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Résumé

Cette thèse vise à étudier la diffusion protonique, et dans une moindre

mesure anionique, au sein d’un matériau électrolyte pour pile à combustible

BaCeO3 dopé Gd, en adoptant une démarche multi-échelle.

Tout d’abord, des calculs ab initio ont été réalisés afin de déterminer les

positions stables des défauts protoniques OH•
O et des lacunes d’oxygène V ••

O

dans le matériau. Puis, en utilisant toujours le formalisme de la théorie de

la fonctionnelle de la densité, les barrières d’énergies pour les deux types de

défauts entre deux positions stables ont été calculées. Enfin, ces barrières

ont été utilisées dans un algorithme de Monte-Carlo cinétique afin de simuler

des trajectoires de protons et de lacunes d’oxygène. Cette méthode permet

d’accéder à des grandeurs macroscopiques, accessibles expérimentalement, telles

que l’énergie d’activation, le coefficient de diffusion ou la mobilité, en se basant

uniquement sur des données atomiques issues de simulations ab initio.

Ce travail montre que la surface d’énergie d’un proton dans une pérovskite

orthorhombique s’avère très complexe. Bien que le gadolinium exerce une

force attractive sur les protons, il se comporte seulement comme un piège peu

profond. Les barrières d’énergies s’étalent sur une large gamme de valeurs et

aucun mécanisme particulier n’apparait comme un processus limitant. Les sauts

inter-octahédriques sont favorisés par rapport aux sauts intra-octahédriques

pour le proton, et les barrières d’énergie sont systématiquement plus basse près

des dopants, tandis que le phénomène contraire est observé pour les lacunes

d’oxygène. L’effet d’une augmentation du taux de dopage sur le coefficient de

diffusion protonique n’est finalement pas trivial.
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Abstract

This thesis deals with the study of protonic diffusion, and to a lesser extent

anionic, inside Gd-doped BaCeO3, a possible electrolyte for fuel cell, using a

multi-scale approach.

First of all, first principles calculations have been performed to determine

stable positions for protonic defects OH•
O and oxygen vacancies V ••

O in the

material. Then, using the same formalism of density functional theory, energy

barriers for both kinds of defects have been computed between every pair of

stable positions. Finally, these barrier heights have been used in a Kinetic

Monte-Carlo algorithm to simulate trajectories of protons or oxygen vacancies.

This method allows to access macroscopic values, that can be measured by

experiments,such as the diffusion coefficient and its activation energy, using

only atomic data coming from ab initio simulations.

This work shows that the protonic energy surface is complex in orthorhombic

perovskites. Although gadolinium attracts the protons, it constitutes only a

shallow trap. There is a wide range of energy barriers and no specific mechanism

appears to be rate-limiting. Some inter-octahedral protonic hoppings are

favoured over intra-octahedral ones, and the barriers are systematically lowered

close to dopants, while the opposite phenomenon is found for the oxygen

vacancies. The effect of increasing the doping rate on the protonic diffusion

coefficient is eventually non trivial.
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Introduction

T
he awareness of global warming and the impending disappearance of fossil fuels

have aroused a new enthusiasm for any kind of ecological and renewable energy.

Neglected for a long time due to their high cost in terms of time and money, alternatives

energies are getting more and more attention. Among them, fuel cells, which are not

an alternative energy per se, but rather an ecological way of storage, are the topic of

numerous studies.

0.1 Fuel cells

It has been nearly two centuries since the first model of fuel cell was made by

William R. Grove in 1839 [1, 2], and yet the first large projects of applications are

only flourishing since a decade. Apart from their use by NASA during space mission

Apollo and Gemini in the sixties [3], fuel cells have been stuck at research stage for

a long time. Such a duration of development can be explained by the high cost of

fuel cell materials but above all by the development of other types of electric energy

generators (coal, oil, nuclear). Fuel cells are now put forward due to the ecological

context.

In addition to the environmental interest, fuel cells present a theoretical efficiency

of 90%, much higher than the one of a Carnot process, used in thermal power station

(with nuclear of fossil fuel). Even under real conditions, the electrical efficiency can

reach 60%, to which we can add, depending on the application, a possible thermal

efficiency through co-generation of 20-30%.

The operating principle is rather simple: the fuel cell looks like an electrochemical

cell in which the electricity is generated by oxidation of a reducing fuel (usually

hydrogen, sometimes methane) at the anode, and the reduction of oxygen at the

cathode. Figure 0.1 shows the operating principle of such cell, on the case of a

protonic conductor electrolyte (H+).

1



Introduction

Figure 0.1: Operating principle of a protonic conducting fuel cell.

If we only look at the principle, fuel cells seem indeed ecological as the only

emissions are water. But the production of hydrogen is still mostly based on fossil

fuels: 95% of the current production comes from natural gas via a steam reforming

process. These emissions of CO2 and the use of fossil resources prevent fuel cells from

being called « ecological and renewable ».

A proper use of these cells would be as energy storage devices rather than energy

production systems, by coupling them with renewable sources such as solar or wind

energy, whose electricity production is strongly dependent on weather. This is the

goal of the MYRTE project(Mission hYdrogène Renouvelable pour l’inTégration au

réseau Électrique [4]) in Corsica, which aims at creating solar energy on demand

through fuel cells coupled with solar panels (see figure 0.2). Hence, hydrogen appears

not as an energy source but rather as an energy carrier, allowing the conversion from

one form of energy to another, from electrical to chemical energy, or vice versa. This

principle can also be applied in residential sector: houses would benefit both from

the heat and the electricity generated by fuel cells.

But stationary applications are far from being the only destiny of these cells, the

transportation industry has launched their use with space shuttle, and is now starting

to put out on the consumer market hybrid cars (Toyota: 2015, Mercedes: 2017).

Finally, the smallest scales are also a matter of interest: mobile technologies (from

phone to computer) constitute a third possibility for applications, replacing a costly

2



0.2. Protonic conducting oxides

Figure 0.2: MYRTE project in Ajaccio [5].

battery with a fuel cell. Moreover, fuel cells can store three times as much energy as

a lithium-ion battery and thus have an excellent autonomy. They can handle strong

temperature variations and can have a long life span [6]

For those last applications, preliminary hydrogen production is still an issue but

new leads have recently appeared with the discovery of natural land-based sources

of hydrogen, potentially workable, by IFPEN (French institute of oil and new ener-

gies) [7].

This wide range of applications also appears in the large variety of types of fuel

cells. We can roughly distinguish two main classes:

• Protonic exchange membrane fuel cell (PEMFC) : proton conducting, low

temperature (<120 ◦C), rather for mobiles technologies.

• Solid oxide fuel cell (SOFC) : oxygen ion conducting, high temperature (>700 ◦C

because the activation energy of oxygen anion O2− is high), rather for stationary

applications.

PEMFC have the advantage of conducting protons, more mobile than oxygen, but

they cannot work beyond boiling temperature of water in order not to dry out their

membrane, therefore they need an expensive catalyst such as platinum for hydrogen

dissociation. A new type reconciling both advantages of PEMFC and SOFC thus

appears: the protonic ceramic fuel cell (PCFC). The working temperature range of

PCFC goes from 300°C to 600°C.

0.2 Protonic conducting oxides

First high-temperature protonic conducting ceramics based on strontium cerate

appeared in litterature thirty years ago [8]. Since then, numerous similar oxides

3
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have also shown this protonic conducting characteristic, such as titanates, zirconates,

stannates, and cerates. All of these oxides have a perovskite structure with formula

ABO3 shown on figure 0.3, in which the A-site is occupied by a divalent cation A2+

(Ba2+, Sr2+, Ca2+) and the B-site, at the centre of an oxygen octahedron, is occupied

by a tetravalent element B4+ (Ti4+, Zr4+, Sn4+, Ce4+).

Figure 0.3: Primitive cell of an ideal (cubic) perovskite structure (5 atoms).

By substituting the tetravalent cation on B-site by a trivalent element M, a

negatively charged defect is introduced, referred as M
′

B using Kröger-Vink notations

(a formal charge is labelled « M
′

» if negative and « M• » if positive). Charge

compensation will then promote the appearance of charged oxygen vacancies V••
O .

Under wet atmosphere, these vacancies will be able to incorporate water molecules,

creating protonic defects according to the following hydration reaction and enabling

a possible protonic conduction:

H2O + V ••
O +Ox

O ⇒ 2OH•
O. (1)

A very wide literature of experimental results exist on these materials, summarized

many times in the papers from Kreuer and co-workers [9–11] and Norby and co-

workers [12–14].

Among these materials, BaCeO3 exhibit a particularly high protonic conductivity

(see figure 0.4) and thus constitute a good possible electrolyte.

Numerical studies have also been performed on these protonic conducting per-

ovskites such as BaZrO3 [15] or BaSnO3 [16], but most of these works only deal

with the cubic structure. The treatment of orthorhombic structure, shared by lots of

perovskites, is rather complex, that is why very few ab initio studies have tackled it,

with the noticeable exception of the study on In-doped CaZrO3 by Bilic and Gale [17].
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0.2. Protonic conducting oxides

Figure 0.4: Protonic conductivity of various oxides (picture extracted from reference
[9]).

Table 0.1 references some numerical studies for various perovskites, mostly made

on cubic structure. The ground state structure of a perovskite is linked to its

Goldschmidt tolerance factor: t = rA+rO√
2(rB+rO)

. When the value of the tolerance factor

is below 1 [18], oxygen octahedra have the tendency to tilt and distort the ideal

cubic structure into an orthorhombic structure Pnma. This is the space group of the

ground state of many perovskites. At high temperature, all perovskites end up in the

cubic structure.

This thesis intends to present an extensive study of protonic conduction, and to a

lesser extent anionic conduction, in gadolinium-doped BaCeO3 in its orthorhombic

structure. This material constitutes a possible electrolyte for PCFC: the presence

of gadolinium atoms creates oxygen vacancies able to incorporate water molecules.

The water molecules then dissociate to give rise to protonic defects. This work will

examine the properties of these defects at the atomic scale (energy surface, migration

barriers) and how these properties are modified under the influence of the dopant.

Combining electronic structure calculations and KMC into a multiscale approach gives

indications about the effect of doping on the macroscopic diffusion coefficient. The

5
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Material t Structure Reference
SrCeO3 0.89 Pnma (orthorhombic) [19]
CaZrO3 0.92 Pnma (orthorhombic) [20–23]
BaCeO3 0.94 Pnma (orthorhombic) [19, 24, 25]
SrZrO3 0.95 Pnma (orthorhombic) [20, 22, 26]
CaTiO3 0.97 Pnma (orthorhombic) [23, 27, 28]
BaZrO3 1.01 Pm3̄m (cubic) [22, 23, 29]
SrTiO3 1.01 Pm3̄m (cubic) [27, 28]
BaSnO3 1.03 Pm3̄m (cubic) [30]
BaTiO3 1.07 P4mm (tetragonal) [23]

Table 0.1: Link between structure at room temperature and Goldschmidt tolerance
factor for some simple perovskites.

effects of dopant on proton conductivity are of prime importance: although dopants

allow to increase the concentration of proton in BaCeO3, they could significantly

reduce the good properties of protonic mobility of the pure material. A good dopant

should probably have a weak interaction energy with the proton in order to avoid the

deterioration of the protonic conductivity.

Outline

At first, various methods used in our multi-scale approach will be explained. Then

practical numerical aspects will be detailed with all hypothesis and approximations

made, and preliminary studies will be presented. The third chapter will present two

phenomena that can occur depending on thermodynamic conditions: oxidation and

hydration, and will scrutinise the different configurations of the dry and hydrated

compound. Afterwards, a fourth chapter will deal with mechanisms of protonic and

anionic migration, and the computation of the associated barrier between every pair of

stable positions. The diffusion and the conduction, studied by a Kinetic Monte-Carlo

algorithm using results from ab initio calculations, will be presented in the fifth

chapter, before finishing with an opening on a discussion of possible quantum effects

associated to proton transport.
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Chapter 1

Computational methods

In order to study protonic conduction and diffusion properties of our material, a
multi-scale approach has been carried out. First, ab initio computations have been
run to access stable positions and barrier energies for both protonic defect and oxygen
vacancy. Then these barriers have been used in a kinetic Monte-Carlo algorithm.
Finally, the quantum nature of nuclei has been taken into account with path integral
molecular dynamics calculations. In this chapter, we will see the interest, the
principle and the approximations of each of the methods we used.

Contents
1.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Presages of DFT . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Development of the wavefunctions . . . . . . . . . . . . . . . . . 14

1.2.1 Plane waves . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Pseudopotential and projector augmented wave method 16

1.3 String Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Simplified String method . . . . . . . . . . . . . . . . . . 20

1.4 Kinetic Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Events probability . . . . . . . . . . . . . . . . . . . . . 21

1.5 Path Integral Molecular Dynamics . . . . . . . . . . . . . . . . . 23

1.5.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 25

7



1. Computational methods

The multi-scale approach consists of three main steps:

• Ab initio calculations based on Density Functional Theory (DFT) so as to get

the energy landscape of stable positions for both hydrogen and oxygen vacancy

in Gd-doped BaCeO3 (on 80 atoms);

• Computations of energy barriers between two stable positions through String

Method (also using DFT, on the same number of atoms);

• Kinetic Monte-Carlo simulations using these barriers for studying diffusion and

conduction (on several thousands of atoms).

Moreover, few Path Integral Molecular Dynamics (PIMD) calculations have also

been carried out on a smaller simulation box (20 atoms), still in the DFT framework,

so as to treat the quantum effects on nuclei, and thus see what significance zero-point

effects can have. This will be the subject of the last chapter of this thesis.

Such a multi-scale approach, based on ab initio results, allows to access macroscopic

quantities that can be experimentally measured, such as the diffusion coefficient, the

activation energy or even the protonic mobility. Indeed, all those different simulation

methods can give access to different length and time scales of a system as shown in

table 1.1. The given orders of magnitude are purely indicative, but may obviously

vary according to the available computing power, the development of methods and

algorithms, and the studied system.

Method Time scale (s) Length scale (m) quantum treatment
PIMD none 1 10−10-10−9 nuclei and electrons

DFT+MD 10−15-10−10 10−10-10−8 only electrons
MD 10−13-10−6 10−10-10−6 classical treatment2

KMC 10−10-1 10−9-10−5 (only electrons in our case3)

Table 1.1: Application scales of different methods of numerical simulations. [31, 32]

1.1 Density functional theory

Purpose

Density functional theory (DFT) is a way of solving the Schrödinger equation in

order to determine the ground-state electronic structure of a system.

1. Time does not have a physical meaning in PIMD.
2. However, inter-atomic potentials may be based on quantum computations.
3. The transitions rates come from DFT computations in our case. KMC simulations could also

used barriers from PIMD computations and thus treat both nuclei and electrons with quantum
effects.

8



1.1. Density functional theory

1.1.1 Problem statement

We want to solve the Schrödinger equation for a system of N electrons and M

nuclei. The Hamiltonian is

Ĥ = T̂N + T̂e + V̂ee + V̂eN + V̂NN + V̂app (1.1)

where we have (using atomic units):

T̂N = −
M∑

k=1

1
2
∇2
k, kinetic energy of nuclei

T̂e = −
N∑

i=1

1
2
∇2
i , kinetic energy of electrons

V̂ee =
1
2

∑

i,j
i6=j

1
|~ri − ~rj|

, interaction energy between electrons

V̂eN =
N∑

i=1

M∑

k=1

−Zk
|~ri − ~Rk|

, interaction energy between electrons and nuclei

V̂NN =
1
2

∑

k,l
k 6=l

ZkZl

|~Rk − ~Rl|
, interaction energy between nuclei

V̂app, a possible external potential applied to the system

Born-Oppenheimer approximation is used, meaning that the electrons are supposed

to react instantaneously to any nuclei motion. Electrons move in a system in

which nuclei are fixed : we then get T̂N = 0 et V̂NN = constant and write V̂ext =

V̂eN + V̂NN + V̂app.

Now, we have to solve the equation: (T̂ + V̂ee + V̂ext)ψ = Eψ.

The main difficulty lies in the electron-electron interaction term: V̂ee. The equation

will become easy to solve if the independent electron approximation could be made,

that is to say replacing

1
2

∑

i,j
i6=j

1
|~ri − ~rj|

with
N∑

i=1

V el
eff (~ri)

.

The purpose of DFT is to replace V̂ee with
∑
Veff without any approximation.

9



1. Computational methods

1.1.2 Presages of DFT

1.1.2.1 The Hartree approximation

In order to simplify the electron interaction term, the Hartree approximation uses

the following effective potential:

Veff,i(~r) = Vext(~r)
︸ ︷︷ ︸

+
∫ n(~r′)
|~r − ~r′|d

3r′

︸ ︷︷ ︸

−
∫ ni(~r′)
|~r − ~r′|d

3r′

︸ ︷︷ ︸

external potential Coulomb potential self-interaction

(1.2)

The resulting mono-electronic equations give a solution as a product of mono-

electronic wavefunctions: ψ({~ri, si}) =
∏N
i ψJi

(~ri, si). But these wavefunctions are

not orthogonal and the solution does not respect the Pauli exclusion principle.

1.1.2.2 The Hartree-Fock equation

In order to respect the Pauli principle, the wavefunction is anti-symmetrised using

a Slater determinant:

D({~ri, si}) =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

ψJ1
(~r1, s1) · · · ψJN

(~r1, s1)
...

. . .
...

ψJ1
(~rN , sN) · · · ψJN

(~rN , sN)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1.3)

By applying the variational method to Schrödinger equation under the constraint

of orthonormalisation of mono-electronic wavefunction, the Hartree-Fock equation

can be obtained 4:
[

−1
2
∇2 + Vext(~r) +

∫ n(~r′)
|~r − ~r′|d

3r′
]

ψiσ(~r)−



∑

j

∫ ψ∗
jσ(~r′)ψiσ(~r′)
|~r − ~r′| d3r′



ψjσ(~r) = εiσψiσ(~r)

(1.4)

The second term, called « Fock operator » or « Exchange potential » is a non-local

potential. This term is analogous to the « self-interaction » term in the Hartree

equation, but it takes into account interactions between all the electrons with parallel

spin (and not only one electron with itself).

The Hartree-Fock approximation is accurate except for the fact that only one

Slater determinant is considered instead of an infinite linear combination: all that

is missing is electronic correlation.

1.1.2.3 Slater Theory

Slater [33] reinterpreted the Fock operator by multiplying and dividing it by

ψ∗
iσ(~r)ψiσ(~r). It then appears as a simple multiplicative operator, similar to Coulomb

4. The Hartree equation is obtained using the same method but under normalisation constraint
only.

10



1.1. Density functional theory

potential:

−



∑

j

∫ ψ∗
jσ(~r′)ψiσ(~r′)
|~r − ~r′| d3r′



ψjσ(~r) =⇒
[
∫ nxiσ(~r, ~r′)
|~r − ~r′| d

3r′
]

ψiσ(~r) (1.5)

where nxiσ(~r, ~r′) is the charge distribution defined by:

nxiσ(~r, ~r′) = −
∑

j

ψ∗
iσ(~r)ψjσ(~r)ψ∗

jσ(~r′)ψiσ(~r′)
ψ∗
iσ(~r)ψiσ(~r)

(1.6)

But the new charge distribution depends on ~r and not only ~r′ (dynamical effect),

on the orbital i and the spin σ of the considered electron. It satisfies the condition
∫

nxiσ(~r, ~r
′)d3r′ = −1, which reminds of the « self-interaction » term of the Hartree

equation.This characterises what is called the « exchange hole »: the electron in ~r

creates a hole in the charge density when moving, he repels the other electrons.

To simplify Hartree-Fock equation, Slater made two approximations:

• In a first time, he averaged the exchange hole on all orbitals, weighting with

the probability for one electron in ~r to be on the orbital iσ:

piσ(~r) =
ψ∗
iσ(~r)ψiσ(~r)

∑

j ψ
∗
jσ(~r)ψjσ(~r)

(1.7)

It gives us the equation nxσ(~r, ~r′) =
∑

i piσ(~r)nxiσ(~r, ~r′).

• Then, he went further in its simplification, making the approximation of an

homogeneous electron gas (or jellium model):

i/ periodic boundaries conditions are imposed (on a box with a volume V )

ii/ wavefunctions are planewaves with a uniform density nσ = Nσ

V

iii/ states are occupied if |~k| 6 kFσ = (6π2nσ)1/3

He computed the exchange hole with these wavefunctions to finally get a greatly

simplified exchange potential:

V Slater
σ (~r) = −3

2

(

6
π

)1/3

n1/3
σ (1.8)

Later, Kohn and Sham [34] would make the homogeneous electron gas approxim-

ation then the variational method (the reverse of Slater approach) to find a slightly

different potential:

V KS
σ (~r) = −

(

6
π

)1/3

n1/3
σ (1.9)

11



1. Computational methods

1.1.3 Principle

1.1.3.1 Hohenberg-Kohn theorems

Density functional theory is based on two fundamental theorems, formulated by

Hohenberg and Kohn in 1964 [35] :

1) Density as a unique variable. The ground state density is enough to determine

all the properties of a system.

In fact, the external potential V̂ext(~r) is unique for a given ground-state density

n(~r). Since V̂ext(~r) determine the Hamiltonian, all the properties of the system can

be determined in theory.

2) Variational principle. The ground state density minimises the functional

EV [n] = FHK [n] +
∫

Vext(~r)n(~r)d3r. (1.10)

The universal functional FHK , independent of external potential Vext(~r), is defined

by FHK [n] = minψ→n〈ψ|T̂ + V̂ee|ψ〉.

These theorems prove the existence of functionals of the density, but they do not

give any information on the expression of these functionals.

1.1.3.2 Kohn-sham theory

The idea of Kohn and Sham [34] is to consider a fictitious system of N non-

interacting electrons under an arbitrary potential Vs(~r). The Hamiltonian of such a

system is separable and can thus be written as:

Hs =
N∑

i=1

hs =
N∑

i=1

[

−1
2
∇2 + Vs(~ri)

]

(1.11)

where hs is the mono-electronic Hamiltonian: hsψi = εiψi. From the mono-electronic

wavefunctions, the ground state density can be built:

n(~r) =
N∑

i=1

ni|ψi|2 with ni







= 1 if εi < εF

= 0 if εi > εF

∈ [0, 1] if εi = εF

(1.12)

The kinetic energy of the system of non-interacting electrons can then be defined:

Ts[n] = 〈ψs|
1
2

N∑

i=1

∇2
i |ψs〉 (= FHK [n] because V̂ee = 0) (1.13)

Now, let’s consider a real system of electrons, with the same ground state density as

the fictitious system. The exchange-correlation energy Exc[n] is defined by FHK [n] =

12



1.1. Density functional theory

Ts[n] + J [n] + Exc[n] where Ts[n] is the non-interacting kinetic energy and J [n] the

Coulomb (or Hartree) energy:

J [n] =
1
2

∫ ∫ n(~r)n(~r′)

|~r − ~r′|
d3rd3r′ (1.14)

Moreover, the universal functional FHK [n] is defined by :

FHK [n] = 〈ψ0|T̂ + V̂ee|ψ0〉 = T [n] + Vee[n] (1.15)

where ψ0 is the ground state wavefunction.

Finally, the exchange-correlation energy has the following expression:

Exc[n] = T [n]− Ts[n] + Vee[n]− J [n] (1.16)

The density n must minimise both the energy of the fictitious system Ts[n] +
∫

Vs(~r)n(~r)d3r and the energy of the real system Ts[n]+J [n]+Exc[n]+
∫

Vext(~r)n(~r)d3r,

we thus must have:

Vs(~r) = Vext(~r) +
δJ

δn
+
δExc
δn

(1.17)

We can then find the same ground state density nG for both systems. It is much

easier to calculate it from the fictitious system, as it comes down to a system of

mono-electronic equations:
(

−1
2
∇2 + Vext(~r) +

δJ

δn
+
δExc
δn

)

ψi(~r) = εiψi(~r) (1.18)

These are the Kohn-Sham equations.

This theory is formally exact, except for the Born-Oppenheimer approximation and

the non-relativistic approximation, but the (ψi, εi) do not have any physical meaning

and, above all, the analytical expression of the exchange-correlation functional is

unknown. Different ways of calculating it have been developed afterwards.

1.1.3.3 Exchange-correlation functional

(a) Local-density approximation (LDA)

The first idea to try to get an expression for this mysterious exchange-correlation

potential is to consider a system with a slowly-varying density, so that the local

approximation can be made:

ELSD
xc [n] =

∫

εxc[n]n(~r)d3r (1.19)

Among local functionals, the easiest is obtained with the Jellium model, defined

in section 1.1.2. We thus get the Slater exchange energy:

ES
x [n] = −3

4

(

3
π

)1/3 ∫

n4/3d3r (1.20)

13



1. Computational methods

This exchange, when associated to the correlation of Vosko, Wilk and Nusair [36]

(see appendix A.1) is commonly referred as the Local density approximation (LDA)

(and can be generalised in LSDA, Local Spin Density Approximation, for magnetic

systems by considering separately both spin densities).

The LSDA, despite its rough approximation, gives rather good results, in particular

through a right compensation between the exchange energy error and the correlation

energy error. Nevertheless, if we want to compute rather small quantities precisely

such as barrier energies, we must use a more accurate functional.

(b) Generalized gradient approximation (GGA)

A correction depending on the gradient of the electron density is added to the

exchange-correlation functional, which can hence be written as:

EGGA
xc

[

n↑, n↓
]

=
∫

n(~r)εhomx [n]Fxc(n↑, n↓,∇n↑,∇n↓)d3r (1.21)

where Fxc is the enhancement factor and εhomx the exchange energy density of an

homogeneous electron gas, that is εhomx = −3
4

(

3
π

)1/3

n1/3 .

Among the most famous GGA functionals, we can cite the BLYP functional,

which uses Becke exchange [37], and Lee-Yang-Parr correlation [38] or the Perdew,

Burke and Ernzerhof (PBE) exchange-correlation functional [39]. It is this last

approximation PBE, detailed in appendix A.2, we will use in our case, as

it is a widely used functional in solid state physics.

1.2 Development of the wavefunctions

Let’s put aside the purely theoretical aspects to treat a more practical question:

how can we determine the wavefunctions solutions of the Kohn-Sham equations? In

practice, we must choose a set of basis functions. Then, we will have to find the

components of our wavefunction on this basis set, i.e. the coefficients in a linear

combination of basis functions. This basis set is crucial, several options are available:

plane waves, Gaussian orbitals, atomic orbitals, etc. The code we used in this thesis

is a plane wave code called ABINIT 5[40].

1.2.1 Plane waves

The interest of plane waves is that they are very easy to treat mathematically

and there is a systematic way to go towards the completeness of the basis by simply

5. http://www.abinit.org/
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1.2. Development of the wavefunctions

increasing the number of plane waves (it is not the case for localised orbitals such as

gaussians). Besides, there are particularly well-fitted for periodic systems.

1.2.1.1 Bloch’s theorem

In the case of periodic boundaries conditions, we have a periodic effective potential

in Kohn-Sham equations (see equation 1.17): Vs(~r + ~R) = Vs(~r) for all vectors ~R

written as a linear combination of the cell vectors:

~R = n1 ~a1 + n2 ~a2 + n3 ~a3, (n1, n2, n3) ∈ Z
3. (1.22)

In the fictitious system, the wavefunction are solutions of Kohn-Sham mono-electronic

equations 1.18. According to Bloch’s theorem [41], we have the relation:

ψn~k(~r + ~R) = ei
~k·~Rψn~k(~r), (1.23)

where n is the band index, and ~k is a vector of the reciprocal space, that can be

restricted to the first Brillouin zone. For a given vector ~k, there are several solutions

to the monoelectronic Kohn-Sham equations corresponding to different discrete levels

of energy indexed by n.

1.2.1.2 Development in plane waves

According to Fourier’s theorem in one dimension, every periodical function with

a period « a » can be represented by an infinite sum of complex exponentials:

{exp(2iπn
a
x)}n∈Z. The same can be applied in three dimensions, if we introduce

the vectors of the reciprocal space ~G:

~G = n1
~b1 + n2

~b2 + n3
~b3, (n1, n2, n3) ∈ Z

3. (1.24)

We have the following relation between real and reciprocal vectors:

~ai · ~bj = 2πδij.

Therefore, the complex exponentials, or plane waves,
{

ei
~G·~r
}

(n1,n2,n3)∈Z3
constitute a

complete basis set for Kohn-Sham wavefunctions.

Practically, we cannot use an infinite number of exponentials: only wave vectors
~G with a modulus below a defined value Gcut are included. It is useful to note that

this value Gcut can be related to a cutoff energy Ecut as a plane wave represents a

free particle with kinetic energy ~
2G2

2m . Choosing a cutoff energy is enough to

determine all the properties of the basis set, i.e. all the plane waves exp(~G ·~r)
such as :

~
2G2

2m
< Ecut. (1.25)

15



1. Computational methods

1.2.2 Pseudopotential and projector augmented wave

method

1.2.2.1 Frozen core approximation

In addition to the exchange-correlation approximation inherent in DFT, another

approximation is often made in solid state physics: the frozen core approximation.

This approximation consists in regarding the core electrons (to define according to

the environment) as not participating in chemical bonds and reactions, as being

insensitive to external variations, hence the term « frozen ». This hypothesis is related

to two observations:

i/ In the vicinity of the nucleus, the wavefunction has rapid oscillations and thus

needs a very fine grid to be accurately described (it means we need a lot of plane

waves in our case), but the shape of the wavefunction is not very sensitive to

chemical environment.

ii/ In the inter-atomic region, for external levels, the wavefunction is smoother and

more regular, but also very sensitive to external variations.

This hypothesis allows to ignore the treatment of some electrons in order to be able

to compute heavy elements at a lesser computational cost.

However, the core electrons implicitly appeared in the orthogonalisation of wave-

functions describing electronic states. Indeed, a wavefunction of a valence electron has

to be orthogonal to all core electron wavefunctions. It constrains this wavefunction

to have many nodes near the nucleus.

To avoid the touchy treatment of nodes, the potential created by the core ion

(nucleus and core electrons) can be replaced by a softened effective potential, usually

non local, called pseudopotential, associated to a nodeless pseudo-wavefunction.

This effective potential corresponds to a new atom with a screened nucleus but the

same valence properties. Figure 1.1 compares the shape of both the real and the

pseudo wavefunctions.

The key parameter in a pseudopotential is its cutoff radius rc beyond which both

wavefunctions must be strictly equal. The larger the cutoff radius, the softer the

pseudopotential and the faster the convergence (wavefunction easy to approach with

few plane waves); but the less transferable the pseudopotential, that is to say less

able to give good results whatever the chemical environment.

1.2.2.2 PAW method

Several methods exist to build pseudopotentials, each requiring particular condi-

tions on the pseudo wavefunction ψ̃ in addition to the condition ψ̃ = ψ for r > rc:

16



1.2. Development of the wavefunctions

Figure 1.1: Compar-
ison between real wave-
function (dashed blue
line) – associated to
the Coulomb potential
of the nucleus – and
the pseudo wavefunc-
tion (solid red line)
– associated to the
pseudopotential. Both
wavefunctions are ex-
actly identical beyond
the cutoff radius (r >
rc).

• norm-conserving [42, 43] :
∫ rc

0 ψ̃ =
∫ rc

0 ψ

• ultra-soft [44] : relax the previous condition to use a limited basis set.

More recently, a method combining the low computational cost of pseudo-

potential and the accuracy of all electrons methods has been developed :

the Projector Augmented Wave (PAW) [45].

The main idea of the PAW method is to separate the wavefunction in two parts:

• below rc, in a sphere around the nucleus, the wavefunction is developed on

atomic orbitals to recover the correct oscillations (real wavefunction),

• beyond rc, outside the sphere around the nucleus, the wavefunction is developed

on plane waves (pseudo wavefunction).

Linear transformation

A pseudo wavefunction linked to the real one through a linear transformation T is

introduced:

|ψ〉 = T |ψ̃〉. (1.26)

We want |ψ〉 and |ψ̃〉 to be equal everywhere except in the spheres surrounding the

atoms. We can decompose the linear transformation T as:

T = 1 +
∑

R

T̂R,

where T̂R are local contributions, called PAW corrections, and only act inside the

sphere enclosing atom R. This expression ensure that both wavefunction |ψ〉 and |ψ̃〉
coincide outside the atomic spheres. Inside the atomic spheres, corrections are added

to the pseudo wavefunction |ψ̃〉. These corrections, |ψsphere〉 and |ψ̃sphere〉, are the

real and the pseudo wavefunction inside the spheres respectively.

17



1. Computational methods

The real wavefunction can then be expressed as:

|ψ〉 = |ψ̃〉+ |ψsphere〉 − |ψ̃sphere〉 (1.27)

The next step is to expand the wavefunction inside the sphere on partial waves:

|ψsphere〉 =
∑

i ci|φi〉. The |φi〉 are atomic orbitals, built from the true atomic potential.

The index i refers to the atomic site R, the angular momentum (l,m) and an additional

number n to differentiate several partial waves with the same angular momentum

and localised on the same atom. For the pseudo wavefunction, the |φ̃i〉 are built from

a pseudopotential and must satisfy: |φi〉 = T |φ̃i〉. This implies identical coefficients

ci in both expansions.

The total wavefunction can thus be expressed as:

|ψ〉 = |ψ̃〉+
∑

i

ci(|φi〉 − |φ̃i〉). (1.28)

Equation 1.28, represented in figure 1.2, is the main equation of PAW method.

Figure 1.2: PAW transformation.

Once the linear transformation T is known, physical properties can be obtained.

Indeed, to compute the expectation value 〈A〉 = 〈ψ|A|ψ〉 of an observable A, we

introduce a pseudo-operator Ã = T †AT so that:

〈A〉 = 〈ψ̃|Ã|ψ̃〉.

If the frozen core approximation is right, and the basis set of projectors is complete,

then the PAW method has the same accuracy as an all-electron method. This

is the method we will use for all our calculations, unless specified otherwise. Since this

method is not really a pseudopotential method but instead requires the knowledge of

the coefficients {ci} for each atom, we will refer to the input file containing all the

needed informations as « atomic data » and not « pseudopotential ».
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1.3. String Method

1.3 String Method

Purpose

To find the energy variation along the reaction coordinate of a chemical reaction

(protonic or oxygen transfer in our case), we need the energy of both initial and final

stable positions, and the energy of the transition state, also called saddle state. This

name comes from the shape of the surface in the vicinity of the transition state: along

the reaction path, it is an energy maximum, but it is a minimum in the subspace

perpendicular to the path (see figure 1.3). Several methods are available to localise

the transition state of a chemical reaction through theoretical calculations. These

methods often look for the minimum energy path (MEP). It is the case for the Nudge

Elastic Band (NEB) or for the String Method. We will use the latter and explain it

hereafter.

Figure 1.3: The red dot corresponds to the saddle point.

1.3.1 Principle

The String method allows the determination of the minimum energy path between

two positions through an iterative algorithm [46]. The path – we can take a simple

straight line at the beginning – is discretised in equidistant configurations called

« images ». The choice of the number of images is crucial to get an accurate barrier

energy. At each iteration, a two-step procedure is applied:

i/ Displacement of the images according to atomic forces perpendicular to the path.

ii/ Re-parametrisation in order to keep all images equidistant (in terms of length or

of energy).
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1. Computational methods

The algorithm stops when a convergence criterion is reached: for instance, when

the total energy difference averaged over all images between one iteration and the

previous one is below 10−5 Ha.

1.3.2 Simplified String method

The method we actually used is the Simplified String Method, which differs from

the String Method by simply taking the total forces in the first step, instead of their

projection. This method is faster and even more efficient that the String Method [47].

Figure 1.4 sums up the algorithm.

Figure 1.4: Principle of the simplified string method.

1.4 Kinetic Monte-Carlo

Purpose

The kinetic Monte-Carlo (KMC) method is a numerical stochastic method to

simulate the time evolution of a system in which every process rate is known, under

or out of thermodynamic equilibrium. Its main interest is to be able to treat

simultaneously events with very different probabilities, and hence to study rare

events [48] (which are problematic in molecular dynamics). KMC can simulate long

trajectories – typically a few microseconds (or more depending on the temperature,

the type of processes, etc.) – while (ab initio) molecular dynamics can hardly simulate
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longer than a few picoseconds. It has been used to study bulk diffusion [49], reactivity

at surfaces [50], crystal growth [51], etc.

1.4.1 Principle

The kinetic Monte-Carlo method follows the relatively simple algorithm (« residence-

time algorithm »):

i/ Set the time t=0.

ii/ List all possible processes i = 1 . . . n and their rates νi in the system.

iii/ Calculate the cumulative function Ri =
∑i
j=1 νi for every i ∈ [1 : N ]. Let’s set

R = RN .

iv/ Generate a random number ρ1 ∈ [0 : 1]

v/ Find the event i such that Ri−1 < ρ1R < Ri and fulfil it.

vi/ Generate another random number ρ2 ∈ [0 : 1]

vii/ Increment simulation time t = t+ ∆t where ∆t = − ln(ρ2)/R

viii/ Return to step ii and iterate until the desired number of steps is reached.

At each iteration, the probability to chose an event is proportional to its transition

rate (see steps iii–v).

1.4.2 Events probability

1.4.2.1 Master equation

If PA(t) is the probability to find the system in the microscopic state A at time t,

the time evolution of this probability PA(t) is governed by the master equation [48]:

dPA(t)
dt

= −
∑

B 6=A
νABPA(t) +

∑

B 6=A
νBAPB(t), (1.29)

where νAB is the probability per time unit (rate constant) to go from state A to state

B.

Taking the master equation 1.29 at equilibrium leads to the condition for every

state A:
∑

B 6=A
[νBAP∞

B − νABP∞
A ] = 0, (1.30)

where P∞
A is the time-independent probability, i.e. the solution of the master equation

at equilibrium.

This equation simply states that the sum of all transitions into a given state A is

equal to the sum of all transition out of this given state A.
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In fact, one can show that the condition of equation 1.30 implies a stricter relation

called the detailed balance principle, valid for an isolated system or a system in

contact with a thermostat [52]:

νBAP
∞
B − νABP∞

A = 0 (1.31)

It is possible to prove that the canonical distribution is the equilibrium solu-

tion of the master equation for a system in contact with a thermostat. This

canonical distribution is given by:

P∞
A =

1
Z
e−EA/kBT . (1.32)

From equations 1.31 and 1.32, we get the following relation between both rate

constants νij and νji:
νAB
νBA

= exp

(

−EB − EA
kBT

)

(1.33)

1.4.2.2 Transition state theory

The algorithm requires only the probability rates {νAB} associated to each ele-

mentary process.

The most commonly used approach to get the values of these rates comes from

the transition state theory [53–55] :

νAB = ν0e
− ∆EAB

kBT (1.34)

where ∆E is the migration barrier between both initial and final positions, and the

general expression of ν0 is given, using the harmonic approximation, by [48] :

ν0 =
kBT

h

Z‡
Z

(1.35)

where Z‡ is the partition function at the transition state and Z the partition function

at the initial state A. The issue of the prefactor ν0 will be discussed in section 5.2.3.

Using equations 1.33 and 1.34 for a transition between state A and state B (see

notations in figure 1.5), provided that ν0 is identical for both rate constants νAB and

νBA, we must have:

νAB

νBA
= exp

(

−EB−EA

kBT

)

= exp
(

−∆EAB−∆EBA

kBT

)

⇒ EB − EA = ∆EAB −∆EBA
(1.36)

In fact, this last equation is obvious if we look at the physical quantities behind:

it simply states that the saddle point has the same energy whether the particle comes

from initial state A or initial state B:

EA + ∆EAB = EB + ∆EBA (= transition state energy) (1.37)
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Figure 1.5: Energy barrier between two stables positions A and B.

It is necessary to have this strict equality 1.37 to recover the canonical distribution

expected in kinetic Monte Carlo simulations. In section 5.1.2, we will make sure that

the set of energy barriers ∆EAB fulfils this condition.

1.5 Path Integral Molecular Dynamics

Purpose

Path Integral Molecular Dynamics (PIMD) aims at taking into account the

quantum nature of nuclei, left out in standard ab initio molecular dynamics, by

treating an equivalent system of an infinite number of classical particles.

1.5.1 History

Path Integral Molecular Dynamics (PIMD) or Monte-Carlo (PIMC) are based on

a 30-years old idea [56] and use Feynman path integrals [57, 58]. But it has become

practical since only a few years, with the advent of super-computers. In 1996, the

algorithms of path integral coupled with Car-Parrinello molecular dynamics [59] or

Born-Oppenheimer dynamics [60] have been detailed and discussed. The applications

are still rare and restricted to small systems of light atoms (such as the superfluid

transition of liquid helium at 2.17 K[61], or hydrogen bonding in water [62, 63])

because of its prohibitive cost. Nevertheless, a first paper of Zhang et al. [64] uses

this method on 5 atoms to simulate proton motions inside the perovskite BaZrO3.

1.5.2 Principle

In this section, the basic principles of ab initio PIMD formulated by Marx and

Parrinello in 1996 [60] will be presented. Here is a demonstration in the simple case

of a particle in a one-dimensional potential.
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The starting point is the canonical density operator ρ̂ = e−βĤ = e−β(T̂+V̂ ). The

partition function can then be written as the trace of this operator in the position

representation:

Z = Tr(e−βĤ) =
∫

dx〈x|ρ̂|x〉

We can then use the Trotter formula [65] :

eα(A+B) = lim
P→∞

[

e
α

2P
Be

α
P
Ae

α
2P
B
]P

We apply this theorem to ρ̂ and get:

〈x|e−β(T+V )|x〉 = lim
P→∞
〈x|

(

e− β

2P
V̂ e− β

P
T̂ e− β

2P
V̂
)P

|x〉

Let Ω = e− β

2P
V̂ e− β

P
T̂ e− β

2P
V̂ . The partition function can be written as:

Z = lim
P→∞

∫

dx〈x|ΩP |x〉

The insertion (P-1) times of the completeness relation I =
∫ |x〉〈x|dx leads to:

Z = lim
P→∞

∫

dx1dx2 . . . dxP 〈x1|Ω|x2〉〈x2|Ω|x3〉 . . . 〈xP |Ω|x1〉 (1.38)

We now need to compute:

〈xi|Ω|xi+1〉 = 〈xi|e− β

2P
V̂ e− β

P
T̂ e− β

2P
V̂ |xi+1〉. (1.39)

1.5.2.1 Potential energy

The potential energy operator action is easy because the eigenvectors of the

position operator |x〉 are the eigenvectors of V̂ (hence of e− β

2P
V̂ ) so that: e− β

2P
V̂ |x〉 =

e− β

2P
V (x)|x〉. The previous expression 1.39 simply becomes:

〈xi|e− β

2P
V̂ e− β

P
T̂ e− β

2P
V̂ |xi+1〉 = e− β

2P
(V (xi)+V (xi+1))〈xi|e− β

P
T̂ |xi+1〉. (1.40)

The only thing left to determine is the kinetic energy term 〈xi|e− β

P
T̂ |xi+1〉.

1.5.2.2 Kinetic energy

Once again, we insert the completeness relation, but on eigenvectors of the

impulsion operator I =
∫

dk|k〉〈k|:

〈xi|e
−β

P
T̂ |xi+1〉 =

∫

dk〈xi|k〉〈k|e
−β

P
T̂ |xi+1〉.

T̂ is a hermitian operator whose eigenvectors and eigenvalues are |k〉 and ~
2k2

2m

respectively. Moreover, we have the relation 〈x|k〉 = 1√
2π
eikx. We thus have:

24



1.5. Path Integral Molecular Dynamics

〈xi|e− β

P
T̂ |xi+1〉 =

∫

e− β~
2k2

2mP 〈xi|k〉〈k|xi+1〉dk =
1

2π

∫

e− β~
2k2

2mP eik(xi−xi+1)dk.

The substitution u =
√

β
2mP ~k− i

2~

√
2mP
β

(xi−xi+1), so that du =
√

β~2

2mP dk, finally

gives:

〈x|e−β

P
T |x′〉 =

1
2π
e

− mP

2β~2 (x−x′)2

×
√

2mP
β~2

×
∫

e−u2

du =

(

mP

2πβ~

)1/2

e
− mP

2β~2 (x−x′)2

(1.41)

1.5.2.3 Partition function

Using the three equations 1.38, 1.40 and 1.41, the partition function is finally

written:

Z = lim
P→∞

(

mP

2πβ~

)P/2 ∫

dx1 . . . dxP e− β

P

∑
V (xi)e

− mP

2β~2

∑
(xi−xi+1)2

(1.42)

where xP+1 = x1.

If we fix P, equation 1.42 appears as the partition function of a classical system

of P particles (beads or imaginary time slices ) connected by springs with a force

constant mk2
B
T 2P

~2 and subjected to an interaction potential V
P

inside each slice. The

key parameter to get the correct quantum partition function is thus the Trotter

number P.

1.5.3 Limitations

Path Integral molecular dynamics approach possesses some limitations though:

• it is only valid for distinguishable particles, (possibly bosons in PIMC);

• practically, it only works for « not too low » temperatures (otherwise, P must

tend to infinity);

• when P tends to infinity, the system behaves as a pure harmonic oscillator

leading to the necessity to use specific thermostats to recover the ergodicity

(risk of non-ergodic trajectories). In this work, a Langevin thermostat will be

used to ensure ergodicity.

We presented here the theory behind density functional theory, kinetic Monte-

Carlo and path integral molecular dynamics. The next chapter will explain some

parameters needed for density functional theory. Then, in the following chapters,

all these methods will be used to access thermodynamics, structural, diffusion and

conduction properties.
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Chapter 2

Numerical methodology

After describing all the theory behind the method we used, the DFT methodology –

parameters, assumptions, choices – will be detailed.
This chapter will first present preliminary results on elements, binary compounds

and pure barium cerate, and then describe how we built our supercell and how we
chose to treat the defects.
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2. Numerical methodology

2.1 Preliminary study – test of PAW atomic data

All DFT computations have been made with the periodic code ABINIT in the

PAW framework. This code uses planewaves as the basis set for wavefunctions. We

used the exchange-correlation functional GGA-PBE [39], but we also performed some

tests with a LDA functional. The use of a periodic code with planewaves implies two

parameters of convergence:

• the number of k-points to appropriately sample the Brillouin zone (for a non-

periodic system, one k-point is enough).

• the cutoff energy Ecut which controls the number of planewaves (see sec-

tion 1.2.1.2 and equation 1.25). The larger Ecut, the better converged the

calculation.

As described in the section 1.2.2, the core electrons are considered as frozen,

however the semi-core electrons of metals are explicitly treated using the PAW

method. Table 2.1 shows the explicitly treated electrons for each studied element.

Element Structure (number of treated electrons)
H 1s1 (1)
O 2s2 2p4 (6)
Ba 5s2 5p6 6s2 (10)
Ce 5s2 5p6 4f 1 5d1 6s2 (12)
Gd 5s2 5p6 4f 7 5d1 6s2 (18)

Table 2.1: Explicitly treated electrons in our simulations for each considered element.

The atomic data associated to these electronic structures have been generated

with the code AtomPAW [66]. They have to be tested on pure materials and binary

compounds to check their validity and define the suitable convergence parameters,

before using them in more complex simulations with five different chemical elements

(Gd-doped BaCeO3 with a protonic defect).

This preliminary study has two goals:

• testing the numerical scheme on the simple systems (molecules, crystals) that

will be used in the following as references for the calculation of various energies

• determining the numerical parameters (Ecut and k-point sampling) ensuring a

very good convergence of the results, according to a chosen criterion.

We will carefully detail the methodology to choose atomic data in this section. The

values of parameters are usually given in atomic units, i.e. length in bohr radius

1 a0=0.529 Å and energy in Hartree 1 Ha=4.360× 10−18 J=27.211 eV. The criterion

that will lead us in this preliminary study is an accuracy of 10−3 Ha (0.03 eV)

per atom or formula unit on the total energy. However, it is well known in
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2.1. Preliminary study – test of PAW atomic data

plane-wave DFT that an accuracy of 0.03 eV on total energies induces a much better

accuracy on the total energy differences (bond energies, cohesive energies, formation

energies, etc.). Therefore, the accuracy on physical quantities, with the same

parameters, will usually be much better than 0.01 eV.

2.1.1 Light elements – Molecules

We started with the light elements O and H to see if we recover correctly the

bond length and the binding energies of molecules O2, H2 et H2O. Special attention

is to be paid to this last molecule H2O since this is the molecule that will incorporate

inside our material, and the O-H bond will be fundamental in our study.

In order to choose perfectly appropriate atomic data, several cutoff radii have

been tested:

• for oxygen: rO1 = 1.1 a0 , rO2 = 1.4 a0, rO3 = 1.5 a0,

• for hydrogen : rH1 = 0.8 a0, rH2 = 1.1 a0.

For oxygen, we first tested a short (rO1) and a large cutoff radius (rO3), the intermediate

cutoff radius (rO2) was introduced afterwards, for reasons explained below. A large

radius is usually said to be « soft » while a short radius is said « hard », as it requires

more computations and gives a better accuracy. The cutoff radius is crucial for light

element since their bond length is usually rather short. We must be careful to choose

a cutoff radius short enough to prevent the overlap between PAW spheres, but not

too short to get a rather low cutoff energy and have a reasonable computational cost.

Table 2.2 shows the typical overlap induced by the different PAW atomic data for

H2 and O2 molecules, and for the usual O–H bond. By default, ABINIT tolerates an

overlap of 5% between two PAW spheres.

Molecules rc Overlap on length (Å) Overlap on volume (%)
H2 rH1 0.1 Å 2%

(0.74 Å) rH2 0.4 Å 15%
O2 rO1 0.0 Å 0%

(1.21 Å) rO2 0.3 Å 5%
rO3 0.4 Å 8%

O–H bond rH1 & rO2 0.2 Å 11%
(0.96 Å) rH2 & rO2 0.4 Å 15%

Table 2.2: Overlap on length and volume for H2, O2 and O–H bond, according to
different PAW atomic data.

Except for the atomic data of O with the shortest cutoff radius, overlaps of PAW

spheres are unavoidable to keep the atomic data rather soft. Our final choice of
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Figure 2.1: Convergence curves of several atomic data for hydrogen and oxygen (free
atoms).

atomic data will be a compromise with a small amount of overlap on the O–H bond

while keeping a very good (and perfectly controlled) accuracy on the bond energy.

We also tested a LDA functional for the exchange-correlation. For such non-

periodic system, we do not have to test the number of k-points, the sole parameter to

converge is Ecut, providing the simulation box is large enough to prevent interactions

between a molecule and its image in a different cell. We tried several values of cell

parameters : 10 a0, 20 a0 and 30 a0. It appeared that for both oxygen and hydrogen,

20 a0 was enough to get an accuracy on total energy better than 10−3 Ha per atom,

but 10 a0 was too small. We then run several simulations with Ecut varying from 4 to

60 Ha with a step of 2 Ha.

Figure 2.1 shows the difference in total energy found between Etot(Ecut) and

Etot(Ecut−max), with Ecut−max = 62 Ha, for the previously introduced atomic data

for hydrogen and oxygen free atoms (except rO2) for both LDA and GGA exchange-

correlation functional.

These curves allow to determine the right plane-wave cutoff energy associated to

each cutoff radius (according to the criterion previously defined). For instance, we

found a cutoff energy of 20 Ha for the hard radius of hydrogen, and of 12 Ha for the

soft one. For oxygen, the difference is even stronger, and a cutoff of 32 Ha is found

for rO1 while the soft radius allows the system to be converged with Ecut = 16 Ha. As

expected, hard atomic data, with a short cutoff radius, require a larger cutoff energy

than soft one, meaning a higher computational cost.

One should keep in mind that the cutoff energy depends on the chemical

environment, and so the cutoff energy ensuring a given accuracy in an atomic

system may be different in a bulk. Indeed, if a right cutoff energy for rO3 in atomic
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2.1. Preliminary study – test of PAW atomic data

system is found to be Ecut = 16 Ha, the oxygen molecule needs a cutoff energy of

26 Ha to get an error on the total energy below 10−3 Hartree per atom. This difference

implies using the higher cutoff of 26 Ha to get the correct binding energy.

Finally, we can see that there is no noticeable difference in convergence for LDA

or GGA, the difference will appear on the values of physical properties.

Once the cutoff energies have been determined, we have to look at physical

properties found for each cutoff radius with the right Ecut. Table 2.3 summarises the

results obtained for a cutoff energy so that the accuracy on the total energy is below

10−3 Hartree.

Molecules Exc rHc rOc Ecut (Ha) deq (Å) Ebind

H-H O-H (eV/molec.)
H2 LDA rH1 – 20 0.770 -4.878

LDA rH2 – 12 0.771 -4.849
GGA rH1 – 20 0.756 -4.506
GGA rH2 – 14 0.757 -4.481

LDA [45] 15 0.773 -4.62
GGA [67] 10 0.750 -4.58
GGA [68] 13 0.750 -4.54
Exp. [69] 0.741 -4.75

O2 LDA – rO1 32 1.209 -7.494
LDA – rO3 18 1.242 -7.066
GGA – rO1 32 1.222 -6.195
GGA – rO2 26 1.228 -6.262
GGA – rO3 26 1.249 -6.076

LDA [45] 15 1.228 -7.33
GGA [70] 37 – -6.214
Exp. [70] – -5.116

H2O LDA rH1 rO1 32 1.543 0.973 -11.533
LDA rH1 rO3 28 1.555 0.977 -11.458
LDA rH2 rO1 32 1.549 0.978 -11.452
LDA rH2 rO3 26 1.562 0.983 -11.376
GGA rH1 rO1 32 1.533 0.972 -10.161
GGA rH1 rO2 26 1.539 0.974 -10.160
GGA rH1 rO3 28 1.545 0.977 -10.163
GGA rH2 rO1 32 1.538 0.979 -10.020
GGA rH2 rO3 26 1.552 0.984 -10.026

GGA [70] 37 – – -10.134
Exp. [70] – – -10.104

Table 2.3: Binding energy and bond length for O2, H2 and H2O from our calculations
compared to other PAW calculations and experience. The O2 molecule is computed
in a spin-polarised scheme, its calculated magnetic moment is 2µB.

In this table, the difference between LDA and GGA clearly appears. We can see
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2. Numerical methodology

that GGA gives better results both on the bond length and on the binding energies, as

usually observed. This observation comforts us in the choice of GGA-PBE functional.

To see whether the atomic data give good results, we can compare our values with

previous ones computed in the same formalism: PAW method and GGA functional.

First of all, we see that both atomic data of H give the same results (Ebind

≈ −4.50± 0.02 eV and dH−−H = 0.756± 0.001 Å in GGA), in excellent agreement

with other GGA-PAW calculations [67, 68]. As the cutoff energy is low (compared

to the cutoff for other elements such as oxygen) even for the hard atomic data, we

choose the hardest one, rH1, to get the best results.

For O2, it is more complicated. We can see from the convergence curves of

figure 2.1(b), that both atomic data are not really satisfactory. There is a plateau

just below the 10−3 line meaning that a slight change in ∆E could result in a drastic

increase of the cutoff energy: this is the case for rO3 where we need Ecut = 26 Ha

for a molecule when Ecut = 16 Ha was enough for an atom. Furthermore, these

atomic data tend to significantly overestimate the bond length and underestimate the

binding energy, as shown in table 2.3. This is clearly due to the large overlap of PAW

spheres which is forbidden by PAW formalism. On the other hand, the hard cutoff

radius rO1 requires a very high cutoff energy and will have a great computational cost.

This is why we introduced an intermediate radius rO2 which gives almost

as good results as the hard one, but needs a cutoff energy as low as the

soft one. These are the atomic data we used in this thesis, except for some

tests with the hard one to confirm the validity of our results. These atomic data rO2

allow to treat the O2 molecule at a reasonable cutoff energy and keep a very good

binding energy of −6.26 eV (versus −6.20 eV for rO1, i.e. less than 1% of error). The

accuracy is even better on the binding energy of H2O (−10.160 eV versus −10.161 eV,

less than 0.01% of error). Finally, the overlap between PAW spheres existing in O2

with rO2 completely disappears in the bulk oxides, where the interatomic distances

are much larger than in O2, which fully justifies the use of rO2.

In light violet in table 2.3, we summarize the results obtained on H2, O2 and H2O

with the atomic data chosen in this thesis.

2.1.2 Metals and binary oxides

For metallic elements, we did not try several cutoff radii but we made sure the

atomic data were accurate by looking at equilibrium volume, bulk modulus and

cohesive energy for pure metals first, and for their oxides in a second time. The PAW

radii are 2.8 a0 for Ba, 2.5 a0 for Ce and 2.5 a0 for Gd, they ensure that there is no

overlap at all between PAW spheres. Atomic data of cerium and gadolinium are
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2.1. Preliminary study – test of PAW atomic data

taken from the work of Amadon et al. [71]. We thus simulate the following materials

in their most stable structure:

• Barium: body-centred cubic; BaO: rock salt;

• Cerium: face centred cubic; CeO2: fluorite 1;

• Gadolinium: hexagonal (antiferro and ferromagnetic); Gd2O3: bixbyite.

The cerium being in the oxidation state 4+, its electronic structure loses four electrons

so that f -orbitals are empty 5s2 5p6 4f 0 5d0 6s0. Therefore we do not need to use a

special treatment for strongly correlated electrons.

Here, we also have to test the k-point sampling to converge our results. As we

have periodic materials, the electronic density is obtained by an integration in the

reciprocal space. To get the good value we thus have to increase the number of

k-points until the physical properties are converged.

Another parameter we need to converge for metallic compounds is the smearing

temperature, it corresponds to the electronic temperature and so allows electrons to

move from one orbital to another. It should be small as we want to find the ground

state configuration. We will not discuss this parameter though, as it is of importance

only for metallic elements, and our calculations will mainly focus on insulating oxides.

We present a convergence study for both cutoff energy and k-point sampling in

the following.
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Figure 2.2: Convergence curves on the number of k-points (in the irreducible Brillouin
zone) and the cutoff energy for barium and barium oxide.

As mentioned in the previous section, the convergence speed can be very different

in a pure metal and an oxide (the chemical environment is different but above all,

1. In our material, Gd-doped BaCeO3, the cerium is always in oxidation state 4+, that is why,
we are interested in CeO2 only to test our method, and not Ce2O3, in which the cerium is trivalent
and should be hence treated in DFT+U to recover a correct insulating behaviour.
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2. Numerical methodology

there is the influence of the oxygen atomic data), this difference is illustrated on

barium in figure 2.2, the same effect is found on cerium and gadolinium. In general,

metals need a low cutoff energy but high k-point sampling, while insulating oxides

need a much higher cutoff energy but very few k-points.

Note that nothing implies to decrease the energy when converging in k-points (it

is not the variational method), that is why we plot the absolute value of ∆E. For the

same reason, for the metal, we can see that |∆E| does not regularly decrease with the

increase of the number of k-points. However to achieve convergence with ∆E below

10−3 Ha per atom, 6 k-points (in the irreducible Brillouin zone) are enough, even for

the metal. In fact this number corresponds to a k-point sampling 4×4×4, but the

number of k-points is reduced thanks to the symmetry.

Once we found the accurate parameters (cutoff energy, number of k-points, and,

for metals, smearing temperature), we run several calculations on each material

varying the volume in order to plot the energy-volume curve. We then fit these curves

with the Murnaghan equation of state:

E(V ) = E0 +
B0V

B
′

0






(V0/V )B
′

0

B
′

0 − 1
+ 1




− V0B0

B
′

0 − 1
(2.1)

where B0 is the bulk modulus, B
′

0 the derivative of the bulk modulus, E0 is the

minimum energy and V0 the equilibrium volume.
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Figure 2.3: Birch-Murnaghan fit for CeO2 for several k-points sampling.

From this fit, we can thus extract the equilibrium volume and the bulk modulus.

Figure 2.3 shows an example of such curve for cerium oxide. Here we can see, that a
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2.1. Preliminary study – test of PAW atomic data

k-point sampling 2×2×2 is clearly not enough to get correct value for the equilibrium

volume and the total energy.

We also compute the difference between the total energy of our compound and

the total energies of isolated atom in order to get the cohesive energies. All these

values are presented and compared to previous computed or experimental values in

table 2.4. The oxygen atomic data are found to be the key parameter to determine

the cutoff energy . It appears that we need a cutoff of 20 Ha to get a convergence on

physical energy below 10−3 Ha per atom. For testing purpose, to achieve an extremely

accurate convergence, we will sometimes use 30 Ha.

Element V0 (Å3/f.u.) Ecoh (eV/f.u.) B0 (GPa)
Ba [bcc] 63.37 -1.89 8.2

Exp. [72] 63.25 -1.90 10.3
GGA [73] 62.98 -1.91 7.6
LDA [73] 56.34 -2.23 7.9

GGA All-electron [74] 63.72 – –
Ce [fcc] 26.60 -4.64 42.5

Exp. [72] 34.35 -4.32 23.9
GGA [75] 26.05 48.7
LDA [71] 23.09 59

Gd [hcp] 33.45 -3.95 35.9
(FM) Exp. [72] 37.89 -4.14 38.3

LDA [76] 32.60 40.9
BaO 43.68 -10.08 66.9

Exp. [77, 78] 42.49 66.2
GGA [79] 43.41 75.7
LDA [79] 40.80 91.6

CeO2 40.97 -21.32 173.5
Exp. [80] 39.61 220
GGA [81] 41.14 178.0
LDA [81] 38.93 210.7

Table 2.4: Unit cell volumes for simple metals and oxides, cohesive energies (with
respect to free atoms) and bulk moduli from our simulations, compared with experi-
ments and other DFT calculations.

As expected, a very good agreement is found between our results and previous

GGA calculations. We also add a value for the equilibrium volume of Ba computed

with an all-electron computation performed by full potential linearised augmented

plane waves (FLAPW) method [74]. It is interesting to note how close the result of

our PAW computations is to an all-electron value. This is expected and confirms that

the frozen core electrons do not participate in chemical bonds.
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2.1.2.1 Gd2O3

Gd2O3 oxide deserves its own section because of its complexity. On the one

hand, its bixbyite structure with a primitive cell of 40 atoms is very computationally

demanding. On the other hand, magnetism in Gd2O3 is still a controversial topic.

Both these difficulties have resulted in a weak number of studies on Gd2O3. Besides

the few existing ab initio studies [82] mainly deal with the structures of higher

symmetry, namely the hexagonal and the monoclinic structure with 5 and 30 atoms

in the primitive cell respectively. However, since the phase transition between the

bixbyite structure and the monoclonic one only occurs at 1425 K[83], it is crucial to

treat correctly this cubic structure.

Another problem frequently met in rare-earth compounds is the touchy treatment

of strongly-correlated electrons in the 4f electronic shell. In many correlated materials,

standard GGA is not enough to recover the correct physicochemical properties because

of a bad representation of 4f electrons. For instance, rare-earth oxides (Ce2O3 for

example) are found to be metallic while there are in fact insulating. We thus wish to

check that our theoretical approach can reasonably reproduce the crystal structure,

the electronic structure and the magnetism of Gd2O3. We tried to optimise the ground-

state structure – bixbyite – of Gd2O3 with simple GGA, instead of introducing a

Hubbard parameter with GGA+U often used for this kind of material (but the

GGA+U introduces metastable states in the electronic structure, which need subtle

control to obtain the correct ground state [84]).

(a) Bixbyite structure

At room temperature and up to 1425 K, gadolinium sesquioxide Gd2O3 has a

bixbyite structure (space group Ia3̄, body-centered cubic) with a 40-atom primitive

cell (see figure 2.4). It then undergoes two phase transitions: first, it becomes

monoclinic at 1425 K and then hexagonal at 2443 K [83]. There are two inequivalent

sites for Gd atoms in the cubic structure: four Gd3+ ions are on site 8b (C2, six

identical bonds with oxygen atoms) and 12 Gd3+ ions are on site 24d (C3i, four short

and two longer bonds with oxygen atoms). The bixbyite structure is in fact similar

to a fluorite structure in which one fourth of the oxygen atoms have been removed.

A full optimization of lattice constants and atomic positions was performed in

both type of magnetic order: first, we assume an antiferromagnetic order (AFM)

for the Gd magnetic moments – with opposite spins – shown in figure 2.4, and then

a ferromagnetic (FM) order where all spins are aligned. The convergence with the

planewaves cutoff was tested by performing two calculations at 20 Ha and 30 Ha.

20 Ha corresponds to the cutoff needed in our previous calculations on oxygen and

oxides to get an accuracy of 10−3 Ha per formula unit, and 30 Ha is used to check
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2.1. Preliminary study – test of PAW atomic data

Figure 2.4: Representation of the bixbyite structure of Gd2O3 (conventional cubic
unit cell – multiplicity = 2 – with 80 atoms) with the AFM order studied in this
work.

our values.

Table 2.5 shows the structural parameters of Gd2O3 for our computations, previous

ones, and experiments. A globally good agreement is observed, especially for structural

parameters. The volume equilibrium we found is different by 2% from the one found

also using GGA by Hirosaki et al. [82]. This slight discrepancy could be due to the

difference in treating the 4f electrons: we explicitly treated them whereas they froze

them in the core of the pseudopotential.

Up to the fifth decimal (not shown in the table), we found exactly the same

structural parameters u, x, y, z whether we use a 20 or a 30 Ha cutoff energy .

Therefore, the structural properties are fully converged with respect to the cutoff

energy at 20 Ha.

u x y z V (Å3)
GGA (AFM) -0.0316 0.3906 0.1507 0.3794 80.67
GGA (FM) -0.0316 0.3907 0.1507 0.3794 80.71
GGA [82] -0.0319 0.3909 0.1510 0.3793 78.99
LSD-SIC [85] 80.70
Exp. [86] -0.0304 0.3913 0.1512 0.3811 79.02

(±0.007) (±0.0013) (±0.0012) (±0.0015)

Table 2.5: Structural parameters of Gd2O3 in its bixbyite structure.
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(b) Magnetism

As there is a possible uncertainty on the magnetic structure of gadolinium oxide,

we computed both antiferromagnetic and ferromagnetic order. We found the same

atomic parameters for both states (AFM or FM) so that the accuracy of structural

parameters is not affected whatever the magnetism (see table 2.5).

Most of previous ab initio studies on Gd2O3 were dealing with clusters, and not

crystal. The tendency of these calculations [87, 88] and experimental papers [86] is

an antiferromagnetic state slightly more stable than the ferromagnetic one, except for

the study of Pedersen and Ojamäe [89]. We found the same result in our calculations:

the AFM state is found more stable, though the energy difference between the AFM

and FM structures is very small, as shown in table 2.6. In both cases, a magnetic

moment of 7 µB per gadolinium atom is found, leading to a total moment of 112 µB
(16 Gd atoms per cell) for the FM state (and zero for the AFM state).

Our result is in the range with previous values, although the study of clusters

instead of bulk may induce a difference on EFM -EAFM . We also run a simulation

with a non-magnetic structure, imposing a half-filling of 4f bands to get occupation

numbers identical to the FM case. The total energy of the structure is much higher

than magnetic ones by almost 18 eV per formula unit, and so should not be stable.

E(FM)-E(AFM)
Present work 0.012

Gd12O18 cluster [87] 0.001
Gd2O3 cluster [88] 0.02

Table 2.6: Energy difference between different magnetic states of Gd2O3 (in eV per
formula unit).

(c) Electronic structure: need of GGA+U?

The electronic density of states (DOS) for both magnetic structures has been

computed. Figure 2.5 confirms that we find an insulator whatever the magnetic

order, with a Kohn-Sham band gap of 2.88 eV for the FM state, and 3.27 eV for

the AFM state. This larger gap in AFM state has been previously found in small

clusters by Ayuela et al. [88] and Ning et al. [87], using respectively PBE functional

on Gd2O3 and B3LYP functional on Gd12O18. Experimental gaps can have very

different values according to the method: conductivity measurements provide a gap

of 2.64 eV [90] whereas optical measurements find a gap up to 5.44 eV [91, 92]. The

gap we computed is closer to the one of conductivity measurements since we took the

lowest point of the conduction band minus the highest point of the valence band (and

not the vertical gap). Our results are consistent with all the previous computational
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2.1. Preliminary study – test of PAW atomic data

or experimental values, as summarised by Table 2.7. Our AFM value is in good

agreement with SIC-LSD [85] (gap for A-type structure) and LDA+U results [93].

Subsequently, we will use a pure GGA as it is found to describe the electronic

structure of Gd2O3 with reasonable accuracy, despite its usual poor description of

strongly correlated electrons.
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Figure 2.5: Density of states in arbitrary units for both AFM and FM state of Gd2O3.
The Fermi level is set to zero and the density of states for spin down is shown in
negative for the FM state.

Ref. [90] [94] [91] [95] [85] [93] [88] [87] Present
State – – – – – – FM AFM FM AFM FM AFM
Gap 2.64 5.3 5.44 3.60 3.13 3.9 2.03 2.25 4.03 4.19 2.88 3.27

Table 2.7: Experimental and theoretical values of the energy gap of Gd2O3 in eV for
the cubic structure (except in Ref. [85]).

These rather good results are related to the fact that the 4f orbitals are exactly

half-filled in the Gd3+ ion. PBE exchange strongly stabilises this electronic structure

4f 7, in which all electrons have parallel spins. Indeed, the electronic repulsion is

minimised – the Pauli principle applies to the orbital parts and electrons spatially

exclude each other by filling the different 4f orbitals.

It is sufficient to open a wide gap of 5–6 eV between the occupied 4f states and

the unoccupied 4f states. The 4f bands appear as two narrow peaks in figure 2.5:

the occupied band in the middle of the valence band while the unoccupied one is at
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the bottom of the conduction band. The narrow character of the 4f peaks proves

that there is few hybridisation between the 4f orbitals of Gd and the 2p orbital of

oxygen. We therefore expect a correct description of Gd-doped BaCeO3 within the

GGA-PBE functional.

2.1.3 Pure BaCeO3

2.1.3.1 Structure: Pnma space group

Barium cerate has a perovskite structure, as many ternary oxides. At very high

temperature, the structure is cubic with a primitive cell of 5 atoms shown on figure 0.3.

The B-site – in the middle of the oxygen octahedron– is occupied by a cerium atom

and the A-site by a barium atom. Under ambient pressure, BaCeO3 (BCO) undergoes

three phase transitions when increasing temperature [96–98].

At low temperature, the structure is orthorhombic with space group Pnma, then

around 550 K, it keeps an orthorhombic structure but changes its space group to

Imma. At 670 K, BaCeO3 becomes rhombohedral R3̄c through a first-order transition.

And finally, above 1170 K, it is cubic with space group Pm3̄m.

(a) In phase (b) Anti-phase

Figure 2.6: Structure of BaCeO3 in its Pnma space group with its two tilts: in phase
along b-axis (left) and anti-phase along a and c-axis (right).

These phase transitions can also be expressed from the point of view of oxygen

octahedral rotations, using Glazer’s notations [99]. Indeed, oxygen octahedra, charac-
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2.1. Preliminary study – test of PAW atomic data

teristic of perovskite structure, have a tendency to tilt. If all the oxygen octahedra

along an axis turn in the same direction, the tilt is said to be « in phase » and is

noted a+ (figure 2.6(a)), if they alternate turning in opposite direction, the tilt is said

« in anti-phase » and is noted a− (figure 2.6(b)). A tilt in phase corresponds to the

freezing of a phonon mode localised at the M point of the first Brillouin zone of the

parent cubic structure, while a tilt in anti-phase is associated to the R point. With

these notations, the orthorhombic ground state structure Pnma is noted: a−b+a−,

with one tilt in-phase along the b-axis, and a tilt anti-phase along a-axis and c-axis

(identical for both axis). The Pnma cell and its oxygen octahedra tilts are represented

in Fig. 2.6. When heating, the tilt in-phase disappears so that we get a different

orthorhombic structure a−b0a−. The orthorhombic-rhombohedral transition implies a

first order transition as a new tilt appears suddenly: the tilt structure is then a−a−a−.

Finally, the structure becomes cubic at high temperature with no tilt at all (a0a0a0).

Around 900 K, the working temperature of a protonic ceramic fuel cell (PCFC), the

structure of BaCeO3 is rhombohedral. We thus first performed geometry optimisations

in the R3̄c space group. But the material systematically went back in its ground-state

Pnma structure: the rhombohedral structure does not constitute a local minimum

and may be stabilised at high temperature by entropy through thermal vibrations.

Therefore, we will only study BaCeO3 – pure or with defects – in its ground state

Pnma. The Pnma structure gives two non equivalent positions for the oxygen atoms:

apical oxygen O1 and equatorial oxygen O2, shown in figure 2.6(b).

Structural and lattice parameters are shown in table 2.8 and compared to other

data. The atomic positions are in very good agreement with previous calculations

(∆d < 0.005), and even experiments (∆d 6 0.01). As expected, lattice constants are

slightly overestimated by the GGA calculations.

2.1.3.2 Determination of convergence parameters

Once again, we tested the three cutoff radii for oxygen, and get similar results to

the ones obtained in binary oxides. To achieve a high accuracy with a reasonable

cutoff energy, atomic data with the cutoff radius rO2 are the more appropriate. Note

that there is absolutely no PAW sphere overlap with the chosen cutoff radii in BaCeO3

and Gd-doped BaCeO3.

Tables 2.9 and 2.10 show the total energy and the difference of total energy per

formula unit between the considered parameter and the most accurate one. The

lowest k-point sampling we tested, i.e. 3×2×3 k-points 2, is more than enough to

2. The number of k-points needed is inversely proportional to the lattice parameter: for the
same material, if we double our lattice parameter, we will need twice fewer k-points. That is why
the use of a k-point grid 2×2×2 is more than enough for a supercell.
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Wyckoff positions Element Present GGA [100] Exp. [101] Exp. [96]

4c
Ba(x) 0.0254 0.0273 0.0204 0.0123
Ba(y) 0.2500 0.2500 0.2500 0.2500
Ba(z) -0.0080 -0.0077 -0.0085 -0.0038

4b
Ce(x) 0.0000 0.0000 0.0000 0.0000
Ce(y) 0.0000 0.0000 0.0000 0.0000
Ce(z) 0.5000 0.5000 0.5000 0.5000

4c
O1(x) -0.0199 -0.0200 -0.0094 -0.0089
O1(y) 0.2500 0.2500 0.2500 0.2500
O1(z) 0.4204 0.4194 0.4287 0.4290

8d
O2(x) 0.2802 0.2833 0.2790 0.2707
O2(y) 0.0431 0.0446 0.0384 0.0377
O2(z) 0.7208 0.7186 0.7235 0.7302

lattice parameter
a (Å) 6.293 6.28 6.214 6.227
b (Å) 8.867 8.81 8.774 8.791
c (Å) 6.280 6.30 6.233 6.252

Table 2.8: Atomic positions and lattice parameters of BaCeO3 (Pnma) compared
with previous GGA computations and experiences.

achieve an accuracy of 10−3 Ha per formula unit. For the cutoff energy, table 2.10

suggests that we need at least a value of 30 Ha. However, we are never interested

in the total energy, but always in energy differences such as formation energy. We

can thus look at the variation of cohesive energy (from single atoms) and formation

energy (from binary oxides: CeO2 and BaO) of BaCeO3. Table 2.11 shows the results

in eV per formula unit (1 Ha=27.211 eV). Note that this difference in energy does not

have necessary a decreasing value when increasing the cutoff energy. The accuracy on

the formation energy is already far below 10−3 Hartree with the lowest cutoff (16 Ha).

A cutoff of 20 Ha gives also a very good accuracy (0.01 eV) on the cohesive energy.

In this thesis, we will preferentially use this cutoff of 20 Ha, but run some tests at

30 Ha to check the accuracy of our values.

Table 2.12 compares the results obtained with a cutoff of 20 Ha and a k-point

sampling of 3×2×3 with previous experiments and GGA computations. The unit

cell volume is slightly overestimated – as expected from a GGA simulation – and the

formation energy is underestimated by about 9%.

Finally, in this material, cerium atoms are also in state 4+ (as in CeO2), therefore

we should not need GGA+U as there are no f-electrons. Considering the defect we

will introduce, there is no possibility for cerium to become Ce3+. However, if one
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k-point Etot (Ha) ∆E (Ha/ f.u.)
3×2×3 -455.559728 0.000028
4×3×4 -455.559832 0.000002
6×4×6 -455.559844 -0.000001
9×6×9 -455.559840

Table 2.9: Total energy and error energy
(∆E=Etot(Nk)-Etot(9×6×9)) of BaCeO3

for different k-point sampling at fixed
Ecut=30 Ha.

Ecut Etot (Ha) ∆E (Ha/ f.u.)
16 -455.526707 0.013959
18 -455.562369 0.005044
20 -455.568696 0.003462
22 -455.569184 0.003340
24 -455.570303 0.003060
26 -455.572698 0.002461
28 -455.575597 0.001737
30 -455.578225 0.001080
32 -455.580129 0.000604
34 -455.581329 0.000304
36 -455.581950 0.000148

Table 2.10: Total energy and error
energy (∆E=Etot(Ecut)-Etot(50 Ha)) of
BaCeO3 for different cutoff energies at
fixed k-point sampling 3×2×3.

Ecut Ecoh (eV/f.u.) ∆ Ecoh (eV/f.u.) Eform (eV/f.u.) ∆ Eform (eV/f.u.)
16 -31.905 -0.022 -0.498 0.000
18 -31.897 -0.014 -0.499 -0.001
20 -31.894 -0.011 -0.498 0.000
22 -31.893 -0.009 -0.498 0.000
24 -31.889 -0.006 -0.497 0.000
26 -31.888 -0.004 -0.497 0.000
28 -31.886 -0.003 -0.497 0.000
30 -31.886 -0.002 -0.498 0.000

Table 2.11: Formation energy from binary oxides (BaO and CeO2) and cohesive
energy of BaCeO3. The difference ∆E is given by ∆E=Etot(Ecut)-Etot(36 Ha).

wants to study other kinds of defects in BaCeO3 that would lead to the presence of

Ce3+, the use of GGA+U may be necessary [105].

Summary

Consequently, we choose the hardest cutoff radius for hydrogen and an intermediate

one, rather soft, for oxygen (1.4 a0). For this configuration, we will use a cutoff energy

of 20 Ha, ensuring an accuracy better than 0.01 eV on physical energies (and around

0.01 eV for cohesive energies). To get an even better accuracy, some tests will be run

at a cutoff of 30 Ha. If we needed a k-point mesh of 3×2×3 in the primitive Pnma

cell of 20 atoms, 2×2×2 k-points for our 80-atoms supercell would be more than

enough to get a very high accuracy. These two parameters ensure an error per atom

below 10−3 Ha.
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V0 Ef B0 Band Gap
(Å3) (eV/f.u.) (GPa) (eV)

Present 350.4 -15.97 107.37 2.20
Exp. 340.8 [102] -17.52 [103] 103.7 [102] 3.2 [104]
GGA 348.58 [100] 2.6 [104]

Table 2.12: Equilibrium volume (per primitive cell), formation energy ( i.e. with
respect to Ba, Ce and O in their standard state), bulk modulus and band gap of
BaCeO3.

Once again, to be absolutely sure of the reliability of our results, some tests have

been run with the hard cutoff radius of oxygen rO1. These atomic data are supposed

to be very accurate, but require a much higher cutoff energy (46 Ha for perfect

accuracy – 10−3 Ha on total energies – or 36 Ha for relaxed criterion – 10−3 Ha on

physical energies) to get results with the same accuracy. We have checked that it

provides quasi-identical results as the radius rO2 we used for all our calculations.

Table 2.13 shows the results of these tests for formation enthalpies of some

compounds. It appears that the « soft » cutoff radius tends to slightly overestimate

formation energies by 1%. This difference seems rather acceptable considering the

huge gain in computational cost.

This is even more true if we are computing difference of formation energies (as

needed to study thermodynamic properties) : for instance the formation enthalpy of

BaCeO3 from BaO+CeO2 is exactly the same (-0.49 eV) whatever the atomic data.

Moreover, we can notice that the difference between formation enthalpies computed

with soft and hard cutoff radius is exactly the same (0.17 eV) for pure BaCeO3 and

all the three phases of Gd-doped BaCeO3. This error will thus disappear when we

compute differences between these quantities.

rO1 = 1.1 a0 rO2 = 1.4 a0 Error
(Ecut = 46 Ha) (Ecut = 20 Ha)

O2 -6.20 -6.26 1.0%
BaO -5.00 -5.06 1.2%
CeO2 -10.31 -10.42 1.1%

Gd2O3 -17.21 -17.39 1.0%
BaCeO3 -15.80 -15.97 1.1%

Gd-doped BaCeO3

dry -15.47 -15.64 1.1%
oxidized -15.52 -15.69 1.1%
hydrated -15.71 -15.88 1.1%

Table 2.13: Formation enthalpy in eV of some compounds for two different calculations,
and difference in percentage between both atomic data.
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2.2 Supercell and defects

All calculations will be parallelized on three different levels : k-points sampling,

number of bands (linked to the number of electrons), FFT grid (FFT meaning Fast

Fourier Transform). Typical geometry optimizations were run on a thousand CPU

cores.

2.2.1 Supercell

At first thought, we wanted to study BaCeO3 at the working temperature of a

fuel cell, i.e. in its rhombohedral structure R3̄c. Calculations in this state have thus

been done and we found a total energy only slightly higher than the orthorhombic

state one by 0.017 eV per formula unit.

The primitive cell of rhombohedral state is a 10-atom cell with primitive vectors

expressed on the cubic vectors:

~arhombo = ~bcubic + ~ccubic

~brhombo = ~ccubic + ~acubic

~crhombo = ~acubic +~bcubic

We built an 80-atom supercell from this primitive cell 2×2×2. However, when breaking

the symmetry by introducing a defect, we observed that the structure fell back to

the orthorhombic ground state. Therefore, the study of the rhombohedral structure

with defects is not possible by DFT. We chose to study instead the orthorhombic

structure existing at room temperature up to 550 K.

We checked that this lattice was compatible with our 80-atoms supercell by

expressing the supercell vectors as a linear combination of the orthorhombic vectors.

The orthorhombic vector of the 20-atom Pnma primitive cell can be expressed as:

~aortho = ~acubic + ~ccubic

~bortho = 2~bcubic

~cortho = ~acubic − ~ccubic

and the supercell vectors are given by:

~A = 2~arhombo = 2~bcubic + 2~ccubic
~B = 2~brhombo = 2~ccubic + 2~acubic
~C = 2~crhombo = 2~acubic + 2~bcubic
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Therefore, we have:

~A = ~aortho +~bortho − ~cortho
~B = 2~aortho
~C = ~aortho +~bortho + ~cortho

We can thus keep our initial 80 atoms supercell – 2×2×2 rhombohedral cell – even to

study the orthorhombic state. All our work will be done in this supercell. We will also

run a few test computations on another 80 atoms supercell – 2×1×2 orthorhombic

cell – to check that another periodic arrangement of defects provides similar results.

2.2.2 Treatment of defects

Considering, the multitude of existing methods to correct the energy shift due to

the treatment of charged cell, we favoured the use of neutral cell only. To do so, we

introduced systematically two compensating defects in our cells, exactly

as a « real » system. This approach has nevertheless the drawback to prevent the

study of truly isolated defects.

We will use the Kröger-Vink notations to deal with defects. An atom M replacing

an atom N will be denoted according to its charge:

• negative: M
′

N

• neutral: MX
N

• positive: M•
N

In our compound we will have three kinds of atomic defects:

• a gadolinium atom Gd3+ replacing a cerium atom Ce4+: Gd
′

Ce

• an oxygen vacancy instead of an oxygen atom O2−: V ••
O

• a protonic defect OH− replacing an oxygen atom O2−:OH•
O

As we want to consider only neutral cells, we will put two Gd dopants to study

one oxygen vacancy and one Gd dopant to study one protonic defect. The charges of

the point defects (-1 for Gd
′

Ce, +2 for V ••
O , +1 for OH•

O) are formal values, they are

different from the charge that would be obtained from examination of the electron

density at the defective site and at the undefective site. In particular, the protonic

defect OH•
O is not a really bare proton and the O-H bond keeps an ionocovalent

character.

Finally, the introduction of gadolinium, a magnetic element, in BaCeO3, implies

to run spin-polarised computations. When two dopants are introduced, we can choose

opposite spin (antiferromagnetic order) or parallel spin (ferromagnetic order). This

choice should not have any impact on total energy as both gadolinium atoms are

placed as far as possible in the supercell. Note that we only use collinear magnetism,

the possible spin-orbit coupling effects are ignored.
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All the convergence parameters have been chosen after a very careful study of struc-

tural and energetic properties for simple elements, binary oxides and pure BaCeO3.

Several atomic data have been tested for light elements and the best compromise

between accuracy and computational cost has been selected. The use of the exchange-

correlation functional PBE, without a Hubbard term to treat f-orbitals, is justified by

the special configuration of half-filling in gadolinium, and to the absence of f-electrons

in Ce4+. Finally, the treatment of defects is relatively simple as it does not imply any

band alignment and other corrections: we will treat only neutral supercells containing

charge-compensated defects.
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Chapter 3

Thermodynamics aspects: hydration

and oxidation

In this chapter, we will present a study of three possible states of Gd-doped
BaCeO3 (BCGO): dry, hydrated and oxidized compound. We will analyse in details
the possible positions for proton and oxygen vacancies, and finally discuss the
thermodynamics of hydration and oxidation in this material.
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3. Thermodynamics aspects: hydration and oxidation

There is an infinite number of existing intermediate states, with only some oxygen

vacancies filled, but we will only be interested in the three extreme states when all

the oxygen vacancies are filled, with the same kind of molecules, or none:

• the dry compound (BaCe1−δGdδO3− δ
2

): this is the initially synthesised material,

it contains oxygen vacancies (one for every two dopants) ;

• the fully hydrated compound (BaCe1−δGdδO3Hδ): the material after all oxygen

vacancies have been filled up with (dissociated) water molecules (one proton

for one dopant);

• the fully oxidized compound (BaCe1−δGdδO3): the material after all oxygen

vacancies have been filled up with (dissociated) oxygen molecules.

In order to compute the defect positions, we have fully optimized the geometry of the

system (atomic positions and supercell vectors) using the efficient Broyden-Fletcher-

Goldfarb-Shanno minimization scheme implemented in ABINIT, with an optimization

criterion on atomic forces of 1.0 × 10−4 Ha/Bohr (≈ 0.005 eV Å−1).

3.1 Dry compound

This is the state we get when we synthesised Gd-doped barium cerate (BCGO)

from binary oxides:

BaO + (1− δ)CeO2 +
δ

2
Gd2O3 → BaCe1−δGdδO3−δ/2

In this material, the elements Ba, Ce and Gd keep the same oxidation degree they have

in binary oxide : +2, +4 and +3 respectively. BaCe1−δGdδO3−δ/2 can be seen as a

compound of BaCeO3 in which some cerium atoms have been replaced by gadolinium

(dopant) creating negative defects Gd
′

Ce. This leads to the removal of some oxygen

atoms to compensate the missing charge, creating oxygen vacancy V••
O , one for every

two dopants.

3.1.1 Doping influence on atomic and electronic structure

3.1.1.1 Atomic structure

Doping can affect the space group of perovskite oxide, or significantly modify

their lattice parameters, especially at high dopant concentration. Nevertheless,

previous experimental studies on Y-doped BaCeO3 [106] and Gd-doped BaCeO3 [107]

have found that the substitution of Ce4+ by trivalent ions (Y3+ and Gd3+) has

almost no influence on the structure, but induces a shift in the phase transition

temperatures. BCGO would thus keep the Pnma structure at zero and

room temperature.

50



3.1. Dry compound

Indeed, experimentally, it is found that Gd-doped BaCeO3 keeps its perovskite

orthorhombic structure even for high value of doping up to δ = 20% [108], as shown in

table 3.1. In our calculations, we also found that the tilt system a−b+a−, is preserved

even though, in our supercell, the Pnma symmetry is broken due to the presence of

defects. The change induced by doping in the lattice parameters is very small for

both experiments and GGA calculations (around 1 ‰). This confirms that replacing

Ce4+ by Gd3+ has little influence on the structural properties. This may be due to

the fact that both Ce4+ and Gd3+ have very close ionic Shannon radii: 0.87 Å and

0.94 Å respectively [109]. The same argument can apply to Y3+ as its ionic radius is

0.90 Å.

Compound Cell parameters (Å)
a b c

BaCeO3

GGA [Present] 6.293 8.867 6.280
GGA [100] 6.28 8.81 6.30
XRD [96] 6.227 8.791 6.252

BaCe1−δGdδO3− δ
2

δ=0.125 GGA [Present] 6.292 8.865 6.282
XRD [Present] 6.231 8.772 6.248

δ=0.10 XRD [110] 6.221 8.770 6.244
δ=0.15 XRD [108] 6.203 8.769 6.243
δ=0.20 XRD [108] 6.223 8.777 6.241

Table 3.1: Lattice constants of pure BCO and BCGO.

In our calculations, the possible values for the doping rate δ are limited: as there

are only 16 Cerium in our 80-atom supercell, we can either have δ = 6.25%, δ = 12.5%

or δ = 25%. We simulate BCGO by introducing two gadolinium atom and one oxygen

vacancy leading to a doping rate of δ = 12.5%. But experiments usually take round

numbers such as 10 or 20%, that is why experimental data on BCGO at a level of

doping of 12.5% are lacking in the literature.

In order to compare our simulations with experiments, we did a little experimental

work and performed X-ray diffraction experiments on BCGO containing exactly 12.5%

of Gd. This work was done at Centrale Paris, in the SPMS (Structure, properties and

modelling of solids) laboratory. We synthesised this compound using freeze-drying

method. After dissolving barium, cerium and gadolinium acetate powders in water

in the stoichiometric ratio, the solution was homogenized and sprayed into liquid

nitrogen to get frozen droplets. The solvent was then eliminated by sublimation

and the resulting nanopowder was pre-calcined at 600 ◦C for 10 min. Finally, the

greyish powder was calcined at 1200 ◦C for 4 h. X-ray diffraction was then performed

51



3. Thermodynamics aspects: hydration and oxidation

to check whether there were impurity phases or not and to determine the lattice

parameters through Rietveld refinement. Table 3.1 shows that the parameters found

when δ=0.125 are almost identical to the ones of previous experiments on BaCeO3

doped with 10% of Gadolinium.

3.1.1.2 Band gap and magnetism

In our 80-atom supercell, we put one oxygen vacancy V••
O and two dopants Gd

′

Ce

so that the electrical neutrality is achieved without introducing any electronic defects.

However, both cerium and gadolinium are touchy elements because of their f-electrons,

usually poorly treated by GGA. Even though Ce is supposed to be in oxidation state

4+, without f-electrons, and Gd3+ is well behaving in GGA (see section 2.1.2), we

have to check that the insulating character of BCGO is not lost in GGA calculations.

This insulating behaviour is fundamental for a good electrolyte.

We computed the electronic density of states for both BCO and BCGO with

the GGA-PBE exchange-correlation functional. We found a band gap of 2.2 eV for

BaCeO3, lower than the experimental band gap of 3.2 eV [104], as expected. For

Gd-doped BaCeO3, the band gap is slightly smaller: 1.8 eV but still enough to get

the insulating character.

Since gadolinium is magnetic, all our computations were spin-polarised, as pre-

viously explained. With two dopants in the supercell, we have two choices for the

magnetic order: antiferromagnetic or ferromagnetic. As the dopants are far from

each other (≈ 9 Å), we expect to find no difference on total energies whatever the

magnetic choice. Indeed, computing both magnetic structures, DFT calculations

give a total energy difference of approximatively 10−7 Ha per formula unit. This

is four orders of magnitude below the error bar: AFM and FM order can thus be

considered as equivalent. Furthermore, we checked that the magnetic moment on

gadolinium atom was not dependent on the magnetic structure. In oxidation state

3+, gadolinium has the electronic structure: 5s2 5p6 4f 7 5d0 6s0, and hence should

have a moment of 7 µB. A simple integration of the electronic density in the PAW

sphere gives a moment of 6.91 µB for both AFM and FM order, very close to the

expected value (the difference between the number of up and down electrons in the

global supercell is equal to 0 and 14 µB respectively).

3.1.2 Energy landscape of oxygen vacancies

As explained, we substitute two Ce atoms by two Gd atoms, placed in the supercell

such as their distance is maximal, and remove one oxygen atom. Where should we

place the oxygen vacancy?
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3.1. Dry compound

In pure barium cerate, there would be only two non-equivalent positions: O1

or O2. However, if we look at the B-O distances in the equatorial plane (ac) of a

perovskite oxide ABO3 in Pnma structure, there are two kinds of distances: d1 and

d2. These distances, as shown in figure 3.1, alternate along the B-O chains (along

a-axis and c-axis). The introduction of one dopant in the place of Ce breaks the

symmetry, and the equivalence between the four equatorial oxygens O2 of its first

coordination shell disappears. The set of the four O2 split into two sets called O2

and O2’ in the following. The two oxygens of each set are symmetrically placed

with respect to Gd, the d1 and d2 distances between them and Gd are almost alike:

2.295 Å and 2.296 Å after structural optimisation, and slightly larger than the Ce-O

bond.

Figure 3.1: Ce–O different distances in the Pnma structure. The four equatorial
oxygens O2 are equivalent but there are two different bond lengths Ce–O2. Therefore,
if a dopant replace a cerium atom, the equivalence between oxygen would be broken,
giving two different group of equatorial oxygens O2 and O2’.

To study all the possible positions of the oxygen vacancy, we first focus on the

first coordination shell of Gd with three possible sites: O1, O2 and O2’. Calculations

shows that O2 and O2’ sites have very close energies (∆E < 0.015 eV, i.e. within the

error bar of 10−3 Ha) and will thus be considered as one single site for the oxygen

vacancy.

Therefore, we have only two positions near the dopant O1 and O2. We should

now look at the difference in energy when the distance between oxygen vacancy and

gadolinium increases. Since the difference – in energy and bond length – between O2
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3. Thermodynamics aspects: hydration and oxidation

and O2’ is insignificant near Gd, we can also consider that there are only two non

equivalent oxygen atoms O1 and O2 beyond the first coordination shell. Considering

the size of our supercell and the presence of two dopants in it, we can test three

different distances (from 2.3 to 6.2 Å): 1st, 2nd and 3rd neighbour of the gadolinium.

This leads to 6 possible positions shown in figure 3.2.

Figure 3.2: Possible positions for the oxygen vacancy in Gd-doped barium cerate. 1
and 2 stand for the oxygen type (O1 or O2), and the letter a, b, c represent a 1st,
2nd and 3rd neighbour of Gd.

The result of these six computations is represented in figure 3.3. The energy is

plotted for the six positions, relative to the most stable one: O1 near Gd. The dopant

and the oxygen vacancy are attracted to each other: indeed, the total energy of the

oxygen vacancy is lower near the dopant than far from the dopant. This was expected

since these defects have opposite formal charge. However, this interaction seems to

be rather short-range: beyond the first coordination shell, the positions have very

close total energies. From this observation, we can define an approximate interaction

energy (sometimes called "association energy") as the mean value (on O1 and O2

sites) of the energy difference between the closest and the furthest positions, which
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3.2. Hydrated compound

gives Eint(Gd
′

Ce-V
••
O ) ≈ −0.18 eV.

Figure 3.3: Energies of the different positions for the oxygen vacancy (eV), relative
to the most stable one (O1 in the oxygen octahedron surrounding the dopant). The
difference O2/O2’ is ignored even in the first coordination shell due to the energetic
proximity of the corresponding configurations.

3.2 Hydrated compound

Under humid atmosphere, the dry compound can incorporate water molecules.

They dissociate in the oxygen vacancies to provide protonic defects (hydroxyl groups)

OH•
O. This is the reaction of hydration:

H2O + V ••
O +OX

O → 2OH•
O (3.1)

Once again the metallic elements keep their formal oxidation state. There is one

dopant Gd
′

Ce for one proton OH•
O so that no electronic defect should appear. DFT

calculations show that the band gap is very close to the one of the dry compound:

1.86 eV, hence keeping its insulating character.

After incorporation of a water molecule into an oxygen vacancy in the dry

compound, we get an 80-atom supercell of the hydrated compound with two dopants

and two protonic defects. We can reduce the doping rate from 12.5 % to 6.25 %

to simplify the number of defects to treat. We will thus consider a supercell with

one dopant Gd
′

Ce and one proton OH•
O to study the possible stable positions, but

with two dopants and two protons to compute the hydration enthalpy. Both these

structures correspond to the fully hydrated case, no oxygen vacancy is remaining.
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3. Thermodynamics aspects: hydration and oxidation

3.2.1 Stable positions for the proton

3.2.1.1 Position of the O–H bond

We want to determine the possible positions for the proton. The hydroxyl group

OH•
O should point roughly along the [100] direction in the interoctahedral space.

However some studies argue that they can differ from that position and lean towards

the B-site, and even align along the oxygen octahedron edge [11, 111]. This alignment,

leading to 8 possible positions per oxygen, would be due to the dipolar moment of

the protonic defect OH•
O, preferring to point to neighbouring oxygen. In fact, the

direction seems to strongly depend on the lattice parameter:

• along the octahedra edge, for perovskites with small lattice parameter such as

SrTiO3 [112, 113] or LaMnO3 [112] (a0 = 3.91 Å for both),

• along the pseudocubic axis, for perovskites with large lattice parameter such as

SrZrO3 [20] or BaCeO3 [114, 115] (a0 = 4.14 Å and a0 = 4.41 Å respectively)

This phenomenon can easily be explained: when the lattice constant decreases, the

nearest oxygen gets closer and closer to the proton, attracting it sufficiently to

bend the O–H bond towards the octahedron edge. On the other side, if the lattice

parameter is large, the distance between the proton and the oxygen belonging to the

same octahedron will reduce this attraction. This is even more true in a distorted

perovskite: as the oxygen octahedra tilt, the distance between two oxygens belonging

to the same octahedron is kept constant, while two facing oxygens – belonging to

different octahedra – may get closer or further.

In our case, the lattice parameter is large and we have a distortion, so we have to

study 4 possible positions per oxygen atom, along the pseudocubic directions. This

positions are denoted a, b, c and d: a and b positions correspond to a cus site while

c and d positions are on a hollow site (see figure 3.4).

Introducing a dopant may also affect the orientation of the O–H bond, as shown in

figure 3.4. The electrostatic interaction between dopant and protonic defect should be

more pronounced if the proton is on an hollow site (c/d type) than on a cus site (a/b

type). Angles between the pseudocubic direction and the actual bond O–H are shown

in table 3.2 for the eight possible positions, described in the following section, near

the dopant and far from the dopant. As expected when looking at figure 3.4, the cus

site – far from B-site – bends less than the hollow site – closer to the B-site. Indeed,

positions a and b are almost aligned along the pseudocubic direction (deviation less

than 1 or 2°), while c/d type positions deviate slightly more (≈ 5°), especially when

they are near the dopant. The dopant, defect with a negative charge, tends to attract

the positive protonic defect.
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3.2. Hydrated compound

Figure 3.4: Angles between the pseudocubic direction and the actual O–H bond
for the two subcategories of protonic sites (left: cus or a/b-type; right: hollow or
c/d-type).

Position θ near Gd θ far from Gd
1a -0.1° 0.2°
1b -0.1° 0.2°
1c 5.3° 0.5°
1d 3.5° 0.5°
2a -0.5° 0.6°
2b 1.6° 1.2°
2c 5.0° 2.1°
2d 8.2° 4.9°

Table 3.2: Values of the angle described in figure 3.4, for a proton near a dopant, and
far from a dopant.

3.2.1.2 Energy landscape of protonic defect

Due to the low symmetry of Pnma space group, there are many possible non

equivalent positions for the proton. In principle, in pure barium cerate, there are four

possible directions per oxygen atom and two kinds of oxygen leading to 8 different

positions.

When we introduce a dopant, as explained in section 3.1.2, we create two types

of equatorial oxygens O2 and O2’, that may not be equivalent. As we did for the

oxygen vacancy, we have to see whether both oxygens give identical protonic sites

or not. If we only focus on protons bonded to oxygen atoms first neighbor of the

Gd dopant for now, we have 12 possible positions – four on each oxygen atom. The

four sites on each oxygen atom are labelled a, b, c and d, they are represented in

figure 3.5 on O1 and O2 only. Table 3.3 shows the energies of the 12 studied sites,

relative to the most stable one (1a). It appears that almost no difference is found

between O2 and O2’ site (the largest difference,found for 2c and 2c’, is still below

the error bar: 0.013 eV≈ 5× 10−4 Ha), whereas the four sites of O1 (1a, 1b, 1c, 1d)
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3. Thermodynamics aspects: hydration and oxidation

have very different energies. Therefore, we can neglect the asymmetry induced by

the introduction of Gd, and consider the sites on O2 and O2’ to be analogous.

Site O1 O2 O2’
a (1a) 0.000 (2a) 0.165 (2a’) 0.163
b (1b) 0.008 (2b) 0.052 (2b’) 0.052
c (1c) 0.112 (2c) 0.147 (2c’) 0.134
d (1d) 0.003 (2d) 0.085 (2d’) 0.088

Table 3.3: Energies (in eV) of the protonic sites in the first coordination shell of Gd,
relative to the most stable one (1a).

Figure 3.5: The eight possible positions for a proton bonded to an oxygen atom
first-neighbor of a dopant.

Then, we examine the protonic sites beyond the first coordination shell of Gd on

only two types of oxygen O1 and O2. The 8 sites shown on Fig. 3.5 near Gd are

computed near Ce1, Ce2 and Ce3. Ce1 is a cerium first neighbour of the gadolinium,
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3.2. Hydrated compound

Ce2 is a second neighbour and Ce3 is the furthest cerium from gadolinium that we

can choose considering the size of our supercell. The energies of the 32 computed

positions are plotted in figure 3.6 relative to the most stable one, 1a near gadolinium.

Figure 3.6: Energies of the 8 possible positions for the proton near different B-sites,
relative to the most stable one (i.e. 1a position near Gd).

Several observations are noteworthy:

• the energy landscapes near Ce1, Ce2 and Ce3 look very much alike, suggesting

that the interaction energy between gadolinium and protonic defect is confined

to the oxygen 1st coordination shell of Gd.

• The energy landscape near Gd is almost a simple shift towards lower energy of

an energy landscape far from Gd. The proton is more stable near Gd than far

from Gd because of their opposite formal charge.

• Some positions close to Gd are, however, higher in energy than other ones far

from the dopant. For instance, 2a near Gd is less stable than 1d and 2b far from

Gd. This suggests that, under certain circumstances, protons would rather be

far from Gd than close to Gd, contrary to the traditional picture in which sites

close to the dopant act as traps for protons [116] .

Computations on a charged supercell of pure BaCeO3 with one proton have also

been carried out to check whether we recover the same relative energies for the 8

positions. We used the same cutoff of 20 Ha and the same k-point sampling of 2×2×2

than in the case of BCGO, and performed an optimisation of all atomic positions.

The undoped supercell – with no gadolinium atom but one hydrogen atom inside –

has a charge +1 compensated by a uniform background (or jellium) as classically done

to simulate isolated charged defects. No particular correction such as Makov-Payne
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3. Thermodynamics aspects: hydration and oxidation

or band realignment needed to be performed as we are interested in differences of

total energies only.

Table 3.4 shows the energies of the 8 positions for pure BaCeO3 (charged +1) and

for Gd-doped BaCeO3 far from the dopant. The results are almost identical, except

maybe for the 2a position, but the difference is still below 10−3 Ha= 0.027 eV. This

proves that we have areas free of any dopant influence in our supercell of 80 atoms,

and that the site near Ce1, Ce2 and Ce3 can indeed be considered as « far » from a

dopant.

Position pure BCO « far » BCGO
1a 0.000 0.000
1b -0.007 -0.013
1c 0.151 0.159
1d 0.054 0.054
2a 0.162 0.141
2b 0.037 0.034
2c 0.194 0.195
2d 0.139 0.141

Table 3.4: Energies of the 8 protonic positions relative to the energy of position 1a
for a charged supercell of BaCeO3 and Gd-doped BaCeO3,far from the dopant.

Finally, with reasonable approximations, we can distinguish only two families of

sites: proton are either close to the dopant – bonded to an oxygen first-neighbour of

a dopant – or not. This conclusion leads to a simplified protonic energy landscape of

16 local minima. These 16 positions will be hereafter labelled with:

• a number (1 or 2) corresponding to the oxygen type (apical and equatorial,

respectively),

• a letter (« a », « b », « c » or « d ») corresponding to the O-H direction (shown

in figure 3.5),

• and another letter, « n » for a site near the dopant, or « f » for a site far from

the dopant.

As we did with the vacancy, we calculate an approximate dopant-proton interaction

energy or association energy, by averaging (over the possible positions) the energy

difference between the values around Gd and the values far from Gd, which provides

−0.11 eV. This is roughly half the interaction energy between dopant and oxygen

vacancy. If we consider only electrostatic interactions, this was expected as the

dopant-proton interaction corresponds to the interaction of charges -1 and +1, while

the dopant-vacancy interaction represents the interaction of charges -1 and +2. This

value of association energy is rather low compared to the one of other materials and

other dopants: for instance, Yamazaki and co-workers [117] found an association
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3.2. Hydrated compound

energy of −0.3 eV in Y-doped BaZrO3. This suggests that gadolinium in BaCeO3

has not a strong power of attraction on the protonic defect and constitutes

a shallow trap.

3.2.2 Hydration enthalpy

From the computations of hydrated and dry compound we can compute the

hydration enthalpy, associated to reaction 3.1. This reaction can be rewritten as:

H2O +BCGOdry → BCGOhydrated (3.2)

We have to take configuration with the same doping rate for the initial and final

state: δ = 12.5%. We perform a calculation of the supercell with two protons and two

dopants (at the same positions as for the calculation of the vacancy). Both protons

are taken in their most stable position (1a), close to each dopant. For the oxygen

vacancy, we also consider the most stable state: O1 first neighbour of the dopant.

The hydration enthalpy is then simply estimated using the relation:

∆Hhyd = Etot(BCGOhydrated)− Etot(BCGOdry)− Etot(H2O), (3.3)

in which Etot(BCGOhydrated) is the total energy of the (fully relaxed) supercell

containing 2 dopants and 2 protons, Etot(BCGOdry) is the total energy of the (fully

relaxed) supercell containing 2 dopants and one oxygen vacancy, and Etot(H2O) is

the total energy of an isolated water molecule.

Since the system is fully relaxed and the defects are in their most stable positions,

the computed quantity ∆Hhyd is the hydration enthalpy at zero pressure and zero

temperature.

An hydration enthalpy of −1.34 eV per H2O molecule is found, showing that

hydration of Gd-doped BaCeO3 is an exothermic process, favoured at low temperature.

Even if we consider less stable positions for the proton or the vacancy, we will still

obtain an absolute value for the hydration enthalpy above 1 eV.

This high value is in agreement with experimental studies on acceptor-doped

BaCeO3 as shown in Tab. 3.5. Cerates are known to have very strong hydration

enthalpy, twice as much as zirconates or stannates. Looking at this fact alone, it

seems that cerates are much more interesting candidates for electrolyte. However, the

protonic concentration does not depend only on the hydration enthalpy but also on the

hydration entropy. Indeed the equilibrium constant K of hydration reaction (3.1), can

be directly linked to standard entropy and enthalpy: kBT lnK = −∆H0
hydr + T∆S0

hyd.

Figure 3.7, from the work of Kreuer [10], shows that hydration entropy varies almost

linearly with the hydration enthalpy for perovskite oxides. A high absolute value of

enthalpy would be compensated by a high absolute value of entropy.
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Work B-site Dopant Rate(%) ∆Hhyd(eV)
Present Ce Gd 12.5 -1.34

Ref. [118] Ce Gd 15 -1.78
Ref. [9] Ce Y 10 -1.68

Sn Y 50 -0.92
Zr Y 10 -0.78

Table 3.5: Present theoretical results compared to experimental hydration enthalpies
of acceptor-doped BaCeO3, with various dopants (Gd, Y). Values measured in Y-
doped BaZrO3 and Y-doped BaSnO3 are shown for comparison.

Figure 3.7: Hydration entropy and enthalpy for some protonic conductors, figure
from Ref. [10]

3.3 Oxidized compound

Under an oxygen atmosphere, charged oxygen vacancies can be filled up with

oxygen so that electronic defects may appear [119] according to the following process:

V ••
O +

1
2
O2 = OX

O + 2h• (3.4)

Here we study the fully oxidized state: instead of having a vacancy V••
O for two

dopants Gd
′

Ce, there are only two dopants in the supercell, providing two holes. The

charge compensation of point defect is therefore no longer fulfilled in this state. Such

process would not result in an effective oxidation of metallic elements Ba2+,Ce4+ and

Gd3+, as they are already in their maximal oxidation state. In particular, cerium and

gadolinium keep the oxidation states studied in their binary oxides in section 2.1.2,
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3.3. Oxidized compound

so that they will not become problematic. But the appearance of holes may affect

the electrical properties of the system and deteriorate the insulating character of the

electrolyte. Therefore, this state has to be avoided to prevent a possible short circuit

in devices.

3.3.1 Oxidation enthalpy

For the fully oxidized state, the oxygen vacancy has been filled up and there

is no protonic defect: the only defect remaining are the two dopants. We have

only one configuration to compute: dopants are put in the same positions as in the

dry compound to compute the oxidation enthalpy, associated to reaction 3.4. The

oxidation enthalpy for one oxygen vacancy filled is given by:

∆Hox = Etot(BCGOoxidized)− Etot(BCGOdry)−
1
2
Etot(O2). (3.5)

in which Etot(BCGOoxidized) is the total energy of the (fully relaxed) supercell con-

taining 2 dopants and 2 protons, Etot(BCGOdry) is the total energy of the (fully

relaxed) supercell containing 2 dopants and one oxygen vacancy, and Etot(O2) is the

total energy of an isolated oxygen molecule.

The same remarks made for hydration can be applied here: the system is fully

relaxed and the defect (oxygen vacancy only) is in its most stable position, so we

obtain the oxidation enthalpy ∆Hox at zero pressure and zero temperature. This

process is also found exothermic, as hydration, with an enthalpy ∆Hox = −0.70 eV

per O atom. It should thus be favoured at low temperature, except if kinetically

blocked.

This oxidation process has previously also been found exothermic by DFT calcu-

lations in other acceptor-doped perovskites such as barium zirconate [15, 120] and

barium stannate [120]. Oxidation leads to the emergence of hole polarons and a

metallic character.

Experimentally, hole conduction had indeed been observed in these materials

under oxygen atmosphere, but at high temperature only. It is not measured at

low temperature, the reason could be a kinetic blocking. To incorporate into the

perovskite, the O2 molecule has to dissociate at the surface and then diffuse throughout

the material via oxygen vacancies. The latter process is associated to a high activation

energy barrier (typically ≈ 0.8 eV), and hence requires a rather high temperature.

This kinetic blocking is not observed in the case of hydration as the associated energy

barrier for proton diffusion is smaller, usually around 0.4–0.5 eV.
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3.3.2 Characteristic of the hole polaron

We plot the electronic density of states of the oxidized system for spin down

(negative values) and spin up (positive values) for both oxidized and dry compound

in figures 3.8 and 3.9. After oxidation, unoccupied states appear at the top of the

valence band. This observation reflects the metallic character of the oxidized system

and the appearance of holes subsequent to oxygen incorporation. The empty states

have a spin up polarisation as shown by figure 3.8. Computation of the magnetic

moment of the system confirms that a moment of 2µB is missing: it is only 12 µB in

the oxidized system while it was 14 µB (two gadolinium with parallel spin of 7 µB
on each) in the dry material. Therefore, the two holes have the same spin +µB and

constitute magnetic defects. The same magnetisation associated to hole polarons has

been found in oxidized barium stannate and barium zirconate [120]).
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Figure 3.9: Projected density of state of
the oxidized compound, on p orbitals of
Oxygen and f orbitals of Gadolinium.

We now want to characterise more precisely these unoccupied states by determining

where there are located, whether the hole polaron is well localised or not. In order

to do so, we plot the partial density of states (projection of the density of states on

different orbital momentum) for every atom. Figure 3.9 shows the projection of the

DOS on the p orbitals of oxygen and the f orbitals of Gd. It distinguishes the oxygen

atoms 1st neighbour of a dopant (12 atoms because there are 2 Gd in the supercell)

and the oxygen atoms far from the dopants (36 atoms). It clearly evidences that the

hole is mainly localised on the oxygen atoms first-neighbors of Gd, supporting the

picture of a small polaron.
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3.4 Competition between hydration and

oxidation

Hydration and oxidation are both strongly exothermic processes. The

state of the material – dry, hydrated or oxidized – depends on the thermodynamics

conditions: temperature and atmosphere (pressure and content).

To check the accuracy of the enthalpy values for both processes, we run calculations

with a higher cutoff, and more accurate PAW atomic data (see table 3.6). The chosen

cutoff energies – 36 Ha for rO1 and 20 Ha for rO2 – are enough to get an error of

5 meV or less (far below 10−3 Ha= 0.027 eV), compared to higher cutoff. The soft

pseudopotential we used, rO1, is also enough to get accurate results, especially on

the hydration enthalpy. The oxidized material being more complex, the accuracy is

a little deteriorated – due to the reference O2 for which the overlap between PAW

spheres is not negligible – but the error is only about 6%.

rO1 rO1 rO2 rO2

Ecut = 36 Ha Ecut = 46 Ha Ecut = 20 Ha Ecut = 30 Ha
∆Hhyd (eV/V••

O ) -1.321 -1.321 -1.337 -1.332
∆Hoxi (eV/V••

O ) -0.652 -0.650 -0.697 -0.692

Table 3.6: Hydration and oxidation enthalpies for different oxygen pseudopotentials
and cutoff energies, to check the accuracy of our results.

From the enthalpies, we calculated grand potentials of our three states: dry,

hydrated and oxidized. This allowed us to study the stability of these three phases

in the simultaneous presence of oxygen and water, as done in previous studies on

other proton-conducting perovskites [121–123]. This section deals with the respective

stability of these three phases. The stability of BCGO (i.e. the dry compound) with

respect to its chemical elements and their oxides is detailed in appendix B, using the

same method of grand potential.

The grand potential is defined in a general way by

Ω = E − TS −
∑

j

Njµj, (3.6)

where E is the internal energy, Nj and µj are respectively the number of atoms and

the chemical potential of the j chemical species. The deviation of chemical potential

of a species is defined as ∆µj = µj − Ej and the formation energy of a phase as

Ef = E −∑j Ej, Ej being the internal energy of the j species in its standard phase

(i.e. molecule O2, body-centred cubic Ba, face-centred cubic Ce and hexagonal Gd).

The formation energies of the three phases are given in the previous chapter in

table 2.13. The three grand potentials can then simply be expressed as a function of
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3. Thermodynamics aspects: hydration and oxidation

∆µO and ∆µH2O :

Ωdry = Ef
dry − c+

δ

2
∆µO (3.7)

Ωoxi = Ef
oxi − c (3.8)

Ωhyd = Ef
hyd − c−

δ

2
(Ef

H2O
+ ∆µH2O −∆µO) (3.9)

where c is a function of ∆µBa, ∆µCe, ∆µGd and ∆µO, identical for each of the three

compounds: c = ∆µBa + (1− δ)∆µCe + δ∆µGd + 3∆µO.

The expression of Ωhyd is obtained from Ωhyd = Ef
hyd − c − δ∆µH , where we

have replaced ∆µH in order to get the dependency on ∆µH2O, using ∆µH2O =

∆µO + 2∆µH − Ef
H2O

.

We can then plot stability domain for the three extreme states as a function of

(∆µH2O,∆µO), i.e. as a function of external conditions since the chemical potentials

can be directly related to the partial pressure and the temperature. For an ideal gas,

we have:

∆µO =
1
2

(µO2
(T, P 0) + kBT ln(

PO2

P 0
)) (3.10)

where P 0 is the reference pressure of 1 bar and µO2
(T, P 0) is taken from experimental

values [124].
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Figure 3.10: Stability of BCGO in its three phases (dry, hydrated, oxidized), as a
function of (∆µH2O,∆µO). ∆µi can be related either to the partial pressure Pi at
fixed temperature (which is done hereabove), or to the temperature T at fixed partial
pressure.
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3.4. Competition between hydration and oxidation

Figure 3.10 illustrates the competition between hydration and oxidation. At high

oxygen partial pressure PO2
, the presence of water may prevent the oxidation, and

so extend the electrolyte-like behaviour. This is why the oxidized phase is probably

absent in the operating conditions of fuel cells. At T=300 K, if we maintain a

water pressure around 25 mbar or above, the compound should be hydrated rather

than oxidized, which is in qualitative agreement with experiments (predominance of

protons at low T while holes are usually dominant at high T).

However, we should remember that this stability diagram neglects the entropy

(configurational and vibrational). Moreover, we only consider the extreme states:

fully hydrated, fully oxidized or dry. The line delimiting the three zones in the

diagram should in fact be blurry regions where the compound is partially hydrated

and/or oxidized. This limit may spread over a wide range of water and oxygen

partial pressures. The present approach, with its approximations, shows that BCGO

compound is likely to be hydrated at room temperature.

Two main ideas should be remembered from this chapter:

• due to the low symmetry of barium cerate, the protonic defects evolve in a very

complex energy landscape, approximated by a structure of 16 local minima.

• both oxidation and hydration are strongly exothermic and thus compete, depend-

ing on the experimental conditions.
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Chapter 4

Migration barriers

Once all the stable positions for defects have been computed, we need to compute
the energy barriers between each pair of neighbouring positions. First, we define the
diffusion mechanisms that allow protons and oxygen vacancies to move. Then, we
use the string method to compute the energy barrier between two stable positions
related by a given mechanism. Finally, the results will be discussed regarding
especially the agreement with Bell-Evans-Polanyi principle and with a previous study
on a similar material.

Contents
4.1 Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Protonic . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Anionic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Energy Barrier for protonic defects . . . . . . . . . . . . 73

4.2.2 Energy Barrier for oxygen vacancy . . . . . . . . . . . . 77

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Assumptions and approximations . . . . . . . . . . . . . 78

4.3.2 Comparison with In-doped CaZrO3 . . . . . . . . . . . . 79

4.3.3 Rate-limiting events . . . . . . . . . . . . . . . . . . . . 80

4.3.4 Bell-Evans-Polanyi principle . . . . . . . . . . . . . . . . 82

69



4. Migration barriers

4.1 Mechanisms

In the previous chapter, all stable sites for the proton and the oxygen vacancy

have been extensively identified. We now have to analyse how defects move from one

position to another.

4.1.1 Protonic

In a cubic perovskite, there are two kinds of processes for the proton motion:

reorientation and transfer (or hopping) [29]. In this ideal structure, each process is

associated to a single barrier, provided the proton is far enough from any dopant. For

instance, Gomez et al. [23] found in BaZrO3 (respectively BaTiO3) a reorientation

barrier of 0.14 eV (respectively 0.19 eV) and a transfer barrier of 0.25 eV for both

materials. In such simple systems, there is only one kind of stable position for the

proton (without considering the presence of a dopant for now). In this position, the

proton has four possibilities to move: two reorientations and two hoppings. This

possible hopping is named « intra-octahedral hopping » as both oxygens to which

the proton is linked in initial and final positions belong to the same octahedron (see

figure 4.1(b)).

In distorted perovskites, when there is a set of tilts of oxygen octahedra, a third

mechanism may appear: the inter-octahedral hopping. Indeed, the facing oxygen,

which does not belong to the same octahedron as OH•
O, can become very close to

the protonic defect and possibly form a hydrogen bond. This mechanism is possible

only for one site out of two: the cus position (a/b type) shown in figure 4.1(c).

The hollow site (c/d type) is too far from the facing oxygen to be able to feel its

attraction. Looking at figure 4.1(b) and 4.1(c), one interoctahedral hopping appears

to be equivalent to two intraoctahedral hoppings in terms of distance. This direct

jump to another octahedron might fasten the diffusion in Pnma structure compared

to cubic perovskites.

As evoked in the introduction, many perovskites have tilted oxygen octahedra, it

depends on their tolerance factor:

t =
rA + rO√
2(rB + rO)

. (4.1)

Table 4.1 recalls the values of tolerance factor, already given in table 0.1, and

the possibility of interoctahedral transfer or not according to several studies. The

correlation between tolerance factor t< 1 and the Pnma structure is clearly evidenced,

as well as the one between Pnma structure and interoctahedral hopping. Note however

that some studies found a possible inter-octahedral transfer in small cubic perovskites

70



4.1. Mechanisms

such as SrTiO3 [9, 27, 28] or even in cubic perovskites with large lattice constant

such as BaZrO3 [125], in contradiction with other works [23, 28].

(a) Reorientation (b) Intra-octahedral hopping (c) Inter-octahedral hopping

Figure 4.1: Possible motions of the proton in a perovskite with space group Pnma.

Perovskite a0 (Å) t Structure Flip Inter Reference
CaTiO3 3.85 0.97 Pnma yes yes [23, 27, 28]
SrTiO3 3.91 1.01 Pm3̄m (I4/mcm) yes no [27, 28]
CaZrO3 4.04 0.92 Pnma no yes [20–23]
BaTiO3 4.06 1.07 Pm3̄m (R3m) no no [23]
SrZrO3 4.14 0.95 Pnma no yes [20, 22, 26]
BaSnO3 4.16 1.03 Pm3̄m no no [30]
BaZrO3 4.25 1.01 Pm3̄m no no [22, 23, 29]
SrCeO3 4.29 0.89 Pnma no yes [19]
BaCeO3 4.41 0.94 Pnma no yes [19]

Table 4.1: Pseudo-cubic lattice constant a0 from DFT calculations (GGA), tolerance
factor t calculated from Shannon ionic radii, crystal space group of different perovskite
oxides, and whether flip or inter-octahedral hopping can occur or not. For BaTiO3

the high-temperature cubic structure is considered, which is the one simulated in
Ref. [23]. The cubic structure (room temperature structure) is also considered for
SrTiO3, rather than the low-temperature tetragonal structure. The ground-state
space group for both cases is given between parentheses.

A fourth mechanism has been mentioned in previous works, although sporadic-

ally, under different names: « flip » [126], « bending » [127] or « inter-octahedron

hopping » [113]. It correspond to the situation described in section 3.2.1.1: there

could be two possible positions for the protonic defect for each pseudocubic direction,

slightly bend towards either neighbouring oxygen atoms (up to being aligned along

the octahedra edge), instead of being equidistant from both of them. In that case, the

proton can move from « bending towards one oxygen » to « bending to the other »,
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4. Migration barriers

staying bound to the same oxygen through a slight reorientation. That is why « in-

teroctahedral reorientation » should be a better name for that mechanism, especially

if the protonic defect OH•
O is aligned along octahedron edge. This mechanism seems

to only happen in perovskites with a small lattice constant (≤ 4.0 Å), as illustrated

by table 4.1. The energy barrier of the flip is usually rather low (. 0.1 eV [113]) and

hence most of the time neglected. It can also be seen as a part of the intra-octahedral

transfer mechanism: before jumping from one oxygen to another, there is a little

reorientation of the proton in order to get an O–H·O alignment. The intra-octahedral

transfer would thus be a two-step mechanism with bending (flip) then stretching

(hopping). This will be detailed later in section 4.2.1. In this work, only the three

mechanisms: reorientation, intra-octahedral hopping and inter-octahedral hopping

will be considered.

4.1.2 Anionic

The mechanism of oxygen vacancy are easier to list, as their sites are better

defined and fewer than the possible positions of protonic defect. A vacancy can only

move from one oxygen site to another, belonging or not to the same octahedron.

Therefore, there are a priori two possible mechanisms: intraoctahedral hopping or

interoctahedral hopping for oxygen vacancy.

Only few works have studied oxygen vacancy migration in such material since

perovskites are usually more interesting for their protonic conduction ability. Besides,

these numerical studies are usually achieved using classical molecular dynamics [128,

129], less computationally demanding, since oxygen is easier to treat with empirical

potentials than hydrogen. However, the noticeable exception of Ammann et al. [130]

studies both mechanisms – intra and interoctahedral transfer – in MgSiO3.

4.2 Results

Once mechanisms and stable positions have been determined, the only thing

remaining is the computation of the minimum energy path (MEP) using the string

method described in section 1.3. These computations are using the DFT framework

with the same parameters mentioned in the previous chapter (3), namely a 2×2×2 k-

point grid, a 20 Ha energy cutoff, on the same 80-atom supercell. Typical simulations

were done on 3000 cpu cores using four levels of parallelization: k-points, bands, FFT

grid, and images.

The only two parameters needed for using the string method are: the number

of images, and a convergence criterion. For all our simulations, the optimisation is
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4.2. Results

stopped when the total energy difference – averaged over all the images – between

one iteration and the previous one is lower than 1× 10−5 Ha. The number of images

is trickier to choose: we first run all simulations with 10 images, and then with 19

images. For some barriers, discrepancies between both number of images were found,

they will be discussed in section 4.2.1.1.

4.2.1 Energy Barrier for protonic defects

4.2.1.1 Importance of the number of images

The minimum energy path has to be correctly sampled to get the correct associated

energy barrier, i.e. to determine the saddle point with accuracy. The number of

images needed is strongly dependent on the shape of the MEP: a very smooth barrier

would need few images to get the right transition state energy, while a sharp peak

could need more images to be accurately described.

After all calculations with 10 images were over, we tested 19 images on some

barriers 1. It appears that for some of them we were indeed missing the real peak.

Figure 4.2 shows the minimum energy path for 10 and 19 images for one smooth

barrier and one sharp one. A 10-image simulation seems enough to recover perfectly

a smooth path, while the sharp peak requires 19 images to find the right transition

point. Consequently, all the barriers have been computed again with 19 images.
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Figure 4.2: Examples of one sharp (a) and one smooth (b) minimum energy paths
computed with 10 and 19 images.

4.2.1.2 Barrier values

Depending on the initial position, there are four or five possible mechanisms:

1. This number of 19 images was chosen to be almost the double of what we used at first. An
odd number might capture a saddle point missed by an even number of images.
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4. Migration barriers

• if the starting site is a cus site (a/b), there are two reorientations, two intraoc-

tahedral hoppings and one interoctahedral hopping;

• if the starting site is a hollow site (c/d), there are only two reorientations and

two intraoctahedral hoppings 2.

Reorientation Intra Inter
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

From To ∆E To ∆E To ∆E To ∆E To ∆E
1an 1bn 0.50 1dn 0.10 2dn 0.37 2df 0.58 1bf 0.24
1bn 1cn 0.30 1an 0.49 2dn 0.32 2df 0.48 1af 0.24
1cn 1dn 0.05 1bn 0.20 2bn 0.29 2bf 0.43
1dn 1an 0.09 1cn 0.16 2bn 0.36 2bf 0.52
2an 2bn 0.31 2dn 0.15 2cn 0.22 2cf 0.40 2af 0.25
2bn 2cn 0.28 2an 0.43 1cn 0.35 1cf 0.51 2bf 0.21

1dn 0.31 1df 0.47
2cn 2dn 0.03 2bn 0.18 2an 0.23 2af 0.45
2dn 2an 0.23 2cn 0.09 1an 0.29 1af 0.44

1bn 0.24 1bf 0.39
1af 1bf 0.54 1df 0.14 2df 0.50 2dn 0.44 1bf 0.19

1bn 0.16
1bf 1cf 0.33 1af 0.54 2df 0.45 2dn 0.40 1af 0.20

1an 0.16
1cf 1df 0.06 1bf 0.18 2bf 0.36 2bn 0.32
1df 1af 0.08 1cf 0.15 2bf 0.42 2bn 0.39
2af 2bf 0.36 2df 0.17 2cf 0.39 2cn 0.36 2af 0.21

2an 0.17
2bf 2cf 0.33 2af 0.49 1cf 0.47 1cn 0.42 2bf 0.16

1df 0.44 1dn 0.39 2bn 0.13
2cf 2df 0.02 2bf 0.17 2af 0.36 2an 0.28
2df 2af 0.20 2cf 0.08 1af 0.37 1an 0.34

1bf 0.31 1bn 0.28

Table 4.2: Energy barriers (eV) for proton reorientation, intra-octahedral hopping
(« intra ») and inter-octahedral hopping (« inter »).

Considering the number of stable sites and the four or five mechanisms associated

to each site, we get a total of 84 values to determine. Obviously, the number of

simulations to run is much smaller (around half) since most computed barriers give

two values – back and forth – except for symmetric cases (for example, 2af – 2af gives

only one value). Each simulation of 19 data points has then been fitted with a spline

to find the minimum energy path, and thus the energy barrier. These energies are

provided in table 4.2. The list presented in this table is complete provided there is

2. In that case, the interoctahedral hopping is assumed to have a too large energy barrier, owing
to the very large distance separating the protonic defect OH•

O
from the facing oxygen
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4.2. Results

only one dopant considered. The only missing configurations are the one in which two

dopants are 1st or 2nd neighbours. These barrier heights are given with an uncertainty

of ±0.02 eV due to the approximation made in section 3.2.1.2 considering that beyond

the 1st coordination shell of the dopant, a position is « far ». As shown by figure 3.6,

there may be a slight energy difference between two equivalent positions « far »,

inducing an uncertainty on the energy barrier.

We can notice that reorientation barriers between two « near » sites or two « far »

sites are similar (difference 6 0.05 eV). The energy surface of proton bonded to

an oxygen 1st neighbour of the dopant is indeed approximately shifted by 0.1 eV

compared to the surface far from the dopant (see figure 3.6). The case of hopping

is more complicated though: the Coulomb interaction between H and Gd prevents

hydrogen from easily escaping from the dopant. Hopping barriers from a « near »

site towards a « far » sites have higher values than those of the backward motion, as

expected.

Barrier pure BaCeO3 « far » BaCeGdO3

Reorientation → ← → ←
1a-1b 0.54 0.54 0.54 0.54
1b-1c 0.33 0.18 0.33 0.18
1c-1d 0.06 0.15 0.06 0.15
1d-1a 0.09 0.14 0.08 0.14
2a-2b 0.36 0.49 0.36 0.49
2b-2c 0.33 0.17 0.33 0.17
2c-2d 0.03 0.08 0.02 0.08
2d-2a 0.20 0.17 0.20 0.17

Hopping → ← → ←
1a-2d 0.50 0.37 0.50 0.37
1b-2d 0.45 0.31 0.45 0.31
1c-2b 0.36 0.47 0.36 0.47
1d-2b 0.42 0.44 0.42 0.44
2a-2c 0.39 0.36 0.39 0.36
1a-1b 0.19 0.20 0.19 0.20
2a-2a 0.21 – 0.21 –
2b-2b 0.16 – 0.16 –

Table 4.3: Comparison of barriers values “far” from the dopant in BCGO and in pure
charged BaCeO3.

Using an undoped supercell, as we did in the previous chapter for the stable

positions in table 3.4, the barriers occurring far from the dopant have been recomputed

in pure BaCeO3. The charge of the proton is here compensated by a uniform charged

background (homogeneous electron gas or jellium) instead of a gadolinium atom. In

that simple case, an exhaustive list of the possible motions gives 30 barrier values
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associated to 16 different motions: 8 reorientations, 5 intra-octahedral hoppings and

3 inter-octahedral hoppings. Table 4.3 compares these energy barriers with the one

obtained in Gd-doped BaCeO3, far from the dopant. The energy barriers obtained

are, as expected, very close: they are identical within 0.01 eV. This corroborates,

once again, that our 80-atom supercell is large enough to contain regions that are

sufficiently far from the dopant to be considered as pure BaCeO3. It also shows

that jellium model only induces a systematic shift in total energies, and has thus no

impact on energy differences.

4.2.1.3 Barrier shapes

The computation of minimum energy paths does not give only the barrier value

but also the shape of the path. Figure 4.3 gives an example of energy profiles for each

of the three kinds of mechanisms, as well as the evolution of the O-H distance and

angle during the motion. Figure 4.3(a) illustrates a complete reorientation around an

oxygen O1 near the dopant (1an⇒ 1bn⇒ 1cn⇒ 1dn⇒ 1an). It clearly evidences

the fact that reorientation processes are not alike. In addition to very different barrier

heights, the angle between two stable sites varies from 60° to 120° instead of being set

to 90° (like in a cubic perovskite). It also proves that the O–H bond is never broken

during a reorientation process as the O–H distance is kept constant around 1 Å.

(a) Reorientation (b) Intraoctahedral hopping (c) Interoctahedral hopping

Figure 4.3: Energy profiles and evolution of the O–H distance and the angle φ
along typical MEP. The angle φ is between the initial and current O–H direction
(Hinit–O–H).

Figure 4.3(b) and 4.3(c) present the same information for transfer. The evolution

of the O–H distance and the angle between initial and current O–H position show

that both processes are in fact two-step motions: first a reorientation in order to get
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O–H–O aligned, then a jump between oxygen atoms. The reorientation is only slight

for the interoctahedral hopping (≈ 5°) but significant for intraoctahedral hopping

(≈ 50°). This reorientation could be related to what was previously mentioned as

« flip » (see section 4.1.1).

4.2.2 Energy Barrier for oxygen vacancy

The oxygen vacancies have in fact more possibilities than the proton to move:

each oxygen belongs to two octahedra and has four oxygen nearest neighbours on

each octahedron leading to eight intraoctahedral transfers. Besides, there are four

second neighbours enabling four interoctahedral hoppings. However, even if each

oxygen vacancy has 12 possible motions, most of them are alike and should have the

same barrier values. In pure BaCeO3, there will be four kinds of barriers:

• two intraoctahedral hoppings: O1↔O2 and O2↔O2;

• two interoctahedral hoppings: O1↔O1 and O2↔O2.

The presence of dopant distinguishes four kinds of oxygen vacancy positions: O1n,

O2n, O1f and O1f, using the same notation as for the proton: n stands for « near » the

dopant and f for « far » from the dopant. This leads to 18 barrier values, presented

in table 4.4.

Intra Inter
︷ ︸︸ ︷ ︷ ︸︸ ︷

From To ∆E To ∆E To ∆E To ∆E
O1n O2n 0.64 O2f 0.62 O1f 1.10
O1f O2n 0.33 O2f 0.57 O1n 0.90 O1f 1.12
O2n O1n 0.59 O1f 0.48 O2f 1.14

O2n 0.53 O2f 0.49
O2f O1n 0.37 O1f 0.53 O2n 0.93 O2f 1.07

O2n 0.31 O2f 0.39

Table 4.4: Energy barriers (eV) for oxygen vacancy intra-octahedral hopping (« intra »)
and inter-octahedral hopping (« inter »)

Contrary to the protonic case, this list is not completely exhaustive as several

barriers can hide under the label « O1↔O2 » or « O2↔O2 ». Indeed, even if the

initial and final position of several barriers are equivalent and the mechanisms (e.g.

interoctahedral hopping) identical, the path to go from one type to another can

slightly change because directions ~a, ~b and ~c are not equivalent. A complete study

will imply to compute the eight possible intraoctahedral and four interoctahedral

hoppings for a given initial position. However, owing to the very small anisotropy

in the equatorial plane (see the lattice parameters in table 2.8), the barrier values
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behind « O2↔O2 » or « O1↔O2 » will probably be alike. Therefore, we decided to

compute only one barrier for a given pair of initial and final positions.

The oxygen vacancy does not constitute our major focus. Their migration barrier

energies are calculated to roughly know their behaviour and compare it with the

protonic motion. That is why they are computed with only nine images 3. Because of

the uncertainty in energy for one given oxygen vacancy positions, all barrier values

have an error bar of ±0.02 eV.

4.3 Discussion

As our main interest lies in protonic conduction, we will mainly comment on the

protonic barriers, and just say a few words concerning oxygen vacancy barriers.

4.3.1 Assumptions and approximations

A few assumptions and approximations inherent to our calculations should be

kept in mind when discussing the result.

First of all, the computation of energy path through the string method gives

« fully-relaxed » static barriers, as opposed to « dynamical » barriers obtained in

molecular dynamics though the counting of occurrences of events. Static barrier

might neglect collective and recrossing effects. Besides, there is the issue of relaxing

or not the whole structure. One may argue that the lattice has no time to relax

instantaneously during proton hopping as the hydrogen moves quickly compared to

other atoms. The computations of proton motions in unrelaxed environment would

naturally lead to higher barriers (up to a factor 6 [15, 29]). But this process can be

considered in a reverse way: the proton is most likely to transfer when other atoms

are in specific relaxed positions – randomly happening according to their vibrations.

That is why all our barriers were computed in a fully-relaxed lattice.

Secondly, quantum contributions from zero-point motions were not taken into

account. This approximation is valid if the nuclei can be considered as classical

particles, i.e. for heavy atoms and for high temperature. At the operating temperature

of PCFC , this approximation may be true for barium, cerium, gadolinium and possibly

for oxygen, but not for the hydrogen (the characteristic temperature associated to the

stretching mode of OH is ≈ 3000–4000 K). The barrier height could be significantly

decreased by proton tunnelling, by ~ω
2 ≈ 0.15 eV. This change would principally affect

3. If the barrier is assumed to be more or less symmetric, an odd number should be more
appropriate to capture the transition point, lying at mid-distance between the initial and final
positions.
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the transfer barrier, while reorientation barriers should not be shifted since the O–H

bond is not broken during this process [64].

However, another approximation that could counterbalance this overestimation of

the barrier is the generalised gradient approximation. Indeed, GGA has the tendency

to overstabilise the configuration in which a proton is equally shared between two

electronegative atoms [131], leading to an underestimation of the activation energy

for proton transfer of 0.10 eV to 0.15 eV.

4.3.2 Comparison with In-doped CaZrO3

The present study of protonic migration in Gd-doped BaCeO3 can be compared

with an analogous study in In-doped CaZrO3 [17, 21, 132]. Both materials have the

same Pnma structure and should thus have similar protonic energy landscapes with

small differences due to different lattice parameters and tolerance factors. BaCeO3

has a Goldschmidt factor of 0.94, while the one of CaZrO3 is slightly smaller: 0.92.

Consequently, we expect CaZrO3 to be more distorted than BaCeO3 whose tolerance

factor is closer to one (cubic structure). Table 4.5 compares structural parameters

of both materials with a fictitious ideal cubic structure. It confirms that structural

distortions are smaller in BaCeO3 than in CaZrO3. The deviation σ on A–O and

B–O bond length is due to the different distances existing in a Pnma structure, while

there is only one in a cubic perovskite.

BaCeO3 CaZrO3 [17] cubic
ac (Å) 4.44 4.06 –
a/ac 1.42 1.44 1.41
b/ac 2.00 2.00 2.00
c/ac 1.41 1.39 1.41

A-O/ac (±σ) 0.71(±0.21) 0.72(±0.22) 0.71
B-O/ac (±σ) 0.51(±0.00) 0.52(±0.00) 0.50
B-O1-B (deg) 153.85 144.74 180.00
B-O2-B (deg) 156.45 145.49 180.00

Table 4.5: Structural parameters (lattice parameters, cation-oxygen distances and
angles) for BaCeO3, CaZrO3 and a fictitious cubic perovskite.

These stronger distortions in CaZrO3 should facilitate the interoctahedral hopping.

On the other hand, the larger lattice parameter of BaCeO3 could lower the energy

barriers (the proton has more space to move). In fact, the barriers of CaZrO3 are

found globally higher than our values. For reorientation, we found values between 0.02

and 0.54 eV while Bilić and Gale[17] found values up to 0.89 eV. For intraoctahedral

hopping, the same phenomenon is observed: our values are in the range 0.22–0.58 eV
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with an average value of 0.38 eV, while transfer barriers in In-doped CaZrO3 can reach

0.89 eV with an average value of 0.45 eV. The contrary is found for interoctahedral

hopping, as expected considering the strong distortions of CaZrO3: this process

has an average value of 0.15 eV, lower than the one in BaCeO3 of 0.19 eV. The

smaller barrier found in interoctahedral hopping compared to intraoctahedral hopping

comes from the tilting of oxygen octahedra in the orthorhombic structure. This

tilt can bring two facing oxygens very close to each other while the rigidity of an

octahedron will keep constant the distance between its oxygen atoms, preventing an

easy intraoctahedral transfer (even though a little distortion is observed, also found

in previous studies [112]).

Overall, both materials exhibit the same tendency with a very large range of

possible values over almost al two orders of magnitude. The very small barrier we

found in BaCeO3 between c and d sites might explain why the work of Bilic and

Gale consider only 7 different positions (and not eight). One of the stable site here

considered, namely 1c, does not exist in CaZrO3.

From these common observations, we can assume that all orthorhombic perovskites

exhibit similar behaviour:

• rather low barriers for interoctahedral hopping (. 0.2 eV) – the bigger the

distortion, the smaller the barrier;

• relatively high barriers for intraoctahedral hopping (≈0.3–0.6 eV);

• a very wide range of values for reorientation (from ≈ 0.01 eV up to nearly 1 eV)

The last thing to comment is the dopant effect: it seems harder to escape from

Indium in CaZrO3 than from Gd in BaCeO3. If we compare the barrier to escape from

the dopant to the one towards the dopant, we find a factor 3 for Indium in CaZrO3,

and 1.5 for Gadolinium in BCO. Dopants can have different power of attraction, as

described by Björketun et al. [133] in BaZrO3, according to their size and the size of

A and B cation in the perovskite. This is in agreement with a recent study [134] that

observed that BaSnO3 possesses an ideal radius of dopant for which the proton-dopant

attraction is minimal. The weak proton-dopant interaction in Gd-doped BaCeO3 is a

positive point and shows that the trapping effect in BCGO is weak. This suggests

that gadolinium may have a nearly ideal radius in BaCeO3, as yttrium in BaZrO3 or

indium in BaSnO3.

4.3.3 Rate-limiting events

The rate-limiting or rate-determining process is defined as the slowest step in

reaction. In our case, it is the slowest mechanism in the diffusion pathway. The

energy barriers Ea we computed are however not enough to ascertain the frequency
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of a process. Indeed, using transition state theory, the rate is given by ν = ν0e
− Ea

kBT

where ν0 is an attempt frequency to determine. A possible way, though approximate,

to find this attempt frequency is to compute phonon modes in the initial and saddle

point, and then use the classical harmonic approximation to transition state theory.

This method will be displayed in the next chapter in section 5.1.4.2. Full phonon

computations have not been carried out because of their computational cost. Some

example of phonon computations in the hydrated state will be further discussed

in the next chapter 5. But the attempt frequency effect on the speed of a process

is secondary compared to the energy barrier effect (exponential factor). We will

therefore mainly focus on the difference in barrier height.

4.3.3.1 For the proton

While a common view in cubic perovskites [135] is to consider transfer as rate-

limiting and reorientation as very fast, this does not apply any more to orthorhombic

structure. The reorientation does not appear to be faster than hopping in our

simulations. The proton hoppings have been found to be indeed rate-limiting in

BaCeO3 by Münch and co-workers [19], but to be similar to reorientation in SrCeO3.

The activation energy value they computed for reorientation in BaCeO3 is of 0.07 eV

for a proton bonded to O1 and 0.11 eV for one bonded to O2, analogous to our results

for the lowest barrier.

If we want to go further and include the attempt frequency in our estimations –

without doing phonon calculations – we can settle for approximate values, using for

instance the one found in In-doped CaZrO3 by Bilic and Gale [17]. Averaging all the

different value, we get a frequency ν0 around 3000 cm−1 for transfer and 1000 cm−1

for reorientation. This allows us to compute the time scale for a process: τ = ν−1.

These values lead to a maximum uncertainty factor of 3 on the time scale, while the

difference in barrier height can change the time scale over orders of magnitude. If we

take the lowest (0.02 eV) and the highest barrier (0.54 eV) of reorientation process,

the associated time scale at 900 K, for instance, are respectively 4.3× 10−14 s and

2.1× 10−11 s. For a hopping process with a value around 0.3 eV, the associated time

scale is 5.3× 10−13 s. Therefore the limiting process is not necessarily the hopping in

general. In previous computational studies, the rate-limiting process in orthorhombic

structure seems to be the intra-octahedral transfer [26], in agreement with our results.

Nevertheless, the proton does not need intraoctahedral transfer to diffuse, a succession

of interoctahedral hopping and reorientation is enough. In that case, the reorientation

would be the rate-limiting step.
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4.3.3.2 For the oxygen vacancy

Table 4.4 strikingly shows that interoctahedral hopping (≈ 1 eV) is twice more

costly in term of energy than intraoctahedral hopping (≈ 0.5 eV), contrary to the

protonic case. The oxygen vacancy will always prefer the intraoctahedral path over

the interoctahedral one. In contrast to the protonic case, the final site is closer to

the initial one in the case of intraoctahedral hopping than interoctahedral hopping.

The same effect was previously found in a material with same Pnma space group:

MgSiO3, by Ammann et al. [130]. However in this material with a very small

lattice parameter (a0 = 3.5 Å), the diffusion barrier are higher: around 0.8 eV for

intraoctahedral hopping. These large difference in both mechanisms will bring us to

neglect interoctahedral hopping in the following chapter. This process is indeed not

necessary as two intraoctahedral process are equivalent to a interoctahedral hopping.

4.3.4 Bell-Evans-Polanyi principle

We want to see if the set of energy barriers we get, apparently chaotic with a wide

range of values, can be unified through a general relationship. We decide to confront

our results to a concept, very useful in physical chemistry: Bell-Evans-Polanyi

principle. It states that there might be a linear relation between the barrier height

Ea of similar chemical processes and their reaction enthalpy ∆H [136, 137]:

Ea = E0
a + α∆H, (4.2)

E0
a is a reference barrier height for a class of processes and α is a a constant between

0 and 1, supposedly close to 0.5 [137]. The value of 0.5 can be recovered by assuming

a parabolic form for the potential energy surface with the same curvature in initial

and final positions, and finding the crossing point along a reaction coordinate.

This principle is illustrated on figure 4.4: starting from an identical initial position,

the higher energy the final position has (∆H), the higher energy the transition point

has (Ea).

This principle reflects the intuitive fact that if a reaction becomes more exothermic,

the activation energy decreases, while if it becomes more endothermic, the activation

energy will increase.

Does this principle applied to our defects? This principle has first been observed

by Bell [136] in the case of proton transfer, and then by Evans and Polanyi [137] in

the more general case of chemical reactions of type A + BC = AB + C. It is thus

expected to apply pretty well in the case of proton hopping, while it is not clear

whether it should apply to oxygen vacancy or not. The trick is always to define

precisely what exactly means « similar processes ».
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Figure 4.4: Illustration of the Bell-Evans-Polanyi principle: enthalpy profile along a
reaction coordinate for similar processes (left), evolution of the activation energy (or
barrier height) as a function of the reaction enthalpy (right).

4.3.4.1 For the proton

In order to see if the BEP principle applies to our energy barrier, we have to plot

the activation energy as a function of the enthalpy reaction for a set of similar processes.

In our case, what is called « activation energy » in BEP principle corresponds to

the the barrier height, and the « enthalpy reaction » is in fact an energy reaction –

since our computations are performed at constant volume – it is simply the energy

difference between the final and initial positions. We will keep the notation Ea for

the energy barrier in the following (and not ∆E like in previous sections) in order to

avoid confusion with the energy difference between final and initial positions, which

will be noted ∆E (replacing ∆H in BEP principle).
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Figure 4.5: Activation energy versus reaction energy of protonic barrier for the three
kinds of mechanisms.
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The first idea is to separate the three mechanisms in three different plots presented

in figure 4.5 with a linear fit. Since intra-octahedral hoppings occurring around a

dopant (n↔n) have activation energy significantly lower than other transfers, we

chose to plot them apart.

Several comments can be made about this figure:

• first of all, the reorientations do not obey Bell-Evans-Polanyi principle at all,

there is no correlation between ∆E and the energy barriers Ea. This is not

surprising considering the fact that a reorientation is not a true chemical process:

the bond between oxygen and hydrogen is not broken during this mechanism.

• On the other hand, BEP principle seems to apply reasonably well to both types

of transfers.

For the inter-octahedral transfer, the linear fit is rather good and give a reference

energy E0
a of 0.19 eV.

If we take a closer look at barrier values for proton transfers of table 4.2, especially

intra-octahedral hoppings , all the energy barriers satisfy, for every pair of initial and

final positions (i, j), the inequalities:

Ea(in→ jn) < Ea(if → jn) < Ea(if → jf) < Ea(in→ jf). (4.3)

Figure 4.6: Activation energy Ea as a function of reaction energy ∆E for intra-
octahedral transfer considering only two processes per category: if → jn and
if → jf . The dashed line is a linear fit of all the data.

The middle inequality of equation 4.3 is simply the characterisation of BEP

principle if we restrict the meaning of « similar processes » to processes between same
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types of positions. In that case, we consider only two barriers per class: if → jn and

if → jf . Figure 4.6 shows the BEP plot for the 10 different class of intra-octahedral

transfer. This choice ensures that the processes are really « similar »: they start from

the same initial position if and arrive to a position low in energy near the dopant jn

or high in energy, far from the dopant jf . Since there is only two processes per class,

we can hardly claim that there is a linear relation between activation energy and

reaction enthalpy. However, we can note, that the activation energy is indeed always

higher for a mechanism if → jf than for if → jn, and the slope between this two

points is very close to 0.5 for every class. Hence, BEP principle is very well satisfied

for intra-octahedral transfer, with an energy reference of 0.41 eV and a factor α of

0.49.

The last inequality of equation 4.3 can also be understood through BEP principle:

the energy differences between n-type and f-type positions are usually higher than

between two f-type positions, leading to a higher activation energy.

Concerning the intra-octahedral hopping of type in → jn shown in figure 4.5,

the linear fit is not very good but a global increase of Ea as a function of ∆E is

evidenced.

(a) Simple representation
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Figure 4.7: Distance between gadolinium and hydrogen during an intra-octahedral
mechanism close to the dopant.

The fact that all barriers near a dopant (in → jn) are lower than barriers far

from a dopant (if → jf) – as implied by the inequalities 4.3 – can be justified

with very simple geometric considerations. Since there is almost a simple shift in

energy between positions « near » and « far » from the dopant, one could expect

the energy barriers to be almost identical. But if we consider the saddle point for

an intra-octahedral transfer (shown in figure 4.7), assuming the transfer is simply

a straight line between initial and final positions, it appears that it is closer to the

dopant than the initial and final positions. It is confirmed if we look at the evolution
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of the Gd-H distance during an intra-octahedral transfer near Gd: figure 4.7(b) proves

that, at the transition point, the distance is indeed shorter than in initial and final

states. By simple electrostatic considerations, we can infer that the saddle point is

more stabilised than the initial and final positions, leading to a lower energy barrier.

Note that the value of α – found to be nearly 0.5 in all cases – is to be considered

with caution: there is an artefact due to the fact that most barriers give two points

on the graphic: one for the forward motion, one for the backward motion (except

for barrier between two identical sites such as « 2b↔2b »). Indeed, if we consider

a barrier between state A and state B, we will extract two pairs (∆E, Ea). If we

note EA, EB and Et, the energies of the initial, final and transition point respectively,

we have ∆E1 = EB − EA, ∆E2 = EA − EB, Ea1 = Et − EA and Ea2 = Et − EB.

Therefore, the slope of the line joining both points (∆E, Ea) is given by:

Ea1 − Ea2

∆E1 −∆E2
=

EB − EA
2(EB − EA)

= 0.5. (4.4)

However, the values of E0
a are perfectly meaningful and give a good average energy

for each kind of mechanism. Moreover the value of figure 4.6 are free from this

artefact. E0
a is an intrinsic energy barrier, the one that is obtained when the initial

and final positions have the same energy. Protonic inter-octahedral transfers (E0
a ≈

0.19 eV) are favoured (when possible, i.e. when the initial and final protonic sites

are made closer by the octahedral tilts) over intra-octahedral hoppings (excluding

n → n) (E0
a ≈ 0.41 eV). The intra-octahedral transfer close to dopants (n → n) is

also favoured, with a low energy barrier of ≈ 0.30 eV.

4.3.4.2 For the oxygen vacancy

If we plot the activation energy versus the reaction enthalpy for intra-octahedral

and inter-octahedral transfers in figure 4.8, we see that the fit is not as good as the

protonic one. Because of the previously mentioned artefact, we also find a value of

α ≈ 0.5 for both mechanisms. The intrinsic energy barrier is found to be 0.48 eV

for the intra-octahedral hopping and much higher, with a value of 1.06 eV for the

inter-octahedral hopping. For the intra-octahedral case, the points are very scattered:

this suggests that either the BEP principle does not apply or these processes can not

be considered as « similar ».

In order to see if we can define other categories of processes, we draw the same

plot as figure 4.6 for the oxygen vacancy (see figure 4.9): each segment correspond to

a couple of barriers (if → jn,if → jf).

Even if the common tendency is less clear than for the protonic case, we recover the

part of inequality 4.3 corresponding to the BEP principle for every type of barriers:

Ea(if → jn) < Ea(if → jf). (4.5)
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Figure 4.8: Activation energy versus reaction energy of oxygen vacancy barrier for
the two kinds of mechanisms.

Figure 4.9: Activation energy Ea as a function of reaction energy ∆E for intra-
octahedral and inter-octahedral transfer considering only two similar processes per
category: if → jn and if → jf .

Nevertheless, the coefficient α is close to 0.75 and not 0.5 and the values are much

scattered. But the BEP principle seems to apply if we use the restricted notion of

« similar » processes.

We do not recover however the first part of inequality 4.3. On the contrary,

the energy barriers near a dopant(n→ n) are found to be higher than the barriers
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far from a dopant (f → f). This can however be explained with exactly the same

argument: during an oxygen vacancy migration, it is in fact an oxygen atom that

is moving. This oxygen atom is formally charged −2 and will thus be subject to an

electrostatic repulsive force from the dopant. This repulsive force is stronger for the

saddle point since, it is closer to the dopant than initial and final positions (path

analogous to the one of a proton in figure 4.7(a)).

In other words, the oxygen vacancies diffuse less easily in the vicinity of

a dopant, whereas protons diffuse more easily in the vicinity of a dopant.

The fact that BEP principle does not apply perfectly to oxygen vacancy was

somehow expected. Indeed, the reaction involved during an oxygen vacancy migration

does not correspond to a simple bond breaking and reformation, while protonic

transfers exactly match the conditions in which BEP principle was formulated.

All the intrinsic energy barrier values E0
a for both kinds of defects are summarised

in table 4.6.

Defects Mechanism E0
a (eV)

Proton

Reorientation –
intra-octahedral hopping 0.41

(without n↔n)
intra-octahedral hopping 0.30

(only n↔n)
inter-octahedral hopping 0.19

Oxygen vacancy
intra-octahedral hopping 0.48
inter-octahedral hopping 1.06

Table 4.6: Intrinsic energy barrier E0
a for the different diffusion mechanisms of protonic

defects and oxygen vacancies.

The energy landscape of defects is much more complex in the orthorhombic struc-

ture than in cubic structure. The picture of a two-step Grotthus diffusion with a fast

reorientation followed by a slow transfer [9] does not apply to our material. The reori-

entation, usually considered as very fast, could be in fact a limiting process here. The

interoctahedral process seems to be the more efficient in hydrogen diffusion. On the

contrary, for oxygen vacancy, only the intraoctahedral transfer should be considered.

All these barriers will be used as an input for the Kinetic Monte-Carlo algorithm

in the following chapter.
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Chapter 5

Diffusion and conduction

From all computed barriers in DFT, we want to extract a global activation energy,

and to study the influence of the dopant concentration on this activation energy and

on the diffusion coefficient.
Kinetic Monte-Carlo is particularly well-fitted to study a succession of events with

very different transition rates, as in our case. It allows us to access macroscopic
quantities using ab initio results.
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Kinetic-Monte Carlo (KMC) algorithm needs very few input parameters: the

main one is the transition rate for every process, modelled by:

ν = ν0e
− ∆E

kBT . (5.1)

The definition of the transition rate given by equation 5.1 implies three parameters:

the attempt frequency ν0, the barrier height ∆E and the temperature T. The barrier

heights correspond to the results of the previous chapter, the temperature can vary

from one simulation to another, and the choice of the attempt frequency will be

discussed in section 5.1.4.

In order to perform KMC simulations, a code has been written following the

algorithm described in section 1.4.1 (chapter 1). Considering our implementation,

other physical parameters can be modified in the input file: the supercell size, the

dopant concentration, the proton concentration (level of hydration), the number of

KMC steps, and the value of a possible applied external electric field in each direction.

5.1 Assumptions and choices

Most of the KMC computations have been performed using a 8× 8× 8 supercell

(in terms of pseudo-cubic unit cells) with periodic boundary conditions in the three

directions. The compound is assumed to be either:

• dry : [V••
O ]=1

2 [Gd
′

Ce] and [OH•
O]=0,

• or fully hydrated : [OH•
O]=[Gd

′

Ce] and [V••
O ]=0,

though mix of protonic defects and oxygen vacancies are possible regarding our code.

Two types of simulations were performed:

• without external electric field,

• under an external electric field.

Both types allow to access diffusion properties such as the activation energy by

computing directly the diffusion coefficient (without external electric field) or through

calculations of the defect mobility (under an electric field).

In order to get enough statistics to get a perfect fit, the number of steps was fixed

to 10 millions KMC steps for simulations without external electric field, and 200 000

steps for simulations under an external electric field. This difference is justified by

the fact that Brownian motion is predominant when there is no electric field leading

to a lot of noise on the protonic mean square displacement, while an external electric

field forces the proton to mainly move along it, causing a tremendous reduction of

the noise. Depending on the temperature and the dopant concentration, 10 millions

KMC steps can represent 30 ns to 1 ms in real time. The lower the temperature and

the lower the doping rate, the longer the simulation time.
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5.1.1 Assumptions on non-computed cases

Ab initio computations of BCGO always assumed that dopants are far from each

other. Configurations in which two dopants are neighbours have not been computed.

Therefore, our KMC simulations are valid at low doping rates. Indeed, as the doping

rate increases (higher than 12.5% typically), the number of neighbouring gadolinium

atoms increases as well. The transition state of a defect between two different dopants

could be more stabilised and the stable sites as well: this « overtrapping » effect has

not been computed in DFT, as it drastically multiplies the number of configurations

to simulate.

To treat the configurations with neighbouring dopants, we made two assumptions

in the case of a transition between two oxygen octahedra belonging to two different

dopants:

• energy of the stable sites (initial and final positions) are identical to the one of

a near region,

• the barrier height is the same as the one from a « near » site to a « far » site.

With these assumptions, we do not take into account the extra stabilisation induced

by a pair of dopants contrary to Björketun et al. [29], and may thus underestimate

the trapping effect at high doping rate.

5.1.2 Detailed balance principle

Due to the uncertainty on position energy (around 0.01 eV), computed barriers

between two positions A and B does not necessarily obey the detailed balance relation

explained in section 1.4.2:

EA − EB = ∆EB→A −∆EA→B. (5.2)

To remedy this issue, we slightly modified the barriers, so that equality 5.2 is strictly

respected for every couple of positions (A,B). Whenever this equality was not true,

we chose an average transition point with an energy of

Esaddle =
1
2

[(EA + ∆EA→B) + (EB + ∆EB→A)] (5.3)

and modified both barriers ∆EA→B and ∆EA→B accordingly. Following this process,

all barriers were not modified by more than 0.008 eV, far below the error bar.

5.1.3 Ab initio computation of BaCeO3 dielectric tensor

In this chapter, we will sometimes need the knowledge of the static dielectric

constant of BCO: εBCO. It will be requires in section 5.2.2, dedicated to the inco-

91



5. Diffusion and conduction

pora incorporation of electrostatic interaction between charge point defects, and

section 5.3.2 treating the response to an external electric field.

Therefore, we computed the value of εBCO in DFT using the same exchange-

correlation functional as previous calculations. In order to get this value, we performed

Density Functional Perturbative Theory (DFPT) calculations [40, 138, 139], still

using ABINIT code, but with norm-conserving Troullier-Martins pseudopotentials

for Ba, Ce and O. Simulations were performed on a 20-atom primitive cell of BCO

using a plane-wave cutoff of 60 Ha.

From these simulations, we can access to the electronic dielectric tensor ε∞
αβ, the

phonon modes at the Γ point of the Brillouin Zone and the atomic Born effective

charge tensors. Using these quantities, we can recover the static dielectric tensor

εBCO
αβ in the harmonic approximation:

εBCO
αβ = ε∞

αβ +
4π
Ω

∑

τ

S
(τ)
αβ

ω2
τ

, (5.4)

in which τ is the index of phonon modes at Γ point, S(τ) is the mode-oscillator

strength tensor of mode τ (deduced from the Born effective charges and phonon

eigendisplacements), ωτ is the phonon pulsation of mode τ and Ω is the unit cell

volume.

We finally get the static dielectric constant with:

εBCO = 1/3(εBCO
xx + εBCO

yy + εBCO
zz ) = 31.45. (5.5)

5.1.4 Attempt frequency

5.1.4.1 First approximations of the prefactor

Once we have the energy barrier ∆E, the only remaining input parameters are

the attempt frequencies associated to each process. Most of our computations simply

used the prefactor ν0 = 1× 1013 Hz, known to be a typical atomic vibration frequency

in a crystal. This frequency is also a good average value of vibrational frequencies

found for protons in perovskites [140]. This first set of prefactors, the same for every

process, is labelled « set 1 ». However this is only a rough approximation, that

associates to every mechanism the same attempt frequency.

To go beyond this approximation, we should perform phonon computations, but

these simulations are very costly and could not be done for each single configuration

(stable site and saddle point). We will discuss these computations in the next section

(5.1.4.2), but they do not give an exhaustive list of frequency for each process.

However, we can use results from previous studies on similar materials: in a first time,

we can try two different frequencies for hopping (ν0 = 3000 cm−1) and reorientation
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(ν0 = 1000 cm−1). This distinction comes from the fact that reorientation is based

on a bending mode while hopping is based on a stretching mode [29]. This choice of

prefactors is hereafter noted « set 2 ». Finally a third set (« set 3 ») of attempt

frequencies can be chosen, noticing that intra-octahedral hopping are initiated by the

activation of a bending mode, as shown in figure 4.3(b) in the previous chapter. It gives

us the same two attempt frequencies but not for the same process: ν0 = 3000 cm−1 for

inter-octahedral hopping and ν0 = 1000 cm−1 for reorientation and intra-octahedral

hopping, in good agreement with phonon computations performed in an analogous

material: In-doped CaZrO3 [17].

Results obtained with these both sets would be discussed in section 5.2.3 and

compare with the result obtained for the unique frequency of test 1.

The three choices of set for atomic frequencies are summed up in table 5.1.

Mechanism Reorientation Intra hopping Inter hopping
Set 1 333 cm−1 333 cm−1 333 cm−1

Set 2 1000 cm−1 3000 cm−1 3000 cm−1

Set 3 1000 cm−1 1000 cm−1 3000 cm−1

Table 5.1: Attempt frequencies ν0 associated to each mechanism for the three sets
tested.

In all cases, since the attempt frequencies of a given mechanism and the one of

the reverse process are the same, the detailed balance relation is still obeyed.

5.1.4.2 Phonon computations – Transition state theory

Some phonon computations have also been performed in the same DFPT formalism,

still using norm-conserving Troullier-Martins pseudopotentials (see section 5.1.3). Due

to the very high computational cost, phonon calculations have been fully performed

for only two protonic configurations in pure BaCeO3 on a 40-atom supercell (with

compensating charge background): one in a stable site (« 2c ») and one in a saddle

point (« 2b–2b »). Other calculations of perturbation theory have been performed

on some other configurations, but only looking at the linear response of the proton

(the perturbations corresponding to atomic displacements of the other atoms are

not considered). The obtained frequencies with that partial method are therefore

approximate and should be taken with caution. Table 5.2 presents these calculations

and compare the obtained frequencies with full-computations for the configuration

« 2c » and « 2b–2b ». It appears that performing a full-computation only slightly

changes the values of phonon frequencies, therefore a partial computation – applying

perturbations only on the proton – is sufficient to recover very good values. Moreover,
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phonon frequencies are alike for every stable position, especially for positions belonging

to the same group « cus » or « hollow » type. Saddle positions for transfers seem

to have the same frequency even if the mechanism implied is not the same, while a

saddle point of reorientation gets very different values, as expected considering the

fact that the O–H bond is not broken.

Proton positions Phonons frequencies (cm−1)
Stable positions
1a 631 1169 3130
1d 699 885 3292
2b 669 1235 3037
2c 683 885 3303
2c (full) 696 900 3405
2d 732 930 3245
Saddle positions
1c–1d reo 1038 3446
1a–2d intra 1279 1615
2b–2b inter 1161 1613
2b–2b inter (full) 1183 1622

Table 5.2: Phonon frequencies calculated from partial and full phonon computations
« (full) » (only highest frequencies are shown in this case) for some stable sites, and
for a saddle point for each mechanism.

Using the harmonic transition state theory (see section 1.4.2.2), we can compute

the prefactor ν0 :

ν0 =

n∏

i∈initial
νi

n−1∏

i∈saddle
νi

. (5.6)

Using this equation and the values of table 5.2, we get the following values: ν0 =

569 cm−1 for reorientation, 1117 cm−1 for intra-octahedral hopping and 1339 cm−1 for

inter-octahedral hopping. This results are close to the set 2 of frequencies we tested,

despite the factor 2. Indeed, they show that both types of hopping have very close

attempt frequencies while reorientation gets a much lower frequency.

5.2 Test of the methodology and the code

5.2.1 Canonical distribution recovered

In order to test our KMC implementation, we run long trajectories without

external electric field: as explained in section 1.4.2, we should recover the canonical

distribution when the system reaches equilibrium. Occupation probabilities were
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extracted from the computations through the formula:

nocci =
1

N sites
i

N i

Ntot

(5.7)

where N sites
i is the total number of sites of type i, Ntot is the total number of protons

in the simulation, and N i is the mean number of proton on sites of type i. nocci is

the mean fraction of protons per site of type i, it is related to the energy of site i:

nocci ∝ e
− Ei

kBT for a given total number of protons. The ratio of site occupations is

thus given by:
nocci
noccj

= e
− Ei−Ej

kBT (5.8)

From these site occupations, we can thus recover the relative energies (the most

stable positions, 1an, is chosen as reference), using:

− kBT ln

(

nocci
nocc1an

)

= ∆Ei = (Ei − E1an). (5.9)
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Figure 5.1: Relative energies of the 16 stable protonic site from KMC simulations
compared with ab initio values.

Figure 5.1 compares these relative energies at a fixed temperature for three doping

rate: 6.25%, 12.5% and 25% (panel a) , and at a fixed doping rate of 12.5% for three

temperatures : 600, 900 and 1200 K (panel b), with ab initio values. All the curves

are a lot alike proving that all the sites are occupied with the correct probability

during the KMC trajectory whatever the doping rate and the temperature. We can

see that at the lowest temperature of 600 K, the agreement between the KMC curve

and the DFT reference is slightly less perfect (especially for the high energy positions

2c), this may suggest that a longer equilibration time is needed since the probability

to get over a high barrier is very small.
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If we look at the occurrences of the 84 kinds of events during a simulation, each

of them happens at least a thousand times even in the worst case scenario with few

protons and a low temperature. Moreover, we checked the distance travelled by a

proton: after 10 millions KMC steps, the root mean square displacement
√

〈r2〉 is at

least of 70 Å (up to thousands Å) meaning that the proton has crossed at least twice

the supercell boundaries (of length 8× 4.44 Å = 35.52 Å).

Both these observations confirm that the proton is actually exploring all the

positions, and that our simulation really consider long-range protonic diffusion. This

is probably related to the fact that gadolinium acts as a rather shallow trap (the

association energy is only of −0.1 eV).

5.2.2 Influence of electrostatic interactions between

charged point defects

In this section, we want to check, at least in a rough way, what we are missing

when assuming no electrostatic interaction between charged defects. The ab initio

barriers already contain the electrostatic interaction between one proton and one

dopant (and their periodic images). However, in our KMC simulations, without

adding an electrostatic interaction term, we cannot describe accurately space-charge

regions (for instance, an inhomogeneous repartition of dopants or an accumulation of

protons). In our simulations, we assume a uniform (random) distribution of defects.

However, it is still useful to test the electrostatic interactions between defects because

it will take into account the proton-proton repulsion, expected to lower the diffusion

coefficient, and the pair of dopants, which could strengthen the trapping effect.

We will only deal with a fully-hydrated compound in this section (no oxygen

vacancy in the material). Gadolinium (Gd
′

Ce) and proton (H•
i ) are seen as point

defects with charge −1 and +1 respectively in a matrix of BaCeO3 of permittivity

εBCO(≈ 30). Since we have periodic boundaries conditions in the three direction in

our supercell, we used the Ewald summation method to compute the electrostatic

potential at every position ~r. (The electric field that derives from this potential is

hereafter noted ~Edef). We modified the energy barrier by adding the electrostatic

potential at the saddle point minus the electrostatic potential at the transition point

for every mechanism. However, one strong interaction is already taken into account

in the DFT computation: the Gd-H attraction. For KMC calculations including

electrostatic interactions, we thus used a modified set of barriers: we remove the

electrostatic part of this attraction from all barriers involving a « near » site. This

typically provides a decrease for « n→f » barriers of 0.04 eV and an increase of « f→n »

barriers of 0.03 eV.
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5.2. Test of the methodology and the code

Ewald summation requires the static dielectric constant (previously computed in

section 5.1.3) and three parameters:

• the Ewald parameter σ which determine the range separation and is usually

related to the length of supercell through the equation σ = L√
2π

,

• the highest vector in real space ~nmax used to compute the short-range part,

• the highest vector in reciprocal space ~kmax used to compute the long-range

part.

We used the usual value of σ = L√
2π

, and tried different couples (~nmax, ~kmax). It

appeared that the lowest possible value of these vectors: (1,1,1) is enough to recover

an accuracy on Ewald energy better than 10−6 eV (with a sum up to vector (2,2,2)

we find an accuracy of 10−12 eV). This implementation was tested through the

computation of Madelung constant in sodium chloride NaCl.

Ewald summation has to be computed at every KMC step for all protons and

possible transition states: this increases drastically the computational cost (≈ 200

times higher, depending on the number of protons). Figure 5.2 presents the mean

square displacement at 1200 K for a doping rate of 6.25% with and without long-range

electrostatic interactions. It appears that the diffusion coefficient is reduced (by 14%)

as expected considering the proton-proton repulsion. However, further computations

showed that the activation energy is not affected by these electrostatic interactions.
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Figure 5.2: Long-range electrostatic interactions effect on the mean square displace-
ment evolution for proton.

Considering the high computational cost due to Ewald summation, we will not

take into account these interactions in the following sections.
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The consideration of long-range interactions improves the accuracy of our model

but elastic deformations due to the presence of several hydrogen are still missing. We

cannot see a phenomenon described by Bork et al. [141] in which two protonic defects

may attract each other through elastic deformation of the lattice.

5.2.3 Influence of the prefactor

We now test the three sets of attempt frequencies mentioned in section 5.1.4. In

figure 5.3, we can see that the three sets give the same slope (logarithm of diffusion

coefficient as a function of 1
T

) and so the same activation energy of 0.36 eV (for a

fully-hydrated system with δ = 12.5%). The method to find the activation energy

is described hereafter in section 5.3.1. The diffusion coefficient is naturally affected:

almost one order of magnitude smaller for the set 1 compared to both other sets, as

expected since the transition rates are also ten times smaller.
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Figure 5.3: Arrhenius plots of proton diffusion coefficient for the three different set of
attempt frequencies.

It appears that the choice of the attempt frequency is not of prime importance: it

only induces a rescaling of the diffusion coefficient, but does not affect the activation

energy. In the following, we will simply use the first set, ν0 = 1013 Hz whatever the

mechanism, for both kinds of defects.

5.3 Diffusion coefficient and defect mobility

Using the parameters and hypothesis mentioned above, we run KMC simulations

either in the fully hydrated compound to study protonic motion, or in the dry

compound to study oxygen vacancy diffusion.
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In a first time, we run computations without external electric field to study

the diffusion of protons and oxygen vacancy in BCGO . This allows to compute

the diffusion coefficient, the mobility and the activation energy for different doping

concentration. However, we also wish to test a method in which an external field is

directly applied. This is an alternative way to get the defect mobility that could be

extended to the study of non-linear effects in strong electric fields. In this section,

the attempt frequencies are fixed to ν0 = 1013 Hz for both the protonic defect and

the oxygen vacancy.

5.3.1 Diffusion coefficient

Protonic defects and oxygen vacancies obey to a Brownian law when no external

force is applied. Their mean square displacement is given by:

〈r(t)2〉 = 6Dt, (5.10)

where 〈r(t)2〉 is the square of the distance between the position at t = 0 and the

position at time t, averaged over all the protons of the simulation cell, and D is the

diffusion coefficient.

Plotting 〈r2〉 as a function of time allows to calculate the diffusion coefficient.

Finally, from an Arrhenius fit of the diffusion coefficients at different temperatures,

we can extract the global activation energy Ea:

D = D0e
− Ea

kBT (5.11)

Note that the defect mobility µ can be recovered from the diffusion coefficient by

µ = qD
kBT

where q is the charge of the defect.

5.3.1.1 Protonic diffusion

KMC computations were conducted for different temperatures between 500 K and

1500 K, and for different doping rates δ = 1/32, 1/16 ,1/8, 1/5 and 1/4. Considering

the size of our supercell, the number of protons is 16, 32, 64, 108 or 128 respectively.

We also performed some simulations in a bigger supercell 12× 12× 12 for the lowest

dopant concentrations, in order to get a better statistic (e.g. 54 protons instead of

only 16).

For a given temperature and a given doping rate, four trajectories are computed

and averaged to plot 〈r(t)2〉 and find the associated diffusion coefficient. The logarithm

of D is plotted in figure 5.4 as a function of inverse temperature. Using equation 5.11,

we can extract the activation energy Ea. It is found to have a value around 0.37 eV and

to be rather independent of the doping rate, especially at low dopant concentration.
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Figure 5.4: Arrhenius plot of the diffusion coefficient of protons as a function of
dopant concentration.

At higher doping rate, namely 20% or 25%, the activation energy seems to decrease,

with values of 0.357 and 0.340 eV respectively. But our approximations are less valid

at high doping rate since DFT computations only treated the case of a proton in

the neighbourhood of one dopant. At high dopant concentration, the probability of

having two dopants near a proton increases. The assumptions we made in section 5.1.1

to treat these cases of several neighbouring dopants may underestimate the trapping

effect of pairs of dopants. Therefore, the results for δ = 20% or 25% should be

considered with caution.

δ (%) Ea (eV)
3.125 0.366
6.25 0.363
12.5 0.364
20 0.357
25 0.340

Table 5.3: Activation energy for pro-
tonic diffusion from KMC simulations
performed with different doping rates.

δ (%) Ea (eV) Reference
5 0.46 [142]
10 0.45 [143]
10 0.52 [142]
15 0.56 [142]
20 0.56 [142]
30 0.55 [142]

Table 5.4: Activation energy of BaCeO3

for different Gd doping concentrations,
from published experimental results.

Table 5.3 shows the values of activation energy for doping rates 6 12.5%. Ex-

perimental values, shown in table 5.4, are found around 0.5 eV (note however that

the data from Ref.[142] include oxide ion conductivity and not only protonic con-

ductivity). This discrepancy might be explained by the approximations we made
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(GGA-PBE, no quantum correction), and especially the use of static barriers instead

of dynamical barriers, but also by the fact that we only consider fully-hydrated

materials while experiments deal with partially hydrated materials containing many

oxygen vacancies. These vacancies are obstacles to the diffusion of protons since

they suppress possible oxygen sites for the proton and possess a charge +2 (repulsive

for the proton). Even at low temperature, it has been found that full hydration is

never reached: in Y-doped BaCeO3, the maximum possible hydration is around 15%

lower than the theoretical maximum [106], probably because of partial occupation of

Ba-sites by yttrium dopants.

5.3.1.2 Anionic diffusion

We performed the same kind of simulations in the dry compound, which contains

one oxygen vacancy for every two dopants. Using the Arrhenius equation 5.11, we

can extract the activation energy. Arrhenius plots for different dopant concentrations

are shown in figure 5.5.
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Figure 5.5: Arrhenius plot of the diffusion coefficient of oxygen vacancies as a function
of doping concentration.

Contrary to the protonic case, the doping rate has a strong influence on the

activation energy of oxygen vacancies (see table 5.5). The higher the doping rate,

the higher (in absolute value) the activation energy. This behaviour characterises a

strong trapping effect of dopants on the oxygen vacancy. This difference in behaviour

between both defects was expected since the interaction energy between dopant and

oxygen vacancy is twice higher as the one between Gd
′

Ce and H•
i , and above all, the

energy landscape for oxygen vacancy is much simpler. Indeed, there are only two
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sites « near » and two sites « far » for the oxygen vacancy and both « near » sites

have a lower energy than both « far » sites, while for the proton, some « near » sites

are in fact higher in energy than other « far » sites.

δ (%) Ea (eV)
3.125 0.482
6.25 0.510
12.5 0.533
20 0.548
25 0.553

Table 5.5: Activation energy for oxygen
vacancy diffusion from KMC simulations
performed with different doping rates.
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Figure 5.6: Activation energy of oxygen
vacancy as a function of the dopant con-
centration.

These values of activation energies for the oxygen vacancy might explained the

high experimental values found in table 5.4, which included oxygen ion conductivity.

Furthermore, the values found are in agreement with what was previously found in

other perovskites materials. Table 5.6 give some examples of activation energy found

in other perovskites by molecular dynamics simulations.

Material Ea (eV) Reference
LaMnO3 0.86 [128]
LaCoO3 0.61 [128]
LaFeO3 0.50 [128]
LaCrO3 0.48 [128]
LaGaO3 0.73 [129]

Table 5.6: Activation energy from previous molecular dynamics computations for
some perovskites.

5.3.2 Simulations under finite external electric field

The previous KMC simulations performed without external field allow to get the

diffusion coefficient D and the mobility µ using the relation µ = qD
kBT

. In the present

section, we propose a model to get access to the same quantities by simulations using

an external (finite) electric field. Such computations provide directly the mobility µ

and thus indirectly the diffusion coefficient D using the reverse relation D = µkBT
q

.

The proposed model is described in section 5.3.2.1 and the results for protonic and

anionic mobility are shown in sections 5.3.2.2 and 5.3.2.3 respectively. In particular,
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we show that the diffusion coefficient we get are identical to the one computed in the

previous section by more conventional KMC simulations.

5.3.2.1 Methodology

(a) KMC procedure

A mobile charge feeling a finite electric field E obeys the Nernst-Einstein law:

~v = µ~E or 〈x〉 = µEt (5.12)

where µ the mobility of the species. This relation is valid in a linear response approach,

i.e. in the limit of weak electric fields. The mobility µ is defined with respect to the

field actually felt by the charge.

We now have to include the finite electric field E felt by the charge in the KMC

procedure. We adopt the method used by Pornprasertsuk et al. [49] and Modak and

Lusk [144]: for a given process, the energy barrier without field, ∆E is replaced by

∆E − q ~E · ~∆r, (5.13)

where ~∆r is the position vector separating the saddle position from the stable one.

The prefactors are not modified. this approach can be justified by assuming a local

equilibrium around the defect and considering that the energy landscape felt by the

defect is the microscopic energy landscape without external field plus the electrostatic

potential energy associated to ~E ( ~E should be in fact considered as the supplement

of electric field induced by the external field).

Figure 5.7 shows the effect of a constant electric field on a simple energy landscape

(one dimension with only one kind of barrier). Both dashed lines in the right figure

represent the limit of the simulated box: while periodic boundary conditions are

applied to the system, the electric potential can not respect these conditions (it would

induce a discontinuity).

(b) Electric field felt by the defects

If we consider that the defects do not interact with each other, nor with the host

matrix, the electric field felt by the defect is simply the external field. In that case,

the electric field ~E introduced in the previous section correspond to both the external

electric field ~Eext and the local electric field felt by the defect ~Eloc.

However, in a dielectric medium, the local field and the external field might

differ significantly. This is important if one wants to compute the conductivity from

mobility values. Indeed, the mobility is defined according to equation 5.12 with

respect to the local field felt by the charge, while the conductivity σ is defined with

respect to the external electric field: ~j = σ ~Eext. The relation between the mobility
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Figure 5.7: Effect of a constant electric field on a simple energy landscape with
only one barrier. The transition rate r0 without external field become two different
transitions rates r1 and r2 when applying an external electric field, with the relation:
r2 < r0 < r1.

and the conductivity might thus be different than the usual relation σ = qnµ (n being

the defect concentration) which assumes an equality between both electric fields. In

fact, the expression of the electric current density ~j = qn~v = qnµ~Eloc leads to the

relation between conductivity and mobility:

σ = qnµeff , where µeff = µ
Eloc
Eext

. (5.14)

The local field ~Eloc must include the contribution coming from the surrounding

matrix that become polarised by application of ~Eext. It is linked to the polarisability

(and so to the dielectric permittivity) of the host material (BaCeO3). It is usually

divided in two terms ~E2 + ~E3, where ~E2 is called the Lorentz field [72] and is expressed

with the induced polarisation by: ~E2 = ~P
3ε0

. ~E3 is the field created by the dipoles

inside the Lorentz cavity and is equal to zero in a cubic environment. Making this

approximation and using ~P = ε0(εBCO − 1) ~Eext, we get:

~Eloc = ~Eext +
~P

3ε0
=
εBCO + 2

3
~Eext (5.15)

The electric field felt by a charged defect is in fact the macroscopic field rescaled

by a factor εBCO+2
3 = 11.15. Using equation 5.14, we can see that the conductivity is

underestimated by a factor 11.15 if we assume the electric field and the external field

are identical.
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Neglecting the Lorentz contribution is equivalent to set εBCO = 1 and thus
~Eloc = ~Eext. Note that the mobility is the same whether we neglect this contribution

or not, since it can be defined without the intervention of any electric field, from

the diffusion coefficient: µ = qD
kBT

. Accounting for Lorentz term, however, has effects

on the conductivity, whose expression explicitly includes a contribution from the

dielectric constant. The computation of σ involves the defect concentration, that we

do not know (the protonic concentration depends on the H2O partial pressure, and

the oxygen vacancy concentration on the O2 partial pressure). We will only present a

fictitious maximal conductivity σmax assuming a full hydration, expected to be close

to the real conductivity at low temperature and high water pressure.

We can also add the interactions between charged defects ~Edef , as described in

section 5.2.2. The local field will simply become:

~Eloc = ~Edef +
εBCO + 2

3
~Eext. (5.16)

Owing to the computation cost, this last case will not be treated.

Since the noise due to Brownian motion is relatively smaller when an electric field

is applied, the mobility (and so the diffusion coefficient) can be obtained with shorter

trajectories – 200 000 KMC steps is usually enough – and with a better accuracy

than when no external force is applied. We checked that we recover the results of

the previous section 5.3.1 concerning the diffusion coefficient. This verification also

confirms that our implementation of electric field is correct.

Moreover, we can choose the direction of the applied electric field in order to

study the anisotropy of conduction and diffusion in Gd-doped BaCeO3. This is also

possible without applying an electric field but it requires much longer trajectories

with a very big supercell to compensate for the noise.

5.3.2.2 Protonic

We tried different values of local electric field from 0.005 up to 0.05 V Å−1, which

correspond to external electric field (or macroscopic field) of 4.5× 106 V m−1 to

4.5× 107 V m−1. These fields are close to the one applied by Pornprasertsuk et al.

[49] (E = 7× 105 V m−1) or Modak and Lusk [144] (E = 6.79× 107 V m−1) on YSZ.

We first applied an electric field along the x-axis on a supercell doped with

12.5% of gadolinium. Here, we used the pseudo-cubic direction x,y and z: using the

orthorhombic notations, x and y are the pseudo-cubic direction in the plane (ac) (only

transfer between equatorial oxygens are possible in that plane) while z correspond to

the direction of axis b (along which are the apical oxygens).

Using equation 5.12, and plotting the mean displacement versus time (〈r〉 =

v × t = µEt), we can extract the protonic mobility. Figure 5.8 confirms that the
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5. Diffusion and conduction

mobility is not dependent of the value of the electric field – showing that we remain

in the linear part of the electric response – but strongly temperature dependent. We

get a protonic mobility around 5× 10−9 m s−2 V−1 at 600 K, 35× 10−9 m s−2 V−1 at

900 K and 82× 10−9 m s−2 V−1 at 1200 K. The order of magnitude of our results is in

agreement with the experimental value of 30× 10−9 m s−2 V−1 obtained in Y-doped

BaCeO3 (10%) [145] at 1173 K.
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Figure 5.8: Protonic mobility as a function of local electric field (applied along x) at
600 K, 900 K and 1200 K.

From the relation µ = eD
kBT

, we can compute the diffusion coefficient: D = µkBT
e

,

and plot it as a function of temperature, to recover the results obtained in the previous

section, in the absence of electric field. We indeed get the same values with an error

lower than 10% , and around 5% at high temperature (> 700 K). These differences

are related to the numerical uncertainties of the two approaches.

But considering our orthorhombic structure, it might be interesting to study the

anisotropy of the diffusion coefficient by applying an electric field in each pseudo-

cubic direction. However, the diffusion seems to be rather isotropic for the proton:

figure 5.9 shows the diffusion coefficient computed when applying an electric field in

each direction, for a doping rate δ = 12.5%. The protonic mobility is almost identical

whatever the direction, with a slight difference for the z-axis, consistent with the fact

that x and y-axis are alike in the Pnma structure while z-axis (corresponding to the

b-axis of the orthorhombic cell) is special. We finally find an activation energy of

0.354 eV for x and y-axis, and 0.377 eV for z-axis.

Note that the protonic conductivity, obtained by σ = 11.15× enHµ, cannot be

recovered with our studies since it requires the knowledge of the concentrations of
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Figure 5.9: Diffusion coefficient, calculated from protonic mobility, along the a, b and
c-axis as a function of temperature.

protons nH . However, assuming a full hydration (i.e. nH is equal to the dopant

concentration: if δ = 12.5%, there are half a dopant per Pnma cell of volume 350 Å3,

nH = 1.166× 1022 m−3), we get a conductivity σ = 7× 10−3 S cm−1 at 900 K. In

Y-doped BaCeO3 with a doping rate of 10%, Grimaud et al. [122] found that the

protonic defect concentration can reach the doping rate (10%) at 873 K if the partial

pressure of H2O is above 0.1 bar. Under these conditions, they found a protonic

conductivity around σ = 0.01 S cm−1. Previously, Oishi et al. [146] got a similar

result with σ = 0.014 S cm−1 at the same temperature with a partial pressure of water

around 0.02 bar and a very low partial pressure of oxygen (PO2
= 10−4 bar) in order

to avoid a possible hole conduction. Considering the fact that, with a more realistic

attempt frequency instead of ν0 = 1013 Hz, we would have a mobility higher by a

factor 2 or 3, our results are consistent with experiments.

5.3.2.3 Anionic

The same study can be applied to oxygen vacancies. When applying an electric

field along the x-axis, we find and oxygen vacancy mobility of 3× 10−9 m s−2 V−1 at

600 K, 62× 10−9 m s−2 V−1 at 900 K and 240× 10−9 m s−2 V−1 at 1200 K for the dry

compound with 12.5% of gadolinium. The fact that the mobility and the diffusion

coefficient of oxygen vacancies are higher than the protonic ones at high temperature,

may be an artefact due to the use of the same prefactor ν0 while the attempt frequency

of proton is likely to be higher than the attempt frequency of oxygen. Therefore,

these values should not be compared. What can be compared with each other are:
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5. Diffusion and conduction

i/ the activation energies (whatever the defects, the doping rate, the axis) since

the values are not dependent of ν0,

ii/ the diffusion coefficients (or the mobility) for the same kind of defect along

different axis or for different doping rate.

Figure 5.10 shows the Arrhenius plots for an electric field applied in the three

pseudo-cubic directions. Oxygen vacancy diffusion is significantly anisotropic. Indeed

the activation energy along the z-axis is found around 0.61 eV while it is only of

0.51 eV along x and y-axis. This result could have been predicted when looking at the

barrier energies of table 4.4: barriers between apical and equatorial oxygen (O1↔O2)

are globally higher by 0.1 eV than barriers between two equatorial oxygen atoms O2.
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Figure 5.10: Diffusion coefficient, calculated from oxygen vacancy mobility, along the
a, b and c-axis as a function of temperature.

This anisotropy obviously impacts the mobility: the values previously given were

computed for an electric field along the x-axis. If we now study the conduction of

oxygen vacancy along the b-axis, we find much lower values: 0.6× 10−9 m s−2 V−1 at

600 K, 24× 10−9 m s−2 V−1 at 900 K and 124× 10−9 m s−2 V−1 at 1200 K. From these

values, as we did for the protonic defect, we can compute a conductivity assuming

a completely dry material: σ = 11.15 × 2enV µ (nV is equal to half the dopant

concentration). This approximation may be true for low partial pressure of O2 and

H2O and high temperature. At 900 K, we find a conductivity of σ = 5× 10−3 S cm−1.

With the assumptions of completely hydrated or dry materials, the only difference

between protonic and anionic conductivity comes from the mobility. The mobility

values for both defects are very close, but we should keep in mind that this observation

is mainly due to the use of the same prefactor in both cases, while in fact, the attempt
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frequencies are likely to differ by a factor 3 or more. For a zero partial pressure of

water (dry compound), Grimaud et al. [122] find a conductivity at 873 K similar to

the one of the protonic conductivity in the fully-hydrated case, of σ = 0.01 S cm−1.

5.4 Discussion

In this section, we will discuss only the behaviour of protonic defects, which is

very peculiar regarding previous models: the two-state model of Hempelmann [116]

and some suggestions made by Kreuer [9] to correct it.

5.4.1 Discrepancy with respect to the two-state model [116]

The two-state model of Hempelmann is illustrated in figure 5.11 (for SrCeO3

doped with ytterbium). The dopant are considered as trap with an escaping time τ0

while the energy barriers « far » from dopants are associated to another time τ1.

Figure 5.11: Two-state model of Hempelmann applied to Yb-doped SrCeO3, figure
taken from Ref. [116]

From this representation, it clearly appears that this model cannot match our

simulations since the energy landscape for protons has been found to be much more

complex. This model is probably good for cubic perovskites, but in an orthorhombic

structure:

i/ even in the absence of dopant, the stable sites are not alike they can differ in

energy up to 0.2 eV.;
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5. Diffusion and conduction

ii/ near the dopant, the same difference in energy can be observed, even though

there is a global decrease of the energy landscape.

In fact, the presence of dopant has a double effect on perovskites with orthorhombic

structure:

• the most stable sites of the energy surface (1a, 1b, 1d, 2b, 2d) are even more

stabilised by ≈ 0.1 eV and are likely to behave as traps;

• the less stable sites, with high energy (1c, 2a, 2c), are lowered to the energy

of the most stable sites of the primitive surface, but not enough to create

traps. Some obstacle to protonic diffusion have been removed thanks to the

introduction of a dopant.

It is thus probable the two-state model does no apply to the present case.

Indeed, according to this model, when increasing the dopant concentration, we

should have a decrease of the diffusion coefficient but an activation energy kept

constant. We found an activation energy rather constant (though slightly decreasing),

but the diffusion coefficient is not clearly decreasing.

5.4.2 Discussion with respect to Kreuer’s hypothesis [9]

The vision of Kreuer is a bit different from Hempelmann’s model: he suggests that

the proton-dopant interaction is not local but delocalised over the material leading

to a global increase in the basicity of all oxygen atoms. This assumption explains

why an increase of hydration enthalpy with the doping rate is usually observed in

perovskites, even at low doping rate.

However, his hypothesis is also based on the assumption that dopants behave as

traps for the proton: it is perfect to represent a cubic perovskite but should not apply

to an orthorhombic system for the same reason mentioned above (creation of traps

but also removal of obstacles). In his experimental result, he found an increase of the

absolute value of activation energy with the doping rate. However, for the proton, we

observe the contrary: the absolute value of activation energy is rather constant – and

even seems to slightly decrease – when increasing the doping rate.

At low doping rate – below 12.5% – the activation energy and the diffusion

coefficient seem rather constant. It appears that protonic diffusion is relatively

independent on the dopant concentration from 3.125% to 12.5%. This surprising

result can be explained by the two opposite effects induced by dopant: the creation

of trap for the most stable protonic positions, and the removal of obstacles that

constituted the highest-energy positions. The global effect of dopant on the long-range

diffusion is a compensation between both phenomena and result in an invariance of

the diffusion coefficient and the activation energy.
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5.4. Discussion

At high doping rate, we are probably missing the strong trapping effect created by

pair of dopants. When δ > 12.5%, the regions near the dopant are likely to connect

to each other creating diffusion path of lower energy around the dopants. This vision

is consistent with the behaviour we observed: an increase of the diffusion coefficient

and a decrease of the absolute value of activation energy. But we are not treating

correctly the case of neighbouring dopants. Between two dopants, the proton sites

could be drastically stabilised [29] with a much lower energy than near only one

dopant. For instance, Björketun et al. [29] chose to represent the effect of a pair of

dopant by doubling the association energy. Besides, the influence of a pair of dopants

could extend beyond the 1st coordination shell.

However, the fact that the absolute value of activation energy increases with

dopant concentration is not that obvious either when looking at experimental values

showed in table 5.4. Indeed, if the activation energy seems to increase slightly at

“low” doping rate, it seems to reach a plateau around 15%.

Furthermore, another computational study, using the same KMC technique we

employed, by Bilić and Gale [132] find similar results on In-doped CaZrO3, an

orthorhombic perovskite. Indeed, they found a slightly higher (almost equal) protonic

diffusion coefficient in the doped material compared to the pure one and concluded

that dopant-proton trapping is weak and short-ranged. This result on another

orthorhombic perovskite is in agreement with figure 5.4: the diffusion coefficient is

constant – if not slightly increasing – when the doping rate increases.

Kinetic Monte-Carlo simulations have shown that gadolinium could be a very

interesting dopant in BaCeO3: thanks to its weak attraction power, and the complex

energy landscape of the orthorhombic structure, gadolinium atoms act like shallow

traps on the protons. BCGO keeps good diffusion and conduction properties when the

doping rate increases, and confirms to be a possible electrolyte for PCFC.
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Chapter 6

About quantum effects

So far, quantum effects in nuclei have been completely ignored. And yet, compounds

containing hydrogen are known to have a high Debye temperature. Indeed, the O–

H bond is usually associated with a frequency of 3000 cm−1 leading to a Debye

temperature of approximately 4000 K. Below this temperature, and so at the working

temperature of a fuel cell, quantum effects might be significant.
This chapter will simply give an introduction to the treatment of quantum effects

with qualitative results. First, two rough approaches to get an order of magnitude of
quantum effects will be presented, then some preliminary results obtained with PIMD
computations will be displayed.
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6. About quantum effects

6.1 Zero-point effects - Tunnelling

The quantum nature of nuclei is expected to modify the « classical » energy barrier

between two stable positions because zero-point effects affect differently the energy

of the stable and saddle positions. If the barrier is lowered, the density of probability

in the classically forbidden region increases inducing a tunnelling current. Zero-point

motions and tunnelling current are thus two manifestations of the same phenomenon.

In order to get a first approximation of these effects, we will use very simple

models and calculate the modified energy barrier and the tunnelling current.

6.1.1 Zero-point energy

Zero-point effects are expected to increase the energy of stable positions so that

some sites of high energy such as 1c may become unstable.

The first idea to get zero-point energy associated to a protonic position is to

consider the O–H bond as an harmonic oscillator (harmonic approximation). More

generally, we can assume that the forces applied on the proton by other atoms of the

crystal can also be modelled by a N-dimensional oscillator with N frequencies {ωi}.
With this assumption, the ground state energy is simply given by:

E0 =
∑

i

~ωi
2
. (6.1)

This method has been previously used on BaZrO3 by [15].

If we use the results obtained by phonon computations presented in table 5.2,

we can calculate the zero-point energy for some stable positions and saddle point.

From these modifications, we can deduce the new energy barrier including zero-point

effects.

Mechanism Stable site E0 Saddle point E0 ∆E0 ∆E
reorientation 1d 0.30 1d–1c 0.28 -0.02 0.06
intra hopping 1a 0.31 1a–2d 0.18 -0.13 0.50
inter hopping 2b 0.31 2b–2b 0.17 -0.13 0.16

Table 6.1: Zero-point energies for some protonic positions, computed from phonon
frequencies.E0 is the zero point energy for stable and saddle positions. ∆E is the
energy barrier without zero-point effects associated to a mechanism, and ∆E0 is the
change on the energy barrier due to quantum effects. All energy values are given in
eV.

Table 6.1 shows the zero-point energy for some protonic positions and an example

of « quantum » barrier for each mechanism. It appears that the modification of

the barrier due to zero-point motion is very significant, especially in the case of
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inter-octahedral hopping. For reorientation, the modification is rather low, even if it

represents one third of the barrier height in the case of 1d–1c. This value of 0.02 eV

is likely to be recovered for other reorientations with much higher energy (up to

0.50 eV). This slight impact of quantum effects on reorientation is expected since

the O–H bond is not broken during the process and is responsible for the highest

frequencies.

On the contrary the protonic transfer should be significantly affected by zero-point

corrections. Indeed, the frequencies in the stable positions are very different from the

frequencies in the saddle point leading to a large modification of the barrier of 0.13 eV.

This is particularly high with respect to the barrier height of inter-octahedral hopping,

around 0.20 eV, while intra-octahedral hopping have energy barriers around 0.40 eV.

However, as explained in the paragraph on approximations (see section 4.3.1) made on

the barriers, the use of a generalised gradient approximation as exchange-correlation

functional strongly underestimates the energy of a proton equally shared by two

oxygens [131] by ≈ 0.10 eV to 0.15 eV. Therefore, trying to correct this error will lead

an increase of the barrier by 0.10 eV to 0.15 eV. On the other hand, the quantum

effects will lead to a decrease of the barrier by 0.13 eV. Both effects might thus

compensate, but one should keep in mind that there is a huge uncertainty on the

value of the barrier for transfer, especially in the case of inter-octahedral transfer.

These contribution of zero point effects for transfer and reorientation of −0.13 eV

and −0.02 eV are very similar to the one found in BaZrO3 by Sundell et al. [15], with

values of −0.12 eV and −0.04 eV respectively. These large impact on transfer barriers

and weak influence on reorientation have also been found by PIMD in BaZrO3 by

Zhang et al. [64].

6.1.2 Tunnelling effect

As a first approximation, we can model the barrier of a proton transfer with a

very simple one-dimensional squared barrier shown in figure 6.1. Let us take the case

of the lowest barrier and the smallest distance to cross: the inter-octahedral hopping

(such as the transition 2b → 2b). The average barrier height is around 0.2 eV, and

the distance between the initial and final position is around 0.8 Å.

We can solve analytically the Schrödinger equation Hφ = Eφ for a 1D particle in

this energy landscape. Using notations of figure 6.1 to distinguish the three zones

along the z-axis, for a proton of mass m and energy E, we have:






φ1(z) = Aeikz+ Be−ikz

φ2(z) = Ceβz+ De−βz

φ3(z) = Feik(z−a)+ Ge−ik(z−a)

(6.2)
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Figure 6.1: Model for a barrier of protonic inter-octahedral hopping.

where k =
√

2mE
~

and β =
√

2m(V0−E)
~

.

If we set down ε = E
V0

and σ = 2mV0a2

~2 , the transmission coefficient is given by:

T (ε) =




1 +

sinh2
√

σ(1− ε)
4ε(1− ε)






−1

. (6.3)

As done by Sundell et al. [15] on BaZrO3, we can take for the energy E the

difference in zero point effects. For an inter-octahedral transfer, we have E = 0.13 eV,

leading to a transmission factor T (ε) = 3 × 10−4 = 0.03%. This value may seems

rather small but it is not negligible. Furthermore, the transmission coefficient is very

sensitive to the ratio E
V0

. If we take the barrier height of 2b−−2b inter-octahedral

transfer (0.16 eV), we find a diffusion coefficient ten times higher: T (ε) = 0.27%. The

tunnel current is also sensitive to the width of the barrier, and hence it could be

much higher in perovskites with a smaller lattice constant and/or a larger distortion

(both effects leading to a smaller value of a).

6.2 PIMD approach

We performed some Path-Integral Molecular Dynamics simulations still using

ABINIT code[147] on a charged Pnma cell of BaCeO3 with one hydrogen atom.

This 21-atom cell is treated in the Born-Oppenheimer approximation: at each step,

the electronic structure is first optimized with DFT, then the nucleus positions in

the different beads are moved. As we explained in chapter 1, the key parameter

is the Trotter number P that determine the number of beads to use in order to

recover the quantum partition function. Our computations were performed in the

canonical ensemble NVT, using Langevin thermostat. This thermostat adds another
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input parameter: the friction mass. Several values were tested in order to get the

best possible convergence on temperature (i.e. a small relaxation time, and small

fluctuations).

We chose to use 16 imaginary time slices (or « beads »), as used by Zhang et al.

[64] in an analogous material BaZrO3, at 600 K. The Trotter number is dependent

on the temperature, the product P × T should be kept constant to get the same

discretisation: e.g. we should use 32 time slices at 300 K. Trajectories of ≈ 5000

steps have been performed using a time step δt = 20 a.u = 5 fs.

Figure 6.2 shows the density probability of finding an hydrogen and its bonding

oxygen in a plane (xOy) (it is the plane in which the reorientation process occurs). It

is hard to distinguish the quantum fluctuations from thermal fluctuations: the density

includes the positions of the 16 images (or beads) during 4000 steps of PIMD. The

proton is obviously much more delocalised than the oxygen, but it could be simply

due to the thermal fluctuations. Considering the two peaks of protonic density, we

can deduce that during this 4000 steps a reorientation process has probably happened.

Figure 6.2: Density of presence (per Bohr) of one oxygen and one proton in a plane
(xOy).

In order to really get an idea of quantum fluctuations, we can compute the spatial

extension of the wave packet for each kind of atoms. It is related to the distance

between images of a same particle though the relation:

d =

√
√
√
√

1
P

P∑

i=1

|~rc − ~ri|2, (6.4)

where ~rc is the position of the centroid (centre of mass of all beads associated to one

atom), and ~ri the position of a specific bead.
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(a) P=1 (b) P=16

Figure 6.3: Frames of PIMD simulations using a Pnma cell of 20 atoms with one
bead (classical) and 16 beads.

Figure 6.3 compares two frames of PIMD simulations: one using only one imaginary

time slice, equivalent to a classical molecular dynamics simulation, and the other

using sixteen imaginary time slices. The uncertainty on hydrogen positions appears

clearly, and can also be slightly observed on oxygen. Heavy atoms, barium and

cerium, have their sixteen images at the same point suggesting that quantum effects

are not significant for them.

Using equation 6.4, we compute the spatial extension of the wave packet for each

atom averaged over 4000 PIMD steps, and find the following values:

dbarium = 0.017 Å, dcerium = 0.016 Å, doxygen = 0.048 Å and dhydrogen = 0.157 Å

The extension of hydrogen is ten times higher than the one of heavy atoms but

it is still rather small compared to the distance between two stable sites (≈ 0.8 Å).

Hence, the covering of two wave packets in different protonic sites is expected to be

very small.

Unfortunately, considering the huge computational cost necessary to get quantit-

ative effects, we did not go further so far. It indeed requires to perform several path

integral molecular dynamics simulations under constraints for different configurations

along the minimum energy path. This method have been previously used once on

BaZrO3 by Zhang et al. [64]. They have found that adding quantum effects of

nuclei turn the reorientation process into the rate-limiting step below 600 K. This is
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consistent with what was predicted by our rough approaches: the reorientation being

less affected by quantum effects than the transfer, its barrier is almost kept identical

while the transfer barriers may be significantly lowered.

Qualitative results of quantum effects of nuclei has been presented in hydrated

BaCeO3. It appears that adding zero-point energy does not affect a lot the reorientation

process, but considerably lowers the barrier for transfers (up to 65%). However, this

huge change may be partly compensated by the underestimation of the barrier made in

GGA. Quantum effects could still suppress some stable positions of high energy such

as 1c and hence, they can have a significant impact on the energy landscape. PIMD

simulations confirm the quantum character of the dynamics of H+ (with respect to

other atoms). Further computations are needed to determine precisely quantitative

changes induced by zero-point effects.
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Conclusion

I
n this thesis, we have presented a study of protonic and anionic diffusion in an

orthorhombic perovskite: Gd-doped BaCeO3. This material is of particular interest

as an electrolyte for Protonic Ceramic Fuel Cell. It should thus verify some conditions:

to have an insulating character, to be hydrated at the working temperature of fuel

cell and to have a good protonic conduction. The main interest of this study was

to analyse the influence of the gadolinium dopant on proton diffusion since dopant

are usually considered as trap. They are necessary to increase the number of water

molecules that the material can incorporate but they often deteriorate the diffusion.

One purpose of the study was to examine how that gadolinium affects the properties

of the various defects.

The first step of the study was to determine the stable positions of defects in the

doped material, for oxygen vacancy and hydrogen (protonic defect). It appears that

in such orthorhombic structure, the energy landscape is very complex, with eight

different positions without considering the dopant interaction. We finally simplify

this energy surface in the doped material to a 16 minima landscape. For the oxygen

vacancy, we only kept four different positions. From these DFT computations, we

also checked that Gd-doped BaCeO3 was an insulator whether it is hydrated or dry.

Furthermore, the thermodynamics conditions of stability of the hydrated state were

carefully studied to answer the second necessary condition to be an electrolyte for

fuel cell.

In a second time, all the barriers between two stable positions were computed

using the algorithm of String Method. This was the main time-consuming step, since

it requires the optimisation of 10 or 19 images for more than forty different paths.

Contrary to cubic perovskites, the reorientation does not appear as a very fast process

in orthorhombic perovskites, but with a very wide range of values from 0.02 eV up to

0.54 eV. The barrier height of transfers are less scattered: intra-octahedral transfer

are found around 0.4 eV while inter-octahedral transfer have lower barriers around

0.2 eV. It is really hard to determine which mechanism is the rate-limiting step since
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one mechanism (reorientation, inter- or intra-octahedral transfer) can be associated

to very different barriers.

After these long computations, the energy barriers were used as an input for Kinetic

Monte-Carlo simulations. The results of these simulations allow to calculate the

activation energy through an Arrhenius fit of diffusion coefficient versus temperature.

An activation energy around 0.37 eV was found for the proton. Both diffusion

coefficient and activation energy seem rather independent of the doping rate. For the

oxygen vacancy, on the contrary, the absolute value of activation energy (≈ 0.5 eV)

increases and the diffusion coefficient decreases with the doping rate. This suggests

that gadolinium dopant really behave as traps with respect to the oxygen vacancies,

while their influence on protonic diffusion is more complex and non trivial. The weak

attraction exerted by the dopant on the proton constitutes a good characteristic of

gadolinium, considering its possible application as a dopant in an electrolyte for fuel

cell.

Simulations under electric field were also performed to determine the defects

mobility. Besides the mobility, these computations provide a simple way to study the

anisotropy of diffusion in Gd-doped BaCeO3. While protonic diffusion seems rather

isotropic, it appears that oxygen vacancies move more easily in the (ac) plane than

along the b-axis.

Finally, in a very qualitative manner, quantum effects of nuclei have been ap-

proached by several methods: calculations of zero-point energies from phonon com-

putations, and path-integral molecular dynamics simulations. The quantum effects

might change the landscape with the eventual suppression of one stable position

but should not drastically affect the barriers and hence the mechanisms of protonic

diffusion.

This work could be extended in several directions. For instance, it would be

interesting to get quantitative results of quantum effects of nuclei performing path-

integral molecular dynamics under constraints, though it may not be worth the

computational amount of time required.

Concerning the Monte-Carlo simulations, they could be extended following two

different trails:

• a grand-canonical Monte-Carlo algorithm, simulating the material BCGO in

contact with water, should provide the protonic concentration at thermodynamic

equilibrium as a function of the temperature and water partial pressure. This

concentration, associated with the diffusion coefficient, allows to determine
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6.2. PIMD approach

the conductivity of a material. It strongly depends on the temperature, and

can drop suddenly at high temperature. It is thus fundamental to determine

this concentration to be sure to have a good conductivity at the operating

temperature of a fuel cell.

• Kinetic Monte-Carlo simulations under an alternative electric field provide

informations on capacitive effects. It could be important if the distribution

of dopant is not homogeneous in the material creating space-charged zone.

Nyquist plots can be drawn from such simulations in order to determine the

capacitance associated to these zones.

Another very interesting perspective is the study of grain boundaries effects.

Indeed, we have only studied a single crystal but practically, the electrolyte is made

of numerous grains. The conductivity in grain boundaries is known to be a limiting

factor in BaZrO3, and hence cannot be neglected. Moreover, the grain boundaries

might create space charged zones with an accumulation of defects. Many recent

numerical studies are now focussing on the grain boundaries effects.
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Appendix A

Expression of exchange-correlation

functional

A.1 LDA Functional

A.1.1 VWN correlation

To get the common local density approximation exchange-correlation functional,

we must had to the Slater exchange described in equation 1.20 the local correlation

of Vosko, Wilk and Nusair. The VWN correlation energy per electron is written as:

εc(rs) =
A

2

(

ln
x2

X(x)
+

2b
Q

arctan
Q

2x+ b
− bx0

X(x0)

[

ln
(x− x0)2

X(x)
+

2(b+ 2x0)
Q

arctan
Q

2x+ b

])

with

x = r1/2
s , X(x) = x2 + bx+ c, Q = (4c− b2)1/2

and the parameters A = 0.0621814, b = 3.72744, c = 12.9352 et x0 = −0.10498.

A.2 GGA functional (PBE)

A.2.1 PBE exchange

The exchange energy of a GGA functional can be written as:

EGGA
x =

∫

nεhomx [n]Fx[s]d3r

where Fx is the enhancement factor and s = |∇n|
2kFn

the reduced gradient (with kF =

(3π2n)1/3).

But we can also present the GGA exchange functional as a correction to the LDA:

EGGA
x = ELDA

x + ∆EGGA
x =

∫ (

εLDAx + εGGAx

)

n(~r)d3r.

125



A. Expression of exchange-correlation functional

For PBE exchange, then enhancement factor is rather simple:

Fx[s] = 1 + κ− κ

1 +
µs2

κ

where both parameters κ = 0.804 and µ = β(π2/3) ≃ 0.21951 have been determined

in order to respect some physical constraints – the choice of κ allows to satisfy the

Lieb-Oxford bound, and the choice of µ allows to recover the linear response of LSDA

when s→ 0.

A.2.2 PBE correlation

The PBE correlation energy is written as:

EPBE
c =

∫

d3r n(εhomc (rs, ζ) +H(rs, ζ, t))

où t = s/phi, φ(ζ) = [(1 + ζ)2/3 + (1− ζ)2/3]/2 is the spin polarisation factor, et ks =
√

4kF/πa0 is the wave vector of Thomas-Fermi. εhomc represents the correlation ernergy

per electron of the homogeneous electron gas, and H is the gradient contribution:

H = γφ3 ln

(

1 +
β

γ
t2
[

1 + At2

1 + At2 + A2t4

])

où A =
β

γ

[

exp

(

−ε
hom
c

γφ3

)

− 1

]−1

, β = 0.066725 et γ = 0.031091.

126



Appendix B

Thermodynamics stability of

Gd-doped BaCeO3

In this appendix, we want to examine the stability of dry BCGO compound with

respect to pure elements in their metallic state and their oxides, in order to find the

thermodynamics conditions in which BCGO is stable. We use the same method of

grand potential computation as in section 3.4: Ω = Ef −∑j Nj∆µj.

The grand potential of pure barium cerate is given by:

Ω = Ef
BaCeO3

−∆µBa −∆µCe − 3∆µO,

with Ef
BaCeO3

the formation energy of BCO:

Ef
BaCeO3

= EBaCeO3(bulk) − EBa(s) − ECe(s) −
3
2
EO2(g).

To determine where BCGO can be stable, we have to find a zone in the space

(∆µO,∆µCe,∆µBa,∆µGd) where the grand potential of BaCe1−δGdδO3−δ/2 is lower

than that of the elementary metals, gases and their related oxides. This space cannot

be easily represented though, so we will try to reduce the space to two dimensions.

We can first eliminate one of the variables, for instance ∆µBa, using the relation

of formation energy:

Ef
BCGO = ∆µBa + (1− δ)∆µCe + δ∆µGd +

(

3− δ

2

)

∆µO. (B.1)

The prevention of formation of metals, gases and binary oxides leads to several con-

ditions: chemical potentials of Ba, Ce, Gd and O must be smaller in BaCe1−δGdδO3−δ/2

than in other phases: µj < Ej for each species j:

∆µO < 0,∆µCe < 0,∆µGd < 0,∆µBa < 0, (B.2)

∆µBa + ∆µO < Ef
BaO, (B.3)
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B. Thermodynamics stability of Gd-doped BaCeO3

∆µCe + 2∆µO < Ef
CeO2

, (B.4)

2∆µGd + 3∆µO < Ef
Gd2O3

, (B.5)

Combining equations (B.1)–(B.5), we finally get four conditions between ∆µGd,

∆µCe and ∆µO:

• No precipitation of Ba:

δ∆µGd > Ef
BCGO − (1− δ)∆µCe −

(

3− δ

2

)

∆µO (B.6)

• No precipitation of BaO:

δ∆µGd > Ef
BCGO − Ef

BaO − (1− δ)∆µCe −
(

2− δ

2

)

∆µO (B.7)

• No precipitation of CeO2:

∆µCe 6 Ef
CeO2

− 2∆µO (B.8)

• No precipitation of Gd2O3:

∆µGd 6
Ef
Gd2O3

2
− 3

2
∆µO (B.9)

Formation enthalpy (eV/f.u.)
GGA [our work] Exp.

H2O -2.50
BaO -5.06 -5.78 [148]
CeO2 -10.42 -11.30 [149]
Ce2O3 -18.58 [83]
Gd2O3 -17.39 -18.94 [83]

BaCeO3 -15.97 -17.52 [103]
dry -15.64 -17.18 [150]

oxidized -15.69
hydrated -15.88

Table B.1: Formation enthalpies of binary oxides, of BCO and BCGO (δ = 0.125).

To avoid an unclear 3D diagram, we plot the precipitation lines of all binary

oxides and pure elements in the plane ∆µGd = −5 eV in figure B.1 using the enthalpy

values of table B.1 from our work and from experiments (the doping rate δ is equal to

12.5%), and using the equations B.6–B.9. The stability zone of BCGO is represented

by hatched area. The choice of another ∆µGd = c plane lead to a diagram with the

same shape but shifted to lower values of ∆µO, and higher values of ∆µCe as we

increase ∆µGd (when looking at the inequality B.9, it is obvious that an increase in

∆µGd requires a decrease in ∆µO).
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(a) Experiments (b) Simulations

Figure B.1: Thermodynamics stability diagram as a function of O and Ce chemical
potentials, in the plane ∆µGd = −5 eV . Hatched area corresponds to the stable zone
of BCGO (without considering the precipitation of BaCeO3).

If we now add the condition of the non-formation of BaCeO3:

∆µBa + ∆µCe + 3∆µO < Ef
BCO, (B.10)

that we can rewrite using condition B.1 as:

δ∆µGd > Ef
BCGO − Ef

BCO + δ∆µCe +
δ

2
∆µO, (B.11)

we find a contradiction between this inequality combined with equations B.7 and B.9.

Indeed combining the two inequalities B.7 and B.9 on one side, and inequalities B.9

and B.11 on the other side by eliminating ∆µGd, we get the two following relations

between ∆µCe and ∆µO:

(1− δ)∆µCe > Ef
BCGO − Ef

BaO −
δ

2
Ef
Gd2O3

− 2(1− δ)∆µO, (B.12)

δ∆µCe 6 −Ef
BCGO + Ef

BCO +
δ

2
Ef
Gd2O3

− 2δ∆µO. (B.13)

Finally, if we calculate: −1
1−δ×inequality B.12+1

δ
×inequality B.13, we eliminate

∆µCe and ∆µO, and finally get a condition on δ:

δ



Ef
BaO +

Ef
Gd2O3

2
)− Ef

BaCeO3



 > Ef
BCGO − EBCO. (B.14)

Using the values of table B.1, we found a condition on δ: δ > 0.149. However,

δ is equal to 12.5% for the given value of Ef
BCGO leading to the contradiction. We

also tested the formation enthalpy value of BCGO for δ = 25%, and find the new

condition δ > 0.30. Therefore, BCGO is not stable whatever the values of chemical

potentials, using both experimental and simulations values for the formation energies.
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B. Thermodynamics stability of Gd-doped BaCeO3

This apparent contradiction with the effective existence of BCGO in experiments

may be explained by kinetics: BCGO with Gd and Ce disordered on the B-sublattice

is probably stable in the high-temperature conditions in which the compound is

synthesised, due to the high configurational entropy associated to the disorder on

the B-site. This stability could be lost at low temperature (order-disorder transition

as in binary mixtures) and the system should separate into a BaCeO3 phase and a

Gd2O3 phase. Nevertheless the B-sublattice configuration (Gd and Ce) is probably

frozen and kinetically blocked since the diffusion of Ce/Gd atoms involves very high

activation energy that cannot be crossed at low temperature.
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