s'authentifier
version française rss feed
Fiche détaillée Thèses
Université de Strasbourg Ruhr-Universität Bochum (18/03/2011), Patrick Foulon et Gerhard Knieper (Dir.)
Versions disponibles :
Liste des fichiers attachés à ce document : 
PDF
these.pdf(1.5 MB)
Dynamics and entropies of Hilbert metrics
Mickaël Crampon1, 2

On étudie le flot géodésique d'une géométrie de Hilbert définie par un ouvert strictement convexe à bord de classe $C^1$. On s'intéresse à la fois à son comportement local autour d'une orbite, et à ses propriétés globales sur une variété quotient. On explique en quoi ce flot a des propriétés locales de type hyperbolique, en étudiant notamment ses exposants de Lyapunov, qu'on relie précisément à la forme du bord du convexe. On prouve un résultat de rigidité entropique pour les quotients compacts. Dans le reste de la thèse, on développe des outils généraux permettant d'aborder le cas des quotients non compacts, en s'inspirant de qu'on sait faire en courbure négative. Le cas des surfaces géométriquement finies est traitée plus spécifiquement, et le théorème de rigidité est étendu au cas des surfaces de volume fini.
1 :  IRMA - Institut de Recherche Mathématique Avancée
2 :  Ruhr-Universität Bochum
géométrie de Hilbert – dynamique hyperbolique – flot géodésique – entropie – exposants de Lyapunov

Dynamics and entropies of Hilbert metrics
We study the geodesic flow of a Hilbert geometry defined by a strictly convex open set with $C^1$ boundary. We get interested in its local behaviour around one specific orbit as well as its global properties on a quotient manifold. We explain why this flow has hyperbolic-like properties, by studying in particular its Lyapunov exponents, which are linked in a precise way to the shape of the boundary of the convex. We prove an entropy rigidity result for compact quotients. We also develop general tools that can be used when considering noncompact ones, following ideas and results of negative curvature. The case of geometrically finite surfaces is studied in details, and the entropy rigidity theorem is extended to finite volume surfaces.

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...