s'authentifier
version française rss feed
Fiche détaillée Thèses
École Nationale Supérieure des Mines de Paris (23/01/2002), Patrick Laborde et Pierre Montmitonnet (Dir.)
Liste des fichiers attachés à ce document : 
PDF
these-renon.pdf(3.6 MB)
Simulation numérique par éléments finis des grandes déformations des sols : application à la scarification
Nicolas Renon1

Le déminage mécanique consiste à scarifier le sol avec une " charrue ", outil formé d'une lame en V munie de plusieurs dents, poussée par un engin : les dents déstructurent le sol et le font remonter devant la lame qui l'évacue sur le côté avec les mines qu'il contient. L'objectif de nos travaux est de mettre en œuvre la simulation numérique par éléments finis du problème fortement non linéaire issu de la modélisation de la scarification du sol. Le code d'éléments finis implicite Forge3®, dédié à la mise en forme des métaux, a été choisi comme support numérique. Il permet de prendre en compte les grandes déformations, en particulier à l'aide de son remaillage automatique. Nous avons dans un premier temps implanté dans ce code deux modèles élastoplastiques de comportement, l'un incompressible réservé aux sols fins saturés, purement cohésifs, l'autre compressible, fondé sur la notion d'état critique, pour les matériaux purement frottants ou cohésifs et frottants. Ces modèles adoucissants sont intégrés par un schéma de retour radial généralisé, au sein d'une formulation implicite du problème aux limites. Nous montrons que la matrice de raideur est non symétrique dans le cas compressible et que la symétrisation du système ne conduit pas à une approche robuste. Nous avons donc importé et testé un solveur itératif non-symétrique : Bi-CGSTAB. Nous avons validé la programmation de ces modèles sur des essais triaxiaux. Pour les comportements adoucissants, on constate des oscillations dans la relation contrainte/déformation passé le pic de contrainte. Ces difficultés numériques sont traitées par linéarisation et régularisation. Dans un deuxième temps, nous avons mis en œuvre des simulations de scarification pour différents niveaux de complexité : une dent seule, une dent + une tranche de lame, plusieurs dents, en faisant suffisamment avancer l'outil pour atteindre le régime stationnaire ; cela se révèle d'autant plus long que l'outil est large, ce qui nous amène au calcul très intensif. L'influence de paramètres géométriques comme l'inclinaison de la dent ou l'angle d'étrave du système a été mise en évidence, elle est qualitativement conforme aux observations expérimentales. L'étude de l'influence des paramètres des modèles de comportement montre la prépondérance de ceux liés à l'état critique, i.e. aux propriétés mécaniques après de grandes déformations. Enfin nous avons validé qualitativement le code en termes de modes d'écoulements et de répartition des efforts pour des outils multi-dents. La comparaison quantitative des efforts reste à affiner en revenant sur le comportement choisi et son implémentation.
1 :  CEMEF - Centre de Mise en Forme des Matériaux
Interaction outil/sol – Scarification – Déminage – Modélisation – Elasto-plasticité – Plasticité compressible – Simulations numériques 3D – Calcul intensif

Numerical simulation of soil large deformation with finite element method: application to ploughing
Mine clearing (or military breaching) consists in ploughing the superficial layer of the soil with a multi-tine blade located in front of a pusher vehicle: the tine destructure the soil and heave it in front of the blade which pushes it aside, with the mines inside. The aim of the present study is to perform the numerical simulation by the 3D finite element method of the highly non-linear problem of soil ploughing modeling. The numerical tool chosen for this purpose is the implicit finite element code Forge3® (devoted to Metal Forming Processes) which, thanks to its automatic re-meshing routine, is able to model large deformation. We have implemented in Forge3® two hypo-elastic-plastic models: an incompressible one for saturated fine soils, purely cohesive, and a compressible one based on the critical state concept for frictional or frictional-cohesive materials. These worksoftening material models are time-integrated by a generalized radial return technique within an implicit formulation. We show that compressibility yields a non-symmetric stiffness matrix, and that the symmetrization of the system is not robust enough, so that the non-symmetric solver Bi-CGSTAB has been implemented after comparative tests. The implemented models were validated on triaxial tests. For softening models, oscillations occurred in the stress/strain curves after the stress peak. These numerical difficulties were overcome using linearisation and regularisation techniques. As a second step, we performed numerical simulations for different kinds of tools : a single tine, a single tine + a slab of a blade, several tines and several tines + a blade. Tool displacements were simulated until a steady state was reached. This takes displacements all the larger as the tool system is wider, leading to intensive computation. Geometric parameters such as tine rake angle or system stem angle clearly influence the complex material flow patterns, in a way similar to experimental observations. Material model parameters shown dominant are those linked with the concept of critical state, i.e. corresponding to the large deformation range. Finally the global model was validated from a qualitative point of view, in terms of flow pattern and force distribution for multi-tine tools. Quantitative comparison with experiments must still be refined, returning to the constitutive model and its implementation.
Soil/tool interaction – Ploughing – Mine clearance – Modelisation – Compressible plasticity – Elasto-plasticity – 3D numerical simulation – Intensive computation

tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...
tous les articles de la base du CCSd...