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INTRODUCTION

This beginning of the XXIst century marks the long standing revenge of data. For centuries, paper
data has been shelved in libraries. For decades, numerical data has been sleeping on hard drives of
individuals and corporations. Nowadays, large Internet companies such as Google, Facebook or Yahoo!
have realized that large quantities of data could turn into a gold mine for their business. Driven by
these companies and the tools they proposed, more and more organizations are turning to the analysis
of large quantity of data, for financial, societal or scientific profit. New “buzz words” have emerged,
such as Big Data and Medium Data. While such words can be seen as a fresh coating of flashy paint on
well established concepts, their very existence shows that data analysis is going mainstream. Its ideas,
concepts and techniques are reaching more company managers, more scientists and many, many more
students.

It is thus an exciting time to be a researcher in data mining, the young branch of Computer Science
dedicated to analyzing data in order to turn it into actionable knowledge.

This habilitation thesis presents my main research results and perspectives in the field of data mining
called pattern mining. The inception of many of these works lies in my two post-doctoral periods in
Japan, in Osaka University from 2004 to 2006 and in the Institute of Statistical Mathematics in Tokyo
from 2006 to 2007. These postdocs helped me to mature the main research topics that I wanted to
develop in my career. I started actively working on these topics with my PhD students and colleagues
since I became Associate Professor at Grenoble University in 2007. All the results presented in this
habilitation thesis are post-2007.

Intuitively, the goal of pattern mining is to discover interesting regularities in data, such regularities
being called patterns. The field is often called frequent pattern mining, for the measure of interesting-
ness is in most existing works the frequency of a pattern, i.e. how many times it is repeated in the data.
In this habilitation thesis, I will present both works where pattern interestigness is based on frequency,
and works where other interestingness measures can be exploited.

The most iconic application of pattern mining is the analysis of supermarket data [AIS93], in order to
answer questions such as which are the products that are often sold together ? Such information allows
to improve product placement, decide better promotions, and product cross-selling. Pattern mining has
also been applied successfully to various domains such as bioinformatics [ZS06], telecommunications
networks [GAA10], software execution analysis [LYY+05] among many others. The domain is alive
and vibrant, with novel kind of useful patterns presented every year at major data mining conferences,
algorithms several orders of magnitude faster than those existing ten years before, and challenging new
perspectives for the years to come.
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2 Introduction

Everything seems bright for pattern mining. In our new data age, where data analysis tools are king,
and with the usefulness of the insights it can provide in data, it should end up as one of the most beloved
tools of data analysts.

Sadly, the pretty story stops here, and the real motivations behind the works presented in this ha-
bilitation thesis will soon appear. In practice, most existing data analysis tools only provide the most
basic pattern mining tools for discovering frequent itemsets and association rules. Very few tools offer
the possibility to mine more complex patterns, such as sequential, tree or graph patterns. Worse, the
implementations of frequent itemset mining in these tools often rely on the antiquated Apriori [AIS93]
algorithm, which pioneered the domain but is three to four orders of magnitude slower than modern
approaches such as LCM [UKA04]. This can be illustrated by looking at the following well known
tools:

• Weka [atUoW13], an open source data mining tool used a lot in data mining classes, allows to mine
frequent itemsets and association rules with Apriori and FPGrowth (optional package). Another
package allows to mine generalized sequential patterns.

• Knime [Kni13], a more advanced open source data mining tool, is limited as-is to frequent item-
sets. It can however use any tool of Weka, and C. Borgelt wrote a plugin allowing to use Apriori,
FPGrowth, Relim, Sam algorithms. These algorithms allow to mine closed and maximal frequent
itemsets. However, they have been proven less efficient than the state of the art.

• Microsoft LINQ includes an association mining algorithms, described as “a straightforward im-
plementation of the well known Apriori algorithm” [Mic12].

• Mahout [Apa12], the Apache Machine Learning toolbox for clusters on MapReduce, contains 11
clustering algorithms and 10 classification algorithms. But it contains only one frequent itemset
mining algorithm [LWZ+08], based on FPGrowth [HPY00].

As a pattern mining researcher, I find this situation deeply frustrating: all data analysis tools are be
joining the great data bandwagon, and pattern mining is late for the party !

I thus focused my works on what I consider as the three main areas where pattern mining has to be
improved in order to become a mainstream tool for data analysts. Not in the limited setting of frequent
itemsets and association rules, but with all the richness of pattern mining, which is able to tackle very
diverse types of data and discover a range of patterns as broad as the data analyst can imagine. I present
my contribution in these areas in three chapters:

1. A first critical area is to extend the reach of pattern mining by discovering more kinds of pat-
terns likely to interest practitioners for analyzing their data. Such novel patterns can be patterns
adapted to complex data types not addressed by existing pattern mining approaches, or complex
patterns uncovering non trivial relations in well known types of data. My contributions to this area,
presented in Chapter 1, entitled Mine more, are twofold:

• first, I contributed to improve the state of the art on two novel kinds of patterns: gradual

patterns (work of M2 student Thac Do) and periodic patterns with unrestricted gaps

(work of PhD student Patricia Lopez Cueva)

• second, in the PhD of Benjamin Negrevergne we proposed ParaMiner, a generic pattern

mining algorithm capable of efficiently tackling a broad class of pattern mining problems.
With ParaMiner, a practitioner can directly specify the kind of pattern he is interested in and
benefit from an efficient algorithm, allowing tailor-made pattern definitions for more focused
data analysis.
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2. The second area is to reduce the processing time of pattern mining algorithms. This is especially
critical when one want to mine complex patterns as those presented above. One of the solutions
to reduce processing time is to exploit efficiently the parallel processing capacities of today’s
multicore processors. My results in this area are presented in Chapter 2, entitled Mine faster.
Most of these works were conduced in the context of the PhD of Benjamin Negrevergne. I first
explain why designing parallel pattern mining algorithms is especially delicate. I then present the
approach that we used in ParaMiner to ensure it a good parallel scalability. These results show
that the critical dataset reduction step of modern pattern mining algorithms can, when conduced
naively, completely ruin parallel scalability. Our approach shows how to detect such situations, in
which kind of pattern mining problems it is most likely to happen, and proposes solutions to get
back parallel scalability without sacrificing execution time.

3. The third and last area is to provide more understandable results to the data analysts. Most of
my works presented in the previous chapters, which are now mature enough, show how to improve
and expand the “main engine” of pattern mining. However as is, the output of this “engine” is
difficult to exploit: in most cases, it is a list having millions of patterns. Examining such list is
time consuming and error prone. Thus in Chapter 3, entitled Mine better, I will present several
different approaches that we are working on with PhD students and colleagues, in order to improve
results or results presentation. These approaches are based on the idea that as output of a data
mining process, the patterns should explain as well as possible the data, without overwhelming the
user. I work on this topic in real application contexts, especially the analysis of large application
execution traces in embedded systems. The works presented in this chapter are less mature than
the two other chapters, and the whole chapter can be considered as a chapter or short and medium
term perspectives.
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CHAPTER

1

MINE MORE: One algorithm to rule

them all

Since its inception in 1993 [AIS93], researchers in pattern mining have strived to extend the reach of
this domain to either extract more complex patterns from the data (such as [SA95], [BKWH11]) or to
extract patterns from more and more kinds of data (e.g. sequences [TC12], trees [AAA+02] or graphs
[IWM00]). This work is the most fundamental of all in pattern mining: it allows to exploit pattern
mining techniques on an increasing number of domains, and pushes researchers and data owners to ask
increasingly complex questions to data thanks to advanced pattern mining techniques. It opens up the

imagination of data analysts, by providing, as imperfect as they can be, new tools to analyze their data.
Making these tools faster and easier to use only comes afterwards.

From a pattern mining researcher point of view, such task requires first to come up with a new type of
pattern to discover. This is often the result of a cooperation with practitioners, that have a real problem
and actual data to analyze. Once the pattern mining problem is posed, the pattern mining researcher
proposes an algorithm efficient enough to process the real data it was designed for.

In this regard, my major contribution to the field of pattern mining is to have proposed several al-
gorithms for solving novel pattern mining problems, which are all based on the best known techniques
for closed pattern enumeration and testing. The best synthesis of these techniques can be found in the
LCM algorithm [UKA04] from Uno et al., which won the FIMI workshop of frequent itemset miners in
2004, and is to date the best sequential algorithm for mining frequent itemsets. Despite its efficiency,
this algorithm is non-trivial to understand, and there are only few work that build upon LCM, compared
with the myriad of (even recent) work based on the antiquated Apriori algorithm [ALS12, DJLT09],
and the many other based on the far from optimal FP-Growth algorithm [TWSY10, LL07]. My works
can all be seen as examples of how to build efficient pattern mining algorithms based on the techniques
presented in LCM, with an opinionated goal of shifting pattern mining research on the higher grounds
that these techniques allow. Note that the enumeration used in LCM is close from former FCA results
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6 Chapter 1. Mine more: One algorithm to rule them all

[Gan84, Kuz96]: working in such kind of enumeration will help in bridging the gap between pattern
mining and FCA community. The advantages being:

• for pattern mining researchers, to access the wealth of strong enumeration work of FCA re-
searchers, with potential for better algorithms ;

• for FCA researchers, to access the culture of pattern mining researchers on high performance
algorithms applied to large real data, and gain an improved visibility.

In this chapter,

• I first present a synthetic view of the LCM algorithm and especially the enumeration technique
used in this algorithm. This introductory section is designed to help understanding how LCM can
be extended, and is the basis for the rest of the chapter.

• I present my work on gradual patterns. It was conduced during two M2R internship periods of
Trong Dinh Thac Do, in collaboration with Anne Laurent (University of Montpellier). This work
was presented at ICDM’10 conference [DLT10] and has been submitted in second revision in the
KAIS journal [DTLN13].

• Next, I present my work on periodic patterns, done with the PhD of Patricia Lopez Cueva, in
collaboration with Jean-François Méhaut (University of Grenoble) and Miguel Santana (STMicro-
electronics). This work was presented in the EMSoft’12 conference [CBT+12].

• I then present ParaMiner, a first work on efficient generic closed pattern mining, allowing to
handle a broad range of pattern mining problems with a single algorithm. This is the PhD work of
Benjamin Négrevergne, in collaboration with Jean-François Méhaut and Marie-Christine Rousset
(both at University of Grenoble). This work is published in the DMKD journal [NTRM13].

• I finish the chapter by giving some future research directions, focus on extensions of the ParaMiner
algorithm.

A Preliminaries: LCM algorithm principles

The rest of this chapter is heavily based on the principles proposed by Uno and Arimura in the LCM
algorithm [UAUA04]. We thus briefly give some definitions used throughout this chapter, and explain
the most important principles of the LCM algorithm.

1 Definitions

The data is constituted of items drawn from a set I = {i1, ..., im}, also called ground set in the fol-
lowing. A dataset is a set of transactions D = {t1, ..., tn} where each transaction is a set of items:
∀i ∈ [1..n] ti ⊆ I. Each transaction tk ∈ D has a unique identifier tid(tk). We assume for simplicity
tid(tk) = k.

An itemset I is an arbitrary set of items: I ⊆ I. An itemset I occurs in a transaction tk, with
k ∈ [1..n], if I ⊆ tk. Given a dataset D, the conditional dataset for an itemset I is the dataset restricted
to the transactions of D where I occurs: D[I] = {t | t ∈ D and I ⊆ t}.

The tidlist of an itemset I in a dataset D is the set of identifiers of the transactions where the itemset
occurs: tidlistD(I) = {tid(tk) | tk ∈ D and I ⊆ tk}. The support of an itemset I in a dataset D is
the number of transactions of D in which I occurs: supportD(I) = |tidlistD(I)|. Given a frequency
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threshold ε ∈ [0, n], an itemset I is said to be frequent in dataset D if supportD(I) ≥ ε. When the
dataset is clear from context, D will be omitted from the notations of tidlist and support in the rest of
the chapter.

If an itemset I is frequent, all its sub-itemsets I ′ ⊂ I are also frequent. The sub-itemsets that have
exactly the same support as I do not bring any new information and it is thus not necessary to compute
them nor to output them, which can lead in practice to one order of magnitude faster computation and
reduced output size [PBTL99]. The remaining itemsets are called closed frequent itemsets. More
formally, a frequent itemset I is said to be closed if there exist no itemset I ′ with I ′ ⊃ I such that
support(I) = support(I ′).

Problem statement: (closed frequent itemset mining) The goal of LCM is, given a dataset D and a
frequency threshold ε, to return all the closed frequent itemsets having at least frequency ε.

2 LCM algorithm

A simplified pseudo-code of the LCM algorithm is presented in Algorithm 1.

Algorithm 1: LCM
Data: dataset D, minimum support threshold ε
Result: Output all closed itemsets in D

1 begin

2 ⊥clo ← Clo(⊥) =
⋂

t∈D t
3 output ⊥clo

4 D⊥clo
← reduce(D,⊥clo)

5 foreach e ∈ I s.t. e 6∈ ⊥clo do

6 expand(⊥clo, e,D⊥clo
, ε)

7 Function expand(P, e,D, ε)
8

Data: Closed frequent itemset P , item e, reduced dataset DP , minimum support threshold ε
Result: Output all closed itemsets descending from (P, e) in the enumeration tree

9 begin

10 if supportDP
(P ∪ {e}) ≥ ε then /* Frequency test */

11 Q← Clo(P ∪ {e}) =
⋂

t∈DP [{e}] t /* Closure computation */

12 if firstParentTest(Q, (P, e)) then /* First parent test */

13 output Q
14 DQ = reduce(DP , Q)
15 foreach i ∈ augmentations(Q, (P, e), DQ) do /* Itemset enumeration

*/

16 expand(Q, i,DQ, ε);

The main program has to compute the closure of ⊥, for the case where an itemset would be present
in all transactions of the dataset. Once this closure is computed, expand is called with all possible items
of I as augmentations of ⊥clo (excepts the ones in ⊥clo).
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On getting intimate with LCM

Since 2007, the LCM algorithm is at the heart of many of my works. In order to build my
understanding of this algorithm, it is worth mentioning that in addition to theoretical work
and work with students, I also implemented myself twice the LCM algorithm. The most
interesting of these implementations is an implementation in Haskell, a popular functional
language, with a strong focus on parallelism on multicores. To the best of my knowledge, it
is the only implementation of LCM in functional programming, and it is available publicly
on Hackage, the public Haskell package repository, as the hlcm package [Hac10]. This
implementation has two interests:

• It is, to date, the most concise (code-line wise) implementation of LCM having all the
optimizations of the original algorithm

• It was one of our earliest parallel implementation of LCM, which allowed us to explore
both how to parallelize tasks in LCM, and how adequate a functional programming
language was for pattern mining.

The conclusion of this experiment was mixed [TNMS11]: although I could get decent re-
sults (one order of magnitude slower than original C implementation) and the algorithm was
very easy to write in Haskell, optimizing it for performance was on the other hand a dif-
ficult process, and required low level knowledge of the garbage collector of Haskell. The
constant evolution of the language runtime, especially for parallel applications, also means
that these results are not definitive, and should be reconsidered in a few years time once the
language has further matured (for example, at the time of the tests, garbage collector stopped
all threads when collecting only for one thread, an important source of inefficiency).
It was nevertheless an excellent exercise to get a good working knowledge of LCM, and
Haskell remained my language of choice for quickly prototyping new algorithms.

LCM is a backtracking algorithm, so most of the work is performed by the recursive function expand.
This function takes as input an already found closed frequent itemset P ⊆ I, an item to augment it e ∈ I,
and DP the reduced dataset of P , which is a dataset smaller than the conditional dataset of P , but that
is guaranteed to be equivalent w.r.t. the soundness and completeness of computations performed in
expand. The support of P ∪{e} is first computed in line 10. Then the closure of P ∪{e} is computed in
line 11. This is done by taking the intersection of all the transactions of the conditional dataset of {e} in
DP : these are all the transactions of the input dataset D where P ∪ {e} occurs. At this point, a problem
arises in the enumeration: several calls to expand with different parameters (P, e) could lead by closure
to the same Q. This means that several independant branches of enumerations would land on the same
pattern, needing a costly duplicate detection mechanism (usually of exponential memory complexity).
The way LCM avoids this problem is to impose an arbitrary enumeration order that allows to perform a
tree-shaped enumeration of the search space of closed frequent patterns.

This means that for a closed pattern Q, there is only one pair (P, e) which is allowed to generate
it. Such (P, e) is called the first parent of Q. Hence in line 12, the algorithm tests if for the found Q,
the couple (P, e) received in parameters is its first parent. Uno and Arimura [UAUA04] have shown that
the first parent test in the case of frequent itemsets could be done in polynomial time. If the test passes
Q is output in line 13. The reduced dataset of Q is computed in line 14 in order to feed next recursive
calls to expand. Then, all possible further augmentations of Q are enumerated in line 15 and given as
parameters to recursive calls together with Q.



B. Gradual pattern mining 9

One can note that we have not instanciated the critical functions of LCM, which are support,
firstParentTest, augmentations and reduce. Several variants of each of these functions exist, and
explaining them in detail is not relevant here. The important point to note is that the structure of the LCM
algorithm is quite simple, and that it leaves a lot of room for modification and improvement by replacing
the above mentioned functions.

The original LCM algorithm provides strong complexity guarantees: it is of polynomial space com-
plexity and of output linear time complexity, hence its name: Linear Closed itemset Miner.

B Gradual pattern mining

Most pattern mining methods consider only symbolic data, and cannot be applied directly on numerical
data. Gradual pattern mining is one of the rare pattern mining method considering directly numerical
data, without any discretization step. It’s goal is to discover co-variations of attributes in the data. For
example, when the data consists of records about individuals, a typical gradual pattern could be: the

older a person is, the higher its salary is.
More precisely, the input data considered is a matrix where the lines are transactions and the columns

are attributes. A gradual pattern is a set of gradual items, each gradual item being a direction of variation
of an attribute: either increasing (↑) or decreasing (↓). The support of a gradual pattern is the size of the
longest sequence of transactions that respects the variations indicated by its gradual items.

Exemple: Consider the following table:

tid age salary loans cars
t1 22 2500 0 3
t2 35 3000 2 1
t3 33 4700 1 1
t4 47 3900 1 2
t5 53 3800 3 2

A gradual pattern is {age↑, salary↑}. The DAG of transactions ordered according to this pattern is
shown in Figure 1.1. The longest sequences of transactions exhibiting simultaneous increase of age and
salary are: 〈t1, t2, t4〉 and 〈t1, t2, t5〉. Both have length 3, so the support of {age↑, salary↑} is 3.

t1 : age = 22, salary = 2500

t2 : age = 35, salary = 3000 t3 : age = 33, salary = 4700

t4 : age = 47, salary = 3900 t5 : age = 53, salary = 3800

age ≤, salary ≤ age ≤, salary ≤

age ≤, salary ≤ age ≤, salary ≤

FIGURE 1.1: Transactions ordered according to gradual pattern {age↑, salary↑}. Nodes of longest paths
are colored in red.

The gradual patterns are particularly useful when the records have no particular order, such as differ-
ent independant observations with changing parameters in a biological experiment. The gradual patterns
can discover many complex co-variations that would have been difficult to detect with classical tech-
niques.
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However, computing gradual patterns is computationally expensive, so it is important to restrict the
algorithm to finding closed gradual patterns, in order to avoid any redundancy in the search space. The
theoretical definition of closed gradual patterns had been proposed in [ALYP10], but without a mining
algorithm.

This is the challenge that we tackled in the M2R internship of Thac Do, co-supervised with Anne
Laurent (LIRMM, University of Montpellier), with two objectives:

• propose an efficient algorithm to mine gradual patterns, able to scale up to real datasets

• base this algorithm on the principles of LCM presented above.

In this work, detailed in [DLT10, DTLN13], we could propose an encoding of gradual itemsets as
simple itemsets. Using this encoding and modified versions of the support, firstParentTest and
augmentations functions used in LCM, we could propose GLCM, a variant of LCM for mining closed
frequent gradual itemsets. Due to this similarity, we do not present the pseudo code here, the interested
reader is referred to the aforementioned publications.

Despite the absence of dataset reduction in GLCM, it has the same complexity guarantees as LCM,
and our experiments have confirmed its efficiency. We also made a parallel version of this algorithm,
PGLCM. It will be briefly evoked in Chapter 2.

We show on Figure 1.2 a comparative experiment of GLCM with the state of the art that existed
before. This state of the art is Grite [DJLT09], an algorithm for mining frequent gradual itemsets based
on Apriori. As Grite does not mine closed patterns, the experiment is not fair. However at that time it
was the only algorithm available to practitioners willing to compute gradual itemsets. The experiment is
conduced on an Intel Xeon 7460 @ 2.66 GHz with 64 GB of RAM. The dataset is a synthetic dataset
produced by a modified version of the IBM synthetic data generator.
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FIGURE 1.2: Minimum support threshold comparative plot

As the results show, GLCM is two to three orders of magnitudes faster than Grite, confirming the
interest of an approach mining closed patterns and based on LCM.

Thanks to these excellent results, GLCM was the first algorithm able to mine a real biological dataset
of microarray data, with 20 lines and 4408 attributes. The analysis of these results is still ongoing at
University of Montpellier.

To conclude this section, I present the analysis of a simple dataset from the American stock market
that we did with Thac Do. This dataset collects weekly NYSE quotations for 300 different stocks. We
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FIGURE 1.3: BP, Halliburton, Transocean and Anadarko’s stock price decrease in the same time

present in Figure 1.3 a closed gradual pattern found for the year 2010 at the dates corresponding to the
Deepwater Horizon oil spill accident in the Gulf of Mexico.

Unsurprisingly, at this time BP stock price decreases. More interesting is the fact that three other
companies see their stock decrease with BP: Transocean, Halliburton, Anadarko. As an European, I
didn’t know these companies, nor that they had links with BP. However, some googling reveals that:

• Halliburton was responsible for cementing the ocean floor beneath the platform

• Transocean owned the rig where the accident happened, BP was only leasing it

• Anadarco has a 25% share in BP’s Macondo Prospect

The gradual pattern quickly showed that there existed a relation between these four compagnies,
allowing non specialists to conduct informed searches and possibly take better decision.

GLCM/PGLCM are available as OpenSource: http://membres-liglab.imag.fr/termier/PGLCM.html
Basing the work of Thac Do on LCM was in line with a longer term objective for me: see how far

it was possible to go with the LCM principle, and how difficult it was to adapt this principle to mining
problems more complex that itemsets. As such, this work is one of the early steps that led to ParaMiner,
described later in this chapter.

C Periodic pattern mining

Even in purely symbolic data, there are many numeric relations to be found. One of those is the pe-

riodicity at which a set of items repeat itself in the data. Consider a transactional dataset, which is a

http://membres-liglab.imag.fr/termier/PGLCM.html
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sequence of transactions {t1, ..., tn}. Each transaction is a set of items, and has a transaction identifier
ti. For example, each transaction could be all the events occuring during a certain time window. If a
given itemset I occurs in the transactions {t1, t3, t5, t7}, then it occurs every 2 transactions. Such item-
set is periodic, with a period of 2. Many earlier works on periodic pattern mining [HYD99],[YWY03]
proposed definitions based on that intuition. Such definitions are very strict, as they don’t allow any
disruption in the periodicity. Later works thus proposed more relaxed definitions, allowing “gaps” in the
periodicity [MH01]. Although this is better adapted to real world data where periodic behavior can be
altered for some transactions and come back after, this lead to an even greater number of output patterns,
being computationnally expensive to mine and difficult to exploit by an analyst.

In the CIFRE (joint funding between academy and industry) PhD of Patricia Lopez Cueva, co-
supervised with Jean-François Méhaut (University of Grenoble) and Miguel Santana (STMicroelec-
tronics), we tackled this problem in the context of execution trace analysis of multimedia applications
[CBT+12]. In this context, the transactions can either correspond to the set of trace events occurring in
a fixed time window, or to the set of trace events occurring during the decoding of an audio/video frame.

To explain our definition of periodic patterns, we first present the definition of the basic component
of a periodic pattern, that we call a cycle:

Definition 1. (Cycle) Given a dataset D, an itemset X and a period p, a cycle of X , denoted
cycle(X, p, o, l), is a maximal set of l transactions in D containing X , starting at transaction to and
separated by equal distance p:

cycle(X, p, o, l) = {tk ∈ D | 0 ≤ o < |D|, X ⊆ tk, k = o+ p ∗ i, 0 ≤ i < l,X * to−p, X * to+p∗l}

TABLE 1.1: Example dataset
tk Itemset tk Itemset tk Itemset
t1 a, b t5 a, b t9 k, l
t2 c, d t6 g t10 a, b
t3 a, b t7 h, i
t4 e, f t8 a, b, j

Example: In the example dataset in Table 1.1, the itemset X = {a, b} is found at a period p = 2
on transactions from t1 (o = 1) to t5, therefore it forms a cycle of length l = 3, denoted cycle({a, b}, 2

,1, 3) = {t1, t3, t5} (Note: periods are presented in bold for clarity). The other possible cycles, shown
in red in the figure, are not actual cycles as they do not satisfy the maximality constraint.

FIGURE 1.4: Example of cycles and non-cycles



C. Periodic pattern mining 13

Definition 2. (Periodic pattern) An itemset X together with a set of cycles C and a period p form a
periodic pattern, denoted P (X, p, s, C), if the set of cycles C = {(o1, l1), ..., (ok, lk)}, with 1 ≤ k ≤ m
and m being the maximum number of cycles of period p in the dataset D, is a set of cycles of X such
that:

• All cycles have the same period p

• All cycles are consecutive:
∀(oi, li), (oj , lj) ∈ C such that 1 ≤ i < j ≤ k, we have oi < oj

• Cycles do not overlap:
∀(oi, li), (oj , lj) ∈ C such that i < j, we have oi + (p ∗ (li − 1)) < oj

With s being the support of the periodic pattern, i.e. the sum of all cycle lengths in C =
{(o1, l1), ..., (ok, lk)}, calculated with the formula

s =

k∑

i=1

li

FIGURE 1.5: Periodic pattern formation

Definition 3. (Frequent Periodic Pattern) Given a minimum support threshold min_sup, a periodic
pattern P is frequent if its support is greater than min_sup, i.e. P (X, p, s, C) is frequent if and only if
s ≥ min_sup.

Example: Given the dataset shown in Table 1.1 and a minimum support of two transactions
(min_sup = 2), the set of frequent periodic patterns is presented in Table 1.2 (note: only periods

not greater that the length of the dataset divided by min_sup are considered).

TABLE 1.2: Set of frequent periodic patterns
Frequent Periodic Patterns

P1({a}, 2, 5, {(1, 3)(8, 2)}) P9({a, b}, 4, 2, {(1, 2)})
P2({b}, 2, 5, {(1, 3)(8, 2)}) P10({a}, 5, 2, {(3, 2)})
P3({a, b}, 2, 5, {(1, 3)(8, 2)}) P11({b}, 5, 2, {(3, 2)})
P4({a}, 3, 2, {(5, 2)}) P12({a, b}, 5, 2, {(3, 2)})
P5({b}, 3, 2, {(5, 2)}) P13({a}, 5, 2, {(5, 2)})
P6({a, b}, 3, 2, {(5, 2)}) P14({b}, 5, 2, {(5, 2)})
P7({a}, 4, 2, {(1, 2)}) P15({a, b}, 5, 2, {(5, 2)})
P8({b}, 4, 2, {(1, 2)})

This very relaxed definition of periodic patterns allows to discover many interesting periodic behav-
iors in the data, as well as their disruptions. Its disadvantage is that it outputs a huge number of patterns,
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many of which are just redundant subparts of other patterns. Our objective was thus to considerably
reduce the number of periodic patterns output to the analyst, without losing information, i.e. we were
looking for a condensed representation of periodic patterns. From [CRB04], a set of patterns C is a
condensed representation of a set of patterns F if from the elements of C it is possible to recompute all
the elements of F without re-scanning the original data. In the case of frequent itemsets (and of frequent
gradual patterns seen before), the set of closed frequent itemsets / gradual patterns is a condensed rep-
resentation of the set of frequent itemsets / gradual patterns. This works because the frequent itemsets
can be expressed as an intent (the itemset) and an extent (the transactions supporting the itemset), thus
fitting well into a Galois lattice from which closure definition is derived. On the other hand, periodic
patterns have a third component, which is the period. We have shown that indeed periodic patterns could
be represented as triadic concepts, for which it is known that no closure relation can be defined in the
traditional sense of Galois lattices [CBRB09].

We present in the following definitions how periodic patterns can be represented in a triadic setting.

Definition 4. (Periodic Triadic Context) A periodic triadic context is defined as a quadruple (I,P,D,Y)
where I is the set of items, P is the set of periods, D is the set of transactions, and Y is a ternary relation
between I, P and D, i.e. Y ⊆ I × P ×D.

TABLE 1.3: Representation of the relation Y .
I/P − T 2 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
a × × × × × × ×

b × × × × × × ×

...

I/P − T 4 5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
a × × × × × ×

b × × × × × ×

...

Example: Given the dataset shown in Table 1.1, the corresponding periodic triadic context is shown
in Table 1.3. Each cross in the table represents an element of the ternary relationY . For example, P1({a},
2 ,5, {(1, 3)(8, 2)}) in Table 1.2 is transformed into the triples (a, 2, t1), (a, 2, t3), (a, 2, t5), (a, 2, t8), (a, 2, t10)
shown by the corresponding crosses in Table 1.3. For simplicity, items not forming any cycle of any pos-
sible period are not shown on the table.

Definition 5. (Frequent Triple) Given a minimum support threshold min_sup, a triple (I, P, T ), with
I ⊆ I, P ⊆ P , T ⊆ D and I×P×T ⊆ Y , is frequent if and only if I 6= ∅, P 6= ∅ and |T | ≥ min_sup.

Example: In Table 1.3, given a minimum support threshold of two transactions
(min_sup = 2), we can observe several frequent triples such as ({a}, {2, 4}, {t1, t5}) or ({a, b},
{2}, {t1, t3, t5}), since the number of transactions forming those triples is greater or equal to 2.

Definition 6. (Periodic Concept) A periodic concept of a periodic triadic context (I,P,D,Y) is a
frequent triple (I, P, T ) with I ⊆ I, P ⊆ P and T ⊆ D, such that none of its three components can be
enlarged without violating the condition I × P × T ⊆ Y .
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Example: In Table 1.4, we can observe the set of periodic concepts extracted from the set of frequent
triples obtained from the dataset shown in Table 1.3. The triples forming this set are periodic concepts
since it is not possible to extend any of the attributes of the triple without violating the relation Y .

TABLE 1.4: Set of periodic concepts
Periodic Concepts

T1({a, b}, {2}, {t1, t3, t5, t8, t10})
T2({a, b}, {2, 4}, {t1, t5})
T3({a, b}, {2, 5}, {t3, t5, t8, t10})
T4({a, b}, {2, 3, 5}, {t5, t8})
T5({a, b}, {2, 3, 4, 5}, {t5})

One of our major contributions, presented in [CBT+12], was to define the notion of Core Periodic

Concepts (CPC), which is a condensed representation for the triadic concepts of periodic patterns, based
on properties of the period.

Definition 7. (Core Periodic Concept) A periodic concept (I, P, T ) is a Core Periodic Concept if there
does not exist any other periodic concept (I ′, P ′, T ′) such that I = I ′, P ′ ⊂ P and T ′ ⊃ T .

Example: In Table 1.5, we can observe the set of CPC extracted from the set of periodic con-
cepts shown in Table 1.4. For instance, T2({a, b}, {2, 4}, {t1, t5}) is not a CPC since there exists
T1({a, b}, {2}, {t1, t3, t5, t8, t10}) with the same itemset {a, b}, a smaller set of periods {2} ⊂ {2, 4}
and a bigger set of transactions {t1, t3, t5, t8, t10} ⊃ {t1, t5}.

TABLE 1.5: Set of CPC
Core Periodic Concepts

M1({a, b}, {2}, {t1, t3, t5, t8, t10})

In [CBT+12], we had no efficient way to compute the core periodic patterns, and had to use a two
step process computing all the triadic concepts first with the DPeeler algorithm [CBRB09] and post-
processing them to extract the CPC.

The difficulty of the proposed approach for efficient mining is that determining if a triadic concept is
a CPC requires to compare it with other triadic concepts. Such approach is symptomatic of DAG-shaped
enumeration strategies, which are hard to predict and thus require an exponential space complexity to
store all the triadic concepts found so far in order to determine if a given triadic concept is a CPC or not.

However, in recent works of Patricia Lopez Cueva that haven’t been published yet but that will soon
appear in her PhD document, we deepened our analysis of CPC and proposed a property that we called
connectivity. This property allows to determine, for any triadic concept, if it is a CPC or not, without

relying on any other triadic concept. It is based on necessary relations that exist between periods and
transactions of a CPC. This property is needed to build a first parent test for CPC.

From an enumeration point of view, in the general case of n-ary patterns [CBRB09], the components
of the tuples making the patterns are independant and have thus to be augmented independently. This
complicates the enumeration strategy. However with CPC, thanks to the strong connection between peri-
ods and transactions that we isolated, we have shown that it is possible to make an enumeration strategy
based on the itemset part of the CPC, thus exploiting LCM principles. The periods and transactions re-
quire additional computations in the recursive loop, however these computations only require polynomial
time and space, and can benefit from dataset reduction mechanisms.

The complete algorithm for mining directly CPC is called PerMiner. The pseudo-code of PerMiner
is shown in Algorithm 2. The algorithm starts by computing the CPC for ⊥, in case an itemset appears
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Algorithm 2: The PerMiner algorithm

1 procedure PerMiner(D,min_sup);
Data: dataset D, minimum support threshold min_sup
Result: Output all Core Periodic Concepts that occur in D

2 begin

3 if |D| ≥ min_sup then

4 ⊥clo ←
⋂

t∈D t
5 output (⊥clo, {1..|D|/2}, D)
6 D⊥clo

= {t \ ⊥clo | t ∈ D}
7 foreach e ∈ I with e /∈ ⊥clo do

8 perIter(⊥clo, D⊥clo
, e, ∅,min_sup)

9 Function perIter(X,DX , e,min_sup,min_red)
10

Data: Itemset of a discovered CPC X , reduced dataset DX , item e, minimum support
threshold min_sup

Result: Output all Core Periodic Concepts whose itemset is prefixed by X and whose
transactions are in DX , with minimal support min_sup.

11 begin

12 B := getPeriods(tidlist(X ∪ {e}),min_sup) /* Period computation */

13 G := group(B)
14 S ← ∅ /* Closure computation */

15 foreach g ∈ G do

16 X ′ :=
⋂

t∈g.occs t

17 S := S ∪ (X ′, g.periods, g.occs)

18 S := filter(S); /* First parent test */

19 enum← ∅ /* Itemset enumeration */

20 foreach (X ′, P, T ) ∈ S do

21 if firstParentTest(X ′, (X, e)) then

22 Q = X ∪X ′

23 output (Q,P, T )
24 if Q /∈ enum then

25 DQ = reduce(DX , Q, e,min_sup)
26 foreach i ∈ augmentations(Q, (X, e), DQ) do

27 perIter(Q,DQ, i,min_sup)

28 enum := enum ∪Q
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in all transactions. If such case, we have shown that the correct set of periods to return is {1..|D|/2}
[Cue13].

Then for all items that can augment ⊥clo, the recursive function perIter is called. This function can
be explained as follows:

• as LCM, it takes as parameter the itemset part of an already found CPC and an augmentation,
together with a reduced dataset and a support threshold

• the algorithm first computes all the periods that are admissible for the augmented itemset (line 12).
This steps exploits the properties of CPC to return only periods likely to appear in CPC. For more
details, the interested reader is referred to the PhD of Patricia Lopez Cueva [Cue13].

• A CPC has a set of periods. All the periods found at previous step that have the same transaction
list are regrouped in a single set of periods (line 13), that is guaranteed to participate in a CPC.
These sets of periods make the group G.

• In lines 14-17, for each group of periods the itemset is maximally extended by intersection of the
transactions supporting the group. After this step, S is guaranteed to contain a set of CPCs.

• All the CPCs of S do not necessarily have (X, e) as first parent. CPCs of S that include other
CPCs of S (itemset-wise) are suppressed in line 18. Then a first parent test inspired by LCM but
also from works on polynomial-delay enumeration by Boley et al. [BHPW10] is performed in line
21.

• The found CPC are outputted (line 23) and the dataset is reduced on the transactions containing Q
(line 25).

• Last, augmentations are determined in a way similar to LCM (line 26) and recursive calls are
performed.

We have proved in [Cue13] that this algorithm was sound and complete. We also proved that its
complexity was polynomial space and polynomial delay.

We compared experimentally a C++ implementation of PerMiner to our previous three-step ap-
proach, which chains a dataset preprocessing to convert it to triples, the original C++ implementation
of DPeeler [CBRB09] and a C++ postprocessor we wrote that filters CPCs from the periodic concepts.
The experiment is conduced on an Intel Xeon 7460 @ 2.66 GHz with 64 GB of RAM. The dataset
is a synthetic dataset produced by a modified version of the IBM synthetic data generator (details in
[CBT+12] and [Cue13]).

Figure 1.6 shows a comparison of PerMiner and 3-STEP performance on a simple synthetic dataset
with 1000 transactions and 200 distinct items. The curve on the left shows the wall clock time w.r.t. the
minimum support value, whereas the curve on the left shows the number of CPCs found. Programs were
stopped after 105 seconds. It can be seen that for minimum support values lower than 30%, 3-STEP
run time exceeds 105 seconds of execution, whereas PerMiner is one to two orders of magnitude faster,
demonstrating the interest of the approach.

We then compared both algorithms running time on a real execution trace of a multimedia application
used for board testing at STMicroelectronics. The raw trace has 528,360 events in total. It is transformed
into a matrix of 15,000 transactions (1 transaction representing 10ms of trace) and 72 distinct items,
having in average 35 items per transactions.

Figure 1.7 shows the execution time w.r.t. minimum support for computing CPCs in this trace, as well
as the number of CPCs extracted. PerMiner is one to two orders faster than 3-STEP in this experiment.



18 Chapter 1. Mine more: One algorithm to rule them all

20 40 60 80
101

102

103

104

105

min_sup (%)

R
es

po
ns

e
ti

m
e

(s
ec

.)

3-STEP PerMiner

20 40 60 80

101

102

103

104

105

min_sup (%)
N

um
be

r
of

C
P

C
s

FIGURE 1.6: Minimum support threshold comparative plot
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This experiment demonstrates that PerMiner good scalability allow it to compute CPCs from large real
world traces in a reasonable amount of time, and that it is the only approach able to do so for low support
value, that are need for fine grained analysis of the trace.

Regarding the interest of the periodic patterns found, we show in Figure 1.8 two periodic patterns
extracted from a test application of STMicroelectronics, called HNDTest.

FIGURE 1.8: Two periodic patterns from HNDTest application

They come from a small tool that we wrote to find competitor periodic patterns, i.e. patterns where
one is active in the “gap” of periods of the other. Such patterns are likely to show disturbances in the
system.

The timeline of execution is shown on the bottom of the figure, with the first pattern on top and the
other under. Color marks signal occurrences of the corresponding pattern (different colors indicate differ-
ent instances of the pattern with different offsets). The first pattern, {Interrupt_168, Interrupt_16}, is
a periodic poll of the USB bus: it comes from the system. The second pattern, {HNDTest_try_to_wake_up},
is increasing its activity when the test application wants to get out of idle state and work. Here we can
note that intense activity of {HNDTest_try_to_wake_up} has temporarily disabled USB checks: it
is likely that the application has masked too aggressively other interruptions for a too long time. This
behavior is dangerous, as if during this time data is received from (or sent to) an USB source, there is a
risk of data loss.

This work on PerMiner shows that even for complex patterns that do not fit intuitively in the classical
setting of LCM, it is possible to design an efficient enumeration strategy based on the same principles,
with excellent experimental results.

D ParaMiner: towards (pattern mining) world domination

At the beginning of this chapter, I have deliberately presented LCM in a very generic way: an algorithm
structure where one has to instanciate several key functions:

• support

• Clo

• firstParentTest

• augmentations
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• reduce

We have seen, for GLCM and PerMiner, that instanciating these functions was not trivial and required
involved work from a pattern mining researcher. This is unfortunate, as it means that for practitioners
and data owners, adapting the LCM algorithm to their pattern mining tasks is mostly out of reach.

The main difficulty is handling the complex dependencies between all these functions. Especially,
designing firstParentTest and augmentations that suits the patterns at hand is tough.

In pioneering works about generic pattern mining, Arimura and Uno [AU09] and Boley et al.
[BHPW07, BHPW10] proposed novel enumeration methods of closed patterns. They have found a
large class of pattern mining problems for which firstParentTest and augmentations can be fixed,
Furthermore, the test supportDP

(P ∪{e}) ≥ ε can be replaced by a more generic test Select(P ∪{e}),
allowing to have interest function for patterns that go beyond the classic frequency test. They have shown
that as long as the Select and Clo functions provided were of polynomial time and space complexity,
the complete algorithm exhibited polynomial space complexity and polynomial delay time complexity.

However, despite their interest and these strong complexity guarantees, no implementation was pro-
vided for these works, which remained purely theoretical. The reason is simple: even if Select and Clo
are polynomial, in most existing pattern mining problems these functions will have to scan a dataset that
can have millions of transactions. This will have to be done at least once per pattern found, leading to
extremely long running times if done naively.

Our goal in the PhD of Benjamin Négrevergne was to enrich the state of the art in generic pattern
mining with an approach making it easy for practitioners to add new pattern mining problems, while
having performances close to the best specialized algorithms. We designed ParaMiner, a generic pattern
mining algorithm based on the principles proposed by Arimura and Uno and Boley et al., having the
same complexity guarantees, but exhibiting actual performance close to those of the best specialized
algorithms.

ParaMiner differs from existing generic pattern mining approach in the following ways:

• DMTL [AHCS+05] captures a wider range of pattern mining problems but does not provide re-
cent enumeration techniques based on efficient handling of closure, and thus is not competitive
with specialized algorithms. Its great flexibility, translated in an implementation based on C++
templates, can also make it difficult to use for non-data mining specialists.

• iZi [FMP09], like ParaMiner, focuses on different patterns based on set-encoding, but does not
integrate closure and is based on older enumeration techniques.

Our solution to provide an efficient generic pattern mining algorithm is to tackle the last function that
I presented in the pseudo-code of LCM (Algorithm 1) and that has been left untouched in the previous
theoretical works, the reduce function. The difficulty is that reduce is closely related to Select and Clo,
and thus before us no related works tackled the problem of proposing a generic reduce function.

By introducing some constraints (satisfied by most existing pattern mining problems) on the form of
Select and Clo, we could propose an efficient and generic reduce function.

In the following, I will briefly explain the theoretical foundations on which ParaMiner is based. I will
then introduce the constraints on Select that we impose, and define the range of pattern mining problems
that ParaMiner can solve. I will then explain intuitively how the algorithm operates, with a special focus
on our generic reduce function.

In order to explain the theoretical foundations of ParaMiner, it is first necessary to define formally
the notion of pattern w.r.t. the predicate Select:

Definition 8. Given a dataset DI built over a ground set I and a selection predicate Select, X ⊆ I is a
pattern in DI if and only if:
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1. X occurs in DI

2. Select(X,DI) = true

Note that differing from Arimura and Uno [AU09], we integrate the dataset from the ground up in
our definitions. Similarly, we define formally the notions of augmentation and first parent, that have
only been presented intuitively at the beginning of this chapter:

Definition 9. A pattern Q is an augmentation of a pattern P if there exists e ∈ Q \ P such that Q =
P ∪ {e}.

Definition 10. Let P be a closed pattern, and Q the closure of an augmentation P ∪ {e} of P such that
P < P ∪ {e}. P is the first parent of Q if there does not exist a closed pattern P ′ < P and an element
e′ such that P ′ < P ′ ∪ {e′} and Q is the closure of P ′ ∪ {e′}.

Now, in order to get a deeper understanding on pattern enumeration with first parent, we first need to
present some concepts from set theory.

The first one is the concept of set system, which allows to rewrite neatly the goal output of any
pattern mining algorithm.

Definition 11. A set system is an ordered pair (E,S) where E is a set of elements and S ⊆ 2E is a
family of subsets of E.

With I the ground set andF the set of patterns defined above, it can be immediately seen than (I,F)
is indeed a set system. The major interest of a set system is when there exists an underlying structure
linking together all the elements of the set sytem. Such structure can be characterized by accessibility

properties, which we list below, from the weakest to the strongest.

Definition 12. A set system (I,F) is accessible if for every non-empty X ∈ F , there exists some e ∈ X
such that X \ {e} ∈ F .

Definition 13. A set system (I,F) is strongly accessible if it is accessible and if for every X,Y ∈ F
with X ⊂ Y , there exist some e ∈ Y \X such that X ∪ {e} ∈ F .

Definition 14. A set system (I,F) is an independence set system if Y ∈ F and X ⊆ Y together imply
X ∈ F .

As one can see, these properties are based on extending patterns with one element, i.e. are based on
the augmentation operation. They are thus closely linked with the first parent operation. The works of
Arimura and Uno [AU09] and Boley et al. [BHPW10] provide generic first parent operations and their
complexities for the three accessibility cases:

• when the set system is an independence set system, the first parent test is very simple: one has to
check if Q > P or not

• when the set system is strongly accessible, Boley et al. have shown in [BHPW10] that the first
parent test could be done with an intersection between Q and a small list of size O(log(|I|)).

• when the set system is accessible, Arimura and Uno have shown in [AU09] that the first parent test
was polynomial. However it is much more expensive than the previous cases, as testing for first
parent may lead to the reverse enumeration of a whole branch of the enumeration tree.
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Our first constraint was thus to restrict the Select function to those leading to a strongly accessible

set system. We are guaranteed to have a very efficient first parent test, while covering many existing
existing pattern mining problems [NTRM13].

We can now give in Algorithm 3 the pseudo code of the ParaMiner algorithm, where firstParentTest
and augmentations have been fixed to those proposed in [BHPW10] for the strongly accessible case.
Note that to ensure the soundness of this first parent test that relies on an extension list, the structure of
the algorithm is slightly modified from what has been shown in LCM and PerMiner. expand no longer
takes the augmentation e as an argument, and starts by looping over all possible enumerations (line 8).
The rest of the algorithm is very similar in structure to LCM and PerMiner.

Algorithm 3: ParaMiner
Data: dataset D, selection criterion Select, closure operator Clo
Result: Output all closed patterns in D

1 begin

2 ⊥clo ← Clo(⊥, D)
3 output ⊥clo

4 expand(⊥clo, D, ∅)

5 Function expand(P,DP , EL)
6

Data: Closed pattern P , reduced dataset DP , extension list EL
Result: Output all closed patterns descending from P in the enumeration tree

7 begin

8 foreach e ∈ I s.t. e 6∈ P and e ∈ DP do /* Augmentation enumeration */

9 if Select(P ∪ {e}, DP ) = true then /* Pattern test */

10 Q← Clo(P ∪ {e}, DP ) /* Closure computation */

11 if Q ∩ EL = ∅ then /* First parent test */

12 output Q
13 DQ = reduce(DP , Q,EL)
14 expand(Q, i,DQ, EL)
15 EL← EL ∪ {e}

In order to propose a generic reduce function that doesn’t compromise the soundness and complete-
ness of ParaMiner, it has to:

• avoid compromising the results of Select and Clo (lines 9 and 10)

• keep all the necessary augmentations in the dataset for the loop of line 8

In usual pattern mining algorithms, dataset reductions have two main operations:

1. they suppress the lines where the pattern does not occur

2. from the remaining lines, they suppress the elements that are unlikely to belong to a descendant of
the pattern (via first parent extension)
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The generic reduce function that we proposed in ParaMiner follows the same structure. In order to
guarantee that reduce does not compromise Select results, we introduced a supplementary constraint on
Select, that we called decomposability:

Definition 15. A selection criterion Select(P,D) is decomposable if it can be expressed as the con-
junction of two predicates, one on P and the other on the tidlist of P in D:

Select(P,D) = p1(P ) ∧ p2(tidlist(P,D))

The writing of predicate p2 guarantees that the transactions that do not contain the pattern have
no influence on the result of Select. Thus operation 1) of dataset reduction can be conduced without
harmful effects. Moreover, predicate p2 does not have as input the precise elements of the transactions
containing P , so it is not impacted by operation 2) of dataset reduction. Predicate p1 guarantees that
only the elements of a pattern have an impact on Select. Operation 2) of dataset reduction is thus only
required to preserve, in the transactions where P occurs, the elements of P and all the elements leading
to augmentations and closures of P by first parent enumeration. All the other elements can be safely
removed.

The difficulty is thus to determine, in the expand function for a given P augmented with a given e,
what are the elements that are guaranteed not to be augmentations and closures of descendants of P by
first parent extension.

According to line 11 of Algorithm 3, there cannot be any element of EL in the patterns output in
line 12, thus such elements are good candidates for removal from the dataset. Some of these elements
participate in closures computed in line 10 and removing them would make these closures incorrect in
a way that would systematically defeat the first parent test of line 11, leading to many duplicates in the
enumeration. Hence, only the elements of EL not participating in any further closure can be removed.

Lets consider a simple example. Suppose that the ground set is I = {A,B,C,D}, that P = {C}
and that EL = {A,B}. Consider the following (reduced ) dataset for pattern {C}:

t1: A B C D
D{C} = t2: A C D

t3: C

The only augmentation of {C} than can lead to a closure is by element D, appearing in transactions
t1 and t2. When performing a closure on t1 and t2, element A of EL will be kept in the closure as it
appears in both transactions. However element B of EL will be suppressed by the closure: such element
can be suppressed in advance from the dataset by the reduction operation.

Such elements can be computed with an algorithm detailed in [NTRM13]. Intuitively, this algorithm
groups transactions in the dataset according to their elements not in EL and containing elements different
from P . In the above example, there would be only one group, containing transactions with {D}:
{t1, t2}. For such groups, all elements of EL that do not appear in all transactions are removed, as they
cannot be part of a closure. We have also proved in [NTRM13] that this operation has no impact on the
soundness and completeness of ParaMiner.

This completes the presentation of our generic dataset reduction, that we called ELReduction.
In order to show its impact on ParaMiner’s execution time, we present in Figure 1.9 an experiment
comparing ParaMiner with ParaMinernodsr, which is a stripped down version of ParaMiner where the
dataset reduction has been removed. Select and Clo are set up for frequent itemset mining, the dataset
is the well known Mushroom dataset from FIMI repository [Goe04], and the machine is an Intel Core i7
7560 with 64 GB of RAM.

Without the dataset reduction, despite the small size of the dataset, the ParaMinernodsr algorithm can
take more than 1000 seconds of execution for lowest support values: being that long on a toy dataset, the
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FIGURE 1.9: PARAMINER vs PARAMINERno_dsr, sequential execution times on the dataset Mushroom
(a).

algorithm can’t be exploited on more realistically sized datasets. On the other hand, ParaMiner with
ELreduction activated is two orders of magnitude faster than ParaMinernodsr for lowest support values,
mining Mushroom in less than 10 seconds, which is in line with state of the art algorithms (LCM requires
1s).

This confirms the interest of integrating a generic dataset reduction in a generic pattern mining algo-
rithm. In the next chapter, detailing the parallel processing capacities of ParaMiner, more comparative
experiments with state of the art pattern mining algorithms will be presented.

To conclude, we have presented in this last section our approach for efficient and generic pattern
mining. Currently, we have instantiated three pattern mining problems in the ParaMiner’s framework:

• closed frequent itemset mining

• closed frequent gradual itemset mining

• closed frequent relational graph mining

The detail of Select and Clo for these problems, as well as proofs of strong accessibility and decompos-
ability, can be found in [NTRM13].

ParaMiner is an OpenSource program, available at http://membres-liglab.imag.fr/negrevergne/paraminer/.

E Perspectives for "Mine more"

In the topic of this chapter, my perspectives are centered around ParaMiner. The results published in
[NTRM13] and presented in this document (theoretical in current chapter and practical in next chapter)
show that we succeeded in designing an efficient, generic and parallel pattern mining algorithms. How-
ever this is only a first step, far from my self-assigned goal: make ParaMiner and its successors reference
data mining algorithms, exploited by many practitioners for analyzing real data, and used as a starting
point or baseline by pattern mining researchers producing new and better algorithms.

To reach this goal many perspectives have to be explored:

• From a practical point of view, making new ParaMiner instances must be as simple as possible. For
the moment we are working on the engineering side, by producing a better and easier to understand

http://membres-liglab.imag.fr/negrevergne/paraminer/
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implementation, in which making Select and Clo will be simpler than in our current prototype.
However, a practitioner will still have to verify manually strong accessibility and decomposability
properties of its Select criterion, which is not straightforward. An exciting perspective would
be to propose basic Select operators (strongly accessible and decomposable), and an algebra for
composing them while preserving these properties. This would allow to propose on top of this
algebra a small DSL (Domain Specific Language) for writing Select criterion, similarly to SQL
which is built on top of relational algebra. The difficulty is that the strong accessibility property is
ill-studied and not trivial to understand. Thus designing the proposed algebra could be easier for
researchers with a good background in set theory, which are rare in the data mining area.

• Due to the lack of work on generic pattern mining, it is difficult to have an intuitive idea of the
class of pattern mining problems which can be handled by ParaMiner. A theoretical perspective,
connected with the previous one, would be to have a better characterization of the pattern mining
problems that can be handled by ParaMiner. Such problems first have to be representable as sets.
Here we can benefit from recent works from Lhouari & Petit [NP12], which present the notions
of problems (efficient) weakly representable as sets. Such notions can be used as starting points to
better understand the theoretical characterization of pattern mining problems that can be handled
by ParaMiner. The difficulty, here also, is to take into account the notion of strong accessibility.

• Beside understanding what problems ParaMiner can handle, it is also important to expand the
range of ParaMiner so that is can handle more problems and thus be more useful:

– In [NTRM13], we presented the notion of partial strong accessibility, which is a way to
handle problems where the strong accessibility property is only verified above a given border
in the search space of patterns. Such case arises in constraint pattern mining, especially
with monotonous constraints. An straightforward perspective would be to design an efficient
improvement of ParaMiner using this notion. The difficulty being to propose and efficient and
generic way to reach the border, from which it is possible to switch to the classical ParaMiner
enumeration. Another perspective could be to extend this work to a more generic case where
strong accessibility is only verified in parts of the search space, with “jumps” between these
parts.

– A difficult case for generic pattern mining is handling sequences, as many sequence mining
problems cannot be encoded efficiently in a set framework. A solution is to restrict oneself
to sequence mining problems where known set representations exists, for example frequent

rigid sequences with wildcards [NP12], or by adapting work done on conjuctive sequences

[RCP08]. Even in such cases, ParaMiner may require some adaptations to be used. A more
ambitious perspective which I am very interested in is to get rid of sets altogether, and to
adapt ParaMiner to “natively” handle sequences. Such radical solution requires to adapt the
strongly accessible set systems framework to a framework based on sequences. A difference
with sets is that there are several ways to define inclusion of sequences, hence this will lead to
several accessibility definitions. Another point is that many practical sequence mining prob-
lems deal with a dataset which is a single long sequence, i.e. where there are no transactions.
With the most relaxed Select criterion for sequences (for example when the patterns are
episodes [MTV97]), such problems leave very little room for a dataset reduction to operate,
making it difficult to design. To get a better understanding on these problems, I am starting a
collaboration with Thomas Guyet from IRISA lab, on the topic of generic sequence mining.
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2
MINE FASTER: Multicore processors

to the rescue

Most of the processors exploited in today’s computing platforms, from smartphones to desktops to high-
end clusters, are multicore processors. These processors combine several independent processing units
into a single chip package. In order to exploit their power to have faster and more scalable algorithms, it
is necessary to write parallel algorithms adapted to the specificity of these processors.

There are two major difficulties with this task:

• it is inherently difficult to program parallel algorithms

• performance behavior of parallel algorithms is very different from traditional sequential algo-
rithms.

I addressed both issues in the works that I conduced with my PhD and Master students since 2007.
Most of these works were done in collaboration with Jean-François Méhaut, Professor at University
Joseph Fourier and specialist in parallelism and performance evaluation. After a presentation of mul-
ticore processors and of parallel programming difficulties, I will briefly present our solutions in this
chapter.

• To alleviate the programmining difficulty, we choose in the Master and PhD of Benjamin Né-
grevergne to propose a custom parallelism library, called Melinda. Melinda is both easy to use
and customize, well adapted to pattern mining algorithms, and has low overheads.

• With regard to parallel performance, a previous study [TP09] have shown on a particular tree
mining problem that the parallel architecture of a multicore processor was particularly stressed by
a classical pattern mining algorithm, especially the bus between the memory and the cores. Thanks
to the genericity of ParaMiner, we could extend this experiment to several different pattern mining
problems. We also contributed a generic solution that improves the parallel performance of all
pattern mining problems that can be handled by ParaMiner.

27
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• Thanks to the two contributions presented above, we show on comparative experiments that
ParaMiner can have performance on par with state of the art specialized algorithms.

• At the end of this chapter, I will give some perspectives in order to further improve parallel pat-
tern mining algorithms on multicores processors, and also briefly discuss perspectives on clusters
driven by MapReduce.

A Multicore processors

The goal of a computer processor is to execute as many operations per second as possible. Making more
operations allows to run more complex algorithms and to process larger volumes of data in a reasonable
amount of time.

Processor designers have thus strived to increase the performance of their processors. They are
helped by the empirical Moore’s law: the number of transistors on a die doubles every two years.

Until 2005 they exploited a simple corollary of this law: the number of transistors doubles because
they can be engraved with a finer resolution, and this finer resolution allows to increase the frequency of
operation of the processor. This is known as frequency scaling, and it as been the dominant paradigm
in computer architecture for years. For algorithms, it means that a “magic” doubling of performance can
be expected by waiting two years and buying a new processor: a very convenient feature.

In 2005, physical limits due to the difficulty of heat dissipation were reached, preventing further fre-
quency scaling, and processors have been locked since then to a 2-3 GHz frequency. However, Moore’s
law remained valid. The solution processor designers found to continue increasing the number of op-
erations per second their processors could do was thus to pack several processors on a single die, with
independent execution units but possibly shared caches. Each of these processors is called a core, and
the complete package is called a multicore processor. First solutions proposed multicore processors
with two cores, but nowadays four to eight cores are common.

We show a recent laptop dual-core processor (Intel Core i5-2520M) in Figure 2.1, and a server
processor with eight cores (Intel Xeon X7560) in Figure 2.2.
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L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

PU P#2

L2 (256KB)

L1 (32KB)

Core P#1

PU P#1

PU P#3

FIGURE 2.1: Topology of an Intel Core i5-2520M

These figures were produced with the lstopo tool [Ope13b], and allow to see for each processor
(termed Socket in the figure) its cores and its cache hierarchy.

There are two ways to exploit the multiple cores of these processors in order to get more work done.
The simple one is to execute independently one sequential application per core. This allows to use legacy
applications unmodified, and to get the results of both applications in a time as long as the execution lime
of the longest application. However, this approach does not allow to accelerate computation intensive
applications such as pattern mining.
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FIGURE 2.2: Topology of an Intel Xeon X7560

This is achieved with the other approach, which is to rewrite the application as a parallel program,
capable of exploiting several threads of execution which will be dispatched over the cores and benefit
from all the power of the multicore processor. The catch is that it is notoriously difficult to write parallel
programs. One of the biggest difficulties is that in most applications, threads have to communicate
together, for example to exchange results of dependent computations. This communication is done by
writing values in memory locations known by both communicating threads. A precise order of access on
these memory locations have to be enforced in order to guarantee correct results. This is done through
synchronization primitives such as locks or semaphores, which are not trivial to use especially when
many of them are involved. Failure in synchronization can lead in the worst case errors such as deadlocks,
which block the program, or to undeterministic bugs difficult to hunt.

time
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t2 t3

exec. time = 4

core 1

core 2

(a)

time
t1 t2

t3

exec. time = 3

core 1

core 2

(b)

FIGURE 2.3: Unbalanced execution (a) vs. balanced execution (b).

Performance-wise, the main issues faced by programmers are:

• synchronization issues: in practice, what a synchronization mechanism such as a lock do is to
make sequential a portion of the parallel program, in order for a thread to have exclusive access
to a resource. During this exclusive access, other threads will not be working if they are waiting
for the same resource. This alters parallel performance, and having too much synchronization in a
parallel program can ruin the gain of performance from parallelism.

• load balance issues: another important issue is to guarantee that all threads have enough work
to do until the end of execution. If not, some threads will be idle for some portion of the execu-
tion while others have too much work to do, a situation called load unbalance (shown in Figure
2.3 (a)). Having a good load balance (Figure 2.3 (b)) is especially difficult in applications with
irregular and unpredictable workloads, which is often the case in pattern mining.
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For both of these issues, researchers in parallelism have proposed many solutions, such as lock-free
algorithms [CB04], work stealing techniques [BL99] or transactional memory [MMTW10].

There is a third issue that arises in multicore architectures, called the memory wall, which is more
difficult to fix for the programmer and that results from physical limitations of the architecture. The
typical communication architecture in a UMA (Unified Memory Access) multicore computer is shown
in Figure 2.4.

Memory System bus

Core1

Core3

Core2

Core4

FIGURE 2.4: System bus, memory and cores

There is a system bus, on which are connected both the main memory, and all the cores of the
multicore processor. All cores requests for data in memory thus transit by the same system bus. If there
are too many of such requests, the bus can easily become saturated, and the memory response time is
also limited, which can form waiting queues.

For technical and cost reasons, the bus capacity cannot be increased easily, neither can the memory
response time. However, the number of cores is always increasing, leading to congestion situations when
all of them are simultaneously making requests to the memory.

A partial solution, especially used in large system with several multicore processors is to use NUMA
(Non-Uniform Memory Access) architectures, where each processor has a dedicated physical memory
bank. However there still is one system bus, and when the application has bad locality properties there
will be many “distant” accesses between cores and memories far from them, that can again saturate the
system bus.

A more fundamental solution used by processor designers since many years is to use large caches,
which are small and fast memories integrated on the processor die. Most applications are likely to reuse
a data they accessed (temporal locality), or to access data close to that data (spacial locality). Cache
memories can hold data access shortly before, and prefetch data that is likely to be used in a near future,
accelerating memory accesses and limiting traffic on the bus. They are usually organized in a hierarchy,
with the smallest, fastest and most expensive caches closest to each core, and larger, slower and cheaper
caches shared by several cores. For example in the two processors shown in Figures 2.1 and 2.2, each
core has a fast Level 1 (L1) cache of 32 KB, an intermediate L2 cache of 256 KB, and a large L3 cache
shared by all the cores of the processor (3 MB for the Core i5, 24 MB for the Xeon).

Many papers have shown that for frequent itemset mining it was very important to make algorithms
exploiting well the caches, such as [ZPL97], [GBP+05b].

However most pattern mining algorithms have been designed with single-core processors in mind,
and thus are biased to sacrifice memory space in order to save CPU cycles. This is especially true for
structured pattern mining algorithms (trees, graphs), which maintain data structures in memory that can
become to large to fit any cache, thus requesting frequent accesses to the main memory. Tatikonda et
al. [TP09] were the first to show the devastating effect of such bias on multicore processors. Due to
intense communications between the cores and the memory, the bandwidth limit is quickly reached, and
the algorithm can’t scale to more than a few cores.
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The solution that they proposed was simple: change the bias to take into account the characteristics
of multicore architectures, and try to reduce as much as possible bandwidth usage, at the expense of extra
computations by the cores. Extra computations is the cheapest resource of recent CPUs.

As a former tree mining specialist that designed tree [TRS04, TRS+08] and DAG mining [TTN+07]
algorithms, I was especially receptive to the arguments of this paper, and it strongly influenced my
thinking on how to do parallel pattern mining on multicores. Most of the experiments that we did to
understand and improve the parallel scalability of our pattern mining algorithms originate from the ideas
exposed by Tatikonda et al., that we tried to improve and generalize.

B Melinda: a simple API for parallel data-driven programs

In order to ease the burden of parallel programming, several APIs providing higher level interfaces have
been proposed, such as OpenMP [Ope13a]. However, the tradeoff for easier programming is a lack
of control on the parallel runtime, that can both hinder experiments reproducibility and performance
optimization. For instance, with Jean-François Méhaut, we conduced initial experiments with OpenMP
in C++ in 2007. These experiments showed that three major compilers (GNU g++, Intel icc, Portland
pgc++) had a very different implementation of the way threads were handled, leading to large runtimes
differences.

With Benjamin Négrevergne, our student (M2R then PhD), we thus decided to make a high level
API that would be specialized for parallel pattern mining algorithms, and with a behavior that we could
control and study. We called this API Melinda, as it derives from the Linda approach proposed by
Gelernter in [Gel89].

The majority of pattern mining algorithms that we are interested in are depth first search algorithms
that produce a vast amount of intermediary data. Melinda has thus been designed from the ground up to
be data driven. It borrows to the Linda approach the idea of having an approach based on tuples:

• all threads can access a shared memory space called a TupleSpace

• the TupleSpace handle a set of tuples, each of which represent an unit of work for the threads

• the threads can either insert new tuples from the TupleSpace, or retrieve one.

The original Linda approach allows to have many different tuple formats simultaneously in the Tu-
pleSpace and complex retrieval operations on tuples to get only tuples verifying certain characteristics.
Although this is convenient for the programmer, this can lead to high overheads in the Linda runtime,
which are incompatible with data mining performance requirements. Thus our Melinda approach is a
stripped-down version of Linda, where the tuples have a fixed format, and where tuple retrieval does not
allow complex querying. This allows to have an easy to use framework, with very low runtime overheads.

The API of Melinda has two main primitives:

• put(tuple): inserts a tuple into the TupleSpace

• get(): retrieves a tuple from the TupleSpace (the tuple is deleted from the TupleSpace)

Accessing the TupleSpace with these primitives is represented in the Figure 2.5.
First, at least one thread has to put one or more tuples in the TupleSpace to give work to the other

threads. Then, during execution idle threads retrieve work (tuples) with get, while threads producing
work (tuples) insert it in the TupleSpace with put.

With these settings, it is easy to write the depth first algorithms that we described in Chapter 1:
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application

multi−threadead

put

tuplespace

put get put get

FIGURE 2.5: Accessing the TupleSpace with put and get

• a tuple contains the parameters of a recursive call

• instead of performing recursive calls, a thread creates a tuple with the necessary parameters, and
put it into the TupleSpace

• idle threads call get in order to receive new tuples to process

We show in Algorithm 4 the ParaMiner algorithm exploiting the Melinda API. Note that for sake of
readability, the TupleSpace itself is not shown: it is supposed to be a global variable used inside calls to
functions initTupleSpace, isTupleSpaceEmpty, put and get.

As can be seen in line 7 for patterns descendants of ⊥, and in line 18, calls to expand have been
replaced by calls to put. The threads themselves are initialized in lines 3-4, and perform the function
runThread. This function, as long as there are tuples in the TupleSpace, retrieves them with get, and
makes the necessary calls to expand in order to process the pattern given in the tuple. For sake of
simplification, the precise termination condition is not shown in the above pseudo-code. In practice,
when all threads are blocked and waiting for tuples, it means that the TupleSpace is empty and that no
thread is processing a tuple (which may generate new tuples), so the program is stopped.

The expand function now keeps track of the current depth in the enumeration tree with parameter d.
Thanks to the efficiency of dataset reduction, for high values of d usually expand has only little work to
do. This happens especially in simple pattern mining problems such as frequent itemset mining. For such
deep nodes of the enumeration tree, the processing time of expand can become close to the overheads of
the parallel runtime overheads, defeating the performance advantage of parallel execution. The classical
solution used by the parallelism community is to set up a depth cutoff (line 17), which above a certain
depth switches back to sequential execution (line 20). The threshold value for switching, max_depth, is
a parameter of the algorithm and depends on the pattern mining problem at hand and even sometimes of
the dataset.

The advantages of our approach for writing parallel pattern mining using Melinda are the following:

• Ease of use: The synchronizations are handled by the TupleSpace implementation, the program-
mer doesn’t have to care about them.

• Data driven: The tuples representing recursive calls, in pattern mining algorithms it means that
they represent patterns, which are the intermediate data that can suffer from combinatorial ex-
plosion. This guarantees that the main complexity factor is the one that benefits the more from
parallelism.
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Algorithm 4: ParaMiner
Data: dataset D, selection criterion Select, closure operator Clo, depth cutoff threshold

max_depth
Result: Output all closed patterns in D

1 begin

2 initTupleSpace()
3 foreach i ∈ 1..NUM_THREADS do

4 createThread(runThread())

5 ⊥clo ← Clo(⊥, D)
6 output ⊥clo

7 put((⊥clo, D⊥clo
, ∅, 0))

8 Function expand(P,DP , EL, d)
9

Data: Closed pattern P , reduced dataset DP , extension list EL, current enumeration depth d
Result: Output all closed patterns descending from P in the enumeration tree

10 begin

11 foreach e ∈ I s.t. e 6∈ P and e ∈ DP do /* Augmentation enumeration */

12 if Select(P ∪ {e}, DP ) = true then /* Pattern test */

13 Q← Clo(P ∪ {e}, DP ) /* Closure computation */

14 if Q ∩ EL = ∅ then /* First parent test */

15 output Q
16 DQ = reduce(DP , Q,EL)
17 if d < max_depth then /* Depth cutoff */

18 put((Q,DQ, EL, d+ 1))

19 else

20 expand(Q,DQ, EL, d+ 1)

21 EL← EL ∪ {e}

22 Function runThread()
23

24 while !isTupleSpaceEmpty() do

25 (P,DP , EL, d)← get()
26 expand(P,DP , EL, d)
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• Efficiency: It is easy to implement the TupleSpace in a way such that simultaneous put and get
require little to no synchronization. The structure is simple enough to have low overheads, and can
scale to large problems with many tuples involved.

• Customizability: The behavior of a parallel program using Melinda boils down to a simple
scheduling problem: when a thread on a core executes get, what tuple will it receive ? The choice
of some tuples can favor locality, while the choice of other tuples can help with load balance. This
behavior can be tuned at will.

In order to understand better how Melinda’s behavior can be customized, it is necessary to get the in-
tuition of how we designed the TupleSpace. The TupleSpace is a set of deques, which are data structures
well adapted for simultaneous insertion and extraction with little to no synchronization. We call each of
these deques an internal.

• when put is called with a new tuple, it first has to choose an internal for insertion, or create a new
one if necessary. This choice is delegated to a function called distribute, which takes as input the
tuple and the id of the thread requesting insertion, and returns an internal id. Then put performs
the actual insertion.

• when get is called, it has to choose a non empty internal for retrieval. This choice is delegated to
a function called retrieve, which takes as input the id the thread requesting a tuple, and returns a
non-empty internal id. Then get retrieves the tuple from that internal.

distribute and retrieve are relatively simple functions of Melinda which are exposed to the pro-
grammer willing to alter its behavior. Our default implementation of these functions is to have one
internal per core, in order to favor locality as much as possible: new tuples produced on a core are
likely to have associated reduced datasets residing in the cache of this core, so giving back these tuples
to the thread working on this core will allow to exploit immediately the contents of this cache. Such
locality problems have been shown to be of great importance for the performance of parallel pattern min-
ing algorithms on multicores [ZPL97, GBP+05a, BPC06]. We thus focused on these problems, which
is explained with more details in Chapters 3 (subsection 3.3.3) and 4 (subsection 4.3.3) of the PhD of
Benjamin Négrevergne [Neg11].

Other implementations for distribute and retrieve are possible, for example by creating one internal
per enumeration depth level in distribute, and by exploiting in retrieve the heuristic that expand is
usually computed faster for deeper patterns to improve the scheduling.

We advocate that for pattern mining researchers, Melinda is a nice tool to explore scheduling strate-
gies for pattern mining.

Thanks to the ease of use of Melinda, since 2007 we could propose 4 new parallel pattern mining
algorithms, and could focus on algorithm and work-sharing concerns instead of low level synchronization
issues. These algorithms are:

• PLCM [NTMU10]

• PGLCM [DLT10], [DTLN13]

• ParaMiner [NTRM13], [Neg11]

• PerMiner [Cue13]
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C Breaking the memory wall for ParaMiner

Experiments of Tatikonda et al. [TP09] on bandwidth pressure from a pattern mining algorithm on a
multicore architecture have been done in the extreme case of tree mining. In this case, CPU-costly tree

inclusion tests have to be performed, and can be accelerated later by keeping large data structures called
occurrences lists in memory. Thanks to ParaMiner’s genericity, several different pattern mining problems
that exhibit different CPU and memory usage behaviors can be evaluated, where the algorithm is fixed
and only Select and Clo change.

We conduced preliminary experiments with our C++ implementation of a preliminary parallel imple-
mentation of ParaMiner corresponding to the pseudo-code of Algorithm 4. The pattern mining problems
tested were closed frequent itemset mining (FIM), closed frequent gradual itemset mining (GRI), and
closed frequent relational graph mining according to the definitions in [YZH05] (CRG). The detail of
the Select and Clo functions for these three problems can be found in [NTRM13]. The depth cutoff
threshold is set to a depth of 2, which gave the best results for these experiments.

The characteristics of the datasets used in the all the experiments of this chapter are given in the
table below. Note that we report the size of the dataset as given in input to ParaMiner after encoding the
problem as a set.

Problem: dataset name || DE || | E | Size (MB)
FIM : BMS-2 (sparse) 320,601 3,340 2.2
FIM : Accidents (dense) 11,500,870 468 34
GRI : I4408 50,985,072 4,408 194.5
CRG : Hughes-40 270,985 794 6.0

About these datasets:

• BMS-2 and Accident are well known datasets from the FIMI repository [Goe04]. They are repre-
sentatives of sparse and dense datasets respectively. We got similar results for each density class
on other datasets of the FIMI repository, and only report results on these ones.

• I4408 is a real dataset from bioinformatics containing gene expression values in the context of
breast cancer [DLT10]. There are 4,408 genes tracked (4,408 attributes), and 100 experiments (100
lines) in the original dataset. Due to encoding as sets expressing variation directions of attributes
between lines, the numbers of lines is squared in the input to ParaMiner [NTRM13].

• Hughes-40 is also a dataset coming from microarray experiments. It represent a set of 1,000
potential gene interaction networks computed from real microarray data with a statistical algorithm
presented in [IGM01].

All the experiments have been conduced on a large server with 4 Intel Xeon X7560 processors clocked
at 2.27 GHz. These processors have each 24 MB of L3 cache, and 8 cores, for a total of 32 cores. The
total RAM of the server is 64 GB, and the bandwidth of the bus is 9.7 GB/s. In our experiments the time
is always wall-clock time measured with the Unix time command. Time thus include dataset loading
and preprocessing (single threaded), thread creation and result output. Although it lowers our parallel
performance due to Amdahl’s law, we consider that it is fairest experimental setting, as it reflects the
time that a practitioner will have to wait to get result, and the real speedup that parallelism will bring.

We present the speedup (execution time on n cores divided by execution time on 1 core) measure
for the three problems FIS, GRI and CRG on our datasets in Figure 2.6.

This figure is especially interesting. It is the first time that with a fixed pattern mining algorithm, the
parallel behavior of several pattern mining problems can be evaluated. It shows that:
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FIGURE 2.6: Speedup for first version of ParaMiner

• closed frequent gradual itemset mining (GRI) scales very well with the number of cores, reaching
a final speedup of 28 out of 32 cores

• closed frequent itemset mining (FIM) has a mixed behavior depending on the dataset:

– on the sparse dataset, it scales well up to 8 cores, then the scaling reaches a plateau with a
final speedup of 12 out of 32 cores

– on the dense dataset there is close to no parallel scaling, with a final speedup of 2 out of 32
cores

• closed frequent relational graph mining (CRG) also has very modest parallel scaling, with a final
speedup of 3 out of 32 cores

In order to understand the wide discrepancy of parallel scaling between FIM on dense datasets and
GRI, we studied bus bandwidth in both cases. For this, we made measurements with the performance

monitoring unit (PMU) embedded in recent processors to understand lower level behavior of the proces-
sor. It is difficult to have a direct measurement of used bandwidth as there are no performance counters
in the bus on our machine, but it can be easily deduced by indirect observation of some CPU counters.
When a core makes a memory access, there are performance counters that measure how long this ac-
cess takes to be completed. If the bus is saturated, all memory operations will be delayed, and thus the
percentage of memory accesses performed with unusually large delays will increase.
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FIGURE 2.7: Memory transfer latencies

This is represented in Figure 2.7.
Usually on the computer used for experiments, a memory access is performed in 128 cycles if the

data is not in the cache, less if the data is already in the cache. For the GRI problem, the proportions of
different delays for memory accesses stays constant with the number of cores: the bus is always equally
loaded. Around 1% of the accesses are out of the cache and take more than 128 cycles, which can
be easily understood from the large size of the input dataset: most of the times the dataset reduction
works well and allows the data to stay in cache, but a few times when the algorithm backtracks in the
enumeration it has to fall back on larger reduced datasets or even the original dataset, which are likely to
have been evicted from cache. This situation is normal and confirms the good speedup exhibited by GRI
in Figure 2.6. On the other hand, for FIM on Accidents the latency of memory accesses quickly increases
when increasing the number of cores. Even with as few as 2 cores, extremely long memory accesses
with latency higher than 512 cycles (4 times normal access latency) appear, and make more than 1% of
all accesses for 32 cores. This is symptomatic of heavy bus congestion, and explains the lack of speedup
shown in Figure 2.6.

Dataset reduction by itself is an expression of the “memory over CPU” tradeoff: all the transactions
containing a pattern are stored together as a reduced dataset, in order to avoid costly rescans of the
complete dataset by Select and Clo. Often, the reduction in following computations is so tremendous
that dataset reduction is unavoidable in modern pattern mining algorithms. However, it is also very
costly to perform it, both for CPU, memory usage (RAM or cache), and bandwidth usage. We are thus
confronted with an amortized analysis problem, which can be expressed intuitively by: Is the gain in

performances of a dataset reduction worth the resources paid doing it ?

Answering this question theoretically is difficult, as the gain are to be computed on a subtree of com-
putation which is unknown a priori, and there are complex interactions between the different resources
(CPU, cache/RAM, bus bandwidth). Although I am interested in such theoretical approach, I consider it
as an open perspective that requires teaming up with a specialist of theoretical amortized analysis.

However, it is possible to understand the amortizing behavior of dataset reductions in ParaMiner by
using an experimental approach. Our approach follows the following steps:

1. For each dataset reduction performed by ParaMiner in its enumeration tree, identified by its input
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pattern, a reduction factor is computed, i.e. how much the dataset reduction shrinks its input
dataset.

2. The dataset reductions are sorted in decreasing order of reduction factor. The hypothesis being
that the dataset reductions having the highest reduction factors are the most important for gaining
performance.

3. ParaMiner is executed by activating only the top x% of dataset reductions having the highest
reduction factors. During this execution the number of memory accesses per 1000 instructions
(excluding cache hits) is measured, it corresponds to the requested bus bandwidth.

Figure 2.8 show the results of this experiment for ParaMiner on FIM problem and Accidents dataset.
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FIGURE 2.8: Bandwidth impact of top-x% datasets reductions

There are three parts of this histograms:

• When 100 % of dataset reductions are performed (usual case of all pattern mining algorithms),
ParaMiner does too many memory accesses, indicating congestion and ultimately bad parallel
speedup. This corresponds to the results of Figures 2.6 and 2.7.

• When too few dataset reductions are done (less than 12.5 %), then the datasets are not reduced
enough and the algorithm has to scan through gigantic datasets that mostly don’t fit in cache. This
leads to bad usage of the machine resources, and ultimately long execution times.

• In all the other cases, the number of memory accesses is lower, meaning that the system bus is less
stressed, which ultimately leads to better parallel speedups and possibly to better execution times.
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We confirmed that the same behavior can be observed on other problems and other datasets, with
Accidents reported here as the most extreme case. These results clearly show that systematically doing

dataset reduction is harmful for parallel pattern mining performance.

However, doing too few dataset reductions is also detrimental for performance. Dataset reduction
must be kept, but driven by a well designed criterion that decides when it is necessary and when it can
be skipped.

We proposed such criterion in [NTRM13]. Intuitively, this criterion estimates a maximal reduction
factor that can be achieved by the dataset reduction of ParaMiner, and doesn’t perform dataset reductions
that can’t reach an high enough reduction factor (given by a threshold). The interested reader is invited
to read the paper for more details on this criterion.

Using the modified dataset reduction proposed, with a criterion set to only keep reductions that divide
at least by 2 the size of their input dataset, we repeated the speedup experiment presented at the beginning
of this section. The new results are presented in Figure 2.9.
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FIGURE 2.9: Speedup for final version of ParaMiner

The results change drastically for the FIM problem:

• for the sparse dataset BMS-WebView-2, there is no longer a plateau, and a final speedup of 25 out
of 32 cores is reached.

• for the dense dataset Accidents, there is a ten times increase in speedup, with a final speedup of 21
out of 32 cores.

For the CRG problem, there is an excellent scalability up to 12 cores, but it degrades after. The
reason is that unfortunately on the dataset used for CRG the dataset reduction has difficulties to get good
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reduction factors, and can’t reduce enough the data. Usually when a dataset is well reduced, datasets
close to the leaves of the enumeration tree are very small and hold in L2 or even L1 cache, leading to
very quick Select and Clo operations. Such case cannot be reached with the CRG problem and Hughes-

40 dataset, so at 12 cores the bandwidth gets saturated and adding more cores worsens the situation.
Last, the performances stay very good for the GRI problem.
These results confirm the interest of our approach, and the efficiency of our generic criterion for

selective dataset reduction activation. This criterion, like the rest of ParaMiner, is generic, so any pattern
mining problem that can be handled by ParaMiner immediately benefit from it.

D ParaMiner vs specialized parallel algorithms

To conclude on ParaMiner, we compare its mining performance with state of the art algorithm for the
FIM, GRI and CRG problems.

For the FIM problem, we compared our C++ implementation of ParaMiner with our C++ imple-
mentation of PLCM [NTMU10], which is specialized for frequent itemset mining and can thus take
advantage of a better first parent test and a more aggressive dataset reduction. We also compared it with
the C++ implementation of MT-Closed, a parallel closed frequent itemset miner proposed by Lucchese et
al. [LOP07]. MT-Closed is better adapted to dense datasets, thanks to the use of bitmap representations
and SIMD instructions. All algorithms were executed using 32 cores, the results are presented in Figure
2.10.

For the sparse dataset, ParaMiner’s run time is worse than PLCM but slightly better than MT-Closed,
which is one order of magnitude slower than PLCM. For the dense dataset, ParaMiner is between one
and two orders of magnitude slower than MT-Closed and PLCM.

These results show that despite its genericity, ParaMiner can have reasonable run times on the very
competitive problem of closed frequent itemset mining.

For the CRG problem, first defined in [YZH05], there are no available implementation of algorithms
solving this problem. We thus compared ParaMiner with gSpan [YH02] and Gaston [NK05], two state
of the art general graph mining algorithms. The comparison is clearly unfair because the CRG problem
is simpler than general graph mining. However it reflects the choice of algorithms that a practitioner
interested in the CRG problem would have. ParaMiner is run on only 1 core, because gSpan and Gaston
are not parallel algorithms. The results are shown on Figure 2.11 (a).

It clearly appears that ParaMiner is much more efficient for the CRG problem than gSpan and Gaston,
being two orders of magnitude faster for the lower support values. It demonstrates the interest of having
a generic algorithm that can be easily adapted to non-standard problems.

Last, for the GRI problem we compared ParaMiner with our C++ implementation of PGLCM pre-
sented in Chapter 1. Both algorithms are executed with 32 cores, the results are presented in Figure 2.11
(b).

Here, ParaMiner is two orders of magnitude faster than PGLCM, that was the previous state of the art
for the GRI problem. The problem is that PGLCM does not have a dataset reduction, and such a dataset
reduction is difficult to design when the dataset is a matrix of numerical values. On the other hand,
through set encoding ParaMiner requires a much bigger initial input matrix, but reduces it effectively,
leading to vastly improved execution time.

This is one of the key advantages of ParaMiner: any recent or unusual problem, such as CRG or
GRI, can immediately benefit from a state of the art enumeration and a state of the art dataset reduction,
allowing to start with efficient implementations that can process real world data. This is convenient for
practitioners, which need such performance. It also allows pattern mining researchers to start from a
strong baseline: works for improving this baseline are likely to be significant for the community, as were
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FIGURE 2.10: Comparative experiments for FIM, on BMS-WebView-2: (a) and Accidents: (b). Run-
times (top) and memory usage (bottom).

first works to improve Apriori in the late 90’s.

E Perspectives for "Mine faster"

Up to now in the pattern mining community, parallelism has too often been seen as an implementation
trick, and getting one or two orders of magnitude through better theory and algorithms on a single core
has been the most sought after contributions in the domain. However future processors are evolving
from multicore to manycore (see for example recent products from Tilera [Til13], Kalray [Kal13] and
Intel Xeon Phi), with hundreds of cores. Exhibiting good parallel scaling on such processors means
two orders of magnitude faster algorithms than classical sequential algorithms. Sooner or later, the
majority of pattern mining (and more generally data mining) researchers will realize that however nice
the algorithms and theory they produce, it will have to fit the parallel computing model. This is what the
community once did in the monocore era, when people realized that efficient handling of the memory
hierarchy was key for good performances.

For my part, I find this research topic very exciting. The works described in this chapter are a first
step, and there are many perspectives that I am interested in:
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FIGURE 2.11: Comparative experiments for CRG on Hughes-40 and GRI on I4408. Runtimes (top) and
memory usage (bottom).

• A perspective linked with of pattern mining DSL of the previous chapter is to provide some control
over parallelism in the DSL. This would allow to have extremely fine granularity parallel tasks in
the Select. Such fine grained decomposition would help for complex Select predicates and cases
where the datasets can’t be reduced enough, such as what happened in our experiments with CRG.

• Another interesting perspective previously evoked in this chapter would be to make a theoretical
amortized analysis of dataset reduction in ParaMiner. This would help to find a better criterion for
determining if a dataset reduction has to be performed or not, with strong complexity guarantees.

• This work on dataset reduction is strongly correlated with cache usage. There is a fascinating area
of research about cache aware [SCD02] and cache oblivious [FLPR99, BGS10] algorithms.

– cache aware algorithms take the cache hierarchy as a parameter, and provide theoretical upper
bounds on number of cache misses, effectively increasing performances

– cache oblivious algorithms don’t need to know the cache size, and guarantee that (asymptot-
ically) the data for the computation will fit into the cache.

ParaMiner is tending towards cache obliviousness: as the dataset is progressively reduced, it is
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likely to fit into the cache at some point. However there are no strong theoretical guarantees of
it, and many counter examples of datasets that can’t be reduced well can be found. It would be
interesting to turn ParaMiner into a real cache oblivious algorithm. Two difficulties arise: the first
one is that the Select predicate is not known, and may use extra memory. This could be controlled
by adding some reasonable hypothesis on memory usage by both parts of Select (which, we recall,
has to be decomposable). The other difficulty is that currently only relatively simple and regular
problems are known to have a cache oblivious algorithm, mostly on basic matrix operations. A
problem such as (generic) pattern mining is much more complex and would represent a significant
improvement in the study of cache oblivious algorithms.

• There are more and more data which are produced today as high throughput streams, with needs
for real-time analysis. Such real-time needs require highly efficient parallel algorithms, that are
possibly simpler in their results that classical pattern mining algorithms, but that are able to take
advantage of manycores or GPU architectures. In the starting PhD of Serge Emteu, co-advised
with Jean-François Méhaut (University of Grenoble) and Miguel Santana (STMicroelectronics),
we are working on such algorithms on a GPU target. The goal being to mine trace output of
applications running on prototype embedded systems developed by STMicroelectronics, in order
to quickly detect defects and accelerate the debugging process.

• A longer term perspective is to work on the recent trend of co-design between architectures and
algorithms [KVBH11]. The HPC (High Performance Computing) community, currently working
on exascale clusters (i.e. delivering 1 ExaFlops = 1018 Flops) that should become available around
2020, is facing several problems. Due to the massive parallelism (billions of cores) and compar-
atively modest bandwidth of these machines, it will be difficult to have good performances on all
types of applications. However, these clusters will be extremely costly to buy, and also to power:
for the scientific applications they will run, they must deliver performance significant enough to
justify that cost. The idea is thus to design simultaneously the algorithms and the architectures
(hence the term co-design) in order to make architectures choices best adapted to the applications
of interest, and to take this architecture into account efficiently in the applications code. Pattern
mining being an especially demanding application, it would benefit from such effort, even at a
scale more modest than exascale clusters.

Last, this chapter on parallelism would not be complete without a mention to Big Data. There are
nowadays many works on analyzing large scale datasets on clusters using the MapReduce paradigm
[DG04]. This is interesting in several ways for me:

• there exists datasets and pattern mining problems that are too large to be handled by a single
machine. Finding efficient solutions to handle them and produce patterns is a real challenge.

• Even on multicores/manycores, the tendency is to limit as much as possible shared memory and
cache coherency, which are complex to implement physically, lead to inefficiencies and also to fatal
bugs for programmers. Models coming from the cluster word (message passing) and functional
programming (Map Reduce) are seen as the way to make better manycore chips and program them
more easily. Thus working on MapReduce today is also a good way to gain experience for working
on future manycore processors.

In the internship and soon to start PhD of Martin Kirchgessner, co-advised with Vincent Leroy and
Sihem Amer-Yahia (both at University of Grenoble), we are working on adapting LCM for MapReduce.
This problem is more difficult than previous work such as PFP [LWZ+08] which adapted FPGrowth to
MapReduce, because of the closure which prevents some known efficient decompositions of the dataset
on several machines.
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MINE BETTER: Less is more

The two previous chapters have shown my work on how to extend the reach of pattern mining, and how
to make it faster thanks to multicore architectures. However once a pattern mining algorithm finishes, its
user is left with a list of patterns, possibly with millions of entries. Finding the most interesting patterns
in this list is extremely time consuming, and can be seen as a second order data mining problem.

There is increasingly more research on how to either get only the most interesting patterns, or make
the output of pattern mining algorithms more manageable. This corresponds to the following areas:

• control the part of the search space of pattern mining algorithms (constraint pattern mining
[SVA97, SC05, BJ10, BL07]).

• reduce in an understandable way the output of pattern mining algorithms (top-k pattern mining
[HWLT02], k-pattern set mining [GNR13])

• discover few patterns that answer to very specific questions (emerging and discriminative pattern
mining [DB13])

• provide visualizations over the set of patterns output [KSS05, CL10]

In the rich industrial and academic environment of Grenoble, I am currently confronted with chal-
lenging applications, with collaborators or practitioners that have high expectations from data mining
techniques. This chapter presents my latest works, focused on how to make pattern mining more use-
ful for these applications. Contrarily to the previous chapters, it presents research which is ongoing or
even just starting, giving a quick outlook at my short and mid-term perspectives. It is organized in three
sections:

• Mining execution traces from Multi-Processor System-on-Chip (MPSoC)

• Mining patterns social communities in user data

• Mining fewer patterns from matrix factorisations

45
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A Mining execution traces from Multi-Processor System-on-Chip

Since the 60’s, Grenoble is one of the strategic places in France for the development of its semi-
conductors industry. Today, it hosts an important part of the STMicroelectronics company (including
2 Fabs as well as R&D offices), which is world’s 5th provider of semi-conductors.

Semi-conductor companies such as STMicroelectronics are heavily investing on Multi-Processor

System-on-Chip (MPSoC). These are highly integrated electronic packages integrating several com-
putation cores, memories, specialized processing units and I/O components. They are both cheap and
powerful, and thus drive most of existing embedded systems, from our smartphones and tablets to car
and plane computers. However, due to their heavy parallelism, they are extremely difficult to debug with
today’s tools. The solution is to collect large execution traces of applications running on MPSoC, and
analyze them post-mortem in order to uncover bugs or bad performance causes. This is a complex data
analysis problem, and thus an exciting playground for data miners.

I have active collaborations both with the TIMA lab (Grenoble public research unit on the future of
MPSoC), and with STMicroelectronics. In both cases our goal is to provide tools that can be of actual use
to developers of applications on MPSoC, which exclude the traditional “skim-this-million-pattern-list”
approach. We have started working on different approaches on how to make pattern mining more useful
for these application developers. I present these approaches and some preliminary results below.

1 Mining contention patterns in extremely large execution traces

The first approach that I want to present is also the simplest, and consists in outputting as meaningful
and understandable patterns as possible while using legacy pattern mining algorithms, in a precise
application context.

This is the goal of the PhD of Sofiane Lagraa, that started in december 2010 and that will end in
early 2014, co-supervised with Frédéric Pétrot (TIMA lab, University of Grenoble). The team of F.
Pétrot (SLS team, TIMA lab) is working on the future generations of Multi-Processor System-on-Chip
(MPSoC), which are the chips that will power set-top boxes and smartphones in a few years. Such chips
have multiple processing cores and memories (16 - 32 cores is common), and performances issues of
applications come as well from bad parallel programming that from complex interactions between the
application, the system and the hardware, making such issues very difficult to detect and reproduce.
The solution is to use MPSoC simulators, that simulate the complete execution of the application on a
MPSoC and output a trace of this execution, and to analyze this trace.

Such simulations output large amount of traces (ex: 10 seconds of video decoding leads to 24 GB
of trace per core), making the analysis of such traces an application area of choice for data mining
methods. Despite such needs in data mining, there are still few works in this area, making the PhD of
Sofiane Lagraa interesting for TIMA and LIG labs to see how useful data mining, and especially pattern
mining methods, can be for analyzing large execution traces.

The most usual reason for sub-optimal performance in a MPSoC is contention, i.e. when too many
cores are requesting the same resource simultaneously, typically a memory. The memory being only able
to serve a given number of accesses per cycles, the other accesses are put in a waiting queue, delaying
further operations by requesting CPUs. This problem is similar to what we saw in Chapter 2, except that
in MPSoC there can be several memories and the bus topology is more complex.

In the traces, contention can be observed through an increase of the latency, which is a metric in-
dicating for each memory access how many cycles it took to complete. For example consider Figure
3.1.

It corresponds to a simulated execution of a Motion-JPEG (MJPEG) decoder on a MPSoC with 4
cores. For each core, all memory accesses are plotted, with the time stamp of the access in X-axis and
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FIGURE 3.1: An occurrence of contention in an execution trace

its latency in Y-axis. Towards the end of the execution all cores exhibit a simultaneous peak of latency:
it is symptomatic of contention.

Contention being a co-occurrence of several accesses to the same physical memory location, it can
be easily detected through frequent itemset mining, whose goal is precisely to detect co-occurrences.
Existing algorithms can be exploited, as long as a necessary preprocessing of data is performed.

The method we proposed in [LTP13] relies on the preprocessing steps explained below:

• All latency values are analyzed in order to determine latency values significantly above than aver-
age. This is performed with a simple statistical method: high latencies values are the upper quartile
of the latency values distribution.

• For each event having a high latency, a transaction is constructed. This transaction contains all
events in a window of ω cycles around the high latency event, accross all CPUs (ω being a param-
eter).

• The items in the transactions are the events:

– when the event is a data access the precise address becomes an item

– when the even is an instruction access the precise address as well as the function contain-
ing the instruction are turned into items, in order to have both fine and coarse granularity
information in the transaction.

For each event, its discretized latency as well as CPU are also added to the items in order to have
patterns as informative as possible.
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A standard closed frequent itemset mining algorithm is then run on these transactions in order to find
sets of events co-occurring often while contention arises.

We present in the table below two patterns found according to our method for a MJPEG video de-
coding application running on simulated MPSoC with 4 and 8 cores:

Platform Contention pattern Support
4 cores CPU[0,3] [0x10009ee4, 0x10009f78] idct [0x10016b50, 0x10016f2c] memcpy

lat_10_20 lat_20_30
72 %

8 cores CPU[0,7] [0x10009b10, 0x1000a224] idct [0x10016ab0, 0x10016e8c] memcpy
lat_10_20 lat_20_30

88 %

These patterns show that there is a contention problem between the idct and memcpy functions in
both platforms. The addresses colored respectively in red and blue give the precise addresses of the loops
of idct and memcpy for which the contention occurs. The patterns tell us that this contention affects all
CPUs of the considered platform (set of all CPUs represented by items CPU[0,3] and CPU[0,7]).
Given that the average latency is around 10 cycles in both platforms (represented by item lat_10_20,
that still appears in the pattern due to some normal accesses), the patterns also inform us that the con-
tention doubles or triples the latency of impacted accesses (presence of item lat_20_30).

The use of such pattern for a developer of the MJPEG decoder is to indicate him that the main
function of the MJPEG application, idct, which performs inverse discrete cosine transformation, is
negatively impacted by too many memory accesses, that the architecture can’t handle well. This can help
him to rethink the way the application is written, in order to either reduce or schedule better the memory
accesses. A more elaborate discussion can be found at the end of our DATE paper [LTP13].

Admittedly the method we proposed is simple from a pattern mining point of view. It has the advan-
tage to quickly give results which are understandable by an expert, and which can help to improve the
application.

It’s cons are that there are still many patterns returned, and a pattern miner must be heavily involved
to design the preprocessing in order to guarantee having interesting and interpretable results.

We are thus working on a more elaborate method which crosses several executions of the same
program on platforms having different number of cores. Our goal is to identify the sets of instructions
whose performance behavior changes the most when the number of cores increases, in the sense of loss
of scalability. We submitted our preliminary results in this direction to the EMSoft’13 conference.

2 The SoCTrace project

The approach above presents solutions for one of the problems of MPSoC execution trace analysis. How-
ever, there are many other kinds of problems, and for debugging or optimization application developers
may be interested in very peculiar characteristics of their traces.

This is the goal of the SoCTrace project to improve the set of tools available for trace analysis. This
large project sponsored by French Ministry of Industry (FUI project) is lead by STMicroelectronics, its
other members being University of Grenoble (LIG and TIMA labs), INRIA (French National Institute
for Informatics and Automatics), and ProbaYes and Magilem companies. The project aims to provide
new tools for storing, querying, analyzing and visualizing large execution traces coming from STMicro-
electronics MPSoCs. I am the responsible of the “University of Grenoble” partner in this project, which
involves 5 permanent researchers from the university, and will fund 3 PhDs and 2 engineers during the 4
years of the project.

In this project, pattern mining has an important role to play to simplify how developers interact
with the traces. Today, when developpers use traces to understand the behavior of their application,
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they usually rely on visualization techniques that represent all the events of the trace one by one. Such
visualization is often based on Gantt charts, as shown in Figure 3.2

FIGURE 3.2: Classic Gantt chart visualization of a trace portion (KPTrace tool [STM])

On the figure, an extremely short portion of a trace of video decoding is shown. One can immediately
note the complexity of this visualization, which makes very difficult to have a quick trace overview.

Simplifying trace representation: One approach that we propose is to exploit pattern mining in order
to extract regularities in the trace in order to simplify the trace representation. Especially, many of the
applications that STMicroelectronics is interested in are multimedia applications, which revolve around
the processing of audio/video frames. From frame to frame the computations performed are roughly the
same: frequent sequential patterns inside frames can be detected and exploited to abstract the events they
cover in a simplified rewriting of the trace. An example of such rewriting is shown in Figure 3.3: on the
left part, a fictional trace is shown, with frames materialized and three sequential patterns occurring in
both frames. On the right part, a rewriting of the trace with these patterns is shown: it contains much less
elements, reducing the number of information a developer has to handle to understand the trace.

Our goal is not to find all sequential patterns existing in frames, but a given number of patterns (user
parameter k) that allow an optimal coverage of the complete trace. Choosing a low number of patterns
allow the developer to quickly grasp the main repeating steps of the applications, and also to see where
these steps are not respected.

For example consider Figure 3.4 (a), which is a rewriting of an actual audio/video decoding trace
produced with GStreamer open source framework [GSt13], with the patterns we found (k = 10).

Each line corresponds to a frame, and each pattern is represented by a colored block whose length
is its number of events. Black blocks corresponds to areas of the frame not matched by any of the
10 patterns we found. The developer can quickly identify the different steps of frame decoding cap-
tured by patterns: the gray or yellow patterns at the beginning of most frames correspond to initial-
ization, the orange pattern at the middle corresponds to actual video decoding, and the pink pattern at
the end correspond to end of decoding and finalization. The developer can also notice that irregulari-
ties come mostly at beginnings of frames. Zooming on the fourth frame in Figure 3.4 (b), one can see
to the precise events inside the patterns and can spot in the unmatched region (in black) a rare call to
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Frame 1
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Pattern 3

Pattern 3

9.5054 GetFrame

9.5073 exitGet

9.5081 CS_I:produc

9.5083 Interrupt_Period
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(a) Raw trace (b) Rewritten trace

FIGURE 3.3: Example of frame rewriting with patterns
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(a) (b)

FIGURE 3.4: Trace rewritings: (a) set of 50 frames, (b) zoom on fourth frame

gst_ffmpegdec_chain:’resized, which asks for buffer resizing. Usually buffers are properly
dimensioned but here a buffer wasn’t, requiring this resizing call. Memory operations being critical for
performance, the developer is likely to investigate further on the reason of this buffer resizing.

From a more theoretical point of view, we have shown in a recent submission to the KDD’13 confer-
ence that this problem was an instance of the packing problem [Ege08], and NP-hard problem for which
no general solution is known. In a previous paper [KFI+12], we presented a simple solution to this
problem based on a basic greedy algorithm. In a recent submission to the KDD conference we present
several more elaborated solutions based on algorithms mixing pattern mining steps and greedy steps that
improve processing time by up to two orders of magnitude.

In this work I collaborate with:

• the PhD student Christiane Kamdem-Kengne, who is supervised by Noha Ibrahim and Marie-
Christine Rousset (both at the University of Grenoble) and financed by the SoCTrace project

• Takashi Washio from Osaka University, who I know since my postdoc in 2004-2005, and who
brought us his expertise in greedy algorithms.

Exploiting domain knowledge for trace analysis: A problem of the previous approach is that the
patterns found to rewrite the trace are not associated any semantics. The user has to manually inspect the
events constituting the patterns in order to determine their semantics.

In the PhD of Léon-Constantin Fopa, financed by the SoCTrace project and that I co-supervise
with Fabrice Jouanot and Jean-François Méhaut (both at the University of Grenoble), we are studying a
method to automatically associate semantics to frequent patterns found in the trace, and to use this infor-
mation to provide higher quality rewritings of the trace. To this end, we exploit a flexible formalization
of the domain knowledge as a lightweight ontology, which is a graph-based representation of knowl-
edge as concepts and relations between these concepts. This ontology represents base concepts of the
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underlying hardware and application. We show an example of such ontology in Figure 3.5. It represents
a preliminary ontology that we designed for audio/video decoding with the GStreamer framework.

FIGURE 3.5: Ontology for audio/video decoding with GStreamer

With the help of such ontology, the challenge is to associate semantics to the frequent patterns found
in the trace, such as those presented above for simplified rewritings. This semantics come by establishing
mappings between the frequent patterns and concepts of the ontology. We have proposed a first simple
method for automatically mapping frequent sequences to concepts of the ontology: in our case each
concept of the ontology corresponds to a well identified step of the GStreamer audio/video decoding
pipeline, so many individual events of the trace can be mapped to a concept. A pattern is thus mapped to
the concept of the majority of the events constituting it.

Figure 3.6 shows a simple rewriting of a GStreamer trace based on the patterns found by the method
presented above,where each pattern has been mapped to a class of an ontology representing video de-
coding with GStreamer. The x-axis is time. A rectangle corresponds to a pattern occurrence, where the
length of the pattern is the duration of this occurrence. Each pattern is given a color corresponding to the
ontology concept to which it is associated. The top row (Summary) shows a rewriting of the trace with
all patterns occurrences. The rows below give partial rewritings of the trace, with one row per ontology
concept. For each of these rows, only the occurrences of the patterns mapped to the ontology concept
of the row are represented. For example the ontology concept queue-stop is represented in the 6th

row of the figure, its color is pink. It has a long occurrence at the beginning of the trace, and three short
occurrences at the end. The last row (not_matched) corresponds to parts of the trace not covered by
any pattern.

As simple as our mapping method is, the figure shows its potential usefulness: here in the middle
of the decoding, the computer running the experiment has been purposefully stressed with high CPU,
memory and disk activity in order to disturb the decoding process. One can notice in the middle part of
the figure that pattern occurrences become extremely long, while they are short before and after the per-
turbation. By looking at the classes on the left, one can immediately know which parts of the GStreamer
pipeline are the most impacted the induced heavy machine load. Here the queue and qtdemux ele-
ments, which are responsible of sending raw data to the audio and video decoding algorithms, are delayed
by the heavy load, possibly due to high number of concurrent disk accesses. Then the CPU-bound el-
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FIGURE 3.6: Trace rewritten with semantic labels on patterns

ements faad-decode (audio decoding) and ffmpeg-process-decoder (video decoding) take a
large performance hit, possibly due this time to high load on CPUs.

We submitted these first results, as a proof of concept, to the EMSoft’13 conference. Our goal for
extending our preliminary results, are first to provide a complete hierarchical view of the trace through
the ontology to the developpers, using the hierarchy of concepts existing in the ontology, in order to
provide several levels of abstraction for analysis of the trace. Next, this work allows perform complex
queries on the trace using the high level concepts of the ontology, with query languages such as SPARQL
[W3C08]: we want to demonstrate the interest of such advanced querying for developers in order to
uncover complex problems in the trace.

B Use domain knowledge to enable scalable exploration of large user

datasets

The approach presented above has shown how to use domain knowledge in order to avoid showing the
patterns to the data analyst. In that approach, patterns are just representatives of concepts in the ontology,
and data analysts are mostly shown how concepts of the ontology appear in the trace.

In another approach set up in a different application context, we consider an orthogonal direction:
show the patterns to the data analyst, but use a taxonomy to simplify the elements constituting patterns,
through a controlled generalization process.

The application concerned is the analysis of user data, that we briefly describe below. Numerous
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social networking or social interactions website produce large amounts of such user data, which are data
where a transaction corresponds to an user, and the contents of the transaction correponds to actions from
that user. For example, movie rating datasets such as MovieLens [Gro11] associate to each user the set
of ratings he/she gaves to movies. Flickr [Fli13] associates to each user a set of pictures, with for each
pictures informations such as tags, geolocalisation, exposure information. Moreover, such datasets also
maintain for each user a set of attributes (age, sex,. . . ) which can help to better characterize the users.

Analyzing these data can allow to discover communities of users having common characteristics, and
exhibiting similar behaviors. This information can serve several purposes: it can be exploited to improve
and personalize the website, for sociological studies, and of course for online advertisement.

There has been a large range of work for detecting communities, for example in social networks
[CNM04, HAHH12]. But few of these approaches focus on giving an understandable definition of the
communities founds. Hence in starting PhD of Behrooz Omidvar Tehrani, co-advised with Sihem Amer-
Yahia (University of Grenoble), we are studying how to discover user communities and to label them a
relevant descriptions based on user characteristics, and with a short, understandable behavior based on
frequent patterns found in the data. This means that only a few patterns can be used to characterize a
community.

The domain knowledge that we are interested in are taxonomies of actions that can do users (for
example taxonomy over the movie domain in the case of MovieLens). This way generalization operations
can be carried on the elements of the patterns describing user’s actions. Many different patterns will by
generalization of their elements become identical, they can thus be aggregated and lead to fewer patterns
for the final description of communities.

Combined with demographic information, this approach will lead to community descriptions of the
form: This community represents 35-40 years old men who watched Drama movies from the nineties and

The Matrix. Preliminary testings have shown us that doing such pattern aggregation does not give good
results when based on a naive taxonomy generalization operator: it quickly gets to over-general patterns
which are not useful. We are now working on more elaborate generalization operators that are based on
statistical characteristics of the dataset to allow or not the generalization. In our fictional example above,
many different movies have been generalized to a higher level category Drama movies from the nineties.
However The Matrix could not be generalized to a higher level category (possibly “Science Fiction”),
giving an important information about the community: its members do not like science fiction movies in
general, but all found some special interest in The Matrix movie.

C Reducing the number of patterns

When there is no domain knowledge available to reduce the number of potential patterns, there still
exists solution to summarize the contents of the dataset with a few patterns. Most of these solutions
boil down to an optimization problem: among the complete set of N patterns, choose k patterns (with
k ≪ N ) optimizing some objective function that represents how well the dataset is summarized. Some
of these approaches exploit an optimization criteria specified through constraints, and then proceed to an
exhaustive search of the best set of k patterns [GNR13], with a considerable computational cost. Other
approaches, while based on a similar principle, use heuristics to reduce the search space . There are also
approaches that exploit criterion based on information theory, and try to determine the set of patterns that
compress best either the dataset through rewriting [VvLS11] or the set of frequent patterns [AGM04].

The solution that we explore in the starting PhD of Hamid Mirisae, co-advised with Eric Gaussier
(University of Grenoble), is different. It is based on the fact that patterns “summarizing well” the data
should be related to the “important parts” of a matrix. One example of such “important parts” are latent

factors found during matrix decomposition such as Non-Negative Matrix Factorization. The number of
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such latent factors can be controlled through an input parameter of the matrix decomposition algorithm,
and they are guarantee to give together a good approximation of the initial matrix. Extracting frequent
itemsets from these latent factors can thus severely reduce the output size while having some guarantees
on how representative these itemsets are over the set of all frequent itemsets.

These are not the first studies on mining frequent itemsets over latent factors from matrix decomposi-
tions: the topic has already been explored by Miettinen et al. [MMG+08] and Lucchese et al. [LOP10].
Our difference is that these works are based on binary arithmetic which can produce counter-intuitive
results, whereas we are focusing on an approach based on classical integer arithmetic, which guarantees
simpler to interpret results.
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CONCLUSION AND FUTURE WORK

The work presented in this habilitation thesis shows the evolution of my research interests. Since my PhD
and postdocs, I have constantly made contribution to the “classical” area of pattern mining, which is to
propose new patterns or faster ways to mine existing patterns. My focus has always been closed patterns,
for tree mining [TRS04, TRS+08], directed acyclic graph mining [TTN+07], gradual pattern mining
[DLT10, DTLN13] and periodic pattern mining [CBT+12, Cue13]. Since 2007, I have adventured myself
in the more unusual areas of generic pattern mining and parallel pattern mining on multicores, that I
think are of large interest for the future of pattern mining. Their combination to make parallel and
generic algorithms is especially powerful, as demonstrated by the ParaMiner algorithm [NTRM13]. My
most recent research interest is to study how to make pattern mining results more understandable for an
analyst, with a strong applicative focus on trace analysis.

Throughout this document I gave perspectives in each of the areas of research I am interested in
(Chapter 1 section 5, Chapter 2 section 5, most of Chapter 3). In this final chapter, I will not repeat them
but instead I will give my priorities among them, in order to show the future research direction that I
intend to follow.

The first point is that I see the ParaMiner algorithm as a strong asset, that I want to build upon
and extend for the coming years. Ideally, in the near future most of my work should thus be based
on ParaMiner. This is not possible today, and requires deep theoretical work to extend foundations
of ParaMiner. For example, currently it is difficult to integrate ParaMiner with the recent works of the
“Mine better” chapter, mainly because ParaMiner focus on pattern mining problems representable as sets

make it impractical for trace mining tasks that require general sequential patterns. One of my highest
priorities is thus to turn ParaMiner into an algorithm capable of handling a broad range of sequence
mining problems. Another point is that ParaMiner is an exhaustive algorithm, mining all patterns of the
data satisfying the pattern definition it was given, with the risk of overwhelming users with too many
results. An interesting perspective to reduce the output of ParaMiner without sacrificing its complexity
guarantees would be to exploit for the enumeration the notion of abstract lattice presented by Soldano
and Ventos [SV11]. Intuitively, this work from Formal Concept Analysis adds an operator that merges
together the equivalence classes of several closed patterns, and keeps one representative for each bigger
equivalence class obtained. The result is a smaller set of “closed” pattern, which are still organized in a
lattice, and where the difference between these patterns and the complete set of actual closed patterns is
formally defined by the operator given as input. It is a high priority for me to study if strong accessibility
is preserved in this setting, and if yes on how to modify ParaMiner to operate on abstract lattices.

These two perspectives would allow ParaMiner to cover most existing pattern mining problems (both
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representable as sets and representable as sequences), and at the same time to reduce its output in a
principled way. When adding the other perspective presented in Chapter 1, section 5 about establishing
an algebra and Domain Specific Language (DSL) for specifying pattern mining problems in ParaMiner,
this would make ParaMiner an invaluable tool for data analysts.

Working on such ambitious perspectives for ParaMiner implies to also keep working on improving
parallel performance on multicore processors. In the favorable case where the perspectives stated above
lead to a successful outcome and that ParaMiner becomes a well used data analysis tool in the years to
come, it will soon, like most pattern mining algorithms, be confronted with manycore processors. These
processors will present in an amplified way the same difficulties as current multicore processors, and
pose new challenges due for example to more complex bus architectures, or lack of cache coherency in
some architectures. In order to get ready for the multicore era, my highest priority is to better formalize
the use of caches and bus that is done in our pattern mining algorithms and especially ParaMiner. Find-
ing the conditions to turn these algorithms into cache oblivious or at least cache aware algorithms would
guarantee a more consistent parallel scalability across architectures and pattern mining problems, which
will be necessary for a large diffusion of our approaches. This requires a mix of theoretical, algorithmic
and experimental work in order to guarantee the actual scalability of the solutions proposed. I also con-
sider our recent work on MapReduce evoked at the end of Chapter 2 as well as some of my work on the
Haskell language as an important preparation for the manycore era: functional programming paradigms
are increasingly seen as a possible way to program efficiently multicore and manycore processors in the
years to come. In order to get a glimpse at the challenges offered by manycore processors, an interesting
perspective is to study the parallel scalability of pattern mining algorithms such as ParaMiner on the Intel
Xeon Phi, which is a recently available manycore with 60 cores.

Among all the research perspectives presented in this document, I think that the ones presented
above are those who fit best how I see myself as a pattern mining researcher: first and foremost, I
consider myself as a toolsmith. For nearly two decades, we pattern miners have provided elaborate,
hand crafted data analysis tool, requiring lots of skills to be used. Striving to make the best possible
pattern mining algorithms will remain the core of my research activity for a foreseeable future. However
through collaboration with data owners in applications such as trace analysis, I want to make these
algorithms of practical use for as many people as possible.

With better pattern mining tools, an exciting future application area should also arise in the forth-
coming years. Soon, with the advent of 3D printers, FabLabs and software for easily designing complex
objects (for example VehicleForge of the DARPA FANG project [DAR13]), even physical objects of
our everyday lives could be produced from numerical designs coming from individuals, and not large
companies. In such setting, pattern mining could have a large social impact, allowing to automatically
come with a wide range of templates of various objects, or new components useful for many different
objects. Fabrication of such key components could then be optimized in order to reduce natural resource
consumption at a very large scale, with tremendous benefits for both people and environment.

Could that be the birth of a new research field, eco-mining ?
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