s'authentifier
version française rss feed
Fiche détaillée Thèses
Université d'Avignon (10/07/2009), Juan-Manuel Torres Moreno;Marc El-Bèze (Dir.)
Liste des fichiers attachés à ce document : 
PDF
2009AVIG0167_0_0.pdf(1.6 MB)
Traitement automatique d'informations appliqué aux ressources humaines
Rémy Kessler1

Depuis les années 90, Internet est au coeur du marché du travail. D'abord mobilisée sur des métiers spécifiques, son utilisation s'étend à mesure qu'augmente le nombre d'internautes dans la population. La recherche d'emploi au travers des « bourses à l'emploi électroniques » est devenu une banalité et le e-recrutement quelque chose de courant. Cette explosion d'informations pose cependant divers problèmes dans leur traitement en raison de la grande quantité d'information difficile à gérer rapidement et efficacement pour les entreprises. Nous présentons dans ce mémoire, les travaux que nous avons développés dans le cadre du projet E-Gen, qui a pour but la création d'outils pour automatiser les flux d'informations lors d'un processus de recrutement. Nous nous intéressons en premier lieu à la problématique posée par le routage précis de courriels. La capacité d'une entreprise à gérer efficacement et à moindre coût ces flux d'informations, devient un enjeu majeur de nos jours pour la satisfaction des clients. Nous proposons l'application des méthodes d'apprentissage afin d'effectuer la classification automatique de courriels visant leur routage, en combinant techniques probabilistes et machines à vecteurs de support. Nous présentons par la suite les travaux qui ont été menés dans le cadre de l'analyse et l'intégration d'une offre d'emploi par Internet. Le temps étant un facteur déterminant dans ce domaine, nous présentons une solution capable d'intégrer une offre d'emploi d'une manière automatique ou assistée afin de pouvoir la diffuser rapidement. Basé sur une combinaison de systèmes de classifieurs pilotés par un automate de Markov, le système obtient de très bons résultats. Nous proposons également les diverses stratégies que nous avons mises en place afin de fournir une première évaluation automatisée des candidatures permettant d'assister les recruteurs. Nous avons évalué une palette de mesures de similarité afin d'effectuer un classement pertinent des candidatures. L'utilisation d'un modèle de relevance feedback a permis de surpasser nos résultats sur ce problème difficile et sujet à une grande subjectivité.
1 :  LIA - Laboratoire Informatique d'Avignon
Traitement automatique du langage naturel – Apprentissage automatique – Recherche d'information – Ressources humaines – Modèles probabilistes – Mesures de similarité

Automatic processing of information applied to human resources
Since the 90s, Internet is at the heart of the labor market. First mobilized on specific expertise, its use spreads as increase the number of Internet users in the population. Seeking employment through "electronic employment bursary" has become a banality and e-recruitment something current. This information explosion poses various problems in their treatment with the large amount of information difficult to manage quickly and effectively for companies. We present in this PhD thesis, the work we have developed under the E-Gen project, which aims to create tools to automate the flow of information during a recruitment process.We interested first to the problems posed by the routing of emails. The ability of a companie to manage efficiently and at lower cost this information flows becomes today a major issue for customer satisfaction. We propose the application of learning methods to perform automatic classification of emails to their routing, combining technical and probabilistic vector machines support. After, we present work that was conducted as part of the analysis and integration of a job ads via Internet. We present a solution capable of integrating a job ad from an automatic or assisted in order to broadcast it quickly. Based on a combination of classifiers systems driven by a Markov automate, the system gets very good results. Thereafter, we present several strategies based on vectorial and probabilistic models to solve the problem of profiling candidates according to a specific job offer to assist recruiters. We have evaluated a range of measures of similarity to rank candidatures by using ROC curves. Relevance feedback approach allows to surpass our previous results on this task, difficult, diverse and higly subjective.
Natural language processing – Machine-Learning – Information retrieval – Human ressources – Statistical approaches – Similarity measures

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...