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École Normale Supérieure de Lyon

46, allée d’Italie

69364 Lyon Cedex 07

France
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Résumé et introduction

Contenu. Ce texte est consacré à l’étude de produits tensoriels cristallins (ou semi-

stables, ou de de Rham, ou de Hodge-Tate) de représentations p-adiques de GK =

Gal(Qp/K), où K/Qp est une extension finie, ainsi que de produits tensoriels trian-

gulins de représentations p-adiques de GK . On étudie également la situation où l’image

d’une représentation p-adique par un foncteur de Schur (tel, par exemple, Symn ou
�n)

est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate). Les résultats présentés

dans cette thèse sont des énoncés pour les B-paires; ils s’appliquent en particulier aux

représentations p-adiques de GK .

Cette introduction résume les questions que nous avons abordées, ainsi que leurs

réponses et quelques éléments de demonstration. Dans la partie I de cette thèse, nous

rappelons quelques éléments fondamentaux de la théorie de Hodge p-adique et des fonc-

teurs de Schur. La partie II est consacrée à l’étude de produits tensoriels et objets de

Schur cristallins (ou semi-stables, ou de de Rham, ou de Hodge-Tate), tandis que la partie

III est consacrée à l’étude de produits tensoriels triangulins de représentations p-adiques

de GK .

Mots-clefs : Représentation p-adique d’un groupe de Galois absolu d’un corps p-adique,

B-paire, théorie de Hodge p-adique, représentation cristalline, semi-stable, de de Rham,

de Hodge-Tate, représentation trianguline, produit tensoriel, foncteur de Schur.

Produits tensoriels et objets de Schur admissibles en théorie de Hodge

p-adique. Soient Qp une clôture algébrique de Qp, K/Qp et E/Qp des extensions finies

contenues dans Qp, et GK = Gal(Qp/K) le groupe de Galois absolu de K. On note

RepE(GK) la catégorie des représentations E-linéaires continues de GK . En utilisant les

anneaux Bcris, Bst, et BdR (voir [Fon94b]), Fontaine a défini la notion de représentation

E-linéaire de GK cristalline, semi-stable et de de Rham, et il a montré que les sous-

catégories correspondantes de RepE(GK) sont stables par sous-quotient, somme directe

et produit tensoriel. L’un des buts de la partie II de cette thèse est de répondre à la

question suivante : si V et V � sont des représentations E-linéaires non nulles de GK dont

le produit tensoriel V ⊗E V � est cristalline (ou semi-stable, ou de Rham, ou de Hodge-

Tate), alors que peut-on dire de V et V � ? On répond aussi à la question suivante :

5



6 RÉSUMÉ ET INTRODUCTION

si F : RepE(GK) → RepE(GK) est un foncteur de Schur (comme, par exemple, Λn ou

Symn) et si F (V ) est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate),

alors que peut-on dire de V (sous certaines hypothèses sur dimE V ) ?

Les résultats obtenus dans cette thèse portent sur les B-paires, ce qui permet d’en

déduire des résultats pour les représentations galoisiennes p-adiques. On explique main-

tenant plus en détail les énoncés obtenus. On note Be l’anneau Bϕ=1
cris . Berger a défini

dans [Ber08] la catégorie des B-paires. Une B⊗E
|K -paire est une paire W = (We,W

+
dR),

où We est une Be ⊗Qp E-représentation de GK (c’est-à-dire un Be ⊗Qp E-module li-

bre de rang fini muni d’une action Be-semi-linéaire et E-linéaire de GK) et W
+
dR est un

B+
dR ⊗Qp E-réseau de WdR = (BdR ⊗Qp E) ⊗(B+

dR
⊗QpE) We stable par l’action de GK .

Si W = (We,W
+
dR) est une B⊗E

|K -paire, alors le rang de W est défini par rang(W ) :=

rang(Be⊗QpE)We. Par exemple, si V est une représentation E-linéaire de GK , alors

W (V ) = ((Be⊗Qp E)⊗E V, (B
+
dR⊗Qp E)⊗E V ) est une B⊗E

|K -paire de rang d = dimE V , et

la catégorie RepE(GK) s’identifie par le foncteur W (−) à une sous-catégorie tensorielle de

la catégorie des B⊗E
|K -paires. Les notions d’objets cristallins, semi-stables, de de Rham, et

de Hodge-Tate s’étendent aux B⊗E
|K -paires de telle façon qu’une représentation E-linéaire

V de GK est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate) si et seulement

si la B⊗E
|K -paire W (V ) l’est.

La théorie de Sen des représentations Cp-semi-linéaires de GK (voir [Sen80]) et la

théorie de Fontaine des representations BdR-semi-linéaires de GK (voir [Fon04]) nous

permettent de montrer le résultat suivant (c’est le théorème 5.1.0.15 de la partie II).

Théorème A. Soient W et W � des B⊗E
|K -paires non nulles. Si la B⊗E

|K -paire W ⊗W � est

de Hodge-Tate, alors il existe une extension finie F/E et un caractère µ : GK → F× tels

que les B⊗F
|K -paires W (µ−1) et W �(µ) soient de Hodge-Tate. De plus, si W ⊗W � est de

de Rham, alors W (µ−1) et W �(µ) le sont.

Il est connu que tout B⊗E
|K -paire de de Rham est potentiellement semi-stable, grâce aux

résultats de [And02], [Ber02], [Ked00], et [Meb02]. Les propriétés des (ϕ, N,Gal(L/K))-

modules (ici, L/K est une extension finie galoisienne) nous permettent comprendre la sit-

uation où W et W � sont toutes les deux potentiellement semi-stables : c’est le théorème

6.2.0.21 de la partie II.

Théorème B. Soient W et W � des B⊗E
|K -paires non nulles potentiellement semi-stables.

Si la B⊗E
|K -paire W ⊗ W � est semi-stable, alors il existe une extension finie F/E et un

caractère µ : GK → F× tels que les B⊗F
|K -paires W (µ−1) et W �(µ) sont semi-stables. De

plus, si W ⊗W � est cristalline, alors W (µ−1) et W �(µ) le sont.
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En particulier, les deux théorèmes ci-dessus s’appliquent lorsque W et W � sont des

B⊗E
|K -paires de la forme W = W (V ) et W � = W (V �) avec V, V � ∈ RepE(GK) (voir les

corollaires 5.1.0.16 et 6.2.0.22 de la partie II).

Corollaire. Soient V et V � des représentations E-linéaires non nulles de GK. Si V ⊗EV
�

est cristalline (resp. semi-stable, ou de de Rham, ou de Hodge-Tate), alors il existe une

extension finie F/E et un caractère µ : GK → F× tels que V (µ−1) et V �(µ) soient

cristallines (resp. semi-stables, ou de de Rham, ou de Hodge-Tate).

Les méthodes utilisées pour démontrer les théorèmes A et B peuvent être utilisées

pour comprendre la situation où l’image par un foncteur de Schur d’une B-paire est

cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate), ce que l’on explique dans

la suite.

Si n ∈ N>0 et si n = u1+. . .+ur est une partition de n en entiers avec u1 ≥ . . . ≥ ur ≥
1, alors le r-uplet u = (u1, . . . , ur) définit un foncteur de Schur, noté Schuru(−), qui envoie

une B⊗E
|K -paire W sur une B⊗E

|K -paire Schuru(W ). Si r = 1 ou si u1 = u2 = . . . = ur, alors

on pose r(u) = r + 1; sinon, on pose r(u) = r. Par exemple, si u = (n), alors r(u) = 2 et

le foncteur de Schur associé à u est Symn(−); si u = (1, . . . , 1), alors r(u) = n + 1 et le

foncteur de Schur associé à u est Λn(−).

Les deux théorèmes suivants correspondent respectivement aux théorèmes 5.2.0.18 et

6.3.0.24 de la partie II.

Théorème C. Soit W une B⊗E
|K -paire telle que rang(W ) ≥ r(u). Si la B⊗E

|K -paire

Schuru(W ) est de Hodge-Tate, alors il existe une extension finie F/E et un caractère

µ : GK → F× tels que la B⊗F
|K -paire W (µ−1) soit de Hodge-Tate. Si, de plus, Schuru(W )

est de de Rham, alors W (µ−1) l’est.

Théorème D. Soit W une B⊗E
|K -paire potentiellement semi-stable avec rang(W ) ≥ r(u).

Si la B⊗E
|K -paire Schuru(W ) est semi-stable, alors il existe une extension finie F/E et

un caractère µ : GK → F× tels que la B⊗F
|K -paire W (µ−1) soit semi-stable. Si, de plus,

Schuru(W ) est cristalline, alors W (µ−1) l’est.

Les théorèmes C et D impliquent à leur tour des résultats analogues pour les représentations

p-adiques de GK (voir les corollaires 5.2.0.19 et 6.3.0.25 de la partie II). On montre après

le corollaire 5.2.0.19 que la borne sur rang(X) donnée dans les théorèmes C et D est

optimale.

Corollaire. Soit V une représentation E-linéaire de GK avec dimE(V ) ≥ r(u). Si

Schuru(V ) est cristalline (resp. semi-stable, ou de de Rham, ou de Hodge-Tate), alors
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il existe une extension finie F/E et un caractère µ : GK → F× tels que V (µ−1) soit

cristalline (resp. semi-stable, ou de de Rham, ou de Hodge-Tate).

Dans son étude de la compatibilité de Langlands locale pour les formes modulaires

de Hilbert, Skinner a montré que si V est une représentation p-adique telle que Sym2(V )

soit cristalline, alors les méthodes de Wintenberger présentées dans [Win95] et [Win97]

peuvent être appliquées pour montrer l’existence d’un caractère quadratique µ tel que

V (µ) soit cristalline (voir §2.4.1 de [Ski09]). Récemment, Chenevier et Harris ont utilisé

des arguments analogues pour le foncteur Λ2(−) dans la démonstration de la partie (b)

du théorème 3.2.3 de [CheHar13]. On s’attend à ce que les méthodes de Wintenberger

puissent être utilisées de la même manière pour redémontrer les théorèmes A, B, C, et D.

Produits tensoriels triangulins de représentations galoisiennes p-adiques.

Si W est une B⊗E
|K -paire, on dit que W est triangulable si elle est une extension successive

de B⊗E
|K -paires de rang 1, et l’on dit que W est potentiellement triangulable s’il existe

une extension finie L/K telle que la B⊗E
|L -paire W |GL

soit triangulable. Si V est une

représentation E-linéaire de GK , on dit que V est trianguline deployée si la B⊗E
|K -paire

W (V ) est triangulable, et on dit que V est trianguline s’il existe une extension finie

E �/E telle que la représentation E �-linéaire E � ⊗E V soit trianguline deployée. On dit

que V ∈ RepE(GK) est potentiellement trianguline s’il existe une extension finie L/K

telle que V |GL
est trianguline. Par exemple, si W est une B⊗E

|L -paire semi-stable, alors il

existe une extension finie F/E telle que la B⊗F
|K -paire F ⊗E W est triangulable (c’est la

proposition 7.1.4.1). Ces notions ont a été introduites par Colmez dans le cadre de son

travail sur la correspondance de Langlands p-adique pour GL2(Qp) (voir [Col08c]).

Dans la partie III de cette thèse, on s’intéresse à la question suivante : si V et V � sont

des représentations E-linéaires de GK dont le produit tensoriel V ⊗E V � est trianguline,

alors que peut-on dire de V et V � ?

Pour toute extension finie E/Qp, l’anneau Be,E = Be ⊗Qp E est un anneau prin-

cipal (voir le paragraphe 2.5.1 pour des références) et on note FE = Frac(Be,E). Si

W est une B⊗E
|K -paire, alors W est triangulable si et seulement si la représentation FE-

semi-linéaire FE ⊗Be,E
We est une extension successive d’objets de dimension 1 (c’est la

corollaire 7.1.3.2). Ce résultat, combiné avec des résultats sur l’algèbre semi-linéaire de

FE-représentations de GK et le théorème A plus haut nous permettent de montrer le

résultat principal de la partie III (c’est le théorème 7.3.1.2).

Théorème E. Si W et W � sont deux B⊗E
|K -paires telles que W ⊗ W � soit triangulable,

alors il existe des extensions finies F/E et L/K telles que les B⊗F
|L -paires (F ⊗E W )|GL

et (F ⊗E W �)|GL
soient triangulables.
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En particulier, le théorème ci-dessus s’applique lorsque W et W � sont des B⊗E
|K -paires

de la forme W = W (V ) et W � = W (V �) avec V, V � ∈ RepE(GK).

Corollaire. Si V et V � sont des représentations E-linéaires de GK telles que V ⊗E V �

soit trianguline, alors V et V � sont potentiellement triangulines.

Dans le paragraphe 7.3.2 de la partie III, on donne l’exemple d’une représentation E-

linéaire V de dimension 2 deGQp qui est potientiellement trianguline sans être trianguline,

tandis que V ⊗E V est trianguline.
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Synopsis and introduction

Contents. This text is devoted to the study of crystalline (resp. semi-stable, de

Rham, and Hodge-Tate) tensor products of p-adic representations of GK = Gal(Qp/K),

where K/Qp is a finite extension, as well as trianguline tensor products of p-adic repre-

sentations of GK . We also study the situation where the image of a p-adic representation

of GK by a Schur functor (for example, Symn(-) or Λ(-)) is crystalline, semi-stable, de

Rham, or Hodge-Tate. The results presented in this thesis are statements about B-pairs;

they apply in particular to p-adic representations.

This synopsis states the questions studied, the statements of our theorems, and ele-

ments of the methods used to prove them. Part I of this thesis introduces various fun-

damental results from p-adic Hodge theory and properties of Schur functors. Part II is

devoted to the study of crystalline (resp. semi-stable, de Rham, and Hodge-Tate) tensor

products and Schur objects in p-adic Hodge theory, and in part III we study trianguline

tensor products of p-adic Galois representations of GK .

Keywords: p-adic Galois representations of absolute Galois groups of p-adic fields, B-

pairs, crystalline representations, trianguline representations, tensor products, Schur

functors, p-adic Hodge theory.

Admissible tensor products and Schur objects in p-adic Hodge theory. Let

Qp be an algebraic closure of Qp, let K and E be finite extensions of Qp contained in Qp,

and let GK = Gal(Qp/K) be the absolute Galois group of K. We let RepE(GK) denote

the category of continuous linear E-representations of GK . Using the rings Bcris, Bst,

and BdR (see, for example, [Fon94b]), Fontaine has defined the notions of crystalline,

semi-stable and de Rham continuous E-linear representations of GK and he has proved

that the corresponding categories are stable under sub-quotient, direct sum and tensor

product. One of the goals of part II is to answer the following question: if V and V � are

nonzero p-adic representations of GK whose tensor product is crystalline (or semi-stable

or de Rham or Hodge-Tate), then what can be said about V and V �?

We also answer the following question: if F : RepE(GK) → RepE(GK) is a Schur

functor (for example, Λn or Symn) and if F (V ) is crystalline (or semi-stable or de Rham

or Hodge-Tate), then what can be said about V (under suitable constraints on dimE(V ))?

13



14 SYNOPSIS AND INTRODUCTION

The results obtained in this thesis are stated for B-pairs, which allows us to deduce

analogous results for p-adic Galois representations as corollaries. We now explain the

results we have obtained in more detail. Let Be denote the ring Bϕ=1
cris . Berger has defined

the tensor category of B⊗E
|K -pairs, in which the objects are pairs W = (We,W

+
dR) such that

We is a Be ⊗Qp E-representation of GK (i.e., We is a free Be ⊗Qp E-module of finite rank

endowed with aBe-semi-linear, E-linear action ofGK) andW+
dR is aGK-stableB

+
dR⊗QpE-

lattice of WdR = (BdR ⊗Qp E)⊗(B+

dR
⊗QpE) We. If W = (We,W

+
dR) is a B⊗E

|K -pair, then the

rank of W is defined to be rank(Be⊗QpE)We = rank(B+

dR
⊗QpE)W

+
dR. For example, if V is

an E-linear representation of GK , then W (V ) = ((Be⊗Qp E)⊗E V, (B+
dR⊗Qp E)⊗E V ) is

a B⊗E
|K -pair of rank d = dimE V , and the category RepE(GK) identifies with a full tensor

subcategory of the category of B⊗E
|K -pairs by the functor W (-). The notions of crystalline,

semi-stable, de Rham, and Hodge-Tate objects extend to objects in the category of B⊗E
|K -

pairs in such a way that an E-linear representation V of GK is crystalline (or semi-stable

or de Rham or Hodge-Tate) if and only if the B⊗E
|K -pair W (V ) is.

Using Sen’s theory of Cp-representations (as in [Sen80]) and Fontaine’s theory of

BdR-representations (as in [Fon04]), one can show the following result (which appears

as theorem 5.1.0.15 of part II).

Theorem A. Let W and W � be nonzero B⊗E
|K -pairs. If the B⊗E

|K -pair W ⊗W � is Hodge-

Tate, then there is a finite extension F/E and a character µ : GK → F× such that the

B⊗F
|K -pairs W (µ−1) and W �(µ) are Hodge-Tate. If, moreover, W ⊗W � is de Rham, then

so are W (µ−1) and W �(µ).

It is known that every de Rham B⊗E
|K -pair is potentially semi-stable, due to the re-

sults of [And02], [Ber02], [Ked00], and [Meb02]. The properties of (ϕ, N,Gal(L/K))-

modules (where L/K is a finite Galois extension) allow us to understand the situation

when W and W � are both potentially semi-stable. The following is theorem 6.1.0.20 in

part II.

Theorem B. Let W and W � be nonzero potentially semi-stable B⊗E
|K -pairs. If the B⊗E

|K -

pair W ⊗ W � is semi-stable, then there is a finite extension F/E and a character µ :

GK → F× such that the B⊗F
|K -pairs W (µ−1) and W �(µ) are semi-stable. If, moreover,

W ⊗W � is crystalline, then so are W (µ−1) and W �(µ).

In particular, the above two theorems may be used to deduce analogous results for

p-adic representations (see corollaries 5.1.0.16 and 6.2.0.22 in part II).

Corollary. Let V and V � be non-zero linear E-representations of GK. If V ⊗E V � is

crystalline (resp. semi-stable, de Rham, or Hodge-Tate), then there is a finite extension
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F/E and a character µ : GK → F× such that V (µ−1) and V �(µ) are crystalline (resp.

semi-stable, de Rham, or Hodge-Tate).

The methods used to prove theorems A and B above may be used to understand the

situation when the image of a B-pair by a Schur functor is crystalline (or semi-stable or

de Rham or Hodge-Tate), which we now explain.

If n ∈ N>0 and if n = u1 + . . . + ur is an integer partition with u1 ≥ . . . ≥ ur ≥ 1,

then the r-tuple u = (u1, . . . , ur) gives rise to a Schur functor, denoted Schuru(−), which

sends B⊗E
|K -pairs to B⊗E

|K -pairs. If r = 1 or if u1 = u2 = . . . = ur, then we put r(u) = r+1

and we put r(u) = r when this is not the case. For example, if n ≥ 1 and if u = (n),

then r(u) = 2 and the associated Schur functor is Symn(−) and if u = (1, . . . , 1), then

r(u) = n+ 1 and the associated Schur functor is Λn(−).

The following theorems correspond to theorems 5.2.0.18 and 6.3.0.24, respectively, in

part II.

Theorem C. LetW be a B⊗E
|K -pair such that rank(W ) ≥ r(u). If the B⊗E

|K -pair Schuru(W )

is Hodge-Tate, then there is a finite extension F/E and a character µ : GK → F× such

that the B⊗F
|K -pair W (µ−1) is Hodge-Tate. If, moreover, Schuru(W ) is de Rham, then

W (µ−1) is de Rham.

Theorem D. Let W be a potentially semi-stable B⊗E
|K -pair such that rank(W ) ≥ r(u).

If the B⊗E
|K -pair Schuru(W ) is semi-stable, then there is a finite extension F/E and a

character µ : GK → F× such that the B⊗F
|K -pair W (µ−1) is semi-stable. If, moreover,

Schuru(W ) is crystalline, then so is W (µ−1).

Theorems C and D above imply the analogous results for p-adic Galois representations

(see corollaries 5.2.0.19 and 6.3.0.25 in part II). In the discussion following corollary

5.2.0.19 in part II, we show that the bounds on rank(W ) in theorems C and D are

optimal.

Corollary. Let V ∈ RepE(GK) be a representation such that dimE(V ) ≥ r(u). If the

linear E-representation Schuru(V ) is crystalline (resp. semi-stable, de Rham, or Hodge-

Tate), then there is a finite extension F/E and a character µ : GK → F× such that

V (µ−1) is crystalline (resp. semi-stable, de Rham, or Hodge-Tate).

Special cases of theorems C and D have been used in the study of Galois representa-

tions attached to certain automorphic forms. For example, in his study of local Langlands

compatibility for Hilbert modular forms, Skinner showed and used the fact that if V is

a p-adic representation and if Sym2(V ) is crystalline, then Wintenberger’s methods of

[Win95] and [Win97] may be applied to show that there exists a quadratic character µ
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such that V (µ) is crystalline (see §2.4.1 of [Ski09]). Recently, similar arguments for the

functor Λ2(−) were applied by Chenevier and Harris to prove part (b) of theorem 3.2.3

of [CheHar13]. It is expected that Wintenberger’s methods can be used in the same

fashion to give alternate proofs of theorems A, B, C, and D.

Trianguline tensor products of p-adic representations of GK. If W is a B⊗E
|K -

pair, then we say that W is triangulable if it is a successive extension of B⊗E
|K -pairs of

rank 1, and we say that W is potentially triangulable if there is a finite extension L/K

such that the B⊗E
|L -pair W |GL

is triangulable. If V is a linear E-representation of GK ,

then V is said to be split trianguline if the B⊗E
|K -pair W (V ) is triangulable, and V is said

to be trianguline if there is a finite extension F/E such that F ⊗E V is split trianguline.

One says that V ∈ RepE(GK) is potentially trianguline if there is a finite extension L/K

such that V |GL
is trianguline. For example, if W is a semi-stable B⊗E

|K -pair, then there is

a finite extension F/E such that the B⊗F
|K -pair F ⊗E W is triangulable (see proposition

7.1.4.1). These notions were introduced by Colmez in [Col08c] in the context of his work

on the p-adic Langlands correspondence for GL2(Qp).

In part III of this thesis, we study the following question: if V and V � are linear

E-representations of GK such that V ⊗E V � is trianguline, then what can be said of V

and V �? We now explain our results in this direction.

The category of E -(ϕ,ΓK)-modules is equivalent to the category of B⊗E
|K -pairs (see

theorem A of [Ber08]); in particular, the notion of a trianguline representation may be

translated in terms of B-pairs.

If E/Qp is a finite extension, then Be,E = Be ⊗Qp E is a principal ideal domain (see

paragraph 2.5.1 for references) and we define FE = Frac(Be,E). If W is a B⊗E
|K -pair,

then W is triangulable if and only if the semi-linear FE-representation FE ⊗Be,E
We is a

successive extension of 1-dimensional semi-linear FE-representations of GK (see corollary

7.1.3.2). Using this and several other results on semi-linear algebra of FE-representations

of GK , and our theorem A, we may show the following, which is theorem 7.3.1.2 of part

III.

Theorem E. If W and W � are B⊗E
|K -pairs such that W⊗W � is triangulable, then there are

finite extensions F/E and L/K such that the B⊗F
|L -pairs (F ⊗E W )|GL

and (F ⊗E W �)|GL

are triangulable.

In particular, the theorem above applies to B⊗E
|K -pairs of the form W = W (V ) and

W � = W (V �) for representations V, V � ∈ RepE(GK).

Corollary. If V and V � are linear E-representations of GK such that V ⊗E V � is

trianguline, then V and V � are potentially trianguline.
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In section 7.3.2 we give an example of a potentially trianguline 2-dimensional E-linear

representation V of GQp which is not trianguline and such that V ⊗E V is trianguline.
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Part 1

General background





CHAPTER 1

Galois representations

1.1. Notation

If p > 0 is a prime integer, then let Qp denote the completion of Q for the topology

defined by the p-adic absolue value | - |p (normalized so that |p|p = 1/p), and letQp denote

an algebraic closure of Qp. The field Qp is endowed with its p-adic topology, which is

defined by the absolute value arising from putting | - | = n
�
|NmE/Qp(-)|p for every finite

extension E/Qp of degree n = [E : Qp]. The field Qp is not complete for the p-adic

topology, and its completion is denoted by Cp; the field Cp is algebraically closed.

If E/Qp is a sub-extension of Cp/Qp, then we let OE denote the valuation ring of E.

If E/Qp is a sub-extension of Qp/Qp, then OE is the ring of integers of E over Zp and

it is a discrete valuation ring; we denote its maximal idea by mE, and its residue field

OE/mE by kE. When we choose a uniformizer of E, we will denote it by πE or simply π.

In this document, if K is a field and if K/K is an algebraic closure, then K sep/K

denotes the separable closure of K in K/K and GK denotes the absolute Galois group

Gal(Ksep/K) endowed with its profinite topology, which is compact, Hausdorff, and to-

tally disconnected. If F/K is a separable sub-extension of K/K, then FGal denotes the

Galois closure of F in K/K. The group GQp = Gal(Qp/Qp) acts on Qp by Qp-linear

isometries, so that the action of GQp extends to an action on Cp. Continuity estimates on

the action of GQp on Cp due to Ax, Sen, and Tate imply that if K/Qp is a sub-extension

of Qp/Qp, then the inclusion �K ⊂ CGK
p is an equality.

Let F/Qp be a finite extension. If k/kF is a finite extension, then there is a unique

non-ramified sub-extension F (k)/F of Qp/F with residual extension k/kF , and there is a

unique continuous F -automorphism σF : F (k) → F (k) lifting x �→ x|kF | on k/kF . If, for

example, L/F is a finite extension and k = kL, then F (kL) ⊂ L, and L/F (kL) is totally

ramified. We let F nr/F denote the maximal non-ramified sub-extension of Qp/F , and

we let (abusing notation) σF : �F nr → �F nr denote the unique continuous F -automorphism

extending the maps σF on finite sub-extensions F (k)/F of F nr/F . If F = Qp (so that

kF = Fp) and if K/Qp is a finite extension with residual extension k/Fp, then we write

K0 instead of Qp(k) and we write σ instead of σQp .

23
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1.2. Galois representations: definitions and examples

Let E/Qp be a finite extension, and let K be a field. We let RepE(GK) denote the

category of continuous linear E-representations of GK , where morphisms of objects are

GK-equivariant E-linear transformations. When E is unspecified, we simply refer to such

objects as p-adic representations of GK . Every linear E-representation of GK is also a

linear Qp-representation of GK .

If η : GK → E× is any continuous linear character and if W = E · e is a 1-

dimensional E-vector space with basis (e), then defining g.e = η(g) · e makes W into

a 1-dimensional linear E-representation of GK , which we denote by E(η). More gener-

ally, if V ∈ RepE(GK) and if η : GK → E× is a continuous linear character, then we

define V (η) = V ⊗E E(η).

Let F ∈ {Q,Qp}. If F/F is an algebraic closure, and if (ζpn)n≥1 is a sequence

of primitive pn-th roots of 1 in F such that ζ
p
pn+1 = ζpn , then for each n ≥ 1 and

g ∈ GF , g(ζpn) is a primitive pn-th root of 1, and we have g(ζpn) = ζ
χn(g)
pn for some

χn(g) ∈ {1, . . . , pn − 1} prime to p, defining a character χn : GF → (Z/pnZ)×. This

gives rise in the limit to the cyclotomic character χ : GF → Z×
p , which is surjective and

continuous. If K/F is finite, if V ∈ RepE(GK), and if k ∈ Z, then we will write V (k)

instead of V (χk|GK
).

Let � > 0 be a prime number, and let Q and Q� be algebraic closures of Q and

Q�, respectively. Giving a maximal ideal l ⊂ OQ lying over � is equivalent to giving an

embedding τl : Q → Q� lifting Q ⊂ Q�. Such an embedding gives an injective group

morphism ϕτl : Gal(Q�/Q�) → Gal(Q/Q) defined by sending g ∈ Gal(Q�/Q�) to its

restriction g|Q,τl
via τl. The inclusion Q ⊂ C corresponds to the infinite place, and allows

one to view Gal(C/R) as a sub-group of GQ. The group GQ acts transitively on the set of

primes l|� of OQ lying over �, and the image of the map ϕτl is equal to the decomposition

group D(l|�) = {g ∈ GQ|g(l) = l} = Stabl|�; in particular, D(l|�) � GQ�
. For each l|�,

we have a surjective group morphism D(l|�) → Gal(F�/F�). Its kernel is denoted by

I(l|�), and is called the inertia group of l|�. A Frobenius element at l|� is any elemenet

Frobl|� ∈ D(l|�) such that Frobl|�(x) = x�(mod l) for all x ∈ OQ. If l, l�|� are maximal

ideals of OQ lying over �, then decomposition groups Dl|� and Dl�|� (resp. inertia groups

Il|� and Il�|�) are conjugate in GQ; we let D� (resp. I�) denote any such decomposition

group (resp. inertia group) at � when speaking about properties that only depend on �.

One has analogous notions and notation over a general number field K/Q.

In particular, if V ∈ RepE(GQ), and if � is a prime, then we may consider the restricted

representation ρ|D�
: D� → GLQp(V ) (which only depends on � up to isomorphism); we

sometimes write, somewhat abusively, ρ|GQ�
= ρ|D�

. We say that ρ is unramified at � if
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I� ⊂ ker ρ; in this case, ρ|D�
is determined by the image of a Frobenius element of a place

over �. For example, if χ : GQ → Z×
p is the cyclotomic character for F = Q and if � �= p,

then χ|D�
is unramified and χ|D�

(Frob�) = �. After identifying Dp with GQp , χ|GDp
is

equal to the cyclotomic character for F = Qp.

1.2.1. Lubin-Tate characters. Let K/Qp be a finite extension. In this paragraph,

we summarize some constructions used in [LubTat65] to describe Gab
K .

A commutative 1-parameter formal group over OK is a formal series F ∈ OK [[X, Y ]]

satisfying the following conditions:

(1) F (X, Y ) = X + Y (mod deg 2),

(2) F (X,F (Y, Z)) = F (F (X, Y ), Z),

(3) F (X, Y ) = F (Y,X).

If F ∈ OK [[X, Y ]] is a formal group as above, then there is a unique λ ∈ OK [[X]] such that

λ(X) = −X(mod deg 2) and F (X,λ(X)) = F (λ(X), X) = 0. If F,G ∈ OK [[X, Y ]] are

formal groups as above, then a morphism f : F → G is a formal series f ∈ OK [[X]]

such that f(F (X, Y )) = G(f(X), f(Y )); the set EndOK
(F ) of endomorphisms of F

is a ring with respect to addition and composition. A formal OK-module is a for-

mal group F together with a ring homomorphism [-] : OK → EndOK
(F ) such that

[a](X) = aX(mod deg 2).

A formal group (resp. formal OK-module) F may be used to endow a group (resp.

OK-module) structure upon domains of convergence for F (resp. F and [a](X) for all

a ∈ OK). For example, if mQp
is the maximal ideal of the valuation ring OQp

of Qp, then

for all power series F ∈ OK [[X1, . . . , Xn]] with constant term 0 and all x1, . . . , xn ∈ mQp
,

F (x1, . . . , xn) converges to an element in mQp
. In particular, if F ∈ OK [[X, Y ]] is a formal

group (resp. formal OK-module) then x+F y := F (x, y) defines a map mQp
×mQp

→ mQp

(resp. and a.x = [a](x) defines a map OK × mQp
→ mQp

) which makes mQp
into a

commutative group with additive inverses given by λ (resp. OK-module). If F is a

formal OK-module and if a ∈ OK , then let F [a] = {x ∈ mQp
|[a](x) = 0}.

Let q = |kK |, and let π ∈ OK be a uniformizer. If f ∈ OK [[X]] satisfies

(i) f(X) = πX(mod deg 2), and

(ii) f(X) = Xq(mod π),

then there is a unique commutative 1-parameter formal group Ff ∈ OK [[X, Y ]] such that

f ∈ End(Ff ). Moreover, Ff is a formal OK-module with structural map [-]f : OK →
End(Ff ) satisfying [π]f (X) = f(X). If g ∈ OK [[X]] is another power series satisfying

conditions (i) and (ii), then Ff and Fg are isomorphic as formalOK-modules; in particular,

the isomorphism class of Ff depends only on π. In particular, while the set of πn-torsion
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points in mQp
of Ff depends on f , the extension Kn,π = K(Ff [π

n]) of K depends only

on π and n.

Example 1.2.1.1. Let K = Qp, so that OK = Zp, and let π = p. If f(X) =

(X + 1)p − 1 =
�p

k=1

�
p
k

�
Xk, then Ff = X + Y +XY , and [-]f : Zp → End(Ff ) is given

by a �→ (1 +X)a − 1 :=
�∞

k=1

�
a
k

�
Xk. The set Ff [p

n] consists of ζ − 1 with ζ a pn-th root

of 1.

In what follows, let π ∈ OK be a uniformizer and let LT ∈ OK [[X]] denote the formal

OK-module attached to f(X) = πX + Xq. For n ≥ 1, let Kπ =
�

n≥1 Kn,π, where

Kn,π = K(LT[πn]). By Galois theory, the following theorem of Lubin and Tate gives an

explicit description of Gab
K .

Theorem 1.2.1.2. For each n ≥ 1, the extension Kn,π/K is totally ramified of degree

qn−1(q−1), where q = |kK |, and we have an isomorphism Gal(Kn,π/K)
∼→ (OK/π

nOK)
×.

The sub-extensions Kπ/K and Knr/K of Qp/K are linearly disjoint, and KπK
nr = Kab,

the maximal abelian sub-extension of Qp/K.

For n ≥ 1, LT[πn] is a free OK/π
nOK-module of rank 1 which is stable by the natural

action of GK on mQp
. For n ≥ 1, we therefore have a system of surjective characters

χn,π : GK → (OK/π
nOK)

× which give rise in the limit to a character χπ : GK → O×
K

with ker(χπ) = GKπ
. The character χπ is called the Lubin-Tate character attached to π

and satisfies g(x) = [χ(g)](x) for all x ∈ �
n≥1 LT[π

n] and g ∈ GK .

Example 1.2.1.3. If K = Qp and π = p as in 1.2.1.1, then the Lubin-Tate character

χp : GQp → Z×
p is the cyclotomic character.

1.2.2. Galois representations coming from geometry. Let E/Q be an elliptic

curve. The set E(Q) of Q-rational points of E/Q is endowed with the structure of an

abelian group. If � > 0 is a prime number, then we let E � denote the reduction modulo �

of E , which is a curve over F�; E/Q is said to be of good reduction at � if E � is smooth (i.e.,

if it is an elliptic curve over F�), and E/Q is said to be of bad reduction at � otherwise. If

E/Q is of bad reduction at �, then E � has a singularity which is either a node (in which

case, we say that E/Q is of multiplicative reduction at �) or a cusp (in which case, we say

that E/Q is of additive reduction at �). Attached to E/Q is an integer N = NE called

the conductor of E/Q whose prime divisors are the finitely many primes � at which E has

bad reduction, and the �-adic valuation of N is defined in terms of the reduction type of

E at �. If E/Q is of good or multiplicative reduction for every prime � (in this case, E/Q

is said to be of semistable reduction), then N is equal to the product of the primes of bad

reduction.
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If p > 0 is a prime number, then for each n ≥ 1, the set E [pn] ⊂ E(Q) of pn-torsion

points is a free Z/pnZ-module of rank 2 and is stable by the natural action of GQ.

Passing to the limit with respect to the multiplication by p maps x �→ p.x : E [pn+1] →
E [pn], we may consider Vp(E) = Qp ⊗Zp lim←− E(Q)[pn], which is a 2-dimensional Qp-vector

space endowed with a continuous linear action of GQ. We denote this representation by

(Vp(E), ρE,p); the basic properties of these representations are developed, for example, in

[Ser68] and [Sil].

Proposition 1.2.2.1. If E/Q is an elliptic curve of conductor N , then det ρE,p = χ

and for all prime numbers � > 0 such that � � pN , we have

(1) ρE,p|D�
: D� → GL2(Qp) is non-ramified, and

(2) the characteristic polynomial of ρE,p(Frob�) is equal to X2−(�+1−|E �(F�)|)X+�.

Note in particular that if c ∈ GQ is complex conjugation, then det ρE,p(c) = χ(c) = −1

since c(ζ) = ζ−1 for every pn-th root of unity ζ; the representation ρE,p is therefore said

to be odd. Results of Faltings imply that the Galois representation ρE,p determines E/Q

up to isogeny.

More generally, ifX/Q is an algebraic variety, then the i-th étale cohomologyH i
ét(XQ,Qp)

(here, XQ denotes the base change of X/Q to Q) is a finite dimensional Qp-vector space

endowed with a continuous Qp-linear action of GQ which comes from functoriality. If

E/Qp is an elliptic curve, then H1
ét(EQp

,Qp) = Vp(E)
∗.

1.2.3. Galois representations coming from modular forms. Let H = {z ∈
C| Im(z) > 0} and let O(H) denote the C-vector space of holomorphic functions f : H →
C. For k ∈ Z, the right weight-k action of SL2(Z) on O(H) is defined as follows: if γ =

( a b
c d ) ∈ SL2(Z) and if f ∈ O(H), then (f |kγ)(z) := (cz + d)−kf(γ.z), where γ.z = az+b

cz+d
,

defines a holomorphic function on H; this definition makes sense since Im(γ.z) = Im(z)
|cz+d|2

.

For all N ≥ 1, Γ1(N) = {γ = ( a b
c d ) ∈ SL2(Z)|γ ≡ ( 1 ∗

0 1 ) (modN)} is a sub-group of

SL2(Z). A holomorphic function f : H → C is said to be a modular form of weight k and

level Γ1(N) if it is invariant by Γ1(N) for the weight-k action and if limy∈R→∞(f |kγ)(iy)

exists and is finite for all γ ∈ SL2(Z); the C-vector space Mk(Γ1(N)) of modular forms

of weight k and level Γ1(N) is known to be finite dimensional. Elements of the sub-space

Sk(Γ1(N)) ⊂ Mk(Γ1(N)) of f such that limy∈R→∞(f |kγ)(iy) = 0 are called cusp forms.

If k < 0 then Mk(Γ1(N)) = {0}, and M0(Γ1(N)) consists of constant functions.

If f ∈ O(H) is a modular form of weight k and level Γ1(N), then f(z+1) = f(z) and

therefore f has a Fourier series expansion (also called the q-expansion of f) of the form

f(z) =
�∞

n=0 cn(f)q
n where q = e2πiz; if f is a cusp form, then c0(f) = 0.
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Example 1.2.3.1. (1) If Δ(z) = q
�

n>0(1− qn)24 with q = e2πiz for z ∈ H, then

Δ is a cusp form of weight 12 and level Γ1(1) and S12(Γ1(1)) is generated by

Δ(z) as a C-vector space.

(2) The space M12(Γ1(1)) decomposes as E12 ⊕ S12(Γ1(1)), where E12 is the C-vector

space generated by the Eisenstein series E12(z) =
691

32760
+
�∞

n=1(
�

d|n d
11)qn with

q = e2πiz for z ∈ H.

The C-vector space Sk(Γ1(N)) is stable by the action of the sub-group Γ0(N) =

{γ = ( a b
c d ) ∈ SL2(Z)|γ ≡ ( ∗ ∗

0 ∗ ) (modN)}. The sub-group Γ1(N) is normal in Γ0(N),

and Γ0(N) acts on Sk(Γ1(N)) through the quotient Γ0(N)/Γ1(N)
∼→ (Z/NZ)× (this

latter isomorphism is given by ( a b
c d ) �→ d); if d is prime to N , then we let �d� denote

the corresponding operator on Sk(Γ1(N)) (one calls it a diamond operator). If f is a

simultaneous eigenform for the operators �d� (with d ∈ (Z/NZ)×), then �d�(f) = �(d)f

for some character � : (Z/NZ)× → C×. Moreover, for each prime q � N , there is a so-

called Hecke operator Tq on Sk(Γ1(N)). One has Tq ◦Tq� = Tq� ◦Tq and �d� ◦Tq = Tq ◦ �d�
for all primes q, q� � N and d ∈ (Z/NZ)×. The space Sk(Γ1(N)) is therefore a direct

sum of generalized simultaneous eigenspaces for the Hecke and diamond operators; a

simultaneous eigenvector f ∈ Sk(Γ1(N)) is called a Hecke eigenform. It is known that if

f ∈ Sk(Γ1(N)) is a Hecke eigenform, then the eigenvalues of f generate a finite extension

Ef/Q; we will call this the coefficient field of f .

The following theorem is due to Eichler [Eic54], Shimura [Shi58], Igusa [Igu59] in

the weight k = 2 case, to Deligne [Del71] in the weight k > 2 case, and to Deligne-

Serre [DelSer74] in the weight k = 1 case. The irreducibility statement is due to Ribet

[Rib77].

Theorem 1.2.3.2. Let k,N ≥ 1. If f ∈ Sk(Γ1(N)) is a normalized eigenform with

character � and coefficient field Ef/Q and if p is a prime number, then for every maximal

ideal p ⊂ OEf
lying over p, there is an irreducible Galois representation ρf,p : GQ →

GL2(OEf ,p) such that det ρf,p = �χk−1 (where χ : GQ → Z×
p is the cyclotomic character

and � is viewed as a character of GQ via the quotient Gal(Q(ζN)/Q)
∼→ (Z/NZ)×) such

that for all � with � � pN ,

(1) ρf,p|D�
: D� → GL2(OEf ,p) is non-ramified, and

(2) The characteristic polynomial of ρf,p|D�
(Frob�)) is X

2 − c�(f)X + �(�)�k−1.

The representation ρf,p is odd.

1.2.4. Galois representations coming from Hilbert modular forms. If γ =

( a b
c d ) ∈ SL2(R) and if z ∈ H, then putting γ.z = az+b

cz+d
defines an action of SL2(R)

on H. For n ≥ 1, let SL2(R)n = SL2(R) × . . . × SL2(R) act componentwise on Hn =
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H× . . .×H. If k = (k1, . . . , kn) ∈ Nn
>0, then the weight k-action of SL2(R)n on the space

O(Hn) of holomorphic functions f : Hn → C is defined as follows: for f ∈ O(Hn) and

γ =
�
ai bi
ci di

�
1≤i≤n

∈ SL2(R)n, put

(f |kγ) := (c1z1 + d1)
−k1 · . . . · (cnzn + dn)

−knf(γ.z)

for all z = (z1, . . . , zn) ∈ Hn.

If F/Q is totally real of degree [F : Q] = n > 1 then the set I = {τ1, . . . , τn} of

embeddings of F into R allows us to view SL2(OF ) as a sub-group of SL2(R)n via the

embedding γ �→ (τi(γ))1≤i≤n : SL2(OF ) → SL2(R).

If Γ ⊂ SL2(OF ) is a congruence sub-group and if k ∈ Nn
>0, then a Hilbert modular

form of level Γ and weight k is a holomorphic function f ∈ O(Hn) such that (f |kγ) = f

for all γ ∈ Γ. In contrast with the n = 1 situation as in paragraph 1.2.3, no additional

condition on cusps is necessary. The C-vector space Sk(Γ) of Hilbert modular forms of

weight k and level Γ is finite dimensional.

Suppose now that k = (k1, . . . , kn) satisfies ki ≥ 2 and ki ≡ kj mod 2 for all 1 ≤ i, j ≤
n. For a non-zero ideal n ⊂ OF , we have a congruence sub-group Γ(n) ⊂ SL2(OF ). If

q ⊂ OF is a prime ideal and if a ⊂ F is a fractional ideal prime to n, then there are

notions of Hecke operators Tq and Sa on Sk(Γ(n)). If f ∈ Sk(Γ(n)) and if f is an eigenform

for all Tq and all Sa, then Shimura showed in [Shi78] that the extension Ef/Q generated

by the Hecke eigenvalues θ(Tq) and θ(Sa) of f is finite.

The following theorem was proven in various cases (including when [F : Q] is odd) by

Carayol [Car86] and Wiles [Wil88], in the case when [F : Q] is even by Taylor [Tay89],

and in general by Blasius-Rogawski [BlaRog93], following work of Eichler, Shimura,

Deligne, Ohta, Tunnel, and others.

Theorem 1.2.4.1. Let k and n be as above. If f ∈ Sk(Γ(n)) is a Hilbert eigenform

with field of definition Ef/Q and if p|p is a non-zero prime of OEf
, then one may associate

to f a continuous representation

ρf,p : GF → GL2(OEf ,p)

such that

(1) ρf,p is unramified outside np,

(2) l is a prime of F not dividing np, then the characteristic polynomial of ρf,p(Frobl)

is X2 − θ(Tl)X + θ(Sl) Nm(l)





CHAPTER 2

p-adic Hodge theory

2.1. Rings of periods and admissible representations

In this section, we summarize some fundamental notions from p-adic Hodge theory.

2.1.1. The rings �E+ and �B+. In this paragraph, we summarize several results on

the rings defined in §1 of [Fon94a]. The articles [Fon82], [FonWin], and [Win83] are

also good references, as well as sections §4.3 and §5.1 of [Col08a] are also good references

for the statements presented in this paragraph. We signal to the reader that the notation

used for these rings differs in the literature; for example, the ring �E+ is sometimes denoted

by R or by R(Cp).

Let �E+ denote the set

lim←−
x�→xp

OCp = {(x(i))i∈Z≥0
| x(i) ∈ OCp and (x(i+1))p = x(i) ∀i ∈ Z≥0}

If x = (x(i)) and y = (y(i)) are elements of �E+, then the operations x + y defined by

putting (x+y)(i) = limj→∞(x(i+j)+y(i+j))p
j
(this limit converges for the p-adic topology)

and x · y defined by (x · y)(i) = x(i) · y(i) make �E+ into a perfect ring of characteristic p.

If x = (x(i)) ∈ �E+, then putting valE(x) = vp(x
(0)) defines a discrete valuation on �E+,

and �E+ is complete for the topology defined by valE. The componentwise action of GQp

on �E+ is an action by ring endomorphisms.

Let {ζpk}Z>0
denote a sequence of primitive pk-th roots of 1 such that ζp

pk+1 = ζpk for

all k ≥ 1. Let � = (1, ζp, ζp2 , . . .) ∈ �E+ and let π = � − 1. Since vp(ζpn − 1) = 1
pn−1(p−1)

,

we have valE(π) =
p

p−1
, and �E = �E+[π−1]. The field �E is algebraically closed (see (iv) of

proposition 4.10 of [Col08b]).

If R is a perfect ring of prime characteristic p > 0, then we let W (R) denote the ring

of Witt vectors of R; it is a ring of characteristic 0 which is p-adically separated and

complete, and such that W (R)/pW (R) = R, and it comes equipped with a multiplicative

map [-] : R → W (R) (called the Teichmüller map) such that [x] = x for all x ∈ R (here,

· denotes the reduction mod p map). In particular, every element x ∈ W (R) may be

written as a p-adically convergent series x =
�

k=0 p
i[xi] (with xi ∈ R). For example,

W (Fp) = Zp. More generally, if K/Qp is finite, then W (kK)[1/p] = K0 is the maximal

31
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non-ramified sub-extension of K/Qp and W (kK) = OK0
as in paragraph 1.1. See chapter

II of [Ser68b] for details on the construction of the ring of Witt vectors.

Let Fp be an algebraic closure of Fp, and let [-] : Fp → �OQnr
p
denote the Teichmüller

map. The map Fp → �E+ given by x �→ ([x1/pk ])k∈Z≥0
allows us to view Fp as a sub-ring

of �E+.

The ring �A+ = W (�E+) and the field �B+ = W (�E+)[1/p] are p-adically separated

and complete and inherit the actions of GQp and ϕ on �E+: more precisely, if x =�
k�−∞

pk[xk] ∈ �B+ (such an expression is unique, and x is in �A+ if xk = 0 for all

k < 0), then we have:

g(x) =
�

k�−∞

pk[g(xk)] for all g ∈ GQp and ϕ(x) =
�

k�−∞

pk[xp
k]

Note that (�A+)ϕ=1 = Zp and (�B+)ϕ=1 = Qp.

The universal property of Witt vectors gives rise to a surjective ring morphism θ :
�A+ → OCp given by

�
k�−∞

pk[xk] �→ �
k�−∞

pkx
(0)
k , which extends to a morphism

θ : �B+ → Cp. The following can be found, for example, as proposition 2.4 of [Fon82].

Proposition 2.1.1.1. If ω ∈ ker(θ) ⊂ �A+, then ω generates ker θ if and only if

valE(ω) = 1. Every generator of ker(θ : �A+ → OCp) is a generator of ker(θ : �B+ → OCp).

For example, the above proposition shows that if �p ∈ �E+ is any element such that

�p(0) = p, then the element ξ = [�p]− p ∈ �A+ generates ker θ.

The strong topology (resp. weak topology) on �A+ is the finest topology making the

projection map �A+ → �E+ continuous, when �E+ is endowed with the discrete topology

(resp. the topology of valE). The strong topology on �A+ is the same as the p-adic

topology, and the weak topology on �A+ is the same as the topology given by the family

of semi-valuations {ωk(−)}k∈Z defined by ωk(
�∞

i=0 p
i[xi]) = infi≤k valE(xi). The ring

�B+ may be endowed with the strong (resp. weak) topology by giving it the inductive

limit topology from �B+ =
�

n≥0 p
−n �A+. The following can be found, for example, as

proposition 5.2 and remark 5.3 of [Col08a].

Proposition 2.1.1.2. The map ϕ acts continuously on �B+ for the weak and strong

topologies. The action of GQp on �B+ is continuous for the weak topology, but is not

continuous for the p-adic topology.

2.1.2. The rings B+
dR and BHT. Let θ : �B+ → Cp be the surjective GK-equivariant

ring homomorphism given by
�

k�−∞
pk[xk] �→

�
k�−∞

pkx
(0)
k as in the previous para-

graph. The (ker θ)-adic completion of �B+ is denoted by B+
dR. The kernel of θ : �B+ → Cp

is generated, for example, by the element [�] − 1, so that the series t = log([�]) =
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�
k≥1(−1)k−1 ([�]−1)k

k
converges in B+

dR for the (ker θ)-adic topology. Moreover, B+
dR is

a discrete valuation ring and t is a uniformizer; in this document, we let vt(-) denote the

t-adic valuation on the field BdR = B+
dR[1/t]. For all g ∈ GK , g(t) = χ(g)t (where χ is

the cyclotomic character). There is a GK-equivariant section of θ over Qp ⊂ Cp, so that

we have a GK-equivariant inclusion Qp ⊂ B+
dR (see, for example, §1.2 and §2 of [Col12]

for a proof of this fact and a detailed topological discussion).

The associated graded ring grt(B
+
dR) =

�
i∈Z(t

iB+
dR/t

i+1B+
dR) is denoted by BHT,

and is isomorphic in a GQp-equivariant way to the graded ring Cp[T, T
−1] of Laurent

polynomials, where Cp[T, T
−1] is endowed with the action of GQp given by the natural

action on Cp and by defining g(T ) = χ(g)T for all g ∈ GQp).

2.1.3. The rings Bcris and Bst. Let �p ∈ �E+ be an element with �p(0) = p, so that

�p = (p, p1/p, p1/p
2

, . . .) and so that ξ = [�p] − p generates the ideal ker(θ : �A+ → OCp).

The sub-ring

B+
cris = { x =

�

n≥0

an
ξn

n!
| an ∈ �B+ and an → 0 p-adically }

of B+
dR is stable by the action of GQp and contains the element t = log([�]). Put Bcris :=

Bcris[1/t] ⊂ BdR. The Frobenius ϕ on �B+ extends by continuity to B+
cris, and thus to a

map ϕ : Bcris → Bcris which is additive and injective, and such that for all λ ∈ �Qnr
p and

x ∈ Bcris, one has ϕ(λx) = σ(λ)ϕ(x), where σ : �Qnr
p → �Qnr

p is the absolute frobenius for

F = Qp as defined in paragraph 1.1.

The action of GQp on Bcris extends to the polynomial ring Bst = Bcris[X] by defining

g(X) = X + c(g)t where c : GQp → Z×
p is the cocycle defined by g(p1/p

n
) = p1/p

n
· ζ

c(g)
pn

for all n ≥ 1 and primitive pn-th roots ζpn of 1, and one extends ϕ on Bcris to Bst

by defining ϕ(X) = pX. The map N = −∂X on Bst is referred to as the monodromy

operator. By sending the variable X to an element log([�p]/p) = −
�∞

n=1
(1−[�p]/p)n−1

n
,

which converges in BdR, the ring Bst may be equipped with an injective GQp-equivariant

morphism Bst �→ BdR of Bcris-algebras, which allows us to view Bst as a GQp-stable sub-

ring of BdR (this is theorem 4.2.4 of [Fon94a]); this inclusion corresponds to choosing

an extension of logp : O×

Qp
→ Qp to Q

×

p by putting logp(p) = 0, while choosing other

values for logp(p) gives rise to different embeddings of Bst in BdR. If K/Qp is finite, then

BGK
st = BGK

cris = K0. The properties of Bcris and Bst are developed in §2.3.3 of [Fon94a];

see also III §2 of [Col98b] for a technical discussion of the topology on Bcris, as well for

a discussion of the ring Bmax, which is sometimes used as an alternative to the ring Bcris.

2.1.4. Admissibility. In this paragraph, let B denote any of the rings Bcris, Bst,

BdR, or BHT from paragraphs 2.1.2 or 2.1.3, or any GK-stable sub-extension of Cp/Qp.
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A semi-linear B-representation of GK is a free B-module of finite rank together with an

action of GK by semi-linear operators. If W and W � are semi-linear B-representations of

GK , then a morphism f : W → W � is defined to be a morphism of B-modules such that

f(g(w)) = g(f(w)) for all w ∈ W and g ∈ GK . If W is a semi-linear B-representation

of GK , then W is said to be trivial if it admits a basis of GK-invariant elements; this

is equivalent to saying W � BrankB W as semi-linear representations. We will sometimes

denote the category of semi-linear B-representations of GK by RepB(GK).

For example, if V ∈ RepE(GK), then W = B ⊗Qp V is a free B-module of rank

d = [E : Qp] dimE V , and putting g(b⊗ v) = g(b)⊗ g(v) for all g ∈ GK defines an action

of GK on W by semi-linear operators. One says that V is B-admissible if the semi-linear

B-representation B⊗Qp V is trivial. One says that V is potentially B-admissible if there

is a finite extension L/K such that the restriction of V to GL is B-admissible.

To be more precise, we say that V ∈ RepE(GK) is (potentially) crystalline if it

is (potentially) Bcris-admissible, and similarly we speak of (potentially) semi-stable, de

Rham, or Hodge-Tate representations.

If V ∈ RepE(GK), then DB(V ) = (B ⊗Qp V )GK is a vector space over the field

BGK ; we often abreviate DBcris
(-) by Dcris(-), and we use similar notation for DB(-) when

B ∈ {Bst,BdR,BHT}. The following can be found as propositions 1.4.2, 5.1.2, and 3.6 of

[Fon94b].

Proposition 2.1.4.1. Let B ∈ {Bcris,Bst,BdR,BHT}. If V ∈ RepE(GK), then the

morphism f : B ⊗BGK DB(V ) → B ⊗Qp V of semi-linear B-representations of GK is

injective, and dimBGK DB(V ) ≤ dimQp V . Moreover, the following conditions are equiv-

alent:

(1) f is an isomorphism,

(2) V is B-admissible,

(3) dimBGK DB(V ) = dimQp V

Note that the above proposition implies that for V ∈ RepE(GK), the notion of B-

admissibility is encoded by the dimension of DB(V ) as a BGK -vector space. On the other

hand, the object DB(V ) inherits additional structures from the structures on B (such as

filtration, ϕ, or monodromy operator N , etc.).

For example, if V is Hodge-Tate (i.e., BHT-admissible), then we define i ∈ Z to be a

Hodge-Tate weight of V of multiplicity m if (Cp(−i)⊗Qp V )GK �= 0 and dimK(Cp(−i)⊗Qp

V )GK = m. If k ∈ Z, then V = Qp(k) is Hodge-Tate, with unique Hodge-Tate weight k

of multiplicity 1. If V is a p-adic representation of GK , then the K-vector space DdR(V )

is endowed with the filtration of sub-K-vector spaces Fili DdR(V ) := (tiB+
dR ⊗Qp V )GK .

If V is de Rham, then it is also Hodge-Tate; in this case, the Hodge-Tate weights of V
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are the integers i ∈ Z such that Fil−i DdR(V ) �= Fil−i+1 DdR(V ), and the multiplicity of

i is equal to dimK(Fil
−i DdR(V )/Fil−i+1 DdR(V )). In the same spirit, it turns out that a

semi-stable representation V can be completely described by simple invariants on Dst(V );

more will be said about this in paragraph 2.1.5 below.

If B contains Qp as a GK-stable sub-ring (for example if B is BdR or BHT), then the

notion of B-admissibility is equivalent to the notion of potential B-admissibility by Galois

descent. The various GQp-equivariant inclusions and morphisms between the period rings

from paragraphs 2.1.2 and 2.1.3 give the following relationships:

pot. crystalline �� pot. semi-stable �� de Rham �� Hodge-Tate

crystalline ��

��

semi-stable

��

It is also known that every de Rham representation is potentially semi-stable, due to

the results of Y. André [And02], L. Berger [Ber02], K. Kedlaya [Ked00], and Z.

Mebkhout [Meb02]. This was formerly known as the p-adic local monodromy conjecture

of Fontaine. Aside from this, the other implications in the above diagram are strict. For

example, the following appears as proposition 3.10 of [Fon03].

Example 2.1.4.2. If 0 → Qp → V → Qp(1) → 0 is a non-split extension in

RepQp
(GK), then V is Hodge-Tate but not de Rham.

The following describes the ∗-admissible (for ∗ ∈ {Bcris,Bst,BdR,BHT}) 1-dimensional

linear Qp-representations of GK (see, for example, propositions 4.3 and 5.6 of [Fon04]).

Proposition 2.1.4.3. Let η : GK → Q×
p be a continuous character and let V =

Qp(η).

(1) The following conditions are equivalent:

(a) V is crystalline,

(b) V is semi-stable,

(c) η = χhη� for some h ∈ Z and some non-ramified character η�.

(2) The following conditions are equivalent:

(a) V is de Rham,

(b) V is Hodge-Tate,

(c) η = χhη� for some h ∈ Z and some finitely-ramified character η�.

Propostion 1.5.2 of [Fon94b] implies the following.

Proposition 2.1.4.4. The full sub-category of RepE(GK) of crystalline (resp. semi-

stable, de Rham, Hodge-Tate) representations is stable by direct sum, sub-objects, quo-

tients, tensor product, and duals.



36 2. p-ADIC HODGE THEORY

The notion of (potential) B-admissibility for B ∈ {Bcris,Bst,BdR,BHT} and the basic

properties of the functors DB(-) attached to period rings are developed in §1 of [Fon94b].

If V ∈ RepE(GK) and if L/K is finite, then the BGL-vector space DB,L(V ) = (B⊗Qp

V )GL is also a BGL ⊗Qp E-module. The following appears in §6.3 of [Col08b].

Proposition 2.1.4.5. Let V ∈ RepE(GK) and let L/K be a finite extension.

(1) The L0 ⊗Qp E-modules Dcris,L(V ) and Dst,L(V ) are free.

(2) If V is de Rham, then DdR,L(V ) is a free L⊗Qp E-module.

2.1.5. Semi-stable representations and admissible filtered (ϕ, N)-modules.

Let E/Qp and K/Qp be finite sub-extensions of Qp/Qp. In this section, we let K0,E

denote K0 ⊗Qp E. A filtered E -(ϕ, N)-module over K is a free K0,E-module D of finite

rank endowed with the following structures:

(1) a bijective additive map ϕ : D → D which is E-linear and K0-semilinear for the

Frobenius σ : K0 → K0,

(2) a K0,E-linear operator N : D → D such that Nϕ = pϕN ,

(3) a family {Fili(K ⊗K0
D)}i∈Z of sub-(K ⊗Qp E)-modules of K ⊗K0

D such that

(a) Fili+1(K ⊗K0
D) ⊂ Fili(K ⊗K0

D) for all i ∈ Z,

(b) Fili(K ⊗K0
D) = {0} for i � 0 and Fili(K ⊗K0

D) = K ⊗K0
D for i � 0

The relation Nϕ = pϕN implies that N is nilpotent. Every filtered E -(ϕ, N)-module

over K may also be viewed as a filtered Qp -(ϕ, N)-module over K by forgetting the

E-linear structure.

If D and D� are filtered E -(ϕ, N)-modules over K, then a morphism f : D → D� is

a morphism of K0,E-modules such that f commutes with ϕ and N on D and D�, and

such that the K-linearisation f : K ⊗K0
D → K ⊗K0

D� satisfies f(Fili(K ⊗K0
D)) ⊂

Fili(K ⊗K0
D�) for all i ∈ Z.

If D and D� are filtered E -(ϕ, N)-modules over K, then the free K0,E-module D⊗K0,E

D� together with

(1) the map ϕ : D ⊗K0,E
D� → D ⊗K0,E

D� defined by ϕ : d⊗ d� �→ ϕ(d)⊗ ϕ(d�),

(2) the mapN : D⊗K0,E
D� → D⊗K0,E

D� defined byN : d⊗d� �→ N(d)⊗1+1⊗N(d�),

(3) a filtration defined by Fili((K ⊗K0
D) ⊗K0,E

(K ⊗K0
D�)) =

�
a+b=i Fil

a(K ⊗K0

D)⊗K0,E
Fila(K ⊗K0

D�) for all i ∈ Z.

is a filtered E -(ϕ, N)-module, which we refer to as the tensor product of D and D�.

The basic properties of filtered E -(ϕ, N)-modules over K are developed in chapter 4

of [Fon94b], in [ColFon00], §5.1-5.3 of [Fon04], §3.1 of [BreMez], and §2 of [Col10e],

among other places. We refer to §5.1 of [Fon04] for the notions of exact sequences and

quotients in the category of filtered E -(ϕ, N)-modules over K.
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Example 2.1.5.1. If V ∈ RepE(GK) and if L/K is finite, then Dst,L(V ) = (Bst ⊗Qp

V )GL is a filtered E -(ϕ, N)-module over L. If V |GL
is semi-stable, then rankL0,E

Dst,L(V ) =

dimE V .

The following example appears in remark 3.1.1.4 of [BreMez].

Example 2.1.5.2. If p �≡ 1mod 4 is a prime, then let E := Qp(
√
−1) denote the

unramified quatratic extension of Qp. If D = (E ⊗Qp E) · e, then defining

ϕ(e) = (p+1
2

⊗ 1 + p−1
2

√
−1⊗

√
−1) · e, N(e) = 0, Fili D =





D for i ≤ 0
(E ⊗Qp E) · [(1⊗ 1 +

√
−1⊗

√
−1) · e] for i = 1

{0} for 2 ≤ i

makes D into a filtered E -(ϕ, N)-module over E.

In the above example, the (E ⊗Qp E)-module Fil1 D is annihilated by the element

1⊗
√
−1 +

√
−1⊗ 1, and thus is not free.

Admissible filtered E -(ϕ, N)-modules. Let D be a filtered E -(ϕ, N)-module over K.

When viewed as a filtered Qp -(ϕ, N)-module, the dimension of D as a K0-vector space

is d = [E : Qp] rankK0,E
(D) and

�d
K0

D = K0 · e is a filtered Qp -(ϕ, N)-module of rank

1. We let tH(D) denote the maximal integer i ∈ Z such that Fili(K ⊗K0

�d
K0

D) �= 0,

and we let tN(D) = vp(λ), where λ ∈ K0 is defined by ϕ(e) = λ · e (the integer tN(D)

depends only on D). One says that D is weakly admissible if

(i) tH(D
�) ≤ tN(D

�) for all sub-filtered Qp -(ϕ, N)-modules D� ⊂ D over K,

(ii) and tH(D) = tN(D).

If V ∈ RepE(GK) is semi-stable, then Dst,K(V ) as in 2.1.5.1 is weakly admissible. It

is shown in proposition 3.1.1.5 of [BreMez] that if D is a filtered E -(ϕ, N)-module over

K, then D is weakly admissible if and only if tH(D) = tN(D) and tH(D
�) ≤ tN(D

�) for

all sub-filtered E -(ϕ, N)-modules D� ⊂ D over K.

The following theorem of Colmez and Fontaine (see [ColFon00]) allows one to trans-

late questions about the category Repst
E(GK) of semi-stable representations in RepE(GK)

into questions about filtered E -(ϕ, N)-modules over K.

Theorem 2.1.5.3. The functor Dst,K induces an equivalence of categories between

Repst
E(GK) and the full sub-category of weakly admissible filtered E -(ϕ, N)-modules over

K; crystalline representations in RepE(GK) correspond to weakly admissible filtered E -(ϕ, N)-

modules over K for which N = 0. On Repst
E(GK), the functor Dst,K is compatible with

direct sums, tensor products, and exact sequences.

2.2. Examples

Here are some examples of admissible linear Qp-representations of dimension > 1.
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2.2.1. Lubin-Tate characters. Let K/Qp be a finite extension and let π ∈ OK be

a uniformizer. One may attach to π a formal Lubin-Tate OK-module LTπ ∈ OK [[X, Y ]]

and the Lubin-Tate character χπ : GK → O×
K as in 1.2.1.

Proposition 2.2.1.1. The linear K-representation V = K(χπ) of GK is Hodge-Tate

with Hodge-Tate weights 1 with multiplicity 1 and 0 with multiplicity [K : Qp]− 1

The above proposition is a special case of more general results on Hodge-Tate de-

compositions for p-divisible groups given by Tate in [Tat66]. A proof along these lines is

given, for example, in lemma 2 in appendix A5 to chapter III of [Ser68]. See also [Col93]

and [Fou09] for another perspective. More precisely, what is shown in [Ser68] is that

the proposition is true after restriction to GKGal , but BHT-admissibility and Hodge-Tate

weights are invariant by restriction to an open sub-group.

2.2.2. Representations coming from geometry. If X/Qp is an algebraic variety,

then V = H i
ét(XQp

,Qp) is a continuous linear Qp-representation of GQp . If X/Qp is

proper and smooth, then the i-th hypercohomology H i
dR(X/Qp) of the de Rham complex

Ω•
X/Qp

has a natural structure as a filtered Qp-vector space of finite dimension. The

following was formerly a conjecture of Fontaine and Jannsen (see §6.2 of [Fon94b] and

[Tsu02] for a survey), and has been proven in various cases and generalities by Faltings,

Fontaine, Fontaine-Messing, Hyodo, Nizio�l, Tsuji, and more recently by Beilinson and

Bhatt.

Theorem 2.2.2.1. If X/Zp is a proper smooth variety, then there is an isomorphism

of semi-linear BdR-representations of GQp

BdR ⊗Qp H
i
ét
(XQp

,Qp) � BdR ⊗Qp H
i
dR(X/Qp)

which is compatible with filtrations, so that V = H i
ét
(XQp

,Qp) is de Rham and DdR(V ) �
H i

dR(X/Qp) as filtered Qp-vector spaces.

(1) If X/Zp is of good reduction, then V is crystalline and in this case Dcris(V ) =

H i
cris(X/Zp).

(2) If X/Zp is of bad semi-stable reduction, then V is semi-stable and Dst(V ) =

H i
log - cris(X).

2.2.3. Representations coming from modular forms. Let k,N ≥ 1 and let

f ∈ Sk(Γ1(N)) be an eigenform with character � : (Z/NZ) → C×. Let p be a prime and

let E/Qp be the finite extension, of degree d = [E : Qp] say, generated by the images of

the Hecke eigenvalues by a fixed embedding ι : Q → Qp. Let ρf,p : GQ → GL2(E) be the

p-adic representation attached to f with underlying E-vector space Vf,p, as described in

section 1.2.3.
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Proposition 2.2.3.1. The representation ρf,p|Dp is potentially semi-stable, and if

p � N , then it is crystalline and Dcris(V
∗
f,p) = Dk,ap is the 2 dimensional E-vector space

E · e1 ⊕ E · e2 with filtered E -ϕ-module structure given by

Mat(ϕ) =
�

0 −1
�(p)pk−1 ap

�
and Fili D =





Dk,ap for i ≤ 0
Ee1 for 1 ≤ i ≤ k − 1
{0} for i ≥ k

In particular, the Hodge-Tate weights of ρf,p|Dp are 0 (with multiplicity d) and k−1 (with

multiplicity d).

The fact that ρf,p|Dp is potentially semi-stable is is due to Saito (see [Sai97]) and the

description of Dcris(V
∗
f,p) when p � N is due to Scholl (see [Sch90]). Saito also established

local Langlands compatibility of Weil-Deligne representations for f at p.

2.3. Sen’s theory of Cp-representations

2.3.1. Sen-Tate theory for Cp-representations. Let K/Qp be a finite extension

and let χ : GQp → Z×
p be the cyclotomic character. If HK = ker(χ|GK

: GK → Z×
p ),

then HK = Gal(Qp/K∞), where K∞ =
�

n≥1 K(ζpn) ⊂ Qp. The group ΓK = GK/HK is

isomorphic to an open subgroup of Z×
p via χ. The following theorem is due to Sen, and

appears as theorem 2 of [Sen80]:

Theorem 2.3.1.1. If X is a semi-linear Cp-representation of GK of dimension d, then

XHK is a d-dimensional semi-linear �K∞-representation of ΓK and X = Cp ⊗ �K∞
XHK as

semi-linear Cp-representations of GK.

If W ∈ Rep �K∞
(GK), then let W fini denote the set of w ∈ W such that the ΓK-orbit

of w in W generates a finite-dimensional K-vector space. The set W fini is a K∞-vector

space and is stable by the action of ΓK . The following is theorem 3 of [Sen80]:

Theorem 2.3.1.2. If W ∈ Rep �K∞
(ΓK), then W = �K∞ ⊗K∞

W fini.

Theorems 2.3.1.1 and 2.3.1.2, taken together, give the following.

Theorem 2.3.1.3. The functor Dsen : RepCp
(GK) → RepK∞

(ΓK) defined by X �→
Dsen(X) := (XHK )fini is an equivalence of categories, with quasi-inverse given by the

extension of scalars functor Cp ⊗Qp - : RepK∞
(ΓK) → RepCp

(ΓK).

Proposition 2.3.2.5 below gives some properties of the functorDsen(-). Theorem 2.3.1.1

is applicable in particular when X = Cp ⊗Qp V for some V ∈ RepQp
(GK), and theorem

2.3.1.2 may be applied to (Cp ⊗Qp V )HK . In this note, we also write (abusively) Dsen(V )

for (Cp⊗Qp V )HK . We signal to the reader that the notation used in this text differs from

the notation of in [Sen80].
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2.3.2. Sen’s operator and generalized Hodge-Tate weights. The cyclotomic

character induces an inclusion ΓK = GK/HK �→ Z×
p , so that we may write ΓK = Σ× Γ0

where Σ is a finite abelian group and Γ0 � Zp. Let γ ∈ Γ0 be a topological generator. If

D ∈ RepK∞
(ΓK) and if E = (e1, . . . , ed) is a K∞-basis, then lemma 2 of [Sen80] shows

that there is a finite sub-extension K �/K of K∞/K such that Mat(g|E) ∈ GLd(K
�) for

all g ∈ ΓK ; i.e., W
� =

�d
i=1 K

� · ei is stable by ΓK . If Γ
� ⊂ ΓK is the open sub-group such

that K � = KΓ�

∞, then we have a linear representation ρ� : Γ� → GLd(K
�) = AutK�(W �) and

there is an operator T ∈ EndK�(W �) such that ρ�(γz) = exp(zT ) for all z ∈ Zp sufficiently

close to 0. Put Θ = 1
logp χ(γ)

T .

In this way, to each D ∈ RepK∞
(ΓK), Sen associates a K∞-linear operator ΘD : D →

D. The following is theorem 4 of [Sen80], and shows how Θ (locally) describes the action

of ΓK on D.

Theorem 2.3.2.1. If D ∈ RepK∞
(ΓK), then ΘD : D → D is the unique K∞-linear

operator such that for all x ∈ D, there is an open sub-group ΓK,x ⊂ ΓK such that γ(x) =

exp(logp(χ(γ)) ·Θ)(x) for all γ ∈ ΓK,x.

In particular, ΘD commutes with the action of ΓK on D, and therefore its character-

istic polynomial PΘ has coefficients in K = KΓK
∞ . The roots of PΘ in Qp are called the

Sen weights of D, or sometimes the generalized Hodge-Tate weights of D.

Example 2.3.2.2. If X = Cp(i), then Dsen(X) = K∞(i) and Θ : Dsen(X) → Dsen(X)

is given by multiplication by i.

If �χ� denotes the projection of χ onto the second factor of Z×
p = [F×

p ]×(1+pZp) for p

odd (resp. the second factor of Z×
2 = {±1}×(1+4Z2) if p = 2) and if s ∈ Zp, then �χ(g)�s

converges in Z×
p for all g ∈ GQp and therefore defines a character �χ�s : GQp → Z×

p .

Example 2.3.2.3. If η = µ�χ�s for some s ∈ Zp and a finitely ramified character

µ : GQp → Z×
p , then the unique generalized Hodge-Tate weight of Cp(η) is s.

The following is the corollary in §2.3 of [Sen80], and it gives a re-interpretation of

the notion of Hodge-Tate representation in terms of Sen’s theory.

Proposition 2.3.2.4. If V ∈ RepQp
(GK), then V is Hodge-Tate with Hodge-Tate

weights h1, . . . , hd if and only if ΘV is semi-simple with integer eigenvalues h1, . . . , hd.

The above proposition explains the teminology “generalized Hodge-Tate weights.”

Here are some properties of Sen’s operator and generalized Hodge-Tate weights, which

are proven in §2.2 of [Sen80].

Proposition 2.3.2.5. Let D,D� ∈ RepK∞
(ΓK).
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(1) If L/K is a finite extension, then Dsen(D|GL
) = L∞ ⊗K∞

Dsen(D) and ΘD|GL
is

the L∞-linearization of ΘD. In particular, the Sen weights of D are the same as

the Sen weights of D|GL
.

(2) Dsen(D ⊕D�) = Dsen(D)⊕Dsen(D
�) and ΘD⊕D� = ΘD ⊕ΘD�.

(3) Dsen(D ⊗ D�) = Dsen(D) ⊗ Dsen(D
�) and ΘD⊗D� = ΘD ⊗ Id+ Id⊗ΘD�. In par-

ticular, the Sen weights of D ⊗D� are the elements of the form α + β where α

is a Sen weight of D and β is a Sen weight of D�.

(4) If D� is a sub-object of D, then ΘD� = ΘD|D�, and ΘD/D� is the canonical operator

induced by ΘD.

Sen’s theory has been generalized to apply to different rings than Cp (see §3.3 of

[Col03] and §3 of [BerCol02]). We also briefly mention that Colmez has given a rein-

terpretation of Sen’s theory more in the spirit of the period ring formalism (see [Col94]).

2.4. Fontaine’s theories of Cp-representations and BdR-representations

2.4.1. Fontaine’s theory of semilinear Cp-representations. Let RepCp
(GK)

denote the category of semi-linear Cp-representations of GK . We will say that W ∈
RepCp

(GK) is Hodge-Tate if there is a Cp-basis (e1, . . . , ed) of W and integers h1, . . . , hd

such that g(ei) = χ(g)hiei for all i ∈ {1, . . . , d}. When W = Cp ⊗Qp V for some

V ∈ RepQp
(GK), W is Hodge-Tate if and only if V is BHT-admissible; one also says

that V is Hodge-Tate in this case.

We now describe Fontaine’s classification of Cp-representations as in §2.6 of [Fon04].

A GK-orbit A ⊂ Qp is a sub-set of Qp of the form Ox = {gx|g ∈ GK} for some x ∈ Qp;

note that Ox is necessarily finite and stable by the action of GK . If W ∈ RepCp
(GK)

and if A ⊂ Qp, then Fontaine says that W is of type SA if every element of the multiset

Wt(W ) of generalized Hodge-Tate weights of W is an element of A. If W ∈ RepCp
(GK)

is indecomposible, then the set Wt(W ) of Sen weights of W is a single GK-orbit A in Qp.

If d ≥ 0, then let Zp(0; d) denote the Zp-module of polynomials of degree1 ≤ d in a formal

variable X = log t, on which GQp acts by g(log t) = log t+logp(χ(g)). If W ∈ RepCp
(GK)

is irreducible, then W ⊗Zp Zp(0; d) is indecomposible; it is irreducible if and only if d = 0.

Fontaine shows in proposition 2.13 of [Fon04] that if A ⊂ Qp is a GK-orbit, then there

is a unique irreducible object Cp[A] ∈ RepCp
(GK) of type SA. For example, if A = {i}

for some integer i ∈ Z, then Cp[A] is just Cp(i). If V is a 2-dimensional Qp-vector space

1In [Fon04], Zp(0; d) denotes the Zp-module of polynomials of degree < d, but we have shifted d to
make some of our notation later work out more cleanly.
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on which g ∈ GQp acts on a basis E = (e1, e2) by the matrix

Mat(g|E) =

�
1 logp(χ(g))
0 1

�

then Cp ⊗Qp V = Cp[{0}; 1].

The following is theorem 2.14 of [Fon04]:

Theorem 2.4.1.1. If W ∈ RepCp
(GK) is non-zero, then there are unique GK-orbits

A1, . . . , Ar ⊂ Qp and integers d1, . . . , dr ∈ N and hi = hAi,di(W ) such that W =�r
i=1 Cp[Ai; di]

hi.

If W ∈ RepCp
(GK) admits a decomposition as in the above theorem, then W is

Hodge-Tate if and only if for all i, Ai = {αi} with αi ∈ Z and di = 0 (see p. 45 of loc.

cit.). In this case, h{αi},0(W ) is the multiplicity of αi as a generalized Hodge-Tate weight

of W .

2.4.2. Fontaine’s theory of BdR-representations. Let RepBdR
(GK) denote the

category of semi-linear BdR-representations of GK . We will say that W ∈ RepBdR
(GK) is

de Rham if it is trivial as a semi-linear BdR-representation of GK . If W ∈ RepBdR
(GK),

then a GK-stable lattice of W is a GK-stable sub-B+
dR-module W+ ⊂ W of finite type

such that BdR⊗B+

dR
W+. For example, if V ∈ RepE(GK), then B+

dR⊗Qp V is a GK-stable

lattice of W = BdR ⊗Qp V . More generally, if W = (We,W
+
dR) is a B⊗E

|K -pair, then W+
dR

is (by definition) a GK-stable lattice of WdR = BdR,E ⊗Be,E
We.

Let W be a BdR-representation of GK and let W ⊂ W be a GK-stable B+
dR-lattice.

The quotient W := W/tW is a Cp-representation of GK , and we may therefore associate

to it the set Wt(W) of its Sen weights, which is a set of elements of Qp of cardinal

dimBdR
W which is stable by the action of GK . The following proposition shows that all

lattices of W have the same Sen weights up to integers, so that the set of Sen weights

modulo Z of a lattice W is an invariant of W .

Proposition 2.4.2.1. Let W be a BdR-representation of GK. If W and W � are two

GK-stable B+
dR-lattices of W , then each Sen weight of W � may be written in the form

α+ i where α is a Sen weight of W and i ∈ Z.

Proof. Let c ≥ 0 be an integer such that the lattice tcW � is contained in W and let

c� ≥ 0 be an integer such that the lattice tc
�

W is contained in tcW �.

Consider the sequence of GK-stable lattices :

tcW � = tcW � + tc
�

W ⊂ tcW � + tc
�−1W ⊂ . . . ⊂ tcW � + tW ⊂ tcW � +W = W ,

and let Xk denote the lattice tcW � + tc
�−kW (for 0 ≤ k ≤ c�). We have GK-equivariant

inclusions tXk+1 ⊂ Xk ⊂ Xk+1 for k = 0, 1, . . . , c� − 1 ; we therefore have exact sequences
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of Cp-representations :

Xk+1/tXk+1 → Xk+1/Xk → 0 and 0 → tXk+1/tXk → Xk/tXk → Xk+1/tXk+1

which, taken together with (i) and (iii) of proposition 4.2.1.2, and since x �→ tx induces

an isomorphism of (Xk+1/Xk)(1) onto tXk+1/tXk, implies that Wt(Xk) ⊂ Wt(Xk+1) ∪
(Wt(Xk+1) + 1). By recurrence, the Sen weights of X0 = tcW � are all of the form α + i,

where α is a Sen weight of Xc� = W and i is an integer. Again by (iii) of proposition

4.2.1.2, the Sen weights of W � are of the form α+ i where α is a Sen weight of W . �

If W is a BdR-representation of GK and if W ⊂ W is a GK-stable lattice, then the

multiset WtdR(W ) of de Rham weights of W is the multiset of images of elements of

Wt(W) modulo Z; by proposition , this multiset depends only on W and not on the

lattice W .

For each GK-orbit A ⊂ Qp, Fontaine constructed a simple object Cp[A] ∈ RepCp
(GK)

(see the previous paragraph), which corresponds (via Sen’s theory) to a simple object

K∞[A] ∈ RepK∞
(ΓK). Fontaine defines BdR[A] = BdR ⊗K∞

K∞[A]; the set of de Rham

weights of W is the image of A modulo Z. Fontaine showed in proposition 3.18 of [Fon04]

that for GK-orbits A,A
� ⊂ Qp, one has BdR[A] � BdR[A

�] if and only if A = A� modZ,

and (ii) of Theorem 3.19 of loc. cit. asserts that for each d ≥ 0, the BdR-representation

BdR[A; d] = BdR[A]⊗Zp Zp(0; d) is indecomposible, and it is simple if and only if d = 0.

The following is part of theorem 3.19 of [Fon04].

Theorem 2.4.2.2. IfW ∈ RepBdR
(GK) is non-zero, then there are GK-orbits A1, . . . , Ar ⊂

Qp (unique modulo Z) and unique integers d1, . . . , dr ∈ N and hi = hAi,di(W ) such that

W =
�r

i=1 BdR[Ai; di]
hi.

In light of the above, W ∈ RepBdR
(GK) is de Rham (i.e., isomorphic to Bd

dR as an

object in W ∈ RepBdR
(GK)) if and only the decomposition of W as in the above theorem

is such that for all 1 ≤ i ≤ r, Ai = {zi} for some zi ∈ Z and di = 1.

2.5. The category of B-pairs

In this section we recall several basic properties of B-pairs developed in [Ber08],

[BerChe10], and [Nak09].

2.5.1. The ring Be,E. Let Be = Bϕ=1
cris . If E/Qp is a finite extension, then let GK

act on the ring Be,E = Be ⊗Qp E by defining g(b⊗ e) = g(b) ⊗ e. It is known that Be,E

is a Bézout domain; for E = Qp, this is shown in proposition 1.1.9 of [Ber08], and the

same method is used to show general case in lemma 1.6 [Nak09]. In fact, it is now known
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that Be is a principal ideal domain (see theorem 10.2 of [FarFon]), and therefore Be,E is

principal as well since it is a quotient of the polynomial ring Be[X], and thus noetherian.

Proposition 2.5.1.1. If E/Qp is finite, then the ring Be,E is a principal ideal domain.

2.5.2. The category of B-pairs. AB⊗E
|K -pair W = (We,W

+
dR) is aBe,E-representation

We of GK together with a GK-stable B
+
dR,E-lattice W

+
dR of WdR = (BdR⊗Qp E)⊗(Be⊗QpE)

We; saying thatW
+
dR is a B+

dR,E-lattice ofWdR means thatW+
dR ⊂ WdR is a free sub-B+

dR,E-

module such that BdR,E⊗B+

dR,E
W+

dR = WdR. If W is a B⊗E
|K -pair, then rank(W ) is defined

to be the rank of We as a Be,E-module, which is equal to the rank of W+
dR as a B+

dR,E-

module. If W and W � are B⊗E
|K -pairs, then W ⊗W � = (We⊗Be,E

W �
e,W

+
dR⊗B+

dR,E
W �+

dR) is a

B⊗E
|K -pair. If F/E and L/K are finite extensions and if W is a B⊗E

|K -pair, then F ⊗EW |GL

is a B⊗F
|L -pair.

For example, if V is a linear E-representation of GK , then

W (V ) = ((Be ⊗Qp E)⊗E V, (B+
dR ⊗Qp E)⊗E V )

is a B⊗E
|K -pair of rank d = dimE V .

The notions of crystalline, semi-stable, de Rham, and Hodge-Tate objects in RepE(GK)

may be extended to objects in the category of B⊗E
|K -pairs in such a way that an E-linear

representation V of GK is crystalline (or semi-stable or de Rham or Hodge-Tate) if and

only if the associated B⊗E
|K -pair W (V ) is. More precisely, if B is any of the period rings

Bcris, Bst, or BdR and if W = (We,W
+
dR) is a B⊗E

|K -pair, then W is said to be B-admissible

if the semi-linear B-representation (B ⊗Be
We of GK is trivial and W is Hodge-Tate if

the Cp-representation W = W+
dR/tW

+
dR is Hodge-Tate.

One can also construct B⊗E
|K -pairs from filtered E -(ϕ, N)-modules over K: if D is a

filtered E -(ϕ, N)-module over K, and if We(D) = (Bst,E ⊗K0,E
D)ϕ=1,N=0 and W+

dR(D) =

Fil0(BdR,E ⊗K0,E
D), then W (D) = (We(D),W+

dR(D)) is a semi-stable B⊗E
|K -pair of rank

r = rankK0,E
D (see proposition 2.3.3 of [Ber08]).

Quotients in the category of B-pairs. If W � ⊂ W are B⊗E
|K -pairs, then W � is said to be

saturated in W if W �+
dR = W �

dR∩W+
dR. In this case, W+

dR/W
�+
dR is a free B+

dR,E-module and

W/W � = (We/W
�
e,W

+
dR/W

�+
dR) is therefore a B⊗E

|K -pair of rank r = rank(W )− rank(W �).

Rank one B-pairs. The following is shown for E = Qp in lemma 2.1.3 of [Ber08] and

for E ⊃ KGal in theorem 1.45 of [Nak09]; the same proof as in lemma 2.1.3 of [Ber08]

together with proposition 7.1.2.3 implies the following:

Lemma 2.5.2.1. If W is a B⊗E
|K -pair of rank 1, then there is a linear character η :

GK → E× and a GK-stable fractional ideal
2 W+ ⊂ BdR,E such thatW = (Be,E(η),W

+(η)).

2I.e., W+ ⊂ BdR,E is a GK-stable free sub-B+

dR,E-module of rank 1. If E = Qp, then the fractional

ideals of BdR are of the form tiB+

dR
with i ∈ Z.
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Proof. If W = (We,W
+
dR) is a B⊗E

|K -pair of rank 1, then proposition 7.1.2.3 im-

plies that there is a character η : GK → E× such that We = Be,E(η), so that W+ =

W+
dR(η

−1) ⊂ BdR,E is free sub-B+
dR-module of rank 1 on which GK acts trivially. �

2.5.3. Trianguline representations. Let E/Qp be a finite extension. In the con-

text of the p-adic Langlands correspondence for GL2(Qp), Colmez has defined the notion

of a trianguline E-linear representation of GQp = Gal(Qp/Qp).

A B⊗E
|K -pair W is said to be triangulable if there are sub-B⊗E

|K -pairs {0} = W0 ⊂ W1 ⊂
. . . ⊂ Wn = W such that Wi/Wi−1 is a B⊗E

|K -pair of rank 1 for all i ∈ {1, . . . , n}. If V ∈
RepE(GK), then V is said to be split trianguline if the B⊗E

|K -pair W (V ) is triangulable,

and V is said to be trianguline if there is a finite extension E �/E such that the linear

E �-representation E � ⊗E V of GK is split trianguline. For example, if V ∈ RepE(GK)

is semi-stable, then V is trianguline (see proposition 7.1.4.1). The following is an easy

consequence of corollary 7.1.3.2.

Proposition 2.5.3.1. The sub-category of split trianguline representations in RepE(GK)

is stable by sub-quotients, extensions, tensor product, and duals.

Here is another example of a trianguline representation. If f is an overconvergent p-

adic modular form of finite slope in the sense of Katz (see [Kat73]), then one may attach

to f a 2-dimensional p-adic representation Vpf of GQ, and results of Kisin (theorem

6.3 of [Kis03]) and Colmez (prop 4.3 of [Col08c]) show that Vpf |GQp
is trianguline.

Representations attached to finite slope overconvergent p-adic modular forms need not

be Hodge-Tate at p in general (indeed, they need not have Hodge-Tate weights in Z).





CHAPTER 3

Schur functors

In this chapter, we present some fundamental properties of Schur functors which

are used in this document. We signal to the reader that we have chosen to follow the

construction of Schur functors as given in [Ful97], which is dual to the construction given

in §6.1 of [FulHar] for example.

3.1. Young diagrams and tableaux

3.1.1. Basic definitions. Let n ≥ 1 be an integer and let n = u1 + . . . + ur be

an integer partition such that ui ≥ ui+1 ≥ 1 for all i ∈ {1, . . . , r − 1}. We denote this

partition by u = (u1, . . . , ur) and we may represent u by its Young diagram Yu, which is

a diagram of n-many boxes arranged into left-justified rows such that the i-th row from

the top contains ui-many boxes. We say that Yu has shape u. For example, the partition

13 = 5 + 4 + 2 + 1 + 1 is represented by the following diagram:

If d ≥ 1 is an integer, then a tableau on Yu with values in {1, . . . , d} is a labeling of

the boxes of Yu with elements in {1, . . . , d} such that the labeling is weakly increasing

from left to right and strongly increasing from top to bottom. Note that if d is strictly

less than the length of the left-most column of Yu, then Yu has no tableau with values in

{1, . . . , d}. For example, the following is a tableau with values in {1, . . . , 7} on the above

Young diagram:

1 1 2 3 3
2 3 3 4
4 5
5
7

We will write T = (tij) to denote a tableau with the integer tij ∈ {1, . . . , d} in the i-th

row (from the top) of the j-th column (from the left) of Yu.
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Let vj denote the length of the j-th column from the left of Yu. Put r(u) = r + 1 if

Yu is a rectangle (i.e., if u1 = . . . = ur) and put r(u) = r if Yu is not a rectangle. For

example, if n ≥ 1 and if u = (n), then we have r(u) = 2 and for u = (1, . . . , 1) we have

r(u) = n + 1. If d ≥ r, then there is a tableau on Yu with values in {1, . . . , d} which

has i in each box of the i-th row from the top; we refer to this tableau as the standard

tableau, and we denote it by T1. For example, here is T1 on the Young diagram for

u = (5, 4, 2, 1, 1):

1 1 1 1 1
2 2 2 2
3 3
4
5

Proposition 3.1.1.1. If d ≥ r(u), then there are tableaux T1, T2, . . . , Td on Yu with

values in {1, . . . , d} such that for all i ∈ {1, . . . , d−1}, there is an integer j ∈ {1, . . . , d−1}

such that Tj and Tj+1 have the same entries in all but one box, and this box of Tj contains

i while this box in Tj+1 contains i+ 1.

For example, for the partition u = (2, 2, 2, 1, 1) of n = 8, we have r(u) = 5 and if

d = 5, then we have T1, . . ., T5 as follows:

1 1
2 2
3 3
4
5

1 1
2 2
3 4
4
5

1 1
2 2
3 5
4
5

1 1
2 3
3 5
4
5

1 2
2 3
3 5
4
5

Proof of the proposition. Let T1 denote the trivial tableau on Yu with values

in {1, . . . , d}; this is the tableau having i in every box in the i-th row. Let vu1
denote the

length of the rightmost column in Yu. From T1 obtain T2 by adding 1 to the bottom-most

entry in the right-most column of T1 (i.e., in coordinate (u1, vu1
), and therefore it is equal

to vu1
). If i ≥ 2 and if the entry in the (u1, vu1

) coordinate of Ti is less than d, then let

Ti+1 be the tableau obtained from Ti by adding 1 to the entry in its (u1, vu1
) coordinate.

Repeat this process until we obtain a tableau Tr with d in the bottom-most cell of the

right-most column of Yu. To obtain Tr+1, add 1 to the entry just above the bottom-most

cell in the right-most column of Tr. To obtain Tr+1 from Tr, add 1 to the entry of Tr

in the (u1, vu1
− 1) coordinate. To obtain Tr+2 from Tr+1, add 1 to the entry of Tr+1

in the (u1, vu1
− 2) coordinate, and so on until we end with a tableau Td having 2 the

rightmost column of the first row of Yu. The tableaux T1, T2, . . . , Td satisfy the desired

condition. �
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The row bumping operation. Let Yu be a Young diagram of shape u and let T = (tij)

be a tableau on Yu with values in {1, . . . , d}. If x ∈ {1, . . . , d}, then we define a Tableau

on a Young diagram having one more box than Yu (denoted by T ← x) by the following

procedure. If t1j ≤ x for all j, then append one box to the end of row 1 and label it with

the number x (the result is a tableau). If this is not the case, then there is some j such

that t1,j < x and x� := t1,j+1 ≤ x, and we replace t1,j+1 with x (the result is a Tableau).

At this point, we do the same for x� in the second row of T and so on. Here are two

examples:

1 2 2
2 3 3
3 4
4 ← 2 =

1 2 2 2
2 3 3
3 4
4 and

1 2 2
2 3 3
3 4
4 ← 1 =

1 1 2
2 2 3
3 3
4 4

Products of tableaux. The row bumping operation is used to define the product of

two tableaux. Let Yu and Yv be Young diagrams of shape u and v respectively. If T is a

tableau on Yu and if T � is a tableau on Yv, both with values in {1, . . . , d}, then we may

define a product tableau T · T � as a series of row-bumping operations: let x be left-most

number in the bottom-most column of T �, construct T ← x, and repeat this process with

T ← x and T � (ignoring x in T �), continuing until there are no more entries in T � left to

bump. Here are two examples of products of tableaux :

Example 1:

1 1 1
2 2
3 ·

1 3
2 =

1 1 1 1 3
2 2 2
3

Example 2:

1 1 1
2 2 3
3 3
4 ·

1 2
2 3
4 =

1 1 1 2 2
2 2 2 3
3 3 3 4
4

If λ, µ, ν are partitions of integers σλ, σµ, and σν , then we denote by cνλ,µ the number

of tableaux T on Yλ and U on Yµ such that T · U is equal to the standard tableau on

Yν ; this number is referred to as the Littlewood-Richardson number. Note that cνλ,µ = 0

unless |λ| + |µ| = |ν| and Yν can contain both Yλ and Yµ. There are many equivalent

definitions of the Littlewood-Richardson number; we have chosen that which has been

easiest to work with in our situation (see proposition 2 of §5 and §5.3 of [Ful97]).
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3.2. Schur functors

3.2.1. The universal property of Schur modules. Let u = (u1, . . . , ur) be a

partition of an integer n ≥ 1 as in 3.1.1 and let vj denote the length of the j-th column

from the left of Yu.

Let R be a commutative ring with 1. If M is an R-module, then we let M×u denote

the n-fold direct product M × . . . × M indexed by the squares of Yu; i.e., elements of

M×u are tuples of the form m = (mij) (1 ≤ j ≤ u1 and 1 ≤ i ≤ vj), so that mij ∈ M is

the coordinate of m corresponding to the box of Yu in the i-th row of the j-th column. If

m = (mij) ∈ M×u, then m� ∈ M×u is said to be an (a, b; k)-exchange of m if there exist

1 ≤ a < b ≤ u1, 1 ≤ k ≤ vb, and integers 1 ≤ i1 < . . . ik ≤ va and 1 ≤ i�1 < . . . < i�k ≤ vb

such that

(1) m�
ij = mij for all j �∈ {a, b},

(2) m�
ia = mia if i �∈ {i1, . . . , ik}, and m�

it,a = mi�t,b
for all t ∈ {1, . . . , k}, and

(3) m�
ib = mib if i �∈ {i�1, . . . , i

�
k}, and m�

i�t,b
= mit,a for all t ∈ {1, . . . , k}, and

Note that there are a total of
�
va
k

�
-many (a, b; k)-exchanges of m. We let Em ⊂ M×u

denote the set of all exchanges of m (i.e., for all a, b, and k).

Example 3.2.1.1. Let u = (4, 3, 2, 1), and (a, b; k) = (2, 3; 2). If m = (mij) is given

by
a b c d
e f g
h i
j

then there are three (2, 3; 2)-exchanges of m, and they are as follows:

a c b d
e g f
h i
j

a c b d
e f i
h g
j

a b f d
e c i
h g
j

If M is an R-module, then there is an R-module Schuru(M) together with a morphism

ϕ : M×u → Schuru(M) of R-modules such that

(1) ϕ is R-multilinear,

(2) ϕ is alternating with respect to the columns of Yu; i.e., if m = (mij) ∈ M×u and

if there is some j and some 1 ≤ i < i� ≤ vj such that mij = mi�j, then ϕ(m) = 0.

(3) for all m ∈ M×u, ϕ(m) =
�

m�∈Em
ϕ(m�).

and if M � is an R-module with φ : M×u → M � a morphism of R-modules satisfying (1),

(2), and (3), then there is a unique morphism of R-modules φ� : Schuru(M) → M � such

that φ = φ� ◦ ϕ.
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By the universal properties for alternating product and tensor product, conditions (1)

and (2) imply that Schuru(M) is a quotient of of the R-module Λv1(M)⊗R . . .⊗RΛ
vu1 (M).

In particular, if {m1, . . . ,mk} ⊂ M and if T = (tij) is a tableau on Yu with values in

{1, . . . , k}, then we may consider the image of the element (mt11 ∧ . . . ∧ mtv11
) ⊗ . . . ⊗

(mt1u1
∧ . . . ∧mtvu1u1

) in Schuru(M); we denote this element by mT .

Example 3.2.1.2. (1) When u = (n) (so that Yu consists of a single row of n-

many boxes), condition (2) imposes no restrictions and condition (3) says that

ϕ is symmetric; in this case, Schuru(M) = Symn(M).

(2) When u = (1, . . . , 1) (i.e., Yu consists of a single column of n-many boxes),

condition (3) imposes no restrictions and condition (2) says that ϕ is alternating;

in this case, Schuru(M) = Λn(M).

(3) We now describe the Schur functor associated to the partition u = (2, 1) of n = 3.

In this situation, the exchange condition (3) is the following: for m ∈ M×u with

m = (m11,m21;m12), ϕ(m) = ϕ(m12,m21;m11) + ϕ(m11,m12;m21). Concretely,

Schur(2,1)(M) is the quotient of Λ2(M)⊗R M by the sub-R-module generated by

elements of the form (a ∧ b)⊗ c− (c ∧ b)⊗ a− (a ∧ c)⊗ b.

The following is theorem 1 of §8.1 in [Ful97]:

Proposition 3.2.1.3. If M is a free R-module of finite rank with basis (e1, . . . , ed),

then Schuru(M) is a free R-module (which is nonzero if d ≥ r) with basis (eT )T , where

T ranges over all tableaux on Yu with values in {1, . . . , d}.

The universal property of Schuru(-) implies that Schuru : R -Mod → R -Mod is

functorial, and we just saw that it sends free modules to free modules.

Proposition 3.2.1.4. If E is a field of characteristic 0 and if V is a finite-dimensional

E-vector space together with an operator f : V → V , and if λ1, . . . ,λd are the eigenvalues

of T counted with multiplicity, then the eigenvalues of the operator induced by f on

Schuru(V ) are the elements of the form λT =
�

T=(tij)
λtij , where T ranges over all

tableaux on u with values in 1, . . . , d.

The functor Schuru(−) is compatible with extension of scalars:

Proposition 3.2.1.5. If R → R� is a ring morphism and if M is an R-module, then

Schuru(R� ⊗R M) = R� ⊗R Schuru(M).

3.2.2. Direct sums. If M = M � ⊕ M �� is a direct sum of free R-modules, then

Symn(M) �
�

p+q=n Sym
p(M �)⊗RSym

q(M ��) and
�n(M) �

�
p+q=n

�p(M �)⊗R

�q(M ��);

these two isomorphisms are special cases of the following more general result, which

appears in (20) of §8.3 of [Ful97]:
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Proposition 3.2.2.1. If W and W � are free R-modules, then we have a functorial

decomposition

Schuru(W ⊕W �) �
�

λ,µ

(Schurλ(W )⊗R Schurµ(W �))⊕cu
λ,µ

where cuλ,µ ≥ 0 denotes the Littlewood-Richardson number.

The above, together with the following lemma, will be used in part 2:

Lemma 3.2.2.2. If u is a partition of an integer n ≥ 1 and if R ≥ r(u), then for all

1 < d ≤ R, there are sub-shapes Yλ and Yµ of Yu such that d ≥ r(λ) and R− d ≥ rµ and

such that cuλ,µ �= 0.

Note that the above lemma is obvious for the partitions u = (n) or u = (1, . . . , 1) of

n. Here are two more examples.

Example 3.2.2.3.

(1) For R = 5, u = (5, 4, 4, 2, 1), and d = 3, the following factorisation shows that

λ = (2, 1) and µ = (5, 4, 4) satisfy the conditions of the lemma:

1 1 1 1 1
2 2 2 2
3 3 3 3
4 4
5 =

4 4
5 ·

1 1 1 1 1
2 2 2 2
3 3 3 3

(2) For R = 4, u = (3, 3, 2, 2), and d = 2, the following factorisation shows that

λ = (3, 2) and µ = (3, 2) satisfy the conditions of the lemma:

1 1 1
2 2 2
3 3
4 4 =

2 3 3
4 4 ·

1 1 1
2 2

Proof of the lemma. Label Yu with the standard tableau with values in {1, . . . , R}.

Draw a horizontal line L between row d and row d+ 1 in Yu.

If the shape above this line is not a rectangle, then denote it by λ (so that d = r(λ))

and denote the shape below this line by µ. If Tλ (resp. Tµ) denotes the tableau of entries

on λ (resp. µ) inherited from the standard tableau on Yu, then Tµ · Tλ is the standard

tableau on Yu.

Suppose now that the shape above the line between row d and row d+1 is a rectangle.

Let x denote the entry in the rightmost column of row d of the standard tableau on Yu.

If Tµ is the tableau obtained from bumping x (see the previous section for the definition

of the bumping operation) into the diagram below the line L, and if Tλ is the tableau on
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the shape λ obtained by removing the rightmost box in row d from the shape above the

line L, then d = r(λ) and Tµ · Tλ is equal to the standard tableau T1 on Yu. �

3.2.3. Schur functors applied to B-pairs. If W = (We,W
+
dR) is a B⊗E

|K -pair,

then Schuru(W ) = (Schuru(We), Schur
u(W+

dR)) is a B⊗E
|K -pair by 3.2.1.3 and 3.2.1.5.

If V is an E-linear representation of GK , then we have an isomorphism of B⊗E
|K -pairs

Schuru(W (V ))
∼→ W (Schuru(V )).





Part 2

Admissible tensor products & Schur objects





CHAPTER 4

Notation and generalities

4.1. Notation and generalities

4.1.1. Notation. Let Qp be an algebraic closure of Qp and let Cp be the p-adic

completion of Qp. Let Q
nr
p denote the maximal non-ramified sub-extension of Qp/Qp. If

F/Qp is a finite extension, then we let FGal denote the Galois closure of F in Qp. Let

BdR, B
+
dR, Bcris, and Bst denote Fontaine’s rings as in [Fon94a] and let Be = Bϕ=1

cris . In

this part, E/Qp and K/Qp denote finite extensions. If B is any of the above rings or any

Galois sub-extension of Qp/Qp, then BE will denote the ring B⊗Qp E endowed with the

action of GK = Gal(Qp/K) defined by g(b⊗ e) = g(b)⊗ e for all g ∈ GK . If W is a free

BE-module of finite rank endowed with a semi-linear action of GK , then we refer to W

as a BE-representation of GK .

4.1.2. Decomposing representations with coefficients. If F/Qp is a finite ex-

tension and if B ∈ {Cp,BdR} or if B is any Galois sub-extension of Qp/Qp containing

F , then the map

B⊗Qp F �
�

h:F→Qp

B

(b⊗ f) �→ (b · h(f))h

(1)

(where h runs over the embeddings of F into Qp) is an isomorphism of B-algebras, and

it is GK-equivariant if K ⊃ FGal.

If W is a BF -module, then for each embedding h : F → Qp, let Wh denote the sub-

B-module of W coming from the h-factor map (b⊗ f) �→ b · h(f) : B⊗Qp F → B in the

isomorphism (1) above.

Proposition 4.1.2.2. Let W be a BF -module and let Wh denote the B-module cor-

responding to the embedding h : F → Qp.

(1) We have a direct sum decomposition W =
�

h Wh of B-modules.

(2) If W is free of rank d as a BF -module, then Wh is free of rank d as a B-module.

(3) If W � is another BF -module and if T : W → W � is a morphism of BF -modules,

then T (viewed as a morphism of B-modules) sends Wh to W �
h for all h : F → Qp.
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In particular, if K ⊃ FGal, then a BF -representation W of GK decomposes into a

direct sum W =
�

h:F→Qp
Wh as a B-representation of GK , and rankB Wh = rankBF

W .

Note that if K ⊃ FGal, then a BdR,F -representation W of GK is de Rham if and

only if the BdR-representations Wh are de Rham for each embedding h : F → Qp and a

Cp,F -representation W of GK is Hodge-Tate if and only if the Cp-representations Wh are

Hodge-Tate for all embeddings h : F → Qp.

Proposition 4.1.2.3. Let W and W � be BF -representations of GK with K ⊃ FGal

and let W =
�

h Wh and W � =
�

h W
�
h be the decompositions as described above.

(1) The BF -representation W ⊗BF
W � decomposes as

�
h:F→Qp

(Wh ⊗B W �
h).

(2) The BF -representation W ⊕W � decomposes as
�

h:F→Qp
(Wh ⊕W �

h).

(3) If W � ⊂ W is a sub-BF -module, then the BF -representation W/W � decomposes

as W/W � =
�

h:F→Qp
(Wh/W

�
h)

Corollary 4.1.2.4. Let n ≥ 1 and let u = (u1, . . . , ur) be a partition of n as defined

in paragraph 3.1.1 of chapter 3. If W is a BF -representation of GK and if W =
�

h Wh,

then the BF -module Schuru(W ) decomposes into Schuru(W ) =
�

h:F→Qp
Schuru(Wh) as

a B-representation of GK.

4.2. Sen’s theory for representations with coefficients

4.2.1. Generalized Hodge-Tate weights. Let E and K denote finite extensions

of Qp. In what follows, a Cp,E-representation of GK is a free finite rank Cp,E-module

W endowed with a Cp-semi-linear E-linear action of GK , such that the action of GK is

continuous when W is viewed as a Cp-representation of rank [E : Qp] · rankCp,E
(W ). For

example, if V ∈ RepE(GK), then Cp ⊗Qp V is a Cp,E-representation of GK . Similarly, if

W is a B⊗E
|K -pair, then W := W+

dR/tW
+
dR is a Cp,E-representation of GK .

If W is a Cp,E-representation of GK of rank d, then Dsen(W ) = (WHK )fini (see §2.3.1)

is a K∞,E-module, and 2.3.2.1 implies that the ΓK-equivariant operator Θ : Dsen(W ) →
Dsen(W ) is K∞,E-linear. It turns out that Dsen(W ) is in fact free of rank d as a K∞,E-

module; by 4.1.2 of [BerCol02], there is a finite extension L/K such that Dsen(W |GL
) =

L∞ ⊗K∞
Dsen(W ) is free as a L∞,E-module and since the ring extension L∞,E/K∞,E is

faithfully flat, Dsen(W ) is necessarily free as a K∞,E-module.

Proposition 4.2.1.1. Let W be a Cp,E-representation of GK.

(1) Dsen(W ) is a free K∞,E-module of rank d = rankCp,E
(W ) on which ΓK acts

K∞-semi-linearly and E-linearly.

(2) The operator ΘDsen(W ) is K∞,E-linear.
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The characteristic polynomial PΘ,E(X) = det(X ·Id−Θ) has coefficients in (K⊗QpE)

since Θ commutes with the action of ΓK on D. Let PΘ ∈ K[X] denote the characteristic

polynomial of Θ : D → D when viewed as a K∞-linear operator (as in paragraph 2.3.1

of chapter 2).

The following is a more precise version of proposition 2.3.2.5 for representations with

coefficients:

Proposition 4.2.1.2. Let W and W � be Cp,E-representations of GK.

(i) If W � is a sub-representation of W , then ΘW |W � = ΘW � and ΘW/W � is the canon-

ical operator induced by ΘW . In particular, if 0 → W � → W → W �� → 0 is an

exact sequence of Cp,E-representations, then PΘW
= PΘW �PΘW �� .

(ii) If F/E is a finite extension, then Dsen(F ⊗E W ) = F ⊗E Dsen(W ) and ΘF⊗W is

the F -linearisation of ΘW .

(iii) We have a natural isomorphism Dsen(W ⊗Cp,E
W �) = Dsen(W ) ⊗K∞,E

Dsen(W
�)

of K∞,E-representations of ΓK and the Sen operator on Dsen(W ⊗Cp,E
W �) is

ΘW ⊗ Id+ Id⊗ΘW �.

(iv) If L/K is a finite Galois extension, then Dsen(W |GL
) = L∞ ⊗K∞

Dsen(W ) as an

L∞,E-representation of ΓL, and ΘW |GL
is the L∞-linearization of ΘW .

Recall that the set of generalized Hodge-Tate weights of W is the set of roots of PΘ

in Qp counted with multiplicity. In what follows, we explain two ways to recover the

generalized Hodge-tate weights of W from the polynomial PΘ,E(X).

4.2.1.3. Weight combinatorics I. Let D ∈ RepK∞,E
(ΓK) be a nonzero object, let Θ

be Sen’s K∞,E-linear operator on D, and let PΘ,E ∈ (K ⊗Qp E)[X ] be its characteristic

polynomial. For all j : E → Qp, let PΘ,E,j(X) ∈ (K · EGal)[X] be the polynomial

obtained from PΘ,E by applying the map K ⊗E → K ·EGal defined by x⊗ e �→ xj(e) to

the coefficients of PΘ,E(X). We now explain how to recover the generalized Hodge-Tate

weights of D from PΘ,E(X).

Proposition 4.2.1.4. Let L ⊃ EGal with L/Qp finite. If D ∈ RepL∞,E
(ΓL) and if

D =
�

j:E→Qp
Dh is the decomposition of D as an L∞-representation of ΓL, then

(1) Θ|Dj
= ΘDj

(2) PΘ(X) =
�

j:E→Qp
PΘ,E,j in L[X].

Proof. Assertion (1) is an immediate consequence of proposition 2.3.2.5. Asser-

tion (2) is an immediate consequence of assertion (1) since PL∞,E,j is the characteristic

polynomial of ΘDj
. �
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Let K and E be finite extensions of Qp as before (i.e., we are not assuming that

K ⊃ EGal) and let W ∈ RepCp,E
(GK). Part (2) of the above proposition shows that

the generalized Hodge-Tate weights of D = Dsen(W ) may be decomposed into subsets

corresponding to the embeddings j : E → Qp; more precisely, if L = K · EGal, then the

Sen operator on D� = Dsen(W |GL
) = (L∞ ⊗K∞

D)|ΓL
is just the L∞-linearization of Θ

on D; in particular, PΘD
= PΘD� and PΘD,E = PΘD� ,E. By the above proposition, we

therefore have PΘD
=

�
j:E→Qp

PΘD,E,j in L[X], where L = K · EGal.

With this in mind, ifW ∈ RepCp,E
(GK), then we may partition the multiset Wt(W ) =�

j:E→Qp
Wtj(W ), where Wtj(W ) is the set of roots of PΘ,E,j in Qp counted with mul-

tiplicity. If L/K is a finite extension such that L ⊃ EGal and if W =
�

j Wj is the

decomposition as a Cp-representation of GL as in proposition 4.1.2.2, then Wtj(W ) may

be interpreted as precisely the set of generalized Hodge-Tate weights of Wj ∈ RepCp
(GK).

Here is a description of the sets Wtj(W ) for the example in paragraph 2.2.1.

Example 4.2.1.5. Let K/Qp be a finite extension and let π ∈ OK be a uniformizer.

If χπ : GK → O×
K is the character attached to a Lubin-Tate formal module for π, then

Wtj(K(χπ)) = {1} if j is the inclusion K ⊂ Qp and Wtj(K(χπ)) = {0} for any of the

other [K : Qp]− 1 embeddings j : K �→ Qp.

Propositions 4.1.2.3 and 4.2.1.2 tell us how the sets Wtj(W ) behave with respect to

various operations:

Proposition 4.2.1.6. Let W �,W be nonzero Cp,E-representations of GK and let j :

E → Qp be an embedding.

(1) If 0 → W � → W → W �� → 0 is an extension of Cp,E-representations of GK, then

Wtj(W ) = Wtj(W
�)�Wtj(W

��). In particular, Wtj(W
��) = Wtj(W )−Wtj(W

�)

(this is a multiset difference with multiplicity).

(2) If Wtj(W ) = {α1, . . . ,αd} and Wtj(W
�) = {α�

1, . . . ,α
�
d�} (enumerated with mul-

tiplicity), then Wtj(W ⊗Cp,E
W �) = {αi + α�

i� |1 ≤ i ≤ d, 1 ≤ i� ≤ d�}.

(3) If F/E is a finite extension, then for all embeddings j � : F → Qp such that

j�|E = j, Wtj�(F ⊗E W ) = Wtj(W ).

(4) If L/K is a finite extension, then Wtj(W |GL
) = Wtj(W ).

Similarly, propositions 4.1.2.3 and 4.2.1.2 together with 3.2.1.4 from part I imply the

following:

Corollary 4.2.1.7. Let W be a Cp,E-representation of GK of rank d. If j : E → Qp

is an embedding and if a1,j , . . . , ad,j denote the elements of Wtj(W ), then the elements of

Wtj(Schur
u(W )) are the elements aT =

�
i,k atik,j for any tableau T = (tik) on the Young

diagram of u with values in {1, . . . , d}.
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4.2.1.8. Weight combinatorics II. Suppose now that E/Qp is finite Galois andK ⊂ E.

LetD ∈ RepK∞,E
(ΓK) be a nonzero object, let Θ be Sen’sK∞,E-linear operator onD, and

let PΘ,E ∈ (K⊗QpE)[X ] be its characteristic polynomial. For each embedding h : K → E,

let P h
Θ,E ∈ E[X] be the polynomial obtained by applying the map K ⊗Qp E → E defined

by λ ⊗ e �→ h(λ)e to the coefficients of PΘ,E. Let Wth(W ) denote the multiset of roots

of P h
Θ,E in Qp, counted with multiplicity.

The following proposition relates the sets Wth(W ) to the sets Wtj(W ) from the

previous paragraph.

Proposition 4.2.1.9. Let h : K → E and let j : E → E be an embedding lifting h.

We have an equality j(PΘ,E,j−1) = P h
Θ,E.

In particular, we see that if h : K → E and if j : E → E is an embedding lifting h,

then we have a bijection Wth(W )
∼→ Wtj−1(W ) of multisets given by α �→ j−1(α). For

example, the above proposition and 4.2.1.5 show the following:

Example 4.2.1.10. Let K/Qp be a finite extension and let χπ : GK → O×
K be the

Lubin-Tate character coming from π. If E/Qp is finite Galois and if E ⊃ K, then the

h-weight of E(χπ) is 1 for h the inclusion K ⊂ E, and the h-weight is 0 for all other

embeddings.

Here are some formal properties of h-weights.

Proposition 4.2.1.11. Let W,W � ∈ RepCp,E
(GK) and let h : K → E be an embedding

(1) If 0 → W � → W → W �� → 0 is an exact sequence in RepCp,E
(GK), then

Wth(W ) = Wth(W �) �Wth(W ��) as multisets.

(2) Wth(W ⊗ W �) = {α+ α�|α ∈ Wth(W ),α� ∈ Wth(W �)}

(3) If F/E is a finite extension, then Wth(F ⊗E W ) = Wth(W ).

(4) If L/K is a finite sub-extension of E/K, then Wth(W |GL
) = Wth(W ).

Proof. Assertions (1) and (2) are immediate consequences of propositions 4.2.1.6

and 4.2.1.9. Assertions (3) and (4) follow immediately from 4.2.1.2. �

Corollary 4.2.1.12. Let W be a Cp,E-representation of GK of rank d. If h : K → E

is an embedding and if a1,h, . . . , ad,h denote the elements of Wth(W ), then the elements

of Wth(Schuru(W )) are the elements aT =
�

i,k atik,h for any tableau T = (tik) on the

Young diagram of u with values in {1, . . . , d}.

Characters with prescribed weights. Let K/Qp be a finite extension and let χπ : GK →
O×

K be the Lubin-Tate character associated to a uniformizer π ∈ OK . Let E/Qp be a

finite Galois extension with K ⊂ E. For each embedding h : K �→ E, the h-weight of

E(χK) is 1 if h is the inclusion of K in E, and 0 otherwise.
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Theorem 4.2.1.13. Let h1, . . . , hr denote the embeddings ofK into E and let ω1, . . . ,ωr

be elements of E. There exists a finite Galois extension F/E and a character µ : GK →
F× such that Wthi(F (µ)) = {ωi} for i = 1, . . . , r.

Proof. Let χK : GK → O×
K be the character associated to a Lubin-Tate module over

OK .

If ω ∈ E, then ω = p−nω� for some ω� ∈ OE, and some integer n ≥ 0. Consider

the topological factorisation O×
K = [k×

K ]× (1 +mK). Consider a topological factorisation

of the Zp-module 1 + mK into Z/paZ × Zr
p, where a ≥ 0 and r = [K : Qp]. Let �χK�

denote the projection of χK onto the submodule Zr
p in this factorisation. If {y1, . . . , yr}

is a Zp-basis of Z
r
p, and if F/E is a finite extension which is Galois over Qp and contains

z1, . . . , zr ∈ 1 +mF such that zp
n

i = yi, then the map µ(ya11 · . . . · yarr ) := zω
�a1

1 · . . . · zω
�ar

r

composed with �χK� is a character whose h-weight is p−nω� = ω when h = id and 0

otherwise. We denote this character by �χK�ω : GK → O×
F .

Given ω1, . . . ,ωr ∈ E, the product of characters
�
�h−1

i (χK)�ωi has hi-weight equal to

ωi for each 1 ≤ i ≤ r, where h−1
i : F → F is the inverse of an automorphism hi : F → F

extending hi : K → E ⊂ F . �



CHAPTER 5

Tensor products and Schur B-pairs of Hodge-Tate type

5.1. Hodge-Tate and de Rham tensor products of B-pairs

Let W = (We,W
+
dR) be a B⊗E

|K -pair. We say that W is de Rham if the BdR-

representation WdR of GK is de Rham. We say that W is Hodge-Tate if the Cp,E-

representation W = W+
dR/tW

+
dR of GK is Hodge-Tate.

Proposition 5.1.0.14. If W and W � are Cp-representations of GK with Sen weights

in Z such that W ⊗Cp W
� is Hodge-Tate, then W and W � are Hodge-Tate.

If W and W � are BdR-representations of GK with de Rham weights in Z such that

W ⊗BdR
W � is de Rham, then W and W � are de Rham.

Proof. Let W and W � be BdR-representations of GK with de Rham weights in Z.

By Fontaine’s theorem [Fon04, 3.19], W and W � admit unique decompositions W ��r
i=1 BdR[{0}; di]

ei and W � �
�r�

j=1 BdR[{0}; d
�
j]
e�j . The BdR-representations W and W �

are de Rham if and only if all of the di and d�j are equal to zero. If W ⊗BdR
W � is de

Rham, then BdR[{0}; di]⊗BdR
BdR[{0}; d

�
j] is de Rham for every 1 ≤ i ≤ r and 1 ≤ j ≤ r�.

Suppose, for example, that W is not de Rham, so that we may assume d1 > 0. Let

U = BdR[{0}; d1]⊗BdR
BdR[{0}; d

�
1], let v1 = 1⊗ 1, and let (v1, v2, . . . , vf ) be a K-basis of

DdR(U) = UGK , where f = (d1+1)(d�1+1). If U is de Rham, then the element X⊗1 ∈ U

(where X = log t in BdR[{0}; d1]) may be written as a sum X ⊗ 1 = b1(1⊗ 1)+
�f

i=2 biei

with bi ∈ BdR for all 1 ≤ i ≤ f . Since g(X⊗1) = X⊗1+log(χ(g))(1⊗1) for all g ∈ GK , we

have g(b1)−b1 = log(χ(g)) for all g ∈ GK . If b1 ∈ B+
dR, then g(θ(b1))−θ(b1) = logχ(g) for

all g ∈ GK , which is impossible since g �→ logχ(g) is a generator of the one-dimensional

K-vector space H1(GK ,Cp). If b1 ∈ thB+
dR\t

h+1B+
dR for some h < 0, then b1 = thb� for a

unique b� ∈ B+
dR\tB

+
dR and χ(g)hg(b�) − b� ∈ t−hB+

dR ⊂ tB+
dR, so that reducing modulo t

would imply that θ(b�) ∈ Cp(h)
GK = {0}, a contradiction. We therefore see that W and

W � must be de Rham.

The same arguments together with Fontaine’s theorem [Fon04, 2.14] show that if

W and W � are Cp-representations of GK with Sen weights in Z such that W ⊗Cp W
� is

Hodge-Tate, then W and W � are Hodge-Tate. �

63
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Theorem 5.1.0.15. Let W and W � be nonzero B⊗E
|K -pairs. If the B⊗E

|K -pair W ⊗W � is

Hodge-Tate, then there is a finite extension F/E and a character µ : GK → F× such that

the B⊗F
|K -pairs W (µ−1) and W �(µ) are Hodge-Tate. If, moreover, W ⊗ W � is de Rham,

then so are W (µ−1) and W �(µ).

Proof. Let W and W � be B⊗E
|K -pairs and suppose that the B⊗E

|K -pair W ⊗ W � is

Hodge-Tate. By extending scalars if necessary, we may suppose that E/Qp is finite

Galois and contains K, so that the methods of paragraph 4.2.1.8 apply.

Let r = rank(W ) and let r� = rank(W �). For each embedding h : K → E, let

a1,h, . . . , ar,h denote the h-weights of the Cp,E-representation W and let a�1,h, . . . , a
�
r�,h

denote the h-weights of W �. Part (iii) of proposition 4.2.1.2 implies that if h : K → E is

an embedding, then the h-weights of W ⊗W � are the elements ai,h + a�j,h for 1 ≤ i ≤ r

and 1 ≤ j ≤ r�, which are integers since the Cp,E-representation W ⊗W � = W ⊗Cp,E
W �

is Hodge-Tate. By lemma 4.2.1.13, there is a finite Galois extension F/E and a character

µ : GK → F× such that for all embeddings h : K → E ⊂ F , the h-weight of the

Cp,F -representation W (F (µ)) is a1,h.

We now show that the B⊗F
|K -pairs W (µ−1) and W �(µ) are Hodge-Tate. If h : K →

E ⊂ F is an embedding, then (ii) and (iii) of proposition 4.2.1.2 imply that the h-weights

of W (µ−1) are the integers ai,h − a1,h (for 1 ≤ i ≤ r) and the h-weights of W �(µ) are

the integers a1,h + a�j,h for 1 ≤ j ≤ r�. Since being Hodge-Tate is the same as being

potentially Hodge-Tate, it suffices to show that the B⊗F
|F -pairs W (µ−1)|GF

and W �(µ)|GF

are Hodge-Tate. Let W (µ−1) =
�

h:F→F W (µ−1)h and W �(µ) =
�

h:F→F W �(µ)h be

the decompositions of Cp,F -representations of GF as described in paragraph 4.1.2. The

Cp-representations W (µ−1)h and W �(µ)h have weights in Z for every h. The isomorphism

W (µ−1)⊗W �(µ) �
�

h:F→F

W (µ−1)h ⊗Cp W
�(µ)h

of Cp-representations of GF as in lemma 4.1.2.3 implies that W (µ−1)h ⊗Cp W �(µ)h is

Hodge-Tate for each embedding h : F → F . By proposition 5.1.0.14, W (µ−1)h and

W �(µ)h are Hodge-Tate for each embedding h : F → F , and therefore W (µ−1) and W �(µ)

are Hodge-Tate. Therefore, the B⊗F
|K -pairs W (µ−1) and W �(µ) are Hodge-Tate.

Suppose now that E/Qp is a finite Galois extension and that W and W � are B⊗E
|K -

pairs such that the B⊗E
|K -pair W ⊗ W � is de Rham. By the above, there is a finite

Galois extension F/E and a character µ : GK → F× such that the B⊗F
|K -pairs W (µ−1)

and W �(µ) are Hodge-Tate. We now show that W (µ−1) and W �(µ) are de Rham. It

suffices to show that the restrictions of W (µ−1) and W �(µ) to GF are de Rham. Let

W (µ−1)dR =
�

h:F→F W (µ−1)dR,h and W �(µ)dR =
�

h:F→F W �(µ)dR,h be the decomposi-

tions of BdR-representations of GF as in paragraph 4.1.2. For each embedding h : F → F ,
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the BdR-representations W (µ−1)dR,h and W �(µ)dR,h have de Rham weights in Z. By

lemma 4.1.2.3, the BdR-representation W (µ−1)dR,h ⊗BdR
W �(µ)dR,h is de Rham for each

embedding h : F → F , and therefore so are W (µ−1)dR,h and W �(µ)dR,h by proposition

5.1.0.14. Therefore, the B⊗F
|K -pairs W (µ−1) and W �(µ) are de Rham. �

Corollary 5.1.0.16. Let E/Qp and K/Qp be finite extensions, and let V and V �

be nonzero E-linear representations of GK. If V ⊗E V � is Hodge-Tate, then there is a

finite extension F/E and a character µ : GK → F× such that V (µ−1) and V �(µ) are

Hodge-Tate. If, moreover, V ⊗E V � is de Rham, then so are V (µ−1) and V �(µ).

5.2. Hodge-Tate and de Rham Schur B-pairs

In what follows, let n ≥ 1 be an integer and let u = (u1, . . . , ur) denote an integer

partition n = u1 + . . . + ur (ui ≥ ui+1 ≥ 1) of n. If u1 = . . . = ur, put r(u) = r + 1.

Otherwise, put r(u) = r.

Proposition 5.2.0.17. If W is a Cp-representation of GK having Sen weights in Z

such that dimCp(W ) ≥ r(u) and Schuru(W ) is Hodge-Tate, then W is Hodge-Tate.

If W is a BdR-representation of GK having de Rham weights in Z such that dimBdR
(W ) ≥

r(u) and Schuru(W ) is de Rham, then W is de Rham.

Proof. Let W be a BdR-representation of GK having de Rham weights in Z such

that dimBdR
(W ) ≥ r(u). If W is not de Rham, then Fontaine’s theorem [Fon04, 3.19]

gives a decomposition W = BdR[{0}; d]⊕W � for some d > 0, so that

Schuru(W ) �
�

λ,µ

(Schurλ(BdR[{0}; d])⊗BdR
Schurµ(W �))⊕cu

λ,µ

as a BdR-representation of GK , where cuλ,µ ≥ 0 denotes the Littlewood-Richardson num-

ber. By lemma 3.2.2.2, there are λ and µ such that cuλ,µ and Schurλ(BdR[{0}; d]) ⊗BdR

Schurµ(W �) are nonzero, and such that d+ 1 ≥ r(λ).

The BdR-representations Schur
λ(BdR[{0}; d]) and Schurµ(W �) have de Rham weights

in Z by lemma 4.2.1.2. If Schuru(W ) is de Rham, then so is Schurλ(BdR[{0}; d]) ⊗BdR

Schurµ(W �) and proposition 5.1.0.14 implies that Schurλ(BdR[{0}; d]) is de Rham. Let

X = log t inBdR[{0}; d], so that (1, X,X2, . . . , Xd) is the standardBdR-basis ofBdR[{0}; d].

If T1 is the standard tableau defined in 3.1.1, then the element eT1
∈ Schurλ(BdR[{0}; d])

is such that g(eT1
) = eT1

for all g ∈ GK . Let T
� be the tableau with values in {1, . . . , d+1}

which is obtained from T1 by adding 1 to the value in the bottom-most cell of the right-

most column of Yλ; this tableau T � exists since d + 1 ≥ r(λ). A calculation shows that

g(eT �) = eT � + ν logχ(g)eT1
, where ν is the length of the right-most column of Yλ. If
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Schurλ(BdR[{0}; d]) is de Rham, then it admits a basis of the form (eT1
, e2, . . . , ef ) (re-

call that eT1
is an element of Schurλ(BdR[{0}; d]) defined by the standard tableau on

Yλ, as in paragraph 3.2.1), such that for all i = 2, . . . , f , g(ei) = ei for all g ∈ GK . If

b1, . . . , bf ∈ BdR are elements such that eT � = b1eT +
�

i≥2 biei, then g(b1)−b1 = ν logχ(g)

for all g ∈ GK , which is impossible. Therefore, W and W � must be de Rham.

One can prove the claim for Cp-representations by using Fontaine’s theorem [Fon04,

2.14] and applying the same arguments. �

Theorem 5.2.0.18. Let W be a B⊗E
|K -pair such that rank(W ) ≥ r(u). If the B⊗E

|K -

pair Schuru(W ) is Hodge-Tate, then there is a finite extension F/E and a character

µ : GK → F× such that the B⊗F
|K -pair W (µ−1) is Hodge-Tate. If, moreover, Schuru(W )

is de Rham, then W (µ−1) is de Rham.

Proof. Let W be a B⊗E
|K -pair such that d = rank(W ) ≥ r(u) and suppose that

Schuru(W ) is Hodge-Tate. By extending scalars if necessary, we may suppose that E/Qp

is finite Galois and contains K.

If h : K → E is an embedding, then let a1,h, . . . , ad,h denote the h-weights of W .

By corollary 4.2.1.7, the h-weights of the Cp,E-representation Schuru(W ) = Schuru(W )

are the elements of the form aT,h =
�

atij ,h for any tableau T = (tij) with values in

{1, . . . , d} on the Young diagram of u. Since Schuru(W ) is Hodge-Tate, the elements aT,h

are in Z. Considering the tableaux T1, . . . , Td as in proposition 3.1.1.1, we see that for

all i ∈ {2, . . . , d}, there is a j ∈ {1, . . . , d} such that aTj,h
− aTj−1,h

= ai,h − ai−1,h ∈ Z,

and therefore ai,h − a1,h ∈ Z for all 1 ≤ i ≤ d. By lemma 4.2.1.13, there is a finite Galois

extension F/E and a character µ : GK → F× such that the B⊗F
|K -pair W (F (µ)) has a1,h

as its h-weight for each embedding h : K → E ⊂ F .

We now show that the B⊗F
|K -pair W (µ−1) is Hodge-Tate. It suffices to show that the

restriction of W (µ−1) to GF are Hodge-Tate. Let W (µ−1) =
�

h:F→F W (µ−1)h be the

decomposition as a Cp-representation of GF as described in paragraph 4.1.2. The Cp-

representation W (µ−1)h has Sen weights in Z for each embedding h : F → F . By lemma

4.1.2.4, the Cp-representation Schuru(W (µ−1)h) of GF is Hodge-Tate for each embedding

h : F → F . Since dimCp W (µ−1)h = rank(W ) ≥ r(u), proposition 5.2.0.17 implies

that W (µ−1)h is Hodge-Tate for each embedding h : F → F . The B⊗F
|K -pair W (µ−1) is

therefore Hodge-Tate.

Suppose now that W is a B⊗E
|K -pair such that rank(W ) ≥ r(u) and Schuru(W ) is

de Rham. There is a finite Galois extension F/E and a character µ : GK → F× such

that the B⊗E
|K -pair W (µ−1) is Hodge-Tate. We now show that W (µ−1) is de Rham.

Let W (µ−1)dR �
�

h:F→F W (µ−1)dR,h be the decomposition as a BdR-representation of

GF as described in paragraph 4.1.2. The BdR-representation W (µ−1)dR,h has de Rham
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weights in Z for each embedding h : F → F . By lemma 4.1.2.4, Schuru(W (µ−1)dR,h)

is a de Rham BdR-representation of GF for each embedding h : F → F and therefore

proposition 5.2.0.17 implies that W (µ−1)dR,h is de Rham for each embedding h since

dimBdR
W (µ−1)dR,h = rank(W ) ≥ r(u). Therefore, the B⊗F

|K -pairW (µ−1) is de Rham. �

Corollary 5.2.0.19. Let n ≥ 1 be an integer, let u be a partition of n, and let V be

an E-linear representation of GK such that dimE(V ) ≥ r(u). If Schuru(V ) is Hodge-Tate,

then there is a finite extension F/E and a character µ : GK → F× such that V (µ−1) is

Hodge-Tate. If, moreover, Schuru(V ) is de Rham, then V is de Rham.

We now show that the bound on rank(W ) in theorem 5.2.0.18 is optimal. Suppose

r(u) = r, so that Yu is non-rectangular. In this case, Schuru(W ) = 0 for any B⊗E
|K -pair

W such that rank(W ) < r(u) = r, and optimality is clear in this situation. Otherwise,

r(u) = r + 1 (i.e., Yu is rectangular, and u1 = . . . = ur). Let W be a B⊗E
|K -pair. If

rank(W ) < r, then Schuru(W ) = 0. If rank(W ) = r, then Schuru(W ) =
�r

i=1 det(W ).

To show optimality in the r(u) = r+1 case, it therefore suffices to find a B⊗E
|K -pair which

is not Hodge-Tate up to a twist, but such that det(W ) is Hodge-Tate. Let V be the

Qp-module of polynomials in X = log(t) of degree ≤ r, viewed as a representation of

GQp , so that Cp ⊗Qp V = Cp[{0}; r]. Considering W = W (V ), we see that det(W ) is

the trivial 1-dimensional representation of GQp and therefore Schuru(W ) is trivial, and

therefore Hodge-Tate. On the other hand, there is no character µ : GQp → E× (with

E/Qp finite) such that V (µ) is Hodge-Tate; such a character would necessarily have

Hodge-Tate weights in Z, and 5.2.0.17 would imply that V is Hodge-Tate (which is not

the case).





CHAPTER 6

Tensor products and Schur B-pairs of semi-stable type

6.1. Semi-stable B-pairs

Let W = (We,W
+
dR) be a B⊗E

|K -pair. We say that W is crystalline if the Bcris-

representation (Bcris,E)⊗Be,E
We of GK is trivial. Similarly, we say that W is semi-stable

if the Bst-representation (Bst,E)⊗Be,E
We of GK is trivial. We say that W is potentially

crystalline (or potentially semi-stable) if there is a finite extension L/K such that the

B⊗E
|L -pair W |GL

is crystalline (or semi-stable). Note that if V is an E-linear representa-

tion of GK , then V is crystalline (or semi-stable) if and only if the B⊗E
|K -pair W (V ) is

crystalline (or semi-stable).

Let L/K be a finite Galois extension and let L0 = L ∩ Qnr
p . If W is a B⊗E

|K -pair

which is semi-stable when restricted to GL, then Dst,L(W ) = (Bst,E ⊗Be,E
We)

GL is a

free L0,E-module such that rankL0,E
(Dst,L(W )) = rank(W ), and it is endowed with an

injective additive self-map ϕ that is E-linear and semi-linear for the absolute Frobenius

automorphism σ on L0, an L0,E-linear nilpotent endomorphism N such that Nϕ = pϕN ,

and an E-linear and L0-semi-linear action of Gal(L/K) which commutes with ϕ and N .

The following follows from [Fon94b, 4.2.6, 5.1.5].

Proposition 6.1.0.20. Let W be a potentially semi-stable B⊗E
|K -pair, semi-stable when

restricted to GL where L/K is finite and Galois. The B⊗E
|K -pair W is semi-stable if and

only if the inertia group IL/K acts trivially on Dst,L(W ), and W is crystalline if and only

if it is semi-stable and N = 0 on Dst,L(W ).

6.2. Semi-stable tensor products

Theorem 6.2.0.21. Let W and W � be nonzero potentially semi-stable B⊗E
|K -pairs. If

the B⊗E
|K -pair W ⊗W � is semi-stable, then there is a finite extension F/E and a character

µ : GK → F× such that the B⊗F
|K -pairs W (µ−1) and W �(µ) are semi-stable. If, moreover,

W ⊗W � is crystalline, then so are W (µ−1) and W �(µ).

Proof. Let L/K be a finite Galois extension such that W and W � are semi-stable

as B⊗E
|L -pairs. By an E-linear analogue of [Fon94b, 5.1.7], we have an isomorphism of

E -(ϕ, N,Gal(L/K))-modules:

Dst,L(W ⊗W �)
∼← Dst,L(W )⊗L0,E

Dst,L(W
�).

69
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Let E ⊂ Dst,L(W ) and E � ⊂ Dst,L(W
�) be L0,E-bases, so that the set E ⊗ E � of

elementary tensors is a basis of Dst,L(W ⊗ W �). For all g ∈ GK , let Ug = Mat(g|E) ∈
GLd(L0,E) and let U �

g = Mat(g|E �) ∈ GLd�(L0,E). By proposition 6.1.0.20, IL/K acts

trivially on Dst,L(W ⊗W �), and we have Mat(g|E ⊗ E �) = Ug ⊗ U �
g = Id for all g ∈ IL/K ,

so that Ug = ηg Id and U �
g = η−1

g Id with ηg ∈ (L0,E)
×. The relation ϕg = gϕ on Dst,L(W )

translates to the matrix relation Mat(ϕ|E)·σ(Ug) = Ug ·g(Mat(ϕ|E)) for all g ∈ Gal(L/K),

so that for all g ∈ IL/K , we have ηg ∈ (L0,E)
σ=1 = E and therefore ηg ∈ E×.

We now show that there is a finite extension F/E such that the character η : IL/K →
E× can be extended to a character µ : Gal(L/K) → F×. Let ω ∈ Gal(L/K) be such

that its residual image generates the cyclic group Gal(kL/kK). If g ∈ Gal(L/K), then we

can write g = g�ωi for a unique g� ∈ IL/K and unique 0 ≤ i ≤ f − 1, where f = [kL : kK ].

Let ξ ∈ Qp be an f th root of η(ωf ). Since η(ωg�ω−1) = η(g�) for all g� ∈ IL/K , putting

F = E(ξ) and µ(g) := η(g�)ξi defines a homomorphism µ : GK → F×.

The B⊗F
|K -pairs W (µ−1) and W �(µ) are semi-stable, by proposition 6.1.0.20. If, more-

over, W ⊗W � is crystalline, then the B⊗F
|K -pair W (µ−1)⊗W �(µ) is crystalline as well and

by the isomorphism of F -(ϕ, N,Gal(L/K))-modules recalled above, we have :

Dst,L(W (µ−1)⊗W �(µ))
∼← Dst,L(W (µ−1))⊗L0,F

Dst,L(W
�(µ)).

The monodromy operator N ⊗ Id+ Id⊗N � is zero, and therefore the matrices of N and

N � are scalar multiples of the identity. Since N and N � are nilpotent, these scalars are

necessarily zero since L0,F is reduced, and thus W (µ−1) and W �(µ) are crystalline by

6.1.0.20. �

Corollary 6.2.0.22. Let V and V � be nonzero potentially semi-stable E-linear rep-

resentations of GK. If V ⊗E V � is semi-stable, then there is a finite extension F/E and

a character µ : GK → F× such that the F -linear representations V (µ−1) and V �(µ) are

semi-stable. If, moreover, V ⊗E V � is crystalline, then so are V (µ−1) and V �(µ).

6.3. Semi-stable Schur B-pairs

In this paragraph, n ≥ 1 is an integer and u = (u1, . . . , ur) denotes an integer partition

n = u1 + . . .+ ur such that ui ≥ ui+1 ≥ 1 for each i ∈ {1, . . . , r − 1}.

Lemma 6.3.0.23. Let L/K be a finite Galois extension and let D be an E -(ϕ, N,Gal(L/K))-

module such that rank(D) ≥ r(u). If IL/K acts trivially on Schuru(D), then there is a

finite extension1 E �/E such that IL/K acts on D via a character η : IL/K → E �×. If

N = 0 on Schuru(D), then N = 0 on D.

1In [DiM13], we mistakenly neglect to point out that one should extend scalars.
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Proof. By extending scalars if necessary, we may suppose that E ⊃ L. We have

an isomorphism of rings, L0,E
∼→ �

h:L0→Qp
E on which IL/K acts trivially on both sides.

We therefore see that D decomposes as an E-linear representation of IL/K into D ��
h Dh where Dh is the E-linear representation of IL/K coming from the h-factor map

(λ, e) �→ h(λ)e : L0,E → E. The corresponding decomposition of Schuru(D) is given by

Schuru(D) � �
h Schur

u(Dh), and by assumption IL/K acts trivially on each E-linear

representation Schuru(Dh). Let IL/K act Qp-linearly on Dh = Qp ⊗E Dh. Let g ∈
IL/K . Since IL/K is finite, there is a Qp-basis Eg

h = (eg1,h, . . . , e
g
d,h) of Dh and elements

λ
g
1,h, . . . ,λ

g
d,h ∈ Qp such that g(egi,h) = λ

g
i,he

g
i,h for all i ∈ {1, . . . , d}. Consider the Qp-basis

of Schuru(Dh) consisting of elements egT,h, where T ranges over all tableaux on Yu with

values in {1, . . . , d}. By proposition 3.2.1.4, one has g(egT,h) = λ
g
T,he

g
T,h, where λ

g
T,h =�d

i=1(λ
g
i,h)

mT (i) and mT (i) denotes the number of times that i appears in the tableau

T . Since dimQp
Dh = rank(D) ≥ r(u), there are tableaux T1, . . . , Td as in proposition

3.1.1.1. Since IL/K acts trivially on Schuru(D), one sees that λ
g
T,h = 1 for all g and

all tableaux T and in particular, for all i ∈ {2, . . . , d}, there is a j ∈ {1, . . . , d} such

that 1 = λ
g
Tj ,h

· (λg
Tj+1,h

)−1 = λ
g
i,h(λ

g
i+1,h)

−1 (again, by proposition 3.1.1.1). In particular,

λ
g
1,h = λ

g
2,h = . . . = λ

g
d,h = λ

g
h, and therefore g(z) = λ

g
hz for all z ∈ Dh. If E �/E denotes

the extension generated by the λg
h for all g and all h, then we see that for each embedding

h : L0 → E, IL/K acts on Dh by a character ηh : IL/K → E �×, which translates to saying

that IL/K acts on D (and therefore on E � ⊗E D) by a character η : IL/K → (L0,E�)×,

which takes values in E �× since ϕg = gϕ for all g ∈ IL/K and since (L0,E�)σ=1 = E �.

Moreover, since N is an L0,E-linear map, the factors in the decomposition D � �
h Dh

are N -stable. We let N again denote the E-linear nilpotent map induced on Dh. Since

N = 0 on Schuru(D) =
�

h Schur
u(Dh), we see that N = 0 on Schuru(Dh) for each

embedding h : L0 → Qp. Let (e�1,h, . . . , e
�
d,h) denote a Jordan canonical basis for N on

Dh. Suppose that N �= 0, so that we may suppose N(e�2,h) = e�1,h. If T is the tableau on

Yu in which i appears in all boxes of the i-th row, except in the right most column where

i+1 appears, then a calculation shows that N(eT,h) = eT �,h, where T
� is another tableau,

therefore contradicting the fact that N = 0 on Dh. We therefore see that N = 0 on each

Dh, so that N = 0 on D and thus N = 0 on D. �

Theorem 6.3.0.24. Let W be a potentially semi-stable B⊗E
|K -pair such that rank(W ) ≥

r(u). If the B⊗E
|K -pair Schuru(W ) is semi-stable, then there is a finite extension F/E and

a character µ : GK → F× such that the B⊗F
|K -pair W (µ−1) is semi-stable. If, moreover,

Schuru(W ) is crystalline, then so is W (µ−1).
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Proof. Let L/K be a finite Galois extension such that W is semi-stable as a B⊗E
|L -

pair, so that [Fon94b, 5.1.7] implies that we have an isomorphism of E -(ϕ, N,Gal(L/K))-

modules

Schuru(Dst,L(W ))
∼→ Dst,L(Schur

u(W ))

If Schuru(W ) is semi-stable, then proposition 6.1.0.20 implies that IL/K acts trivially

on Schuru(Dst,L(W )). Lemma 6.3.0.23 implies that there is a finite extension E �/E such

that IL/K acts on Dst,L(E
�⊗E W ) via a character η : IL/K → E �×. By the same reasoning

as in the proof theorem 6.2.0.21, there is a finite extension F/E and a character µ :

Gal(L/K) → F× such that µ|IL/K
= η. By proposition 6.1.0.20, W (µ−1) is semi-stable.

If Schuru(W ) is crystalline, then N = 0 on Schuru(Dst,L(W )). Lemma 6.3.0.23 implies

that N = 0 on Dst,L(W ), which implies the same for Dst,L(W (µ−1)), so that W (µ−1) is

crystalline. �

Theorem 6.3.0.24 implies the following.

Corollary 6.3.0.25. Let V be a potentially semi-stable E-linear representation of

GK such that dimE V ≥ r(u). If the E-linear representation Schuru(V ) of GK is semi-

stable, then there is a finite extension F/E and a character µ : GK → F× such that

the F -linear representation V (µ−1) of GK is semi-stable. If, moreover, Schuru(V ) is

crystalline, then so is V (µ−1).
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Triangulable tensor products





CHAPTER 7

Triangulable tensor products

7.1. Notation and generalities

7.1.1. Notation. Let Qp/Qp be an algebraic closure and let Cp be the p-adic com-

pletion of Qp. Let Qnr
p denote the maximal non-ramified sub-extension of Qp/Qp. Let

BdR, B
+
dR, Bcris, and Bst denote Fontaine’s rings as in [Fon94a] and let Be = Bϕ=1

cris . In

this chapter, E/Qp and K/Qp denote finite extensions. If B is any of the above rings

or any Galois sub-extension of Qp/K, then BE denotes the ring B⊗Qp E endowed with

an action of GK defined by g(b ⊗ e) = g(b) ⊗ e for all g ∈ GK . If W is a free BE-

module of finite rank endowed with a semi-linear action of GK , then we refer to W as a

BE-representation of GK .

7.1.2. The ring Be,E. The ring Bcris may be viewed as a GK-stable sub-ring of

BdR, and therefore the same is true for Be. We therefore have a GK-equivariant map

Be,E → BdR,E , where the actions of GK on these two rings are defined as in paragraph

7.1.1 above. On the other hand, there is an injective morphism of rings Bcris⊗E0
E → BdR

which is GK-equivariant if K ⊃ EGal, and therefore we have an injective morphism

Be,E → BdR which is GK-equivariant if K ⊃ EGal. One has Be ∩ B+
dR = Qp and

Be ∩ tB+
dR = {0}. We will use the following generalization (see §8.7 of [Col02]).

Proposition 7.1.2.1. If E/Qp is finite, then Be,E ∩B+
dR = E.

As pointed out in paragraph 2.5.1 of chapter 2, we also have the following.

Proposition 7.1.2.2. If E/Qp is a finite extension, then Be,E is a principal ideal

domain.

In this chapter, FE denotes the field Frac(Be,E).

Proposition 7.1.2.3. If E/Qp is finite, then B×
e,E = E×, and if λ ∈ Be,E generates

a GK-stable Be,E-module of rank 1, then λ ∈ E×.

Proof. For E = Qp, this is lemma 1.1.8 of [Ber08]. Suppose now d = [E : Qp] > 1.

For each embedding τ : E → Qp, we have an injective morphism ιτ : Be,E → BdR. If

λ ∈ B×
e,E, then NmE/Qp(λ) =

�
τ ιτ (λ) ∈ B×

e = Q×
p . Therefore, since vt(λ) = vt(ιτ (λ))

75
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for all τ , we have vt(λ) = 0 (here vt denotes the t-adic valuation of BdR). Therefore

λ ∈ Be,E ∩ (B+
dR − tB+

dR) = E× and thus B×
e,E = E×.

Suppose now that λ ∈ Be,E generates a GK-stable Be,E-module of rank 1. For all

g ∈ GK , g(λ)/λ ∈ B×
e,E = E× and µ : GK → E× given by g �→ g(λ)/λ is a linear character.

Let L/K be a finite extension such that L ⊃ EGal. The element λ� = Nm(λ) ∈ Be − {0}

is a period for the character η = NmE/Qp(µ) : GL → Q×
p . Applying lemma 1.1.8 of

[Ber08], we deduce that λ� ∈ Q×
p , so that we again have vt(λ) by the same reasoning as

above, and therefore λ ∈ Be,E ∩ (B+
dR − tB+

dR) = E×. �

In particular, the above proposition immediately implies the following.

Corollary 7.1.2.4. If X is a semi-linear Be,E-representation of GK, then there is a

linear character η : GK → E× such that X = Be,E(η).

Proposition 7.1.2.5. If E/Qp is a finite extension, then Frac(Be)⊗Qp E is a field.

Proof. It suffices to show that if P ∈ Qp[T ] is monic and irreducible, then P remains

irreducible when viewed as a polynomial in Frac(Be)[T ]. To that end, let Frac(Be) be

viewed as a sub-field ofBdR and suppose that P = AB with A,B ∈ Frac(Be)[T ] ⊂ BdR[T ]

monic and non-constant. The relations between roots and coefficients of a polynomial

imply that there is a finite extension E �/Qp inside Qp ⊂ B+
dR such that A,B ∈ E �[T ]. We

now show E � ∩ Frac(Be) = Qp. Let λ = a
b
∈ E � ∩ Frac(Be) − {0} with a, b ∈ Be, b �= 0,

and (a, b) = 1. Let K/Qp be a finite extension containing E �Gal. We have g(a) = λg(b)

for all g ∈ GK and therefore, since Be is principal, b|g(b) in Be for all g ∈ GK so

that g(a) = (g(b)/b)a for all g ∈ GK , and thus a generates a GK-stable Be-module of

rank 1, so that 7.1.2.3 implies a ∈ Q×
p . Similarly, b ∈ Q×

p and therefore, we see that

Frac(Be) ∩ E � = Qp. In particular, both A and B have coefficients in Qp, and therefore

one of them is a nonzero constant since P is irreducible in Qp[T ], which contradicts the

assumption that both A and B are non-constant. �

In particular, FE := Frac(Be,E) = Frac(Be)⊗Qp E and FE may be interpreted as the

compositum of Frac(Be) and E inside BdR, and this interpretation is compatible with

the action of GK on BdR when K ⊃ EGal.

7.1.3. Triangulability. Recall that FE := Frac(Be,E) = Frac(Be) ⊗Qp E. If W =

(We,W
+
dR) is aB

⊗E
|K -pair of rank r, thenX = FE⊗Be,E

We is a semi-linear FE-representation

of GK and dimFE
X = r.

Proposition 7.1.3.1. Let W be a B⊗E
|K -pair and let X = FE⊗Be,E

We be the associated

semi-linear FE-representation of GK.
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(1) If X � ⊂ X is a GK-stable sub-FE-vector space, then there is a saturated sub-B⊗E
|K -

pair W � ⊂ W such that X � = FE ⊗Be,E
W �

e. In particular, rank(W �) = dimFE
X �.

(2) If X �� is a quotient of X in the category of semi-linear FE-representations of

GK, then there is a B⊗E
|K -pair W �� such that W �� is a quotient of W and X �� =

FE ⊗Be,E
W ��

e

Proof. The sub-Be,E-module W �
e = X � ∩ We of We is stable by the action of GK .

Since Be,E is a principal ideal domain, W �
e is a free Be,E-module, and a basis of W �

e may

be extended to a basis of We. In particular, rankBe,E
W �

e = dimFE
X �.

The sub-B+
dR,E-module W �+

dR = W �
dR ∩ W+

dR is a GK-stable B+
dR,E-lattice of W �

dR,

and W � = (W �
e,W

�+
dR) is a saturated sub-B⊗E

|K -pair of W . In particular, the quotient

W/W � = (We/W
�
e,W

+
dR/W

�+
dR) is a B⊗E

|K -pair of rank equal to rank(W )− rank(W �).

If f : X → X �� is a surjective morphism of FE-representations of GK , then (2) follows

from (1) by considering X � = ker(f : X → X ��) and taking W �� = W/W �. �

If B ∈ {FE,Be,E}, then we say that a semi-linear B-representation W of GK is

triangulable if it is a successive extension of rank 1 semi-linear B-representations.

Corollary 7.1.3.2. Let W = (We,W
+
dR) be a B⊗E

|K -pair. The following conditions

are equivalent.

(1) W is triangulable in the category of B⊗E
|K -pairs.

(2) We is triangulable in the category of semi-linear Be,E-representations of GK.

(3) X = FE⊗Be,E
We is triangulable in the category of semi-linear FE-representations

of GK.

Proof. Showing that (1) implies (2) and that (2) implies (3) is straightforward.

Proposition 7.1.3.1 allows one to construct a triangulation of W from a triangulation of

X. �

In particular, if V ∈ RepE(GK), then V is split trianguline if and only if the semi-

linear FE-representation FE ⊗E V of GK is triangulable.

7.1.4. Semi-stable B-pairs. In §2.4 of [BelChe09], it was shown that if V ∈
RepE(GQp) is crystalline, then V is trianguline. Using similar arguments, we can show

the following.

Proposition 7.1.4.1. If W is a semi-stable B⊗E
|K -pair, then there is a finite extension

F/E such that the B⊗F
|K -pair F ⊗W is triangulable.

Proof. If E �/E is a finite extension, then E � ⊗E W is a semi-stable B⊗E�

|K -pair; we

may therefore assume without loss of generality that E ⊃ K0. If f = [K0 : Qp] and if
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σ : K0 → K0 denotes the absolute frobenius, then {Id, σ, σ2, . . . , σf−1} are the distinct

embeddings of K0 into Qp. The E -(ϕ, N)-module D = Dst,K(W ) decomposes as an

E-vector space into Dst,K(W ) =
�f−1

i=0 Dσi , where Dσi is the sub-E-vector space coming

from the i-th projection in the isomorphism of E-algebras K0,E
∼→

�
σi:K0→K0

E. One

has Dσi = ϕi(DId).

The operators ϕf and N on Dst,K(W ) are both K0,E-linear, and they therefore both

stabilize the sub-E-vector spaces Dσi (for each i ∈ {0, . . . , f − 1}) when viewed as E-

linear operators. The relation Nϕf = pfϕfN implies that there is a finite extension

F/E and an F -basis E = (e1, . . . , ed) of DId such that Mat(ϕf |E) and Mat(N |E) are

simultaneously upper-triangular. If i ∈ {1, . . . , d} and if vi = ei ⊕ ϕ(ei)⊕ . . .⊕ ϕf−1(ei),

then V = (v1, . . . , vd) is a K0,F -basis of Dst,K(W ). For each i ∈ {1, . . . , d}, the sub-K0,F -

module Di =
�i

j=1 K0,F · vi is stable by ϕ and by N , and K ⊗K0
Di inherits a filtration

from the filtration on K ⊗K0
Dst,K(W ); in particular, Di is a filtered F -(ϕ, N)-module

over K.

For each i ∈ {1, . . . , d}, the sub-B⊗F
|K -pair W (Di−1) ⊂ W (Di) is saturated, and

W (Di)/W (Di−1) is a B⊗F
|K -pair of rank 1. By proposition 2.3.3 of [Ber08], we have

W (Dst,K(W )) = W , and therefore we have a triangulation

0 ⊂ W (D1) ⊂ . . . ⊂ W (Dst,K(W )) = W

in the category of B⊗F
|K -pairs. �

If W is a de Rham B⊗E
|K -pair, then it is potentially semi-stable (see theorem 2.3.5 of

[Ber08]). We therefore have the following.

Corollary 7.1.4.2. If W is a de Rham B⊗E
|K -pair, then there are finite extensions

F/E and L/K such that the B⊗F
|L -pair (F ⊗W )|GL

is triangulable.

7.2. Semi-linear algebra

In this section, F denotes a field and G denotes a group that acts on F by field

automorphisms.

7.2.1. Semi-linear representations. We say that a semi-linear F -representation

V of G is irreducible if its only G-stable sub-F -vector spaces are {0} and V .

If X is a semi-linear F -representation of G, then X is said to be triangulable if there

is a filtration of G-stable sub-F -vector spaces

{0} = X0 ⊂ X1 ⊂ . . . ⊂ Xd = X
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such that Xi/Xi−1 is of dimension 1 for all 1 ≤ i ≤ d. We say that X is triangulable

by characters if there are linear characters η1, . . . , ηd : G → (FG)× ⊂ F× such that

Xi/Xi−1 = F (ηi) for all i.

Lemma 7.2.1.1. If 0 → X � → X → X �� → 0 is an exact sequence of semi-linear

F -representations of G, then X is triangulable if and only if X � and X �� are triangulable.

7.2.2. The trace form. If V is a semi-linear F -representation of G, then the F -

vector space EndF (V ) equipped with the action g.f : x �→ g(f(g−1.x)) is a semi-linear

F -representation of G of dimension (dimF V )2. If µ : G → F× is a 1-cocycle (for example,

a linear character µ : G → (FG)×), then let EndF (G)(µ) denote EndF (G)⊗F F (µ), where

F (µ) = F · e with g(e) = µ(g)e is the 1-dimensional semi-linear F -representation of G

defined by µ. For all f ∈ EndF (V )(µ) and all g ∈ G, we have Tr(g.f) = µ(g)g(Tr(f)).

In particular, W0 = {f | Tr(f) = 0} ⊂ EndF (V )(µ) is a G-stable sub-F -vector space.

The map

�-, -� : EndF (V )(µ)× EndF (V )(µ) → F (µ2)

(h, h�) �→ Tr(h ◦ h�)

satisfies the following properties:

(1) �-, -� is F -bilinear,

(2) �-, -� is symmetric,

(3) �g.h, g.h�� = µ2(g)g(�h, h��).

In particular, ifW ⊂ EndF (V )(µ) is aG-stable sub-F -vector space, thenW⊥ = {h | Tr(h◦
h�) = 0 for all h� ∈ W} ⊂ EndF (V )(µ) is a G-stable sub-F -vector space.

The trace form �-, -� is, in particular, a bilinear form; therefore, if W0 ∩W⊥
0 = {0},

then EndF (V ) = W0⊕W⊥
0 as F -vector spaces, and in this case EndF (V )(µ) = W0⊕W⊥

0

is a decomposition into G-stable sub-F -vector spaces.

Lemma 7.2.2.1. If char(F ) = 0, then W0 ∩W⊥
0 = {0}.

Proof. If h ∈ W0 ∩W⊥
0 , then Tr(h ◦ h) = 0 and thus h2 ∈ W0. We therefore have

Tr(hk) = 0 for all k ≥ 1. Since char(F ) = 0, h is therefore nilpotent. Let E = (e1, . . . , ed)

be a Jordan canonical basis for h, so that Mat(h|E) is a direct sum of r × r blocks of

the form Jr(0) = (aij)1≤i,j≤r with aij = 1 if j = i + 1 and aij = 0 otherwise. If h �= 0,

then we may suppose that h(e1) = 0 and h(e2) = e1. Let h� : V → V be the F -linear

map defined by h�(e1) = e2 and h�(ej) = 0 for all j �= 1. Note that Tr(h�) = 0, but that

Tr(h ◦ h�) = 1 �= 0, which contradicts h ∈ W⊥
0 . We must therefore have h = 0. �
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7.2.3. Triangulable tensor products.

Lemma 7.2.3.1. If F is of characteristic 0, if X and X � are irreducible semi-linear

F -representations of G, and if η : G → (FG)× ⊂ F× is a linear character, then every

short exact sequence 0 → kerϕ → X ⊗F X � ϕ−→ F (η) → 0 is split in the category of

semi-linear F -representations of G.

Proof. The G-equivariant F -linear map ϕ is non-zero, and therefore gives an iso-

morphism of semi-linear representations x �→ (x� �→ ϕ(x ⊗ x�)) : X
ϕ�

−→ (X �)∗(η). We

therefore have an isomorphism Φ : X ⊗F X � � (X �∗ ⊗F X �)(η) � EndF (X
�)(η) of semi-

linear F -representations of G which sends a⊗b to the endomorphism f : w �→ ϕ�(a⊗w)b.

If x ∈ X ⊗F X �, then a calculation reveals that x ∈ kerϕ if and only if Tr(Φ(x)) = 0.

The sub-F -vector space W0 ⊂ EndF (X
�)(η) is G-stable. The map �-, -� : EndF (X

�)(η)×

EndF (X
�)(η) → F (η2) given by (h, h�) �→ Tr(h ◦ h�) is a G-equivariant symmetric F -

bilinear form, so thatW⊥
0 = {h ∈ EndF (X

�)(η)|Tr(h◦h�) = 0 for all h ∈ W0} is G-stable.

Moreover, by lemma 7.2.2.1 we have W0 ∩W⊥
0 = {0}, so that EndF (X

�)(η) = W0 ⊕W⊥
0

and thereforeX⊗FX
� = kerϕ⊕f−1(W⊥

0 ) = kerϕ⊕F (η) as a semi-linear F -representation

of G. �

Corollary 7.2.3.2. If F is of characteristic 0, if X and X � are irreducible semi-

linear F -representations of G, and if X ⊗F X � is triangulable by characters η1, . . . , ηd :

G → (FG)× ⊂ F×, then X ⊗F X � � �d
i=1 F (ηi).

Proof. Let {0} = X0 ⊂ X1 ⊂ . . . ⊂ Xd = X ⊗F X � be G-stable sub-F -vector spaces

such that Xi/Xi−1 � F (ηi) for all i ∈ {1, . . . , d}. For each i, let ϕi : Xi → F (ηi) denote

the quotient morphism. By lemma 7.2.3.1, the exact sequence 0 → Xd−1 → X ⊗F X � →
F (ηd) → 0 is split, and thereforeX⊗FX

� � Xd−1⊕F (ηd) as semi-linear F -representations

of G.

Suppose that we have an isomorphism X ⊗F X � � Xj ⊕ F (ηj+1) ⊕ . . . ⊕ F (ηd) of

semi-linear F -representations of G, with j ∈ {1, . . . , d − 1}. If pj : X ⊗F X � → Xj is

the natural G-equivariant F -linear projection and if φj = ϕj ◦ pj, then lemma 7.2.3.1

implies that the exact sequence 0 → ker(φj) → X ⊗F X �
φj−→ F (ηj) → 0 is split. Since

ker(ϕj ◦ pj) = Xj−1 ⊕ F (ηj+1) ⊕ . . . ⊕ F (ηd), we therefore see that X ⊗F X � � Xj−1 ⊕
F (ηj)⊕ F (ηj+1)⊕ . . .⊕ F (ηd). The claim therefore follows by induction. �

7.3. Triangulable tensor products

7.3.1. Triangulable tensor products. In this section, let E/Qp and K/Qp be fi-

nite extensions. By proposition 7.1.2.5, Frac(Be)⊗QpE is a field and therefore Frac(Be)⊗Qp



7.3. TRIANGULABLE TENSOR PRODUCTS 81

E = FE. In particular, if E �/E is a finite extension, then FE⊗EE
� = FE� and ifK ⊃ EGal,

then FE is isomorphic as a GK-ring to the compositum of Frac(Be) and E inside BdR.

Lemma 7.3.1.1. Let Y, Y � be irreducible semi-linear FE-representations of GK. If

there are linear characters η1, . . . , ηn : GK → E× such that Y ⊗FE
Y � =

�n
i=1 FE(ηi),

then η−1
1 ηi is of finite order for all i ∈ {1, . . . , n}.

Proof. For each i ∈ {1, . . . , n}, let φi : Y ⊗FE
Y � → FE(ηi) denote the surjective GK-

equivariant projection coming from the direct sum decomposition. Since Y and Y � are

irreducible, we have isomorphisms of semilinear FE-representations σi : Y → (Y �)∗(ηi)

sending y �→ (y� �→ φi(y ⊗ y�)) and τi : Y � → Y ∗(ηi) sending y� �→ (y �→ φi(y ⊗ y�)).

Therefore, for each j ∈ {1, . . . , n} we have a composite isomorphism τ ∗
1 ◦ σj : Y → Y (µj)

for each j, where µj = η−1
1 ηj : GK → E×. In particular, taking determinants gives

rise to an element λ = λj ∈ FE − {0} such that g(λ) = µr
j(g)λ for all g ∈ GK , where

r = dimFE
Y .

In particular, taking determinants gives rise to an element λ = λj ∈ FE − {0} such

that g(λ) = µr
j(g)λ for all g ∈ GK , where r = dimFE

Y . Since Be,E is a principal ideal

domain, we may write λ = x/y with x, yBe,E and (x, y) = 1, so that y|g(y) in Be,E and

the relation g(x) = µr
j(g)

g(y)
y
x shows that x generates a GK-stable Be,E-module of rank 1,

so that x ∈ E× by proposition 7.1.2.3. Similarly y ∈ E×, and therefore we have µr
j(g) = 1

for all g ∈ GK . �

Theorem 7.3.1.2. If W and W � are B⊗E
|K -pairs such that the B⊗E

|K -pair W ⊗ W � is

triangulable, then there are finite extensions E �/E and L/K such that the B⊗E�

|L -pairs

(E � ⊗E W )|GL
and (E � ⊗E W )|GL

are triangulable.

Proof. The semi-linear FE-representations X = FE ⊗Be,E
We and X � = FE ⊗Be,E

W �
e

of GK admit filtrations {0} = X0 ⊂ X1 ⊂ . . . Xd = X and {0} = X �
1 ⊂ X �

2 ⊂ . . . ⊂ X �
d� =

X � by sub-FE-representations of GK such that the quotients Xi/Xi−1 and X �
j/X

�
j−1 are

irreducible for all 1 ≤ i ≤ d and 1 ≤ j ≤ d�. The semi-linear FE-representation X⊗FE
X �

is triangulable by 7.1.3.2, and therefore lemma 7.2.1.1 implies that Xi/Xi−1⊗FE
X �

j/X
�
j−1

is triangulable for all 1 ≤ i ≤ d and 1 ≤ j ≤ d�.

Fix i ∈ {1, . . . , d} and j ∈ {1, . . . , d�}. Let Y = Xi/Xi−1 and Y � = X �
j/X

�
j−1, and let

r = dimFE
Y and r� = dimFE

Y �. By lemma 7.1.3.1, there are B⊗E
|K -pairs U and U � such

that Y = FE ⊗Be,E
Ue and Y � = FE ⊗Be,E

U �
e.

By corollary 7.2.3.2, Y ⊗FE
Y � =

�rr�

j=1 Yj, where Yj is a 1-dimensional semi-linear

FE-representation of GK for each j. By lemmas 7.1.3.1 and 2.5.2.1, there are characters

η1, . . . , ηrr� : GK → E× such that Yj = FE(ηj), and lemma 7.3.1.1 implies that η−1
1 ηj

is of finite order for each j. If K �/K is a finite extension such that η−1
1 ηj|GK� = 1 for
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all j and K � ⊃ EGal, then Y ⊗FE
Y �(η−1

1 ) =
�rr�

j=1 FE as semilinear FE-representations

of GK� and extending scalars by the GK�-equivariant map Be,E → FE → BdR,E shows

that BdR,E ⊗Be,E
U ⊗ U �(η−1

1 ) admits a BdR,E-basis of GK�-invariants, and therefore the

B⊗E
|K� -pair U ⊗ U �(η−1

1 ) is de Rham, and thus potentially semi-stable. Let L/K � be a

finite extension such that U ⊗ U �(η−1
1 ) is a semi-stable B⊗E

|L -pair. By theorem 5.1.0.15,

there is a finite extension E �/E and a character µ : GL → E �× such that the B⊗E�

|L -pairs

(E � ⊗ U)|GL
(µ−1) and (E � ⊗ U �(η−1

1 ))|GL
(µ) are semi-stable, and therefore triangulable

by corollary 7.1.4.2. Since triangulability is insensitive to twisting by characters, we see

that FE� ⊗FE
Y |GL

and FE� ⊗FE
Y �|GL

are triangulable by corollary 7.1.3.2.

Therefore, for finite extensions E �/E and L/K big enough, (FE� ⊗FE
X)|GL

and

(FE� ⊗FE
X �)|GL

are successive extensions of triangulable FE�-representations of GL, and

therefore are themselves triangulable by lemma 7.2.1.1. By corollary 7.1.3.2, the B⊗E�

|L -

pairs (E � ⊗E W )|GL
and (E � ⊗E W �)|GL

are triangulable.

�

Corollary 7.3.1.3. If V and V � are linear E-representations of GK such that V⊗EV
�

is trianguline, then V and V � are potentially trianguline.

7.3.2. Quaternions. Let Q8 denote the group of quaternions. If p > 0 is a prime

congruent to 3mod 4, then there is an octic Galois extensionK/Qp such that Gal(K/Qp) =

Q8; for the construction of such extensions, see p. 466 of [Jen89]. There are six non-

isomorphic Galois extensions K/Q2 with Gal(K/Q2) isomorphic to Q8, four of which

are totally ramified; for the construction of such extensions, see chapter 3, section 1 of

[HSVT09], or [JenYui88].

let E/Qp be a finite extension containing Qp(
√
−1), and let K/Qp be an octic Galois

extension such that Gal(K/Qp) is isomorphic to the groupQ8. IfQ8 = {± Id,±i,±j,±k} ⊂
GL2(E) is the sub-group generated by the matrices i = ( i 0

0 −i ), j = ( 0 1
−1 0 ), and k = ( 0 i

i 0 ),

then we have an isomorphism Gal(K/Qp)
∼→ Q8. Let (V, ρ) denote the E-vector space

V = E · e1⊕E · e2 endowed the E-linear action of GQp defined as follows: if g ∈ GQp and

if g denotes the image of g in Q8, then the matrix of g acting on (e1, e2) is g.

The representation (V, ρ) is potentially trivial, and thus potentially trianguline. On

the other hand, the relation i2 = j2 = k2 = ijk = − Id implies that that the semi-linear

FE-representation X = FE ⊗E V of GQp is irreducible (for any E ⊃ Qp(
√
−1)), and

therefore V is not trianguline by corollary 7.1.3.2.

On the other hand, (e1⊗e1+e2⊗e2, e1⊗e1−e2⊗e2, e1⊗e2+e2⊗e1, e1⊗e2−e2⊗e1)

is a basis of V ⊗E V consisting of simultaneous eigenvectors for the ρ(g) with eigenvalues

in {±1}, so that V ⊗E V is a direct sum of characters of GK , and therefore trianguline.
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