Stratégies numériques avancées pour la simulation de modèles définis sur des géométries de plaques et coques : solutions 3D avec une complexité 2D

Brice Bognet

GEM, Ecole Centrale Nantes dans le cadre de la chaire EADS

16 avril 2013

Mise en situation

Conception et optimisation de structures complexes : Design préliminaire mise à jour des couplages > 010 010 010 010 0 optimisation des composants mise en commun Design final du produit

Mise en situation

Conception et optimisation de structures complexes : Design préliminaire mise à jour des couplages > 010 010 010 010 0 optimisation des composants P nombreux problèmes similaires mise en commun Design final du produit

Optimisation structurelle de composants :

Optimisation structurelle de composants :

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	

Problématique

Motivations

Économiser la matièreAlléger les structures

Dimensionner au plus juste

Types de pièces :

 Diminution du nombre de pièces/d'assemblages

Pièces complexes

- Géométries : plaques et coques
- Matériaux métalliques et composites

Objectif

- Simulation pour des plaques/coques métalliques/composites complexes
- Méthode de simulation performante
- Simulation paramétriques (variables de conception, chargements, ...) en vue de construire des abaques numériques

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	

Problématique

Motivations Économiser la matière Dimensionner au plus juste Alléger les structures Types de pièces : Diminution du nombre de Pièces complexes pièces/d'assemblages Géométries : plaques et coques ۹ Matériaux métalliques et composites

• Simulation paramétriques (variables de conception, chargements, ...) en vue de construire des abaques numériques

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	

Problématique

Motivations Économiser la matière Alléger les structures Types de pièces :

• Diminution du nombre de

pièces/d'assemblages

Pièces complexes

- Géométries : plaques et coques
- Matériaux métalliques et composites

Objectif

- Simulation pour des plaques/coques métalliques/composites complexes
- Méthode de simulation performante
- Simulation paramétriques (variables de conception, chargements, ...) en vue de construire des abaques numériques

État de l'art : mécanique des plaques et coques

Méthode	Points forts	Points faibles
Résolution analytique du problème continu [Pagano,Timoshenko] [Woinowsky-Krieger]	Solution exacte	Domaines simples Comportements simples

- Effectuer des simulations 3D
- Utiliser la PGD (Proper Generalized Decomposition) pour résoudre en séparant des variables d'espace
- Inclure des paramètres en tant que coordonnées du problème

État de l'art : mécanique des plaques et coques

Méthode	Points forts	Points faibles
Résolution analytique du problème continu [Pagano,Timoshenko] [Woinowsky-Krieger]	Solution exacte	Domaines simples Comportements simples
Résolution numérique du problème discret 3D [Zienkiewicz]	Aucune restriction sur la forme du domaine	Très coûteux

- Effectuer des simulations 3D
- Utiliser la PGD (Proper Generalized Decomposition) pour résoudre en séparant des variables d'espace
- Inclure des paramètres en tant que coordonnées du problème

État de l'art : mécanique des plaques et coques

Méthode	Points forts	Points faibles
Résolution analytique du problème continu [Pagano,Timoshenko] [Woinowsky-Krieger]	Solution exacte	Domaines simples Comportements simples
Résolution numérique du problème discret 3D [Zienkiewicz]	Aucune restriction sur la forme du domaine	Très coûteux
Résolution numérique du problème discret 2D basé sur théorie de plaques/coques [Carrera,Reddy] [Reissner,Timoshenko] [Ugrimov,Vidal et Polit]	Peu coûteux Domaines plaques et coques	Solution dégradée près des bords/chargements Nécessite des traitements particuliers pour capturer les effets 3D [Liew,Sheng,Vel]

- Effectuer des simulations 3D
- Utiliser la PGD (Proper Generalized Decomposition) pour résoudre en séparant des variables d'espace
- Inclure des paramètres en tant que coordonnées du problème

État de l'art : mécanique des plaques et coques

Méthode	Points forts	Points faibles
Résolution analytique du problème continu [Pagano,Timoshenko] [Woinowsky-Krieger]	Solution exacte	Domaines simples Comportements simples
Résolution numérique du problème discret 3D [Zienkiewicz]	Aucune restriction sur la forme du domaine	Très coûteux
Résolution numérique du problème discret 2D basé sur théorie de plaques/coques [Carrera,Reddy] [Reissner,Timoshenko] [Ugrimov,Vidal et Polit]	Peu coûteux Domaines plaques et coques	Solution dégradée près des bords/chargements Nécessite des traitements particuliers pour capturer les effets 3D [Liew,Sheng,Vel]
Approche présentée [Bognet]	3D Peu coûteux Domaines plaques et coques	?

- Effectuer des simulations 3D
- Utiliser la PGD (Proper Generalized Decomposition) pour résoudre en séparant des variables d'espace
- Inclure des paramètres en tant que coordonnées du problème

État de l'art : mécanique des plaques et coques

Méthode	Points forts	Points faibles
Résolution analytique du problème continu [Pagano,Timoshenko] [Woinowsky-Krieger]	Solution exacte	Domaines simples Comportements simples
Résolution numérique du problème discret 3D [Zienkiewicz]	Aucune restriction sur la forme du domaine	Très coûteux
Résolution numérique du problème discret 2D basé sur théorie de plaques/coques [Carrera,Reddy] [Reissner,Timoshenko] [Ugrimov,Vidal et Polit]	Peu coûteux Domaines plaques et coques	Solution dégradée près des bords/chargements Nécessite des traitements particuliers pour capturer les effets 3D [Liew,Sheng,Vel]
Approche présentée [Bognet]	3D Peu coûteux Domaines plaques et coques	?

- Effectuer des simulations 3D
- Utiliser la PGD (Proper Generalized Decomposition) pour résoudre en séparant des variables d'espace
- Inclure des paramètres en tant que coordonnées du problème

État de l'art : PGD

Séparation espace/temps, espace/paramètres :

Nombreux domaine de la physique [Ammar,Chinesta,Cueto,Falcó,Huerta,Ladevèze,Nouy,Vidal,...]

Séparation espace/espace :

Domaines :

- thermique [Ghnatios] (thèse soutenue à Centrale Nantes le 2 Octobre 2012)
- fluides [Dumon 2013]

Travail présenté : résolution de problèmes d'élasticité 3D sur des géométries de plaques et coques [Bognet] : séparation 2D/1D.

État de l'art : PGD

Séparation espace/temps, espace/paramètres :

Nombreux domaine de la physique [Ammar,Chinesta,Cueto,Falcó,Huerta,Ladevèze,Nouy,Vidal,...]

Séparation espace/espace :

Domaines :

- thermique [Ghnatios] (thèse soutenue à Centrale Nantes le 2 Octobre 2012)
- fluides [Dumon 2013]

Travail présenté : résolution de problèmes d'élasticité 3D sur des géométries de plaques et coques [Bognet] : séparation 2D/1D.

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

- Coordonnées cartésiennes
- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

Conclusion et perspectives

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

- Coordonnées cartésiennes
- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

5 Conclusion et perspectives

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
	● 00000000 000000			
Problème mé	anique 2D			

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

Paramètres supplémentaires en tant que coordonnées

5 Conclusion et perspectives

Soit Ω , le domaine de résolution :

$$\begin{aligned} \sigma(\mathbf{u}) &= \mathbb{K} \cdot \varepsilon(\mathbf{u}) \\ \varepsilon(\mathbf{u}) &= \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) \\ \partial \Omega &= \partial_1 \Omega \cup \partial_2 \Omega \\ SA &: \mathbf{F}_{\mathbf{d}}(x, z) \text{ sur } \partial_2 \Omega \\ CA &: \mathbf{u}(x, z) &= \mathbf{u}_{\mathbf{d}} \text{ sur } \partial_1 \Omega \end{aligned}$$

Définition du problème mécanique :

Définition du problème mécanique :

Problème mécanique 2D

Introduction de la PGD (Proper Generalized Decomposition)

Principe des travaux virtuels :

$$\iint_{\Omega} \Big(\boldsymbol{\varepsilon}(\mathbf{u}^{\star}) \cdot \mathbb{K} \cdot \boldsymbol{\varepsilon}(\mathbf{u}) \Big) \mathrm{d}\Omega = \iint_{\Omega} (\mathbf{u}^{\star} \cdot \mathbf{f}_{\mathsf{d}}) \, \mathrm{d}\Omega + \int_{\partial_{\mathbf{2}\Omega}} (\mathbf{u}^{\star} \cdot \mathbf{F}_{\mathsf{d}}) \, \mathrm{d}\Gamma$$

Séparation des variables

Les quantités doivent être exprimées sous forme séparée :

• le déplacement :

$$\mathbf{u}(x,z) = \sum_{i=1}^{N} \begin{pmatrix} u_{x}^{i}(x) \cdot u_{z}^{i}(z) \\ v_{x}^{i}(x) \cdot v_{z}^{i}(z) \end{pmatrix} = \sum_{i=1}^{N} \mathbf{U}_{x}^{i}(x) \circ \mathbf{U}_{z}^{i}(z)$$

$$\mathbb{K}(x,z) = \sum_{i=1}^{N_{\mathbb{K}}} \mathbb{K}_{x}^{i}(x) \circ \mathbb{K}_{z}^{i}(z)$$

• les éléments de volume et de surface élémentaires :

$$d\Omega = d\Omega_x \otimes d\Omega_z$$
$$d\Gamma = d\Gamma_x \otimes d\Gamma_z$$

où o représente le produit d'Hadamard

Problème mécanique 2D

Démarche de résolution

Algorithme glouton par enrichissements successifs de u

Pour N 'modes' de u connus, on cherche le $(N + 1)^e$ [Ammar et al., 2006] :

$$\mathbf{u}_{N+1}(x,z) = \mathbf{u}_N(x,z) + \mathbf{R}(x) \circ \mathbf{S}(z) = \sum_{i=1}^N \mathbf{U}_x^i(x) \circ \mathbf{U}_z^i(z) + \begin{pmatrix} R_u(x) \cdot S_u(z) \\ R_v(x) \cdot S_v(z) \end{pmatrix}$$

Champ test u'

$$\mathbf{u}^{*}(x,z) = \mathbf{R}(x)^{*} \circ \mathbf{S}(z) + \mathbf{R}(x) \circ \mathbf{S}(z)^{*}$$

Travaux virtuels

Problème non-linéaire en (R,S) : linéarisation $\textbf{R} \rightarrow \textbf{S} \rightarrow ... \rightarrow \textbf{R} \rightarrow \textbf{S}$

$$\begin{split} \iint\limits_{\Omega} \Big(\boldsymbol{\varepsilon} (\boldsymbol{\mathsf{R}}^{\star} \circ \boldsymbol{\mathsf{S}} + \boldsymbol{\mathsf{R}} \circ \boldsymbol{\mathsf{S}}^{\star}) \cdot \mathbb{K} \cdot \boldsymbol{\varepsilon}(\boldsymbol{\mathsf{u}}) \Big) \mathrm{d}\Omega \\ &= \iint\limits_{\Omega} \left((\boldsymbol{\mathsf{R}}^{\star} \circ \boldsymbol{\mathsf{S}} + \boldsymbol{\mathsf{R}} \circ \boldsymbol{\mathsf{S}}^{\star}) \cdot \boldsymbol{\mathsf{f}}_{\mathsf{d}} \right) \mathrm{d}\Omega + \int\limits_{\partial_{2}\Omega} \left((\boldsymbol{\mathsf{R}}^{\star} \circ \boldsymbol{\mathsf{S}} + \boldsymbol{\mathsf{R}} \circ \boldsymbol{\mathsf{S}}^{\star}) \cdot \boldsymbol{\mathsf{F}}_{\mathsf{d}} \right) \mathrm{d}\Gamma \end{split}$$

Problème mécanique 2D

Démarche de résolution

Algorithme glouton par enrichissements successifs de u

Pour N 'modes' de u connus, on cherche le $(N + 1)^e$ [Ammar et al., 2006] :

$$\mathbf{u}_{N+1}(x,z) = \mathbf{u}_N(x,z) + \mathbf{R}(x) \circ \mathbf{S}(z) = \sum_{i=1}^N \mathbf{U}_x^i(x) \circ \mathbf{U}_z^i(z) + \begin{pmatrix} R_u(x) \cdot S_u(z) \\ R_v(x) \cdot S_v(z) \end{pmatrix}$$

Champ test \mathbf{u}^{\star}

$$\mathbf{u}^{\star}(x,z) = \mathbf{R}(x)^{\star} \circ \mathbf{S}(z) + \mathbf{R}(x) \circ \mathbf{S}(z)^{\star}$$

Travaux virtuels

Problème non-linéaire en (\mathbf{R}, \mathbf{S}) : linéarisation $\mathbf{R} \rightarrow \mathbf{S} \rightarrow ... \rightarrow \mathbf{R} \rightarrow \mathbf{S}$

$$\begin{split} & \iint_{\Omega} \Big(\varepsilon (\mathsf{R}^{\star} \circ \mathsf{S} + \mathsf{R} \circ \mathsf{S}^{\star}) \cdot \mathbb{K} \cdot \varepsilon(\mathsf{u}) \Big) \mathrm{d}\Omega \\ & = \iint_{\Omega} \left((\mathsf{R}^{\star} \circ \mathsf{S} + \mathsf{R} \circ \mathsf{S}^{\star}) \cdot \mathsf{f}_{\mathsf{d}} \right) \mathrm{d}\Omega + \int_{\partial_2 \Omega} \left((\mathsf{R}^{\star} \circ \mathsf{S} + \mathsf{R} \circ \mathsf{S}^{\star}) \cdot \mathsf{F}_{\mathsf{d}} \right) \mathrm{d}\Gamma \end{split}$$

Problème mécanique 2D

Démarche de résolution

Algorithme glouton par enrichissements successifs de u

Pour N 'modes' de u connus, on cherche le $(N + 1)^e$ [Ammar et al., 2006] :

$$\mathbf{u}_{N+1}(x,z) = \mathbf{u}_N(x,z) + \mathbf{R}(x) \circ \mathbf{S}(z) = \sum_{i=1}^N \mathbf{U}_x^i(x) \circ \mathbf{U}_z^i(z) + \begin{pmatrix} R_u(x) \cdot S_u(z) \\ R_v(x) \cdot S_v(z) \end{pmatrix}$$

Champ test \mathbf{u}^{\star}

$$\mathbf{u}^{\star}(x,z) = \mathbf{R}(x)^{\star} \circ \mathbf{S}(z) + \mathbf{R}(x) \circ \mathbf{S}(z)^{\star}$$

Travaux virtuels

Problème non-linéaire en (R,S) : linéarisation $\textbf{R} \rightarrow \textbf{S} \rightarrow ... \rightarrow \textbf{R} \rightarrow \textbf{S}$

$$\begin{split} \iint\limits_{\Omega} \Big(\varepsilon (\mathsf{R}^{\star} \circ \mathsf{S} + \mathsf{R} \circ \mathsf{S}^{\star}) \cdot \mathbb{K} \cdot \varepsilon(\mathsf{u}) \Big) \mathrm{d}\Omega \\ &= \iint\limits_{\Omega} \left((\mathsf{R}^{\star} \circ \mathsf{S} + \mathsf{R} \circ \mathsf{S}^{\star}) \cdot \mathsf{f}_{\mathsf{d}} \right) \mathrm{d}\Omega + \int\limits_{\partial_2 \Omega} \left((\mathsf{R}^{\star} \circ \mathsf{S} + \mathsf{R} \circ \mathsf{S}^{\star}) \cdot \mathsf{F}_{\mathsf{d}} \right) \mathrm{d}\Gamma \end{split}$$

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
	000000000000000000000000000000000000000			
Problème méc	anique 2D			
- · · ·				

Résolution

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
	000000000000000000000000000000000000000			
Problème mé	anique 2D			

Résolution

Détail de la résolution du problème en R

Choix de résolution

Problème mécanique 2D

Détail de la résolution du problème en R

Expression de u :

$$\mathbf{u}_{N+1}(x,z) = \mathbf{u}_N + \mathbf{R} \circ \mathbf{S}$$

 \boldsymbol{S} est supposé connu, le champ test \boldsymbol{u}^{\star} devient alors :

 $\mathbf{u}^{\star}(x,z) = \mathbf{R}^{\star} \circ \mathbf{S}$

Expression de la déformation :

$$\boldsymbol{\varepsilon}(\mathbf{R} \circ \mathbf{S}) = \begin{pmatrix} R_{\boldsymbol{u}, \mathbf{x}} \cdot S_{\boldsymbol{u}} \\ R_{\boldsymbol{v}} \cdot S_{\boldsymbol{v}, \boldsymbol{z}} \\ R_{\boldsymbol{v}, \mathbf{x}} \cdot S_{\boldsymbol{v}} + R_{\boldsymbol{u}} \cdot S_{\boldsymbol{u}, \boldsymbol{z}} \end{pmatrix}$$

Travaux virtuels

$$\begin{split} \int_{\Omega_{\mathbf{x}}} \int_{\Omega_{\mathbf{z}}} & \left(\boldsymbol{\varepsilon} (\mathbf{R}^{\star} \circ \mathbf{S}) \cdot \mathbb{K} \cdot \boldsymbol{\varepsilon} (\mathbf{R} \circ \mathbf{S}) \right) \mathrm{d}\Omega_{\mathbf{x}} \mathrm{d}\Omega_{\mathbf{z}} = - \int_{\Omega_{\mathbf{x}}} \int_{\Omega_{\mathbf{z}}} \int_{\Omega_{\mathbf{z}}} \left(\boldsymbol{\varepsilon} (\mathbf{R}^{\star} \circ \mathbf{S}) \cdot \mathbb{K} \cdot \boldsymbol{\varepsilon} (\mathbf{u}) \right) \mathrm{d}\Omega_{\mathbf{x}} \mathrm{d}\Omega_{\mathbf{z}} \\ & + \int_{\Omega_{\mathbf{x}}} \int_{\Omega_{\mathbf{z}}} \left((\mathbf{R}^{\star} \circ \mathbf{S}) \cdot \mathbf{f}_{\mathbf{d}} \right) \mathrm{d}\Omega_{\mathbf{x}} \mathrm{d}\Omega_{\mathbf{z}} + \int_{\partial_{2}\Omega_{\mathbf{x}}} \int_{\partial_{2}\Omega_{\mathbf{z}}} \left((\mathbf{R}^{\star} \circ \mathbf{S}) \cdot \mathbf{F}_{\mathbf{d}} \right) \mathrm{d}\Gamma_{\mathbf{x}} \mathrm{d}\Gamma_{\mathbf{z}} \end{split}$$

 $=\sum_{i=1}^{\circ}\lambda_{\boldsymbol{s}_{i}}\int_{\Omega_{\mathbf{r}_{i}}}\left(R_{\boldsymbol{c}_{i},\alpha_{i}}^{\star}\cdot R_{\boldsymbol{d}_{i},\beta_{i}}\right)\mathrm{d}\Omega_{\mathbf{x}}$

XS;

Problème mécanique 2D

Détail de la résolution du problème en R

Développement des produits, séparation des intégrales, et intégration :

$$\begin{split} \int_{\Omega_{\mathbf{x}}} \int_{\Omega_{\mathbf{x}}} \begin{pmatrix} R_{u,x}^{*} \cdot S_{u} \\ R_{v}^{*} \cdot S_{v,z} \\ R_{v,x}^{*} \cdot S_{v} + R_{u}^{*} \cdot S_{u,z} \end{pmatrix} \begin{pmatrix} AB \, 0 \\ BA \, 0 \\ 0 \, 0 \, C \end{pmatrix} \begin{pmatrix} R_{u,x} \cdot S_{u} \\ R_{v} \cdot S_{v,z} \\ R_{v,x} \cdot S_{v} + R_{u} \cdot S_{u,z} \end{pmatrix} \mathrm{d}\Omega_{\mathbf{x}} \mathrm{d}\Omega_{\mathbf{z}} \\ &= \sum_{i=1}^{8} \mathcal{K}_{i} \int_{\Omega_{\mathbf{x}}} \begin{pmatrix} R_{e_{i},\alpha_{i}}^{*} \cdot R_{d_{i},\beta_{i}} \end{pmatrix} \mathrm{d}\Omega_{\mathbf{x}} \int_{\Omega_{\mathbf{x}}} \begin{pmatrix} S_{e_{i},\gamma_{i}} \cdot S_{d_{i},\delta_{i}} \end{pmatrix} \mathrm{d}\Omega_{\mathbf{z}} \\ &= \sum_{i=1}^{8} \lambda_{s_{i}} \int_{\Omega_{\mathbf{x}}} \begin{pmatrix} R_{e_{i},\alpha_{i}}^{*} \cdot R_{d_{i},\beta_{i}} \end{pmatrix} \mathrm{d}\Omega_{\mathbf{x}} \end{split}$$

Le problème linéaire en R devient :

$$\underbrace{\sum_{i=1}^{8} \lambda s_{i} \int _{\Omega_{x}} \left(R_{c_{i},\alpha_{i}}^{*} \cdot R_{d_{i},\beta_{i}} \right) \mathrm{d}\Omega_{x}}_{\mathcal{K}_{i} \int _{\Omega_{x}} \left(S_{c_{i},\gamma_{i}} \cdot S_{d_{i},\delta_{i}} \right) \mathrm{d}\Omega_{z}} \xrightarrow{\mathcal{K}_{d_{i},\beta_{i}}} \left(S_{c_{i},\gamma_{i}} \cdot W_{y_{i},\delta_{i}} \right) \mathrm{d}\Omega_{z}}_{\Omega_{x}} \left(K_{i} \int _{\Omega_{x}} \left(S_{c_{i},\gamma_{i}} \cdot W_{y_{i},\delta_{i}} \right) \mathrm{d}\Omega_{z}} \right)$$

Pour les N modes connus, et à fonction **S** donnée, le problème 1D en **R** est résolu par la méthode des éléments finis

Détail de la résolution du problème en S

Choix de résolution

oui I Résolution terminée
Convergence du point fixe

Point fixe

Si on nomme \mathbf{R}^i et \mathbf{S}^i les fonctions respectivement de (x) et (z) calculées à l'itération *i* du point fixe.

La convergence est atteinte quand :

$$\iint_{\Omega} \|\mathbf{R}^{i} \circ \mathbf{S}^{i} - \mathbf{R}^{i-1} \circ \mathbf{S}^{i-1}\| \mathrm{d}\Omega < \varepsilon_{\mathsf{point fixe}}.$$

Le mode convergé est ajouté à la solution :

$$\mathbf{u}_{N+1} = \mathbf{u}_N + \mathbf{R}^i \circ \mathbf{S}^i$$

Choix de résolution

Brice BOGNET Soutenance de thèse 16 avril 2013, Nantes

Convergence de l'enrichissement

Critère d'arrêt de l'enrichissement :

Plusieurs critères sont envisageables :

• Critère sur la norme du résidu du problème :

$$\frac{- \iint\limits_{\Omega} \left(\boldsymbol{\varepsilon} \left(\boldsymbol{u}^{\star} \right) \cdot \mathbb{K} \cdot \boldsymbol{\varepsilon} \left(\boldsymbol{u}_{\textit{N}+1} \right) \right) \mathrm{d}\Omega + \iint\limits_{\Omega} \left(\boldsymbol{u}^{\star} \cdot \boldsymbol{f}_{\textit{d}} \right) \mathrm{d}\Omega}{ \iint\limits_{\Omega} \left(\boldsymbol{u}^{\star} \cdot \boldsymbol{f}_{\textit{d}} \right) \mathrm{d}\Omega} < \varepsilon_{\textit{résidu}}$$

• Autres critères possibles, notamment basés sur des estimateurs d'erreur [Ladevèze et Chamoin] Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives Résolution mode par mode du problème

Plan

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Critère d'arrêt de l'enrichissement atteint

Résolution mode par mode du problème

Enrichissement successifs du problème :

Critère d'arrêt de l'enrichissement atteint

Résolution mode par mode du problème

Enrichissement successifs du problème :

Critère d'arrêt de l'enrichissement atteint

Résolution mode par mode du problème

Enrichissement successifs du problème :

Résolution mode par mode du problème

Enrichissement successifs du problème :

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

Paramètres supplémentaires en tant que coordonnées

5 Conclusion et perspectives

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

- Coordonnées cartésiennes
- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

5 Conclusion et perspectives

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives	
		•00000000000000000000000000000000000000			
Coordonnées cartésiennes					

Plan

Introduction

Séparation en 2D : 1D/1D

Séparation en 3D : plan/hors plan Coordonnées cartésiennes

- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

5 Conclusion et perspectives

Problème mécanique 3D

Soit $\Omega,$ le domaine de résolution :

Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives coordonnées cartésiennes
Problème mécanique 3D

Soit Ω , le domaine de résolution :

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives			
		000000000000000000000000000000000000000					
Coordonnées cartésiennes							
Problème mécanique 3D							

Soit Ω , le domaine de résolution :

Problème mécanique 3D

 $\mathbf{x} = (x, y)$

Problème mécanique 3D

 $\mathbf{x} = (x, y)$

 $\begin{array}{l} \text{Trouver } \boldsymbol{u}(\boldsymbol{x},z), \, \text{tel que}:\\ \textit{div}(\boldsymbol{\sigma}(\boldsymbol{u})) + \boldsymbol{f}_{d} = \boldsymbol{0} \\ \boldsymbol{\sigma}(\boldsymbol{u}) = \mathbb{K} \cdot \boldsymbol{\varepsilon}(\boldsymbol{u}) \\ \boldsymbol{\varepsilon}(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{T}) \\ \partial \boldsymbol{\Omega} = \partial_{1} \boldsymbol{\Omega} \cup \partial_{2} \boldsymbol{\Omega} \\ \text{SA}: \, \boldsymbol{F}_{d}(\boldsymbol{x},z) \, \, \text{sur } \partial_{2} \boldsymbol{\Omega} \\ \text{CA}: \, \boldsymbol{u}(\boldsymbol{x},z) = \boldsymbol{u}_{d} \, \, \text{sur } \partial_{1} \boldsymbol{\Omega} \end{array}$

 $\Omega = \Omega_{\mathbf{X}} \otimes \Omega_{\mathbf{z}}$

Problème mécanique 3D

 $\mathbf{x} = (x, y)$

 $\begin{array}{l} \mbox{Trouver } \boldsymbol{u}(\boldsymbol{x},z), \mbox{ tel } que: \\ \mbox{div}(\boldsymbol{\sigma}(\boldsymbol{u})) + \boldsymbol{f}_d = 0 \\ \boldsymbol{\sigma}(\boldsymbol{u}) = \mathbb{K} \cdot \boldsymbol{\varepsilon}(\boldsymbol{u}) \\ \boldsymbol{\varepsilon}(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T) \\ \partial \Omega = \partial_1 \Omega \cup \partial_2 \Omega \\ \mbox{SA: } \boldsymbol{F}_d(\boldsymbol{x},z) \mbox{ sur } \partial_2 \Omega \\ \mbox{CA: } \boldsymbol{u}(\boldsymbol{x},z) = \boldsymbol{u}_d \mbox{ sur } \partial_1 \Omega \end{array}$

$$\begin{split} \Omega &= \Omega_{\mathbf{X}} \otimes \Omega_z \\ \mathbf{F}_{\mathsf{d}}(\mathbf{x}, z) &= \mathbf{F}_{\mathsf{d}\mathbf{X}}(\mathbf{x}) \circ \mathbf{F}_{\mathsf{d}z}(z) \\ & \text{sur } \partial_2 \Omega = \partial_2 \Omega_{\mathbf{X}} \otimes \partial_2 \Omega_z \end{split}$$

Problème mécanique 3D

 $\mathbf{x} = (x, y)$

 $\begin{array}{l} \text{Trouver } \boldsymbol{u}(\boldsymbol{x},z), \mbox{ tel } que: \\ div(\boldsymbol{\sigma}(\boldsymbol{u})) + \boldsymbol{f}_d = 0 \\ \boldsymbol{\sigma}(\boldsymbol{u}) = \mathbb{K} \cdot \boldsymbol{\varepsilon}(\boldsymbol{u}) \\ \boldsymbol{\varepsilon}(\boldsymbol{u}) = \frac{1}{2} (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T) \\ \partial \Omega = \partial_1 \Omega \cup \partial_2 \Omega \\ \text{SA}: \mbox{ } \boldsymbol{F}_d(\boldsymbol{x},z) \mbox{ sur } \partial_2 \Omega \\ \text{CA}: \mbox{ } \boldsymbol{u}(\boldsymbol{x},z) = \mbox{ } \boldsymbol{u}_d \mbox{ sur } \partial_1 \Omega \end{array}$

$$\begin{split} \Omega &= \Omega_{\mathbf{X}} \otimes \Omega_z \\ \mathbf{F}_{\mathsf{d}}(\mathbf{x}, z) &= \mathbf{F}_{\mathsf{d}\mathbf{X}}(\mathbf{x}) \circ \mathbf{F}_{\mathsf{d}z}(z) \\ & \text{sur } \partial_2 \Omega = \partial_2 \Omega_{\mathbf{X}} \otimes \partial_2 \Omega_z \end{split}$$

Coordonnées cartésiennes

Introduction de la PGD (Proper Generalized Decomposition)

Séparation des variables d'espace

L'ensemble des quantités doivent être exprimées sous forme séparée :

• le déplacement :

$$\mathbf{u}(x, y, z) = \sum_{i=1}^{N} \begin{pmatrix} u_{xy}^{i}(x, y) \cdot u_{z}^{i}(z) \\ v_{xy}^{i}(x, y) \cdot v_{z}^{i}(z) \\ w_{xy}^{i}(x, y) \cdot w_{z}^{i}(z) \end{pmatrix} = \sum_{i=1}^{N} \mathbf{U}_{xy}^{i} \circ \mathbf{U}_{z}^{i}$$

• les coefficients matériaux :

$$\mathbb{K}(x,y,z) = \sum_{i=1}^{N_{\mathbb{K}}} \mathbb{K}_{xy}^{i} \circ \mathbb{K}_{z}^{i}$$

A/---

• les éléments de volume et de surface élémentaires :
$$\label{eq:alpha} \begin{split} &\mathrm{d}\Omega = \mathrm{d}\Omega_{xy}\otimes\mathrm{d}\Omega_z\\ &\mathrm{d}\Gamma = \mathrm{d}\Gamma_{xy}\otimes\mathrm{d}\Gamma_z \end{split}$$

Enrichissement succesifs de u

On suppose les N premiers 'modes' de u connus, et l'on cherche le $(N+1)^e$

$$\mathbf{u}_{N+1}(x, y, z) = \sum_{i=1}^{N} \mathbf{U}_{xy}^{i} \circ \mathbf{U}_{z}^{i} + \begin{pmatrix} R_{u}(x, y) \cdot S_{u}(z) \\ R_{v}(x, y) \cdot S_{v}(z) \\ R_{w}(x, y) \cdot S_{w}(z) \end{pmatrix} = \mathbf{u}_{N} + \mathbf{R} \circ$$

Coordonnées cartésiennes

Introduction de la PGD (Proper Generalized Decomposition)

Séparation des variables d'espace

L'ensemble des quantités doivent être exprimées sous forme séparée :

• le déplacement :

$$\mathbf{u}(x, y, z) = \sum_{i=1}^{N} \begin{pmatrix} u'_{xy}(x, y) \cdot u'_{z}(z) \\ v'_{xy}(x, y) \cdot v'_{z}(z) \\ w'_{xy}(x, y) \cdot w'_{z}(z) \end{pmatrix} = \sum_{i=1}^{N} \mathbf{U}_{xy}^{i} \circ \mathbf{U}_{z}^{i}$$

• les coefficients matériaux :

$$\mathbb{K}(x,y,z) = \sum_{i=1}^{N_{\mathbb{K}}} \mathbb{K}_{xy}^{i} \circ \mathbb{K}_{z}^{i}$$

A/---

• les éléments de volume et de surface élémentaires : $d\Omega = d\Omega_{xy} \otimes d\Omega_z$ $d\Gamma = d\Gamma_{xy} \otimes d\Gamma_z$

Enrichissement succesifs de \mathbf{u}

On suppose les N premiers 'modes' de u connus, et l'on cherche le $(N + 1)^e$:

$$\mathbf{u}_{N+1}(x, y, z) = \sum_{i=1}^{N} \mathbf{U}_{xy}^{i} \circ \mathbf{U}_{z}^{i} + \begin{pmatrix} R_{u}(x, y) \cdot S_{u}(z) \\ R_{v}(x, y) \cdot S_{v}(z) \\ R_{w}(x, y) \cdot S_{w}(z) \end{pmatrix} = \mathbf{u}_{N} + \mathbf{R} \circ \mathbf{S}$$

Coordonnées cartésiennes

Détail de la résolution du problème en R

Expression de u :

$$\mathbf{u}_{N+1}(x,y,z) = \mathbf{u}_N + \mathbf{R} \circ \mathbf{S}$$

S est supposé connu, Le champ test \mathbf{u}^* devient :

$$\mathbf{u}^{\star}(x,y,z)=\mathbf{R}^{\star}\circ\mathbf{S}$$

Expression de la déformation

$$\varepsilon(\mathbf{R} \circ \mathbf{S}) = \sum_{i=1}^{N} \begin{pmatrix} R_{u,x} \cdot S_{u} \\ R_{v,y} \cdot S_{v} \\ R_{w} \cdot S_{w,z} \\ R_{w,y} \cdot S_{w} + R_{v} \cdot S_{v,z} \\ R_{w,x} \cdot S_{w} + R_{u} \cdot S_{u,z} \\ R_{v,x} \cdot S_{v} + R_{u,y} \cdot S_{u} \end{pmatrix}$$

Coordonnées cartésiennes

Détail de la résolution du problème en R

Substitution des quantités dans l'expression des puissances virtuelles

$$\begin{split} & \iiint \limits_{\Omega} \begin{pmatrix} R_{x,x}^{\star} \cdot S_{u} \\ R_{y,y}^{\star} \cdot S_{v} \\ R_{w,y}^{\star} \cdot S_{v,z} \\ R_{w,x}^{\star} \cdot S_{w} + R_{x}^{\star} \cdot S_{v,z} \\ R_{w,x}^{\star} \cdot S_{w} + R_{x}^{\star} \cdot S_{v,z} \\ R_{w,x}^{\star} \cdot S_{w} + R_{x}^{\star} \cdot S_{u,z} \\ R_{v,x}^{\star} \cdot S_{v} + R_{u,y}^{\star} \cdot S_{u} \end{pmatrix} \begin{pmatrix} \kappa_{11} \kappa_{12} \kappa_{13} \ 0 \ 0 \ \kappa_{16} \\ \kappa_{12} \kappa_{22} \kappa_{23} \ 0 \ 0 \ \kappa_{26} \\ \kappa_{13} \kappa_{23} \kappa_{33} \ 0 \ 0 \ \kappa_{36} \\ 0 \ 0 \ 0 \ \kappa_{44} \kappa_{45} \ 0 \\ 0 \ 0 \ 0 \ \kappa_{45} \kappa_{55} \ 0 \\ \kappa_{16} \kappa_{26} \kappa_{36} \ 0 \ 0 \ \kappa_{66} \end{pmatrix} \begin{pmatrix} R_{u,x} \cdot S_{u} \\ R_{v,y} \cdot S_{v} \\ R_{w,y} \cdot S_{w} + R_{u} \cdot S_{v,z} \\ R_{w,x} \cdot S_{v} + R_{u,y} \cdot S_{u} \end{pmatrix} \mathrm{d}\Omega \\ & = - \iiint \limits_{\Omega} \left(\varepsilon (\mathbb{R}^{\star} \circ \mathbb{S}) : \mathbb{K} : \varepsilon(u_{\mathbb{N}}) \right) \mathrm{d}\Omega + \iiint \limits_{\Omega} \left((\mathbb{R}^{\star} \circ \mathbb{S}) \cdot \mathrm{f}_{d} \right) \mathrm{d}\Omega + \iint \limits_{\partial_{2}\Omega} \left((\mathbb{R}^{\star} \circ \mathbb{S}) \cdot \mathrm{F}_{d} \right) \mathrm{d}\Gamma \end{split}$$

Le problème linéaire en R devient

$$\underbrace{\sum_{i=1}^{41} \lambda_{S_i} \iint\limits_{\Omega_{xy}} \left(R_{c_i,\alpha_i}^* \cdot R_{d_i,\beta_i} \right) \mathrm{d}\Omega_{xy} = -\sum_{i=1}^{41N+6} \lambda_i \iint\limits_{\Omega_{xy}} \left(R_{c_i,\alpha_i}^* \cdot W_{xy_i,\beta_i} \right) \mathrm{d}\Omega_{xy}}_{\int\limits_{\Omega_x} \left(S_{c_i,\gamma_i} \cdot K_{m_in_i}(z) \cdot W_{z_i,\delta_i} \right) \mathrm{d}\Omega_x} \int\limits_{\Omega_x} \underbrace{\int\limits_{\Omega_x} \left(S_{c_i,\gamma_i} \cdot K_{m_in_i}(z) \cdot W_{z_i,\delta_i} \right) \mathrm{d}\Omega_x}_{\Omega_x}$$

Pour les *N* modes connus, et à fonction **S** donnée, le problème 2D en **R** est résolu par la méthode des éléments finis

Coordonnées cartésiennes

Détail de la résolution du problème en R

Substitution des quantités dans l'expression des puissances virtuelles

$$\begin{split} & \iiint_{\Omega} \begin{pmatrix} R_{u,x}^{*} \cdot S_{u} \\ R_{v,y}^{*} \cdot S_{v} \\ R_{w,y}^{*} \cdot S_{v,z} \\ R_{w,x}^{*} \cdot S_{w} + R_{v}^{*} \cdot S_{v,z} \\ R_{w,x}^{*} \cdot S_{w} + R_{u}^{*} \cdot S_{u,z} \\ R_{w,x}^{*} \cdot S_{w} + R_{u}^{*} \cdot S_{u,z} \\ R_{v,x}^{*} \cdot S_{v} + R_{u,y}^{*} \cdot S_{u} \end{pmatrix} \begin{pmatrix} K_{11}K_{12}K_{13} \ 0 \ 0 \ K_{16} \\ K_{12}K_{22}K_{23} \ 0 \ 0 \ K_{26} \\ K_{13}K_{23}K_{33} \ 0 \ 0 \ K_{36} \\ 0 \ 0 \ 0 \ K_{44}K_{45} \ 0 \\ 0 \ 0 \ 0 \ K_{45}K_{55} \ 0 \\ K_{16}K_{26}K_{36} \ 0 \ 0 \ K_{66} \end{pmatrix} \begin{pmatrix} R_{u,x} \cdot S_{u} \\ R_{v,y} \cdot S_{v} \\ R_{w} \cdot S_{w,z} \\ R_{w,x} \cdot S_{v} + R_{u} \cdot S_{u,z} \\ R_{v,x} \cdot S_{v} + R_{u,y} \cdot S_{u} \end{pmatrix} \mathrm{d}\Omega \\ & = - \iiint_{\Omega} \left(\varepsilon(\mathbb{R}^{*} \circ \mathbb{S}) : \mathbb{K} : \varepsilon(\mathbb{u}_{\mathbb{N}}) \right) \mathrm{d}\Omega + \iiint_{\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iiint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial 2\Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \circ \mathbb{S}) \cdot \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint_{\partial \Omega} \left((\mathbb{R}^{*} \otimes \mathbb{I}_{d} \right) \mathrm{d}\Omega + \iint$$

Le problème linéaire en R devient :

$$\underbrace{\int_{\boldsymbol{\Omega}_{\boldsymbol{x}}}^{\boldsymbol{41}} \lambda_{\boldsymbol{S}_{\boldsymbol{i}}} \iint_{\boldsymbol{\Omega}_{\boldsymbol{x}\boldsymbol{y}}} (R_{\boldsymbol{c}_{\boldsymbol{i}},\alpha_{\boldsymbol{i}}}^{\star} \cdot R_{\boldsymbol{d}_{\boldsymbol{i}},\beta_{\boldsymbol{i}}}) \mathrm{d}\boldsymbol{\Omega}_{\boldsymbol{x}\boldsymbol{y}} = -\sum_{i=1}^{\boldsymbol{41N+6}} \lambda_{\boldsymbol{i}} \iint_{\boldsymbol{\Omega}_{\boldsymbol{x}\boldsymbol{y}}} (R_{\boldsymbol{c}_{\boldsymbol{i}},\alpha_{\boldsymbol{i}}}^{\star} \cdot W_{\boldsymbol{x}\boldsymbol{y}_{\boldsymbol{i}},\beta_{\boldsymbol{i}}}) \mathrm{d}\boldsymbol{\Omega}_{\boldsymbol{x}\boldsymbol{y}}}{\int_{\boldsymbol{\Omega}_{\boldsymbol{x}}} (S_{\boldsymbol{c}_{\boldsymbol{i}},\gamma_{\boldsymbol{i}}} \cdot K_{\boldsymbol{m}_{\boldsymbol{i}}\boldsymbol{n}_{\boldsymbol{i}}}(z) \cdot S_{\boldsymbol{d}_{\boldsymbol{i}},\delta_{\boldsymbol{i}}}) \mathrm{d}\boldsymbol{\Omega}_{\boldsymbol{x}}} \underbrace{\int_{\boldsymbol{\Omega}_{\boldsymbol{x}}} (S_{\boldsymbol{c}_{\boldsymbol{i}},\gamma_{\boldsymbol{i}}} \cdot K_{\boldsymbol{m}_{\boldsymbol{i}}\boldsymbol{n}_{\boldsymbol{i}}}(z) \cdot W_{\boldsymbol{x}\boldsymbol{i}},\delta_{\boldsymbol{i}}) \mathrm{d}\boldsymbol{\Omega}_{\boldsymbol{x}}}_{\boldsymbol{X}}}_{\boldsymbol{\Omega}_{\boldsymbol{x}}}$$

Pour les N modes connus, et à fonction **S** donnée, le problème 2D en **R** est résolu par la méthode des éléments finis

Coordonnées cartésiennes

Problème utilisé pour les analyses de précision et de performance :

Coordonnées cartésiennes

Comparaison avec une solution de référence éléments finis 3D

Erreur relative (maillages équivalents) :

$$Err_{Ed} = 100 \cdot \frac{\sigma(\mathbf{u}_{PGD} - \mathbf{u}_{FE}) : \varepsilon(\mathbf{u}_{PGD} - \mathbf{u}_{FE})}{\sigma(\mathbf{u}_{FE}) : \varepsilon(\mathbf{u}_{FE})},$$

Erreur relative en densité d'énergie de déformation (solution PGD constituée de 7 modes) :

Le problème est résolu avec les deux méthodes en faisant évoluer la discrétisation :

20 éléments 1D par pli

- 18 millions de degrés de libertés 3D
- 12 minutes de calcul sur un ordinateur portable (4Go de RAM)
- 16Go de RAM nécessaires à la visualisation

Exemple concret : plaque trouée stratifiée en traction

Détail de la contrainte σ_{zz} au voisinage du trou :

Coordonnées cartésiennes

Extensions de la méthode

Points forts de l'approche présentée :

- Résolution 3D avec une complexité 2D
- Pièces composites stratifiées

Limitations de l'approche présentée :

- Géométries planes
- Pièces massives

Extensions souhaitées :

- Pièces plus complexes (raidisseurs, cavités, ...)
- Coques

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
		000000000000000000000000000000000000000		

Extensions de la méthode

Points forts de l'approche présentée :

- Résolution 3D avec une complexité 2D
- Pièces composites stratifiées

Limitations de l'approche présentée :

- Géométries planes
- Pièces massives

Extensions souhaitées :

- Pièces plus complexes (raidisseurs, cavités, ...)
- Coques

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
		000000000000000000000000000000000000000		

Extensions de la méthode

Points forts de l'approche présentée :

- Résolution 3D avec une complexité 2D
- Pièces composites stratifiées

Limitations de l'approche présentée :

- Géométries planes
- Pièces massives

Extensions souhaitées :

- Pièces plus complexes (raidisseurs, cavités, ...)
- Coques

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
		000000000000000000000000000000000000000		
Domaines con	nplexes			

Plan

Introduction

Séparation en 2D : 1D/1D

Séparation en 3D : plan/hors plan
 Coordonnées cartésiennes
 Domaines complexes
 Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

5 Conclusion et perspectives

Introduction Séparation 1D/1D Plan/hors plan Paramètres suppléments

Paramètres supplémentaires Conclusion et perspectives

Domaines complexes

Représentation de la structure en plusieurs modes

Domaine réel :

Domaine de résolution englobant le domaine réel :

Où δ_{xyz} s'écrit :

$$\delta_{xyz} = \sum_{i=1}^{3} \delta_{xy}^{i} \cdot \delta_{z}^{i}$$

Domaines complexes

Représentation de la structure en plusieurs modes

Domaine réel :

Domaine de résolution englobant le domaine réel :

$$\delta_{xyz} = \sum_{i=1}^{3} \delta_{xy}^{i} \cdot \delta_{z}^{i}$$

Conclusion et perspectives

 δ_{z}^{1}

 δ_z^2

 δ_z^3

Domaines complexes

Représentation de la structure en plusieurs modes

Domaine réel :

Exemple d'un panneau sandwich composite/nid d'abeilles

matériaux :

Nid d'abeilles : aluminium Peaux : stratifié $[0, 45, 90, -45]_s$

Description de la microstructure : Maillage une cellule :

Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives con

Containte σ_{xx} sur le panneau :

 Introduction
 Séparation 1D/1D
 Plan/hors plan
 Paramètres supplémentaires
 Conclusion et perspectives

 Occordences
 Occordence
 <td

Résultat de la simulation :

Containte σ_{yy} et σ_{zz} sur le panneau :

Taille du problème reconstruit : 10 millions de ddl

Résultat de la simulation :

Containte σ_{yy} et σ_{zz} sur le panneau :

Taille du problème reconstruit : 10 millions de ddl

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
		000000000000000000000000000000000000000		
Coordonnées (curvilignes			
Plan				

Introduction

Séparation en 2D : 1D/1D

Séparation en 3D : plan/hors plan

- Coordonnées cartésiennes
- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

5 Conclusion et perspectives

Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives coordonnées curvilignes Problème mécanique 3D

Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives coordonnées curvilignes
Problème mécanique 3D
Description de la géométrie :

Paramétrage de la géométrie :

La surface moyenne est définie par : $\mathbf{x}_{P}(\xi, \eta) = \begin{pmatrix} X_{P}(\xi, \eta) \\ Y_{P}(\xi, \eta) \\ Z_{P}(\xi, \eta) \end{pmatrix}$

Les vecteurs tangents à la surface moyenne :

$$\begin{aligned} \mathbf{a_1} &= \mathbf{x}_{P,\xi}(\xi,\eta) \\ \mathbf{a_2} &= \mathbf{x}_{P,\eta}(\xi,\eta) \end{aligned}$$

La normale s'écrit :

$$\mathsf{n} = \frac{\mathsf{a}_1 \land \mathsf{a}_2}{\parallel \mathsf{a}_1 \land \mathsf{a}_2 \parallel}$$

Le point M du volume est défini par :

$$\mathbf{x}_{M}(\xi,\eta) = \mathbf{x}_{P}(\xi,\eta) + \zeta \mathbf{n}(\xi,\eta)$$

Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives conconconces curvilignes
Problème mécanique 3D
Description de la géométrie :

Déplacement sous forme séparée :

$$\mathbf{u}(\xi,\eta,\zeta) = \sum_{i=1}^{N} \mathbf{u}_{\xi\eta}(\xi,\eta) \circ \mathbf{u}_{\zeta}(\zeta)$$

Coordonnées curvilignes

Choix de la base de travail

différentes bases :

expression de $rac{\partial \mathbf{u}}{\partial \mathbf{x}}$	
nécessite un changement de base	$naturelle \ (pour \ des \ stratifiés) \ \mathbb{K} = ig(\mathbb{K}_{\xi\eta} \circ \mathbb{K}_{\zeta}ig)_{(t_1,t_2,t_3)}$
naturelle $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \xi} \frac{\partial \xi}{\partial \mathbf{x}}$	

Coordonnées curvilignes

Choix de la base de travail

différentes bases :

 $\begin{array}{l} \text{Base locale}:(t_1,t_2,t_3) \text{ Base} \\ \text{globale}:(e_x,e_y,e_z) \end{array}$

	expression de $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	expression de $\mathbb K$
base locale	nécessite un changement de base	naturelle (pour des stratifiés) $\mathbb{K} = \left(\mathbb{K}_{\xi\eta} \circ \mathbb{K}_{\zeta}\right)_{(\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3)}$
base globale	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \xi} \frac{\partial \xi}{\partial \mathbf{x}}$	nécessite un changement de base

Coordonnées curvilignes

Choix de la base de travail

différentes bases :

 $\begin{array}{l} \text{Base locale}:\left(t_{1},t_{2},t_{3}\right)\text{ Base}\\ \text{globale}:\left(e_{x},e_{y},e_{z}\right)\end{array}$

	expression de $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	expression de $\mathbb K$
base locale	nécessite un changement de base	$naturelle \ (pour \ des \ stratifi\! és) \ \mathbb{K} = ig(\mathbb{K}_{\xi\eta} \circ \mathbb{K}_{\zeta}ig)_{(t_1,t_2,t_3)}$
base globale	naturelle $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \xi} \frac{\partial \xi}{\partial \mathbf{x}}$	nécessite un changement de base

Coordonnées curvilignes

Complexité liée au changement de base de $\mathbb K$

Cas d'un matériau composite stratifié

Le matériau est supposé homogène dans l'épaisseur du pli

$$\begin{split} \zeta(\xi,\eta,\zeta) &= \left(\sum_{i=1}^{p} \mathbb{K}^{p}(\xi,\eta) \cdot \delta^{p}(\zeta)\right)_{(\mathbf{t}_{1},\mathbf{t}_{2},\mathbf{t}_{3})} \\ &= \left(\sum_{i=1}^{p} \left(\overline{\mathbf{Q}}^{T}(\xi,\eta) \ \mathbb{K}^{p}(\xi,\eta) \ \overline{\mathbf{Q}}(\xi,\eta)\right) \cdot \delta^{p}(\zeta)\right)_{(\mathbf{e}_{X},\mathbf{e}_{Y},\mathbf{e}_{Z})} \end{split}$$

Où $\mathbb{K}^{p}(\xi, \eta)$ est le tenseur d'élasticité pour les plis d'orientation p, $\overline{\mathbf{Q}}(\xi, \eta)$ est la matrice de passage de $(\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3})$ à $(\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z})$, et $\delta^{p}(\zeta)$ vaut 1 si $\zeta \in (\text{pli } i)$, et 0 sinon.

Changement de base de $\mathbb K$

Le nombre de termes pour représenter K : nombre d'orientations de plis p

Coordonnées curvilignes

Complexité liée au changement de base de $\mathbb K$

Cas d'un matériau composite stratifié

Le matériau est supposé homogène dans l'épaisseur du pli

$$\begin{split} \zeta(\xi,\eta,\zeta) &= \left(\sum_{i=1}^{p} \mathbb{K}^{p}(\xi,\eta) \cdot \delta^{p}(\zeta)\right)_{(\mathbf{t}_{1},\mathbf{t}_{2},\mathbf{t}_{3})} \\ &= \left(\sum_{i=1}^{p} \left(\overline{\mathbf{Q}}^{T}(\xi,\eta) \ \mathbb{K}^{p}(\xi,\eta) \ \overline{\mathbf{Q}}(\xi,\eta)\right) \cdot \delta^{p}(\zeta)\right)_{(\mathbf{e}_{\mathbf{X}},\mathbf{e}_{\mathbf{Y}},\mathbf{e}_{\mathbf{Z}})} \end{split}$$

Où $\mathbb{K}^{p}(\xi,\eta)$ est le tenseur d'élasticité pour les plis d'orientation p, $\overline{\mathbf{Q}}(\xi,\eta)$ est la matrice de passage de $(\mathbf{t}_{1},\mathbf{t}_{2},\mathbf{t}_{3})$ à $(\mathbf{e}_{x},\mathbf{e}_{y},\mathbf{e}_{z})$, et $\delta^{p}(\zeta)$ vaut 1 si $\zeta \in (\text{pli } i)$, et 0 sinon.

Changement de base de \mathbb{K}

Le nombre de termes pour représenter \mathbb{K} : nombre d'orientations de plis p

Coordonnées curvilignes

Complexité liée au changement de base de $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$

Expression du gradient de u dans la base locale :

Expression de u :

$$(\frac{\partial u}{\partial x}) = \left(\mathbf{Q}^{\mathcal{T}} (\frac{\partial u}{\partial x}) \mathbf{Q} \right)_{(t_1, t_2, t_3)} \qquad (\text{génère } 3^2 \text{ termes})$$

Expression de ε :

$$\varepsilon = \frac{1}{2} \Big(\mathbf{Q}^{\mathsf{T}} \Big(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \Big) \mathbf{Q} + \mathbf{Q}^{\mathsf{T}} \Big(\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \Big)^{\mathsf{T}} \mathbf{Q} \Big)_{(\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3)} \qquad \text{(génère } 2 \cdot 3^2 \text{ termes)}$$

Le développement de $\iiint_{\Omega} \left(\varepsilon(\mathbf{u}^*) \cdot \mathbb{K} \cdot \varepsilon(\mathbf{u}) \right) d\Omega$ génèrera alors $(2 \cdot 3^2)^2 = 324$ fois

plus de termes

Coordonnées curvilignes

Choix de la base de travail

différentes bases :

 $\begin{array}{l} \text{Base locale}:(t_1,t_2,t_3) \text{ Base} \\ \text{globale}:(e_x,e_y,e_z) \end{array}$

	expression de $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	expression de $\mathbb K$
base locale	génère 324 termes	$naturelle \ (pour \ des \ stratifiés) \ \mathbb{K} = ig(\mathbb{K}_{\xi\eta} \circ \mathbb{K}_{\zeta}ig)_{(t_1,t_2,t_3)}$
base globale	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \xi} \frac{\partial \xi}{\partial \mathbf{x}}$	génère p termes

Exemple de validation

Définition du problème :

Tube infini (déformation planes) soumis à une pression interne :

Solution analytique du problème :

$$u_r(r) = \frac{1+\nu}{E(b^2-a^2)} \left[(1-2\nu)(a^2P_ir) + \frac{a^2b^2P_i}{r} \right]$$

Solution de référence 3D :

Surface moyenne pour l'approche PGD :

Comparaison de la solution PGD avec les solutions de références :

Comparaison de la solution PGD avec les solutions de références :

Comparaison de la solution PGD avec les solutions de références :

Paramètres supplémentaires Conclusion et perspectives

Coordonnées curvilignes

Introduction

Calcul sur un tronçon de fuselage composite

<u>Plan/hors</u> plan

Présentation du problème :

Séparation 1D/1D

Géométrie :

Détail des raidisseurs :

Matériau : composite stratifié $[0, 45, 90, -45]_{3s}$ Chargement : pression interne Diamètre : 5m Nombre d'éléments par pli : 10 Nombre d'éléments 2D : 20 000 Nombre de ddl 3D : $30 \ 10^6$

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

- Coordonnées cartésiennes
- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

5 Conclusion et perspectives

Mise en situation

Conception et optimisation de produits :

Construction des abaques numériques

Mise en situation

Conception et optimisation de produits :

Construction des abaques numériques

Mise en situation

Conception et optimisation de produits :

Construction des abaques numériques

Brice BOGNET Soutenance de thèse 16 avril 2013, Nantes
Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives		
			• 0 00000000			
Paramètres matériaux						
Plan						

- Séparation en 2D : 1D/1D
- Séparation en 3D : plan/hors plan

Paramètres supplémentaires en tant que coordonnées

Paramètres matériaux

- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

Paramètres matériaux

Exemple de paramétrage de l'orientation d'un pli composite :

Les quantités sont exprimées sous la forme :

$$f(x, y, z, \theta) \approx \sum_{i=1}^{N} f_{xy}^{i}(x, y) \cdot f_{z}^{i}(z) \cdot f_{\theta}^{i}(\theta)$$

Exemple d'illustration :

La solution s'écrit sous la forme :

$$\mathbf{u}(x, y, z, \theta_1, \theta_4) \approx \sum_{i=1}^{N} \mathbf{u}_{xy}^i(x, y) \circ \mathbf{u}_z^i(z) \circ \mathbf{u}_{\theta_1}^i(\theta_1) \circ \mathbf{u}_{\theta_4}^i(\theta_4)$$

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives		
			000000000			
Paramètres de chargement						
Plan						

- Séparation en 2D : 1D/1D
- Séparation en 3D : plan/hors plan

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

Paramètres de chargement

Chargement dépendant d'un paramètre externe :

Forme de la solution :

$$f(x, y, z, \alpha) \approx \sum_{i=1}^{N} f_{xy}^{i}(x, y) \cdot f_{z}^{i}(z) \cdot f_{\alpha}^{i}(\alpha)$$

Où α est le paramètre externe qui fait varier le chargement.

Exemple :

Le chargement s'écrit :

 $\mathbf{f}_{\mathsf{d}}(x, y, z, \theta_1, \theta_4) = -\varepsilon(\mathbf{u}^{\star}) \cdot \mathbb{K}(z, \theta_1, \theta_4) \cdot (\alpha(z, \theta_1, \theta_4) \cdot \delta T)$

$$=\sum_{i=1}^{N}f_{xy}^{i}(x,y)\circ f_{z}^{i}(z)\circ f_{\theta_{1}}^{i}(\theta_{1})\circ f_{\theta_{4}}^{i}(\theta_{4})$$

Introduction Séparation 1D/1D Plan/hors plan Paramètres supplémentaires Conclusion et perspectives

Paramètres de chargement

Exemple d'application : chargement et matériau paramétré

Problème :

Conditions aux limites : libre Chargement : dilatation thermique

Coupes de la solution par l'espace 3D :

de gauche à droite : $(\theta_1 = 0^\circ, \theta_4 = 20^\circ), (\theta_1 = 0^\circ, \theta_4 = 0^\circ), (\theta_1 = 10^\circ, \theta_4 = -20^\circ).$

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives		
			000000000			
Paramètres géométriques						
Plan						

- Séparation en 2D : 1D/1D
- Séparation en 3D : plan/hors plan

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives		
			0000000000			
Paramètres gé	éométriques					
Épaisseur paramétrée						

Problème considéré :

Les quantités sont exprimées sous la forme :

$$f(x, y, z, e) \approx \sum_{i=1}^{N} f_{xy}^{i}(x, y) \cdot f_{z}^{i}(z) \cdot f_{e}^{i}(e)$$

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
			0000000000	
Paramètres gé	éométriques			
Résultat	:			

Variation de l'épaisseur, à norme de chargement constante :

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives		
			000000000000			
Paramètres topologiques						
Plan						

- Séparation en 2D : 1D/1D
- Séparation en 3D : plan/hors plan

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

Introduction Séparation 1D/1D Plan/hors plan

Paramètres supplémentaires

Conclusion et perspectives

Paramètres topologiques

Inclusion de patchs interchangeables :

Représentation :

Le domaine de résolution est

$$\Omega = \Omega_0 \cup \Omega_i, \tag{1}$$

où *i* peut prendre les valeurs de 1 à 3 :

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
			0000000000	
Paramètres to	pologiques			
Résultat				

Chargement : encastré sur la face du bas, force de cisaillement suivant x sur la face du haut Résultat pour $\Omega_0\cup\Omega_1$:

Introduction	Séparation 1D/1D	Plan/hors plan	Paramètres supplémentaires	Conclusion et perspectives
			0000000000	
Paramètres to	pologiques			
Résultat				

Chargement : encastré sur la face du bas, force de cisaillement suivant x sur la face du haut Résultat pour $\Omega_0\cup\Omega_2$:

Chargement : encastré sur la face du bas, force de cisaillement suivant x sur la face du haut Résultat pour $\Omega_0 \cup \Omega_3$:

Plan

Introduction

Séparation en 2D : 1D/1D

- Problème mécanique 2D
- Résolution mode par mode du problème
- Résolution pas à pas d'un mode

Séparation en 3D : plan/hors plan

- Coordonnées cartésiennes
- Domaines complexes
- Coordonnées curvilignes

Paramètres supplémentaires en tant que coordonnées

- Paramètres matériaux
- Paramètres de chargement
- Paramètres géométriques
- Paramètres topologiques

Récapitulatif : séparation 2D/1D

Permet d'exploiter la puissance paramétrique de la PGD :

Paramètre Paramètre géométrie matériau/chargement :

Paramètre topologique :

Récapitulatif : séparation 2D/1D

Permet d'exploiter la puissance paramétrique de la PGD :

Perspectives

Méthode

- assemblages de plaques et coques
- Non linéaire
- D-PGD (délaminage des stratifiés)

Implémentation

- parallélisme (assemblage et résolution)
- intrusivité

Merci de votre attention

