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Titre :   

Modélisation de l'effet de la rugosité de surface et de la litière des couverts naturels sur les 

observations micro-ondes passives : application au suivi global de l'humidité du sol par la 

mission SMOS    

Résumé :  

Dans le cadre de la mission spatiale SMOS (Soil Moisture and Ocean Salinity), nous présentons dans 

cette thèse une nouvelle approche numérique de modélisation du calcul de l’émissivité et du 

coefficient bi-statique de systèmes forestiers sol-litière en Bande L. Le système sol-litière est 

représenté par deux couches diélectriques 3D comportant des interfaces rugueuses, une démarche qui 

n’apparait pas actuellement dans la littérature. Nous validons notre approche pour une seule couche en 

comparant les simulations de l'émissivité avec celles produites par la méthode des moments et des 

données expérimentales. A partir de ce nouveau modèle, nous évaluons la sensibilité de l’émissivité du 

système sol-litière en fonction de l’humidité et de la rugosité de la litière. Ce nouveau modèle 

permettra de créer une base de données synthétiques d’émissivités calculées en fonction de nombreux 

paramètres qui contribuera à améliorer la prise en compte de la litière dans l'algorithme d’inversion 

des données de la mission spatiale SMOS. 

Mots clés : radiométrie micro ondes des forêts, émissivité des structures sol litière, Modélisation  

numérique par éléments finis, rugosité du sol, litière des forêts, HFSS, IEM, SMOSREX, Coefficient 

de rétro diffusion, Coefficient bi-statique, mission SMOS 

Title:  

Modelling the effects of surface roughness and a forest litter layer on passive microwave 

observations: application to soil moisture retrieval by the SMOS mission 

Abstract: 

In the context of the SMOS (Soil Moisture and Ocean Salinity) mission, we present a new numerical 

modelling approach for calculating the emissivity and bistatic scattering coefficient of the soil-litter 

system found in forests, at L-band. The soil-litter system is modelled as two 3-dimensional dielectric 

layers, each with a randomly rough surface, which to our knowledge has not previously been achieved. 

We investigate the validity of the approach for a single layer by comparing emissivity simulations 

with results of Method of Moments simulations, and experimental data. We then use the approach to 

evaluate the sensitivity of the soil-litter system as a function of moisture content and the roughness of 

the litter layer. The numerical modelling approach which has been developed will allow us in the 

future to create a synthetic database of the emissivity of the soil-litter system as a function of 

numerous parameters, which will contribute to validating and improving the inversion algorithm used 

by the SMOS mission to retrieve soil moisture over forests. 

Key Words: microwave forest radiometry, soil-litter emissivity, FEM numerical modelling, soil 

roughness, forest litter, HFSS, IEM, SMOSREX, backscattering coefficient, bistatic scattering 

coefficient, SMOS mission 
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List of Symbols and Abbreviations 

α: attenuation constant, a measure of the attenuation of an electromagnetic wave as it travels through a 

lossy medium 

AIEM: Advanced Integral Equation Method 

β': phase constant, a measure of the change of phase experienced by an electromagnetic wave when it 

enters a lossy medium 

B: Magnetic Field 

c: speed of an electromagnetic wave 

c0: speed of an electromagnetic wave in a vacuum, equal to 3x108 ms-1 

D: Electric displacement field 

ep: emissivity at polarisation p 

eN: emissivity calculated by averaging the scattered electric field over N surfaces 

ε: electric permittivity of a material 

ε0:  electric permittivity of a vacuum, equal to 8.85x10-12 F/m 

εr: the relative permittivity (electric permittivity relative to that of a vacuum) 

E:  Electric Field 

f: frequency of an electromagnetic wave 

Ff: spectral flux density at frequency f 

F: radiative flux density 

FEM: Finite Element Method 

FDTD: Finite Difference Time Domain Method 

γ: propagation constant, a measure of the change in phase and magnitude of a wave as it enters a lossy     

medium 

g: the beamwidth of a tapered wave 



h: Planck’s constant, equal to 6.26x10-34 Js-1 

H: magnetising field 

HFSS: High Frequency Software Simulator, electromagnetic modelling software used in this PhD 

I: electric current 

If: specific intensity, or brightness, of a radiated beam 

IEM: Integral Equation Method 

J: surface current density (current per unit area)  

k: the wave number of an electromagnetic wave 

kb: Boltzmann constant, equal to 1.381x10-23 JK-1 

KA: Kirchoff Approximation 

λ: wavelength of an electromagnetic wave 

λ0: wavelength of an electromagnetic wave in a vacuum 

L: size of the rough surface, also equal to the width of the calculation area 

Lc: autocorrelation length of a rough surface 

L-MEB: L-Band Microwave Emission of the Biosphere model 

m: rough surface slope, equal to σ/Lc  

mg: gravimetric soil moisture content 

mv: volumetric soil moisture content 

µ: magnetic permeability of a material 

µ: the direction of propagation cosθ 

µ0: magnetic permeability of a vacuum, equal to 4πx10-7 H/m 

µr: the relative permeability (magnetic permeability relative to that of a vacuum) 

MoM: Method of Moments 

n: refractive index of a wave  



N: number of simulations performed for a given roughness condition 

p: penetration depth of a medium  

P: power 

ρ: the volume charge density 

ρ(x’,y’): autocorrelation function of a rough surface 

ρxy: degree of coherence of a wave, where the symbols x and y refer to the wave’s components 

ρb: soil bulk density 

ρw: density of water 

Rp: Reflection coefficient for a wave of polarisation p 

RTE: Radiative Transfer Equation 

σ: the standard deviation of surface heights of a rough surface, also used for a material’s conductivity 

σΝ: the bistatic scattering coefficient calculated by averaging the electric field over N surfaces 

σsb: Stephan-Boltzmann constant 

σpq
0: bistatic scattering coefficient at polarisation p of the incident beam and polarisation q of the 

scattered beam 

σ0: backscattering coefficient 

s: the step in angles (θS,φS) at which the scattered field is calculated, equivalent to the integration step 

for the emissivity calculation 

S: Poynting vector  

SMOS: Soil Moisture and Ocean Salinity mission 

SMOSREX: Surface Monitoring Of the Soil Reservoir EXperiment 

θ: angle of incidence for scattering problems, equivalent to the angle of emission 

θT: angle of transmission when a wave encounters a boundary 

θc: critical angle, for incident angles greater than or equal to this value total reflection occurs 



θB: Brewster angle: the incident angle at which total transmission occurs for a V polarised wave 

(θS, φS): scattering angle  

τ: optical depth of a medium 

Tp: Transmission coefficient for a wave of polarization p 

Γ: reflectivity 

Τ: transmissivity 

T: temperature  

Teff: effective temperature of a medium 

TB(θ,φ): Brightness temperature at angle (θ,φ) 

uf: spectral energy density (at frequency f) 

u(T): energy density of a radiated beam 

ω: angular frequency of an electromagnetic wave, also used for a medium’s single scattering albedo 

W(z): temperature weighting function for each layer in the soil 
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1. Introduction 

Remote sensing is the collection of information about objects from a distance. As a discipline it first 

became possible with the advent of balloons (1900), and later airplanes, providing a platform for 

regarding the environment. In 1960 the first satellite weather image was taken with NASA’s TIROS 

mission, heralding the start of remote sensing as a tool for observing the environment.  

Remote Sensing of the environment via satellite or airplane allows us to obtain geophysical 

information over large regions. The satellite or airplane provides a platform at a distance, from which 

a signal from the environment can be measured, usually an electromagnetic wave. This signal must be 

propagated between the object and the observer unambiguously and without serious loss. Ideally 

propagation should be in a straight line with no attenuation (from vegetation cover, or the atmosphere 

for example), in other words through a transparent, homogeneous medium. An interaction must also 

exist between the sensing wave and the object, in order to provide the observer with information about 

the object.  

Remote Sensing of the environment combines many disciplines, principally electromagnetic theory 

and environmental studies. In order to obtain useful information from remote sensing observations we 

must understand the electromagnetic theory describing the processes involved in the propagation and 

interactions of electromagnetic waves as well as how the observed objects interact with these waves. 

This must be coupled with an understanding of key environmental and geophysical properties and how 

they affect such interactions. Often this means understanding the electromagnetic properties of the 

object and how they depend on its physical properties. For example a key electromagnetic property is 

the dielectric permittivity constant which can be linked to properties such as moisture content, material 

content, temperature, etc. Also an object’s shape can affect its interaction with electromagnetic waves.  

Environmental variables that can be measured by remote sensing include physical variables such as 

vegetation and ground structure and global variables such as the Earth’s water content, salinity, and 

temperature.  

The work of this PhD thesis was carried out in the context of the European Space Agency’s (ESA’s) 

Soil Moisture and Ocean Salinity (SMOS) mission (Y. Kerr et al 2001), a remote sensing satellite 

mission. The SMOS mission was launched in November 2009 with the objective of retrieving the soil 

moisture over land and the salinity over oceans on a global scale, from microwave radiometric 

measurements of the Earth’s thermal radiation. The Earth’s thermal emission is very sensitive to these 

two variables in the L-band microwave region and the mission was conceived in order to provide a 

way to measure globally these two variables, which had not previously been done.  
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Surface soil moisture is a key variable in the hydrologic cycle. Both water and energy fluxes at the 

surface/atmosphere interface depend strongly on soil moisture and surface soil moisture drives 

evaporation, infiltration and runoff while soil moisture in the vadose zone (the top part of the soil 

which is unsaturated by water) governs the rate of water uptake by the vegetation. Global soil moisture 

is an important input variable for numerical weather forecasting and climate models, such as the 

European Centre for Medium-range Weather Forecasts’ (ECMWF’s) Numerical Weather Prediction 

(NWP) model. 

The SMOS satellite carries an interferometric radiometer which measures the Earth’s natural thermal 

emission, at L-band. This band was chosen because at higher frequencies the vegetation cover is not 

transparent enough to allow us to measure the soil signal and at lower frequencies we are not able to 

obtain a very good resolution of the image taken by the satellite. The frequency at which the SMOS 

satellite radiometer takes measurements is 1.4 GHz, since this is the L-band frequency designated by 

the International Telecommunication Union for passive remote sensing measurements. Note that 

volume effects cannot be entirely neglected at this frequency: in general the Earth’s emission includes 

mainly contributions from the surface (on average the first 3-5cm) at this frequency but for low soil 

moisture conditions the emission also includes contributions from much lower depths. 

These measurements are taken at a mixture of the two polarisations H and V, from which the pure H 

and V components can be calculated and at angles in the range of 0° to 50°. A retrieval algorithm is 

then applied to the measurements in order to retrieve soil moisture. This algorithm models emission 

using the forward model and then uses an iterative approach, obtaining values of soil moisture and 

surface parameters which minimise a cost function computed from the sum if the square weighted 

differences between measured and modelled emission. The forward model is the so-called L-band 

Microwave Emission of the Biosphere (LMEB) model (Wigneron et al 2003, 2007). This model is the 

result of an extensive review of current knowledge of microwave emission of various land cover types 

with the objective of being accurate while remaining simple enough for operational use at a global 

scale, and allowing developments to be incorporated as they occur. 

Other factors affecting microwave emission include surface roughness, topography, soil texture, land 

cover and vegetation type. All these factors are constant with time and so can be estimated or 

calibrated from other information such as soil maps, data taken in the optical domain, digital elevation 

maps, etc. Only vegetation cover is retrieved simultaneously to soil moisture, making use of multi-

angular, dual-polarisation measurements.  

For the work of this thesis we concentrate on soil moisture retrieval over forests. The ground emission 

in forests is affected by the vegetation above the ground which consists of a tree, or canopy, layer and 

a litter layer of organic debris covering the forest floor. The canopy acts as a semi-transparent layer 

which attenuates the ground emission and this can be modelled simply by the τ-ω model, with two 
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variables, the optical depth τ and the scattering albedo ω, determining the attenuation. However the 

litter layer is much denser and has a tendency to absorb and hold water which means that, besides 

attenuating the ground emission, it adds an emission of its own to the signal which is very strong 

under high moisture conditions. In addition both the ground and the litter layer often have rough 

surfaces, which affect the overall emission. The litter layer effectively masks the ground signal (Grant 

2007, 2009) making it difficult to retrieve soil moisture. This effect has not been studied in any great 

depth and has not been well accounted for in the L-MEB model and so although soil moisture retrieval 

is performed over forests in the SMOS mission its accuracy has yet to be determined and is expected 

to be poor. 

The motivation of this PhD thesis is to improve the L-MEB model over forests by studying in greater 

depth the contribution of emission from the forest floor, including the soil and litter layers, to the 

signal. In order to do this we aim to develop a modelling approach which allows us to calculate the 

emission of the soil and litter layers in forests, incorporating surface roughness of both the soil and 

litter layers as well as parameters relating to both layers. The advantage of a modelling approach over 

an experimental one is that we can better control many different parameters that effect the emission. 

Once developed and validated, the model can be used to create a large database of the emission of the 

soil-litter system, as a function of numerous parameters. Analysing results in this database, we hope to 

infer a simple model which can be incorporated into the L-MEB forward model to better account for 

the effect of a litter layer in forest emission.  

The work of this PhD was to develop and validate the model to be used for modelling the soil-litter 

layers. Such a model requires at least two layers and surface roughness and there is currently no 

numerical (exact) model available for this. Although generating the database is not part of this thesis, 

the model must be developed with this end goal in mind. 

In the following chapters we present first the background theory including the physics relevant to 

remote sensing of the environment and the theory for the microwave emission of forests. Secondly we 

present a review of the methods currently used to model the bare soil layer, and secondly methods for 

modelling the litter layer. The main challenge in modelling the soil layer is in modelling the surface 

roughness and so we concentrate mainly on this in the soil layer section. Next we present the model 

developed in the work of this thesis and validate it against other models and experimental data. We 

finish with a conclusions and perspectives section. 
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2. Background Theory 

In this section we present the background theory relevant to this thesis. The information presented is 

mainly based on the volumes by Ulaby et al (1985a,b and c) but also on the remote sensing lecture 

course by C. Matzler (2007), and the volumes by C. Matzler et al (2006) and Chukhlantsev (2006).  

We begin with the context of active and passive remote sensing of the environment, two distinct areas 

of research that are nevertheless theoretically linked. We then present a summary of the physical 

theories of electromagnetism and thermal radiation, on which active and passive remote sensing 

respectively are based. We then present the background theory for passive microwave remote sensing 

of land. In this section we focus in particular on modelling the bare ground emission as well as the 

emission of the ground covered by vegetation, topics which are key to this thesis.  

2.1 Passive and Active Remote Sensing 

Methods for observing the environment by remote sensing can be divided in two distinct categories: 

active and passive. In active methods an artificially created electromagnetic wave is sent to the object 

to be sensed and the returned signal analysed. In passive methods it is the environment’s natural 

thermal emission that is detected and analysed. Thus for the active case we focus on scattering from 

the material and in the passive case we focus on emission. The theory behind active remote sensing is 

based on the theory of electromagnetism whereas the theory behind passive remote sensing is based on 

radiation theory. In the following sections we present these two theories, focusing on areas that are 

important for remote sensing. As we will see electromagnetic theory relating to scattering can be 

linked to the concept of emission found in thermal radiation, by Peake’s theorem (1959): we can 

calculate an object’s emission by integrating the scattering resulting from an incident wave. Thus, 

although experimentally passive and active remote sensing techniques each provide different 

information about an object, theoretically we can calculate one from the other. In this thesis we are 

interested in the emission of soil-litter systems. However in theoretical modelling approaches it is 

usual to calculate the emission from the scattering, including the approach we develop and apply. We 

will therefore present the theory behind both electromagnetic scattering and thermal radiation as both 

are relevant to this thesis.  

2.2 Electromagnetism 

The theory of electromagnetism was formulated by Maxwell. It describes the behaviour of magnetic 

and electric fields for a given system of electric currents and charges. It is a macroscopic theory and so 

does not consider the microscopic processes in a medium in the presence of an electromagnetic field. 

Electric and magnetic properties of a specific medium are described by three macroscopic quantities: 

the magnetic permeability, �, the conductivity σ and the permittivity ε. Electromagnetic theory rests on 
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Maxwell’s four equations. These four equations are very powerful since they are simple, yet fully 

describe an electromagnetic field problem: all electromagnetic theory can be derived from them.   

2.2.1 Maxwell’s Equations 

Maxwell’s four equations can be expressed in differential or integral form. In differential form they 

can be written as: 

ρ=∇ D.           (2.1a) 

0B. =∇            (2.1b) 

t

B
Ex

∂
∂−=∇

          (2.1c) 

 J
t

D
Hx +

∂
∂=∇           (2.1d) 

where: 

ED ε=            (2.2) 

HB µ=            (2.3) 

EJ σ=  (Ohm’s law)         (2.4) 

and the electromagnetic quantities are: 

E: the electric field  

B:  the magnetic field  

D: the electric displacement field 

H: the magnetising field 

ε: the electric permittivity 

ρ: the volume charge density 

σ: the conductivity 

J: the surface current density (current per unit area). 



8 
 

ε and � can be expressed as functions of the vacuum permittivity ε0 and the vacuum permeability �0 as 

follows:

 
 � � ����          (2.5) 

� � ����          (2.6) 

where εr and �r are respectively the relative electric permittivity and magnetic permeability of the 

material. Both ε and � and equivalently εr and �r are usually complex and are often written as: 

 � � �� � ��" � 
��� � ���"���        (2.7) 

� � �� � ��" � 
��� � ���"���         (2.8) 

Note that in this thesis we deal with non-magnetic media, i.e. �r = 1.  

Maxwell’s equations can be written in their integral form as: 

0Ad.E
V

=∫∫∂           (2.9a) 

0Ad.B
V

=∫∫∂           (2.9b)

 

t
ldE S,B

S ∂
Φ∂

−=⋅∫∂          
(2.9c)

 

t
IldB S,E

00S0
S ∂

Φ∂
εµ+µ=⋅∫∂         

(2.9d)
 

The left-hand sides of (2.9a) and (2.9b) are the integration of respectively the electric field and 

magnetic field over a closed surface ∂V, of area A and bounding volume V. The left-hand sides of 

(2.9c) and (2.9d) are the integration of respectively the electric field and magnetic fields over closed 

line dS of length l bounding area S.ФB,S  is the magnetic flux through area S and ФE,S   is the electric 

flux through area S, given by: 

∫∫ ⋅=Φ
S

S,B AdB          (2.10a) 

∫∫ ⋅=Φ
S

S,E AdE           (2.10b) 

For the work of this thesis, we develop a numerical modelling approach to calculate the emission of 

the forest soil-litter system. Numerical modelling approaches such as the one used in this thesis solve 

Maxwell’s equations for finite spaces. This is what makes them exact, since Maxwell’s equations are 

exact and complete. As will be covered in more detail in section 3.1.3, numerical modelling 
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techniques can be divided into two types: those that solve Maxwell’s equations in their differential 

form and those that solve them in their integral form. 

2.2.2 The Wave Equation 

For active remote sensing we are interested in the scattering of electromagnetic waves. We now 

consider, therefore, the concept of electromagnetic waves, which may be derived from Maxwell’s 

equations. Maxwell’s theory permits the existence of electromagnetic fields in space even without the 

presence of charge or current sources. This is because a changing magnetic field creates a changing 

electric field and vice versa. We can therefore visualise an electromagnetic wave propagating through 

space with oscillating electric and magnetic fields which are dependent on each other. In order to 

formally describe such waves we combine Maxwell’s equations (grad x (2.1c)) to obtain two wave 

equations, which, for a non-conductor (σ=0), are given by: 

0
t

E

c
E

2

2

2
0

rr2 =
∂
∂εµ

−∇          (2.11a)

0
t

B

c
B

2

2

2
0

rr2 =
∂
∂εµ−∇           (2.11b) 

For: 

 21
000 )(c µε=           (2.12) 

Electromagnetic waves propagate with phase velocity c given by:  

rr0 /cc µε=           (2.13) 

where c0 is the speed of an electromagnetic wave in a vacuum equal to 3x108ms-1. 

It further follows from Maxwell’s equations that a wave’s electric and magnetic fields must always be 

perpendicular; hence if the electric field oscillates in the x direction, the magnetic field oscillates in the 

y or z direction. The magnitudes of the E and B fields are also related by: 

c/EB O0 = .           (2.14) 

For this reason we usually only consider the electric or magnetic fields in waves since the other can be 

derived afterwards. 
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2.2.3 Plane Waves and Polarisation 

There are numerous possible solutions to the wave equation and correspondingly numerous types of 

wave, of which the most basic form is the plane wave. In remote sensing we deal extensively with 

plane waves since antennas emit waves that may be considered plane far from the emitting antenna 

and also the earth’s thermal radiation may be considered plane when measured at a distance far from 

the ground.  

A plane wave propagating in an arbitrary direction given by the wavevector k can be described by the 

following equations: 

)t.rikexp(E)t,r(E 0 ω−⋅=         (2.15a) 

)t.rikexp(H)t,r(H 0 ω−⋅=         (2.15b) 

where ω is the phase velocity. Note we take the real part in the above equations but it is common 

practice to write wave equations in complex form and the real part is implied. A wave is considered to 

be plane when its electric field remains in the same plane with respect to its propagation.   

Substituting these wave equations into Maxwell’s equations (2.1a) and (2.1b) we find that k is 

perpendicular to both H and E as follows: 0HikH =⋅=⋅∇ and 0EikE =⋅=⋅∇ . 

Since the electric and magnetic fields must also be perpendicular these two fields form a plane 

orthogonal to the direction of propagation, called the polarisation plane.  

Inserting the above equations into the wave equation we deduce the following relationship: 

c

11

k
=

εµ
=ω

          (2.16) 

ω is calculated as 2π/λ, where λ is the wavelength. This equation for k is the dispersion relation of 

electromagnetic waves in unbounded space. 

A wave is linearly polarised if its electric and magnetic fields oscillate in one direction only. However 

all waves can be rewritten as the sum of their components in the 2 orthogonal polarisations. In 

particular, a wave incident on a plane boundary at angle θi has an electric field which can be 

decomposed into two directions: the direction orthogonal to the boundary plane and the direction 

parallel to this plane: 

//EEE += ⊥           (2.17) 
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The orthogonal component is also known as the vertical component (V) and the parallel component is 

also known as the horizontal component (H). Horizontal and Vertical polarisations are not intrinsic to 

a plane wave but rather depend on the wave’s orientation relative to a boundary. A horizontally 

polarised wave has an electric field only in the H direction and a vertically polarised wave has an 

electric field in the V direction only, relative to the boundary. 

 

Figure 2.1: One period of a plane EM wave with linear polarization (direction of the E field is 

constant). The horizontal axis is the phase kr-ωt with the propagation path, r. 

In remote sensing we usually consider waves that are either H or V polarised: in active remote sensing 

we direct these polarised beams at the environment and also measure the reflections and passive 

emissions at both H and V polarisation (for example the SMOS satellite measures emission at a 

mixture of H and V polarisation and the H and V components are then calculated from this 

measurement). This provides us with two sets of measurements instead of one, and allows us to better 

retrieve environmental parameters.  

2.2.4 A Superposition of Waves 

Previously we have considered plane waves of a single frequency, known as monochromatic waves. 

Signals transmitted from single frequency or multifrequency transmitters are of this type. A wave that 

is not monochromatic but essentially behaves like one is said to be quasi-monochromatic.   

Electromagnetic signals emitted by physical objects, irregular terrains or inhomogeneous media 

usually cover a wide range of frequencies and consist of a superposition of many statistically 

independent waves. There is no correlation between the component waves of this type of signal which 

is said to be incoherent or unpolarised. 
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To identify the state of polarisation or degree of coherence of a wave, Born and Wolf (1964) and 

others (Ko 1962, Kraus and Carver 1973) introduced the following relationship: 

2
1

2
y

2
x

yx
xy

EE

*EE









=ρ         (2.18) 

ρxy is equal to 1 when the wave is completely polarised and 0 when the wave is completely 

unpolarised. ρxy between these two values is said to be partially polarised or partially coherent. 

The concept of coherence more generally describes all properties of the correlation between physical 

quantities of a wave. When considering the addition of two waves with electric field vectors E1 and E2 

we calculate their coherence from:  

2
1

2
2

2
1

21
12

EE

*EE








=ρ         (2.19) 

Often the concept of coherence refers to the amplitudes of two waves relative to each other: two waves 

are said to be coherent if they have a constant phase relative to each other. Note that if two waves add 

incoherently the power of the resultant wave is the algebraic sum of the powers of its components. For 

example, let us consider two beams E1 and E2 which are combined to form a beam E1+E2. The power 

of this combined beam is then proportional to: 

*
21

2
2

2
1

2
21 EE2EEEE ++=+

       
(2.20) 

If the beams are incoherent the third term on the right-hand side of (2.20) is equal to zero thus the 

amplitude of the resultant wave is the algebraic sum of the amplitudes of its components. However if 

the waves are coherent this term is not zero and we have what is called coherent effects. This means 

we see peaks and troughs in the amplitude of the combined beam, depending on whether the two 

components add in phase or out of phase. In radiometry because the emission is natural it is on the 

whole incoherent. However, in scattering coherent effects are more often seen since the beam 

measured is artificially created and therefore monochromatic and also multiple reflections occur which 

lead to coherence effects.   

The concept of a coherent and an incoherent beam is important when considering rough surface 

scattering, as will be described in section 2.5.1.3. 



13 
 

2.2.5 The Poynting Vector 

We now consider the energy carried by an electromagnetic wave, which can be calculated from the 

Poynting vector. The complex Poynting vector, S, is defined as: 

HES ×=           (2.21) 

The Poynting vector is perpendicular to the electric and magnetic fields and so is in the direction of 

propagation. It represents the energy flux, or the power per unit area of the wave. A wave’s energy is 

therefore always transferred in the direction of propagation and the amount of energy transferred by a 

wave per unit area and per unit time is given by ½ times the real part of S. Since the magnitude of the 

electric and magnetic fields are related by (2.14) the energy of a plane wave is thus proportional to the 

square of the electric field, or the square of the magnetic field. 

It is important to note this because in the field of scattering, we often measure how much energy is 

scattered in different directions. 

2.2.6 Waves at boundaries 

So far we have considered the basics of electromagnetic theory (Maxwell’s equations) and the 

properties of electromagnetic waves. We turn now to the scattering of electromagnetic waves at a 

boundary, which is important for the work of this thesis, since our numerical approach calculates the 

scattering of an electromagnetic wave off the boundary of the soil-litter system. 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
When a wave approaches a boundary, that is to say a change in the electromagnetic properties of the 

medium through which it propagates, there are certain rules governing its behaviour. The electric field, 

E, perpendicular to the boundary must be the same either side of the boundary and the magnetic field, 

H, parallel to the boundary must be conserved. This leads to some of the wave being transmitted, at 

angle to the normal, θT, and some of the wave being reflected, at angle θ to the normal, see Figure 2.2 

θT 

θ θ 

Medium 1 

ε1, �1 
Medium 2 

ε2, �2 

Figure 2.2: Reflection and transmission of an 

electromagnetic wave at a plane boundary 
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for example. In sections 2.2.6.1 - 2.2.6.3 we consider the amplitudes and behaviour of the transmitted 

and reflected beams. 

2.2.6.1 Reflection and Transmission coefficients for H and V polarization 

The fraction of the wave that is reflected and the fraction transmitted can be calculated by the 

following Fresnel formulas, which are derived directly from the boundary conditions: 

T12

T12
h cosZcosZ

cosZcosZ
R

θ+θ
θ−θ

=         (2.22) 

θ+θ
θ−θ

=
cosZcosZ

cosZcosZ
R

1T2

1T2
v              (2.23)   

               

 (2.24)  

 (2.25) 

 

where Z, the material impedance, is the electric field divided by the magnetic field, equal to: 

k

i

H

E
Z

eq

ωµ−
=

ε

µ
==

          (2.26) 

The reflectivity, Γ, and transmissivity, T, are the square of respectively the reflection coefficient and 

the transmission coefficient. The reflectivity is the fraction of the incident power that is reflected and 

the transmissivity is the fraction of incident power that is transmitted. From energy conservation we 

have: 

1=Τ+Γ           (2.27) 

 The reflection and transmission coefficients are the fractions of the incident wave amplitude reflected 

and transmitted respectively. 

The angle of transmission θT can be calculated from the incident angle θ as follows: 

2

1
T k

sink
sin

θ
=θ          (2.28) 

T12

2
h cosZcosZ

cosZ2
T

θ+θ
θ

=

θ+θ
θ

=
cosZcosZ

cosZ2
T

1T2

2
v
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where k1 is the wavenumber in medium 1 and k2 the wavenumber in medium 2. This relationship is 

known as Snell’s law since it was originally found by Snell, and can also be derived from the 

boundary conditions. 

2.2.6.2 Total Reflection and the Brewster Angle 

Two phenomena of interest relating to plane wave reflection and transmission across a plane boundary 

between lossless media are total reflection and total transmission. These two can be derived from 

Snell’s law. 

Total reflection occurs when a wave is incident from a more optically dense to a less optically dense 

medium (k1>k2) and the incident angle is greater than the critical angle θc, such that: 

1

2
c k

k
sin =θ

.           (2.29) 

Inserting this value into Snell’s law we find that cosθ2 is entirely imaginary for θ1≥θc and thus the 

wave is completely reflected; no average energy can be transmitted into the lower medium. This 

phenomenon is true for both H and V polarised waves. 

Total transmission occurs for V polarised waves at an incident angle equal to the Brewster angle, θB, 

where: 

 

2
1

1

2
Btan 









ε
ε

=θ
         (2.30) 

This follows directly from Snell’s law if we let R=0.  

This effect can be understood qualitatively by considering electric dipoles in the medium. The incident 

field is absorbed by the medium and then reradiated by oscillating electric dipoles at the interface. The 

dipoles oscillate in the polarisation direction of the transmitted wave, the same oscillation producing 

the reflected beam. However dipoles cannot radiate any energy along their direction of oscillation. 

Therefore when the direction of the refracted beam is perpendicular to the direction of the reflected 

beam, as is the case at the Brewster angle, the dipoles cannot radiate any energy in the reflected 

direction and total transmission occurs. 

2.2.6.3 Wave Propagation in a lossy medium 

If medium 2 in figure 2.2 has a relative permittivity constant with a non-zero imaginary part, then the 

transmitted wave experiences a loss in energy as it travels through this medium, associated with the 
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imaginary part of the permittivity. To illustrate this, let us consider a wave propagating in the z 

direction through an isotropic medium with complex relative permittivity εr and complex relative 

permeability µr. Inserting (2.16) into (2.15a) (and setting µr=1) we find that the electric field can be 

expressed as: 

z
xx eEE

γ−=           (2.31a) 

z
yy eEE

γ−=           (2.31b) 

z
zz eEE

γ−=           (2.31c) 

The electric and magnetic fields are both perpendicular to each other and to the direction of travel of 

the wave. Let us therefore take the E field to be entirely in the y direction and the H field in the x 

direction. 

γ is the propagation constant and is complex since it depends on εr and �r, which are both complex. It 

can be written as: 

'βαγ i+=
          (2.32) 

where α is the attenuation constant and β’ is the phase constant. Thus a wave travelling in a lossy 

medium, i.e. one with non-zero values of εr” and/or µr”, will be attenuated by a factor of e-α. Figure 2.3 

shows a representation of this. A wave passing from a vacuum to a medium will also undergo a phase 

change of +β’.  
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From Maxwell’s equations we find that α and β’ depend on the medium permittivity and permeability 

as follows: 













 δ++″ε″µ−′ε′µβ=β′
2

tan11 2

rrrr0        (2.33) 

p

1

2

tan11 2

rrrr0 =












 δ++−″ε″µ−′ε′µβ=α       (2.34) 

Where β0 and tanδ are given by: 

0
0

2

λ
πβ =

          (2.35) 

″ε″µ−′εµ

″εµ+′ε″µ
=δ

rrrr

rrrrtan          (2.36) 

p is the penetration depth, the distance the wave must travel through the medium to be attenuated by a 

factor of 1/e. The penetration depth is an important idea for emission in electromagnetism, since it 

turns out that the ground emits thermal emission from a depth related to the penetration depth (see 

section 2.5.1.2) 

vacuum lossy medium 

 

Figure 2.3: the amplitude of a wave passing from a vacuum to a lossy medium. The wave’s magnitude 

is attenuated exponentially in the lossy medium. Note that the phase change is not shown 
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2.2.7 Layered media 

Plane boundary reflection and transmission can be generalised to a multilayer case. This is done by 

evaluating the fields within each layer and then applying a matrix technique to sum the effects of all 

layers. The current models which include the litter layer in forest scattering and emission use this type 

of technique since the soil and forest litter make up a two layer system. However this technique only 

applies to plane boundaries, where the surfaces are flat. 

2.2.8 Antenna Radiation 

In the previous sections we considered the properties and behaviour of electromagnetic waves. Now 

we will consider how these waves may be created, by antennas. This is not directly relevant to the 

work of this thesis which involves numerical modelling in which we consider the scattering of a wave, 

but not its creation, but the theory of antenna radiation leads to the important concepts such as the near 

and far field, which will be important later for numerical modelling. 

The radiation of an antenna, or the launching of a free space wave, may be viewed in two different 

ways: as radiation from current sources or as radiation from apertures. These lead to different 

approaches for calculating the radiated electromagnetic field. The theory for antenna radiation is also 

relevant to emitting objects since they can be modelled as antenna. 

2.2.8.1 Radiation from current sources: the Hertzian Dipole 

The short dipole or Hertzian dipole has a length l  which is much less than the wavelength. The fields 

E and H at a distance Q are induced by the current I across the dipole, which we can assume to be 

uniform. A linear antenna may be regarded as a series of a large number of short antennas and the field 

due to the linear antenna can then be calculated by integrating the fields induced by all elements, 

including magnitude and phase. 

We assume the current in the short dipole to be sinusoidal: 

ti
oeII ω−=           (2.37) 

The fields E and H induced by the antenna can be calculated from the vector potential A, to be: 
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θ

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H

2
ikr0         (2.38c) 

where 
 � ���, and Er and Eθ are the components of the electric field in the r and θ direction 

respectively, in spherical polar coordinates, and Hφ is the component of the H field in the φ direction. 

It is important to note that at large distances, kr>>1, the 1/r term is much larger than the 1/r2 and 1/r3 

terms in the above equations. Thus the fields reduce to: 

ikr0 esin
r4

likI
E θ

π
η−

=θ                      (2.39a) 

 
η
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= θ
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E

sine
r4

likI
H ikr0                                       (2.39b) 

and Er is negligible. This is known as the “far field region” and we see that in this region the fields 

produced by the Hertzian dipole are similar to uniform plane waves  

2.2.8.2 Radiation from aperture sources 

In this case the radiated field is related to the field distribution across the aperture, which becomes the 

radiation source. There are two types of formulation: the scalar formulation based on Kirchoff’s work 

and the vector formulation based on Maxwell’s equations. The latter is theoretically superior but more 

difficult and so is used mostly for apertures whose dimensions are less than or comparable to the 

wavelength, making the scalar approach inapplicable. In this section we will only consider the simpler 

scalar approach. 

a) Scalar Approach 

Let us consider an aperture in the plane (xa,ya) of length d and either an observation plane (x,y) at a 

fixed distance z from the aperture or an observation sphere at fixed radius r=R from the centre of the 

aperture, as shown in Figure 2.4: 
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Figure 2.4: Far-zone observation regions: (a) plane at a fixed distance, and (b) sphere at a fixed 

radius r=R 

Starting with Green’s theorem and the Helmholtz wave equation and applying the Kirchoff boundary 

conditions we can derive a formula relating the field at a distance (x,y,z) from the aperture to the field 

distribution across the aperture Ea(xa,ya): 
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where θ1  is the angle between the normal to the aperture, ��, and the observation point and ��is the 

angle between �� and the direction of the incident wave illuminating the aperture. s is the vector 

defining the direction of propagation of the wave. 
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This integral is known as the Fresnel-Kirchoff diffraction integral. We can use approximations to 

simplify the computation of the integral, namely the Fresnel and Fraunhofer approximations. These 

approximations explain the important concepts of the near field and far field zone and the intermediate 

Fresnel zone. 

a1) Near Field zone 

The immediate vicinity of the aperture is called the near-field region. In this region no approximations 

may be applied to solve the Fresnel-Kirchoff diffraction integral. Furthermore the integral itself may 

not be valid in this region because the Kirchoff boundary conditions applied in its derivation are not 

valid and so vector diffraction theory should be used. 

a2)  Fresnel Region 

In the Fresnel region, intermediate between the near field and far field, the assumption is made that the 

distance z from the aperture to the observation plane is much larger than the longest linear dimension 

of the aperture (i.e. aperture length l). Since the aperture is much smaller than the wavelength for the 

scalar approach to be applicable the distance z is much larger than the wavelength. The following 

approximations can therefore be applied: 

ikik
s

1 −≈



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 −           (2.41a) 

θ≈θ coscos 1           (2.41b) 
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We also replace [ ] 2/12
a

2
a

2 )yy()xx(zs −+−+=  by the first two terms of its binomial expansion; 

� � � �1 � �� ������  � � �� �!�!��  �"       (2.42) 

This latter approximation is called the Fresnel approximation. 

Substituting these approximations into the Fresnel-Kirchoff diffraction integral we obtain: 

#
$, &, �� � �'
�()*+,��- ./01� 2$3 4'5�� 
$� � &��6 7 8
$, &, ��    (2.43) 
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$, &, �� � 9 #:
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$$: � &&:�6 <$:<&:   (2.44) 
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a3) Fraunhofer, far-field, region 

If the observation point is far enough away such that: 

= > �5� 
$:� � &:��?:�        (2.45) 

then exp 4� CD�E 
xF� � yF��HFI6 � 1 over the aperture and we have: 

#
$, &, �� � �'./0K-L 8
�, M�         (2.46) 

where: 

 8
�, M� � N #:
$: , &:�2$3OP�Q����
$: RS� M � &: ��� M�T;�; <$:<&:           (2.47) 

In practice these equations are used for the Fraunhofer conditions: 

= > �UV-           (2.48) 

which is known as the far-field condition, and is obtained by requiring: 

� 5�L 
$:� � &:��?:� W XY        (2.49) 

and choosing the origin to be the midpoint of the longest dimension of the aperture. 

So we see that when objects emit electromagnetic radiation the emitted fields have a different form 

near and far from the receiver. When radiation is measured by a satellite borne detector it is the far 

field that is measured. This is important for our numerical model since Maxwell’s equations are solved 

in the near field but we require the far field value. In this case a near to far field transformation is 

applied to the solution, by treating the external surfaces as aperture antennas and calculating the field 

that would be emitted by such antennas. The far field value is calculated on a sphere at a distance R 

from the surface. The value given to R must be large enough to satisfy (2.48), so that the electric field 

is calculated in the far field region. 

2.3 Dielectric Properties of Mixtures: Effective Media 

In this section we consider the electromagnetic properties of materials that determine their interactions 

with electromagnetic waves. The macroscopic electromagnetic properties of materials are the relative 

electric permittivity, εr, the relative magnetic permeability, µr, and the conductivity σ. In remote 

sensing we consider only the permittivity since environmental media is non-magnetic. For 

homogeneous media, i.e. a media with only one component evenly distributed, the values of εr have 

been measured and tabulated. However most natural substances, including soil and litter, are 
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inhomogeneous mixtures, combining many different components. Furthermore the amounts and 

distribution of the components vary, and so such media do not have a universal value of the 

permittivity. Instead we must find a way to calculate their electromagnetic properties as a function of 

the electromagnetic properties of their components, and their physical properties (including e.g. 

component percentage, component shape, etc). 

An inhomogeneous medium consisting of a mixture of many components that are smaller than the 

sensing wavelength can be modelled as homogeneous medium with an effective permittivity constant. 

The value of this constant depends on the permittivities of the components. A large number of 

effective medium theories exist that allow us to calculate the permittivity of mixtures, appropriate for 

different types of mixture. In this section we present some of the main ones. These formulae are 

applied to calculate the dielectric permittivity constant of environmental media including soil and litter 

as a function of parameters including notably water content for microwave frequencies. The dielectric 

permittivity constant is the main parameter that effects emission. 

2.3.1  Physical mixing formulas 

Let us assume a host medium of permittivity ε1 with embedded particles of permittivity ε2 and volume 

fraction vf.  

When an electric field is applied to a dielectric object, this object becomes polarised with polarisation 

density P, creating an ‘induced’ electric field due to the polarised object. The electric displacement due 

to the polarised object is equal to P. The total electric displacement, D, has components due to both the 

applied electric field and the polarised object, which is expressed mathematically as: 

i0ii EPD ε+=           (2.50) 

where Ei is the electric field applied to object i, and Di is the resultant displacement current D field due 

to the applied and induced electric fields. 

We also have the following relationship: 

i0ii ED εε=           (2.51) 

where εi is the relative permittivity of object i. 

Equally we can rewrite the total displacement current D as a function of the effective relative 

permittivity of the medium, εr,: 

ED 0rεε=           (2.52)  
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where D and E are summations of the D and E fields in the host media and the inclusion, weighted by 

the volume fraction of each:  

21f DfD)v1(D +−=         (2.53) 

and        2f1f EvE)v1(E +−=         (2.54) 

Rearranging equations (2.50) – (2.54), we can rewrite the effective permeativity εr as a function of the 

permittivity of each components i, εi, the volume fraction vf and the polarisation of each component. 

The component’s polarisation Pi depends on its shape and dielectric properties (its dielectric 

permittivity constant).  

A number of different equations have been derived for particles of different shape including, spheres, 

ellipsoids, etc. 

One of the main equations is the Maxwell-Garnett mixing formula, for an ellipsoid shaped component 

i of volume fraction vf in a host h, given by: 

)v1()v2(

)2v2()v21(

fifh

fhfi
h −ε++ε

−ε−+ε
ε=ε         (2.55) 

where εi is the relative permittivity constant of the component i, and εh is the relative permittivity 

constant of the host. 

2.3.2 The Semi-empirical Refractive Mixing Formula 

In some cases there is a lack of sufficiently accurate information on the shape of particles in a mixture 

and so there is a need for practical semi empirical formulas for certain materials. One of the most 

important is the refractive mixing formula. In this model the refractive indexes of the components are 

combined in a linear fashion with their volume fractions determining their weighting. This gives an 

effective refractive index of the mixture, n, of: 

∑
=

=
N

1i
iif nvn           (2.56) 

where vfi is the volume fraction of component i, ni is its refractive index and N is the total number of 

components. 

 Note that: 
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 1v
N

1i
if =∑

=

          (2.57) 

Since for non-magnetic media ε=n2 andεi=ni
2, (2.56) can be rewritten as: 

∑
=

ε=ε
N

1i

5.0
iif

5.0 v .         (2.58) 

The physical basis for this model comes from the fact that the real part of a material’s refractive index 

is proportional to the propagation time of waves travelling through the material. Then if we consider a 

wave propagating successively through three different materials, as shown in Figure 2.5, we find that 

propagation time can be added linearly with equation (2.59):  

 

 

 

 

Propagation time over total path s=s1+s2+s3 is given by: 

0
332211

0 c

sn
)snsnsn(

c

1
t

′
=′+′+′=         (2.59) 

where n′  is given by: 

3f32f21f1 vnvnvnn ′+′+′=′          (2.60) 

for volume fractions vf1, vf2 and vf3. 

The same reasoning applies to n’’ which is proportional to the wave absorption. 

A model such as this where we imagine the wave travelling successful through one particle then 

another implies that the particle size is larger than the wavelength. Nevertheless this model is also 

used in situations where particles are smaller than the wavelength. 

2.4 Radiation 

In this section, we present the theory of electromagnetic radiation, which forms the basis for passive 

remote sensing of the environment. All material media (gases, liquids, solids and plasma) radiate 

electromagnetic energy due to their temperature, known as “thermal” emission. When a medium emits 

s1 s2 s3 

Figure 2.5: propagation of a beam through a mixture whose components are arranged linearly 
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thermal energy its temperature falls and when it absorbs thermal radiation its temperature increases. At 

“thermal equilibrium”, ie constant temperature, these two processes are balanced.   

Up to this point we have considered electromagnetic radiation as waves, taking into account both their 

amplitude and phase. In order to understand the Earth’s thermal emission we must now consider 

radiation as photons, in particle form, considering only their amplitude or energy. We must therefore 

consider radiation as an incoherent, quasi-monochromatic, beam. The propagation and development of 

such a beam in a homogeneous medium is described by the theory of radiative transfer. Since we 

consider only incoherent radiation, this is an approximation to reality since we discount coherent 

effects which can occur. However it is a good approximation, provided the media considered are not 

dense and we do not have a large number of reflections, which lead to large coherent effects. 

In this section we will first define some important radiometric quantities, and then describe firstly 

thermal radiation and then important aspects of radiative transfer theory. 

2.4.1 Important Quantities in Radiation and their definit ions 

The following terms are used often in radiation theory: 

1. Radiance or Specific Intensity, If, (sometimes also called Brightness): 

This is the measure of the radiative power of a beam at a given polarisation, frequency, f, position and 

travelling in a given direction. It is defined as: 

Ω⋅θ⋅⋅φθ= dcosdf)),(n,r(IdP f         (2.61) 

where dP is the infinitesimal power at position (r,θ,φ), in the frequency range (f,f+df), crossing a given 

area dA, within the solid angle dΩ, and travelling in a given direction defined by unit vector n(θ,φ).  

2. Spectral Flux density, Ff, and Radiative flux density, F 

The Spectral Flux Density is the radiance integrated over all directions, as follows: 

Ω= ∫
π

dn̂)n̂,r(IF
4

ff          (2.62) 

Hence the spectral flux density is a measure of the total power per unit area travelling all directions, at 

a given frequency and position. 

3. The radiative flux density is the Spectral flux density integrated over all frequencies: 
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dfFF
0

f∫
∞

=           (2.63) 

The radiative flux density is therefore the total power of all radiation, at all frequencies and travelling 

in all directions, per unit area, at a given point. 

4. Mean Intensity and spectral energy density, uf 

The energy density of a ray (the total energy propagated and absorbed per unit volume traversed) is 

given by: 

dfd
c

I
du f

f Ω=           (2.64) 

2.4.2 Thermal Radiation 

Radiation theory is based on Quantum theory. Atomic gases radiate electromagnetic energy at discrete 

frequencies, or wavelengths, giving them line spectra. Quantum theory describes atoms as having 

discrete energy levels and explains their emission as occurring when an atomic electron transfers from 

one energy level to another, whose discrete frequency corresponds to the discrete energy difference 

between levels in the atom. This comes from Planck’s quantum theory which is based on the 

assumption that emitted radiation occurs only in discrete quanta. 

Emission by an atom or particle is caused by a collision with another atom or particle. The probability 

of this happening increases with particle density and kinetic energy. Since temperature is a measure of 

kinetic energy it follows that the intensity of the radiated energy increases with the temperature of the 

emitter. 

Molecules have vibrational and rotational modes corresponding to a set of allowable energy levels. 

This increases the number of lines in spectra of molecular gases compared to atomic gases since it 

increases the number of possible changes in energy levels. Because of this, sometimes molecular gas 

spectra contain lines that are so close together it is difficult to resolve them into discrete frequencies.  

As gases become liquids and solids the interaction between particles increases and the radiation 

spectrum becomes more complicated. The radiation spectrum becomes effectively continuous and the 

body can be said to radiate at all frequencies. 

Theoretically we divide emitting bodies up into two categories: black bodies and non-black bodies. A 

black body is a perfect emitter and is an entirely theoretically concept since such a body cannot exist 

in nature. However the concept of a black body is important because we are able to derive exact 

equations for its emission. This gives us a standard against which to measure the emission of all other 
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bodies (non-black bodies), since they will all emit less radiation than a black body. In section 2.4.2.1  

we present the theory of black body radiation and in section 2.4.2.2 we present the theory of non black 

body radiation. 

2.4.2.1 Black Body Radiation 

A black body is a perfect emitter, as already stated, and also a perfect absorber: it absorbs all the 

energy it receives at all frequencies. At thermal equilibrium (constant temperature T) a black body will 

emit photons with spectral brightness Bf at frequency f. Photons follow the Bose-Einstein statistics and 

so their spectral brightness is given by the Planck function: 

)1)Tk/hf(exp(c

hf2
I

b
2

3

f
−

=
        

(2.65)
 

where h is the Planck constant equal to 6.626x10-34 Js-1, kb is the Boltzmann constant equal to 

1.381x10-23 JK-1, and c is the speed of the emitted radiation (the speed of light in a vacuum). 

Alternatively the brightness can be expressed as a function of the wavelength as follows: 

)1)Tk/hc(exp(

hc2
I

b
5

2

−λλ
=λ         (2.66) 

This radiance is isotropic and un-polarized. We see from (2.65) that the intensity of black body 

emission depends only on the frequency and temperature and is independent of any properties of the 

body. This concept of black body emission is important because it serves as a reference for all other 

types of emitters: we measure non-black body emission as a function of the equivalent black body 

emission at the same temperature.  

Figure 2.6 shows the variation of the brightness of black body emission with frequency, at difference 

temperatures. 

The radiated power per unit area is given by: 

dP � dA · u
T� · c/4         (2.67) 

Where u(T) is the energy density (an integration of the spectral energy density over all frequencies, i.e. 

the total energy density summed over all frequencies), found to be: 

u
T� � Ycd
Def�g�h
ij�k          (2.68) 

Therefore:  
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4
sb TdAdP ⋅σ⋅=          (2.69) 

where σsb is the Stefan-Boltzmann constant given by  

23

4
b

5

sb
ch15

k2π
=σ

          
(2.70) 

 

Figure 2.6: the variation of the brightness of black body emission at different temperatures. 

From Figure 2.6 we note that the peak frequency increases with temperature. This relationship is 

expressed mathematically as follows: 

The peak spectral brightness If occurs at frequency fm, where: 

THzK10x87.5f 110
m

−= and the equivalent maximum If is: 

3
1mf Tc)f(I =            (2.71) 

for  311219
1 KHzsrWm10x37.1c −−−−−=        (2.72) 

Note that the maximum brightness per wavelength does not occur at the same frequency. The 

wavelength at which we have the maximum value of Iλ is given by: 

mK10x879.2T 3
m

−=λ          (2.73) 

T=3K 

T=6000K 

T=1000K 

T=300K 
T=100K 
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This is known as the Wien displacement law. The equivalent value of Iλ is 

5
2m Tc)(I =λλ           (2.74) 

for constant c2. 

Figure 2.6 also shows that the total energy emitted increases with temperature. This is expressed by 

the Stephan-Boltzmann law. Integrating If over all frequencies we obtain: 

4
sbTI σ=           (2.75) 

 for the Stephan-Boltzmann constant 1428
sb srKWm10x673.5 −−−−=σ . So we see that total brightness 

varies with T4. 

a) Wien Radiation Law (High Frequency Limit) 

For high frequencies such that 1Tkhf b >> , (2.65) can be approximated to: 

Tk/hf3
2f

bef
c

h2
I −=           (2.76) 

which is known as the Wien radiation law. 

b) Rayleigh-Jeans Law 

The Rayleigh-Jeans law is the counterpart to the Wien Radiation law at low frequencies. For 

1Tkhf b << (2.65) can be approximated to: 

2
b

f
Tk2

I
λ

=            (2.77) 

This result is very useful for microwave radiometry since it is valid in the microwave region. The 

deviation of (2.77) from Planck’s law is less than 1% provided: 

mK77.0T >λ           (2.78) 

For f=1.4GHz this is true for temperatures above 3.59K, ie all temperatures.  

2.4.2.2 Non-black body Radiation and Emissivity 

So far we have considered the theoretical concept of a black body. Let us now consider real bodies or 

non-black bodies, also known as grey bodies. Real bodies emit less radiation than a black body and do 
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not necessarily absorb all incident energy. From (2.77) we find that in the microwave region, the 

brightness of a black body over a bandwidth �f is: 

 f
Tk2

I
2
b

bb ∆
λ

=           (2.79) 

For a grey body we define a radiometric temperature so that its brightness, Igb, can assume a form 

similar to that of a blackbody. This temperature is known as the brightness temperature, or TB, and is 

defined such that: 

f),(T
k2

I B2
b

gb ∆φθ
λ

=           (2.80) 

or: 

 
fk2

I
),(T

2
gb

B ∆
λ

=φθ
         

(2.81) 

The ratio between the grey body brightness temperature and the equivalent brightness temperature of a 

black body at the same temperature is known as the emissivity, e. This can be expressed as follows: 

T

),(T

I

),(I
),(e B

bb

gb φθ
=

φθ
=φθ         (2.82) 

In microwave radiometry we measure the brightness temperatures of grey bodies such as vegetation 

and soil, which is directly related to the absolute temperature of the body and its emissivity. The 

emissivity depends on the properties of the body and it is usually this value that we wish to determine. 

The emissivity of an object is the fraction of the object’s total energy that is emitted. If an 

electromagnetic wave is incident on an object in thermal equilibrium the energy absorbed by the wave 

must be equal to the energy emitted. If we consider the Earth’s surface, all energy transmitted by a 

plane wave is absorbed and thus the emissivity is equal to the transmissivity of the surface, defined 

earlier by the Fresnel equations. This transmissivity is equal to 1 minus the reflectivity, which means 

we can express the emissivity as: 

),(1),(e φθΓ−=φθ          (2.83) 

Thus the ground’s thermal emission can be directly related to the reflection of a plane wave travelling 

through medium 1 and incident upon a boundary with medium 2 at angle θ1. 

For a flat surface the ground emissivity can therefore be calculated from the Fresnel equations as 

follows: 
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2
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−=         (2.84) 

2

T

T
V
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1e

θ+θε

θ−θε
−=         (2.85) 

θT is the angle of transmission in medium 2 and is related to θ by Snell’s law as: 

2
1

22
2

T
sin

1cos
λ

θλ
−=θ . Therefore we have: 

2
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1e
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−=        (2.86) 
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22
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2
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V
)sin(cos

)sin(cos
1e

θλ−λ+θελ

θλ−λ−θελ
−=        (2.87) 

The concept of emissivity and brightness temperature, which have been presented in this section, are 

key concepts both in microwave radiometry and for this thesis. Microwave radiometers, including the 

SMOS radiometer, measure the brightness temperature of the Earth which depends on the emissivity 

and temperature. The emissivity depends principally on the dielectric permittivity constant which is 

highly sensitive to moisture content in the microwave region. Thus we are able to retrieve soil 

moisture from microwave radiometer measurements. 

In this thesis we aim to model the emissivity of the soil-litter forest system. In order to do this we 

calculate firstly the reflectivity and then apply (2.83). 

2.4.3 Radiative Transfer 

In radiative transfer we consider an incoherent, quasi-monochromatic beam of radiative power as it 

propagates and develops in a complex medium. Radiative transfer theory describes how the radiation 

field changes from point to point and for different directions under a given illumination or source 

distribution. 

In Radiative Transfer theory the following assumptions are made: 

- the scenario is stationary 

- different rays interact incoherently because their phases are mostly uncorrelated 

- Local Thermodynamic Equilibrium is usually assumed 
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- Geometrical Optics (GO) is assumed valid when finding a selected ray path on a macroscopic 

scale  

Deviations from these assumptions may require special treatments. 

2.4.3.1 The Radiative Transfer Equation 

In this section we consider what happens when the emitted radiation travels through other, potentially 

emitting, media. When this radiation passes through a homogeneous medium its specific intensity, I, is 

reduced by scattering and absorption and simultaneously increased by the emission of the medium 

through which it travels. The overall change in brightness is expressed mathematically for the 

geometry shown in Figure 2.7 by the Radiative Transfer Equation (RTE). 

 

 

 

 

 

 

The Radiative Transfer Equation in its most general form, for polarisations H and V, is: 

( ) ( )[ ]∫
−

µµ⋅µµ+µ⋅µµ+µ⋅µα−
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(2.88a) 

( ) ( )[ ]∫
−

µµ⋅µµ+µ⋅µµ+µ⋅µα−
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HVHH,e2
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k2

dz/)z,(dI

 (2.88b) 

for directions θ=µ cos  and 'cos' θ=µ . 

(2.88a) and (2.88b) contain the following three terms: 

1. The emission term )z(T
k2
2
B

a
λ

α . This term accounts for the emission of the medium 

through which the wave travels. aα is the absorption coefficient of the medium and T(z) is 

the temperature of the medium at position z. 

Figure 2.7: radiation travelling at angle θ to the z direction through an emitting medium 

dz z 

I 0(θ) θ 
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2. The extinction term )z,(I)( VV,e µ⋅µα or )z,(I)( HH,e µ⋅µα , which accounts for energy loss 

due to absorption and scattering. )(p,e µα is the extinction  coefficient of the medium 

which depends on the direction, �, and polarisation, p, of the incident beam. The 

extinction coefficient can be written as a sum of the absorption coefficient, αa , and 

scattering coefficient, αs, which account for energy loss to due absorption and scattering 

respectively, ie: 

sae α+α=α          (2.89) 

3. The source term from scattering ( ) ( )[ ]∫
−

µµ⋅µµ+µ⋅µµ
1

1

HV 'd)z,'(I)'('h),(v)z,'(I)'('v),(v or 

( ) ( )[ ]∫
−

µµ⋅µµ+µ⋅µµ
1

1

HV 'd)z,'(I)'('h),(h)z,'(I)'('v),(h . This term accounts for scattered 

energy being redirected into the direction of observation by a second scattering event. 

(p(µ),p’(µ’)) represents the fraction of the incident wave at polarisation p travelling in 

direction µ scattered into direction µ’ with polarisation p’. The four possible combinations 

for the different polarisations make up a matrix known as the phase matrix, P.  

 

So we see a medium’s ability to absorb and add radiative energy depends on its absorption and 

scattering coefficients, αa and αs. In practice however a medium is defined in radiative transfer theory 

by its single scattering albedo ω and optical depth τ which are defined as: 

e

s

α
α

=ω
          (2.90)

de ⋅α=τ            (2.91) 

for a medium of depth d.  

There is no formal solution to this equation. However when evaluating the radiative transfer equation 

we can often neglect the third term which allows us to evaluate this equation, leading to the simplified 

radiative transfer equations. 

2.4.3.2 The Simplified Radiative Transfer Equation 

Neglecting the scattering source term in the RTE gives us the following, which is of identical form for 

H and V polarisation: 
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⋅α=µ         (2.92) 

We can rewrite this in terms of Brightness temperature TB, applying (2.82) and (2.79), as: 

Bea
B TT

dz

dT
⋅α−⋅α=µ

         (2.93) 

If we assume that αa, αe and T are constants we can integrate (2.93) from z’=z to z=0 to obtain: 
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    (2.94) 

The first term in this equation calculates the original brightness temperature reduced along the path z 

by an exponential factor, corresponding to total loss due to absorption and scattering. The second term 

sums the emission of each layer of the medium from 0 to z, which each emit thermal radiation 

αa.T.dz’/µ which is attenuated along the path it must travel by the same exponential factor. 

Integrating the second term gives the following equation: 
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or T)1()1()0(T)z(T BB ⋅γ−⋅ω−+γ⋅=        (2.96) 

for 

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2.5 Passive Microwave Remote Sensing of Land 

Satellite-borne microwave radiometers have been providing information about atmospheric and 

oceanic parameters for some time. However this is not the case for land parameters since the spatial 

resolution of most satellites – typically of the order of 10km - is more compatible with spatial 

variations of oceanic and atmospheric parameters than land parameters and also because mechanisms 

for microwave emission from land surfaces and volumes are not as well understood, as they are more 

complicated. 

Nevertheless, an extensive body of research has been collected over the last few decades in the form of 

experimental data and theoretical models. In this section we present this theory, related to emission of 

soil and vegetation, which is most relevant to this thesis. 
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Microwave remote sensing’s main application is monitoring the water content and temperature of the 

land. As we have seen, the Earth’s thermal radiation depends on its temperature and emissivity. The 

emissivity and reflectivity of the Earth is directly related to the dielectric permittivity content which 

depends strongly on water content in the microwave region.  

In the following sections we consider first the emission the bare ground and then the emission of the 

ground covered by vegetation. 

2.5.1 Emission of Bare Soil Surfaces 

The simplest representation of the bare soil surface is a homogeneous isothermal soil medium with a 

plane air-soil boundary. This allows us to calculate the soil brightness temperature measured at angle θ 

and polarisation p as follows: 

[ ] ssB T)p,(1T)p,(e)p,(T θΓ−=θ=θ        (2.97) 

where e is the soil emissivity, Ts the soil temperature and Γ is the soil reflectivity calculated from its 

permittivity using the Fresnel equations.  

(2.97) coupled with (2.86) and (2.87) shows that the soil’s brightness temperature is determined by the 

dielectric permittivity constant and soil temperature. In order to understand the emission of the bare 

soil we must therefore understand how the soil’s dielectric permittivity constant is related to soil 

physical parameters. This is broached in section 2.5.1.1. Also, in reality the soil is often neither 

homogeneous nor isothermal and its surface is not flat. The effects of these three issues therefore need 

to be understood and accounted for. In section 2.5.1.2 we consider the effects of a temperature profile 

and a rough surface on the emission. 

2.5.1.1 The soil dielectric permittivity constant in the microwave region 

Soils are a mixture of mineral matter, salts, organic matter, soil colloids, water containing dissolved 

salts, organic matter and gases, and air filling the empty voids. One of the most important structural 

features of a soil is its grain size (granulometric) composition or the relative content of particles of 

different sizes within the soil per unit volume or soil mass. It is usual to classify different soil types 

based on their granular composition. However there are several different classifications of soil grading 

that are used in soil science, geology, mining and agriculture. The classification of the US department 

of agriculture is often used in remote sensing and classifies the following soil particles based on their 

size: 1) sand: particles with a size of more than 0.05mm, 2) clay: particles with a size of 0.002 – 0.05 

mm and 3)silt: particles with a size of less than 0.002mm. Thus we consider the bulk soil material (not 

including water and air) to be made up of sand, clay and silt. The amount of sand, clay and soil 
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fractions in a soil, which are expressed in percents by weight, is known as the soil texture. Different 

soils are grouped together into types based on their textures.  

The overall soil moisture content can be defined by two different variables: the relative gravimetric 

soil moisture content, mg, and the volumetric soil moisture content, mv. The relative gravimetric soil 

moisture content, mg, is defined as: 

d

dw
g w

ww
m

−
=           (2.98) 

where ww and wd are respectively the wet and dry weights of the soil sample. The volumetric soil 

moisture mV is defined as: 
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==          (2.99) 

where Vw is the volume of the water in the soil, Vs is the volume of the soil, ρb is the soil bulk density 

and ρw is the density of water (equal to approximately 1g/cm3 at room temperature).  

The value of mv, given by (2.99) is the value of soil moisture that is retrieved from microwave 

radiometric measurements by the SMOS mission. 

Since in the microwave band the dimensions of soil particles are small, the concept of an effective 

permittivity may be used for describing the propagation of electromagnetic waves in such a medium. 

Electromagnetically a soil consists of three components: air, bulk soil (containing sand, silt and clay), 

and water. Moisture is further divided into bound and free water. Bound water is the water absorbed 

by the surface of soil particles and kept there by chemical and physical-chemical forces, forming a 

film around a particle with a thickness of several molecular layers. Free water is considered to be 

liquid water subject only to the gravitational force and located in macro voids and cracks. Bound water 

interacts with an electromagnetic wave in a manner different to free water due to the high intensity of 

the forces physical and physical-chemical forces acting on it. This is why electromagnetically bound 

and free water are considered separately. 

The complex permittivity constants of bound and free water are each functions of the electromagnetic 

frequency, the physical temperature T and the salinity S. Hence the permittivity of soil is generally a 

function of: 1) f, T and S, 2) the total volumetric water content mV, 3) the relative fractions of bound 

and free water, related to soil surface area per unit volume, 4) the bulk soil density, ρb, 5) the shape of 

the soil particles, and 6) the shape of water inclusions. The main factor influencing the permittivity of 

soil in the microwave region is the water content and it is thanks to this relationship that soil moisture 

can be retrieved from microwave radiometric observations of soil emission. For example for a clayey 
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or sandy bare soil with a flat surface and at a temperature of around 300K, a change in volumetric soil 

moisture of about 1% leads to a change in measured brightness temperature of about 3K 

(Chukhlantsev 2006). Thus the measured brightness temperature of a bare soil is highly sensitive to 

soil moisture in the microwave region. The soil texture (or soil type) also influences the dielectric 

permittivity constant because this influences in particular the fraction of bound and free water in the 

soil. For example the quantity of bound water is low for sand (about 2-3%) and high for clay, 

amounting to about 30-40% of dry weight for heavy clays. 

The dielectric permittivity constant of soil is the main factor determining its emission. Therefore 

relating the soil dielectric permittivity to its physical parameters is essential for retrieving soil moisture 

from remote sensing data. Because of this, numerous experiments have been conducted in order to 

investigate the dielectric behavior of soil-water mixtures in the microwave region (e.g. Wang and 

Schmugge 1980, Mironov et al 2004, 2009, Demontoux et al 2008). Currently the main models that 

are used to relate soil moisture to the soil permittivity are the model proposed by Dobson et al(1985), 

the model proposed by Mironov et al (2004) and the empirical model proposed by Wang and 

Schmugge (1980). The SMOS mission uses the Dobson model which gives good except for dry sandy 

soils, when the approach developed by Matzler (1998) is used, which accounts for the behavior of dry 

desert sand. The Mironov model has been developed recently and improves on the Dobson model, 

particularly in relation to the dielectric permittivity constant’s temperature dependence (J.P. Wigneron 

et al 2010, Mironov et al 2009). We therefore chose to use this model for the work of this thesis. In our 

numerical approach the soil is represented as a dielectric layer whose permittivity constant is 

calculated as a function of soil moisture, temperature and soil type (clay content) using the Mironov 

model. 

2.5.1.2 Non-uniform Temperature and Dielectric profiles 

The soil emission is directly related to soil temperature, as shown by (2.97). However this equation 

assumes that the soil is isothermal and in reality the soil temperature usually varies with depth. 

Theoretically we consider the soil to be made up of many emitting layers, each dependent on the 

temperature and moisture of that layer. The width of each layer can then be made infinitesimally 

small. The net intensity of the soil emission is a superposition of intensities emitted at various depths. 

The emission from each layer is attenuated by the wet soil layers above. Deeper surfaces contribute 

less to the overall intensity because their emission is attenuated more by the above soil (Choudhury et 

al 1982). Thus the surface contributes the most, followed by each of the layers below in turn. 

In a homogeneous medium, 63% of the emitted energy comes from a layer extending from the surface 

to a depth of pcosθ2, where p is the penetration depth and θ2 the refraction angle in the medium. There 

is an 87% contribution by a layer twice as thick and a 95% contribution by a layer 3 times as thick. 
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The penetration depth in the soil varies between approximately λ for soil moisture of ≈ 0.04 g/cm3 and 

0.1λ for very wet soil, which for the SMOS mission frequency of 1.4 GHz is equivalent to about 

2.1cm for very wet soil and 21cm for a very dry soil. Therefore when considering the effect of 

temperatures and dielectric permittivities varying with depth, so called volume effects, on emission it 

is important to remember that only uniformities at a depth of up to about 2p – 3p (up to about 40 – 

60cm for the SMOS mission) affect the emission, because contribution by deeper layers is relatively 

small.  

The brightness temperature of the soil can be calculated from radiative transfer theory as the sum of 

the emission of each layer. This emission can be calculated by modeling the soil as an effective 

isothermal medium with an effective temperature Teff, given by: 

∫
∞
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(2.100) 

where Ts(z) is the soil temperature at depth z, and W(z) is a temperature weighting function of the 

contribution of each soil layer. W(z) depends only on the soil dielectric profile and is given by: 
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 W(z) decreases rapidly with depth for wet soils and more slowly for dryer soils. 

However this model requires a detailed vertical profile of soil moisture and temperature, which is not 

usually available.  

Several methods have therefore been developed to estimate Teff as accurately as possible from a 

minimum number of measurements. The most simple method is to take the surface or air temperature 

to be Teff. However this approximation is only considered to be valid at frequencies higher than 10 

GHz, where the penetration depth is low. Choudhury et al (1982) developed an approximation for Teff 

as a linear function of soil temperature measured at two different depths. This was improved on for L-

band measurements by Wigneron et al (2001) by taking into account the influence of soil moisture on 

the penetration depth: the dryer the soil the deeper the contribution. Holmes et al (2006) developed a 

new parameterization which further takes into account the effect of the dielectric depth profile on the 
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The coherent part decreases and the non-coherent part increases with surfaces of higher roughness. 

The contribution of the coherent part of the bistatic scattering coefficient to the emissivity is larger 

than the contribution from the non-coherent part, so the emissivity increases with surface roughness. 

Note that Shi et al (2002) suggested an exception to this around the Brewster angle. Using an 

analytical modelling technique, they found that the emissivity decreased with roughness around the 

Brewster angle, because the non-coherent contribution was more significant around this angle. 

However this effect has so far not been observed experimentally (this is covered in more depth in 

section 3.1.2.2c).  

In the presence of a rough surface, the radiation emitted by the surface will be transmitted across the 

boundary in many different directions. Consequently the brightness temperature is composed of 

contributions that are incident upon the surface from below along many different directions. 

The reflectivity and emissivity of a rough surface cannot be calculated using the Fresnel equations. A 

vast body of research has been dedicated to calculating the reflectivity and emissivity of a rough 

surface, a nontrivial problem. We will present this research topic in detail in the next chapter but first 

in sections a) - d) we will introduce the basic concepts of rough surface scattering and emission theory. 

We start by defining a rough surface mathematically, in section a), then define the bistatic scattering 

coefficient, a measure of the reflection of a rough surface, and finally define the concepts of a smooth 

surface and a very rough surface. 

a) Statistical Definition of a Rough surface 

A natural rough surface can be modelled as a random statistical process. This conveniently provides us 

with a measure of the degree of roughness of a surface, or quite simply its roughness, using 3 

statistical parameters. These parameters are: the surface autocorrelation function, the autocorrelation 

length, Lc, and the standard deviation of surface heights, σ.  

a1) Standard Deviation of Surface height, σ 

Let us consider a surface in the x-y plane whose height at point (x,y) is z(x,y) above the x-y plane. For 

a statistically representive segment of the surface, of widths Lx and Ly in the x and y directions 

respectively, the surface mean height can then be calculated from: 
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The standard deviation can be calculated as follows: 
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( )22 zz −=σ           (2.104) 

where 2z is calculated from: 
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In practice surface profiles are digitized into discrete values zij(xi,yj) at appropriate spacing �x and �y. 

A rule of thumb is that the spacing should be chosen to be less than or equal to 0.1λ (2.14cm for 

f=1.4GHz). For the same spacing and number of points, N, in the x and y direction, the standard 

deviation can be calculated from: 
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a2) Surface autocorrelation function and length 

The normalised autocorrelation function is defined as: 
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and is a measure of the similarity between the height z at a point x and at a point x’ distant from x. For 

the discrete surface profile we have a normalised autocorrelation function for discrete displacement 

y)1l(y,x)1k(x ∆−=′∆−=′  of: 
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The autocorrelation length Lc is defined as the length for which the autocorrelation function falls by 

1/e, ie e/1)L( c =ρ . This value provides a reference for estimating the statistical independence of two 

points on the surface: if their distance apart is greater than Lc they may be considered (approximately) 

statistically independent of one another. For a smooth surface Lc is infinity since every point is 

correlated with every other point on the surface with a correlation coefficient of 1. 
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Broadly speaking σ is a measure of how rough the surface is in the vertical direction and Lc is a 

measure of the roughness in the horizontal direction. Another rough surface value which is sometimes 

useful is the surface slope, m, equal to the ratio of σ/Lc. High slope values indicate a highly rough 

surface and low values of the slope indicate a smooth surface. 

Rough soil surfaces are generally considered to have autocorrelation functions of the following form: 
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where n determines the form of the autocorrelation function: for the special cases of exponential and 

gaussian autocorrelation functions it is equal to 1 and 2 respectively. Traditionally a Gaussian 

autocorrelation coefficient was assumed for rough bare soil surfaces however natural surfaces have 

recently been shown to have autocorrelation functions closer to exponential than gaussian. 

b) Bistatic Scattering Coefficient 

Since we have diffuse scattering with rough surfaces it is helpful at this point to define a more general 

expression for scattering: the bistatic scattering coefficient, σpq
0(θ,φ;θs,φs). This term is defined as the 

fraction of the power incident upon the surface at angle(θ,φ) and at polarisation p that is scattered in 

the direction (θs,φs) with polarisation q. If p and q are the same, either H or V, it is called the vertically 

or horizontally polarised scattering coefficient, and if p and q are different it is called the cross-

polarised scattering coefficient (note σHV
0= σVH

0). 

For a beam incident at angle (θ,φ) across an area Aeff of a surface, scattered to a point at a distance R 

and angle (θs,φs) from the surface, σpq
0(θ,φ;θs,φs) measured at a distance R is given by: 
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where Ep
s(θs,φs) is the reflected Electric field of polarization p and Eq

i(θ,φ) is the incident electric field 

of polarization q. 

The backscattering coefficient is the bistatic scattering coefficient for the monostatic case of 

(θs,φs)=(θs,φs+π) i.e. the reflection angle is equal to the incident angle. 

Applying Kirchoff’s radiation law to the rough-surface case, Peake (1959) developed expressions for 

the polarised emissivity ),(ep φθ  of polarisation p and measured at an angle ),( φθ in terms of the 

bistatic scattering coefficient as follows: 
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),,(1),(e pp φθΓ−=φθ         (2.111) 

where ),(r φθΓ  is the reflectivity at polarization ,r given by: 
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Thus the emissivity can be calculated by integrating the bistatic scattering coefficient over half space. 

This integration reduces to the Fresnel reflectivity for the case of a smooth surface. 

Note that equation (2.111) follows from energy conservation considerations. This is important for 

numerical calculations of emissivity since it is usual to calculate the emissivity from the reflectivity, 

applying (2.110), (2.111) and (2.112). This approach is only valid if the numerical solution satisfies 

energy conservation. It is usual to use energy conservation as a check that a numerical approach is 

accurate but it is particularly important for emissivity calculations, since the calculations themselves 

are based on energy conservation via equation (2.111). 

Note that the bistatic scattering coefficient and backscattering coefficients are usually measured and 

calculated in dB: 

0
10dB

0 log10 σ=σ          (2.113) 

Almost all theoretical models that calculate the emissivity of a rough surface, including the approach 

developed in this thesis, do this by first calculating the bistatic scattering coefficient at all points in the 

hemisphere above the rough surface and then applying (2.111) and (2.112) 

c) Smooth surface criteria 

So far we have discussed the emission of a flat and smooth surface without really thinking about at 

what point a surface is still considered to behave as a smooth surface and at what point it may be 

considered to behave as a rough surface. 

When discussing a smooth surface we usually mean one that obeys Fresnel’s laws of reflection and 

transmission. Experimentally this can mean different things depending on whether we measure the 

emission or scattering of a surface. For the emission case the emissivity must follow the law Γ−=1e , 

where Γ is the Fresnel reflectivity, for the surface to be smooth. For the scattering case the 

backscattering coefficient must decay rapidly with increasing θ, e.g.  a drop of at least 40dB from 

nadir to 10°. 
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Theoretically we can apply the Rayleigh or the Fraunhofer criterion. The former states that the surface 

may be considered smooth if two reflected rays have a phase difference of no more than π/2. This 

leads to following condition on the standard deviation of surface heights: 

σ m nY jop q         (2.114) 

This condition provides a first order classifier of surface roughness but we require a more accurate 

condition in the microwave region where the wavelength is of the order of the standard deviation of 

surface heights. This can be provided by the Fraunhofer definition for the far field distance of an 

antenna, leading to: 

σ m nr� jop q         (2.115) 

This criterion is more consistent with experimental observations. 

d) Perfectly Rough Surface 

It is of interest to consider the theoretical case of a perfectly smooth surface and its behaviour. This 

allows us to consider the emissivity of the extremes of a perfectly smooth and perfectly rough surface, 

and then we expect the behaviour of all other rough surfaces to fall in between. 

A perfectly rough surface is known as the Lambertian surface after Lambert’s law which states that the 

angle variation of σpq
0(θ,φ;θs,φs) depends only on the product cosθcosθS, ie: 
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where σ0
o is a constant depending on the dielectric properties of the surface. The corresponding 

emissivity is: 
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which is polarization and angle dependent. 

Thus the bistatic scattering coefficient varies proportionally to cosθS and its magnitude depends on the 

incident angle (its cosine).   

The emissivity of a perfectly smooth surface depends on the dielectric properties, the polarization and 

the angle. However the emissivity of a perfectly rough surface is independent of all properties except 

the dielectric surface properties. In between the two extreme cases the emissivity is related to the 

angle, polarisation and both the geometric and dielectric properties of the surface. 
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2.5.2 Modelling the emission of the ground covered by vegetation 

In this section we consider the emission of soil covered by vegetation, including trees, shrubs, grass, 

and crops. The emission of soil covered by a vegetation layer can be modelled by the simplified 

Radiative Transfer Equations. For example let us consider the setup shown in Figure 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The emission from a soil-vegetation structure has three components: the emission of the vegetation 

layer, the emission of the soil layer attenuated by the vegetation and vegetation emission emitted 

downwards and reflected back up by the soil-vegetation boundary. We have designated these three 

components TB1, TB2 and TB3 respectively. Unless we consider tropical forests, vegetation is usually 

not very dense and so its permittivity is close to that of air, i.e. ΓV ≈0. Therefore we assume no 

reflections off the vegetation-air boundary. 

Let us call the vegetation emission TB*. From (2.96) TB* is given by: 

VB T)1()1(*T ⋅γ−⋅ω−=          (2.118) 

where TV is the temperature of the vegetation.  

Assuming isotropic emission by the vegetation, TB* has the same value just above the vegetation-soil 

interface and just under the vegetation-air interface. 

Assuming no reflection at the vegetation-air boundary, TB1 can be approximated to TB*, i.e.: 

Figure 2.10: Emisison of soil covered by a vegetation layer 
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VB1B T)1()1(*TT ⋅γ−⋅ω−=≈         (2.119) 

We deduce, similarly, expressions for TB2 and TB3, as: 

γ⋅Γ⋅= SB2B *TT          (2.120) 

γ⋅⋅Γ−= SS3B T)1(T          (2.121) 

Combining these three components we have an overall emitted brightness temperature, TBp, at 

polarisation p, of: 

sspVspBp T)1(T)1()1()1(T ⋅γ⋅Γ−+⋅γ⋅Γ+⋅γ−⋅ω−=
     (2.122) 

γ can be replaced by )/exp( µτ−=γ , rewriting TBp in terms of the coefficients τ and ω. 

For this reason the model is often known as the τ−ω model. 

This equation is frequently used for interpreting microwave radiometry measurements over vegetation 

covers, including crop fields, grasslands and forests. The values of τ and ω are to be determined 

experimentally, and attempted to be fitted to vegetation characteristics. The τ−ω model is used by 

SMOS in the L-MEB model for retrieving soil moisture over vegetation covered ground. τ and soil 

moisture are retrieved simultaneously from multiangular data. 

In deriving this equation we have neglected the scattering source term in the full RTE. This is a good 

assumption at low frequencies (high wavelength) of no more than several GHz. Since SMOS measures 

at 1.4 GHz this equation can be considered valid. 

2.5.3 Note 

In section 2.5 we have presented the main concepts behind remote sensing of land. In the next two 

chapters we consider in more depth modelling the emission of the soil and the influence of a forest 

litter layer on the soil emission, since the aim of this PhD is to model the soil-litter system.  
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3. Modelling the Emission of the Soil-Litter system 

In this chapter we present a review of methods that have been used to calculate the scattering and 

emission of soil and litter layers. Firstly, in section 3.1 we present a review of models to calculate the 

bare soil scattering and emission, which take into account in particular the effects of a randomly rough 

surface on emission. Secondly, in section 3.2 we present models that take into account the effects of a 

litter layer on the forest ground emission. Finally in section 3.3, we discuss the choice of modelling 

approach for the work of this PhD. 

3.1 Microwave Emission of Soil: modelling the effects of a rough surface 

In this section we consider modelling the scattering and emission of a rough soil surface. This subject 

has been studied for several decades and a vast body of knowledge has been collected, and many 

different modelling techniques developed. In this chapter we present and review the different 

approaches currently used to model the scattering and emission of rough surfaces. In general the rough 

surface is represented as a dielectric of a known permittivity value. This value can be calculated from 

the soil moisture by applying models such as the model developed by Dobson et al (1985) or the 

model presented by Mironov et al (2004), which are algebraic, or an experimentally determined 

relationship. The models discussed in this section can in general also be used to study any medium that 

can be represented as a dielectric with a single homogeneous permittivity, and a rough surface. In this 

chapter we focus on the main methods currently used to calculate rough surface scattering and 

emission, presenting in detail those that are particularly relevant to this thesis. Note that in theoretical 

modelling approaches we consider scattering and emission together. This is because the two are 

theoretically linked. In general theoretical modelling approaches have been developed firstly to 

calculate scattering and then the emissivity can be calculated from one minus the reflectivity, where 

the reflectivity is calculate by integrating the bistatic scattering coefficient over halfspace. 

There are typically three main scientific approaches to modelling rough surface scattering and 

emission: the analytical approach, semi-empirical approach and the numerical approach. Analytical 

and numerical approaches are theoretical whilst semi-empirical approaches have a physical basis but 

are essentially constructed from experimental data. These types of approach are more general than for 

the problem of rough surface scattering and emission. When modelling any complicated process in 

remote sensing (one that cannot be solved analytically without making assumptions) we can apply a 

semi-empirical, analytical or numerical approach. 

Analytical approaches are based on a physical description of wave scattering off a rough surface (with 

emission calculated from the bistatic scattering coefficient using equations (2.110) – (2.112)). We 

wish to calculate the value of the scattered electric field in (2.110) for a given roughness condition 
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(given values of σ, Lc, and autocorrelation function). Due to the complexity of rough surfaces a 

general solution cannot be found and so we make assumptions in order to obtain an analytical solution. 

The solution that we obtain is then only valid under conditions where the approximations and/or 

assumptions are valid. Outside of these conditions the analytical model produces inaccurate results.  

Once an analytical approach has been developed and shown to be valid, most of the research done 

focuses on testing and extending their regions of validity. In the case of rough surface scattering and 

emission there are many different analytical models each with their own regions of validity. 

Historically the main models are the Kirchoff approximation (geometric optics and physical optics 

models) (Ulaby et al 1985, vol II 12-4) and the small perturbation method (SPM)(Ulaby et al 1985, vol 

II 12-5). Currently the model most often used is the Integral Equation Model (IEM) (Fung et al 1992, 

Fung et al 1994) and the updated version, the Advanced Integral Equation Model (AIEM)(Chen et al 

2003, T.D. Wu et al 2004), since it has a wide validity region. Analytical models such as these are 

very complicated but are nevertheless simpler and faster than numerical models, as they tend to be 

algebraic. The inputs of analytical models are generally the values of σ, Lc, the form of the 

autocorrelation function and the permittivity ε. 

The semi-empirical approach consists of very simple equations, whose form has some physical basis, 

and which contain variables whose values are fitted experimentally. The advantage of semi-empirical 

theories is the simplicity of the equation or equations involved. They can also be quite accurate 

providing enough work is done to fit the parameters over different conditions. The disadvantage is that 

the parameters fitted experimentally are not usually valid under experimental conditions other than 

those for which they were fitted. Development work for these approaches involves further experiments 

to fit parameters for a wider range of conditions. The aim is to fit over many different conditions and 

then gradually find a relationship between them.  

Inputs for such models tend to be experimentally determined parameters which intrinsically include a 

measure of how rough a surface is and other possible affecting factors not already accounted for such 

as soil dielectric inhomogeneities. In satellite remote sensing missions these parameters can be either 

simultaneously retrieved or measured beforehand for the different roughness conditions, the former 

being the approach most often adopted.  

Numerical modelling methods solve directly Maxwell’s equations for rough surface scattering. The 

input is the rough surface itself: a rough surface is constructed on a computer and then Maxwell’s 

equations solved for wave scattering off this surface. This type of modelling therefore does not 

produce an analytical equation as an output but rather results of the emission or scattering of a 

particular surface, called a deterministic surface. In these models we reconstruct the physical situation 

and calculate exactly the “results” that would be obtained for that situation: in essence we perform an 

experiment on a computer, the advantage being that we can better control the various parameters 
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which affect the results. The input can either be the rough surface itself or more usually values of σ, Lc 

and the autocorrelation function. In the latter case we construct many different surfaces and average 

over the ensemble in order to compute emission and scattering for these rough surface conditions. The 

advantage of numerical methods over other modelling methods is that they are exact, and so the most 

accurate, but their main disadvantage is that they can be time consuming and require larger memory 

than other methods. Historically this type of method has been used principally to validate other 

methods (analytical, empirical, and semi-empirical), since calculation time made it unsuitable for 

everyday use. However with advances in computing these methods are used more and more frequently 

for scientific studies. 

In the following sections we present firstly the semi-empirical method most often used, secondly the 

main analytical methods, and finally a detailed review of numerical methods. We present numerical 

methods in the most detail since we chose to use a numerical modelling approach for the work of this 

thesis. (The reasons for this choice are presented in chapter 5.) Note that the theoretical approaches are 

presented here in the context of calculating scattering and emission of a soil medium. However they 

apply equally to any medium that can be represented as a dielectric of homogeneous permittivity 

constant. This includes the forest litter layer (which is addressed in chapter 5) and other rough surfaces 

found in remote sensing including the ocean. 

3.1.1 A Semi-Empirical model for soil emission at L-Band 

In this section we present the main semi empirical approach currently used for rough surface emission 

at L-band, known as the Q-h model (Choudhury et al 1979 and Wang et al 1981), including the 

model’s formulation and subsequent development. 

3.1.1.1 Q-h Model Formulation 

The Q-h model is based on two roughness parameters: the roughness height hs and a polarization 

mixing parameter Qs, both of which can be retrieved from brightness temperature measurements. The 

h parameter was introduced by Choudhury et al (1979) and the Q parameter by Wang et al (1981). 

This model based on these two parameters is known as the Q-h model and has been developed and 

modified over the years to account for experimental observations made. The reflectivity is calculated 

from a modified Fresnel reflection formula incorporating h and Q, which has been found to be 

appropriate for most applications. In the latest version of the semi-empirical model, the polarized soil 

reflectivity Rp(θ) is given by: 

Rt
θ� � O
1 P Qw�Rtx 
θ� � QwRwx 
θ�Texp 
Phwcos|}
θ��    (3.1) 
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Where p and q represent the polarization, which can be either h or v, Rp is the polarized specular 

reflectivity (calculated from θ and dielectric permittivity ε using the Fresnel equations) and NS is an 

exponent. The corresponding emissivity is: 

et
θ� � 1 P Rt
θ�         (3.2) 

et
θ� � 1 P ~O
1 P Qw�Rtx 
θ� � QwRwx 
θ�Texp 
Phwcos|}
θ���   (3.3) 

An additional factor NS(θ) appears in this model. In the equation suggested by Choudhury this was 

equal to 2. Later experiments however (Wang et al (1983) and Wigneron et al (2001)) indicated a 

value of 0 to be more appropriate and so this was replaced with the variable N S(θ)  whose value and 

its dependence on polarization and angle was to be determined. Escorihuela et al (2004) demonstrated 

that N depends strongly on polarisation. 

The physical basis for this formula is that surface roughness reduces coherent reflectivity due to 

dispersion of the incident wave by the rough surface. This dispersion increases with roughness. Thus 

the h parameter accounts for this effect. Incoherent reflectivity also increases with surface roughness 

(from zero at a smooth surface) but this effect is not accounted for in this model; it is assumed to be 

negligible. An exception has been suggested by Shi et al (2002), using the analytical AIEM formula, 

who found that at angles around 50° the emissivity decreased, which they explained by the increase in 

the non-coherent component at around the Brewster angle, where coherent scattering is negligible. 

This Q-h semi-empirical formula would be incorrect in this case. However this has not yet been 

observed experimentally.  

The second main effect of a rough surface on emission is depolarization, accounted for by the Q 

parameter.   

This model is useful for soil moisture retrieval studies. However the dependence of h and Q on 

roughness statistical parameters (σ,Lc, autocorrelation function, surface slope) is still unclear.  

3.1.1.2 Model Development 

Early experimental data of rough surface emission was acquired by Choudhury et al (1979), Wang et 

al (1981) and Mo et al (1987) but was not large enough to allow for the development of the model 

over a large validity range. A large dataset (PORTOS-93) of bare soil rough surface emission at L-

band was acquired (Wigneron et al 2001) over the whole range of roughness values found in 

agricultural fields and a large range of soil moisture and temperature conditions. This showed that QS 

and NS could be set to zero, ie no theta dependence and no depolarization. This conclusion for N=0 

was in agreement with findings of Wang et al (1983) who also showed that N could be set to zero for θ 

= 10 to 60° and at three frequencies (1.4, 5 and 10.7 GHz). Mo and Schmugge (1987) also considered 
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that N could be set to zero for L and C bands. In a more recent study for rather smooth soil 

Escorihuela et al (2004) showed that values of N should be different for each polarization with N≈1 

for H polarization and N≈0 for V polarization. This result has yet to be generalized to a larger 

roughness range. 

Considering that QS=0 at L-Band is also in agreement with most published experimental datasets, 

including Mo and Schmugge (1987), Njoku and Entekhabi (1996) and Wegmuller and Matzler (1999). 

Wang et al (1983) found that QS was very strongly frequency dependent with very small values 

obtained at L-Band, with varying values at different soil types including 0, 0.01 0.12. Prigent et al 

(2000) also found that Q was frequency dependent, increasing with frequency. 

Setting NS=0 and QS=0, we obtain: 

et � 1 P Rt
θ� � 1 P ORtx 
θ�exp 
Phw�T      (3.4) 

The roughness parameter hS was retrieved in the PORTOS-93 experiment for angles θ=0 – 40°. This 

parameter accounts for both “geometric roughness” effects and “dielectric roughness” effects. hS was 

therefore linked to the slope (m=σ/LC) and surface soil moisture wS and the equation with the best fit 

to measurements was found to be: 

hw � A
ww��
σ L��⁄ �         (3.5) 

with best fit parameters A=0.5761, B=-0.3475 and C=0.4230. Mo and Schmugge (1987) also found hS 

to be linked to the slope. Without considering a soil moisture dependence for hs the following fit was 

found (Wigneron et al 2001): 

hw � A
σ L��⁄ �          (3.6) 

with best fit parameters A=1.3972 and C=0.5879. For this fit the range of rms error and bias were 

respectively approximately 8 – 10K and 0 – 2K. The dependence on soil moisture can be considered to 

account for the soil’s “dielectric roughness” as this originates from the effect of the soil drying 

imhomogeneously. 

Recent results from the SMOSREX 2006 campaign of L-Band measurements taken over a year for 

bare soil at a range of angles, roughness conditions, soil moisture and temperatures (Escorihuela et al 

2004) confirm general soil moisture dependence of hS. Preliminary results show a linear dependence 

instead of an exponential was preferable for hs. 

A link between hs and physical parameters such as σ, Lc and soil moisture has been attempted, as 

described above, but this has limited success because the model is too simple and the reality much 

more complicated than considered above. 



55 
 

Wigneron et al (2010) re-analysed the PORTOS-93 dataset (which was presented in an earlier paper) 

which included experimental data over a large range of roughness conditions. The authors confirmed 

that QR could be set to zero and further found that considering NR to depend on polarization (two 

separate values NRH and NRV) improved the model accuracy. They also related parameters HR and the 

difference between NRH and NRV (NRH - NRV) to the standard deviation of surface height as follows: 

6

R 2913.28865.0

9437.0
H 









σ+
σ=   93.0R2 =       (3.7) 

24.20361.0NN RVRH +σ−=−  44.0R2 =       (3.8) 

Also the following linear relationship was suggested between NRH and NRV: 

167.1N686.0N RHRV −=  59.0R2 =       (3.9) 

Note that R2 is the coefficient of determination which provides a measure for how close the fit is to the 

experimental data: a value close to 1 indicates a good fit and a value close to 0 indicates a poor fit.  

3.1.1.3 Comparing semi-empirical models to theoretical models 

It is worth noting the differences between the semi-empirical approach to rough surface emission and 

theoretical modelling approaches and thus the problems encountered when comparing the two. When 

modelling rough surfaces we consider them to have homogeneous characteristics, i.e. surface 

roughness is the same in both x and y directions and soil moisture is homogeneously spread inside the 

ground, providing a dielectric constant that is homogeneous across and under the surface. However the 

reality is more complex. For example let us consider a ploughed soil. After heavy rainfall the surface 

will be homogeneously wet and will have a homogeneous roughness. If a sunny period follows 

however the ground will not dry out in a homogeneous manner: large emerging clods dry out more 

rapidly than hollows within the field. This may lead to a large spatial variation in soil moisture content 

at the surface and within the soil at a spatial scale of about 1m. There is also soil moisture non-

uniformity at a lower spatial scale of a few cm from the surface of the clods drying more quickly than 

the inside. The roughness is no longer isotropic due to the clods created by the drying process. Under 

dry conditions we must also consider volume effects in the soil, since the emission is no longer only 

produced by the surface but by soil up to a depth of 10cm at low frequencies. In this case, the soil 

emission results from both geometric roughness and “dielectric roughness” from soil moisture 

heterogeneities.   

Current theoretical surface scattering models, both analytical and numerical, should therefore be 

limited to cases where the soil can be considered homogeneous, namely very wet soil or very dry 
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conditions. Rough surface models should be extended to include heterogeneities if we wish to use 

them accurately for the case of dry soils. On the other hand semi-empirical models, such as the Q-H 

model, are based mainly on experiments and so already take into account implicitly both the surface 

effects and the heterogeneous volume effects for dry soils. This difference in current physical and semi 

empirical models makes it hard to make comparisons between them.  

3.1.2 Analytical Models 

In this section we present different analytical models for the calculation of rough surface scattering 

and emission. Firstly we present the general approach and then the main models. 

3.1.2.1 General Approach 

In analytical methods, the emissivity and bistatic scattering coefficient are computed from the 

scattered electric field in the far-field region, ES, applying formulas (2.110) – (2.112). 

In order to calculate ES the Stratton-Chu formula is used which expresses the scattered field in the far 

zone in terms of tangential surface fields, as follows: 

Ew����� � Kn�w 7 � �n� 7 E��� P ηwn�w 7 �n� 7 H�����exp
Pikwr�. n�w�� dΣ
 

    (3.10)

 

where dΣ is an infinitesimal element on the rough surface, n is the normal to the rough surface at point 

dΣ, ns is the normal to surface s of the far field sphere on which we calculate Es, and E and H are the 

electromagnetic fields at dΣ on the rough surface. The geometry relating to this integral is shown in 

Figure 3.1 below. 
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Figure 3.1: The scattered field in the far field region, Es, may be expressed in 

terms of the surface fields E and H 
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3.1.2.2 Different Analytical Models 

The different analytical models make assumptions which allow us to calculate the surface fields (n x 

E) and (n x H), for the rough surface case (neglecting volume effects). The standard models are:  

- The Small Perturbation Method (SPM) for slightly rough surfaces 

- The Kirchoff approximation for surfaces of gentle curvature. This includes the Physical 

Optics (PO) and Geometric Optics (GO) models for different conditions  

The Integral Equation Model (IEM) takes the Kirchoff approximation and extends its range of validity 

to include a wide range of roughness conditions. It is currently the analytical model with the largest 

validity range and is therefore the most commonly used. 

In the following we present briefly the standard models, including their main ideas and their validity 

regions and then present the Integral Equation Model (IEM) and its updated version the Advanced 

Integral Equation Model (AIEM), detailing its general formulation as well as a summary of the 

research done to extend and improve the model, and finally the results of AIEM simulations. 

a) Small Perturbation Method (SPM) 

For this method (Ulaby et al 1985 vol. II 12-5) to be valid the standard deviation of surface heights, σ, 

must be less than about 5% of the electromagnetic wavelength. Note that in this case σ refers to the 

value obtained when only frequency components responsible for scattering at a certain wavelength are 

included in the rough surface profile. A further condition is that the average surface slope should be of 

the same order of magnitude as the wave number times the standard deviation of surface heights, σ. 

No precise validity conditions have been obtained for this method but the following provides a 

guideline: 

kσ m 0.3          (3.11) 

√2 σ L�⁄ m 0.3          (3.12) 

b) Kirchoff Approximation 

The basic assumption of the Kirchoff approximation (Ulaby et al 1985 vol. II 12-4) is that plane-

boundary reflection occurs at every point on the surface. In other words each part of the surface may 

be looked at locally as an inclined plane. For this to be valid the curvature of the surface must be 

gentle, ie small slope (high Lc, low σ). Mathematically this is expressed in the following validity 

conditions for the Kirchoff approximation: 

kL� � 6          (3.13) 
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L�� � 2.76σλ          (3.14) 

where λ is the wavelength and k the wavenumber.  

The Kirchoff approximation is employed by both the Physical Optics model and the Geometric Optics 

model but with a different interpretation in each case (leading to different validity regions): 

b1) Physical Optics (PO) Model 

In the Physical Optics model we assume that each point on the surface behaves like an infinite plane 

centred on that point (see Figure 3.2 below). 

 

 

 

We can then apply the Fresnel equations for an infinite plane boundary reflection in order to obtain 

expressions for n x E and n x H. 

This assumption is valid for small or medium values of σ, as well as small slope for the Kirchoff 

approximation. This leads to the following validity conditions for surfaces of gaussian autocorrelation 

function: 

Lc > 2-3 λ 

σ <0.5 λ 

b2) Geometric Optics (GO) Model 

This model is also based on the Kirchoff assumption but instead of infinite planes we consider the 

surface to be composed of many finite facets, as shown in Figure 3.3: 

 

 

 

 

This method uses the stationary phase method requires the arc of each point on the surface to be 

greater than the wavelength. This imposes the condition of σ  >> λ. 

It is also preferable that Lc be greater than λ.  

Low slope and low to medium σ 

Figure 3.2: Each surface point behaves like an 

infinite plane 

Figure 3.3: The rough surface is 

represented by many small facets 
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This model takes into account only the non-coherent component in the specular direction. Therefore 

this works best with high roughness. This model also does not include shadowing or multiple 

reflections. 

c) The Integral Equation Model (IEM) 

The Integral Equation Method (IEM) is based on the Kirchoff approximation with modifications made 

to correct for inaccuracies for roughness conditions outside its validity range. This model assumes that 

each part of the surface reflects/emits in the same way, ie it assumes a homogeneous permittivity 

across the surface. Shadowing of incident and scattered intensities is not included, as the Kirchoff 

approximation is applied. However a corrective term can be added. 

The main assumptions for the original IEM analytical model are the following (Chen et al 2003): 

1. The local angle in the Fresnel coefficients are approximated to either the incident angle for 

slightly rough surfaces or to the specular angle for rough surfaces. 

2. Edge diffraction terms are excluded. 

3. The absolute phase terms in the surface Green’s function and its gradient, which are 

needed for computing the complementary field coefficients, are set to zero. 

However recent work has removed assumption 3 and reduced the effect of assumption 1 somewhat. 

IEM reduces to Geometric Optics model in the high frequency limit and to the SPM model for low 

frequency. 

c1)  IEM formulation 

The reflectivity can be written as the sum of the coherent component, Rp
coh(θ),and the noncoherent 

component, Rp
non(θ) : 

Rt
θ� � R� o 
θ� � R�joi
θ�        (3.15) 

The coherent component is approximated to the flat surface reflectivity (calculated from the Fresnel 

equations) reduced by an exponential factor, as follows: 

R�joi
θ� � R�x 
θ�exp OP
4πσ cos θ λ�⁄ �T      (3.16) 

where σ is the standard deviation of surface heights. Thus the coherent of the bistatic scattering 

coefficient is not calculated by IEM but incorporated into the reflectivity by (3.16). Note that the 

accuracy of this coherent term is unknown.  
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The non-coherent reflectivity is calculated from the bistatic scattering coefficient, σo, by applying 

equation (2.110), which is in turn calculated from the tangential surface fields by applying the Stratton 

Chu integral equation (3.10).  

An estimate of the tangential fields is formed from a sum of Kirchoff and complimentary terms, as 

shown in (3.17): 

n�xE � 
n�xE�¢ � 
n�xE��        (3.17) 

(nxE)K is the Kirchoff component of the tangential surface Electric field and (nxE)C is its 

complementary component. 

 The Kirchoff term accounts for large scale roughness effects while the complementary term corrects 

for inaccuracies in the Kirchoff approximation and accounts for the small scale effects. The 

complementary term is expressed as a function of complementary field coefficients (Fqp) that can be 

computed from a spectral representation of the Green’s function G and its gradients £¤. The Kirchoff 

term is expressed as a function of the Kirchoff field coefficients fqp. Field coefficients are computed 

for all polarisation combinations, ie HV, VH, HH and VV. Fqp and fqp can be expressed as functions of 

the Fresnel coefficients. 

Inserting these field coefficients back into the Stratton-Chu integral, we obtain a Kirchoff component 

and a complimentary component of the scattered field as well as a cross term. The bistatic scattering 

coefficient, σo, which is calculated from the scattered electric field, can therefore be expressed as 

follows: 

σo � σ¢ � σ� � σ¢�         (3.18) 

where σK
 is the Kirchoff term, σC

 is the complementary term and σ
KC

 is the cross term. 

For weak-to-moderate roughness conditions σ° can also be rewritten as a sum of single and multiple 

scattering terms.  

The IEM model is entirely algebraic which makes it faster to compute than numerical methods. The 

updated AIEM has been formulated for surfaces of either gaussian or exponential autocorrelation 

function. 

c2) Development of IEM to AIEM 

The IEM model has been developed to remove some of the approximations made and thus improve its 

accuracy. This was particularly important in order to compute the emissivity since an accurate value of 

reflectivity is required for energy conservation and thus equation (2.111) to be valid.  



61 
 

As a first step Chen et al (2000) included all phase terms in G and  £¤ for multiple scattering terms 

whilst continuing to set them to zero for single scattering terms. In a second step Chen et al (2003) 

then reformulated IEM to also include these phase terms for single scattering, allowing the calculation 

of emissivity. This version of IEM was renamed the Advanced Integral Equation Model (AIEM) and it 

included the same Kirchoff term as before but the complementary term now contained 8 terms and the 

cross term contained 64 terms. The formulation remained algebraic. These two steps removed the third 

assumption in IEM, producing a model of higher accuracy but with longer computation time. However 

computation time remained significantly lower than for numerical models. 

IEM was further improved by Wu et al (2001) with the introduction of a “transition function”. In the 

original IEM the Fresnel coefficient, needed in the calculation of fqp and Fqp, was evaluated at either 

the incident angle (θi) for low roughness or the specular angle (θSP) for high roughness. However it 

was unclear what the conditions for these two regions were or what to do for medium roughness 

conditions, in between these two regions.  Wu et al (2001) therefore proposed a transition function to 

connect and smooth these two approximations. In doing this the Fresnel coefficient of either Rp(θi) for 

low roughness or Rp(θSP), were replaced by Rp(T): 

Rt
T� � Rt
θC� � ORt
θwt� P Rt
θC�TΥt      (3.19) 

where Υt is the transition function with a value ranging from 0 to 1. It is calculated as a function of 

Sqp, which is the ratio of the complementary term to the total scattering coefficient, given by: 

S§� � σ§�j σ§�o¨           (3.20) 

This transition function was validated against numerical Method of Moments simulations (Chen et al 

2001) and experimental data (Fung and Chen 2004) and incorporated into AIEM. 

c3) AIEM simulations of soil emission 

AIEM has mostly been used for calculating the backscattering coefficient (Chen et al 2000, Fung et al 

2004, Wu et al 2004). Since recent improvements in accuracy, as described in the previous section, 

studies have also been performed on rough surface soil emission. Two studies (Liou et al 2001 & Shi 

et al 2002) have evaluated AIEM simulations of soil emission at L-Band for both gaussian and 

exponential autocorrelation functions. These studies showed that roughness effects differ strongly at 

different incident angles and polarizations. As roughness increases, emission was found to increase at 

H polarization and decrease at V polarization. This latter is a new and surprising result since 

emissivity is considered to generally increase with roughness, which forms the basis for the semi 

empirical Q-h model. Shi et al explained the result by the increase in the non-coherent component 

being larger than the reduction in the coherent component at angles around the Brewster angle and at 
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V polarization. This is because the coherent component of a flat surface is negligible at this Brewster 

angle and at V polarization. This result strongly impacts the ratio of reflectivity at V and H 

polarization (RV/RH). 

Shi et al (2002) developed a new parameterized model of the surface reflectivity, based on AIEM data, 

that accounted for these new results. This model was designed to be able to invert soil parameters from 

L-Band measurements. 

It is important to bear in mind that the IEM model accounts for surface effects but not volume effects 

and should therefore only be used for rather wet soils where surface effects are dominant. In addition 

the IEM model assumes the permittivity is homogeneous across the surface which is more likely to be 

true for very wet or very dry surfaces. Comparisons between AIEM and experimental data confirm 

this limitation to wet soils, for example reasonable agreement was found to be limited to wet soils for 

the backscattering coefficient (Zribi et al 2005). 

Shi et al 2005 developed a parameteric model based on an AIEM study for rough surface emission as a 

function of surface slope, polarization and frequency (for frequencies larger than about 3 GHz). 

Comparison with AIEM showed a maximum error of 10-3 of this model. This result is interesting as it 

demonstrates the importance of the rough surface slope as a measure of surface roughness. 

3.1.3 Numerical Models 

Numerical methods calculate exactly the emission or scattering of rough soil surfaces by solving 

Maxwell’s equations. This makes them more complex and more computationally costly (require 

longer computation time and higher memory) than analytical methods but they are exact and are not 

limited to certain ranges of roughness.  

In this section we will first present the general methodology for calculating the bistatic scattering 

coefficient and emissivity of an infinite rough surface by a numerical method. We further detail 

important considerations relating to this, which include determination of the surface size and incident 

beam to be used in numerical calculations. Secondly we present the different numerical methods 

which can be used in such a calculation. In particular we present the Method of Moments (MoM), 

which is currently the most popular numerical method used to study rough surface scattering and 

emission, and in the latter category we present the Finite Difference Time Domain method (FDTD) and 

the Finite Element Method (FEM). We then detail the choice of numerical method to be used for 

different applications, validating a numerical method, and finally the research performed to data in this 

field. We finish with a discussion of the choice of method for solving this problem. 
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3.1.3.1 Methodology 

a) Procedure 

In reality a soil surface, as “seen” by a radar or radiometer, can be considered to be infinite in size. 

However it is not possible to model this numerically. Instead, calculations are performed for N 

different rough surfaces each of discrete size L (or L x L for 3D surfaces) and each with the same 

autocorrelation functions and values of σ and Lc. Using a numerical method, such as those presented 

in section 3.1.3.2, the electric field scattered off each rough surface is calculated in the far field region, 

Er,j
s(θs,φ s) at distance R from the surface and as a function of position (θs,φ s), when a beam is incident 

upon the surface of a given dielectric permittivity.  

 We then calculate the bistatic scattering coefficient, for incident polarization t and reflected 

polarization r, σpq
0, from the reflected electric field in the far field region, averaged over all N surfaces. 

The bistatic scattering coefficient is then calculated from (2.110), summing the scattered electric field 

over all rough surfaces as follows:  
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where (θ,φ) is the angle of the incident wave, (θs,φs) is the angle of the reflected wave, N is the number 

of surfaces to be averaged over, Aeff is the effective area of the surface illuminated and Et
i

 is the 

incident electric field with polarization t,  

The bistatic scattering coefficient calculated by (3.21) contains both coherent and non-coherent 

components. The coherent component is given by: 
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(3.22) 

Therefore the non-coherent component can be isolated as follows: 
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(3.23) 

The emissivity can be calculated from the bistatic scattering coefficient applying equations (2.111) – 

(2.112).

 The procedure of averaging over many surfaces allows us to approach the bistatic scattering 

coefficient and/or emissivity of an infinite rough soil surface. As the ensemble size increases results 
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should converge. The number of rough surfaces, N, must be chosen so that we have convergence. 

However, in order to obtain convergence towards a solution which is accurate the surface size must be 

carefully chosen, as will be explained further in the following section. 

The averaging procedure can be done “by hand”, as for this thesis. In this case the rough surfaces are 

created by hand prior to numerical calculation and also the procedure of recovering the scattered 

electric fields for each surface and applying (3.23) and (2.111) – (2.112) to the ensemble is done by 

hand post-calculation. However this process can be time consuming. The Monte Carlo method is 

therefore often employed, coupled with a numerical method, to automatically average the 

deterministic scattered fields of individual surfaces over an ensemble of surfaces.  

For any numerical study of rough surface scattering and emission, the size of the surface, and the 

incident beam must be chosen with care. In sections b) and c) we explain how this can be done. 

b) Surface Size, L 

The physical meaning of limiting surface size is limiting the coherent interaction of waves hence the 

larger the better. However since the number of unknowns is directly related to surface size the larger 

the surface the longer the computation (CPU) time and memory. Note that we refer to the calculation 

time and memory combined as the calculation costs. A compromise must therefore be reached.  

For each individual surface simulated, the surface size must be large enough compared to the 

autocorrelation length so that it represents the statistical problem. An empirical rule is that for 

Gaussian surfaces a size of 10 correlation lengths is enough (Saillard & Sentenac 2001).  

The surface should also be large enough to be considered macroscopic in comparison to the 

wavelength; normally 10λ is considered sufficient. Smaller surfaces may yield acceptable results with 

a greater number of realizations but important interactions between long wavelength components may 

be neglected. For example, Zhou et al (2004) found that a surface size of 8λ x 8λ is sufficient. 

c) Incident beam and Avoiding Edge Effects 

In practice, source and receiver antenna are far from the ground surface and the incident field can be 

approximated locally to a plane wave. However for numerical scattering we must use a finite surface 

and in this case a plane incident wave would lead to an edge effect on the sides of the calculation area, 

or sidelobes, which would reduce the accuracy of the computed scattered field. In order to avoid these 

problems, calculations are usually performed with tapered incident waves which have zero amplitude 

at the edges of the surface. Alternatively a window function, of usually Gaussian form, can be applied 

after the scattering of plane waves (e.g. Chen & Bai 1990, Axeline and Fung 1978, Ceraldi et al 2005, 

Inan & Ertuk 2006, Fung et al 1994, Zhou et al 2001) to reduce the contributions of edge scattering to 



65 
 

the far field calculation. Other methods include periodic boundary conditions or resistive regions at the 

edges of the surface. 

Often the tapered incident wave is of Gaussian form however this poses a problem as a gaussian wave 

is “non-Maxwellian”, ie it is not a solution to Maxwell’s equations. One other problem with the 

Gaussian incident wave is that the illuminated area spreads with incident angle, increasing 

computational time. Alternatively a Gaussian spectrum of plane waves can be used. This maintains the 

tapering effect at the edges and yet since it consists entirely of plane waves it is a solution to 

Maxwell’s equations. However this type of wave increases calculation time since it requires numerical 

integration. Another popular tapered wave involving a summation of plane waves was proposed by 

Thorsos et al (1988) for the 2D scattering case. This wave, whilst not being an exact solution to 

Maxwell’s wave equation, is closer than a purely Gaussian beam and, since it does not involve 

numerical integration, the calculation time is not increased as much as for the integration of plane 

waves. It can be considered to be a compromise between the Maxwellian integration of plane waves 

and the faster, simpler Gaussian beam. The Thorsos taper is however limited at grazing angles, as 

analysed and discussed by Toporkov et al (1999) and Marchand and Brown (1999). Most of the work 

on the above mentioned incident beams has focused on the 2D scattering case. For the 3D emissivity 

case it may be desirable to have an incident beam that is not an integral thus reducing computation 

time. 

Braunisch et al updated the spectrum of plane wave formulation with a new formulation that included 

both evanescent and propagating waves with the use of a simple Gaussian plane wave spectrum. This 

new formulation addressed the problems of losing the dominant polarisation state and degradation of 

tapering at normal incidence. This produced a more reliable tapered wave with dominant polarisation 

state that could be used for all incidence angles, which was Maxwellian. The authors also discussed a 

newly encountered problem of grazing when buried objects are present (scattering of buried objects 

into the edges).  

The tapered wave and window function contain a factor “g” which controls the beam-width of the 

wave. This then becomes one of the parameters that must be decided for numerical calculation. Its 

value must be large enough to illuminate the majority of the rough surface, such that the solution is 

accurate, and small enough to diminish the edge effects (ie the wave must be negligible at the edges). 

It is a compromise between resolution and stability; we must sample the bistatic scattering coefficient 

enough such that we maintain the form and not too much so that we obtain oscillations due to edge 

effects. The choice of g depends on the wavelength, the roughness and the size of the rough surface as 

well as the desired resolution of the bistatic scattering coefficient (Axeline & Fung et al 1978). It also 

depends on incident angle. Different authors have suggested different conditions for the choice of g.  
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The value of g to be used in simulations depends in general on: surface roughness (Axline and Fung 

1978), wavelength (Axline and Fung 1978), surface size, L, and incident angle. The beamwidth must 

be large enough so that enough of the rough surface interacts with the wave but small enough so that 

edge effects are negligible. For smaller surfaces we require a smaller beamwidth, thus we usually 

consider restriction on the size of g as a function of L. The beamwidth size varies with angle, so we 

must consider the angle to be used. The area of the surface that must be illuminated in order to obtain 

accurate calculations of the scattered field depends on the surface roughness and also the wavelength. 

Axline and Fung (1978) drew the general conclusion that smaller g should be used for a rougher 

surface or the same surfaces with smaller λ. In some papers, g was chosen so that the wave amplitude 

was negligible at the edges of the surface, in some cases falling by 10-6 its maximum amplitude at the 

edge (Franceschetti et al 2000, Inan & Ertuk et al 2006, Axeline and Fung1978) and in some cases 10-3 

its maximum amplitude (Fung et al 1994, Devayya et al 1992), equivalent to g of less than L/7.43 and 

L/5.25, respectively for a Gaussian incident beam on a 1D surface, where L is the length of the 

calculation area. Other authors have suggested the empirical condition that g must be less than L/4, 

which is often used. 

Setting a maximum value of g is important for the reduction of edge effects and also for the 

calculation of the bistatic scattering coefficient, which requires the effective surface area to be 

calculable. However g must also be large enough to illuminate enough of the rough surface so that the 

bistatic scattering coefficient is calculated accurately. This means that, in order to maintain the 

previous condition, the rough surface itself must be large enough. L is already limited by conditions 

based on wavelength and autocorrelation length but we may require additional conditions when 

applying a tapered incident beam.  

A minimum value of g can be obtained by considering spreading of the beam with angle. For example 

the following condition has been suggested for the Thorsos beam (Thorsos 1988): 

g > �D jop qª          (3.24) 

where k is the wavenumber. This means that minimum g varies from 0.16λ at 0° to 0.92λ at 90°, which 

is not very meaningful since these values are very small. Tsang (1994a) suggested g in the range 

(L/10, L/4) whose actual value depended on incidence angle, but this cannot be used for grazing 

angles approaching 90°. Kapp et al (1999) suggested: 

g � «D
¬V�qª� jop qª          (3.25) 
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where A is some constant. Toporkov et al (1999) further suggested a value of 9.4 for this constant. 

However this condition is not very meaningful for small angles. For example we have a minimum g of 

0.95λ at 0°.  

Ye and Jin (2005) suggested the following condition for the Thorsos taper, which was found by 

imposing a minimum error in the Helmholtz equation (a simplified version of the wave equation based 

on the assumption that the wave’s dependence on time and space can be separated) of 10-4: 

gHC  � ­
jop qª�®.d         (3.26) 

This leads to a minimum g of 6λ at 0° incidence, 11.6λ at 50° and 83λ at 80° incidence. However we 

note that this condition was based on limiting errors arising from the non-Maxwellian nature of the 

Thorsos taper at non-zero incidence, not on sufficient sampling of the rough surface. 

Marchand and Brown (1999) suggested the values between g > 10λ and L > 4g, which leads to a 

minimum L of 40λ. 

It must be noted that these conditions have all been derived and proposed for the case of 2D scattering. 

Authors of numerical emissivity calculations have adopted the L > 4g condition and the Thorsos taper. 

3.1.3.2 Numerical Methods 

Thus far we have considered the general methodology of all numerical methods when applied to the 

problem of rough surface scattering and emission. In this section we now consider the different 

numerical methods that may be applied including their formulations and differences. A numerical 

method solves Maxwell’s equations over a finite region by: (1) discretizing the region into a “mesh”, 

(2) solving the equations for each discrete element and then (3) regrouping the solutions of each 

element into a global solution. The mesh is then continuously refined to smaller and smaller elements 

until the solution converge. 

In this section we present different numerical methods currently used to calculate the electric field 

scattered off rough surfaces, concentrating only on the main methods. Most of the literature 

concentrates on the surface case (i.e. a single homogeneous dielectric layer with a rough surface) but 

numerical methods can be extended to include volume effects including multilayer structures, some 

more easily than others. This is important for the work of this thesis since the aim is to develop a 

method for modelling the L-band emission of the two layer soil-litter system. 

The ways in which numerical methods solve Maxwell’s equations can be used to classify the models 

into broadly speaking three different categories: (a) those based on approximations; (b) those that 

solve integral equations and (c) those that solve differential equations. Methods in the first category 
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solve an approximation of Maxwell’s equations and the other two categories solve Maxwell’s 

equations directly in either their differential or integral form. 

Methods solving differential equations require a volume mesh whereas those solving integral 

equations require a surface mesh. 

All numerical methods are approximate but some can be considered to be numerically exact. A 

method is numerically stable if the error, due to perturbations such as rounding error, remains small as 

the degrees of freedom (number of unknowns) increase. 

a) Integral Equation Methods (Boundary Integral Methods) 

In these methods the scattering of EM waves off a rough surface is approached as a boundary problem. 

We consider two homogeneous media separated by a boundary. Maxwell’s equations are solved in 

their integral form to find the unknown surface current induced by the incident field. The scattered 

field created by the surface current can then be found: see Figure 3.4 for an illustration of this. 

 

 

 

 

 

 

 

 

The integral equations are formulated using either Green’s functions or elementary solutions to 

Maxwell’s equations for an infinitesimal source. As an example let us consider a perfectly conducting 

1-dimensional surface: 

The surface is divided into many segments of equal length, D: 

 

 

    x ′  
D 

Figure 3.4: The incident field induces electric and magnetic currents in 

the surface, which in turn induced a scattered wave 

Incident field Scattered field induced by the 

surface current 

J, M: electric and magnetic surface 

currents induced by the incident field 
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The surface current for each segment i, given by[ ]ii
s xHn̂J = , is related to the incident field as follows: 

)r(Hsd)r(xJ)r,r(G i
inc

2/Dx

2/Dx

i
S1r

i

i

−=′′′∇∫
+

−         

(3.27) 

where G1(r,r’) is the scalar free space Green’s function satisfying: 

)'(1
2
11 rrGkG −=+∆ δ          (3.28) 

Note that for V polarization equation (3.28) is a function of the magnetic field and not the electric 

field.  

The segment i is divided into P sub-segments, as shown below, and equation (3.28) solved by applying 

an Integral Equation (IE) method such as the Method of Moments (MOM): 

               P

D
x =∆

 

The different types of Integral Equation (IE) method are distinguished by choice of the functions used 

to discretize the integral equation (3.28) as well as iterative algorithms employed and methods used to 

accelerate the evaluation of the integral operators.   

The Method of Moments (MoM) expands the unknown surface current as a linear combination of a set 

of basis functions. The integral equations are projected onto a set of field test functions. The basis 

functions can be considered to radiate fields which are then received by the field testing functions. 

This produces a dense linear system of equations: 

bxZ =⋅           (3.29) 

where Z is the moment matrix of interactions between basis functions and testing functions, b is the 

projection of the incident field onto the testing functions and x determines the approximate current 

solution. These basis and testing functions are defined on an underlying surface mesh.  

The far zone scattered field )(θiE due to the surface current, as shown in Figure 3.5, can be written as 

a function of iJ , calculated by the method of moments (MoM). 

 

 

 

 

D 
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At this point a Gaussian “window function” Gi(x) can be introduced to remove edge effects from the 

last segments (see section 3.1.3.1c)): 

( )[ ]22
ii gxxexp)x(G −−=         (3.30) 

The bistatic scattering coefficient at this point is calculated by summing the scattered field due to all N 

segments: 

∑
=π

π=θσ
N

1i
ii

0 )x(*E)x(E
2gN

R2
)(        (3.31) 

The parameters x,D,g ∆ and N must be chosen appropriately in order to obtain good estimates of the 

average scattered power. 

The traditional version of MOM used standard inversions to solve matrix equation (3.29) however 

computation time scales as N3 where N is the number of unknowns. A lot of work has been done to 

reduce computation time using iterative methods, instead of standard inversions, and fast methods to 

speed up the process. This is addresses in the next section. 

a1) Development of the Method of Moments: fast methods and iterative techniques 

The method of moments is the solution of the surface integral equation. This can be solved by 

applying one of the following iterative techniques: 

1. The Kirchoff iterative approach 

2. Sparse Matrix Canonical Grid (SMCG) method 

3. Steepest-descent fast multipole method (SDFMM) 

One of the following fast methods can also be applied to speed up computation: 

Figure 3.5: The scattered electric field in the far field region can be calculated from the 

surface current 

segment i 
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1. Fast Fourier Transform Methods 

2. Fast multipole method 

3. Physics based two-grid method (PBTG) meshing using 2 grids, a dense and a coarse one 

Due to the geometry of a rough surface which is planar on average it has been shown that for most 

surfaces only short range interactions are relevant, i.e. the current at any point on the surface depends 

only on the geometry and incident field at this point. This of course depends on the incident angle and 

the rough surface statistics but is true for most surfaces. Taking advantage of this, the interaction 

matrix, Z, can be decomposed into a strong component Zs and a weak component Zw: 

ws ZZZ +=           (3.32) 

Zs is a sparse matrix whose filling ratio depends on the strong interaction radius (ρs) and size of the 

area illuminated. Zw is a dense matrix without any property. The aim is to avoid generating and storing 

Zw.  

In the Sparse Matrix Canonical Grid (SMCG) method Zw is expanded as a Taylor series about the ratio 

of vertical to horizontal distances: 

∑
=

=
M

0m

w
m

w ZZ           (3.33) 

Fast Fourier Transforms are used to compute the product of each matrix Zm
w with column vectors.  

Storage memory is thus reduced from N2 to NxM, where M is the number of matrices in the Taylor 

series and is much smaller than N. However the rougher the surface, the longer the strong interaction 

radius must be. This increases the size of Zs and rapidly increases computation time.  

The steepest-descent fast multipole method (SDFMM) also divides the matrix decomposition into 

strong and weak interactions. This technique is designed to speed up matrix-vector products in 

conjugate-gradient algorithms. To compute Zw.x instead of a Taylor expansion the surface currents are 

mapped onto a 3-dimensional grid using the fast multipole plane-wave field expansion.  

The forward-backward method, also called the Method Of Multiple Interaction (MOMI) has been 

suggested to avoid storing large matrices. In this case Z is rewritten as: 

 Z � I P 
L � U�         (3.34) 

Where I is the identity matrix and L and U are lower and upper triangular matrices, respectively, with 

zeros on the diagonal. This leads to the expansion: 

x � 
I P U���
∑ ~O
I P L��� P ITO
I P U��� P IT�H;H´� �
I P L���b    (3.35) 
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This decomposition requires a second type of integral equation and at present this method has been 

implemented only for perfectly conducting surfaces with MFIE. This method is called the forward 

backward method because for one dimensional surfaces and low grazing angles the triangular matrices 

describe scattering in either the forward or backward direction. However this interpretation is not valid 

for the case of 2-dimensional surfaces and low incident angles.  

For very rough surfaces, such as when σ and Lc approach the wavelength, the MOMI fails to converge 

(Tran 1997). Equally for the SMCGM or SDFMM very rough surfaces if convergence were achieved 

it would require a large radius of strong interaction slowing the computation down considerably. A 

way to overcome this is to compute exactly the terms of the weak interaction matrix Zw, for example 

with the original sparse matrix flat surface approach (SMFSIA). Since Zw is a dense matrix it cannot 

be stored and must be recalculated for each iteration. Applying this method means that the 

computation time scales as N2 but by combining with a robust iterative scheme based on the 

generalized minimal residual (GMRes) method (G Soriano and M Saillard 2001) very rough surface 

scattering can at least be solved. 

b) Differential Equation Methods 

In this section we present the two main differential equation methods: the Finite Element Method 

(FEM) and the Finite Difference Time Domain (FDTD) method. We present the former in greater 

detail since this is the method used in this thesis. (Reasons for this choice are given in chapter 5). 

b1) Finite Element Method (FEM) 

The Finite Element Method was developed originally to solve problems in structural mechanics 

arising during the development of airplanes in the 1940s. The basic idea was to divide a complicated 

structure into different mechanical elements (beams, plates, etc.) for which the deformation could be 

calculated and then assemble them using linking equations. The method has since been formalized 

mathematically and generalized to a wide number of problems including in the field of 

electromagnetism. It is also generally used in the field of fluid dynamics. 

In this section we present the basic concepts of the finite element method applied to electromagnetic 

problems, including rough surface emission and scattering. 

The finite element method calculates an approximate solution in a finite space, to a set of partial 

differential equations (PDEs), satisfying certain boundary conditions on the boundary of the finite 

space. In the case of electromagnetism these equations are Maxwell’s equations in their differential 

form. The solution approach is either to eliminate the PDE completely, i.e. for the case of steady state 

problems, or to render it into an equivalent ordinary differential equation (ODE) (one with only one 

variable) which is then solved by standard techniques.  
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In the following we will describe the main steps to solving electromagnetic problems by the finite 

element method, which leads us to solve the electromagnetic fields in the calculation area. We then 

describe how the scattered electric field in the far field region can be calculated from this value. 

Step 1: Establish the physical equations 

The first step is to establish the physical equations that we wish to solve. In the case of 

electromagnetism this is Maxwell’s equations, which are usually rewritten in terms of potentials. For 

example in the case of electro- and magneto- statics the equations can be rewritten in terms of scalar 

potentials, which are then easier to solve since they have one degree of freedom (the scalar φ or V) 

instead of three (vector H or E). Reduced scalar potentials and vector potentials can also be used, 

depending on the problem. In the following we consider the case of an electrostatic problem in order 

to illustrate the basics of the FEM approach. We consider this problem since it is simple but the 

concepts can also be extended the scattering of electromagnetic waves: the problem at hand. 

For electrostatics we wish to solve Maxwell’s first equation in terms of the electric scalar potential V: 

£. ε£V � ρ 
in 2D�, where E � P£V. 

This can be rewritten as: 

ººI �ε º»ºI � ºº¼ �ε º»º¼ � Pρ,        (3.36) 

Step 2: Discretize the space 

The second step is to solve the equations in the finite dimensional space for which we wish to find the 

solution, by discretization. Let us consider the domain � for which we wish to solve an 

electromagnetic problem by the Finite Element Method. The domain, or problem area, is divided into 

a mesh of N sub-domains of the same shape, called elements, and the solution found in each element. 

The global solution at any point in � is then the solution of the surrounding element at that point. In 2-

dimensional problems we often consider triangular elements and in 3-dimensional problems 

tetrahedral elements. The points defining the elements are called “nodes” or “degrees of freedom”. 

The solution is calculated at each node and then the solution of the element is calculated from the 

solution at the nodes and a function to interpolate between them. Figure 3.6 shows a triangular element 

with 3 and 6 nodes, or degrees of freedom. 
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3 nodes:     6 nodes: 

 

 

 

 

Let UE(x,y) be the approximate solution for the element and the exact solution be U. It is usual to 

choose polynomials for UE(x,y) eg for 3 nodes: 

U½
x, y� � a � bx � cy         (3.37) 

An element with this solution is known as a first order element. 

For 6 nodes the polynomial solution is: 

U½
x, y� � a � bx � cy � dx� � exy � fy�      (3.38) 

A 2-dimensional element with this solution is known as a second order element. Once we know the 

solution at the nodes we can calculate the values for the constants a,b,c (or a,b,c,d,e,f) and we have the 

solution for the element. For example let us consider a triangular element with nodes 3 nodes (x1,y1), 

(x2,y2) and (x3,y3). (3.37) must be true on the nodes so we can write: 

U½
x�, y�� � a � bx� � cy�         (3.39a) 

U½
x�, y�� � a � bx� � cy�         (3.39b) 

U½
xr, yr� � a � bxr � cyr         (3.39c) 

From these equations we can rewrite the coefficients a, b and c in terms of the solutions at the nodes 

and the nodal coordinates. Substituting these expressions into (3.37) and simplifying we obtain: 

U½
x, y� � ∑ �À 
pC � qCx � rCyrC´� �U½
xC, yC�      (3.40) 

where � Â1 $� &�1 $� &�1 $r &rÂ .  
Also p� � x�yr P xry�, q� � y� P yr, r� � xr P x� and the remaining terms p2, q2, r2, p3, q3, r3 are 

obtained by cyclical permutation of the indices. 

(3.40) can also be rewritten under the form: 

Figure 3.6: Triangular elements with 3 (left) and 6 (right) nodes 
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U½
x, y� � ∑ Ã½C 
x, y�U½
xC, yC�C         (3.41) 

where Ã½C 
x, y� is the interpolation function or “shape function”, given by: 

Ã½� 
x, y� � �À 
p� � q�x � r�y�         (3.42a) 

Ã½�
x, y� � �À 
p� � q�x � r�y�         (3.42b) 

Ã½r
x, y� � �À 
pr � qrx � rry�         (3.42c) 

In doing this we ensure a continuous solution.  Note that this procedure also applies for more than 3 

nodes, leading to shape functions of different forms. So far, we have reformulated the problem so that 

each node has an associated solution and shape function. The shape function is known, but the solution 

unknown. The form of the shape function is chosen at the start, usually to be polynomial. The overall 

solution for the element (as a function of position) is written as the sum of the solution of each of its 

nodes multiplied by the node’s shape function. To find the solution of each element we therefore need 

only to find the solution at the nodes.  

Ã½C 
x, y�can take various forms including linear as in the above example, in which case it is called a 

form function , and quadratic, called basis functions. It is usual to choose Legendre polynomials as 

shape functions. e.g for a 1-dimensional element with 2 nodes: 

Ã½� 
x� � IV�IIV�I®           (3.43a) 

Ã½�
x� � I�I®IV�I®           (3.43b) 

Since (3.42a), (3.42b), and (3.42c) must reduce to the nodal solutions UE(xi,yi) when (x,y)=(xi,yi), we 

observe that the following identities are true: 

Ã½� 
x�, y�� � 1  Ã½� 
x�, y�� � 0  Ã½� 
xr, yr� � 0                          

Ã½�
x�, y�� � 0  Ã½�
x�, y�� � 1  Ã½�
xr, yr� � 0 

Ã½r
x�, y�� � 0  Ã½r
x�, y�� � 0  Ã½r
xr, yr� � 1 

In other words a node’s shape function varies from 1 on the node itself to zero on all other nodes, 

implying that the effect of one node is zero on all other nodes. We also note that, in order to maintain a 

continuous solution the following conditions must be satisfied: 

1. A node belonging to several elements must have the same value in each, as must each 

point on the boundary between two elements.  
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2. The shape function must fall to zero outside the element (so that nodes only have an effect 

on the element they are in).  

Condition 1 can be written mathematically as follows. For any point (x,y) on the boundary between 

two elements E1 and E2, we have: 

U
x, y� � U½�
x, y� � U½�C Ã½�C 
x, y� � U½�
x, y� � U½�C Ã½�C 
x, y�    (3.44) 

It is important to have a continuous solution for the potential since the electromagnetic field vectors E, 

D, B and H must be continuous in space in order to be physical. 

Step 3: Application of the weighted residual method 

Thus far we have formulated the problem over the discrete domain into a set of nodal solutions and 

shape functions but we still have to calculate the nodal solutions. As a first step towards this we 

regroup the solutions of each element into a global solution and impose conditions so that this solution 

satisfies the original defining equation. To do both of these we can either apply a residual method or 

we can determine a variational functional for which stationarity is sought. The former is the method 

most commonly used since it is comparatively simpler and easier to understand and apply. Galerkin’s 

method of weighted residuals is a particular form of a residual method and is widely used in 

electromagnetism. We will therefore focus on this method. 

Since the solution obtained by the finite element method UE is only approximate to the exact solution 

U (ie UE≠U) this introduces a “residual” in the defining equation. For example in the case of 

electrostatics we have a residual “R” in Maxwell’s first equation: 

RU =ρ+∇ε⋅∇            (3.45) 

In order to satisfy the original equation defining the problem, (3.36), over the domain Ω, we force R to 

be zero as follows: 

0wRd =Ω∫Ω            
(3.46) 

where w is a weighting function and Ω is the domain over which the condition is forced. We replace R 

by the defining equation, which in the case of an electrostatic problem is: 

[ ] 0dUw =Ωρ+∇ε⋅∇∫Ω           
(3.47) 

Applying Green’s theorem we obtain: 
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[ ] ∫∫∫∫
ΩΩ

ΩΩ
Ωρ+Ω∇⋅∇ε−⋅∇ε=Ωρ+∇ε⋅∇ dwwdUdsUwdUw E

)(S
EE

   

(3.48) 

where S(Ω) is the boundary of the domain Ω and ds is an element of the boundary.  This provides the 

governing equation that must be solved for each element. Note that the first term on the right hand side 

of the equation relates to the boundary conditions and the last term is called the “source term”.  

In the Galerkin method, the shape functions are also used as the weighting functions. Furthermore we 

can integrate the above equation element by element as follows: 

[ ]∑ ∫
=

Ω
=Ωρφ−φ∇⋅∇ε

N,1n
nnE 0dU

       

(3.49) 

where n is a generic element and N is the number of elements in the solution domain. 

Replacing UE by the nodal solutions and shape functions, we can integrate the right-hand side of 

(3.48), obtaining a matrix equation for each element. For example in the electrostatic case the second 

term of (3.48) can be rewritten as: 
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This matrix is known as the “stiffness matrix”. 

The third, source term can be written as: 



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
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


ρ

1

1

1

6

D
.  

Summing elements therefore requires assembling all matrices into a global matrix: adding lines and 

columns corresponding to the numbering of the nodes in the global matrix. Our next steps are to insert 

boundary conditions and solve this matrix system using a linear system solving technique. 

Note that the source term does not depend on unknown potentials or the location of nodes and so is 

assembled on the right-hand side of the matrix system. 

In order to obtain a solution we must specify what happens on the boundary of the problem domain. 

This comes from the first term on the right hand side of (3.48). This term must be equal to zero since 

the numerical procedure imposes that the sum of the integrals on Ω be zero. So we require: 
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0dsUw
)(S

E =⋅∇ε∫
Ω           

(3.50) 

There are two types of boundary conditions that ensure this: 1) the Dirichlet boundary condition where 

the potentials are known on the boundary and the weighting functions are set to zero for all boundary 

nodes where the potential is known 2) the Neumann boundary condition where the potentials are 

unknown on the boundary in which case dsUE ⋅∇ is set to zero, which means that the E field is 

tangential to the boundary.  

In order for the solution to be physical the following conditions must be fulfilled: 

1. Over the exterior boundary either UE or 
ÄÅÆÄÇ  (or a combination of both) must be prescribed 

2. If only 
ÄÅÆÄÇ  is prescribed the solution is not unique 

3. For an infinite problem the potential must be regular at infinity (i.e. the solution decays to 

zero at a specified rate) 

We have now presented the main steps required to solving an electromagnetic problem using FEM. In 

order finding to apply these steps it is often practical to use different coordinate systems including the 

global coordinate system, a local system for each element or a natural coordinate system (in triangular 

elements, barycentric coordinates ζ and η).  

If Legendre polynomials are chosen for the shape function, the coordinate transform from a local 

system (based on the two nodes) to a global system can then be performed using the same element 

shape functions e.g.: 

x � U½�x� � U½�x�          (3.51) 

As well as calculating the potential we must also calculate derivatives of the potential to obtain 

electromagnetic fields E, D, B and H. To simplify this process the derivative is calculated in local 

coordinates and then these can be transformed to global derivatives using the “Jacobian” which is 

defined as: 

OJT � ÉºIºÊ º¼ºÊºIºË º¼ºËÌ          (3.52) 

where:  

ºIºÊ � ºÍÎ®ºÊ x� � ºÍÎVºÊ x�          (3.53) 

Global derivatives are written in terms of local derivatives as follows: 
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ÏºÍÎªºIºÍÎªº¼
Ð � OJT�� ÏºÍÎªºÊºÍÎªºË

Ð          (3.54) 

Thus solutions can be obtained for each element in its local coordinate system and the solution 

transformed to the global system, before collecting the element solutions into the global solution. 

b.1.1) Near to Far Field Transformations 

FEM computes the total electric and magnetic fields in the calculation area as shown below in Figure 

3.7. The total calculated field, Etot, is the sum of the incident and scattered fields, Einc and Escatt 

respectively. 

 

 

 

 

 

 

In order to calculate the bistatic scattering coefficient and emissivity we require the scattered field in 

the far field region. The scattered field in the calculation area can be calculated from Etot-Einc. Once we 

have our scattered field in the calculation area we must perform a transformation to the far field 

region. In order to do this we select a surface or surfaces in the area or on the calculation area 

boundary to be known as the “virtual surface”. The tangential components of the scattered field are 

calculated on this surface (by FEM), ES and HS, and from these values we obtain equivalent surface 

currents: 

JÑw � n�xH��Ñw          (3.55) 

M���Ñw � n�xE��Ñw               (3.56) 

Where n is the outward normal vector on virtual surface S. The scattered far fields are then found by 

the transform of the currents over the free space Green’s function, as with MoM. 

b2) Finite Difference Time Domain (FDTD) method 

The finite difference time domain method was originally introduced in 1966 by Yee for the calculation 

of near-field scattering from an object in the time domain (Yee 1966). It has since been developed to 

Virtual surfaces TOTAL FIELD 

calculated by FEM 

Figure 3.7: The FEM calculation area 
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also calculate far-field quantities and the steady state solution. The method is based on approximating 

the derivative operators in Maxwell’s equations with finite differences, i.e. ∂t becomes �t, ∂x becomes 

�x, etc. These equations are then used to calculate field values at a given time step and in a given 

element of space from values calculated at a previous time step.  

In this section we show how Maxwell’s equations are converted to finite difference forms and give 

conditions for acceptable time and spatial increments, as given in Fung et al (1994b).  

Following Yee’s notation we define a spatial increment �, where �=δx= δy= δz, and a time step δt. 

Then we denote a mesh point as: 

)k,j,i()k,j,i( ∆∆∆=          (3.57) 

and any function in space and time as: 

)tn,k,j,i(F)k,j,i(Fn δ∆∆∆= .        (3.58) 

The differential operator within the curl operator of Maxwell’s equations is discretized using the 

central difference approximation. Any derivative of Fn with respect to space and time is approximated 

as: 

∆
−−+≈

∂
∂ )k,j,2/1i(F)k,j,2/1i(F

)k,j,i(F
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nn
n

      
(3.59) 
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(3.60) 

where x may be replaced by y or z and i exchanged for j and k in (3.59) to obtain the equivalent 

derivative with respect to y or z. 

Applying these approximations to Maxwell’s equations Yee obtained the finite difference approximate 

expressions of Maxwell’s curl equations by positioning different field components on a unit cell, as 

shown in Figure 3.8. 

The finite difference approximations for the y components of the E and H fields were obtained as: 

[ ])2/1k,j,i(E)2/1k,j,1i(E)1k,j,2/1i(E)k,j,2/1i(E
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(3.61) 

and 
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Therefore the H field at a certain position and time is calculated as a function of the H field at this 

position in a previous time increment and also the E field in the current time step but in adjacent 

positions. The E field is calculated in the same way as functions of itself at a previous time and the H 

field in adjacent positions. 

To ensure an algorithm which is stable and accurate, conditions are imposed on the spatial and 

temporal increments � and δt. According to Taflove and Umashankar (1989), � ≤ λ/10 is sufficient to 

obtain a solution with an uncertainty of less than ±7% in the near fields due to the approximation of 

the spatial derivatives.  To ensure stability in the time stepping algorithm δt should satisfy the 

following (Fung et al 1994): 

( ) ( ) ( )[ ] 1
max

2/1222 Czyxt −−−−− δ+δ+δ≤δ        (3.63) 

where Cmax is the maximum phase velocity of the incident wave. For a cubic lattice where (3.63) 

reduces to: 

x 

z 

y 

origin (i,j,k) 

Ey(i+1,j+0.5,k) 

Ey(i,j+0.5,k+1) Ex 

Ez 

Ez(i,j+1,k+0.5) 

Ex(i+0.5,j+1,k) 

Hx(i+1,j+0.5,k+0.5) 

Hz(i+0.5,j+0.5,k) 

Hx 

Hz 

Hy 

Hy(i+0.5,j,

k+0.5) 

Figure 3.8:  Position of the field components in a unit cell of the Yee Lattice. Vectors in blue 

represent magnetic, H, fields and vectors in black represent electric E fields. 
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 ( ) .C3t
1

max

−
×∆≤δ          (3.64) 

As with the Finite Element method, conditions must be defined on the boundaries of the calculation 

area that determine the behavior of the electric and magnetic fields at these boundaries. For example 

we can mathematically impose total reflection on the boundary, or radiation to infinity. These 

conditions are necessary for a numerical solution to be found. Substituting these conditions into 

equations (3.61) and (3.62) reduces the unknowns in the numerical equations and allows them to be 

solved. As with FEM, FDTD calculates the total Electromagnetic fields in the calculation area. The 

scattered electric field in the far field region can be calculated by defining virtual surfaces and 

performing a near to far field transformation, as described in section b1). 

3.1.3.3 Selection of the appropriate numerical approach 

We have now described several different numerical approaches which can all be used to model rough 

surface scattering and emission. In order to choose which method to use we must consider the required 

application, since each method has its advantages and disadvantages and is consequently better suited 

to certain problems. However, in general a method may be considered to be “better” if it has a lower 

calculation CPU time and memory requirement (is less “computationally costly”) and/or a higher 

accuracy. Usually a compromise has to be reached between these two ideals. 

In discussing computational time and memory requirements of different methods it is important to 

understand the meaning of sparse and dense matrices. A sparse matrix is a matrix populated primarily 

with zeros. Physically this corresponds to loosely coupled systems such as a line of balls connected by 

springs. A dense matrix on the other hand is primarily populated by non-zero elements and 

corresponds to strongly coupled systems such as a group of balls each one connected to all of the 

others by springs. Computationally, sparse matrices are easily compressed and stored and specialized 

algorithms and data structures can be used which take advantage of their sparse nature and are 

therefore less computationally costly. Numerical methods which solve sparse matrices are therefore 

less computationally costly. 

Differential operators are local and therefore lead to sparse matrices, as opposed to integral equations 

which lead to dense interaction matrices. This means that the FDTD and FEM methods are faster and 

less memory consuming than the traditional Method of Moments. A large amount of research has gone 

into developing fast solvers for MoM while maintaining the accuracy of the solutions obtained.  

As with MoM the Finite Element Method (FEM) requires the solution of a linear system but with a 

sparse matrix, so that matrix-vector multiplications are less computationally costly. FEM is well suited 

to inhomogeneous problems with complex geometries.  
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MoM methods are well suited to rough surface scattering and emission problems since they use a 

surface mesh, making the meshing more accurate and allowing calculations to be done for much larger 

surfaces without greatly increasing memory requirements or calculation time. Also for differential 

methods error can accumulate with surface size, whereas for MOM error is size independent. However 

traditional MoM methods were slow because of the necessity of solving and storing dense matrices. A 

large amount of research has gone into developing fast solvers for MoM while maintaining the 

accuracy. Currently MOM-based fast solvers are considered to be the most accurate methods available 

for rough surface scattering and emission. 

For the general inhomogeneous volume problem it is more desirable to use a volume-meshing 

approach such as FEM. FEM has a more flexible meshing procedure than FDTD. This makes the FEM 

method well suited to heterogeneous structures since the mesh shape and size can be modified as 

required around the object, with larger elements in homogeneous areas and smaller elements in 

heterogeneous zones. Alternatively the volume integral equation method can be applied for 

heterogeneous media.  

FDTD calculates the solution as a function of time whereas FEM and MoM calculate directly the 

steady state solution so FDTD is better suited to problems where the temporal response is required.  

FDTD is a good method for time-domain or broadband scattering results as it provides these directly. 

It is a straight forward method flexible enough to handle a wide range of problems. 

3.1.3.4 Validation of Numerical Methods 

In section 3.1.3.2 we presented the main numerical methods that can be used to calculate rough surface 

scattering and emission in general, and the scattering of a soil layer of homogeneous moisture content 

in particular. We then discussed how to select an appropriate method for the required application. 

Once we have selected a method to be adopted, it is important to test its validity, that is to say whether 

or not the calculated solution is accurate. The best known test of the validity for using numerical 

methods to calculate the scattering and emission of a rough soil surface is an energy check. For 

lossless media the sum of the Poynting vector of the scattered field above the surface and the total 

field below the surface must equal the Poynting vector of the incident field. However if the lower 

medium absorbs part of the energy performing this energy check would involve the integration of 

volume density which is harder to achieve. 

Other tests include one based on the Lorentz reciprocity theorem which is well suited to incident plane 

waves but not finite incident beams. 
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3.1.3.5 Problems of current interest 

In this section we discuss in more detail the research that has been carried out in the field of modelling 

electromagnetic scattering and emission of rough surfaces using numerical methods.  

Historically, numerical models were developed to provide an accurate baseline against which 

analytical models and their validity regions could be tested and also to provide results for the cases 

where analytical models could not be used. Validation remains an important application of numerical 

methods, and studies continue to be carried out using numerical methods where methods such as the 

standard Kirchoff Approximation (KA) and the small perturbation method (SPM), as well as the more 

recent integral equation method (IEM) fail. 

Before the 1990s, research was mostly done for scattering from 1-dimensional surfaces, including 

studying backscatter and bistatic scattering. Problems studied were also restricted to incident waves at 

moderate angles relative to the normal. Current research of 1-dimensional surface scattering 

concentrates on low-grazing angle scattering, which is harder to model.  

Since the 1990s, with the increase in computational resources and improvements to the numerical 

methods, attention has turned to 3-dimensional scattering, usually of 2-dimensional surfaces. 

Investigations of scattering include studying the physical phenomena which typically occur when a 

rough surface is present, e.g. enhanced backscatter. There have also been studies comparing numerical 

predictions with experimental results. Inverse scattering is also studied as this is important for buried 

object detection by radar, including detection of mines for example.  

With the development of 3-dimensional scattering models it has also become possible to model the 

emissivity and in the last ten years attention has turned to the passive case. Passive remote sensing 

requires greater accuracy in energy conservation than active remote sensing. This is because the 

relationship Γ−=1e relies on energy conservation. The transmission energy must be equal to one 

minus the scattered energy and if these values are different we do not know whether to take the 

emissivity equal to one minus scattering or equal to the transmissivity. On the other hand (Zhou et al 

2004) the bistatic scattering coefficient fluctuates from one realization to another because of speckle, a 

phenomenon where a lot of interference between waves of different phases leads to an intensity which 

varies randomly, and in the case of scattering a lot of realizations are required to average this out. 

However the emissivity is an integration of the bistatic scattering coefficient and this tends to smooth 

out the speckle effect; hence fewer realizations are usually required in the passive case.   

Emission studies focus on accuracy for cases that are harder to model such as surfaces of exponential 

correlation function with high permittivity. 
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Research has also focused on developing the models themselves, in order to increase accuracy and 

reduce computation time. Much work has been done to develop the Method of Moments (MoM) 

model, which is well suited to the surface scattering problem and gives highly accurate results for this 

case. Research has focused on speeding up computation time whilst maintaining accuracy. The 

method of moments is currently generally considered to be a reference method for surface scattering 

and emission due to the high accuracy of its predictions and the application of fast solvers coupled 

with advances in computer capabilities has made its use practical. 

The FEM and FDTD methods were originally developed to provide alternatives to the Method of 

Moments, which was considered more accurate, since they are faster. Both methods have been used to 

study the rough surface scattering: the FEM by Lou et al (1991a and 1991b) and FDTD notably by 

Fung et al (1994b). However they became less important for the surface scattering and emission case 

as developments in computational resources and also in the use of MoM, made the more accurate 

MoM a practical tool. To our knowledge there are no papers that present the emission of rough 

surfaces as calculated by the FDTD or FEM. However the FD-TD and FEM methods are still useful 

for respectively temporal studies and studies of heterogeneous media. In particular the FEM method 

can be extended to study heterogeneous media such as multiple layers with rough surfaces, dielectric 

gradients, and buried objects more easily than the MoM. Indeed, the approach adopted for the study of 

the soil-litter layer adopted in this thesis utilises an FEM modelling tool, and one of the reasons for 

this choice is its adaptability to multi-layer structures.  

3.2 Modelling the contribution of the litter layer to f orest emission at L-
band 

In order to explain the role the leaf litter layer plays in forest emission, and how this can be modelled, 

we must start with what is currently known about forest emission. In this section we present firstly the 

general structure of forests. Secondly, we present a background on forest emission, including 

experimental results and theoretical models. We then present and compare attempts that have been 

made to include effects of the litter layer in theoretical models for forest emission. Information on the 

structure of forests is mainly taken from Chukhlantsev (2006), although some information is taken 

from Bonan (2008). 

3.2.1 The Forest structure 

A third of the Earth’s land surface is covered by forest (about 50 millions of square kilometres). The 

distribution of different types of forest over the Earth’s land surface is shown in Figure 3.9: 
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Figure 3.9: Global map of the Earth’s forest cover. Different colours represent different forest types. 

Boreal forests of Europe, Russia, Canada, and the USA occupy about fifteen millions of square 

kilometres. Tropical forests make up about 53% of the world forest store.  

Forests play a key role in the global carbon and nitrogen cycles and considerably affect the energy and 

water balance of the biosphere. Forests exchange carbon both with the atmosphere and the ground, by 

mechanisms such as photosynthesis, autotrophic respiration, and litterfall. Forest-atmosphere 

interactions are complex and non-linear and a lot of research has gone into understanding the 

processes involved. Forests transfer water to the atmosphere by evapotranspiration (evaporation from 

the ground plus transpiration from the vegetation). Water transferred from the atmosphere to the land 

by precipitation is caught by forest vegetation and either held by the vegetation or funnelled down to 

the ground through stemflow. Water is also transferred from the soil to the forest vegetation by water 

uptake. Tropical forests also increase precipitation compared with pastureland. Forests have low 

surface albedo (the fraction of radiation reflected by a surface) and can mask the high albedo of snow 

allowing more heat to be absorbed by the land. However for the case of tropical forests this warming 

is offset by strong cooling through evapotranspiration.  

A characteristic feature of forests is their stratum, or layered, structure. The basic components are: 1) 

the forest stand (including the canopy and trunks), 2) the understory layer, including the undergrowth 

(small trees, bushes, ferns etc) and the live soil cover, and 3) the ground, including dead litter in 

various stages of decomposition, and the underlying soil. The stand consists of one or more stratum 

formed by trees of different heights and species. The forest canopy contains elements of small size 
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(branches and leaves) and has a low density of 0.03 -0.3 kg/m3, a large height of 2 – 25m, and a 

relatively stable water (gravimetric moisture) content.  

The live soil cover includes bushes, shrubs, grass, moss, and lichen. In the absence of live soil cover, a 

layer of dead needles, leaves, small branches and bark forms on the soil surface. This litter layer has a 

friable structure and dries and moistens fast. Its height varies from 0.01 to 0.07m, its mass is 0.1 – 0.6 

kg/m2, and its density is 5 – 30 kg/m3. 

Forest leaf litter is fragmented and mixed into the lower layers of the soil, usually within 1 year of 

falling from the trees. The reduction and mixing of leaf litter is largely done by many different soil 

animals ranging from microscopic nematodes to large earthworms. This decomposition process leads 

to distinct layers in the forest floor. 

The forest ground can be divided into two layers: the forest floor and the underlying mineral soil layer. 

Each of these two layers can be further subdivided. The forest floor usually consists of three main 

layers, named L, F and H. The L layer is the previously mentioned fresh, undecomposed litter layer. 

Below this we have the F layer consisting of fragmented organic materials in a stage of partial 

decomposition. This layer contains mostly organic materials in cellular form, and fungi and bacteria 

are common. The H, or humus, layer consists primarily of resistant products of the decomposition 

process and has lower proportions of organic matter in cellular form. The lower portion of the H layer 

often shows an increasing proportion of inorganic mineral soil constituents, but organic components 

still dominate.  

Below these layers we have the mineral soils, including the A1 horizon which is a mixture of soil and 

the humus layer and then the pure mineral soil layers.   

Temperate forests have two main types of forest floor, known as “mor” and “mull”. Mors are found in 

cooler climates, often with coniferous vegetation, and decomposition is slow and incomplete resulting 

in a thick organic layer. This is largely due to a low earthworm population resulting in little 

fragmentation and mixing with the underlying soil. Mulls are typically found in deciduous forests in 

warm temperate climates and decomposition of the forest floor is more rapid. Often the fragmentation 

and mixing make it difficult to distinguish between different forest floor layers. Lowland tropics have 

a decomposition process that is even more complete and rapid than temperate forests, resulting in little 

forest floor mass. Tropical forests in general have an absence of a thick forest litter layer. 
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3.2.2 Remote Sensing of Forests 

3.2.2.1 Experimental data 

Prior to 2000, remote sensing of forests at microwave frequencies was usually done using an active 

system since this allows us to penetrate the canopy and retrieve information about the forest 

parameters.  

More recently the development of space projects such as the SMOS mission has stimulated interest in 

studies of forest emission. The SMOS mission is particularly concerned with the sensitivity to soil 

moisture and measuring other influencing parameters in order to remove them from the signal. Forest 

emission is important for SMOS since a significant fraction of land pixels is either partially or fully 

covered by forest (see Figure 3.9).  

In recent years several ground-based radiometric measurements for deciduous and coniferous forests 

have been carried out (Guglielmetti 2008, Grant 2007, Santi 2007) with interesting results. These three 

experiments demonstrated the semi-transparency of the forest canopy at L-band frequencies which 

allows the sensing of the forest ground radiation. However Guglielmetti et al (2008) and Grant et al 

(2007) found that variations in soil moisture had a weak influence on overall emission and reasons for 

this were suggested to be litter effects. From the Forest Soil Moisture Experiment (FOSMEX) 

performed by Guglielmetti et al (2008) at a deciduous forest site, it was postulated that a large fraction 

of the rainwater is caught by the litter layer and funnelled through to deeper soil horizons. Under wet 

conditions the litter layer acts as an absorber of the underlying soil radiation and also itself emits a 

strong signal. It acts as an impedance matching layer, with a permittivity whose value is in between 

that of the soil and canopy layers. The “Bray 2004” campaign performed in a coniferous forest by 

Grant et al (2007) also showed generally high scene emissivities which were associated with 

substantial litter and understory layers. 

In order to improve understanding of the electromagnetic properties of the litter layer, Demontoux et 

al (2008) performed laboratory measurements of the litter permittivity as a function of its moisture 

content. These experiments were performed for litter taken from the site of the Bray 2004 campaign, 

which consisted of a mixture of decomposed grass and pine needles. These measurements were taken 

to be complimentary to theoretical models of litter emission.  

3.2.2.2 Theoretical Models 

Theoretical simulations carried out using physical models add important information to our 

understanding of forest emission. Measurements are necessarily limited to single forests and single 

environmental conditions. Analytical models allow us to extend studies of forest emission to several 
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cases of possible forest variables, single out contributions from different forest components and carry 

out parametric studies at different frequencies, angles and polarizations.   

In this section we firstly outline the main forest emission models that have been presented in the 

literature and secondly focus on the work presented in the literature to model the litter layer and 

include it in forest emission models.  

a) Modelling Forest Microwave Emission 

Theoretical models are an important attempt to understand the complexity of forest emission and in 

particular its dependence on many different variables. However in practice only a limited set of forest 

variables is available by direct measurements. 

The majority of theoretical simulations have so far mostly focused on radar applications, or forest 

scattering. However, some physical models of emission are also available, notably Ferrazzoli et al 

(1996), and Karam (1997). The basic modelling approach for forest scattering and emission involves 

contributions from discrete forest elements and is based on radiative transfer theory. The medium is 

subdivided into three main regions or layers: crown, trunks and soil. The contribution of each layer 

may then be calculated using radiative transfer theory, as demonstrated previously in section 2.5.2. 

The relevant emission and absorption properties of each layer (values of τ and ω) are then calculated 

by electromagnetically modelling its components, which includes leaves, branches, trunks and leaf 

ground litter. The single elements tend to be modelled as canonical bodies, typically discs, needles, 

ellipsoids and cylinders and the contributions from each element are combined using algorithms which 

consider multiple scattering effects.  

The crown is filled with scatterers representing leaves, needles, twigs, and branches. They may be 

positioned at different heights, depending on the properties of the tree species being modelled. Usually 

the scatterers are assumed to be uniformly located within the crown. 

Prior to the identification of its contribution to forest emission, the litter layer was considered 

transparent and generally ignored in the physical models.  

In the next section, as an example, we present the model proposed by Ferrazzoli et al (2006), which 

was later modified by Della Vecchia et al (2007) to include contributions from the forest litter. 

a1) Forest Emission model without litter contributions, by Ferrazzoli et al 

Figure 3.10 shows a visual representation of the model by Ferrazzoli et al (1996), without 

contributions from forest litter. 
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Figure 3.10: Model of the three forest layers: soil, trunks and crown 

Vegetation elements were represented by cylinders of various dimensions: those representing the trunk 

standing upright and those in the crown of different random orientations. Bistatic scattering and 

extinction cross sections for each element were calculated by applying suitable Electromagnetic theory 

(such as the “infinite length” cylinder, Rayleigh-Gans approximation, etc.) depending on wavelength 

and cylinder dimensions. The canopy scattering including contributions of all elements was then 

computed using a multiple scattering algorithm. This same algorithm was then used to combine 

canopy and soil scattering. The soil was represented as a homogeneous half space with a rough 

interface and its scattering calculated from the Q-h semi-empirical model. Finally the emissivity of the 

whole system was calculated from one minus the reflectivity (1-Γ). 

b) Inclusion of the litter layer 

Since the recognition of the litter layer’s role in forest emission, there have been two attempts to 

include it in physical models of forest emission: by Della Vecchia et al (2007) and Schwank et al 

(2008). This topic is still very new and so we may expect further developments in the future (including 

the work of this thesis). Demontoux et al (2008) also proposed a simple numerical approach for 

modelling the soil-litter emission. In all these approaches, the litter was modelled as an effective 

dielectric medium with a homogeneous effective permittivity value. This permittivity value was 

related to physical properties of the litter layer, including notably litter moisture content. The litter can 

be represented as an effective medium, at L-band frequency, because the components are smaller than 

the wavelength. It is also worth noting that since the litter is a dense medium we expect coherent 

effects to be non-negligible and therefore modelling the litter layer in the same manner as the canopy 

layer, applying radiative transfer theory, would lead to inaccuracies. 

In the next sections we present the models proposed by Della Vecchia et al (2007), Schwank et al 

(2008) and Demontoux et al (2008), and then briefly compare them.  
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b1) Model by Della Vecchia et al 

Della Vecchia et al (2007) present an updated version of the forest emission model proposed by 

Ferrazzoli et al in (1996), including contributions from a litter layer (Della Vecchia et al 2007). In the 

updated version the soil layer was replaced by a two layer soil-litter system with flat surfaces, as a first 

step, where the litter is represented as a layer of a mixture of air and dielectric material, as shown 

below in Figure 3.11: 

 

Figure 3.11: Representation of the soil and litter layers 

The uniform permittivity of the litter layer was calculated from the permittivities of the respective 

components of dielectric material (leaves and water) and air, with the aim of finding a relationship 

with measurable quantities. The permittivity of the dielectric material, εdm, was calculated as a 

function of the litter moisture using the empirical formula adopted for vegetation by El-Rayes and 

Ulaby 1987. 

The permittivity of the mixture, εlitter, was then calculated from the semi-empirical “refractive model” 

for mixtures (Ulaby et al vol I) as: 

εÓCÔÔÕÖ�/� � 
1 P V×�εFCÖ�/� � V×εØH�/�       (3.65) 

where VF is the volume fraction of dielectric material, expressed as a function of litter biomass, litter 

moisture, litter layer thickness and the density of water and dry dielectric material (leaves). A ratio 

was later assumed between litter thickness and litter biomass of 0.5 kg/m2, which fits the Bray 2004 

measurements. 

Soil permittivity was calculated using the semi-empirical model proposed by Hallikainen et al (1985) 

and the reflectivity of the overall soil-litter system was then calculated using the coherent multiple 

reflection model described in chapter 4, pages 232-237 of Ulaby et al (1985a). Note that this is still 

considering flat layers. This leads to oscillations due to coherent interactions between multiple 

reflections which in reality are smoothed by natural variations in the layer thickness around its average 

value and so the trend was modified in order to eliminate oscillations and keep the asymptotic values. 

In order to do this an exponential function was fitted to the coherent model output (reflectivity as a 

function of litter biomass) such that the root mean square difference between the function and the 

output was minimized. 
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The whole soil-litter medium was reduced to an equivalent single homogeneous half space whose 

permittivity was computed by minimizing a cost function proportional to the root mean square 

differences between the Fresnel reflectivity of the half space and the reflectivity calculated from the 

composite soil-litter medium, considering all angles in the range of 0° to 60° with a step of 10° and 

both polarisations. 

Finally the roughness of the equivalent half space was accounted for using the integral equation 

method (taken from Fung et al 1994) to calculate the bistatic scattering coefficient of the equivalent 

half space and combine soil and vegetation scattering. 

From this model, the litter was found to behave as a matching layer between the soil and the air (or 

canopy). The litter layer is less dense than soil and so its permittivity is between that of soil and air 

which led to the litter layer reducing reflectivity in the model and increasing emissivity at the soil-

canopy boundary. This was mostly evident in the real part of the equivalent half space permittivity. 

Inclusion of the litter layer in the model did not affect the time variation of simulated brightness 

temperatures but greatly increased their absolute values (by about 20K). The model was compared to 

results of the Bray 2004 radiometry experiment and the increased brightness temperature due to the 

litter layer meant that the calculated TB and experimental TB were very close in absolute values. 

Inclusion of the litter layer in the model also led to an improved representation of the forest 

emissivity’s sensitivity to soil moisture. 

b2) Model by Schwank et al 

Schwank et al (2008) proposed a physically based model for the microwave radiation of leaf litter at 

different moisture conditions. Like the Della Vecchia model, Schwank et al used an effective medium 

approach, considering the litter layer as a mixture of leaves, water and air, which each contributed to 

an overall effective permittivity of the litter layer. However the Schwank model considers the 

contributions of each of the components in a more physical way, using physical mixing formulas 

instead of the semi-empirical refractive index formula. 

The litter is modelled as an isotropic mixture of ellipsoids embedded in air (see Figure 3.12).  
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Figure 3.13: representation of the soil and litter layers as an effective medium with an effective 

permittivity that varies with depth z 

A coherent radiative transfer model, based on a matrix formulation of the boundary conditions at 

dielectric discontinuities derived from Maxwell’s equations (Bass et al 1994), is applied to calculate 

the overall reflectivity from ε(z). 

In order to account for large scale variations in litter depth, the reflectivity for each litter depth DL was 

computed as the average reflectivity over a depth DL±�DL.  

b3) Numerical Approach proposed by Demontoux et al  

In order to improve understanding of the electromagnetic properties of the litter layer, Demontoux et 

al (2008) performed laboratory measurements of the litter permittivity as a function of its moisture 

content. These experiments were performed for litter taken from the site of the Bray 2004 campaign, 

which consisted of a mixture of decomposed grass and pine needles. These measurements were used 

to derive an empirical relationship for the litter permittivity as a function of litter moisture. The 

authors then proposed a simple numerical model where the soil litter system was represented as two 

dielectric layers with flat surfaces. The soil permittivity was calculated from the soil moisture, using 

an empirically derived relationship and the litter permittivity was also calculated from litter moisture 

using an empirical relationship derived from laboratory measurements. The emission of the soil-litter 

system was calculated at nadir (0°).   

3.2.3 Discussion 

The identification of the role the litter layer plays in forest emission is an important discovery since it 

means that, unless we find a way to account for and remove the litter effect, we will be unable to 

retrieve soil moisture over forests under high moisture conditions. It is worth noting however that this 

may not be the case for all forests since the litter’s contribution to the emission is restricted to forests 

with a significant litter covering (which discounts tropical forests for example) and may be restricted 

to certain litter types, for example with a large leaf surface area. The dependence on litter type is still 

to be investigated. 

Soil - εsoil 

Litter – εlitter  
ε(z) 
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Theoretical models could play a key role in improving our understanding of the effect of the litter 

layer since if the model is complete it allows us to vary the many different parameters involved and 

identify the key affecting factors. 

So far the only two attempts have been made to model the contribution of the litter layer to forest 

emission: models proposed by Della Vecchia et al (2007) and Schwank et al (2008). Both models 

focused on calculating the permittivity of the litter layer as a function of its physical parameters, 

including moisture content. Della Vecchia et al calculate this in a more semi-empirical manner and 

Schwank et al in a more physical manner. Della Vecchia et al calculated the emission of the soil-litter 

system using a coherent multiple reflection model and the rough surface of the litter layer was 

accounted for by representing the soil-litter medium as a single homogeneous effective medium with a 

rough surface, whose emission was calculated using the Q-h semi-empirical model. Schwank et al 

calculated the emission of the soil-litter system by representing the soil-litter system as a single 

medium with a permittivity varying with depth. The rough surfaces were accounted for as variations in 

the permittivity constant with depth. In summary, Della Vecchia et al applied an exact electromagnetic 

model to calculate the soil-litter emission but only took into account the litter layer roughness, and this 

was accounted for using an approximate method. On the other hand Schwank et al accounted for both 

the litter and soil rough surfaces but in an approximate manner, considering only the standard 

deviation of surface height and not the autocorrelation length or autocorrelation function. 

The two models are therefore both approximate in the way they deal with litter and soil surface 

roughness, but they both provide first attempts at calculating the permittivity of the litter as a function 

of its physical properties. More research is required, particularly in experimental data on the litter 

permittivity, in order to further test the validity of these models. 

A numerical modelling approach for calculating the soil-litter emission was also proposed by 

Demontoux et al (2008), based on the Finite Element Method. Calculations were performed for a two 

layer system, with soil and litter permivities. Both layers had flat surfaces and the emissivity was 

calculated only at nadir (0°). The litter permittivity was calculated as a function of litter moisture from 

a relationship determined experimentally from laboratory measurements of litter samples taken from 

the Bray 2004 site (Grant et al 2007). Note that this was a first step in the model that was later 

developed for the work of this PhD. 
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3.3 Choice of approach for modelling the soil-litter L-band emission in this 
thesis 

The objective of this thesis is to develop and validate a modelling technique that allows us to study the 

microwave emission of the soil-litter forest system. The modelling approach that we adopt must allow 

us to model all important features of the soil and litter layers as well as the measurement conditions of 

the SMOS mission. This includes the following features of the soil and litter layers: 

1. Soil layer: 

- Temperature gradient (modelled as Teff) 

- Soil moisture content, which varies as a function of depth 

- Rough surface 

- Inclusions such as rocks or stones (in some cases) 

2. Litter layer: 

- A dense layer of organic debris  

- Rough surface 

- Litter moisture content 

- Litter depth 

 

In order to reproduce the measurement conditions of the SMOS mission, we must also be able to 

perform calculations of the emissivity for two polarisations, H and V, at all angles from 0° to 50°, and 

for different permittivity values covering the range of soil and litter moistures. These requirements are 

summarised in Figure 3.14. 

 

As we have seen, the soil layer can be represented as a homogeneous dielectric layer with a 

permittivity εsoil which can be calculated from the frequency, soil moisture content, soil texture and 

soil temperature. There are various algebraic models that allow us to do this, including the model 

developed by Mironov et al (2004). Thus the moisture content and soil texture can be accounted for in 

the soil’s dielectric permittivity constant. The overall emission of the soil layer can then be calculated 

from its effective permittivity and as a function of its roughness (standard deviation of surface 

height,σ, autocorrelation length, Lc, and autocorrelation function) using either a semi empirical 

approach, a numerical method, or an analytical method, as discussed in section 3.1.2. Since volume 

effects are non-negligible at microwave frequencies for low soil moisture it may be important to 

model heterogeneous features below the soil’s surface, which includes soil moisture and potentially 

temperature gradients and in some cases inclusion such as buried rocks can have an effect. 
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The litter may be modelled in a similar manner to the soil layer: as a homogeneous layer with an 

effective dielectric permittivity constant, εlitter, which can be calculated as a function of its physical 

parameters using a standard mixing model such as the models used by Schwank et al (2008), or Della 

Vecchia et al (2007), or an empirical, experimentally determined relationship (e.g. Demontoux et al 

2008), and a rough surface accounted for using one of the methods presented in chapter 4. 

 

Thus we can model the soil-litter system as two dielectric layers, each with a rough surface. It may be 

important to include heterogeneous features such as moisture gradients or buried objects (rocks, 

stones, etc.). The emission of each dielectric layer could then be calculated as discussed in chapter 4: 

using the semi-empirical Q-h model, an analytical model such as IEM, or a numerical approach. 

However we require the combined emission of the two layers. If we chose to use one of the numerical 

models presented in chapter 4, we could equally calculate the emission of two layers as of one, since 

results are obtained by solving Maxwell’s equations directly for the desire structure. If we were to 

Figure 3.14: The features of the soil and litter layers and measurement conditions that 

must be modelled in the approach adopted 

θ Calculate the far-field emissivity 

at: 

- H and V polarisation 

- angles from 0 to 60° 
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apply an analytical or semi-empirical approach, we could calculate the emission of the whole system 

using radiative transfer equations, or an electromagnetic approach such as those adopted by Della 

Vecchia et al (2007) or Schwank et al (2008). However we may lose information due to reflections 

between the two rough surfaces. Also we cannot model volume effects with the analytical approach 

and with the Q-h approach we would not be able to study the effects of σ and Lc. Furthermore we 

could not model heterogeneous features such as moisture gradients and inclusions using an analytical 

or semi-empirical method. 

 

In this thesis we therefore chose to use a numerical approach since it is the most accurate of all the 

methods, and it also allows us to include all our requirements, including in particular the inclusion of 

heterogeneous features such as multilayers.  

We now consider the choice of numerical modelling approach for this thesis. In constructing a 

numerical model which solves Maxwell’s equations for a given structure, there are several steps which 

must be completed. The numerical equations of the selected method (MoM, FEM, or FDTD) must be 

developed and written as a code (usually in Fortran), the structure (including rough surfaces) created 

and meshed, boundary conditions and calculation conditions (frequency, incident beam, incident 

angle) defined and the numerical equations solved in the mesh. 

It is possible, and even common, to write a code for each step and a code to run them together. This 

process is a long one and takes many years of work. Often, laboratories develop and improve such 

codes over time and it involves the work of many different people. The advantage of writing codes is 

that they can be adapted specifically to the structure to be studied, such as to the rough surface 

scattering case. For example some MoM based codes have been speeded up thanks to characteristics 

particular to rough surfaces, and the Thorsos taper (Thorsos 1988) which has been developed 

specifically for rough surface scattering applications can be included.  

Alternatively it is possible to purchase commercial software designed to solve Maxwell’s equations 

numerically for a number of different problems and adapt this software to the problem in hand. In this 

case we are able to skip the stages where the numerical equations are written and the meshing 

procedure is established and begin working directly on the application. We benefit from a meshing 

procedure, a powerful tool for creating geometric structures, and a calculating code, all of which have 

been optimised and are continually being updated and optimised by the software developers. This 

makes the process of developing the model much faster, since a lot of the work has been done for us, 

and we are able to generate and analyse results much sooner. The disadvantage is that we cannot 

develop or adapt the code for the rough surface case and we may come across limitations. However if 

we choose a flexible software tool, we can keep these restrictions to a minimum. 
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For the work of this thesis we decided to adopt the second method of developing a procedure using 

commercial software, in the interests of being able to apply the model more quickly. Furthermore, 

prior to the start of this PhD, the IMS (Integration du Materiau au Système) laboratory, where the 

work of this thesis was in part carried out, already owned electromagnetic software and was 

experienced in its use. 

The IMS laboratory owns software based on the FDTD method and also software based on the FEM 

method, both of which can be used to model the scattering and emission of rough surfaces. In 

choosing which of the two to use we must consider again the afore-mentioned requirements, 

summarised in Figure 3.14. In addition to these factors, the model must be practical for the use of 

creating a database. 

We chose to use the FEM software, Ansoft’s HFSS© (High Frequency Structure Simulator), because 

it fulfils these criteria. It is based on the finite element method which is well suited to calculating a 

solution to Maxwell’s equations for heterogeneous structures, and so can be easily extended to 

considering multilayer structures and even including moisture gradients and inclusions. Also, there is 

the possibility to vary certain parameters such as incident angle and permittivity (soil moisture) within 

one calculation. This will be useful when we require results of many different values of soil moisture 

and measurement angles for the database. 

A MoM method was not adopted because whilst it is the most accurate method for calculating rough 

surface scattering it is not well suited to heterogeneous structures including multilayers and/or 

temperature and moisture gradients. The approach developed in this thesis allows us to model two 

dielectric layers with rough surfaces, which to date has not been done with the Method of Moments. It 

can also be extended to include temperature and soil moisture gradients, which has not been done with 

the Method of Moments. 

Our general approach was to develop a method for calculating the emission of the soil-litter system 

and then validate it, first for the bare soil emission and secondly for the two layer soil system. This 

validation process is important since there are currently no results published of the rough surface 

emissivity and only a very few papers of the rough surface scattering, as calculated using the Finite 

Element Method. Furthermore there are no results of rough surface scattering and emission published 

using the HFSS modelling tool. Therefore it is important to validate first for a single layer with a 

rough surface, and secondly for the two-layer system. Note that although Ansoft’s HFSS tool was used 

to perform numerical simulations, it forms only a part of the whole approach developed to calculate 

the scattering and emission of the soil-litter structure. In this thesis we will refer to this whole 

approach as the numerical FEM approach. 
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4. The Numerical FEM Approach developed for 
Calculating the L-band Scattering and Emission of the 

Soil-Litter system found in Forests 

In this section we present the numerical modelling approach developed in this thesis to calculate the 

scattering and emission of multilayer heterogeneous forest structures. In section 4.1 we present the 

approach developed and in section 4.2 we present a sensitivity study that was carried out to determine 

values of model parameters. 

4.1 Model Description  

The numerical modelling approach developed during this thesis relies on the use of Ansoft’s HFSS 

(version 12.1) simulation software1 which in turn solves Maxwell’s equations using the Finite Element 

Method. At the start of this PhD, a simple HFSS modelling approach had already been developed in 

the IMS laboratory, to model the emission of the soil-litter system. In this approach the soil and litter 

media were modelled as dielectric layers with flat surfaces and the emission was calculated only at 

nadir (0°). For the work of this PhD, I developed this approach to include rough surfaces and to 

calculate both the scattering and emissivity of the soil-litter a system over the whole range of angles 

(θ=0 – 90°) and both H and V polarisation. 

In the following sections we present an introduction to the HFSS software and then describe each 

stage in the numerical FEM approach developed to calculate the scattering and emission of 

multilayered forest structures. Lastly we present a perspective on how the procedure could be adapted 

to future applications. 

4.1.1 Ansoft’s HFSS software 

Ansoft’s HFSS software is a numerical modelling software tool that calculates the electromagnetic 

field using the Finite Element Method, described in section 3.1.3.2b1). The reasons for our choice of 

this software are given in section 3.3. 

HFSS combines a 3D graphics design tool, an automatic meshing tool, a numerical solver and an 

application for post-calculation results analysis, all of which can be controlled in the HFSS user 

interface. This interface includes a number of windows and commands that allow us to set up a 

calculation and view and export results. The two main windows are the calculation area and the project 

                                                      

1 HFSS product website : http://www.ansoft.com/products/hf/hfss/  
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manager. The calculation area shows a visual representation of the object for which we wish to 

perform a calculation. The object is built or imported in this window. We can then select the object or 

any of its faces, and apply material properties or boundary conditions to them. The project manager is 

where all the calculation conditions may be defined and the post-calculation results analysis may be 

controlled.  Other windows allow us to see the progress of a calculation, including any errors which 

have occurred, view and export results, and view the convergence obtained during the meshing 

procedure. 

The basic HFSS procedure is to create or import a structure, apply material properties to this structure, 

set calculation conditions, start the calculation and then view and export data once the calculation is 

finished. 

4.1.2 Calculating the scattering and emission of forest multilayer structures using a 

numerical FEM approach 

In the approach developed during this thesis, the soil and litter layers are represented as homogeneous 

dielectrics with randomly rough surfaces. It is also possible to extend the approach to include 

heterogeneous features of the two layers, such as permittivity gradients and inclusions (buried rocks or 

stones), but as a first step the soil and litter layers are considered to be effective media with 

homogeneous permittivity constants. The electric field scattered off such a structure is calculated using 

the Finite Element Method, by use of Ansoft’s HFSS software. 

The approach developed during this thesis for calculating the scattering and emission of multi-layer 

forest structures with rough surfaces follows the usual HFSS procedure with some developments, and 

involves the following stages: 

1. Creating the required rough surface(s) 

2. Building graphically the structure to be studied using one or more of the rough surfaces and 

then exporting it into a HFSS project 

3. Adding extra features to the structure with HFSS, if necessary, including inclusions, 

temperature and moisture gradients 

4. Applying calculation conditions including 

- boundary conditions 

- incident beam set up 

- optimetrics: a “sweep” different values for a given variable 

- convergence conditions necessary for the meshing procedure 

- the far field sphere on which the scattered electric field will be calculated 

5. Running calculations and post-calculation results analysis 
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6. Exporting the calculated scattered electric field  

7. Repeating all the previous stages for N different surfaces, creating N different HFSS projects 

and exporting N sets of results of the scattered electric field 

 

These different stages, and the software tools used at each stage, are shown in Figure 4.1.  

We present each of stage in depth in sections 4.1.2.1 to 4.1.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 4.1: The different stages in the numerical FEM approach developed to calculate the 

scattering and emission of the soil-litter structure. The different programmes used for each stage are 

shown on the left. 

Repeat steps 1– 6 

N times for N 

different structures 

but with the same 

roughness 

conditions 

R Programme 

C4W’s 2D Shop 

Model Design 

Ansoft’s HFSS 

Matlab 

1. Create one randomly rough surface 

(bare soil structure) or two randomly 

rough surfaces  (soil-litter structure) 

2. Create the volume to be studied 

3. Import the volume into HFSS 

4. Set the calculation conditions 

5. Run the calculation 

6. Export the calculated scattered E-

field 

7. Calculate the bistatic scattering 

coefficient and emissivity, averaging 

the scattered Electric field over the N 

different structures 



105 
 

4.1.2.1 Building the structure 

HFSS possesses a powerful 3D graphics design tool that allows the user to build many different and 

complicated structures. However for this thesis we wished to create randomly rough surfaces of 

specific autocorrelation functions and values of σ and Lc, and this was not possible with HFSS’ 

graphics tool. Therefore we developed a procedure for creating the desired structures elsewhere and 

importing them into HFSS. 

A 3-dimensional layer with a rough surface is introduced into HFSS’s calculation area by the 

following procedure.  Randomly rough surfaces are generated in the form of {x,y,z} points using the 

“R” statistical software©, employing in particular the “Random Fields” package. These rough surfaces 

have guassian random distribution, standard deviation of surface heights, σ, and autocorrelation 

functions of the following form: 
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Lc is the autocorrelation length and the value of n determines the form of autocorrelation function: for 

the special cases of exponential and gaussian autocorrelation functions it is equal to 1 and 2 

respectively.  

The distance between the points, known as the surface’s “resolution”, was set to 1cm for the work of 

this thesis. The size of the surface, L x L, must be carefully chosen. This will be broached in the next 

section. 

It is also possible to introduce roughness profiles measured experimentally. The rough surfaces, either 

those created using the statistical software, or real profiles measured experimentally, are then 

transformed into 3-dimensional layers: C4W’s “3D Shop Model Design” © software (a graphics 

design tool) is used to create solid slabs out of the rough surfaces.  

Figure 4.2 shows the procedure for creating volumes from the rough surfaces and then importing them 

into HFSS. There are three variants of the procedure, shown in columns a), b) and c). If we wish to 

study the rough surface only, using C4W’s 3D shop model design software, we can create a volume 

above the rough surface, representing a vacuum. This is shown in column a) of Figure 4.2. If we wish 

to study the soil volume, including heterogeneities in the soil (added later in HFSS), we can create a 

volume below the rough surface to represent the soil, as shown in column b) of Figure 4.2. This can 

then be capped by a vacuum above the rough surface, by creating and importing the structure shown in 

column a). A multilayer structure can also be built by importing each different layer using one of the 

procedures shown in columns a), b) or c) as appropriate. Column c) shows the importation of a 
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a) Boundary Conditions 

Before performing the calculation, boundary conditions must be applied to the boundary faces of the 

structure. These boundary conditions describe the behaviour of the electromagnetic field at and 

beyond the boundaries, for example whether it is radiated to infinity, absorbed or reflected. Boundary 

conditions are necessary in order to obtain a numerical solution. HFSS allows us to apply a number of 

different boundary conditions; the two used in the work of this thesis are the “radiation condition” and 

the “layered impedance” condition. The former “radiates” all electromagnetic fields incident on the 

boundary to infinity. Note that this condition assumes a vacuum inside the boundary and so if applied 

to the boundary of a non-vacuum surface there will be reflections. The radiation condition is also 

necessary for the near to far field calculation. The “layered impedance” boundary condition acts as if 

there is an infinite material on the other side of the boundary. The “starting impedance” is defined by 

selecting a material for the layered impedance boundary condition. Note that if this is the same as the 

material on the inside of the boundary the Electromagnetic field is totally absorbed on the boundary. 

However if a different material is selected there will be reflections. In summary the radiation and 

layered impedance boundary conditions provide total absorption on the boundaries of the calculation 

area, the former on boundaries bordering a vacuum and the latter on boundaries bordering materials. 

The layered impedance boundary can also be used to create a change in permittivity at the boundary, 

as in the calculations performed for the work of this thesis.  

In our calculations, a layered impedance boundary condition was applied below the structure to 

simulate an infinitely deep lower layer. At the top and sides of the calculation area radiation boundary 

conditions were applied in order to prevent reflections, as well as to provide “virtual surfaces” for the 

near to far field calculation.  

b) Incident wave 

For our calculations we required a continuous polarized incident wave, at an incident angle θ in the 

range of 0° to 90°, azimuth angle φ=0, and polarization H or V.  

The incident wave(s) are set under the “excitation” section in the project manager. Possible incident 

waves include a plane wave and a gaussian beam. The plane wave is the natural choice for satellite 

radar and radiometer applications. However a gaussian beam allows us to avoid errors due to “edge 

effects” (see section 3.1.3.1c)). Unfortunately the HFSS software does not allow us to vary the 

equations of the wave so we cannot apply the Thorsos taper (described in section 3.1.3.1c)) for this. 

The Gaussian beam has the form: 
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where (x,y) is a point on the surface, (xcentre,ycentre) is the centre of the surface and g is a measure of the 

beam width. 

The type of wave must be carefully chosen as well as the value of g for a Gaussian beam. This is 

explained in detail in the next section.  

The incident angle of the beam, its polarisation (H or V), and, in the case of the gaussian beam, the 

value of g must all be defined. 

HFSS can calculate the electromagnetic field resulting from a number of different incident angles in 

one calculation. This can be done in two different ways. A sweep of the angle can be included in the 

the wave setup, with a starting point, an ending point and a homogeneous step, for example 0, 30, 60°. 

Alternatively a number of different incident beams can be set up, each with a different angle. In the 

first case the disadvantage is that, in our experience, for complicated structures HFSS is sometimes 

unable to perform mesh operations with this kind of setup or is likely to take longer setting up such a 

calculation. In the second case the disadvantage is that exporting the data takes longer. This is because 

the results of each angle must be viewed and exported separately and each time a new beam is selected 

HFSS must recalculate the far field data. In the second case it is also important not to apply too many 

different waves as HFSS may then be unable to find a solution. 

c) Calculation Conditions 

HFSS solves Maxwell’s equations by dividing the structure in the calculation area into a mesh of small 

elements or cells, and then solving for each cell, taking into account the boundary conditions. Once a 

solution has been found the mesh is refined many times, with progressively smaller cells, and a new 

solution obtained. With each refinement (iteration) the change in the calculated energy value, �E, of 

each solution or the change in the reflection coefficient matrix, �S, is obtained. A final solution is 

obtained by imposing a convergence criterion on �E or �S. 

Before beginning calculations, criteria for a converged solution must therefore be defined, so that 

HFSS knows when to stop the mesh refining procedure. This includes a value of �E or �S (the change 

in energy or the S matrix between passes) which indicates convergence, the maximum number of 

iterations, the maximum refinement per pass, and the minimum number of converged passes. In all the 

calculations performed during the work of this thesis the minimum converged passes was set to 2 and 

a convergence of 0.03 (3%) in �E was set. A high maxiumum number of passes was set (around 20) 

so that a 3% convergence was always obtained. This allowed us to restrict errors due to the meshing 

approximation to approximately 3%. A maximum refinement per pass of 10% was also set.  
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Other calculation conditions that must be defined are the frequency and the order. For the work of this 

thesis, the frequency was always set to 1.4GHz since the first application of this model is the SMOS 

mission. However the model can be used for different frequencies as required. It is also possible to 

perform a frequency sweep with HFSS, where a solution is obtained for a number of different 

frequencies, but this was not considered in this thesis. However it could be of interest for future work. 

The order gives the type of shape functions, used in the FEM calculation and can be equal to 1 or 2. 

An order of 2 refers to quadratic shape functions and an order of 1 refers to linear shape functions. The 

order also indicates the number of nodes on a cell: a higher order means more nodes. An order of 2 is 

more accurate but requires more CPU time and memory. In the latest version of HFSS (v12.1.1) it is 

possible to set a “mixed order”. This means that HFSS can use different orders on different cells: it 

chooses order 2 for more complex geometrical areas and order 1 for simpler geometrical areas, thus 

maintaining the accuracy of order 2 but reducing computational cost. In the results presented in this 

thesis we chose therefore to use mixed order. 

All calculations presented in this thesis were performed on a 64 bit machine with 64GB of available 

memory. 

d) Optimetrics 

It is possible to vary the value of certain parameters in one calculation by defining an “optimetric”, a 

sweep over that parameter. The parameter is defined as a variable, which is given a starting value and 

then an optimetric of different values for this variable may be defined. The optimetric includes a list of 

all possible values. HFSS then calculates automatically a solution for each value in the optimetric, 

recalculating the mesh if necessary. Parameters for which an optimetric may be defined include 

material permittivities and dimensions of objects in the calculation area, providing changing these 

does not add any external faces for which boundary conditions are not defined. For the work of this 

thesis we were able to calculate automatically different values of soil moisture, by setting an 

optimetric for the soil permittivity. This feature of HFSS will also be useful for the future application 

of creating the final database. 

e) Displaying and Exporting Results 

The scattered electric field is calculated inside the area by HFSS. The electric field in the far field 

region, at a distance R from surface j, Er,j
s(θs,φs) is then extrapolated from this value at the virtual 

surfaces, a procedure which is described in section 3.1.3.3b1.1, r is the polarization of the scattered 

field, and θs and φs are the scattering angles. This is done by defining a near field sphere at a distance 

R from the structure. In defining this sphere we set a ‘step’ for the angles around the sphere, which 

sets the integration step in the emissivity calculation later on. This value must therefore be chosen to 
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be small enough so that errors due to discretising the integration process are minimized. This will be 

addressed in section 4.2. HFSS then performs a near to far field calculation from the virtual surfaces to 

the sphere. The value of R was set to 50m for smaller surfaces (L=6λ) and 100m for larger surfaces 

(L>6λ), both of which are in the Fraunhoffer far field region according to the condition (2.50).  

Results of the scattered electric field in the far field sphere may be viewed in HFSS as a table. These 

results may then be exported as .txt files. 

4.1.2.3 Analysing Results calculated by HFSS 

The HFSS calculation procedure described in the previous section is repeated for structures with N 

different rough surfaces with the same autocorrelation functions and values of σ and Lc. This gives us 

N HFSS projects and N sets of results of Ep,j
s(θs,φs) at all angles (θs,φs) in the hemisphere above the 

rough surface. We then calculate the bistatic scattering coefficient, for incident polarization p and 

reflected polarization q, σpq
0, from the reflected electric field averaged over all N surfaces. This 

averaging process is done in order to approach the value that would be obtained for the case of an 

infinitely large rough surface. The bistatic scattering coefficient is calculated from the following:  
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where (θ,φ) is the angle of the incident wave, (θs,φs) is the angle of the reflected wave, N is the number 

of surfaces to be averaged over, Aeff is the effective area of the surface illuminated and Eq
i

 is the 

incident electric field with polarization q. For a gaussian incident beam the effective area is given by 

Aeff=πg2/(2cosθ) and in the case of a plane wave it is simply the total area of the surface illuminated.  

The bistatic scattering coefficient calculated by (4.3) contains both coherent and non-coherent 

components. The non-coherent component can be isolated from (3.23). The values of g and N in this 

equation must be carefully chosen: this will be discussed further in section 4.2. The backscattering 

coefficient is the bistatic scattering coefficient for the monostatic case of (θs,φs)=(θs,φs+π) i.e. the 

reflection angle is equal to the incident angle. The emissivity of the surface measured at polarization p, 

ep(θ,φ) can be calculated by integrating the bistatic scattering coefficient over half space (Peake 1959), 

as follows. The emissivity is calculated from the reflectivity Γp(θ,φ) using (2.83) and the reflectivity is 

in turn calculated from the bistatic scattering coefficient by the following: 
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Thus we integrate the bistatic scattering coefficient over θS and φS. We approximate this integral to a 

sum over θS and φS as follows: 
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where �θS and �φS are the integration steps in θS and φS respectively. To simplify things we chose 

values so that �θS = �φS=s. (4.5) is an approximation to (4.4) that approaches (4.4) as the integration 

step s approaches zero. If the integration step is not small enough we could introduce errors into the 

emissivity calculation due to this approximation. The integration step must be carefully chosen to be 

small enough to prevent this: this is discussed in section 4.2.   

4.1.3 Note 

In this thesis we have developed a procedure to calculate the scattering and emission of multilayer 

forest structures with rough surfaces, as presented in the previous sections. For the work of this thesis 

we represent the soil and litter layers as homogeneous dielectrics but it is worth noting that 

heterogeneous features can also be modelled using this approach. For example, as mentioned in 

section 4.1.2.1, we can create structures which include temperature and soil moisture (permittivity) 

gradients with this approach. This will have future applications such as modelling the emission of 

structures with extreme temperature gradients like permafrost. Also the optimetrics feature, which 

allows us to vary parameters in a single calculation, was used to some extent in this PhD but it will be 

of great use when creating the database of the soil-litter emission, the first application of the model.  

4.2 A sensitivity analysis to set model parameters 

In the previous section we identified a number of model parameters that must be carefully chosen 

before we apply our numerical modelling approach. In order to do this, a model sensitivity analysis 

was performed and is presented in this section. The objective of this study was to find the value for 

each parameter that maximises the accuracy of the calculated emissivity for the whole range of 

conditions for the soil and litter layers that are found in the environment, and also for all SMOS 

measurement conditions, which includes angles from 0° to 50° and polarisations H and V. We also 

aimed to evaluate the effect of each model parameter on the calculation cost. This would allow us to 

verify that the values selected for the model parameters are not too costly in calculation time and 

memory for the required application. A secondary objective was to optimise the model, by identifying 
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values for parameters that have a lower associated calculation cost but produce equally accurate 

results. 

We focused this study on parameters that are considered in the literature to most influence results of 

rough surface scattering (see section 3.1.3.1), and also parameters that were found to most influence 

results during the course of this PhD. 

In the next sections, we present first the model parameters whose values we aimed to determine, and 

the conditions for which these values must be valid. Secondly we present the sensitivity analysis of 

each parameter, including method, results and discussion. Lastly we summarise the conclusions of this 

study, and identify values of parameters that will be used for the work of this thesis. 

4.2.1 Model Parameters and calculation conditions 

The model parameters whose values we aimed to determine in this study were: 

1. The number of simulations performed for each rough surface, corresponding to the number of 

rough surfaces, N, over which we average the scattered electric field in order to obtain the 

bistatic scattering coefficient and the emissivity.  

2. The step in the angles θs and φs at which the scattered electric field is calculated. This sets the 

step in the angles for the bistatic scattering coefficient, and is the integration step for the 

emissivity calculation. It is defined as the step in the θs and φs of the sphere for the near to far 

field calculation (see section 4.1.2.2e). We shall call this step s. 

3. The type of incident beam 

4. The size of each rough surface: L x L 

When modelling the scattering and emission of a rough surface using a numerical approach, we 

approximate a surface of infinite size to N surfaces of L x L size, as explained in section 3.1.3.1b. We 

must therefore determine a minimum value of N for which this approximation is valid. We must also 

determine the minimum value of L for which this is valid since if we perform calculations for surfaces 

that are too small we lose information of the long range interactions between surface points. In 

addition L must be large compared to the wavelength so that the surface can be considered 

macroscopic in its interaction with the incident beam. L must also be large compared to Lc so that the 

rough surface accurately represents a surface of the same roughness and infinite size. Thus the value of 

L must also be determined to be large enough so that we do not lose important long range interactions, 

the surface may be considered macroscopic, and the surface roughness of each surface is 

representative of the whole. Note that larger values of N and L have larger calculation costs so we 

cannot simply choose very high numbers. We must also determine how the values of N and L 
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influence the calculation costs, so that we do not choose values that have unreasonably high 

calculation time and memory requirements. 

We chose N to range up to a high number and s down to a low number because the higher the number 

of surfaces the more accurate the results and the lower the integration step the more accurate the 

results. However it takes longer to calculate higher values of N since we require more simulations, and 

lower values of s require more time for the near-to far field calculations. We arbitrarily chose the 

values of N=100 for high N and s=0.2° for low s. We expect the results to indicate whether N=100 is 

sufficiently high and if s=0.2° is sufficiently low, after which we can adjust these values by 

performing more calculations and/or reducing the value of s below 0.2° if necessary.  

For the incident beam we tested both the plane incident beam and a tapered wave. The former is the 

natural choice for radar and radiometer applications since the electromagnetic waves measured in the 

field may be considered to be plane. However with the case of finite surface size a tapered beam may 

be desirable in order to reduce errors due to edge effects, as discussed in section 3.1.3.1c. For the 

tapered beam, we chose a gaussian beam of the form of (4.2) since this is the only tapered beam option 

available in HFSS. For this gaussian beam, the beamwidth, g, must also be determined. We therefore 

tested values in the range of g=0.1L to g=0.25L since it has been suggested in the literature that values 

of g should be chosen in this range, depending on incident angle  (e.g. Tsang et al 2001, Marchand and 

Brown 1999). In general the size of the surface is considered to be sufficient at a value of 10λ. We 

therefore decided to test surface sizes around this value, ranging from 12λ just above this value to 6λ 

just below.  

The values that were considered for these parameters are summarised in Table I.  

Table 4-I:  Possible values for the model parameters 

Parameter Range of values 

N 2 – 100 surfaces 

Integration step, s 0.2, 0.5, 1 degrees 

Incident beam Plane, Gaussian g=0.1L – 0.25L 

L 6λ - 12λ (1.27m – 2.55m) 

 

We require the chosen values for the model parameters to be valid for all conditions that we may wish 

to model, i.e. all conditions found in the field and for all conditions used in experimental radiometry, 

including all: 

1. Roughness conditions: different values of the standard deviation of surface heights, σ and the 

autocorrelation length, Lc 
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2. Soil moisture conditions (dielectric permittivities of the layer with the rough surface)  

3. Incident beam angles 

4. Polarisation 

 

We also require them to be valid for all possible values of the other model parameters. 

We selected roughness values for σ and Lc varying between the extremes of values found in the field. 

Soil moisture found in the field tends to vary between approximately 5% and 50% for a saturated soil. 

We therefore selected 5% for the lowest value. However we selected 30% for the highest value since 

this corresponds to a very wet conditions and the soil permittivity does not greatly change above this 

value. The angle range was chosen to be that of SMOS (θ=0 - 50°), which also covers the usual range 

of radiometry measurements, the azimuth angle fixed at 0° (φ=0°), and both polarisations were tested.  

Note that we only consider the case of a single rough surface in this study. In general we expect the 

parameters chosen to still be valid for multilayer structures. However further work may be required to 

verify the validity of some of the selected values for parameters, in the presence of multilayers and 

heterogeneous features (inclusions, soil moisture gradients), before the model is used to generate 

results for such structures. 

In all calculations performed in this study, surface resolution, the distance between surface points, was 

chosen to be 1cm. Values in the literature that have been used in MoM emissivity studies range from 

approximately 0.5cm (e.g. Huang et al 2010) to 1.3cm (Zhou et al 2004). Thus we chose a value that 

falls within this range. However it would be of interest in future work to test the effect of this 

parameter on the accuracy of the results. The autocorrelation function of the rough surfaces was 

chosen to be exponential, since in reality rough surfaces have autocorrelation functions closer to 

exponential than gaussian functions. For the calculations in this study, permittivity values were 

calculated for a given soil moisture using the Mironov model for a soil with a clay content of 16.6% 

and sand content of 83.4%, as found in the field on the SMOSREX experimental site (see de Rosnay et 

al 2006, as well as chapter 6 of this thesis, for details of this site). 

Table 4-II summarises the range of calculation conditions considered in this study.  
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Table 4-II: range of possible values for the calculation conditions 

Condition Range of values 

σ 0.44 - 4 cm 

Lc 3 – 9cm 

Angle, θ 0 – 50° 

Polarisation H, V 

Soil Moisture 5 – 30%  

 

In performing this study we also consider the CPU time and memory requirements and how these 

depend on the values of the model parameters. The aim of this study is to evaluate the effect of each 

parameter on the accuracy of the results and also on the calculation costs so that we can select values 

that are accurate but not too costly in calculation time and memory. In the case that this involves a 

compromise between accuracy and calculation time we wish to evaluate this compromise. 

The range of calculation conditions shown in table II presents the range over which the parameters 

chosen must be valid. However, it was not always necessary to test the entire range for all the 

conditions, in order to obtain this validity. Wherever possible we aimed to test the worst case scenario. 

For example if we wished to find the minimum value of N necessary to produce accurate results we 

tested only calculation conditions that would require the highest value of N, and so forth. 

The specific conditions tested for each parameter are presented in the following sections. In all cases 

we considered the impact of the parameters on the emissivity and in some cases the impact on the 

bistatic scattering coefficient and backscattering coefficient. We considered the scattering case 

because although the application of the modelling approach developed is the emissivity we compare 

calculations of the surface scattering when we validate the model (as presented in section 5.2). 

4.2.2 Method and Results 

4.2.2.1 Number of Rough Surfaces 

Firstly we considered the emissivity eN and bistatic scattering coefficient σN of a rough surface as a 

function of the number of surfaces, N, over which the scattered electric field is calculated. As we 

average the scattered electric field over an increasing number of surfaces we expect σN and eN to 

converge to a solution, namely the value that would be obtained for a rough surface of infinite size, or 

eN=∞ and σN=∞. In this study we wish to evaluate the effect of N on the calculated emissivity, bistatic 

scattering coefficient and backscattering coefficient. We wish to observe the expected convergence 

with N so that later when we apply our numerical approach we can select a value of N such that 
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averaging over a higher number of surfaces has little effect on the results. Futhermore we wish this 

value to be valid for all possible calculation conditions shown in table II and all possible values of the 

other model parameters, shown in table I.  

 

For the determination of this parameter, we chose to investigate only the smallest surfaces, with a size 

of 6λ, since we expect larger surfaces to require less averaging. We also considered only an incident 

gaussian beam of the smallest beamwidth g=0.1L. This is because this wave illuminates the smallest 

area of the surface and so we expect to have to average over the highest number of surfaces with this 

beam. Thus a value of N that is large enough for surfaces with a size of 6λ and incident beam of 

g=0.1L will be large enough for larger surfaces and all other incident beams and we need only test 

these conditions. We considered surfaces of two different roughnesses: 

 

1. σ=4cm, Lc=3cm 

2. σ=0.44cm, Lc=9cm 

 

These represent the extreme cases of very rough and very smooth (though still rough) surfaces that can 

be found experimentally (e.g. Wigneron et al 2010 and Mialon et al 2008). 

 

For the rougher surface (surface 1 above) we considered only H polarisation and a value of 30% for 

soil moisture. We do not expect polarisation to have an effect on the number of surfaces required so 

we expect to find the same value for H and V polarisation. Also, if the soil moisture is high this means 

that the rough surface has the greatest effect on scattering since there is the largest difference in 

permittivity on the air-to-soil boundary. In this case the scattering profiles of each of the surfaces 

should vary more and we expect to have to average over a greater number of surfaces. However we 

performed calculations at both V and H polarisation and for both 5% and 30% soil moisture for the 

smoother surface (surface 2 above), to check this hypothesis.  

 

We also used an integration step s of 1 degree since this requires the least amount of calculation time. 

The permittivity values were calculated using the Mironov model, to be εr=17.03+1.96i for a soil 

moisture of 30% and ε r =3.54+0.24i for a soil moisture of 5%. These permittivity values were used 

throughout this study for soil moistures of 5% and 30%. 

 

Figure 4.4 and Figure 4.5 show the results of the bistatic scattering coefficient as a function of 

scattering angle, for different values of N. We present results at H polarisation and for a soil moisture 

of 30% but results were very similar for a soil moisture of 5% and V polarisation. Figure 4.6 - Figure 

4.11 show the results of the backscattering coefficient and the emissivity as a function of the number 
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of surfaces, N, for different angles and polarisations and for different values of surface roughness and 

soil moisture.  

 

 

Figure 4.4: Bistatic scattering coefficient (dB) as a function of scattering angle for the smoother 

surface of σ=0.44cm, Lc=9cm, soil moisture of 30% and H polarisation. Results are shown for 

different values of N and for incident angles of a)θ=0° and b) θ =50° 
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Figure 4.5: Bistatic scattering coefficient (dB) as a function of scattering angle for the rougher 

surface of σ=4cm, Lc=3cm, soil moisture of 30% and H polarisation. Results are shown for different 

values of N and for incident angles of a) θ =0° and b) θ =50° 
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Figure 4.6: The calculated non-coherent backscattering coefficient as a function of the number of 

surfaces  for the rougher surface of exponential autocorrelation function, σ=4cm, Lc=3cm and 30% 

soil moisture (ε=17.03+1.96i) at H polarization and incidence angles of a) θ =0° and b) θ =50° 
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Figure 4.7: The calculated emissivity as a function of the number of surfaces  for the rougher surface 

of exponential autocorrelation function, σ=4cm, Lc=3cm and 30% soil moisture (ε=17.03+1.96i) at H 

polarization and incidence angles of a) θ =0° and b) θ =50° 
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Figure 4.8: The calculated non-coherent backscattering coefficient as a function of the number of 

surfaces  for the smoother surface of exponential autocorrelation function, σ=0.44cm, Lc=9cm at H 

polarization, 5% and 30% soil moisture, and incidence angles of a) θ =0° and b) θ =50° 
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Figure 4.9: The calculated emissivity as a function of the number of surfaces  for the smoother surface 

of exponential autocorrelation function, σ=0.44cm, Lc=9cm at H polarization, 5% and 30% soil 

moisture, and incidence angles of a) θ =0° and b) θ =50° 
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Figure 4.10: The calculated non-coherent backscattering coefficient as a function of the number of 

surfaces  for the smoother surface of exponential autocorrelation function, σ=0.44cm, Lc=9cm at V 

polarization, 5% and 30% soil moisture, and incidence angles of a) θ= 0° and b) θ =50° 
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Figure 4.11: The calculated emissivity as a function of the number of surfaces  for the smoother 

surface of exponential autocorrelation function, σ=0.44cm, Lc=9cm at V polarization, 5% and 30% 

soil moisture, and incidence angles of a) θ =0° and b) θ =50° 
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oscillations have therefore negligible contributions to the emissivity but are significant in the bistatic 

scattering coefficient and the backscattering coefficient. The backscattering coefficient varies 

significantly, with a variation of around 10dB, at low values of N but relatively little at higher values, 

with a variation of no more than about 1dB for N>30 surfaces. We conclude that only a very small 

number of surfaces are required for emissivity calculations but for the active case we require a higher 

number in order to avoid introducing large errors. Note that the trends are very similar for both H and 

V polarizations, and for both values of soil moisture, as expected. 

 

In order to further quantify the variation produced in the results of the backscattering coefficient and 

emissivity for different values of N, let us first define the values, �e, and �σ0, for the percentage error 

in the emissivity and backscattering coefficient (of the rougher surface) as a function of N, as: 

 

45N

45NN

e

ee
)N(e

=

=−
=∆

         
(4.6)

 

50N
0

50N
0

N
0

0 )N(
=

=

σ
σ−σ=σ∆

        
(4.7)

 

 

N=45 is the highest value tested for the emissivity of the rougher surface and N=50 the highest value 

tested for the bistatic scattering and backscattering coefficients of the rougher surface. Therefore, in 

(4.6) and (4.7), we take eN=45 to be the exact value of the emissivity and σ0
N=50 to be the exact value of 

the backscattering coefficient that would be calculated for a surface of infinite size. This is an 

approximation but a good one as Figure 4.6 and Figure 4.7 indicate that there is a convergence with N 

and so we expect the values of e and σ0
 to change little for higher values of N. Note that (4.7) is 

calculated using linear values of the backscattering coefficients, i.e. not in dB. 

 

Figure 4.12 shows �e, given in percentage, as a function of the number of surfaces and Figure 4.13 

shows �σ0 as a function of the number of surfaces, for a rough surface with σ=4cm, Lc=3cm, and 30% 

soil moisture. 
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Figure 4.12: Percentage error in the emissivity due to a finite number of surfaces, �e, as a function of 

the number of surfaces, N, for the rougher surface of exponential autocorrelation function, σ=4cm, 

Lc=3cm and 30% soil moisture (εr=17.03+1.96i) at H polarization and incidence angles of 0° and 50 

°  

Figure 4.13: Percentage error in the linear value of the backscattering coefficient due to a finite 

number of surfaces, �σ0, as a function of the number of surfaces, N, for the rougher surface of 

exponential autocorrelation function, σ=4cm, Lc=3cm and 30% soil moisture (εr =17.03+1.96i) at H 

polarization and incidence angles of 0° and 50° 
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We see from Figure 4.12 that for values of N≥5 surfaces we expect the error in the emissivity due to a 

finite number of surfaces to be less than 1%. However Figure 4.13 shows that the backscattering 

coefficient (and thus the bistatic scattering coefficient) has an expected error of less than 10% in its 

linear value for N≥15. There seems to be an error of less than about 5% for N≥50 but we would need 

to perform further calculations, extending the graph beyond N=55, to be sure of this. 

 

We have not performed this analysis for the case of the bistatic scattering coefficient, since the bistatic 

scattering coefficient also depends on θS and so we obtain a more accurate view of the variation of the 

bistatic scattering coefficient with N from Figure 4.4 and Figure 4.5. These figures show that in 

general the bistatic scattering coefficient (in dB) changes little for N≥20 surfaces. 

 

In the following parts of the sensitivity analysis we consider only the emissivity since this is what 

interests us for SMOS applications, and therefore the purposes of this thesis. This allows us to perform 

calculations for a lower number of surfaces: we chose to use N=5 given that the result changes by less 

than 1% for a higher number. 

 

However it is worth noting that the model can equally calculate the bistatic scattering coefficient so if 

in future work the bistatic scattering coefficient were required this analysis would now need to be 

extended to the active case, by performing calculations for a larger number of surfaces. 

4.2.2.2 Integration step, s 

For the calculation of the emissivity we approximate the integration of the bistatic scattering 

coefficient over θs and φS to a summation at discrete intervals of θs and φS. For simplicity we keep the 

intervals of θs and φS to be the same, and we call this interval the integration step, or s. Since the 

summation of the bistatic scattering coefficient is only an approximation to the integral there will be 

an associated error. As the value of s approaches zero this error approaches zero and the calculated 

emissivity approaches its true value, were a real integration to be used. However it takes longer to 

perform the near-to-far field transformation for smaller values of s. As with N, we therefore require an 

integration step which provides a sufficient accuracy (convergence) but does not require too much 

time for the near to far field calculation.  

 

We performed calculations only for the smoothest surface, with σ=0.44cm, Lc=9cm since smoother 

surfaces require a smaller integration step. This is because a smoother surface has a narrower peak in 

σ0(θs, φs) and therefore requires a smaller step in the angle so that this narrow beam is accurately 

sampled. Therefore, if we find a step which is small enough to give an accurate solution of the 

emissivity for the smoothest surface, it will be valid for all other rough surfaces. 
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We tested all possible values of s shown in table I, for the following conditions: 

 

1. L=6λ and L=12λ 

2. Incident angles θ =0°,25°,50 

3. H polarisation  

4. Soil moisture content=30% 

5. incident beams: plane wave, gaussian g=0.25L, and gaussian g=0.1L 

 

From the experience gained analysing the bistatic scattering coefficients of rough surfaces during this 

thesis, we expect the width of the peak of σ0(θs, φs) to depend mainly on the roughness and to vary 

little with different polarisations and permittivity values. Therefore we did not investigate lower values 

of soil moisture nor V polarisation as we do not expect these variables to influence the choice of s. 

However it would be of interest to test this in further work. 

 

Results for L=6λ and different incident beams are shown in Table 4-III to Table 4-V and Figure 4.14 - 

Figure 4.16. Results for L=12λ are shown in Table 4-VI to Table 4-VIII and Figure 4.17- Figure 4.19. 

Table 4-III: The calculated emissivity at H polarisation, L=6λ, g=0.1L, and a soil moisture of 30%, 

for different values of theta and different integration steps 

 calculated emissivity for integration step,s 

% difference in emissivity 

with respect to the value at s = 

0.2 degrees 

angle, θ s=0.2 degrees s=0.5 degrees s=1 degree s=0.5 degrees s=1 degree 

0 0.625 0.624 0.623 0.09% 0.23% 

25 0.587 0.585 0.583 0.22% 0.58% 

50 0.453 0.450 0.445 0.66% 1.78% 
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Table 4-IV: The calculated emissivity at H polarisation, L=6λ, g=0.25L, and a soil moisture of 30%, 

for different values of theta and different integration steps 

 calculated emissivity for integration step,s 

% difference in emissivity 

with respect to the value 

calculated at s = 0.2 degrees 

angle, θ s=0.2 degrees s=0.5 degrees s=1 degree s=0.5 degrees s=1 degree 

0 0.628 0.627 0.627 0.07% 0.14% 

25 0.581 0.578 0.572 0.57% 1.53% 

50 0.463 0.455 0.442 1.66% 4.42% 

 

Table 4-V: The calculated emissivity at H polarisation, L=6λ, plane wave, and a soil moisture of 30%, 

for different values of theta and different integration steps 

 calculated emissivity for integration step,s 

% difference in emissivity 

with respect to the value 

calculated at s = 0.2 degrees 

angle, θ s=0.2 degrees s=0.5 degrees s=1 degree s=0.5 degrees s=1 degree 

0 0.639 0.638 0.638 0.07% 0.04% 

25 0.596 0.591 0.582 0.57% 2.34% 

50 0.476 0.464 0.444 1.66% 6.79% 

 

 

Figure 4.14: the calculated emissivity as a function of angle for different integration steps and the 

following conditions: H polarisation, 30% soil moisture, L=6λ, g=0.1L. 
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Figure 4.15: the calculated emissivity as a function of angle for different integration steps and the 

following conditions: H polarisation, 30% soil moisture, L=6λ, g=0.25L. 

 

Figure 4.16: the calculated emissivity as a function of angle for different integration steps and the 

following conditions: H polarisation, 30% soil moisture, L=6λ, plane wave. 
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Table 4-VI: The calculated emissivity at H polarisation, L=12λ, g=0.1L, and a soil moisture of 30%, 

for different values of theta and different integration steps 

 calculated emissivity for integration step,s 

% difference in emissivity 

with respect to the value 

calculated at s = 0.2 degrees 

angle, θ s=0.2 degrees s=0.5 degrees s=1 degree s=0.5 degrees s=1 degree 

0 0.627 0.627 0.626 0.08% 0.18% 

25 0.588 0.585 0.581 0.44% 1.19% 

50 0.453 0.447 0.436 1.39% 3.70% 

 

Table 4-VII: The calculated emissivity at H polarisation, L=12λ, g=0.25L, and a soil moisture of 30%, 

for different values of theta and different integration steps 

 calculated emissivity for integration step,s 

% difference in emissivity 

with respect to the value 

calculated at s = 0.2 degrees 

angle, θ s=0.2 degrees s=0.5 degrees s=1 degree s=0.5 degrees s=1 degree 

0 0.622 0.622 0.626 0.04% 0.58% 

25 0.590 0.583 0.568 1.10% 3.73% 

50 0.476 0.461 0.427 3.05% 10.17% 

 

Table 4-VIII: The calculated emissivity at H polarisation, L=12λ, plane incident beam, and a soil 

moisture of 30%, for different values of theta and different integration steps 

 calculated emissivity for integration step,s 

% difference in emissivity 

with respect to the value 

calculated at s = 0.2 degrees 

angle, θ s=0.2 degrees s=0.5 degrees s=1 degree s=0.5 degrees s=1 degree 

0 0.633 0.634 0.443 0.11% 0.58% 

25 0.599 0.588 0.572 1.68% 4.49% 

50 0.503 0.480 0.443 4.47% 11.92% 
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Figure 4.17: the calculated emissivity as a function of angle for different integration steps and the 

following conditions: H polarisation, 30% soil moisture, L=12λ, g=0.1L. 

 

Figure 4.18: the calculated emissivity as a function of angle for different integration steps and the 

following conditions: H polarisation, 30% soil moisture, L=12λ, g=0.25L. 
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Figure 4.19: the calculated emissivity as a function of angle for different integration steps and the 

following conditions: H polarisation, 30% soil moisture, L=12λ, plane wave. 

The results shown in Table 4-III to Table 4-VIII and Figure 4.14 - Figure 4.19 show that we require a 

smaller integration step for larger surfaces, higher angles and wider incident beams (a plane wave 

having the widest beam width, followed by g=0.25L then g=0.1L). The worst case scenario is 

therefore L=12λ, with a plane incident beam, and an incident angle of 50°. Looking at the results for 
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plane wave and gaussian beams with beamwidths of g=0.1L and g=0.25L. Calculations were 

performed for the following conditions: 

 

1. σ=0.44cm, Lc=9cm, representing a very smooth surface 

2. a soil moisture of 30%, 

3. H polarisation 

4. L=6λ, L=12λ 

5. Incident angles θ =0°, 25°,50° 

6. s=0.2° 

 

Only the highest soil moisture was considered since at this value the rough surface has the greatest 

effect. For all cases considered, the integration step was taken to be 0.2°, in order to minimise 

additional errors. Again we only considered H polarisation since we do not expect the type of incident 

beam required to depend on polarisation.  

 

We also performed calculations at L=6λ for the case of a very rough surface, σ=4cm, Lc=3cm. In this 

case we used an integration step of s=1°. This integration step could introduce errors into the results 

but we expect this to be small since we have a very rough surface of a small size. We did not test the 

case of L=12λ for the very rough surface because calculation time would be very long (see section 

4.2.2.5). We expect to still be able to draw good conclusions without this point, but it would be of 

interest to test this later. 

 

The smoother surface is in the validity region of the analytical small perturbation model (SPM) so we 

can compare results obtained with this model.  We did this using the AIEM model, which gives the 

same results as the SPM model in this region. The AIEM model used was provided by J.C. Shi and L. 

Chen of the University of California and CESBIO laboratory Toulouse, respectively, and is the version 

presented by Shi et al (2002). For interest, we also compare to Fresnel, since we expect the emissivity 

of any rough surface to be higher than Fresnel. Note that we do not compare results to AIEM for the 

rougher surface since AIEM is not valid for these roughness conditions. 

 

Table 4-IX and Table 4-X and Figure 4.20 - Figure 4.21 show results of the emissivity as a function of 

angle, for the different incident beams, at H polarisation, 30% soil moisture, and roughness conditions 

σ=0.44cm Lc=9cm (smoother surface). Figure 4.20 and Table 4-IX show results for surface size L=6λ 

and Figure 4.21 and Table 4-X present results for surface size L=12λ.  
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Table 4-XI and Figure 4.22 show results of the emissivity as a function of angle, for the different 

incident beams, at H polarisation, 30% soil moisture, roughness conditions σ=4cm Lc=3cm (very 

rough surface), and L=6λ. 

Table 4-IX: Emissivity at H polarisation, roughness σ=0.44cm Lc=9cm, different incident beams and 

L=6λ, compared to results from AIEM and Fresnel models 

 Incident beam 
AIEM Fresnel 

Theta plane g=0.1L g=0.25L 

0 0.639 0.625 0.628 0.634 0.626 

25 0.596 0.587 0.581 0.598 0.591 

50 0.476 0.453 0.463 0.476 0.471 

 

Table 4-X: Emissivity at H polarisation, roughness σ=0.44cm Lc=9cm, different incident beams and 

L=12λ, compared to results from AIEM and Fresnel models 

 Incident beam 
AIEM Fresnel 

Theta plane g=0.1L g=0.25L 

0 0.634 0.627 0.622 0.634 0.626 

25 0.599 0.588 0.590 0.598 0.591 

50 0.503 0.453 0.476 0.476 0.471 

 

Table 4-XI: Emissivity at H polarisation, roughness σ=4cm Lc=3cm, different incident beams and 

L=6λ 

 Incident beam 

Theta plane g=0.1L g=0.25L 

0 0.945 0.948 0.944 

50 0.864 0.865 0.865 
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Figure 4.20: Emissivity at H polarisation, different incident beams, roughness σ=0.44cm Lc=9cm,  

and L=6λ, compared to results from AIEM and Fresnel models 

 

Figure 4.21: Emissivity at H polarisation, roughness σ=0.44cm Lc=9cm, different incident beams and 

L=12λ, compared to results from AIEM and Fresnel models 
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Figure 4.22: Emissivity at H polarisation, L=6λ, roughness σ=4cm Lc=3cm, different incident beams, 

compared to results from the Fresnel models 

From Table 4-IX and Table 4-X we see that in general results are closer to AIEM for the plane 

incident beam, followed by g=0.25L, then g=0.1L. The only exception is the point at 50° for the larger 

surface and a plane incident beam which is further from AIEM than the other points. This is surprising 

because a larger surface should produce more accurate results. Two possible reasons for this are as 

follows. The first is that since this is the worst case scenario for the integration step (plane beam, large 

angle, large surface) perhaps we need to reduce s to a value below 0.2° in order to obtain good results. 

A second possibility is that this result is good and it is AIEM that is inaccurate. This is possible 

because experimental results in the literature show that the difference between the emissivity of a 

rougher and smoother surface is larger for higher angles (see Wigneron et al (2010) for example) 

whereas the difference between AIEM and Fresnel is lower at θ=50° than for  θ=25°. On the other 

hand results of our model show an increase of the gap with angle, for the plane incident beam and 

L=12λ. 

 

It would be interesting to investigate this further. However, for the purposes of this work we can still 

conclude that the plane incident beam appears to be the best choice for the emissivity calculation. 

 

Table 4-XI and Figure 4.22 show that the incident beam that is chosen has little effect on the 

emissivity results for very rough surfaces and L=6λ. We estimate that this will be the case for the 

larger surface size also (L=12 λ), since results of the smoother surface indicate that the surface size 
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does not affect the incident beam that gives the most accurate results. However in further work it 

would be interesting to verify this. 

4.2.2.4 Surface size 

As explained in section 3.1.3.1b, the size of the surface required depends on: the autocorrelation 

length, the surface roughness, and the wavelength. Firstly for larger autocorrelation lengths we require 

larger surfaces in order for the surface to be statistically representative of a rough surface of infinite 

size. Secondly in restricting surface size we lose long range scattering interactions between different 

points on the surface. If surfaces are rougher (higher standard deviation of surface height σ, lower Lc) 

these interactions are more likely to occur and so we expect the loss of these interactions to be more 

significant for rougher surfaces. Therefore rougher surfaces may require a larger surface size. 

 

We performed calculations for two surface sizes, L=6λ and L=12λ, and for two different rough 

surfaces: a low roughness of σ=0.44cm, Lc=9cm and a high roughness of σ=4cm, Lc=3cm. The 

surface size of 12λ should be sufficient to give results of a good accuracy (10λ is considered 

sufficient) but since a size of 6λ will considerably reduce calculation time and memory requirements it 

is of interest to investigate whether results of a surface size of 6λ will be sufficiently accurate for the 

conditions considered in this thesis; the conditions of the SMOS mission and roughness conditions 

found in the field. 

 

As well as the two surface sizes, we performed calculations for the following conditions: 

 

1. H polarisation 

2. A soil moisture of 30% 

3. Incident angles θ=0°,25°,50° 

4. Incident plane wave 

 

We chose a value of N=5 for all conditions except for the very rough surface (σ=4cm, Lc=3cm) of 

large size (L=12λ) where we chose a value of N=2, since calculation times were very long in this case. 

Again we compared results to predictions of the AIEM (SPM) model and the Fresnel equations for the 

smoother surface. 

 

Table 4-XII, Table 4-XIII and Figure 4.23 show the emissivity calculated using the numerical 

approach presented in section 4.1 for the two different surface sizes as a function of angle. Table 4-XII 

and Figure 4.23 present results for a low surface roughness of σ=0.44cm and Lc=9cm and Table 4-XIII 

presents results for a high surface roughness of σ=4cm and Lc=3cm. For the low roughness condition 



140 
 

the integration step was set to 0.2 and for high roughness the integration step was set to 0.5, in keeping 

with results of section 4.2.2.2. 

Table 4-XII: The emissivity at H polarisation as a function of angle, for the rough surface σ=0.44cm, 

Lc=9cm, 30% soil moisture, and different surface sizes, L, compared to results of the AIEM model and 

Fresnel 

 L=6λ L=12λ 

AIEM Fresnel 
theta emissivity 

%error wrt 

AIEM 
emissivity 

%error wrt 

AIEM 

0 0.639 0.80% 0.634 0.00% 0.634 0.626 

25 0.596 0.35% 0.599 0.11% 0.598 0.591 

50 0.476 0.02% 0.504 5.68% 0.476 0.471 

Average 

error 
 0.39%  1.93% - - 

 

 

Figure 4.23: The emissivity at H polarisation as a function of angle, for the rough surface σ=0.44cm, 

Lc=9cm, 30% soil moisture, and different surface sizes, L, compared to results of the AIEM model and 

Fresnel 
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Table 4-XIII: The emissivity at H polarisation as a function of angle, for the rough surface σ=4cm, 

Lc=3cm, 30% soil moisture, and two different surface sizes, L=6λ and L=12λ. 

theta 
Emissivity, 

L=6λ 

Emissivity, 

L=12λ 
difference 

0 0.947 0.945 0.03% 

50 0.864 0.870 0.69% 

 

Table XII shows that for θ=0° and 25° the higher surface produces more accurate results, as expected. 

However at θ=50° the emissivity for L=6λ appears to be more accurate, making the average error of 

L=12λ higher than that of L=6λ. This is surprising because we know that accuracy is higher as we 

increase surface size so we assume that the large error for L=12λ, θ=50°, is either due to an integration 

step that is too high or is not correct due to an inaccuracy in the AIEM result, as discussed previously. 

Discounting the error calculated at θ=50°, we see that overall the higher surface produces more 

accurate results. 

 

If we assume that at L=12λ we have accurate results, then the error introduced by performing a 

calculation at L=6λ is as shown in Table 4-XIV: 

Table 4-XIV: errors associated with using a small surface size of L=6λ, 

with respect to results for a surface size of L=12λ 

Theta 
% error for L=6λ, w.r.t. 

L=12λ 

0 0.80% 

25 0.46% 

50 5.40% 

Average error: 2.22% 

 

For low angles (θ=0°,25°) we see that the error produced by using a small surface size is negligible. At 

θ=50°, the error is higher, at 5.40%, demonstrating that a larger surface is produces more accurate 

results at higher angles.  
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4.2.2.5 Calculation Cost 

Table XIV presents the calculation CPU time and memory requirements for calculations of different 

surface size and roughness. We present results for the case of H polarisation and a soil moisture of 

30% but we found similar figures for V polarisation and a soil moisture of 5%. We also present results 

for an incident gaussian beam of beamwidth g=0.1L for the smoother surface and for a plane wave for 

the larger surface, but we found that the incident beam type also did not affect calculation cost. Note 

that the total number of passes, CPU time and memory are for one calculation only, and do not include 

the near to far field calculation. The values were averaged over several calculations. These values vary 

to some extent depending on the surface. Note that the calculation time and memory increase with the 

number of passes performed before convergence was achieved. The number of passes was around 10 – 

15 for the smoother surfaces and 6 passes for the rougher surfaces. Therefore the values presented 

should be considered to be only an indication of the order of magnitude. Note that the CPU time also 

depends on the resources of the machine used for calculations. Values given in Table 4-XVwere 

obtained on a 64 bit machine with 64 GB of available memory. 

Table 4-XV: Calculation cost for surfaces of different size and roughness 

Surface size, L roughness CPU time 
Maximum 

Memory (GB) 

6λ σ=0.44 Lc=9 00:32:17 1.9 

6λ σ=4 Lc=3 05:11:10 15.5 

12λ σ=0.44 Lc=9 01:34:57 5.0 

12λ σ=4 Lc=3 76:14:23 31.4 

 

Table 4-XV demonstrates that the calculation costs depend strongly on surface roughness and surface 

size. In particular the largest surface with the highest roughness has an extremely long calculation 

time. We see that, irrespective of surface roughness, doubling the surface size from 6λ to 12λ 

approximately doubles the memory required. However the calculation time seems to depend not only 

on the surface size but also on the roughness. For the smooth surface, if we increase the surface size 

from L=6λ to L=12λ, we triple the calculation time but for the rough surface if we double the surface 

size the calculation time is 16 times longer. Thus it is much more costly in calculation time to increase 

the surface size of a rougher surface. 

 

These results demonstrate the value of using a smaller surface size wherever possible and also the 

difficulty of modelling very rough surfaces for surface size of around 12λ or larger, with the 

calculation machines currently available for the work of this thesis, in the IMS laboratory. 
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4.2.3 Conclusions: Values determined for model parameters 

Results of this study have led us to select N=5 for the number of rough surfaces over which we 

average when calculating the emissivity. However we will only use this value for calculations of the 

emissivity. Restricting ourselves to 5 surfaces should introduce an error of no more than 0.75% in the 

emissivity calculation, as shown in Figure 4.12. For the active case we will use a value of N=20. 

Figure 4.13 indicates that by not exceeding this value we introduce an error of no more than 

approximately 2.5%, for angles away from the specular direction. In the specular direction we will 

have an error of up to approximately 7.5%. The values of these errors is less certain for the scattering 

case than for the emissivity case since the values for the bistatic coefficient varied much more with N 

and so we can be less sure of the final value obtained in the scattering case. In order to quantify the 

errors in the bistatic scattering coefficient more accurately, more calculations would need to be 

performed to extend N beyond 50 for the case of a very rough surface. However, this is not necessary 

for the work of this thesis which focuses on applications for the SMOS mission which measures only 

the emissivity. 

 

Secondly, results show that the plane wave incident beam gives the most accurate results for the case 

of the emissivity. We observe that results of the emissivity are more accurate for a plane beam if the 

surface is smoother but that the incident beam chosen has little effect on the results of the emissivity 

for rougher surfaces. However calculations at high roughness and for a larger surface size would be 

useful to confirm this. In conclusion, for the emissivity calculation we will use a plane incident beam.  

 

Results also show that in general a surface size of L=6λ produces accurate results for lower angles of 

approximately less than or equal to 30°. Above this the error due to a small surface size is no more 

than approximately 5.4% for a smoother surface. For a rougher surface, results did not greatly vary 

with surface size: the difference in the emissivity calculated for surface sizes L=6λ and L=12λ was 

observed to be no greater than 0.69% (at 50°). We chose therefore to use L=6λ for emissivity 

calculations in this thesis.  

 

For a plane incident beam, results showed that the value of the integration step had a greater influence 

on results for larger surface sizes. However since we will use a small surface size of L=6λ for the work 

of this thesis we will use an integration step of 0.5°, which has an associated error of no more than 

approximately 1.66%, for the smoother surface, as shown in table V. For this value, the near to far 

field calculation should take no longer than 30 minutes, per calculation. 

 

Table XV summarises the model parameters chosen for the work of this thesis. 
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Table 4-XVI: Summary of the values chosen for the model parameters, for the work of this thesis 

Model parameter Scattering calculation Emission calculation 

Number of rough surfaces, N 20 5 

Integration step, s 1° 0.5° 

Surface size, L 2.55m (=12λ) 1.27m (=6λ) 

Incident beam gaussian g=0.25L Plane 
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CHAPTER 5. VALIDATION OF THE NUMERICAL FEM  

APPROACH FOR A SINGLE LAYER  
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5. Validation of the Numerical FEM Approach for a 
Single Layer 

It is important to demonstrate that our approach gives good results for a single layer with a rough 

surface representing the soil, before extending the study to the two layer soil-litter structure. This is of 

particular importance since there are very few studies of the finite element method presented in the 

literature for rough surface scattering, and none for the emissivity. In this section we aim to validate 

our method for the case of rough surface scattering and emission. 

We begin by comparing results of our approach with the Fresnel equations for a flat surface. This is 

presented in section 5.1. In section 5.2 we compare results for the rough surface case with predictions 

of the method of moments. Lastly, in section 5.3, we compare results with experimental data. In this 

section we also compare results with the AIEM model, an analytical model which is valid for wet soils 

only (see section 3.1.2.2c). Note that the AIEM is not to validate our approach against AIEM, since 

the AIEM model is not considered to be accurate for all conditions. However since the AIEM model is 

often used to calculate rough surface emission (see for example Chen et al 2003), we compare the 

validity of our approach, when compared with experimental data, with the validity of the AIEM 

model, as a point of reference.  

5.1 Comparison with Fresnel for a flat surface 

In this section we validate the model for a flat surface by comparing results of the emissivity with 

predictions calculated from the Fresnel equations, which are exact for flat surfaces. 

5.1.1 HFSS calculation set up 

We chose two different permittivities for the ground, equivalent to low and high soil moistures. For 

low soil moisture we used a permittivity of εr=3.54+0.24i, and for high soil moisture we used a 

permittivity of εr=17.03+1.96i (see p119 for an explanation of these values). 

The calculation area of the HFSS project used is shown in Figure 5.1, along with a summary of its 

properties and the boundary conditions applied. 
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Figure 5.2: The emissivity of a flat surface, calculated using the numerical FEM approach and the 

Fresnel equations for H and V polarisations and: a) 5% soil moisture and b) 30% soil moisture 
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5.2 Comparison with the Method of Moments for a rough surface 

In this section we validate our method for rough surface scattering and emission by comparing results 

of the bistatic scattering coefficient and emissivity with results of the Method of Moments found in the 

literature. The Method of Moments is the numerical model currently considered the standard model 

for calculating rough surface scattering and emission since it is the most accurate. It is therefore 

important to show that our approach produces results in agreement with MoM. Despite being 

interested only in emissivity calculations for the purposes of this thesis, we compare results also for 

the active case in order to obtain a more thorough and reliable validation of the FEM approach 

developed. Since the emissivity is calculated from the bistatic scattering coefficient we expect both 

values to be calculated accurately if the approach is valid. 

The comparison was performed with results of the method of moments presented by Wu et al (2001), 

Ewe et al (2001a, 2001b), and Zhou et al (2004) for four different rough surfaces and permittivity 

values.  In the following section we describe firstly conditions for these MoM calculations and 

secondly conditions for calculations performed with our approach, as described in section 4.1. We 

then present the results of the comparisons and finally the discussion and conclusions. 

5.2.1 Method of Moments data 

Results of the method of moments are presented by Wu et al (2001), Ewe et al (2001a, 2001b) and 

Zhou et al (2004) for roughness conditions and permittivity values presented in Table I. 

Table 5-I: Calculation Conditions 

Surface 
Autocorrelation 

function 
σ (cm) Lc (cm) 

Relative 

permittivity 

1 gaussian 1.22 8.57 3+0.1i 

2 gaussian 3.41 20.5 4+1i 

3 exponential 0.4 8.4 15.57+3.71i 

4 exponential 1.12 8.4 15.34+3.66i 

 

Surfaces 1 and 2 are fairly smooth, particularly since the autocorrelation functions are gaussian which 

corresponds to smoother surfaces than for exponential autocorrelation functions. MoM calculations of 

the backscattering coefficient are presented by Wu et al (2001) for surface 1 with a low permittivity, 
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which is the equivalent to dry soil conditions. Results of bistatic scattering coefficient calculations, 

calculated by MoM, are presented by Ewe et al (2001a, 2001b) for surface 2 and also for a low 

permittivity value (dry soil conditions).   

 Zhou et al (2004) present emissivity simulations, performed by the numerical Maxwell-equation 

model (NMM3D), a MoM-based fast method, for surfaces 3 and 4, with high permittivity values (wet 

soil conditions). Surface 3 has a low roughness, and surface 4 is moderately rough. 

5.2.2 Method 

Calculations were performed for surfaces 1 - 4 using the numerical approach described in chapter 4, in 

order to compare model predictions with the Method of Moments. Since in this study we concentrate 

only the surface case, we set the layer thickness to zero, i.e. the structure in HFSS’ calculation area 

consisted of a vacuum with a lower rough surface. To check the validity of this, we also tested a layer 

thickness of 5, 10 and 15cm but we found that this led to very little change in the calculated scattered 

electric field and so we chose to use zero surface thickness as calculations were faster. We applied a 

layered impedance boundary condition to the bottom of this rough surface, simulating an infinite 

dielectric layer, as described in section 4.1.2.1. 

Numerical calculations were performed at 1.4 GHz and at both H and V polarizations on a 64 bit 

machine with 64 GB of available RAM.  

A surface size of L=2.55m (12λ) was used for the bistatic case and L=1.27m (6λ) was used for the 

passive case. A gaussian incident beam with g=0.25L was applied in the active case (surfaces 1 and 2) 

and a plane incident beam in the passive case. Calculations were performed for 20 different rough 

surfaces (N=20) for the active case and 5 different rough surfaces (N=5) for the active case. The 

conditions for the active case are in accordance with conclusions from section 4. A surface size of 

L=6λ was selected to be sufficient for the emissivity case in the sensitivity study which is presented in 

5.2. However the influence of the surface size on the bistatic scattering coefficient was not tested in 

this study and so we chose to use the larger surface, in order to avoid any potential errors due to the 

surface size being too small. N=20 was chosen for scattering calculations, in accordance with the 

findings of section 4.2. A gaussian beam was used for the scattering case because we expect to have 

errors due to edge effects to be more apparent for the scattering case than for the emissivity. The value 

of g=0.25L was chosen for the beamwidth of this gaussian wave because this is the value most 

commonly adopted in the literature. The integration step was chosen to be 0.5° for the emissivity 

calculation and 1° for the scattering calculation.  

It is usual to perform an energy conservation check for the case of rough surface emission however 

this was not possible since HFSS only calculates the scattered field in the upper hemisphere. Instead, 
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for the case of the emissivity, we performed a calculation of the reflectivity, from (4.3) and (4.5), for 

angles from 0 to 60°, and with a “perfect E” boundary condition replacing the “layered impedance” 

boundary condition on the surface. This condition ensures total reflection and so the reflectivity must 

be equal to unity for energy conservation to be true.  

5.2.3 Results 

Results for the scattering case (bistatic scattering and backscattering coefficients calculated from (4.3)) 

are presented in Figure 5.3 and in Figure 5.4. For surface 2 results are illustrated at H polarisation 

(very similar results were achieved at V polarisation). Results for the passive case are presented in 

Table 5-II and Table 5-III as well as in Figure 5.5 and Figure 5.6. CPU and memory requirements for 

each HFSS calculation (one surface only) varied from approximately 2 hours and 3 GB for surface 1 

and approximately 12 hours and 15 GB for surface 4.  

The energy conservation check using the perfect E boundary condition gave a reflectivity within 5% of 

unity for all angles. Although not conclusive, this indicates that energy conservation is good to within 

5%. 

Results show a good general agreement between our numerical approach and the Method of Moments, 

for both the active and passive case. There is a slight divergence between the two approaches for the 

bistatic scattering coefficient at high angles of reflection. However agreement is very good for the 

emissivity, the case of interest for SMOS applications. In Figure 5.5 and Figure 5.6 we note a slight 

increase in emissivity of about 0.05 (equivalent to ~ 15K) at H polarization as roughness increases 

from σ=0.4 cm to 1.12 cm. There is also a corresponding decrease in the difference between the 

emissivity at H and V polarizations (eV-eH). These observations are in good agreement with 

experimental data (e.g. Wigneron et al 2010). We conclude that whilst not as accurate as the Method 

of Moments, this approach provides results of adequate accuracy for scattering and good accuracy for 

emission, making it a good complimentary method for rough surface scattering and emission.  
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Figure 5.3: Backscattering coefficient for the Method of Moments and the Finite Element Method 

models, calculated at 1.4 GHz for εr=3+0.1i and [σ, Lc]= [1.22cm, 8.57cm] at polarizations a) HH 

and b) VV 
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Figure 5.4: Bistatic scattering coefficient for the Method of Moments and the Finite Element Method 

models, calculated at 1.4 GHz for εr=4+1i and [σ, Lc]= [3.41cm, 20.5cm] with an incident angle of 

30° and at polarization HH 

Table 5-II: Emissivities calculated by the MoM and the FEM models, at 1.4GHz, H and V 

polarization, for a rough surface of σ=0.4cm and Lc=8.4cm, exponential autocorrelation function, 

and permittivity of εr=15.57+3.71i 

polarisation 
Incident 

Angle (deg) 

MoM 

Emissivity 

FEM 

Emissivity 

Difference between 

emissivities calculated 

by FEM and MoM 

methods 

H 30 0.5891 0.5655 0.0236 

H 40 0.5465 0.5608 0.0143 

H 50 0.4930 0.4694 0.0236 

V 30 0.6951 0.7051 0.0100 

V 40 0.7397 0.7311 0.0086 

V 50 0.7997 0.8075 0.0078 
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Figure 5.5: Emissivity for the MoM and the FEM models, calculated at 1.4GHz, H and V polarization, 

for surface of σ=0.4cm and Lc=8.4cm, exponential autocorrelation function, and permittivity of 

εr=15.57+3.71i 

Table 5-III: Emissivities calculated by the MoM and the FEM models, at 1.4GHz, H and V 

polarization, for a rough surface of σ=1.12cm and Lc=8.4cm, exponential autocorrelation function 

and εr=15.34+3.66i 

polarisation 
Incident 

Angle (deg) 

MoM 

Emissivity 

FEM 

Emissivity 

Difference between 

emissivities calculated 

by FEM and MoM 

H 30 0.6351 0.6246 0.0105 

H 40 0.5944 0.6002 0.0058 

H 50 0.5338 0.5249 0.0089 

V 30 0.7380 0.7252 0.0128 

V 40 0.7658 0.7547 0.0111 

V 50 0.8140 0.8122 0.0018 
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Figure 5.6: Emissivity for the MoM and the FEM models, calculated at 1.4 GHz, H and V 

polarization, for a surface of σ=1.12cm and Lc=8.4cm, exponential autocorrelation function and 

εr=15.34+3.66i 

5.2.4 Conclusion 

In this section we have compared results of rough surface scattering and emission for our numerical 

approach with results of the Method of Moments, a numerical method considered to be a reference in 

the field of rough surface scattering and emission. In particular we presented results of the emissivity 

of rough surfaces with exponential autocorrelation functions and also high permittivity values, which 

were considered difficult for the FEM simulations. Good general agreement was obtained between 

FEM and MoM, demonstrating that the new approach provides a good complimentary method to the 

Method of Moments for rough surface scattering and emission.  
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5.3 Comparison between the numerical approach, experimental data and 
the AIEM model 

In this section we present a comparison between our numerical approach, the analytical AIEM 

approach and experimental data for the case of the emission of a bare soil layer with a rough surface. 

We compare rough surface emissivity predictions of the two modelling methods with experimental 

values for different roughness conditions and for high soil moisture. This allows us to validate our 

model against experimental data for the homogeneous soil layer with a rough surface. It also allows us 

to make a comparison with the commonly used analytical AIEM model, using the experimental data as 

a standard. The experimental data used in this section is taken from the SMOSREX 2006 experimental 

campaign (de Rosnay et al 2006a, Mialon et al 2008, Schwank et al 2010). The AIEM model was 

provided by L. Chen and J.C. Shi from CESBIO Laboratory, Toulouse and the University of 

California, respectively, and is the latest version presented by Shi et al (2002). The numerical 

approach is the FEM approach presented in section 4.1, with parameters determined in section 4.2 

In the first section we present the SMOSREX 2006 dataset, including an initial analysis of the 

experimental data that allowed us to select surface roughness conditions and the soil permittivity value 

to be used for the comparison. Secondly we present the method and lastly we present and discuss 

results of the comparison between the two models and the experimental data, finishing with a 

conclusions section.  

5.3.1 SMOSREX 2006 dataset 

The experimental dataset used in this study consisted of data from the Surface Monitoring Of the Soil 

Reservoir EXperiment (SMOSREX) 2006 campaign (de Rosnay et al 2006a, Escorihuela et al 2007, 

Mialon et al 2008). A long-term dataset was acquired over the course of 2006 at the SMOSREX site 

near Toulouse in the south of France (43°23’N, 1°17’E, at 188m altitude), which has been in operation 

since January 2003. Details of the SMOSREX site including the equipment used have been presented 

in detail by de Rosnay et al (2006a) and Escorihuela et al (2007), and the 2006 campaign by Mialon et 

al (2008) and Schwank et al (2010), so here we will outline only the general method of the 2006 

campaign.  

On the 13th January 2006, which we shall call Day of Year (DOY) 13, the field on the SMOSREX site 

was ploughed to create a rough surface. It was then left to smooth out naturally over the course of the 

year. During this time, L-band brightness temperature measurements were taken automatically every 3 

hours, at V and H polarization and at angles of 20°, 30°, 40°, 50° and 60°, using the L-band radiometer 

for Estimating Water In Soils (LEWIS) installed on the site. The LEWIS radiometer is mounted at the 

top of a 13.7m vertical tower, and measures brightness temperature at 1.4 GHz with an accuracy of ± 
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0.2K and a beam-width of 13.5°. Figure 5.7 shows the LEWIS radiometer mounted on the tower at the 

site (left) and the soil surface being ploughed (right). 

 

Figure 5.7: The LEWIS radiometer mounted on a tower, on the SMOSREX site, left and the soil being 

ploughed to create a rough surface, right. 

Measurements of the soil moisture were taken throughout the year and soil temperature and weather 

conditions (precipitation, air temperature and humidity, wind speed and direction, atmospheric 

pressure, and solar and atmospheric incoming radiation) were also continuously monitored. Soil 

moisture was measured automatically every 30 minutes using impedance sensors (ML2 Theta probes) 

installed in the ground at depths of up to 90cm. Surface sensors were installed vertically in the soil, 

providing an integrated measurement of the soil dielectric constant (KTP) at different depths. In order 

to address the soil moisture spatial variability, another four surface probes were placed at about 2m 

apart. The theta probe readings of KTP were calibrated to soil moisture using gravimetric 

measurements of soil samples. Six soil samples were regularly taken from random locations in the 

field for a wide range of soil moisture conditions. Soil moisture was determined by gravimetry for 

each sample as follows. Samples of the soil of known volume were weighed on the site, and then 

removed, dried in the laboratory and weighed again. The average soil moisture of the six samples 

provided the gravimetric soil moisture on the site for the particular time and day that the samples were 

collected. These values were plotted against measurements taken on site with the probes at the same 

time and a straight-line relationship was obtained for impedance sensor measurements v. gravimetric 

soil moisture. This provided the calibration.  

Soil temperature was also measured automatically every 30 minutes using thermistors at depths of 0 to 

60cm. The site is equipped with a complete meteorological station that measured weather conditions, 

including measurements of precipitation, air temperature, atmospheric pressure, surface fluxes, wind 

speed and direction, infrared and solar radiation, and specific humidity every 2 minutes (averaged over 

30 minutes). 
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skypeffpBp T)(T)(e)(T θΓ+θ=θ         (5.1) 

where ep(θ) is the ground emissivity, Гp(θ) is the ground reflectivity and Tsky is the sky radiometric 

temperature equal to 6.3 K. Replacing the reflectivity by one minus the emissivity (following (2.111)) 

and rearranging (5.1) we obtain the following relationship: 

skyeff

skyB

p TT

T)(T
)(e p

−

−θ
=θ           (5.2) 

The emissivity was therefore calculated from the selected SMOSREX measurements of TB and Teff by 

applying this relationship. 

Roughness profiles f(xj,zj) collected on the SMOSREX site on certain days of the year were analyzed 

to calculate values of σ and Lc. All measurements taken on one day were averaged (first averaging 

measurements taken parallel and perpendicular to the furrow) to produce a value for that day and the 

error estimated from the standard deviation of these measurements. Results are shown in Figure 5.9 

and Figure 5.10. The error bars shown on these figures are the standard deviation in measurements 

taken that day. 

 

Figure 5.9: Variation of standard deviation of surface heights (σ) with time 
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Figure 5.10: Variation of Autocorrelation length (Lc) with time 

We expect the value of σ to decrease with time and Lc to increase with time in the manners shown in 

Figure 5.9 and Figure 5.10, that is to say quickly at first and then more slowly as time goes on. This is 

because the field which is very rough just after ploughing is gradually flattened over time due to 

weathering and also the movements of animals on the site. We expect this flattening process to be 

faster when the surface is rough and then slower as the surface smooths. 

Equations of σ and Lc as a function of DOY (the day of the year) were fitted to these values. A power 

law was fit to σ and an exponential equation to Lc. The equations fitted were the following: 

σ � 59.295
DOY���.��­           R� � 0.906   (5.3) 

Lj � 65.121 41 P exp �P ÀÝÞ�ß�.­ß� 6 � 58.693            R� � 0.805   (5.4) 

It must be noted that the fit of Lc potentially has large inaccuracies because of the large measurement 

errors associated with the values. However we expect Lc to increase with time in such a manner, which 

lends credence to the fit. 

Values of σ and Lc for the selected measurements (soil moisture of 30%) were then calculated from 

(5.3) and (5.4), and these values are presented in Table IV.  
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Table 5-IV: Roughness conditions for a soil moisture between 28% and 32% inclusively 

σ (mm) Lc (mm) Slope σ/Lc 

28 71 0.39 

25 77, 78 0.32, 0.32 

24 81, 82, 83 0.30, 0.29, 0.29 

23 86, 87, 88 0.27, 0.26, 0.26 

22 91 0.24 

21 97, 98 0.22, 0.21 

18 118 0.15 

17 120, 121 0.14, 0.14 

 

Three roughness values used in the comparison with the two modelling approaches were chosen from 

the values shown in table IV, which cover the range of values for rough surface slope in table IV. They 

are shown in table V. 

Table 5-V: Roughness conditions selected for the comparison with the numerical approach 

Surface σ (cm) Lc (cm) Slope m=σ/Lc 

5 1.7 12.1 0.14 

6 2.3 8.7 0.26 

7 2.8 7.1 0.39 

 

These three surfaces, which we have named 5, 6 and 7 for continuity, range from a moderately rough 

surface (surface 5) to a very rough surface (surface 6). They therefore compliment the surfaces studied 

in the previous section (surfaces 3 and 4), which had a low roughness. 

The emissivity at H and V polarization were calculated for surfaces 5 – 7 using both our numerical 

approach and the AIEM model, for incidence angles θ=20°, 30°, 40°, 50°, 60°, φ=0°, exponential 

surface autocorrelation functions, and a soil moisture of 30%. A soil moisture of 30% was chosen 

since in this case surface effects dominate and this puts us in the validity region of the AIEM model. 

In addition at higher soil moistures. The input permittivity value equivalent to 30% soil moisture was 

calculated using the model developed by Mironov et al. (2009). This model requires inputs of soil 

moisture, soil clay content, frequency and soil temperature. The clay content for the SMOSREX site 

was taken to be 16.6%, as measured by Escorihuela et al (2007). The permittivity was calculated for 
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these values and for each temperature value measured on the SMOSREX site for days where the soil 

moisture was 30%. We then took the average permittivity value which was εr=17.03+1.96i. 

5.3.2 Method 

Calculations were performed using the numerical approach and the AIEM model for roughness and 

permittivity conditions presented in section 5.3.1: the three different roughness conditions are shown 

in table V and the soil permittivity was εr=17.03+1.96i. 

The model parameters for the numerical approach are those selected in section 4.2. Calculations were 

performed for N=5 different rough surfaces with the same autocorrelation functions and values of σ 

and Lc and then the square of the reflected electric field averaged over all surfaces to calculate 

|Er
s(θs,φs)|

2 in (4.3). This averaging process is necessary in order to approach the value that would be 

obtained for the case of an infinitely large rough surface, corresponding to the value calculated by the 

AIEM model. The emissivity was then calculated from |Er
s(θs, φs)|

2 using (4.3), (4.5) and (2.111).  

Roughness conditions are shown in table V and values of the model parameters are summarised in 

table VI, below. 

Table 5-VI: model parameters for the numerical approach 

Model Parameter value 

Surface size, L 1.27m 

incident beam Plane wave 

Number of rough surfaces, N 5 

Number of points on the surface 128 x 128 

Integration step, s 0.5° 

 

Currently the most commonly used model analytical model for the calculation of rough surface 

emission is the Integral Equation Model (IEM), or its updated version the Advanced Integral Equation 

Model (AIEM). This is the most widely used analytical model since it has the widest validity region. 

The AIEM model is limited to rather wet soils since in the AIEM model does not consider volume 

effects, only surface effects, and at wet soils surface effects dominate. 

The version of AIEM used in this study is a code written and run in fortran. We input values of 

permittivity, incident angle, frequency, the standard deviation of surface heights σ of the rough 

surfaceand the surface autocorrelation length Lc. We can also choose between an exponential 

autocorrelation function and a gaussian autocorrelation function for the rough surface. The fortran 
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code was executed for roughness conditions shown in table IV, incident angles of 20 – 60°, with a step 

of 10°, H and V polarisation and a permittivity of εr=17.03+1.96i equivalent to 30% soil moisture. 

5.3.3 Results and Discussion 

Figure 5.11 - Figure 5.13 show a comparison of the emissivity as a function of measurement angle, as 

calculated by the numerical model, AIEM and also experimental data from the SMOSREX 2006 

campaign. The six different graphs present results for the three different roughness conditions shown 

in table IV (surfaces 5 – 7) and H and V polarisations. Not that in some cases there are many different 

experimental points for one roughness condition and measurement angle. These different points 

correspond to measurements that were taken at different times for the same roughness and soil 

moisture conditions. The variation in the emissivity of these points could be due the fact that the 

measurements of soil moisture and surface roughness were taken by sampling and therefore somewhat 

inaccurately represent the roughness of the whole rough surface or the average soil moisture across the 

footprint. Also the soil moisture was not measured at depths of less than 5cm and for wet conditions 

the soil moisture profile in the region 0 to 5cm has been shown to significantly affect emission (ref 

Escorihuela). 
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Figure 5.11: Results of the emissivity of rough surface 5, with standard deviation of surface heights 

σ=1.7cm, autocorrelation length Lc=12.1cm, a soil moisture of 30%, as calculated by AIEM and the 

HFSS model and as measured on the SMOSREX site, for: a) H polarization and b) V polarization. 
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Figure 5.12: Results of the emissivity of surface 6, with standard deviation of surface heights σ=2.3 

cm, autocorrelation length Lc=8.7cm, a soil moisture of 30%, as calculated by AIEM and the HFSS 

model and as measured on the SMOSREX site, for: a) H polarization and b) V polarization. 
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Figure 5.13: Results of the emissivity of surface 7 with standard deviation of surface heights σ=2.8cm, 

autocorrelation length Lc=7.1cm, a soil moisture of 30%, as calculated by AIEM and the HFSS model 

and as measured on the SMOSREX site, for: a) H polarization and b) V polarization. 
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values that are too low for angles above approximately 40°: there is a difference in values predicted by 

AIEM and experimental data of about 0.3 at 60°, at V polarisation, for surface 6, which is the 

equivalent of about 10K in brightness temperature. Both the AIEM model and the FEM method give 

similar results for surface 6 and H polarisation, which are in good agreement with experimental data 

for lower angles(<40°) but are lower than the experimental data for higher angles. However at 60° the 

difference in emissivity is about 0.05 less for the FEM method, equivalent to about 15K in brightness 

temperature. For surface 7, the surface with the highest roughness, both the FEM method and the 

AIEM method predict emissivities that are too low. However the gap between experimental and 

modelled data is less for the FEM method at higher angles. For the FEM method, the difference is 

fairly constant for all angles, varying from 0.05 to 0.1 at H polarisation and 0.05 to 0.075 for V 

polarisation, in other words we observe the same trend for the FEM method as for the experimental 

data. However the gap between experimental and modelled data increases with angle for the AIEM 

model at H polarisation, varying from 0.05 at 0° to approximately 0.2 at 60°. 

In order to further analyse the trends in results as a function of surface roughness, we present in Figure 

5.14 the emissivity as a function of rough surface slope (σ/Lc) for the two models compared to 

experimental data, for polarisations H and V and at angles of a) θ=0° b) θ=50° and c)θ=60° 
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Figure 5.14: The emissivity as a function of rough surface slope calculated by the FEM and AIEM 

models compared to experimental data, for a soil moisture of 30%, H and V polarisation and a) 

θ=20°, b) θ=50° and c) θ=60°. 

The graphs of Figure 5.14 show that both models produce good predictions for all roughness 

conditions if the measurement angle is low. The AIEM model has a good agreement also for angles up 

to 50° if the surface has a rough surface slope of less than or equal to about 0.15. On the other hand the 

FEM model has a good agreement with experimental data for all angles up to 60° and  a rough surface 

slope of less than or equal to about 0.15. At higher angles (see Figure 5.14a and b for example) and for 

a rough surface slope higher than 0.15, both models predict values that are too low particularly at V 

polarisation, but the FEM method is still overall closer to the experimental results. The difference 

between the experimental results and FEM model predictions at high roughness conditions could be 

due to the measured soil moisture and roughness values inaccurately representing the soil moisture and 

surface roughness across the whole field of view of the radiometer measurements. This seems likely as 

we see a spread in different points with the same conditions in Figure 5.11 and Figure 5.12, i.e. when 

we have different points of the same measured conditions the measured emissivity is not the same. 

This could also be due to inaccuracies in the FEM approach which we may be able to correct in future 

work, for example by increasing surface size or resolution. 

In summary, the results presented in Figure 5.11 - Figure 5.14 show that the FEM approach has overall 

a better agreement with experimental data, particularly for higher angles, than AIEM. Both the FEM 

method and the AIEM model have a good agreement with experimental data for surfaces of moderate 

roughness (surface slope of about 0.15) but the FEM method makes better predictions for rougher 
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surfaces and at higher angles. The FEM method is still too low however for the high roughness case 

(high angles and H polarisation for slope=0.26 and all conditions for slope=0.39). Future work will 

evaluate whether these differences could be due to error in the soil moisture measurements or 

roughness values or due to rough surfaces being too small or having too low a resolution (number of 

points on the surface) in the FEM approach.  

5.3.4 Conclusions 

Results of this section have shown that, for all roughness conditions, we observe the same trends in the 

emissivity predicted by the FEM approach as with the experimental data. Results have also shown that 

the results of the FEM approach have an overall better agreement with experimental data than the 

AIEM model. In particular results are better for higher roughnesses and at higher angles. A good 

agreement was obtained between the FEM approach and the experimental results for a moderately 

rough surface. For very rough surfaces predictions of the FEM approach are lower than experimental 

data, but they are still closer to the experimental data than the AIEM model. We conclude then that the 

FEM approach gives good results for moderately rough surfaces and values that are too low for very 

rough surfaces but still more accurate than the AIEM approach. Further work needs to be done to 

determine why we have these differences between predictions of the FEM approach and experimental 

data at high soil roughness conditions, in particular whether this could be due to uncertainties in the 

soil moisture and roughness measurements or due to inaccuracies in the FEM approach such as rough 

surface size and/or resolution being too low. 
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6. Emissivity of the Soil-Litter system: comparison with 
Experimental Data and the Schwank Model 

In this section we present the first results of the emissivity of the soil-litter system as calculated using 

the FEM approach. We model the soil and litter layers as homogeneous dielectric materials with 

randomly rough surfaces. As a first step in modelling the soil-litter system we consider homogeneous 

soil and litter layers which do not have soil moisture gradients or inclusions. The litter medium is a 

mixture of decomposing organic material, air and water. However since all components are smaller 

than the wavelength we are able represent the litter as an effective medium of a homogeneous 

permittivity constant (see section 2.3). By the same reasoning, we also represent the soil layer as an 

effective medium with a homogeneous permittivity constant. We aim to compare the general 

behaviour of the emissivity of this soil-litter system, calculated by the numerical FEM approach, with 

results found in the literature for the emissivity of the soil-litter system. Currently very few studies of 

the effect of the litter layer on forest emission have been performed and only two papers present 

results of the emissivity of the soil-litter system. The first is an experimental paper by Grant et al 

(2009), in which an experimental campaign at the Bray site (Grant et al 2007) is presented, and the 

second is a theoretical modelling paper by Schwank et al (2008). The comparison with experimental 

data presented by Grant et al (2009) may also be considered a first step in validating the FEM 

approach for the whole soil-litter system. However the comparison with the Schwank model (2009) is 

a comparison only, since the model proposed by Schwank is approximate and has not yet been 

validated for the soil-litter system.  

In the following sections we present first a summary of the studies performed by Grant et al (2009) 

and Schwank et al (2008), secondly the method and finally a discussion and conclusions. 

6.1 The Bray 2009 Experimental campaign and the Schwank model 
predictions 

Grant et al (2009) present experimental data taken at the Bray site in the Les Landes forest near 

Bordeaux, France (latitude 44°42’ N, longitude 0°46’ W, altitude 61 m), of the emissivity above and 

below the forest canopy, i.e. forest emission as a whole and emission of the soil-litter-understory 

layers, for different moisture conditions. This experimental data covers soil moisture conditions 

ranging from 15% to 30% (volumetric soil moisture), angles from 35° to 60° and H and V 

polarisation. The litter layer in the experimental site varied in thickness up to 10 cm and consisted of 

decomposing grass, pine needles, pine cones, and branches. There was also an understory layer of 

grass, covering the forest floor. In addition to experimental data, the authors performed simulations for 

the soil-litter system using a radiative transfer approach (the “Wilheit model”, presented by T.T. 

Wilheit 1978) for flat soil and litter surfaces.  
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Figure 6.1, taken from Grant et al (2009), shows results of the emissivity as a function of soil 

moisture. The results shown in black are experimental results and include the forest emission (above 

canopy shown as black crosses) and the emission of the soil-litter-grass system (shown as black 

circles). Also shown are simulation results of the soil-litter emissivity (from a Wilheit radiative 

transfer model with flat surfaces) and the bare soil emissivity calculated from the Fresnel equations, 

which are exact for flat surfaces.  

 

Figure 6.1: Horizontally polarized surface emissivities derived from above-canopy observations 

(eH,45◦SLGC,obs and eH,45◦SLG,_obs_; black) and simulations (eH,45◦SL,sim and eH,45◦S,sim ; 

gray), plotted against volumetric soil moisture content. 

The second paper by Schwank et al (2008) presents results of the reflectivity (equal to 1 minus the 

emissivity) calculated using a soil-litter model. This model is presented in detail in section 3.2.2.2 b2. 

In this model, the permittivity of the litter layer was calculated using a physical mixing formula, 

considering the litter to be a mixture of leaves (represented as spheroids), water and air. The soil-litter 

system was modelled as an effective medium with an effective permittivity ε(z) varying with depth z, 

which was equal to the litter permittivity at depths that fall within the litter medium and soil 

permittivity at depths that fall within the soil medium. A Fermi function was applied to smooth the 

transition, also accounting for small scale roughness. The roughness was estimated to have standard 

deviation of surface heights of 1cm for both soil and litter layers. A coherent radiative transfer model 

was applied to calculate the reflectivity of the soil-litter medium from the effective permittivity. Litter 

depth was taken to be 2cm in this model.  
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Results are summarised in Figure 6.2, taken from the article (Schwank et al 2008). 

 

Figure 6.2: Reflectivities Rp(ε_L, εS) of a litter–soil formation computed for litter water column 

density 0 ≤ ρwL ≤ 6 · 10−3 m3 · m−2, angle α = 50°, and T = 290 K. Data are shown for (a) p = H and 

(b) p = V and the imaginary part of the soil permittivity εS = 5, 10, 17, 25. The crosses and the hollow 

and the bold dots are Rp’s for the bare soil, the drained litter condition (ρwL = 0 m3 · m−2), and the 

wettest observed litter condition (ρwL = 5· 10−3 m3 · m−2), respectively. 

6.2 Method 

The emissivity of the soil-litter system was calculated using the FEM approach described in section 

4.1. Both soil and litter layers were represented as dielectric materials of homogeneous permittivity 

and with rough surfaces. In order to minimise the calculation time, the volume of the soil layer was 

replaced by the layered impedance boundary condition on the soil rough surface, as with calculations 

performed in chapter 7. The calculation area for the soil-litter system thus consisted of a litter layer 

with a rough surface, bordered by a vacuum above and a rough surface representing the soil layer 

below. Radiation boundary conditions were applied to the boundaries of the vacuum and layered 

impedance boundary conditions applied to the boundaries of the litter layer. The impedance boundary 

conditions were set to the litter permittivity at the sides of the litter layer and to the soil permittivity on 

the rough surface representing the soil, at the bottom of the litter layer. This is shown in  

Figure 6.3. 
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would have similar values to values of σ and Lc for a soil surface and so we chose values of relatively 

low surface roughness, since calculations are then faster and require less memory, but still within the 

range of soil roughnesses found in the field. On the other hand we chose to use gaussian 

autocorrelation functions since the litter tends to collect in rounded clumps, forming a profile which 

appears to be smoother than the soil profile and so we estimate that the litter roughness profile will be 

closer to a gaussian than an exponential autocorrelation function. 

Table 6-I: Roughness conditions for the soil and litter surfaces 

Medium 
Standard deviation of surface height, σ 

(cm) 
Autocorrelation length (cm) 

Soil 0.44 9 

Litter 1 0.4 12.4 

Litter 2 0.8 12.4 

 

We therefore had two different roughness combinations: the soil rough surface combined with litter 1, 

which we shall call soil-litter1, and the soil rough surface combined with litter 2, which we shall call 

soil-litter2. 

We chose a litter depth of 8cm which is within the range of values found in the field. The roughness 

values and litter depth were chosen to be close to values observed during an experimental campaign 

performed at the SMOSREX site during 2009 and 2010. In this campaign the ground (with a rough 

surface) was covered with grass litter and the brightness temperature of the soil-litter system measured 

at 40°, H and V polarisation, and on different days with different moisture conditions. The litter depth 

and roughness values shown in Table I are also similar to values observed during the Bray 2009 

campaign: the litter depth was observed to vary between 0 and 10cm during this campaign and 

although roughness was not measured the authors estimate it to be low on the Bray site. 

Soil and litter permittivities were calculated respectively from soil and litter moisture content. Firstly 

we considered the soil and litter moisture to be related, so that litter moisture increases with soil 

moisture. We applied the following empirical relationship found by Grant et al on the Bray site, and 

presented by Della Vecchia et al (2007): 

)vol(SM)grav(LM =    1.0SM0 <<      (6.1a) 

1817.0)vol(SM*0971.3)grav(LM −=  35.0SM1.0 ≤≤      (6.1b) 

9.0)grav(LM =     35.0SM <      (6.1c) 
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where LM(grav) is the gravimetric litter moisture and SM(vol) is the volumetric soil moisture. Since 

in general we deal with gravimetric soil moisture, SM(grav), for the litter moisture calculations we 

first calculated the volumetric soil moisture SM(vol) from the gravimetric soil moisture using (2.99), 

which for a water density ρw of 1 gcm-3,is given by: 

)gcm(*)grav(SM)vol(SM 3
s

−ρ=         (6.2) 

where ρs is the bulk soil density, which we took to be 1.4 gcm-3 as measured on the SMOSREX site 

(see Escorihuela et al 2007). 

In order to calculate the permittivity of the soil from the soil moisture SM(grav) we applied the 

Mironov model for a soil texture of 16.6% clay and 83.4% sand, as measured on the SMOSREX site 

(de Rosnay et al 2006a), and a temperature of 290K. In order to calculate the litter moisture we applied 

the following empirical relationship found by Demontoux et al (2008): 

1.4LM8.5))65.0LM(8tanh(3.2litter ++−=ε′       (6.3a) 

35.1))63.0LM(18tanh(25.1litter +−=ε ′′        (6.3b) 

Note that this relationship was determined from laboratory measurements of the permittivity constant 

of litter samples taken from the Bray site, where the experimental campaign by Grant et al (2009) was 

performed. These litter samples therefore consisted of decomposing grass, pine cones, pine needles. 

The soil and litter moistures and their corresponding permittivity values are given in table II. 

Table 6-II: soil and litter moistures and their corresponding permittivity values 

SM(%grav) SM(%vol) LM(%vol) Soil permittivity Litter permittivity 

10 14 25 5.313+0.443i 3.269+0.100i 

20 28 69 10.288+1.025i 8.712+2.301i 

30 42 90 16.893+1.837i 11.537+2.600i 

 

We firstly calculated the emissivity of the soil-litter1 and soil-litter2 for the soil and litter 

permittivities given in table II, assuming that the litter and soil moistures are related. Thus we 

performed calculations for the first soil permittivity combined with the first litter permittivity, then the 

second soil permittivity combined with the second litter permittivity, etc. We also calculated the 

emissivity of the bare soil for soil permittivities shown in table II and soil roughness shown in table I. 

These calculations allowed us to compare results with the Bray experimental results given by Grant et 

al (2009). Secondly we calculated the emissivity of the soil-litter2 structure for all combinations of soil 

and litter permittivities shown in table II, assuming that the soil and litter moistures are not correlated. 
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This allowed us to observe the effects of litter moisture at fixed soil moisture and vice versa, and also 

to compare with results of the Schwank soil-litter model presented by Schwank et al (2008).  

6.3 Results and Discussion 

Figure 6.4 shows results of the emissivity of the soil-litter and bare soil systems, calculated with the 

FEM approach, and assuming the relationship between litter and soil moisture given by (6.1a) – (6.1c) 

is valid. Results are presented for H and V polarisation. 

These results show a good general agreement with the experimental data reproduced in Figure 6.1, 

from Grant et al (2009). We see that the presence of the litter layer causes an overall increase in 

emissivity and we observe that the curve is generally flatter in the presence of the litter, as with the 

experimental results shown in Figure 6.1. This flattening of the curve indicates that the sensitivity of 

the emissivity to soil moisture is diminished in the presence of a litter layer, which is consistent with 

conclusions of Grant et al (2007, 2009). We note in Figure 6.4 the high influence of the litter surface 

roughness, which is a new result. When we double the litter surface standard deviation of surface 

heights (and also the surface slope) from the soil-litter1 to soil-litter2 structure, we observe a high 

increase in emissivity, particularly for H polarisation and for high soil moisture (or litter moisture). 

Figure 6.5 shows the emissivity of the soil-litter2 system as a function of litter moisture, for fixed 

values of SM(grav) and for H and V polarisation. Results presented in this figure show that emissivity 

generally decreases with litter moisture, albeit with a low gradient. We also observe that at high litter 

moisture values the emissivity no longer depends on soil moisture: the litter layer completely masks 

the signal from the ground. This is consistent with conclusions from Grant et al (2007, 2009).  
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Figure 6.4: The emissivity calculated using the FEM approach at 40° for a bare soil of roughness 

σ=0.44cm, Lc=9cm, and a soil of the same roughness covered by litter layers of two different 

roughnesses, calculated as a function of gravimetric soil moisture content and at a) H polarisation 

and b) V polarisation  
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Figure 6.5: The emissivity calculated for the soil-litter system as a function of volumetric litter 

moisture content, calculated for fixed values of soil moisture, 40°, at a) H polarisation and b) V 

polarisation 

Figure 6.6 shows the reflectivity as a function of the real part of the litter permittivity, for fixed values 

of soil permittivity. This allows us to compare with results of the Schwank model (2008) presented in 

Figure 6.2. Note that the points shown at εr’=1 correspond to values calculated using the FEM 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

20 30 40 50 60 70 80 90 100

E
m

is
si

v
it

y

Litter Moisture (%)

a) H polarisation

SM=10%

SM=20%

SM=30%

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

20 30 40 50 60 70 80 90 100

E
m

is
si

v
it

y

Litter Moisture (%)

b) V polarisation

SM=10%

SM=20%

SM=30%



181 
 

approach for a bare soil of roughness σ=0.44cm, Lc=9cm and different soil permittivities. Again 

results are shown for H and V polarisation. 

 

 

Figure 6.6: The reflectivity calculated by the FEM approach for the soil-litter system, as a function of 

the real part of the litter permittivity, for three different fixed values of soil permittivity (values given 

in table II) and for a) H polarisation and b) V polarisation. 
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Figure 6.6 shows that in general the soil-litter reflectivity increases with litter permittivity in a manner 

similar to that calculated by the Schwank model, shown in Figure 6.2. In both Figure 6.2 and Figure 

6.6 we also observe that, in general, the reflectivities of the soil-litter system are lower than those of 

the bare soil, with the exception of the case when the soil permittivity is low and the litter permittivity 

high. The presence of a litter layer introduces mechanisms to both increase and decrease emission. The 

litter layer attenuates the soil emission which overall decreases the emission of the soil-litter system. 

However it also acts as an impedance-matching layer so that the soil emission is higher in the presence 

of the litter. Also the litter itself has an emission which adds to the overall signal. The results of Figure 

6.2 and Figure 6.6 show that the overall effect of the litter layer is to increase the emission. Figure 6.6 

shows that the exception to this is for low soil permittivity and high litter permittivity where the 

overall effect of the litter layer is to reduce the emission. In this case the litter layer’s permittivity is 

higher than that of the soil and so it no longer acts as an impedance matching layer but rather 

attenuates strongly the soil emission. Also the emission of the litter layer itself is at its lowest for high 

moisture conditions. 

A main difference between Figure 6.2 and Figure 6.6 is that at low litter moisture we observe a 

crossing over of the curves representing different soil moistures in Figure 6.2, which is not observed in 

Figure 6.6. Instead, in Figure 6.6 the curves representing different soil moistures cross at high litter 

permittivity, which is not observed in Figure 6.2. This crossing over represents a very low sensitivity 

of emission to soil moisture. It is therefore more logical that this will occur at high litter moisture, 

when the litter layer more effectively masks the soil, as shown in experimental data (e.g. Grant et al 

2007, 2009). Therefore the FEM approach appears to model the soil-litter system more accurately than 

the Schwank model. 

6.4 Conclusions and Perspectives 

In this chapter we have presented a study of the emission of the soil-litter system as a function of soil 

and litter moistures, calculated by the FEM approach. We compare results with those found in the 

literature, in particular experimental results presented by Grant et al (2009) and the Schwank model 

(2008), which is not exact. Results show a good general agreement with the experimental results, 

validating the numerical approach for the case of the two layer soil-litter system. Results agree in 

general with the Schwank model. However the Schwank model predicts a low sensitivity to soil 

moisture for low litter moisture values whereas the FEM approach predicts a low sensitivity to soil 

moisture for high litter moisture values. The latter is more consistent with experimental results 

indicating that the FEM approach is more accurate than the Schwank model. From this study we can 

also conclude that the roughness of the litter layer has a large effect on the emission of the soil-litter 

system. To our knowledge, this is a new result since a soil-litter system with rough surfaces has not 

previously been studied. 
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Future work will further validate the FEM approach as a tool to model the emission of the soil-litter 

forest system by comparing results of the emissivity with experimental data over a range of soil 

moisture and roughness conditions. However there is currently very little data of the soil-litter 

emission available in the literature, and none in which the surface roughness was measured. An 

experimental campaign must therefore be performed for this validation. With this in mind, we carried 

out an experimental campaign on the SMOSREX site during 2009 and 2010, where a rough ground 

surface was covered with grass litter and the radiometric brightness temperatures measured at 40° and 

H and V polarisation for different ground moisture conditions. The ground temperature, soil and litter 

moistures, and soil and litter surface roughness were also monitored.  

Once the modelling approach has been validated it can be used to study the effects of a number of 

different parameters on the soil-litter emission. The emission can be calculated at different angles and 

polarisations and for different surface roughnesses, soil and litter permittivities (moisture content), and 

litter depth. Thus we will be able to study the effect on the soil-litter emission of each of the following 

variables: litter depth, soil surface roughness, litter surface roughness and soil and litter moisture 

contents. We will be able to study the importance of the effects for angles and polarisations. 
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7. Conclusions 

During this PhD we have developed a numerical modelling approach which allows us to calculate the 

scattering and emission of a two-layer heterogeneous system representing the soil and litter layers in 

forests. This approach relies on the use of Ansoft’s HFSS software, which solves Maxwell’s equations 

using the Finite Element Method (FEM), and is therefore an exact numerical approach. In this 

approach, which we refer to as the numerical FEM approach, we are able to model many features of 

the soil-litter system including randomly rough surfaces, moisture content, and litter depth. We can 

calculate the bistatic scattering coefficient and emissivity of such a system at H and V polarisation, 

and incident angles in the range of 0 to 90°. The approach was developed in the context of the SMOS 

mission and so was developed for a frequency of 1.4 GHz (SMOS frequency) but it can be adapted to 

other frequencies. It was developed as a tool that will enable us to study in detail the emission of 

multilayer systems, with rough surfaces, in general and the soil-litter system in particular. To our 

knowledge there is currently no numerical modelling approach that allows us to model a two layer 

system with randomly rough surfaces, at L-band frequencies. It is important to study the emission of 

the soil-litter system since it is not yet well understood and has not been accurately accounted for in 

the inversion algorithm used to retrieve soil moisture from SMOS measurements over forests. Using 

the approach developed during this PhD, it is now possible to create a synthetic database of the 

emission of the soil-litter system at 1.4 GHz, as a function of numerous different parameters including 

measurement parameters such as angle and polarisation and also physical parameters of the soil and 

litter layers, such as the surface roughness and moisture content. Such a database will allow us to 

study the emission of the soil-litter system under many different conditions. This was not possible 

before the work of this PhD. 

In this thesis we have presented the approach developed for modelling the scattering and emission of 

the soil-litter system and also a sensitivity study performed to set the values of the important model 

parameters. We then presented a validation of the approach for the case of a single homogeneous 

dielectric layer with a randomly rough surface (representing the bare soil). As a first step, we 

compared results of the scattering and emission of this system, as calculated using our numerical FEM 

approach, with predictions of the Method of Moments (MoM) model and also with experimental data. 

The Method of Moments is considered to be the most accurate method for calculating rough surface 

scattering and emission but cannot easily be adapted to heterogeneous or multilayer structures such as 

the soil-litter forest system. We compared results of the bistatic scattering coefficient, backscattering 

coefficient and emissivity with the Method of Moments for surfaces of low to moderate roughness and 

for both dry soil moisture conditions (for the bistatic scattering and backscattering coefficients) and 

wet soil moisture conditions (for the emissivity). Results showed a good general agreement between 

the Method of Moments and the new FEM approach, validating our approach for the rough surface 
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case and for rough surfaces of low to moderate roughness. Results showed a better agreement for the 

emissivity than for the active case (backscatter and bistatic scattering coefficients) indicating that our 

approach produces more accurate results for emissivity calculations than for scattering calculations. 

These results are of particular interest since, to our knowledge, the emissivity has never been 

calculated using the FEM method before, as it was not considered to be accurate enough. We conclude 

from our results however, that although the Method of Moments is a more accurate model for the case 

of rough surface scattering and emission, our approach is nevertheless a good complimentary method, 

producing results in good agreement with MoM, and has the advantage that it can be extended to 

model multilayer, heterogeneous media such as the soil-litter system. 

As a second step in the validation of the numerical FEM approach, we compared results of the 

emissivity of the bare soil with a rough surface, with experimental data from the SMOSREX 2006 

campaign, for high soil moisture conditions and for high to very high roughness conditions. We found 

that the FEM approach had a very good agreement with experimental data for high roughness 

conditions, at a rough surface slope of approximately 0.14, but somewhat underestimated the 

emissivity at very high roughness conditions, at a rough surface slope of about 0.39. In all cases, 

however, results of the FEM approach showed the same general trend as the experimental data. At a 

surface slope of around 0.26, which is already very high, our approach had a good agreement with 

experimental data for lower measurement angles (less than or equal to 40°) but predicted values that 

were up to approximately 30K too low for higher angles. However there are uncertainties in the 

experimental data of soil moisture measurements and roughness measurements since these were 

measured by taking samples in the field which may not be representative of the whole field of view. 

The differences between the FEM approach and experimental data at very high roughnesses may be 

due to these uncertainties. In addition we may be able to improve results of the FEM approach for 

example by increasing the size of the surfaces in the model at certain roughness conditions.  

From results of the validation against the Method of Moments and experimental data, we conclude that 

our numerical approach is accurate for rough surfaces of a surface slope up to about 0.26 for lower 

angles (40° or less) and up to between 0.14 and 0.26 for angles higher than 40°. It appears that the 

FEM approach somewhat underestimates the emissivity of rough surfaces with higher surface slopes. 

However this could be due to the effects of uncertainties in soil moisture and roughness measurements 

on the measured emissivity values used for this validation. Future work will evaluate this and also 

whether results of the FEM approach can be improved, by increasing the surface size or resolution, for 

example. However since surface slopes of 0.14 and 0.26 are still fairly high, for now we can conclude 

that our method gives good results for rough surfaces in the majority of cases. As a comparison, we 

also compared the experimental data to predictions of the analytical IEM model, used often to 

calculate rough surface scattering and emission. The IEM approach is faster than our method but since 

it is not exact it has a limited validity region. We found that our approach had a better overall 
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agreement with the experimental data than the analytical IEM approach, even though we considered 

high soil moisture which is within the IEM validity region. In particular the FEM approach had a 

better agreement for high angles and high roughnesses. For example, the differences between results 

of the emissivity for the IEM approach and experimental data were approximately 0.2 at very high 

roughness and a high angle (50°), equivalent to about 60K, whereas the FEM approach only 

underestimated the emissivity by about 0.2, or 30K, under these same conditions. 

We presented next in this thesis the first calculations of the emissivity of the soil-litter system at 1.4 

GHz and H and V polarisation. We modelled the soil-litter system as two homogeneous dielectric 

layers each with rough surfaces: for the moment not including any further heterogeneous features such 

as soil moisture gradients or inclusions. We performed calculations for different soil and litter 

moisture conditions, one surface roughness condition for the soil layer and two surface roughness 

conditions for the litter layer. The soil permittivity was calculated from soil moisture using the model 

presented by Mironov et al (2009) and the litter permittivity was calculated from the litter moisture 

using a relationship found experimentally by Demontoux et al (2008). As a first step in validating the 

approach for the two-layer system, we compared results with experimental data presented by Grant et 

al (2009). Since not all input values required for the modelling approach were measured in this 

experimental campaign (notably surface roughness was not measured) we estimated these parameters 

and therefore only compared general trends of the results and not absolute values. Results of the FEM 

method showed a good general agreement with experimental data, predicting key features such as (in 

general) an increase in emission and a loss in the sensitivity of the emissivity to soil moisture, in the 

presence of a litter layer. Results of the FEM method also indicated that the litter roughness has a 

strong influence on the emission of the soil-litter system, a case that has not been studied to date. We 

also compared results of the FEM approach to those of an analytical model presented by Schwank 

(2009), which calculates the litter permittivity using a dielectric mixing model and calculates the 

emissivity of the soil-litter system using a coherent radiative transfer model. We concluded that the 

FEM approach produces similar results to the Schwank approach and in the cases where the results are 

different the FEM approach produces results that are more consistent with experimental data. The 

FEM approach better reproduces the loss in the sensitivity of forest emissivity to soil moisture at high 

litter moisture values, which is observed experimentally by Grant et al (2007, 2009). 
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8. Perspectives 

Since the FEM approach developed in this thesis is somewhat inaccurate for very high roughnesses 

further work is necessary to develop and improve its accuracy for surfaces of high roughness. In order 

to do this the sensitivity analysis presented in section 4.2 could be extended to further roughness 

conditions and also to include the surface resolution, a parameter that was not tested. In particular, a 

study could be performed to investigate the effect of the surface size on the calculated emissivity value 

for a range of roughness conditions (different values of standard deviation of surface height and 

autocorrelation length). In section 4.2 the surface size was tested only for very low roughness and very 

high roughness conditions and we found that in these cases a smaller surface size (L=6λ) was 

sufficient. However we expect surface size to have a high influence on the accuracy of the model and 

so it would be of interest to study this in more depth. In particular, we expect the surface size that is 

required for an accurate solution to depend on the autocorrelation length and so it would be of interest 

to study the effect of surface size if we fix the standard deviation of surface height and vary the 

autocorrelation length. Also, a study of the effect of surface resolution on emissivity for surfaces of 

different roughnesses could be performed. For the work of this thesis, surface resolution was fixed at 

1cm (equivalent to 21 points per wavelength) since this seemed to be a good resolution when 

compared with values used by the Method of Moments (Zhou et al used a lower resolution of 16 

points per wavelength or 1.3cm) yet did not have a heavy associated calculation cost (the lower the 

resolution the higher the calculation cost). However it would be of interest to evaluate the effect on the 

results of increasing or decreasing resolution. In particular, we expect rougher surfaces to require a 

higher resolution so that the surface roughness is sampled in small enough intervals to be 

representative of the surface profile. In these studies, it is also important to evaluate the effect of 

surface resolution and the width of the calculation area (size of the rough surface) on calculation cost. 

This will allow us to select values for the width and resolution that do not have unreasonably high 

calculation costs. Furthermore, studying calculation cost (CPU calculation time and memory 

requirements) will potentially allow us to optimise the modelling approach, by allowing us to select 

parameter values that lower the calculation costs whilst maintaining accuracy. We could also study 

whether the convergence criterion of the numerical simulations can be reduced, which would reduce 

calculation costs, while still maintaining accuracy of the results. 

In order to develop the modelling approach further for calculations of the soil-litter system, we must 

further test and validate the model for a two layer system representing the soil and litter layers. In this 

thesis we have shown that, for low roughness conditions, the FEM approach produces results that are 

in agreement with experimental data in their general behaviour and main features but it is important to 

extend this validation to a comparison of absolute values over a range of different conditions. Since 

there are currently no exact modelling methods for this, this validation must be done by comparison 
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with experimental data. However there is currently very little data of the soil-litter emission available 

in the literature, and none in which the surface roughness was measured. An experimental campaign 

must therefore be performed for this validation. With this in mind, we carried out an experimental 

campaign on the SMOSREX site during 2009 and 2010, where a rough ground surface was covered 

with grass litter and the radiometric brightness temperatures measured at 40° and H and V polarisation 

for different ground moisture conditions. The ground temperature, soil and litter moistures, and soil 

and litter surface roughness were also monitored. It is important in future work to validate our 

approach against this data. In order to accurately perform this validation we would need to carry out 

further tests to determine some of the model parameters. In particular, we would need to test how 

many simulations are required, for each roughness condition, since we now have two rough surfaces in 

each simulation instead of one. It would also be important to verify values for the surface size and 

incident beam since with the inclusion of a second layer edge effects may be more significant and 

therefore we may now need to use larger surfaces and/or a gaussian incident beam to reduce the effects 

of these errors. 

Once the model has been validated for a two layer system we will be able to use it to create a database 

of the emission of the soil-litter forest system. This will require a very large number of calculations 

therefore, before doing this, steps could be taken to optimise the approach used. We could aim to 

optimise the calculation costs as previously mentioned by studying the effects of the surface resolution 

on calculation costs and accuracy. Also, one of the disadvantages of our approach compared to those 

that have been written in code is that it is not automatic. Approaches that do not utilise software are 

usually automatic, making use of the Monte Carlo method to average the emissivity over a large 

ensemble of rough surfaces, so that we simply input all the model parameters that we wish to test (e.g. 

dielectric constant, roughness, incident angle, etc.) and the emissivity is calculated automatically. 

Since our approach uses several different software tools, it is not possible to make it entirely 

automatic. However perhaps it is possible to make some parts of the approach automatic. For example 

the process of building the structure to be studied is currently done using several different tools (R and 

C4W’s 2D shop model design). We may be able to find one tool which creates both the rough surface 

and the volume to be studied in a .sat format, which can then be directly integrated into HFSS.  

Once the approach has been validated for the soil-litter system it can be used to study the effects of 

various parameters on the emission of the soil-litter system in forests. Parameters that can be studied 

include soil moisture, litter moisture, litter roughness, soil roughness and litter depth. For example we 

can investigate whether the presence of the litter layer diminishes the effect of the rough soil surface 

on the signal. Studies can be performed for H and V polarisation and a range of different angles. 

The FEM modelling approach developed in the work of this PhD can also be extended to applications 

other than L-band emission of the soil-litter system. The approach can easily be extended to any 
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multilayer systems with rough surfaces where the media can be represented as homogeneous 

dielectrics. With a little more development it would also be possible to model heterogeneous media 

such as trees, etc., using simple shapes like spheroids and cylinders. The model can also be extended 

to different frequencies, provided a study was performed of the surface size required for each 

frequency. The numerical Finite Element Method is particularly well suited to studies of 

heterogeneous media and our approach, which uses an electromagnetic modelling tool based on FEM, 

can also be extended to include studies of heterogeneous media. Currently, work is being done in the 

IMS laboratory to extend the modelling of rough surface emission to include temperature and moisture 

gradients for example.  

The numerical FEM approach can also be used for radar applications. In this thesis we concentrate on 

the emissivity case since our application is the SMOS mission. However the approach developed 

during this PhD also allows us to calculate the bistatic scattering coefficient and so we could equally 

use the FEM numerical approach for radar applications, for example for ESA’s current BIOMASS 

mission, which aims to estimate the forest biomass by use of a P-band space-borne Synthetic Aperture 

Radar (SAR) satellite (Le Toan 2010). In extending the approach to radar applications we would need 

to extend the sensitivity study used to fix model parameters (presented in section 4.2) to include the 

bistatic case, for example studying in more depth the number of surfaces required for each calculation 

of the bistatic scattering coefficient. 
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9. Appendix A : Résumé en Français 

Ce manuscrit de thèse est composé de 8 chapitres. Le premier chapitre présente une introduction au 

travail en expliquant le contexte, la motivation et les objectifs de la thèse. Le contexte de ce travail de 

thèse est la mission spatiale SMOS (Soil Moisture and Ocean Salinity). Cette mission repose sur un 

satellite apportant un radiomètre interférométrique multi-angulaire qui mesure l’émission thermique 

microonde naturelle venant de la Terre à une fréquence de 1.4 GHz (bande L). L’objectif de la mission 

est de retrouver l’humidité du sol et la salinité des océans en appliquant un algorithme d’inversion sur 

les mesures effectuées. Cet algorithme est basé sur le modèle L-MEB (L-band Microwave Emission of 

the Biosphere) (Wigneron et al 2001). L’humidité du sol est une variable clé pour comprendre le cycle 

hydrologique. Les applications de la mesure de ce paramètre à l’échelle globale sont nombreuses, 

notamment pour la météo et dans le domaine agricole. 

L’émission thermique des surfaces continentales est très sensible à l’humidité du sol dans le domaine 

microondes. Cependant d’autres paramètres ont aussi une influence non-négligeable. Il est important 

de prendre en compte les effets de tous ces paramètres dans l’algorithme de SMOS afin d’extraire 

correctement l’humidité du sol des mesures du satellite. Nous avons orienté le travail de cette thèse 

vers une amélioration de la compréhension des effets des paramètres forestiers. Pour comprendre 

l’émission d’une forêt nous considérons qu’elle peut être représentée par une structure de quatre 

couches diélectriques homogènes. Les couches sont le sol, une couche de litière végétale, le sous-bois 

qui comprend tout type de végétation plus petite que les arbres (de l’herbe,…), et la canopée qui 

comprend les arbres. Les effets de la canopé et du sous-bois ont été beaucoup étudiés et sont bien pris 

en compte dans le modèle LMEB. Cependant l’effet  de la litière n’a été que très peu étudié à présent 

mais les études expérimentales de Grant et al (2009) indiquent que la litière a pourtant un fort effet sur 

l’émission pour les conditions très humides. Elle augmente notamment l’émission globale et elle 

diminue la sensibilité de l’émission à l’humidité du sol. L’objectif de cette thèse était de développer et 

de valider un modèle qui permettra d’étudier en détail l’effet de la litière sur le signal forestier. Ce 

modèle doit calculer l’émission du système bicouche sol-litière et doit prendre en compte les effets de 

tous les paramètres de ce système qui peuvent influencer son émission, tels que la rugosité de surface, 

les permittivités du sol et de la litière, etc. L’objectif final de ce modèle est la création d’une base de 

données de l’émission du système sol-litière en fonction de nombreux paramètres. Cette base de 

données sera utile pour valider et/ou améliorer la prise en compte de l’effet de la litière dans 

l’algorithme de la mission SMOS. 

Dans le chapitre 4 nous présentons l’approche de modélisation développée. (Le choix de l’approche 

est expliqué au paragraph 3.3.) Cette approche comprend plusieurs étapes. La première étape est la 

création des structures à étudier. Ceci est fait à l’aide de deux logiciels : le programme R et le 
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programme « 3D Shop Model Design » de la société C4W. Avec R nous créons les surfaces 

aléatoirement rugueuses qui ont des paramètres de rugosité σ (l’écart type des hauteurs), Lc (la longeur 

d’autocorrélation) et une forme de la fonction d’autocorrélation bien définis. Nous construisons 

ensuite des structures 3D bicouches, comportant des surfaces rugueuses, qui représentent le système 

sol-litière, à l’aide de « 3D Shop model design ». Nous introduisons chaque structure créée dans HFSS 

(High frequency Structure Simulator de la société ANSOFT) puis nous définissons des conditions de 

calculs, telles que les conditions de bord, les permittivités et l’onde incidente qui peut avoir la forme 

d’une onde plane ou d’une onde gaussienne. HFSS calcule alors le champ diffusé quand une onde 

électromagnétique est incidente sur la structure en résolvant les équations de Maxwell par la méthode 

des éléments finis. Nous calculons le champ diffusé par cette méthode pour un nombre N de structures 

qui ont toutes les mêmes paramètres (valeurs de permittivité, σ, Lc, etc.) mais qui ont chacun des 

surfaces rugueuses différentes, c.-à.d. des profils de rugosité différents mais avec un même degré de 

rugosité pour chaque structure. Nous calculons le champ diffusé pour des valeurs fixes de paramètres 

(rugosités, permittivités, épaisseur de litière) en moyennant sur les valeurs calculées pour toutes les 

structures différentes. A partir de cette valeur de champ diffusé nous pouvons calculer l’émissivité, en 

appliquant les équations (4.3), (4.5) et (2.111). Le fait de moyenner sur des structures différentes mais 

avec des mêmes valeurs de rugosités nous permet de s’approcher de la valeur qui serait obtenue dans 

la réalité pour une surface "infinie". Le nombre de structures sur lesquelles nous moyennons pour 

calculer l’émissivité, N, et la taille de chaque structure doivent être déterminés soigneusement. La 

procédure de calcul est présentée sur la Figure 4.1. 

Dans la procédure de modélisation présentée dans le paragraphe 4.1 il y a une série de paramètres qui 

ont une influence sur la précision des résultats. Ces paramètres ont aussi un effet sur le temps et la 

mémoire nécessaire pour chaque calcul. Nous présentons dans le paragraphe 4.2 une étude de 

sensibilité qui a permis de quantifier ces effets. L’objectif de cette étude était de déterminer des 

valeurs pour chaque paramètre qui donneront la meilleure précision au niveau des résultats. Nous 

avons étudié aussi l’effet de chaque paramètre sur le « coût » de calcul (le temps et la mémoire 

nécessaires). Dans certains cas il sera peut être nécessaire de choisir une valeur qui sera un compromis 

entre le cout de calcul et la précision. Les paramètres étudiés étaient les suivants : 

- le nombre de simulations (ou de surfaces différentes) pour chaque rugosité, N,  

- la taille du domaine de calcul (la taille de surface dans chaque simulation), L x L,  

- le pas d’intégration en angle de diffusion, s 

- la forme de l’onde incidente sur chaque surface (gaussienne ou plane)  
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Nous avons testé l’influence de ces paramètres sur les résultats et le coût de calcul pour toute la 

gamme de conditions de la mission SMOS (par exemple l’humidité de sol variant de 5% à 30%, 

l’angle variant de 0° à 50°, etc.) et pour un grand nombre de valeurs.  

Les résultats sont présentés sur les Figure 4.4 à Figure 4.23.  Ces résultats montrent que nous avons 

besoin d’un plus grand nombre de surfaces pour les cas actifs (calcul du coefficient bi-statique et du 

coefficient de rétrodiffusion) que pour les cas passifs (calcul de l’émissivité). La Figure 4.12  montre 

qu’à partir d’une valeur de N=5 nous obtiendrons une valeur pour l’émissivité qui a une erreur dû au 

nombre fini de surfaces inférieure à 1%. Par contre la Figure 4.13  montre que 50 surfaces d’études 

sont nécessaire pour ne pas dépasser 5% d’erreur sur le coefficient de rétrodiffusion . Il sera nécessaire 

de vérifier cette conclusion en faisant plus de simulations.  

Les Table 4-III à Table 4-VIII et les Figure 4.14 à Figure 4.19 montrent que le pas d’intégration, s, 

doit être diminué pour le calcul de l’émissivité pour les grands angles (>25°), les ondes incidentes 

planes ou gaussiennes avec des largeurs importantes (supérieures à g=0.25L), et pour les grandes 

surfaces. Une valeur de s=0.5° paraît suffisamment petite pour les surfaces de taille L=6λ et aussi pour 

les grandes surfaces (L≤12λ) si l’onde incidente gaussienne a une largeur inférieure à g=0.1L. Une 

valeur de s=0.5° est aussi suffisante dans tous les cas pour un angle de 0°. Les conditions qui 

nécessitent la plus petite valeur de s sont une surface de taille 12λ et une onde incidente plane. Dans ce 

cas si nous utilisons une valeur de s=1° ou de s=0.5° nous avons une erreur par rapport à l’émissivité 

obtenue avec s=0.2° de 4.5% et de 11.9% respectivement. Il semblerait qu’il soit alors préférable 

d’utiliser une valeur de s=0.2°. Cependant les petites valeurs de s conduisent à un temps de calcul qui 

est plus important. Avec un ordinateur de 64Go de mémoire RAM et deux processeurs à 1.87 GHz le 

calcul a duré 10 minutes, 30 minutes et de 1h30 par angle pour calculer la transformation du champ 

proche au champ lointain pour des valeurs de s= 1 degré, 0.5 degré et 0.2 degré respectivement. Nous 

avons décidé alors de prendre une valeur de s=0.5° pour tous les calculs que nous ferrons par la suite 

dans le travail de thèse parce que cela semble un bon compromis entre une bonne précission et un 

temps de calcul "raisonnable".  

Nous avons étudié ensuite l’effet de l’onde incidente sur l’émissivité pour des surfaces peu et très 

rugueuses et pour des grandes et petites tailles de surface (L=6λ, L=12λ). Nous avons testé trois ondes 

différentes : une onde plane, une onde gaussienne avec une largeur g=0.25L et une onde gaussienne 

avec  g=0.1L. Pour une surface peu rugueuese nous avons comparé les résultats avec ceux produits par 

la méthode analytique AIEM, une méthode qui est considérée comme précise pour les surfaces 

rugueuses. Les résultats sont présentés en Table 4-IX à Table 4-XI et en Figure 4.20 à Figure 4.22. 

Table 4-IX à Table 4-XI montrent qu’en général nous obtenons des résultats plus proche de la 

méthode AIEM avec une onde incidente qui est plane. La seule exception est pour la plus grande 

surface (L=12λ) et à un angle de 50°. Ce résultat est plus éloigné de la méthode AIEM. Il y a deux 
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raisons possible pour cette divergence. La première est que nous avons besoin de réduire le pas 

d’intégration pour ce point et la seconde est que l’AIEM sous-estime l’émissivité pour ce point. La 

première raison est possible car nous avons montré que les surfaces plus grandes et les angles plus 

grands nécessitent des pas d’intégration plus petits. La deuxième est aussi possible parce que le 

résultat obtenu par notre méthode numérique a un meilleur accord que la méthode AIEM avec la 

litérature (par exemple Wigneron et al (2010)). Il sera intéressant de continuer à étudier ces points 

mais pour ce travail de thèse nous pouvons constater que l’onde incidente plane semble le meilleur 

choix car elle donne des résultats plus précis dans la plupart des cas.  

Nous avons testé deux tailles de surface différentes (L=6λ et L=12λ). L’émissivité a été calculée pour 

ces deux tailles, une surface peu rugueuse, des angles de 0 à 50°, une humidité du sol de 30% et en 

polarisation H. Les résultats sont présentés à l’aide des Table 4-XII à Table 4-XIV et de la Figure 

4.23. Ces résultats montrent que pour les petits angles (θ ≤ 30°) nous obtenons les résultats très 

similaires pour les deux tailles. Nous pouvons donc utiliser également une taille de surface de 6λ ou de 

12λ mais il est plus avantageux d’utiliser les surfaces plus petites car ces calculs sont moins couteux 

en mémoire et en temps de calcul, ce qui est montré sur la Table 4-XV. Cependant pour les angles plus 

grands (θ > 30° ) une taille de 6λ introduit une erreur de 5.40% dans l’émissivité, par rapport à une 

taille de 12λ (voir la Table 4-XIV). Nous avons décidé toutefois de prendre une taille de 6λ pour le 

travail de cette thèse car cette taille permet d’obtenir une bonne précision dans la plupart des cas et une 

taille plus grande sera trop couteuse en temps de calcul et en mémore. La Table 4-XVI résume enfin la 

partie 4.2 en présentant les valeurs de paramètres que nous avons déterminées grace à l’étude de 

sensibilité. 

Le chapitre 5 présente la validation de notre méthode numérique en comparant les résultats d’un sol nu 

lisse avec les équations de Fresnel, et ceux d’un sol nu rugueux avec des résultats produits par la 

méthode des moments ainsi que des résultats expérimentaux d’une campagne de mesures SMOSREX 

2006. La Figure 5.2 montre que les résultats de la méthode FEM sont en accord avec les équations de 

Fresnel, qui sont exacts pour les surfaces lisses. L’erreur maximale est approximativement de 0.02 et 

est obtenue à 50° et en polarisation H. Pour les autres angles et pour la polarisation V les erreurs sont 

inférieures à cette valeur.  

Les Figure 5.3 à Figure 5.6 montrent la comparaison avec la méthode des moments (MoM). MoM est 

la méthode numérique qui est considérée comme la plus précise pour calculer l’émission et la 

diffusion d’une surface rugueuse. Cependant cette méthode n’est pas bien adaptée aux études des 

systèmes volumiques tels que le système bicouche sol-litière. Il est pourtant important de valider notre 

approche FEM avec la méthode des moments pour le cas d’un sol nu avant de l’appliquer aux calculs 

du système sol-litière. Nous avons fait des comparaisons pour le cas actif et le cas passif. Le cas passif 
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nous intéresse pour l’application  SMOS mais nous avons aussi comparé le cas actif afin de faire une 

validation plus complète. 

La Figure 5.3 montre la comparaison du coefficient de rétrodiffusion calculé par la méthode FEM et 

calculé par la méthode des moments. La Figure 5.4 montre la comparaison du coefficient bi-statique et 

Les Figure 5.5, Figure 5.6 ainsi que les Table 5-II et Table 5-III montrent la comparaison des calculs 

d’émissivité. Les résultats indiquent un bon accord entre les résultats de la méthode FEM et ceux de la 

méthode MoM dans tous les cas. Il y a une légère différence entre les deux approches pour le 

coefficient bi-statique aux grands angles de diffusion. Cependant l’accord est très bon pour le cas 

passif, ce qui nous intéresse le plus. Nous pouvons conclure que bien que la méthode des moments soit 

la méthode la plus précise pour calculer l’émission et le diffusion d’une surface rugueuse, la méthode 

FEM est une bonne méthode complémentaire qui a l’avantage d’être bien adaptée aux systèmes 

volumiques, tel que le système bi-couche sol-litière. 

Les Figure 5.11, Figure 5.12 et Figure 5.13 montrent une comparaison entre les résultats de la méthode 

FEM et des résultats de la campagne de mesures SMOSREX 2006 pour un sol nu rugueux. Les trois 

figures répresentent trois rugosités différentes variant d’un sol assez rugueux à un sol très rugueux. 

Nous comparons aussi avec des résultats produits par la méthode analytique AIEM qui est considérée 

précise pour des surfaces peu rugueuses et des petits angles. En comparant avec des données 

expérimentales, nous trouvons que dans tous les cas la méthode FEM estime mieux l’émissivité que la 

méthode AIEM. Nous voyons un bon accord entre la méthode FEM et les données expérimentales 

pour la surface assez rugueuse (l’écart type σ de 1.7cm et la longeur d’autocorrélation Lc de 12.1cm) et 

un bon accord pour la surface moyennement rugueuse (σ = 2.3cm, Lc=8.7cm) et en polarisation de V. 

Pour la surface moyennement rugueuse nous observons qu’en polarisation H l’accord entre la méthode 

FEM et les données expériementales est bon pour les petits angles (θ ≤ 40°) mais que la méthode FEM 

sous-estime l’emissivité pour les grands angles (θ > 40°). Nous observons aussi que la méthode FEM 

sous-estime l’émissivité pour la surface très rugueuse (σ = 2.8cm, Lc =  7.1cm) pour les deux 

polarisations et pour tous les angles. Cette sous-estimation peut venir soit d’une imprécision dans la 

méthode de modélisation soit d’une erreur de mesure dans les données de la campagne de SMOSREX 

2006. Dans le premier cas, l’imprécision pourrait venir de la taille de surface que nous avons utilisé 

(L=6λ), qui pourrait être trop petite, ou d’un nombre de points sur la surface qui est insuffisant pour 

bien représenter la rugosité pour les surfaces très rugueuses. Dans le deuxième cas, l’erreur peut venir  

d’une mesure imprécise de l’humidité du sol ou de la rugosité. Cela semble probable car nous voyons 

dans la Figure 5.11et la Figure 5.12 une diffusion verticale dans les données expérimentales alors que 

ses points réprésentent normalement les mêmes conditions (humidité de sol, rugosité etc). Nous 

pouvons en déduire qu’il y a des imprécisions de mesure dans les données expérimentales que nous ne 

voyons pas dans la Figure 5.13 car nous n’avons pas assez de points mais qui doivent certainement 
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exister. Pour mieux comprendre d’où vient la sous-estimation de la méthode FEM pour les fortes 

rugosités il sera intéressant et nécessaire de faire des études supplémentaires dans l’avenir. 

Dans le chapitre 6 nous présentons les premiers résultats de calcul par la méthode FEM de l’émissivité 

du système sol-litière. Nous comparons dans un premier temps ces résultats avec des résultats 

expérimentaux obtenus sur le site du Bray en 2009 (Grant et al (2009)) et d’une méthode 

approximative de modélisation proposé par Schwank et al (2009). Pour la comparaison avec les 

données du Bray nous avons appliqué la relation empirique (6.1) qui nous permet de calculer 

l’humidité de la litière en fonction de l’humidité du sol, ainsi que la relation empirique (6.3) proposée 

par Demontoux et al (2009) qui nous permet de calculer la permittivité de la litière en fonction de son 

humidité. Nous présentons les résultats de l’émissivité du sol-litière, calculés avec la méthode 

numérique FEM, dans la Figure 6.4. Les trois courbes réprésentent les résultats des systèmes suivants : 

« Soil-litter 1 » : sol-litière, rugosité de sol faible, rugosité de litière faible 

« soil-litter 2 » : sol-litière, rugosité de sol faible (la même valeur), rugosité de litière plus forte 

« bare soil » : sol nu, rugosité de sol faible (la même valeur). 

Nous remarquons les mêmes tendances dans cette figure et sur  les données expérimentales, présentées 

en Figure 6.1 . Notamment nous voyons que dans les deux cas la couche de litière augmente 

l’émissivité et que l’émissivité est moins sensible à l’humidité du sol quand il y a une couche de litière 

présente. Nous avons donc obtenu un bon accord général entre la méthode FEM et les données 

expérimentales pour le système sol-litière. 

La Figure 6.5 présente l’émissivité du système sol-litière nommé « soil-litter 2 » en fonction de 

l’humidité de litière, pour des valeurs fixes de l’humidité du sol. Ces résultats montrent qu’en général 

l’émissivité diminue avec l’humidité de la litière avec une pente très faible. Nous observons aussi que 

l’émissivité perd sa sensibilité à l’humidité du sol pour les valeurs de l’humidité de la litière très 

élevées. La litière masque complètement le signal du sol. Ces résultats coïncident avec les conclusions 

de Grant et al (2007, 2009). 

Dans la Figure 6.6 nous présentons les résultats qui nous permettent de comparer notre méthode FEM 

avec une méthode de modélisation approximative présentée par Schwank et al (2008). Nous 

présentons ici la réfléctivité du système sol-litière, calculée par la méthode FEM, en fonction de la 

permittivité de la litière. Il y a trois courbes qui réprésentent des valeurs différentes de la permittivité 

du sol, et trois points qui représentent les valeurs de l’émissivité du sol nu pour les mêmes 

permittivités du sol. La rugosité du sol et celle de la litière sont fixes et assez basses. Nous observons 

que la réfléctivité augmente avec la permittivité de litière de la même manière que les tendances que 

nous observons dans les résultats du modèle de Schwank et al, présentés en Figure 6.2. Nous 
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observons aussi dans les deux cas qu’en général la réfléctivité du système sol-litière est plus basse que 

la réfléctivité du sol nu, sauf quand la permittivité du sol est faible et la permittivité de la litière est 

forte. Il y a deux mécanismes physiques qui amènent la litière à augmenter et à la fois diminuer 

l’émissivité du sol. D’un coté, la litière attenue l’émission du sol, qui va diminuer l’émission globale, 

et aussi ajoute sa propre émission à l’émission globale qui va augmenter. La litière se comporte aussi 

comme une couche d’adaptation d’impédance qui augmente l’émission du sol. Les résultats de la 

Figure 6.2 et de la Figure 6.6 montrent que l’effet final est une augmentation de l’émission. La Figure 

6.6 montre que la seule exception arrive quand la permittivité de litière est plus basse que la 

permittivité de sol. L’effet est alors une diminution de l’émission. Dans ces conditions la couche de 

litière ne peut plus être considérée comme une couche d’adaptation d’impédance et attenue fortement 

l’émission. 

La plus grande différence entre la Figure 6.2 et la Figure 6.6 est qu’à une faible humidité de litière 

(faible permittivité) nous observons que les courbes de réflectivité du système sol-litière en fonction 

des humidités du sol se croisent sur la Figure 6.2. Contrairement à la Figure 6.6 où ce croisement est 

observé à une forte humidité de litière. Le croisement des courbes représente une faible sensibilité de 

l’émissivité à l’humidité du sol. , que nous nous attendons à rencontrer lorsquela permittivité de la 

litière est très élevée et masque donc l’émission du sol (par exemple nous le voyons dans les données 

expérimentales de Grant et al 2007, 2009). La méthode FEM semble donc mieux modéliser 

l’émissivité du système sol-litière que le modèle de Schwank et al, qui ne modélise pas cet effet. 

Dans le chapitre 7 de ce manuscrit de thèse nous présentons nos conclusions sur le travail présenté 

dans ce manuscrit et le chapitre 8 présente les perspectives. Au cours de cette thèse nous avons 

dévéloppé une approche numérique qui nous permet de calculer la diffusion et l’émission d’un 

système bi-couche hétérogène, réprésentant le système forestier sol-litière. Cette approche s’appuit sur 

le logiciel commercial HFSS, qui résoud les équations de Maxwell par la méthode des éléments finis 

(FEM), et c’est donc une approche exacte. Nous avons dévéloppé l’approche FEM dans le contexte de 

la mission SMOS et nous avons donc orienté le dévélopement vers des applications à 1.4 GHz et des 

applications d’émission. Cependant l’approche peut tout à fait être développée dans l’avenir pour les 

applications dans le cas actif et pour d’autres fréquences. L’approche développée nous permettra 

d’étudier en détail l’émission des systèmes multicouches avec surfaces rugueuses en général et le 

système sol-litière en particulier. Nous avons l’intention dans l’avenir d’utiliser cette approche pour 

créer une base de données de l’émissivité du système sol-litière en fonction de nombreux paramètres, 

tels que l’angle d’incidence, l’humidité du sol, etc. Une telle base de données nous permettra d’étudier 

l’émission du système sol-litière dans des conditions différentes ce qui n’était pas possible avant ce 

travail de thèse.  
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Pendant cette thèse nous avons présenté l’approche dévéloppé et ensuite mené une étude de sensibilité 

pour déterminer des paramètres importants de notre approche. Nous avons présenté par la suite une 

validation de l’approche pour un sol nu, en comparant avec la méthode des moments et avec des 

données expérimentales. Cette comparaison a montré la validté de la méthode FEM pour les surfaces 

peu et moyennement rugueuses (pour les rugosités à σ=1.7cm, Lc=12.1cm, ou moins). Nous avons 

observé que la méthode FEM sous-estime l’émissivité pour les surfaces très rugueuses (rugosités entre 

σ=2.3cm, Lc=8.7cm et σ=2.8cm, Lc=7.1cm). Le travail futur évaluera d’où vient cette imprécision et 

nous espérons améliorer la méthode pour ces rugosités plus tard. Finalement nous avons présenté une 

étude préliminaire de l’émissivité du système sol-litière, comparant les tendances obtenues avec les 

jeux de données expérimentaux et de modélisation qui sont dans la litérature. Nous avons observé un 

bon accord entre la méthode FEM et les données expérimentales et aussi entre la méthode FEM et une 

autre méthode de modélisation présentée par Schwank et al (2008). Nous pourrions par la suite valider 

le modèle pour le système sol-litière en comparant plus précisément aux données expérimentales. Pour 

cela il serait  nécessaire de faire une nouvelle campagne de mesures car il y a très peu de données 

expérimentales dans la littérature. Une campagne a déjà été faite sur le site de SMOSREX en 2009 et 

ces données sont en cours de traitement. Nous pourrions encore dévéloper le modèle pour prendre en 

compte d’autres effets hétérogène, tels que les inclusions ou les gradients d’humidité, ou pour 

l’optimiser en terme de mémoire ou de temps de calcul. Nous pourrions aussi appliquer la méthode 

développée au cas actif ou à d’autres fréquences, par exemple la mission BIOMASS (Le Toan 2010). 

 

 

 

 

 

 

 

 



202 
 

  



203 
 

 

 

 

 

 

 

 

CHAPTER 10. APPENDIX B: PUBLICATION  

Article accepted by IEEE Transactions on Geoscience and Remote Sensing 
letters, January 2011. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



GRSL-00381-2010 

204 
 

204

  
Abstract—We evaluate a new 3D numerical modeling 

approach for calculating the rough surface scattering and 
emission of a soil layer. The approach relies on the use of 
Ansoft’s numerical computation software HFSS (High Frequency 
Structure Simulator), which solves Maxwell’s equations directly 
using the Finite Element Method. The interest of this approach is 
that it can be easily extended to studies of heterogeneous media. 
However before being applied in this way it must first be 
validated for the rough surface case. In this letter we perform 
this validation by comparing results of rough surface scattering 
and emission with results of the Method of Moments (MoM), for 
a range of different roughnesses and permittivities and with both 
gaussian and exponential rough surface autocorrelation 
functions. Results show a good agreement between the two 
methods for scattering and an excellent agreement for emissivity. 
We illustrate the application of the new approach by calculating 
the emission of a two-layer system with rough surfaces, 
representing the soil-litter system in forests. 
 

Index Terms— Electromagnetic scattering by rough surfaces, 
microwave emissivity, numerical simulation. 
 

I. INTRODUCTION 

HERE is currently great interest in numerical studies of 
rough surface scattering and emission, with applications 
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to both passive and active microwave remote sensing of the 
Earth, including satellite missions such as the current SMOS 
mission [1] or the upcoming SMAP mission [2]. It is also of 
interest to extend such studies to include the scattering and 
emission of heterogeneous media such as forests or ice packs. 
Scattering and emission from these media involve rough 
surface effects as well as volume effects from multi-layers, or 
permittivity gradients, and/or inclusions such as buried rocks. 
Numerical studies would provide a good approach for 
studying the scattering or emission of these media, allowing us 
to control the many parameters involved. 

Currently, the most widely used numerical methods for 
studying rough surface scattering and emission are Method of 
Moments (MoM)-based fast methods, e.g. [4] – [6], due to 
their high accuracy coupled with implementation of a fast 
solution method. Such methods are particularly well suited to 
the rough surface case, since they solve surface integral 
equations. However they are not well suited to studies of 
heterogeneous media, whose permittivity values vary 
horizontally or vertically (e.g. forests or ice packs) [7]. 
Numerical methods that utilize volume meshing, such as the 
Finite Element Method (FEM), on the other hand are well 
suited to studies of heterogeneous materials [7] but are not 
considered as accurate as the Method of Moments for the 
rough surface case.  

In this letter we present a new numerical modeling approach 
for calculating the rough surface scattering and emission of a 
dielectric layer, using Ansoft’s HFSS© (High Frequency 
Structure Simulator) (version 12.1) simulation software [8], 
which is based on the FEM. The advantage of HFSS as a 
numerical computation tool is that it allows us to vary many 
parameters, including the incident angle and the dielectric 
permittivity constants, without having to repeatedly restart 
simulations. The interest of the approach is that it can be 
extended to calculate the emissivity of heterogeneous media 
with rough surfaces, such as forest layers or permafrost. 
However before being applied in this way, it must first be 
validated for the rough surface case, particularly since there 
are very few studies of rough surface scattering calculated by 
FEM in the literature and none of rough surface emissivity. In 
this letter we aim to carry out this validation by comparing 

Evaluation of a Numerical Modeling Approach 
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calculating the Rough Surface Scattering and 
Emission of a soil layer 
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results of the FEM approach to MoM predictions.  
In section II we present the FEM approach using HFSS and 

in section III we present a comparison of results with MoM 
predictions for the rough surface case. To illustrate the interest 
of the FEM approach, and potential future applications, we 
also present results of the emissivity of a two-layer structure, 
representing the soil and litter layers found in forests. 
Concluding remarks are given in section IV. 
 

II. MATERIALS AND METHOD 

A. Numerical Modeling Approach 

The FEM numerical modeling approach presented in this 
letter relies on the use of HFSS and comprises 3 main stages: 
creating many solid structures with rough surfaces and 
importing each of these into an HFSS project, using HFSS to 
calculate the electric field scattered off each structure, and 
finally calculating values of the bistatic scattering coefficient, 
backscattering coefficient and emissivity from the scattered 
electric field, averaging over the ensemble of rough surfaces. 
In this section we describe briefly the FEM and then each of 
the 3 stages.  
 

1) Finite Element Method: 
In FEM calculations, the structure to be studied is divided 

into a mesh of many small regions, called cells, and then 
Maxwell’s equations are solved in their differential form for 
the electric and magnetic fields in each cell. The mesh used by 
the HFSS software consists of tetrahedral cells.   

Once a solution has been found the mesh is refined many 
times, with progressively smaller cells, and a new solution 
obtained. With each refinement (iteration) the change in the 
calculated energy value, �E, of each solution or the change in 
the reflection coefficient matrix, �S, is obtained. A final 
solution is obtained by imposing a convergence criterion on 
�E or �S.  
 

2) Creating structures with rough surfaces: 
The 3-dimensional structure to be studied is created and 

imported into HFSS by the following procedure.  Randomly 
rough surfaces are generated in the form of {x,y,z} points 
using the “R” statistical software©, employing in particular 
the “Random Fields” package [12]. These rough surfaces have 
standard deviation of surface heights, σ, and autocorrelation 
functions of the following form: 

   .
L

r
exp)r(

n
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











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
−=ρ            (1) 

Lc is the autocorrelation length and the value of n 
determines the form of the autocorrelation function: for the 
special cases of exponential and gaussian autocorrelation 
functions it is equal to 1 and 2 respectively. r is given by: 

   .yxr 222 +=               (2) 

The rough surfaces are then transformed into volumes using 
C4W’s “3D Shop Model Design” © software [13]. Firstly the 

{x,y,z} points which form the rough surface are joined by 
bspline curves to create a continuous rough surface, which is 
then extended vertically, creating volumes above or below the 
surface. These volumes represent the vacuum above the rough 
surface and a dielectric slab below the rough surface. Note that 
when studying the rough surface case we do not require the 
dielectric slab.  

 
3) Numerical Calculation Conditions: 

Once the required structure has been created, it is imported 
into HFSS where permittivity constants are applied and the 
calculation conditions are defined. A polarized incident wave 
is selected, either a wave of gaussian form or a plane wave, at 
an incident angle θ in the range of 0° to 90°, and azimuth 
angle φ=0°. The calculation can be done for H or V 
polarization, for both the incident and scattered beams. An 
impedance boundary condition is applied below the structure 
to simulate an infinitely deep lower layer, preventing any 
reflections at the lower boundary. These are also applied at the 
sides of the dielectric slab, for volume studies. Radiation 
boundary conditions are applied at the top and sides of the 
vacuum area, which also prevent reflections, as well as 
providing “virtual surfaces” for the near to far field 
calculation.  

The scattered electric field is calculated inside the 
calculation area and then the electric field in the far field 
region, Ep,j

s(θs,φs), is extrapolated from this value, at a distance 
R from surface j, at polarization p, and at discrete values of 
scattering angles θs and φs.  

 
4) Data Analysis: 

Numerical simulations are performed for N different rough 
surfaces (N different structures) with the same autocorrelation 
functions and values of σ and Lc. The bistatic scattering 
coefficient, σpq

0, was then calculated, for incident polarization 
q and scattered polarization p, from the scattered electric field 
in the far field region, averaged over all N surfaces. This 
averaging process is done in order to approach the value that 
would be obtained for the case of an infinitely large rough 
surface. The bistatic scattering coefficient is calculated from 
the following: 
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where (θ,φ) are incidence angles, (θs,φs) are angles of the 

scattered wave, N is the number of surfaces to be averaged 
over, Aeff is the effective area of the surface illuminated and 
Eq

i

 is the incident electric field with polarization q, which for a 
gaussian incident wave has the following form:  
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(x,y) is a point on the surface, (xcenter,ycenter) is the center of 
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the surface and g is a measure of the beam width. For this type 
of incident wave the effective area is given by 
Aeff=πg2/(2cosθ) [14] and in the case of a plane wave it is 
simply the total area of the surface illuminated.  

The bistatic scattering coefficient calculated by (3) contains 
both coherent and non-coherent components. The non-
coherent component is isolated as follows: 
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The values of g and N must be carefully chosen: this is 
discussed further in section B. The backscattering coefficient 
is the bistatic scattering coefficient for the monostatic case of 
(θs,φs)=(θs,φs+π) i.e. the reflection angle is equal to the 
incident angle. The emissivity of the surface measured at 
polarization p, ep(θ,φ) can be calculated by integrating the 
bistatic scattering coefficient over half space (Peake 1959), as 
follows [15]: 

 
).,(1),(e pp φθΓ−=φθ
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),(p φθΓ  is the reflectivity at polarization p given by: 
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where σ0

pp is the like polarized bistatic scattering coefficient 
and σ0

tp the cross polarized bistatic scattering coefficient. 
Since these are calculated for discrete values of θS and φS, we 
approximate (7) to a sum over θS and φS. For emissivity 
calculations, the step in the discrete values of θS and φS at 
which the electric field is calculated must be small enough that 
the errors due to this approximation are negligible.  

A. Numerical Calculations 

A comparison between the FEM approach and MoM was 
performed for the rough surface case. Results of the bistatic 
scattering coefficient and backscattering coefficient calculated 
using the FEM approach were compared to MoM results 
presented in [9] and [10] – [11] respectively, for surfaces of 
gaussian autocorrelation function, low roughness values and 
low permittivity values (equivalent to dry soil conditions). 
Results of the emissivity of rough surfaces with exponential 
autocorrelation functions, high permittivity values (equivalent 
to wet soil conditions) and low to high roughness values were 
compared to MoM results presented in [5]. 

In order to illustrate the interest of the approach presented 
in this letter, the emissivity of a rough surface covered by a 
dielectric layer, also with a rough surface, was then calculated 
using the FEM approach. This structure represented a rough 

soil surface covered by forest litter. The permittivity of the 
litter layer was fixed at 8.712+2.301i, equivalent to a 
moderately wet grass litter [16] and a litter depth of 8cm was 
chosen. Calculations were performed for permittivity values of 
5.313+0.443i, 10.288+1.025i and 16.893+1.837i for the lower 
soil rough surface, equivalent to dry to wet soil moisture 
conditions. Soil roughness was fixed at a low value and 
calculations were performed for two litter roughnesses, at H 
polarization and an angle of θ=40°, and φ=0°.  

All FEM calculations were performed at 1.4 GHz and at 
both H and V polarizations, on a 64 bit machine with 64 GB 
of available RAM. For the comparison with MoM we studied 
the surface case only, so the layer thickness was set to zero, 
i.e. the structure studied consisted of a vacuum with a lower 
rough surface. However it was found that results were almost 
unaffected by increasing the depth up to 20cm. For the soil-
litter study the structure consisted of a lower rough surface 
covered by a dielectric layer with a rough surface and topped 
by a volume representing a vacuum. 

The surface size L was chosen to be 12λ x 12λ (= 2.55m x 
2.55m). This amply satisfies the specification given in [5] that 
surfaces must be at least 8λ x 8λ in size. The surface size 
chosen was also much larger than the autocorrelation length, 
equivalent to 12Lc x 12Lc or higher. The surfaces created 
using the R software had a resolution of 256 x 256 points.  

We chose to use a tapered incident beam, as is common 
practice, in order to reduce edge effect errors, from the sides 
of the calculation area. We chose to use a gaussian beam, as 
described by (3), for its simplicity. The gaussian beam allows 
us to avoid errors due to edge effects but does not satisfy 
Maxwell’s equations exactly and is therefore only considered 
an approximation to an electromagnetic wave. Better 
approximations exist but are more difficult to implement with 
HFSS. However the results obtained indicate that the chosen 
beam was adequate for the comparison presented in this paper.  

The tapering parameter, g, for the incident beam must be 
small enough to reduce edge effects and large enough so that 
enough of the surface is illuminated to provide an accurate 
representation of the bistatic scattering coefficient. This 
parameter should also depend on the incident angle since 
higher angles lead to a spreading in the beam focal width in 
the x direction. Values commonly used vary from L/10 to L/4 
[3]. For simplicity we chose to use the same value of g for all 
angles. We chose to use a high value of L/4 (=63cm) in order 
to maximize the illuminated surface area since on the whole 
the angles considered in this paper are low, and all are far 
from grazing. This value may be somewhat high for the higher 
angles considered however the results obtained do not indicate 
that errors due to edge effects are significant. Calculations 
were performed for 20 different surfaces (N=20) for the 
scattering case since increasing calculations beyond this value 
led to very little change in results. Similarly calculations were 
performed for N=40 for the emissivity.  

The step in θS and φS, was chosen to be 0.2 degrees for the 
emissivity calculations. To test the adequacy of this, we 
reduced this value to 0.1 degrees but found that this had little 
effect on results of the emissivity. A step of 1 degree was used 



GRSL-00381-2010 

207 
 

207

for scattering calculations. 
It is usual to perform an energy conservation check for the 

case of rough surface emission however this was not possible 
since HFSS only calculates the scattered field in the upper 
hemisphere. Instead, we performed a calculation of the 
reflectivity, for angles of 30° to 50°, and with a perfect 
electrical reflector boundary condition (permittivity=infinity)  
replacing the impedance boundary condition on the rough 
surface. This condition ensures no transmission across the 
rough surface and so the reflectivity must be equal to unity for 
energy conservation to be true. Note that the scattered field 
across the whole sphere surrounding the structure was 
included in this calculation, including therefore any downward 
scattering due to edge effects, since the aim was to check that 
the total calculated energy was conserved. 

 

III.  RESULTS 

Results of the comparison with MoM for the scattering case 
(bistatic scattering and backscattering coefficients calculated 
from (2)) are presented in Fig.s 1 and 2. In Fig. 2 results of the 
bistatic scattering coefficient are illustrated at H polarization 
(very similar results were achieved at V polarization). Results 
of the emissivity comparison with MoM are presented in 
Tables I and II. The final column in these tables shows the 
difference in brightness temperature between the two methods, 
TB(FEM-MoM). These values are calculated from the 
difference in emissivity multiplied by a physical temperature 
of 290K. Results of the soil-litter study are shown in Fig. 3. 

CPU and memory requirements for each HFSS calculation 
(one surface only) varied from approximately 2 hours and 3 
GB for surfaces of lower roughness and approximately 12 
hours and 15 GB for surfaces of higher roughness, not 
including CPU time for near to far field calculations which 
was negligible for an integration step of 1 degree (scattering 
calculations) and approximately 10 minutes per incident angle, 
for an integration step of 0.2 degrees (emissivity calculations). 

The energy conservation check using the perfect E 
boundary condition gave a reflectivity within 0.1% of unity 
for all angles for the lower roughness and 1.2% of unity for 
the higher roughness. Although not conclusive, this indicates 
that energy conservation is good to within 1.2% or less.  

Fig.s 1 and 2 show a good agreement between the new 
method presented in this letter and the Method of Moments, 
for the active case. The average difference between the two 
methods for the backscattering coefficient is 1.2 dB for HH 
polarization and 2.1 dB for VV polarization. The largest 
difference is 4.0 dB for HH polarization, which occurs at 60°, 
and 1.7 dB for VV polarization, which occurs at 40°. The 
average difference for the bistatic scattering coefficient is 1.4 
dB, and the maximum difference occurs at 70°, and is equal to 
3.5 dB for HH polarization and 6.3 dB for VV polarization. 

Agreement is excellent for the emissivity, with an average 
difference between MoM and the FEM approach of 2.1K for 
the lower roughness and 2.4K for the higher roughness. The 
maximum difference between the two methods is 2.9K for the 
lower roughness and 3.6K for the higher roughness.  

 

 

 
Fig. 1.  Backscattering coefficient for the Method of Moments and the Finite 
Element Method models, calculated at 1.4 GHz for εr=3+0.1i and [σ, Lc]= 
[1.22 cm, 8.57 cm] at polarizations a) HH and b) VV.  

 
Fig. 2.  Bistatic scattering coefficient for the Method of Moments and the 
Finite Element Method models, calculated at 1.4 GHz for εr=4+1i and [σ, 
Lc]= [3.41 cm, 20.5 cm] with an incident angle of 30°.  

 
TABLE I EMISSIVITY FOR THE MOM AND THE FEM MODELS, CALCULATED 

AT 1.4GHZ, H AND V  POLARIZATION, FOR A SURFACE OF σ=0.4CM AND 

LC=8.4CM, EXPONENTIAL AUTOCORRELATION FUNCTION, AND PERMITTIVITY 

OF εr=15.57+3.71i.  

polarization angle 
MoM 

emissivity 
FEM 

emissivity 
TB(FEM-

MoM) 
H 30 0.5891 0.5920 0.8 

H 40 0.5465 0.5535 2.0 

H 50 0.4930 0.4987 1.6 

V 30 0.6951 0.7020 2.0 

V 40 0.7397 0.7467 2.0 

V 50 0.7997 0.8107 3.2 
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TABLE II  EMISSIVITY FOR THE MOM AND THE FEM MODELS, 
CALCULATED AT 1.4 GHZ, H AND V POLARIZATION, FOR A SURFACE OF σ 

=1.12 CM AND LC=8.4 CM, EXPONENTIAL AUTOCORRELATION FUNCTION AND 

PERMITTIVITY OF εr =15.34+3.66i. 

polarization angle 
MoM 

emissivity 
FEM 

emissivity 
TB(FEM-

MoM) 
H 30 0.6351 0.6296 1.6 

H 40 0.5944 0.5836 3.1 

H 50 0.5338 0.5365 0.8 

V 30 0.7380 0.7270 3.2 

V 40 0.7658 0.7726 2.0 

V 50 0.8140 0.8266 3.6 
We conclude that whilst not as accurate as the Method of 

Moments, the FEM approach provides results of good 
accuracy for rough surface scattering and emission, making it 
a good complimentary method. 

Fig. 3 is an example of a calculation for a multilayer 
structure with rough surfaces, which illustrates the interest of 
the new method. We see that the presence of the second 
covering litter layer has a clear effect on the overall emissivity 
and also the effects of surface roughness of the second layer 
are strong. 

 

 
Fig. 3.  Emissivity of the soil-litter forest system calculated using the Finite 
Element Method approach, at 1.4 GHz, H polarization, and with an incident 
angle θ=40° (φ=0°). Litter permittivity was 8.712+2.301i. Soil surface 
roughness was σ=0.44cm, Lc=9cm, with an exponential autocorrelation 
function and litter roughnesses were of gaussian autocorrelation function with 
values of: 1) soil-litter1 σ= 0.4, Lc=12.4 and 2) soil-litter2 σ= 0.8, Lc=12.4.  

 
 

IV.  CONCLUSION 

An FEM approach for calculating the rough surface 
scattering and emission of a soil layer, using the numerical 
modeling tool HFSS, has been presented and results compared 
to MoM predictions. We obtained good agreement with MoM 
for rough surface scattering, and excellent agreement for 
rough surface emissivity. The interest of the approach is that it 
can be used to study the emission of heterogeneous media, 
which was illustrated by a calculation of the emissivity of a 
soil-litter structure found in forests. Future studies can focus 

on this application as well as evaluating whether calculation 
time and memory requirements can be reduced and also 
whether the accuracy can be improved further by use of a less 
approximate tapered beam. 
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