
HAL Id: tel-01022166
https://theses.hal.science/tel-01022166

Submitted on 10 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of network coding in wireless networks :
coding conditions and adaptive redundancy control

Thuong Van Vu

To cite this version:
Thuong Van Vu. Application of network coding in wireless networks : coding conditions and adaptive
redundancy control. Other [cs.OH]. Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT :
2014PA066062�. �tel-01022166�

https://theses.hal.science/tel-01022166
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ PIERRE ET MARIE CURIE

Pour l’obtention du titre de

Docteur en Informatique

École Doctorale Informatique, Télécommunications et Électronique de Paris

Application du codage réseau dans
l’environnement san fil: conditions de codage et

contrôle de redondance adaptatif

présentée par Thuong Van VU

devant le jury composé de:

M. André-Luc BEYLOT Rapporteur
Professeur à IRIT-ENSEEIHT
M. Steven MARTIN Rapporteur
Mâıtre de Conférences HDR à l’Université Paris-Sud
M. Naceur MALOUCH Examinateur
Mâıtre de Conférence HDR à l’Université Pierre et Marie Curie

M. Michel BOURDELLÈS Examinateur
Ingénieur à THALES Communications
M. Sidi Mohammed SENOUCI Examinateur
Professeur à l’Université de Bourgogne
M. Guy PUJOLLE Encadrant
Professeur à l’Université Pierre et Marie Curie
Mme. Thi Mai Trang NGUYEN Co-directrice de Thèse
Mâıtre de Conférence HDR à l’Université Pierre et Marie Curie
Mme. Nadia BOUKHATEM Co-directrice de Thèse
Professeur à Télécom ParisTech

Acknowledgements

First of all, I would like to thank Prof. Andr-Luc BEYLOT, IRIT-ENSEEIHT

Toulouse and Prof. Steven MARTIN, University of Paris-Sud for their time and ex-

pertise in the review of the manuscript. I also appreciate Prof. Naceur MALOUCH,

University of Pierre et Marie Curie, Prof. Sidi-Mohammed SENOUCI, University of

Bourgogne and Mr. Michel BOURDELLÈS, THALES Communications for partici-

pating my Phd defense committee and for their interest over my Phd subject.

To the end of this 3-year-Phd journey, I would like to show my great gratitude

to my supervisors, Prof. Thi-Mai-Trang NGUYEN, Prof. Nadia BOUKHATEM and

Prof. Guy PUJOLLE, for their support, guidance in work (conducting research and

writing improvement) and even encouragement in life.

I also take this chance to thank Ba Lam TO, Dinh Phong VO and everyone else

in ”Paris Tech Club” who shared many great memories with me in this City of Light.

I acknowledge the help of the administrative and technical staff of LIP6, particu-

larly, Sabrina VACHERESSE, Irphane KHAN, Julia FRANKE, Véronique VARENNE,

Aziza LOUNIS, Pierre-Emmanuel LE ROUX and Konstantin KABASSANOV, all

members of PHARE team and LIP6, who smiles at and gives me friendly and warm

talks in work everyday.

I give my words to Phuong for her love and trust in me.

Finally, I would like to say thanks to my family, for their love and never-ending

support.

1

2

Contents

1 Introduction 7

2 Related work 13

2.1 Network Coding and its benefits . 13

2.2 Linear Network Coding versus Non-linear Network Coding 16

2.3 Linear Network Coding - Deterministic versus Random 16

2.4 Network coding approaches in the thesis 17

2.5 Inter-flow network coding (Opportunistic Network Coding) 18

2.5.1 Coding Opportunistically (COPE) 19

2.5.2 Distributed Coding-Aware Routing (DCAR) 23

2.5.3 MAC-layer proactive mixing for Network Coding (BEND) . . 25

2.6 Intra-flow network coding (Random linear network coding) 27

2.6.1 Source coding versus batch coding 27

2.6.2 Generation . 29

2.6.3 Batch Coding . 30

2.6.4 Pipeline Coding . 30

2.6.5 Transmission Control Protocol with Network Coding (TCP/NC) 31

2.7 Applications of network coding into current network systems 33

2.7.1 Wireless networks . 33

2.7.1.1 Multi-hop traffic flows in wireless networks 33

2.7.1.2 Broadcast in wireless networks 33

2.7.1.3 Coding-aware routing metric 34

2.7.1.4 Opportunistic routing 35

2.7.2 Ad-hoc sensor networks . 36

2.7.3 Peer to peer (P2P) file distribution 37

2.7.4 Network security . 38

2.8 Problem statement . 38

2.9 Chapter conclusion . 39

3

3 Inter-flow network coding 41

3.1 Distributed and Diffused Encoding (DODE) 42

3.1.1 Coding chance improvement 44

3.1.2 Generalized coding condition of DODE 44

3.2 Distributed and Diffused Encoding with Multiple Decoders (DODEX) 45

3.2.1 Coding chance improvement 46

3.2.2 Generalized coding condition of DODEX 47

3.3 Distributed and Diffused Encoding with Multiple Encoders and Mul-

tiple Decoders (DODEX+) . 48

3.3.1 Coding chance improvement 49

3.3.2 Generalized coding condition of DODEX+ 50

3.4 Design . 51

3.4.1 Node architecture . 51

3.4.1.1 Neighbor list and source routing list 52

3.4.1.2 Decoder list . 52

3.4.1.3 Queuing system . 53

3.4.2 Routing metric with coding chance discovery for DSDV proto-

col - SPENM . 53

3.4.3 Modified DSDV packet format 55

3.4.4 Node behavior . 55

3.4.4.1 COPE and BEND 55

3.4.4.2 DCAR and DODE 56

3.4.4.3 DODEX and DODEX+ 56

3.5 Simulation and results . 57

3.5.1 DODE . 57

3.5.2 DODEX . 63

3.5.3 DODEX+ . 67

3.6 Chapter conclusion . 71

4 Intra-flow network coding 73

4.1 Multi-batch Pipeline Coding with Adaptive Redundancy Control (ARC) 74

4.1.1 Design . 75

4.1.2 DRTT estimation . 76

4.1.3 Adaptive redundancy scheme 77

4.1.4 Node behavior . 79

4.1.5 Simulation and results . 81

4.2 Dynamic Coding (DynCod) . 84

4.2.1 Packet definition . 85

4

4.2.2 Design . 88

4.2.3 Dynamic information vector 89

4.2.4 Adaptive redundancy control 91

4.2.5 Simplified encoding vectors to reduce overhead 92

4.2.6 Multipath DynCod (MP-DynCod) 93

4.2.6.1 Design . 93

4.2.6.2 Forwarding belt assignment 94

4.2.6.3 Feedback of link quality 94

4.2.6.4 Adaptive redundancy control 95

4.2.6.5 Node behavior . 96

4.2.7 Simulation and results . 96

4.2.7.1 DynCod . 96

4.2.7.2 MP-DynCod . 99

4.3 Chapter conclusion . 102

5 Conclusion and Future Work 105

5.1 Conclusion . 105

5.2 Future Work . 108

List of Publications 109

Appendices 111

A Mathematical Background 113

A.1 Linear Framework F2s . 113

A.1.1 Encoding . 115

A.1.2 Decoding . 115

A.2 Matrix and Gaussian elimination . 116

A.3 Finite field operations . 116

B Practical Considerations 119

B.1 Decoding matrix . 119

B.2 Decoding delay . 119

C Ad-hoc routing protocols 121

C.1 Destination-Sequenced Distance Vector (DSDV) 121

C.2 Ad-hoc On-demand Distance Vector (AODV) 121

References 123

5

6

Chapter 1

Introduction

Communication networks have been significantly developed since the early of 1960s,

the decade when Advanced Research Projects Agency Network (ARPANET), one

of the world’s first operational packet switching networks, was born. ARPANET

is the first network implementing Transmission Control Protocol/Internet Protocol

(TCP/IP), keeping evolved to what becomes the global Internet. Surprisingly, trans-

mitting a packet is still sharing the same fundamental principle of travelling by a car.

That is, information or human beings will be transmitted or transported but they

have to be separate and their wholeness is maintained. Throughout many decades,

this great assumption has been a de facto for all network components (routing, data

storage, ...) to work on.

Since its first introduction in [1], network coding has gained a significant attention

from the research communities in the need of improving the way of communication in

computer networks. In short, network coding is a technique which allows the nodes

to combine several native packets into one coded packet for transmission (i.e, coding

packets) instead of simply forwarding packets one by one. With network coding,

a network can save the number of transmissions to reduce data transfer time and

increase throughput. This breaks the great assumption about keeping information

separate and whole. Information must not be tampered but it can be mixed, and

transformed. To this very point, there are three main questions about network coding

that lead the community’s research:

• How does network coding evolve the current network systems? Based on what?

• What are the benefits of network coding?

• Where can a network coding layer be added? Which application is network

coding suitable for?

7

Certainly, our work only covers a small part of the answers to these three questions.

In the context of this thesis, our contributions belong to two main research branches

of network coding: inter-flow network coding (i.e, opportunistic network coding) for

throughput enhancement and intra-flow network coding (i.e, random linear network

coding) for transmission reliability.

Inter-flow network coding is ”encoding packets from multiple traffic flows at a

common node”. One of practical inter-flow network coding considerations, called

opportunistic network coding, has been firstly proposed in Coding Opportunistically

(COPE) [2]. COPE XORs multiple packets from different traffic flows and broadcast

a single packet based on a particular designed coding condition, called ”two-hop

pattern”. Consequently, COPE can reduce the number of transmissions and enhance

the bandwidth utilization. With the inspiration of COPE, more extended works,

notably, MAC-layer proactive mixing for Network Coding (BEND) [3] and Distributed

Coding-Aware Routing (DCAR) [4] have been proposed in order to achieve better

network performances over COPE. The coding condition is a key factor which allows

COPE and its successors to know if an encoded packet can be decoded successfully

later, so that only the traffic flows fulfilling the coding condition are encoded and

decoded in a network. In the case of COPE, the encoders and decoders (i.e., the

nodes encoding and decoding packets, respectively) must be neighbors to each other

and all of them must be on the routing path of the traffic flows. By giving enhanced

coding conditions, DCAR and BEND increase the chances of having encodable flows

and outperform COPE. DCAR allows decoders to be more than one hop away from

the encoders. Nevertheless, DCAR requires the encoders to be on the routing path

of all flows. BEND does not require the later condition because an overhearing node

(i.e., a node receiving packets not intended for it) can also be the encoder. However,

BEND still insists the encoder and decoders to be neighbors like COPE.

On the other hand, intra-flow network coding is ”encoding packets from the same

traffic flow”. Random linear network coding is mainly applied into intra-flow net-

work coding and widely supported in research community. Random linear network

coding has been recently proposed to provide transmission reliability. Instead of be-

ing transmitted separately, native packets of a flow are coded in the form of random

linear combinations. At recipients (the destination or the intermediate nodes), inno-

vative coded packets are stored until they are sufficiently decoded for original data.

In Batch Coding [5, 6, 7, 8, 9], a popular and fundamental random linear network

coding scheme, native packets are grouped in to many consecutive batches (called

generation), encoded and transmitted by linear network coding combination to re-

duce the complexity of network coding layer at a node. As a trade-off, generations

8

cause two problems of high decoding delay and generation discard. In lossy environ-

ments like wireless networks, a redundancy control is also needed to mitigate random

losses. Some implementations (e.g., [10]) use the fixed redundancy control (i.e, locat-

ing the number of redundant packets at fixed intervals to resist losses) which can waste

bandwidth due to over-redundancy or degrade network performances with packet gen-

eration discards due to packet insufficiency. To overcome this, other propositions (e.g.

[11] and [12]) suggest figuring out the required number of redundant packets flexibly

by predicting the link quality to compensate errors. The proposed solutions are not

quite effective because they are traffic-related (TCP only, like [11], [12]) or do not ob-

tain the ”link quality” exactly due to the measurement packet-probing [5], which still

wastes bandwidth for over-redundancy. In summary, generations in Batch Coding in-

troduces two problems of high decoding delay and generation discard. Moreover, the

fixed redundancy control or predicting the loss rate by packet-probing do not tackle

the problem of random losses effectively.

In this thesis, we put our efforts on opportunistic network coding (inter-flow net-

work coding) and random linear network (intra-flow network coding). Our first ap-

proach is to improve network throughput by an enhanced opportunistic coding system

which surpasses COPE, BEND and DCAR. Summarily, if BEND can enrich the cod-

ing chances ”vertically” (between coders), DCAR can extend the coding chances

”horizontally” (along the traffic flow), Distributed Opportunistic and Diffused Cod-

ing (DODE) [13], our proposition, is deployed with a new coding condition which

combines coding conditions from COPE, BEND and DCAR; and grasps the coding

chances ”vertically and horizontally”, hence, improving the network performance con-

siderably. Afterwards, we have extended DODE into Distributed Opportunistic and

Diffused Coding with Multiple Decoders (DODEX) [14], which is a significant next

step forward with the new concept of multiple decoders. Basically, a trivial limitation

in previous works, even in DODE, is that for every coded packet (the combination of

natives packets from different traffic flows), we always have only one encoder (which

creates the coded packet) and one decoder (which retrieves the desired packet for

the destination). This limitation dramatically restricts the coding chances which can

be found in a network topology. DODEX proposed a new coding condition which

allows that for one encoder, we can have multiple decoders on the path (up to the

number of other traffic flows involved in the encoding process). We complete our

inter-flow network coding system by improving the generalized coding condition with

Distributed Opportunistic and Diffused Coding with Multiple Encoders and Multiple

Decoders (DODEX+). In previous works, the coded packets, after generated, are

only forwarded from the encoder to the decoder. Even though some coding chances

9

can be found with this traffic, the intermediate nodes do not perform the re-encoding

process. DODEX+ allows the re-encoding of coded packets with other codable flows

to maximize the chances to apply network coding in a network. Thus, more coding

chances can be found, improving the network performance. We also introduce a sim-

ple routing metric called Short Paths of Enriched Neighbors Metric (SPENM), which

bolsters more coding chances found.

Our second approach is to provide transmission reliability by new practical ran-

dom linear network coding systems. Transmission reliability can be achieved by a

link-by-link adaptive redundancy control (i.e, losses informed by intermediate nodes

or destination) or an end-to-end adaptive redundancy control (i.e, losses informed

only by the destination). We believe that an adaptive redundancy control can adjust

the redundant traffic effectively if it is integrated and supported by a well-designed

coding scheme. We have investigated the current research and found that Pipeline

Coding [10] is a generation-based coding scheme which tackles the problem of high

decoding delay. In Pipeline Coding, upon receiving a new data packet, the source will

create the coded packet including all packets up to the new packet in the batch. If

all coded packets are delivered successfully, they can be decoded immediately at their

arrival time without waiting for generation completion. As a result, Pipeline Coding

helps to reduce the decoding delay and improve the throughput. We would like to pro-

pose Multi-batch Pipeline Coding with Adaptive Redundancy Control (ARC) [15], a

tailored coding scheme over Pipeline Coding integrated with a link-by-link adaptive

redundancy control. Multi-batch pipeline coding is the coding scheme where packets

are transmitted consecutively by generations, which are buffered at the destination

until well-decoded. In case of losses, the adaptive redundancy control at the source

(or forwarders) is triggered to send the traffic accordingly. To achieve a link-by-link

adaptive redundancy control to mitigate random losses, we interpret the acknowl-

edgement from the current transmission-acknowledgement mechanism at MAC layer

IEEE 802.11 as the indicator of ”link quality”. We decide to find the suitable time to

transmit the redundant packets to cover losses. An algorithm is proposed to calcu-

late which time is appropriate for transmitting the redundant packet. We argue that

the state of link quality should be rechecked before every transmission to deduce if

we should adjust the redundant packets or we continue streaming new data to the

network. Consequently, we ensure not only the packet sufficiency for decoding but

also the new information being transmitted smoothly.

We propose an end-to-end adaptive redundancy control to deal a problem of

random losses in TCP/IP. TCP/IP does not react to random losses in wireless net-

works smoothly. If there are some losses not related to any congestion in the network,

10

TCP/IP still treats them as signals of congestion and cuts down the sending rate,

leading to the performance degradation [16]. Transmission Control Protocol with

Network Coding (TCP/NC) [17] can resolve the problem. Whenever TCP wants to

transmit a packet, TCP/NC will send one or more coded packets, depending on the

redundancy level. The coded packet in TCP/NC is the combination of all non-ACKed

packets remained in the TCP congestion window. TCP ACKs will be sent back to the

source to inform that the destination acknowledges every degree of freedom (i.e., new

data stored in one linear combination reaches the destination successfully) even if it

does not retrieve the data yet. Indeed, the coding scheme of TCP/NC resolves the

problem of high decoding delay and avoids the problem of generation discard. Conse-

quently, packet losses are essentially masked by TCP/NC from the congestion control

algorithm. However, the redundancy control provided at fixed intervals in TCP/NC

does not recover random losses in time. We present Dynamic Coding (DynCod) [18],

a tailored coding scheme from TCP/NC integrated with an end-to-end adaptive re-

dundancy control, to address this lingering problem upon TCP. Our main idea is how

the destination can inform to the source whether the latest data sent from the source

is codable or not and how many packet losses occur via TCP ACKs. Particularly, we

change the principle of the information delivered by TCP ACKs: the destination does

not only acknowledges every degree of freedom, but also announces how many unseen

packets (≥ 0) there are in the coding window at the destination. Unseen packets are

the native packets which are not yet decoded and remained in the coding window at

the destination. We argue that the number of unseen packets (introduced in [17])

somehow reflects the number of packet losses. If this reflection is shown correctly (i.e,

one unseen packet indicates one loss), we can use the number of unseen packets as a

loss indicator. First, we re-design the coding scheme: when TCP wants to transmit

a packet, DynCod will send only one innovative coded packet. The latest data in

DynCod is always transformed and presented by only one coded packet at a time.

Second, thanks to this coding scheme, losses on the transmission will create unseen

packets in the coding window at the destination. Therefore, one unseen packet in

the coding window at the destination can be interpreted as a loss. The source can

be informed about the number of lost native packets via TCP ACKs and adjusts the

number of redundant packets accordingly.

In DynCod, another minor problem is arise that there may be a potentially high

end-to-end delay due to the random losses of TCP ACKs. We extend DynCod to sup-

port multipath transmission, Multipath Dynamic Coding (MP-DynCod) to tackle this

problem. MP-DynCod allows multipath transmission by classifying the neighbors of

a node into one primary forwarder and backup forwarders. The primary forwarder is

11

the neighbor with the highest probability of packet reception and the other neighbors

are backup. In other words, the primary forwarder handles the innovative packets

while backup forwarders transmit the redundant packets to compensate losses. The

probability of packet reception is calculated based on the link-quality routing metric

(e.g., Expected Transmission Count (ETX) [19]). Generally, in intra-flow network

coding with multipath transmission, we need to re-encode the traffic at an inter-

mediate node to avoid sending the non-innovative coded packets. As the primary

forwarder in MP-DynCod always transmits the innovative packets from the source,

only backup forwarders need to re-encode the redundant traffic. This will help to

reduce the complexity at forwarders. The redundant control is provided hop-by-hop,

not from the source only like DynCod, so that it can help to reduce the potentially

high end-to-end delay.

The remainder of this thesis is organized as follows. In Chapter 2, we present

the related work and how a practical network coding scheme can be deployed to

improve the network performance via two main trends inter-flow network coding and

intra-flow network coding. We explain the benefits of network coding and introduce

current applications of network coding. We also states what concrete problems are

solved in the scope of this thesis. In Chapter 3, we introduce three contributions in

inter-flow network coding: DODE, DODEX and DODEX+. In Chapter 4, we present

three contributions in intra-flow network coding: ARC, DynCod and MP-DynCod.

Finally, we draw some conclusions and future research directions in Chapter 5.

12

Chapter 2

Related work

This chapter presents the background knowledge and provides the state of the art of

network coding (Sections 2.1, 2.2, 2.3). Two main trends of network coding: inter-flow

network coding and intra-flow network coding are introduced in the details (Sections

2.5 and 2.6). We also categorize applications of network coding in current network

systems (Sections 2.7). Problem statement declares which issues we tackle in this

thesis (Section 2.8).

2.1 Network Coding and its benefits

The definition of network coding is not straightforward, even though in [1], the authors

refer ”coding at a node in a network as network coding”. However, we need an explicit

and simple definition that explains the purpose and functionality of network coding

as below:

Definition 1 Network coding is a technique which allows the nodes to combine several

native packets into one coded packet for transmission (i.e, coding packets) instead of

simply forwarding packets one by one in order to maximize network capacity.

Network capacity is the amount of traffic that a network can carry. How is the

combination of native packets for transmission can maximize network capacity over

conventional forwarding? We will move to a basic example. The very first idea for

network coding was introduced in [1], given by the famous butterfly topology (Fig 2-

1). We suppose there are two multicast flows from sources S1 and S2 to two receivers

D1 and D2 via a common link X → Y and assume links are loss-free with a capacity

of one packet per time unit. With the conventional transmission mechanism, X only

forwards either p1 or p2 at a time unit. The throughput of each receiver (D1 or D2) is

13

approximately 1.5 packets per time unit. Network capacity in this case is 3.0 packets

per time unit.

(a) Butterfly topology without network coding

S S

X

Y

DD

1

12

2

p
1

p
1

p
2

p
2

p
2

p
1

+

p
2

p
1

+ p
2

p
1

+

(b) Butterfly topology with network coding

Figure 2-1: Butterfly networks

However, if X intelligently XORs p1 and p2 together and sends the coded packet

p = p1+p2, receivers D1, (or D2) can extract the desired packet p2 (or p1) successfully

by XOR-ing the coded packet p with the obtained packet p1 (or p2). In the comparison

with the conventional transmission mechanism, network coding reduces the number

of transmission and maximizes network capacity (4 packets per time unit instead of

3). Network capacity in this case is maximized. That is the first benefit of network

coding: throughput enhancement. Generally, below is Theorem 1 taken from

[20]:

Theorem 1 Assume that the source rates are such that, without network coding,

the network can support each receiver in isolation (i.e. each receiver can decode all

sources when it is the only receiver in the network). With an appropriate choice of

linear coding coefficients, the network can support all receivers simultaneously [1],

[21].

In network coding, not only the intermediate nodes encode the packets, but also

the source also participates in coding its own data. Let’s consider the wireless but-

terfly topology (Fig. 2.2), a multicast flow with only one source S and two receivers

D1 and D2. The source S wants to send two packets p1 and p2, so that it generates

and transmits two coded packets: pc1 = 1 × p1 and pc2 = 1 × p2. The intermediate

nodes A, B, C and E re-encode the received packets and transmit the new linear

14

combinations: pc3 = 1× p1 + 1× p2, pc4 = 1× p1 + 2× p2, pc5 = 2× p1 + 1× p2 and

pc6 = pc5 , respectively.

A B

C

E

DD
12

S

p
1c

p
2c

p
5c

p
3c p

4c

p
6c

Figure 2-2: Wireless butterfly topology

In Fig. 2.2, the information (packets p1 and p2) from single source S is distributed

to both sinks D1 and D2 but intermediate nodes constituting the transmission path

don’t need to exchange any routing decision on which packets (p1 or p2) are prioritized

for transmissions. Currently, the conventional transmission mechanism needs to send

the data in order and recognizes whether each packet is lost or not to perform the

retransmission (e.g., Automatic Repeat Query (ARQ) [22]). Instead, with network

coding, coded packets are considered equally important to each other and carry only

one ”piece of information” from the source. If the destination sufficiently collects

the ”pieces”, the destination can retrieve the data successfully. If a loss occurs,

the forwarders (or even the source) only need to generate another coded packet for

compensation. The forwarders (or the source) have to know how many redundant

packets are required to cover errors. This is a simplified task in comparison with

the conventional transmission mechanism that requires to know which specific packet

is lost. Consequently, network coding reduces the complexity of the transmission

mechanism and recovers the data from losses more easily. This is the second benefit

of network coding: transmission reliability.

Moreover, from two examples above, we can see that there are two approaches to

perform the encoding: the first is inter-flow network coding, i.e., encoding packets

15

from multiple flows (Fig 2-1(b)) and the second is intra-flow network coding, i.e.,

encoding packets from the same flow (Fig 2.2). Each approach has its own advan-

tages and challenges that define how network coding is applied into current network

systems.

2.2 Linear Network Coding versus Non-linear Net-

work Coding

Many works so far still assume on using linear algebra as the fundamental theory

to develop network coding. Interestingly, there exist network topologies where the

maximum capacity could not be achieved if only linear network coding solutions are

used. This phenomenon was firstly described in [23] and many debates, along with

open questions, are still left about which approach is better. The complexity of non-

linear network coding is not much higher than linear network coding [24, 25]. To our

best knowledge, there are some applications of using non-linear network coding to

counter many issues involved in security ([26]) or special networks that linear coding

could not satisfy ([27, 28, 29]).

2.3 Linear Network Coding - Deterministic versus

Random

Many researches [21], [30] and [1] show that network coding can be practically applied

if we develop it as ”linear network coding”. Consider the network system of which

intermediate nodes can act as information forwarders. Conventionally, forwarders

only need to forward (i.e, receive and re-transmit) packets to the next hop. The

information (packets) is kept intact during the transmission. With linear network

coding, nodes constituting the traffic flows are allowed to linearly combine a number

of incoming (i.e., received or created) native packets into various coded packets for

transmission.

To ensure the independence among coded packets, some deterministic algorithms

to find coding coefficients [21], [31] are provided. In [31], the algorithm checks each

node in network and decides the encoding vector each node will choose. The algo-

rithm is polynomial in time and not scaling even this is a decentralized solution. On

the other hand, we can use Random Linear Network Coding [32]. Each node inde-

pendently selects the coefficients for coded packets at random. This is a lemma taken

from [32]:

16

Lemma 1 For a feasible multicast connection problem with independent or linearly

correlated sources and a network code in which some or all code coefficients are cho-

sen independently and uniformly over all elements of a finite field Fq, (q = 2s) (some

coefficients can take fixed values as long as these values preserve feasibility), the proba-

bility that all the receivers can decode the source processes is at least (1− d
q
)v for q > d,

where d is the number of receivers and v is the maximum number of links receiving

signals with independent randomized coefficients in any set of links constituting a flow

solution from all sources to any receiver.

For example, we assume there is a 3-hop single-path unicast traffic flow in a

wireless network. If we consider the finite field F2s with s equal to 8 bits (1 byte), we

have the probability that the receiver can decode the packets of (1 − 1
256

)1 = 0.996

which is very high and possible. Moreover, the decoding probability greatly increases

if we consider a larger s in F2s . As Random Linear Network Coding is a simple and

effective approach, it is widely used and also the basic platform for us to propose the

nouvel coding scheme.

2.4 Network coding approaches in the thesis

In the scope of this thesis, we follow linear network coding because it is simple and

widely used. Let’s recall, from the examples in Figs 2-1(b) and 2.2, that we see two

clear trends how to apply network coding into the current network systems: packets

from different traffic flows are coded and transmitted to improve the network perfor-

mance, which is called inter-flow network coding and packets in the same traffic flow

are coded and transmitted for the enhanced transmission reliability, which is called

intra-flow network coding. Indeed, these trends are the main interesting topics for the

current research community. In the term of practical application of network coding

system, Opportunistic Network Coding [2] is the pioneer of inter-flow network coding

and Random Linear Network Coding [32] is the simple and effective proposition of

intra-flow network coding. We will go through these two in the following sections by

detailing many proposed implementations which inspired our works. Fig 2.4 shows the

visual illustration about our work and how it fits into the current research of network

coding. The works on inter-flow network coding are sorted as the coding condition is

extended to support more network topologies and helps to improve network perfor-

mance. On the other hand, the works on intra-flow network coding are sorted as the

new coding schemes are proposed. The blue boxes represent our contributions.

17

Figure 2-3: Thesis contributions

2.5 Inter-flow network coding (Opportunistic Net-

work Coding)

In this section, we introduce one popular and practical inter-flow network coding

scheme called Opportunistic Network Coding (ONC). ONC is first introduced in

COPE [2] which is applied to unicast traffic in wireless network. ONC is a technique

which combines packets (i.e., XORs them together) from traffic flows traversing in

opposite ways at an intermediate node called encoder. Encoded packets are then

acquired to retrieve the original packets at decoders. ONC is a practical inter-flow

network coding system of which design is based on two key principles:

• No point-to-point assumption and exploitation of the broadcast nature of wireless

networks : In conventional wireless networks, nodes always discard the non-

intended packets even though they can overhear them due to adapting the

principle of point-to-point transmission from wired networks. However, ONC

18

can exploit the broadcast nature of wireless environment to use the overheard

packets in the term of network enhancement.

• Inter-flow network coding for wireless unicast traffic: ONC practically mixes

and transformes data from multiple flows and gain an extra of network through-

put. Consequently, an enhanced network system is proposed.

ONC systems are heavily based on a coding condition to decide which flows are

codable together because there’s no point to code packets without ensuring their

successful decoding. In ONC, the coding chances are gained more based on how the

coding condition is defined (i.e., covering more network flowing cases). We will detail

these in the next subsections.

2.5.1 Coding Opportunistically (COPE)

Figure 2-4(a) and 2-4(b) show how COPE works in the basic scenario. The dashed

lines imply that the related nodes are neighbors (i.e., within the transmission range)

to each other and the arrows indicate the direction of traffic flows. Both end-to-

end connections go through the intermediate node C which serves as a forwarding

node. Suppose that node A and B want to send packet p1 and p2 to node B and A,

respectively. Without network coding, node C simply forwards packets p1 and p2 to

the destinations using two separate transmissions. Using network coding, node C can

smartly combine these two native packets by XOR-ing them together and broadcast

the coded packet (p1+p2) to nodes A and B in a single transmissions. Nodes A and B

will decode the coded packet to get the desired packet by XOR-ing the coded packet

with the packet they originate. As a result, node C can save one transmission and

improve the network utilization. Node C is called the encoder and two nodes A and

B serve as decoders.

More coding scenarios are possible if we consider one important feature intro-

duced by COPE: the opportunistic listening in which each wireless node can overhear

other transmissions and use the overheard packets for later use (e.g, for the decoding

process). Consider the scenario presented in Figure 2-4(b) in which nodes A, B, D

and E wish to send packets p1, p2, p3 and p4 to its opposite nodes B, A, E and D,

respectively. Each extremity node (A, B, D and E) will perform the opportunistic

listening because it is the neighbor of the other nodes except its opposite node. C

intelligently encodes four native packets to broadcast pc = p1 + p2 + p3 + p4. All re-

ceivers are able to extract the desired packets because they have collected sufficiently

other packets for decoding. For example, node A can decode the coded packet pc to

get p2 successfully because p3 and p4 are obtained from opportunistic listening (p3

19

and p4 are overheard by transmissions (D → C) and (E → C) respectively) and p1

is its own packet. In summary, COPE exploits the broadcast nature of the wireless

channel to perform the opportunistic listening and opportunistic encoding, reducing

the number of forwarded packets and improving the network utilization.

Indeed, the ONC system needs to check if the flows are codable or not based on

a coding condition. The coding condition in ONC will define which flow is codable to

another and which node is the encoder or the decoder. There is no point in creating

the coded packets if they are un-decodable. To check the coding condition, COPE

needs to obtain the ”neighbor state”, or which packets the neighbors could receive. In

the absence of deterministic information, COPE utilizes a link state routing protocol

with the link-quality routing metric ETX [19] to guess the ”neighbor state” intelli-

gently. Certainly, the node can make a false decision, reducing the coding chances by

not coding the codable native packets or producing un-decodable coded packets. How

to guess the ”neighbor state” intelligently is quite challenged. In the scope of this

thesis, we leave this problem open as we focus on a more certain existing problem:

extending the coding condition of COPE to gain more coding chances.

(a) Simple case without the opportunistic
listening

(b) Complex case with the opportunistic
listening

Figure 2-4: Two scenarios applied for COPE

To determine whether flows are codable, COPE defines the coding condition called

the two-hop coding pattern. The coding condition of COPE is provided to detect if

multiple flows are codable together or not. Every pairs of flows must be checked and

met the coding condition. This is the principle required in ONC. Before we move

further into the details of the coding condition of COPE, we need some mathematical

notations to describe the ideas more clearly:

• A network is formally presented by a graph G. A graph G = (V,E) is a set of

nodes V connected by a set of links E.

20

• A node v ∈ V is a terminal node (e.g., the user’s station) or an intermediate

node (e.g., the switch or the router).

• A link e = (v, t) ∈ E is a connectivity between two nodes v and t. The link

e = (v, t) consists of one node v called the start node and one node t called the

end node.

• A traffic flow F = (VF , EF) of k links is a subgraph of the network G, repre-

senting a way to get from a source to a destination by traversing links in the

network. A flow F = (VF , EF) (VF ⊂ V and EF ⊂ E) is uni-directional and can

be written as an ordered list of nodes: VF = {v1F , v2F , ..., vkF , vk+1F } connected

by an ordered list of directed links: EF = {(v1F , v2F), (v2F , v3F), ..., (vkF , vk+1F)}.

• v1F is the source of flow F .

• vk+1F is the destination of flow F .

• vi+1F is the next hop of node viF .

• vi−1F is the previous hop of node viF .

• The set of neigbors of node vi, denoted as N(vi), contains all nodes that have

a link with node vi:

N(vi) = {∀vj, j 6= i|(vi, vj) ∈ E}.

• The set of upstream nodes of node viF on flow F , denoted as Up(viF , F), is the

set of nodes on transmission path from the source v1F to the previous hop vi−1F :

Up(viF , F) = {∀vjF |jF < iF}

• The set of downstream nodes of node viF on flow F , denoted as Dn(viF , F), is

the set of nodes on transmission path from the next hop vi+1F to the destination

vk+1F :

Dn(viF , F) = {∀vjF |jF > iF}

• The set of neighbors of all nodes on flow F = (VF , EF), denoted as N(F), is

the union of sets of neighbors of all nodes on flow F :

N(F) =
k+1⋃

j=1,j 6=i

N(vjF)

• The set of neighbors of a group of nodes T , denoted as N(T), is the union of

sets of neighbors of nodes in T :

∀vj ∈ T,N(T) =

|T |⋃
j=1,j 6=i

N(vj)

21

The two-hop coding pattern of COPE is then described in Condition 1 and Con-

dition 2. The first condition (Condition 1) explains how two traffic flows are codable

to each other and the second condition (Condition 2) explains how multiple flows are

codable together.

Condition 1 Two native flows Fi and Fj (i 6= j) are considered as codable to each

other, at node c = vfFi
= vgFj

∈ (VFi

⋂
VFj

) if and only if:

• |Dij| = |{vf+1Fi
}
⋂

({vg−1Fj
}
⋃
N(vg−1Fj

))| = 1.

• |Dji| = |{vg+1Fj
}
⋂

({vf−1Fi
}
⋃
N(vf−1Fj

))| = 1.

Literally, Condition 1 states: two native flows Fi and Fj (i 6= j) are considered

as codable to each other at node c which is intersected by both flows if the next hop

of c on flow Fi (or flow Fj) is the previous hop of c on flow Fj (or flow Fi) or is

the neighbor of that previous hop. Dij (or Dji) is the set of decoders of flow Fi (or

flow Fj) to remove the native packet of flow Fj (or flow Fi) from the coded packet

generated by encoder c.

Condition 2 Native flows belonging to a set of flows F = {Fk|k ∈ [1, n]} (n is the

number of flows) are considered as codable together at node c ∈
n⋂

j=1,j 6=i

VFj
if and only

if:

• ∀Fi, Fj ∈ F(i 6= j) | Fi and Fj are considered as codable to each other at node

c.

• ∀Fi ∈ F, |Di| = |
|F|⋃

j=1,j 6=i

Dij| = 1.

Condition 2 specifies the constraint for multiple flows to be codable. First, each

pair of flows must be codable and intersected at a common node c, which is the only

encoder for all flows. Second, for each flow, there is only one decoder (|Di| = 1),

which is di ∈ Di, Di is the set of decoders of flow Fi to retrieve the native packet of

flow Fi from the coded packet.

With the two-hop coding pattern of COPE, we can realize that node c is the en-

coder and node di ∈ Di is the decoder. In other words, the coded packet generated

by the coder c is decoded by only one decoder di of flow Fi. That is a trivial limita-

tion that DODEX (Section 3.2) breaks to find more coding chances. However, as a

pioneer, COPE filled a significant gap between the theory and practical consideration

22

in network coding. COPE gets the great attention from the research community and

many works focus on how to improve COPE from many aspects: extending the coding

condition of COPE (like BEND, DCAR, or our contributions DODE, DODEX and

DODEX+ (Chapter 3)), investigating the constraints affecting the coding condition

of COPE [33, 34, 35, 36, 37, 38], or finding the routing path that gain the most coding

chance from COPE ([39, 40, 41, 4, 42, 43, 44, 45, 46, 47, 48, 49]).

2.5.2 Distributed Coding-Aware Routing (DCAR)

COPE has two separate limitations: the routing path dependency and the strict two-

hop coding pattern. The first limitation is that the coding chances inevitably depend

on the established route. The best routing path (e.g., the shortest path) may not

be the best coding-aware one. Consider the example in Figs 2-5(a) and 2-5(b) with

two traffic flows. Without being aware of the potential coding chances, two separate

routing paths shown in Fig 2-5(a) may be chosen. On the other hand, if a coding-

aware routing decision is made, a common routing path via node 1 is used. Node

1 becomes the encoder and has the coding chance to generate the coded packets

(in Fig 2-5(b)). In this example, coding-aware routing will provide the improved

performance.

0

1

2

3

(a) Non-coding-aware routing

0

1

2

3

(b) Coding-aware routing

Figure 2-5: Routing decision affects the coding chance

The second limitation is that traffic is strictly coded based on the two-hop coding

pattern. Let’s take Fig 2-6 as an example and consider the scenario where two flows

F1(1 → 2 → 3 → 4) and F2(5 → 3 → 6 → 7) intersect at node 3. In this scenario,

COPE cannot detect the coding chance because two hop coding pattern is not met.

Indeed, there is a coding chance where node 3 is an encoder and decoders are 4 and 7.

Node 3 can generate the coded packet from both flows. Even though node 6 cannot

perform the decoding, it can forward the coded packet to node 7. Node 7 obtains

enough packets to perform the decoding to retrieve the desired data. In general, the

decoder can be more than one hop-away from the encoder. If we can re-design

23

the coding condition in 1, these coding chances can be detected and the bandwidth

efficiency and throughput can be enhanced.

3

6

5

2 4

7

1

1p

1p

p
2

p
21p +p

21p +

p
21p +

Figure 2-6: Generalized coding condition of DCAR breaks two hop coding pattern

To cope with the first limitation of COPE, DCAR [4] tries to make routing de-

cisions and concentrate traffic through some specific nodes for more coding chances.

Even though this solution enhances COPE in some cases, concentrating traffic solely

via one encoder can lead to packet collisions and packet drops at that intersecting

node. This problem is discussed in the next section 2.5.3. DCAR has solved the

second limitation by extending the two-hop coding pattern. The decoders are not

necessarily one-hop neighbors of the encoder.

The generalized coding condition of DCAR is described in Condition 3 and 2.

DCAR only changes the coding condition between two traffic flows (Condition 3) and

re-uses the coding condition of multiple flows of COPE (Condition 2). Condition 3

states that two native flows Fi and Fj (i 6= j) are considered as codable to each other

at a node c if and only if there is one downstream node of c on flow Fi (or on flow

Fj) being the upstream node of c on flow Fj (or on flow Fi) or at least being the

neighbor of that upstream node. Dij (or Dji) contains decoders which do not need

to be neighbors of encoder c.

Condition 3 Two native flows Fi and Fj (i 6= j) are considered as codable to each

other, at node c ∈ (VFi

⋂
VFj

) if and only if:

• |Dij| = |Dn(c, Fi)
⋂

(Up(c, Fj)
⋃
N(Up(c, Fj)))| = 1.

• |Dji| = |Dn(c, Fj)
⋂

(Up(c, Fi)
⋃
N(Up(c, Fi)))| = 1.

For illustration on how to apply the generalized coding condition of DCAR, let’s

reconsider Figure 2-6 with two flows F1(1→ 2→ 3→ 4) and F2(5→ 3→ 6→ 7), one

24

realizes that COPE cannot detect the coding chances of two traffic flows but DCAR

can. As the coding condition of DCAR says, we can easily see c = 3, d1 = 4 and

d2 = 7 as c ∈ VF1

⋂
VF2 , d1 ∈ D1 = D12 = Dn(3, F1) = {4} ⊂ N(5), 5 ∈ Up(3, F2)

and d2 ∈ D2 = D21 = Dn(3, F2) = {7} ⊂ N(1), 1 ∈ Up(3, F1).

2.5.3 MAC-layer proactive mixing for Network Coding (BEND)

Concentrating traffic through only one encoder which is also the intersecting node of

two flows like COPE or DCAR can cause the performance problem. Considering a

wireless mesh network with dense traffic, concentrating traffic via the encoders result

in packet collisions and packet drops at the intersecting node. The problem can be

worse if the dropped packets are the coded ones. BEND is a MAC layer solution to

practical network coding in multi-hop wireless networks, which solves the problem.

In contrast to COPE and DCAR which use a single node to encode packets, BEND

deploys a group of neighboring nodes which can share the encoding process, called the

encoder group. In fact, the transmission of a node is heard by its neighbors, which can

be used to encode the packets. In BEND, any node can code and forward a packet

even when this node is not on the routing path of the packet, as long as it ensures

that the decoding process can be successfully performed at the decoders to obtain

the original packets.

Figure 2-7: An encoder group in BEND

Specifically, BEND takes advantage of the encoder group to share the encoding

process instead of concentrating the traffic through only one encoder. The encoder

25

group can grasp the overheard packets and combine them with the packets that they

have in their queues to provide the coded packet. In comparison with COPE and

DCAR, the overheard packets are not only used in the decoding process but also in

the encoding process. As illustrated in Figure 2-7, there are two flows F1(0→ 1→ 4)

and F2(5 → 3 → 6). The packets will be forwarded by an encoder group of three

intermediate nodes 1, 2 and 3, i.e., nodes 1, 2 and 3 share the encoding process.

For example, if node 3 is more idle than nodes 1 and 2, it can combine both native

packets into one and broadcast (p1 + p2). The coded packets are broadcasted by the

most idle intermediate node. All other nodes in the encoder group overhear the coded

packet and stop the intended transmission for packet duplication avoidance. This fea-

ture called the diffused gain by neighborhoood indeed solves the first problem routing

dependency mentioned in Section 2.5.2 and increases the network performance.

The two-hop coding pattern of COPE has also been extended by the diffused gain

of BEND: the encoder is not necessarily the intersecting node of the two flows. The

two-hop coding pattern of BEND is described in Condition 4 and Condition 5. BEND

changes the definition of the encoder c which affects the coding condition between

two flows of COPE (Condition 1) and the coding condition of multiple flows of COPE

(Condition 2). Condition 4 states: two native flows Fi and Fj (i 6= j) are considered

as codable to each other at an encoder group Cij if and only if there exist two nodes

vfFi
, vgFj

∈ Lij such that the next hop of vfFi
(or vgFj

) on flow Fi (or on flow Fj) is

the previous hop of vgFj
(or vfFi

) on flow Fj (or on flow Fi) or at least is the neighbor

of that previous hop. Lij is the set of nodes u on flows Fi and nodes t on flow Fj

such that there are links between u and t or u = t. Cij, the encoder group that

generates coded packets between two flows Fi and Fj, is the set of neighbors of four

nodes vf−1Fi
, vg−1Fj

, vf+1Fi
and vg+1Fj

. Dij (or Dji) is the set of decoders of flow Fi

(or flow Fj) to remove the native packet of flow Fj (or flow Fi) from the coded packet

generated by the encoder group Cij.

Condition 4 Two native flows Fi and Fj (i 6= j) are considered as codable to each

other at a group of nodes Cij ⊂ Lij = {∀u ∈ VFi
,∀t ∈ VFj

|u = t
∨

(u, t) ∈ E} if and

only if:

• ∃vfFi
,∃vgFj

∈ Lij.

• |Dij| = |{vf+1Fi
}
⋂

({vg−1Fj
}
⋃
N(vg−1Fj

))| = 1.

• |Dji| = |{vg+1Fj
}
⋂

({vf−1Fi
}
⋃
N(vf−1Fi

))| = 1.

• |Cij| = |N(vf−1Fi
)
⋂
N(vg−1Fj

)
⋂
N(vf+1Fi

)
⋂
N(vg+1Fj

)| ≥ 1

26

Condition 5 does not change much from Condition 2, only an encoder group Ci

is used instead of only one encoder c like COPE. Condition 5 states that each pair

of flows must be codable and intersected at an encoder group Cij, which contains

the encoders of coding packets between two flow Fi and Fj. Besides, for each flow,

there is only one decoder (|Di| = 1), which is di ∈ Di, and Ci is the encoder group

containing all encoders to create coded packets of multiple flows ∀Fi ∈ F, which must

be the intersection of all Cij: Ci =
n⋂

j=1,j 6=i

Cij (|Ci| ≥ 1).

Condition 5 Native flows belonging to a set of flows F = {Fk|k ∈ [1, n]} (n is the

number of flows) are considered as codable together at a group of nodes ∀Fi ∈ F, Ci =
n⋂

j=1,j 6=i

Cij if and only if:

• ∀Fi, Fj ∈ F(i 6= j) | Fi and Fj are considered as codable to each other at the

group of node Cij.

• ∀Fi ∈ F, |Di| = |
|F|⋃

j=1,j 6=i

Dij| = 1.

• |Ci| ≥ 1

For example, let’s reconsider network topology in Fig 2-7. As we have L12 =

{0, 6, 1, 3, 4, 5}, there exist two nodes 1, 3 ∈ L12 such that 4 (or 6), the next hop of 1

on flow F1 (or 3 on flow F2), is the neighbor of 5 (or 0) which is the previous hop of

3 on flow F2 (or 1 on flow F1). Consequently, decoder on flow F1 (or F2) is 4 (or 6)

and the encoder group is {1, 2, 3} = N(0)
⋂
N(4)

⋂
N(5)

⋂
N(6).

2.6 Intra-flow network coding (Random linear net-

work coding)

2.6.1 Source coding versus batch coding

Random linear network coding (RLNC) has been introduced almost at the same time

since the idea of network coding emerged. As shown in Figs 2-1(b) and 2.2, RLNC

is focusing on ”coding the packets belonging to the same traffic flows”. The nature

of wireless network tends to be error-prone and exposed to interference and conges-

tion. To provide a simple and effective transmission reliability, instead of transmitting

27

native packets in order, native packets are coded to broadcast the random linear com-

binations. At recipients, innovative coded packets are stored until they are sufficiently

decoded for original data. In lossy environments like wireless networks, a redundancy

control is also needed to mitigate losses. Automatic Repeat Query (ARQ) [22] and

Forward Error Correction (FEC) [50] are two techniques which can be used:

• ARQ is an error-control method for data transmission relying on acknowledge-

ments and timeouts to ensure the transmission reliability.

• FEC is an error-control method for data transmission which allows sending the

information along with some redundant data to control errors over the lossy

communication environment.

In this thesis, we focus on FEC-related coding schemes, such as source coding

scheme [51] and batch coding scheme [1, 9]:

• Source coding scheme: the source generated innovative coded packets, along

with some redundant coded packets, and transmits them to the destination.

Forwarders only forward the coded packets to the destination.

• Batch coding scheme: the source generated innovative coded packets, along

with some redundant coded packets, and transmits them to the destination.

Forwarders perform the re-encoding process over the input coded packets, gen-

erate and transmit new linear network coding combinations to the destination.

In this section, we would like to show the popular coding schemes of RLNC. We

present Batch Coding (Section 2.6.3), Pipeline Coding (Section 2.6.4) and TCP/NC

(Section 2.6.5), along with some frequently used terms in Table 2.1. Throughout the

examples in Figs 2-8, 2-9, 2-10, the fixed redundancy control used in Batch Coding,

Pipeline Coding and TCP/NC coding scheme has the redundancy level R = 1.25 per

one transmission, which means 1 redundant transmission every 4 transmissions.

Table 2.1: Defitions of terms used in intra-flow network coding
Term Definition
Source coding scheme Source-side only coding.
Batch coding scheme Source-side and relay coding.
Batch Coding Every coded packet will encode all data packets within the same generation.

Coding and decoding begins only when the generation rank is full
Pipeline Coding Coded packets will be generated upon every new data packet arriving. Destina-

tions decode the data packets progressively if possible.
Generation A set of packets that are encoded or decoded together as a unit.
Coding vector (Encoding vector) A vector of coefficients that reflect the linear combination of data packets.
Rank (Degree of freedom) Number of linearly independent combinations of data packets.
Innovative packet A packet that increases the rank.
Coding redundancy Number of coded packets sent per generation divided by generation size.

28

2.6.2 Generation

Basically, due to the constraints of practical implementation, a RLNC system requires

that packets are grouped into many consecutive batches with the same fixed size,

called generations. The size of generation and how generation is generated will give a

huge impact on the performance of network coding [52]. Generations help to reduce

the complexity of decoding process as the calculation over a decoding matrix with the

fixed size is quite simple [20]. Original data is only decoded after the whole generation

is well-received, thus, causing a high decoding delay. Moreover, coded packets in a

generation need to be decoded successfully before packets in a newer generation can

be transmitted [32]. If a generation is discarded (e.g., not enough innovative packets),

the node has to retransmit that generation, leading to an increasing decoding delay.

In summary, the main limitation that generations introduce is the high decoding delay

and potential information loss due to whole generation discard, especially with fixed

redundancy control (i.e, redundant traffic is adjusted into the network at pre-set time

intervals) [10], [6], [7], [8], [9]. For illustration, in Fig 2-8, generation 1 is well-decoded

but the destination has to wait for sufficient packets to perform the decoding process,

leading to the high decoding delay. Because there are not sufficient packets to perform

the decoding, whole generation 2 is discarded.

Many propositions [10], [11] introduce a minimum redundancy level to ensure

that the generation discard does not happen. However, this may introduce the over-

redundancy.

Figure 2-8: Batch coding

29

2.6.3 Batch Coding

This scheme is the fundamental mechanism of many works [5], [6], [7], [8], [9]. With n

packets in the gth generation (g > 0), the ith coded packet generated for transmission

is:

ci =
n∑
j=1

ejp(g−1)×n+j (2.1)

where ej is the coding coefficient (ej > 0), an element deployed from a particular

Galois field F,pj is the jth native packet in the gth generation and (g−1)×n denotes

the number of transmitted packets. This coding scheme exposes two problems that

are described in Section 2.6.2.

2.6.4 Pipeline Coding

Pipeline Coding is a generation-based coding scheme which encodes and decodes

packets progressively instead of waiting for the entire batch (i.e., generation) like

many previous works [5], [6], [7], [8], [9]. For n packets in the gth generation, the ith

coded packet generated for transmission is:

ci =
i∑

j=1

ejp(g−1)×n+j (2.2)

Figure 2-9: Pipeline Coding

Fig 2-9 shows the mechanism of Pipeline Coding: upon receiving the ith new data

30

packet, the source will instantly trigger the encoding process to create the coded

packet which is the combination of all currently received data packets (up to the ith

packet in the gth generation). If coded packets arrive at the destination successfully,

original data can be decoded immediately without waiting for transmitting the whole

generation. We can say the coding scheme of Pipeline Coding is progressive, i.e,

coded packet is decoded one by one at the arrival time without generation comple-

tion. Thanks to the progressive coding scheme, the problem of high decoding delay is

resolved. However, Pipeline Coding still suffers the problem of generation discard.

2.6.5 Transmission Control Protocol with Network Coding

(TCP/NC)

In a lossy environment like wireless network, random losses are treated by TCP

as signals of congestion. As a result, TCP will dramatically reduce the sending

rate, leading to network performance degradation [16]. TCP/NC has been proposed

to resolved this problem. TCP/NC is intended to incorporate network coding into

TCP/IP layer as a network coding layer between TCP layer and routing layer without

any major changes to TCP/IP stacks. Using this idea as the core philosophy to

develop, authors of TCP/NC only change mechanisms of packet generation and packet

acknowledgement. First, at the source, a coding window, of which the size is the same

with the size of TCP congestion window, is used in TCP/NC layer to receive packets

from TCP layer. Whenever TCP layer at the source wants to send a packet, TCP/NC

will generate and transmit at least one coded packet (depending on the redundancy

level R) which combines that packet with other non-ACKed packets in the coding

window. TCP/NC uses the fixed redundancy control to tackle the problem of random

losses. In TCP/NC, only the source generates and transmits the coded packets to the

destination. If it’s a multi-hop traffic flow, forwarders constituting the transmission

path will forward the traffic without re-encoding them. Second, at destination, the

destination acknowledges every degree of freedom, which indicates an arrival of one

linear network coding combination which contributes a new piece of information,

even though it does not retrieve the desired data yet. With the new interpretation of

TCP ACKs, packet losses are essentially masked from TCP congestion control. The

source then reacts to packet losses smoothly, without cutting down the sending rate.

Summarily, to be compatible with TCP mechanisms, TCP/NC is a intra-flow source

coding layer. Moreover, as described in the coding scheme, TCP/NC coding scheme

is non-generation-based but it is also progressive, which allows TCP/NC to avoid the

problems of high decoding delay and generation discard as explained in Section 2.6.2.

31

When ith packet pi is allowed for transmission, bNUMc coded packets cir are

generated as follows:

for r = 1→ bNUMc:

cir =
i∑

j=i−n

ejpj (2.3)

and

NUM =

{
NUM +R before packet generation

NUM − bNUMc afterward
(2.4)

where R denotes the redundancy level, n denotes the number of non-ACKed pack-

ets remained in coding window.

Figure 2-10: TCP/NC

We do not illustrate the ACK transmissions in Fig 2-10 but TCP ACKs help to re-

move the packets already reached the destination from the coding window. TCP/NC

provides the progressive encoding and decoding processes like Pipeline Coding as

coded packets can be decoded at the time they arrive. Due to the losses of C6, C7,

the arrival of the redundant packet C82 is not sufficient for decoding. The decoding

will be performed until the next redundant packet is sent (i.e., the transmission of

packet C122).

32

2.7 Applications of network coding into current

network systems

2.7.1 Wireless networks

2.7.1.1 Multi-hop traffic flows in wireless networks

COPE [2], BEND [3] and DCAR [4] provide practical network coding with multi-hop

traffic flows in wireless networks. The coding condition becomes generalized from

each extension (from COPE to DCAR). As shown in Figs 2-1(b) and 2-4(a), network

coding can improve throughput of wireless network when more than 2 traffic flows

intersect at a common node. This is also extended to support any network of which

physical layer using broadcast. Being dependent on the type of traffic (e.g. multicast

or unicast), network coding will be applied into differently situational network topolo-

gies. In 2-1(b), two multi-cast traffic flows are transmitted in the same direction while

in 2-4(a), two unicast traffic flows are transmitted in opposite directions. Moreover,

there exist problems like transmission interference, channel fading, energy consump-

tion in multi-hop wireless networks. [53, 54] try to find solutions to send multicast

traffic in interference-prone wireless networks effectively. In order to reduce the effort

and complexity to perform network coding, [55] suggests selecting nodes which need

encoding instead of all nodes. CodeCast [8], I2NC [56], [57] and [58] were developed

further the idea ”XORs in the air” from COPE and assessed on real scalable testbeds.

[57] proposes the combination of network coding and physical broadcast in wireless

networks in the mutual exchange of information between two nodes as a distributed

scheme which is robust to random losses and delay.

2.7.1.2 Broadcast in wireless networks

Broadcasting is one of basic operations in communication networks. Flooding is the

typical method of broadcast in multi-hop wireless networks. Flooding allows one

node to forward a packet to its neighbors whenever the packet arrives at the node at

first. In wireless networks, flooding may cause packet collisions, resulting in wasteful

energy consumption due to great amount of packets repeatedly forwarded (i.e, broad-

cast storm problem [59] and its solutions [60, 61]). Network coding can help to solve

the broadcast storm problem more effectively because the node can encode number

of packet needed for broadcast in the form of one linear combination and reduce the

number of broadcast transmissions. The broadcast scheme that one source (or mul-

tiple sources) can transmit packet to other nodes is called single-source broadcasting

(or multiple-source broadcasting). [62] proposes a broadcasting scheme with RLNC

33

while [63] proposes a deterministic approach to multiple-source broadcasting. Flood-

ing is very robust to packet losses because each node has high chances of receiving

broadcast packets. As a result, network coding can help to reduce the number of

broadcast transmissions but data is delivered with the low probability of packet loss

([64, 65, 66]).

2.7.1.3 Coding-aware routing metric

How the traffic flows are steered through the network to reduce the transmission delay

and maximize network capacity is an interesting application of network coding. Net-

work coding is used as a routing metric to decide routing decisions. One proposition

in this is Routing with Opportunistically Coded Exchanges (ROCX) [39], which gain

much attention. Following works are extended the idea of ROCX to solve more com-

plicated problems: Interference-aware ROCX (IROCX) [40], Topology control ROCX

(TC-IROCX) [41], DCAR [4], [42], Adaptive Routing in Dynamic Ad Hoc Networks

(AROD) [43], Coding-Aware Multi-path Routing (CAMP) [44], Coding-aware real-

time routing (CARTR) [45], Self-recommendation Coding-Aware Routing (SCAR)

[46], Coding-aware opportunistic routing (CORE) [47], [48], [49], etc. Many routing

protocols (e.g., Ad hoc On-Demand Distance Vector (AODV) [67], Dynamic Source

Routing (DSR) [68], Dynamic Destination-Sequenced Distance-Vector (DSDV) [69])

are extended to support the coding-aware routing metric. Essentially, coding-aware

routing metric is find the transmission path that provides the maximum number of

encoder to encode the number of native packets as many as possible. However, the

number of native packets encoded together is small, as written in [70]:

”In a generic coding structure, there is one coding node and n coding flows whose

packets can be encoded by the coding node. Clearly, the encoding number in this coding

structure is at most n. In [2], the authors assume that n is unbounded because there

can be infinite nodes surrounding the coding node. However, we show that due to

physical limitations of the wireless channel and the geometrical constraints for proper

decoding, n is indeed upper bounded by a small constant determined by the physical

layer parameters. In particular, the upper bound is Θ((r
δ
)2) for 2D space and Θ((r

δ
)3)

for 3D space, where r is the ”reliable transmission range” between the a transmitter

and a receiver and δ is the channel parameter such that the receiver with a distance

larger than r + δ can only hear the transmission with a very low probability. For more

details, please refer to [71]”

34

2.7.1.4 Opportunistic routing

Opportunistic routing has recently emerged as a mechanism to resist losses in the

error-prone environment, like wireless networks. In current network systems, conven-

tional routing chooses the next hop per packet before any transmissions. However,

when the links are lossy, the probability of packet transmission is be very low, lead-

ing to the performance degradation. In contrast, opportunistic routing suggests any

node obtaining the packets can participate into forwarding packets to destination.

Let’s consider a two-hop transmission from A to B (Fig 2-11). We have 5 forwarders

Ci, i ∈ [1, 5]. The probability of successful packet transmission on the link between

A and Ci is around 20% while the probability of successful packet transmission on

the link between Ci and B is 100%. Rapidly, we realize the traditional routing can

only offer the sending rate 1 successful packet transmission every 5 packets despite

which nexthop should be picked. However, if opportunistic routing is used, the suc-

cessful rate should be 100% because packet is handled by any of 5 forwarders, which

reduces the probability of packet loss from 80% to 0%. Certainly, this should be an

ideal case because the practical performance may be affected by many other factors.

Nevertheless, the benefit of opportunistic routing is not deniable.

C1

C2

C3

C4

C5

A B
20% 100%

Figure 2-11: An example of opportunistic routing

The very first proposition of opportunistic routing is Extremely Opportunistic

Routing (ExOR) [72, 73] even though ExOR and some successors (e.g., Simple Op-

portunistic Adaptive Routing (SOAR) [74]) do not absorb network coding into its

mechanism. ExOR is a cross-layer modification between datalink layer and routing

35

layer. However, the idea ”any nodes as the next hop” can be prone to many chal-

lenges. Multiple nodes overhear the packet and try to forward it. It leads into a

broadcast loop if nodes farther away from destination are so eager to act. Therefore,

how to find the suitable nodes and how they cooperate to forward the traffic effec-

tively (no broadcast loop, no duplication) are the main questions with opportunistic

routing. ExOR provides a highly structured scheduler on the routing access queried

by MAC layer. ExOR builds up a forwarder list and sort the forwarders by their

probability of packet transmission, from the highest to the lowest. Forwarders need

to transmit in that order and one at a time. All nodes try to overhear the transmission

to avoid the duplication. If the transmission is not successful, the next forwarder in

line will be allowed transmitting the packet. The process is repeated until the packet

reaches the destination. Even though this kind of routing is quite interesting, the

highly structured scheduler from ExOR is indeed complicated, quite hard to extend

to support more kind of traffic (e.g., multicast) or exploit the medium spatial-reuse,

i.e., multiple non-interference packets transmitted at the same time.

To suppress the limitations of ExOR, MAC-independent Opportunistic Routing

and Encoding (MORE) [5] introduces the effect of network coding into opportunistic

routing, which significantly improves the network performance. MORE, which uses

RLNC to transmit packets of a flow in the form of multiple linear combinations, gains

two important aspects: i) removing the complexed design of the highly structured

scheduler of ExOR and ii) no routing information exchanged among forwarders to

decide which packet is prioritized for forwarding. Many researches are done to ex-

tended the idea of MORE, such as Coding in Opportunistic Routing (CodeOR) [75],

Online Opportunistic Network Coding (SlideOR) [76], Multipath TCP with Network

Coding (CoMP) [77], Network Coded Multipath to Support TCP (CodeMP) [78],

A Game Theoretic Framework for Wireless Multipath Network Coding (DICE) [79],

and Cumulative Coded Acknowledgments (CCACK) [80].

2.7.2 Ad-hoc sensor networks

A sensor network deploys sensor nodes which are simple and cheap devices to collect

a specific kind of information (e.g., the weather-like data) at a located area. During

the exchange of information from many tiny sources to a sink node (probably the data

center), using the RLNC to steer the traffic and resist losses is a good solution [81],

[82]. In dense sensor networks with many of tiny sensor terminals, the multi-hop path

from many sources (the sensors) to one destination (the sink) always exists. With

RLNC, we don’t need to find the path but data can be combined and broadcasted.

Even though a specific protocol is not given, the authors from [82] conclude that

36

RLNC can provide the benefit more than the conventional way. Other works on

applying RLNC into ad-hoc sensor network, the authors from [83] propose Partial

Network Coding (PNC). This implementation of RLNC which removes all out of date

coded packets with a specific time constraint, defined by the wireless sensor network,

shows good performances in a real environment. However, the traffic in PNC needs

to be application-specific. AdapCode [64] provides an extra gain by network coding

by coding traffic from upstream (e.g., updates from the control center) to all leaves.

Indeed, this implementation helps to increase the performance but the data from

upstream is not quite mainstream in wireless sensor network. Similarly, [84] provide

a link-by-link feedback mechanism in wireless sensor networks to save up the energy

consumption.

To this very end, Zigbee Index-coding (ZInC) [85] suggests that applying the

RLNC as ”the whole package” from others like wireless networks will not be a well-

considered solution. ZInC is an index coding scheme that is tailored by the constraints

of wireless sensor networks. Generally, ZInC is an enhancement of ZigBee, the most

widespread technology for sensor networking and wireless personal area networks.

ZInC is designed to focus on coding the data from downstream to upstream which

dominates the bandwidth of wireless sensor network. The authors notices even though

the packet data in sensor networks are quite small, the overhead (e.g., packet header)

is excessive. They proposes in the many-to-one wireless sensor network, each source

data can dominate a part of data packet (i.e, only few bits or up to few bytes)

and this part can help to identify the source, hence, it’s called the index coding

scheme. Through each hierarchical node, the overhead is significantly reduced while

data are still aggregated to the upstream. Consequently, ZInC improves the network

performance.

2.7.3 Peer to peer (P2P) file distribution

In a P2P content distribution network (e.g., BitTorrent [86]), a tracker, the one ob-

taining the file, becomes the first seeder, the node which splits the sharing file into

many small blocks and distributes them to a swarm of nodes which needs the files

(called leechers). Because the swarm are located randomly around the Internet, the

structure of BitTorrent network is also random. Some leechers can get the blocks di-

rectly from seeder while others can’t. Instead, leechers in the swarm start exchanging

the blocks after they get sufficient new blocks from their neighbours. The distribution

is spread around until the leechers receive the whole file, becoming the seeders them-

selves. Each node in the BitTorent network can join and leave freely. Avalanche [87]

is an enhancement of BitTorrent that adapts the RLNC into the BitTorrent system to

37

resist the loss of blocks more effectively. Network coding helps Avalanche to reduce

the knowledge of block distribution throughout the network by simply broadcasting

the linear coding combinations instead. Each leecher starts transmitting the linear

coding combinations generated by their own blocks whenever they know there is new

information (i.e., new blocks) needed exchanging among them. Because each block is

around hundreds of kilobytes, the packet overhead (e.g., the coefficient list attached

to each coded packet...) can be ignored for the overhead.

More similar works [88, 89, 90, 91, 92, 93] follow the similar discipline to solve

many different challenges arise with network coding in distributed systems.

2.7.4 Network security

There are many applications of network coding for the security:

• Resistance against eavesdropping

• Detection of malicious nodes in networks

• Resistance against jamming attacks

By the nature of network coding, data is mixed, transformed and widespread,

making it harder to eavesdrop [94, 95, 96]. One important note is in network secu-

rity, data can be combined with random information in order to reduce the chance

of unauthorized data recovery. Moreover, the authors of [97] suggests that network

coding itself can support the security if in the network, we ensure all parts of infor-

mation (i.e., the sufficient number of linear network coding combinations) are only

obtained by the dedicated recipient. Consequently, eavesdroppers cannot restore data

in this case. The modification of coefficient list is also used to improve the mechanism

[98]. The intermediate nodes are able to modify the coded packets (i.e., re-encode the

packets) with some random information, thus, the attackers do not apprehend correct

data. For the jamming attacks, the authors from [99] suggest the similar solutions.

2.8 Problem statement

After looking through the current research progress of network coding, the challenges

which we are facing in the wireless environment are solidified to

• In inter-flow network coding, how do we propose a generalized coding condition

to maximize network capacity?

38

• In intra-flow network coding, how do we propose an effective coding scheme

which is robust to random losses to provide the transmission reliability?

We introduce an inter-flow network coding system to improve the throughput

and another intra-flow network coding to provide the transmission reliability. Our

approach is straight-forward: for inter-flow network coding, we will re-design the

coding condition while for intra-flow network coding, we suggest the new coding

schemes. Via simulations, we show the promising results. Details of our contributions

will be lined out in next chapters.

2.9 Chapter conclusion

In this chapter, we present what network coding is and how it can be used to maximize

network capacity. Two important benefits: throughput enhancement and robustness

to random losses to provide transmission reliability are also described. These two

benefits are derived directly from two branches of network coding: inter-flow network

coding (ONC) and intra-flow network coding (RLNC). The state of the art of network

coding in current wireless networks is shown, along with descriptions of typical works

(i.e, inter-flow network coding systems: COPE, BEND and DCAR; intra-flow network

coding systems: Batch Coding, Pipeline Coding and TCP/NC). Main applications

of network coding are discussed with references to notable works in each field. We

conclude the chapter with our problem statement.

39

40

Chapter 3

Inter-flow network coding

This chapter provides our contributions on inter-flow network coding or more pre-

cisely, Opportunistic Network Coding (ONC). In ONC, the coding condition is a key

factor which allows an ONC system to know if the encoded packet can be decoded

successfully later, so that only the traffic flows satisfying the coding condition are

encoded and decoded to improve network performance. We briefly introduce what

ONC is in previous Chapters 1 and 2. We will use the definitions of traffic flow,

coding chance, encoder and decoder as below:

Definition 2 Traffic flow is a subgraph of the network, representing a way to get

from a source to a destination by traversing links in the network.

Definition 3 Coding chance is the ability of intermediate nodes to detect if traf-

fic flows are feasible to be coded under a specific coding condition declared by each

opportunistic coding system. The higher coding chance is found, the more network

performance can improve.

Definition 4 Encoder is the node which receives packets from multiple codable traf-

fic flows and performs the coding process to create coded packets for transmissions.

Definition 5 Decoder is the node which performs the decoding process on coded

packets, generated by the encoder, to retrieve the desired packets successfully.

We propose 3 contributions: DODE, DODEX and DODEX+ which are briefly

introduced in Chapter 1. Next sections 3.1, 3.2 and 3.3 will detail their coding

conditions and illustrate how they can gain more throughput than COPE, BEND

and DCAR. Section 3.4 shows the design of our propositions. Section 3.5 shows

the simulation configurations and results. Fig 3-1 illustrates our work on inter-flow

network coding.

41

Opportunistic Network Coding
(Coding Opportuinistically - COPE)

MAC-layer proactive mixing for Network Coding
(BEND)

Distributed Coding-Aware Routing
(DCAR)

Distributed Opportunistic and Diffused Coding
(DODE)

Distributed Opportunistic and Diffused Coding with Multiple Decoders
(DODEX)

Distributed Opportunistic and Diffused Coding with Multi Encoders and Multiple Decoders
(DODEX+)

Figure 3-1: Opportunistic Network Coding schemes

3.1 Distributed and Diffused Encoding (DODE)

COPE, one of the pioneers of inter-flow network coding, has two limitations: (i)

the coding chances inevitably depend on the established route, (ii) traffic is strictly

encoded based on the two-hop coding pattern. We propose our novel and enhanced

network coding architecture, Distributed Opportunistic Diffused Encoding (DODE).

DODE combines (i) the diffused gain from BEND and (ii) the generalized coding

condition from DCAR to completely solve the limitations present in the three previous

propositions.

COPE suggests codable traffic flows being the flows which traverse through some

similar intermediate nodes on the routing path. These nodes will become the encoders

generating the encoded packets. Encoders and decoders must be neighbors to each

others and all of them are on the routing path of the traffic flows. This will ensure

the encoded packets are handled by correct nodes. Otherwise, traffic is forwarded

normally. Because of the nature of wireless transmission, overheard packets can also

be exploited for the decoding process. In other words, not only the next hops of

codable flows are the candidates to be decoders but also their one-hop neighbors.

By giving the enhanced coding condition, DCAR and BEND increase the chances of

coding flows and outperform COPE. The proposition of BEND is an adjust to which

nodes can be encoders. Encoders in BEND are nodes which receive or overhear

packets from codable traffic flows. Because the number of nodes possible to be coders

increases, it also increases the coding chances, thus, giving the improvement from

BEND over COPE. DCAR finds another approach to redefine which are the decoders.

42

Decoders in DCAR are not limited to one-hop neighbor to coders but any nodes

which stay on the routing path and obtain sufficient extra information to perform the

decoding process successfully.

We propose DODE as a combination of all features from COPE (opportunistic

listening and coding), DCAR (the general coding condition) and BEND (the diffused

gain). We can see the generalization of coding condition from COPE to its successors

(Fig 3-2). At first, COPE requires encoders and decoders to be one-hop neighbors

because the coding condition is easily checked to be met via the information existed

in exchanged messages of current routing protocols (e.g., DSDV). Next, BEND allows

overhearing nodes to be encoders also. The overheard packets in BEND is also re-used

for coding process, not only decoding process like in COPE. Finally, DCAR proposes

that coders and decoders might not be one-hop neighbors by showing a specific case

that coding chances could be found.

0

2

1

3

5

6

7

8

9

4

Decoders in COPE (also in BEND, DCAR)

Coders in COPE (also in BEND, DCAR)

Coders in BEND

Coders in DCAR

Decoders in DCAR

codable transmissions

codable transmissions by overhearing

overheard transmissions

Figure 3-2: Generalizing the coding condition from COPE to DCAR

Fig 3-2 illustrates ”the evolution” of coding condition from all previous works to

DODE. Consider three codable flows F1(0 → 2 → 4 → 5 → 7 → 8), F2(9 → 7 →
6 → 4 → 2 → 0) and F3(1 → 2 → 3). At first, with COPE, only one coding chance

is found at node 2, encoder is node 2 and nodes 0, 3 and 4 are decoders. In BEND,

more coding chances are found at coders 1 and 3. Finally, DCAR suggests another

coding chance found at node 7, encoder is 7 and decoders are 4 and 8.

We can conclude that two extensions given by BEND and DCAR from COPE are

possible to be combined together to create an enhanced network coding system. Con-

sequently, DODE is designed to increase the number of possible coders and decoders,

hence, improving the network performance.

43

3.1.1 Coding chance improvement

Let’s consider the topology depicted in the Figure 3-3 with two flows F1(1 → 2 →
3→ 5) and F2(5→ 6→ 4). COPE, BEND and DCAR cannot find the coding chance

in this example. COPE and DCAR cannot be applied in this case because the two

flows are not intersected. BEND cannot be applied because nodes 2 and 4 are not

neighbors. However, it is easy to detect that it is possible to code the two flows with

node 3 as encoder, and nodes 4 and 5 as decoders.

Figure 3-3: The missing coding chance scenario with COPE, BEND and DCAR

3.1.2 Generalized coding condition of DODE

From this observation, the coding condition of DODE combined from DCAR and

BEND is presented by Condition 6 and Condition 5 (i.e, the coding condition of

multiple flows of BEND in Section 2.5.3). DODE only replaces the definition of

the decoder (Dij and Dji) of BEND by the definition of the decoder of DCAR and

introduces the Condition 6. Condition 6 states that two native flows Fi and Fj (i 6= j)

are considered as codable to each other at an encoder group Cij if and only if there

exist two nodes vfFi
, vgFj

∈ Lij such that one downstream node of vfFi
(or vgFj

) on

flow Fi (or on flow Fj) is the upstream node of vgFj
(or vfFi

) on flow Fj (or on flow

Fi) or at least is the neighbor of that upstream node. Lij is the set of nodes u on

flows Fi and nodes t on flow Fj such that there are links between u and t or u = t.

Cij, the encoder group that generates coded packets between two flows Fi and Fj, is

the set of neighbors of four nodes vf−1Fi
, vg−1Fj

, vf+1Fi
and vg+1Fj

. Dij (or Dji) is the

set of decoders of flow Fi (or flow Fj) to remove the native packet of flow Fj (or flow

Fi) from the coded packet generated by the encoder group Cij. The coding condition

of multiple flows is inherited from BEND (Condition 5).

44

Condition 6 Two native flows Fi and Fj (i 6= j) are considered as codable to each

other at a group of nodes Cij ⊂ Lij = {∀u ∈ VFi
,∀t ∈ VFj

|u = t
∨

(u, t) ∈ E} if and

only if:

• ∃vfFi
,∃vgFj

∈ Lij.

• |Dij| = |Dn(vfFi
, Fi)

⋂
(Up(vgFj

, Fj)
⋃
N(Up(vgFj

, Fj)))| = 1.

• |Dji| = |Dn(vgFj
, Fj)

⋂
(Up(vfFi

, Fi)
⋃
N(Up(vfFi

, Fi)))| = 1.

• |Cij| = |N(vf−1Fi
)
⋂
N(vg−1Fj

)
⋂
N(vf+1Fi

)
⋂
N(vg+1Fj

)| ≥ 1

For example, let’s reconsider the network situation in Fig 3-3. As we check L12 =

{1, 4, 3, 6, 5}, there exist two nodes 3, 6 ∈ L12 such that Dn(3, F1) 3 5 ∈ Up(6, F2)

and Dn(6, F2) 3 4 ∈ N(1), 1 ∈ Up(3, F1). However, only 3 is the encoder because

3 ∈ C12 = N(2)
⋂
N(5)

⋂
N(4) = {3}. As there are two flows coded to each other,

C1 = C2 = C12 = C21 = {3}, D1 = {5} and D2 = {4}.
With the new designed coding condition, DODE can capture more coding chances

to enhance the network utilization.

3.2 Distributed and Diffused Encoding with Mul-

tiple Decoders (DODEX)

For better performance, the aim of network coding systems COPE, BEND, DCAR

and DODE is trying to find more and more coding chances in network topologies.

However, they restricted the finding within a simple rule ”a pair of encoder and de-

coder”. For every coded packet sent on the traffic flow, we always have one encoder

and one decoder. We redesign the coding condition in DODEX for each coded packet

at the encoder, which allows multiple decoders in order to find more coding chance

and improve network utilization. After one encoder creates the coded packets, mul-

tiple decoders can share the decoding process to retrieve the desired packet for the

destination. More coding chances can be found, leading to an improved network

performance.

We would like to discuss a bit the core idea of decoupling the pair of encoder and

decoder. Actually, the idea goes straight from a limitation that how an intermedi-

ate nodes obtains sufficient extra information to become a decoder, especially, the

multiple packet coding (> 2) case. Practically, the number of codable flows coded

together are greatly constrained and is a small number [71]. Multiple packet coding

45

(> 2) barely exists except the ideal wheel topology (Fig 3-4). In the wheel topology,

one node is a neighbor of other nodes except its opposite node which is the node to

receive its sending packet. For example, in Fig 3-4, node 5 is a neighbor of nodes

0, 2, 3, 4, 6, 7 and 8 except node 1. Wheel topology in Fig 3-4 allows maximum 8-

packet coding (there are 8 nodes on the wheel and each node transmits packets to its

opposite node).

With the concept of ”one coder- multiple decoders”, nodes obtaining insufficient

(or partly) extra information can co-operate together to perform the decoding process.

Consequently, more coding chances will be found. We will look into the details in

next section.

Figure 3-4: Wheel topology

3.2.1 Coding chance improvement

In DODEX, encoders can combine many native packets for transmission and multiple

decoders will recover the desired packet. Actually, because multiple nodes insuffi-

ciently obtain native packets of other flows to perform the decoding process by itself.

These nodes partially decode the coded packet and transmit that ”partially”-decoded

packet to next decoders. The decoding process is repeated on the next decoder until

the coded packet reach the last decoder which decodes the coded packet to get the

original native packet successfully. In other words, the decoding process is sharing

among the nodes. The coded packets are not maintained ”untouched” but eventually

”peeled out” the unnecessary packets until the original native packet reaches the desti-

nation. Consider Fig 3-5, we can see three flows F1(0→ 3→ 4→ 5), F2(2→ 3→ 6)

46

and F3(8 → 7 → 3 → 1) can be coded together but on the flow F1 there are two

decoders 4 (for leaving out packet p2) and 5 (removing p3 to get the desired p1). With

previous implementation, only 2-packet coding can be found instead of 3-packet cod-

ing like our proposition DODEX. Because DODEX inherits the advantage of general

coding condition from DCAR, the encoder will know which next hops can perform

the decoding processes to remove the packets from different paths and obtain the

desired one successfully.

Figure 3-5: Coding chance improvement with DODEX

3.2.2 Generalized coding condition of DODEX

The coding condition of DODEX can be written as in Condition 6 (i.e, the coding

condition of two flows of DODE in Section 3.1.2) and Condition 7. As DODEX

introduces a new concept ”one coder - multiple decoders”, DODEX keeps intact the

coding condition between two flows of DODE (Condition 6) and changes the coding

condition of multiple flows (Condition 7). Condition 7 states: each pair of flows must

be codable and intersected at an encoder group Cij, which contains the encoders of

coding packets between two flow Fi and Fj. Besides, for each flow, the number of

decoders of a flow Fi can be more than 1 (|Di| ≥ 1), and Ci is the encoder group

containing all encoders to create coded packets of multiple flows ∀Fi ∈ F, which must

be the intersection of all Cij: Ci =
n⋂

j=1,j 6=i

Cij (|Ci| ≥ 1).

Condition 7 Native flows belonging to a set of flows F = {Fk|k ∈ [1, n]} (n is the

number of flows) are considered as codable together at a group of nodes ∀Fi ∈ F, Ci =

47

n⋂
j=1,j 6=i

Cij if and only if:

• ∀Fi, Fj ∈ F(i 6= j) | Fi and Fj are considered as codable to each other at the

group of node Cij.

• ∀Fi ∈ F, |Di| = |
|F|⋃

j=1,j 6=i

Dij| ≥ 1.

• |Ci| ≥ 1

For example, let’s consider three flows F1(0 → 3 → 4 → 5), F2(2 → 3 → 6) and

F3(8→ 7→ 3→ 1) in Fig 3-5. Let’s check Condition 6 and Condition 7:

• L12 = {0, 3, 4, 2, 6}, ∃3 ∈ L12|Dn(3, F1) 3 4 ∈ N(2), 2 ∈ Up(3, F2)
∧
Dn(3, F2) 3

6 ∈ N(0), 0 ∈ Up(3, F1) =⇒ C12 = C21 = {3}, D12 = {4} and D21 = {6}

• L13 = {0, 1, 3, 7, 5, 8}, ∃3 ∈ L13|Dn(3, F1) 3 5 ∈ N(8), 8 ∈ Up(3, F3)
∧
Dn(3, F3) 3

1 ∈ N(0), 0 ∈ Up(3, F1) =⇒ C13 = C31 = {3}, D13 = {5} and D31 = {1}

• L23 = {1, 2, 3, 6, 7}, ∃3 ∈ L23|Dn(3, F2) 3 6 ∈ N(7), 7 ∈ Up(3, F3)
∧
Dn(3, F3) 3

1 ∈ N(2), 2 ∈ Up(3, F2) =⇒ C23 = C32 = {3}, D23 = {6} and D32 = {1}

• =⇒ C1 = C2 = C3 = {3}, D1 = D12

⋃
D13 = {4, 5}, D2 = D21

⋃
D23 = {6}

and D3 = D31

⋃
D32 = {1}

3.3 Distributed and Diffused Encoding with Mul-

tiple Encoders and Multiple Decoders (DO-

DEX+)

We improve the network performance of ONC by extending the coding condition.

In this final phase, we complete the coding condition by presenting the idea of re-

encoding in ONC for the throughput enhancement. Normally, in DCAR, DODE or

DODEX, the coded packets are only forwarded until they reach the decoders. The

coded traffic is untouched even though there may be any coding chances found. In the

complete form of general coding condition of ONC, we propose ”the re-encoding” or

multiple encoders on the same traffic: for the coded packets, the re-encoding can be

performed if the coding condition is met again with this traffic. We extend DODEX

to Distributed and Diffused Encoding with Multiple Coders and Multiple Decoders

48

(DODEX+). With this, more coding chances are found and the performance will be

improved.

The idea is totally different from the re-encoding in RLNC [7]. The re-encoding

in RLNC is to avoid the non-innovative transmission when the intermediate nodes,

especially in the opportunistic routing (e.g., MORE [5]), need to forward the packets

from the source to the destination. If they simply forward the coded data, it could

lead to some non-innovative and wasted transmissions. On the other hand, the re-

encoding will ensure that packets are coded and innovative when they arrive at the

destination.

In contrast, our idea about the re-encoding is proposed to complete the generalized

coding condition in ONC. The heart of the idea is that all traffic can be coded together

whenever there are any coding chances. Because checking coding condition of ONC

is quite sensitive over transmission time and delay, coding packets which they are

native or coded will help to maximize network capacity.

3.3.1 Coding chance improvement

Consider the situation in Fig 3-6, the coded packet p1+p2 at node 5 is only forwarded.

Even though we notice that flow F3 can be coded with flow F2 at node 5, the coding is

only performed between the native packets of F2 and F3. The limitation is not quite

necessary as we easily notice the coded packet p1 + p2 and native packet p3 can be

coded together to produce p1 + p2 + p3. Decoders 6, 2 can obtain the desired packet

successfully (e.g., node 6 gets p2 because it has p1 by overhearing and p3 is its own).

0

1

2

3

4
5

6

p
1

p
3

p
1

p
2p

1
p
2

p
3

+ +
p
1

p
2+

p
1

p
2+

p
1

p
2

p
3

+ +

Figure 3-6: Coding chance improvement with DODEX+

49

3.3.2 Generalized coding condition of DODEX+

The generalized coding coding of DODEX+ is presented in Condition 8 and Condition

9. The coding condition between two flows and the coding condition of multiple flows

are kept intact from Condition 6 and Condition 7 but extended to support coded

flows. Condition 8 states: two native or coded flows Fi and Fj (i 6= j) are considered

as codable to each other at an encoder group Cij if and only if there exist two nodes

vfFi
, vgFj

∈ Lij such that one downstream node of vfFi
(or vgFj

) on flow Fi (or on flow

Fj) is the upstream node of vgFj
(or vfFi

) on flow Fj (or on flow Fi) or at least is the

neighbor of that upstream node. Lij is the set of nodes u on flows Fi and nodes t on

flow Fj such that there are links between u and t or u = t. Cij, the encoder group

that generates coded packets between two flows Fi and Fj, is the set of neighbors of

four nodes vf−1Fi
, vg−1Fj

, vf+1Fi
and vg+1Fj

. Dij (or Dji) is the set of decoders of flow

Fi (or flow Fj) to remove the packet of flow Fj (or flow Fi) from the coded packet

generated by the encoder group Cij.

Condition 8 Two native or coded flows Fi and Fj (i 6= j) are considered as codable

to each other at a group of nodes Cij ⊂ Lij = {∀u ∈ VFi
,∀t ∈ VFj

|u = t
∨

(u, t) ∈ E}
if and only if:

• ∃vfFi
,∃vgFj

∈ Lij.

• |Dij| = |Dn(vfFi
, Fi)

⋂
(Up(vgFj

, Fj)
⋃
N(Up(vgFj

, Fj)))| = 1.

• |Dji| = |Dn(vgFj
, Fj)

⋂
(Up(vfFi

, Fi)
⋃
N(Up(vfFi

, Fi)))| = 1.

• |Cij| = |N(vf−1Fi
)
⋂
N(vg−1Fj

)
⋂
N(vf+1Fi

)
⋂
N(vg+1Fj

)| ≥ 1

Condition 9 states: each pair of native or coded flows must be codable and in-

tersected at an encoder group Cij, which contains the encoders of coding packets

between two flow Fi and Fj. Besides, for each flow, the number of decoders of a

flow Fi is can be more than 1 (|Di| ≥ 1), and Ci is the encoder group containing

all encoders to create coded packets of multiple flows ∀Fi ∈ F, which must be the

intersection of all Cij: Ci =
n⋂

j=1,j 6=i

Cij (|Ci| ≥ 1).

Condition 9 Native or coded flows belonging to a set of flows F = {Fk|k ∈ [1, n]}
(n is the number of flows) are considered as codable together at a group of nodes

∀Fi ∈ F, Ci =
n⋂

j=1,j 6=i

Cij if and only if:

50

• ∀Fi, Fj ∈ F(i 6= j) | Fi and Fj are considered as codable to each other at the

group of node Cij.

• ∀Fi ∈ F, |Di| = |
|F|⋃

j=1,j 6=i

Dij| ≥ 1.

• |Ci| ≥ 1

One important note is that the re-encoding cannot happen in COPE or BEND due

to their two hop coding pattern, where decoders are the one-hop neighbors of coders

and rip off the unnecessary packets immediately. Consider the chain topology in Fig

3-7 with two flow F1(0 → 3) and F2(3 → 0) , at encoders 1 and 2, the re-encoding

of coded packets does not happen because for every encoded packet received, the

decoding process will occur first to extract the native packets. Afterwards, another

separate encoding process may be performed. For example, assume at node 1 there

are two packets p1 and p2 coded together to produce the coded packet p1 + p2. At

node 2, the coded packet will be decoded to get p1. This packet will be encoded

with p2′ , another packet from flow F2 of node 3. As we can see, there no re-encoded

packet p1 + p2 + p2′ because next hop (node 2) will act as a decoder to remove the

non-intended packet.

0

1

2

3

p
1 p

1
p
2+

p
1

p
2+

p
2’p

2

p
1

p
2’+

p
2’

p
2

Figure 3-7: No re-encoding in COPE or BEND

3.4 Design

3.4.1 Node architecture

To perform the coding condition above, DODE, DODEX and DODEX+ have to

collect the information ”who sends what” on the transmission path of each flow and

detect the coding chances based on that. They store and forward native packets,

51

generate and forward coded packets when coding chances exist. Particularly, each

node changes its behaviors to handle the native and coded traffic. To do this, they

need to collects the network coding information. In DODE, DODEX and DODEX+,

the network coding information includes the neighbor list, the source routing list

and the decoder list (details in Sections 3.4.1.1 and 3.4.1.2). The network coding

information is required by nodes to check the coding condition over the packets in

the queuing system. We also modify Destination-Sequenced Distance-Vector Routing

(DSDV) [69], a well-known table-driven routing scheme for wireless networks, so

that the network coding information is broadcast over the network via the routing

messages. As ONC has to know ”the neighbor state” (or the network topology) to

check the coding condition and make coding decisions, we use the table-driven routing

protocol like DSDV for its simpleness in the mechanism and easy modification (e.g.,

full routing table updates to broadcast network coding information). AODV or OLSR

can be also used to broadcast network coding information but more complicated

modification may need to be done.

3.4.1.1 Neighbor list and source routing list

Each node maintains its neighbor list and also its neighbors’ neighbor lists. Besides

the original information of DSDV, each route entry in the update message will also

carry the list of nodes constituting the route and their neighbors. The neighbor list is

obtained by collecting the senders’ addresses of DSDV messages. Before broadcasting

out the DSDV messages, the sender adds its address to the current list of routing

path in the entry. After receiving the routing updates from neighbors, each node

will process the routing update messages as the original DSDV routing protocol does

and cache the network coding information. The receiver, in turn, will broadcast the

update after adding its network coding information (its neighbor list). The process

will be repeated per update. Thus, all nodes in the network gradually acquire enough

information to perform the correct coding. The source routing list is built through a

the similar procedure.

3.4.1.2 Decoder list

Because multiple decoders need to co-operate to perform the decoding, coded packets

broadcasted by coders have to maintain a list storing the addresses of decoders. The

list is to be computed when encoder perform the encoding process. The result is the

addresses of decoders. The encoder will add the decoder list into coded packets for

transmissions. Each node will check if it is the decoder by comparing its address with

52

the addresses in the list. The node then performs the decoding process to remove as

much as possible the extra information and forward the remained if possible.

3.4.1.3 Queuing system

DODE, DODEX and DODEX+ use four different queues: Qnative for storing the

native packets, Qovrhrd for storing the overheard packets, Qcodable for the linked lists

of native packets that can be combined together to create coded packets, andQcoded for

storing coded packets that need forwarding or encoding (only DODEX and DODEX+

need this queue). Figure 3-8 shows a representation of queues. The algorithm to find

the coding chances is straight-forward: packet received from data-link layer is checked

with linked list of packets stored in Qcodable first, and then existed packets in Qnative,

Qovrhrd and Qcoded. If there is a match, the packet will be added into the link list of

Qcodable or a new link list of both matched packets is created and moved into Qcodable.

Each queue is allowed to forward the packets down to physical layer for transmission

in a round robin fashion. The algoritm to check the coding condition is polynomial

in time and equal to Θ(|Qcodable|+ |Qnative|+ |Qovrhrd|+ |Qcoded|).

Q_native

Q_ovrhrd

Q_coded

Q_codable

native packet

overheard packet

coded packet

packets in a linked list

Figure 3-8: Queuing system

3.4.2 Routing metric with coding chance discovery for DSDV

protocol - SPENM

Routing decision can affect the efficiency of network coding. Let’s recall the example

shown in Figure 3-3. As the routing protocol has decided the path 1→ 2→ 3→ 5 for

flow F1 and the path 5→ 3→ 4 for flow F2, BEND cannot be applied because node

2 is not a neighbor of node 4. If the path of flow F1 were 1→ 0→ 3→ 5, BEND can

be used. It means that if the routing path is correctly chosen so that the next hop is

the node with the highest number of neighbors, we can greatly increase the chance to

fulfil the coding condition. From this observation, we introduce ”the Shortest Path

53

with Enriched Neighborhood routing Metric” (SPENM) with a simple discipline: for

equal shortest paths to a destination, we will use the one with the highest number of

neighbors for intermediate nodes.

With this modified DSDV and SPENM, we gain two benefits for the coding+routing

discovery process. First, we only do a little modification to DSDV. We reuse the orig-

inal mechanism to exchange more routing information needed for the network coding

functionality among nodes. Second, DODE provides SPENM which does not need a

long convergence to find coding chances. We can view the SPENM as a ”guide” to

keep the traffic flows going through the intermediate nodes with the most potential

coding chances in DODE network system. For example, in Fig 3-9, without SPENM,

traffic flows F1 and F2 can choose the transmission paths which do not gain the high-

est number of neighbors for intermediate nodes. With SPENM, the routing paths

can be selected so that both flows are codable with maximum coding chances.

Transmission range

Traffic flows with SPENM

Traffic flows without SPENM

Figure 3-9: An illustration for benefits gained by SPENM

In order for the routing process to select the shortest path with highest coding

chance, among the shortest paths with equal number of hop counts pi, the path with

the highest number of neighbors will be chosen based on the SPENM metric which

is calculated as follows:

SPENM(pi) =
n∑
j

neighborsj

where:

• j is the intermediate node on the routing path pi.

• n is the number of intermediate nodes on pi.

• neighborsj is the number of neighbors of the node j.

54

3.4.3 Modified DSDV packet format

In this section, we will describe the modified packet format used in our DSDV to

support the network coding at MAC layer. The format of DSDV update packet is

depicted in Figure 3-10.

Figure 3-10: The modified DSDV update packet format

As we discussed above, we keep the original information of the original DSDV

(i.e., destination, metric and sequence number) intact because we want to have the

same functionalities but adding the mechanism to support the network coding. Here,

we add three more lists: the neighbor list, the source routing list and the decoder list.

The decoder list is only used by DODEX and DODEX+.

3.4.4 Node behavior

Each node in DODE, DODEX and DODEX+ has to perform packet reception and

packet transmission. We will illustrate the node behavior via the flow chart.

3.4.4.1 COPE and BEND

Node behavior is shown in Fig 3-11. We do not illustrate the packet transmission

from COPE to DODEX because it is simple: the network coding layer only forwards

the packet based on the upper layer’s request. For packet reception, COPE and

BEND will check if the packet is coded or not to perform the decoding. They do

not support decoders that are two-hop away from coders and the decoding process

must produce a native packet. Otherwise, received packet gets dropped. If the packet

is native, packet is checked with others from every queues successively: the codable

queue Qcodable, the native queue Qnative and the overheard queue Qoverheard to meet

the coding condition. Whenever it is a match, the packet is added to the linked list,

55

along with related codable packets. The linked list is then included into the codable

queue Qcodable. If the packet is not codable after the check, the packet is stored into

the associated queues.

Figure 3-11: Packet reception of COPE and BEND

3.4.4.2 DCAR and DODE

In DCAR and DODEX, the packet reception (Fig 3-12) is quite similar except the

coding condition, which leads to the new mechanism called forwarding coded packets.

Because they support the decoders over two-hop away from coders, the coded packets

will go through some validations. If the coded packet is forward-able and intended

to the node, it will be kept. The node will ensure the coded packets intact for

transmission by adding them into a separate coded queue Qcoded. Otherwise, packets

will get dropped.

3.4.4.3 DODEX and DODEX+

Because DODEX and DODEX+ support ”multiple decoders” feature, each encoded

packet maintain the decoder list to ensure the correct forwarding. The decoder list

56

Figure 3-12: Packet reception of DCAR and DODE

is created by the encoder and included into the packet header for the next hops to

check. Based on other network coding information (e.g., the neighbor lists...) the

node will conclude if it is appropriate to forward the packet (i.e., the decoder is still

on the routing path). If the forwarding is wasteful, the packet will get dropped. We

add a validation before the decoding, so the traffic can be properly forwarded.

DODEX+ support ”the re-encoding” feature and the encoded packets will be

checked with the coding condition again to collect as much as possible the coding

chance (Fig 3-13 and 3-14) before the transmission. We decide the packets are checked

to meet the coding condition again before the transmission because it does not affect

to the current mechanism of DODEX much.

3.5 Simulation and results

3.5.1 DODE

We use NS-2 as the simulator to compare the performances of DODE with the previous

architectures: the original IEEE 802.11, COPE, BEND and DCAR. We use two

topologies as illustrated in Figures 3-15(a) and 3-15(b). The first topology (Figure

3-15(a)) is provided for test scenario of 2-packet coding (x-packet coding, i.e. the

combination of x packets in a single transmission). The second topology (Figure

57

Figure 3-13: Packet reception of DODEX and DODEX+

Figure 3-14: Packet transmission of DODEX+

3-15(b)) is used for test scenario of 3 or 4-packet coding.

Each topology is created in a flat area of 1000m× 1000m. The data traffic in the

network are all CBR (Constant Bit Rate) flows sent over UDP (User Datagram Proto-

col) using 1000-byte datagrams with an arrival interval of 0.01s and traffic generation

duration at source of 150s. The performances is then evaluated by two performance

metrics, the throughput and the number of coded packets. We vary the traffic flows in

test scenarios as shown in Table 3.1 . Afterwards, the test scenarios will be executed

with each traffic-flow variety for all implementations and the result is collected with

a 95% confidence interval.

58

(a) Test case 1 topology for coding 2 native
packets

(b) Test case 2 topology for coding 3-4 packets

Figure 3-15: Test cases for exposing 2, 3-packet coding in DODE

Table 3.1: Flows in Test scenarios
3 flows varied in test sce-
nario 1

F1(0→ 1→ 2→ 3), F2(4→ 5→ 6→ 7), F3(2→ 5→ 6)

5 flows varied in test sce-
nario 1

F1(0 → 1 → 2 → 3), F2(4 → 5 → 6 → 7), F3(2 → 5 → 6),
F4(3→ 2→ 1→ 0), F5(7→ 6→ 5→ 4)

4 flows varied in test sce-
nario 2

F1(0 → 3 → 4 → 5), F2(5 → 4 → 3 → 0), F3(2 → 4 → 7),
F4(7→ 4→ 2)

6 flows varied in test sce-
nario 2

F1(0 → 3 → 4 → 5), F2(5 → 4 → 3 → 0), F3(2 → 4 → 7),
F4(7→ 4→ 2), F5(1→ 3→ 6), F6(6→ 3→ 1)

In the first topology, we run the test with three flows F1(0 → 1 → 2 → 3),

F2(4→ 5→ 6→ 7) and F3(2→ 5→ 6). In the second test case, there are five flows:

the above-mentioned flows F1, F2 and F3 and two additional ones F4(3→ 2→ 1→ 0)

and F5(7→ 6→ 5→ 4). The test case is then repeated after adding two more codable

flows F4(3 → 2 → 1 → 0) and F2(7 → 6 → 5 → 4). The purpose of this test case is

exposing the advantage of DODE over the formers by two keys: the generalized coding

condition helps DODE to detect the code chances (while COPE, BEND does not)

and the diffused gain which will reduce the collision of traffic flow through encoders,

thus, giving DODE an upper hand over the previous architectures.

In each test case, a number of intermediate nodes are placed between source and

destination. Based on the purporse of test case, the number of flows UDP/CBR

(Constant Bit Rate 800kbps on UDP) can be varied, but maintained data transfer

during the test case runtime. The data transfer is 150s.

All parameters and values that are used in running the simulation are referenced

in the Table 3.2.

As shown in Figures 3-16(a) and 3-16(b), the throughput obtained by DODE gains

59

Table 3.2: Simulation parameters

Parameter Value Comments

Flat Grid 1000x1000 Simulation space, a flat field
1000mx1000m

Bandwidth 1Mbps The bandwidth of wireless network
Mac layer IEEE 802.11, COPE,

BEND, DCAR, and
DODE

IEEE 802.11 with support the network
coding

Routing layer DSDV DSDV with support the network coding
Propagation model Two-Ray Ground A propagation model supported by ns-2

to simulate the signal propagation
Interference model Thermal Threshold If a packet power is lower than a min-

imum threshold (set fixed), packet will
get dropped

Error model ErrorModel80211 An error model supported by ns-2 to
simulate the loss on wireless links

UDP/CBR rate 800kbps Rate for application Constant Bit Rate
on UDP

Test case duration 320s The testcase runtime
Data transfer duration 150s The data transfer runtime
CBR packet size 1000 bytes Data in each CBR packet
UDP traffic UDP/CBR UDP constant bit rate at 800kbps

the extra 21% - 30% over DCAR, BEND, COPE and IEEE 802.11. First, based on the

two-hop coding pattern, COPE or BEND cannot detect the coding chances, forcing

them to transmit the native packets during data transfer. That’s the reason why there

is almost no coding packets for COPE or BEND, and their throughputs achieved are

nearly the same as the throughput of IEEE 802.11. Second, in the case of DCAR, it

requires the encoder to be on the routing paths of traffic flows, so that only either 2

or 5 is the encoder, depending on the routing result in each simulation running. Due

to the presence of the flow F3 whose traffic is (2→ 5→ 6), the traffic going through

node 2 or 5 is dense and collisions are increased, resulting in packet drops at node 2

or 5. With the diffused gain, DODE can overcome this problem by sharing the load

of coding process between 2 and 5 while still keeping the traffic of F3 sending.

COPE or BEND does not detect the coding chance fully like DODE or DCAR,

leaving them to perform 2 packet encoding while DODE or DCAR (sometimes) per-

form 3 or 4 packet encoding. There are plenty of equivalent encoders on the path

from source to destination, causing the packet collision at encoder on routing path in

case of DCAR, reducing its throughput gain compared with DODE.

We also have a note on the coded packets gained by COPE and BEND in test case

2 are greatly reduced after adding 3 more reverse flows. This happens because COPE,

BEND intend to do the 2-packet encoding at node 4 or 8. Only the packet pairs of

60

(a) Coded packets result for Test case 1

(b) Throughput result for Test case 1

Figure 3-16: Test results for coding 2 packets

(F2, F3), (F2, F5), (F3, F6) can be coded together. However, the packets from flow F1

are now considered as non codable and contributed to the collision with the codable

ones. Moreover, the source or destination of the other flows can be the intermediate

nodes of the routing path for flow F1. All these constraints can create a great collision

around the node 4 or 8 which reduces the number of successful coded packets, thus,

decreasing the throughput gained by COPE or BEND. On the other hand, DODE

and DCAR manage to overcome the problem. They can detect more coding chances

thanks to the generalized coding condition, resulting in releasing the packets in the

queue faster so that reducing the collision.

61

(a) Coded packets result for Test case 2

(b) Throughput result for Test case 2

Figure 3-17: Test case result for coding 3-4 packets

In the second topology, the performances of DODE, IEEE 802.11, COPE, BEND

and DCAR are presented in Figures 3-17(a) and 3-17(b). There are two test cases: the

first one with four flows (F1(0 → 3 → 4 → 5), F2(5 → 4 → 3 → 0), F3(2 → 4 → 7),

F4(7 → 4 → 2)) and the second with four flows mentioned above and two more

(F5(1 → 3 → 6), F6(6 → 3 → 1). Particularly, DODE uses the metric SPENM,

which helps maintaining traffic going through the path with the most coding chances

as illustrated in Figure 3-15(b) while the previous suffer from their own limitation

of choosing the different paths: COPE, BEND uses the shortest routing metric sup-

ported by DSDV, which can select the non-codable paths; DCAR requires the encoder

62

to stay on the routing paths of flows, so traffic is concentrating on encoding nodes.

For example, with COPE, BEND, traffic for F1, F2 may flow by F ′1(0→ 1→ 2→ 5)

and F2(5→ 4→ 3→ 0). With DCAR, it keeps selecting 3 and 4 as encoders for test

simulation. These problems force the previous coding systems not to encode packets

fully (COPE, BEND) or to suffer packet drop (COPE, DCAR), giving DODE a bet-

ter performance 16%-33% over the formers as shown in Figures 3-20(a) and 3-20(b).

COPE, BEND and DCAR may select transmission paths not feasible to perform the

encoding caused by their routing metrics. For example, all the network architectures

will choose the path (2 → 4 → 7) for flow F2 and the reversed one for F3. Never-

theless, the previous may choose the path (0 → 1 → 4 → 5) for flow F1 and DODE

chooses (0→ 3→ 4→ 5) for flow F1 by using SPENM.

3.5.2 DODEX

We use NS-2 as the simulator to compare the performances of DODEX with the

previous architectures: IEEE 802.11, COPE, BEND, DCAR and the non-extended

DODE. We use two topologies as illustrated in Fig 3-18(a) and 3-18(b). The first

topology (Fig 3-18(a)) is provided for test scenario of maximum 3-packet coding with

light traffic. The second topology (Fig 3-18(b)) is used for test scenario of maximum

4-packet coding with stress traffic causing high packet collisions and drops.

Each topology is created in a flat area of 1000m× 1000m. The data traffic in the

network are all CBR (Constant Bit Rate) flows sent over UDP (User Datagram Proto-

col) using 1000-byte datagrams with an arrival interval of 0.01s and traffic generation

duration at source of 150s. The performances is then evaluated by two performance

metrics, the throughput and the number of coded packets. We vary the traffic flows in

test scenarios as shown in Table 3.3. Afterwards, the test scenarios will be executed

with each traffic-flow variety for all implementations and the result is collected with

a 95% confidence interval.

Table 3.3: Flows in Test scenarios
3 flows varied in test sce-
nario 1

F1(0→ 3→ 4→ 5), F2(2→ 3→ 6), F3(8→ 7→ 3→ 1)

6 flows varied in test sce-
nario 1

F1(0 → 3 → 4 → 5), F2(2 → 3 → 6), F3(8 → 7 → 3 → 1),
F4(5→ 4→ 3→ 0), F5(6→ 3→ 2), F6(1→ 3→ 7→ 8)

7 flows varied in test sce-
nario 2

F1(6 → 2 → 3 → 1), F2(1 → 3 → 2 → 6), F3(0 → 3 → 4 → 5),
F4(5→ 4→ 3→ 0), F5(5→ 6), F6(1→ 4), F7(0→ 2)

10 flows varied in test sce-
nario 2

F1(6 → 2 → 3 → 1), F2(1 → 3 → 2 → 6), F3(0 → 3 → 4 → 5),
F4(5 → 4 → 3 → 0), F5(5 → 6), F6(1 → 4), F7(0 → 2), F8(5 →
6→ 2), F9(2→ 6→ 5), F10(0→ 2→ 6)

63

(a) Test topology 1 for 3-packet coding

(b) Test topology 2 for 4-packet coding

Figure 3-18: Test scenarios for exposing 3 and 4-packet coding in DODEX

As shown in Fig 3-19(a) and 3-19(b), with the light traffic, DODEX outperforms

previous implementations significantly. In the case of 3 flows, only DODEX discovered

the 3-packet coding, and the throughtput gain over the previous is quite promising

(32% over our old DODE and 30%-45% over the others). First, COPE and BEND

only detects the 2-packet coding between F2 and F1. However, coder 3 also serves as

a forwarder for F3, increasing packet collisions and drops at node 3 due to concen-

trating traffic via the coder. Second, DODE and DCAR are also able to detect the 2

packet-coding between F1 and F3 thanks to the general coding condition but the same

problem happened too because the diffused gain does not help BEND, DODE or even

DODEX much (only 3 as the coder). With 3-packet coding, DODEX allows more

packets delivered to destination, result in higher throughput. For the next case (6

64

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

DODEX 802.11 COPE BEND DCAR DODE DODEX 802.11 COPE BEND DCAR DODE

N
um

be
r

of
 c

od
ed

 p
ac

ke
ts

 r
ec

ei
ve

d

Number of flows

3 flows
6 flows

(a) Coded packets result for Test scenario 1

 0

 2000

 4000

 6000

 8000

 10000

DODEX 802.11COPE BEND DCAR DODE DODEX 802.11COPE BEND DCAR DODE

T
hr

ou
gh

pu
t (

nu
m

be
r

of
 p

ac
ke

ts
 r

ec
ei

ve
d)

Number of flows

3 flows
6 flows

(b) Throughput result for Test scenario 1

Figure 3-19: Test scenarios 1 results

flows), because there are more coding chances (F4, F5 and F6 are in reverse directions

with F1, F2 and F3, respectively), the previous works can compensate the throughput

gain and the number of coded packets by creating the coded packets from these flows

with opposite ways. Nevertheless, DODEX still maintains higher throughput because

DODEX can detect not only all coding chances like the previous but also the 3-packet

coding with multiple decoders.

In the second topology exposing the coding 3 or 4 packets in a single transmis-

sion, the performances of all previous and DODEX are presented in Figs 3-20(a) and

3-20(b). We would like to check if under heavy traffic, DODEX still keeps the high

65

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

DODEX 802.11 COPE BEND DCAR DODE DODEX 802.11 COPE BEND DCAR DODE

N
um

be
r

of
 c

od
ed

 p
ac

ke
ts

 r
ec

ei
ve

d

Number of flows

7 flows
10 flows

(a) Coded packets result for Test scenario 2

 0

 2000

 4000

 6000

 8000

 10000

DODEX 802.11COPE BEND DCAR DODE DODEX 802.11COPE BEND DCAR DODE

T
hr

ou
gh

pu
t (

nu
m

be
r

of
 p

ac
ke

ts
 r

ec
ei

ve
d)

Number of flows

7 flows
10 flows

(b) Throughput result for Test scenario 2

Figure 3-20: Test scenario 2 results

throughput and coded packets. By applying 4-packet coding with multiple decoders,

DODEX transfers more data even in the interference of the non-codable flows. Com-

pared to DODEX, in case of 10 flows (4-6 of them are non-codable), all previous

implementations are losing throughput because it takes more transmissions for 2-

packet coding. Due to high interference from the non-codable flows, the throughputs

gained from all architectures are reduced, both from competition of accessing MAC

layer to send coded packets or the packet collisions and drops. DODEX can alleviate

the problem by discovering more coding chances via coding with multiple decoders,

draining the packets from the queue at the forwarder faster than the others (4-packet

66

coding compared to 2-packet coding), thus, giving DODEX a better performance

over the formers (6% over DODE, and 10%-20% over the others as Figs 3-20(a) and

3-20(b) shows)

3.5.3 DODEX+

Similar to DODE, DODEX, we use NS-2 to compare the performance against the

previous propositions: IEEE 802.11, COPE, BEND, DCAR and DODEX. There are

3 testing topologies shown in Figs 3-21(a), 3-21(b) and 3-21(c). Testing parameters

will keep intact as they are in the running tests of DODE, DODEX. Two testing

metrics the throughput (the number of received packets during the running time

150s) and the number of coded packets reached the destination. Each topology is

created in a flat area of 1000m× 1000m. The data traffic in the network are all CBR

(Constant Bit Rate) flows sent over UDP (User Datagram Protocol) using 1000-byte

datagrams with an arrival interval of 0.01s and traffic generation duration at source

of 150s.

(a) Test topology 1 (b) Test topology 2

(c) Test topology 3

Figure 3-21: Test topologies in DODEX+

67

We vary the traffic flows in test scenarios as shown in table 3.4. Afterwards, the

test scenarios will be executed with each traffic-flow variety for all implementations

and the result is collected with a 95% confidence interval.

Table 3.4: Flows in Test scenarios
2 flows varied in test sce-
nario 1

F1(0→ 3), F2(4→ 7)

4 flows varied in test sce-
nario 1

F1(0→ 3), F2(4→ 7), F3(3→ 0), F4(7→ 4)

3 flows varied in test sce-
nario 2

F1(0→ 5), F2(2→ 6), F3(8→ 1)

6 flows varied in test sce-
nario 2

F1(0 → 5), F2(2 → 6), F3(8 → 1), F4(5 → 0), F5(6 → 2),
F6(1→ 8)

5 flows varied in test sce-
nario 3

F1(6→ 1), F2(1→ 6), F3(0→ 5), F4(5→ 0), F5(5→ 6)

10 flows varied in test sce-
nario 3

F1(6 → 1), F2(1 → 6), F3(0 → 5), F4(5 → 0), F5(5 → 6),
F6(1→ 4), F7(0→ 2), F8(5→ 2), F9(2→ 5), F10(0→ 6)

In Fig 3-22(b), DODEX+ outperforms DODEX and others around 1-5% and 31-

42%, respectively. We see that the extra gain of DODEX+ over DODEX is not

much because in the first test case, the ”re-encoding” feature is only used in the

transmissions between node 6 and 7 or 0 and 1. Coded packets are re-encoded again

with other native packets and transmitted instead of simply forwarded. That’s the

reason why the number of coded packets are similar to the one of DODEX (only

1-5%, in Fig 3-22(a)).

The second and third test cases (Figs 3-21(b) and 3-21(c)) are the same from ones

of DODEX (Figs 3-18(a) and 3-18(b)). Thanks to the new feature ”re-encoding”,

DODEX+ can gain the extra throughput 1-3% and 1-5% over DODEX in these two

test cases, respectively (Figs 3-23(b) and 3-24(b)). This is very interesting if we know

in the second test case, DODEX and DODEX+ perform the 3-packet coding. Com-

bining two features from DODEX and DODEX+ pose a problem: in the lossy wireless

environment, more data are combined, more risky they are to be lost. In DODE and

its extensions, we leave the random loss and interference for farther research (see

Chapter 3) and focus on finding more coding chance based on extending the coding

condition. Even though DODEX+ saves more transfer time, it risks losing more data

than DODEX. Consequently, the extra gain is not much. The number of coded pack-

ets in both cases is similar to the one in DODEX as DODEX+ takes advantages of

the current coded traffic to perform the coding, ”compressing” the data again to save

more transfer time. It means that DODEX+ re-encodes the current coded packet, so

that the number of coded packets could not increase. We can see that the number

of coded packets slight decreases by 1-2% due to the lossy wireless environment. We

68

(a) Coded packets result for Test scenario 1

(b) Throughput result for Test scenario 1

Figure 3-22: Test scenarios 1 results

can conclude that the ”re-encoding” feature indeed gives some extra throughput in

case with the light traffic (the first test case). However, in the case with heavy traffic,

with the lossy and interfered wireless network, the gain is not much.

Another important note is that the benefit given by the ”re-encoding” feature is

not quite a boost. There are two reasons: the re-encoding of coded packets is not

an only option, the coding condition is still met among the native packets and the

lossy environment can reduce the coding chances for re-encoding. Let’s recall the

situation in Fig 3-6. Because of the property of ONC, there are always the native

transmissions from coders to next hops. The native packets will compete with the

69

(a) Coded packets result for Test scenario 2

(b) Throughput result for Test scenario 2

Figure 3-23: Test scenarios 2 results

encoded packets in the encoding process, which reducing the effect of ”re-encoding”

feature. In our farther work (out of the scope of this thesis), we need some mechanism

of transmission reliability to reduce the effect of loss and interference. With that, the

performance is well-increased.

70

(a) Coded packets result for Test scenario 3

(b) Throughput result for Test scenario 3

Figure 3-24: Test scenarios 3 results

3.6 Chapter conclusion

ONC is a practical inter-flow network coding which is under development and re-

search. Extending the coding condition is one of the challenges to bolster ONC.

COPE, BEND and DCAR are works which defines and extends the coding condition

by suggesting many features to maximize network capacity.

• COPE: the feature of opportunistic listening and encoding

71

• BEND: the feature of diffused gain

• DCAR, the feature of generalizing the coding condition

Our work is a contribution to extend the coding condition by the followings:

• DODE combines of features of COPE, BEND and DCAR.

• DODEX adds the encoding process with multiple decoders.

• DODEX+ adds the re-encoding process with multiple encoders.

Certainly, the more the coding condition is generalized, the more complex its

mechanism is to learn the neighbor’s state. Learning the neighbor’s state is crucial to

ONC because it leads to the decision to create the encoded packet or not. Network

topology change can lead to wrong match in the coding condition, which results

in reducing the performance by unnecessary forwarding native transmissions or un-

decodable packet broadcasts. It’s an interesting problem open to future research,

especially, in other greatly lossy and mobile environments, e.g. vehicular networks.

72

Chapter 4

Intra-flow network coding

In this chapter, we describe our contributions which provide transmission reliability

with intra-flow network coding in wireless networks. Currently, in lossy environ-

ments like wireless networks, random losses cause the performance degradation. A

redundancy control, which is triggered to transmit redundant traffic, can indeed al-

leviate the effect of random losses and provide transmission reliability. Let’s recall

how RLNC works in intra-flow network coding. Instead of transmitting packets of

a flow separately, packets are grouped and transmitted to the destination as RLNC

combinations. Each linear combination is considered equally important and carries

a ”piece” of coded data of the packets in a group. When the destination collects

a sufficient number of ”pieces”, it can perform the decoding process to retrieve the

original data. If a loss occurs, the source only needs to generate and transmit another

linear combination to cover the loss. In fact, RLNC is efficient to simplify the mecha-

nism of providing transmission reliability which our research aims for. However, this

appealing benefit can be given by RLNC under specific conditions: coded packets

need to be properly generated, transmitted and decoded in an acceptable decoding

delay. To control random losses, some researches have suggested fixed redundancy

control (e.g., [10]) or adaptive redundancy control by calculating the loss rate based

on sending probes to estimate the network quality (e.g., [5]). These two approaches

do not provide the redundancy in time and pose the risk of wasting bandwidth by

over-redundancy or unsuccessful decoding due to an insufficient number of received

packets, dramatically degrading the performance. We would like to follow a different

approach to provide transmission reliability. We believe that an adaptive redundancy

control can efficiently adjust the redundant traffic if it is integrated and supported by

a well-designed coding scheme. We propose two solutions: the link-by-link adaptive

redundancy control based on the feedback of link quality at MAC layer, called Adap-

tive Redundancy Control (ARC) and the end-to-end adaptive redundancy control

73

based on the feedback of transmission quality at TCP layer, called Dynamic Coding

(DynCod). Multipath DynCod (MP-DynCod) is an enhancement of DynCod to sup-

port multipath transmission and alleviate a minor limitation of DynCod. Details on

each proposition and current related state of the art are given in next sections. Sec-

tion 4.1 details ARC. DynCod and MP-DynCod are introduced in Sections 4.2 and

4.2.6, respectively. The simulation and obtained results are presented and analyzed

in Sections 4.1.5, 4.2.7.1 and 4.2.7.2.

4.1 Multi-batch Pipeline Coding with Adaptive Re-

dundancy Control (ARC)

We need to recall some terms used in RLNC before going into detail. As formulated

in Section 2.6.3, Batch Coding [5], [6], [7], [8], [9] is a generation-based batch coding

scheme. Within a batch of n packets of the same flow, native packets are combined and

transmitted by n+r random linear combinations. R = n+r
n

is the value of redundancy

level, which Batch Coding uses to resist random losses. The traffic flow is encoded

in many consecutive generations. At the recipient side, innovative coded packets (i.e,

linear combinations which reveal a new ”piece” of information) are stored until they

are sufficient for the decoding. As explained in Section 2.6.2, generation-based coding

is a technique that may introduce the problems of high decoding delay and generation

discard. Pipeline Coding [10] (mentioned in Section 2.6.4) is an enhancement of Batch

Coding to avoid the problem of high decoding delay. Instead of generating n linear

combinations such that each of them is a linear combination of n native packets

of the batch, n linear combinations in Pipeline Coding are generated based on the

incremental amount of native packets j (1 ≤ j ≤ n). More specifically, the first coded

packet is generated from the first native packet, the second coded packet is generated

by combining the first and second native packets and so on. Thanks to this coding

scheme, the encoding and decoding processes are performed progressively. If all linear

combinations up to the current coded packet successfully arrive at the destination,

the decoding process does not need to wait for n arrivals of coded packets like Batch

Coding to start off. Pipeline Coding indeed alleviates the effect of high decoding delay.

Nevertheless, Pipeline Coding still suffers from the problem of generation discard even

though it does give a fixed redundancy control.

To this point, we would like to propose a link-by-link adaptive redundancy con-

trol based on a new tailored coding scheme over Pipeline Coding in order to provide

transmission reliability. Our proposition is called Multi-batch Pipeline Coding with

74

Adaptive Redundancy Control (ARC). It resolves the problems of generation discard

and random losses. First, to suppress the potential generation discard, we propose

the concept of multi-batch pipeline coding in which all sent batches are buffered at the

sender and the receiver until they are well-decoded. In case of losses, the adaptive

redundancy control is triggered at the sender to send redundancy packets accord-

ingly. Second, to provide an adaptive redundancy control to mitigate random losses,

we interpret the MAC layer IEEE 802.11 acknowledgement as an indicator of ”link

quality” and also as the acknowledgment of a coded packet. We define a new metric,

the MAC layer Data-frame Round Trip Time (DRTT) which is the duration from

the time when a MAC data-frame is sent to the time when its acknowledgement is

received. The DRTT is used to determine the interval between two successive packets

to send. Based on DRTT, the sender can adapt the sending rate of coded packets

to the current state of link quality. Finding the exact number of redundant packets

is merely impossible. So that we decide to find the suitable time to transmit the

redundant packets to cover losses. Thanks to multi-batch coding scheme, new data is

transmitted to the network while interpreting the received MAC acknowledgements

as the feedback on the state of link quality. From that, an algorithm is proposed to

calculate which time is appropriate for transmitting the redundant packet. We argue

that the state of link quality should be rechecked before every transmission to deduce

if we should adjust the redundant packets or we continue to send new data to the

network. Consequently, we ensure not only the packet sufficiency for decoding but

also the new information being transmitted smoothly. Summarily, our contribution

ARC is two-fold:

• We suggest multi-batch pipeline coding scheme to tackle the problem of gener-

ation discard.

• We present an adaptive redundancy control based on the MAC acknowledge-

ments, which decides the suitable time to adjust the redundant packets to tackle

the problem of random losses.

4.1.1 Design

We suggest a cross-layer solution. ARC is implemented as a layer ”2.5” between

network and data link layer to provide an intra-flow unicast RLNC system as shown

in Fig 4-1. One coded packet generated by ARC will be packed inside a MAC data-

frame, transmitted and acknowledged by a MAC ACK. ARC interprets the MAC

IEEE 802.11 acknowledgement as the feedback on the state of link quality. Traffic

75

is buffered into multiple batches. Native packets are then pipeline-coded and trans-

mitted generation by generation. A generation is only removed from the buffer if it

is well-received by the destination, which avoids the problem of generation discard.

An adaptive redundancy control at the sender is triggered to send redundant pack-

ets if losses occur. ARC is designed to continuously send data from sender to the

recipient while interpreting the MAC acknowledgements as the feedback on the link

quality. Each generation transmission in ARC starts by sending the whole generation

while collecting the number of acknowledgements to compute the value of DRTT

(details in Section 4.1.2). Afterwards, ARC will run the adaptive redundancy control

to check whether it is the suitable time to send the redundant packet. Otherwise,

ARC will start over with the new batch in case the batch is well received. ARC

continues transmitting this way until all data are sent from source to destination. As

the requirement in the design, ARC intends to mask losses exposed to the application

layer. It means that if a loss occurs, ARC keeps finding the suitable time to adjust the

redundancy while streaming new data. The more losses occur, the more redundancy

ARC adjusts to the network. With this, ARC ensures the smooth traffic flow from

source to destination.

IP layer
p7

ARC

Native packet

p1 p2 p3 Batch 1 (Generation id = 1)

p4 p5 p6

p4

Batch 2 (Generation id = 2)
generates

c7
Coded packet

MAC 802.11

Physical medium

is sent down to MAC layer

c7
802.11 data frame

is transmitted

........

ACK MAC 802.11 ACK acknowledges the coded packet c7

is colllected to calculate DRTT

Figure 4-1: ARC layer in TCP/IP stack

4.1.2 DRTT estimation

The DRTT reflects the time needed for a successful transmission of a data frame at

the MAC layer. The DRTT value depends on the distance between two nodes and

the quality of the radio link. It also depends on the number of collisions at the MAC

layer. If the distance between two nodes is long, the link quality is bad and there are

many collisions at the MAC layer, a node will experience a long DRTT. ARC uses

76

the DRTT value as an indicator of link quality and schedules the next transmission

of a coded packet based on the DRTT. ARC also uses the DRTT value to calculate

the adaptive redundancy as presented in Section 4.1.3.

In order for the sender not to react too quickly to spontaneous and temporary

changes of the link quality, the DRTT estimation (given in Algorithm 1) is calculated

with a smooth factor α. Every time the sender receives a MAC ACK, it gets a DRTT

measurement and updates the smoothed DRTT value as follows:

DRTT = α×DRTTold + (1− α)×DRTTmes

where:

• DRTT is the smoothed data frame round trip time.

• DRTTmes is the newly measured DRTT upon receiving a MAC ACK.

• DRTTold is the value of DRTT before updated by DRTTmes.

• α is the smooth factor.

4.1.3 Adaptive redundancy scheme

As the main idea is introduced above, we will find the suitable time to add the re-

dundancy instead of finding the number of redundant packets to send. We argue our

approach based on an observation: even if an adaptive redundancy control measures

the loss rate exactly to decide the number of redundant packets (> 1), at the time

when the second redundant packet is transmitted, the loss rate may be not the same.

The redundancy control has to re-measure the loss rate to ensure the exact number

of redundant packets. Instead, we propose at time interval possible for MAC layer

to transmit a packet (i.e, the DRTT calculated above), ARC will decide if a redun-

dant packet or a new innovative coded packet is needed for transmission. Below is

Algorithm 2 showing our scheme:

77

Algorithm 1 - Acknowledgement Reception

1: For each acknowledgement ack intended to the coded data packet p

2: if gen idack ≥ 0 then

3: Find batch bi such that i = gen idack

4: if bi exists then

5: Increase recvcntbi by 1

6: Calculate DRTTmes = timestamp−NOW
7: Calculate DRTT = α×DRTTold + (1− α)×DRTTmes
8: Update scheduled-time-for-next-packet = NOW - DRTT

9: end if

10: end if

Algorithm 2 - Adaptive Redundancy Scheme

1: idbatch = −1

2: For each batch bi(i ∈ [0,N)) stored in buffers

3: if recvcntbi < rankbi& recvcntbi < GEN SIZE & min gen > genbi then

4: //only batches not well-received, find the one with minimum generation id to

meet condition:

5: if sendcntbi > GEN SIZE then

6: //the redundant packet has to wait for a while before transmission

7: if bi waited for
recvcntbi

sendcntbi −GEN SIZE + 1
×DRTT then

8: idbatch = i

9: min gen = genbi
10: end if

11: else

12: //keep sending the packets if there’s still new information

13: if sendcntbi ≤ rankbi then

14: idbatch = i

15: min gen = genbi
16: end if

17: end if

18: end if

19: return idbatch

where:

• min gen is the minimum value of generation ids of batches in transmission.

78

• sendcntbi is the number of coded packets generated and sent by batch bi.

• recvcntbi is the number of acknowledgements received by batch bi.

• rankbi is the rank of batch bi.

• N is the number of batches.

• GEN SIZE denotes the generation size.

• timestamp is the time when the packet is transmitted.

• NOW is the current time when the packet is proceeded.

As the algorithm 2 describes, each batch bi in ARC contains: the rank rankbi ,

recvcnt is the number of acknowledgement from the recipient, sendcnt is the number

of packets sent. Because ARC handles multiple batches instead of a single batch, for

every timing interval, ARC will decide either to keep transmitting new data or to add

the redundancy. Each redundant packet has to wait for the duration as below:

recvcntbi
sendcntbi- GEN SIZE + 1

×DRTT (4.1)

before ARC starts transmitting a packet. The ratio
recvcntbi

sendcntbi −GEN SIZE + 1
indicates the number of successful sent data during the time transmitting the whole

batch. If the number is high (receiving many acknowledgements) and nearly reaches

to the generation size, ARC senders can be patient for receiving more data and the

waiting duration is longer. If not, the waiting duration is shorter and rapidly reduced

after each redundant packet is sent. Consequently, less or more redundant packets are

requested to send to recover losses based on the interpretation of MAC acknowledge-

ments. One more important note is that ARC deploys multi-batch pipeline coding

scheme, which avoids the problem of generation discard and high decoding delay

completely. Additionally, generation size is also set to a small value (e.g., in our sim-

ulation, generation size is set to 10) so thats our adaptive redundancy control reacts

to losses more effectively. In case of losses in a generation, ARC takes priority of

sending the redundant packets for the batch with the lowest generation id. After a

while, the generation is recovered and ARC can move to the next generation.

4.1.4 Node behavior

ARC does not transmit every packet received from application layer (at the source)

or MAC layer (at the forwarder). Instead, ARC only generated coded packets every

79

time-inverval DRTT because during DRTT, MAC has a high chance to be busy.

Consequently, ARC only asks MAC to transmit packets at the time which is more

possibly successful.

Algorithm 3 shows the coded packet reception at the destination or the forwarders.

At first, the packet is added into the correct batch and is performed Gaussian elim-

ination to check if the batch or the packet is decoded or not. The packet is then

forwarded to the upper layer (at destination) or the lower layer for transmission (at

forwarders). Otherwise, packet gets dropped. Algorithm 5 shows how the source han-

dles a native packet which arrives from the upper layer. A batch will be created if the

packet belongs to the new batch. The packet is then added to the batch. Algorithm

4 is triggered for packet transmission.

Algorithm 3 - Coded Packet Reception

1: if Intended coded packet prcv from lower layer then

2: For each coded packet prcv received

3: if gen idprcv ≥ 0 AND gen idprcv ∈ batchbi then

4: Add packet prcv to batch bi

5: Perform the Gaussian reduction on batch bi

6: if batch bi is fully decoded then

7: Forward the remained packets in bi to upper layer

8: else if latest packet prcv decoded then

9: Forward prcv to upper layer

10: end if

11: end if

12: else if Coded packet pfwd requested to forward then

13: For each coded packet pfwd received

14: if gen idpfwd
≥ 0 AND gen idpfwd

∈ batchbi then

15: Add packet prcv to batch bi

16: Perform the Gaussian reduction on batch bi

17: if rankbi increased then

18: Call Algorithm 4 for packet transmission

19: end if

20: end if

21: end if

80

Algorithm 4 - Coded Packet Transmission

1: For each time-interval DRTT, run Algorithm 2 to find the appropriate batch bi

to send

2: if batch bi exists then

3: Generate the random linear combination c from batch bi

4: if c is generated then

5: Increase sendcntbi by 1

6: Set current time as the start of waiting time for the acknowledgement

7: Request the lower layer to proceed sending packet

8: end if

9: end if

Algorithm 4 shows the coded packet transmission at a node. For each interval

DRTT, Algorithm 2 is triggered to locate an appropriate batch to send. A coded

packet is generated from that batch for transmission. The current time is recorded

as the start of waiting time for the MAC ACK. The counter sendcntbi also increases

by 1.

Algorithm 5 - Native Packet Reception

1: if Native packet pnativ from upper layer then

2: Create a batch bi

3: Add pnativ to bi

4: Call Algorithm 4 for packet transmission

5: end if

4.1.5 Simulation and results

We use NS-2 as the simulator to compare performances of ARC with previous archi-

tectures: IEEE 802.11 and FRC - Fix Redundancy Control, a similar network coding

system using fixed redundancy scheme to cover losses. Two topologies are illustrated

in Figs 4-19(a) and 4-19(b). Nodes in test topologies are indexed from 0 to N − 1

(N is the number of nodes in topology). The first topology (Fig 4-19(a)) is a chain

of nodes for to test the packet loss and performance with light traffic via multi-hop.

The second topology (Fig 4-19(b)) is a grid topology with multiple traffic flows to

test the high load traffic (maximum 10 flows). Each topology is created in an area

of 1000m × 1000m. Distance between two successive nodes is 150m. Data flows in

network are all CBR (Constant Bit Rate) flows sent over UDP (User Datagram Pro-

tocol) using 1000-byte datagrams with an arrival interval of 0.01s. Traffic generates

81

12500 packets during 250s. Channel bit-rate is set to 1Mbps and default link loss

value is set to 20%. Handshake RTS/CTS is turned off during the simulation. Proto-

col OLSR is used in network layer to determine the transmission path. Performances

are then evaluated by two metrics, the throughput and the number of lost packets.

We vary the traffic flows in test scenarios as shown in Tables 4.1. The test scenarios

will be executed with each traffic flow variety for all implementations and results are

collected with 95% confidence interval.

(a) Chain (b) Grid

Figure 4-2: Test topologies

Table 4.1: Flows in Test scenarios
1 flow in Test scenario
chain

F1(0→ 1→ 2)

2 flows in Test sce-
nario chain

F1(0→ 1→ 2 and F2(2→ 1→ 0)

2 flows in Test sce-
nario grid

F1(0→ 5→ 10→ 15) and F2(3→ 6→ 9→ 12)

5 flows in Test sce-
nario grid

F1(0 → 1 → 2 → 3), F2(15 → 14 → 13 → 12), F3(1 →
5→ 9→ 13), F4(14→ 10→ 6→ 2) and F5(7→ 11)

10 flows in Test sce-
nario grid

F1(0 → 1 → 2 → 3), F2(15 → 14 → 13 → 12), F3(0 →
4 → 8 → 12), F4(15 → 11 → 7 → 3), F5(4 → 5 →
6 → 7), F6(11 → 10 → 9 → 8), F7(0 → 5 → 10 → 15),
F8(3 → 6 → 9 → 12), F9(1 → 5 → 9 → 13) and
F10(14→ 10→ 6→ 2)

As shown in Fig 4-3(a), even with light traffic (1 flow over two-hop connection)

ARC and FRC provides a continuous and smooth streaming data (no loss) against

IEEE 802.11 thanks to the mechanisms of DRTT estimation and adaptive redundancy

for loss recovery. As the desired application rate is 800kbps, 802.11 doesn’t have

enough time to control the flow but pushing packets to the collision on the media,

which results in a lot of packet drops. Moreover, the desired rate is too high for total

82

packets (12500 packets) to spend on the whole duration (250s). 802.11 keeps sending

packets until nothing left after about 130s and the number of lost packets keeps

constant. On the other hand, ARC and FRC use DRTT estimation as the interval

between two successive packets to send. The desired rate of ARC and FRC now is
8000

DRTT
. Because of DRTT obtained from the feedback on the state of link quality,

the desired rate now is adapted flexibly to reduce packet collisions and drops on the

media. Besides, using the adaptive redundancy control mentioned in Algorithm 2,

ARC is not only compensated for losses by appropriate redundant packets but also

provides an extra throughput (23%-35%) over FRC and IEEE 802.11, respectively.

Particularly, the adaptive redundancy control gives ARC a better performance over

the remained (in Fig 4-21(b)) around 24%-40% (2-hop) or 51%-70% (4-hop) over

FRC and 802.11, respectively. It means, ARC is more resistant to the increasing

interference and forwarding delay in the network.This can be explained if we compare

the performance of ARC with FRC. If there’re more hops in transmissions, FRC

performance is rapidly reduced due to FRC consideration on the link quality only

at the end of sending the whole batch to calculate the fixed redundancy. Based on

the calculated number of redundant packets, FRC will eventually send these packets,

which results in wasted traffic of over-redundancy sent to destination, decreasing the

performance of FRC.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250

P
ac

ke
ts

Transmission duration (s)

ARC-Pkts reception
ARC-Pkts loss

FRC-Pkts reception
FRC-Pkts loss

802.11-Pkts reception
802.11-Pkts loss

(a) Accumulative received and lost packets
for one two-hop traffic flow

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

ARC FRC 802.11 ARC FRC 802.11 ARC FRC 802.11

T
hr

ou
gh

pu
t (

kB
)

Number of hops

2 hops
3 hops
4 hops

(b) Throughput result for one flow and its
reversed on test scenario chain

Figure 4-3: Test scenario chain results

As Fig 4-4(a) shows, under high loaded traffic leading to great packet collisions

and drops, ARC maintains the better throughput over 802.11 and FRC about 21%-

40%, respectively. For a better illustration, we also show the result of throughput

over increasing loss percent (%) in Fig 4-20(b). Let’s also recall ARC (and its similar

FRC) provides a lossless streaming data during the whole runtime but IEEE 802.11

does not. In the test scenario with throughput over increasing loss percent (%), our

proposed adaptive redundancy scheme stably gains ARC an extra throughput over

83

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

ARC FRC 802.11 ARC FRC 802.11 ARC FRC 802.11

T
hr

ou
gh

pu
t (

kB
)

Number of flows

2 flows
5 flows

10 flows

(a) Throughput result for varied number of
flows

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

kB
)

Loss (%)

ARC-2 flows
ARC-5 flows

ARC-10 flows
FRC-2 flows
FRC-5 flows

FRC-10 flows
802.11-2 flows
802.11-5 flows

802.11-10 flows

(b) Throughput over increasing loss percent

Figure 4-4: Test scenario grid results

the others.

4.2 Dynamic Coding (DynCod)

In lossy environment like wireless networks, random losses are treated by TCP as

signals of congestion and TCP cuts down the sending rate, leading to the performance

degradation [16]. The practical network coding system TCP/NC [17] can address this

problem. As explained in Section 2.6.5, TCP/NC masks the random losses by allowing

the destination to acknowledge every degree of freedom even though original data is

not decoded yet. Consequent, TCP/NC smoothly reacts to random losses without

reducing the performance. TCP/NC is progressive non-generation-based coding

scheme which avoids problems of high decoding delay and generation discard. The sole

problem from TCP/NC is that TCP/NC uses the fixed redundancy control which does

not recover random losses in time. We suggest an end-to-end adaptive redundancy

control based on re-designing the coding scheme from TCP/NC. Our main idea is how

the destination can inform to the source whether the latest data sent from the source

is decodable or not and how many packet losses occur via acknowledgement packets.

Particularly, we change the principle of the information delivered by TCP ACKs: the

destination does not only acknowledge every degree of freedom, but also announces

how many unseen packets (≥ 0) there are in the coding window at the destination.

The proposition to show what is a unseen packet is taken from [17]:

Definition 6 Seeing a packet: A node is said to have seen a packet pk if it has enough

information to compute a linear combination of the form (pk+qk), where qk =
∑
l>k

αlpl

84

with αl ∈ F2s for all l > k. Thus, q is a linear combination involving packets with

indices larger than k.

Proposition 1 If a node has seen packet pk, then it knows exactly one linear com-

bination of the form pk + qk such that qk is itself a linear combination involving only

unseen packets.

For example, let’s assume that one destination receives two coded packets c1 =

p1 + 2× p2 + 3× p3 + 4× p4 and c2 = p1 + p2 + 5× p3 + 3× p4. The seen packets are

p1 and p2 and the unseen packets are p3 and p4 because the destination can compute

2 × c2 − c1 = p1 + 7 × p3 + 2 × p4 and c1 − c2 = p2 − 2 × p3 + p4 which are linear

combinations of the form pk + qk mentioned in Definition 6 and Proposition 1.

We argue that the number of unseen packets somehow reflects the number of

packet losses. If by some way, we can make the reflection accurate (i.e, these two

numbers have the same value), we can interpret one unseen packet in the destination’s

coding window as a loss on the transmission path. We present Dynamic Coding

(DynCod), our re-designed coding scheme integrated with an adaptive redundancy

control, to realize our idea. First, when TCP wants to transmit a packet, DynCod

will send only one innovative coded packet. Consequently, the latest data can be

decoded immediately if all coded packets up to the latest are transmitted successfully

(it’s very similar with the coding scheme of Pipeline Coding but it is non-generation-

based). The latest data in DynCod is always transformed and presented by only one

coded packet at a time. Second, thanks to this progressive coding scheme, losses on

the transmission will create unseen packets in the coding window at the destination.

For example, in Fig 4-5, under the progressive coding scheme of DynCod, a sequence

of 5 coded packets c1, c2, c6, c7 and c8 is transmitted to the destination and added

to the coding window. Throughout examples in Figs 4-5, 4-7, 4-8(a) and 4-8(b),

we assume that TCP ACKs will be sent immediately after its acknowledged coded

packet arrives at the destination. In Fig 4-5, 3 losses create 3 unseen packets. In other

words, the number of unseen packets can be interpreted as the number of losses. This

information can be informed back to the source via TCP ACKs and the source adjusts

the redundant traffic accordingly. We will describe our solution more clearly after we

state the packet definition in the next section.

4.2.1 Packet definition

The ith combination ci of the latest data pi with n(ci) non-ACKed packets remained

in the coding window at the time ci generated, is as below:

85

Figure 4-5: The number of unseen packets in DynCod

ci = vTi ⊗ pi =
i∑

j=i−n(ci)

ejpj (4.2)

where: vi is the encoding vector, vTi = (e1, ..., en+1), pi is the information vector, nci is

the number of non-ACKed packets remained in the coding window at the transmission

time of packet pi, p
T
i = (pi−nci

, ..., pi) and ⊗ is the multiplication between two vectors.

The reflection between the number of unseen packets and the number of losses is

only correct if a well-designed coding scheme is used. In DynCod, the latest data is

presented by only one coded packet at a time. Consequently, the latest data pk can

only be presented by the linear combination of the form pk + qk with qk = 0 if all

packets up to coded packet ck are received. Otherwise, qk =
l∑

j>k

pj with αl ∈ F2s for

all l > k if there are some consecutive losses up to the arrival of packet cl. The number

of losses is the number of unseen packet in qk. We can simply prove it. Let’s assume

that the destination of a traffic flow receives coded packets from c1 to ck−1 and packet

pl but losses occur from packet pk to packet pl−1. We also assume nci = nci−1
+ 1,∀pi

without loss of generality. By the packet definition 4.2, if the destination computes

the linear combination of the form pm + qm(m ∈ [1, k − 1]) with coded packet cm,

that form is actually cm − cm−1 = pm + 0 with qm = 0. In case there are some

losses, the destination has to compute the linear combination of the form pk +qk with

coded packet pl instead, the form turns out to be cl − ck−1 = pk + pk+1... + pl with

qk = pk+1... + pl. We can easily see that the number of unseen packets in qk is the

same value as the number of losses from packet pk to packet pl−1. For instance, Fig

4-6 shows how the linear combination of the form pk + qk is computed in DynCod.

In other words, the progressive coding scheme of DynCod will allow the destination

86

Figure 4-6: The linear combination of the form pk + qk computed in DynCod

to acknowledges not only every degree of freedom (like TCP/NC) but also how many

unseen packets remains in the coding window. The number of unseen packets exposes

the need on how many linear combinations of these unseen packets are required to

fully decode the coding matrix (i.e, the coding window) at the destination. In fact,

it turns out to be the number of losses at the time when the source transmits the latest

data. Fig 4-7 shows a traffic flow under the coding scheme of DynCod. CX(X > 0)

is the X th coded packet while DX is the X th native packet. The destination quickly

notices 2 losses after the arrival of coded packet C8. C8 is not decoded because there

are 2 unseen packets D7 and D8. The destination will inform the number of unseen

packets to the source. Afterwards, the adaptive redundancy control at the source will

be triggered to send 2 redundant packets to compensate losses. The idea is straight-

forward and we have an adaptive redundancy control to tackle random losses based

on a tailored coding scheme.

C1=4D1

C2=2D2

C3=5D3

C4 =3D4

C5=6D5

C6=2D6
C7=3D6+8D7

C8 =2D6+D7+D8

D4

Source
Network coding Application

Destination

X

D1

D2

D3

D5

D1

D2

D3

D4

D5

D6

D7

D8

there are two losses

D6 D7 D8

there are two unseen packets D7 and D8

X

D9
C9 =D7+D8+D9

C9 =D7+D8+2D9

C9 =D7+2D8+D9
D10

r1

r2

C10 =D10 D10

adaptive redundancontrol at the source is triggered
to send two redundant packets C9r1 and C9r2

Figure 4-7: The number of losses and the number of unseen packets in DynCod

As a result, DynCod classifies the coded traffic into innovative coded packets and

redundant coded packets:

• The innovative packet is the coded packet containing at least one new native

packet (i.e., the latest packet that TCP requires to send).

87

• The redundant packet is the coded packet containing no new information but

old non-ACKed packets, only generated and transmitted by the adaptive re-

dundancy control if losses are detected.

This classification will help to reduce the packet overhead, which is introduced in

Section 4.2.5. The redundancy level of TCP/NC is replaced by an adaptive redun-

dancy control, which is only triggered to send redundant coded packets if losses are

detected.

We would like to discuss the reason why in the original coding scheme of TCP/NC,

the number of unseen packets does not reflect the number of losses. TCP/NC

completely ignores the constraint of ”one latest data packet transmitted in a form

of one innovative coded packet at a time” like DynCod. If we assume that packets

from TCP layer arrive at TCP/NC layer more than one packet at a time, TCP/NC

will transmit linear combinations that cannot be decoded immediately, making the

number of unseen packets totally meaningless. For example, we consider a traffic flow

from the source to the destination in Figs 4-8(a) and 4-8(b). The difference between

two cases is that in Fig 4-8(b), two packets from TCP layer arrive at TCP/NC layer

at a time instead of one packet in Fig 4-8(a). In both cases, there are two losses

but the number of unseen packets is changed variably and cannot be used as a loss

indicator.

4.2.2 Design

DynCod is a network coding layer between the transport layer and the network layer

of the protocol stack. The source receives packets from TCP layer and buffers them

into the coding window, until they are ACKed by the sink. Each packet arrival from

TCP layer will trigger DynCod to generate and send one random linear network

coding combination of latest data with others non-ACKed in the coding window. If

required, the redundancy control is also activated to transmit the redundant packets.

At the destination side, the sink will perform the Gaussian elimination after any in-

novative packet arrivals. The linear equation system (4.3) can be solved progressively

to reconstruct the original data.

[ci−n

...
ci

]
=


e
(ci−n)

1 0 ... 0

e
(ci−n+1)

1 e
(ci−n+1)

2

...
...

... 0

e
(ci)
1 e

(ci)
2 ... e

(ci)
n+1


[pi−n

...
pi

]
(4.3)

88

C1=4D1

C2=2D2

C3=5D3

C4 =3D4

C4 =2D4

C5=6D5

C6=2D6
C7=3D6+8D7

C8 =2D6+D7+D8

C8 =D6+2D7+D8

D4

Source

Network coding Application

Destination

X

D1

D2

D3

D5

R=1.25

1

2

1

2

D1

D2

D3

D4

it’s one wasted transmission
D5

D6
D7

D8
there are 2 unseen packets D7 and D8

X
there are 2 losses

there is 1 unseen packet D8

C9 =D8+2D9 there is 1 unseen packet D9

D9

D10
C10 =2D8+2D9+D10 there is 1 unseen packet D10

(a) One packet from TCP arrives at TCP/NC at a time

C1=2D1+D2

C2=D1+2D2

C3=2D3+D4

C4 =D3+2D4

C4 =D3+3D4

C5=6D5

C6=2D6
C7=3D6+8D7+2D8

C8 =2D6+D7+D8

C8 =2D7+D8

D4

Source

Network coding Application

Destination

X

D1 D2

D3

D5

R=1.25

1

2

1

2

D1 D2

D3 D4

it’s one wasted transmission
D5 D6

D7 D8

there is no loss but one unseen packet D2

there is no loss but one unseen packet D4

there are 2 unseen packets D7 and D8

X

there is 1 unseen packet D8

C9 =D8+2D9+D10 there are 2 unseen packets D9 and D10

D9 D10

C10 =2D8+2D9+D10 there is 1 unseen packet D10

there are 2 losses

(b) Two packets from TCP arrive at TCP/NC at a time

Figure 4-8: The number of losses and the number of unseen packets in TCP/NC

4.2.3 Dynamic information vector

C5

D5

D3 D4

base = 3 latest = 5

base_pkt = 3 latest_pkt = 5

C5

base = 3 latest = 4

base_pkt = 3 latest_pkt = 5

The source

The destination

Figure 4-9: Range of native packets transmitted in combination

To keep track of information stored in the coding window, the index of the earliest

coming data which still remains non-ACKed in the coding windows is stored into the

variable base while the index of the latest data is stored into the variable latest. In

89

other words, from Equation (4.2), base = i − n and latest = i. The coded packet

generated by DynCod then similarly contains two variables: basepkt and latestpkt

which is set based on base and latest of the source at transmission time. The index

i (i > 0) of the packet is based on the order of packets that TCP layer wants to

transmit. For example, let’s examine the scenario in Fig 4-9. Currently, the source

has base = 3 and latest = 4 (i.e, it contains 2 packets D3 and D4). After receiving

packet D5 from TCP, the source add this packet to the coding window and changes

base = 3 and latest = 5 (i.e, it contains 3 packets D3, D4 and D5). The source

generates and transmits the coded packet C5 = D3 +D4 +D5 with basepkt = 3 and

latestpkt = 5. At the destination, packet C5 is added into the coding window. The

destination performs the Gaussian elimination and changes base = 3 and latest = 5.

In summary, let’s imagine the data stored in the coding window as the information

matrix Mi−1 (i.e, the latest data stored in Mi−1 is the data packet pi−1) and the

information vector pi in the coded packet ci. For simplicity, we don’t illustrate the

coefficients along with each packets pi. The procedure to add the information vector

pi to the information matrix at a node can be illustrated as below:


0 0 ... 0 0

0 0
...

...
... 0 0

0 0 ... 0 0
pi−n pi−n+1 ... pi−1 pi


︸ ︷︷ ︸
pi as an information matrix

+


pi−n 0 ... 0 0

pi−n pi−n+1

...
...

... 0 0
pi−n pi−n+1 ... pi−1 0
0 0 ... 0 0


︸ ︷︷ ︸

Mi−1

=


pi−n 0 ... 0 0

pi−n pi−n+1

...
...

... 0 0
pi−n pi−n+1 ... pi−1 0
pi−n pi−n+1 ... pi−1 pi


︸ ︷︷ ︸

Mi

(4.4)

For simplicity, we assume that the packet information vector pi and the informa-

tion matrix Mi have the same np = nM = n non-ACKed packets. Otherwise, we

can include more 0s into or remove some already-ACK-ed data from the information

vector pi. That is, if np < nM = n (np +m = n):


0 0 ... 0 0 ... 0 0

0 0
...

... 0
...

...
...

0 0 ... 0 0 ... 0 0
0 0 ... pi−n+m pi−n+m+1 ... pi−1 pi

+


pi−n 0 ... 0 0 ... 0 0

pi−n pi−n+1

...
... 0

...
...

...
pi−n pi−n+1 ... pi−n+m pi−n+m+1 ... pi−1 0
0 0 ... 0 0 ... 0 0

 (4.5)

=


pi−n 0 ... 0 0 ... 0 0

pi−n pi−n+1

...
... 0

...
...

...
pi−n pi−n+1 ... pi−n+m pi−n+m+1 ... pi−1 0
0 0 ... pi−n+m pi−n+m+1 ... pi−1 pi


90

If np > nM = n (np = n+m):


0 0 ... 0 0

0 0
...

...
... 0 0

0 0 ... 0 0
pi−n pi−n+1 ... pi−1 pi

+


pi−n 0 ... 0 0

pi−n pi−n+1

...
...

... 0 0
pi−n pi−n+1 ... pi−1 0
0 0 ... 0 0

 =


pi−n 0 ... 0 0

pi−n pi−n+1

...
...

... 0 0
pi−n pi−n+1 ... pi−1 0
pi−n pi−n+1 ... pi−1 pi

 (4.6)

It means, the useful and innovative data from the packet will be added exactly

into the coding window with the dynamic size. The node then performs the Gaussian

elimination over the information matrix M so the row ith will contain the data ith

(if decoded) or the data ith along with other data with higher indices. For example,

the matrix M below would be a typical matrix after a Gaussian elimination:
pi−n 0 ... 0

0 pi−n+1

...
...

... 0
0 0 ... pi

 (4.7)

The matrix M in Equation 4.7 contains all decoded data which are ready to be

forwarded to the upper layer or to the next hop.

4.2.4 Adaptive redundancy control

The main point of our proposed coding scheme DynCod is the interpretation of the

number of unseen packets at the destination. The unseen packet pi is still the linear

combination of other native packets, and pi is not decoded yet. Thanks to the pro-

gressive decoding of DynCod, one unseen packetat the destination can be interpreted

as a loss. The number of unseen packets or the number of losses, stored in variable

unseen, is calculated as:

unseen = latestpkt − latest (4.8)

where latestpkt is the index of the latest data arrived at the destination side and

latest is the index of the data that the sink expects to receive. Besides base, latest,

basepkt, latestpkt mentioned in Section 4.2.2, let’s denote latestack as the index of

ACKed data packet, r unseen as the number of redundant packets needed for trans-

mission and r pkt as the index of the latest redundant packets. Fig 4-10 and 4-11

show the packet reception at both sides. For each packet requested to send by TCP,

the source will generate one coded packet along with a number of redundant traf-

fic based on r unseen. The number of redundant packets r unseen is calculated

according to the number of losses unseen shown in Fig 4-10. Whenever there is a

91

loss (unseen > r unseen > 0), the value of r unseen is set. The difference between

latest ack and r pkt indicates losses even with the redundant packets. For the sink,

it just needs to calculate the number of losses unseen based on the difference between

latestpkt and latest as in Equation (4.8), and informs this value back to the source

via ACKs.

Data packet from TCP layer

Add the packet to coding window
Generate r_unseen + 1

combinations of all packets in the coding window
Transmit the coded packets

Intended ACK
Drop the packet

Remove the ACKed data packet.
Calculate the number of redundant packets r_unseen:
 - unseen = 0: no loss, r_unseen = 0
 - unseen > r_unseen: losses, r_unseen = unseen - r_unseen
 - latest_ack > r_pkt && unseen > 0: redundant losses,
 r_unseen = unseen, r_pkt = latest
 - else: keep r_unseen intact

Yes
Yes

No No

Figure 4-10: Packet reception at the source

Drop the packetInnovative data packet

Add the packet to coding window
Decode the packet

Successful decoding

Remove and forward
decoded packets to TCP layer

base = base_pkt
latest = latest_pkt

Transmit an ACK to the source

Calculate the number of losses:
unseen = latest_pkt - latest

latest_ack = latest_pkt
Add the variables to the ACK

base = base_pkt
latest = latest_pkt

Transmit an ACK to the source

Yes

No

Yes

No

Yes

Figure 4-11: Packet reception at the sink

4.2.5 Simplified encoding vectors to reduce overhead

In DynCod, the latest data is presented by one coded packet at a time. DynCod

separates coded packets into innovative (coded) packets and redundant (coded) pack-

ets. As the result, the next innovative packet always contains at least one native

packet ”fresher” than the previous packet. Innovative packets are ensured to be in-

dependent in spite of how their linear combinations are. We take advantage of this

92

property to reduce the packet overhead. Any pairs of coded packets ci, cj in general

are independent to each other as in (4.9):

ci = eipi +
i−1∑

j=i−n(ci)

ejpj ≤ eipi +
i−1∑

j=i−n(ci−1)

ejpj = eipi + ci−1 (4.9)

or ci is the combination of the new data (i.e., pi) with at most the previous coded

packet ci−1. In other words, DynCod can select vTi = (1, ..., 1) and remove vi from

the coding header to reduce the overhead. However, encoding vectors of redundant

packets cannot be simplified because they are considered as re-broadcasts of lost

packets, not transmissions of the latest data. Nevertheless, the number of redundant

packets is quite small, compared with the number of normal packets transmitted and

we still have the benefit from this.

4.2.6 Multipath DynCod (MP-DynCod)

In DynCod, there may be a potentially high end-to-end delay due to the losses of TCP

ACKs. MP-DynCod is an extension of DynCod to support multi-path transmission

and tackle the problem. We keep the same mechanism in MP-DynCod, but replace

the redundancy control with a heuristic hop-by-hop adaptive redundancy control.

MP-DynCod calculates the loss rate based on a link quality routing metric (e.g.,

ETX [19]). This information will be transferred from one node to its forwarders to

adjust the traffic accordingly. MP-DynCod is implemented as a layer ”3.5” between

TCP and network layer to provide an intra-flow unicast random linear source coding

system.

4.2.6.1 Design

Because we keep the same principle to handle TCP traffic from DynCod, the coded

packet definition in MP-DynCod is similar as in Section 4.2. However, intermediate

nodes in MP-DynCod also need to maintain the coding windows like source and sink.

The re-encoding is performed at forwarders to avoid the non-innovative transmissions

since many nodes can transmit based on the same input data. The challenge remained

is the multi-path routing or how intermediate nodes co-operate to forward the data

to the destination.

93

4.2.6.2 Forwarding belt assignment

As a part of multipath routing, we need to identify which nodes can share the task

of forwarding. This is a prerequisite required for multipath routing protocol like

MORE, CodeMP, or CCACK to avoid unnecessary or duplicated transmissions. In

MP-DynCod, we create the forwarding belt by concluding all nodes with the same

distance from the source, illustrated in Fig 4-12. For ease of implementation, we use

the number of hop counts as distance metric. For transmissions, one node decides

that in its next forwarding belt (containing its neighbors possible to forward traffic

to the destination), which neighbor is the primary forwarder, which neighbor are

the backup forwarders and add the forwarding belt with the fractions from ETX

of each forwarder to coded packet headers based on the ETX obtained by packet-

probing. The calculation of fraction from ETX at one node is detailed in next

Section 4.2.6.3.

S D

Forwarding belt

Figure 4-12: Forwarding belts

4.2.6.3 Feedback of link quality

MP-DynCod does not uses the feedbacks of transmission quality via TCP ACKs like

DynCod. The TCP ACKs are only used in MP-DynCod for removing the packets

seen (received but not decoded yet) by the destination (see Fig 4-15). In fact, the

end to end feedback from destination to source like DynCod can increase packet

forwarding delay. To address the remained problem in DynCod, we suggest a hop-

by-hop upstream control based on a link quality routing metric (e.g. ETX).

Unlike MORE, MP-DynCod allows multipath transmission by classifying the next

hops of a node into one primary forwarder and backup forwarders. Considering a traf-

fic flow from the source to the destination, at one node in MP-DynCod, the primary

forwarder is the neighbor with the highest probability of packet reception and the

94

other neighbors are backup forwarders. In other words, the primary forwarder han-

dles the innovative packets while backup forwarders transmit the redundant packets

to compensate losses. The probability of packet reception is calculated based on the

link-quality routing metric (e.g., ETX [19]). Generally, in intra-flow network cod-

ing with multipath transmission, we need to re-encode the traffic at an intermediate

node to avoid sending the non-innovative coded packets. As the primary forwarder in

MP-DynCod always transmits the innovative packets from the source, only backup

forwarders need to re-encode the redundant traffic.

The idea for redundancy control is straightforward: the value of ETX can be

assumed as the number of transmissions to forward the coded packets successfully from

upstream at downstream nodes (e.g., ETX at an upstream node is 1.5, which means

15 transmissions from upstream will successfully deliver 10 packets at downstream).

Consequently, for every packet forwarding, one primary forwarder has 1.0 from ETX

and other backup forwarders share the remainder of ETX δETXpr for transmission.

The source will generate both innovative traffic and redundant traffic based on the

value of ETX. In case of only 1 next hop, that node handles both traffic. Summarily,

for each downstream i, the fraction from ETX for transmission ∆dwni
will be

calculated by a upstream node as below:

∆dwni
=


1.0 for oneprimaryforwarder

δETXpr ×
ETXbki

n∑
j=1

ETXbkj

else (4.10)

where:

• δETXpr = ∆ETXpr − 1.0, ∆ETXpr is the ETX value from the current node to one

downstream primary forwarder.

• ETXbki is the ETX value from the current node to backup i. This is the lowest

among all values of ETX from one node to its forwarders.

•
n∑
j=1

ETXbkj is the sum of ETXs from current node to backup forwarders.

4.2.6.4 Adaptive redundancy control

As the idea is introduced in previous Section 4.2.6.3, MP-DynCod maintains a credit

system that provides the number of transmission to forward a packet num. For

example, in case of no loss, the number of transmission that allows primary to forward

one packet is 1.0 (1 transmission per forwarding) and the number of transmissions

95

for backups are always 0.0 (no redundant traffic). Nodes in the forwarding belt will

forward packets based on num, without or with re-encoding them (primary forwader

or backup forwarders, respectively). The value of num can increase by the fraction

from ETX informed by upstream nodes and decrease by transmissions. Whenever

ETX is changed ≥ 1.0, the fraction from ETX > 1.0 will indicate the loss of the

link. This will triggers downstream nodes to adjust the redundancy. According to

the credit system, one node will calculate the fractions from ETX for transmissions

of its forwarders. Forwarders will accumulate this value into num which only triggers

the transmissions every integral count (e.g., num = 1.2 triggers 1 transmission and

is reduced to 0.2). Certainly, before forwarding the packet, one node calculates the

fractions from ETX for its forwarders. Eventually, the number of lost packets will be

considered and compensated adaptively (Fig 4-14). Fig 4-13 illustrates a basic case

of how multipath dynamic coding works. Assume there is a 2-hop traffic flow and two

forwarders (one primary forwarder and one backup forwarder). The traffic is coded

and transmitted from source to destination. At the time, there’s a loss on the link

(packet C3). This would affect to the ETX metric calculated by the source, let’s say,

it gives the fraction from ETX to backup as ”0.5”. After receiving two fractions, the

backup forwarder will transmit 1 redundant packet and reduce the fraction of num

to 0.0. As a result, destination will decode packets successfully.

This adaptive redundancy control has two advantages. First, the diversity over

the required traffic and the redundant traffic will avoid the complexed calculation

for the number of required transmissions (MORE [5]). Instead, we only deal how

many redundant packets needed for each backup per forwarding. That problem is

much reduced to be solved by a simple formula suggested in Section 4.2.6.3. Second,

we also avoid the complexity of designing and providing the good feedbacks as the

adaptive redundancy control like CCACK [80] because actually, there is no explicit

feedback from downstream nodes in MP-DynCod.

4.2.6.5 Node behavior

Each node in MP-DynCod has to perform coded packet and acknowledgement recep-

tion and packet transmission which are all described in Figs 4-14 and 4-15.

4.2.7 Simulation and results

4.2.7.1 DynCod

We use NS-2 as the simulator to compare performances of DynCod with TCP Reno

and TCP/NC. Two topologies are illustrated in Figs 4-19(a) and 4-19(b). Nodes in

96

Primary transmits 6 data
adaptive redundancy

Destination

MP-DynCod Application
C1=D1

C2=D1+D2

C3=D2+D3

C4=D3+D4

C5=D4+D5

C6=D4+2D5

C7=D6

D3,D4,D5

X

D1

D2ACK 1

ACK 2

ACK 5

ACK 3

ACK 4

ACK 6 D6

bk
num =0.0

bk
num =0.0

bk
num =0.0

bk
num =0.5

bk
num =1.0

bk
num =0.0

Figure 4-13: MP-DynCod

Figure 4-14: Packet reception at the sender

test topologies are indexed from 0 to N− 1 (N is the number of nodes in topology).

The first topology (Fig 4-19(a)) is a chain of nodes to test the performance with

light traffic via multi-hop. The second topology (Fig 4-19(b)) is a grid topology with

multiple traffic flows to test the load traffic with high interference and loss. Each

topology is created in an area of 1000m × 1000m. Distance between two successive

nodes are 180m. Data flows in network are all FTP traffic sent over TCP Reno using

1000-byte datagrams with an arrival interval of 0.1s. Traffic is continuously generated

during the test runtime of 250s. Channel bit rate is set to 1Mbps and default link

loss value is set to 20% (i.e., at maximum 20% of sent packets are lost during the

test). Propagation delay between two nodes is around 100ms. Performances are

97

Figure 4-15: Packet reception at the receiver

then evaluated by throughput, coefficient list size per packet received at destination,

and end to end packet delivery time (pdt). For each test scenario, we randomly

choose sources and destinations for the traffic flows which are 2 or 3-hop length

(chain topology) or 3-hop length only (grid topology). Results are collected with 95%

confidence interval.

(a) Coefficient list size per packet (b) Throughput

Figure 4-16: Test results of chain topology

As shown in Figs 4-21(b) and 4-16(a), DynCod achieved a thoughput which is 10-

26% better than TCP/NC and 83-87% better than TCP Reno, respectively. The extra

gain for DynCod is derived from the reduced packet overhead (around 97% against

98

TCP/NC) and the adaptive redundancy control. Moreover, setting the redundancy

factor R like TCP/NC is quite complex and degrades the performance if TCP itself

can recover from the random losses. For example, in Fig 4-20(b), in case of loss ratio

1%, even TCP Reno surpasses TCP/NCs.

Figure 4-17: Packet delivery time for 3-hop flows in test scenarios

In a lossy environment with high interference, not only the data but also the

routing information is suffered from losses. Fig 4-17 shows the pdt of 3-hop traffic

flows in both test scenarios. The adaptive redundancy control allows DynCod to

deliver packets to TCP layer at destination within an acceptable pdt (around 1.5-

2.5s per packet). On the other hand, TCP Reno and TCP/NC with different R can

increase the pdt significantly. For instances, with 8 traffic flows in grid topology,

pdt of TCP Reno and pdt of TCP/NC increase around 50-600% and 50-700% over

DynCod, respectively. The reason is that due to high loss and interference, packet

insufficiency will result in the long TCP timeouts (TCP Reno) or decoding delays

(TCP/NC), especially, in case of under-redundancy (TCP/NC R=0.8). For a better

illustration, we also show the result of throughput over increasing loss ratio (%) in Fig

4-20(b). In test topology Grid with increasing loss (Fig 4-20(b)), DynCod can resist

the losses (from 1% to 40%) and improve the network performance over TCP/NC.

4.2.7.2 MP-DynCod

We use NS-2 as the simulator to compare performances of MP-DynCod with previous

architectures: DynCod and TCP/NC with fixed redundancy control. Two topologies

are illustrated in Figs 4-19(a) and 4-19(b). Nodes in test topologies are indexed from

0 to N − 1 (N is the number of nodes in topology). The first topology (Fig 4-19(a))

is a chain of nodes for to test the performance with light traffic via multi-hop. The

99

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

DynCod

TCP/FNC R=1.1

TCP/FNC R=1.3

TCP/FNC R=1.5

TCP Reno

DynCod

TCP/FNC R=1.1

TCP/FNC R=1.3

TCP/FNC R=1.5

TCP Reno

DynCod

TCP/FNC R=1.1

TCP/FNC R=1.3

TCP/FNC R=1.5

TCP Reno

DynCod

TCP/FNC R=1.1

TCP/FNC R=1.3

TCP/FNC R=1.5

TCP Reno

DynCod

TCP/FNC R=1.1

TCP/FNC R=1.3

TCP/FNC R=1.5

TCP Reno

T
hr

ou
gh

pu
t (

kb
ps

)

8 flows (1%)
4 flows (1%)
2 flows (1%)

8 flows (10%)
4 flows (10%)
2 flows (10%)
8 flows (20%)
4 flows (20%)
2 flows (20%)
8 flows (30%)
4 flows (30%)
2 flows (30%)
8 flows (40%)
4 flows (40%)
2 flows (40%)

Figure 4-18: Throughput over increasing loss (%)

second topology (Fig 4-19(b)) is a grid topology with multiple traffic flows to test

the load traffic with high interference and loss. Each topology is created in an area

of 1000m× 1000m. Distance between two successive nodes are 150m. Data flows in

network are all FTP traffic sent over TCP Reno using 1000-byte datagrams with an

arrival interval of 0.1s. Traffic is continuously generated during the test runtime 250s.

Channel bit-rate is set to 1Mbps and default link loss value is set to 20%. Propagation

delay between two nodes is around 100ms. Handshake RTS/CTS is turned off during

the simulation. Protocol OLSR is used in network layer to determine the transmission

path. DynCod does not apply ”coefficient list compression” to reduce the packet

delivery time. Performances are then evaluated by throughput, packet overhead, and

loss per delivery. For each test scenarios, we randomly pick sources and destinations

for the traffic flows which are 2 or 3-hop away (chain topology) or 3-hop away only

(grid topology). The test scenarios will be executed with each traffic flow variety for

all implementations and results are collected with 95% confidence interval.

(a) Chain (b) Grid

Figure 4-19: Test topologies

100

(a) Loss over delivery

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

kb
ps

)

Loss ratio (%)

MP DynCod-2 flows
MP DynCod-4 flows
MP DynCod-8 flows

DynCod-2 flows
DynCod-4 flows
DynCod-8 flows

TCP/FNC R=1.1-2 flows
TCP/FNC R=1.1-4 flows
TCP/FNC R=1.1-8 flows
TCP/FNC R=1.5-2 flows
TCP/FNC R=1.5-4 flows
TCP/FNC R=1.5-8 flows

(b) Throughput

Figure 4-20: Test results of grid topology

(a) Transmission overhead of traffic flow F1 (b) Throughput

Figure 4-21: Test results of chain topology

As shown in Figs 4-21(b) and 4-21(a), MP-DynCod resisted losses and main-

tained the higher throughput than DynCod and TCP/NC approximately 20-31%

and 42-45%, respectively. The extra gain for MP-DynCod is derived from the re-

duced transmission overhead (only 1.4 against 2.8 of DynCod, 3.2 of TCP/NC) and

the adaptive redundancy control. Transmission overhead is the ratio between the

number of transmission at source and the number of received packets at destination.

Because MP-DynCod takes advantage of multipath transmission, the redundancy will

not be delayed until the feedbacks (TCP ACKs) are sent back to source like DynCod.

Instead, based on the routing metric ETX, one node will calculate the loss rate and

inform its forwarders to transmit more traffic for compensation.

Fig 4-20(a) shows the loss per delivery (lpd), which is the ratio between the to-

tal number of lost packets and the number of received packets at destination. Even

though under high interference and losses, MP-DynCod still maintains a reasonable

101

lpd over the others (80-96 lost packets per delivery against 85-140 of TCP/NC and

90-135 of DynCod). The support of multipath transmission help reducing the interfer-

ence as it diverts the traffic into different routes but not simultaneously transmitted

but based on the credit system. That’s the reason why MP-DynCod gains an extra

throughput around 26-28% and 28-36% compared to DynCod and TCP/NC, respec-

tively (Fig 4-20(b)).

To further illustration, Fig 4-20(b) shows the throughput of all implementations

with the loss increased by percent %. MP-DynCod provides a higher resistance against

losses over the others. One note is that DynCod has the performance similarly equal

to the ones of TCP/NC R=1.1 and TCP/NC R=1.5 because the end to end adaptive

redundancy control still exposes the feedbacks (TCP ACKs) to losses, leading to the

reduced throughput if loss reaches over 20%. On the other hand, MP-DynCod utilizes

the hop by hop adaptive redundancy control. The information for redundancy control

is provided based on metric ETX by packet probing. The throughput gained from

MP-DynCod is much higher. MP-DynCod is more adaptive to losses in network, and

outperforms the previous propositions.

4.3 Chapter conclusion

RLNC is well-researched and widely supported in the network coding community. In

this chapter, we suggest the nouvel coding schemes to improve transmission reliability:

• ARC is the multi-batch pipeline coding with an adaptive redundant control

based on the feedback of link quality provided by MAC ACKs. ARC avoids fig-

uring out how many packets are required for the redundancy but suggests the

suitable time when the physical link is more feasible for the redundant trans-

missions. Consequently, ARC reduces the random losses by packet congestion

and interference, thus, provides the improved performance for UDP traffic.

• Dynamic Coding is the progressive non-generation based source coding scheme

like TCP/NC. The difference is that our DynCod suggests the latest data be-

ing presented by only one coded packet at a time. One unseen packet in the

coding window at the destination can be interpreted as a loss on the transmis-

sion. Consequently, an adaptive redundancy control is designed to support the

redundant packets accordingly.

• Multipath Dynamic Coding is the multipath progressive non-generation based

batch coding scheme. A hop by hop heuristic credit generating mechanism is

included to help reducing the high end-to-end delay introduced in DynCod.

102

To support transmission reliability, we agree that a transparent network coding

system is quite effective and robust to random losses. We provide three new coding

schemes which help to improve the network performance.

103

104

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Network coding is an interesting and promising solution that helps to enhance net-

work performance. There are many benefits of deploying network coding, from the

conventional throughput improvement to transmission reliability. The core idea of

network coding is that data flowing through the network can be mixed and trans-

formed (i.e., coded) but still lossless and recoverable (i.e., decoded) at the recipient.

The main trade-off of using network coding is that the computational capability of

current network stack at nodes need to be powerful. This is feasible because with

modern terminals and routers, processing is becoming faster and faster, completing

vast processing tasks in a blink. Network coding utilizes less expensive computational

power to trade network efficiency [20].

As an emerging field to the networking research community, how to design an

effective network coding system is still challenging and open to many propositions.

Linear network coding is used thanks to its popularity and wide support from the

research community. Moreover, linear network coding is well suited to our challenges

from the thesis: the throughput improvement and the transmission reliability. In

the context of applying network coding into wireless networks with unicast traffic,

we propose two main contributions: one for inter-flow network coding and one for

intra-flow network coding.

The first contribution, we address the benefit of network coding as throughput

improvement that traffic flows from opposite directions but intercepted at an in-

termediate nodes can be encoded to save the transmissions, thus, more data to be

transferred. We have proposed a nouvel and practical network coding architecture

for unicast traffic in the wireless mesh network. We studied the previously proposed

network coding systems, including COPE, BEND and DCAR, their advantages and

105

limitations. Based on this, the enhanced network coding system, called DODE, is re-

designed and proposed to take advantages of the formers and overcome their remained

issues. In the next step, we suggest DODEX (an extension of DODE) with a nouvel

idea: for more than 2 packet coding, DODEX will allow more than one decoder on

the path instead of only one. Decoders perform the decoding process cooperatively

to provide the packets to destination. DODEX breaks through a basic assumption

that the decoder for a traffic flow has to be only one node decoding coded packets.

With that, more coding chances will be explored and more network performance can

be improved. Moreover, we introduce DODEX+ to complete the coding condition.

Normally, the coded packets are kept intact and forwarded to decoders even though

some coding chance is found with that kind of traffic. DODEX+ allows re-encoding

the coded traffic to provide the better performance. In spite of very first results that

show DODEX+ is a minor improvement, DODEX+ is promising to give the enhanced

network coding system. Via simulations, we show our propositions DODE, DODEX

and DODEX+ surpass their previous works.

The second contribution follows the random linear network coding, a simple and

effective intra-flow network coding. Random linear network coding is the distributed

approach to avoid the node co-operation from locating the non-innovative encoding

vectors. Randomized network coding combination are generated and proved to con-

tain independent encoding vectors with the high probability [7]. Via well-investigating

the pros and cons of current propositions (e.g., Batch Coding, Pipeline Coding and

TCP/NC), we suggest a new coding scheme and an adaptive redundancy control by

using MAC ACKs for UDP traffic, named ARC. ARC uses the multi-batch pipeline

coding scheme that is continuously streaming new packets from generation to gen-

eration. Generations are not discarded if losses occur. They are kept and awaits

the redundant packets to be decoded, which is ensured by the adaptive redundancy

control provided by ARC. ARC is based on the use of MAC acknowledgements as

the feedback on the state of link quality. Thus, senders can adapt the sending rate

of coded packets to the current state of link quality. While interpreting the received

MAC acknowledgements as the feedback on the state of link quality, ARC can find

the suitable time to adjust the redundant traffic to the network to cover losses if nec-

essary. We show that our proposition can indeed help the transmission resist against

the loss, which results in smooth and lossless data streaming and increasing the band-

width utilization. For TCP traffic, we introduce the dynamic coding scheme DynCod.

In DynCod, when TCP wants to transmit a packet, DynCod will code this packet

with others non-ACKed in TCP congestion window. Therefore, the latest data are

always transformed and presented by only one coded packet at a time. This is the

106

heart of our proposed coding scheme which allows one unseen packet in the coding

window at the destination to be seen as a loss on the transmission. The source can

be informed via ACKs and adjust the redundant packets accordingly. TCP ACKs are

interpreted as the feedback of transmission quality and DynCod can accordingly add

the redundant packets. In DynCod, the end to end delay can be high due to the packet

congestion and interference causing the losses of TCP ACKs. We reuse our dynamic

coding scheme and adapt it to support the multipath transmission. Based on routing

metric ETX, a hop-by-hop credit distributed system is proposed. MP-DynCod can

classify the forwarding traffic into one primary forwarder and backup forwarders so

that MP-DynCod can accordingly add the redundant packets. MP-DynCod helps to

reduce the end-to-end delay and the redundant packets are provided by all related

nodes, not just the source as in DynCod. Via simulation, we show ARC, DynCod

and MP-DynCod will provide the better performance over previous approaches.

Figure 5-1: Future work

107

5.2 Future Work

We already explained how a generation coding condition is evolved from COPE

through BEND, DCAR to DODE, DODEX and DODEX+. We still leave an practi-

cal issue unanswered: the interference between multi-flows. This problem is partially

solved by PiggyCode [100] but we think the core problem can be solved if a more

effective coding scheme is developed from the current dynamic coding scheme. In

other words, the interference problem should be resolved at lower layer, for example,

channel network coding would be a possible way to go. Combined with our current

3.5 network coding layer, the result should be very promising. We can see the two

first future works pointing to the same direction: combining the two systems between

DODEX+ and DynCod can provide an enhanced network coding system. We show

in Fig 5-1, the future approaches open from this thesis.

108

Publications

CONFERENCE PAPERS

[C.1] T. V. Vu, T. M. T. Nguyen and G. Pujolle, Distributed Opportunistic and Dif-

fused Coding in Multi-hop Wireless Networks, ICC, 5583-5587, 2012.

[C.2] T. V. Vu, T. M. T. Nguyen and G. Pujolle, Distributed Opportunistic and Dif-

fused Coding with Multiple Decoders in Wireless Mesh Networks, MSWiM, 409-

412, 2012.

[C.3] T. V. Vu, N. Boukhatem, T. M. T. Nguyen and G. Pujolle, Adaptive Redundancy

Control with Network Coding in Multi-hop Wireless Networks, WCNC, 1510-

1515, 2013.

[C.4] V. C. Phung, T. V. Vu, T. M. T. Nguyen, DCAR Coding Gain Modeling and

Analysis, NoF, 2013.

[C.5] T. V. Vu, N. Boukhatem, T. M. T. Nguyen and G. Pujolle, Dynamic Coding

for TCP Transmission Reliability in Multi-hop Wireless Networks, WoWMoM,

2014.

109

110

Appendices

111

112

Appendix A

Mathematical Background

In the appendix, we would like to discuss the mathematical aspects of network coding

[101] and how we fit them into our proposition. We also explain some practical

considerations that allows an network coding system to be practically realized.

A.1 Linear Framework F2s

The reason why we consider a linear framework (hence, linear network coding) be-

cause the linear algebra is well-understood and the framework is quite simple and

effective. Let’s assume that each packet has data of L bits (e.g., in our simulation

L = 1000B = 8000b). For the simplicity, we also consider all native packets in our

system has the same size = L bits. In general case of different sizes among packets,

we can paddle successive ”0” into the end of shorter ones to meet the same. Math-

ematically, we can interpret s consecutive bits of packets as a symbol over the field

F2s . Consequently, a packets will has L
s

symbols (e.g., in our simulation s = 8). Our

proposed practical linear network coding system will provide intra-flow unicast coded

traffic Y (I) mentioned in the Definition below:

Definition 7 Let G be a delay-free communication network. G is a F2s - linear

network if for all links, the coded packet Y (I) at node I satisfies:

Y (I) =


µ(I)∑
l=1

αlX(I, l) if source∑
K:prev(I)

βKY (K) else
(A.1)

where:

• Y (I) denotes the egress coded packet at node I.

113

• X(I, l)(l ∈ (0, µ(I)]) denotes the packets at node I for transmission from the

application indexed by l.

• µ(I) denotes the number of applications at node I.

• prev(I) denotes the previous forwarders which are nodes constituting before node

I on the transmission path.

• αl, βK is the coefficients chosen from a finite field GF = 2m.

S

I I

I

D

I

1 2

3

4

X(S, 1)

Y(I)1 Y(I)2

Y(I)3Y(I)4

Z(D)

Figure A-1: An example of linear network

For illustration, Fig A-1 shows the packet Z(D) at node D as

Z1(I6) = Y (I3) = β1I3Y (I1) + β2I3Y (I2) = β1I3β1I1α1X(S, 1) + β2I3β1I2α1X(S, 1)

= (β1I3β1I1α1 + β2I3β1I2α1)X(S, 1)

Z2(I6) = βI4,1Y (I1) = β1I4β1I1α1

Definition 7 describes how actually a coded packet is created. Indeed, it is the

combination between the received coded packets from previous forwarders. Moreover,

Fig A-1 only illustrates a part of transmission path. If we look at the whole picture,

the coded packets received at the destination Z(D) is actually the combination of all

native packets from source. Consequently, via a linear network coding system, data

are maintained the integrity but transformed :

Z(D) =

µ(S)∑
l=1

∏
K:prev(D)

(βK)αlX(S, l) (A.2)

From the definition and illustration, packets (elements) in a linear network coding

system could be performed to satisfy the superposition and homogeneity properties:

114

• Combination of packets (even coded ones) will be a new packets. For example,

in Fig. A-1, Z1(I6) = Y (I3) = β1I3Y (I1) + β2I3Y (I2) = β1I3β1I1α1X(S, 1) +

β2I3β1I2α1X(S, 1)

• Each packet could be multiplied by a scalar, or a coefficient from the Galois

field F2s , e.g., Z2(I6) = βI4,1Y (I1) = β1I4β1I1α1

In other words, we can deduct how the nodes in network coding system perform

the encoding process and the decoding process.

A.1.1 Encoding

• At source

Assume we have n native packets X1(S, µ(S)), ..., Xj(S, µ(S)), ..., Xn(S, µ(S))

are generated by source S. To generate a coded packet Y (S), source S needs

to associate a list of coefficients (αµ(S)1, ..., αµ(S)j, ..., αµ(S)n) in F2s , so Yj(S) =
µ(S)∑
l=1

αlXj(S, l). (αµ(S)1, ..., αµ(S)j, ..., αµ(S)n) is called encoding vector or coeffi-

cient vector, Yj(S) is called information vector.

• At forwarders

Encoding process can be performed repeatedly with the coded pacekts at for-

warders. It’s called ”re-encoding”. For example, consider node I3 in Fig A-1, it

has two coded packets from I1 and I2: Y (I1) and Y (I2), respectively. I3 then

generates a coded packet Y (I3) = βI31Y (I1) + βI32Y (I2). Generally, after a re-

encoding process, at an intermediate node I, a new coded packet is produced

Y (I) =
∑

K:prev(I)

βKY (K) which is mentioned in Definition 7.

A.1.2 Decoding

Consider destination D has received m coded packets Z(Dj). Node D needs to

solve the linear problem

Z(Dj) =
n∑
j=1

∏
K:prev(D)

(βK)αµ(S)Xj(S, µ(S))

. A crucial

conditions is that m ≥ n, meaning the number of received coded packets at least

equal to the number of original packets. Otherwise, some of linear combinations

are not linearly independent or lost on transmission. At this point, the problem is

that how we ensure the linear combination (i.e., coded packets) are innovative (i.e.,

independent to each others) and loss-resistant. These two goals are in the aim of this

thesis, which we discuss in details in next sections.

115

A.2 Matrix and Gaussian elimination

In a linear network, Gaussian elimination is an algorithm for solving systems of linear

equations, which is a sequence of row operations performed on the decoding matrix

of coefficients and reducing it into a upper triangular matrix. There are 3 types of

elementary row operations:

• Swapping two rows.

• Multiplying a row by a non-zero scalar.

• Adding to one row a scalar multiple of another.

An illustration is shown in the example below:

[
1 2

3 4

]
←−

−3

+

⇒

[
1 2

0 −6

]
| ·− 1

6

⇒

[
1 2

0 1

]
←−
−2

+

⇒

[
1 0

0 1

]

A.3 Finite field operations

Network coding requires the manipulation over packets, or performs the operations

in F2s . The operations are defined as below:

• Addition ⊕ is the standard bitwise XOR between two packets.

• Subtraction 	 is also the stand bitwise XOR between the sum and the subtra-

hend.

• Multiplication ⊗ is a multiplication following by a modulo an irreducible re-

ducing polynomial (e.g., Rijndael’s finite field F2s is 1 + x+ x3 + x4 + x8). The

result is the product of two packets. Summarily, in F2s , deduce the sequence of

s bits as the polynominal b0 + b1x+ ...+ bs−1x
s−1, compute the product of two

deduced polynominals modulo the selected irreducible polynominal (e.g., like

one in Rijndael’s finite field F2s).

116

• Division� is computed by using Extended Euclidian algorithm to find the multi-

plicative reverse b−1 of divisor b, that is, a�b = a⊗b−1. The Extended Euclidian

algorithm states that we can find b−1 thanks to a ⊗ b−1 + b ⊗ a−1 = gcd(a, b)

(in our case, with the Galois field GF (2s) = GF (256), gcd(a, b) = 256).

117

118

Appendix B

Practical Considerations

B.1 Decoding matrix

To decode packets effectively, each node maintain a decoding matrix, that is, contain-

ing the pair encoding vector and information vector row by row (e.g., like in Eq B.1).

At first, the coded packet is added to the last row of the decoding matrix. Using Gaus-

sian elimination, the matrix is transformed to triangular matrix. If the rank of matrix

increased, the coded packet is innovative (i.e., new information). Otherwise, the row

of this packet is reduced to all 0s. After n innovative packets are well received and

Gaussian-eliminated, the triangular matrix will be transformed into diagonal matrix

The remain in information vector will be the original packets. Decoding process is

done.

 X1 0 0

0 X2 0

0 2 X3︸ ︷︷ ︸
encoding vector

∣∣∣∣∣∣∣
Y1

Y2

Y3


︸ ︷︷ ︸

information vector

(B.1)

B.2 Decoding delay

Network coding has an special impact on the decoding delay. The very proposition

[6] suggest the batch coding scheme: k packets are grouped into a batch and at least k

linear combinations will be generated and transmitted from this batch. This coding

scheme continues being adapted to many propositions [5], [80], [75], [76], [77], [79] like

a fundamental mechanism. Let’s consider the batch coding with fixed redundancy

control in [6]. Generally, assume we use a batch coding with size = k, redundancy

= r. Furthermore, assume ti is the time packet ith added into the coding window,

119

tci is the time coded packet intended for packet ith transmission is sent. Eventually,

let’s denote dtrx is the average transfer delay per transmission including processing,

transmission, propagation and queuing delay and dc is the average decoding delay per

packet. In case of no loss, the packet delivery time pdt of packet ith calculated by [6]

is:

pdti = tci+k−(i%k+1)+l
− ti + dtrx + dc (B.2)

Equation B.2 shows that the recipient has awaited at least k successful transmission

before it can decode the packets. Moreover, each packet contains all native ones mixed

together, leading to a careful selection of coefficients to ensure the linear independence.

Even with Random Linear Network Coding [32], there is a probability to get non-

innovative if we consider the high traffic and multipath streaming. More coding and

decoding schemes are proposed [10], [11] to significantly reduce this impact.

120

Appendix C

Ad-hoc routing protocols

C.1 Destination-Sequenced Distance Vector (DSDV)

Destination-Sequenced Distance-Vector Routing (DSDV) [69] is a table-driven routing

scheme for ad hoc mobile networks based on the Bellman Ford algorithm. Each entry

in the routing table maintains a sequence number. If a link is present, the sequence

number is even. Otherwise, the sequence number is odd. The destination generates

the sequence number. If one node has a routing path to the destination, the node

has to send the routing update with this sequence number. Routing information

is exchanged among nodes by sending full routing table updates and incremental

entry updates. Incremental entry updates are frequently triggered to send while

full routing table updates are infrequently transmitted. The route with the latest

sequence number is selected. If there are two routes with the same sequence number,

the route with the better metric is selected. If a routing entry is not updated for a

while, it becomes stale. Stale entries along with the associated routes will be removed

from the routing table.

C.2 Ad-hoc On-demand Distance Vector (AODV)

Ad-hoc On-demand Distance Vector (AODV) [67] is a reactive routing protocol for

mobile ad hoc networks (MANETs) and other wireless ad hoc networks. In AODV,

if there is a routing demand from a transmitter to a receiver, the transmitter will

broadcast a routing request to the network. Other nodes forward the request, and

record which node they hear the request from. Consequently, a number of routing

requests are transmitted to the receiver. If there is one node on the routing path

which already obtains the route to the destination, that node will send a routing

121

reply travelling back to the transmitter via the forwarders which forwarded the routing

request. Otherwise, the receiver receives the routing request and uses the route with

the least number of hops. Unused routing entries will be purged after a duration.

When a link fails, a routing error message is passed backward to the transmitter, and

the routing process above repeats.

122

References

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Net-

work information flow. IEEE Transactions on Information Theory, 46(4):1204–

1216, 2000.

[2] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and

Jon Crowcroft. XORs in the air: Practical wireless network coding. In Proceed-

ings of the 2006 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, SIGCOMM ’06, pages 243–254, New

York, NY, USA, 2006. ACM.

[3] Jian Zhang, Yuanzhu Peter Chen, and Ivan Marsic. MAC-layer proactive mix-

ing for network coding in multi-hop wireless networks. Computer Networks,

54(2):196–207, 2010.

[4] Jilin Le, John Chi Shing Lui, and Dah Ming Chiu. DCAR: Distributed coding-

aware routing in wireless networks. In Proceedings of the 2008 The 28th In-

ternational Conference on Distributed Computing Systems, ICDCS ’08, pages

462–469, Washington, DC, USA, 2008. IEEE Computer Society.

[5] Szymon Chachulski, Michael Jennings, Sachin Katti, and Dina Katabi. Trading

structure for randomness in wireless opportunistic routing. In SIGCOMM, pages

169–180, 2007.

[6] Philip A. Chou, Yunnan Wu, and Kamal Jain. Practical network coding. In

Allerton Conference on Communication, Control, and Computing, 2003.

[7] Tracey Ho, Muriel Medard, Jun Shi, Michelle Effros, and David R. Karger.

On randomized network coding. In In Proceedings of 41st Annual Allerton

Conference on Communication, Control, and Computing, 2003.

[8] Joon-Sang Park, Mario Gerla, Desmond S. Lun, Yunjung Yi, and Muriel

Médard. CodeCast: a network-coding-based ad hoc multicast protocol. IEEE

Wireless Commun., 13(5):76–81, 2006.

123

[9] Ralf Koetter and Muriel Médard. An algebraic approach to network coding.

IEEE/ACM Trans. Netw., 11(5):782–795, 2003.

[10] Chien-Chia Chen, Soon Young Oh, Phillip Tao, Mario Gerla, and M.Y. Sana-

didi. Pipeline network coding for multicast streams. In Proceedings of the

5th International Conference on Mobile Computing and Ubiquitous Networking

(ICMU), Seattle, U.S.A, 2010.

[11] Chien-Chia Chen, Clifford Chen, Soon Y. Oh, Joon-Sang Park, Mario Gerla,

and M. Y. Sanadidi. ComboCoding: Combined intra-/interflow network coding

for TCP over disruptive MANETs. Journal of Advanced Research, 2:241–252,

2011.

[12] Hamlet Medina Ruiz, Michel Kieffer, and Batrice Pesquet-Popescu. An adaptive

redundancy scheme for TCP with network coding. In ”IEEE International

Symposium on Network Coding (NETCOD), United States. IEEE, 2012.

[13] Thuong Van Vu, Thi Mai Trang Nguyen, and Guy Pujolle. Distributed op-

portunistic and diffused coding in multi-hop wireless networks. In ICC, pages

5583–5587. IEEE, 2012.

[14] Thuong Van Vu, Thi Mai Trang Nguyen, and Guy Pujolle. Distributed oppor-

tunistic and diffused coding with multiple decoders in wireless mesh networks.

In Proceedings of the 15th ACM International Conference on Modeling, Analysis

and Simulation of Wireless and Mobile Systems, MSWiM ’12, pages 409–412.

ACM, 2012.

[15] Thuong Van Vu, N. Boukhatem, Thi Mai Trang Nguyen, and G. Pujolle. Adap-

tive redundancy control with network coding in multi-hop wireless networks. In

Wireless Communications and Networking Conference (WCNC), 2013 IEEE,

pages 1510–1515, April 2013.

[16] Sumit Rangwala, Apoorva Jindal, Ki-Young Jang, Konstantinos Psounis, and

Ramesh Govindan. Understanding congestion control in multi-hop wireless

mesh networks. In Proceedings of the 14th ACM International Conference on

Mobile Computing and Networking, MobiCom ’08, pages 291–302, New York,

NY, USA, 2008. ACM.

[17] Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard, Michael Mitzen-

macher, and João Barros. Network coding meets TCP. In INFOCOM, pages

280–288, 2009.

124

[18] Thuong Van Vu, N. Boukhatem, Thi Mai Trang Nguyen, and G. Pujolle. Dy-

namic coding for tcp transmission reliability in multi-hop wireless networks. In

IEEE International Symposium on a World of Wireless, Mobile and Multimedia

Networks (WoWMoM) 2014, June 2014.

[19] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A

high-throughput path metric for multi-hop wireless routing. In Proceedings of

the 9th Annual International Conference on Mobile Computing and Networking,

MobiCom ’03, pages 134–146, New York, NY, USA, 2003. ACM.

[20] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. Network coding:

an instant primer. SIGCOMM Comput. Commun. Rev., 36(1):63–68, January

2006.

[21] Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear network coding.

IEEE Transactions on Information Theory, 49(2):371–381, 2003.

[22] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Ap-

proach, 3rd Edition. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2003.

[23] Søren Riis. Linear versus non-linear boolean functions in network flow. In CISS,

2004.

[24] A. Blasiak, R. Kleinberg, and E. Lubetzky. Lexicographic products and the

power of non-linear network coding. In Foundations of Computer Science

(FOCS), 2011 IEEE 52nd Annual Symposium on, pages 609–618, 2011.

[25] Hongyi Yao and E. Verbin. Network coding is highly non-approximable. In

Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual

Allerton Conference on, pages 209–213, 2009.

[26] Oliver Kosut, Lang Tong, and David Tse. Nonlinear network coding is necessary

to combat general byzantine attacks. In in 47th Annual Allerton Conference

on Communication, Control, and Computing, 2009.

[27] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network

information flow. Information Theory, IEEE Transactions on, 51(8):2745–2759,

Aug 2005.

[28] T. Koike-Akino, P. Larsson, P. Popovski, and Vahid Tarokh. Non-linear network

coding in two-way relaying discrete channels. In Wireless Communications

125

Signal Processing, 2009. WCSP 2009. International Conference on, pages 1–5,

2009.

[29] F. Davoli, M. Marchese, and M. Mongelli. Non-linear coding and decoding

strategies exploiting spatial correlation in wireless sensor networks. Communi-

cations, IET, 6(14):2198–2207, 2012.

[30] S. Y. R. Li and R. W. Yeung. Network multicast flow via linear coding. 1998.

[31] Peter Sanders, Sebastian Egner, and Ludo Tolhuizen. Polynomial time algo-

rithms for network information flow. In in 15th ACM Symposium on Parallel

Algorithms and Architectures, pages 286–294, 2003.

[32] Tracey Ho, Ralf Koetter, Muriel Mdard, David R. Karger, and Michelle Effros.

The benefits of coding over routing in a randomized setting. In In Proceedings

of 2003 IEEE International Symposium on Information Theory, 2003.

[33] Yu Wang, Hancheng Lu, Peilin Hong, and Kaiping Xue. Practical wireless

network coding with constrained decoding buffers. In Network Coding (NetCod),

2010 IEEE International Symposium on, pages 1–6, 2010.

[34] Jinyi Zhou, Shutao Xia, Yong Jiang, and Haitao Zheng. Decoding buffer man-

agement in practical wireless network coding. In Network Coding (NetCod),

2011 International Symposium on, pages 1–6, 2011.

[35] Chao Dong, Guihai Chen, Weibo Yu, Panlong Yang, and Hai Wang. How

to discover the coding opportunity for practical wireless network coding? In

Wireless Communications Signal Processing, 2009. WCSP 2009. International

Conference on, pages 1–4, 2009.

[36] T. Aktas, A.O. Yilmaz, and E. Aktas. Practical wireless network coding and

decoding methods for multiple unicast transmissions. In Wireless Communica-

tions and Networking Conference (WCNC), 2012 IEEE, pages 6–11, 2012.

[37] Huan Wang, Kaiping Xue, Peilin Hong, and Hancheng Lu. Impact of traffic pat-

tern on benefits of practical multi-hop network coding in wireless networks. In

Consumer Communications and Networking Conference (CCNC), 2011 IEEE,

pages 1197–1201, 2011.

[38] S. Omiwade, Rong Zheng, and Cunqing Hua. Practical localized network cod-

ing in wireless mesh networks. In Sensor, Mesh and Ad Hoc Communications

126

and Networks, 2008. SECON ’08. 5th Annual IEEE Communications Society

Conference on, pages 332–340, 2008.

[39] Bin Ni, Naveen Santhapuri, Zifei Zhong, and Srihari Nelakuditi. Routing with

opportunistically coded exchanges in wireless mesh networks. In WiMesh, 2006.

[40] Youghourta Benfattoum, Steven Martin, and Khaldoun Al Agha. IROCX:

Interference-aware routing with opportunistically coded exchanges in wireless

mesh networks. In WCNC, pages 1113–1118, 2011.

[41] Youghourta Benfattoum, Steven Martin, and Khaldoun Al Agha. TC-IROCX:

Network coding with topology control and interference awareness. In WCNC,

pages 1970–1975, 2012.

[42] Shinji Kano, Takahiro Wada, and Iwao Sasasei. Route switching protocol for

network coding in ad hoc networks. In Iwano Communication and Electronics

(ICCE), 2010.

[43] Cong Liu and Jie Wu. Adaptive routing in dynamic ad hoc networks. In Wireless

Communications and Networking Conference, 2008. WCNC 2008. IEEE, pages

2603–2608, March 2008.

[44] Song Han, Zifei Zhong, Hongxing Li, Guihai Chen, E. Chan, and A.K. Mok.

Coding-aware multi-path routing in multi-hop wireless networks. In Perfor-

mance, Computing and Communications Conference, 2008. IPCCC 2008. IEEE

International, pages 93–100, 2008.

[45] Seong-Hee Lee, Junwhan Kim, and Ho gil Cho. Coding-aware real-time routing

in multi-hop wireless sensor networks. In Consumer Electronics (ICCE), 2011

IEEE International Conference on, pages 443–444, 2011.

[46] Jin Wang, Cenzhe Zhu, Qinfeng Guo, Chai Teck Yoong, and Wai-Choong

Wong. SCAR: A dynamic coding-aware routing protocol. In Signal Processing

and Communication Systems (ICSPCS), 2012 6th International Conference on,

pages 1–5, 2012.

[47] Yan Yan, Baoxian Zhang, Jun Zheng, and Jian Ma. Core: a coding-aware

opportunistic routing mechanism for wireless mesh networks [accepted from

open call]. Wireless Communications, IEEE, 17(3):96–103, June 2010.

[48] Xin Wei, Li Zhao, Ji Xi, and Qingyun Wang. Network coding aware routing

protocol for lossy wireless networks. In Wireless Communications, Networking

127

and Mobile Computing, 2009. WiCom ’09. 5th International Conference on,

pages 1–4, 2009.

[49] Bin Guo, Hongkun Li, Chi Zhou, and Yu Cheng. Analysis of general network

coding conditions and design of a free-ride-oriented routing metric. Vehicular

Technology, IEEE Transactions on, 60(4):1714–1727, 2011.

[50] James F. Kurose and Keith Ross. Computer Networking: A Top-Down Ap-

proach Featuring the Internet. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2nd edition, 2002.

[51] Luigi Rizzoi. Effective erasure codes for reliable computer communication pro-

tocols. SIGCOMM Comput. Commun. Rev., 27(2):24–36, April 1997.

[52] Christina Fragouli, Jrg Widmer, and Jean-Yves Le Boudec. A network coding

approach to energy efficient broadcasting: from theory to practice. In IN PROC.

OF IEEE INFOCOM, 2006.

[53] Yufang Xi and E.M. Yeh. Distributed algorithms for minimum cost multicast

with network coding. Networking, IEEE/ACM Transactions on, 18(2):379–392,

April 2010.

[54] Tracey Ho, Jia-Qi Jin, and Harish Viswanathan. On network coding and routing

in dynamic wireless multicast networks. 2006.

[55] Jingyao Zhang and Pingyi Fan. On network coding in wireless ad-hoc networks.

IJAHUC, 2(3):140–148, 2007.

[56] Hulya Seferoglu, Athina Markopoulou, and K. K. Ramakrishnan. I2NC: Intra-

and inter-session network coding for unicast flows in wireless networks. In

INFOCOM, pages 1035–1043, 2011.

[57] Y. Wu, P. A. Chou, and S. Y. Kung. Information exchange in wireless networks

with network coding and physical-layer broadcast. In Proc. 39th Annual Conf.

Inform. Sci. and Systems (CISS), 2005.

[58] Sachin Katti, Dina Katabi, Wenjun Hu, Hariharan Rahul, and Muriel Medard.

The Importance of Being Opportunistic: Practical Network Coding for Wireless

Environments. In Allerton Annual Conference on Communication, Control and

Computing, 2005.

128

[59] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The broad-

cast storm problem in a mobile ad hoc network. In Proceedings of the 5th Annual

ACM/IEEE International Conference on Mobile Computing and Networking,

MobiCom ’99, pages 151–162, New York, NY, USA, 1999. ACM.

[60] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying for flooding

broadcast messages in mobile wireless networks. In System Sciences, 2002.

HICSS. Proceedings of the 35th Annual Hawaii International Conference on,

pages 3866–3875, Jan 2002.

[61] Wei Peng and Xi-Cheng Lu. On the reduction of broadcast redundancy in

mobile ad hoc networks. In Proceedings of the 1st ACM International Sympo-

sium on Mobile Ad Hoc Networking & Computing, MobiHoc ’00, pages 129–130,

Piscataway, NJ, USA, 2000. IEEE Press.

[62] T. Matsuda, T. Noguchi, and T. Takine. Broadcasting with Randomized Net-

work Coding in Dense Wireless Ad Hoc Networks. IEICE Transactions on

Communications, 91:3216–3225, 2010.

[63] Li Li, R. Ramjee, M. Buddhikot, and S. Miller. Network coding-based broad-

cast in mobile ad-hoc networks. In INFOCOM 2007. 26th IEEE International

Conference on Computer Communications. IEEE, pages 1739–1747, May 2007.

[64] Ihong Hou, Yuen Tsai, Tarek F. Abdelzaher, and Indranil Gupta. AdapCode:

Adaptive network coding for code updates. In in Wireless Sensor Networks, in

Proceedings of IEEE INFOCOM, 2008.

[65] Shuhui Yang and Jie Wu. Efficient broadcasting using network coding and di-

rectional antennas in MANETs. Parallel and Distributed Systems, IEEE Trans-

actions on, 21(2):148–161, Feb 2010.

[66] Zhenyu Yang, Ming Li, and Wenjing Lou. R-Code: Network coding based

reliable broadcast in wireless mesh networks with unreliable links. In Global

Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pages 1–6,

Nov 2009.

[67] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector

(AODV) routing. IETF RFC 3561, 2003.

[68] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR)

for Mobile Ad Hoc Networks for IPv4. RFC 4728 (Experimental), February

2007.

129

[69] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers. In Proceedings of the

Conference on Communications Architectures, Protocols and Applications, SIG-

COMM ’94, pages 234–244, New York, NY, USA, 1994. ACM.

[70] Jilin Le, John C. S. Lui, and Dah-Ming Chiu. On the performance bounds of

practical wireless network coding. pages 1134–1146, 2010.

[71] Jilin Le, J.C.S. Lui, and Dah Ming Chiu. How many packets can we encode? -

An analysis of practical wireless network coding. In INFOCOM 2008. The 27th

Conference on Computer Communications. IEEE, 2008.

[72] Sanjit Biswas and Robert Morris. Opportunistic routing in multi-hop wireless

networks, 2005.

[73] A. Tiwari, A. Ganguli, Ashwin Sampath, D.S. Anderson, Bao-Hong Shen,

N. Krishnamurthi, J. Yadegar, M. Gerla, and D. Krzysiak. Mobility aware

routing for the airborne network backbone. In Military Communications Con-

ference, 2008. MILCOM 2008. IEEE, pages 1–7, 2008.

[74] Eric Rozner, Jayesh Seshadri, Yogita Ashok Mehta, and Lili Qiu. SOAR: Sim-

ple opportunistic adaptive routing protocol for wireless mesh networks. IEEE

Trans. Mob. Comput., 8(12):1622–1635, 2009.

[75] Yunfeng Lin, Baochun Li, and Ben Liang. CodeOR: Opportunistic routing in

wireless mesh networks with segmented network coding. In ICNP, pages 13–22,

2008.

[76] Yunfeng Lin, Ben Liang, and Baochun Li. SlideOR: Online opportunistic net-

work coding in wireless mesh networks. In INFOCOM, pages 171–175, 2010.

[77] Steluta Gheorghiu, Alberto López Toledo, and P. Rodriguez. Multipath TCP

with network coding for wireless mesh networks. In ICC, pages 1–5, 2010.

[78] Chien-Chia Chen, Guruprasad Tahasildar, Yu-Ting Yu, Joon-Sang Park, Mario

Gerla, and M. Y. Sanadidi. CodeMP: Network coded multipath to support tcp

in disruptive MANETS. In MASS, pages 209–217, 2012.

[79] Xinyu Zhang and Baochun Li. DICE: a game theoretic framework for wireless

multipath network coding. In MobiHoc, pages 293–302, 2008.

130

[80] Dimitrios Koutsonikolas, Chih-Chun Wang, and Y. Charlie Hu. CCACK: Ef-

ficient network coding based opportunistic routing through cumulative coded

acknowledgments. In INFOCOM, pages 2919–2927, 2010.

[81] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiquitous access to

distributed data in large-scale sensor networks through decentralized erasure

codes. In Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth

International Symposium on, pages 111–117, April 2005.

[82] Dragan Petrovi, Kannan Ramchandran, and Jan Rabaey. Overcoming untuned

radios in wireless networks with network coding. IEEE TRANSACTIONS ON

INFORMATION THEORY, pages 2649–2657, 2006.

[83] P. Ingtoft T. Madsen R. Jacobsen, K. Jakobsen and F.H.P. Fitzek. Practical

Evaluation of Partial Network Coding in Wireless Sensor Networks. In 4th In-

ternational Mobile Multimedia Communications Conference (MobiMedia 2008),

Oulu, Finland, July 2008. ICTS/ACM.

[84] Vahid Shah-Mansouri and Vincent W. S. Wong. Link-by-link feedback mecha-

nism for intra-session random linear network coding in wireless sensor networks.

In ICC, pages 681–686, 2012.

[85] Ismail Salhi, Erwan Livolant, Yacine Ghamri-Doudane, and Stéphane Lohier.

ZInC: Index-coding for many-to-one communications in zigbee sensor networks.

In ICC, pages 783–788, 2012.

[86] www.bittorrent.com. 2001.

[87] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content

distribution. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, volume 4, pages

2235–2245 vol. 4. IEEE, March 2005.

[88] M. Martalo, M. Picone, R. Bussandri, and M. Amoretti. A practical network

coding approach for peer-to-peer distributed storage. In Network Coding (Net-

Cod), 2010 IEEE International Symposium on, pages 1–6, 2010.

[89] Y. Wu. Existence and construction of capacity-achieving network codes for

distributed storage. Selected Areas in Communications, IEEE Journal on,

28(2):277–288, 2010.

131

[90] M. Martalo, M. Picone, M. Amoretti, G. Ferrari, and R. Raheli. Randomized

network coding in distributed storage systems with layered overlay. In Infor-

mation Theory and Applications Workshop (ITA), 2011, pages 1–7, 2011.

[91] Ning Wang and Jiaru Lin. Network coding for distributed data storage and

continuous collection in wireless sensor networks. In Wireless Communications,

Networking and Mobile Computing, 2008. WiCOM ’08. 4th International Con-

ference on, pages 1–4, 2008.

[92] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure

codes for distributed networked storage. Information Theory, IEEE Transac-

tions on, 52(6):2809–2816, 2006.

[93] A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ramchandran.

Network coding for distributed storage systems. Information Theory, IEEE

Transactions on, 56(9):4539–4551, 2010.

[94] Ning Cai and R.W. Yeung. Secure network coding on a wiretap network. In-

formation Theory, IEEE Transactions on, 57(1):424–435, 2011.

[95] Young-Sik Kim. Refined secure network coding scheme with no restriction on

coding vectors. Communications Letters, IEEE, 16(11):1907–1910, 2012.

[96] Ning Cai and T. Chan. Theory of secure network coding. Proceedings of the

IEEE, 99(3):421–437, 2011.

[97] Muxi Yan and A. Sprintson. Weakly secure network coding for wireless cooper-

ative data exchange. In Global Telecommunications Conference (GLOBECOM

2011), 2011 IEEE, pages 1–5, 2011.

[98] Yawen Wei, Zhen Yu, and Yong Guan. Efficient weakly-secure network coding

schemes against wiretapping attacks. In Network Coding (NetCod), 2010 IEEE

International Symposium on, pages 1–6, 2010.

[99] C. Gkantsidis and P.R. Rodriguez. Cooperative security for network coding

file distribution. In INFOCOM 2006. 25th IEEE International Conference on

Computer Communications. Proceedings, pages 1–13, 2006.

[100] Luca Scalia, Fabio Soldo, and Mario Gerla. Piggycode: A MAC layer net-

work coding scheme to improve TCP performance over wireless networks. In

Proceedings of the Global Communications Conference, 2007. GLOBECOM 07,

Washington, DC, USA, 26-30 November 2007, pages 3672–3677. IEEE, 2007.

132

[101] N. R. Wagner. The laws of cryptography with java code, 2000.

133

