login
english version rss feed
Detailed view PhD thesis
Université de Nantes (11/05/2010), Xavier Gandibleux (Dir.)
Attached file list to this document: 
PDF
these_julien_jorge.pdf(1.7 MB)
ANNEX
soutenance_julien_jorge.pdf(667.6 KB)
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires
Julien Jorge1

Ce travail porte sur la résolution exacte d'un problème d'optimisation combinatoire multi-objectif. Nous cherchons d'une part à confirmer l'efficacité de l'algorithme dit en deux phases, et d'autre part à poser une généralisation des procédures de séparation et évaluation, populaires dans le cadre mono-objectif mais presque absentes en multi-objectif. Notre étude s'appuie sur le problème multi-objectif de sac à dos unidimensionnel en variables binaires. Ce dernier est un classique de l'optimisation combinatoire, présent comme sous problème dans de nombreux problèmes d'optimisation. La première partie de nos travaux porte sur un pré-traitement permettant de réduire la taille d'instances de ce problème. Nous mettons en évidence plusieurs propriétés permettant de déterminer a priori une partie de la structure de toutes les solutions efficaces. Nous nous attachons ensuite à décrire une procédure performante de type deux phases pour ce problème, tout d'abord dans le cas bi-objectif. Nous étendons ensuite cette procédure pour des instances ayant trois objectifs ou plus. Les résultats obtenus sont comparés aux meilleurs algorithmes existants pour ce problème et confirment l'efficacité de l'approche en deux phases. La dernière partie de notre travail concerne la généralisation au cas multi-objectif d'une procédure de séparation et évaluation. Nous identifions plusieurs difficultés auxquelles nous répondons en proposant deux nouvelles procédures. Les expérimentations numériques indiquent que ces dernières permettent de résoudre des instances en des temps raisonnables, bien qu'elles n'atteignent pas les performances d'une procédure de type deux phases.
1:  LINA - Laboratoire d'Informatique de Nantes Atlantique
optimisation combinatoire multi-objectif  – problème de sac à dos unidimensionnel en variables binaires  – résolution exacte  – pré-traitement  – méthode en deux phases  – procédure de séparation et évaluation

New propositions for the exact solution of the unidimensional multi-criteria knapsack problem with binary variables
The purpose of this work is the exact solution of a problem from the field of multi-criteria combinatorial optimisation. Our goal his twofold. First, we aim at confirming the efficiency of the so-named two-phases algorithms. Then, we set a generalisation of the branch and bound procedures, popular in the mono-criteria case but almost non-existent in the multi-criteria case. Our work is based on the unidimensional multi-criteria knapsack problem with binary variables, a classic from combinatorial optimisation, found as a sub problem in many optimisation problems. The first part concerns the reduction of the instances of the problem. We expose several properties allowing to a priori find some parts of the structure of all efficient solutions. Then, we describe an efficient two-phases procedure for this problem. Initially in the bi-criteria case, we improve the original procedure from Visée et al. (1998) before defining a new procedure to efficiently find the solutions in the second phase. This algorithm is extended to the tri- and multi-criteria case in the next part. Finally, the generalisation of the branch and bound procedure is the last part of our work. We focus on several difficulties, to which we answer with two new procedures. Numerical experiments show that these procedures can solve instances in acceptable time. Nevertheless, the two-phases algorithms outperform these procedures, just like the best known procedures for this problem.
multi-objective combinatorial optimisation  – unidimensional binary knapsack problem  – exact resolution  – preprocessing  – two phase method  – branch and bound

all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...