login
english version rss feed
Detailed view PhD thesis
Ecole Centrale Paris (27/01/2011), Denis Aubry;Etienne Balmes (Dir.)
Attached file list to this document: 
PDF
plugin-These_Vermot.pdf(28.3 MB)
Frequency and time simulation of squeal instabilities. Application to the design of industrial automotive brakes.
Guillaume Vermot Des Roches1

Le crissement de frein est une nuisance sonore classique dans l'automobile. L'augmentationdes coefficients de friction et la réduction de la masse mènent aujourd'hui à de hauts niveauxvibratoires dans les fréquences auditives, et ces problèmes de qualité se traduisent par des pénalités économiques aux équipementiers, bien qu'il n'existe pas de méthode robuste de conception.La pratique industrielle repose donc sur de coûteuses phases de prototypage et d'ajustement.L'évolution de la puissance de calcul permet le calcul de grands assemblages mécaniques mais lesétudes vibratoires non-linéaires restent généralement hors de portée. Dans ce contexte, l'objectifde la thèse est de fournir, dès les phases de conception, des outils de conception numérique d'aideà la résolution du crissement.Une méthode de réduction paramétrée utilisant comme base de Rayleigh-Ritz les modes réelsdu système assemblé permet la génération de modèles réduits très compacts, avec modes réelsexacts. La méthode proposée d'ajustement des modes de composants utilise les modes libresde composants comme degrés de liberté explicites. L'étude des sensibilités et la réanalyse d'unassemblage en fonction de modifications à l'échelle d'un composant deviennent possibles. Lesétudes temporelles non-linéaires sont rendues possibles par deux développements. Un schémade Newmark non-linéaire modifié et un Jacobien fixe adapté aux vibrations de contact sontintroduits. Le frein est réduit en un superélément avec modes réels exacts et une zone nonréduite au niveau du contact.Un ensemble d'outils de conception est illustré sur un modèle industriel de frein. La stabilitéinstantanée et les trajectoires de modes complexes sont étudiées. Les interactions modales et lesphénomènes non-linéaires au sein des cycles limites sont alors mieux compris. Des corrélationstemps/fréquence sont obtenues par l'identification modale instantanée et une décompositionespace-temps. La grande utilité d'un modèle temporel d'amortissement modal est illustrée.Enfin, la modification d'un composant critique au crissement est testée et validée.
1:  MSSMat - Laboratoire de mécanique des sols, structures et matériaux
Dynamique des structures – Vibrations auto-entretenues – Crissement de frein

Simulation temporelle et fréquentielle des instabilités de crissement. Application à la conception de feins automobiles industriels.
Brake squeal is a common noise problem encountered in the automotive industry. Higherfriction coefficients and weight reduction recently led to higher vibration levels in the audiblefrequency range. This quality issue becomes economic due to penalties imposed to the brakesupplier although no robust design method exists. The industrial practice thus relies on costlyprototyping and adjustment phases. The evolution of computational power allows computationof large mechanical assemblies, but non-linear time simulations generally remain out of reach.In this context, the thesis objective is to provide numerical tools for squeal resolution at earlydesign stages.Parameterized reduction methods are developed, using system real modes as Rayleigh-Ritzvectors, and allow very compact reduced models with exact real modes. The proposed ComponentMode Tuning method uses the components free/free modes as explicit degrees of freedom.This allows very quick sensitivity computation and reanalyzes of an assembly as function oflocal component-wise parameters. Non-linear time simulations are made possible through twoingredients. A modified non-linear implicit Newmark scheme and a fixed Jacobian are adaptedfor contact vibrations. The brake is reduced keeping a superelement with exact real modes anda local non-linear finite element model in the vicinity of the pad/disc interaction.A set of design tools is illustrated for a full industrial brake model. First, instant stabilitycomputations and complex mode trajectories are studied. Modal interactions and non-linearphenomena inside the limit cycles are thus well understood. Time/frequency correlations areperformed using transient modal identification and space-time decomposition. A time domainmodal damping model is also shown to be very useful. The modification of a critical componentfor squeal resolution is finally tested and validated.
Structural dynamics – Self excited vibrations – Brake squeal

all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...