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1 Introduction

In many decision contexts, a decision maker bases his choice on several cri-
teria, often conflicting. For example, when traveling by car we are interested
in minimizing the fuel used and minimizing the time of the travel, when buy-
ing a product we are interested in minimizing the price and maximizing the
quality, when constructing a building we are interested in minimizing the cost
and maximizing the safety of the structure. This kind of practical multi-objective

or multicriteria problems led to the field of research called multi-objective opti-
mization (see [24, 25, 34] for general overviews).

In multi-objective optimization, in opposition to single objective optimiza-
tion, there is typically no optimal solution i.e. one that is best for all the criteria.
Therefore, the standard situation is that any solution can always be improved
on at least one criterion. The solutions of interest, called efficient solutions, are
those such that any other solution which is better on one criterion is necessarily
worse on at least one other criterion. In other words, a solution is efficient if its
corresponding vector of criterion values is not dominated by any other vector of
criterion values corresponding to a feasible solution. These vectors, are called
feasible points when associated to feasible solutions and nondominated points

when associated to efficient solutions. The set of all nondominated points is
usually called the Pareto set. Since each efficient solution could be interesting
for a decision maker, the question is: How can we "solve" a multi-objective
problem?

A first approach consists in aggregating the different objective functions in
one global objective function and then consider the problem as a single ob-
jective optimization problem. Many ways to aggregate the different objective
functions have been studied and developed [21, 35, 39, 42, 60, 83]. Never-
theless, this approach is relevant only if it is possible to define such a function
that represents the preferences of the decision maker and if it is then possible
to optimize the aggregated function. In general, it is not easy to formalize the
preferences of a decision maker and moreover sometimes we may have different
decision makers who have different preferences.

The second approach consists in producing all the efficient set (or a set of
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6 CHAPTER 1. INTRODUCTION

solutions that represents as well as possible the efficient set). This provides a
representation of the trade-offs between objectives and may support the deci-
sion maker in identifying solutions of interest.

Note that, how a decision maker will make his choice among the proposed
solutions, is an important field of research called Decision Aiding which has
grown significantly since Bernard Roy introduced in 1968 the well-known method
ELECTRE [70]. This kind of questions will not be discussed in this thesis. We are
only focused in producing an interesting set of solutions for a decision maker,
not in helping him to make his choice among this set of solutions.

For many multi-objective optimization problems, one of the main difficulties
is the large cardinality of the set of nondominated points, and the even larger
cardinality of the set of efficient solutions (considering that several solutions can
have the same image in the criterion space). Similarly to single objective opti-
mization where we usually look for one among all optimal solutions, we usually
look for all nondominated points and a corresponding efficient solution for each
such point. Thus, the study can be restricted to the set of nondominated points.
Even with this restriction, it is well-known, that most multi-objective combinato-
rial optimization problems are intractable, in the sense that they admit families
of instances for which the number of nondominated points is exponential in the
size of the instance [24].

It appears that the intractability situation arises when the number of values
taken on each criterion is itself exponential in the size of the instance. Then,
either it is possible to have some a priori information on the different criteria
to avoid this case, or it is not possible to produce the full set of nondominated
points and we have to contend with an approximation of this set. In this last
case, the goal is to compute and give to a decision maker a set of solutions that
represents as well as possible the different choices, i.e. providing a good approx-
imation of the Pareto set. There exists two different approaches to compute an
approximation set.

The first one is based on heuristics or metaheuristics which are very useful
in practice but give no guarantee on the quality of the returned solutions. The
running times of these algorithms is also often competitive but no theoretical
results can be established.

The second approach is to produce approximation algorithms with guaran-
teed performance. The main and most ambitious approximation algorithms are
(fully) polynomial time approximation schemes, called PTAS (resp. FPTAS). A
PTAS (resp. FPTAS) produces, for any ε > 0, a particular approximation of the
Pareto set called ε-Pareto set in a time polynomial in the size of the instance
(and 1/ε). An ε-Pareto set is a set Pε of feasible points that approximately dom-
inates every other feasible points, i.e. such that for every feasible point z it
contains a feasible point z′ that is better within a factor 1 + ε than z in all the
objectives.
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This approach, which is central in this thesis, has grown significantly when
Papadimitriou and Yannakakis [66] showed that for every multi-objective op-
timization problem and every ε > 0 there exists an ε-Pareto set whose size is
polynomial in the size of the instance and 1/ε. Moreover, they gave a necessary
and sufficient condition for its efficient computability.

Note that, there may exist ε-Pareto sets of very different sizes. An inter-
esting problem introduced by Vassilvitskii and Yannakakis [80] and continued
by Diakonikolas and Yannakakis [20] is the efficient construction of ε-Pareto
sets of size as small as possible. Indeed, the construction of an ε-Pareto set of
polynomial size could not be sufficient for multiple practical reasons. For ex-
ample, when buying a new apartment, we could have time to visit only a few
apartments. Anyway, it is why even when the full Pareto set has a polynomial
size, we may still prefer produce an ε-Pareto set of small size instead of the full
Pareto set.

The notion of representation of the Pareto set, which is even more general
than the notion of ε-Pareto set, can also be considered. A representation is
evaluated according to three main dimensions: the quality of the coverage, i.e.
providing a good approximation, the cardinality, i.e. it does not contain too
many points, the spacing, i.e. it does not include any redundancies [33, 72].
Indeed, still when buying our apartment, we do not want to visit several apart-
ments that are very similar. The notion of representation of the Pareto set is
meaningful since it is closer to a set of solutions that a decision maker would
receive to make his choice.

Goal of the thesis The goal of this thesis is to propose new general methods
to get around the intractability of multi-objective optimization problems and
to present some algorithms that produce good representations of the nondomi-
nated set.

First, we try to give some insight on this intractability by determining an,
easily computable, upper bound on the number of nondominated points, know-
ing the number of values taken on each criterion (chapter 3). Then, we are
interested in producing some discrete and tractable representations of the set
of nondominated points for each instance of multi-objective optimization prob-
lems. These representations must satisfy some conditions of coverage, cardinal-

ity and if possible spacing. Starting from works aiming to produce ε-Pareto sets
of small size, we first propose a direct extension of these works (chapter 4),
then we focus our research on ε-Pareto sets satisfying an additional condition
of stability (chapter 5).

Our results are mainly theoretical. When we propose a bound, it is easily
computable, when we propose an algorithm, it is computable in polynomial
time and with guaranteed performance. Moreover, no multi-objective optimiza-
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tion problem is studied in particular in this thesis, the methods are generic and
relevant for every multi-objective optimization problem.

The work presented in this thesis has been performed in the context of
the ANR (French Research Agency) project GUEPARD "GUaranteed Efficiency
for PAReto optimal solutions Determination in multiobjective combinatorial op-
timization problems" (2009-2013). It included three partners: LIP6 (Univer-
sité Paris-VI), LAMSADE (Université Paris-Dauphine), and LINA (Université de
Nantes). The project was divided into five complementary tasks that cover the
main scientific questions to be dealt with in any multi-objective combinatorial
optimization study:

1. Analysis of instances of multi-objective combinatorial optimization prob-
lems.

2. Complexity and approximability of multi-objective combinatorial optimiza-
tion problems.

3. Exact methods for the determination of the Pareto set.

4. Efficient approximation algorithms for the Pareto set with provable guar-
antees.

5. Preference-based optimization for compromise search.

Our contributions are related to tasks 2 and 4.

Organization of the thesis This thesis is organized as follows:

In chapter 2, entitled Preliminaries, we define the basic concepts, give details
on the different ways to study multi-objective optimization problems, formalize
the different problems studied in this thesis and recall some previous related
works.

In chapter 3, entitled Computation of upper bounds, we investigate the num-
ber of nondominated points when we know (or have an upper bound on) the
number of values taken on each criterion. We propose some bounds, easily com-
putable, on the number of nondominated points. We also study the tightness
of these bounds and the possible reduction of these bounds using some known
feasible solutions.

In chapter 4, entitled Approximation of small size, we investigate the problem
of determining a small ε-Pareto set and we compare the size of the ε-Pareto
set produced with the size of a smallest ε-Pareto set. For the bicriteria case,
we propose a new polynomial time algorithm that produces an ε-Pareto set of
size at most three times the size of a smallest ε-Pareto set. For the tricriteria
case, we study the performance of a greedy algorithm when the points are
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given explicitly in the input, thus answering an open problem of Koltun and
Papadimitriou [54].

In chapter 5, entitled Representation using kernels, we focus on special ε-
Pareto sets, called (ε, ε′)-kernels, which satisfy a property of stability. The points
in an (ε, ε′)-kernel have to be spaced by at least a (1 + ε′) factor in some di-
mensions. We give some general results on (ε, ε′)-kernels. We propose some
polynomial time algorithms that produce small (ε, ε′)-kernels for the bicriteria
case and we give some negative results for the tricriteria case and beyond.

In the last chapter, we provide some general conclusions and perspectives.





2 Preliminaries

Contents
2.1 Framework and definitions . . . . . . . . . . . . . . . . . . . 11
2.2 Difficulties in computing the nondominated set . . . . . . . . 13

2.2.1 Complexity of the decision problem . . . . . . . . . . 14
2.2.2 Intractability . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Problem formulation and state of the art . . . . . . . . . . . . 16
2.3.1 Bounds on the nondominated set . . . . . . . . . . . 16
2.3.2 Approximation of the Pareto set . . . . . . . . . . . . 16

2.3.2.1 ε-Pareto sets . . . . . . . . . . . . . . . . . 16
2.3.2.2 ε-Pareto sets of minimal size . . . . . . . . 18
2.3.2.3 Good representations of the Pareto set . . . 21

2.1 Framework and definitions

In a general multi-objective optimization problem, there are p ≥ 2 objective
functions, where we may have both minimization and maximization objectives.
Since it is convenient not to consider all the combinations of types of objectives
in the different proofs and algorithms, we assume in this thesis that all are ob-
jectives to be minimized. If some or all objective functions are to be maximized,
our results are directly extendable.

Thus, in this thesis, we consider multi-objective optimization problems for-
mulated as:

min
x∈S
{f1(x), . . . , fp(x)}, (2.1)

where f1, . . . , fp are p ≥ 2 objective functions to be minimized and S is the set
of feasible solutions.

We distinguish the decision space X which contains the set S of feasible
solutions from the criterion space Y ⊆ Rp which contains the criterion vectors

11
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associated to these solutions. We denote by f(x) = (f1(x), . . . , fp(x)) the feasi-
ble point associated to a feasible solution x ∈ S, and by Z = f(S) the set of
images of the feasible solutions. In the criterion space Y , we denote by yi the
coordinate on criterion fi of a point y ∈ Y for i = 1, . . . , p. We define, in the
criterion space Y , the following partial strict order. Relation ≤ corresponds to
the standard dominance relation used in multi-objective optimization.

Definition 1. Let ≤ be the partial strict order defined such that for any y, y′ ∈ Y ,

y ≤ y′ if yi ≤ y′i for all i ∈ {1, . . . , p} and y 6= y′. We say that point y dominates

point y′.

Then we define efficient solutions and nondominated points, respectively, in
the decision space X and in the criterion space Y , as follows:

Definition 2. A feasible solution x ∈ S is called efficient if there is no other feasible

solution x′ ∈ S such that f(x′) ≤ f(x). If x is efficient, f(x) is a nondominated
point in the criterion space.

We denote by SE the set of efficient solutions and by ZND the set of nondom-
inated points. In some context we also denote by P , the set of nondominated
points, called Pareto set.

Definition 3. A feasible solution x ∈ S is called supported if there exists a linear

combination of the criterion functions for which x is optimal.

Definition 4. A feasible point z ∈ Z is weakly nondominated if there is no feasible

point z′ ∈ Z such that z′i < zi for all i = 1, . . . , p.

We also define, in the criterion space Y , the following partial order:

Definition 5. Given a constant c > 0, let �c be the partial order defined such that

for any y, y′ ∈ Y , y �c y
′ if yi ≤ (1 + c)y′i for all i ∈ {1, . . . , p}. We say that point

y (1 + c)-dominates point y′.

Now, we can define the following central notion of ε-Pareto sets.

Definition 6. For any rational ε > 0, an ε-Pareto set Pε is a subset of feasible

points such that for all z ∈ P , there exists z′ ∈ Pε such that z′ (1 + ε)-dominates z.

In the context of ε-Pareto sets, the central relation is the (1 + ε)-dominance
relation, denoted by �ε. The asymmetric part of the (1+ ε)-dominance relation
is denoted by ≺ε.

Note that sometimes we can also be interested in a set of solutions whose
images in the criterion space are the points of an ε-Pareto set Pε. We make no
distinction between these two sets in the following and an ε-Pareto set refers to
a set of points or to a set of solutions.
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Figure 2.1: The ideal, anti-ideal and nadir points

We recall the definitions of three particular points in the criterion space.
Anti-ideal, ideal and nadir points are defined as follows:

Definition 7. The ideal and anti-ideal point are defined respectively by:

yIi = min
x∈S

fi(x), i = 1, . . . , p

yAi = max
x∈S

fi(x), i = 1, . . . , p

The nadir point is a refinement of the anti-ideal point, defined by:

yNi = max
x∈SE

fi(x), i = 1, . . . , p

These three notions are illustrated in the bicriteria case in Figure 2.1.

Observe that, when the underlying single objective minimization (resp. max-
imization) problem is solvable in polynomial time, the coordinates of the ideal
(resp. anti-ideal) point are computable in polynomial time for any number of
objectives. As pointed out in [27], for more than two objectives, the coordinates
of the nadir point are not easily computable.

2.2 Difficulties in computing the nondominated
set

For a multi-objective optimization problem, when we wish to compute the
nondominated set, we are generally faced with two main difficulties. On the
one hand, it is hard to verify if a feasible point is nondominated and, on the
other hand the number of nondominated points can be very large.
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2.2.1 Complexity of the decision problem

For a given instance of a multi-objective optimization problem, the associ-
ated multi-objective decision problem consists, for a given point y, in deciding if
there is a feasible point z such that zi ≤ yi for i = 1, . . . , p.

Usually, even for an "easy" multi-objective optimization problem, i.e. when
the underlying single objective problem can be solved in polynomial time, the
associated multi-objective decision problem is NP-hard and even strongly NP-
hard in some cases. We recall that a problem is strongly NP-hard if it remains so
even when all its numerical parameters are bounded by a polynomial in the size
of the input. Of course, if the underlying single objective problem is NP-hard,
the associated multi-objective decision problem is also NP-hard.

We recall some main multi-objective optimization problems, with an under-
lying single objective problem that can be solved in polynomial time, whose
associated multi-objective decision problem is NP-hard even for the bi-ojective
case: BI-OBJECTIVE SHORTEST PATH [74], BI-OBJECTIVE SPANNING TREE [13],
BI-OBJECTIVE s − t CUT (that is even strongly NP-hard) [66]. Of course, if a
multi-objective decision problem is NP-hard in the bi-objective case, it is also
NP-hard for more than two objectives.

Remark that solving this decision problem for a given point y means estab-
lishing if point y is dominated. Thus, determining if a point is dominated is
generally an NP-hard problem.

2.2.2 Intractability

Usually, for a multi-objective optimization problem, it is possible to find a
family of instances for which the cardinality of the nondominated set is very
large, i.e. exponential in the input size.

Definition 8. A multi-objective optimization problem is intractable if there are

families of instances for which the number of nondominated points is not polyno-

mial in the input size.

Of course, if a multi-objective optimization problem is intractable in the
bi-objective case, it is also intractable for more than two objectives. Most of
the classical multi-objective combinatorial optimization problems are proved
intractable even for the bi-ojective case: BI-OBJECTIVE KNAPSACK [51], BI-
OBJECTIVE SHORTEST PATH [45], BI-OBJECTIVE TSP [29], BI-OBJECTIVE SPAN-
NING TREE [44], BI-OBJECTIVE s − t CUT [51] are intractable. We present in
Figure 2.2 a classical instance of BI-OBJECTIVE SHORTEST PATH showing that
the problem is intractable. In Figure 2.3, the points in the criterion space of
this instance are represented, showing that all the 2n−1 paths from v1 to vn are
efficient.
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Figure 2.2: Intractability of SHORTEST PATH
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Figure 2.3: Intractability in the criterion space

Up to our knowledge, only one multi-objective combinatorial optimization
problem is proved to be tractable, BI-OBJECTIVE GLOBAL MIN CUT [1].

However, many algorithms for generating all the Pareto set have been de-
veloped in the literature. There exists several exact methods for generating all
the Pareto set. We give some examples of these methods in the following. The
well-known Two-phase method introduced by Ulungu and Teghem [79] is the
main one and was much developed these last years [67, 69, 81]. It consists first
in computing all the supported efficient solutions (see [65, 68] for different
approaches) and then in the definition and the exploration of the search area
inside which non-supported nondominated points may exist. The second phase
is mainly based on Branch and Bound algorithms [63, 81] or Ranking algorithms
[67]. The Two-phase method is mainly relevant for the bi-objective case since
the search area of the second phase is not defined by trivial geometric construc-
tions in the multi-objective case [27, 69]. There exists also some algorithms for
generating all the Pareto set based on the ε-constraint method [11, 56, 62] or on
Dynamic Programming for instance for MULTI-OBJECTIVE KNAPSACK [53, 64].

Of course, since the number of nondominated points can be exponential in
the input size, such algorithms cannot run in polynomial time.

Finding some ways to get around the intractability of multi-objective opti-
mization problems is one of the main issue in multi-objective optimization. We
present in the following section a review of existing results on this question.
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2.3 Problem formulation and state of the art

The situation of intractability arises when the number of values taken on
each criterion is itself exponential in the size of the instance. For example,
it is the case in the instance for BI-OBJECTIVE SHORTEST PATH presented in
Figure 2.2. So, there are two options to "hope" to get around intractability.
Either it is possible to have some a priori information on the different criteria to
avoid this case and so produce the set of nondominated points could be done
in polynomial time, or it is not possible to produce the full set of nondominated
points in polynomial time and then we have to contend with an approximation
of this set. We present in the following some existing results based on these
two approaches. These results are the main ones that are directly related to the
cardinality of the set of points produced.

2.3.1 Bounds on the nondominated set

In this part, the goal is to avoid the intractability assuming that we can get
some information on the different criteria. More precisely, the goal is to inves-
tigate the number of nondominated points when it is assumed that we know
(or have an upper bound on) the number of values taken on each criterion.
Remark that, how to find (in general or more probably depending on the under-
lying problem) these numbers, or even some small bounds on it, is in itself an
interesting problem.

Up to our knowledge, this problem has not been dealt with, except very
recently by Stanojević et al. in [75]. The best bound on the number of non-
dominated points that they give is obtained by a recursion formula which is
well-known in ordered set theory [57] and that we recall in chapter 3. Unfortu-
nately, this formula becomes quickly impractical when the number of values on
each criterion increases. One of our purposes is to provide an alternative for-
mula which does not depend on the number of values taken on each criterion.

2.3.2 Approximation of the Pareto set

First, we discuss about the notion of ε-Pareto set and present some works
related to the size of ε-Pareto sets. Then, we deal with the more general notion
of representation of the Pareto set, including a dimension of "stability".

2.3.2.1 ε-Pareto sets

For a given instance of a multi-objective optimization problem, there may ex-
ist several ε-Pareto sets, and these may have different sizes. Papadimitriou and
Yannakakis showed in [66] that for every classical multi-objective optimization
problem and every ε > 0 an ε-Pareto set of size polynomial in the input size and
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1/ε always exists. Thus, producing an approximation of the Pareto set is a way
to get around the intractability. They obtained this result subdivising the objec-
tive space into hyperrectangles, such that, in each dimension the ratio of the
largest to the smallest coordinate of an hyperrectangle is 1+ ε. Then, observing
that the number of hyperrectangles thus defined is polynomial in the input size
and 1/ε, can be obtained by taking, when it exists, one point in each hyperrect-
angle. Note that, to obtain an ε-Pareto set that does not contain unnecessary
points, it is possible to remove the dominated points of the obtained ε-Pareto
set.

Moreover, it is also shown in [66] that the computation of an ε-Pareto set is
related to the computation of the following routine GAPδ.

Definition 9. (GAP) Given an instance I of a given problem, a point y and a

rational δ ≥ 0, the routine GAPδ(y) either returns a feasible point that dominates

y or reports that there does not exist any feasible point z such that zi ≤ yi
1+δ

for all

i = 1, . . . , p.

We say that a routine GAPδ(y) runs in polynomial time (resp. fully polyno-
mial time when δ > 0) if its running time is polynomial in |I| and |y| (resp. |I|,
|y|, |δ| and 1/δ).

Note that, for δ = 0, the existence of a routine GAPδ running in polynomial
time is quite unlikely, since the routine has to solve a decision problem that is
often NP-hard (see section 2.2.1).

We recall the central result relating the computation of an ε-Pareto set and
the computation of the routine GAPδ. We sketch the proof of this result since
we use some similar techniques in the thesis.

Theorem 1. (Papadimitriou and Yannakakis [66]) An ε-Pareto set is computable

in polynomial time (resp. fully polynomial time) if and only if the routine GAPδ

runs in polynomial time (resp. fully polynomial time).

Proof : The one direction of this equivalence is quite easy. If it is possible to
compute an ε-Pareto set in polynomial time (resp. fully polynomial time), then
we can solve the routine GAPδ(b) in polynomial time (resp. fully polynomial
time) by checking if Pε contains a point which dominates b. In such a case
return the corresponding solution, else return NO.

In the other direction, if we can solve the routine GAPδ in polynomial time
(resp. fully polynomial time), then it is possible to compute an ε-Pareto set
of polynomial size (resp. fully polynomial time) using the following procedure:
Subdivise the objective space into hyperrectangles, such that, in each dimension
the ratio of the largest to the smallest coordinate of an hyperrectangle is 1 + ε′

where 1 + ε′ ≤
√
1 + ε. Then, use the routine GAPε′ on all the corner points of

the grid and then remove the obtained dominated points. ✷
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Even if algorithms for computing ε-Pareto sets were given before for specific
problems, most notably MULTI-OBJECTIVE SHORTEST PATH, for which Hansen
[45] and Warburton [82] showed how to contruct an ε-Pareto set in polynomial
time, many PTAS (FPTAS) have been developed and improved for many multi-
objective optimization problems since Theorem 1 was established.

We give a brief list of these results for main multi-objective optimization
problems: MULTI-OBJECTIVE SHORTEST PATH [78], MULTI-OBJECTIVE KNAPSACK

[7, 31], MULTI-OBJECTIVE TSP [59], BI-OBJECTIVE WEIGHTED MAX-CUT [2],
scheduling problems [4, 52]. Some particular conditions have also been stud-
ied for the existence of an FPTAS for the computation of ε-Pareto sets for differ-
ent combinatorial problems including network flow and scheduling problems
[71]. There are few works that also deal with the non-approximability of some
multi-objective problems, for instance BI-OBJECTIVE s− t MIN CUT [66], MULTI-
OBJECTIVE TSP(1,2) [3] or some versions of MAX CUT [48]. Naturally, a result
of non-approximability for a single objective problem is still valid for the multi-
objective version of the problem.

In this thesis we are interested in the efficient construction of ε-Pareto sets.
Our algorithms are guaranteed to run in polynomial time and to produce an
ε-Pareto set for a fixed ε > 0. However, in the literature there are also heuristics
that have been developed for the approximation of the Pareto set [18, 19].

Finally, there are also some works that deal with the approximation of the
Pareto set using a fixed number of solutions. In [6], for a given constant k, some
general properties are studied allowing the construction of approximation sets
using at most k solutions for some bi-objective optimization problems. How-
ever, this kind of problems is more likely studied in the literature with only one
solution [32, 36, 40, 41, 76]. This approach (using only one solution) is similar
to the notion of max-min fair-ness [5, 10, 55]. In these settings, the different
objectives represent the part of an agent Ai, where i = 1, . . . , p, and the goal
of the max-min fairness criterion is to maximize the satisfaction of the least
satisfied agent.

2.3.2.2 ε-Pareto sets of minimal size

The existence of ε-Pareto sets of polynomial size is interesting for a com-
putational point of view. However, such sets can still be quite large. Small
ε-Pareto sets, if they exist, would be quite interesting for decision makers. For
this reason, Vassilvitskii and Yannakakis introduced in [80] the study of the de-
termination of an ε-Pareto set of minimal size. Formally, we can summarize
these ideas as the following primal and dual problems:

Definition 10. (primal and dual problems)
– Primal problem: Given an instance of a p-objective problem and an ε > 0,

the goal is to obtain an ε-Pareto set of minimal size.
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– Dual problem: Given an instance of a p-objective problem and an integer

k > 0, the goal is to obtain an ε-Pareto set of size k with a minimal ε.

One can remark that in order to obtain results on the primal and dual prob-
lems, just using a routine GAP on the "grid" considered by Papadimitriou and
Yannakakis [66] is not sufficient. For instance, for the primal problem, the ob-
jective space must be explored with more precision to obtain some guarantees
on the size of the ε-Pareto set returned. For this purpose, an interesting generic

approach was introduced by Vassilvitskii and Yannakakis in [80]. They explored
the objective space not using a routine GAP in all the corner points of the "grid"
but performing, in a specific order, binary searches which call a routine GAP at
each step. Thus, they obtained an ε-Pareto set whose size is close to the size of
a smallest ε-Pareto set.

Definition 11. An algorithm that uses a routine is called generic if only the rou-

tine is specific to a particular problem.

In such algorithms, it is only required to have bounds on the minimum and
maximum values of the criteria functions. We assume that the values taken
by the objective functions are positive rational numbers whose numerators and
denominators have at most m bits, and so that any feasible point has a value
between 2−m and 2m. Then, the algorithm calls a routine as a black box for
some values between 2−m and 2m. This hypothesis is quite general and not too
restrictive. Moreover, note that with such hypothesis, the minimum difference
between two points of the criterion space is at least 2−2m. Indeed, let a/b and
a′/b′ be rational numbers belonging to the range [2−m, 2m], it is clear that a/b−
a′/b′ = (ab′ − ba′)/bb′ ≥ 1/22m.

Remark that if the objective function values are even polynomially bounded,
then the minimum difference between two points of the criterion space is also
polynomially bounded. Thus, an algorithm based on the routine GAPδ for δ > 0
is polynomially equivalent to the same algorithm but using the exact routine
GAP0 instead of GAPδ since it is possible to choose δ less than the minimum
difference between two points of the criterion space.

In order to use generic algorithms, Diakonikolas and Yannakakis introduced
in [20] two other main routines called Restrictδ and DualRestrictδ for the bi-
objective case.

Definition 12. (Restrict and DualRestrict)
– Given an instance I, a bound b and a rational δ ≥ 0, the routine Restrictδ(f1,
f2 ≤ b) either returns a feasible point z satisfying z2 ≤ b and z1 ≤ (1 +
δ).min{f1(x) : x ∈ S and f2(x) ≤ b} or correctly reports that there does not

exist any feasible point z such that z2 ≤ b.
– Given an instance I, a bound b and a rational δ ≥ 0, the routine DualRestri-

ctδ(f1, f2 ≤ b) either returns a feasible point z satisfying z2 ≤ b(1 + δ) and
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z1 ≤ min{f1(x) : x ∈ S and f2(x) ≤ b} or correctly reports that there does

not exist any feasible point z such that z2 ≤ b.

We say that a routine Restrictδ(f1, f2 ≤ b) or DualRestrictδ(f1, f2 ≤ b) runs in
polynomial time (resp. fully polynomial time when δ > 0) if its running time is
polynomial in |I| and |b| (resp. |I|, |b|, |δ| and 1/δ). Routines Restrictδ(f1, f2 ≤ b)
and DualRestrictδ(f2, f1 ≤ b′) are polynomially equivalent as proved in [20]. It
means that one of these routines can be used a polynomial number of times to
simulate the other one.

Remark that routines Restrictδ(f1, f2 < b) and DualRestrictδ(f1, f2 < b) with a
strict constraint, can easily be simulated respectively by routines Restrictδ(f1, f2 ≤
b′) and DualRestrictδ(f1, f2 ≤ b′) using b′ = b− 2−2m.

Such routines have been studied for many multi-objective optimization prob-
lems. We give a list of main multi-objective optimization problems for which
there exists a routine Restrictδ that runs in polynomial (or fully polynomial)
time: BI-OBJECTIVE SHORTEST PATH [30, 46, 58, 82], BI-OBJECTIVE SPANNING

TREE [37, 47], BI-OBJECTIVE MATCHING [9], BI-OBJECTIVE MATROID INTERSEC-
TION [9].

Remark that in the routines considered it is assumed that the error δ is a
rational number, otherwise it is approximated from below by a rational one.

We denote by P ∗
ε a smallest ε-Pareto set and by optε its cardinality. There ex-

ist only a few results on primal and dual problems, we summarize these results
in the following.

Bi-objective case, primal problem In the bi-objective case, for the primal
problem, a generic algorithm that computes an ε-Pareto set of size at most 3optε
using routines GAPδ was established by Vassilvitskii and Yannakakis in [80].
Moreover, if the routine GAPδ runs in polynomial time (resp. fully polynomial
time) then the algorithm also runs in polynomial time (resp. fully polynomial
time). Then, Diakonikolas and Yannakakis showed in [20] that an ε-Pareto set
of size at most 2optε is computable in polynomial time if there exists a rou-
tine Restrictδ computable in polynomial time for at least one objective. These
approximation results are tight for the class of problems admitting such rou-
tines. Remark that these two classes of problems are distinct. For instance,
BI-OBJECTIVE KNAPSACK, the knapsack problem with two objective functions
to minimize and a capacity constraint to satisfy, belongs to the class of prob-
lems admitting a routine GAPδ that runs in polynomial time but not to the class
of problems admitting a routine Restrictδ that runs in polynomial time. Indeed,
solving Restrictδ for BI-OBJECTIVE KNAPSACK requires to solve SINGLE OBJECTIVE

KNAPSACK to produce a solution that respects the constraints of Restrictδ.
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Definition 13. An algorithm that computes an ε-Pareto set of size at most k.optε
is called a k-approximation algorithm.

Observe that the generic algorithms proposed in [20, 80] run in fully poly-
nomial time if and only if the routines called run in fully polynomial time. For
instance, for BI-OBJECTIVE SPANNING TREE, since there exists a routine GAPδ

that runs in fully polynomial time [50], the generic algorithm of Vassilvitskii
and Yannakakis [80] is a 3-approximation that runs in fully polynomial time.
Moreover, since the generic algorithm of Diakonikolas and Yannakakis [20] pro-
duces a 2-approximation, the computation of a 2-approximation that runs in
fully polynomial time is related to the existence of a routine Restrictδ for BI-
OBJECTIVE SPANNING TREE that runs in fully polynomial time (which is an in-
teresting open question). Nevertheless, the best current algorithm that solves
Restrictδ has a running time O((1/ε)1/εn3) with 1/δ = O(1/ε) [47]. Thus, using
this algorithm to solve Restrictδ, the generic algorithm of Diakonikolas and Yan-
nakakis [20] gives an efficient polynomial time approximation scheme (EPTAS)

which is a 2-approximation.

Bi-objective case, dual problem In the bi-objective case, for the dual prob-
lem, it is shown in [80], that the problem is NP-hard even in simple cases but
has a PTAS if the bi-objective problem admit a routine GAPδ that runs in poly-
nomial time.

Multi-objective case For more than two objectives, it is shown for the primal
problem that any generic algorithm based on routine GAP is not a k-approximation
for any constant k [80] and for the dual problem that it is NP-hard to approxi-
mate the minimum ratio even within any polynomial multiplicative factor [20].

There is no algorithm in the literature that is not generic that produces an
ε-Pareto set with a guarantee on its size. It seems hard to take benefit of the
underlying problem to obtain some guarantees on the size of the produced
ε-Pareto set. Moreover, the works mentioned ([80], [20]) of Diakonikolas, Vas-
silvitskii and Yannakakis are, to our knowledge, the only ones in the literature
that give some approximability and non-approximability results for primal and
dual problems.

2.3.2.3 Good representations of the Pareto set

Measures of the quality of a discrete representation of the Pareto set have
been discussed in [33, 72]. As outlined in these papers three dimensions are
relevant:

– coverage which ensures that any nondominated point is represented or
covered by at least one point in the representation,
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– spacing (also called stability or uniformity) which ensures that any two
points in the representation are sufficiently spaced, avoiding redundan-
cies,

– cardinality which should be minimal so as to make the representation as
tractable as possible.

Coverage is the most important dimension for the representation to be mean-
ingful. However, it must be counterbalanced by the two other dimensions which
favor a uniform and small cardinality representation. While coverage on the
one hand and spacing and cardinality on the other hand are clearly conflicting,
the relationship between spacing and cardinality is not obvious. At first sight
it could seem that improving spacing will lead to a decrease of the number of
points in the representation. It must be observed, however, that imposing spac-
ing is an additional constraint that may impact negatively on the cardinality.
An interesting result in our work is that no negative impact is to be expected in
the bi-objective case, but it is no longer true when dealing with at least three
objectives. This shows the interest of considering all three dimensions.

Many works in the literature refer to the computation of discrete represen-
tations. These works mainly consider that a representation is a subset of the
nondominated set, this makes a difference with an approximation set which
can contain some dominated points. As outlined in [33], we can classify these
works in different categories.

Some of these works use a predefined measure into algorithms to produce
representations satisfying some prespecified goals on coverage, spacing or cardi-
nality. Most of these algorithms are only applicable to particular classes of prob-
lems. For instance, Helbig [49] proposed an approach applicable to bi-objective
problems and Sylva and Crema [77] an approach applicable to mixed-integer
linear problems, both give a "good" coverage, the method suggested by Sayin
[73] which is applicable for multiple objective linear problems gives a repre-
sentation with a target coverage or target cardinality. Finally Eichfelder [28]
presented a scalarization method which controls the spacing.

Another approach is to generate in a first phase a discrete representation
which is quite large and then in a second phase remove some points so that the
resulting set satisfies some conditions of coverage, spacing or cardinality [61].

Finally, there exist some heuristics that produce some discrete representa-
tions. In this case, many authors just improve the coverage or spacing of exist-
ing methods. Observe that the framework introduced by Sayin in [72] allows
a posteriori to measure the quality of a discrete representation using linear pro-
gramming. The author also identify the cases in which coverage or spacing
conditions can be computed by solving a simple mathematical program. It is
particularly useful for evaluating the set returned by some heuristics.

In the following we give some examples of heuristics. The global shooting

method, a heuristic presented by Benson and Sayin in [8], gives a "good" cover-
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age but the spacing can be "bad". Conversely, the normal boundary intersection

method, a heuristic presented by Das and Dennis in [19] gives a "good" spac-
ing but the coverage can be "bad". The revised boundary intersection method, a
heuristic recently presented by Ehrgott and Shao [26] which combine the ideas
of the two previous heuristics gives satisfying coverage and spacing.

Of course, in these approaches, the quality of the coverage, the spacing
or the cardinality is not compared to the optimum, i.e. to the best coverage,
spacing and cardinality that is possible to obtain. Our goal is to compare our
representations to these optimum values, it means to transpose the primal and
dual problems in terms of representations. For this purpose, we only need to
take into account the dimension of spacing.

One way to ensure spacing is to impose a condition of stability with respect
to an (1 + ε′)-dominance relation. An ε-Pareto set satisfying this additional
condition will be called (ε, ε′)-kernel and is defined precisely as follows.

Definition 14. Given a set Z of feasible points and ε, ε′ > 0, an (ε, ε′)-kernel is a

set of points Kε,ε′ satisfying the two following conditions:

(i) for any point z′ ∈ Z \ Kε,ε′, there exists z ∈ Kε,ε′ such that z �ε z′ (ε-
coverage).

(ii) for any two distinct points z, z′ ∈ Kε,ε′, we do not have z �ε′ z′ (ε′-
stability).

Notice that we chose to use the same metric (the classical one in approxi-
mation of the Pareto set) for the coverage and the stability, which seems more
natural than using different metrics.

Observe that an (ε, ε′)-kernel is an (ε, ε′′)-kernel for all ε′′ ≤ ε′. Thus, when
we refer to an (ε, ε′)-kernel, we always consider the largest known ε′ for which
the ε′-stability condition is satisfied.

If ε′ > ε it is easy to see that an (ε, ε′)-kernel does not always exist. Consider
for instance Z = {z1, z2} such that neither z1 �ε z

2 nor z2 �ε z
1 but z1 �ε′ z

2 or
z2 �ε′ z

1. Therefore, for a given ε, the goal is to find an (ε, ε′)-kernel with the
largest ε′. When ε′ = ε an (ε, ε′)-kernel is called an ε-kernel.

These special ε-Pareto sets seem interesting for two reasons. First, a deci-
sion maker could be interested in an ε-kernel instead of a classical ε-Pareto set
because of its better representation of the space of solutions. Secondly, since we
are also interested in small ε-Pareto sets, the ε-stability condition seems mean-
ingful. Indeed, since the points of an ε-kernel have to be spaced by at least a
1+ ε factor in some dimension it could induce a character of minimality. In fact,
it is the case only for the bi-objective case.

In Figure 2.4 we present a small instance to illustrate the interest of this
concept. In this figure, the set constituted by points z3 and z4 is an ε-Pareto
set of minimum cardinality but not an ε-kernel. This set gives no real choice
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Figure 2.4: ε-kernels compared to ε-Pareto sets.

to a decision maker since the two points are very close. The set constituted by
points z2 and z5, which is an ε-kernel, provides a much better representation of
the nondominated set.

Our goal is to establish some general properties on ε-kernels and propose
some solutions to the primal and dual problems for the case of ε-kernels. In
chapter 5, when we consider the primal and dual problems, we refer to the
version where we look for ε-kernels instead of ε-Pareto sets.



3 Computation of upper bounds

Abstract

In this chapter, we propose an upper bound on the maximal number of
nondominated points of a multicriteria optimization problem. Assuming
that the number of values taken on each criterion is known, the criterion
space corresponds to a comparability graph or a product of chains. Thus,
the upper bound can be interpreted as the stability number of a compara-
bility graph or, equivalently, as the width of a product of chains. Standard
approaches or formulas for computing these numbers are impractical. We
develop a practical formula which only depends on the number of criteria.
We also investigate the tightness of this upper bound and the reduction of
this bound when feasible, possibly efficient, solutions are known.
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The content of this chapter is based on the following paper.

◮ C. Bazgan, F. Jamain, and D. Vanderpooten. On the number of non-
dominated points of a multicriteria optimization problem, Discrete Applied Math-

ematics, 161(18):2841-2850, 2013.

In the following section, we define the basic concepts and formalize the
problem both in the context of graphs and ordered sets. Then, in section 3.2,
we deal with simple cases and provide, in the general case, a formula using a
combinatorial version of the inclusion-exclusion principle [15]. The time for
computing this formula is only exponential in the number of criteria. We also
make comparisons with other bounds which are easier to compute. In section
3.3, we show that the proposed bound is tight for many classical multicriteria
optimization problems. In section 3.4, we try to reduce the maximal number
of nondominated points using known feasible solutions, possibly efficient. We
conclude with some possible extensions to this work.

3.1 Problem statements

We assume that each criterion function fi can take up to ci+1 values, where
ci is a nonnegative integer. Since we are interested in the number of nondomi-
nated points, we can assume for simplicity and without loss of generality, that
each fi takes integer values between 0 and ci for i = 1, . . . , p.

In some cases, the ci values are known precisely, e.g. for qualitative criteria
which take values on a scale whose grades correspond to predefined judge-
ments. In other cases, these values can only be approximated. We can find
an upper bound on ci by computing the coordinates of the ideal and anti-ideal

points, corresponding, respectively, to the best and the worst possible values on
each criterion. Better bounds can be given if we can compute the coordinates of
the nadir point, which corresponds to the worst possible values over the set of
nondominated points. Moreover, how to find some small bounds on these num-
bers, is in itself an interesting problem. For some problems and some particular
families of instances, it is possible to compute (or find some very small bounds
on) the ci values. For instance, consider the following family of instances of
MULTI-OJECTIVE SPANNING TREE: The complete graphs with n vertices, where
each edge cost is randomly chosen between 0 and k on each criterion, with
k ≪ n. Since each spanning tree consists of n − 1 edges, with high probability
we have ci = (n− 1)k for all i = 1, . . . , p.

The problem of determining the maximum cardinality of the nondominated
set can be stated as follows.
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MAX SIZEND
Input: an integer p and p integers ci, i = 1, . . . , p.
Output: maximum cardinality of the nondominated set ZND associated to a set
Z of p-dimensional points such that at most ci + 1 values are taken on the ith

dimension, i = 1, . . . , p.

Let (ci + 1) = {0, . . . , ci}, i = 1, . . . , p and P = (c1 + 1)× . . .× (cp + 1). Any
relevant set Z, and in particular any of those leading to a nondominated set of
maximum cardinality, is included in P .

More precisly, this problem can be stated within different theoretical frame-
works. Using graph theory, the maximal cardinality of a set of nondominated
points corresponds to the stability number of a given graph. Using ordered set
theory, this maximal cardinality corresponds to the width of a product of chains.
These two frameworks provide different insights on our problem that will be
discussed in the following.

3.1.1 Statement as a graph theory problem

Consider the graph G = (P,E) whose set of vertices is P = (c1 + 1)× . . .×
(cp + 1) and set of edges is E = {(u, v) ∈ P × P : u ≤ v}. By construction, G is
a comparability graph (i.e. a graph that admits a transitive orientation), since
relation ≤ is transitive.

In this context, determining the maximum number of nondominated points
amounts to determining the maximum cardinality of a stable set in G, i.e. com-
puting α(G), the stability number of G. It is well-known that α(G) can be
determined in polynomial time when G is a comparability graph [38]. In our
case, this is achieved by computing a minimum flow in the digraph G′ = (P,≤)
from (0, . . . , 0) to (c1, . . . , cp) where each vertex has a lower bound of 1. Then
α(G) corresponds to the value of this minimum flow in G′.

Computing a minimum flow in G′ can be performed in a time polynomial in
the number of vertices P =

∏p
i=1(ci +1). Since the input of MAX SIZEND is not

G′ but only values c1, . . . , cp, which are encoded in binary, this approach only
gives us a pseudo-polynomial time algorithm to solve MAX SIZEND.

3.1.2 Statement as an ordered set theory problem

Given a partially ordered set (S,R), we recall that a chain is a totally ordered
subset and an antichain is a subset whose elements are pairwise incomparable.
Moreover, the height of (S,R), denoted by h(S), is the maximal cardinality of a
chain in S, and the width of (S,R), denoted by α(S), is the maximal cardinality
of an antichain in S. (S,R) is said to be ranked if we can define a function r
such that for any x, y ∈ S, whenever xRy and there is no element z ∈ S such
that xRzRy, we have r(y) = r(x) + 1. Calling Lk the level of rank k in S, i.e.
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the subset of elements of S with rank k, we define nk = |Lk| and σ(S) = maxnk.
Since the levels are antichains, we have α(S) ≥ σ(S). Finally, a partially ordered
ranked set S is said to satisfy the Sperner property if α(S) = σ(S) [14].

In our case, P = (c1 + 1) × . . . × (cp + 1), which is a product of chains, is
partially ordered by the dominance relation ≤. The resulting partially ordered
set (P,≤) has height h(P ) =

∑p
k=1ck (denoted for short by h in the following).

Moreover, (P,≤) can be ranked using rank function r which associates to each
element (y1, . . . , yp) ∈ P its rank r(y1, . . . , yp) =

∑p
k=1 yk.

In this context, solving MAX SIZEND is equivalent to determining the width
α(P ). We recall the following result.

Theorem 2. (De Bruijn et al. [12]) A product of chains satisfies the Sperner

property.

Therefore, since P is a product of chains, we have α(P ) = σ(P ). Thus, we
are interested in determining the cardinality of a level of P which has the largest
number of elements. It is well-known that the levels of maximum cardinality
are all centered around the level Lh/2 if h is even, and the levels L(h−1)/2 and
L(h+1)/2 if h is odd [14, 57]. Thus, determining α(P ) amounts to computing
n⌊h

2
⌋.

Leclerc [57] and Caspar et al. [14] proposed induction formulas to compute
n⌊h

2
⌋. Nevertheless, these induction formulas depend on p but also on the values

ci, i = 1, . . . , p. Since the values ci may often be large, these formulas are not
really usable in practice, as acknowledged by the previous authors. This is,
however, another pseudo-polynomial time method to solve MAX SIZEND. The
motivation is to obtain a new more practical formula, the complexity of which
does not depend on the values ci, that is a strongly polynomial time algorithm.

3.2 Computation of the width of a product of
chains

We first provide an upper bound on the width of a product of chains P ,
showing that this bound is tight in a special case, which includes the bicriteria
case. Then, we propose and compare two formulas for computing exactly α(P ).

We assume w.l.o.g. that the criteria are numbered by non-increasing order
of values ci, that is c1 ≥ ... ≥ cp.

3.2.1 A simple upper bound on α(P )

A first simple upper bound on α(P ) is given by the following result.

Lemma 1. α(P ) ≤
∏p

i=2(ci + 1).
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Proof : By contradiction, if α(P ) >
∏p

i=2(ci + 1) there exist at least two non-
dominated points with the same values on criteria fi, i = 2, . . . , p. Then, among
these two points, the point with a worse value on f1 is dominated by the other
one. ✷

This upper bound is tight in a particular case, as shown in the following
lemma:

Lemma 2. α(P ) =
∏p

i=2(ci + 1) if and only if c1 ≥
∑p

i=2ci.

Proof :
⇐ If c1 ≥

∑p
i=2ci then all possible

∏p
i=2(ci+1) configurations on the last p−1

criteria can be completed on criterion f1 so as to define nondominated points.
Indeed, any point with value vj on criterion fj, j = 2, . . . , p is nondominated if
it is assigned the (nonnegative) value

∑p
i=2ci −

∑p
i=2vj on criterion f1.

⇒ If α(P ) =
∏p

i=2(ci+1), all possible configurations on the last p−1 criteria
must correspond to nondominated points. In particular, the

∑p
i=2ci + 1 follow-

ing configurations, which constitute a chain on the last p − 1 criteria, must
correspond to nondominated points:

(∗, 0, . . . , 0), (∗, 1, 0, . . . , 0), . . . , (∗, c2, 0, . . . , 0),
(∗, c2, 1, 0, . . . , 0), . . . , (∗, c2, c3, 0, . . . , 0),
. . .
(∗, c2, c3, . . . , cp−1, 1), . . . , (∗, c2, c3, . . . , cp−1, cp)
For this chain on the last p − 1 criteria to become an antichain on the p

criteria, we need
∑p

i=2ci + 1 different values on criterion f1, and thus c1 ≥
∑p

i=2ci. ✷

In the particular case where p = 2, we obtain the following corollary, since
c1 ≥ c2.

Corollary 1. If p = 2, we have α(P ) = c2 + 1.

3.2.2 Exact computation of α(P )

Since P satisfies the Sperner property, we noticed at the end of section 3.1.2
that α(P ) = n⌊h

2
⌋. We first review a well-known recursion formula for com-

puting n⌊h
2
⌋, which is not practicable as values ci grow. Then, we propose an

alternative analytical formula, which is shown to be much easier to implement.

3.2.2.1 A recursion formula

As indicated in [57], the following result is known from "folklore".

Proposition 1. Let P ′ = P × (c+ 1) where P is a product of chains. The values

n′
k, the size of level of rank k in P ′, can be obtained from values nk by the following
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recursion:

n′
k =

c
∑

i=0

nk−i

which can be rewritten as

n′
k = n′

k−1 + nk − nk−c−1 (3.1)

where nk = 1, for all k ≥ 0 when P is a chain and nk = 0 for k < 0.

As outlined in [57], this recursion is relevant in practice only for a small
number of criteria and small values ci. More precisely, the complexity of this
induction formula is given by the following result.

Lemma 3. The computation of the width of the product of chains P = (c1 + 1)×
. . .×(cp + 1) using formula (3.1) of Proposition 1 is done in Θ(p2cmax) operations,

where cmax = max{c1, . . . , cp}.

Proof : At each step i of the recursion for i = 1, . . . , p, the computation of the
cardinality of ((

∑p
j=p−(i−1) cj) + 1)/2 levels is needed. Since each of these cardi-

nalities is computed in constant time, the computation of α(P ) is performed in
((
∑p

i=1 ici) + p)/2 = Θ(p2cmax) operations. ✷

Observe additionally that these recursions require to keep in memory all the
sizes of the levels of the previous step, which requires a space Θ(cmax). In most
multicriteria optimization problems, the number of criteria is rather small and
can thus assumed to be constant. On the other hand, values ci may be rather
large. This makes this recursion quickly useless. This is the motivation to obtain
a formula computing the width of P whose complexity does not depend on the
values ci.

3.2.2.2 An analytical formula

We need to compute the number of points on a level of maximum cardinality,
which amounts to computing the number of integer solutions of the equation

x1 + ...+ xp = k (3.2)

with k = ⌊h/2⌋, under the constraints 0 ≤ xi ≤ ci.

We recall the following result, presented in standard textbooks on combina-
torics such as [15], which is a combinatorial version of the inclusion-exclusion
principle.

Lemma 4. The number of integer solutions of equation (3.2) with the restrictions

si ≤ xi ≤ mi, i = 1, . . . , p
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where si and mi are given for i = 1, . . . , p with s ≤ k ≤ m, s = s1 + . . . + sp
and m = m1 + . . .+mp, with ui = mi − si ≥ 0, i = 1, . . . , p is given by

(

p+ k − s− 1

p− 1

)

+

p
∑

r=1

(−1)r
∑

I⊆{1,...,p}:|I|=r

(

p+ k − s−
∑

i∈I ui − r − 1

p− 1

)

Applied in our context, the previous lemma gives the following result.

Theorem 3. The width α(P ) of a product of chains P = (c1 + 1)× · · · × (cp + 1)
is given by the following formula:

α(P ) =
∑

I⊆{1,...,p}:|I|≤⌊h
2
⌋−cI

(−1)|I|
p−1
∏

k=1

(

1 +
⌊h/2⌋ − cI − |I|

k

)

(3.3)

where cI =
∑

i∈I ci and c∅ = 0.

Proof : Using the formula of Lemma 4 with si = 0 and mi = ci for i = 1, . . . , p
we obtain the following formula:

α(P ) =

(

p + ⌊h/2⌋ − 1

p− 1

)

+

p
∑

r=1

(−1)r
∑

I⊆{1,...,p}:|I|=r

(

p+ ⌊h/2⌋ −
∑

i∈I ci − r − 1

p− 1

)

Combining the two members of this formula we have:

α(P ) =
∑

I⊆{1,...,p}:|I|≤⌊h
2
⌋−cI

(−1)|I|
(

p+ ⌊h/2⌋ − cI − |I| − 1

p− 1

)

where cI =
∑

i∈I ci and c∅ = 0, which can be rewritten as (3.3) using
(

n
t

)

=
1
t!
(n− t+ 1) . . . n. ✷

In the particular case where p = 3, the formula can be simplified as follows.

Corollary 2. If p = 3, we have

α(P ) =











(c2 + 1)(c3 + 1) if c1 ≥ c2 + c3

1 + (h
2
)
2
+ h

2
− c21+c22+c23

2
if c1 < c2 + c3 and h is even

1
2
+ (h+1

2
)
2 − c21+c22+c23

2
if c1 < c2 + c3 and h is odd

Moreover, if ci = q, i = 1, 2, 3, we have

α(P ) =

{

3
4
(q + 1)2 + 1

4
if q is even

3
4
(q + 1)2 if q is odd
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Proof : The first case is a consequence of Lemma 2. The second and third cases
are obtained from formula (3.3), observing that the only subsets I ⊆ {1, 2, 3}
such that |I| ≤ ⌊h/2⌋ − cI are ∅, {1}, {2}, and {3} when c1 < c2 + c3. ✷

The next lemma gives the complexity for computing α(P ), using (3.3).

Lemma 5. The computation of the width of a product of chains P = (c1 + 1) ×
· · · × (cp + 1) using formula (3.3) is performed in O(p2p) operations.

Proof : The product
∏p−1

k=1(1+
⌊h/2⌋−cI−|I|

k
) requires O(p) operations and the sum

is over O(2p) subsets, so the computation of α(P ) needs O(p2p) operations. ✷

Thus, this complexity is exponential in the number of criteria p, but does
not depend on the values ci. Actually, since p is usually small in practice and
thus considered constant in theory, the previous discussion can be summarized
through the following result.

Theorem 4. MAX SIZEND is solvable in constant time when p is constant.

3.2.3 Comparison of the different bounds

We propose to compare α(P ) to simpler bounds on the number of nondomi-
nated points. Let us first illustrate this comparison on a large class of instances
of TRI-OBJECTIVE SPANNING TREE. Let G = (V,E) be a complete graph with
n = 101 vertices, where each edge cost is randomly chosen between 0 and
10 on each criterion. We wish to compute, in the worst case, the number of
nondominated points.

Considering that for some instances all feasible solutions can give rise to dif-
ferent nondominated points [44], a first bound is the total number of spanning
trees in a complete graph, i.e. nn−2 = 10199. This huge bound, which can be
achieved only when edge costs are exponential, does not take account of values
ci.

A second bound corresponds to the product
∏p

i=2(ci + 1), where c1 = c2 =
c3 = 1000 and p = 3 which gives 10012 = 1.002.001.

Finally, our proposed bound, computed from Corollary 2 with c1 = c2 = c3 =
1000, gives 3

4
(1001)2 + 1

4
= 750.751.

It is interesting to quantify the ratio between α(P ) and
∏p

i=2(ci + 1). The
smallest ratio is reached, as in the previous example, when all ci are equal. Let
αp,q(P ) be the result of the formula which computes the maximal number of
nondominated points in the worst case when there are p criteria and for all
i, ci = q − 1. In the following proposition, we determine limq→∞ αp,q(P )/qp−1,
where qp−1 corresponds to the product

∏p
i=2(ci + 1).
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Proposition 2. For p criteria, we have

limq→∞
αp,q(P )
qp−1 =

∑⌈ p
2
⌉−1

l=1 −(1)l p
l!(p−l)!

(p
2
− l)p−1.

Proof : Using formula (3.3) and keeping only the coefficients of the terms of
degree p− 1.

✷

This way, we can compute all these limits when p is fixed. For instance
limq→∞

α3,q(P )

q2
= 3

4
and limq→∞

α4,q(P )

q3
= 2

3
. When the number of criteria in-

creases, we note that the proposed bound is more and more interesting, as
compared with the bound qp−1.

3.3 Tightness of the bound

The determination of the maximum number of nondominated points is par-
ticularly relevant for multicriteria combinatorial optimization problems, for which
it is well-known that this number can be exponential in the size of the instance
[24]. Considering such a problem Π, the problem of determining the maxi-
mum cardinality of the nondominated set associated to Π, knowing values ci,
i = 1, . . . , p, is denoted by MAX SIZEND Π in the following.

We show in this part that our bound α(P ) is tight for the multicriteria ver-
sion of some classical optimization problems such as SELECTION, KNAPSACK,
SHORTEST PATH, SPANNING TREE, TSP, s-t CUT. We propose some relatively
simple families of instances of these problems where the number of nondomi-
nated points is exactly α(P ).

We first introduce some notations used in the definitions of these problems.
SELECTION and KNAPSACK require to define a set O of objects, a capacity b
and a nonnegative integer t. Each object o ∈ O has a criterion vector v(o) =
(v1(o), . . . , vp(o)) and a weight w(o). We define the criterion functions on a set
O′ ⊆ O as vi(O′) =

∑

o∈O′ vi(o) for all i ∈ {1, . . . , p}.
SELECTION consists in selecting a subset O′ ⊆ O of t objects maximizing

vi(O
′), i = 1, . . . , p. KNAPSACK consists in selecting a subset O′ ⊆ O satisfying

the constraint
∑

o∈O′ w(o) ≤ b maximizing vi(O
′), i = 1, . . . , p.

The other problems are defined on a graph. Consider G = (V,E) a graph
where V = {1, . . . , n} is the set of vertices and E ⊆ V × V is the set of edges.
Each edge e ∈ E has a criterion vector v(e) = (v1(e), . . . , vp(e)). We define the
value function v on a subset E ′ of edges as follows: v(E ′) = (v1(E

′), . . . , vp(E
′))

where vi(E
′) =

∑

e∈E′ vi(e) for all i ∈ {1, . . . , p}.

Proposition 3. The bound α(P ) is tight for MAX SIZEND SELECTION and MAX

SIZEND KNAPSACK.



34 CHAPTER 3. COMPUTATION OF UPPER BOUNDS

Proof : Consider p integers c1, . . . , cp and p subsets Oj, j = 1, . . . , p, where
each subset Oj contains cj identical objects oij , i = 1, . . . , cj with vj(o

i
j) = 1 and

vk(o
i
j) = 0 for k 6= j. Let O = ∪pj=1Oj with |O| =

∑p
j=1 cj = n and t = ⌊n

2
⌋.

Selecting t = ⌊n
2
⌋ = ⌊h

2
⌋ objects can be seen as selecting xj objects in subset

Oj, j = 1, . . . , p such that
∑p

j=1 xj = ⌊h
2
⌋ and 0 ≤ xj ≤ cj , with a resulting

nondominated criterion vector (x1, x2, . . . , xp). The number of such vectors is
the number of integer solutions of equation (3.2) and thus corresponds to α(P ).

Since SELECTION is a particular case of KNAPSACK, the result also holds for
MAX SIZEND KNAPSACK. ✷

Proposition 4. The bound α(P ) is tight for MAX SIZEND SHORTEST PATH, MAX

SIZEND SPANNING TREE, and MAX SIZEND TSP.

Proof : Assume that p is even and let q be a nonnegative integer. We consider
the following gadget consisting of a graph with two vertices, which are con-
nected by edges corresponding to all the p-tuples containing p/2 values 0 and
p/2 values 1, with the corresponding values on these edges (see Figure 3.1).

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

Figure 3.1: Gadget

Let G be the concatenation of q times this gadget (see Figure 3.2).

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

s t

Figure 3.2: Graph G

Any path between s and t in G uses exactly one edge of each gadget and
corresponds to a nondominated point (v1, . . . , vp) with 0 ≤ vi ≤ q and

∑p
i=1 vi =

pq
2

. The number of such points is the number of integer solutions of equation
(3.2), with ci = q, for i = 1, . . . , p, and thus corresponds to α(P ).

Since in the previous construction paths and spanning trees are equivalent,
the proof holds for MAX SIZEND SPANNING TREE. Adding edge (s, t) to the
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above construction with criterion value (0, . . . , 0), the proof holds also for MAX

SIZEND TSP. ✷

Proposition 5. The bound α(P ) is tight for MAX SIZEND s-t CUT.

Proof : The proof is essentially the same as in Proposition 4 but using the
following gadget consisting of a path whose edges correspond to all the p-tuples
containing p/2 values 0 and p/2 values 1 (see Figure 3.3) and the following
graph G (see Figure 3.4), where this gadget is duplicated q times, each of these
being connected at each end.

bc bc bc bc bc bc
(0, . . . , 0, 1, . . . , 1) (1, . . . , 1, 0, . . . , 0)

Figure 3.3: Gadget

bc

bc

bc bc

bc

bc

bc

bc bc

bc

bc

bc bc

bc

bc

bc bc

bc

(0, . . . , 0, 1, . . . , 1) (1, . . . , 1, 0, . . . , 0)

(0, . . . , 0, 1, . . . , 1) (1, . . . , 1, 0, . . . , 0)

s t

Figure 3.4: Graph G

In the same way, we have ci = q for i = 1, . . . , p, and the number of nondom-
inated points is exactly α(P ). ✷

3.4 Reduction of the bound using known feasible
solutions

We investigate now if it is possible to improve the upper bound on the num-
ber of nondominated points when a subset of feasible solutions or a subset
of efficient solutions is known. Indeed, feasible solutions can often be easily
computed. Moreover, supported efficient solutions, which are obtained by opti-
mizing a weighted sum of the criteria, are easily computable, when the corre-
sponding single criterion problem is polynomially solvable.

The knowledge of feasible criterion vectors, possibly known to be nondomi-
nated, involves the elimination of some points in P . More precisely, if a feasible
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point z is known, all the points dominated by z cannot be part of the nondom-
inated set and can thus be removed from P . Moreover, if z is known to be
nondominated, we can also remove from P all the points which dominate z. In
the graph theory setting, this leads to subgraphs which are still comparability
graphs. Therefore, the computation of the maximal number of nondominated
points in this context is still achievable in pseudo-polynomial time. We investi-
gate the problem under the ordered set theory setting.

3.4.1 When feasible solutions are known

Given P = (c1 + 1) × . . . × (cp + 1) and k points z1, . . . , zk in the criterion
space, representing feasible solutions, let D be the subset of P dominated by at
least one point from {z1, . . . , zk}, that is the set of points y of P such that there
is j ∈ {1, . . . , k} with zj ≤ y. We want to study if the set Q = P −D still satisfies
the Sperner property and we want to compute α(Q).

3.4.1.1 Two objectives

In the bicriteria case we have the following result.

Proposition 6. When p = 2, Q satisfies the Sperner property and we have α(Q) =
min(c2, mink

j=1r(z
j)) + 1 where r(zj) is the rank of point zj .

Proof : When there is no point in {z1, . . . , zk} located below the first level of
maximum cardinality of P we have α(Q) = α(P ) = c2 + 1. Otherwise, let
L be the lowest level of P containing an element of the set {z1, . . . , zk} and
zm = (zm1 , zm2 ) such a point. Since points zj , j 6= m, located above level L do
not eliminate any point on L, we have α(Q) ≥ |L| = r(zm) + 1.

Consider now the set W ⊂ P of points belonging either to the chains contain-
ing all the points with a first constant coordinate v1, for each v1 ∈ {0, . . . , zm1 }
or to the chains containing all the points with a second constant coordinate v2,
for each v2 ∈ {0, . . . , zm2 − 1}. We have Q ⊂ W and we use |L| chains to cover
W . Therefore, any antichain of Q contains at most |L| points, i.e. we have
α(Q) ≤ |L| = r(zm) + 1.

In any case, α(Q) corresponds to the cardinality of a level of Q, meaning
that Q satisfies the Sperner property. ✷

3.4.1.2 More than two objectives

When p ≥ 3, the observed structure does not satisfy the Sperner property as
will be shown in the next result. We observed in the bicriteria case that α(Q)
is determined either from the first level of maximum cardinality or from the
level of one of the points zj . We could expect that, for p ≥ 3, only these levels
are relevant when computing α(Q). Unfortunately, we also show that other
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levels may contribute to α(Q). This suggests that the determination of α(Q) is
difficult.

Proposition 7. For any p ≥ 3, Q does not satisfy the Sperner property. Moreover,

other levels than the first level of maximum cardinality of P and levels of the points

zj may contribute to α(Q).

Proof : We first construct a simple example with three criteria. Let P = 3×3×3
be the product of chains and z = (0, 1, 0) a known feasible solution (see Figure
3.5).

ut
z

Figure 3.5: P = 3× 3× 3

ut
z

Figure 3.6: The set Q = P −D

The set Q = P − D, represented in Figure 3.6, does not satisfy the Sperner
property. Indeed, we have σ(Q) = |L1| = |L2| = 3, while α(Q) = |L2| + 1 = 4
since point z, which belongs to level L1, is incomparable to the 3 points belong-
ing to level L2. Observe that L2 is neither the first level of maximum cardinality
of P (L3) nor the level of z (L1).

This example can be extended easily to p ≥ 4 criteria. We just need to
extend z with values 0 on the p − 3 other criteria and add p − 3 new points zi,
i = 1, . . . , p− 3, where zi has coordinate 1 on criterion i+ 3 and 0 on the other
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criteria. Doing so, we obtain the same set Q as for p = 3 (except that points in
Q have now all their p− 3 last coordinates equal to 0). ✷

3.4.2 When efficient solutions are known

We consider now the same problem when the feasible solutions are known
to be efficient.

Given P = (c1 + 1) × . . . × (cp + 1) and k nondominated points z1, . . . , zk

in the criterion space, representing efficient solutions, let D be the subset of P
corresponding to the set of points y of P such that there is j ∈ {1, . . . , k} with
zj ≤ y or y ≤ zj . We are interested in computing α(Q), where Q = P −D.

3.4.2.1 Two objectives

In this case, the set Q does not satisfy the Sperner property. We illustrate
this on an instance where P = 8 × 6, and two known nondominated points
z1 = (5, 1) and z2 = (1, 4) (see Figure 3.7). Here Q consists of the points
represented by squares and the two points z1 and z2. A largest antichain in Q is
{z1, z2, y1, . . . , y4} and thus we have α(Q) = 6, whereas σ(Q) = 4.

rs

rs
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rs

y3
rsrs
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Figure 3.7: P = 8× 6

We show, however, that Q\{z1, . . . , zk} is a disjoint union of products of two
chains, which allows the computation of α(Q). We assume in this part that the
k nondominated points zj , j = 1, . . . , k are ranked by non increasing value on
the first criterion, i.e. z11 ≥ . . . ≥ zk1 .

Proposition 8. When p = 2, we have α(Q) = k +min(c1 − z11 , z
1
2) + min(zk1 , c2 −

zk2 ) +
∑k−1

j=1 min(zj1 − zj+1
1 − 1, zj+1

2 − zj2 − 1).

Proof : The first term k in the proposed formula corresponds to the k given
nondominated points. These k points delimit exactly k + 1 disjoint products
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of two chains, some of them being possibly empty. The first product of chains
is of size c1 − z11 on the first criterion and z12 on the second one, the (k + 1)th

product of chains is of size zk1 on the first criterion and c2 − zk2 on the second
one, whereas the products of chains located between two points zj and zj+1 are
of size zj1 − zj+1

1 − 1 on the first criterion and zj+1
2 − zj2 − 1 on the second one.

Each point of any of these k + 1 products of chains is incomparable with any
point of any other product and incomparable with each zj . Since the width of
a product of two chains c1 × c2 is min(c1, c2), the formula is proved. ✷

We remark that, to determine α(Q), we can consider only nondominated
points located on the levels which contain the known nondominated points zj .
Referring again to the instance presented in Figure 3.7, we illustrate this remark
with the largest antichain {z1, z2, y1, . . . , y4}.

3.4.2.2 More than two objectives

We observed in the bicriteria case that α(Q) is determined by considering
points on the levels of points zj . Unfortunately, for p ≥ 3, other levels may
contribute to α(Q), as shown in the next result. This suggests that the determi-
nation of α(Q) is difficult.

Proposition 9. For any p ≥ 3, other levels than the first level of maximum cardi-

nality of P and levels of the points zj may contribute to α(Q).

Proof : We consider the same counter-example as in the proof of Proposition 7
and Figure 3.5. The set Q = P −D is represented in Figure 3.8.

ut
z

Figure 3.8: The set Q = P −D

We have α(Q) = |L2| + 1. Observe that L2 is neither the first level of maxi-
mum cardinality of P (L3) nor the level of z (L1). ✷

3.5 Conclusions

The purpose of this chapter was to develop tight and easily computable
bounds on the cardinality of the set of nondominated points. Graph theory
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and ordered set theory provided complementary insights on this topic. Two
main questions require further investigation.

A basic assumption in our work is the a priori knowledge on the number of
values taken on each criterion. Obviously, obtaining a good upper bound on
these values is itself a difficult question which depends on the problem at hand
as well as on the specific instances.

Knowing feasible, possibly efficient, solutions may improve our bound on
the number of nondominated points. The impact is clear in the bicriteria case.
For p ≥ 3, nice properties (the Sperner property, the fact that only the levels of
known points are relevant) are no longer valid. Even if we know, from graph
theory, that this upper bound can be computed in pseudo-polynomial time, fur-
ther structural insights are still required.



4 Approximation of small size

Abstract

In this chapter, we are interested in a problem introduced by Vassilvitskii
and Yannakakis [80], the computation of a minimum set of solutions that
approximates within an accuracy ε the Pareto set of a multi-objective op-
timization problem. We first establish a new 3-approximation algorithm
for the bicriteria case. We also propose a study of the greedy algorithm
performance for the tricriteria case when the points are given explicitly,
answering an open question raised by Koltun and Papadimitriou in [54].
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In the following section we formalize the problem and recall some previous
related works. In section 4.2, we mainly propose a new polynomial time 3-
approximation algorithm of the size of a smallest ε-Pareto set for the bicriteria
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case. In section 4.3, we give a performance analysis of the greedy algorithm
when the points of the objectives space are given explicitly in the input and the
number of criteria is three. We conclude with some possible extensions to this
work.

4.1 Problem statements

In this chapter, we are interested in determining efficiently small ε-Pareto
sets which is a problem introduced by Vassilvitskii and Yannakakis in [80]. For-
mally, the problem is the following:

Primal problem: Given an instance of a p-objective problem and an ε > 0,
the goal is to obtain an ε-Pareto set of minimal size.

We denote by P ∗
ε a smallest ε-Pareto set and by optε its cardinality. We recall

that an algorithm that uses a routine is called generic if only the routine is
specific to a particular problem.

4.1.1 Two objectives

In the bi-objective case, for the primal problem, a generic algorithm that
computes an ε-Pareto set of size at most 3optε using routines GAPδ with δ > 0
was established in [80]. Moreover, if the routine GAPδ runs in polynomial time
(resp. fully polynomial time) then the algorithm also runs in polynomial time
(resp. fully polynomial time). This approximation result is tight for the class
of problems admitting such a routine. They also showed the existence of a bi-
objective problem admitting such a routine that cannot be approximated within
a factor better than 3 in polynomial time unless P = NP. It means that there are
problems whose the size of a smallest ε-Pareto set is 3-approximable using a
generic algorithm and for which it is not possible to do better than 3 even using
an algorithm that directly depends on the problem. In the next section, we first
show that a main classical bi-objective problem belongs to this class.

We study the problem of determining small ε-Pareto sets with generic algo-
rithms but using a routine called SoftRestrict instead of GAP.

Definition 15. (SoftRestrict) Given a positive rational bound b and a parameter

δ > 0, the routine SoftRestrictδ(f1, f2 ≤ b) either returns a feasible point z satisfy-

ing z2 ≤ (1 + δ)b and z1 ≤ (1 + δ).min{f1(x) : x ∈ S and f2(x) ≤ b} or correctly

reports that there does not exist any feasible point z such that z2 ≤ b.

We say that a routine SoftRestrictδ(f1, f2 ≤ b) runs in polynomial time (resp.
fully polynomial time when δ > 0) if its running time is polynomial in |I| and
|b| (resp. |I|, |b|, |δ| and 1/δ).
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Remark that a routine SoftRestrictδ(f1, f2 < b), with a strict constraint, can
easily be simulated by a routine SoftRestrictδ(f1, f2 ≤ b′) using b′ = b− 2−2m.

Such a routine was proposed for several problems. For instance, for the BI-
OBJECTIVE SPANNING TREE problem, the best known running time of the routine
is O(mn5τ(⌊(n − 1)/δ⌋, ⌊(n − 1)/δ⌋)) where n is the number of vertices in the
graph, m the number of edges in the graph and τ(a, b) is the time to multiply
polynomials of maximum degrees less than or equal to a and b [50]. For a
BI-OBJECTIVE SINGLE MACHINE SCHEDULING problem, an algorithm is given in
[16] and the running time of the routine is O(n5R/(δ3L)) where n is the number
of jobs, L and R are respectively lower and upper bounds on the first coordinate
of an optimal solution.

4.1.2 More than two objectives

For p ≥ 3 objectives, Vassilvitskii and Yannakakis [80] showed that any
generic algorithm based on routine GAPδ cannot establish a c-approximation
of the size of a smallest ǫ-Pareto set for any constant c.

Note that for several problems the routine Restrictδ extended to p criteria
(one criterion has to be minimized and there is a bound to satisfy on each
other criterion) is not computable in polynomial time [43] but it could be the
case for the extension of DualRestrictδ to p criteria. Essentially since the error
δ is represented in the p − 1 constraints in DualRestrictδ but only once in the
minimization in Restrictδ. Recall that for p = 2 when routines DualRestrictδ
are computable in polynomial time for both objectives, an ε-Pareto set of size
at most 2optε is computable in polynomial time [20]. An interesting problem
is to obtain an ε-Pareto set of smallest size for a p-criteria problem using the
extension of DualRestrictδ, but it seems quite hard.

To get around this difficulty, the standard way is to assume that the feasible
points are given explicitly in the input. Assuming that feasible points are given
explivitly in the input, we propose a study of the greedy algorithm performance,
which is an open question of Koltun and Papadimitriou [54].

4.2 Two objectives

We first present a hardness result for the BI-OBJECTIVE KNAPSACK problem
then we propose a new generic algorithm that approximates the size of a small-
est ε-Pareto set to a factor 3, which is much simpler and, in some cases, more
efficient than the one presented in [80].
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4.2.1 Approximation hardness for BI-OBJECTIVE KNAPSACK

Diakonikolas and Yannakakis [20] showed that the size of a smallest ε-Pareto
set of BI-OBJECTIVE SHORTEST PATH and BI-OBJECTIVE SPANNING TREE cannot
be approximated within a factor better than 2 in polynomial time, unless P = NP.
These results are tight since these two problems admit a routine Restrictδ that
runs in polynomial time, and thus an ε-Pareto set of size at most 2optε is com-
putable in polynomial time as shown in [20]. Vassilvitski and Yannakakis [80]
showed that the size of a smallest ε-Pareto set of an artificial variant of KNAP-
SACK, called BI-OBJECTIVE 2-TYPE-KNAPSACK, cannot be approximated within
a factor better than 3 in polynomial time, unless P = NP. This result is also tight
since this problem has a routine GAPδ that runs in polynomial time, and thus an
ε-Pareto set of size at most 3optε is computable in polynomial time as shown in
[80].

In this part, we investigate the status of the classical version, called BI-
OBJECTIVE KNAPSACK, with as input a set Q of items, a capacity c and for each
item i two values v1(i), v2(i) and a weight w(i). Values and weights are positive
rationals. A solution is a nonempty subset Q′ of items with total values v1(Q′) =
∑

i∈Q′ v1(i), v2(Q′) =
∑

i∈Q′ v2(i) and a total weight w(Q′) =
∑

i∈Q′ w(i) ≤ c.
The goal is to maximize the values. First, note that the size of a smallest ε-
Pareto set of BI-OBJECTIVE KNAPSACK is approximable in polynomial time to a
factor 3 since this problem admits an FPTAS [31]. We prove that the size of a
smallest ε-Pareto set of BI-OBJECTIVE KNAPSACK is not approximable in polyno-
mial time within a factor better than 3, if P 6= NP.

Theorem 5. For BI-OBJECTIVE KNAPSACK the size of a smallest ε-Pareto set cannot

be approximated within a factor better than 3 in polynomial time, unless P = NP.

Proof : We construct a reduction from the PARTITION problem. Thus, from any
instance I of PARTITION, we construct an instance I ′ of BI-OBJECTIVE KNAPSACK

such that if the answer of I is ’yes’ then the size of the smallest ε-Pareto set of
I ′ is 1 and if the answer of I is ’no’ then the size of the smallest ε-Pareto set
of I ′ is 3. Recall that in PARTITION, the input is a set N of n positive integers
a1, . . . , an, and we have to determine if it is possible to partition N into two
subsets with equal sum. Starting with such an instance we construct an instance
of BI-OBJECTIVE KNAPSACK as follows. Let b =

∑n
i=1 ai/2. For each i = 1, . . . , n,

we have one item i with values v1(i) = v2(i) = ai and weight w(i) = ai. In
addition, we have two special items α and β with v1(α) = (1 + ε)b, v2(α) = 0,
w(α) = b and v1(β) = 0, v2(β) = (1 + ε)b, w(β) = b. The capacity of the
knapsack is b. Note that if a solution contains a special item, it cannot contain
any other item. Let zα and zβ be the points corresponding to the solution with
special item α and β respectively. Consider now solutions without special items.
The corresponding points having the same value on each criterion, let z∗ be the
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point with the largest value v∗ on each criterion. z∗ dominates all other such
points.

If I is a ’yes’ instance, we have v∗ = b. Thus, z∗ (1+ε)-dominates both zα and
zβ , and {z∗} is an ε-Pareto set. If I is a ’no’ instance, we have v∗ < b. Thus zα

and zβ must make part of any ε-Pareto set and {z∗, zα, zβ} is a smallest ε-Pareto
set. ✷

Remark that we can generalize the previous result proving that for p-OBJECTIVE

KNAPSACK the size of a smallest ε-Pareto set cannot be approximated within a
factor better than p+ 1 in polynomial time, unless P = NP.

4.2.2 A new 3-approximation algorithm

We propose in this section a new 3-approximation algorithm, based on the
routine SoftRestrictδ.

Our approximation algorithm has the same approximation ratio as the algo-
rithm presented in [80] but is much simpler, both in its description and in its
proof, owing to the use of the routine SoftRestrictδ instead of GAPδ. Its running
time is comparable to the one of [80] and better under some conditions.

Before presenting and analyzing this new 3-approximation algorithm, we
first compare the two routines GAP and SoftRestrict.

4.2.2.1 Comparison of the routines

Proposition 10. The routines SoftRestrict and GAP are polynomially equivalent.

Proof : We first show that we can answer to GAPδ(y) using SoftRestrictδ(f1, f2 ≤
y2/(1 + δ)). Indeed, if SoftRestrictδ(f1, f2 ≤ y2/(1 + δ)) returns NO or returns a
feasible point z with z1 > y1, we return NO and if SoftRestrictδ(f1, f2 ≤ y2/(1+δ))
returns a feasible point z with z1 ≤ y1 we return z.

We give in the following an algorithm that computes the function SoftRe-

strictδ(f1, f2 ≤ b) using a polynomial number of calls to GAPδ′ where δ′ =√
1 + δ − 1. We first call GAPδ′((1 + δ′)2m, (1 + δ′)b). If it returns NO, then

we also return NO for SoftRestrictδ(f1, f2 ≤ b). Otherwise, we partition the ob-
jective space by defining intervals, on the first objective, from 2−m/(1 + δ′) to
2m such that the ratio between the upper and lower bounds of each interval is
1 + δ′. We perform a binary search on the upper bounds of the previous inter-
vals calling GAPδ′(a, (1 + δ′)b) for some a until one finds a value a∗ such that (i)
GAPδ′(a

∗(1 + δ′), (1 + δ′)b) returns a feasible point z∗ and (ii) GAPδ′(a
∗, (1 + δ′)b)

returns NO. Then we return z∗.
The number of subdivisions on the first coordinate is 2m/ log(1 + δ′) ≈

Θ(4m/δ′). Hence, the number of calls to GAPδ′ is Θ(log(m/δ′))=Θ(log(m/δ)).
✷
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Corollary 3. Consider the class of bi-objective problems that possess a fully polyno-

mial time routine SoftRestrictδ with δ > 0 for both objectives. Then, for any ε > 0,

there is no polynomial time generic algorithm using SoftRestrictδ that computes an

ε-Pareto set of size less than or equal to 3optε.

Proof : Follows from Proposition 10 and the fact that the same result holds for
the routine GAPδ [80]. ✷

4.2.2.2 Algorithm description

We first describe briefly the idea of the algorithm. We compute by fmin
1 and

fmin
2 lower bounds on the minimum values on the first and second objectives

using SoftRestrictδ. The algorithm iteratively generates a sequence of points
r1, q1, . . . , rs, qs. Points q1, . . . , qs are selected in decreasing order according to
f1 and increasing order according to f2. Point q1 is selected so as to (1 + ε)-
dominate the feasible points that have an optimal second coordinate while get-
ting the best possible value on f1. The algorithm stops when generates a point
qs that (1 + ε)-dominates the feasible points that have a first coordinate equal
to fmin

1 . Routines SoftRestrictδ(f2, f1 ≤ b) and SoftRestrictδ(f1, f2 ≤ b) are alter-
natively used to construct points ri and points qi respectively. Point ri is a point
with a smallest second coordinate that we can determine with the routine Soft-

Restrictδ that is not (1 + ε)/(1 + δ)-dominated by the points qj with j < i. Point
qi is a point with a smallest first coordinate that we can determine with routine
SoftRestrictδ that (1 + ε)-dominates point ri.

A formal description of this algorithm is given in Algorithm 4.1. In order
to obtain a 3-approximation algorithm, we consider in the following that δ ≤
3
√
1 + ε− 1.

We propose an illustration of Algorithm 4.1 in Figure 4.1 where 3 points
q1, q2, q3 are already selected and such that, instead of these three points, only
one point p∗1 was sufficient.

4.2.2.3 Algorithm analysis

We show now that Algorithm 4.1 produces a 3-approximation of the size of
a smallest ε-Pareto set. Let Q = {q1, . . . , qs} and R = {r1, . . . , rs} be the sets
of feasible points produced by the algorithm. We show in the following that
set Q is an ε-Pareto set, then that its size is at most three times the size of P ∗

ε ,
an ε-Pareto set of minimal size. The proof is essentially the same as the one
in [20] for the 2-approximation algorithm. We first show some preliminarily
results regarding points in Q and R.

Lemma 6. For all i = 2, . . . , s we have (i) ri1 < qi−1
1 (1 + δ)/(1 + ε) and (ii) for

each feasible point z with z1 < qi−1
1 /(1 + ε), we have z2 ≥ max{f2

i−1
, ri2/(1 + δ)}.
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Algorithm 4.1: Algorithm SoftGreedy
input : An instance of a bi-objective problem for which routines

SoftRestrictδ(f1, f2 ≤ b) and SoftRestrictδ(f2, f1 ≤ b) are available
output : An ε-Pareto set of size at most 3optε

fmin
1 ← f1(SoftRestrictδ(f1, f2 ≤ 2m))/(1 + δ);1

fmin
2 ← f2(SoftRestrictδ(f2, f1 ≤ 2m))/(1 + δ);
r1 ← SoftRestrictδ(f2, f1 ≤ 2m);2

f2
1 ← 1+ε

(1+δ)2
r12;3

q1 ← SoftRestrictδ(f1, f2 ≤ f2
1
);4

f1
1 ← q11/(1 + ε);5

Q← {q1};6

i← 1;7

while f1
i
> fmin

1 do8

i← i+ 1;9

ri ← SoftRestrictδ(f2, f1 < f1
i−1

);10

f2
i ← 1+ε

1+δ
max{f2

i−1
, ri2/(1 + δ)};11

qi ← SoftRestrictδ(f1, f2 ≤ f2
i
);12

if qi1 > ri1 then13

qi ← ri;14

f1
i ← qi1/(1 + ε);15

Q← Q ∪ {qi};16

return Q;17

Proof : This results from the definition of the routine SoftRestrictδ and steps
10-12 and 15 of the algorithm. ✷

Lemma 7. For all i = 1, . . . , s we have (i) qi2 ≤ (1+ δ)f2
i
and (ii) for each feasible

point z with z2 ≤ f2
i
, we have z1 ≥ qi1/(1 + δ).

Proof : This results from the definition of the routine SoftRestrictδ and steps
10-12 of the algorithm. ✷

We can now prove the following results.

Proposition 11. Set Q is an ε-Pareto set.

Proof : We show that the points in Q cover all the feasible points by partitioning
the range of feasible values on f1. More precisely, we show that:

(i) Point q1 (1 + ε)-dominates all the feasible points with an f1 value greater
than or equal to q11/(1 + ε).
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Figure 4.1: Illustration of Algorithm 4.1 with 1 + δ = 3
√
1 + ε

(ii) For each i = 2, . . . , s point qi (1 + ε)-dominates all the feasible points
that have their f1 value in the interval

[

qi1/(1 + ε), qi−1
1 /(1 + ε)

)

.
(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).

(i) Let z be a feasible point with z1 ≥ q11/(1 + ε). We need to show that z is
(1 + ε)-dominated by q1, i.e. that z2 ≥ q12/(1 + ε). From steps 2-4 we get where
q12 ≤ r12(1 + ε)/(1 + δ) ≤ fmin

2 (1 + ε) and thus q12/(1 + ε) ≤ fmin
2 ≤ z2.

(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1
1 /(1 + ε). We need

to show that z is (1 + ε)-dominated by qi, i.e. that z2 ≥ qi2/(1 + ε). From
Lemma 6-(ii) we have z2 ≥ max{f2

i−1
, ri2/(1+ δ)}. Furthermore from Lemma 9-

(i) we have qi2 ≤ (1 + δ)f2
i
. Hence, from the definition of f2

i
(step 11), we get

qi2 ≤ max{f2
i−1

, ri2/(1 + δ)} ≤ (1 + ε)z2.

(iii) The stopping condition of the algorithm (step 8) is f1
s
= qs1/(1 + ε) ≤ fmin

1 .
✷

Therefore, we only need to show that the size of Q is at most three times the
size of an optimal ε-Pareto set.

Proposition 12. Set Q is such that |Q| ≤ 3optε.

Proof : Let P ∗
ε = {p∗1, . . . , p∗k} be an optimal ε-Pareto set, where its points p∗i

for i = 1, . . . , k are in increasing order of their coordinates on f2 and decreasing
order of their coordinates on f1. We have to show that |Q| ≤ 3k. For this
purpose, we show by induction on i that if the algorithm selects a feasible point
q3i−2 then there must exist a point p∗i in P ∗

ε , if the algorithm selects a point q3i−1

then p∗i1 (1+δ) ≥ q3i−1
1 and if the algorithm selects a point q3i then p∗i1 > (1+δ)q3i1 .

Initialization (i = 1). The first statement trivially holds. To prove the second
statement we first show that p∗12 ≤ f2

2
. Since the feasible point r1 must be
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(1 + ε)-dominated by a point of P ∗
ε and in particular by point p∗1, we have

p∗12 ≤ r12(1 + ε). From the definitions of f2
1

and f2
2

(step 11) and using that
δ ≤ 3

√
1 + ε − 1, we have r12(1 + ε) = f2

1
(1 + δ)2 ≤ f2

2
. Using that p∗12 ≤ f2

2

and Lemma 9-(ii) we obtain p∗11 (1 + δ) ≥ q21. Since we have q31 ≤ r31 (steps 13
and 14) Lemma 6-(i) implies that q31 < q21(1 + δ)/(1 + ε), and so that the third
statement is a consequence of the second one, using that δ ≤ 3

√
1 + ε− 1.

Induction step. Assume the result is true until index i − 1, we prove it for
index i. First, if the algorithm selects a point q3i−2, we show that P ∗

ε contains
a point p∗i. By the termination condition of the algorithm (step 8), we have
q3i−3
1 > (1 + ε)fmin

1 and by the induction hypothesis that p∗i−1
1 > (1 + δ)q3i−3

1 ,
it follows that p∗i−1

1 > (1 + δ)(1 + ε)fmin
1 . Thus, point p∗i−1 does not (1 + ε)-

dominate the feasible points that have a minimum first coordinate, and so P ∗
ε

must contain another point p∗i. To prove the second statement we first show
that p∗i2 ≤ f2

3i−1
. Since the feasible point r3i−2 must be (1 + ε)-dominated by a

point of P ∗
ε and in particular by point p∗i, we have p∗i2 ≤ r3i−2

2 (1 + ε). From the
definitions of f2

3i−2
and f2

3i−1
(step 11) and using that δ ≤ 3

√
1 + ε−1, we have

r3i−2
2 (1 + ε) = f2

3i−2
(1 + δ)2 ≤ f2

3i−1
. Using that p∗i2 ≤ f2

3i−1
and Lemma 9-(ii)

we obtain p∗i1 (1+δ) ≥ q3i−1
1 . Since we have q3i1 ≤ r3i1 (steps 13 and 14) Lemma 6-

(i) implies that q3i1 < q2i−1
1 (1 + δ)/(1 + ε), and so that the third statement is a

consequence of the second one, using that δ ≤ 3
√
1 + ε− 1. ✷

Thus, we obtain the following result:

Theorem 6. Algorithm 4.1 computes an ε-Pareto set of size less than or equal to

3optε using O(optε) routine calls to SoftRestrictδ, when δ ≤ 3
√
1 + ε− 1.

Proof : Since the algorithm uses 2 |Q| times the routine SoftRestrictδ, the num-
ber of routine calls is bounded by 6optε, the result is a direct consequence of
Propositions 11 and 12. ✷

4.2.2.4 Comparison to existing algorithms

For the class of problems admitting a routine GAP that runs in polynomial
time, the algorithm of Vassilvitski and Yannakakis presented in [80] was the
only one ensuring some guarantee on the size of the returned ε-Pareto set. This
algorithm, called ZIGZAG is a generic algorithm based on the routine GAP, that
establishes a 3-approximation of the size of a smallest ε-Pareto set and it needs
O(optε · log(m/ε)) routine calls. Since algorithm ZIGZAG and our algorithm run
in polynomial time for the same class of problems and give the same approxima-
tion ratio of a smallest ε-Pareto set we can compare them with regard to their
running times. The running time of a generic algorithm is defined as the product
between the number of routine calls and the running time of the routine called.
This way, the running time of algorithm ZIGZAG is O(optε · log(m/ε)) · TGAPδ
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with δ = 4
√
1 + ε − 1 and the running time of the algorithm SoftGreedy is

O(optε) · TSoftRestrictδ
with δ = 3

√
1 + ε − 1 where TGAPδ

and TSoftRestrictδ
are the

running times of the routines GAPδ and SoftRestrictδ respectively.
The running times of algorithms SoftGreedy and ZIGZAG are comparable

since we can solve the routine SoftRestrictδ using Θ(log(m/ε)) calls to GAPδ′

with δ′ =
√
1 + δ − 1 (see the proof of Proposition 10). Moreover, if we can

solve faster the routine SoftRestrictδ , the running time of algorithm SoftGreedy

will be smaller than the one of algorithm ZIGZAG. Especially, if the best known
algorithm to solve GAPδ solves SoftRestrictδ in the same time, we gain the time
of the binary searches. It is the case for BI-OBJECTIVE SPANNING TREE since the
algorithm in [50] that solves SoftRestrictδ is the best known to solve GAPδ.

4.3 More than two objectives

For p ≥ 3 objectives, Vassilvitski and Yannakakis [80] showed that any
generic algorithm based on routine GAPδ cannot establish a c-approximation
of the size of a smallest ǫ-Pareto set for any constant c. Note that for several
problems the routine Restrictδ extended to p criteria (one criterion has to be
minimized and there is a bound to satisfy on each other criterion) is not com-
putable in polynomial time [43] but it could be the case for the extension of
DualRestrictδ to p criteria. Essentially since the error δ is represented in the
p− 1 constraints in DualRestrictδ but only once in the minimization in Restrictδ.
Recall that for p = 2 when routines DualRestrictδ are computable in polynomial
time for both objectives, an ε-Pareto set of size at most 2optε is computable in
polynomial time [20]. An interesting problem is to obtain an ε-Pareto set of
smallest size for a p-criteria problem using the extension of DualRestrictδ, but it
seems quite hard. To get around this difficulty, we assume in this section that
the feasible points are given explicitly in the input. In this case, we can easily
filter out the dominated points and thus we consider in the following that the
input contains only nondominated points.

When p = 3, the problem of finding an ε-Pareto set of smallest size is c-
approximable, for some constant c [54]. Moreover, for any number of criteria
there is a O(logn)-approximation since the instances of the problem are particu-
lar ones of the SET COVER problem. We prove that the greedy algorithm for SET

COVER does not perform better than its worst case, O(logn), on these particular
instances. Thus we answer an open question of Koltun and Papadimitriou [54].
The greedy algorithm iteratively selects the point that covers the largest number
of non-covered points.

Note that for 2 criteria, the greedy algorithm gives a 2-approximation, but
it is not really satisfying because the algorithm of Diakonikolas and Yannakakis
[20] finds an optimal solution when the points are given explicitly in the input.
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Theorem 7. For p ≥ 3 objectives, when the feasible points are given explicitly in

the input, the solution produced by the greedy algorithm for SET COVER has a size

Θ(log n) · optε in the worst case.

Proof : We prove the result for p = 3. The result clearly extends to p ≥ 4 since
we can consider the same points extended with the last p − 3 coordinates to 0.
In order to prove it, we give a family of instances where the algorithm produces
a Θ(log n)-approximation. Let a, b, c be three nonnegative integers, n = 2ℓ and
consider N = 2ℓ + ℓ − 3 = n + logn − 3 nondominated points in the criterion
space, defined as follows.

For all i = 1, . . . , log n− 1 let:
zi = ( a

(1+ε)i/(log n−1) ,
b

(1+ε)i/(log n−1) , c(1 + ε)(i−1)/(log n−1)+1),

Γi be a set of n
2i+1 points lying uniformly on the line from (a, b

(1+ε)(i−1)/(log n−1)+1−
1, c(1 + ε)

i−1
log n−1 ) to (a(1 + ε), b

(1+ε)i/(log n−1)+1 , c(1 + ε)(i−1)/(log n−1)) if i 6= logn − 1

and be the singleton {(a, b
(1+ε)(i−1)/(log n−1)+1−1, c(1 + ε)(i−1)/(log n−1))} if i = logn−

1,
Γ′
i be a set of n

2i+1 points lying uniformly on the line from ( a
(1+ε)(i−1)/(log n−1)+1 −

1, b, c(1 + ε)(i−1)/(log n−1)) to ( a
(1+ε)i/(log n−1)+1 , b(1 + ε), c(1 + ε)(i−1)/(log n−1)) if i 6=

log n− 1 and be the singleton {( a
(1+ε)(i−1)/(log n−1)+1 − 1, b, c(1 + ε)(i−1)/(log n−1))} if

i = log n− 1.
Note that if the coordinates of points zi are not rational, we approximate its

coordinates from below by rational ones. Moreover, if the coordinates of points
in Γ∪Γ′ are not rational, we approximate its coordinates from above by rational
ones.

Let ξ = ∪i{zi} and Γ = ∪iΓi, Γ′ = ∪iΓ′
i. Remark that a, b, c can be set

sufficiently large to have the following (1 + ε)-dominance relations:

1. for any zi, zj ∈ ξ, zi �ε z
j

2. for any i, j = 1, . . . , logn− 1, for any z ∈ Γj ∪ Γ′
j, z

i �ε z iff i = j

3. for any z, z′ ∈ Γ, z �ε z
′

4. for any z, z′ ∈ Γ′, z �ε z
′

5. for any z ∈ Γ, z′ ∈ Γ′, z 6�ε z
′ and z′ 6�ε z

We show in the following that the greedy algorithm selects the points zi,
i = 1, . . . , logn− 1 in this order. The proof is by induction on i.

Initialization (i=1). Note that |Γ| = |Γ′| = n
2
− 1. From 5 it follows that any

point in Γ∪Γ′ (1+ε)-dominates at most n
2
+logn−2 points. From 1 and 2 point zi

(1+ε)-dominates exactly the points in ξ∪Γi∪Γ′
i, where |ξ∪Γi∪Γ′

i| = n
2i
+logn−1.

In particular point z1 (1 + ε)-dominates n
2
+ log n− 1 points. Therefore, point z1

is the first point selected by the greedy algorithm.
Induction step. Assuming that the first i − 1 points selected by the greedy

algorithm are z1, . . . , zi−1, we prove that the next one is point zi. The points
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(1 + ε)-dominated by {z1, . . . , zi−1} are exactly the points in ξ ∪ (∪i−1
j=1(Γj ∪ Γ′

j)).
Therefore, any point in Γ∪Γ′ (1+ε)-dominates exactly |∪logn−1

j=i (Γj∪Γ′
j)| = n

2i
−1

points that are not already covered. Point zi exactly (1 + ε)-dominates, among
the non-covered points, the points in Γi ∪ Γ′

i where |Γi ∪ Γ′
i| = n

2i
. Thus point zi

is selected by the greedy algorithm at step i.
Observe now, that the first point of Γ1 (1 + ε)-dominates all the points in ξ.

Thus, from 3 and 4, it follows that a set constituted by the first point of Γ1 and
any point in Γ′ (1 + ε)-dominate the N points. Therefore, the greedy algorithm
returns a set of points of size logn − 1 while an optimal set of points contains
only two points. ✷

4.4 Conclusions

In this chapter, we investigated a problem introduced by Vassilvitskii and
Yannakakis [80], computing a minimum set of solutions for a multi-objective
optimization problem that represents approximately the Pareto set within an ac-
curacy ε. First, for the bi-objective case, we presented a new 3-approximation
algorithm of the size of a smallest ε-Pareto set. We showed that for a classi-
cal bi-objective problem this approximation is tight unless P = NP. Since this
problem is particularly difficult when the number of criteria is greater than two,
when p ≥ 3, we standardly considered that the points of the objective space are
given explicitly in the input. In these settings, we studied the greedy algorithm
performance, answering an open question of Koltun and Papadimitriou [54].

There is an interesting problem that remains open for a number of criteria
greater than or equal to 3. When p ≥ 3 and the points are given explicitly in
the input, it is NP-hard to determine an ε-Pareto set of minimal size but there
is a 100-approximation of the size of a smallest ε-Pareto set [54]. The open
problem is to make this lower and upper bounds closer.



5 Representation using kernels

Abstract

In this chapter, we are interested in producing discrete and tractable rep-
resentations of the set of non-dominated points for multi-objective opti-
mization problems. These representations must satisfy some conditions of
coverage, i.e. providing a good approximation of the non-dominated set,
spacing, i.e. whitout redundancies, and cardinality, i.e. with the smallest
possible number of points. This leads us to focus on ε-Pareto sets of small
size satisfying an additional condition of ε′stability, called (ε, ε′)-kernels or
ε-kernels when ε′ = ε is possible.

We first establish some general properties on ε-kernels. Then, for the
bi-objective case, we propose some generic algorithms computing in poly-
nomial time either an ε-kernel of small size or, for a fixed size k, an ε-kernel
with a nearly optimal approximation ratio 1 + ε. For more than two objec-
tives, we show that ε-kernels do not necessarily exist but that (ε, ε′)-kernels
with ε′ ≤

√
1 + ε − 1 always exist. Nevertheless, we show that the size of

a smallest (ε, ε′)-kernel can be very far from the size of a smallest ε-Pareto
set.
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The content of this chapter is based on the following paper.

◮ C. Bazgan, F. Jamain, and D. Vanderpooten. Representation of the non-
dominated set for multi-objective optimization problems using kernels, submit-
ted.

In the following section, we define the concept of representation, recall the
notion of (ε, ε′)-kernels and we formalize the problem. In section 5.2, we study
the bi-objective case. We show some general results and present polynomial
time algorithms to construct small (ε, ε′)-kernels under some conditions. In
section 5.3, we study the case of three or more objectives, pointing out specific
difficulties. We conclude with some possible extensions to this work.

5.1 Problem statements

A good representation of the Pareto set is evaluated according to three main
dimensions. We already deal with two of them in the previous chapter, the
quality of the coverage, i.e. providing a good approximation, and the cardinality,
i.e. that does not contain too many points. The last dimension, which is the goal
of this chapter, is the spacing, i.e. that does not include any redundancies [72].

One way to assure the spacing is to consider an (ε, ε′)-kernel that is a spe-
cial ε-Pareto set for which we impose a condition of stability. We recall the
definition:

Definition 16. Given a set Z of feasible points and ε, ε′ > 0, an (ε, ε′)-kernel is a

set of points Kε,ε′ satisfying the two following conditions:

(i) for any point z′ ∈ Z \ Kε,ε′, there exists z ∈ Kε,ε′ such that z �ε z′ (ε-
coverage).

(ii) for any two distinct points z, z′ ∈ Kε,ε′, we do not have z �ε′ z′ (ε′-
stability).

Since when ε′ > ε an (ε, ε′)-kernel does not always exist, for a given ε the
goal is to find an (ε, ε′)-kernel with the largest ε′. When ε′ = ε an (ε, ε′)-kernel
is called an ε-kernel.

In this chapter, our goal is to establish some general properties on ε-kernels
and propose some solutions to the primal and dual problems for the case of
ε-kernels. In the following sections, when we talk about primal and dual prob-
lems, we refer to the version where we want ε-kernels instead of ε-Pareto sets.
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5.2 Two objectives

We first give some general results on ε-kernels in the bi-objective case (sec-
tion 5.2.1). Then we consider the computation of ε-kernels when an exact
Restrict routine is available (section 5.2.2) and when we only have an approxi-
mate Restrict routine (section 5.2.3).

5.2.1 General results

We first show that, in the bi-objective case, an ε-kernel always exists.

Lemma 8. In the bi-objective case, relation ≺ε does not contain cycles.

Proof : Suppose that we have the cycle z1 ≺ε z2 . . . ≺ε zn ≺ε z1. Thus, for all
i ∈ {1, . . . , n− 1} we have (i) zij/(1 + ε) ≤ zi+1

j for each j ∈ {1, 2} and (ii) there
exists j ∈ {1, 2} such that zij(1+ε) < zi+1

j . Moreover, we have (i) znj /(1+ε) ≤ z1j
for each j ∈ {1, 2} and (ii) there exists j ∈ {1, 2} such that znj (1 + ε) < z1j .

Considering this cycle, assume that we are tj times in case (ii) for each
j ∈ {1, 2}. We must have t1 + t2 ≥ n. First, remark that it is not possible
that tj = 0 for each j ∈ {1, 2}. Indeed, assuming wlog that t1 = 0, we get
t2 = n leading to (1 + ε)n < 1. Now, observe that when we are tj times in
case (ii) for criterion j, we are also n − tj times in case (i). Since tj > 0 for
each j ∈ {1, 2}, we have z1j /(1 + ε)n−2tj < z1j , which implies tj < n/2 for each
j ∈ {1, 2}, contradicting t1 + t2 ≥ n. ✷

Proposition 13. In the bi-objective case, an ε-kernel always exists.

Proof : It is a direct consequence of Lemma 8 since any relation that does not
admit cycles in its asymmetric part admits kernels as proved in Duchet [22]. ✷

In general ε-kernels may contain dominated points. We prove the existence
of ε-kernels containing only nondominated points.

Proposition 14. In the bi-objective case, an ε-kernel that contains only nondomi-

nated points always exists.

Proof : Let Kε be an ε-kernel of the Pareto set P . Proposition 13 implies that
such an ε-kernel does exist. Kε is clearly an ε-Pareto set and contains only
nondominated points by definition. ✷

In the following we give some bounds on the size of any ε-kernel.

Theorem 8. In the bi-objective case, any ε-kernel has a cardinality less than or

equal to 3optε.



56 CHAPTER 5. REPRESENTATION USING KERNELS

Proof : The proof is by contradiction. Let P ∗
ε be an ε-Pareto set of minimal size

optε. Now assume that there exists an ε-kernel Kε of size at least 3optε + 1. It
means that at least one point z∗ of P ∗

ε (1 + ε)-dominates at least 4 points of Kε.
Let zi for i = 1, 2, 3, 4 be 4 points of Kε such that z∗ �ε zi for each i =

1, 2, 3, 4. Assume wlog that zi+1
1 < zi1 and zi+1

2 > zi2 for i = 1, 2, 3. Since Kε is an
ε-kernel, the coordinates of the points zi must satisfy the following inequalities:
zi+1
1 < zi1/(1 + ε) and zi+1

2 > zi2(1 + ε). Using these inequalities and since
z∗ �ε zi for each i = 1, 2, 3, 4, its coordinates satisfy z∗1 ≤ z41(1 + ε) < z31 <
z21/(1 + ε) < z11/(1 + ε) and z∗2 ≤ z12(1 + ε) < z22 < z32/(1 + ε) < z42/(1 + ε).
Thus no point zi for i = 1, . . . , 4 (1 + ε)-dominates z∗. If another point z of Kε

(1+ε)-dominates z∗ the previous inequalities give z1 ≤ z∗1(1+ε) < z31(1+ε) < z21
and z2 ≤ z∗2(1+ε) < z22(1+ε) < z32 which involves that point z (1+ε)-dominates
points z2 and z3. This contradicts the fact that Kε is an ε-kernel. Thus, no point
of Kε (1 + ε)-dominates z∗, contradiction. ✷

If we consider ε-kernels containing nondominated points only, we obtain a
smaller upper bound on their size. The following result is even slightly stronger
since it deals with ε-kernels containing weakly nondominated points only.

Theorem 9. In the bi-objective case, any ε-kernel that contains only weakly non-

dominated points has a cardinality less than or equal to 2optε.

Proof : The proof is by contradiction. Let P ∗
ε be an ε-Pareto set of minimal

size optε. Now assume that there exists an ε-kernel Kε of size at least 2optε + 1
containing only weakly nondominated points. It means that at least one point
z∗ of P ∗

ε (1 + ε)-dominates at least 3 points of Kε.
Let zi for i = 1, 2, 3 be 3 points of Kε such that z∗ �ε zi for each i =

1, 2, 3. Assume wlog that zi+1
1 < zi1 and zi+1

2 > zi2. Since Kε is an ε-kernel,
the coordinates of the points zi must satisfy the following inequalities: zi+1

1 <
zi1/(1+ ε) and zi+1

2 > zi2(1 + ε) for i = 1, 2. Since z∗ �ε z
i for each i = 1, 2, 3, the

coordinates of point z∗ must satisfy z∗1 ≤ z31(1 + ε) < z21 and z∗2 ≤ z12(1 + ε) < z22 .
This contradicts the fact that z2 is a weakly nondominated point. ✷

Corollary 4. In the bi-objective case, there exists an ε-kernel with a cardinality

less than or equal to 2optε.

Proof : It is a direct consequence of Theorem 9 and Proposition 14. ✷

We are interested now on ε-kernels of minimal size. An important fact is
that an ε-kernel of minimal size is not larger than an ε-Pareto set of minimal
size optε.

Theorem 10. In the bi-objective case, there exists an ε-kernel of size optε.

A constructive proof of Theorem 10 is given in the next section, where an
algorithm that computes an ε-kernel of size optε is provided.
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5.2.2 Algorithms for ε-kernels using exact routines

In this section, we provide algorithms for the primal problem (section 5.2.2.1)
and the dual problem (section 5.2.2.2) considering that a routine Restrict0 is
available for both objectives.

5.2.2.1 Primal problem

We propose an algorithm that produces an ε-kernel of minimal size that
contains only nondominated points.

Algorithm description The algorithm proceeds in two phases. The first phase
(greedy phase) corresponds to a slightly modified version of the algorithm pre-
sented in [20] which returns a set {q1, . . . , qs} of nondominated points as an
ε-Pareto set of minimal size. The second phase (verification phase) ensures
ε-stability by checking, and possibly modifying, the returned set. We denote
by fmin

1 and fmin
2 the minimum values on the first and second objectives respec-

tively. In the first phase, the algorithm iteratively generates points r1, q1, . . . , rs, qs

in decreasing order according to f1 and increasing order according to f2. Point
r1 corresponds to an optimal solution on objective f2. Point q1 is the non-
dominated point with the best possible value on f1 which (1 + ε)-dominates
r1. Routines Restrict0(f2, f1 ≤ b) and Restrict0(f1, f2 ≤ b) are used alternatively
to construct points ri and points qi respectively. Point ri is a point with the
smallest value on f2 that is not (1 + ε)-dominated by the point qi−1. Point qi is
the nondominated point with the smallest value on f1 that (1 + ε)-dominates
point ri. The first phase of the algorithm stops when it determines a point qs
that (1 + ε)-dominates the feasible points that have a first coordinate equal to
fmin
1 . At the end of the first phase, ε-stability is ensured on the first objective,

but not on the second one. In the second phase, points qi are scanned from qs

in decreasing order according to f2. If point qi (1 + ε)-dominates point qi−1, we
replace point qi−1 by the nondominated point with the smallest f1 value which
is not (1+ε)-dominated by qi while having a strictly larger value on f1 than qi−1.
This ensures ε-stability on the second objective, while preserving ε-stability on
the first one.

A formal description of this algorithm is given in Algorithm 5.1.

We propose an illustration of this algorithm in Figure 5.1 where 4 points
q1, q2, q3, q4 are selected during the first phase. During the second phase, the al-
gorithm detects that point q3 (1+ ε)-dominates point q2 and, therefore, replaces
q2 by q′2 which is not (1+ε)-dominated by q3 but (1+ε)-dominates all the points
that were (1 + ε)-dominated by q2 only.
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Algorithm 5.1: Algorithm Greedy and Verification
input : An instance of a bi-objective problem for which routines

Restrict0(f1, f2 ≤ b) and Restrict0(f2, f1 ≤ b) are available
output : An ε-kernel of size optε

fmin
1 ← f1(Restrict0(f1, f2 ≤ 2m)); fmin

2 ← f2(Restrict0(f2, f1 ≤ 2m));1

r1 ← Restrict0(f2, f1 ≤ 2m);2

f2
1 ← (1 + ε)r12;3

q1 ← Restrict0(f1, f2 ≤ f2
1
);4

q1 ← Restrict0(f2, f1 ≤ q11);5

f1
1 ← q11/(1 + ε);6

Q← {q1};7

i← 1;8

/* greedy phase */

while f1
i
> fmin

1 do9

i← i+ 1;10

ri ← Restrict0(f2, f1 < f1
i−1

);11

f2
i ← (1 + ε)ri2;12

qi ← Restrict0(f1, f2 ≤ f2
i
);13

qi ← Restrict0(f2, f1 ≤ qi1);14

f1
i ← qi1/(1 + ε);15

Q← Q ∪ {qi};16

/* verification phase */

i← i− 1;17

while qi+1
2 /(1 + ε) > fmin

2 do18

if qi+1
2 /(1 + ε) ≤ qi2 then19

Q← Q− {qi};20

qi ← Restrict0(f1, f2 < qi+1
2 /(1 + ε));21

qi ← Restrict0(f2, f1 ≤ qi1);22

Q← Q ∪ {qi};23

i← i− 1;24

return Q;25

Algorithm analysis We show now that Algorithm 5.1 produces an ε-kernel
of minimal size. Let R = {r1, . . . , rs} and Q = {q1, . . . , qs} be the set of feasi-
ble points produced by the algorithm. We first show some preliminary results
regarding points in Q and R.

Proposition 15. Set Q contains only nondominated points.
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Figure 5.1: Illustration of Algorithm 5.1

Proof : Points qi ∈ Q are computed in two steps, both in the greedy phase
(steps 13-14) and in the verification phase (steps 21-22). The first step returns

a point qi such that there exists no point z ∈ Z such that z1 < qi1 and z2 ≤ q2i .
Thus, at this step, qi is only guaranteed to be weakly nondominated since there
may exist a point z such that z1 = qi1 and z2 < qi2. The second step rules out this
possibility, ensuring that qi is nondominated. ✷

Observe that the algorithm proposed in [20], which corresponds to the
greedy phase, does not include this second step optimization. Therefore, the
returned ε-Pareto set in [20] consists of weakly nondominated points.

Lemma 9. During the verification phase, if a point q′i replaces a point qi in Q, we

have (i) q′i2 < qi2 and (ii) q′i1 > qi1.

Proof : (i) Point q′i computed at steps 21-22 satisfies q′i2 < qi+1
2 /(1 + ε) ≤ qi2.

(ii) Since points in Q are nondominated, including qi and q′i, (i) implies that
q′i1 > qi1. ✷

Lemma 10. Any feasible point z ∈ Z (1+ ε)-dominates at most one point from R.

Proof : Suppose, by contradiction, that z (1 + ε)-dominates two points from R.
Clearly, the most favorable situation is when these points are consecutive. Thus,
let ri and ri−1 be two consecutive points in R such that z (1 + ε)-dominates
them. Assuming that z �ε ri−1, we have z2 ≤ (1 + ε)ri−1

2 . By steps 13-14, this
inequality implies that qi−1

1 ≤ z1, which implies qi−1
1 /(1 + ε) ≤ z1/(1 + ε). From

step 11, we have ri1 < qi−1
1 /(1+ε) and thus ri1 < z1/(1+ε), contradicting z �ε r

i.
✷

Lemma 11. The only point in R which is (1 + ε)-dominated by qi is ri, for i =
1, . . . , s.
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Proof : By Lemma 10, we just need to show that qi �ε ri, for i = 1, . . . , s.
We proceed by induction. By steps 13-14, the assertion is clear if qi has not
be modified. In particular, for qs which is not modified, the assertion is true.
Assuming now that qi+1 �ε ri+1, we prove that qi �ε ri. The only case that
could me problematic is when qi has been modified during the second phase. By
Lemma 10, we have not (qi+1 �ε r

i), which means that qi+1
2 > (1 + ε)ri2. Hence,

by steps 21-22, we get qi1 ≤ ri1. Moreover, regarding the second criterion, since
qi computed during the first phase (1 + ε)-dominates ri, we have qi2 ≤ (1 + ε)ri2.
Considering that qi has been modified, using Lemma 9-(i) we get qi2 < (1 + ε)ri2.
Therefore, we get finally qi �ε r

i. ✷

Proposition 16. Set Q satisfies the ε-coverage condition.

Proof : We show that the points in Q cover all the feasible points by partitioning
the range of feasible values on f1. More precisely, we show that:

(i) Point q1 (1 + ε)-dominates all the feasible points with an f1 value greater
than or equal to q11/(1 + ε).

(ii) For each i = 2, . . . , s, point qi (1 + ε)-dominates all the feasible points
that have their f1 value in the interval

[

qi1/(1 + ε), qi−1
1 /(1 + ε)

)

.
(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).

(i) Let z be a feasible point with z1 ≥ q11/(1 + ε) and, by definition, z2 ≥ fmin
2 .

Point q1 computed in steps 4-5 satisfies q12 ≤ (1 + ε)fmin
2 ≤ (1 + ε)z2, which

shows that q1 (1+ ε)-dominates z. If point q1 is modified during the verification
phase, using Lemma 9-(i) we also have q12 ≤ (1 + ε)z2.

(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1
1 /(1 + ε). In order

to prove that z is (1 + ε)-dominated by qi, we have to show that qi2 ≤ z2(1 + ε).
We consider three cases.

– If points qi and qi−1 have not been modified during the verification phase,
then qi, which is defined in step 13-14, verifies qi2 ≤ (1 + ε)ri2. From
step 11, we have ri2 ≤ z2, which leads to qi2 ≤ (1 + ε)z2.

– If point qi has been modified but not point qi−1, then by Lemma 9-(i), the
inequality is preserved.

– Finally if point qi−1 has been modified during the verification phase, step
21 ensures that there is no feasible point z′ such that z′2 < qi2/(1 + ε) and
z′1 < qi−1

1 . Since z1 < qi−1
1 /(1 + ε), it follows that z1 < qi−1

1 and thus
z2 ≥ qi2/(1 + ε).

(iii) Point qs, which is not modified in the verification phase, is the last point
obtained in the while loop 9-16. By step 15 and condition in step 9, we have
qs1/(1 + ε) ≤ fmin

1 . ✷

Proposition 17. Set Q satisfies the ε-stability condition.
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Proof : We just need to show that ε-stability holds for consecutive points in Q,
that is for all i = 2, . . . , s we have (i) not (qi−1 �ε q

i) and (ii) not (qi �ε q
i−1).

(i) From Lemma 11, we have not(qi−1 �ε ri). This occurs because we have on
the first criterion qi−1

1 > (1+ε)ri1. Since we have ri1 ≥ qi1, we get qi−1
1 > (1+ε)qi1,

that is not(qi−1 �ε q
i).

(ii) Test 19-23 ensures that qi−1
2 < qi2/(1 + ε). ✷

Theorem 11. For any ε > 0, Algorithm 5.1 computes an ε-kernel of minimal

size optε that contains only nondominated points using O(optε) routine calls to

Restrict0.

Proof : Q is an ε-kernel containing only nondominated points from Propo-
sitions 15, 16, and 17. Moreover, set Q has minimal size optε since, from
Lemma 10, at least |R| points are required for any ε-Pareto set, whereas Al-
gorithm 5.1 returns a set Q with |Q|=|R|.

Since the algorithm uses at most 3 |Q| + 2 |Q| = 5 |Q| times the routine
Restrict0, the number of routine calls is bounded by 5optε. ✷

Since optε is polynomially bounded in the input size and 1/ε [66], we have
the following corollary.

Corollary 5. For any ε > 0, if routines Restrict0 are computable in polynomial

time for both objectives, then we can determine an ε-kernel of minimal size that

contains only nondominated points in polynomial time in the size of the input and

1/ε.

5.2.2.2 Dual problem

We show that the minimal ratio 1+ε∗ is approximable within any factor 1+θ
in polynomial time in the input size and 1/θ.

Theorem 12. Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio

for which an ε∗-kernel of size at most k exists. For any rational θ > 0, we can

determine an ε-kernel of size at most k with 1 + ε ≤ (1 + ε∗)(1 + θ). This can be

done using O(k log(m/θ)) subroutine calls to Restrict0.

Proof : We first apply Algorithm 5.1 with ε = θ. If the returned ε-kernel has
size at most k, then the required condition is satisfied. Otherwise, the minimal
ratio 1+ε∗ belongs to the range [1+θ, 22m], where the upper bound corresponds
to the extreme situation with k = 1 and Z = {z1 = (2m, 1/2m), z2 = (1/2m, 2m)}.
Let 1 + εi = (1 + θ)i be the candidate ratios for i = 1, . . . , ⌈2m/ log(1 + θ)⌉. We
perform a binary search on i values. At each step we call Algorithm 5.1 in order
to obtain an εi-kernel of minimal size. If this size is greater than k then we
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continue the search in the right part, otherwise in the left part. Observe that, at
each step, the search is between the indices iℓ and ir such that the size of the
smallest iℓ-kernel is more than k and the size of the smallest ir-kernel is at most
k. Thus, 1 + εℓ < 1 + ε∗ ≤ 1 + εr. The search is stopped when ir = iℓ + 1, i.e.
when 1 + εr = (1 + εℓ)(1 + θ). Then the current εir-kernel is of size at most k
and such that 1 + εir = (1 + εiℓ)(1 + θ) ≤ (1 + ε∗)(1 + θ).

The number of calls to Algorithm 5.1 is O(log(2m/ log(1+θ))) ≈ O(log(m/θ)).
Since we can stop each call to Algorithm 5.1 when it tries to compute a (k+1)th

point, each such call uses O(k) calls to Restrict0. Thus, the total running time is
O(k log(m/θ)) Restrict0 calls. ✷

Corollary 6. Let k be a nonnegative integer and let 1+ ε∗ be the minimal ratio for

which an ε∗-kernel of size at most k exists. If routines Restrict0 are computable in

polynomial time for both objectives, then we can determine an ε-kernel of size at

most k with 1+ ε ≤ (1+ ε∗)(1+ θ) in polynomial time in the size of the input and

1/θ.

5.2.3 Algorithms for (ε, ε′)-kernels using approximate
routines

In this section, we provide algorithms for the primal problem (section 5.2.3.1)
and the dual problem (section 5.2.3.2) considering that a routine Restrictδ is
available for both objectives.

If a routine Restrictδ with δ > 0 is available for at least one objective, Di-
akonikolas and Yannakakis [20] showed that no generic algorithm is able to
compute an ε-Pareto set of minimal size but it is possible to compute an ε-Pareto
set of size 2optε in polynomial time. Then, from Theorem 8, it follows that using
routines Restrictδ with δ > 0 we can only compute an ε-kernel of size between
2optε and 3optε in polynomial time. In fact, adapting an argument from [20]
which shows that there is no polynomial time generic algorithm based on rou-
tines Restrictδ with δ > 0 that approximates the size of a smallest ε-Pareto set to
a factor better than 2, we can show the following proposition.

Proposition 18. Consider the class of bi-objective problems that possess a fully

polynomial time routine Restrictδ with δ > 0 for both objectives. Then, for any

ε > 0, there is no polynomial time generic algorithm using Restrictδ that computes

an ε-kernel.

Proof : Consider the following set of feasible points Z = {z, z1, z2, z3, z4} (see
Figure 5.2) where: z = (z1, z2), with z1, z2 ≥ 1/ε, z1 = ((z1+1)(1+ε), z2/(1+ε)2),
z2 = (z1 + 1, z2), z3 = (z1, z2 + 1) and z4 = (z1/(1 + ε)2, (z2 + 1)(1 + ε)). Then,
note that each point of {z, z2, z3} (1+ ε)-dominates only these three points, and
that z1 (1+ε)-dominates z2 and z4 (1+ε)-dominates z3. Then, there are exactly
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Figure 5.2: No polynomial time generic algorithm can compute an ε-kernel.

three minimal ε-Pareto sets: Pε = {z, z1, z4}, P ′
ε = {z2, z1, z4}, P ′′

ε = {z3, z1, z4}
and only Pε is an ε-kernel.

We show that a generic algorithm using Restrictδ is guaranteed to return
the ε-kernel only if 1/δ is exponential in the size of the input. Let z1 = z2 = M ,
where M is an integer value exponential in the size of the input and 1/ε. Assume
that we use the routine Restrictδ(f1, f2 ≤ C) with C ∈ [M,M + 1). Then, the
routine can return the point z2 instead of z as long as δ ≥ 1/M . Symmetrically,
if we use the routine Restrictδ(f2, f1 ≤ C) with C ∈ [M,M + 1) we can obtain
z3 instead of z. But, since we want a polynomial time algorithm, 1/δ has to be
polynomial in logM . Therefore, a polynomial time generic algorithm cannot
guarantee to compute the unique ε-kernel which contains the point z. ✷

This previous proposition shows that it is not possible to obtain a similar
result to Corollary 5 when only approximate routines Restrictδ with δ > 0 are
available. However, if we relax the stability condition to a value ε′ < ε, we
show that we can achieve the computation in polynomial time. Therefore, in
the following, we assume that ε′ < ε.

5.2.3.1 Primal problem

We propose an algorithm that produces an (ε, ε′)-kernel of size at most twice
the size of a minimal ε-Pareto set.

Algorithm description The algorithm proceeds in two phases. The first
phase (greedy phase) corresponds to the algorithm presented in [20] which
returns a 2-approximation algorithm for finding an ε-Pareto set of minimal size.
The second phase (verification phase) is basically the same as Algorithm 5.1 but
using ε′ instead of ε.
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Algorithm 5.2: Algorithm Greedy and Verification Extended
input : An instance of a bi-objective problem for which routines

Restrictδ(f1, f2 ≤ b) and Restrictδ(f2, f1 ≤ b) are available
output : An (ε, ε′)-kernel of size at most 2optε

fmin
1 ← f1(DualRestrictδ(f1, f2 ≤ 2m));1

fmin
2 ← f2(DualRestrictδ(f2, f1 ≤ 2m));
r1 ← Restrictδ(f2, f1 ≤ 2m);2

f2
1 ← 1+ε

(1+δ)2
r12;3

q1 ← DualRestrictδ(f1, f2 ≤ f2
1
);4

f1
1 ← q11/(1 + ε);5

Q← {q1};6

i← 1;7

/* greedy phase */

while f1
i
> fmin

1 do8

i← i+ 1;9

ri ← Restrictδ(f2, f1 < f1
i−1

);10

f2
i ← 1+ε

1+δ
max{f2

i−1
, ri2/(1 + δ)};11

qi ← DualRestrictδ(f1, f2 ≤ f2
i
);12

f1
i ← qi1/(1 + ε);13

Q← Q ∪ {qi};14

/* verification phase */

s← i, i← i− 1;15

while qi+1
2 /(1 + ε) > fmin

2 do16

if qi+1
2 /(1 + ε′) ≤ qi2 then17

Q← Q− {qi};18

qi ← Restrictδ(f1, f2 < qi+1
2 /(1 + ε));19

if qi1 < qi−1
1 /(1 + ε′) then20

Q← Q ∪ {qi};21

else22

reindex {qi+1, . . . , qs} by {qi, . . . , qs−1};23

s← s− 1;24

i← i− 1;25

return Q;26

The algorithm is shown to produce an (ε, ε′)-kernel when δ < (1 + ε)/(1 +
ε′) − 1 (Propositions 19 and 20) and the size of this (ε, ε′)-kernel is proved to
be at most 2optε if δ ≤ 3

√
1 + ε − 1 (Theorem 13). Therefore, we assume that

δ < min{(1 + ε)/(1 + ε′)− 1, 3
√
1 + ε− 1}.
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A formal description of this algorithm is given in Algorithm 5.2.

Note that, when a routine Restrictδ is available only for one objective, we
have another version of this algorithm that requires δ < min{

√

(1 + ε)/(1 + ε′)−
1, 3
√
1 + ε−1} by replacing step 19 by qi ← DualRestrictδ(f1, f2 < qi+1

2 /(1+ε′)(1+
δ)2);.

Algorithm analysis We show now that Algorithm 5.2 produces an (ε, ε′)-
kernel whose size is at most 2optε. Let Q = {q1, . . . , qs} be the set of feasible
points produced by the algorithm.

Observe that in steps 23-24 Algorithm 5.2 does discards points that are
proved unnecessary in the next result. The returned set may thus be of smaller
cardinality than the ε-Pareto set obtained at the end of the greedy phase.

Lemma 12. During the verification step, if a point q′i, replacing a point qi, is such

that q′i1 ≥ qi−1
1 /(1 + ε′), then point q′i is unnecessary.

Proof : Point q′i, with q′i1 ≥ qi−1
1 /(1 + ε′), is computed in step 19 using Re-

strictδ(f1, f2 < qi+1
2 /(1 + ε)) where δ < (1 + ε)/(1 + ε′) − 1. This implies that

any feasible point z satisfying z2 < qi+1
2 /(1 + ε) is such that z1 ≥ q′i1 /(1 + δ) >

q′i1 (1+ ε′)/(1+ ε) ≥ qi−1
1 /(1+ ε). Therefore, there is no feasible point z such that

z1 < qi−1
1 /(1 + ε) and z2 < qi+1

2 /(1 + ε). Thus, a point that is (1 + ε)-dominated
by point q′i is (1 + ε)-dominated by point qi−1 or qi+1. ✷

In the following, for proving the correctness of our algorithm, the case of
points which are not included (steps 23-24) can be ignored. Indeed, when this
happens, the consequence of reindexing at step 23 is that points qi+1 and qi−1

become respectively points qi+1 and qi at the next iteration, without any impact
on the ε-coverage condition as shown by Lemma 12.

Lemma 13. During the verification step, if a point q′i replaces a point qi in Q, we

have (i) q′i2 < qi2 and (ii) q′i1 ≥ qi1.

Proof : (i) Point q′i computed at step 19 satisfies q′i2 < qi+1
2 /(1 + ε) < qi+1

2 /(1 +
ε′) ≤ qi2.

(ii) Remark that point qi was computed in step 12 using routine DualRestrictδ
during the greedy phase. It follows that there is no feasible point z such that
z1 < qi1 and z2 < qi2/(1 + δ). Since ε′ < (1 + ε)/(1 + δ)− 1, point q′i is computed
in step 19 such that q′i2 < qi+1

2 /(1 + ε) < qi+1
2 /(1 + ε′)(1 + δ) ≤ qi2/(1 + δ). It

follows that q′i1 ≥ qi1. ✷

Proposition 19. Set Q satisfies the ε-coverage condition.

Proof : We show that the points in Q cover all the feasible points by partitioning
the range of feasible values on f1. More precisely, we show that:



66 CHAPTER 5. REPRESENTATION USING KERNELS

(i) Point q1 (1 + ε)-dominates all the feasible points with an f1 value greater
than or equal to q11/(1 + ε).

(ii) For each i = 2, . . . , s, the point qi (1+ε)-dominates all the feasible points
that have their f1 value in the interval

[

qi1/(1 + ε), qi−1
1 /(1 + ε)

)

.
(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).

(i) Let z be a feasible point with z1 ≥ q11/(1 + ε) and, by definition, z2 ≥ fmin
2 .

Point q1 computed in step 4 satisfies q12 ≤ (1 + ε)fmin
2 ≤ (1 + ε)z2, which shows

that q1 (1+ ε)-dominates z. If point q1 is modified during the verification phase,
using Lemma 13-(i) we also have z2 ≥ q12/(1 + ε).

(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1
1 /(1 + ε). In order

to prove that z is (1 + ε)-dominated by qi, we have to show that qi2 ≤ (1 + ε)z2.
We consider three cases.

– If points qi and qi−1 have not been modified during the verification phase,
then qi, which is defined in step 12, verifies qi2 ≤ (1 + ε)max{f2

i−1
, ri2/(1 +

δ)}. From step 10 we have z2 ≥ ri2/(1 + δ) and from step 12 for i − 1

we have z2 ≥ f2
i−1

. Thus max{f2
i−1

, ri2/(1 + δ)} ≤ z2 which leads to
qi2 ≤ (1 + ε)z2.

– If point qi has been modified but not point qi−1, then by Lemma 13-(i), the
inequality is preserved.

– Finally if point qi−1 has been modified during the verification phase, step
19 ensures that there is no feasible point z′ such that z′2 < qi2/(1 + ε) and
z′1 < qi−1

1 /(1 + δ). Since z1 < qi−1
1 /(1 + ε) it follows that z1 < qi−1

1 /(1 + δ)
and thus z2 ≥ qi2/(1 + ε).

(iii) Point qs, which is not modified during the verification phase, is the last
point obtained in the while loop 8-14. By step 13 and condition in step 8, we
have qs1/(1 + ε) ≤ fmin

1 . ✷

Proposition 20. Set Q satisfies the ε′-stability condition.

Proof : We just need to show that ε′-stability holds for consecutive points in Q,
that is for all i = 2, . . . , s we have (i) not (qi−1 �ε′ q

i) and (ii) not (qi �ε′ q
i−1).

(i) We consider three cases.
– If points qi and qi−1 have not been modified during the verification phase,

then point ri, computed in step 10, is such that ri1 < qi−1
1 /(1+ε). Moreover

since point qi, computed in step 12, is such that qi1 ≤ ri1, we get qi1 <
qi−1
1 /(1 + ε) < qi−1

1 /(1 + ε′), that is not (qi−1 �ε′ q
i).

– If point qi is modified and point qi−1 is not modified, then since qi is added
to Q in step 21, it satisfies qi1 < qi−1

1 /(1 + ε′), that is not (qi−1 �ε′ q
i).

– The final case is when point qi−1 changes during the verification phase
and is replaced by a point q′i−1. Then, according to Lemma 13-(ii) the
inequality is preserved.
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(ii) Test 17-24 and the definition of point qi−1 at step 19 ensures that qi−1
2 <

qi2/(1 + ε) < qi2/(1 + ε′). ✷

Lemma 14. Any point z ∈ Z (1 + ε)-dominates at most two points from R.

Proof : Suppose, by contradiction, that z (1 + ε)-dominates three points from
R. Clearly, the most favorable situation is when these points are consecutive.
Thus, let ri, ri−1, and ri−2 be three consecutive points in R such that z (1 + ε)-
dominates them. Assuming that z �ε r

i−2, we have z2 ≤ (1 + ε)ri−2
2 . By step 11,

for i−2 and i−1, we get f2
i−2 ≥ 1+ε

(1+δ)2
ri−2
2 and f2

i−1 ≥ 1+ε
1+δ

f2
i−2

and thus f2
i−2 ≥

(1+ε)2

(1+δ)3
ri−2
2 . Since (1 + δ)3 < 1 + ε, we have z2 ≤ f2

i−1
. From this last inequality,

by step 12, for i− 1, we have qi−1
1 ≤ z1, which implies qi−1

1 /(1 + ε) ≤ z1/(1 + ε).
From step 10, we have ri1 < qi−1

1 /(1 + ε) and thus ri1 < z1/(1 + ε), contradicting
z �ε r

i. ✷

Theorem 13. For any ε, ε′ such that ε > ε′ > 0, Algorithm 5.2 computes an (ε, ε′)-
kernel of size less than or equal to 2optε using O(optε) routine calls to Restrictδ or

DualRestrictδ, where δ < min{(1 + ε)/(1 + ε′)− 1, 3
√
1 + ε− 1}.

Proof : Q is an (ε, ε′)-kernel from Propositions 19 and 20. Moreover, set Q has
a size less than or equal to 2optε since, from Lemma 14, at least ⌈|R|/2⌉ points
are required for any ε-Pareto set, whereas Algorithm 5.2 returns a set Q with
|Q| ≤ |R|.

Since the algorithm uses at most 2 |Q| + |Q| = 3 |Q| times the routines Re-

strictδ or DualRestrictδ, the number of routine calls is bounded by 3optε. ✷

Since optε is polynomially bounded in the input size and 1/ε [66], we have
the following corollary.

Corollary 7. For any ε, ε′ such that ε > ε′ > 0, if routines Restrictδ and DualRestrictδ
with δ > 0 are computable in (fully) polynomial time for both objectives, then we

can determine an (ε, ε′)-kernel of size less than or equal to 2optε in (fully) polyno-

mial time.

We recall that it is not possible to produce an ε-Pareto set of size optε in
polynomial time using routines Restrictδ [20]. Nevertheless, Vassilvitskii and
Yannakakis showed in [80] that it is possible to produce in polynomial time an
ε-Pareto set of size bounded optε̂ for any ε̂ < ε. In the following we present
a similar result for (ε, ε′)-kernels. More precisely, we show that Algorithm 5.2
used with δ < min{

√

(1 + ε)/(1 + ε̂)−1, (1+ε)/(1+ε′)−1} computes an (ε, ε′)-
kernel of size bounded by optε̂, for any ε̂ < ε and ε′ < ε. Let Q be the set of
feasible points produced by the algorithm.
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Since δ < (1 + ε)/(1+ ε′)− 1, Q is an (ε, ε′)-kernel from Propositions 19 and
20. Therefore, we only need to show that set Q has a size less than or equal to
optε̂.

Proposition 21. When δ ≤
√

(1 + ε)/(1 + ε̂)− 1, Algorithm 5.2 returns a set Q
with |Q| ≤ optε̂.

Proof : Let P ∗
ε̂ = {p∗1, . . . , p∗k} be an ε̂-Pareto set of minimal size, where points

p∗i for i = 1, . . . , k are in increasing order of their coordinates on f2 and decreas-
ing order of their coordinates on f1. Let Q̃ = {q̃1, . . . , q̃r} be the set of points
returned by the greedy phase of Algorithm 5.2. We have |Q̃| ≥ |Q| due to the
possible omission of points in steps 23-24 of the verification step. We show now
that |Q̃| ≤ |P ∗

ε̂ |. For this purpose, we show by induction on i that for each point
q̃i in Q̃ there exists a point p∗i in P ∗

ε̂ such that q̃i1 ≤ p∗i1 .

Initialization (i = 1). The fact that P ∗
ε contains at least one point is trivially

true. We need to show that q̃11 ≤ p∗11 . Since point q̃1 is computed in step 4
using DualRestrictδ(f1, f2 ≤ f2

1
), to show the statement it suffices to prove that

f2
1 ≥ p∗12 . Since P ∗

ε̂ is an ε̂-Pareto set where its points p∗j for j = 1, . . . , k are in
increasing order of their coordinates on f2, it follows that point p∗1 must (1+ ε̂)-
dominates fmin

2 and so p∗12 ≤ (1 + ε̂)fmin
2 . Since δ ≤

√

(1 + ε)/(1 + ε̂) − 1, it
follows that p∗12 ≤ 1+ε

(1+δ)2
fmin
2 . From step 2 we have r12 ≥ fmin

2 and from step 3

we have f2
1
= 1+ε

(1+δ)2
r12, thus it follows that f2

1 ≥ p∗12 .
Induction step. Assume the result is true until index i − 1, we prove it for

index i. By the termination condition of the greedy phase of Algorithm 5.2 (step
8), we have q̃i−1

1 > (1 + ε)fmin
1 and by the induction hypothesis that p∗i−1

1 ≥
q̃i−1
1 , it follows that p∗i−1

1 > (1 + ε)fmin
1 . Thus, point p∗i−1 does not (1 + ε)-

dominate the feasible points that have a first coordinate equal to fmin
1 , and

so P ∗
ε̂ must contain another point p∗i. Since point q̃i is computed in step 12

using DualRestrictδ(f1, f2 ≤ f2
i
), to show the statement it suffices to prove that

f2
i ≥ p∗i2 . Since P ∗

ε is an ε̂-Pareto set where its points p∗j for j = 1, . . . , k are in
increasing order of their coordinates on f2, it follows that point p∗i must (1+ ε̂)-
dominates point ri and so p∗i2 ≤ (1 + ε̂)ri2. Since δ ≤

√

(1 + ε)/(1 + ε̂) − 1, it

follows that p∗i2 ≤ 1+ε
(1+δ)2

ri2. From step 11 we have f2
i ≥ 1+ε

(1+δ)2
ri2, thus it follows

that f2
i ≥ p∗i2 . ✷

Theorem 14. For any ε̂, ε, ε′ such that ε > ε̂ > 0 and ε > ε′ > 0, Algorithm 5.2

computes an (ε, ε′)-kernel of size less than or equal to optε̂ using O(optε̂) routine

calls to Restrictδ or DualRestrictδ, with δ < min{
√

(1 + ε)/(1 + ε̂)−1, (1+ ε)/(1+
ε′)− 1}.

Proof : Set Q returned by Algorithm 5.2 is an (ε, ε′)-kernel since Propositions 19
and 20 hold. Moreover, the size of Q is less than or equal to optε̂ by Proposi-
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tion 21. Since the algorithm uses 3 |Q| times the routine Restrictδ or DualRe-

strictδ, the number of routine calls is bounded by 3optε̂. ✷

Corollary 8. For any ε̂, ε, ε′ such that ε > ε̂ > 0 and ε > ε′ > 0, if routines

Restrictδ and DualRestrictδ with δ > 0 are computable in (fully) polynomial time

for both objectives, then we can determine an (ε, ε′)-kernel of size less than or equal

to optε̂ in (fully) polynomial time.

5.2.3.2 Dual problem

We show that the minimal ratio 1+ε∗ is approximable within any factor 1+θ
in polynomial time in the input size and 1/θ.

Theorem 15. Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio

for which an ε∗-kernel of size at most k exists. For any rational θ > 0, we can

determine an (ε, ε′)-kernel with 1 + ε ≤ (1 + ε∗)(1 + θ), for all ε′ < ε, of size at

most k using O(k log(m/θ)) routine calls to Restrictδ or DualRestrictδ.

Proof : We first apply Algorithm 5.2 with ε = θ, ε′ < ε, and δ < min{ 4
√
1 + θ −

1, (1 + ε)/(1 + ε′)− 1}, where δ < 4
√
1 + θ − 1 results from considering 1 + ε̂ =√

1 + θ in Theorem 14. If the returned (ε, ε′)-kernel has size at most k, then
the required condition is satisfied. Otherwise, from Theorem 14, the minimal
ratio 1 + ε∗ belongs to the range [

√
1 + θ, 22m]. Let 1 + εi = (

√
1 + θ)i be the

candidate ratios for i = 2, . . . , ⌈4m/ log(1 + θ)⌉ and let 1 + ε̂i = (1 + εi)/
√
1 + θ.

We perform a binary search on i values. At each step we call Algorithm 5.2
with δ < min{ 4

√
1 + θ− 1, (1 + εi)/(1 + ε′i)− 1}, where ε′i is an arbitrary number

such that ε′i < εi, in order to obtain an (εi, ε
′
i)-kernel of size at most optε̂i (see

Theorem 14). If this size is greater than k then we continue the search in the
right part, otherwise in the left part. Observe that, at each step, the search is
between the indices iℓ and ir such that the size of the (εiℓ, ε

′
iℓ
)-kernel is more

than k and the size of the (εir , ε
′
ir)-kernel is at most k. Thus, (1 + εiℓ)/

√
1 + θ <

1 + ε∗ ≤ 1 + εir . The search is stopped when ir = iℓ + 1, i.e. when 1 + εir =
(1 + εiℓ)

√
1 + θ. Then, the current (εir , ε

′
ir)-kernel is of size at most optε̂ir ≤ k

and such that 1 + εir = (1 + εiℓ)
√
1 + θ ≤ (1 + ε∗)(1 + θ).

The number of calls to Algorithm 5.2 is O(log(4m/ log(1+θ))) ≈ O(log(m/θ)).
Since we can stop each call to Algorithm 5.2 when it tries to compute a (k+1)th

point, each such call uses O(k) calls to Restrictδ or DualRestrictδ. Thus, the total
running time is O(k log(m/θ)) Restrictδ or DualRestrictδ calls. ✷

Corollary 9. Let k be a nonnegative integer and let 1+ ε∗ be the minimal ratio for

which an ε∗-kernel of size at most k exists. If routines Restrictδ and DualRestrictδ
with δ > 0 are computable in (fully) polynomial time for both objectives, for any

rational θ > 0, we can determine an (ε, ε′)-kernel with 1 + ε ≤ (1 + ε∗)(1 + θ), for

all ε′ < ε, of size at most k in (fully) polynomial time.
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5.3 More than two objectives

For more than two objectives, the notion of ε-kernel is not really operational
since an ε-kernel does not always exist.

Proposition 22. For p ≥ 3 objectives, an ε-kernel may not exist.

Proof : Let p = 3 and z1, z2, and z3 be three points with the following co-
ordinates: z1 = (a(1 + ε), b/(1 + ε), c), z2 = (a, b(1 + ε), c/(1 + ε)), z3 =
(a/(1 + ε), b, c(1 + ε)) where a, b, and c are three nonnegative rational numbers.

Clearly z1 (1 + ε)-dominates z2, z2 (1 + ε)-dominates z3 and z3 (1 + ε)-
dominates z1. Since any ε-kernel must satisfy the ε-stability condition, it follows
that an ε-kernel must contain at most one point. Moreover, no point (1 + ε)-
dominates the two others. Since any ε-kernel must satisfy the ε-coverage condi-
tion, it follows that an ε-kernel must contain at least two points. This is clearly
impossible. ✷

Moreover, even if an ε-kernel exists, we have no guarantee on its size like
Theorems 8, 9, and 10 for the bi-objective case. On the opposite, we can show
that a smallest ε-kernel may have a very large size compared with optε.

Proposition 23. For p ≥ 3 objectives, the size of a smallest ε-kernel, when it exists,

can be greater than k.optε for any integer k.

Proof : Let p = 3 and z1, z2, and z3 be defined as in the proof of Proposition 22.
Let z = (z21 , z

3
2 , z

1
3) = (a, b, c). Fix any rational ε̂ > ε and consider the 3k points

z1j = (z11(1+ ε̂)j , z12/(1+ε), z13(1+ ε̂)k−j) , z2j = (z21(1+ ε̂)k−j, z22(1+ ε̂)j, z23/(1+ε))
and z3j = (z31/(1 + ε), z32(1 + ε̂)k−j, z33(1 + ε̂)j) for j = 1, . . . , k.

For this instance, the only cases of (1+ ε)-dominance are: z1 �ε z
2, z2 �ε z

3,
z3 �ε z1, z �ε zi and zi �ε z for i = 1, 2, 3, and zi �ε zij for i = 1, 2, 3 and
j = 1, . . . , k.

The set constituted by points z1, z2, and z3 is clearly an ε-Pareto set of min-
imal size. Moreover, any ε-kernel must contain point z and thus points zij for
i = 1, 2, 3 and j = 1, . . . , k. This is the only ε-kernel and it contains 3k+1 points.

✷

However, if we consider ε′ ≤
√
1 + ε − 1, we can show that an (ε, ε′)-kernel

always exists. For this purpose, we recall the notion of quasi-kernel (also called
semi-kernel).

Definition 17. Given a directed graph G = (V,A), a quasi-kernel is a set S ⊆ V
such that (i) for any v ∈ V − S, there exists v′ ∈ S such that (v′, v) ∈ A or there

exist v′ ∈ S and v′′ ∈ V − S such that (v′, v′′) ∈ A and (v′′, v) ∈ A (ii) for any

u, v ∈ S, u 6= v, (u, v) /∈ A.

The following result is well-known.
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Theorem 16. (Chvátal and Lovász [17]) Any finite directed graph G admits a

quasi-kernel.

Applied in our context, this gives rise to the following result.

Proposition 24. For any number of objectives p ≥ 3 and any finite set Z of points

an (ε, ε′)-kernel exists if and only if ε′ ≤
√
1 + ε− 1.

Proof :
⇐ Consider the graph G = (Z,�ε′) and apply Theorem 16.
⇒ Assuming that ε′ >

√
1 + ε − 1, we show the existence of an instance

which does not admit an (ε, ε′)-kernel.
Let Z = {z1, z2, z3} where z1, z2, and z3 are three points in the criterion

space and assume that their coordinates are the following: z1 = (a(1+ε′), b/(1+
ε′), c), z2 = (a, b(1 + ε′), c/(1 + ε′)), z3 = (a/(1 + ε′), b, c(1 + ε′)) with a, b, and c
three nonnegative rational numbers.

Remark that z1 (1 + ε′)-dominates z2, z2 (1 + ε′)-dominates z3 and z3 (1 +
ε′)-dominates z1. In order to satisfy the ε′-stability condition an (ε, ε′)-kernel
contains at most one point among z1, z2, and z3. Moreover, since ε′ >

√
1 + ε−1,

no point (1 + ε)-dominates the two others and thus in order to satisfy the ε-
coverage condition, an (ε, ε′)-kernel must contain at least two points. This is
clearly impossible. ✷

Moreover, when the points Z are given explicitly and ε′ ≤
√
1 + ε − 1 it is

possible to compute an (ε, ε′)-kernel in polynomial time. Indeed, the problem
can be reduced to finding a kernel in a directed acyclic graph [23]. We briefly
describe the method of Duchet et al. from [23]. Consider the directed graph
G = (Z,�ε′) and any arbitrary order < on the vertices. We first partition the
set of arcs into two disjoint subsets A1 = {(i, j) ∈�ε′ : i < j}, A2 = {(i, j) ∈�ε′ :
i > j}. The two directed graphs (Z,A1) and (Z,A2) contain no cycle. Since a
(unique) kernel can be easily computed in polynomial time in directed acyclic
graphs, first construct the kernel K of (Z,A1) and then the kernel K ′ of (K,A2).
The resulting subset K ′ is a quasi-kernel of G, i.e. an (ε, ε′)-kernel.

In the general case, when the points of the criterion space are not given
explicitly, we have the following result.

Proposition 25. For p ≥ 3 objectives and any 0 < ε′ ≤ 3
√
1 + ε − 1, an (ε, ε′)-

kernel is computable in polynomial time when the associated routine GAPδ runs in

polynomial time.

Proof : First we construct a grid in the criterion space as in the proof of the
efficient constructability of an ε-Pareto set presented in [66]. Consider a subdi-
vision of the criterion space into hyperrectangles such that, in each dimension,
the ratio of the largest to the smallest coordinate of each hyperrectangle is
6
√
1 + ε. In each corner point, call the GAPδ routine with δ = 6

√
1 + ε − 1 and
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denote by S the resulting set of points. Set S (after removing the dominated
points) is clearly an ( 3

√
1 + ε− 1)-Pareto set.

On set S, we use the method of Duchet et al. [23] to construct a quasi-kernel
in a directed graph. Thus, we obtain a subset K ⊆ S which is an (( 3

√
1 + ε)2 −

1, 3
√
1 + ε − 1)-kernel for the points in S. Since S is an ( 3

√
1 + ε − 1)-Pareto

set, it implies that K is an (( 3
√
1 + ε)2 × 3

√
1 + ε − 1, 3

√
1 + ε − 1)-kernel i.e. an

(ε, ε′)-kernel. ✷

Nevertheless, we can show a similar result to Proposition 23 for (ε, ε′)-kernels.

Proposition 26. For p ≥ 3 objectives and any 0 < ε′ ≤
√
1 + ε − 1, the size of a

smallest (ε, ε′)-kernel can be greater than k.optε for any integer k.

Proof : Let p = 3 and z1, z2, and z3 be three points with the following coordi-
nates: z = (a, b, c), z1 = (a(1+ε′), b/(1+ε′), c), z2 = (a, b(1+ε′), c/(1+ε′)), z3 =
(a/(1+ ε′), b, c(1+ ε′)) where a, b, and c are three nonnegative rational numbers.
Fix any rational ε̂ and consider 6k points z1j = (z11(1+ε̂)j, z12/(1+ε), z13(1+ε̂)2k−j)
, z2j = (z21(1+ε̂)2k−j, z22(1+ε̂)j , z23/(1+ε)) and z3j = (z31/(1+ε), z32(1+ε̂)2k−j, z33(1+
ε̂)j) for j = 1, . . . , 2k.

Remark that points z, z1, z2, and z3 (1+ε)-dominates each other and zi �ε z
ij

for i = 1, 2, 3 and j = 1, . . . , k. For this instance, the only cases of (1 + ε′)-
dominance are: z1 �ε′ z

2, z2 �ε′ z
3, z3 �ε′ z

1, z �ε′ z
i and zi �ε′ z for i = 1, 2, 3.

The set constituted by points z1, z2, and z3 is clearly an ε-Pareto set of min-
imal size. Moreover, a smallest (ε, ε′)-kernel contains a point zi with i = 1, 2, 3
and all the points zi

′j for i′ = 1, 2, 3 with i 6= i′ and j = 1, . . . , 2k, and it contains
4k + 1 points. ✷

5.4 Conclusions

The purpose of this chapter was to produce discrete and tractable repre-
sentations of the set of nondominated points for multi-objective optimization
problems. We considered that representations should satisfy some conditions
of coverage, spacing, and cardinality. For this purpose, we introduced the notion
of (ε, ε′)-kernel which is a particular ε-Pareto set that satisfies an additional con-
dition of stability implementing spacing. We proposed some generic methods to
produce (ε, ε′)-kernels. Our algorithms run in polynomial time if and only if the
subroutines called in the algorithms run in polynomial time.

The situation for the bi-objective case is quite clear and the concept of (ε, ε′)-
kernel, or even ε-kernel, seems relevant to provide a good discrete representa-
tion of the nondominated set. For more than two objectives, we showed that im-
posing a condition of spacing may impact negatively on the cardinality. Since a
coverage condition must necessarily be imposed, the choice is between empha-
sizing spacing or cardinality. If the condition of spacing prevails, we showed
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that it is possible to construct an (ε, ε′)-kernel, with ε′ ≤
√
1 + ε − 1, provided

that the GAPδ routine is available, but without any guarantee on its cardinality.
If the condition of cardinality prevails, known guarantees are very weak, even
without any condition on spacing. The only known result, by Koltun and Pa-
padimitriou [54], in the tri-objective case and when the points of the objective
space are explicitly given, is the existence of a polynomial time algorithm which
returns an ε-Pareto set of size at most 100optε.





6 Conclusions and perspectives

This thesis mainly deals with the difficulty of obtaining, for a multi-objective
optimization problem, a good represention of the set of nondominated points,
due to the intractability of the problem. We proposed new general methods to
get around this intractability.

First, assuming that it is possible to obtain some information on the differ-
ent criteria, more precisely, the number of values taken on each criterion, we
developed some bounds on the cardinality of the set of nondominated points.
Our main bound is computable in constant time if the number of criteria is
assumed to be constant. We also showed that this bound is tight for many
multi-objective optimization problems. We showed how these bounds can be
reduced when some feasible or efficient solutions are known.

Then, we were interested in producing some discrete and tractable represen-
tations of the nondominated set for each instance of multi-objective optimiza-
tion problems. These representations must satisfy some conditions of coverage,
cardinality and if possible spacing. For this purpose, we investigated the prob-
lem, introduced by Vassilvitskii and Yannakakis, of computing a minimum set
of solutions for a multi-objective optimization problem that represents approx-
imately the Pareto set within an accuracy ε. For the bi-objective case, we pre-
sented a new 3-approximation algorithm of the size of a smallest ε-Pareto set.
We showed that for a classical bi-objective problem this approximation is tight
unless P = NP. This problem become really hard when the number of criteria
is greater than or equal to three. In the case where the points of the objective
space are given explicitly in the input, we studied the performance of a greedy
algorithm, answering an open question of Koltun and Papadimitriou.

We introduced the concept of (ε, ε′)-kernel to take into consideration the
dimension of spacing. We showed some general properties on (ε, ε′)-kernels
and proposed algorithms to compute small (ε, ε′)-kernels in polynomial time
for the bi-objective case assuming that there exists a routine Restrictδ that runs
in polynomial time. The number of calls to Restrictδ is linear in the number of
points in a smallest ε-Pareto set.

75
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There are many perspectives to this work. We already presented most of
them at the end of each chapter of the thesis. We recall and develop the main
ones here and add some general comments.

In chapter 3, for a multi-objective optimization problem, a basic assumption
in our work is the a priori knowledge on the number of values taken on each
criterion. Obviously, obtaining a good upper bound on these values is itself a
difficult question which depends on the problem as well as on particular char-
acteristics of specific instances. Thus, for a given multi-objective optimization
problem, finding some large classes of instances for which tight upper bounds
on the number of values taken on each criterion, appears as an interesting issue.

In chapter 4, we mainly showed that for more than two objectives, when the
feasible points of a multi-objective optimization problem are given explicitly in
the input, a greedy algorithm cannot be used to construct small ε-Pareto sets. In
this case, it is known on the one hand that it is NP-hard to determine an ε-Pareto
set of minimal size but on the other hand that there is a 100-approximation of
the size of a smallest ε-Pareto set. Thus, there is a large gap between the NP-
hardness and the 100-approximation. Making these lower and upper bounds
closer is an interesting open question.

In chapter 5, for a multi-objective optimization problem, in the case of more
than two objectives, we showed that an (ε, ε′)-kernel with ε′ ≤

√
1 + ε − 1 al-

ways exists and moreover that its size could be arbitrarily far from the size of
a smallest ε-Pareto set. This means that obtaining a stability condition implies
to lose a good property on the size of the set obtained. It means that the di-
mensions of spacing and cardinality are conflicting, at least in the worst case.
An interesting problem is to define a different stability condition ensuring the
existence of a small ε-Pareto set satisfying this stability condition.

An interesting approach would be to consider a particular multi-objective
optimization problem and study the issues discussed in this thesis applied to
this particular problem. Especially, it seems not easy to take benefit of the
underlying problem to obtain some results for primal and dual problems. It
could also be interesting to implement the different algorithms presented in
this thesis for a particular multi-objective problem, which of course requires to
use the best known algorithm to solve the subroutines called.

We mentioned that finding an ε-Pareto set when the points of the objective
space are given explicitly is a set covering problem, with particular instances. A
very interesting open problem is to obtain a characterization of these instances.
This requires to have a characterization of the relation �ε.

To conclude, we hope that this work, brings some insights and helps to
develop different ways to get around the intractability of multi-objective opti-
mization problems.
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Résumé

Le but de cette thèse est de proposer des méthodes générales afin de contourner l’in-
tractabilité de problèmes d’optimisation multi-objectifs.

Dans un premier temps, nous essayons d’apprécier la portée de cette intractabilité en
déterminant une borne supérieure, facilement calculable, sur le nombre de points non do-
minés, connaissant le nombre de valeurs prises par chaque critère. Nous nous attachons
ensuite à produire des représentations discrètes et tractables de l’ensemble des points non
dominés de toute instance de problèmes d’optimisation multi-objectifs. Ces représentations
doivent satisfaire des conditions de couverture, i.e. fournir une bonne approximation, de
cardinalité, i.e. ne pas contenir trop de points, et si possible de stabilité, i.e. ne pas conte-
nir de redondances. En s’inspirant de travaux visant à produire des ensembles ε-Pareto
de petite taille, nous proposons tout d’abord une extension directe de ces travaux, puis
nous axons notre recherche sur des ensembles ε-Pareto satisfaisant une condition supplé-
mentaire de stabilité. Formellement, nous considérons des ensembles ε-Pareto particuliers,
appelés (ε, ε′)-noyaux, qui satisfont une propriété de stabilité liée à ε′. Nous établissons des
résultats généraux sur les (ε, ε′)-noyaux puis nous proposons des algorithmes polynomiaux
qui produisent des (ε, ε′)-noyaux de petite taille pour le cas bi-objectif et nous donnons des
résultats négatifs pour plus de deux objectifs.

Mots-clés : Représentations discrètes, ensemble de Pareto, approximation, points non do-
minés, noyaux, problèmes d’optimisation multi-objectifs.

Abstract

The goal of this thesis is to propose new general methods to get around the intractability
of multi-objective optimization problems.

First, we try to give some insight on this intractability by determining an, easily com-
putable, upper bound on the number of nondominated points, knowing the number of
values taken on each criterion. Then, we are interested in producing some discrete and
tractable representations of the set of nondominated points for each instance of multi-
objective optimization problems. These representations must satisfy some conditions of
coverage, i.e. providing a good approximation, cardinality, i.e. it does not contain too
many points, and if possible spacing, i.e. it does not include any redundancies. Starting
from works aiming to produce ε-Pareto sets of small size, we first propose a direct extension
of these works then we focus our research on ε-Pareto sets satisfying an additional condi-
tion of stability. Formally, we consider special ε-Pareto sets, called (ε, ε′)-kernels, which
satisfy a property of stability related to ε′. We give some general results on (ε, ε′)-kernels
and propose some polynomial time algorithms that produce small (ε, ε′)-kernels for the
bicriteria case and we give some negative results for the tricriteria case and beyond.

Keywords: Discrete representations, Pareto set, approximation, Pareto set, nondominated
points, kernels, multi-objective optimization problems.
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