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Résumé

On s’intéresse dans cette thèse à la couverture des produits dérivés dans des

marchés incomplets. L’approche choisie peut se voir comme une extension

des travaux de M. Schweizer sur la minimisation locale du risque quadra-

tique. En effet, tout en restant dans le cadre de la modélisation des actifs

par des semimartingales, notre méthode consiste à remplacer le critère de

risque quadratique par un critère de risque plus général, sous la forme d’une

fonctionnelle convexe du coût local. Nous obtenons d’abord des résultats

d’existence, d’unicité et de caractérisation des stratégies optimales dans un

marché sans friction, en temps discret et en temps continu. Puis nous ex-

plicitons ces stratégies dans le cadre de modèles de diffusion avec et sans

sauts. Nous étendons également notre méthode au cas où la liquidité n’est

plus infinie. Enfin nous montrons par le biais de simulations numériques les

effets du choix de la fonctionnelle de risque sur la constitution du portefeuille

optimal.



Abstract

This thesis deals with the issue of hedging contingent claims in incomplete

markets. The way we tackle this issue may be seen as an extension of M.

Schweizer’s work on quadratic local risk-minimization. Indeed, while still

modelling assets as semimartingales, our method relies on the introduc-

tion of a convex function of the local costs to assess risk, thus relaxing the

quadratic assumption. The results we obtain are existence and uniqueness

results first and characterizations of optimal strategies in a frictionless mar-

ket, both in discrete and continuous time settings. We then make those

strategies explicit by using diffusion models with and without jumps. We

further extend our approach in the case when liquidity is given through a

stochastic supply curve. Finally we show the effect of the choice of different

risk functions on the optimal portfolio by numerically solving the optimality

equations.
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avancées de la création de la chaire de finance quantitative après que je lui

ai fait part de mon désir d’effectuer une thèse.

Je remercie Bruno Bouchard et Denis Talay qui m’ont fait l’honneur d’accepter
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de l’École Centrale Paris pour leur accueil sympathique ; je remercie plus

particulièrement Abhijeet Gaikwad, Aymen Jedidi, Olaf Torné et Riadh Za-
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Notations

Given a filtration (Ft) the conditional covariance of two random variables W and Z

with respect to a probability measure P is defined as

cov(W,Z|Ft) := E[WZ|Ft]− E[W |Ft]E[Z|Ft] (1)

provided that the conditional expectations and their difference make sense. Likewise,

we define the conditional variance of W under P :

var(W |Ft) := E[W 2|Ft]− E[W |Ft]
2 (2)

= cov(W,W |Ft) (3)

A sequence of processes (Xn)n∈N indexed by n is said to converge to X in ucp if, for

each t > 0, sup0≤s≤t |X
n
s −Xs| converges to 0 in probability.

Given a function f : Rn → R, f ∈ C1(Rn,R), Df is the gradient of f , the vector of

first order derivatives:

Df(x1, · · · , xn) =







∂f
∂x1
...
∂f
∂xn






(4)

If f ∈ C2(Rn,R), D2f is the Hessian of f , the symmetric matrix of second order

derivatives

D2f(x1, · · · , xn) =









∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂f

∂x2
n









(5)
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Introduction

1.1 Pricing and Hedging Derivatives Products

This thesis is focusing on pricing and hedging contingent claims in incomplete markets.

The emphasis will rather be put on the latter part which stands as essential once we

discuss models and contingent claims which do not qualify for the complete markets

paradigm. We recall that complete markets are markets where assets are modelled in

such a way that contingent claims written on those assets and satisfying some inte-

grability requirements can be exactly reproduced by trading in the underlying assets

with self-financing strategies. In the usual terminology they are called “attainable”

or “redundant”. The hypothesis to rely on self-financing strategies for qualifying as a

redundant claim is essential in the pricing methodology which follows: self-financing

means that there are no further inputs or withdrawals of money from the hedging port-

folio, thus with the no-arbitrage assumption the price at which the contingent claim

should be sold has to be the initial value of the hedging portfolio. The theory dates

back to the seminal work of Black and Scholes (5) and Merton (41) who studied a

particular type of market where two assets are traded: a risk-free asset representing

the bank account and a risky asset modelled as a geometric Brownian motion with a

drift. They show that this market is indeed complete and for that they rely on solving

a PDE for the value of the hedging portfolio which once solved in turn gives the perfect

delta hedging. Since their work in this setting, the theory of complete markets was

thoroughly developed and given a sound mathematical background with the work of

Harrison and Kreps (23) and Harrison and Pliska (24) who for that purpose introduced

1



1. INTRODUCTION

the notion of equivalent martingale measure, a measure that turns discounted assets

into martingales. Their results identify complete markets as those markets which pos-

sess a single equivalent martingale measure. Their setting goes much beyond the initial

settings of Black, Scholes and Merton since it includes rather general semimartingales.

The pricing is then done through the computation of an expectation under the risk-free

measure whereas the hedging strategy is obtained thanks to a representation formula.

The most recent work in the area of qualifying complete markets is the paper of Del-

baen and Schachermayer (16) who gives the precise no arbitrage condition (NFLVR: No

Free Lunch with Vanishing Risk) so as to preclude dubious arbitrage strategies while

allowing for the most general semimartingale models.

Yet going as far as the work of Mandelbrot (38, 39), evidences against the simpler mod-

els relying on Brownian motion, such as the Black, Scholes and Merton model (5, 41),

accumulated and realistic models for describing the underlying assets do not qualify

for complete markets. One such evidence is that the log returns of stock prices are

not distributed normally but rather exhibit fat tails, which may be accounted for by

the micro-structure nature of price formation as explained in Abergel et Al (10, 11).

A number of models have then been proposed in the literature to account for this ob-

servation among which the most popular are the Heston model (27) which postulate

that the volatility driving the Brownian motion of the stock is itself stochastic, and

models using Levy processes as in Cont and Tankov (13). One common characteristic

of these models is that they feature non hedgeable risk by adding sources of risk which

cannot be traded with market assets. Hedging is therefore a much more involved task

in these settings and it cannot be done unambiguously as was the case with complete

markets. Same goes for pricing. One of the first works which address this question of

hedging and pricing in incomplete markets is the paper of Föllmer and Sondermann

(51). In order to protect against the intrinsic risk of a given contingent claim they

proposed a sequential regression technique in a discrete time setting. Their approach

is thus concerned with the backward minimization of the quadratic deviation between

the option payout and its hedging portfolio. This approach was further extended in

Föllmer and Schweizer (46) who gave results of existence of risk-minimizing strategies

in a martingale setting, and was recently revisited by Cerny and Kallsen (9). It is

noticeable that this approach relied on mean self-financing strategies, strategies which

on average have zero costs but which are no longer self-financing.

2



1.1 Pricing and Hedging Derivatives Products

So as to remain within the self-financing world, Schweizer in (49) introduced the con-

cept of mean-variance hedging which proposes to measure the riskiness of a strategy

at inception by considering the quadratic deviation between the contingent claim value

at expiry and the hedging portfolio. The procedure for finding optimal strategies then

consists in minimizing the quadratic criterion among all suitable strategies. In contrast

with the previous approach for which the minimization was carried out backward and

sequentially in time, the optimal strategies are to be found at inception through a global

minimization. Thus in essence the latter criterion is very close to the well-developed

theory of stochastic optimal control. Using this theory gave rise to a number of other

similar approach, still using self-financing strategies but turning to utility maximization

instead of risk-minimization. Pricing is then achieved through indifference valuation,

which means that the fair price of the contingent claim is the amount of money which

leaves the utility unchanged from the situation where the portfolio manager would not

have sold the product. In the usual case of exponential utility, this gives rise to a for-

mulation in terms of forward backward stochastic differential equations with drivers of

quadratic growth for which Imkeller, Reis and Zhang (28) is a good reference. We will

see that our approach shares the same kind of formulation. Other approaches, though

this is certainly not an exhaustive list, include risk-minimization using coherent risk

measures, a thorough account of it which can be found in Barrieu and El Karoui (3),

local utility maximization as in Kallsen (30), superhedging as originally introduced by

Davis and Clark in (15), which provides bounds on prices so that the hedging portfolio

always dominates the contingent claim.

Most of the time, each of these approaches turn to SDE (Stochastic Differential Equa-

tions) to model the underlying assets so that the natural tools for deriving hedging

and pricing equations are PDE (Partial Differential Equations) and FBSDE (Forward

Backward Stochastic Differential Equations). Usually these are solved numerically and

for that purpose in high dimension the latter representation will be preferred. The clos-

est approach to ours in this list, from the point of view of the techniques used, would

be Kallsen’s utility maximization. Actually it can be seen as an “orthogonal” method-

ology since instead of minimizing the risk of a trading strategy meant to produce the

payoff of a given contingent claim, it proposes to maximize the utility of the gains of

a trading strategy. To effectively deal with contingent claim pricing and hedging, the

trading strategy should include one unit of the derivative which then produces its payoff

3



1. INTRODUCTION

at the terminal date. Derivatives prices are then determined through an equilibrium

or neutral/indifferent pricing argument. Especially in this approach, the author uses

a limiting process because he wants to maximize a local utility instead of the usual

one, and we will see that we as well need a limiting process to define a special kind of

optimality. We also need to insist on the fact that most of the theory, be it in complete

or incomplete markets, relies on the use of stochastic integrals to model trading gains.

This is the direct extension of the discrete time formula Gk =
∑k

j=1 δj∆Sk which ex-

plains why Ito’s formula and more generally tools from stochastic calculus have proved

so useful in financial mathematics. This representation however does not really extend

easily whenever imperfections in the market have to be taken into account. In 2004,

Cetin, Jarrow and Protter (8) introduced liquidity costs in the theory of self-financing

strategies and they derived an expression for the value V of a self-financing portfolio

when trading on a stock which has a stochastic supply curve.

Having presented schematically the different approaches for pricing and hedging con-

tingent claims in incomplete markets, we are now in a position to describe succinctly

our methodology. For that purpose we step back a little and putting ourselves in the

position of a trader who sold an option we make the simple remark that at the expi-

ration of that option he will be bound to deliver the cash or asset corresponding to

the contingent claim. If he were able to hedge against this unpredictable payment only

once, at the initial date, then a natural way to build his portfolio is to consider the

costs incurred at expiration date from adjusting the portfolio value to the contingent

claim value. Since he is hedging, he would look for the initial composition of the port-

folio that will leave him, on average, with the minimum costs at expiration date. Now

the criterion he chooses to transform costs at expiration date into a risk function will

have to weight, on average over all possible scenarios, losses and gains from adjusting

the portfolio. Arguably the risk is more important if losses are suffered rather than

gains. Yet because he is a trader and not a portfolio manager, he will bear another

constraint in that the initial costs of setting up the portfolio should be minimal or at

least as close as possible to the market price of the option, if there is any available.

This naturally leads to choosing a function f of the costs which will be positive, convex,

for the usual reason that we want to have E(f(x)) > f(E(x)), a way of mathematically

specifying risk-aversion, null at zero, and asymmetric, favouring gains over losses, so

with f(x) > f(−x) for x > 0. With just one hedging date the formulation obviously

4



1.1 Pricing and Hedging Derivatives Products

does not differ whether we are performing a global minimization, meaning that we

minimize the risk over all possible strategies from inception date to expiry date and

local minimization when we minimize the risk over strategies which are perturbations

of the optimal strategy at inception date only. Neither does the concept of local risk,

being the risk due to costs incurred between two trading dates, and global risk which

is the risk of the total costs accumulated from start date until end date.

In this thesis we will consider only local minimization of local risk. We chose local

risk over global risk mainly for tractability reason and also because the approach then

generalizes more easily to options of American type and to include some market in-

efficiencies such as liquidity costs. As well we chose local minimization because it is

rather fruitful in terms of optimal strategies characterization, and also to avoid the

time inconsistencies which would probably occur otherwise. We also think that this

approach would yield more steady strategies in case of a change of regime in the market

for instance.

In chapter 3 we give as an introduction to the mathematical setting and notations

an overview of the main results that have been found by Schweizer (47, 48) since his

initial thesis work on the hedging of options in general incomplete markets by means

of quadratic hedging methods.

In chapter 4 we first introduce our method which generalizes the latter by consider-

ing a discrete time setting. This allows us to already give several equivalent character-

izations of the optimal strategies which will prove useful when tackling the continuous

time setting which is the object of the second part of the chapter.

In chapters 5 and 6 we exemplify our method in two usual settings in continuous

time: the stochastic volatility model and the jump-diffusion model.

In chapter 7 we introduce liquidity costs in the modelling of the trading costs and go

again through the characterization of optimal strategies in both discrete and continuous

time settings.

Finally in chapter 8 we consider some specific Markovian models to describe the

evolution of underlying assets and solve for optimal strategies by means of numerical

methods for which we discuss the different schemes. This allows us to compare our

approach with the quadratic framework of Schweizer.

5
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2

Introduction

2.1 Couverture et évaluation des produits dérivés

Cette thèse s’intéresse à la problématique de la couverture des produits dérivés dans

les marchés incomplets. La complétude des marchés est une notion introduite par Har-

rison et Kreps et c’est une propriété à la fois du modèle utilisé pour décrire l’évolution

des actifs à risque et du produit dérivé que l’on cherche à couvrir. Cette notion ex-

prime le fait que les produits contingents satisfaisant certaines hypothèses de régularité

sont réplicables exactement par une stratégie d’achat/vente d’actifs à risque, sans

apport ni retrait d’argent. Ces deux points sont essentiels pour résoudre du même

coup la problématique de l’évaluation et de la couverture d’un produit contingent. La

complétude des marchés est donc liée à la notion essentielle de stratégie auto-finançante,

sans apport ni retrait d’argent, et elle fut d’abord exprimée dans un cadre discret puis

généralisée au cas continu. L’outil mathématique pour parvenir à cette généralisation

est l’intégrale stochastique d’Itō : en temps discret les gains de trading accumulés lors de

l’application d’une stratégie auto-finançante sont donnés par Gk =
∑k

j=1 δj (Sj+1 − Sj)

et par Gt =
∫ t
0 δsdSs en temps continu. On voit alors que si l’on dispose d’une telle

stratégie auto-finançante pour répliquer un produit contingent, le prix du produit dérivé

correspondant doit être la valeur initiale du portefeuille de couverture, par un simple

raisonnement d’arbitrage, si le marché est à l’équilibre. Trouver une telle stratégie

pour n’importe quel produit contingent, et donc montrer que le marché est complet,

peut s’effectuer à l’aide de théorèmes de représentation ou par le biais de résolution

d’équations aux dérivées partielles. Cette dernière approche fut celle employée par

7



2. INTRODUCTION

Black, Merton et Scholes pour l’évaluation et la couverture d’options européennes dans

un marché où l’actif à risque est modélisé par un mouvement Brownien géométrique.

Dans un marché incomplet, il existe par définition des produits contingents qui ne sont

pas réplicables, ou, autrement dit, pour lesquels on ne peut pas éliminer totalement le

risque en exécutant n’importe quelle stratégie de couverture auto-finançante. Le risque

est une mesure de l’écart entre la valeur du produit contingent à l’échéance (pour un

produit de type européen, le seul type de produits envisagé dans cette thèse) et la

valeur du portefeuille de couverture. En effet, pour une stratégie auto-finançante, une

fois le capital initial et la stratégie d’investissement en actif à risque décidés, il n’existe

plus de degré de liberté pour ajuster la valeur du portefeuille au cours de la vie de

l’option. Il peut donc être intéressant de relâcher l’hypothèse d’auto-financement afin

de pouvoir utiliser d’autres critères d’optimalité. Si l’on ne travaille donc plus qu’avec

des stratégies auto-finançantes, le coût de la stratégie n’est plus seulement déterminé à

l’échéance de l’option mais peut être observé tout au long de sa vie. En fait le coût ap-

parat alors comme un processus, non trivial (dans le cas d’une stratégie auto-finançante

il est nul jusqu’à la maturité où le saut est alors appelé errreur de réplication), adapté

à la filtration et qui dépend alors des deux composantes de la stratégie : la valeur du

portefeuille et la quantité d’actifs à risque détenue. Des critères d’optimalité peuvent

alors porter sur le coût local, c’est-à-dire le coût d’application de la stratégie entre deux

dates de couverture, ou bien sur le coût global ou terminal, soit le coût d’application

de la stratégie jusqu’à l’échéance. Dans le premier cas on s’intéresse donc au processus

∆Ck = ∆Vk − δk∆Sk

alors que dans le dernier cas, c’est le processus

Ck =
∑

i≥k

∆Ci

qu’on regarde. Dans nos travaux de thèse, les résultats obtenus se rapportent au pre-

mier cas : on minimise localement le risque local, qui est l’espérance conditionnelle

d’une fonction convexe du coût local. Comme on le note dans le premier chapitre con-

sacré à la récapitulation des résultats obtenus dans le cas quadratique par Schweizer,

coût global et coût local sont équivalents dans le sens où ils donnent lieu aux mêmes

stratégies optimales. Ce n’est plus vrai lorsque l’on s’intéresse à des fonctions convexes

8



2.1 Couverture et évaluation des produits dérivés

non quadratiques. Si l’on s’est également penché sur le cas du risque global, il nous a

semblé plus fructueux de porter notre attention sur le coût local, celui-ci permettant

notamment d’étendre naturellement les résultats obtenus par Schweizer et ce par le

biais de techniques similaires.

On a donc commencé par regarder la formulation du problème en temps discret, ce

qui fait l’objet de la première partie du deuxième chapitre de la thèse. Naturellement

on obtient un programme de minimisation rétrograde puisque la stratégie optimale

est connue à la date terminale du contrat. Par la propriété de convexité de la fonc-

tionnelle de risque, on a alors le théorème (1) relatif à l’existence et l’unicité de la

solution du programme de minimisation. On note par ailleurs qu’il faut que la con-

dition de non-dégénérécence du processus de prix de l’actif risqué soit vérifiée pour

obtenir l’unicité, ce qui était attendu au vue du même résultat dans le cas quadratique.

Dans le but d’étendre les résultats de caractérisation des stratégies optimales au cas du

temps continu, on reformule les conditions d’optimalité du premier ordre satisfaites par

les deux composantes de la stratégie de la manière suivante : le processus des f−coûts
∑

i≤k f
′ (∆Ci) est une martingale orthogonale au processus de prix S. En effet, en

temps continu, d’une part il est crucial de bien définir la minimisation locale, en par-

ticulier par le choix de l’espace des perturbations admissibles, et d’autre part le choix

du processus à minimiser n’est pas évident. En l’occurrence, une première approche

de la minimisation locale du risque local en temps continu pourrait être de définir le

risque local en temps continu comme la limite des incréments de risque
∑

i≤k f (∆Ci)

sur une partition tendant vers l’identité. Pourtant il est facile de voir que les stratégies

optimales obtenues par cette approche, dans le cas où le processus de prix est continu,

sont les mêmes que les stratégies optimales du cas quadratique et ne tiennent donc pas

compte de l’asymétrie de la fonction f . En fait, comme s’attache à le démontrer la

deuxième partie du deuxième chapitre, le bon processus à considérer pour un passage

à la limite est bien le processus des f−coûts.

La deuxième partie du deuxième chapitre s’attache donc d’une part à définir précisément

l’optimalité en temps continu et d’autre part à relier cette notion à celle de martingalité

et d’orthogonalité à la limite du processus des f−coûts dans un cadre très général où le

processus de prix est donné par une semimartingale quelconque. L’objet du théorème

(2) est justement de donner un résultat d’existence de ce processus, et de le caractériser

9



2. INTRODUCTION

à partir du processus de prix et de la fonctionnelle de risque. L’expression obtenue est

la suivante :

C
f
t (φ) = f ′′(0)

(

Vt − V0 −

∫ t

0+
δs−dXs

)

+
f (3)(0)

2

(

[V, V ]ct − 2

∫ t

0+
δs−d[V,X]cs +

∫ t

0+
δ2s−d[X,X]cs

)

+
∑

0<s≤t

f ′(∆Vs − δs−∆Xs)− f ′′(0)(∆Vs − δs−∆Xs)

Ceci permet de d’introduire la notion de pseudo-optimalité, par analogie avec le temps

discret et également de manière analogue à ce qui a été fait dans le cas quadratique.

On qualifie donc de pseudo-optimale une stratégie dont le processus des f−coûts défini

ci-dessus est une martingale orthogonale au processus de prix.

La question qui se pose alors naturellement est de savoir si l’on peut relier la notion de

pseudo-optimalité à une notion d’optimalité en temps continu. On introduit alors une

notion d’optimalité en temps continu. Pour ce faire on définit d’abord le coût Ct d’une

stratégie φ en temps continu:

Ct(φ) := Vt(φ)−

∫ t

0
δudXu, (0 ≤ t ≤ T )

Puis on introduit le risque local étant donnée une partition τ = {0 = t0, t1, · · · , tk = T}

de l’intervalle [0, T ] correspondant aux dates de couverture:

∆Rti(φ) := E
(

f
(

∆Cti+1(φ)
)

|Fti

)

Et enfin la notion de petite perturbation : une stratégie de trading φ = (β, δ) bornée

et telle que βT = 0 et δT = 0.

Ces définitions en place on introduit le f−quotient de risque pour un produit contingent

H, une stratégie de trading φ simulant H, une partition τ = {0 = t0, t1, · · · , tk = T}

de [0, T ] et une petite perturbation ∆

rτf [φ,∆](t, ω) =
∑

ti,ti+1∈τ

∆Rti(φ+∆|(ti,ti+1])(ω)−∆Rti(φ)(ω)

ti+1 − ti
1(ti,ti+1](t)

Et finalement on dira qu’une stratégie de trading φ simulant H est optimale si pour

toute petite perturbation ∆ n’importe quelle séquence de partitions (τn)n∈N tendant

vers l’identité, on a

lim inf
n→∞

rτnf [φ,∆] ≥ 0 P − a.e.
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2.1 Couverture et évaluation des produits dérivés

Afin d’étudier le lien entre optimalité et pseudo-optimalité, on introduit les notions

de g−martingale et de g−martingale orthogonale une autre martingale. Un proces-

sus adapté Y est une g−martingale (orthogonale à une martingale M) s’il existe une

martingale M⊥ (orthogonale à M) telle que

Y =
k
∑

j=1

g(∆M⊥
j )

Ces définitions nous permettent en particulier d’étendre la notion de décomposition

de Föllmer-Schweizer. En outre, moyennant une hypothèse sur l’espace de proba-

bilité (Ω,F, P, (Ft)) (existence d’une base de décomposition orthogonale de L2(P ) et

régularité de la base), on obtient le théorème (6) qui montre qu’une stratégie pseudo-

optimale est toujours optimale.

Les troisième et quatrième parties de la thèse sont consacrées à l’application des

résultats théoriques de la deuxième partie dans le cadre des modèles à volatilité stochas-

tique avec et sans sauts.

Le choix de ces modèles de marché incomplet est bien sûr lié à la popularité des modèles

de Heston et de Bates pour expliquer les déviations observées entre la théorie de Black,

Scholes et Merton et les données de marché pour les options liquides (smile/skew de

volatilité).

On fait les hypothèses nécessaires et suffisantes pour obtenir existence et unicité du pro-

cessus solution de l’équation différentielle stochastique régissant l’évolution de l’actif à

risque qui, dans le cas de la volatilité stochastique, s’écrit

dXs = a(s,Xs, Ys)ds+ b(s,Xs, Ys)dW
1
s

dYs = c(s,Xs, Ys)dt+ d(s,Xs, Ys)
(

ρdW 1
s +

√

1− ρ2dW 2
s

)

où (W 1,W 2) est un processus de Wiener standard bidimensionnel sous la mesure P .

Ceci nous permet de nous placer dans un cadre Markovien pour les stratégies optimales

et donc de les chercher sous la forme parmétrique suivante

{

δt = δ(t,Xt, Yt)
Vt = V (t,Xt, Yt)

où X est l’actif à risque actualisé et Y est la volatilité de la diffusion associée.

Dès lors on peut obtenir une expression du processus des f−coûts en fonction de la

stratégie et en appliquant les critères de pseudo-optimalité on arrive aux équations
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aux dérivées partielles satisfaites par la stratégie optimale. Dans le cas de la volatilité

stochastique, on obtient l’EDP quadratique suivante

∂V

∂u
+ ΛV =

a

b

(

∂V

∂X
b+

∂V

∂Y
ρd

)

+ α

(

√

1− ρ2
∂V

∂Y
d

)2

où Λ est le générateur infinitésimal de la diffusion de paramètres a, b, c et d, et α =

−1
2
f (3)(0)
f ′′(0) . Le ratio de couverture δ vérifie l’équation

δb =
∂V

∂X
b+

∂V

∂Y
ρ

L’existence et l’unicité sont obtenus pour l’EDP quadratique au sens des solutions

de viscosité grâce à des résultats acquis dans un cadre plus général. Pour obtenir

un résultat plus fort sur l’optimalité de la solution donnée par l’EDP, on utilise la

caractérisation de la solution optimale par une équation différentielle stochastique

rétrograde

−dVs = g(s,Xs, Ys, Vs, Z
1
s , Z

2
s )ds− Z1

sdW
1
s − Z2

sdW
2
s

VT = H

avec g(s,X, Y, Z1, Z2) = −a
bZ

1 − α(Z2)
2
, with V = β + δX et Z = (δb, ∂V∂Y d

√

1− ρ2).

On sait alors que la solution de cette EDSR donne une solution de viscosité pour

l’EDP quadratique. Or l’EDSR est également la formulation de l’optimalité par la

g−martingalité.

Dans le cas où l’on ne considère plus seulement une évolution de l’actif à risque avec

des trajectoires continues, on utilise la modélisation suivante

dXs = a(s,Xs−, Ys−)ds+ b(s,Xs−, Ys−)dW
1
s + kdNs

dYs = c(s,Xs−, Ys−)ds+ d(s,Xs−, Ys−)
(

ρdW 1
s +

√

1− ρ2dW 2
s

)

où (W 1,W 2) est un processus de Wiener standard bidimensionnel sous la mesure P et

Nt est un processus de Poisson d’intensité λ et l’amplitude des sauts associés k a une

densité de probabilité K.

On obtient moins de résultat théorique dans ce cadre, mais on est au moins capable,

en se plaçant toujours dans un cadre Markovien, d’écrire les équations de pseudo-

optimalité.
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2.1 Couverture et évaluation des produits dérivés

La condition de martingalité du processus des f−coûts donne l’EIDP suivante

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δu−au

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

−f (3)(0)δu−

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2u−b

2
u

+

∫

R

f ′(∆Vu − δu−∆Xu)K(k)dkλu = 0

avec la condition terminale VT = H.

Tandis que la condition d’orthogonalité nous permet de relier le ratio de couverture

optimale à la valeur du portefeuille
(

∂V

∂X
− δu−

)

b2u +
∂V

∂Y
ρbudu +

∫

R

f ′(∆Vu − δu−∆Xu)kK(k)dkλu = 0

La cinquième partie de la thèse s’attache à étendre les résultats des trois parties

précédentes au cadre plus général de la liquidité finie, ou plus précisément au cas où le

prix d’achat ou de vente de l’actif à risque dépend de la quantité.

On revient donc au cas discret afin d’examiner la notion d’optimalité qu’il est possi-

ble d’obtenir dans ce cadre. On s’intéresse toujours à minimiser séquentiellement une

fonction des coûts de couverture, ces derniers prenant la forme suivante

∆Ck(φ) = L ((δk+1 − δk), Xk, tk) + (βk − βk−1) ∀k ∈ {k = 1, · · · , T}

où la fonction L donne les coûts liés à l’ajustement de la stratégie sur la partie actif

à risque. C’est cette fonction qui a pour but de modéliser les effets de liquidité. Elle

a donc certaines propriétés et est en particulier strictement croissante et convexe. La

fonction à minimiser s’exprime alors comme l’espérance conditionnelle des coûts

∆R
f
k(φ) = Ek (f(∆Ck+1))

On a toujours l’existence d’une solution au programme de minimisation mais non son

unicité. Une stratégie optimale doit vérifier les conditions du premier ordre qui se

traduisent par le système d’équations suivant

Ek

(

f ′ (∆Ck+1(φ
∗))
)

= 0 (2.1)

Ek

(

f ′ (∆Ck+1(φ
∗)) l (δk+2 − δk+1)Xk+1

)

= 0 (2.2)
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où l est la dérivée partielle de la fonction de liquidité L par rapport à sa première

variable (la quantité d’actifs).

Afin d’étendre la notion de minimisation locale du risque au temps continu, de mme

que pour le cas de la liquidité infinie, on réinterprète les équations d’optimalité en

terme d’orthogonalité de processus. Pour ce faire on définit le processus des f−coûts
(

C
f
k

)

k
par C

f
k =

∑k
i=1 f

′(∆Ci), C
f
0 = 0, et le processus de prix ajusté de la liquidité

(

XS
k

)

k
par XS

k = X0 +
∑k

i=1 (l (∆δi)Xi − l(0)Xi−1) = X0 +
∑k

i=1 (l (∆δi)Xi −Xi−1),

XS
0 = X0. Ainsi on dira qu’une stratégie est pseudo-optimale si le processus Cf est

une martingale fortement orthogonale à la partie martingale du processus XS .

Pour le cas continu on s’attache tout d’abord à étudier l’existence des processus limites

définis ci-dessus dans un cadre général où l’actif à risque est une semimartingale.

On obtient des résultats d’existence et des caractérisations explicites des deux processus

Cf et XS de manière très similaire au cas de la liquidité infinie.

Le processus des f−coûts s’écrit

C
f
t (φ) = f ′′(0)

(

Vt − V0 −

∫ t

0+
δs−dXs

)

+ f ′′(0)l′(0)

(

1

2

∫ t

0+
Xs−d[δ, δ]

c
s

)

+
f (3)(0)

2

(

[V, V ]ct − 2

∫ t

0+
δs−d[V,X]cs +

∫ t

0+
δ2s−d[X,X]ct

)

+
∑

0<s≤t

f ′(∆Vs − δs−∆Xs + L(∆δs, Xs)−∆δsXs)

−
∑

0<s≤t

f ′′(0)(∆Vs − δs−∆Xs)

alors que le processus de prix ajusté de la liquidité s’écrit

XS
t (φ) = Xt + l′(0)

(

δtXt − δ0X0 −

∫ t

0+
δs−dXs

)

+
1

2
l′′(0)

∫ t

0+
Xs−d[δ, δ]

c
s

+
∑

0<s≤t

(

l((∆δs)− 1)Xs − l′(0)∆δsXs

)

On applique d’abord les résultats qui précèdent aux cas de la volatilité stochastique

avec et sans sauts afin d’obtenir une caractérisation des stratégies pseudo-optimales.

Avec les mmes hypothèses sur le processus d’actif à risque que dans le cas de la liq-

uidité infinie, on obtient que les composantes d’une stratégie pseudo-optimale doivent
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satisfaire le système d’EDP parabolique et hyperbolique suivant































































∂V
∂u + ∂V

∂X a+ ∂V
∂Y b+ 1

2
∂2V
∂X2 b

2 + 1
2
∂2V
∂Y 2 d

2 + ∂2V
∂X∂Y ρbd =

δa+ α
(

(

∂V
∂X b+ ∂V

∂Y ρd− δb
)2

+ (1− ρ2)
(

∂V
∂Y

)2
d2
)

+l′(0)X2

(

(

∂δ
∂X b+ ∂δ

∂Y ρd
)2

+ (1− ρ2)
(

∂δ
∂Y

)2
d2
)

(

∂V
∂X − δ

) (

1 + l′(0)X ∂δ
∂X

)

b2 + ∂V
∂Y

(

1 + l′(0)X ∂δ
∂X

)

ρbd

+
(

∂V
∂X − δ

)

∂δ
∂Y l′(0)Xρbd+ ∂V

∂Y
∂δ
∂Y l′(0)Xd2 = 0

avec VT = H. Toujours dans ce cadre de volatilité stochastique sans sauts, on parvient

à montrer l’équivalence entre pseudo-optimalité et optimalité, lorsque l’optimalité est

définie en ne considérant que des stratégies de type “buy and hold”, c’est à dire des

stratégies constantes sur les intervalles sur lesquels on mesure le risque local. Le pas-

sage à la limite en temps permet donc d’obtenir un résultat de caractérisation plus fort

que dans le cas du temps discret.

En revanche on n’obtient pas de résultat de ce type pour le cas des processus à tra-

jectoires discontinues et on donne donc simplement la caractérisation due au critère

de pseudo-optimalité. Le ratio de couverture δ est solution de l’équation non-linéaire

suivante

XS
t (φ)− E

(

XS
t (φ)

)

=

∫ t

0

(

1 + l′(0)X
∂δ

∂X

)

budW
1
u +

∫ t

0
l′(0)X

∂δ

∂Y
dudW

2
u

+

∫ t

0

∫

R

((l(∆δu)− 1)Xu + k)K(k)dkdÑu

où Ñ est le processus de Poisson compensé de N . La valeur théorique du portefeuille

V est solution de l’EIDP suivante

(

∂V

∂X
− δ

)(

1 + l′(0)X
∂δ

∂X

)

b2 +
∂V

∂Y

(

1 + l′(0)X
∂δ

∂X

)

ρbd

+

(

∂V

∂X
− δ

)

∂δ

∂Y
l′(0)Xρbd+

∂V

∂Y

∂δ

∂Y
l′(0)Xd2

+

∫

R

f ′(∆Vu − δu−∆Xu + L(∆δu, Xu)−∆δuXu) ((l(∆δu)− 1)Xu + k)K(k)dkλu = 0

Tout comme dans le cas volatilité stochastique pure, les résultats d’existence et d’unicité

pour ces systèmes d’équations aux dérivées partielles couplées restent à établir.
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Enfin la dernière partie de la thèse aborde la question de la résolution numérique de

quelques unes des équations obtenues dans les parties théoriques précédentes. On com-

pare également les approximations obtenues avec la résolution numérique du problème

en temps discret.

Pour ces études, on se place dans un cadre de volatilité stochastique où les équations

d’évolution de l’actif à risque sont

dXt

Xt
= µ(t, Yy)dt+ YtdWt

dYt = a(t, Yt)dt+ b(t, Yt)dW
′
t

Les paramètres choisis sont

Modèle Volatilité stochastique Y Taux de rendement µ

Stein dYt = κ(θ − Yt)dt+ kdWt µ(t, Yt) = ∆Yt
Heston d(Yt)

2 = κ(θ − (Yt)
2)dt+ΣYtdW

′
t µ(t, Yt) = ∆Yt

(2.3)

On s’intéresse dans un premier temps à la résolution de l’équation différentielle stochas-

tique rétrograde suivante

dXt

Xt
= µ(t, Yy)dt+ YtdW

1
t

dYt = a(t, Yt)dt+ b(t, Yt)(ρdW
1
t +

√

1− ρ2dW 2
t )

−dVs = g(s,Xs, Ys, Vs, Z
1
s , Z

2
s )ds− Z1

sdW
1
s − Z2

sdW
2
s

VT = h(XT )

avecW = (W 1,W 2) un mouvement Brownien bi-dimensionnel standard et g(s, S, σ, Y, Z1, Z2) =

−µ
σZ

1 − α(Z2)
2
.

A cause de la croissance quadratique du générateur g, on doit utiliser un schéma de

troncature. On a alors la convergence du schéma de troncature sous certaines con-

ditions vérifiées dans le cadre de nos hypothèses de diffusion. On applique ensuite à

l’EDSR dont le générateur auquel est appliquée la troncature est alors Lipschizien une

méthode de résolution numérique basée sur des régressions.

Dans un deuxième temps on cherche à résoudre numériquement l’EDP quadratique

associée

∂V

∂u
+ ΛV =

µ

Y

(

∂V

∂X
XY +

∂V

∂Y
ρb

)

+ α

(

√

1− ρ2
∂V

∂Y
b

)2
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avec la condition terminale VT = H(XT ) = (XT −K)+ et le générateur correspondant

à nos hypothèses de diffusion

ΛVu =
∂V

∂X
µuX +

∂V

∂Y
au +

1

2

∂2V

∂X2
X2Y 2 +

1

2

∂2V

∂Y 2
b2u +

∂2V

∂X∂Y
ρbuXY

On utilise pour sa résolution un code d’éléments finis et l’on choisit d’appliquer les

conditions de Dirichlet V (Xmin) = K−Xmin et V (Xmax) = 0 sur une grille assez large

en X, et des conditions de frontière libre en Y .

Enfin on compare avec la résolution du problème en temps discret. Pour cette résolution,

discrétise d’abord l’EDS afin de simuler l’actif à risque et la volatilité aux dates de cou-

verture. Puis on approxime la fonction de risque f par un développement polynomial à

l’ordre 3. Ceci permet d’écrire les équations d’optimalité du premier ordre sous forme

d’un système d’équations polynomiales en les composantes de la stratégie où les coeffi-

cients sont des espérances conditionnelles qui ne dépendent que de valeurs connues. On

calcule donc ces espérances conditionnelles par le biais de régressions, ce qui permet

alors de résoudre simplement le système d’équations polynomiales.

On peut alors comparer nos trois méthodes et constater la bonne convergence pour

différents types d’options européennes.
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3

Quadratic Local Risk

Minimization

In this chapter we recall the main results obtained by Schweizer (47, 48) and Föllmer

and Schweizer (21) for the method of quadratic hedging with local risk-minimization.

This allows us to introduce our notations for the classical problem of hedging contingent

claims in incomplete markets. We start this review with the discrete time case before

moving onto the continuous time setting.

3.1 Discrete Time

3.1.1 Definitions

Let X = (Xt)t=0,··· ,T be a stochastic process defined on a filtered probability space

(Ω,F, (Ft)t=0,··· ,T . T ∈ N is a fixed and finite time horizon. (Ft)0≤t≤T is assumed to

satisfy the usual hypothesis, meaning that F0 is complete. We also assume that F0

is trivial, i.e. F0 = {∅,Ω}, so that random variables adapted to F0 are treated like

constants. The process X describes the price evolution of a risky asset and as we

assume the existence of a (locally) risk-free asset (the bank account), strictly positive

at all time. X will actually stand for the discounted price process. The bank account,

discounted, is then worth 1 at all time. Furthermore we assume that X is adapted (i.e.

Xk is Fk-measurable) and that it is a square-integrable process (i.e. Xk ∈ L2(P ) ∀k ∈

{0, · · · , T}). We use the notation ∆Xk := Xk −Xk−1 for k ∈ {1, · · · , T}.

With these two assets, and with the aim of hedging a claim contingent on the value
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3. QUADRATIC LOCAL RISK MINIMIZATION

of X, we build a portfolio consisting of δ shares of the risky asset and β shares of the

risk-free one. This consideration leads to the following definition:

Definition 1. A trading strategy φ is a pair of two stochastic processes (β, δ) such

that

β = (βk)k=0,··· ,T is adapted. (3.1)

δ = (δk)k=1,··· ,T is a predictable process. (3.2)

k
∑

j=1

δj∆Xj ∈ L2(P ) for k ∈ {1, · · · , T}. (3.3)

δkXk + βk ∈ L2(P ) for k ∈ {1, · · · , T}. (3.4)

Definition 2. The (discounted) value process V of φ = (β, δ) is defined as

V0 := β0

and Vk := βk + δk ·Xk for k ∈ {1, · · · , T}

For a trading strategy, condition (3.4) then says that the value process V has to be

square-integrable.

With these definitions, the trading strategy of the trader is thus interpreted as choosing

βk at time k after having observed the value Xk. δk was chosen in the previous period.

Knowing β at time k is thus equivalent to knowing V . Therefore with this trading

strategy the trader is assured to meet the contingent claim requirements at time T by

adjusting only βT .

Definition 3. For a trading strategy φ = (β, δ), the (cumulative) gains process G

accumulated up to time k by investing into the risky asset is given by

Gk :=

k
∑

j=1

δk ·∆Xk, k = 1, · · · , T and G0 := 0.

The (cumulative) costs process is then defined as the difference

Ck := Vk −Gk, k = 0, · · · , T (3.5)

between the value process V and the gains process G.
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3.1 Discrete Time

We now introduce the definition of a contingent claim, which will be considered

throughout this thesis of European type.

Definition 4. A contingent claim H is an FT -adapted square-integrable random vari-

able, i.e. H ∈ L2(P ).

A classical example is a European call option of strike K which is represented by

H = (XT −K)+. We will only focus on strategies which can replicate the contingent

claim at terminal time T , we thus have the following definition of admissibility:

Definition 5. A trading strategy φ is called H-admissible if

VT (φ) = H P − a.s.

Since we always want to replicate our contingent claim, we had to relax the pre-

dictability assumption on the whole strategy φ by allowing β to be adapted while

keeping δ predictable. But then an obvious H-admissible strategy would be to do

nothing until the terminal date and then let βT = H. In order to preclude such strate-

gies Schweizer in (47) after Föllmer and Sondermann (51) introduced a criterion based

on the costs from trading so that while we do not restrict ourselves to self-financing

strategies, reasonable strategies will still have to satisfy the weaker property of being

mean self-financing.

Definition 6. A trading strategy φ is called mean self-financing if its costs process

C(φ) is a square-integrable martingale.

Lemma I.1 of Schweizer (47) then shows that there is a bijective correspondence

between the set of all mean self-financing H−admissible trading strategies and the set

of all predictable process δ satisfying (3.3). It is given by δ 7→ φ = (δ, β) with

βk := E



H −
T
∑

j=k+1

δj∆Xj

∣

∣

∣

∣

∣

∣

Fk



− δkXk.

Remark 1. This bijection will prove a major ingredient for the derivation of optimal

strategies once it has been proven that we can indeed focus only on those mean self-

financing strategies. In that respect it proves that the approach used by Schweizer is very

much an extension of the traditional self-financing framework in complete markets. We

will also see in the next chapter that the absence of this bijection will slightly complicate

things for a non-quadratic measure of risk.
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3. QUADRATIC LOCAL RISK MINIMIZATION

3.1.2 Local Risk-Minimization

The aim is to exhibit strategies which bear minimum risks in some sense while still

allowing the perfect replication of our contingent claim H. The measure of riskiness

proposed by Schweizer is defined through this definition of the risk process:

Definition 7. The (global) risk process R(φ) of a trading strategy φ is defined by

Rk(φ) := E

[

(CT (φ)− Ck(φ))
2
∣

∣

∣Fk

]

, k ∈ {0, · · · , T}.

The previous remark allows one to directly associate a risk process to every pre-

dictable process δ satisfying (3.3) for a given contingent claim H. So as to select

strategies which minimize the risk R over all H−admissible strategies, we have to

introduce a notion of perturbations. Schweizer chose local perturbations over global

perturbations since for the latter a (global) risk-minimizing strategies might just fail

to exist (see example at the end of section I.2 in Schweizer (47)). This calls for the

following definition:

Definition 8. Let φ be a trading strategy and k a trading date. An admissible local

variation of φ at k is a trading strategy ∆ = (ξ, η) such that

ξj = 0 for 1 ≤ j ≤ k and k + 2 ≤ j ≤ T

ηj = 0 for 0 ≤ j ≤ k − 1 and k + 1 ≤ j ≤ T − 1

and

VT (φ+∆) = VT (φ) P − a.s. (3.6)

This concept of local perturbations amounts to consider varying only δk+1 and βk

while leaving the rest of the strategy φ unchanged. (3.6) then determines βT from δT :

βT = −δTXT so that ∆ = 0 for k = T . For all other k < T , ∆ is uniquely determined

by δk+1 and βk. With this concept in place, we can introduce the definition of a locally

risk-minimizing strategy:

Definition 9. A trading strategy φ is called locally risk-minimizing if for any trading

date k and any admissible local variation ∆ of φ at k we have

Rk(φ+∆)−Rk(φ) ≥ 0 P − a.s.
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3.1 Discrete Time

Local risk-minimization corresponds to a backward sequential regression algorithm:

since admissible local variations vary only the components of the strategy at the consid-

ered time k and together with the terminal condition which enforce that the perturbed

H−admissible strategies remain H−admissible, we see that we have to start from the

terminal date T when VT is known and then proceed backward with the minimization.

Now that we have introduced most notations, we give the results Schweizer got in his

PhD thesis (47).

Lemma 1. Let φ be a trading strategy. If φ is locally risk-minimizing, then φ is mean

self-financing.

Proof. See lemma I.7 of Schweizer (47). The proof relies on constructing an admissible

local variation which varies only the risk-less component by adding the conditional

expectation of the future costs of the strategy. It is then readily seen that such a

local variation would decrease the risk, unless the costs process of the strategy is a

martingale.

To give more insights on the structure of the strategy we need the following defini-

tion:

Definition 10. Two adapted processes U and Y are called strongly orthogonal with

respect to P if the conditional covariances

cov(Ut+1 − Ut, Yt+1 − Yt|Ft), t = 0, · · · , T − 1

are well-defined and vanish P−almost surely.

In the particular case where either U or Y is a P−martingale, their conditional

covariance reduces to

cov(Ut+1 − Ut, Yt+1 − Yt|Ft) = E [(Ut+1 − Ut)(Yt+1 − Yt)|Ft]

The next proposition gives the procedure to actually find the locally risk-minimizing

strategy associated with a contingent claim H. We make use of the following notation

σk =
√

V arFk−1
(∆Xk).

Proposition 1. Let H be a contingent claim and φ = (δ, β) an H−admissible trading

strategy. The following statements are equivalent

1. φ is locally risk-minimizing.
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3. QUADRATIC LOCAL RISK MINIMIZATION

2. φ is mean self-financing and

CovFk−1
(∆Ck(φ),∆Xk) = 0 P − a.s., 1 ≤ k ≤ T

3. φ is given by

δk =
CovFk−1

(

H −
∑T

j=k+1 δj∆Xj ,∆Xk

)

V arFk−1
(∆Xk)

· Iσk 6=0, 1 ≤ k ≤ T (3.7)

and

βk = E



H −
T
∑

j=k+1

δj∆Xj |Fk



− δkXk, 0 ≤ k ≤ T (3.8)

Proof. See proposition 8 of Schweizer (47). The proof relies on a backward induction

together with classical result on optimal linear prediction.

Remark 2. Originally, the criterion used is a global criterion as is noticed from the

definition. It was however already noted in Schweizer (47) that it is equivalent with

using the following local criterion:

Definition 11. The (local) risk process Rl(φ) of a trading strategy φ is defined by

Rk(φ) := E

[

(Ck+1(φ)− Ck(φ))
2 |Fk

]

, k ∈ {0, · · · , T − 1}.

To see that the local criterion is equivalent to the global one, a backward induction

shows that the optimal solution is given by

Vk = E [Vk+1 − δk+1∆Xk+1|Fk]

δk+1 =
CovFk

(Vk+1,∆Xk+1)

V arFk
(∆Xk+1)

· Iσt+1 6=0

But then from the definition of Ck this is seen to be equivalent to

E [∆Ck+1|Fk] = 0

CovFk
(∆Ck+1,∆Xk+1) = 0

which just says that (Ck) is a martingale strongly orthogonal to the martingale part of

(Xk).
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3.1 Discrete Time

This result shows how to construct a candidate for the locally risk-minimizing strat-

egy but assumes that φ is an H−admissible strategy. Schweizer gives a sufficient con-

dition on X so that the candidate defined only by relations (3.7) and (3.8) is indeed

admissible. It further assumes that there exists c ∈ R with 0 ≤ c < 1 so that

(E [∆Xk|Fk−1])
2 ≤ cE

[

∆X2
k |Fk−1

]

P − a.s., 1 ≤ k ≤ T

This condition is essentially a non-degeneracy condition for the martingale part of

X since using a Doob decomposition of X = M + A with M a martingale and A

a predictable process, it can be rephrased E
[

∆M2
k |Fk−1

]

≥ K∆A2
k for K > 0. This

condition is also better known as the fact thatX has a bounded mean-variance trade-off,

the mean-variance process of X being defined as

k
∑

j=1

(E [∆Xj |Fj−1])
2

V arFj−1
(∆Xj)

The following result characterizes the existence of locally risk-minimizing strategies in

terms of a decomposition of the claim H.

Corollary 1. There exists a locally risk-minimizing strategy if and only if H admits a

decomposition

H = c+
T
∑

j=1

δj ·∆Xj + LT P − a.s.,

where c is a constant, δ is a predictable process such that

δj ·∆Xj ∈ L2(P ) for all j,

and where L is a square integrable P−martingale which is strongly orthogonal to X

and satisfies L0 = 0. In this case, the locally risk-minimizing strategy (β̂, δ̂) is given by

δ̂ = δ and by the adapted process β̂ defined by β̂0 = c and

β̂k = c+

k
∑

j=1

δj ·∆Xj + Lk − δj ·Xj, j = 1, · · · , T.

Moreover the decomposition is unique in the sense that the constant c and the martingale

L are uniquely determined.

Proof. See remark at the end of chapter I of Schweizer (47) and corollary 10.14 of

Föllmer and Schied (20).
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3. QUADRATIC LOCAL RISK MINIMIZATION

A decomposition of this form will be called the orthogonal decomposition of the

contingent claim H with respect to the process X. If X is itself a P−martingale,

then the orthogonal decomposition reduces to the Kunita-Watanabe decomposition.

We next move to transferring the same local risk-minimization ideas to the continuous

time setting.

3.2 Continuous Time Setting

3.2.1 Assumptions and Definitions

We work with a probability space (Ω,F, P ) now equipped with a continuous time filtra-

tion (Ft)0≤t≤T where T ∈ R is still a fixed and finite time horizon. As usual we assume

that (Ft) satisfies the usual conditions of right-continuity and completeness. We also

assume that F0 is trivial and that FT = F. X is still the discounted price process of

the risky asset and is modelled now as a càdlàg (right continuous with limits from the

left) adapted process. Furthermore we assume that

X = (Xt)(0≤t≤T ) is a semimartingale with a decomposition X = X0 +M +A

such that

M = (Mt)(0≤t≤T ) is a square-integrable martingale with M0 = 0

and

A = (At)(0≤t≤T ) is a predictable process of finite variation |A| with A0 = 0.

M has a sharp bracket (predictable variation) process < M > with respect to P , and

we denote by PM the measure P× < M > on the product space Ω̄ := Ω × [0, T ] with

the σ−algebra of predictable sets. We now introduce the concept of trading strategy

in continuous time:

Definition 12. A trading strategy φ is a pair of processes δ = (δt)(0≤t≤T ), β =

(β)(0≤t≤T ) satisfying the following conditions

1. δ is predictable

2. The process
∫ T
0 δudXu (0 ≤ t ≤ T ) is a semimartingale of class S2, the class of

P−square integrable processes
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3.2 Continuous Time Setting

3. β is adapted

4. The process V (φ) defined by Vt(φ) := δt ·Xt + βt, (0 ≤ t ≤ T ) is right-continuous

and satisfies Vt(φ) ∈ L2(P ), (0 ≤ t ≤ T )

The integrability condition 2. is equivalent to

E

[

∫ T

0
δ2ud < M >u +

(∫ T

0
|δu|d|A|u

)2
]

< ∞

which means that

δ ∈ L2(PM ) and

∫ T

0
|δu|d|A|u ∈ L2(P ) (3.9)

In accordance with the usual terminology, the process V (φ) is called the value process

of φ and the right-continuous square-integrable process Cφ defined by

Ct(φ) := Vt(φ)−

∫ t

0
δudXu, 0 ≤ t ≤ T

the (cumulative) costs process of φ. We have the same definition of mean self-financing

strategies as in discrete time:

Definition 13. A trading strategy φ is called mean self-financing if its costs process

C(φ) is a martingale.

A contingent claim H is intended to model the payout at time T of some financial

instrument. In mathematical terms, a contingent claim is a random variable H ∈

L2(P ). We will concentrate on strategies which are H−admissible in the sense that:

Definition 14. A trading strategy φ is called H−admissible for a contingent claim H

if VT (φ) = H P−a.s.

The trading strategy φ is then said to generate H. Just like in discrete time we

note that an H−admissible strategy always exists: we can simply choose δ ≡ 0 and

β ≡ 0 except for βT = H. Schweizer in (47) gives the same result which allows to

identify predictable processes satisfying integrability condition (2) with H−admissible

mean self-financing strategies.
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3. QUADRATIC LOCAL RISK MINIMIZATION

Lemma 2. Let H be a contingent claim. Then there exists a bijective correspondence

between the set of all mean self-financing H−admissible trading strategies φ and the set

of all predictable processes δ satisfying (2). It is given by δ 7→ φ = (δ, β) with

βt := E

[

H −

∫ T

t
δudXu

∣

∣

∣

∣

Ft

]

− δtXt, 0 ≤ t ≤ T

where we choose right-continuous versions for both the martingale given by the expec-

tation and the stochastic integral.

Proof. See lemma 1 of chapter II of Schweizer (47).

Remark 3. Again we emphasize that this bijection is actually essential for deriving

the optimality equation satisfied by locally risk-minimizing strategies.

3.2.2 Local Risk-Minimization

Definition 15. As a measure of riskiness, we introduce for each strategy the condi-

tional mean square error process

Rt(φ) := E
[

(CT (φ)− Ct(φ))
2
∣

∣Ft

]

, 0 ≤ t ≤ T

defined as a right-continuous version.

We now introduce the concept of a locally R−minimizing trading strategy in con-

tinuous time. Being an infinitesimal concept, it will involve limit considerations, and

under suitable assumptions on the price process, the required limit actually exists. This

will enable to prove that a trading strategy is locally R−minimizing if and only if it is

mean-self-financing and satisfies a stochastic optimality equation.

Definition 16. A trading strategy ∆ = (δ, β) is called a small perturbation if it satisfies

the following conditions

1. δ is bounded.

2.
∫ T
0 |δu|d|A|u is bounded.

3. δT = βT = 0.

As the idea is to introduce the notion of a local variation of a trading strategy, we

consider partitions τ = (ti)(0≤i≤N) of the interval [0, T ]. Such partitions will always

satisfy

0 = t0 < t1 < · · · < tN = T,
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3.2 Continuous Time Setting

and their mesh size will be defined by |τ | := max1≤i≤N (ti−ti−1). A sequence (τn)n∈N of

partitions will be called increasing if τn ⊆ τn+1 for all n. It will be called 0−convergent

is it satisfies

lim
n→∞

|τn| = 0

If ∆ is a small perturbation and (s, t] is a subinterval of [0, T ], we define the small

perturbation

∆|(s,t] :=
(

δ|(s,t], β|[s,t)
)

by setting

δ|(s,t](ω, u) := δu(ω) · I(s,t](u)

β|[s,t)(ω, u) := βu(ω) · I[s,t)(u)

if t < T and

δ|(s,t](ω, u) := δu(ω) · I(s,t](u)

β|[s,t)(ω, u) := βu(ω) · I[s,t](u)

if t = T .

The asymmetry is stemming from the fact that δ is predictable while β is merely

adapted. This small perturbation allows to define in continuous time the equivalent

concept of risk-minimization as in discrete time, given a partition τ of [0, T ].

Definition 17. Let φ be a trading strategy, ∆ a small perturbation and τ a partition

of [0, T ]. Then we can define the risk quotient

rτ [φ,∆](ω, t) :=
∑

ti∈τ

Rti(φ+∆|(ti,ti+1])−Rti(φ)

E
[

< M >ti+1 − < M >ti |Fti

](ω) · I(ti,ti+1](t)

The strategy φ is called locally R−minimizing if

lim inf
n→∞

rτn [φ,∆] ≥ 0 PM − a.e.

for every small perturbation ∆ and every increasing 0−convergent sequence (τn) of

partitions of [0, T ].
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3. QUADRATIC LOCAL RISK MINIMIZATION

rτ [φ,∆] is a stochastic process which is well defined PM−a.e. on Ω× [O, T ]. It can

be interpreted as a measure for the total change of riskiness if φ is locally perturbed

by ∆ along the partition τ . The denominator describes the appropriate time scale for

these measurements. We make an additional assumption on X:

Assumption 1. For P−almost all ω, the measure on [0, T ] induced by < M > (ω) has

the whole interval [0, T ] as its support.

Equivalently we could postulate that < M > (ω) is strictly increasing P−a.s (see

Schweizer (47, 50)). This non-degeneracy condition prevents the martingale M from

being locally constant. The following lemma shows that it is enough to look for optimal

strategies among mean self-financing ones:

Lemma 3. Under assumptions (3.9) and (1), if a trading strategy φ is locally risk-

minimizing then it is mean self-financing.

Proof. See lemma 2.1 of Schweizer (48).

Remark 4. This last result together with Remark 3 is the key ingredient for the deriva-

tion of the characterization of optimal strategies for the quadratic risk. It is indeed

essential since it allows to concentrate on mean self-financing strategies to find locally

risk-minimizing ones, by varying only the δ component and using martingale techniques

from the property of C(φ). The absence of this decoupling makes things considerably

harder in the general case of a convex risk measure as we will see in the next chapter.

The next result which gives the characterization of locally risk-minimizing strategies

requires these additional technical assumptions on X:

Assumption 2. 1. A is continuous

2. A is absolutely continuous with respect to < M > with a density α satisfying

EM [|α|log+|α|] < ∞

Proposition 2. Assume that X satisfies conditions (3.9) - (2) and let H be a contin-

gent claim and φ and H−admissible trading strategy. Then the following statements

are equivalent

1. φ is locally risk-minimizing

2. φ is mean self-financing and the martingale C(φ) is (strongly) orthogonal to M

Proof. See proposition 2.3 of Schweizer (48).
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3.2 Continuous Time Setting

3.2.3 Explicit Characterization of Locally Risk-Minimizing Strategies

Finally, to complete this chapter review of results in the quadratic case we discuss the

practical ways of explicitly computing locally risk-minimizing strategies. We present

two methods, one using the so-called minimal equivalent local martingale measure (min-

imal ELMM), the other using a forward backward stochastic differential equation (FB-

SDE). Both these methods further assume that X is continuous.

Minimal ELMM

The minimal ELMM (for uniqueness, we refer to theorem 3.5 of Föllmer and Schweizer

(21)) P̂ has the property of turning X into a martingale while preserving strong orthog-

onality with respect to M , i.e. if a P -martingale N is strongly orthogonal to M , then

under P̂ it is also a martingale, strongly orthogonal to M . This property and the fact

that it minimizes the relative entropy with respect to the original measure P explains

the terminology. For the successful use of the minimal ELMM, continuity of X is re-

quired so that the expectation of H under P̂ , denoted by V
H,P̂
t := Ê [H|Ft], 0 ≤ t ≤ T

is a continuous local P̂−martingale then admits a Galtchouk-Kunita-Watanabe decom-

position with respect to X as the following decomposition

V
H,P̂
t = V

H,P̂
0 +

∫ t

0
δH,P̂
u dXu + L

H,P̂
t (3.10)

Then δu = δ
H,P̂
u and βu given according to the formula

βu = Ê [H] +

∫ t

0
δudXu + L

H,P̂
t − δuXu

is pseudo-optimal, hence locally risk-minimizing from proposition (2). So the basic idea

is to find the minimal ELMM and then write explicitly the decomposition (3.10) for

H. This is especially easy in a Markovian framework for a European contingent claim.

We refer to the article of Heath, Platen and Schweizer (26) for the full derivation.

Forward Backward SDE

In the quadratic case, and for (Ft) the completed Brownian filtration generated by X,

the formulation of local risk-minimization stems straightforwardly from the Follmer

Schweizer decomposition in continuous time:
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3. QUADRATIC LOCAL RISK MINIMIZATION

Definition 18. An FT -measurable random variable Y ∈ L2(P ) admits a Föllmer-

Schweizer decomposition if it can be written as

Y = Y0 +

∫ T

0
νYs dXs + LY

T P − a.s.

where Y0 ∈ L2(P ) is F0-measurable, νY ∈ ΘS where

ΘS =

{

θ predictable process such that E

[

∫ T

0
θ2sd < M >s +

(∫ T

0
|θs|d|A|s

)2
]}

so that
∫ T
0 νYs dXs is well-defined and a semimartingale in S2, and the process LY =

(LY
t ) is a right-continuous square integrable martingale null at 0 and strongly orthogonal

to M .

Then proposition 5.2 of Schweizer (50) or proposition 2.24 of Föllmer and Schweizer

(21) states that when X is continuous or satisfies the so-called structured condition

(requiring that A be absolutely continuous with respect to < M > and the mean-

variance tradeoff process be finite), it is equivalent for the contingent claim H to have

a Föllmer-Schweizer decomposition and to possess a locally risk-minimizing strategy.

But then with the martingale representation property of (Ft) it immediately follows

that the Föllmer-Schweizer decomposition is equivalent to the following linear forward

backward stochastic differential equation

Vt = H −

∫ T

t
ZsdWs −

∫ T

t
Z1
s

µs

σs

where µ and σ are the drift and volatility of the (discounted) spot process.

Remark 5. See also the article by ElKaroui, Peng and Quenez on backward stochastic

differential equations in finance (19), Proposition 1.1 for another BSDE description of

locally risk-minimizing strategies.

32



4

Convex Local Risk Minimization

4.1 Measuring Risk

So as to extend the quadratic approach to a more meaningful risk-measure while still

keeping enough tractability for problems to be considered, we introduce the following

set of functions:

Definition 19. The set R of admissible functions for measuring risk is made of func-

tions from R to R which are: strictly convex, positive, null at zero and twice contin-

uously differentiable, and such that f ∈ R is of quadratic growth in the strong sense

(f ′(x) = cx for |x| > A).

As a consequence of this definition the first derivative f ′ is null at zero for f ∈ R.

Assumption 3. Henceforth whenever we use a function noted f it will belong to R.

Remark 6. For our derivations in continuous time we will restrict our focus on func-

tions in R which are three times continuously differentiable.

Remark 7. We consider functions of quadratic growth in order to simplify integrability

issues and work in L2(P ). The strong sense is required to have relatively simple proof of

the admissibility of optimal strategies in discrete time. It can be relaxed in continuous

time.

We should also add that the latter assumptions have no impact on the financial

meaning of the function given that our approach is to find those strategies which are

locally optimal. Locally meaning that the only behaviour that really matters is the one

of f around zero provided we consider prices evolution models with continuous paths.
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4. CONVEX LOCAL RISK MINIMIZATION

As a matter of fact our approach is “twice” local since we will use the same local

perturbations as in the quadratic approach and also a risk-measure which is local, in

the sense that it measures the risk over one time step (infinitesimal in continuous time).

We already noted in the introduction that using a notion of local risk has the advantage

over that of global risk that it can easily encompass the hedging of more exotic products

such as American options. In the quadratic approach, and in discrete time, we showed

that considering either of the two risks leads to the same characterization of optimal

strategies. Yet the global risk is chosen over the local risk because its generalization to

continuous time appeared more obvious. Indeed the sum of the one step costs is then

the difference of the portfolio values minus the trading gains:

lim
n→∞

tn
∑

j=1

(∆Vj − δj∆Xj) = Vt − V0 −

∫ t

0
δudXu.

Then with the quadratic criterion the calculus of the limiting risk-process and its quo-

tient can be carried out and the same characterization of martingale orthogonality of

the costs process can be recovered. With a general convex risk criterion things are dif-

ferent. Obviously the (cumulative) costs process has the same expression and we could

measure the risk of the strategy as the conditional expectation of the chosen function

of the costs process: R
g
t := Et [f(CT − Ct)] = Et

[

f(Vt − V0 −
∫ t
0 δudXu)

]

. But since

we cannot separate perturbation on the component δ and perturbation on the com-

ponent β (unless f happens to be quadratic obviously, see last Remark of Chapter I

of Schweizer (47) for an account of this fact) we do not have such explicit character-

ization through the mean self-financing properties of optimal strategies and therefore

no bijection between such a space of H−admissible mean self-financing strategies and

predictable processes. On the other hand, by considering local risk instead, we are

able to formulate two very similar conditions (martingale orthogonality) to character-

ize optimality through the introduction of a process which we chose to name the f−risk

process. This characterization then allows for a nice extension in continuous time under

mild technical assumptions on the process X and the strategies under consideration. If

we restrain the processes X modelling the risky asset while still allowing for most com-

mon models to be used, then we can even show that the characterization is equivalent

with the concept of local risk-minimization.

This chapter therefore begins with the discrete time setting and then extends the results

obtained to the continuous time setting.
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4.2 Discrete time

4.2 Discrete time

4.2.1 Definitions and Assumptions

We use the same concepts as in the previous chapter in terms of strategies, contingent

claim and small perturbations and thus start by defining the (incremental) costs process

which we will consider for our definition of the local risk:

Definition 20. The (incremental) costs process of a trading strategy φ = (β, δ) is

defined as the difference

∆Ck(φ) := ∆Vk − δk∆Xk, k = 0, · · · , T

We now introduce the local version of a convex criterion for the hedging error of a

trading strategy:

Definition 21. The (local)f−risk process of a trading strategy φ is the process

R
f
k(φ) := E [f (∆Ck+1(φ))|Fk] , k = 0, · · · , T − 1.

4.2.2 Local f−Risk Minimization

The risk-minimization is then carried out the same way as in the quadratic case, only

the risk criterion has changed.

Definition 22. A trading strategy φ is called locally f−risk-minimizing if for any

trading date k and any admissible local variation ∆ of φ at k we have

R
f
k(φ+∆)−R

f
k(φ) ≥ 0 P − a.s.

As announced at the beginning of the chapter we only changed the way the risk is

being assessed and not the way we specify optimal strategies. However this “small”

change has rather “big” implication in tools which can be used to characterize those

optimal strategies, as it turns out. One major property of the quadratic criterion which

is lost in the general convex case is the separability between the two components of a

strategy. We already insisted on this point in the previous chapter and emphasize here

again that we cannot solve the minimization problem embedded in the definition of

locally f−risk-minimizing strategies in two separated steps. In the quadratic case, this

was indeed realized by first minimizing a conditional covariance with respect to the δ
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4. CONVEX LOCAL RISK MINIMIZATION

component and then deriving the corresponding optimal β from the mean self-financing

condition. Here we rely on the convexity of f and on theorem related to minimization of

convex functions to characterize optimal strategies. Indeed given the set of conditions

imposed on f , Xk and Vk, we have the existence and uniqueness of the optimal strategy

φ∗. It is characterized by the first-order optimality equations

Ek

(

f ′(∆Ck+1(φ
∗))
)

= 0 (4.1)

Ek

(

f ′(∆Ck+1(φ
∗))∆Xk+1

)

= 0 (4.2)

Theorem 1. Assume that there is some c > 0 such that V ark (∆Xk+1) := Ek

(

∆X2
k+1

)

−

Ek (∆Xk+1)
2 ≥ c P −a.s., then there exists a unique locally f−risk-minimizing trading

strategy φ∗ whose components δ∗ and β∗ solve equations (4.1) and (4.2).

To prove the theorem, we first need the following lemma:

Lemma 4. Let h(x, y, ω) := Ek (f(U − y − xV ))) (ω) with U and V in L2(P ) and such

that there exists c > 0 with V ark(V ) > c P−a.s.. Then for a fixed (x, y) 7→ ω h(x, y, ω)

is elliptic.

Proof. The proof is straightforward from the characterization of ellipticity for C2 func-

tions of two variables with the help of the Hessian matrix H of h for a fixed ω

det(H) =

∣

∣

∣

∣

∣

Ek

(

V 2f ′′(U − y − xV )
)

Ek (V f ′′(U − y − xV ))

Ek (V f ′′(U − y − xV )) Ek (f
′′(U − y − xV ))

∣

∣

∣

∣

∣

where the expression forH is justified by the quadratic growth assumption on f together

with the fact that U and V are both in L2(P ).

Then h is elliptic if the smallest eigenvalue of the symmetric matrix H has a positive

lower bound for all x and y. But the characteristic polynomial of H is

det(H − λI) =
(

Ek

(

V 2f ′′(U − y − xV )
)

− λ
) (

Ek

(

f ′′(U − y − xV )
)

− λ
)

−
(

Ek

(

V f ′′(U − y − xV )
))2

After some algebra in order to compute the discriminant of the second order polynomial,

we obtain that the lowest of the two roots is strictly greater than a positive number if

and only if the following expression is itself strictly greater than a positive number

Ek

(

V 2f ′′(U − y − xV )
)

−
(

Ek

(

V f ′′(U − y − xV )
))2

But then, using the strict convexity of f it may be written as

(

Ek

(

f ′′(U − y − xV )
))2

(

Ek

(

V 2 f ′′(U − y − xV )

Ek (f ′′(U − y − xV ))

)

−

(

Ek

(

V
f ′′(U − y − xV )

Ek (f ′′(U − y − xV ))

))2
)
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4.2 Discrete time

Now we define a new equivalent measure Q by its Radon-Nikodym derivative dQ
dP =

f ′′(U−y−xV )
Ek(f ′′(U−y−xV )) so that we have

(

Ek

(

f ′′(U − y − xV )
))2
(

E
Q
k

(

V 2
)

−
(

E
Q
k (V )

)2
)

Since by assumption V arkV > c P − a.s., f is strictly convex and of quadratic growth,

and since P andQ have the same null sets, necessarily there exists c′ such that V ar
Q
k V >

c′ and the lemma is proved.

Now the proof of the theorem follows from the construction of a Fk minimizer using

dyadic rationals.

Proof. We use the same function h as defined in the previous lemma. Firstly for a

fixed ω, h is thus a strictly convex function of x and y so that it has a global minimum

(x∗, y∗) if and only if (x∗, y∗) is a critical point of h, i.e. ∇h(x∗, y∗) = 0. From the

lemma we have that h has a unique global minimum P−almost surely. Finally we show

that (x∗, y∗) is Fk−measurable: let Dn = {j2−n|j ∈ Z} be the set of dyadic rational of

order n, we define

(xn(ω), yn(ω)) = argmin
(x,y)∈Dn×Dn

{h(x, y, ω)}

Since ω 7→ h(x, y, ω) is Fk−measurable, (xn, yn) is also Fk−measurable. As (xn, yn)

is bounded in n P−a.e. (since lim|(x,y)|→∞ = +∞ from the ellipticity and hence coerciv-

ity of h) and h is continuous in (x, y), (x̃, ỹ) = lim infn→∞(xn, yn) is a Fk−measurable

minimizer of h and by uniqueness it is equal to (x∗, y∗).

Remark 8. We note that like in the quadratic case this result only shows how to con-

struct (implicitly) a candidate for the locally risk-minimizing strategy but assumes that

φ is an H−admissible strategy hence in L2. Using the assumption of strong quadratic

growth of the convex function f we can show that the candidate strategy defined by re-

lations (4.1) and (4.2) is indeed admissible. For that we would need to further assume

that there exists c ∈ R with 0 ≤ c < 1 so that

(E [∆Xk|Fk−1])
2 ≤ cE

[

∆X2
k |Fk−1

]

P − a.s., 1 ≤ k ≤ T

Thus we have the same sufficient condition as in the quadratic case which is equivalent

to the fact that X has a bounded mean-variance trade-off process.
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4. CONVEX LOCAL RISK MINIMIZATION

The set of equations (4.1) and (4.2) is equivalent to the property that the pro-

cess
(

C
f
k

)

k
with C

f
k =

∑k
i=1 f

′(∆Ci) is a martingale (strongly) orthogonal to (the

martingale part of) Xk. This calls for the two following definitions:

Definition 23. Given a trading strategy φ, the f−costs process is the process
(

C
f
k

)

k

defined by C
f
k =

∑k
i=1 f

′(∆Ci(φ)) for k ∈ {1, · · · , T} and C
f
0 = 0.

Definition 24. A trading strategy φ is called pseudo-optimal (for the f−risk-minimization)

if its f−costs process Cf (φ) is a martingale orthogonal to the martingale part of Xk.

This definition will be the main ingredient of the extensions to the continuous time

setting in the general semimartingale case. Before introducing another characterization

of pseudo-optimality (and therefore an equivalent characterization of optimality in dis-

crete time) through a decomposition theorem, we rewrite the martingale orthogonality

property of the f−costs process

∆C
f
k (φ) = f ′(∆Ck) := ∆M⊥

k

where (M⊥
k ) is a martingale orthogonal to X. Since f ′ is bijective from the strict

convexity of f and the quadratic bounds imposed, we have

∆Ck = (f ′)−1(∆M⊥
k )

⇔ Ck =

k
∑

j=1

(f ′)−1(∆M⊥
j )

We therefore introduce the concept of a g−martingale:

Definition 25. An adapted process Y is a g−martingale if there exists a martingale

M such that

Y =
k
∑

j=1

g(∆Mj)

Likewise we have the notion of a g−martingale orthogonal to a martingale M :

Definition 26. An adapted process Y is a g−martingale orthogonal to a martingale

M if there exists a martingale M⊥ orthogonal to M such that

Y =

k
∑

j=1

g(∆M⊥
j )
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4.2 Discrete time

With this last definition in hands we can give our third equivalent characterization

of a locally f−risk-minimizing strategy.

Proposition 3. There exists an H−admissible locally f−risk-minimization strategy φ

if and only if the contingent claim H admits the following decomposition

H = c+

T
∑

j=1

δj∆Xj + L
f ′−1,⊥

T

where c is a constant, δ a predictable process in L2(X) and Lf ′−1,⊥

a f ′−1-martingale

orthogonal to the martingale part of X, with L
f ′−1,⊥

0 = 0.

Proof. The if part of the theorem is straightforward from the remark following definition

(24) since an H−admissible strategy φ verifies VT = H. For the reverse it is easily

checked that the strategy φ = (β, δ) with β defined by

βk = c+

k
∑

j=1

δj∆Xj + L
f ′−1,⊥

k − δkXk, t = 1, · · · , T

is pseudo-optimal and thus locally f−risk-minimizing.

Remark 9. To further anticipate on the development in continuous we notice that if

we assume that f (3)(x) ≥ 0, ∀x ∈ R then f ′ is convex too and thus the f ′−1-martingale

appearing in the decomposition is a supermartingale. Therefore applying this remark to

the f−costs process of a locally risk-minimizing strategy, Cf possesses a unique Doob

decomposition into a decreasing predictable process Af and a martingale Mf . We may

then rewrite the pseudo-optimal condition into a so-called backward difference equation

Yk +
T
∑

j=k

Z1
j∆Mj +

T
∑

j=k

Z2
j∆M

f
j −

T
∑

j=k

F (j, Yj , Z
1
j , Z

2
j ) = H

where the unknowns are the adapted processes Y , Z1 and Z2. This result is very close

to the one we will see in continuous time with the representation of pseudo-optimal

strategies through solutions of a forward backward stochastic differential equation. See

Cohen and Elliott (12) for more insights on the theory of backward difference equations.

Remark 10. At this point it is worth checking whether the results obtained in the

general convex case agree with the quadratic case of chapter 3. We thus restate our

results for f(x) = 1
2x

2. The f−costs process is then the costs process as defined by
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4. CONVEX LOCAL RISK MINIMIZATION

equation (3.5) and the characterization obtained in theorem (1) is equivalent to the

formulation obtained in Remark (2). Likewise the Follmer Schweizer decomposition of

H is equivalent to the decomposition of theorem (3) since f ′−1 = Id.

We next move the continuous time setting and see how the results obtained in the

quadratic case and the results obtained in discrete time in the convex case find their

counterparts.

4.3 Continuous Time Setting

4.3.1 Definitions and Assumptions

We recall that we work with a probability space (Ω,F, P ) now equipped with a con-

tinuous time filtration (Ft)0≤t≤T where T ∈ R+ is still a fixed and finite time horizon.

As usual we assume the (Ft) satisfies the usual conditions of right-continuity and com-

pleteness. We also assume that F0 is trivial and that FT = F. The discounted price

process X still satisfies

X = (Xt)(0≤t≤T ) is a semimartingale with a decomposition X = X0 +M +A

such that

M = (Mt)(0≤t≤T ) is a square-integrable martingale with M0 = 0

and

A = (At)(0≤t≤T ) is a predictable process of finite variation |A| with A0 = 0.

We recall the definition of a trading strategy in continuous time:

Definition 27. A trading strategy φ is a pair of processes δ = (δt)(0≤t≤T ), β =

(β)(0≤t≤T ) satisfying the following conditions

1. δ is predictable

2. The process
∫ t
0 δudXu, (0 ≤ t ≤ T ) is a semimartingale of class S2

3. β is adapted (hence V is adapted too)

4. The process V (φ) defined by Vt(φ) := δt ·Xt + βt, (0 ≤ t ≤ T ) is right-continuous

and satisfies Vt(φ) ∈ L2(P ), (0 ≤ t ≤ T )
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4.3 Continuous Time Setting

We recall as well the definition of the costs process in continuous time:

Definition 28. The costs process is the following right-continuous and square-integrable

process

Ct(φ) := Vt(φ)−

∫ t

0
δudXu, (0 ≤ t ≤ T )

Contrary to the quadratic case we do not associate with the costs process a global

risk-measure so we need a partition of the trading interval [0, T ] to measure the local

risk accordingly. The (local) risk associated with the costs process in continuous time

is then

Definition 29. Given a partition τ of [0, T ], where τ = {0 = t0, t1, · · · , tk = T} the

(local) risk of a trading strategy φ at ti ∈ τ is

∆Rti(φ) := E
(

f
(

∆Cti+1(φ)
)

|Fti

)

In order to define risk-minimization in a local way, we again need the concept of

small perturbations:

Definition 30. A small perturbation is a bounded trading strategy φ = (β, δ) such that

βT = 0 and δT = 0.

Given a contingent claim H and a trading strategy φ generating H, we want to

study the increase of risk at some discrete times when the strategy is perturbed. To

do so, given a partition τ of [0, T ], where τ = {0 = t0, t1, · · · , tk = T}, and a small

perturbation ∆, we define the process rτf the following way:

Definition 31. The f−risk quotient of a trading strategy φ along the partition τ is

the process

rτf [φ,∆](t, ω) =
∑

ti,ti+1∈τ

∆Rti(φ+∆|(ti,ti+1])(ω)−∆Rti(φ)(ω)

ti+1 − ti
1(ti,ti+1](t)

The f−risk quotient is always well-defined since for the case of convex risk-minimization

we use the size of the mesh instead of the increase of quadratic variation of the mar-

tingale part of X as time scale for measurement of risk increase due to perturbations.

Remark 11. We emphasize that this definition of the risk quotient of a strategy differs

in this case from the quadratic definition (17) since the measurement is made on the
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4. CONVEX LOCAL RISK MINIMIZATION

incremental (remaining) risk ∆R instead of the global (remaining) risk
∑

j ∆Rj. On

the other hand the definition is equivalent to the one used in section (III.2) of Schweizer

(47) for the treatment of American options, apart from the time scale. So as to have

the same equivalence between optimal and pseudo-optimality which we obtained in the

discrete time setting, we changed our definition from the original article (1). We will

see however that in the case of liquidity costs studied in chapter 7, we still need the

discrete time perturbations of the risk, though the trading occurs in continuous time.

In the cases of interest it does not change the optimality equations though.

4.3.2 Local f−Risk-Minimization

Now we can define the local f−risk-minimization the same way as we did for the discrete

time setting

Definition 32. For a contingent claim H, a trading strategy φ generating H is called

locally risk-minimizing if for every small perturbation ∆ and every increasing sequence

of partitions (τn)n∈N tending to the identity, we have

lim inf
n→∞

rτnf [φ,∆] ≥ 0 P − a.e.

As a matter of fact, this definition naturally extends the notion of local minimization

of local risk. However this definition might not always be of much practical interest

and in the following section, we will introduce the concept of a pseudo-optimal strategy

similar to the one introduced in the discrete time setting. When restricting our attention

to certain prices processesX it will be shown that we can concentrate on those strategies

indeed.

4.3.3 The f−Costs Process

We proceed with defining the f−costs process which will allow us to characterize

pseudo-optimal strategies by analogy with discrete time.

Definition 33. For a trading strategy φ we define the f−costs process C
f
t (φ) as the

following limit, whenever it exists

lim
n→∞

ln
∑

k=1

f ′

(

V τn
k − V τn

k−1 −

∫ τn
k

τn
k−1

δ
τn
k−1

s dXs

)

where convergence is required in ucp topology, for any increasing 0−convergent sequence

(τn) of Riemann partitions of [0, T ] of length ln ( i.e. τnln = T ) and where we used the

notation Xt for the process stopped at t.
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4.3 Continuous Time Setting

To ensure that the f−costs process is well defined we need to introduce some re-

strictions on strategies. We shall concentrate on strategies which are H−admissible

according to the following definition:

Definition 34. A trading strategy φ = (β, δ) is H−admissible if
{

VT = H P − a.s.

Its costs process (Ct) is a semimartingale (and hence V itself is one).

We now focus on an H−admissible strategy φ and state a theorem related to the

existence of the f−costs process.

Theorem 2. The f−costs process of an H−admissible strategy φ is well defined and

is given according to the following formula

C
f
t (φ) = f ′′(0)

(

Vt − V0 −

∫ t

0+
δs−dXs

)

+
f (3)(0)

2

(

[V, V ]ct − 2

∫ t

0+
δs−d[V,X]cs +

∫ t

0+
δ2s−d[X,X]cs

)

+
∑

0<s≤t

f ′(∆Vs − δs−∆Xs)− f ′′(0)(∆Vs − δs−∆Xs) (4.3)

with notation [V,X]c standing for the continuous part of the (càdlàg) quadratic covari-

ation process.

Proof. The reasoning is very close to the one used in the proof of Itō formula for

general semimartingales in Protter (44). Let Pn be an increasing sequence of Riemann

partitions of [0, T ], Pn = {0 = tn0 ≤ · · · ≤ tnln = T}.

C
f,Pn

t (φ) =

Nn
∑

k=1

f ′

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

where we have assumed without loss of generality that t belongs to the sequence of

partitions (t = tnNn
with limn→∞Nn = +∞). Since V and

∫

δdX are càdlàg processes,

and
∑

s(∆Vs)
2 and

∑

s δ
2
s−(∆Xs)

2 are (absolutely) convergent series, given ǫ > 0 we

can find two sets A and B such that A and B are disjoint and A∪B exhausts the jump

times of V and X on (0, T ], A being a set of jump times that V and X have a.s. a finite

number of times and B being such that
∑

0<s≤t(∆V )2 ≤ ǫ2 and
∑

0<s≤t δ
2
s−(∆X)2 ≤ ǫ2.

Thus we have

C
f,Pn

t (φ) =
∑

k,A

f ′

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

+
∑

k,B

f ′

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)
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4. CONVEX LOCAL RISK MINIMIZATION

where
∑

k,A denotes
∑

k 1{A∩(tk−1,tk] 6=∅} and
∑

k,B denotes
∑

k 1{B∩(tk−1,tk] 6=∅}. The

first sum converges to
∑

s∈A f ′(∆Vs − δs−∆Xs). In the second sum we apply Taylor’s

theorem which says

f ′(x) = f ′′(0)x+
1

2
f (3)(0)x2 +R(x)

where |R(x)| ≤ r(x)x2, such that r : R+ → R+ is an increasing function with

limu↓0 r(u) = 0. Thus we have

∑

k,B

f ′

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

=

f ′′(0)
∑

k,B

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

(4.4)

+
1

2
f (3)(0)

∑

k,B

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)2

(4.5)

+
∑

k,B

R

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

(4.6)

The first sum (4.4) is equal to

∑

k

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

−
∑

k∈A

(

Vtk − Vtk−1
−

∫ tk

tk−1

δsdXs

)

which converges to

(

Vt − V0 −

∫ t

0+
δs−dXs

)

−
∑

s∈A

(∆Vs − δs−∆Xs)

The second sum (4.5), after developing and switching to obvious and less cumbersome

notations, is equal to

∑

k,B

(Vk − Vk−1)
2 − 2(Vk − Vk−1)

∫ tk

tk−1

δsdXs +

(

∫ tk

tk−1

δsdXs

)2

∑

k,B(Vk − Vk−1)
2 =

∑

k(Vk − Vk−1)
2 −

∑

k,A(Vk − Vk−1)
2 and the first sum con-

verges to [V, V ]t while
∑

k∈A(Vk−Vk−1)
2 converges to

∑

s∈A(∆Vs)
2. Now

∑

k,B 2(Vk−

Vk−1)
∫ tk
tk−1

δsdXs converges to 2
∫ t
0+ δs−d[V,X]s−2

∑

s∈A δs−∆Vs∆Xs. Finally
∑

k,B

(

∫ tk
tk−1

δsdXs

)2

is equal to
∑

k

(

∫ tk
tk−1

δsdXs

)2
−
∑

k,A

(

∫ tk
tk−1

δsdXs

)2
and converges to

∫ t
0+ δ2s−d[X,X]s−
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4.3 Continuous Time Setting

∑

s∈A δ2s−(∆Xs)
2. Now we turn to the last term (4.6) of the Taylor’s development

∣

∣

∣

∣

∣

∣

∑

k,B

R

(

Vk − Vk−1 −

∫ tk

tk−1

δsdXs

)

∣

∣

∣

∣

∣

∣

≤
∑

k,B

r

(∣

∣

∣

∣

∣

Vk − Vk−1 −

∫ tk

tk−1

δsdXs

∣

∣

∣

∣

∣

)(

Vk − Vk−1 −

∫ tk

tk−1

δsdXs

)2

= (∗)

Assuming that supω δ ≤ K < ∞ over [0, T ] we have

(∗) ≤ sup r ((K + 1)ǫ)
(

[V, V ]t + 2K[V,X]t +K2[X,X]t
)

We are now ready to take the limit when ǫ goes to zero. The last term tends to zero

from the property of r and it remains to prove that the series
∑

s∈A are absolutely

convergent. We next proceed by localization, as in Protter (44) by considering first

UK = inf{t > 0, |δ| > K}, WK = inf{t > 0, |V | > K} and ZK = inf{t > 0, |X| > K}

so that 1[0,UK ]δ, 1[0,WK ]V and 1[0,ZK ]X are [−K,K]-valued. Therefore we have that

|f ′(x)− f ′′(0)x| ≤ Cx2 for some constant C. This allows us to write
∣

∣

∣

∣

∣

∑

s∈A

f ′(∆Vs − δs−∆Xs)− f ′′(0)

(

∑

s∈A

∆Vs − δs−∆Xs

)∣

∣

∣

∣

∣

≤C
∑

s∈A

∆V 2
s − 2δs−∆Vs∆Xs + δ2s−∆X2

s

≤C([V, V ]t + 2K|[V,X]t|+K2[X,X]t) < ∞

And the series are absolutely convergent which completes the proof.

Remark 12. We note from the explicit formula (4.3) that the f−costs process is itself

a semimartingale for an H−admissible strategy.

Remark 13. Conditions imposed on φ to be admissible strategies are stronger than

what is actually required for the f−costs process to be well defined. It would be enough

to have






















VT = H P − a.s.

X has finite and integrable quadratic variation.

V has finite and integrable quadratic variation.

V and X have finite and integrable quadratic covariation.

for the f−costs process to be well defined as seen from the proof. We enforced the

condition that V is a semimartingale so as to have another interesting characterization

of pseudo-optimal strategies.
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4. CONVEX LOCAL RISK MINIMIZATION

With the f−costs process well defined for strategies of interest in continuous time,

we can now state the criteria which will characterize pseudo-optimal strategies, by

analogy with the discrete time case.

4.3.4 Pseudo-Optimal Strategies

Definition 35. An H−admissible strategy φ will be called pseudo-optimal for the lo-

cal risk-minimization if its f−costs process is a martingale strongly orthogonal to the

martingale part M of the process X.

Remark 14. Since the f−costs process is well defined for an H−admissible strategy,

the definition always makes sense.

In the next chapter, we will derive the corresponding set of equations that pseudo-

optimal strategies have to solve in two different Markovian frameworks. But before

that, we first present the notion of g−martingale in continuous time, which we will

need to study some special cases where we can already have a different representation

of the solutions. This is again inspired from the discrete time setting results.

4.4 g−Martingales and Orthogonality

We defined pseudo-optimality in continuous time through the f−costs process, the limit

of f ′ applied to infinitesimal costs increments, which happened to be semimartingale

increments given the assumptions on H−admissible strategies. In order to have the

same representation result which we obtained in discrete time in the form of proposition

(3), we need some auxiliary definitions and properties on the limit process.

Definition 36. For a function g twice continuously differentiable and a general semi-

martingale Y , we define the g−stochastic integral of Y noted
∫ T
0 g(dY ) the following

limit whenever it exists

lim
n→∞

ln
∑

k=1

g
(

Y τn
k − Y τn

k−1

)

where convergence is required in ucp topology, for any increasing 0−convergent sequence

(τn) of Riemann partitions of length ln ( i.e. τnln = T ) of [0, T ].

We then have the following theorem:
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4.4 g−Martingales and Orthogonality

Theorem 3. Given a semimartingale Y , the g−stochastic integral process of Y is well

defined and is given by the semimartingale below

∫ t

0
g(dY ) =

g′(0) (Yt − Y0) +
g′′(0)

2
[Y, Y ]ct +

∑

0<s≤t

g(∆Ys)− g′(0)(∆Ys) ∀t ∈ [0, T ] P − a.s. (4.7)

Theorem (2) is thus only a consequence of this more general theorem.

Proof. We give our proof for completeness but also refer to the work of Diop (17, 18) for

a generalization to time dependent and optional function of semimartingale increments.

Essentially the proofs rely on the same ingredients though.

Let Pn be a refining sequence of Riemann partitions of [0, T ], Pn = {0 = tn0 ≤ · · · ≤

tnln = T}. We want to find the limit of the following discretized sum of semimartingale

increments

n
∑

k=1

g
(

Ytk − Ytk−1

)

= (∗)

Since Y is a semimartingale, which we assume to be a càdlàg process without loss of

generality,
∑

s(∆Ys)
2 is an absolutely convergent serie, given ǫ > 0 we can find two sets

A and B such that A and B are disjoint and A ∪ B exhausts the jump times of Y on

(0, T ], A being a set of jump times that Y has almost surely a finite number of times

and B being such that
∑

0<s≤t(∆Y )2 ≤ ǫ2.

Thus we have

(∗) =
∑

k,A

g
(

Ytk − Ytk−1

)

+
∑

k,B

g
(

Ytk − Ytk−1

)

where
∑

k,A denotes
∑

k 1{A∩(tk−1,tk] 6=∅} and
∑

k,B denotes
∑

k 1{B∩(tk−1,tk] 6=∅}. The

first sum converges to
∑

s∈A g(∆Ys). In the second sum we apply Taylor’s theorem

saying

g(x) = g′(0)x+
1

2
g′′(0)x2 +R(x)

where |R(x)| ≤ r(x)x2, such that r : R+ → R+ is an increasing function with
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4. CONVEX LOCAL RISK MINIMIZATION

limu↓0 r(u) = 0. Thus we have

∑

k,B

g
(

Ytk − Ytk−1

)

= g′(0)
∑

k,B

(

Ytk − Ytk−1

)

(4.8)

+
1

2
g′′(0)

∑

k,B

(

Ytk − Ytk−1

)2
(4.9)

+
∑

k,B

R
(

Ytk − Ytk−1

)

(4.10)

The first sum (4.8) is equal to

∑

k

(

Ytk − Ytk−1

)

−
∑

k∈A

(

Ytk − Ytk−1

)

which converges to

Yt − Y0 −
∑

s∈A

∆Ys

The second sum (4.9) is equal to

∑

k

(Yk − Yk−1)
2 −

∑

k,A

(Yk − Yk−1)
2

where we have used notation Yk for Ytk . It converges to [Y, Y ]t −
∑

s∈A (∆Ys)
2.

Now we turn to the last term (4.10) of the Taylor’s development

∣

∣

∣

∣

∣

∣

∑

k,B

R (Yk − Yk−1)

∣

∣

∣

∣

∣

∣

≤
∑

k,B

r (|Yk − Yk−1|) (Yk − Yk−1)
2 (4.11)

Assuming that supω Y ≤ K ≤ ∞ over [0, T ] we have (4.11)≤ sup r(2Kǫ)[Y, Y ]t. We are

now ready to take the limit when ǫ goes to zero. The last term tends to zero from the

property of r and it remains to prove that the series
∑

s∈A are absolutely convergent.

We next proceed by localization by considering first UK = inf{t > 0, |Y | > K} so that

1[0,UK ]Y is [−K,K]-valued. Therefore we have that |g(x) − g′(0)x| ≤ Cx2 for some

constant C. This allows us to write
∣

∣

∣

∣

∣

∑

s∈A

g(∆Ys)− g′(0)

(

∑

s∈A

∆Ys

)∣

∣

∣

∣

∣

≤ C
∑

s∈A

∆Y 2
s

≤ C([Y, Y ]t < ∞

And the series are absolutely convergent which completes the proof.
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4.4 g−Martingales and Orthogonality

We thus have an application noted
∫

g(.) which transforms a semimartingale into

a semimartingale. It is interesting to ask whether this application is invertible and

in case it is what is its inverse. The next theorem answers positively and is a direct

extension of the discrete time case.

Theorem 4. Let g be a bijective C2 function from R to R, with g(0) = 0, then the

g−stochastic integral seen as an application from the linear space of semimartingales S

into S is itself a bijection and its inverse is given by the g−1−stochastic integral modulo

a constant term.

Proof. It is enough to check that given a semimartingale S we have
∫ t

0
g−1d

(∫ s

0
g(dS)

)

= St − S0

But from (4.7) we write

∫ t

0
g(dS) = g′(0) (St − S0) +

g′′(0)

2
[S, S]ct +

∑

0<s≤t

g(∆Ss)− g′(0)(∆Ss)

so that
∫ t

0
g−1d

(∫ s

0
g(dS)

)

= g−1′(0)

(∫ t

0
g(dS)

)

+
g−1′′(0)

2

[∫ .

0
g(dS),

∫ .

0
g(dS)

]c

t

+
∑

0<s≤t

g−1

(

∆

∫ s

0
g(dS)

)

− g−1′(0)

(

∆

∫ s

0
g(dS)

)

Now we have

g−1′(0)

(∫ t

0
g(dS)

)

=
1

g′(0)

(

g′(0)(St − S0)−
g′′(0)

2
[S, S]ct

+
∑

0<s≤t

g(∆Ss)− g′(0)(∆Ss)





g−1′′(0)

2

[∫ .

0
g(dS),

∫ .

0
g(dS)

]c

t

= −
g′′(0)

2g′(0)
[S, S]ct

∑

0<s≤t

g−1

(

∆

∫ s

0
g(dS)

)

− g−1′(0)

(

∆

∫ s

0
g(dS)

)

=
∑

0<s≤t

∆Ss −
1

g′(0)
g(∆S)

Summing the last three equations we find
∫ t

0
g−1

(

d

∫ s

0
g(dS)

)

= St − S0

which is the result expected.
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4. CONVEX LOCAL RISK MINIMIZATION

Remark 15. Now this is immediately seen to apply to the f−costs process since with

our standing assumptions on f , f ′ is strictly positive and maps R into R and hence is

a bijection.

With the definition of the g−stochastic integral and the existence theorem, we can

introduce the continuous time notions of a g−martingale

Definition 37. An adapted stochastic process Z is a g−martingale if there exists a

martingale M such that Z is the g−stochastic integral of M .

Likewise we have the definition of a g−martingale orthogonal to a martingale N

Definition 38. An adapted stochastic process Z is a g−martingale orthogonal to N if

there exists a martingale M , orthogonal to N , such that Z is the g−stochastic integral

of M .

The last remark together with the last definition find applications to our risk-

minimization problem, provided we can have a description of martingales orthogonal

to M . This situation happens typically when we study the special case when the

filtered probability space (Ω,F, P, (Ft)) has the martingale representation property.

For instance if (Ω,F) is separable, then applying theorem 44 of Protter (44), there is a

countable L2− martingale basis. In our case for simplicity and we further assume the

following

Definition 39. M and N form a P−basis of L2(P ) if the following conditions are

satisfied

1. Both M and N are square-integrable martingales under P .

2. M and N are P−orthogonal

3. Every martingale Z in L2(P ) has a unique representation

Zt = Z0 +

∫ t

0
K1

udMu +

∫ t

0
K2

udNu P − a.s. (4.12)

for two predictable processes K1 ∈ L2(PM ) and K2 ∈ L2(PN ).

As already noted in Schweizer (48), condition (4.12) is equivalent to assuming that

the stable subspace generated by M and N coincides with the whole space of square-

integrable martingales under P . From the discrete time equivalent characterization of

optimal strategies of proposition (3) we are encouraged to look at having the same

result in continuous time. Indeed we have the following theorem
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4.4 g−Martingales and Orthogonality

Theorem 5. Given a contingent claim H the two following statements are equivalent

1. There exists an H−admissible pseudo-optimal strategy φ

2. H admits a decomposition

H = c+

∫ T

0
δudXu +M

f ′−1,⊥
T

where c ∈ R and Mf ′−1,⊥is a f ′−1-martingale orthogonal to M .

Proof. That 1. ⇒ 2. is immediate from the fact that if there exists an H−admissible

pseudo-optimal strategy φ, by definition we have that the f−costs process Cf
t (φ) is a

martingale orthogonal to M . We thus write C
f
t (φ) = M⊥

t and apply theorem (4) to

find

∫ t

0
f ′−1

(

dCf
u (φ)

)

= Vt − V0 −

∫ t

0
δudXu =

∫ t

0
f ′−1

(

dM⊥
u

)

Writing
∫ t
0 f

′−1
(

K2
udNu

)

= M
f ′−1,⊥
t , where K2 is the process arising in the decompo-

sition (4.12) of the f−costs process, we have for t = T , H = V0 +
∫ T
0 δudXu +M

f ′−1,⊥
T .

For 2. ⇒ 1. let us assume that the contingent claim H admits the following decompo-

sition

H = c+

∫ T

0
δudXu +M

f ′−1,⊥
T

with c ∈ R and δu a predictable process in L2(X) and Mf ′−1,⊥ a f ′−1−martingale

orthogonal to the martingale part M of X. We then consider the adapted process β

defined by

βt = c+

∫ t

0
δudXu +M

f ′−1,⊥
t − δtXt

We now have to show that the trading strategy φ defined by the pair (β, δ) is indeed

pseudo-optimal. But we have (Vu = βu + δuXu)

C
f
t (φ) =

∫ t

0
f ′(dVu − δudXu) =

∫ t

0
f ′(dMf ′−1,⊥

u )

and by definition of Mf ′−1,⊥ and again using theorem (4), we see that Cf (φ) is a

martingale orthogonal to M .
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4. CONVEX LOCAL RISK MINIMIZATION

We thus have another characterization of pseudo optimality which will prove most

useful when considering specific models. One other interesting result we have from

using theorem (4) for pseudo-optimal strategies is that it allows for a relatively simple

proof of the actual optimality of those strategies with mild technical assumptions on X.

This is important as it means that we can indeed concentrate on these for the purpose

of finding locally risk-minimizing strategies. Thus for the last part of this chapter, we

add the assumptions that the martingales M and N appearing in (39) are continuous

and that their quadratic variation processes are absolutely continuous with respect to

the Lesbegue measure.

With these assumptions in place we state the last theorem of the chapter

Theorem 6. Let φ be a pseudo-optimal strategy for H, then it is locally risk-minimizing.

Proof. In order to avoid confusion with our notations, we use in the proof notation

∆
ti+1

ti
U for the increment of the process U between ti and ti+1: ∆

ti+1

ti
U = Uti+1 − Uti

and ∆Ut for the jump of U at t: ∆U = Ut − Ut−. The proof follows from writing the

definition of pseudo-optimal strategies

C
f
t (φ) = M⊥

t

with M⊥ a martingale orthogonal to M . With the assumptions on trading strategies

we can apply the representation property of our filtration to write M⊥
t =

∫ t
0 HudNu,

with H a predictable process in L2. From theorem (4) is equivalent to having

Ct(φ) := Vt − V0 −

∫ t

0
δudXu = M

f ′−1,⊥
t

where Mf ′−1,⊥ =
∫

f ′−1
dM⊥ is a f ′−1−martingale orthogonal to the martingale part

of X. Therefore we may write the local risk at ti as

∆Rti(φ) = Etif
(

∆
ti+1

ti
Mf ′−1,⊥

)

(4.13)

for a given partition τ = {ti}i Now we write the process rτf on t = ti ∈ τ for a small

perturbation Γ = (ǫ, ν)

rτf [φ,Γ](t, ω) =
∆

ti+1

ti
R
(

φ+ Γ|[ti,ti+1(

)

(ω)−∆
ti+1

ti
R (φ) (ω)

ti+1 − ti

=
Eti

(

f
(

∆
ti+1

ti
C
(

φ+ Γ|[ti,ti+1(

)

))

(ω)− Eti

(

f
(

∆
ti+1

ti
C (φ)

))

(ω)

ti+1 − ti
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4.4 g−Martingales and Orthogonality

Applying Taylor’s formula with remainder term to g : (x, y) 7→ f(x + y) in the expec-

tation, we have that

f
(

∆
ti+1

ti
C
(

φ+ Γ|[ti,ti+1()

)

)

= f
(

∆
ti+1

ti
C (φ)

)

− ηtif
′
(

∆
ti+1

ti
C (φ)

)

−

(∫ ti+1

ti

νsdX

)

f ′
(

∆
ti+1

ti
C (φ)

)

+
1

2

(

ηti +

∫ ti+1

ti

νsdX

)2

g(φ̃)

where g(φ̃) = f ′′(∆C(φ̃)) with φ̃ = (β̃, δ̃) such that |β̃| ≤ β and |δ̃| ≤ δ. Rearranging

and simplifying we get

rτf [φ,Γ](t, ω) = ηti
Eti

(

f ′(∆Cti+1(φ))
)

(ω)

ti+1 − ti
+

Eti

((

∫ ti+1

ti
νsdX

)

f ′(∆Cti+1(φ))
)

(ω)

ti+1 − ti

+

Eti

(

(

ηti +
1
2

∫ ti+1

ti
νsdX

)2
g(φ̃)

)

(ω)

ti+1 − ti

Now we replace ∆
ti+1

ti
R(φ) with its expression (4.13) to find that the first term on the

right-hand side is equal to

ηti

Eti

(

f ′
(

∆
ti+1

ti
Mf ′−1,⊥

))

(ω)

ti+1 − ti

We next apply Itō’s lemma for a general semimartingale to f ′
(

∆t
tiM

f ′−1,⊥1t≥ti

)

, be-

tween ti and ti+1. This gives

f ′
(

∆
ti+1

ti
Mf ′−1,⊥

)

=
∫ ti+1

ti

f ′′
(

∆s−
ti

Mf ′−1,⊥
)

dMf ′−1,⊥
s +

1

2

∫ ti+1

ti

f (3)
(

∆s−
ti

Mf ′−1,⊥
)

d[Mf ′−1,⊥,Mf ′−1,⊥]cs

+
∑

ti<t≤ti+1

f ′(∆t
tiM

f ′−1,⊥)− f ′(∆t−
ti
Mf ′−1,⊥)− f ′′(∆t−

ti
Mf ′−1,⊥)∆M

f ′−1,⊥
t

We begin by treating the first two terms, leaving the jump term aside. Replacing

M
f ′−1,⊥
t by its expression (without the jump part

∑

0<s≤t f
′−1(∆M⊥

s )− f ′−1(0)∆M⊥
s )

and computing [Mf ′−1,⊥,Mf ′−1,⊥]c accordingly, we get after removing the martingale

term whose expectation vanishes

Eti

(

f ′
(

∆
ti+1

ti
Mf ′−1,⊥

)c)

=

−
f (3)(0)Eti

(

∫ ti+1

ti
f ′′(∆s−

ti
Mf ′−1,⊥)d[M⊥,M⊥]cs

)

2f ′′(0)3

+
Eti

(

∫ ti+1

ti
f (3)(∆s−

ti
Mf ′−1,⊥)d[M⊥,M⊥]cs

)

2f ′′(0)2
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We used the superscript c on the left hand side to remind that we consider only the

continuous part.

Then, by dividing by ti+1 − ti and taking the limit using the absolute continuity

of [M⊥,M⊥]c with respect to the Lesbegue measure and the left continuity of s 7→

∆s−
ti

Mf ′−1,⊥

lim
ti+1→ti

Eti

(

f ′
(

∆
ti+1

ti
Mf ′−1,⊥

)c)

ti+1 − ti
= 0

We now take care of the two terms coming from the jump part of f ′(∆t
tiM

f ′−1,⊥).

The jump part is
∑

ti<t≤ti+1

f ′′(∆t−
ti
Mf ′−1,⊥)

[

f ′−1(∆M⊥
s )− (f ′−1)′(0)∆M⊥

s

]

+
∑

ti<t≤ti+1

f ′(∆t
tiM

f ′−1,⊥)− f ′(∆t−
ti
Mf ′−1,⊥)− f ′′(∆t

tiM
f ′−1,⊥)∆M

f ′−1,⊥
t

With the jump of the process Mf ′−1,⊥ at t being

∆M
f ′−1,⊥
t = f ′−1

(

∆M⊥
t

)

this jump part becomes
∑

ti<t≤ti+1

f ′
(

∆t−
ti
Mf ′−1,⊥ + f ′−1

(

∆M⊥
t

))

− f ′
(

∆t−
ti
Mf ′−1,⊥

)

−
∑

ti<t≤ti+1

f ′′
(

∆t−
ti
Mf ′−1,⊥

)

(

f ′−1
)′
(0)∆M⊥

t (4.14)

Thus if there are jumps, the expectation of the above expression might not vanish,

unless f happens to be quadratic.

The rest of the proof relies on exactly the same argument, except for applying Itō’s

formula to the product
(

∫ ti+1

ti
νsdX

)

f ′(∆Cti+1(φ)) instead of f ′(∆Cti+1(φ)) only to

find
(∫ ti+1

ti

νsdX

)

f ′(∆Cti+1(φ)) =

(∫ ti+1

ti

νsdX

)

f ′
(

∆
ti+1

ti
Mf ′−1,⊥

)

(∫ ti+1

ti

νsdX

)

f ′
(

∆
ti+1

ti
Mf ′−1,⊥

)

=

∫ ti+1

ti

f ′′
(

∆s−
ti

Mf ′−1,⊥
)

dMf ′−1,⊥
s +

1

2

∫ ti+1

ti

f (3)
(

∆s−
ti

Mf ′−1,⊥
)

d[Mf ′−1,⊥,Mf ′−1,⊥]cs

+
∑

ti<t≤ti+1

f ′(∆t
tiM

f ′−1,⊥)− f ′(∆t−
ti
Mf ′−1,⊥)− f ′′(∆t−

ti
Mf ′−1,⊥)∆M

f ′−1,⊥
t
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4.4 g−Martingales and Orthogonality

and then using the orthogonality of M⊥ with M . Thus both first order terms in

the Taylor development vanish, leaving only the positive quadratic term, and there-

fore meaning that any small perturbation of a pseudo-optimal strategy will lead to an

increase of risk. Hence the optimality of pseudo-optimal strategies is proved.

A few remarks are in order, following the theorem.

Remark 16. We derived the implication under very mild technical assumptions on the

L2−basis, basically the only assumption which is needed is that M and N be continuous

with a quadratic variation process absolutely continuous with respect to Lebesgue mea-

sure. The implication still holds provided we have a martingale representation theorem

with M and N that may have jumps but we then need to impose more requirements

on the jump part. For instance it would be sufficient in a market driven by a special

semimartingale (in the sense of Jacod and Shiryaev (29)) to have that the compensator

of the random measure of jumps ν is absolutely continuous with respect to Lebesgue

measure, i.e. ν([0, t]×G) = F (G)t for G a Borel set of R, since upon taking expectation

of the jump part (4.14) and using Fubini’s theorem

∫ ti+1

ti

∫

R

{

f ′
(

∆t−
ti
Mf ′−1,⊥ + f ′−1(x)

)

− f ′
(

∆t−
ti
Mf ′−1,⊥

)}

ν(dx)dt

−

∫ ti+1

ti

∫

R

{

f ′′
(

∆t−
ti
Mf ′−1,⊥

)

(

f ′−1
)′
(0)x

}

ν(dx)dt

Thus dividing by ti+1 − ti and letting ti+1 → ti we get that the jump part vanishes as

well and so the pseudo-optimal strategy is indeed optimal.

Remark 17. In our original article introducing “non-quadratic” local risk-minimization

(1) we already relied on pseudo-optimality as the criterion to apply in continuous time

by analogy with the situation in discrete time. We also introduced a criterion for actual

optimality similar to the one used in chapter 7 where we discuss the impact of liquidity

costs on strategies. The criterion is different in that it considers that not only risk

is measured at discrete time but also costs. The link between pseudo-optimality and

optimality was then achieved in the very special case when the filtration was the natural

filtration of strong Markov processes, solutions of stochastic differential equations. We

will see in the following chapters 5 and 6 that the new results obtained in the form of

theorem 6 make things considerably easier. Also in a general setting considering crite-

rion from definition 32 means that we allow for more general kind of strategies since

we can always recover the criterion from our original article by restricting our strategy

to “simple” strategies (as in Harrison and Pliska (24) or Cetin, Jarrow and Protter
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4. CONVEX LOCAL RISK MINIMIZATION

(8) for instance) which correspond to buy and hold strategies on a predefined and fixed

set of times.

Remark 18. Our last remark is directly related to the problem of uniqueness of locally

risk-minimizing strategies. Indeed, this is almost straightforward in discrete time from

the assumptions made on the risk function f . In continuous time this is more involved

unless we fall in the case described in the remark above, where uniqueness appears as

a by-product of the equations explicitly derived.

In the general case introduced in this chapter, we would first need to find suitable con-

ditions so that the reverse implication of theorem (6) holds. Here the difficulty comes

from the fact that the f−costs process is defined independently of the actual optimality

criterion, contrary to the quadratic case.
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5

Application to Stochastic

Volatility Models

This chapter is dedicated to the study of a stochastic volatility model with Markovian

solutions which in turn allow to find a characterization of optimal strategies through a

non-linear parabolic partial differential equation (PDE). The PDE is naturally obtained

from the pseudo-optimal criterion given that the f−costs can be expressed as a function

of the diffusion parameters, assuming smoothness of the strategy components. On the

other hand the link between non-linear PDE of quadratic growth in the gradient and

quadratic backward stochastic differential equations (as in Kobylanski (33)) arising

naturally from an extension of the Feynman-Kac formula is revisited thanks to the

equivalence between pseudo-optimality and optimality in this setting, since theorem

(6) of chapter 4 applies.

5.1 Model Assumptions

Throughout this chapter we model the evolution of X through an SDE with stochastic

volatility, which is given by the following system

dXs = a(s,Xs, Ys)ds+ b(s,Xs, Ys)dW
1
s (5.1)

dYs = c(s,Xs, Ys)dt+ d(s,Xs, Ys)
(

ρdW 1
s +

√

1− ρ2dW 2
s

)

(5.2)

with initial conditions X0 = x, Y0 = y and (W 1,W 2) a standard two-dimensional

Wiener process under P . With this prescription the stochastic factor Y of the volatility
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5. APPLICATION TO STOCHASTIC VOLATILITY MODELS

has constant instantaneous correlation ρ with X, i.e. d < X, Y >t= ρdt. We will

assume that a, b, c and d are Lipschitz continuous functions on (0, T )×R
2 taking values

in R and that there exists a constant C such that for t ∈ [0, T ] and x, y, x′, y′ ∈ R

|a(t, x, y)− a(t, x′, y′)|+ |b(t, x, y)− b(t, x′, y′)|

+|c(t, x, y)− c(t, x′, y′)|+ |d(t, x, y)− d(t, x′, y′)| ≤ C
(

|x− x′|+ |y − y′|
)

(5.3)

|a(t, x, y)|2 + |b(t, x, y)|2 + |c(t, x, y)|2 + |d(t, x, y)|2 ≤ C
(

1 + |x|2 + |y|2
)

(5.4)

These assumptions ensure existence and uniqueness of a strong solution to the system

of SDE (5.1), (5.2) and the continuity of the flow (t, x, y) 7→ (Xt,x,y
s , Y

t,x,y
s ), where

X
t,x,y
s and Y

t,x,y
s are the solutions with initial data Xt = x and Yt = y (see for instance

Platen and Kloeden (32)). These properties in turn ensure that the solution is a strong

Markov process.

Thus with these diffusion assumptions we will now place ourselves in a Markovian

framework and look for the optimal strategy φ as a smooth function of the state vari-

ables
{

δt = δ(t,Xt, Yt)
Vt = V (t,Xt, Yt)

5.2 Quadratic PDE

We first derive a PDE formulation. For that purpose we use equation (4.3) in order to

express the f−costs process as a function of the diffusion parameters and the strategy

C
f
t (φ) =

∫ t

0

[

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δuau

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

− f (3)(0)δu

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2ub

2
u

]

du

+

∫ t

0
f ′′(0)

((

∂V

∂X
− δu

)

bu +
∂V

∂Y
ρdu

)

dW 1
u +

∫ t

0
f ′′(0)

∂V

∂Y

√

1− ρ2dudW
2
u

Now, applying to the strategy φ the first pseudo-optimality criterion, i.e. that (Cf
t )

must be martingale under the measure P , we find the equation satisfied by the portfolio
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5.2 Quadratic PDE

value V

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δuau

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

−f (3)(0)δu

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2ub

2
u = 0

with terminal condition VT = H.

Applying to the strategy φ the second pseudo-optimality criterion, i.e. that the mar-

tingale (Cf
t ) must be orthogonal to X, we find the equation satisfied by the optimal

hedge δ

(

∂V

∂X
− δu

)

b2u +
∂V

∂Y
ρbudu = 0

We next rewrite the equations in a more standard way

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
c2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu =

δuau + α

(

(

∂V

∂X
bu +

∂V

∂Y
ρdu − δubu

)2

+ (1− ρ2)

(

∂V

∂Y

)2

d2u

)

(5.5)

∂V

∂X
bu +

∂V

∂Y
ρdu − δubu = 0 (5.6)

where α = −1
2
f (3)(0)
f ′′(0) . Inserting equation (5.6) in equation (5.5) and dropping the

subscript u of the time-dependence for ease of reading, we find

∂V

∂u
+ ΛV =

a

b

(

∂V

∂X
b+

∂V

∂Y
ρd

)

+ α

(

√

1− ρ2
∂V

∂Y
d

)2

(5.7)

δb =
∂V

∂X
b+

∂V

∂Y
ρd (5.8)

where Λ is the infinitesimal generator corresponding to the diffusion equations (5.1)

and (5.2) under measure P

ΛVu =
∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu

which corresponds to the second-order elliptic operator defined by L = −Λ.

Equation (5.8) gives the optimal hedge as a function of the portfolio value and its

derivatives with respect to the state variables, so as such it may be seen as an extension
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5. APPLICATION TO STOCHASTIC VOLATILITY MODELS

of the Black and Scholes delta. Solving for V in the quadratic parabolic PDE given

by equation (5.7) with boundary condition VT = H yields the value of the optimal

portfolio.

5.2.1 Existence and Uniqueness Results

We first state our last assumptions on the SDE driving price and volatility processes

and on the contingent claim H

Assumption 4. • Functions a, b, c and d are bounded, uniformly in (t, x, y).

• The volatility process of X, given by function a(t, x, y) is uniformly lower bounded

in (t, x, y), with a strictly positive bound (this condition is often referred to in the

literature as a non-degeneracy condition for X).

• The contingent claim H is bounded.

We now study the existence and uniqueness of solutions to the quasi-linear parabolic

PDE.

We next write equation (5.7) in an Hamiltonian form

−
∂V

∂t
+H(t, x, y, V,DV,D2V ) = 0 in (0, T )× R

2

where the Hamiltonian isH(t, x, y, u, p,M) = −Tr(aM)−µp1−γp2−F (t, x, y, u, σt(t, x, y)p),

with

σ =

(

b 0
ρd (1− ρ2)d

)

p = (p1, p2) ∈ R
2, a = (ai,j) = σσt the variance-covariance matrix, so with a11 = b2,

a22 = d2 and a12 = a21 = ρbd, M ∈ S2 the space of 2 × 2 symmetric matrices and

finally F (t, x, y, u, σt(t, x, y)p) = a
bσ

t(t, x, y)p ·e1+ασt(t, x, y)p ·e2, with e1 = (1, 0) and

e2 = (0, 1).

Since solutions of the quadratic PDE (5.7) may not be smooth we introduce the weaker

notion of viscosity solutions. We refer to Crandall, Ishii and Lions (14) for more details

on this notion.

Definition 40. A lower semicontinuous (resp. upper semicontinuous) function u is a

viscosity subsolution (resp. viscosity supersolution) of (5.5) if for any φ ∈ C2([0, T ]×
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5.2 Quadratic PDE

R
n such that if φ− V has a global maximum (resp a global minimum) in (t0, x0, y0) we

have

−
∂φ

∂t
(t0, x0, y0) +H(t0, x0, y0, Dφ(t0, x0, y0), D

2φ(t0, x0, y0)) ≤ 0

[

resp. −
∂φ

∂t
(t0, x0, y0) +H(t0, x0, y0, Dφ(t0, x0, y0), D

2φ(t0, x0, y0)) ≥ 0

]

The function u is a viscosity solution if it is both a supersolution and a subsolution.

Theorem 7. Equation (5.7) has a unique viscosity solution on [0, T ]× R
2.

Proof. The proof consists in verifying that all hypotheses from theorem 3.2 and theorem

3.8 of Kobylanski (33) hold. Indeed theorem 3.8 and the remark just before it show that

there exists a solution of the associated Forward Backward SDE and it is a viscosity

solution of the quadratic PDE. Theorem 3.2 which is a comparison theorem for viscosity

super and subsolution then provides the uniqueness result.

The conditions to be checked are hypotheses (H4) and (H5) of Kobylanski. Hypothesis

(H4) is exactly conditions (5.3) and (5.4). For hypothesis (H5), we have

|F (t, x, y, u, σt(t, x, y)q)| ≤ max(1,
a

b
)|σt(t, x, y)q|2 ≤ C

(

1 + |σt(t, x, y)q|2
)

∣

∣

∣

∣

∂F

∂z
(t, x, y, u, σt(t, x, y)q)

∣

∣

∣

∣

=
∣

∣

∣
(
a

b
, 2ασt(t, x, y)q · e2)

∣

∣

∣
≤ C

(

1 + |σt(t, x, y)q|
)

∂F

∂u
(t, x, y, u, σt(t, x, y)q) = 0 ≤ cǫ + ǫ|σt(t, x, y)q|2, ∀ǫ > 0

∣

∣

∣

∣

(

∂F

∂x
(t, x, y, u, σt(t, x, y)q),

∂F

∂y
(t, x, y, u, σt(t, x, y)q)

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

∂a
∂xb− a∂b

x

b2
+ α▽xσ

t(t, x, y)q, (

∂a
∂y b− a∂b

y

b2
+ α▽yσ

t(t, x, y)q

)∣

∣

∣

∣

∣

≤

C
(

1 + |σt(t, x, y)q|2
)

thanks to the non degeneracy condition on X.
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5. APPLICATION TO STOCHASTIC VOLATILITY MODELS

5.2.2 Complete markets case

The case of complete markets allows us to recover the celebrated Black and Scholes

formula ((5), (41)) regardless of the choice we make for the function f . Indeed, by

taking d the volatility of volatility equal to zero, the optimality equations reduce to

δu =
∂V

∂X
(5.9)

∂V

∂u
+

1

2

∂2V

∂X2
b2u = 0 (5.10)

Equation (5.9) gives the perfect hedging strategy in that context, since upon suitable

boundary conditions it is well know that the PDE (5.10) has a unique solution. Of

course one can verify that the f−costs process is then identically zero, which amounts

to having a self-financing strategy that perfectly replicates the contingent claim H.

5.3 Quadratic FBSDE

Given the two equations we found for the optimal portfolio, we may now relate pseudo-

optimal strategies for the local risk-minimization with the solution of a FBSDE as-

sociated with the diffusion process of the discounted price X. This is based on the

generalisation of the Feynman-Kac formula (see survey paper on BSDE in finance from

El Karoui, Peng and Quenez (19) for instance), which links quasi-linear PDE with

BSDE.

The next theorem states that if we have a smooth solution to the quadratic PDE (5.7)

then it is also a solution to the associated FBSDE.

Theorem 8. Any smooth pseudo-optimal strategy φ = (β, δ) for the local risk-minimization

yields a solution to the following Forward-Backward stochastic differential equation

dXt = atdt+ btdW
1
t

dYt = ctdt+ dt(ρdW
1
t +

√

1− ρ2dW 2
t )

−dVs = g(s,Xs, Ys, Vs, Z
1
s , Z

2
s )ds− Z1

sdW
1
s − Z2

sdW
2
s

VT = H

with W = (W 1,W 2) is a standard two-dimensional Brownian motion and g(s,X, Y, Z1, Z2) =

−a
bZ

1 − α(Z2)
2
, with V = β + δX and Z = (δb, ∂V∂Y d

√

1− ρ2).
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5.3 Quadratic FBSDE

Proof. The result follows from a straightforward application of the Itō formula to the

pseudo-optimal strategy φ∗ = (β∗, δ∗), which solves equations (5.7) and (5.8). We get

dV ∗
t =

∂V

∂t
+ ΛVt +

∂V

∂S
σdW 1

s +
∂V

∂σ
Σ(ρdW 1

s +
√

1− ρ2dW 2
s )

⇔dV ∗
t = −g(t, St, σt, Vt, δ

∗
t ,
√

1− ρ2
∂V

∂σ
Σ) +

∂V

∂S
σdW 1

s +
∂V

∂σ
Σ(ρdW 1

s +
√

1− ρ2dW 2
s )

⇔− dV ∗
t = g(t, St, σt, Vt, δ

∗
t ,
√

1− ρ2
∂V

∂σ
Σ)− δ∗σsdW

1
s −

∂V

∂σ
Σ
√

1− ρ2dW 2
s

which is the result announced with Y = V and Z = (δσ, ∂V∂σΣ
√

1− ρ2).

The last theorem requires stronger assumptions than what we may need in this

context, in that it assumes that we have pseudo-optimal strategies are smooth functions

of the state variables. A direct application of theorem (4) allows us to overcome these

requirements since we are typically in the case where there the filtration generated by

the state variables X and Y has the martingale representation property and hence there

is a P−basis with M = W 1 and N = W 2 (see Karatzas and Shreve (31) for instance).

Finally we give the most interesting result which is a direct application of a general

result of Kobylanski (33) and the last results of chapter 4

Theorem 9. The unique solution of the quadratic FBSDE (7.1) gives an optimal strat-

egy for the risk-minimization problem with risk function f .

Proof. With our standing assumptions on the process X and Y , we can apply theorem

3.8 of Kobylanski (33) which ensures that there is a unique solution of the quadratic

FBSDE (7.1). Now since X has continuous paths we are in a position to apply theorem

(6) to get the desired result upon checking that the BSDE part of FBSDE (7.1) is

exactly equivalent to

Vt − V0 −

∫ t

0
δudXu = M

f ′−1,⊥
t
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6

Application to Jump Diffusion

Models

This chapter is dedicated to the study of a stochastic volatility model with jumps,

with Markovian solutions which allow to find a characterization of optimal strategies

through a non-linear parabolic partial integro-differential equation (PDE). The PIDE

is naturally obtained from the pseudo-optimal criterion given that the f−costs can be

expressed as a function of the diffusion parameters, assuming smoothness of the strategy

components. On the other hand the link between non-linear PDE of quadratic growth

in the gradient and quadratic backward stochastic differential equations (Kobylanski)

arising naturally from an extension of the Feynman-Kac formula is revisited thanks to

the equivalence between pseudo-optimality and optimality in this setting, since theorem

(6) of chapter 4 applies.

In this section, we want to provide an example of a situation where the non-

quadratic risk definitely implies a different hedging strategy, not only through the

Taylor expansion around zero of the risk function f . We therefore model the evolution

of S through an SDE with stochastic volatility and Poisson jumps in the vein of the

Bates model (4)

dXs = a(s,Xs−, Ys−)ds+ b(s,Xs−, Ys−)dW
1
s + kdNs

dYs = c(s,Xs−, Ys−)ds+ d(s,Xs−, Ys−)
(

ρdW 1
s +

√

1− ρ2dW 2
s

)

with initial conditions X0 = x, Y0 = y and (W 1,W 2) a standard two-dimensional

Wiener process under P . Nt is a Poisson process of intensity λ and the amplitude of
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6. APPLICATION TO JUMP DIFFUSION MODELS

the jumps k has probability distribution K. We also assume that Wt = (W 1
t ,W

2
t ), Nt

and k are independent. With this prescription the stochastic factor Y of the volatility

has constant instantaneous correlation ρ with X, i.e. d < X, Y >t= ρdt. As in the case

of stochastic volatility we shall assume that appropriate conditions hold on the adapted

processes a, b, c, d, K and λ so that the set of SDEs has a unique strong solution. With

these assumptions we will again place ourselves in a Markovian framework and look for

the optimal strategy φ as smooth functions of the state variables

δt = δ(t,Xt, Yt)

Vt = V (t,Xt, Yt)

Quadratic PIDE

We first derive a PIDE formulation. For that purpose we express the costs process as

a function of the diffusion parameters and the strategy

C
f
t (φ) =

∫ t

0

(

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δu−au

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

− f (3)(0)δu−

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2u−b

2
u

)

du

+

∫ t

0
f ′′(0)

(

∂V

∂X
− δu−

)

σudW
1
u +

∫ t

0
f ′′(0)

∂V

∂Y
dudW

2
u

+

∫ t

0

∫

R

f ′(∆Vu − δu−∆Xu)K(k)dkdNu

which we have again obtained from equation (4.3), and with ∆Vu the jump in V when

there is a jump ∆Xu of size k on X at time u being equal to V (u−, Xu− + k, Yu−) −

V (u−, Xu−, Yu−). Now, applying to the strategy φ the first pseudo-optimality criterion,

i.e. that (Cf
t ) must be martingale under the measure P , we find the equation satisfied
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by the portfolio value V

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δu−au

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

−f (3)(0)δu−

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2u−b

2
u

+

∫

R

f ′(∆Vu − δu−∆Xu)K(k)dkλu = 0

with terminal condition VT = H.

Applying to the strategy φ the second pseudo-optimality criterion, i.e. that the mar-

tingale (Cf
t ) must be orthogonal to X, we find the equation satisfied by the optimal

hedge δ

(

∂V

∂X
− δu−

)

b2u +
∂V

∂Y
ρbudu +

∫

R

f ′(∆Vu − δu−∆Xu)kK(k)dkλu = 0

Contrary to the stochastic volatility case, where only the local behaviour of the risk

function f in 0 mattered, the optimal strategy in the jump-diffusion model requires the

knowledge of the risk function f on its whole support.

Remark 19. A formal link with forward bacward stochastic differential equations with

jumps can be done, by assuming that a smooth enough solution to the PIDE satisfied by

V exists. There are a few recent papers (Matoussi and Wang (40), Barles, Buckdahn

and Pardoux (2), Bouchard and Elie (6) or Lejay, Mordecki and Torres (36) for a

numerical scheme) which discuss the probabilistic interpretation of solutions of PIDE

through solutions of the corresponding FBSDE with jumps in a general framework, but

they all require Lipschitz conditions on the source term of the PIDE or on the driver of

the FBSDE with jumps. We however mention two articles from Morlais (42, 43) which

tackle the issue of BSDE with jumps and with a quadratic growth in the driver but with

a very specific form of the latter.
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7

Liquidity

7.1 Motivations

We have seen in chapter 4 how the theory of quadratic hedging could be extended so

as to use a general convex function to account for the asymmetric nature of the risk

arising from trading costs. However these trading costs were assumed to be evaluated in

a perfect market, which is to say without considering transaction costs. In this chapter

we extend the approach to the case where there are transaction costs on the stock

component. Transaction costs are understood to occur as a dependence of the costs on

the volume traded and not from the bid/ask spreads where the change of volume (the

“gamma”) would be the main factor. As a matter of fact we are especially concerned

with continuous time equations in which case a non-zero bid/ask spread would lead to

an infinite costs in most cases (due to the infinite variation of the Brownian motion).

The local risk is still a convex function of the local costs process and we derive the

corresponding (pseudo-)optimal strategies in both discrete time and continuous time

settings. We end the chapter by exemplifying the hedging method with two same

models used in the “infinite” liquidity case of chapter 5 and 6: a one dimensional

stochastic volatility model and a mixture of stochastic volatility and jump diffusion.

7.2 Liquidity costs and risk process

Among the number of market imperfections which can be considered when applying a

trading strategy are two equally important facts. Firstly there always exists a difference

in the prices at which one can either buy or sell an asset, this is know as the bid/ask
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spread or bid/offer spread. Incorporating this effect in our theory is rather involved

since the costs would then depend on the sign of the amount of risky asset to buy or

to sell, and this feature would certainly make the identification of optimal strategies

less straightforward. In the quadratic case, this has been nicely tackled by Lamberton,

Pham and Schweizer (35) in the discrete time case but its extension to continuous time

does not seem obvious. Secondly, neglecting the bid/ask spread, the price depends

on the absolute amount of risky asset one buys or sells. To understand how liquidity

costs can modify optimal strategies and what corresponding pseudo-optimal criterion

we should look at, we start by investigating the situation in a discrete time setting. We

study existence and uniqueness of solutions to the minimization problem and to this

end we use the same multi-period model as in chapter 4 section 4.2, where the evolution

of the risky asset is driven by a strictly positive process Xk, (k = 0, · · · , T ) on some

probability space (Ω,F, P ). Fk then denotes the σ−field of events which are observable

up to and including time k. We assume that Xk is adapted and square-integrable. Xk

is actually the discounted stock prices process, which is equivalent to having the money

market account grow at a zero interest rate.

In this two-asset market, we recall that we are interested in hedging a contingent

claim which is described by a square-integrable random variable H ∈ L2(P ). To do

so we introduce a trading strategy φ represented by two stochastic processes: (δk),

(k = 1, · · · , T ) a predictable process and (βk), (k = 0, · · · , T ) adapted to Fk and both

in L2(P ). δk is the amount of stock held in period k, (= (tk−1, tk]) and has to be

fixed at the beginning of that period, i.e. we assume that δk is Fk−1−measurable

(k = 1, · · · , T ). βk, the amount held in the market account in period k, is allowed to

be fixed at the end. We thus relax the usual predictable assumptions on the strategy

components the same way as we did in the previous chapter. Since the adjustment at

the terminal date T will be made only on the cash account, we further assume that

there will be no liquidity costs on the stock. This means essentially that physically

settled options can be dealt with exactly as cash settled ones.

The theoretical value of the portfolio at time k is its value right after applying the

strategy and is given by

Vk = δkXk + βk, (k = 1, · · · , T )

V0 = β0
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7.2 Liquidity costs and risk process

We admit only strategies such that each Vk is square-integrable and which replicate the

contingent claim H, i.e. we require VT = H, which for instance can always be done

through adjusting β at time T . This is simply recalling definitions 1 and 5.

Applying strategy φ induces costs ∆Ck at time k > 0, which are given in the presence

of liquidity costs on the stock by

∆Ck(φ) = L ((δk+1 − δk), Xk, tk) + (βk − βk−1) ∀k ∈ {k = 1, · · · , T}

with the convention that δT+1 = δT and where the function L gives the costs of adjust-

ing the stock part and accounts for the liquidity effect

- If (δk+1 − δk) > 0, meaning that we have to buy more stocks, we might not

necessarily be able to do so at the theoretical price Xk but rather at a higher

price, so that the bigger the quantity to acquire the greater the marginal costs.

- If on the contrary (δk+1 − δk) < 0, meaning that we have to sell more stocks, we

might not necessarily be able to do so at the theoretical price Xk but rather at a

lower price, so that the bigger the quantity to sell the greater the marginal costs

(costs are negative in this case, so that they are smaller in absolute value).

Assumptions on Liquidity Costs

As a consequence of the liquidity effect observed on real markets and described above,

it is legitimate to assume that L : (R,R+,R+) → R is a strictly increasing and convex

function of its first variable, with L(0, ., .) = 0 and that it is differentiable with respect

to its first variable, with ∂L
∂x (0, X, .) = X. As a matter of fact we do not take into

account any bid/ask spread at this level. We also neglect the transaction’s impact on

the price process meaning that there is no feedback effect no matter the quantity. This

amounts to assuming that the period of trading is much greater than the relaxation time

of the market impact function. Finally we will assume that the first order derivative

of L with respect to the quantity x, ∂L
∂x , is bounded. This means that above a certain

quantity to buy or to sell, there is a fixed and finite price available for trading.

If there exists an adapted function g, i.e. g = g(x, t, ω) with ω ∈ Fk, such that the

liquidity costs can be written as L((δk+1 − δk), Xk, tk) = (δk+1 − δk)g((δk+1 − δk), tk),

then g is called the supply curve. We refer to Cetin et al (8) for more details on the

self financing approach in case there is a supply curve. In our case, we will assume that
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there exists an increasing density function l : (R,R+,R+) → R, l ∈ C1 which represents

the price to pay for buying a marginal amount of stock so that L takes the following

form

L (∆δk+1, Xk, tk) =

∫ ∆δk+1

0
(x,Xk, tk)dx (7.1)

with then (0, Xk, tk), the marginal costs for entering a transaction whatever its sign

being equal to Xk in the absence of bid/ask spread.

It corresponds to smoothing the orderbook profile which gives the quantity available for

a given price. In order to make calculus in continuous time more tractable whilst not

narrowing the scope of the paper we shall assume that the marginal costs can be writ-

ten as a stationary function times the theoretical spot price X, i.e. (x,X, t) = l(x)Xt.

We now note that with these assumptions on the liquidity costs function together with

the convexity of the risk function f we cannot be sure that (x, y) 7→ f(L(x)X + y) is a

convex function, unlike the case of “infinite” liquidity.

The (local) f−risk is then naturally defined as the conditional expectation given infor-

mation up to time k of our chosen functional f of the costs including liquidity costs

incurred at time k + 1. This reads

∆R
f
k(φ) = Ek (f(∆Ck+1)) (7.2)

7.3 Optimal and pseudo-optimal strategies

As in the previous chapters, optimal strategies will sequentially minimize the risk pro-

cess, backward in time since they have to replicate the contingent claim at time T and

indeed solve the following problem

Problem (*) Given a contingent claim H, find φ∗, admissible strategy such that

∀k ∈ (0, · · · , T − 1), ∆Rk(φ) ≥ ∆Rk(φ
∗)∀φ admissible,

with δk+1 = δ∗k+1 and βk+1 = β∗
k+1

We note that Problem (*) though formulated differently than local f−risk minimiza-

tion in chapter 4 is actually equivalent. It is enough to check that if φ and φ∗ are

admissible strategies, then (φ− φ∗)1tk is an admissible local variation of φ at k. Given
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the conditions imposed on f ∈ Rf , L, Xk and βk we have the existence of the optimal

strategy which is a solution to the following first-order optimality equations

{

Ek (f
′ (∆Ck+1(φ

∗))) = 0
Ek (f

′ (∆Ck+1(φ
∗))L′ (δk+2 − δk+1, Xk+1, tk+1)) = 0

⇔

{

Ek (f
′ (∆Ck+1(φ

∗))) = 0
Ek (f

′ (∆Ck+1(φ
∗)) l (δk+2 − δk+1)Xk+1) = 0

(7.3)

where we have used the notation L′ for the partial derivatives of L(x, y, z) with respect

to its first variable.

We then have a theorem for the existence of a locally risk-minimizing strategy:

Theorem 10. Problem (*) has a at least one solution φ∗ whose components δ∗ and β∗

solve the set of equations (7.3).

To prove the theorem, we first need the following lemma:

Lemma 5. Let h(x, y, ω) := Ek (f (L((U − x), X, tk+1) + (V − y))) (ω) with U , V and

X ∈ L2(P ).

If there exists c > 0 such that V ark(X) > c then we have lim||(x,y)||→∞ h(x, y, ω) = +∞.

Proof. We write

h(x, y) = Ek (f (L((U − x), X, tk+1) + (V − y)))

= Ek

(

1L((U−x),X,tk+1)+(V−y)>01U−x>0f (L((U − x), X, tk+1) + (V − y))
)

+ Ek

(

1L((U−x),X,tk+1)+(V−y)>01U−x≤0f (L((U − x), X, tk+1) + (V − y))
)

+ Ek

(

1L((U−x),X,tk+1)+(V−y)≤01U−x>0f (L((U − x), X, tk+1) + (V − y))
)

+ Ek

(

1L((U−x),X,tk+1)+(V−y)≤01U−x≤0f (L((U − x), X, tk+1) + (V − y))
)

so that we have the following inequality

h(x, y) ≥ Ek

(

1L((U−x),X,tk+1)+(V−y)>01U−x>0f ((U − x)Xk+1) + (V − y))
)

+ Ek

(

1L((U−x),X,tk+1)+(V−y)>01U−x≤0f
(

(U − x)A− +B− + (V − y)
))

+ Ek

(

1L((U−x),X,tk+1)+(V−y)≤01U−x>0f
(

(U − x)A+ +B+ + (V − y)
))

+ Ek

(

1L((U−x),X,tk+1)+(V−y)≤01U−x≤0f ((U − x)Xk+1 + (V − y))
)

as f is decreasing on R− and increasing on R+ and as there exist A+, A−, B+ and B−

such that (U − x)Xk+1 ≤ L((U − x), X, tk+1) ≤ A+(U − x) + B+ for U − x > 0 and

A−(U − x) +B− ≤ L((U − x), X, tk+1) ≤ (U − x)Xk+1 for U − x ≤ 0. The latter fact
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stems from our assumption that L has bounded first order derivative with respect to

its first variable.

From this inequality and adapting the proof of lemma (4) to show that the three func-

tions (x, y) 7→ f ((U − x)Xk+1) + (V − y)) and (x, y) 7→ f
(

(U − x)Xk+1) +B+/− + (V − y)
)

are elliptic hence coercive we get the desired result

lim
‖(x,y)‖→∞

h(x, y) = +∞ (7.4)

The proof of the theorem is then essentially the same as in the “infinite” liquidity

case except that we cannot ensure uniqueness of an optimal strategy.

Proof. Let h(x, y, ω) be the function defined above with U , V and X ∈ L2(P ). We

first observe that because of our assumptions on the liquidity costs, for a fixed ω,

h is a continuous and differentiable function of (x, y) so that it reaches a minimum

(x∗, y∗) only if (x∗, y∗) is a critical point of h, i.e. ∇h(x∗, y∗) = 0. Secondly we

have lim‖(x,y)‖→∞ h(x, y, ω) = +∞ from the above lemma, P − a.e. so that h has a

global minimum P−almost surely. Finally we show that (x∗, y∗) is Fk−measurable: let

Dn = {j2−n|j ∈ Z} be the set of dyadic rational of order n, we define

(xn(ω), yn(ω)) = argmin
(x,y)∈Dn×Dn

{h(x, y, ω)}

Since ω 7→ h(x, y, ω) is Fk−measurable, (xn, yn) is also Fk−measurable. As (xn, yn) is

bounded in n P−a.e. and h is continuous in (x, y), (x̃, ỹ) = lim infn→∞(xn, yn) is a

Fk−measurable minimizer of h, satisfying ∇h(x̃, ỹ) = 0.

For the sake of extending the notion of local risk-minimization in a continuous time

setting we reinterpret the set of equations (7.3) as follows: defining the processes
(

C
f
k

)

k

by C
f
k =

∑k
i=1 f

′(∆Ci), C
f
0 = 0, and

(

XS
k

)

k
withXS

k = X0+
∑k

i=1 (l (∆δi)Xi − l(0)Xi−1) =

X0 +
∑k

i=1 (l (∆δi)Xi −Xi−1), X
S
0 = X0, equations (7.3) are equivalent to having Cf

be a martingale strongly orthogonal to the martingale part of the process XS . The first

process will again be referred to as the f−costs process as in chapter 4, while the new

process XS will be referred to as the supply price process. We shall name this property

pseudo-optimality. We also note that in the original case of “infinite” liquidity, so with

l(.) = 1, the supply price process is just the stock price X, as is expected.
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7.4 Continuous time setting

Now let (Ω,F, P ) be a probability space with a filtration (Ft)0≤t≤T satisfying the usual

conditions of right-continuity and completeness. T ∈ R
+ denotes a fixed and finite

time horizon. Furthermore, we assume that F0 is trivial and that FT = F. We model

the risky asset X = (Xt)0≤t≤T as a strictly positive semimartingale and we use a right-

continuous version of X. We use the same trading strategies as in chapters 3 and 4

which therefore satisfy the following definition:

Definition 41. A general trading strategy φ is then a pair of processes δ = (δt)0≤t≤T ,

β = (βt)0≤t≤T , (δ)t being a predictable process and (β)t being an adapted process.

Contingent claims which will be considered are still of European type and are thus

described by random variables H ∈ L2(P ).

In order to define the processes which are the basic ingredients of pseudo-optimality

in continuous time we need to restrict the set of trading strategies to H−admissible

strategies which satisfy the following requirements























δT = δH P − a.s.

βT = βH P − a.s.

δ has finite and integrable quadratic variation
β has finite and integrable quadratic variation
δ and β have finite and integrable quadratic covariation

The two following sections are dedicated to the definition and expression of these two

processes required to characterize pseudo-optimal risk-minimizing strategies by analogy

with discrete time.

7.4.1 The f−Costs Process (inclusive of liquidity costs)

For a general trading strategy φ we define the f−costs process Cf
t (φ) as the following

limit, whenever it exists

lim
n→∞

ln
∑

k=1

f ′
(

L(δτ
n
k − δτ

n
k−1 , Xτn

k ) + βτn
k − βτn

k−1

)

where convergence happens in ucp topology, for any sequences Pn of Riemann partitions

of [0, T ] of length ln (i.e. τnln = T ). We used the notation XT for the process stopped

at T .
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We now restrict our attention to H−admissible strategies and show the existence of its

f−costs process.

Theorem 11. The f−costs process of an H−admissible strategy φ is well defined and

is given by the following formula

C
f
t (φ) =

f ′′(0)

(

Vt − V0 −

∫ t

0+
δs−dXs +

1

2
l′(0)

∫ t

0+
Xs−d[δ, δ]

c
s

)

+
f (3)(0)

2

(

[β, β]ct + 2

∫ t

0+
Xs−d[β, δ]

c
s +

∫ t

0+
X2

s−d[δ, δ]
c
t

)

+
∑

0<s≤t

f ′(∆βs + L(∆δs, Xs))− f ′′(0)(∆βs +∆δsXs) (7.5)

with notation [X,Y ]c standing for the continuous part of the (càdlàg) quadratic covari-

ation process.

Proof. Though very similar to the proof given for the f−costs process expression in

case of infinite liquidity, we give the proof for finite liquidity for completeness. Let Pn

be a refining sequence of Riemann partitions of [0, T ], Pn = {0 = tn0 ≤ · · · ≤ tnln = T}.

CPn
t (φ) =

ln
∑

k=1

f ′
(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

Since β, δ and X are càdlàg process, and
∑

s(∆βs)
2,
∑

s(∆δs)
2 and

∑

s(∆Xs)
2 are

(absolutely) convergent series, given ǫ > 0 we can find two sets A and B such that A

and B are disjoint and A∪B exhausts the jump times of β, δ and S on (0, T ], A being

a set of jump times that β, δ and S have a.s. a finite number of times and B being

such that
∑

0<s≤t(∆β)2 ≤ ǫ2,
∑

0<s≤t(∆δ)2 ≤ ǫ2 and
∑

0<s≤t(∆X)2 ≤ ǫ2.

Thus we have

CP
t (φ) =
∑

k,A

f ′
(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

+
∑

k,B

f ′
(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

where
∑

k,A denotes
∑

k 1{A∩(tk−1,tk] 6=∅} and
∑

k,B denotes
∑

k 1{B∩(tk−1,tk] 6=∅}. The

first sum converges to
∑

s∈A f ′ (L(∆deltas, Xs) + ∆βs).
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In the second sum we apply Taylor’s theorem to f ′ and to L seen as a function of its

first variable

f ′(x) = f ′′(0)x+
1

2
f (3)(0)x2 +R(x) (7.6)

L(x) = l(0)x+
1

2
l′(0)x2 +RL(x) (7.7)

where |R(x)| ≤ r(x)x2, such that r : R+ → R+ is an increasing function with

limu↓0 r(u) = 0 and likewise for RL. Thus we have

∑

k,B

f ′
(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

=

f ′′(0)
∑

k,B

(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

(7.8)

+
1

2
f (3)(0)

∑

k,B

(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)2
(7.9)

+
∑

k,B

R
(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

(7.10)

The first sum (7.8) is equal to

∑

k

(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

−
∑

k∈A

(

L(δtk − δtk−1
, Xtk) + βtk − βtk−1

)

which converges in ucp topology to

(

Vt − V0 −

∫ t

0+
δs−dXs +

1

2
l′(0)

∫ t

0+
Xs−d[δ, δ]

c
s

)

−
∑

s∈A

(L(∆δs, Xs) + ∆βs)

The second sum (7.9), after developing and switching to less cumbersome notations, is

equal to

∑

k,B

(βk − βk−1)
2 + 2(βk − βk−1)L(δk − δk−1, Xk) + L(δk − δk−1, Xk)

2

∑

k,B(βk−βk−1)
2 =

∑

k(βk−βk−1)
2−
∑

k,A(βk−βk−1)
2 and the first sum converges to

[β, β]t while
∑

k∈A(βk−βk−1)
2 converges to

∑

s∈A∆β2
s . Now

∑

k,B 2(βk−βk−1)L(δk−

δk−1, Xk) =
∑

k,B 2Xk−1(βk−βk−1)(δk−δk−1)+
∑

k,B(Xk−Xk−1)(βk−βk−1)(δk−δk−1).

The first term is equal to
∑

k 2Xk−1(βk−βk−1)(δk−δk−1)−
∑

k,A 2Xk−1(βk−βk−1)(δk−
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δk−1) and converges to 2
∫ t
0+Xs−d[β, δ]s−2

∑

s∈AXs−∆βs∆δs. The second term is less

than supk,B |(Xk − Xk−1)|
∑

k,B |βk − βk−1||δk − δk−1| again less than supk,B |(Xk −

Xk−1)|(
∑

k(βk − βk−1)
2 +

∑

k(δk − δk−1)
2. Taking the limit when n → ∞ we find that

|
∑

k,B(Xk −Xk−1)(βk − βk−1)(δk − δk−1)| ≤ ǫ
√

[δ, δ]t
√

[β, β]t. Finally

∑

k,B

X2
k(δk − δk−1)

2 =
∑

k,B

X2
k−1(δk − δk−1)

2

+2
∑

k,B

Xk−1(Xk −Xk−1)(δk − δk−1)
2 +

∑

k,B

(Xk −Xk−1)
2(δk − δk−1)

2

The first term is equal to
∑

k X
2
k−1(δk−δk−1)

2−
∑

k,AX2
k−1(δk−δk−1)

2 and converges to
∫ t
0+X2

s−d[δ, δ]s−
∑

s∈AX2
s−(∆δs)

2. The second term is less than supk,B |Xk| supk,B |(Xk−

Xk−1)|(
∑

k(δk − δk−1)
2 and if we assume for now that S ≤ K < ∞ uniformly in t then

we have |
∑

k,B Xk−1(Xk − Xk−1)(δk − δk−1)
2| ≤ Kǫ[δ, δ]t. The last term is less than

ǫ2[δ, δ]t by following the same reasoning. Now we turn to the last term (7.10) of the

Taylor’s development

|
∑

k,B

R(βtk − βtk−1
+ (δtk − δtk−1

)Xtk)|

≤
∑

k,B

r(|βtk − βtk−1
+ (δtk − δtk−1

)Xtk |)(βtk − βtk−1
+ (δtk − δtk−1

)Xtk)
2 (7.11)

Again assuming that supX ≤ K ≤ ∞ over [0, T ] we have (7.11)≤ sup r((K+1)ǫ)[δ, δ]t.

We are now ready to take the limit when ǫ goes to zero. The last term tends to zero

from the property of r and it remains to prove that the series
∑

s∈A are absolutely

convergent. We next proceed by localization, as in Protter (44) by considering first

VK = inf{t > 0, |δ| > K}, WK = inf{t > 0, |β| > K} and ZK = inf{t > 0, |X| > K}

so that 1[0,VK ]δ, 1[0,WK ]β and 1[0,ZK ]X are [−K,K]-valued. Therefore we have that

|f ′(x)− f ′′(0)x| ≤ Cx2 for some constant C. This allows us to write

∣

∣

∣

∣

∣

∑

s∈A

f ′(∆βs +∆δXs)− f ′′(0)

(

∑

s∈A

∆βs +∆δsXs

)∣

∣

∣

∣

∣

≤ C
∑

s∈A

∆β2
s + 2∆βs∆δXs +∆δ2sX

2
s

≤ C([β, β]t + 2K|[δ, β]t|+K2[δ, δ]t) < ∞

And the series are absolutely convergent which completes the proof.

Corollary 2. The f−costs process of an H−admissible strategy φ can also be expressed
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7.4 Continuous time setting

in terms of the portfolio value V

C
f
t (φ) = f ′′(0)

(

Vt − V0 −

∫ t

0+
δs−dXs

)

+ f ′′(0)l′(0)

(

1

2

∫ t

0+
Xs−d[δ, δ]

c
s

)

+
f (3)(0)

2

(

[V, V ]ct − 2

∫ t

0+
δs−d[V,X]cs +

∫ t

0+
δ2s−d[X,X]ct

)

+
∑

0<s≤t

f ′(∆Vs − δs−∆Xs + L(∆δs, Xs)−∆δsXs)

−
∑

0<s≤t

f ′′(0)(∆Vs − δs−∆Xs) (7.12)

Proof. The proof is a straightforward application of quadratic variation properties when

expressing β as a function of V in formula (7.5).

Remark 20. The additional term in the expression of Cf
t (φ) due to the finite liquidity is

f ′′(0)l′(0)
(

1
2

∫ t
0+Xs−d[δ, δ]

c
s

)

and it is non-decreasing given the convexity of both f and

L.

7.4.2 The supply price process

For an H−admissible trading strategy φ we define the supply price process XS
t (φ) as

the following limit, whenever it exists

lim
n→∞

ln
∑

k=1

(

l(δτ
n
k − δτ

n
k−1)Xτn

k −Xτn
k−1

)

where convergence happens in ucp topology, for any sequences Pn of Riemann partitions

of [0, T ] of length ln.

For an H−admissible strategy φ we have a similar theorem relative to the existence of

the supply price process as for the f−costs.

Theorem 12. The supply price process XS of an H−admissible strategy φ is well

defined and is given by the following formula

XS
t (φ) = Xt + l′(0)

(

δtXt − δ0X0 −

∫ t

0+
δs−dXs

)

+
1

2
l′′(0)

∫ t

0+
Xs−d[δ, δ]

c
s

+
∑

0<s≤t

(

l((∆δs)− 1)Xs − l′(0)∆δsXs

)

(7.13)

Proof. The proof follows the same lines as theorem 11 so we do not detail it here.
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7.5 Application to stochastic volatility models

In order to derive an explicit formula for the f−costs and supply price processes and

completely characterize pseudo-optimal strategies for the local risk-minimization, we

will need to introduce further assumptions on the evolution of X.

We start with the same setting as in chapter 5, where we recall that (X,Y ) is described

by the following set of SDEs

dXs = a(s,Xs, Ys)ds+ b(s,Xs, Ys)dW
1
s (7.14)

dYs = c(s,Xs, Ys)dt+ d(s,Xs, Ys)
(

ρdW 1
s +

√

1− ρ2dW 2
s

)

(7.15)

with initial conditions X0 = x, Y0 = y and (W 1,W 2) a standard two-dimensional

Wiener process under P . With this prescription the stochastic factor Y of the volatility

has constant instantaneous correlation ρ with X, i.e. d < X, Y >t= ρdt. We will

assume that a, b, c and d are Lipschitz continuous functions on (0, T )×R
2 taking values

in R and that there exists a constant C such that for t ∈ [0, T ] and x, y, x′, y′ ∈ R

|a(t, x, y)− a(t, x′, y′)|+ |b(t, x, y)− b(t, x′, y′)|

+|c(t, x, y)− c(t, x′, y′)|+ |d(t, x, y)− d(t, x′, y′)| ≤ C
(

|x− x′|+ |y − y′|
)

(7.16)

|a(t, x, y)|2 + |b(t, x, y)|2 + |c(t, x, y)|2 + |d(t, x, y)|2 ≤ C
(

1 + |x|2 + |y|2
)

(7.17)

These assumptions ensure existence and uniqueness of a strong solution to the system

of SDE (7.14), (7.15) and the continuity of the flow (t, x, y) 7→ (Xt,x,y
s , Y

t,x,y
s ), where

X
t,x,y
s and Y

t,x,y
s are the solutions with initial data Xt = x and Yt = y (see Platen and

Kloeden (32)). These properties in turn ensure that the solution is a strong Markov

process.

With these diffusion assumptions we will now place ourselves in a Markovian framework

and look for the optimal strategy φ as a smooth function of the state variables

δt = δ(t,Xt, Yt)

Vt = V (t,Xt, Yt)
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7.5 Application to stochastic volatility models

7.5.1 PDE formulation

So as to derive a set of PDEs satisfied by pseudo-optimal strategies, we first express

the f−costs process as a function of the diffusion parameters and the strategy

C
f
t (φ) =

∫ t

0

[

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δuau

)

+ f ′′(0)l′(0)
Xu

2

(

(

∂δ

∂X

)2

b2u +

(

∂δ

∂Y

)2

d2u + 2
∂δ

∂X

∂δ

∂Y
ρbudu

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

− f (3)(0)δu

(

∂V

∂X
σ2
u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2ub

2
u

]

du

+

∫ t

0
f ′′(0)

(

∂V

∂X
− δu

)

budW
1
u +

∫ t

0
f ′′(0)

∂V

∂Y
dudW

2
u

which follows from equation (7.12).

Likewise we express the supply price process

XS
t (φ) =Xt + l′(0)

(

δtXt − δ0X0 −

∫ t

0
δuaudu−

∫ t

0
δubudW

1
u

)

+
1

2
l′′(0)

∫ t

0

(

(

∂δ

∂X

)2

b2u +

(

∂δ

∂Y

)2

d2u + 2
∂δ

∂X

∂δ

∂Y
ρbudu

)

du

which is derived from equation (7.13).

Now, applying to the strategy φ the first pseudo-optimality criterion, i.e. that C must

be martingale under the measure P , we find a first fully non-linear PDE satisfied by

the strategy (V, δ)

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δuau

)

+f ′′(0)l′(0)
Xu

2

(

(

∂δ

∂X

)2

b2u +

(

∂δ

∂Y

)2

d2u + 2
∂δ

∂X

∂δ

∂Y
ρbudu

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

−f (3)(0)δu

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2ub

2
u = 0

with terminal condition VT = H.
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7. LIQUIDITY

In order to apply to the strategy φ the second pseudo-optimality criterion, i.e. that

the martingale C must be orthogonal to the martingale part of the supply price process

XS , we first identify its martingale part

XS
t (φ)− E

(

XS
t (φ)

)

=

∫ t

0

(

1 + l′(0)X
∂δ

∂X

)

budW
1
u +

∫ t

0
l′(0)X

∂δ

∂Y
dudW

2
u

so that the second PDE satisfied by the strategy (V, δ) is

(

∂V

∂X
− δ

)(

1 + l′(0)X
∂δ

∂X

)

b2 +
∂V

∂Y

(

1 + l′(0)X
∂δ

∂X

)

ρbd+

(

∂V

∂X
− δ

)

∂δ

∂Y
l′(0)Xρbd+

∂V

∂Y

∂δ

∂Y
l′(0)Xd2 = 0

With some rearrangements, the pseudo-optimal strategy φ finally solves the following

system of parabolic and hyperbolic PDEs































































∂V
∂u + ∂V

∂X a+ ∂V
∂Y b+ 1

2
∂2V
∂X2 b

2 + 1
2
∂2V
∂Y 2 d

2 + ∂2V
∂X∂Y ρbd =

δa+ α
(

(

∂V
∂X b+ ∂V

∂Y ρd− δb
)2

+ (1− ρ2)
(

∂V
∂Y

)2
d2
)

+l′(0)X2

(

(

∂δ
∂X b+ ∂δ

∂Y ρd
)2

+ (1− ρ2)
(

∂δ
∂Y

)2
d2
)

(

∂V
∂X − δ

) (

1 + l′(0)X ∂δ
∂X

)

b2 + ∂V
∂Y

(

1 + l′(0)X ∂δ
∂X

)

ρbd

+
(

∂V
∂X − δ

)

∂δ
∂Y l′(0)Xρbd+ ∂V

∂Y
∂δ
∂Y l′(0)Xd2 = 0

(7.18)

with VT = H.

Complete markets case

We investigate the case of complete markets by setting the volatility of volatility d

equal to zero. The equation for the hedge ratio δ then reduces to

(

∂V

∂X
− δ

)(

1 + l′(0)X
∂δ

∂X

)

= 0

so that a sufficient condition is that V, δ is a solution to

δ =
∂V

∂X
(7.19)

∂V

∂u
+

1

2

∂2V

∂X2
σ2

(

1 + l′(0)X
∂2V

∂X2

)

= 0 (7.20)
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7.5 Application to stochastic volatility models

Upon the generalized Black and Scholes PDE ((5), (41)) (7.20) having a solution, which

is expected when the contingent claim has a convex payoff, equation (7.19) gives the

perfect hedging strategy in that context. As in the “infinite” liquidity case, the solution

does not depend on the choice for the function f . An easy calculation allows to verify

that in this case the f−costs process is identically zero, which amounts to having a self-

financing strategy incorporating liquidity costs that perfectly replicates the contingent

claim H. Another remark is that the PDE (7.20) shows that the value of the portfolio

being an increasing function of the volatility for a convex payoff, in the presence of

liquidity costs, is increased proportionally to the slope of the marginal costs and to the

Γ = ∂2V
∂X2 of the option.

7.5.2 The minimization problem

Despite the fact that in discrete time a pseudo-optimal strategy, satisfying the set of

equations (7.3), might not be optimal, in continuous time, when working with contin-

uous path processes we have a correspondence between the two concepts. First and

foremost we need to redefine the notion of optimality we are concerned with, in partic-

ular to take into account the fact we did not define the costs of a strategy in continuous

time 1.

Given a partition τ of [0, T ], where τ = {0 = t0, t1, · · · , tk = T}, and a small perturba-

tion ∆, we define the process rτf as:

Definition 42. The f−risk quotient (inclusive of liquidity costs) of a trading strategy

φ along the partition τ is the process

rτf [φ,∆](t, ω) :=
∑

ti,ti+1∈τ

∆Rti(φ+∆|(ti,ti+1])(ω)−∆Rti(φ)(ω)

ti+1 − ti
1(ti,ti+1](t) (7.21)

with ∆Rti(Φ) = E
(

f(∆Cti+1)|Fti

)

.

And optimality is then defined the usual way:

Definition 43. For a contingent claim H, a trading strategy φ generating H is called

locally risk-minimizing if for every small perturbation ∆ and every increasing sequence

of partitions (τn)n∈N tending to the identity, we have

lim inf
n→∞

rτnf [φ,∆] ≥ 0 P− a.e. (7.22)

1see remark 21 at the end of the chapter for more comments on this
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Given the smoothness of the risk function f and the liquidity costs function L we can

rewrite the process rτf by using a Taylor development around the non-perturbed strategy

φ. Let Γ = (β, δ) be a small perturbation and let us fix t ∈ [0, T ]. Because of the

definition of the process rτf [φ,Γ] and as we work with increasing sequences of partitions,

we may assume that t is one of the tni(n) (we will thereafter drop the superscript n and

simply write ti instead), we have

rτf [φ,Γ](t, ω) =
∆Rti(φ+ Γ|[ti,ti+1()(ω)−∆Rti(φ)(ω)

ti+1 − ti

=
Eti

(

f(∆Cti+1(φ+ Γ|[ti,ti+1())
)

(ω)− Eti

(

f(∆Cti+1(φ))
)

(ω)

ti+1 − ti

Applying Taylor’s formula with remainder term to g : (x, y) 7→ f(L(x) + y) in the

expectation, we have that

f(∆Cti+1(φ+ Γ|[ti,ti+1())) =f(∆Cti+1(φ))− βtif
′(∆Cti+1(φ))− δtiL

′(φ)f ′(∆Cti+1(φ))

+
1

2
δ2tih(φ̃) +

1

2
(βti + δtiL

′(φ̃))2g(φ̃)

where g(φ̃) = f ′′(∆Cti+1(φ̃)) and h(φ̃) = L′′(φ̃)f ′(∆Cti+1(φ̃)) with φ̃ = (β̃, δ̃) such that

|β̃| ≤ β and |δ̃| ≤ δ. With the assumptions on f ∈ R, namely f ′(0) = 0 and f ′′(0) > 0,

the remainder term δ2tih(φ̃) + (βti + δtiL
′(φ̃))2g(φ̃) will remain strictly positive in a

neighborhood of ti for δti and βti small enough.

Rearranging and simplifying we get

rτf [φ,Γ](t, ω) = βti
Eti

(

f ′(∆Cti+1(φ))
)

(ω)

ti+1 − ti
+ δti

Eti

(

L′(φ)f ′(∆Cti+1(φ))
)

(ω)

ti+1 − ti

+
1

2

Eti

(

δ2tih(φ̃)
)

(ω)

ti+1 − ti
+

1

2

Eti

(

(βti + δtiL
′(φ̃))2g(φ̃)

)

(ω)

ti+1 − ti

Since we work with Itō processes, the following stands

lim
ti+1→ti

Eti

(

f ′(∆Cti+1(φ))
)

(ω)

ti+1 − ti
= Λ

(

f ′ ◦∆C
)

ti

lim
ti+1→ti

Eti

(

L′(φ)f ′(∆Cti+1(φ))
)

(ω)

ti+1 − ti
= Λ

(

L
′ · f ′ ◦∆C

)

ti
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and

lim
ti+1→ti

Eti

(

h(φ̃)
)

(ω)

ti+1 − ti
= Λhti

lim
ti+1→ti

Eti

(

g(φ̃)
)

(ω)

ti+1 − ti
= Λgti

lim
ti+1→ti

Eti

(

L′g(φ̃)
)

(ω)

ti+1 − ti
= Λ

(

L
′ · g
)

ti

lim
ti+1→ti

Eti

(

L′2g(φ̃)
)

(ω)

ti+1 − ti
= Λ

(

L
′2 · g

)

ti

where Λ is the infinitesimal generator associated with the diffusion (7.14, 7.15)

Λh =
∂h

∂X
a+

∂h

∂Y
c+

1

2

∂2h

∂X2
b2 +

1

2

∂2h

∂Y 2
d2 +

∂2h

∂X∂Y
ρbd (7.23)

Finally the process rτf evaluated in t is worth

rτf [φ,Γ](t, ω) =βtΛ
(

f ′ ◦∆C
)

t
+ δtΛ

(

L
′ · f ′ ◦∆C

)

t

+
1

2

(

β2
tΛgt + 2βtδtΛ

(

L
′ · g
)

t
+ δ2tΛ

(

L
′2 · g + h

)

t

)

Now we first take the component δ of the perturbation equal to zero, that is we perturb

only β, so that we have the following first condition for the strategy φ to be locally

risk-minimizing

βtΛ
(

f ′ ◦∆C
)

t
+

1

2
β2
tΛgt ≥ 0 P − a.e. ∀βt

As a consequence we must have Λ (f ′ ◦∆C)t = 0.

Likewise we take the component β equal to zero and we get the following second

condition for the strategy φ to be locally risk-minimizing

δtΛ
(

L
′ · f ′ ◦∆C

)

t
+

1

2
δ2tΛ

(

L
′2 · g + h

)

t
≥ 0 P − a.e. ∀δt

Therefore we must have Λ (L′ · f ′ ◦∆C)t = 0. But we observe that

{

Λ (f ′ ◦∆C)t = 0
Λ (L′ · f ′ ◦∆C)t = 0

⇔
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





















































































f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δuau

)

+f ′′(0)l′(0)
X

2

(

(

∂δ

∂X

)2

b2u +

(

∂δ

∂Y

)2

d2u + 2
∂δ

∂X

∂δ

∂Y
ρbudu

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

−f (3)(0)δu

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2ub

2
u = 0

(

∂V

∂X
− δ

)(

1 + l′(0)X
∂δ

∂X

)

b2u +
∂V

∂Y

(

1 + l′(0)X
∂δ

∂X

)

ρbudu

+

(

∂V

∂X
− δ

)

∂δ

∂Y
l′(0)Xρbudu +

∂V

∂Y

∂δ

∂Y
l′(0)Xd2u = 0

Finally, just as in the “infinite” liquidity case, we see that in this context of stochastic

volatility model, the optimal strategies with respect to the local risk-minimization

problem are the same as the pseudo-optimal strategies. Likewise, the only requirement

to obtain this result is the existence of the infinitesimal generator and its expression

in terms of the parameters of the SDE driving the process so as to identify the sets

of two equations, which therefore allows again for a straightforward generalization to

more general Itō processes.

7.6 Application to stochastic volatility/jump diffusion mod-

els

Now we study pseudo-optimal strategies in a situation where the stock process may

exhibit jumps so as to demonstrate that the global behaviour of the risk function f can

also have an impact. To this end we model the evolution of X through an SDE with

stochastic volatility and Poisson jumps as in chapter 6

dXs = a(s,Xs−, Ys−)ds+ b(s,Xs−, Ys−)dW
1
s + kdNs (7.24)

dYs = c(s,Xs−, Ys−)ds+ d(s,Xs−, Ys−)
(

ρdW 1
s +

√

1− ρ2dW 2
s

)

(7.25)

with initial conditions X0 = x, Y0 = y and (W 1,W 2) a standard two-dimensional

Wiener process under P . Nt is a Poisson process of intensity λ and the amplitude of

the jumps k has probability distribution K. We also assume that Wt = (W 1
t ,W

2
t ), Nt

and k are independent. With this prescription the stochastic factor Y of the volatility

has constant instantaneous correlation ρ with X, i.e. d < X, Y >t= ρdt. As in the
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7.6 Application to stochastic volatility/jump diffusion models

above case of stochastic volatility we shall assume that appropriate conditions hold on

the adapted processes a, b, c, d, K and λ so that the set of SDEs has a unique strong

solution.

With these assumptions we will again place ourselves in a Markovian framework and

look for the optimal strategy φ as a smooth function of the state variables

δt = δ(t,Xt, Yt)

Vt = V (t,Xt, Yt)

7.6.1 PIDE formulation

So as to derive a set of PIDEs satisfied by pseudo-optimal strategies, we first express

the f−costs process as a function of the diffusion parameters and the strategy

C
f
t (φ) =

∫ t

0

(

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δuau

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

+
l′(0)X

2

(

(

∂δ

∂X

)2

b2u +

(

∂δ

∂Y

)2

d2u + 2
∂δ

∂X

∂δ

∂Y
ρbudu

)

− f (3)(0)δu−

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2ub

2
u

)

du

+

∫ t

0
f ′′(0)

(

∂V

∂X
− δu−

)

budW
1
u +

∫ t

0
f ′′(0)

∂V

∂Y
dudW

2
u

+

∫ t

0

∫

R

f ′(∆Vu − δu−∆Xu + L(∆δu, Xu)−∆δuXu)K(k)dkdNu

which we have obtained from equation (7.12), and with ∆Vu the jump in V when

there is a jump ∆Xu of size k on X at time u being equal to V (u−, Xu− + k, Yu−) −

V (u−, Xu−, Yu−) and likewise for ∆δu.

Now, applying to the strategy φ the first pseudo-optimality criterion, i.e. that C

must be martingale under the measure P , we find the PIDE satisfied by the portfolio
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value V

f ′′(0)

(

∂V

∂u
+

∂V

∂X
au +

∂V

∂Y
cu +

1

2

∂2V

∂X2
b2u +

1

2

∂2V

∂Y 2
d2u +

∂2V

∂X∂Y
ρbudu − δu−au

)

+
f (3)(0)

2

(

(

∂V

∂X

)2

b2u +

(

∂V

∂Y

)2

d2u + 2
∂V

∂X

∂V

∂Y
ρbudu

)

+
l′(0)X

2

(

(

∂δ

∂X

)2

b2u +

(

∂δ

∂Y

)2

d2u + 2
∂δ

∂X

∂V

∂Y
ρbudu

)

−f (3)(0)δu−

(

∂V

∂X
b2u +

∂V

∂Y
ρbudu

)

+
f (3)(0)

2
δ2u−b

2
u

+

∫

R

f ′(∆Vu − δu−∆Xu)K(k)dkλu = 0

with terminal condition VT = H.

In order to apply to the strategy φ the second pseudo-optimality criterion, i.e. that

the martingale C must be orthogonal to the martingale part of the supply price process

XS , we first identify its martingale part

XS
t (φ)− E

(

XS
t (φ)

)

=

∫ t

0

(

1 + l′(0)X
∂δ

∂X

)

budW
1
u +

∫ t

0
l′(0)X

∂δ

∂Y
dudW

2
u

+

∫ t

0

∫

R

((l(∆δu)− 1)Xu + k)K(k)dkdÑu

with Ñ the compensated Poisson process of N .

Therefore the second PIDE satisfied by the strategy (V, δ) is

(

∂V

∂X
− δ

)(

1 + l′(0)X
∂δ

∂X

)

b2 +
∂V

∂Y

(

1 + l′(0)X
∂δ

∂X

)

ρbd

+

(

∂V

∂X
− δ

)

∂δ

∂Y
l′(0)Xρbd+

∂V

∂Y

∂δ

∂Y
l′(0)Xd2

+

∫

R

f ′(∆Vu − δu−∆Xu + L(∆δu, Xu)−∆δuXu) ((l(∆δu)− 1)Xu + k)K(k)dkλu = 0

We can therefore check that contrarily to the stochastic volatility case, where only the

local behaviour of the risk and liquidity costs functions f and L in 0 mattered, finding

the optimal strategy in a jump-diffusion model requires the knowledge of both functions

on their whole support.
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Remark 21. We emphasize that for the case of liquidity costs we took a different route

in order to arrive at equations for (pseudo-)optimal strategies. As a matter of fact

we made the strong assumption that optimal strategies were “Markovian” which was

justified by the strong Markov property of the processes X and Y , and then check that

the system of PDEs obtained in both cases (optimality and pseudo optimality) were

the same. This methodology was inspired by our initial work on non-quadratic local

risk-minimization and reflected in our original paper (1). Yet, further to the result

obtained in the “infinite” liquidity case, namely theorem (6), we may obtain the same

direct relationship (implication) between pseudo-optimal and optimal strategies. The

costs process we consider for that purpose is derived from by taking f ′ = Id in equation

(7.5) to get

Ct(φ) =

(

Vt − V0 −

∫ t

0+
δs−dXs

)

+ l′(0)

(

1

2

∫ t

0+
Xs−d[δ, δ]

c
s

)

+
∑

0<s≤t

L(∆δs, Xs)−∆δsXs) (7.26)

Optimality would then be defined as in chapter 4, with the risk along the partition being

taken as the expectation of the increase of the (continuous) costs process C between two

consecutive times, weighted by function f . For this implication to hold we need the same

assumptions as for theorem (6), namely the existence of a martingale representation

for the filtration (Ft). In the case where it is generated by continuous processes, then

the orthogonality condition which in the case of finite liquidity is generally not simply

on the martingale part of X, still reduces to the same condition.
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8

Numerical Results and

Comparisons

8.1 Motivations

The aim of this last chapter is to illustrate numerically the impact of the choice of

different risk functions on the optimal strategies. While the strongest point of our

method is that it is economically more justified as it allows to put more weight on

losses than on gains, being a local minimization of a local risk, we saw in chapter 4

and 5 how we could derive several characterizations of optimal strategies. Particularly

in the context of diffusion models optimal strategies may be given as solutions of a

quadratic forward backward stochastic differential equation (FBSDE) or alternatively

a quasilinear partial differential equation (PDE). Those two characterizations give rise

to two numerical methods to compute optimal hedge ratio and portfolio values.

We therefore focus on these two characterizations and show numerical results in a set

of two different stochastic volatility models. The two models chosen are taken from

the comparative study of quadratic hedging methods undertaken by Heath, Platen and

Schweizer (25).

We also present in this chapter one possible way of addressing the issue of pricing, which

as previously mentioned, does not have a straightforward answer due to the fact that

optimal strategies are not necessarily neither self-financing nor mean self-financing.

Throughout this chapter we consider only European put option as contingent claim so

as to have boundedness of the terminal condition in all the equations considered. This
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8. NUMERICAL RESULTS AND COMPARISONS

means that H = h(X) = (XT −K) for a fixed strike price K.

8.2 Benchmark Stochastic Volatility Models

We first introduce two of the four stochastic volatility models already used by Heath,

Platen and Schweizer (25, 26) as presented in the motivations section. We use the

same notations (except for δ and β which we replaced by κ and θ in models S1) and

terminology as this will also enable us to verify our result in the case when we choose

a quadratic function for f .

The SDE driving the stock process and its volatility is of the form

dXt

Xt
= µ(t, Yy)dt+ YtdWt

dYt = a(t, Yt)dt+ b(t, Yt)dW
′
t

with P−Brownian motions W , W ′ wit constant instantaneous ρ, i.e. d < W,W ′ >t=

ρdt and the choices for the drifts and volatility of volatility are summarized in the table

below

Model Volatility Dynamics Y Appreciation Rate µ

Stein dYt = κ(θ − Yt)dt+ kdWt µ(t, Yt) = ∆Yt
Heston d(Yt)

2 = κ(θ − (Yt)
2)dt+ΣYtdW

′
t µ(t, Yt) = ∆Yt

(8.1)

The references for these two models can be found in Stein and Stein (52) and Hes-

ton (27).

The assumptions are that the constants k, κ, θ, Σ are non-negative, with ∆ and γ real

valued and ρ ∈ [−1, 1]. The only model with non-zero correlation though is the Heston

model.

For the Heston model we also require that the Feller’s test for explosions is satisfied,

which guarantees the existence and uniqueness of a strictly positive strong solution Y .

This condition reads κθ ≥ 1
2Σ

2.

92



8.2 Benchmark Stochastic Volatility Models

8.2.1 Solving the Quadratic Forward-Backward Stochastic Differen-

tial Equation

As was shown in chapters 4 and 5 the natural characterization obtained for pseudo-

optimal strategy is through a quadratic FBSDE. This was proven in the case when we

have a representation theorem for martingales related to the filtration considered and

thus holds for stochastic volatility models with the natural filtration of the two state

variables X and Y .

Therefore we consider in this section the numerical resolution of the following FBSDE

dXt

Xt
= µ(t, Yy)dt+ YtdW

1
t

dYt = a(t, Yt)dt+ b(t, Yt)(ρdW
1
t +

√

1− ρ2dW 2
t )

−dVs = g(s,Xs, Ys, Vs, Z
1
s , Z

2
s )ds− Z1

sdW
1
s − Z2

sdW
2
s

VT = h(XT ) (8.2)

withW = (W 1,W 2) is a standard two-dimensional Brownian motion and g(s, S, σ, Y, Z1, Z2) =

−µ
σZ

1 − α(Z2)
2
.

The literature on numerical schemes for solving a quadratic BSDE or a decoupled FB-

SDE is not as abundant as in the case of BSDE with Lipschitz drivers. As a matter

of fact quadratic BSDE only appeared recently, namely for the pricing and hedging of

derivatives in incomplete markets. In most cases, the existing papers are focussing on

utility maximization approaches. Yet it is striking that the equations obtained in those

frameworks are very close to the one which we obtained in the previous chapters. So

we will show how we can use the proposed numerical schemes for our purposes.

To the best of our knowledge two papers propose a numerical method, Imkeller Dos

Reis and Zhang (28), and Richou (45), for some fairly general decoupled FBSDE. They

both rely on the theory of BMO martingales to provide estimate of approximations

and thus prove convergence of their numerical schemes.

The article of Richou is concerned with improving the numerical scheme initially pro-

posed by Imkeller Dos Reis and Zhang, through an adapted mesh for the time dis-

cretization. Unfortunately the scheme is then proven to work for a special case of

volatility function for the forward part, which is a time dependent volatility. Thus

this does not apply to our cases of interest. We note however that from the thesis of

Richou, where he provides additional numerical results with an actual implementation,
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the scheme with improved time discretization does not seem to perform better that

the one with a uniform mesh. So we detail the truncation procedure put in place by

Imkeller, Dos Reis and Zhang. For the truncation of the quadratic part, which would

otherwise cause troubles for the convergence of the numerical scheme, we introduce the

map h̃n, for n ∈ N, which is assumed continuously differentiable and satisfies

• h̃n → id locally uniformly, |h̃n| ≤ |id| and |h̃n| ≤ n+ 1

•

h̃n(x) =







(n+ 1) , x > n+ 2
x , |x| ≤ n

−(n+ 1) , x < −(n+ 2)

• the derivatives of h̃n is absolutely bounded by 1 and converges to 1 locally uni-

formly.

The construction of such a sequence of functions is given in their paper (28), section 5.

We then set hn : R2 → R by z 7→ hn(z) = (h̃n(z1), h̃n(z2)), n ∈ N.

Next we define the truncated driver, for n ∈ N fn(t, x, y, z) := f(t, x, y, hn(z)), (t, x, y, z) ∈

[0, T ]×R×R×R
2. This gives rise to the following family of so-called truncated BSDE

V n
t = H(XT ) +

∫ T

t
gn(s,Xs, Ys, Z

1
s
n
, Z2

s
n
)ds−

∫ T

t
Z1
s
n
dW 1

s −

∫ T

t
Z2
s
n
dW 2

s , (8.3)

t ∈ [0, T ], n ∈ N

For the convergence to happen, two sets of conditions on the coefficients are required

to hold

Assumption 5. • There exists a positive constant K such that µ, a and b are

uniformly Lipschitz continuous with Lipschitz constant K, and µ(., 0), a(., 0) and

b(., 0) are bounded by K

• There exists a constant M ∈ R+ such that H is absolutely bounded by M , f is

measurable and continuous in (x, y, z1, z2) and for (t, x) ∈ [0, T ] × R, y, y′ ∈ R

and (z1, z2), (z′1, z′2) ∈ R
2 we have

|g(t, x, y, z1, z2)| ≤M(1+ ‖ (z1, z2) ‖2)

|g(t, x, y, z1, z2)− g(t, x, y, z′1, z′2)| ≤M(1+ ‖ (z1, z2) ‖ + ‖ (z′1, z′2) ‖) ‖ (z1, z2)− (z′1, z′2) ‖
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Assumption 6. • The functions µ, a and b are continuously differentiable with

bounded derivatives in the spatial variable for all t ∈ [0, T ]

• g is continuously partially differentiable in (x, y, z1, z2)

• There exists a constant M ∈ R+ such that for all (t, x, y, z1, z2) ∈ [0, T ] × R ×

R× R× R

∣

∣

∣

∣

∂g

∂x

∣

∣

∣

∣

≤ M(1+ ‖ (z1, z2) ‖2)

∣

∣

∣

∣

∂g

∂y

∣

∣

∣

∣

≤ M(1+ ‖ (z1, z2) ‖2)

∣

∣

∣

∣

∂g

∂z1

∣

∣

∣

∣

≤ M(1+ ‖ (z1, z2) ‖)

∣

∣

∣

∣

∂g

∂z2

∣

∣

∣

∣

≤ M(1+ ‖ (z1, z2) ‖)

• H is a continuously differentiable function satisfying |∇H| ≤ M

It is readily checked that with the specific form of the driver in (8.2) and the choice

of coefficients driving the SDEs, these conditions are satisfied. Note that there is also

an ellipticity condition on the volatility matrix which trivially holds in our setting. So

under these assumptions, we have the following theorem (theorem 6 of (28)):

Theorem 13. Fix n ∈ N and let X be the solution of (1). Let (V,Z) and (V n, Zn)n∈N

be the solution pairs of (8.2) and (8.3) respectively. Then for all p ≥ 2 there exists a

positive constant Cp such that for all n ∈ N

E

[

sup
t∈[0,T ]

|V n
t − Vt|

p

]

+ E

[

(∫ T

0
|Zn

s − Zs|
2ds

)

p

2

]

≤ Cp
1

n12
. (8.4)

Having established the convergence of the truncated FBSDE we shall concentrate on

the numerical methods available when the driver is Lipschitz. We recall that there are

mainly three different methods proposed in the litterature for addressing this numerical

issue which actually differ in the way conditional expectations are approximated. The

first one relies on quantization techniques as in Lemor (37). The second one uses Malli-

avin derivatives as in Bouchard and Touzi (7). And finally the most straightforward

approach is based on least-square regressions. The two references for that last method

are the paper of Gobet, Lemor and Warin (22) and the PhD thesis of Lemor (37).

We chose to implement method based on least-square regressions technique and for
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that purpose we used basis functions taken from Lemor (37): they are multidimen-

sional polynomials, hypercubes indicators and hypercubes indicators with low degree

polynomials for the theoretical value process approximation.

8.2.2 Solving the Nonlinear Partial Differential Equation

We consider in this section the PDE associated with the FBSDE (8.2) or derived from

the martingale and orthogonality conditions on the f−costs process as in chapter 5.

With the notations introduced at the beginning of the chapter, we have

∂V

∂u
+ ΛV =

µ

Y

(

∂V

∂X
XY +

∂V

∂Y
ρb

)

+ α

(

√

1− ρ2
∂V

∂Y
b

)2

with terminal condition VT = H(XT ) = (XT −K)+ and

ΛVu =
∂V

∂X
µuX +

∂V

∂Y
au +

1

2

∂2V

∂X2
X2Y 2 +

1

2

∂2V

∂Y 2
b2u +

∂2V

∂X∂Y
ρbuXY

Its numerical approximation will serve as a benchmark for our FBSDE schemes, as the

convergence of the former is usually much better as for the latter. In order to solve it

numerically, we use a finite elements method with convection terms corresponding to

the first order spatial derivatives treated by the Characteristic Galerkin method (see

Kuzmin (34) for an introduction) so as to obtain an unconditionally stable scheme.

In order to deal with the non-linear terms when f (3)(0) 6= 0 we use Gauss-Newton

iterations.

The grid is chosen big enough so that we can use Dirichlet boundary conditions in the

X direction: V (Xmin) = K −Xmin and V (Xmax) = 0 whereas in the Y direction we

chose free boundary conditions.

The optimal hedge is then computed according to the following formula

δ =
∂V

∂X
+

∂V

∂Y
ρ

b

XY

by approximating the partial derivatives from the grid values.

8.2.3 Discrete Time Approximation

Given that the problem of local risk-minimization was firstly stated in a discrete time

setting, we also compare the results of the previous sections with the risk-minimization

program applied to the discretization of the SDEs. The method used works as follows
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• We compute the state variables X and Y at n hedging dates for a number N of

simulation paths

• We approximate the risk function f with its 3rd-order Taylor expansion at 0.

• We rewrite the risk function accordingly.

• We perform a least-square fit onto basis functions (the same as for the FBSDE

approximation).

• We carry out the minimization on each path given the fact that the risk function is

now an explicit function of the value V and the hedge δ, as a 3rd-order polynomial.

So we have Rk = Ek (f (Vk+1 − V − δ(Sk+1 − Sk))), with f(x) = 1
2x

2 + α
6x

3, this gives

Rk = Ek

(

1

2
(Vk+1 − V − δ(Sk+1 − Sk))

2 +
α

6
(Vk+1 − V − δ(Sk+1 − Sk))

3

)

which yields after developing and factorizing terms in powers of δ and V

Rk =
1

2
Ek

(

V 2
k+1

)

+
α

6
Ek

(

V 3
k+1

)

+V
(

−Ek (Vk+1)−
α

2
Ek

(

V 2
k+1

)

)

+ V 2

(

1

2
+

α

2
Ek (Vk+1)

)

− V 3α

6

+δ
(

−Ek (Vk+1Sk+1) + SkEk (Vk+1)−
α

2
Ek

(

V 2
k+1Sk+1

)

+
α

2
SkEk

(

V 2
k+1

)

)

+δ2
(

1

2
Ek

(

S2
k+1

)

− SkEk (Sk+1) +
1

2
S2
k +

α

2
Ek

(

Vk+1S
2
k+1

)

−αSkEk (Vk+1Sk+1) +
α

2
S2
kEk (Vk+1)

)

+δ3
(

−
α

6
Ek

(

S3
k+1

)

+
α

2
SkEk

(

S2
k+1

)

−
α

2
S2
kEk (Sk+1) +

α

6
S3
k

)

+δV (Ek (Sk+1)− Sk + αEk (Vk+1Sk+1)− αSkEk (Vk+1)) + δV 2
(

−
α

2
Ek (Sk+1) +

α

2
Sk

)

+δ2V
(

−
α

2
Ek

(

S2
k+1

)

+ αSkEk (Sk+1)−
α

2
S2
k

)

Thus in the Monte Carlo implementation we have to compute a total of 9 condi-

tional expectations Ek (Vk+1), Ek

(

V 2
k+1

)

, Ek

(

V 3
k+1

)

, Ek (Sk+1), Ek

(

S2
k+1

)

, Ek

(

S3
k+1

)

,

Ek (Vk+1Sk+1), Ek

(

Vk+1S
2
k+1

)

and Ek

(

V 2
k+1Sk+1

)

. We do so using a linear regression

algorithm which relies on a singular value decomposition routine. We then solve numer-

ically the minimization problem using Fletcher-Reeves conjugate gradient algorithm.
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8.2.4 Numerical Results

Convergence Tests

We produce convergence graphs for two sets of inputs in the Heston case. The option

we consider is a 1Y put option with a strike value of 100. The first set allows to simply

recover the Black and Scholes model and corresponds to X0 = 100 and Y0 = 0.2 all

other parameters being set to zero. The reference values obtained by applying Black

Scholes formula is 7.9656 for the portfolio initial value and −0.4602 for the initial delta.

We obtained the following results by solving the FBSDE.

The first two graphs show the convergence with the number of paths, with n = 100

and polynomial basis up to order 3.
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Using the minimization in the Monte Carlo we got
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The next series of two graphs shows the convergence with the number of time steps,

with N = 100000 and polynomial basis up to order 3

Results obtained by solving the FBSDE
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8.2 Benchmark Stochastic Volatility Models

Results obtained using the minimization in the Monte Carlo
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Now we perform the exact same convergence tests with the values used in the paper

of Heath, Platen and Schweizer. These are ∆ = 0.5, κ = 5.0, θ = 0.04, Σ = 0.5. We

used ρ = −0.3 and α = 0.

We show only the results for the FBSDE in the same order as above (convergence

with respect to the number of paths and then convergence with respect to the number

of time steps)

102



8.2 Benchmark Stochastic Volatility Models

103



8. NUMERICAL RESULTS AND COMPARISONS

Finally we give the optimal hedge δ and theoretical portfolio value V for one year

put options of different strikes for different levels of correlation
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8.3 Mean Costs

They have been obtained with N = 100000 paths and n = 100 and averaged over

50 runs.

8.3 Mean Costs

In the quadratic framework, Föllmer and Schweizer showed that the optimal strategies

have zero costs on average. This is lemma (3) of chapter 3. We retrieve this property

when considering f quadratic. On the other hand, for risk functions that have a non-

zero third order derivative f (3)(0) 6= 0, the average costs will generally not vanish. It is

then interesting to compute this value and look at some properties such as its empirical

distribution. This will give a hint as to which price should the option be sold. In the

quadratic case, the authors suggested to use the initial optimal hedge portfolio value

since the strategy is mean self-financing. We use the FBSDE characterization of the

optimal strategy to show how we may compute the average costs of an optimal strategy

−dVt = g(t,Xt, Yt, Vt, δt,
√

1− ρ2
∂V

∂Y
b)− δYsdW

1
s −

∂V

∂Y
b
√

1− ρ2dW 2
s

Thus we find that the costs are expressed as

VT − Vt −

∫ T

t
δsdSs = α

∫ T

t

∂V

∂Y

2

b2(1− ρ2) +
∂V

∂Y
b
√

1− ρ2dW 2
s
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The average costs are then

Et

(

VT − Vt −

∫ T

t
δsdSs

)

= α(1− ρ2)Et

(∫ T

t

∂V

∂Y

2

b2
)

(8.5)

From this last expression we see that the average costs for the f−risk-minimizing strat-

egy are expressed as the expected squared costs for the local risk-minimizing strategy

in the quadratic case.

So as to compute them we can either use the Monte Carlo implementation and run a

forward calculation and then average the results along the paths, or we can write the

PDE for C(t,Xt, Yt) = Et

(

VT − Vt −
∫ T
t δsdSs

)

∂C

∂t
+ xµ

∂C

∂x
+ a

∂C

∂y
+

1

2
x2y2

∂2C

∂x2
+

1

2
b2
∂2C

∂y2
+ xybρ

∂2C

∂x∂y
+ α(1− ρ2)

∂V

∂Y

2

b2 = 0

on (0, T )× (0,∞)× R with boundary condition

C(T, x, y) = 0

for (x, y) ∈ (0,∞). We solve this equation with a finite element method and since the

computation of ∂V
∂Y is a source term of the PDE, we do this along with the computation

of V .

Numerical Results

We finally present the numerical results obtained by solving the two PDEs (8.5) and

(5.5) for the Heston model with the second set of parameters as described in the previous

section, with correlation ρ = 0.

We price one year put options, in the money (K = 110), at the money (K = 100) and

out of the money (K = 90) and we give the values of theoretical portfolio at initial

time (V, δ) together with the mean costs C.

The parameters of the finite elements PDE solver are as follows: the grid in X variable

goes from 40 to 300 and has 100 discretization points. The grid in Y variable goes

from 0.0001 to 1 and has 50 discretization points. The elements are quadratic on each

triangle of the mesh (P2 elements). The time discretization is uniform with 50 time

steps but we still use the characteristic Galerkin method to have an unconditionally
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stable scheme. We start with model H1. We use 5 different values of α: from -0.2 to

0.2 The results are summarized in the following graphs
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Note that because the correlation is zero in this set of parameters the initial theo-

retical portfolio value adjusted with the mean costs is the same whichever function f

is chosen. This is clearly seen in that last graph
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