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Abstract

ETWORKS are models that help us understanding and thinking about relationships
between entities in the real world. Many of these networks are dynamic, i.e. con-
nectivity changes over time. Understanding changes in connectivity means to understand
interactions between elements of complex systems; how people create and break up
friendship relations, how signals get passed in the brain, how business collaborations
evolve, or how food-webs restructure after environmental changes. However, understand-
ing static networks is already difficult, due to size, density, attributes and particular motifs;
changes over time very much increase this complexity. Quantification of change is often
insufficient, but beyond an analysis that is driven by technology and algorithms, humans
display a unique capability of understanding and interpreting information in data, based
on vision and cognition.

This dissertation explores ways to interactively explore dynamic networks by means
of visualization. I develop and evaluate techniques to unfold the complexity of dy-
namic networks, making them understandable by looking at them from different angles,
decomposing them into their parts and relating the parts in novel ways. While most
techniques for dynamic network visualization rely on one particular type of view on the
data, complementary visualizations allow for higher-level exploration and analysis.

Covering three aspects Tasks, Visualization Design and Evaluation, 1 develop and
evaluate the following unfolding techniques: (i) temporal navigation between individual
time steps of a network and improved animated transitions to better understand changes,
(i1) designs for the comparison of weighted graphs, (iii) the Matrix Cube, a space-time
cube based on adjacency matrices, allowing to visualize dense dynamic networks, as well
as GraphCuisine, a system to (iv) generate synthetic networks with the primary focus on
evaluating visualizations in user studies. In order to inform the design and evaluation of
visualizations, we (v) provide a task taxonomy capturing users’ tasks when exploring
dynamic networks.

Finally, (vi) the idea of unfolding networks with Matrix Cubes is generalized to other
data sets that can be represented in space-time cubes (videos, geographical data, etc.).
Visualizations in these domains can inspire visualizations for dynamic networks, and
vice-versa. We propose a taxonomy of operations, describing how 3D space-time cubes
are decomposed into a large variety of 2D visualizations. These operations help us
exploring the design space for visualizing and interactively unfolding dynamic networks
and other spatio-temporal data, and may serve users as a mental model of the data.






Résume

ES réseaux sont des modeles qui nous permettent de comprendre les relations entre
L éléments du monde réel. Une grande quantité de réseaux sont dynamiques, c’est-
a-dire que leur connexité change au cours du temps. Comprendre les changements de
connexité signifie comprendre les interactions entre les éléments de systemes complexes:
comment se forment les relations sociales et commerciales, comment sont transmis les
signaux entre les régions du cerveau, comment s’organisent les réseaux trophiques apres
des catastrophes environnementales. Au-dela de ce que nous permet la technologie et
les algorithmes d’analyses, I’homme dispose d’une capacité unique pour comprendre et
interpréter des informations : la vision et la cognition.

Cette these développe et examine des moyens pour explorer les réseaux dynamiques
d’une manigre interactive et visuelle. Je propose des techniques pour déplier la complexité
des réseaux, avec le but de les rendre compréhensibles, de les voir a partir de perspectives
différentes, d’examiner leurs composantes. Déplier des réseaux est une métaphore,
comme la création des cartes bidimensionelles d’objects tridimensionnels comme la
Terre : chaque méthode de projection a comme résultat une carte différente qui permet de
voir des relations différentes entre la taille des continents et des océans, des distances, etc.

Je propose les techniques de dépliage suivantes, implementées et évaluées dans des
systemes interactifs : (i) une navigation temporelle qui permet de naviguer plus effi-
cacement entre des différents instants, ainsi qu’un feedback visuel qui permet de mieux
comprendre les changements dans la réseaux entre deux instants arbitraires. (ii) Des
designs permettant la comparaison directe de deux réseaux avec des liens pondérés. (iii)
Un modele de visualisation pour des réseaux denses avec des liens pondérés, ainsi que
(iv) la génération de réseaux synthétiques utilisés pour 1’évaluation des visualisations.
Afin de mieux créer et évaluer des visualisations, nous (v) proposons une taxonomie de
tache pour décrire des tiches accomplies par des analystes des réseaux.

Pour compléter, (vi) nous généralisons 1’idée de dépliage pour décrire d’autres genres
de données temporelles, représentable dans des cubes espace-temps. Cela concerne la
visualization de vidéos, des données multi-variées, ainsi que la géographique. Une telle
généralisation a pour but de fournir une base commune pour échanger des techniques de
visualisation et de mieux comprendre 1’espace de design pour les réseaux dynamiques.
Dans cette optique, nous proposons une taxonomie d’opérations génériques qui nous
permet de transformer un cube espace-temps en visualisation bidimensionelle, ainsi
qu’une description des formes évoquées par les données dans le cube espace-temps.

iii
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1. Introduction

“Historians of science [...] glorify great thinkers and their conceptual breakthroughs.

Less heralded are the inventors of scientific instruments |[...]
Seoung, 2012, p. 138

This dissertation is about creating scientific instruments: interactive visualizations for
the exploration of dynamic networks.

1.1. Background and Motivation

ETWORKS are models that help us understand and reason about relationships be-
Ntween entities in the real world. As such, networks appear in a variety of domains;
sociologists investigate relationships, and collaboration between people; historians and
geographers analyze migration streams and trading routes; enterprises monitor computer
networks, analyze traffic load and watch out for fraud; biologists research reaction net-
works and interactions between proteins; epidemiologists investigate the spreading of
viruses and neurologists investigate functional correlations between regions in the brain,
in order to detect the patterns of an individual activity or external stimuli, as well as the
impact of drugs and diseases on the brain’s functionality.

Networks in their general form are used where they help in answering questions about
the connectivity of nodes (also: vertices, actors); Which two nodes are related? Are two
nodes reachable via a path? Where are the clusters in the network? Is there structure in
the network? How vulnerable is the network? How dense is it? While these questions
imply a static network model, there are many questions that require a dynamic network
model; Where does the network grow fastest? Which nodes behave differently? In which
order do nodes connect, how do clusters exchange nodes and evolve? Is the network
stable or unstable? Is there a trend? Which nodes do not follow the trend? When do
major changes impact the network?

While static networks describe topology and structure, dynamic networks' describe
changes, interactions, behavior and evolution on its elements. Dynamic networks allow
the exploration of rules within a system and how its individual parts behave. They

'In this dissertation I use the term Dynamic Network to describe networks with a temporal dimension, as
opposed to static networks. See Section 2.3.
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represent the impact of environmental factors on ecosystems and organisms, as well as
restructuring mechanisms thereafter. They describe how friendship relations emerge and
break up, how signals are exchanges between regions in the brain, and many others (see
e.g., Holme & Saramiki, 2012 and Sporns, 2011).

Many of these systems exhibit similar patterns. Networks grow and shrink, connections
break and get established, nodes enter communities, clusters merge and networks divide
into disconnected components. Observations in these networks are made over time, i.e.
events at a particular time point as well as the order of events. Changes are described
between time points as well as over periods of time, including the evolution of statistical
measures. Low-level events involving a single node or a pair of nodes (dyads) such
as the appearance or disappearance of a node or a connection (also: link, edge) can be
responsible for higher-level changes on clusters, paths, as well as the entire network.
Similar to static networks, dynamic networks can be investigated on different topological
scales (nodes, dyads, clusters, etc.). Furthermore, there are different temporal scales;
individual events on a short time scale, or changes on a higher structural level that
happen over a longer time period, and which provoke patterns of repetition, instability, or
convergence.

While investigating static networks is already complex, dynamic networks combine two
types of data: networks and time-varying (or temporal) data. Static networks get complex
as the number of nodes, edges and density, increases, because this complicates the search
for, and the exploration of, paths, individual connections, and clusters. Dynamic networks
increase in complexity with the number of time steps, the amount of change between
individual time steps, the lack of clear trends, as well as the presence of attributes varying
over time.

Making sense of, and understanding such complex data, generally relies on two com-
plementary methods: analysis, based on measures, and observation, based visualization.

Exploratory Data Analysis

Networks can be analyzed using basic measurements such as the number of nodes, density,
or clustering coefficient. Such network measures can indicate the importance of a node or
how stable a network is to node removal. Often, an analysis requires an aggregation of
information across multiple measures, but the more measures are involved in an analysis,
the more complex it becomes. In fact, numerical analysis appropriate for hypothesis
testing, is also called confirmative analysis. The opposite, Exploratory Data Analysis
(EDA) (Tukey, 1993), is described as a type of analysis without a particular hypothesis
in mind. EDA is about formulating hypotheses about the data, which therein can be
confirmed or rejected by confirmative analysis. Confirmatory and exploratory analysis
are hence complementary.
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Figure 1.1.: Anscombe’s quartet (Anscombe, 1973). (a) Values in four different data
samples (1-4), (b) statistical measures are the same across all four samples, (c) scatter
plots showing actual differences in the four samples.

A proper analysis requires multiple tools including powerful computers, fast algo-
rithms and clever analysis methods. Yet, beyond what can be achieved by technology
and engineering, humans display a unique capability of understanding and interpreting
information, based on vision and cognition. EDA therefore emphasizes “seeing results

— graphically, or numerically”?

and “stripping off layer after layer of what could be
described.”> An example of the importance of seeing the data, in contrast to obtaining
the statistical numbers, is given by Anscombe (1973), called Anscombe’s quartet (Figure
1.1). Anscombe’s quartet is made of four data samples (columns in Figure 1.1(a)), each
containing the same number of observations (rows). Yet, each sample contains a different
distribution of observations. However, all sets have exactly the same values for various
statistical measures (Figure 1.1(b)). Eventually, showing the data as points in a scatterplot
reveals obvious differences (Figure 1.1(c)). As further illustrated in Chapter A, networks

with equal measures can have quite different topologies.

Information Visualization

Vision is a powerful tool to capture information, because its processing is highly parallel,
other than reading numbers or listening to language. This parallelism allows us to see
things in their context, and detecting relationships pre-attentively without having to
infer them cognitively. However, providing effective visual communication requires
interdisciplinary knowledge, proper methodologies, effective ways of evaluation, as well
as algorithms to organize glyphs on the screen and interactively explore the data.

Developing means for an effective visual communication of information is called
Information Visualization*. The process of information visualization can be described
through the InfoVis pipeline (Card et al., 1999), shown in Figure 1.2: during four stages
raw data gets turned into information; (i) raw data is transformed into structure data (data
tables), (i1) a visual mapping turns data into visual structures, marks and their visual

2Tukey, 1993, p. 5
3Tukey, 1993, p. 3
4Information Visualization is defined by Colin Ware as “the use of interactive visual representations of

abstract data to amplify cognition™.
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Data Visual Form

Data Visual
Data > > > i
"] Tables ”| Structures > Views
Data Transformations Visual Mappings View Transformations

T T T Human Interaction

Figure 1.2.: Infovis Pipeline model according to Card, Mackinlay, and Shneiderman
(1999)

properties, (iii) the visual form gets rendered on the screen to create a view, which allows
(iv) perception of the image by the user and to solve particular fasks. An effective visual
mapping is essential to every visualization and involves a large body of methods and
literature on its own (e.g., Bertin, 1973; Tufte, 1986, 1990; Card et al., 1999; Ware, 2004).

Information visualization involves the use of computers and algorithms to perform each
of the steps on the pipeline and to produce the final image. A single visual representation
hardly answers all users’ questions (Yi, Kang, Stasko, & Jacko, 2007). Users should
be able to interact with the visualization in order to change the part of the data shown
and adapt parameters along the InfoVis pipeline, as different user tasks require different
visual representations, filtering, clusterings or visual mappings. Such an interactive and
exploratory process can, to a certain extent, be described by “Overview first, zoom and
filter, detail-on-demand”, as formulated by Shneiderman (1996). Other methods have
been described as “search, show context, expand on demand”(van Ham & Perer, 2009),
yet in general, exploration does not follow a particular methodology but every finding
may lead to a new hypothesis or question.

Visualizing Networks

The most common way of looking at networks is through node-link diagrams, showing
nodes as points and connections as lines between points. Nodes are placed in a 2-
dimensional space using a graph layout. In the 1930s, Jacob Levy Moreno used node-link
diagrams to study social groups and to communicate his findings. His graph layouts were
hand-drawn and emphasized densely connected groups of nodes (Figure 1.3). Additional
information about persons and their relations was encoded using color and different
shapes. Today, many automatic layout algorithms exist, but the amount of information
contained in networks (edge types, weighted edges, dynamic, etc.) requires additional
visual and interactive means.

Dynamic networks with their changing topology pose numerous challenges to creating
visualizations and providing interaction to explore them; visualization and interaction
techniques developed for static networks, with a few exceptions, are not sufficient. While
static networks are commonly understood and interpreted as static 2D maps, dynamic
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Figure 1.3.: Handdrawing of a social network by Moreno, 1932

networks imply dynamic media such as animation and interaction to “perceive change”,
“replay the evolution”, and “navigate in time”. Figure 1.4 gives a preview of current
techniques to visualize dynamic networks and illustrates some of the problems in the
field: How to visualize topology and changes at the same time?, How to show differences
between time steps? How to visualize attribute changes?, How to deal with increased
(visual) density of connections, resulting from the increased number of connections over
time?.

1.2. Research Questions and Approach

In this dissertation, I address the general research question:
> How to support the interactive visual exploration of dynamic networks?

Supporting visual exploration means to improve the ability to an effective visual
communication that allows users to gain insights into the data, i.e. obtain an overview,
dig into the data, discover relevant and unexpected relations, as well as formulate and
confirm hypotheses. My effort to support such a visual exploration involves the three
aspects: tasks, visualization design, and evaluation.

Tasks First, we must know which tasks must be supported. Tasks inform the design of
interfaces as well as serve to assess their value through user evaluations afterwards. Task
taxonomies exist for information visualization in general (Amar, Eagan, & Stasko, 2005),
as well as for static networks (Lee, Plaisant, Parr, Fekete, & Henry, 2006).
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1

System Design
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(b) Parallel Edge Splatting, Burch et al. (2011) (c) Space-time cube, Ahmed et al. (2005)

Figure 1.4.: Examples of dynamic network visualizations. (a) Small multiples: one picture
per time point, read from left to right. (b) Parallel edge splatting: time also running
from left to right, nodes are ordered on vertical axis, edges indicated between them. (c)
Space-time cube: node-link diagram getting extruded into additional spatial dimension
(from bottom to top), simulating time.

> How to describe and structure user tasks, necessary for dynamic network explo-

ration?

For dynamic networks, a taxonomy must capture tasks related to the exploration of
changes over time, but no such task taxonomy has been published yet.

Visualization Design Many visualization techniques have already been proposed
for the visualization of dynamic networks, including “network movies” (Moody, McFar-
land, & Bender-DeMoll, 2005), small multiples (Figure 1.4(a)), time line views (Figure
1.4(b)) and 3D node-link diagrams (Figure 1.4(c)), as well as methods showing temporal
information in addition to the network’s topology (Chapter 2). However, each of these
techniques supports a particular set of user tasks, while falling short on others. Since
many techniques are in fact complementary, the questions is:

> How can techniques be integrated in a consistent way by keeping the interface
simple?
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As current techniques are far from optimal and do not cover all possible user tasks, there
is a need to improve existing techniques and think of new ones to tackle the many open
problems in visualizing dynamic networks, user navigation and network characteristics
such as size, density and amount of change.

> How to design novel visualizations to tackle open problems in the visualization of
dynamic networks?

While there are many open problems, I address the particular problems:

> How to improve temporal navigation between time steps? (Chapter 4)
> How to improve the perception of changes between two time slices? (Chapter 5)

D> How to visualize dense dynamic networks with changing edge weight? (Chapter 6)

Evaluation Visualizations can be evaluated by various methods, ranging from quantita-
tive and controlled user studies, to qualitative evaluations, involving lay-persons, domain
experts or information visualization experts (Munzner, 2009; Lam, Bertini, Isenberg,
Plaisant, & Carpendale, 2012). If data is rare or does not show the desired properties to
test the visualization, it must be generated synthetically:

> How to generate synthetic network data for controlled user experiments?

1.3. Thesis Statement

Exploring dynamic networks involves a multitude of tasks, which vary in their level
of difficulty (task complexity). While many simple (low-level) tasks may require only
one specialized visualization, more complex tasks (higher-level) tasks require multi-
ple perspectives on the data, i.e. multiple complementary visual representations, made
manageable and navigable by users though interaction.

This dissertation explores ways to interactively explore dynamic networks by means
of visualization. I develop and evaluate techniques to unfold the complexity of dynamic
networks, making them understandable by looking at them from different angles, decom-
posing them into their parts and relating the parts in novel ways. Unfolding networks is
a metaphor such as different geographical projections unfold the spherical shape of the
earth into easy-to-read two-dimensional maps, each making visible different relations
between land masses and oceans, distances and areas, traveling routes and areas of interest
(Figure 1.5).

We categorize tasks as queries along three dimensions: WHERE in the network, WHEN
in time and WHAT has happened (Chapter 3). Higher-level tasks involve answering ques-
tions from different dimensions and explore these dimensions. GraphDiaries (Chapter
4) is a system that facilitates navigation between, as well as comparison and exploration
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of individual time steps. It is based on the three dimensions of our taxonomy and aims
to support higher-level exploratory tasks. GraphDiaries integrates various techniques
such as animations, small multiples and difference highlighting techniques. For dense
networks with changing attributes, we require matrix visualizations (Chapter 5), which
can be integrated in systems such as GraphDiaries. In order to allow for multiple views,
while keeping the interface complexity low, we introduce the concept of the Matrix Cube
(Chapter 6). A Matrix Cube represents fully connected and weighted dynamic networks
as a space-time cube, while allowing users to manipulate and decompose the cube to
explore the data.

Three-dimensional space-time cubes provide a powerful way to unfold data that con-
tains two dimensions plus time (geo-temporal data, videos, etc.). Dynamic networks are
one case of such data, being represented as node-link diagrams or matrices, for example.
We discuss space-time cubes as a general mental model (Johnson-Laird, 1983; Liu &
Stasko, 2010) (Chapter 7) that:

e allows us to define a taxonomy of operations that span a design space for 2D
visualizations,

e allows us to describe characteristics of data sets,

o helps to discuss visualizations and technique, and

e can serve as user interface metaphor, to facilitate understanding of and navigation
between views on the data.

Chapter 7 generalizes the idea of unfolding networks to other data sets that involve one
temporal dimension and two spatial dimensions (graph layout and adjacency matrices
are 2-dimensional representations for (static) networks). The visualization of video
data, multivariate data, as well as changes in geographical information can inspire the
visualization of dynamic networks, as well as vice-versa. We propose a taxonomy of basic
operations that describe the decomposition of 3-dimensional space-time cubes, leading to
novel 2-dimensional visualizations. These operations help us to explore the design space
for visualizing and interactively unfolding dynamic networks and other spatio-temporal
data, as well as to transfer techniques across the domains.

1.4. Outline

Chapter 2 gives an overview of the major definitions and concepts about networks, tempo-
ral data and dynamic networks, as well as describing visualizations for (static) networks
in general. Chapter 2 finishes with a review of techniques that are used to visualize
dynamic networks, and introduces problems specific to dynamic network visualization.
Following Chapter 2, this dissertation is divided into five chapters, and finishes with a
chapter on conclusions and future work (Chapter 8).
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Figure 1.5.: Unfolding the earth: different projections by van Wijk (2008), each showing
a different aspect of the earth’s topology.

Chapter 3: Towards a Task Taxonomy for Dynamic Networks This chapter
describes our task taxonomy, which is inspired by an approach from geography (Peuquet,
1994), as well as existing taxonomies. Tasks are structured along three dimensions
WHERE, WHAT, and WHEN. We further discuss the mapping from tasks in the data space
to tasks in visual space.

Chapter 4: Animated Transitions and Temporal Navigation Informed by our
task taxonomy and its implications, described in Chapter 3, we designed a system called
GraphDiaries and evaluate some of the implemented techniques in a controlled user
study. Besides small multiples, difference highlighting, and animated transitions (Figures
1.6(a) and 1.6(b)) with change highlighting between individual time steps of the network,
GraphDiaries includes adaptive layout stabilization and a way to track a set of nodes over
time. While navigation through time in common interfaces is only supported in a linear
way, we provide navigation between non-adjacent time steps as well different levels of
visual feedback when navigating between time steps. A controlled user study, comparing
our interface with others, concludes the chapter.
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Figure 1.6.: Visualizations to unfold dynamic networks, presented in this dissertation.

Chapter 5: Comparison of Dense Weighted Networks For dense networks
and those with weighted edges, node-link techniques as described in Chapter 5 are not
sufficient. Starting with a case study on connectivity in the brain and describing associated
user tasks, we develop designs for the comparison of two dense networks with weighted
edges, using both node-link and matrix representations (Figure 1.6(c)). We conducted
a controlled user study to compare the most promising designs. Results show that our
design for matrices outperformed that for node-link diagrams.

Chapter 6: Unfolding Networks with the Matrix Cube While matrices are ef-
fective to visualize dense networks (Ghoniem, Fekete, & Castagliola, 2005), they have
not yet been studied much to visualize dynamic networks. In this chapter we describe
the Matrix Cube and its parts, as well as Cubix, our interface that allows interaction with
the cube and navigation between a set of predefined views. Cubix is demonstrated in

10
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a walkthrough exploring a co-authorship network. We evaluate the Matrix Cube in a
qualitative study with two experts from the domains of astronomy and neurology.

Chapter 7: A Framework for Unfolding Space-Time Cubes In this chapter we
show how different visualizations from multiple domains (geo-spatial data, video data,
etc.), including the techniques for dynamic networks explained at the end of Chapter
2, can be described as operations on space-time cubes (Figure 1.6(e)). By describing
a detailed taxonomy of space-time cube operations, we generalize the concept of an
interactive cube for visualization, developed in Chapter 6. This allows us to eventually
discuss operations, including the resulting visualizations in terms of effectiveness. We
further discuss other space-time cube systems, which employ operations on a space-time
cube, and report on a use case to design a visualization for dynamic networks based on a
minimal set of operations from our taxonomy.

While evaluating GraphDiaries, the need to generate data emerged. However, current
graph generators require input parameters, whereby it is sometimes hard to understand
how these parameters influence the topology of the final graph. Moreover many syn-
thetically generated graphs do look artificial. We tried to invert the problem of graph
generation; rather than letting the user define input parameters, we generate graphs while
a user selects the graphs he considers most appropriate. In an appendix to this disserta-
tion (Random Graph Generation for Evaluating Network Visualizations), we describe
GraphCuisine, our random graph generator, which is based on an evolutionary algorithm.
We report on its components and show examples of generated graphs. We finally report
on a way to use GraphCuisine for the generation of dynamic networks.

1.5. Individual Contributions

The individual contributions of this dissertation are as follows:

[am—

. A survey of the state-of-the-art in visualizations for dynamic networks (Chapter 2)
2. A task taxonomy for the exploration of dynamic networks (Chapter 3).

3. An interface for the exploration of dynamic networks based on node-link diagrams,
named “GraphDiaries” (Chapter 4).

4. A controlled user study estimating the effectiveness of the transitions and navigation
techniques proposed in GraphDiaries (Chapter 4).

5. Designs for node-link and matrix representations to compare weighted networks,
as well as the results from a controlled user study on their efficiency (Chapter 5,
involving Basak Alper (UC Santa Barbara, CA), Nathalie Henry-Riche (Microsoft
Research, WA), and Tobias Isenberg (INRIA, France)).

11
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10.

11.

12

Matrix Cubes as a visualization and interaction model for the exploration of dy-
namic networks and the description of corresponding decomposition operations
(Chapter 6).

. An interactive interface, named “Cubix”, for the exploration of dynamic weighted

networks, using Matrix Cubes (Chapter 6).

An evaluation of Cubix by experts using the tool to explore their data (Chapter 6).

. A general taxonomy of space-time cube operations, a typology of data sets based

on shapes inside the space-time cube, as well as, an extensive discussion about
visualization techniques, which are captured by the design space that is defined
by space-time cube operations (Chapter 7, involving Pierre Dragicevic (INRIA,
France), Christophe Hurter (ENAC, France), Daniel Archambault (Swansea Uni-
versity, UK), and Sheelagh Carpendale (University of Calgary, Canada)).

An interface and genetic algorithm for the generation of random graphs with user
defined properties, allowing for the creation of data sets for controlled user studies
(Chapter A, involving Andre Spritzer (Universidade Federal do Rio Grande do Sul,
Brasil) and Evelyne Lutton (INRIA, France)).

GraphTabasco, an extension to GraphCuisine allowing to create dynamic networks
with random noise.
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YNAMIC networks combine two problem domains; network connectivity and changes
D over time. This chapter clarifies the main definitions for graphs and networks, as
well as temporal data and dynamic networks. It then gives an overview of how visual-
izations help in exploring (static) networks, and discusses visualizations for dynamic
networks. The chapter concludes with a list of open problems in visualizing dynamic
networks.

2.1. Graphs

2.1.1. Terminology

A graph G = (N,E) consists of a finite set of nodes (or vertices) N and a finite set of
edges (or links, connections) E, between pairs (n,v) of N. Nodes and edges of a graph are
called its elements. A layout for G is called the embedding for G, finding a position for
any node in NV in R x R. If the layout can be drawn in 2-dimensinonal space, G is called
planar. The adjacency matrix M of a graph is a matrix of size |N| x |[N| with an entry
m;; = 1 for every existing edge between two nodes i and j, otherwise m;; = 0.

Edges in the graph can be modeled in different ways. Multiple edges between the same
nodes are called a multi edge and the graph is called a multigraph. If edges are directed,
i.e. one node is the source, while the other is the rarget, the graph is called directed

13
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(@) (b) (c) (d) (e)

Figure 2.1.: Graphs: (a) with self-edges, (b) directed graph (digraph), (c) multigraph,
(d) weighted graph, and a combination of all (e) weighted directed multigraph with
self-edges.

(also: digraph). For any directly connected node pair in a directed graph, one node is
the predecessor (the source of the edge, source(e)) and the other one is the successor
(the target of the edge, rarget(e)). Edges can have a weight w; associated with them,
which is usually a real number. Depending on the application domain and data set, edge
weight can mean different things, such as frequency of calls between persons, strengths
of signals between antennas or number of messages between computers. A graph with
weighted edges is called a weighted graph. An edge with the same source and target
is called self edge. Combinations of graph types are possible, for example, a directed
multigraph with self-edges (alternatively: directed graph with multiple and self edges). A
simple graph has neither multi- or self-edges nor directed or weighted edges.

A path is a sequence of connected nodes in G, with one node being the start and another
being the end. In directed graphs, all edges between nodes in a path must point into the
same direction. If there are at least two paths between two nodes in G, the shortest path is
the path with less nodes, also called hops between nodes. If the start and end nodes of the
path are the same, the path is a cycle. Cycles in directed networks are called closed walks.

A subset of nodes and edges in G is called a subgraph G’ = (N',E’) with Ve € E' =
source(e) € N' Ntarget(e) € N'. A graph partition is a division of G into a set of non-
overlapping subgraphs, i.e. K/(\K;# 0 =i = j. The set of all edges that connect
nodes in two subgraphs is called agraph cut. Removing these edges splits the graph
into disconnected components, i.e. there exists no path between any two nodes from
different components. By convention the path length between two nodes in unconnected
components is infinite.

A k-partite graph is a graph that can be partitioned into k partitions so that edges
exist only between nodes of different partitions. In other words, all edges in E are in the
graph cut. In the case where k = 2, the graph is called a bigraph.

Graph motifs are subgraphs with specific topological structures, such as groups, cliques,
cycles, and stars (fans). A group is a set of nodes with a high number of edges between
them. In the case where all pairs of nodes in a group are connected, the group is a
cligue (fully connected group). A star is a node n with many neighbors where none of
the neighbors is directly connected to another neighbor of n. A star is a special type

14
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Figure 2.2.: Motifs in a protein-interaction network (left) abstracted in a visualization
called Power Graphs (middle) (Royer et al., 2008).

of bigraph; one component is the central node, the other are its neighbors. In directed
networks, stars with more outgoing nodes are called hubs, while sinks are stars with more
incoming edges. In practice, specific motifs exist for any domain that uses graphs for
calculation or data analysis (Yeger-Lotem et al., 2004)(Royer, Reimann, Andreopoulos, &
Schroeder, 2008). Figure 2.2 shows a set of motifs with two to three nodes from biology.

2.1.2. Graph Measures

Graph measures quantify characteristics of a graph and its elements. Measures on
nodes include the number of neighbors (degree), predecessors (in-degree) and number
of successors (out-degree). Degree is one way to indicate the importance of a node in
the network. The higher its degree, the more it is more integrated. Another important
centrality measure is the number of shortest paths that a node is part of (in-betweenness
centrality). Nodes that connect two densely connected components have a high in-
betweenness centrality. Removing nodes with high centrality makes the network unstable
and can break the network into unconnected components. More information on network
measures and centrality measures can be found in Brandes and Wagner (2003).

A graphs has a size that indicates the number of nodes in the graph (|N|). Edge density
is used to characterize graphs as sparse, dense, or fully-connected. Graph density is a
visually important characteristic that poses numerous challenges to graph visualization.
For density, several measures exist; not only depending on whether the graph has directed
and/or self edges, but what density means for the visual density of graphs (Melancgon,
2006).

15
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The equation:
_ 2|
IN|* (IN]—1)

expresses the ratio of existing edges to possible edges. However, in this case density

density; (G)

grows exponentially with the number of nodes, i.e. visual density does not increase
linearly. One alternative equation where density grows linearly, is

_ Bl

density,(G) = N

indicating the ratio between edges and nodes.

The diameter of a graph is the longest shortest path, i.e. the maximal number of hops
necessary to reach every node from every other one. Dense graphs usually have small
diameters, since nodes are highly connected. However, density does not account for
where nodes connect to. The local clustering coefficient c¢; in undirected graphs for a
node n indicates how much a node is part of a group (or clique) and is the ratio between
the existing edges between the neighbors of a node n and the possible edges between
them. That is, given a graph G’ = (N',E’), with N' = {m € N|Je € E,e = (n,m)} and
E'={e € Ele = (my,my),m;,my € N'}, then

c;(n) = density; (G)

The global clustering coefficient ¢, in a graph G results from:

¢4(G) = Wﬂ;cmn)

An important trait of a graph is whether it has small-world characteristic (Watts &
Strogatz, 1998). In small worlds, paths between any two nodes are relatively short and
the average path length only grows logarithmically with the number of nodes. Because of
the short path length, for example, diseases or messages spread faster than in randomly
connected networks. However, in order to asses if a graph is a small world graph, two
measures with particular values are necessary:

e low average path length, and
o a high average clustering coefficient.

Small worlds are interesting not only because they are very frequent, but also because
they describe an in-between state between a regularly structured network and a randomly
wired network Figure 2.3.

Another important measure is the distribution of node degree. Scale free networks,
described by Barabasi and Albert (1999), have a power law distribution of node degrees
meaning that there are few nodes with a high degree, but many nodes with low degree.

16
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Figure 2.3.: Small-world graphs (Watts & Strogatz, 1998). p indicating the probability of
random re-wiring (re-attaching an edge to another node). Illustration after Watts and
Strogatz (1998)
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Figure 2.4.: Representative examples of complex graphs, described along three dimensions
Heterogeneity, Randomness, and Modularity Sole and Valverde (2004).

Nodes with a high degree shorten paths between nodes, in a sense the network becomes
small. Showing that a particular network has power-law degree distribution allows to
reason about its stability and vulnerability to random node removal; the likelihood that
the network splits into disconnected components if particular nodes are removed.

Figure 2.4 illustrate further types of complex graphs and their characteristics in a
“space”, described along three dimensions: randomness, heterogeneity, and modularity
(Sole & Valverde, 2004). The figure demonstrates the need for visualization, as well
as the variety of visual and topological patterns in these graphs. Translated to dynamic
networks, each of these graphs is likely to produce individual patterns of change. More
interestingly are the dynamic processes over time that organize a network into one of
these particular ways.

17
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Figure 2.5.: Conversion between (orbital) temporal units (Aigner, Miksch, Schumann, &
Tominski, 2011 ).

2.1.3. Networks

According to (von Landesberger et al., 2011), the term network in visualization refers to a
graph where nodes or edges are associated with attributes. Sometimes attributes are graph
measures, referred to as topological attributes (J. Ahn, Plaisant, & Shneiderman, 2012).
Alternative terms for networks are attributed graph (Xu, Ke, Wang, Cheng, & Cheng,
2012; Zhou, Cheng, & Yu, 2010) and multivariate network (or graph) (Wattenberg, 2006;
Pretorius & Wijk, 2006).

A network is defined as A" = (N,E,An,Ag) with Ay(n) : N — V and Ag(e) : E —V
being functions that map a node or an edge to a set of attributes V. Values can be of
any type, including numerical and alphanumerical values, and depend on the data model
used. If nodes and edges have explicit types (or modes) assigned, such as persons and
institutions, the corresponding graph is called heterogeneous or multi-mode network.

An important aspect of visualizing graphs is to find a good layout that satisfies certain
aesthetic criteria (Purchase, Carrington, & Allder, 2002). Visualizing networks faces
multiple problems related to the presence of multidimensional information in addition to
topology (Herman, Melancon, & Marshall, 2000; von Landesberger et al., 2011).

Dynamic networks can be seen as networks with temporal attributes on nodes and
edges, plus additional information about the presence of nodes and edges. Yet time is a
particular data type, as detailed in the next section.

2.2. Characteristics of Time

Time appears simple since it progresses linearly. It is divided into a past, a present and a
future. Events in the past cannot made un-done, while events in the future are unknown,
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Figure 2.6.: Examples of circular time visualization. (a) Spiral glyph showing temperature
along the year (one rotation), and (b) energy consumption during the year, organized by
day (Van Wijk & Van Selow, 1999)

and present is where events happen. Yet time is a much more complex, and several ways
have been proposed to describe and structure time. For example, time can also be thought
of as being circular and recurrent, based on temporal units such as days, weeks, months,
years and seasons, called granules (Aigner et al., 2011). This section describes the basic
notions of time, temporal granules and their relations.

Temporal Granularity

Time is structured using many different granules which differ in their duration as well as
beginning and ending time. For example:

e orbital units (seconds, minutes, hours, days, weeks, months years),

domain-specific organizational units (fiscal year, academic year),
biological cycles (REM sleep cycles, hormone cycles),
cycles in nature (tide, seasons), or

planning units (working steps, milestones).

Any coherent system of granularities, which allows for conversion between granulari-
ties, is called a calendar. Some granules are easy to convert (e.g., seconds and minutes),
others overlap (e.g., weeks and months) and cannot be converted without knowing the
exact time points (Figure 2.5). Units on the same granularity level (a) do not overlap,
and (b) are close. Close means that between two units (e.g., two days), there is no gap
other than another instant of that same unit (another day). The smallest temporal unit
in any system is called the chronon. The smallest temporal unit in nature is the Planck
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time which captures the minimal time that is required to change a state in the universe. A
Planck time unit is 5.3906 x 10~** seconds!.

While the linear model of time allows us to understand and measure duration and
order of events in time, circular time helps in understanding granularity and cyclic
patterns in events, for example, by comparing values across the same weekday. Common
visualizations are spirals (Figure 2.6(a)) and tables (Figure 2.6(b)).

A common notion of time is that of continuous or discrete. Continuous time means
that every time point can be associated with data. Discrete time means that there are
“gaps” between time points. Yet, in practice the difference is that of the level of temporal
granularity. A data set that uses milliseconds to time events may not be appropriate to
visualize the evolution over years. Discretizing time means aligning events from a low
granularity (e.g., milliseconds) to a higher granularity (e.g., months). The difference is
whether data is sampled, i.e. some low level granularity time points are representative for
higher-level ones, or whether values and events are aggregated over the low-level time
points. For example, weeks can be sampled by extracting the events and values for each
Monday. Aggregation takes all events within this week into account and averages values.

Events and Values

Time on data can be described in two ways: events and time series. Time series reflect the
evolution of ordinal or numeric attributes and are associated to a data object for any time
point, such as the daily temperature at a specific place. Events indicate state changes and
either describe:

e changes in a nominal attribute (e.g., presence of a node in the network: add,
remove),

e describe changes in a non-nominal attribute, such as increase by x, or decrease by
X.

e describe a single occurrence in time, such as a metro incident or the presence of
smog in the city.

While time series exist for any point in time (at least during a certain period), events
do not necessarily exist for any time point. Yet, events can have a duration.

Temporal Primitives and Relations

When analyzing time, the important information is when and in what order something
happens, as well as how long it takes. In order to describe temporal data and relations
between data in time, we need temporal primitives, associated to data. Aigner et al. (2011)
describe the following temporal primitives. I indicate alternative terms in brackets.

1http: //physics.nist.gov/cgi-bin/cuu/Value?plkt
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Figure 2.7.: Categorization according to Aigner et al. (2011): Instants can refer to (a)
a discrete point in time, (b) a unit on a higher-level of granularity. Intervals include
multiple instants. (c) an interval spanning multiple instants.

¢ An instant is a unique time point at an arbitrary level of granularity. An instant
can be a specific second, a day or a year. Figure 2.7(a) illustrates instants at the
lowest granularity level, while Figure 2.8(b) shows an instant that represents an
interval on a higher-level of temporal granularity. Instants on different levels of
granularity follow the same rules as units: they are non-overlapping and close.

e An interval (period) is defined by either two instants or by an instant and a
duration. The instant can mark the beginning of the interval, or its end (Figure
2.8(a)). An interval spans a sequence of instants.

e A span indicates a duration and is not related to any particular time, i.e. it is a
relative temporal primitive. Examples for spans are “two hours” or “three weeks”.
Instants and intervals are absolute temporal primitives because they are specified at
a particular time.

“Monday, May 20, 2013” represents an instant, while “Monday, May 20, 2013, 00:00
- Tuesday, May 21, 2013, 00:00” is an interval, although the designated time is the
same. That is, the notion of interval and instant depends on the current level of temporal
granularity.

Temporal relations in data (before, after, longer than) can be described as relations
between temporal primitives (Figure 2.8).

e Two Instants: Two instants A and B, within the same level of granularity, are
either in sequence (before, after), or equal.

o Interval and Instant: An interval can be before or after an instant, can start or
end at an instant, or can contain an instant (Figure 2.8(a)).

o Two Intervals: Allen (1984) describes seven possible relations between two
intervals (13 including symmetry), illustrated in Figure 2.8(b). Independent from
their duration, intervals can be in sequence (before, after), touching each other
(meet), overlap, start or finish at the same time, one being completely contained by
the other or both intervals happen in parallel (equal).
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Figure 2.8.: Relations between temporal primitives according to Allen (1984) (figures
taken from Aigner et al., 2011). (a) Relations between instants, (b) relations between

intervals.

2.3. Dynamic Networks

Dynamic networks are networks with some component that changes over time (time-

varying). Many different terms occur in literature to describe such networks:

e time-varying, e.g. Hoppe and Rodgers (2013); Nicosia et al. (2013),

e temporal, e.g., J.-W. Ahn, Taieb-Maimon, Sopan, Plaisant, and Shneiderman

(2011); J. Ahn et al. (2012),
e longitudinal, e.g., Moody et al. (2005); Brandes and Nick (2011),
e evolving, e.g. Erten, Harding, Kobourov, Wampler, and Yee (2003),

e dynamic, e.g., Archambault and Purchase (2013); Diehl and Gorg (2002); Saffrey

and Purchase (2008); Bender-deMoll and McFarland (2005),

While terms significantly differ across domains, to the best of my knowledge, there
are no fundamental differences in their definition. Dynamic network seems to be the
most frequently used term in the information visualization literature, so throughout this

dissertation I use dynamic network as opposed to static network.
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2.3. Dynamic Networks

The following list contains a small typology of dynamic networks, based on which
elements (nodes, edges, attributes) are affected by change; literature has not yet provided
such a categorization.

e Varying connectivity: Edges are added or removed, nodes remain in the network,
even if not connected, e.g. face-to-face conversation between people.

e Varying node-presence: Both, nodes and edges are added or removed to the
network. Nodes not present in the network are unable to create connections. Note
that if a node gets removed from the network its incident edges get automatically
removed, as well. Examples of dynamic networks with varying node-presence are
group conversations (people can join and leave the group), or food webs (species
may die-out or being otherwise removed from the ecosystem).

e Varying attribute values: attribute values associated with nodes and/or edges
over time, e.g. strength of brain connectivity, or strengths of friendship between
people.

o Transactions: Transactions represent individual events being send from one node
to the other, such as messages between people, signals between devices, or vehicles
in a transportation network. The actual network topology functions as a carrier
of events, i.e. only if two nodes are connected, events can be passed between
both nodes. Multiple individual messages can travel along the same physical
connection between machines, and multiple individual cars travel along the same
roads. Changes in connectivity can be described by frequency of events (messages,
cars, etc.) or changes in the underlying connection (loss of connection between
machines, road work, etc.).

Each model conveys particular information and combinations of these cases are possi-
ble, for example a network with varying edge weight and varying node presence. More
important, a network can be expressed in different ways. For example, vehicles between
cities (transactions) can be modeled as attribute-varying, where the number of vehicles
per hour indicates edge weight.

2.3.1. Dynamic Network Exploration

Analysis and exploration of dynamic networks can be divided into two major scenarios:

online and offline.

Online scenarios In online scenarios the network is explored while data gets still
updated and the visualization has to be updated as well. Examples for online scenarios are
the monitoring of computer and traffic networks. The task focus in online scenarios is on
judging current events and developments, such as abnormal behaviours and exceptions.

Offline scenarios 1In an offline scenario, the entire network is present at the time of
observation, i.e. data does not update. Common offline scenarios are the analysis of
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Figure 2.9.: Three representations of the same dynamic network: (a) Snapshots per
instant, (b) supergraph with lifespans (Diehl & Gorg, 2002).

social networks or brain connectivity data resulting from cognitive experiments. The
focus in offline scenarios is on the analysis and exploration of the entire network in order
to estimate trends in evolution, sequences of events as well as causalities.

The particular scenario has an important influence, for example, on the choice of
layout: online scenarios require layouts that remain stable while future topologies are
unknown. In offline scenarios, an stable graph layout can be calculated and remains fixed
(see Section 2.7).

2.3.2. Definitions for Dynamic Networks

A dynamic network D = (N, E, T) consists of a set of nodes N, a set of edges E, and a
set of time points 7. If D has attributes associated to nodes and edges, two functions
An(a,n,t) and Ag(a,e,t) return the value of attribute a on node n or edge e, for time 7.
For each dynamic network, an ordered set of time steps [Go,G1,Ga, '“G\T\] is called a
sequence, with G; being a static representation of D at time ¢ (Figure 2.9(a)).

Nodes N; and edges E; are subsets of N and E respectively, whereby all incident
vertices of all edges in E; have to be in N;. G,_ is called the preceding time step, while
G,y is called the succeeding time step. Preceding and succeeding time steps are adjacent
to G;. Since time steps compare to instants, and instants are close, no information is lost
between two adjacent time steps; any event in the network is captured in either time step.

Nodes and edges are associated with a birth, which refers to the first instant they enter
the network, and a death, referring to the last time step before they leave the network.
Both nodes and edges can be re-inserted into the network The time between birth and
death is called lifespan and nodes may re-enter the network after they have have been
removed from it. The supergraph (Dichl, Gorg, & Kerren, 2001) S = (N, E) is the graph
that contains all nodes and edges present in at least one time step of D. Figure 2.9(b)
shows the supergraph of the time steps on the left, indicating the time steps where each
node (non-italic) and edge (italic) are present. For instance, node a has a lifetime of 3
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2.3. Dynamic Networks

time steps, while the edge between nodes b and d has a lifetime of 1 time step. The edge
between C and D reappears.

For the quantification of dynamic networks, measures for static graphs can be calculated
for every time step individually and then observed over time. Furthermore, a range of
metrics for dynamic networks there has been described (Nicosia et al., 2013). For example,
two nodes ng and n; are connected by a temporal path if there exist a sequence of edges
[(no,n1),(n2,n2),..(ni—1,n;)] where each edge (n,_1,n,) is prior to the adjacent edge
(np,nps1). The temporal distance of two nodes is consequently defined as the duration
between the first and last connection. The distance between two graphs G| = (N1, E})
and G, = (N,, E») can be calculated in many different ways (Bilgin & Yener, 2010). One
possibility is the size of the common subgraph (Bunke & Shearer, 1998):

. ’N 1N Nz’
distance(G1,Gy) = o A RITAY

Federico, Pfeffer, Aigner, Miksch, and Zenk (2012a) measure the ratio between added
and removed nodes in the neighborhood of a node and define a change centrality metric.
The value effectively quantifies the change in a node’s neighborhood. As a direct use of
change centrality, Federico et al. suggest to use it to stabilize the layouts; nodes with high
change centrality must be allowed to move more, while those with low change centrality
may keep their positions.

2.3.3. Models

Static networks can be represented in different forms, such as edge lists or adjacency
matrices. Similarly, dynamic networks can be stored and thought of in different ways:
snapshots, events, and time series. Pajek (Pajek - Program for Large Network Analysis,
1997) is a commonly tool for network analysis (providing layout algorithms for node-link
diagrams, data structures for network analysis, network analysis measures, etc.) and
supports all three kinds of representations.

Snapshots Snapshots represent the network’s state and topology for every instant.
The term “snapshot” comes from photography and in terms of dynamic networks can
capture data from a longer time interval (cf. Figure 2.8(b)). For example, Pajek can export
adjacency matrices, one for every time step. Node and edge presence, as well as attribute
values are encoded explicitly within each snapshot. Birth events and lifetimes must be
inferred by comparing individual snapshots.

Events In online scenarios, data may be described as events which update the current
data. Other (raw) data is in the form of individual events, such as e-mail messages or face-
to-face conversations between people, or people entering or leaving a discussion room.
Events can correspond to instants (node birth, node death) or intervals (conversation
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Command | Description [[ Command | Description
TIt initial event: following events || DE uv delete edge (u:v)
happen at start of time segment t
TE t end event: following events hap- || DE uv delete edge (u:v)
pen at end of time segment t
AV vns add vertex v with label n and || CA uvs change property of arc (u, v) to s
properties s
HVv hide vertex v CE uvs change property of edge (u:v) to
S
SVv show vertex v CT uv change type (arc/edge) of line (u,
v)
DV v delete vertex v CD uv change direction of arc (u, v)
AA uvs add arc (u, v) with properties s PE uvs replace pair of bidirected arcs by
a single edge
HA uv hide arc (u, v) AP uvs add pair of arcs with properties s
SA uv show arc (u, v) DP uv delete pair of arcs
DA uv delete arc (u, v) EP uvs replace
edge by pair of opposite arcs
AE uvs add edge (u:v) with properties s
HE uv hide edge (u:v)
SE uv show edge (u:v)

Table 2.1.: Commands and events defined in Pajek (Mrvar & Batagelj, 2004).

between people). Internally, Pajek uses events to describe changes to the network,
summarized in Table 2.1 (Pajek uses the term arcs for directed edges). Events describe
a change on nodes and edges that happen in a single instant. Events in Pajek describe
simple events on the network topology.

Time Series Alternatively to multiple matrices, Pajek can encode dynamic networks
as time series of node and edge presence. The following shows an excerpt from how
Pajek stores networks inside a . paj file.

*Vertices 3

1 "a" [5-10,12-14]
2 "b" [1-3,7]

3 "e" [4-%]

*Edges

121 [7]

1 31 [6-8]

The example defines three nodes; a, b, and e. Time steps where nodes and edges are
present in the network are indicated in squared brackets. Node a is present in time steps 5
to 10 and 12 to 14, node b from 1 to 3 and in time step 7, and node e is present from 4 on
(till the very last time step). Edges exist between nodes 1 and 2 in time 7 and between 1
and 3 (with weight 1) from time 6 to 8. Time series can also represent attribute values
over an interval of instants.

Snapshots, events and time series represent the same data, although each may be more
suited for certain queries and use cases. Conversion between these is possible: individual
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Figure 2.10.: Network at different levels of temporal granularity (Bender-deMoll &
McFarland, 2005). The bottom line shows snap shots at a very fine temporal granularity,
while the top most graph shows the supergraph, i.e. at the highest temporal granule.

events can be aggregated into snapshots; time series can be inferred from snap shots (cf.
Figure 2.9); events can be derived from both, and vice versa.

2.3.4. Temporal Granularity and Aggregation

Temporal granularity is an essential aspect of dynamic network exploration. Moody et
al. (2005) summarize that any (dynamic or static) network structure is a rather artificial
construction that emerges only from “aggregating dead past events” (Moody et al., 2005,
p. 1208). A network that describes messages sent between people does not exist in
permanence and does not “change” from one second to the next. In fact, the network’s
particular topology depends on the interval that is aggregated; topology and the visible
structure depends on the size of the chosen time frame (or time window).

Finding the right size of temporal granularity is important for visual network explo-
ration. Figure 2.10 shows the same network at different levels of temporal granularity.
The bottom line shows snap short at a very fine temporal granularity, while the top
most graph shows the supergraph, i.e. at the highest temporal granule. Networks at low
granularity contain too little information to see any topological patterns, while the highest
granularity levels show too many connections and loose information about time. Yet, the
duration of a connection is of major importance to temporal aggregation.
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(a) (b) (©

Figure 2.11.: Types of connectivity. A, B and C represent nodes, time goes from top to
bottom, edges are indicated in red. (a) Instantaneous edges, (b) Transmissive edges, (c)
Persistent edges.

Types of Connectivity

Nodes in dynamic networks usually represent persistent entities in the data, such as
persons, countries or neurons. However, edges in dynamic networks can have multiple
interpretations, depending on the data domain. Here, I introduce the following grouping,
illustrated in Figure 2.11.

o Instantaneous edges are single events between two nodes and without any dura-
tion (Figure 2.11(a)). Instantaneous edges represent messages between people or
computers, or signals between neurons in the brain. They have no duration, only a
single time stamp.

o Transmissive edges represent moving objects such as airplanes, metro trains, blood
cells or abstract transmissions in progress. Such edges have a start and an end time
(Figure 2.11(b)). Between start and end, their state conveys the fraction where the
moving object is.

o Persistent edges can also have a duration, but represent permanent states, such as
anatomic connections between neurons, the existence of a flight route, or friendship
between individuals (Figure 2.11(c)).

While each of these types imply a proper data model and individual visualization, they
all can be modeled as edges in a network, depending on the temporal granularity.

Time Windows

A time window W represents a temporal span of duration d. An interval [p, g that is de-
fined by W, defines a graph sequence [G),Gp+1,...G4—1,Gy|. W can define a supergraph
S§'=(N',E") with N =N,,i € [p,q] and E' = JE;,i € [p,q|. Multiple time windows
could be defined, while two windows W; and W, can overlap.

Figure 2.12 illustrate a time window between two time points (“slice points”), while
horizontal gray bars indicate the lifetime of certain nodes and edges (“arc””). Whenever a
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Slice 1 Slice 2
node A
node B
node C
edge 1
edge 2
Time >
Slice point Slice point

Figure 2.12.: Time window between two instances ( “slice point”). Gray vertical bars
represent the lifetime of nodes and edges (“arc”) in the network (lllustration according
to Bender-deMoll & McFarland, 2005).

node or edge is present inside a time window, it is part of the supergraph’s topology for
that time window. In the example, the time window contains all nodes and arcs.

In Figure 2.10, graphs are aggregated from the bottom to the top, from the top to
the bottom de-aggregated or decomposed. Given a time window W with a sequence
(Gp,Gpi1,...Gg—1,G,), the supergraph §' = (N, E’) which results from W is the graph
for the next higher level of granularity.

If nodes and edges in D have numerical attributes with associated time series, we can
define an aggregation function for each attribute. This function returns a single measure
for the attribute value between two time points. Common aggregated values from a series
of values are average, median, min, max, number and sum (cf. Elmqvist, Do, Goodell,
Henry, & Fekete, 2008; Elmqvist & Fekete, 2010).

In summary, most static networks can be seen as both a snapshot of a dynamic network
or a completely aggregated dynamic network.

2.4. Network Visualization

The visualization of networks is related to several issues:

o the description of tasks that user’s perform when exploring and analyzing a network,

e visual representations, such as node-link diagrams, matrices, arc diagrams (Wattenberg,

2002), etc.,

graph layouts (graph drawing) and matrix reordering algorithms,
user navigation in networks,

clustering and aggregation for compound graphs,

visual encoding of nodes, links and their attributes, as well as
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e applying and developing evaluation methods for empirically assessing the effec-
tiveness of network visualizations.

This section first gives an overview of the most common representations for networks
and their visual encodings, and then briefly discusses general problems in visualizing
(static) networks.

2.4.1. Visual Graph Representations

A graph representation describes the general visual representation of nodes and edges and
how connectivity is encoded visually. Figure 2.13 shows a systematic design space of
graph representation techniques and layouts, compiled by Bertin (1973). Some of these
techniques have not been used yet, others have been used frequently and obtained proper
names, for example: Arc Diagram (1), Circular Layout / Ring Layout (4), Node-link
diagram (7), Containment diagram (10), Directed Acyclic Graph or Tree (11), Adjacency
Matrix (20).

The following presents visualization techniques for the two most common representa-
tions: node-link diagrams and adjacency matrices.

Node-link Diagrams

Node-link diagrams have been used for most of the techniques in graph visualization
and their advantage is that they are easy to understand and more intuitive than adjacency
matrices (see next subsection “Adjacency Matrices”).

Node-link diagrams are usually displayed using 2D layouts, rarely 3D layouts (e.g.
Balzer & Deussen, 2007). The field concerned with finding layout algorithms is called
graph drawing. Layout algorithms try to satisfy a number of aesthetic criteria, which are
measures that characterize the human readability of the layout, i.e. the graph (Purchase,
1997, 2000, 2002) and many studies on graph layout techniques have been conducted
(Dwyer et al., 2009). Examples of such criteria are (a) minimize edge crossings, (b)
minimize edge bends, (c) maximize symmetry, (d) minimize total drawing area, (d) place
connected nodes close to each other, and (e) prevent nodes from overlapping.

Techniques for creating layouts include, but are not limited to the techniques described
in the first column in the upper table in Figure 2.13 (numbers in brackets refer to the
corresponding case):

e force-directed approaches (7), e.g., Fruchterman and Reingold (1991); Kamada
and Kawai (1989),

e geometric optimizations, a sub-type (7), e.g. Eades and Hong (2013),

e circular layouts (4), e.g. Six and Tollis (2013),
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2.4. Network Visualization

e layouts for clustered compound graphs, (7) and (10) , e.g. Bertault and Miller
(1999); Frishman and Tal (2004)),

e layered layouts for directed acyclic graphs, (11), e.g. Sugiyama, Tagawa, and Toda
(1981), or

e topographical structures, a sub-type of (7), e.g. Archambault, Munzner, and Auber
(2007)

Further information on graph layouts can be found in Battista, Eades, Tamassia, and
Tollis (1998), von Landesberger et al. (2011), as well as Tamassia (2013). However, the
main problem with node-link diagrams remains graph density, since dense graphs result
in more lines crossing and overlapping. At the same time, node positions may be less
representative for node connection in dense networks (criteria (d)), since any node has a
large set of neighbors.

Many network visualization systems support node-link diagrams, such as the represen-
tative selection. While JUNG (O’Madadhain, Fisher, & Nelson, 2003) and Tulip (Auber,
2003) are programming libraries, Pajek (Pajek - Program for Large Network Analysis,
1997), Cytoscape (Cytoscape: An Open Source Platform for Complex Network Analysis
and Visualization, 2013), Gephi (Bastian, Heymann, & Jacomy, 2009), Orion (Heer &
Perer, 2011) or Ploceus (Liu, Navathe, & Stasko, 2011) are applications that allow users
to visualize their own data. Cytoscape and Gephi also provide APIs for developers to
write plugins. NodeXL (NodeXL: Network Overview, Discovery and Exploration for
Excel, n.d.) is an Excel extension to visualize tables as networks. NodeXL features several
extensions such as motif simplification (Dunne & Shneiderman, 2013) and visualization
of dynamic networks (J.-W. Ahn et al., 2011). All of the mentioned systems support
multiple layout algorithms, apply different colors to nodes and visualize clusters.

A further commonly used type of node-link diagrams are arc diagrams, which order
nodes in one dimension (Figure 2.13(1)), while showing links between nodes as visual
arcs (e.g. Wattenberg, 2002; Neumann, Schlechtweg, & Carpendale, 2005).

Adjacency Matrices

Adjacency matrices represent nodes as rows and columns, while edges correspond to
matrix cells. Adjacency matrices do not suffer from the problem of edge-crossings and
can visualize dense and fully-connected graphs. Although matrix representations have
been in use for a long time (Bertin, 1973; Ziegler, Kunz, & Botsch, 2002; Abello & van
Ham, 2004; Liiv, 2010), they have not received wider attention until the controlled user
study by Ghoniem et al. (2005) showed that matrices outperform node-link diagrams on
most tasks, except finding a path between two nodes.

Similar to a graph layout, matrices require an ordering on the nodes (ordering of rows
and columns) in order to make particular connection patterns emerge inside the matrix.
Matrix ordering is an optimization problem that tries to minimize the euclidean distance
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Figure 2.13.: Graph representations taken from Bertin (1973). Some of these representa-
tions are commonly referred to by certain names, others have not been used so far. For
example, (1) Arc Diagram, (4) Circular Layout / Ring Layout (7) Force directed, (10)
Containment diagram, (11) Directed Acyclic Graph (or Tree), (20) Adjacency Matrix.
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Figure 2.14.: Network topological patterns in both, adjacency matrix and node-link

representation (Henry & Fekete, 2006). The pattern labeled with an A shows a star motif,
while pattern B shows a dense cluster. Pattern C shows a clique (complete subgraph).
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(b) MatLink

Figure 2.15.: Matrix visualizations: (a) NodeTrix hybrid visualization for locally dense
(matrix) and globally sparse (node-link diagrams) networks (Henry, Fekete, & McGuffin,
2007). (b) Matlink showing links between nodes (columns) to support path follow-
ing (Henry & Fekete, 2007).

between adjacent rows and columns. A summary of matrix reordering techniques can be
found, for example, in Liiv (2010) as well as (Henry & Fekete, 2006).
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Figure 2.14 illustrates how topological patterns are represented in both an ordered
matrix and a node-link diagram using a force-directed layout algorithm. The pattern
labeled with an A (dark red) shows a star motif, while pattern B (bright yellow) shows a
dense cluster. Pattern C (orange) shows a clique (complete subgraph).

Some networks are only dense on a local level, that is they contain dense groups, and
few connections between groups. As Figure 2.14 shows, such networks cause much
space in the matrix to remain empty. Matrix Explorer (Henry & Fekete, 2006) shows a
node-link diagram and a matrix side-by-side using brushing and linking to relate graph
elements in both representations. NodeTrix (Figure 2.15(a)) integrates matrices directly
into node-link diagrams (Henry et al., 2007), which facilitates the visualization of dense
components in networks, while edges between dense groups are shown as lines. This
technique was later extended to heterogeneous networks (Bach, Pietriga, & Liccardi,
2013).

Visually, there are two major drawbacks with matrices: finding paths between nodes
and dealing with the empty visual space in sparse networks. Following paths in symmetric
matrices (directed graphs) results in following a row until a connection is found, then
traversing that column until the next connection is found and so on. In short, following
paths in matrices is highly cognitive work. To facilitate finding and following paths
between two nodes, Henry and Fekete (2007) show links between columns on matrices
(Figure 2.15(b)) while Sheny and Maz (2007) connect cells in the matrix by lines. Other
common approaches indicate the shortest path distance between any node pair as value in
the corresponding cells.

In order to reduce the empty visual space in large matrices, Elmqvist, Do, et al. (2008)
aggregate the network by combining nodes into meta-nodes and effectively reducing the
number of nodes. Elmqvist, Henry, Riche, and Fekete (2008) use folding of the 2D space
to compare distant rows. Dinkla, Westenberg, and van Wijk (2012) compress matrices
and Bezerianos, Dragicevic, Fekete, Bae, and Watson (2010) remove quasi-non existent
cells to visualize directed acyclic graphs.

2.4.2. Problems in Network Visualizations

Large Networks Not only do large networks pose significant problems to a visual-
ization and a user’s perception, also calculating layouts and managing large numbers of
nodes in memory is challanging. While some layouts are less time intense to calculate
(e.g. Kamada & Kawai, 1989), the GPU (graphics processing unit) can be used to calcu-
late layouts (Frishman & Tal, 2007). Multilevel graph layouts decompose the network
into hierarchical layers and then calculate a layout independently for each cluster in
parallel. Layers can stem, for example, from a hierarchical clustering (Walshaw, 2001), or
topological features (Archambault et al., 2007). Alternatively, only a part of the network
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can be visualized at a time. As users change the scope, additional elements are displayed,
while others get removed. Corresponding techniques are further discussed in Section 2.5.

Dense Networks Since matrices do not suffer from edge-crossing issues, they are
commonly used to visualize dense networks. If matrices cannot be used, for example
because nodes have geographic positions that must be presented, density in node-link
diagrams can be reduced by filtering connections, for example those with low weights.
An effective method is presented by Holten (2006) who bundle links with similar source
or target regions. Another solution are lenses that locally remove edges that are not
connected to the nodes in the lens’ focus (Tominski, Abello, van Ham, & Schumann,
2006).

Multivariate Networks Links in node-link diagrams can show directionality (Holten
& van Wijk, 2009) and multi-edges can be visualized by arcs (Henry Riche, Dwyer, Lee,
& Carpendale, 2012). Extending the NodeTrix technique (Henry et al., 2007), OntroTrix
(Bach et al., 2013) uses a specific color encoding of matrix cells as well as allows for
reorganizing matrices by interactive node reordering, as well as splitting and merging
matrices. Pivot graphs (Wattenberg, 2006) show a node for every attribute value, while
links between these nodes represent actual relations in the network.

Compound Networks If networks get large, subgraphs can get abstracted by meta
nodes and edges between them represented as meta edges (Eades & Feng, 1997; Shen,
Ma, & Eliassi-Rad, 2006). Motif simplification replaces certain graph motives, such
as fans, and cliques by perceptually simple glyphs such as rhomboids or circle sectors
(Dunne & Shneiderman, 2013). Hierarchies of clusters can be represented using common
tree representations, such as nested circles (Archambault, Munzner, & Auber, 2008),
rectangles (Neumann et al., 2005), or treemaps (Fekete, Wang, Dang, & Plaisant, 2003).
Overlapping subgraphs pose further problem when visualizing graphs. Corresponding
techniques have been developed using Euler diagrams (Henry-Riche & Dwyer, 2010),
LineSets (Alper, Riche, Ramos, & Czerwinski, 2011) and as fuzzy communities (Vehlow,
Reinhardt, & Weiskopf, 2013).

2.5. Network Navigation

Many graphs are too big to fit on screen while remaining readable. Even if they do,
users may not be interested in all parts of the graph at the same time. Only a part of
the network can be shown, while users navigate through the graph in order to reveal
different parts. Graph navigation techniques define and adjust the visible part of the
graph, such as panning defines the position, and zooming the viewing distance of the
viewer with respect to the data. While pan and zoom techniques are performed on the
view (view navigation) and are independent from the underlying visualization technique,

35



2. State of the Art

graph navigation techniques rely on the graph’s topology to define what is made visible
to users.

Graph navigation is performed by interaction, as only the user can decide what he is
interested in and change his focus accordingly (von Landesberger et al., 2011). In analogy
with the information visualization pipeline (Card et al., 1999), we can describe navigation
on each of the pipeline’s steps; navigation in data space (network structure), navigation in
the visualization, and navigation in the view. In this section, I categorize graph navigation
techniques into four groups, whereby techniques from different groups can be combined
in the same interface. In each of these groups, horizontal navigation refers to a change
in the subgraph that is seen, while vertical navigation refers to the number of elements
and/or the level of detail in the current view.

e View Navigation changes the user’s position with respect to the visualization,
while remaining independent from the data (time, topology, attributes, etc.)

e Structural navigation changes the visible parts of the graph,

e Temporal navigation changes temporal scope and granularity, and

e Navigation in the visualization changes the representation on the graph within
the visualization.

Among all four groups, the challenges for effective visualization include (i) interaction
for navigation, (ii) visual clues while changing the visible part of the network, as well as
(iii) to enable user to maintain context about the space they navigate in.

2.5.1. View Navigation

A simple technique for vertical navigation has been presented by van Ham and van Wijk
(2004), keeping node size fixed with respect to screen size (Figure 2.17(a)). By zooming
out, nodes implicitly get combined into clusters, without calculating any clustering.
However, the problem is that links in dense are (Figure 2.17(a) left, “Classical area”)
vanish quickly. Graph folding (Carpendale, Cowperthwaite, Fracchia, & Shermer, 1996)
uses a geometric fisheye on graphs and, by using multiple foci, enables direct comparison
between distant subgraphs.

In order to maintain orientation while panning, Ghani and Elmqvist (2011) tested
different background and node encoding techniques, such as dividing the background
into colored regions, adding landmark glyphs, and color nodes according to their position
in the graph. Ghani and Elmqvist conclude that background coloring in combination with
landmark glyphs perform best.
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Figure 2.16.: Compound fisheye technique as illustrated by Abello, Kobourov, and Yusufov
(2004). van Ham and van Wijk (2004) developed a similar technique at the same time. (a)
Hierarchical clustering, (b) resuling view with focus on dark red nodes, (c) nodes within
the green cone are expanded, i.e. its children are shown.

(b) Fisheye used to resolve clustering and show underlying graph elements.

Figure 2.17.: Techniques for vertical graph navigation as described by van Ham and van
Wijk (2004).
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Figure 2.18.: Same data set shown at two different zoom levels in ZAME (Elmgqvist, Do, et
al., 2008)

2.5.2. Structural Navigation
Vertical Structural Navigation

Vertical navigation in networks is similar to zooming on the view level in a user interface;
a low zoom level gives an overview, while a high zoom level shows the details. At a low
zoom level, graph structures are aggregated into meta nodes and meta edges. Sarkar and
Brown (1992) were the first to apply the fisheye technique (Furnas, 1986) to graphs by
taking into account the graph’s structure. The size of nodes does not depend on the spatial
screen distance to the focus, but on topological distance. Fisheye techniques for graphs
have then been developed that aggregate nodes which are far from the fisheye focus.
Schaffer et al. (1998), Gansner, Koren, and North (2005) as well as Abello et al. (2004)
and van Ham and van Wijk (2004) calculate a hierarchical clustering on the graph and
use fisheye lenses to open nodes that are close to the focus node. Figure 2.16 illustrates
the usage of such a compound (Abello et al., 2004) or semantic fisheye (van Ham & van
Wijk, 2004). The resulting graph shows nodes from different levels of detail in one graph
(Figure 2.16(b)). Ask-Graph (Abello, van Ham, & Krishnan, 2006) is a comprehensive
graph navigation and exploration system, allowing for interactively opening and closing
clusters. It builds on previous work by Abello and van Ham (2004) and Abello et al.
(2004).

In a similar approach, Abello and van Ham (2004) use matrices to navigate hierar-
chically clustered graphs and let users interactively open and close nodes in a cluster
hierarchy, shown on the side as done later in Ask-Graph. The coloring of matrix cells
reflects the number of edges between nodes or meta nodes. Abello and van Ham also
present algorithms to manage very large graphs, by keeping only a part of the graph
in memory and reloading parts of the graph from hard disk on demand. Also using an
adjacency matrix, Elmqvist, Do, et al. (2008) do not pre-calculate the clustering hierarchy,
but nodes get aggregated as the users zoom in. When the user zooms out, two nodes
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Figure 2.19.: Glyph designs in ZAME to visualize and aggregate attributes on
edges (Elmqvist, Do, et al., 2008)

being neighbors in the matrix row and column ordering become aggregated into a meta
node (Figure 2.18), while matrix cells show aggregated information about the underlying
edges in a single value. Elmqvist, Do, et al. (2008) further proposed embedded glyphs to
abstract distributions or show trends (Figure 2.19).

Horizontal Structural Navigation

Similar to panning, horizontal navigation brings other parts of the graph into focus,
but remains at the same level of detail. It is also referred to as incremental navigation
(Herman et al., 2000). Horizontal navigation is for example required to find neighbors of
a node in large graphs, and/or travel along paths. Furthermore, many network exploration
tasks require revisiting graph elements (Lee et al., 2006), i.e. switch back to a node
or group that have already been observed. If edges in the graph span large distances
and nodes of interest are far from each other, free panning is less useful. However, the
network’s edges can guide the user like hyperlinks in document collections. Moscovich,
Chevalier, Henry, Pietriga, and Fekete (2009) describe two such techniques for network
visualization: Bring-and-go interactively brings related nodes close to the focus node
(Figure 2.20(a)) and link sliding attaches the mouse cursor to a link and enables to slide
along the link to the target node. Similar to bring-and-go, Ghani, Riche, and Elmqvist
(2011) use dynamic insets, which are small portals that show the neighbors to a selected
node on the margins of the screen (Figure 2.20(b)).

The principle of horizontal navigation also helps to navigate graphs that do not fit
entirely in memory. Users start by a single node or a subset of nodes and their immediate
neighbors, then subsequently, further neighbors of the neighbors are loaded and displayed.
Huang, Eades, and Cohen (1998) call the current visible graph a logical viewing frame
(Figure 2.20(c)). Whenever the user clicks a node (a website), the viewing frame is moved
and nodes that are no longer part of the frame are removed from the display. Nodes that
have been clicked by the user always remain visible, resulting in a history trail, similar to
Nestor (Eklund, Sawers, & Zeiliger, 1999).

Hyperbolic layout shows logical viewing frames in a circular tree layout and usually
shows more than the direct neighborhood. Hyperbolic layouts are calculated from
the spanning tree, rooted in the selected nodes given each node the same importance,
depending only on the distance to the focus node (Yee, Fisher, Dhamija, & Hearst, 2001;
Lamping, Rao, & Pirolli, 1995; Munzner, 1998).
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Figure 2.20.: Techniques for horizontal graph navigation. (a) Bring and Go (Moscovich
et al., 2009), (b) Dynamic Insets (Ghani et al., 2011), (c) Schematic view of Logical
frames, illustration after Huang, Eades, and Cohen (1998), (d) Degree of Interest graph
visualization by van Ham and Perer (2009).

van Ham and Perer (2009) extend Furnas’ notion of degree of interest (DOI) function
to graphs. If a node is shown depends on its a priori importance, e.g. its relevance
with respect to a user-posed query, and on the length of the shortest path to a selected
focus node. van Ham and Perer call their approach “Search, Show Context, Expand on
Demand”, in analogy to “Overview first, zoom and filter, detail on demand”.

Navigating individual links between nodes can be time intensive. Facet Graphs (Heim,
Ertl, & Ziegler, 2010) is a solution for set-based browsing that retrieves all neighbors of a
focus set of nodes. Neighbors are grouped by type and can be used for further navigation.
GraphTrail (Dunne, Henry Riche, Lee, Metoyer, & Robertson, 2012) is similar to Facet
Graphs but embeds visualizations in each set. Visualizations can show bar charts, world
clouds or matrices. Users can filter elements using the visualizations and refine the other
sets visible on the screen.
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2.5.3. Temporal Navigation

Temporal navigation is only required in dynamic networks, unless users manipulate a
static graph and require to navigate the history (Heer, Mackinlay, Stolte, & Agrawala,
2008). Similar to navigation in static networks (see Section 2.5), navigation in dynamic
networks refers to moving the user with respect to the data and/or visualization, in time.
That is, rather than viewing the graph at different levels of detail (horizontal navigation),
or different parts of the graph (vertical navigation), temporal navigation changes the
temporal focus and granularity. Changing the temporal focus means navigating along
the time axis and corresponds to a horizontal navigation, while changing granularity
corresponds to a vertical navigation that changes detail of the displayed data.

Horizontal Temporal Navigation Horizontal temporal navigation changes the hour,
day or current time step, usually using time sliders to navigate animated sequences of the
dynamic network (e.g. SONIA (Moody et al., 2005), TempoVis (J.-W. Ahn et al., 2011),
and Gephi (Bastian et al., 2009)). Other techniques originate from video interfaces with
play, pause, forward and backward controls. Horizontal temporal navigation with sliders
is mostly linear, unless the user can move the slider head instantly to a particular time
point, which causes an abrupt change in the graph sequence. A detailed description of
techniques to animate changes within a sequence of graphs is given in Section 2.6.2.

Vertical Temporal Navigation Vertical temporal navigation sets the temporal gran-
ularity of instants (see Section 2.3.4). Gephi and TempoVis allow the user to define a
time window and to interactively set its start and end time, while the window is moved
along a time slider.

2.5.4. Navigation in the Visualization

In visualization navigation, the user navigates between different visualizations on the
graph, i.e. it changes the way the graph is represented. A visualization is a representation
of the graph and can offer alternative views on the graph and its elements. Techniques
for visualization navigation are much less intuitive to design than for structural and
temporal navigation. It requires overviews and metaphors to help users orient themselves.
GraphDice (Bezerianos, Chevalier, Dragicevic, Elmqvist, & Fekete, 2010) is an example
that visualizes homogeneous, multivariate, and dynamic graphs by locating nodes in a
scatter plot, where axes represent attribute dimensions or time. Edges between nodes are
shown on top of the scatterplot. A scatterplot matrix serves as overview and interaction
widget, animated transitions change axes in the scatterplot as described in ScatterDice
(Elmgvist, Dragicevic, & Fekete, 2008).

Ploceus (Liu et al., 2011) is a system that allows users to create node-link representa-
tions of huge homogeneous graphs, where each view shows a different subset of nodes
and edges, filtered by type. To define a view on the data, Ploceus provides a widget

41



2. State of the Art

Overview

T . e O B B - Ll =
CENWAr TN NN N g _
PN S dadladld f;a\%@ - B == @
w N AL EF £ A : ” --%\
w DN AEF ¥ kA § & |
o« YN AFAF £ ddd o3 N )
o VA A E L F b g Y
-~ | EBFEPE/ 2D i N
| 2 aFERE A /5 (AP b
| £ ERFFEMM/ . T
kR H :
Selection History. =E“"”“"‘3’;’@EI H | x
S Do b !
& . - :
® © : :
(] — L 2 H 7 10 pa;z"snb 15 17 20 22
(@ (b)

Figure 2.21.: View navigation in GraphDice (Bezerianos, Chevalier, et al., 2010). (a)
Scatterplot Matrix for selecting views. (b) View transition in the scatterplot using staged
animated transitions described by Elmqvist, Dragicevic, and Fekete (2008).
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Figure 2.22.: View creation and overview in Ploceus (Liu et al., 2011). (a) Model view to
define which nodes (according to node type) and relations should be visible. (b) Multiple
views, each showing different nodes and times. Here, columns indicate years, while rows
indicate domain specific node attributes.

(Figure 2.22(a)) that allows users to define which node and edge types should be shown
and how they are related. For example, Ploceus can show indirect relations between
nodes that are not related directly connected. Views in Ploceus change instantly without
any transitions, but can be displayed side-by-side for comparison (Figure 2.22(b)). To
visualize and explore dynamic networks, Hadlak, Schulz, and Schumann (2011) change
representations individually for subgraphs (Figure 2.23(a)). Representations are nested,
similar to NodeTrix (Henry et al., 2007) or nodes are duplicated and the new visualization
is shown in a portal window.

2.6. Visualizations for Dynamic Networks

While research on dynamic networks involves the same areas as visualization for static
networks (Section 2.4), it faces additional problems:

42



2.6. Visualizations for Dynamic Networks

(@ (b)

Figure 2.23.: (a) Insitu graph views by Hadlak, Schumann, Cap, and Wollenberg (2013)
and (b) navigation and interaction history by Heer et al. (2008).

e Dynamic graph layout: finding a graph layout that does not change too much
with the topological changes in the network over time,

Time-varying attributes: design visualization techniques that encode time and
changes to graph elements and attributues,

Topology and Time: How to show topology and time at the same moment.

Temporal navigation: enable navigation in time (horizontal and vertical).

In order to describe visualizations for dynamic networks, Hadlak et al. (2011) propose
two orthogonal dimensions: network structure and time, illustrated in Figure 2.24%. In
any visualization, network structure and/or time can be shown unreduced, reduced or
abstracted. Reducing space or time focuses on a subgraph or set of time points (horizontal
structural and temporal navigation), while abstracting removes detail from either dimen-
sion. Unreduced structure and time means that the entire network is visible for every time
step. The taxonomy by Hadlak et al. supports comparison compare visualizations and to
discuss the tradeoff between abstracting and showing time or structure. The taxonomy
clarifies what a visualization shows, but does not inform sow information is (or can be)
shown, i.e. how time and space are abstracted.

A survey on dynamic networks is yet missing. In this section, I introduce a simple
typology of visualizations, according to how they visualize time, topology, and attributes.
The typology is based on what are the visual means that encode time and topology. Later
in this dissertation (Chapter 7), we define a more detailed classification that can can serve
as a design space and allows to better describe, discuss and design new visualization
techniques.

e Temporal Multiples: Graph snapshots are shown side by side on the screen.

e Animated Sequences: Snapshots of the graph are shown in a sequence, often
employing animations between them.

e Temporal Aggregations: Shows a supergraph of the dynamic network and en-
codes time explicitly using visual variables other than position (Bertin, 1973).

ZNumbers in the figure refer to references in the paper by Hadlak et al., 2011.
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Figure 2.24.: Taxonomy for dynamic tree and network visualizations as described by
Hadlak et al. (2011). Visualizations are grouped according to whether they abstract time
(columns) or network structure (rows).

e Nesting: Changes of a node or edge attribute over time are shown in the corre-
sponding glyphs in topological representations (node-link or matrices).

e Timelines: Time is shown along one spatial dimension, while the remaining screen
space is used to convey network structure.

e Ego networks: Shows the evolution of a single node’s neighborhood.

e Space-Time Cube representations: 3D representations of dynamic networks as
space-time cubes.

In the following, I discuss visualizations in all of these groups and afterwards will
refer to the few comparative studies that exist. Table 2.2 summarizes the visualizations
discussed in this section.

2.6.1. Temporal Multiples

Temporal multiples show the network at every time step, side-by-side on the screen. This
technique is often called small multiples, but the term small multiples does not refer to
time explicitly. Technically, temporal multiples is the simplest technique to represent
dynamic networks. One image per time step can be created with any common graph
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Figure 2.25.: Examples of temporal multiples. (a) Matrices juxtaposed in Matrix Flow
(Perer & Sun, 2012). The line chart shows the evolution of connection weigth between two
selected nodes. (b) Design for a user study on temporal multiples in Boyandin, Bertini,
and Lalanne (2012).

visualization systems for static networks. Pictures can then be shown in parallel using
any kind of (multi-view) image viewer. Ploceus (Liu et al., 2011) can produce and lay out
temporal multiples interactively (Figure 2.22(b)). More recently, Perer and Sun (2012)
use adjacency matrices in MatrixFlow (Figure 2.25(a)). Cell darkness indicates strength
of relation. When the user hovers over a cell in a matrix, the evolution of the connection’s
weight is plotted in a line graph below the matricess. Matrices benefit from the advantage
that, if properly placed on the screen, rows or columns align and connections of nodes
can be tracked along rows across matrices (time steps). Figure 2.25(b) originated from a
study that compares animated sequences and temporal multiples, (Boyandin et al., 2012).
Within these temporal multiples, users are able to synchronously zoom the views and
highlight edges across them. Line thickness indicates edge weight.

Temporal multiples provide a quick overview of the network’s evolution without hiding
or abstracting any information. Yet the size of multiples depends on their number and
on the available screen space; larger images show more details of the network, smaller
images mean that more time steps can be shown simultaneously. Another problem is
the comparison of distant times and to track particular graph elements across time steps.
Temporal multiples therefore hardly allow for a detailed analysis of changes, as those
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Figure 2.26.: Example of animation in Friedrich and Eades (2002) employing geometric
transformations before moving nodes to their final positions. Images 1-6 indicate affine

transformations (rotation, scaling, shearing, translation), images 7-12 show nodes moving
to their individual positions.

require direct comparison across multiple small images and do not scale to large networks
or networks with many time steps. Letting users change the temporal granularity (vertical
temporal navigation), or allow for brushing-and-linking, could perhaps help to overcome
some of these problems. To the best of our knowledge, such techniques have not been
implemented yet.

2.6.2. Animated Sequences

Sequences of the network’s time steps is by far the most common visualization approach.
In order to convey changes between time steps, animations show node and edge addition
and removal as well as move nodes to their positions in the new layout. The simplest
animations interpolate between the position of nodes, possibly using fast-in-fast out
pacing, while fading in new nodes and edges and fading out nodes and edges which get
removed from the graph (Diehl & Gorg, 2002; Erten et al., 2003; Friedrich & Eades,
2001; Moody et al., 2005; Bender-deMoll & McFarland, 2005). Crucial to any such
animation is the amount of change in node positions, which is directly related to the
layout used. While in Gephi (Bastian et al., 2009), each time the user navigates through
time, the force-directed layout gets updated continuously, techniques exist to stablize the
layout, discussed in detail in Section 2.7.

Although direct interpolation between node positions is easy to understand, nodes
can cross each other during animation. Friedrich and Eades (2002) described staged

46



2.6. Visualizations for Dynamic Networks

/§{ /’,’/7—

P
stems !m:fmg

lempirical studies)

J..L

lalgorithm animation)
R — rogra?v.l.suahzatlon

_}.\&IBD graphicsf 5~
) |
(Virtual reality
- ~
() (b) (©)

Figure 2.27.: Examples of aggregated dynamic networks. (a) Matrices in information
visualization spreadsheets (Chi, Riedl, Barry, & Konstan, 1998), (b) superimposed node-
link diagrams in Hascoét and Dragicevic (2012), (c) nodes colored by age (Collberg,
Kobourov, Nagra, Pitts, & Wampler, 2003), and (d) line graphs showing time series on
network nodes (Hadlak et al., 2013).

animations employing general geometric transformations to the graph in order to make
the current layout appear as close to the new one as possible, without changing node
positions relative to each other (Figure 2.26). The employed stages are as follows: (1)
removing network elements, (2) transforming the entire network by rotation, scaling,
and translation, (3) moving each node individually to its final position, and finally (4)
showing new network elements. While added nodes grow or fade-in and removed nodes
shrink or fade-out, links are not animated. Although node movements can be tracked,
it is difficult to track many changes that happen to the topology, especially for large
networks made of unconnected components. Visone (Brandes & Wagner, 2003) features
three-stage transitions: first fade out nodes and their incident edges; then remove and add
edges between nodes that remain in the network while also updating nodes’ positions;
and finally add new nodes and their incident edges. In TempoVis (J.-W. Ahn et al., 2011),
nodes do not change positions during the animation and intensity of node color diminishes
depending on the node’s age, i.e. its time in the network.

Animated sequences allow to use the entire screen space to show a single time step,
while encoding changes implicitly as change between two time steps. Sequences can
scale up to hundreds and thousands of time steps, yet users must memorize the network
at earlier time steps and navigate though time. Studies on the efficiency of animated
sequences are discussed together with other studies in Section 2.8.

2.6.3. Temporal Aggregation

Temporal aggregation represents the entire dynamic network into a single picture of the
network without duplicating elements, (the supergraph) while encoding:

e values over time (such as the average number of connections) (value encoding), or
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o time (when did a particular node first appear in the network) (time encoding).

Value Encoding Value encoding is very common and does not require sophisticated
visual encodings. For example, Chi et al. (1998) color cells in a matrix according to the
frequency of connections and propose to use the third spatial dimension to highlight very
frequent connections. However, all information about precise time points or distribution
over time, is lost. Similarly, NetVisia (Gove et al., 2011) shows adjacency matrices with
varying cell saturation, and Honeycomb (van Ham, Schulz, & Dimicco, 2009) summarises
the number of edges between any node pair over time in a single brightness value per
matrix cell.

Time Encoding Time encoding assigns each time step a particular encoding, such
as a color hue value to encode, for example, the first appearance of nodes and edges in
the entire network (Collberg et al., 2003). Difference graphs can be a particular form
of time encoding if both graphs are still distinguishable as in Andrews, Wohlfahrt, and
Wurzinger (2009). Hascoét and Dragicevic (2012) as well as Erten, Kobourov, Le, and
Navabi (2004) compare multiple networks by coloring each network individually and
superimposing the networks.

Aggregated images preserve the topology and show where the graph is affected over
time. While value encodings may still yield readable images, much of the temporal
information is lost. Time encoding can show more temporal information, also it can
increase the visual complexity of the network representation. Difference graphs work
well when comparing few graphs, but are insufficient to explore long sequences of time
steps.

2.6.4. Nestings

Nestings represent changing values for node or edge time attributes over time, inside
glyphs for graph elements, while the topology of the network remains visible.

Matrices have been used more often for nesting temporal information on edges, likely
because cells provide more space than lines in a node-link diagram, for encoding informa-
tion. To show the same information, Yi, Elmqvist, and Lee (2010) (Figure 2.28(a)) use bar
charts inside matrix cells, similar to ZAME (Elmgvist, Do, et al., 2008). Stein, Wegener,
and Schlieder (2010) employ a space filling algorithm to map temporal evolution of
connection activity betwen nodes into the matrix cells (Figure 2.28(b)). Brandes and
Nick (2011) use Gestaltlines inside matrix cells to represent changing edge weight over
time (Figure 2.28(c)). Time runs from bottom to top while length and inclination of the
horizontal indicates weight in both directions of the relation.

While matrices show nestings inside their cells, node-link diagrams have been used
to embed time-series on nodes, using line graphs Saraiya, North, and Duca (2010) and
Hadlak et al. (2013) (Figure 2.28(d)).
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Figure 2.28.: Examples of aggregated dynamic networks. (a) Time Matrix showing edge
time-varying attributes as bar charts inside matrix cells (Yi et al., 2010), (b) Pixel-oriented
visualizations using space filling curves to indicate time-varying edge attributes (Stein
et al., 2010), (c) Gestaltlines in matrix cells indicating weight changes in bi-directed
weighted networks (Brandes & Nick, 2011)
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Figure 2.29.: Techniques to visualize dynamic networks on a timeline. The timeline goes
horizontally from left to right, and nodes are shown on the vertical axis (topology axis).
Red glyphs indicate connections. (a) Node-link based, (b) Arc-diagram based, (c) Parallel
edge splatting, (d) Flow chart, (e) Heat map, (f) Polar layout

Nestings can show changes in edge values without necessarily hiding information.
They can show trends in attribute values for a single graph element as well as allow for
comparison of these trends. Since the network topology is shown explicitly, trends can
easily be related to topology. However nestings can be very detailed, especially if they
show information for many time steps. The problems are similar to those with temporal
multiples: (i) as the network gets large and contains many time steps, screen space might
not be sufficient to show all nestings in sufficient detail; (ii) perception of one particular
time step is difficult, as well as (iii) the comparison of time steps.

2.6.5. Timelines

Timeline visualizations for dynamic networks consist of a timeline along one spatial
dimension, while network structure is displayed using the remaining spatial dimension,
for each time step. Timeline views are useful because they allow to estimate the exact
sequence and duration of events, as well as allow to compare durations at different
locations in time. The main problem in time line visualizations is to find a node ordering
that keeps the chart readable and creates patterns among connections in the chart. The
other problem is to deal with the resulting over plotting of connections.
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Different techniques have been proposed to address one or both of these problems;
some duplicate nodes, some use fixed node position, some do show and other do not
show connections. In the following I group the visualizations into the the following
(non-exclusive) types, illustrated in Figure 2.29:

(a) Node-link based: no node or edge duplication, edges connect nodes placed along
time;

(b) Arc-Diagram based: nodes have fixed vertical positions, and connections are
shown as arcs or lines between horizontal lines;

(c) Edge splatting: node duplication;

(d) Flow Charts: node order change in the topological dimension;

(e) Heat-maps: show node attributes per time step;

(f) Polar layout: Use a polar layout to indicate time.

Node-link based Node-link based techniques are basically node-link diagrams but
nodes are laid out according to time (Figure 2.29(a)). There is no node or edge duplication.
For example, Falkowski, Bartelheimer, and Spiliopoulou (2006) first calculate a layout
for the entire super graph, and then show time along a vertical axis, while keeping the
y-coordinates of nodes (Figure 2.30(a)). A node’s position along the time axis indicates
the time point at which it joined the network. Communities in the graph are calculated in
advance and their coloring in the timeline view reveals the evolution of each community.
GraphDice (Bezerianos, Chevalier, et al., 2010) shows nodes located in a scatterplot where
one axis shows time (Figure 2.30(c)). Since every node appears only once, relations
between different nodes can clutter the visualization and are hard to follow. Semantic
Substrates (Shneiderman & Aris, 2006) solves the problem of visual clutter by showing
links only on users’ demand, as they hover a particular node (Figure 2.30(b)).

Arc-Diagram based Arc-Diagram based timelines solve the clutter problem by as-
signing each node a unique position on the vertical dimension (given that time is rep-
resented on the horizontal screen dimension). Connections are represented as arcs or
lines between these horizontal layers (Figure 2.29(a)). Greilich, Burch, and Diehl (2009)
represent connectivity between nodes in a tree and use nodes’ positions in the tree as
order (Figure 2.30(e)).

Yet, this ordering might not be optimal to reduce clutter in the diagram. van den
Elzen, Holten, Blaas, and van Wijk (2013) propose several ordering mechanisms on
Massive Sequence Views including one that minimizes lengths of arcs in the diagram
(Figure 2.30(d)). Many timeline visualizations use discrete time steps and show multiple
connections at the same time step, massive sequence views show only one connection
per step on the time axis. Further orderings by van den Elzen et al. therefore include
mechanisms to minimize block overlap, order nodes by degree measures, and according
to when nodes are connected for the first time. Eventually, ordering techniques can be
combined in order to produce specific pre-attentive visual patterns in the chart.

50



2.6. Visualizations for Dynamic Networks

Parallel Edge Splatting Parallel Edge Splatting (Burch et al., 2011) also uses fixed
positions on the topology axis, while showing time steps on the time axis (Figure 2.29(c)).
Edge over plotting is avoided by introducing gaps between time steps and showing edges
between nodes in adjacent time steps, looking similar to a parallel coordinates plot (Figure
7.3(b)).

Flow Charts Other approaches abstract even further by removing edges and instead
letting nodes change their position on the topology axis over time (Figure 2.29(d)). Node
positions are re-calculated for every time step, similar to calculating a new layout for
every time step in an animated sequence (Section 2.6.2). Reda, Tantipathananandh,
Johnson, Leigh, and Berger-Wolf (2011) show node groups (defined by attribute value)
as horizontal layers with fixed positions, while individual nodes are shown as lines
and switch between these groups (Figure 2.30(g)). Sallaberry, Muelder, and Ma (2013)
visualize only nodes as lines and find an ordering for every time step (Figure 2.30(h)).
Given a “good” ordering, these flow charts can show the evolution of clusters.

Heat maps Heat maps do not show any connections either, but summarize node
attributes over time, i.e. topological information is completely lost (Figure 2.29(e)). For
example, in NetVisia (Gove et al., 2011) rows indicate nodes, columns indicate time
points and cells encode specific network topology metrics for nodes (Figure 2.30(j)).
Similar to matrices, rows in the heatmap can be ordered according to value similarity.
Heatmaps in NetVisia are coupled with an adjacency matrix that shows an aggregated
picture of the network structure for a certain, user defined, time period.

Polar layout A common problem in finding a linear node ordering for timeline views
is that the connected but distant nodes produce long arcs in the diagram. Polar representa-
tions avoid long arcs by showing each time as concentric circles (Figure 2.29(f)). van den
Elzen et al. represent Massive Sequence Views to such a polar representation and further
improve their ordering techniques (Figure 2.30(1)). Polar representations can significantly
reduce visual clutter since any arc is at maximum as long as half the circumference of a
“time ring”. van den Elzen et al. use the rays representing nodes to encode node attributes.
Burch and Diehl (2008) show a radial ego network at the end of the each node beam,
illustrated in Figure 2.30(k). Burch et al. also describe a polar representation for parallel
edge splatting.

Timeline visualizations benefit from the clear mapping of time so space and they can
effectively visualize changes in temporal clusters. On the downside, precise topological
information is lost due to the linear ordering of nodes that is required, since only one
spatial dimension remains to show them. Parallel edge platting and the designs by Reda
etal. (2011) as well as Sallaberry et al. (2013) can suffer from crossing lines that result
from nodes changing distant communities or edges between distant nodes. Cui et al.
(2014) partially overcome this problem by creating a pixelbased flow map, rather than
visualizing individual nodes and edges (Figure 7.3(c)).
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Figure 2.30.: Examples of timeline visualizations for dynamic networks. Time runs from
left to right, topology is abstracted in the remaining spatial dimension. (a) Falkowski et al.,
2006, (b) Semantic Substrates, (Shneiderman & Aris, 2006), (c) GraphDice, Bezerianos,
Chevalier, et al., 2010, (d) Massive Sequence views, van den Elzen et al., 2013, (e)
TimeArcTrees, Greilich et al., 2009, (f) Parallel edge splatting, (Burch et al., 2011),
(g) Reda et al., 2011, (h) Sallaberry et al., 2013, (i) GraphFlow, Cui et al., 2014, (j)
NetVisia, (Gove et al., 2011), (k) TimeRadarTrees, Burch & Diehl, 2008, (1) Polar view of
Massive Sequence Views, (van den Elzen et al., 2013).
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(a) (b)

Figure 2.31.: Dynamic ego networks: (a) central node expanded to timeline (Shi, Wang,
& Wen, 2011), (b) ego networks placed side-by-side (Farrugia, Hurley, & Quigley, 2011),

2.6.6. Dynamic Ego Networks

Dynamic ego networks capture changes to the neighborhood of a single node, called
the ego. This reduction of the displayed information allows for some more freedom
in arranging visual elements on the screen and encoding information about time and
attributes.

Shi et al. (2011) use a timeline to represent the activity of the ego, while placing related
nodes around the timeline. Whenever a node connects with the focus node, a link is
drawn between the neighbor and the position on the timeline that corresponds to the
time of connection. Edges between neighbors are shown regardless of the time point
(Figure 2.31(a)). Farrugia et al. (2011) lay out the ego’s neighborhood in a radial manner,
while neighbors are placed on concentric circles, whose radius increase with time point
of connection. This concise representation allows to visualize multiple ego networks at
the same time (Figure 2.31(b)) and compare the individual connection behaviour.

While dynamic ego networks work well to observe connectivity changes in the neigh-
borhood of an individual node, it does not allow to visualize higher-level graph structures
such as clusters or paths.

2.6.7. Space Time Cube Representations

Space time cubes have been used in many domains to visualize temporal data that intrin-
sically has to be shown in 2D, such as geographical data (Carpendale, Cowperthwaite,
Tigges, Fall, & Fracchia, 1999; Kraak, 2003) or videos (Mackay & Beaudouin-Lafon,
1998; Fels, Lee, & Mase, 2000; Daniel & Chen, 2003). While two dimensions represent
the spatial data, the third spatial dimension conveys time. Since network structure can be
mapped to a 2D layout, approaches have been made to extrude node-link diagrams into
3-dimensional space. Dwyer (2004) defines this type of 3D visualisation as 2.5D,
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(b) ©)

Figure 2.32.: Examples of space-time cube visualizations for dynamic networks. (a)
Stacked node-link diagram with same layout for all time steps (Brandes & Corman, 2003),
(b) stacked node-link diagram, with different layout per time steps, bending nodes to
“worms” (Ahmed et al., 2005), (c) layers in GraphAEL (Erten et al., 2003)
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Figure 2.33.: Views on the 3D map of different pathways in Wilmascope (Brandes, Dwyer,
& Schreiber, 2004). (a) Orthogonal projections, (b) perspective projections with cutting
plane and detail view of the pathway in the cutting plane.

>

Nodes become columns (Brandes and Corman (2003), Figure 2.32(a)) or “worms’
(Dwyer and Eades (2002), Figure 2.32(b)), while edges are shown as bridges between the
extruded nodes. Worms are bent because node positions change between different layouts
over time (see Section 2.7). Bending can show if two or more nodes are tightly connected,
without showing edges explicitly. However, as nodes can be “arbitrary” curves in 3D
space, tangled in many ways, the visualization can quickly get cluttered.

3D visualizations suffer from the common drawbacks of 2D screens, such as perspective
distortion and scaling, reduced depth perception and visual occlusion. Space time cubes
usually allow for free rotation to overcome the problem of occlusion. Furthermore,
cutting planes help to highlight individual time steps (Brandes & Corman, 2003; Dwyer
& Eades, 2002). In visually comparing biological pathways, stacked to form a space time
cube, (Brandes et al., 2004) overcome some of the drawbacks of 3D visualizations by
providing two fixed views; one that shows an aggregated view of pathways and another
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(b)

Figure 2.34.: (a) 3D view and (b) transitions between views in the system by Federico,
Aigner, Miksch, Windhager, and Zenk (2011 ).

view showing the space time cube “from the side” (Figure 2.33). The small window in
Figure 2.33(b) shows the currently selected pathway in its 2D layout. GraphAEL (Erten
et al., 2003) also combines several views on the dynamic network; besides temporal
multiples, it provides animated sequences, difference graphs and a 3D view similar to
Dwyer and Eades (2002) that shows edges connecting nodes in different time steps.

Similarly, Federico et al. (2011) propose a system that integrates views of multiple
types: 2.5D view (space time cube, Figure 2.34(a)), juxtaposition (temporal multiples),
superimposition (aggregation), and animated sequences. Animated transitions help users
understand transitions between views (Figure 2.34(b)). Federico et al. implemented
interaction support to show node fraces (the positions of a node though time).

While static 2D network visualization is already challenging due to node overlap and
link crossing, adding a third dimension usually increases the visual complexity. Yet,
while they may be hard to read and less useful for a precise analysis, they have a great
potential to explain a data set or visualization.

2.7. Dynamic Graph Layout

Most of the techniques in the last section require some sort of graph layout. Layouts for
static graphs have been summarized in Section 2.4.1.
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While aggregated visualizations of dynamic networks require only a single layout for
the graph, animated sequences or temporal multiples can show a different layout for
each time step (local layout). Local layouts can optimize the layout for each time step
individually, improving readability of the topology. However, local layouts can change
significantly between two time steps, depending on the number of nodes and edges being
added or removed with respect to the previous layout. The problem of dynamic graph
drawing is to find a local layout for each time step that minimizes changes in node
positions, while allowing for a good layout at every time step. This problem is known
as the Mental map preservation problem (Eades, Lai, Misue, & Sugiyama, 1991; Misue,
Eades, Lai, & Sugiyama, 1995). In order to minimize visual changes between time
steps, layout algorithms use information about node positions across time steps. Such
algorithms use either previous time steps only (online), or previous and future time steps
(offline). Conceptually, the mental map preservation problem exists as well for finding an
optimal node ordering for matrices (Yi et al., 2010; Brandes & Nick, 2011) or vertical
lines (Reda et al., 2011; Burch et al., 2011). Yet, to the best of our knowledge, no work
has been done in this direction.

2.7.1. Mental Map Preservation

The mental map is described as the users’ internal view of a visualization or network.
It relates visual elements and patterns to their meaning and is required to understand
the visualization, to remember it, and to use it for reasoning to solve tasks. Changes to
the visualization, caused by interaction or system updates, require the user to update his
mental map.

In order to convey changes across time steps and to help users updating their mental
map, animated transitions have been proven useful (Heer & Robertson, 2007; Robertson,
Fernandez, Fisher, Lee, & Stasko, 2008) (cf. Section 2.6.2). However, in the worst case,
the visualization changes so much that users can not follow the animations and may lose
their mental map. Loosing the mental map means not being able to relate the current
(state of the) visualization, to the knowledge the user got from it previously. The user
must read and understand the visualization again, while relating it to his new mental
map. Independent from using animation or not, a stable layout which minimizes changes
between time steps, is supposed to support users in maintaining their mental map, when
navigating through time steps and working with the visualization.

Similar to aesthetic graph drawing criteria for static graphs, criteria for dynamic graph
layouts exist. Misue et al. (1995) suggest (i) to preserve horizontal and vertical node
ordering in succeeding layouts (orthogonality), to (ii) keep relative distances between
neighboring nodes (proximity), and (iii) to preserve the dual graph, that is to avoid crossing
lines that did not cross in previous layouts (fopology). Based on these criteria, measures
to quantify the mental distance between two layouts have been described (Bridgeman &
Tamassia, 1998; Branke, 2001; Diehl & Gorg, 2002).
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Different studies investigated the effect of mental map preservation techniques on
users’ task performance, mainly while using animated sequences and/or temporal mul-
tiples. None of these studies found conclusive statistical evidence about which degree
of stabilization is the best. Purchase, Hoggan, and Gorg (2007) as well as Archambault,
Purchase, and Pinaud (2011a) could not find any significant difference between three
degrees of stabilization (low, medium, and high), although, depending on the task, either
medium or high stabilization caused fewer errors. Purchase et al. suggests that mental
map preservation is more important to track nodes, but is less required for tasks about
edges. In a follow-up study, Purchase and Samra (2008) showed evidence that either
high or low stabilization caused users to make less errors than when using a medium
stabilization, with low stabilization causing significantly less errors than a high stabiliza-
tion. Study participants reported that stable layouts support tracking individual nodes,
and liked the fact that clusters were clearly visible and that low-degree nodes were shown
on the margin of the layout. At the same time, they found stable layouts more cluttered
and less clear. In contrast, users liked the more clear individual layouts and reported that
it was fun to watch fluid animated node movements in the low stabilization conditions?.
Purchase and Samra suggest that, rather than combining the advantages of high and low
mental map preservation techniques, a medium stabilization would combine the worst of
both extremes. Depending on the task, the one or the other should be preferred.

While the results are not so clear for the efficiency of mental map preservations,
Archambault and Purchase (2012) showed that a stable layout improves memorizablity in
dynamic graph layouts, and report on two features that are important for memorability.
Memorizing static features such as prominent network motifs (cliques, users, etc) is sup-
ported by stable layouts. In contrast, dynamic features such as particular node movements
or the order of changes, are supported by unstable layouts. Further evidence in favor of
mental map preservation was reported in another study by Archambault and Purchase
(2013). Users have been asked to find nodes in one time slice and to re-find them in
another time slice, without being able to going back to the first time slice. The results
showed a significant decrease in time and error rate for mental map preservation (i.e.
stable layouts). These results could be seen as supportive for choosing a stable or locally
optimal layout.

Yet, all these studies have only used a single metric for mental distance (node position
preservation (Diehl & Gorg, 2002)) but different layout and stabilization techniques,
which may account for variations in results. For example, Purchase and Samra (2008),
Archambault et al. (2011a), as well as Archambault and Purchase (2013) used the offline
algorithm detailed in Erten et al. (2003), while Purchase et al. (2007) used an iterative
online algorithm with differing tolerance in node movement. The remainder of this
section discusses the most important techniques and their problems for creating layouts

3The fact that animations are engaging may account for better subjective results, but not as indicative of for
better objective results.
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for dynamic networks. Further techniques and references are summarized by Brandes
and Mader (2012), Brandes, Freeman, and Wagner (2013), and Frishman and Tal (2007).

2.7.2. Online Algorithms

Online dynamic graph drawing algorithms create a layout for time step #; based on the
layouts of #;_, whereby x can vary between 1 and the number of time steps (S. C. North,
1996; Huang, Eades, & Wang, 1998; Moody et al., 2005). In the most simple case, the
layout from the previous time step is incrementally adjusted while taking the newly added
nodes and edges into account. In order to minimize changes, new nodes are placed at the
barycenters of their neighbors, i.e. minimizing distances to all the neighbors. For directed
networks, Moody (2001) suggest to update node positions so that nodes move towards
the barycenter of their successors. However, this could cause unnecessary movement.

Online algorithms are simple to implement by reusing existing algorithms and they
do not require much computation. They are used in online scenarios (see Section 2.3.1)
where the graph needs to be updated, such as when monitoring a network or when the
user is allowed to manipulate the network’s topology. However, the problem with this
approach is that online algorithms can run into local optima and abrupt changes are
necessary to keep the layout readable and ready for further changes.

2.7.3. Offline Dynamic Graph Algorithms

Given that all temporal information is present prior to a visual analysis, an offline
algorithm can use information from all the time steps. According to Brandes et al. (2013),
there are three approaches to offline dynamic graph drawing algorithms: aggregation,
anchoring, and linking.

Aggregating is based on a single supergraph of the network, which is used to calculate
a single global layout for all nodes that are part of the network, over time. Each node has
a unique position that does not change between time steps (Diehl et al., 2001; Brandes
& Corman, 2003; Dwyer & Eades, 2002). Such static layouts can be sufficient if the
network grows, but lead to unusual results in cases where nodes get removed and the
network changes a lot during time. (Purchase & Samra, 2008).

Anchoring uses node positions in past and future time steps, or the global layout,
as reference to minimize changes between local layouts. Adjustments for a time step
can be calculated (a) independent for each time step, taking only the difference to the
global layout into account, (b) predecessor dependent, taking into account the previous
and the global layout, (c) context dependent taking into account the previous, the global
layout and the successor layout into account, and finally (d) simultaneous adjustment
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which iteratively optimizes time steps. Simultaneous optimization is technically similar
to linking techniques.

Linking is based on a supergraph that contains a copy of each node for every time step
and introduces (invisible) inter time step edges between instances of the same node in
adjacent time steps (Erten et al., 2003; Peterson, 2011). Inter time step edges are treated
in almost the same manner as actual edges in a force-directed layout algorithm; they
prevent nodes from moving too far. Linking does not require a global layout, but nodes
can drift over time, which, depending on the case, can yield more optimal flexible layouts,
but likely introduces more movement in the graph.

Comparing these three types of algorithms in a benchmark test, Brandes and Mader
(2012) found linking to produce layouts with less overall differences between time steps.
Since linking is performance intensive (each node has to be compared against itself, in all
times) Brandes and Mader suggest anchoring as alternative. Results from studies on the
mental map are not easy to interpret since they did not test for different layout algorithms.
Quantifying the efficiency of layout algorithms and mental map preservation techniques
is hard, given that difference metrics do not necessarily reflect user performance, but
moreover, that users’ performance depends on a multitude of (independent) factors: the
size of graphs, their characteristics, the amount of changes between time steps, the tasks
users perform and how the graph is eventually visualized.

Existing layout algorithms are useful only for visualizations that are based on node-link
diagrams, but Section 2.6 shows that there are many visualization techniques for dynamic
networks. Perhaps even more important than in static graph drawing, visualization
of dynamic networks requires creative and purposeful visualization techniques, going
beyond the calculation of a graph layout. Once a layout algorithm is chosen, the next
question is how to present the data, using techniques such as those presented in Section
2.6. Yet, the choice of the visualization technique may have an influence on the layout
algorithm to choose. The next section reports on controlled user studies that compare
some of the visualization techniques reported in Section 2.6.

2.8. Comparative Studies

Few studies have been conducted that compare different ways of visualizing dynamic
networks. Most of them compared animated sequences and temporal multiples (“small
multiples” in the studies). The results suggest that temporal multiples are significantly
faster than animated sequences on a number of tasks, but do not significantly decrease
error rate (Farrugia & Quigley, 2011; Archambault et al., 2011a; Boyandin et al., 2012).

Farrugia and Quigley (2011) found temporal multiples to be faster and, in most cases, to
be more accurate than animated sequences. However, several results were not significant.
Asked for their preference, participants were much more positive about temporal multiples
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than about animated sequences. As participants commented, animations were too slow
for solving the time-critical tasks. They liked that temporal multiples allowed for quick
access and the possibility to verify results. However, the temporal multiples conditions
contained only four images (time steps). Farrugia and Quigley conclude that animated
sequences may be the best choice for large networks, because they can use the entire
screen and are independent from the number of time steps. They remain positive about
animated sequences in general, but suggest better interaction and navigation methods to
overcome the shortcomings of animated sequences. They argue that graph movies, such
as created with SONIA (Moody et al., 2005) (which have been used in the experiment)
suffer from the inability to “jump” to a particular time point, as well as the ability to
quickly preview.

Archambault et al. (2011a) also compared temporal multiples to animated sequences
and, in accordance with Farrugia and Quigley, found temporal multiples to be faster
than animated sequences, for all five tasks. There was no significant difference across
error rate, except for tasks related to the appearance of nodes and edges; for these tasks,
animated sequences significantly reduced error rate. Archambault et al. suggest to use
temporal multiples for topology-based tasks (cf. Lee et al., 2006), and animated sequences
for node and edge appearance and disappearance as well as in cases where accuracy is
generally more important than task-completion time. However, similar to Farrugia and
Quigley, data sets were rather small and consisted of 9 time steps with at most 60 nodes.

A third study, conducted by Boyandin et al. (2012), compared temporal multiples and
animated sequences in an open-ended exploratory study on migration flows between
countries. Boyandin et al. found that animated sequences helped observing local geo-
graphical changes and changes between subsequent years, while temporal multiples were
good for long term observations. The authors suggest an integration of both techniques.
Conditions in this study included far more nodes (200) and time steps (35) than the
studies by Farrugia and Quigley (2011) and Archambault et al. (2011a). In the animation
condition, users appreciated that the entire screen was available to show the visualization,
while they found the temporal multiples too small.

Some contrary results to the above mentioned studies come from Archambault and
Purchase (2013). Their study showed animated sequences to be generally faster and yield
less errors than temporal multiples, but without statistical significance. The conditions
included 6 time steps and up to 72 nodes.

Zaman, Kalra, and Stuerzlinger (2011) evaluated animations, side-by-side views (tem-
poral multiples) and difference views for the comparison of two layered diagrams (directed
acyclic graphs). Difference views showed both diagrams superimposed, highlighting
nodes and edges that were in only one diagram. Zaman et al. found difference views to
perform better than animations. Animations were also better than side-by-side views.
One study condition combined difference views with animation, which resulted in better
performance than animation or difference view individually.
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(a) (b)

Figure 2.35.: Experiment conditions in Robertson et al. (2008): (a) traces superimposed,
(b) small multiples (one per country).

Beyond the domain of networks, studies have compared temporal multiples, animated
sequences and aggregated images for other data types. For example, Robertson et al.
(2008) investigated the effectiveness of animated sequences for trend visualization in
scatterplots. Scatterplots showed statistics for country statistics evolving over time, such
as in Gapminder (Rossling, 2007). Robertson et al. compare animations to a static image
with traces (Figure 2.35(a)) and to temporal multiples (Figure 2.35(b)). Each of the
74 temporal multiples shown in a scatterplot of a single country plus a trace for the
countries’ movement. The results of the controlled user study showed that animations
performed significantly less accurately if users had no control over the animation pace
and exact position in the entire movie (10 second duration for 25 years). Being able to
control the animation raised task completion time over that of the other two techniques.
Although temporal multiples performed better, especially for the condition with a larger
data set, animation was the more exciting and encouraging to participants*. A more ample
discussion of studies outside the scope of dynamic networks is found in Section 7.4.

Except for Farrugia and Quigley (2011), animations were generally rated higher in
users’ preference, although animations did not perform better in error rate and/or task
completion time. According to Boyandin et al., animations were more appealing to users.

However, if some of the studies yield congruent conclusions for some conditions,
but are contradictory for other conditions, each study is limited and in fact lists several
exceptions for particular conditions. There are simply too many parameters that vary
between studies. Data varied in terms of node count, and time steps, but also in edge
attributes. For example Boyandin et al. (2012) included edge weight, while the others
had no additional attributes encoded. Furthermore, data varies in density and amount
of change, across studies. Tasks are generally hard to compare, especially since there
is no common repository or taxonomy for tasks about dynamic networks. Each study
used a proper implementation of the compared techniques: Boyandin et al. (2012) used

4 “Without control,[the participants] had to find their target very rapidly: ‘It’s hard to check all the flying
balls!” However, participants in all groups did find flying balls to be exciting.” (Robertson et al., 2008,
p.7)

61



2. State of the Art

difference highlighting across all conditions, interactivity in the animation condition also
varied. Several authors ask for improvement of animations (Farrugia & Quigley, 2011)
and the integration of different techniques to balance individual drawbacks (Zaman et al.,
2011; Boyandin et al., 2012). Finally, layouts were also different across studies, and as
shown in the previous section, remain an unknown parameter to task performance.

In general, studies seem to show that for small networks (up to around 30 nodes) and
with a few time steps (up to 4 time steps), small multiples seem to perform better overall.
However, most authors suggest that animations are much better, although not perfect, for
larger networks and longer time periods.

More studies are needed, investigating, for example, optimal animation speed, the
effect of interaction in animated sequences and temporal multiples, data density and
large networks, amount of change, etc. Furthermore, there are no studies comparing
visualizations from the following categories discussed in Section 2.6: nestings, temporal
aggregation, those involving adjacency matrices, and the different types of timelines
(see Section 2.6). Yet, for the mentioned reasons (differences in data, implementation,
task, etc.), it is unlikely that qualitative evaluations of individual techniques yield fur-
ther insights, other than for particular cases. Moreover, many techniques may not be
comparable at all, because they simply do not show the same information, but are rather
complementary to one another.

2.9. Summary

Visualizing dynamic networks combines many different aspects, such as the notion and
structure of time, structural changes inside the graph or on its attributes, visualization
techniques that show topology, attributes and time, finding the right visual encodings that
allow users to understand information in an unambiguous way, and provide appropriate
interaction and navigation techniques. While much has been learned and designed in
recent years, many open problems remain, such as:

e How to visualize large and dense dynamic graphs with thousands of nodes and
hundreds of time steps?

e How to visualize changing edge weights?

o How to navigate efficiently between hundreds of time steps?

o How to track changes on higher-level graph structures (clusters, paths, etc.) over
time?

e How to achieve a tradeoff for the mental map problem?

e Can performance of animated sequences be improved by interaction and better
visual feedback?

e How can the drawbacks of the different techniques be balanced? and finally:

e Which tasks do users perform while exploring dynamic networks?
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A potential design space for dynamic network visualizations is huge but less struc-
tured so far. A clear terminology to describe and discuss visualizations is missing, too.
Individual visualizations differ in their implementation (interactive vs. non-interactive,
color-coded vs. monochrome, attribute encoding vs. simple topology) and are hard to
compare. Studies have evaluated mostly temporal multiples against animated sequences,
but as data sets, tasks and other experiment conditions differed, the narrow evidence
that the studies yield is hardly generalizable. While many visualizations rely on a single
presentation (cf. Table 2.2), study authors suggest integration and improvement of tech-
niques. In fact, a more sound exploration process would be too much constrained by a
single technique.

This thesis adresses most of the above mentioned problems in an integrative manner.
That is, ultimate solutions to an individual problem are hard to achieve and many solutions
to these problems depend on the context they are employed in. For example, visualizing
dense dynamic graphs require multiple views and interaction techniques, as well as
efficient temporal navigation. On the other side, the individual advantages and drawbacks
of certain visualization techniques heavily depend on the data characteristics.

Yet, in order to better understand for what we visualize dynamic networks, i.e. what
these visualizations should support, the next chapter starts by laying out a taxonomy of
tasks that users perform while exploring dynamic networks.
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GraphAEL Erten et al., 2003 X | X X

Ploceus Liu et al., 2011 X

MatrixFlow Perer & Sun, 2012 X

- Boyandin et al., 2012 X

Maray Friedrich & Eades, 2001 X

Visone Brandes & Wagner, 2003 X

- J.-W. Ahn et al., 2011 X

SoNIA Moody et al., 2005; Bender-deMoll & McFar- X

land, 2005; McFarland & Bender-deMoll, n.d.

DiffAni Rufiange & McGuffin, 2013 X

Information Visualization | Chi et al., 1998 X

Spreadsheets

— Brandes et al., 2004 X X

— Erten et al., 2004 X

- Andrews et al., 2009 X

HoneyComb van Ham et al., 2009 X

Netvisia Gove et al., 2011 X X

- Hascoét & Dragicevic, 2012 X

- Hadlak et al., 2013 X

TimeMatrix Yietal., 2010 X

Gestalt Lines Brandes & Nick, 2011 X

- Stein et al., 2010 X

- Farrugia et al., 2011 X

1.5D Shi et al., 2011 X | X

- Falkowski et al., 2006 X

- Sallaberry et al., 2013 X

- Reda et al., 2011 X

Massive Parallel Sequence | van den Elzen et al., 2013 X

Views

GraphFlow Cui et al., 2014 X

Paralel Edge Splatting Burch et al., 2011 X

Semantic Substrates Shneiderman & Aris, 2006 X

GraphDice Bezerianos, Chevalier, et al., 2010 X

- Diehl et al., 2001 X

- Dwyer & Eades, 2002 X

- Brandes & Corman, 2003 X | X

2.5D Brandes et al., 2004 X X | x

- Gaertler & Wagner, 2006 X

- Federico et al., 2011 X X X

Table 2.2.: Representative list of visualizations of dynamic networks and the techniques
they use.
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ASKS are important in creating and researching novel visualizations, because they

describe which problems a visualization should help to solve. When designing a
visualization, a designer should have a specific task in mind (Bertin, 1973); tasks are
crucial for validation at various stages, as well as for a final evaluation (cf. Munzner, 2009
as well as Lam et al., 2012). For example Lam et al. (2012) describe the design process
for visualizations in five stages; 1) Pre-design, 2) design, 3) prototyping, 4) deployment,
and 5) redesign. Mistakes in each of these stages can impact the subsequent stages.

A list of tasks can be obtained by various means. For example, conducting inter-
views, using questionnaires, or observing practitioners’ working process (Lam et al.,
2012; Carpendale, 2008). These methods are time intensive and require practitioners’
availability. Moreover, an unstructured list of tasks should then be structured in order
to allow proper conclusions for design and evaluation. Structured fask taxonomies are
useful because they provide:

e task categories and grouping principles,

o the ability to evaluate existing visualizations, in checking which tasks they allow
users to perform,

e a base for the definition of design guidelines and implications for interfaces and
visualizations, as well as

e representative tasks for an evaluation.
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Task taxonomies have been created for visualization tasks in general (e.g., Shneiderman,
1996 as well as Amar et al., 2005) and (static) networks (Lee et al., 2006). Recently
J. Ahn et al. (2012) published a Technical Report describing an extensive taxonomy of
tasks for dynamic networks. However, a simple description of the questions and tasks is
missing. The questions we address in this chapter are:

> How to describe and categorize tasks for dynamic networks?
> Which implications can we draw from the tasks for the visualization design?

This chapter adapts and extends previous taxonomies on general tasks in information
visualization (Amar et al., 2005), time and geography (Peuquet, 1994; MacEachren, 1995;
N. Andrienko & Andrienko, 2004), as well as static networks (Amar et al., 2005). For the
exploration of dynamic networks, we define three categories of tasks, corresponding to
the three dimensions Network elements (Where?), Time (When?), and Behaviors (What?),
then describe compound and eventually higher level tasks. While our taxonomy allows
us to discuss the complexity and difficulty of tasks, tasks can be easy or hard, depending
on the visualization. We conclude this chapter with a discussion of the relation between
the tasks in our taxonomy and visual tasks, as well as list how our taxonomy can support
design and evaluation of visualizations.

Our taxonomy informs the designs and evaluation of the visualizations presented in
this dissertation.

3.1. Tasks for Information Visualization

This section gives an overview of the notion and purpose of tasks in information visual-
ization, and lists the taxonomies that are important to understand the construction of our
own.

The literature describes many different evaluation methods, ranging from very informal
qualitative interviews, to long-term studies, and quantitative controlled user studies
(cf. Plaisant, 2004; C. North, 2006; Carpendale, 2008 as well as Lam et al., 2012).
Quantitative approaches, such as used in Human Computer Interaction (HCI) to assess
task completion time and error rate, can assess a visualization’s capability to support
specific tasks, or to compare visualizations (Plaisant, 2004). However, quantification
hardly captures a deeper understanding of the information and reporting of actual insight.
Reporting on the users’ insight is important to evaluate the understanding of complex
and actual relevant information (C. North, 2006). Methods include scenarios (Lam et al.,
2012), working with domain experts, posing open ended tasks, letting users explore the
data using the visualizations, and preferably running long term observations.
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3.1. Tasks for Information Visualization

Low-level Tasks | Higher-level Tasks
Description Analytic primitives (Amar et al., 2005) Uncaptured by low and compound tasks
(Amar et al., 2005; Lee et al., 2006)
Scope Restricted set of data elements and/or at- | Multiple elements or attributes
tributes
Answers Precise (numbers, yes/no) Complex answers, discussions
Domain not required required
knowledge
Methodology | Simple or given No methodology, user dependent
Time Fast Can take days and months (Carpendale,
2008)

Table 3.1.: Contrasting low and higher-level tasks.

3.1.1. High and Low-level Tasks

Understanding of task complexity helps in assessing which tasks to pose in order to
get the right level of feedback in an evaluation; simpler and precise tasks allow for
better quantification, complex tasks allow ecological validity. In quantitative evaluation,
common measures for effectiveness are the time it takes a participant to perform a given
task (task completion time), and the number of errors he produces (error rate). While
task completion time is simple to assess and compare, time is measured equally, errors
are harder to interpret since they depend on the tasks and data; some tasks may have only
two possible answers, others require the user to choose from a scale or give free form
answers. In order to make errors comparable across tasks, errors must be quantifiable.

The literature distinguishes between low-level tasks and high-level tasks (Amar et al.,
2005; Lee et al., 2006; J. Ahn et al., 2012). Low-level tasks represent simple questions,
described as “analytic primitive” (Amar et al., 2005). For example, the task “Find
Adjacent Nodes |[...]” from Lee et al. (2006) is considered low-level. Examples for
higher-level tasks are “Are there car aspects that Toyota has concentrated on?” (Amar et
al., 2005) or about the comparison of two networks or changes in dynamic networks (Lee
et al., 2006).

Higher-level tasks require specific domain knowledge about the data, the domain. and
involve human judgement. Human judgement is perhaps the most prominent aspect for
differentiating between low-level and higher-level tasks; while low-level tasks describe a
clear methodology, higher-level tasks may not follow any particular methodology. Table
3.1 summarizes the notion of low and higher-level tasks. However, the transition between
both categories is not strict; tasks may be more low-level or more high-level.
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Amar et al.’s taxonomy lists ten low-level analytical tasks:

1. Retrieve Value: Find the value for an attribute, associated with an element (e.g.
How long is the movie Gone with the Wind?")

2. Filter: Find the elements whose attribute values satisfy certain filter criteria (e.g.
What comedies have won awards?)

3. Compute Derived Value: Calculate derived measures from a set of values (e.g.
How many manufacturers of cars are there?)

4. Find Extremum: Find elements with extreme attribute values (e.g. What is the
car with the highest MPG?)

5. Sort: Rank data elements according to some metric (e.g. Order the cars by weight.)

6. Determine Range: Find the range of an attribute within a given set of data elements
(e.g. What is the range of film lengths?)

7. Characterize Distribution: Describe the characteristics of a distribution of at-
tribute values (e.g. What is the age distribution of shoppers?)

8. Find Anomalies: Find outliers in a data set which do not correspond to the general
trend in the data (e.g. Are there exceptions to the relationship between horsepower
and acceleration?)

9. Cluster: Group elements into groups according to attribute value similarity (e.g.
Are there groups of cereals w/ similar fat/calories/sugar?)

10. Correlate: Define relations between the values of two attributes, across a set of
data elements (e.g. Is there a correlation between carbohydrates and fat?)

Between low-level and higher-level tasks, users often perform compound tasks. Com-
pound tasks can be divided into a series of primitives from the above list. For example,
first retrieve particular values and then sort, or compure derived values.

The next section describes low and compound tasks for (static) networks.

3.1.2. Tasks for Networks by Lee et al., 2006

Lee et al. (20006) classify tasks on static networks, but do not explicitly include tasks
for the exploration of dynamic networks. Exploration of dynamic networks is listed
as the single higher-level task "How has the graph changed over time?”. This task is
not a low-level task, since it involves multiple data elements, requires knowledge about
changing networks, does not imply a particular methodology, and the questions are rather
open (cf. Table 3.1).

In their taxonomy, Lee et al. define graph specific elements: nodes, links, paths, graphs,
connected components, clusters, and groups (set of nodes related by attribute).

1Example tasks in this list are taken from Amar et al. (2005).
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3.1. Tasks for Information Visualization

Lee et al. then define four groups of tasks:

1. Topology based tasks are performed on the network structure itself and involve
for example, “Find the set of nodes adjacent to a node?”? or “Given nodes, find a
set of nodes that are connected to all of them.”

2. Attribute based tasks are about attributes associated with graph elements, such
as “Find the nodes having a specific attribute value.” or “Which node is connected
by a link having the largest/smallest value?”

3. Browsing tasks are tasks related to following links and paths in the network:
“After they follow a path in the above task, they may want to see A’s other friends”

4. Overview tasks are related to the network in general (e.g. size) and the con-
tained clusters and connected components: “estimate the size of a network”, “find

particular patterns and outliers”

From J. Ahn et al.’s taxonomy we adapt the graph specific elements. However, the
taxonomy does not provide the means to describe change over time explicitly.

3.1.3. Temporal Tasks by MacEachren

MacEachren (1995) describes seven tasks related to time, and the existence of geographic
objects. We will reuse these tasks later in our own taxonomy:

o Existence of Entity: Does an entity exist at a given time? The answer to such a
question is usually yes or no or may be uncertain.

e Temporal location: When does an entity exist? The answer to such questions is a
particular instant (time point or interval).

o Time interval: How long is the time span from beginning to end of an entity? The
answer to these types of question is a set of instants or a period.

o Temporal Texture: How often does an entity occur? The answer is a number or
fraction that defines a frequency (e.g. five times per hour).

o Rate of change: How fast is an entity changing or how much difference is there?
Answers include absolute or relative values about change, as well as less quantifi-
able values such as very fast, faster than, etc.

e Sequence: In what order do entities appear? The answer is an ordering which can
include concurrency.

e Synchronization: Do entities occur together? Answers can include if two entities
co-occur, and how much (Allen, 1984).

2Example tasks in this list are taken from Lee et al. (2006)
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3.1.4. Task framework by Andrienko and Andrienko

N. Andrienko and Andrienko (2004) describe an extensive and detailed framework of
tasks for the analysis of spatial and temporal analysis. In their framework, a task is defined
by two parts, constraints, which define a set of known elements, and a farget, which
specifies the type of information that is wanted. Similar to Lee et al. and Bertin (1973),
the framework differentiates into elementary tasks, which involve individual elements
and their attributes, and synoptic (compound) tasks, which involve sets of objects. In
elementary tasks, the target can be an attribute value (characterisitc), a location or a
temporal value (reference). Targets on the synoptic level involve trends, distributions and
variations (behaviors).

The framework of N. Andrienko and Andrienko (2006) further introduces a formal
notion to describe all the possible relationships between constraints and target, listing
many detailed tasks. An adaptation to dynamic networks would yield a taxonomy that we
consider too complex and too hard to use, for our purposes. Nevertheless, the approach
we adapt is similar but less formal, as detailed in the following.

3.1.5. Tasks for Spatio Temporal Data by Peuquet

Peuquet (1994) proposes a much simpler—although less expressive—task framework for
spatio-temporal analysis. Her taxonomy describes tasks in terms of queries, according to
three representations, each one tailored to representing a particular aspect of the data:

e Where: Describes spatial locations (woodlands, rivers, cities, etc.) and relations
between them (administrative hierarchies, neighboring regions, etc.).

e What: Describes potentially movable objects (animals, storms, etc.) and their
attributes, embedded in a knowledge representation, such as a taxonomy and other
data models.

e When: Describes time points, sets of times and changes that happen to elements’
positions or attributes.

Based on these representations, a system can receive queries and return values. Queries
are created by defining known elements in fwo representations, and asking for the un-
known one in the remaining representation:

e What + When = Where: Describe the location where a specific element is present
at a given time.

o When + Where = What: Describe an element that is present at a certain location
at a given time.

e Where + What = When: Describe a time when a certain element is present at a
given location.
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If an analyst has to find the time point when a certain element is present at a given
location (Where + What = When), we can say that the information he is provided with, is
the location (Where) and the element (What), while he has to search in time (When). For
questions related to the What dimension (When + Where = What), the analyst must be
provided with an appropriate view on the particular time and region, and has to describe
the different elements (What).

In differentiating between known and unknown information, Peuquet’s framework is
similar to those by N. Andrienko and Andrienko and Bertin. Yet, we consider Peuquet’s
framework much simpler, and make it the basis for our taxonomy of dynamic network
tasks. Yet, a direct application is not completely straightforward.

3.2. Task Dimensions for Dynamic Networks

In the following, we explain how we adapt Peuquet’s approach to dynamic networks,
taking into account the other taxonomies mentioned earlier; MacEachren (1995); Amar et
al. (2005) and Lee et al. (2006). We first describe the units in each of the representations
(we will call representations dimensions) and then systematically describe queries. A
task is defined as consisting of two parts: a guery (made out of known and unknown
dimensions) and an action (i.e. query + action = task). While the query retrieves data,
the action describes additional actions performed on the values, corresponding to Amar et
al.’s tasks: retrieve, sort, characterize distribution, derive value, etc. For example, the task

How often is node n present in the network?

consists of a query that retrieves the instants the node is present, and an action that
counts the number of instants. Yet, in order to properly describe queries for dynamic
networks, we must re-define two of Peuquet’s initial representations.

Most importantly, networks do not have fixed spatial (screen) positions; rather, nodes
move in the abstract graphic space. Node positions are defined by the graph layout,
taking into account their connectivity. Nodes and links in the networks are similar to
Peuquet’s moving elements in the What representation. However, referring to moving
elements in space implies aspects such as: a) proximity and distance, b) local vs. global,
¢) locations, paths and areas, as well as d) characteristics of spatial units. Transposed
to a network, these concepts are in fact represented by the network’s topology. Asking
Where in networks, we ask about the graph elements and their attributes; nodes,
links, clusters, etc; Peuquet’s question about Where in space, becomes Where in the
network (topologically speaking).

Changes that happen to elements over time are captured by Peuquet’s When dimension.
In our taxonomy, asking What, we capture questions that ask for the behavior of
elements and their attributes.

71



3. Towards a Task Taxonomy for Dynamic Networks

Our three dimensions WHERE, WHAT and WHEN, defined in the following, result
from a direct extension of static networks (WHERE) into time (WHEN), while accounting
for the behavior of elements in static networks (WHAT). Our notion of behavior is similar
to that used by N. Andrienko and Andrienko (2006).

3.2.1. WHERE: Dimension of Network Elements

Our WHERE dimension describes the elements in a static network: graph elements and
attributes. Graph elements are adapted from Lee et al. (2006)’s taxonomy and include the
following graph primitives: nodes, edges, and an attribute associated with a particular
node or edge, e.g., the weight of an edge e or the type of a node n.

To be able to describe higher-level changes in the network, we define Compound graph
elements, which are made of multiple graph primitives:

dyads: a pair of two nodes,

triads: a set of three nodes,

paths: a set connections and nodes between two arbitrary nodes,
motifs: a specific topological configuration such as a cycle, star etc.,
clusters: group of densely connected nodes,

cliques: group of completely connected nodes,

groups: any set of nodes, not necessarily defined by topology or connectedness,
e subgraphs: any subset of nodes and edges, etc.

The list of graph elements and attributes can be extensive, and depends on the domain
that the network represents.

In our WHERE dimension, we include (domain) attributes of graph elements (e.g., edge
weight, a node’s group type) as well as measures about graph elements (e.g., degree,
centrality, age). Attributes and graph measures are part of a static graph and are/can be
defined in every time point. If a node or attribute values is not present in the network,
then it is defined just as “not present”.

3.2.2. WHEN: Dimension of Time

Our WHEN dimension captures temporal units and derived values. Units includes one
primitive, a single instant. Compound units consist of (ordered) sets of instants:

pair of adjacent instants,

pair of non-adjacent instants,
set of adjacent instants (period).
set of non-adjacent instants,

set of equidistant instants (recurrent or cyclic instants), etc.
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3.2. Task Dimensions for Dynamic Networks

Graph Individual Events Long-term changes
Element
Node appear / disappear get isolated, get integrated

connect to / disconnect from
enter, leave, change, or connect to a clus-
ter or group

Edge appear / disappear strengthen, weaken
connect two nodes
Attribute value increase, decrease, remain equal increase, decrease, remain equal, pulse,
converge, diverge, etc.
Cluster, appear, disappear, dissolve
Group, get denser, sparser
Connected merge with other cluster, split
Component grow, shrink

exchange nodes
attract, repel nodes

Path grow / shrink’
break

Graph grow, shrink,
become sparse, dense

Table 3.2.: Representative list of possible changes to primitive and compound graph
elements.

Using Amar et al.’s tasks (indicated in brackets), further values can be inferred from
these temporal units. These inferred values correspond to questions described by other
authors: Allen (1984); MacEachren (1995) and Moody et al. (2005):

how often (derive value),

how long (range between two instants),
in what order (sort),

before or after (sort),

during (correlate),

beginning,

ending, etc.

3.2.3. WHAT: Dimension of Behavior

Our WHAT dimension captures short- as well as long-term events that happen to elements
from the WHERE dimension (graph elements and their attributes) in the respective units
of the WHEN dimension. WHEN and WHERE are orthogonal dimensions; WHAT captures
WHERE X WHEN.

Low-level changes happen to primitives in a single or two adjacent instants, such as
appearance and disappearance of a node or changes to one of its attributes (increase
attribute a by value x). Low-level changes are responsible for higher-level changes,
which:
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3. Towards a Task Taxonomy for Dynamic Networks

e happen over a longer period of time,
e involve multiple graph elements, and/or
e events that happen on compound graph elements.

Table 3.2 lists low and higher-level changes that occur to graph elements over time, in
a sense extending Table 2.1 in Section 2.3.3.

Some topological measures (e.g. group size) are implicitly mentioned in the table as
growing and shrinking of a group. Changes to other measures (e.g. centrality) and domain
attributes (e.g. edge weight, node type, etc.) are summarized as attributes. Attribute
values are time-series with the general change increase, decrease, pulse, converge, diverge,
etc. Changes further have characteristics such as speed, or distribution (among elements
in the WHERE dimension).

3.3. 1-Dimensional Tasks

We now have all the definitions to describe tasks for dynamic networks: (i) a methodology
to create queries, (ii) definitions of units in each of the three dimensions WHERE, WHEN,
WHAT, and (iii) analytic actions from Amar et al.’s taxonomy.

In the following, we create I-dimensional tasks. These tasks involve two known
and one unknown dimension which contains the answer and which is to be explored.
We then refer to compound and higher-level tasks. Tasks in this section are created
by systematically combining units from the three dimensions described in the previous
section and have been complemented with tasks found in the literature about dynamic
networks.

3.3.1. Where? — Network Tasks

The following tasks are of the form WHEN + WHAT = WHERE, which translates into
“Which element in the network is affected by a given event at a given time?”

Are nodes ny and ny connected at time t?
How many nodes disappear in time t?

Which group is grows fastest?

Which nodes keep the exact same neighbors between times t; and t?
o Which two nodes are connected only once?
o Which cluster is the most unstable over time?

Which nodes remain in group g\ from time t; to t,.

Which parts of the graph remain just for one time step?

Which node increases its degree over time (Archambault et al., 201 1a)

Which set of three nodes appear together exactly once? (Archambault et al., 2011a)

Which two edges appear together exactly once? (Archambault et al., 2011a)
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o Which student was called the most (overall) during the 6 week term (Purchase &
Samra, 2008)

o Which of these nodes has the most edges: [yellow, green, red, purple] (Saffrey &
Purchase, 2008)

o Which of these groups of nodes has the most edges: [yellow, green, red, pur-
ple] (Saffrey & Purchase, 2008)

e Find a node that has only one connection on weeks 3, 4 and 5. (Farrugia & Quigley,

2011)

3.3.2. When? — Temporal Tasks

Tasks of the WHEN dimension are of the form WHERE + WHAT = WHEN, which
translates into “When does a particular event happen to an element?”.

When does node n disappear?
When are nodes n; and ny connected?
How long does it take until clusters ¢\ and c, are completely merged?

In what order do nodes n| until nyy appear?

In which time slice is the shortest path between these two nodes: [yellow,green]? (Saffrey

& Purchase, 2008)

o [n which time slice is the shortest path between these two groups of nodes: [yel-
low,green]? (Saffrey & Purchase, 2008)

o For how many weeks does the connection between Node 1 and Node 6 last? (Farrugia

& Quigley, 2011)

3.3.3. What? — Behaviour Tasks

Tasks of the WHAT dimension are of the form WHERE + WHEN = WHAT, which translates
into “What happens to a particular element at a given time?”.

How does the edge weight of edge e change over time?

How does the degree of node n evolve over time?

What happens to cluster c between times t| and t,?
Are nodes ny and ny connected at time t?
Which two edges appear together exactly once? (Archambault et al., 2011a)

How does the number of connections of Node I change in weeks 2, 3 and 4? (Farrugia
& Quigley, 2011)

Each time we pose a query, we restrict some dimensions, while returning a set of values
that are used as input into our action. Recalling the task:

How often is node n present in the network?,
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3. Towards a Task Taxonomy for Dynamic Networks

which is made of the query When is node n present (WHERE+WHAT=WHEN), the
query returns a set of arbitrary instants which serve as input to Amar et al.’s task: derive
value (counting time steps).

3.4. Compound Tasks

The above-mentioned 1-dimensional tasks can be used to describe compound tasks.
Compound tasks consist of several low-level tasks to be performed in sequence, i.e. the
answer to the first task, serves as input to the second one.

Examples of compound tasks are:

o Which of the groups that node n is part of has the longest lifespan?
o [n what order do the nodes in group g\ join it?
o How big is group g when node n leaves it?

The last task combines the tasks “When does n; leaves g7 and “Is n; part of g at time
t7”’, whereby ¢ is the answer to the first task.

3.5. Higher-level Tasks

Our framework allows us—to a certain extent—to discuss the complexity of a task. There
may be (at least) two aspects that make one task more complex than another:

e number of sub-tasks in compound tasks, and
e the cognitive effort to perform the action.

Many tasks related to dynamic network exploration are hard to describe with low-level
tasks. Here, we list tasks that we consider higher-level. Higher-level tasks still involve
our three dimensions and Amar et al.’s tasks but in some cases, only one dimension is
given, i.e. a single node, two time steps, etc.

Examples of higher-level tasks include:

o Find similar time steps.

e Describe the distribution of edge density in time and topology.
o What are trends in the network?

o Which are the important time points?

Which nodes behave ab-normally?

Describe the formation of clusters.

Describe the major changes between t; and t;.
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3.6. From Data Tasks to Visual Tasks

So far, the described tasks are all in data space, i.e. they refer to objects in the data (the
dynamic network). Those tasks are described independently from the actual visualization.
A task can be low-level in data space, e.g. Is node n present at time t? but can be quite
hard with certain visualizations. For example, consider an aggregated representation
of a dynamic network (Section 2.6): assessing when a node is present and when not
is impossible, if no additional visual clue is provided (e.g. color-coded time, labels,
interaction). Visualizations are designed to support particular tasks, and can render a
task that is difficult in data space easy in visual space. Answering whether the node 7 is
present in ¢ can be simple on a time line visualization (Section 2.6) if nodes are properly
laid out and labeled.

Turning data-tasks into visual tasks requires users to map between both. This translation
from network-oriented tasks into perception tasks and interactions is not straightforward:
it requires some degree of familiarity and experience with the visual representation. For
example, node-link diagrams represent topology, using points for nodes, lines for edges,
and rely on a layout algorithm to place the nodes on the plane. Graph attributes are
visualized using the visual attributes associated with the points and lines. A translation of
network tasks into perception tasks may require some learning, leading to some acquired
knowledge on the properties of the visual representation.

In particular, users familiar with network visualizations know that, in addition to reading
lines to understand the topology of a graph, connected nodes in a force-based layout are
closer-by than disconnected ones, with the exception of “bridge” nodes connecting two
distant groups and that can be detected with their long connecting lines. This is a property
enforced by most layout algorithms, although it is sometimes relaxed for small graphs
where lines are easy to read, allowing nodes to be evenly spaced. Otherwise, this property
is essential for larger graphs where lines should be drawn lightly to limit occlusion and
cannot be read easily. Therefore, topology tasks can be performed by either reading
the lines, if possible, or looking at the proximity of nodes. For larger graphs, densely
connected nodes become clouds where bridges can be noticed with their long outstanding
lines.

Most of the studies on graph readability have focused on relatively small graphs (; 50
nodes) where participants had to read individual lines or identify nodes to perform a tasks.
Yet higher-level network-tasks, which involve tracking groups of nodes and estimate the
type and quantity of change, require both proximity inspection and reading lines when
necessary and possible.
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3.7. Implications

We believe our taxonomy is useful, because it allows us to describe components of user
interfaces and systems in terms of which dimensions and combinations thereof they cover;
and thus, what low-level and compound tasks they support. The following high-level
implications for the design of dynamic network visualization systems can be drawn from
it.

When: Specific time steps must be easy to identify and reach, so that users can compare
and analyze them in detail. Features that can meet these requirements include overviews
of the network’s time steps, mechanisms for the quick selection and filtering of those
steps, mechanisms for temporal aggregation, and a flexible scheme to navigate from one
step to another.

Where: Graph elements with particular properties must be easy to identify in the
network’s topology, and to track over time steps. The layout and rendering of the network
should be parameterized carefully.

What: Understanding the nature of, and possibly quantifying, the changes that graph
elements undergo requires that the corresponding attributes be easy to identify. Those
should be emphasized.

Compound and Higher-level Tasks: Performing tasks in sequence can require
switching to a more appropriate representation of the network while maintaining the users
mental model of the data. It further implies interaction and navigation mechanisms.

Task Complexity: Although our taxonomy is yet in an initial state, we can sketch
and discuss complexity of tasks in data-space. Important factors on task complexity may
be the number of open dimensions, the number of given elements in each of the given
dimensions, and the number of sub-tasks in a compound task. Eventually, complexity of a
task also depends on the data itself, i.e. the number of elements that have to be searched;
retrieving similar time steps in a graph with five time steps is much easier than in one
with over a hundred.

Visual Tasks: Tasks that seem complex in data-space can be simple in visual-space.
Especially those tasks involving multiple units from our dimensions, e.g. groups, time
periods, etc., can be supported by pre-attentive mappings and well designed visualizations.
For example, showing the differences between two time steps explicitly makes comparison
tasks easier.

Evaluation: So far, the focus of the implications was on the design of visualizations,
but what can we learn from the taxonomy about evaluating visualizations? Low-level tasks
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Three dimensions of temporal tasks
Select
Entities

Figure 3.1.: Pipeline model in the task taxonomy for dynamic networks by J. Ahn et al.
(2012).
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and such that involve few elements are better suited to be used in controlled user studies,
since quantitive measurements are more likely to be comparable. Higher-level tasks,
which involve human judgement, may yield very different results across participants.
However, carefully choosing tasks and components of queries may allow for evaluation
of even more difficult tasks.

3.8. Comparison with the Taxonomy by Ahn et al. (2012)

While in the progress of publishing our taxonomy, J. Ahn et al. (2012) made a Technical
Report publicly available, which describes a taxonomy of tasks for the analysis of dynamic
networks. This section briefly compares their approach to ours.

Their taxonomy is based on three dimensions:

1. Network Entities, which fall into nodes, links, subgroups, or the entire network.

2. Network Properties such as attributes associated to nodes and edges, and which
capture both fopological attributes (e.g. node degree) and domain attributes.

3. Temporal Features, referring to the change in property values and captures:

o Temporal Features of individual events such as birth or death (appearance,
disappearance of network entities),

o Temporal Features of aggregated events—Shape of Change spanning multiple
time steps and describe growth, convergence, and stability,

o Temporal Features of aggregated events—Rate of Change also spanning
multiple time steps and describ speed and acceleration of change.

A task in their taxonomy is defined as a triple of the form Entity-Property-Temporal
Feature. For reasons of complexity, the corresponding design space described in the
report captures only two dimensions; Entities and Temporal Features. Tasks are described
with a pipeline model, illustrated in Figure 3.1. The pipeline consists of the three steps:
1) Select Entities, 2) select Properties, and 3) select Temporal Features necessary for
analysis. During analysis, users and analysts change tasks by adapting the stages of the
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3. Towards a Task Taxonomy for Dynamic Networks

pipeline, i.e. change the graph elements of interest, change temporal feature to observe.
Compound tasks are described as involving multiple tasks.

The basic building blocks—graph entities, attributes, temporal features—are similar
in J. Ahn et al.’s taxonomy and in ours, although not grouped the same way. Their
taxonomy is very detailed and lists many important aspects of temporal changes in
dynamic networks. However, similar to N. Andrienko and Andrienko’s taxonomy, we
consider J. Ahn et al.’s taxonomy very complex to inform the design of visualizations,
because of the many different concepts involved. With our taxonomy, we dso not aim for
completeness in terms of tasks. Instead, we are seeking for a simple way to describe the
main dimensions that an interface must allow to explore, and which complications arise
from those.

3.9. Conclusion and Limitations

As the number of possible tasks is virtually infinite (Lee et al., 2006), we do not claim that
our taxonomy is complete. Constructing task taxonomies is a complex process and ideally
involves analyzing examples from the literature and talking to experts. Our taxonomy
is based on the structural analysis of data. It presents an initial step towards a more
comprehensive understanding for dynamic network exploration.

With our taxonomy we are able to:

e “Generate” and categorize various tasks for user evaluation,

e Inform the design of novel interfaces,

e Discuss the complexity of tasks in data-space,

e Categorize existing interfaces in how far they support the three dimensions. For
example, an interface that does not allow for selecting an individual time point
lacks support for all (low and high-level) tasks that require a single time step;
either as given in the task (e.g. WHEN + WHERE = WHAT) or as answer (WHAT +
WHERE = WHEN).

The taxonomy informs the design and evaluations of the visualizations developed in
this dissertation. Yet, it is extensible in many ways. Future work consists of relating it
to tasks in the literature, but more importantly to try to better describe types of changes
and events that are important in dynamic network analysis (WHAT). A more comprehen-
sive taxonomy does not necessarily capture more tasks or allow us to better judge the
complexity of tasks, but to provide good rationales of when a particular visualization or
technique is necessary, what they have to show and which interaction is necessary.
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ISUALIZATION systems for dynamic networks should provide effective visual rep-
V resentations and interactions to support tasks such as described in our taxonomy.
Some tasks require exploration of events over time (WHEN), within topology (WHERE)
as well as the type of changes (WHAT). A user’s focus has to switch during various stages
of the analysis or exploration process; a compound task may first require the user to find
a particular time point, then describe the network topology, and eventually compare it to
a particular other time point.

Many techniques have been described and evaluated in the literature (see Chapter
2). Sequences of the network, one time step at a time, provide particular advantages.
Showing any time step individually reduces complexity of the overall network in an
intuitive way and allows for detailed observation of the topology for every time step
(WHERE). As changes are implicitly encoded as difference between time steps, the
network visualization itself remains free to encode attributes about the topology (e.g.
node degree), domain-specific attributes (e.g. node or edge type), or measures related to
time (e.g. age of a node or edge). Users can easily track individual elements or subgraphs
(WHEN + WHAT).

Network sequences are simple to integrate, and have already been integrated, into
existing network visualization systems (e.g., Cytoscape (Cytoscape: An Open Source
Platform for Complex Network Analysis and Visualization, 2013), Gephi (Bastian et
al., 2009), Pajek (Pajek - Program for Large Network Analysis, 1997), Visone (Brandes
& Wagner, 2003)), using animations between individual time steps to provide some
cognitive support to indicate state changes (Tversky, Morrison, & Betrancourt, 2002).
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Navigation between time steps is provided by common video controls and/or time sliders
(e.g., TempoVis (J.-W. Ahn et al., 2011), Gephi) to navigate between time steps (temporal
navigation).

Technically, animated sequences allow exploration of large networks—the entire screen
is available for a single time step—and such with many time steps. However, their value
tends to decrease as the number of elements that change between two steps increases. A
further limitation comes from their inability, in their basic form, to transition between
non-contiguous time steps. Especially for networks with many time steps, all animated
transitions between intermediate steps have to be played. This makes the comparison of
distant time steps difficult and actually increases users’ cognitive load.

This chapter addresses the following research questions:

> How can animations between time steps be improved to facilitate perception of
changes?

> How can users navigate easily between time steps?

> Which complementary techniques and visualizations are necessary in a system for
higher-level task support?

This chapter presents an interactive visual interface, called GraphDiaries, which
explores animated staged transitions with change highlighting between time steps, as well
as adaptive and non-linear temporal navigation techniques. The design of GraphDiaries
is motivated by the three dimensions in our taxonomy from Chapter 3 and combines
various techniques in a consistent way; small multiples, difference highlighting, temporal
aggregation, time sliders, interactive layout stabilization and a method to track nodes over
time. It is extensible in many ways and provides a base for further research.

We evaluate our animated transitions and non-linear navigation with higher-level
tasks. While studies on animations have so far focused on relatively small graphs where
participants had to read individual nodes and lines to perform topology tasks, we are
interested in tasks which involve tracking groups of nodes and estimate the type and
quantity of change.

4.1. Animations in the User Interface

Comparing the results from the studies mentioned in Section 2.8 does not lead to a simple
answer about the general usefulness of animations for dynamic networks. Although
animations barely increased performance for most tasks, users often ranked them high in
preference. User feedback also reveals some drawbacks of animations: distraction, longer
run time, difficulties to find particular time steps, which in turn increases task completion
time. These results altogether reveal that many important aspects of animations are still
not well understood; pacing, staging, ordering of stages, graphical rendition of transitions
(smooth/abrupt trajectory, fading, etc.). More experiments, especially ones involving
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higher-level tasks and larger data sets, are required to better understand the challenges
and find interaction techniques that efficiently support dynamic network exploration.

Mentioned across all studies, either implicitly or explicitly, is the lack of interactive
control for animations. In many applications that display dynamic networks, animations
are precomputed, and navigation in time is linear (e.g., Gephi (Bastian et al., 2009),
TempoVis (J.-W. Ahn et al., 2011), Visone (Brandes & Wagner, 2003), Pohl, Reitz, and
Birke (2008)).

Studies concluded that animations perform generally worse than small multiples, but
the authors see more potential in using animations. This section reviews how animations
are used in user interfaces and information visualization in general.

In general, animations have long been used to convey changes in user interfaces. For
example, Chang and Ungar (1993) describe animations for the user interface, inspired
by cartoon animations. These animations include slow-in slow-out movements, motion
blur and dissolving windows, helping user to keep track of state changes in the inter-
face. Section 2.8 already reported on studies that evaluated animations under different
conditions.

4.1.1. Animations in Information Visualization

Heer and Robertson (2007) describe animated transitions between data graphics, such
as line charts, pie charts and bar graphs. They report that users generally prefer slower
animations. Animations helped users perceive changes much better, but the authors
recommend to use staged transitions instead of parallel ones, even if they report that
“the advantages are not overwhelming”. Bezerianos, Chevalier, et al. (2010) employ
animation to switch axes between between scatterplot views of graphs as first described in
ScatterDice (Elmqvist, Dragicevic, & Fekete, 2008). While using animations to highlight
changes within textual document histories, Chevalier, Dragicevic, Bezerianos, and Fekete
(2010) avoid staged transitions to shorten transition time which, in turn, is an important
factor for the efficient use of short-term memory when interpreting animations.

Staged animations have also been used for visualizing dynamic trees (Guilmaine, Viau,
& McGuffin, 2012), e.g., when expanding subtrees in SpaceTree (Plaisant, Grosjean, &
Bederson, 2002) or when navigating through the tree’s changes over time (Card, Sun,
Pendleton, Heer, & Bodnar, 2006). DOITrees (Heer & Card, 2004) also show animations
when navigating the tree, but run the different types of animations (subtree expansion,
layout adaption) in parallel. In addition, nodes that appear or disappear are briefly
highlighted. Yee et al. (2001) employ animations to navigate in large graphs, while
showing the neighborhood of only one node at a time.

&3



4. Animated Transitions and Temporal Navigation

4.1.2. Effectiveness of Animations

Animations as a means to convey changes in user interfaces has been extensively studied
in psychology. Tversky et al. (2002) are critical about the effect of animations to com-
municate information, arguing that even if animations are intuitive in showing temporal
changes (Principle of Congruency), they are hard to perceive and process by humans
(Principle of Apprehension). The problem is to find an appropriate speed that allows the
user to entirely “read” and understand the visualization; if animations are too short users
can miss information, if they are too long, users have to wait. Generally, the less change
happens, the faster a transition can be.

Tversky et al. contrast cases where animations have been effective and where not.
Animations have been effective in such cases where (i) they conveyed additional informa-
tion that was not shown in static variates of a graphics, for example, speed or changes
on a finer level of granularity. Animations have further been considered useful in (ii)
showing the trajectory of objects, for example though space, and (iii) are effective to
support learning in school (in most cases). However, Tversky et al. argue that animation
in the referred studies performed better because either animations showed information not
visible in static graphics, or because they used better visualizations and were interactively
controlled by the user. Tversky et al. conclude that interaction on its own is highly
supportive for learning, since users can re-view animations, focus an particular parts and
adapt the animation speed. Tversky et al. conclude that the (pure) effect of animations
per se seems little or just not properly evaluated.

The results by Robertson et al. (2008) (see Section 2.8) support Tversky’s findings.
Both encourage animations for presentation (i.e. explain system in school classes), but
discourage it for analysis. They considered it crucial that a presenter draws attention to
(parts of) the animated data and explains what happens.

Summarizing the concerns about animations manifests that animations are desired
where they show additional information and/or if they are interactive; although they
seem to perform poorer, animations seem to be more engaging to users. This further
suggests that animations are not appropriate to show changes across time steps in dynamic
networks.

From the related work on the effectiveness of animations in user interfaces and from the
studies in the graph literature, we conclude that animations are supportive in cases where
there is interaction and temporal navigation. Animations can further show additional
information about changes and events. The following sections describe our approach to
an interface that enhances animated transitions by integrating them in a more general
interface, complemented with other visualizations and improved interaction control.
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Figure 4.1.: GraphDiaries interface: a) Network view, b) Timeline, c) Layout stabilization
slider, d) Navigation history, e) Node queries, f) Panel to change visibility of red, blue or
gray elements in the Timeline, g) Animation playback panel.

4.2. Graph Diaries

GraphDiaries is an interface designed to help users answer questions related to the
different dimensions of our taxonomy presented in Chapter 3 : WHERE, WHAT and
WHEN. GraphDiaries employs interactive, staged, animated transitions that highlight
changes from one time step to another, difference views and small multiples for temporal
navigation. Users are able to control many of the transition parameters, such as pace,
position, type and jump between arbitrary time steps. By integrating different techniques
and interface components, we try to overcome some of the drawbacks of animations, as
discussed in the last section.

4.2.1. Interface Components

The network view (Figure A.2(a)) shows the network as a node-link diagram at the time
step currently selected in the Timeline (Figure A.2(b)). The network view focuses on
answering questions about the WHERE and WHAT dimensions, i.e. where do changes
happen, and what changes happen. The WHEN dimension is the primary focus of the
thumbnails and the slider in the Timeline. Each thumbnail shows the network at a
particular time step and is used for temporal navigation. Difference highlighting in the
thumbnails and the network view highlight differences between any given step and the
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one before, using the same visual encoding as in our staged transitions (Section 4.3):
removed elements are colored red, new ones blue, remaining ones gray.

Additional interface components, shown in Figure A.2, provide further support to
relate the taxonomy’s three dimensions. The layout slider (c) controls layout stability
(supporting element tracking and exploration within the WHERE), as further explained
in Section 4.2.2. Navigation history (d) and the time control panel (g) provide higher-
level playback and access to previously visited time steps (WHEN) in the network view.
Conversely, options in (f) let users configure what information is shown (WHAT type of
changes) in the timeline’s thumbnails. Finally, the node query panel (e) lists node queries
created by users, as detailed in Section 4.5.

4.2.2. Dynamic Graph Layout

Layout stabilization (Figure A.2(c)) enables users to choose between a globally optimized
layout for mental map preservation, a locally optimized layout for each time step, or any
configuration in-between obtained by linear interpolation. Although a slider for partial
stabilization has been used previously by Federico et al. (2011), our implementation
is actually independent of the underlying graph layout. We were interested in how
differently stable layouts combine with the different transitions, in order to support users
in different tasks. Depending on the layout strategy, the same transition allow users to
track different types of changes; combined with change highlighting, a stable layout
draws users’ attention to regions of the network that are changing—users can navigate
quickly through time and to perceive the different amount of red and blue within the
graph. While for a locally optimized layout, transitions support tracking changes in
entities’ positions, thus reflecting their new neighborhood (Section 4.3.3).

Layout Calculation

Global and locally-optimized layouts are computed as follows: the global layout is
computed using the LinLog (Noack, 2007) algorithm on the whole time-aggregated
graph, taking into account the number of edges between node pairs as edge weight.
The locally-optimized layouts are computed for all time steps #;, by running the faster
Fruchterman-Reingold layout algorithm (Fruchterman & Reingold, 1991) on each time-
step independently. For force-based algorithms that perform iterative improvements,
instability is avoided by starting from an initial layout obtained by interpolating between
the layout at the previous time step #;,_; and the global layout. Nodes that appear at this
point are initially positioned at their coordinates in the global layout.

All layouts, global and local, are stored in memory, so that the exact same layout is
reused when navigating back to the same time step. As the user manipulates the layout
adaptation slider, the interpolated layout is calculated and then relaxed to remove overlaps.
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Figure 4.2.: Staged transitions with change highlighting (node fill colors describe arbi-
trary, domain-specific, attributes of those nodes): (a) initial state, (b) element removal
(red halos), (c) remaining elements only, (d) layout adaption, (e) remaining elements at
their new position, (f) element addition (blue halos), and (g) final state.

We found an almost fully locally-optimized layout (80% local layout, in other words 20%
stabilization) to be a good tradeoft for the various data sets we tested, which we use as
default value.

Node Operations

While global and local layouts, as well as their interpolations, change the entire layout,
users can pin individual nodes to make them stay in the same position. Nodes are pinned
by a double left click and cause the global and local layouts to update accordingly. To
preserve the mental map of the network, the original global and local layouts are stored
when nodes are pinned, and re-stored when all nodes are un-pinned. A right click on a
node highlights it within all small multiples and shows its trajectory in the graph view in
light yellow.

4.3. Staged Animated Transitions

Staged animated transitions with change highlighting are designed to help users under-
stand what changes occur in the network’s topology and where, while navigating through
time steps (Figure 4.2).

4.3.1. Design Goals

In order to address the problems of animations for graph visualizations (see Section
4.1) we define design goals for the transitions in GraphDiaries. In addition to common
design goals for animations such as smoothness, aesthetics and intuitiveness (Chevalier
et al., 2010), and in accordance with the goals for a good graph animation as defined by
Friedrich and Eades (Friedrich & Eades, 2001), the design of our transitions is based on
the following goals:
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D1

D2

D3

D4

Separation of Concerns—Staged transitions avoid overloading users with too
much information at a time. It allows them to focus on each type of event in turn
(WHAT). Low-level changes, which account for all types of higher-level changes,
can be split in three stages: node and edge removal, node repositioning and node
and edge addition.

Visualization independence—The visual encoding of transitions must not inter-
fere with the visual encoding of network data (node and edge shapes, color, visual
elements etc.) or any user driven annotations (e.g., selection of nodes) . We want
our transitions to be integrable into all kinds of existing node-link visualizations
and visual mappings.

Controllability—As implied by multiple studies (e.g., Farrugia & Quigley, 2011;
Archambault et al., 2011a), users should be enabled to

(i) control the animation speed,

(i1) directly navigate between time slices,
(iii) freely navigate inside the frames of a transition, as well as
(iv) interrupt transitions at will.

Controllability is important for two reasons: it enables users to focus on graph
elements (WHERE) and to understand complex changes (WHAT), possibly playing
the transition back and forth multiple times at low speed; it also enables them to
quickly browse through or skip transitions or particular stages within transitions of
low interest to them (WHEN).

Ad-hoc Transitions—As users interact with the visualization, they must be able
to change other visualization parameters, such as the graph layout or the timeline’s
granularity, independently. Other than in existing “graph movies”, any transition
should be calculated on demand, taking into account the current state of the vi-
sualization (e.g., layout, visible graph elements, current visual mappings). This
includes the ability to show transitions between non-adjacent time steps to allow
the comparison of arbitrary time steps.

We explored various implementations of the above goals, iterating on the interaction

design and fine-tuning the parameters through pilot tests. We compared the different

options considered for both the staging of transitions and the interactions that control

temporal navigation. The following sections describe our final design, relating to the

features of the original design goals.

4.3.2. Transition Stages

Staged transitions in GraphDiaries can be triggered between any two time-steps #; and

tj, not necessarily adjacent (D4). Stages correspond to the three types of low-level

topological changes (D1), as illustrated in Figure 4.2.
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1. Remove Elements (300 ms) — A red halo fades-in around each node and edge that
is no longer present in ¢; (Figure 4.2(b)). Edge halos fade-in slightly later than node
halos to emphasize the perception of affected nodes in clusters and dense regions.
Then, all elements involved in the removal fade-out along with the associated halos.

2. Transform Layout (600 ms) — Remaining nodes and connections get smoothly
moved to their new position in the layout of #; using a slow-in/slow-out pacing
function (Figures 4.2(c),(d) and (e)). This stage has a longer duration to help users
track node position changes. Changes to domain-specific attributes, encoded using,
for example, node fill color or node size, also get animated during this stage.

3. Add Elements (300 ms) — The last stage adds new nodes and edges by fading
them in, accompanied by blue halos that vanish thereafter (Figure 4.2(f)).

In cases where #; > 1; (user changes from a later to an earlier time step), nodes which
are present in ¢; but not in #; are removed while highlighted in red, and nodes which are
present in #; but not in ¢; are added while highlighted in blue. Thus, halo coloring does
not convey temporal order, but type of change.

We tested multiple alternative designs for our transitions. We discarded the option
of first showing element insertion, then changing to a new layout, and finally showing
element removal, because it significantly increases the number of visual elements on
screen during the transition. These elements must potentially be moved in the second
stage, causing additional distraction. Furthermore, elements that are present in both time
steps are not distinguishable. We also considered separating node and edge changes in two
stages, but this increases transition time even more by making the transition appear less
smooth and changing regions harder to identify. Furthermore, it introduces ambiguities
such as the following: a node disappearing implies that its incident edges disappear as
well; but when first removing edges and then nodes, users whose attention gets caught
by a particular node might no longer know whether this node was connected or isolated
before the staged transition started.

We also tried to run stages in parallel, either partially or completely, for example,
repositioning nodes while removing or adding elements, or start fading-in new elements
before the fade-out of removed elements ended. However, we found that this option
contradicts D1 in the sense that users cannot focus on a particular type of change; staging
allows them to anticipate when a certain type of change will happen. Overall, we observed
that as networks become denser and as changes are more frequent, staging should be
favored over shorter-but-more-confusing transitions that run all animations in parallel
(fade-in of new nodes, fade-out of removed nodes, repositioning of remaining nodes).
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Figure 4.3.: Size of node halos is independent from the zoom level, allowing for analysis
at different levels of scale. (a) Using a low zoom level, change highlighting emphasizes
changing subgraphs, while (b) a high zoom level reveals details.
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Figure 4.4.: Direct difference view between two time steps, showing the replacement of a
very central node.

4.3.3. Change Highlighting

We use halos to highlight changing nodes and edges rather than coloring them directly, so
as to avoid interfering with existing visual encodings (D2), instead making it possible to
visually encode, for example, temporal network measurements such as dynamic centrality,
or domain-specific data attributes (Lerman, Ghosh, & Kang, 2010; Federico, Pfeffer,
Aigner, Miksch, & Zenk, 2012b). Figure 4.2 shows that halos are still visible when
node fill color encodes a domain-specific data attribute. A recent study by Archambault,
Purchase, and Pinaud (2011b) confirms that using color to highlight changes between two
graphs improves users’ performance, compared to a simple animation or no animation.
Further evidence about the benefits of explicit change highlighting in comparing diagrams
is found by Zaman et al. (2011). While there is no strong agreement in the community
about which colors to use to encode those changes, we argue that red and blue are relevant
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choices as they feature a significant contrast in hue and are readable by people impaired
by color blindness.

Halos around nodes and edges have a constant, scale-independent thickness, which
guarantees that changes will always be clearly visible, no matter the network’s size and
zoom level (Figure 4.3). Holding the shift-key while hovering any small multiple in the
timeline view highlights the direct differences between the network in the Network view
(Figure 4.4) and the one in the hovered thumbnail; blue elements are present only in the
hovered thumbnail, red elements are only present in the current (reference) time step.

The duration of each stage of a transition was fine-tuned manually. While a total
duration of 1.2 seconds might seem long, it is necessary to actually enable users to keep
track of the complex changes that occur (D1). However, as users might not always
be interested in all stages of a transition depending on the task at hand (depending on
the WHAT component of the task), we enrich the animated transitions with interaction
techniques that let users quickly skip or fast-forward them (D3), while navigating through
time (WHEN).

4.4. Temporal Navigation

Users navigate through time using either the thumbnail previews, the time slider, or the
animation control panel. Holding shift while moving the mouse wheel to zoom, scales
the time line horizontally. The Time Control Panel mentioned earlier (Figure A.2(g))
provides standard playback controls, including playback speed, looping and temporal
aggregation (hours, days, weeks..). Changing temporal granularity creates temporal
aggregation of the network’s steps. Thumbnails get updated and the network view shows
the same transitions as described in Section 4.3.

We defined methods to navigate over time and interactively control staged transitions
both across time steps (inter time-step navigation) and within transitions (intra time-step
navigation). In the timeline, red, white and blue sections visually identify the three stages
of a transition, thus facilitating intra time-step navigation when dragging the slider (Figure
A.2(b) and Figure 4.5).

Inter Time-Step Navigation

Users move between adjacent time steps using the left and right arrow keys. To jump be-
tween non-adjacent time steps without going through the intermediate ones, users simply
click on the corresponding thumbnail. In both cases, the main graph view gets smoothly
animated according to the staged transition technique described earlier, providing details
about what happens where in between the two time steps.
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Intra Time-Step Navigation

Users can control a staged transition’s unfolding in various ways, depending on whether
they are trying to get an overview of changes through time (WHAT and WHEN), are
tracking a particular element over time (WHERE and WHAT), or searching for a particular
event (WHEN and WHERE): We provide four options for controlling the duration of and
the position within a single transition so that users can adapt navigation to the current
task, either overview, tracking or searching for a particular event related to a graph entity
(WHAT) or a location (WHERE):

a) Full Transition — Pressing and holding down the left mouse button on a thumbnail,
or keeping an arrow key depressed, runs the full staged transition.

b) Interrupt and Finish — Releasing the mouse button or key while the transition is
running interrupts it. The remaining stages are played fast-forward (200 ms), all
in parallel, in order to guarantee perceptual continuity and help users preserve their
mental map of the network.

¢) Skip Animations — Clicking on a thumbnail or hitting an arrow key (quick
press/release) jumps to the target time step without any animation or highlight-
ing, to allow browsing through steps very fast. This is useful when the details
of changes between two particular steps are not so important or he uses a global
layout to quickly see where the graph changes (WHAT is given, the user explores
time and affected graph elements WHEN, WHAT).

d) Interact — Controlling the animation’s pace with a time slider can be very effective
when exploring transitions. We support this through direct manipulation of the
time slider, with the red, white and blue zones between steps delimiting the three
stages of the transition. Figure 4.5 illustrates the use of this strategy to identify
elements that exist only during one time step: by quickly moving the slider back
and forth between the blue slider part of the previous transition and the red part of
the following one.

The slider requires the two compared time steps to be adjacent on the timeline. In order
to use the slider on non-adjacent time steps, users can create a new timeline just below the
default one (Figure 4.6(a)). Dragging a thumbnail from the default time line to the new
timeline duplicated the time step. Users can drag several time steps and consequently use
the slider to navigate between them. Difference highlighting on the new timeline layers
show differences between the time steps on only that layer. Thumbnails are removed
by right mouse click. If the graph has many time steps, thumbnails on the timeline get
squeezed, using the mouse wheel (Figure 4.6(b)).
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Figure 4.5.: Dragging the yellow time cursor around the tick that indicates the time step
for September 2011 (Sep-2011), shows which nodes and edges were (a) added from
August to September (blue elements) and (b) which were removed from September to
October (red elements). The example shows that a major part of new nodes added in
September have been removed again in October

4.5. Dynamic Node Queries

Changing layout and disappearing nodes can make it hard to follow specific sets of nodes
and subgraphs. GraphDiaries provides a mechanism to highlight node sets over time.
This feature, called node queries, is similar to the selection highlighting feature available
in ScatterDice (Elmqvist, Dragicevic, & Fekete, 2008). Queries are created by lasso
selection and are represented by a colored halo around the nodes that are part of the query,
plus a convex hull polygon that encompasses all those nodes. Figure 4.7 shows a node
query during an animated transition. Queries can be refined by the user at any time to
include new nodes. Node queries are managed in the user interface panel depicted in
Figure A.2(e).

4.6. Controlled User Study

To evaluate the potential benefits of staged transitions and associated interactive navigation
techniques, such as the possibility to smoothly navigate between non-adjacent time steps,
we conducted two controlled experiments. Evaluating all factors and combinations of
techniques in GraphDiaries would require multiple user studies, each one looking at a
subset of factors in isolation. The first experiment measured participants’ performance on
a set of three tasks, each one covering one of the dimensions of our taxonomy (WHERE,
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Figure 4.6.: Operations on the timeline: (a) Timeline with additional track on which
the user placed selected time steps. Differences between thumbnails are computed on
the basis of the time steps present in this track only. (b) Thumbnails in the timeline get
squeezed to fit more timesteps.

Figure 4.7.: Node query during transition.

WHAT, WHEN). The second experiment was a follow-up study to obtain additional
empirical data about participants’ ability to assess instability in dynamic networks.

Compared to previous evaluations of graph visualization techniques (e.g. Farrugia &
Quigley, 2011; Archambault et al., 2011a), we favored higher-level tasks that involve
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observation, tracking and comparison of attribute-based subgraphs, not necessarily cor-
responding to a single connected component. Our tasks possibly require non-linear
navigation patterns, for example, revisitation of a given time step multiple times, compare
non-adjacent time steps, and tracking different kinds of changes between steps. For graph
navigation, we believe low-level tasks, such as tracking one specific node over time or
detecting the presence of particular edges in two specific time steps, do not properly reflect
realistic network exploration tasks and would not be very informative as to the techniques’
efficiency. However, tasks that are too high-level by requiring extended graph knowledge
or experience in mapping user tasks into visual tasks, are hard to control and to compare
in a controlled user study, which aims in investigating the general understandability and
benefits of technique.

4.6.1. Techniques

The primary goal of this study was to assess the potential benefits of techniques that
support navigation in time and the impact of different visual feedback strategies to convey
changes. For a first assessment of our design choices, we compared GraphDiaries to two
baseline techniques: video animation and flip book. We compared conditions in which
different time navigation capabilities were enabled. The interface components made
available were the same across conditions: only the graph view (Figure A.2(a)), and the
timeline with small multiples (Figure A.2(b)). The three conditions were as follows:

FB: Flip Book provided a static representation of the graph at each time-step, like an
image viewer or a file explorer with content preview. Users could switch between
any two images but there were no animation between time steps. Graphs were
replaced instantaneously. To jump between time steps participants either clicked
on the thumbnail in the timeline, or used arrow keys.

VA: Video Animation allowed participants to navigate using a video player metaphor,
as in Gephi (Bastian et al., 2009) and TempoVis (J.-W. Ahn et al., 2011) Animations
were shown between consecutive time steps only and showed all changes at the
same time: added nodes and edges fading-in, removed ones fading-out, and all
others moving to their position in the target step’s layout. Animation time was 1
second. Participants could play back and pause, as when watching videos. As in
the FB condition, participants could either click on the corresponding thumbnail in
the timeline or use arrow keys to navigate between consecutive steps.

GD: Graph Diaries provided participants with the major techniques presented earlier
in this chapter, extending the capabilities of VA: staged animation with change
highlighting between any step, inter and intra time step navigation, and difference
visualization on the thumbnails. Because of the staged nature of the transitions,
default animation time was set to 1.2 seconds, as explained earlier. All other
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features of GraphDiaries: layout stabilization, node queries, temporal aggregation,
animation speed change and history, were removed.

All techniques used the layout strategy described in Section 4.2.2 with a stabilization of
20% (almost fully locally-optimized layout). Node positions were calculated and stored
once for each data sample in order to ensure the exact same layout across techniques.
Labels where shown on-demand when hovering nodes. All datasets fully fitted on
screen at nominal scale. Panning and zooming were thus disabled to avoid noise in
the experimental data due to uncontrolled differences in participants’ spatial navigation
strategies.

4.6.2. Tasks

Participants were asked to answer questions about a real-world co-authorship network
made of more than 10,000 authors from 200 research groups between 2005 and 2009 (5
time steps). Nodes represent individual authors. In order to convey group membership,
authors that belonged to the same research group shared the same color. For each task,
we used data samples consisting of approximately 100 nodes in 7 groups (average, per
time step). Group membership was not directly related to the network’s topology. In
a given time step, an edge links two nodes when the two authors have collaborated on
at least one publication during the corresponding year. Participants had to answer the
following questions:

Tsi.e — In which year is the red group largest? (WHEN) Participants had to
navigate through all time steps and compare them, in order to find the time when the red
group was largest. To input their answer, they had to press the space bar and select the
correct year from a pop-up menu.

Tinss — Which group features the most changes over time? (WHERE Groups
exchanged nodes over time, for example, they lost some nodes and gained new ones.
Participants had to observe all groups over the years, and eventually click any node from
the group that featured the most changes.

Trrena — What is the trend of the red group? Does it grow, does it shrink,
does it remain stable, or is it unstable? (WHAT Participants had to spot a trend
over the years. Groups that grew actually doubled in size. Those that shrank halved. Both
did so in a non-monotonic way. Stable groups kept a set of constant core members that
was larger than half the size of the group. Unstable groups did not feature any such set of
stable core members. They could possibly gain, loose or exchange all of their members
over time. To input their answer, participants had to press the space bar and select the
correct answer from a pop-up menu.
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Figure 4.8.: Example of the data set as used and laid out in the user study. Nodes are
colored by research group. The actual background in the experiment was a very dark

gray.

4.6.3. Datasets

A major problem with these tasks is that difficulty can vary significantly with each
dataset’s complexity. Observed differences between techniques can actually stem from
this variability if dataset complexity is not controlled and counterbalanced properly across
conditions. But comparing the complexity of different datasets is difficult, especially if
they have not been created artificially, carefully controlling their characteristics.

To guarantee equivalent conditions, we extracted and analyzed data samples (subgraphs)
from our main dataset for each task, and reused them across all participants. Each task
required special conditions and tuning to make sure that there would not be too much
ambiguity with respect to what answer was the correct one.

We re-used the same datasets across techniques, thus allowing for a fair comparison
between conditions. Each data sample was used in 3 trials, one per technique. However,
simply reusing datasets across conditions would have been risky, as participants might
have remembered answers or partial answers from previous trials, resulting in an uncon-
trolled learning effect. To minimize possible asymmetrical transfer between conditions,
we mirrored and rotated the three instances of each network. In addition, each time a
dataset appeared, node labels were anonymized by randomly assigning them popular
English names at runtime.

The data samples were obtained as follows and were rendered as illustrated in Figure
4.8. Nodes were filled with the color of the corresponding research group, using the
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Setl 9-color scheme from ColorBrewer (ColorBrewer, 2002) so that participants could
identify groups pre-attentively.

Tsi. — Per dataset, seven research groups were randomly extracted from the original
network and one group was chosen to be the target one (colored red). The size of that
group was analyzed over time and data samples were selected by hand in order to remove
sources of ambiguity. A group, at the time step when it was at its largest size, always
featured at least two more nodes than in any other time step.

Truse — All 200 groups from the original network were analyzed, based on particular
types of changes: size, nodeGain (nodes added per time step), nodeLoss (nodes removed
per time step), and number of constantNodes. Each dataset was composed of 6 groups
with a low rate of change:

avg(nodeGain) < 3, avg(nodeLoss) < 3, avg(size) > 6.

The additional target group was extracted from the original network and featured a
high rate of change:

avg(nodeGain) > 7, avg(nodeLoss) > 7, avg(size) < 15.

Trrena — For each dataset, 7 groups were randomly extracted from the original network.
One group was chosen to be the target one (colored red). Datasets were selected by hand
to ensure that the target group featured a clear trend, either growing, shrinking, stable, or
unstable.

4.6.4. Design and Apparatus

The first experiment followed a within-subject full-factorial design with the 3 earlier-
mentioned techniques (Tech € {GD, VA, FB}) and the 3 tasks described above (Task
€ {Tsizes Tinst> Trrena }) as independent variables. The resulting 9 conditions were counter-
balanced using a Latin square, blocking by Tech. For each condition, participants were
presented with 4 training trials, followed by 5 actual measurement trials. Each trial used
a different dataset. The presentation order of datasets was the same for all participants.

On average, the experiment lasted 70 minutes. It was divided into two sessions to
avoid fatigue due to the high cognitive load involved in performing the tasks. Two
techniques were tested in the first session (50 minutes). The remaining one was tested in
the second session (20 minutes), which had to take place at least one hour after the first
one. Participants were allowed to rest between each trial.

Participants were instructed to favor accuracy over speed, for example, to avoid making
mistakes. Due to the complexity of the tasks, each trial was limited to 90 seconds. After
60 seconds, the screen flashed briefly, and a countdown for the remaining 30 seconds was
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shown. Once an answer had been selected, both the right answer and the participant’s
answer were shown.

We asked eighteen volunteers (four female), ranging in age from 24 to 44 years old
to participate in this experiment. All of them used computers daily, had normal or
corrected-to-normal vision and were not color blind. The experiment was conducted
using a 2.66Ghz iCore 7 MacBook Pro with 4GB of RAM and a monitor resolution of
1440 x 900. The interface was implemented in Java 6 using the ZVTM toolkit (Pietriga,
2005). Background was set to black to minimize visual fatigue. Participants interacted
using a mouse and an external keyboard. During training, animation speed decreased
from 2 seconds initially to the default duration of 1 second for VA and 1.2 seconds for GD.

The two main measures were error rate and task completion time. The timer started as
soon as the dataset showed up on screen, and stopped when participants either clicked a
node (for 77,5 ) or hit the space bar (for the other two tasks). Error rates were computed
differently for each task. In Tg;,, time slices were ranked according to the size of the
target (red) group. For Tj,y, groups were ranked according to their rate of change:
avg(nodeGain) + avg(nodeLoss). Error was equal to the position in this ranking. For
Trrend, the answer was either right or wrong as answers were nominal.

4.6.5. Hypotheses

Our hypotheses were as follows:

H, For all three tasks, error rate is lower when using staged transitions (GD), as this
technique helps better keep track of changes between time steps.

H, For the same reason, completion time does not increase significantly when using
staged transitions (GD), despite the longer duration of animations and their higher
visual complexity.

H3 Participants use features that enable them to transition between non-adjacent time
steps, when available.

4.6.6. Results

A SHAPIRO-WILK test showed that measurements of time and error were not normally dis-
tributed. The measurements distribution could not be corrected using either a logarithmic
or Box-CoxX transformation. We thus performed a non-parametric MANN-WHITNEY-
WILCOXON (Mann-Whitney U) test for pair-wise comparison between techniques, for
each task. During the experiment, we realized that one particular dataset used for Ty,
contained changes that were too hard to detect for participants. The difference between
the largest two sizes was only 2 nodes, for an average group size of 18 nodes. We
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Figure 4.10.: Time (seconds) per Tech x Task. Error bars show the 95% confidence interval of the mean.

subsequently removed the corresponding trials from our analysis, as this noisy set would
not have yielded meaningful results.

All analyses are performed by Task, as error rates are measured differently across tasks.
Tsi;e (Figure 4.9-a): GD features a significantly (p<0.04) lower error rate (avg. 4%) than
FB (avg. 18%). VA performed similar to FB (avg. 15%) with a near-significant difference
compared to GD (p<0.069). There was no significant difference between FB and VA.
Tins: (Figure 4.9-b): GD features a significantly (p<0.011) lower error rate (avg. 21%)
than FB (avg. 52%), with VA in-between (avg. 27%) and a near-significant difference
(p<0.072) compared to FB. There was no significant difference between VA and GD.
Trrena (Figure 4.9-¢): we did not observe any effect of Tech on Error. All three techniques
feature relatively similar error rates.

Tsi;e (Figure 4.10-a): FB (avg. 16.2s) is significantly faster than both VA and GD (avg.
24.5s, p<0.0001 and 21.9s, p<0.0001, respectively). GD was not significantly faster than
VA. Tp,s (Figure 4.10-b): FB features a significantly (p<0.005) lower time (avg. 21.6)
than GD (avg. 28.4s), with VA in-between (avg. 23.9s) and not significantly different
from the other two. Tr.,q (Figure 4.10-c): FB features a significantly lower time (avg.
16.1s) than GD (avg. 26s, p<0.001) and VA (avg. 19.7s, p<0.007).GD is significantly
slower (p<0.004) than VA.

4.6.7. Follow-up Experiment

Trreng did not yield significant results in terms of error rate, which is our main measure of
performance. Despite intense piloting, such higher-level and complex tasks are difficult
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to control. We decided to redesign this task and run a follow-up study. We switched from
four possible answers to two, and created the target group artificially, inserting ground
truth in real-world data so as to better control this group’s behavior. The new task was as
follows:

Tchange—(WHAT) How does the red clique behave? Is there a high turnover, for
example, are there many nodes coming and leaving, over time? Or is there a larger
constant core of members over all years? The core was made of nodes that remained
in the group from the beginning to the end. If the number of nodes in the core was
larger than half the size of the group, the group was stable; otherwise it was unstable.
Participants had to press the space bar and select the correct answer from a pop-up menu.

We extracted datasets from the co-authorship network we had used in the first experi-
ment. For each dataset, 6 groups of nodes were randomly selected, and one group was
artificially created according to predefined figures to guarantee its stability or instability
(depending on the trial). This target group had between 13 and 17 nodes, including a
constant core of nodes. Core nodes never left the group. Other nodes remained in the
group for one to three years. In the unstable group condition, the target group’s core size
was lower than 50% of the overall group size. In the stable group condition, the core’s
size was above 50%. The difference in size between stable and unstable was either 30%,
15% or 7.5%, corresponding to three levels of difficulty. Although the last value seems
fairly small, we did make sure that there was no ambiguity when performing the task
visually. It is also important to bear in mind that the task was about observing changes of
nodes, rather than changes in group size.

We asked the same 18 volunteers to participate in this experiment. Time between the
first experiment and this follow-up study never exceeded two weeks. The only task tested
was Tcpange. We compared the same three techniques. We added a new feature to the
environment that enabled participants to toggle visibility of all node labels at once. While
this can potentially introduce noise in the data, participants needed a way to compare
nodes across graphs. We kept track of the status of node labels (shown or hidden) in the
experiment’s logs.

Results for this task show that Tech has a significant effect on Error. FB features a
significantly (p<0.004) higher error rate (avg. 25%) than VA and GD (avg. 13% and
11%, respectively), which are not significantly different from one another (Figure 4.9-d).
Tech also has a significant effect on Time. As shown in Figure 4.10-d, FB features a
significantly (p<0.001) higher task completion time (avg. 18.1s) than VA and GD (avg.
11.6s and 10.6s, respectively), which are not significantly different from one another.

4.6.8. User Strategies

Participants were asked to report their strategies and subjective preferences in a post-
hoc questionnaire. Further information was retrieved by analyzing low-level interaction
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logs: keyboard and mouse events, as well as somewhat higher-level information such
as the order in which participants visited the five time steps for each trial, when were
node labels displayed, how much was the time slider used. Examining these logs, we
identified various common and alternative strategies for exploring dynamic networks.
The main observation is that temporal navigation in the data follows Shneiderman’s
mantra (Shneiderman, 1996): users first wanted to have an overview of the data through
time, and only then did they focus on particular time steps in more detail. While this
observation holds for all tasks and techniques, other observations were made for specific
tasks, as detailed below. We also observed that 27% of the participants never used the
mouse. This means that they never used the slider, and never compared non-adjacent time
steps (indeed, the mouse was necessary for both).

Tsi.e — Find Time Step While participants were able to quickly go from time step to
time step with FB and GD, things were less straightforward with VA. They either watched
the animation step by step, or dragged the time slider. Participants made extensive use
of the non-adjacent time step comparison feature with GD, while they barely used it in
conjunction with FB. While this feature was not available in VA, it is noteworthy that
participants did not employ any feature for comparison between time steps with VA: in
most cases, they simply navigated over time using video controls, not going back and
forth.

Tt — Find Network Entity  This task was about spotting nodes entering and leaving
groups over time. In addition to the amount of color that was shown with groups, the
middle step of staged transitions (GD) made it easy to identify how many (and which)
nodes did not change. If a group was much smaller during this stage than at the beginning
or end, it was probably unstable. However, changes had to be observed throughout the
network. Participants employed very different strategies; FB allowed for quick navigation
which led them to quickly visit all time steps in linear order and observe changes in
the layout that might result from unstable groups. With VA, participants iterated less
frequently over all time steps, except those participants who used the slider, the latter
making navigation faster. 50% of all participants who used the mouse compared non-
adjacent time steps in the FB and GD condition.

Trrena — Characterize change This task was the most difficult for participants
as observed from our post-hoc questionnaire, and we did not observe any statistical
difference between conditions. However, we could observe that participants applied a
strategy similar to that employed in 77, ; they observed all time steps first and heavily
switched between steps in the GD condition. Where it was possible to directly compare the
first and last time steps (FB and GD) , participants could estimate the right answer when
the group was growing or shrinking. However, due to the experimental conditions—clear
differences in the data between growing, shrinking, unstable or stable—this strategy
worked in the experiment.

102



4.6. Controlled User Study

Tcnange — Characterize change: This task was the only one where enabling and
disabling all node labels at once was allowed. Since this task was about tracking nodes
joining and leaving a group, we expected the task to be very hard in the FB condition.
However, despite the difficulty of the task, results indicate that very few participants
(four) actually used labels in FB and in VA. Among them, all but one also displayed labels
in the GD condition. This seems to indicate that having to read and memorize node labels
was considered as inconvenient and unnecessary. As expected, many participants (80%)
switched between non-adjacent time steps, when possible.

4.6.9. Discussion and Limitations

The goal of this study was to investigate the potential benefits of staged transitions and
other features such as the possibility to smoothly navigate between non-adjacent time
steps and to control the type and speed of transitions. We wanted to assess their impact
on user comprehension of the higher-level changes that occur in dynamic networks.

Our results show that animations significantly decrease error rate, and suggest that
staged transitions offer further improvements for some tasks, thus partially supporting H;.
Animations increase task completion time for tasks Tsize, Tnst> ITrend, but decrease it for
TChange- since participants spent more time memorizing node labels and comparing graph
states. Comparing the first three tasks, the difference is significant in terms of statistical
analysis, but its magnitude is relatively small. Thus, H> is supported. A lower error rate
should be favored over a small decrease in task completion time in real work situations,
and we interpret those results as generally favorable for GD. Quantitative results are
in accordance with user preferences collected through the post-hoc questionnaire: GD
was ranked as the best technique by 80% of the participants, and FB was ranked last by
72% of them. Our results are in accordance with Archambault et al. (2011a) who found
that for tasks related to node and edge appearance, animations decrease the number of
errors when compared to small multiples, but increase task completion time. Further
studies (Zaman et al., 2011; Heer & Robertson, 2007) suggest that users prefer accurate
techniques that they can trust to faster, but less reliable, ones.

Error: Results suggest that animations played a major role in participants’ performance:
the two techniques that relied on it, VA and GD, yielded consistently and significantly
lower error rates than FB (Figure 4.9). Animations seemed to play a crucial role when
tracking incoming and outgoing nodes. When animations were not available, labels
sometimes helped to solve the task, but significantly increased cognitive load and fatigue
according to several participants. When animations were available, the simple fading of
nodes and edges provided by VA helped, but the animation was often not sufficient to help
participants track more than a few changes in the limited screen area. Changes scattered
throughout the screen were hard to track, as suggested by the results of 7j,, in which
the entire network had to be observed. GD provided an advantage in that respect, as it
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used color to convey changes in a pre-attentive manner and enabled participants to spot
and identify the kind of changes in a much larger area. Subjective feedback indicates
that participants found highlighting overall useful (44%) or useful (36%). 66% of them
indicated that it made them more confident about their answers.

The significantly lower error rate of GD for Ts;,. suggests that highlighting of changes
(halos) played an important role when comparing two time steps. In addition, solving this
task required comparing local maxima between non-adjacent time steps; this was made
relatively straightforward by both FB and GD, but highlighting was only enabled in GD.

Time: Task completion time was slightly lower with GD than with VA for Tg;,., and
slightly higher for all other tasks (Figure 4.10). We tentatively attribute this difference
to the fact that FB and GD enabled direct comparison of arbitrary time steps. FB was
always the fastest technique, except for task Tcjange. This is probably due to the fact
that participants had to read and memorize labels with FB, for lack of a more efficient
and less cognitively-demanding alternative. It is interesting to note that the average time
spent solving a task with FB was far below the maximum time per trial (90 seconds).
Participants seldom reached that limit, even if they were not particularly confident about
their answer; they considered that spending more time on the task with FB was not worth
it, as it was not going to provide more insight. Overall, FB featured lower task completion
times mainly because participants gave up, not because they were confident about their
answer, as confirmed by the higher error rates with this technique and our observation
of participants’ behavior during the experiment. This suggests that providing users with
animated transitions while enabling them to skip these transitions is a good solution.

Strategies: Only five participants (27%) never used the mouse for interacting with
the system; all others adopted non-linear time-navigation patterns in the FB and GD
conditions. The reason could be that the interface did not required to pan and zoom in
the network view, as well as the fairly limited amount of time-steps in the experiment
so that no panning on the timeline was necessary either. Such capabilities would likely
have involved the mouse as an interaction device. The most typical temporal navigation
pattern was to get an overview by quickly looking at all time steps, then focus on a
particular subset of—not necessarily contiguous—steps, switching back and forth to
compare them. This supports H; and suggests that features enabling direct difference
visualization between arbitrary time steps is useful, as those spare users from having to
rely on their memory to compare distant time steps, thus lowering the associated cognitive
load.

The slider enabled users to scrub and to explore elements that last for a single time
step only (see Figure 4.5). As one participant reported with respect to VA, vanishing and
occurring nodes faded out at the same moment and their translucency is not sufficient
to differentiate both cases. Another method was to move the slider very fast through
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across all time slices in both conditions VA and GD. Yet, highlighted nodes could better
be estimated.

Tasks: The experimental tasks were chosen to represent the dimensions in our taxon-
omy on a higher level. However, we had to make some compromises to make those tasks
amenable to a controlled experiment. Designing a study and operationalizing higher-level
and cognitively-demanding tasks is very challenging, as acknowledged by Archambault
et al. (2011a). We had to pilot and iterate on the design, datasets and tasks multiple
times. This necessarily entails some limitations. Visually, our tasks mainly focused on
the appearance and disappearance of nodes as opposed to links. As mentioned earlier,
some topological tasks involving group membership turn into visual tasks of looking
for geometrical proximity: nodes close to one another are more likely to be connected,
especially when using a locally-optimized layout (see Figure 4.8). Tracking groups
essentially comes down to tracking node movements and node appearance/disappearance.
While staging separates both types of change for better perception, change highlighting
results in a higher or lower concentration of red or blue halos in different regions of the
representation. Further studies, however, should also include links, for instance asking
questions about density and connected components; questions which require some domain
expertise to answer, putting some constraints on the participant population.

Data: A limitation is the number of time steps associated with each dataset. Real-world
data usually contains much more than five steps. Future studies should investigate the
effect of this specific factor, but it already seems reasonable to claim that some features
discussed earlier, such as the capability to directly compare and smoothly transition
between non-adjacent time steps and quickly browse all time steps, should bring even
stronger benefits in situations where the number of time steps is larger. Currently, we
considered networks made of approximately 100 nodes but very large networks and the
more complex tasks associated with them require aggregation and analytical capabilities
that are both complementary to the work presented here and beyond the scope of the
generic navigation tasks considered. Furthermore, larger data sets are likely to be more
complex, which makes them hard to use in a controlled user study, and are more suited to
qualitative evaluations.

Complementary Techniques: We did not fully isolate all factors. Our goal was
to compare the transition and navigation techniques as complementary elements, not to
isolate the effects and contributions of each single low-level interaction technique. We
thus cannot say much about the respective contribution of, for example, small multiples
and animation to performance improvements. Our results in terms of comparison between
plain and staged animations are in accordance with those of Heer and Robertson’s study
about transitions in data graphics (Heer & Robertson, 2007). Archambault et al.’s
study (Archambault & Purchase, 2013) suggests that layout stabilization depends very
much on the task, and that small multiples and animations are rather complementary for
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different tasks. Results from these studies and ours help gain a broader perspective, but
further studies are required to gain a more comprehensive understanding of the various
factors that come into play.

Finally, we did not test for the effect of the graph layout and different layout stabiliza-
tions. However, more extensive studies require more conditions and the usefulness of
quantifying the individual effect for every single technique is questionable, since often
the benefit of a single technique can hardly be defined, independently from others.

4.7. Conclusion

Showing multiple time steps of the network, one after the other, has clear advantages and
disadvantages, as multiple studies have shown. However, the efficiency of animations for
representative tasks from our task taxonomy (Chapter 3) can be improved by a) showing
different changes at different moments (stages), b) highlight certain low-level changes,
and c) complement the transitions with interaction. While evaluating GraphDiaries against
techniques commonly found in visualization systems for temporal graph navigation, we
observed a minor increase in task completion time, that is compensated by a significant
decrease in error rate in favor of animated transitions. The latter improve the perception
of changes and provide users with a rich set of exploration strategies.

Animated transitions should be part of any more general system, such as GraphDiaries
tries to sketch, and be complemented with additional visualizations and navigation
widgets. For the design and evaluation of new techniques, as well as their complementing,
we have proposed a task taxonomy in Chapter 3. The goal of any novel technique,
extension or integration should directly support higher-level tasks, such as exploring time,
tracking elements and perceive complex changes happening to groups of nodes and their
internal connectivity.

Future work in animations and integrating techniques should explore the issue of how
to convey the temporal evolution of node and edge attributes (e.g. edge weight): we want
to extend the scope of GraphDiaries towards the exploration of dynamic multivariate
and hierarchical graphs, whose complexity will require new aggregation, navigation,
comparison and tracking techniques. Still, GraphDiaries is meant to describe simple
but useful techniques and to explore how different techniques support visual exploration
and analysis. Techniques including temporal aggregation and enhancing the display and
summarization in small multiples remain longer term research goals.

A more general problem is network density and the amount of change happening over
time. GraphDiaries as well as most current visualizations and tools (Gephi, TempoVis,
etc.) rely on node-link representations, which become less readable with the number of
links crossing (Ghoniem et al., 2005). As for animations, they become hard to follow
as the number of changing elements increases, especially since he has to keep track of
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all the changes across time steps. The following chapters propose techniques to address
these specific issues.
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RAPHDIARIES provides a platform to integrate different visualization techniques
G and to allow for flexible navigation between times steps of dynamic networks. The
results of our experiment showed that we can effectively use the techniques integrated
in GraphDiaries for the exploration of, for example, social networks. However, many
networks are not as simple and easy to visualize, such as networks representing brain
connectivity. Brain connectivity networks can reflect actual physical connections between
regions of interest (ROI) (anatomical connectivity), aggregated functional correlation
(functional connectivity) and actual signals (effective connectivity). These networks are
usually (i) very dense or even fully connected, (ii) can dramatically change in a short
amount of time, and (iii) edges are weighted and with weights changing over time.

Neuroscientists investigate brain connectivity to answer questions such as how brain
connectivity changes throughout development, with aging, or with physical injury; what
kind of connectivity patterns are required for a particular functionality; and how these
connectivity patterns show variances across individuals and across certain anomaly
conditions. A list of precise tasks is provided by my coauthors (Alper, Bach, Henry Riche,
Isenberg, & Fekete, 2013) in the first section of this chapter. It shows that many of
these tasks can be described as comparing two weighted graphs—either representing two
different brains, or two different types of connectivity in the same brain, or the same brain
at different time steps, relating to different conditions.

The questions addressed in this chapter are the following:

> Which designs allow for effective comparison of two weighted graphs?

> Which techniques are most efficient?
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structural connectivity functional connectivity effective connectivity

Figure 5.1.: Three types of connectivity in the brain: (a) structural/anatomical connectivity,
(b) functional connectivity, and (c) effective conncetivity. The figure shows schematic
brain maps and adjacency matrices. Colors in the matrices indicate the weight of
connection using color mapping (blue for low weight via green and yellow to red for high
weight).

In this chapter we develop several visual designs to allow for visual comparison of two
dense weighted networks, using node-link diagrams and adjacency matrices. We start with
an introduction to brain connectivity and list tasks that are performed by neuroscientists
when investigating brain connectivity. We then discuss the strengths and weaknesses of
existing visual designs for visualizing brain connectivity, weighted graphs, as well as
visually comparing two graphs. After explaining our designs for node-link diagrams and
matrices, we report on the results of a controlled user study that assesses the efficiency of
our two most promising designs.

5.1. Brain Connectivity

Brain analysts investigate connectivity between regions of interest (ROI) in the brain in
order to understand the brain’s functionality and responsibility of particular regions. An
ROI can be anything between a single neuron, neuron populations or anatomically-defined
brain regions. These ROIs are related by different types of connectivity, each of which
has particular characteristics, explained in the following and illustrated in Figure 5.1.

Anatomical connectivity refers to actual axonal fibers between neurons or fiber bun-
dles between regions. Current diffusion weighted techniques detect fiber bundles on a
coarse level. However, invasive tracing techniques can detect actual axonal connections.
Changes in the anatomical connectivity are observed within hours or even days, reflecting
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learning, rebuilding mechanisms after an injury (Cao & Slobounov, 2010) and even aging
(Dosenbach et al., 2010).

The second type of connectivity is functional connectivity, which reflects statistical
correlation and covariance in the activity of these regions; two regions that are always
active at the same time show strong correlation, two regions that exhibit equal changes
over time show strong covariance. Functional connectivity can be meaningful correlated
in time intervals above 10 milliseconds and depends on the user’s activity during this
time.

The third kind of connectivity is called effective connectivity and reflects the actual
exchange of signals between neurons and ROIs while a subject receives stimuli or
performs cognitive tasks, such as observing a picture or reading a text. Signals are
exchanged at a very high frequency and can be recorded during the entire time of an
experiment. Signals are not exchanged symmetrically, thus the network is essentially a
directed graph.

Functional connectivity and effective connectivity result in almost fully connected and
weighted networks, where weight indicates correlation, covariance or strength of signal.
Duration of time steps can be very low, e.g. 2 seconds, while experimental observations
can take up to 5 minutes (see Section 6.6.3 in Chapter 6). Figure 5.1 shows all three types
of connectivity in a schematic representation (top) and what the corresponding matrix
looks like (bottom).

5.1.1. High-Level Brain Connectivity Analysis Tasks

Through a literature survey and a series of one-hour-long interviews with seven neu-
roscientists, we identified a list of major tasks in brain connectivity analysis where
visualizations are already in use or can be used to aid and enhance the analysis:

1. Identify network structures that are responsible for a specific cognitive function:
Neuroscientists examine how our brain carries out specific cognitive functions,
identify the regions responsible or involved, and study their interaction with each
other while executing these functions (Vidal et al., 2012). However, significant
individual variations exist. These variations require the comparison of connectivity
data of large subject groups to be able to identify common network structures.

2. Identify effects of anatomical structure on functional connectivity: Understanding
the effect of anatomical structure on the formation of functional relations is a key
challenge in neuroscience (Honey, Kotter, Breakspear, & Sporns, 2007; Bullmore
& Sporns, 2009). For this purpose, scientists look for correlated patterns across
anatomical and functional connectivity, requiring the simultaneous exploration of
data for both types of connectivity to reveal complex mappings between ROIs.
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112

. Identify alterations in brain connectivity: Brain connectivity of an individual

changes over time—through development and with aging (Dosenbach et al., 2010).
Another instance of alteration in brain connectivity is the development of re-
routings that restore functionality typically after a local injury (Cao & Slobounov,
2010). In addition, changes in white matter fiber connectivity following behavioral
training of a complex skill have also been reported (Scholz, Klein, Behrens, &
Johansen-Berg, 2009). In order to understand the temporal evolution of these
changes, scientists need to compare connectivity data gathered at different instances
in time.

. Identify the existence or the loss of patterns in brain connectivity that are associ-

ated with anomalous conditions: Neuroscientists have already shown that certain
cognitive anomalies are associated with the loss of specific connectivity patterns
(Bassett et al., 2008; Sanz-Arigita et al., 2010). For instance in Alzheimer’s disease,
it is observed that functional connectivity does not exhibit small-world properties
as much as a healthy brain (Sanz-Arigita et al., 2010). Identifying such differences
in connectivity patterns is essential for the diagnosis and treatment of these anoma-
lies, which can be done by comparing the connectivity of the anomalous brains to
healthy ones.

. Identify deviation of an individual’s connectivity from a population mean: The

aforementioned tasks often utilize an ‘average’ brain—the term ‘average’ encom-
passing connectivities that are common to all individuals. The average brain, in
turn, can be used to characterize an individual’s brain by studying the deviation of
it from the average brain.

. Effective brain parcellation and multimodal connectivity analysis: ldentifying

brain structures that act as a unit is an important problem. Automatic parcellation
algorithms, based on statistical likelihood of synchronized activation, are employed
to identify these units. A variety of statistical techniques along with multiple data
sources exist, each yielding different parcellations. For example, an automatic
parcellation based only on functional connectivity data can be refined by taking into
account fiber connectivity (Li et al., 2012), or anatomy-based parcellation can be
validated by functional connectivity relationships between the regions (Beckmann,
Johansen-Berg, & Rushworth, 2009). Thus, different parcellation outcomes are
needed to be compared to verify the robustness of a technique (Worsley, Chen,
Lerch, & Evans, 2005).

. Identify effects of local injury: In clinical applications it is important to predict

the effect of a local injury. Local damage to an anatomical structure can have
multiple implications on functional connectivity due to the loss of indirect as well
as direct connections. Similarly, in image-guided neurosurgery (Archip et al., 2007),
identifying optimal surgical paths that minimize damage induced by intervention
is also important. In order to be able to make these decisions, neurologists look
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at brain connectivity data in a spatial context and observe which anatomical and
functional connections are associated with which specific brain locations.

This summary shows that a large number of neuroscientific problems can be facilitated
with weighted graph comparison tools. Apart from the last task, for which connectivity
data has to be presented in its spatial context (inside the brain volume), all other tasks can
be conducted with non-spatial representations such as 2D node-link diagrams and adja-
cency matrices. Although it is essential for brain connectivity analysis to communicate
spatial context of the data to ease the interpretation, non-spatial representations can prove
more effective for communicating changes in complex connectivity data, as they relax a
set of strong constraints on the visual representation (such as preserving the exact shape
of connections in three dimensions). Hence, tools supporting brain connectivity analysis
have to offer multiple visual representations—each of which is optimal for a specific set
of tasks. In this chapter we focus on connectivity comparison tasks which, at an abstract
level, can be expressed as comparison of two weighted graphs.

5.1.2. Use of Visualizations in Brain Connectivity Analysis

Defined as a correlation matrix between specific locations within the brain volume (ROIs),
functional connectivity data is often visualized as 3D node-link diagrams reflecting the
ROIs’ spatial positions in the brain: ROIs are shown as nodes and weighted edges denote
the pairwise strength of these node relationships (e.g., Figure 5.2(a)). Although the edges
below a certain strength threshold can be hidden, the resulting images are still cluttered
and suffer from the known side effects of 3D rendering such as occlusion (Gerhard et al.,
2011; Dosenbach et al., 2010). To facilitate comparison, two connectivity datasets can be
overlaid within the 3D brain (Worsley et al., 2005), with edge colors denoting correlation
and anti-correlation between the end points. However, the clutter and complexity of the
visual encoding in these spatial/volumetric representations makes it difficult to perform
accurate weighted edge comparison tasks.

An alternative approach is to show the connectivity data as a 2D node-link diagram
whose layout is calculated by multi-dimensional scaling or force-directed algorithms
(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006) (e.g., Figure 5.2(c)). These
layouts remedy some of the clutter problems by eliminating overlaps and reducing the
number of long edges. They are thus adopted especially among those scientists who
practice graph-theoretical analysis of brain connectivity.

The spatial context of the data, however, is still crucial for an effective interpretation of
the data by neuroscientists who are trained to reason with respect to spatial brain regions.
Hence, node-link diagrams are often accompanied with a separate spatial rendering of
the node positions, with nodes on the two representations being matched by region color
and label (Nelson et al., 2010). To preserve the spatial character of the data to some
extent, many 2D connectivity node-link diagrams adopt a biological layout where node
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positions are projections on 2D planes defined by two of the standard anatomical axes
(e.g., ventrodorsal, anteroposterior, left-right; e.g., Figure 5.2(b)) (Achard et al., 2006).
These layouts communicate spatial properties of the data coarsely, helping scientists orient
themselves in the graph, while enabling the use of color for encoding other information
such as change across two states (Richiardi, Eryilmaz, Schwartz, Vuilleumier, & Van
De Ville, 2011; Bassett et al., 2008).

Matrices of functional connectivity as an alternative representation are also popular
(Achard et al., 2006; Gerhard et al., 2011; Sanz-Arigita et al., 2010) and are occasionally
used in the form of small multiples to illustrate trends across different connectivity
datasets (Bassett, Brown, Deshpande, Carlson, & Grafton, 2011; Kramer et al., 2011;
Ginestet & Simmons, 2011). To support direct comparisons, correlation coefficients from
multiple scan states can be shown within nested quadrants of a matrix cell (Thomason
et al., 2011), conceptually similar to the designs by Stein et al. (2010) (cf. Section 2.6).
However, this design makes it hard to focus on a single scan state.

Representing physical entities, fibertracts that constitute anatomical connectivity are
more frequently visualized within the 3D brain volume (Gerhard et al., 2011) (e.g.,
Figure 5.2(d)). Research in fiber connectivity visualization focuses on their similarity
clustering, bundling, and selection in 3D space (Moberts, Vilanova, & van Wijk, 2005;
Sherbondy, Akers, Mackenzie, Dougherty, & Wandell, 2005) as well as on illustrative
depiction (Everts, Bekker, Roerdink, & Isenberg, 2009). While non-spatial representations
for fiber similarity and clustering are also used (Jianu, Demiralp, & Laidlaw, 2009),
neuroscientists reported difficulties with interpreting these representations. Related to
our work, anatomical connectivity can be reduced to a fiber density graph among ROIs
and visualized as a 3D spatial node-link diagram combined with a matrix representation
(Hagmann et al., 2008) (e.g., Figure 5.2(e)—(f)).

So far, the coordinated visualizations of structural and functional connectivity has
received little attention, and existing visualizations focus on spatial representations rather
than supporting abstract graph comparison tasks. Several tools, for example, Connec-
tomeViewer (Gerhard et al., 2011; Li et al., 2012) support visual brain connectivity
analysis using spatial 3D node-link and matrix representations for functional connectivity
and volumetric fibertract representations for anatomical connectivity. Although it is
crucial to communicate the spatial context in brain connectivity analysis for several tasks,
2D non-spatial representations with flexible layouts are more suitable to communicate
differences/changes in the connectivity data in an explicit way. To the best of our knowl-
edge, none of the existing brain connectivity tools supports such a visual connectivity
comparison.
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Figure 5.2.: Visualization techniques for brain connectivity. Left column, functional
connectivity: (a) 3D spatial node-link diagram within the brain volume (courtesy of Erik
Ziegler, Cyclotron Research Centre, Univ. of Liege, generated with ConnectomeViewer
(Gerhard et al., 2011)), (b) 2D node-link diagram with biological layout (Achard et al.,
2006), and (c) force-directed node-link accompanied with a spatial visualization showing
actual positions of the nodes (Nelson et al., 2010). Right column, anatomical connectivity:
(d) fibers within the 3D volume of the brain, (e) fiber density ROI graph as a spatial
node-link diagram (Hagmann et al., 2008), and (f) matrix representation of fiber densities
between ROIs (Hagmann et al., 2008). All images reproduced with authors’ permissions.
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Figure 5.3.: Possible ways of comparing two node link diagrams as illustrated by Gleicher
etal (2011).
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5.2. Designing for Graph Comparison

5.2.1. Design Options

Comparing two graphs first and foremost requires communicating absence or presence
of connections. For several domains, comparison techniques for unweighted graphs
have been proposed, such as to characterize metabolic pathways (Brandes et al., 2004;
Schreiber, 2003), business process models (Andrews et al., 2009) and software evolution
(Collberg et al., 2003). Gleicher et al. (2011) categorise comparison techniques into three
groups and illustrate them with node-link diagrams (Figure 5.3): (a) juxtaposed views
where two graphs are presented side-by-side and often complemented with interactive
techniques that highlight the matches between the two (Andrews et al., 2009), (b) super-
imposed or overlaid views with representations slightly offset, and (c) a single layout
for both graphs with differing edges and nodes coded by color (Andrews et al., 2009;
Hascoét & Dragicevic, 2012; Erten et al., 2003). According to Gleicher et al. (2011),
several of these techniques can be used in conjunction in order to overcome individual
weaknesses. To the best of our knowledge, adjacency matrices have not yet been used to
compare two weighted or un-weighted graphs.

Only a single study, conducted by Zaman et al. (2011), compared juxtaposed views,
direct differencing, animated transitions, and toggling (switch between graphs without
animation). The results show that juxtaposition performed worst, while animation was
best. Informal feedback that we gathered from our initial implementation, indicates that
side-by-side views were indeed much slower and error-prone compared to the overlaid
views—due to the fact that the distance to be covered even for simple comparison tasks
is much higher in the side-by-side view compared to the overlaid views (especially for
element lookup). The difference increases tremendously as the graphs get larger.

Explicit encodings may be the simplest to read since they encode actual increase or
decrease in weight where they happen. However, the problem with changing edge weights
is that we need information about both: absolute edge weight for the two graphs, and
relative difference. A single visual variable in an explicit encoding could only either
encode absolute or relative change, but hardly both.

Edge weight is usually mapped to the length of an edge with inverse proportions
(Collberg et al., 2003), or mapped to line stroke width, or is encoded using color and
translucency. In matrix visualizations, the weight of a connection is mapped either to the
color of the corresponding cell or to the size of a glyph inside the cell (van Ham et al.,
2009).

We finally opted for conceptual overlaid views, since both absolute values for edge
weight can be shown and users can infer the difference based on visual contrast.
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Figure 5.4.: Examples of designs for node-link for comparison of weighted graphs.

5.2.2. Designs for Node-Link Diagrams

The design space for graph comparison, based on node-link diagrams, is limited to visual
variables of the link lines: (i) color (intensity or hue), (ii) translucency, (iii) line width,
and (iv) stroke patterns. Other variables such as curvature (Henry Riche et al., 2012) are
less useful because the continuous variable of edge weight would be hard to read.

For our designs, we want to keep the visual variables used for this purpose at a
minimum. However, the problem is to distinguish between both graphs in the overlaid
view. Edge thickness to encode weight increases the space requirements and makes heavy
edges very salient, biasing perception. Moreover, when node-link diagrams represent
dense graphs, it is important to keep edge thickness at a minimum.

We examined two other options for overlaid edge weight encoding. First, we considered
two constant-width parallel edges with two different colors (blue and red)—each encoding
the edge weight from one graph (Figure 5.4(a)). Our second option was dashed lines
for edges, while color for each graph alternated (Figure 5.4(b)). Initially, we varied
dash-length according to edge weight in the corresponding graph, but eventually encoded
edge weight by lightness, as in Figure 5.4(a).

We tried both alternatives with our datasets and found continuous parallel lines to be
more legible, especially for dense graphs. Dashed lines caused much change of color
through the entire visualization, making the overview seem cluttered and edges of one
graph difficult to isolate.

5.2.3. Designs for Matrices

Matrices provide space for much more complex glyphs inside cells and potentially encode
information more efficiently. Different cell designs for edge weight comparison across
multiple time steps in dynamic networks have been proposed. Yi et al. (2010) use bar
charts (Figure 5.5(a)), while Brandes and Nick (2011) use Gestaltlines (Figure 5.6(b))
that encode edge weight using angle and length of vertical strokes (each stroke represents
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<\
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Figure 5.5.: Glyph designs to indicate changes in time series: (a) TimeMatrix (Yi et al.,
2010), (b) Gestalt Lines (Brandes & Nick, 2011) (c) Time Series as small multiples (Fuchs,
Fischer, Mansmann, Bertini, & Isenberg, 2013)
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Figure 5.6.: Examples of all visual encodings examined to facilitate the comparison of
weighted graphs.

one time step). Gestaltlines are powerful in showing general trend and outliers, but we
consider even two strokes (one for each graph) too hard for comparison.

Similar to Yi et al. (2010), we examined color-coded bar charts shown within the cell to
show the absolute weight from each graph (Figure 5.6(a)). However, this design produced
vertical patterns and complicates comparison of time steps. We investigated alternative
ways of dividing matrix cells into two regions and using a separate color scheme for each
region to encode weight from the corresponding graph. Horizontal divisions produce
the same problem and we tried diagonal divisions (Figure 5.6(b)) as used in (Bach et
al., 2013). However, we found that even with only two graphs, all divisions produced
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Figure 5.7.: (a) Final encodings for node-link diagrams and matrices on the same data
set. (b) Details of the selected edge weight encoding in matrices (left) and node-link
diagrams (right), as appearing the the handout accompanying our study (The study used
a red-green color encoding, while we ensured none of the participants was color blind).

patterns interfering with the cell boundaries of the matrix, making it hard to distinguish
individual cells.

Next, we tried to encode weight using scaled glyphs such as concentric circles (Figure
5.6(c)). Here the radius of the inner circle indicates the smaller value of both weights,
while the outer circle indicates the larger value. A blue outer circle signifies increase in
weight—from the first to the second graph—a red circle signifies decrease. We did not
pursue this approach further because of the difficulty of identifying a single connectivity
state. Besides, when the difference is minimal, the borders produced between inner and
outer circles became illegible within the limited cell space.

Finally, we adopted an inner and outer squares division (Figure 5.6(d)), where the edge
weight from each graph is mapped to the color density of the corresponding region. We
considered this approach efficient because it did not obscure the matrix’ grid structure.
It also allowed us to reduce the number of visual variables, by using brightness alone
to encode weight; graphs are simply differentiated by inner and outer rectangle. Color
hue is free to potentially encode other data attributes. More important, brightness can
be difficult to compare across color hues. As a natural outcome of this encoding, the
amount of change is mapped to the contrast between inner and outer regions of a cell,
easily enabling viewers to differentiate regions with high and low change in edge weight
change.
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Figure 5.7(a) summarizes the two final designs for node-link diagrams and matrices.
Figure 5.7(b) appeared in the hand-out sheet accompanying our user study (see next
section), and explaining both encodings to participants.

5.3. Controlled User Study

We decided to run a controlled user study to asses the efficiency (accuracy, task completion
time) of our two final designs for node-link diagrams and matrices when comparing two
graphs (G, G») with different edge weights. Our goal was to assess how both techniques
scale with changing graph sizes and edge densities across different comparison tasks,
to inform designs that would utilize both representations. Representative tasks for the
study were derived from common tasks in analyzing differences in brain connectivity, as
previously described.

5.3.1. Techniques

We used our visual encodings for overlaying two graphs in node-link and matrix visu-
alizations. In all techniques, the entire information is shown in one full-screen window
without a need to zoom or pan. This design eliminates any confounds due to navigation
issues rather than reading of the visual representation to complete the task.

1. Node-Link Diagram—Overlaid (NL): A single node-link diagram shows edge
weights in both graphs using two parallel edges. Connections that are present in
G are encoded in green colored edges, while connections that are present in G,
are encoded with the red colored edges (Figure 5.8(a)). Thus, a single green edge
represents an edge that was only present in G, while a single red edge represents
an edge that was only present in G,. The absolute edge weight is encoded using
brightness as in the matrix condition, and we ensured that values for the same edge
weight had the same brightness. Layout was a force-directed layout.

2. Matrix—Overlaid (M): A single adjacency matrix representation shows edge
weights in both graphs. Each matrix cell (12 x 12 pixels) contains an inner region
encoding the weight of the edge in G and an outer region encoding the weight of
the edge in G, (Figure 5.8(b)). The absolute weight is mapped to color brightness
using a perceptually linear scaling. A cell with a light inner and dark outer regions
indicates an edge with a high weight in G and a low weight in G,. Vice versa, a
cell with a dark inner region and a light outer one indicates an edge with a high
weight in G, and a low weight in G;. Since one of our tasks required identifying a
specific region, we reordered rows and columns of the matrix to ensure that nodes
were placed in the same regions in both the matrix view and the node-link diagram.
The tradeoff of this reordering is, however, that it did not ensure a close placement
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Figure 5.8.: Example from our controlled study: (a) node-link and (b) matrix representa-
tion of the same data (small, dense) for the region identification.

of items that need to be compared during other tasks, as other reordering algorithms
could have.

5.3.2. Tasks

We identified three generic comparison tasks, which can be related to the taxonomy in
Chapter 3. In fact, all tasks were compound tasks and the temporal WHEN dimension
referred to these graphs. These tasks require users to assess changes in edge weights at
different levels of detail: from a single element to the overview of a large portion of the
data. Below, we describe each task and the optimal strategy for achieving it.

Assess weight change of a node’s connections (Trend): Given one highlighted node,
does the overall edge weight to all of its neighbors decrease or increase from Gy to G,?
Participants completed this task in three steps: (1) they needed to identify all connections
to the highlighted node (WHERE), (2) they needed to assess the change in weight for
each connection (WHAT), and (3) they needed to estimate the aggregated change for all
these connections. To avoid confounds in the study, we made sure that all trials exhibited
a clear increase or decrease trend. To prevent participants from selecting one option at
random, we offered an additional “I don’t know” option and instructed them to select it if
their confidence was low. We excluded these trials from the analysis.

Assess connectivity of common neighbors (Connectivity): Given two highlighted
nodes, how many of their common neighbors in G| are still common neighbors in G, ?
Participants completed this task in two steps: (1) they needed to find common neighbors,
meaning the nodes that are connected to both of the highlighted nodes (WHERE) and
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(2), among them, they needed to count how many are present in both graphs (WHAT).
Participants selected an option from O to 6.

Identify the region with most changes (Region): Identify the region showing the most
variation between G, and G1? For this task we provided users with simple interaction
tools to view regions. In the node-link case, we create a 4 x 4 grid laid over the node-
link diagram and assigned each node to the region it fell into. As participants moved
their mouse pointer on the diagram, the corresponding region boundary appeared in
light blue and nodes of the region became highlighted (Figure 5.8(a)). In the matrix
condition, we used the same 16 regions, ordering the nodes linearly according to the
regions they belonged to. As participants moved their mouse pointer on the matrix, the
region boundaries were highlighted (Figure 5.8(b)).

Participants completed this task by browsing each region successively (WHERE),
estimating the region with highest edge weight variation (WHAT). To avoid confounds in
the study, we ensured that all trials presented a region with discernably higher variation
than the rest. Participants clicked on a region of their choice.

5.3.3. Data

We used synthetic data in order to control for data size, network density, and amount
of change. We generated four types of uniform networks with either 40 (Small) or 80
(Large) number of nodes, and with either 5% (Sparse) or 10% (Dense) edge density. For
each data type, we created four isomorphic networks per trial which were used across all
tasks. We created five additional datasets for training with a Small, Sparse metric. The
edge weights were assigned arbitrarily to each of the generated graphs, ranging from 0O to
1 in increments of 0.2. We created comparison graphs by copying the original weighted
graphs and then randomly perturbing the weights of 70% of the edges in order to ensure
edge weights that remain constant across the graphs.

5.3.4. Participants and Setting

11 participants (1 female) participated in the study with a mean age of 30.2 years.
All participants had normal or corrected-to-normal vision, without color deficiency.
Participants were graduate students or researchers, familiar with graphs, but not with
matrices. The experiment was conducted in a quiet room during the day. The computer
used for the study was a 2.4 GHz Dual-Core HP Z800 workstation equipped with a 30
inch screen with a 2500 x 1600 pixel resolution. The visualization area was restricted to
a window of 1500 x 1350 pixels. Participants interacted with a mouse and keyboard to
complete the tasks.
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5.3.5. Experimental Procedure

We used a within-subject, full-factorial design: 2 Techniques x 3 Tasks x 2 Sizes x 2
Densities. Each condition was repeated four times. We counter-balanced the techniques
(M, NL) using a Latin square. Tasks appeared always in a fixed order of increasing
complexity (Trend, Connectivity, and Region). Datasets also appeared in a fixed order
from simple (Small and Sparse) to more complex (Large and Dense). For each trial, we
measured accuracy and task completion time.

Before the controlled experiment, we instructed participants about the visualizations
as well as the weight encoding used in each, making sure none of them had any vision
problems. We asked them to complete trials as accurately and quickly as possible. Before
each new technique and task, five training trials were performed. Participants completed
the first two following the explanations of the instructor. They answered the remaining
trials on their own unless they had further questions. Trials were not timed during the
training. After training trials, participants completed the 16 timed trials (2 Size x 2
Density x 4 Repeat) required for each condition (technique X task). For all conditions,
we collected a total of 96 trials per participant (excluding training).

To keep the experiment within a reasonable time, we limited the time per trial to 30
seconds (measured as a feasible value in a pilot study) and notified participants before the
experiment. After 20 seconds, the screen flashed and a time counter appeared below the
visualization for the remaining 10 seconds. To provide their answer, participants pressed
the space bar to view the dialog box with the answers. After this point, the timer stopped
and the visualization disappeared. Participants were instructed to take breaks if needed
when no visualization was shown on the display. None of the participants took a noticable
break nor reported any fatigue.

5.3.6. Hypotheses

Our hypotheses for the experiment were the following:

o H1—For the Trend task, we expect Matrix to outperform (accuracy and completion
time) Node-Link for high-density datasets. We expect that occlusion problems in
Node-Link would get severe in Dense cases, causing more errors. We also believe
that the spatial encoding used in Matrix would prove easier to remember than the
color encoding used in Node-Link, leading to faster answers.

e H2For the Connectivity task, we expect Matrix not to outperform Node-Link
because we believe that participants might need to compare two distant columns
or rows in Matrix, whereas the force-directed layout in Node-Link ensures that
connected nodes are in closer proximity.
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Figure 5.9.: Task error and task completion time per task for matrix (blue) and node-link
(red) techniques. Error bars represent +/— 2 standard errors.

o H3—For the Region task, we expected Matrix to outperform Node-Link (accuracy

and completion time). In Matrix, all connections of nodes in one region are

contained within the region boundary. However, in Node-Link, participants had to

consider links that are drawn across region boundaries, leading to more errors and

slower answers.

e H4—Opverall, we expected Node-Link to decrease in performance (accuracy and

completion time) for Dense datasets, as edge density causes many edge crossings,

decreasing the legibility of this representation.

5.3.7. Results

We used a repeated-measure analysis of variance (RM-ANOVA) to analyze the collected

accuracy and time performance data. We performed the RM-ANOVA on the logarithm of

the task times to normalize the skewed distribution, as is standard practice with reaction

time data. The analysis of the time performance is reported for correct answers only.

Accuracy The accuracy results are summarized on the left side in Table 5.1 and

are shown in Figure 5.9(a). We found a significant effect of accuracy for Technique

Accuracy Time
Matrix Node-Link  p-value || Matrix Node-Link p-value
All tasks* 88.5(0.9) 69.3(2.0) <.001 || 9.3(0.3) 11.0 (0.4) <.001
Trend * 95.5(1.2) 85.2 (4.3) <.05 || 7.1(0.3) 8.2 (0.5) not significant
Connectivity * | 90.3(1.0)  70.5(2.5) <.0001 || 11.7 (0.5) 14.3 (0.7) <.0001
Region * 79.6 2.1)  52.3(45) <.0001 || 9.1(0.5) 11.1 (0.7) <.01

Table 5.1.: Means of accuracy and time in percentages. Standard error is indicated
in parentheses. Significant differences are indicated by *. More accurate results are

highlighted in bold.
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(F1,10) = 55.32, p < .0001) with a large effect size (TI;% =.85). Overall, Matrix is about
20% more accurate than Node-Link. The RM-ANOVA also revealed a significant effect
of Task (F{350) = 28.67, p < .0001) with large effect size (nﬁ =.74), and a significant
effect of the interaction Task x Technique (F(3 20y = 4.34, p < .05) with a large effect size
(n, = .30). Pairwise comparisons revealed that Matrix is more accurate than Node-Link
for all three tasks.

We also found a significant effect of Size (F(;,19) = 18.69, p < .01) with a large effect
size (ng =.65) and Density (F(; 10) = 61.00, p <.0001) with a large effect size (771% =.86).
As expected, accuracy decreases for Large or Dense networks. The interaction Technique
x Size (F(1,10) = 6.5, p < .05) is significant with a large effect size (nl% =.39). Node-Link
is affected by Size, losing about 25% accuracy in large datasets compared to small ones.
In contrast, Matrix has less than 1% loss in accuracy. Pairwise comparisons indicate that
Matrix significantly outperforms Node-Link for large networks across all three tasks. The
results indicate that both Techniques are affected by Density, Matrix losing about 10%
accuracy, Node-Link about 20%. Pairwise comparisons indicate that Matrix significantly
outperforms Node-Link both for Sparse and Dense networks across all three tasks.

Completion Time We analyzed the completion time for correct answers only, using
a mixed linear model capable of handling missing data cases. We excluded about 10%
incorrect trials for Matrix and 30% for Node-Link (out of 528 total trials per technique).

The completion time results are summarized on the right side in Table 5.1 and are shown
in Figure 5.9(b). We found a significant effect of time for Technique (F{; 10) = 28.40,p <
.0001). Overall, Matrix is 15% faster than Node-Link. We also found a significant effect
of Task (F320) = 183.25,p < .0001) and Technique x Task (F30) = 3.82,p < .05).
Pairwise comparisons reveal that Matrix is faster than Node-Link for Connectivity and
Region tasks.

We also found a significant effect of Size (F{; 10y = 139.19, p < .0001) and Density
(F1,10) = 30.94, p < .0001). As expected, completion time increases for Large or Dense
networks. The interaction Technique x Size (F{; 10y = 9.84, p < .01) is significant. Node-
Link is particularly affected by Size. For Large datasets, the completion time increases
by about 60% for Node-Link and 40% for Matrix. For Dense datasets, the completion
time increases by about 25% for both techniques.

User Preference Users rated their preference on a 5-point scale from -2 (strong
preference for Node-Link) to +2 (strong preference for Matrix). We analyzed these ratings
using a z-test. Results reported in Table 5.2 reveal that there is a significant difference in
user preference between Techniques. Users preferred Matrix overall (p < .0001). In fact,
7 out of 11 participants ranked Matrix as the most effective representation (maximum
rating of 2). Z-test also showed that the user preference was significantly different for the
Connectivity (p < .0001) and the Region tasks (p < .0001). For these tasks, Matrix was
preferred to Node-Link.
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[ Preference p-value
Overall* 1.25 (0.26) < .0001
Trend 0.63 (0.38)  not significant
Connectivity * | 1.31 (0.23) < .0001
Region * 1.36 (0.21) < .0001

Table 5.2.: User preference (means of ratings from -2-strongly node-link, -1-somewhat
node-link, O-indifferent, 1-somewhat matrix, 2-strongly matrix), the standard error is
indicated in parentheses. Significant differences in user preference are indicated by *.

5.3.8. Discussion

The results of our controlled experiment indicate that matrix representations are more
effective than node-link diagrams for encoding edge weights and performing comparison
tasks. While we expected that it would be the case for the Trend (H1) and Region (H3)
tasks in the Dense datasets, we were surprised to find significant differences in accuracy
across all tasks for both sparse and dense networks. We did not expect a significant
performance difference across techniques for Connectivity (H2). While we did not find
any significant difference in completion time for correct answers, the results indicated
that matrix outperformed node-link in accuracy, contradicting (H2).

Our results are in accordance with the study by Ghoniem et al. (2005). Besides
that we compared particular designs for graph comparison on node-link diagrams and
matrices, our tasks involved multiple graph elements; spotting a particular region in the
graph, requires to entirely observe the representation and spot higher level visual patterns.
However, we did not test for path finding tasks, since such tasks are generally hard to
perform with adjacency matrices (Ghoniem et al., 2005).

Our results further show that participants unfamiliar with matrices were able to un-
derstand our cell encodings and to map abstract tasks to visual tasks (see Section 3.6).
We originally thought that comparison in matrices may be error-prone since the rows
or columns to be compared may be far away. Instead, we observed that the linear ar-
rangement of edges (cells) in the matrix allowed people to inspect each of the candidate
neighbors successively. In contrast, despite common neighbors being placed closer to-
gether in space in the node-link diagram, performance suffered from the less systematic
manner to count them, leading to a decrease in accuracy.

While we exptected the decrease in performance for dense node-link diagrams (H4),
we did not expect the strong performance decrease for large networks with node-link
diagrams. We believe that this happened because the total number of edges increases
quadratically with a linear increase in number of nodes, although the graph density
remains the same. The total number of links shown in large sparse datasets, thus, is much
higher than small sparse datasets. To offer a similar visual complexity in small and large
graphs, we could envision to control the edge density per display area unit.
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5.4. Conclusions

The findings of the study indicate that, for edge weight comparisons across two networks,
node-link representations are more error-prone and less readable than matrices. The
implications are three-fold.

Brain Analysis Scientists should adopt matrix representations to ensure better accu-
racy when performing comparison tasks. Our findings are encouraging to develop proper
solutions that can combine matrices with spatial maps of the brain, which is important for
brain analysis.

Network Density The first point to consider relates to the datasets’ density. While
we tested graphs with connection densities of 5% and 10%, most brain networks are fully
connected graphs with a wide range of weights. For certain tasks, especially overview
and topological exploration tasks (WHERE, WHAT), it is necessary to observe the full
range of edges; the general distribution of weight and its differences, as well as clusters
and regions of lower edge weight. Brain analysis currently use a visibility threshold on
the edge weight, in order to make node-link diagrams readable. Yet, as Ghoniem et al.
(2005) and our study suggest, the reasonable threshold for node-link diagrams is very
high, i.e. few edges can remain visible.

Dynamic Networks Comparing graphs can help exploring dynamic networks by
comparing individual time steps. The matrix design can be integrated into GraphDiaries
to show directed differences between time steps in the network view. It remains to be
investigated how many graphs can be directly compared with our glyph design.

ek
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ENSE dynamic networks with changing edge weight, such as brain connectivity
D networks, pose numerous challenges to visualization interfaces. The last chapter
proposed one technique for one set of tasks (direct comparision of two time steps).
Eventually, many different visualization and interaction techniques may be required to
support the wide range of tasks and account for a network’s complexity. For example,
matrices are used to effectively visualize dense topologies; glyphs inside matrix cells
(e.g. Brandes & Nick, 2011) or timelines can show temporal evolution of edge attributes;
difference views allow for direct comparison, while animations help to track changes over
a longer period, and allow a user to quickly jump between individual views of time steps.

Multiple techniques can always be combined and integrated into an interface in order
to improve its power and task coverage, but at the cost of simplicity and usability.
Highly specialized interfaces with powerful functions require learning and may only be
manageable by experts, who have learned to read the visualizations and use different
techniques, as well as aggregate information across visualizations. Generally speaking,
the more powerful the interface becomes, the more effort is required by users to manage
it—or, the less willing they are to learn and use it. Yet, we must build interfaces that
remain simple while supporting a wide variety of tasks.

In this chapter, we address the following two research questions:

> How to manage the tradeoff between power and simplicity in network visualization
interfaces?

> How to support exploration of dense dynamic networks with changing edge at-
tributes?
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To address these questions, we developed the Matrix Cube, an easy-to-understand
visualization and interaction model to visualize and explore dynamic networks. Matrix
Cubes result from stacking adjacency matrices for each time step in the network, forming
a space-time cube (Hagerstrand, 1970; Kraak, 2003). 3D visualizations suffer from
numerous problems, including perspective distortion, occlusion, and the need for specific
interaction techniques (cf. Shneiderman, 2003; Robertson, Card, & Mackinlay, 1993).
However, Matrix Cubes are not 3D visualizations; they serve as a model, a metaphor, and
a design space to create and relate better readable 2D visualizations (views). Each view
supports certain tasks by either showing the cube in a particular way, or by showing only
particular parts of it. The views are conceptually—and visually—related by the cube,
making it easy to navigate between views and understand which information they show
and how they show it.

In order to create 2D visualizations from the cube, users interact with it. The Ma-
trix Cube and associated interactions are inspired by the way people comprehend and
manipulate physical cubes. Users can change their perspective on the data by rotating
and projecting the 3D cube, or decomposing it using operations such as slicing and
filtering. These operations lead to various 2D visualizations, that offer a set of coherent,
easy-to-relate views on the data. The 3D view of the cube provides an overview of the
data, as well as a visual metaphor for understanding transitions and pivoting between
views. Meanwhile, the 2D views derived from the cube support more detailed analysis of
specific aspects of the network and entities that constitute it.

In order to allow for interactions on the cube and employ visual mappings, we imple-
mented a system called Cubix. Cubix supports several predefined views, quick navigation
between them and several visual mappings, making it easy to handle the cube and explore
the data. Cubix further features animated transitions that show how the cube is rotated
and decomposed.

6.1. The Matrix Cube

The Matrix Cube is a representation of dynamic networks with associated time series to
edges (e.g. edge weight). Let G = (N,E,T,W) be a dynamic network with a set of nodes
N, a set of edges E between nodes in N, and a set of time steps 7. W is a function that
maps a weight to every edge, for every time.

The Matrix Cube is created by stacking adjacency matrices in chronological order, one
for each time step, as illustrated in Figures 6.1(a) and 6.1(b). The cube consists of two
dimensions corresponding to the network nodes (node dimension) and one dimension
containing the network’s time steps (time dimension). In our representation, node dimen-
sions are colored red, while the time dimension is blue. For the sake of simplicity and
demonstration, here we focus on undirected networks, where matrices are symmetric to
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Figure 6.1.: The Matrix Cube. (a) Each time step of the network (1,2,3,4), is represented
as an adjacency matrix. (b) The Matrix Cube results from stacking those matrices. Red
edges of the cube hold nodes and correspond to the rows and columns of the constituent
adjacency matrices; blue edges of the cube hold time steps. (c) Slicing the cube along
one of the node dimensions yields node slices.

the diagonal. An extension towards directed networks is straightforward and is briefly
discussed in the end of this section.

6.1.1. Parts of the Cube

This section further describes the three major parts of a Matrix Cube and what information
they encode: cells, slices and vectors.

Cells A cell c;j € (N x N x T) in the Matrix Cube exists for each edge ¢;;; between
nodes i and j at time 7.

Slices A slice in the cube is a 2D array of cells. There are two types of orthogonal
slices in the Matrix Cube:

e Time slices 7; exist along the cube’s time dimension and correspond to adjacency
matrices for any time step ¢ (Figure 6.1(a)). Time slices have the dimensions N X N.

e Node Slices V; exist along each of the cube’s node dimensions and represent the
dynamic ego network of node i. Node slices have the dimensions N x T (Figure
6.1(c)). The cube contains one node slice per node in the network. Rows in a node
slice correspond to all nodes in N while columns correspond to time steps in 7.
A cell in the node slice for node i shows all edges between i and the nodes in the
slice’s rows, for any time.

Vectors Cells are 0-dimensional and slices are 2D structures in the cube. 1-dimensional
structures are called vectors and contain a 1-dimensional array of cells. The Matrix Cube
contains two types of vectors which are orthogonal:
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o Time vectors contain all cells representing an edge between the same node pair
over time; @ = [cijo,Cij1,.--CijT]. A time vector hence describes the evolution of
the connectivity between two nodes. Empty places in a time vector indicate that an
edge is not present at that moment.

e Neighborhood vectors contain all the cells representing incident edges of a node;
Bic = [ciors Cites ---Cine] A neighborhood vector B, corresponds to a row or a column
in the adjacency matrix (time slice) for time ¢. It contains all incident edges for a
node i at a time ¢.

6.1.2. Matrix Reordering

General methods for matrix reordering have been mentioned in Section 2.4.1. Since the
Matrix Cube is a static structure it avoids the problem of stabilizing the mental map for
each time point. If individual time slices were to be reordered, consistency of time vectors
and node slices would be violated. Similar to the global layout in dynamic node-link
diagrams, the Matrix Cube has one global ordering, which is the same for all time slices.

Brandes and Nick (2011) use a block modeling approach (Doreian, Batagelj, & Ferligoj,
2005) to reorder a matrix that visualizes a directed weighted dynamic network (Figure
2.28(c), Section 2.6). Block modeling requires a weight w;; for any pair of nodes i and j.
In the case of a directed networks, Brandes and Nick calculate w;; as the sum over the
individual weights w! ; (weight w from node i to node j in time 7 € T', with wh ;> 0):

T
L tooat
Wij = Z\/ Wij Wi
t=1

Cubix currently supports the following reordering methods:

1. alphanumerical on the node names to help finding nodes,

2. reverse Cuthill-McKee (Cuthill & McKee, 1969): an algorithm that tries to min-
imize the matrix bandwidth and which yields good results for sparse matrices.
It starts with a low-connected node and subsequently choses neighbors with the
highest number of common neighbors.

3. Traveling salesman resolver: models the linear matrix ordering as finding the
shortest path between points with a defined distance. Distances between nodes are
the euclidean distances between row vectors. To find the shortest path, we use the
implementation of Lin-Kernighan heuristic (LKH, 2012), described by Helsgaun,
2000).

4. Optimal leaf ordering first requires a hierarchical clustering that results in a linear
order of the leaves (nodes). Then leaves in the clustering are ordered to minimize
the distance d;; between any two adjacent nodes. Clustering in Cubix is calculated
using the HAC java implementation (HAC - A Java class library for hierarchical
agglomerative clustering, 2013). First, it calculates a binary clustering, based on
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Figure 6.2.: Illustration of (b) Matrix Cube for directed networks (a), in row-major
notation (edges point from rows to column nodes). (c) Vertical node slices contain
incoming edges (In-slices), (d) horizontal node slices contain outgoing edges (Out-slices)

the euclidean distances between nodes (rows/columns). Then, the clusters are
ordered to minimize the distance between adjacent leaves in the clusters. This
optimization is done with the Bar-Joseph algorithm for ordering binary hierarchical
clusters (Bar-Joseph et al., 2003).

Since we do not yet visualize directed networks with the Matrix Cube, for the distance
w;; between two nodes i and j we simply accumulate the absolute values of their weights
over time:

1 &
Wij = m't;W;’j

The values of w;; are then useds to calculate the euclidean distance d;;:

N
dij= [ Y (Win —wjn)?

n=1

6.1.3. Directed Networks

For directed networks that allow only one edge between two nodes i and j, that edge
can appear twice in each time slice; as cell ¢;j; and as cell ¢ ;;;, while edge direction must
be encoded visually (e.g. color). For such networks, no extensions are required to the
previous definitions of the Matrix Cube. Section 6.6.3 illustrates such a network.

For directed networks that allow for bi-directed edges, our definitions can be easily
extended. Since an edge can only appear as one cell in a time slice, matrices can be
read from rows to columns, for example (row-major notation). Consequently, we would
differentiate between horizontal and vertical node slices in the cube. Vertical slices
contain all incoming edges and horizontal slicess contain all outgoing edges. There would
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Figure 6.3.: Cubix Ul screenshot. a) Cubelet Widget, b) Cell color encoding options, c)
Cell shape encoding options, d) Additional cell options, e) Matrix ordering options, f)
Time range slider, g) Cell weight filter with histogram indicating edge weight distribution,
h) Cell opacity slider for filtered (F) and visible (V) cells. i) General edge visibility
options, j) transition speed slider.

further be two time vectors between any node pair (one for each direction) and two types
of neighborhood vectors; one comprising incoming edges at a specific time, and one
comprising outgoing edges at a specific time. These additional slices and vectors describe

additional views in our design space.

6.2. Cubix

The Matrix Cube is a rich model to describe dynamic networks. Cubix is a system
visualizing dynamic networks with the Matrix Cube. Its interface is shown in Figure 6.3,
with the Matrix Cube in the center. Users interactively manipulate the cube by applying
operations to it. Different operations can be described to (i) derive meaningful 2D views
that emphasize particular dimensions of the data, (ii) filter cells, and (iii) apply different
visual mappings to cells’ color and size. This section summarizes the main concepts of
Cubix, while a walkthrough follows in the next section (Section 6.3), illustrating how
Cubix supports the exploration of dynamic networks.
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6.2.1. Design Principles

Cubix is based on the following design principles:

D1:

D2:

D3:

D4:

3D as a pivot — As already stated in the introduction of this chapter, 3D represen-
tations are hard to visualize on two-dimensional screens. Cubix is about applying
operations on the cube that result in 2D visualizations. Still, explicitly showing the
3D cube has advantages: (i) it explicitly conveys the cube-based model to the user,
(ii) it provides an overview of the data along all dimensions, and (iii) it serves as a
pivot visualization when switching between views.

Limited number of views — The possible number of operations on the Matrix
Cube as well as the views that can be derived by decomposing the cube and
arranging its parts is potentially huge. In Cubix, the number of operations and
views is constrained in order to keep navigation simple and manageable.

Easy navigation — Some views require multiple operations. For instance, laying
out slices side-by-side requires specifying the slicing direction (time slices or
node slices), and moving them to their appropriate position in 3D space. With the
Cubelet @', we provide a widget for quick navigation between most predefined
views, which are also accessible via keyboard shortcuts.

Animated transitions — Changes between views on the cube are smoothly ani-
mated, providing a good level of perceptual continuity during transitions, which
helps users understand the relationship between views as well as track elements
across them.

6.2.2. Views and Operations

In order to support exploration and create 2D views, Cubix currently supports several

operations, illustrated in Figure 6.4. Most of them lead to particular views on the data,

others are used to adjust the cube’s appearance. Operations are performed on the cube or

its slices and change the geometry of the cube. Operations are grouped into six major

categories:

1.

5.

Extraction includes the extraction of individual cells, time and neighborhood
vectors as well as both types of slices; time and node slice.

Projection flattens the cube along one dimension; time flattening or node flattening.
Vectors in each direction get flattened into a single visible cell.

Shift includes the translation of time and node slices along all three spatial dimen-
sions.

Rotation includes the rotation of the cube along all three spatial dimensions and
the rotation of individual slices along the vertical spatial axis.

Filtering is the filtering of cells/edges according to their weight.

I Circled letters refer to interface components in Figure 6.3
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Figure 6.4.: Operations on the Matrix Cube, supported in Cubix.
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Figure 6.5.: Cubix View design space. Columns indicate operations applied to the
cube. Rows indicate operations applied to time (red X red) and node slices (blue X red),
respectively. (a) 3D view, (b) time-projection view, (c) node-projection view, (d) time small
multiples, (e) node small multiples, (f) time-slice-rotation, and (g) node-slice-rotation.

6. Time Coloring colors cells according to where they are located in time. All cells
of the same time slice are get the same color assigned.

Some of these operations are used to create the views (D2) in Cubix, others are applied
interactively by the user. Figure 6.5 shows the set of, each of which can be further
adjusted. View names have been chosen to consistently to describe a view design space.

(a) 3D view: The Matrix Cube is shown in 3D space, using a perspective projection.

The virtual camera can be everywhere around the cube (Figure 6.5(a)). The 3D
view is the default view and does not require any particular operation. It can be

136



6.2. Cubix

Verex Slices Time Slices Time Slices Wartex Slices
() (b) (©)

Figure 6.6.: Different states of the Cubelet widget indicating the current view of the Matrix
Cube. (a) The N x N face is shaded and selected slices highlighted, (b) slicing along the
time dimension with selected slice highlighted, and (c) slicing along the node dimension.
Red slices indicate slices the user has selected, while the others are hidden.

adjusted by rotation, filtering, slice, vector and cell extraction. Extraction and filter
operations are not exclusive but complement each other.

(b) Time-projection view: The virtual camera orthogonally faces a cube’s side so that
the entire cube is projected onto the N x N plane (Figure 6.5(b)). Using orthogonal
projection, temporal information is generally lost to the benefit of showing clearly
the network topology.

(c) Node-projection view: The virtual camera orthogonally faces a cube’s side so
that the entire cube is projected onto the N x T plane (Figure 6.5(c)). Using
orthogonal projection, topological information is generally lost to the benefit of
giving a glimpse of the overall temporal evolution of the network.

(d) Time small multiples: This view extracts all time slices and shifts them so that
they are placed side by side on the screen (Figure 6.5(d)). This view shows the
network’s state at any point in time (in 7).

(e) Node small multiples: This view extracts all node slices and shifts them so that
they are placed side by side on the screen (Figure 6.5(e)). It shows the evolution of
every node over time.

(f) Time-slice-rotation: This view is a focus+context view that rotates one or more
time slices in the context of the node projection view (Figure 6.5(¢)).

(g) Node-slice-rotation: This view is a focus+context view that rotates one ore more
node slices in the context of the time projection view (Figure 6.5(f)).

6.2.3. View Navigation with the Cubelet Widget

To obtain a view, users do not need to perform all the necessary operations manually
(D3). Quick navigation is enabled by an interactive overview widget called the Cubelet
@ (Figure 6.6). The Cubelet is a static 2D-isometric abstraction of the Matrix Cube that
indicates the current view on the Matrix Cube. Our Cubelet is somewhat similar to the
ViewCube (Khan, Mordatch, Fitzmaurice, Matejka, & Kurtenbach, 2008) but provides
different feedback about the current views. It uses the same color coding for the cube’s
dimensions as the actual Matrix Cube: blue for time, red for nodes. The Cubelet’s left face
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6. Unfolding Networks with the Matrix Cube

corresponds to node slices (red x blue), the right face to time slices (red x red). Clicking
on one of these faces triggers an animated transitions to the corresponding projection view,
and shades the clicked face of the Cubelet (cf. Figure 6.6(a)). Dragging the mouse on the
cube’s faces transitions to the corresponding small-multiples view. When this happens,
the Cubelet changes its appearance, to make it look like if it were sliced. Clicking on the
Cubelet’s top face animates back to the 3D pivot (Figures 6.6(b) and 6.6(c)).

Red segments in the cube indicate slices that have been selected manually by the user,
while all other slices are invisible.

6.3. Walkthrough

This section illustrates Cubix using the example of a scientific collaboration network,
referring to the tasks in the task taxonomy in Chapter 3. The network contains one
time step per year. In this network, nodes correspond to researchers, and connections
between nodes indicate a co-authorship relation on at least one publication during that
year. Self-edges, which are cells located on the cube’s diagonal, indicate individual
publications of the corresponding author. Edge weight represents the number of papers
between any two authors for a given year.

6.3.1. Matrix Cube Overview

After loading the data into Cubix, the cube appears as in Figure 6.3. Its axes are labeled
with author names and dates, respectively. The initial questions we can answer from
this first overview include all three dimensions of our taxonomy in Chapter 3 (WHEN,
WHERE WHAT):

Q1) Size: How big is the network, i.e. how many nodes and time steps? (WHERE)

Q2) Density: How dense is the network approximately? (WHERE, WHEN)

Q3) Clusters: How are edges distributed in time and topology? (WHERE, WHEN)

Q4) Attribute distribution: How are edge attributes distributed in time and topology?
(WHERE, WHEN)

Q5) Trends: Is there a clear trend over time and where are the anomalies? (WHAT)

The network shown contains 11 nodes and 6 time steps (Q1), and appears of medium
density (Q2). By default, cell size and color indicate the cell weight (number of publica-
tions per year) encoded redundantly. Color ranges from light gray for low edge weight, to
dark blue for high edge weight (value encoding). Edges with high values stand out across
the entire cube while smaller cells make it possible to see inside the cube.

Cells appear in the entire cube with a denser cluster in the “upper left” corner (Q3).
To better show edge weights in dense areas, we switch to an alternative value encoding
() (circled letters refer to interface components in Figure 6.3) that maps edge weights
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6.3. Walkthrough

Figure 6.7.: Matrix Cube rotated. Cell size and color indicate edge weight; blue indicates
low weight, red indicates high weight.

from blue (low) via gray to red (high)(Q4). This color scale was chosen because the
two extreme values (blue and red) have equal lightness and gray in the middle is a fairly
neutral value. In order to avoid occlusion, users can freely rotate the cube and obtain an
overview of the data (Figure 6.7).

As long as the user smoothly rotates the cube with the mouse, he perceives the cube in
3D and can very well differentiate between cells in the foreground and in the background.
However, as he stops rotating the cube, the 3D effect vanishes and the cube “collapses”
into a 2D image. To help the user further getting an idea of the distribution of cells over
time, we switch to time-color encoding, using the radio buttons in (b), and obtain Figure
6.8(a). For the time encoding we use a gradient ranging from blue (early time steps)
via violet to orange (later time steps). This mapping was chosen because it ranges from
a dark and fairly cold color to a light and warm color. The additional step of violet is
to obtain more shades. In addition to that, I had to make sure that color scales (time
encoding, value encodings) are sufficiently different from each other, so that they can
be easily distinguished (during the exploration process, but also on screenshots). Time
encoding, shown in Figure 6.8(a), shows that the cube contains much more and larger
bright and orange cells than dark and blue ones. Hence, the network is growing (Q5).

Small cells can bias the way we perceive network density (Figure 6.7). Figure 6.8(b)
shows a mapping where all cells have equal size © and entirely fill their “slot” in the
cube. In fact, the entire cube contains 208 cells, which equals a density of 34%.

6.3.2. The Network’s Topology

After that initial overview, we want to gain information about the network topology
(WHERE):

Q1) Clusters and central actors: Which are the main clusters, central actors and
outliers?
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6. Unfolding Networks with the Matrix Cube

(a) Time encoding for cell color, cells encode edge (b) Value encoding for cell color, cells have equal
weight. size.

Figure 6.8.: Collaboration network in 3D view with (a) time encoding and (b) value
encoding.

Q2) Aggregated number of edges: Which regions are connected in most of the times?

Q3) Aggregated edge weight: Which regions are connected by higher edge weight?

Q4) Stability/Instability: Which regions are affected by change, which regions remain
stable?

Clicking on the Cubelet’s right face @) rotates the cube to the time-projection view
shown in Figure 6.9(a). Cubix switches from a perspective projection to an orthogonal
projection and all cells in the same time vector become superimposed. We adapt cell
translucency (b) so that cell values get aggregated. Since cells all have the same size, we
see the large cluster involving most of the authors, as well as a second smaller cluster in
the lower right corner (Q1) containing low-weighted edges (Q3). Both clusters are highly
interlinked involving Lucas, Louise, Nathan and Camille.

In order to know in how many years a collaboration has happened, we make all cells
the same color (None-option checked in (b)), which results in the view shown in Figure
6.9(b)). Now only the number of cells in time vector are responsible for the darkness
value of the cells. While most papers have been written between Louise and Lucas, the
longest period of collaboration is between Lucas and Lea (Q2).

We are now interested in instability in the topology and switch back to the time
encoding while mapping edge weight to cell size (Figure 6.9(c)). The major cluster
contains large orange cells indicating growing edge weight. The pair Lea-Lucas show
decreasing edge weight, because the corresponding time vector contains a large purple
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Figure 6.9.: Cell color and size mappings in Time-projection view. (a) Cell color is
mapped to time, and cell size to edge weight. (b) Constant cell size, with color mapped to
edge weight shows accumulated edge weight over time. (c) Constant cell size and same
color (gray) for all cells gives an idea of the number of edges in time vectors, independent

of edge weight.
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Figure 6.10.: Superimposition of translucent cells in projected views using temporal
encoding. (a) exact superimposition, (b) slightly shifting time slices gives a quick preview
of previously-hidden cells.

cell (Q4). Gabriel’s connections seem exclusively recent, since they do not overlap with
any purple cells.

Figure 6.10 shows a close-up on the authors involved in the major cluster. The amount
of orange indicates strong and recent connectivity between all of the cluster’s members.
Each of them has some individual publications long ago (purple cells), except Louise
whose time vector is darker (more superimposing cells). Also visible is that the most
publications have been co-authored by Louise and Lucas. Yet, a slight shift occurs, from
Lucas and Louise collaborating with Nathan (purple framed cells Figure 6.10(a)), to
collaborating more mutually (orange framed cells in Figure 6.10(a)).
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6. Unfolding Networks with the Matrix Cube

Figure 6.11.: Rotation of the node slice corresponding to Lea. Cells inside the rotated
slices all have the same length, while their height is still mapped to edge weight.

6.3.3. Previews

Since time has been (almost) completely omitted from the topology view, many open
questions remain:

Q1) Edge weight evolution: How does the edge weight between a particular node
pair evolves? (WHAT)
Q2) Part of subgraph: When is a particular node part of a cluster? (WHEN)

An easy way to get a better impression of time in the topology view, is to slightly
tilt the cube causing time slices to shift (SHIFT+drag mouse (panning)). Figure 6.10(b)
shows how cells in the time vectors appear and are better visible. The figure shows better
the different cell sizes: cells sizes (edge weights) decrease between Nathan and Louise,
while increasing largely between Louise and Lucas (cf. Figure 6.10(a)). Edge weights
remain stable for Louise’s individual publications and between Nathan and Lucas (Q1).

From the topology view, we noticed that Lea stopped collaborating with Lucas at some
point in time. In order to know when this happened, we rofate Lea’s node slice by 90
degrees and yield Figure 6.11. Rows in the rotated slice align horizontally with those
of the projected slices, while columns now indicate time. To better compare cells sizes
along time, cells only vary in height, but have the same lengths to link cells in the same
time vector. Lea’s slice reveals that she still collaborates with other authors (Q2) in the
dense cluster as well as Nathan (bottom row). However, she was most productive in 2007.
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Figure 6.12.: Temporal trends in the node-projection view using different cell size encod-
ings. Time runs from left to right.

6.3.4. Temporal Trends

Now, we are interested in the general temporal evolution of the network:

Q1) Evolution of density: How is the trend in density? (WHAT)

Q2) Node degree evolution: How does the degree of individual nodes evolve? (WHAT)

Q3) Regional density: Which regions get denser/sparser over time? (WHERE)

Q4) Activity: How “pro-active” are nodes, i.e. does their degree increase or decrease?
(WHAT)

Clicking on the Cubelet’s left side first rotates Lea’s slice back in-line and then shows
an animation that rotates the Matrix Cube by 90 degrees to the right, resulting in the view
in Figure 6.12(a). We switch to value encoding since time encoding is redundant, while
keeping the cell-size-to-height mapping. In this node projection view, we see a heat-map
with one column per time step, time running from left to right. Rows still correspond to
the network’s nodes. In this view, cells in the same neighborhood vector superimpose
and yield the aggregated connectivity per node for every year.

The general trend in this research group is towards more publications and collaboration
(Q1) indicated by darker cells due to superimposition of translucent elements, except for
2008. Even the large cluster, involving Lucas, Louise, and Nathan grew steadily, except
in 2008 (Q3, Q4).

When comparing rows, we compare the connectedness of individual nodes over time.
To avoid bias by self edges, they can be hidden manually (checkbox in D). We see that
four authors collaborated throughout the entire time span (Lucas, Louise, Lea, Nathan).
Several others (e..g Camille, Gabriel, Hugo) seem to have joined the group in 2007 (Q3).
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6. Unfolding Networks with the Matrix Cube

6.3.5. Individual Connections

After obtaining a literally “superficial” overview over the network’s topology and its
general temporal trends, many questions require a detailed analysis of the cube’s interior.

Q1) Individual connections: When does a node collaborate with whom? (WHEN)

Q2) Stable connections: Which nodes are always connected to the same nodes?
(WHEN, WHEN)

Q3) Unstable connections: Which nodes have connections with many different nodes,
at different times? (WHEN, WHAT)

Q4) Evolution of weight for an individual connection: How does the connectivity
between an individual node pair evolves? (changes in the same time vector) (WHAT,
WHEN)

Q5) Trends in connectivity: Which trends in connection weight exist? (Comparison
of time vectors) (WHAT, WHEN)

From Figure 6.12(b), we see Lea publishing only with Lucas until 2007. If we switch
to an equal encoding for all cells (b)XC), we see that Lea in 2007 has one of the highest
degrees in the entire network. In order to know with whom she collaborated, we have two
options. (1) Her slice can be rotated vertically, similar to Figure 6.11. (2) More elegantly,
we can hide all other slices. Therefore, projection views in Cubix provide a list with
labels from the hidden dimension on the right side of the cube, indicated by the arrow
in Figure 6.12(c). Hovering Lea’s label keeps only her slice in the cube and reveals her
collaborators in 2007. Note that cell color and size have been set to be equal to obtain the
view in Figure 6.12(b), except that cells have been rendered opaque. Lea’s slice further
reveals that she collaborated with almost all people in the data set (Q1), indicated by only
three completely empty rows. The row for Lea shows one cell, which indicates the one
individual publication Lea had in 2006 (showing self-edges again ).

In order to compare multiple node slices, we could rotate as many of them as necessary,
while remaining in the time-projection view. Eventually, all slices would be rotated and
would face the observer. A shorter way to achieve that view is to drag the mouse on the
left face of the Cubelet. An animation is shown decomposing the cube and laying out
slices as in the node-small multiples view in Figure 6.13.

The overview on all node slices reveals who has been most active and for what period
of time. Slices for Hugo, Sarah and Enzo show very similar patterns. They started
collaborating recently and collaborate with the same people (Q1). The same is true for
Lucas, Louise and Camille. Most collaborations are stable (Q2), indicated as almost no
row shows holes, meaning that once a pair have started collaborating, they continue or
stop for ever (Q2,Q3). There are only two node pairs not following this pattern: Enzo—
Lucas and and Enzo—Chloe. In fact, having a closer look to Enzo’s slice, shows that
he did collaborate a lot in 2007. It might be that he was an intern in 2007 and officially
joined the group later.
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Figure 6.13.: Node Small multiples view illustrating both color mappings. (a) Cells are
colored according to edge weight, highlighting differences in weight across slices. (b)
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Figure 6.14.: Three Node slices using value encoding. Cell size also encodes edge weight,
while cell width is equal, linking cells in the same time vector visually.

Figure 6.14 shows more detail for Lucas’, Luise’s and Nathan’s slices. Comparing the
evolution of connectivity (time vectors) shows that Nathan’s collaborations are constant
but slightly decreasing, while Louise yields the most increase in collaborations. She
co-authors most of her publications with Lucas (Q4). Camille and Nathan are constant
collaborators.

Switching to the time-index color mapping (Figure 6.13(b) makes it easier to compare
ego-network topologies for a given time step. The general trend of collaboration is
towards more collaboration and number of papers (Q5).
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6. Unfolding Networks with the Matrix Cube

6.3.6. Topology of Individual Time Steps

At this point of the exploration, we know about the network’s clusters, its central actors,
important years, as well as how individual authors collaborate over the years. Finally, we
want to compare individual time steps, to answer the following questions:

Q1) Compare times: How much do time slices differ between each other? (WHEN,
WHERE)

Q2) Evolutionary process: Can the network evolution process be divided into periods
and states? (WHEN, WHERE, WHAT)

Q3) Recurring Patterns: Are there typical topological patterns that reoccur over time?
(WHEN, WHERE, WHAT)

In summary, Cubix provides five ways to show a single or a few individual time or
node slices:

1. hover the label of a slice in the 3D view (Figure 6.16(a)), or in the corresponding
legend in the projection views (Figure 6.12(c)),

click the slice label to make the slice permanently visible, but hide the others,
select a time range on the time-ranger slider () (for time slices only),

layout all slices side-by-slide Figure 6.15, or

A

rotate an individual slice inside the cube (cf. Figure 6.11).

In Figure 6.16(a), the label for slice 2009 has been hovered, causing all other slices to
be hidden. In order not to lose context completely, hidden slices are “ghosted”, rather
than completely removed; the left handle of the opacity slider (h), labeled “F”, is used
to set translucency for filtered slices, while the right handle sets translucency for visible
slices.

We switch to the time-projection view and, using the list of all times on the right
side, leafing though slices by sliding over the labels with their mouse. One or several
slices can be selected to compare two time steps. Figure 6.12 showed 2008 as an outlier,
against the general trend towards more connections and higher edge weight in the network.
By selecting the two years 2007 and 2009, and switching to a time encoding, Figure
6.16(b) reveals the direct differences between the years preceding and succeeding 2008
(2007=purple, 2009=orange). Most connections in 2008 are not present in 2007 and vice
versa, except for some pairs in the cluster on the top left (Q1).

To see the different stages of topology evolution at-a-glance, dragging the mouse on the
Cubelet’s right face triggers an animation that decomposes the cube into individual time
slices. Using color encoding for cells, Figure 6.15 shows four characteristic topological
configurations (Q?2) that explain the different patterns observed in Figure 6.12. 2005 and
2006 indicate a primary period in the research group, with only a few people contributing.
2007 then involved several new people, including Lea as a major central actor. Some of
these people vanished again one year later (2008), partially reappearing in 2009. In 2008
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Figure 6.15.: Time slices juxtaposed in the time-slices view. Darker cells correspond to
more publications between people. Ordering by different time slices (a,b) reveals different

patterns.
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(a) (b

Figure 6.16.: Exploring individual time slices; (a) Individual slice (2009) is hovered in
the 3D view as the user hovers over the corresponding slice label, (b) selection of two
slices (2007, 2009) for direct comparison in the time-projection view. In (b) purple cells
belong to 2007, while orange cells belong to 2009.

only the group’s core existed. One year later, the group again gained new members and
kept stable in 2010 (Q3).

Note that, due to the global matrix ordering, outlier topologies such as in 2007 stick out
visually due to a more fragmented cell layout. In larger networks, fragmented time slices
are likely to appear more often and reduce legibility. When only a subset of time steps
are selected (using time slider or mouse selection), users can reorder the entire cube @,
by taking only the selected time steps into account, potentially yielding more meaningful
visual patterns. After reordering, users show again all slices; time slices that are more
fragmented indicate time steps with a more different topology than the selected ones.

This rough overview over the collaboration network, already revealed many trends,
patterns as well as detailed information. The group’s density is steadily growing, as well
as the numbers of papers co-authored between any two authors. New people seem to have
arrived during the years, being highly connected to the one central core, which likely
included the group leader(s). However, collaborations are generally equally distributed
among all group members.

6.4. Cell Filtering

The example network from the walkthrough scenario was small and relatively sparse,
compared to the majority of networks. Figure 6.17(a) shows a almost complete network
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(c) Filter node slices (horizontally and vertically) (d) Filter time vectors

Figure 6.17.: Effect of cell filtering in an almost complete network.

of communication between antennas (see Section 8.4). Signal strength is indicated as
edge weight.

Cubix offers multiple ways to filter cells that let users specify which ones should be
shown or hidden in the cube (and thus across all views).

e The edge weight range slider makes it possible to hide edges whose weight
is below or above some threshold, which is especially useful when the cube is
complete. Selecting the Adapt Weight check box (d) maps the weight of visible cells
into the range of minimal and maximal cell weight. As an effect, the low weighted
visible cells become even smaller (making the cube appear sparser) and allow to
perceive more details in the edge weight distribution of the selected range (Figure
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6.17(b)). As an option the mapping from weight to cell size may be changed from
a linear mapping to a logarithmic one (Logarithmic Scale (d)).

A further option (Inverse Filter (d) allows to invert the edge weight slider, i.e.
the part selected by the range is removed from the visualization. This function is
particularly useful to investigate extreme edge weights (see Section 6.6.3).

e Lasso selection works in any view and leaves only the selected cells and those
behind. Figure 6.17(c) shows an isolated block selected while in the node-projection
view.

e Selecting one or more slices, by right clicking slice labels in the 3D view, auto-
matically hides all others. If both horizontal and vertical slices are selected, only
the cells at the intersection of all selected slices remain visible. Hovering over a
hidden slice’s label temporarily reveals that slice. Figure 6.17(d) shows several
vertical and horizontal node slice selected, leaving only the cells in the intersection
visible.

e Clicking a cell once hides all slices but those that contain this cell. Clicking it
twice hides all cells but those that belong to the same time and neighborhood
vectors.

6.5. Animated View Transitions

To help users understand the relationship between views on the Matrix Cube, transitions
between individual views are smoothly animated transitions (Robertson et al., 1993).
Those transitions are designed to (a) help users identify the current direction the cube is
sliced (by time or by nodes slices) and (b) support users’ interpretation of the new view.
Each animation within a transition changes one particular element or parameter of the
representation. There are animations to move the camera, animate between perspective
and orthogonal projection, move or rotate slices, and fade labels in or out. Animations on
the same element (e.g., a slice, or the camera) are played sequentially, while animations
on different elements are played in parallel, for the most part.

The three following types of transitions exist between individual views of the cube.

e Rotation + Projection: When switching from the 3D view to one of the projected
views, the camera is moved, and then the projection is changed from perspective to
orthogonal. Likewise, switching from time-projection to Node-projection views
(Figure 6.18(a)), (1-2) the projection is changed from orthogonal to perspective,
then (3) the camera is rotated around the cube, and finally (4-5) the projection is
changed back to the orthogonal projection. Labels remain in their 3D position but
are adjusted and rotated to always face the user. The total duration of this animation
is 1 second.

e Slice Rotation: When rotating a slice in the Time-projection or Node-projection
view (Figure 6.18(b)), first (1-2) the projection changes to perspective, then (2) the
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(a) Cube rotation from Time-projection view (1) to Node-projection view (5).
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(b) Rotating node slice “Brazil” (arrow) in the Time-projection (1).
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(c) Cube decomposition from 3D view (1) to Time small multiples view (5).

Figure 6.18.: View transitions in cubix.

slice is rotated, all other slices being pushed to the sides to make room for it, and
finally (3) the projection changes back to orthogonal. The default duration of this
animation is 0.5 second.

e Composition and decomposition of the cube: Decomposing the entire cube and
laying out all of its slices in a grid pattern is the most complex transition. We tested
several possibilities including an animation that manages slices as if they were
pages on a stack of paper and, starting with the far most one, slices are moved
to their new position using a slow-in / slow-out pacing function. This transition
turned out out cause a lot of visual noise, especially if the transition has to handle
many slices by remaining within a short duration (maximum of 1.5 seconds). We
finally decided on the staged transition shown in Figure 6.18(c). (1) From the 3D
view, (2) slices in the cube move in together to their final vertical-position in the
small multiples grid (5), as if the cube were sliced only partially. Then (3-4) slices
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get moved to their final horizontal-position, starting with the top slices slightly in
advance to produce a fluent animation.

There are some views between which no direct transition exists, such as between a
node small multiples view and a time small multiples view. In cases that require the cube
to be sliced, independently whether it is already sliced, a first transition leads to the 3D
view, and a second transition leads to the target view. For instance, this happens when
switching from Node to time slices and vice versa. A slice rotation view first rotates all
its rotated slices back, yielding a corresponding superimposition view, before starting the
transition to the destination view. The 3D cube acts as a pivot, providing clues about the
relationship between the views. While novice users might prefer slow, detailed transitions,
experts might prefer to navigate quickly between views. Animation speed can be adapted
using a slider (.

6.6. Validation with Experts

Visualizing dense, weighted dynamic networks is a problem in multiple application
domains. For a first evaluation of Matrix Cubes, we contacted two researchers that face
the issue of visualizing dynamic networks: an astronomer and a neurologist. We wanted
to focus on the overall usefulness of Matrix Cubes and usability of Cubix through an
open-ended evaluation using real data, so as to answer questions such as: Is the metaphor
understandable? How well do experts manage to manipulate the cube and interpret the
views? Can they gain insights about their data from this visualization?

6.6.1. General Methodology

Both experts were approached independently and asked if they would be interested in
trying to visualize their data with Cubix. We demonstrated Cubix using the co-authorship
network described earlier in this paper. In both cases, the experts’ feeling was that the
approach had potential, and they agreed to provide us with actual data. Once their data
had been imported in Cubix, we met again with each of the two experts for a longer
session, walking them through the different views and features based on a sample of their
own data. Experts then took control, looking at their data in more detail by themselves
under our guidance, as detailed below.

6.6.2. ALMA

The Atacama Large Millimeter/submillimeter Array (Pietriga et al., 2012) is a state-of-the-
art radio-telescope composed of 66 high-precision antennas currently under construction
in the Chilean Andes. Observations are based on the principle of interferometry: a
source in the sky is observed by a subset of 12-to-50 of those antennas, called an array.
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In a given array, all antennas are connected to the other ones in a pairwise manner,
thus forming a fully-connected network. Edges of this network, called baselines, have
several quantitative time-dependent variables associated with them, which astronomers
are interested in looking at.

Astronomers currently use a tool developed in-house to plot these individual variables
as scatterplots or line charts. While these charts may be able to produce legible visualiza-
tions for antenna-based variables, they do not scale to the number of baselines in an array
(typically 1225 for 50 antennas). Still, astronomers need to either monitor in real-time or
analyze a posteriori those data over numerous time steps.

Following the general methodology described above, we approached an ALMA as-
tronomer. The session consisted of two parts. We used one of the four baseline-based
variables available in the data he had provided (see below) for the walkthrough. Then the
astronomer took control of the computer, and visualized all four datasets, commenting
on his findings and insights, and asking for help to get to a particular view when stuck
(he was told that he could freely ask for our assistance). These two phases lasted 22
and 45 minutes, respectively. The entire session lasted 1.5 hours, including preliminary
explanations and post-hoc discussions. We recorded the session and took pictures of
meaningful views on the data for analysis once back in our lab.

Data

The dataset corresponds to a calibration, used to compute very precisely the (x,y,z)
geographical position of antennas. For this, antennas point at a series of quasars that
act as reference sources. Quasars are pointed at, one after another, by all antennas
simultaneously. Each quasar represents one of the 34 time steps in the data. The data
consists of four variables, each visualized independently in a separate cube: DELAY,
Amplitude (AMP), Amplitude RMS (RMS), and signal-to-noise ratio (SNR). All are
measured for 42 antennas, i.e., 861 baselines, for one particular baseband and one
polarization only. Each cube thus consists of 42 x 42 x 34 ~ 60,000 cells.

Usage Scenario

We first provide a summary of the visual exploration process over the entire session,
focusing on the main steps related to the key findings which are discussed afterwards.

RMS We used the RMS data to give a walkthrough to the astronomer (Figure 6.19).
Straight from the 3D overview, four time slices stood out, featuring larger values than
other time steps, as illustrated in Figure 6.19(a). After briefly showing the time-projection
view (Figure 6.19(b)), we quickly switched to the node-projection view at the expert’s
request, as he was interested in getting a better look at the evolution of values over time
(Figure 6.19(c)). From this view, he confirmed his intuition that the four time slices
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Figure 6.19.: ALMA RMS data set. Antennas are ordered by name. (a) with four time
slices seem to stick out 3D View, (b) Time-projection view, (c) Node-projection view, and
(d) again Node-projection view while high weighted edges are filtered out.

spotted in the 3D overview were quasars that were too weak and should probably be
removed from the catalogue of sources used for calibration. Based on the fact that always
two of the four columns in the node-projection view look exactly the same, he inferred
that these four time steps might actually correspond to the same quasar observed 4 times,
or to 2 quasars observed twice each.

At the expert’s request, we filtered out higher values corresponding to the weak sources,
S0 as to be able to better compare the cells from other time steps visually (the value-to-
color mapping adjusts cell color dynamically as higher-value cells get filtered out). The
result looked homogeneous (Figure 6.19(d)), leading the astronomer to the conclusion that
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Figure 6.20.: ALMA DELAY data set in different views. (a) Node-projection view, (b)
Time-projection view, (c) node slices as small multiples. View cropped to show only 21
out of 42 slices. Similar patterns (reversed) appear in the lower half.

there was no antenna-based problem, which would have appeared visually as one-or-more
entire rows of cells with high values. We then finished the walkthrough by explaining
both time and node small-multiples views, illustrating features such as brushing.

DELAY Now familiar with Cubix’s main features, the astronomer started exploring the
data on his own, switching to DELAY Figure 6.17(a). In this data, he was looking for
baselines whose delay varies over time, as this was not supposed to happen (delay should
be more or less constant). He switched to the node-projection view Figure 6.20(a), which
shows time steps as columns. However, as all node slices were superimposed, it was
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Figure 6.21.: ALMA AMP dataset. (a) Overview of AMP in which four time steps seem to
stand out. (b) The time-projection view on AMP, showing an abnormal behavior of one
specific antenna (1), various baseline specific outliers such as (2). A different behavior of
the first eight antennas compared to the other ones is clearly visible: (3) vs. (4).

difficult to spot specific baselines that would feature significant variability. The expert
realized this, and decided to switch to the time-projection view Figure 6.20(b). Some
rows and columns stood out, indicating possible antenna-based problems.

From there, he asked that we switch to the view that shows node slices as small
multiples, as he wanted to get an overview of what particular antennas feature higher
variability, something that can easily be seen in this view by visually scanning the whole
set of small multiples (Figure 6.20(c)). This view revealed another pattern: for some
antennas, roughly half of the baselines had much larger delays than the other half. The
astronomer switched back to stacked node slices to quickly brush through the slices in
more detail. There was no clear explanation for this observation, which requires further
investigation by looking at additional data not available here.

AMP  We then switched to AMP data, shown in Figure 6.21. Figures 6.21(a) and 6.21(b)
show the same 3D view but the astronomer was very interested in the time-projection view,
as the two main types of problems were readily apparent. First, antenna-based problems
affect all baselines that connect to it, which visually translates into the corresponding
row/column featuring a lot of variability (see (1)). Second, problems affecting a single
baseline, possibly due to, e.g., atmospherical changes, which visually translate into
isolated cells featuring a lot of variability (see (2)). Another pattern that clearly stood out
in this view is the difference between the eight left-most columns (3) and the following
ones (@), attributed to the different types of antennas that compose ALMA?Z. Finally, the

2We discussed the possibility that the antenna in (1) could belong to group (3). This was ruled out because
of the way the data was generated, with antennas sorted alphabetically, and thus by type.

156



6.6. Validation with Experts

(a) 3D view (b) 3D view (c) Node projection view

Figure 6.22.: ALMA SNR data set showing similar patters to the RMS and AMP data sets.

astronomer looked at SNR data, identifying similar visual patterns, and then finished the
session.

6.6.3. Brain Function Activity

The second expert, a researcher in neurology, studies signal patterns between regions of
the brain under different stimuli, collected using EEG-correlated fMRI (Goldman, Stern,
Engel, & Cohen, 2000). He is interested in identifying time steps that feature a high
activity level overall, connectivity patterns that reoccur over time, and which regions are
active at specific moments. All of these can then be compared across different stimuli.

The neurologist currently uses spatial brain maps to explore his data, but the physical
position of brain regions is not important when analyzing this type of dataset: maps do not
properly convey the network’s topology. Currently, no visualization faithfully represents
his data since node-link diagrams fail to provide a legible view of such dense networks.
Therefore, just like the astronomy expert, neurologists typically look at time-series for
each region of the brain, without any visual feedback about the topology.

The methodology employed for the neurologist was slightly different than for the
first expert. The neurologist was located in Canada, and thus sessions were conducted
remotely using a videoconferencing tool. The neurologist was provided with the Cubix
software; the system ran simultaneously on both ends, with screen sharing enabled. We
conducted two sessions, with one day in-between the two. After looking at the data
and explaining to us what it was about, the neurologist asked for a few changes to the
visual representation to reflect domain specific information. We planned for the second
session to implement the requested changes and give him time to explore his data with the
adapted version of Cubix. The second session was conducted under the same conditions,
using the new visual representation.
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Data

We obtained data about three different regions of the brain from multiple subjects, ob-
served under 3 different stimuli. For each of these regions, signals for 50 different
frequencies in 8-to-16 subregions were recorded. Several measures are used to character-
ize connectivity, such as Granger causality, and we can only show one dynamic network
at a time from this rich dataset in a matrix cube. The networks visualized in Cubix consist
of 8 or 16 nodes over 150 time steps (5 minutes of recorded brain activity at a 2-second
sampling frequency). Measures exist between any two regions, meaning that networks are
fully-connected, the corresponding matrix cubes containing from 8 x 8 x 150 = 9600 to
16 x 16 x 150 = 38400 cells. Figure 6.23(a) shows 15 out of 150 time steps for a network
of 8 regions.

During the first session, the neurologist explained that edge weights have normalized
values in [—1.0, 1.0], and that edges of interest are those near the extrema. We added an
additional color scale and mapping, emphasizing those values, as illustrated in Figure 6.23:
1.0 gets mapped to red, O to light gray, and —1.0 to blue. A new mapping of edge weight
to cell size was also added, assigning smaller sizes to edges with lower absolute values.
The range slider used to filter out edges based on their weight now features an option to
invert the selection, so as to remove values in-between the two knobs rather than those
outside the corresponding range.

Usage Scenario

Data visualized during the first session corresponded to a resting phase (no visual stimulus,
subjects’ eyes closed). At the neurologist’s request, the second session focused on data
observed during a phase featuring visual stimuli. Using the new color and size mappings
revealed the symmetric distribution of red and blue cells in the 3D overview (Figure
6.23(a)). Several time steps also stood out as significantly denser than others, distributed
over time. Switching to time-projection view made it possible to get a clear look at the
denser time-slices, confirming the symmetry between red (sending) and blue (receiving)
edges. Beyond symmetry, one pattern appeared consistently across all slices that feature a
high level of activity, made even more apparent when reordering rows and columns based
on their similarity: two or three regions received from exactly four other regions (blue
cells in the same row) while sending signals to the remaining four regions (red cells in
the same row, (1)). Sending and receiving regions were the same. However, one of the
two active regions also sent to the other one, not receiving any signal from it.

Switching to the node-projection view (Figure 6.23(c)), salient patterns could be
observed when looking at the temporal distance between highly-active time steps. The
neurologist indicated again that edges with low absolute values were irrelevant; those got

removed accordingly, keeping cells whose absolute value was larger than |0.5| only. We

adapted translucency as illustrated in Figure 6.23(b). Rotating some time slices in-place
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Figure 6.23.: Brain connectivity data. 8 regions over a sample of 15 time steps. (a)
Overview reveals that some time steps are more active than others. (b) Detailed view
of 16 time slices. (c) node-projection view, showing activity patterns and revealing one
region more active than the others. (d) Individual node slice sending more than it receives.

enabled the neurologist to recognize the topological patterns previously spotted in the
time-projection view. Temporal patterns seemed randomly distributed but occurred in
intervals of 3 or 4 time steps (2). As illustrated in Figure 6.23-c, one region was more
active than the others (3). Switching to time small multiples (Figure 6.23(b)) confirmed
that region R-4 was indeed active in many time slices, and was often among the most
active ones (4). Switching to the node small multiples, the neurologist found two regions
that were more active than the others, one of them @ sending more often than it received,
and almost always sending to the same regions (Figure 6.23(d)).

6.6.4. Key Findings

The cube metaphor was quickly understood. It helped, along with ani-
mated transitions, to switch between views. Right from the start, both experts
understood what the cube was about, as well as the views that were derived from it. For
instance, as the view was animating from the 3D cube to the time-projection view, the
astronomer made the following comment: “Ah! ok, now you are stacking time.” Once he
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took over, he always managed to switch between views without assistance, sometimes
hitting the wrong key but quickly recognizing that this was not the view he wanted.
The neurologist used both the Cubelet and keyboard shortcuts. There was only a bit
of confusion for the astronomer the first time we switched to the view that shows node
slices as small multiples, but that view was then well understood and used, though the
astronomer asked for assistance to go back to this particular view from the time-projection
view. It is worth noting that he knew exactly what view he wanted; his problem was that
he did not remember how to get there.

Further evidence of the experts’ understanding of the matrix cube comes from a
comment the astronomer made as he was looking at DELAY data in the time-projection
view. As he was looking for baselines featuring significant variability, i.e. squares within
squares in a given cell, he realized on his own that for a given baseline, larger cells
earlier-in-time would hide smaller cells that were behind them in this particular view,
thus masking some types of variability patterns. This is indeed true; we then explained
how to overcome this limitation in Cubix by, for example, adjusting cell translucency to
see through them, or by switching to another view.

The astronomer also took for granted that cells filtered out in one view would still be
hidden when transforming the cube to another view, without us mentioning this at all. We
interpret this as further evidence that the cube was well-understood as a model/pivot view.

All views were considered useful for different tasks. According to the as-
tronomer, the time small multiples view was very useful, but slices were very small. This
fact could be partially lowered by switching to an equal size for all cells, thus keeping
color intensity as only weight indicator. Better interaction capabilities (e.g zoom on
slice) could easily improve this view. In the brain scenario, the time slice view revealed
repetitive patterns at a glance.

Slice rotation in node-projection very useful to get quick overview over each node’s
activity, given that cells in the same time slice overlap. In fact, since the entire set contains
too many dimensions to be visualized in a single cube, experts were looking for prominent
time steps across the cube. They could then draw conclusions from the regions activity
back to the visual stimuli at that time.

The 3D view was slightly but constantly moved to better perceive depth of the model.
Being able to switch between different views was essential to his analysis due to the
density of the data and the different patterns visible in any of these views.

Filtering, brushing and linking were useful. To look at individual slices, the
astronomer used the slice list on the right side in node- and time-projection views. Some-
times he looked at one particular antenna he had identified in another view, sometimes he
browsed through slices to find antennas with particular characteristics hinted at by the
default view, which shows all slices stacked.

160



6.6. Validation with Experts

Filtering was found useful by both experts, given the density of the data and the
opportunity to focus on different ranges of edge weights (low weight, high weight,
extremes). The astronomer understood on his own that filtering was happening on the
cube as an object, not on a particular view of it. He made one request: in addition to
being able to select what slices to show, he wanted to select which slices to hide (which
was at the time only possible by selecting all slices not to hide).

The astronomer further mentioned that brushing and linking in the small multiple views
was very helpful to compare particular values across slices. The brain scenario contained
too many time slices (150), which made it hard to compare distant time slices in detail.

Cell color was constantly mapped to edge value. The neurologist asked specif-
ically for a new edge-weight-to-color mapping that would encode edge direction (blue,
red) and used it exclusively. The astronomer was told about both original color mappings:
time and value. He immediately stated that redundantly encoding time with color was of
no interest to him. Instead, he wanted cell color to reflect the associated edge value.

Row and column reordering are useful, but can be confusing. Rows and
columns of matrices can be either sorted alphabetically or reordered based on their
similarity, so as to make some visual patterns such as clusters more apparent. By default,
users are presented with the latter option. The astronomer had not realized the type of
ordering, which was confusing to him at first, as he is used to looking at matrices sorted
alphabetically, by antenna type and name. As a result, he was not expecting to see some
of the visual patterns that appeared, and was instead expecting individual, isolated rows
and columns to stand out. He realized this when we switched to name ordering while
discussing possible differences due to antenna type. This alphabetically-sorted view felt
much more familiar to him, as the visual patterns of clusters were no longer there to
“prevent him from seeing individual rows and columns.”

The neurologist specifically requested that rows be reordered based on similarity when
looking for patterns in the time-projection view. However, since there was much variation
between time slices, the general reordering was not very optimal. A better way would be
to either select individual time slices of interest or particular time ranges, and then order
those time slices.

Matrix Cubes succeeded in providing a legible visualization where other
approaches had failed so far. The astronomer currently visualizes data using line
charts and scatterplots. While this worked fine during the early construction phase of the
observatory with only a few antennas available, this solution clearly does not scale to the
over-a-thousand baselines now formed by the almost full complement of 66 antennas.
What the astronomer appreciated with Cubix was that he could clearly see patterns at
once, such as antenna-based problems, without having to select and plot specific antenna
pairs as he has to do now, and which is very tedious: “With Cubix, you visualize it
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instantaneously. It is much faster.” He also enjoyed the fact that he could smoothly
transition from one view to another. In the same vein, the neurologist commented: “With
your tool you just load the data and you see it [...] It is a very nice piece of work.”

At the time of writing, both experts expressed interest in exploring their data further
with Cubix. The astronomer has prepared additional datasets that he then explored with
our system. The neurologist stated that he wanted to further use Cubix. The data he
looked at was the result of a recent experiment, and he wanted to spend more time
exploring it as to become more familiar with it.

6.7. Conclusions

This chapter introduced the Matrix Cube, a representation for dense dynamic networks
with weighted edges. We described how an interactive system, Cubix, is used to visualize
such networks with the Matrix Cube and interactively deduces 2D views, including basic
interaction support and animated transitions between view states.

The feedback we got from the two experts is encouraging: they both were able to
understand the cube metaphor, interpret the views, chose views according to the current
task, as well as to navigate between views. Cubix enabled them to make interesting
observations about their data, in a way they were not able to see it before, as they stated
during the study. Both experts expressed interest in using it further to explore additional
data in the future.

However encouraging, our evaluation is only a first step and we need to further evaluate
the potential and usefulness of the Matrix Cube as well as novel interface too exploit and
explore it. A limitation of the study is that it only involved two domain experts. While
they were from two very different domains (astronomy and neurology), Cubix should be
evaluated with more experts and datasets, in order to validate the generalizability of our
results. Controlled experiments are required, involving low-level network exploration and
analysis tasks, to help identify particular strengths and weaknesses of Cubix and Matrix
Cubes.

The design decisions made in Cubix are aimed at making the cube model and associated
interactions simple to understand and consistent across views on the data, providing users
with an effective interface metaphor. It can only serve as a basis for the many open
questions, that should be addressed in future research on visual representation, interaction
and analytical methods.

Cubix currently implements several visual mappings for cells, including color and size.
However, projection views may require more powerful encodings. While currently cells
overlap, glyphs such as used by Yi et al. (2010), as well as Brandes and Nick (2011), can
show information about the projected dimension.
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A major drawback of the cube model is that it does not provide a direct way to encode
changing attributes on the nodes. One solution is to visualize node attributes inside cells
when in the node-projection view, creating a heatmap as in NetVisia (Gove et al., 2011).
A second solution, also requiring a projected view, consists in showing changes in node
attributes as, for example, time lines next to the nodes’ labels.

The Matrix Cube makes a link between a detailed analysis, including focused and
precise tasks, and the general visual exploration. A simple extension in this direction is
to provide multiple coordinated windows (Roberts, 2007) on the same cube, while each
window can show different views and states thereof. While Cubix is currently designed
for desktop computer setups, which rely on 2D screens, mouse and keyboard, future
research could investigate appropriate exploration techniques that make use of beyond-
desktop techniques; (multi) touch screens, large wall displays, stereoscopic displays, or
interaction through physical props. The multitude of ways to look at the cube may inspire
the design of appropriate interaction techniques.

While the current model focuses on undirected networks, it is technically easy to
adapt it to visualize directed networks, as already explained in Section 6.1.3. However,
a particular problem is the visualization of large networks. While the cube’s size and
visual complexity quickly increase with the number of nodes and times steps, the derived
2D views remain less affected by network size due to aggregation and clear layout of
cells. Many options can be envisioned to further reduce the cube’s size, informed by its
geometry:

e Pan+Zoom: Show only a portion of the large cube, a technique described by Kraak
(2003).

e Collapse: Filter out low-weighted edges and remove slices with no visible cells.

e Aggregate: Aggregate node slices into higher level slices using clustering, aggre-
gating neighbors such as used in ZAME (Elmqvist, Do, et al., 2008), or aggregate
adjacent time slices at different levels of temporal granularity (cf. Section 2.2).
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ISUALIZING temporal data is a problem in many domains where data is rich and
V involves more than a single dimension. Networks are only one example where
two spatial dimensions (node-link diagrams and matrices) are used, while visualizing
evolution over time requires abstraction and changing the mapping to space as discussed
in Section 2.6, for example, using techniques such as that described in the chapters on
GraphDiaries (Chapter 4) and the comparison of weighted networks (Chapter 5). The
particular visualization problems (combination of space and time, density, amount of
change, types of change, etc.) are similar to, for example, visualizing geo-temporal
information such as bush fires, earthquakes or people’s movement over time, or analyzing
and exploring large collections of videos.

Many different techniques have been designed to visualize such time varying data,
including some of the oldest examples of information visualization, such as Minard’s
“Napoleon’s march to Moscow” (Figure 7.1). Some techniques have become common
across domains such as animation or small multiples. Other techniques use unique names
that are easy-to-remember, such as Parallel Edge Splatting, Massive Sequence Views or
GraphFlow (see Section 2.6). However, the term small multiples can refer to two different
representations of the same data, depending on the meaning of the spatial dimensions
within each picture (Figure 7.2). In contrast, the examples in Figure 7.3 have different
names but are conceptually similar as they show time as the horizontal spatial dimension.

A missing common terminology for all these visualizations makes it hard to describe, as
well as to think about and discuss them. A discussion of the advantages and disadvantages
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Figure 7.1.: Example of visualizing time and space: Napoleon’s march to Moscow (Tufte,

1986)

USA

®

Inflation (%)
o

90

00
‘éfz

98 96

IS

~

o

s

Inflation (%)

®

o

~

N}

Japan

90

92
4
98
96 @00

France

®

Inflation (%)
o

Inflation (%)
®

10 20 -
Unemployment rate (%)

o

10 20
Unemployment rate (%)

Spain

2 92

0 20
Unemployment rate (%)

10 20
Unemployment rate (%)

(a) By country

1992

1990 1994
*

Inflation (%)
o N & o
L ]
-
Inflation (%)
o N & o
-
>
Inflation (%)
o N & o
L]
>

o
S
S

10 20 10 20 10 20
Unemployment rate (%) Unemployment rate (%) Unemployment rate (%)

1996 1998 2000

g8 28 s8
= < <
g6 26 26
€ * % < *
T4 T4 * T4 .

2 ' . 2 " a 2 4

o] o o] © 0

°
2 2 2

10 20
Unemployment rate (%)

(b) By year

10 20 10 20
Unemployment rate (%) Unemployment rate (%)

Figure 7.2.: Small multiples used for two different views on the same data set; left: per
country, right: per year.
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Figure 7.3.: Examples of techniques with different names, but similar concepts to show
time and topology. (a) Parallel Edge Splatting (Burch et al., 2011), (b) Massive Sequence
Views (van den Elzen et al., 2013), and (c) Pixel based flow maps in GraphFlow (Cui et

al., 2014)

of techniques is important, since the current literature does not provide sufficient evidence
and context to guide the application and design of new techniques (see Section 2.8).
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Figure 7.4.: lllustration of space-time cube afterHdgerstrand (1970). On the bottom the
two spatial dimensions, while time proceeds to the top. Curves in the cube describe the
trajectory of peoples, involved a group event “meeting” (right trajectories), or interacting
with a machine (left trajectory). Telephone call is an event between distant peoples.

The previous chapter on Matrix Cubes (Chapter 6) made an attempt to define a more
structured design space to visualize and unfold dynamic network data, although with a
very specific type of visualization and on a specific type of data. I introduced the notions
of operations and views where operations are performed on the 3D space-time cube and
lead to specific 2D views, each view supporting a complementary set of tasks (Chapter 6).
Although the particular space-time cube appears to be domain-specific in the first place,
its approach to visualization is generalizable to space-time cubes in other domains.

Motivated by the way Cubix uses the Matrix Cube to visualize dynamic networks, this
chapter addresses the following questions:

> How can operations on the space-time cube be described in a consistent design
space?

> How can we create a common understanding of the space-time cube that allows for
the evaluation of existing, and generation of novel, visualizations across domains?

Space-time cubes originate from geography. They have first been described by Héger-
strand (1970) in order to provide a model to describe peoples’ movement in space and
time!. Individual peoples’ space-time paths can reveal their interaction with other peoples
as well as their range of action (space-time-prism). Figure 7.4 illustrates several peoples’
space-time paths, some bundled in an event called “meeting”. Geographical space is
represented as a 2D plane, and time evolves towards the third spatial dimension to the top.

In this chapter, we present a framework in which the space-time cube serves as a
conceptual representation for datasets that include a temporal plus a spatial component
(spatio-temporal). “Spatial” does not need to refer to geographical data, but applies to
all datasets that are usually visualized in two dimensions; dynamic networks, videos,

'Higerstrand describes the space-time cube as to “help us to develop a kind of socio economic web
model” (Hagerstrand, 1970, p. 10).
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multivariate data in scatterplots, bar charts etc. By conceptual we mean that the space-
time cube does not have to appear explicitly in the final visualization, nor does the cube
or individual operations have to be implemented in a visualization system, as it is done in
Cubix. Our model of the cube serves as a thinking tool with the purpose to:

e describe and classify operations,
e help in evaluating operations and visualizations, and
e serve as a design space to create novel visualizations.

To group techniques for dynamic networks in Section 2.6, I used the terms aggregation,
animated sequences, timeline, temporal multiples, embeddings, and ego networks. All of
these visualizations are conceptually related to space-time cubes. For example, animated
sequences can be described as quickly showing time slices to users; temporal multiples
can be described as laying out time slices side-by-side on the screen. Views in Cubix were
already created in such a way (Chapter 6). Here, we use a new terminology, informed
by operations, and review additional visualizations of spatio-temporal data from related
visualization domains (Section 7.1). In general, while some views can be described by a
single elementary operation, others require multiple operations, described as a compound
operation. We group and describe elementary operations in a taxonomy and describe how
they are assembled into compound operations in Section 7.2.

In order to discuss operations’ appropriateness and allow for transfer across domains,
we then analyse the different types of space-time cubes, as resulting from different
characteristics of the data (Section 7.4 ). Independent from the actual type of data, space-
time cubes can be described, for example, as dense or sparse, containing few or many
changes. These characteristics are manifested as 3D structures inside the space-time cube
and described in Section 7.3.

For any data set, we assume the space-time cube is given and we can discuss the
appropriateness of our operations in creating 2D views from the 3D cube structure, based
on (i) the the cube’s inner structure, and (ii) on how they apply to the space-time cube.

7.1. Static Visualizations as Space-Time Cube
Operations

In Section 2.6 of this dissertation I categorized dynamic network visualizations in seven
groups: temporal multiples, animated sequences, aggregations, nestings, timelines, ego-
networks and space-time cubes. This section shows how visualizations in each of these
groups can be described by space-time cube operations, thereby extending each group
with examples of visualizations for general temporal data. I also link the operations
with those developed throughout this dissertation (Chapters 4, 5 and 6). We focus on a
small but representative selection of examples from the literature, and describe operations
informally.
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Figure 7.5.: (a) Time cutting and (b) time flattening.

Our conceptual space-time cube has three major axes: a time axis, and two orthogonal
axes that we call data axes. The 2D plane formed by the two data axes is referred to as
the data plane.

7.1.1. Time Cutting

The time cutting operation consists in extracting a particular temporal snapshot from the
cube to be presented to the viewer. Figure 7.5(a) illustrates this operation: the left part (1)
shows the initial space-time cube and the temporal snapshot that is being extracted, while
the right part (2) shows the resulting image that is presented to the viewer.

A time cut in network visualization corresponds to a single picture showing the state of
the network at a particular time point, called a time slice, snap shot or time cut. Cubix
implements time cutting as the user selects a single time slice and then switches to the
time-projection view, or if already in the time-projection view, as the user hovers over a
slice label. In GraphDiaries, a single selected time step is shown enlarged in the network
view.

However, temporal visualization rarely consists in a single time slice. As we will see
in Section 7.2, time cutting, typically, is either performed multiple times and used in com-
bination with other operations, or is used in combination with animation and interaction.
For example, in Cubix and GraphDiaries, users interactively navigate between time slices,
while GraphDiaries shows animated transitions to convey changes. Animations are used
in the majority of other graph visualization systems, already summarized in Section 2.6.2:
Marey (Friedrich & Eades, 2001), SoNIA (Moody et al., 2005), Gephi (Bastian et al.,
2009), Visone (Brandes & Wagner, 2003), and TempoVis (J.-W. Ahn et al., 2011).

7.1.2. Time Flattening

Time flattening projects the space-time cube along its time axis, merging all time slices
into a single 2D image (Figure 7.5(b)).

Chapter 5 presented designs to compare two graphs using matrices (Figure 7.6(a)). In
that particular case the space-time cube contained only two “time slices” and flattening
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Figure 7.6.: Examples of time flattening (a) the direct comparison of graphs, and (b) in
Cubix.
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Figure 7.7.: Examples of time flattening: (a) Detail of the map of the cholera outbreak
in London 1854, by Dr. John Snow. Piled bars mark the number of death per house. (b)
Another example of time flattening: scatterplot showing the relationship between inflation
and unemployment in Japan from 1960 to 1991 (Tufte, 1990). Measures are connected
by a line to indicate their order of time. (c) Scatterplot indicating development data for
countries (Robertson et al., 2008).

also required a scaling of one of the two matrices in order to obtain the cell patterns
required for preattentive visual perception. Cubix provides the time-projection where
time vectors superimpose in order to provide a legible picture of the network topology
(Figure 7.6(b)). Different color encodings and translucency values for cells allow different
information to be aggregated such as accumulated edge weight or time steps in which a
node pair is connected (number of edges).

Other network visualizations also make usage of flattening, summarized in Section
2.6.3, and referred to as “aggregations” (Chi et al., 1998; Brandes et al., 2004; Andrews
et al., 2009; van Ham et al., 2009; Gove et al., 2011; Hascoét & Dragicevic, 2012).

One of the earliest uses of time flattening to visualize information is Minard’s illus-
tration of Napoleon’s march towards Moscow (Figure 7.1). The illustration shows on a
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Figure 7.9.: Examples of visualizations using colored time flattening. (a) Older nodes
are faded to gray in TempoVis(J.-W. Ahn et al., 2011) (b) graph in Gevol (Collberg et al.,
2003), and (c) stroke order in Chinese characters (Wikimedia, 2013). The color legends
have been added.

single image the state of Napoleon’s army (position, size, key events) at different points
in time during the Russian campaign in 1812 (Tufte, 1990). Another early example is
Dr. John Snow’s map showing where deaths from cholera occurred in London in 1854
(Figure 7.7(a)). Since the map shows multiple events aggregated over time (deaths), it
could be seen as a time-flattened space-time cube.

Time flattening has been employed in a large variety of modern information visualiza-
tion systems as well as static data graphics, and is not limited to geographical data. Figure
7.7(b), shows a Phillips Curve, i.e. a 2D plot of the relationship between unemployment
and inflation in a country across several years (Tufte, 1990). This diagram can be seen as
a time-flattened version of a dynamic 2D scatter plot. The scatterplot has a single data
point whose coordinates are the two country indicators and evolve over time. Another
example using scatterplots is used in a study by (Robertson et al., 2008), shown in Figure
7.7(c). Each colored point refers to a country in one year, while points of the same color
indicate a country’s trace though time.

7.1.3. Colored Time Flattening

The colored time flattening operation is similar to the time flattening operation, but time
slices are assigned a color before being combined (Figure 7.8).
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Figure 7.10.: Time juxtaposing.

Both flattening techniques in Figure 7.6 use coloring to differentiate between graphs.
In Cubix, coloring is used independently from flattening; it is available in all views.
Three examples of visualizations obtained by colored time flattening are shown in Figure
7.9: (a) TempoVis fades nodes to gray, which have been in the network for a long time
(J.-W. Ahn et al., 2011), (b) Gevol where old links (in red) are distinguished from new
links (in blue) (Collberg et al., 2003), (b) Chinese characters where first strokes (in black)
are distinguished from later strokes (in red) (Wikimedia, 2013). Minard’s map (Figure
7.1) also makes use of a simplified form of colored time flattening, since the army’s
forward march and return are distinguished using two different colors.

A special form of coloring is difference encoding, which has been used to compare
two graphs (Andrews et al., 2009) or multiple graphs (Hascoét & Dragicevic, 2012).
GraphDiaries (Chapter 4) includes color highlighting in the transitions, while Chapter 5
shows designs to compare networks with matrices.

7.1.4. Time Juxtaposing

Time juxtaposing consists in extracting multiple time slices from the space-time cube and
then placing them side-by-side or on a grid (Figure 7.10).

Cubix and GraphDiaries, both support time juxtaposition. Other examples for networks
as summarized in Section 2.6 (Temporal Multiples) are Matrix Flow (Perer & Sun, 2012),
Flow Maps (Boyandin et al., 2012), GraphAEL (Erten et al., 2003), and Ploceus (Liu et
al., 2011).

Beyond graph visualization, time juxtaposing is often used to show temporal data such
as time-evolving maps and trajectories in space. Figure 7.11(a) shows forest harvest data
over 11 years. Figure 7.11(b) shows a more complex example of time juxtaposing, where
not the entire space, but a detail, is shown for each time step. Additionally, the example
uses a flattening for each time step shown in order to visualize trajectories within one
location. Time juxtaposing has also been widely used for video summarization (Truong
& Venkatesh, 2007).

For spatio-temporal data, time juxtaposing is often referred to as small multiples
(Collberg et al., 2003), although small multiples are not necessarily built from time slices,
as for example demonstrated in Cubix, where multiple pictures are used to show node
slices.
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Figure 7.11.: Time juxtaposing showing (a) approved forest harvest applications
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Figure 7.12.: Space cutting and space flattening.

7.1.5. Space Cutting

Space cutting consists in extracting a planar cut in a direction perpendicular to the data
plane (Figure 7.12(a)).

Cubix allows space cutting as the user selects a single node slice in the 3D or node-
projection view. A single node-slice shows the dynamic ego network of the corresponding
node. While the Matrix Cube provides a geometry that allows for easy space cutting, a
space cut in node-link diagram is less intuitive. The only space-time cube system for
node-link diagrams that allows for multiple operations is the one described by Brandes et
al. (2004) (see Section 2.6).

Space cutting has also been employed for visualizing temporal data. In the 19th
century, Marey created a visualization of train connections between major french cities
that employs space cutting (Figure 7.13(a)). Marey created a visualization using space
cutting to visualize train connections between major french cities (Figure 7.13(a)). Space
is cut along the rails connecting cities and diagonal lines indicate positions of trains at
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Figure 7.13.: Example of space cutting: (a) horizontal lines indicate train stops, vertical
lines indicate times, and diagonal lines indicate trains (Marey, 1878), (b) Space cutting
used to show road traffic (Tang, Greenberg, & Fels, 2008).

any time (Tufte, 1990; Marey, 1878). Again, the cut through space is not a simple plane,
since it follows the course or the rails.

More recently, space cutting was shown to be useful for analyzing video logs (Tang et
al., 2008): Figure 7.13(b) shows a space cut (called tear in the original work) extracted
from a video scene, and revealing traffic activity (car count, speed and direction) on a
road. The time slice at #; is shown to the left, together with the position of the segment
extracted. The system is also able to show multiple longitudinal slices on top of each
other (i.e. space juxtaposing).

7.1.6. Space Flattening

Space flattening is similar to space cutting, but involves projecting the cube along a
particular direction on the data plane instead of extracting a cut (see Figure 7.12(b)).
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Figure 7.14.: Examples for space flattening: (a) edit history of a Wikipedia article in
HistoryFlow (Viégas, Wattenberg, & Dave, 2004), (b) space flattening showing temporal
connection patterns in a network in semantic substrates (Shneiderman & Aris, 2006).

Cubix uses space flattening analog to time flattening, in the node-projection view.
Many network visualizations use space flattening, summarized in Section 2.6(Timeline):
e.g., Semantic sustrates Shneiderman and Aris (2006) or parallel edge splatting (Burch
et al.,, 2011). In none of the cases, the flattening is “perfect”, i.e. additional effort was
required to remove node overlap, which would have resulted from simply projecting a 2D
node-link diagram. Space flattening for node-link diagrams turns into finding an optimal
ordering along the spatial dimension orthogonal to the time axis.

An example of use of space flattening in infovis is the History Flow technique for
visualizing document histories (Viégas et al., 2004), illustrated in Figure 7.14(a): the right
panel shows the last revision of a Wikipedia article, each color corresponding to a specific
contributor. The left visualization shows the history of the article, built by collapsing each
article revision into a one-pixel column, and then displaying all columns side-by-side.
These operations are equivalent to flattening the article’s space-time cube along the x-data
axis.

7.1.7. Sampling

Sampling is an operation that consists in extracting space cuts (samples) from a space-time
cube at several locations on the data plane, then rotating those samples in-place so they
face the viewer (Figure 7.15).

Cubix provides two ways of sampling; (a) tilting the cube (Figure 7.16(a)) or rotating
slices (Figure 7.16(b)).

Two visualization techniques based on sampling were mentioned in this chapter’s
introduction (Figure 7.17). The left example shows the evolution of crime statistics in
every US state (N. Andrienko & Andrienko, 2004), while the right example shows the
evolution of high school population in several districts across three years (Shanbhag,
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Figure 7.16.: Sampling in Cubix, by (a) tilting the cube, and (b) rotating individual slices
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Figure 7.17.: Examples of sampling: (a) the evolution of crime statistics in every US state;
(b) the evolution of high school population in several districts across 3 years.

Rheingans, & des Jardins, 2005). Although more complex operations are involved (e.g.,
using silhouette graphs to encode values), both examples are conceptually based on a
sampling operation.

7.2. Taxonomy of Space-Time Cube Operations

Some operations are rather simple (e.g., time cutting), while others are more complex
(e.g., sampling) and could be described as a combination of several lower-level operations.
Yet, some particular techniques such as Semantic Substrates or Maray’s train schedule,
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require particular operations in addition to space flattening, in order to obtain the final 2D
visualization.

In this section, we provide a more systematic description of the design space of space-
time cube operations. This design space can be seen as an extension of the ones described
for Cubix in Figure 6.4.

7.2.1. Basic Terminology

A space-time operation takes a space-time object and produces another space-time object.
A space-time object is a geometrical object within a space-time coordinate system (i.e.
two spatial dimensions and one temporal dimension). Possible space-time objects include,
but are not limited to:

space-time volumes (of which a complete space-time cube is an example),
space-time surfaces (planar and non-planar),

space-time curves,

points, as well as

sets of disconnected volumes, surfaces, curves and points.

The ultimate goal of space-time operations is to transform a space-time cube into a
space-time object whose shape is compatible with the shape of the media employed to
convey the information. By media we mean the visualization’s physical presentation,
which is the physical object or apparatus that makes a visualization observable to the end
user (Jansen & Dragicevic, 2013). In the vast majority of cases (i.e. computer displays
and paper) the media has a planar shape.

For a given media, a space-time operation is complete if it takes space-time volumes as
input and produces space-time objects whose shape match the media’s shape. Otherwise
the operation is incomplete: it cannot be used to produce a valid visualization from a
space-time cube. Several elementary space-time operations can be chained, in which case
they form compound operations. A compound operation is complete if the first operation
takes space-time volumes as input, and the last operation produces space-time objects
whose shape is compatible with the media.

7.2.2. A Taxonomy of Elementary Space-Time Operations

A taxonomy of elementary space-time operations is shown in Figure 7.18, illustrated
by small illustrations. The taxonomy breaks down space-time operations into five main
classes:

1. Extraction consists in selecting a subset of a space-time object (e.g., extracting a
line or cut from a volume),
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Figure 7.18.: Taxonomy of elementary space-time operations with schematic illustrations.
Gray shading indicate non-leaves, bold indicates complete operations. The Time column
regroups operations that are applied according to the time axis, while the Space column
regroups operations that are applied according to the data plane. Elementary operations
can be performed in sequence, called compound operations.

2. Flattening consists in aggregating a space-time object into a lower-dimensional
space-time object (e.g., projecting a volume onto a surface),
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3. Filling consists in turning a set of disconnected space-time objects into a fully
connected space-time object,

4. Geometry transformation consists in transforming a space-time object spatially
without change of content,

5. Content transformation consists in changing the content of a space-time object
without affecting its geometry.

The table in Figure 7.18 shows how general operations break down into more specific
operations. On each of the two columns, general operations are on the left while more
specific operations are on the right. Operations that are the most specialized (i.e. leaves
on the taxonomy tree) are shown on a white background. Operations written in bold
are those which produce planar surfaces, i.e. that can be used as final operations on
screen-based and paper-based media.

We quickly review the most specialized operations (white background), going from top
to bottom on the left column, then on the right column. We also describe the parameters
necessary to specify each space-time operation.

Extraction

o Point extraction consists in selecting a specific point inside a space-time volume.
This operation is defined by a 2D position on the data plane and a time value.

e Time drilling consists in extracting a line parallel to the time axis. It is uniquely
specified by a 2D position on the data plane.

o Space drilling extracts a line perpendicular to the time axis. It is specified by a 2D
line and a time value.

e Oblique drilling consists in extracting an arbitrarily oriented straight line from
within a space-time volume.

o Planar curvilinear drilling consists in extracting a planar 3D curve from a space-
time volume. This operation, as well as all operations above, is complete for 2D
media.

e Non-planar curvilinear drilling consists in extracting an arbitrary 3D curve from
a space-time volume. It is incomplete, and hence needs to be combined with other
operations like flattening or unfolding.

e Time cutting consists in extracting a planar cut from a space-time volume in a
direction orthogonal to the time axis (cf. Section 7.1.1). It takes as parameter a
time value that defines the cut position on the time axis. It is a complete operation
for 2D media.

o Linear space cutting consists in extracting a planar cut from a space-time volume
in a direction orthogonal to the data plane (see Section 7.1.5). It is also complete,
and takes as parameter a line or a segment parallel to the data plane that, once
extruded over time, defines the cutting surface.
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Oblique cutting consists in extracting a planar cut from a space-time volume that
is neither orthogonal to the time axis, nor orthogonal to the data plane (Fels et al.,
2000). It takes as parameter a 3D cutting plane.

Curvilinear space cutting is similar to linear space cutting except the cutting
surface is produced by extruding a curve parallel to the data plane that is neither a
line nor a segment. This operation produces non-planar space-time surfaces that
further need to be flattened or unfolded.

Time chopping is similar to time cutting but slices have a thickness instead of being
infinitely thin. Since it produces volumes, it is not complete for 2D media, and thus
needs to be complemented with additional operations. It takes as parameter a time
segment that defines the two cutting slabs (a slab is the infinite region between two
planes).

Linear space chopping, oblique chopping and curvilinear space chopping are
similar to the previous cutting operations, with the difference that they produce
volumes with a certain thickness instead of infinitely thin surfaces.

Flattening

o Time flattening aggregates a space-time volume into a plane orthogonal to the

time axis (see Section 7.1.2). This operation takes as parameters a time value, a
projection function and an aggregation function. The projection function maps
3D points to points on the plane. Examples include orthographic projection and
perspective projection. The aggregation function describes how point values are
combined. If values are defined in an RGBA color space, the function maps vectors
of RGBA colors to a single RGBA color. Examples of such functions include
alpha-blending (e.g., averaging all colors) and overplotting (i.e. only keeping the
last color) (Collberg et al., 2003; Kapler & Wright, 2004; Robertson et al., 2008).
Space flattening, oblique flattening and non-planar flattening are similar oper-
ations, but the surface on which the volume is projected is different (see previous
cutting operations for more details) (Viégas et al., 2004).

Filling
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e Time interpolation consists in filling “holes” in space-time objects (volumes,

surfaces or curves) by interpolating between values along the time axis. It takes as
parameter a monovariate interpolation function. For example, a piecewise linear
time interpolation operation will transform a set of time slices into a full space-time
cube by linearly interpolating the values (e.g., RGBA colors, positions) between
pairs of successive time slices. For example, in order to provide fluent animations
for dynamic networks, node positions are interplated (e.g., GraphDiaries).
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e Space interpolation consists in filling “holes” in space-time objects by inter-
polating between values on each data plane. It takes as parameter a bivariate
interpolation function. For example, a bilinear space interpolation operation will
transform a set of lines parallel to the time axis into a full space-time cube.

e Volume interpolation consists in filling “holes” in space-time objects by interpo-
lating across both space and time. It takes as parameter a trivariate interpolation
function. One example is interpolating video frames using motion estimation
techniques (Choi, Lee, & Ko, 2000).

Geometry Transformation

e Space shifting, time shifting, yaw, roll and pitch consist in moving or rotating
space-time objects. They can be used, e.g., for placing multiple cuts side-by-side.
They each take a single scalar value as parameter.

o Time scaling and space scaling rescale space-time objects along their principal
axes. They take as parameters one and two scalar values respectively, that define
the scaling factor.

¢ Bending deforms space-time objects. For example, a space-time volume can be
bent such that the time axis follows an arc instead of a line (Daniel & Chen, 2003).
This operation takes as parameter a deformation function that maps 3D locations to
3D locations.

e Unfolding transforms a non-planar space-time surface into a planar space-time
surface. An analogy is a map projection function that transforms a sphere or
portion of sphere into a plane. An example of space-time unfolding is Maray’s
train schedule (Figure 7.13(a)), which can be seen as an unfolded curvilinear space
cut performed on a time-evolving 2D map.

Content Transformation

e Time coloring consists in altering the colors of each time slice according to time
(Collberg et al., 2003; Erten et al., 2004). Examples include coloring each time
slice uniformly according to a linear color scale (Figure 7.9), changing the hue
of each time slice, or dividing the time axis in different regions and applying a
discrete color scale (Figure 7.1).

e Space coloring alters the color of points in a space-time volume depending on
their 2D position on the data plane.

o Difference coloring consists in altering the colors of each time slice according to
the difference between time slices. One example is highlighting appearing nodes
and disappearing nodes in a dynamic graph such as in GraphDiaries (Chapter 4)
or Rufiange and McGuffin (2013); J.-W. Ahn et al. (2011).
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o Time labeling consists in adding time labels to each time slice or to objects inside
a space-time volume (Figure 7.7(b)).

o Stabilizing consists in repositioning objects on each data plane so that their tra-
jectories are as parallel as possible to the time axis. Examples include computing
stable layouts for dynamic networks, summarized in Section 2.7 (Erten et al., 2003;
Diehl et al., 2001; Diehl & Gorg, 2002) and stabilizing videos (Battiato, Gallo,
Puglisi, & Scellato, 2007).

¢ Bundling consists in repositioning objects on each data plane in order to bring
their trajectories closer to each other. One example is bundling air plane routes
(Hurter, Ersoy, Fabrikant, Klein, & Telea, 2013).

o Shading consists in altering the color of a space-time volume’s content by sim-
ulating light propagation mechanisms (e.g., diffusion, specular reflection, drop
shadows).

o Filtering consists in removing parts of a space-time volume’s content. One example
is removing all points of a certain color or value as in Cubix (Chapter 6) or in
Tardis (Carpendale et al., 1999) and V3 (Daniel & Chen, 2003).

e Aggregation replaces multiple space-time objects by a single, larger space-time
object. Different methods exist. For example, 3D kernel density estimation trans-
forms a set of space-time points or space-time curves into 3D volumes or 2D (iso)
surfaces (DemsSar & Virrantaus, 2010).

7.2.3. Adaptive and Semantic Operations

Adaptive operations take into account the shape or content of the space-time objects they
operate on. For example, an adaptive time cutting operation can cut cubes according
to regions with large changes instead of cutting them into regularly-spaced slices. This
technique is used, for example, in adaptive video fast-forward (Petrovic, Jojic, & Huang,
2005). Similarly, an unfolding operation that works on any surface (as opposed to, e.g.,
only spheres), would be an adaptive unfolding operation.

Semantic operations take into account the data semantics of the space-time objects they
operate on. One example would be a semantic volume interpolation operation, which
connects discrete sets of moving objects (e.g. in dynamic scatterplots (Rosling, 2006))
with lines or tubes (see Figure 7.7(b) for another example). This operation is semantic
because it needs to know the identity of the objects to be able to match them on successive
time slices. Time labeling operations such as the one used in Figure 7.7(b) are also
semantic, because they need to know the location of datapoints of interest to place the
labels appropriately. Filtering operations can also be semantic, as well as recoloring
operations (Viégas et al., 2004; Robertson et al., 2008).
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7.2.4. Compound Operations

We previously defined compound operations as several operations applied in sequence.
According to our taxonomy from Figure 7.18, some of the operations we introduced in
Section 7.1 are elementary, namely time cutting, time flattening, space flattening. Others
are compound and can be broken down as indicated in Table 7.1. In our notation, the
symbol + refers to a composition, the symbol * refers to operations applied multiple
times and the symbols [ ] refer to optional operations.

Compound Operation \ Elementary Operations

Discrete time flattening time cutting*® + time flattening

Colored time flattening time coloring + time flattening

Time juxtaposing (time cutting + space scaling + space shifting)* +
time flattening

Marey’s schedule curvilinear space cutting + yaw + unfolding

Slit tears (linear/curvilinear space cutting + yaw + [unfold-
ing] + space shifting)*

Sampling (time drilling + time scaling + yaw)*

3D rendering [shading] + oblique flattening

Table 7.1.: Compound operations decomposed.

A compound operation inherits the parameters of its sub-operations. For example,
a discrete time flattening operation is specified by a sequence of time values, as well
as a projection function and an aggregation function. But in practice, most compound
operations enforce constraints between their parameters. For example, all space scalings
from a time juxtaposing operation are typically the same.

7.2.5. Dynamic Operations

So far we only considered operations (both elementary and compound) that transform a
space-time cube into a static visual representation. On computer displays, operations can
also be applied in a dynamic manner. Dynamic operations can involve either animation
or interaction.

Animation

We refer to animation as the process of applying different operations on a space-time
cube over time, or similarly, varying the parameters of an operation over time.

The most common form of animation consists in changing the position of a cutting
operation over time, i.e. animated time cutting. This results in the space-time cube
content being “played back”. For example, if the space-time cube represents a visual
scene like video surveillance data, synchronizing the motion of the slice with a clock
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will result in a real-time playback of the original scene. When significant data is skipped
during playback, the animation is closer to a discrete time juxtaposing operation, except
slices are shown in sequence instead of being laid out side-by-side.

An animated time cutting operation can be preceded by a filling operation in order
to produce smooth animated transitions. Examples for dynamic networks have been
given in Section 2.6.2 and in (Chapter 4), but animated time cutting has also been used
for scatterplots (Rosling, 2006; Robertson et al., 2008). Most of these examples can be
described as semantic volume interpolation + animated time cutting operations. Animated
time cutting can also be combined with other space-time operations such as time flattening.
For example, Gapminder can combine scatterplot animations with static trails for points
of interest (a filtering + time flattening operation) (Rosling, 2006).

While many animation techniques can be described as animated time cutting on static
space-time cubes, more elaborate techniques require operations to be applied in real-time.
For example, they system by Hurter et al. (2013) uses animated time chopping to animate
a network over time while preserving temporal context information. At every animation
frame, a time flattening is applied that produces colored trails and a dynamic bundling
operation is applied that guarantees a continuous animation without jumping bundles
(Hurter, Ersoy, & Telea, 2012).

Although animated time cutting and its many variants are the most common forms of
animation, other animated operations exist. For example, animated 3D rendering can
explain a transition between two space-time operations to a user such as used in Cubix
when switching between views.

Interaction

Interaction is similar to animation except the changes in the space-time cube operations
are under the user’s control.

Consider animated time cutting: if the position of the cutting plane is controlled by
the user, for example by dragging a slider, instead of being automatically moved, then
the operation becomes interactive time cutting. A common implementation of interactive
time cutting is the slider on a video player. As with animations, any operation can be
made interactive.

GraphDiaries implements particular interaction techniques for interactive time cutting:
(a) transitions are possible between non-adjacent time steps, i.e. time cuts are not
traversed in the order of time (inter-time step navigation), (ii) transition type and duration
are controlled by the user (intra-time step navigation).

In Cubix most of the operations are interactive. (i) Time cutting, as well as space
cutting is performed and parameterized interactively when leafing through nodes (cf.
Section 6.3.6). (ii) Interactive time chopping is supported by the time slider allowing a
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Figure 7.19.: Different inner structures in a space-time cube.

time window to be moved “through the cube”. Further interactive operations in Cubix
include (iii) the rotation of slices, a compound operation that consists of a space or time
cutting + yaw, while (iv) tilting the Matrix Cube is a single yaw on the entire cube by a
very small degree. Finally, Cubix allows for various (v) interactive filter mechanisms,
summarized in Section 6.4.

7.3. The Inner Structure of Space-Time Cubes

So far we considered space-time cubes as monolithic 3-dimensional entities. However,
two space-time cubes can look very different, depending on (a) the data that is visualized:
migration of animals, earthquakes, changes in vegetation and ecosystems, dynamic
networks, surveillance videos, or scatterplots, and (b) the data’s characteristics. The way
a space-time cube “looks” will be referred to as its inner structure and can be described
independently from the actual data. As we discuss in Section 7.4, inner structure is
an important factor when choosing and discussing space-time operations, because it
influences each operation’s efficiency.

7.3.1. Decomposing Space-Time Cubes

We assume that any space-time cube can be subdivided into lower-level space-time objects.
A common example is a set of 3D curves or tubes generated by moving objects such as
cars, persons, nodes in a network, or points in a scatterplot, illustrated in the first row in
Figure 7.19 (In the following we use circled numbers to refer to the cases in Figure 7.19).
These curves can yield different patterns depending on the data ((1D)-(4)). A second typical
structure is obtained from dense matrix data such as videos, temperature maps or Matrix
Cubes ((5)-(8)). For these datasets, the object of interest (e.g., a pixel or a matrix cell)
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is fixed in space but its attributes change through the time dimension. Again, different
patterns of variation are possible such as between (5) and (6).

A space-time cube can often be subdivided in different ways. For example, pixels with
an alpha channel can yield higher-level space-time objects with intervening spaces: (7)
could be obtained by filtering a pixel-based landscape visualization according to the type
of vegetation, while (8) could be obtained by isolating bush fires (Carpendale et al., 1999).
Alternatively, optical flow can be extracted from a video, which would yield a structure
more similar to cases (1)-(4). Conversely, any animated visualization could be turned into
a video and yield a structure similar to cases (5) and (6). These are all different ways of
looking at a space-time cube. Ideally, however, the focus should not be on the specific
decomposition used, but rather on the overall properties of the inner structure.

7.3.2. Dimensions of Inner Structures

Figure 7.19 only shows eight possible examples of inner structures, defined by three
properties: density, variability in position, and whether moving objects or matrix data is
visualized. However, many more structures are possible. For example, moving objects
can change in color or shape over time (Dwyer & Eades, 2002), or disappear and reappear.
However, four dimensions are however enough to capture the most important properties of
inner structures, namely: density, variability in positions, variability in visual attributes,
and object lifespan. We review them here.

Density

The density of a space-time cube refers to how much non-empty space it contains. The
inner structure of a space-time cube can be dense such as in cases (D2)X5)X6) or sparse

such as in Q)@7)®).

Datasets like videos, and potentially Matrix Cubes ((5)(6)) produce inner structures
that are maximally dense, and which will be referred to as complete. Dense and complete
cubes are often transformed into sparser cubes @D®), by filtering elements (e.g., Cubix,
Tardis (Carpendale et al., 1999)). Furthermore, a space-time cube can be spatially dense
but temporally sparse (e.g., incomplete video data, or networks with a few dense time
steps, cf. Figure 6.22), or vice versa (e.g., a GPS log over several days, a sparse network
with many permanent connections). Density is a key property of inner structures, and it is
the only dimension that is independent from the decomposition used.
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Variability in positions

This dimension refers to the amount of motion that 2D objects undergo in the space-time
cube, which in turn affects the shape of the 3D space-time objects that make up its inner
structure.

For example, (3) (which could be four moving people) involves rather straight curves,
while case (4) (which could be moving cars) produces more spaghetti-like curves. In
networks, (4) uses an unstabilized layout, while (3) has been stabilized (cf. Section 2.7).
Matrix data ((5)-(8)) yield zero variability in positions, since pixels are fixed and space-
time objects are parallel with the time axis. However, using an optical flow decomposition,
case (6) would exhibit more variability in position than case (5).

Variability in visual attributes

This dimension refers to the amount of changes on the objects’ visual attributes, such as
color and size.

For example the pixels in (5) and (6) (which could be pixels in a video or cells in
a Matrix Cube) change in color, with a much higher variability in (6). In contrast,
moving objects in (D-(@) have fixed shape and color (black lines) and therefore exhibit
no variability in visual attributes. There would be variability in visual attributes if, for
example, objects were moving taxis and their color or radius would encode the number
of customers they carry. Likewise, size and cells in time vectors in a Matrix Cube can
exhibit changing edge weight over time as in (7) (see Figure 6.17(d)). (8) involves “blobs”
moving over time, which can be bushfires or clusters in a network (cf. Figure 6.8(a)).

Object lifespan

Object lifespan refers to how long space-time objects persist, which has an influence
on the portion of the time axis covered by the 3D space-time objects. The lifespan is
maximum when all objects span the entire time axis. Regular matrix data also yields a
maximum lifespan.

Objects with a long lifespan can be permanent connections in a network (e.g, trading
flows) (-7 or taxis moving in a city ()-4). In contrast, objects can reflect events that
have a start and an end such as in earth quakes. Events without any duration produce the
shortest possible lifespans, and yield inner structures consisting of points (Figure 7.20).
Since objects do not persist, there is no variability in position or visual attributes.
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(@ (e) ®

Figure 7.20.: Examples of inner structures within space time cubes. (a) Earthquakes,
illustration after N. Andrienko and Andrienko (2006), (b) Fund manager holdings (Dwyer
& Eades, 2002), (c) Trajectories in GeoTime, illustration after Kapler and Wright (2004),
(d) Signals between antennas (Cubix, Chapter 6), (e) Brain connectivity (Cubix, Chapter
6), (f) Surveillance video (Daniel & Chen, 2003).

7.3.3. Examples of Space-Time Cubes

This section describes representative examples of space-time cubes, showing different
data sets, created with different visualization systems. Yet, the cubes’ inner structure can
be described by the properties of the space-time objects.

Earthquakes The cube in Figure 7.20(a) is sparse and objects have zero lifespan.
They further vary in size, but in no other visual attributes. The cube resembles (§) in
Figure 7.19.

3D node-link diagram The dynamic network in Figure 7.20(b) shows nodes as
columns and links as bridges between columns. The cube is relatively sparse, objects
have different lifespans; nodes have maximal lifespan while links have zero lifespan and
appear for a single instant only. Nodes can be described as moving objects. However, node
positions have been stabilized and there is no variability in position but high variability
in visual attributes (color, radius). The example resembles D.

People’s trajectories Figure 7.20(c) shows peoples’ trajectories (moving objects),
discriminated by color (space coloring). Objects also have maximal lifespan, do not
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vary in visual attributes, and show high variability in position. While generally the cube
appears sparse, its center is quite dense. The cube resembles (4), or ).

Antenna communication in the Matrix Cube The data set in the Matrix Cube in
Figure 7.20(d) is complete and resembles (5. The cube contains matrix data, i.e. there
is no variability in position. However, cells in time vectors along the time dimension
vary in size and color (edge weight), and since the cube is complete, time vectors have
maximal lifespan.

Brain connectivity Figure 7.20(e) shows also a complete cube of location values
with maximal lifespan and no variability in position, but with high variability in visual
attributes. It resembles (6).

Surveillance video Figure 7.20(f) is an example of a video cube, but only changing
pixels have been kept, the others have been removed (the cube shows two people passing a
door). The video cube is made of pixels, hence shows location values. There is relatively
high variability in visual attributes, resembling (8).

In the next section we will see why these characteristics matter, and how the inner
structure of a space-time cube can be altered with space-time operations.

7.4. Which Operations to Chose?

So far, this chapter focused on the descriptive function of our framework: the different
types of operations, how they can be combined and made dynamic, and the inner structure
of space-time cubes. We now have all the elements to discuss the practical strengths and
weaknesses of space-time operations. This section extends the previous discussions in
this dissertation (mainly Sections 2.8 and 4.1) by using the framework introduced in this
chapter and considering studies beyond the scope of dynamic networks. The discussion
in this section aims to support the choice of operations when designing visualizations or
researching novel visualization techniques to leverage the strengths and overcome the
drawbacks of the space-time operations.

7.4.1. Empirical Evaluations

Studies related to dynamic network visualizations have been discussed in Chapter 2
(Section 2.8). These studies showed that time-juxtaposing is to be preferred for small
networks with few time steps. Robertson et al. (2008) showed that animations performed
least but were encouraging and fun to watch for participants.

In Chapter 4 we showed that time interpolation and animated time cutting significantly
improve users’ performance, compared to simple time-cutting without animation. Differ-
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ence coloring and improved temporal navigation further improved users’ performance as
well as resulted in much more positive feedback. The tested data sets were much larger
and denser than in previous studies. Object lifetime was short for some nodes, long for
others.

In Chapter 5 we compared node-link diagrams with time coloring (each graph had
an individual color) and matrices with space scaling and space transformation, both in
combination with time flattening. Node-link diagrams represent the network using moving
objects, while matrices represent the network using location values. Both representations
were stabilized, i.e. node and edge positions were exactly the same in both networks. We
found that matrices perform much better than node-link diagrams.

Beyond dynamic networks, studies have been conducted on data about moving objects
as well as with location values with minimal lifespan (Kjellin, Pettersson, Seipel, & Lind,
2010). The studies majorly compared time flattening against 3D rendering and sometimes
animated time cutting. On a data set of four people moving through space, (Kristensson
et al., 2009) compared 3D rendering with shading against time flattening, while using
space coloring (each person had an individual color). In summary, the results show that
for simple tasks, time flattening performed better, while 3D rendering was better for more
complex tasks.

A study by Willems, van de Wetering, and van Wijk (2011) compared (non-interactive)
animated time cutting with 3D rendering and an enhanced version of time flattening
described earlier by same authors (Willems, van de Wetering, & van Wijk, 2009). Results
across three different tasks showed that overall, each technique was best for one task.
The study lists many exceptions, depending on data density, and variability in position.
Animated time cutting was reported to be the least robust to a high variability in position.
For the number of objects, Willems et al. report that 3D rendering was least scalable,
while animated time cutting performed best.

Kveladze and Kraak (2012) conduced a participatory design session with experts
in geography, analysing movement patterns in 3D renderings. The study aimed in
investigating proper designs for people’s trajectories to encode attributes such as gender
and income. Experts reported that shading and mapping attributes to trajectory thickness
cluttered the visualization. Instead, they suggested space coloring in order to better
distinguish people. The data contained about 203 trajectories of commuters in a single
city and compared to time flattening, experts found time flattening (showing a map of
the city) too overloaded. However, experts further reported that 3D rendering “helps in

earlier stages of the research to get some hints about the data”?.

In the case of dynamic networks, only a small subset of all possible operations have
been covered by the mentioned studies; time juxtaposing, animated time cutting, as well
as time flattening and sometimes 3D renderings. Tasks and implementation are different

ZKveladze & Kraak, 2012, p. 7
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across studies, which makes it difficult to compare them. While study results are already
diverging for the case of dynamic networks, many of the existing findings are hard to
generalize beyond the domain, type of data, and operation parameters used in the stimuli.

Using our framework, with its ability to reduce complex techniques into elementary
operations and describe the inner structure of space-time cubes, we now discuss operations
on a general level, driven by general knowledge on visual perception and on common
sense. Where appropriate, we refer to the listed studies throughout our discussion.

7.4.2. 3D Rendering

3D rendering ([shading] + oblique flattening) is the operation most commonly as-
sociated with the space-time cube concept. The major difficulties of 3D visualiza-
tions (Shneiderman, 2003) include (i) occlusion, (ii) depth ambiguity, (iii) perspective
distortion, (iv) color distortion and (v) navigation difficulties. There are further discussed
below. However, 3D rendering can be useful for providing a general overview of a
space-time cube’s inner structure (density, variability and object lifespan). It is also the
most effective approach when the goal is to have observers explicitly think in terms of a
space-time cube by conveying the metaphor, and for an initial overview of the data (cf.
Kveladze & Kraak, 2012).

Occlusion issues are due to the use of a flattening operation together with an overplot-
ting aggregation function (i.e., near objects are drawn on top of far objects). The amount
of occlusion depends on the density of the inner structure. Therefore, 3D rendering should
mostly be adapted to sparse structures (cf. Willems et al., 2011; Kveladze & Kraak,
2012). Additional space-time operations should be employed for visualizing dense (and
sometimes complete) structures. An effective technique involves sparsifying the cube’s
structure using interactive filtering, such as in Cubix.

A related approach involves the use of translucency filtering or more generally, translu-
cent space-time objects. However, translucency produces visual clutter without fully
addressing the problem of occlusion, and we found few instances of this technique yield-
ing legible results. Also, occlusion is an important depth cue (Wanger, Ferwerda, &
Greenberg, 1992; Kjellin et al., 2010) that is mostly lost when translucency is employed.
For similar reasons, we recommend against making the whole space-time cube translu-
cent — or equivalently, using an alpha blending aggregation function in combination
with 3D rendering. Elaborate interactive operations exist that can decompose a space-
time cube using extraction and rigid transformation operations, and allow users to look
inside (Cowperthwaite, Carpendale, & Fracchia, 1996).

Depth ambiguity is further caused by the use of a flattening operation in 3D space.
In the real world, most depth ambiguities are resolved through stereoscopic vision and
structure from motion (Todd, 2004; Wanger et al., 1992), also there is evidence that
stereoscopic displays do not improve performance for point clouds (Kjellin et al., 2010).
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Structure from motion is as powerful as stereoscopic vision (Todd, 2004), and this is
why 3D rendering is the most effective when the space-time cube is allowed to rotate
through animated or interactive 3D rendering. Incidentally, being able to “look behind”
space-time objects also mitigates occlusion problems. When interaction cannot be used
(e.g., on paper media), static depth cues are important. One approach for structures with
no or very low variability in position is to have space-time objects “touch” the ground.
This is already the case for structures with maximum object lifespans such as in Figure
7.20(b). For short object lifespans like in Figure 7.20(a), it is advised to either add lines
connecting objects to the ground (Kapler & Wright, 2004) or add drop shadows (Wanger
et al., 1992; Turdukulov, Kraak, & Blok, 2007) by applying a shading operation with
perpendicular lighting.

Perspective distortion is due to the use of a perspective projection function: far objects
appear smaller than near objects, making it difficult to accurately compare sizes and
lengths. This issue can be eliminated with the use of an ortographic projection function
instead. However, doing so will eliminate an important depth cue and may produce depth
reversals analogous to the necker cube illusion (Wanger et al., 1992). Again, this type of
ambiguity can be alleviated by the use of other depth cues such as occlusion, contact and
shading.

Color distortion is a side-effect of the shading operation, since it alters the color of
the space-time objects. This is not a problem when color is not encoding information
or when simple color scales are used as in Figure 7.20(b), but could be an issue when
numerical data is encoded through brightness. Yet, Kveladze and Kraak (2012) suggest
to use not too many visual encodings on space-time cube objects.

Navigation difficulties with 3D visualizations are due to the oblique flattening operation
having too many degrees of freedom. One way to facilitate navigation is to add constraints,
i.e., only let users manipulate 3D renderings in ways that are essential to their task (Smith,
Stuerzlinger, Salzman, Watson, & Buchanan, 2001; Shneiderman, 2003), or restrict
interaction so as to allow only for rotation around the y-axis. Restricting users freedom
of interactions was one of the design goals for Cubix, leading us to use fixed views with
easy navigation between them.

Generally speaking, space-time cubes are a convenient conceptual tool for thinking
about temporal visualizations, but explicitly showing them using 3D rendering poses
a number of problems and should be done only when necessary (e.g, for showing an
overview or for explanatory purposes). Computer screens and paper are 2D media, and
are optimized for 2D visualizations (Shneiderman, 2003). As we have already seen, many
2D solutions exist to show temporal data.
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7.4.3. Time Flattening

Time flattening (Figure 7.5(b)) can be seen as a 2D technique, or as a specific form of
3D rendering projecting orthogonally on the data plane, as implemented in Cubix. Time
flattening essentially turns a space-time cube into a spatial visualization: each point on
the resulting image shows the history of this point aggregated over time. As a result,
spatial relationships and trends are preserved and are clearly visible, such as the path of
Napoleon’s army in Figure 7.1 or the distribution of data values in Figure 7.7(b). Any
aggregation function can be used, including alpha-blending for showing averages, or
more elaborate techniques for showing cumulative statistics (Figure 7.7(a)).

The major drawback of time flattening is that it reduces the time axis to a point
(Figure 7.5(b)), so most temporal information is lost, including the ordering of events
(cf. Willems et al., 2011), temporal intervals, and absolute timestamps. However, part of
this information can sometimes be cognitively reconstructed from object trajectories. For
example, when reading Napoleon’s march (Figure 7.1), one knows that an army does not
jump between random locations but progresses smoothly, so not all orderings of events
are plausible. Knowing that an army generally shrinks in size is then enough to infer its
direction of motion: eastward then westward.

For flattened trajectories to be legible and informative, the space-time cube needs to be
spatially sparse (cf. Kveladze & Kraak, 2012), with long object lifespans, and exhibit a
reasonable amount of variability in positions. If an object’s color is not used to encode
domain-specific attributes, time coloring (Figure 7.9) can be used. This operation has the
additional advantage of explicitly encoding time. However, color is a poor visual attribute
since the human visual system cannot discriminate between many colors (Conti, Ahamad,
& Stasko, 2005), and no color scale exists that naturally maps to time. If time intervals
(or object speeds) are more important than absolute times, a more effective approach is to
change the color or shape of objects at regular time intervals.

Another prominent problem of time flattening becomes evident in the Matrix Cube.
Since there is no variability in position, i.e. objects (time vectors) do not appear as traces,
as for example, in scatterplots (Figure 7.7(c)). This makes it impossible to communicate
when, or when not, a space-time cube object is present at a particular position, since all
objects overlap equally. In Cubix, cells are still visible, if they vary in size (edge weight).
Otherwise, the tilting operation allows a quick preview, if cells are not too big.

Discrete time flattening (time cutting® + time flattening) is a variant that can also
clearly expose time intervals and object speeds. Since this technique can result in loss of
information, it works best for structures that are sparse in time or exhibit low variability.
The way time cuts are placed on the cube is important; equidistant cuts generally expose
relative times, durations, and rates of change. When not all cuts are equally informative,
non-equidistant cuts may be preferred, but at the cost of loosing most of this temporal
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information. If cuts are chosen so that objects do not overlap, these objects become
clearly visible.

Additional operations can be applied to a space-time cube in order to reintroduce
missing time information. For example, the Phillips curve in Figure 7.7(b) uses semantic
volume interpolation to connect points and show their ordering. Both Figure 7.7(b) and
Figure 7.1 (for the army’s return trip) employ time labelling to explicitly convey event
timestamps. However, since time labelling increases the number of visual elements on
the screen, it should be used with care and may be inappropriate if many visual objects
are shown already (Figure 7.7(c)). Moreover, time labelling is less useful to relate object
position at the same time, since this requires reading labels which does not happen
preattentively. In contrast, color is a preattentive visual variable.

In summary, time flattening is an operation that produces easy-to-interpret visualiza-
tions: space simply maps to space. It is useful for showing data patterns aggregated over
time. But since it collapses the time axis into a point, it is most powerful when it can
leverage humans’ ability to reconstruct time from trajectories. This often requires the use
of additional space-time operations and a very careful visual design.

7.4.4. Space Flattening

Space flattening (Figure 7.12(b)) is another form of orthogonal flattening that does not
suffer from the drawbacks of regular 3D rendering. The orthogonal projection function
creates a meaningful spatial encoding, since one axis maps to time while the other axis
maps to space.

Space flattening is effective when both time and space are important, and there is a
meaningful mapping from the 2D data plane to a 1D line. For example, in order to be
meaningful, time flattening in node-link diagrams requires a technique for node overlap
removal or any other technique that orders nodes along a line (cf. Section 2.6.5). However,
it produces visualizations that are generally less easy to interpret when the data plane
does not have a natural coordinates system (e.g., in a node-link diagram or on a map), but
may work well in cases that visualize location values, such as Cubix.

7.4.5. Time Cutting

So far we covered the different types of flattening techniques. These techniques essentially
aggregate the data in a space-time cube and are helpful for overview tasks, but fail at
providing details. Among the extraction techniques, time cutting is by far the most
common, although mostly used in combination with time interpolation and/or interaction.
A single time cut provides a clean and fully detailed snapshot of a particular time stamp.
This is useful if the cube is spatially and temporally dense, since the entire screen is
available for visualization and only a single time is shown.
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However, since the goal of a temporal visualization is to show information across time,
more than one time cut must be shown. We already mentioned discrete time flattening
as a possible approach, although it still suffers from the drawbacks of aggregation. Two
aggregation-free alternatives are time juxtaposing and animated time cutting. We review
them separately.

7.4.6. Time Juxtaposing

Time juxtaposing ({time cutting + space scaling + space shifting}* + time flattening)
allows to show different time cuts simultaneously. Usually, space shifting follows the
occidental convention of laying out time cuts either linearly from left to right, or on 2D
from left to right then top to bottom (McCloud, 1994).

The main advantage of time juxtaposing over flattening is the legibility of individual
time cuts due to the absence of occlusion, and the ability to compare distant time steps
(cf. Slocum, Robert S. Sluter, Kessler, & Yoder, 2004; Farrugia & Quigley, 2011). But
the need for selecting time cuts generally means a loss in temporal resolution. Time
Juxtaposing is therefore mostly recommended for space-time cubes that are both spatially
dense but temporally sparse. However, the space scaling operation also has the effect
of shrinking time cuts (cf. (Boyandin et al., 2012; Farrugia & Quigley, 2011)): the
more cuts are shown, the less space — and therefore resolution — every cut has. The time
Jjuxtaposing operation therefore requires finding the best trade-off between spatial and
temporal resolution.

A potentially serious drawback of time juxtaposing is that time cuts use inconsistent
spatial coordinate systems, due to the space shifting operation. This can make it difficult
or impossible to relate moving objects across time cuts (cf. Archambault et al., 2011a).
Hence, tracking elements or understanding trends can be hard. However, if objects on a
time cut can be distinguished by their visual appearance and have a consistent appearance
across time (i.e., low variability in visual attributes and possibly in position), relating time
cuts becomes possible (cf. (Boyandin et al., 2012)). With few objects and preattentive
visual encodings (Ware, 2004), relating cuts can be effortless. If not, it may still require
visual search, split attention, and cognitive effort. One way of alleviating this problem is
through interaction, by adding brushing and linking support (Becker & Cleveland, 1987).

Like with discrete time flattening, the proper choice of time cuts is crucial with time
Jjuxtaposing, with the difference that granularity also affects spatial resolution. Again,
equidistant cuts are better at preserving temporal information. But when not all cuts are
equally informative, non-equidistant cuts (i.e., semantic time cutting) may be preferred.
For example, when showing changes in territory, historical atlases and newspapers often
employ this technique to emphasize different periods and historical events (Figure 7.21).
Individual dates typically need to be added (i.e., time labelling) to reintroduce the missing
time information.
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Figure 7.21.: Borders of countries on the territory of later Yugoslavia, in different years
(Kids Britannica, 2014).

7.4.7. Animated and Interactive Time Cutting

Animated time cutting inherits the benefits of time cutting compared to flattening in that
no aggregation is done, time cuts can therefore be seen clearly, without occlusion. In
contrast with time juxtaposing, animated time cutting does not suffer from the reduced
spatial resolution due to space scaling: each time cut spans the whole visualization and
show more objects.

Moreover, it benefits from a much higher temporal resolution. Although time cuts may
still need to be selected (if, e.g., the animation’s duration must be short), many of them
can be typically shown (e.g., 60 in only one second on a 60Hz display). Animated timer
cutting is therefore mostly recommended for spatially and temporally dense structures
but low or medium variability in position. If variability is too high, time interpolation or
volume interpolation need to be used to produce smooth animated transitions, such as
studies in Chapter 4; changes can also be highlighted (e.g., through a difference coloring
operation) in order to facilitate their detection and interpretation.

Animated time cutting can be extremely effective for revealing changes between
successive cuts, as our visual system is equipped for preattentively detecting visual
changes (Bartram, 1997). Ideally, objects’ trajectories on the screen are smooth across
time cuts and do no change abruptly (cf. (Willems et al., 2011)).

While comparative studies are missing, the study in Chapter 4 shows that animation
helps to understand more complex changes occurring across sequences of several time
cuts, under a range of variabilities in position and in visual attributes. Our perceptual abil-
ity to detect and interpret changes, however, requires the absence of visual discontinuities
(e.g., flicker) between time cuts of interest (Rensink, 2002), and ideally, that successive
time cuts are similar enough to be visually integrated and perceived as a motion (Feldman
& Tremoulet, 2006).

One drawback of animated time cutting is that an animation takes time, especially if
the structure is temporally dense (e.g., a surveillance video). Additionally, users have to
watch the entire sequence of time cuts, to get an overview over the data, a fact that users
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may complain about (cf. Archambault et al., 2011a; Robertson et al., 2008; Farrugia &
Quigley, 2011).

As with previous techniques, semantic time cutting can be used to speed up the
playback when not all time cuts are equally informative (Petrovic et al., 2005). A related
drawback is that since time cuts are not shown simultaneously, they cannot be freely
accessed (Tversky et al., 2002). This makes it difficult to carry out many types of
exploratory tasks, such as comparing two non-successive cuts, or examining a cut in
context with other cuts. To overcome this issue, we enabled navigation and transition
between non-adjacent time steps in GraphDiaries. However, comparison is still limited to
two time cuts.

Finally, both animated and interactive time slicing can only be used on dynamic dis-
plays, whereas all previous methods are compatible with static media such as newspapers.

The controversy about all these operations is far from being settled. Most likely, the
respective advantages of both techniques depend not only on the task, but also on the
type of dataset and on the specific operations used. For example, employing smooth
transitions (an interpolation operation) or giving subjects control over animations (infer-
active time cutting) can make a difference. Also, different datasets may produce widely
different inner structures, and dramatically influence the efficiency of both techniques.
By clarifying these differences and providing a terminology to describe them, we hope
that our framework will help design more informative user studies.

7.4.8. Stabilization

The stabilization operation can be used to complement several of the previously seen
approaches. While interpolation allows to produce smooth transitions between predefined
time cuts, stabilization allows to reduce variability in position when positions do not en-
code data. Although it may reduce the legibility of trajectories when using time flattening,
this technique may facilitate object tracking tasks in animated time cutting and object
mapping tasks in time juxtaposing. Stabilization also has an effect in space flattening and
space cutting, where it keeps object positions stable on the y-axis. Stabilization is mostly
used in dynamic graph drawing under the term “mental map preservation”, summarized
in Section 2.7.

7.4.9. Other operations

We discussed the benefits and drawbacks of space-time operations commonly used for
visualizing temporal data. As suggested by our framework (the elementary operation
taxonomy in Figure 7.18 and the different ways to combine them), a possibly infinite
variety of operations exist and it is impossible to analyze them all. It is likely that
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among all possible operations, the least constrained ones such as oblique and non-planar
operations, are the most difficult to read and to interpret.

In fact, often used approaches are particular in that they mostly involve orthogonal
operations, especially along the time axis (i.e., time flattening and time cutting). One
striking exception is 3D rendering, which combines several complex operations to emulate
how we perceive solid objects in the real world, and therefore produces familiar (but
sometimes illegible) images.

However, it is also likely that the immense design space of space-time cube operations
contains techniques that are hard to understand in the beginning and must be learned,
but can yield unique benefits for specific temporal data analysis tasks that usefully
complement standard approaches. In providing a framework for even more experimental
techniques, we want to stress the importance of research in novel temporal visualization
techniques. By discussing the multiple trade-offs involved in known techniques and
explaining how these trade-offs originate from the intrinsic properties of elementary
operations, we hope that our framework will be able to guide designers and accelerate
future discoveries. Another promising line of work consists in supporting multiple
space-time cube operations such as in Cubix, and as discussed in the next section.

7.5. Space-Time Cube Systems

We have shown that the choice of the best space-time operation depends on many factors
and always involves tradeoffs: there is not a single “best” approach. In this section we
review visualization systems that address this tradeoff by supporting multiple space-time
operations, comparable to Cubix. Such systems almost invariably use 3D rendering as
an explicit representation of the space-time cube, both for showing an overview and
for explaining how different operations relate. We call these systems space-time cube
systems. Because these systems work by letting users switch between different operations
and tune their parameters, interaction is a central feature.

7.5.1. Space-Time Cubes for Exploration

Hégerstrand’s intention with the space-time cube was to provide a thinking and analysis
tool, not envisioning actual graphical usage due to missing graphical capabilities (Kraak,
2003). About 30 years later, another geographer, Kraak (2003) described the potential of
the space-time cube in a viewing environment with “interaction, dynamics and alternative
views”3. These multiple coordinated views (Figure 7.22) comprise four main views. The
working view (Figure 7.22 right) shows a region of the geographical space and a certain
time span (creating a sub-cube). The 2d-view (top left) shows a map with the projected

3Kraak, 2003, p.1991

198



7.5. Space-Time Cube Systems

S e—— . X

attribute-vi
available

| /7 used
map| x| y]time| sto-colour| sto-width |

Figure 7.22.: Interface for space-time cube exploration as described by Kraak (2003)

trajectories, and the 3d-view (center left) shows all the data, much like an overview portal.
Red boundaries indicate the location of the sub cube?, shown on the right.

7.5.2. CommonGIS
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Figure 7.23.: CommonGIS (G. Andrienko & Andrienko, 1999)

CommonGIS (G. Andrienko & Andrienko, 1999) is a feature-rich analytical system for
geotemporal data. It supports several space-time operations, including time flattening and
3D rendering (Figure 7.23). The 3D rendering view is combined with a semantic filtering
operation to make the space-time cube sparser: geographical context is only shown on a
single time slice as reference plane, once at the bottom of the 3D rendered cube, and as a
time-flattened map. To control for the camera’s position with respect to the space-time
cube, two widgets allow to parameterize the projection function (indicated by an arrow
in Figure 7.23). One widget controls the camera position around the cube, the other one
controls its height.

I define the term sub cube here, since Kraak did not provide a proper term for that concept.
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7.5.3. GeoTime

(a) 3D rendering (b) Space flattening

Figure 7.24.: GeoTime, illustrations after (Kapler & Wright, 2004)

GeoTime is a carefully-designed commercial system for analyzing geotemporal data
(Kapler & Wright, 2004). Events are shown as spheres on a 3D rendering view that
can be freely rotated (Figure 7.24(a)). This view also uses a reference plane, and a
semantic volume interpolation operation is applied to indicate event ordering. Geotime
implements Kraak’s concept of detail (Kraak, 2003) as users zoom and pan in space and
time. Dragging the timeline allows for interactive time chopping by defining size and
position of time chopping. A zoom on the timeline results in time scaling. Similar, pan &
zoom in space allows for space chopping + space scaling.

GeoTime further supports time flattening and space flattening. Figure 7.24(b) shows
a space flattening view where time runs from top to bottom, and a reference plane is
provided that can be rotated. This reference plane shows a space flattening. Events in
both flattening views are connected through thin gray lines.

7.5.4. Tardis

Tardis (Carpendale et al., 1999; Carpendale, Fall, et al., 1996) is a system for visualizing
environmental data using 3D rendering in combination with advanced space-time opera-
tions. While CommonGIS and Geotime are made for the visualization of movement data
and sparse cubes, Tardis aims are visualizing matrix data that is complete (Figure 7.25(a)).
Voxels are color-coded depending on the type of vegetation, its age, soil characteristics or
the presence of bush fires.

To sparsify the cube, Tardis implements interactive semantic filtering: users can,
e.g., select a particular type of vegetation or bushfires (Figure 7.25(b)). In addition,
Tardis supports interactive orthogonal cutting, but in contrast with our previous examples,
cutting is always used in combination with 3D rendering. Users can define and manipulate
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(a) (b) (d)

Figure 7.25.: Examples of operations supported in Tardis (Carpendale et al., 1999); (a)
time chopping + yaw rotation. (b) Time and Space Cutting in 3D Rendering, (c) Semantic
filtering, (d) 3D fisheye distortion (Carpendale, Fall, Cowperthwaite, Fall, & Fracchia,
1996).

multiple orthogonal cutting planes, illustrated in (Figure 7.25(c)). Further operations
include opening the cube like a book (interactive (volume extraction + rotation)*) (Figure
7.25(a)) or apply a 3D fisheye effect (interactive (volume extraction + translation)*). This
fisheye effect, called “Visual Access Distortion” (Cowperthwaite et al., 1996), pushes
away voxels from the cursor (Figure 7.25(d)) (Carpendale, Fall, et al., 1996) so as to
make inner voxels visible.

In the inner structure of the data, Tardis is comparable to Cubix, and in fact employs
similar operations. Interactions are all performed manually and no predefined views exist.
Also, Tardis does not support operations such as time juxtaposing and space juxtaposing
nor flattening.

7.5.5. Video Cube Systems

Space-time cubes for video analysis result from stacking all the video frames in their
temporal order. As in Tardis, the resulting cubes are dense, and sophisticated algorithms
have been developed to recognize and track moving objects, for example to analyse video
surveillance material (Daniel & Chen, 2003; Botchen et al., 2008) and annotate videos
(Mackay & Beaudouin-Lafon, 1998).

Diva displays an isometric 3D rendering, while interactive time cutting allows for
exploration of the individual video frames. Frames are annoted by colored tabs (Figure
7.26(a)) which remain visible at the cube’s sides and indicate where frames have been
annotated the same way. Video Cubism (Fels et al., 2000) uses a more unconventional
way of exploration by interactive oblique cutting, shown in Figure 7.26(b). Similary,
Khronos projector (Cassinelli & Ishikawa, 2005) manipulates the cube in a non-planar
cutting, using touch and mid-air gestures (Figure 7.26(c)). By pointing into the video
frame, the frame is “bended” into time, changing the shown time for parts of the video.
V3 (Volume Visualization for Videos) by Daniel and Chen (2003), supports different
operations, including time juxtaposing and a 3D rendering view that can be combined
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(@

Figure 7.26.: Examples for space-time cubes used in video analysis. (a) Diva (Mackay
& Beaudouin-Lafon, 1998), (a) Video Cubism (Fels et al., 2000), (c) Khronos Projec-
tor (Cassinelli & Ishikawa, 2005) (d) V3 (Daniel & Chen, 2003).

with a bending operation (Figure 7.26(d)). V? also supports filtering operations that allow
to remove pixels of a certain color, or pixels that do not change across a given time period.

7.5.6. VISUAL-TimePAcTS

VISUAL-TimePACcTS is a system for analyzing activity diaries (Vrotsou et al., 2010). It
uses non-geographical space-time cubes. The cube’s two data axes can be mapped to
data dimensions such as individuals, locations, or activities. We focus on the case where
one axis maps to individuals while the other axis maps to activities. Activities are also
encoded using color.

VISUAL-TimePACcTS supports linear space flattening on both data axes. Figure 7.27(a)
shows 6 individuals (horizontal axis) and their activities (colors) across time (vertical axis).
Figure 7.27(c) shows the evolution of activities aggregated across all people over time.
VISUAL-TimePACcTS supports a seamless transition between the two operations through
interactive 3D rendering (Figure 7.27(c)). Since 3D rendering employs orthographic
projection and no shading, it is essentially an oblique flattening operation.

VISUAL-TimePACcTS supports a more elaborate space-time operation that prevents
visual marks from overlapping due to flattening. In Figure 7.27(c), for example, individ-
uals are horizontally offset when several of them do the same activity at the same time.
This technique is similar to the tilt in Cubix and is called shearing by the authors, and is
illustrated in Figures 7.27(d), 7.27(e). This technique is essentially a (linear space cutting
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Figure 7.27.: Views on the space-time cube in VISUAL TimePAcTS (Vrotsou, Forsell,
& Cooper, 2010): (a) space Flattening on activities, (b) oblique flattening, (c) space
flattening on individuals, (d) sharing illustrated, and (e) the result of shearing.

+ space offset)* + space flattening operation, and is a hybrid between space juxtaposing
and space flattening.

7.6. Discussion

This section briefly discusses our model with respect to the Information Pipeline by Card
et al. (1999) in its ability to create visualizations. We also discusses its applicability to
non-temporal data and possible limitations.

7.6.1. Information Visualization Pipeline

The most common software architecture for information visualization toolkits is the info-
vis pipeline (Card et al., 1999; Chi, 2000; Jansen & Dragicevic, 2013), already introduced
in Chapter 1 and shown in Figure 1.2. As our framework builds on the notion of compo-
sition of operations, it can also be seen as a data-flow process, transforming a 3D cube
into 2D visualizations. However, the way our operations map to the traditional infovis
pipeline is not immediately obvious. Some space-time operations can be performed at
different stages of the infovis pipeline. For example, time flattening can be done at the
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(a) (b) (©

Figure 7.28.: Examples of 3D visualizations partially or not captured by our taxonomy.
(a) 3D scatter plot (3D scatterplot, 2007), (b) Time-time cube (Van Wijk & Van Selow,
1999), and (c) operations on complex 3D data (McGuffin et al., 2003)

data transformation stage, by aggregating raw data over time. Alternatively, it could be
emulated by explicitly rendering a 3D space-time cube on the screen and using a proper
camera placement and projection transformation. In that case, it would be implemented
at the rendering level. However, both methods only give access to a very narrow range of
operations.

7.6.2. Non-temporal Data

This chapter focused on temporal visualizations that involve two dimensions plus time.
However, many other structured 3D visualizations exist, such as 3D scatterplots (Figure
7.28(a)) and bar charts. Van Wijk and Van Selow (1999) created a time-time cube, a type
of space time cube but with two temporal axes and one axis to indicate values (Figure
7.28(b)). A single timeline is “folded” into that time-time space. Although our operations
apply to 3D scatterplots and time-time space cubes with little modifications, there may be
particular operations on those data sets, that are not captured by our taxonomy yet. For
three-dimensional scientific data, McGuffin, Tancau, and Balakrishnan (2003) propose an
extensive set of data driven decomposition methods (Figure 7.28(c)).

7.6.3. Limitations

Our framework is only a thinking tool. Like any model, it is necessarily incomplete. First,
our taxonomy of elementary operations is not meant to cover all operations possible on
space time cubes. Second, it does not provide much guidance for interaction design, i.e.
how can operations be supported by interaction? Thereby, our framework is not meant to
restrict creativity but rather to help visualization designers find new solutions, extend or
generalize existing ones, and think out of the box. Only if we have a model to think about
visualization, we can look for ways to overcome it.

Again, our framework assumes that the space-time cube already exists. It does not pro-
vide guidance for producing the space-time cube itself. Examples in this chapter—videos,
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dynamic networks, geo-spatial data, scatterplots—are rather common to be represented as
space-time cubes. For other temporal data, especially 3D spatial data (Baker & Bushell,
1995), creating a space time cube may not be so trivial.

Another issue we did not discuss is whether operations should duplicate data or
should only aggregate and decompose space-time cubes. A case for not duplicating
data has been made before (Hurter, Tissoires, & Conversy, 2009). At the same time,
multiple coordinated views (Roberts, 2007) can help analyze complex datasets, shown in
GraphDiaries. More research is needed to find a sensible trade-off.

7.7. Conclusion

This chapter presented a detailed analysis of techniques to visualize spatio-temporal
data, by describing them as sequences of parametric operations applied to a conceptual
space-time cube. Our operations are independent from the underlying data and can
be applied across a range of application domains, be they geo-temporal visualization,
dynamic networks, scatter plots, bar charts, or video visualizations.

By introducing domain-agnostic concepts, a clear terminology, and by extensively
discussing trade-offs between known techniques, we aim at facilitating the comparison
of different approaches to unfold and visualize temporal data. Existing visualizations
from one data domain can be analyzed in terms of elementary operations and then be
adapted to other domains and problems. Our model also aims at facilitating the design of
user studies and discussing results in a more informative manner. Currently, the body of
evidence is largely inconsistent due to the lack of a clear terminology and of low-level
concepts that are necessary to tease out important factors. More controlled studies are
needed to understand the trade-offs between different space-time operations, and how
they perform depending on the task, the data, and the users.

Eventually, by giving a better vision of the richness of the design space, we hope our
model will also motivate the exploration of new approaches. However, our framework
also stresses the importance of developing fully-integrated interactive systems and toolkits
that can support a range of techniques in a consistent manner. Which minimal set of
views is necessary? How can multiple views be combined in a consistent way? It is
important is to design effective navigation and interaction techniques to switch views as
well as adapt and parameterize individual operations on the space time cube.

Finally, we have not involved tasks in our discussion of techniques. While a task
taxonomy has been sketched in Chapter 3 of this thesis, mapping individual tasks to
views has been done for views in Cubix in Section 6.3. Discussing tasks in the context of
operations for general time-space cubes is important but is left as future work.
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HIS dissertation set out from the question: “How to support the interactive visual
Texploration of dynamic networks”. 1 explored approaches to—in a metaphorical
sense—unfold dynamic networks, i.e. to look inside, to extract and re-lay out its parts,
to re-organize, to leaf through, to superimpose, to project from 3D them to 2D space,
making some intrinsic patterns visible. Unfolding is an iterative and interactive process,
not only in terms of managing the interface but also for the user’s mind; it involves
posing questions, formulating hypothesis, confirming and rejecting hypothesis, making
unexpected discoveries, and relate discoveries, gaining knowledge about the processes the
data represents. Unfolding means to change perspectives, reveal the hidden and provide
means to make the complex simple and visualizations can help mapping complex tasks to
simple visual forms.

The individual chapters and contributions in this dissertation can be described as
implementing four principles of unfolding dynamic networks:

e complementary views and techniques,

e interaction support to switch views,

e animated transitions for cognitive and perceptive support when switching views, as
well as

e a consistent interface, possibly based on interface metaphors.

In this final chapter, I summarize the project in this dissertation by reviewing the
individual contributions. This chapter concludes with an outline of future and open
research questions.

8.1. Summary and Contributions

State-of-the-Art Review Chapter 2 first gave an overview of the notions and vari-
ety of dynamic networks and then presented a state-of-the-art in visualizing dynamic
networks, using the following typology: animated sequences, temporal aggregation,
nestings, dynamic ego networks, temporal multiples, and space-time cubes. We can
think of these groups as general complementary views allowing to discuss individual
visualizations’ respective advantages and drawbacks, as well as how each visualization
addresses particular drawbacks in its group (e.g. node ordering in timeline views, layout
stabilization and change encoding in animations, encode time in aggregated views, etc).
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Some studies on the effectiveness of techniques across groups exist, but the results are
often hard to compare, due to that individual techniques, data, and task conditions differ.
The overview in Chapter 2 demonstrated the variety of problems and approaches, and
motivated the further work in the remainder of this dissertation.

Chapter 3: Towards a Task Taxonomy for Dynamic Networks Our task di-
mension defines the three main dimensions along which dynamic networks are explored:
the elements of the network (WHERE), temporal units and their respective relation-
ships (WHEN) as well as how network elements behave over time (WHAT). Simple
(1-dimensional) tasks correspond to queries that consist of given values from two dimen-
sions and search for the corresponding value in the third (open) dimension. The retrieved
graph elements, time points or behaviors are usually further analyzed by tasks described,
for example, by Amar et al. (2005). Higher-level tasks involve multiple dimensions and
require to perform compound tasks, for example to compare time steps or to describe the

evolution of a cluster.

Our taxonomy is a first step towards understanding what we should support with
interactive visual exploration of dynamic networks. More expressive taxonomies can be
imagined, capturing more tasks, reveal different groups of tasks, and result in different
implications for visualization and interaction design. Rather than creating one large and
complex taxonomy, which may be difficult to use and memorize by people, taxonomies
could be specialized and be used in parallel.

Chapter 4: Animated Transitions and Temporal Navigation With GraphDi-
aries we provide ways to explore dynamic networks along the three dimensions of our
taxonomy. Since many techniques support different tasks, there is no simple mapping
from tasks to techniques. GraphDiaries unfold networks with animated transitions by
allowing flexible temporal navigation; showing one time step allows to fully visualize
network topology and its attributes, supporting tasks about WHERE (Figure 8.1(a)). Tran-
sitions between time steps (Figure 8.1(b)) highlight changes and provide visual clues
to track elements (WHAT). Transitions are adjustable in what they show and between
which time steps. Important for navigation is the time line with the small multiples and
the navigation slider (Figure 8.1(c), WHEN).

For evaluating GraphDiaries we chose representative tasks and which involve compar-
ing, tracking and observing compound graph elements (groups of nodes); size, number
of permanent members, and amount of change. Each task represented and required to
explore a different dimension in our taxonomy. Such experiments and tasks are harder to
design, but they can yield more information about (i) which strategies users employ to
explore dynamic networks, (ii) which techniques they use, and (iii) how useful a particular
technique is under more realistic settings (ecological validity). We found that users overall
preferred the extended navigation and visual feedback, and that our transitions increased
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Figure 8.1.: Visualizations and techniques in GraphDiaries (Chapter 4): (a) Change
highlighting and slider navigation, (b) staged animated transitions and node query, and
(c) temporal multiples.

users’ performance. From these results, we conjecture that in being able to support more
complex tasks, GraphDiaries presents a useful approach to dynamic network exploration.

GraphDiaries can be extended in many ways including visual encoding of time relevant
network measures and temporal aggregation of multiple time steps in the network view.
Open questions include the visualization of a large number of small multiples on a limited
screen space or to otherwise summarize the network over time in order to provide visual
landmarks and previews to facilitate temporal navigation.

While in the process of publishing GraphDiaries, Rufiange and McGuffin (2013) pre-
sented DiffAni a system that combined similar techniques than GraphDiaries; integrating
small multiples, interactive animations and difference views. We see this as evidence of
the potential of providing ways to integrate multiple techniques in a consistent interface.

Upon multiple external requests, the research prototype of GraphDiaries is currently
under preparation to be released in the upcoming months.

Chapter 5 Comparison of Dense Weighted Networks Density and changing
weights of the connections are two aspects that make networks complex. In our use case
about brain connectivity, analyzing the literature and interviewing neurologists revealed a
list of tasks, many of which can be described as graph comparison tasks. Although to
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Figure 8.2.: Designs for comparing two weighted graphs (Chapter 5): (a) Selected
designs based on node-link and adjacency matrix representations, (b) condition from the
experiment comparing the two best designs for both representations.

a small extent, graph comparison tasks involve the three dimensions of our taxonomy.
Techniques based on node-link diagrams fall short in both aspects of brain networks, as
shown in our study (Figure 8.2(a)). For that study, we developed and discussed several
designs for both node-link diagrams and adjacency matrices (Figure 8.2(b)). The success
of matrices is likely due to their better capabilities to encode information in their cells, in
comparison with lines in a node-link diagram.

A particular problem in brain analysis is to represent the anatomical locations of the
regions. It requires further designs and studies to provide legible representations of
dynamic networks that require “spatialization”, including geographical networks such as
migration flows and transportation networks. An integration of our matrix design into
GraphDiaries is straight forward and planned as a future extension.

Chapter 6: Unfolding Networks with the Matrix Cube A central model in this
thesis was the space-time cube, serving as a base for interactive exploration. The Matrix
Cube provides us with a consistent way of representing and exploring dynamic networks,
especially dense ones and those with changing edge weight (Figure 8.3(a)). The cube’s
value results from its ability to apply operations to yield proper 2D views on the data,
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Figure 8.3.: The Matrix Cube (Chapter 6). (a) 3D view showing an almost complete
antenna signals network, (b) 3D and derived views showing a brain connectivity network.
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Figure 8.4.: lllustrations from the space-time cube framework (Chapter 7). (a) Selection
of space-time cube operations, (b) selection of types of inner structures in space-time
cubes

while the 3D cube can serve as visual pivot and to communicate the metaphor to the user.
Each way of looking at and unfolding the cube produces different visual patterns. It can
be seen as direct translation of mapping tasks from data space (data in the cube and its
visual encoding is the same in all views) into different visual tasks; here the user can (or
must) decide which representation solves his task best (Figure 8.3(b)). Views are still
complementary, since we cannot guarantee one optimal view per task.

The feedback we got from the experts we provided with Cubix was very positive and
we continue on working with these experts and applying Matrix Cubes to their problems:
for example, we want to investigate how we can represent multi-variate networks and
allow for comparison of multiple dynamic networks with Matrix Cubes.

Chapter 7: A Framework for Unfolding Space-Time Cubes Cubix is a space-
time cube system, since it implements the cube explicitly and allows users to apply
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operations interactively. In order to explore the design space of operations and views on
space-time cubes (e.g. consisting of node-link diagrams), we generalized that concept to
other domains that use space-time cubes, such as video visualization and geo-temporal
analysis. We first reviewed different 2D visualizations from those domains and proposed a
structured and unified design space for visualizations, based on space-time cube operations
(Figure 8.4(a)). We then described 3D structure within space-time cubes, which describe
the data in domain-independent terms (density, change etc)(Figure 8.4(b)). Describing
data is important to know which visualization is likely to yield good results, in other
words, which visualization technique could fail. We showed that these data characteristics
and the set of operations we described, are a good means to discuss visualizations of
spatio-temporal data.

However, we were not yet able to properly discuss tasks in relationship to our frame-
work. The dimensions of our task taxonomy are inherent in the cube; WHEN on the
temporal dimension, WHERE in the spatial one and WHAT as the patterns inside the
cube. Yet, since techniques support tasks, we can ask for which operation supports which
queries and tasks. For example, queries define two dimensions, while requiring to search
in the third one. Translated to the model of the cube, this results in customizing the cube:

e highlight time points according to the elements given in the WHEN dimension (e.g.,
slice extraction, time chopping, time coloring, time labeling),

e highlight graph elements given in the WHERE dimension (e.g., space cutting,
unfolding, space coloring, stabilizing).

e highlight behavior over time and changes (e.g., filtering, time flattening (without
stabilizing), difference coloring)

However, tasks are domain-dependent and even for dynamic networks, the discussion
including tasks, techniques and data characteristics is far from being settled.

We hope our framework will help others to design novel visualizations, to improve
existing ones, to compare and evaluate techniques, and most importantly to help them
to think and to communicate about space-time cubes and how to unfold complex data.
We finally hope to expand the range of operations as we describe more visualizations,
new techniques get designed, and new data gets described with space-time cubes (e.g.
propagation in networks, see Section 8.2).

8.2. Future Research

Descriptions of individual future research on each of the projects in this dissertation have
been described in the last section and in the corresponding chapters. In this section I refer
to which open problems remain and how results from this dissertation can contribute.
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Visualize Propagation and Exchange The techniques described in this disserta-
tion apply to the dynamics of changes in network topology and attributes. A widely
under-explored area is the visualization of propagation and events, such as viruses, ideas,
vehicles, messages, etc. Furthermore, topology and events interact in a way similar to
rivers shaping their bed, while the bed defines where the river flows (adapted from Seoung,
2012). For example, brain connections strengthen where there are many signals. That
means that both topology and events form the network and provide two ways of looking
at a complex system. Space-time cubes intuitively represent spread in space and time, but
which particular (novel) operations are necessary? How do the visualizations described
in Chapter 2 are useful? How should future visualizations be designed? Which tasks do
users perform?

Comparing Dynamic Networks Another under-explored domain in information
visualization is the comparison of two and more dynamic networks (such as brain activity
across individuals during an experiment). An obvious solution would be to treat networks
as two disconnected components in the same network and use the existing techniques
for dynamic networks visualization. However, comparing the evolution in different net-
works, possibly across different time spans, poses interesting challenges to visualizations
and interaction design. Matrix Cubes as a concise way to visualize networks, perhaps
can account for rapid comparison of dynamic networks. Operations could be applied
synchronously to all cubes, while showing them side-by-side.

Compound Networks Dynamic Networks are aggregated along time, as users change
temporal granularity. Temporal aggregation in a space-time cube is equivalent to the
compound operation: (time chopping + time flattening)*. Structural aggregation, i.e.
grouping nodes into meta nodes and edges into meta edges, can be described as: (space
chopping + space flattening)*. Cubix can easily be extended to allow for aggregating
node slices, yet there are many problems related to visualizing hierarchical networks that
change over time.

Multivariate and Directed Dynamic Networks Multivariate dynamic networks
with different node types, many time-varying attributes per node, and potentially different
types of connectivity are difficult to visualize. How can the evolution of node and edge
attributes be shown at the same time? How to show changes on more than one type of

connection between two nodes?

Toolkit Support Toolkits exist for many types of networks, but little has been devel-
oped for dynamic networks. Perhaps because they are such a complex issue and have
not yet been studied sufficiently, compared to large and multivariate networks. A toolkit
for dynamic networks should provide appropriate data structures for large networks, as
well as fast access. It should provide an API to pose queries and retrieve data, create and
stabilize, the layouts, and it should be easily understood by programmers. According the
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three types of storing networks, (see Section 2.3) I can imagine three complementary
representations (or interfaces) to manage dynamic networks; a topology-centric that stores
information per node and edge, a time-centric, storing information according to time
(e.g. temporal snapshots), and an event-centric, storing individual change events. The
appropriateness of each representation will depend on the data and visualizations to build
with. The cube model and its operations, as well as the visualizations in this dissertation,
could inform the set of queries that such a toolkit should support.

Mental Models Finally, can we think of other models to unfold dynamic networks,
other than space-time cubes (a model very much stressed in this dissertation)? Does
the notion of operations on consistent structures such as cubes, help us understand
other problems in visualizing networks and design appropriate interfaces? Which other
metaphors help us think about unfolding dynamic networks and to address the problems
that cubes cannot solve in a straight manner?
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A. Random Graph Generation for
Evaluating Network Visualizations

HILE evaluating our prototype for GraphDiaries we had to find appropriate data
W sets that would suite the needs of a controlled user study. Controlled experiments
not only require controlled tasks, but also controlled data. Controlling data means to
control characteristics of the data in order to make data samples comparable across
evaluation conditions. Within the same experimental condition, data sets should be rather
similar, yet across condition certain carefully designed variations are required, including
variation size, or density. The number of required data samples can be very huge.

Real world networks are desirable for external validity, but finding networks that meet
a set of desired characteristics is hard or impossible. Even if they do exist, data might
not be available in sufficient quantity or variety, or may contain sensitive information
requiring more than anonymization to be disclosed.

An often used alternative to real-world graphs is the generation of graphs using random
graph generators. These generators allow to create graphs that satisfy certain characteris-
tics but do not control for others. This limited flexibility may not be sufficient for formal
evaluations of algorithms and layouts, for example if one wants to evaluate graphs with
an upper bound on the node degrees or a given number of connected components.

Testing for higher-level tasks, on the other hand, requires yet a different approach to
control data. Many higher-level tasks require higher-level graph patterns in the graph
such as clusters of certain “shape” that resemble common patterns from the real world.
Yet, domain and graph experts can best decide on the appropriateness of a synthetic data
set when seeing it and comparing it to their knowledge about domain data.

In general, the problem does not only consist in finding the “right” graph generator,
but finding the “right parameters” that lead to a certain desired graph. We describe
the process of generating graphs as an interactive process that requires the computer to
generate graphs, while experts control the generation interactively, based on immediate
feedback of the machine’s results.

Dynamic networks are a particular case for several reasons. (1) Changes in a graph are
not easy to see (visualize) and hence it is not easy to judge whether the data set meets the
desired requirements, (2) for almost the same reason tne graphs are hard to compare, for
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example in terms of difficulty, and (3) dynamic networks are even harder to describe and
quantify than static graphs, with respect to automatic generators and evaluation. Yet, we
are interested in a general way to improve the generation of graphs, and also to reduce
the problem; in this chapter, we focus on static networks. We explore and describe:

> How to generate static graphs with particular measures and visual patterns?

> How the process of graph generation can be controlled interactively by the user,

involving visualization for feedback?

This chapter introduces GraphCuisine, an interactive system that lets users steer an
Evolutionary Algorithm (EA) to create random graphs matching user-specified properties.
GraphCuisine has been designed with three main scenarios in mind:

(i) Generate graphs with specific graph measures When designing a new layout,
routing, or edge bundling algorithm, being able to test its behavior with varying
topological properties, described by graph measures (e.g., density, diameter or
clustering-coefficient) is essential and almost impossible with current generators.

(i) Generate graphs that “look like” a target graph not knowing in advance the
measures that contribute to the graph’s structure. When testing the appropriateness
of an algorithm for a specific application domain (e.g., network traffic, brain
networks) with only a few samples of real graphs available, generating graphs
similar to the samples is important. In that case, selecting the measures that
best characterize the sample graphs requires visualization, human judgment, and
interaction.

(iii) Anonymize a specific graph by generating a graph with similar or identical mea-
sures. When a company has confidential graphs to analyze (e.g., e-mail exchanges
between employees or telephone calls between possible suspects), collaborating
with researchers or specialists can be impossible. Generating graphs as similar as
possible to the interesting confidential graphs makes collaborations much simpler.

To allow for these different modes of interactive random graph generation, GraphCui-
sine consists of an interactive interface and a graph generation model that combines
different generators and optimizes their parameters with an EA. Graphs are created by
traversing a pipeline of generators, each acting on the output of the previous one by
adding or removing nodes and edges in very specific ways, according to the generators
respective input parameters. The EA then attempts to find sets of parameters that produce
graphs that best match the user-defined properties.

After a discussion of existing graph generators and an explanation of the basic concepts
of evolutionary algorithms in Section A.1 Section A.2 introduces GraphCuisine and how it
is used, while Section A.3 explains the particular evolutionary algorithm in GraphCuisine.
We show how GraphCuisine is used to first reproduce and then adapt a real world
social network in Section A.4. Section A.5 briefly explains how we use the graphs

218



A.l. Background

generated with GraphCuisine to generate dynamic networks, and how we plan to extend
GraphCuisine to generate actual dynamic networks.

A.1. Background

This section briefly reviews the foundations of graph generation and evolutionary algo-
rithms. It then describes user interfaces for interactively generating synthetic data.

A.1.1. Random Graph Generation

The most simple random graph generator is the one from Erdos and Rényi (1959), where
any pair of nodes is connected with a certain probability p. This generator allows to
control only the graph’s density, which for larger graphs is p. Generators have been
developed using different techniques to construct graphs with varying characteristics. The
most common classes are preferential attachment, which model “behaviour” of graph
elements, and structural generators, which directly create certain structures.

Preferential attachment Preferential attachment generators iteratively add nodes
to the network and connect them to existing nodes under a certain probability. This
probability can depend on different conditions, such as node degree ((Barabdsi & Albert,
1999)) or distance in a lattice (Waxman, 1988; Kleinberg, 2000; Watts & Strogatz, 1998).
While Barabasi and Albert (1999) generate graphs with exponential degree distribution,
Kleinberg (2000) as well as Watts and Strogatz (1998) generate small-world graphs.
These generators do not introduce new connections into the graphs, but reconnect nodes
(re-wiring).Generally preferential attachment is used to generate graphs with power-
law node degree. Other techniques have been proposed to overcome drawbacks of
preferential attachment and rewiring techniques, mainly to create networks with more
realistic structures.

Structural generators Structural generators first create higher-level structures of
the graph, such as clusters and recursively model details (Doar, 1996; Calvert, Doar, &
Zegura, 1997). A problem common to most generators is that they focus on producing
networks with one or two particular characteristics, disregarding all others. Consequently,
techniques have been proposed that treat graph generation as a global optimization
problem (Frank & Strauss, 1986; Carlson & Doyle, 1999) or using local forces between
nodes and edges by evolving the network (Fabrikant, Koutsoupias, & Papadimitriou,
2002; Berger, Borgs, Chayes, D’Souza, & Kleinberg, 2004). R-Mat tries to model as
many characteristics as possible in a flexible way by partitioning an adjacency matrix
into cells, similar to BRITE (Medina, Matta, & Byers, 2000) and creates edges with
different probabilities. The model features several graph characteristics and comes with
an input parameter fitting function. However, R-Mat generates one graph at a time and
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Figure A.1.: Steps performed during one iteration of an evolutionary algorithm.

only matches few graph properties. Again, one graph at a time slows down the exploration
process.

Choosing the appropriate generator and modelling the desired graph characteristics
is crucial in several contexts; the lack of expressiveness of existing generators impacts
the generation quality or requires a long sequence of trials and errors to obtain graphs
with a desired structure. For dynamic networks, there are even just very few generators,
summarized in Section A.5.

A.1.2. Evolutionary Algorithms

Evolutionary algorithms (EA) are stochastic optimization heuristics that copy, in a very
abstract manner, the principles of natural evolution that let a population of individuals be
adapted to its environment (Goldberg, 1989). An EA considers populations of potential
solutions exactly like a natural population of individuals that live, fight, and reproduce,
and the natural environment pressure is replaced by an abstract optimization pressure. In
this way, individuals which are the best ones, with respect to the problem to be solved,
reproduce.

Figure A.1 summarizes the main steps of the iterative process of an EA. Each one is
controlled by parameters and specific algorithms. The individual steps are as follows:

1. A set of individuals is selected from a population, called parents. The size of the
set can vary, as well as the criteria for selecting parents.

2. Information about individuals (solution) is encoded in chromosomes, an array of
parameters and their values. Similar to nature, in a crossover process, chromosomes
of two individuals are combined to form a new chromosome, that of the child.

3. Finally, the child chromosome is mutated, i.e. parameter values are slightly changed
in order to create new solutions.

4. New children are added to the old population, while mechanisms ensure an equal
size of the population by eliminating the worst solutions.

220



A.l. Background

Evolutionary optimization techniques are particularly well suited to complex problems,
where classical methods fail due to the irregularity of the function to optimize or to the
complexity of the search space. In this chapter, we define an interactive evolutionary
algorithm (IEA) where users influence steps and parameters of the algorithm interactively.

EAs have been used in Neuroevolution to evolve the topology and edge weights of
neural networks in their creation and learning phase. Neuroevolution faces two main
problems: (a) How to encode neural networks in genes, and (b) how to design effective
cross-over operators that do not destroy desired sub-structures in the networks. There are
mainly two approaches to these problems: Direct encoding and grammar encoding.

Direct encoding encodes each node and edge directly as genes (Gruau, 1994). Edge
genes are active or inactive, depending on whether the edge is present or not. Cross-over
operators for direct encoding (Stanley & Miikkulainen, 2002) are straightforward in
the sense that they swap the presence or weights of edges. With effective cross over,
direct encoding can maintain individual topological structures across generations, but the
chromosomes can become very large (#genes > #edges) and have to vary in size if the
network grows, which is quite unusual in EA.

Grammatical encoding encodes rules that create the neural network. Rules are
described in a grammar tree, which is traversed and iteratively transforms a seed-node
into multiple nodes and change their connectivity (Kitano, 1990; Suchorzewski, 2011).
Evolutionary algorithms evolve the grammar tree, not the network. Grammar-based
approaches are similar to the algorithm designed for GraphCuisine but differ in that these
algorithms optimize one network at a time. Important for experiments is that a “good”
network can be reproduced many times while copies are not identical, but as similar as
possible. Grammar trees are deterministic.

EAs have further been used to create graph layouts. Biedl, Marks, Ryall, and Whitesides
(1998) use an interactive EA and present several layouts to the user from which he can
chose. The system then tries to infer aesthetic criteria the user is interested in. However,
the approach focuses on finding layouts for one very small graph.

A.1.3. Uls for Data Generation and Analysis.

Few approaches exist that tightly involve the user in the data generation process. Albuquerque,
Lowe, and Magnor (2011) present an interactive approach to create high-dimensional
data sets using generators and sketching methods for 1D, 2D and 3D scatterplots.

Low level graph sketching and graph editing capabilities are provided by several tools
(e.g. yEd Graph Editor, 2012). Wong, Foote, Mackey, Perrine, and Chin Jr. (2006)
generate graphs through sketching on adjacency matrices and adapt pixel-based drawing
techniques to draw edges inside the matrix. Although a node-link representation is
provided in parallel with the matrix, only the matrix is used for drawing. Except when
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drawing cliques, this makes it hard to predict the final layout of the resulting graph in
the form of a node link diagram, and, except for node count and edge count, it is almost
impossible to control measures of the resulting graph. In general, sketching approaches
do not solve the problem of creating similar copies of a graph. GraphCuisine uses
“receipes” to create graphs and reproduce graphs with similar properties. For the general
creation of multivariate data, Albuquerque et al. (2011) present interactive approaches
using generators and sketching methods for 1D, 2D and 3D scatterplots. Still, sketching
interfaces do not create diverse data sets, but instead only provide one particular solution.

A.2. Graph Cuisine

A.2.1. Generation Overview

GraphCuisine is a random graph generator for undirected graphs that evolves a population
of individuals encoded in chromosomes, each of them representing a “recipe” to generate
a graph. A graph is generated from a chromosome by running a pipeline of generators,
each reading its appropriate input parameters from the chromosome and modifying the
graph by systematically adding or removing nodes and edges. GraphCuisine currently
implements 12 graph generators, each using 2-5 input parameters and creating basic
network structures such as stars, clusters and several types of “noise” (see Table A.1).
The target graph towards which the graphs (as representatives of individuals) are evolved
is encoded as a set of rarget measures—such as node count, density and clustering
coefficient. The fitness of a generated graph is calculated as the distance between the
measures of the generated graph and the target values (Section A.3.3).

Encoding the genome as a set of parameters for generators has two major advantages:
(1) the genome size remains constant and independent of the graph size, and (2) the
measures used to optimize the graphs are independent from the number and parameters
of the simple generators, allowing new measures to be added easily, as well as new
generators. Having constant-size genomes facilitates crossover between chromosomes,
which in turn increases the diversity of generated solutions.

A.2.2. Interface

The interface of GraphCuisine consists of five major parts as shown in Figure A.2:

(a) The population view is a visualization of 12 representative graphs from the current
population,

(b) the detail view shows an enlarged view of a selected graph,

(c) the data set view, which shows an imported graph from which target measures can
be extracted,
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Figure A.2.: User Interface of GraphCuisine showing (a) the population view displaying
representative graphs of the current population (population view), (b) a detail view of
selected graph (detail view), (c) an imported graph (data set view), (d) the parallel
coordinates plot showing the distribution of measures in the population (measures view)
and (e) the table with the graph measures of the representative graphs (measures table).
The position of the white markers in the measures view indicate the target measures while
the red line heighights the measures of the selected graph.
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Figure A.3.: Fitness curve showing the evolution of the population fitness in a logarithmic
scale. Better fitness values are closer to 0. The blue line shows the value of the fittest
individual in the population and the black shows the mean fitness. The stronger black
vertical lines indicate the generations that have been presented to the user and upward
peaks in the blue curve show that the user has changed the target measures, leading to a
decreased overall fitness of all individuals in the current population.
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(d) the measures view employs an interactive parallel coordinates plot to show the
distribution of measures in the entire graph population. The width of the color-
coded rectangles indicates the weight of the measure in the fitness computation
(Section A.3.3). As in standard parallel coordinates, each polyline represents a
graph in the current population and connects all the graph’s measures. Vertical
axes show the value range of each measure as set by the user. Tick marks on the
axis lines indicate the desired minimal and maximal values, while the white circle
indicates the desired target value for the population. All values can be adjusted
interactively by dragging the marks. A vertical line graph draws the distribution
of node degrees for each graph, at the right of the gray degree measure axis. We
opted for line plots because they cause less visual clutter than bar graphs and allow
to show how multiple graphs converge or diverge in this measure.

(e) The measure table shows all measures with the population, similar to NetLens (Freire,
Plaisant, Shneiderman, & Golbeck, 2010).

The user can switch between adjacency matrix and node-link representations for all
the graphs on the population and detail views as well as choose between different layout
algorithms to highlight particular graph patterns. Views in GraphCuisine are coordinated
with brushing and linking: moving the mouse over a polyline highlights the corresponding
graph in the population and table views, and vice-versa.

A.2.3. Generation Process

To initialize the graph generation, the user can choose among the following options:

e Random initialization: The population is created from a random set of generator
parameters for each chromosome and random target measures, providing a base for
a more exploratory generation.

o Set target measures directly: The values for the desired graph measures can be
set interactively by adapting the minimal, maximal and target values as well as the
measure weight directly in the measures view.

e Graph templates: Templates are predefined sets of generator parameters and
measures selected to create graphs with particular characteristics such as small-
sized, medium-sized or large-sized, dense or sparse, following power-law degree
distribution, or small-world graphs. Templates are chosen from a menu where
complementary templates can be selected at a time. New templates can be defined
by the user for later reuse. Based on a template, an initial population is created.

o Load an existing graph: To mimic an existing graph, the graph is imported and
shown in the data set view (Figure A.2(c)). Its measures are derived, displayed in
the measures view, and serve as target values for the evolution. The measures and
their weights can immediately be modified by the user or at any time during the
evolution; they can also be reset to the value of the loaded graph.
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Generating graphs with GraphCuisine consists of two alternating phases. After the
initialization and selection of the target measures, the evolution of the generator param-
eters is started and machine solutions are created by optimizing the initial population
(50 graphs) to fit the target values. After five generations, we select 12 representative
graphs. Since showing the entire population is not very practical, our heuristic selects 12
representative graphs; the three fittest and nine at random for purposes of diversity. They
are consequently displayed in the population view and the measure table. The measures
view is then updated to display the values from the whole population. The saturation
of the green bars in the population view indicates the fitness of each graph and adapts
immediately if the user changes the target measures in the measures view. This feedback
is required for the user to know which graphs are considered similar by the system with
the current settings.

Alternatively to changing measures in the respective view, users can select graphs
they judge good directly from the population view by clicking on them. Multiple graphs
can be selected and the target measures are set to reflect the chosen graphs. Measure
weights are updated according to the variance of their respective values in the selected
graphs—the more a particular measure differs, the lower it is weighted and vice-versa
(see Section A.3.4). The evolution can then run for a further step with the new measures
being taken into account.

The number of generations as well as other parameters of the EA can be adjusted
by the user at any time, allowing for control of the evolution behavior (population size,
generations, elitism, etc.). Any generator can be disabled to prevent the graph from
showing particular characteristics. Setting generator parameters directly gives additional
freedom over the resulting graphs.

Since our fitness value reflects the difference between measures of each graph and the
target measures, a lower fitness value means a higher fitness. Behavior and convergence
of the fitness of the whole population is monitored in the chart shown in Figure A.3. It
shows minimal (best), maximal (worst) and average fitness throughout all generations
using a logarithmic scale. In order to avoid previous graphs being lost during the
evolution process, GraphCuisine can be reset to any generation to try alternative evolutions.
Additionally, the chromosome of any generated graph can be saved as template to initialize
new populations later on.

A.3. An Evolutionary Algorithm for Graph Generation

As explained in the previous section, each individual in GraphCuisine’s EA corresponds
to a graph. It is encoded in a generative way, i.e., its chromosome, which fully specifies a
sequence of generators, their parameters, and the corresponding values. The creation of a
graph from a chromosome and the evaluation of its fitness is done in four steps, illustrated
in Figure A.4: (1) From a chromosome, parameters are fed into the graph generators that,

225



A. Random Graph Generation for Evaluating Network Visualizations
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Figure A.4.: Graph creation process: (1) Parameters encoded in genes of a chromosome,
(2) employ graph generators, (3) extract graph measures, and (4) calculate fitness value.

forming a pipeline, (2) generate a graph. The generated graph is then evaluated according
to the (3) measure values and weights, (4) calculating a unique fitness value.

A.3.1. Chromosome Structure: Internal Encoding of an Individual

Each chromosome is divided into three blocks. The first is a single gene with an integer
value, which serves as a seed for the random number generator to ensures consistent
random values for the generation. The second and third block stand for two different
kinds of generators, explained in the next section (Section A.3.2). They are both rep-
resented in the same way: the first gene contains a Boolean value indicating whether
the corresponding generator is active or not (g;), and the second gene contains a value
specifying the execution order of the generator in the creation pipeline (0;) (Figure A.4).
The remaining genes of each generator contain their input parameters (p;).

A.3.2. Graph Generators

We implemented two specific types of generators in GraphCuisine: motif generators
and noise generators. They are applied in two steps: motif generators start by creating
topological patterns, such as clusters, stars, paths, and cycles. The generators’ parameters
specify subgraph-specific properties (e.g., the degree of a star’s central node, detailed
in Table A.1) and how many instances of it should be created. Noise generators are
applied in a second step to break these regularities, making structures more varied and
less predictable by adding or removing nodes and edges. Nodes and edges can be inserted
randomly with different node degree distributions: uniform, power-law, logarithmic or
exponential. Nodes and edges to be removed are either chosen randomly or according
to some criterion, such as eliminating isolated nodes (degree 0). These two steps are
conceptually similar to some structural generators but the motifs and noise we produce
are more varied and generalized.

Parameters for noise generators define how many nodes or edges the graph should have
(and thus how many should be added or removed) as a means to control the approximate
size of the graph. More specific properties exist, such as the probability of connecting
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| Generator Description Parameters
Cluster Create dense subgraphs. Number of clusters (integer), ideal clus-
ter size (integer), size variability (double),
density (double).
Path Sequence of nodes in which there is al- | Number of paths (integer), ideal path
ways an edge from one node to the next. | length (integer), length variability (dou-
ble). Star and end nodes are chosen ran-
domly from the graph.
Cycle Closed path. The start/end node is an ex- | Number of cycles (integer), ideal cycle
isting node. size (integer), size variability (double).
Star Tree with one central node and a given | Number of stars (integer), ideal central
number of leaves. node degree (integer), central node degree
variability (double).
Edge Noise Adds edges linking randomly chosen | Ideal number of edges the graph should
nodes. have (integer).
Eppstein ~ Wang | Adds or removes edges according to the | Number of iterations (integer).

Power Law Noise

model by Eppstein and Wang (2002).

Exponential Edge
Noise

Adds edges while trying to achieve an ex-
ponential degree distribution.

Ideal number of edges the graph should
have (integer).

Logarithmic Edge
Noise

Adds edges while trying to achieve a log-
arithmic degree distribution.

Ideal number of edges the graph should
have (integer).

Cleanup Noise

Node Noise Adds nodes until the target count for the | Ideal number of nodes the graph should
graph is reached. have (integer).

Orphan Cleanup | Removes nodes with degree 0. Percentage of orphans to be removed (dou-

Noise ble).

Random Edge | Removes randomly chosen edges. Percentage of edges to be removed (dou-

Cleanup Noise ble).

Random Node | Removes randomly chosen nodes. Percentage of nodes to be removed (dou-

ble).

Table A.1.: GraphCusine’s Motif (above) and noise generators (below).

two given nodes by an edge. The count of nodes and edges to be inserted and which
nodes should be connected depend on what is already in the graph. As such, if applied
in a different order, the same noise generators with the same parameters will produce
different graphs.

A.3.3. Fitness Function: Quality Assessment of an Individual

The computation of the fitness of each chromosome/graph is based on the set of target
graph measures M = {m;|m; € R,i € [0,n]}, with tolerance bounds m; € [min;, max;],
and importance weights w; € [0, 1]. For a graph Gy, each measure in M is computed as:
My = (moy,...,mu ) where m; is the i'" graph measure. The fitness(Gy) € R of the
graph Gy is its distance to the optimal solution, i.e. the following weighted sum:

— Mk |

fitness(Gy) = Z wi | i

i€[0.] max; — min;
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Normalization is necessary to weight and sum up measures equally. Currently,
GraphCuisine supports the following measures: node amount, edge amount, density,
graph diameter, number of clusters (using the EdgeBetweennessClusterer imple-
mented in JUNG (O’Madadhain et al., 2003)), number of connected components, average
clustering coefficient, and average node degree.

Some of the measures such as node amount, edge amount and density, are interde-
pendent so that if the user restricts one measure, others are restricted automatically. We
recommend to start with few measures (high weight) while observing the first generations
and then add and adjust additional measures. It requires more investigation to provide
appropriate interface components to communicate and manage such dependencies.

A.3.4. Interactive Evolution

The population view allows selecting good solutions by visual inspection. This feature is
based on the assumption that visual node link or matrix representations allow humans
to compare graphs and match some of their visible structure effectively. When selecting
multiple graphs S with Gy € S, GraphCuisine tries to infer what graph characteristics are
important to the user. The target value for each measure m; is taken to be the average
of measures of all selected graphs: m; = m; ;. The weights w; are adjusted to reflect the
diversity or similarity of the single graph measures using the standard deviation of the
normalized graph measures m; x:

m; —mj

/ / . /
w; = stddev(m; g, ...,m; ;) with m; , = —————
: ’ " max; — min;

When users change the target measures or their weights, we increase the mutation rate
for one generation in order to yield a larger variety of new solutions.

A.3.5. Implementation

GraphCuisine is implemented in Java using the JGAP library!. By default, the graph
generation process begins with a randomly generated population of 50 individuals, which
is evolved for 5 generations in each evolution cycle. These values were chosen to keep
a balance between population diversity and acceptable running time for each cycle, an
important issue for GraphCuisine due to its interactive nature. In order not to lose good
solutions over time, we guarantee that each generation keeps 30% of the individuals from
the previous generation (elitism). The components of the evolutionary algorithm are the
following:

'ttp://9jgap.sourceforge.net
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A.4. Case Description

e A tournament selection of size five, meaning that five individuals are randomly
chosen with uniform probability, with the best one being kept as a parent. The
process is repeated twice to select two parents for a crossover.

e A one-point crossover that creates two offsprings by swapping all the genes of the
parents that come after a randomly selected position in the genome.

e A simple random mutation that takes 5% of the genes of each individual and
replaces them with random values.

Crossover and mutation are applied in cascade. First, new individuals are created by
applying a crossover, then all new individuals undergo a mutation that alters 5% of their
genes. The configuration of GraphCuisine ’s EA is based on the specific problem we
approach and on results obtained from experimentation with the different parameters.

Performance of the generation and evaluation process is essentially limited by the
computation time for the graph measures (in particular those related to clusters), with
creation, mutation, and crossover times being negligible. Measure weights can be set to
0, which accelerates the process by not computing this measure.

Adding new measures or generators to GraphCuisine consists of adding the new imple-
mentations and update the user interface. Measures must be added to the fitness function,
while new generators require that their parameters be included in the chromosome struc-
ture. Integrating new measures into the interface amounts to adding columns to the table
and dimensions to the parallel coordinates plot.

A.4. Case Description

A.4.1. HIV Network

Imagine an HIV (Human Imune Virus) contamination network? that must be anonymized
while keeping the characteristic structures present so that it can be given to students in
epidemiology for analysis. By importing the network in GraphCuisine, its measures are
calculated and automatically set as target measures. The graph population is randomly
initialized to guarantee diversity. After a first evolution step of five generations, the
representative graphs are shown in the population view and the measures table. The
parallel coordinates in the measures view shows that the distribution of measure values
for all the 50 graphs in the current population has already converged well towards the
target values.

The user can then decide to increase the graph size and, proportionally, the number of
clusters. This is done by setting the desired size and the number of clusters in the measures
view. Since these two seem to be the most important measures for this evolution, the
user slightly increases their weight by varying the width of the colored rectangles in the

thtp ://insitu.lri.fr/~nhenry/socnets/realtreelike/Hiv.xml
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NN
(a) (b) (©)
Graph | Node Edge Density | Diameter Clusters Avg Degree Avg Clust.
Count Count coefficient
(a) 161 191 0.014 9 49 2.37 0.018
(b) 213 457 0.020 15 43 4.30 0.230
(c) 283 273 0.007 11 34 1.93 0.213

Figure A.5.: Examples of Graphs from a random chromosome initialization.

parallel coordinates plot. After another evolution cycle, the graphs have grown and show
a proportionally higher number of clusters. The degree of optimization and similarity
between the generated graphs and the original one can be controlled by adjusting the
number of generations in the evolution step.

If desired, the user can continue to refine the graphs by, for example, selecting their
favorite representative graphs from the population view and running another evolution
cycle to obtain graphs similar to the ones they chose. Since selecting graphs causes the
target measures to reflect the measures of the selection, they might slightly diverge from
those of the imported graph. When a desired result has been reached, generated graphs
can then be exported. Figure A.2 shows the imported HIV network (right), the generated
graphs (left), as well as a particular selected graph (center) with its measures highlighted
in red in the measures view. The fitness view (Figure A.3) shows the convergence of the
population fitness declining, unless the target measures have been changed by the user.
The pure evolution time for 50 individuals for 20 generations was 6.52 minutes.

A.4.2. Further Examples
Examples of different types of graphs generated with GraphCuisine, in Figures A.5, A.6,

A.7, and A.8, are shown along with their measures.

A.5. Generating Dynamic Networks with GraphTabasco

With GraphCuisine we explored a way to generate static graphs in an interactive way and
by including users’ feedback. Generating dynamic networks is a much more complex
process that requires a deep understanding of changes in over time. Simulating dynamic
changes in networks is best expressed by preferential attachment generators (Section
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(a) (b) (c)
Graph Node Edge Density | Diameter Clusters Avg Degree Avg Clust.
Count Count coefficient
(a) 140 733 0.075 7.0 11 10.471 0.621
(b) 161 379 0.029 10.0 12 4.708 0.251
(b) 146 420 0.039 7.0 10 5.753 0.273

Figure A.6.: Examples of small-world networks created with GraphCuisine.

(a)

(b) (c)
Graph | Node Edge Density | Diameter Clusters Avg Degree Avg Clust.
Count Count coefficient
(a) 208 285 0.013 14 31 2.740 0.209
(b) 190 243 0.013 9 35 2.557 0.167
(c) 296 396 0.009 14 35 2.675 0.163

Figure A.7.: scale-world networks using, among others, the Eppstein-Wang generator.

A.1.1), since in these generators, graph generation is already modelled as an iterative
and evolutionary process. However, these generators generate one graph with particular
measures, rather than a sequence; they do not model abrupt changes, node removal, or
control for trends.

Two very recent generators for dynamic network exist that model events and their
probability in the graph evolution, both having been published at the same time as
GraphCuisine. Jonsson, Vigfusson, and Helgason (2012) use node insertion events
whereby nodes have a minimum and an average lifetime. Edges are exchanged as nodes
enter and leave the network, or get updated randomly. Attachment probabilities are based
on the model by Barabasi and Albert (1999). Gorke, Kluge, Schumm, Staudt, and Wagner
(2012) describe a generator that is also based on Barabasi and Albert’s model and that
models clustered graphs. In each time step, the algorithm decides if a cluster splits or
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(@ (b) ©
Graph | Node Edge Density | Diameter Clusters Avg Degree Avg Clust.
Count Count coefficient
(a) 673 751 0.003 17.0 - 2.231 -
(b) 600 750 0.004 9.0 - 2.5 -
(c) 745 752 0.002 22.0 - 2.018 -

Figure A.8.: Three randomly picked graphs from the same population showing conver-
gence across almost all measures after five generations (population size=50). Measures
showing ”—" have been disabled in order to increase evolution speed.

Graphs

(@]

Create Edge Weight

(d)

Import 20 |7

Number of Graphs 9|3

Degree of Variance (in%) 10 |5

(e)

/ Show removed elements | Create

Export

(f)

Figure A.9.: Graphlabasco interface. (a) imported graph, (b) generated graphs, (c)
apply edge weight according to distance in layout (close nodes are connected with higher
weight), (d) apply random edge weight, (e) adjust generation parameters, (f) export
graphs into files.

two clusters merge, then adding and removing nodes randomly. Between two cluster
states, there is a transition period, where clusters get organized in order to avoid abrupt
changes in their structure. However, the already discussed issues with generators for
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static networks remain; determining input parameters, the quality of generated patters,
and lack of users’ control over the generation.

Currently, we have chosen a simple way to generate dynamic networks, based on
the graphs generated with GraphCuisine. While evaluating our designs for comparing
two weighted graphs (Chapter 5), we required multiple similar graphs, but with certain
(controlled) differences. I implemented an extension to GraphCuisine, GraphTabasco,
which takes one graph as input and generates an arbitrary number of copies with some
adjustable variability. Different from GraphCuisine, where each graph is generated from
scratch, graphs in GraphTabasco are true copies of the input graph, i.e. node-IDs match
across graphs. With GraphTabasco we can (i) introduce (random) edge weights to the
imported graph and its copies, (ii) create copies of the imported graph which are modified
individually, and (iii) control for changes in the copies. While for the evaluation in
Chapter 5, we created only one copy of the input graph, dynamic networks can easily be
created by putting multiple individual graphs into a sequence. Since they all originate
from the same input graph, the basic structure (e.g. clusters) are maintained.

Figure A.9 shows the interface of GraphTabasco. On the left (a) a graph created with
GraphCuisine has been imported, and on the right (b) a set of graphs (read left-right,
top-bottom). Blue and orange edges indicate added and removed edges, respectively.
Variation is currently controlled by only one parameter (Degree of Variance, (¢)) indicating
the percentage of added and removed edges. However, there is a potentially large number
of parameters (number of edges and nodes, to be added, nodes and edges to be removed,
variability of values, etc.).

An optimization algorithm, such as in GraphCuisine, may eventually be used to
optimize these parameters, while GraphTabasco can support visual feedback and ways
of controlling the generation. Matrix Cubes have a high potential in providing quick
overview of each generated dynamic networks.

A.6. Conclusion

This chapter described GraphCuisine, a system that uses an evolutionary algorithm to
generate static random graphs according to user-specified graph measures. We encode
graphs using a generative model where several generators are run in sequence, each
taking as input a set of parameters. We store the parameters and execution order in the
genome of the EA engine and evolve it to produce graphs matching the set of target
measures. GraphCuisine is available online for download at http://www.aviz.fr/
Research/Graphcuisine. GraphCuisine has been complemented with Graph-
Tabasco to generate a multitude of exact, but slightly different copies, as well as random
dynamic graphs.
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Generation Process GraphCuisine’s parameter encoding has several advantages for
our specific goal compared to directly encoding graphs in the genome: it is efficient,
both in space and computation time. One genome can potentially generate an unlimited
number of similar random graphs. Changing the parameters through mutation generates
more diversity than direct encoding. Diversity, in turn, leads to faster convergence
of the evolution and can introduce interesting unexpected results that still match the
constraints. In our experience, GraphCuisine’s EA converges rapidly. However, we
want to conduct more formal studies to better understand the behavior of our generators
compared to existing ones in terms of convergence and expressive power. Such a formal
study would also help to balance speed of convergence of the evolution against diversity
in the population.

Usability Generating graphs with GraphCuisine does require some understanding of
graphs and the meaning of the particular measures. However, users do not require deep
knowledge about evolutionary algorithms and can freely explore the generation space
for graphs using the GraphCusisine interface. In order to improve the interface and the
underlying algorithm, as well as define additionally required features, an evaluation with
actual practitioners remains to be done.

Extensibility The set of generators, measures and templates currently implemented
in GraphCuisine is limited to maintain controllability. Extending it is straightforward;
new generators can be added to the pipeline and their parameters can be are added to the
chromosome; new measures can simply be added and integrated into the interface. We
continue seeking for a good minimal set of generators and measures and how to prevent
users from obtaining empty search spaces due to dependencies between measures (e.g.
node amount, edge amount, and density). Another extension we are working on is to
express and match measure distributions such as power-law node degrees. The EA would
require little change to support this, but the interface would need more work to effectively
let the user specify the distributions.

Dynamic Networks As already mentioned in Section A.5, we want to extend the
scope of GraphCusisine towards dynamic networks. Besides proper measures to evalu-
ate dynamic networks by an automatic optimization algorithm, a problem remains the
effective visual comparison of the generated networks.

ks
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