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Abstract

Efficient best-first search algorithms have been developed for determin-

istic two-player games with two outcomes. We present a formal framework

to represent such best-first search algorithms. The framework is general

enough to express popular algorithms such as Proof Number Search, Monte

Carlo Tree Search, and the Product Propagation algorithm. We then show

how a similar framework can be devised for two more general settings:

two-player games with multiple outcomes, and the model checking problem

in modal logic K. This gives rise to new Proof Number and Monte Carlo

inspired search algorithms for these settings.

Similarly, the alpha-beta pruning technique is known to be very impor-

tant in games with sequential actions. We propose an extension of this

technique for stacked-matrix games, a generalization of zero-sum perfect

information two-player games that allows simultaneous moves.

Keywords: Artificial Intelligence, Monte Carlo Tree Search, Proof Number

Search, Modal Logic K, Alpha-beta Pruning

Résumé

Il existe des algorithmes en meilleur d’abord efficace pour la résolution

des jeux déterministes à deux joueurs et à deux issues. Nous proposons un

cadre formel pour la représentation de tels algorithms en meilleur d’abord.

Le cadre est suffisamment général pour exprimer des algorithmes populaires

tels Proof Number Search, Monte Carlo Tree Search, ainsi que l’algorithme

Product Propagation. Nous montrons par ailleurs comment adapter ce cadre

à deux situations plus générales : les jeux à deux-joueurs à plusieurs issues,

et le problème de model checking en logique modale K. Cela donne lieu à

de nouveaux algorithmes pour ces situations inspirées des méthodes Proof

Number et Monte Carlo.

La technique de l’élagage alpha-beta est cruciale dans les jeux à actions

séquentielles. Nous proposons une extension de cette technique aux stacked-

matrix games, une généralisation des jeux à deux joueurs, à information

parfaite et somme nulle qui permet des actions simultanées.

Mots clés : Intelligence Artificielle, Monte Carlo Tree Search, Proof Number

Search, Logique Modale K, Élagage Alpha-beta
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Felicity Allen, Marc Bellemare, Édouard Bonnet, Dave Churchill, Tim Furtak,

Richard Gibson, Florian Jamain, Marc Lanctot, Arpad Rimmel, Fabien Teytaud,

Joel Veness, you were always ready to play, be it abstract games, board games,

card games, or video games. Michael Buro, Rob Holte, and Jonathan Scha-

effer, the GAMES parties you organized are among my favorite memories of

Edmonton.

Bonita Akai, Eric Smith, and the members of the University of Alberta Improv

Group, it was a lot of fun to spend time with you and you definitely contributed

to the balance of my Canadian life. Pierre Puy, Richard Soudée, and the member
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1 Introduction

1.1 Motivation

The term multi-agent system has been used in many different situations and

it does not correspond to a single unified formalism. Indeed, formal concepts

such as extensive-form games, multi-agent environments, or Kripke structures

can all be thought of as referring to some kind of multi-agent system.

A large fraction of the multi-agent systems lend themselves to a multi-stage

interpretation. This multi-stage interpretation is non only relevant in domains

where agents perform actions sequentially, but also, say, in epistemic logics

where agents can have higher order knowledge/beliefs or perform introspection.

The underlying structure of these multi-stage problems is that of a graph where

the vertex correspond to states of the world and the edges correspond to the

actions the agents can take or to the applications of modal operators in epistemic

logic.

Properties of the system can thus be reduced to properties of the underlying

graph. The algorithmic stance adopted in this thesis consists of expressing

concrete heuristics or algorithms that allow to understand a multi-agent system

through the exploration of the corresponding graph. In most non-trivial such

multi-agent systems, the underlying graph is too large to be kept in memory

and explored fully. This consideration gives rise to the Search paradigm. In

Search, the graph is represented implicitly, typically with some starting vertex

and a successor function that returns edges or vertices adjacent to its argument.

Opposite to this high-level description of search problems in general, we

have a variety of concrete applications, research communities, and, accordingly,

1



1. INTRODUCTION

typical assumptions on the graphs of interest. As a result, many classical search

algorithms are developed with these assumptions in mind and seem to be

tailored to a specific class of multi-agent systems. The conducting line of our

work is to study whether and how such algorithms can be generalized and some

assumptions lifted so as to encompass a larger class of multi-agent systems.

The research presented in this thesis has two main starting points, the alpha-

pruning technique for the depth-first search algorithm known as minimax on

the one hand, and the Monte Carlo Tree Search (MCTS) and Proof Number

Search (PNS) algorithms on the other hand.

The minimax algorithm which is a generalization of depth-first search to

sequential two-player zero-sum games can be significantly improved by the

alpha-beta pruning technique. Alpha-beta pruning avoids searching subtrees

which are provably not needed to solve the problem at hand. Two important

facts contribute to the popularity of alpha-beta pruning in game search. It is

a safe pruning technique in that the result returned by the depth-first search

is not affected when pruning is enabled. Discarding subtrees according to

the alpha-beta pruning criterion can lead to considerable savings in terms of

running time. Indeed, Knuth and Moore have shown that if a uniform tree of

size n was explored by the minimax algorithm, alpha-beta pruning might only

necessitate the exploration of a subtree of size
√
n.

Alpha-beta pruning contributed to the creating of very strong artificial

players in numerous games from CHESS to OTHELLO. However, the original

algorithm for alpha-beta pruning only applied to deterministic sequential zero-

sum two-player games of perfect information (called multi-outcome games

in this thesis, see Chapter 3). This is quite a strong restriction indeed and

there have been many attempts at broadening the class of multi-agent systems

that can benefit from alpha-beta-like safe pruning. Ballard and Hauk et al.

have shown how to relax the deterministic assumption so that safe pruning

could be applied to stochastic sequential zero-sum two-player games of perfect

information [13, 61]. Sturtevant has then shown how the two-player and the

zero-sum assumptions could be alleviated [147, 148]. In Chapter 5, we lift the

sequentiality assumption and show how safe alpha-beta-style pruning can be

performed in zero-sum two-player games with simultaneous moves. Thus, two

tasks remain to be completed before safe alpha-beta pruning can be applied to

a truly general class of multi-agent system. Creating a unified formalism that

2



1.2. Organization and Contributions

would allow combining the aforementioned techniques and providing pruning

criteria for imperfect information games in extensive-form.

The PNS and MCTS algorithms were first suggested as ways to respectively

solve and play deterministic sequential two-player Win/Loss games of perfect

information (called two-outcome games in this thesis, see Chapter 2). Both

algorithms proved very successful at their original tasks. Variants of PNS [74]

were essential to solve a number of games, among which CHECKERS [136],

FANORONA [131], as well as medium sizes of HEX [8]. On the other hand, the

invention of the Upper Confidence bound for Trees (UCT) [76] and MCTS [40]

algorithms paved the way for the Monte Carlo revolution that improved consid-

erably the computer playing level in a number of games, including GO [85],

HEX [7], and General Game Playing (GGP) [47] (see the recent survey by Browne

et al. for an overview [20]).

Besides actual games, these algorithms have been used in other settings that

can be represented under a similar formalism, notably chemical synthesis [64]

and energy management problems [39].

In their simplest form, the PNS and MCTS algorithms maintain a partial game

tree in memory and they share another important feature. They can be both

expressed as the iteration of the following four-step process: descend the tree

until a leaf is reached, expand the leaf, collect some information on the new

generated leaves, backpropagate this information in the tree up to the root.

This leads us to define a Best First Search (BFS) framework consisting exactly

of these four steps and parameterized by an information scheme. The information

scheme determines the precise way the tree is to be traverse, the kind of

information collected at leaves and how information is backpropagated. The

BFS framework is first defined in Chapter 2 for two-outcome games and then

extended to multi-outcome games and to Multi-agent Modal Logic K (MMLK)

model checking.

1.2 Organization and Contributions

The common formalism used throughout this thesis is the transition system (see

Definition 1 in Section 1.4). Transition systems have been used in a variety

of domains, and particularly in verification and model checking [11]. In this

thesis, we shall focus on a few selected classes of multi-agent systems for which

3



1. INTRODUCTION

we will present and develop appropriate solving techniques. Each chapter of

this thesis is organized around a specific class and we will see how they can all

be viewed as particular transition systems where a few additional assumptions

hold.

Chapter 2 Two-player two-outcome games

Chapter 3 Two-player multi-outcome games

Chapter 4 Models of Multi-agent Modal Logic K

Chapter 5 Stacked-matrix games

More precisely, the contributions presented in this thesis include

• – A formal BFS framework for two-outcome games based on the new

concept of information scheme;

– information schemes generating the PNS, MCTS Solver, and Product

Propagation (PP) algorithms;

– an experimental investigation of PP demonstrating that PP can some-

times perform significantly better than the better known algorithms

PNS and MCTS;

• – an extension of the BFS framework to multi-outcome games through

the new concept of multi-outcome information scheme;

– an information scheme defining the Score Bounded Monte Carlo Tree

Search (SBMCTS) algorithm, a generalization of MCTS Solver;

– a principled approach to transforming a two-outcome information

scheme into a multi-outcome information scheme;

– the application of this approach to develop Multiple-Outcome Proof

Number Search (MOPNS), a generalization of PNS to multi-outcome

games and an experimental study of MOPNS;

• – an adaptation of the proposed BFS framework to the model checking

problem in MMLK, yielding several new model checking algorithms

for MMLK;

4



1.3. Contributions not detailed in this thesis

– Minimal Proof Search (MPS), an optimal algorithm to find (dis)proofs

of minimal size for the model checking problem in MMLK.

– a formal definition of many solution concepts popular in sequential

games via MMLK formula classes, including ladders in two-player

games, and paranoid wins in multi-player games;

– the use of MMLK reasoning to prove formal properties about these

solution concepts and to provide a classification of number of algo-

rithms for sequential games;

• – a generalization of Alpha-Beta pruning in games with simultaneous

moves, Simultaneous Move Alpha-Beta (SMAB);

– an efficient heuristic algorithm for games with simultaneous moves

under tight time constraints in the domain of Real-Time Strategy

(RTS) games, Alpha-Beta (Considering Durations) (ABCD);

– an experimental investigation of these new algorithms.

1.3 Contributions not detailed in this thesis

1.3.1 Endgames and retrograde analysis

The algorithms presented in this thesis are based on forward search. Given

an initial state s0, they try to compute some property of s0, typically its game

theoretic value, by examining states that can be reached from s0.

It is sometimes possible to statically, i.e., without search, compute the game

theoretic value of a game position even though it might no be a final position.

We developed a domain specific technique for the game of BREAKTHROUGH

called race patterns that allows to compute the winner of positions that might

need a dozen additional moves before the winner can reach a final state [126].

We also proposed a parallelization of the PN2 algorithm on a distributed system

in a fashion reminiscent of Job-Level Proof Number Search [168]. An imple-

mentation of race patterns and the parallelization of PN2 on a 64-client system

allowed us to solve BREAKTHROUGH positions up to size 6× 5 while the largest

position solved before was 5× 5.

An interesting characteristic of a number of domains that we try to solve is

that they are convergent, that is, there are few states in the endgames compared

5



1. INTRODUCTION

to the middle game. For example, CHESS is convergent as the number of possible

states shrinks as the number of pieces on the board decreases. It is possible to

take advantage of this characteristic by building endgame databases that store

the game theoretic value of endgame positions that have been precomputed.

In CHESS, endgame databases, or rather one particularly efficient encoding

called Nalimov tables, are now pervasive and used by every competitive CHESS

playing engine [152, 104]. Endgame databases have been crucial to solving

other games such as CHECKERS [135], AWARI [116], and FANORONA [131].

An endgame database does actually not need to contain all endgame posi-

tions but only a representative position for every symmetry equivalence class.

Geometrical symmetry is the most common type of symmetry and it typically

involves flipping or rotating the game board [42]. Another kind of symmetry

occur in trick-taking card games, where different cards can take corresponding

roles. We call this it material symmetry and we show argue that it occurs in a

variety of games besides trick-taking card games.

We argue that material symmetry can often be detected via the graph

representing the possible interaction of the different game elements (the mate-

rial) [128]. Indeed, we show in three different games, SKAT, DOMINOES, and

CHINESE DARK CHESS that material symmetry reduces to the subgraph isomor-

phism problem in the corresponding interaction graph. Our method yields

a principled and relatively domain-agnostic approach to detecting material

symmetry that can leverage graph theory research [154]. While creating a

domain-specific algorithm for detecting material symmetry in SKAT and DOMI-

NOES is not hard, interactions between pieces in CHINESE DARK CHESS are

quite intricate and earlier work on CHINESE DARK CHESS discarded any material

symmetry. On the other hand, the interaction graph follows directly from the

rules of the game and we show that material symmetry can lead to equivalent

databases that are an order of magnitude smaller.

[126] Abdallah Saffidine, Nicolas Jouandeau, and Tristan Cazenave. Solv-

ing Breakthough with race patterns and Job-Level Proof Number Search.

In H. van den Herik and Aske Plaat, editors, Advances in Computer

Games, volume 7168 of Lecture Notes in Computer Science, pages 196–207.

Springer-Verlag, Berlin / Heidelberg, November 2011. ISBN 978-3-642-

31865-8. doi: 10.1007/978-3-642-31866-5 17
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1.3. Contributions not detailed in this thesis

[128] Abdallah Saffidine, Nicolas Jouandeau, Cédric Buron, and Tristan

Cazenave. Material symmetry to partition endgame tables. In 8th In-

ternational Conference on Computers and Games (CG). Yokohama, Japan,

August 2013

1.3.2 Monte Carlo Methods

Monte Carlo methods are being more and more used for game tree search.

Besides the Score Bounded Monte Carlo Tree Search algorithm that we detail in

Chapter 3, we have investigated two aspects of these Monte Carlo methods. In

a first line of work, we focused on the MCTS algorithm and studied how trans-

positions could be taken into account [125]. After showing a few theoretical

shortcomings of some naive approaches to handling transpositions, we proposed

a parameterized model to use transposition information. The parameter space

of our model is general enough to represent the naive approach used in most

implementations of the MCTS algorithm, the alternative algorithms proposed

by Childs et al. [27], as well a whole range of new settings. In an extensive

experimental study ranging over a dozen domains we show that it is consistently

possible to improve upon the standard way of dealing with transposition. That

is, we show that the parameter setting simulating the standard approaches

almost always perform significantly worse than the optimal parameter setting.

In a second line of work, we propose a new Monte Carlo algorithm for

stochastic two-player games with a high branching factor at chance nodes [83].

The algorithms we propose are quite similar to EXPECTIMAX and its pruning

variants STAR1 and STAR2 [61]. The only difference is that instead of looping

over all possible moves at a chance nodes, we sample a bounded subset of moves.

This allows searching faster or much deeper trees at the cost of some inaccuracy

in the computed value. We show that the computed value is accurate with a

high probability that does not depend on the true branching factor at chance

nodes. This results constitute a generalization of sparse sampling from Markov

Decision Processes to stochastic adversarial games [72]. It can also be related to

the double progressive widening idea [38]. We conduct an experimental study

on four games and show that the new approach consistently outperforms their

non-sampling counterparts.

[125] Abdallah Saffidine, Tristan Cazenave, and Jean Méhat. UCD: Upper
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1. INTRODUCTION

Confidence bound for rooted Directed acyclic graphs. Knowledge-Based

Systems, 34:26–33, December 2011. doi: 10.1016/j.knosys.2011.11.014

[83] Marc Lanctot, Abdallah Saffidine, Joel Veness, Chris Archibald, and

Mark Winands. Monte carlo *-minimax search. In 23rd International Joint

Conference on Artificial Intelligence (IJCAI), Beijing, China, August 2013.

AAAI Press

1.3.3 Analysis of the Game Description Language

The formalism use throughout this thesis is based on transition systems. These

transition systems notably include a state space and a transition relation. How-

ever, in practice the state space is implicit and uses a domain specific state

representation. In that case, the transition relation is given by domain specific

game rules.

The most straightforward approach to running concrete algorithms on a

domain, is to implement the mechanics of the domain directly in some program-

ming language and to provide procedure to manipulate states in a specified

interface. The algorithms to be tested are implemented in the same program-

ming language and can be adapted to use the specified interface.

One downside to this approach is that describing game rules in the same

procedural language as the algorithms might be tedious for some games. Even

more so, this approach makes automatic comparison between competing al-

gorithms implemented by different people rather difficult. Indeed, when we

compare two implementations of two competing algorithms based on two dif-

ferent implementation of the domain, determining whether a speed-up is due

to an improvement on the algorithm side or is due to a domain-specific trick is

usually tricky, particularly when the implementations are not publicly available.

An alternative approach is to develop a standard modeling language to

represent domains and then have interfaces from the language of the domains

to the programming language of the algorithms. We can then measure the

merits of various algorithms on the very same domain without fear that domain

specific improvements might creep in some implementations only.

This idea was successfully brought into effect in multiple research communi-

ties. For instance, the PROMELA language was designed to represent distributed

system and makes it possible to implement model checking or verification
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1.3. Contributions not detailed in this thesis

algorithms in a domain agnostic way [67, 68]. In planning, the Planning Do-

main Description Language (PDDL) was developed to be used as part of the

international planning competitions [48, 65].

In the games community, the Game Description Language (GDL) was in-

troduced to model a large variety of multi-agent transition systems [93]. GDL

was used as a domain language in the yearly GGP competition and hundreds of

games have been specified in this language. Interfacing domain written in GDL

with a game playing engine is traditionally based on a Prolog interpreter such

as YAP [37], and Prolog bindings in the programming language of the playing

engine.

A few other methods have since been suggested to deal with GDL and provide

the needed interface. For instance, under some assumptions, it is possible to

ground the game rules and use an Answer-Set Programming solver [151, 101] to

determine legal transitions or even solve some single-agent instances. We have

proposed an compiling approach to GDL based on forward chaining [121]. The

compilation strategy is based on successive program transformations that have

proved successful in other domains (notably the Glasgow Haskell Compiler [96]

and the CompCert C compiler [87]). The forward chaining approach we

use is adapted from the Datalog interpretation scheme advocated by Liu and

Stoller [89], but we outlined a few optimizations specific to GDL.

Most compilers and interpreters for GDL actually only support a subset of

the language. This is not a shortcoming unbeknownst to the authors of the

said systems but rather a design choice. These implementations indeed impose

restrictions on GDL to allow for further optimizations at the cost of not handling a

small subset of the games appearing in practice. A popular such restriction is to

prevent nested function constants in terms, or at least to have bounded nesting

depth which is the case for the vast majority of GGP games used in international

competitions. We motivate formally this design choice by showing that the full

Game Description Language is Turing complete [120]. As a consequence many

properties of GDL rules are undecidable. Bounding the nesting depth (as well as

other typical restrictions) make these properties decidable.

More recently, we have improved the forward chaining compilation of

GDL in a new implementation that introduces an additional set of lower-level

optimizations, leading to very efficient generated code [140].

[121] Abdallah Saffidine and Tristan Cazenave. A forward chaining
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1. INTRODUCTION

based game description language compiler. In IJCAI Workshop on General

Intelligence in Game-Playing Agents (GIGA), pages 69–75, Barcelona, Spain,

July 2011

[120] Abdallah Saffidine. The Game Description Language is Turing-

complete. IEEE Transactions on Computational Intelligence and AI in Games,

2013. submitted

[140] Michael Schofield and Abdallah Saffidine. High speed forward

chaining for general game playing. In IJCAI Workshop on General In-

telligence in Game-Playing Agents (GIGA), Beijing, China, August 2013.

submitted

1.3.4 Complexity of Solving Games

Multiple approaches for solving games are presented in this thesis, but all of

them rely on an explicit exploration of at least a fraction of the state space.

Since the state space can be implicitly represented, e.g., when the game is

specified in the GDL (see Section 1.3.3), the state space is usually exponentially

bigger than the domain specific representation of a state.

As a result, the algorithms we advocate typically are exponential in the

size of the input. Since they can in principle solve games of any size, they are

particularly adapted to games that are computationally complex, as polynomial

algorithms for such games are unlikely.

Determining the computational complexity of generalized version of games

is a popular research topic [63]. The complexity class of the most famous games

such as CHECKERS, CHESS, GO was established shortly after the very definition of

the corresponding class [50, 49, 115]. Since then, other interesting games have

been classified, including OTHELLO [71] and AMAZONS [53]. Reisch proved the

PSPACE completeness of the most famous connection game, HEX, in the early

80s [113]. We have since then proved that HAVANNAH and TWIXT, two other

notable connection games, were PSPACE-complete [15].

Trick-taking card games encompass classics such CONTRACT BRIDGE, SKAT,

HEARTS, SPADES, TAROT, and WHIST as well as hundreds of more exotic variants.1

1A detailed description of these games and many other can be found on.http://www.pagat.
com/class/trick.html.
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A significant body of Artificial Intelligence (AI) research has studied trick-taking

card games [22, 57, 51, 80, 94] and Perfect Information Monte Carlo (PIMC)

sampling is now used as a base component of virtually every state-of-the-art

trick-taking game engine [88, 57, 150, 91]. Given that most techniques based

on PIMC sampling rely on solving perfect information instance of such trick-

taking games, establishing complexity of the perfect information variant of

these games is a pressing issue.

Despite their huge popularity in the general population as well as among

researchers, BRIDGE and other trick-taking card games remained for a long time

virtually unaffected by the stream of complexity results on games. In his thesis,

Hearn proposed the following explanation to the standing lack of hardness

result for such games [62, p122].

There is no natural geometric structure to exploit in BRIDGE as there

is in a typical board game.

In a recent paper [16], we propose a general model for perfect information

trick-taking card games and prove that solving an instance is PSPACE-complete.

The model can be restricted along many dimensions, including the number of

suits, the number of players, and the number of cards per suit. This allows to

define fragments of the class of trick-taking card games and it makes it possible

to study where the hardness comes from. In particular, tractability results by

Wästlund fall within the framework [163, 164]. We also show that bounding

the number of players or bounding the number of cards per suit is not sufficient

to avoid PSPACE-hardness. The results of the paper can be summed up in the

complexity landscape of Figure 1.1.

[15] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. Havan-

nah and Twixt are PSPACE-complete. In 8th International Conference on

Computers and Games (CG). Yokohama, Japan, August 2013

[16] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. On the

complexity of trick-taking card games. In 23rd International Joint Confer-

ence on Artificial Intelligence (IJCAI), Beijing, China, August 2013. AAAI

Press
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B( , , )
[16, Thm. 1]

B( , , 5)
[16, Thm. 2]

B(L3, , )
[16, Thm. 3]

B( , S, )

B(L1, , 4)
[16, Prop. 2]

B(L1, , )

BM(L1, , )
[164]

B(L1, 1, )
[163]

PTIME

PSPACE-complete

Figure 1.1: Summary of the hardness and tractability results known for the
fragments of the class of trick-taking card games B(L, s, l). An underscore
means that the parameter is not constrained. In the first parameter, Li indicates
that there are 2i players partitioned in two team of equal size. The second
parameter is the number of suits s, and the third parameter is the maximum
number of cards per suit. Finally, BM(, , ) indicates a symmetry restriction on
the distribution of suits among players.
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1.3.5 Computational Social Choice

If studying algorithms that compute Nash equilibria and other solution concepts

in specific situations constitute one end of the multi-agent/algorithmic game

theory spectrum, then computational social choice can be seen as the other

end of the spectrum. In computational social choice, one is indeed interested

in solution concepts in their generality. Typical computational social choice

investigations include the following questions.

• What properties does a particular solution concept have?

• Is there a solution concept satisfying a given list of axiom?

• Is the computation of a given property in a given class of multi-agent

systems tractable?

• Can we define a class of multi-agent systems that could approximate a

given real-life interaction among agents?

• If so, what new solution concepts are relevant in the proposed class and

how do they relate to existing solution concepts in previously defined

classes?

A subfield of computational social choice of special interest to us is that of

elections. Elections occur in multiple real-life situations and insight from social

choice theory can be fruitfully applied to settings as varied as political elections,

deciding which movie a group of friend should watch, or even selecting a subset

of submissions to be presented at a conference. Another setting closer to the

main topic of this thesis can also benefit from social choice insights: ensemble

based decision making [112] has recently been successfully applied to the games

of SHOGI [107] and GO [95] via a majority voting system.

Given a set of candidates and a set of voters, a preference profile is a

mapping from each voter to a linear order on the candidates. A voting rule maps

a preference profile to an elected candidate. It is also possible to define voting

rules that map preference profiles to sets of elected candidates. Social choice

theorist study abstract properties of voting rules to understand which rule is

more appropriate to which situation. We refer to Moulin’s book for a detailed

treatment of the field [99].

13



1. INTRODUCTION

An very important solution concept in single winner elections is that of

a Condorcet winner. A Condorcet winner is a candidate that is preferred by

majority of voters to every other candidates in one-to-one elections. A Condorcet

winner does not always exists for a given preference profile, but when one does,

it is reasonable to expect that it should be elected. We proposed a generalization

of the Condorcet winner principle to multiple winner elections [43]. We say that

a set of candidates is a Condorcet winning set if no other candidate is preferred

to all candidates in the set by a majority of voter. Just as Condorcet winners,

Condorcet winning sets satisfy a number of desirable social choice properties.

Just as Condorcet winners, Condorcet winning sets of size 2 are not guaranteed

to exist and we ask whether for any size k, there exists a profile Pk such that Pk

does not admit any Condorcet winning set of size k.

Another line of work that we have started exploring deals with voters’

knowledge of the profile [160]. The fact that voters may or may not know each

other’s linear order on the candidate has multiple consequences, for instance

on the possibilities of manipulation. We propose a model based on epistemic

logic that accounts for uncertainty that voters may have about the profile. This

model makes it possible to model higher-order knowledge, e.g., we can model

that a voter v1 does not know the preference of another voter v3, but that v1
knows that yet another voter v2 knows v3’s linear order.

[43] Edith Elkind, Jérôme Lang, and Abdallah Saffidine. Choosing col-

lectively optimal sets of alternatives based on the Condorcet criterion.

In Toby Walsh, editor, 22nd International Joint Conference on Artificial

Intelligence (IJCAI), pages 186–191, Barcelona, Spain, July 2011. AAAI

Press. ISBN 978-1-57735-516-8

[160] Hans van Ditmarsch, Jérôme Lang, and Abdallah Saffidine. Strategic

voting and the logic of knowledge. In Burkhard C. Schipper, editor, 14th

conference on Theoretical Aspects of Rationality and Knowledge (TARK),

pages 196–205, Chennai, India, January 2013. ISBN 978-0-615-74716-3

1.4 Basic Notions and Notations

We now introduce a few definitions and notations that we will use throughout

the thesis.
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1.4. Basic Notions and Notations

Definition 1. A transition system T is a tuple 〈S,R,−→, L, λ〉 such that

• S is a set of states;

• R is a set of transition labels;

• −→⊆ S ×R× S is a transition relation;

• L is a set of state labels;

• λ : S → 2L is a labeling function. This function associate a set of labels to

each state.

For two states s, s′ ∈ S and a transition label a ∈ R, we write s
a−→ s′ instead

of (s, a, s′) ∈−→. If s is a bound state variable, we indulge in writing ∃s a−→ s′

instead of ∃s′ ∈ S, s a−→ s′. Similarly, if s′ is bound, the same notation ∃s a−→ s′

means ∃s ∈ S, s a−→ s′. In the same way, we allow the shortcut ∀s a−→ s′.

We recall that multisets are a generalization of sets where elements are

allowed to appear multiple times. If A is a set, then 2A denotes the power set of

A, that is, the set of all sets made with elements taken from A. Let NA denote

the set of multisets of A, that is, the set of all multisets made with elements

taken from A. We denote the carrier of a multiset M by M∗, that is M∗ is the

set of all elements appearing in M .

We recall that a total preorder on a set is a total, reflexive, and transitive

binary relation. Let A be a set and 4 a total preorder on A. 4 is total so every

pair of elements are in relation: ∀a, b ∈ A we have a 4 b or b 4 a. 4 is reflexive

so every element is in relation with itself: ∀a ∈ A we have a 4 a. 4 is transitive

so ∀a, b, c ∈ A we have a 4 b and b 4 c implies a 4 c.

Basically, a total preorder can be seen as a total order relation where distinct

elements can be on the “same level”. It is possible to have a 6= b, a 4 b, and

b 4 a at the same time.

We extend the notation to allow comparing sets. If 4 is a total preorder on A

and A1 and A2 are two subsets of A, we write A1 4 A2 when ∀a1 ∈ A1, ∀a2 ∈
A2, a1 4 a2.

We also extend the notation to have a strict preorder: a ≺ b if and only if

a 4 b and b 64 a. Finally, we extend the strict notation to allow comparing sets,

we write A1 ≺ A2 when ∀a1 ∈ A1, ∀a2 ∈ A2, a1 ≺ a2.
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2 Two-Outcome Games

We define a formal model of deterministic two-player perfect infor-

mation two-outcome games. We develop a generic best-first-search

framework for such two-outcome games and prove several properties

of this class of best-first-search algorithms. The properties that we ob-

tain include correctness, progression, and completeness in finite acyclic

games. We show that multiple standard algorithms fall within the

framework, including PNS, MCTS, and PP.

The Chapter includes results from the following paper.

[124] Abdallah Saffidine and Tristan Cazenave. Developments on

product propagation. In 8th International Conference on Computers

and Games (CG). Yokohama, Japan, August 2013
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2.6.3 Results on DOMINEERING . . . . . . . . . . . . . . . 40

2.6.4 Results on NOGO . . . . . . . . . . . . . . . . . . . . 42

2.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Game Model

We base the definition of two-outcome games on that of transition system (see

Definition 1). Transition labels are interpreted as agents or players.

Definition 2. A two-outcome game is a transition system 〈S,R,−→, L, λ〉 where

the following restriction holds.

• There are two distinguished agents Max ∈ R and Min ∈ R

• State turns are exclusive: ¬∃s1, s2, s3 ∈ S, s1 Max−−→ s2 ∧ s1 Min−−→ s3.

• There is a distinguished label: Win ∈ L;

We define the max states A and the min states B as the sets of states that

allow respectively Max and Min transitions: A = {s ∈ S, ∃s′ ∈ S, s Max−−→ s′} and

B = {s ∈ S, ∃s′ ∈ S, s Min−−→ s′}.
We say that a state is final if it allows no transition for Max nor Min. We

denote the set of final states by F . F = S \ (A ∪ B). States that are not final

are called internal. For two states s1, s2 ∈ S, we say that s2 is a successor of s1
if it can be reached by a Max or a Min transition. Formally, we write s1 −→ s2

when s1
Max−−→ s2 ∨ s1 Min−−→ s2.

Remark 1. From the turn exclusivity assumption, we derive that A, B, and F

constitute a partition of S.

We say that a state is won, if it is final and it is labelled as a Win: s ∈
F ∧Win ∈ λ(s). We say that a state is lost if it is final and it is not won.

Note that we have not mentionned any other agent beside Max and Min nor

any state label besides Win. Other agents and other state labels will have no

influence in this Chapter and we will assume without loss of generality that

R = {Max,Min} and L = {Win}.
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2.1. Game Model

The game graph is a Direct Acyclic Graph (DAG) if there are no sequences

s0 −→ s1 −→ . . . −→ sk −→ s0. When the game graph is a finite DAG, we can define

the height h of a state to be the maximal distance from that state to a final state.

If s ∈ F then h(s) = 0 and if s ∈ A ∪B then h(s) = 1 +maxs−→s′ h(s
′).

Definition 3. A weak Max-solution to a two-outcome game is a subset of states

Σ ⊆ S such that

If s ∈ F then s ∈ Σ⇒ Win ∈ λ(s) (2.1)

If s ∈ A then s ∈ Σ⇒ ∃s Max−−→ s′, s′ ∈ Σ (2.2)

If s ∈ B then s ∈ Σ⇒ ∀s Min−−→ s′, s′ ∈ Σ (2.3)

Conversely, a weak Min-solution is a subset of states Σ ⊆ S such that

If s ∈ F then s ∈ Σ⇒ Win /∈ λ(s) (2.4)

If s ∈ A then s ∈ Σ⇒ ∀s Max−−→ s′, s′ ∈ Σ (2.5)

If s ∈ B then s ∈ Σ⇒ ∃s Min−−→ s′, s′ ∈ Σ (2.6)

Remark 2. Weak Max-solutions on the one hand, and weak Min-solutions on the

other hand are closed under union but are not closed under intersection.

The class of systems that we focus on in this Chapter and in Chapter 3 are

called zero-sum games. It means that the goals of the two players are literally

opposed. A possible understanding of the zero-sum concept in the proposed

formalism for two-outcome games is that each state is either part of some weak

Max-solution, or part of some weak Min-solution, but not both.

Proposition 1. Let Σ be a weak Max-solution and Σ′ be a weak Min-solution. If

the game graph is a finite DAG, then these solutions do not intersect: Σ ∩ Σ′ = ∅.

Proof. Since the game graph is a finite DAG, the height of states is well defined.

We prove the proposition by induction on the height of states.

Base case: if a state s has height h(s) = 0, then it is a final state. If it is part

of the Max-solution, s ∈ Σ, then we know it has label Win, Win ∈ λ(s) and it

cannot be in the weak Min-solution.

Induction case: assume there is no state of height less or equal to n in Σ∩Σ′

and obtain there no state of height n + 1 in Σ ∩ Σ′. Let us take s ∈ Σ such
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that h(s) = n+ 1 and prove that s /∈ Σ′. If s ∈ A then by definition of a weak

Max-solution s has a successor c ∈ Σ. Since all successors of s have height

less or equal to n, we know that h(c) ≤ n. From the induction hypothesis, we

obtain that c is not in Σ′. Hence, s cannot be in Σ′ either as it would require all

successors and c in particular to be in Σ′.

Proposition 2. Let s be a state, if the game graph is a finite DAG, then s belongs

to a weak solution.

Proof. Since the game graph is a finite DAG, the height of states is well defined.

We prove the proposition by induction on the height of states.

Base case: if a state s has height h(s) = 0, then it is a final state. If it has

label Win, then we known s is part of a Max-solution, for instance Σ = {s}.
Otherwise, it is part of a Min-solution, for instance Σ = {s}.

Induction case: assume all states of height less or equal to n are part of a

weak solution and obtain that any state of height n+1 is part of a weak solution.

Let us take s ∈ A such that h(s) = n+ 1. Since all successors of s have height

less or equal to n, we know that they are all part of a weak solution. If one

of them is part of weak Max-solution Σ, then Σ ∪ {s} is a weak Max-solution

that contains s. Otherwise, each successor s′ is part of a weak Min-solution

Σs′ . Since weak Min-solutions are closed under union, we can take the union of

these Min-solutions and obtain a Min-solution: Σ =
⋃

s−→s′ Σs′ . It is easy to see

that Σ ∪ {s} is a weak Min-solution that contains s.

The same idea works if we take s ∈ B instead, and we omit the details.

Definition 4. A strong solution to a two-outcome game is a partition of S,

(Σ, S \ Σ) such that

If s ∈ F then s ∈ Σ⇔ Win ∈ λ(s) (2.7)

If s ∈ A then s ∈ Σ⇔ ∃s Max−−→ s′, s′ ∈ Σ (2.8)

If s ∈ B then s ∈ Σ⇔ ∀s Min−−→ s′, s′ ∈ Σ (2.9)

Proposition 1 and Proposition 2 directly lead to the following caracterisation

of strong solutions.

Theorem 1 (Existence and unicity of a strong solution). If the game graph is a

finite DAG, then a unique strong solution exists and can be constructed by taking Σ
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to be the states that are part of some weak Max-solution and S \Σ to be the states

that are part of some weak Min-solution.

Remark 3. A strong solution is a pair of weak solutions that are maximal for the

inclusion relation.

From now on, we will extend the notion of won and lost states to non-final

states by saying that a state is won if it is part of a weak Max-solution and that

it is lost if it is part a weak Min-solution.

It is now possible to give a formal meaning to Allis’s notion of solving a

game ultra-weakly, weakly, and strongly [3, 156].

Remark 4. A game with a specified initial state s0 is ultra-weakly solved when

we have determined whether s0 was won or s0 was lost.

A game with a specified initial state s0 is weakly solved when we have exhibited

a weak solution that contains s0.

A game is strongly solved when we have exhibited a strong solution.

While the finite DAG assumption in the previous statements might seem

quite restrictive, it is the simplest hypothesis that leads to well-definedness and

exclusion of won and lost values for non terminal states. Indeed, if the game

graph allows cycles or if is not finite, then Theorem 1 might not hold anymore.

Example 1. Consider the game G1 = 〈S1, R,−→1, L, λ1〉 with 4 states, S1 =

{s1, s2}, and a cyclic transition relation −→1. The transition relation is defined

extensively as s0
Max−−→1 s1, s0

Max−−→1 s2, s1
Min−−→1 s0, and s1

Min−−→1 s3. The only

final state to be labelled Win is s3. A graphical representation of G1 is presented

in Figure 2.1a.

G1 admits two strong solutions, ({s0, s1, s3}, {s2}) and ({s3}, {s0, s1, s2}).
While s3 is undeniably a win state and s2 is undeniably a lost state, s0 and s1
could be considered both at the same time.

Example 2. Consider the game G2 = 〈S2, R,−→2, L, λ2〉 defined so that there

are infinitely many states, S2 = {si, i ∈ N}, and the transition relation −→2 is

such that s2i
Max−−→ s2i+1 and s2i+1

Min−−→ s2i+2. λ2 is set so that no states are

labelled Win. A graphical representation of G2 is presented in Figure 2.1b.

G2 admits two strong solutions, (S2, ∅) and (∅, S2). Put another way, we can

consider that all the states are winning or that all the states are losing.
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s0 s1

s2 s3

Max

Min
Max Min

(a) Cyclic game graph

max min lost won

s0 s1 s2 . . .

Max Min

(b) Infinite game graph

Figure 2.1: Examples of two-outcome games in which the conclusions of Theo-
rem 1 do not apply.

In practice, the vast majority of games actually satisfy this hypothesis. Take

CHESS, for instance, while it is usually possible from a state s to reach after a

couple moves a state s′ where the pieces are set in the same way as in s, s and s′

are actually different. If the sequence of moves that lead from s to s′ is repeated

in s′ we reach yet another state s′′ with the same piece setting. However, s′′ is a

final state because of the threefold repetition rule whereas s and s′ were internal

states. As a consequence, s′ is a different state than s since the aformentionned

sequence of moves does not have the same effect. Therefore, in such a modeling

of CHESS, the game graph is acyclic. The 50-moves rule, acyclicity, and the

fact that there finitely many piece settings ensure that there are finitely many

different states.

Another modeling of CHESS only encodes the piece setting into the state and

relies on the history of reached position to determine values for position. While

introducing dependency on the history is not necessary to define CHESS and

gives rise to a complicated model in which very few formal results have been

established, it is popular among game programmers and researchers as it allows

a representation with fewer distinct states.

The ancient game of GO takes an alternative approach to deal with short

loops in the piece setting graph. The Ko rule makes it illegal to play a move in

a position s that would lead to the same piece setting as the predecessor of s.

This rule makes it necessary to take into account short term history. Observe

that the Ko rule does not prevent cycles of length greater than two in the piece
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setting graph. Another rule called superko rule makes such cycles illegal, but

the superko rule has only been adopted by Chinese, America, and New Zealand

GO federation. On the other hand, Japanese and Korean rules allow long cycles

in the piece setting graph. As a consequence, the game can theoretically last for

an infinite number of moves without ever reaching a final position. In practice,

when a long cycle occurs in Japanese and Korean professionnal play, the two

players can agree to stop the game. This is not understood as a draw as it

would be in CHESS, but is rather seen as a no result outcome and the players are

required to play a new game to determie a winner.

In the rest of this Chapter, we will mostly be concerned with providing

search algorithms for weakly solving games that have a finite game graph with

a DAG structure.

2.2 Depth First Search

In this Section, we present a simple game search algorithm to weakly solve

two-outcome games called Depth First Search (DFS). It is a direct adaptation of

the graph search algorithm of the same name. Indeed, DFS performs a depth-

first traversal of (an unfolding of) the game graph until the set of visited nodes

contains a weak solution for the initial state. Pseudo-code for DFS is presented

in Algorithm 1.

Algorithm 1: Pseudo-code for the DFS algorithm.

dfs(state s)
switch on the turn of s do

case s ∈ F
return Win ∈ λ(s)

case s ∈ A
foreach s′ in {s′, s Max−−→ s′} do

if dfs(s′) then return true

return false
case s ∈ B

foreach s′ in {s′, s Min−−→ s′} do
if not dfs(s′) then return false

return true
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2. TWO-OUTCOME GAMES

Remark 5. The specification of DFS in Algorithm 1 is non-deterministic. One

consequence of this non-determinism is that the algorithm might or might not

converge for a given game. This will be expanded upon in Example 3.

If the game graph is a finite DAG, then its unfolding is a finite tree. The DFS

algorithm visits each state of the unfolded tree at most once so it can only visit

a finite number of states in the unfolding. This is summed up in Proposition 3.

Proposition 3 (Termination). If the game graph is a finite DAG, then the DFS

algorithm terminates.

Proof. If the game graph is a finite DAG, then the height of states is well-defined.

We prove the proposition by induction on the height of the argument state s.

Base case: h(s) = 0. When s is a final state, DFS returns without performing

a recursive call.

Induction case: Assume DFS terminates whenever given an argument of

height less or equal to n and prove that it terminates when given an argument s

of height n+ 1. Let s be a state of height n+ 1. s is either a max state or a min

state, and all its successors have height less or equal to n. Since the game graph

is finite, we know that s only has finitely many successors. We conclude that

when DFS is called with s as argument, finitely many recursive calls to DFS are

performed and so the algorithm terminates.

The DFS algorithm is correct, that is, if dfs(s) terminates, then it returns

true only when there exists a weak Max-solution containing s, and it returns

false only when there exists a weak Min solution containing s.

Proposition 4 (Correctness). If DFS returns true when given argument s, then

there exists a weak Max-solution including s. If it returns false then there is a

weak Min-solution including s.

Proof. Induction on the depth of the call-graph of DFS.

This property establised by Proposition 4 does not rely on the finite DAG

assumption. However, if we make the finite DAG assumption, then Proposition 3

and 4 combine and lead to the following completeness result.
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Figure 2.2: Example of a two-outcome game in which the DFS algorithm might
or might not terminate. s6 is a lost final node and s7 is a won final node.

Theorem 2 (Completeness in finite DAG). When called on a state s of a game

which graph is a finite DAG, then DFS terminates and returns true exactly when s

is won and returns false exactly when s is lost.

If the game graph is allowed to be infinite or to contain cycles, then DFS

might or might not terminate.

Example 3. Consider the game presented in Figure 2.2. The graph of the

game presents a cycle, {s1, s3}, and the game indeed has two strong solutions,

({s0, s1, s2, s3, s4, s5, s7}, {s6}) and ({s0, s2, s4, s5, s7}, {s1, s3, s6}). s0 is part of

the Max weak-solution of every strong solution, so it can be considered as a

won state. Still, it is possible that a call to DFS with s0 as argument does not

terminate and it is also possible that it terminates and returns true. Indeed, s0
has two successor states, s1 and s2, and DFS is called recursively in either of the

two non-deterministically. On the one hand, if the first recursive call from s0
takes s1 as argument, then the algorithm gets stuck in an infinite loop. On the

other hand, if the first recursive call from s0 takes s2 as argument, then that

calls returns true and the loop is shortcut without calling DFS on s1.
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2. TWO-OUTCOME GAMES

2.3 Best First Search

We propose in this section a generic Best First Search (BFS) framework. The

framework can be seen as a template that makes it easy to define game tree

search algorithms for two-outcome games. The framework is general enough to

encompass PNS and MCTS in particular.

2.3.1 Formal definitions

Definition 5. An information scheme is a tuple 〈V,⊤,⊥,4, H〉 such that V is a

set of information values; ⊤ ⊂ V and ⊥ ⊂ V are two distinguished sets of top

values and bottom values.

4 is a selection relation parameterized by a player and an information

context: ∀v ∈ V we have 4v
max and 4v

min two total preorders on V .

H is an update function parameterized by a player. It aggregates multiple

pieces of information into a single information value. Since we allow pieces of

information to be repeated, we need to use multisets rather than sets. We have

Hmax : NV → V and Hmin : NV → V .

This set represents the information that can be associated to nodes of the

tree. The intended interpretation of v1 4v
p v2 is that v2 is preferred to v1 by

player p under context v.

We extend the notation for the selection relation as follows: v1 4p v2 is

short for ∀v ∈ V, v1 4v
p v2. It is not hard to see that 4p is also a total preorder.

Definition 6. We define the set of solved values as S = ⊤ ∪ ⊥ and the set of

unsolved values as U = V \ S.

Example 4. Let the set of information values be the real numbers with both

infinites: V = R ∪ {−∞,+∞}, the bottom values be the singleton ⊥ = {−∞},
and the top values be ⊤ = {+∞}. We can define a selection relation 4 that

is independent of the context as ∀x ∈ V , a 4x
Max b iff a ≤ b and a 4x

Min b iff

a ≥ b. Finally, we can take for the update function the standard max and min

operators: HMax = max and HMin = min. Together, these elements make an

information scheme: MinMaxIS
def
= 〈V,⊤,⊥,4, H〉.

The set of solved values is S = {−∞,+∞} and the set of unsolved values is

U = R.
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2.3. Best First Search

Definition 7. An information scheme 〈V,⊤,⊥,4, H〉 is well formed if the fol-

lowing requirements are met. The top and bottom values do not overlap.

⊤ ∩⊥ = ∅ (2.10)

The selection relation avoids lost values for max and avoid won values for min.

⊥ ≺max V \ ⊥ and ⊤ ≺min V \ ⊤ (2.11)

A top value is sufficient to allow a top max update. A multiset with only bottom

values leads to a bottom max update.

M∗ ∩ ⊤ 6= ∅ implies Hmax(M) ∈ ⊤
M∗ ⊆ ⊥ implies Hmax(M) ∈ ⊥

(2.12)

A bottom value is sufficient to allow a bottom min update. A multiset with only

top values leads to a top min update.

M∗ ∩ ⊥ 6= ∅ implies Hmin(M) ∈ ⊥
M∗ ⊆ ⊤ implies Hmin(M) ∈ ⊤

(2.13)

An update cannot create top and bottom values without justification.

M∗ ∩ S = ∅ implies Hp(M) /∈ S (2.14)

Proposition 5. The information scheme defined in Example 4 is well formed.

We will only be interested in well-formed information scheme.

Definition 8. Let G = 〈S,R,−→, L, λ〉 be a two-outcome game, and let I =

〈V,⊤,⊥,4, H〉 be a well-formed information scheme, and ζ be an information

function ζ : S → V . Then 〈G, I, ζ〉 is a best first scheme if the following two

constraints are met.

• The information function needs to be consistent. If a state s is associated

to a top value ζ(s) ∈ ⊤ then there exists a weak Max-solution containing

s. Conversely, if a state s is associated to a bottom value ζ(s) ∈ ⊥ then

there exists a weak Min-solution containing s.

27



2. TWO-OUTCOME GAMES

• The information function needs to be informative. If a state is final, then

it is associated to a solved value by the information function. s ∈ F ⇒
ζ(s) ∈ S.

While the consistency requirement might seem daunting at first, there are

multiple ways to create information function that are consistent by construction.

For instance, any function returning a top or a bottom value when and only

when the argument state is final is consistent.

2.3.2 Algorithmic description

We now show how we can construct a best first search algorithm based on a

best first scheme as defined in Definition 8. The basic idea is to progressively

build a tree in memory and to associate an information value and a game state

to each node of the tree until a weak solution can be derived from the tree.

We assume that each node n of the tree gives access to the following fields.

n.info ∈ V is the information value associated to the node. n.state ∈ S is the

state associated to the node. If n is not a leaf, then n.chidren is the set of

children of n. If n is not the root node, then n.parent is the parent node of n.

We allow comparing nodes directly based on the selection relation 4: for any

two nodes n1 and n2, we have n1 4v
p n2 iff n1.info 4v

p n2.info. We also indulge

in applying the update function to nodes rather than to the corresponding

information value: if C is a set of nodes and M is the corresponding multiset of

information values, M = {n.info, n ∈ C}, then H(C) is short for H(M).

Algorithm 2 develops an exploration tree for a given state s. To be able

to orient the search efficiently towards proving a win or a loss for player Max

instead of just exploring, we need to attach additional information to the nodes

beyond their state label.

If the root node is not solved, then more information needs to be added to

the tree. Therefore a (non-terminal) leaf needs to be expanded. To select it, the

tree is recursively descended selecting at each node the next child according to

the 4 relation.

Once the node to be expanded, n, is reached, each of its children are added

to the tree and they are evaluated with ζ. Thus the status of n changes from

leaf to internal node and its value has to be updated with the H function. This

update may in turn lead to an update of the value of its ancestors.
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2.3. Best First Search

After the values of the nodes along the descent path are updated, another

leaf can be expanded. The process continues iteratively with a descent of the

tree, its expansion and the consecutive update until the root node is solved.

Algorithm 2: Generic pseudo-code for a best-first search algorithm in
two-player games.

extend(node n)
foreach s′ in {s′, n.state→ s′} do

new node n′

n′.state← s′ ; n′.info← ζ(s′)
Add n′ to n.children

backpropagate(node n)
old info← n.info
switch on the turn of n.state do

case n.state ∈ A n.info← Hmax(n.children)
case n.state ∈ B n.info← Hmin(n.children)

if old info = n.info ∨ n = r then return n
else return backpropagate(n.parent)

bfs(state s)
new node r
r.state← s ; r.info← ζ(s)
n← r
while r.info /∈ S do

while n is not a leaf do
C ← n.children
switch on the turn of n.state do

case n.state ∈ A n← any element ∈ C maximizing 4n.info
max

case n.state ∈ B n← any element ∈ C maximizing 4n.info
min

extend(n)
n← backpropagate(n)

return r
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2.3.3 Properties

We turn on to proving a few properties of BFS algorithms generated with the

proposed framework. That is, we assume given a blabla and we prove formal

properties on this system. Thus any best first scheme constructed with this

framework will satisfy the properties presented in this section. The typical

application of this work is to alleviate the proof burden of the algorithm designer

as it is now sufficient to show that a new system is actually a best first scheme.

Proposition 6 (Correctness). If n.info ∈ ⊤ then n.state is contained in a weak

Max-solution. Conversely if n.info ∈ ⊥ then n.state is contained in a weak Min-

solution.

Proof. Structural induction on the current tree using the consistency of the

evaluation function.

Proposition 7. If n is a node reached by the BFS algorithm during the descent,

then it is not solved yet: n.info /∈ S.

Proof. Proof by induction.

Base case: When n is the root of the tree, n = r, we have r.info /∈ S by

hypothesis.

Induction case: assume n is a child node of p, p.info /∈ S, and n maximizes

the selection relation. Let M = {n′.info for n′ ∈ p.children}. If p is a Max state,

p.state ∈ A, we note that p.info = Hmax(M).

Given that p is not solved, we have in particular that p.info /∈ ⊥ and therefore

M∗ 6⊆ ⊥ from Equation (2.12). As a result, at least one element in M does not

belong to ⊥. Let n′ be a node such that n′.info /∈ ⊥. n maximizes 4max so n′ is

not strictly preferred to n. Since 4max avoids lost values and n′.info is not lost,

then we know that n cannot be lost either (Equation (2.11)). Thus, n.info /∈ ⊥.

We also have that p.info /∈ ⊤ and therefore M∗ ∩ ⊤ = ∅ from Equation

(2.12). As a result, no element in M belongs to ⊤. In particular, n.info /∈ ⊤ and

so we conclude that n is not be solved: n.info /∈ S.

The case where p is a Min state is similar and is omitted.

Proposition 8 (Progression). If n is a leaf node reached by the BFS algorithm

during the descent, then the corresponding position is not final: n.state /∈ F .
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2.4. Proof Number Search

Proof. We have assumed in Definition 8 that the evaluation function ζ was in-

formative. That is, n.state ∈ F implies n.info ∈ S. We know from Proposition 7

that n.info /∈ S. Hence, we can conclude that n.state /∈ F .

The direct consequence of Proposition 8 is that the extend() procedure

always add at least one node to the tree. Therefore, the size of the tree grows

after each iteration.

Proposition 9 (Convergence in finite games). If the game graph is finite and

acyclic, the BFS algorithm terminates.

We will see in Section 2.4, 2.5, and 2.6 a few classical algorithms can be

expressed the suggested formalism and inherit its theoretical properties. Many

more are possible, for instance the results we obtain also apply to the best first

scheme derived from Example 4 .

2.4 Proof Number Search

PNS [4, 74] is a best first search algorithm that enables to dynamically focus

the search on the parts of the search tree that seem to be easier to solve. PNS

based algorithms have been successfully used in many games and especially as

a solver for difficult games such as CHECKERS [137], SHOGI [141], and GO [73].

There has been a lot of developments of the original PNS algorithm [4].

An important problem related to PNS is memory consumption as the tree has

to be kept in memory. In order to alleviate this problem, V. Allis proposed

PN2 [3]. It consists in using a secondary PNS at the leaves of the principal PNS.

It allows to have much more information than the original PNS for equivalent

memory, but costs more computation time. PN2 has recently been used to solve

FANORONA [131].

The main alternative to PN2 is the DFPN algorithm [103]. DFPN is a depth-first

variant of PNS based on the iterative deepening idea. DFPN will explore the game

tree in the same order as PNS with a lower memory footprint but at the cost of

re-expanding some nodes.

We call effort numbers heuristic numbers which try to quantify the amount

of information needed to prove some fact about the value of a position. The

higher the number, the larger the missing piece of information needed to prove
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2. TWO-OUTCOME GAMES

the result. When an effort number reaches 0, then the corresponding fact has

been proved to be true, while if it reaches∞ then the corresponding fact has

been proved to be false.

In PNS we try to decide whether a node belongs to a weak Max-solution.

That is, we simultaneously try to find a weak Max-solution containing it and

to prove that it does not belongs to any weak Max-solution. We will use the

standard PNS terminology for the remaining of this Section, that is, we say that

we prove a node when we find a weak Max-solution containing it, and that we

disprove a node when we find a weak Min-solution containing it.

2.4.1 The Proof Number Search Best First Scheme

We use N
∗ to denote the set of positive integers: N∗ = {1, 2, . . .}.

The information value associated to nodes contains two parts: we have

v = (p, d) with p, d ∈ N ∪ {∞}. The proof number (p) represents an estimation

of the remaining effort needed to prove the node, while the disproof number (d)

represents an estimation of the remaining effort needed to disprove the node.

When Max solution has been found we have p(n) = 0 and d(n) =∞, and when

a Min solution has been found we have p(n) =∞ and d(n) = 0.

V = N
∗ × N

∗ ∪ {(0,∞), (∞, 0)}
⊤ = {(0,∞)} and ⊥ = {(∞, 0)}

(2.15)

The basic idea in PNS is to strive for proofs that seem to be easier to obtain.

Thus, we define the selection relation so that if Max is on turn, then the selected

child minimizes the proof number and if Min is on turn, the selected child

minimizes the disproof number.

(p, d) 4max (p′, d′) iff p′ ≤ p
(p, d) 4min (p′, d′) iff d′ ≤ d

(2.16)

If an internal node n corresponds to a Max position, then proving one child

of n is sufficient to prove n and disproving n requires disproving all its children.

As a consequence, the (greatest lower bound on the) amount of effort needed

to prove n is the amount of effort needed for the easiest child of n to be proved,

and the amount of effort needed to prove n is bounded below by the sum of
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efforts for all children of n. A similar intuition for Min nodes leads to the update

functions.

Hmax(M) =



 min
(p,d)∈M

p,
∑

(p,d)∈M

d





Hmin(M) =




∑

(p,d)∈M

p, min
(p,d)∈M

d





(2.17)

It is not hard to see that for any multiset of V , M , we have HMax(M) ∈ V
and HMin(M) ∈ V . Therefore we have an information scheme.

Proposition 10. The information scheme is well-formed.

The evaluation function, also known as the initialization function in the PNS

litterature, is a simple admissible bound on the effort to prove or disprove a

node. If the node corresponds to a final position, then we know its value. If

it is a Win, the remaining effort need to prove it is p = 0 and the remaining

effort to disprove it can be set to d =∞ since we know this node cannot ever

be disproved. Conversely, if the final node is not a Win then we set the proof

number to∞ and the disproof number to 0.

If the node n corresponds to a non-final position, then (dis)proving will

require expanding at least one node (this very node n), so we set p = 1 and

d = 1. This can be summed up with the following initialization formulas.

∀s ∈ A ∪B,ζ(s) = (1, 1)

∀s ∈ F,Win ∈ λ(s)⇒ ζ(s) = (0,∞)

∀s ∈ F,Win /∈ λ(s)⇒ ζ(s) = (∞, 0)
(2.18)

ζ is consistent and informative. Therefore, we have a best first scheme. From

Proposition 6 and Proposition 9 we have that PNS is correct, and converges in

finite acyclic games.

Example 5. Here is an example of finite game with a cycle in which PNS does

not converge.

Example 6. Here is an example of an infinite game without cycles in which PNS

does not converge.
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2.5 Monte Carlo Tree Search

MCTS is a very successful algorithm for multiple complete information games

such as GO [40, 41, 54, 86, 114], HEX [25, 7], or LINES OF ACTION [166].

MCTS is a recent game tree search technique based on multi-armed bandit

problems [20]. MCTS has enabled a huge leap forward in the playing level of

artificial GO players. It has been extended to prove wins and losses under the

name MCTS Solver [165, 46]. It is this MCTS Solver algorithm that we describe

here.

The basic idea in MCTS is to evaluate whether a state s is favourable to

Max via Monte Carlo playouts in the tree below s. A Monte Carlo playout is

a random path of the tree below s ending in a terminal state. Performing a

playout and checking the type of the corresponding terminal state can be done

as demonstrated in Algorithm 3.

Monte Carlo programs usually deal with transpositions the simple way: they

do not modify the UCT formula and develop a DAG instead of a tree.

Algorithm 3: Pseudo-code for a Monte Carlo Playout.

playout(state s)
switch on the turn of s do

case s ∈ F ∧Win ∈ λ(s) return 1
case s ∈ F ∧Win /∈ λ(s) return 0
otherwise

s′ ← random state such that s→ s′

return playout(s′)

MCTS explores the Game Automaton (GA) in a best first way by using aggre-

gates of information given by the playouts.

V = N× N
∗ × {0, 1, 2}

⊤ = N× N
∗ × {2}

⊥ = N× N
∗ × {0}

(2.19)

An information value is a triple (r, t, s) where t denotes the total number of

playouts rooted below n and r denotes the number of playouts ending in a Win

state among them.
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2.5. Monte Carlo Tree Search

We also have the label s that represents the solution status and allows

to avoid solved subtrees. s can take three values: 0, 2, or 1. These values

respectively mean that the corresponding node was weakly Min-solved, weakly

Max-solved, or not solved yet for this node.

(r, t, s) 4
(r0,t0,s0)
max (r′, t′, s′) iff







s < s′

s = s′ and r
t
+
√

2 ln t0
t
≤ p′

t′
+
√

2 ln t0
t′

(r, t, s) 4
(r0,t0,s0)
min (r′, t′, s′) iff







s′ < s

s = s′ and −r
t

+
√

2 ln t0
t
≤ −r′

t′
+
√

2 ln t0
t′

(2.20)

When a node is not solved yet, we are faced with an exploration-exploitation

dilemma between running playouts in nodes which have not been explored

much (t is small) and running playouts in nodes which seem successful (high r
t

ratio). This concern is addressed using the UCB formula [9, 20].

∀s ∈ A ∪B, ζ(s) = (playout(s), 1, 1)

∀s ∈ F,Win ∈ λ(s)⇒ ζ(s) = (1, 1, 2)

∀s ∈ F,Win /∈ λ(s)⇒ ζ(s) = (0, 1, 0)

(2.21)

To initialize a value corresponding to a non terminal position s we call the

playout(s) procedure (Algorithm 3). If the position s is terminal, then the

initial value depends on whether s is a Win state.

Hmax(M) = (
∑

(r,t,s)∈M

r,
∑

(r,t,s)∈M

t, max
(r,t,s)∈M

s)

Hmin(M) = (
∑

(r,t,s)∈M

r,
∑

(r,t,s)∈M

t, min
(r,t,s)∈M

s)
(2.22)

The total number of playouts rooted at a node can be viewed as the sum of

the number of playouts rooted at each child. Similarly, the number of playouts

ending in a Win state is the sum of the corresponding number at each child.
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Proposition 11. ζ is informative and consistent, the information scheme is well-

formed, and so we have a best first scheme.

Remark 6. The evaluation of a leaf node in MCTS as presented in Equation 2.21

takes the form of games played randomly until a terminal position. It can also be

the value of a heuristical evaluation function after a few random moves [92, 166].

We denote the latter variant as MCTS-E.

2.6 Product Propagation

PP is a way to backup probabilistic information in a two-player game tree

search [144]. It has been advocated as an alternative to minimaxing that does

not exhibit the minimax pathology [110, 69, 70].

PP was recently proposed as an algorithm to solve games, combining ideas

from PNS and probabilistic reasoning [146]. In Stern’s paper, PP was found to

be about as performant as PNS for capturing GO problems.

In this Chapter, we express PP as an instance of the BFS framework presented

in Section 2.3 and conduct an extensive experimental study of PP, comparing

it to various other paradigmatic solving algorithms and improving its memory

consumption and its solving time. Doing so, we hope to establish that PP is an

important algorithm for solving games that the game search practician should

know about. Indeed, we exhibit multiple domains in which PP performs better

than the other tested game solving algorithms.

The baseline game tree search algorithms that we use to establish PP’s

value are DFS (see Section 2.2); PNS [4, 155, 74] (see Section 2.4); and MCTS

Solver [165] which was recently used to solve the game of HAVANNAH on size

4 [46] (see Section 2.5).

In PP, each node n is associated to a single number PP called the probability

propagation number for n, such that PP ∈ [0, 1]. The PP of a leaf corresponding

to a Max win is 1 and the PP of a Max loss is 0.

V = [0, 1], ⊤ = {1}, and ⊥ = {0} (2.23)

The probability propagation number of a node n can intuitively be under-

stood as the likelihood of n being a Max win given the partially explored game

tree. With this interpretation in mind, natural update rules can be proposed.
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2.6. Product Propagation

If n is an internal Min node, then it is a win for Max if and only if all children

are win for Max themselves. Thus, the probability that n is win is the joint

probability that all children are win. If we assume all children are independent,

then we obtain that the PP of n is the product of the PP of the children for Min

nodes. A similar line of reasoning leads to the formula for Max nodes.

Hmax(M) = 1−
∏

p∈M

(1− p)

Hmin(M) =
∏

p∈M

p
(2.24)

To define the PP of a non-terminal leaf l, the simplest is to assume no

information is available and initiate the PP information value to 1
2 .

∀s ∈ A ∪B, ζ(s) = 0.5

∀s ∈ F,Win ∈ λ(s)⇒ ζ(s) = 1

∀s ∈ F,Win /∈ λ(s)⇒ ζ(s) = 0

(2.25)

Note that this explanation is just a loose interpretation of the probability

propagation numbers and not a formal justification. Indeed, the independence

assumption does not hold in practice, and in concrete games n is either a win

or a loss for Max but it is not a random event. However, this probabilistic

analogy mainly serves as an intuition for the algorithm and it is reasonable not

to feel constrained by the lack of independance as the algorithm performs well

nontheless.

To be able to use the generic BFS framework, we still need to specify which

leaf of the tree is to be expanded. The most straightforward approach is to

select the child maximizing PP when at a Max node, and to select the child

minimizing PP when at a Min node.

p 4max p
′ if and only if p ≤ p′

p 4min p
′ if and only if p′ ≤ p

(2.26)

Proposition 12. ζ is informative and consistent, the information scheme is well-

formed, and so we have a best first scheme.

Note that it is also possible to use a heuristical evaluation function taking

values in (0, 1) to evaluate leaves.
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2.6.1 Experimental Results

While the performance of PP as a solver has matched that of PNS in GO [146],

it has proven to be disappointing in SHOGI.1 We now exhibit several domains

where the PP search paradigm outperforms more classical algorithms.

In the following sets of experiments, we do not use any domain specific

knowledge besides an evaluation function where appropriate. We are aware

that the use of such techniques would improve the solving ability of all our

programs. Nevertheless, we believe that showing that a generic and non-

optimized implementation of PP performs better than generic and non-optimized

implementations of PNS, MCTS, or DFS in a variety of domains provides good

reason to think that the ideas underlying PP are of importance in game solving.

Besides PP, PNS, MCTS, and DFS, we also try to incorporate transpositions in

PP and PNS [139]. We thus obtain PP with Transpositions (PPT) and PNS with

Transpositions (PNT). Finally, we also adapt the PN2 [19] idea to PP and try

the resulting PP2 algorithm, that is, instead of directly using an heuristical

evaluation function to evaluate leaves that correspond to internal position, we

perform a nested call to PP.

2.6.2 Results on the game of Y

The game of Y was discovered independently by Claude Shannon in the 50s,

and in 1970 by Schensted and Titus. It is played on a triangular board with a

hexagonal paving. Players take turns adding one stone of their color on empty

cells of the board. A player wins when they succeed in connecting all three

edges with a single connected group of stones of their color. Just as HEX, Y

enjoys the no-draw property.

The current best evaluation function for Y is the reduction evaluation func-

tion [162]. This evaluation function naturally takes values in [0, 1] with 0

(resp. 1) corresponding to a Min (resp. Max) win.

PNS with the mobility initialization could not solve any position in less than 3

minutes in a preliminary set of about 50 positions. As a result we did not include

this solver in our experiment with a larger set of positions. The experiments on

Y was carried out as follows. We generated 77, 012 opening positions on a board

1Akihiro Kishimoto, personnal communication.
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Table 2.1: Number of positions solved by each algorithm and number of posi-
tions on which each algorithm was performing best.

PP MCTS MCTS-E

Positions solved 77,010 76,434 69,298
Solved fastest 68,477 3,645 4,878
Fewest iterations 22,621 35,444 18,942

of size 6. We then ran PP using the reduction evaluation function, MCTS using

playouts with a random policy, and a variant of MCTS using the same reduction

evaluation instead of random playouts (MCTS-E). For each solver, we recorded

the total number of positions solved within 60 seconds. Then, for each solving

algorithm, we computed the number of positions among those 77, 012 which

were solved faster by this solver than by the two other solver, as well as the

number of positions which needed fewer iterations of the algorithm to be solved.

The results are presented in Table 2.1.

We see that the PP algorithms was able to solve the highest number of

positions, 77, 010 positions out of 77, 012 could be solved within 60 seconds. We

also note that for a very large proportion of positions (68, 477), PP is the fastest

algorithm. However, MCTS needs fewer iterations than the other two algorithms

on 35, 444 positions. A possible interpretation of these results is that although

iterations of MCTS are a bit more informative than iterations of PP, they take

much longer. As a result, PP is better suited to situations where time is the most

important constraint, while MCTS is more appropriate when memory efficiency

is a bottleneck. Note that if we discard MCTS-E results, then 72, 830 positions are

solved fastest by PP, 4, 180 positions are solved fastest by MCTS, 30, 719 positions

need fewest iterations to be solved by PP, and 46, 291 need fewest iterations by

MCTS.

Figure 2.3 displays some of these results graphically. We sampled about 150

positions of various difficulty from the set of 77, 012 Y positions, and plotted the

time needed to solve such positions by each algorithm against the time needed

by PP. We see that positions that are easy for PP are likely to be easy for both

MCTS solvers, while positions hard for PP are likely to be hard for both other

solvers as well.
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Figure 2.3: Time needed to solve various opening positions in the game of Y.

2.6.3 Results on DOMINEERING

DOMINEERING is played on a rectangular board. The first player places a vertical

2× 1 rectangle anywhere on the board. The second player places an horizontal

2× 1 rectangle, and the games continues like that until a player has no legal

moves. The first player that has no legal moves has lost.

DOMINEERING has already been studied in previous work by game search

specialists as well as combinatorial game theorists [18, 82].2 While these

papers focusing on DOMINEERING obtain solution for relatively large boards,

we have kept ourselves to a naive implementation of both the game rules and

the algorithms. In particular, we do not perform any symmetry detection nor

make use of combinatorial game theory techniques such as decomposition into

subgames.

We presents results for the following algorithms: DFS, PNT [139], PN2 [19],

PP, PPT and PP2. The PNS algorithm could not find a single solution within 107

node expansion when transpositions where not detected and it is thus left out.

For PP variants, the probability of a non solved leaf is computed as the

2Some results can also be found on http://www.personeel.unimaas.nl/uiterwijk/

Domineering_results.html.
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Table 2.2: Number of node expansions needed to solve various sizes of DOMI-
NEERING.

7× 6 6× 6 5× 6

DFS 6, 387, 283, 988 38, 907, 049 701, 559
PNT > 107 > 107 1, 002, 277
PN2 > 511, 568 > 154, 107 17, 236
PP > 107 5, 312, 292 836, 133
PPT > 107 419, 248 140, 536
PP2 1, 219, 024 29, 870 9, 986

Table 2.3: Time (s) needed to solve various sizes of DOMINEERING.

7× 6 6× 6 5× 6

DFS 5, 656 40.68 0.87
PNT 5.92
PN2 > 153, 000 > 10, 660 78.7
PP 19.79 2.9
PPT 4.12 1.02
PP2 4, 763 21.53 2.15

number of legal moves for the vertical player divided by the sum of the number

of legal moves for each player. For PNS variants the mobility heuristic is used to

compute the proof numbers and the disproof numbers at non solved leaves.

Tables 2.2 and 2.3 give the number of nodes and times for different algo-

rithms solving DOMINEERING. DFS is turned into the alpha-beta algorithm and is

enhanced with transposition tables, killer moves, the history heuristic and an

evaluation function. We can see that on the smallest 5 × 6 board alpha-beta

gives the best results. On the larger 6× 6 board PPT becomes the best algorithm

by far. On the largest 7× 6 board, most of the algorithms run out of memory,

and the best algorithm is now PP2 that outperforms both alpha-beta and PN2.

In their paper, Breuker et al. have shown that the use of transposition tables

and symmetries increased significantly the performance of their alpha-beta (that

is, DFS) implementation [18]. While, our proof-of-concept implementation does

not take advantage of symmetries, our results show that transpositions are of

great importance in the PP paradigm as well.
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Table 2.4: Number of node expansions needed to solve various sizes of NOGO.

18× 1 20× 1 22× 1

DFS 4, 444, 384 154, 006, 001 3, 133, 818, 285
PNT 2, 015, 179 > 107 > 107

PN2 > 22, 679 > 29, 098
PP 1, 675, 159 > 107 > 107

PPT 206, 172 657, 045 4, 853, 527
PP2 14, 246

Table 2.5: Time (s) needed to solve various sizes of NOGO.

18× 1 20× 1 22× 1

DFS 10.43 361.0 7, 564
PNT 144.2 > 809
PN2 > 3, 607 > 4, 583
PP 39.96 > 257.0
PPT 21.06 85.11 801.0
PP2 109.7

2.6.4 Results on NOGO

NOGO is the misere version of the game of GO. It was presented in the BIRS

2011 workshop on combinatorial game theory [28].3 The first player to capture

has lost.

We present results for the following algorithms: DFS, PNT [139], PN2 [19],

PP, PPT and PP2. Again, the PNS algorithm could not find a single solution within

107 node expansion and is left out.

For standard board sizes such as 4 × 4 or 5 × 4, DFS gives the best results

among the algorithms we study in this paper. We have noticed that for N × 1

boards for N > 20, PPT becomes competitive. Results for a few board sizes are

given in Table 2.4 for the number of nodes and in Table 2.5 for the times.

3http://www.birs.ca/events/2011/5-day-workshops/11w5073
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2.6.5 Conclusion

In this Section, we have presented how to define and use Product Propagation

(PP) in order to solve abstract two-player games. We briefly described how to

extend PP so as to handle transpositions and to reduce memory consumption

with the PP2 algorithm. For the three games that have been tested (i.e., Y,

DOMINEERING, and NOGO), we found that our extensions of PP are able to better

solve games than the other solving algorithms.

Being a BFS algorithm, PP is quite related to PNS and MCTS. As such, it seems

natural to try and adapt ideas that proved successful for these algorithms to the

Product Propagation paradigm. For instance, while PNS and PP are originally

designed for two-outcome games, future work could adapt the ideas underlying

MOPNS [123] (see Section 3.7) to turn PP into an algorithm addressing more

general games. Adapting more elaborate schemes for transpositions could also

prove interesting [100, 73, 125].
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3 Multi-Outcome Games

We define a formal model of deterministic two-player perfect infor-

mation zero-sum games called multi-outcome game. We adapt the

concept of information scheme to multi-outcome game and obtain a

Best First Search (BFS) framework.

We show that a generalization of Monte Carlo Tree Search (MCTS)

Solver, termed Score Bounded Monte Carlo Tree Search (SBMCTS), can

be obtained as an instance of the BFS framework. We then develop a

principled approach to create a multi-outcome information scheme

based on two-outcome information scheme that we call multization.

We use it to derive a new Multiple-Outcome Proof Number Search

(MOPNS) algorithm that generalizes Proof Number Search (PNS) to

multi-outcome games.

The Chapter includes results from the following papers.

[26] Tristan Cazenave and Abdallah Saffidine. Score bounded Monte-

Carlo tree search. In H. van den Herik, Hiroyuki Iida, and Aske Plaat,

editors, Computers and Games, volume 6515 of Lecture Notes in

Computer Science, pages 93–104. Springer-Verlag, Berlin / Heidelberg,

2011. ISBN 978-3-642-17927-3. doi: 10.1007/978-3-642-17928-0

9

[123] Abdallah Saffidine and Tristan Cazenave. Multiple-outcome

proof number search. In Luc De Raedt, Christian Bessiere, Didier

Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter

Lucas, editors, 20th European Conference on Artificial Intelligence

(ECAI), volume 242 of Frontiers in Artificial Intelligence and Appli-

cations, pages 708–713, Montpellier, France, August 2012. IOS Press.
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3.1 Introduction

Many interesting games have more than two outcomes, for instance CHESS,

DRAUGHTS and CONNECT FOUR have three outcomes: Win, Draw, and Lose. A

game of WOODPUSH of size s has a number of possible outcomes bounded by

s× s× (s+ 1). We describe the game of WOODPUSH in Section 3.8.2. Matches

in General Game Playing (GGP) typically are associated to an integer score

in [0, 100]. For many games, it is not only interesting to know whether the

maximizing player can obtain the maximal outcome, but also what is the exact

score of the game. That is, what is the best outcome the maximizing player can

achieve assuming perfect play from the opponent.
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3.2 Model

Definition 9. A multi-outcome game is a transition system 〈S,R,−→, L, λ〉 where

the following restriction holds.

• There are two distinguished agents Max ∈ R and Min ∈ R

• State turns are exclusive: ¬∃s1, s2, s3 ∈ S, s1 Max−−→ s2 ∧ s1 Min−−→ s3.

• There is a finite ordered set of distinguished labels called outcomes: O =

{o1 < o2 < · · · < om−1} ⊆ L;

We define A and B as the sets of states that allow respectively Max and Min

transitions: A = {s ∈ S, ∃s′ ∈ S, s Max−−→ s′} and B = {s ∈ S, ∃s′ ∈ S, s Min−−→ s′}.
We say that a state is final if there it allows no transition for Max nor Min.

We denote the set of final states by F . F = S \ (A∪B). States that are not final

are called internal. For two states s1, s2 ∈ S, we say that s2 is a successor of s1
if it can be reached by a Max or a Min transition. Formally, we write s1 −→ s2

when s1
Max−−→ s2 ∨ s1 Min−−→ s2.

From the turn exclusivity assumption, we derive that A, B, and F constitute

a partition of S.

Let o0 and om two new state labels not appearing in L. We denote O ∪
{o0, om} with O. We extend the ordering on O to O by taking o0 < oi < om for

all 0 < i < m.

Definition 10. The score of a final state s ∈ F , σ(s), is defined as the maximum

outcome if any outcome appears in s, and o0 otherwise. σ(s) = max(O ∩ λ(s))
if O ∩ λ(s) 6= ∅, and σ(s) = o0 if O ∩ λ(s) = ∅.

Definition 11. A weak Max-o-solution to a multi-outcome game is a labelling

of states Σo
max ⊆ S such that

• If s ∈ F then s ∈ Σo
max ⇒ σ(s) ≥ o

• If s ∈ A then s ∈ Σo
max ⇒ ∃s

Max−−→ s′, s′ ∈ Σo
max

• If s ∈ B then s ∈ Σo
max ⇒ ∀s

Min−−→ s′, s′ ∈ Σo
max
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Definition 12. A weak Min-o-solution to a multi-outcome game is a labelling of

states Σo
min ⊆ S such that

• If s ∈ F then s ∈ Σo
min ⇒ σ(s) < o

• If s ∈ A then s ∈ Σo
min ⇒ ∀s

Max−−→ s′, s′ ∈ Σo
min

• If s ∈ B then s ∈ Σo
min ⇒ ∃s

Min−−→ s′, s′ ∈ Σo
min

Definition 13. A weak-solution to a multi-outcome game is a pair of labellings of

states (Σoi
max,Σ

oi+1

min ) ⊆ S×S such that Σoi
max is a weak Max-oi-solution and Σ

oi+1

min

is a weak-Min-oi+1-solution, and with non-empty intersection: Σoi
max∩Σ

oi+1

min 6= ∅.
In that case, for any state s in the intersection we say that oi is the value of s.

Conversely, it is possible to prove that if the game graph is finite Direct

Acyclic Graph (DAG), then each state is associated to exactly one value.

We say that a multi-outcome game with a distinguished initial state s0 is

weakly-solved when we can exhibit a weak-solution containing s. Multi-outcome

games that have been weakly solved include CONNECT 4 [2], CHECKERS [137],

and FANORONA [132].

3.3 Iterative perspective

Let 〈S,R,−→, L, λ〉 with outcome set O a multi-outcome game. For any outcome

o ∈ O, 〈S,R,−→, L, λ〉 can be seen as a two-outcome game with distinguished

label o. The transformed games have exactly the same rules and game graph as

the original one but have different distinguished outcomes.

Proposition 13. We can combine solutions on the various two-outcome games

and obtain a solution to the multi-outcome game.

If there are more than two possible outcomes, the minimax value of the

starting position can still be found with a two-outcome algorithm by using a

binary search on the possible outcomes [4]. If there are m different outcomes,

then the binary search will make about lg(m) calls to the two-outcome algorithm.

If the score of a position is already known, e.g., from expert knowledge, but

needs to be proved, then two calls to a two-outcome algorithm are necessary

and sufficient.
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3.4 MiniMax and Alpha-Beta

The MiniMax value of a game tree is calculated based on the assumption that

the two players, called Max and Min, will choose their next move such that

when it is Max’s turn he will select the action that maximizes his gain while Min

will select the one that minimizes it on his turn. MiniMax values are propagated

from the leaves of the game tree to its root using this rule. Alpha-beta uses

the MiniMax value to prune a subtree when it has proof that a move will not

affect the decision at the root node [118]. This happens when a partial search

of the subtree reveals that the opponent has the opportunity to lower an already

established MiniMax value backed up from a different subtree.

Algorithm 4: Pseudo-code for the MiniMax algorithm.

minimax(state s)
switch on the turn of s do

case s ∈ F
return σ(s)

case s ∈ A
α← o0

foreach s′ in {s′, s Max−−→ s′} do
α← max{α, minimax(s′)}

return α
case s ∈ B

β ← om

foreach s′ in {s′, s Min−−→ s′} do
β ← min{β, minimax(s′)}

return β

3.5 Multiple-Outcome Best First Search

We have seen in Section 3.3 that it was possible to use two-outcome algorithms

iteratively to solve multi-outcome games. While this approach works in principle

and was sometimes used in games with three outcomes [131], it seems wasteful

not to reuse the state-space exploration effort between the different passes of
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Algorithm 5: Pseudo-code for the alpha-beta algorithm.

alpha-beta(state s, outcome α, outcome β)
switch on the turn of s do

case s ∈ F
return σ(s)

case s ∈ A
foreach s′ in {s′, s Max−−→ s′} do

α← max{α, alpha-beta(s′, α, β)}
if β ≤ α then break

return α
case s ∈ B

foreach s′ in {s′, s Min−−→ s′} do
β ← min{β, alpha-beta(s′, α, β)}
if β ≤ α then break

return β

the search. In this Section we propose a one pass Multiple-Outcome Best First

Search (MOBFS) algorithm that can solve multi-outcome games.

3.5.1 Formal Definitions

Definition 14. An information scheme is a tuple 〈V,O,⊤,⊥,4, H〉 such that

• V is a set of information values. This set represents the information that

can be associated to nodes of the tree.

• ⊤ = {⊤o}o∈O
and ⊥ = {⊥o}o∈O

are two collections of distinguished set

of values, where for all o ∈ O, ⊤o ⊂ V and ⊥o ⊂ V . We call ⊤o the set of

positive values associated to o and ⊥o the set of negative values associated

to o.

• 4 is a selection relation parameterized by a player and a context based

on a pair of information values. ∀v, v′ ∈ V we have 4
v,v′

max and 4
v,v′

min two

total preorders on V . The intended interpretation of v1 4v,v′

p v2 is that v2
is preferred to v1 by player p under context (v, v′).

• H is an update function parameterized by a player. It aggregates multiple

pieces of information into a single information value. Since we allow
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pieces of information to be repeated, we need to use multisets rather than

sets. Hmax : NV → V and Hmin : NV → V .

The intended interpretation of ⊤ and ⊥ is that if a value belongs to ⊤o then

we know that Max can ensure an outcome o or better is reached. Conversely,

if a value belongs to ⊥o then we know that Min can ensure an outcome o or

better is not reached.

Definition 15. We define the set of solved values as S =
⋃

0≤i<m⊥oi+1 ∩ ⊤oi

and the set of unsolved values as U = V \ S.

As an example of an information scheme, we propose the following Blind

information scheme. While the definition is very straightforward and is not

based on elaborate concepts, we will see later (in Proposition 15 that this

information scheme is precise enough to allow solving multi-outcome games.

Our presentation follows Definition 14.

Example 7. Let O = {o1, . . . , om−1} and let Blind be the information scheme

defined by

V = {(p, n), 0 ≤ p < n ≤ m}
⊤oi = {(p, n) ∈ V, i ≤ p}
⊥oi = {(p, n) ∈ V, n ≤ i}

(3.1)

Intuitively the first field of the information value reflects the highest outcome

that has been proved to be achievable by Max. The second field reflects the

lowest outcome known not to be achievable by Max.

(p, n) 4max (p′, n′) iff n ≤ n′

(p, n) 4min (p′, n′) iff p′ ≤ p
(3.2)

The selection relation can be seen as Max being optimistic and always preferring

values with a better potential outcome. Conversely, Min prefers values

Hmax(M) = ( max
(p,n)∈M

p, max
(p,n)∈M

n)

Hmin(M) = ( min
(p,n)∈M

p, min
(p,n)∈M

n)
(3.3)
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The set of solved values for Blind is S such that

S =
⋃

0≤i<m

{(p, n), i ≤ p < n ≤ i+ 1} = {(i, i+ 1), 0 ≤ i ≤ m} (3.4)

Definition 16. An information scheme 〈V,O,⊤,⊥,4, H〉 is well formed if the

following requirements are met.

• The sets of positive and negative values are respectively decreasing and

increasing. For all oi < oj , ⊤oj ⊆ ⊤oi and ⊥oi ⊆ ⊥oj .

• Any value is positive for o0 and any value is negative for om. ⊤o0 = V and

⊥om = V .

• No value is both positive and negative for a given outcome o. That is, the

corresponding sets do not overlap ⊤o ∩ ⊥o = ∅.

• The selection relation avoids dominated values: ⊤oi ∩⊥oi+1 ≺max V \ (S∪
⊥oi+1) and ⊤oi ∩ ⊥oi+1 ≺min V \ (S ∪ ⊤oi).

• A positive value is sufficient to allow a positive max update: M∗∩⊤oi 6= ∅
implies Hmax(M) ∈ ⊤oi . A multiset with only negative values leads to a

negative max update: M∗ ⊆ ⊥oi implies Hmax(M) ∈ ⊥oi .

• A negative value is sufficient to allow a negative min update: M∗∩⊥oi 6= ∅
implies Hmin(M) ∈ ⊥oi . A multiset with only positive values leads to a

positive min update: M∗ ⊆ ⊤oi implies Hmin(M) ∈ ⊤oi .

• An update cannot create positive and negative values without justification.

For any oi ∈ O, M∗∩ (⊤oi) = ∅ implies Hp(M) /∈ ⊤oi and M∗∩ (⊥oi) = ∅
implies Hp(M) /∈ ⊥oi .

As a consequence we have ⊤om = ⊥o0 = ∅.
We can practice proving well-formedness on this simple information scheme

presented in Example 7. As we shall see in Section 3.5.2, knowing that an

information scheme is well-formed allows to derive many useful properties such

as correctness of the resulting BFS algorithm.

Proposition 14. The Blind information scheme presented in Example 7 is well-

formed.
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Proof. The positive and negative sets are decreasing and increasing. For all

oi < oj ,

⊤oj = {(p, n), i ≤ j ≤ p < n ≤ m} ⊆ ⊤oi = {(p, n), i ≤ p < n ≤ m}
⊥oi = {(p, n), 0 ≤ p < n ≤ i ≤ j} ⊆ ⊥oj = {(p, n), 0 ≤ p < n ≤ j}

(3.5)

The positive set for o0 and the negative set for om are exactly the possible

information values.

⊤o0 = ⊥om = {(p, n), 0 ≤ p < n ≤ m} = V (3.6)

The top and bottom values for outcome oi do not overlap.

⊤oi ∩ ⊥oi = {(p, n), i ≤ p < n ≤ i} = ∅ (3.7)

• The selection relation for Max avoids dominated values. On the one hand

⊤oi ∩⊥oi+1 = {(p, n), i ≤ p < n ≤ i+1} = {(i, i+1)}. On the other hand,

V \ (S ∪ ⊥oi+1) ⊆ V \ ⊥oi+1 = {(p, n), i + 1 < n}, and we have indeed

(i, i+ 1) ≺max {(p, n), i+ 1 < n}.
The same reasoning shows that the selection relation for Min avoid domi-

nated values.

• Let M be a multiset of information values, and let (p0, n0) = Hmax(M).

Assume M∗ ∩ ⊤oi 6= ∅ and take (p, n) ∈ M∗ ∩ ⊤oi . We know that i ≤ p,

and also that p ≤ p0. Therefore i ≤ p0 and Hmax(M) ∈ ⊤oi .

Similarly, if we assume M∗ ⊆ ⊥oi , then for all (p, n) ∈M∗, we have n ≤ i.
As a result, n0 ≤ i and Hmax(M) ∈ ⊥oi .

• The same reasoning on the Min update function leads to the expected

result.

• Finally, it is easy to derive a similar argument to show that an update

cannot create positive and negative values without justification.

Definition 17. Let G = 〈S,R,−→, L, λ〉 be a multi-outcome game with outcome

set O, I = 〈V,O,⊤,⊥,4, H〉 be a well-formed information scheme, and ζ be

an information function ζ : S → V . Then 〈G, I, ζ〉 is a best first scheme if the

following constraints are met.
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• The information function needs to be consistent. If a state s is associated to

a top value ζ(s) ∈ ⊤oi then there exists a weak Max-oi-solution containing

s. Conversely, if a state s is associated to a bottom value ζ(s) ∈ ⊥oi+1 then

there exists a weak Min-oi+1-solution containing s.

• The evaluation function needs to be informative. If a state is final, then it is

associated to a solved value by the evaluation function. s ∈ F ⇒ ζ(s) ∈ S.

Proposition 15. Consider ζ such that for every final state s ∈ F , ζ(s) = (i, i+ 1)

where oi = σ(s), and for every non final state s ∈ A ∪ B, ζ(s) = (0,m). Then

combining ζ to the Blind information scheme defined in Example 7 gives a best

first scheme.

3.5.2 Properties

We define the score of a node as the score of the corresponding position: σ(n) =

σ(n.state). We define the pessimistic and optimistic bounds for an information

value v as pess(v) = max{o ∈ O, v ∈ ⊥o} and opti(v) = min{o ∈ O, v ∈ ⊤o}.
The definition of these bounds is naturally extended to nodes.

Definition 18. The pessimistic bound for a node n is defined as pess(n) =

max{o ∈ O, n..info ∈ ⊥o}. Similarly, the optimistic bound for a node n is

defined as opti(n) = min{o ∈ O, n..info ∈ ⊤o}.

The pessimistic bound is the worst value possible for n consistent with the

current information in the tree. And the optimistic bound is the best value

possible for n consistent with the current information in the tree. It can be

useful in some implementations or proofs to observe that the bounds can be

computed recursively from the leaf nodes upwards.

Proposition 16. Let n be an internal node.

If n.state ∈ A







pess(n) = max
c∈n.children

pess(c)

opti(n) = max
c∈n.children

opti(c)
(3.8)

If n.state ∈ B







pess(n) = min
c∈n.children

pess(c)

opti(n) = min
c∈n.children

opti(c)
(3.9)
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Proof. Proof by induction on the height of the node making use of the well-

formedness of the heredity function H.

The following inequality gives their name to the bounds.

Proposition 17. The pessimistic (resp. optimistic) bound of a node is a lower

(resp. upper) bound on the score associated to the corresponding position.

pess(n) ≤ σ(n) ≤ opti(n). (3.10)

Proof. Proof by induction on the height of the node making use of the consis-

tency of the evaluation function ζ.

For any node n, we know the exact score of the position corresponding to n

as soon as the two bounds match pess(n) = opti(n). Although the definition is

different, these bounds coincide with those described in SBMCTS [26].

We also define relevancy bounds that are similar to alpha and beta bounds in

the classic Alpha-Beta algorithm [118]. For a node n, the lower relevancy bound

is noted α(n) and the upper relevancy bound is noted β(n). These bounds

are calculated using the optimistic and pessimistic bounds as follows. If n

is the root of the tree, then α(n) = pess(n) and β(n) = opti(n). Otherwise,

n has a parent f in the tree. In that case, we use the relevancy bounds of

the parent of n: if n ∈ f .children, we set α(n) = max{α(f), pess(n)} and

β(n) = min{β(f), opti(n)}.
The relevancy bounds of a node n take their name from the fact that if

σ(n) ≤ α(n) or if σ(n) ≥ β(n), then having more information about σ(n.state)

will not contribute to solving the root of the tree. Therefore they enable safe

pruning.

Proposition 18. For each node n, if we have β(n) ≤ α(n) then the the subtree of

n need not be explored any further.

Subtrees starting at a pruned node can be completely removed from the

main memory as they will not be used anymore in the proof. This improvement

is crucial as lack of memory is one of the main bottleneck of PNS and MOPNS.
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3.5.3 Score Bounded Monte Carlo Tree Search

An MCTS solver which backs up exact MiniMax values of the sequential zero-

sum two-outcome game Lines of Action was introduced in [165]. SBMCTS [26]

expands on this idea and generalized the MCTS solver concept to any sequential

zero-sum game. Score bounded search allows for pruning in the absence of

exact MiniMax values as long as there is some information available to establish

bounds.

Because simulations do not usually methodically explore the game tree, it is

to be expected that we cannot easily assign MiniMax values to the states when

we explore them as we are only sampling the subtree below. Even though we

may not have explored every reachable state, the sampling information builds

up and can be used to get tighter and tighter bounds on state values. These

bounds are called pessimistic and optimistic, referring to the payoff Max believes

he can get in the worst and best case, respectively. The default bounds are the

minimum and maximum achievable values. Instead of backing up a MiniMax

value, the bounds of a state are deduced from the bounds of subsequent states

and used in Alpha-Beta fashion by checking whether lower and upper bounds

coincide.

An information value is a 4-tuple v = (r, t, p, n).1 Let n be a node in the

BFS tree and v the associated information value. v1 denotes the total reward

accumulated from playouts rooted below node n, v2 denotes the total number

of such playouts. v3 is a the greatest lower bound on the score of n that has

been obtained so far while v4 is the smallest upper bound on the score of n.

V = {(r, t, p, n), r ∈ N, t ∈ N
∗, 0 ≤ p < n ≤ m}

⊤oi = {v ∈ V, i ≤ v3}
⊥oi = {v ∈ V, v4 ≤ i}

(3.11)

The selection relation relies on the Upper Confidence Bound (UCB) formula

to decide which node is more interesting unless the score bounds prove that

one is inferior or superior to the other. The only contextual information that

we need to compare two sibling nodes is the number of playouts accumulated

1We extend the vector notation to tuples: if v = (r, t, p, n) then v1 = r, v2 = t, v3 = p, and
v4 = n.
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3.5. Multiple-Outcome Best First Search

below the father. This contextual information is needed for the computation

of the exploration factor in the UCB formula. We will use 4t as short for
(r′,t′,p′,n′) 4(r,t,p,n).

v 4
t0
max v

′ iff







v4 ≤ v′3 or

v′3 < v4, v3 < v′4, and v1
v2(m−1) +

√
2 ln t0
v2
≤ v′

1

v′

2
(m−1) +

√
2 ln t0
v′

2

v 4
t0
min v

′ iff







v′4 ≤ v3 or

v′3 < v4, v3 < v′4, and −v1

v2(m−1) +
√

2 ln t0
v2
≤ −v′

1

v′

2
(m−1) +

√
2 ln t0
v′

2

(3.12)

The accumulated reward is the sum of the accumulated rewards over the

children nodes and the total number of playouts is also the sum of the number

of playouts over the cildren. The score bounds are the greastest or smallest

bounds found among the bounds of the children depending on which player

controls the node.

Hmax(M) =

(
∑

v∈M

v1,
∑

v∈M

v2,max
v∈M

v3,max
v∈M

v4

)

Hmin(M) =

(
∑

v∈M

v1,
∑

v∈M

v2, min
v∈M

v3, min
v∈M

v4

) (3.13)

To initialize a value corresponding to a non terminal position s we call the

playout(s) procedure (Algorithm 6). As no definite information is known

about the game theoretic value associated to s, the score bounds are set to safe

initial values. If the position s is terminal, then the information value depends

on the score of s, σ(s).

∀s ∈ A ∪B, ζ(s) = (playout(s), 1, 0,m)

∀s ∈ F, ζ(s) = (i, 1, i, i+ 1) such that oi = σ(s)
(3.14)

The set of solved values for SBMCTS is S such that

S = {(r, t, i, i+ 1), r ∈ N, t ∈ N
∗, 0 ≤ i < m} (3.15)

S = {v ∈ V, v4 = v3 + 1} (3.16)
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Algorithm 6: Pseudo-code for a Monte Carlo Playout in SBMCTS.

playout(state s)
if s ∈ F then return i such that oi = σ(s)
else

s′ ← random state such that s→ s′

return playout(s′)

Theorem 3. The information scheme for SBMCTS is well-formed.

3.6 Multization

MOBFS is a new framework to derive a BFS algorithm for multiple-outcome games

based on a BFS algorithm for two-outcome game. We apply the MOBFS idea to

PNS and Product Propagation (PP) to create MOPNS (Section 3.7).

We have seen in Section 2.3 that a two-outcome BFS algorithm could be

defined by specifying a two-outcome best first scheme. We now show how such

a scheme can be used to build a multi-outcome best first scheme. Create

such a multi-outcome information scheme only requires a base two-outcome

information scheme and a priority relation π.

Assume the outcome set is O = {o1 < o2 < · · · < om−1}. The multi-outcome

BFS algorithm we propose will associate m− 1 node values v1, . . . , vm−1 to each

node in the constructed tree. For a node n, value vi(n) corresponds to the

current information about the decision problem corresponding to oi:

Is the game theoretic value of n greater or equal to oi?

At each iteration of the new BFS algorithm, we compute which coordinate

of the information value at the root maximizes the priority relation and call it

attractive outcome. We then project the multi-outcome node values according

to the attractive outcome and use those projections and the two-outcome BFS

algorithm to perform the iteration. Put another way, the attractive outcome is

the outcome that constitutes the focus of an iteration of the multi-outcome BFS

algorithm.

Definition 19. We say that the priority relation π is well-formed if it prefers

unsolved values to solved ones: SπU .
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3.6. Multization

Definition 20. Let 〈V,⊤,⊥,4, H〉 a two-outcome information scheme, and

O = {o1, . . . , om−1} a set of outcomes. We define a multi-outcome information

scheme 〈V ,O, {⊤o}o∈O
, {⊥o}o∈O

,444,H〉 as follows. The set of information

values is the cartesian product of the original set.

V = V × · · · × V = V m−1 (3.17)

For each outcome oi ∈ O,

⊤
oi = {(t1, . . . , ti, vi+1, . . . , vm−1), tj ∈ ⊤, vj ∈ V }

⊥
oi = {(v1, . . . , vi−1, bi, . . . , bm−1), bj ∈ ⊥, vj ∈ V }

(3.18)

with the understanding that ⊤o0 = ⊥
om = {(v1, . . . , vm−1), vj ∈ V } = V ′ and

⊤
om = ⊥

o0 = ∅.
The selection relation uses the priority relation to determine on which

coordinate the base selection should be applied.

v 444
r,u

w iff vi 4
ri,ui wi where i is such that ri maximize π in r. (3.19)

The update function applies the base update to each coordinate.

H(M) = (H({v1}v∈M ), . . . , H({vm−1}v∈M )) (3.20)

Theorem 4. If the base information scheme and the priority relation are well-

formed, then the multi-outcome version is well-formed as well.

We now show that pruning does not interfere with the descent policy in the

sense that it will not affect the number of descents performed before the root is

solved. For this purpose, we prove that the descent policy does not lead to a

node which can be pruned.

Proposition 19. If r is not solved, then for all nodes n traversed by the root

descent policy, α(n) < o∗ ≤ β(n).

Proof. We first prove the inequality for the root node. If the root position r is

not solved, then by definition of the attractive outcome, o∗ > pess(r) = α(r).

Using Proposition 20, we know that all outcomes better than the optimistic

bound cannot be achieved: ∀o > opti(r) = β(r), G(o, r) =∞. Since G(r, o∗) +

S(r, o∗) 6=∞, then α(r) < o∗ ≤ β(r).
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3. MULTI-OUTCOME GAMES

For the induction step, suppose n is a Max node that satisfies the in-

equality. We need to show that c = argminc∈chil(n) G(c, o∗) also satisfies

the inequality. Recall that the pessimistic bounds of n and c satisfy the fol-

lowing order: pess(c) ≤ pess(n) and obtain the first part of the inequality

α(c) = α(n) < o∗. From the induction hypothesis, o∗ ≤ β(n) ≤ opti(n), so

from Proposition 20 G(n, o∗) 6=∞, moreover, the selection process ensures that

G(c, o∗) = G(n, o∗) 6= ∞, therefore G(c, o∗) 6= ∞ which using Proposition 21

leads to o∗ ≤ opti(c). Thus, o∗ ≤ β(c). The induction step when n is a Min node

is similar and is omitted.

3.7 Multiple-Outcome Proof Number Search

In this chapter, we propose a new effort number based algorithm that enables to

solve games with multiple outcomes. The principle guiding our algorithm is to

use the same tree for all possible outcomes. When using a dichotomic PNS, the

search trees are independent of each other and the same subtrees are expanded

again. We avoid this re-expansion sharing the common nodes. Moreover we can

safely prune some nodes using considerations on bounds as in Score Bounded

MCTS [26].

MOPNS aims at applying the ideas from PNS to multi-outcome games. How-

ever, contrary to dichotomic PNS and iterative PNS, MOPNS dynamically adapts

the search depending on the outcomes and searches the same tree for all the

possible outcomes.

In PNS, two effort numbers are associated with every node, whereas in MOPNS,

if there are m outcomes, then 2m effort numbers are associated with every node.

In PNS, only completely solved subtrees can be pruned, while pruning plays a

more important role in MOPNS and can be compared to alpha-beta pruning.

3.7.1 Effort Numbers

MOPNS also uses the concept of effort numbers but different numbers are used

here in order to account for the multiple outcomes. Let n be a node in the game

tree, and o ∈ O an outcome. The greater number, G(n, o), is an estimation of

the number of node expansions required to prove that the value of n is greater

than or equal to o (from the point of view of Max), while conversely the smaller
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3.7. Multiple-Outcome Proof Number Search

Outcome G S

Win 500 10
Draw 0 ∞

Figure 3.1: Example of effort numbers for a three-outcome game with distin-
guished outcomes O = {Win,Draw}

number, S(n, o), is an estimation of the number of node expansions required to

prove that the value of n is strictly smaller than o. If G(n, oi) = S(n, oi+1) = 0

then n is solved and its value is σ(n) = oi.

Figure 3.1 features an example of effort numbers for a three-outcome game.

The effort numbers show that in the position under consideration Max can force

a draw and it seems unlikely that at that point the Max can force a win.

3.7.2 Determination of the effort

The effort numbers of internal nodes are obtained in a very similar fashion to

PNS, G is analogous to p and S is analogous to d. Every effort number of a leaf

is initialized at 1, while the effort numbers of an internal node are calculated

with the sum and min formulae as shown in Figure 3.2a.

If n is a terminal node and its value is σ(n), then the effort numbers are

associated as shown in Figure 3.2b. We have for all o ≤ σ(n), G(n, o) = 0 and

for all o ≥ σ(n), S(n, o) = 0.

3.7.3 Properties

G(n, oi) = 0 (resp. S(n, oi+1) = 0) means that the value of n has been proved

to be greater than (resp. smaller) or equal to oi, i.e., Max (resp. Min) can force

the outcome to be at least oi (resp. at most oi). Conversely G(n, oi) =∞ means

that it is impossible to prove that the value of n is greater than or equal to oi,

i.e., Max cannot force the outcome to be greater than or equal to oi.

As can be observed in Figure 3.1, the effort numbers are monotonic in the

outcomes. If oi ≤ oj then G(n, oi) ≤ G(n, oj) and S(n, oi) ≥ S(n, oj). Intuitively,

this property states that the better an outcome is, the harder it will be to obtain

it or to obtain better.
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Node type G(n, o) S(n, o)

Leaf 1 1
Max minc∈chil(n) G(c, o)

∑

c∈chil(n) S(c, o)

Min
∑

c∈chil(n) G(c, o) minc∈chil(n) S(c, o)

(a) Internal node

Outcome G S

om ∞ 0
. . . ∞ 0
σ(n) 0 0
. . . 0 ∞
o1 0 ∞

(b) Terminal node

Figure 3.2: Determination of effort numbers for MOPNS

0 and∞ are permanent values since when an effort number reached 0 or∞,

its value will not change as the tree grows and more information is available.

Several properties link the permanent values of a given node. The proofs are

straightforward recursions from the leaves and are omitted for lack of space.

Care must only be taken that the initialization of leaves satisfies the property

which is the case for all the initializations discussed here.

Proposition 20. If G(n, o) = 0 then for all o′ ≤ o, S(n, o′) =∞ and similarly if

S(n, o) = 0 then for all o′ ≥ o, G(n, o′) =∞.

Proposition 21. If G(n, o) = ∞ then S(n, o) = 0 and similarly if S(n, o) = ∞
then G(n, o) = 0.

3.7.4 Descent policy

We call attracting outcome of a node n, the outcome o∗(n) that minimizes the

sum of the corresponding effort numbers.

o∗(n) = argmin
o

(G(n, o) + S(n, o)) (3.21)
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Put another way, we define the priority relation π as

(p, d)π(p′, d′) if and only if p+ d ≤ p′ + d′ (3.22)

As a consequence of the existence of a minimax value for each position, for

all node n, there always exists at least one outcome o, such that G(n, o) 6=∞
and S(n, o) 6=∞. Hence, G(n, o∗(n)) + S(n, o∗(n)) 6=∞.

Consider Figure 3.1, if these effort numbers were associated to a Max node,

then the attracting outcome would be Win, while if they were associated to a

Min node then the attracting outcome would be Draw.

Proposition 22. For finite two outcome games, MOPNS and PNS develop the same

tree.

Proof. If we know the game is finite, the Max is sure to obtain at least the

worst outcome so we can initialize the greater number for the worst outcome

to 0, we can also initialize the smaller number for the best outcome to 0.

If there are two outcomes only then one is distinguished: O = {Win}. We

then have the following relation between effort numbers in PNS and MOPNS:

G(n,Win) = p, S(n,Win) = d. If the game is finite with two outcomes, then

the attracting outcome of the root is Win. Hence, MOPNS and PNS behave in the

same manner.

3.7.5 Applicability of classical improvements

Many improvements of PNS are directly applicable to MOPNS. For instance, the

current-node enhancement presented in [3] takes advantage of the fact that

many consecutive descents occur in the same subtree. This optimization allow

to obtain a notable speed-up and can be straightforwardly applied to MOPNS.

It is possible to initialize leaves in a more elaborate way than presented in

Figure 3.2a. Most initializations available to PNS can be used with MOPNS, for

instance the mobility initialization [155] in a Max node n consists in setting the

initial smaller number to the number of legal moves: G(n, o) = 1, S(n, o) =

| chil(n)|. In a Min node, we would have G(n, o) = | chil(n)|, S(n, o) = 1.

A generalization of PN2 is also straightforward. If n is a new leaf and d

descents have been performed in the main tree, then we run a nested MOPNS

independent from the main search starting with n as root. After at most d
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descents are performed, the nested search is stopped and the effort numbers

of the root are used as initialization numbers for n in the main search. We can

safely propagate the interest bounds to the nested search to obtain even more

pruning.

Similarly, a transformation of MOPNS into a depth-first search is possible as

well, adapting the idea of Nagai [103]. Just as in Depth-First Proof Number

Search (DFPN), only two threshold numbers would be needed during the descent,

one threshold would correspond to the greater number for the current attractive

outome at the root and one threshold would correspond to the smaller number

for the distractive outcome.

Finally, given that MOPNS is very close in spirit to PNS, a careful implementer

should not face many problems adapting the various improvements that make

DFPN such a successful technique in practice. Let us mention in particular

Nagai’s garbage collection technique [103], Kishimoto and Müller’s solution to

the Graph History Interaction problem [73], and Pawlewicz and Lew’s 1 + ε

trick [109].

3.8 Experimental results

To assess the validity of our approach, we implemented a prototype of MOPNS

and tested it on two games with multiple outcomes, namely CONNECT FOUR and

WOODPUSH. Our prototype does not detect transposition and is implemented

via the best first search approach described earlier. As such, we compare it

to the original best-first variation of PNS, also without transposition detection.

Note that the domain of CONNECT FOUR and WOODPUSH are acyclic, so we do

not need to use the advanced techniques presented by Kishimoto and Müller to

address the Graph History Interaction problem [73]. Additionally, the positions

that constitute our testbed were easy enough that they could be solved by search

trees of at most a few million nodes. Thus, the individual search trees for PNS

as well as MOPNS could fit in memory without ever pruning potentially useful

nodes.

In our implementation, the two algorithms share a generic code for the best

first search module and only differ on the initialization, the update, and the

selection procedures. The experimental results were obtained running OCaml
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3.11.2 under Ubuntu on a laptop with Intel T3400 CPU at 2.2 GHz and 1.8 GiB

ofmemory.

For each test position and each possible outcome, we performed one run of

the PNS algorithm and recorded the time the number of node creation it needed.

We then discarded all but the two runs needed to prove the final result. For

instance, if a position in WOODPUSH admitted non-zero integer scores between

−5 and +5 and its perfect play score was 2, we would run PNS ten times, and

finally output the measurements for the run proving that the score is greater or

equal to 2 and the measurements for the run disproving that the score is greater

or equal to 3. This policy is beneficial to PNS compared to doing a binary search

for the outcome.

To compare MOPNS to PNS on a wide range of positions, we created the list of

all positions reached after a given number of moves from the starting position

of a given size. These positions range from being vastly favourable to Min to

vastly favourable to Max, and from trivial (solved in a few milliseconds) to more

involved (each run being around two to three minutes).

3.8.1 CONNECT FOUR

CONNECT FOUR is a commercial two-player game where players drop a red

or a yellow piece on a 7 × 6 grid. The first player to align four pieces either

horizontally, vertically or diagonally wins the game. The game ends in a draw if

the board is filled and neither player has an alignment. The game was solved

by James D. Allen and Victor Allis in 1988 [2].

Table 3.1 presents aggregate data over our experiments on size 4× 5 and

5× 5. In both cases, we used the positions occuring after 4 moves. In the first

case, 16 positions among the 256 positions tested were a first player win, 222

were a draw while 18 were a first player loss. In the second list of positions,

there were 334 wins, 267 draws, and 24 losses.

Figure 3.3 plots the number of node creations needed to solve each of the

256 4× 5 positions. We can see that for a majority of positions, MOPNS needed

fewer node creations than PNS. There are 16 positions that needed the same

number of node creations by both algorithm and these positions are exactly the

positions that are first player wins.
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Table 3.1: Cumulated time and number of node creation for the MOPNS and
PNS algorithms in the game of CONNECT FOUR. For both algorithm, Lowest time

indicates the number of positions that were soved faster by this algorithm, while
Lowest node creations indicates the number of positions which needed fewer
node creations.

MOPNS PNS

Size 4× 5,
256 positions
after 4 moves

Total time (seconds) 99 85
Total node creations 16,947,536 20,175,238
Lowest time 21 235
Lowest node creations 227 13

Size 5× 5,
625 positions
after 4 moves

Total time (seconds) 11,230 9055
Total node creations 1,557,490,694 1,757,370,222
Lowest time 55 570
Lowest node creations 406 140
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PNS node creations

MOPNS
PNS

Figure 3.3: Comparison of the number of node creations for MOPNS and PNS for
solving 256 CONNECT FOUR positions on size 4× 5.
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# #   

Figure 3.4: WOODPUSH starting position on size (10, 2)

3.8.2 WOODPUSH

The game of WOODPUSH is a recent game invented by combinatorial game

theorists to analyze a game that involves forbidden repetition of the same

position [1, 24]. A starting position consists of some pieces for the left player

and some for the right player put on an array of predefined length as shown in

Figure 3.4. A Left move consists in sliding one of the left pieces to the right. If

some pieces are on the way of the sliding piece, they are jumped over. When a

piece has an opponent piece behind it, it can move backward and push all the

pieces behind, provided it does not repeat the previous position. The game is

won when the opponent has no more pieces on the board. The score of a game

is the number of moves that the winner can play before the board is completely

empty.

The experimental protocol for WOODPUSH was similar to that of CONNECT

FOUR. The first list of problems corresponds to positions occuring after 4 moves

on a board of length 8 with 3 pieces for each player. The second list of problems

corresponds to positions occuring after 8 moves on a board of length 13 with 2

pieces for each player. Table 3.2 presents aggregates data for the solving time

and the number of node creations, while Figure 3.5 presents the number of

node creations for each problem in the second list.

In WOODPUSH (8, 3), it is possible to create final positions with scores ranging

from−18 to 18 but these positions might not be accessible from the start position.

Indeed, in our experiments, no final position with a score below −5 or over 5

was ever reached. However, while the scores remained between −5 and 5, the

exact range varied depending on the problem. While doing a binary search for

the outcome is the natural generic process for solving a multi-outcome game

with PNS, we decided to compare MOPNS to the ideal case for PNS which only

involves two runs per position. On the other hand, we only assumed for MOPNS

that the outcome was in [−5, 5]. Therefore, the results presented in Table 3.2

and Figure 3.5 significantly favour PNS.

Tables 3.3 and 3.4 detail the results for the position presented in Figure 3.6.
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Table 3.2: Cumulated time and number of node creation for the MOPNS and PNS

algorithms in the game of WOODPUSH.

MOPNS PNS

Size (8, 3), 99
positions
after 4 moves

Total time (seconds) 718 702
Total node creations 31,328,178 34,869,213
Lowest time 25 74
Lowest node creations 76 23

Size (13, 2),
256 positions
after 8 moves

Total time (seconds) 4796 4573
Total node creations 155,756,022 174,285,199
Lowest time 98 158
Lowest node creations 205 51
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Figure 3.5: Comparison of the number of node creations for MOPNS and PNS for
solving 256 WOODPUSH positions on size (13, 2).
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Table 3.3: Detailed results for PNS on the 86th WOODPUSH problem of size (8, 3).

PNS

Setting ≥ −4 ≥ −3 ≥ −2 ≥ −1 ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

Time 0.508 0.500 0.884 1.188 1.200 1.204 3.084 1.360 1.356
Nodes 39340 39340 68035 84184 84568 84545 178841 98069 98069
Result true true true true true true false false false

Table 3.4: Detailed results for the multi-outcome algorithms on the 86th WOOD-
PUSH problem of size (8, 3).

Dichotomic PNS MOPNS

Setting [−5, 5] [1, 3] [−5, 5] [1, 3]

Time 6.676 4.288 4.556 3.684
Nodes 351366 263386 210183 191127
Result 2 2 2 2

  # #  #

Figure 3.6: 86th WOODPUSH problem on size (8, 3).

The PNS tree did not access any position with a score lower or equal to −4 nor

any position with a score greater or equal to 5.

3.9 Conclusion and discussion

We have presented a generalized Proof Number algorithm that solves games

with multiple outcomes in one run. Running PNS multiple times to prove an

outcome develops the same nodes multiple times while in MOPNS these nodes

are developed only once. MOPNS has been formally proved equivalent to PNS in

two-outcome games and we have shown how safe pruning could be performed

in multiple outcome games. For small CONNECT FOUR and WOODPUSH boards,

in most cases MOPNS solves the games with fewer node creations than PNS even

if it already knows the optimal outcome of the game and no binary search is

needed.

Conspiracy numbers search [97, 133] also deals with a range of possible
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3. MULTI-OUTCOME GAMES

evaluations at the leaves of the search tree. However, the algorithm works with

a heuristic evaluation function whereas MOPNS has no evaluation function and

only scores solved positions. Moreover the development of the tree is not the

same for MOPNS and for Conspiracy numbers search since MOPNS tries to prove

the outcome that costs the less effort whereas Conspiracy numbers search tries

to eliminate unlikely values of the evaluation function.

The Iterative PNS algorithm [98] also deals with multiple outcomes but uses

the usual proof and disproof numbers as well as a value for each node and a

cache. The main difference between Iterative PNS and the proposed MOPNS, is

that Iterative PNS tries to find the value of the game by eliminating outcomes step

by step. On the other hand, MOPNS can dynamically focus on newly promising

values even if previously promising values have not been completly outruled

yet.

We have assumed in this thesis that the game structure was unfolded into

a tree. In most practical cases it actually is a DAG and in some cases the graph

contains cycles.2 The theoretical results presented in this article still hold in the

DAG case, provided the definition of the relevancy bounds is adapted to reflect

the fact that a node may have multiple parents and some of them might not

yet be in the tree. The double count problem of PNS will also affect MOPNS in

DAGs, but it is possible to take advantage of previous work on the handling of

transpositions in PNS [139, 100]. Similarly, the problems encountered by MOPNS

in cyclic graphs are similar to that of PNS and DFPN in cyclic graphs. Fortunately,

it should be straightforward to adapt Kishimoto and Müller’s ideas [73] from

DFPN to a depth-first version of MOPNS.

In future work, we plan on trying to adapt the PN2 paralellization scheme

suggested by Saffidine et al. [126] to games with multiple outcomes via MOPNS.

We would also like to study a depth-first version of MOPNS that can be obtained

via Nagai’s transformation [103].

Finally, studying how MOPNS can be extended to deal with problems where

the outcome space is not known beforehand or is continuous in order to develop

an effort number algorithm for non-deterministic two-player games is definitely

an attractive research agenda.

2For instance, the original rules for CHESS result in a DAG because of the 50-moves rule, but
this rule is usually abstracted away, resulting in a cyclic structure.
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4 Modal Logic K Model Checking

In this chapter, we investigate the relationship between Multi-agent

Modal Logic K (MMLK) and sequential game search. Drawing inspira-

tion from game search algorithms such as MCTS, PNS, or A*, we suggest

several new model checking algorithms for MMLK. We prove that one of

these algorithms, Minimal Proof Search (MPS), allows to find minimal

witness/counterexample for the model checking problem optimally.

We show how to express formally multiple solution concepts of sequen-

tial games in MMLK. Indeed, the testing of many solution concepts on

sequential games can be seen a model cheking problem for MMLK in

disguise. Finally, we use the MMLK model checking framework to obtain

a classification of more than a dozen game tree search algorithms.

This Chapter includes results from the following papers.

[122] Abdallah Saffidine and Tristan Cazenave. A general multi-agent

modal logic K framework for game tree search. In Computer Games

Workshop @ ECAI, Montpellier, France, August 2012

[119] Abdallah Saffidine. Minimal proof search for modal logic K

model checking. In Luis del Cerro, Andreas Herzig, and Jérôme Mengin,

editors, 13th European Conference on Logics in Artificial Intelligence

(JELIA), volume 7519 of Lecture Notes in Computer Science, pages

346–358. Springer, Berlin / Heidelberg, September 2012. ISBN 978-3-

642-33352-1
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4.1 Introduction

Model checking for temporal logics such as LTL or CTL is a major research area

with important applications in software and hardware verification [32]. Model

checking for agent logics such as ATL or S5 is now also regarded as an important

topic with a variety of applications [158, 161, 90]. On the other hand, Modal

Logic K is usually considered the basis upon which more elaborate modal logics

are built, such as S5, PDL, LTL, CTL, or ATL [14, 143]. Multi-agent Modal Logic
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K (MMLK) can also be used directly to model (sequential) perfect information

games.

A natural question in perfect information games is indeed whether some

agent can achieve a specified goal from a given position. The other agents can

either be assumed to be cooperative, or adversarial. For example, an instance of

such a question in CHESS is: “Can White force a capture of the black Queen in

exactly 5 moves?” In CHINESE CHECKERS, we could ask whether one player can

force a win within ten moves. Ladder detection in GO and helpmate solving in

CHESS also belong to this framework. The latter is an example of a cooperative

situation.

While And/Or trees are as expressive as the combination of MMLK and Game

Automata (GAs), we believe that the separation of concerns between the logic

and the Game Automaton is beneficial in practice. For instance, if the properties

to be checked are encoded in the logic rather than in the graph, there is no need

to rewrite the rules of CHESS if one is interested in finding helpmates instead of

checkmates, or if one just wants to know if any piece can be captured in two

moves from a given position. The encoding through an And/Or graph would be

different in every such situation while in our approach, only the modal logic

formula needs to be adapted.

The first contribution in this chapter is a formal definition of (dis)proof in

MMLK model checking, as well as a very general definition of (dis)proof cost.1

We then provide with a variety of new algorithms to solve MMLK model

checking problem (Section 4.3). These algorithms are based on the depth-first

search and the best-first search approaches that we have seen in Chapter 2 and

that we adapt to the setting of this chapter. They include a generalization of

Proof Number Search (PNS), the practical importance of which has been stressed

already, and an algorithm inspired by Monte Carlo Tree Search (MCTS). To

do so, we extend the concept of Monte Carlo playouts which are generalized

into Monte Carlo probes (Section 4.3.4). Finally, we develop Minimal Proof

Search (MPS), a model checking algorithm that outputs (dis)proofs of minimal

size for the proposed broad definition of (dis)proof cost. Besides proving the

correctness and admissibility of MPS, we also argue that it is optimal.

1Following the convention in Proof Number Search, we use the term proof and disproof instead
of witness and counterexample which are more common in the model checking literature.
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In Section 4.5, we show that many abstract properties of games can be

formally expressed as MMLK formulas. We tighten the correspondence between

sequential games and MMLK model checking in Section 4.6 by showing that

numerous previous game tree search algorithms can be directly expressed as

combinations of model checking problems and model checking algorithms

(Section 4.6).

We demonstrate that the MMLK allows new solution concepts to be rigorously

defined and conveniently expressed. Moreover, many new algorithms can be

derived through new combinations of the proposed search algorithms and

existing or new solution concepts (formulas). Finally, it is a convenient formal

model to prove properties about game algorithms.

We believe that these contributions can be of interest to a broad class of

researchers. Indeed, the model checking algorithms we develop for MMLK could

serve as a basis for model checking algorithms for more elaborate logics such as

LTL, CTL, and ATL. The games that fall under our formalism constitute a significant

fragment of the games encountered in General Game Playing (GGP) [55]. We

also express a generalization of the MCTS algorithm that can be used even when

not looking for a winning strategy. Finally, the unifying framework we provide

makes understanding a wide class of game tree search algorithms relatively

easy, and the implementation is straightforward.

4.2 Definitions

We define in this section various formal objects that will be used throughout

the chapter. The GA is the underlying system which is to be formally verified.

The MMLK is the language to express the various properties we want to model

check GAs against. Finally, a (dis)proof is a tree structure that shows whether a

property is true on a state in a GA.

4.2.1 Game model

We now define the model we use to represent games. We focus on a subset of the

strategy games that are studied in Game Theory. The games we are interested

in are turn-based games with perfect and complete information. Despite these

restrictions, the class of games considered is quite large, including classics such
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as CHESS and GO, but also multiplayer games such as CHINESE CHECKERS, or

single player games such as SOKOBAN.

A GA is a kind of labelled transition system where both the states and the

transitions are labelled. If a GA is interpreted as a perfect information game,

then the states of the game automaton correspond to possible positions over

the board, a transition corresponds to a move from one position to the next and

its label is the player making that move. The state labels are domain specific

information about states, for instance we could have a label for each triple

(piece, owner, position) in CHESS-like games. The formal definition of GAs is

almost exactly that of transition systems (see Definition 1).

Definition 21. A Game Automaton is a 5-tuple G = 〈L,R, S, λ, δ〉 with the

following components:

• L is a non-empty set of atoms (or state labels);

• R is a non-empty finite set of agents (or transition labels, or players);

• S is a set of game states;

• λ : S → 2L maps each state q to its labels;

• δ : S ×R→ 2S is a transition function that maps a state and an agent to

a set of next states.

In the following, we will use p, p′, p1, . . . for atoms, a for an arbitrary agent,

and q, q′, q1, . . . for game states. We write q
a−→ q′ when q′ ∈ δ(q, a) and we read

agent a can move from q to q′. We understand δ as: in a state q, agent a is free

to choose as the next state any q′ such that q
a−→ q′. Note that δ returns the set

of successors, so it need not be a partial function to allow for states without

successors. If an agent a has no moves in a state q, we have δ(q, a) = ∅.
Note that we do not require the GA to define δ such that a 6= a′ implies

δ(q, a) = ∅ or δ(q, a′) = ∅. Although the games are sequential, we do not

assume that positions are tied to a player on turn. This is natural for some

games such as GO or HEX. If the turn player is tightly linked to the position, we

can simply consider that the other players have no legal moves, or we can add

a pass move for the other players that will not change the position.
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We do not mark final states explicitly, neither do we embed the concept of

game outcome and reward explicitly in the previous definition. We rather rely

on a labelling of the states through atomic propositions. For instance, we can

imagine having an atomic proposition for each possible game outcome and label

each final state with exactly one such proposition.

4.2.2 Multi-agent Modal Logic K

Modal logic is often used to reason about the knowledge of agents in a multi-

agent environment [14]. In such environments, the states in the GA are inter-

preted as possible worlds and additional constraints are put on the transition

relation which is interpreted through the concepts of knowledge or belief. In

this work, though, the transition relation is interpreted as a legal move function,

and we do not need to put additional constraints on it. Since we do not want

to reason about the epistemic capacities of our players, we use the simplest

fragment of multi-agent modal logic [14].

Following loosely [14], we define the Multi-agent Modal Logic K over a set of

atoms L as the formulas we obtain by combining the negation and conjunction

operators with a set of box operators, one per agent.

Definition 22. The set of well-formed Multi-agent Modal Logic K (MMLK) formu-

las over L and R is defined through the following grammar.

φ := p | ¬φ | φ ∧ φ | 2a φ

Thus, a formula is either an atomic proposition, the negation of a formula,

the conjunction of two formulas, or the modal operator 2a for a player a

applied to a formula. In the following, φ, φ′, φ1,. . . stand for arbitrary MMLK

formulas. We define the usual syntactic shortcuts for the disjunction φ1 ∨
φ2

def
= ¬(¬φ1 ∧ ¬φ2), and for the existential modal operators 3a φ

def
= ¬2a ¬φ.

The precedence of 3a and 2a, for any agent a, is higher than ∨ and ∧, that is,

3a φ1 ∨ φ2 = (3a φ1) ∨ φ2.

The box operators convey necessity and the diamond operators convey

possibility: 2a φ can be read as it is necessary for agent a that φ, while 3a φ is it

is possible for a that φ.
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4.2.3 The Model Checking Problem

We can now interpret MMLK formulas over GAs via the satisfaction relation |=.

Intuitively, a state in a GA constitutes the context of a formula, while a formula

constitutes a property of a state. A formula might be satisfied in some contexts

and not satisfied in other contexts, and some properties hold in a state while

others do not. Determining whether a given formula φ holds in a given state q

(in a given implicit GA) is what is commonly referred to as the model checking

problem. If it is the case, we write q |= φ, otherwise we write q 6|= φ.

It is possible to decide whether q |= φ by examining the structure of φ, the

labels of q, as well as the accessible states.

Definition 23. The formulas satisfied by a state q can be constructed by induc-

tion as follows.

• If p is a label of q, that is if p ∈ λ(q), then q |= p;

• if q 6|= φ then q |= ¬φ;

• if q |= φ1 and q |= φ2 then q |= φ1 ∧ φ2;

• if for all q′ such that q
a−→ q′, we have q′ |= φ, then q |= 2a φ.

It can be shown that the semantics for the syntactic shortcuts defined previ-

ously behave as expected. q |= φ1∨φ2 if and only if q |= φ1 or q |= φ2; q |= 3a φ

if there exists a q′ such that q
a−→ q′ and q′ |= φ.

This semantical interpretation of MMLK allow an alternative understanding

of the box and diamond operators. We can also read 2a φ as all moves for agent

a lead to states where φ holds and read 3a φ as there exists a move for agent a

leading to a state where φ holds.

4.2.4 Proofs and Counterexamples

In practice, we never explicitly construct the complete set of formulas satisfied

by a state. So when some computation tells us that a formula φ is indeed (not)

satisfied by a state q, some sort of evidence might be desirable. In software

model checking, a model of the program replaces the GA, and a formula in a

temporal logic acts as a specification of the program. If a correct model checker

asserts that the program does not satisfy the specification, it means that the
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program or the specification contained a bug. In those cases, it can be very

useful for the programmers to have access to an evidence by the model checker

of the mismatch between the formula and the system as it is likely to lead them

to the bug.

In this section we give a formal definition of what constitutes a proof or

a disproof for the class of model checking problems we are interested in. It

is possible to relate the following definitions to the more general concept of

tree-like counterexamples used in model checking ACTL [33].

Definition 24. An exploration tree for a formula φ in a state q is a tree with

root n associated with a pair (q, φ) with q a state and φ a formula, such that n

satisfies the following properties.

• If n is associated with (q, p) with p ∈ L, then it has no children;

• if n is associated with (q,¬φ) then n has at most one child and it is an

exploration tree associated with (q, φ);

• if a node n is associated with (q, φ1 ∧ φ2) then any child of n (if any) is an

exploration tree associated with (q, φ1) or with (q, φ2);

• if a node n is associated with (q,2a φ) then any child of n (if any) is an

exploration tree associated with (q′, φ) for some q′ such that q
a−→ q′.

• In any case, no two children of n are associated with the same pair.

Unless stated otherwise, we will not distinguish between a tree and its root

node. In the rest of the paper, n, n′, n1, . . . will be used to denote nodes in

exploration trees.

Definition 25. A proof (resp. a disproof) that q |= φ is an exploration tree with

a root n associated with (q, φ) satisfying the following hypotheses.

• If φ = p with p ∈ L, then p ∈ λ(q) (resp. p /∈ λ(q));

• if φ = ¬φ′, then n has exactly one child n′ and this child is a disproof

(resp. proof);

• if φ = φ1 ∧ φ2, then n has exactly two children n1 and n2 such that n1 is a

proof that q |= φ1 and n2 is a proof that q |= φ2 (resp. n has exactly one

child n′ and n′ is a disproof that q |= φ1 or n′ is a disproof that q |= φ2);
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• if φ = 2a φ
′, then n has exactly one child n′ for each q

a−→ q′, and n′ is a

proof for q′ |= φ′ (resp. n has exactly one child n′ and n′ is a disproof for

q′ |= φ′ for some q
a−→ q′).

4.2.5 Cost Functions

To remain as general as possible with respect to the definitions of a small

(dis)proof in the introduction, we introduce a cost function k as well as cost

aggregators A∧ and A2. These functions can then be instantiated in a domain

dependent manner to get the optimal algorithm for the domain definition of

minimality. This approach has been used before in the context of A* and

AO* [111].

We assume given a base cost function k : L→ R
+, as well as a conjunction

cost aggregator A∧ : NR
+∪{∞} → R

+ ∪ {∞} and a box modal cost aggregator

A2 : Σ× N
R

+∪{∞} → R
+ ∪ {∞}, where N

R
+∪{∞} denotes the set of multisets

of R+ ∪ {∞}.
We assume the aggregators are increasing in the sense that adding elements

to the input increases the cost. For all costs x ≤ y ∈ R
+ ∪ {∞}, multisets of

costs X ∈ N
R

+∪{∞}, and for all agents a, we have for the conjunction cost

aggregator A∧(X) ≤ A∧({x} ∪X) ≤ A∧({y} ∪X), and for the box aggregator

A2(a,X) ≤ A2(a, {x} ∪X) ≤ A2(a, {y} ∪X).

We further assume that aggregating infinite costs results in infinite costs

and that aggregating finite numbers of finite costs results in finite costs. For all

costs x ∈ R
+, multisets of costs X ∈ N

R
+∪{∞}, and for all agents a, A∧({∞}) =

A2(a, {∞}) =∞ and that A∧(X) <∞⇒ A∧({x} ∪X) <∞ and A2(a,X) <

∞⇒ A2(a, {x} ∪X) <∞.

Note that in our presentation, there is no cost to a negation. The justification

is that we want a proof aggregating over a disjunction to cost as much as a

disproof aggregating over a conjunction with children of the same cost, without

having to include the disjunction and the diamond operator in the base syntax.

Given k, A∧, and A2, it is possible to define the global cost function for a

(dis)proof as shown in Table 4.1.

Example 8. Suppose we are interested in the nested depth of the 2 operators

in the (dis)proof. Then we define k = 0, A∧ = max, and A2(a,X) = 1+maxX

for all a.
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Table 4.1: Cost K of a proof or a disproof for a node n as a function of the base
cost function k and the aggregators A∧ and A2. C is the set of children of n.

Label of n Children of n K(n)

(q, p) ∅ k(p)
(q,¬φ) {c} K(c)
(q, φ1 ∧ φ2) C A∧({K(c)|c ∈ C})
(q,2a φ) C A2(a, {K(c)|c ∈ C})

Example 9. Suppose we are interested in the number of atomic queries to

the underlying system (the GA). Then we define k = 1, A∧(X) =
∑
X, and

A2(a,X) =
∑
X for all a.

Example 10. Suppose we are interested in minimizing the amount of expansive

interactions with the underlying system. Then we define A∧(X) =
∑
X, and

A2(a,X) = k2a
+
∑
X for all a. In this case, we understand that k(p) is the

price for querying p in any state, and k2a
is the price for getting access to the

transition function for agent a in any state.

4.3 Model Checking Algorithms

We now define several model checking algorithms. That is, we present algo-

rithms that allow to decide whether a state q satisfies a formula φ (q |= φ).

4.3.1 Depth First Proof Search

Checking whether a formula is satisfied on a state can be decided by a depth-first

search on the game tree as dictated by the semantics given in Section 4.2.2.

Pseudo-code for the resulting algorithm, called Depth First Proof Search (DFPS)

is presented in Algorithm 7.

4.3.2 Best-first Search Algorithms

We can propose several alternatives to the DFPS algorithm to check a given

formula in a given state. We adapt the generic Best First Search (BFS) framework

proposed in Chapter 2 to express model checking algorithms. Best-first search
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Algorithm 7: Pseudo-code for the DFPS algorithm.

dfps(state q, formula φ)
switch on the shape of φ do

case p ∈ L return p ∈ λ(q)
case φ1 ∧ φ2 return dfps(q, φ1) ∧ dfps(q, φ2)
case ¬φ1 return ¬ dfps(q, φ1)
case 2a φ1

foreach q′ in {q′, q a−→ q′} do
if not dfps(q′, φ1) then return false

return true

algorithms must maintain a partial tree in memory, the shape of which is

determined by the formula to be checked.

Nodes are mapped to a (state q, formula φ) label. A leaf is terminal if its

label is an atomic proposition p ∈ λ otherwise it is non-terminal. Each node is

associated to a unique position, but a position may be associated to multiple

nodes. 2

The following static observations can be made about partial trees:

• an internal node labelled (q,¬φ) has exactly one child and it is labelled

(q, φ);

• an internal node labelled (q, φ1 ∧ φ2) has exactly two children which are

labelled (q, φ1) and (q, φ2);

• an internal node labelled (q,2a φ) has as many children as there are

legal transition for a in q. Each child is labelled (q′, φ) where q′ is the

corresponding state.

The generic framework is described in Algorithm 8. An instance must

provide a data type for node specific information which we call node value and

the following procedures. The info-term defines the value of terminal leaves.

The init-leaf procedure is called when initialising a new leaf. The update

2While it is possible to store the state q associated to a node n in memory, it usually is more
efficient to store move information on edges and reconstruct q from the root position and the path
to n.
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Algorithm 8: Pseudo-code for a best-first search algorithm.

extend(node n)
switch on the shape of n.formula do

case φ1 ∧ φ2
foreach i in {1, 2} do

ni ← new node
ni.state← q ; ni.formula← φi ; ni.info← ζ(q, φi)
Add ni as childi of n

case ¬φ
n′ ← new node
n′.state← q ; n′.formula← φ ; n′.info← ζ(q, φ)
Add n′ as the child of n

case 2a φ

foreach q′ in {q′, n.state
a−→ q′} do

n′ ← new node
n′.state← q′ ; n′.formula← φ ; n′.info← ζ(q′, φ)
Add n′ to n.children

backpropagate(node n)
old info← n.info
switch on the shape of n.formula do

case φ1 ∧ φ2 n.info← H∧(n.child1, n.child2)
case ¬φ n.info← H¬(n.child)
case 2a φ n.info← H2(n.children)

if old info = n.info ∨ n = r then return n
else return backpropagate(n.parent)

bfs(state q, formula φ)
r ← new node
r.state← q ; r.formula← φ ; r.info← ζ(q, φ)
n← r
while r.info /∈ S do

while n is not a leaf do
switch on the shape of n.formula do

case φ1 ∧ φ2 n← max4n.info
∧

{n.child1, n.child2}
case ¬φ n← n.child
case 2a φ n← max4n.info

2

{n.children}
n← select-child(n)

extend(n)
n← backpropagate(n)

return r
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procedure determines how the value of an internal node evolves as a function

of its label and the value of the children. The select-child procedure decides

which child is best to be explored next depending on the node’s value and label

and the value of each child. We present possible instances in Sections 4.3.3 and

4.3.4.

The backpropagate procedure implements a small optimization known as

the current node enhancement [4]. Basically, if the information about a node n

are not changed, then the information about the ancestors of n will not change

either and so the next descend will reach n. Thus, it is possible to shortcut the

process and start the next descent at n directly.

4.3.3 Proof Number Proof Search

We present a first instance of the generic best-first search algorithm described

in Section 4.3.2 under the name Proof Number Proof Search (PNPS). This

algorithm uses the concept of effort numbers and is inspired from Proof Number

Search (PNS) [4, 155].

The node specific information needed for PNPS is a pair of numbers which

can be positive, equal to zero, or infinite. We call them proof number (p) and

disproof number (d). Basically, if a subformula φ is to be proved in a state s and

n is the corresponding node in the constructed partial tree, then the p (resp. d)

in a node n is a lower bound on the number of nodes to be added to the tree to

be able to exhibit a proof that s |= φ (resp. s 6|= φ). When the p reached 0 (and

the d reaches∞), the fact has been proved and when the p reached∞ (and the

d reaches 0) the fact has been disproved.

The info-term and init-leaf procedures are described in Table 4.2, while

Table 4.3 and 4.4 describe the update and select-child procedures, respec-

tively. If domain specific information is available, we can initialize the p and d

in init-leaf with heuristical values.

4.3.4 Monte Carlo Proof Search

MCTS is a recent game tree search technique based on multi-armed bandit

problems [20]. MCTS has enabled a huge leap forward in the playing level

of artificial GO players. It has been extended to prove wins and losses under
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Table 4.2: Initial values for leaf nodes in PNPS.

Node label p d

info-term
(q, p) when p ∈ λ(q) 0 ∞
(q, p) when p /∈ λ(q) ∞ 0

init-leaf (q, φ) 1 1

Table 4.3: Determination of values for internal nodes in PNPS.

Node label Children p d

(q,¬φ) {c} d(c) p(c)
(q, φ1 ∧ φ2) C

∑

C p minC d
(q,2a φ) C

∑

C p minC d

Table 4.4: Selection policy for PNPS.

Node label Children Chosen child

(q,¬φ) {c} c
(q, φ1 ∧ φ2) C argminC d
(q,2a φ) C argminC d

the name MCTS Solver [165] and it can be seen as the origin of the algorithm

presented in this section which we call Monte Carlo Proof Search (MCPS).

The basic idea in MCPS is to evaluate whether a state s satisfies a formula via

probes in the tree below s. Monte Carlo probes are a generalization of Monte

Carlo playouts used in MCTS. A Monte Carlo playout is a random path of the

tree below s, whereas a Monte Carlo probe is a random subtree with a shape

determined by an MMLK formula. A probe is said to be successful if the formulas

at the leaves are satisfied in the corresponding states. Determining whether a

new probe generated on the fly is successful can be done as demonstrated in

Algorithm 9.

Like MCTS, MCPS explores the GA in a best first way by using aggregates of

information given by the playouts. For each node n, we need to know the total

number of probes rooted below n (denoted by t) and the number of successful

probes among them (denoted by r). We are then faced with an exploration-
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Algorithm 9: Pseudo-code for a Monte Carlo Probe.

probe(state q, formula φ)
switch on the shape of φ do

case p ∈ L
return p ∈ λ(q)

case φ1 ∧ φ2
return probe(q, φ1) ∧ probe(q, φ2)

case ¬φ1
return ¬ probe(q, φ1)

case 2a φ1
q′ ← random state such that q

a−→ q′

return probe(q′, φ1)

Table 4.5: Initialisation for leaf values in MCPS for a node n.

Node label s r t

info-term
(q, p) where p ∈ λ(q) ⊤ 1 1
(q, p) where p /∈ λ(n) ⊥ 0 1

init-leaf (q, φ) ? probe(q, φ) 1

exploitation dilemma between running probes in nodes which have not been

explored much (t is small) and running probes in nodes which seem successful

(high r
t

ratio). This concern is addressed using the UCB formula [20].

Similarly to MCTS Solver, we will add another label to the value of nodes

called s. s represents the proof status and allows to avoid solved subtrees.

s can take three values: ⊤, ⊥, or ?. These values respectively mean that

the corresponding subformula was proved, disproved, or neither proved nor

disproved for this node.

We describe the info-term, init-leaf, update, and select-child proce-

dures in Table 4.5, Table 4.6, and Table 4.7.

4.4 Minimal Proof Search

Let q |= φ be a model checking problem and n1 and n2 two proofs as defined in

Section 4.2.4. Even if n1 is not a subtree of n2, there might be reasons to prefer,
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Table 4.6: Determination of values for internal nodes in MCPS.

Node label Children s r t

(q,¬φ) {c} ¬s(c) t(c)− r(c) t(c)
(q, φ1 ∧ φ2) C

∧

C s
∑

C r
∑

C t
(q,2a φ) C

∧

C s
∑

C r
∑

C t

Table 4.7: Selection policy for MCPS in a node n.

Node label Children Chosen child

(q,¬φ) {c} c

(q, φ1 ∧ φ2) C argmaxC,s(c)=?
t−r
t

+
√

2 ln t(n)
t

(q,2a φ) C argmaxC,s(c)=?
t−r
t

+
√

2 ln t(n)
t

n1 over n2. For instance, we can imagine that n1 contains fewer nodes than n2,

or that the depth of n1 is smaller than that of n2.

In this chapter, we put forward a model checking algorithm for MMLK that

we call Minimal Proof Search (MPS). As the name indicates, given a model

checking problem q |= φ, the MPS algorithm outputs a proof that q satisfies φ or

a counterexample, this proof/counterexample being minimal for some definition

of size. Perfect information games provide at least two motivations for small

proofs. In game playing, people are usually interested in “short” proofs, for

instance a CHESS player would rather deliver checkmate in three moves than

in nine moves even if both options grant them the victory. In game solving,

“compact” proofs can be stored and independently checked efficiently.

Our goal is related both to heuristic search and software model checking.

On one hand, the celebrated A* algorithm outputs a path of minimal cost from

a starting state to a goal state. This path can be seen as the proof that the

goal state is reachable, and the cost of the path is the size of the proof. On the

other hand, finding small counterexamples is an important subject in software

model checking. For a failure to meet a specification often indicates a bug in

the program, and a small counterexample makes finding and correcting the bug

easier [59].

Like A*, MPS is optimal, in the sense that any algorithm provided with the
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Table 4.8: Definition of the heuristic functions I and J .

Shape of φ I(φ) J(φ)

p k(p) k(p)
¬φ′ J(φ′) I(φ′)
φ1 ∧ φ2 A∧({I(φ1), I(φ2)}) mini∈{1,2}A∧({J(φi)})
2a φ

′ A2(a, ∅) A2(a, {J(φ′)})

same information and guaranteed to find a proof of minimal size needs to do as

many node expansions as MPS.

4.4.1 Heuristics

We define two heuristic functions I and J to estimate the minimal amount of

interaction needed with the underlying system to say anything about a formula

φ. These functions are defined in Table 4.8, I(φ) is a lower bound on the

minimal amount of interaction to prove φ and J(φ) is a lower bound on the

minimal amount of interaction to disprove φ.

The heuristics I and J are admissible, that is, they never overestimate the

cost of a (dis)proof.

Proposition 23. Given a formula φ, for any state q, for any proof n that q |= φ

(resp. disproof), I(φ) ≤ K(n) (resp. J(φ) ≤ K(n)).

Proof. We proceed by structural induction on the shape of formulas. For the

base case φ = p, if n is a proof that q |= p, then the n label of n is (q, p) and its

cost is K(n) = k(p), which is indeed greater or equal to I(p) = J(p) = k(p).

For the induction case, take the formulas φ1 and φ2 and assume that for any

proofs (resp. disproofs) n1 and n2, the cost is greater than the heuristic value:

I(φ1) ≤ K(n1) and I(φ2) ≤ K(n2) (resp. J(φ1) ≤ K(n1) and J(φ2) ≤ K(n2)).

For any proof (resp. disproof) nwith label (q,¬φa) and child c, the cost of n is

the cost of the disproof (resp. proof) c: K(n) = K(c). The disproof (resp. proof)

c is associated with (q, φ1) and we know from the induction hypothesis that

J(φ1) ≤ K(c) (resp. I(φ1) ≤ K(c)). By definition of the heuristics, I(φ) = J(φ1)

(resp. J(φ) = I(φ1)), therefore we have I(φ) ≤ K(n) (resp. J(φ) ≤ K(n)).
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For any proof (resp. disproof) n with label (q, φ1 ∧ φ2) and children c1, c2
(resp. child c), the cost of n is the sum of the costs of the children: K(n) =

K(c1) + K(c2) (resp. K(n) = K(c)). The nodes c1 and c2 are associated

with (q, φ1) and (q, φ2) (resp. c is associated with (q, φ1) or to (q, φ2)) and we

know from the induction hypothesis that I(φ1) ≤ K(c1) and I(φ2) ≤ K(c2)

(resp. J(φ1) ≤ K(c) or J(φ2) ≤ K(c)). By definition of the heuristics, I(φ) =

I(φ1)+I(φ2) (resp. J(φ) = min{J(φ1), J(φ2)}), therefore we have I(φ) ≤ K(n)

(resp. J(φ) ≤ K(n)).

The remaining case is very similar and is omitted.

Lemma 1. For any formula φ, I(φ) <∞ and J(φ) <∞.

Proof. We proceed by structural induction on φ. For the base case, φ = p, simply

recall that the range of k is R
+. The induction case results directly from the

assumptions on the aggregators.

We inscribe the MPS algorithm in a best first search framework inspired

by game tree search. We then specify a function for initializing the leaves, a

function to update tree after a leaf has been expanded, a selection function to

decide which part of the tree to expand next, and a stopping condition for the

overall algorithm.

Algorithm 8 develops an exploration tree for a given state q and formula

φ. To be able to orient the search efficiently towards proving or disproving the

model checking problem q |= φ instead of just exploring, we need to attach

additional information to the nodes beyond their (state, formula) label. This

information takes the form of two effort numbers, called the minimal proof

number and minimal disproof number. Given a node n associated with a pair

(q, φ), the minimal proof number of n, MPN(n), is an indication on the cost of a

proof for q |= φ. Conversely, the minimal disproof number of n, MDN(n), is an

indication on the cost of a disproof for q |= φ. For a more precise relationship

between MPN(n) and the cost of a proof see Prop. 28.

The algorithm stops when the minimal (dis)proof number reaches∞ as it

corresponds to the exploration tree containing a (dis)proof of minimal cost (see

Prop. 26).

The values for the effort numbers in terminal leaves and in newly created

leaves are defined in Table 4.9. The values for the effort numbers of an internal
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Table 4.9: Values for terminal nodes and initial values for leaves.

Node label MPN MDN

info-term
(q, p) where p ∈ λ(q) k(p) ∞
(q, p) where p /∈ λ(q) ∞ k(p)

init-leaf (q, φ) I(φ) J(φ)

Table 4.10: Determination of values for internal nodes.

Node label Children MPN MDN

(q,¬φ) {c} MDN(c) MPN(c)
(q, φ1 ∧ φ2) C A∧({MPN(c)|c ∈ C}) minC A∧({MDN})
(q,2a φ) C A2(a, {MPN(c)|c ∈ C}) minC A2(a, {MDN})

Table 4.11: Selection policy.

Node label Children Chosen child

(q,¬φ) {c} c
(q, φ1 ∧ φ2) C argminC A∧({MDN})
(q,2a φ) C argminC A2(a, {MDN})

node as a function of its children are defined in Table 4.10. Finally, the selection

procedure base on the effort numbers to decide how to descend the global tree

is given in Table 4.11. The stopping condition, Table 4.9, 4.10, and 4.11, as

well as Algorithm 8 together define Minimal Proof Search (MPS).

Before studying some theoretical properties of (dis)proofs, minimal (dis)proof

numbers, and MPS, let us point out that for any exploration tree, not necessarily

produced by MPS, we can associate to each node an MPN and an MDN by

using the initialization described in Table 4.9 and the heredity rule described in

Table 4.10.

4.4.2 Correctness

The first property we want to prove about MPS is that the descent does not get

stuck in a solved subtree.
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Proposition 24. For any internal node n with finite effort numbers, the child

c selected by the procedure described in Table 4.11 has finite effort numbers.

MPN(n) 6=∞ and MDN(n) 6=∞ imply MPN(c) 6=∞ and MDN(c) 6=∞.

Proof. If the formula associated with n has shape ¬φ, then MDN(c) = MPN(n) 6=
∞ and MPN(c) = MDN(n) 6=∞.

If the formula associated with n is a conjunction, then it suffices to note that

no child of n has an infinite minimal proof number and at least one child has a

finite minimal disproof number, and the result follows from the definition of the

selection procedure. This also holds if the formula associated with n is of the

form 2a φ
′.

As a result, each descent ends in a non solved leaf. Either the associated

formula is of the form p and the leaf gets solved, or the leaf becomes an internal

node and its children are associated with structurally smaller formulas.

Proposition 25. The MPS algorithm terminates in a finite number of steps.

Proof. Let F be the set of lists of formulas ordered by decreasing structural

complexity, that is, F = {l = (φ0, . . . , φn)|n ∈ N, φ0 ≥ · · · ≥ φn}. Note that the

lexicographical ordering (based on structural complexity) <F is wellfounded

on F . Recall that there is no infinite descending chains with respect to a

well-founded relation.

Consider at some time t the list lt of formulas associated with the non

solved leaves of the tree. Assuming that lt is ordered by decreasing structural

complexity, we have lt ∈ F . Observe that a step of the algorithm results in a list

lt+1 smaller than lt according to the lexicographical ordering and that successive

steps of the algorithm result in a descending chain in F . Conclude that the

algorithm terminates after a finite number of steps for any input formula φ with

associated list l0 = (φ).

Since the algorithm terminates, we know that the root of the tree will

eventually be labelled with a infinite minimal (dis)proof number and thus will

be solved. It remains to be shown that this definition of a solved tree coincides

with containing (dis)proof starting at the root.
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Proposition 26. If a node n is associated with (q, φ), then MDN(n) =∞ (resp.

MPN(n) = ∞) if and only if the tree corresponding to n contains a proof (resp.

disproof) that q |= φ as a subtree with root n.

Proof. We proceed by structural induction on the shape of trees.

For the base case when n has no children, either φ = p or φ is not atomic.

In the first case, n is a terminal node so contains a (dis)proof (n itself) and we

obtain the result by definition of MPN nad MDN as per Table 4.9. In the second

case, φ is not atomic and n has no children so n does not contain a proof nor a

disproof. Table 4.9 and Lemma 1 show that the effort numbers are both finite.

For the induction case when φ = ¬φ′, we know that n has one child c

associated to φ′. If c contains a proof (resp. disproof) that q |= φ′, then n

contains a disproof (resp. proof) that q |= φ. By induction hypothesis, we know

that MPN(c) =∞ (resp. MDN(c) =∞) therefore, using Table 4.10, we know

that MDN(n) = ∞ (resp. MPN(n) = ∞). Conversely if c does not contain a

proof nor a disproof, then n does not contain a proof nor a disproof, and we know

from the induction hypothesis and Table 4.10 than MPN(n) = MDN(c) < ∞
and MDN(n) = MPN(c) <∞.

The other induction cases are similar but make use of the assumption that

aggregating inifinite costs results in infinite costs and that aggregating finite

numbers of finite costs results in finite costs.

Theorem 5. The MPS algorithm takes a formula φ and a state q as arguments and

returns after a finite number of steps an exploration tree that contains a (dis)proof

that q |= φ.

4.4.3 Minimality of the (Dis)Proofs

Now that we know that MPS terminates and returns a tree containing a (dis)proof,

we need to prove that this (dis)proof is of minimal cost.

The two following propositions can be proved by a simple structural induc-

tion on the exploration tree, using Table 4.9 and the admissibility of I and J for

the base case and Table 4.10 for the inductive case.

Proposition 27. If a node n is solved, then the cost of the contained (dis)proof is

given by the minimal (dis)proof number of n.
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Proof. Straightforward structural induction on the shape of the tree using the

first half of Table 4.9 for the base case and Table 4.10 for the induction step.

Proposition 28. If a node n is associated with (q, φ), then for any proof m (resp.

disproof) that q |= φ, we have MPN(n) ≤ K(m) (resp. MDN(n) ≤ K(m)).

Proof. Structural induction on the shape of the tree, using the second half of

Table 4.9 and the admissibility of I and J (Prop. 23) for the base case and

Table 4.10 for the inductive case.

Since the aggregators for the cost function are increasing functions, then

MPN(n) and MDN(n) are non decreasing as we add more nodes to the tree n.

Proposition 29. For each disproved internal node n in a tree returned by the MPS

algorithm, at least one of the children of n minimizing the MDN is disproved.

Sketch. If we only increase the minimal (dis)proof number of a leaf, then for

each ancestor, at least one of either the minimal proof number of the minimal

disproof number remains constant.

Take a disproved internal node n, and assume we used the selection pro-

cedure described in Table 4.11. On the iteration that lead to n being solved,

the child c of n selected was minimizing the MDN and this number remained

constant since MPN(c) raised from a finite value to∞.

Since the MDN of the siblings of c have not changed, then c is still minimiz-

ing the MDN after it is solved.

Theorem 6. The tree returned by the MPS algorithm contains a (dis)proof of

minimal cost.

4.4.4 Optimality

The MPS algorithm is not optimal in the most general sense because it is pos-

sible to have better algorithm in some cases by using transpositions, domain

knowledge, or logical reasoning on the formula to be satisfied.

For instance, take φ1 = 3a(p∧¬p) and φ2 some non trivial formula satisfied

in a state q. If we run the MPS algorithm to prove that q |= φ1∨φ2, it will explore

at least a little the possibility of proving q |= φ1 before finding the minimal proof

through φ2. We can imagine that a more “clever” algorithm would recognize
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that φ1 is never satisfiable and would directly find the minimal proof through

φ2.

Another possibility to outperform MPS is to make use of transpositions to

shortcut some computations. MPS indeed explores structures according to the

MMLK formula shape, and it is well-known in modal logic that bisimilar structures

cannot be distinguished by MMLK formulas. It is possible to express an algorithm

similar to MPS that would take transpositions into account, adapting ideas from

PNS [139, 100, 73]. We chose not to do so in this article for simplicity reasons.

Still, MPS can be considered optimal among the programs that do not use

reasoning on the formula itself, transpositions or domain knowledge. Stating

and proving this property formally is not conceptually hard, but we have not

been able to find simple definitions and a short proof that would not submerge

the reader with technicalities. Therefore we decided only to describe the main

ideas of the argument from a high-level perspective.

Definition 26. A pair (q′, φ′) is similar to a pair (q, φ) with respect to an ex-

ploration tree n associated with (q, φ) if q′ can substitute for q and φ′ for φ in

n.

Let n associated with (q, φ) be an exploration tree with a finite MPN (resp.

MDN), then we can construct a pair (q′, φ′) similar to (q, φ) with respect to n

such that there is a proof that q′ |= φ′ of cost exactly MPN(n) (resp. a disproof

of cost MDN(n)).

Definition 27. An algorithm A is purely exploratory if the following holds. Call

n the tree returned by A when run on a pair (q, φ). For every pair (q′, φ′) similar

to (q, φ) with respect to n, running A on (q′, φ′) returns a tree structurally

equivalent to n.

Depth first search, if we were to return the explored tree, and MPS are both

examples of purely exploratory algorithms.

Proposition 30. If a purely exploratory algorithm A is run on a problem (q, φ)

and returns a solved exploration tree n where MPN(n) (resp. MDN(n)) is smaller

than the cost of the contained proof (resp. disproof), then we can construct a

problem (q′, φ′) similar with respect to n such that A will return a structurally

equivalent tree with the same proof (resp. disproof) while there exists a proof of

cost MPN(n) (resp. disproof of cost MDN(n)).
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Note that if the cost of a solved exploration tree n is equal to its MPN (resp.

MDN), then we can make MPS construct a solved shared root subtree of n just

by influencing the tie-breaking in the selection policy described in Table 4.11.

Theorem 7. If a purely exploratory algorithm A returns a solved exploration tree

n, either this tree (or a subtree) can be generated by MPS or A is not guaranteed to

return a tree containing a (dis)proof of minimal cost on all possible inputs.

4.5 Sequential solution concepts in MMLK

We now proceed to define several classes of formulas to express interesting

properties about games.

We will assume for the remainder of the paper that one distinguished player

is denoted by A and the other players (if any) are denoted by B (or B1, . . . ,

Bk). Assume a distinguished atomic propositions w, understood as a label of

final positions won by A. We also use a variant of the normal play assumption,

namely, when a position s is won by A, no other player has a legal move in s.

When a position s is lost by A, then A has no legal moves in s but other players

have a pass move that loop to s. That is, for every state s lost by A, we have

s
B−→ s.

Reachability A natural question that arises in one-player games is reachability.

In this setting, we are not interested in reaching a specific state, but rather in

reaching any state satisfying a given property.

Definition 28. We say that a player A can reach a state satisfying φ from a state

q in exactly n steps if q |= 3A . . .3A
︸ ︷︷ ︸

n times

φ.

Winning strategy The concept of winning strategies in a finite number of

moves in an alternating two-player game can also be represented as as a

formula.

Definition 29. Player A has a winning strategy of depth less or equal to 2n+ 1

in state q if q |= ωn+1, where ω1 = w ∨3A w and ωn = w ∨3A2B ωn−1.
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(a) HEX position featuring a ladder for Black. (b) CHESS position featuring a helpmate
for Black in four moves.

Figure 4.1: Positions illustrating the solution concepts of ladder and helpmate.

Ladders The concept of ladder occurs in several games, particularly HEX and

GO [102]. A threatening move for player A is a move such that, if it was possible

for A to play a second time in a row, then A could win. A ladder is a sequence

of threatening moves by A followed by defending moves by B, ending with A

fulfilling their objective.

Definition 30. Player A has a ladder of depth less or equal to 2n+1 in state s if

q |= L2n+1, where L1 = w∨3A w and L2n+1 = w∨3A((w∨3A w)∧2B L2n−1).

For instance, Figure 4.1a presents a position of the game HEX where the goal

for each player is to connect their border by putting stones of their color. In this

position, Black can play a successful ladder thereby connecting the left group to

the bottom right border.

Helpmates In a CHESS helpmate, the situation seems vastly favourable to

player Black, but the problemist must find a way to have the Black king check-

mated. Both players move towards this end, so it can be seen as a cooperative

game. Black usually starts in helpmate studies. See Figure 4.1b for an example.

A helpmate in at most 2n plies can be represented through the formula Hn

where H0 = w and Hn = w ∨3B 3A Hn−1.
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(a) HEX position featuring a progress tree of depth
7 for Black.

(b) CHESS endgame featuring a progress
tree of depth 11 for White.

Figure 4.2: Positions illustrating the concept of progress tree.

Selfmates A selfmate, on the other hand, is a situation where Black forces

White to checkmate the Black King, while White must do their best to avoid this.

Black starts moving in a selfmate and a position with a selfmate satifies Sn for

some n, where S0 = w and Sn = w ∨3B 2A Sn−1.

Progress Trees It occurs in many two-player games that at some point near

the end of the game, one player has a winning sequence of n moves that is

relatively independent of the opponent’s moves. For instance Figure 4.2 presents

a HEX position won for Black and a CHESS position won for White. In both cases,

the opponent’s moves cannot even delay the end of the game.

To capture this intuition, we define a new solution concept we name progress

tree. The idea giving its name to the concept of progress trees is that we want

the player to focus on those moves that brings them closer to a winning state,

and discard the moves that are out of the winning path.

Definition 31. Player A has a progress tree of depth 2n + 1 in a state q if

q |= PTn+1, where PT1 = w ∨3A w and PTn = w ∨3A(πn−1 ∧2B PTn−1).

We can check states for progress trees using any of the model checking

algorithms presented earlier, effectively giving rise to four new specialized
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Table 4.12: Search statistics for a DFPS on positions along a principal variation
of the CHESS problem in Figure 4.2b.

Model checking
problem

Time (s)
Number of queries

atomic listmoves play

PT3 0.1 6040 328 5897
ω3 0.2 11172 624 5587

PT4 1.4 99269 5312 98696
ω4 3.5 194429 10621 97217

PT5 23.6 1674454 88047 1668752
ω5 63.8 3382102 181442 1691055

PT6 260.4 25183612 1297975 25106324
ω6 953.6 52209939 2759895 26104986

algorithms. Note that if a player has a progress tree of depth 2n + 1 in some

state, then they also have a winning strategy of depth 2n + 1 from that state

(see Proposition 31). Therefore, if we prove that a player has a progress tree in

some position, then we can deduce that they have a winning strategy.

We tested a naive implementation of the DFPS model checking algorithms on

the position in Figure 4.2b to check for progress trees and winning strategies.

The principal variations consists for White in moving the pawn up to the last

row and move the resulting queen to the bottom-right hand corner to deliver

checkmate. To study how the solving difficulty increases with respect to the size

of the formula to be checked, we model checked every position on a principal

variation and present the results in Table 4.12.

We can see that proving that a progress tree exists becomes significantly

faster than proving an arbitrary winning strategy as the size of the problem

increases. We can also notice that the overhead of checking for a path at each α

node of the search is more than compensated by the early pruning of moves not

contributing to the winning strategy.
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4.6 Understanding game tree algorithms

We now turn to show how the MMLK Model Checking framework can be used

to develop new research in game tree search. As such, the goal of this section

is not to put forward a single well performing algorithm, nor to prove difficult

theorems with elaborate proofs, but rather to demonstrate that the MMLK Model

Checking is an appropriate tool for designing and reasoning about new game

tree search algorithms.

By defining appropriate formulas classes, we can simulate many existing

algorithms by solving model checking problems in MMLK with specific search

algorithms.

Definition 32. Let φ be a formula, S be a model checking algorithm and A be

a specific game algorithm. We say that (φ, S) simulates A if for every game, for

every state q where A can be applied, we have the following: solving q |= φ

with S will explore exactly the same states in the same order and return the

same result as algorithm A applied to initial state q.

Table 4.13 presents how combining the formulas defined later in this section

with model checking algorithms for MMLK allows to simulate many important

algorithms. We use the model checking algorithms defined in Section 4.3,

DFPS, PNPS, and MCPS as well as MPS proposed by Saffidine [119]. For instance,

using the DFPS algorithm to model-check an APSn formula on a HEX position

represented as a state of a GA is exactly the same as running the Abstract Proof

Search algorithm on that position.

4.6.1 One-player games

Many one-player games, the so-called puzzles, involve finding a path to a

terminal state. Ideally this path should be the shortest possible. Examples of

such puzzles include the 15-PUZZLE and RUBIK’S CUBE.

Recall that we defined a class of formulas for reachability in exactly n steps

in Definition 28. Similarly we define now a class of formulas representing the

existence of a path to a winning terminal state within n moves.

Definition 33. We say that agent A has a winning path from a state q if q

satisfies πn where πn is defined as π0 = w and πn = w ∨3A πn−1 if n > 0.
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4.6.2 Two-player games

We already defined the winning strategy formulas ωn in Definition 29. We will

now express a few other interesting formulas that can be satisfied in states in

two player games.

λ-Trees λ-trees have been introduced [153] as a generalisation of ladders as

seen in Section 4.5. We will refrain from describing the intuition behind λ-trees

here and will be satisfied with giving the formal corresponding property as they

only constitute an example of the applicability of our framework.

Definition 34. A state q has an λ-tree of order d and maximal depth n for

player A if q |= λd,n, where λ0,n = λd,0 = w, λd,1 = w ∨ 3A w, and λd,n =

w ∨3A(λd−1,n−1 ∧2B λd,n−2).

λ-trees are a generalisation of ladders as defined in Definition 30 since a

ladder is a λ-tree of order d = 1.

Abstract proof trees Abstract proof trees were introduced to address some

perceived practical limitations of αβ when facing a huge number of moves.

They have been used to solve capture problems for the game of GO. We limit

ourselves here to describing how we can specify in MMLK that a state is root to

an an abstract proof tree. Again, we refer the reader to the literature for the

intuition about abstract proof trees and their original definition [23].

Definition 35. A state q has an abstract proof tree of order n for player A

if q |= APSn, where APS0 = w, APS1 = w ∨ 3A w, and APSn = w ∨
3A(APSn−1 ∧2B APSn−1).

Other concepts Many other interesting concepts can be similarly implemented

via a class of appropriate formulas. Notably minimax search with iterative

deepening, the Null-move assumption, and Dual Lambda-search [145] can be

related to model checking some MMLK formulas with DFPS.

4.6.3 Multiplayer games

Paranoid Algorithm The Paranoid Hypothesis was developed to allow for

αβ style safe pruning in multiplayer games [149]. It transforms the original
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4.6. Understanding game tree algorithms

k + 1-player game into a two-player game A versus B. In the new game, the

player B takes the place of B1, . . . , Bk and B is trying to prevent player A

from reaching a won position. Assuming the original turn order is fixed and is

A,B1, . . . , Bk, A,B1, . . . , we can reproduce a similar idea in MMLK.

Definition 36. Player A has a paranoid win of depth (k + 1)n in a state q if

q |= PAn,0, where PAn,0 is defined as follows.

PA0,i = w

PAn,0 = w ∨3A PAn−1,1

PAn,i = 2Bi PAn−1,i+1 for 1 ≤ i < k

PAn,k = 2Bk PAn−1,0

(4.1)

Observe that in a k + 1-player game, if 0 ≤ j < k then PA(k+1)n+j,j can be

expressed as 2Bj 2Bj+1 . . .2Bk PA(k+1)n,0

Best Reply Search Best Reply Search (BRS) is a new search algorithm for

multiplayer games [130]. It consists of performing a minimax search where

only one opponent is allowed to play after A. For instance a principal variation

in a BRS search with k = 3 opponents could involve the following turn order A,

B2, A, B1, A, B1, A, B3, A, . . . instead of the regular A, B1, B2, B3, A, B1, B2,

B3, . . . .

The rationale behind BRS is that the number of moves studied for the player

in turn in any variation should only depend on the depth of the search and not

on the number of opponents. This leads to an artificial player selecting moves

exhibiting longer term planning. This performs well in games where skipping

a move does not influence the global position too much, such as CHINESE

CHECKERS.

Definition 37. Player A has a best-reply search win of depth 2n+ 1 in a state q

if q |= βn, where β1 = w ∨3A w and βn = w ∨3A

∧k

i=12Bi βn−1.

4.6.4 Expressing properties of the algorithms

We now demonstrate that using the MMLK model checking framework for game

tree search makes some formal reasoning straightforward. Again, the goal of
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this section is not to demonstrate strong theorems with elaborate proofs but

rather show that the framework is convenient for expressing certain properties

and helps reasoning on them.

It is easy to prove by induction on the depth that lambda trees, abstract proof

trees, and progress trees all have winning strategies as logical consequence.

Proposition 31. For all order d and depth n, we have |= λd,2n+1 → ωn+1,

|= APSn → ωn, and |= PTn → ωn.

Proof. We prove the implication between λ-trees and winning strategy by in-

duction on the depth n. The proofs for abstract proof trees and progress trees

are similar and are omitted.

Base case n = 0. If the depth is n = 0 then we have λd,1 = w ∨3A w and

ω1 = w ∨3A w so the property holds.

Induction case, assuming |= λd,2n+1 → ωn+1, let us show that |= λd,2n+3 →
ωn+2. If d = 0, then λd,2n+3 = w so the property holds. Else, d > 0 and we

have λd,2n+3 = w ∨3A(λd−1,2n+2 ∧ 2B λd,2n+1). By induction hypothesis we

obtain |= λd,2n+3 → w ∨ 3A(λd−1,2n+2 ∧ 2B ωn+1). By weakening we have

|= λd,2n+3 → w ∨3A2B ωn+1, that is |= λd,2n+3 → w ∨ ωn+2.

Therefore, whenever we succeed in proving that a position features, say, an

abstract proof tree, then we know it also has a winning strategy for the same

player: for any state q, q |= APSn implies q |= ωn.

On the other hand, in many games, it is possible to have a position featuring

a winning strategy but no lambda tree, abstract proof tree, or even progress

tree. Before studying the other direction further, we need to rule out games

featuring zugzwangs, that is, positions in which a player would rather pass and

let an opponent make the next move.

Definition 38. A φ-zugzwang for player A against players B1, . . . , Bk is a state

q such that q |= ¬φ∧(∨i2Bi φ). A game is zugzwang-free for a set of formulas Φ

and player A against players B1, . . . , Bk if for every state q, and every formula

φ ∈ Φ, q is not a φ-zugzwang for A against B1, . . . , Bk.

We denote the set games that are zugzwang-free for Φ as Z(Φ). A formula

ψ is valid in zugzwang-free games for Φ, if for any game G in Z(Φ) and any

state s, we have G, s |= ψ. In such case we write |=Z(Φ) ψ.
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We can use this definition to show that in games zugzwang-free for winning

strategies, such as CONNECT-6 or HEX, an abstract proof tree and a progress tree

are equivalent to a winning strategy of the same depth.

Proposition 32. Consider a two-player game zugzwang-free for winning strategies.

For any depth n and any state q, q |= ωn implies q |= APSn and q |= ωn

implies q |= PTn. That is |=Z(Φ) ωn → APSn and |=Z(Φ) ωn → PTn where

Φ = {ωi, i ∈ N}.

Proof. We prove the result involving abstract proof trees and winning strategies

by induction on n. The other result can obtained with a similar proof. Assume a

zugzwang-free game for winning strategies. We want to prove that for any state

q in the game, if q |= ωn then we have q |= APSn
Since ω0 = APS0 = w, the property holds for the base case, n = 0.

Assume that for all q, q |= ωn implies q |= APSn, and take q such that

q |= ωn+1. Since ωn+1 = w ∨ 3A2B ωn then either q |= w in which case

q |= APSn+1 or we can find q′ such that q′ |= 2B WS and q
A−→ q′. In this case,

it remains to prove that q′ |= APSn and q′ |= 2B APSn.

To show that q′ |= 2B APSn, consider q′′ such that q′
B−→ q′′. We know that

q′ |= 2B ωn so q′′ |= ωn and by induction hypothesis, we have q′′ |= APSn.

To show that q′ |= APSn, recall that the game is zugzwang-free for winning

strategies, and in particular, it is zugzwang-free for ωn. It means that there

is no state q̂ such that q̂ |= ¬ωn ∧ 2B ωn. By taking q̂ to be q′, we have

q′ |= ωn ∨ ¬2B ωn. Since we know that q′ |= 2B ωn we derive that q′ |= ωn.

The induction hypothesis allows us to conclude.

The usual understanding of zugzwang is in two player games with φ a

winning strategy formula or a formula representing forcing some material gain

in CHESS. The more general definition we have given allows for multiplayer

games and other solution concepts besides winning strategies. For instance, it is

possible to show that best reply wins are more common than paranoid wins in

games which are zugzwang-free for paranoid wins.

Proposition 33. Consider a multiplayer game with k + 1 players, zugzwang-free

for paranoid wins. For any depth n and any state q, q |= PA(k+1)n,0 implies

q |= βn. That is |=Z(Φ) PA(k+1)n,0 → βn where Φ = {PAi,j , i ∈ N, j ∈ N}.
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As a result, in such a game, if a search for a best reply win fails, we know

there is no need to carry a search for a paranoid win. Since looking for a best

reply win of depth 2n + 1 is usually much faster than looking for a paranoid

win of depth (k + 1)n, this formal result can be seen as a partial explanation of

the experimental success of Best Reply Search in CHINESE CHECKERS [130].

4.6.5 Examining new combinations

We have seen that we could obtain previously known algorithms by combining

model checking algorithms with solution concepts. On the one hand, some

solution concepts such winning path and winning strategy, were combined with

the four possible search paradigms in previous work. On the other hand, other

solution concepts such as abstract proof trees were only investigated within the

depth-first paradigm.

It is perfectly possible to model check a paranoid win using the MCPS algo-

rithm, for instance, leading to a new Minimal Paranoid Win Search algorithm.

Similarly model checking abstract proof trees with PNPS would lead to a new

Proof Number based Abstract Proof Search (PNAPS) algorithm. Preliminary

experiments in HEX without any specific domain knowledge added seem to

indicate that PNAPS does not seem to perform as well as Abstract Proof Search,

though.

Finally, most of the empty cells in Table 4.13 can be considered as new

algorithms waiting for an optimized implementation and a careful evaluation.

4.7 Related work and discussion

In CTL model checking, finding a minimal witness or a minimal counterexample

is NP-complete [31]. MMLK model checking, on the contrary, though PTIME-

complete [84], allows finding minimal witnesses/counterexamples relatively

efficiently as we shall see in this chapter.

The tableau-based model checking approach by Cleaveland for the µ-calculus

seems to be similar to ours [34], however it would need to be adapted to

handle (dis)proof cost. Also, in our understanding, the proof procedure check1

presented by Cleaveland can be seen as an unguided Depth First Search (DFS)

while our approach is guided towards regions of minimal cost.
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The two algorithms most closely related to MPS are AO*, a generalization

of A* to And/Or trees, and DFPN+ [103], a variant of DFPN, itself a depth-first

variant of PNS [4].

DFPN+ is typically only used to find a winning strategy for either player in

two-player games. MPS, on the contrary, can be applied to solve other interesting

problems without a cumbersome And/Or graph prior conversion. Example of

such problems range from finding ladders in two-player games to finiding

paranoid wins in multi-player games. Another improvement over DFPN+ is

that we allow for a variety of (dis)proof size definitions. While DFPN+ is set to

minimize the total edge cost in the proof, we can imagine minimizing, say, the

number of leaves or the depth of the (dis)proof.

Besides the ease of modelling allowed by MMLK rather than And/Or graphs,

another advantage of MPS over AO* is that if the problem is not solvable, then

MPS finds a minimal disproof while AO* does not provide such a guarantee.

In his thesis, Nagai derived the DFPN algorithm from the equivalent best-first

algorithm PNS [103]. Similarly, we can obtain a depth-first version of MPS from

the best first search version presented here by adapting Nagai’s transformation.

Such a depth-first version should probably be favoured in practice, however we

decided to present the best first version in this article for two main reasons. We

believe the best-first search presentation is more accessible to the non-specialists.

The proofs seemed to be easier to work through in the chosen setting, and they

can later be extended to the depth-first setting.

Another trend of related work is connecting modal logic and game the-

ory [157, 167, 81]. In this area, the focus is on the concept of Nash equilibria,

extensive form games, and coalition formation. As a result, more powerful

logic than the restricted MMLK are used [6, 159, 58]. Studying how the model

checking algorithms presented in this chapter can be extended for these settings

is an interesting path for future work.

We have shown that the Multi-agent Modal Logic K was a convenient tool to

express various kind of threats in a game independent way. Victor Allis provided

one of the earliest study of the concept of threats in his Threat space search

algorithm used to solve GOMOKU [5].

Previous work by Schaeffer et al. was also concerned with providing a

unifying view of heuristic search and the optimization tricks that appeared in

both single-agent search and two-player game search [134].
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The model used in this chapter differs from the one used in GGP called

Multi-Agent Environment (MAE) [138]. In an MAE, a transition correspond to

a joint-action. That is, each player decide a move simultaneously and the

combination of these moves determines the next state. In a GA, as used in this

chapter, the moves are always sequential. It is possible to simulate sequential

moves in an MAE by using pass moves for the non acting agents, however this

ties the turn player into the game representation. As a result, testing for solution

concepts where the player to move in a given position is variable is not possible

with an MAE. For instance, it is not possible to formally test for the existence of

a ladder in a GGP representation of the game of GO because we need to compute

the successors of a given position after a white move and alternatively after a

black move.

We envision a depth-first adaptation of MPS similar to Nagai’s transformation

of PNS into DFPN. Alternatively, we can draw inspiration from PN2 [4] and

replace the heuristic functions I and J by a nested call to MPS, leading to an

MPS2 algorithm trading time for memory. These two alternative algorithms

would directly inherit the correctness and minimality theorems for MPS. The

optimality theorem would also transpose in the depth-first case, but it would not

be completely satisfactory. Indeed, even though the explored tree will still be

admissibly minimal, several nodes inside the tree will have been forgotten and

re-expanded multiple times. This trade-off is reminiscent of the one between A*

and its depth-first variation IDA* [78].

Representing problems with unit edge costs is already possible within the

framework presented in Section 4.2.5. It is not hard to adapt MPS to the more

general case as we just need to replace the agent labels on the transitions with

(agent, cost) labels. This more general perspective was not developed in this

chapter because the notation would be heavier while it would not add much to

the intuition and the general understanding of the ideas behind MPS.

Effective handling of transpositions is another interesting topic for future

work. It is already nontrivial in PNS [73] and MCTS [125], but it is an even richer

subject in this model checking setting as we might want to prove different facts

about a given position in the same search. Finding minimal (dis)proofs is more

challenging when taking transpositions into account because of the double count

problem. While it is possible to obtain a correct algorithm returning minimal

(dis)proofs by using functions based on propagating sets of individual costs
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instead of real values in Section 4.2.5, similarly to previous work in PNS [100],

such a solution would hardly be efficient in practice and would not necessarily

be optimal. The existing literature on PNS and transpositions can certainly

be helpful in addressing efficient handling of transpositions in MMLK model

checking [139, 100, 73].

4.8 Conclusion

We have seen the MMLK was an appropriate framework for formal definitions of

solution concepts for perfect information games. We have shown that research

on game tree search could be a source of inspiration when designing algorithms

to solve the model checking problem for MMLK. Also, combining modal formulas

and a model checking algorithms yields a variety of game tree search algorithms

that can be modeled in the same framework. This makes it easy to test known

algorithms as well to define new ones. Finally, non-trivial properties of game

search algorithms can be proved in the modal logic formalism with just a few

formula manipulations.

Table 4.13 reveals many interesting previously untested possible combina-

tions of formula classes and search algorithms. Implementing and optimizing

one specific new combination for a particular game could lead to insightful

practical results. For instance, it is quite possible that a Proof Number version

of Abstract Proof Search would be successful in the capture game of GO [23].

We have also presented Minimal Proof Search (MPS), a model checking

algorithm for MMLK. MPS has been proven correct, and it has been proved that

the (dis)proof returned by MPS was minimizing a generic cost function. The

only assumption about the cost function is that it is defined recursively using

increasing aggregators. Finally, we have shown that MPS was optimal among

the purely exploratory model checking algorithms for MMLK.

Nevertheless, the proposed approach has a few limitations. MPS is a best

first search algorithm and is memory intensive; the cost functions addressed in

the chapter cannot represent variable edge cost; and MPS cannot make use of

transpositions in its present form. Still, we think that these limitations can be

overcome in future work.

Beside evaluating and improving the practical performance of MPS, future

work can also study to which extent the ideas presented in this chapter can be
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applied to model checking problems in more elaborate modal logics and remain

tractable.
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5 Games with Simultaneous Moves

This chapter defines and focuses on stacked-matrix games, that is

two-player zero-sum games featuring simultaneous moves. Alpha-

beta pruning can be generalized to stacked-matrix games, however

computing the alpha and beta bounds is costly as it involves solving

Linear Programs (LPs). We develop a few heuristical optimizations

that allow to mitigate the time spent solving LPs, eventually leading to

an algorithm solving GOOFSPIEL faster than backward induction and

sequence form solving.

The stacked-matrix games formalism can also model the combat phase

of Real-Time Strategy (RTS) games. However the time constraints

associated to building an Artificial Intelligence (AI) for an RTS game are

so tight that practical settings cannot be solved exactly. On the other

hand, we show that approximate heuristical search is possible and leads

to much better performance than existing script-based approaches.

This Chapter includes results from the following papers.

[127] Abdallah Saffidine, Hilmar Finnsson, and Michael Buro. Alpha-

beta pruning for games with simultaneous moves. In Hoffmann and

Selman [66], pages 556–562

[30] David Churchill, Abdallah Saffidine, and Michael Buro. Fast

heuristic search for RTS game combat scenarios. In Mark Riedl and Gita

Sukthankar, editors, 8th AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (AIIDE), pages 112–117, Palo

Alto, California, USA, October 2012. AAAI Press
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5.1 Stacked-matrix games

While search-based planning approaches have had a long tradition in the con-

struction of strong AI systems for abstract games like CHESS and GO, only in

recent years have they been applied to modern video games, such as First-Person

Shooter (FPS) and RTS games [108, 29].

In this chapter, we study two-player zero-sum games featuring simultaneous

moves called stacked-matrix games. We first show how it relates to the more

general class of MAE and that combat situations in RTS games can be seen as
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5.1. Stacked-matrix games

stacked-matrix games. We then provide with an algorithm to perform safe

pruning in a depth-first search in this class of games, thus generalizing alpha-

beta pruning. Using this algorithm, we are able to solve GOOFSPIEL instances

more efficiently. In RTS games, the time constraints are tight and the goal is to

find a good move rather than to determine the value of the game. We therefore

show how efficient approximate search can be performed on stacked-matrix

games, focussing on RTS combat settings.

Classical abstract games such as CHESS or GO are purely sequential zero-sum

two-player games. To model some other games such as CHINESE CHECKERS it is

necessary to drop the two-player assumption. In this chapter, we study the class

of games obtained by dropping the pure sequentiality assumption.

5.1.1 Formal model

Definition 39. A stacked-matrix game is a transition system 〈S,R,−→, L, λ〉 in

which the following restriction holds:

• The set of transition labels can be seen as the cartesian square of a set of

moves M , R =M ×M ;

• The state labels are bounded real numbers, L ⊆ [b, a], where a ∈ R and

b ∈ R.

Stacked-matrix games are two-player games with simultaneous moves. The

interpretation of the transition relation is that when in a state s, both players

choose a move, say m1 and m2 and the resulting state s′ is obtained as a

combination of s and the joint move (m1,m2): s
m1,m2−−−−→ s′.

A state is final, if it has no outgoing transitions. The set of final states is

F = {s ∈ S,¬∃s′ ∈ S, (m1,m2) ∈ M ×M, s
m1,m2−−−−→ s′}. States that are not

final are called internal.

Definition 40. The score of a final state s ∈ F , σ(s), is defined as the maximum

outcome if any outcome appears in s, and b otherwise. σ(s) = maxλ(s) if

λ(s) 6= ∅, and σ(s) = b if λ(s) = ∅.

To simplify exposure, we assume that transitions are deterministic rather

than stochastic or non-deterministic. That is, for every triple (s,m1,m2) there
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5. GAMES WITH SIMULTANEOUS MOVES

Table 5.1: Definition of the transition function −→ from the game presented in
Figure 5.1.

S \ F M ×M
(1, 1) (1, 2) (2, 1) (2, 2)

s1 s3 f6 f2 s2
s2 s3 f6 f0 f2
s3 f10 f0 f0 f10

is at most a single state s′ such playing (m1,m2) in s can lead to s′.

∀s, s′, s′′ ∈ S, ∀m1,m2 ∈M, s
m1,m2−−−−→ s′ ∧ s m1,m2−−−−→ s′′ ⇒ s′ = s′′ (5.1)

Definition 41. A move m1 is legal for Max in a state s if there is a transition

from s that involves m1, that is, if there is a move m2 and a state s′ such that

s
m1,m2−−−−→ s′. Similarly, we define legal moves for Min. The set of legal moves

for Max and Min in a state s are denoted L1(s) and L2(s) respectively.

Remark 7. Let s a state, we want every combination of legal moves to lead to a

valid state. To ensure this is the case, we add new final state fb with score b to the

game. We then extend the transition relation so that every missing combination of

legal moves from s now leads to fb.

Example 11. Consider the following game. G = 〈S,M ×M,−→, L, λ〉, where

S = {s1, s2, s3, f0, f2, f6, f10}, M = {1, 2}, −→ is defined as presented in Ta-

ble 5.1, L = [0, 10], and λ(fi) = {i}. It is possible to represent G graphically as

in Figure 5.1. The first player Max performs the row selection and the second

player Min corresponds to columns.

We will assume in the rest of this chapter that the transition relation forms a

Direct Acyclic Graph (DAG).

5.1.2 Related game classes

Multi-Agent Environments (MAEs) formally describe discrete and deterministic

multi-agent domains [138]. A MAE can be seen as a transition system where

transitions are associated with joint actions executed by the participating agents.

It is useful to classify MAEs along several dimensions:
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5.1. Stacked-matrix games

1

2

1 2

0 2 610

Figure 5.1: Graphical representation of the game from Example 11. The states
are from top to bottom and from left to right s1, s2, s3, f10, f0, f2, and f6.

Definition 42. An MAE is said to be

(purely) sequential if in any state, there is at most one agent with more than

one legal action;

zero-sum if the sum of utilities of all agents is constant in all final states;

single-player if there is at most one agent, two-player if there are at most two

agents, and multiplayer otherwise.
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5. GAMES WITH SIMULTANEOUS MOVES

Proposition 34. Stacked-matrix games are equivalent to two-player zero-sum

MAE.

Clearly, the stacked-matrix games constitute a super-class of the multi out-

come games in Chapter 3. They can also be seen as the deterministic non-loopy

subclass of recursive games [45, 10]. This class of games encompasses a

small portion of games appearing in the GGP competition such as BIDDING-

TICTACTOE. Furthermore, particular instances of this game class have been

studied in [21, 79, 52]. This class encompasses a few card games such as

GOOFSPIEL and the two-player version of 6 NIMMT. It can also be used to model

the combat phase in RTS games as we shall see.

As a subset of general zero-sum imperfect information games, stacked matrix

games can be solved by general techniques such as creating a single-matrix

game in which individual moves represent pure strategies in the original game.

However, because this transformation leads to an exponential blowup, it can

only be applied to tiny problems. In their landmark paper, [77] define the

sequence form game representation which avoids redundancies present in

above game transformation and reduces the game value computation time to

polynomial in the game tree size. In the experimental section we present data

showing that even for small stacked matrix games, the sequence form approach

requires lots of memory and therefore can’t solve larger problems. The main

reason is that the algorithm doesn’t detect the regular information set structure

present in stacked matrix games, and also computes mixed strategies for all

information sets, which may not be necessary. To overcome these problems [56]

introduce a loss-less abstraction for games with certain regularity constraints and

show that Nash equilibria found in the often much smaller game abstractions

correspond to ones in the original game. General stacked matrix games don’t

fall into the game class considered in this paper, but the general idea of pre-

processing games to transform them into smaller, equivalent ones may also

apply to stacked matrix games.

5.1.3 Modelling RTS game combat

Battle unit management (also called micromanagement) is a core skill of suc-

cessful human RTS game players and is vital to playing at a professional level.

One of the top STARCRAFT players of all time, Jaedong, who is well known
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for his excellent unit control, said in a recent interview: “That micro made me

different from everyone else in Brood War, and I won a lot of games on that micro

alone”.1 It has also been proved to be decisive in the previous STARCRAFT AI

competitions, with many battles between the top three AI agents being won

or lost due to the quality of unit control. In this chapter we study small-scale

battles we call combats, in which a small number of units interact in a small

map region without obstructions.

In order to perform search for combat scenarios in STARCRAFT, we must

construct a system which allows us to efficiently simulate the game itself.

The BWAPI programming interface allows for interaction with the STARCRAFT

interface, but unfortunately, it can only run the engine at 32 times “normal

speed” and does not allow us to create and manipulate local state instances

efficiently. As one search may simulate millions of moves, with each move

having a duration of at least one simulation frame, it remains for us to construct

an abstract model of STARCRAFT combat which is able to efficiently implement

moves in a way that does not rely on simulating each in-game frame.

We will not dwelve into the details of the model we used to abstract STAR-

CRAFT here, but more details can be found in Appendix A. Let us just recall

that a game state correspond to a set of units for each player, that for each unit

we know among other its position, hit points, delay before next attack or next

move, as well as the damage per second it can perform. Finally, a player move

is a set of unit actions, and each action can either be a move action, an attack

action or a wait action.

5.2 Solution Concepts for Stacked-matrix Games

In this section, we recall a few solution concepts from game theory. We show

how these solution concepts can be used to define perfect play and approximate

play in stacked-matrix games.

5.2.1 Backward induction and Nash equilibria

A Nash equilibrium is a strategy profile for all players for which no player can

increase his payoff by deviating unilaterally from his strategy. In the case of

1http://www.teamliquid.net/forum/viewmessage.php?topic_id=339200
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zero-sum two-player games, all Nash equilibria result in the same payoff, called

the value of the game. When faced with simultaneous actions, Nash equilibrium

strategies are often mixed strategies in which actions are performed with certain

probabilities (e.g., the only Nash equilibrium strategy for ROCK-PAPER-SCISSORS

is playing Rock, Paper, and Scissors with probability 1/3 each).

Two-player zero-sum games are often presented in normal-form which in

a matrix lists payoffs for player Max for all action — or more generally pure

strategy — pairs. Throughout this paper, player Max chooses rows, and player

Min chooses columns. When working with normal-form games it is sometimes

possible to simplify them based on action domination. This happens when no

matter how the opponent acts, the payoff for some action a is always less or

equal to the payoff for some other action b or a mixed strategy not containing a.

In this situation there is no incentive to play action a and it can be ignored. The

possibility of actions being dominated opens the door for pruning.

Example 12. Consider the game G presented in Example 11. It is possible to

associate to each triple made of a state and a joint move a value based on the

state that the joint move leads to. A graphical representation of G after it is

solved is presented in Figure 5.2.

Note that, if the game is expressed implicitely, it is likely to be hard to

solve. For intance, it was recently proved that deciding which player survives in

combat games in which units can’t even move is PSPACE-hard in general [52].

This means that playing stacked-matrix games optimally is computationally

hard and that in practice we have to resort to approximations.

5.2.2 Game Theoretic Approximations

As mentioned above, combat games fall into the class of two-player zero-sum

simultaneous move games. In this setting, the concepts of optimal play and

game values are well defined, and the value Nash(G) of a game G (in view of

the maximizing player Max) can be determined by using backward induction.

However, as discussed earlier, this process can be very slow. Kovarsky and Buro

(2005) describe how games with simultaneous moves can be sequentialized

to make them amenable to fast alpha-beta tree search, trading optimality for

speed. The idea is to replace simultaneous move states by two-level subtrees in
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1

2

1 2

0 2 610

5 6

2 5

5 6

0 2

10 0

0 10

Figure 5.2: Graphical representation of game G from Example 11 once solved.

which players move in turn, maximizing respectively minimizing their utilities

(Figure 5.3: Minmax and Maxmin). The value of the sequentialized games

might be different from Nash(G) and it depends on the order we choose for the

players in each state with simultaneous moves: if Max chooses his move first in

each such state (Figure 5.3: Minmax), the value of the resulting game we call

the pure maxmin value and denote it by mini(G). An elementary game theory

result is that pure minmax and maxmin values are bounds for the true game

value:

Proposition 35. For stacked matrix games G, we have mini(G) ≤ Nash(G) ≤
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Maxmin

a1 a2

b1 b2 b1 b2

Minmax

b1 b2

a1 a2 a1 a2

Best Response

b1

a1 a2

Nash

a1b1

a1b2 a2b1

a2b2

Max node

Min node

Script node

Nash node

Figure 5.3: Graphical representations leading to the Maxmin, Minmax, Best
Response, Nash solution concepts.

maxi(G), and the inequalities are strict if and only if the game does not admit

optimal pure strategies.

Example 13. Consider the stacked-matrix game from Figure 5.1. The Maxmin

and Minmax approximations are displayed in Figure 5.4.

These approximations are two-player multi-outcome games and can be

solved within the framework described in Chapter 3. Take the game in Fig-
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(a) Maxmin

s1

10 0 2 6

s2

s3

1 2

1

2

1
2

1 2

1

2

1

2

1
2

1 1
2 2

(b) Minmax

Figure 5.4: Graphical representations of the Maxmin and Minmax approxima-
tions for the game from Figure 5.1.

ure 5.4a, the state s3 has value mini(s3) = 0, the state s2 has value mini(s2) = 0,

and so the state s1 has value mini(s1) = 0 as well. In the minmax approximation

Figure 5.4b, s3 has value maxi(s3) = 10, s2 has value maxi(s2) = 6, and s1 has

value maxi(s1) = 6 as well.

We know from Proposition 35 that these values can be used to bound the

corresponding values in the original stacked matrix game. Thus 0 ≤ Nash(s3) ≤
10, 0 ≤ Nash(s2) ≤ 6, and 0 ≤ Nash(s1) ≤ 6. Looking back at Figure 5.2, we

see that Nash(s3) = 5, Nash(s2) = 5, and Nash(s1) = 5 which confirms the

above inequalities.

It is possible that there is no optimal pure strategy in a game with simulta-
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neous moves, as ROCK-PAPER-SCISSORS proves. Less intuitively so, the need for

randomized strategies also arises in combat games, even in cases with 2 vs. 2

immobile units [52]. To mitigate the potential unfairness caused by the Minmax

and Maxmin game transformations, [79] propose the Random Alpha-Beta (RAB)

algorithm. RAB is a Monte Carlo algorithm that repeatedly performs Alpha-Beta

searches in transformed games where the player-to-move order is randomized

in interior simultaneous move nodes. Once time runs out, the move with the

highest total score at the root is chosen. [79] shows that RAB can outperform

Alpha-Beta search on the Maxmin-transformed tree, using iterative deepening

and a simple heuristic evaluation function. In our experiments, we will test the

stripped down RAB version we call RAB’, which only runs Alpha-Beta once.

Another approach of mitigating unfairness is to alternate the player-to-move

order in simultaneous move nodes on the way down the tree. We call this tree

transformation Alt.

Because RAB’ and the Alt transformation just change the player-to-move

order, the following result on the value of the best RAB move (rab(G)) and Alt

move (alter(G)) are easy to prove by induction on the tree height:

Proposition 36. For stacked matrix game G, we have

mini(G) ≤ rab(G), alter(G) ≤ maxi(G)

The proposed approximation methods are much faster than solving games by

backward induction. However, the computed moves may be inferior. Section 5.5

we will see how they perform empirically.

5.3 Simultaneous Move Pruning

Table 5.2 summarizes related work of where pruning has been achieved in the

context of MAE and clarifies where our contribution lies.

Example 14. Consider the game G presented in Example 11. After the game

has been partially expanded and solved as shown in Figure 5.5, it becomes

possible to compute the optimal strategies for both players at state s1 without

expanding state s2. Indeed, any value for the joint move (s1, 2, 2) greater or

equal to 2 results in move 1 being optimal for Min, and any value smaller or
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Table 5.2: Pruning in Multi-Agent Environments

Sequential Zero-sum Agents Pruning

Yes Yes Two αβ
Yes Yes Any [149]
Yes No - [148]
No Yes Two This chapter

1

2

1 2

5 6

2

10 0

0 10

0 2 610

Figure 5.5: Graphical representation of game G from Example 11 partially
expanded and solved and featuring an opportunity for pruning.

equal to 6 results in move 1 being optimal for Max. Thus, there is no value for

the joint move (s1, 2, 2) that would make it belong to a Nash equilibrium.

The criterion we use for pruning is similar to that of the original Alpha-

Beta algorithm: we prune sub-trees if we have a proof that they will under no
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Figure 5.6: System of inequalities for deciding whether row action a is dom-
inated. a is dominated and can be pruned if the system of inequalities is
feasible.

circumstances improve upon the current guaranteed payoff assuming rational

players.

Let s be a position in the game tree with m actions for Max and n actions

for Min. For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we call si,j the position reached after

joint action (i, j) is executed in s. We assume that the information we have

gained so far about position si,j is in the form of a pessimistic bound pi,j and

an optimistic bound oi,j on the real value of si,j . For instance, if the value v of

si,j has been determined, we have pi,j = v = oi,j . If, however, no information

about si,j is known, we have pi,j = minval and oi,j = maxval.

To determine if a row action a can be safely pruned from the set of available

Max actions in the presence of pessimistic payoff bounds pi,j and optimistic

payoff bounds oi,j we use linear programming. A sufficient pruning condition

is that action a is dominated by a mixed strategy excluding a. Using the given

payoff bounds, we need to prove that there is a mixed strategy excluding action

a that, when using pessimistic payoff bounds, dominates action a’s optimistic

payoff bounds. If such a mixed strategy exists then there is no need to consider

action a, because a certain mixture of other actions is at least as good.

The system of inequalities (SI) in Figure 5.6 shows these calculations. If this

system is feasible then action a can be pruned. Note that if n = 1, i.e., this

state features a non-simultaneous action with Max to play, the SI reduces to the
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Figure 5.7: System of inequalities to decide if a row action a can be pruned
when there is only one column action.
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Figure 5.8: System of inequalities to decide if a column action b is dominated. b
is dominated and can be pruned if the system of inequalities is feasible.

one shown in Figure 5.7. This SI is feasible if and only if there exists an action

a′ 6= a such that pa′ ≥ oa. This is can be reformulated as pruning action a if

max pi ≥ oa which matches the pruning criterion in score bounded MCTS [26]

exactly. The analogous SI for pruning dominated column actions is shown in

Figure 5.8.
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Figure 5.9: Computing the pessimistic value αa,b

5.3.1 Alpha-Beta Search

Like the original Alpha-Beta algorithm, we traverse a given game tree in depth-

first manner, for each position s using a lower bound α and an upper bound β

on the value of s. As soon as we can prove that the value of s lies outside (α, β),

we can prune the remaining positions below s and backtrack.

In this section we again assume that payoffs are given in view of row-player

Max and that for each game state and player we have a bijection between legal

moves and move indices starting at 1.

We begin by explaining how to determine the α and β bounds from pes-

simistic and optimistic value bounds. We then show how this computation can

be integrated into a recursive depth-first search algorithm. Finally, we discuss

some practical aspects.

5.3.2 Propagating Bounds

Let s be a position in the game tree and A = {1..m} and B = {1..n} the move

sets for players Max and Min. For all (i, j) ∈ A × B, we call si,j the position

reached after joint action (i, j) is executed in s. We assume that the information

we have gained so far about position si,j is in the form of a pessimistic bound

pi,j and an optimistic bound oi,j on the real value of si,j . The default bound
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x =
(
x1 . . . xb−1 xb+1 . . . xn xn+1

)
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
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

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

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, f =


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
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...

pa−1,b

pa+1,b

...
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
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e =
(
oa,1 . . . oa,b−1 oa,b+1 . . . oa,n β

)

βa,b = min ext, subject to Oxt ≤ f , 0 ≤ xt ≤ 1,
∑

i xi = 1, or maxval+1 if the
LP is infeasible

Figure 5.10: Computing the optimistic value βa,b

values are minval and maxval, respectively. Let sa,b be the next position to

examine. We are interested in computing αsa,b
and βsa,b

in terms of α, β (the

value bounds for s), pi,j and oi,j for (i, j) ∈ A × B. We first concentrate on

computing αsa,b
, or αa,b for short. βa,b can be derived analogously.

There are two reasons why we might not need to know the exact value

of sa,b, if it is rather small. Either we have proved that it is so small that a

is dominated by a mixed strategy not containing a (shallow pruning), or it is

so small that as a result we can prove that the value of s is smaller than α

(deep pruning). We can combine both arguments into one LP by adding an

artificial action m+ 1 for Max that corresponds to Max deviating earlier. This

action guarantees a score of at least α, i.e., pm+1,j = α for all j ∈ B. We can

now restrict ourselves to determining under which condition action a would

be dominated by a mixed strategy of actions M := {1, . . . ,m + 1}\{a}. To

guarantee soundness, we need to look at the situation where a is least expected

to be pruned, i.e., when the values of positions sa,j reach their optimistic bounds

oa,j and for every other action i 6= a, the values of positions si,j reach their

pessimistic bounds pi,j .

Consider the set of mixed strategies D dominating a on every column but b,
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i.e.,

D = {x ∈ R
m
≥0 |

∑

i

xi = 1, ∀j 6= b :
∑

i∈M

xipi,j ≥ oa,j} (5.2)

Action a is dominated if and only if a is dominated on column b by a strategy

in D. I.e., action a is dominated if and only if value v of sa,b satisfies:

∃x ∈ D :
∑

i∈M

xipi,b ≥ v (5.3)

If D is non-empty, to have the tightest αa,b possible, we maximize over such

values:

αa,b = max
x∈D

∑

i∈M

xipi,b (5.4)

Otherwise, if D is empty, sa,b can’t be bound from below and we set αa,b =

minval.

This process can be directly translated into the LP presented in Figure 5.9.

Similarly, the bound βsa,b
is defined as the objective value of the LP shown in

Figure 5.10.

5.3.3 Main Algorithm

Algorithm 10 describes how our simultaneous move pruning can be incorporated

in a depth-first search algorithm by looping through all joint action pairs first

checking trivial exit conditions and if these fail, proceeding with computing

optimistic and pessimistic bounds for the entry in questions, and then recursively

computing the entry value. We call this procedure Simultaneous Move Alpha-

Beta (SMAB) Search.

Theorem 8. When SMAB is called with s, α, β and α < β . . .

1. . . . it runs in weakly polynomial time in the size of the game tree rooted in s.

2. . . . and returns v ≤ α, then value(s) ≤ v.

3. . . . and returns v ≥ β, then value(s) ≥ v.

4. . . . and returns α < v < β, then value(s) = v.

Proof sketch.
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5.3. Simultaneous Move Pruning

Algorithm 10: Pseudo-code for simultaneous move Alpha-Beta search.
Function Nash(X) computes the Nash equilibrium value of normal-form
game payoff matrix X for row player Max.

SMAB(state s, lower bound α, upper bound β)
if s ∈ F then return σ(s)
else

pi,j ← b for i ∈ L1(s), j ∈ L2(s)
oi,j ← a for i ∈ L1(s), j ∈ L2(s)
Let P denote the matrix formed by all pi,j
Let O denote the matrix formed by all oi,j
foreach (a, b) ∈ L1(s)× L2(s) do

if row a and column b are not dominated then
Let αa,b as defined in Fig. 5.9 restricted to non-dominated
actions
Let βa,b as defined in Fig. 5.10 restricted to non-dominated
actions
sa,b ← the state reached after applying (a, b) to s
if αa,b ≥ βa,b then

va,b ← SMAB(sa,b, αa,b, αa,b + ǫ)
if va,b ≤ αa,b then a is dominated
else b is dominated

else
va,b ← SMAB(sa,b, αa,b, βa,b)
if va,b ≤ αa,b then a is dominated
else if va,b ≥ βa,b then b is dominated
else pa,b ← va,b; oa,b ← va,b

return Nash(P restricted to non-dominated actions)

1.: Weakly polynomial run-time in the sub-tree size can be shown by induction

on the tree height using the fact that LPs can be solved by interior point

methods in weakly polynomial time.

2.,3.,4.: Induction on tree height h. For h = 0, SMAB immediately returns the

true value. Thus, properties 2.-4. hold. Now we assume they hold for all

heights h ≤ k and s has height k + 1 and proceed with an induction on

the number of inner loop iterations claiming that P and O are correctly
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updated in each step (using the derivations in the previous subsection

and the main induction hypothesis) and if line 28 is reached, properties

2.-4. hold.

5.3.4 Ordering Move Pairs

Heuristics can be used to initialize (pi,j , oi,j), given that they have the admissi-

bility property with regards to the bound they are applied to. As an example, we

might in some game know from the material strength on the board in some state

that we are guaranteed at least a draw, allowing us to initialize the pessimistic

value to a draw. Similarly, we should be able to set the optimistic value to a

draw if the opponent is equally up in material.

Additionally, the order in which the pairs (a, b) will be visited in Algorithm 10

can dramatically affect the amount of pruning. This problem can be decomposed

into two parts. Move ordering in which the individual moves are ordered and

cell ordering in which the joint moves are ordered based on the order of the

individual moves. Formally, move ordering means endowing the sets A and

B with total orders <A and <B and cell ordering is the construction of a total

order for A×B based on <A and <B . For instance, the lexicographical ordering

is a possible cell ordering: (a1, b1) will be explored before (a2, b2) iff a1 <A a2
or a1 = a2 and b1 < b2. We will discuss heuristic cell orderings in the next

section.

5.4 Fast approximate search for combat games

In the previous section we discussed multiple game transformations that would

allow us to find solutions by using backward induction. However, when playing

RTS games the real-time constraints are harsh. Often, decisions must be made

during a single simulation frame, which can be 50 ms or shorter. Therefore,

computing optimal moves is impossible for all but the smallest settings and we

need to settle for approximate solutions: we trade optimality for speed and

hope that the algorithms we propose defeat the state of the art AI systems for

combat games.
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5.4. Fast approximate search for combat games

The common approach is to declare nodes to be leaf nodes once a certain

depth limit is reached. In leaf nodes Max’s utility is then estimated by calling an

evaluation function, and this value is propagated up the tree like true terminal

node utilities.

In the following subsections we will first adapt the Alpha-Beta search algo-

rithm to combat games by handling durative moves explicitly and then present

a series of previously known and new evaluation functions.

5.4.1 Scripted behaviors

The simplest approach, and the one most commonly used in video game AI

systems, is to define static behaviors via AI scripts. Their main advantage is

computation speed, but they often lack foresight, which makes them vulnerable

against search-based methods, as we will see in Section 5.5, where we will

evaluate the following simple combat AI scripts:

• The Random strategy picks legal moves with uniform probability.

• Using the Attack-Closest strategy units will attack the closest opponent

unit within weapon’s range if it can currently fire. Otherwise, if it is

within range of an enemy but is reloading, it will wait in-place until it has

reloaded. If it is not in range of any enemy, it will move toward the closest

enemy a fixed distance.

• The Attack-Weakest strategy is similar to Attack-Closest, except units attack

an opponent unit with the lowest hp within range when able.

• Using the Kiting strategy is similar to Attack-Closest, except it will move a

fixed distance away from the closest enemy when it is unable to fire.

The Attack-Closest script was used in second-place entry UAlbertaBot in the

2010 AIIDE STARCRAFT AI competition, whereas Skynet, the winning entry, used

a behavior similar to Kiting. The scripts presented so far are quite basic but we

can add a few smarter ones to our set of scripts to test.

• The Attack-Value strategy is similar to Attack-Closest, except units attack

an opponent unit u with the highest dpf(u)/hp(u) value within range

when able. This choice leads to optimal play in 1 vs. n scenarios [52].
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• The No Overkill/Attack Value (NOK-AV) strategy is similar to Attack-Value,

except units will not attack an enemy unit which has been assigned lethal

damage this round. It will instead choose the next priority target, or wait

if one does not exist.

• Using the Kiting-AV strategy is similar to Kiting, except it will choose an

attack target similar to Attack-Value.

Most scripts we described make decisions on an individual unit basis, with

some creating the illusion of unit collaboration (by concentrating fire on closest,

weakest, or most-valuable units). NOK-AV is the only script in our set that exhibits

true collaborative behaviour by sharing information about unit targeting.

5.4.2 Alpha-Beta Search with Durative Moves

Consider Figure 5.11 which displays a typical path in the sequentialized game

tree. Because of the weapon cooldown and the space granularity, battle games

exhibit numerous durative moves. Indeed, there are many time steps where the

only move for a player is just pass, since all the units are currently unable to

perform an action. Thus, non-trivial decision points for players do not occur on

every frame.

Given a player p in a state s, define the next time where p is next able to

do a non-pass move by τ(s, p) = minu∈s.Up
(u.ta, u.tm). Note that for any time

step t such that s.t < t < min(τ(s,Max), τ(s,Min)), players cannot perform

any move but pass. It is therefore possible to shortcut many trivial decision

points between s.t and min(τ(s,Max), τ(s,Min)).

Assume an evaluation function has been picked, and remaining simultaneous

choices are sequentialized as suggested above. It is then possible to adapt the

Alpha-Beta algorithm to take advantage of durative moves as presented in

Algorithm 11

We use the terminal(s, d) function to decide when to call the evaluation

function. It is parametrized by a maximal depth dmax and a maximal time tmax

and return “true” if s is a terminal position or d ≥ dmax or s.t ≥ tmax.

The third argument to the ABCD algorithm is used to handle the delayed

action effect mechanism for sequentialized simultaneous moves. If the state

does not correspond to a simultaneous decision, m0 holds a dummy value ∅.
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Figure 5.11: Durations

Otherwise, we apply the effects of m0 after move m is generated because m0

should not affect the generation of the complementary moves.

5.4.3 Evaluation Functions

A straight-forward evaluation function for combat games is the hitpoint-total

differential (Equation 5.5) which, however, does not take into account other

unit properties, such as damage values and cooldown periods.

e(s) =
∑

u∈U1

hp(u)−
∑

u∈U2

hp(u) (5.5)

Kovarsky and Buro (2005) propose an evaluation based on the life-time damage

a unit can inflict, which is proportional to its hp times its damage-per-frame

ratio:
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Algorithm 11: Alpha-Beta (Considering Durations) (ABCD)

abcd(s, d, m0, α, β)
if computationTime.elapsed then return timeout

else if s ∈ F or d = 0 then return ζ(s)
τ ← s.playerToMove(policy)
while m← s.nextMove(τ) do

if s.bothCanMove and m0 = ∅ and d 6= 1 then
v ←abcd(s, d− 1, m, α, β)

else
s′ ← s
if m0 6= ∅ then s′.doMove(m0)
s′.doMove(m)
v ←abcd(s′, d− 1, ∅, α, β)

if τ = Max and v > α then α← v
if τ = Min and v < β then β ← v
if α ≥ β then break

if τ = Max then return α
else return β

dpf(u) =
damage(w(u))

cooldown(w(u))
(5.6)

LTD(s) =
∑

u∈U1

hp(u) · dpf(u)−
∑

u∈U2

hp(u) · dpf(u) (5.7)

A second related evaluation function propose favours uniform hp distribu-

tions [79]:

LTD2(s) =
∑

u∈U1

√

hp(u) · dpf(u)−
∑

u∈U2

√

hp(u) · dpf(u) (5.8)

While these evaluation functions are exact for terminal positions, they can

be drastically inaccurate for many non-terminal positions. To improve state

evaluation by also taking other unit properties such as speed and weapon range

into account, we can try to simulate a game and use the outcome as an estimate

of the utility of its starting position. This idea is known as performing a playout
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in game tree search and is actually a fundamental part of MCTS algorithms which

have revolutionized computer GO [40]. However, there are differences between

the playouts we advocate for combat games and previous work on GO and HEX:

the playout policies we use here are deterministic and we are not using MCTS or

a best-first search algorithm, but rather depth-first search.

5.4.4 Move Ordering

It is well-known in the game AI research community that a good move ordering

fosters the performance of the Alpha-Beta algorithm. When Transposition

Tables (TTs) and iterative deepening are used, reusing previous search results

can improve the move ordering. Suppose a position p needs to be searched

at depth d and was already searched at depth d′. If d ≤ d′, the value of the

previous search is sufficiently accurate and there is no need for an additional

search on p. Otherwise, a deeper search is needed, but we can explore the

previously found best move first and hope for more pruning.

When no TT information is available, we can use scripted strategies to

suggest moves. We call this new heuristic scripted move ordering. Note that

this heuristic could also be used in standard sequential games like CHESS. We

believe the reason it has not been investigated closely in those contexts is the

lack of high quality scripted strategies.

5.5 Experiments

5.5.1 Solving GOOFSPIEL

As a test case we implemented SMAB pruning for the game of GOOFSPIEL. The

following experimental results were obtained running OCaml 3.11.2, g++ 4.5.2,

and the glpk 4.43 LP-solver under Ubuntu on a laptop with Intel T3400 CPU at

2.2 GHz.

The game GOOFSPIEL [117, 142] uses cards in three suits. In the version

we use, each player has all the cards of a single suit and the remaining suit is

stacked on the table face up in a pre-defined order. On each turn both players

simultaneously play a card from their hand and the higher card wins its player

the top card from the table. If the played cards are of equal value the table card

is discarded. When all cards have been played the winner is the player whose
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1 2 3 4 5

6 10 11 12 13

7 14 17 18 19

8 15 20 22 23

9 16 21 24 25

Figure 5.12: L-shaped cell ordering for 5× 5 matrices.

accumulated table cards sum up to a higher value. We used games with various

number of cards per suit to monitor how the pruning efficiency develops with

increasing game-tree sizes.

We use a cell ordering that strives to keep a balance between the number of

rows filled and the number of columns filled. We call it L-shaped and it can be

seen as the lexicographical ordering over tuples (min{a, b}, a, b). Its application

to 5×5 matrix is described in Figure 5.12. In all of our preliminary experiments,

the L-shaped ordering proved to lead to earlier and more pruning than the

natural lexicographical orderings.

To save some calculations, it is possible to skip the LP computations for some

cells and directly set the corresponding α and β bounds to (b− 1) and (a+ 1),

respectively. On the one hand, if the computed bounds wouldn’t have enabled

much pruning, then using the default bounds instead allows to save some time.

On the other hand, if too many bounds are loose, there will be superfluous

computations in prunable subtrees.

To express this tradeoff, we introduce the early bound skipping heuristic. This

heuristic is parameterized by an integer s and consists in skipping the LP-based

computations of the α and β bounds as long as the matrix does not have at least

s rows and s columns completely filled. For instance, if we use this heuristic

together with the L-shaped ordering on a 5× 5 matrix with parameter s = 1, no

LP computation takes place for the bounds of the first 9 cells.

In our backward induction implementation that recursively solves subgames

in depth-first fashion, we used one LP call per non-terminal node expansion.

Table 5.3 shows the number of non-terminal node expansions/LP calls, the total
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Table 5.3: Solving GOOFSPIEL with backward induction.

size nodes (= LP calls) total time LP time

4 109 0.008 0.004
5 1926 0.188 0.136
6 58173 5.588 4.200
7 2578710 247.159 184.616

Table 5.4: Solving GOOFSPIEL with a sequence form solver.

size memory time

4 8 MB < 1 s
5 43 MB 152 s
6 > 2 GB > 177 s

Table 5.5: Solving GOOFSPIEL with SMAB.

size nodes LP calls total time LP time s

4 55 265 0.020 0.016 0
4 59 171 0.012 0.012 1
4 70 147 0.012 0.012 2

5 516 2794 0.216 0.148 0
5 630 1897 0.168 0.128 1
5 1003 1919 0.184 0.152 2

6 13560 74700 5.900 4.568 0
6 18212 55462 4.980 3.852 1
6 30575 57335 5.536 4.192 2

7 757699 4074729 324.352 245.295 0
7 949521 2857133 259.716 197.700 1
7 1380564 2498366 241.735 182.463 2
7 1734798 2452624 237.903 177.411 3
7 1881065 2583307 253.476 188.276 4
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time spent running the algorithm, and the time spent specifically solving LPs.

Table 5.5 shows the same information for SMAB using L-shaped ordering and

early bound skipping parameterized by s. This table has separate columns for

the number of non-terminal node expansions and the number of calls to the LP

solver as they are not equal in the case of SMAB.

Table 5.4 shows the memory and time needed to solve GOOFSPIEL using a se-

quence form solver based on based on [77]. The algorithm needs a huge amount

of memory to solve even a moderate size instance of GOOFSPIEL. The backward

induction and the SMAB implementations, on the contrary, never needed more

than 60 MB of memory. This difference is expected as the backward induction

and SMAB are depth-first search algorithms solving hundreds of thousands of

relatively small LPs while the sequence form algorithm solves a single large LP.

5.5.2 Real-time Strategy games

We implemented the proposed combat model, the scripted strategies, the new

ABCD algorithm, and various tree transformations. We then ran experiments to

measure 1) the influence of the suggested search enhancements for determining

the best search configuration, and 2) the real-time exploitability of scripted

strategies.

Because of time constraints, we were only able to test the following tree

transformations: Alt, Alt’, and RAB’, where Alt’ in simultaneous move nodes

selects the player that acted last, and RAB’ selects the player to move like RAB,

but only completes one Alpha-Beta search.

Setup The combat scenarios we used for the experiments involved equally

sized armies of n versus n units, where n varied from 2 to 8. 1 versus 1 scenarios

were omitted due to over 95% of them resulting in draws. Four different army

types were constructed to mimic various combat scenarios. These armies were:

Marine Only, Marine + Zergling, Dragoon + Zealot, and Dragoon + Marine.

Armies consisted of all possible combinations of the listed unit type with up

to 4 of each, for a maximum army size of 8 units. Each unit in the army was

given to player Max at random starting position (x, y) within 256 pixels of the

origin, and to player Minat position (−x,−y), which guaranteed symmetric

start locations about the origin. Once combat began, units were allowed to
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move infinitely within the plane. Unit movement was limited to up, down, left,

right at 15 pixel increments, which is equal to the smallest attack range of any

unit in our tests.

These settings ensured that the Nash value of the starting position was

always 0.5. If the battle did not end in one player being eliminated after 500

actions, the simulation was halted and the final state evaluated with LTD. For

instance, in a match between a player p1 and an opponent p2, we would count

the number of wins by p1, w, and number of draws, d, over n games and

compute r = (w + d/2)/n. Both players perform equally well in this match if

r ≈ 0.5.

As the 2011 STARCRAFT AI Competition allowed for 50 ms of processing

per game logic frame, we gave each search episode a time limit of 5 ms. This

simulates the real-time nature of RTS combat, while leaving plenty of time (45

ms) for other processing which may have been needed for other computations.

Experiments were run single-threaded on an Intel Core i7 2.67 GHz CPU

with 24 GB of 1600 MHz DDR3 RAM using the Windows 7 64 bit operating

system and Visual C++ 2010. A transposition table of 5 million entries (20

bytes each) was used. Due to the depth-first search nature of the algorithm,

very little additional memory is required to facilitate search. Each result table

entry is the result of playing 365 games, each with random symmetric starting

positions.

Influence of the Search Settings To measure the impact of certain search

parameters, we perform experiments using two methods of comparison. The first

method plays static scripted opponents vs. ABCD with various settings, which are

then compared. The second method plays ABCD vs. ABCD with different settings

for each player.

We start by studying the influence of the evaluation function selection on

the search performance (see Section 5.4.3). Preliminary experiments revealed

that using NOK-AV for the playouts was significantly better than using any of the

other scripted strategies. The playout-based evaluation function will therefore

always use the NOK-AV script.

We now present the performance of various settings for the search against

script-based opponents (Table 5.6) and search-based opponents (Table 5.7).

In Table 5.6, the Alt sequentialization is used among the first three settings
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Table 5.6: ABCD vs. Script - scores for various settings

Opponent
ABCD Search Setting

Alt Alt Alt Alt’ RAB’
LTD LTD2 NOK-AV Playout

Random 0.99 0.98 1.00 1.00 1.00
Kite 0.70 0.79 0.93 0.93 0.92
Kite-AV 0.69 0.81 0.92 0.96 0.92
Closest 0.59 0.85 0.92 0.92 0.93
Weakest 0.41 0.76 0.91 0.91 0.89
AV 0.42 0.76 0.90 0.90 0.91
NOK-AV 0.32 0.64 0.87 0.87 0.82

Average 0.59 0.80 0.92 0.92 0.91

Table 5.7: Playout-based ABCD performance

Opponent
Alt Alt’ RAB’
NOK-AV Playout

Alt-NOK-AV 0.47 0.46
Alt’-NOK-AV 0.53 0.46
RAB’-NOK-AV 0.54 0.54

Average 0.54 0.51 0.46

which allow to compare the leaf evaluations functions LTD, LTD2, and playout-

based. The leaf evaluation based on NOK-AV playouts is used for the last three

settings which allow to compare the sequentialization alternatives described in

Subsection 5.2.2.

We can see based on the first three settings that doing a search based on

a good playout policy leads to much better performance than doing a search

based on a static evaluation function. The search based on the NOK-AV playout

strategy is indeed dominating the searches based on LTD and LTD2 against any

opponent tested. We can also see based on the last three settings that the Alt

and Alt’ sequentializations lead to better results than RAB’.
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Table 5.8: Real-time exploitability of scripted strategies.

Random Weakest Closest AV Kiter Kite-AV NOK-AV

1.00 0.98 0.98 0.98 0.97 0.97 0.95

Estimating the Quality of Scripts The quality of scripted strategies can be

measured in at least two ways: the simplest approach is to run the script

against multiple opponents and average the results. To this end, we can use

the data presented in Table 5.6 to conclude that NOK-AV is the best script in

our set. Alternatively, we can measure the exploitability of scripted strategies

by determining the score a theoretically optimal best-response-strategy would

achieve against the script. However, such strategies are hard to compute in

general. Looking forward to modelling and exploiting opponents, we would

like to approximate best-response strategies quickly, possibly within one game

simulation frame. This can be accomplished by replacing one player in ABCD

by the script in question and then run ABCD to find approximate best-response

moves. The obtained tournament result we call the real-time exploitability of

the given script. It constitutes a lower bound (in expectation) on the true

exploitability and tells us about the risk of being exploited by an adaptive player.

Table 5.8 lists the real-time exploitability of various scripted strategies. Again,

the NOK-AV strategy prevails, but the high value suggests that there is room for

improvement.

5.6 Conclusion and Future Work

We have shown that it is possible to extend Alpha-Beta pruning to include

simultaneous move games and that our SMAB pruning procedure can reduce

the node count and run-time when solving non-trivial games. In the reported

experiments we used a fixed move ordering and a fixed cell ordering. The

results show a considerable drop in node expansions, even though not nearly as

much as with Alpha-Beta in the sequential setting, but certainly enough to be

very promising. Still, this threshold is not high and with increasing game size

the run-time appears to be increasingly improving. The pruning criterion we

propose is sound, but it only allows us to prune provably dominated actions.
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5. GAMES WITH SIMULTANEOUS MOVES

Example 15 shows that it sometimes happen that some strategies are not part

of any Nash equilibria, but cannot be eliminated by iterative dominance. As a

result, some actions which are irrelevant may not get pruned by our method.

SMAB yields considerable savings in practice, but this example shows that there

is room for even more pruning.

Example 15. The following game has a unique Nash equilibrium at (A2, B2),

but no action is dominated.

6 1 0

3 3 3

0 1 6

A1

A2

A3

B1 B2 B3

It will be interesting to see how SMAB pruning performs in other domains and

it can also be applied to MCTS which has become the state-of-the-art algorithmic

framework for computer GO and the GENERAL GAME PLAYING competition. A

natural candidate is to extend the score bounded MCTS framework that we

described earlier.

In our implementation we just used a naive move ordering scheme. However,

simultaneous moves offer some interesting opportunities for improvements. As

each individual action is considered more than once in a state, we get some

information on them before their pairings are fully enumerated. The question is

whether we can use this information to order the actions such that the efficiency

of the pruning increases, like it does for sequential Alpha-Beta search.

Finally, it may be possible to establish the minimal number of node expan-

sions when solving certain classes of stacked matrix games with depth-first

search algorithms in general, or SMAB in particular.

In this chapter we have also presented a framework for fast Alpha-Beta

search for RTS game combat scenarios of up to 8 vs. 8 units and evaluated it

under harsh real-time conditions. Our method is based on an efficient combat

game abstraction model that captures important RTS game features, including

unit motion, an Alpha-Beta search variant (ABCD) that can deal with durative

moves and various tree transformations, and a novel way of using scripted

strategies for move ordering and depth-first-search state evaluation via playouts.
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5.6. Conclusion and Future Work

The experimental results are encouraging. Our search, when using only 5 ms per

episode, defeats standard AI scripts as well as more advanced scripts that exhibit

kiting behaviour and minimize overkill. The prospect of opponent modelling for

exploiting scripted opponents is even greater: the practical exploitability results

indicate large win margins best-response ABCD can achieve if the opponent

executes any of the tested combat scripts.

The ultimate goal of this line of research is to handle larger combat scenarios

with more than 20 units on each side in real-time. The enormous state and move

complexity, however, prevents us from applying heuristic search directly, and we

therefore will have to find spatial and unit group abstractions that reduce the

size of the state space so that heuristic search can produce meaningful results

in real-time. Balla and Fern (2009) present initial research in this direction, but

their Upper Confidence bound for Trees (UCT)-based solution is rather slow and

depends on pre-assigned unit groups.

Our next steps will be to integrate ABCD search into a STARCRAFT AI competi-

tion entry to gauge its performance against previous year’s participants, to refine

our combat model if needed, to add opponent modelling and best-response-ABCD

to counter inferred opponent combat policies, and then to tackle more complex

combat scenarios.
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6 Conclusion

In this thesis, we have proposed a generic BFS framework for two-outcome

games and we have adapted and extended it to multi-outcome games and MMLK

model checking. This gives access to generalizations of PNS and MCTS Solver for

multi-outcome games and for MMLK model checking. An attractive direction for

future work would be to express a similar BFS framework for other classes of

multi-agent systems. Candidate classes comprise simple stochastic games or

competitive Markov Decision Processes (MDPs) [35, 36, 44], and stacked-matrix

games as defined in Chapter 5.

We have generalized alpha-beta pruning to stacked-matrix games. Develop-

ing a safe pruning criterion for the general class of Multi-Agent Environment

as defined by Schiffel and Thielscher [138] seems accessible now, as it only

requires combining our approach with that of Sturtevant for non-zero and

multi-player games [147, 148].

The approach that we have taken in Chapter 2, 3, and 5 make an implicit

closed-world assumption: we assumed that computing the game-theoretic value

of a position was all the information we could ever need. Combinatorial Game

Theory goes a step further as it considers it possible that the game could be just

a small part of a bigger game [1]. In such a setting, it is possibe that a player

plays twice in a row in a subgame if the opponent plays in another subgame. As

a result, there is more information to extract from a position than its minimax

value. The maximum amount of information a position contains is called the

canonical form and algorithms have been developed to compute the canonical

form of any two-player combinatorial game.

However, these algorithms are quite slow and sometimes spend time com-
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6. CONCLUSION

puting redundant or useless information. Providing a safe pruning mechanism à

la alpha-beta would certainly enable much faster computations in certain cases.

We can also envision adapting the BFS framework presented in this thesis to the

computation of canonical forms in combinatorial game theory.
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A Combat game abstract model

To fully simulate RTS game combat, our model is comprised of three main

components: states, units, and moves.

State s = 〈t, U1, U2〉

• Current game time t

• Sets of units Ui under control of player i

Unit u = 〈p, hp, ta, tm, v, w〉

• Position p = (x, y) in R
2

• Current hit points hp

• Time step when unit can next attack ta, or move tm

• Maximum unit velocity v

• Weapon properties w = 〈damage, cooldown〉

Move m = {a0, . . . , ak}which is a combination of unit actions ai = 〈u, type, target, t〉,
with

• Unit u to perform this action

• The type type of action to be performed:

Attack unit target

Move u to position target

Wait until time t
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A. COMBAT GAME ABSTRACT MODEL

Given a state s containing unit u, we generate legal unit actions as follows:

if u.ta ≤ s.t then u may attack any target in its range, if u.tm ≤ s.t then u may

move in any legal direction, if u.tm ≤ s.t < u.ta then u may wait until u.ta. If

both u.ta and u.tm are > s.t then a unit is said to have no legal actions. A legal

player move is then a set of all combinations of one legal unit action from each

unit a player controls.

Unlike strict alternating move games like chess, our model’s moves have

durations based on individual unit properties, so either player (or both) may

be able to move at a given state. We define the player to move next as the one

which contains the unit with the minimum time for which it can attack or move.

While the mathematical model we propose does not exactly match the

combat mechanics of STARCRAFT it captures essential features. Because we

don’t have access to STARCRAFT’s source code, we can only try to infer missing

features based on game play observations:

• no spell casting (e.g., immobilization, area effects)

• no hit point or shield regeneration

• no travel time for projectiles

• no unit collisions

• no unit acceleration, deceleration or turning

• no fog of war

Quite a few STARCRAFT AI competition entries are designed with a strong focus

on early game play (rushing). For those programs some of the listed limitations,

such as single weapons and spell casting, are immaterial because they become

important only in later game phases. The utility of adding others, such as

dealing with unit collisions and acceleration, will have to be determined once

our search technique becomes adopted.
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