s'authentifier
version française rss feed
Fiche détaillée Thèses
Penn State University (2006-05-12), Nigel Higson (Dir.)
Liste des fichiers attachés à ce document : 
PDF
thesis.pdf(988.1 KB)
Analytic structures for the index theory of SL(3,C)
Robert Yuncken1

Si G est un groupe de Lie connexe, l'anneau de représentations de Kasparov, KK^G(C,C) contient un élément particulièrement important---l'élément gamma---qui établit un lien entre l'anneau de représentations de Kasparov de G et l'anneau de représentations de son sous-groupe compacte maximal K. Dans les preuves de la conjecture de Baum-Connes avec coefficients pour les groupes G=SO(n,1) [Kasparov] et G=SU(n,1) [Julg-Kasparov], une partie fondamentale est la construction explicite de l'élément gamma comme élément de la K-homologie G-équivariante pour l'espace G/B, où B est le sous-groupe de Borel de G. Dans cette thèse, nous décrirons des constructions analytique qui peuvent être utiles pour telle construction de gamma pour le groupe de Lie de rang deux G=SL(3,C). L'inspiration est le complexe de Bernstein-Gel'fand-Gel'fand---un complexe différentiel naturel de fibrés homogènes sur G/B. Les raisons de considérer ce complexe sont expliquées en détails. Pour G=SL(3,C), l'espace G/B admet deux fibrations canoniques, qui réapparaît souvent dans l'analyse suivante. La géométrie locale de G/B se comporte comme la géométrie du groupe de Heisenberg en dimension trois, noté H. Donc, nous étudions l'algèbre d'opérateurs différentiels sur H. Nous définissons une famille à deux paramètres d'espaces de Sobolev H^(m,n)(H), en utilisant les deux fibrations de G/B. Nous introduisons les opérateurs laplaciens longitudinaux $\Delta_X$ et $\Delta_Y$. Nous montrons que ces opérateurs satisfont une condition d'ellipticité longitudinal par rapport aux espaces H^(m,n)(H) pour quelques valeurs (m,n), mais par contre nous donnons un contre-exemple à cette propriété pour un autre choix de (m,n). Ce contre-exemple est un obstacle de taille pour une approche pseudodifférentielle à l'element gamma de SL(3,C). Au lieu de cela, nous considérons l'analyse harmonique du sous-groupe compacte K=SU(3). En utilisant la théorie spectrale des opérateurs laplaciens longitudinaux K-invariants sur G/B, nous construisons une C*-catégorie $\mathcal{A}$ et des idéaux $\mathcal{K}_X$ et $\mathcal{K}_Y$ liés aux fibrations canoniques. Nous expliquons pourquoi celles-là sont les structures prometteuses pour la construction de l'élément gamma.
1 :  Laboratoire de Mathématiques
Théorie de l'indice – groupes semi-simples – algèbres d'opérateurs – analyse harmonique non commutative

If G is a connected Lie group, the Kasparov representation ring KK^G(C,C) contains a singularly important element---the gamma-element---which is an idempotent relating the Kasparov representation ring of G with the representation ring of its maximal compact subgroup K. In the proofs of the Baum-Connes conjecture with coefficients for the groups G=SO(n,1) [Kasparov] and G=SU(n,1) [Julg-Kasparov], a key component is an explicit construction of the gamma-element as an element of G-equivariant K-homology for the space G/B, where B is the Borel subgroup of G. In this thesis, we describe some analytical constructions which may be useful for such a construction of $\gamma$ for the rank-two Lie group G=SL(3,C). The inspiration is the Bernstein-Gel'fand-Gel'fand complex---a natural differential complex of homogeneous bundles over G/B. The reasons for considering this complex are explained in detail. For G=SL(3,C), the space G/B admits two canonical fibrations, which play a recurring role in the analysis to follow. The local geometry of G/B can be modeled on the geometry of the three-dimensional complex Heisenberg group H in a very strong way. Consequently, we study the algebra of differential operators on H. We define a two-parameter family H^(m,n)(H) of Sobolev-like spaces, using the two fibrations of G/B. We introduce fibrewise Laplacian operators $\Delta_X$ and $\Delta_Y$ on $H$. We show that these operators satisfy a kind of directional ellipticity in terms of the spaces H^(m,n)(H) for certain values of (m,n), but also provide a counterexample to this property for another choice of (m,n). This counterexample is a significant obstacle to a pseudodifferential approach to the gamma-element for SL(3,C). Instead we turn to the harmonic analysis of the compact subgroup K=SU(3). Here, using the simultaneous spectral theory of the K-invariant fibrewise Laplacians on G/B, we construct a C*-category $\mathcal{A}$ and ideals $\mathcal{K}_X$ and $\mathcal{K}_Y$ related to the canonical fibrations. We explain why these are likely natural homes for the operators which would appear in a construction of the gamma-element.
Index theory – semisimple groups – operator algebras – noncommutative harmonic analysis

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...