s'authentifier
version française rss feed
Fiche détaillée Thèses
Université Joseph-Fourier - Grenoble I (29/09/2009), Alain Manceau (Dir.)
Liste des fichiers attachés à ce document : 
PDF
Kirpichtchikova_PhD_Thesis.pdf(28.5 MB)
ANNEX
Kirpichtchikova_PhD_Presentation.pdf(26.8 MB)
Bioferme.mov(24.3 MB)
Phytoremédiation par Jardins Filtrants d'un sol pollué par des métaux lourds : Approche de la phytoremédiation dans des casiers végétalisés par des plantes de milieux humides et étude des mécanismes de remobilisation/immobilisation du zinc et du cuivre
Tatiana Kirpichtchikova1, 2, 3

De nombreuses études en phytoremédiation visent à accroître le prélèvement des métaux par les plantes pour dépolluer les sols. Ce travail porte sur une nouvelle approche de phytoremédiation appelée Jardins Filtrants qui consiste à traiter le sol dans des casiers végétalisés par des plantes de milieux humides (Phragmites australis, Iris pseudacorus et Salix viminalis) et irrigués de manière à imposer une alternance des conditions hydromorphie-assèchement afin d'accroître la solubilité de métaux dans le sol et de les extraire par lixiviation. Dans une expérience pilote de seize mois, cette approche a été appliquée pour la phytoremédiation de Zn, Cu et Pb d'un sol agricole fortement pollué par l'épandage d'eaux usées. Le bilan de masse des métaux dans les systèmes sol-plante a montré que seule une quantité non-significative des métaux a été accumulée dans la biomasse des plantes. Une quantité importante des métaux a été éliminée du sol via la phytolixiviation résultant de l'interaction de l'activité racinaire avec l'irrigation. Un traitement chimique complémentaire au citrate permet d'augmenter la lixiviation. Les mécanismes de transformations de Zn et Cu impliqués dans cette phytoremédiation ont été mis en évidence par combinaison des techniques analytiques sur la source synchrotron à micro- (µXRF, µXRD, µEXAFS) et macro-échelle (EXAFS) couplée aux analyses chimiques, permettant d'identifier et quantifier les formes des métaux dans le sol. Dans le sol initial, le zinc a été majoritairement sous formes de minéraux secondaires (Zn-ferrihydrite, Zn-phosphate et Zn-phyllosilicate modélisé par Zn-kérolite) et le cuivre a été associé essentiellement à la matière organique. L'activité racinaire dans les conditions hydromorphie-assèchement a profondément modifié la spéciation des métaux. Zn-ferrihydrite, une des formes majoritaires de Zn, a été complètement dissoute. La dissolution réductive de cet oxyhydroxyde de fer, favorisée par les conditions d'hydromorphie, a induit la lixiviation de Zn. Une partie de Zn solubilisé a coprécipité avec Fe en un autre oxyhydroxyde de fer zincifère moins soluble, Zn-goethite substituée, dans les conditions oxydantes et avec assistance des racines formant des plaques de goethite en défense contre l'excès de métaux dissous. De plus, les nouvelles particules de Zn métallique et ZnO ont été découvertes dans la rhizosphère, en faible quantité. L'oxydation de la matière organique a induit l'excès de Cu cationique toxique. En réponse au stress oxydant, ce cuivre a été biotransformé par les racines en association avec des mycorhizes en nanoparticules de Cu métallique, en quantité importante. Ce nouveau mode de biominéralisation peut être typique des plantes de milieux humides. Cette nouvelle voie de phytoremédiation implique principalement la phytolixiviation induisant la solubilisation des métaux et leur lixiviation et la phytotransformation, due pour une part à la phytodétoxication, conduisant la conversion des métaux toxiques en formes peu solubles.
1 :  Phytorestore
2 :  LGIT - Laboratoire de géophysique interne et tectonophysique
3 :  LGCA - Laboratoire de géodynamique des chaines alpines
phytoremédiation – phytorestauration – jardins filtrants – phytolixiviation – phytotransformation – phytodétoxication – bioferme – sol – rhizosphère – spéciation – métaux lourds – zinc – cuivre – plomb – zinc métallique – cuivre métallique – nanoparticules – Phragmites australis – Iris pseudacorus – Salix viminalis – citrate – chélatants – XRF – EXAFS

Phytoremediation of Metal Contaminated Soil by Filtering Gardens
Numerous studies in phytoremediation have tried to increase the uptake of metals by plants for soil cleanup. This work is about a new phytoremediation approach named Filtering Gardens using common wetland plants (Phragmites australis, Iris pseudacorus and Salix viminalis) in the vegetated cells irrigated so as to impose periodic flooding-drying conditions for enhancing the solubility of metals in the soil and their removal through leaching. In a pilot-scale sixteen-month experiment, this approach was applied for phytoremediation of Zn, Cu and Pb from an agricultural soil highly contaminated by sewage disposal. Metal mass balances for soil-plant systems showed that only a non-significant amount of metals was accumulated in plant tissues. An important amount of metals was removed from the soil via phytoleaching resulting from the interaction of plant roots with irrigation. An additional chemical treatment with citrate can enhance metal leaching. Mechanisms of Zn and Cu transformations involved in this phytoremediation were highlighted by combining synchrotron-based X-ray analytical tools at micro- (µXRF, µXRD, µEXAFS) and macro-scale (EXAFS) coupled with chemical analyses, allowing to determine the nature and amount of metal forms in the soil. In the initial soil, zinc was occurred mainly as secondary minerals (Zn-ferrihydrite, Zn-phosphate and Zn-kerolite-like-phyllosilicate) and copper was essentially bound to organic matter. The activity of plant roots under flooding-drying conditions clearly modified the original speciation of metals. In the phytoremediated soil, Zn-ferrihydrite, one of the initially major forms of Zn, was entirely dissolved. The reductive dissolution of this iron oxyhydroxide favored by flooding conditions was the major process inducing Zn leaching. One part of solubilized Zn coprecipitated with Fe into another less soluble iron oxyhydroxide, Zn-substituted goethite, under oxidizing conditions and with assistance by plant roots likely in defense against toxic dissolved metals, as evidenced by the formation of goethite plaques on and near roots. Moreover, the newly occurred particles of metallic Zn and ZnO were discovered in the rhizosphere, in small amount. The oxidation of organic matter likely enhanced by root oxygen release caused an excess of toxic cationic Cu. In response to oxidative stress, this Cu was biotransformed into metallic Cu nanoparticles, in important amount, by plant roots with evidence of assistance by endomycorrhizal fungi. This newly identified mode of metal biomineralization by plant roots may be typical of common wetland plants. This new way of making phytoremedation involves mainly phytoleaching inducing the solubilization of metals in the soil and their leaching and phytotransformation, due in part to phytodetoxication, driving the conversion of toxic metals into weakly soluble forms.
phytoremediation – phytorestoration – filtering gardens – phytoleaching – phytotransformation – phytodetoxication – biofarm – soil – rhizosphere – speciation – heavy metals – zinc – cooper – lead – metallic zinc – metallic copper – nanoparticles – Phragmites australis – Iris pseudacorus – Salix viminalis – citrate – chelants – XRF – EXAFS

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...