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Introduction

Relaxor ferroelectrics constitute a class of disordered crystals possessing peculiar structure

and properties. They were discovered more than 50 years ago among the complex oxides

with perovskite structure, and so far, in spite of numerous investigations, the microscopic

origin of the peculiar behavior of relaxor ferroelectrics remains unsettled.

In these materials, the disorder and frustration stemming from spatial heterogeneities are an

integral part of their characteristics. Several theoretical formulations have been conducted

in the attempt of elucidating the origin of the relaxor behavior, mainly either involving

phenomenological approaches or resorting to statistical spin models. However, the under-

standing remains scattered and a unifying approach is still lacking. The experimental picture

that has emerged from local structural probing yet clearly indicates the necessity of distin-

guishing the short-range effects from the long-range ones. At short range and at relatively

low temperatures the local symmetry is polar and the atomic shifts from their ideal cubic

symmetry positions are correlated. At long range however, the global symmetry is cubic

due to the statistical atomic disorder that results in a spatially varying polarization, yielding

zero net global polarization. In this respect, these materials have a structure that locally

deviates from the average global one, giving rise to remarkable dielectric, electrostrictive,

and electrooptic properties, making them of both a technological and fundamental interest.

It is the purpose of this work to account for the relevance of the local scale and of the short-

range interactions to the properties of relaxors by proposing a microscopical model based

on local symmetry, within the lattice gauge theoretical framework. This postulate is mainly

motivated by the manifest lack of generalized rigidity, i.e., by the inability of correlations to

fully develop so as to achieve homogeneous order. In another words, the competition between

ordering and disordering interactions has to be assessed on a local scale rather than on a

global one, since the mere consideration of the global scale may conceal the underlying local

effects from which the global properties originate. Essentially, our approach revolves around

the postulate of a local gauge symmetry and stands as a generalization of the first-principles-

derived effective Hamiltonian so as to incorporate gauge fields taking values in a Lie group,

in addition to ferroelectric and elastic degrees of freedom. It is then applied to a specific

relaxor, namely, disordered (Pb1−3/2xLax)(ZryTi1−y)O3 (PLZT) solid solutions.
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The work is organized as follows.

∗ Chapter 1 constitutes an overview of relaxor ferroelectrics. Since the parent compounds

of ABO3 perovskite relaxors are prototypical ferroelectrics, it is worthwhile starting

the chapter by a brief review of the phenomoneological, soft-mode and first-principles

theories of ferroelectrics. This will be followed by a discussion of the properties of

relaxor ferroelectrics and the contrast between these properties and those of normal

ferroelectrics. We then give a detailed presentation of both the accumulated and current

knowledge about relaxors. Finally, a section is devoted to PLZT family of relaxors, as

these compounds will later serve as a case of study in the assessment of our model.

∗ Chapter 2 is concerned with providing the conceptual foundations and framework for a

gauge theory for relaxors, and is subdivided into two main parts. The first part intro-

duces the common concepts and methods underlying various related gauge approaches,

emphasizing their lattice formulation and they reliability in describing defects and

disorder-induced frustration. The second part is methodological and provides a de-

tailed description of the implementation of local symmetry and related gauge concepts

to the case of relaxor ferroelectrics.

∗ Chapter 3 collects the main results that were obtained from Monte Carlo simulations

and also presents an attempt to characterize the underlying role of topological defects

in the relaxor behavior.

Finally, concluding remarks and future directions are gathered in the conclusion.



Chapter 1

General background

The most studied and most technologically [32–34] important relaxor ferroelectrics are mixed

ABO3 perovskite oxides (Fig.1.1).

Fig. 1.1: Schematic view of the cubic prototype perovskite-type structure with the formula
A2+B4+O2−. The space group is Pm3̄m with a lattice constant a ∼ 4 Å.

Since the parent compounds of ABO3 perovskite relaxors are prototypical ferroelectrics (FE),

it is worthwhile reviewing the phenomenological, soft-mode and first-principles theories of

ferroelectrics. This will be addressed in section 1.1. In order to appreciate the properties

of relaxor ferroelectrics, some of their properties are contrasted with those of normal fer-

roelectrics in section1.2. Section 1.3 surveys both the accumulated and current knowledge

about relaxors, and is subdivided into three parts, referring to the three main categories of

models. The subdivision is indicative and aims only into highlighting the conceptual analogies

invoked to understand the relaxor behavior. Whereas the first category has made wide use of

the random exchange mechanism, the second one envisioned disorder as a source of random

fields, and the third one has combined both, in a random-bond random-field model. Finally,

section 1.4 reviews the main features of the PLZT family of relaxors, as these compounds

will later serve as a case of study to assess our model.
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1.1 Theory of ferroelectrics

1.1.1 General background

From a crystallographic point of view, crystals are classified into seven systems according

to their geometry: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and

cubic. These systems can be subdivided into 32 possible crystal classes, or point groups,

according to their symmetry with respect to a point. 11 of them are centrosymmetric and

thus cannot exhibit polar properties. The remaining 21 lack a center of symmetry, and thus

can possess one or more polar axes. All but one exhibit piezoelectricity, the property that

the application of mechanical stress induces polarization, and conversely, the application of

an electric field produces mechanical deformation. Of these 20 piezoelectric classes, 10 have

a unique polar axis and thus are spontaneously polarized, i.e., polarized in the absence of an

electric field. Crystals belonging to these 10 classes are called pyroelectric, as they display a

temperature dependent polarization. Ferroelectric crystals belong to the pyroelectric family1,

but have the particularity of exhibiting the additional property of reversibility under applied

electric field of the spontaneous polarization’s direction as shown by the hysteresis loop in

Fig.1.2 [4, 36].

Fig. 1.2: Hysteresis dependence of the polarization of a typical ferroelectric crystal on electric
field, PS is the spontaneous polarization, Pr the remanent polarization and Ec is
the coercive field (figure after [37]).

In the linear approximation, a dielectric sample placed in an external electric field E acquires

a macroscopic polarization that is proportional to the strength of the applied field:

Pi = ε0χikEk (1.1)

1Ferroelectricity is accompanied by the appearance of new components in the pyroelectric tensor [35].
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where χik is the tensor of the dielectric susceptibility of the material and where ε0 = 8.854×
10−12

[
F.m−1

]
is the dielectric permittivity of the vacuum. If the dielectric is isotropic and

uniform, χ is a scalar and Eq.(1.1) is reduced to:

P = ε0χE (1.2)

The electric flux density, or electric displacement, D is defined as 2

D = ε0E+P = εE (1.3)

where ε = ε0(1+χ) is the dielectric response of the medium. When the dielectric is subjected

to a time dependent electric field, D and P do not follow instantaneously, but rather over a

period of time due to inertial and dissipation effects. A relaxation time τ is thus needed to

reach equilibrium values. Therefore, if E = E0 exp (iωt), then D = D0 exp (iωt− δ), where

ω is the frequency of the applied field and δ the loss angle. In the presence of dielectric losses

and relaxation effects, ε is a complex quantity ε = ε′ + iε′′, where the real part, ε′, is called

the dielectric response and the imaginary part, ε′′, is the so-called loss. Both are related, at

any given frequency, by the Kramers-Kronig dispersions relation, and define the loss angle

tan δ = ε′′/ε′ [4, 36].

Although ferroelectric crystals are a widely varied group, they exhibit general characteristic

properties among which [4]:

⋄ The hysteresis loop disappears at a certain temperature, the Curie point TC , above

which the crystal behaves as a normal dielectric.

⋄ Above TC a ferroelectric crystal loses its intrinsic polarization and transforms to a phase

of higher symmetry. This higher temperature phase is usually nonpolar, or paraelectric.

⋄ The polar crystal structure of a ferroelectric can be derived from the high temperature

paraelectric structure by a slight distortion of the crystal lattice. This is the main reason

behind the success of the phenomenological theory of ferroelectricity which assumes that

the same free energy function is applicable for both the ferroelectric and paraelectric

phases.

⋄ Ferroelectrics generally have a ε (or χ) larger than in normal dielectrics, which rises to

a peak value at TC .

⋄ Above TC , ε of a ferroelectric (measured along the polar axis) usually obeys the Curie-

Weiss law ε = C/(T − T0), where C and TC , are the Curie-Weiss constant and Curie-

Weiss temperature, respectively, and where T0 coincides with TC in the case of a second

order transition.
2For anisotropic dielectrics, χ as well as ε are tensors and Eq.(1.3) must be written as Di =

∑3
j=1 εijEj ,

i = 1, 2, 3.
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1.1.2 Landau-Ginzburg-Devonshire phenomenological theory

Based solely on symmetry considerations, Landau theory can provide a reliable description of

a system’s equilibrium behavior near a phase transition. This phenomenological approach3

relates measurable quantities to one another using a minimum set of input parameters that

can be determined either by comparison to experiment or from first-principles approaches.

Because it assumes spatial averaging of all local fluctuations, this theory is particularly well-

suited to systems with long-range interactions such as ferroelectrics [49, 50].

The fundamental idea of the Landau approach is that the free energy can be represented

as a series expansion of the order parameter in the vicinity of the transition. Although

it is suspicious that singular behavior associated with a transition can emerge from such

a regular expansion, this assumption is to a certain extent justified because the value of

the order parameter that minimizes the free energy is itself a singular function of the ex-

pansion coefficients which are temperature-dependent. However, the power-law form of the

free-energy may not be valid very close to the transition. Furthermore Landau theory is

based on the presumption that local fluctuations in the order parameter are small, whereas

in the immediate vicinity of the transition, critical fluctuations occur. Given those limita-

tions, Levanyuk and Ginzburg [51, 52] developed a criterion to assess the validity of Landau

theory. Qualitatively [50] their criterion suggests that Landau Theory works well 4 when the

coordination number is high, condition that can be achieved either by large dimensionality

or by long-range interactions (such as dipole-dipole interactions).

The first step in the development of a thermodynamic theory is the identification of the

relevant degrees of freedom of the problem under consideration. Three independent vari-

ables have to be chosen among the conjugate pairs temperature-entropy, stress-strain, and

electric field-electric displacement (or polarization). Different combinations yield different

thermodynamic potentials related by the proper Legendre transformations between the in-

dependent variables [49]. The next step is the choice of a prototype state. For perovskite

oxides this state usually corresponds to a non-polar phase. Then, a polynomial expansion

of the thermodynamic potential as a function of the independent variables is done and is

assumed to remain valid before and after the phase transition. Coupling terms between the

independent variables are also considered 5. Finally, the thermodynamic potential is mini-

mized to find the equilibrium thermodynamic states, and specific thermodynamic functions

3Let us note that the Landau theory of phase transitions is a mean self-consistent theory.
4i.e. the critical exponents are mean-field-like
5The major difference between Landau theory treatments of ferroelectricity and ferromagnetism arises

from the strong coupling between the polarization and the lattice, feature which is usually insignificant in the
magnetic case. Ferroelectric dipoles are generated by the displacement of atoms, and thus on a local scale
there is strong spatial anisotropy. In general the development of a macroscopic polarization in a ferroelectric
will be accompanied by a macroscopic strain, and thus ferroelectricity and ferroelasticity are closely related
phenomena. Elastic degrees of freedom thus must be represented in a Landau theory for most ferroelectrics.
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are subsequently computed by differentiating it accordingly. The effect of the temperature

arises from a temperature dependence of some parameters assumed a priori.

Let us exemplify the approach considering polarization and strains as independent degrees

of freedom. The expression for the thermodynamic potential around the unpolarized cubic

crystal takes the following form, as first suggested by Ginzburg [53–55] and further developed

by Devonshire [56, 57]:

F (T, η, P ) =
1

2
C11(η

2
11 + η222 + η233) + C12(η22η33 + η33η11 + η11η22)

+
1

2
C44(η

2
12 + η223 + η231) + a1(P

2
1 + P 2

2 + P 2
3 )

+ a11(P
4
1 + P 4

2 + P 4
3 ) + a12(P

2
1P

2
2 + P 2

1P
2
3 + P 2

2P
2
3 )

+ a111(P
6
1 + P 6

2 + P 6
3 ) + g11(η11P

2
1 + η22P

2
2 + η33P

2
3 )

+ g12
[
η11(P

2
2 + P 2

3 ) + η22(P
2
1 + P 2

3 ) + η33(P
2
1 + P 2

2 )
]

+ g44(η23P2P3 + η31P3P1 + η12P1P2) (1.4)

where C11, C12, and C44 stand for the elastic stiffness of the material, and the subindices refer

to the Cartesian directions. The expansion has been cut at 6th order in P for simplicity, and

it does not contain odd terms in polarization since the prototype state is centrosymmetric.

The last three terms in the expansion couple the strain and the polarization6.

For simplicity, let us ignore the strain fields and suppose that the polarization is directed

along one of the Cartesian directions. Under these conditions, the expression for the ther-

modynamic potential reduces to

F (T, η, P ) = a1P
2 + a11P

4 + a111P
6 (1.5)

The signs and magnitudes of the coefficients determine the nature of the transition and the

behavior of the dielectric properties in the immediate vicinity of Tc. As previously mentioned,

the coefficients of the expansion should be temperature dependent. However, for practical

purposes, it usually sufficient to consider the quadratic coefficient as T-dependent, of the

form a1 = a(T − T0), with a a positive constant and where the temperature T0 signals the

sign change of a1. a111 is fixed to positive constant values.

F (T, η, P ) = a(T − T0)P
2 + a11P

4 + a111P
6 (1.6)

Depending on the sign of a11 two cases are to be considered:

⊲ If a11 > 0, then a second order phase transition occurs at T = T0: For T > T0 the

quadratic term is positive and the thermodynamic functional is a single well with its

6As it will appear clearly later, this expression shows strong similitude with the effective Hamiltonian that
also corresponds to an expansion in terms of polarization and strain with appropriate coupling terms.
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Fig. 1.3: Second order phase transition. (a) Free energy as a function of the polarization
at T > T0, T = T0, and T < T0; (b) Spontaneous polarization as a function of
temperature; (c) The susceptibility and its inverse. (After Chandra et al. [50])

minimum corresponding to the non-polar P = 0 phase. For T < T0 the quadratic

coefficient is negative, and the thermodynamic potential displays the typical double

well shape. There are two minima for P 6= 0. In this case the change in temperature

of P is continuous and T0 corresponds to the Curie point Tc (Fig.1.3).

⊲ If a11 < 0, even if T > T0 (such that the quadratic coefficient is positive) the free

energy may have a subsidiary minimum at non-zero P . As T is reduced, this minimum

will drop in energy below that of the unpolarized state, and thus will correspond to the

thermodynamically favored configuration. The temperature at which this happens is,

by definition, the Curie temperature Tc which however in this case exceeds T0. At any

temperature between Tc and T0 the unpolarized phase exists as a local minimum of

the free energy. The most important feature of this phase transition is that the order

parameter jumps discontinuously to zero at Tc. This type of phase transition is usually

called a first-order or discontinuous transition (Fig.1.4).

Landau theory offers a simple and coherent framework to classify and describe structural

phase transitions at a phenomenological level. For this reason it was widely used in the

past to study ferroelectric systems and still remain a valuable approach. We emphasize that

Landau theory is strictly a macroscopic approach and thus it cannot describe any microscopic

physics (e.g. atomic displacements etc.) associated with the phase transition.
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Fig. 1.4: First order phase transition. a) Free energy as a function of the polarization at
T > Tc, T = Tc, and T = T0 < Tc; (b) Spontaneous polarization as a function of
temperature; (c) Susceptibility χ. (After Chandra et al. [50])

1.1.3 Soft-mode microscopical theory

One of the most significant theoretical development in ferroelectricity was reported by

Cochran [58, 59], within a dynamical phenomenological description of the ferroelectric tran-

sition. He realized that the theory describing the instability should be cast within the frame-

work of lattice dynamics, considering one of the lattice mode as the basic variable. The

notion of soft-mode was introduced and provided the link whereby the static phenomenology

of Landau-Ginzburg-Devonshire could be interconnected with atomistic descriptions through

the elementary excitations, phonons, of the crystal lattice.

From a lattice dynamics point of view, the condition for stability implies that the crystal is

stable with respect to three distinct types of deformations: long wavelength homogeneous

deformations or displacements (zone-center acoustic modes, k = 0 at the Γ point in the

Brillouin zone), long wavelength inhomogeneous deformations associated with an opposite

motion between positive and negative ions (zone-center transverse optical mode), and short

wavelength deformations (zone-boundary optical modes of vibrations, at points such as X

or R). Hence, the general condition of lattice stability is that all normal modes of vibration

have real finite frequencies. The limit of stability against a particular mode of vibration is

approached as the corresponding frequency approaches zero.

The soft-mode theory has been successful in understanding many displacive ferroelectrics,

especially ABO3 perovskites. On approaching Tc, the restoring forces to the original equilib-

rium positions in the high-symmetry phase are weakened, ultimately vanishing and resulting

in a new set of equilibrium positions associated to a distorted crystalline structure, whose

symmetry is dictated by the symmetry of the mode driving the instability. The decrease
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and ultimate vanishing of the soft-mode frequency as the transition is approached, is caused

by cancellation between competing forces, namely, short-range covalent repulsions that favor

centrosymmetric structure, and long-range dipole-dipole interactions that stabilize long-range

order. This cancellation can be induced by changes in composition, temperature, or other ex-

ternal fields. In particular, the application of pressure can significantly influence the balance

between competing forces and thereby strongly influence, or induce, soft-mode behavior [93].

In perovskites, it is the softening of the transverse optical zone-center mode that drives the

ferroelectric instability ωTO(T → Tc) → 0. The spontaneous displacements associated to the

soft phonon can be regarded as the order parameter of the transition, since they are directly

related to the the spontaneous polarization.

Experimentally, the square of the soft-mode frequency is found to vary linearly with temper-

ature:

ω2
TO = K(T − Tc) (1.7)

where K is a positive constant and Tc is the second order transition temperature. According

to the Lyddane-Sachs-Teller relation which connects the macroscopic dielectric constants to

the microscopic optical phonon frequencies,

εs(T )

ε∞
=

ω2
LO

ω2
TO(T )

. (1.8)

Here εs and ε∞ are the static and the high frequency dielectric constants, and ωLO and ωTO

are the frequencies of the longitudinal and transverse optical phonon modes, respectively. It

is generally found that the frequency of the higher optical mode ωLO exhibit no considerable

variation with temperature. The decrease in the soft-mode frequency as the temperature

approaches Tc, will thus cause a dramatic increase of εs, ultimately resulting in the dielectric

anomaly ascribed to the soft-mode condensation. Combining Eqs. (1.7) and (1.8) yields the

observed Curie-Weiss temperature dependence of the static dielectric constant, namely

εs = C/(T − Tc) (1.9)

1.1.4 First-principles theory

Although Landau and soft-mode theories have been very successful in the analysis and in-

terpretation of FE properties and in identifying the mechanism for the FE transition in

soft-mode systems, the atomic-level origin of ferroelectricity, particularly in the ABO3 per-

ovskites, remained unclear. The remaining questions pertained to the underlying cause of

the ferroelectric instability, and to the vastly different FE behavior in seemingly similar

compounds.
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In 1990, Boyer et al. [44] anticipated that first-principles theory could lead to a deeper

understanding of FE properties. The reason to use first-principles methods is that (i) one is

not reliant on parametrized theories or (ii) on fitting possible inaccurate experiments, (iii)

one has access to the underlying potential surfaces, (iv) can clearly see the origin of observed

behavior, and (v) they can be applied to hypothetical or not yet synthesized materials, or

(vi) for temperature, pressure or compositions for which data are not available [45]. First-

principles methods refer to the exclusive use of parameters obtained from the fundamental

interactions among electrons and nuclei rather then constrained by experimental data.

Among the advances made have been the understanding of the role of covalency and hy-

bridization in driving ferroelectricity in perovskites. Carrying first-principles calculations

based on the density functional theory (DFT) within the local density approximation, Co-

hen et al. [46, 137] elucidated the difference between BaTiO3
7 and PbTiO3

8. Performing

lattice dynamics and electronic structure calculations for the two materials, the calculated

potential as a function of soft-mode distortion for the two crystals featured much deeper well

for PbTiO3 than for BaTiO3, when accounting for the tetragonal strain. Thus the tetragonal

strain stabilizes the tetragonal phase in PbTiO3 but not in BaTiO3, where the rhombohedral

phase remains more stable.

Analysis of the charge densities and densities of states further showed that the ferroelectric

instability is due to hybridization between the oxygen 2p states and the titanium 3d states. If

this hybridization is inhibited, the FE instability is suppressed and the cubic phase is stable.

Additionally, in BaTiO3 the Ba is ionic and spherical, whereas the Pb in PbTiO3 is highly

nonspherical in the FE phase, and its polarization helps stabilize the tetragonal ground state.

More generally, the above calculations [45] have shown that (i) all Coulomb lattices are

unstable with respect to off-center ferroelectric ionic displacements, and (ii) the short-range

repulsive forces tend to stabilize the lattice against such displacements. In particular, in the

perovskites the hybridization of oxygen 2p states and the d states of the transition-metal ion

reduces the short range repulsions thus allowing off-center displacements.

These recent theoretical developments made possible the microscopic and first-principles

modeling of ferroelectrics. DFT was successfully applied to various ABO3 compounds. How-

ever, it has also its limitations. The most important one is the limited number of atoms that

can be handled considering explicitly the electronic degrees of freedom (few hundreds atoms

for basic ground-state calculations). This imposes serious restrictions to the applicability of

pure DFT calculations for the study of complex ferroelectrics. Second, ferroelectrics exhibit

structural phase transitions and their properties strongly evolve with temperature. Meaning-

ful predictions and direct comparison with the experiment requires therefore to estimate the

7BaTiO3 exhibits on cooling a sequence of three FE phase transitions, cubic to tetragonal to orthorhombic
to rhombohedral.

8PbTiO3 exhibits a single cubic-to-tetragonal FE transition.
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properties at finite temperature, unaffordable within DFT, mainly because random thermal

vibrations cannot be described properly with too small simulation box.

The advent of an effective Hamiltonian approach allowed to overcome these limitations and

treat finite temperature effects [12, 149]. In this approach the soft mode is considered as

the driving force for the phase transitions. The Hamiltonian is constructed from a Taylor

expansion of the energy around the paraelectric phase in terms of the soft mode ionic degree of

freedom and the strains (and can be generalized to mixed crystals by including compositional

degrees of freedom to account for the alloy nature of the compounds). All parameters that

appear in the expansion are determined from DFT total energy. The total energy based

on this Hamiltonian is then used in Monte Carlo simulations enabling the study of the

structural phase transitions of ferroelectrics [149, 150] and the temperature dependence of

their dielectric, piezoelectric and optical properties.

Since the local polarization is directly related to the local mode, the effective Hamiltonian

can be viewed has an expansion of the energy in terms of local polarization and strains (also

including their coupling). In this regard, its form strongly resembles that of the Landau-

Ginzburg-Devonshire theory with polarization and strain as primary and secondary order pa-

rameters. This provides a connection between the first-principles approach and phenomeno-

logical models [49]. However, it is worthwhile emphasizing that the effective Hamiltonian

approach remains a microscopic theory in which the polarization can fluctuate locally. It is

also a truly first-principles approach with parameters directly fitted on DFT simulations and

not adjusted to reproduce the experiment.

Now the challenge is to address problems in more complex mixed perovskites, that are struc-

turally and/or chemically heterogeneous with possibly frequency dependent properties, such

as relaxors [47, 48].

1.2 Relaxors vs Ferroelectrics

Compositional disorder, i.e., the disorder in the arrangement of different ions on the crystal-

lographically equivalent sites, is the common feature of relaxors [2]. The relaxor behavior was

first observed in the perovskites with disorder of non-isovalent ions, including the stoichiomet-

ric complex perovskite compounds, e.g. Pb(Mg1/3Nb2/3)O3 (PMN) [63] or Pb(Sc1/2Ta1/2)O3

(PST) [83] (in which Mg2+, Sc3+,Ta5+ and Nb5+ ions are fully or partially disordered in the

B-sublattice of the perovskite ABO3 structure) and non-stoichiometric solid solutions, e.g.

Pb1−xLax(Zr1−yTiy)1−x/4O3 (PLZT) [74, 157] where the substitution of La3+ for Pb2+ ions

necessarily leads to vacancies on the A-sites. Recently an increasing amount of reported data

has shown that many homovalent solid solutions, e.g. Ba(Ti1−xZrx)O3 (BTZ) [75, 76] and

Ba(Ti1−xSnx)O3 (BTS) [77] can also exhibit relaxor behavior. Other examples of relaxor
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ferroelectrics are complex perovskites Pb(Zn1/3Nb2/3)O3 (PZN) Pb(Mg1/3Ta2/3)O3 (PMT),

Pb(Sc1/2Nb1/2)O3 (PSN) and the solid solutions (1− x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3

(PMN-PT) and (1− x)Pb(Zn1/3Nb2/3)O3 − xPbTiO3 (PZN-PT) [2].

The diversity in interpretations of the relaxor properties is due to the fact that so far, a

general microscopic model capable of describing the generic behavior of all relaxors is still

lacking. One difficulty in unifying the descriptions is related to the fact that in the case

of some compounds like PST [83] and PLZT [4], in contrast to the canonical PMN for

example, in addition to the relaxor behavior, a relaxor-to-ferroelectric transition occurs at

low temperatures.

The general qualitative understanding, beyond points of disagreement among authors, could

be summarized in the following [4]. Chemical substitution and accompanying lattice defects

can introduce dipolar entities in mixed ABO3 perovskites. At very high temperatures, ther-

mal fluctuations are large and there are no well-defined dipole moments. Upon cooling, the

presence of these dipolar entities manifests itself at a temperature Td (the so-called Burns or

dipolar temperature), higher than the temperature at which the dielectric response peaks Tm.

At and below Td each dipolar entity induces polarization (or dipoles) in its vicinity within

a correlation length, forming polar regions whose extent is determined by the polarizability

of the medium. With decreasing temperature, the size of these regions increases, ultimately

either percolating the whole sample and yielding a cooperative FE phase transition at TC , or

exhibiting a dynamic slowing down of their fluctuations at T < Tm, leading to an isotropic

relaxor state with random orientation of the polar regions.

Despite the wide variety of the relaxor group, it is possible to gather some common points.

In the perspective of appreciating and understanding their properties, it is useful to contrast

some of their characteristic features with those of normal ferroelectrics [4] :

⋄ The P-E hysteresis loop (Fig.1.5(a)) is the signature of an FE in the low temperature

FE phase. The large remanent polarization, PR, is a manifestation of the cooperative

nature of the FE phenomenon. A relaxor, on the other hand, exhibits a so-called slim-

loop as shown on the right-hand side. For sufficiently high electric fields, the polar

regions of the relaxor can be oriented with the field leading to large polarization; how-

ever, on removing the field most of these re-acquire their random orientations resulting

in a small PR.

⋄ The saturation and remanent polarizations of a ferroelectric decrease with increasing

temperature and vanish at the FE transition temperature (Tc). The vanishing of P at

Tc is continuous for a second-order phase transition (Fig.1.5(b)) and discontinuous for a

first-order transition. No polar domains exist above Tc. By contrast, the field-induced

polarization of a relaxor decreases smoothly through the dynamic dielectric maximum
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Fig. 1.5: Contrast between the properties of normal ferroelectrics and relaxors ferroelectrics
(After Samara [4])

temperature, Tm, and retains finite values to rather high temperatures due to the fact

that the polar regions persist to well above Tm.

⋄ The static dielectric susceptibility, or dielectric constant ε′, of an FE exhibits a sharp,

narrow peak at Tc (Fig.1.5(c)). For a single crystal, the peak is very sharp and the

width at half max is ∼10-20 K. For a mixed oxide FE, e.g., a PZT, the peak is somewhat

rounded due to compositional fluctuations, and the width at half max is typically ∼20-

40 K. The FE response is frequency independent in the audio frequency range. By

contrast, a relaxor exhibits a very broad ε′(T ) peak, and strong frequency dispersion

in the peak temperature, Tm, and in the magnitude of ε′ below Tm.

⋄ The temperature dependence of ε′ of an FE obeys a Curie-Weiss law, ε′ = C/(T −T0),

above Tc as shown by the linear 1/ε′ versus T response in Fig.1.5(c). By contrast ε′(T )

of a relaxor exhibits strong deviation from this law for temperatures well above Tm. It

is only at very high temperatures that a linear 1/ε′ versus T response is recovered.

⋄ The FE transition can be thermodynamically first or second order and involves a macro-

scopic symmetry change at Tc. By contrast, there is no structural phase transition

across Tm in a relaxor.
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1.3 Theoretical approaches to Relaxors

In many solid materials, where intrinsic quenched randomness exists in form of defects, impu-

rities or as a general structural property, the disorder stemming from spatial heterogeneities

is an integral part of their characteristics. In certain circumstances, even a weak disorder can

have a crucial effect on their critical behavior, by altering the stability of the low-temperature

ordered phase, and inducing non-trivial properties governed by rare regions. As it will be

later pointed out, one of the essential requirements for the occurrence of the relaxor behavior

in ferroelectric perovskites, is lattice disorder. In order to describe disordered systems and

to explore their thermodynamic behavior, simple spin systems are frequently invoked. The

model Hamiltonian

H = −
∑

〈ij〉

JijSiSj −
∑

i

hiSi (1.10)

accounts for random interactions (or random bonds RBs), Jij , between nearest neighbor

spins Si and Sj , and for quenched random fields (RFs), hi acting on the spins Si. While the

RBs are at the origin of spin glass behavior, RFs may give rise to disordered domain states

provided that the order parameter has continuous symmetry [5]. In the two next subsections,

we examine the different models that have been resorted to in order to explain the relaxor

behavior and that conceptually belong to either one (RBs models) or the other (RFs models)

of the categories. In the third subsection, we review the spherical random bond random field

model (SRBRF model), which combined both sources of disorder. The second ingredient for

the relaxor behavior seems to be the existence of polar areas, at temperature higher than

Tm, that are either referred to as polar nanoregions (PNR), when regarded as the result

of local phase transitions embedded in a cubic matrix within the RBs models, or as polar

nanodomains separated by domain walls in random-field models [2].

As it will be later seen, although the existence of polar regions seems doubtless to many, the

mechanisms of their formation, and thus their nature itself, are not conclusively understood.

The picture that has emerged from numerous investigations, using local structural probes,

clearly indicates the necessity of distinguishing the short-range effects from the long-range

ones. At short range and at low temperatures the local symmetry is polar and the atomic

shifts [7–9] from their ideal cubic symmetry positions are correlated. At long range however,

the global symmetry is cubic due to the statistical atomic disorder that results in a spatially

variable polarization, yielding zero net global polarization. Thus, the crystal does not behave

as a polar homogeneous crystal, because the coherence length of the polar zones is spatially

limited, nor does it behave as a perfectly cubic crystal, because of the strong deviations from

the cubic symmetry; in this sense, it is neither polar nor cubic.
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Fig. 1.6: Rhombohedral distortion and ionic displacements along the 〈111〉 direction in PMN
at 5 K. (After Mathan et al. [7])

This picture meets the experimental observations. For example, de Mathan et al. studied

the low temperature phase of PMN at 5 K [7]. The widenings observed at the basis of some

X-ray and neutron diffraction lines were interpreted as scattering induced by atomic shift

correlations, leading to a locally polar structure, characterized by antiparallel shifts of the

cations against oxygen atoms inducing a dipolar moment (Fig.1.6). The local symmetry was

assumed to be rhombohedral, with atomic shifts along the 〈111〉 rhombohedral axis. The

correlation length of the polar regions was found to increase as the temperature is lowered,

reaching a value of 10 nm at 5 K. Additionally, a rough estimate suggested that the polar

nanoregions occupy only 20% of the volume of the crystal (polar phase amount), clearly

indicating the coexistence of two phases at 5 K.

As stated above, the presence of two local phases has led to two main theoretical approaches

i) one approach has been to consider polar nano-regions as resulting from local phase tran-

sitions, so that the system is regarded as consisting of nanosized polar regions embedded

into a cubic matrix. The relaxor behavior is attributed to a dipolar glass state with ran-

domly interacting polar regions in presence of random fields. ii) in the second approach the

charge disorder is considered to be at the origin of the occurrence of polar nanoregions and

the relaxor behavior is attributed to a ferroelectric state broken up into polar nanodomains

under the constraint of those quenched random fields. In the two cases the crystal is not of

a single-nature 9.

As it will be further developed, it has been considered that randomly polarized nanoregions,

that are the precursors of the polar clusters, start to form at the so-called Burns tempera-

ture Td, i.e., the temperature at which mean-field fit deviates from experimental points. A

matter of dispute is still the physical significance of this temperature. Recently, Bobnar et

al. reported high-temperature dielectric investigations of PMN, revealing that the dielectric

9These two situations can hardly be distinguished experimentally by structural examinations because the
thickness of domain walls (i.e. the interdomain regions where polarization is not well defined) is comparable
with the size of nanodomains and thus can not be neglected [7].
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dispersion that appears around 600K might be due to the Maxwell-Wagner-type contribu-

tions of interface layers between sample and contacts [60]. Even more recently, Hlinka [61]

questioned the necessity of the convenient but speculative concept of polar nanoregions.

Specifically, he demonstrated the possibility of analyzing the experimental signatures of the

so-called PNRs in a alternative way, namely by referring to a matrix-free scenario involving

ferroelectric nanodomains.

Moreover, many of the existing models interpret the dielectric relaxation as stemming from

the thermally activated reorientation of dipole moments of polar nanoregions, which are

considered as interacting (directly or via the surrounding matrix) entities constituting a

glassy system. However, another type of contribution from the polar regions to the dielectric

permittivity has been formulated in terms of vibration of their boundaries within the breathing

model proposed by Glazounov and Tagantsev [79] . The idea of the model lies in the use

of the theory of randomly pinned interface, earlier developed for magnetic materials, and

can be formulated as follows. The relaxor is considered as an ensemble of polar regions,

elongated along the direction of the local spontaneous polarization PS, the boundaries of

which are initially pinned by the spatial fluctuations of internal random electric fields induced

by the charge disorder. In this picture, the interface of a polar region is effectively free on

a characteristic length scale Lc, smaller than the size of the polar region and determined by

both the distribution of the pinning centers (i.e. the internal random local fields) and the

elastic properties of the interface. The application of an external field E will exert pressure

E.PS on the interphase boundary, leading to its bending and a modification ∆pE of the

dipole moment associated to the polar region : ∆pE ∝ PSL
2
c(E.PS). The contribution from

the polar region to the dielectric permittivity is proportional to ∆pE.E/ε0E
2. Therefore, the

polarization response of the system is believed to occur as a consequence of the motion of the

boundaries of the polar regions under applied ac field, without any change in the orientation

of PS.

Before addressing the dipole-glass class of models in detail, lets us briefly consider the fol-

lowing atomistic model, developed by Egami and aiming at getting atomistic insight to the

relaxor behavior. Based on pulsed neutron atomic pair-density function (PDF) analysis of

PMN, Egami observed that the prerequired atomic disorder for the onset of relaxor behavior

mainly affects the Pb polarization, making its direction random, resulting in a non-collinear

structure. In this picture, in PMN, the Pb ions cannot form covalent bonds with O ions

which are bonded to Nb. On the other hand, Mg ions create purely ionic bonds and do not

prevent the Pb-O bonding. As a result, the direction towards Mg is an easy direction for

Pb displacement. Egami addressed the atomistic mechanisms within the so-called random

anisotropy model [11], described by the following Hamiltonian H = Hdip +Haniso

Hdip = −
∑

ij

JijPiPj , Haniso =
∑

i

∑

lm

Dm
l O

m
l (Pi) (1.11)
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where Pi is the local polarization caused by the displacement of the i -th Pb ion, Jij describes

the interaction between local polarization mediated by oxygen and B-site ions, Dm
l describes

the anisotropy energy to rotate the Pb polarization, and Om
l are the operators equivalent of

the spherical harmonics. Since Mg is randomly distributed around Pb, the preferred direction

of displacement of Pb varies from site to site. It is the anisotropy term that accounts

for the directional dependence of the energy of Pb displacements in the compositionally

disordered crystal. Consequently, the random anisotropy model analyzes the relaxor behavior

within the idea of competing ordering (Hdip, favoring collinear structure) and disordering

(Haniso, favoring random non collinear structure) interactions, and leads to the concept of

critical level of disorder associated to a threshold value of the D/J ratio between regular

and relaxor ferroelectric behaviors. Although this model was established to account for the

relaxor properties, the appearance of polar regions was not derived.

1.3.1 Compositional fluctuations and glassy like approaches to relaxors

The early model by Smolensky et al. [62, 64, 65] attributed the diffuse phase transition

in mixed perovskites to compositional heterogeneity in the materials and thereby to the

existence of wide distributions in transition, or Curie, temperatures. It it in this context

that first appeared the notion of polar regions. Cross then extended this first approach

and proposed a superparaelectric model for relaxors in analogy with the superparamagnetic

state [1]. Central to this proposal is the hypothesis that the polar nanodomains that exist

above Tm, are in dynamic disorder undergoing random reorientation of their polarization

along one of the eight 〈111〉 equivalent directions in the cubic paraelectric phase of ABO3

perovskites. In support of this model, Viehland et al. [127] have given evidence for the dipolar

glass-like character of PMN. Specifically, they showed that the polarization fluctuations have

a freezing temperature analogous to that of spin glasses and that the correlations among polar

regions control the kinetics of the fluctuations as well as the freezing process. Subsequently,

these correlations were held responsible for the large deviation of the dielectric response from

Curie-Weiss behavior above Tm.

Because there are similarities between spin glasses and dielectric dipolar glasses, and because

of the wealth of available knowledge on the former, it is useful to start this section by

summarizing briefly some of the characteristics of spin glasses.

1.3.1.1 Spin glasses : an overview

Spin glasses are disordered magnetic alloys, widely regarded as paradigmatic complex sys-

tems. As an emergent state from the random magnetic system, the spin glass state differs

from other statistical systems in several ways. In particular the competitive interactions give
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Fig. 1.7: Zero-field cooled ((b),(d)) and field-cooled ((a),(c)) static susceptibilities of spin
glass CuMn for 1.08% Mn and 2.02% Mn, demonstrating preparation-dependence
and implying metastability. After zero-field cooling (H < 0.05 Oe), initial suscep-
tibilities (b) and (d) were taken for increasing temperature in a field of H = 5.9
Oe. The susceptibilities (a) and (c) were obtained in the field H = 5.9 Oe, which
was applied above Tf before cooling the samples.(After Nagata et al. [126])

rise to non-trivial degeneracies of the ground states. The simplest definition of spin glass

is that of a spin system whose low temperature state appears as a disordered one. In or-

der to produce such a state, two requirements are necessary: the Hamiltonian must contain

randomness, and there must be frustration. Randomness means that the Hamiltonian de-

pends on some random parameters, such as the couplings among the elementary degrees of

freedom, whose probability distribution is supposed to be known. These random couplings

are collectively denoted as spatially quenched disorder, physically meaning that the dynam-

ics of the impurities in the disordered system is by many orders of magnitude slower than

the dynamics of the spin degrees of freedom. Therefore, the disorder does not thermalize,

it can be considered as fixed. Frustration refers to the presence of competing interactions

which can not be simultaneously satisfied, such that the Hamiltonian can not be reduced to

a sum of many terms, all of which can be minimized by a single ground state configuration,

but rather gives rise to low-lying metastable configurations, as shown by zero-field and field

cooled susceptibilities measures (Fig.1.7). Upon cooling in the absence of an applied field, the

magnetic moments do not achieve neither ferromagnetic nor antiferromagnetic long-range or-

der, rather, they exhibit a freezing temperature, Tf , below which the moments are randomly

frozen over macroscopic times. Tf is manifested by a relatively sharp but rounded peak in

the frequency-dependent susceptibility χ(ω, T ), as shown for example in Fig.1.8. This is a

universal feature of a spin glass, among history-dependence, observation-time dependence,

etc. In this short overview, we present some of their characteristic features [4, 85]:

⋄ A broad spectrum of relaxation times just above Tf , with the spatial extent of the
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Fig. 1.8: Temperature dependence of the real part of the magnetic susceptibility of spin
glass CuMn (0.94% Mn). Inset is an expanded view revealing the rounding ad the
frequency dispersion at and below the peak. (After Mulder et al. [125])

spin correlations (i.e., the correlation length, rc) increasing as T → Tf from above,

indicating that collective behavior of the spins is coming into play. Thus on a local

scale strong magnetic correlations develop far above the freezing temperature. It is

these collective effects that presumably give rise to the long relaxation times. For a

system of Ising spins, the spin-spin correlation function for spins i and j averaged

over time, τ , is 〈SiSj〉. Its sign for a spin glass is random, and thus there is no net

magnetization. However, the quantity 〈SiSj〉2 is not random but decays exponentially

to zero as the separation between spins |ri − rj | becomes comparable to rc, i.e.,

〈SiSj〉2 ∝ exp [−|ri − rj |/rc] (1.12)

⋄ At sufficiently high temperature, χ(T ) follows a Curie-Weiss law. However, deviations

from this law set in and grow at temperatures much higher than Tf as T → Tf from

above. These deviations are attributed to spin-spin correlations.

⋄ Cooling in the presence of an applied magnetic field (field cooling) the spins tend

to align with the field, leading to magnetic hysteresis and remanence below Tf . At

sufficiently high fields, the spin-glass state is destroyed.

⋄ A prototype model for the description of cooperative phenomena in disordered magnets

was formulated by Edwards and Anderson [81], who considered that the site random-

ness of the spin-carrying atoms is less relevant to the properties of spin glasses compared

to the randomness in interactions or bond randomness. The Hamiltonian of the random

bond Ising model (RBIM) in the absence of an external field is then expressed as

HEA = −
∑

(i, j)

JijSiSj (1.13)
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Fig. 1.9: (a) Simple free energy: In a ferromagnet the free energy as a function of the state of
the system has a simple structure (b) Multivalley structure: The free energy of the
spin glass state is considered to have many minima and the barriers between them
are expected to grow indefinitely as the system size increases. Within a limited time
scale, the physical properties of the system are determined by one of the valleys.
After a an extremely long time, the observed behavior would reflect the properties
of all the valleys (After Nishimori [88]).

The spin variables are assumed to be of the Ising type Si = ±1, placed on a regular Zd

lattice, where d is the spatial dimension. Each interaction Jij between a neighboring

spin pair (ij) is considered to be distributed independently according to a probability

distribution P (Jij). As typical examples of the distribution of exchange bonds, one

often uses

⊲ Gaussian model : P (Jij) = (2πJ2)−1/2 exp
[

−J2
ij/2J

2
]

, with zero mean and J2

variance.

⊲ ± J model or frustration model : P (Jij) = p δ(Jij −J)+ (1− p) δ(Jij +J) , where

Jij is either J(> 0) (with probability p) or −J (with probability 1− p).

⋄ There exist in spin glasses a large number of thermodynamic states with the same

macroscopic properties, but with different microscopic configurations, separated by

large energy barriers in phase space. The free energy landscape is then expected to

exhibit many minima (Fig.1.9).

⋄ A long-standing question for spin glasses is whether or not the χ(T ) peak at Tf repre-

sents a true equilibrium phase transition. For a phase transition, both τ and rc should

diverge at Tf , otherwise both quantities become large and finite. To assess the spin

ordering in a single valley, it is necessary to take the thermodynamic limit to separate

the valley from the others by increasing the barriers indefinitely so as to ignore transi-

tions between valleys and observe the long-time behavior of the system in one valley.

Under these conditions, the Edwards-Anderson order parameter for one valley qEA is

defined as follows:

qEA = lim
t→∞

lim
N→∞

[〈Si(t0)Si(t0 + t)〉] (1.14)
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where 〈 . 〉 denotes statistical mechanics average over thermal fluctuations and [ . ] de-

notes the configurational average over the random interactions. qEA
10 measures the

similarity (overlap) of a spin state at site i at t0 + t to its initial state at t0
11.

⋄ The multivalley structure in phase space leads to a breakdown of ergodicity. Whereas

symmetry considerations relate every thermodynamic state to another one of the same

free energy with spins inverted (note that this symmetry can be broken in any nonzero

field conjugated to the order parameter), mean-field theory 12 predicts additional states,

unrelated by symmetry, with virtually the same free energy. This phenomenon corre-

sponds to ”ergodicity breaking.” and is associated to accidental degeneracy, which in

turn occurs because of randomness and frustration in the system.

⋄ There is evidence that ferromagnetic clusters are the building blocks out of which the

spin-glass state is formed. This points to some degree of correlations and distinguishes

the spin-glass state from the superparamagnetic state where the magnetic particles are

dilute (or free) and non-interacting.

⋄ Measurements of the frequency and temperature dependencies of the real and imagi-

nary parts of the susceptibility reveal a broad spectrum of relaxation times even well

above Tf . The temperature dependence of the maximum relaxation time, τmax, is gen-

erally found to be non-Arrhenius, i.e.. not compatible with simple thermally activated

hopping over barriers: rather τmax(T ) can be well fit by the Vogel-Fulcher equation

τmax = τ0 exp [E/kB(T − T0)] where T0 is a characteristic temperature.

As we have seen above, spin glass behavior results if disorder is introduced into magnets with

competing interactions. Thus it is immediately plausible to expect that similar behavior may

occur for other ordering phenomena, if there is competition between various interactions in

presence of disorder. Candidates for such behavior are systems associated with structural

transitions as they occur in ferroelectrics or antiferroelectrics. In this case, the local ordering

is due to electric dipoles, and hence one is talking about ”dipolar glasses” [121, 124]. From a

theoretical point of view, the spin representing a magnetic moment turns into a ”pseudospin”

representing the electric moment; dielectric rather than magnetic susceptibilities need to be

considered, while otherwise the situation is similar to that for magnetic spin glasses.

10One can rewrite this quantity using the square of the local magnetization ma
i = 〈Si〉a, where a labels the

restriction of the system to a specific valley a, and the probability Pa = e−βFa/Z that the system is located
in a valley a. qEA =

[
∑

a Pa(m
a
i )

2
]

=
[
∑

a Pa
1
N

∑

i(m
a
i )

2
]

. In this second equality, it is assumed that the
averaged square magnetization does not depend on the location

11In addition to qEA that probes the single valley ordering, it is possible to define qEA that represents the
average over all valleys corresponding in the long-time observation. It can be expressed explicitly as qEA =
[

(
∑

a Pam
a
i )

2
]

= 1
N

[
∑

ab PaPb

∑

i m
a
i m

b
i

]

which can be rewritten using mi =
∑

a Pam
a
i as qEA =

[

〈Si〉
2
]

,
that accounts for the average overlaps between valleys for time scales longer than transition times between
valleys [88].

12The mean field theory of spin glasses was developed in Sherrington-Kirpatrick model [89], the infinite-
range version of the Edwards-Anderson model.
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1.3.1.2 Compositional fluctuation model

In this early phenomenological model developed by Smolenskii, Kirillov and Isupov [62, 64,

65], the diffuse nature of the phase transition in perovskites was attributed to the disor-

dered distribution of hetero-valent cations over equivalent cristallographic sites. Due to the

dependence of the Curie temperature on the concentration of the components, the resulting

spatial micro-inhomogeneities consequently lead to a statistical distribution of local ferroelec-

tric transition temperatures TC,loc, causing the broad temperature dependence of dielectric

properties and the diffuseness of the transition. In this model, the relaxor ferroelectric is

considered as an ensemble of randomly oriented non-interacting polar regions in paraelectric

environment, whose number increase upon cooling. Thus PNRs correspond to regions with

enhanced local TC . It was suggested that the total number of polar regions contributing

to the dielectric response in the vicinity of the permittivity peak is given by a Gaussian

distribution characterized by a mean value corresponding to the temperature of permittivity

maximum Tm, and by a standard deviation δ, also regarded as the diffuseness coefficient.

Assuming that the phase transition of the polar regions is of the first order, the following

expression for ε ′ was obtained:

ε ′(T ) = ε ′
m exp−(T − Tm)2

2δ2
(1.15)

Taking the limit of high diffuseness δ ≫ T − Tm and expanding Eq.(1.15) into a truncated

power series, the following expression, known as the square Curie-Weiss law, was then derived:

ε ′
m

ε ′
= 1 +

(T − Tm)2

2δ2m
(1.16)

Deviation to the quadratic dependence (Eq.(1.16)) incited many authors [67–70] to search for

a new formula describing the diffuse phase transition. In order to characterize the dielectric

diffuseness an empirical power law was proposed:

ε ′
m

ε ′
= 1 +

(T − Tm)γ

2δ2γ
, (1 6 γ 6 2) (1.17)

The limiting values γ = 1 and γ = 2 reduce the expression, in the first case to the Curie-

Weiss law valid in the case of a normal ferroelectric (and in the case of relaxors [71, 72] for

temperatures above the characteristic Burns Td), and in the second case to the quadratic

dependence corresponding to Eq.(1.16). The exponent γ, determining the degree of the

diffuseness of the phase transition, is usually obtained from the slope of the log− log plot of

(1/ε ′ − 1/ε ′
m) versus (T − Tm).

By introducing the notion of polar regions, this model has initiated the conceptual foundation

for subsequent models. However, this static model fails in describing the dispersive nature of
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the transition. Moreover, the effect of pressure in tuning the relaxor behavior in ferroelectrics

compounds of fixed compositions can not be recovered.

Following the idea of Smolenskii et al., Nambu et al. proposed a mean field theory of

the diffuse phase transition [66]. In this phenomenological model, the existence of clusters

is postulated a priori and the diffuseness is ascribed to the gradual condensation of local

polarizations in these clusters. Specifically, the free energy is expanded in terms of a uniform

polarization P , and a local polarization Pi, yielding

F =
1

2
Nα1P

2 +
1

4
Nα11P

4 +
1

6
Nα111P

6 (1.18)

+
1

2
γP 2

N∑

i=1

P 2
i +

1

2

∑

〈ij〉

aijPiPj +
1

4
a11

N∑

i=1

P 4
i

where αi = (T − T0)/ǫ0C, N is the total number of lattice sites, α11 and α111 are constants

(α11 < 0). From symmetry considerations, the coupling term between the two polariza-

tions is of the form γP 2P 2
i . The interaction aij between local polarization is assumed to

be of the form aij = (T − Jij)/ǫ0c
′ where Jij is a random variable with zero mean value.

All the parameters were determined so as to fit to the measured dielectric susceptibility.

Using this free energy, numerical calculations were carried out for PMN and ordered PST

(Pb(Sc1/2Ta1/2)O3), yielding ε
′(T ) behaviors in close agreement with experimental observa-

tions.

1.3.1.3 Superparaelectric model

An extension of the compositional fluctuation model was made by Cross [1] who, in the spirit

of superparamagnetism [78], proposed the superparaelectric model. This model ackowledge

the existence of polarized regions within the relaxor ferroelectrics similarly to the single-

domain spin clusters in the super-paramagnetics, and consequently regard them as non-

interacting dynamical entities, flipping between alternative orientational states under thermal

activation. The multiwell stucture of the potential is ascribed to the compositional fluctuation

that locally breaks the global symmetry and creates favorable directions. In this case of

dynamic polar regions each of which contributes independently to the dielectric response in

a Debye-like fashion, the relaxation time τ follows the Arrhenius law:

τ = τ0 exp(Eb/kBT ) (1.19)

where Eb is the volume dependent energy barrier between orientational states. Given the

nanometric scale of the polarized regions and under sufficient thermal fluctuation, the polar-

ization can overcome the energy barrier, leading to the frequency dependence of the dielectric

response. The superparaelectric model emphasizes the dynamic behavior of the polarized
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regions, which enables reasonable explanation to aging, electrostriction and the nonlinear

behavior of the thermoelastic and optical properties. However, as reported by Isupov [80],

whereas superparamagnetic particules are embedded in a non magnetic host, thereby justify-

ing the concept of paraelectric gas, in relaxor ferroelectrics, polar regions are surrounded by

polarizable para-electric (rather than dielectric) regions. Moreover, although the frequency

dependence reflects a slowdown in the dynamics at low temperatures, Debye relaxation is

insufficient in reproducing the frequency dependence of Tm. It is this shortcoming, together

with the inability of the assumption of independent cluster in predicting the appearance of

long-range order with the change of the composition or due to an applied external field, that

have motivated the consideration of interactions among polar regions.

1.3.1.4 Dipole glass models

At high temperature, relaxors exhibit a non-polar paraelectric phase, which is in many aspects

similar to the paraelectric phase of normal ferroelectrics. Upon cooling they transform into

the ergodic relaxor state in which polar regions of nanometer scale with randomly distributed

directions of dipole moments appear. This transformation which occurs at the Burns temper-

ature, Td, can not be considered a structural phase transition because it is not accompanied

by any change of crystal structure on the macroscopic or mesoscopic scale. Nevertheless, the

polar nanoregions affect the behavior of the crystal drastically, giving rise to unique physical

properties. For this reason the state of crystal at T < Td is often considered as a new phase

different from the paraelectric one. At temperatures close to Td the polar nanoregions are

mobile and their behavior is ergodic [2]. Upon cooling, their dynamics slows down and at a

low enough temperature, Tf
13(typically hundreds degrees below Td), the polar nanoregions in

the canonical relaxors become frozen into a nonergodic state, while the average symmetry of

the crystal still remains cubic. Similar kind of nonergodicity is characteristic of a dipole glass

(or spin glass) phase [2]. It is precisely the identification of the two characteristic tempera-

tures, i) the Burns temperature14 , Td (greater than Tm), below which the condensation of

local polarization occurs, marking an onset of deviation from a simple extrapolation of higher

temperature properties, and ii) the freezing temperature, Tf , below which thermal energy is

insufficient for reorientational activation, heralding the onset of non-ergodic behavior, that

led to a glassy interpretation of the relaxor behavior.

Evidence for the existence of polarized regions above Tm Since the average value

of the dipole polarization Pd reduces to zero under thermal fluctuation, it is P2
d−dependent

13Let’s note that Tm of relaxors corresponds to Tf of spin glasses, while Tf of relaxors corresponds to T0 of
spin glasses.

14The Burns temperature is not a usual phase transition temperature, rather, it can be associated [5] to
the onset of a Griffiths phase [153], i.e., a phase in disordered systems where nonanalytic behavior above the
critical point is ascribed to rare spatial regions that are in a different thermodynamic phase (ferro) from the
bulk system (para).
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properties, such as the quadratic electro-optic effect and electrostiction, that were best ex-

pected to reveal the existence of polarized regions. Measurement of the temperature depen-

dence of the refractive index n(T ) by Burns and Dacol [82], led to the observations that

relaxors, unlike normal ferroelectrics, exhibit a deviation to linear behavior occurring at a

temperature higher than TC , the so-called Burns temperature Td associated to the onset of

randomly polarized regions. Moreover, the absence of anomaly in n(T ) near Tm reflects the

absence of a phase transition at Tm (Fig.1.10). Assuming that the polarized regions develop

randomly along one of the eight 〈111〉 directions in the cubic paraelectric phase of ABO3 per-

ovskites, the long wavelength of the light averages n over the crystal, so that the deviation

can be quantitatively described by :

∆n =
∆n‖ +∆n⊥

3
= −n

3
0

2

[
g33 + 2g13

3

]

P2
d (1.20)

where ∆n‖ and ∆n⊥ are the changes in the parallel and perpendicular components of n,

n0 is the index in the absence of polarization, and the gij are the quadratic electrooptic

coefficients.

Fig. 1.10: Schematic temperature dependencies of the refractive index n, the unit cell volume
V , and the reciprocal dielectric permittivity 1/ε ′ in the canonical relaxor (After
Bokov et al. [2])

Another evidence for the onset of polarized regions above Tm is reflected in the measured

thermal expansion [1]. In contrast to the normal linear dependence of the length of a sample

with respect to temperature as given by lT = l0 [1 + α(T − T ∗
0 )], where lT is the length at

temperature T , l0 is the reference length at the reference temperature T ⋆
0 , and α is the linear

coefficient of thermal expansion, or equivalently by x = ∆l/l0 = α(T − T ∗
0 ) where x is the

thermal strain, an anomalous deviation to linearity, occurring at Td is reported in relaxors.

This deviation can be explained in terms of electrostriction, and it can be shown [1, 4] using

the Landau expansion of the free energy in terms of stress and polarization, that for a cubic
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perovskite the axial thermal strain x11 is given by:

x11 = α(T − T ∗
0 ) + (Q11 + 2Q12)P

2
d (1.21)

where Q11 and Q12 are electrostrictive coefficients. Consequently, a deviation from linearity

is also measured in the lattice parameter (Fig.1.10) [84].

Evidence for the existence of polarized regions in relaxors well above Tm has also been

deduced from the temperature dependence of the susceptibility (Fig.1.10). As noted earlier,

deviations to the Curie-Weiss behavior were modeled using the compositional heterogeneity

model predicting a power-law (Eq.(1.17)) relationship, where γ was approximately equal to

2 [64, 87]. Although this expression gives a reasonable fit of the data for some relaxors, it has

been generally observed [73] that no single value of γ is found that uniquely describes the 1/ε ′

dependence of relaxors. Rather, different γ’s can be found for given relaxors, depending on

the width of the temperature range analyzed above Tm and on the measurement frequency. In

spin glasses, the Curie-Weiss law is obeyed at temperatures much greater than Tf (T > 5Tf ),

but at lower temperatures strong deviations occur [85, 86]. Sherrington and Kirpatrick [89]

developed an infinite range model for a spin glass which related the temperature dependence

of the magnetic susceptibility χ below Tf to the onset of a local (spin glass) order parameter

q in the following way:

χ =
C [1− q(T )]

T − θ [1− q(T )]
(1.22)

Whereas the ideal (non-interacting) superparamagnetic is known to exhibit Curie-Weiss be-

havior, in spin glasses, the deviation to it is ascribed to the development of strong magnetic

correlations on the local scale when approaching Tf and the onset of local spin glass or-

der below Tf . Similarly, Viehland et al. [72] proposed that the deviation to Curie-Weiss in

PMN and other relaxors, arises due to short-range correlations among polar regions, and

that these correlations at high temperature are the precursor to a freezing of the polarization

fluctuations into a glassy state at lower temperatures. Invoking Eq.(1.22), and considering

that the local order parameter due to to correlation between neighboring polar regions of

polarization Pi and Pj is q = 〈PiPj〉1/2, Viehland et al. phenomenologically modeled the

susceptibility data of PMN using the values of C and θ determined from high temperatures,

and calculated the temperature dependence of q (Fig.1.11). In this picture, at Td, local fer-

roelectric transitions start to occur, leading to the condensation of the polar nano-regions.

In the temperature interval between 400 and 600K, the disordering effect of temperature is

large enough to prevent most polar regions from coupling, i.e. 〈PiPj〉1/2 = 0. As the tem-

perature decreases, correlations develop as the volume fraction of polar regions increases and

the thermal disordering effect decreases, ultimately leading to a freezing of the polarization

fluctuation.
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Fig. 1.11: (a) Schematic representation of the deviation of ε ′ from the hypothetical Curie
and Curie-Weiss behaviors calculated from the values of C and θ obtained by
extrapolation from temperatures above that of the onset of local polarization.
(b) The inverse susceptibility as function of temperature. The dashed line is the
Curie-Weiss behavior determined from high temperature and the inset shows the
temperature dependence of the local order parameter q obtained using Eq.(1.22).
(After Viehland et al. [72])

Dynamics of the dipolar slowing down and freezing process In many aspects, re-

laxors exhibit non-ergodic behavior similar to that of the spin (or dipole) glasses. On cooling,

a slowing down of the relaxation of their orientational degrees of freedom, ultimately results

in a frozen-in polar state that lacks long-range orientational order. As noted earlier, the

Fig. 1.12: The non-Arrhenius character of the relaxational response of PMN. The solid line
is a V-F equation fit to the data. (After Viehland et al. [73])

non-Arrhenius character (Eq.(1.19)) of the relaxors response [73, 92, 93] underlines a funda-

mental difference between relaxors and superparaelectrics (Fig.1.12). Whereas in the latter,

the thermal localization process stems from an independent behavior, in relaxors the glassy

dipole freezing emerges from a cooperative one. This departure from Arrhenius behavior can

be described in the form of the empirical Vogel-Fulcher (V-F) equation [107, 108]:

τ−1 = ω0 exp [−Eb/kB(Tm − Tf )] (1.23)

where ω0 is the attempt frequency related to the cut-off frequency of the distribution of

relaxation times, Eb is the energy barrier between equivalent dipole directions and Tf is the
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freezing temperature (i.e. where all relaxations times diverge) which can be viewed as the

static dipolar freezing temperature for the relaxation process.

Validity of the Vogel-Fulsher Equation Although the V-F equation is often considered

to be a sign of freezing in the system, no microscopic prescription for it has clearly emerged.

Moreover, it is not unanimously accepted and other equations have been proposed. For

example, it was shown in by Cheng et al. [94], that the temperature dependence of the

relaxation time τ should be replaced by a super exponential function given by:

τ =
1

ω0
exp [(Eb/kBTm)p] (1.24)

where p (> 1) is a constant that characterizes the degree of dielectric relaxation.

Fig. 1.13: Average size of polar nanoregions in the PMN crystal (determined from diffuse
neutron scattering) as function of temperature. The vertical dashed line corre-
sponds to Tf . (After Xu et al. [96])

Furthermore, the V-F relation can be directly derived from different assumptions and alterna-

tive mechanisms. For instance, based on experiments performed by neutron scattering [95, 96]

indicating that the average size of polar nanoregions increases with decreasing temperature

(Fig.1.13), and saturates below Tf , Pirc et al. suggested the possibility of a percolation-type

transition into a frozen relaxor state [97]. The proposed mesoscopic mechanism for the V-F

relaxation process is based on the qualitative picture of a network of polar nanoregions em-

bedded in a highly polarizable medium. Each polar nanoregion polarizes the medium within

a space region bounded by the correlation radius rc. As the temperature is lowered, rc is

expected to increase; ultimately, freezing will occur due to the growth of both the size of

the polar regions and the correlations among them. The basic idea is that thermodynamic

stability of the polarization density with a power-law distribution P (r) ∼ r−3 implies a tem-

perature dependence of the correlation radius rc ∼ T−1/3. Thus the mean volume v of the

polar regions increases until the percolation limit is reached. Using the mean field theory of

continuum percolation, they showed that v ∼ (1 − Tf/T )
−1, and since the reorientational

activation energy is proportional to v, the V-F relation follows immediately. According to
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this model, the two physical pictures, namely that of cluster growth and of the freezing of

the local modes, are essentially two parts emerging from the same considerations.

Tagantsev [109] showed that the V-F relation can be obtained in the framework of a simple

phenomenological model, all the parameters of which manifest analytical and gradual temper-

ature and frequency dependencies. Within this model, the dielectric response is considered as

a sum of relaxators having an exponentially wide and smooth spectrum of relaxation times.

Following this approach, the V-F relation can be obtained as a direct consequence of gradual

broadening of the spectrum with decreasing temperature. In doing so, it was demonstrated

that the V-F behavior for the maximum of the dielectric permittivity can be observed in sys-

tems that manifest a regular temperature dependence of the spectrum at any temperature,

i.e. without any assumption of freezing in the system.

To conclude this section, at early stages, local phase transitions models owing to chemical

heterogeneity, and cluster-glassiness owing to dipolar disorder and frustrated interaction,

allowed a number of achievements to be made based on a extension of spin-glass results to

relaxors. However, the underlying abstraction from the very nature of the dipoles in the

cluster-glassiness interpretation grid has proven to be insufficient, and accounting for the

real nature of dipoles has become necessary [80].

1.3.1.5 From local structure to global properties

Since the works of Burns and Dacol [82], the dielectric and structural properties of relax-

ors have been ascribed to the appearance of polar nanoregions within the cubic matrix at

the Burns temperature Td, and their ensuing growth as the temperature is lowered. The

formation of these polar nonregions have been attributed to the presence of nanoscale com-

positional inhomogeneities. Such inhomogeneities would lead to strong random electric fields

and a smearing out of the ferroelectric phase transition. However, the structure and dy-

namics of the polar nanoregions on a atomistic level is not fully understood and reports

on relaxor behavior in perovskites with long range B-cation ordering call into question the

polar nanoregions based models [132]. While it is known that heterovalency on the B-site

is necessary for relaxor behavior in some lead-based relaxors, quantitative relations between

local structure and relaxor dispersion are still lacking. With this in mind, Grinberg et al.

suggested that a local-structure-based approach could result in a deepened understanding of

the relaxor behavior.

Leveraging the availability of local structural information from density functional theory

studies (within the local density approximation [128–130] for the exchange and correlations

between electrons) and molecular dynamics simulations (performed with the bond valence

model for the atomistic potential [131]), Grinberg et al. examined the connections between

composition, local structure and dynamics in lead-based relaxor ferroelectrics, showing that
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the interactions behind the relaxor behavior are of short range type and are controlled by

the variations in the local chemical bounding in perovskites.

Fig. 1.14: Measure of the dependency of the dispersion ∆Tdisp on the fraction x of the
ferroelectric end members in (1-x )PSW-xPT, (1-x )PSW-xPZ, (1-x )PMN-xPT,
(1-x )PMN-xPZ and (1-x )PMN-xPSN solid solutions. ∆Tdisp exhibits a smooth
monotonic trend as the fraction x of the ferroelectric end members increases, mak-
ing it suitable to serve as an order parameter for the compositional phase transi-
tions between the relaxor and ferroelectric phases. (After Grinberg et al. [134])

In order to assess the effect of the compositional variation on the extent of the relaxor

behavior, the parameter ∆Tdisp was introduced to evaluate the strength of the dielectric

dispersion:

∆Tdisp = Tǫ,max(10
2Hz)− Tǫ,max(10

6Hz) (1.25)

where Tǫ,max(10
2Hz) and Tǫ,max(10

6Hz) are the temperatures at which the dielectric constant

ǫ is maximal for ω = 100 Hz and ω = 1 MHz respectively. The magnitude of ∆Tdisp is related

to the Vogel-Fulcher [97] activation barrier Ua:

ω = ω0e
−Ua/kB(Tǫ,max−Tf ) (1.26)

where ω is the frequency of applied field, ω0 is an attempt frequency and Tf is the freezing

temperature at which the relaxation frequency vanishes. ∆Tdisp is thus equal to zero for nor-

mal ferroelectrics. Furthermore, in solid solutions mixing relaxors with normal ferroelectrics,

∆Tdisp exhibits a smooth monotonic trend from high values (on the relaxor side of the phase

diagram) to zero (on the ferroelectric side), making it suitable to serve as an order parameter

for compositional phase transitions between relaxor and ferroelectric phases (Fig.1.14).

To understand the origin of the large dispersion in such solid solutions, the correlations be-

tween the experimentally observed ∆Tdisp values and crystal chemical parameters, such as the
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ionic valence and the ionic displacement, are then investigated. The choice of these local pa-

rameters is achieved by the inspection of previous works which indicate (i) that compositional

phase transitions in lead-based solid solutions are driven by changes in the local potential

energy surface of the Pb cations [130, 136], (ii) that Pb off-centering, which give rise to fer-

roelectricty in PbTiO3 (and related Pb(B)O3 materials), is due to the energetically favorable

formation of short Pb−O bonds of Pb with a subset of its oxygen neighbors [137], (iii)

that B-site disorder15 in Pb(B,B′)O3 solid solutions produces overbonded and underbonded

oxygen atoms depending on the valence of their B-cation neighbors [138–140], leading to a

preferential displacement of Pb towards underbonded oxygens16 thereby inducing variations

in the local potential energy surface17.

As a measure of these variations, the second moment of the valence of the two B-cation

nearest neighbors of each oxygen atom 〈V 2〉 was chosen as a local structural parameter. It

is defined as:

〈V 2〉 = 1

NO

∑

i

(V B
i,1 + V B

i,2 − 2V B)2 (1.27)

where V B
i,1 and V B

i,2 are the valences of the two nearest B-cation neighbors of the i-th O

atom. The first moment of the oxygen atom B-cation neighbor valence V B is equal to four

in all Pb-based perovskites. The other crystal chemical parameter of relevance is the average

off-center displacement DB
avg of the B-cations. This choice stems from the observation by

the means of DFT calculations [129, 130], of a correlation between a low average B-cation

displacement DB
avg and a large ∆Tdisp. The relevance of ionic displacement can also be

inferred from the effect of pressure on the relaxor behavior. The application of pressure

shortens interatomic distances and decreases off-centering displacements [137] i.e. it lowers

DB
avg. This leads to an alteration of interatomic interactions that in turn affects the balance

between long range Coulomb forces (which favor the ferroelectric state) and short-range

repulsions (which favour the nonpolar cubic structure). The decay of the correlation radius

results in a enhanced relaxor behavior and in a increased frequency dispersion [104], i.e. a

higher ∆Tdisp (Fig.1.15). The 〈V 2〉 values and the average values of B-cation displacements

DB
avg were obtained by DFT calculations using the local density approximation.

15Setter and Cross studied that the role of B-site cation disorder in diffuse phase transition behavior of
perovskite ferroelectrics [138]. In particular, they showed that ordered cationic arrangements on the B-site
of Pb(Sc0.5Ta0.5)O3 give rise to a normal first-order ferroelectric phase transition (long annealing), whereas
B-site disorder leads to a diffuse phase transition with broad Curie range and strong low-frequency dielectric
dispersion (rapid quenching).

16Burton et al. compared first-principles calculations for Ba(B,B′)O3 and Pb(B,B′)O3 perovskites in order
to elucidate why the latter disorder at lower temperatures than their Ba counterparts. This tendency was
attributed to an enhanced Pb-O hybridization between Pb 6s and O 2p states of underbonded oxygens,
yielding more competitive short-range interactions.

17Grinberg et al. connect these B-disorder induced variations in the local potential energy surface, to that
of the value of h in random field spin models, which is known to hinder ferroelectricty and bring about the
relaxor phase [91, 141].
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Fig. 1.15: ∆Tdisp evolution with pressure in PLZT from the experimental results of
Samara [104]. ∆Tdisp increases with increasing pressure. Since off-center displace-
ments are smaller at reduced volumes of perovskites [137], ∆Tdisp is increased by
lower off-centering displacements. (After Grinberg et al. [134])

The dependence of ∆Tdisp on 〈V 2〉 being found similar to that of the order parameter on

temperature in standard Landau theory of a second order phase transition (Fig.1.16), the

authors combined the two local criteria in a Landau theory equation [132] for describing

ferroelectric-to-relaxor compositional phase transition, with ∆Tdisp as the order parameter

G = G0 −
1

2
A(〈V 2〉, DB

avg)(∆Tdisp)
2 +

1

4
(∆Tdisp)

4 (1.28)

A(〈V 2〉, DB
avg) = a0 + av〈V 2〉+ ade

−κDB
avg (1.29)

where G is the free energy of the relaxor phase, G0 is the energy of the parent ferroelec-

tric phase, and the Landau coefficient A is function of 〈V 2〉 and DB
avg (a0,av,ad and κ are

constants). The exponential dependence of A(〈V 2〉, DB
avg) on DB

avg (Eq.1.29) is chosen for

its providing the best fit to experimental ∆Tdisp data18. The values of the coefficients in

Eq.1.28 were obtained by the use of experimental ∆Tdisp values for different compositions

for which full long-range B-cation ordering enables precise 〈V 2〉 evaluation. The good agree-

ment between the fit and the experimental values (Fig.1.17) validates the Landau theory of

ferroelectric-to-relaxor compositional phase transition and supports the idea that the inter-

actions that give rise to the characteristic dispersion of relaxors are of short range type and

that they are governed by the variations in the local chemical bonding in perovskites.

To further assess the model and investigate in greater depth the connections between composi-

tion, local structure and dynamics in lead-based relaxor ferroelectrics, the authors performed

molecular dynamics study of the dielectric response in GHz frequencies [133]. The obtained

results show that some essential features of the dielectric response in relaxors can be driven

18The exponential dependence of A(〈V 2〉, DB
avg) on DB

avg derives its justification from the exponential vari-
ation of the bonding overlap with interatomic distances [132].
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Fig. 1.16: Dependence of ∆Tdisp on 〈V 2〉 in PMN-PSN solid solution, revealing a strong
resemblance to the behavior of of the order-parameter in a second-order phase
transition. (After Grinberg et al. [134])

Fig. 1.17: Comparison of the ∆Tdisp results of the Landau theory fit with experimental
∆Tdisp. Data points are close to the y = x line, indicating that the Landau
theory of the relaxor-to-ferroelectric transition encapsulated by Eq.1.28 and 1.29
quantitatively captures the trend of the experimental ∆Tdisp data, and attest-
ing that local effects govern the magnitude of the dispersion in Pb-based relaxor
ferroelectrics. (After Grinberg et al. [134])

by local phenomena without the requirement of PNRs [129, 133, 134], thereby supporting

the idea according to which PNRs represent a useful but largely speculative concept [135].

1.3.2 Random Fields in Relaxors

The second canonical class of disordered systems relies on the random fields theory. Since

in relaxors, inherent charge disorder due to the random distribution of heterovalent cations

on the B-site of the perovskites naturally leads to quenched random fields, it wasn’t long
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before Westphal et al. and others asserted that random fields (RF) were in fact at the origin

of the observed slowing down of the dynamics of relaxors and their eventual freezing into

a domain state on a nanometric length scale. Before considering random fields models in

detail, it is worthwhile to briefly review the canonical random field Ising model (RFIM) since

it captures the competing mechanisms for order and disorder. The local spin couplings favor

ferromagnetic ordering, whereas variations in the random fields favor disorder.

1.3.2.1 Random Field Ising Model : An overview

The Ising model in a random field is a prominent example of a lattice spin model with

quenched disorder, representative of a large number of impure materials. The RFIM model

is defined on a lattice in the following way:

H = −J
∑

〈ij〉

SiSj −
∑

i

hiSi (1.30)

The spins variables can only point up or down, so that the order parameter falls in the

discrete symmetry framework. This models describes the competition between random or-

dering fields and long range order. The probability distribution for the disorder average is

typically a Gaussian or a bimodal one, where the latter one is given by hi = ±h with equal

probability and h being some constant value of the field. The following assumptions about

hi are generally made:

hi = 0 , hihj = h2δij , h≪ J (1.31)

The RFIM was first discussed in 1975 by Imry and Ma [116] and is currently under strong

theoretical and experimental investigation. The important question that was first addressed is

whether or not there a tendency due to disorder to suppress the ordering in lower dimensions,

and hence to shift the lower critical dimension dl, above which long range order occurs, to

higher values. The situation of interest is h ≪ J , since it is clear that in the opposite case

the system will be disordered. Regarding this question, the two main conflicting arguments

were Imry and Ma domain argument [116] and the dimensional reduction argument proposed

by Parisi [118].

(i) Imry and Ma domain argument19 In one of the earliest studies of the random field Ising

model, Imry and Ma [116] argued that quenched random fields in a system may cause

a uniform ferromagnetic state to break into domains, i.e. , that the ferromagnetically

ordered state becomes unstable with respect to the formation of ill oriented domains in

all dimensions d ≤ 2, so that dl = 2. The intuitive argument that was given goes is the

19Imry and Ma actually extended Peierls proof [119] of the existence of a phase transition in the two-
dimensional Ising model to the situation with symmetry breaking randomness in RFIM.
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Fig. 1.18: Droplet of overturned spins in a supposed ferromagnetic (up) ground state. A
quenched random field acts at each site of the system; the field points up on the
blue sites and down on the green sites. The configuration with the overturned
droplet, or domain, can have a lower energy than that consisting of all-pointing
up spins. This can happen because the droplet occurs in a region in which the
random fields points predominantly down. Imry and Ma estimated the probability
of occurrence of such droplets and concluded that the ferromagnetic state is un-
stable with respect to the formation of large droplets in fewer than 2 dimensions.
(Adapted from Fisher et al. [120])

following (Fig.1.18): In a region of linear dimension L, the energy cost for reversing the

spins in this region is proportional to the domain wall area, hence this energy scales

as JLd−1. However, the associated bulk energy gain due to the interaction with the

random fields scales as −hLd/2. Obviously, for h≪ J , i.e., there will be a characteristic

length over which the bulk energy gain will overcome the cost of the surface energy. In

other words, even for arbitrary week random fields, domains will spontaneously form

and field fluctuations should prevent any long-range order in d ≤ 2, yielding dl = 2

(rather than dl = 1 for pure Ising model).

(ii) Dimensional reduction Other arguments were subsequently put forward for dl = 3

rather than dl = 2. Among these is the correspondence between a random system in d

dimensions and its pure counterpart in d − 2 dimensions. This corresponds to the so-

called dimensional reduction and was first suggested in the context of the perturbation

theoretical formulation of the critical behavior of the Ising model in a quenched random

magnetic field [118]. In particular, since the lower critical dimension of the ordinary

pure Ising model is dl = 1, this should imply that the 3-dimensional random field Ising

model has no phase transition, i.e. dl = 3 in the random version.
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The debate was finally resolved by two papers in mathematical physics proving ferromagnetic

ordering in 3 or more dimensions at low temperature [114], and absence of ferromagnetic

ordering in 2 dimensions at any temperature [115], thereby confirming the domain argument

and infirming the dimensional reduction. The breakdown of the perturbation theory is mainly

due to a large number of local minima in the energy landscape20.

The domain argument of Imry and Ma can be generalized to the case where the order

parameter is of continuous symmetry. The random-field instability of the ordered state of

continuous symmetry sets in at dl = 4. So that in d < 4, the ordered state is unstable against

an arbitrarily weak random field, i.e., a field much weaker than the interactions that favor

the ordered state. Instead of a long-range ordered state, it becomes energetically favorable

for such a system to break up on cooling into sufficiently large domains to form a so-called

low-temperature domain state. The size of the domains is determined by a balance between

the domain wall energy and the statistics of the random field. We now turn to the random

fields models as they were formulated for describing the relaxor behavior.

1.3.2.2 Random fields in relaxors

Shortly after the work of Imry and Ma [116] on the effect of forzen-in random fields in

ferromagnets, Halperin and Varma [117] advanced the possibility that similar ideas could be

extended to understand the effect of atomic disorder in ferroelectric perovskites. In particular,

they showed that atomic impurities couple linearly to the ferroelectric order parameter, in

a equivalent manner to the random fields in ferromagnets, leading to the smearing of the

transition. Although disregarded for a while, this idea resurfaced after that it had been

realized that the random-bond concept was insufficient in accounting for all of the observed

effects featured by relaxors.

Westphal, Kleemann and Glinchuk [122] applied the results of the theoretical work by Imry

and Ma to relaxors. They considered that the applicability was legitimate for PMN for in-

stance, despite its (only) eight-fold dipolar degeneracy. In this view, the quasi-continuous

symmetry of the order parameter was held responsible for a disordered ground state on

macroscopical scales, consisting of low-symmetry nanodomains separated by domain walls.

The disordered substitution of the heterovalent ions inherent to the compositionally dis-

ordered structure, provides the source for quenched random electric fields. Moreover, the

lattice strains associated with these substituents also couple to the polarization setting up

additional random fields or enhancing their presence. The authors have argued that random

fields are responsible for the observed strong slowing down of the dynamics of PMN, and for

20This failure often arises from the difficulty encountered when applying formal perturbative methods to
random systems, where the procedures of averaging over randomness typically neglect the effects of statistically
unlikely regions of the random system; such regions can make essential contributions to physical quantities.
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its eventual freezing into a domain state. Within this framework, the frequency dispersion

of the dielectric response is explained via a complex domain-wall motion.

Fig. 1.19: Linear birefringence measured subsequently as a function of temperature on zero-
field cooling (ZFC), field heating with E = 1.2kV/cm, E < Ecr (FH), field cooling
(FC) and zero-field heating (ZFH), illustrating the nonergodic behaviour of PMN
crystal. (After Kleemann et al. [123])

One of the salient features of this model is its ability to explain the observed non-ergodic

behavior (Fig.1.19) in terms different of those referring to the glass concept. For instance, the

Kohlrausch-Williams-Watts-type and the Curie-von Schweidler-type relaxations of birefrin-

gence that were found in the temperature intervals of 180 < T < 210K and 210 < T < 230K,

respectively, were successfully explained by domain wall displacements, rather then by the

reorientation of dipoles. Furthermore, this model could explain some features of relaxors,

unknown to the spin and dipole glasses, such as the Barkhausen jumps during poling pro-

cess [2].

1.3.2.3 First-principles-based effective Hamiltonian approach for random fields

Substitutional charge disorder on the B-site of Pb(B,B′)O3 perovskites such as PMN, PSN

and PST, gives rise to quenched electric random fields ~hi, which are believed to be at the origin

of the behavior of relaxor ferroelectrics [122, 143]. Another contribution to local random fields

can stem from structural cation vacancies such as Pb vacancies21. A work by Chu et al. [142]

studying the role of lead vacancies in impeding the spontaneous relaxor-to-ferroelectric phase

transition in incipient relaxor ferroelectrics such as PSN and PST, supports the interrelation

between random fields and the relaxor behavior. In the same stream, the vanishing of the

relaxor-to-ferroelectric transition induced by the application of hydrostatic pressure [104] at

a critical point, can be understood by assessing the relative strength of the interactions that

21Most likely Pb-O divacancies [144]
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favor ferroelectricity and that are pressure-sensitive on the one hand, and the practically22

pressure-independent spatial average strength of quenched local fields 〈|~hi|〉, which disrupt

long range ordering and favor the relaxor state on the other hand. Thus, both pressure-

induced and polar-defects-induced vanishing of the relaxor-to-ferroelectric phase transition

in incipient RFE emphasize the role of random fields in contributing to the relaxor behavior.

Polar nanoregions whose existence is supported by neutron scattering [145], are believed

to originate from the coupling between the random fields ~hi and the ferroelectric degrees

of freedom [146]. Within the paradigmatic view of polar nanoregions embedded in a non

polar matrix and deemed to be at the origin of the relaxor behavior below Td, Burton et al.

developed molecular dynamics simulations of a first-principles effective Hamiltonian model,

where random local field terms were combined with an effective Hamiltonian for a normal FE,

in order to elucidate the correlations between chemical and polar short range orders, [146–

148].

The effective HamiltonianHeff is obtained from a Taylor expansion of the total energy around

a high-symmetry perovskite reference structure in terms of a chosen set of relevant degrees

of freedom:

Heff = H({~ξi}) +H(eαβ) +H({~ξi}, eαβ) +H({~ξi}, σl, vPb−O, · · · ) (1.32)

where {~ξi} represent local polar distortion variables, or local vibrational modes, centered on

Pb sites, {eαβ} the homogeneous strain variables and H({~ξi}, eαβ) a coupling term between

polar and strain variables. The first four terms give a valid Heff for modeling normal FE

perovskites without local fields [12, 149, 150]. The term H({~ξi}, σl, vPb−O, · · · ) is a random

local field term [151], proportional to
∑

i
~hi . ~ξi, in which ~hi is the local electric field at Pb site

i arising from the screened electric fields of the quenched distribution of B-site cations, σl,

or from any other polar-defect contribution such as vPb−O that stands for Pb-O divacancy

pairs.

Molecular dynamics simulations were performed in a 403 unit-cell simulation boxes. Accessi-

ble time scales of the order of 0.1 ns imply that only frequencies greater then approximately

10 Ghz are accessible, therefore preventing the access to the GHz-Hz frequency range in which

the dielectric dispersion is measured. A given chemical configuration of Sc3+−Nb5+ ordering

on next-neighboring A-sites generates a random field configuration that can be regarded as

quenched since diffusive order-disorder mechanisms are negligible in the temperature range

of interest for the relaxor properties (T . 400 K in PSN). The quenched chemical configura-

tions, and therefore random fields ~hi configurations, consist of 20 chemically ordered regions

(so-called COR) in a matrix composed of 80 chemically disordered regions (so-called CDR).

Both types of regions are of spherical shapes and enclose around 800 Pb sites. Fig.1.20

22In reality, the local electric fields vary as the inverse of square of the lattice constant. However, the
increase at 20 GPa is estimated to be less then 5% in PSN [148].
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Fig. 1.20: Projection of the Pb-site local fields (in arbitrary units) on a (110) plane through
the simulation box of Pb(Sc1/2Nb1/2)O3. Chemically ordered regions have rela-
tively small homogeneous fields whereas chemically disordered regions have larger,
more varied disordered local fields. (After Burton et al. [146])

illustrates a (110) cross-section through the simulation box, in which arrows represent pro-

jected ~hi, that are larger and more disordered in the disordered matrix than in the built-in

chemically ordered regions. As a consequence, the weak but homogeneous local fields config-

Fig. 1.21: Snapshot of local mode polarizations of PSN at T = 600 K (≈ Tc). Highly corre-
lated regions are chemically ordered whereas the disordered matrix is chemically
disordered. (After Burton et al. [146])

urations at the CORs gives rise to preferential local polar ordering (Fig. 1.21). Comparing

the cluster-cluster correlations ξij (Eq.(1.33)) as functions of intercluster separation between

COR-COR, CDR-CDR and COR-CDR,

ξij = 〈~Si(t). ~Sj(t)〉 − 〈~Si(t)〉〈 ~Sj(t)〉 , ~Si : cluster moment (1.33)

the authors find the following hierarchy ξCDR−CDR < ξCOR−CDR < ξCOR−COR, from which

they infer the identification of PNRs to the built-in CORs.

In addition to some obvious redundancy among the assumptions and inferences of the model,

the extrinsic implementation of what would be identified as PNRs makes the procedure
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somewhat factitious. It is interesting to report Kleemann’s view on the matter:

”In our opinion, the authors’ conclusion that the ”lengthscale of PNRs is the

same as for chemical short range order” is disappointing, since it just manifests

that the correlation length in the CDR part of the model is limited by the size of

the simulation box. Hence, we are left with a PNR structure of a heterogeneous

system - a plausible but probably trivial result.” [152]

Fig. 1.22: Simulated PSN polarization as a function of temperature at hydrostatic pressure
in the range 0 < P < 22 GPa. The first-order character of the transition, signaled
by the jumps, is accentuated as the pressure increases. (After Burton et al. [148])

Adding the standard pressure-volume +PV term to the effective Hamiltonian, the authors

studied the effect of hydrostatic pressure on PSN [148]. Fig.1.22 shows PSN bulk polarization

as a function of T at various pressures. According to the authors, a first-order phase transition

occur at the polarization jump, the character of which increases with P as the transition

temperature approaches zero. The Burns temperature is associated to the temperature at

Fig. 1.23: Cumulative histogram of Px values for chemically ordered regions at different
temperature for PSN under 18 GPa. The three curves correspond to paraelectric
(320 K), relaxor (120 K), and ferroelectric (80 K) states. (After Burton et al. [148])

which the COR become polar. This is illustrated in Fig.1.23 where plots of the cumulative

histogram of the x component of the polarization Px of the CORs in PSN under 18 GPa
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are shown at three qualitatively different temperatures. Above 320 K, the distribution is

unimodal centered at zero, this is representative of the paraelectric state. At 120 K, in the

pre-transition region, the distribution is bimodal with two unequal peaks centered at non-

zero opposite values. At this temperature, the system is in its relaxor state. The asymmetry

in the peaks is ascribed to finite-size effects, since the relaxor state belong to the paralectric

phase and should exhibit zero bulk polarization. Below the first-order phase transition (80

K), the symmetry is broken and the distribution is unimodal centered at non zero value; the

system is in its ferroelectric phase.

Fig. 1.24: Predicted pressure vs temperature phase diagram for PSN, indicating the ferro-
electric to relaxor transition and the estimated Burns temperature (After Burton
et al. [148]).

The predicted pressure vs temperature phase diagram is shown in Fig.1.24. The FE transition

temperature was estimated from Fig.1.22 and the Burns temperature from the temperature at

which the distributions of COR polarization components changed from unimodal to bimodal

(Fig.1.23). Although qualitatively consistent with experiment, the predicted pressure vs

temperature phase diagram exhibit no termination of the FE/RFE transition line at an

isolated critical point as measured in Ref. [154]. Moreover, when comparing the slopes of the

FE/RFE lines in the predicted (Fig.1.24) and experimental (Fig.1.25) phase diagrams, one

finds a large discrepancy: dTFE/dP ∼ -27 K GPa−1 in the simulated line whereas dTFE/dP ∼

-100 K GPa−1 in the experimental one.

1.3.3 Spherical Random bond-Random Field model

In spite of intensive investigations, the nature of the diffuse phase transition in relaxors

has remained the subject of some controversy. As noted earlier, the basic open question is

whether the relaxor state in PMN and related systems in zero field is either (i) a ferroelectric

state broken up into nanodomains under the constraint of quenched random electric fields,
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Fig. 1.25: Experimental temperature vs pressure phase diagram for the PSN crystal at 104

Hz. The TFE(P ) phase boundary terminates at a finite temperature and pressure,
as depicted by the star. Such termination represent a critical point which, from a
thermodynamic point of view, would be somewhat akin to the vapor-liquid critical
point. (After Samara et al. [154]).

or (ii) a dipolar glass state with randomly interacting polar microregions in the presence

of random fields. To assess the relevance of these two classes of models, Blinc et al. re-

ported the temperature dependence of the Edwards-Anderson order parameter qEA and the

local polarization distribution function W (~p) in a PMN single crystal via two-dimensionnal

39Nb NMR [99]. The obtained results were then described by a newly proposed spherical

random bond-random field (SRBRF) model of relaxor ferroelectrics.

1.3.3.1 Uncoupled Pseudospin Model

The picture adopted in this model is that of reorientable interacting polar clusters, each

consisting of n dipolar unit cells of dipole moment ~m. The dipole moment of the ith cluster

is thus ~Mi = ni ~mi. A dimensionless order parameter field is then introduced:

~Si = ( ~Mi/ni)
[
(m2

i )av/3
]−1/2

(1.34)

where (m2
i )av = (1/N)

∑

im
2
i withN the total number of reorientable clusters. The Edwards-

Anderson order parameter for a crystal with average cubic symmetry (PMN in zero field) is
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defined as:

qEA =
1

N

N∑

i

〈Si〉2 =
[
〈Si〉2

]

av
(1.35)

The average probability distribution of local polarization ~pi ≡ 〈~Si〉 is defined as:

W (~p) =
1

N

∑

i

δ(~p− ~pi) (1.36)

where the first moment of W (~p) is the total polarization ~P , which for a relaxor in the glass

phase is zero in the absence of an external electric field, while the second moment is qEA.

The measured 93Nb NMR spectrum consists of two lines, one of which is relatively broad

and temperature independent, attributed to pinned nanodomains, the second being relatively

narrow and temperature dependent, attributed to reorientable clusters. The temperature

dependence of the second moment M2 of the inhomogeneous frequency distribution corre-

sponding to the narrow line is shown in Fig. 1.26. It is seen that the Edwards-Anderson order

parameter qEA, which is proportional to M2, is nonzero in the whole investigated tempera-

ture range between 400 and 30 K. It is rather small and weakly T-dependent above 300 K.

Below 260 K it increases nearly linearly with decreasing temperature down to 100 K.

Fig. 1.26: Temperature dependence of the Edwards-Anderson order parameter qEA of the re-
orientable part of the inhomogeneous frequency distribution in PMN (qEA ∝M2).
The inset shows the Gaussian shape of the probability distribution of local polar-
ization. (After Blinc et al. [99])

Blinc et al. also noted that the local polarization distribution function W (~p) in PMN is

Gaussian in shape (inset in Fig.1.26), whereas it is double-peaked in dipolar glasses below the

freezing temperature Tf . According to Blinc et al., this is incompatible with the assumption
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of a fixed-length order parameter field typically made in (Ising-type) dipolar glasses. Rather,

in a relaxor the order parameter field is described as a continuous vector field of variable

length, which is associated with the dipole moment of reorientable polar clusters, and is

subject to a global spherical constraint on the square of the total polarization. Within this

picture, a relaxor thus corresponds to a new type of dipolar glass, namely, the spherical

vector glass (SG).

Blinc et al. described the above features in terms of a new semimicroscopic model for relaxor

ferroelectrics, based on randomly competing interactions between reorientable polar clusters

of different sizes in the presence of random fields. The dimensionless order parameter ~Si has

a large number of equilibrium orientations lying on a spherical shell of radius |~Si| which scales

with the cluster size ni in the ith cluster (i = 1 · · ·N , the total number of clusters). Going

over the continuous limit, it is assumed [98] that each component Si µ, where µ = x, y, z,

varies continuously in the range −∞ < Si µ < +∞, and that the set of all the fields is subject

to the spherical constraint given by the following closure relation:

N∑

i

~Si
2
= 3N (1.37)

The model Hamiltonian of a system of interacting polar clusters is then formally written as:

HS = −1

2

∑

ij

Jij ~Si.~Sj −
∑

i

~hi.~Si − g
∑

i

~Ei.~Si (1.38)

Here Jij are random frustrated interactions, or bonds. These random bonds are infinitely

ranged23 with a Gaussian probability distribution characterized by the following mean value

and variance:

[Jij ]
c
av = J0/N ,

[
(Jij)

2
]c

av
= J2/N (1.39)

In Eq.(1.38), the random local electric fields ~hi similarly obey an independent Gaussian

distribution such that:

[hiµ]
c
av = 0 , [hiµhjν ]

c
av = ∆δijδµν (1.40)

The last term in Eq.(1.38) describes the influence of an external field ~E, where g is an

effective dipole moment corrected by the appropriate local field factor. Two order parameters

characterize the model, the polarization,

Pµ =
1

N

N∑

i

〈Siµ〉 (1.41)

23This assumption is supported by the long range nature of intercluster interactions mediated by the acoustic
and optic phonons.
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and the dipolar glass order parameter, written here in its Cartesian components,

qµ =
1

N

N∑

i

〈Siµ〉2 (1.42)

For a pseudocubic or isotropic system, both order parameters are independent of µ. After

applying the replica method to the average free energy derived from Eq.(1.38), the usual

saddle point condition leads to coupled equations for the order parameters and two sets of

solutions, that in the case of zero external field can be expressed as: (i) For J0 < (J2+∆)1/2,

a spherical glass (SG) state q 6= 0 is obtained without long range order P = 0 below a

dynamic glass transition temperature J/k, (ii) for J0 > (J2 + ∆)1/2 on the other hand,

an inhomogeneous ferroelectric phase (FE) is obtained, with P 6= 0 and q 6= 0 below a

transition temperature given by J0/k. (The generalized temperature-coupling parameter J0

phase diagram is shown in Fig.1.27). In this latter case of FE phase, the Edwards-Anderson

Fig. 1.27: Generalized temperature-coupling parameter J0 phase diagram of the spherical
random bond-random field model of a relaxor in zero field. (After Pirc et al. [98])

order parameter is given by qEA = 1− T/J0 and the spontaneous polarization by:

P 2 =

[

1−
(
J

J0

)2
] [

1−
(
T

J0

)]

− ∆

J2
(1.43)

The SRBRF model for relaxor behavior applied to PMN gives good agreement between model

predictions and experiment. In Fig.1.26, the open circles representing the evolution with

temperature of the second moment ofW (~p) are from data, and the solid line is the theoretical

fit. Whereas the local polarization distribution function W (~p) discriminates between dipolar

and spherical glassy behavior, the third-order dielectric nonlinearity a3 = χ3/χ
4
1 [100], where

χ3 is the third order susceptibility, discriminates between a glassy state and a ferroelectric
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state broken up into nanodomains due to the presence of random fields. In the case of no

long range order, the SRBRF glass model yields the following expression for a3
24

a3 =
T

(1− q2) [1− β2J2(1− q)(1− 3q − 2∆/J2)]
(1.44)

Fig. 1.28: Temperature dependence of the quasistatic non linear susceptibility a3 = χ3/χ
4
1

in PMN for E = 0; a3(T ) is found to increase sharply on lowering the tempera-
ture between 320 and 220 K. This is incompatible with the case of a random-field
frustrated ferroelectric, but quantitatively agrees with the SRBRF model’s pre-
dictions (solid line is obtained using Eq.(1.44)). The dashed line represents the
temperature dependence of a3 evaluated for E/J = 0.01. Note that with increas-
ing field strength the peak in a3(T ) disappears, i.e., for a large enough field a
crossover from a glass phase to ferroelectric one occurs. (After Blinc et al. [99])

For a random-field frustrated ferroelectric J0 ≫ J without random bonds (J = 0), i.e. the

Westphal et al. model, a3 is found to be a monotonically increasing function of temperature.

On the other hand, for a random-bond glass J0 ≪ J without random fields (∆ = 0), i.e. the

dipolar-glass model, a3 diverges at a freezing temperature J/k, according to a3 ∼ |T −Tf |−1.

In the presence of weak random fields, i.e., for ∆/J2 ≪ 1, a3 does not diverge, but shows

a sharp peak near T ≈ J/k (Fig.1.30(a)). This last behavior was found in PMN [101] and

PLZT [102], supporting the assumption that these systems can be described as a special

24In a system with average cubic symmetry, the phenomenological relation between polarization Pµ and
electric field Eµ (µ = 1, 2, 3) can be written as a power series P1 = χ1E1 − χ122E1(E

2
2 +E2

3)− χ111E
3
1 + · · · ,

or inversely, E1 = a1P1 + a122P1(P
2
2 + P 2

3 ) + a111P
3
1 + · · · . Comparing these two relations thus yields :

a1 = χ1, a122 = χ122/χ
4
1, a111 = χ111/χ

4
1, where χ1 is the linear susceptibility, and χ122, χ111 the third order

non-linear susceptibilities. For a field ~E in the [111] direction and P1 = P2 = P3, the following simplifications
are obtained: P = χ1E−χ3E

3 + · · · and E = a1P +a3P
3 + · · · where χ3 = 2χ122 +χ111 and a3 = χ3/χ

4
1.

Even though one of the unique features of relaxors is their positive dynamic dielectric non-linearity, it won’t
be addressed in the third chapter due to the required time-consuming calculations.
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kind of dipolar glasses, namely, the spherical glasses. Good agreement was found between

calculated a3(T ) from susceptibility data and calculations based on Eq.(1.44) (Fig.1.28).

Fig. 1.29: Schematic electric field-temperature (E-T) phase diagram. For E < Ec and J <
J0, the dipolar freezing temperature (J2 + ∆)1/2/k is independent of E and a
vertical phase boundary is found in the E-T phase diagram between the ergodic
and non-ergodic relaxor phases, indicating the braking of ergodicity associated to
the divergence of the longest relaxation time.(After Kutnjak et al. [102])

In the presence of an external field E, the crossover from a glassy phase to a ferroelectric one

(Fig.1.29) can occur since J0 is expected to be field dependent, J0(E) = J0(E = 0) + αE2.

This dependence can be explained by the field induced polarization-strain coupling. Thus,

a critical field Ec may exist such that for E > Ec, J0(E) > (J2 + ∆)1/2. In this case the

a3 peak vanishes as it is found experimentally and in agreement with the SRBRF model

(Fig.1.30(b)).

However, it is worthwhile noting that although the SRBRF can accurately reproduce [91]

the aforementioned crossovers from paraelectric to glassy state (upon cooling in zero electric

field) and from a glassy state to an inhomogeneous random-field-modulated ferroelectric state

(in the presence of an external field exceeding the critical value Ec), since it is based on the

reorientable polar cluster picture, it doesn’t account for the underlying perovskite structure

(directional anisotropy) of the system.

1.3.3.2 Coupled spherical pseudospin-phonon model

Motivated by recent investigations demonstrating the pressure induced crossover from fer-

roelectric to relaxor behavior [104, 105], occurring in PLZT for example, Blinc et al. [103],

extended the SRBRF model so as to account for the coupling to the lattice. The physical

explanation for this crossover is to be found in the pressure dependence of the soft-mode fre-

quency ωs, or equivalently, the pressure dependence of the polarizability of the host lattice ε
′
,
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Fig. 1.30: (a): Scaled third-order nonlinear response a3 in the spherical-glass (SG) phase
(J0 = 0) as a function of temperature, plotted for various values of the random-
field strength ∆. Top to bottom: ∆/J2 = 0, 0.001, 0.01, 0.1. If ∆ = 0, corre-
sponding to a pure SG, a3 diverges at the freezing temperature J/k. For ∆ 6= 0
the denominator in Eq.(1.44) never vanishes, the divergence is suppressed. For
∆/J2 ≪ 1, a3 shows a sharp peak around J/k. This peak broadens at ∆/J2 ≥ 0.1
and ultimately disappears for larger ∆/J2. (b): Temperature and field dependence
of the nonlinear response a3(E) in the SG phase (J0 = 0) and for fixed value of
∆/J2 = 0.01. Top to bottom E/J = 0, 0.01, 0.1, 0.2, 0.5. With increasing field
strength the peak in a3 gradually disappears. (This effect is similar to that oc-
curring when the value of ∆ is increased) (c): Temperature and field dependence
of the nonlinear response in the FE in random fields phase (J = 0)and for fixed
∆/J2

0 = 0.01. Top to bottom E/J0 = 0, 0.01, 0.1, 0.2, 0.5.a3 remains finite as
T → Tc, but makes a jump at Tc in accordance with mean-field theory. In con-
trast to the SG case, a3 in a random-field frustrated ferroelectric does not show
any anomalous peak.(After Pirc et al. [98])

since both quantities are related by the relation ω2
s(T )ε

′(T ) =constant. Since rc ∝ 1/ωs,

the increase of ωs with pressure causes a decrease in the correlation length rc, upsetting the

balance between long and short range forces.

Since the nanoregions are dispersed in a deformable lattice, Blinc et al. added the lattice
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(phonon) contributionHL and the pseudospin-polar phonon coulping termHSL to the Hamil-

tonian given by Eq.(1.38). The total Hamiltonian of the coupled SRBRF-phonon system is

formally written as:

H = HS +HL +HSL (1.45)

where

HL =
1

2

∑

~kp

[

ω2
~kp
Q~kp

Q
−~kp

+ P~kpP−~kp

]

and HSL =
∑

~kp

Q
−~kp

~γ~kp.
~S~k (1.46)

in which Q~kp
and P~kp are respectively the normal coordinates and momenta of polar optic

phonons with branch index p, wave vector ~k and frequency ω~kp. ~γ~kp is the coupling constant,

and ~S~k = N−1/2
∑

i
~Si exp(i~k. ~Ri) is the Fourier transform of the order parameter field. The

main result is that the lattice coupling modifies the uncoupled interaction parameters J0 and

J to J∗
0 and J∗, as follows:

J∗
0 = J0 +

∑

p

|~γ0p|2
ω2
0p

− 1

N

∑

~kp

|~γ~kp|2

ω2
~kp

(1.47)

and

(J∗)2 = J2 +
1

N

∑

~k

[
∑

p

|~γ~kp|2

ω2
~kp

]2

−




1

N

∑

~kp

|~γ~kp|2

ω2
~kp





2

(1.48)

where ω0 is the ~k = 0 optic phonon frequency. Blinc et al. then introduced the pressure

dependencies of J∗
0 and J∗ via that of ω~kp = ω~kp(P ). Since the main contribution is given by

the ~k = 0 term in Eq.(1.47), and since in perovskites ω2
0p linearly increases with pressure [106],

the decrease in pressure of J∗
0 (P ) is expressed as follows:

J∗
0 (P ) = J∗

0 (0)− α1P + · · · (1.49)

In contrast to J∗
0 , the phonon contribution to (J∗)2 is determined by the fluctuation of the

averages over the optic-phonon branches. Because these branches are relatively flat, their

weak dispersion leads to a weaker pressure dependence of J∗(P ) in comparison to that of

J∗
0 (P ). As in the case of the uncoupled SRBRF model, two limiting cases are reported.

(i): For J∗
0 < ((J∗)2 + ∆)1/2, a long range order can not exist and the system is in a

spherical-glass phase (SG) with non-zero order parameter q(T ). For ∆ = 0, a transition from

a high temperature PE phase to a SG phase occurs at J∗/k. For ∆ 6= 0 and ∆ ≪ (J∗)2

on the other hand, the sharp transition vanishes giving way to a mximum in the nonlinear

susceptibility at Tf ≈ ((J∗)2 + ∆)1/2. (ii): For J∗
0 > ((J∗)2 + ∆)1/2, long range order

is possible and a phase transition to an inhomogeneous FE state occurs below a critical
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temperature Tc = (J∗
0/k)[1−∆/((J∗

0 )
2 − (J∗)2)].

Fig. 1.31: Temperature-pressure phase diagram of the relaxor ferroelectric PLZT 6/65/35.
The solid and dashed lines are evaluated from the static and dynamic coupled
SRBRF-phonon models respectively, whereas the solid triangles and solid circles
are experimental points obtained by Samara [104]. The horizontal line is deter-
mined by J∗

0 (Pc) and separates the FE phase from the nonergodic relaxor phase
where the longest relaxation time diverges. The vertical dotted line corresponds
to the freezing temperature Tf , where the static nonlinear permittivity has a peak.
(After Blinc et al. [103])

Since J∗
0 depends on pressure P , Tc is also a function of P . Thus the relative stability of the

different phases is strongly affected by the application of an hydrostatic pressure. The model

suggest that a critical pressure, Pc, given by J∗
0 (Pc) = ((J∗)2+∆)1/2, exists for which the FE

order becomes unstable at any temperature, i.e. a ferroelectric-to-relaxor crossover occurs.

The calculated pressure dependence of Tc in the range 0 < P < Pc is shown as a solid line

representing the phase boundary Tc(P ) separating the ferroelectric from the ergodic relaxor

phase in Fig.1.31. This line terminates at a critical point defined by Pc and the associated Tc.

It is interesting to note that Samara himself assessed the results of the coupled spherical

pseudospin-phonon model contrasting its predictions with the experimental data he had

gathered :

”It is significant that the model reproduces very well the qualitative features

of the experimental data, including the vanishing of the Tc(P ) phase boundary

at a critical point. The quantitative agreement is also very good, but perhaps a

bit fortuitous given the approximations in the model and in estimating the model

parameters and their dependences on pressure.” [4]
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1.4 Case of study : PLZT

Solid solutions of lead zirconate PbZrO3 and lead titanate PbTiO3, i.e., PbZr1−yTiyO3

or PZT, represent a technologically important family of ferroelectrics and antiferroelectrics

whose properties and phase transitions have been studied extensively [36]. At high tempera-

tures these materials have the cubic perovskite ABO3 structure, and on cooling they undergo

FE and antiferroelectric (AFE) transitions to lower symmetry phases. Because the isovalent

Zr4+ and Ti4+ are randomly distributed over the B lattice sites, local compositional fluctua-

tions and strain inhomogeneities lead to some broadening of the transitions compared to the

pure end members; however, there are generally no polar relaxational effects (i.e., frequency

dispersion) in the audio frequency range, and PZT exhibit normal, long-range FE and AFE

order; the substitution of Ti4+ for Zr4+, or vice versa, does not lead to the randomly oriented

dipolar entities needed to induce relaxor behavior [4].

For practical purposes, aliovalent cations are substituted in PZT at both the A and B cationic

sites. For example, La3+ is substituted for Pb2+ on the A sites to form a well-known family of

ceramics referred to as PLZT that have unusual dielectric and electro-optic properties [155].

Fig. 1.32: Schematic temperature dependence of the dielectric permittivity and sponta-
neous polarisation, after Hirota et al. [3]: (a) relaxors with a diffuse relaxor-
to-ferroelectric phase transition. TC is below Tm(f) and spontaneous polarisation
occurs already above TC . (b) canonical relaxors. At the Burns temperature Td,
polar regions nucleate and after growing with decreasing temperature, they freeze
to a non-ergodic state at Tf . Polarisation appears only under an external electric
field.

Relaxor behavior has been observed in several PLZT compositions. These materials have

the chemical formula (Pb1−3x/2Lax)(Zr1−yTiy)O3, where the substitution of La3+ for Pb2+

introduces one A-site-vacancy for every two La3+ ions, thus preserving charge neutrality. The

role of La3+ in the development of the relaxational character is to break the translational

symmetry of the polarization, either by heterogeneities in the composition or the electric field
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associated with the defect structure. The net effect is that the polar behavior is localized on a

scale where relaxational processes can contribute to the dielectric response [158]. Lanthanum

substitution thus represents a type of disorder that can significantly modify the properties

of these materials. One manifestation of this disorder is the condensation of local dipolar

nanodomains leading to local, randomly oriented polarization at a temperature much higher

than the ferroelectric transition temperature TC [82]. These polar nanodomains increase in

size with decreasing temperature and, for relatively low La concentration, ultimately result in

the formation of macroscopic ferroelectric domains with long-range FE order. For higher La

concentrations, the disorder hinders the onset of long-range order, and the polar nanodomains

condense below the freezing temperature Tf of the polarization fluctuations [158] into a

glasslike, or relaxor, state with no macroscopic phase (symmetry) change [4]. Thus depending

on the La content, the system either exhibits a non-ergodic behaviour below a freezing

temperature Tf (as in canonical relaxors such as PMN, PMT and PLZT with large x) or

experiences a spontaneous structural phase transition into the FE phase (PLZT with small

x) [2]. These two different paths of temperature evolution are shown schematically in Fig.1.32.

Fig.1.33 shows the room temperature phase diagram for the PLZT solution. Several features

are noticeable: i) small variations in La content produce rather large changes in areas of

phase stability, ii) increasing La content extends the antiferroelectric phase (AFE) over the

ferroelectric (FE) phase, and iii) increasing La content favors the tetragonal ferroelectic

phase over the rhombohedral one [155].

Fig. 1.33: Room-temperature phase diagram for the PLZT solution. The relaxor range is
indicated by dashed lines (After Haertling et al. [155]).

The phase diagram as a function of temperature for various levels of La (Fig.1.34) illustrates

the systematic change in Curie points for the complete system as the La content is increased.

The extension of the AFE phase at the expense of the FE phase is evident, as well as

the extension of the transition region to higher temperatures for varying Zr/Ti ratios [155].

Detailed studies have mainly been carried on two La-substituted PZT families:
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Fig. 1.34: Phase diagram of PLZT system showing constant La concentration levels (After
Haertling et al. [155]).

⋄ The (Pb1−3x/2Lax)Zr0.65Ti0.35O3 family denoted by PLZT x/65/35, where x is the

mol % La. For these systems, relaxor behavior in the dielectric response becomes

experimentally discernible for x > 4% [72, 156, 157] and much of the literature has

dealt with compositions 4 < x < 14 (Fig.1.33).

⋄ The PbZr0.40Ti0.60O3 family denoted by PLZT x/40/60 for which relaxor response

becomes discernible for x ≥ 12 % La [156] (Fig.1.33).

These two families represent regions of the PZT phase diagram that exhibit different crystal

structures and properties. PZT 65/35 is representative of compositions on the Zr-rich side

of the diagram. Here the cubic PE phase transforms on cooling into the high-temperature

rhombohedral phase, the transformation accompanied by relatively little lattice strain. PZT

40/60, on the other hand, is representative of Ti-rich composition. Here the PE-FE transition

is to a tetragonal FE phase, which involves relatively large lattice strain [4].

Fig.1.35 illustrates the Curie point lowering for increasing La concentration in the two series

of compositions; the effect is essentially linear [155].

Relative dielectric constant as a function of temperature for compositions with 65/35 and

40/60 Zr/Ti ratios is shown in Fig.1.36. The peaks in the dielectric constant are reduced

in height and in temperature as the La content is increased. For the series with 65/35

Zr/Ti ratios, a fairly consistent and gradual reduction in the Curie point occurs up to La

concentrations of 4 at.% or less. Higher concentrations of La reduce the height of the dielectric

constant peak, making it more diffuse, without significantly changing the temperature of the
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Fig. 1.35: Curie point lowering with incresing La content (After Haertling et al. [155]).

peak. This change in behavior between 8 and 9 at.% La may indicate that mixed FE/cubic

phases are present on a microscopic or macroscopic scale [155].

Fig. 1.36: Dielectric constant as a function of temperature (After Haertling et al. [155]).
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1.4.1 PLZT x/65/35

On the basis of dielectric and internal friction measurements with and without bias on dif-

ferent compositions in the PLZT x/65/35 family, Viehland et al. [158] proposed the phase

diagram shown in Fig.1.37. It shows that the relaxational character of the response becomes

noticeable between 4 and 5 % La, as illustrated by the vertical dashed line in the diagram.

Fig. 1.37: Dielectric constant as a function of temperature (After Viehland et al. [158]).

The Burns temperature, Td, which denotes the temperature at which dipolar clusters first

begin to nucleate, is shown by the dashed horizontal line at 623 K. This is effectively the

FE Curie temperature of the La-free composition, i.e., PZT 65/35, and it is essentially

independent of La content [82] (see Fig.1.38). Viehland et al. suggest a lower temperature

percolation limit may be reached when the host matrix can start to deform in response

to the polarization fluctuations; consequently, the orientation of the electrostrictive strain

may begin to fluctuate. An isothermal dashed line at ∼ 510 K labeled Tperc is shown on

the diagram. Although there is some evidence for this boundary, [158] its existence is not

established [4]. The Tm (at 102 Hz) versus La content boundary is shown by a heavy dashed

line, and the Vogel-Fulcher freezing temperature Tf , is denoted by a solid line. This freezing

temperature is shown to approach 0 K near 14 % La, close to the composition at which

the local structure is believed to be cubic. Two rhombohedral FE phases are shown. These

are the well-known rhombohedral phases found in Zr-rich PZT compositions. On cooling

these PZT compositions, as well as PLZT compositions with low La content, from the high-

temperature cubic PE phase, the material first transforms to the FE rhombohedral phase II
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Fig. 1.38: Index of refraction versus temperature n(T ) for different La concentration x/65/35

as measured at 6328 Å. The high temperature part can be approximated by a
straight line, and the value of Td, temperature at which the deviation from the
straight line occurs, are about the same for the investigated compositions ∼ 623
K (After Burns et al. [82]).

(space group R3m) which in turn transforms to the FE rhombohedral phase I (space group

R3c) on further cooling. This transformation is driven by the softening of a zone boundary

phonon at the R point of the ABO3 Brillouin zone [4] and results in a doubling of the unit cell

in phase I. In Fig.1.37 this rhombohedral-rhombohedral phase boundary is seen touching the

Tf boundary at 8 % La and the Tm boundary at 10 % La. The region between Td and Tperc,

is shown to have fluctuations of only the polarization, whereas between Tperc and Tf , there

are fluctuations in polarization, local electrostrictive strain fields, and the tilt of the oxygen

octahedra. The region defined by the Tf phase line and the rhombohedral-rhombohedral

phase boundary for x > 4% La, is shown to have fluctuations in the tilting of the oxygen

octahedra, but the polarization and the electrostrictive strain are frozen. Finally, the region

defined by the Tf phase line and the rhombohedral-rhombohedral phase boundary between 4

and 8 % La is shown to have all the fluctuations, polarization, strain, and tilt, frozen [4, 158].

The physics of the relaxor behavior and the spontaneous relaxor to FE (R-to-FE) transition

is not well understood. Whereas the usual manner of studying these properties has been to

vary the composition and degree of disorder in order to induce relaxor behavior, Samara [104]

has suggested the use of hydrostatic pressure as a probing tool of the underlying physics.

He considered that, in contrast to composition variation that introduce complications such

as added randomness, compositional fluctuations, lattice defects, and changed interatomic

forces leading to vagueness in interpretation, hydostratic pressure stands a cleaner variable,

in the sense that the application of pressure to a sample of fixed composition only varies the

interatomic interactions and balance between long and short range interactions.

The left panel of Fig.1.39 shows the temperature evolution of the dielectric constant and the
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Fig. 1.39: Left panel : Temperature and frequency dependences of the dielectric constant and
the dissipation for PLZT 6/65/35 at 1 bar (0 kbar). Right panel : Temperature
and frequency dependences of the dielectric constant and the dissipation for PLZT
6/65/35 at 15 kbar. The inset shows the increase in the frequency dispersion in
Tm with pressure (After Samara [104]).

dissipation for PLZT 6/65/35 at 1 bar (0 kbar) at different frequencies. Starting in the PE

phase, the dielectric constant increases with decreasing temperature in a Curie-like manner

and exhibits a maximum at the expected PE-FE transition temperature, here denoted by

Tm. The dielectric constant is frequency independent in the PE phase, and its magnitude at

Tm is also essentially independent of frequency. Tm exhibits weak dispersion having a value

of 442 K at 102 Hz and increasing to 447 K at 106 Hz with most of this increase occurring

above 104 Hz. On further cooling below Tm, there is some dispersion in the magnitude of the

dielectric constant, primarily above 104 Hz. This dispersion becomes considerably smaller

below a spontaneous R-to-FE transition denoted by Tx and manifested by a sharper drop in

the dielectric constant and a sharp frequency-independent peak in the dissipation response.

Pressure causes large decreases in the amplitude of the dielectric constant anomaly at Tm

and in the transition temperatures and induces full relaxor character for the PE-R transition

by 5 kbar, in essence a FE-to-R crossover. The right panel of Fig.1.39 shows that at 15 kbar,

Tx remains frequency independent, but there is increased dispersion in the dielectric constant

at T ≤ Tx compared with the response at lower pressures. Taking the difference, ∆T , in Tm

between 106 and 102 Hz as a measure of the dispersion in Tm, the inset shows the change in

∆T with pressure.

Fig.1.40 shows the shifts in Tm and Tx with pressure measured at 105 Hz. Within experimen-

tal uncertainty, Tm and Tx have the same slope, namely, dTm,x/dP = −5.2 ± 0.2 K /kbar,

a value comparable to that for many perovskite ferroelectrics. Note that Fig.1.40 shows the

pressure dependence of Tm at one frequency, Tm is, of course, frequency dependent, but its

pressure derivative is only weakly dependent on frequency [4]. Moreover, the R-FE phase
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Fig. 1.40: Temperature-Pressure phase diagram of PLZT 6/65/35 (After Samara [104]).

boundary terminates in a critical point (CP), a point that should thermodynamically be

equivalent to the liquid-gas critical point in fluids. For a solid, a CP can exist only if the

two phases separated by the phase boundary have the same internal symmetry. In PLZT,

the R phase, as determined by X rays, is macroscopically cubic, whereas the FE phase is

rhombohedral. Thus the likely explanation is that whereas the macroscopic symmetry of the

R phase is cubic, at the polar nanodomain level the symmetry is rhombohedral making a CP

possible [4, 104].

The physics underlying this pressure induced FE-to-R crossover can be understood in terms

of soft mode theory. The decrease of ωs with decreasing T in the PE phase causes the polar-

izability of the lattice, and thereby the correlation length (or radius rc) for polar fluctuations,

which is inversely related to ωs, to increase rapidly as T → TC . Because ωs is determined

by a delicate balance between long range and short range interactions, it is very strongly

pressure (or volume V) dependent. A measure of this dependence is the soft mode Grüneisen

parameter γ = −(∂ lnωs/∂ lnV )T = 1/2(∂ ln ε/∂ lnV )T . γ is thus the ratio of the fractional

change in ωs to the fractional change in volume. For odinary dielctrics γ for TO phonons

is of the order of 1-2 and very weakly temperature dependent. However, for soft TO mode

systems, such as PLZT x/65/35 and PLZT x/40/60, γ is very large and strongly temperature

dependent, approaching values of several hundred near TC [104].
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1.4.2 PLZT x/40/60

The dielectric studies performed on PLZT x/40/60 cover the range 0 < x < 21 % La [156].

Fig.1.41 shows the dielectric response as function of temperature in zero field for three compo-

sitions of La. The PLZT 8/40/60 response is characteristic of that of a FE ceramic. There is

essentially no frequency dispersion in TC or in ε′ and the rounding of the ε′(T ) peak is due to

compositional heterogeneities. The 15/40/60 composition, on the other hand, exhibits clas-

sic relaxor response. The intermediate composition 12/40/60 displays the following features.

On ZFC the sample first enters a relaxor state with strong dispersion and then undergoes a

spontaneous R-to-FE transition at Tx with weak dispersion. The transition is reversible on

ZFH but exhibits a large thermal hysteresis signifying its first-order character [156]. This

transition in the absence of bias also occurs in PLZT 6/65/35 under zero bias and in PMN

and other relaxors under bias [4].

Fig. 1.41: The dielectric response of PLZT x/40/60 for x = 8, 12 and 15 % La, showing
the composition-induced crossover from normal ferroelectric to relaxor behavior.
(After Dai et al. [156]).

There is a remarkable similarity between the results in Fig.1.41 and those in Fig.1.39 for PLZT

6/65/35. In Fig.1.41 the FE-to-R crossover is induced by changing La content at 1 bar. Near

the crossover concentration a spontaneous, first-order FE-R transition occurs. The transition

vanishes for higher x. In Fig.1.39, on the other hand, the FE-to-R crossover is induced by

hydrostatic pressure for a fixed La composition. At intermediate pressures a spontaneous,

first-order FE-R transition occurs. This transition vanishes at higher pressures. This analogy

between increasing La content and increasing pressure is significant for the mechanisms of

the FE-to-R crossover in the FE ABO3 oxides.
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Fig. 1.42: Dielectric response of PLZT 12/40/60 showing the pressure induced FE-R
crossover (After Samara [4]).

Pressure studies have been performed on PLZT 12/40/60 [104]. This composition was chosen

because it is near that at which the FE-R crossover occurs at 1 bar, making it possible to

observe the pressure-induced crossover at a readily accessible hydrostatic pressure (Fig.1.42).

As for PLZT 6/65/35 described earlier, among the most interesting pressure effects on PLZT

12/40/60 are the following: i) a FE-to-R crossover and stabilization of the R phase, ii)

continuous evolution of the energetics and dynamics of the relaxation process, and iii) the

suppression of the spontaneous FE-R transition with indications that it might vanish at a

pressure somewhat higher than the 20 kbar achieved in the study [4]. The dielectric response

in Fig.1.42 shows the pressure-induced FE-to-R crossover. Only ZFH results are shown. At

1 bar the response is characteristic of a normal FE with a first-order FE-PE phase transition.

The finite width of the transition at TC , and the rounding of the ε′(T ) peak normally are

features of ceramic samples, but in the present case the rounding also points to the early

onset of some relaxor character. Pressure strengthens the relaxor character at a pressure

higher than 10 kbar, and at 20 kbar and higher pressures, the sample exhibits classic relaxor

character [104].

Left panel of Fig.1.43 shows the deviation from Curie-Weiss (1/ε′(T ) ∼ (T − TC)) behavior

above Tm in the PE phase. The onset of the deviation occurs at Td temperature at which polar

regions form and grow [4, 82]. The right panel of Fig.1.43 illustrates the strong influence of

pressure on the rc. The results were deduced from the pressure and temperature dependencies

of the dielectric response, thus the absolute value of rc cannot be accessed, but only relative

changes in this quantity. The 1-bar results show the large increase in rc with decreasing

temperature, a remarkable feature of the soft mode response of the system. The decrease of

rc with pressure is nonlinear and explains the FE-to-R crossover [4, 104].
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Fig. 1.43: Left panel : Temperature dependence of the reciprocal of ε′(T ) of PLZT 12/40/60
measured at 105 Hz and different pressures. The location of the structural phase
transition is denoted by TC for the 1-bar response. Right panel : Variation of the
correaltion radius (in arbitrary units) for polarization fluctuations with tempera-
ture for PLZT 12/40/60 (After Samara [104]).



Chapter 2

Gauge approach for relaxors

This chapter is concerned with providing the conceptual foundations and framework for a

gauge theory for relaxors, and is subdivided into two main parts. The first part serves

the purpose of introducing the common concepts and methods underlying various related

gauge approaches. The second part leverages on the first one and proceeds to applying and

implementing the concepts related to gauge theories to the case of relaxor ferroelectrics.

2.1 A few landmarks on gauge theories

2.1.1 Introduction: Local symmetry and Gauge fields

Modern theories of fundamental interactions are gauge theories [179]. Roughly speaking,

these field theories promote global symmetries to local ones and as will be seen further, ex-

press a central hypothesis of physics, namely that there is a flexibility in the local representa-

tion of nonlocal aspects of interactions. This flexibility denotes nothing but the robustness of

a physical phenomenon, which should be the same independently of any choice of convention.

In order for a theory to be a field theory, the dynamical degrees of freedom taking values in

some internal space at each point φ(x) need to be coupled through nonlocal terms (of the

form φ(x)φ(x+δx)), without which each point would have dynamic independent of its neigh-

bors, and any symmetry, global φ(x) 7→ eαφ(x) or local φ(x) 7→ eα(x)φ(x), operating in the

internal space would yield trivial consequences. These internal symmetries can be thought

of as a change in the internal space basis [180]. Whereas the nonlocality of interactions is

immune to global internal symmetry affecting all points in an equivalent manner, thus cor-

responding to a global redefinition of basis, the consideration of local symmetry on another

hand, allowing independent choices of basis at each point, requires the introduction of a com-

pensating external field, the gauge field, needed to compensate out the contributions of the

inhomogeneous conventions at different points. Since two internal space variables residing at

63
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Fig. 2.1: An internal symmetry space is attached to each point x in space. In the case of the
U(1) local symmetry group, the internal symmetry space consists of all possible
values of the phase of φ, and can be represented by the unit circle, points of which
are the phase value. A particular field configuration φ(x) means a choice of one
point on each circle attached to each point in space. For instance, in Figures (a)
and (b) the phase values taken by φ at points x and x + δx are indicated by dots
on the unit circle. There is a rule to take a point φ(x) and parallel transport it
to an infinitesimally neighboring point φ(x + δx). The gauge connection exactly
specifies how a certain point φ(x) is mapped into another point φ(x + δx). The
gauge connection is illustrated by the arrow between Figures (a) and (b). Local
symmetry thus turns the phase into a local variable. The invariance under local
transformations, i.e. the freedom to choose any value or convention for the phase
(i.e., any point on the circle), is ensured by a compensating change in the connec-
tion. Thus, if one phase is rotated, such as Figure (c) with respect to Figure (a),
the rotated point, φ′(x), should still map the same neighboring point φ(x + δx),
which demands a change in the connection, as represented by a new arrow between
Figures (c) and (d) (after Moore [178]).

two different locations can not be compared in their natural bases, the gauge field acquires

an intrinsic geometrical role enabling the comparison by means of parallel transportation, a

generalization of the construction of the covariant derivative (Fig. 2.1). Measurable quanti-

ties are independent of the choice of basis for the field variable, therefore they must be gauge

invariant and in their most general form, gauge theories consist of a matter-field φ coupled

to a gauge field A which mediates interactions[15].

The principle of gauge invariance is strongly associated with general relativity as it was

derived as an extension of the general covariance under continuous reparametrizations of

space-time. It was first introduced by Weyl [159] in field theory, in an attempt to describe

gravitation and electromagnetism within a unifying geometrical framework. In particular,

considering scale of length a local property of the metric, he proposed a so-called purely

infinitesimal geometry, which stands as a generalization of Riemannian geometry. He required
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a twofold invariance, supplementing the general covariance with gauge scale invariance. Scale

invariance refers to invariance under a scale change of the metric tensor and is encoded by the

substitution gµν(x) → λ(x)gµν(x), where the conformal1 factor λ(x) is an arbitrary, positive

smooth function of position. Although this theory is generally deemed to have failed in its

original form, it nevertheless defined the anchoring points for later success in the context of

field theory. In particular, London [160] proposed a quantum mechanical interpretation of

Weyl’s proposal, by noticing its equivalency to the invariance of the wave equation, provided

that λ(x) was made imaginary. Weyl himself reinterpreted his original theory[161], this

latter time emphasizing the role of gauge invariance as a constructive principle from which

electromagnetism can be derived [162–164]. The gauge principle was later extended beyond

the scope of quantum electrodynamics (QED of Abelian gauge group U(1)) to non-Abelian

symmetries (Yang-Mills theories) and gauge theories have been proposed as fundamental

theories of the so-called weak and strong interactions, with non-Abelian gauge group SU(2)

and SU(3), respectively. The latter is quantum chromodynamics (QCD) which describes

the strong interactions between the quarks (the constituents of hadronic matter) which are

mediated by gluons [163, 164].

The concept of a gauge field in general has been extensively discussed in condensed matter

physics, especially, in relation with modeling different types of topological defects, phase

transitions, and properties of glasses. As pointed out in the previous chapter, in spite of

numerous experimental investigations and theoretical formulations, the microscopic origin

of the relaxor behavior remains a matter of fruitful debate. In many solid materials, where

intrinsic quenched randomness exists in form of defects, impurities or as a general structural

property, the disorder stemming from spatial heterogeneities is an integral part of their char-

acteristics. Indeed, and since the discovery of relaxors [165], recurrent emphasis have been

made on the role of disorder in inducing complex nanostructure [2, 5, 99, 152, 166–169],

altering the stability of the low-temperature phase and driving their characteristic behavior.

It is generally accepted that intrinsic inhomogeneity and hierarchical organization of relax-

ors strongly affect translational and rotational symmetries at a local scale, whereas global

symmetries hardly change[170]. Therefore, the relaxor state is robust to local environment

variations. As we shall later explicit, the non-trivial interplay between local and global scales

can be captured within the framework of the local gauge symmetry [15, 16], which is known

to provide a solid basis for describing defects and their interactions[17].

For the sake of sustaining the intuition of a gauge model for relaxors and establishing con-

nections with related successful gauge descriptions, we will briefly review the occurrence of

gauge symmetries in physics and geometry, such in:

1A conformal map is a function which preserves angles.
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⋄ scalar electrodynamics, where gauge theory finds its root and where the local phase

symmetry gives rise to the electromagnetic interaction [171]. This part focuses on

continuum gauge theories, as a preliminary step in dealing with the lattice case.

⋄ lattice gauge theories, originally developed by Wegner [14] for the study of phase tran-

sitions without a local order parameter2, and later used by [186] in their modern form,

as a non perturbative regularization of a gauge theory, in connection with the problem

of quark confinement in quantum chromodynamics (QCD). The lattice formulation re-

vives the geometrical implications of gauge theories, for which it provides a natural

framework. Indeed, remembering that the geometric role of the gauge potential is to

specify the rotation of the reference frame in some internal symmetry space as one

moves between nearby points in space, the continuum of points is replaced by the sites

of a lattice, and the elementary displacements become those between neighboring sites,

i.e., along the links of the lattice itself [16].

⋄ spin-glasses (RBs models), where local gauge symmetry leads to the concept of gauge-

invariant frustration, which in turn leads to a substantial analysis of disorder, in that it

topologically discriminates between two types of disorder, namely, the so-called serious,

or relevant disorder in contrast with the deceptive, trivial one [20, 190, 201, 204].

⋄ gauge theoretical formulation of the defect theory in an elastic continuum[17], where

nonintegrable deformations are incorporated by demanding invariance of the elastic

Lagrangian under the local action of the Euclidean group SO(3)⊲ T(3)3 . Within this

picture, dislocations arise from the inhomogeneous action of the group of translations,

T(3), while the disclinations owe their origin to the action of the rotation group, SO(3).

This section does not pretend to be a review of the topic, and aims only at introducing some

coherence among various related ideas, as they form the conceptual ground on which our

approach stands.

2.1.2 Continuum gauge theories

Global symmetries (e.g. space groups) are not the most general form of invariance. The

invariance principle would be stronger if it was possible to extend global symmetries to local,

so-called gauge symmetries, where the transformation parameter would be dependent on

spacetime. Symmetry transformations which are spacetime dependent are called local gauge

transformations. Local gauge symmetry imposes constraints on the action, determining the

2A local order parameter, e.g. magnetization M , is obtained by averaging the local variables mi over the
volume.

3The Euclidean group is the set of all distance-preserving transformations of the Euclidean space. It is
isomorphic to a semidirect product of the T(3) group (which describes translations) and the group SO(3) of
orthogonal 3× 3 matrices (which describes rotations).
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interaction. In order to exemplify how local symmetry dictates the form of the interaction,

it is instructive to examine the gauge invariance in electromagnetism, where local symmetry

finds its root.

2.1.2.1 From a symmetry principle to a Lagrangian

Let us begin for simplicity with a complex scalar field φ(x). Let L{φ, ∂φ} be its Lagrangian

density, which is a functional of the fields {φ} and their derivatives {∂φ}. A fundamental

quantity common to any quantum field theory is the action, given by the time integral of the

Lagrangian L, which is in turn given by the space integral of the Lagrangian density L

S =

∫ +∞

−∞
Ldt =

∫

d4xL{φ, ∂φ} (2.1)

The equations of motion are derived by means of Hamilton’s principle of stationary action:

δ

∫ t2

t1

Ldt = 0 (2.2)

Equation (2.2) implies that the Lagrange density must obey Euler’s equations

δL
δφ

= ∂µ
δL

δ(∂µφ)
(2.3)

As an example let us construct a field theory which is invariant under local phase transfor-

mations. Our starting point is the Lagrange density of a non-interacting complex scalar field

given by:

L{φ, ∂φ} =
1

2

[
(∂µφ⋆)(∂µφ)−m2φ⋆φ

]
(2.4)

where m is the mass of the spinless particles associated to the quanta of the field. The

Euler equation of motion for the field φ is the Klein-Gordon equation4, which describes the

quantum wave mechanics of spinless particles of mass m.

(∂µ∂
µ +m2)φ ≡ (�+m2)φ = 0 (2.5)

Global U(1) symmetry In order to assess the implications of symmetries of the La-

grangian, let us first see the case of a global U(1) symmetry. Consider the transformations

4In component form, the Klein-Gordon equation is expressed as (
∂2

∂t2
−∇2 +m2)φ = 0 which, for m = 0,

reduces to the standard wave equation. Performing the usual identifications i
∂

∂t
→ E and − i∇ → p, the

Klein-Gordon equation follows from the relativistic kinematic conservation requirement E2 − p
2 = m2.
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of the fields φ under:

φ(x) 7→ e−iqθφ(x) φ⋆(x) 7→ e+iqθφ⋆(x) (2.6)

where q is to be associated with the charge of the φ field and θ parameterizes the trans-

formations. Since θ is independent of x, the Lagrangian density equation (2.5) is invariant

under this set of rigid, or global, internal transformations, which form the group of unitary

transformations U(1)5. In this case the U(1) symmetry expresses a redefinition of the phase

factor convention for the φ field. The invariance under rigid transformations is ascribed to a

degeneracy of certain degrees of freedom. Since the phase of the field φ is not an observable

quantity, adding a constant θ to it merely redefines the phase convention, without affecting

the predictions made by the theory. However, there is a priori no reason to require a trans-

formation equivalently affecting all points in space, and a ”rigid” transformation of the form

φ(x) 7→ eiθφ(x) is certainly not the most general. The question then arises as to how one

can extend the global symmetry to a local one 6.

Local U(1) symmetry and interaction law To that end, one is thus led to consider

theories which are invariant under symmetry operations performed locally, by allowing θ to

vary over space, becoming θ(x). The extension of the invariance principle from global to

local means that the Lagrangian (2.4), which was conserved under the global transformation

(2.6), should also be invariant under the local transformation7:

φ(x) 7→ φ(x)e−iqθ(x) (2.7)

By insisting on the freedom to change fields by an arbitrary group transformation at each

space-time point separately, it turns out that one needs a quantity that can carry information

regarding these transformations from one space-time point to another. This quantity is the

gauge field, whose existence can be regarded as a prime consequence of choosing a framework

based on local gauge invariance. Explicitly, whereas the local aspect of the transformation

does not alter the mass term which only involves fields taken at the same point in spacetime,

m2φ⋆(x)φ(x) 7→ m2φ⋆(x)φ(x) , (2.8)

5The family of transformations U(α) ≡ eiα, where α may assume any real value, constitutes the unitary
Abelian group, called U(1). Unitary groups satisfy the condition U† = U−1 and Abelian groups have the
property of commutativity under group multiplication U(α1)U(α2) = U(α2)U(α1). One can think of the
group U(1) as the unit circle, with the multiplication rule on its points given by addition of angles. Let us
note in passing that SO(2) is Abelian and isomorphic to U(1).

6Note that in this example we are dealing with internal symmetries, since they do not involve any change
in the space coordinate of the fields.

7From a geometric point of view, defining the phase of φ(x) locally is equivalent to defining a local frame
with respect to which the phase of the field is measured. The gauge group thus defines an internal space, and
local invariance is then the statement that the physical properties of the system must be independent of the
particular choice of frame [15].
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terms involving the gradients ∂µφ of the φ fields on the other hand, are not invariant since

under (2.7) their transformation yields:

∂µφ 7→ [∂µφ(x)− iq∂µθ(x).φ(x)] e
−iqθ(x) (2.9)

Clearly, ∂µφ does not have the same transformation rule as φ itself. For these terms the

local character of the transformation is crucial, gradients which intrinsically compare fields

at different points in spacetime will be subject to transformations at neighboring spacetime

points. To compensate this lack of invariance, one can resort to the introduction of a com-

pensating gauge field Aµ (which is later to be identified with the electromagnetic potential),

whose variation will compensate for the supplemental ∂µθ(x) terms in (2.9), that are induced

by the transformations at neighboring spacetime points and proportional to the derivative of

the transformation parameter. The usual procedure, referred to as minimal gauge coupling,

consists in the replacement of the gradient operator ∂µ in the Lagrangian density with a

so-called covariant derivative Dµ :

Dµ ≡ ∂µ − iqAµ(x) (2.10)

where Aµ is still to be defined by its transformation properties. The prescription of a co-

variant8 transformation of Dµ operating on the field φ, i.e., the requirement that this new

quantity exhibits the same transformation law as that of equation (2.7) in order to ensure

local invariance yields:

Dµφ(x) 7→ e−iqθ(x)Dµφ(x) (2.11)

which in turn requires the following local gauge transformation rule for the newly introduced

gauge field Aµ

Aµ(x) 7→ ∂µθ(x) +Aµ(x) (2.12)

Therefore the modified Lagrangian takes the form 1
2

[
(Dµφ)

⋆(Dµφ)−m2φ⋆φ
]
, and remains

invariant under the local gauge transformation given by equations (2.11) and (2.12). One

should also account for the pure gauge field contribution by including terms in the La-

grangian density which couple Aµ only to itself. One quantity involving only the Aµ is the

antisymmetrical field strength second rank tensor

Fµν = ∂µAν − ∂νAµ (2.13)

8The term covariant refers to covariance with respect to the introduction of the local transformation of
equation (2.7), and not to covariant-contravariant indices.
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which is invariant9 under the gauge transformation in equations (2.11) and (2.12). Conse-

quently, the complete expression for the gauge invariant Lagrangian density is:

Llocal =
1

2

[
(Dµφ)

⋆(Dµφ)−m2φ⋆φ
]
− 1

4
FµνF

µν (2.14)

where the last term is recognizable as that of pure electromagnetism−1
4FµνF

µν = 1
2(E

2−B2).

Thus Llocal is the standard form of the Lagrange density of scalar electrodynamics, and equa-

tions (2.11) and (2.12) are the canonical gauge transformation of electrodynamics. The sole

requirement of local gauge invariance on the free Lagrangian (2.4) leads to the formulation of

scalar electrodynamics, a field theory that couples the φ(x) field to the gauge field Aµ which

is nothing but the vector potential of electromagnetism. The original Lagrangian is also

modified by an additional self-energetical contribution from the compensating gauge fields.

To conclude, let us stress that the prescription of a local symmetry affecting φ(x) by an

arbitrary group transformation at each point separately, leads to the necessary introduction

of a quantity that can carry information regarding these transformations from one point to

another. This quantity is the gauge field, or connection, whose existence can be viewed as a

prime consequence of choosing a framework based on local gauge invariance [15].

2.1.3 Lattice gauge theories

In 1971, Wegner studied a class of Ising models [14], where the global Z(2) symmetry of

the Hamiltonian was promoted to a local one. Although the models did not possess a local

order parameter, they did exhibit a phase transition10. In constructing the models, Wegner

introduced a number of concepts which turned out to play a fundamental role in the lattice

formulation of gauge field theories11, suwh as the concept of a nonlocal gauge invariant order

parameter12.

9The gauge invariance of Fµν does not hold when the current analysis is extended to gauge groups other
than U(1), rather it is a coincidence related to the fact that U(1) transformations are Abelian. The general-
ization of U(1) to non-Abelian groups as SU(N) or SO(3) is straightforward, the main modification arises in
the definition of the field strength (Eq.(2.13)) that becomes Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

10Among familar examples of models whose possible phases cannot be characterized by an order parameter
is the XY-model, where du to Mermin-Wagner’s theorem [183], the continuous O(2) symmetry cannot be
spontaneously broken. In this case, it is the (non-local in nature) correlation function that encodes the phase
change. Whereas in the disordered phase, it decays exponentially, below TKT, the temperature at which
the Kosterlitz-Thouless transition (KT) [184] takes place, it decays as a power law. Let us recall that this
transition is of a topological nature, since it is associated to an unbinding of pairs of point defects carrying
opposite topological charges for T > TKT.

11Let us note that lattice gauge theories are not entirely discrete constructions, as they involve continuous
ingredients; gauge groups are Lie groups and involve internal symmetries (they do not relate to the lattice
symmetries) [185].

12 This follows from Elitzur’s theorem[172], which rigorously demonstrates that a local symmetry cannot be
spontaneously broken, and hence, gauge non-invariant observables vanish. This means that the equilibrium
state of the theory is gauge invariant at all temperatures. There can certainly be phase transitions in the
theory, but one needs to resort to different arguments than spontaneous symmetry breaking to explain them.
For example, in the confinement transition of gauge field theories topological properties of the theory are
expected to play an important role [173–177].
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2.1.3.1 Geometrical approach

Before addressing the lattice implementation of a gauge theory, it is worthwhile pointing

out some of its geometrical implications. We here only briefly sketch some general ideas of

the geometrical picture, as it can provide a unifying ground for discussing different gauge

theories. The concepts of gauge fields and covariant derivatives can be translated into the

language of differential geometry, based on differential forms. In general, the gauge field

Aµ has a mathematical interpretation as a Lie-valued connection (1-form)13. It is used to

construct covariant derivatives acting on fields and it generates parallel transport of the

geometric objects under gauge transformations (Fig. 2.1).

The field tensor Fµν is a 2-form given by the commutator of two covariant derivatives

[Dµ, Dν ]. It is an element of the Lie algebra associated to the gauge group. As the tensor

Fµν measures the lack of commutativity, its effect is analogous to that of curvature14 [15].

2.1.3.2 Sites, links, plaquettes

The first step in constructing a discretized version of gauge theory is to approximate the

continuous spaceby a discrete set of points, that is, a lattice. The lattice is then defined as a

set of points of the d-dimensional Euclidean space with the coordinates:

xµ = nµa (2.15)

where a is the lattice spacing and where the components of the vector

nµ = (n1, n2, · · · , nd) (2.16)

are integer numbers. The points are called the lattice sites, or nodes. The next concept

relates to the links of the lattice. A link is a line which connects two neighboring sites, and

is usually denoted by the letter l. It is characterized by the coordinate x of its starting point

and its direction µ = 1, · · · , d

l = {x, µ} (2.17)

The link l connects sites with the coordinates x and x + aµ̂, where µ̂ is a unit vector along

the µ-direction (Fig. 2.2).

13The geometrical picture enables a strong parallelism between gauge theory and general relativity. The
latter can be interpreted as a gauge theory, where gauge invariance is the invariance under diffeomorphisms
(local smooth changes of coordinates) in the space-time manifold, and where gauge transformation corresponds
to a change of local frame. The role of the gauge fields is played by the Christoffel symbols defining the
connection which generates parallel transport [180].

14One encounters the same situation when considering translations on a curved surface, which do not
commute for finite curvature.
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Fig. 2.2: A link of the lattice. The links connects the sites x and x+ aµ̂.

The elementary square enclosed by four links is called a plaquette. A plaquette p is specified

by the coordinate x of a site and by the two directions µ and ν along which it is built.

p = {x;µ, ν} (2.18)

The set of four links which bound the plaquette p is denoted by ∂p (Fig. 2.3), or else by

the square symbol �. Usually, in order to reduce artificial surface effects (finite-size effects),

Fig. 2.3: A plaquette of a lattice. The plaquette boundary is made of four links.

one changes the topology of the lattice by imposing periodic boundary conditions in every

direction µ, thus compactifying the d-dimensional hyper-cubic lattice to a d-dimensional

hyper-torus (Fig. 2.4). The number of sites, links and plaquettes for a symmetric (spatial

sizes L1 = L2 = · · · = Ld = L) hyper-cubic lattice with periodic boundaries conditions are

Ns = Ld, Nl = dLd, Np =
d(d− 1)

2
Ld, (2.19)

respectively [179].

2.1.3.3 Lattice formulation

Consider a theory which involves a matter field φ(x), endowed with a local internal symmetry

group G. In the following, we will consider the case of a group G of n×n orthogonal matrices

with determinant 1. In its lattice formulation[15, 179], matter field is assigned to the lattice

sites. A continuous field is thus approximated by its value at the lattice sites

φ(x) =⇒ φx. (2.20)
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Fig. 2.4: Illustration of a 2-dimensional lattice compactified to a torus by periodic boundary
conditions.

A transformation by an independent element g ∈ G at each site yields

φx 7→ φ′x = gxφx. (2.21)

If it is a symmetry, then one should observe the invariance of the theory under such trans-

formations. As it is for the continuum case, gradient terms of the form (φx − φy)
2 spoil the

invariance. Indeed,

φxφy 7→ φx
(
g−1
x gy

)
φy 6= φxφy. (2.22)

Parallel transporters A term of the form (φx − φy)
2, which only measures the change in

the components from point to point, would have been suitable if the basis, or frame, didn’t

change. The problem is essentially that under a local gauge transformation, the meaning of

comparing two vectors at different points in these terms is lost.

Since two internal vectors residing at two different locations can not be compared in their

natural bases (or local frames), one needs a definition of what would physically equivalent

internal vectors mean at different points. This is achieved by the parallel transport, which

specifies the rotation of the frame in some intrinsic internal symmetry space upon transport

between neighboring points. One could refer to Fig. 2.5 for an simple illustrative example

and to the Appendix A for a formal derivation of the relation between gauge fields, connection

and parallel transport [15]. The essential point of gauge theories is that by allowing local

symmetry, parallel transport acquires the status of a new degree of freedom. Therefore,

for each point on the lattice and each possible direction for parallel transport, there is a

new dynamical variable, element of the symmetry group G. Building a theory with a local

symmetry is thus achieved at the expense of introducing many new degrees of freedom, the

gauge fields [188].
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Fig. 2.5: Parallel transport: consider an ordinary vector in the plane, expressed in polar
coordinates. Consider the unit basis vectors er and eθ at the point P . Parallel
transport of er to the point P ′ (i.e. the transport keeping er parallel to what it
was) yields the vector labeled ger, different from the unit radial vector e′r at point
P ′.

Since the gauge field Aµ(x) has the geometrical role of a connection (Section 2.1.3.1, Section

A), a natural manner to encode the gauge variables in a discrete setting is by considering

parallel transporters. To parallel as closely as possible the steps in the continuum formulation,

we observe that, since φxφy 7→ φx
(
g−1
x gy

)
φy, one must include a factor depending on the

gauge potential which compensates the gauge variation [16, 179, 188]. This factor, known as

the Schwinger line integral15 [181], is given by:

U(x, y) = e
∫ y

x
dzµAµ(z) (2.23)

where the integral is carried out along a path connecting x and y. We note that U(x, y) is

element of the gauge group G, and under a gauge transformation (Eq.(2.12)) it transforms

as:

U(x, y) 7→ gxU(x, y)g−1
y . (2.24)

Taking y = x+aµ̂, the gauge variables acquire the meaning of elementary parallel transporters

between neighboring lattice points and are thus assigned to the links of the lattice,

Aµ(x) =⇒ Ux,µ. (2.25)

where Ux,µ ≈ eaAµ(x) [179, 188]. Link variables, which are elements (i.e., matrices) of the

gauge group, thus obey the following transformation rule:

Ux,µ 7→ U ′
x,µ = gxUx,µg

−1
x+aµ̂. (2.26)

15Also referred to as the operator of parallel transport, the phase factor or the Wilson line.
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From the above considerations, we conclude that φxφx+aµ̂ must be modified as follows:

φxφx+aµ̂ =⇒ φxUx,µφx+aµ̂, (2.27)

The implementation of the parallel transport between neighboring points guarantees the

sought invariance under gauge transformation. Indeed, simultaneous transformations oper-

ating on sites (Eq.(2.21)) and on links (Eq.(2.26)) leave the inner gauge product φxUx,µφx+aµ̂

unaltered:

φ′xU
′
x,µφ

′
x+aµ̂ =

(
φxg

−1
x

) (

gxUx,µg
−1
x+aµ̂

)

(gx+aµ̂φx+aµ̂) = φxUx,µφx+aµ̂ (2.28)

Finally, let us not that the same link connecting x and x+ aµ̂ can be regarded as a forward

one, {x;µ}, or as a backward one, {x+ aµ̂;−µ}. They are related through Ux+aµ̂,−µ = U−1
x,µ

in the case of an orthogonal gauge group, since the backward link is simply the reversed

forward one (Fig. 2.6).

Fig. 2.6: Left : Link Ux,µ from site x in direction µ. Right : Link U−1
x,µ in the reverse direction,

from site x+ aµ̂ in direction −µ.

Wilson action To complete the lattice construction, one must include the lattice analog of

the second term of equation (2.14), i.e., a gauge invariant term functional of the link variables

only (see footnote 12). Such functionals are easily constructed by taking the product of link

variables around closed loops. The simplest choice of a closed contour involves the product

Fig. 2.7: A contour in the form of an oriented boundary of a plaquette p.

of contiguous link variables around an elementary plaquette p (Fig. 2.7)

U∂p = Ux,µUx+aµ̂,µU
−1
x+aν̂,µU

−1
x,ν , (2.29)
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where U∂p denotes the plaquette variable (also denoted by U�). Under the lattice gauge

transformation (Eq.(2.26)), U∂p transforms as:

U∂p 7→ U ′
∂p = gxU∂pg

−1
x (2.30)

Therefore, its trace is gauge invariant. Indeed, by virtue of the cyclicity of the trace, one has

tr(U ′
∂p) = tr(gxU∂pg

−1
x ) = tr(g−1

x gxU∂p) = tr(U∂p). (2.31)

The invariance of the trace under the gauge transformation is used in constructing the so-

called Wilson action[14, 186] of a lattice gauge theory:

EG = k
∑

p

(

1− 1

n
Re tr(U∂p)

)

(2.32)

where k is the lattice gauge self-coupling parameter, and where n refers to the dimension of

the representation of the gauge group G. The integration measure for the gauge variables

over the local symmetry group must be invariant under gauge transformations, it is thus

performed over the Haar measure16 which is an invariant group measure [179, 187, 189].

Before ending this section, let us note that the pure gauge term could have been introduce

equivalently from geometrical considerations. One way is to mimic the continuum construc-

tion, in which the second term in Eq.(2.14) involves Fµν , which is related to the lack of

commutativity of the covariant derivatives,

[DµDν ] = [∂µ +Aµ, ∂ν +Aν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] = Fµν (2.33)

Since in the discrete setting, the gauge variables (links) are used to parallel transport the

matter field between neighboring sites, one can formulate a discrete analog of the covariant

derivative, the covariant finite difference [16]:

∆µφx = Ux,µφx+aµ̂ − φx, (2.34)

where Ux,µ has served the purpose of transporting the matter field from site x+aµ̂ to site x.

Computing [∆µ,∆ν ] leads to the lattice analog of Fµν and enables recovering the previous

result (Eq.(2.32))[187]. The second way is to recall that Fµν is a curvature 2-form. A very

natural way to define curvature is to measure the change in some arbitrary orientation due

16The partition function of a pure lattice gauge theory (i.e. without matter field) is defined by
Z =

∫

D [U ] e−EG[U ], where EG denotes the gauge field action (Eq.(2.32)). As for any integral, the result of
a path integral should be invariant under a change of variables, in particular under the gauge transformation
(Eq.(2.26)). This requirement reads D [U ] = D [U ′]. Using the fact that the integration measure for the link
variables is the product measure

∫

D [U ] =
∫
∏

x,µ dUx,µ, the condition dUx,µ = dU ′
x,µ = d(gxUx,µg

−1
x+aµ̂) for

the integration over the individual link variables is derived. Since gx and gx+aµ̂ can be chosen independently,
the measure dU for a group element must be invariant under left and right multiplication by another arbitrary
group element V ∈ G , dU = d(V U) = d(UV ), which is a defining property of the Haar measure[179, 189].
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to parallel transportation around a closed path, and this is exactly what the Wilson action

measures. In this sense, the 1− 1
ntr (U∂p) term appearing in equation (2.32) can be seen as

a measure of deviation from flatness. Indeed, in the case of trivial identity link matrices, the

traced plaquette variable amounts to n, yielding vanishing energy term.

2.1.4 Gauge invariance and frustration in spin glasses

In order to provide some conceptual foundation for a gauge model for relaxor ferroelectrics,

we now turn to the gauge description of frustrated systems. Gauge glasses [23, 200], that

is, gauge theories with quenched random couplings stand as geometrical extensions of the

spin-glass models, emphasizing the relevance of local symmetries in describing the disorder-

induced frustration.

For a given realization of all the couplings or bonds, the Hamiltonian of a spin-glass model is

clearly not invariant under neither translational nor rotational symmetries. However, some

sort of subtler symmetry remains: since the probability distribution of the bonds corre-

sponding to a certain realization of disorder is unchanged by lattice translation, i.e. the

corresponding couplings are independently chosen from the same distribution, one can re-

cover a certain notion of symmetry for a disordered system, that is, a statistical symmetry

[196]. In this sense, although the randomness of glasses leads to a lack of generic rotational or

translational symmetry, one can nevertheless regard them as globally homogeneous such that

each of the constitutive points is equally suitable as a reference point as any other, despite

different local surroundings17. The free energy of a glass is thus invariant under transforming

the local surroundings of an atom into those of another (mainly by performing local rotation

of the attached frame) provided that the connection with the remaining system is adjusted

in a covariant way. The local rotation is then a gauge transformation and the glass homo-

geneity can be written in terms of a gauge invariance parametrized by the rotation group.

By virtue of statistical global invariance, one can convert the translational probing of global

homogeneity into a local modification of environment under gauge transformation [194].

To be more explicit, let us consider the symmetry of the Edwards-Anderson model [81] of an

Ising spin system in an arbitrary configuration of bonds, to show that a simple transformation

of variables using the local symmetry leads to non-trivial conclusions. The Hamiltonian of

this model is expressed in the following manner:

HEA = −
∑

(i, j)

JijSiSj (2.35)

The spin variables are assumed to be of the Ising type σi = ±1, placed on the sites of a

regular Zd lattice. The sum over (ij) is in this case limited to nearest neighbors, so that

17According to Rivier and Duffy [194], it is this kind of symmetry one is facing while being lost in a random
forest. Every tree is then as good as another to be the reference point.
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the variables Jij specify the distribution of the bonds and reside at the links ij joining the

sites of the lattice (Fig. 2.8). Each of the Jij is considered to be distributed independently

according to a probability distribution P (Jij). In the ±J model, the distribution P (Jij) of

exchange bonds takes the form:

P (Jij) = p δ(Jij − J) + (1− p) δ(Jij + J) (2.36)

where Jij is either J(> 0) (with probability p) or −J (with probability 1 − p). In this

model, disorder is thus expressed in terms of a competition between random ferromagnetic

and antiferromagnetic interactions.

Fig. 2.8: Location of the degrees of freedom of the spin-glass system. The dots represent the
spin (site) variables S, and the crosses represent the gauge (link) variables J (after
Fradkin et al. [204]).

2.1.4.1 Gauge transformation

A gauge transformation of the system (2.35) at site i is defined as the following change of

variables [20]:







Si 7→ −Si
Jij 7→ −Jij (for all j adjacent to i)

(2.37)

The most important feature of the transformation (2.37) is its locality (see Fig. 2.9 for an

illustration). The transformation is performed independently at all sites. A more general

expression of this transformation is possible [23]:







Si 7→ TiSi

Jij 7→ TiJijTj

(2.38)

where T is some suitable transformation, T ∈ {+1,−1} in this case18. The above trans-

formation leaves the Hamiltonian invariant and does not change the partition function, i.e.,

18For instance if the transformation (2.37) is performed only at site i, then Ti = −1 (Ti = +1 otherwise)
and Tj = +1 for all j 6= i, so that (2.38) reduces to (2.37).
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Fig. 2.9: Gauge transformation on the central site. Dark circles are spins pointing up and
white circles are spins pointing down. All bonds stemming from the central site
have been made negative; the gauge-modified configuration yields the same energy,
with the central spin flipped (after Fradkin et al. [204]).

Z [{Jij}] = Z [{TiJijTj}]. This invariance indicates that considering a new set of bonds does

not alter the thermodynamic properties, hence Z is not a functional of the details of the dis-

tribution of the couplings {Jij} itself, but rather depends on the features of that configuration

which are gauge invariant.

2.1.4.2 Gauge invariant frustration

HEA is evidently preserved under the local gauge transformationas defined in equations (2.37)

or (2.38). Under this procedure, only gauge invariant quantities conserve any meaning [204],

since a gauge transformation can reverse signs at any site ensuring the vanishing of non-

invariant averages.

Fig. 2.10: Illustration of the concept of frustration, one of the key ingredients of a spin glass
system. Dark circles represent spins pointing up. ”+ ” denotes the ferromagnetic
interaction, where parallel spins have the lowest energy, and ” − ” denotes the
antiferromagnetic interaction, where the lowest energy is for anti-parallel spins.
If there is an odd number of ” − ” interactions or bonds around the square, no
spin configuration will simultaneously minimize each contribution to the energy.
The configuration shown minimizes the energy of the upper and lower bonds, as
well as the right hand bond, leaving the left hand bond in a high-energy state, the
plaquette is frustrated, Φ = 1 (after Fradkin et al. [204]).

Relevant disorder and the concept of frustration The necessity of probing the phase

structure using exclusively gauge-invariant functions leads to a substantial analysis of disorder
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in spin glasses. Namely, once the existence of a local symmetry is recognized [20, 204], it

becomes apparent that two types of disorder have to be distinguished one from the other,

that is, the so-called serious disorder, or relevant disorder, in contrast with the non-serious

disorder, i.e., the irrelevant one. Only serious disorder, which stems from frustration, is

gauge-invariant, whereas trivial or irrelevant disorder can be eliminated by a transformation

of the type (2.38).

Mattis model or trivial disorder Let us consider the spin glass model of Mattis [205]

in which disorder is only deceptive. The model is of the form (2.35), but instead of equa-

tion (2.36) for the random exchange Jij , one chooses the form Jij = Jτiτj , where J is a

nonrandom exchange and τi = ±1. Defining a new set of spins ξi = τiSi , one recovers an

Ising ferromagnet, devoid of disorder [85]. Hence the randomness within this model is trivial

since it can be eliminated, or gauged away, by a suitable redefinition of the spin variables.

The Mattis model is thus frustration-free and can be seen as a gauge transformation of the

pure Ising model.

Frustration function In order to filter out relevant from irrelevant disorder19 Toulouse

defined the frustration function [20]:

Φ =
∏

(C)

Jij (2.39)

defined on any closed contour (C) along connected bonds of the lattice. Φ is a geometrical

property, independent of the ”matter”field Si [195], that provides a measure of the frustration

within the contour. If Φ = +1, it is possible to orient the spins along (C) without frustration;

if Φ = −1, it is not (see Fig. 2.10). If the lattice under consideration is a regular one, as it is

the case for (2.35), then frustration of a plaquette (elementary square l
i�

k
j whose corners are

labeled by i, j, k, l) is the most fundamental notion since any larger loops can be expressed

as a product of the plaquettes enclosed by the contour. The fundamental gauge-invariant

frustration function is thus:

Φ = JijJjkJklJli (2.40)

From the topological standpoint, the plaquette variable Φ is reminiscent of the path depen-

dent parallel transport of a tangent vector on a curved surface [20, 204] (see Fig. 2.11 for an

19Disorder and frustration often go together, but they refer to distinct concepts and neither implies the
other. An example of frustration-free disorder has been given in the previous footnote while considering the
Mattis model. The counterpart of frustration-free disorder is frustrated order. The most simple minded
illustration of this concept is a triangle of Ising spins coupled with antiferromagnetic interactions. In such a
case, one can not find a configuration where all interactions are satisfied. Such an ordered system is said to
be geometrically frustrated.
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illustration). It is the analog of the field strength or gauge curvature of conventional gauge

theories[20, 204]. The misfit between the various lines of transport can thus interchange-

ably signal frustration, curvature or disclination (see Fig. 2.12). In this sense, frustrated

plaquettes are curved whereas unfrustrated are flat. In this sense, all the plaquettes of the

aforementioned Mattis model are flat, Φ = 1.

Fig. 2.11: Frustration on a sphere. The parallel transport of a vector on a sphere is defined
by minimizing the energy locally as one moves around a path. When the path
crosses itself forming a loop, there will in general be a change in the direction of the
vector, and for small loops this change will be proportional to the area enclosed.
The frustration represented by this change is described by the curvature tensor R
of the sphere (after Sethna [203]).

As already pointed out, only gauge-invariant disorder (frustration) can change the nature

of the phase transition, and thus the resort to gauge-invariant quantities is necessary to the

probing of the transition. In order to isolate the effects of gauge-invariant disorder (i.e.,

frustration), Fradkin et al. [204] have defined a gauge-invariant analog of the correlation

function 〈SiSj〉 by inserting a string of J ’s between Si and Sj . The gauge-invariant correlation

function thus takes the form 〈Si (
∏
J)Sj〉, where

∏
J stands for the product of all the J

variables along the links of an arbitrary path Γ(i, j) connecting sites i and j. The difference

between the correlation function evaluated along two different paths connecting the same end

points i and j is given by (−1)fP , where fP is the number of frustrated plaquettes enclosed

by the loop defined by the two considered paths, explicitly showing that it is the frustration

content, rather than the detailed distribution of the individual bonds, that characterizes the

system.

We have so far investigated the gauge invariance of the Ising spin-glass model under (2.37).

This treatment is not exclusive to Ising-like variables and can be extended to the XY

model [204, 208], for which the degrees of freedom are fixed-length two dimensional vec-

tors, subject to planar rotations. The introduction of disorder into the standard model

can either be made via the randomness of the bonds or via random difference angles ψij ,
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such that in the latter case the interaction takes the form J0 cos(θi − θj − ψij). Defin-

ing a link-gauge degree of freedom Uij = exp(iψij), the interaction can be rewritten as

J0/2(SiU
⋆
ijS

⋆
j + h.c), with Si ≡ exp(iθi), and remains invariant under the local gauge trans-

formation Si → ViSi and Uij → ViUijV
⋆
j , where Vi = exp(iχi) (analog of equations (2.37)

and (2.38)). Hence, to a local rotation of a spin by an angle χi is associated a rotation of

the connecting link by the difference χi − χj . The frustration angle at plaquette ijkl is now

defined as exp(i2πΦijkl) = UijUjkUklUli, where 2πΦijkl = ψij+ψjk+ψkl+ψlimod(2π). Thus

only fractional values of Φ signal frustration, and in the continuum limit, the sum over the

ψij gives rise to the connection over a closed path, equivalent to the net change of curvature

measured through the Berry phase [202].

Fig. 2.12: Left: In the two-dimensional case, the elementary curved unit is one plaquette.
It is thus possible to isolate a single frustrated plaquette at the expense of a dual
string of flipped antiferromagnetic bonds starting from the frustration center to
the boundary of the system. In the upper figure, the isolated frustrated plaquette
is signaled by a cross, the antiferromagnetic bonds are shown in bold and the dual
string crossing non-frustrated plaquettes is indicated by a dashed line. A ground
state configuration is obtained by pairing the frustrated plaquettes, with mini-
mal total length of the strings (going through adjacent non-frustrated plaquette
centers), as shown is the lower figure. Right: In the three-dimensional case, a
frustrated plaquette cannot be isolated. This follows from the conservation law
of curvature, which is the strict analogue of the conservation of magnetic flux in
electromagnetism [20]. The elementary unit is thus a loop of frustrated plaquettes,
as shown in the upper figure. A ground state configuration involves loops of min-
imal area, enclosing non-frustrated plaquettes as shown in the lower figure. The
spin direction across this area changes discontinuously, i.e., one has disclinations.
These disclinations induced by frustration have non-trivial topological properties
and have been associated to the gauge fields in the continuous version of gauge
theory for glasses as formulated by [21, 197, 198].

Frustration and ground-state degeneracy In order to appreciate the relevance of a

gauge theoretical approach to spin glasses, it is worthwhile recalling that a defining char-

acteristic of spin glasses is the existence, for a given realization of the couplings, of many

configurations of spins which are locally stable minima of the energy. This large degeneracy
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of the ground state introduces non-trivial multiplicity since the minima are not all related by

standard global symmetry of the action. Now the cause behind this large degeneracy resides

in the frustration, i.e., in the existence of competing interactions (see Fig. 2.13 for an illus-

tration). As a consequence of frustration, typically, there is no ideal low-lying ground state,

and instead many metastable states of similar energies [190]. The notion of local invariance

thus leads to that of gauge-invariant frustration, which in turn captures an essential feature

of spin-glasses, that is the large degeneracy of their ground-state.

Fig. 2.13: Illustration of the degeneracy introduced by frustration. Dark circles are spins
pointing up and white circles are spins pointing down. Represented is the 8-fold
degenerate ground state of a frustrated plaquette composed of an odd (here one)
number of antiferromagnetic bonds on its perimeter, i.e., Φ = −1. Competing
interactions render impossible the accommodation of all bonds. There exist a bond
at which the lowest state is not achieved, such a bond is frustrated and indicated
by the wavy line. This simple investigation shows that competing interactions
raise the ground state energy and the ground state degeneracy.

On the connection between spin glasses and gauge field theories To conclude this

section it remains to be pointed out that the local transformation as defined in equation

(2.37) or equivalently in equation (2.38), is quite similar20 to the local transformation under

which the Lagrangian of electrodynamics is invariant (equations (2.7) and (2.12)), the bond

interactions Jij playing a role somewhat similar to that of the electromagnetic potential Aµ

[20]. In the present case the lattice gauge group is the discrete Abelian group with two

elements, Z2, whereas in the former case of electrodynamics, the gauge group is the one

dimensional Abelian continuous group U(1). However, the analogy is not complete since

in electrodynamics the gauge field Aµ is dynamical, whereas in the case of gauge glasses,

the bond interactions Jij are quenched [85, 199]. The analogy would thus be complete if

the analogs of the vector potential, i.e., the exchange variables Jij were annealed variables.

Nonetheless, as we shall now see, there have been attempts to reexpress the spin glass problem

as a genuine gauge theory in which both spins and gauge variables are treated on the same

footing. Toulouse et al. examined the connection between spin glasses and gauge field

20For an introductory review on the relation between gauge theories on the lattice and spin systems, one
may refer to the monograph of Kogut [201]
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theories [199]. They noticed that in the case of the annealed models of spin glasses, in

which the Si’s and the Jij ’s are statistical variables to be averaged over at the same time,

the thermal average of the frustration function Φ is nonzero 〈Φ〉T 6= 0, reflecting the low

frustration content of the annealed system. Indeed, the non-vanishing of the frustration

function in the annealed model stems from the fact that at low temperature, non-frustrated

configurations of the Jij ’s are energetically favored and thus dominate the annealed free

energy. In contrast, when considering the realistic ±J quenched models of spin glasses, before

performing the average over distributions of the gauge degrees of freedom or bonds, one has

to first perform the thermal average over the Si’s in a given distribution of the bonds. In

this latter case of a quenched system with equal probabilities of positive and negative bonds,

[Φ]av = [JijJjkJklJli]av = 0, because the contour is equally likely to be frustrated (Φ < 0)

or non-frustrated (Φ > 0). Toulouse and Vannimenus argued that an annealed description

of the gauge-glass could in principle yield satisfactory results, provided that the error due to

the annealed approximation, i.e., basically the underestimate of frustration, is compensated

by imposing a suitable constraint on the Jij ’s so as to restore an appropriate statistical

account for frustration. The constraint naturally corresponds to the vanishing of the global

frustration function:

〈JijJjkJklJli〉T = 0 (2.41)

To ensure that equation (2.41) is satisfied, they defined the so-called ”gauge annealing”scheme

consisting in the introduction of a Lagrange multiplier βP , the so-called plaquette tempera-

ture, for the frustration function into the Hamiltonian.

−βHGA = β
∑

(ij)

JijSiSj + βP
∑

�

JJJJ (2.42)

where the last term runs over plaquettes, and

β
∂FG

∂βP
= 〈JJJJ〉G = 0 (2.43)

In this gauge annealing scheme, the phase transition lines are determined by the equation

(2.42), and the frustration constraint (equation (2.43)), that can only be satisfied for negative

βP , defines a trajectory in the (β, βP ) plane. Thus, a spin glass transition would correspond

to this trajectory crossing a phase transition line [85, 199]. Note that the equation (2.42) does

describe a gauge theory since it is invariant under the gauge transformation (2.37). Monte-

Carlo simulations aiming for the assessment of this approach [206, 207] revealed a discrepancy

between what would be physically expected in quenched systems (e.g. a transition in d = 3)

and the predictions of this annealed approximation for quenched systems (no intersection of

the transition lines with the trajectory (2.43) was observed), thereby indicating the limited

applicability of this latter approach in that it introduces correlations among the plaquettes
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that are absent in the quenched system where the Jij ’s are independent random variables.

However, as stated by Toulouse and Vannimenus [85, 199], this gauge annealing scheme can

be further improved by the introduction of more constraints which would make the annealed

system increasingly imitating the quenched one.

2.1.4.3 Continuum gauge glasses models

Gauge theories for spin glasses have been developed in two directions. Our discussion on

frustration in spin-glass so far has been based on spin models on discrete lattices, let us now

briefly consider the continuum counterpart.

Hertz suggested a description of a spin-glass based on the concept of frustration within a

continuum Landau-Ginzburg model [197]. For a planar spin, the effective Hamiltonian has a

form analogous to that of the Ginzburg-Landau functional for a superconductor in a magnetic

field,

Heff =
1

2

∫

ddx

[

r0|φ(x)|2 +
1

4
u|φ(x)|4 + | (∇− iQ(x))φ(x)|2

]

(2.44)

except that the role of the vector potential is taken by a quenched random variable Q(x)

which represents the wave vector of the lowest-energy spin-density wave, into which the

spins condense below the Néel temperature. Thus Q = 0 represents a ferromagnet and

Q 6= 0 an antiferromagnet. Since the model is based on the notion of randomly competing

antiferromagnetic and ferromagnetic interactions, the probability distribution P [Q] of this

random quenched variable is chosen not to depend directly on Q(x), in order not to privilege

any value over any other. Rather, P [Q] is taken as a Gaussian distribution in the gauge

invariant quantity :

Fµν(x) = ∂µQν(x)− ∂νQµ(x) (2.45)

involving the curl of Q(x).

P [Q] ∝ exp

(

− 1

2f

∫

ddx
∑

µν

F 2
µν(x)

)

(2.46)

The parameter f corresponds to the mean-square vorticity in Q(x) and measures the degree

of frustration in the model. In order to study the effects induced by the introduction of a small

amount of frustration, Hertz performed renormalization near the f = 0 fixed point21. He

found that the fixed point is unstable below d < 4, discarding the occurrence of conventional

second order ferro or antiferromagnetic phase transitions and indicating that in the presence

21The situation where f = 0 refers to the unfrustrated Mattis model, in which the disorder is trivial or
irrelevant.
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of frustration, there is no uniquely favored spin configuration, but an infinite number of nearly

equally favorable ones, i.e., frustration implies degeneracy. After having investigated the

usual kind of order where the order parameter is characterized by the spin field, and proved

its instability against the introduction of any frustration, Hertz considered a mean-field

analysis of a transition to a state characterized by an Edwards-Anderson order parameter,

qEA = 〈〈S〉2〉c (where the inner brackets indicate a thermal average, and those followed by

the subscript c indicate a configuration average). This second investigation yields the main

qualitative features of mean-field theories for other models for spin glasses.

As already pointed out, frustration loops induce topological defects such as disclinations

[20–22] (see Fig. 2.12). Leveraging on this genuine inhomogeneity in the spin orientation

arising from frustration, Dzyaloshinskii and Volovik suggested that at a semi-macroscopic

level, the gauge variables associated with the SO(n) group22 and describing disclinations,

should be introduced for a proper description of spin glass properties. Their theory consists

in a reappraisal of concepts related to distortions in elasticity theory while formally it is

based on Yang-Mills gauge theories[15].

There is a limited similarity between the work of Herzt [197] and Dzyaloshinskii and Volovik

[21]. Hertz assumes that the field Q is induced by the frustration network which is produced

by competing interactions and hence it is randomly quenched. He does not give a dynamical

status to this field. Hence he averages the free energy expression with respect to the proba-

bility distribution P [Q]. Dzyaloshinskii and Volovik on another hand argue that the field Q

has two components, i) one random and static arising from the disclinations in the spin field

produced by frustrations and ii) the other non-random, ascribed to thermal fluctuations,

and thus of a dynamical nature. Hence a complete thermodynamical analysis of the gauge

theory as introduced by Dzyaloshinskii and Volovik will involve the two following steps [193].

The gauge field is written as Q(r) = q(r) + η(r), where the first part represents the random

component and the second part the non-random component. The free energy also contains

a term which is function of η only and representing the energetics of the thermally produced

disclinations. The functional integral in the partition function involves integration over the

S field as well as the η(r) gauge field, resulting in a free energy depending on the random

component q(r) only. The free energy is then averaged with the probability distribution

for q.

2.1.5 Gauge theory of defects

A second conceptual ground for a gauge model for relaxor ferroelectrics is provided by the

modern trends in theoretical description of defects in condensed matter, which include geo-

metrical and gauge theoretical methods (see, e.g., [17–19, 212, 217]). The theory of defects

22SO(n) is the continuous group associated with the rotation symmetry of the spins.
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[210, 211] deals with bodies that are subjected to internal stresses even if there are no exter-

nal forces acting on them. These stresses are caused by the presence of defects, which are

alterations of the ideal and ordered structure of the medium that rearrange its structure to

reach internal equilibrium.

2.1.5.1 Gauge theoretical approaches

The ordinary theory of elasticity requires that the displacement at any point of a body should

be a single valued function of the coordinates of that point. This requirement ceases to be

fulfilled when considering the theory of defects [17]. Indeed, dislocations and disclinations

can be viewed as topological defects, in that their presence changes a simply connected region

in a multiply connected one23. This implies that the components of displacement are not

single-valued functions whenever a defect line or surface is crossed (see Fig. 2.14).

Fig. 2.14: Multivaluedness of displacement field: In the presence of a dislocation, the dis-
placement field is intrinsically non-unique. The figure shows the ambiguity in the
assignment of the displacement ui(x) to the nearest equilibrium position. When
removing a layer of atoms, S, the result is a dislocation line along the boundary
of the layer. Across the layer, the positions ui(x) jump by a lattice spacing. The
same dislocation line could have been constructed by removing a different layer
of atoms, S′, just as long it has the same boundary line. Physically there is no
difference. There is only a difference in the discriptions which amounts to a dif-
ference in the assignment of the equilibrium positions from where to count the
displacement field ui(x) (After Kleinert [19]).

This is best illustrated by considering a doubly-connected body as exemplified by a torus

(Fig. 2.15). This hollow ring has the property that a closed circuit in the medium cannot

shrink to a point while always remaining inside of the medium. The body may be dislocated

by performing cuts along the radial lines OAA′, OBB′, and removing the wedge AA′BB′ of

angle φ. If the cut edges are now joined, the ring is in a state of self-strain. The coordinates

of a point P in the strained ring may be expressed in polar coordinates r=OP, θ = ÂOP

(Fig. 2.15 (b)). The displacement uθ of the point P is given by uθ = rθφ/2π. For the

point Q1 the displacement is zero, whereas for the point Q2 the displacement is rφ. Thus for

23We say a domain D is simply connected if, whenever C ⊂ D is a simple closed contour, every point in
the interior of C lies in D. One can think of a simply-connected domain as one without holes. In contrast,
domains with holes are said to be multiply-connected.
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these two neighboring points lying on either side of the cut, the reference coordinates differ

only infinitesimally, while their displacements differ significantly. The relative displacement

δui(Q) = ui(Q2)− ui(Q1) of neighboring points on either side of the cut is given by [211]:

δui(Q) = bi + dijxj(Q) (2.47)

in which dji = −dij . This represents an arbitrary rigid-body displacement of a point with

respect to a neighboring point. According to Eq.(2.47), the most general dislocation of a

Fig. 2.15: Left Dislocation of a hollow ring. The ring is cut along the radial lines AA′

and BB′, the wedge AA′BB′ is removed, and AA′ is joined to BB′. The same
dislocation could be made by cutting along CC′ and DD′. Right The dislocated
ring. The neighbouring points Q1 and Q2 lie on opposite sides of the cut (after
Nabarro [211])

doubly-connected body is thus described by three constants dij specifying the relative ro-

tation of the two cut surfaces, and three constants bi specifying their relative translation.

These constants can be considered as the infinitesimal generators of the 3-parameter ro-

tation group SO(3) and the infinitesimal generators of the 3-parameter translation group

T(3), respectively. A semi-direct product of these two groups gives a 6-parameter group

E(3)=SO(3)⊲ T(3) of all rigid body motions. Noticing that the incremental displacement

δui can be obtained by allowing the group E(3) to act differently at different points, that

is to act locally, or inhomogeneously, Kadic et al. developed the so-called gauge-theory for

defects [17].

The gauge theory of defects essentially consists of the following ingredients [213] : (i) adopting

an admissible Lagrangian which is invariant under a global symmetry group, that is, the

Euclidean group in the elasticity E(3), (ii) making the group local, or inhomogeneous, spoils

the invariance of the Lagrangian, (iii) restoring the lost invariance of the Lagrangian by means

of minimal gauge coupling requires replacing the standard derivative by a covariant derivative

and introducing compensating gauge fields, (iv) in this fashion a new Lagrangian is formed

that also includes the compensating gauge fields together with a coupling constant. The new

field equations are obtained as customary, via appeal to the Euler-Lagrange equations, and

are supplemented by an appropriate choice of gauge to render a unique solution. For a simple

illustrative example, one can refer to [218].
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2.1.5.2 Geometrical approaches

Unlike Kadic and Osipov who consider the problem in the framework of the gauge theory of

defects in an elastic continuum, the geometric approach [18, 19, 210] translates the theory

of defects in solids to the language of three-dimensional gravity, involving nontrivial metric

and torsion.

Topological defects, formed during phase transitions involving continuous symmetry break-

ing, can be conceptually generated by a ”cut and glue” process, when layers or sections of

matter are cut from a crystal with a subsequent smooth rejoining of the cutting surfaces[215].

This process, known as the Volterra process [214] (see Fig. 2.16), gives a unifying view of

the topological line defects in crystals. Displacement of the surfaces of the cut with respect

to each other and subsequent gluing will generate a line defect whose core coincides with

the axis. A topological defect thus consists in a core region, characterized by the absence of

order, and a smooth far field region.

Fig. 2.16: Crystalline defects may be generated via so called Volterra process, when layers
or sections of matter are cut from a crystal with a subsequent smooth rejoining of
the cutting surfaces. A crystal can have two different types of topological defects,
which are line-like defects in the 3-dimensional space. A first type of topological
defects are translational defects called dislocations: a single-atom layer is removed
from the crystal and the remaining atoms relax to equilibrium under the elastic
forces. A second type of defects are of the rotation type and called disclinations.
They arise by removing an entire wedge from the crystal and re-gluing the free
surfaces. Geometrically, the former transformation introduces torsion, the latter
curvature (After Kleinert [19]).

In the continuum approximation the core of such line defects is associated to a geometrical

singularity, hence the formal analogy with gravity theory, in which singularities are sources

of gravitational field, described by a deformation of the space-time from the flat Minkowsky

geometry [18, 215]. A defect is thus treated as a source of a ”gravitational” distortion field,
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and the metric describing the medium surrounding the defect is then a solution to the three-

dimensional Einstein-Cartan equation.

In this gravitational approach, crystals are considered as continuous elastic media endowed

with a spin structure, and both dislocations (defects in elastic media) and disclinations (de-

fects in the spin structure) are described within the framework of Riemann-Cartan geometry,

the torsion and curvature tensors being identified with the surface density of dislocations and

disclinations, respectively (Fig. 2.17).

Existence of defects Rij
µν T i

µν

Elastic deformations 0 0

Dislocations 0 6= 0

Disclinations 6= 0 0

Dislocations and disclinations 6= 0 6= 0

Fig. 2.17: Relation between physical and geometrical notions in the geometric theory of
defects (after Katanaev [217]).

Whereas a smooth displacement vector field only indicates elastic deformations corresponding

to diffeomorphisms of the Euclidean space24 , discontinuities arising from cutting surfaces

indicate the existence of defects in the elastic structure, and lead to the appearance of

nontrivial geometry. Those discontinuities in the displacement vector field, or dislocations,

correspond to a nonzero torsion tensor T i
µν , equal to the surface density of the Burgers

vector25. Setting the criterion for the presence of dislocations to nonzero torsion tensor

allows accounting for punctual defects such as vacancies and impurities. In the first case

a ball is cut from the Euclidean space and the boundary sphere is shrunk to a point (Fig.

2.18). In the case of impurity, a point of the Euclidean space is blown up to a sphere and

the produced cavity is filled with the medium [217].

Disclinations on another hand, arise from discontinuities in the order parameter field (see

Fig. 2.19), have already been accounted for within gauge approaches based on the rotational

24The elastic solid without defects is assumed to be a continuous, infinite medium, whose undeformed
state is characterized by a flat Euclidean metric δij . Ordinary elasticity theory [216] attaches a Cartesian
reference xi to the undistorted medium and describes its deformations locally by the displacement vector field
ui(x), which is a smooth function. This way, after the deformation, the point xi will have the coordinates
yi = xi + ui(x) in the initial Cartesian frame, and from the mathematical standpoint this map xi 7→ yi by
itself is the diffeomorphism of the Euclidean space R3.

25Indeed, the lack of a preferred Cartesian coordinate frame stemming from the lack of symmetry asso-
ciated to the presence of a defect implies an invariance of the Burgers vector, expressed as the integral of
the displacement vector along a closed contour surrounding the dislocation axis, under arbitrary coordinate
transformations. This invariance requires the consideration of the components of the displacement vector field
with respect to the orthonormal basis in the tangent space. Resorting to Cartan formalism, the torsion tensor
acquires the physical interpretation of the surface density of the Burgers vector bi =

∫∫

dxµ ∧ dxν T i
µν
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Fig. 2.18: Point defect: a vacancy appears when a ball is cut out from the medium, and the
boundary sphere is shrunk to a point (after Katanaev [217]).

group SO(3) in spin glass models[21, 194, 197] (Section 2.1.4.3). Geometrically, the surface

density of the Frank vector of a disclination is associated to the curvature tensor26 Rij
µν [217].

Fig. 2.19: Vector field distributions on the plane x1,x2 for linear disclinations parallel to the
x3 axis. The length of the Frank vector |Θ| is equal to the total angle of rotation
(multiple of 2π) of the field as it goes around the disclination. In the left panel
|Θ| = 2π, whereas in the right panel |Θ| = 4π (after Katanaev [217]).

2.2 Methodology

2.2.1 Postulate of a gauge theoretical approach for relaxors

The phase structure of relaxor ferroelectrics is obviously not captured by the notion of local

order parameter, such as the polarization, on account of the existence of at least two differ-

ent phases in the paraelectric region. Whereas at short range, the local symmetry is polar,

and the atomic shifts [7–9] from their ideal cubic symmetry positions are correlated, at long

range, the global symmetry is cubic due to the statistical atomic disorder that results in a

spatially variable polarization, yielding zero net global polarization. The relaxor behavior is

thus contained within the paraelectric phase. Deviations from mean field expectations have

26Indeed, every linear disclination is characterized by the Frank vector Θi = ǫijkΩ
jk, where ǫijk is the

totally antisymmetric third-rank tensor and Ωjk the integral of the spin structure or displacement field along
closed contour surrounding the disclination axis. By identifying the rotation matrices field (associated to that
of the spin structure) with a SO(3) connection, Katanaev gives the physical interpretation of the curvature
tensor as the surface density of the Frank vector Ωij =

∫∫

dxµ ∧ dxν Rij
µν .
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been associated with the onset of the relaxor behavior at Td [82], and several propositions

have been made in an attempt to define characteristic temperatures, invoking for instance

random bonds or/and random fields models [64, 99, 122, 219, 220], or conceptually resorting

to spatially modulated phases [62–65] or Griffiths phase [5, 153]. It was indeed very early

realized that in relaxors, where intrinsic quenched randomness exists in form of defects, impu-

rities or as a general structural property, the disorder stemming from spatial heterogeneities

is substantial, in that it is an integral part of their characteristics. In certain circumstances,

even a weak disorder can have a crucial effect on their critical behavior, by altering the sta-

bility of the low-temperature ordered phase, and inducing non-trivial properties governed by

rare regions [2, 5, 166]. A local order parameter does not lead to any information, since by

construction it averages over local fluctuations and overlooks the scale inhomogeneities. As

well appreciated, both the physical dimension of a system and the symmetry of its degrees

of freedom condition its propensity to undergo a phase transition. For example, continuous

symmetries for two-dimensional theories with finite range interactions [184] and local sym-

metry based theories [14, 186] cannot exhibit spontaneous symmetry breaking [172, 183], yet

it is possible to account for the different encountered phases at the expense of introducing

nonlocal quantities. Whereas in the first case, the Kosterlitz-Thouless transition (KT) is

captured by the correlation function whose dependence on distance changes from an expo-

nential decay at high temperatures, to a power law decay below TKT [184], in the case of

gauge theories, it is the Wegner-Wilson loop that encodes the non-local features of the the-

ory [14, 186]. Let us note that in both cases nontrivial topological properties are crucially

involved27 (binding-unbinding of vortex-antivortex pairs [184], ’t Hooft-Polyakov monopole

[173–177]). Revealing the relaxor behavior might thus necessitate the consideration of more

complex symmetries, whose inability to be described by local order parameter would never-

theless capture the encountered phases.

Driven by these fundamental considerations, we argue that the disorder-induced nontrivial

interplay between local and global scales in relaxors can be captured within the framework

of the local gauge symmetry. Our proposition is further motivated by the large success of

the concept of a gauge field in condensed matter physics, beyond its original formulation by

Wegner as a probing tool of phase transitions without local order parameter [14], as a mean

to account for glassy behavior and various kinds of topological defects.

We consequently propose a new scheme based upon the first-principles-derived effective

Hamiltonian approach, local symmetry, and lattice gauge theory to describe and analyze

relaxor behavior, emphasizing the role of disorder and the importance of local gauge invari-

ance. This theoretical framework is then applied to a specific relaxor, namely, disordered

(Pb1−3/2xLax)(ZryTi1−y)O3 solid solutions.

27It was firstly observed by Anderson [13] that a second order phase transition is characterized by the
breakdown of a generalized rigidity (i.e. the breakdown of the spatially uniform symmetry breaking), with a
proliferation of defect structures, thus connecting critical behavior to geometrical properties of defects.
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In this section, we will start by reviewing the theoretical background related to the mi-

croscopic modeling of ferroelectrics, namely, the first-principle based effective Hamiltonian

construction. We will then present the gauge-modified effective Hamiltonian for relaxors.

2.2.2 Density functional theory

Ab initio methods (also referred to as first-principles methods) are used to predict the proper-

ties of materials by resolving quantum mechanics equations without any adjustable variables.

Among ab initio methods, the density-functional theory (DFT) in its earliest formulation by

Hohenberg, Khon and Sham [221, 222], consists in a reformulation of the many-body quan-

tum problem in a problem solely depending on the electronic density. This reduction of the

problem enables the access by calculations to the ground state of a system involving a large

number of electrons. Thus DFT offers both conceptual simplicity and computational effi-

ciency (see Appendix B). However, let us stress that first-principles methods are essentially

restricted to the study of the zero-temperature electronic and structural properties.

2.2.3 Effective Hamiltonian for ferroelectrics

First-principles approaches, based upon a full solution for the quantum mechanical ground

state of the electron system within the framework of density functional theory, have shown

to yield highly accurate material-specific microscopic information, enabling the investiga-

tion of the origin of the behavior of a wide variety of system at the atomic-scale. These

methods are free of empirically adjustable parameters, as they take as their only inputs the

atomic numbers of the constituent atoms, thereby overcoming the oversimplifications related

to inherent limitations of phenomenological models that are usually constrained by the avail-

ability of experimental data. However, first-principles methods are essentially restricted to

the study of the zero-temperature electronic and structural properties, while phase transi-

tions for instance require finite-temperature treatment. Despite this temperature limitation,

first-principles methods constitute a foundation to a computational scheme combining the

advantages of density functional theory predictions together with temperature dependent

expansion within the so-called first-principles effective Hamiltonian approach.

In order to overcome the lack of temperature dependency in DFT predictions, a

first-principles effective Hamiltonian approach had been proposed by K. Rabe and

J.D. Joannopoulos in order to study the displacive phase transition of GeTe [225, 226].

Their approach consisted in (i) identifying the relevant degrees of freedom for describing

the transition though the local mode approximation of Lines [36] that incorporates lattice

instabilities, and (ii) performing a low-order expansion of the energy in terms of these de-

grees of freedom, with coefficients directly determined from total energy DFT calculations
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within a well-established procedure [230]. This model was then successfully generalized to

ferroelectric perovskite oxides by W. Zhong, K. Rabe and D. Vanderbilt [12, 227, 228]. In

what follows, we briefly summarize the effective Hamiltonian approach as it was developed

for ferroelectric bulk simple perovskites.

Fig. 2.20: Perovskite cubic structure ABO3, where A and B atoms are respectively located
at the corners and in the center of the cube. The octahedra connect O atoms.

2.2.3.1 General framework

Perovskite structure oxides (Fig.2.20) exhibit a wide range of low temperature structural

distortions associated with lattice instabilities of the prototype cubic structure. This class of

materials includes a large number of ferroelectrics, characterized by uniform polar distortions

and associated lattice relaxation.

Both experiments and first-principles calculations suggest that ferroelectricity involves only

small atomic displacements and strain deformations from the equilibrium cubic structure.

The first fundamental approximation is thus to represent the energy surface, i.e. the total

potential energy, by a Taylor expansion around the high-symmetry cubic perovskite structure,

including fourth-order anharmonic terms, required to stabilize the low-symmetry ferroelectric

phase.

The second approximation follows the soft-mode theory [59] and thereby allow the identi-

fication of the relevant degrees of freedom as the unstable phonons of the high-symmetry

reference structure, which freeze in to produce the low temperature distorted structure. This

approximation simplify the expansion by reducing the number of degrees of freedom per cell

from 15 (3 acoustic and 12 optical normal-mode coordinates per k points) to 6, that is the

lowest transverse-optical TO modes (soft-modes) and the long-wavelength acoustic phonons

(strain variables η). Since the contribution to the partition function decreases exponen-

tially with increasing energy, these low-energy phonon excitations enable the obtainment of
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a simple effective Hamiltonian yielding accurate partition function for studying equilibrium

properties at low temperatures.

The effective Hamiltonian therefore acts in the restricted subspace defined by the branches

containing the unstable phonons, and consists in a low-order Taylor expansion of the bulk

energy around the cubic phase28 in terms of these relevant degrees of freedom, expansion

which coefficients are determined from first-principles calculations. The lowest transverse

optical phonon, or soft-mode, denoted u, characterizes the collective displacements inside a

given primitive cell and can be written as:

ujα =
∑

τ

ξτα(j, α)v
τ
α (2.48)

where ξτα is the eigenvector of the soft mode phonon and vτα are components of the displace-

ment vector. α goes over x, y, z respectively, τ runs over the different atoms in the unit cell

and j is the cell index.

2.2.3.2 Construction of the effective Hamiltonian

With these two fundamental approximations, the effective Hamiltonian consists of five

parts[12, 227, 228]: a local mode self energy, a long-range dipole-dipole interaction, a short-

range interaction between soft modes, an elastic energy, and an interaction between the local

mode and the local strain:

Etot = Eself({u}) + Edip({u}) + Eshort({u}) + Eelas({ηl}) + Eint({u}, {ηl}) (2.49)

where u is the soft mode local amplitude and ηl is the six-component local strain tensor in

Voigt notation (η1 = e11,η4 = 2e23).

Local mode self energy The first term corresponds to the local mode self energy:

Eself({u}) =
∑

i

E(ui) (2.50)

where E(ui) is the energy of an isolated local mode at cell Ri with amplitude ui, relative to

that of the perfect cubic structure. Since ferroelectrcity is intrinsically an anharmonic phe-

nomenon, the expansion contains harmonic and anharmonic contributions up to the fourth

order at least:

E(ui) = κ2u
2
i + αu4i + γ(u2ixu

2
iy + u2iyu

2
iz + u2izu

2
ix) (2.51)

28only even-order terms are allowed by the cubic symmetry
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where ui are local soft-mode vectors in each 5-atom cell i (directly proportional to the local

electric dipole moment centered in cell i), ui = |ui| and κ2, α, and γ are expansion parameters

obtained by fitting first-principles results.

Dipole-dipole interaction The second term represents long-range interactions between

local modes. The dipole moment associated with the local mode in cell i is di = Z∗|ui|, where
Z∗ is the Born effective charge for the soft mode. Z∗ is calculated from the eigenvector of

the soft-mode [231]:

Z∗ = ξAZ
∗
A + ξBZ

∗
B + ξO‖Z

∗
O‖ + 2ξO⊥Z

∗
O⊥ (2.52)

The dipole-dipole energy is written as:

Edip({u}) = Z∗2

ǫ∞

∑

i<j

uiuj − 3(R̂ij .ui)(R̂ij .uj)

R3
ij

(2.53)

where ǫ∞ is the optical dielectric constant, Rij = |Rij |, Rij = Ri −Rj and R̂ij = Rij/Rij .

In practice, for three-dimensional systems with periodic boundary conditions, an Ewald con-

struction is used to evaluate Edip. It can then be written as:

Edip =
∑

ij,αβ

Qij,αβui,αuj,β (2.54)

with Q being a matrix:

Qij,αβ =
2Z∗2

ǫ∞




π

Ωc

∑

G 6=0

1

|G|2 exp
(

−|G|2
4λ2

)

cos(G.Rij)GαGβ − λ3

3
√
π
δαβδij



 (2.55)

where G are the reciprocal lattice vectors, Rij are the lattice vectors joining sites i and j,

Ωc is the volume of the unit cell and λ denotes the decay of the Gaussian function, or Ewald

parameter. Another approximation increasing the computational efficiency is performed by

fixing G and Ri, the atomic position vectors, that is by neglecting the strain dependency of

Rij . Thus Q is treated as a constant. α and β denote Cartesian components, i and j run

over the cells. and z respectively, i and j run over the cells.

Short-range interaction For the short-range interaction between neighboring local

modes, quadratic interactions up to third nearest neighbors with the most general form

allowed by the space group symmetry are considered. This contribution yields

Eshort({u}) = 1

2

∑

i 6=j

∑

αβ

Jij,αβuiαujβ (2.56)
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where Jij,αβ is the coupling matrix which can be simplified by symmetry consideration. It

is a function of Rij and decays quickly with increasing |Rij |. For a cubic lattice, there

are only seven interaction parameters j1, · · · , j7 determined from first-principles calculations

and schematically depicted in Fig. 2.21. The couplings matrices for 1st, 2nd and 3rd nearest

neighbors (NN) are given by:

1st NN : Jij,αβ = (j1 + (j2 − j1)|R̂ij,α|)δαβ (2.57)

2nd NN : Jij,αβ = (j4 +
√
2(j3 − j4)|R̂ij,α|)δαβ + 2j5R̂ij,αR̂ij,β(1− δαβ) (2.58)

3rd NN : Jij,αβ = j6δαβ + 3j7R̂ij,αR̂ij,β(1− δαβ) (2.59)

where R̂ij,α is the α component of Rij/Rij .

Fig. 2.21: Independent intersite interactions corresponding to the parameters j1, j2 (first
neighbor), j3, j4, j5 (second neighbor), and j6, j7 (third neighbor). (After Zhong
et al. [226]).

Elastic energy The fourth term in the energy sum is the elastic energy which accounts

for both the homogeneous ηH and inhomogeneous ηI strains:

Eelas({η}) = Eelas
I ({ηI}) + Eelas

H ({ηH}) (2.60)
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Using the Voigt convention, η1 = ηxx, η2 = ηyy, η3 = ηzz, η4 = ηxz, η5 = ηyz and η6 = ηxy,

the homogeneous strain can be written as:

Eelas
H ({ηH}) =

N

2
B11(η

2
H,1 + η2H,2 + η2H,3)

+ N B12(ηH,1ηH,2 + ηH,2ηH,3 + ηH,3ηH,1)

+
N

2
B44(η

2
H,4 + η2H,5 + η2H,6) (2.61)

where B11, B12 and B44 are elastic constants determined from first-principles calculations,

and N the number of primitive cells composing the supercell. The inhomogeneous term

is better expressed in terms of dimensionless local displacements v(Ri). Translation and

rotation invariances require the expansion of the energy in terms of differences between the

v(Ri):

Eelas
I =

∑

i

{γ11[vx(Ri)− vx(Ri ± x)]2

+ γ12[vx(Ri)− vx(Ri ± x)][vy(Ri)− vy(Ri ± y)]

+ γ44[vx(Ri)− vx(Ri ± y) + vy(Ri)

− vy(Ri ± x)]2 + cyclic permutations} (2.62)

corresponding to bond stretching, bond correlation and bond bending, respectively, with

x = ax̂, y = aŷ and z = aẑ. The γ coefficients are related to the elastic constants by

γ11 = B11/4, γ12 = B12/8 and γ44 = B44/8.

Elastic-mode interaction The last term in the energy form is the contribution stemming

from on-site elastic strains and local modes interaction29:

Eint({u}, {ηl}) =
1

2

∑

i

∑

lαβ

Blαβ ηl(Ri)uα(Ri)uβ(Ri) (2.63)

Cubic symmetry considerations yield three independent coupling constants Blαβ :

B1xx = B2yy = B3zz

B1yy = B1zz = B2xx = B2zz = B3xx = B3yy

B4yz = B4zy = B5xz = B5zx = B6xy = B6yx (2.64)

2.2.3.3 Generalization of Heff to mixed compounds

The effective Hamiltonian approach is not restricted to pure ABO3 compounds and can

be generalized to solid solutions, such as PbZr1−xTixO3 (PZT) [233, 234] or to the relaxor

29This term is particularly important in ferroelectrics and, for instance, at the origin of the piezoelectric
response.
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PbSc1−xNbxO3 (PSN) [47, 232, 235].

For such A(B′B′′)O3 compounds, the generalization consists in (i) considering an averaged

Hamiltonian within the virtual crystal approximation [236, 237] accounting for the energy of

a hypothetical Pb〈B〉O3 system in which 〈B〉 is a virtual atom averaging between B′ and B′′

and (ii) including first-order correction terms that take into account the real nature of atom

on the B-site, i.e., B′ or B′′. The total energy is thus written as a sum of two energies and

has the form

E({ui}, {vi}, ηH , {σi}) = Eave({ui}, {vi}, ηH) + Eloc({ui}, {vi}, {σi}) (2.65)

where ui is the local soft mode in cell i, {vi} are the dimensionless local displacements which

are related to the inhomogeneous strain variables inside each cell, ηH is the homogeneous

strain tensor, and {σi} is the set of variables characterizing the atomic configuration of the

alloy (σi = 1 for B′ and -1 for B′′).

The average term Eave depends only on the soft mode and strain variables, and has the

same analytical expression as Eq.(2.49). It thus consists of five parts: a local-mode self-

energy, a long-range dipole-dipole interaction, a short-range interaction between soft modes,

an elastic energy, and an interaction between the local modes and local strain. Eave is fitted

as previously described for simple compounds only from DFT calculations performed on a

uniform virtual system Pb〈B〉O3 that compositionally averages the potentials of the pure

parent compounds

VVCA = (1− x)VPbB′O3 + xVPbB′′O3 (2.66)

The local corrections term Eloc involves the {σi} parameters and includes (i) on-site effect

of alloying on the self-energy up to the fourth order in the local-mode vector ui, and (ii)

intersite contributions linear in ui and in vi:

Eloc({ui}, {vi}, {σi}) =
∑

i

[
∆α(σi)u

4
i +∆γ(σi)(u

2
ixu

2
iy + u2iyu

2
iz + u2izu

2
ix)
]

+
∑

ij

[Qji(σj)eji.ui +Rji(σj)fji.vi] (2.67)

where eji and fji are unit vectors joining site j to the center of ui and vi. The parameters

∆α(σi), ∆γ(σi), Qji(σj) and Rji(σj) are derived by performing first-principles calculations

on small supercells in which a true atom is surrounded by virtual atoms.
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2.2.3.4 Physical properties

Once the effective Hamiltonian is fully determined, it can be subjected to classical Monte

Carlo [12, 227, 238, 240] or molecular dynamics [241] simulations in order to access finite-

temperature properties of the considered materials30.

Such calculations are usually performed with periodic boundary conditions and typically re-

quire 12×12×12 supercell. As an output, one can access the mean values 〈u〉 and 〈η〉 in terms

of temperature, external pressure and electric field. The macroscopic polarization is also ac-

cessible since it is directly proportional to the amplitude of the local mode Pi = (1/Ωc)Z
⋆ui

where Z⋆ is the Born effective charge of the mode and Ωc is the unit cell volume. In addition

to the phase transition sequences and transitions temperatures, simulations also give direct

access to the temperature dependence of various functional properties such as dielectric and

piezoelectric responses (through the correlation function approach [245]).

Among the achievements enabled by the first-principles-based effective Hamiltonian approach

has been the quantitative assessment of the ferroelectric instability. Following the initial idea

of Cochran [59], the ferroelectric instability of ABO3 compounds can be regarded as a col-

lective phenomenon arising from the competition between short-range covalent repulsions

which favor the cubic phase, and long-range Coulomb interactions which favor the ferroelec-

tric state. Beyond the qualitative picture, first-principles effective Hamiltonian simulations

allowed to reinvestigate this model and to enhance the microscopical understanding of the

interplay between electronic and dynamical properties in generating the ferroelectric insta-

bility.

ABO3 perovskite structures can be subject to competing structural instabilities. The two

most common instabilities result from the softening of either a polar zone-center phonon

mode, leading to a FE phase, or the softening of a non-polar zone-boundary mode involving

rotations of oxygen octahedra, leading to an antiferrodistortive (AFD) phase. When different

kinds of instabilities are present and compete with each other, the effective Hamiltonian

model can be extended in order to include properly all the relevant ionic degrees of freedom,

such as antiferrodistortive degrees of freedom [238, 239]. Polar and non-polar instabilities

compete in a delicate way and tend to suppress one another, yielding rich phase diagrams

showing a large variety of different structures (see for example PbZr1−xTxO3 phase diagram

near its morphotropic phase boundary in Fig. 2.22 [233, 244]).

First-principles-based approach within the effective Hamiltonian framework have also been

used to address the relaxor behavior. Let us report the comparative study of PbSc1/2Nb1/2O3,

a ferroelectric with relaxor-like characteristics, and PbZr60Ti40O3,a normal ferroelectric, by

means of the generalized effective Hamiltonian for mixed compounds [48]. The main con-

30Quantum Monte Carlo simulations have also been reported [242, 243], allowing to assess the effects of
quantum fluctuations on structural phase transitions
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Fig. 2.22: Phase diagram of PbZr1−xTxO3 near the MPB, as predicted by a first-principles-
derived scheme that incorporates ferroelectric and antiferrodistortive degrees of
freedom. In addition to recovering five of the well-known expected phases (namely,
the paraelectric Pm3̄m, FE rhombohedral R3m, FE tetragonal P4mm, FE mon-
oclinic Cm, and the rhombohedral R3c phases), accounting for both FE and AFD
motions leads to the prediction of a sixth phase, a monoclinic Cc ground state
at intermediate T i compositions, thereby resolving controversies about its nature.
Moreover, a seventh phase I4cm emerges as a discovery for the largest displayed
T i compositions. (After Kornev et al. [244]).

Fig. 2.23: Properties of PZT (open dots), and PSN (filled dots), as a function of T/Tm. Panel
(a) shows one third of the trace of the dielectric susceptibility tensor directly
obtained from MC simulations. Dots in panel (b) show the supercell averaged
mean component of the local modes. The arrow in panel (b) emphasizes the
highest temperature at which the polarization begins to develop in PSN (After
Iniguez et al. [48]).

clusions of this study are the following: unlike in PZT, it was found that PSN exhibits a

broad dielectric response and a high-temperature polarization tail (Fig. 2.23). The results

show that the static simulations of PSN reproduce the broad dielectric peak measured in
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relaxors, which implies that the relaxor behavior is not a purely dynamic effect, as it ex-

hibits a static component. Moreover, oscillations across Tm in the case of PSN (Fig. 2.23)

are put in relation with complicated multiminima free energy landscape. Such features are

attributed to the breaking of the macroscopic symmetry at the nanoscale due to the large

internal electric fields associated with the heterovalent PSN alloy. It was concluded that the

broad peak has also a static component, i.e., it is not only due to dynamical effects. The

picture of a macroscopic sample as a collection of noninteracting nanometric regions, each

associated with its own locally large anisotropic internal field, was found to be sufficient to

yield typical static relaxor features.

A recent study [169] aiming at gaining microscopic insight into the properties of

Ba(Zr50,Ti50)O3 relaxor ferroelectric, showed that, in this particular system, turning off

random fields and random strains does not significantly affect the results. On the other

hand, the computations revealed that it is the difference in polarizability between Ti and

Zr ions that leads to the relaxor behavior in BZT. It was found that the average magnitude

of the local modes centered on Zr are much smaller than those centered on Ti, and while

the temperature behavior of the former shows a continuous shrinking of the magnitude with

decreasing temperature, that of Ti on the opposite reveals an enlargement of the magnitude.

Moreover, it was shown that large chemically ordered regions were not necessary to reproduce

the relaxor behavior.

2.2.4 Gauge modified effective Hamiltonian for relaxors

We now provide the methodology pertaining to the gauge-implementation in the effective

Hamiltonian so as to recover the relaxor behavior. The gauge-modified effective Hamiltonian

is then applied to a specific relaxor, namely, disordered (Pb1−3/2xLax)(ZryTi1−y)O3 solid

solutions, extensively studied for their promising characteristics for various applications [155].

These compounds have substitutional disorder on both the A and B sites of the perovskite

structure. The B-site disorder (the replacement of Zr4+ with Ti4+) alone leads to the well

known ferroelectric PZT [233, 244], whereas the additional A-site disorder (the additional

La3+ substitution for Pb2+) can induce the relaxor behavior within a certain concentra-

tion range of lanthanum [166, 246]. Substitution of La3+ for Pb2+ and accompanying A-

and B-vacancies, i.e., 2La3+ →1VPb and 4La3+ →1VZr/T i, can substantially affect the in-

volved energetics by disrupting the balance between competing short and long ranged inter-

actions [247–249].

As already pointed out (chapter 1), in complex structures such as relaxor ferroelectrics,

the condition of balance between competing ordering and disordering interactions has to

be assessed on a local scale rather than on a global one, since the only consideration of

the global scale may conceal the underlying local effects [6]. Indeed, relaxor ferroelectrics
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exhibit significant structural distortions occurring at the local scale that are not reflected

in the average global structure which remains cubic [7–11]. While the average structure

determined by crystallography presents a global view of the structure (point or space groups),

the relevance of the local, short-range point of view to the properties of relaxors has a direct

implication for the method of theoretical analysis.

We thus adopt the local point of view since our approach essentially consists in accounting

for continuous local symmetry, and stands on a generalization of the first-principles-derived

effective Hamiltonian of Ref.[12], so as to incorporate gauge fields, in addition to ferroelectric

and elastic degrees of freedom. Constructed in a manifestly gauge-invariant manner, this

new theoretical framework encompasses the local signature of relaxors and aims at getting

deeper insight into underlying mechanisms. In the following, we will explicit the two main

steps involved in the construction of this model.

2.2.4.1 Gauge-invariant short-range interaction

A crucial feature in our construction thus revolves around the observation that short-range

interactions and local structure play the major role in driving relaxor behavior [7–11].

We are then motivated to restrict the gauge-implementation to the short-range interaction

(Eq.(2.56)) in the effective Hamiltonian.

x

y

z

q2

q3

q1

Fig. 2.24: Schematic illustration of the global directional SO(2) symmetry of the first nearest
neighbors short-range interaction. Local modes vectors attached to the vertices
are omitted. Cylinders, each of which axes coincide with either the x, y or z
direction, represent rotations by angles θ1, θ2 and θ3 respectively (three different
colors). These rotation angles affect all points in the lattice equivalently, i.e.,
they are independent of the lattice point i. Eshort is thus invariant under global
directional SO(2) rotations acting in the internal space of the dipole moments ui

in the plane perpendicular to the linking direction R̂ij .



Chapter 2. Gauge approach for relaxors 104

The short-range interaction among first nearest neighbors features directional anisotropy

(Eq.(2.57)) with respect to which it is readily seen that Eshort displays a global directional

SO(2) symmetry. This is schematically depicted in Fig. 2.24, where depending on the direc-

tion (R̂ij along x, y or z) linking two first nearest neighbors local modes, cylindrical SO(2)

rotation operations (by angles θ1, θ2 and θ3, respectively) such that the axes around which

the rotation is performed coincides with the linking direction R̂ij , leave E
short invariant. In

this case the invariance is global, i.e., the rotation angles θ1, θ2 and θ3 exhibit no spatial

dependence.

The postulate we make resides in the extension of this global symmetry to the local scale,

thus allowing independent transformations of individual ui while the remaining system stays

unaffected. In such a construction, the angles θ1, θ2 and θ3 now acquire a spatial dependence

on the lattice points i, i.e., θ1(i), θ2(i) and θ3(i) (Fig.2.25). This requires the introduction

of compensating gauge fields, needed to ensure the postulated invariance under the action

of the local directional SO(2) group G. The gauge degrees of freedom are then position-

dependent rotational matrices Uij taking values in the gauge group G and assigned to every

link between neighboring sites i and j. They satisfy the condition Uij = U−1
ji and act as

parallel transporters between adjacent sites. Simultaneous transformations operating on

local modes ui 7→ giui and links Uij 7→ giUijg
−1
j with gi ∈ G leave the product uiUijuj

unaltered (Eq.(2.28)).

Fig. 2.25: Schematic illustration of the local directional SO(2) symmetry of the first nearest
neighbors short-range interaction. Local modes vectors attached to the vertices are
omitted. From each lattice site i stem three cylinders, each of which axes coincide
with either the x, y or z direction. These cylinders represent space-dependent
rotations (as many colors as there are rotations) by angles θ1(i), θ2(i) and θ3(i)
respectively, and are associated with the compensating gauge fields that have
been introduced so as to guarantee the invariance of Eshort under local directional
SO(2) rotations acting in the internal space of the dipole moments ui in the plane

perpendicular to the linking direction R̂ij .
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The presence of the additional local gauge symmetry thus implies the form of the coupling

between local modes and gauge fields, the gauge-invariant form of the short-range interaction

yields:

EFE−G({ui}, {Uij}) =
1

2

∑

i 6=j
α,β

Jij,αβuiαUij,αβujβ , (2.68)

with

Uij = exp
(

−iθk(i)T kδ|R̂ij |,k

)

∈ G (2.69)

Here T k are the three SO(3) generators. Uij are elements of the local directional SO(2) group

and can be expressed as 3 × 3 matrices, i.e., Uij are embedded in SO(3). The parameters

θ(i) = (θ1(i), θ2(i), θ3(i)) are specific to each lattice points i with θk(i) ∈ [−π, π). The

requirement of local gauge invariance for Eshort has thus resulted in the introduction of a

rotation Uij with each bond ij31. The effect of the gauged interaction is to favor, energetically,

a certain relative orientation for each pair of interacting local modes, rather than merely

ferroelectric alignment.

The energy of the gauge degrees of freedom can be written as a sum over elementary squares

(plaquettes, Eq.(2.29), Fig. 2.7) of links in the lattice [14, 186]:

EG({Uij}) = k
∑

�

E� = k
∑

�

(

1− 1

3
Tr[U�]

)

, (2.70)

where U� = UijUjkUklUli ∈ SO(3) is the product of transporters around a plaquette, and

k is the coupling parameter, which governs the strength of the gauge field self-interaction.

We note that since Uij matrices need to be chosen with respect to the directional anisotropy

(i.e., the axis of rotations R̂ij are different for these matrices) the product belongs to SO(3).

The gauge-field energy then is a scalar obtained by taking the trace of the product.

The extension of the global directional SO(2) symmetry as featured by the short-range inter-

action among first nearest neighbors to the local scale consequently leads to a gauge-modified

effective Hamiltonian Ẽtot that can be formally cast into the form:

Ẽtot = EFE({ui}, {η}) + EG({Uij}) + EFE−G({ui}, {Uij}) (2.71)

31The effective Hamiltonian respects the cubic symmetry. However some terms in it such as Eshort, possess
a higher symmetry. If all the terms entering in the Hamiltonian were to be made gauge invariant, then the
corresponding gauge group would have been m3̄m⊲ T(3) where T(3) is the 3-parameter translation group,
with at least two different gauge fields [17]. In such a case the resulting gauge group would have been discrete.
This approach is used, for example, to treat disclinations and dislocations in continuum approximation [17]
(section 2.1.5). The restriction of the gauge-implementation to Eshort is an approximation motivated by the
observation that short-range interaction plays a major role in driving relaxor behavior. Unlike the Heisenberg
Hamiltonian, the short-range interaction Eshort in perovskites features directional anisotropy, with respect to
which there is a global and continuous intrinsic symmetry. This is the reason why rendering it local involves
the introduction of matrices (the gauge field) from SO(2) rather than from SO(3).
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with EFE being the energy of the parent PZT system provided in Eq.(2.65)[233, 234], where

{ui} are the local modes, directly proportional to the electrical dipole moments and {η} are

the homogeneous and inhomogeneous strain tensors. EG and EFE−G on the other hand are

the additional terms gathering gauge degrees of freedom {Uij}, and their couplings with fer-

roelectricity. The first-principles obtained coefficients involved in this effective Hamiltonian

are listed in Table 2.26. We note that additional parameters are introduced by the gauge-

implementation, namely, the self-coupling parameter of the gauge field, k, and the angles

parameters θ(i) = (θ1(i), θ2(i), θ3(i)) of the rotational matrices Uij , they will be addressed

in the following section.

Lattice constant (P= −4.68 GPa) a = 7.56

Born effective charge Z⋆ = 7.342

Optical dielectric constant ǫ∞ = 7.15

Soft mode on-site energy κ2 = 0.0138 α = γ = 0

Soft mode 1st NN interaction j1 = −0.00577 j2 = 0.014245

Soft mode 2nd NN interaction j3 = 0.0014016 j4 = −0.00094
j5 = 0.00141

Soft mode 3rd NN interaction j6 = 0.000062 j7 = 0.000031

Elastic constants B11 = 5.22 B12 = 1.67
B44 = 1.215

Elastic - Soft mode interaction B1xx = −0.374 B1yy = −0.1545
B4yz = −0.068

On-site alloying (Zr) σi = 1 (40%
Ti)

∆α = 0.016 ∆γ = −0.022

On-site alloying (Ti) σi = −1 (40%
Ti)

∆α = 0.01 ∆γ = 0.003

Alloy - Soft mode 1st NN coupling Qi1/2 = 0.0008001

Alloy - Soft mode 2nd NN coupling Qi2/(2
√
2) = −0.0001007

Alloy - Soft mode 3rd NN coupling Qi3/(2
√
3) = −0.0000512

Alloy - Strain coupling Ri1/
√
3 = −0.0071997

Fig. 2.26: First-principles derived coefficients in the case of PZT with 60% of Zr and 40%
of Ti [233, 244].

2.2.4.2 Quenched and dynamic contributions to disorder

It is widely believed that both dynamic and quenched defects associated with compositional

inhomogeneities play a major role in the behavior of relaxors. In this second step, we are

therefore led to study an intermediate situation where there is inherent quenched as well as

dynamic disorder. On another hand, local symmetry has proven to be reliable in describing

defects (section 2.1.5) and in probing disorder-induced frustration (section 2.1.4). Specifi-

cally, gauge approaches have been resorted to in order to account for the twofold nature of

disorder, i.e., for its randomly quenched component and its thermally fluctuating dynamical

one (section 2.1.4.3). We here leverage on this ability of gauge approaches to handle such
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features. Within our model, disorder and frustration are provided by a random gauge-field

type of interaction.

Expressly, quenched disorder is introduced via fixing links on the lattice and can be thought of

as arising due to an explicit breaking of the local symmetry. To mimic random La3+-disorder,

we thus fix the rotation angles of adjacent links Uij defining the edges of cubes enclosing

randomly selected A-sites (upper panel of Fig. 2.27 and Fig. 2.28). These quenched links32

Fig. 2.27: Schematic view of two unit cells (cubes) centered around La3+ (a) and Pb2+

(d). Solid lines indicate quenched links, whereas dotted lines signal relaxing ones.
The boundaries of each cube consists of six (b) curved (frustrated) or (e) flat
(unfrustrated) plaquettes. Panels (c) and (f) show the parallel transport of a
vector around a curved and flat plaquette, respectively.

are drawn independently and uniformly from G, so as to introduce genuine frustration33. An

elementary plaquette U� in Eq. (2.70) determines the frustration-induced local curvature34

of the gauge fields, i.e., it measures the difference in orientation of a vector being transported

along the two paths on a plaquette, as depicted in Fig. 2.27(c,f). Each elementary quenched

cube (La3+-containing) consisting of six randomly frustrated plaquettes (Fig. 2.27(b,c)) thus

introduces non-trivial constraints on the gauge field35 which force the system to locally

deviate from energetically optimizing configurations. There is here a mechanism analogous to

that in spin glasses which produces complicated behavior leading to ground state degeneracy.

32By fixing the links around La3+ ions we also assume that the dynamics of the corresponding quenched
defects is much slower then the dynamics of the local modes.

33By frustration of a plaquette, we mean that the angles associated to the four links making up the plaquette
cannot simultaneously minimize all the bond energies for the neighboring local modes in EFE−G (Eq.(2.68)).

34Indeed, in the continuum limit a → 0, the link variable Ui,µ, assigned to the link stemming from the
lattice site i to its nearest neighbor i + aµ̂ in direction µ, can be viewed as exp[aAµ(i)] and the plaquette
variable, U� as exp[a2Fµν(i) +O(a3)], where Fµν is the curvature tensor. The link product is then nothing
but a parallel transporter around a closed loop which determines curvature. In this sense, the 1 − 1

3
Tr[U�]

term appearing in the Wilson action of Eq.(2.70) can be seen as a measure of deviation from flatness. Indeed,
in the case of trivial identity link matrices, the traced plaquette variable amounts to three, yielding vanishing
energy term.

35As a matter of fact, each set of links assigned to the edges of a quenched cube is in violation of the Bianchi
identity [23].
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Fig. 2.28: Schematic view of the random La3+-disorder in the supercell. La3+-containing
unit cells are the elementary blue cubes whose edges are associated to quenched
links.

Other links (defining the edges of Pb2+-containing unit cells, lower panel of Fig. 2.27) are

initially set to identity and treated as fluctuating quantities, i.e., on the same footing as local

modes and the strain36.

We now address that additional parameters introduced by the gauge-implementation, namely,

the self-coupling parameter of the gauge field, k, and the angles θ(i) = (θ1(i), θ2(i), θ3(i)) of

the rotational matrices Uij . Since disorder originates from the randomly quenched gauge field

which are coupled through the k parameter, the gauge term EG can be seen as the energy of

disorder, while the term EFE−G represents the short-range interaction between local dipole

moments in the presence of disorder. Relaxor behavior is thought to precisely arise from the

synergy of competing yet balanced interactions[6]. Asymptotically, a very weak disorder will

leave the system unaffected and the order intact, while a very strong one will preclude any

form of ordering. The two parameters of the model, namely the coupling parameter k and

the angular interval, effectively control the degree of frustration and the strength of quenched

disorder in the system.

Insight into the evolution of disorder is gained by considering Eq. (2.70) as a function of βk

while disregarding all other terms in the effective Hamiltonian, i.e., by pure-gauge consider-

ations. In this case, the probability of a gauge configuration is proportional to exp(−βEG).

Figure 2.29 shows the plaquette energy E� as a function of βk. Let us mention that in a

pure gauge theory, the k parameter entering in Eq. (2.70) can be seen as an inverse temper-

ature with the plaquette energy playing the role of internal energy of the system in analogy

with statistical mechanics [16]. A regime of weak coupling (small k) corresponds to high

36Let us note again that this approach can be put in conceptual relation with that of the gauge glass model
of Dzyaloshinskii and Volovik [21], who endowed the gauge field with both static and dynamic contributions,
the former being associated to the quenched defects while the latter is ascribed to thermal fluctuations, and
thus to thermally produced defects.
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Fig. 2.29: The plaquette energy E� as a function of βk, with k the gauge coupling parameter
and β the inverse temperature, on a 123 cubic lattice with cold start configuration
(i.e. all links are initially set to unit matrices). The temperature is kept fixed at
high values in the course of this simulation. Right and left insets show snapshots of
plaquettes U� that deviate from unity for high and low values of βk, respectively.

temperature, whereas strong coupling becomes equivalent to low temperature. However, the

analogy is only formal and the true physical temperature of the pure-gauge field is zero. On

the other hand, since our interest is to study thermally activated configurations, we need

to introduce the temperature, and this is achieved by considering βk at high temperatures,

T∼ 2000 K. Although no phase transition is expected for this pure-gauge case of Eq. (2.70) in

three dimensions, there is a pronounced crossover region in the plaquette energy, as marked

by dashed lines and indicated by an arrow in Fig. 2.29. The density of frustrated plaquettes

undergoes a rapid change as we proceed through the crossover region marked by dashed lines.

This crossover is thought to be reminiscent of phase transitions occurring in higher dimen-

sions [16, 250]. Clearly, in the asymptotic k → ∞ limit, a starting configuration is frozen-in,

effectively breaking the gauge symmetry and suppressing fluctuations of the link angles θk(i).

This limit thus corresponds to vanishing gauge-disorder.We numerically found that the inter-

play between ferroelectricity and gauge fields is most pronounced when the angular interval

for quenched links37 is [−π/2, π/2] and k is in the crossover region. Technically, since the

energy of a gauge configuration is given by Eq. (2.70), and the probability with which the

thermal fluctuations can generate that configuration is proportional to exp(−βEG), with β

being the inverse temperature, k was chosen such that the product βk is within the crossover

37Three extreme cases for the choice of quenched {Uij} can be pointed out. Indeed, (1) by setting the
links to unity, one recovers the usual ferroelectric model, (2) for G = Z2 the model can be seen as the one
of ferroelectrics with local frustration arising from competing ferroelectric and antiferroelectric interactions,
and (3) we expect that our model with fully quenched random link variables and the corresponding angles,
uniformly distributed between −π and π, is similar to the gauge glass model [200, 251].
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region (see Fig. 2.29) at high temperatures, we found k = 0.05. This value is obtained by

taking kβ = 6.35× T/(3.18 × 105) where T=2500 K corresponds to the non-rescaled fixed

temperature.

As for the distribution of the random gauge rotations associated with the remaining fluctuat-

ing links, those angles to be independent and identically distributed with the Haar measure

(see footnote 16). This describes the case in which all twists are equally possible.

Let us stress that knowing the exact relation between La3+ induced vacancies at A/B-sites

and gauge fields would allow us to calculate the value of k in Eq. (2.70) from first-principles.

Instead, we mimic the presence of defects in the way it is done in the gauge theory of

defects (i.e., by introducing frustration in the gauge field) and check the entire range for the

parameter. We then numerically found the range of values (the crossover region in Fig.2.29)

which leads to relaxor behavior. Calculating the parameter from first-principles and thus

describing the exact relation between La3+ and gauge fields is a challenge and beyond the

scope of this work. Let us also mention that pure-gauge investigations has hinted a value

for the k parameter that is not as fortuitous as it might seem. Indeed, the range of k which

yields competing and balanced interactions is very narrow, and any precise determination of

k would merely result in relatively small corrections.

We would like to stress that the purpose of this work is not to prove a relation between defects

and gauge theories, but rather to answer the question of whether the postulate of a local

symmetry on the leading short-range interaction term in a system where disorder-induced

frustration is provided by a random gauge-field type of interaction, enables to retrieve the

relaxor behavior. Behind this postulate lies the strong belief that such a model would meet

the physics of relaxor ferroelectrics on length scales in which frustration effects dominate.

2.2.4.3 Monte-Carlo simulations

In order to access finite-temperature properties, we use Monte-Carlo simulations, which main

features we here review [253].

Meaningful quantities of a physical system in thermal equilibrium usually involve thermal

expectation value of some observable A(X) which depends on the systems configuration:

〈A〉 = 1

Z

∫

Ω
dkX A(X) exp [−βE(X)] (2.72)

where Z is the partition function

Z =

∫

Ω
dkX exp [−βH(X)] (2.73)
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Ω denoting the (k-dimensional) volume of phase space {X} over which is integrated, E(X)

being the Hamiltonian, and β = 1/kBT , where kB is the Boltzmann factor. In the present

case, the partition function is expressed in terms of the dynamical variables u, η, and U and

takes the following form:

Z =

∫

du dη dU exp
[

−βẼtot(u, η, U)
]

(2.74)

where du and dη denote the integration over ferroelectric and elastic degrees of freedom

respectively, and dU is the integration measure (gauge invariant Haar measure, see footnote

16) over individual link variables taking values in a Lie group. Ẽtot refers to the gauge-

modified effective Hamiltonian given by Eq.(2.71).

This expression is analytically intractable, except for very small lattices38. The probability

distribution p(X) = 1
Z exp [−βE(X)] has a very sharp peak in phase space where all exten-

sive variables A(X) are close to their average values 〈A〉. Hence, when summing over the

configurations it is more important to consider the configurations with larger weight than

those with smaller weight, i.e., the configurations Xn in the vicinity of the peak of this prob-

ability distribution. This goal is achieved by the so-called importance sampling Monte Carlo

method, whose central idea is to approximate the very large sum by a comparatively small

subset of configurations {Xn} of finite number N , sampled according to the weight factor

∝ exp [−βE(Xn)]. The average of an observable A(X) can then be approximated by the

mean value taken by the observable over the N configurations in this sequence:

〈A〉 = lim
N→∞

1

N

N∑

n=1

A(Xn) (2.75)

The statistical error of the result will be proportional to 1/
√
N , and the exact value will be

reached in the limit N → ∞.

Starting from some initial configuration X1, one constructs a stochastic sequence of config-

urations that eventually follows the equilibrium distribution p(X). This is done with the

so-called Markov chain or Markov process

X1 → X2 → X3 → · · · (2.76)

In this Markov chain configurations Xn are generated subsequently39, with the property that

the next state depend on the present state, and does not depend on any other past state. The

change of a field configuration to a new one is called an update, or a Monte-Carlo step. The

38The number of configurations available for a system grows exponentially with its size (This is in relation
with the fact that the entropy is an extensive quantity, proportional to the logarithm of the number of
configuration).

39The index n is often referred to as computer time, not to be mistaken with the Euclidean time of a 4D
spacetime [189].
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Markov chain is constructed such that it visits configurations with larger probability more

often (see Fig. 2.30). The convergence of this Markov process towards thermal equilibrium

is ensured by imposing the condition of detailed balance, which requires that the probability

to reach a given state is the same as that to leave a given state

W (X → X′)p(X′) =W (X → X′)p(X) (2.77)

where W (X → X′) is the transition probability to change from state X to state X′, and

p(X) is the weight of state X.

Fig. 2.30: Schematic sketch of a Markov chain in the space of all configurations. The bound-
ary delimits the space of all configurations. The dots represent configurations
visited by a Markov chain and are connected with straight lines to indicate that
they are visited subsequently. The Markov chain starts in the upper left corner
and then evolves towards the center, where the density of dots is larger. This
corresponds to a region where the Boltzmann factor exp [−βH(X)] is large, and
thus with large probability (After C. Gattringer et al. [189]).

The transition probabilityW (X → X′) still needs to be specified. The widely used Metropolis

algorithm accomplishes both tasks of importance sampling and detailed balance. It proposes

a change in the system state X → X′ and evaluates the energy change ∆E = EX′ − EX. If

∆E < 0 the proposed change is accepted, otherwise it is only accepted with a probability

exp (−β∆E), i.e.

W (X → X′) =

{

1 if ∆E < 0

exp (−β∆E) if ∆E > 0
(2.78)

In this latter case, a pseudo-random number r, selected in the interval between 0 and 1 with

uniform probability distribution, is generated and if r 6 exp (−β∆E) the change is accepted,

otherwise, it is rejected. Let us sum up the steps involved in the Metropolis algorithm:

start Generate an arbitrary initial configuration for all the dynamical variables at all

sites. In the present case, the initial state for the matter field (u,η) is taken to be zero

at high temperature, while that of the dynamical gauge field U is taken to be identity

(cold start).

update & accept/reject Proceeding site by site through the lattice, propose a random

change to each of the dynamical variables and apply for each of the variables the

acceptance/rejection procedure. The local mode is updated according to ui → u′
i =
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ui + dui. The three components of dui are updated at once, the energy difference

between u’i and ui is then computed and submitted to the accept/reject test. The

inhomogeneous strain is updated in terms of the local displacement vector vi → v′
i =

vi+dvi, in same fashion as for the local mode. For each of the three links stemming for

the considered lattice site and pointing in the x̂, ŷ and ẑ directions, the involved angle

is updated from the angular interval [−π, π], and the energy difference between the old

and new configurations is computed and evaluated according to the accept/reject test.

sweep Once all the dynamical variables have been updated and all the sites have been

considered, a final update of the homogeneous strain (the six components of the tensor

at once) is performed, which completes one sweep of the lattice.

Let us note that the acceptance ratio, defined within one sweep for each of the dynamical

variables as the number of accepted updates over the number of sites, allows to adjust the

range of the updates in a next sweep so as to efficiently probe the phase space. Expectation

values are approximated by average values of observables taken over 50000 sweeps after 50000

initial configurations have been discarded to allow for the onset of statistical equilibrium. We

use 12 × 12 × 12 supercells with periodic boundary conditions. This procedure effectively

eliminates boundary effects. However, finite size effects are to be expected since the system

is still characterized by a finite lattice size, as it yields an upper bound for the maximum

value of correlation length. The resulting properties of the system differ from those of the

corresponding infinite lattice. In general all singularities that can occur only in the thermo-

dynamic limit will be rounded, in particular this means that response functions expected to

diverge at the critical point, like the dielectric susceptibility or the specific heat, will instead

reach finite values. Moreover functions which should be vanishing above TC will generally

exhibit a finite tail, as the polarization for instance. And finally, discontinuous jumps oc-

curring across first-order transitions will instead appear continuous with large slopes over

narrow regions.





Chapter 3

Numerical results

We investigate the influence of lanthanum-mimicking quenched spatial disorder on gauge-

modified lead zirconate titanate effective Hamiltonian. Disorder is achieved by the quenching

of gauge variables along edges of randomly chosen unit cells, whose percentage can be seen

as that of the lanthanum substitution for lead, x, effectively yielding PLZT systems. In this

chapter we report the results obtained for PLxZ60T40
1 compositions, with 0% ≤ x ≤ 20%,

whose parent compound, PZ60T40, is a prototypical soft-mode ferroelectric with a rhombo-

hedral FE phase. PLxZ60T40 systems exhibit relaxor behavior arising from compositionally

induced disorder for x ≥ 5%, and upon cooling in the absence of an electric field, a sponta-

neous relaxor-to-ferroelectric transition occurs [155].

3.1 Macroscopic observables

In order to probe the characteristics of PLxZ60T40 systems, the expectation value of observ-

ables (Eq.2.72) is estimated within the Monte Carlo simulations as a simple arithmetic mean

over the Markov chain, or number of sweeps (Eq.2.75). The commonly used order parameter

for dipolar systems is polarization. To compute this quantity, one takes the sum of all the

local modes vectors in the lattice, divided by the number of lattice sites and averaged over

the sweeps

〈u〉 = 1

N
〈

N∑

i=1

ui〉 (3.1)

where i runs over the lattice sites and where N is their total number (N = 123). The

statistical average over sweeps is denoted by 〈 〉. Since ui is directly proportional to the local

electric dipole moment, 〈u〉 is proportional to the polarization.

1Throughout this chapter, we will be using the following PLxZ60T40 notation for lanthanum modified lead
zirconate titanate for convenience.
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3.1.1 Polarization and specific heat

Figures 3.1 to 3.5 depict the temperature evolutions of the specific heat C and the norm of the

statistical average of the local modes, |〈u〉|, for PZ60T40 and PLxZ60T40, with x = 5, 10, 15

and 20%. The specific heat is estimated from energy fluctuations

C =
1

kBT 2
(
〈
E2
〉
− 〈E〉2) (3.2)

where 〈E〉 corresponds to the average over Monte Carlo sweeps of the internal energy E

and
〈
E2
〉
to that of its square, and where kB is the Boltzmann constant. The peak in the

specific heat reflects the onset of a long-range collective behavior and is thus used for the

determination of TC . The norm of the statistical average of the local modes, |〈u〉|, directly
proportional to the norm of the polarization, corresponds to

|〈u〉| = (〈ux〉2 + 〈uy〉2 + 〈uz〉2)1/2 (3.3)

where (〈ux〉 , 〈uy〉 , 〈uz〉) are the Cartesian components of 〈u〉, and where 〈 〉 denotes the av-

erage over sweeps performed on the average over the supercell of the local modes. Regarding

the temperature scale, since the effective Hamiltonian does not include antiferrodistortive

(AFD) motions (associated with the oxygen octahedra rotation [244]), the transition tem-

peratures are shifted upwards with respect to the true ones [155]. In order to provide a better

comparison of our simulation results to experiment, we have linearly rescaled the tempera-

ture (as in Ref [233]), so that the theoretical Curie temperature in disordered PZ60T40 (960

K) coincides with the experimental value of 652 K [155]. From figures 3.1 to 3.5, one sees

that TC (the temperature at which the specific heat peaks) coincides with the inflection point

of |〈u〉|. Moreover, with increasing lanthanum content, the specific heat C broadens while

|〈u〉| exhibits a quasi-linear behavior.

Figure 3.6 is recapitulative of the temperature behavior of |〈u〉| with increasing lanthanum

content. Error bars clearly indicate that whereas the subsisting tail practically reduces to

zero within the error bars above TC for PZ60T40, thus indicating its finite-size effects origin, it

retains a substantial non-vanishing value for PLxZ60T40 systems with x = 5%, 10%, 15% and

20%, that can be ascribed to the nucleation of local order (this is further evidenced by the

temperature evolution of the correlation length shown in Fig. 3.17.). TC lowers monotonically

with the substitution of La, which is in remarkable agreement with the available experimental

data [155]. The account for lanthanum by means of the randomly quenched gauge variables

thus reproduces both the linear Curie point lowering and the drop in magnitude of the

polarization (proportional to |〈u〉|) for increasing lanthanum concentrations.

Figure 3.7 depicts the integral curves for PZ60T40 and PLxZ60T40 with x = 5%, 10%, 15%

and 20% associated to the corresponding local modes vector fields within a given (x, y) plane
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Fig. 3.1: Temperature evolutions of the specific heat (filled symbols) and the scaled polar-
ization (open symbols) in PZ60T40 system. Dotted vertical line corresponds to
TC .
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Fig. 3.2: Temperature evolutions of the specific heat (filled symbols) and the scaled polariza-
tion (open symbols) in PL5Z60T40 system. The inset shows the distribution of the
quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical
line corresponds to TC .

of the supercell at T = 34 K.

Integral curves are a very simple way of conveying the structure of vector fields. By following

the vector field path, they convey this information in an intuitive manner with enhanced

visibility.
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Fig. 3.3: Temperature evolutions of the specific heat (filled symbols) and the scaled polariza-
tion (open symbols) in PL10Z60T40 system. The inset shows the distribution of the
quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical
line corresponds to TC .
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Fig. 3.4: Temperature evolutions of the specific heat (filled symbols) and the scaled polariza-
tion (open symbols) in PL15Z60T40 system. The inset shows the distribution of the
quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical
line corresponds to TC .
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Fig. 3.5: Temperature evolutions of the specific heat (filled symbols) and the scaled polariza-
tion (open symbols) in PL20Z60T40 system. The inset shows the distribution of the
quenched (lanthanum containing) unit cells inside the supercell. Dotted vertical
line corresponds to TC .
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and 20%. The inset shows the variation of the transition temperature TC with
different concentration of lanthanum. Filled symbols refer to the experimental
results of Ref. [155], whereas empty symbols correspond to the results of our
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P0L5Z60T40 P0L10Z60T40

P0L15Z60T40 P0L20Z60T40

P0Z60T40

Fig. 3.7: Integral curves of the local modes (∝ the dipole moments) within a given (x, y)
plane of the supercell at T = 34 K for PZ60T40, PL5Z60T40, PL10Z60T40,
PL15Z60T40 and PL20Z60T40 systems. The integral curves are obtained from the
local Cartesian components (〈ux〉 , 〈uy〉) averaged over sweeps.

Let us briefly recall that integral curves require solving differential equations determined by

vector fields [255]. Let U be a domain of the Euclidean space, and let v be a vector field in

U . The differential equation determined by v corresponds to :

ẋ = v(x), x ∈ U (3.4)

while its solution involves a differential mapping γ : I → U of the interval

I = {t ∈ R, a < t < b} of the real t-axis into U , such that

d

dt

∣
∣
∣
∣
t=τ

γ(t) = v(γ(τ)), ∀ τ ∈ I (3.5)
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In other words, the tangent vector to γ at each point is equal to the value of v at that point.

If the value of a solution γ : I → U at the point t0, a < t0 < b equals x0 , then γ is said to

satisfy the initial condition

γ(t0) = x0, t0 ∈ R, x0 ∈ U. (3.6)

Comparing these integral curves reveals that turning on the gauge degrees of freedom has

drastic effects on the behavior of the system even in the ferroelectric phase. PZ60T40 shows

the uniform configuration that is reached by the pure system, whereas a remarkably high

deviation from perfect ordering exists in PLxZ60T40 systems over a wide temperature range,

even far below the transition point. These non-perfectly ordered regions can be seen as non-

ordered nanodomains in the ordered matrix, which are formed as a consequence of gauge

fields and their fluctuations. Interestingly, the microdomain distribution due to quenched

random-fields and their spatial fluctuations appears to have a rather similar structure [152].

It is then possible that the gauge-induced local ferroelectric disorder gives rise to similar

macroscopic characteristics as the disorder in random fields. This point will further be

addressed in section 3.1.6.

3.1.2 Effects of quenched disorder on the dipoles pattern

A spontaneous question regarding the account of quenched disorder by means of the quench-

ing of the links concerns the influence of the latter on the local modes. We investigate this

matter by first subdividing the local modes population according to whether they are at-

tached to quenched links defining quenched cubes QC (left panel of Fig. 3.8), or to relaxing

links attached to non-quenched cubes nonQC (right panel of Fig. 3.8).

We then define the mean angular deviation between the direction of the local modes ui and

that of the ground-state spontaneous polarization Ps in the following way

1

8NQC

NQC∑

j=1

8∑

i∈QCj

Arccos [ui.Ps] (3.7)

and

1

8NnonQC

NnonQC∑

j=1

8∑

i∈nonQCj

Arccos [ui.Ps] (3.8)

for local modes attached to the nodes of quenched cubes (Eq.3.7), and to those attached

to the nodes of non-quenched cubes (Eq.3.8), respectively. NQC refers the total number of

quenched cubes and NnonQC to that of non-quenched cubes. Fig. 3.9 enables the following

observations.
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nonQCQC

Fig. 3.8: Schematic view of two unit cubes. Left cube has edges corresponding to quenched
links (solid lines) and will be referred to as quenched cube (lanthanum containing)
QC. Right cube has edges associated with relaxing link variables (dotted lines)
and will be reffered to as non-quenched cube (lead containing) nonQC. Each of
QC and nonQC have relaxing local modes attached to their nodes.

For the pure system PZT devoid of disorder, and thus of quenched cubes, the mean angular

deviation from the ground state direction tends to zero with decreasing temperature, thereby

signaling that local modes achieve perfect low temperature ordering. For each of the PLZT

systems on another hand, depending on whether local modes are attached to QC or to

nonQC, their deviation from the ground state direction is more or less pronounced at low

temperatures. Increasing the amount of quenched disorder enhances theses deviations. The

underlying quenched gauge disorder thus affects the local modes by hindering their ordering

process below TC (signaled by vertical dotted lines). The extension of its effect beyond the

local modes directly attached to QC, is due to the correlations developed by the gauge field

and to those developed by the local modes (section 3.1.4). As it will be later shown, it is

also a signature of quenched-disorder-induced non-vanishing density of topological defects

associated to the local modes (section 3.4).

The disordering effect of the partially quenched gauge field on the dipoles pattern is further

illustrated in Fig. 3.10. Both the integral curves associated to the local modes at T = 34 K,

and the location of quenched cubes are shown within a given (x, y) plane of the supercell.

One observes that the propensity to achieving order is more pronounced in regions devoid of

quenched disorder.

3.1.3 Dielectric response and departure from Curie-Weiss behavior

We now turn to the study of the dielectric susceptibility. The dimensionless dielectric sus-

ceptibility χαβ is defined by [256]:

χαβ =
1

V ε0

(
∂uα
∂Eβ

)

T

=
(NZ∗)2

V ε0kBT
[〈uαuβ〉 − 〈uα〉 〈uβ〉] (3.9)
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Fig. 3.9: Temperature evolution of the mean angular deviation between the local modes
ui and the ground-state spontaneous polarization Ps for PZT, PL5ZT, PL10ZT,
PL15ZT and PL20ZT systems. Open symbols denote the deviation as experienced
by local modes attached to non-quenched cubes nonQC, whereas filled symbols
denote the deviation of the local modes when attached to quench cubes QC. Dotted
vertical lines correspond to TC . Insets show the distribution of the quenched cubes
(lanthanum containing unit cells) inside the supercell.

where uα is the α component of the supercell average of the local modes and where 〈uαuβ〉
refers to the statistical average of the product between α and β components of the supercell

average of local modes vectors. N is the number of sites in the supercell, V its volume and

ε0 the permittivity of vacuum. Figures 3.11 to 3.15 show the gradual effect of Lanthanum

disorder on the reduced temperature evolution of the inverse susceptibility 3/(χ11+χ22+χ33).

In the case of PZ60T40 system, the reduced temperature corresponds to T/TC (where TC is

the temperature at which the specific heat peaks), whereas in the cases of PLxZ60T40 systems,

it corresponds to T/Tm (where Tm is the temperature at which the dielectric susceptibility

peaks). For each of the considered systems, we show both the specific heat and the inverse

susceptibility to demonstrate the disorder-induced shift between TC and Tm.
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P0 L5 Z60 T40 P0 L10 Z60 T40

P0 L15 Z60 T40 P0 L20 Z60 T40

Fig. 3.10: Integral curves of the local modes (∝ the dipole moments) within a given (x, y)
plane of the supercell at T = 34 K for PL5Z60T40, PL10Z60T40, PL15Z60T40 and
PL20Z60T40 systems. The integral curves are obtained from the local Cartesian
components (〈ux〉 , 〈uy〉) averaged over sweeps. Straight lined squares refer to in
plane quenched cubes and dotted ones stand for those contained in the upper and
lower parallel planes.

In the case of PZ60T40 system (Fig. 3.11), TC and Tm nearly coincide. Moreover, the in-

verse dielectric susceptibility at T > TC can be well approximated to a Curie-Weiss form

χ−1 = C(T/Θ− 1)γ , with γ ≃ 1 and Θ ≃ TC, indicative of a typical ferroelectric behavior.

We then investigate the origin of the rounding of the inverse susceptibility near TC in PZ60T40

by increasing the simulation box size L (Fig. 3.12). We approximate the behavior of χ−1 to a

Curie-Weiss form χ−1 = C(T −T0), and collect the parameters of the fits (Curie temperature

T0, Curie constant C) above and below the transition [256]. The values of the Curie constants

above and below the transition are predicted from mean field arguments [257] to satisfy

Cbelow = −2Cabove for second-order transitions, whereas for first-order transitions, the values

of Cbelow and 2Cabove are not related in a simple way, generally yielding a |Cbelow|/− 2Cabove
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Fig. 3.11: Temperature evolution of the inverse dielectric susceptibility and the specific heat
for PZ60T40. TC = 652 K corresponds to the maximum of the specific heat and
the reduced temperature refers to T/TC. The inverse dielectric susceptibility at
T > TC can be well approximated to a Curie-Weiss form χ−1 = C(T/Θ− 1)

γ

with γ ≃ 1 and Θ ≃ TC.

ratio larger than one [256]. Results indicate that the extracted Curie temperature T0 are

close but not identical to TC , moreover, the |Cbelow|/− 2Cabove ratio is close to (and slightly

smaller than) 1. In view of this results and of the absence of a jump in the polarization

(Fig. 3.1), we conclude that the rounding can be ascribed to finite-size effects, and that the

ferroelectric transition is close to a second order one.

Figures 3.13 to 3.15 show the temperature evolution of the inverse dielectric susceptibility

and the specific heat for PLxZ60T40 systems, with x = 5, 10 and 15% of lanthanum. In-

verse dielectric susceptibilities at T ≫ TC can be well approximated to a Curie-Weiss form

χ−1 = C(T/Θ− 1)γ with γ ≃ 1 and Θ > TC, indicating a departure from the typical ferro-

electric behavior. Below Td, the data is better fitted with the modified Curie-Weiss law

χ−1 − χ−1
max = C′ (T/Tm − 1)γ (3.10)

with γ ≃ 1.45, 1.69, 1.91, for x = 5, 10 and 15% respectively. The fits were performed on

Ln(χ−1 − χ−1
max) versus Ln (T/Tm − 1), from which the parameter γ corresponding to the

slope and indicative of the diffuseness of the transition was extracted.

The significant broadening of the minima of the inverse dielectric susceptibility with in-

creasing La3+ content as well as the monotonically increasing deviation from the normal

Curie-Weiss behavior quantified by a value of γ > 1 below Td, differing from that associated

with the mean-field approach, are indicative of diffuseness in the phase transition, in agree-

ment with Ref. [258]. Static simulations of PLxZ60T40 thus reproduce the broad dielectric
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Fig. 3.12: Inverse susceptibility of PZ60T40 with varying box size L = 12, 14, 16, 18. Table
indicates the parameters of the fitted values of the inverse susceptibility to the
Curie-Weiss law χ−1 = C(T − T0).
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Fig. 3.13: Temperature evolution of the inverse dielectric susceptibility and the specific heat
for PL5Z60T40. TC ≃ 408 K corresponding to the maximum of the specific heat
and Tm ≃ 442 K corresponding to that of the dielectric susceptibility, are indicated
by vertical dashed lines. The reduced temperature refers to T/Tm. The onset of
deviation from the Curie-Weiss law at Td ≃ 754 K is indicated by a vertical dashed
line.

peak measured in relaxors in low frequency experiments, which implies the existence of a

static component in the smeared peak [169].
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Fig. 3.14: Temperature evolution of the inverse dielectric susceptibility and the specific heat
for PL10Z60T40. TC ≃ 292 K corresponding to the maximum of the specific
heat and Tm ≃ 326 K corresponding to that of the dielectric susceptibility, are
indicated by vertical dashed lines. The reduced temperature refers to T/Tm. The
onset of deviation from the Curie-Weiss law at Td ≃ 455 K is indicated by a
vertical dashed line.
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Fig. 3.15: Temperature evolution of the inverse dielectric susceptibility and the specific heat
for PL15Z60T40. TC ≃ 156 K corresponding to the maximum of the specific
heat and Tm ≃ 176 K corresponding to that of the dielectric susceptibility, are
indicated by vertical dashed lines. The reduced temperature refers to T/Tm. The
onset of deviation from the Curie-Weiss law at Td ≃ 469 K is indicated by a
vertical dashed line.
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3.1.4 Correlation length

We now analyze the temperature evolution of the correlation length, which corresponds to the

length scale over which the fluctuations of the microscopic degrees of freedom are significantly

correlated with each other [259].

Figures 3.16 and 3.17 display the correlation length’s evolution with temperature of the

gauge field, ξg.f., and the local modes, ξl.m., respectively. In the case of the gauge field,

ξg.f. is extracted from the asymptotical decay of the spatial plaquette-plaquette correlation

function

C(d) = 〈TrU�TrU�′〉 − 〈TrU�〉2 (3.11)

where U� and U�′ stand for two plaquette variables facing each other and separated by d

lattice links [260]. In practice ξg.f. is averaged over the three spatial directions x̂, ŷ and ẑ:

ξg.f. =
1

3
(ξx̂g.f. + ξŷg.f. + ξẑg.f.) (3.12)

where for example ξx̂g.f. corresponds to the correlation length extracted from the correlation

function computed for plaquettes facing each other and lying in the (y, z) planes. Let us

note that the obtaining of values for ξg.f. lower than 1 is due to the considered continuum

approximation.
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Fig. 3.16: Temperature evolution of the correlation length of the gauge field ξg.f. for
PL5Z60T40, PL10Z60T40, PL15Z60T40 and PL20Z60T40 systems.

Results indicate a short-range correlated gauge field, with a global drop of the correlation

length with increasing % La content. One also observes a quasi linear decrease of ξg.f. with

temperature, with a slope tending to zero as the disorder content is increased (Fig. 3.16).

Thus the underlying gauge field is not sensitive to structural phase transitions, and does



Chapter 3. Numerical results 129

not display one of its own. Increasing the amount of quenched cubes (i.e. the lanthanum

content) reduces both the correlation length and its range of temperature variation.

The ordering process of the local modes (the matter field), and the eventual crossover from

local, short-ranged correlations to long-ranged ones, can be assessed by the two-points cor-

relation function defined by

G(ri − rj) = G(rij) = 〈ui.uj〉 − 〈ui〉〈uj〉 (3.13)

with ri = (xi, yi, zi) the coordinate of the lattice site i, rij = |rij | the distance between local

modes on sites i and j, and where the first equality reflects the translational invariance due to

periodic boundary conditions. The range in which the direction of one local mode influences

other local modes is given by the correlation length ξl.m., extracted from the asymptotic

behavior of the correlation function at large separations between the local observables:

G(rij) ∝ exp(−rij/ξl.m.) (3.14)

Since a direct estimation of the correlation length from the correlation function is inefficiently

costly, one can alternatively resort to the computation of the second-momentum correlation

length [261], defined by:

ξl.m. =

[
µ2
zµ0

]1/2

(3.15)

where

µ2 =

N∑

i,j=1

r2ijG(rij) (3.16)

is the second moment of the correlation function and µ0 its zero-th moment

µ0 =
N∑

i,j=1

G(rij). (3.17)

z is the number of nearest neighbors, which for a hypercubic lattice equals 2d, with d the

space dimension. For a cubic lattice of size V = L3, the coordination number thus equals 6.

In practice, the moments of the correlation function µ0 and µ2 are computed in the reciprocal

space. Using the decomposition of the correlation function into Fourier modes

G(ri − rj) =
1

V

L−1∑

n1,n2,n3=0

Ĝ(k)eik.(ri−rj) (3.18)

with k = 2π
L (n1, n2, n3), the integration of the correlation function over the lattices sites
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yields µ0 = Ĝ(0) = V (〈u2〉 − 〈u〉2). Numerically, ξl.m. is averaged over the three spatial

directions x̂, ŷ and ẑ:

ξl.m. =
1

3
(ξx̂l.m. + ξŷl.m. + ξẑl.m.). (3.19)

To compute each of those three terms ξx̂l.m., ξ
x̂
l.m. and ξx̂l.m., the Fourier transform of µ2 is

taken at minimal non zero momentum, respectively, kx̂
m = (2π/L, 0, 0), kŷ

m = (0, 2π/L, 0)

and kẑ
m = (0, 0, 2π/L). For example, in the case of ξx̂l.m., equation 3.15 yields

ξx̂l.m. =
1

|kx̂
m|

[

Ĝ(0)

Ĝ(kx̂
m)

− 1

]1/2

(3.20)

Since simulations were performed on finite L3 (with L = 12) systems with periodic boundary

conditions, the maximum value of the correlation length is limited to ≈ L/2, and thus the

resultant properties differ from those of the corresponding infinite lattices. Although finite

size effects smooth the thermodynamic behavior of finite systems whether they pass through

a first order phase transition or through a second order one, it is possible to assess their

strength by examining the maximal value of ξl.m.. Whereas in the pure PZT system, ξl.m. is

found to peak at a value ≈ L/2, thus indicating a finite or bounded signature of divergence,

thereby signaling a second order phase transition together with strong finite size effects,

in the case of PLZT systems, ξl.m. remains lower than L/2, thus signaling smaller finite

size effects together with a probable first-order like thermodynamic behavior (Fig. 3.17).

This latter observation is somewhat in contradiction with the continuous behavior of of the

polarization (Fig. 3.2,3.3 and 3.4), suggesting that disorder gradually turns the transition

into a crossover. We note that with increasing lanthanum content, the maximal value of

ξl.m. decreases, thus supporting the idea of a hindered long-range order owing to disorder

introduction and thereby explaining the decrease in magnitude of the polarization.

Whether quenched disorder affects the critical behavior of an ideal system or not has been

a matter of many experimental and theoretical investigations. Under certain circumstances,

quenched disorder can lead to the destruction of any critical point. In this case, due to the

presence of defects, different parts of the system independently undergo the phase transition

at different temperatures, resulting in a global phase transition smeared by disorder. At

such a smeared phase transition, a unique critical temperature for the entire system does

not exist, as a consequence of which a rounding of the singularities in the thermodynamic

quantities is obtained [262, 263]. The origins of the disorder-induced smearing of the phase

transition and of Griffiths phenomena [153] are very similar, both are caused by rare large

spatial regions which are locally in the ordered phase. The difference lies in the dynamics of

the rare regions.
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Fig. 3.17: Temperature evolution of the correlation length of the the local modes ξl.m. for
PZ60T40, PL5Z60T40, PL10Z60T40, PL15Z60T40 and PL20Z60T40 systems. Dotted
vertical lines refer to the temperatures at which the correlation lengths peak.

Disorder in general decreases the critical temperature TC from its clean (pure counterpart)

value T 0
C . In the Griffiths phase corresponding to the temperature interval TC < T < T 0

C , the

system does not exhibit global order, however, in the limit of an infinitely large system, the

probability of finding an arbitrarily large region devoid of disorder, although exponentially

small, is nevertheless non-zero [153, 262]. Such rare regions can consequently develop local

order, with a true phase transition independently from the bulk. Griffiths has shown that

these rare regions result in a singular free energy in the interval TC < T < T 0
C . They are

endowed with slow dynamics owing to the requirement of a coherent change of the order

parameter over a large volume. Consequently, the long-time dynamics is dominated by these

rare regions [264]. In contrast, disorder-induced smearing occurs if the rare regions actually

develop true static order [262].

However, generically, the effect of disorder on a phase transition is encoded by its spatial

correlation. Subsequently it is possible that a phase transition retains its sharpness even in

presence of quenched disorder, provided that this latter is only short-range correlated. This

is assessed by the Harris criterion [265], which provides a condition enabling the discrimi-

nation between relevant and irrelevant disorder for the critical behavior of the pure system.

Specifically, it states that any d-dimensional pure system undergoing a second order phase

transition with a correlation length exponent ν > 2/d is stable against weak disorder.

In order to gain some insight about the relative effects of quenched disorder on the sharp-

ness of the phase transition, we investigated the correlation length exponent of the PZ60T40

system. We should keep in mind that although PZ60T40 stands as the pure counterpart

of PLZ60T40 systems, replacing Zr with Ti already introduces disorder, so that PZ60T40 is

already disordered though exhibiting a sharp ferroelectric transition.In a study pertaining to
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the critical behavior in ferroelectrics from first principles, a finite-size scaling analysis was

conducted on bulk PZ50T50, whose critical behavior revealed to be (1) strongly deviating

from that given by the mean-field model (ν(PZ50T50) was reported to be different from 0.5,

ν(PZ50T50) = 0.6723), and (2) instead consistent with that associated with the 3D random

Ising model universality class (RIM). Independently, it was shown that the critical behavior

(ν(RIM) = 0.6832) of such random systems appears to be approximately independent of the

impurity concentration, thereby supporting the existence of random Ising universality class

which differs from the one of pure Ising systems [267].
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Fig. 3.18: Temperature evolution of the correlention length of PZ60T40 (cross symbols).
Solid line corresponds to the result of the fit yielding ν(PZ60T40)= 0.664 and
red squares correspond to the Harris threshold critical exponent ν(H)= 0.667.
Dashed line corresponds to the mean field expectations ν(mean field) = 0.5.

Leveraging on both these observations, we started by linearly fitting Ln
(
ξ−1 − ξ−1

m

)
versus

Ln (T/Tξ − 1), with Tξ denoting the temperature at which the correlation function peaks and

ξm its maximal magnitude. We obtained a critical exponent ν(PZ60T40)= 0.664. This result,

although obtained for a 123 lattice, is quite close to (and slightly smaller than) the critical

exponent ν(PZ50T50) = 0.672 reported by finite-size scaling analysis [266]. This likeness

between ν(PZ50T50) and ν(PZ60T40) is rather in agreement with the thesis of a RIM critical

behavior, approximately independent of the impurity concentration [267] (i.e. of the Zr/Ti

ratio). The obtained fit is shown by the solid line in Fig. 3.18. Also shown on this figure is the

curve associated with the Harris threshold critical exponent (red squares), denoted by ν(H)

and equal to 2/d, i.e., ν(H)= 0.667. Parenthetically, we note that while the temperature

interval in close vicinity of the peak is characterized by ν(PZ60T40), the high temperature

region exhibits a deviation from this value, becoming closer to the mean field expectation
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value ν(mean field) = 0.5 (dashed line). Since ν(H) and ν(PZ60T40) nearly coincide, PZ60T40

seems to be on the verge of stability against weak disorder. This observation can explain

why a somewhat sharp ferroelectric phase transition is retained in the weakly disordered

PL5Z60T40, while its dielectric susceptibility already shows a weak departure from the Curie-

Weiss behavior (Fig. 3.13). The question is then how much disorder can the system tolerate

before the transition becomes smeared. Strengthening the disorder by a further increase

of the lanthanum content seems to gradually smear out the phase transition, progressively

changing into a crossover and ultimately destroying it, thus indicating the development of

a spatially inhomogeneous (attested by the drop in magnitude of the global polarization)

quasi-static (attested by the drop in magnitude of the dielectric response) local order.

On another hand, fitting the correlation length in the vicinity of the peak for PL10Z60T40

yielded ν(PL10Z60T40) = 0.612. This result is only a rough estimate of the critical expo-

nent since more careful analysis should involve finite-size scaling procedure. Combining it

with γ(PL10Z60T40) = 1.69 (section 3.1.3) according to the scaling relation 2 − η = γ/ν

implies the anomalous dimension (Fisher critical exponent of the correlation function)

η(PL10Z60T40) = −0.762. It is in rather good qualitative agreement with the available exper-

imental data (η(PL9Z65T35) = −0.865, as extracted from Kallaev et al.’s critical exponents α

and γ for PLZT 9/65/35 [28]). Most importantly, it is negative. According to Fisher [24–26],

a negative η as the one also yielded by Kleemann et al.’s [27] critical exponents β and γ for

strontium barium niobate (SBN61) is unphysical. Interestingly, in gauge theories the proof

of a non-negative η is not applicable due to the non-gauge invariant form of the correlation

function [29–31]. This is in remarkable contrast to the canonical models of relaxors and

also suggests that SBN61 may be described within our gauge model with a suitable gauge

symmetry.

3.1.5 Phase Sequence

We now discuss the structural phase sequence displayed by PLxZ60T40 with increasing lan-

thanum content x = 0, 5, 10, 15, 20% (Fig. 3.19 to 3.23). For each of the systems, we analyze

the temperature evolution of the Cartesian components 〈ux〉, 〈uy〉 and 〈uz〉 of 〈u〉, where
〈 〉 denotes the average over sweeps performed on the average over the supercell of the local

modes. We also report the temperature evolution of the lattice parameters 〈|a1|〉, 〈|a2|〉 and
〈|a3|〉, and that of the lattice angles α, β and γ.

Fig. 3.19 indicates a transition from a high temperature cubic phase to a low temper-

ature rhombohedral ferroelectric phase, in agreement with experimental observations for

PZ60T40 [246]. Left insets of figures 3.20, 3.21, 3.22 and 3.23 show that two of the Cartesian

components are zero within the error bars near TC , thus indicating that PLxZ60T40 systems
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Fig. 3.19: Cartesian components (〈ux〉, 〈uy〉 and 〈uz〉) of 〈u〉 in PZ60T40 as a function of
rescaled temperature [155]. TC corresponds to the maximum of the specific heat
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components are zero within the error bars in the close vicinity of TC . Right side
insets correspond to the temperature evolution of the lattice axes and the lattice
angles.
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Fig. 3.20: Cartesian components (〈ux〉, 〈uy〉 and 〈uz〉) of 〈u〉 in PL5Z60T40 as a function
of rescaled temperature [155]. TC corresponds to the maximum of the specific
heat and is signaled by a vertical dotted line. Left side inset shows that two of
the Cartesian components are zero within the error bars near TC . Right side
insets correspond to the temperature evolution of the lattice axes and the lattice
angles, and indicate a transition from a high temperature cubic phase to a low
temperature monoclinic (MA) ferroelectric phase.

with x = 5, 10, 15 and 20% are tetragonal in the close vicinity of the transition (as exemplified

in Fig. 3.24 for PL5Z60T40 at T = 461K), in agreement with Ref. [270].
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Fig. 3.21: Cartesian components (〈ux〉, 〈uy〉 and 〈uz〉) of 〈u〉 in PL10Z60T40 as a function
of rescaled temperature [155]. TC corresponds to the maximum of the specific
heat and is signaled by a vertical dotted line. Left side inset shows that two of
the Cartesian components are zero within the error bars near TC . Right side
insets correspond to the temperature evolution of the lattice axes and the lattice
angles, and indicate a transition from a high temperature cubic phase to a low
temperature monoclinic (MA) (close to triclinic) ferroelectric phase.
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Fig. 3.22: Cartesian components (〈ux〉, 〈uy〉 and 〈uz〉) of 〈u〉 in PL15Z60T40 as a function
of rescaled temperature [155]. TC corresponds to the maximum of the specific
heat and is signaled by a vertical dotted line. Left side inset shows that two of
the Cartesian components are zero within the error bars near TC . Right side
insets correspond to the temperature evolution of the lattice axes and the lattice
angles, and indicate a transition from a high temperature cubic phase to a low
temperature monoclinic (MB) (close to triclinic) ferroelectric phase.
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Fig. 3.23: Cartesian components (〈ux〉, 〈uy〉 and 〈uz〉) of 〈u〉 in PL20Z60T40 as a function
of rescaled temperature [155]. TC corresponds to the maximum of the specific
heat and is signaled by a vertical dotted line. Left side inset shows that two of
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insets correspond to the temperature evolution of the lattice axes and the lattice
angles, and indicate a transition from a high temperature cubic phase to a low
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Fig. 3.25: Schematic representation of the influence of the lanthanum substitution on the low
temperature structural properties of PLxZ60T40 for increasing lanthanum content
x = 0, 5, 10, 15%.

Moreover, results indicate transitions from a high temperature cubic phase to a low tempera-

ture phase deviating from the rhombohedral one for PLxZ60T40 systems (Fig. 3.25). Whereas

for 0% the ground state is rhombohedral (left panel of Fig. 3.25), with increasing lanthanum

content, the low-temperature phase is in fact monoclinic for x < 15% (MA for 5% and 10%,

MB for 15%) and triclinic for x > 15% rather than rhombohedral (right panel of Fig. 3.25).

Moreover, the unit cell is becoming increasingly metrically cubic in the ground states, with

the maximal angles being approximately 90.75◦ for 0%, 90.58◦ for 5%, 90.41◦ for 10%, 90.25◦

for 15% and 90.06◦ for 20% at low temperatures.

3.1.6 Glassy-like signature and effects of local electric fields

Burns and Dacol have attributed the drop in the temperature dependence of the refractive

index in PL8Z65T35 occurring at a temperature Td, much higher than TC , to the onset

of regions of non-reversible local polarization Pd [82]. They argued that the ferroelectric

transition occurs first in lanthanum deficient regions, and as the temperature is lowered, Pd

and the standard remanent reversible polarization acquire the same magnitude. This view

has motivated glassy-like interpretations of the relaxor behavior within a general picture

according to which, for TC < T < Td and at short range, the local symmetry is polar

and the atomic displacements from their cubic symmetry positions are correlated. The local

regions are dispersed in the disordered host matrix. At long range, the atoms are statistically

disordered and uncorrelated, so that the local polarizations are randomly oriented leading to

a zero net polarization.

In order to enquire whether PLxZ60T40 systems exhibit such features, namely if some local

order can be retrieved within our simulations, we have investigated the temperature depen-

dence of the Edwards-Anderson parameter [81], qEA, that we calculated as in Ref. [169],
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according to

qEA =
〈

〈ui〉2t
〉

i
(3.21)

where the inner averaging is performed on the t Monte Carlo sweeps while the outer one is

made over the i lattice sites. Fig. 3.26 depicts the temperature evolution of both the squared

polarization 〈u〉2 and the Edwards-Anderson parameter qEA for PZT, PL5ZT, PL10ZT,

PL15ZT and PL20ZT systems. The choice of contrasting qEA and the squared polarization is

motivated by the need to compare the local order, encoded by the quadratic in polarization

qEA parameter, to the global one. Moreover, we have rescaled the magnitude of both 〈u〉2

and qEA for all compositions with the maximal magnitude of 〈u〉2 displayed by the pure

PZ60T40 system.

In contrast with PZT and PL5ZT (threshold composition) systems, for which qEA and 〈u〉2

coincide, the cases of PLxZT systems with x > 5% reveal that the qEA parameters are higher

than 〈u〉2 and retain a non-vanishing tail above TC , thus signaling the onset of local order.

This trend is enhanced with increasing lanthanum content, the subsisting tail extends to

higher temperatures while the inflection point shifts to lower temperatures. Moreover, qEA for

x > 5% bears strong similarity with that experimentally measured and theoretically predicted

within the spherical random-bond random-field model for PMN relaxor [268]. One also

observes that the glass transition is not sharp, i.e., it is not possible to define a temperature

above which qEA = 0 and below which qEA 6= 0. Within the SRBRF model that accounts

for the effects of both random fields and bonds, therefore displaying a conceptual link and

a continuous interpolation between the two main interpretations of the nature of the diffuse

phase transition in relaxors, i.e., between a ferroelectric state broken up into nanodomains

due to the presence of random fields, and a glassy state, Blinc et al. have attributed the lack

of sharp glass transition in relaxors to the presence of random fields [99].

We are thus led to the examination of the local fields and their properties. The analysis

can take two possible paths. Whereas the first relies on the electrical nature of the fields,

the second is an attempt of redefinition of the gauge-modified effective Hamiltonian with the

intention of paralleling random-field Ising model.

In the first case, the local electric fields are extracted from the long-range dipole-dipole

interactions between local modes

Edip =
∑

ij,αβ

Qij,αβui,αuj,β (3.22)
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Fig. 3.26: Temperature evolutions of the Edwards-Anderson parameter qEA and squared po-
larization 〈u〉2, for PZT, PL5ZT, PL10ZT, PL15ZT and PL20ZT systems. Dotted
vertical lines correspond to TC (i.e., the temperature at which the specific heat
peaks).

with Q being a matrix treated as a constant. The components of the local electric field on

site i takes the following form

Ei,α =
∑

j,β

Qij,αβuj,β (3.23)

and thus Ei is stemming from the contribution of all the local modes on a given site.
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Fig. 3.27 shows the temperature evolution of the mean angular deviation between the local

modes ui and the local electric fields Ei. The mean angular deviation is defined by

1

N

∑

i

Arccos [ui.Ei] (3.24)

with N the number of sites, and corresponds to the supercell average of the angle between

ui and Ei. Whereas in the pure system PZT, ui and Ei tend towards collinearity at low

temperatures, in PLZT systems, a more pronounced deviation from collinearity sets in at

low temperatures with increasing lanthanum disorder. This is further illustrated by the inset

of Fig. 3.27 that displays superposed low temperature snapshots of both the local electric

fields and the local modes. One can see that the propensity to achieving collinearity is more

pronounced in the ordered regions rather than in the disordered ones. Since the local electric

fields are computed from the local modes, they cannot be put in one to one correspondence

with quenched random fields. However, because of the quenched nature of the introduced

disorder, local modes (directly coupled to the link variables) and local fields (emanating from

the local modes and thus indirectly coupled to the link variables) freeze at low temperatures

in configurations reflecting the disorder content.
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Fig. 3.27: Temperature evolution of the mean angular deviation between the local modes ui
and the local electric fields Ei, for PZT, PL5ZT, PL10ZT, PL15ZT and PL20ZT
systems.Insets show snapshots of the local modes (in blue) and fields (in light
purple) configurations for PL5ZT and PL15ZT at T = 34 K in (x, y) plane.

After having considered orientational effects, we now discuss the magnitude of the local elec-

tric fields. Fig. 3.28 collects the temperature evolution of the mean magnitude of the local

electric fields (upper panel) and of their standard deviation (lower panel) for PZ60T40 and

PLxZ60T40 with x = 5%, 10%, 15% and 20%. We note that 〈|E|〉 globally decreases with
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increasing La content. Moreover, whereas in the case of PZ60T40 the mean magnitude 〈|E|〉
exhibits a minimum at TC , in the case of PLxZ60T40, the minimum is shifted towards T > TC ,

thus indicating the relatively empowered role of the local fields above TC in PLxZ60T40 sys-

tems. The standard deviation indicates that whereas the distribution of the local fields’

magnitude tends to sharpen around the mean value in the case of PZ60T40, a broader dis-

tribution is displayed by the PLxZ60T40 systems, thus appending the orientational disorder

with inhomogeneity in magnitude.

We now turn to the second case, where we abandon the idea of the electrical nature of the

fields, instead relying on their formal definition, that is, a vector field linearly coupled to the

order parameter (local modes) field such as in the
∑

i hiSi term appearing in the random-field

Ising model Hamiltonian:

H = −J
∑

〈ij〉

SiSj −
∑

i

hiSi (3.25)

In order to get more insight into the underlying mechanism and draw parallels with our

approach, we write the gauge-modified short-range interaction term in the following form

EFE−G =
1

2

∑

i 6=j
α,β

Jij,αβuiαUij,αβujβ (3.26)

=
1

2

∑

i 6=j
α,β

Jij,αβuiαujβ +
1

2

∑

j,β







∑

i,α

Jij,αβuiα{
∞∑

k=1

1

k!
Ak

ij,αβ}







︸ ︷︷ ︸

ERF
jβ

ujβ

where we have used the exponential representation of the link matrices and performed its

Taylor series expansion in powers of Aij

Uij,αβ = eAij,αβ = 1+
∞∑

k=1

1

k!
Ak

ij,αβ (3.27)

where depending on the linking direction between coupled nearest neighbors, Aij,αβ takes

one of the following forms

Ax̂ =







0 0 0

0 0 −θ
0 θ 0







Aŷ =







0 0 φ

0 0 0

−φ 0 0







Aẑ =







0 −δ 0

δ 0 0

0 0 0







(3.28)

The latter matrices are the three generators of SO(3) group, multiplied by the corresponding

rotation angles. ERF
iα is constructed according to:

ERF
iα ∝

∑

β

∑

j∈NN

ujβ(Uijαβ − δαβ) (3.29)
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Fig. 3.28: Temperature evolution of the mean magnitude of the local electric fields (upper
panel) and of their standard deviation (lower panel) for PZ60T40 and PLxZ60T40

with x = 5%, 10%, 15% and 20%. Dotted vertical lines refer to TC , obtained from
the maximum of the specific heat.

Let us stress that, despite the formal analogy, since the gauge field is only partially quenched,

the constructed ERF
iα fields are not quenched random fields per se. Indeed, they involve local

modes which are variables quantities, and angles θ, φ and δ, which are quenched only when

associated to the links defining the edges of quenched (lanthanum containing) unit cells.

However, since the links are self-coupled and short-range correlated, ERF
iα has the fingerprint

of quenched local disorder. Fig. 3.29 shows the temperature evolution of the mean angular
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deviation between the local modes ui and the local fields ERF
i . The mean angular deviation

is defined by Eq.3.24. As in the first case, one observes that the deviation from collinearity at

low temperatures increases with increasing quenched local disorder. However, in the present

second case, the deviation is much stronger than the one obtained in the first case. This can

be ascribed to both the derivation of ERF
i in a manner directly involving link matrices which

encode disorder, and the short-range nature of the coupling to local modes.
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Fig. 3.29: Temperature evolution of the mean angular deviation between the local modes ui
and the local fields ERF

i , for PL10ZT, PL15ZT and PL20ZT systems.

This is further confirmed by Fig. 3.30 which depicts the integral curves associated with the

local modes vector field (LM) together with the vectors representing ERF
i (LF) for PL10ZT

at T= 34K and at T= 1358K, within a (x, y) plane. At high temperatures the two vector

fields exhibit uncorrelated disorder. At low temperatures on another hand, while both LM

and LF have gained in order, the one featured by the LF is much weaker thereby attesting its

quenched component. Moreover, one observes that the derived LF tend to bend the integral

curves of the LM, as shown in the encircled regions. Thus these non-genuine self-consistently-

derived local fields nonetheless act as disordering entities.
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Fig. 3.30: Integral curves within a (x, y) plane associated with the local modes (LM) and with
the derived ERF

iα local field (LF) for PL10ZT. The upper and lower panels show
the configurations for T= 34K and T= 1358K, respectively. At low temperatures,
encircled regions illustrate the bending effect of the LF on the LM.
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Fig. 3.31: Icosahedron and its associated planar graph representation. The icosahedron is a
regular polygon of twelve nodes and twenty triangular faces. Its spherical projec-
tion defines a regular tiling of the circumscribing sphere, therefore splitting the
maximal solid angle into twenty equal parts. The numbers appearing in the planar
graph representation of the icosehdraon correspond to a labeling of the faces.

3.2 Clustering of the local modes

We now turn to the investigation of local order, its morphology and its temperature evolution.

To achieve this purpose, we adopt a two-step procedure, consisting in the spatial clustering

of orientational subsets of local modes.

The first step amounts to an orientational partitioning of the local modes population in

orientational subsets. To achieve this partitioning, one needs to define a uniform tiling of

the sphere according to which the local modes will be segregated. A triangulation of the

sphere based on the spherical projection of a regular polygon fulfills such a need. Indeed, it

is circumscribed by a sphere, and the spherical projection of its faces splits the maximal solid

angle into equal parts. Here we choose a twenty-fold tiling, thereby involving the icosahedron

figure (Figures 3.31 and 3.32).

This icosahedron-based spherical triangulation enables the division of the local modes pop-

ulation into twenty subsets corresponding to the spherical projection of the twenty faces.

In order to evaluate whether or not local modes belonging to the same orientational subset
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Fig. 3.32: Theta-Phi diagram of the considered regular triangulation. Each region of the
diagram represents the theta-phi extension of the solid angle associated to the
face. The blue dots correspond to the eight equivalent rhombohedral ground-
state directions. In the chosen labeling, one can see that the [1, 1, 1] direction for
example is assigned to the fifth face.

exhibit spatial clustering in the lattice, we then implement the Hoshen-Kopelman clustering

algorithm [283], for each of the obtained population per icosahedron face. This constitutes

the second step of the procedure, which enables us to systematically extract for each of the

faces, the evolution with temperature of the number of clusters (NCl), their average volume

(V av
Cl ) and their total volume (V tot

Cl ), this latter referring to the total population of a face.

The results are provided by figures 3.33 to 3.37 and discussed therein.

In order to illustrate the previous discussion (figures 3.33 to 3.37), we have extracted

the biggest clusters for PZ60T40 system, just above TC , and for PL5Z60T40, PL10Z60T40,

PL15Z60T40 and PL20Z60T40 systems, for temperatures just above their Tm. One clearly sees

that local order has developed around Tm (section 3.1.6). Moreover, this local order is com-

prised within clusters exhibiting rugged boundaries, as attested by their fractal dimension

that we computed using the box counting method [277, 278] (Eq.3.33). We found that the

fractal dimension all the more deviates from the physical dimension with increasing quenched

disorder.
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Fig. 3.33: PZ60T40: Temperature evolution of the number of clusters (NCl), their average
volume (V av

Cl ) and their total volume (V tot
Cl ) per face. The y axis refers to the

face label, the x axis denotes temperature. Let’s first put our attention on the
high-temperature region. (i) High temperatures are characterized by small values
of NCl, V

av
Cl and V tot

Cl for all faces. Thus spatial correlations are very weak, and
all directions are equivalent. This is merely indicative of full disorder. (ii) While
approaching TC (indicated by a vertical line) from above, one observes signatures
of critical fluctuations, such as emergence of preferred orientations (some direc-
tions are no longer represented while large spatial clusters corresponding to certain
equivalent rhombohedral orientations appear) and scale invariance (indicated by
the fact that differently populated directions acquire equal number of clusters).
(iii) Below TC , up to ∼ 440K, one observes the condensation of only several clus-
ters oriented in [1,−1, 1] and [1,−1,−1] directions (faces 4, 14 and 16). Whereas
the single cluster corresponding to [1,−1, 1] (major phase) direction stands out in
terms of large volume, the clusters with [1,−1,−1] (minor phase) orientation are
numerous and, in contrast, relatively much smaller in volume. This latter observa-
tion shows that below TC the percolation of [1,−1, 1] clusters has been achieved,
however the volume corresponding to the major phase is not simply connected.
This situation is not persistent since a further decrease of the temperature drives
this minor phase to gradually shrink, ultimately disappearing at 440K. (iv) At
temperatures below ∼ 440K the ground state is achieved. It is important to men-
tion that what could appear as a switching of direction is, in fact, only an artifact
of Metropolis Monte-Carlo method.
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Fig. 3.34: PL5Z60T40: Temperature evolution of the number of clusters (NCl), their average
volume (V av

Cl ) and their total volume (V tot
Cl ) per face. The y axis refers to the

face label, the x axis denotes temperature.(i) Qualitatively, the high temperature
region features the same full-disorder characteristics as those featured by the pure
system PZ60T40. (ii) However, on approaching TC from above, a slight difference
emerges in comparison with PZ60T40. The proloferation of clusters is enhanced,
as attested by the increase of both the NCl and V

tot
Cl , while V

av
Cl stays the same

for the two systems. This indicates the emergence of a somewhat shy, short-
range correlated order above TC (iii) Just below TC , the main difference between
PL5Z60T40 and PZ60T40 concerns the dispersion of the major phase around its
rhombohedral direction. Indeed, while the ground state corresponds to [1, 1,−1]
direction (contained in face 8), V av

Cl of faces 7, 15 and 18 stays comparable to that
of face 8 on a wide temperature range, thereby indicating a dispersion around the
ground state direction.(iv) At low temperatures, the aforementioned dispersion
subsists, explaining the drop in magnitude of PL5Z60T40 relatively to PZ60T40.
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Fig. 3.35: PL10Z60T40: Temperature evolution of the number of clusters (NCl), their aver-
age volume (V av

Cl ) and their total volume (V tot
Cl ) per face. The y axis refers to

the face label, the x axis denotes temperature.(i) The high temperature range ex-
hibits full-disorder characteristics. (ii) Above TC and up to ∼500 K, one observes
that for faces labeled by 1, 2 and 3, both NCl and V

tot
Cl gradually increase, while

V av
Cl stays the same. This trend seems of the same nature as that described for

PL5Z60T40, yet monotonical and more pronounced.(iii) Below TC , faces 1, 13 and
20 experience a weak depopulation of their clusters, as attested by the decay of
V tot
Cl . This trend is similar to that described for PL5Z60T40, but weaker.(iv) The

ground state is thus populated by clusters belonging to faces dispersed around
two rhombohedral directions (a main one, [−1,−1, 1] associated with face 3, and
[−1, 1, 1] associated with face 1), making the average symmetry monoclinic (sec-
tion 3.1.5).
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Fig. 3.36: PL15Z60T40: Temperature evolution of the number of clusters (NCl), their aver-
age volume (V av

Cl ) and their total volume (V tot
Cl ) per face. The y axis refers to

the face label, the x axis denotes temperature.(i) The high temperature range
exhibits full-disorder characteristics.(ii) Above TC , faces 6, 14 and 16 exhibit a
monotonical increase of V tot

Cl and of V av
Cl . The fact that V av

Cl also increases in the
case of PL15Z60T40 is an indication of a more developed local order.(iii) Below TC ,
large volumes of differently ordered regions make the ground state direction mixed
between different directions, mainly composed of the directions [1,−1,−1] (faces
6, 7, 14 and 16) and −[1,−1,−1] (faces 10, 20), making the average symmetry
monoclinc on the verge of being triclinic (section 3.1.5).
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Fig. 3.37: PL20Z60T40: Temperature evolution of the number of clusters (NCl), their average
volume (V av

Cl ) and their total volume (V tot
Cl ) per face. The y axis refers to the face

label, the x axis denotes temperature.(i) In this case, disorder extends over a wide
temperature range.(ii) The ground state is strongly mixed, resulting in a triclinic
average symmetry (section 3.1.5).

Fig. 3.38: Biggest clusters of local modes for PZ60T40 system, just above TC , and for
PL5Z60T40, PL10Z60T40, PL15Z60T40 and PL20Z60T40 systems, for temperatures
just above their Tm.
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3.3 Under Pressure

The application of hydrostatic pressure on a system with fixed composition has been ad-

vocated as a suitable probe of the interatomic interactions and thusly of the mechanisms

underlying the relaxor behavior. Indeed, pressure has been shown to be a ”clean” relaxor-

inducing variable. In contrast to the usual approach relying on the change of compositions in

order to drive the onset of the relaxor behavior, pressure on the other hand, without altering

the disorder content, rather enhances its effects by disrupting the balance between long and

short range interactions, favoring the latter and weakening the former [104]. In PLxZ60T40

systems, relaxor behavior becomes discernible above x>%5 [155, 269]. We thus investigate

the influence of pressure on the properties of PL5Z60T40 system. For this composition of

disorder, the system is on the verge of the relaxor behavior [269] and hence constitutes a

good candidate to test whether our model reproduces the expected ferroelectric-to-relaxor

crossover.

3.3.1 Strengthened disorder

Fig. 3.39 provides the effect of various pressures on the evolution with temperature of the

norm of the statistical average of the local modes, |〈u〉| (Eq.3.3), directly proportional to

polarization. The effect of pressure is investigated in the range 0 ≤ P≤ 100 kbar. Increasing

pressure destabilizes the ferroelectric phase. It depresses TC and lowers the magnitude of the

polarization at low temperatures, ultimately preventing the onset of a ferroelectric phase for

high enough pressure (∼100 kbar).
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Fig. 3.39: Influence of pressure on the temperature evolution of |〈u〉| in PL5Z60T40 systems.
Plot of the polarization as a function of T for various pressures in the range
0 ≤ P ≤ 100 kbar.
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Fig. 3.40 corroborates this observation by providing a microscopic insight of the effect of an

increasing pressure on the integral curves associated to the dipole moments field in a (x, y)

plane of PL5Z60T40 system. For the same disorder realization (i.e., the same spatial distri-

bution of quenched disorder), the increasing pressure reveals its substantial disordering effect

in that it engenders gradual deviation from the low pressure quasi-ordered configuration.

1 bar 10 kbar

30 kbar 40 kbar

Fig. 3.40: Integral curves of the local dipole moments within a given (x, y) plane for
PL5Z60T40 at T = 34K under 1 bar, 10 kbar, 30 kbar and 40 kbar for the same
realization of random disorder.

3.3.2 Temperature-Pressure phase diagram

The results displayed in Fig. 3.41 show the influence of pressure on the specific heat and on

the inverse susceptibility. The temperature at which the specific heat peaks is used for the

determination of TC while that at which the dielectric response peaks corresponds to Tm.

Both TC and Tm feature a shift towards lower temperatures with increasing pressure, in a

manner somewhat analogous to the effect of an increasing disorder content. These character-

istic temperatures are collected in Fig. 3.42, which provides the Temperature-Pressure phase

diagram of PL5Z60T40. We find that the shifts of TC and Tm with pressure are characterized

by similar slopes, namely, dTC/dP = −4.85 K/kbar and dTm/dP = −4.66 K/kbar. These

results are fully consistent with those experimentally found by Samara [104] who reports

dTC,m/dP = −5 K/kbar for PL6Z65T35. However, we find no evidence of a relaxor/ferro-

electric phase boundary terminating in a critical point [104]. Let us note that in contrast
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with Ref. [148], our results are in both qualitative and quantitative agreement with those

reported by Samara [104], specifically the pressure range that we investigate is identical to

the experimental one.
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Fig. 3.41: Evolution with temperature of the specific heat (left) and the inverse dielectric
response (right) for PL5Z60T40 under 1 bar, 10 kbar, 20 kbar, 30 kbar and 50 kbar.
The temperature at which the specific heat peaks is used for the determination of
TC while that at which the dielectric response peaks corresponds to Tm.

*

*

*
*

*

ù

ù

ù
ù

ù

P0L5 Z60 T40 * TC
ù Tm

Ferroelectric

Paraelectric

R

0 5 10 15 20 25 30

300

350

400

450

P HkbarL

T
HK

L

Fig. 3.42: Temperature-Pressure phase diagram for PL5Z60T40. Dotted lines delimit the
relaxor region and their slopes are exctracted from linear fits of the TC and Tm
data, dTC/dP = −4.85 K/kbar and dTm/dP = −4.66 K/kbar respectively.

3.3.3 Pressure-induced diffuseness

The decrease of both TC and Tm with increasing pressure points to a manifest similar-

ity between pressure and quenched disorder content. The analogy is further supported by

the rounding of the inverse susceptibility as pressure is increased. Fig. 3.43 shows plots of

Ln(χ−1 − χ−1
m ) versus Ln (T/Tm − 1) in the paraelectric regions for PL5Z60T40 under 1 bar
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Fig. 3.43: Plots of Ln(χ−1 − χ−1
m ) versus Ln (T/Tm − 1) in the paraelectric regions for

PL5Z60T40 under 1 bar and 30 kbar. Linearly fitting the data yields γ ≃ 1 in
both cases for high enough temperatures. As the temperature is lowered slopes
increase, γ ≃ 1.66 and γ ≃ 2.31 for 1 bar and 30 kbar respectively.

and 30 kbar, from which γ (Eq.3.10) are extracted. As temperature is lowered, a departure

from the Curie-Weiss behavior occurs, all the more pronounced with increasing pressure. Ex-

tracted slopes yield γ ≃ 1.66 and γ ≃ 2.31 for 1 bar and 30 kbar respectively, thus signaling

a pressure-induced diffuseness.

3.3.4 Correlation length reduction

As already discussed (section 1.4.1), the analogy between the pressure induced ferroelectric

to relaxor crossover, and the compositionally mediated one is not fortuitous, and has been

ascribed to the decrease of the correlation length ξl.m. in both cases [104]. Increasing the

La content increases the degree of disorder, and effectively reduces ξl.m. (Fig. 3.17). Above

a certain amount of quenched disorder, ξl.m. is sufficiently short, ordered regions do not

percolate and relaxor behavior sets in for T <Tm. The effect of pressure is also to reduce

ξl.m., as a consequence of the pressure dependence of the soft-mode frequency which controls

the polarizability of the system [104]. This interpretation is recovered within our model, as

shown in Fig. 3.44 whose left panel provides the dependence of the correlation length of the

local modes ξl.m. on pressure. The right panel also indicates a reduction of the correlation

length associated to the gauge field ξg.f. when subjected to pressure, similarly to its reduction

with increasing quenched disorder (Fig. 3.16).
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Fig. 3.44: Variation of the correlation length for local modes ξl.m. (left panel) and gauge field
ξg.f. (right panel) fluctuations for PL5Z60T40 showing the influence of pressure.
(Both ξl.m. and ξg.f. are computed according to the method provided in section
3.1.4).

We end this section by reporting the pressure dependence of the density of pairs of topo-

logical defects np (Fig. 3.45). The obtention of topological defects will be later exposed in

section 3.4.1. Topological defects are associated to strong orientational fluctuations of the

order parameter field and hence act as order-destabilizing agents. The main observation

obtained from Fig. 3.45 relates to the shift of the inflection point to lower temperatures with

increasing pressure, thereby supporting and elucidating both the lowering of TC and the

magnitude reduction of the polarization, as experienced by PL5Z60T40 when subjected to an

increasing pressure (Fig. 3.39).
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increasing pressure.
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3.4 Topological defects

In this section, we enquire whether topological defects play a role in the relaxor behavior.

Topologically stable defects are localized excitations that overcome the finite creation energy

associated with them by carrying large configurational entropy. They are known to induce

phase transitions in two-dimensional systems [182], including the superfluid transition in thin

4He films, the superconducting transition in thin metallic films and the melting transition in

two dimensions. They appear as points, lines, surfaces, etc., depending on the models and

dimensionality. Several canonical examples illustrate the role of topological excitations in

bringing about phase transitions. Among them is the Berezinsky-Kosterlitz-Thouless in the

two-dimensional XY model [184]. The role of topological defects has also been investigated

in the three-dimensional Heisenberg transition [276].

Intuitively, since quasi-ordered clusters (section 3.2) exhibit fractal geometry associated with

the strong irregularities of their boundaries, we are led to expect that topological defects

should occur at the contact points between rugged interfaces of differently ordered clusters

(Fig. 3.46). By resorting to such a description, we are somehow adopting the dual view to

that attributing the polarization response to interphase boundaries vibration [79].

Fig. 3.46: Schematic view of the ordered clusters pattern within a plane. Jaggerred perime-
ters cross at contact points, depicted by red points and representing hedgehogs.

3.4.1 Finding hedgehogs

These contact points merely correspond to singularities in the order parameter field. They

are topological defects, or hedgehogs, generated by strong directional fluctuations and thus

positioned at the junctions of differently ordered regions, at isolated points, where the order

changes discontinuously and is thus ill-defined. At low enough temperatures, they can be

seen as reminiscent of the disordered symmetric phase trapped within the lower symmetry
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Q=+1 Q=-1

Fig. 3.47: Schematic view of dipoles configurations showing ideal hedgehogs of charges Q =
+1 (source-like) and Q = −1 (sink-like).

phase. Topological defects carry an integer topological charge referred to as the winding

number, which indicates how many times one meets all possible orientations of the vector

field while moving along an oriented closed surface enclosing the defect core [271]. Adopting

this topological approach, we thus exchange order for disorder as a probe of the relaxor

behavior. We believe that by doing so, at least part of the current complexity is reducible

while the gained information is not.

In order to assign a topological charge within each of the unit cells composing the super-

cell, we follow Ref. [272–274] and first introduce an auxiliary variable, the gauge potential

Aij between any pair of neighboring sites with normalized local modes ui, uj . This is de-

fined by introducing an arbitrary reference unit vector u⋆ and forming the spherical triangle

(u⋆,ui,uj). The edges of the spherical triangle are segments of great circles, and if the

solid angle subtended by this spherical triangle is denoted by Ω [u⋆,ui,uj ], then the explicit

expression for half its area, Aij is

eiAij = e(i/2)Ω[u⋆,ui,uj ] =
1 + u⋆.ui + u⋆.uj + ui.uj + iu⋆.(ui × uj)
√
2(1 + u⋆.ui)(1 + u⋆.uj)(1 + ui.uj)

(3.30)

In practice u⋆ = (0, 0, 1), but a different choice of the reference vector u′
⋆ merely amounts

to a gauge transformation of A: Aij → Aij + χi − χj , where χi = (1/2)Ω [u⋆,u
′
⋆,uj ]. Thus

gauge invariant quantities are independent of the choice of the reference vector. A flux F�

∈ (−π, π] is then defined on every face bounded by the sites (i, j, k, l, i):

eiF� = ei(Aij+Ajk+Akl+Ali) (3.31)

F� is gauge invariant and hence independent of the choice of the reference unit vector u⋆.

The hedgehog topological charge Q enclosed by the unit cube corresponds to the flux out of
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its volume:

6∑

�=1

= 2πQ (3.32)

and is guaranteed to be an integer from the previous definitions. Moreover, this definition ofQ

ensures that the net topological charge (the supercell sum of topological charges associated

to units cells) is always equal to zero in the considered system with periodic boundary

conditions.

3.4.2 Dipoles pattern and hedgehogs network

Following this prescription, we determined the topological charge associated with each unit

cube of the lattice for different local modes configurations. Generally, we found that the

magnitude of the non-zero charges is almost always equal to unity, only a few topological

defects with Q = ±2 (mostly appearing at high temperatures), and none with |Q| > 2

were found. Fig. 3.48 shows integral curves associated with the local modes within a (x, y)

plane for PL5ZT, PL10ZT, PL15ZT and PL20ZT systems at T > Tm, together with the

topological defects computed from the considered local modes configurations and projected

onto the (x, y) plane. One observes that while quasi-ordered regions are indeed devoid from

topological defects, the latter coincide with the vector field singularities, at the junction

between different quasi-ordered regions.

3.4.3 Density of hedgehogs

Fig. 3.49 shows the temperature evolution of the density of pairs of hedgehogs 〈np〉 (averaged
over MC sweeps) for PZT, PL5ZT, PL10ZT, PL15ZT and PL20ZT. The density of pairs

corresponds to the ratio of half of topologically defective cells to the total number of cells

123. The first observation relates to the non-vanishing values of 〈np〉 for x = 10%, 15%

and 10% at low temperatures. The horizontal dashed line indicates the site percolation

threshold pc for pairs for Rubik neighborhood, i.e. for a regular lattice with NN+2NN+3NN

neighborhood [275]. The rapid increase of 〈np〉 near TC is clearly seen in the right figure,

which shows the temperature dependence of the derivative d 〈np〉 /dT of the density of pairs.

As the lanthanum content is increased, the d 〈np〉 /dT peak becomes broader. Dotted vertical

lines in both left and right figures correspond to the temperature at which the derivative

peaks, and are found to be in close vicinity of TC . The remarkable intersection of the pc line

with 〈np〉 at the temperature at which d 〈np〉 /dT peaks enables the following interpretation.

The percolation threshold pc denotes the critical probability above which a cluster spanning

through the whole system appears. Thus in the temperature region above pc, the development

of long-range order is hindered by percolating clusters of topological defects. On the other
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PL5ZT PL10ZT

PL15ZT PL20ZT

Fig. 3.48: Integral curves associated to the local modes vector fields within a (x, y) plane
and projection onto the plane of topological defects (represented by points) for
PL5ZT, PL10ZT, PL15ZT and PL20ZT. Results correspond to T > Tm, specifi-
cally, T = 441K, T = 340K, T = 203K and T = 170K for 5%, 10%, 15% and 20%,
respectively.

hand, in the temperature region below pc, the density of pairs of hedgehogs is such that

long-range ferroelectric order is possible. The case of PL20ZT is of special interest. The

significant value of 〈np〉 as T → 0, and its non-intersection with the pc line totally precludes

the onset of a long-ranged ferroelectric order. Percolation is a purely geometric process which,

when applied to the topological defects population, enables a qualitative understanding of

the destabilizing effect of quenched disorder.

At low temperature the defect pair density is expected to be proportional to exp(−Ea/T ),

where Ea is the minimum energy required to create a pair of oppositely charged defects [276].

Plotting Ln(〈np〉) versus T−1 (Fig. 3.50), and fitting it linearly reproduces the expected form.

The activation energy is found to exponentially decrease with increasing disorder, in agree-

ment with the observed increasing defects proliferation with increasing disorder (Fig. 3.49).
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Fig. 3.49: Temperature evolution of the density of pairs of hedgehogs 〈np〉 (averaged over
MC sweeps) for PZT, PL5ZT, PL10ZT, PL15ZT and PL20ZT (left figure). The
horizontal dashed line indicates the site percolation threshold pc for pairs for Rubik
neighborhood. Right figure shows the temperature dependence of the derivative
d 〈np〉 /dT of the density of pairs. Dotted vertical lines in both left and right
figures correspond to the temperature at which the derivative peaks.
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Fig. 3.50: Plot of the logarithm of the defect pair density versus the inverse temperature for
PZ60T40, PL5Z60T40, PL10Z60T40, PL15Z60T40 and PL20Z60T40. Dotted lines are
linear fits to the data for T < TC. The right figure collects the extracted slopes
of the fit, yielding the evolution of the activation energy (arb. units) with the
percentage of quenched disorder.

3.4.4 Mobility of hedgehogs · · ·

We now investigate the role of topological defects in the relaxor behavior. We are specifically

interested in inquiring whether the relaxor behavior is defect driven or not. Fig. 3.51 indicates

that the structure of the hedgehogs network is ”loose” and that the location of defects varies

in the course of calculations. Hedgehogs, or else singular contact points among differently

quasi-ordered regions (Figures 3.46 and 3.48), are hence spatially fluctuating entities. Their

mobility, indicative of a dynamical nature, dually reflects the fluctuations of boundaries

between differently quasi-ordered regions. This observation can be put in correspondence
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with the breathing model proposed by Glazounov and Tagantsev [79], within which the

polarization response of relaxors is ascribed to the vibration of interphase boundaries, rather

than to the reorientation of dipole moments.

Fig. 3.51: Supercell snapshots of PL5Z60T40, as obtained for three consecutive MC sweeps
at T = 407K. Dark blue cubes are associated to the topologically defective unit
cells whose variable location in the supercell over the sweeps is indicative of a
dynamical nature.

Fig. 3.52: Supercell snapshots of PL5Z60T40, as obtained for six consecutive MC sweeps at
T = 271K. Pale cubes are associated to the quenched (i.e. lanthanum contain-
ing) unit cells and thus display a fixed spatial distribution in the supercell over
the sweeps. Red cubes correspond to quenched unit cells which are also topologi-
cally defective while dark blue cubes are associated to topologically defective unit
cells whose location is different from that of the quenched unit cells. Topological
defects are hence hopping dynamical entities, whose location in the supercell is
not necessarily in correspondence with that of the quenched cells.

As to the influence of quenched disorder on singularities in the dipole moments field, Fig. 3.52

indicates that the spatial distribution of singularities does not necessarily coincide with that
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of the quenched cubes. Fig. 3.53 provides the evolution with temperature of the fraction of

quenched cubes QC carrying a non-zero topological charge NQCQ 6=0
, for PL5ZT, PL10ZT,

PL15ZT and PL20ZT. At high temperature the spatial overlap between these two entities

is significant, nearly 30% of the quenched cubes are found to carry a non-zero topological

charge for all the four systems, i.e., regardless of the amount of QC. This observation can

be attributed to the occurrence of strong thermal fluctuations, which effectively uncouple

the dipole moments from the gauge field. At lower temperatures however, the overlap-ratio

NQCQ 6=0
/NQC more or less decreases dependently on the amount of quenched disorder. This

is closely related to the exponential decay of the activation energy of topological defects with

increasing lanthanum content (Fig. 3.50). Indeed, the number of topological defects induced

by quenched disorder scales exponentially with respect to the latter at low temperatures,

thereby enhancing the probability for a quenched cube to carry a non-zero topological charge.
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Fig. 3.53: Evolution with temperature of the fraction NQCQ 6=0
/NQC of quenched cubes QC

carrying a non-zero topological charge Q 6= 0, for PL5ZT, PL10ZT, PL15ZT and
PL20ZT.
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3.4.5 · · · in a free background

As the temperature is lowered, the mobility of hedgehogs is associated to a decrease of their

density. Hedgehogs hence evolve in a smooth background, whose volume can be obtained

from the ratio of topologically free cells (i.e. those cells with zero topological charge Q = 0)

to the total number of cells 123. This background is denominated by free volume, and since it

is defined as the complementary to the density of topological defects, it is merely indicative of

the maximal potentially ordered volume. The left panel of Fig. 3.54 provides the temperature

evolution of the free volume df.v for different PLxZT systems. Since df.v increases with

decreasing temperature, this suggests an annihilation mechanism among oppositely charged

topologically defective cells. Moreover, a study of the fractal dimension dH was carried out

on the basis of the box counting method [277, 278], that defines the Haussdorff dimension as

a limit

dH = lim
ε→∞

LnNε

Ln(1/ε)
(3.33)

where Nε is the number of boxes needed to cover the free volume and ε is the side length

of the box. For ”loose” structures, the fractal dimension is different from the topological

dimension of the physical space in that it measures the deviation from compactness [279].

The right panel of Fig. 3.54 shows the temperature evolution of the fractal dimension dH of

the free volume df.v. While at high temperatures dH is quasi independent of the lanthanum

content with a value revolving around ∼2.6, quenched disorder content discriminates between

different low temperature values. For the pure PZT system, the fractal dimension of the

free volume reaches the physical dimension 3. Increasing lanthanum content on the other

hand depresses dH , it is only of ∼2.82 for PL20ZT. These observations clearly indicate that

the extent and compactness of the maximal ordered region is hindered by low temperature

persisting topological defects. Moreover, these findings contradict models within which PNRs

are described as compact [99] spherical entities [146]. Let us however stress that in our model,

polar regions are free to appear rather than constrained to exist.

3.4.6 From an hydrodynamic approach · · ·

According to Fig. 3.52, the sinks (Q < 0) and sources (Q > 0) in the dipoles field are not

stationary. They not only constantly dissolve and emerge, but generically propagate through

the system and interact with one another. Defects of opposite topological charge can readily

annihilate one another, reminiscent of the dynamics in nematic liquid crystals [280]. The

lessening of hedgehogs (Fig. 3.49) and their mobility within a smooth and expanding free

volume most likely emanates from an annihilation mechanism. To evaluate the temperature

dependence of the characteristic relaxation times, we resorted to a simple hydrodynamic

description, according to which defects diffuse freely and annihilate instantaneously upon
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Fig. 3.54: Temperature evolution of the free volume df.v (left figure) and of its fractal di-
mension (right figure) for the pure system PZT and different PLxZT systems.

contact [281]. The hedgehog density decays with time according to the rate equation

d 〈n〉
dt

= −2K 〈n〉2 (3.34)

whereK is the reaction rate that describes the propensity of two diffusing defects to interact,
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Fig. 3.55: Evolution with temperature of the density of topological defects 〈n〉. Solid lines
correspond to the 〈n〉 = a+ 〈n0〉 exp[−b/(T − T0)] fits, where T0 are signaled by
dotted vertical lines .

and where the prefactor 2 accounts for the annihilation of two defects upon contact. The

solution of this governing equation yields

〈n〉 (t) ∼ t−1, d > 2 (3.35)

where d is the spatial dimension. Thus the density of hedgehogs decreases as t−1.
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3.4.7 · · · to Vogel-Fulcher’s kinetics law

Consequently, fitting the density of hedgehogs 〈n〉 with

〈n〉 = a+ 〈n0〉 exp[−b/(T − T0)] (3.36)

valid for T>T0 where T0<TC (Fig. 3.55) and using the relation of Eq.3.35 leads to the

following relation between the relaxation time τ and T

τ = τ0 exp[U/k(T − T0)] (3.37)

which is nothing but the characteristic Vogel-Fulcher (VF) relaxation kinetics law [41, 42].

Thus, within our model, the VF law can be immediately derived from a microscopical an-

nihilation mechanism among defects of opposite topological charge which are associated to

strong directional fluctuations in the dipole moments field.

3.4.8 Polarization and deformation

We now investigate whether the topologically charged cells corresponding to singularities of

the dipole moments vector field exhibit elastic deformations. Extracting the unit cell volume

v/v0 from the inhomogeneous symmetric strain tensor η (expressed in Voigt notation 11≡1,

22≡2, 33≡3, 23≡4, 13≡5, 12≡6) according to

v

v0
=

∣
∣
∣
∣
∣
∣
∣
∣

1 + η1 η6/2 η5/2

η6/2 1 + η2 η4/2

η5/2 η4/2 1 + η3

∣
∣
∣
∣
∣
∣
∣
∣

(3.38)

where v0 is the reference volume of the cubic unit cell, we compared the average volume of

topologically charged (with Q=1 and Q=-1) unit cells to the average volume of the zero-

charged unit cells (Q=0).

The results, shown in Fig. 3.56, indicate a systematic deviation of the average volume of

topologically charged cell from that associated to topological defect-free cells. Interestingly,

local structural distortions [82] are reflected in quasielastic diffuse scattering DS appearing

below Td in the vicinity of the Bragg reflections [282]. Consequently, the local volume

fluctuations subtended by topological defects which are computed from the local modes, can

be put in qualitative correspondence with the mixing of polarization and elastic deformation

from which diffuse scattering is thought to originate.
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Fig. 3.56: Evolution with temperature of the average volume of zero-charged unit cells (Q=0)
and of topologically defective cells (with Q=1 and Q=-1) for PL10ZT.

3.4.9 Binding-unbinding mechanism

An important question pertaining to the role of topological defects is whether the observed

proliferation of defects as T increases is accompanied by unbinding of defect pairs. Since

topological charges are additive [271], a hedgehog/anti-hedgehog bound state between op-

posite charges yields a vanishing far field distortion. Indeed, the flux out of any surface

enclosing their core amounts to zero. An unbound state on the other hand can strongly

distort the vector field within a correlation length which depends on the interaction among

hedgehogs and its screening. It is thus important to develop criteria by which one may de-

termine whether a given system is in a bound or unbound hedgehog state. We investigate

this question according to the following procedure.

The hedgehog content of each unit cell is determined by means of the aforementioned method

(Eq.3.32). For each field realization, we thus dispose of the associated hedgehog network

of the supercell. Applying the Hoshen-Kopelman clustering algorithm [283], we conduct

a comparative study between two different clustering decompositions. In the first case, the

cluster decomposition of the hedgehog population is performed without charge differentiation,

meaning that two adjacent oppositely charged unit cells were considered to belong to the same

cluster. In the second case, each hedgehog subpopulation is clustered on its own, meaning

that only identically charged adjacent unit cells are agglomerated.

Figures 3.57 and 3.58 provide the outcome of this comparative study for PZ60T40 and

PL5Z60T40 on one hand, and PL10Z60T40, PL15Z60T40 and PL20Z60T40 on the other hand,

and show the temperature evolution of the number of clusters and their average volume.

Left and right panels of Fig. 3.57 and Fig. 3.58 indicate that the clustering decomposition
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Fig. 3.57: Temperature evolution of the number of clusters (left panels) and their average
volume (right panels) for PZ60T40 and PL5Z60T40 systems. Curves associated
to |Q| = 1 correspond to the clustering procedure performed on the hedgehogs
population regardless of the sign of the charge they carry, while curves associated
to Q = 1 and Q = −1 correspond to the charge-specific clustering carried out
on each of the subpopualtions of hedgehogs independently, i.e., on that of the
positively charged hedgehogs and on that of the antihedgehogs, respectively.

performed on the hedgehogs regardless of their charge (|Q| = 1) yields lower number of clus-

ters with higher average volume, thereby suggesting that hedgehogs preferably cluster within

mixed charge sets comprising hedgehogs and anti-hedgehogs, rather than in identical charge

sets solely comprising either hedgehogs (Q = 1) or anti-hedgehogs (Q = −1). The vanishing

values of the average volume of clusters in PZ60T40 and PL5Z60T40 at low temperatures only

reflects that hedgehogs are suppressed below a certain temperature in these systems (right

panels of Fig. 3.57).

In the cases of PL10Z60T40, PL15Z60T40 and PL20Z60T40, an additional feature emerges

from the temperature evolution of the average cluster volume. While the charge-specific

clustering (either Q=1 or Q=-1) yields a quasi-constant average cluster volume, the charge-

independent (|Q| = 1) average cluster volume first decreases before increasing with increasing

temperature (right panels of Fig. 3.58). Supplementing this observation with the fact that in

the temperature range where the average volume decreases, the number of clusters is quasi-

constant for either Q=1 or Q=-1 while it is found to be increasing for |Q| = 1, strongly
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suggests a gradual binding-unbinding occurrence.
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Fig. 3.58: Temperature evolution of the number of clusters (left panels) and their average vol-
ume (right panels) for PL10Z60T40, PL15Z60T40 and PL20Z60T40 systems. Curves
associated to |Q| = 1 correspond to the clustering procedure performed on the
hedgehogs population regardless of the sign of the charge they carry, while curves
associated to Q = 1 and Q = −1 correspond to the charge-specific clustering car-
ried out on each of the subpopualtions of hedgehogs independently, i.e., on that of
the positively charged hedgehogs and on that of the antihedgehogs, respectively.
The inset of the figure depicting the number of clusters for PL10Z60T40 shows
that clusters corresponding to {|Q| = 1}-clustering procedure increase in number
in the 0 < T < 200 K temperature range.

Thus, the ferroelectric phase in PLxZT systems with x>5% seems to be driven by an al-

ternative mechanism to that driving ferroelectricity in the pure PZT system or in the very

weakly disordered PL5ZT one. Indeed, for PL10Z60T40, PL15Z60T40 and PL20Z60T40, the

decrease of the average volume of {|Q| = 1}-obtained clusters as the temperature is raised,
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occurs in a temperature range lower than TC , where the non-vanishing and mixed hedge-

hogs population gradually unbinds with increasing temperature. This dissociation of pairs of

oppositely charged topological defects induces empowered distortions in the dipole moments

field, progressively destroying the ground-state order. Consequently, the ferroelectric phase

in these systems is concomitant with a bound state of oppositely charged topological defects

in hedgehog/anti-hedgehog pairs, i.e., with a topological configuration that minimizes the

distortion of the order parameter field. As the temperature is increased beyond the temper-

ature range in which the average volume of {|Q| = 1}-obtained clusters features a decrease,

the average volume increases due to the increase of the density of topological defects.
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Fig. 3.59: Temperature evolution of the average charge of {|Q| = 1}-obtained clusters for
PL5Z60T40, PL10Z60T40, PL15Z60T40 and PL20Z60T40 systems.

The gradual pairs dissociation is further corroborated by Fig. 3.59, which provides the tem-

perature evolution of the average charge of {|Q| = 1}-obtained clusters. For each tempera-

ture, the average charge of clusters is quantified according to

1

Ncl

∑

cli

|
∑

h∈cli

Qh| (3.39)

with Ncl the total number of clusters, cli the i
th-cluster, and where h runs over the unit cells

belonging to cli, and carrying a charge Qh. The charge of a cluster i consisting solely of

hedgehog/antihedgehog pairs,
∑

h∈cli
Qh, is zero. Deviations from zero thus signal unbound

isolated topological charges whose absolute value contributes to the average charge of clusters.
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As the temperature is increased, one observes that the average charge of clusters increases,

thus confirming the unbinding mechanism of pairs (Fig. 3.60).

T

Fig. 3.60: Two-dimensional schematic representation of the unbinding mechanism of hedge-
hog/antihedgehog pairs with increasing temperature. While at low temperatures,
pairs of oppositely charged defects are bound yielding a phase akin to a gas
of (hedgehog/antihedgehog) dipoles, the higher temperature phase constitutes a
plasma of unbound hedgehogs.

3.4.10 The underlying gauge

We wish to conclude this section by stressing that topological defects are controlled by the

gauge. More specifically, for a certain fixed amount of quenched disorder, the tempera-

ture evolution of the number of disorder-induced topological defects is dictated by the gauge

self-coupling parameter k. As k is decreased, deviations of the link variables from identity be-

comes less energetically unfavorable, consequently affecting the order parameter field via the

gauge-modified short-range interaction term. The more k is reduced, the more the disorder is

empowered, ultimately preventing the onset of an ordered state by an induced proliferation

of topological defects. This is illustrated in Fig. 3.61 which shows the temperature evolution

of the density of pairs of hedgehogs np in PL15ZT for k=0.01 and k=0.05. In contrast to the

case k=0.05 where np drops around TC thus signaling the existence of an interplay between

local modes variable and gauge variables, the case k=0.01 is typical of a situation where the

disorder-mediating gauge has taken over ferroelectricity. Symmetrically, a further increase of

k (>0.05) depresses the strength of disorder, leading to a defect suppression [276]. Integral

curves are also shown in the lower panel of Fig. 3.61. For a same quenched disorder real-

ization (whose spatial distribution is indicated by squares), decreasing k yields a lattice of

hedgehogs, somewhat similar to Abrikosov’s vortex lattice [284].
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Fig. 3.61: Temperature evolution of the density of pairs of hedgehogs np in PL15ZT for
k=0.01 and k=0.05. Lower panels depict the integral curves of the order parameter
field within a (x, y) plane for T=17 K. Squares indicate the spatial distribution of
the quenched cells.





Conclusion

To summarize, we have formulated the disorder-induced discrepancy between local and global

scales in terms of local symmetry. This formulation has led to the introduction of a gauge

field endowed with both a quenched component and a fluctuating one. Whereas the former

encodes disorder as it subjects the field of dipole moments to frustration, the latter gives

dipoles leeway to achieving order. As a result, a non-trivial interplay subtended by local

symmetry constraints arises between competing ordering and disordering interactions.

The use of this approach and its combination with the first-principles based effective Hamil-

tonian enables to reproduce many generic features of PLZT such as the characteristic tem-

peratures and their dependence on the La content and the effect of pressure in reducing the

correlation length and driving the relaxor behavior. Within our model, local order is free

to appear rather than constrained to exist, and is found to spontaneously emerge from the

gauge field relaxation in the shape of polar regions. In this sense, the recovered departure

from the Curie-Weiss behavior can be ascribed to local symmetry constraints to which the

system is subjected. Moreover, the gauged disorder impacts the field of dipole moments by

inducing stable topological defects, whose non-vanishing density at low temperatures weak-

ens the ordered state. Our calculations additionally indicate that the dynamical behavior

in relaxor ferroelectrics seems to be related to that of the topological defects. This question

needs to be further addressed.

Note that we focused on the static aspects, since obtaining low-frequency dynamical quanti-

ties from first-principles-based effective Hamiltonian is not currently feasible. A further de-

velopment could thus relate to the time implementation on the lattice, i.e., in a 4-dimensional

Euclidean spacetime that would account for the dynamics of both the gauge and the matter

(dipole moments and strain) fields.

Another development pertains to elucidating the exact algebraic structure of the local symme-

try. Indeed, due to the underlying perovskite structure and associated directional anisotropy,

the local symmetry does not constitute a full rotational group but rather hints a groupoid

type of structure.
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Appendix A

Parallel transport

In order to formulate a gauge theory on a lattice, it is instructive to recall the geometrical

role of the potentials Aµ(x) in the continuum theory. Since two internal space vector residing

at two different space-time locations can not be compared in their natural bases, one needs a

definition of what would physically equivalent internal space vectors mean at different space-

time points. This is achieved by the parallel transport or connection; the potentials Aµ(x)

specify the rotation of the frame in some intrinsic internal symmetry space upon transport

between neighboring space-time points x and x+ dx [15, 16].

The general form of a local symmetry transformation for an arbitrary (non-Abelian) group

can be expressed as:

Uψ = e−iq
∑

k θk(x)Tkψ (A.1)

The local character of the transformation is indicated by the parameters θk(x) which are

continuous functions of x. The general transformation given by Eq.A.1 is to be identified

with the usual form of an ordinary spatial rotation where the position dependent parameter

θk(x) designates rotation angles. The Tk are the generators of the internal symmetry group

and satisfy the usual commutation relations:

[Ti, Tj ] = TiTj − TjTi = icijkTk (A.2)

where cijk are the structure constants of the group (of vanishing values in the case of Abelian

groups).

To see how the transformation given by Eq.A.1 defines a connection, let us now consider a

test particle described by a wavefunction ψ(x) and moving between two points x and x+dx in

spacetime through an external potential field. As shown in Fig.A.1, the initial θk(x) internal

direction at point x continuously changes until reaching the point x + dx where it acquires

175
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Fig. A.1: Rotation of the internal space direction of a moving test particle. The internal
angles change from θ(x) to θ(x + dx) as the test charge moves from x to x + dx
(after Moriyasu, [15]).

a new internal direction θk(x + dx). For an infinitesimal distance dx, this change can be

described by the effect of the transformation given by Eq.A.1 action on ψ(x) which produces

a rotation of the internal direction equal to the difference dθk = θk(x+ dx)− θk(x).

In order to interpret the effect of the external potential field (the gauge field) on the particle

as a precession of the internal basis, we explicitly decompose the particle’s wavefunction ψ(x)

into external and internal parts:

ψ(x) =
∑

α

ψα(x)uα (A.3)

where the {uα} denote the set of basis vectors in the internal space, and the {ψα(x)} are

the components of ψ(x) in the basis {uα}. Under an internal symmetry transformation, the

components transform as usually:

ψβ = Uβαψα (A.4)

where Uβα is some matrix representation of the symmetry group. When the particle moves

from x to x+ dx through the external potential field, ψ(x) changes by an amount dψ given

by:

dψ = ψ(x+ dx)− ψ(x) (A.5)

The expansion of dψ to the first order in dx yields:

dψ =
∑

α

[(∂µψα) dx
µuα + ψαduα] (A.6)

The second term in Eq.(A.6) contains the change duα in the internal space basis. It is given

by the connection and describes the effect of the external potential field on the internal

space direction of the particle. In order to access duα, we consider the infinitesimal internal

rotation U(dx),

U(dx) = e−iq
∑

k dθk(x)Tk (with dθk =
(

∂µθ
k
)

dxµ) (A.7)
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which rotates the internal basis u by an amount du,

U(dx)u = u+ du . (A.8)

The generators Tk act as matrix operators on the column basis vectors uα, yielding:

U(dx)uα = e−iq
∑

k(∂µθk)dxµ(Tk)αβuβ (A.9)

Expanding U(dx) to the first order in dx, we obtain:

uα + duα =

[

δαβ − iq
∑

k

(

∂µθ
k
)

dxµ (Tk)αβ

]

uβ (A.10)

from which we infer the infinitesimal change in the internal basis,

duα = −iq
∑

k

(

∂µθ
k
)

dxµ (Tk)αβ uβ . (A.11)

The change duα gives the sought connection. We therefore introduce the connection operator:

(Aµ)αβ =
∑

k

(

∂µθ
k
)

(Tk)αβ . (A.12)

The total change dψ can thus be finally written as follows:

dψ =
∑

αβ

[

(∂µψα) δαβ − iq (Aµ)αβ ψα

]

dxµuβ (A.13)

where δαβ enables the factoring of the basis vector uβ . The change dψ can be expressed in

terms of its own external and internal parts, yielding:

dψ =
∑

β

(dψ)β uβ ≡
∑

β

(Dµψβ) dx
µuβ (A.14)

where the operator Dµ is a generalized form of derivative, referred to as the gauge covariant

derivative, already mentioned in a previous section, and describing the changes in both the

external and internal parts of ψ(x). From Eq.(A.13), we can explicitly write:

Dµψβ =
∑

α

[

δαβ∂µ − iq (Aµ)βα

]

ψα (A.15)

Coming back to the case of the electromagnetic gauge group U(1), the internal space being

one-dimensional, Eq.(A.15) reduces to:

Dµψ = (∂µ − iqAµ)ψ (A.16)

From this geometrical derivation [15] of the covariant derivative, one concludes that the
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vector potential is both an external field and an internal space operator, since it acts as a

connection in the internal symmetry space.



Appendix B

Density functional theory

When considering a system consisting of N electrons and M nuclei, a first simplification

naturally arises from the large mass difference between electrons and nuclei, enabling the

decoupling of their dynamics and degrees of freedom, within the so-called Born-Oppenheimer

approximation. This leads to a first reduction of the many-body problem to the study

of interacting electrons in a frozen-in configuration of the nuclei whose positions, rα, are

regarded as parameters. Within this first approximation, the ground state of N electrons is

determined by solving the following Hamiltonian of a stationary many-body system:

Ĥv = T̂ + Û + V̂ext (B.1)

The constituent terms are explicitly given as

T̂ = −1

2

∑

i

∇2
i (B.2)

Û =
∑

i

u(ri) =
∑

i

∑

i>j

1

|ri − rj |
(B.3)

V̂ext =
∑

i

v(ri) =
∑

i

∑

α

−Zα

|ri − rα|
(B.4)

where latin subindices refer to the electrons whereas Greek subindices refer to the nuclei

and where the operators denote the kinetic energy of the electrons, the two-particle Coulomb

interaction and the external potential arising from the nuclei, respectively. For all N-electrons

systems, T̂ and Û are the same, they are said to be universal, or system-independent, so that

the specificity of the system is encapsulated in the external potential vext. The Hamiltonian

Ĥv is thereby denoted with a subindex v indicating that the operator can be regarded as

179
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a functional of the external potential. This is in particular the case for the ground state

wavefunction |ψ0[v]〉 and the ground state energy E0[v], which are related by the Schrodinger

equation

(T̂ + Û + V̂ext) |ψ0[v]〉 = E0[v] |ψ0[v]〉 (B.5)

The ground state |ψ0[v]〉 gives rise to a ground state electronic density n(r)

n(r) = 〈ψ0| n̂ |ψ0〉 = 〈ψ0|
N∑

i=1

δ(r− ri) |ψ0〉 = N

∫ N∏

i=2

dri|ψ0(r, r2, · · · , rN )|2 (B.6)

Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem demonstrates that the density may be used in place of

the potential as the fundamental function uniquely characterizing the system, rather than

the many electron wavefunction. It may be stated as: the ground-state density n(r) uniquely

specifies the potential, to within a constant, and hence the ground state wavefunction, to

within a phase factor. This means that the external potential is a well defined functional

v[n] of the density. In the original Hohenberg-Kohn paper [221], this theorem is proven by

reductio ad absurdum for densities with non-degenerate ground states. Assume that there

exist two different external potentials Vext and V
′
ext which both give the same electron density

n(r). Then the corresponding Hamiltonians H and H ′ have the same ground state density

but different ground state wavefunctions |ψ0〉 and |ψ′
0〉 respectively. Using the variational

principle, and taking |ψ′
0〉 as a trial function for H yield the strict inequality

E0 <
〈
ψ′
0

∣
∣H
∣
∣ψ′

0

〉
= 〈ψ′

0|H ′ |ψ′
0〉+ 〈ψ′

0| (H −H ′) |ψ′
0〉

= E′
0 +

∫
drn(r)[Vext(r)− V ′

ext(r)] (B.7)

Whereas taking |ψ0〉 as a trial function for H ′ gives

E′
0 < 〈ψ0|H ′ |ψ0〉 = 〈ψ0|H |ψ0〉+ 〈ψ0| (H ′ −H) |ψ0〉

= E0 −
∫
drn(r)[Vext(r)− V ′

ext(r)] (B.8)

Adding these two equations results in the contradiction

E0 + E′
0 < E0 + E′

0 (B.9)
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from which it is concluded that different ground states must yield different densities. The first

Hohenberg-Kohn theorem1 thus indicates that there is a unique invertible mapping between

the external potential v and the ground state density n(r). This implies that the total energy

is a functional of the density, E = E[n]. The universal Hohenberg-Kohn functional FHK[n]

given by

FHK[n] = 〈ψ[n]| T̂ + Û |ψ[n]〉 (B.10)

defines the energy functional E[n] as

E[n] =

∫

n(r)v(r)dr+ FHK[n] (B.11)

The second Hohemberg-Kohn theorem [221] generalises the variational principle from wave

functions to electron densities in that it states that the functional for the ground state

energy is minimized by the ground state electron density. If n0 is the ground state density

corresponding to an external potential v0 and ñ an arbitrary other ground state density

satisfying ñ(r) > 0 and
∫
ñ(r)dr = N then

Ev0 [n0] 6 Ev0 [ñ]

〈ψ[n0]| T̂ + Û + V̂0 |ψ[n0]〉 6 〈ψ[ñ]| T̂ + Û + V̂0 |ψ[ñ]〉 (B.12)

This second Hohenberg-Kohn theorem thus states that E[n] has an extremum in correspon-

dence to the ground state electron density. It demonstrated the existence of such a functional

but did not provide any explicit instructions as how to build or find this functional.

The Kohn-Sham ansatz

The central assertion of Kohn and Sham’s reformulation of DFT [222] stands in the mapping

of the intractable system of interacting electrons in a external potential vext onto a fictitious

system of independent electrons, chosen to have the same density as the physical system and

evolving in a effective potential vs. In this approach, the exact kinetic energy functional can

be written as

T [n] = Ts[n] + Tc[n] (B.13)

1Lieb [223] was the first to point out the connection between density-functional theory and Legendre
transforms. In this approach, potential and density are conjugate variables, and the first Hohenberg-Kohn
theorem simply trades one set of variational parameters for another via a Legendre transform: writing the
ground state energy as a functional of the external potential E0[v] and taking its functional derivative yield
the following expression for the density n(r) = δE[v]/δv(r). The one-to-one correspondence between v and n
is thus due to the fact that the Legendre transform FHK[n(r)] = E0[v(r)]−

∫

n(r)v(r)dr of the ground state
energy E0[v] is the FHK[n] functional.
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where Ts[n] is the kinetic energy of the auxilliary non interacting N-electron system, and

where Tc[n] is the remainder. The subscripts s and c stand for single-particle and correlation,

respectively. Similarly, the exact Coulomb functional U [n] is written as U [n] = EH [n]+∆U [n]

where the Hartree term EH [n] describes the electron-electron repulsion and where ∆U [n] is

a contribution that accounts for the quantum nature of the interacting electrons. The exact

energy functional is then rewritten as:

E[n] = Ts[n] +

∫

n(r)vext(r) dr+ EH [n] + Exc[n] (B.14)

where the exchange-correlation function Exc[n] corresponds by definition to

Exc[n] = (T [n]− Ts[n]) + (U [n]− EH [n]) (B.15)

and should account for the exchange effects (Pauli repulsion), the correction that compensates

the self-interaction term in EH [n] and the correlations effects. The variational equation its

Euler-Lagrange form for the exact functional is thus:

δE[n]

δn(r)
=
δTs[n]

δn(r)
+ vext(r) +

∫
n(r)

|r− r′| dr+
δExc[n]

δn(r)
= µ (B.16)

where µ is a Lagrange multiplier constraining the number of electrons to N . Kohn and Sham

introduced an auxiliary non interacting system S of N particles with the property that it

yields the same ground state density as the real interacting system in a given external poten-

tial vext(r). This correspondence implies that the non interacting electrons must be subjected

to another external potential vs(r), which must compensate the contributions arising from

the electron-electron interactions. For the virtual system S, the variational equation writes:

δE[n]

δn(r)
=
δTs[n]

δn(r)
+ vs(r) = µ (B.17)

Equations (B.16) and (B.17) coincide whenever:

vs(r) = vext(r) +

∫
n(r)

|r− r′| dr+ vxc[n](r) vxc(r) =
δExc[n]

δn(r)
(B.18)

Consequently, one can calculate the density of the interacting (many-body) system in poten-

tial vext(r), described by a many-body Schrodinger equation of the form given by Eq.B.5,

by solving the equations of a noninteracting (single-body) system in potential vs(r). In

particular, the Schrodinger equation of the auxiliary system

{

−1

2
∇2 + vs(r)

}

φi(r) = ǫiφi(r) (B.19)
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yields orbitals that reproduce the density n(r) of the original system:

n(r) =

N∑

i

fi|φi(r)|2 (B.20)

where fi is the occupation of the ith orbital.

Given a practical approximation for Exc[n], one obtains vxc(r), and can thus find vs(r) from

n(r) for a given vext(r). The set of coupled non linear equations (B.18), (B.19) and (B.20)

are the Khon-Sham equations, and should hold simultaneously. In particular, the density

must be self-consistent. The computational procedure usually starts with an initial guess for

the input density n(r), leading to a potential vs(r) which in turn gives rise to a set of orbitals

φi from which a new density is constructed. This procedure is reiterated until reaching a

convergence criteria (equality of the input and output densities to required precision) within

this self-consistency cycle. Again, this scheme only holds for an explicit form of Exc[n] that

is a priori unknown but can be efficiently approximated.

The local density approximation

As stated previously, the quality of the results using DFT depends on the ability of the uni-

versal exchange-correlation functional Exc[n] to model the many-body electronic interactions.

The first, and most widely used approach is the Local Density Approximation (LDA) [222],

which treats the inhomogeneous system locally as an homogeneous electron gas. It assumes

(i) that the exchange-correlation energy per particle at point r, ǫxc(r), only depends on the

density at this point, and (ii) that it is equal to the exchange-correlation energy per particle

of a homogeneous electron gas of density n(r) in a neutralizing background.

ELDA
xc [n] =

∫

n(r) ǫLDA
xc (r) dr ǫLDA

xc (r) = ǫhomxc [n(r)] (B.21)

The quantity ǫhomxc [n(r)] can be further split into exchange and correlation contributions:

ǫhomxc [n(r)] = ǫhomx [n(r)] + ǫhomc [n(r)] (B.22)

The exchange part describes the energy lowering due to antisymmetrization (Pauli repulsion)

and can be evaluated analytically by the method of Bloch and Dirac, and scales as

ǫhomx [n(r)] = − 3

4π

(
3

π
n(r)

)1/3

(B.23)

For the correlation part, that describes the propensity for two electrons of unequal spin to

choose different orbitals and to mutually avoid along their motion in space, one may rely

on accurate values obtained by Ceperley-Alder [224] from Monte-Carlo simulations of the
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energy of the homogeneous electron gas. By its very construction, the LDA is expected

to be a good approximation for spatially slowly varying densities. Although this condition

is hardly ever met for real electronic systems, LDA has proved to be remarkably accurate

for a wide variety of systems2 providing access to the ground state energy and thereby to

structural and dynamical properties of solids such as equilibrium structures, elastic, dielectric

and vibrational properties. Atomic positions and lattice constants reproduce the experiment

within 1% whereas phonon frequencies are usually obtained within 5%. Although an accuracy

of 1% on the lattice constant might be considered as successful for a method without any

adjustable parameter, it can constitute a limitation in some cases. In perovskite oxides for

example, the ferroelectric instability is very sensitive to pressure, and thus to the lattice

constant. In this context, in order to avoid this problem, it appeared convenient in some

circumstances to fix the lattice parameters to their experimental values, or to apply a negative

pressure [227] in the calculation that compensates for the typical LDA underestimate of the

lattice constant.

2This is due in part to the fact that the LDA fulfills the sum rule on the exchange-correlation hole,
∫

dr′nxc(r, r
′) = −1, ∀r, which must be obeyed by the real functional, and which describes how an electron at

r completely depletes the total density of the other electron at r′. This gives rise to error compensation when
computing the exchange-correlation energy (typically, the LDA overestimates Ex and underestimates Ec)
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