Migration cellulaire par instabilité corticale et disjonction cytosquelette-membrane - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2009

A membrane unbinding transition drives cortical dynamics instabilities and cell motility

Migration cellulaire par instabilité corticale et disjonction cytosquelette-membrane

Benoît Maugis
  • Fonction : Auteur
  • PersonId : 875268

Résumé

Actin polymerization provides the force that directly drives cell motility in a large number of situations, but some observations suggest that amoeboid motions might rely on distinct mechanisms. Using the model of Entamoeba histolytica, we previously observed that these cells produce transient protrusions that are necessary for cell motions. Mutations affecting myosin activity and adhesion molecules inhibit the protrusive activity and cell motility (Coudrier et al, Cell Microbiol. 2005). Following on these observations, we postulated that ameboid motions of Entamoeba histolytica are controlled by a cyclic dynamic instability of the cell cortex: the plasma membrane produces a bleb by unbinding from the cortical cytoskeleton under the action of the internal pressure generated by acto-myosin contraction, and the actin cortex reassembles at the surface of the blebs. The fast initial expansion (faster than actin polymerization) and the analogy with apoptotic blebs produced by the proteolytic disruption of cytoskeleton-membrane links, was a strong indication that Entamoeba histolytica moves by projecting initially cytoskeleton-free blebs, which is confirmed by live fluorescence microscopy of stained F-actin. Experimentally, the protrusion formation has been analyzed in details by video-microscopy. Protrusions first expand during a few hundreds of milliseconds with very high velocities (up to a few tens of μm/s). Then, expansion goes on with locally spherical membrane shape and no intracellular vesicles. At a later stage, the actin cortex collapses and further expansion appears to be powered by a larger flow with intracellular vesicles. Alternatively, protrusions can retract or get stabilized. The blebbing / stabilization cycle leads to random net cell motions sustained over hours. We present here a physical model that describes the control parameters of the dynamic instability. Using suction pressure of a micropipette, we are able to trigger protrusions, and controled geometry of the experiment gives rise to reproducible protrusive events, pretty well decribed by theoretical models. Such cortical instabilities may thus represent a distinct to generate cell motility, relevant for pathogen invasion and immune cell motions.
La polymérisation d'actine fournit la force qui produit directement la motilité dans un grand nombre de cas, mais certaines observations suggèrent que la motilité amiboïde fasse appel à d'autres mécanismes. En utilisant le modèle d'Entamoeba histolytica, il avait été précédemment observé que ces cellules produisent des protrusions transitoires, nécessaires au mouvement. Des mutations affectant l'activité de la myosine et des molécules d'adhésion inhibent l'activité protrusive et la motilité [Coudrier et al., 2005]. En nous appuyant sur ces observations, nous avons fait l'hypothèse que les mouvements amiboïdes d'Entamoeba histolytica sont contrôlés par une instabilité dynamique cyclique du cortex cellulaire : la membrane plasmique produit un bleb par détachement du cytosquelette cortical, sous l'action d'une pression interne due à la contraction acto-myosine, puis le cortex se reforme sous la surface du bleb. L'expansion initiale rapide (plus rapide que les vitesses maximales de polymérisation d'actine) et l'analogie avec des blebs apoptotiques produits par rupture protéolytique des liens cytosquelette-membrane, étaient des indications fortes que Entamoeba histolytica se déplace en émettant des blebs initialement dépourvus de cortex, ce que nous avons pu confirmer par microscopie de fluorescence sur des amibes dont l'actine-F était marquée. Expérimentalement, la formation des protrusions a été analysée en détails par vidéo-microscopie. Les protrusions se développent tout d'abord durant quelques centaines de millisecondes à de très hautes vitesses (jusqu'à quelques dizaines de μm/sec). Ensuite, leur expansion se poursuit avec une membrane ayant une forme localement sphérique et en l'absence d'organites intracellulaires dans la protrusion. A un stade ultérieur, le cortex d'actine basal disparaît et l'expansion qui s'ensuit s'ac- compagne d'un large flot d'organites intracellulaires. Les protrusions peuvent soit être rétractées, soit stabilisées. Le cycle de blebbing / stabilisation conduit à des mou- vements cellulaires sans direction persistante, qui se poursuivent des heures durant. Nous présentons ici un modèle physique décrivant les paramètres de contrôle de cette instabilité dynamique. En utilisant la pression d'aspiration d'une micropipette, nous pouvons produire des protrusions, et la géométrie contrôlée de l'expérience donne lieu à des événements protrusifs reproductibles, qui peuvent être décrits en détail par une modélisation quantitative appropriée. De telles instabilités corticales pourraient donc représenter une façon distincte de générer de la motilité cellulaire, pertinente entre autres dans un contexte d'invasion pathogène ou dans le cadre des mouvements de cellules immunitaires.
Fichier principal
Vignette du fichier
these-BenoA_t-MAUGIS.pdf (5.34 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00512834 , version 1 (31-08-2010)

Identifiants

  • HAL Id : tel-00512834 , version 1

Citer

Benoît Maugis. Migration cellulaire par instabilité corticale et disjonction cytosquelette-membrane. Biophysique [physics.bio-ph]. Université Paris-Diderot - Paris VII, 2009. Français. ⟨NNT : ⟩. ⟨tel-00512834⟩
381 Consultations
1695 Téléchargements

Partager

Gmail Facebook X LinkedIn More