login
english version rss feed
Detailed view PhD thesis
Université Montpellier II - Sciences et Techniques du Languedoc (18/06/2002), Claude Cibils (Dir.)
Attached file list to this document: 
PDF
Rapport.pdf(659.2 KB)
Le groupe fondamental algébrique
Eric Reynaud1

Dans l'optique d'étudier les modules de génération finie sur des algèbres de dimension finie, il a été développé ces dernières années une méthode diagramatique, essentiellement due à P. Gabriel, basée sur des carquois, c'est-à-dire sur des graphes orientées finis. Plus précisément, il a été démontré que pour toute algèbre A sobre de dimension finie sur un corps k algébriquement clos, il existe un carquois unique Q et au moins un idéal I admissible de l'algèbre kQ, l'algèbre des chemins de Q, tels que A soit isomorphe à kQ=I. Un tel couple (Q; I) est nommé une présentation de A par carquois et relations. Pour chaque paire (Q; I), nous pouvons définir un groupe fondamental Pi1(Q; I). En général, cependant, différentes présentations d'une même algèbre peuvent conduire à des groupes fondamentaux difféerents. Ainsi, une algèbre dont toutes les présentations donnent un groupe fondamental trivial est appelée simplement connexe. L'importance des algèbres simplement connexes dans la théorie des représentations d'algèbres réside dans le fait que souvent il est possible de réduire, avec l'aide des recouvrements, l'étude des modules indécomposables d'une algèbre à ceux d'une algèbre simplement connexe bien choisie. Le premier résultat consiste à donner une vision géométrique du groupe fondamental pour une certaine classe d'algèbre : les algèbres d'incidence. Ces algèbres ont une particularité : leur groupe fondamental ne dépend pas du choix de la présentation. Ainsi, à chaque algèbre d'incidence, il est possible d'associer un groupe fondamental algébrique. Par ailleurs, à partir de ce poset, est possible de construire un complexe simplicial qui possède quant à lui un groupe fondamental topologique. Nous prouvons, ici, que ces groupes sont isomorphes. Ce lien permet non seulement d'adapter certains théorèmes de topologie tel que le théorème de Van Kampen, mais également de faire le lien entre des résultats déjà établis en topologie et d'autres en théorie des représentations. Dans un deuxième temps, afn de donner une vision géométrique de tout groupe fondamen- tal algébrique, nous avons associé à toute présentation (Q; I) d'algèbre une algèbre d'incidence A dont le groupe fondamental a la particularité, d'après le résultat précédent, de se réaliser géométriquement. Nous montrons ensuite que les groupes fondamentaux précédents s'insèrent dans la suite exacte : 1 --> H --> Pi1(Q; I) --> Pi1(A) --> 1 où H est un sous-groupe décrit par générateur et relations. Nous donnons également de nom- breux cas où le sous groupe H est trivial. Enfin, nous donnons un algorithme de calcul du groupe fondamental, qui permet de présenter rapidement le groupe fondamental par générateurs et relations. Pour calculer le groupe fondamental d'un couple (Q; I), nous montrons qu'il est isomorphe au groupe fondamental d'un couple (Q0; I0) où Q0 contient un sommet de moins que Q. Ainsi en réitérant le processus, le groupe fondamental Pi1(Q; I) est isomorphe au groupe fondamental d'un carquois ne contenant qu'un seul sommet, ce qui donne une présentation par générateurs et relations.
1:  GETODIM - Laboratoire de Géométrie, Topologie et Algèbre
représentation d'algèbres – groupe fondamental – complexe simplicial – cohomologie de Hochschild

The algebraic fundamental group
We prove that the fundamental group of a simplicial complex is isomorphic to the algebraic fundamental group of itsincidence algebra, and we derive some applications
algebra representation – fundamental group – simplicial complexe – Hochschild cohomology

all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...
all articles on CCSd database...