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Abstract

This thesis is devoted to the development of graph-based methods that address several of

the most fundamental computer vision problems, such as segmentation, tracking, shape

matching and 3D model inference.

The first contribution of this thesis is a unified, single-shot optimization framework

for simultaneous segmentation, depth ordering and multi-object tracking from monocular

video sequences using a pairwise Markov Random Field (MRF). This is achieved through

a novel 2.5D layered model where object-level and pixel-level representations are seam-

lessly combined through local constraints. Towards introducing high-level knowledge,

such as shape priors, we then studied the problem of non-rigid 3D surface matching. The

second contribution of this thesis consists of a higher-order graph matching formulation

that encodes various measurements of geometric/appearance similarities and intrinsic de-

formation errors. As the third contribution of this thesis, higher-order interactions were

further considered to build pose-invariant statistical shape priors and were exploited for

the development of a novel approach for knowledge-based 3D segmentation in medical

imaging which is invariant to the global pose and the initialization of the shape model.

The last contribution of this thesis aimed to partially address the influence of camera pose

in visual perception. To this end, we introduced a unified paradigm for 3D landmark

model inference from monocular 2D images to simultaneously determine both the optimal

3D model and the corresponding 2D projections without explicit estimation of the camera

viewpoint, which is also able to deal with misdetections/occlusions.

Keywords: Markov Random Fields, Higher-order MRFs, Segmentation, Tracking, Depth

Ordering, Shape Matching, Shape Prior, 3D Model Inference
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Résumé

Cette thèse est dédiée au développement de méthodes à base de graphes, permettant de

traiter les problèmes fondamentaux de la vision par ordinateur tels que la segmentation, le

suivi d’objets, l’appariement de formes et l’inférence de modèles 3D.

La première contribution de cette thèse est une méthode unifiée reposant sur un champ

de Markov aléatoire (MRF) d’ordre deux permettant de réaliser en une seule étape la seg-

mentation et le suivi de plusieurs objets observés par une caméra unique, tout en les or-

donnançant en fonction de leur distance à la caméra. Nous y parvenons au moyen d’un

nouveau modèle stratifié (2.5D) dans lequel une représentation bas-niveau et une représen-

tation haut-niveau sont combinées par le biais de contraintes locales. Afin d’introduire des

connaissances de haut niveau a priori, telles que des a priori sur la forme des objets, nous

étudions l’appariement non-rigide de surfaces 3D. La seconde contribution de cette thèse

consiste en une formulation générique d’appariement de graphes qui met en jeu des po-

tentiels d’ordre supérieur et qui est capable d’intégrer différentes mesures de similarités

d’apparence, de similarités géométriques et des pénalisations sur les déformations des

formes. En tant que la troisième contribution de cette thèse, nous considérons également

des interactions d’ordre supérieur pour proposer un a priori de forme invariant par rapport

à la pose des objets, et l’exploitons dans le cadre d’une nouvelle approche de segmenta-

tion d’images médicales 3D afin d’obtenir une méthode indépendante de la pose de l’objet

d’intérêt et de l’initialisation du modèle de forme. La dernière contribution de cette thèse

vise à surmonter l’influence de la pose de la caméra dans les problèmes de vision. Nous

introduisons un paradigme unifié permettant d’inférer des modèles 3D à partir d’images

2D monoculaires. Ce paradigme détermine simultanément le modèle 3D optimal et les

projections 2D correspondantes sans estimer explicitement le point de vue de la caméra,

tout en gérant les mauvaises détections et les occlusions.

Mots-clés : Champs de Markov Aléatoires, Champs de Markov Aléatoires d’ordre supérieur,

Segmentation, Suivi, Ordonnancement par Profondeur, Appariement de Formes, A priori

de Forme, Inférence de Modèles 3D
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Chapter 1

Introduction

The goal of computer vision is to enable the machine to understand the world - often

called visual perception - through processing of digital signals. Such an understanding

for the machine is done by extracting useful information from the signals and performing

complex reasoning. To this end, perception is often associated with the estimation of a

set of parameters about the underlying scene, and the inference of these parameters cor-

responds to the solution of a specific vision problem. Mathematically, let I denote the

observed data (e.g., digital images, surface meshes, etc.) and x denote a latent parame-

ter vector of interest that corresponds to a mathematical answer to the visual perception

problem. Perception can be formulated mathematically as finding a mapping from I to x,

which is essentially an inverse problem [Szeliski 2010].

Mathematical methods such as variational techniques and statistical methods usually

model such a mapping through an optimization problem as follows:

xopt = arg min
x

E(x; I) (1.1)

where the energy (or cost, objective) functionE(x; I) can be regarded as a quality measure

of a parameter configuration x in the solution space, given the observed images I. Hence,

visual perception involves two main tasks: modeling and optimization. The modeling of a

vision problem has to accomplish: (i) the choice of an appropriate representation1 of the

solution using a tuple of variables x; and (ii) the design of the energy function E(x; I)

which can correctly measure the adequacy between x and I. The optimization has to

1For example, image segmentation problems can be formulated either as a pixel labeling problem where

each variable in x represents the index of segment for the corresponding pixel or a boundary labeling problem

where each binary variable in x indicates if the boundaries of the segmentation are present at the correspond-

ing edge between a pair of neighbor pixels, etc.
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search for the set of parameters producing the optimum of the energy function where the

solution of the original problem lies.

The main difficulties in the modeling are due to the fact that most of the vision prob-

lems are inverse and ill-posed and require a large number of latent and/or observed vari-

ables to express the expected variations of the perception answer. Furthermore, the ob-

served signals are usually noisy, incomplete and often only provide a partial view of the

desired space. Physics-based, probabilistic and statistical models are often considered to

recover latent variables of interest from insufficient observed information. Hence, a suc-

cessful model usually requires a reasonable regularization, a robust data measure, and

a compact structure between the variables of interest to well characterize their relation-

ship (which is usually unknown). In the Bayesian paradigm, the model prior, the data

likelihood and the dependence properties correspond respectively to these terms, and the

maximization of the posterior probability of the latent variables corresponds to the mini-

mization of the energy function in Eq. 1.1. In addition to these, another issue that should

be taken into account during the modeling is the tractability of the optimization task. Such

a viewpoint impacts the quality of the obtained optima and introduce additional constraints

on the modeling step.

During the past decades, computer vision has made substantial progress thanks to the

advance in related fields such as mathematics, statistics, optimization, machine learning,

and also to the continuous increase - at a moderate cost - of available computational re-

sources. Numerous mathematical models have been proposed to deal with different vision

problems such as image segmentation, tracking and motion analysis, image reconstruction,

3D reconstruction from 2D images and medical image analysis [Paragios et al. 2005]. Due

to the complexity intrinsically involved in the visual world, more and more researchers

have been resorting to a rigorous modeling of physical phenomena, integration of various

useful cues/information within a single formulation (e.g., the principled fusion of prior

knowledge about objects and data evidence) and/or a joint modeling for complementary

tasks (e.g., joint segmentation and tracking), in order to develop more robust algorithms.

Compared to early methods such as knowledge-free image segmentation approaches and

tackling segmentation and tracking sequentially, such strategies have shown to lead to a

better performance and robustness. However, these benefits do not come for free, resulting

in a drastic increase in the number of variables (or degrees of freedom) in order to properly

treat various tasks in a single formulation. Many existing methods that belong to the scope

of variational techniques or statistical methods are based on “global models”. In such a

context, all the variables are coupled such that the objective function cannot be decom-

posed/factorized. Despite their mathematical soundness, such methods pose challenging

issues to the optimization process, since the objective function is in general non-linear,

high-dimensional and non-convex with numerous local minima. An even more challeng-
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ing case is the one where both continuous and discrete variables are present in the objective

function. Due to all these facts, many methods resort to coordinate-descent or Expectation-

Maximization (EM) optimization approaches to search for the optimal solution. However,

it is generally admitted that such optimization schemes are prone to be trapped in local

minima and provide no guarantee on the optimality of the solution, which often prevents

us from exploring the full expressiveness of the model.

Graph-based approaches - such as Markov Random Fields (MRFs) - that have bene-

fited from recent development in discrete optimization, refer to a promising methodology

for solving various vision problems. Such methods provide an excellent compromise be-

tween the expressive power of the modeling process and the optimality properties of the

corresponding inference algorithms. First, graphical models refer to a modular, flexible

and principled way to combine regularization (or prior), data likelihood terms and other

useful cues within a single graph-formulation, where continuous and discrete variables

can be simultaneously considered. The use of graph provides a simple way to visualize

the structure of a model and facilitates the choice and design of the model. Furthermore,

the use of discrete optimization can relax the constraints on the forms of regularization

and data terms (e.g., discrete optimization methods do not necessitate that the functions

are differentiable) and is less susceptible to local minima compared to continuous opti-

mization methods. Even though the global optimum cannot always be guaranteed, recent

MRF optimization techniques provide a gap index to show how far the resulting energy is

from the global optimum. Last but not least, as an important component of graph-based

methods, graphical models combine probability theory and graph theory within a general

formalism for modeling and solving inference problems using a Bayesian formulation.

Such an approach has potential advantages in terms of parameter learning and uncertainty

analysis over classic variational methods due to the probabilistic interpretation of the ob-

tained solution [Szeliski 2010]. The aforementioned strengths of graph-based modeling

and inference have resulted in the heavy adoption of these methods towards solving many

computer vision, computer graphics and medical imaging problems. However, it is impor-

tant to mention that the community has primarily focused on low-rank graphical models

where interactions between parameters was often at the level of pair of variables. This was

a convenient approach driven mostly from the optimization viewpoint since numerous ef-

ficient algorithms exist for solving pairwise MRFs. Such interactions to certain extent can

cope with rather complex vision problems (segmentation, estimation, motion analysis and

object tracking, disparity estimation from calibrated views, etc.), in particular when the

viewpoint of the camera has little impact on the modeling process. However, in a number

of visual perception tasks, either the camera pose or the “object” plays a fundamental role.

This is often addressed through an alternating approach where given the pose parameters,

inference on the graph is performed and the obtained solution is propagated back to the
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pose space towards re-estimating the pose.

Such a context motivated us to revise several of the most fundamental vision problems

and to develop graph-based formulations for them. More specifically, the problems that

we address in this thesis include:

• Joint multi-object tracking, segmentation and depth ordering from monocular 2D

video sequences

• Non-rigid 3D surface matching

• Knowledge-based 3D model inference from 2D and/or 3D images

They are related to 2D, 2.5D, 3D and 2D-3D visions and thus can be regarded as a repre-

sentative set of visual perception. Moreover, another motivation to solve these problems

is originated from the interest of applications. Such fundamental problems are involved

in numerous important vision applications, such as video surveillance, action recognition,

robot navigation, shape/object recognition, deformation transfer, human-machine interac-

tion and medical imaging.

However, “there is no free lunch”, graph-based modeling is not straightforward for

these vision problems due to the fact that the direct factorization of existing global objec-

tive functions is usually impossible. For example, depth ordering is usually expressed as

a strict and total order between objects and thus involves all unknown variables, result-

ing in a challenging factorization requirement of the objective function defined on such

an ordering. Similar difficulties are shared by 3D model inferences and surface match-

ing problems which are often modeled using an objective function that strongly depends

on both the global pose and local deformations. While global modeling is more intuitive

and better studied, we have to resort to distributed models in order to achieve graph-based

formulations.

1.1 Thesis Statement

In this thesis, we propose graph-based formulations for modeling the problems of interest

stated above, so that various cues can be fused in a principled way and the variables of

interest can be jointly inferred using discrete optimization techniques.

The overall methodology is to first investigate the global structure of each problem and

then to search for proper local interactions the accumulation of which can globally con-

strain the configuration of the whole system. Since local interactions are encoded within

local potential functions involving each a small number of variables, such interactions

must be independent from the configuration of other variables in order to achieve a rigor-

ous distributed model. Hence, the key step for graph-based modeling is to determine such
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“invariant” local interactions for each specific problem. Moreover, we usually expect the

cardinality of local interactions (i.e., the number of involved variables) to be as small as

possible in order to inherit reasonable inference complexity.

Following such a methodology, we have developed a joint 2.5D layered model where

top-down object-level and bottom-up pixel-level representations are seamlessly combined

through local constraints involving only pairs of variables. Then, based on such a layered

model, we have proposed for the first time a single-shot optimization framework for jointly

performing segmentation, depth ordering and multi-object tracking from monocular video

sequences using a pairwise MRF. Promising experimental results demonstrate the potential

of this method and its robustness to noise, cluttered backgrounds, moving cameras and

even complete occlusions.

For the problem of non-rigid 3D surface matching, we have developed a higher-order

graph-based formulation that combines multiple measurements of geometric/appearance

similarities and deformation prior. The use of higher-order interactions are motivated by

the fact that three point correspondences between two surfaces can determine intrinsic

deformation errors under the most natural assumption (i.e., isometry) on the deformation

between two surfaces. Through a number of challenging experiments, our approach was

proved to robustly establish the correspondence between non-rigid surfaces undergoing

large deformations, partial matching as well as inconsistent boundaries and scales.

Furthermore, we have used higher-order interactions to build a statistical shape model

that is pose-invariant. Based on such a shape model, we have introduced a novel approach

for knowledge-based 3D segmentation using a higher-order MRF, which does not require

the estimation of the global pose or the initialization of the shape model. This approach has

been validated on challenging data in the context of the human calf muscle segmentation.

Last but not least, for the problem of landmark-based 3D model inference from monoc-

ular 2D images, we have proposed a graph-based approach to simultaneously determine

both the optimal 3D model and the corresponding 2D projections. To the best of our

knowledge, this is the first attempt that can address both problems without explicit esti-

mation of the camera viewpoint. We are in addition able to encode visibility modeling

and therefore to deal with erroneous detections, lack of correspondences and/or partially

visible configurations. Promising results on standard face benchmarks demonstrate the

potential of our approach.

1.2 Outline of the Dissertation

The remainder of the dissertation is organized as follows. In chapter 2, we provide a survey

on graphical models, which composes the background of the works presented in this thesis.

Particular attention is given to the development of MRF models and their optimization
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techniques that are highly related to our methods. After that, the main works of this thesis

are presented in chapters 3, 4 and 5, respectively. More specifically, in chapter 3, we

present a novel joint layered model and a pairwise MRF formulation for simultaneously

and jointly performing segmentation, multi-object tracking and depth ordering. A higher-

order graph-based 3D surface matching method is introduced in chapter 4. In chapter

5, we propose one-shot optimization formulations for knowledge-based 3D segmentation

and for 3D model inference from monocular 2D images, as well as a pose-invariant 3D

shape prior. Finally, we conclude the thesis and discuss future works in chapter 6.



Chapter 2

Survey of Graphical Models

Graphical models combine probability theory and graph theory towards a natural and

powerful formalism for modeling and solving inference and estimation problems in var-

ious scientific and engineering fields. They have several useful properties that one can

benefit during the algorithm design:

1. A graph-based framework usually inherits modularity. Even though the whole sys-

tem can be complex, the designs of different components are independent to some

extent, and probability theory provides a principled way to combine these compo-

nents together. Furthermore, the modularity also includes the fact that the modeling

and the inference in such a framework are largely decoupled, which makes feasible

the adoption of inference methods being developed in different fields.

2. The graph theoretic side of graphical models provides a simple way to visualize the

structure of a model. Furthermore, these approaches encompass conditional inde-

pendence properties, which facilitates the choice and design of parametric inference

representations within the aforementioned context.

3. The factorization of the joint probability over a graph could produce inference prob-

lems that can be solved in a computational efficient manner. In particular, de-

velopment of inference methods based on discrete optimization1 enhances the po-

tential of graphical models and enlarges significantly the set of visual perception

problems on which the methods can be applied. Furthermore, the use of discrete

optimization as inference methods can relax the constraints on the characteristics

1We should note that continuous graphical models have also been used in the literature (e.g., [Isard 2003,

Sigal et al. 2003, Sudderth et al. 2010]).
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of the local functions (e.g., discrete optimization methods do not necessitate that

the functions are differentiable) and has better behavior in terms of convergence

to a global minimum compared to continuous methods. Even though the global

optimum cannot be guaranteed in general, state-of-the-art MRF optimization tech-

niques (e.g., TRW algorithms [Wainwright et al. 2005, Kolmogorov 2006] and dual-

decomposition [Komodakis et al. 2007a]) provide a gap index to show how far the

resulting energy is from the global optimum.

4. The variables in graphical models can be continuous and/or discrete, resulting in a

better flexibility and capacity for the modeling with respect to other approaches such

as variational methods [Tikhonov & Arsenin 1977, Engl et al. 1996].

5. The probabilistic side of graphical models leads to potential advantages in terms

of parameter learning (e.g., [Roth & Black 2007, Salakhutdinov 2009]) and uncer-

tainty analysis (e.g., [Kohli & Torr 2008, Glocker et al. 2008b]) over classic varia-

tional methods, due to the introduction of probability explanation to the solution

[Szeliski 2010].

Hence, graphical models have been widely used in computer vision community, where

problems (image restoration, image segmentation, stereo vision, etc.) often require to in-

fer the latent states for a large number of variables of interest. In particular, Undirected

Graphical Models, also known as Markov Random Fields (MRFs), have become a ubiqui-

tous tool to model and solve vision problems.

This chapter provides a survey of graphical models, which is the cornerstone of our

works presented in the following chapters of this dissertation. Our survey consists of

two parts. The first part (section 2.1) introduces the three common types of graphical

models, i.e., directed graphical models, undirected graphical models and factor graphs.

In particular, different subclasses of undirected graphical models are discussed as well as

their applications in computer vision. The second part of this chapter (section 2.2) presents

representative techniques for the MAP inference in discrete MRFs, where emphasis is paid

on the methods that are closely related with the ones employed in this thesis.

2.1 Graphical models

A probabilistic graphical model consists of a graph where each node is associated with

a random variable and an edge between a pair of nodes encodes probabilistic interaction

between the corresponding variables. Each of such models provides a compact represen-

tation for a family of joint probability distributions which satisfy the conditional indepen-

dence properties determined by the topology/structure of the graph: the associated family
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of joint probability distributions can be factorized into a product of local functions each of

which involves a (usually small) subset of variables. Such a factorization is the key idea

of graphical models.

There are two common types of graphical models: Directed Graphical Models (also

known as Bayesian Networks or Belief Networks) and Undirected Graphical Models (also

known as Markov Random Fields or Markov Networks), corresponding to directed and

undirected graphs, respectively. They are used to model different families of distribu-

tions with different kinds of conditional independences. It is usually convenient to covert

both of them into a unified representation which is called Factor Graph, in particular for

performing inference. We will proceed with a formal brief presentation of each model

where emphasis will be given to the ones which are strongly related with the content

of this dissertation. We suggest the reader being interested for a larger and more in

depth overview the following publications [Lauritzen 1996, Bishop 2006, Jordan 2007,

Koller & Friedman 2009].

2.1.1 Preliminary Notations

Let us introduce the necessary notations that will be used throughout the dissertation.

For a graphical model, let G = (V , E) denote the corresponding graph which consists

of a set V of nodes and a set E of edges. Then, for each node i (i ∈ V) contained in the

model, let Xi denote the associated random variable, xi the realization of Xi, and Xi the

state space of xi (i.e., xi ∈ Xi). Also, let X = (Xi)i∈V denote the joint random variable

and x = (xi)i∈V the realization (configuration) of the graphical model taking values in its

spaceX which is defined as the Cartesian product of the spaces for all individual variables,

i.e., X =
∏

i∈V Xi.

For the purposes of simplification and concreteness, we use “probability distribution”

to refer to “probability mass function” (with respect to the counting measure) in discrete

cases and “probability density function” (with respect to the Lebesgue measure) in contin-

uous cases. Furthermore, we use p(x) to denote the probability distribution on a random

variableX , and use xc (c ⊆ V) as the shorthand for a tuple c of variables, i.e., xc = (xi)i∈c.

Due to the one-to-one mapping between a node and the associated random variable, for

the purpose of convenience, we often use “node” to refer to the corresponding random

variable in cases where there is no ambiguity.

2.1.2 Bayesian Networks (Directed Graphical Models)

A Bayesian Network (BN) has the structure of a directed acyclic graph (DAG) G where

the edges in E are directed and no directed cycle exists (e.g., Fig. 2.1(a)), and holds the

following local independence assumptions (called local Markov property) which impose



24 SURVEY OF GRAPHICAL MODELS

that every node is independent of its non-descendant nodes2 given all its parents:

∀ i ∈ V, Xi⊥XAi
|Xπi

(2.1)

where Ai and πi denotes the set of non-descendant nodes and the set of parents for a node

i in the graph G, respectively, and Xi⊥Xj|Xk denotes the statement that Xi and Xj are

independent given Xk. The associated family of joint probability distributions are those

satisfying the local independences in Eq. 2.1, and can be factorized into the following form

according to G:

p(x) =
∏

i∈V

p(xi|xπi
) (2.2)

where p(xi|xπi
) denotes local conditional probability distribution (CPD) of xi given the

states xπi
of the parents. It should be noted that any distribution with the factorized form

in Eq. 2.2 satisfies the local independences in Eq. 2.1.

All conditional independences (called global Markov property) implied within the

structure of BNs, including the local independences of Eq. 2.1, can be identified by check-

ing d-separation properties of the corresponding graph G [Pearl 1988]. This can be per-

formed using an intuitive and handy method: Bayes ball algorithm [Geiger et al. 1990,

Shachter 1998]. Let I(G) denote the set of such conditional independences. Note that the

global Markov property and the local Markov property are equivalent in BNs. Hence, if

a distribution can be factorized over G, it must satisfy all the conditional independences

in I(G). On the other hand, we should also note that an instance of distribution that can

be factorized over G may satisfy more independences than those in I(G). Nevertheless,

such instances are very “few” in the sense that they have measure zero in the space of

CPD parameterizations, e.g., a slight perturbation of the local CPDs will almost certainly

eliminate these “extra” independences [Koller & Friedman 2009].

BNs are usually used to model causal relationships between random variables and

have been applied in many fields such as artificial intelligence, computer vision, auto-

matic control, information engineering, etc. In computer vision, Hidden Markov Models

(HMM) [Rabiner 1989] and Kalman Filters [Kalman 1960, Gelb 1974], which are well-

known subsets of BNs, provide a common way to model temporal relations and has been

employed to deal with object tracking [Terzopoulos & Szeliski 1993, Wu et al. 2002], de-

noising [Kim & Woods 1997, Romberg et al. 2001], motion analysis [Hervieu et al. 2007,

Gui et al. 2008], sign language recognition [Starner et al. 1998, Moni & Ali 2009], etc.

Besides, neural networks [Bishop 1995], another special type of BNs, provide an impor-

tant machine learning method to deal with vision problems [Egmont-Petersen et al. 2002].

Other vision applications include for example [Pavlovic 1999] and [Zhang & Ji 2005],

2For a node i ∈ V , its non-descendant nodes consist of the nodes j ∈ V − {i} such that there is no

directed path from i to j.
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(a) Bayesian Network

X1 X2 X3
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X5 X6X4 X7

X9

(b) Markov Random Filed

Figure 2.1: Examples of Bayesian Network and Markov Random Filed. Note that the

directed graph in (a) can be transformed into the undirected graph in (b) by moralization

process [Jordan 2007].

where dynamic BNs have been used to perform gesture/speech recognition and facial ex-

pression understanding, respectively.

2.1.3 Markov Random Fields (Undirected Graphical Models)

A Markov Random Field (MRF) has the structure of an undirected graph G where all edges

of E are undirected (e.g., Fig. 2.1(b)). Furthermore, such a paradigm inherits the following

local independence assumptions (also called local Markov property):

∀ i ∈ V, Xi⊥XV−{i}|XNi
(2.3)

which impose that a node is independent of any other node given all its neighbors. In

such a context, Ni = {j|{i, j} ∈ E} denotes the set of neighbors of node i in the graph

G. An important notion in MRFs is clique, which is defined as a full-connected sub-

set of nodes in the graph. A clique is maximal if it is not contained within any other

larger clique. The associated family of joint probability distributions are those satisfy-

ing the local Markov property (i.e., Eq. 2.3). According to Hammersley-Clifford theorem

[Hammersley & Clifford 1971, Besag 1974], they are Gibbs distributions which can be

factorized into the following form according to G:

p(x) =
1

Z

∏

c∈C

ψc(xc) (2.4)

where Z is the normalizing factor (also known as the partition function), ψc(xc) denotes

the potential function of a clique c which is a positive real-valued function on the possible
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configuration xc of the clique c, and C denotes a set of cliques3 contained in the graph G.

We can also verify that any distribution with the factorized form in Eq. 2.4 satisfies the

local Markov property in Eq. 2.3.

The global Markov property consists of all the conditional independences implied

within the structure of MRFs, which are defined as: ∀V1, V2, V3 ⊆ V , if any path from

a node in V1 to a node in V2 includes at least one node in V3, then XV1⊥XV2 |XV3 . Let

I(G) denote the set of such conditional independences. The identification of these inde-

pendences boils down to a “reachability” problem in graph theory: considering a graph

G ′ which is obtained by removing the nodes in V3 as well as the edges connected to these

nodes from G, XV1⊥XV2 |XV3 is true if and only if there is no path in G ′ that connects

any node in V1 − V3 and any node in V2 − V3. This problem can be solved using stan-

dard search algorithms such as breadth-first search (BFS) [Cormen et al. 2009]. Note that

the local Markov property and the global Markov property are equivalent for any positive

distribution. Hence, if a positive distribution can be factorized into the form in Eq. 2.4

according to G, then it satisfies all the conditional independences in I(G). Similar to

Bayesian Network, an instance of distribution that can be factorized over G, may satisfies

more independences than those in I(G).

MRFs provide a principled probabilistic framework to model vision problems, thanks

to their ability to model soft contextual constraints between random variables [Li 2009].

The adoption of such constraints is important in vision problems, since the image and/or

scene modeling involves interactions between a subset of pixels and/or scene components.

Often, these constraints are referred to as “prior” of the whole system. Through MRFs,

one can use nodes to model variables of interest and combine different available cues that

can be encoded by clique potentials within a unified probabilistic formulation. Then the

inference can be performed via Maximum a posteriori (MAP) estimation:

xopt = arg max
x

p(x) (2.5)

Since the potential functions are restricted to positive here, let us define clique energy

θc as a real function on a clique c (c ∈ C):

θc(xc) = − logψc(xc) (2.6)

3Note that any quantities defined on a non-maximal clique can always be redefined on the corresponding

maximal clique, and thus C can also consist of only the maximal cliques. However, using only maximal

clique potentials may obscure the structure of original cliques by fusing together the potentials defined on

a number of non-maximal cliques into a larger clique potential. Compared with such a maximal repre-

sentation, a non-maximal representation clarifies specific features of the factorization and usually leads to

computational efficiency in practice. Hence, without loss of generality, we do not assume that C consist of

only maximal cliques in this dissertation.
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Due to the one-to-one mapping between θc and ψc, we also call θc potential function (or

clique potential) on clique c in the remaining of this dissertation towards a more convenient

representation of the joint distribution p(x):

p(x) =
1

Z
exp{−E(x)} (2.7)

where E(x) denotes the energy of the MRF and is defined as a sum of potential functions

on the cliques:

E(x) =
∑

c∈C

θc(xc) (2.8)

Since the “-log” transformation between the distribution p(x) and the energy E(x) is

a monotonic function, the MAP inference in MRFs (i.e., the maximization of p(x) in

Eq. 2.5) is equivalent to the minimization of E(x) as follows:

xopt = arg min
x

E(x) (2.9)

In cases of discrete MRFs where the random variables are discrete (i.e., ∀ i ∈ V , Xi

consists of a discrete label set), the above optimization becomes a discrete optimization

problem. Numerous works have been done to develop efficient MRF optimization/inference

algorithms using discrete optimization theories and techniques (e.g., [Boykov et al. 2001,

Ishikawa 2003, Kolmogorov & Zabih 2004, Wainwright et al. 2005, Kohli & Torr 2007,

Kolmogorov 2006, Komodakis et al. 2008, Pawan Kumar et al. 2009, Komodakis 2010]),

which have been successfully employed to efficiently solve vision problems using MRF-

based methods (e.g., [Kolmogorov & Zabih 2002, Glocker et al. 2008a, Kohli et al. 2008b,

Szeliski et al. 2008, Boykov & Funka-Lea 2006]). We will provide a survey on an impor-

tant subset of such works in section 2.2. Due to the advantages regarding both the mod-

eling and the inference as discussed above, discrete MRFs have been widely employed to

solve vision problems. Below, we present several typical subsets of MRFs commonly used

in vision community.

Pairwise MRF Models

The most common type of MRFs that is widely used in computer vision is the pairwise

MRF, in which the associated energy is factorized into a sum of potential functions defined

on cliques of order strictly less than three. More specifically, a pairwise MRF consists of

a graph G with a set (θi(·))i∈V of singleton potentials (also known as unary potentials)

defined on single variables and a set (θij(·)){i,j}∈E of pairwise potentials defined on pairs

of variables. The MRF energy has the following form:

E(x) =
∑

i∈V

θi(xi) +
∑

{i,j}∈E

θij(xij) (2.10)
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(a) 4-neighborhood system (b) 8-neighborhood system

Figure 2.2: Examples of MRFs with Grid-like Structures

Pairwise MRFs have attracted the attention of a lot of researchers and numerous works

have been done in past decades, mainly due to the facts that pairwise MRFs inherit simplic-

ity and computational efficiency. On top of that, their use was spread due to the fact that the

interaction between pairs of variables is the most common and fundamental type of inter-

actions required to model many vision problems. In computer vision, such works include

both the modeling of vision problems using pairwise MRFs (e.g., [Geman & Geman 1984,

Rother et al. 2004, Felzenszwalb & Huttenlocher 2005, Boykov & Funka-Lea 2006]) and

the efficient inference in pairwise MRFs (e.g., [Boykov et al. 2001, Wainwright et al. 2005,

Kolmogorov 2006, Kohli & Torr 2007, Komodakis et al. 2007a]). Two of the most impor-

tant graph structures used in computer vision are grid-like structures (e.g., Fig. 2.2) and

pictorial structures (e.g., Fig. 2.3). Grid-like structures provide a natural and reasonable

representation for images, while pictorial structures are often associated with deformable

(articulated) objects.

Pairwise MRFs of grid-like structures (e.g., Fig. 2.2) have been widely used in com-

puter vision to deal with a large number of important problems, such as image denois-

ing/restoration (e.g., [Geman & Geman 1984, Greig et al. 1989]), stereo vision/multi-view

reconstruction (e.g., [Roy & Cox 1998, Kolmogorov & Zabih 2002, Vogiatzis et al. 2007]),

optical flow and motion analysis (e.g., [Black & Anandan 1993, Sun et al. 2010]), image

registration and matching (e.g., [Glocker et al. 2008a, Shekhovtsov et al. 2008]), segmen-

tation (e.g., [Boykov & Kolmogorov 2003, Rother et al. 2004, Boykov & Funka-Lea 2006])

and over-segmentation (e.g., [Moore et al. 2010, Veksler et al. 2010]).

In this context, the nodes of an MRF correspond to the lattice of pixels4 and the edges

corresponding to pairs of neighbor nodes are considered to encode contextual constraints

between nodes. The random variable xi associated with each node i represents a physical

4Other homogeneously distributed unit such as control point [Glocker et al. 2008a] can also be consid-

ered in such MRFs.
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quantity specific to problems (e.g., an index denoting the segment that the corresponding

pixel belongs to for image segmentation problem, an integral value between 0 and 255

denoting the intensity of the corresponding pixel for gray image denoising problem, etc.).

The data likelihood is encoded by the sum of the singleton potentials θi(·), whose defi-

nition is specific to the considered applications (e.g., for image denoising, such singleton

terms are often defined as a penalty function based on the deviation of the observed value

from the underlying value.). The contextual constraints compose a prior model on the

configuration of the MRF, which is usually encoded by the sum of all the pairwise poten-

tials θij(·, ·). The most typical and commonly used contextual constraint is the smooth-

ness, which imposes that physical quantities corresponding to the states of nodes varies

“smoothly” in the spatial domain as defined by the connectivity of the graph. To this end,

the pairwise potential θij(·, ·) between a pair {i, j} of neighbor nodes is defined as a cost

term that penalizes the variation of the states between the two nodes:

θij(xij) = ρ(xi − xj) (2.11)

where ρ(·) is usually an even and non-decreasing function. In computer vision, common

choices (Eq. 2.12) for ρ(·) are (generalized) Potts model5 [Potts 1952, Boykov et al. 1998],

truncated absolute distance and truncated quadratic, which are typical discontinuity pre-

serving penalties:

ρ(xi − xj) =







wij · (1− δ(xi − xj)) (Potts models)

min(Kij, wij · |xi − xj|) (truncated absolute distance)

min(Kij, wij · (xi − xj)
2) (truncated quadratic)

(2.12)

where wij ≥ 0 is a weight coefficient6 for the penalities, Kronecker delta δ(x) is equal to

1 when x = 0 and 0 otherwise, and Kij is a coefficient representing the maximum penalty

allowed in the truncated models. More discontinuity preserving regularization functions

can be found in for example [Terzopoulos 1986, Lee & Pavlidis 1988]. Such discontinuity

preserving terms reduce the risk of over-smoothing, which is an advantage compared with

Total Variation (TV) regularizations [Chan & Shen 2005] that are often used in variational

methods [Tikhonov & Arsenin 1977, Engl et al. 1996].

MRFs of pictorial structures (e.g., Fig. 2.3) provide a powerful part-based modeling

tool for representing deformable objects and in particular articulated objects. Their nodes

correspond to components of such objects. The corresponding latent variables represent

the spatial pose of the components. An edge between a pair of nodes encode the inter-

actions such as kinematic constraints between the corresponding pair of components. In

5Note that Ising model [Ising 1925, Geman & Geman 1984] is a particular case of Potts model where

each node has two possible states.
6wij is a constant for all pairs {i, j} of nodes in the original Potts model in [Potts 1952].
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(a) Pictorial Model (b) MRF corresponding to the Pictorial Model in (a)

Figure 2.3: Example of MRFs with Pictorial Structures (The original image used in (a) is

from HumanEva-I database: http://vision.cs.brown.edu/humaneva/.)

[Felzenszwalb & Huttenlocher 2005], Pictorial model [Fischler & Elschlager 1973] was

introduced into computer vision to deal with pose recognition of human body and face.

In this work, a tree-like MRF (see Fig. 2.3) was employed to model the spring-like prior

between pairs of components through pairwise potentials, while the data likelihood is en-

coded in the singleton potentials each of which is computed from the appearance model of

the corresponding component. The pose parameters of all the components are estimated

though the MAP inference, which can be done very efficiently in such a tree-structured

MRF using dynamic programming [Bellman 1957, Cormen et al. 2009] (i.e., min-sum be-

lief propagation [Pearl 1988, Yedidia et al. 2003, Bishop 2006]). This work has gained a

lot of attention in computer vision and the proposed part-based models have been adopted

and/or extended to deal with the pose estimation, detection and tracking of deformable ob-

ject such as human body [Sigal et al. 2003, Sigal & Black 2006a, Eichner & Ferrari 2009,

Andriluka et al. 2009], hand [Sudderth et al. 2004b, Sudderth et al. 2004a] and other ob-

jects [Pawan Kumar et al. 2004, Felzenszwalb et al. 2010]. In [Pawan Kumar et al. 2004],

part-based model of [Felzenszwalb & Huttenlocher 2005] was extended regarding the topol-

ogy of the MRF as well as the image likelihood in order to deal with the pose estimation of

animals such as cows and horses. Continuous MRFs of pictorial structures were proposed

in [Sigal et al. 2003] and [Sudderth et al. 2004b] to deal with body and/or hand track-

ing, where nonparametric belief propagation algorithms [Isard 2003, Sudderth et al. 2010]

were employed to perform inference. In the subsequent papers [Sigal & Black 2006a,

Sudderth et al. 2004a], occlusion reasoning was introduced into their graphical models in

order to deal with occlusions between different components. Indeed, the wide existence

of such occlusions in the cases of articulated objects is an important limitation of the part-

based modeling. The modeling of occlusions in graphical models is still an open problem.

http://vision.cs.brown.edu/humaneva/
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Higher-order MRF Models

Higher-order MRFs (also known as high-order MRFs) involve potential functions that are

defined on cliques containing more than two nodes and cannot be further decomposed.

One can express conveniently these graphical models by grouping the cliques according

to their order:

E(x) =
K∑

k=1

∑

c∈Ck

θc(xc) (2.13)

where Ck denotes the set of cliques of order k and K denotes the highest order in the

model.

Higher-order MRFs are often used to model more complex and/or natural statistics

between random variables and richer interactions between them. One can cite for exam-

ple the higher-order MRF model proposed in [Roth & Black 2005, Roth & Black 2009]

to better characterize image priors, by using the Product-of-Experts framework to de-

fine the higher-order potentials. Such a higher-order model was successfully applied in

image denoising and inpainting problems [Roth & Black 2005, Roth & Black 2009]. Pn

Potts model was proposed in [Kohli et al. 2007, Kohli et al. 2009b], which consists of a

strict generalization of the generalized Potts model [Boykov et al. 1998] (see Eq. 2.12).

It considers a similar interaction between n nodes (instead of between two nodes) and its

performance was demonstrated in image segmentation being a natural application domain

of such a model. In [Kohli et al. 2008a, Kohli et al. 2009a], Pn Potts model was further

enriched towards a robust Pn model, which produced better segmentation performance.

Higher-order smoothness priors were used in [Woodford et al. 2009] to solve stereo recon-

struction problems. Other types of higher-order pattern potentials were also considered in

[Komodakis & Paragios 2009] to deal with image/signal denoising and image segmenta-

tion problems. All these works demonstrated that the inclusion of higher-order interactions

is able to improve the performance compared to pairwise models in the considered vision

problems.

Higher-order models become even more important in the cases where we need to model

measures that intrinsically involve more than two variables. A simple example is the

modeling of second-order derivative (or even higher-order derivatives), which is often used

to measure bending force in shape prior modeling such as active contour models (i.e.,

“Snake”) [Kass et al. 1988]. In [Amini et al. 1990], dynamic programming was adopted

to solve “Snake” model in a discrete setting, which is essentially a higher-order MRF

model. A third-order spatial priors based on second derivatives was also introduced to deal

with image registration in [Kwon et al. 2008]. In the optical flow formulation proposed in

[Glocker et al. 2010], higher-order potentials were used to encode angle deviation prior,

non-affine motion prior as well as the data likelihood.
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More recently, global models, which include potentials involving all the nodes, have

been developed, together with the inference algorithms for them. One can cite for exam-

ple [Vicente et al. 2008] and [Nowozin & Lampert 2009] where global connectivity priors

(e.g., foreground segment must be connected) were used to enforce the connectedness

of the resulting labels for binary image segmentation, [Delong et al. 2010] where ‘label

costs” [Zhu & Yuille 1996] was introduced into graph-based segmentation formulation to

deal with unsupervised image segmentation, and [Ladicky et al. 2010a, Ladicky et al. 2011]

which proposed to incorporate “object co-occurrence statistics” in Conditional Random

Field (CRF) models to object class image segmentation.

Conditional Random Fields

A Conditional Random Field (CRF) [Lafferty et al. 2001, Sutton & McCallum 2011] en-

codes, with the same concept as the MRF earlier described, a conditional distribution

p(X|D) where X denotes a tuple of latent variables and D a tuple of observed variables

(data). It can be viewed as an MRF which is globally conditioned on the observed data D.

Accordingly, the Markov properties for the CRF are defined on the conditional distribution

p(X|D). The local Markov properties in such a context become:

∀ i ∈ V, Xi⊥XV−{i}|{XNi
,D} (2.14)

while the global Markov property can also be defined accordingly. The conditional distri-

bution p(X|D) over the latent variables X is also a Gibbs distribution and can be written

as the following form:

p(x|D) =
1

Z(D)
exp{−E(x;D)} (2.15)

where the energy E(x;D) of the CRF is defined as:

E(x;D) =
∑

c∈C

θc(xc;D) (2.16)

We can observe that there is no modeling on the probabilistic distribution over the variable

in D, which relaxes the concern on the dependencies between these observed variables,

whereas such dependencies can be rather complex. Hence, CRFs reduce significantly dif-

ficulty in modeling the joint distribution of the latent and observed variables, and observed

variables can be incorporated into the CRF framework in a more flexible way. Such a

flexibility is one of the most important advantages of CRFs compared with generative

MRFs7 when used to model a system. For example, the fact that clique potentials can be

data dependent in CRFs could lead to more informative interactions than data independent

7Like [Pawan Kumar 2008], we use the term generative MRFs to distinguish the usual MRFs from CRFs.
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Figure 2.4: Examples of Factor Graphs. Note that both of the Bayesian Network in

Fig. 2.1(a) and the Markov Random Filed in Fig. 2.1(b) can be represented by the two

factor graphs above. However, the factor graph in (b) contains factors corresponding to

non-maximal cliques.

clique potentials. Such an concept was adopted for example in binary image segmentation

[Boykov & Jolly 2001].

CRFs have been applied to various fields such as computer vision, bioinformatics and

text processing among others. In computer vision, for example, grid-like CRFs was intro-

duced in [Kumar & Hebert 2004] to model spatial dependencies in the image, an approach

that outperformed the classic MRF model [Geman & Geman 1984] in the image restora-

tion experiments. A multi-scale CRF model was proposed in [He et al. 2004] for object

class image segmentation, and a more sophisticated model named “associative hierarchi-

cal CRFs” were proposed in [Ladicky et al. 2009] to solve the same problem. Following

that, in [Ladicky et al. 2010b], object detectors and CRFs were combined within a CRF

model which can be solved efficiently, so as to jointly estimate the class category, loca-

tion, and segmentation of objects/regions from 2D images. CRFs has been also applied

for object recognition. For example, a discriminative part-based approach was proposed

in [Quattoni et al. 2004] to recognize objects based on a tree-structured CRF.

Despite the difference in the probabilistic explanation, the MAP inferences in genera-

tive MRFs and CRFs boil down to the same problem. For the purpose of convenience, we

do not explicitly represent the observed variables in the graph in this dissertation, however,

the implied model (generative MRFs or CRFs) will be clear in the context.
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2.1.4 Factor Graphs

Factor graph [Frey 1998, Kschischang et al. 2001] is a unified representation for both BNs

and MRFs, which uses additional nodes, named factor nodes8, to explicitly describe the

factorization of the joint distribution in the graph.

More specifically, a set F of factor nodes are introduced into the graph, corresponding

each to an objective function term defined on a subset of usual nodes. Each factor encodes

a local conditional probability distribution defined on a usual node and its parents in cases

of BNs (see Eq. 2.2), while it encodes a potential function defined on a clique in cases of

MRFs (see Eq. 2.4 or Eq. 2.8). The associated joint probability is a product of factors:

p(x) =
1

Z

∏

f∈F

φf (xf ) (2.17)

where the normalizing factor Z is equal to 1 for BNs. Similar to MRFs, we can define the

energy of the factor graph as:

E(x) =
∑

f∈F

θf (xf ) (2.18)

where θf (xf ) = − log φf (xf ). Note that there can be more than one factor graphs corre-

sponding to a BN or MRF. Fig. 2.4 shows two examples of factor graphs which provide

two different possible representations for both the Bayesian Network in Fig. 2.1(a) and the

Markov Random Filed in Fig. 2.1(b).

Factor graphs are bipartite, since there are two types of nodes and no edge exists be-

tween two nodes of same types. Such a representation conceptualizes in a clear manner

the underlying factorization of the distribution in the graphical model. In particular for

MRFs, factor graphs provide a feasible representation to describe explicitly the cliques

and the corresponding potential functions when non-maximal cliques are also consid-

ered (e.g., Fig. 2.4(b)). The same objective can be hardly met using the usual graphical

representation of MRFs. Computational inference is another strength of factor graphs

representations. The sum-product and min-sum (or: max-product9) algorithms in the

factor graph [Kschischang et al. 2001, Bishop 2006] generalize the classic counterparts

[Pearl 1988, Yedidia et al. 2003] in the sense that the order of factors can be greater than

two, which will be presented in section 2.2.2. Furthermore, since an MRF with loops may

has no loop in its corresponding factor graph (e.g., see the MRF in Fig. 2.1(b) and the fac-

tor graphs in Fig. 2.4 (a-b)), in such cases the min-sum algorithm in the factor graph can

8We call the nodes in original graphs usual nodes when an explicit distinction between the two types of

nodes is required to avoid ambiguities.
9The max-product algorithm is to maximize the probability p(x) which is a product of local functions

(Eq. 2.17), while the min-sum algorithm is to minimize the corresponding energy which is a sum of local

energy functions (Eq. 2.18). They are essentially the same algorithm.
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perform the MAP inference exactly with polynomial complexity. Let us call such factor

graphs without loop (e.g., Fig. 2.4 (a-b)) as Factor tree. Such an important subset of factor

graphs will be used later in this dissertation.

2.2 MAP Inference Methods for Discrete MRFs

An essential problem regarding the application of MRF models is how to infer the value

for each of the nodes contained in an MRF. This thesis focuses on the MAP inference

(i.e., Eq. 2.5) in discrete MRFs, which boils down to an energy minimization problem

as shown in Eq. 2.9. Such a combinatorial problem is known to be NP-hard in gen-

eral [Boykov et al. 2001, Kolmogorov & Zabih 2004], except for some particular cases

such as MRFs of bounded tree-width [Dawid 1992, Aji & McEliece 2000, Jordan 2007]

(e.g., tree-structured MRFs [Pearl 1988]) and pairwise MRFs with submodular energy

[Kolmogorov & Zabih 2004, Schlesinger & Flach 2006].

The most well-known early (before early 1990s) algorithms for optimizing the MRF

energy were iterated conditional modes (ICM) [Besag 1986], simulated annealing meth-

ods (e.g., [Geman & Geman 1984, Blake & Zisserman 1987, Tupin et al. 1998]) and high-

est confidence first (HCF) [Chou & Brown 1990, Chou et al. 1993]. While being com-

putational efficient methods, ICM and HCF suffer from their ability to recover a good

optimum. On the other hand, for simulated annealing methods, even if in theory they

provide certain guarantees on the quality of the obtained solution, in practice from com-

putational viewpoint such methods are impractical. In the 1990s, more advanced methods,

such as loopy belief propagation (LBP) [Freeman et al. 2000, Weiss & Freeman 2001,

Felzenszwalb & Huttenlocher 2006] and graph cuts techniques (e.g., [Greig et al. 1989,

Roy & Cox 1998, Boykov et al. 1998, Ishikawa & Geiger 1998, Boykov et al. 2001]), pro-

vided powerful alternatives to the aforementioned methods from both computational and

theoretical viewpoint and have been used to solve numerous visual perception problems

(e.g., [Freeman et al. 2000, Sun et al. 2003, Greig et al. 1989, Ishikawa & Geiger 1998,

Kolmogorov & Zabih 2002, Boykov & Kolmogorov 2003, Rother et al. 2004]). Since then,

the MRF optimization is experiencing a renaissance, and more and more researchers have

been working on it. For the most recent MRF optimization techniques, one can cite for ex-

ample QPBO techniques [Boros et al. 1991, Kolmogorov & Rother 2007, Boros et al. 2006,

Rother et al. 2007], LP primal-dual algorithms (e.g., [Komodakis et al. 2008]) as well as

dual methods (e.g., [Wainwright et al. 2005, Kolmogorov 2006, Komodakis et al. 2007b,

Werner 2007]). All these advances in the MRF optimization make the application of MRFs

more and more popular and become a ubiquitous tool in computer vision.

A brief overview of inference methods that are often employed in computer vision

community, in particular the techniques that have been adopted in the works of this thesis,
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Figure 2.5: Examples of s-t Graph Construction for Binary Graph Cuts

[Kolmogorov & Zabih 2004]. (a) Graphs for the singleton potential defined on a

node i. The left one is for the cases where θi(0) < θi(1) and the right one is

for the cases where θi(0) ≥ θi(1); (b) Graph for the pairwise potential defined

on an edge {i, j} where θij(1, 0) > θij(0, 0) and θij(1, 0) > θij(1, 1). Note that

θij(1, 0) + θij(0, 1)− θij(0, 0)− θij(1, 1) > 0 holds when the energy is submodular.

will be presented in the upcoming sections. To this end, we will first review binary Graph

cuts and their extensions for minimizing the energy of pairwise MRFs in section 2.2.1.

Then in section 2.2.2, we will describe the min-sum belief propagation algorithm in factor

tree and also show its extensions towards dealing with an arbitrary graphical model. Fol-

lowing that, we review in section 2.2.3 recent developed dual methods for pairwise MRFs,

in particular the tree-reweighted message passing methods (e.g., [Wainwright et al. 2005,

Kolmogorov 2006]) and the dual-decomposition approaches (e.g., [Komodakis et al. 2007b,

Komodakis et al. 2011]). Last but not least, a survey on inference methods for higher-

order MRFs will be provided in section 2.2.4.

2.2.1 Graph Cuts and Extensions

Graph cuts consist of a family of discrete algorithms that use min-cut/max-flow techniques

to efficiently minimize the energy of discrete MRFs and have been used to solve vari-

ous vision problems (e.g., [Greig et al. 1989, Ishikawa & Geiger 1998, Rother et al. 2004,

Kolmogorov & Zabih 2002, Boykov & Funka-Lea 2006, Kohli et al. 2008b]).

The basic idea of graph cuts is to construct a directed graph Gst = (Vst, Est) (called s-t

graph10, see examples in Fig. 2.5) with two special terminal nodes (i.e., the source s and

the sink t) and non-negative capacity setting c(i, j) on each directed edge (i, j) ∈ Est, such

10Note that generations such as multi-way cut problem [Dahlhaus et al. 1992] which involves more than
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that the cost C(S, T ) (Eq. 2.19)) of the s-t cut that partitions the nodes into two disjoint

sets (S and T such that s ∈ S and t ∈ T ) is equal11 to the energy of the MRF with the

corresponding configuration12 x.

C(S, T ) =
∑

i∈S,j∈T,(i,j)∈Est

c(i, j) (2.19)

An MRF that has such an s-t graph is called graph-representable13 and can be solved in

polynomial time using graph cuts [Kolmogorov & Zabih 2004]. The minimization of the

energy of such an MRF is equivalent to the minimization of the cost of the s-t-cut problem

(i.e., min-cut problem). The Ford and Fulkerson theorem [Ford & Fulkerson 1962] states

that the solution of the min-cut problem corresponds to the maximum flow from the source

s to the sink t (i.e., max-flow problem). Such a problem can be efficiently solved in polyno-

mial time using many existing algorithms such as Ford-Fulkerson style augmenting paths

algorithms [Ford & Fulkerson 1962] and Goldberg-Tarjan style push-relabel algorithms

[Goldberg & Tarjan 1988]. Note that the min-cut problem and the max-flow problem are

actually dual LP problems of each other [Vazirani 2001].

Unfortunately, not all the MRFs are graph-representable. Previous works have been

done to explore the class of graph-representable MRFs (e.g., [Boros & Hammer 2002,

Ishikawa 2003, Kolmogorov & Zabih 2004, Schlesinger & Flach 2006]) and demonstrated

that a pairwise discrete MRF is graph-representable so that the global minimum of the en-

ergy can be achieved in polynomial time via Graph cuts if the energy function of the MRF

is submodular. There are various definitions of submodular energy functions in the litera-

ture that are equivalent. We consider here the one used in [Schlesinger & Flach 2006]. Let

us assume Xi (∀ i ∈ V) to be a completely ordered set, the energy function of a pairwise

discrete MRF is submodular if each pairwise potential term θij (∀ {i, j} ∈ E) satisfies:

∀x1
i , x

2
i ∈ Xi s.t. x1

i ≤ x2
i , and ∀x1

j , x
2
j ∈ Xj s.t. x1

j ≤ x2
j ,

θij(x
1
i , x

1
j) + θij(x

2
i , x

2
j) ≤ θij(x

1
i , x

2
j) + θij(x

2
i , x

1
j), (2.20)

For binary cases where the Xi = {0, 1} (∀ i ∈ V), the condition is reduced to that each

pairwise potential θij (∀ {i, j} ∈ E) satisfy:

θij(0, 0) + θij(1, 1) ≤ θij(0, 1) + θij(1, 0) (2.21)

two terminal nodes are NP-hard.
11There may be a constant difference between the cost of cut and the MRF energy.
12The following rule can be used to associate an s-t cut to an MRF labeling: for a node i ∈ Vst − {s, t},

i) if i ∈ S, the label xi of the corresponding node in the MRF is equal to 0; ii) if i ∈ T , the label xi of the

corresponding node in the MRF is equal to 1.
13Note that, in general, such an s-t graph is not unique for a graph-representable MRF.
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However, in numerous vision problems, more challenging energy functions are often

required that do not satisfy the submodular condition in Eq. 2.20. The minimization

of such non-submodular energy functions are NP-hard in general [Boykov et al. 2001,

Kolmogorov & Zabih 2004] and an approximation algorithm would be required to ap-

proach the global optimum.

In vision community, [Greig et al. 1989] proposed to use min-cut/max-flow techniques

to exactly optimize the energy of a binary (i.e., binary-label) MRF (Ising model) for im-

age restoration in polynomial time. However, such techniques did not draw much atten-

tion in vision in the following decade since then, probably due to the fact that the model

considered in [Greig et al. 1989] is quite simple. Such a situation has changed in late

1990s when a number of techniques based on Graph cuts were proposed to solve more

complicated MRFs (e.g., multi-labels MRFs). One can cite for example the works of

[Roy & Cox 1998], [Boykov et al. 1998] and [Ishikawa & Geiger 1998], which proposed

to use min-cut/max-flow techniques to minimize multi-label MRFs.

Since then, numerous works have been done for exploring larger subsets of MRFs

that can be exactly or approximately optimized by graph cuts and for developing more

efficient graph cuts algorithms. We can cite for example an efficient graph construc-

tion method proposed in [Ishikawa 2003] to deal with arbitrary convex pairwise MRFs.

In [Boykov et al. 2001], α-expansion and αβ-swap were introduced to generalize binary

Graph cuts to handle pairwise MRFs with metric and/or semi-metric energy with optimum

quality guarantee (i.e., the ratio between the obtain energy and the global optimal energy is

bounded by a factor). An important problem was studied in [Kolmogorov & Zabih 2004],

i.e., what kinds of MRF energy functions can be minimized by Graph cuts. Besides,

[Kolmogorov & Zabih 2004] also introduced a more efficient graph construction approach

compared to [Boykov et al. 2001] and proposed a method able to deal with the minimiza-

tion of third-order pseudo-boolean functions. A dynamic max-flow algorithm was pro-

posed in [Kohli & Torr 2005, Kohli & Torr 2007] to accelerate graph cuts when dealing

with dynamics MRFs (i.e., the potential functions vary over time, whereas the change be-

tween two successive instants is usually quite small), where the key idea is to reuse the

flow obtained by solving the previous MRF so as to significantly reduce the computational

time of min-cut. Another dynamic algorithm was also proposed in [Juan & Boykov 2006]

to improve the convergence of optimization for dynamic MRFs, by using the min-cut

solution of the previous MRF to generate an initialization for solving the current MRF.

In [Komodakis et al. 2007b] and [Komodakis et al. 2008], a primal-dual scheme based on

linear programming relaxation was proposed for optimizing the MRF energy. This method

can be viewed as a generalization of α-expansion and achieves a substantial speedup with

respect to previous methods such as [Boykov et al. 2001] and [Komodakis & Tziritas 2007].

Two similar but simpler techniques with respect to that of [Komodakis et al. 2007b] were
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proposed in [Alahari et al. 2008] to achieve a similar computational efficiency. Besides,

an efficient algorithm based on max-flow and elimination techniques was introduced in

[Carr & Hartley 2009] for the optimization of 4-neighborhood grid-like MRFs.

We should note that several methods do also exist for partially inferring solutions for

non-submodular binary energy functions. About three decades ago, Roof duality was pro-

posed in [Hammer et al. 1984], which provides a way to achieve a partial optimal label-

ing for quadratic pseudo-boolean functions (the solution will be a complete labeling that

corresponds to global optimum if the energy is submodular). Such a method was ef-

ficiently implemented in [Boros et al. 1991], which is referred to as Quadratic Pseudo-

Boolean Optimization (QPBO) algorithm and can be regarded as a graph-cuts-based algo-

rithm with a special graph construction where two nodes in s-t graph are used to represent

two complementary states of a node in the original MRF [Kolmogorov & Rother 2007].

By solving min-cut/max-flow in such an s-t graph, QPBO outputs a solution assigning

0, 1 or 1
2

to each node in the original MRF, where the label 1
2

means the correspond-

ing node is unlabeled. Later, two different techniques were introduced in order to ex-

tend QPBO towards achieving a complete solution. One is probing (called QPBO-P)

[Boros et al. 2006, Rother et al. 2007], which aims to gradually reduce the number of un-

labeled nodes (either by finding the optimal label for certain unlabeled nodes or by re-

grouping a set of unlabeled nodes) until convergence by iteratively fixing the label of

a unlabeled node and performing QPBO. The other one is improving (called QPBO-I)

[Rother et al. 2007], which starts from a complete labeling y and gradually improves such

a labeling by iteratively fixing the labels of a subset of nodes as those specified y and using

QPBO to get a partial labeling to update y. These QPBO techniques were further extended

in [Kohli et al. 2008c] to deal with multi-label MRFs, where the key idea is to convert a

multi-label MRF into an equivalent binary MRF [Ishikawa 2003] and then use QPBO

techniques to solve the linear relaxation of the obtained binary MRF. For the inference in

multi-label MRFs, another interesting method based on QPBO and move techniques was

proposed in [Lempitsky et al. 2010], which is referred to as fusion moves. Different from

previous move techniques such as α-expansion and αβ-swap, such a method fuses two

arbitrary proposals of the full labeling by using QPBO and achieves a new labeling that

has an energy less or equal than the energies of both proposals.

2.2.2 Belief Propagation Algorithms

Belief propagation algorithms use local message passing to perform inference on graphical

models. These methods provide an exact inference algorithm for tree-structured graphical

models, while an approximate solution can be achieved when a loopy graph is considered.

For those loopy graphs with low tree-widths (Eq. 2.23) such as cycles, extended belief
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propagation methods such as junction tree algorithm [Dawid 1992, Aji & McEliece 2000,

Jordan 2007] provide an efficient algorithm to perform exact inference.

Belief Propagation in Tree

Belief propagation (BP) [Pearl 1988, Yedidia et al. 2003, Bishop 2006] was proposed orig-

inally for exactly solving MAP inference (min-sum algorithm) and/or maximum-marginal

inference (sum-product algorithm) in a tree-structured graphical model in polynomial

time. These methods can be viewed as a special case of dynamic programming in graphical

models [Bellman 1957, Cormen et al. 2009, Felzenszwalb & Zabih 2011].

The min-sum algorithm14 is described in Algorithm 2.2 using the factor graph repre-

sentation [Kschischang et al. 2001, Bishop 2006], since as we mentioned in section 2.1.4,

the factor graph makes the BP algorithm applicable to more cases compared to the classic

min-sum algorithm applied on a usual pairwise graph [Freeman et al. 2000]. In general,

the complexity of the belief propagation in the tree isO(NLK), whereN , L, K denote the

number of nodes, the number of candidates for each node, and the maximum order of the

factors, respectively. Note that reparameterization (also known as equivalent transforma-

tion) of the MRF energy (e.g., [Wainwright et al. 2004, Kolmogorov 2006]) provides an

alternative interpretation of belief propagation and leads to a memory-efficient implemen-

tation [Kolmogorov 2006].

Loopy Belief Propagation

The tree-structured constraint limits the use of the standard belief propagation algorithm

presented above. In computer vision, most of the problems require loopy graphical models

to encode well the interactions between variables. Hence, researchers have investigated to

extend the message passing concept for minimization of arbitrary graphs.

Loopy belief propagation (LBP), a natural step towards this direction, performs mes-

sage passing iteratively in the graph (e.g., [Frey & MacKay 1998, Freeman et al. 2000,

Weiss & Freeman 2001, Felzenszwalb & Huttenlocher 2006]) despite of the existence of

loops. We refer the reader to [Freeman et al. 2000, Weiss & Freeman 2001] for the details

and discussion on the LBP algorithm. Regarding the message passing scheme in loopy

graphs, there are two possible choices: parallel or sequential. In the parallel scheme,

messages are computed for all the edges at the same time and then the messages are prop-

agated for the next round of message passing. Whereas in the sequential scheme, a node

14Note that all the BP-based algorithms presented in section 2.2.2 include both min-sum and sum-product

versions. We focus here on the min-sum version, since we consider MAP inference in the works that

have been done in this thesis. Nevertheless, one can easily obtain the sum-product version by replac-

ing the message computation with the sum of the product of function terms. We refer the reader to

[Kschischang et al. 2001, Bishop 2006, Jordan 2007] for more details.
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propagates the message to one of its neighbor node at each round and such a message will

be used to compute the messages sent by that neighbor node. [Tappen & Freeman 2003]

showed empirically that the sequential scheme was significantly faster than the parallel

one, while the performance of both methods was almost the same. Substantial investment

was made towards improving the efficiency of message passing by exploiting different

types of structure regarding the graph and/or the potential functions. For example, an ef-

ficient method was proposed in [Pawan Kumar & Torr 2006] to reduce computational and

memory cost for robust truncated models where a pairwise potential is equal to a constant

for most of the state combination of the two nodes. [Felzenszwalb & Huttenlocher 2006]

introduced a strategy for speeding up belief propagation for cases where pairwise potential

functions only depend on the difference of the variables such as those defined in Eq. 2.12,

an approach to accelerating the message passing in bipartite graphs (including grid-like

MRFs in Fig. 2.2), and a multi-scale belief propagation scheme to perform inference in

grid-like MRFs. Two speed-up techniques specifically for grid-like MRF models were

also proposed in [Petersen et al. 2008].

Despite the fact that LBP performed well for a number of vision applications such as

[Freeman et al. 2000, Sun et al. 2003], they cannot guarantee to converge to a fixed point,

while their theoretical properties are not well understood. Last but not least, their solution

is generally worse than more sophisticated generalizations of message passing algorithms

(e.g., [Wainwright et al. 2005, Kolmogorov 2006, Komodakis et al. 2007a]) that will be

presented in section 2.2.3 [Szeliski et al. 2008].

Algorithm 2.1 Ordering of the Nodes for Sending Messages In a Tree

Input: Tree T = (V , E) with node set V and edge set E

Input: Root node r̂ ∈ V

Output: Psend = NodeOrdering(T , r̂), where Psend is a list denoting the ordering of the

nodes in tree T for sending messages

Psend ← (r̂)

if |V| > 1 then

Get the set C of child nodes: C ← {i|i ∈ V, {i, r̂} ∈ E}

for all c ∈ C do

Get child tree Tc with root c

Psend ← (NodeOrdering(T , r̂),Psend) {Psend is ordered from left to right}

end for

end if

return Psend
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Algorithm 2.2 Min-sum Belief Propagation in Factor Tree

Input: Factor tree T = (V ∪ F , E) with usual node set V , factor node set F and edge set

E

Input: Factor potentials (θf (·))f∈F

Output: The optimal configuration xopt = arg min
x

∑

f∈F θf (xf )

Choose a node r̂ ∈ V as the root of the tree

Construct Π s.t. Π(i) denotes the parent of node i ∈ V ∪ F

Construct C s.t. C(i) denotes the set of children of node i ∈ V ∪ F

Psend ← NodeOrdering(T , r̂) {see Algorithm 2.1}

for k = 1→ length(Psend)− 1 do

i← Psend(k)

parent node p← Π(i)

child node set C ← C(i)

if i ∈ V then

if |C| > 0 then

mi→p(xi)←
∑

j∈C mj→i(xi)

else

mi→p(xi)← 0

end if

else

if |C| > 0 then

mi→p(xp)← minxC
(φ(xi) +

∑

j∈C mj→i(xj))

si(xp)← arg minxC
(φ(xi) +

∑

j∈C mj→i(xj))

else

mi→p(xp)← φ(xp) {p is the unique variable contained in factor i in this case.}

end if

end if

end for

xopt

r̂ ← arg minxr̂

∑

j∈C(r̂)mj→r̂(xr̂)

for k = length(Psend)− 1→ 1 do

i← Psend(k)

if i ∈ F then

parent node p← Π(i)

child node set C ← C(i)

xopt

C ← si(xp)

end if

end for

return xopt
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Figure 2.6: Example of Junction Tree. (a) Original undirected graphical model; (b) Trian-

gulation of the graph in (a); (c) A junction tree for the graphs in (a) and (b); (d) A clique

tree which is not junction tree.

Junction Tree Algorithm

Junction tree algorithm (JTA) is an exact inference method in arbitrary graphical models

[Dawid 1992, Aji & McEliece 2000, Jordan 2007]. The key idea is to make systematic use

of the Markov properties implied in graphical models to decompose a computation of the

joint probability or energy into a set of local computations. Such an approach bears strong

similarities with message passing in the standard belief propagation or dynamic program-

ming. In this sense, we regard JTA as an extension of the standard belief propagation. Let

us introduce some necessary notions and properties about junction trees and then discuss

briefly the corresponding inference algorithm.

For a clique set C, the corresponding clique tree is defined as a tree-structured graph

GJ with node set VJ and edge set EJ where each node i (i ∈ VJ ) represents a clique

ci ∈ C. A junction tree is a clique tree which processes the junction tree property: for

every pair of cliques ci and cj in GJ , ci ∩ cj is contained in all the cliques on the (unique)

path between ci and cj . The junction tree property ensures that local consistency implies

global consistency so that local message passing process can produce exact inference. The

example in Fig. 2.6 provides two clique trees (Fig. 2.6(c) and (d)) corresponding to the

undirected graph in Fig. 2.6(b), where we use square boxes to explicitly represent the

separators each of which is associated to an edge and denotes the intersection of the two

cliques connected by the edge. We can easily verify that the clique tree in Fig. 2.6(c) is a

junction tree, while the other one in Fig. 2.6(d) is not.

There are two important properties about junction trees [Jordan 2007], which are useful

for the construction of a junction tree given an undirected graphical model:
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1. An undirected graph has a junction tree if and only if it is triangulated (i.e., there is

no chordless15 cycle in the graph.

2. A clique tree is a junction tree if and only if it is a maximal spanning tree which is a

clique tree that has the maximal weight (i.e.,
∑

i,j∈EJ
|ci∩ cj|) over all possible trees

connecting the considered cliques.

Hence, for a given undirected graph (e.g., Fig. 2.6(a)), we can first triangulate16 it (e.g.,

Fig. 2.6(b)), and then find a maximal spanning tree to form a junction tree for the maximal

cliques contained in this triangulated graph. This operation will produce a junction tree

for the undirected graph (e.g., Fig. 2.6(c)). For each clique c in the original graph, the

associated clique potential θc is accumulated to the potential θ̂i of one and only one node

i in the junction tree such that c is included in the clique ci corresponding to node i (i.e.,

c ⊆ ci).

Without considering optimality of the generated junction tree17, the triangulation can

be done easily using undirected graph elimination algorithm [Jordan 2007]. This method

successively eliminates the nodes in a graph by connecting the remaining neighbors of

the node and removing the node as well as the edge connected to it from the graph. The

second step, i.e., the finding of a maximal spanning tree, can be easily performed using

greedy algorithms such as Kruskal’s algorithm [Cormen et al. 2009].

The energy18 of a junction tree is defined as a sum of the potentials of the cliques

corresponding to the nodes:

E(x) =
∑

i∈VJ

θ̂i(xci
) (2.22)

where ci denotes the clique corresponding to node i of the junction tree. Due to the junction

tree property, we can perform local message passing in the junction tree to do the inference,

which is similar to standard belief propagation in factor trees. Interestingly, nodes in

junction trees can be regarded as factor nodes in factor trees, while separators in junction

trees can be regarded as usual nodes (may corresponding to a set of variables) in factor

trees. Then the belief propagation scheme in the junction tree can be obtained easily from

the one for the factor tree (see Algorithm 2.2). Hence, we do not present the message

passing process here to avoid redundancy and refer the reader to [Aji & McEliece 2000,

Jordan 2007] for details.

15A cycle is said to be chordless if there is no edge between two nodes that are not successors in the cycle.
16For directed graphical models, a moralization process [Jordan 2007] is to be applied prior to the trian-

gulation in order to transform the directed graph to an undirected graph.
17Note that there may exist several such junction trees corresponding to an undirected graph. As we will

discuss below, the optimality of a junction tree is related to its width. However, it is generally an NP-hard

problem to find an optimal junction tree [Jordan 2007].
18The joint probability of a junction tree is defined as a product of potential functions, which is similar to

factor graph in Eq. 2.17. We do not present it here for the purpose of compactness.
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It can be easily noticed that in discrete cases, the complexity of the inference (i.e.,

belief propagation) in a junction tree is exponential with respect to its width W . The width

is defined as the maximum cardinal of the corresponding cliques over all nodes minus 1,

i.e.:

W = max
i∈VJ

|ci| − 1 (2.23)

Hence, the complexity is dominated by the largest maximal cliques in the triangulated

graph. However, the triangulation process may produce large maximal cliques, while

finding of an optimal junction tree with the smallest width for an arbitrary undirected graph

is an NP-hard problem. Furthermore, graphical models with dense initial connections

could lead to maximal cliques of very high cardinal even if an optimal junction tree could

be found [Jordan 2007]. Due to the computational complexity, the junction tree algorithm

becomes impractical when the tree width is high, although it provides an exact inference

approach. Thus it has been only used in some specific scenarios or some special kinds of

graphs that have low tree widths (e.g., cycles and outer-planar graphs whose widths are

equal to 2). For example, JTA was employed in [Paskin 2003] to deal with simultaneous

localization and mapping (SLAM) problem, and was also adopted in [Batra et al. 2010]

to perform exactly inference in outer-planar graphs within the whole dual-decomposition

framework. In order to reduce the complexity, nested junction tree technique was proposed

in [Kjæ rulff 1998] to further factorize large cliques. Nevertheless, the gain of such a

process depends directly on the initial graph structure and is still insufficient to make JTA

widely applicable in practice.

2.2.3 Dual Methods

The MAP inference in pairwise MRFs (Eq. 2.9, 2.10), can be reformulated as the integer

linear programming (ILP) [Wainwright & Jordan 2007] as follows:

min
τ

E(θ, τ ) = 〈θ, τ 〉 =
∑

i∈V

∑

a∈Xi

θi;aτi;a +
∑

(i,j)∈E

∑

(a,b)∈Xi×Xj

θij;abτij;ab

s.t. τ ∈ τ
G =







τ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

a∈Xi

τi;a = 1 ∀ i ∈ V

∑

a∈Xi

τij;ab = τj;b ∀ {i, j} ∈ E , b ∈ Xj

τi;a ∈ {0, 1} ∀ i ∈ V, a ∈ Xi

τij;ab ∈ {0, 1} ∀ {i, j} ∈ E , (a, b) ∈ Xi ×Xj







.

(2.24)

where θi;a = θi(a), θij;ab = θij(a, b), binary variables19 τi;a = [xu = a] and τij;ab = [xi =

a, xj = b], τ denotes the concatenation of all these binary variables which can be defined

as ((τi;a)i∈V,a∈Xi
, (τij;ab){i,j}∈E,(a,b)∈Xi×Xj

), and τ
G denotes the domain of τ .

19[·] is equal to one if the argument is true and zero otherwise.
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Unfortunately the above ILP problem is NP-hard in general. Numerous approximation

algorithms of MRF optimization have been developed based on Linear Programming (LP)

relaxation of such a problem in Eq. 2.24, aiming to minimize E(θ, τ ) in a relaxed domain

τ̂
G (called local marginal polytope) which is obtained by replacing the integer constraints

in Eq. 2.24 by the non-negative constraints, i.e.:

min
τ

E(θ, τ ) = 〈θ, τ 〉 =
∑

i∈V

∑

a∈Xi

θi;aτi;a +
∑

(i,j)∈E

∑

(a,b)∈Xi×Xj

θij;abτij;ab

s.t. τ ∈ τ̂
G =







τ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

a∈Xi

τi;a = 1 ∀ i ∈ V

∑

a∈Xi

τij;ab = τj;b ∀ {i, j} ∈ E , b ∈ Xj

τi;a ≥ 0 ∀ i ∈ V, a ∈ Xi

τij;ab ≥ 0 ∀ {i, j} ∈ E , (a, b) ∈ Xi ×Xj







.

(2.25)

For purposes of clarity, from now on, the term MRF-MAP will be used for the original

MAP inference problem (Eq. 2.24) and MRF-LP for the relaxed one (Eq. 2.25).

It is generally infeasible to directly apply generic LP algorithms such as interior point

methods [Boyd & Vandenberghe 2004] to solve MRF-LP problems corresponding to MRF

models in computer vision [Yanover et al. 2006], due to the fact that the number of vari-

ables involved in τ is usually huge. Instead, many methods in the literature have been de-

signed based on solving some dual to the MRF-LP problem in Eq. 2.25, i.e., maximizing

the lower bound of E(θ, τ ) provided by the dual. One can cite for example the min-sum

diffusion [Kovalevsky & Koval 1975] and augmenting DAG [Koval & Schlesinger 1976]

algorithms that were reviewed in [Werner 2007], the message passing algorithm based

on block coordinate descent proposed in [Globerson & Jaakkola 2007], tree-reweighted

Message Passing (TRW) techniques [Wainwright et al. 2005, Kolmogorov 2006] and dual

decomposition (MRF-DD) [Komodakis et al. 2007b, Komodakis et al. 2011]. The tight-

ening of the LP-relaxation has also been investigated towards achieving a better optimum

of the MRF-MAP problem (e.g., [Sontag & Jaakkola 2007, Komodakis & Paragios 2008,

Pawan Kumar et al. 2009, Werner 2010]). Here, we review briefly the TRW and MRF-DD

techniques, which have been used in the context of this thesis.

Tree-reweighted Message Passing

Tree-reweighted max-product message passing (TRW) algorithms [Wainwright et al. 2005,

Kolmogorov 2006] are well-explored MRF optimization methods. The key idea of TRW

algorithms is to solve the MRF-LP problem via a dual problem based on convex combi-

nation of trees. Actually, the optimal values of such a dual problem and of the MRF-LP

problem coincide, since strong duality holds [Wainwright et al. 2005]. Furthermore, in
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TRW algorithms, the LP relaxation (Eq. 2.25) is tight if a fix point of TRW algorithms

satisfies a condition referred to as (strong) tree agreement (TA) [Wainwright et al. 2005],

where a global optimal solution to the original MRF problem is achieved.

In [Wainwright et al. 2005], such an methodology was introduced to solve the MRF-

MAP problem by using two different (edge-based and tree-based) message passing schemes,

called TRW-E and TRW-T, respectively. These variants can be viewed as combinations

of reparameterization and averaging operations on the MRF energy. However, both of

the schemes do not guarantee the convergence of the algorithms and the value of the

lower bound may fall into a loop. A sequential message passing scheme was proposed

in [Kolmogorov 2006], which is known as TRW-S. Different from TRW-E and TRW-T,

the TRW-S algorithm updates messages in a sequential order instead of a parallel order.

Such a difference introduce to the algorithm better convergence properties, i.e., the lower

bound will not decrease. TRW-S will attain a point that satisfies a condition referred to

as weak tree agreement (WTA) [Kolmogorov & Wainwright 2005] and the lower bound

will not change any more since then20. Although the global optimum of the dual problem

satisfies WTA condition, the converse is not necessarily true and therefore TRW-S cannot

guarantee the global maximum of the lower bound in general. Nevertheless, as demon-

strated in [Kolmogorov & Wainwright 2005], a WTA fixed point for the cases of binary

pairwise MRFs always corresponds to the global maximum of the dual problem, and thus

also corresponds to the global optimum of the MRF-LP problem. Furthermore, if a binary

pairwise MRF is submodular, a WTA fixed point always achieves the global optimum of

the MRF-MAP problem.

Dual Decomposition

In [Komodakis et al. 2007a, Komodakis et al. 2011], dual-decomposition [Bertsekas 1999]

principle was introduced into the MRF optimization problem. The outcome was a general

and powerful framework to minimize the MRF energy, which will be called MRF-DD

in the remaining part of the thesis. The key idea of MRF-DD is: instead of minimiz-

ing directly the energy of the original problem (referred to as master problem) that is too

complex to solve directly, we decompose the master problem into a set of subproblems

(referred to as slave problems). The main characteristic of these subproblems is that each

of them is easier to solve both in terms of cardinality as well as in terms of convexity.

Once such decomposition is achieved, the solution of the master problem is obtained by

combining the solutions of the slaves problems. Such an idea can be summarized mathe-

matically as following: based on a Lagrangian dual of the MRF-MAP problem in Eq. 2.24,

20[Kolmogorov 2006] observed in the experiments that TRW-S would finally converge to a fixed point but

such a convergence required a lot of time after attaining WTA. Nevertheless, such a convergence may not be

necessary in practice, since the lower bound will not change any more after attaining WTA.
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the sum of the minima of the slave problems that are obtained by the decomposition of the

master problem provides a lower bound on the energy of the original MRF. This sum is

maximized using projected subgradient method so that a solution to the master problem

can be extracted from the Lagrangian solutions21.

Such a MRF optimization framework possesses a great flexibility, generality and con-

vergence property:

1. The Lagrangian dual problem can be globally optimized due to the convexity of the

dual function. The solution obtained by the MRF-DD algorithm satisfies weak tree

agreement (WTA) condition22, while a solution satisfying WTA condition is not nec-

essarily the optimum to the Lagrangian dual. The properties of tree agreement and

weak tree agreement fix points [Kolmogorov & Wainwright 2005] are also applica-

ble within the MRF-DD method.

2. Different decompositions of the master problem can be considered to deal with

MRF-MAP problem. Each of such decompositions leads to a certain relaxation

of the MRF-MAP problem. Interestingly, when the master problem is decomposed

into a set of trees, the Lagrangian relaxation employed by MRF-DD is equivalent

to the LP relaxation in Eq. 2.25, which is exactly the problem TRW algorithms aim

to solve23. However, within MRF-DD framework, one can consider more sophisti-

cated decompositions to tighten the relaxation (e.g., decompositions based on outer-

planar graphs [Batra et al. 2010] and K-fan graphs [Kappes et al. 2010]). To this

end, a very useful theoretical conclusion has been drawn in [Komodakis et al. 2011]

which provides an approach to comparing the tightness between two different de-

compositions.

3. Only MAP inference in slave problems are required and there is no constraints on

how such an inference is done. As a result, one can apply specific optimization al-

gorithms to solve slave problems and even different optimization algorithms for dif-

ferent slave problems. The natural outcome of such a property is high flexibility for

designing new graph-based optimization algorithms based on such a dual decompo-

sition framework. A number of elegant applications have been proposed in the liter-

ature, which include the graph matching method proposed in [Torresani et al. 2008],

21[Komodakis et al. 2011] provides a detailed discussion on different approaches to obtaining a feasible

solution of the master problem from the solution of the slave problems after solving the Lagrangian dual.
22WTA condition can be easily extended to the cases where one or more slave problems are not tree-

structured.
23The main difference between MRF-DD and TRW algorithms consists in the mechanism of the update

of dual variables. The former relies on the optimal solution of slave problems while the latter is based on the

min-marginals of the trees corresponding to slave problems.
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the higher-order MRF inference method developed in [Komodakis & Paragios 2009],

and the algorithm for joint segmentation and appearance histogram models opti-

mization introduced in [Vicente et al. 2009].

However, computational cost is the main drawback of the MRF-DD algorithm. Reducing

the running time for the convergence is an open problem and there are various techniques

that have been proposed in the literature. For example, two approaches were proposed

in [Komodakis 2010] to speed-up LP-based algorithms. One is to use a multi-resolution

hierarchy of dual relaxations, and the other consists of a decimation strategy that gradually

fixes the labels for a growing subset of nodes as well as their dual variables during the

process. [Jojic et al. 2010] proposed to construct a smooth approximation of the energy

function of the master problem by smoothing the energies of the slave problems so as to

achieve a significant acceleration of the MRF-DD algorithm. A distributed implementation

of graph cuts was introduced in [Strandmark & Kahl 2010] to solve the slave problems in

parallel.

2.2.4 Inference in Higher-order MRFs

Higher-order potentials allow a better characterization of statistics between random vari-

ables and increase largely the ability of graph-based modeling. The rapid development of

computer hardwares in terms of memory capacity and CPU speed also motivates the use of

higher-order models in computer vision community. Nevertheless, efficient inference algo-

rithms for solving higher-order MRFs are necessary towards expanding their use in vision

problems that usually involve a large number of variables. In such a context, numerous

works have been devoted in the past decade to search for inference algorithms in higher-

order models. One can cite for example the work of Roth and Black [Roth & Black 2005,

Roth & Black 2009], where a simple inference scheme based on a conjugate gradient

method was developed to solve their higher-order model for image restoration. Since

then, besides a number of methods for solving specific types of higher-order models (e.g.,

[Kohli et al. 2007, Ramalingam et al. 2008, Nowozin & Lampert 2009, Delong et al. 2010,

Ladicky et al. 2010a]), various techniques also have been proposed to deal with more gen-

eral MRF models (e.g., [Lan et al. 2006, Potetz & Lee 2008, Komodakis & Paragios 2009,

Ishikawa 2009]). These inference methods are highly inspired from the ones for pairwise

MRFs. Thus, similar to pairwise MRFs, there are also three main types of approaches for

solving higher-order MRFs, i.e., algorithms based on reduction and graph cuts, higher-

order extensions of belief propagation, and dual methods.
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Reduction and Graph cuts

Most of existing methods tackle inference in higher-order MRFs using a two-stage ap-

proach: first to reduce a higher-order model to a pairwise one with the same minimum, and

then to apply standard methods such as graph cuts to solve the obtained pairwise model.

The idea of order reduction exists for long time. More than thirty years ago, a method

(referred to as variable substitution) was proposed in [Rosenberg 1975] to perform order

reduction for models of any order, by introducing auxiliary variables to substitute prod-

ucts of variables24. However, this approach leads to a large number of non-submodular

components in the resulting pairwise model. This is due to the hard constraints involved

in the substitution, which causes large difficulty in solving the obtained pairwise model.

This may explain why its impact is rather limited in the literature [Boros & Hammer 2002,

Ali et al. 2008], since our final interest is solving higher-order models. In [Ali et al. 2008],

QPBO was employed to solve the resulting pairwise model, nevertheless, only third-order

potentials were tested in the experiments. A better reduction method that generally pro-

duces fewer non-submodular components was proposed in [Kolmogorov & Zabih 2004],

in order to construct s-t graph for a third-order binary MRF. This reduction method was

studied from an algebraic viewpoint in [Freedman & Drineas 2005] and led to some inter-

esting conclusions towards extending this method to models of an arbitrary order. Based

on these works, [Ishikawa 2009, Ishikawa 2011] proposed a generalized technique that

can reduce any higher-order binary MRF into a pairwise one, which can then be solved by

QBPO. The same concept was extended in [Ishikawa 2009, Ishikawa 2011] to deal with

multi-label MRFs by using fusion moves [Lempitsky et al. 2010]. Very recently, aiming to

obtain a pairwise model that are as easy as possible to solve, [Gallagher et al. 2011] pro-

posed to approach order reduction as a optimization problem, where different factors are

allowed to choose different reduction methods towards optimizing an objective function

defined using a special graph (referred to as order reduction inference graph).

Graph-cuts methods have also been considered to cope either with specific visual per-

ception problems or certain classes of higher-order models. For example, [Kohli et al. 2007,

Kohli et al. 2009b] characterized a class of higher-order potentials (i.e., Pn Potts model)

for which the optimal expansion and swap moves can be computed efficiently in poly-

nomial time, and proposed an efficient graph-cuts-based method for solving such mod-

els. Such a technique was further extended in [Kohli et al. 2008a, Kohli et al. 2009a] to

a wider class of higher-order models (i.e., robustPn model). Graph-cuts-based approaches

were also proposed [Ladicky et al. 2010a, Ladicky et al. 2011] and in [Ladicky et al. 2010a,

Ladicky et al. 2011] to perform inference in their higher-order MRFs with global poten-

tials that encode “co-occurrence statistics” and/or “label costs”. Despite the fact that such

24Here, we consider binary higher-order MRFs and their energy functions can be represented in form of

pseudo-Boolean functions [Boros & Hammer 2002].
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methods were designed for a limited range of problems, they better capture the character-

istics of the problems and are able to solve the problems relatively efficiently (e.g., they

often cannot be solved by a general inference methods).

Belief-propagation-based Methods

As we mentioned in section 2.2.2, the factor graph representation of MRFs enables the

extension of classic min-sum belief propagation algorithm to higher-order cases. Hence

loopy belief propagation in factor graphs provides a straightforward way to deal with in-

ference in higher-order MRFs. Such an approach was employed in [Lan et al. 2006] to

solve their higher-order Fields-of-Experts model.

A practical problem for propagating messages in higher-order MRFs is that the com-

plexity increases exponentially with respect to the highest order among all cliques. Var-

ious techniques have been proposed to accelerate the belief propagation in special fam-

ilies of higher-order potentials. For example, the use of distance transform techniques

[Borgefors 1986, Felzenszwalb & Huttenlocher 2006] significantly improves the efficiency

of the message passing process in [Lan et al. 2006]. [Potetz 2007, Potetz & Lee 2008] and

[Tarlow et al. 2010] proposed efficient message passing algorithms for some families of

potentials such as linear constraint potentials and cardinality-based potentials. Recently,

the max-product message passing was accelerated in [Mcauley & Caetano 2011] by ex-

ploiting the fact that a clique potential often consists of a sum of potentials each of which

involves only a sub-clique of variables. The expected time of the message passing was

further reduced in [Felzenszwalb & Mcauley 2011].

Dual Methods

The LP relaxation formulation in Eq. 2.25 can be generalized to the cases of higher-order

MRFs. Such a generalization was studied in [Werner 2008, Werner 2010], where min-sum

diffusion [Kovalevsky & Koval 1975] was adopted to achieve a method for optimizing the

energy of higher-order MRFs, which is referred to as n-ary min-sum diffusion25.

The Dual-decomposition framework [Bertsekas 1999, Komodakis et al. 2007b], which

has been presented in section 2.2.3, can also be adopted to deal with higher-order MRFs.

This was demonstrated in [Komodakis & Paragios 2009], where inference algorithms were

introduced for solving a wide class of higher-order potential referred to as pattern-based

potentials26.

25The method was originally called n-ary max-sum diffusion in [Werner 2008, Werner 2010] due to the

fact that a maximization of objective function was considered.
26For example, Pn Potts model [Kohli et al. 2009b] is a sub-class of pattern-based potentials.
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Lastly, we note that the exploitation of the sparsity of potentials is explicitly or im-

plicitly employed in many of the above higher-order inference methods. In this direc-

tion, [Rother et al. 2009] proposed a compact representation for “sparse” higher-order po-

tentials (except a very small subset, the labelings are almost impossible so as to have

the same high energy) to convert a higher-order model into a pairwise one so that pair-

wise MRF inference methods such as graph cuts can be employed to solve the prob-

lem. Due to the “sparseness”, only a small number of auxiliary variables are required for

the order reduction process. In the same line of research, [Kohli & Pawan Kumar 2010]

studied and characterized some families of higher-order potentials (e.g., Pn Potts model

[Kohli et al. 2009b]) that can be represented compactly as upper or lower envelopes of

linear functions. Furthermore, it was demonstrated that these higher-order models can be

converted into pairwise models with the addition of a small number of auxiliary variables.

2.3 Conclusion

In order to conclude this chapter, let us first recall to the reader that graphical models, in

particular Markov Random Fields and discrete optimization have been a dominant research

direction in computer vision for the past decade. The main stream referred to pairwise

formulations, where their use was mostly motivated from computational efficiency. In the

recent years, we have witnessed significant progress with regards to the optimization of

MRFs, in particular higher-order MRFs, which was the main driving force of this thesis.

The use of distributed graphical models and the master-slave decomposition will be the

concepts being studied and developed towards addressing some of the most fundamental

problems of low, mid and high-level vision.



Chapter 3

Segmentation, Depth Ordering and

Multi-object tracking

In this chapter, we aim to jointly and simultaneously solve segmentation, multi-object

tracking and depth ordering from monocular video sequences using a unified graph-based

framework. To this end, we first propose a joint 2.5D layered model where top-down

object-level and bottom-up pixel-level representations are seamlessly combined through

local constraints which involve only pairs of variables. Then based on such a layered

model, we propose a graphical-model formulation, where all the observed and hidden

variables of interest such as image intensities, states of pixels (index of the associated ob-

ject and relative depth) and of objects (motion parameters1 and relative depth) are jointly

modeled within a single pairwise MRF. Finally, through minimizing the MRF energy,

we simultaneously segment, track and sort by depth the objects. Promising experimen-

tal results demonstrate the potential of this framework and its robustness to image noise,

cluttered background, moving camera and background, and even complete occlusions.

3.1 Introduction

Image segmentation and object tracking are among the most fundamental and active re-

search topics in the computer vision community. They often serve as low and mid-level

cues in numerous applications such as video surveillance, action recognition, robot navi-

gation, medical imaging and human-machine interaction.

1Here, motion parameters are referred to as all the parameters controlling the shape of an object, such as

global pose parameters (location, scale, rotation) and other parameters for characterizing the shape variation.
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Image segmentation aims at grouping pixels into meaningful components/regions or

delineating boundaries between different regions. Hence, segmentation methods can be

classified into two categories: edge-based and region-based. In the first category, one seeks

the region boundaries that do often correspond to visual discontinuities. Active contours

(including snakes [Kass et al. 1988], geodesic active contours [Caselles et al. 1997] and

their implicit level set variants techniques [Osher & Fedkiw 2002, Osher & Paragios 2003])

are popular methods. The central idea is to evolve and propagate an initial curve towards

the desired region boundaries under the influence of image forces while being constrained

from internal ones. In the second category, pixels are grouped together according to their

visual properties and spatial relationships, either through clustering, continuous or discrete

methods. Mean-shift [Comaniciu & Meer 2002] is a typical example of clustering method

that aims at grouping together pixels with the same chromaticity characteristics. Examples

of the continuous methods include Mumford-Shah [Mumford & Shah 1989], Chan-Vese

functionals [Chan & Vese 2001] and geodesic active regions [Paragios & Deriche 2002],

usually solved via level set approaches [Osher & Fedkiw 2002, Osher & Paragios 2003].

Regarding discrete methods, graph-based methods have been quite popular, like normal-

ized cut (NCut) [Shi & Malik 2000], isoperimetric cut (IsoCut) [Grady & Schwartz 2006]

and more recent MRF-based segmentation techniques are the current state of the art (e.g.,

[Rother et al. 2004, Boykov & Funka-Lea 2006]). In such a context, each pixel is en-

dowed a label (discrete variable) denoting the segment it belongs to and the pixel la-

beling can be efficiently achieved via discrete optimization methods. Such an approach

inherits the advantage of being less susceptible - over continuous methods and active con-

tours - to local minima. As a very important sub-problem, segmenting a specific object

category such as human body and organs (e.g., [Cootes et al. 1995, Kohli et al. 2008b,

Besbes et al. 2009]), have also raised lots of attentions. Among existing methods, prior

information on the shape of the specific class is usually combined within the approach to-

wards improving significantly the quality of segmentation (e.g., [Freedman & Zhang 2005,

Huang et al. 2004, Kohli et al. 2008b]).

Object tracking aims at locating moving objects in consecutive frames of a video

sequence. The representation of an object of interest usually consists of a shape (that

can be fairly simple or fairly complex) and an appearance models. Shape representa-

tions encompass basic geometric shapes (e.g., rectangle, ellipse [Comaniciu et al. 2000,

Comaniciu et al. 2003]), complex parametric shape representations [Balan & Black 2006,

Kohli et al. 2008b, de La Gorce et al. 2008] and part-based models [Sudderth et al. 2004a,

Felzenszwalb & Huttenlocher 2005, Sigal & Black 2006a], etc. Such geometric priors are

often combined with image-based similarities of the object appearance in time to esti-

mate the configuration of the object in each frame. Furthermore, dynamical system can

also be adopted to encode information on the object trajectory properties. Kalman filters
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[Kalman 1960, Gelb 1974], the mean-shift algorithm [Comaniciu et al. 2000] and the con-

densation [Isard & Blake 1998] are the most popular methods for single object tracking.

The transition from single object tracking to the multi-object brings in the inevitable task

of efficiently dealing with the interactions between objects, in particular occlusions during

the movement.

3.1.1 Joint Segmentation and Tracking

Image segmentation and object tracking are two complementary tasks. More and more

researchers aim to jointly and simultaneously solve them in order to improve their per-

formances. In the MRF segmentation literature, one can cite for example the works

of [Huang et al. 2004, Freedman & Zhang 2005, Pawan Kumar et al. 2005], where object

shape priors were considered in the context of MRF segmentation. These approaches de-

termine the segmentation and the shape estimation using coordinate descent or EM-style

optimizations where the global objective function is minimized with respect to the shape

model parameters and pixel labeling, alternately.

This concept was further enhanced in [Kohli et al. 2008b], where articulated object

tracking and MRF segmentation were coupled within an objective function. Such a for-

mulation involves both pixel labeling and the pose parameters. In order to solve this com-

plex inference problem due to the fact that discrete and continuous variables are present,

they proposed a combination of continuous and discrete optimizations: for a given pose

configuration, dynamic binary graph cuts [Kohli & Torr 2005] are used to determine the

minimum of the function with respect to the pixel labeling. Once a binary segmenta-

tion map is determined, a gradient-free local search (via Powell minimization algorithm

[Press et al. 1988]) is performed to determine the pose parameters. Such a promising

approach in the context of single object tracking is not suited for multi-object tracking

unless proper handling of occlusions between objects is introduced. The direct exten-

sion of this approach to the case of multiple objects would cause evidence over-counting

problem (i.e., associating a pixel to more than one object). [Malcolm et al. 2007] pro-

posed to solve multi-object tracking and image segmentation via multi-label graph cuts

[Boykov et al. 2001]. More specifically, template shapes of the objects, with the position

parameters predicted from previous frames, are used as shape priors to perform multi-label

MRF image segmentation with graph cuts. Then the object positions are re-estimated us-

ing the segmented regions. The use of multi-label segmentation helps in avoiding evidence

over-counting but is insufficient to ensure robustness with respect to (moderate and severe)

occlusions that would require occlusion reasoning.

However, it is important to note that such combined methods perform in general better

than the ones solving the problems sequentially (e.g., [Huang & Essa 2005, Yang et al. 2005,
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Agarwal & Triggs 2004]). Such an observation is evident when more challenging condi-

tions such as image noise and cluttered background are present.

3.1.2 Depth Ordering and Occlusion Handling

Multi-object tracking in monocular video sequences becomes a challenging computer vi-

sion problem, mostly due to the occlusions caused by the overlapping of objects along the

line of view. In the recent years, substantial effort has been dedicated to deal with oc-

clusions in the literature (e.g., [Jepson et al. 2002, Huang & Essa 2005, Yang et al. 2005,

Senior et al. 2006]). One essential issue of occlusion handling is how to process the

data association so as to correctly explain the evidence from observed images. Another

concern relates on how to account for the occluded parts of objects towards properly

estimating the spatial configuration of objects in the cases where the objects are par-

tially or completely occluded. However, it is not straightforward to take into account

such objectives in a graphical-model formulation without introducing high-order cliques.

[Sigal & Black 2006a] and [Sudderth et al. 2004a] proposed to combine binary visibility

variables within graph-based tracking to perform occlusion reasoning. Occlusions are con-

sidered towards avoiding over-counting image support. Nevertheless, the formulations did

not intrinsically guarantee that at least one object or the background has to be associated

to a given pixel.

Depth notion and layered models were other alternatives that were widely used in the

literature (e.g., [Nitzberg & Mumford 1990, Wang & Adelson 1994, Darrell & Fleet 1995,

Tao et al. 2000, Jojic & Frey 2001, Jepson et al. 2002, Winn & Blake 2004, Smith et al. 2004,

Jackson et al. 2008, Pawan Kumar et al. 2008, Auvray et al. 2009, Sun et al. 2010]). Lay-

ered representations provide a compact spatial modeling by considering succinctly a re-

gion/object as a layer. A 2.5D representation, where relative depth is introduced to each

layer, allows the use of depth ordering to perform visibility reasoning and occlusion han-

dling in an explicit and rigorous way. One can cite for example the work [Jepson et al. 2002]

which proposed to combine depth ordering to perform object tracking. However, an in-

evitable issue is how to efficiently perform the inference. In the previous (generative)

approaches, the layers are usually strictly and totally ordered according to their relative

depths. The use of such a depth ordering and other scene parameters lead to a high-order

objective function which involves all the objects and cannot be factorized. Two kinds

of methods have been used to optimize such a function. One is coordinate-descent or

Expectation-maximization (EM) method such as the one proposed in [Jepson et al. 2002].

An alternative strategy considers depth ordering as a hyper-parameter of the whole for-

mulation (e.g., [Smith et al. 2004]). Then one can evaluate the optimum of the objective

function for each possible ordering configuration by optimizing the function with respect
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to other parameters. The optimal solution of the combined problem corresponds then to

the best one among all ordering candidates. Such an approach increases dramatically the

complexity with respect to the number of objects, since the number of ordering configura-

tions is the factorial of the number of objects.

3.1.3 Our Approach

In the remaining of this chapter, we aim to introduce a method that addresses in a sound

and valid manner the multi-object tracking and segmentation problems while being effi-

cient from computational viewpoint. In order to satisfy such requirements, let us define

a number of desired principles for a combined multi-object segmentation and tracking

approach as follows:

1. Proper integration of depth ordering within the whole tracking/segmentation formu-

lation to modeling rightly and rigorously visibility and occlusion;

2. Joint and simultaneous estimation of all variables of interest (depth, motion param-

eters and pixel segmentation labels);

3. Integration within a single MRF towards taking advantage of generic MRF inference

techniques (see chapter 2), which are less prone to be trapped in local minima than

local search or EM-style techniques.

In order to meet the above conditions, the main theoretical challenge lies on the decom-

position of the depth ordering into low-order interactions between variables, which then

can be easily integrated with standard MRF-based segmentation and tracking components.

Our first main contribution lies on a novel joint 2.5D layered image modeling, where only

pairwise interactions can encode all necessary visibility constraints. Then based on such a

modeling, we have achieved a unified MRF formulation to address the challenge of com-

bining the segmentation and multi-object tracking with a rigorous visibility modeling (i.e.,

depth ordering). The latent states of pixels (index of the associated object and relative

depth) and of objects (motion parameters, relative depth) are integrated along with a prin-

cipled way in the MRF. By minimizing the MRF energy, we simultaneously segment the

image, estimate the motion parameters of the objects and sort by depth the objects.

3.1.4 Outline of the Chapter

The remainder of this chapter is organized as follows. We present in section 3.2 our joint

2.5D layered modeling, which is then transported into the MRF formulation for the inte-

grated multi-object tracking, ordering and image segmentation in section 3.3. Experimen-
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tal validation and some discussion compose section 3.4. Finally, we conclude the chapter

in section 3.5.

3.2 Joint 2.5D Layered Modeling

The proposed joint 2.5D layered model consists of top-down object-level and bottom-up

pixel-level representations which are combined in a principled way. Let us first introduce

some basic assumptions with regard to the above two-level representations. We assume

that the objects of interest have two following properties:

1. There is no mutual occlusion2 (e.g., object 1 partially occludes object 2 and is par-

tially occluded by object 2). Thus, each object can be considered to be “flat” and

modeled as a 2D shape, especially for the purpose of visibility modeling. We regard

each object as well as the background as a layer3.

2. The objects are opaque. Thus, one and only one object is visible at any location in

the image plane.

3.2.1 Object-level Representation

Let us assume that we know that there are K objects of interest in a sequence of images.

Thus, we use Vo = {1, 2, . . . , K} to denote the index set of the objects (i.e., the foreground

layers). Furthermore, we model the background as a special object (i.e., the background

layer) and assign it an index “0”. Finally, we define the extended object set Vs = Vo ∪ {0}

which contains the indices of all the layers of the scene.

The spatial configuration of each object k (k ∈ Vo) consists of two components:

1. a 2D parametric shape model Mk(θk) with motion parameters θk (e.g., location,

scale, rotation for the case of similarity transform), which characterizes the “hori-

zontal” extent in the image plane;

2. a relative depth4 dk, which characterizes the “vertical” position in the layered hier-

archy and is used to determine the occlusion relation between the objects. An object

i can occlude another object j only if di < dj . A detail discussion on the depth will

be provided in section 3.2.1, in particular its domain of definition.

2A mathematical definition will be given in section 3.2.1.
3Hereafter, we use the term layer to refer to object or background for the purpose of conciseness.
4Towards simplifying the presentation of the framework, the term relative depth will be replaced by depth

hereafter.
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Regarding the background layer, we adopt two simple conditions in terms of shape and

occlusion: (i) its 2D shapeM0(θ0) is always equal to the image domain5; and (ii) it lies

behind (is occluded by) all the objects to be tracked6, and thus its depth d0 is greater than

that of any object.

To conclude, the composite spatial parameter Γk = (θk, dk) characterizes the spatial

configuration of layer k (k ∈ Vs), and the object-level representation can be denoted as a

vector of spatial parameters:

Γ = (Γk)k∈Vs
= (θk, dk)k∈Vs

(3.1)

For sake of convenience for some presentation, we also reformulate Γ as Γ = (θ,d)

where θ = (θk)k∈Vs
and d = (dk)k∈Vs

denote the shape parameters and the depths of all

the objects, respectively.

Relative Depth

In previous generative frameworks (e.g., [Jepson et al. 2002, Smith et al. 2004]), the depth

configuration d̂ = (dk)k∈Vo
of the objects is usually considered as a permutation of

(0, 1, . . . , |Vo| − 1) and the depth of the background is a constant, i.e., d0 = |Vo|. In

such a representation, the objects and background are strictly and totally ordered by their

depths (using the usual “less than” operator “<”), and thus the number of possible depth

orderings is |Vo|!. Such a depth modeling provides a sound theoretical approach to rea-

soning the visibility/occlusion. However, it is not compact and is somewhat “wasteful”

in practice. This is due to the fact that the depth order between two objects is meaning-

ful only when there is occlusion between them (including transitive occlusion via third

objects) whereas the number of overlapping objects is usually much smaller than the to-

tal number of objects. Taking two completely visible objects for example, the relation

between their depths can be arbitrary.

Here, we elaborate the modeling of the depth using the notion of occlusion graph Go

[Darrell & Fleet 1995] (Fig. 3.1), where a node i represents a layer i and a directed edge

(i, j) indicates the relation between the two layers: layer i is occluded by layer j, which

implies that layers i and j overlap. We start the presentation by defining mutual occlusion

based on the occlusion graph as follows:

Definition 1. Mutual occlusion is the occlusion relation between two or more layers that

yields a cycle c = (k1, k2, . . . , k1) in the corresponding occlusion graph Go.

5θ0 is an abuse of notation (this variable is not needed), which is used for sake of clarity and consistency

for the following presentation.
6The floating background, i.e., those objects which are not tracked but may occlude the objects to be

tracked will be discussed in section 3.4.2. However, it is not a limitation with regard to the proposed layered

model.
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(a) Original Image (b) Multi-label Segmentation (b) Occlusion Graph

Figure 3.1: Example of Occlusion Graph

Thus, the assumption that no mutual occlusion is present in the scene boils down to that the

corresponding occlusion graph has no cycle, producing a Directed Acyclic Graph (DAG).

Under this assumption, the structure of the occlusion graph can be fully characterized

using the parent-child relation between nodes.

In fact, what we need to model towards visibility/occlusion reasoning is the structure of

the occlusion graph, i.e., the parent-child relation between nodes in cases without mutual

occlusion. As the parent-child relation is a partial order, if we want to achieve the visibility

reasoning purpose by associating a node i with a depth di, the only condition we need to

guarantee is di > dj for any edge (i, j) in Go. Under this condition, we can correctly

reason which layer is visible at a certain location among the overlapping layers using their

depths. Hence, assuming that at most D (D ≤ K) objects (not including the background)

may overlap in an observed image7, D + 1 depths are sufficient to model the visibility

between the objects and the background. We define D = {0, 1, 2, . . . , D − 1} as the set

of all the possible depths for the objects, and “D” as the depth of the background, i.e.,

dk ∈ D (k ∈ Vo) and d0 = D. Note that the number D of overlapping objects is usually

rather small in real scene, where this modeling of depths leads to a much more compact

space of the depth vector d.

3.2.2 Pixel-level Representation

We assume that an observed image consists of N pixels, and use Vp = {K + 1, K +

2, . . . , K+N} to denote the index set of the pixels8. Under the assumption on the opaque-

ness of objects, each pixel is to be assigned to one and only one layer. In order to model

7More formally, D is the length of the longest directed path in the occlusion graph Go.
8The pixels are indexed from K + 1 in order to avoid overlapping with the indices of objects and to be

coherent with the indices of the corresponding nodes in the MRF formulation (see section 3.3).
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(a)
d1 = 0 d2 = 1 d0 = 2
object 1 backgroundobject 2

(a) Object-level Representation

(b)

l i = 0

zi = 1

zi = 2

l i = 2

l i = 1

zi = 0

(b) Pixel-level Representation

Figure 3.2: Sketch Map of the Joint 2.5D Modeling

this, for each pixel i (i ∈ Vp), we introduce a latent variable (named pixel label) li (li ∈ Vs)

which provides the index of the layer to which the pixel i is associated (i.e., layer li is “vis-

ible” at pixel i). And thus l = (li)i∈Vp
denotes the index of the associated layer for all the

pixels, i.e., the segmentation of the image.

In order to combine the object-level and pixel-level representations using only local

pairwise constraints (section 3.2.3), we assign a depth zi (zi ∈ D ∪ {D}) to each pixel i.

It represents the depth of the layer to which the pixel associates, i.e., zi = dli .

To conclude, for each pixel i, the composite parameter Λ = (li, zi) characterizes the

index and the depth of the associated layer. The pixel-level representation can be denoted

as:

Λ = (Λ)i∈Vp
= (li, zi)i∈Vp

(3.2)

3.2.3 Combination of the Two-level Representations

The multi-object segmentation, tracking and depth ordering problem boils down to the

inference of the latent values of shape parameters θ, depths d and the pixel labels l in the

above layered representations. In this section, we combine the two representations together

and derive the conditions for a valid configuration (Γ,Λ) of the joint 2.5D layered model.

Let us first introduce, from a generative viewpoint, three types of visibility constraints

between the object-level configuration Γ and the pixel-level configuration Λ:

1. Pixel Label Consistency encodes constraints on the data association (i.e., which

layer is “visible” at a pixel i) within the top-down generative process. It imposes

that a given pixel i is assigned to the layer having the smallest depth among the lay-

ers whose shapes are likely to project to this pixel. It can be formulated in a rigorous
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mathematical form as follows:

∀ i ∈ Vp , li = arg min
{k|i∈Mk(θk),k∈Vs}

dk (3.3)

where we recall thatMk(θk) denotes the 2D shape model of object k with parameter

θk, and we regardMk ⊂ R2 as the union of the interior region and the boundary of

object k.

2. Object Depth Consistency encodes constraints on the scene configuration Γ in order

to guarantee that one and only one layer is “visible” at any pixel i (i.e., to guarantee

that Pixel Label Consistency is well defined, arg min{k|i∈Mk(θk),k∈Vs} dk should be

singleton). We can formulate this as follows:

∀ i ∈ Vp , ∃k̃ ∈ {k|i ∈Mk(θk) , k ∈ Vs}

s.t. ∀ k′ ∈ {k|i ∈Mk(θk) , k ∈ Vs}\{k̃} , dk̃ < dk′

(3.4)

3. Pixel Depth Consistency encodes constraints between the depths in object-level and

pixel-level towards assigning consistent labels. It imposes that the depth of a pixel i

has to be equal to the depth of the layer which is “visible” at this pixel, and can be

formulated as:

∀ i ∈ Vp , zi = min
{k|i∈Mk(θk),k∈Vs}

dk (3.5)

The combination of Pixel Label, Object Depth and Pixel Depth consistencies (Eqs. 3.3

∼ 3.5) guarantees a valid configuration (Γ,Λ) for the joint 2.5D layered model (Fig. 3.2).

Such a condition can be formulated in a distributed manner so that the visibility reason-

ing and the validation of the model configuration are performed through local pairwise

constraints between a layer and a pixel.

∀ i ∈ Vp, A1 ∧ A2 ∧ A3 ⇔
∧

k∈Vs

(C1k ∧ C2k ∧ C3k) (3.6)

with:






A1 : li = arg min{k|i∈Mk(θk),k∈Vs} dk

A2 : zi = min{k|i∈Mk(θk),k∈Vs} dk

A3 : ∃k̃ ∈ {k|i ∈Mk(θk) , k ∈ Vs} s.t.

∀ k′ ∈ {k|i ∈Mk(θk) , k ∈ Vs}\{k̃} , dk̃ < dk′

C1k : ¬((li = k) ∧ (zi 6= dk))

C2k : ¬((li = k) ∧ (i /∈Mk(θk)))

C3k : ¬((li 6= k) ∧ (zi ≥ dk) ∧ (i ∈Mk(θk)))

(3.7)
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Proof. LetA = A1∧A2∧A3, C =
∧

k∈Vs
(C1k∧C2k∧C3k) andOi = {k|i ∈Mk(θk), k ∈

Vs}.

“⇒”: We first prove that for a pixel i (∀ i ∈ Vp), “A is true” then “C is true” using

Reduction to the absurd:

1. Assuming that ∃k̃ ∈ Vs s.t. C1k̃ is false, then li = k̃ and zi 6= dk̃. But according to

A1, A2, zi = dli = dk̃. So the assumption is wrong, i.e., ∀ k ∈ Vs, C1k is true.

2. Assuming that ∃k̃ ∈ Vs s.t. C2k̃ is false, then li = k̃ and i /∈ Mk̃(θk̃). But according

to A1, li ∈ Oi then k̃ ∈ Oi, i.e., i ∈ Mk̃(θk̃). So the assumption is wrong, i.e.,

∀ k ∈ Vs, C2k is true.

3. Assuming that ∃k̃ ∈ Vs s.t. C3k̃ is false, then li 6= k̃, zi ≥ dk̃ and i ∈ Mk̃(θk̃). So

k̃ ∈ Oi. And according to A1 and A2, dli = zi ≥ dk̃. But according to A1 and A3,

dli < dk′ (∀ k′ ∈ Oi\{li}). So the assumption is wrong, i.e., ∀ k ∈ Vs, C3k is true.

“⇐”: Now we prove that for a pixel i (∀ i ∈ Vp), “C is true” then “A is true”:

C =(
∧

k∈Vs

C1k) ∧ (
∧

k∈Vs

C2k) ∧ (
∧

k∈Vs

C3k)

= (¬
∨

k∈Vs

(¬C1k))

︸ ︷︷ ︸

C1

∧ (¬
∨

k∈Vs

(¬C2k))

︸ ︷︷ ︸

C2

∧ (¬
∨

k∈Vs

(¬C3k))

︸ ︷︷ ︸

C3

(3.8)

C1 ⇔ 6 ∃k ∈ Vs, (li = k) ∧ (zi 6= dk)

⇒ dli = zi (3.9)

C2 ⇔ 6 ∃k ∈ Vs, (li = k) ∧ (i /∈Mk(θk))

⇒ li ∈ Oi (3.10)

C3 ⇔ 6 ∃k ∈ Vs, (li 6= k) ∧ (zi ≥ dk) ∧ (i ∈Mk(θk))

⇒ ∀ k′ ∈ Oi\{li}, zi < dk′ (3.11)

1. (3.9) and (3.11)⇒ ∀ k′ ∈ Oi\{li}, dli < dk′ . And according to (3.10), li ∈ Oi. So

A1 and A3 are true.

2. (3.9) andA1 (has been proved to be true)⇒ zi = dli = darg mink∈Oi
dk

= mink∈Oi
dk,

i.e., A2 is true.
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Interpretation of the local constraints

Let us now proceed with contextual interpretation of the derived constraints.

1. Keeping C1k true imposes that: the depth of pixel i should be equal to the depth of

layer k if it associates to the layer k.

2. Keeping C2k true imposes that: a pixel i can associate to layer k only when it is

occupied by the shape of layer k.

3. Keeping C3k true imposes that: if a pixel i is occupied by the shape of layer k, it can

associate to a layer other than k only when the depth of pixel i is strictly smaller

than the depth of layer k.

Given the equivalence presented in Eq. 3.6, the satisfaction of the local conditions on

the right-side for each pixel ensures that a pixel i will be explained once and only once

by the object which is supposed to be visible at pixel i. One can now integrate these

constraints with support coming from the image towards segmentation, depth ordering

and multi-object tracking. Such an integration can be performed using a pairwise MRF

model. This is doable because the model satisfaction conditions can be mapped to pairwise

interactions, while image support can be encoded through singleton potentials.

3.3 Markov Random Field Formulation

The proposed MRF model consists of two types of nodes (Fig. 3.3). The first are object

nodes corresponding to the objects to be tracked, and the second are pixel nodes corre-

sponding to the image pixels. The index set of the nodes is denoted by V = Vo∪Vp, where

Vo and Vp correspond to the two types of nodes, respectively9. Each node i (i ∈ V) is

associated with a latent random variable Xi which denotes the configuration of the corre-

sponding object/pixel and takes a value xi from its candidate set Xi.

• Pixel node: The latent random variable Xi (i ∈ Vp) is composed of the index of the

associated layer and the depth, i.e., xi = (li, zi). We define the configuration space

of pixel node i as: Xi = (Vo × D) ∪ {(0, D)}. Note that if a pixel is labeled as

“background” (i.e., li = 0), its depth is deterministic (i.e., zi = D).

• Object node: The latent random variable Xk (k ∈ Vo) consists of the motion pa-

rameters and the depth, i.e., xk = (θk, dk). We use Xk = Θk × D to denote the

configuration space of object node k, where Θk denotes the motion parameter space.

9Due to the one-to-one mapping between the object node and the object, the pixel node and the pixel, in

this section, we don’t distinguish pixel node and pixel, object node and object.



MARKOV RANDOM FIELD FORMULATION 65

Object Nodes

Pixel Nodes Vp

Vo

Figure 3.3: MRF Model (Example for Two Tracked Objects)

The whole MRF comprises a latent random variable vector X = (Xi)i∈V . We use x =

(xi)i∈V to denote the configuration of the MRF and X = X1 × X2 × · · · × X|V| its space,

i.e., x ∈ X .

In order to introduce the prior on the joint layered model presented in section 3.2,

the object nodes are connected with all the pixel nodes (Fig. 3.3). These edges com-

pose the edge set E of the MRF, i.e., E = {(k, i)|k ∈ Vo, i ∈ Vp}. We can also intro-

duce interactions/dependencies on the labels of the pixel nodes (in particular with respect

to the segmentation) through conventional 4-neighborhood or 8-neighborhood systems

[Boykov & Funka-Lea 2006], which will be discussed in section 3.4.3.

The energy of the MRF with a configuration x is defined as a sum of singleton poten-

tials and pairwise potentials:

E(x) =
∑

i∈V

φi(xi) +
∑

{k,i}∈E

ψk,i(xk, xi) (3.12)

3.3.1 Singleton Potential

There are two types of singleton potentials, one referring to the pixel nodes and the other

referring to the object nodes. They are used mainly to encode the intensity evidence com-

ing from the observed image and object motion priors from one frame to the next.

Pixel Singleton Term

Like most of existing MRF segmentation approaches (e.g., [Boykov & Funka-Lea 2006,

Kohli et al. 2008b]), we use pixel singleton potential φi(xi) (i ∈ Vp) to introduce the data

likelihood, which imposes penalties for assigning li to pixel i and is defined as:

φi(xi) = − log Pr(Ii|Hli) (3.13)
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where Ii denotes the intensity/color (e.g., RGB value) of pixel i, and Hk (k ∈ Vs)

denotes the intensity/color distribution for layer k. We can model the color distribu-

tion for each layer using existing standard approaches such as a Gaussian mixture, a

kernel-based approximation (e.g., Parzen windows) of the distribution and outcome of

linear or non linear classification techniques (e.g., Boosting algorithms [Schapire 1990,

Freund & Schapire 1997, Schapire 2001], Randomized Forests [Breiman 2001], Support

Vector Machines (SVMs) [Boser et al. 1992, Cortes & Vapnik 1995, Muller et al. 2001]).

Object Singleton Term

The singleton potential for object node k encodes the prior preference on its spatial con-

figuration xk and can be defined as:

φ
(t)
k (x

(t)
k ) = α1 · ρ(θ

(t)
k , θ̂

(t)
k ) + α2 · d

(t)
k (3.14)

where α1 > 0 and α2 > 0 are the weights for the corresponding terms, θ̂
(t)
k is the predicted

configuration of θk for instant t, and ρ(θ
(t)
k , θ̂

(t)
k ) denotes certain distance measure (e.g.,

Euclidean distance) between θ
(t)
k and θ̂

(t)
k which penalizes the deviation of the estimated

configuration from the predicted one.

The first term imposes to certain extend temporal consistency for the motion. In par-

ticular, it can help to determine the motion of an object in cases where there is not enough

visual information for the motion estimation (e.g., the object is completely occluded by

another object during a period). The choice of prediction model or dynamical system for

θ̂
(t)
k is independent from this framework and one can choose an off-the-shelf predictor.

The second term is used to eliminate arbitrary depth choices in case of depth ambigu-

ities by favoring the smallest possible depth. In the absence of this term, different depths

might yield the same MRF energy while all being valid solutions. One obvious example is

the case of an object having no occlusion with any other object, as it can take any possible

depth. However, removal of this term will not impact the performance of tracking and

segmentation.

3.3.2 Pairwise Potential

The pairwise potential between an object and a pixel is used to model the prior on the

layered model. For an edge (k, i) (k ∈ Vo and i ∈ Vp), the pairwise potential ψk,i(xk, xi)

is defined as:

ψk,i(xk, xi) = ψ
(1)
k,i (xk, xi) + ψ

(2)
k,i (xk, xi) + ψ

(3)
k,i (xk, xi) (3.15)
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where ψ
(1)
k,i , ψ

(2)
k,i and ψ

(3)
k,i are the penalties for the cases where C1k = false, C2k = false and

C3k = false, respectively (see Eq. 3.7 for C1k, C2k and C3k):







ψ
(1)
ki (xk, xi) = γ1 · [¬C1k]

ψ
(2)
ki (xk, xi) = γ2 · dist(i,Mk(θk)) · [¬C2k]

ψ
(3)
ki (xk, xi) = γ3 · dist(i,M

c
k(θk)) · [¬C3k]

(3.16)

where γ1 > 0, γ2 > 0 and γ3 > 0 are the weights for the corresponding penalties,Mc
k(θk)

denotes the complement of Mk(θk), Iverson Bracket [·] is defined as: for a statement

S, [S] = 1 if S is true and 0 otherwise, and dist(i,M) denotes the distance function

[Osher & Fedkiw 2002] which is defined as the minimum Euclidean distance between the

geometric shape corresponding toM and the spatial position loc(i) of pixel i in the image:

dist(i,M) = min
j∈M
‖loc(i)− loc(j)‖ (3.17)

Since dist(i,M) = 0 (if i ∈ M), the pairwise potential defined in Eq. 3.15 and 3.16 can

be reformulated more concisely as:

ψk,i(xk, xi) = γ1 · [li = k] · [zi 6= dk]

+ γ2 · [li = k] · dist(i,Mk(θk))

+ γ3 · [li 6= k] · [zi ≥ dk] · dist(i,M
c
k(θk))

(3.18)

Instead of giving an infinite penalty to any case where a statement in Eq. 3.7 is false,

we set ψ
(1)
ki to be constant, ψ

(2)
ki and ψ

(3)
ki to be distance penalties. This is motivated by the

fact that, in general, shape models are not exact: the closer a position is to the center of

shape, the higher is the degree of certainty of being in the projection. Such a penalty yields

an elastic force and can guide both object tracking and image segmentation.

Using the MRF model defined above, we can now simultaneously perform segmen-

tation, depth ordering and multi-object tracking, which is formulated as the inference of

those latent random variables through a minimization over the MRF energy:

xopt = arg min
x∈X

E(x) (3.19)

3.4 Experimental Results

3.4.1 Experimental Setting

In order to validate the proposed framework, we have considered several challenging video

sequences of hundreds of frames each, where noise, cluttered background, moving camera

and background, and/or even complete occlusions are present.
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A weak geometric prior was considered, which is a bounding box (except for Shell

Game sequence, where the geometric prior is the manually delineated contour of each

object in the first frame.). The motion parameters θk of each object correspond to the

position, scale and rotation angle around the shape’s center of mass. The position space

is defined as the support (or: lattice) of the image. The rotation angle space is defined as

the set Z of all integers. The scale factor space is defined as {s|s = 1.05n, n ∈ Z}. We

process an observed video sequence frame by frame. Thus in practice, the search space

for the current frame is in the vicinity of the previous motion parameter vector, due to

the fact that the motion between two successive frames is expected to be small. For the

distance measure function ρ in the object singleton potential (Eq. 3.14), we used Euclidean

distance for simplification. Such a setting is combined with a linear predictor where the

estimated motion parameter vector for the current frame is used to predict that of the next

frame, i.e., θ̂
(t)
k = θ

opt,(t−1)
k (k ∈ Vo). We chose to use such a simple motion predictor in

the experiments, in order to diminish the effect of the predictor in the occlusion handling

and thus to sufficiently demonstrate the potential of our formulation.

For the visual appearance term, we distinguish the case of static background from that

of dynamic background. In the first case, using the manual delineation of the objects in the

first frame, a Gaussian mixture is considered towards modeling the color distribution of

each object. The color of the background, either is globally modeled as a Gaussian mixture

(Box and Shell Game sequences), or is modeled using a pixelwise model (Pedestrian Se-

quence 1), i.e., each pixel’s color is modeled using a Gaussian distribution whose mean and

variance are learned from a sequence of background images [Stauffer & Grimson 1999].

The case of dynamic background (Pedestrian Sequences 2 and 3) is treated differently.

Given the manual segmentation of the first frame, a non-parametric Parzen windows ap-

proximation is used to model the color distribution of each layer. The color model for

the background is updated for the next frame using the segmentation result of the current

frame, while those of the objects are kept constant.

There are two components still to be addressed, the motion parameter sampling and

the parameter setting for the weights of the MRF’s energy. We adopt a sparse sampling

strategy [Glocker et al. 2008a], where θ
(t)
k is sampled uniformly along each main axis plus

the two diagonal directions of the translation centered at the predicted value θ̂
(t)
k , plus

θ̂
(t)
k itself to compose the set Θk of motion parameter candidates. In order to mitigate

inaccuracy of the solution due to the fact that the sampling is sparse, we iterate by re-

sampling at each iteration around the solution found in the previous iteration. According

to the roles of the energy terms, we set the parameters as follows: we adjust and fix γ2 by

trial and error on the first few frames. It is different from one sequence to another since

the color statistics and/or the color model may be different. The rest are set as: γ1 = 50γ2

and α1 = α2 = γ3 = γ2.
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Figure 3.4: Experimental Results for Box Sequence. The first line of each sub-figure is

the tracking result, where we draw the shape contours of the objects with the estimated

motion parameters. The second line is the segmentation result. The third line presents the

estimated depths of the objects. We use different colors to distinguish the objects. Same

for the rest results in this chapter.

The MRF energy in Eq. 3.19 can be optimized using standard MRF-MAP inference

methods. We adopt the sequential tree-reweighted message passing (TRW-S) proposed in

[Kolmogorov 2006] (see also section 2.2.3), since it offers a good compromise between

the quality of the obtained minimum, the ability to model complex interactions between

the nodes and reasonable computational complexity.

3.4.2 Results

We show the results on two sequences with rigid objects and three sequences with de-

formable objects. The test sequences have been degraded (severe noise has been added

to some of them), while at the same time present varying complexity with respect to the

objects and background visual properties, varying degrees of occlusions, as well as static

and moving observers.
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Figure 3.5: Experimental Results for Shell Game Sequence.

Box Sequence

In the original sequence, two boxes move such that significant occlusions (including com-

plete occlusions) occur between them. Our algorithm has successfully tracked the objects,

segmented the image, and estimated the depths of the objects. Furthermore, in order to test

the robustness to noise, we independently added Gaussian white noise of mean 0 and vari-

ance 0.8 (the range of RGB value is [0, 1]3) to each frame, and then tested our method. Our

method still has performed very well despite the presence of severe noise and occlusions.

Fig. 3.4 shows the obtained results on this very degraded video.

Shell Game Sequence

In order to test the robustness with respect to temporally and spatially significant occlu-

sions, we have considered Shell Game sequence [Huang & Essa 2005]. In this video, there

are three identical cups facing downwards and two chips of different colors. The opera-
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Figure 3.6: Experimental Results for Pedestrian Sequence 1.

tor begins the game by placing two cups such that each cup covers one of the two chips,

then he/she quickly shuffles the three cups around and finally uncovering the chips. While

being occluded, each chip keeps sliding with the cup that covers it. This video is quite

challenging mainly due to the long-term complete occlusions of the two occluded chips

(Fig. 3.5).

Note that we previously assumed that the background was always behind all the ob-

jects. However, one can also imagine floating background, i.e., those objects which are

not to be tracked but may occlude the tracked objects (e.g. the hands in the video). Such

a floating background can also be modeled as a layer in our model. In our experiments,

we dealt with this by adding another possible depth “−1” for the background (i.e., add

(0,−1) into Xi (i ∈ Vp)) and giving a prior penalty to the case where a pixel is labeled as

“background” and has depth “−1”.

Pedestrian Sequences

Sever occlusions have also been considered in a real setting, with deformable objects,

image noise, changes of illumination and moving camera. We have considered three se-

quences: (i) the first one consists of a static background with five people, severe occlusions

between the objects and the maximum level of occlusions being three (Fig. 3.6); (ii) the
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Figure 3.7: Experimental Results for Pedestrian Sequence 2.

second one consists of a moving background with five people, severe noise and changes of

illumination (Fig. 3.7); (iii) the last one consists of a moving background with four people

and significant changes in texture (Fig. 3.8).

For these pedestrian sequences, a rectangle is used to model the shape of a person.

Since, in the shape prior, the torso is more reliable than the limbs due to limb motions, we

manually set an area inside the shape model (i.e., including the majority of the torso), and

it has the same motion as the shape model. When computing ψ
(3)
ki (xk, xi) using Eq. 3.16,

if pixel i is inside this area with the configuration θk, we multiply ψ
(3)
ki (xk, xi) by a factor

10 to increase the confidence to this area, and otherwise we divide ψ
(3)
ki (xk, xi) by a factor

10 to decrease the confidence.

For all these test sequences, our algorithm has successfully segmented, tracked and

ordered by depth all the objects. We believe that the robustness is due to the strategy of

coupling segmentation, tracking and depth ordering in a unified single-shot optimization

formulation and also due to the high quality of the optimum provided by the TRW-S algo-

rithm. The main limitation of the method is the computational complexity. Running times

vary from a few seconds to several minutes per frame. It is shown that, with presence of

occlusions in the observed image, TRW-S requires much more iterations to converge than

the cases without occlusions. The theoretical justification of added complexity in the pres-

ence of occlusions and development of specific optimization algorithms for solving such
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Figure 3.8: Experimental Results for Pedestrian Sequence 3.

special MRFs more efficiently are interesting problems to be explored in the future works.

3.4.3 Discussion

Algorithm Acceleration

In the general MRF formulation (section 3.3), all the objects are connected with all the pix-

els. However, in the tracking scenario, such pixel-object connections can be significantly

relaxed by considering the temporal consistency on the motion configuration, as in general

the object motion is bounded in a finite speed. Based on this observation, we propose an

approach to simplifying the MRF model in section 3.3. For an object k (k ∈ Vo), once we

get the estimation of its motion parameters θ
opt,(t−1)
k and predict the parameters θ̂

(t)
k for in-

stant t, we compute the distance functionMk(θ̂
(t)
k ). Using this distance function, we prune

the connections between the object k and those pixels i with dist(i,Mk(θ̂
(t)
k )) > b, where

b is a tolerance coefficient. And for these pixels, the label k is excluded from their con-

figuration spaces. In this way, the complexity of the MRF model is reduced with respect

to both the topology and the space of latent variables. In the experiments, we observed

that the algorithm can be sped up by more than 15 times on average (with b = 20).
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Introducing Interactions between Pixels

As we said previously, we can also introduce interactions/constraints on the labels of the

pixel nodes through conventional 4-neighborhood or 8-neighborhood systems. To this end,

we add the edges between those neighbor pixels into the edge set E . Thus, we can smooth

the segmentation result using Potts model [Potts 1952] by defining the corresponding po-

tential as:

ψ(xi, xj) =

{
η (η > 0) if li 6= lj
0 if li = lj

(i, j ∈ Vp, (i, j) ∈ E) (3.20)

which favors neighbor pixels having the same label. We can also define other forms of

potentials (e.g., by considering the contrast). We have tested the cases both with and

without this smoothness term. It is shown that the inclusion of this term does not improve

the tracking performance but can smooth and improve the segmentation to some extent.

However, the running-time significantly increases with the use of this term and the choice

of η complicates the parameter setting.

3.5 Conclusion

In this chapter, we have proposed a novel single-shot optimization approach for segmen-

tation, depth ordering and tracking with occlusion handling. Our approach is based on

our joint layered image modeling, where a distributed way has been introduced to deal

with visibility satisfaction where individual pixel modeling contributes to the depth or-

dering of objects through local condition preservation constraints. The above constraints

are expressed as cost terms in an MRF and are integrated with image support towards

scene understanding. To the best of our knowledge, this is the first approach that combines

low-level image support with high-level object representation along with rigorous occlu-

sion handling in a single modular MRF where image data terms as well as priors can be

easily replaced with more advanced models. Promising experimental results demonstrate

the potential of the method. However, only weak shape priors such as rectangles were

considered. Towards introducing richer high-level shape prior knowledge into grouping

problems, we have studied the problem of non-rigid 3D surface matching, which will be

presented in the next chapter (chapter 4).

Indeed, jointly modeling high-level knowledge about the scene and low-level image

evidence using a principled formulation can highly improve the performance and robust-

ness of a method for the inference about the scene and the image, and graphical models

provides a powerful tool to achieve such a modeling. Besides the joint segmentation,

tracking and depth ordering as presented here, the same insight has also been employed in

another work [Panagopoulos et al. 2010, Panagopoulos et al. 2011] which I have partici-
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pated into, where we aim to jointly recover the illumination environment and an estimate

of the cast shadows in a scene from a single image, given coarse 3D geometry. For this

objective, we proposed in [Panagopoulos et al. 2011] a higher-order MRF illumination

model to jointly model the illumination environment and the intensity values of pixels,

where the consistency between the illumination condition and the intensity value of pixels

are encoded within higher-order clique potentials and all the latent variables are simul-

taneously inferred through the minimization of the energy of the MRF. Despite the fact

that the geometry used in the experiments consists of bounding boxes or a common rough

3D model for a whole class of objects, our MRF illumination model still have achieved

high-quality estimation results on various datasets.
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Chapter 4

Higher-order Non-rigid 3D Surface

Matching

In this chapter, we aim at developing a robust algorithm for non-rigid 3D surface

matching. To this end, we propose a higher-order graph-based formulation, where sin-

gleton terms encode geometric and appearance similarities (e.g., curvature and texture),

while higher-order terms capture intrinsic deformation errors. The pseudo-boolean rep-

resentation of the objective function involved in such a formulation is optimized using a

dual-decomposition-based method to achieve optimal correspondences between two sur-

faces. Furthermore, an efficient two-stage optimization approach is introduced towards

achieving dense surface matching. Our method has been validated through a series of ex-

periments, which demonstrate its accuracy and efficiency, notably in challenging cases of

large and/or non-isometric deformations, or meshes that are partially occluded.

4.1 Introduction

Surface matching (also known as surface registration or surface alignment), whose objec-

tive is to determine meaningful correspondences between two or more surfaces, is a funda-

mental problem in computer vision, computer graphics and medical imaging for numerous

important applications such as 3D shape retrieval, deformation transfer, object recognition,

facial expression recognition, statistical shape modeling and shape change detection (see

[Campbell & Flynn 2001, van Kaick et al. 2010]). Nowadays, surface matching has be-

come even more important due to the rapid development of 3D acquisition techniques (e.g.,

[Zhang et al. 2004, Wang et al. 2005, Hernández et al. 2007, Shaji et al. 2010, Kinect 2010])

and the desire for building various attractive applications on these 3D data. Despite a large
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amount of literature on surface matching (see [van Kaick et al. 2010] for a survey of meth-

ods), it remains a very challenging problem, particularly when the surfaces undergo large,

non-rigid deformations and are subject to a high level of noise. In order to handle sur-

face matching problems under such difficult situations, it is usually necessary to take into

account both local feature similarities and global deformation constraints. While local

structures are somewhat straightforward to handle, the consideration of global structures

imposes a major challenge for surface matching. Another difficulty lies in the inherent

complexity of the problem, i.e., the matching problem is a combinatorial problem and

the number of possible matching configurations is N ! for the case of bijective matching

(where N denotes the number of points on each surface), which will become even larger

if partial matching is allowed.

In order to impose global deformation constraints for the surface matching problem,

many existing works are based on certain rigidity assumptions on the deformation of the

surface and impose rigidity as a global regularization when searching for correspondences.

Assuming that two surfaces only differ by a global rigid deformation (i.e., rotation and

translation), the iterative closest points (ICP) [Besl & McKay 1992] method and its vari-

ants [Rusinkiewicz & Levoy 2001] have been successfully applied for near-rigid surface

registration with various extensions (e.g., [Hahnel et al. 2003, Brown & Rusinkiewicz 2007]).

In such a context, the global distortion is defined on the correspondence configurations of

all the points (referred to as matching configuration) that are determined by the config-

uration of the global pose. To minimize such a distortion, the ICP algorithm alternates

between establishing correspondences given the rigid transformation and estimating the

rigid transformation given the correspondences. Obviously, such a scheme easily gets

stuck in local minima and thus requires that the initial poses of the two surfaces are close

enough to get a satisfactory matching result. Moreover, global rigidity does not take into

account bendable shapes (e.g., garments or rubber bands) and thus makes it difficult to

deal with surfaces undergoing large non-rigid deformations. To deal with this, the notion

of local rigidity has been proposed to model non-rigid deformations, by assuming that

the deformation between two local neighborhoods of each correspondence is rigid (e.g.,

[Huang et al. 2008]). Similar to the ICP algorithm, an alternating optimization scheme

is usually required to optimize the objective function, which severely limits the quality

of solution, especially when registering two surfaces with large deformations. Also, con-

sidering local rigidity in the 3D space is challenging when the deformation between two

shapes are large, due to the lack of efficient optimization techniques for such a large search

space.

For the non-rigid surface matching problem, most of the methods in the literature are

based on a common assumption that the undergoing deformation between two surfaces

is isometric, which means that the lengths of any infinitesimal vectors between a pair
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of corresponding points is preserved. For a surface undergoing isometric deformation, the

geodesic distance between any pair of points on the first surface is the same as the geodesic

distance between their corresponding points on the second surface. Mathematically, let

dP1(p, q) denote the geodesic distance between two points p and q on the surface P1, we

have the following definition:

Definition 2. A map f : P1 → P2 is isometric if and only if the following condition holds:

dP1(p, q) = dP2(f(p), f(q)), ∀ p, q ∈ P1.

The isometric assumption is a good approximation to many real-world deformations.

For example, the deformation of a cloth is usually isometric and the deformation of face

is nearly isometric [Bronstein et al. 2007]. Compared with those methods based on rigid-

ity or local rigidity assumption, approaches based on isometric assumption or geodesic

distances between pairs of points on the surface exhibit better performance when deal-

ing with large deformations. [Elad & Kimmel 2001] proposed to use multidimensional

scaling (MDS) to represent shapes in a low-dimensional Euclidean space such that the

geodesic distances between a pair of points in the original space are closely approxi-

mated by Euclidean distances in the embedding space. Then the surface matching can

be done by comparing them as rigid objects in such an embedding space. The use of

an intermediate embedding space was eliminated in [Mémoli & Sapiro 2005] by using

the Gromov-Hausdorff formalism [Gromov 1981]. [Bronstein et al. 2006] proposed an

MDS-like algorithm referred to as generalized MDS (GMDS) for the computation of the

Gromov-Hausdorff distance and deformation invariant correspondence between shapes.

This framework was extended in [Bronstein et al. 2010] using diffusion geometry instead

of the geodesic one. Such methods usually inherit embedding errors and do not consider

extrinsic information when establishing correspondences. Another approach without ex-

plicit embedding is to formulate surface matching as an MRF optimization problem (e.g.,

[Anguelov et al. 2004]), where pairwise potentials between neighbor points are defined

based on the deviation of geodesic distance and the loopy belief propagation algorithm is

used for the MRF optimization. Nevertheless, the deviation of geodesic distance is still a

local measurement of the quality of surface matching in the sense that it does not take into

account the information about the matching of other points (due to lack of a “global” view

on the matching of the whole surface). As a result, those methods where only geodesics

are considered may suffer from certain “geodesic” ambiguities and are not robust enough

in cases where the data are corrupted by noise.

There is also a family of approaches for matching surfaces with large deformations

based on the conformal mapping, such as the works in [Wang et al. 2007, Zeng et al. 2008,

Zhang & Hebert 1999]. An important property of conformal mapping is that if two sur-

faces are isometrically deformed from one to the other, their correspondences only dif-
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(a) Sparse Matching (b) Dense Matching

Figure 4.1: Matching Result between Two Surfaces. This result between two surfaces

undergoing a large non-rigid deformation demonstrate the performance of our approach in

establishing both the sparse (a) and dense (b) correspondences.

fer by a Möbius transformation in their conformal parametrization (also known as uni-

formization) domains. Hence, once such a transformation is recovered, one-to-one cor-

respondences between the two surfaces can be established, giving us a global transfor-

mation between two surfaces. Based on such a global property of conformal mapping,

[Wang et al. 2007, Zeng et al. 2008, Zhang & Hebert 1999] established dense correspon-

dences between two surfaces by specifying a few initial feature correspondences. As a

result, the performance of these approaches relies heavily on the accuracy of the selec-

tion of the initial correspondence points. To remedy this, [Lipman & Funkhouser 2009]

proposed to find sparse correspondences between two surfaces based on a voting scheme.

Since every three correspondences determine a unique Möbius transformation between the

uniformization domain of the two surfaces, they also determine a correspondence mapping

between two surfaces. Hence, for each possible triplet of correspondences, one can define

a measure of the plausibility (or metric) of such correspondences by matching among all

the other points on the whole surface using the Möbius transformation recovered from the

triplet of correspondences. Despite promising performance of such a voting scheme, a

main drawback is that there is no guarantee on the quality of the final results, since the

voting scheme does not optimize a concrete objective function. Also, only intrinsic defor-

mation information was considered in [Lipman & Funkhouser 2009], while a principled

integration with other cues such as extrinsic similarity information would be difficult to be

done in such a voting scheme. However, the proposed metric for measuring the quality of

any triplet correspondences provides us a way to measure the global distortion locally by

considering a triplet of correspondences.
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Graph Matching

Many computer vision and pattern recognition problems can be formulated as a graph

matching problem [Conte et al. 2004]. Mathematically, the bipartite graph matching prob-

lem is defined on a bipartite graph G = (U ,V ; E) where U and V denote two disjoint

node sets and E ⊆ U × V denotes an edge set. A matching M is a subset of the

edge set E such that every node of G appears in at most one edge in the matching M

[Lovasz & Plummer 1986]. A matching is called perfect when |U| = |V| and every node

of G coincides with one and only one edge of the matching M. [Hall 1935] proved the

marriage theorem which gives a necessary and sufficient condition for the existence of

a perfect matching. Moreover, a perfect matching in bipartite graphs can be found in

O(|E|
√

|U ∪ V|) time using the Hopcroft-Karp algorithm [Hopcroft & Karp 1973].

If we assign a weight (or cost) to each correspondence (i.e., each edge in E) and aim

to find the optimal matching whose sum of weights are minimal (or maximal), then such a

problem is referred to as minimum weight matching (or maximum weight matching). The

cost can be defined on each correspondence, a pair of correspondences and/or multiple

correspondences to constrain the configuration of matching. There are various matching

problems referred to as linear assignment problems, quadratic assignment problems and

multi-index assignment problems, according to the maximal number of correspondences

that are assigned the cost.

In the linear assignment problem, cost functions are only defined on individual corre-

spondences (referred to as singleton potentials). The Hungarian algorithm was proposed

in [Kuhn 1955] to find a perfect matching with minimum cost, which is the genesis of the

network flow based algorithm that later gained widespread popularity in the combinato-

rial optimization community. The computational complexity of the original algorithm of

[Kuhn 1955] is O(n4), which was later reduced to O(n3) in [Dinic & Kronrod 1969].

Besides singleton potentials, the quadratic assignment problem (corresponding to pair-

wise graph matching) considers cost functions defined on pairs of correspondences (cor-

responding to pairwise potentials) as well. Quadratic assignment problems provides a

powerful tool for modeling numerous real-world applications, due to the consideration

of interactions between a pair of correspondences. In computer vision problems, the

matching cost is often used to measure the dissimilarity of two graphs, where pairwise

potentials can model soft contextual constraints (similar to pairwise MRFs). It has been

previously used to deal with various vision problems such as shape matching and ob-

ject recognition (e.g., [Belongie et al. 2002, Berg et al. 2005]), the matching of feature

points (e.g., [Leordeanu & Hebert 2005, Torresani et al. 2008]) and character recognition

(e.g., [Rocha & Pavlidis 1994, Lee & Liu 1999]). However, solving a quadratic assign-

ment problem is an NP-hard problem [Sahni & Gonzalez 1976]. Numerous methods have

been proposed to deal with such a problem. One can cite for example branch-and-bounds
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approaches (e.g., [Tsai & Fu 1979, Cordella et al. 1996, Cordella et al. 2001]), spectral

relaxation methods (e.g., [Umeyama 1988, Carcassoni & Hancock 2003, Caelli & Kosinov 2004,

Leordeanu & Hebert 2005, Cour et al. 2007]), methods based on continuous relaxation

(e.g., [Gold & Rangarajan 1996, Torr 2003, Schellewald & Schnorr 2005]), etc. As pointed

out by [Torresani et al. 2008], most of these methods have no optimality guarantee. In such

a context, [Torresani et al. 2008] proposed a novel pairwise graph-matching algorithm

based on the well-known dual-decomposition optimization framework (see section 2.2.3),

which provides optimality guarantee and exhibits very promising matching performance.

Multi-index assignment problems (corresponding to high-order graph matching) con-

sider higher-order interactions between three or more correspondences. There are var-

ious works that explored higher-order similarity measures to improve the matching ac-

curacy, resulting in high-order graph matching problems (e.g., [Zass & Shashua 2008,

Duchenne et al. 2009, Chertok & Keller 2010]). Obviously, the optimization of such prob-

lems is even harder than that of quadratic assignment problems in general. In order

to solve the high-order graph matching formulations, [Zass & Shashua 2008] proposed

a probabilistic approach and [Duchenne et al. 2009, Chertok & Keller 2010] developed

spectral relaxation methods based on the optimization algorithms for pairwise counter-

parts [Leordeanu & Hebert 2005], from which one can expect their optimality properties

would be similar to those for pairwise counterparts. In such a context, we are motivated to

use the same insight as [Torresani et al. 2008] and recent order-reduction techniques (e.g.,

[Ishikawa 2009]) to deal with high-order graph-matching problems.

4.1.1 Our Approach

Our goal is to robustly establish the correspondences between two non-rigid surfaces un-

dergoing large (near-isometric) deformations and possibly partial matching, without re-

quiring correspondence initialization and alternating search.

In order to achieve a robust matching, it is desirable to consider the structure of the sur-

faces at both local and global levels [van Kaick et al. 2010] and to encode the distortion at

both levels within a single formulation that is able to be solved efficiently. A graph-based

formulation provides a sound mathematical tool that allows to define such a matching

cost and perform efficient optimization. However, defining a robust global distortion in

a graph-based formulation imposes a challenge, although local matching costs can be de-

fined conveniently by measuring the similarity or distortion between local structures and

encoded within for example singleton potentials. Fortunately, conformal mapping theory

provides an efficient way to measure the similarity of global structures between two sur-

faces. Based on the fact that three correspondences can determine a mapping between two

surfaces, we can then measure the global distortion induced by such a triplet of correspon-
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dences using the deviation of such a mapping from isometry, which can be done efficiently

using the metric proposed in [Lipman & Funkhouser 2009]. This observation motivates us

to define third-order potential functions to encode the global distortion that is implied by

any possible triplet of correspondences.

In summary, we propose a novel approach to robustly establish correspondences be-

tween two surfaces via a high-order graph matching formulation. More specifically, we

consider multiple measurements (e.g., curvature, texture) to capture the appearance and

geometric similarity between local structures and third-order interactions to model the

distortion of global structures (i.e., intrinsic deformation errors) between a triplet of corre-

spondences. All these measurements are integrated within a higher-order graph matching

framework which is represented using a pseudo-boolean function [Boros & Hammer 2002].

In order to optimize such a higher-order function, we reduce the third-order potentials to

quadratic terms [Ishikawa 2009] and obtain a near optimal solution based on the dual-

decomposition technique [Bertsekas 1999, Komodakis et al. 2007a]. Last but not least,

towards dense surface matching, a hierarchical algorithm is introduced to constrain the

search space through candidate selection and local graph matching. The whole method

is able to establish dense matching between surfaces undergoing large non-rigid (near-

isometric) deformations, partial matching and even inconsistent boundaries and scales.

4.1.2 Outline of the Chapter

The reminder of this chapter is organized as follows. We present in section 4.2 the pro-

posed high-order graph-based formulation for surface matching problem. Then in sec-

tion 4.3, we present the two-stage hierarchical surface matching framework for dense sur-

face matching. Experimental validation are presented in section 4.4. Finally, we conclude

this chapter in section 4.5.

4.2 Higher-order Surface Matching Formulation

In this section, we formulate surface matching as a high-order graph matching prob-

lem, where an objective function is defined based on various measurements of geomet-

ric/appearance similarities and intrinsic deformation errors and then is to be optimized to

achieve matching results.

4.2.1 Pseudo-boolean Formulation

Let us denote by P1 and P2 the set of points from two surfaces S1 and S2, respectively.

Then, A , P1 × P2 denotes the set of possible correspondences (also referred to as
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assignments). Similar to [Torresani et al. 2008], we define a boolean indicator variable for

each potential correspondence a = (i, j) ∈ A to characterize its state (active1 or inactive):

xa =

{

1 if a = (i, j) ∈ A is active

0 otherwise
(4.1)

Hence, the joint variable x = (xa)a∈A denotes the activation states of all the correspon-

dences (i.e., matching configuration).

A basic constraint imposed on the matching configuration is that each point in P1 is

mapped to at most one point in P2, while for each point in P2 there is at most one point in

P1 mapping to it. Note that a point is allowed to have no active correspondence in order

to deal with partial matching. Under such a constraint, we can define the feasible solution

space X of the matching configuration x as follows:

X = {x ∈ {0, 1}|A||
∑

i∈P1

xi,j ≤ 1,
∑

j∈P2

xi,j ≤ 1,∀ i ∈ P1 and ∀ j ∈ P2} (4.2)

As we mentioned in section 2.1.3, higher-order models allow to naturally model certain

measures that cannot be encoded using pairwise ones such as second-order derivative and

scale invariant measures in Euclidean space. In this work, we propose a third-order graph

matching formulation to deal with the surface matching problem, where an energy function

E(x) consisting of singleton, pairwise and third-order terms is defined and minimized over

X to achieve the optimal matching configuration, i.e.,

xopt = arg min
x∈X

E(x) (4.3)

The energy function E(x) has the following form:

E(x) =
∑

a∈A

θaxa +
∑

(a,b)∈A×A

θabxaxb +
∑

(a,b,c)∈A×A×A

θabcxaxbxc (4.4)

where θa is the singleton matching cost for each active correspondence a ∈ A, θab for a pair

of active correspondences (a, b) ∈ A×A, and θabc for a triplet of active correspondences

(a, b, c) ∈ A × A × A. In fact, the matching constraint in Eq. 4.2 can be reduced to

pairwise terms in the energy function by using the following equivalence:

∀ i ∈ P1,
∑

j∈P2

xi,j ≤ 1 iff min
x

∑

j′,j′′∈P2,j′ 6=j′′

θ∞xi,j′xi,j′′ = 0 (4.5)

where θ∞ denotes a sufficiently large number. Let us use AC to denote the set of pairs

that encodes the matching constraints for all the correspondences. Thus, the high-order

1A potential correspondence is active means that it is included in the matching.
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matching problem can be formulated as the following pseudo-boolean optimization prob-

lem [Boros & Hammer 2002] as follows:

min
x∈{0,1}|A|

{E(x) =
∑

a∈A

θaxa +
∑

(a,b)∈A×A

θabxaxb +
∑

(a,b)∈AC

θ∞xaxb +
∑

(a,b,c)∈A×A×A

θabcxaxbxc}

(4.6)

The above formulation is general and can capture different matching scenarios, including

partial matching, by properly defining the potentials.

Due to the positive weight θ∞ that encodes the matching constraint, the energy func-

tion 4.6 is non-submodular [Freedman & Drineas 2005] and the minimization of such an

energy is an NP-hard problem in general [Boros & Hammer 2002]. An advantage of the

pseudo-boolean formulation is that any high-order terms can be reduced into a quadratic

term [Boros & Hammer 2002], which can then be solved by existing efficient optimiza-

tion algorithms such as QPBO techniques [Boros et al. 1991, Kolmogorov & Rother 2007,

Boros et al. 2006, Rother et al. 2007]. Such a reduction can be done efficiently using for

example the reduction method recently proposed in [Ishikawa 2009].

4.2.2 Definition of Potential Functions

In order to consider multiple sources of similarity measurements, the potential functions

in Eq. 4.4 are defined such that both local features and global deformation information

contribute to the objective function. In this work, only singleton and third-order terms are

considered for simplification, where the singleton terms are used to measure the dissimilar-

ity of local structures while the third-order terms take the distortion of global structure into

account. Note that pairwise potentials can also be considered in this general formulation to

integrate more geometric information towards improving the matching performance. For

example, we can encode geodesic [Mémoli & Sapiro 2005, Bronstein et al. 2006], diffu-

sion metrics [Bronstein et al. 2010] and commute time metrics [Qiu & Hancock 2007] on

the surface within pairwise potentials.

Singleton Potentials

Singleton potentials encode geometric and/or photometric compatibility between the local

structures of an active correspondence, as in [Thorstensen & Keriven 2009]. For simplic-

ity, we use the Gaussian curvature curv(i) at point i as geometric descriptor, which is in-

variant to isometric transformation [do Carmo 1976], and the texture value tex(i) at point

i as photometric descriptor if the texture information is available. Then, the singleton po-

tential for a correspondence (i, j) is defined as follows to favor correspondences having
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similar local structures:

θi,j = (curv(i)− curv(j))2 + λ0(tex(i)− tex(j))2 (4.7)

where λ0 is a positive coefficient that balances the contribution between the curvature and

the texture information. Similarly, other features can also be considered within such poten-

tials such as spin-image [Johnson 1997], multiscale heat kernel signatures [Sun et al. 2009,

Ovsjanikov et al. 2009, Bronstein & Kokkinos 2010], eigenfunctions of the Laplace-Beltrami

operator [Rustamov 2007, Mateus et al. 2008, Hu & Hua 2009, Dubrovina & Kimmel 2010]

and local photometric properties [Zaharescu et al. 2009, Thorstensen & Keriven 2009].

Higher-order Potentials

High-order potentials encode the distortion of global structures for any triplet of corre-

spondences as well as the consistency of extrinsic orientations.

According to the uniformization theorem [Farkas & Kra 2004], any 3D surface can be

flattened conformally to a canonical 2D domain. Within such a mapping each feature point

p has a parametric coordinate in the complex plane zp ∈ Ĉ. If the undergoing deformation

between two surfaces is isometric, then the mapping between their parameterizations in

the 2D domain is a Möbius transformation, which can be uniquely determined by con-

sidering three pairs of corresponding points on the surfaces (a triplet of points from each

surface). Inspired by [Lipman & Funkhouser 2009], we compute the intrinsic deformation

error based on the Möbius transformation as the distortion of global structures induced by

two corresponding triplets.

Given two surfaces, S1 and S2, for any two triplets, (p1
i , p

1
j , p

1
k) ∈ S1 and (p2

i , p
2
j , p

2
k) ∈

S2, we first recover the associated Möbius transformation m1(z) and m2(z) that map each

triplet to a constant configuration (ei 2π
3 , ei 4π

3 , ei2π). This transformation essentially equips

each point in the sets P1 and P2 with coordinates in Ĉ. Let us denote the new coordinate

for each point p as z(p) ∈ Ĉ. Similar to [Lipman & Funkhouser 2009], we establish

correspondences between the two sets P1 and P2 by searching the mutually closest point

correspondences set under the new coordinates, denoted as:

Mijk ={(p1, p2)|p1 ∈ S1, p2 ∈ S2, such that:

∀ p′2 ∈ S2 \ {p2}, |z(p1)− z(p2)| < |z(p1)− z(p
′
2)|,

∀ p′1 ∈ S1 \ {p1}, |z(p1)− z(p2)| < |z(p
′
1)− z(p2)|}

(4.8)

and define the deformation error as

Eijk =
∑

(p1,p2)∈Mijk

|z(p1)− z(p2)|
2 (4.9)
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(a) (b)

Figure 4.2: Example of Ambiguity due to Intrinsic Symmetry. This figure shows the

ambiguity by considering only the intrinsic embedding information. The matching scores

in (a) and (b) are the same from Eq. 4.9 based on the Möbius transformation, since the

distances between the matching features are identical. However, such ambiguity can be

avoided by adding the extrinsic similarity information (e.g., normal and curvature).

Then we define the Möbius matching potential as follows,

θMöbius
ijk =

{
Eijk

|Mijk|2
− 1 if

Eijk

|Mijk|
< δ

1/|Mijk| otherwise
(4.10)

Here δ is a lower bound value to single out unlikely correspondences (in our experiment

δ = 0.1). Without it the minimization problem of Eq. 4.4 would encourage as many

correspondences as possible even when some of them do not match. Intuitively, if there

were more matching pairs and the distances between those matching pairs were smaller,

the potential would be lower.

However, considering the Möbius energy alone can introduce a certain ambiguity, since

it encodes only isometric information (an example is shown in Fig. 4.2). In order to elim-

inate such an ambiguity, we consider the Gaussian map of the surface. The Gaussian map

is defined as the mapping of the normal at each point on the surface to the unit sphere

[do Carmo 1976]. The Gaussian map captures the extrinsic geometric information of the

surface. In order to avoid ambiguities in orientation, the orientation of the Gaussian maps

is considered for each of the triplets. Two triplets have the same orientation if and only if

the determinant of their normals have the same sign. Therefore, we define another higher-

order term as follows:

θGaussian
ijk =

{

0 if det (n1
i ,n

1
j ,n

1
k) · det (n2

i ,n
2
j ,n

2
k) ≥ 0

1/|Mijk| otherwise
(4.11)

where ni ∈ R
3 denotes the normal at point i, and det (ni,nj,nk) denotes the determinant

of the 3 × 3 matrix [ni,nj,nk]. This is introduced as a soft constraint in our framework,



88 HIGHER-ORDER NON-RIGID 3D SURFACE MATCHING

because in the extreme case, the normal could reverse its orientations when the surface

undergoes very large deformations.

Finally, the third-order potential for each possible triple matching (p1
i , p

1
j , p

1
k)→ (p2

i , p
2
j , p

2
k)

is defined as a a weighted sum of the two types of potentials, i.e.,

θijk = λ1θ
Möbius
ijk + λ2θ

Gaussian
ijk (4.12)

4.2.3 Dual-decomposition-based Optimization

As stated in the introduction (section 4.1), we aim to adopt the same insight as that of

[Torresani et al. 2008] and recent order-reduction techniques [Ishikawa 2009] to deal with

high-order graph-matching problems. We have reviewed the dual-decomposition MRF

optimization framework [Bertsekas 1999, Komodakis et al. 2007a] in section 2.2.3, whose

key idea is to decompose the original problem as a set of several sub-problems that are

easier to solve. For the graph matching problem in Eq. 4.4, let θ denote the vector of all

the singleton, pairwise and triplet potentials, and S denote the set of subproblems. The

decomposition of the original problem with objective function E(x; θ) can be represented

by:

E(x; θ) =
∑

s∈S

ρσE
s(x|θs) (4.13)

where ρs denotes the weight for each subproblem, Es(x|θs) denotes the objective function

of each subproblem s and the potential vectors (θs)s∈S of the subproblems satisfy the

following decomposition constraint:
∑

s∈S

ρσθ
s = θ (4.14)

The lower bound Φs(θ
s) of each subproblem, i.e., Φs(θ

s) ≤ minxE
s(x|θs), constitute a

lower bound for the original problem, i.e.,

Φ(θ) =
∑

s∈S

ρsΦs(θ
s) ≤

∑

s∈S

ρsE
s(x|θs) = E(x; θ) (4.15)

In particular, we decompose the original problem into the following three subproblems:

1. a linear subproblem which considers only the singleton term
∑

a∈A θaxa. This is a

linear assignment problem and can be solved in polynomial time using for example

the Hungarian algorithm (see section 4.1).

2. a higher-order pseudo-boolean subproblem where the high-order terms in Eq. 4.4

are reduced to quadratic terms [Boros & Hammer 2002] which can be solved by

QPBO techniques [Kolmogorov & Rother 2007]. Regarding the order reduction,

we employ the efficient method proposed in [Ishikawa 2009].
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Figure 4.3: The Outline of the Algorithmic Framework for Surface Matching

3. local subproblems which divide the original surface into small regions and uses an

exhaustive search to find the optimal matching solution in each small surface region.

The linear subproblem and the local subproblems used in the experiments are similar to

those of [Torresani et al. 2008]. Besides, a higher-order pseudo-boolean subproblem is

introduced to deal with the higher-order terms in Eq. 4.4. After solving the subproblems,

the dual variables {θs} are updated using a projected subgradient method as described

in [Torresani et al. 2008] to maximize the lower bound Φ(θ).

4.3 Towards Dense Surface Matching

The number of vertices n considered in this high-order formulation is the main compu-

tational bottleneck of our approach. In particular, when n becomes large, as in the case

of dense surface matching, it is computationally expensive to solve the high-order graph

matching problem presented above. Furthermore, the accuracy of the obtained solution

degrade since the assumption of isometry is only an approximation and the distortion

measurement based on Möbius energy becomes less discriminating when feature points

are very close to each other. The graph structure of the above matching problem would

also be very complex if we consider all possible triplets. Several heuristic ways were

considered to prune off some triplets, such as restricting the number of triangles per ver-

tex [Duchenne et al. 2009]. However, because of the complexity of the problem, such

pruning schemes often lead to erroneous matching results when the number of feature

points is large. Hence, towards dense surface matching, we propose a two-stage opti-

mization pipeline which consists of sparse feature matching and dense point matching, as

illustrated in Fig. 4.3.

In the sparse feature matching stage, an initial set of sparse feature points are selected

among the local maxima of Gaussian curvature [Lipman & Funkhouser 2009] on the input

surfaces S1 and S2. Using our high-order graph matching algorithm in section 4.2, we

can compute the ns correspondences between the two feature sets {p1
1, p

1
2 . . . , p

1
ns
} →
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{p2
1, p

2
2, . . . p

2
ns
}, where p1

i and p2
i (i = 1 . . . ns) denote a pair of matched feature points on

S1 and S2, respectively. In this stage, we only select a small set of feature points (typically

8 ∼ 15 in our experiments), so that the computational cost is low on finding the sparse

correspondences and computing the associated conformal maps.

Since the initial feature points are selected among the vertices and the middle points

of the edges of the meshes, the matching results could be unreliable if the mesh resolution

is low. To address the above issue, we consider all conformal maps induced by different

Möbius transformations, which are determined by every three correspondences between

two surfaces, for the dense point matching.

4.3.1 Candidate Selection and Clustering

Candidate Selection

From the sparse matching stage, we have a set of sparse correspondences {p1
1, p

1
2 . . . , p

1
ns
} →

{p2
1, p

2
2, . . . p

2
ns
} between S1 and S2. Because the surface deformation might not be isomet-

ric, we propose a candidate selection scheme based on Möbius transformations to com-

pensate for the approximation error. Given any three correspondence pairs, {p1
i , p

1
j , p

1
k} →

{p2
i , p

2
j , p

2
k}, the corresponding Möbius transformation can be computed very efficiently in

a closed form [Lipman & Funkhouser 2009]. Under such a Möbius transformation, any

point p1 ∈ S1 will be mapped to a different candidate location c(p1) ∈ S2. Thus, for

each point on the source surface, we can compute its candidate locations in the target

surface by considering all possible Möbius transformations from the feature correspon-

dences. Please note that our candidate selection approach differs from the Möbius voting

method [Lipman & Funkhouser 2009] in two ways: (1) our method computes the positions

of matching candidates for each dense point rather than finding sparse feature correspon-

dences; and (2) multiple clusters are computed from the candidate positions of each point

and used to obtain a dense matching result.

One advantage of our candidate selection approach is robustness. If any part of the

sparse matching result is accurate, the matching candidates given by the Möbius groups

will distribute closely around the true location for surfaces undergoing near-isometric de-

formations. Another advantage is that this scheme provides a fast and effective way of

constraining the search space for any point on the surface.

Candidate clustering

Based on the above candidate locations, we want to use the underlying distribution to

reduce our search space for the dense matching. It is also important that the dense match-

ing should optimize the same objective as in the sparse matching stage. For any match-
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ing candidate point c(p1) ∈ S2 of a source point p1 ∈ S1 that is obtained by align-

ing three correspondences {p1
i , p

1
j , p

1
k} → {p

2
i , p

2
j , p

2
k}(i, j, k = 1 . . . n), there is a cost

θMöbius
ijk in the matching energy of Eq. 4.4. Intuitively, the lower the value of θMöbius

ijk and

the closer the curvature and texture is, the more likely p1 and c(p1) match. Therefore,

we define the likelihood of each candidate matching p1 → c(p1) under the alignment of

{p1
i , p

1
j , p

1
k} → {p

2
i , p

2
j , p

2
k} as follows

fijk(p
1, c(p1)) = e−θMöbius

ijk (4.16)

where θMöbius
ijk is the Möbius matching potential in Eq. 4.10. To obtain the candidate dis-

tribution for each point p1 ∈ S1, we use a kernel density estimate (KDE) with the density

function defined as

ρ(p1, c(p1)) =
∑

c

fijk(p
1, c(p1))K(

‖c(p1)− c(p1
c)‖

h
) (4.17)

where c(p1
c) is the center location of each kernel K in S2 and h is the kernel bandwidth.

The mean shift clustering [Comaniciu & Meer 2002] is employed to find the modes of

this density. Compared to parametric representations, KDE does not require nonlinear

optimization to learn the distribution parameters.

Since we search for the modes in Eq. 4.17 on the 2D manifold instead of the 3D Eu-

clidean embedding space, the distance function should be defined as the geodesic distance

on the surface. However, as illustrated in Fig. 4.4 most of the candidate locations are close

to the center, so the Euclidean distance was used in our experiments to simplify the mode

search. To handle partial surface matching, we only select the modes with density higher

than 0.1 and the closest point on the surface as the final matching candidates. If no such

mode exists, we report that there is no reliable correspondence point. The average number

of resulting matching candidates in our experiments is 1 ∼ 6. So our candidate selection

and clustering method can significantly reduce the search space.

4.3.2 Local High-order Graph Matching

Based on the matching candidates obtained for each vertex, our goal now is to find a good

matching position locally for each dense point. This problem can be formulated simi-

larly to the high-order graph matching problem defined in section 4.2.1. Since the candi-

date selection scheme in section 4.3.1 has removed the ambiguities caused by the Möbius

transformations, we only need to consider the matching cost based on texture and geo-

metric similarities defined in Eq. 4.7, as well as the orientation consistency imposing that

each triangle △p1p2p3 and its matched triangle △p′1p′2p′3
should have the same orientation

in the uniformization domain, which is known as having no flip in [Sheffer et al. 2006].
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Matching candidate points

pp’

Figure 4.4: Example of Candidate Selection and Clustering. The figure shows the match-

ing candidate points from different Möbius transformations and clustering. For any point

p from the source surface, the clustering of candidates on the target surface gives us final

matching candidates.

More specifically, for the three vertices of each triangle △123, we define the potential of

matching (p1, p
′
1), (p2, p

′
2) and (p3, p

′
3) as follows

θ123,1′2′3′ =

{

θ∞ sign(△123) 6= sign(△1′2′3′)

0 otherwise
(4.18)

where θ∞ is a sufficiently large number. sign(△123) and sign(△1′2′3′) denote the orienta-

tion of the triangle p1p2p3 and p′1p
′
2p

′
3, respectively, in the uniformization domain. From

the candidate clustering, it is not guaranteed that every point has at least one matching

candidate. Therefore, we remove the points without any matching candidate and obtain

a triangulation for the remaining points on S1 through the Delaunay triangulation algo-

rithm [de Berg et al. 2000] in the uniformization domain.

Suppose for each point p ∈ S1, its matching candidates are given by Cp = {pi|pi ∈

S2, i = 1, 2, . . . , np}. We define the boolean indicator variable:

xi
p =

{

1 if p, pi ∈ Cp are active correspondences

0 otherwise.
(4.19)

Assuming that each p ∈ S1 is matched to at most one of its candidates, we have the

matching constraint:

∑

pi∈Cp

xi
p ≤ 1 (4.20)

Therefore, the same optimization technique as described in section 4.2.3 can be applied to

solve the above problem.
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(a) Sparse matching (b) Dense matching
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(c) Matching area ratio histogram

Figure 4.5: Example Face Matching Result: (matched/total = 2098/2644)

Compared to the graph matching problem in section 4.2.3, one major advantage of the

local graph matching algorithm is that the number of matching candidates for each point

is typically less than 6 and, therefore, the number of variables is very small. In particular,

to match n points locally, there are only O(n) variables and O(n) triplet terms since the

dense points are triangulated in the planar parametric domain.

4.4 Experimental Results

4.4.1 Experimental Setting

Our algorithm is implemented on an Intelr Xeon(TM) 3.4G PC with 4G RAM and an

NVIDIAr Geforce 9800GTX+ graphics card. We developed a matching plugin for the

open source software Meshlab2. For the mean shift algorithm, we used the source code

available online3. For the potential functions of the graph matching algorithm defined

in section 4.2.2, the weights of Eq. 4.7 and 4.12 are defined as λ0 = 1, λ1 = 0.1 and

2http://meshlab.sourceforge.net/
3http://www.caip.rutgers.edu/riul/research/code.html
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λ2 = 1, and the kernel bandwidth of Eq. 4.17 is set to be 0.01 times the diameter of the

target surface. The mid-edge uniformization algorithm was used for the conformal map-

ping [Lipman & Funkhouser 2009, Pinkall & Polthier 1993]. The computation of mid-

edge uniformization involves solving a symmetric linear equation, which can be efficiently

computed by GPU [Buatois et al. 2009]. For a mesh with 104 faces the computation takes

less than 1 second.

Since we consider almost all the triplets, the graph complexity scales cubically with-

out pruning. Therefore, rather than searching for more sparse feature correspondences in

the first stage, we try to find more accurate matching results for a few features. For ex-

ample, 10 sparse feature correspondences will give us 120 matching candidate positions

for each point which are enough for finding final candidate points. To match 10 fea-

ture points, the graph encoding step takes around 5 minutes and the graph matching step

takes less than 1 minute. The candidate selection and local high-order graph matching

of 103 points based on the 10 sparse features takes around 1 minutes. Compared to pre-

vious work [Lipman & Funkhouser 2009, Tevs et al. 2009] which only computes around

100 correspondences, our algorithm not only runs faster but also achieves more correspon-

dences. For the high-order graph matching algorithm in section 4.2.3, the convergence of

the dual-decomposition optimization depends on the input features. In our experiments,

we observed that the more outliers (un-matched points), the more iterations it took to con-

verge.

4.4.2 Results

We evaluate our new algorithmic framework using a number of challenging data. In

our experiments, we match surfaces with large deformations and inconsistent bound-

aries (partial overlapping). The number of vertices for each mesh is in the range of

1, 500 ∼ 4, 000. With our high-order graph matching algorithm, we can find the dense

matching for 60 ∼ 90 percent of all vertices, which is illustrated as matched/total (no.

of matched vertices/no. of total vertices of the source surface) for each example. The

lion data of Fig. 4.1 comes from [Sumner & Popović 2004] and the face and hand data are

captured with texture by the 3D scanner introduced in [Wang et al. 2005]. To measure the

quality of dense registration, from the Delaunay triangulation of the points on the source

surface, we consider the ratio of the area of each local triangle to the area of its matched

triangle. For the natural deformations (e.g., expression change, stretched arms or bending

figures) we experimented with, the local area is not expected to undergo abrupt change.

Therefore the area ratio is expected to be close to one for every local triangle.

Matching with largely inconsistent boundaries and partial overlapping: The mid-edge

uniformization algorithm allows to map the boundaries of the surface to slits and preserve



EXPERIMENTAL RESULTS 95

(a) Sparse matching (b) Dense matching (c) LSCM matching
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(e) Our approach

Figure 4.6: Comparison with LSCM Approach [Wang et al. 2007]. (matched/total =

1455/1635). Notice the high number of flipped triangles in (c)

the conformal structure of the surface in an exact sense. Hence it is suitable for matching

partially overlapping surfaces. This property can be combined with our candidate selection

scheme to determine the outliers near the boundary where the mean shift clustering returns

a low score. Examples are shown in Fig. 4.5, 4.6, and 4.7. An example of significant non-

overlap between the two meshes is shown in Fig. 4.3.

Matching with large deformations: Fig. 4.7 and 4.8 show results that match two sur-

faces undergoing a large deformation. Even when the sparse features can not all be se-

lected consistently (as shown in Fig. 4.8), our high-order graph matching algorithm in sec-

tion 4.2.3 is able to find reliable sparse correspondences (Fig. 4.8(a)) and obtain a dense

surface matching result (Fig. 4.8(b)) through the two-stage optimization scheme described

in section 4.3.

Comparison experiments: Fig. 4.6 shows a comparison between our algorithm and the

least square conformal mapping (LSCM) approach [Wang et al. 2007]. Although LSCM

can handle free boundaries, there is no theoretical guarantee that the conformal struc-

ture is preserved near the boundary and it might include self-intersections in the map-

ping [Sheffer et al. 2006]. In our comparison, we use the feature correspondences com-
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(a) Sparse matching (b) Dense matching

(c) Closeup of the dense matching
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(d) Matching area ration histogram

Figure 4.7: Dense Matching under Large Non-rigid Deformations. (matched/total =

2378/3633)

puted from the sparse matching stage to initialize the LSCM experiments. The inaccuracy

of the LSCM approach can be observed in Fig. 4.6(c). In this example, although all vertices

on the left mesh are matched to the right mesh, there are approximately 42 percent flipped

triangles. Note that here we cannot compare directly with the results in [Wang et al. 2007]

where the initial feature points were manually selected.

4.5 Conclusion

In this chapter, we have proposed an algorithmic framework for non-rigid surface match-

ing. In particular, a high-order graph matching formulation is used to combine local dis-

tortion regarding the appearance and geometry similarity as well as global structure dis-

tortion (i.e., intrinsic deformation errors) between deformed surfaces, resulting in a robust

algorithm to establish sparse matching between two non-rigid surfaces with large defor-

mations, partial matching and inconsistent boundaries and scales. Furthermore, towards

achieving dense surface matching, a two-stage scheme has also been introduced to con-

strain the search space through candidate selection and local graph matching. The whole

method is modular with respect to the potentials used to determine optimal partial corre-
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(a) Sparse matching (b) Dense matching
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(c) Matching area ratio histogram

Figure 4.8: Dense Matching under Multiple Articulated Deformations. (matched/total =

1224/1786)

spondences.

While isometry is a good approximation to many real-world deformations, there are

also many other types of deformations that do not fall into this category. An important

case is the variability within a class of shapes (e.g., fat or thin man). The modeling of

such a variability is extremely important for many computer vision and medical imaging

problems where a common model is used to represent the instances of an object class, such

as knowledge-based image segmentation and 3D model reconstruction from 2D views. In

such cases, one usually resorts to statistical modeling to deal with such intra-class shape

variations. To this end, we have studied the statistical shape modeling and applications

based on it, which will be presented in the next chapter (chapter 5).
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Chapter 5

3D Model Inference from 3D/2D Images

In this chapter, we aim at developing graph-based models for 3D model inference

without explicit estimation of global parameters (i.e., the global pose of the object of in-

terest or the camera viewpoint). To this end, we first propose a pose-invariant shape prior

model that can be naturally encoded within higher-order clique potentials. Based on this

shape model, we introduce a single-shot optimization framework for knowledge-based im-

age segmentation of challenging medical image data using a higher-order MRF, where a

dual-decomposition-based method is used to recover the optimal solution. This approach

has been validated through challenging experiments on segmentation of human skeletal

muscles. Furthermore, in order to partially address the influence of camera pose in visual

perception, we propose a unified higher-order MRF formulation to simultaneously deter-

mine both the optimal 3D landmark model and the corresponding 2D projections without

explicit estimation of the camera viewpoint, which is also able to deal with misdetections

as well as partial occlusions. Promising results on standard face benchmarks demonstrate

the potential of this approach.

5.1 Introduction

Low level segmentation and primitive-based tracking as studied in chapter 3 serve as core

components to solutions of many computer vision problems. Despite their strength, their

applicability is limited though to low or mid-level vision since in general either a more

precise delineation of the object of interest or estimation of dense motion fields is required.

In such a context, simplistic priors as the one employed in the previous chapter fail short

with respect to the expected performance. Introducing such priors can happen either in the

2D space or directly on the 3D world.



100 3D MODEL INFERENCES FROM 3D/2D IMAGES

Segmentation with shape priors often requires a learning stage where given a set of

training examples one seeks for a probabilistic representation of the observed variation. To

this end, all training examples are first brought to the same reference space (e.g., through

linear registration) and then relative deformations with respect to the average shape are

modeled. Given such a prior model, segmentation aims at recovering the best possible

instance of the learned manifold in the image space. Such a process requires bringing the

observed image to the same reference space used during learning. This is usually achieved

through a linear extraction/registration of the mean shape to the observed image. Then,

combination of prior knowledge and image support are used to delineated the optimal

shape. Such an approach has been extensively used in computer vision but suffers from

the need of registering all examples to a reference space, which introduces a strong bias

and results on a sequential optimization method that can be very sensitive approach.

During the past two decades, significant effort has been carried out towards appropriate

modeling of shape variations in the 2D space. Such an approach can mostly cope with

known viewpoint object configurations and aims at modeling variability of a population of

exemplars which have been mostly captured from the same viewpoint. However, coping

with severe viewpoint differences often requires modeling the variations of the shape of

interest in the original 3D space. This eliminates the viewpoint issue with regards to the 2D

alternative and could lead to better expression of the shape manifold. On the other hand, it

introduces during inference (especially when considering 2D images that is often the case),

the need of estimating the projection matrix between the 3D model and the corresponding

image. In the most general case, such a configuration is unknown and the advantage of

modeling directly the 3D variation is compromised from the need of estimating the camera

parameters. The problem is often solved sequentially or in an alternating manner, first the

projection parameters are estimation, then segmentation is solved that is fed back to the

viewpoint estimation process.

Numerous efforts have been carried out towards proper modeling of shape variations.

In both problems above, a well-established limitation of coordinate-descent approaches

is that they provide no guarantee on the optimality of the estimation and are prone to be

trapped in local minima. In the rest of this introduction, we give a detailed description of

the context and motivations of the approaches that we will develop here.

5.1.1 Knowledge-based Segmentation

Image segmentation is a fundamental problem in computer vision and medical image anal-

ysis. Such a problem is intrinsically ill-posed and the use of prior knowledge is often

considered to address it. In particular, the integration of prior knowledge is very important

when extracting specific objects from observed images, towards achieving superior perfor-
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mance and high robustness to challenging cases where noise, occlusions and low-contrast

are present in the images.

Knowledge-based segmentation consists in recovering a region of interest in an ob-

served image and generally involves three main parts: shape representation, prior learning

and inference. First of all, one has to choose an appropriate representation for modeling

the shape of the object of interest. Once the shape representation is determined, training

examples are used to learn statistics on the shape model which is referred to as a statistical

shape model (SSD). Then in the segmentation stage, the inference of the shape model is

done by seeking a compromise between data-attraction and the fitness to the prior model.

Statistical Shape Models

There are diverse representations for modeling the shape of an object, such as landmark-

based models (also referred to as point distribution models (PDMs)) [Cootes et al. 1995,

Cootes et al. 2001], level set representations (often referred to as implicit representations)

[Osher & Fedkiw 2002, Cremers et al. 2007], medial models [Blum 1973, Pizer et al. 2003],

frequency-domain representations [Staib & Duncan 1996, Essafi et al. 2009b] and articu-

lated models [Sigal & Black 2006a, de La Gorce et al. 2011]. In point distribution mod-

els, the shape is represented using a set of control points (often corresponding to land-

marks) distributed on the surface. The coordinates of all the points are concatenated into

a vector x so that the value of x determines the shape. In implicit representations, the

boundary of the shape is embedded in a high dimensional space (e.g., signed distance map

[Osher & Fedkiw 2002]) and is characterized by the zero level set. Medial models charac-

terize a shape using its medial axis and the corresponding radii of the bi-tangent spheres.

Frequency-domain representations refer to a set of techniques which apply Fourier trans-

form or wavelet transform on the shape and describe the shape in the frequency-domain.

Articulated models are employed to represent objects such as the human body and the

hand, by capturing the kinematic constraints between neighbor components.

The objects of interest in the works presented in this chapter are non-articulated ob-

jects such as muscles and the human face. In such a context, we are specially interested

in PDMs, since the landmarks involved in a PDM can be naturally modeled as nodes in

graphical models, while other representations are difficult to be modeled using graphs. The

most well-known PDMs are active shape models (ASMs) and active appearance models

(AAMs), which were proposed in [Cootes et al. 1995] and [Cootes et al. 2001], respec-

tively. Such models are constructed in two steps: i) during the first stage, all the training

samples are aligned in a common coordinate frame using for example Procrustes Analysis

[Dryden & Mardia 1998]; ii) then, a dimensionality reduction is performed using Princi-

pal component analysis (PCA) [Jolliffe 2002] so as to obtain a limited number of modes

that can best capture the most important variations present in the training data. They offer a
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good compromise between computational complexity and model expressiveness potential

and have therefore been widely used in the literature.

However, knowledge-based segmentation methods that use such global statistical mod-

els and many others often exhibit two important limitations. The first limitation lies in the

fact that the shape prior cannot be pose-invariant since it is learned in a certain coordinate

frame, as mentioned earlier in the introduction. Thus, the estimation of the global pose

(translation, rotation and scale) is required both in the training and in the inference stages.

Such methods may introduce a certain bias on the segmentation process since data are

often to be registered in the reference space. More importantly, since the estimation of the

global pose is usually done by a local search, these methods are prone to fail if the initial-

ization is far from the ground-truth pose. The second limitation is related to their ability

to capture statistics and variations on high-dimensional spaces from a small number of

training examples, due to the global representation of the shape as well as the linearity of

the models. The samples-vs-dimensionality ratio of representations is also a well-known

problem in medical imaging, due to the fact that the number of available training data with

ground truth shapes is often very limited.

Various segmentation methods have been proposed aiming to partially deal with such

limitations. For example, non-linear statistical models have been investigated to in order to

better capture shape variations. One can cite for example the PDMs based on mixture mod-

els (e.g., [Cootes & Taylor 1999, Gu & Kanade 2008]), kernel PCA [Scholkopf et al. 1998]

(e.g., [Romdhani et al. 1999, Twining & Taylor 2001]) and the Gaussian process latent

variable model (GPLVM) [Lawrence 2004] (e.g., [Chen et al. 2010, Huang et al. 2011]).

At the same time, various works have been done to develop shape models based on lo-

cal interactions between control points. [Seghers et al. 2007a] introduced a 2D shape

model that is represented by a closed curve consisting of a sequence of landmarks. The

prior is encoded by the statistics on three kinds of measures based on the Euclidean dis-

tances between two successive landmarks or the relative positions of three successive land-

marks. Such statistics inherit different invariance properties such as translation-invariance

and translation/rotation-invariance. Due to the chain structure of the shape model, dy-

namic programming [Bellman 1957, Cormen et al. 2009] was adopted as the inference

algorithm. However, such an approach is not able to deal with 3D cases and only us-

ing constraints based on neighbor landmarks cannot capture well the underlying shape

manifold. The translation-invariant prior of [Seghers et al. 2007a] was also employed in

[Seghers et al. 2007b] to address the 3D segmentation of the liver from contrast enhanced

CT images, through a heuristic search method. In this approach, observed images have to

be registered to the reference image of the training set before the segmentation processing

due to the fact that the used prior is not pose-invariant. Recently, a PDM was proposed in

[Besbes et al. 2009] towards knowledge-based segmentation, where the prior information
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(a) A slice of muscle data (b) Manual expert segmentation of muscles

Figure 5.1: MRI Data of Calf Muscles (courtesy [Essafi et al. 2009a]).

about the shape is expressed through a combination of local interactions. More specifi-

cally, the Euclidean distance between pairs of landmarks are normalized by the scale of

the objects (i.e., the sum of distances between all the pairs of landmarks) and then statis-

tics are built on such normalized distances. Such a prior can be naturally encoded using

the pairwise potentials of an MRF. On the other hand, the data likelihood is decomposed

(via Voronoi diagram [Aurenhammer 1991]) into a sum of local terms that are encoded in

the singleton potentials of the MRF. In this way, the segmentation problem is formulated

as a MAP inference in the MRF model. This method has shown to outperform standard

methods such as AAMs. As a global representation (where we know the position of all

the points), such a prior model is pose-invariant (translation, rotation and scale). However,

it is still not “intrinsically” scale-invariant and cannot be exactly factorized into an MRF,

since the definition of every local term depends on the scale of the object, which requires

the estimation of the sum of the distances between all the pairs of points and thus depends

on the positions of all the points of the shape model. To deal with this, an iterative scheme

was employed in [Besbes et al. 2009], where the shape model is deformed gradually dur-

ing the evolution and at each iteration, the scale is estimated using the configuration of

the shape model at previous iteration. The performance of such a method depends on the

quality of the scale approximation obtained during the iterative search. In this work, we

aim to search for a statistical shape model that is intrinsically pose-invariant.

Another motivation for developing a pose-invariant prior came from applications in

medical imaging. Medical imaging provides a variety of image acquisition techniques

such as radiography, tomography, ultrasound, magnetic resonance imaging (MRI) and dif-

fusion tensor imaging (DTI), to visualize the human body for clinical and medical research

purposes. Segmentation is certainly one of the most important medical image processes

required for clinical examination and biological analysis. However, in comparison to nat-
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ural images, medical modalities often yield certain special difficulties in the segmentation

task.

One major difficulty is related to the choice of data terms. Data terms used in image

segmentation are generally based on edges (e.g., [Kass et al. 1988, Brejl & Sonka 2000,

Iannizzotto & Vita 2000]) and/or region driven (e.g., [Rother et al. 2004, Kohli et al. 2008b,

Boykov & Funka-Lea 2006, Paragios & Deriche 2002]). In the first case, one seeks to

position the solution onto pixels exhibiting important intensity discontinuities, which is

achieved through a weighted surface integral. Region-based methods assume that the ob-

ject and the background have distinct statistical properties and seek to create a partition

that maximizes the posterior probability density with respect to them. However, both

strategies cannot handle satisfactorily anatomical cases where separate regions of inter-

est can belong to the same class of tissue. In such cases conventional image support is

lacking: edges are poorly informative and a statistical discrimination of regions would be

bound to fail. Calf muscle MRI segmentation is a typical example (see Fig. 5.1), since

there is no prominent difference of tissue properties between neighbor muscles and since

tissue boundaries separate adjacent muscles only sparsely and heterogeneously. There-

fore, medical segmentation issues, such as this of the calf muscles that was hardly studied

in the literature [Blemker et al. 2007, Essafi et al. 2009a], provide a perfect frame to illus-

trate the benefit of an alternative image support. A natural way of building an adapted

image support relies on landmark classifications, where feature vectors exploit the infor-

mation around a particular location and exhibit highly discriminative capacity. This strat-

egy has been previously employed in various medical image segmentation applications

(e.g., [Donner et al. 2007, Seghers et al. 2007a, Seghers et al. 2007b]), where a set of can-

didates are detected for each landmark and then prior information are fused in order to

select the optimal candidate for every landmark. These facts have inspired and motivated

us to develop a one-shot knowledge-based segmentation approach using a landmark-based

image support, that is particularly adapted to the segmentation of the challenging medical

cases such as MRI data of calf muscles. In order to be one-shot, such an approach would

necessitate the pose-invariance property of the shape model.

Our Approach for Segmentation from 3D Images

We propose a novel segmentation approach that is able to address 3D segmentation, while

being pose invariant and able to capture local variations from small training sets. The

representation of the shape is a PDM which consists of a set of landmarks located on

the boundary surface and determine the entire surface through conventional interpola-

tion algorithms such as thin plate spline (TPS) [Bookstein 1989]. Prior knowledge is

modeled through higher-order statistics on the PDM, which are invariant to similarity

transform (i.e., translation, rotation and scale) and can be learned from a small num-
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ber of training examples. The entire manifold is described through the accumulation

of such local constraints. Data likelihood is determined using the randomized forest

[Breiman 2001] learning approach that provides an efficient classification algorithm for

points of interest exhibiting certain statistical properties. Finally, the segmentation is for-

mulated as a MAP inference in a higher-order MRF, where the pose-invariant priors are

encoded within higher-order clique potentials and the data support is encoded in the sin-

gleton terms. Such an approach provides a one-shot optimization result that does not

depend on initial conditions nor on the reference pose. In order to optimize the en-

ergy of the higher-order MRF, we adopt the dual-decomposition optimization framework

[Bertsekas 1999, Komodakis et al. 2007a] (see section 2.2.3) and propose to decompose

the original problem into a series of sub-problems each of which corresponds to a factor

tree [Frey 1998, Bishop 2006] (see section 2.1.4). The inference in a factor tree can be

done exactly in polynomial time using max-product belief propagation algorithm (see sec-

tion 2.2.2). The performance of the method is evaluated in the challenging application of

segmentation of the calf muscle, which demonstrates the potential of the proposed method.

5.1.2 3D Model Inference from Monocular 2D images

In a second stage, we consider 3D model inference from monocular 2D images, which

is one of the most challenging problems in computer vision. This is due to the fact that

both camera estimation and 3D model optimization have to be addressed within a sin-

gle framework. In the most general case, the camera parameters are unknown, the 3D

model itself usually inherits high complexity (high degrees of freedom even for non-

articulated objects), while at the same time image features can be ambiguous because

of noise and occlusions for instance. There are numerous applications involving the

above scenario, such as articulated object pose estimation (e.g., [O’Rourke & Badler 1980,

Sigal et al. 2007, Forsyth et al. 2005, de La Gorce et al. 2011]), shape/surface estimation

(e.g., [Balan et al. 2007, Guan et al. 2009, Chen et al. 2010, Salzmann & Fua 2010]), fa-

cial analysis (e.g., [Pighin et al. 1998, Blanz & Vetter 1999, Gu & Kanade 2006]), traffic

monitoring with 3D model-based tracking (e.g., [Roller et al. 1993, Mueller et al. 2003,

Leotta & Mundy 2011], architecture modeling [Walker & Herman 1988, Simon et al. 2011]

and medical imaging (e.g., [Kurazume et al. 2009, Markelj et al. 2010]). Such an infer-

ence process usually involves three steps1: the first aims to determine a compact rep-

resentation of the 3D model, the second to associate such a representation with the 2D

observations, and the last to recover the optimal parameters of the model.

In section 5.1.1, we have reviewed briefly statistical shape models as well as diverse

1Note that there are also a kind of methods (e.g., [Bregler et al. 2000, Sigal & Black 2006b]) which do

first 2D estimation and then recover the 3D configurations.
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representations for modeling non-rigid objects. We recall that the limitations of global

statistical models that have been discussed in section 5.1.1 are still valid in the context

of 3D model inference from monocular 2D images. Once a shape model has been built

for a class of objects, the next steps consist of defining an image likelihood and combin-

ing it with the 3D model prior towards optimal estimation of the 3D model. Since the

image likelihood is related to both the 3D model configuration and the camera parame-

ters, the model estimation is often achieved through an alternating search, an EM-style

approach or other local search methods (e.g., [Sandhu et al. 2009, Gu & Kanade 2006]).

Given an initial 3D-2D correspondence map, the camera parameters are first estimated

and then used to define the fitting error between the model and the image. This error is to

be optimized by gradient-driven methods and iterative search processes so as to estimate

both the correspondences and the optimal model configuration. For example, a level set

shape representation, together with the prior information learned using PCA, was used in

[Sandhu et al. 2009] to deal with 3D model estimation and 2D image segmentation. The

objective function is optimized by iteratively performing gradient descent with respect

to the shape parameters (i.e., PCA coefficients) and the pose parameters (corresponding

to the camera viewpoint). A well-known PCA-based statistical model called morphable

model was proposed in [Blanz & Vetter 1999] to model 3D shape and appearance and hu-

man face and to perform 3D reconstructions from 2D images, where the global pose is

manually determined. [Gu & Kanade 2006] proposed an approach to deal with face align-

ment from a single 2D image. A 3D landmark-based face model is adopted to represent

the face and a PCA-based prior on the 3D model is learned from synthetic training data.

The deformation of such a model and the global 3D pose are adjusted iteratively via an

EM-based approach to fit an observed image. Despite promising performance achieved by

such approaches, the fact that an explicit estimation of the camera viewpoint parameters

is required in the process is a major drawback, since coordinate-descent approaches are

prone to be trapped in local minima and provide no guarantee on the optimality of the

estimations, which would require a good initializations of the 3D model and/or the camera

configuration before the optimization process.

Such a context led to the problem that is addressed in this work, which consists of

the estimation of 3D models from 2D images without explicit estimation of the camera

viewpoints. As a first milestone towards this goal, we aimed to develop a unified approach

for viewpoint 3D landmark model inference from monocular 2D images based on the

previously proposed segmentation formulation (see section 5.2).

Our Approach for 3D Landmark Inference from 2D Images

We propose a novel one-shot optimization approach to simultaneously determine both the

optimal 3D landmark model and the corresponding 2D projections without explicit estima-
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tion of the camera viewpoint, which is also able to deal with misdetections as well as par-

tial occlusions. To this end, we formulate the problem as a maximum a posteriori (MAP)

estimation task which involves 3D pose parameters, associated 2D correspondences and

visibility states. We derive a posterior probability as the product of an image likelihood,

a visibility prior, a 3D geometric prior and a projection consistency prior constraining the

2D and 3D configurations. In order to circumvent the need of viewpoint estimation, we

adopt a high-order decomposition of the 3D model that enables to determine the projection

error between a given 3D configuration and the corresponding 2D landmark positions in a

distributed manner. Furthermore, an explicit visibility modeling is also introduced to cope

with misdetections and outliers. The MAP inference is then naturally transformed into a

higher-order MRF optimization problem and all the latent variables are inferred through

a dual-decomposition-based method. The proposed formulation has been validated in the

context of 3D facial pose estimation from 2D images. Promising results on standard face

benchmarks demonstrate the potential of our method.

5.1.3 Outline of the Chapter

The remainder of this chapter is organized as follows. First in section 5.2, we present

the method that deals with knowledge-based 3D image segmentation. This presentation

also includes our pose-invariant shape model involved in the formulations proposed for

both problems. Section 5.3 is dedicated to the simultaneous estimation of a 3D landmark

model and of 2D correspondences. The used higher-order MRF optimization approach and

experimental validation of both methods are presented in section 5.4. Finally, we conclude

this chapter in section 5.5.

5.2 Knowledge-based Segmentation Using Pose-invariant

Priors

5.2.1 Pose-invariant Shape Modeling

The shape model consists of a set V of control points/landmarks that are located on the

boundary (a closed curve in 2D cases or a surface in 3D cases) of the object of interest.

As an example, Fig. 5.2(a) shows the distribution of the landmarks on the boundary of the

Medial Gastrocnemius (MG) muscle, which were considered in the experiments of calf

muscle segmentation (see section 5.4.2). Let xi (i ∈ V), a 3-dimensional vector, denote

the 3d position of landmark i and x = (xi)i∈V denote the position of all the landmarks

which parameterize the surface.
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We consider training data Mtrain which consist of a set of M shapes, i.e., Mtrain =

{x(m)}m∈{1,2,...,M}, to learn a prior probability distribution on the configuration of the 3D

shape model. As have been presented in section 5.1.1, we aim to achieve a pose-invariant

prior model. Thus, we do not register all the surfaces into a reference space. However, we

assume that correspondences have been determined for the landmarks among the samples

of the training set. Based on such training data, we propose to learn statistics on mea-

surements that are invariant with respect to translations, rotations and scales and can be

encoded within small cliques of an MRF model.

Let us consider a clique c (c ⊆ V and |c| ≥ 3) of landmarks, we enumerate all the

pairs Pc = {(i, j)|i, j ∈ c and i < j} of points. Let dij = ‖xi − xj‖ denote the Euclidean

distance between points i and j ((i, j) ∈ Pc). We obtain the relative distance d̂ij by

normalizing the distance dij over the sum of the distances between the pairs of points

involved in clique c, i.e.,

d̂ij =
dij

∑

(i,j)∈Pc
dij

(5.1)

Since for clique c, any relative distance d̂ij is a linear combination of the others (i.e.,
∑

(i,j)∈Pc
d̂ij = 1), we store all the relative distances, except one in a vector d̂c, i.e.,

d̂c = (d̂ij)(i,j)∈P̄c
(5.2)

where P̄c contains the pairs that are involved in the vector d̂c. For the purpose of clarity,

let us consider third-order cliques (i.e., |c| = 3) as an example, which is used in our

knowledge-based segmentation formulation that will be presented in section 5.2.3. In a

third-order clique c = {i, j, k} (i, j, k ∈ V and i < j < k), the corresponding three points

compose a triangle ∆ijk and d̂c denotes the relative lengths (d̂ij, d̂jk) of the sides (i, j) and

(j, k), i.e.,

d̂c = (
dij

dij + djk + dki

,
djk

dij + djk + dki

) (5.3)

The statistics on d̂c are learned from the training data. We can model its distribution

ψc(d̂c) using standard probabilistic models such as Multivariate Gaussian Distributions,

Gaussian Mixtures, Parzen-Windows. Finally, we get the higher-order shape model S =

(V , C, {ψc(·)}c∈C), where V and C determine the topology of the model while {ψc(·)}c∈C
characterizes the statistical geometric constraints between the points contained in each

clique c ∈ C. In the case where third-order cliques are used, C is defined as C =

{{i, j, k}|i, j, k ∈ V and i < j < k}. Such statistical constraints can be easily encoded in

a higher-order MRF with a clique set that includes C, which results in a prior probability

on the 3D configuration of the shape model as follows:

p(x) ∝
∏

c∈C

ψc(d̂c(xc)) (5.4)
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Figure 5.2: Shape Model for Medial Gastrocnemius Muscle. (a) Distribution of the land-

marks on the muscle boundary. (b) Two perpendicular slices with a triplet of landmarks

(the blue asterisks). (c) Learned Gaussian distribution on d̂c for the triplet shown in (b).

where d̂c(xc) denotes the mapping from the 3D positions xc of the three points contained

in the clique c to the relative distance vector d̂c.

5.2.2 Landmark Candidate Detection

As presented in section 5.1.1, we aim at developing a one-shot optimization approach for

the segmentation of challenging medical image data such as MRI data of calf muscles. In

order to explore image support through feature vectors and to avoid a prohibitive compu-

tational complexity, we perform landmark detections to find a set of possible correspon-

dences (referred to as “candidates”) in the observed image for each landmark i (i ∈ V) in

the 3D shape model. To this end, we first learn a classifier for each landmark, and then

compute a score for each possible location, and finally select the L positions that have the

best scores to compose the candidate set for the landmark.

There are various standard classifiers such as Randomized Forests [Breiman 2001],

Boosting algorithms [Schapire 1990, Freund & Schapire 1997, Schapire 2001] and Sup-

port Vector Machines (SVMs) [Boser et al. 1992, Cortes & Vapnik 1995, Muller et al. 2001].

In this work, we employ Randomized Forests to perform the classification. However, our

method is modular with respect to the classifier and other classifiers can also be con-

sidered. Randomized forests [Breiman 2001] were developed based on previous works

on “Bagging” (i.e., Bootstrap aggregating) and the random selection of features (e.g.,

[Breiman 1996, Amit & Geman 1997, Ho 1998]). They provide a powerful tool for clas-

sifications and has been successfully applied in various computer vision problems, such

as object recognition [Lepetit & Fua 2006], image classification [Bosch et al. 2007], ob-

ject segmentation via graph cuts [Winn & Shotton 2006, Schroff et al. 2008] and facade

segmentation/parsing using procedural shape prior [Simon et al. 2011].
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A randomized forest is composed of a set of T random decision trees. In the decision

trees, an internal node consists of a random test on an input feature vector. When a feature

vector is presented to a tree, it follows a specific path down to a leaf node. At each step

of this path, the direction (left or right) is determined by the binary result of the random

test (corresponding to the internal node) applied to the input vector. A leaf node stores a

histogram h = (h1, . . . , hW ) (W is the number of classes), which is obtained during the

training phase by counting the number of labeled feature vectors that arrive at this leaf.

During the testing phase, an unlabeled feature vector is dropped in each decision tree τ

and eventually reaches the leaf lτ . The normalized histogram of lτ provides a probability

estimation for the feature vector belonging to each class w:

P (w|lτ ) =
hw

∑

i hi

(5.5)

Finally, the probabilities of all the trees are averaged to obtain the probability over the

forest:

P (w|(l1, . . . , lT )) =
1

T

∑

τ

P (w|lτ ) (5.6)

We consider all the voxels in a 3D volume as possible locations of the landmarks.

Each voxel is associated with a feature vector that is used as the input for classifiers. Dif-

ferent features can be considered in randomized forests towards achieving a high-quality

detection. Image patches centered at each voxel are certainly the most straightforward

features to use. A more sophisticated one consists of a series of 3D Gabor features

[Bernardino & Santos-Victor 2006] with different scale, rotation parameters, which can

well capture the local image structure information. Furthermore, these parameters can be

sampled using the method proposed in [Kokkinos & Yuille 2008] so that scaling/rotation

of the image becomes a translation of these parameters, and then the Fourier Transform

Modulus (FTM) of the filter output can be estimated to eliminate variations due to these

translations (because the FTM is translation invariant). Due to the symmetry of FTM, it is

enough to consider only half of the FTM domain by removing the redundant coefficients,

which results in a scale and rotation invariant feature vector. Fig. 5.3 shows the detected

candidate results for four landmarks at different locations on a testing muscle data.

5.2.3 Higher-order MRF Segmentation Formulation

The shape model, together with the evidence from the image support, is formulated within

a higher-order MRF towards image segmentation. To this end, let G = (V , C) denote a

hypergraph2 with a node set V and a clique set C. We associate each landmark to a node

2We reuse the notation V and C to denote the node set and the clique set of the hypergraph, respectively,

due to one-to-one mappings between the nodes/cliques of the hypergraph and the landmarks/cliques of the
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Figure 5.3: Landmark Detection Results. The red hexagram represents the ground truth

while the blue plus signs represent the 50 candidates that have the best scores during the

detection. The reference segmentation surface is provided to visually measure the distance

between candidates and the ground truth.

i (i ∈ V) in the hypergraph, and the latent variable Xi corresponding to the node i is a 3-

dimensional vector that denotes the 3D position of the associated landmark. The candidate

set of each variable is denoted by Xi (i ∈ V), which consists of the detected landmark

candidates (see section 5.2.2). Thus the Cartesian product X =
∏

i∈V Xi denotes the

candidate set of the configuration x = (xi)i∈V of the MRF model. In this work, we use the

pose-invariant shape prior of third order (see section 5.2.1 for the definition of the shape

prior). In order to introduce such a prior into the MRF formulation, we associate a triplet of

landmarks to a third-order clique c and use the potential function of the clique c to encode

the statistical spatial constraints between the three landmarks. Finally, the segmentation

problem is transformed into estimating the optimal positions of the landmarks, i.e., the

optimal configuration xopt of the higher-order MRF, which is formulated as a minimization

of the MRF energy E(x):

xopt = arg min
x∈X

E(x) (5.7)

shape model.
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The energy of MRF is defined as a sum of singleton potentials Ui(xi) (i ∈ V) and third-

order potentials Uc(xc) (c ∈ C), i.e.,

E(x) =
∑

i∈V

Ui(xi) +
∑

c∈C

Hc(xc) (5.8)

where xc denotes the configuration (xi)i∈c of clique c. The singleton potentials and third-

order clique potentials are presented below.

The singleton potential Ui(xi) (i ∈ V) consists of the negative log-likelihood which

imposes penalty for the landmark i being located at position xi in image I, i.e.,

Ui(xi) = − log p(I|xi) (5.9)

p(I|xi) is defined using the classifier’s output probability value for landmark i being lo-

cated at xi.

The higher-order clique potential Uc(xc) (c ∈ C) encodes the statistic geometry con-

straints between the triplet c of points and is defined as:

Uc(xc) = −α · logψc(d̂c(xc)) (5.10)

where α > 0 is a weight coefficient, d̂c(xc) denotes the mapping from the position of the

triplet c to the 2-dimensional relative lengths of the sides, and ψc(·) denotes the learned

distribution on the relative lengths (see section 5.2.1).

5.3 3D Landmark Model Inference from Monocular 2D

Images

5.3.1 Probabilistic 3D-2D Inference Framework

We consider a point-distribution shape model composed of a set V of landmarks located

on the surface of the 3D object of interest. Let latent variable Xi = (X
(3)
i , X

(2)
i ) denote

the 3D and 2D positions of a landmark i (i ∈ V). More specifically, X
(3)
i and X

(2)
i , 3-

dimensional and 2-dimensional vectors respectively, denote the 3D position of landmark i

in the model space and the 2D position in the observed image I. Each variable Xi takes a

value xi from its possible configuration set Xi = X (3)
i ×X

(2)
i , where X (3)

i and X (2)
i denote

the 3D and 2D position candidate sets, respectively. Due to the fact that landmarks may be

invisible, we also introduce a visibility variable Oi for landmark i [Sudderth et al. 2004a].

Oi = 1 when the landmark is visible in the 2D image space, and Oi = 0 otherwise.

Given the observed image I, the estimation of the 3D-2D positions and the visibility

of the landmarks is formulated as a maximization of the posterior probability of (X,O) =
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((Xi)i∈V , (Oi)i∈V) over their domains X =
∏

i∈V Xi and O = {0, 1}|V|:

(x,o)opt = arg max
(x,o)∈X×O

p(x,o|I) (5.11)

The posterior probability p(x,o|I) is:

p(x,o|I) = p(x,o, I)/p(I)

∝ p(x,o, I)

= p(I|x,o) · p(x,o)

= p(I|x(2),x(3),o) · p(x(2)|x(3),o) · p(o|x(3)) · p(x(3))

= p(I|x(2),o)
︸ ︷︷ ︸

Image Likelihood

· p(x(2)|x(3),o)
︸ ︷︷ ︸

Projection Prior

· p(o)
︸︷︷︸

Visibility Prior

· p(x(3))
︸ ︷︷ ︸

3D Model Prior

(5.12)

where p(I|x(2),o) encodes the likelihood of the observed image given the 2D position

configurations x(2) and the visibility states o of the landmarks, p(x(2)|x(3),o) encodes the

projection prior from the 3D configuration x(3) to the 2D configuration of the landmarks,

p(o) denotes the visibility prior on the landmarks, and p(x(3)) denotes the prior on the 3D

configurations of the landmarks.

Note that this probabilistic formulation can be directly applied to the estimation of

3D (or 2D) configuration of the landmarks given 2D (or 3D) configuration, simply by

instantiating the variables whose configurations are known.

5.3.2 Definitions of the Probability Terms

In this section, let us elaborate all the probability terms which are involved in the posterior

probability p(x,o|I) (see Eq. 5.12).

Image Likelihood

The image likelihood p(I|x(2),o) measures the occurrence probability of the observed im-

age I, given the 2D position configurations x(2) and the visibility states o of the landmarks.

If we assume, without loss of generality, that the landmarks are independent in terms of

appearance, then we can define p(I|x(2),o) as follows:

p(I|x(2),o) ∝
∏

i∈V

p(I|x(2)
i , oi) (5.13)

Regarding p(I|x(2)
i , oi), there are two possible cases as follows:
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1. When Oi = 1, the landmark’s position is informative. In such a case, p(I|x(2)
i , oi)

denotes the likelihood of the observed image given that landmark i is located at po-

sition x
(2)
i , which can be defined using the output of a classifier such as Randomized

Forest [Breiman 2001].

2. When Oi = 0, the landmark’s position is not informative. In this case, p(I|x(2)
i , oi)

denotes a uniform distribution, thus we assume that p(I|x(2)
i , oi) = p̂ (constant).

Projection Prior

The projection prior p(x(2)|x(3),o) measures the occurrence possibility of the 2D positions

x(2) of the landmarks when the 3D positions x(3) and the visibility states o are given, which

is modeled using Gibbs distribution:

p(x(2)|x(3),o) ∝ exp{−
f(x,o)

T
} (5.14)

where T is temperature, and the energy function f(x,o) encodes inconsistency between

the 3D and 2D configurations of the landmarks taking the visibility states into account (the

smaller f(x,o) is, the better is the correspondence between x(3) and x(2)).

Without loss of generality, we use the weak-perspective camera configuration [Alter 1994]

to model the projection from 3D points to 2D points3. Let us first consider a triplet

t ∈ T = {t|t ⊆ V and |t| = 3} of landmarks that are all visible. Their 3D-2D po-

sitions xt determine at most two projection mappings P
(s)
xt (s ∈ {1, 2}) [Alter 1994,

Fischler & Bolles 1981] corresponding to two reflective symmetric camera configurations.

Then for any additional visible point i, we can measure the error ext
(xi) between its 2D

position x
(2)
i and the value obtained by projecting its 3D position x

(3)
i , i.e.:

ext
(xi) = min

s∈{1,2}

∥
∥
∥P(s)

xt
(x

(3)
i )− x(2)

i

∥
∥
∥ (5.15)

where ‖·‖ denotes the Euclidean norm, and between the two feasible projections we con-

sider the most prominent one with respect to the considered 2D configuration [Alter 1994].

On the contrary, if one or more of these four points are invisible, we set a constant energy

Ê as the projection error ext
(xi), which can be understood as an upper bound of the aver-

age projection error which is allowed between four points. Therefore, we define the error

function ext,ot
(xi, oi) by taking the visibility states into account as:

ext,ot
(xi, oi) = wt ·

{

ext
(xi) if oj = 1, ∀ j ∈ t ∪ {i}

Ê otherwise
(5.16)

3In the proposed framework, the weak-perspective camera model can be easily replaced by other camera

models such as the perspective model.
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where wt is a confidence weight for the error measure obtained under the mapping deter-

mined by the positions of the points in clique t, which will be presented later in this section.

And then, the 3D-2D consistency between a quadruplet c of landmarks consists of the sum

of the errors which are determined by taking all possible combinations of triplets within

the quadruplet and evaluating the projection error on the remaining point, which can be

formulated mathematically as follows:

e(xc, oc) =
∑

t⊂c

ext,ot
(xc\t, oc\t) (5.17)

Finally, we define the energy function f(x,o) as the sum of e(xc, oc) over all the quadru-

plet, i.e.:

f(x,o) =
∑

c∈C

e(xc, oc) (5.18)

where C = {c|c ⊆ V and |c| = 4} denotes the set of all quadruplets. Last, we should note

that we can further combine other cues in this projection prior, such as regional texture

similarity.

Robust Confidence Weight

Since the projection matrix estimation is unstable when considering triplets of 3D points

that are nearly collinear [Alter 1994], we introduce a confidence weight wt to modulate

the error contribution of each triplet of points. For a triangle ∆
x
(3)
t

consisting of a triplet

t of points with 3D positions x
(3)
t , we define the non-collinear coefficient NC(x

(3)
t ) using

the square root of its area Area(∆
x
(3)
t

) and its perimeter Perim(∆
x
(3)
t

) as follows:

NC(x
(3)
t ) =

2× 3
3
4 × Area

1
2 (∆

x
(3)
t

)

Perim(∆
x
(3)
t

)
(5.19)

We can observe that NC(x
(3)
t ) = 1 for an equilateral triangle and NC(x

(3)
t ) = 0 when

the three points are collinear. Then we learn the confidence weight wt by averaging the

non-collinear coefficients for each triplet t over the training data:

wt =
1

M

M∑

m=1

NC(x
(3)
t,m) (5.20)

where M denotes the number of training samples.
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Specification of the Projection Error

Regarding the computation of ext
(xi), we use the efficient method proposed in [Alter 1994]

to compute directly the projection of a 3D point under the projection determined by a

triplet of corresponding 3D-2D points without calculating the projection mapping. We

refer readers to [Alter 1994] for more details.

Collinear triplets of points lead to degenerate configurations from which we cannot

obtain a solution for the projection mapping. In this case, the corresponding error term

ext
(xi) in Eq. 5.15 is not well-defined. To deal with this, we consider two different scenar-

ios: (i) When we have a prior knowledge that the 3D positions of a triplet t of points have

to be collinear, we simply ignore the corresponding error measure by defining ext
(xi) = 0

(this is consistent with the confidence weight defined in Eq. 5.20, i.e., wt = 0 leads to zero

contribution to f(x)); (ii) Otherwise, we define ext
(xi) = +∞ if x

(3)
t are collinear so that

the final solution of x
(3)
t cannot be exactly collinear. By doing so, the term ext

(xi) is well-

defined for all the cases. For the sake of clarity, hereafter, we assume that the definition of

ext
(xi) in Eq. 5.15 implicitly includes the definition in the degenerate case.

Visibility Prior

We introduce the visibility variable O to achieve a more precise modeling of the 3D-2D

estimation, due to the fact that a landmark can be invisible. The notion of “invisibility”

encodes occlusions and self-occlusions in the 3D space, as well as misdetection due to

insufficient image support or classification failure.

To better understand such a notion of “invisibility”, one can consider that the visibility

of landmark is with respect to the landmark detector. Let us elaborate this in the consid-

ered problem. The inference process is performed by considering, for each landmark i, a

number of 2D positions which lead to the highest probabilities p(I|x(2)
i ) towards compos-

ing the set of plausible solutions for X (2)
i , expecting that at least one candidate is (or close

to) the true position. However, because of erroneous detection or occlusions, it is possible

that all the candidates are far from the ground truth. In such a context, we define the notion

of “visibility” as whether the true 2D correspondence of the landmark is captured by the

candidate set. More specifically, Oi = 1 means that at least one candidate in X (2)
i is close

to the ground truth, and Oi = 0 stands for the opposite case.

The prior probability p(o) is defined as follows:

p(o) =
∏

i∈V

p(oi) (5.21)

where p(oi) denotes the prior probability of the visibility of each individual landmark i

and is modeled as a Bernoulli distribution Bern(oi|µi) with parameter µi = Pr(Oi = 1).
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In practice, it is usually reasonable to assume the same parameter µ > 0.5 for all the

landmarks [Torresani et al. 2008].

3D Model Prior

We adopt the pose-invariant shape model introduced in section 5.2.1 that can capture the

inherent variability of the class of objects from a reasonable small training set and can be

easily modeled within MRFs. Thank to the invariance under similarity transformation, no

registration between surfaces is required during the learning stages and we only assume

that correspondences have been determined for the landmarks among the samples of the

training set. Due to the fact that the projection prior (section 5.3.2) involves quadruplets of

points, we instantiate the generic shape model in section 5.2.1 using fourth-order cliques

(i.e., |c| = 4). Similar to Eq. 5.4, the prior probability on the 3D positions of the landmarks

is defined as follows:

p(x(3)) ∝
∏

c∈C

ψc(d̂c(x
(3)
c )) (5.22)

5.3.3 Higher-order MRF Formulation

The data likelihood, the 3D-2D consistency, the visibility prior and the 3D shape model,

presented in section 5.3.2, can be naturally encoded within a higher-order MRF model

where latent variables are to be inferred through an energy minimization. In this perspec-

tive, the negative logarithm of the posterior probability (Eq. 5.12) is factorized into the

potentials of the MRF and constitutes the MRF energy.

To this end, we use a node to model a landmark i (i ∈ V) with its latent 3D-2D position

Xi and its visibility oi. Actually, we can use a single random variable4 to encode Xi and oi

compactly by simply defining a special label “occ” within 2D position candidate set X (2)
i

such that:

xi =

{

(x
(3)
i , x

(2)
i ) if Oi = 1

(x
(3)
i , occ) if Oi = 0

(5.23)

This compact representation is valid because the 2D position x
(2)
i is meaningless when

the landmark i is occluded (i.e., when Oi = 0, the image likelihood p(I|x(2),o) and the

projection prior p(x(2)|x(3),o) are constant with respect to x
(2)
i .).

In order to factorize the potential functions, we use a fourth-order clique to model a

quadruplet c of landmarks. Due to the bijective mappings between nodes and landmarks

and between fourth-order cliques and quadruplets, we reuse V and C to denote the node

4In order to reduce the number of symbols used, we reuse Xi to denote this new random variable.

Accordingly, we reuse xi, Xi and the other related notations.
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set and the clique set which determine the topology of the MRF. The 3D and 2D positions

of the landmarks are estimated through the minimization of the MRF energy E(x):

xopt = arg min
x∈X

E(x) (5.24)

Here, the energy of the MRF is defined as the negative logarithm of the posterior prob-

ability in Eq. 5.12 (up to an additive constant) and can be factorized into the following

form:

E(x) =
∑

i∈V

Ui(xi) +
∑

c∈C

Hc(xc) (5.25)

where xc denotes the configuration (xi)i∈c of clique c.

Algorithm 5.1 Decompose A Factor Graph into Factor Trees

Input: Factor graph G = (V , C) with the node set V and the factor set C

Output: A set of factor trees ΓG = {Gs = (Vs, Cs)}s∈S
ΓG ← ∅

while C 6= ∅ do

Get an factor c from the factor set C

Vs ← Nc {Nc denotes the set of neighbor nodes of the factor c in G}

Cs ← {c}

Cext ← {c}

while Cext 6= ∅ do

Get an factor c′ from the factor set Cext

Cext ← Cext \ {c
′}

Vext ← Nc′

for all v′ ∈ Vext do

for all ĉ ∈ Nv′ \ {c′} {Nv′ denotes the set of neighbor factors of the node v′ in

G} do

if the graph (Vs ∪Nĉ, Cs ∪ {ĉ}) has no loop then

Vs ← Vs ∪Nĉ

Cs ← Cs ∪ {ĉ}

Cext ← Cext ∪ {ĉ}

end if

end for

end for

end while

Gs = (Vs, Cs)

C ← C \ Cs
ΓG ← ΓG ∪ {Gs}

end while
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Singleton potential

The singleton potential Ui(xi) (i ∈ V) encodes the data likelihood (see section 5.3.2) and

the visibility prior (see section 5.3.2). After taking the negative logarithm, we obtain its

definition as follows:

Ui(xi) =

{

− log p(I|x(2)
i ) if x

(2)
i 6= “occ”

λ1 if x
(2)
i = “occ”

(5.26)

where λ1 is a constant coefficient.

Higher-order clique potential

The higher-order clique potential Hc(xc) (c ∈ C) is defined as follows:

Hc(xc) = λ2 ·H
(1)
c (xc) + λ3 ·H

(2)
c (xc) (5.27)

where λ2 > 0 and λ3 > 0 are two balancing constants, H
(1)
c (xc) encodes the 3D statistic

geometry constraints implied by the shape prior on the 3D configuration of the landmarks,

and H
(2)
c (xc) encodes the 3D-2D projection prior:

{

H
(1)
c (xc) = − logψc(d̂c(x

(3)
c ))

H
(2)
c (xc) = e(xc, oc(xc))

(5.28)

where oc(xc) denotes the binary visibility values that are recovered from xc using Eq. 5.23,

and the definitions of e(xc, oc) and ψc(α(x
(3)
c )) have been presented in section 5.3.1.

5.4 Experimental Results

The optimization of the MRF models for both problems requires a higher-order MRF-

MAP inference algorithm. We present first in section 5.4.1 the optimization approach that

was used in the experiments and then show the experimental results in section 5.4.2 and

section 5.4.3.

5.4.1 Higher-order MRF Optimization via Dual-decomposition

In section 2.2.3, we have reviewed the dual-decomposition MRF optimization framework

[Bertsekas 1999, Komodakis et al. 2007a], which has also been applied in solving higher-

order MRFs [Komodakis & Paragios 2009] and other specific problems such as graph

matching [Torresani et al. 2008] and joint segmentation and appearance histogram models

optimization [Vicente et al. 2009]. We also have adopted such a framework for solving
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high-order graph matching problems as shown in chapter 4. Motivated by the advan-

tages of the dual-decomposition framework in terms of flexibility, generality and conver-

gence property (see section 2.2.3) and by promising performance achieved by the dual-

decomposition-based methods developed in those previous works, we chose to adopt such

an optimization methodology to perform the inference in our higher-order MRF models as

well. However, due to the fact that the higher-order potentials contained in the MRFs are

not pattern-based, the techniques proposed in [Komodakis & Paragios 2009] cannot be di-

rectly used. Thanks to the flexibility and generality of dual-decomposition, one can resort

to other kinds of decompositions in order to optimize the energy of the MRF. Tree decom-

positions have been widely used in the literature to develop successful MRF-MAP infer-

ence algorithms (e.g., [Wainwright et al. 2005, Kolmogorov 2006, Komodakis et al. 2007a]),

due to the fact that the inference in a tree can be exactly done in polynomial computational

time (see section 2.2.2). Using factor trees (see section 2.1.4), many properties and algo-

rithms of usual trees can be generalized to higher-order cases, such as the min-sum belief

propagation (see Algorithm 2.2).

Based on these observations, we adopt the dual-decomposition optimization frame-

work and decompose the original problem into a set of sub-problems each of which cor-

responds to a factor-tree. More concretely, we represent an MRF as a factor graph (see

section 2.1.4). Let MRFG denote the original MRF model whose topology is defined

by the factor graph G = (V , C), UG = {Ui(·)}i∈V denotes the singleton potentials de-

fined on the node set V , and HG = {Hc(·)}c∈C denotes the clique potentials defined

on the factor set C. We decompose the original hypergraph G into a set of factor trees,

which are denoted by {Gs = (Vs, Cs)}s∈S , such that V = ∪s∈SVs, C = ∪s∈SCs and

any higher-order factor in G appears in one and only one factor tree. This process can

be easily done using the algorithm described in Algorithm 5.1. The potentials of the

MRFs corresponding to the sub-problems, denoted by {MRFGs}s∈S , are obtained by de-

composing the potentials of the original MRF into the sub-hypergraphs such that UG =
∑

s∈S UGs and HG =
∑

s∈S HGs . This can be achieved simply by setting UGs

i =
UG

i

|{s|i∈Vs}|

and HGs
c = HG

c

|{s|c∈Cs}|
. Max-product belief propagation algorithm (see Algorithm 2.2) is

employed to exactly and efficiently perform the inference in each subproblem and the

solutions of the sub-problems are combined using projected subgradient method (like

[Komodakis et al. 2007a, Torresani et al. 2008, Komodakis & Paragios 2009]) to solve the

Lagrangian dual so as to obtain the solution of the original problem.

5.4.2 Results on Knowledge-based 3D Segmentation

We used the data set that was previously used in [Essafi et al. 2009a] to validate the pro-

posed method. This data set consists of 25 3D MRI subjects whose calf part was captured.
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Figure 5.4: Experimental Results for Muscle Segmentation. (a) Surface reconstruction

results (green: reference segmentation. red: reconstruction result). (b) Boxplots of the av-

erage landmark error measure in voxel (1. our method. 2. method in [Essafi et al. 2009a].

3. standard ASM method.). On each box, the central mark in red is the median, the edges

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data

points.

The voxel spacing is of 0.7812× 0.7812× 4 mm and each volume consists of 90 slices of

4mm thickness acquired with a 1.5 T Siemens scanner. Standard of reference was avail-

able, consisting of annotations provided by experts for the Medial Gastrocnemius (MG)

muscle.

We performed a leave-one-out cross validation on the whole data set. For compari-

son purpose, we considered as alternative segmentation methods5 the ones presented in

[Essafi et al. 2009a]. We present in Fig. 5.4(a) the surface reconstruction results using the

estimated position of the landmarks and thin plate spline (TPS) [Bookstein 1989], while

in Fig. 5.4(b) the average distance between the real landmark position and the one es-

timated from our algorithm, and the ones reported in [Essafi et al. 2009a] including the

one obtained using standard active shape models. In comparison to [Essafi et al. 2009a],

considered as state-of-the-art, our approach leads to an average reduction of the landmark

location error by a factor 2. The analysis of the results shows that the proposed prior and

the inference using higher-order graphs globally perform well while the main limitation

is introduced from the landmark candidate detection process. Since the method estab-

lishes correspondences between the model and the detected landmarks, in the absence of

meaningful candidates the method fails to recover optimally the global shape. Regarding

computational complexity, the method is linear with respect to the number of higher-order

cliques and cubic with respect to the number of candidates per landmark.

5Opposite to [Essafi et al. 2009a], we have considered a subset of 50 from the 895 model landmarks

uniformly distributed in the model-space (Fig. 5.2).
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Figure 5.5: Experimental Settings for 3D Model Inference (a) The distribution of land-

marks; (b) The histogram presenting the distribution of the number of missing 2D corre-

spondences in the first experiment. Each bin represents the number of tests (vertical axis)

that have the corresponding number of missing 2D correspondences (horizontal axis).

5.4.3 Results on 3D Model Inference from 2D images

Experimental Setting

The performance of the proposed method was evaluated on the publicly-available facial

expression datasets BU-3DFE [Yin et al. 2006] and BU-4DFE [Yin et al. 2008]. The for-

mer consists of 3D range data of 6 prototypical facial expressions of 100 different subjects

(56 female and 44 male), and the latter is composed of 3D dynamic facial expressions of

101 different subjects (58 female and 43 male). The subjects included in both datasets are

of various ethnic/racial origins.

The considered model consists of 13 landmarks (eyes, nose, mouth and eyebrows as

shown in Fig. 5.5(a)). In the inference stage, its 3D initialization was done by randomly

picking one training example. Regarding the 3D positions of the landmarks, the search

was guided by a coarse-to-fine scheme and sparse sampling strategy in a similar way

as [Glocker et al. 2008a]. Upon convergence of the algorithm, we performed Procrustes

Analysis [Dryden & Mardia 1998] to obtain the similarity transform between the estimated

3D model and the ground truth, then transformed the estimated one into the referential

frame of the ground truth. In terms of quantitative evaluation, a common goodness-of-fit

criterion is the squared error standardized by the scale of the object. Thus, Procrustes

distance [Dryden & Mardia 1998] was used as the dissimilarity measure Ed to evaluate

our method quantitatively, which can be computed as follows:

Ed =
∑

i∈V

∥
∥
∥ẋ

(3)
i − x̂

(3)
i

∥
∥
∥

2

/
∑

i∈V

∥
∥
∥x̂

(3)
i − Ĉ(3)

∥
∥
∥

2

(5.29)

where ẋ
(3)
i and x̂

(3)
i denote the resulting and ground truth 3D positions of landmark i,
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Figure 5.6: Results of the First Experiment. (a) and (b): 3D model estimation results. In

each sub-figure, 3D face mesh is provided for measuring visually the error between the

resulting positions (in red) of landmarks and the ground truth (in blue). (c): Boxplots

for the distributions of dissimilarity measures for qualitatively evaluating the 3D model

estimation. c.1: Results obtained by the proposed method; c.2: Results obtained by the

version without visibility modeling; c.3: Initialization of the model. On each box, the

central mark in red is the median, the edges of the box are the 25th and 75th percentiles,

the whiskers extend to the most extreme data points not considered outliers, and outliers

are plotted individually.

respectively, Ĉ(3) = 1
|V|

∑

i∈V x̂
(3)
i is the center of the ground truth model. The smaller Ed

is, the closer the resulting model is to the ground truth.

In all the experiments, the concept of leave-one-out cross-validation was adopted to-

wards the evaluation of the method. In this context, we do the validation on a sample

while using the remaining samples as training data, and such a validation is done for all

the samples contained in a dataset using the same parameter settings. Regarding the 3D

model prior (Eq. 5.22), we modeled the probability distribution pc(d̂c(x
(3)
c )) between a

quadruplet c of points using a two-component Gaussian Mixture.

Qualitative Results and Quantitative Analysis

First, we considered 100 samples of the neutral expression from BU-3DFE, one from each

subject. The 2D landmark correspondence space was associated with 5 labels, four corre-

sponding to the 2D position candidates and the last to the occlusion label “occ”. On top of

the ground truth correspondence, noise was added to generate erroneous 2D candidates as

well. Furthermore, for 10% of the landmarks (randomly sampled), the true correspondence

was removed and replaced with a random position in the image plane, which produced be-

tween 0 and 5 missing 2D correspondences for each test (see Fig. 5.5(b)). Figs. 5.6(a) and

(b) present 3D model estimation results. Fig. 5.6(c).3 and Fig. 5.6(c).1 (i.e., the boxes 3

and 1 in Fig. 5.6(c)) depict the statistics of the dissimilarity measure Ed (Eq. 5.29) for the

initialization and the resulting 3D model obtained by the proposed method, respectively.
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Figure 5.7: Comparison with ASM+RANSAC in term of Dissimilarity Measures. 1. Our

method with random-sample initialization; 2. ASM+RANSAC with random-sample ini-

tialization; 3. Random-sample initialization; 4. Our method with mean-shape initializa-

tion; 5. ASM+RANSAC with mean-shape initialization; 6. Mean-shape initialization.

The qualitative and quantitative evaluations demonstrate that our method leads to well-

estimated 3D models even when correspondences are partially missing. Furthermore, in

order to demonstrate the impact of the visibility modeling, we have also evaluated an alter-

native version (without visibility modeling) of the proposed method where the “occ” label

was removed from the 2D candidate set of each node, and show the obtained statistics of

Ed in Fig. 5.6(c).2. Based on the comparison of Fig. 5.6(c).1 and Fig. 5.6(c).2, we can

conclude that the visibility modeling indeed leads to significantly better performance.

Second, we employed the facial feature point detector of [Vukadinovic & Pantic 2005]

to obtain the 2D position candidates for 101 samples of BU-4DFE, also one from each

subject. Such a detector is based on Gabor features and boosting classifiers, and can well

localize the considered landmarks from observed 2D images (Figs. 5.8(a)-(f)), though er-

rors may still be present in some tests. We also performed a leave-one-out cross-validation

in this experiment. Figs. 5.8(a’)-(f’) show six 3D model estimation results of different

qualities and Fig. 5.8(g) presents the statistics of Ed for the proposed method and the

version without visibility modeling. These results further demonstrate the potential of the

proposed method to infer the 3D configuration of the model from 2D observed images

with misdetections/occlusion handling.

Last but not least, we compared our method with an alternative method (ASM+RANSAC)

with a relaxed condition where we assumed that the ground truth 2D correspondences

were known. For each test, we first learned an ASM [Cootes et al. 1995] from the training

data. Then, we used RANSAC [Fischler & Bolles 1981] to estimate the camera projection

function based on the initialization of the shape model and the given ground truth 2D cor-
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respondences. Once the projection function was estimated, we searched for the best shape

configuration by minimizing the errors between the projections of the 3D points and their

2D correspondences. Furthermore, we evaluated both methods using two different ini-

tializations: besides the “random sample” initialization used throughout the experiments,

we also tested the “mean-shape” initialization where we chose one example as the ref-

erence, registered all the other training examples to it and computed the mean shape as

initialization. We performed leave-one-out cross-validation on all the 2500 samples of

BU-3DFE dataset and the quantitative evaluation is shown in Fig. 5.7. Figs. 5.7.1 and

5.7.4 show that our method performed equally well with the two different initializations,

which demonstrates robustness with respect to the choice of initialization. The evaluation

of ASM+RANSAC is presented in Figs. 5.7.2 and 5.7.5. We observe from Fig. 5.7 that

the dissimilarity measure of our method is approximately 3 to 5 times lower compared to

ASM+RANSAC, which demonstrates that our method performs significantly better than

ASM+RANSAC and is highly robust with respect to the initialization.

In conclusion, the results of all the experiments demonstrate that our method, despite

the important variability of pose and facial geometry, has well estimated the 3D configura-

tion of the model even with the existence of misdetections, and outperforms significantly

the alternative methods.

5.5 Conclusion

In this chapter, we have introduced one-shot optimization approaches for 3D knowledge-

based segmentation and for 3D landmark model inference from a monocular 2D view

based on higher-order MRFs, respectively. In order to eliminate potential effects of global

pose estimation in the training and testing stages, the shape prior manifolds are built upon

higher-order interactions of landmarks from a training set where pose-invariant statistics

are obtained. In particular for the problem of 3D model inference from 2D images, the

proposed 3D-2D consistency that is also encoded in such high-order interactions elimi-

nate the necessity of viewpoint estimation, and the modeling of visibility improves further

the performance of the method by handling missing correspondences and occlusions. The

main innovations of the methods are the absence of global pose estimation and/or camera

parameters estimation, the ability to model geometric consistency through local priors and

the one-shot optimization to jointly infer all the variables. Furthermore, the explicit mod-

eling of visibility in the 2D-3D inference formulation has been demonstrated to be able

to handle missing correspondences and occlusion. Our methods have achieved promising

results on challenging medical image data and standard facial datasets, respectively.

Incorporating regional and/or edge-based image support into the proposed MRF mod-

els will significantly enlarge their extent of applications. We have also studied the prob-
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lem of decomposition of such image support in [Xiang et al. 2011, Wang et al. 2011a]. In

knowledge-based 2D or 3D segmentation with MRFs, while edge-based terms are some-

what easy to be modeled in a distributed manner, it is not straightforward to decompose the

regional data likelihood into local terms since such a regional term involves integrals on the

regions which are delimited by the contour (depending on the positions of all the control

points). In the work of [Xiang et al. 2011], which I have participated into, an exact factor-

ization of the regional data term was proposed by using divergence theorem and leads to

significantly better performance compared to the method of [Besbes et al. 2009] which re-

lies on an approximative decomposition. The integration of such distributed regional terms

in the proposed 3D pose-invariant segmentation framework will certainly yield powerful

segmentation algorithms for many challenging scenarios such as 3D tagged magnetic reso-

nance image segmentation, which is being under investigation. In [Wang et al. 2011a], we

proposed an approach to deal with 3D reconstruction from bi-planar images given camera

parameters, where regional and boundary likelihoods from 2D images are modeled using

higher-order potentials. We are investigating an efficient and accurate approach to fuse

similar distributed likelihood terms in the current joint 2D-3D inference framework.
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Figure 5.8: Results of the Second Experiment. (a)-(f): 2D landmark detection results

[Vukadinovic & Pantic 2005]; (a’)-(f’): The corresponding 3D model estimation results.

(g): Boxplots for the distributions of dissimilarity measures for qualitatively evaluating

the 3D model estimation. g.1: Results obtained by the proposed method; g.2: Results

obtained by the version without visibility modeling; g.3: Initialization of the model.
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Chapter 6

Conclusion

In this thesis, we have introduced graph-based modeling to address several fundamen-

tal problems of computer vision. In particular, our contributions refer to segmentation,

tracking, shape matching and 3D model inference. The driving force of this thesis was

the use of distributed and higher-order graphical models. Such a choice was motivated by

the need of single-shot optimization methods that take into account the complementarity

of visual perception tasks while at the same time inherit invariance with respect to certain

global parameters such as the camera viewpoint and the object pose.

6.1 Contributions

The main contributions of this thesis are the following:

• We have proposed a joint 2.5D layered image representation. Opposite to classic

2.5D layered representations that require a high-order model due to the integration of

depth ordering, we achieved a model that is restricted by local constraints involving

only pairs of variables. Such a representation provides novel insights to solve multi-

object motion estimation problems and allows to use a pairwise objective function

to jointly model and solve depth ordering, segmentation and tracking.

Then, based on this 2.5D layered representation, we have developed a single-shot

optimization framework for joint segmentation, depth ordering and multi-object

tracking using a pairwise MRF, where all the variables of interest interact. Fur-

thermore, the fusion of depth ordering leads to a rigorous visibility modeling and

occlusion handling for segmenting and tracking multiple objects. The proposed for-
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mulation is modular with respect to the data term and the shape representation, while

being independent from the inference algorithm.

• Towards introducing richer geometric prior knowledge in the grouping problem, we

have studied and proposed a novel algorithm for non-rigid 3D surface matching via a

higher-order graph-based formulation that accounts for geometric/appearance sim-

ilarities and intrinsic deformation errors. This was achieved through a third-order

graph matching method where a pseudo-boolean objective function is optimized

using a dual-decomposition-based approach together with recent order-reduction

techniques, so as to achieve optimal correspondences between two surfaces. The

principled fusion of the distortions at both local and global levels leads to a high

robustness of the proposed method.

• We have introduced a pose-invariant distributed shape model whose prior manifold

is described through accumulation of local densities involving pose invariant com-

binations of points. Then, based on such a statistical shape model, we have pro-

posed a novel approach for knowledge-based 3D segmentation based on a higher-

order MRF, where the prior information from the shape model and the image like-

lihood defined by classification techniques are combined together and the inference

is done using a one-shot optimization through a dual-decomposition-based higher-

order MRF optimization method.

• We have proposed a novel approach for 3D landmark model inference from a monoc-

ular 2D view that combines the estimation of the 3D model parameters, the visibility

states and the 2D correspondences. The proposed probabilistic inference approach

does not require explicit viewpoint estimation, while being able to jointly optimize

the 3D model parameters and the corresponding landmarks selection as well as ex-

plicitly handling missing correspondences and occlusions via a visibility modeling.

The image likelihood, the visibility prior, the 3D geometric prior and the 3D-2D pro-

jection consistency prior that compose the posterior probability are naturally mod-

eled using a higher-order MRF and all the latent variables are inferred also through

the dual-decomposition-based method.

The proposed formulations are modular with respect to the optimization method. We

believe that their strength will become more and more significant with the development

of optimization techniques. We also expect that our models could inspire the graph-based

modeling for other vision problems.
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6.2 Future Works

We now open the discussion on several directions of research that are related to the pre-

sented works and are or will be investigated.

Regarding the 2.5D layered model and the formulation for joint segmentation, tracking

and depth-ordering, several important future directions are:

• As opposed to simple shape priors such as rectangles, we can imagine more complex

object representations that are able to cope with important deformations (e.g., point

distribution models). One of the most promising directions for future work would

be to incorporate the graph representation of shape models into the existing MRF

model towards a more accurate understanding of the scene. For example, we are

particularly interested in searching for a principled approach to combine our pose-

invariant shape prior into the unified framework for joint segmentation, tracking and

depth-ordering.

• Another promising direction is to extend the current framework to deal with articu-

lated objects such as the pose estimation of human body and/or hand. A straightfor-

ward way is to model each component of articulated objects using an object node and

add pairwise interactions between object nodes to model spatial constraints between

the corresponding components (similar to pictorial model). The rigorous handling

of visibility/occlusion of such a framework could greatly impact the quality of the

obtained results.

• The extension of the joint 2.5D layered model to deal with the depth ordering prob-

lem in other related vision problems such as motion segmentation, layer decom-

position and optical flow is also under investigation. Existing methods for these

problems usually assume/impose that the layers are strictly and totally ordered ac-

cording to their relative depths. Thus, the decomposition of the depth ordering into

low-order interactions would lead to novel graph-based formulations to efficiently

solve such problems.

• In each node of the proposed MRF model, the candidate set of the latent random

variable is a product space. Theoretical questions are to be addressed in such a

context like how to explore the structure of the energy function of such product-

space MRF models and develop a more efficient optimization algorithm1 both in

terms of computational speed and memory requirement. Moreover, we believe that

the development of such an efficient optimization algorithm would motivate new

product-space MRF models for many vision problems.

1Note that [Goldluecke & Cremers 2010] have investigated the optimization of a class of product-space

MRFs where the form of pairwise potentials are quite limited (i.e., separable metrics).
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Some future works related to the non-rigid 3D surface matching are as follows:

• A promising direction is to study shape similarity analysis, recognition and retrieval

based on the surface matching method. The robust matching performance of our

method could provide a strong cornerstone for these applications.

• The current matching formulation is based on the isometric assumption. The relax-

ation of this assumption towards handling wider deformation groups (e.g., diffeo-

morphism) is an interesting direction. Moreover, the probabilistic extension of the

matching formulation is also an important problem for dealing with the variability

within a class of shapes.

• 3D surface tracking is also a promising direction which can be applied in various

attractive applications such as facial expression analysis and transfer. We are par-

ticularly interested in developing a unified graph-based 3D surface tracking with

advanced deformation priors.

Regarding the 3D model inference from 2D or 3D images, we are interested in the

following directions:

• Better decomposition towards recovering the smallest subset of higher-order interac-

tions that can express the 3D geometric manifold is a natural step forward. Such an

approach could drastically decrease the computational complexity of the methods.

• Towards widening the application set of our knowledge-based segmentation and si-

multaneous 2D-3D estimation formulations, more advanced parameterizations of

the manifold which go beyond simple 3D landmark positions (e.g., the entire sur-

face through some kind of local interpolation) could be employed. Besides, another

promising direction is a principled incorporation of regional and/or edge-based im-

age support in the current formulations, as we discussed in section 5.5.

• Faster optimization algorithms of higher-order MRFs could be beneficial to our ap-

proach both in terms of the considered application as well as in terms of modularity

with respect to other 3D model inference problems. Hence, an important problem

that needs to be dealt with in the future is the development of such a faster optimizer.

• An interesting future work is to develop a graph-based method to track 3D facial

expression from monocular 2D images based on our techniques on the joint 2D-

3D estimation and on the non-rigid 3D surface matching. We believe that a robust

algorithm would be contributive to many applications related to facial expression.
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• Last but not least, one promising direction is to extend the current formulations

to the scenario of 3D model tracking. Towards this goal, an interesting problem

is to model and incorporate spatio-temporal higher-order priors on the shape with

dynamic behavior (e.g., anatomical structure, face).
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