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A alma do Mundo é alimentada pela felicidade das pessoas. Ou pela infelicidade, inveja, cilime. Cumprir sua
Lenda Pessoal é a tinica obrigagcdo dos homens. Tudo é uma coisa so.

"E quando vocé quer alguma coisa, todo o Universo conspira para que vocé realize seu desejo".

Paulo Coelho, O Alquimista (1988)

The Soul of the World is nourished by people’s happiness. And also by unhappiness, envy, and jealousy. To
realize one’s destiny is a person’s only real obligation. All things are one.

"And, when you want something, all the universe conspires in helping you to achieve it".

Paulo Coelho, The Alchemist (translation by Alan R. Clarke, 1992)

A little story about this manuscript, to start with. Academic titles are not just lines on a curriculum vitae (as naive
people can think) but always the ends of adventures, and I take the opportunity here to briefly remind the main steps of
this exciting project.

This manuscript is the achievement of a work that actually took one year and a half. Although the idea germinated in
my mind several years ago, this project actually started during a dinner at my home for celebrating my fortieth birthday
in September 2012 ... 40 years: an ideal time for taking stock of the work done so far and, especially, for looking for new
challenges.

I started that night discussing with Eric Parent who warmly encouraged me to undertake this work and gave me the
first advices. Lucien Duckstein was also there. I remembered him the very last question he asked me at the end of my PhD
defence in February 2004. "Alberto, when will you write another PhD thesis?" Well, a HDR thesis is not a PhD thesis...
but nevertheless a thesis; so that, I was finally able to answer his question, more than eight year later. Meglio tardi che
mai!

Following Eric’s advices, I began collecting the first ideas and listing my papers, communications, reports and several
contributions to be possibly put into evidence in a HDR.

Here comes the second major contributor to this project: Jean-Michel Poggi. I will always remember our fruitful
discussion in a cold November morning during which I presented my first ideas and he gave me back a number of useful
advices. His role in this adventure is simply crucial as he helped me to refine the project and to properly present it, together
with a tailored academic curriculum vitae.

The third person with a special role in this work is Antoine Grall, who listened with interest to my ideas, starting to



Acknowledgments

take form, and definitely oriented me towards the Université de Technologie de Compiegne (UTC). I established the first
contact with UTC at the beginning of 2013 and I completed the application file in Summer 2013. The application included
a summary document, the writing of which was an extremely useful experience and greatly helped my in collecting the
ideas for the writing of this HDR thesis. The Scientific Council of UTC examined and accepted my application in
September 2013 ... and (some hundred hours of work after) here this manuscript is!

I would like to thank, first of all, Eric Parent, Jean-Michel Poggi and Antoine Grall (recalled here in the appearing
order in the story of this adventure) for their help and their advices and for the time they dedicated me in spite of their
busy schedules. Merci, encore et encore.

I warmly thank Anne Gégout-Petit, Frédéric Bois and Olivier Roustant for the honour they have done me by reviewing
this manuscript as well as Enrico Zio for being part of the jury, together with the aforementioned persons.

I also take the opportunity to thank here the UTC for welcoming me and especially Julie Jarek (Ecole Doctorale de
[’UTC) who have been an extremely helpful and effective contact, as well as AgroParisTech for hosting the HDR defence.

I am particularly grateful to the colleagues that read this document before the submission and helped me to improve it
with respect to its form and content: Merlin Keller, Bertrand Iooss, Nicolas Bousquet, Eric Parent (again).

Special thanks are addressed to Jacques Bernier, an example and a source of inspiration. I took the liberty to resume

in this manuscript some of his papers that deserve more light.

Another story that I will not tell. 1 want here to especially thank all people who helped me to get rid of recent difficult
moments and to let me understand a number of teachings I will always bring with me. I cannot remember here all
people that helped me: many discussions with colleagues but also phone-calls with my brother Francesco and my parents,
conversations with Fabienne, football games and drinks with Alessandro, Italian and Greek sunny days with my wife are

also part (the good one) of this history. It is not worth writing anything else here

Co-authors. This manuscript puts into evidence a number of works carried in the last 15 years. Of course, and luckily,
I did not work alone during this period. In this sense, this manuscript, is a sort of collective work. I want to make here
a graphical tribute (cf. Figure 1) to my co-authors by representing their names into a so-called word-cloud (cf. also
Chapter VIII, page 148) in which the size of the name is a function of the number of papers I wrote with. Besides the
"statistical" curiosity, I take the opportunity to gratefully thank each one of them.

EDF colleagues. I had the chance to work in an extremely stimulating environment, at the Dept. Management des
Risques Industriels (MRI) of EDF R&D. I take the opportunity here to make a tribute especially to some of the numerous
colleagues who work or worked with me within the Incertitudes project: Anne Dutfoy (OpenTURNS leader and passionate
researcher on probabilistic dependence), Bertrand Iooss (the sefior researcher who every one wishes to have in his project
team), Mathieu Couplet (amazing how many good ideas he can have simultaneously), the "Bayesian fellows" Merlin
Keller, Nicolas Bousquet and Sophie Ancelet (currently at IRSN), Anne-Laure Popelin (who did and will continue doing
a great job, I am sure of it), Micha€l Baudin (whose arrival in late 2011 completed the team’s skills), the probabilistic
mechanics experts Marc Berveiller and Géraud Blatman, the PhD students Guillaume Damblin (I will find the time to
follow your PhD, until its end), Shuai Fu and Richard Fischer as well as the OpenTURNS crucial contributors Ivan
Dutka-Malen (until 2012) and Renaud Barate. I wish you all the best for the future project (particularly to Anne-Laure).
It was simply great to work with you!

Many thanks also to Emmanuel Remy (ok, you are not Bayesian, but it does not matter) and Frédéric Hostyn (endless

source of engineering common sense and great football expert), as well as Frangoise Talbot, Francoise Massot and Isabelle
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Figure 1 — Word-cloud of the list of the coauthors of the papers of mine cited in this document, built thanks to the Wordle™ tool
(www.wordle.net). The greater the size of the name, the higher the number of papers I coauthored with.

Périlhous, for their effective support. I also remember here the interesting and pleasing coffee talks in Chatou and Clamart
with Roman Sueur, Jean Angles, Marie Gallois, Mohamed Hibti, Kateryna Dorogan, Mathieu Anderhalt, Hélene Bickert,
David Albrecht, Jean-Baptiste Desmottes, Dominique Marion, Frangois Beaudouin, Fanny Douard, Denis Lachéne ... 1
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Chapter I

Foreword

Al primo parlar che si fece di peste, don Ferrante fu uno de’ piu risoluti a negarla. [...] "In rerum natura,"
diceva, "non ci son che due generi di cose: sostanze e accidenti; e se io provo che il contagio non puo esser né
I’uno neé 'altro, avro provato che non esiste, che é una chimera." [...]

La scienza é scienza; solo bisogna saperla adoprare.” [...]

Su questi bei fondamenti, non prese nessuna precauzione contro la peste; gli s’attacco; ando a letto, a morire,
come un eroe di Metastasio, prendendosela con le stelle.

Alessandro Manzoni, I promessi sposi (1842)

On the very first whisper of pestilence, Don Ferrante was one of the most resolute, and ever afterwards one of the
most persevering, in denying it. [...] "In rerum natura" he used to say, "there are but two species of things,
substances and accidents; and if I prove that the contagion cannot be either one or the other, I shall have proved
that it does not exist, that it is a mere chimera. |[...]

Science is science; only we must know how to employ it." [...]

On these grounds, he used no precautions against the pestilence; took it, went to bed, and went to die, like one of
Metastasio’s heroes, quarrelling with the stars.

Alessandro Manzoni, The betrothed (translated by Burns Publishers, 1844)

1 About engineering

A (not so original) way for introducing some reflections about a specific topic is to start from its usual definition.

According to the on-line Collins Dictionary (cf. http://www.collinsdictionary.com), engineering is "the pro-
fession of applying scientific principles to the design, construction, and maintenance of engines, cars, machines, eftc.
(mechanical engineering), buildings, bridges, roads, etc. (civil engineering), electrical machines and communication
systems (electrical engineering), chemical plant and machinery (chemical engineering), or aircraft (aeronautical engi-
neering)".

This definition sounds perfectly good: it is essentially focused on the technical objects the engineers cope with. On the
other hand, although the first part of the definition, evoking some "scientific principles" may seems vague, it also reminds
that methodological tools used by engineers are extremely varied.

Here comes another (and more challenging) definition of engineers. Some years ago, few months before obtaining
my high school diploma, I took part in a day-long orientation workshop intended to young students for guiding the choice
of their university studies. Among all conferences, I particularly remember the passage of a professor of the Faculty of
Engineering of the University of Napoli Federico II (unfortunately I do not remember his name), in which he defined an

engineer as someone who "has learnt to learn". This phrase, maybe not fully original, and surely not restricted to engineers
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only, impressed me (and actually played a role in my personal choice to be an engineer) but I did not understand, in that
present moment, how it was well suited to me.

Engineering studies are hard and long and provide a very wide set of mathematical and methodological tools, mostly
based on the application of physics to technical systems.

In spite of the quality of the tools provided by classical engineering education, due to the extremely wide variety
of problems engineers must cope with in practice, in most cases, they need to complete their own toolbox with other
methods, traditionally coming from the domain of applied mathematics.

Actually, one of the main activity of engineers is to provide forecasts of the behaviour of systems (which can be very
complex) by means of appropriate predictive models. Most of the models used by engineers are deterministic, but often

the problem to be solved contains several sources of uncertainties, the analyst must cope with:

* because the behaviour of the system under investigation is intrinsically stochastic and the question posed is to make
predictions under the base of feedback data and/or expertise,

* because the system under investigation is fairly well described by a deterministic model (a computer code), the

inputs of which are tainted with uncertainties.

In the first case, the engineer must use a statistical model, and most often build his/her own model, suited to the
problem to be solved. In the second case, he/she must couple a probabilistic and a deterministic models. In both situations,
he/she must cope with uncertainties and take them into account in the provided results.

Another issue in modern engineering is that providing forecasts is not enough. What is asked to engineers is essen-
tially solving problems: analysing the results and making decisions (or more modestly providing recommendations) are a
fundamental part of engineering work.

Throughout this document, taking as motivations some technical questions I had to answer during my career, I present
some methods, non conventional in the classical engineering background, which ideally complete it.

In particular, I insist on the issues sketched in the next three sections.

2 Engineers, data and statistical modelling

Reliability assessment of industrial components is a key issue in engineering. Assessing the lifetime of an equipment is a
capital input of safety and assets management studies as well as of the definition of maintenance policies and spare parts
stock.

Even though, in theory, physical phenomena leading to the loss of operability can always be imagined and possibly
modelled, it is common to admit that failures are random events. The problem posed here is thus to imagine a (more or
less) complex statistical model, infer its parameters, based on available information (data and/or expertise), and finally
establish predictions.

In other problems, when a system passes during its lifetime across several states corresponding to more or less dete-
riorated operating conditions, one can be interested also in modelling the deterioration dynamics: what is the probability
for the system to be in a given state, given its age? What is the period the system spends in a given state or in a given set
of states?

It is to notice that in many other technical fields, engineers cope with random variables: measurement errors, natural

phenomena (rain and snow precipitations, floods, earthquakes) etc.
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The main resource for solving these problems is constituted by data. In the case of industrial reliability, data come
from feedback: for instance, if one must assess the probability distribution function of the random variable "lifetime" of
a system, it is intuitive to imagine fitting it on a random sample of lifetimes, which is easy to obtain if one knows exactly
all the commissioning and the failure dates.

When assessing deterioration models, ideally, data should be repeated observations of states (or given features of
interest, related to states) for the same systems at different dates. But unfortunately, data the engineers cope with are often
much less informative.

In real life, data can be scarce, censored, incomplete and, on the one hand, a preliminary analysis taking into account
the technical information available about both the studied system and the data collection procedure is necessary, on the
other hand, the statistical model chosen must be adapted to data. Actually, models must fit to data and not the opposite!
That adds an additional difficulty: reality is much more complex than common statistical models and here arises the need
for more advanced mathematical methods for modelling and inference.

Although data are almost always far from being ideal, normally another source of information, often neglected or not
fully exploited, is available: expertise. Engineers, technicians, operators may have a deep and valuable knowledge of
the behaviour of a system; for instance, based on his/her own experience, one can give an interval for the lifetime of a
component or its mean. Taking into account expertise is traditionally the main motivation for the use of Bayesian methods

in industry (of course, there are many others and some of them will be highlighted in the remainder of this manuscript!).

3 Engineers and computer models

Nowadays, computer modelling is probably the most powerful tool in engineering. Most of the work of engineers (in par-
ticular young engineers), consists, very roughly speaking, in running numerical simulations. The quite recent availability
of more and more computational power gave to analysts the possibility to model more and more accurately, more and
more complex systems. I started working in the 90’s and I belong to the first generation of engineers who have always had
one (or more) "personal” computers on their desk. Yet, as undergraduate student, I have had classes of technical drawing
using T-squares, pencils and technical pens (and actually T learnt AutoCad® by myself a couple of years later). I have
also have been taught (more or less learned) to use tables or graphical methods (Figure 1.1), like the funicular polygon,
the Mohr circles, or the Bergeron-Schnyder method for water hammer calculation. One can argue that it is just a matter
of tools for solving a problem. The added value is in the equations to be solved and not in the tools to be used, exactly
like using a IATEX editor instead of another ... but the question is much deeper than that.

When calculations were long and tedious, engineers were naturally pushed to be parsimonious. A very long phase of
planning and careful choice of the input parameters always preceded the calculation phase.

Modern computer simulation may have a dangerous side. In some situations, the actual physical knowledge of the
system under investigation could not be essential to run an experiment, once the model has been implemented: hence, the
engineer risks becoming a simple operator just modifying input files and storing output files. Of course, good engineers
plan calculation today too and the image of qualified workers using computer codes as machine-guns is somehow caricat-
ural, but the risk exists. I will get back to some issues concerning computer simulation in the beginning of Chapter I'V.

In addition, the model itself and/or its inputs could be tainted with uncertainties of different natures, which must
necessarily be taken into account. Hence, the analyst has to assess the uncertainty of output results. This task is quite
tricky, especially by a computing viewpoint, as it is easy to imagine that, for doing that, a great number of runs of a

possibly costly computer code is necessary. For capably carrying this works, analysts need (i) a proper framework for
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Figure 1.1 — Some examples of older ways for effectively performing computations: (a) table for evaluating the weight of 1
meter of lead-pipe as a function of its internal diameter and thickness (from [Duffau 1903]), (b) resolution of a problem of statics
by mean of the funicular polygon technique (from [Bayle 1946]), (c) determining fronts of sea waves in shallow water under
refraction, by means of Huyghens’ circles technique (from [Benassai 1973]), (d) head losses vs. discharge diagram for a flow-rate
restrictor (Hydraulics practical of the author, academic year 1993-1994).

posing the problem and planning calculations, (ii) proper and adapted mathematical methods to reduce the number of
calculations to be run, (iii) proper software tools for effectively coupling deterministic and probabilistic models and (iv)
high performance computers for reducing the overall computing time.

Another additional and actually important question in computer simulation is the need for effective tools for interpret-
ing, resuming and visualising (possibly uncertain) results. That is actually a wide-open field of investigation at the frontier

between mathematics, computer science and visual perception.

4 Recommending Decisions

After predictive models (deterministic or probabilistic) have been proposed, assessed and run, an even more complicated
question may arise: how using these predictions in order to decide, or (more often) to provide arguments for a rational
decision? In engineering (and actually in everyday life) deciding is a difficult problem, basically because of two reasons.

The first reason is the presence of uncertainties. We live in an uncertain world and, even if one can imagine to reduce

some kinds of uncertainties, the best he/she can do for providing useful inputs to a decision problem is to properly quantify
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all sources of uncertainties tainting the outcomes of each decision. Decision theory under uncertainty is a wide topic; in
this manuscript, I mostly focus on statistical decision theory (and make use of), which is indeed also a fundamental
ingredient of the Bayesian setting. In particular, I deal with the following problem rooted in the domain of industrial
safety: how to build point estimators of risk indicators (like quantiles or failure probabilities) in a decisional context?

The second reason is that the decision must be taken in presence of multiple and antagonistic criteria. For instance, a
decision maker often faces situations where alternatives having high initial costs have also, in return, low running costs.
The problem becomes even more complicated when non-monetary criteria come into play: how to arbitrate between costs,
CO; emissions and user’s comfort? Roughly speaking, two different paths for solving this problem can be taken.

The first one is to reduce the multi-criteria problem to a single-criterion one, by building a scalar function taking as
input arguments the different criteria and returning the overall utility (or cost) of every action.

The second one is to use methods based on the aggregation of outranking relations between couples of alternatives. An
alternative outranks another if it is significantly better than its opponent with respect to enough criteria (notice that behind
these words different mathematical methods for performing comparisons are defined). Then, outranking relations are used
to build a final ranking, which can possibly present situations of equivalence or incomparability between alternatives. That
is the well known family of the ELECTRE methods.

In both situations, it must be clear that the goal of the engineer is twofold: it is not only providing the best solutions
to a problem but also (and this is much more important) clearly present, generally to decision-makers not familiar with
underlying mathematical tools, the reasons why they are the best. And here comes again the issue of presenting methods
and results. Understandability and clearly stated hypotheses are key factors if one wants decision-makers actually follow

engineers recommendations.

5 Structure of the document

Besides this introductory chapter and the final one, summarizing some conclusions and perspectives, the main body of the

document is structured into six chapters (numbered from II to VII).

* Chapter II deals with statistical lifetime analysis of industrial components and in particular with problems con-
cerning systems that do not operate continuously but rather "on demand", for which, in theory, the use of discrete

probabilistic models is recommended.

 Chapter III is concerned with the statistical modelling, by means of Markov chains, of the deterioration of pieces

of equipment when, as it is often the case in the industrial practice, available data are scarce and incomplete.

 Chapter IV relates to my main activity of these recent years, namely the technical management of works and projects
on the quantitative assessment of uncertainties in computer simulation. It is also a sort of introduction for the two

following chapters which are rather concerned with more technical and scientific activities I carried in this domain.

* Chapter V sketches some works (of different natures) carried in the framework of computer simulation by means of
"extra-probabilistic" mathematical tools, i.e. based on uncertainty analysis frameworks alternative to the (classical)

probability theory. In particular, the main tools used are fuzzy sets and possibility distributions.

e Chapter VI describes a methodology, firmly rooted in the Bayesian theory, for building point estimators of risk

criteria (e.g. failure probability) by means of computer experiments, in presence of uncertainties tainting the inputs
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of the model as well as their probability distributions. This methodology is compared to methods (popular within
the engineering community) based on the so-called predictive distribution.

e Chapter VII, finally, gives some details about works applying multi-criteria decision-aid methods and tools to the

domain of the energy efficiency of residential buildings, and in particular to the problem of energy retrofitting.

Each chapter is introduced by a short introductory section, entitled "Reading notes", which gives details on (i) the
technical context of the works (why, when and where these activities have been carried), (ii) the contributions I provided
to the technical problem and (iii) the already published material from which the chapter (or parts of it) is inspired or
excerpted. Even in the case where most of the chapter consists in excerpted text, I have preferred incorporating the text
in the main body of this manuscript rather than "appending" the paper "as is" in its original format, for sake of clarity and
readability (avoiding different formats of texts and references and incoherent notations). That gave me also the opportunity
to make little changes to the original texts when needed. Of course, the original papers and their co-authors are properly
mentioned in the "Reading notes" sections (subsections entitled "Structure of the chapter and credits").

The order of chapters is not chronological. On the one hand, because of my "double life" of engineer and researcher,
some works have been carried (sometimes discontinuously) over quite long periods during which other and very different
works have been also carried and finalized. As an example, more than eight years passed between the very first formal-
ization of the algorithm for the estimation of Markov transition matrices described in Chapter III [Pasanisi 2004a] and its
publication in a scientific journal [Pasanisi ef al. 2012a].

On the other hand, the choice of the order of the presented topics allows gradually introducing some concepts which
will be used in the following chapters (e.g. the concepts of reliability and quantity of interest). The proposed order,
hopefully, makes the reading easier. Works and contributions are not always presented with the same level of detail, for
sake of brevity.

Two appendices complete the document: one is concerned with some additional material and proofs I decided to put
at the end to avoid burdening the text, the other one is my curriculum vitae.

The document has numerous references. A list of communications and publications I am author or co-author of is also

reproduced in Appendix, at the end of my Curriculum vitae (page 167).

Main message. The main message delivered by this document, which is also the connecting thread of my technical
and scientific activity is that advanced mathematical methods and tools, particularly from the domain of probability and
statistics, are necessary to solve engineering problems. These methods, most of engineers are not fully familiar with, are
becoming more and more essential in the industrial practice.

In spite of the complexity of some methods described in the remainder, I wrote this document following an engineer’s
viewpoint, insisting on the technical problems and on the motivations for the use of sophisticated methods and tools.

But the goal of this document is also to summarize and highlight my own works and my contributions to these different
technical fields (naturally humble, I definitely enjoyed very much to write a document focused, in some way, on myself).

For every class of problems, my personal contributions are put into evidence. These contributions are of different natures:
» methodological: adapting, enhancing, or criticizing the use of particular methods in particular contexts,
* technical: solving particular engineering problems,

* managerial: organizing and driving research activities and projects.
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Nevertheless, in spite of the diversity of methods, tools, fields of application and personal contributions given, all of
these works stay coherently in the same mainline: enhancing engineering studies by means of advanced mathematical

tools for coping with uncertainties and recommending decisions.

About introductory quotes. The texts of chapters are preceded by quotes, coming from books and songs which I par-
ticularly appreciated. I am an avid reader and many books (novels, stories or essays), which are seemingly not concerned
at all with my technical and research domain, have definitely been a source of inspiration. I decided to reproduce the

quoted text in its original language as a form of tribute to the authors. When needed, an English translation is provided.

6 Biographical summary

It is interesting, at the end of this introductory chapter, to give some biographical elements summarizing the evolution
of my studies and my professional career. Two features are particular relevant in my opinion. First, I have always
worked in the context of advanced engineering studies, where the borderline between engineering, R&D and academic
research is often thin. Second, my studies and my professional activities are very varied from more than one perspective:
geographical places, cultural environments, technical and scientific disciplines.

Cf. Curriculum vitae (page 161) for a more classical (and complete) presentation of my career.

Early period (before 1998). A seemingly surprising element concerning my education is that my high school studies
have mainly been literary. It is a peculiarity of the Italian school system: a significant number of university students in
scientific disciplines, come actually from literary high school studies. As a young student, I had the possibility to discover
and deeply study subjects as Latin, ancient Greek, philosophy, Italian and classical literature. That gave me a great
curiosity for human sciences (and human beings) and even if the very first weeks of my engineering studies were a little
more difficult for me than for colleagues coming from scientific studies, I do not regret at all my classical education. And
I have been particularly happy (and at ease) when, in 2004, I was asked to give a talk about Aristotle and the subjectivity
in science in front of an audience mainly composed of statisticians in the middle of French Alps [Pasanisi 2004c].

I received my MSci in Civil Engineering (specialty: hydraulics) in 1997 from the University of Naples Federico II'
with a final dissertation ("tesi di laurea") on the cost-effectiveness of artificial nourishment of tourist beaches suffering
from erosion. The main subjects I dealt with, during my university studies have especially been hydraulic, environmental
and coastal engineering.

I also had the opportunity (when I was still a student) to realize my very first engineering studies in these domains
(wave motion studies and planning of marinas and coastal protection works).

After a one-year break due to military service (during which I made rather unusual working experiences as the recep-

tion and redeployment of deserters and jailed soldiers), my career actually started in Summer 1998.

Italian period (1998-2000). Between June 1998 and September 2000, I worked on my own-account as consultant
engineer in the domain of hydraulic and coastal engineering. I realized a number of studies concerned with the planning
of hydraulic works and especially the study of the wave climate in particular areas of interest by means of historical data

(offshore wave climate) and computer simulation (onshore wave climate).

Founded in 1224 by the Emperor Frederick I, it is the world’s oldest state-supported and secular university, i.e. specifically intended to the training
of administrative civil servants, judges and lawyers.
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A particularly significant work has been the development of a software tool (named Tiresia®) for the study of beach
erosion phenomena. In spite of the simplicity of the underlying mathematical assumptions (the so-called "one-line model",
cf. [Koutitas 1988, Abbott & Price 2005] for more details about coastal modelling) this light software, written in Quick-
Basic in cooperation with my brother Francesco, has proved effective and has been especially deployed (in late 1998) at
the Environmental Agency of the Brazilian State of Espirito Santo, in the framework of an Italian-Brazilian cooperation
program.

From February 1999 to September 2000, I mainly worked for the Department of Civil Engineering of the University
of Naples 2. I was involved in a vast engineering and R&D project (supported by European Union), named "Realization
of an integrated system for the control of coastal areas pollution phenomena near river mouths". In particular, I was
in charge of the development of finite difference models of pollutants dispersion in rivers and estuaries. The working
program was ambitious, as it aimed at the development of an integrated modelling environment coupling 1-D (river) and
2-D (estuary) shallow-water hydraulics and advection-dispersion of reactive and non-reactive pollutants in liquid bodies
Cf. [De Bonis et al. 2002] for more details about hydraulic modelling issues in this specific context. Some models I
developed were also used as case-studies of the European project ALICE-QFView (1998-2001), aiming at the effective
management and visualization of computational fluid dynamics data [Vucinic et al. 2000, Vucinic 2007].

A more scientific and prospective work-package of this technical program was concerned with the use of meta-models
based on fuzzy rules for fast predictions of pollution phenomena (namely, the arrival of the pollution front, due to an
accidental release, to a given location). This activity, which was much more a R&D than an engineering work, allows
me to make my very first steps in the field of research and establishing a cooperation with the Ecole Nationale du Génie
Rural, des Eaux et des Foréts (ENGREF). More details on this activities are given in Chapter V (Section 1).

Figure 1.2 shows some example of works, essentially concerned with hydraulic and environmental simulation, carried
between 1998 and 2000.

In September 2000, I joined the aerospace Italian company Alenia (Production Engineering Department, Head Office).
For a couple of months I dealt with the problem of optimizing sub-contractors technical procedures, especially the use of
raw materials for avoiding excessive manufacturing waste. In spite of the interest of the job and the comfort of a more
"linear" career path, I decided to move to Paris in late 2000 for starting my PhD in the framework of a cooperation between

ENGREEF and the French water distribution company Génerale des Eaux.

PhD period (2001-2004). 1 made my PhD (defended in February 2004) within a CIFRE? doctoral program. The tech-
nical problem under investigation was the optimization of the renewal procedures of domestic water meters (which tend
to underestimate more and more the customer’s consumption when getting older). I developed and deployed in planning
tools several algorithms (based on Bayesian analysis) to forecast the efficiency of in-service meters and to estimate the
unaccounted-for water. For more details about the work achieved during this period, cf. Chapter III, Section 7.

Actually, I made my PhD in a very technical environment (Networks, Metering, Investments Department, Head Office
of the Génerale des Eaux) in close connection with the fieldwork and, at the same time, in an applied research academic
laboratory.

The experience gained during this period is priceless and helped me in the following years. It allowed me to deeply
learn statistical modelling, and in particular Bayesian statistics, under the supervising of my mentor Eric Parent. These

years left an indelible mark on my way of working: on the one hand, great commitment to my colleagues and to myself,

2In Greek mythology, Tiresias was a clairvoyant and a prophet of Apollo. He intervenes in a number of tragedies concerned with the city of Thebes
(in particular, Sophocle’s Oedipus the King and Antigone).

3CIFRE, acronym of "Convention Industrielle de Formation par la Recherche" (Research-based Industrial Training Convention) is a French program
which (since the 80’s) partially funds PhD works carried within an industrial context.
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Figure 1.2 — Images summarizing some works carried in the period 1998-2000. Top: exemplary study of the evolution of the
shoreline in the area of the Rio Jucu estuary (Espirito Santo, Brazil) by means of the Tiresia software. Center: simulation of
onshore hydrodynamic field (coast of Vico Equense, Italy). Down: Dispersion of a pollutant in an estuary zone (the river mouth
is located in the center of the shoreline) in a simplified 2D domain under the effect of a symmetrical hydrodynamic field.
Remark. These figures are provided for exemplary purposes only and results (related to very particular configurations of param-
eters) shall not be extrapolated to draw any general conclusion.
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scientific rigour, look for innovative solutions but also, on the other hand, research of clarity and brevity in both written
and oral presentations, adaptation of both form and content to the technical skills of the audience, ability to formalize

different technical problems (often ill-posed) in mathematical terms and reformulate them®.

EDF R&D first period (2004-2008). After a short passage in an engineering consulting firm in Paris, I joined EDF
R&D in June 2004 as research engineer at the Energy in Buildings and Territories Department (ENERBAT) in Southern
Paris Area. The particular activity of ENERBAT I have been concerned with is focused on energy efficiency of buildings
(envelope, thermal systems, user’s behaviour). Together with other actions, these works support the Commercial Division
of EDF by means of methodological and software tools, accompanying energy efficiency services for EDF customers.

As recalled in the beginning of Chapter VII, during the period from June 2004 to February 2008, I worked on the
problem of defining and ranking energy efficiency solutions to be possibly proposed to individual customers. The aim
of these works was to develop new concepts and ideas for inspiring the development of future tools supporting energy
services. During this period I discovered and applied a class of methods concerned with multi-criteria decision-aid, and
in particular those of the so-called ELECTRE family. Part of this work has been accompanied by ENGREF.

More precisely, my work mostly concerned two specific problems.

The first one was the definition and the comparison of multi-energy heating and domestic hot water solutions, based
on the the effective coupling of systems using different energies, for instance electric convectors and wood-burning stoves
for heating and solar thermal panels for domestic hot water. The production of this work consisted in reports, studies,
as well as a software tool for the simulation, multi-criteria ranking and (preliminary) sensitivity analysis of multi-energy
systems.

The other problem I coped with was the energy retrofitting of existing residential buildings. This work, achieved in
the framework of a cooperation with the University of Liege, gave origin to a software tool, named REFLEX, including an
expert system for identifying retrofitting alternatives, a dynamic simulation core for evaluating the building consumption
(and thus the different benefits of the retrofitting alternatives) and several multi-criteria algorithms to rank the alternatives
from the viewpoint of the customer and of the energy company (cf. page 139 and following).

I also took part in the development of an energy efficiency advice software for the British market, deployed by EDF
Energy (EDF subsidiary in UK), named "EE Wizard", delivering customized energy audits by telephone or the Internet as
well as propositions of alternatives for improving the energy efficiency of the dwelling, evaluated by means of a dynamic

simulation core.

EDF R&D second period (since 2008). I joined the Industrial Risks Management Department (MRI) of EDF R&D in
February 2008. This Department is focused on the study of> "hazard-prone socio-technical systems operated within the
EDF Group, such as nuclear and thermal power plants, hydraulic facilities and the power transmission network. This
study includes various dimensions: (i) the component, (ii) the technical system, (iii) the human and organizational factors,
(iv) the environment (natural, technological, organisational, regulatory, etc.)."

More particularly, the works I have been involved in concern, on the one hand, the use of statistical and probabilistic
techniques for the evaluation of the reliability of components, systems and structures, by means of feedback data analysis
(cf. Chapters Il and III) and/or numerical simulation (cf. Chapters IV and VI) and, on the other hand, the uncertainty and
sensitivity analysis of complex computer models (cf. Chapters IV and V).

So far, this period has undoubtedly been the most intensive and creative one of my career.

“4For knowing most of them, I have to say that this is definitely a sort of "hallmark" of Eric’s students.
SCf. the presentation leaflet of the Department at http: //chercheurs.edf . com/organisation/nos-15-departements-93757 . html.
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From January 2009 to March 2014 I have been the leader of a large EDF R&D transverse project concerned with
uncertainty analysis of computer codes. A great part of my activity has consisted in technical management. In addition to
the "internal" EDF R&D project I have also been the coordinator of a multi-partners project, named OPUS (Open source
Platform for Uncertainty treatment in Simulation, ended in 2011).

Firmly convinced of the positive impact (for both communities) of cooperation between industrial and academic
researchers, I have been involved in several partnerships and I had the opportunity to serve in scientific societies. In
particular, I founded in 2009 a thematic group "Reliability and Uncertainties" within the French Statistical Society (SFdS).
In 2013 I have been elected member of the SFdS Council.

The most visible part of this collaborative activity consists in the organization of numerous and various dissemination
actions: training sessions, workshops, sessions in conferences, special issues of scientific reviews.

At the same time, I had the opportunity to carry research works in particular in the fields of discrete reliability models
(and actually nourish and achieve some works on Markov deterioration models initiated during my PhD) and on the use of
Bayesian theory to build point estimation of safety criteria, as well as some introductory works about extra-probabilistic

uncertainty assessment in computer simulation.
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Chapter 11

On the practical use of two discrete lifetime

models

La spedizione per delimitare il confine nel tratto di frontiera rimasto scoperto parti il giorno dopo all’alba. La
comandava il gigantesco capitano Monti, accompagnato dal tenente Angustina e da un sergente maggiore. A
ciascuno dei tre erano state affidate la parola d’ordine di quel giorno e dei quattro giorni successivi. Era ben

improbabile che tutti e tre potessero perire; ad ogni modo il piti anziano dei soldati superstiti avrebbe avuto la

facolta di aprire la giubba dei superiori morti o svenuti, di frugare in un taschino interno, di trarne la busta
sigillata contenente la parola d’ordine per rientrare nella Fortezza.
Dino Buzzati, 1l deserto dei Tartari (1940)

The expedition to trace the unexplored stretch of frontier left the next day at dawn. In command was Monti, the
huge captain, accompanied by Lieutenant Angustina and a sergeant-major. Each of the three had been entrusted
with the password for that day and for the four following days. It was highly improbable that all three of them
would perish; in any case the most senior surviving soldier would have had powers to open his superior officers’
Jackets, if they were dead or had fainted, to search in the little inside pocket and take from it the sealed envelope
containing the secret pass for re-entering the Fort.

Dino Buzzati, The Tartar Steppe (translated by Stuart C. Hood, 1952)

Reading notes

Technical context. The works presented in this chapter concern the reliability of industrial components. They have
been carried at the Industrial Risks Management Department of EDF R&D (MRI), mostly in 2008. Assessing the lifetime
of pieces of equipment is a major input in the study of systems performances and safety, as well as in assets management.
The studies carried at MRI in this field concern essentially power production facilities (nuclear, thermal, hydraulic).

Within this technical framework, I mainly focused on assessing the lifetime of industrial components which do not
operate continuously but rather "on demand". In this cases, the lifetime is better expressed in "number of solicitations"
(discrete variable), rather then a (continuous) calendar time.

The problem has been investigated in cooperation with INRIA-Paris Sud, in the straight continuation of other joint
activities on industrial reliability. In 2008 I supervised, together with Emmanuel Remy (EDF R&D) and Gilles Celeux
(INRIA-Paris Sud) the work of a young researcher (Come Roero) concerning a deep analysis of two popular discrete
lifetime models, namely the Inverse Pélya and Weibull-1 distributions. The main feature of this analysis is that it has been

carried from a practical industrial viewpoint, that is we investigated the relevance of these models in engineering studies
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characterised by (i) heavily censored data and (ii) failures occurring after a high number of solicitations (i.e. several
hundreds or several thousands).

The conclusion is that both models, for different reasons, are not very useful tools for the reliability engineers who
act in this particular context: Inverse Pdlya carried an implicit assumption of decelerating ageing and Weibull-1 can be
approximated by the continuous Weibull distribution, the parameters of which are more easily understandable and the

handling of which is easier from a mathematical viewpoint.

Contributions. This work is described in a detailed internal EDF R&D report [Roero ef al. 2008]. The main results
have been presented in 2009 at the 415t Journées de Statistique [Pasanisi et al. 2009b]. This study has been successively
enriched in 2012 and 2013 and constitute the core of an article submitted in late 2013 [Pasanisi et al. 2013c].

As other contributions to the larger technical problem of lifetime assessment of industrial component, I am involved,

as teacher, since 2008 in two training courses:

* professional training "Components reliability modelling: probabilistic and statistical methods and uncertainty anal-
yses", hosted by the internal training institute of EDF R&D (ITECH, Institut de Transfert des Technologies),

 academic training "Reliability and industrial feedback" at the Université de Technologie de Troyes (notice also that

I am coordinator since 2013 of the interventions of EDF R&D researchers in this course),

in which I essentially teach the basis of Bayesian lifetime modelling (exponential and Weibull models), with a particular
focus on the role of expert opinion in case of scarce and poorly informative data.

Moreover, as president of the thematic Group "Reliability and Uncertainties" within the French Statistical Society
(since 2009), I contribute to establishing bridges between researchers and engineers coping with the two strictly related
problems of reliability assessment based on feedback data (topics of the present and the next chapter) and results of

computer experiments (cf. Chapter IV).

Structure of the chapter and credits. After this introductory Section, the remainder of this chapter essentially ex-
cerpted from the paper "On the practical interest of discrete lifetime models in industrial reliability studies", available as

a preprint [Pasanisi ef al. 2013c] and submitted for publication.

1 Rationale and basic definitions

According to an usual definition, the reliability is "the ability of an item to perform a required function under given
conditions for a given time interval" [IEC 1990]. The same norm also states that "generally, reliability performance is
quantified using appropriate measures. In some applications, these measures include an expression of reliability perfor-
mance as a probability, which is also called reliability", and finally gives another definition of reliability as "the probability
that an item can perform a required function under given conditions for a given time interval". Other definitions (e.g.
[DOD 1981]) are quite similar and, namely, are also twofold: reliability as both "ability" and "probability". Cf. also the
interesting discussion in [Ahmed & Wu 2013], on the importance of terms "required function" and "given conditions" in
this definition. Hence, it is interesting to see that, in practice, the reliability concept is inseparable with probabilistic con-
siderations: failure is seen as an intrinsically random event, and the predictive tools of reliability engineers are statistical

models.
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II.1 Rationale and basic definitions

There is a number of reference books, introducing the rationale of reliability engineering (e.g. [Aggarwal 1993,
Zio 2007, Hamada er al. 2008]). Here, we will limit ourselves to the very basic definitions of survival analysis. First, let
us consider the most common case where the random variable of interest "time to failure" (we denote it T') is continuous.
Let f(z) and F(¢) (with 7 € Ry), be its density and cumulative distribution function respectively. The following well-
known definitions apply:

Survival function: S(t) =1—F(t) =P[T > 1] = [ f(t)dt

(L1)

Hazard function: A (t) = dhmOIP’[T € [m;ttdt}lT >1] _ ]508
11—

According to the usual definitions a component is said ageing if the hazard function A(¢), also called "failure rate", is

increasing. Moreover, the ageing can be increasing or decreasing, depending on the sign of the derivative dA /dt.

For non-repairable systems, the expectation of T is usually called "mean time to failure" (MTTF):
~+oo
MTTE: E[T] = / 1 F(0)dt. (I1.2)
0

The same considerations can be made for discrete survival models, the use of which is naturally considered when the
lifetime of the piece of equipment under investigation cannot be properly expressed as a calendar time. It is the case of
components which do not operate continuously and are only occasionally solicited. One can think of an on-off switch
or an auxiliary power device: the activations of the switch or the starts of the engine can be considered as "occasional
stresses” or solicitations for the equipment. In these cases, for reliability assessment purposes, the variable characterizing
the lifetime of the component is not the operating time, measured as a calendar time (e.g. hours), but rather the number
of solicitations that it can bear before failure. Another case of discrete lifetime data concerns pieces of equipment which

only operate on cycles and the collected information is just the correct (or incorrect) behaviour at a given cycle.

In both cases, we can formalize the problem by stating that the random variable "lifetime", we aim at modelling, is
discrete. Let us call it N. In the following, we will note, according to usual statistical notations, n € N a particular value
that could be taken by the random variable V.

In spite of the potential amount of case-studies in which discrete lifetime models could be considered as appealing tools
for the engineers, surprisingly (or not?), they have been relatively not much investigated (theoretically and/or practically)

in comparison with continuous models, which are nowadays largely used in industrial practice.

To our knowledge, the first scientific article proposing a discrete lifetime model (actually, derived from the Weibull
distribution) dates from the mid of the 70’s [Nakagawa & Osaki 1975]. [Bracquemond & Gaudoin 2003], in their refer-
ence paper, provide a quite exhaustive review of discrete distributions for lifetime data, including numerous references.
Roughly speaking, they can be grouped into two categories: the ones derived from continuous models and the ones de-
rived by urn schemes. After a concise statistical study, for various practical reasons and because of their convenient
properties the authors recommend in most situations the use of the Type I discrete Weibull family (Weibull-1) defined by
[Nakagawa & Osaki 1975], or the Eggenberger-Pélya distribution [Eggenberger & P6lya 1923]. In a more engineering
framework, [Clarotti et al. 1997] stressed the importance to dispose of intuitive models, in the sense that their features
have appealing meanings for the (often non-statistician) practitionner and can be interpreted by experts. Consequently,
they considered that the Inverse Pélya model can be especially valuable in ageing problems. This offers an alternative

solution to the difficulty of deriving discrete distributions from continuous ones, highlighted, for instance, by [Lai 2013].
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Chapter II. On the practical use of two discrete lifetime models

Here, we will make use of the classical definition of the hazard function for discrete models as the conditional
probability of failure after n solicitations (cf. Equations I1.3 and II.5), given that the component already beared n — 1
solicitations. Derived from the definition of the hazard function in the continuous case (where A can be interpreted
as a "conditional density function" [Lai 2013]), this is actually the most popular one in the technical community (e.g.
[Salvia & Bollinger 1982, Shaked et al. 1995, Lawless 2003, Rinne 2008, Almalki & Nadarajah 2014]). It is worth not-
ing that an alternative definition (first proposed by [Roy & Gupta 1992] and discussed by [Xie et al. 2002, Lai 2013])
exists of the hazard rate, defined as the logarithm of the ratio of the survival function in n — 1 and n, that may allow for
solving some theoretical and practical issues arising when using the classical definition.

This chapter is focused in particular on two probabilistic models, the use of which has been investigated in some
industrial reliability studies at EDF R&D. As a major power producer and supplier, EDF is obviously concerned with
the lifetime assessment of the components of its power plants as well as its transmission and distribution facilities. A
huge amount of industrial feedback (observed or censored lifetime) data, often associated with the expertise provided by
engineers and technicians, is available for coping with this problem. Due to the particular context of EDF business, the
failure of its equipment can have cumbersome consequences, in terms of safety and availability. As a consequence, data
are most of the time censored, i.e. actual failures are not observed. This makes the statistical analysis trickier. The main
question we aim at addressing here is: "Are common discrete lifetime models adapted to the specific context of EDF?".
Even if we do not pretend here to derive absolutely general conclusions on the interest of these models, however, we think
that our conclusions can be useful for other analysts who share a similar context and/or similar data, i.e. situations in
which failures are rare (data could be right-censored) and components are highly reliable (they fail after a relatively high
number of solicitations).

The remainder of this chapter is organized as follows. We first discuss some properties of the popular Inverse Pélya
model, which make it not suitable at all time in our context, in spite of its appealing simplicity and clarity of interpretation
by the engineers’ viewpoint. Actually, it appears that only situations where maintenance is known to prevent any accel-
erated ageing may be relevantly treated using this model. Then we discuss some properties of the so-called Weibull-1
model. Especially, some properties of this model are pointed out, that may sound odd for the practitioners and make its use
and interpretation quite complicated. Theoretical results about the closeness of the Weibull-1 and the continuous Weibull
distributions are given, which plead for using the latter as a robust and convenient approximation of the discrete model
in the engineering practice. This viewpoint is then reinforced by numerical studies. The estimation of the considered
models, in typical situations (including censoring), is investigated using simulated and real datasets. These experiments
highlight the irrelevant aspects of the inverse Pélya model in concrete situations and the fair approximation made using
the usual continuous Weibull distribution as a proxy of Weibull-1.

A concluding section sketches the main teachings of this study and proposes some avenues for further research.

2 Inverse Pélya model

The use of urn sampling schemes to model the behaviour of living [Marshall & Olkin 1993, Ivanova ef al. 2000] or
industrial [Alajaji & Fuja 1993, Bracquemond 2001] systems has been often considered. The basic principle of the
numerous probabilistic models based on the Pdlya urn scheme [Bracquemond & Gaudoin 2003, Johnson et al. 2005,
Mahmoud 2008], first introduced in the 20’s of the last century [Eggenberger & Pélya 1923, Pélya 1930], is to consider
an urn in which, at the beginning of the experience, there are a black balls and b red ones, so that the probability to extract
a black ball after a random trial is a/(a + b). If a red ball is sampled, then z new black balls are added (together with the
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sampled red ball), thus increasing the probability to sample a black ball. This scheme suggests an appealing probabilistic
lifetime model [Clarotti et al. 1997] for discrete data: each solicitation of the piece of equipment is considered as a trial in
a Pdlya urn, where black balls are associated to the event "failure” and red ones to the event "correctly operating”. Adding

new balls can easily be interpreted as the result of a deterioration process.

The random variable N "number of the trial at which the failure occurs" follows a so-called Inverse Pélya distribution
(IPD). Following [Bracquemond & Gaudoin 2003], we make use of the following parametrization for IPD:

a:aj—b and C:ﬁ, withO<a <1 and ¢ >0.

Notice that parameter o can be easily interpreted as the probability of failure corresponding to the first solicitation
(n=1). The parameter { governs the ageing of the system: the higher {, the more severe will be the ageing.
The expression of the main reliability quantities of interest, according to this parametrization are given below. In the

remainder, we will mainly focus on the hazard function (or failure rate) A (n):

Inverse Pélya model: N ~ IPD(«, )

Hazard function: A(n) =P[N=n|N>n—1]= (iti—((::ll))g
(1-a)"!(a+(n-1)f)
S+ (i—1)¢) (IL3)

Prob. of failure after n solicitations: p(n) =P [N =n] =

(1-a)
=+ (= 1)0)

. (1-§)¢1ed  1-a) (1-¢ 1-a
e £ == () (2 )

Survival function: S(n) =P [N > n] =

In the expression of the MTTF above, ¥(,-) is the so-called lower incomplete Gamma function:
v
Y(u,v) = / x"exp(—x)dx.
0
The ageing of the component, i.e. the fact that the failure rate (the probability the component fails for the first time

after n solicitations, given that it did not fail after n — 1 solicitations) is an increasing function of n, is modelled by the
addition of z black balls in the urn.

3 Modelling ageing by means of IPD: a major limitation

The condition § > 0 ensures the ageing of the component under investigation. However, in practical applications one is
also interested in describing situations where the ageing increases or decreases as the observed lifetime (here n) increases.

This issue is solved by studying the sign of the second-order derivative of the failure rate. In the case of the Pélya model
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the second-order discrete derivative of A (n) can be written, for n > 2 (after some algebra):

2(a—1)¢2

M) =An) =24 =D+ A=) = A =20 F =30

(I1.4)

Under the conditions: @ < 1, { > 0 and n > 2, it is easy to verify that the numerator and the denominator of Equation 1.4
are negative and positive respectively. Thus, for any value of {, the second-order derivative of the failure rate is negative,
i.e. the IPD can only model situations of decelerated ageing.

This result of decelerated ageing is confirmed by the intuition: if at each solicitation a number z of black balls is
added into the urn, the more n increases, the more the number z of added balls becomes smaller than the number of the
black balls already present. For large values of n, z becomes negligible and the added balls do not influence the failure
probability anymore.

This situation can occur when a preventive maintenance is sufficient enough to prevent close breakdowns, that are
typically encountered at the end of a component life. For this reason, and because the meanings of its parameters are
rather intuitive, the Inverse P6lya model deserves interest in the reliability and risk community, although its use must also
be strictly reserved to low ageing components or systems.

Due to the non-trivial handling of IPD, numerical computations proposed in the remainder needed to dispose of

methods for simulating datasets and estimating the parameters in realistic cases. More precisely, it is needed:
* to have a view of the range of realistic values for (¢, §), associated to various ageing situations;
* to describe a sampling method, given (o, §): this is done in Appendix (cf. page 153);

* to describe an appropriate estimation method; a maximum likelihood (ML) method devoted to this task is presented

in Appendix (cf. page 153).

An answer to the first item is yielded in the experiment resumed in Table II.1. It is inspired by the case of both continuous
and discrete Weibull distributions, in which the shape parameter 3 appears as an immediate indicator of the nature of
ageing (see also Section 5 of this chapter). Its value can help the reliability engineers to synthetize the behavior of the
considered component. It is therefore wanted to characterize the nature of ageing for the inverse P6lya model.

In a non-exhaustive way, several situations can be simulated using Weibull samples, on which inverse Pélya models
are then fitted. On Table II.1, a range of such situations, from rejuvenation to accelerated ageing, are considered. In
practice, the values of {/a shown in this table have been obtained by fitting IPD on a number of (discretized) lifetimes
sampled from the usual (continuous) Weibull distribution.

Apart from providing ranges of plausible values for the ratio {/a in presence of rejuvenation or soft ageing, these
results highlight the fact that, following engineering common sense, finding an estimate of this ratio upper than one
discredits the "physical" relevance of the inverse Pélya model. Actually, a model considering that at each solicitation, the
reliability decreases of an amount greater than the initial reliability, although mathematically possible, seems not coherent
by an engineering viewpoint.

Except in situations, where preventive maintenance is integrated into the lifetime study, this restriction of the IPD can
definitely be a concern for reliability engineers, as it is difficult to imagine (and to justify) a priori, in many situations, a
hypothesis of decelerated ageing. The poor predictive properties of IPD in presence of data concerning systems presenting
an increasing failure rate are exemplified later in the text (cf. Section 6). For this reason, the remainder of this chapter
is mostly focused on another popular probabilistic model for discrete lifetimes, derived from the continuous Weibull

distribution.

18



I1.4 The Weibull-1 model

Scenario Weibull shape parameter 3 Ratio {/a
rejuvenation B <09 <1073

no rejuvenation / no ageing B=1 [8.107>,1074]

soft decelerated ageing =12 [5.8.1074,7.1074]
classical decelerated ageing (1) f =1.5 [2.6.1073,3.2.1073]
classical decelerated ageing 2) S =1.8 [2.1072,4.1072]
non-accelerated ageing =2 [0.25,0.35]
accelerated ageing B =225 [1.28,1.35]
strongly accelerated ageing p=25 [1.48,1.85]

Tableau II.1 — Typical magnitudes for the ratio {/a as a function of a Weibull shape parameter f3, that indicates qualitatively
the ageing behaviour of a component. These ranges of values were estimated by ML estimation from 500 discretized Weibull
samples of size 1000, generated using scale parameter values in {10, 100,500, 1000}.

4 The Weibull-1 model

The Weibull distribution (together with the exponential distribution which is actually a particular Weibull distribution)
is the most popular probabilistic model for continuous lifetime data in engineering. Several discrete versions of the
Weibull model for discrete data have been proposed. We focus here on the so-called "Weibull-1" distribution (or Type I
Weibull distribution), which is historically the first one, proposed in 1975 [Nakagawa & Osaki 1975]. Recommended by
several authors [Bracquemond & Gaudoin 2003], it can be derived from the usual (continuous) Weibull distribution by
time discretization or alternatively defined by means of its survival function, which has formally the same expression as

the continuous Weibull’s one. Thus, the following notations and definitions apply:

Weibull-1 model: N ~ W;(n,)

n B n—1 B
Hazard function: A(n)=1—exp|— <77> + ( )

(IL5)

n—1\P n\P
Prob. of failure after n solicitations: p(n) = exp | — ( ) —exp | — <n>

n

B
Survival function: S(n) = exp [ (n) ] .

It is worth noting that, although no closed form of the MTTF exists for the Weibull-1 model, upper and lower bounds
can be given, cf. Equation (I.8).

The Weibull-1 model W(n, ) is often re-parametrized as W1 (6, ), with 6 = exp (—1/ nh ). This parametrization
allows for a very easy interpretation of the parameter 6: actually, 1 — 8 is the probability of failure at the first solicitation
(i.e. for n = 1). Nevertheless, the advantage of the parametrization (1, 3) is the easiness of the comparison of the two
distributions W1 (1, 8) and W(n, ) (i.e. Weibull-1 and continuous Weibull having the same parameters) and, following
the purposes of our study, it will be used in the remainder of this chapter.

Notice that other discrete distributions can be proposed from the continuous Weibull one, and namely the Weibull-2
[Stein & Dattero 1984], preserving the power function form of the hazard rate, and the Weibull-3 [Padgett & Spurrier 1985].
See also [Jazi et al. 2010, Alzaatreh et al. 2012, Bebbington et al. 2012, Lai 2013] for examples of more complex related
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distributions, as well as the recent review paper of [Almalki & Nadarajah 2014] proposing several variants of both dis-
crete and continuous Weibull distributions. However, as reminded in [Rinne 2008], no discrete distribution exists that can
mimic all the functional forms and the properties, so familiar to engineers, of the continuous Weibull one.

A number of applications of the Weibull-1 distribution can be found in the technical literature, e.g. modelling the
number of shocks [Sheu 1998] or the number of preventive maintenance actions [Liao et al. 2009, Liao & Sheu 2011]
supported by a repairable system before the total loss of operability in the context of optimal replacement strategies
or the number of items produced in an in-control state of a manufacturing process before shifting to an out-of-control
state [Wang & Sheu 2001, Wang & Sheu 2003, Wang et al. 2009, Tsai & Wang 2011].

Other examples of applications exist outside the industrial reliability context, in which Weibull-1 distribution has been
used for modelling: the discretized duration of wind events [Castino et al. 1998], the recruitments of trees in Growth and
yield models of forests [Fortin et al. 2009], the distribution of polymeric particles hosting the active agent in drug release
experiments [Grassi et al. 2000], the time to replacement of a technology option (water heaters and solar photo-voltaic
panels) aiming at reducing energy consumption and greenhouse gas emissions [Higgins er al. 2014], the number of cells

population doublings until senescence in in vitro experiments [Wein & Wu 2001].

S Modelling ageing by means of the Weibull-1 distribution

One of the most interesting features of the continuous Weibull distribution from an engineer’s viewpoint (and probably
the reason of its success within the technical community) is the great flexibility of the hazard function A(z) which can
model very different ageing mechanisms. Moreover, the parameters (1,3) of this model have a clearly understandable
technical meaning. The first is the quantile of the lifetime corresponding to a survival probability of approximately 1/3
(actually 0.37) and the latter rules (independently of the value of 17) the ageing of the system: (i) rejuvenation if B < 1, (ii)
constant hazard rate if § = 1 (exponential model), (iii) decelerated ageing if B €]1,2], (iv) accelerated ageing if § > 2.

These are very useful properties which become even more interesting in a Bayesian framework for eliciting formal
informative priors [Bousquet 2005, Bousquet 2008, Bousquet 2010] from available expertise.

Starting from this very technical viewpoint, we investigated how these properties of the Weibull model can be trans-
posed to Weibull-1 and we particularly focused on the relation between the value of B and ageing, i.e. the monotonicity
properties of the function A (n).

From the expression of A (n) (cf. Equations II.5) it can be shown that:

* For B = 1, the hazard function is constant. A trivial calculation gives: A(n) = 1 —exp(—1/7).

* For 8 > 1, the hazard function is an increasing function of n. One has just to consider, for n > 2, the argument of

_1\B B
(-6

This function of n is decreasing for > 1, thus A(n) is increasing.

the exponential in the expression of A (n):

 for B < 1, the hazard rate is a decreasing function of n. One has just to follow the same reasoning about the

monotonicity of the function (IL.6) above, which is increasing if § < 1.

For B €]1,2] it is possible to show analytically that A(n) is a concave function of n, i.e. the ageing is decelerated

(proof in Appendix, page 154).
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For B > 2, we did not succeed to prove any analytical results. However, as also highlighted by [Xie er al. 2002],
following the classical definition of A(n) as a conditional probability, it is obvious that this function cannot be strictly
convex as it must tend to 1 as n — oo, which is not the case for the Weibull continuous model.

We found empirically, by studying the convexity of A (n) for (n,f) € [1,1000] x [2.1,20], that for a given 3, a value
7o of N exists, so that for each n < Mo, A (n) is strictly concave and for each 11 > 19, A (n) is initially convex, then concave,
presenting thus an inflection point. The main lesson learnt by this empirical study is that, unlike the continuous Weibull
distribution, the concavity of the hazard function does not depend on 3 only, but also on 1. As a conclusion, an interesting
property of the Weibull model, particularly attractive for engineers, is actually lost when switching to Weibull-1.

Figure (II.1) shows the value of n corresponding to the inflection points, found by means of the empirical study

described above.

Figure I1.1 — Weibull-1 model. Values of the solicitation number n corresponding to the inflection points of the hazard function
A(n) as a function of  and .

In practice, the presence of an inflection point could not be a serious issue in practical problems: that happens when
the corresponding value of 7 is a quantile corresponding to a very low survival probability. In that case, we can conclude

that for the set of values of n interesting for practical purposes, A (n) is convex (accelerated ageing).

6 Ageing: two numerical examples

In order to show the behaviour of IPD and Weibull-1 models with respect to the fundamental engineering issue of ageing,
it is interesting to see how these ones are able to reproduce two known hazard functions from simulated samples. More
precisely, starting from two known hazard functions, shown in Figure II.2 (blue curves), two samples of 100 uncensored
discrete lifetimes for each of the components were randomly generated. Then, using the two generated data sets, we
estimated by the Maximum Likelihood method the corresponding parameters of IPD and Weibull-1 models, and we
plotted the hazard functions corresponding to the estimated parameters. The relevance of this method to assess the quality

of the adjustment in the reliability context is defended by [Bracquemond & Gaudoin 2003]. The results are graphically

21



Chapter II. On the practical use of two discrete lifetime models

shown in the same figure I1.2 (dotted curves).
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Figure I1.2 — Actual (blue curves) hazard functions and estimated hazard functions according to Weibull-1 and IPD models, the
parameters of which have been estimated by maximizing the likelihood of random data sets of size 100.

Not surprisingly, in presence of convex hazard functions (i.e. accelerating ageing) the performance of IPD is poor.
Intuitively, as IPD can return concave hazard functions only, the best approximation it can give of a convex A is a linear

function. Instead, the flexible Weibull-1 model returns a quite fair approximation of A.

7 Approximating Weibull-1 by continuous Weibull model

Face to the issues sketched hereinbefore, it may appear practical for the engineer to use the usual (continuous) Weibull
distribution for the assessment of main functions of interest in a reliability study. If seen as a possible "continuous
approximation" of the Weibull-1 distribution, its computational treatment (e.g. parameter estimation, sampling) is well

known and familiar to the practitioner. As evoked in Section 4, let us focus on the two random variables:

N~Wi(n,B) and T ~W(n,B). (1.7)

They have the same parameters but the first is discrete and follows a Weibull-1 distribution and the latter is continuous
and follows a Weibull distribution. The closeness of both models appears first in the closeness of MTTF’s. The following
proposition (the proof of which is given in Appendix at page 155) highlights in particular that the two MTTF’s (noted
Ew, [N|n,B] and Ew[T'|n, B] respectively) are closer and closer as both quantities are > 1.

Proposition 7.1 Given the two random variables T and N (defined by Equation I1.7), the following inequality stands:
Ew[T|n,B] < Ew, [NIn,B] < 1+Ew[T|n,B].

By definition, the survival functions of both models have the same mathematical form, that is they lead to the same

value of the survival and the failure probability for a given n. Therefore, the expression of the quantile n, of probability g
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is the same for Wi (n, ) and W(n, B):

ng =ty =n[—log(1 —Q)]l/ﬁ~

We conclude that the two distributions (which have similar means and the same quantiles) are extremely close to one
another. In particular, in an engineering context, they give the same values for the main quantities of practical interest
(MTTF, quantiles, probability of failure).

Moreover, when estimating (1, ) from actual industrial feedback data in presence of right-censored observations, the
likelihoods of the two models tend also to be very close: the inference, thus, leads to very similar estimates for 11 and 3
for both models. Actually, it can be seen that the likelihoods of a given samples of discrete lifetime, according to W (+)
and W(-) respectively, are closer and closer as (i) the rate of right-censored data increases, and (ii) the (unknown) value
of 1 is high.

The proof of the first part of the assertion is trivial: any right-censored datum n contributes to the likelihood by
means of the value of the survival function S(n|n, ), which has the same expression for both Weibull and Weibull-1
distributions. As far as the second part of the proposition is concerned, if we note fw(-) the density of W(n,f) and
pw, (+) the probability distribution of W (7, ), the contribution of an uncensored observation # to the likelihood of the
two models is equal to fw(n) and pw, (n) respectively.

As the survival functions S(-) have the same expression for W1 (n, ) and W(n, ), one can write:
pw,(n) =B[N > n—1]—P[N > n) = S(n— 1) — S(n) = / Fw(t)di — / fw(t)di = / fwdi.  (L8)
n=1 n n—1

It is easy to provide the following bounds for the last integral in the right hand side of Equation I1.8:

min fw(r) < pw,(n) < max fw(r). (I1.9)
t€ln—1,n] teln—1,n]
Intuitively, the higher the values of 17 and n are, the closer the bounds in Equation I1.8 are and, consequently, the closer
pw, (n) and fw(n) are. The graphs displayed on Figure II.3 confirm, empirically, this intuition.
More formally, in Appendix (page 155), it is proven the following proposition.

Proposition 7.2 Forall f > 1:
lim sup |pw, (1[B,n) — fw(z[B,n)| = 0. (IL.10)
TR+

Notice that the convergence to 0 of |pw, (t|8,1) — fw(t|B,n)| whent — cois trivial as both pw, (|8, 1) and fw(z|B,1)
tend to 0.

In the remainder, we exemplify and highlight these features of Weibull and Weibull-1 distributions. An empirical
study of the specific properties of the Weibull-1 distribution is carried out, in view of testing the ability of the continuous
Weibull model to approximate the Weibull-1 model. The study is conducted using simulated datasets. Finally, a last study
is presented, involving two industrial examples, based on real feedback data.

7.1 Empirical study

The previous results suggest that for practical industrial purposes (i.e. predicting probabilities of failure and MTTF) the
Weibull-1 and Weibull models provide very similar outcomes when 1) is high. High values of 17 mean that the system
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Figure I1.3 — Upper part: plot of the Weibull-1 (red lines) and Weibull distribution functions (blue lines) for fixed values of § as a
function of n and n; one can see that isolines are very close to one another. Lower part: plot of the discrete Weibull-1 distribution
(crosses) vs. the corresponding values of the continuous Weibull for given values of 11 and 8 (continuous lines), as functions of
n; as one can see, the higher 1 and » are, the more the crosses tend to be superposed over the lines.

under investigation is reliable in the common-sense meaning, that is failures occur for high values of n (i.e. > 1).

Moreover, industrial feedback datasets contain generally a number of censored data. In particular, in our specific
industrial context, data are most of the time right-censored (and quite never left-censored) because failures are to be
strictly avoided as they have a costly impact on availability of the overall production facility.

As shown in the last part of the previous section, a set of lifetimes of a reliable system with a significant number
of censored data leads to a very similar likelihood under the two hypotheses of Weibull-1 and Weibull model. Hence,
Maximum Likelihood estimations (MLE) of (1, 8) for both models are expected to be very close. To confirm these
results, we carried intensive numerical simulations, by generating datasets likely to be encountered in industrial practice
and thus evaluating the MLE of (1, ) for Weibull-1 and Weibull model, noted (fjw, 7[§Wl) and (flw, Bw ) respectively.

More precisely, for (n,f) € {10,50,300,500,800,1000} x {0.5,1,1.5,2,2.5,3,5,10}, and for right-censored data
rates of 0%, 25%, 50% and 75%, 5000 samples of sizes 50 and 100 were generated from the Weibull-1 distribution
Wi(n,B).

Based on these data, the MLE (fjw, ,Bwl) and (flw, ,Bw) were evaluated, as well as the relative errors concerning the
estimations of (17, 3):

n—fiw, B—Bw, n—fw B-Pw
n B 7 n ' B
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and the relative errors of plug-in estimators of the following quantities of interest: hazard rates corresponding to the
quantiles of probabilities (0.5,0.75,0.90,0.99) of the original distribution, MTTF and quantiles. As data have been
generated from Weibull-1 distributions, one can expect the estimators (fw, , Bw ,) to be closer to the actual values of (17, )
than (fjw, Bw) the first being obtained by fitting the "true" probabilistic model, the latter by fitting an approximation of
it.

Figure 11.4 shows some results of this empirical study. Here, the mean ML estimation error under the Weibull-1
model assumption (x-axis) is plotted against the error under the continuous assumption. One can see that the points of the
scatterplot are quite close to the first bisector, showing that using the Weibull-1 model yields no significant improvement

with respect to the continuous approximation.

Censored data rate: 0% Censored data rate: 25% Censored data rate: 50% Censored data rate: 75%
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Figure I1.4 — Relative errors of the MLE of 1 (circles) and 8 (squares) and of the ML plug-in estimator of the MTTF (triangles),
obtained from data simulated from the Weibull-1 model under the hypothesis of different censoring rates from 0% to 75%. The
estimation is carried using the Weibull-1 and the continuous Weibull model assumption. The colors correspond to different values
of the true 1.

7.2 Inference from actual feedback data

As a conclusion of this study, it is interesting to examine two datasets coming from actual industrial feedback. Even
though this analysis is proposed for exemplary purposes only, nevertheless data are representative of the ones reliability
engineers cope with in our specific business context. Table I1.2 shows the main features of the examined datasets. A quick
look at data summary allows to find out two important characteristics. First, most of the data are right-censored lifetimes:
the censor rates are equal to 96% and 81% respectively. Second, the components under investigation are reliable, in the
sense that failures are expected to occur after a (relatively) high number of solicitations: the empirical means of the (highly
censored) observed data are 63.8 and 334.5 respectively.

In the same table are also shown the Maximum Likelihood estimators of the parameters of the Inverse Pdlya, Weibull-1
and Weibull models.

Regarding the first data set, the estimated parameters of both Weibull-1 and Weibull models (which have very similar
values) suggest an accelerated ageing. The extremely high (and hardly understandable by a technical viewpoint) value
of ratio é /& (order of magnitude: 10°) highlights a poor modelling performance of Inverse Pélya. Figure 1.5 shows the

cumulative distribution functions (CDF) of the three estimated distributions as well as the Kaplan-Meier estimator. In
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Chapter II. On the practical use of two discrete lifetime models

Sample 1 (Aux. power device Sample 2
linings) [Clarotti et al. 1997])
Data size 497 48
Sum of observed data 31715 16058
Observed failures 18 9
Number of right-censors 479 39
Parameters estimation
v, Pélva & =7.037-10"12 6 =5.601-10"%
oY £ =1.349.10° £ =1.774-10"1°
. 71 =306.814 7 = 1530.139
Weibull-1 B =2320 B=1.122
. 7 =320.580 71 = 1510.250
Weibull B =2320 B=1.124

Tableau I1.2 — Example of analysis of data set coming from actual industrial feedback. Upper part: data summary. Lower part:
Maximum Likelihood estimators of the parameters of Inverse Pélya, Weibull-1 and Weibull distribution.

spite of the issues evoked hereinbefore, the prediction properties of the three models (in terms of failure probabilities)
are quite equivalent within the range of observed data. Yet, as shown in Figure 11.6, the predictions given by IPD for
higher values of n are more optimistic and less conservative, in the sense IPD provides lower values of the CDF (i.e.
higher values of the reliability function) than the ones given by Weibull and Weibull-1, the CDF’s of which are practically
indistinguishable.

As far as the Sample 2 is concerned (cf. Figure I1.7), the components do not show a significant ageing (the Weibull
shape parameter is close to 1). The three probabilistic models return a very similar prediction in terms of CDF (and
reliability function).

As a conclusion, these exemplary analyses confirm the conclusions presented in the previous Sections, by means
of theoretical and empirical considerations: for engineering purposes, the continuous Weibull model is a fairly good

alternative to the discrete model (Weibull-1) investigated in the framework of the present study.

Remark. We stress that, although the data come from real surveys, the study shown in this section is given for exem-
plary purposes only and neither results nor methodology must be extrapolated to make any general conclusion about the

reliability of EDF industrial components or EDF risk assessment policies.

8 Discussion

The study shown hereinbefore has highlighted some weaknesses of both inverse Pélya (IPD) and Weibull-1 distributions
as discrete models for lifetime of industrial components.

IPD carries the implicit hypothesis of decelerating ageing, that can definitely be an issue as this assumption can be
hardly justified a priori in industrial studies.

As far as the Weibull-1 model is concerned, it has been shown that the popular interpretation of the shape and scale
parameters of the Weibull distribution is no longer valid for its discrete version. In particular, the type of ageing does not
depend on 8 only but also on 1.

Moreover, for practical purposes, the Weibull-1 model and the Weibull model are very close. In practice, the Maximum

Likelihood estimation of the parameters (17, 3) computed under the hypotheses of Weibull-1 and Weibull models lead to

26



I1.8 Discussion

the same results. That is more and more true as far as the value of 1) is high (i.e. the piece of equipment under investigation
is reliable, in the sense that it normally fails after a significantly high number of solicitations) and the rate of censored
data is high. That is exactly the case of an industry like EDF: in this context, fortuitous failures can have a great impact on
the availability of the production facilities and lead to high unexpected costs. For these reasons they have to be avoided:
components are highly reliable and they are replaced well before that failures are likely to occur.

Thus, the practical impact of the use of Weibull-1 model for improving reliability analyses based on feedback data is
quite low.

Of course, the conclusions of this study can be questionable and (we insist) they must be clearly put inside the specific
context of an industry like EDF. Moreover the study is limited to IPD and Weibull-1 models, as their use has been evoked
in former internal technical reports as an interesting perspective. Other probabilistic models exist and we do not pretend to
give general conclusions about discrete lifetime models. Nonetheless, the easily-interpretable features of the Inverse Pdlya
distribution could remain valuable in practice if the phenomenon of decelerating ageing could be discarded. It is likely
that adding a supplementary hypothesis of the following nature could improve the versatility of the model: the number z of
balls added at solicitation n should follow an increasing pattern in function of » rather than remaining constant. Defining
and comparing several patterns, from both analytical and computational viewpoints, should be a keypoint of future studies

aiming at preserving the interest of IPD in reliability analysis.

Auxiliary power device linings
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Figure IL.5 — Data Sample 1: Cumulative distribution functions from ML estimations of Inverse Pélya, Weibull and Weibull-1
model and non-parametric Kaplan-Meier estimator.
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Figure I1.6 — Data Sample 1: Cumulative distribution functions from ML estimations of Inverse P6lya, Weibull and Weibull-
1 model. The range of the number of solicitation is here extended beyond the maximum of the observed sample to show the
predictive properties of the model for high values of 7.
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Figure IL.7 — Data Sample 2: Cumulative distribution functions from ML estimations of Inverse Pélya, Weibull and Weibull-1
model and non-parametric Kaplan-Meier estimator.
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Chapter 111

Markov chain modelling of industrial systems

deterioration

"The trees and the Ents," said Treebeard. "I do not understand all that goes on myself, so I cannot explain it to
you. Some of us are still true Ents, and lively enough in our fashion, but many are growing sleepy, going tree-ish,

as you might say. Most of the trees are just trees, of course; but many are half awake. Some are quite wide awake,

'

and a few are, well, ah, well getting Entish. That is going on all the time."
John Ronald Reuel Tolkien, The Two Towers (1954)

Reading notes

Technical context. Markov chains are useful tools for the reliability engineer when analysing the behaviour of systems
which are subject to deterioration. In this case, a simple and intuitive scheme consists of a discrete state model, each state
describing more or less degraded operating conditions or performances. Knowing the initial state (or at least the initial
probabilities for the system to be in each of the considered states), assuming a first-order stationary Markov scheme, the
behaviour of the system is entirely described by the transition probabilities from a state to another in the time unit (e.g.
one year).

The technical context in which I have been first interested in this class of models has been the analysis of the accuracy
of water meters, for the private company Génerale des Eaux, I worked for from December 2000 to February 2004. Ac-
tually, though the company was mainly interested in forecasting the overall accuracy (ratio between billed and consumed
water) for estimating the unaccounted-for water and thus planning the periodic renewal of the machines, regression-like
models directly dealing with accuracy as regressand proved to be ineffective (as in fact observed accuracies seemed to
be rather sampled from a mixture of populations). I proposed, instead, a four-state Markov model, as it is detailed in
Section 7 (pages 49 and following).

A problem that frequently arises in engineering practice is that data are not adapted to the common inference methods
for estimating the transition probabilities. Actually, although the estimation is very easy in presence of complete i.i.d.
(independent and identically distributed) sequences of states for a number of systems over a given time period, the problem
become trickier when the analyst has at his/her disposal, sequences with missing observations (or even constituted by only
one observation) or aggregated data (i.e. the number of systems in a given state at a given time).

EDF R&D is also concerned with this kind of models. When I joined the Industrial Risks Management Dept. in 2008

I had the opportunity to work again on the same problem of estimating Markov transition probabilities from incomplete
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Chapter III. Markov chain modelling of industrial systems deterioration

data, for dealing with problems of cracks propagation in pieces of equipment of power plants (cf. Section 6).

Contributions. The degradation of the accuracy of water meter has been the problem at the heart of my PhD works,
carried within the framework of a CIFRE partnership between the Compagnie Générale des Eaux (CGE) and ENGREF
(Ecole Nationale du Génie Rural, des Eaux et des Forets). Besides the PhD thesis [Pasanisi 2004a], different features
and results of these works have also been presented at the 7th Valencia International Meeting on Bayesian Statistics
[Pasanisi ef al. 2002] (as a poster), at the 35th Journées de Statistiques [Pasanisi 2003] and at the first two editions of
the Rencontres Statistiques au Sommet de Rochebrune [Pasanisi 2002, Pasanisi 2004d] and published in the Revue de
Statistique Appliquée' [Pasanisi & Parent 2004].

Some years later, at EDF R&D, I resumed working on this class of models, and I attempted to better formalize the
inference problem, with the help of my colleague Nicolas Bousquet. In 2009 we supervised the internship, about this
topic, of Shuai Fu (who successively joined my project team on Uncertainty Analysis as PhD student) . The main result
of this work is the acceleration of the Metropolis-Hastings algorithm for the Bayesian inference of transition probabilities
(cf. Section 3) by introducing an instrumental density modelling the dependence of elements of different rows of the
matrix by means of a Gaussian copula. Another result is the equivalence between the case of aggregated data and the one
of sequences made by one single observation.

First presented at the 42nd Journées de Statistiques [Pasanisi et al. 2010], these works have been later on published in

the journal Computational Statistics and Data Analysis [Pasanisi et al. 2012a].

Structure of the chapter and credits. Most of the remainder of this chapter is constituted by the text of the article
"Estimating Discrete Markov Models From Various Incomplete Data Schemes" [Pasanisi et al. 2012a] co-authored with
Nicolas Bousquet and Shuai Fu (with very few adaptations).

The content of Section 7 is essentially adapted from my PhD thesis as well as other studies carried within my PhD
work [Pasanisi et al. 2002, Pasanisi 2003, Pasanisi & Parent 2004].

1 Introduction

In many applications, the analyst is required to model and/or to predict the behaviour of a system X which is fully
characterized (with respect to the framework and the purposes of the analysis) by a discrete variable of interest Z which
takes time-dependent values within a finite (discrete) set 8 = {sy,s2,...,s,} of r classes (let us call them szates). For
instance, he/she could be interested in estimating the probability p 4 (¢) for Z to be in a given set of states A C 8 as a
function of time ¢.

In a reliability analysis context, these states can correspond to failure states, thus 1 — p 4 (¢) is the reliability function of
the system under investigation ¥ at time . Another function of interest could be the expected number of states N 4 before
¥ reaches A. To do so, the analyst first has to estimate the transition probabilities from one state to another, i.e. estimate
the transition matrix 6. The vector p(0) of the initial probabilities p;(0),...p,(0) for the system to be in states sy,...s,
respectively, at t = 0, is usually assumed known in real-life applications; therefore, the knowledge of the transition matrix

0 allows to evaluate, for a given time ¢, the probabilities for being in each of the r states, i.e. the vector:

p(1) =p(0)-6". (IL.1)

!Journal edited by French Statistical Society (SFdS) up to 2006 when it has been merged with the Journal de la Société Frangaise de Statistique.
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II1.1 Introduction

Given some data z under the form of observed sequences of states, the statistical estimation of these probabilities is
traditionally facilitated by a time-homogeneous, first-order Markov stationarity assumption about the process A which
generates the data. In other words, the transition probability 6; ; from any state s; to any other state s; (i possibly equals
to j) is assumed to be independent of time and of the past trajectories before reaching s;. Of course, this assumption is
questionable and may seem restrictive regarding the external knowledge about the process and the complexity of the actual
system [Sonnenberg & Beck 1993, Diebold et al. 1994, Faissol et al. 2009, Grimshaw & Alexander 2011]. However, as
noted by [Jones 2005], "using (possibly more appropriate) higher-order processes increases the complexity and data
requirements quite substantially, and may not be feasible with only a limited time series". That is often the case in
practical applications and in particular in the studies this chapter is concerned with.

Here, the interest in Markov models is rooted in industrial reliability problems; cf. Section 6 and (especially) Section 7.
Many other applications> can be found in this field: discrete Markov schemes, the states of which correspond to gradually
deteriorated operating conditions, have for instance been used to assess the reliability of programmable electronic systems
[Bukowski & Goble 1995], cogeneration plants [El-Nashar 2008], machineries of oil refineries [Cochran et al. 2001], pip-
ing systems of power plants [Cronvall & Minnisto 2009], welded structures submitted to fatigue damage [Lassen 1991]
and cracks propagation (cf. Section 6).

As a more recent example, a scheme based on Markov (hidden) discrete states has been used to describe the de-
terioration of optronic devices from the history of data collected by HUMS (Health & Usage Monitoring Systems)
[Baysse et al. 2012].

Examples of applications in water resources engineering concern the modelling of river inflows [Parent et al. 1991],
lake inflows [Duckstein & Bogardi 1979], water supply reservoir states [Vogel 1987] or propagation of pollutants in water
courses [Zhang & Dai 2007].

In biomedical survey, Markov chains can model the health condition of patients affected by infectious or viral dis-
eases [Sonnenberg & Beck 1993, Gentleman et al. 1994, Faissol et al. 2009]. These models are also applied to capture-
recapture problems [Dupuis 1995, Dupuis & Schwarz 2007], used to describe the dynamics of an animal population.

As a last example, the financial world makes a wide use of first-order Markov transition matrices to explain a
number of phenomena like economic cycle switching [Diebold et al. 1994], migration of credit ratings [Jones 2005,
Fuertes & Kalotychou 2007] or loan defaults [Grimshaw & Alexander 2011].

1.1 Different data structures

In an ideal framework, the data z consist in m time series of observed states for m identical individuals (systems) X that are
assumed independent. If no data is missing, the estimation of 8 is relatively straightforward. In many applied problems,

however, part of data is missing. Such problems can often be divided in two classes.

(1) We call an incomplete sequence problem the estimation of @ when z are observed trajectories of states:

2(1,1) b <o Z,r-1)  Z(1,1)
i 222) -+ Z2r-1) Z271)
Z(m,1) i <o Lm,T-1) o,

2Notice that in the (certainly not exhaustive) review of applications we provide here are highlighted cases in which more or less complex "Markov
schemes" are used to model "systems" that randomly pass from one state to another. This summary of examples includes also studies involving more
complex statistical models than the stationary discrete Markov chain, this chapter is mostly focused on.
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containing random missing items (random successions of unknown states symbolized by "e"), assuming the initial
state is known. This occurs typically when the m individuals are checked at deterministic times ¢t = 1,...,T, inde-
pendently from A, as noted by [Dupuis 1995], or when the survey of all individuals at the same time is impossible
(e.g. only a given proportion of the machineries can be inspected simultaneously, in order to avoid stopping the

industrial production).

(i1) We call an aggregate data problem the estimation of 8 when the sequential data z are reduced to the numbers of
individuals n;(t) being in a given state s; at a given time 7 (i.e. n;(t) =¥, Lz, =s})- Such data are frequently
[Gouno et al. 2011] the only ones being at disposal of the analyst, because, for instance, the full trajectories of
individuals represented too much information or were not considered of primary importance during the survey

process.

2 Bayesian estimation of transition probabilities

This section provides a review of Bayesian inference techniques for the estimation of the transition matrix € under the

obvious conditions:

0<6,;<1, Y 6,;=1 (I11.2)
Jj=1

This estimation problem has thus r(r — 1) degrees of freedom. As stated hereinbefore, we voluntarily chose a Bayesian
viewpoint. Besides the more theoretical issues pointed in a number of reference works we fully agree with (in particular,
we refer to [Bernardo & Smith 1994, Robert 2001, Parent & Bernier 2007, Kadane 2011]), we motivate our choice, in an
industrial context, by the possibility to explicitly (and relatively easily) quantify [Girard & Parent 2004], via predictive
simulation, the uncertainty affecting some quantities of practical interest for the reliability engineer (e.g. the probability
for the system to be in a failure state for a given time #, or the mean time before the system reaches one of the failure
states).

Moreover, from a strictly computational point of view, the Bayesian framework allows here to deal with some is-
sues that can be quite burdensome in frequentist inference, without any particular additional difficulty. These include the
intractability of the likelihood expression in missing data schemes, the respect of constraints II1.2 [Lee ef al. 1968], the
difficulty to obtain a probability distribution for the estimators 6, which requires using (possibly costly) bootstrap ap-
proaches [Fuh 1993]. Besides, the validity of such distributions remains usually asymptotic. Finally, even if this point has
not been investigated, using an informative prior could maybe solve some identifiability problems [Allman et al. 2009],
when the dimension of @ is high and/or data are poorly informative [Puolaméki & Kaski 2009].

A convenient, and quite natural, choice for the prior distribution of the transition matrix @ is the product of r indepen-
dent Dirichlet distributions, one for each row 6; of 0:

.
6; ~ Dir(;) ie. m(6;) < []6;% " (I11.3)
=1

Actually, as the Dirichlet density is null outside the standard (r — 1)-simplex, it is particularly suited as a prior distribu-
tion of probabilities vectors, that must fulfil conditions III.2. Another well-known rationale for choosing a Dirichlet prior

is that it can be seen as the reference posterior for a multinomial parameter given some virtual data of state-occupancy,
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whose sizes ¥; ; — 1 can be interpreted as measures of the prior’s strength [Minka 2003]. However, in absence of precise
expert opinion in the remainder of this chapter, uniform priors (7, ; = 1, Vi, j) were used, as also recently recommended

by [Tuyl et al. 2009], based on symmetry requirements of posterior predictive distributions.

2.1 Complete sequence problem

Transition probabilities estimation can easily be performed when complete states time-series (often alternatively called
panel data) are available for the m individuals. The estimation is based on the calculation, for every couple of states

(si,57), of the number of observed one-step transitions from state s; to state s;:

T m
wi = Z Z 1 {eamny=sien=s;}" (11.4)

t=1k=1
Full data likelihood can be written as a function of the sufficient statistics w; ; by observing that conditional on the
row vector 8; = (6;1...6; ), the vector w; = (w;1...w;,) is multinomial with parameters 6; and Z;-:] w; j. Therefore, the

likelihood £ (z|@) can be written as the product of r multinomial terms:

£(2]0) = H ( Wi > 0. .0"" (I1L5)
S A i -6, .
In a Bayesian framework, the estimation of transition probabilities given complete sequences is straightforward. The
inference problem consists in computing the posterior probability distribution of model parameters 7(0|z) by updating
the prior distribution 7(6) conditional to the observed data z, through the Bayes formula:
£ (2|6) n(6)

n(0]z) = L (210)7(0) 48’ (IIL.6)

where Q denotes the set of all possible values of 8. From Equations III.5 and II1.3, it can be seen that the prior of 6
is conjugate, i.e. the posterior distributions of the 6;’s are also Dirichlet distributions, with parameter vectors equal to

(Vi1 +wit,...,%,r+w;i,). This is the well known Dirichlet-multinomial model.

2.2 Incomplete sequence problem, ignorable DCM

In the most general case of incomplete sequences problem, the estimation problem turns out to be more complicated.
Throughout this study, we mostly consider the case where the Data Collection Mechanism (DCM) is ignorable, which
means, in practice, that it can be neglected in the statistical data analysis. Besides simplicity purposes, this choice is
essentially motivated by the framework and the background of our study, which is reliability analysis. Some elements
about the more general cases of non-ignorable DCM will be provided in the next section.

Let x(; ;) be an auxiliary binary variable (missingness indicator) which is one if the observation is missing, zero if the
state has been observed. The DCM is described by a complementary statistical model specifying P [xw) |2, Zmiss n}, ie.
the probability for an observation to be missing, depending on observed and unobserved data and (possibly) some other
parameters 7).

Fulfilling two conditions is sufficient for ignorability [Gelman et al. 2004]: the first one states the independence be-
tween the parameters of the DCM and the main model (here 17 and @ respectively), the second one asserts that the

probability that an observation is missing does not depend on missing data (MAR: missing at random condition). The
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first condition is generally easily checked, while the second one highly depends on the context of the statistical study. For
instance, in capture-recapture experiments the probability of recapture may depend or not on the state of the individual
(e.g. younger animals can be more easily captured than older ones). In longitudinal medical surveys the health state of
a patient can prevent him from going to a periodical visit (e.g. in case he/she is hospitalized). In an industrial reliability
framework, and in particular in the specific context of EDF, the presence of missing data is mainly due to the impossibility
of simultaneously surveying the whole population of components for cost or system availability reasons. This motivates

our choice to mainly focus on ignorable DCM situations.

Let us now come back to our estimation problem. In incomplete sequences problems, the likelihood has a highly
complex expression. It is the product of m terms which are the probabilities to observe each one of the m sequences. Whilst
writing the term related to an incomplete sequence, one must consider all possible values of the unknown observations.
For example, the probability of the sequence (s;, 51, ®, ®, s3) must be written by taking into account all possible three-steps

paths from state s to state s3:

P[si,s51,0,0,53] < ) [91,1' Y ei,jej,3] :
i=1 =

Estimation methods dealing directly with the likelihood expression may be quite tricky to perform [Deltout et al. 1999].
On the other hand, Bayesian inference can elegantly be performed by means of a Gibbs sampler.

This procedure is particularly adapted to the cases where the posterior distribution of model parameters would be more
easily determined if data were fully observed. Missing data are considered as additional model parameters zpy;s(x,) and,
within the Gibbs sampling, an additional step is performed to simulate them, thus completing the data set. This technique
is usually known as data augmentation [Robert & Casella 2010]. Note that Gibbs sampling may be viewed as the Bayesian
mirror of Stochastic Expectation-Maximization (SEM) algorithms based on a similar mechanism [Deltout et al. 1999].

In our case the augmented data set, say v, is the set of the completed state sequences for all individuals:
Y(ks) = Z(kys) If Z(x,r) 18 Observed
and
Y(ks) = Zmis(k,) Otherwise.

The Gibbs sampler algorithm for the incomplete sequence problem can be viewed as a particular case of the more general
method for the Arnason-Schwarz capture-recapture model [Marin & Robert 2007]. We first initialize the algorithm by

arbitrarily completing state sequences. Then at each step h = 1,2,.. ., we perform the following two-step procedure:

1. drawing new parameter values, conditional on the augmented data ylh=1:
B\ Th— . h—1 h—1
01[ ]|y[h ' Dir (%71 +Wl[,1 ],...,%,r—kwl[?, ]) ,
where w!" ! are the sufficient statistics (ITL.4) evaluated from current completed sequences y[”’”;

i.j

(1]

2. drawing missing data Zis (ko

) conditional to the current values ) of model’s parameters (data augmentation step).
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This can be done by sampling from a conditional categorical distribution defined by the following probabilities:

h h—1 N

P Mk],n = sj|yEk_’2)] = Siﬁ[hq o< ][-,i],fort =1
N ] B

P [y(k,T) - Sj‘y(kj,l) = Siae[h]} o< ei,j Jgfort=T (II1.7)
N AN gl :

g {)’U{J) = Sjb’(kJ,I) =St Yikag1) = Si270[h]:| < 6j7i2,0therw1se.

The computational method shown above is quite general and easy to implement. On the other hand, the more in-
complete the sequences are, the more additional parameters are required and the more the data augmentation step be-
comes time-consuming. This issue will be illustrated later on in the example of Section 2.5. A technique to accelerate
this step, consisting in simulating blocks of consecutive missing data instead of one datum at a time, is proposed by
[Dupuis & Schwarz 2007].

A particularly interesting case of incomplete sequence problem occurs when each individual is observed just once
over the observation period. This can happen in industrial reliability when the data come from the first survey of operating
machines, as in the real-world example of Section 6, or from destructive controls (Section 7). Then let #; (with 1 <, <T)

be the time when the individual k has been observed and s; be the observed state. The state sequences takes the form:

o, ...,05,0 e
In that case, it can be shown (proof in Appendix, page 156) that the likelihood £ (z|0) has the general expression:

T r ,
£ (210) < [T ps(0)". (I11.8)

1=1j=1

In the formula above, p;(t) is the unconditional probability for the system to be in state s5; at time ¢ and n/(t) =

Yol {z3=s}} is the number of times the state s; has been observed at time ¢ in the data sample z. It has to be no-
/
J
the aggregate data problem considered hereinafter. In this particular case, Bayesian estimation can be performed using

ticed that the expression of the likelihood depends on sufficient statistics »’;(¢) and the statistical problem is equivalent to

the Gibbs sampler described above or the Metropolis-Hastings procedure we carry out for the aggregate data problem in
Section 2.4.

2.3 Incomplete sequence problem, non-ignorable DCM

Let us now consider the more general case where DCM is non ignorable.

This problem has been studied in detail (cf. chapters 6-10 of [Little & Rubin 1987]) in particular within the framework
of longitudinal medical surveys: indeed, for different reasons, patients can leave the study permanently (dropout) or
temporarily (intermittent missing). Using the same notation as in the previous subsection, let y; be a complete data
sequence for the individual £ (while z; denotes the actually observed sequence). The different ways for coping with

MNAR (missing not at random) observations rely, from a technical point of view, on the way the full-data likelihood
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L(yr,xr|0,m) is factorized. Three types of factorization are usually proposed:

L(yilxy,0) - L(xk|n) (pattern mixture model),
L(yk|0) - L(xi|yk,m) (selection model), (111.9)
J L(ye|xp, vi, 0) - L(xp|ve,m) - f(vi|tp) dvy (shared parameter model).

The formulations above can be complexified, by considering the influence of covariates in both the main and the
missingness models.

In the pattern mixture framework [Little 1993], the analyst models the conditional distribution of the observable
outcome, given its observation pattern, and the distribution of the different patterns. As a matter of fact, the data are
stratified (each pattern determines a stratum) and the main parameters € are estimated in each stratum.

The selection factorization, first introduced by [Rubin 1976], instead, focuses on the dependence between the miss-
ingness and the actual value of the observable variable (in our case the state of the individual). This scheme explicitly
copes with the distribution of the complete data y conditional on the main parameter of the model, here 8. The DCM
parameters 7} are easy to interpret and provide additional valuable information to the analyst.

In the shared-parameter scheme [Wu & Carroll 1988], the missing mechanism is indirectly related to the observable
variable through a latent variable v, depending on some additional parameters ).

In the particular framework of the estimation of transition probabilities, [Cole et al. 2005] considered categorical
quality-of-life data in cancer clinical trials, using a selection factorization. Transition probabilities 6; ; and missingness
probabilities n; = P[x( ;) = 1]y(x,) = s:] both depend on observable covariates.

The Arnason-Schwarz model [Dupuis 1995, Marin & Robert 2007], also based on a selection factorization, has an
elegant Bayesian solution in the case where the 1;’s do not depend on covariates. In this case, a natural choice of the
prior for each one of the 1),’s is a Beta pdf: Be(a,f;). The Gibbs algorithm for estimating the posterior of (n,0) is
straightforward as, conditional on the the complete data y, both posterior distributions of 77 and @ are explicit. The
detailed description of the two steps of the algorithm (data augmentation and parameters estimation) is given in Appendix,

at page 156.

2.4 Aggregate data problem

In many real-life problems, we do not follow individuals passing from state to state and the only available data for esti-
mating transition probabilities are aggregate data n, i.e. the number of individuals n;(¢) being in a given state s; at a given
time ¢. Any track of individual trajectories is lost. That may occur in practice when a population of m individuals has been
followed over an observation period but the original aim of the survey was simply having the fractions of the population
in particular states. State sequences have thus been considered as raw data and discarded. Examples in sociology and
population dynamics were highlighted by [Bartholomew 1973] and [Pollard 1973], among others. Applications in credit
rating were recently studied by [Jones 2005].

The inference problem has been formalized by [Lee et al. 1968]. Conditional on the probability vector p(¢) = p(0)- 6",
the data vector n(t) = (n1(¢),n2(t), ...,n,(¢)) is multinomial with parameters p(¢) and Y.;_; n;(¢). The likelihood £ (12|0)

can then be written as the product of 7 independent terms:

£(n|6) = ﬁwﬁpj(l‘)nj(t). (IIL.10)

7

=1 Lm0t =1
=1
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II1.2 Bayesian estimation of transition probabilities

[Lee et al. 1968] focused on obtaining point estimates of the matrix 8 and in particular the posterior mode of 7(8|n)
by maximizing the product of the likelihood (Equation III.10) and r independent Dirichlet priors (Equation III.3), one for

each row of 6.

In the same frequentist context, [MacRae 1977] then [Kalbfleisch & Lawless 1984] were among the main authors who
developed generalized least square estimators to remedy the difficulty of the maximum likelihood estimation, because of
the untractability of £(n|@). Under mild conditions on the stationary matrix 6, [Kalbfleisch & Lawless 1984] obtained
general consistency results and asymptotic r(r — 1) —variate normality (in 7 and N = Yion (1)) for the estimated vector
0,ow of entries in @ written rowwise, i.e. Orow = (01.1,...,61,-1,621,...,6r,—1). [Lawless & McLeish 1984] gave condi-
tions on functions of interest for which the information loss due to aggregation is asymptotically negligible with respect
to the estimation based on complete sequences. In a specific reliability framework, [Gouno et al. 2011] recently provided

a methodology to estimate such functions of interest (e.g. survival probability, sojourn time in a state) .

In a Bayesian context, the inference problem can be solved by using a Metropolis-Hastings (MH) algorithm to con-
struct a sample of matrices of Q : 0% @l ... @ . asymptotically drawn from the posterior 7 (0|n), by sampling
at each step h a candidate vector 8" from a given distribution function J (-\0[}"1]). The candidate is accepted with

probability:

(0" n) J(olr-1el")
n(0h-1|n)  J(OI |gh-11)’

p (8|1 = 1 A (IIL11)

i.e. the acceptance of the candidate is the result of a Bernoulli trial of probability p (8" |@/—1]).

The instrumental density function J ('|0[h_1]) allows a random exploration of the space of parameters. The conver-
gence of the chain to the target distribution is proved for any arbitrary function J(-|-) which satisfies mild regularity
conditions [Robert & Casella 2010]. In the present case, a comfortable instrumental function is the product of r inde-
pendent Dirichlet distributions Dir(d; - 01[}’_1]), where d; is a positive (scalar) constant. This is a usual case of controlled
MCMC [Andrieu & Thoms 2008]. As the Dirichlet density is null outside the standard (r — 1)-simplex, all candidates
drawn by the instrumental functions automatically respect constraints shown in Equation III.2.

[h—1]

It can easily be seen that the mean of each of the r Dirichlet instrumental densities is 0; , i.e. the candidate

matrix is sampled from a probability function which is "centered" on the last retained matrix. The variance terms of the
. . ~1
covariance matrix, equal to 6}3 ]

tuning coefficients that rule the distance of exploration from the current state of the MCMC chain to the next proposed

(1— 6,-[7}]’7”) /(d; + 1), depend on the shape parameters d; which can be interpreted as

one.

Notice that, as the expressions of the likelihoods in Equations III.8 and III.10 are formally the same, up to a propor-
tionality constant, the MH procedure described above can also be used in the interesting case of incomplete sequences

when each individual has been observed only once. Such examples are treated in the next paragraphs.
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2.5 A four-dimensional simulated case study

We compare hereby the performances of Gibbs and MH algorithms in the case where individuals are observed only once.
Following a case-study from [Lee et al. 1968], we consider the following transition matrix:

06 04 0 0
0.1 05 04 0

6, = . (1IL.12)
0 01 07 02

0 0 01 09

First, complete state sequences for m € {10,...,1200} individuals have been generated for 7 = 20 observation peri-
ods, under the hypothesis that at + = 0 the initial vector probability is (3/4,1/4,0,0). Then, given complete sequences,
a single observation per individual has been randomly selected, thus obtaining incomplete sequences. Finally, for each
m we used the Gibbs and the Metropolis-Hastings algorithms described above. The convergence has been checked us-
ing the Brooks-Gelman statistic [Brooks & Gelman 1998] computed on three parallel chains and a visual inspection of
the chains. A classic rule of thumb (RT) is to suppose quasi-stationarity once the statistic stably remains under 1.1
[Brooks & Gelman 1998]. The precision in estimation was measured using the relative absolute error matrix between the
elements of 6, and a progressive Monte Carlo posterior estimate of 6. In each case, it has been obtained by using the
second half run of Metropolis-Hastings iterations and Gibbs iterations after the burn-in periods determined by Brooks-
Gelman RT respectively. Parameters d; were sampled uniformly in [100, 2500]. For a same estimation error of at most
5% per element, the CPU time observed on a 2.8 GHz CPU (Xeon) machine before the RT is fulfilled has been plotted in
Figure III.1 as a function of m. Plots are smoothed over 30 repetitions of the algorithms. Clearly, the increasing number
of missing data makes Gibbs less competitive than MH: after m = 700, conditional sampling of individuals requires more
CPU time than our basic MH. The number of missing data to be simulated increases linearly with the total number m of
individuals, as individuals could be observed only once throughout their lifespan. This explains the linear behaviour of
the Gibbs CPU time.

The efforts of the practitioner should then concentrate on improving the mixing of Gibbs and MH algorithms to di-
minish their burn-in period. The development of acceleration methods has been the subject of a large number of works,
reviewed in [Gilks & Roberts 1996, Mira & Sargent 2003, Gentle ef al. 2004]. Techniques such as blocking, which con-
sists in updating multivariate blocks of (often highly correlated) parameters [Roberts & Sahu 1997], were shown to be
efficient to accelerate Gibbs algorithms in conjugate models [Ischwaran & James 2001, Accoto 2009], although their
implementation often remains case-specific [Sargent et al. 2000] and can sometimes slow the sampler’s convergence
[Roberts & Sahu 1997]. Alternatively, the multi-move Gibbs sampler [Carter & Kohn 1994], which was developed for
Markov switching state-space models, proved to be more efficient than the single-move Gibbs sampling.More recently,

cheaper approximations of the Gibbs sampler using best linear predictors have been carried out [Nott & Kohn 2005].

3 Accelerating the MH algorithm using adaptive approaches

Heuristically, implementing an adaptive MCMC consists in sequentially tuning the transition kernel using the knowledge
of past iterations, in an automated way during the simulation, in order to improve the mixing rate [Andrieu & Thoms 2008].
In the particular case of our class of MH algorithms, this means modifying the product of Dirichlet densities chosen as

the instrumental distribution J for the MH algorithm introduced in Section 2.4. Each successive instrumental distribution
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Figure IIL.1 — Case study of [Lee et al. 1968]. Mean CPU time needed to reach quasi-stationarity (in the sense of the Brooks-
Gelman rule of thumb) as a function of the number m of individuals (one individual being associated to a single true observation).
Data have been generated according to the four-state transition matrix (II1.12).

is ideally selected such that parallel sampling can explore a large part of the parameter space, especially in the first steps
of the algorithm.

Recently, a rich literature has been dedicated to these approaches, and is especially focused on the preservation of
the ergodicity of the adaptive chains towards the stationary distribution, which is not automatically ensured by auto-
mated tunings. Seminal works on this subject are due to [Roberts & Rosenthal 2007, Roberts & Rosenthal 2009], as well
as [Andrieu & Moulines 2006, Andrieu & Atchadé 2007, Andrieu & Thoms 2008]. These theoretical works also led to
interesting software developments [Rosenthal 2007, Vihola 2010].

Assuming I'; are indices chosen in some collection Y; based on past algorithm output, we denote by KT, the transition
kernel updating 0/ to li+1]:

Kr,(6,0") = pr,(6,0")Jr, (9'|0)+/(1—prl. (6.€))Jr, (€]0)de 86 (6') , (IIL.13)

where 8y is the Dirac measure in 6 and

7(0'|z)Jr, (016")

/
) = IN—F" 7
pri (6.6) N a2 (6]2)r, 0']6)

Basically, the ergodicity and stationarity properties of an adaptive MH algorithm can be ensured if the amount of adapting
progressively diminishes, in the sense that the kernel parameters are modified by smaller and smaller quantities, or if the
probability of adaptation pr, decreases towards zero as i — oo (Theorem 5 in [Roberts & Rosenthal 2007]). In the frame-
work considered here, such adaptations could be based on eliciting vanishing adaptations for the parameters (d;)i<;<;-
These approaches would however be limitative since each d; characterizes the marginal distribution of row 7, hence they
do not explore the correlations between the rows. Therefore, the approach proposed here focuses on this particular aspect.

In the following, assuming we are at step 4 > 1 of the MH algorithm, we propose two ways of building an adaptive
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Chapter III. Markov chain modelling of industrial systems deterioration

instrumental distribution 80" ~ J, (denoting Jr, = J;, in the following for simplicity) taking advantage of a c—algebra
Fn_1 generated by the succession of sampled parameter matrices 0l .. 6lh-1 Both using a (small) fixed number p of

basic MH iterations, these approaches explore correlations between the rows in the instrumental sampling.

In our first approach (DCS-MH), we attempt to summarize the correlations within (01, ...,0,) by simply capturing

the correlations between the diagonal elements of 6.

elements whose position is randomly sampled within each vector 8;. Doing so, we hope to capture more efficiently the

In our second method (RCS-MH), we generalize the first method replacing the r—vector of diagonal elements by r

dependency between the 8; and accelerate the DCS-MH algorithm.

Diagonal correlated sampling (DCS-MH)

At iteration A>p (large enough):

1. denote {é“],...,é[Pl} the set of last p non-identical sampled matrices in the chain ¢l
2. for i=1,..., r
(i) denote éi,i:(éi[,i']7“‘7éi[,ll')]) the p—vector of replicates of the i—th-diagonal element;
(ii) compute ui:ﬁi(é,}i) where F; is the empirical marginal cdf of 01;’,-;
3. estimate the Pearson correlation RM of (ag,...,up);
4. sample a candidate vector 0([1}1-1];g of diagonal elements 91[]’11*,...,9,[% using:
(i) a Gaussian copula, the parameter of which is RN ;
(i) Beta marginal distributions Be (d,- . 91_[7};—1]7 d; (1 - 9}}?“));
5. for i=1,..., r
(i) sample Gi[ﬁ]*,...,GiEIZ]:l,GiE];K],,.,,Gi[ﬁ]* from:
glh—1l 9'[":1] pli—1] glh—1l
Dir | i dy s e di Ly IR
l_eiﬁi 1_ei,i l_ei,i l_eiﬁi
(ii) for j#i, renormalize each 91-[3]* by multiplying with 1—9}}1?*.
Randomized correlated sampling (RCS-MH)
At iteration h> p (large enough):
1. same as step 1 in DCS-MH;
2. sample (with replacement) a r—vector /€ {l,...,r} of random indicators;
3. for i=1,..., r
(i) denote éi,], :(éi[,ll}v"'véi[,pl}) the p—vector of replicates of the (i,I;) —th matrix element;
(ii) compute lli:ﬁi(éiﬁl,-) where F; is the empirical marginal cdf of 0~,~,1i;
4. same as step 3 in DCS-MH;
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(A" [n ("

5. sample a candidate vector O,,,; of elements 91_11,...,9% following the same main idea as in
DCS-MH method;
6. For i=1,...,r
i [n]* (A glhl® [l .
(i) sample 61}1 "'"gi,li—179i,l,+17"'79i,r from:
[h—1] [h—1] [h—1] [h—1]
Di 6i1 d 611 d 61+ d 6i.r d |-
ir 1 e[hil] Ly== 1 6[]171] 3] 1 O[hil] Ly 1 e[hil] 1 ’
YL N YL YL
hy” (A"

(i) for j#i, renormalize each 6, by multiplying with 1—91.71,, .

J

In our experiments, we used a Gaussian copula to sample the new diagonal parameters, mainly because of its sym-
metric properties and its simplicity of calibration using a correlation matrix R [Marshall & Olkin 1988]. Note that one
has to consider and check up with great care the p previously simulated matrices {5[1], ceey é[”]} to make sure that a robust
empirical estimator of R can be defined, in the sense that its Cholesky decomposition is numerically stable during the
sampling process [Marshall & Olkin 1988]. The condition number can be used to do so [El Ghaoui 2002]. Condition-
ally on correlated sampled parameters, Dirichlet distributions appear necessary to get coherent instrumental sampling of
[

remaining elements within each row vector 6;
For a more general introduction to copulas, see for instance [Nelsen 2006] or [Genest & Favre 2007], as well as

[Genest ef al. 2006, Kim et al. 2007] for more specific issues about copulas fitting.

Theoretical behaviour. Despite the large amount of existing work aiming to simplify the conditions ensuring ergodic-
ity and stationarity of the target distribution [Nott & Kohn 2005, Roberts & Rosenthal 2007, Roberts & Rosenthal 2009,
Atchadé er al. 2011], theoretical descriptions of kernels based on Dirichlet products compounded with Gaussian copulas
turn out to be technically complex, and their study deserves a specific work which remains outside the scope of this
chapter. Since our primary aim is to assess the interest of exploring the correlations between the rows of 8, we adopt
the simplest approach of a finite sampling scheme when choosing J, as proposed by [Roberts & Rosenthal 2007]: given a
time T < oo, Jr,, = Jr, for any n > 7. Here, this approach is carried out at each sweep of the algorithm after a given mixing
period, selecting the final Jr, as the basic product of Dirichlet’s described hereinbefore. In substance, 7 has the sense
of an exploration time, and in practice is selected as the minimum time between the time required for a fixed number of
iterations and the time until the Brooks-Gelman RT is fulfilled.

Nonetheless, this explorative study fits into recent schemes shared by several authors, who tested copula-based meth-
ods to improve the efficiency of their sampling algorithms. In their seminal work on the optimization of the adaptation,
[Haario et al. 2001] considered Gaussian copula instrumental distributions calibrated over the full past of the chains.
See [Andrieu & Thoms 2008] for a review of this particular major field of adaptive MCMC. [Strid et al. 2010] used the
sampling history to continuously calibrate a t—copula proposal distribution, in order to sample from dynamic stochas-
tic equilibrium models. Finally, [Craiu 2011] used products of bivariate copulas to tune MCMC during an initialization

period only, in the same spirit as the finite sampling approach used in the present paper.

Ilustration. Continuing the four-dimensional simulated example from Section 2.5, we applied the DCS-MH and RCS-
MH methods with p = 30, still augmenting the number m of individuals and using three parallel chains per experiment.
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Parameters d; remain similarly sampled at each iteration. Results are smoothed over 50 similar runs of algorithms. The
comparison of Gibbs and MH burn-in periods in Figure III.2, in the sense of the Brooks-Gelman RT, illustrates the
improvement yielded by RCS-MH. On the other hand, in this case DCS-MH performs worse than basic MH and even
Gibbs sampler. As we could expect, RCS-MH does clearly better than DCS-MH because of its widest exploration of the
parameter space. RCS-MH strongly beats Gibbs even for relative low numbers of individuals.

The poor performance of DCS-MH is due to the computational cost of the selection of p past matrices {ém ,...,0 [P]}
sufficiently different to allow for a robust Cholesky inversion. This cost clearly increases with the progression towards
stationarity since sampled matrices become more and more similar and many among them must be rejected in the cal-
ibration task of the instrumental distribution. The RCS-MH algorithm suffers of course from the same defect, but the
much better mixing counterbalances the increase of the computational cost, with respect to the basic MH algorithm, in a

significant way.

g - L
— basic MH P
- - DCS-MH T,
— — RCS-MH - .

-~ Gibbs . 0

CPU computational time (s)
200 300
I I

100
|

[ T T T T T 1
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Number m of individuals

Figure II1.2 — Case study of [Lee et al. 1968]. Mean CPU time needed to reach quasi-stationarity as a function of the number m of individuals
(same simulations as Figure III.1). With respect to the Figure III.1, Gibbs and basic MH are also compared to DCS-MH and RCS-MH algorithms.

4 Numerical experiments

This section deals with simulation studies to test the potentialities of our adaptive proposals to a wide class of transition
matrices commonly encountered in reliability and risk assessment (RRA). In RRA, it often occurs that the degradation
of a system X is described using r separated states (for instance defined by a scale of crack sizes), ordered from minor
defect to major failure (replacement cause). To be conservative, one may assume that potential repairs following a running
failure are, at best, as bad as old, namely X remains in the same state than before the failure. In other cases, one might
assume these repairs bring actually more complications than real improvement (for instance if X is old), so that ¥ is more
deteriorated after the repair than before (worth than old repair). See [Basile ef al. 2007] for more details about these

notions. Under a stationarity assumption, the transition matrix 6 is necessarily upper triangular, with 8, = (0,...,0,1).

42



III.4 Numerical experiments

Simulation features. In the following experiments, we test the potentialities of Gibbs and the three MH algorithms
described hereinbefore (basic, DCS-MH and RCS-MH) as a function of . We vary the dimension r between 2 and rygax
(in practice, we consider rp,x = 6 to remain realistic). To start with, we need a rule to sample realistic matrices with

decreasing dimension:

1. denote 0") a r x r upper triangular matrix.

2. create 1) matrix as follows: fori=1,...,r—1,
Gi(;_w = 91(_;) for j=1 2
and
(r=1)  _ g (r
6z,rfl - ei,rfl + 6i,r .
Doing so we automatically ensure that 05:1) =(0,...,0,1). The rationale for this construction is obviously to increase

the probability of a major failure event when simplifying the model. Thus we simply need to sample Olrmax) to get all other
matrices considered for simulation tests. Pursuing our wish of realism, we assume that worth than old repairs are less

probable than as bad as old ones. Therefore, fori=1,...,rmax —2and k= 1,...,rmax — i — 1, we assume in the sampling:

Fmax —#

(Vmax) rmax rmax
91 i z i+k Z el Ji+p
p=k+1

and especially for i = ryax — 1, 9(’mﬂx) g (rmax)

Tmax—1,"max —1 Tmax — 1,"max

for any r < rmax. Finally, we selected matrices 0"mx) for which:

to ensure a constant decreasing of values 91(1>, Ol(lrzrl, . 91.(2)

(rmax) (Fmax)
911 < 91+l i+1°

That models the following case: the closer to a major failure state, the better (the more cautious) the repair. Notice that
we do not take into account any of our simulation constraints in the following estimation procedures, except the presence
of zeros beneath the diagonal of 8 (by reducing the length of Dirichlet distributed vectors in the instrumental sampling).
We consider it as a minimal knowledge assumable in real case-studies (cf. Sections 6 and 7). Finally, per simulated
matrix, a complete sequence for m = 1000 individuals was generated for 7" = 20 observation times. As we are in the
particular case of "one single observation per individual”, only one observation is randomly retained in each sequence for

the inference exercise.

Estimation. As in Section 2.5, each experiment for a given r € [3,rmax = 6] consists in running three parallel chains
for each method and monitoring them using the Brooks-Gelman statistic. Relative Euclidian errors on posterior means
of matrix components (computed using 1000 iterations after a burn-in period determined by the Brooks-Gelman RT) are
fixed at most at 5%, involving preliminary tests for fixing the total number of iterations. Again, parameters d; are sampled
uniformly in [100,2500]. Finally, each experiment is repeated 100 times to average the results (each time a new family of

matrices @Umax) . 90) being simulated).
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Results. Boxplots and mean CPU times before quasi-stationarity (in the sense of the Brooks-Gelman RT) are plotted
in Figures II1.3 and II1.4. Results obtained on the simulated example from Section 2.5 can be generalized: RCS-MH
provides for all dimensions a significant improvement in mixing. Similar results have been obtained when carrying out

an empirical approach to calibrate the mean acceptance rate to a standard nominal value of 50% then 25%.
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Figure II1.3 — RRA case study. Boxplots of CPU times needed to reach quasi-stationarity as a function of the dimension r. Half lines indicate
median and bounds indicate most extreme values. Data have been generated by upper-triangular transition matrices.

5 Discussion

5.1 Main ideas and results

This work first aims to provide a general review and technical advises about the Bayesian estimation of finite-state tran-
sition matrices @ in discrete Markovian models under various missing data schemes, which appear to be of particular
interest in several domains, especially in engineering. Actually, reliability practitioners may frequently deal with classes
of upper-triangular transition matrices that have been chosen for most of the experiments presented here. Depending on
the nature of available data, the practitioner may have to choose between Gibbs or Metropolis-Hastings (MH) algorithms.
The time-consuming features of these algorithms, depending on the size of missing data and the dimension of the prob-
lem, appear as limiting factors in practice. Therefore, the second part of this study focuses on a first exploration of two
adaptive mechanisms (DCS-MH and RCS-MH) likely to accelerate the MH algorithms.

Numerical experiments have highlighted, on this specific class of examples, that using instrumental distributions based
on Gaussian copulas to account for the correlations between the rows of 6 yields a better mixing of the chains, implying
a significant reduction of the computational cost. The gap with basic MH strategies, based on the independent sampling

of the rows of 8, increases with the number m of individuals or the number r of states. The simplicity of the approaches
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Figure I11.4 — RRA case study. Mean CPU times needed to reach quasi-stationarity.

proposed here lets us think that any practitioner dealing with aggregate data could easily implement the DCS-MH and
RCS-MH mechanisms and reduce the computational time.

Supplementary experiments have highlighted that the CPU time can be still diminished by using two "coarse" versions
of the DCS-MH and RCS-MH mechanisms. They consist in estimating the copula parameter R directly from the Pearson
correlation of the matrix elements, namely removing the step 2.(ii) in each mechanism. These coarse approaches (we call
them DCS-C-MH and RCS-C-MH) have been be compared to the previous ones in Figure III.5. Here, the difference in
CPU time is mainly due to the cost of empirical inversions in the DCS-MH and RCS-MH methods.

The adaptive schemes proposed here (especially the most powerful RCS-MH and RCS-C-MH), which remain only
empirically studied, deserve a more specific study from both theoretical and applied viewpoints. This point is more widely
discussed in the following subsection.

As a take-home message, in the most general case of incomplete data problems with several observations per indi-
vidual, the Gibbs sampler based on the data augmentation technique seems to be the only possible alternative. In the
particular case of a single observation per individual, the adaptive MH algorithms (and especially RCS-MH) are valid
alternatives to the Gibbs sampler if the number of individuals is greater than a few hundred, say 200, and the number of
states is greater than three. In low dimensional problems (two or three) the practical interest of adaptive MH methods,

with respect to the simpler Gibbs sampler, is less obvious.

5.2 Directions of further research

The adaptation processes proposed here remain empirical, and theoretical studies are needed to build copula-based strate-
gies ensuring the ergodicity and the stationarity of the chains less crudely than imposing a finite adaptation time, based
on principles initiated by [Roberts & Rosenthal 2007] and [Andrieu & Moulines 2006]. Indeed, fully adaptive MCMC
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Figure II1.5 — RRA case study. Boxplots of CPU times needed to reach quasi-stationarity as a function of the dimension r. Half lines indicate
median and bounds indicate most extreme values. Data have been generated by upper-triangular transition matrices. The DCS-C-MH and RCS-
C-MH abbrevations indicate two "coarse" versions of the DCS-MH and RCS-MH mechanisms.

should be build on infinite adaptations which continuously modify the choice of the transition kernel using the past values
of @ along the chains, quasi-stationarity occurring when these kernel modifications become imperceptible. These adap-
tations should be led on both correlated and marginal features of the matrix elements. To this first aim, future studies
could focus on the mechanism of state permutation, inspired by similar ones carried out in the framework of variable
selection [Nott & Kohn 2005], and on removing the strong assumption made by using a Gaussian copula to model cor-
relations within the elements of 6. This choice can appear oversimplified since it does not take into account possible
correlations between extreme values in the instrumental distribution of 6. Therefore a copula selection procedure should
be carried out at different times of the adaptive chain, for instance using frequentist tests (e.g. Cramer-von Mises), based
on distances between estimated and simulated copulas [Genest et al. 2006, Nikoloulopoulos & Karlis 2008] or Bayesian
posterior odds [Huard er al. 2006]. As those procedures remain time-consuming in dimensions r > 2, this approach was

not implemented here in this exploratory work.

Furthermore, it is necessary that such more sophisticated adaptive Metropolis-Hastings algorithms be compared in
practice to refined Gibbs algorithms, evoked at the end of Section 2.5, that could benefit from the stick-breaking properties

of Dirichlet distributions.

Another point of interest could be the adaptation of the methods reviewed here to the case of non stationary Markov
chains. A simple way for doing this could be to stratify the data on the time 7 or on groups of values of # [Urakabe et al. 1975,
Sendi et al. 1999]. The use of logit or proportional odds models [Cole ef al. 2005, Grimshaw & Alexander 2011] to in-

clude also the effect of additional covariates is another perspective for this work.
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6 An application to turbine cracks propagation

In the example shown hereby, a discrete Markov model has been used to describe the propagation of transverse cracks on
steam turbine shafts. This phenomenon has been first observed on EDF facilities in late 90’s and since then periodical
non-destructive controls are made to measure crack depths. For a description of the technical problem and available
survey data, see [Garnero & Montgomery 2006]. The most important identified explanatory variable is the time spent by
the turbine in hot shutdown condition. For the purpose of our study, the time has been discretized in equally long intervals.
Cracks depths are classified in four states s ...s4 associated to growing crack lengths. The modelling of cracks growth
by discrete Markov schemes is quite common, e.g. [Roh & Xi 2000].

It is worth noting that more sophisticated models can be proposed for cracks propagation, and namely the so-called
"Piecewise-deterministic Markov process" (PDMP) which allow accounting for both deterministic evolution of cracks
(ruled by differential equations) and stochastic jumps between deteriorated states [Azais et al. 2010, Gégout-Petit 2012].

Coming back to our simple Markov-chain model, we assume that the process is irreversible, which is physically
correct as crack lengths cannot decrease. Thus, the transition matrix is upper-triangular and consequently, 844 = 1. We
made the hypothesis that all turbines are in state s; when putting-into-service at the beginning of the study. Manufacture
and acceptance controls justify this hypothesis. A set of data collected between 1998 and 2001 has been analyzed. The
data come from 68 turbines from 24 EDF power plants. Each turbine is observed only once for a given value of ¢ between
2 and 7. Given the uniformity of EDF French generation facilities (same design, operating conditions and maintenance
policy for all units), we can assume that observed data are i.i.d.

The results of MCMC estimation, using the Gibbs sampler described in Section 2.2 (second half run of 10 000 itera-
tions), are shown in Table III.1 (left). The application of the MH algorithm described above leads to the same results.

The data set has been enriched between 2001 and 2004 with new crack measures (¢ between 2 and 7). 38 turbines
among the 68 previously observed were inspected for the second time and two for the first time. Some of the collected data
are redundant: this happens when for the first and the second observation the corresponding times spent in hot shutdown
condition fall into the same interval. Finally, 17 new exploitable observations can be added to the data set. The estimation
of transition probabilities gives the results shown in Table III.1 (right).

Data set 1 Data set 2
Mean  St. Dev. 95% CI Mean  St. Dev. 95% CI
01,1 0.637 0.042 [0.551, 0.719] 0.655 0.040 [0.573, 0.728]
012 0.306 0.050 [0.208, 0.405] 0.278 0.049 [0.185, 0.374]
013 0.044 0.034 [0.002, 0.127] 0.056 0.036 [0.003, 0.133]
01 4 0.012 0.011 [0.000, 0.041] 0.012 0.011 [0.000, 0.041]
%) 0.713 0.088 [0.538, 0.884] 0.774 0.075 [0.636, 0.921]
6,3 0.250 0.087 [0.079, 0.418] 0.197 0.075 [0.054, 0.341]
024 0.037 0.032 [0.001, 0.119] 0.029 0.024 [0.001, 0.087]
033 0.872 0.097 [0.627, 0.995] 0.910 0.071 [0.730, 0.996]
634 0.128 0.097 [0.005, 0.373] 0.090 0.071 [0.004, 0.270]

Tableau III.1 — Turbine cracks example. MCMC estimations of transition matrix @ using the first data set (left, individuals
observed only one time) and the second data set (right). Here, the bounds of the posterior 95% credibility intervals (CI) are the
quantiles of probabilities 0.025 and 0.975 respectively.

We can notice that in this case the posterior variance has been very lightly reduced by incorporating the information
conveyed by the new data. Given the posterior samples of transition probabilities, some quantities of practical interest
in industrial reliability have been sampled: the unconditional probabilities of the four states, as a function of time, and

the expected number of steps before the system reaches the absorbing state s4. As s4 can be interpreted as a "failure"
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Figure II1.6 — Turbine cracks example. Predictive 95% credibility intervals of state probabilities (left) and predictive distribution
of the MTTF (right).

condition, the expected time to absorption is here the classical MTTF (Mean Time To Failure). Notice that here the term

"failure" just means that the crack has reached a given length, arbitrarily chosen for the purposes of this study.

The calculation of state probabilities using Equation (IIL.1) is straightforward. To evaluate the MTTF we made use of

a well known property of absorbing Markov chains (Chapter 11 in [Grinstead & Laurie Snell 1997]). If we consider the

matrices:
011 612 63 1 00
C = 0 9272 6273 and I = 010 ;
0 0 633 0 0 1

the matrix I — ¢ has an inverse and each component ¢ of the row vector
= (LLD)-(I-¢)

is the expected number of steps before absorption, given that the initial state was s;. In our case the MTTF is then the first
component of the vector t*.

Figure II1.6 shows the 95% credibility intervals of the predictive state probabilities for discretized time ¢ extended up
to 15 and the histogram of 5000 samples from the predictive distribution of MTTFE. Concerning state probabilities, we
can notice that p; credibility intervals are narrower than other state probabilities as, according to our hypotheses of an
irreversible process and initial state sq, p; (t) = 6] .1 Which mean that the uncertainty over p; only depends on uncertainty
over 8, ; (and no other transition probability). The long tail in the MTTF distribution (which is even longer than shown

in the figure) is due to the high values (close to 1) of the posterior distribution of 65 3.
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Remark. We stress that, even if the data come from real surveys, the study shown hereinbefore is given for exemplary
purposes only and neither results nor methodology must be extrapolated to make any general conclusion about EDF risk

assessment policies.

7 Modelling water meters deterioration

7.1 Rationale and modelling assumptions

The accuracy of a water meter is expressed by an accuracy curve, relying the flow rate Q to the relative error (in %):
EI’I‘(Q) = (Vmes - Vact)/vact;

where Vipes and V., are the measured and the actually flowed volume of water during a standard test (at constant flow
rate). The dependency of the error on the flow rate is due to the fact that meters definitely act as hydraulic machines and
the flow rate determines the hydraulic load on the measuring device. For low flow rates, the hydraulic load is not strong
enough to let the machineries correctly operate, so that errors are high (in absolute value) and negative.

The mean of the the errors Err(Q;), weighted with respect to the part of the consumption &; which takes place in each
interval of flow rates centred in Q;, is used to evaluate the overall accuracy R of the meter: R = 1+ Y, Err(Q;) - §;, which
can be seen as the efficiency of the meter.

Water meters tend to be more and more inaccurate when getting older, which gives rise to an under-estimation of the
actual customer’s consumption. As a consequence, a part of the consumed water is not billed and that originates financial
losses for the water utility. For well-run exploitations the losses due to unaccounted-for water are generally limited, with
respect for instance to piping leaks; nevertheless, at the scale of a large distributor (as Générale des Eaux®) they can
generate relevant financial losses. As an example, they were grossly estimated around 50 M€/year in 2004.

In addition, the loss of accuracy can also let the meter be non-compliant with respect to national standards or local
regulations.

Each water distributor have a replacement policy (more or less complex) intended to cover these risks. Whatever the
policy, it is obvious that cornerstone of the methodology is the mathematical model describing the degradation of meters’
accuracy.

The statistical models used in this technical framework are normally regression-like: the overall accuracy is explained
by continuous regressors like the age and the registered volume and/or categorical variables, e.g. meter’s brand, type,
location etc. The issue with these models is that: (i) they strongly depend on the assumption on the water consumption
profile, i.e. the values of the §;’s (cf. Figure II1.7), that can be very different from one customer to another, and (ii)
data structures shows generally a more complex dependency of the accuracy on the age ¢, suggesting rather a mixing of
different populations of meters, the proportion of which depends on .

Hence, a 4-state Markov model has been proposed to cope with this problem. The definition of the states, numbered
from 1 to 4 in decreasing order of quality, is inspired by the ISO 4064-1 standard [ISO 1993], defining tolerance bounds
of the accuracy curves for different quality-classes of meters. The model is based on the assumption of irreversible
degradation; as in the case of the cracks propagation (Section 6 of this chapter), the transition matrix is upper-triangular
and s4 is an absorbing state, corresponding to stuck meters (no volume is recorded). Figure III.7 graphically sketches the

assumption of the statistical model.

3Key figures in 2004: about 6 millions of water meters and 2-10° m? of water distributed in France.
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Figure ITI.7 — Modelling of water meters’ accuracy degradation. Top: Typical consumption histograms (ratios §; of the consump-
tion occurring at different flow rates ranges, centred in Q;) for an individual house (red) and a 50 apartments building (green).

Center: Typical error curves of in-service water meters. The state of a meter is determined by the respect of more or less severe
tolerance bounds: good meters (s1): the curve stays inside the blue bounds, fair meters (s7): the error exceed tolerance limits of
ISO 4064-1, but it still complies with minimal in-service standards, bad meters (s3): to be replaced as soon as possible, stuck
meters (s4). The flow rate is expressed in % of the nominal flow rate, a characteristic of the meter, defined by the norm ISO
4064-1 [ISO 1993] (e.g. 1.5 m3/h for a typical domestic meter with nominal diameter of 15 mm). As an example, it is also shown

the accuracy curve of a new meter of the same type.
Bottom: Graphical representation of the 4-state irreversible Markov model.




III.7 Modelling water meters deterioration

It has to be noticed that, as in many applications, the initial state is assumed to be known: all devices start their

4 must

operating lifetime in state s;. Actually, new meters are submitted to a severe quality control, namely their curves
stay within even tighter bound (5% at Qpi, and 2.5% at Q; and Qnax) than in-service ones. That assures they largely fulfil
conditions required for state s;. The state model is completed by the statistical model of the overall efficiency R within
each state. As, for technical reason, the overall accuracy does not exceed 1.04 and, except for stuck meters, it is well

above 0, a Beta distribution bounded between 0.1 and 1.04 was chosen.
Rlz=s; ~ Bep11.04(0 i) =123 (IIL.14)

Of course for i = 4 (stuck meter), R = 0.

Main data available for this study were accuracy curves of in-service meters, obtained experimentally by means of an
ad hoc facility, owned by the water company. We insist again on the fact that the great advantage of this model is that
it directly copes with the accuracy curve and not with the overall efficiency, which strongly depends on the consumption
profile (the &;’s introduced hereinbefore). The Markov state model proved to be more robust than the ordinary regression-

like approaches, previously used by the company.

7.2 Different sources of information

It is interesting to highlight the following features of available data.
 Data are stratified by meter’s model (type, brand, nominal flow rate).

» Sampled meters are never put into operation again, for practical and financial reasons. The cost of a domestic
meter is comparable to the cost of the human intervention on the customer’s connection, so that it would be too
expensive to remove, test, repair and put into service the same meter some days later. Instead, when a meter is
removed, it immediately replaced with a new one. As a main consequences, data are incomplete and, according to
the classification of Section 1.1, this is an incomplete sequence problem in which each individual can be observed
only once. As far as states s1, 53, §3 are concerned, the DCM is ignorable: the missingness only depends on the fact
that the test is destructive. State s4 raises more tricky issues, as discussed in the next item of this list. In practice,
we are here in the situation of data only once observed; as it is equivalent to the one of aggregate data, the notations

concerning this kind of problem are used below (cf. Section 2.4).

* A major issue in data structure concerns stuck meters. Indeed, stuck meters are easily detected by meters reading
personnel (as the recorded volume does not increase between two readings) and immediately replaced: for this
reason there are very few stuck meters among the tested ones, and their proportion in the experimental database is

absolutely not representative of the actual one among in-service meters.

* A second source of data was available: customers database (CDB) actually can be used to obtain information about
stuck meters, because when a meter is removed the reason of the replacement is recorded in customer’s billing file
(among the possible options in the form used by the personnel, one can find "stuck meter"). However the use of this
piece of information is tricky because this field is not systematically filled, as often considered as "not essential".

Actually, customers database is intended to billing purposes, not to statistical analysis!

4In practice, they are tested at three characteristic values, named Qpin, Ot, Omax defined by the norm ISO 4064-1 (cf. also Figure II1.7).
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7.3 Variants of the main model

Different ways to cope with the problem of stuck meters have been proposed. That has led to different variants of the

main model (listed below).

* Imposing fixed stuck probability, following expert’s advice [Pasanisi ef al. 2002]; namely, the annual probability
for a meter to get stuck, independently on its state (s1, s> or s3) was fixed at 0.04%. The probabilities, p;(t) in
the multinomial likelihood (Equation III.10) are replaced by the conditional probabilities p -, = p;(¢)/[1 — pa(t)],
with j=1,2,3:

3
£ (n]6) o< [T pjs, (1)1
j=1

In a similar variant, a zero-mean Gaussian noise on the the failure probability provided by the experts was also
introduced [Pasanisi 2004a].

* Exploiting the customer database (CDB) information [Pasanisi 2003, Pasanisi & Parent 2004]; the number n4(z)
of recorded stuck meters of age ¢, among the overall population n¢gy(¢), is Binomial distributed with probability
pa(t) - pobs, the latter being the probability to actually observe the failure in the database:

3
£ (1)) o< [T pjss (1)1 - [Pa(t) - pons]™ [1 = pa(t) - pos] =)
j=1

* Working on a reduced 3-state model; definitely, the main technical question the water company is concerned with
is estimating the accuracy of in-service meters, in order to define an optimal replacement policy. Stuck meters are
(i) extremely rare (annual probabilities around 0.05%) and, above all, (ii) immediately recognized by the meters
reading personnel. As a matter of fact, the interest of the distributor was essentially focused on improving the main
model to obtain more tailored prediction of the behaviour of operating meters.

As an example, Figure III.8 shows the 95% predictive interval of the state probabilities evaluated with respect to
the 4-state model (taking into account the CDB information on stuck meters) and with respect to a 3-state model.
Posterior means as well as high and low credibility bounds are extremely close and equivalent, in practice, by the
distributor’s viewpoint. The research effort was then put on the search for covariates, rather then improving the

failure model for accurately estimating the proportion of stuck meters.

7.4 Search for explanatory variables

According to water metering specialists, many other explanatory variables (besides meter’s type) can be proposed. A first
group of factors concerns local effects, depending on the particular features of more or less extended geographical zones
of exploitation: water hardness and temperature, casual presence of solid particles in case of works on the network etc.
Another well known variable which can have an effect on meters deterioration is the annual consumption: one can easily
figure that, at fixed age ¢, the higher the consumption, the more severe the wear of the meter (as for any other hydraulic
machine).

A stratification of the available data according to all the possible explanatory factors was not possible, as most of the
groups of data would have been empty or of not-significant size. We decided to define as additional covariates (i) the mean
annual consumption (i.e. the ratio between the total recorded water volume and the age) and (ii) a latent geographically-

based variable named aggressiveness of the operating conditions, which has been defined at the level of the smallest
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Figure III.8 — Results obtained for the same dataset of accuracy curves of domestic meters aged up to 20 years, according
to a 4-state and a 3-state model respectively. The shades grey zones correspond to 95% posterior credibility intervals for the
4-state model of the conditional probabilities p;/(1 — p4) The posterior means are represented by cyan circles. The solid red lines
correspond to the bounds of the same credibility intervals, evaluated according to the 3-state model. The red dots correspond to
the posterior means. As one can see means and bounds of the credibility interval are very close, and most of time practically
indistinguishable.

territorial unit available in both databases (meters experimental accuracies and customers data base), named contract.
This unit covers, in practice, the perimeter of a given public service delegation contract, established between the company
and the public authorities. As the public delegator could be a Municipality or a group of Municipalities, the contracts
geographical units are very different from one another, with respect to the number of customers served and territorial
extent. However, it is reasonable to assume that many of the factors affecting the deterioration of meters are relatively
homogeneous inside a contract unit. In the remainder, we first give some details on the way the aggressiveness variable

has been defined, then we will explain how this covariate was introduced in the main model.

Characterizing local aggressiveness. We defined a methodology, entirely based on the pragmatic will to exploit the
available data in the best way possible, to characterize a certain number of zones with different aggressiveness. This

method is based on the steps listed below (more details are given hereinafter).

(a) First, assessing a local aggressiveness parameter (4;), following the information provided by experimental accuracy
curves (stratified by contracts), to contracts sufficiently represented in the experimental testing database. Three
groups of aggressiveness are then defined by discretizing this parameter (i.e. by defining three intervals for the

values of the A;’s).

(b) Second, for each of the three groups, evaluate the failure ratio (number of recorded failures, divided by the overall

population) provided by the customers database.

(c) Finally, for zones not adequately represented in the accuracy curves database, assigning a group of aggressiveness
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under the basis of the failure ratio only, by comparing this ratio with the reference value of each of the three
aggressiveness groups defined in Steps (a) and (b). The zone is assigned to the group with the closest failure ratio.

More precisely, first, the results of experimental tests were exploited. Available experimental accuracy curves were
stratified by contract and age. To avoid empty and/or too small groups of data, the curves were not stratified by meter
types but rather by groups of (similar) meter types. As this choice can actually introduce a significant bias in the analysis,
we only considered a group of meters with very similar technical features (volumetric type with rotary piston and dry
register), which correspond, in practice, to four models from two brands (which also represent the most common devices
installed in France).

Ages were discretized in classes of five years: 0-4 years, 5-9 years and so on.

The statistical analysis of the accuracy curves was made with respect to a 2-state model, in which the states s, and s3
were grouped (and s4 ignored). That leads to a very simplified formulation of the model, as the upper-triangular transition

matrix is completely defined by one of the two probabilities of the first row

L1— ‘
01i) = ( Cuiy 1=8ao ) |

In the expression above, the transition matrix is now also indexed by the contract geographical unit (i). For sake of

simplicity the model has been reparametrized in an exponential form, which also defines the parameter A;:
pii(t) = 9?17(,‘) =exp(—A;i-t) with A; =log(1/6, ;)

Notice that here p; (;)(¢) can be seen as a survival function, that is the lifetime of the meter in state s; is exponentially
distributed.

Conditionally to p; (;)(¢) the number n; ;)(¢) of good meter from contract i of age # is binomial:
ny () ~ Bin(exp(—A; -1),n(;) (). (IIL.15)

Instead of performing Bayesian inference techniques separately on each data set from a specific contract (i), the statistical
model of Equation III.15 has been provided with a hierarchical structure: all the A;’s have a common (Gamma) prior
distribution. Figure I11.9 presents the result of the analysis.

This analysis concerned 78 territorial units, covering approximately 20% of the operating meters. The value of A
is clearly representative of the aggressiveness of the operating conditions: the higher A, the faster the deterioration and,
hence, the more aggressive the location.

That suggested the definition of three groups of aggressiveness, each one being defined by an interval of values of A:

Group A, : A <0.145
Group A, : A €]0.145,0.21]
Group A5 : A > 0.21.

Of course this method is empirical. Nevertheless the obtained groups of contracts showed an interesting relationship
between the values of A (obtained from the accuracy curves database) and the "failure ratios" (the ratios of meters unin-
stalled because they have been found stuck by the reading personnel). Actually, if one considers the same kind of meters

concerned by the study above, the mean failure ratio observed in the years 2000, 2001 and 2002 was found to be higher

54



III.7 Modelling water meters deterioration

Posterior St. dev. of lambda Posterior samples of lambda

0.14 900
800 i
0.12f oo
z 700f
o
E0.20f i o
b ° 60O~ i
£
S
© 0.08F i : b
s prig 500 i
= °
> Lo (o) | 400}
%006 A
o |°' 300
2 L | |
E’ 0.04
] 200
a
0.02f > i } i
: 100+ : pecfpesssssssss ;
0.0 i i i i i i i i
: (?.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 %.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Posterior st. dev. (individual model) lambda

Figure II1.9 — Some results of the statistical analysis of accuracy curves stratified by contract (exponential-binomial model
of Equation III.15). Left: Posterior standard deviations of A;’s evaluated with respect to independent (x-axis) and hierarchical
(y-axis) models respectively. Most of the points stand below the first bisector, showing that the hierarchical model tends to give
less dispersed results. Right: posterior samples of 4;’s corresponding to five different contracts.

and higher as one moves from Group A; to Group A, and Group Az. More precisely, if one considers the variable:

where Ny, ; is the number of meters of type j found stuck in the zone i in the three years considered, Nedb ; is the overall
number of meters of type j in the zone i and u; is the ratio of meters removals for which the cause was not recorded in the
zone i, one can find the results shown in Figure II1.10.

The correspondence, highlighted by results of Figure III.10, between aggressiveness indicators obtained from the
analyses of accuracy curve database and customers database suggested an empirical way to assign to zones, for which no
experimental accuracy curves were available, their aggressiveness A, A, or Az. The extremely simple procedure consists
in considering for each zone the point of [0, 1]5 (say K;) the coordinates of which are the ratios &; ; (with j =1,...4) and
the overall stuck ratio (obtained considering all the types of meters together).

This point characterizes the aggressiveness of the zone with respect to meters failure. The same characteristic points
were determined for the three groups A, A, A3. Then the three Euclidean distances between the point K; and the points
K4, , Ka, and K4, were used as a measure of the distance between the unknown aggressiveness of the contract i and the
aggressiveness of each group: the contracts were assigned to the closest group, i.e. the group the characteristic point was
the closest one.

This empirical procedure allowed covering more than 50% of the overall meters population.

Taking into account the consumption level by deforming the transition matrix. Let us consider the other covariate:
the annual water consumption. According to the experts (and after some exploratory analyses) it has been found that
it could be adequately represented, for the purposes of this study, by a binary variable, indicating if the consumption is

ordinary or high (in practice exceeding or not a fixed threshold). Its role with respect to metering accuracy deterioration
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Figure II1.10 — Empirical mean "failure ratio" (i.e. mean proportion of stuck meters recorded in the customers database in the
years 2000-2002) for the three groups of aggressiveness A, Ap and A3z determined by the analysis of the accuracy curves thanks
to the exponential-binomial model of Equation III.15. The analysis shows a quite fair agreement between the indicators coming
from accuracy curves database and customers database: the higher the aggressiveness, the higher the mean failure ratio.

is known: degradation will be faster when the consumption is high. In other terms transition probabilities from states s
to sp and s3 and from s; to s3 will be higher for high consumption than for ordinary consumption.

To account for this variable, additional parameters were introduced to deform the transition matrix 8 and accelerating
transition towards deteriorated states, in case of high consumption:

611 612 013 E-611 v-6ip V03
0 o o) 0 -0 K-6
22 023 2,2 2,3 (IIL16)
0 0 1 0 0 1
Ordinary consumption High Consumption

Notice that, as the sum of the probabilities in each row must sum to 1 it is easy to show that: v=(1—-&-6;1)/(1—61,)
and Kk = (1 —®-622)/(1 — 627). That is, the additional parameters are actually two: & and @. A variant of this model,

involving only one additional parameter (namely &) was also tested with good results.

Some results. The results shown in Figure III.11 and Table II1.2 concern the statistical analysis of 3800 accuracy curves
of the same type of meter (namely the Volumag). Ages were regrouped in groups of five years. Table III.2 presents
posterior summaries of the probability distribution of the parameters (5000 MCMC samples).

Figure II1.11 shows the posterior mean of predictive overall accuracies as a function of the age for the three groups of
aggressiveness. The vertical bars give the 95% credibility intervals.

Here, the threshold separating high and low consumption has been fixed at 200 m3/year. This value (definitely ar-
bitrary) is close to the empirical 90" percentile of the recorded consumption in the CGE customers database and is
considered, in spite of the great variability of the water consumption, as a quite high value for a French dwelling, the
reference value being normally assumed as 120 m3/year (even if this assumption is questionable, cf. [Montginoul 2002]

for a summary of a wide number of studies on this topic).
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age (years)

depending by the age, based on results of Table I11.2.

age (years)

age (years)

Agr. Ay Agr. Ay Agr. Az
Mean St. Dev. 95% CI Mean St. Dev. 95% CI Mean St. Dev. 95% CI
61 | 0.8995  0.0067 [0.8859,0.9121] 0.8473  0.0054 [0.8366,0.8578] | 0.7304  0.0109 [0.7087 , 0.7515]
012 | 0.0859  0.0082 [0.0702, 0.1021] | 0.1251 0.0065 [0.1126,0.1381] | 0.2362  0.0147 [0.2070 , 0.2645]
6,3 | 00146  0.0059 [0.0041, 0.0269] | 0.0276  0.0049 [0.0179,0.0373] | 0.0333  0.0112 [0.0136, 0.0570]
6> | 0.8671 0.0489 [0.7744, 0.9640] | 0.9279  0.0288 [0.8697 ,0.9835] | 0.7807  0.0345 [0.7172,0.8517]
63 | 0.1329  0.0489 [0.0360 , 0.2256] | 0.0721 0.0288 [0.0165,0.1303] | 0.2193  0.0345 [0.1483 , 0.2828]
13 0.9003  0.0419 [0.8115,0.9756] | 0.8387  0.0272 [0.7845,0.8913] | 0.8616  0.0536 [0.7531, 0.9619]
a 258.00 21.10 [219.40,301.40] | 300.10 21.05 [260.70 , 343.50] | 422.20 74.26 [290.30 , 584.90]
[07%3 39.22 5.90 [28.44 ,51.69] 61.57 6.39 [49.75 ,74.57] 84.07 14.25 [58.51, 114.60]
o3 5.27 1.16 [3.21,7.74] 6.08 1.03 [4.24 ,8.24] 17.59 4.39 [10.00, 26.88]
Bi 11.55 0.93 [9.85, 13.45] 13.79 0.95 [12.01, 15.75] 23.51 4.10 [16.17,32.52]
B 4.24 0.61 [3.14,5.52] 6.28 0.63 [5.13,7.56] 8.75 1.44 [6.15, 11.83]
B3 1.11 0.21 [0.75, 1.55] 1.35 0.20 [0.99, 1.77] 4.30 1.03 [2.52,6.48]

Tableau II1.2 — Posterior samples summary of the statistical analysis of 3800 accuracy curves, stratified by groups of territorial
units. The 6; ;’s are the transition probabilities, the parameter & accounts for the level of consumption (ordinary or high) and

(i, Bi), with i = 1,2,3 are the the parameters of the Beta distribution of the overall accuracies for each of the three groups of
aggressiveness.
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Chapter IV

Uncertainties in numerical simulation

On 22 August 1946, Stalin listened to the weather forecast and was infuriated to hear that it was completely
wrong. He therefore ordered Voroshilov to investigate the weather forecasters to discover if there was ’sabotage’
among the weathermen. It was an absurd job that reflected Stalin’s disdain for the First Marshal who reported
the next day that it was unjust to blame the weather forecasters for the mistakes.

Simon Sebag Montefiore, Stalin: The Court of the Red Tsar (2003)

Reading notes

Technical context. This chapter is quite different from the others in its form and content. Actually, the topics and
the activities this chapter is concerned with correspond to a more mature phase of my professional career (since 2008-
2009) at the Industrial Risks Management Dept. of EDF R&D, during which I had the opportunity to give not only a
technical/scientific contribution, but also a contribution in terms of project and research management (cf. next paragraph
"Contributions").

The subject of this chapter is the "generic" quantitative assessment of uncertainties tainting engineering studies based
on computer simulation. Here the term "generic" is particularly important in an industrial R&D framework as methods and
tools under investigation are intended to be reused in many different domains of application, based (or not) on different
physics.

Motivations and issues for these works are largely discussed in Sections 1 to 3. They are rooted:
* in a larger activity carried by EDF R&D concerned with computer simulation (cf. in particular Section 2),

* in a particularly rich collaborative framework, gathering (in different forms) industrial and academic partners (cf.

also Section 7.1),

* in crucial issues for an energy provider as EDF, as computer simulation is one of the ingredients of safety demon-

stration studies.

Hence, the main technical context of this work is industrial risk assessment and particularly safety studies. How-
ever, many other application fields as measurement science, reliability, asset management, energy trade, "smart cities"

simulation can be considered as consolidated or future targets.

Contributions. The main contribution highlighted in this chapter is the technical management of the "Uncertainty

Analysis" activity at EDF R&D. Actually, the EDF R&D works concerned with this topic are organized around an unifying
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project (named "Incertitudes") I have been manager of from 2009 to 2014. Basically, the project deals with three groups

of activities:

the development and the distribution of the OpenTURNS software (cf. Section 6),

the proper diffusion towards different disciplinary R&D and engineering Departments of methods and tools: Open-

TURNS (of course) but also methodological reports accompanied by specific training sessions,

a deep activity of scientific watch and development, generally carried within the frameworks of multipartners
projects - as OPUS (cf. Section 7.2), DICE (2006-2008), CSDL (2009-2012) and ReDICE (2011-2015) - or bilateral
academic partnerships associated to PhD (terminated [Blatman 2009, Fu 2012] or on-going [Damblin ez al. 2013b,
Butucea et al. 2013]) or post-doctoral programs (cf. [Limbourg & de Rocquigny 2010], [Limbourg et al. 2010],
[Keller et al. 2011c], [Pasanisi et al. 2012c¢], [Ancelet et al. 2012a, Ancelet et al. 2012b], [Lamboni et al. 2013] and
[Le Gratiet et al. 2014]) as well as methodological works carried at the own initiative of researchers of the project
team, possibly in cooperation with colleagues of other industries or research institutions (for instance, one can refer
to [Lebrun & Dutfoy 2009a, Dutfoy ef al. 2012], [Blatman & Sudret 2011, Sudret ef al. 2011], [Bousquet 2012],
[Marrel et al. 2012] or [Faivre et al. 2013]).

For having an idea of the scientific production of the project, on average 4 or 5 peer-reviewed articles or book-
chapters per year are published by a project team made of approximately 4 full-time equivalent researchers.

I also had the opportunity to coordinate several collaborative working frameworks and namely the ANR OPUS project,

as well as the working groups "Fiabilité et Incertitudes" (Reliability and Uncertainties) within the French Statistical Soci-

ety (SFdS) and "Incertitudes et Industrie" (Uncertainties and Industry) within the French Institute for Risk Management
(IMdR). Cf. Curriculum vitae, page 163, for further details.

As far as my own communications and publications related with these topics and activities are concerned, they can be

classified into several groups:
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* Diffusion and general presentation of methods and tools: a book chapter [Pasanisi & Dutfoy 2012], two invited

conferences [Pasanisi 2011, Pasanisi 2012a], some talks in national congresses [Pasanisi 2010, Ardillon et al. 2012,
Caruso & Pasanisi 2013] as well as the update of an internal EDF R&D methodological guide [Pasanisi et al. 2013a]
and a technical report giving an overview of uncertainty analysis settings, with some specific considerations con-

cerning design problems [Iooss et al. 2010].

OpenTURNS: a general talk [Dutfoy et al. 2009], as well as an invited conference [Gaudier ef al. 2011] and two in-

ternal reports concerning more largely software tools for uncertainty analysis [looss et al. 2011, Baudin et al. 2013].

The coordination (as guest editor) of two special issues of peer-reviewed journals: [Prieur er al. 2011], specifically
focused on stochastic methods for sensitivity analysis, and [Antoniadis & Pasanisi Eds. 2012], partly inspired from
the OPUS workshops.

Communications and internal reports on applications of uncertainty analysis in simulation: forecasting the be-
haviour of steam generators in specific testing conditions [Pasanisi 2008b], estimation of low-probability quan-
tiles by means of kriging metamodels [Arnaud et al. 2010], inverse estimation of Strickler’s roughness param-
eters of a shallow-water hydraulic model [Couplet et al. 2010], sensitivity analysis of models forecasting foul-
ing phenomena in cooling loops of nuclear power plants equipped with cooling towers [Baudin & Pasanisi 2012,
Rapenne et al. 2013].



IV.1 Computer simulation: opportunities and issues

Important remark: the technical and methodological contributions concerning the problems (i) of propagation of
hybrid possibilistic-probabilistic uncertainties through a computer code and (ii) of point estimation of quantities of interest
in uncertainy analysis study (in the sense of the framework described in Section 3), and namely to probabilistic safety

criteria, will be widely sketched in dedicated chapters (Chapters V and VI).

Structure of the chapter and credits. Unlike the other chapters, most of the text shown hereby, even if it is definitely
the summary of already published works, is not directly excerpted from previous documents.

The introductory considerations and motivations (Section 1 about the need for accounting for uncertainties in advanced
computer simulation, as well as part of Section 5 and 6) are inspired from the book chapter [Pasanisi & Dutfoy 2012].
The brief presentation of the OPUS project (Section 7.2) is inspired (and partially excerpted) from the final report of the
project [OPUS 2011].

1 Computer simulation: opportunities and issues

Computer simulation is undoubtedly a fundamental topic in modern engineering. Whatever the purpose of the study,
computer models help the analysts to forecast the behaviour of the system under investigation in conditions which cannot
be reproduced in physical experiments (e.g. accidental scenarios) or when physical experiments are theoretically possible
but at a very high cost.

The increasing need for simulating and forecasting gave indeed a dramatic momentum in the last decades to the growth
of computers’ power and vice-versa. Since the very first large scale numerical experiments carried out in the 40’s, the
development of computers (and computer science) has gone pairwise with the will of simulating more and more deeply,
more and more precisely, physical, industrial, biological, economic systems. A deep change in science and engineering
has gone on in the last decades in which the role of the computer has been compared to the one of the steam engine
in the first industrial revolution [Schweber & Wachter 2000]. Together with formulating theories and carrying physical
experiments, computer simulation has become a "third way to Science" [Heymann 2010] that allows to solve problems
which were absolutely unaffordable in a not so far past.

That raises some epistemic issues. The following quotation from [Sundberg 2010], highlighting the difference be-
tween "calculation" and "simulation", is particularly interesting and stimulating: "The culture of calculation is modern
and characterized by linearity, logic and depth, and there is a promise to explain, unpack, reduce and clarify its out-
comes. Postmodern culture of simulation is fluid, decentered, and opaque and search for mechanisms and depth is futile
[Turkle 1995]. The boundary between the virtual and the real is eroded, both in everyday life and in scientific fields."

A quite negative vision of computer models, seen as sorts of magic boxes one can play with to obtain whatever desired
result, arose, so that the credibility of the models themselves as tools for guiding decisions can be put under discussion:
"Most simulation models will be complex, with many parameters, state-variables and non linear relations. Under the best
circumstances, such models have many degrees of freedom and, with judicious fiddling, can be made to produce virtually
any desired behaviour, often with both plausible structure and parameter values.” ([Hornberger & Spear 1981] quoted by
[Saltelli 2002]).

Following this reasoning, [Pilkney & Pilkney-Jarvis 2007] raised the issue of the honesty itself of forecasters, and
policy makers which are often the final users of forecasts: "The reliance on mathematical models has done tangible
damage to our society in many ways. Bureaucrats who don’t understand the limitations of modeled predictions often use

them. [...] Models act as convenient fig leaves for politicians, allowing them to put off needed action on controversial
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issues. [...] Agencies that depend on project approvals for their very survival can and frequently do find ways to adjust
models to come up with correct answers that will ensure project funding."

Adopting a more pragmatic viewpoint, we firmly believe in computer simulation as a major tool in daily scientists’
and engineers’ work; simulation is a great tool for understanding, for forecasting, for guiding decision. We think that
the possibility to simulate more and more complex phenomena, taking into account the effect of more and more input
parameters, must be rather seen as a chance than a threat. The "success stories" evoked below witness, among many
others, the fundamental place (probably unsuspected for non-specialists) of advanced simulation in different domains of
fundamental science and engineering.

A particularly stimulating recommendation for consolidating the credibility of computer models for risk assessment
and regulation purposes is provided by [Loizou et al. 2008] (in the particular case of physiologically based pharmacoki-
netic models - cf. page 63 - but this general idea easily applies to many other domains); here it is highlighted the impor-
tance of "increasing the understanding of regulators and risk assessors through increased transparency and accessibility
to user-friendly modelling techniques." In our opinion, the use of open source software (cf. Section 2) is a significant
step towards transparency, but understandability is definitely a challenging issue as more and more refined models turn
inevitably also to be more and more complex.

Even if we are convinced of the key role that computer simulation plays and will play in the years to come, at the same
time, we are aware of the fact that quantitative uncertainty assessment of results is a fundamental issue for assuring the
credibility of computer model based studies ... and a challenge too. Besides technical and theoretical difficulties, maybe
the most challenging point is, in industrial practice, to bridge the cultural gap between a traditional engineering deter-
ministic viewpoint and the probabilistic and statistical approaches which consider the result of a model as an "uncertain"

variable.

Computers vs. test-tubes? As one of the major recent stricking facts confirming the role that computer simulation plays
nowadays in science, one can think at the awarding of the Nobel prize 2013 in chemistry to Martin Karplus, Michael Levitt
and Arieh Warshel "for the development of multiscale models for complex chemical systems". What is remarkable in this
award, apart from the quality of the works of the three scientist, is the nature of their work: establishing computer models
for deeply simulating (at the subatomic level) chemical reactions. The following quotation, from the Information for
the public [Fernholm 2013] , motivating the award, is highly instructive: "Using this kind of software you can calculate
various plausible reaction pathways. [...] In this manner you can get an idea of what role specific atoms play at different
stages of the chemical reaction. And when you have a plausible reaction path it is easier to carry out real experiments
that can confirm whether the computer is right or not. These experiments, in turn, can yield new clues that lead to even
better simulations; theory and practice cross-fertilize each other. As a consequence, chemists now spend as much time in

front of their computers as they do among test-tubes."

Virtual airplanes. "Virtual testing" is a popular term in manufacturing industry (and particularly in the aerospace do-
main) denoting the simulation of a complex system (e.g. the structure of an aircraft) for design and certification purposes.
The idea is to use, as much as possible, numerical simulation instead of real tests which are expensive and time-consuming.
Some basic concepts concerning virtual testing in aerospace industry are given by [Ostergaard et al. 2011]. In particular
this practice relies on three pillars: the modelling and analyses processes, the software used and (most important) engi-
neers skills and experience. In order to let the analysis be robust, uncertainty quantification and sensitivity analysis are
considered indispensable.

Thanks to advanced simulation and CAD (Computer-Aided Design) codes, extremely detailed 3D representation of
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aircrafts (named Digital Mock-Ups or DMU) are used by aerospace engineers in the whole project life cycle since the
90’s [Sabbagh 1996, Garbade & Dolezal 2007]. A complete overview of the main industrial aspects of DMU, from the
technical (requirements, data exchange, data quality), management (team organization, early warning, risk management)
and communication (visualization, documentation) viewpoints is given by [Dolezal 2008].

Nevertheless, real experiments are still necessary, as the final product is a real object, so that virtual and real testing
must be integrated in a coherent design framework currently known as "virtual hybrid testing" [Garcia 2013]. After all, a

flying aircraft is real, not virtual!

Virtual nuclear reactors. The CASL project (Consortium for Advanced Simulation of Light Water Reactors), launched
in 2010, is among the most ambitious R&D projects in nuclear industry. With an annual allocation of 25 M$, funded
by the US Department of Energy, it gathers several key partners of nuclear R&D, among which Oak Ridge National
Laboratory (leader), Idaho National Laboratory, Los Alamos National Laboratory and SANDIA National Laboratories
[Michal 2011]. The main mission of the initiative is to develop and put at the disposal of the nuclear industry a multi-
physics simulation environment for the simulation of a whole nuclear reactor, named VERA for Virtual Environment for
Reactor Applications. Among the final goals, it is particularly interesting in the context of this section to highlight the
following three ones [CASL 2011]:

¢ "promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools

with predictive capabilities,

* incorporate uncertainty quantification as a basis for developing priorities and supporting application of the plat-

form tools for predictive simulation,

e engage the nuclear regulator to obtain guidance and direction on the use and deployment of VERA to support

licensing applications."”

Interpreting rather freely and personally the three points listed above, the first one goes in the sense that up-to-date
advanced simulation tools clearly enhance engineering practice. The two others are more intended to face criticisms
and limitations of the use of a "virtual" software platform as a predictive (and consequently decision-aid) tool. Just like
an aircraft (cf. previous example), nuclear reactors are not virtual and the use of simulation should be supervised and
validated. And the uncertainty quantification could help to support the application of the simulation tools, outside R&D

frameworks and purposes.

Modelling human body. Like all complex systems, the behaviour of human body and human organs can be imple-
mented in more or less complex computer models to be used for a number of different purposes, and in particular for risk
assessments (e.g. effect of chemicals or electromagnetic fields on human health).

Models can be directly based on the finite-elements resolution of physically based partial derivative equations, e.g.
Navier-Stokes (simulation of vesicles [Doyeux ef al. 2012] or blood flow in arteries [Prud’Homme et al. 2011]) or Maxwell
equations (exposure of organs or foetuses to electromagnetic fields [Wong & Wiart 2005, Jala et al. 2013]).

A very important class of models is rather phisiologically based (PB). They are widely used to forecast the complex
process of absorption, distribution, metabolism and excretion (ADME) of chemical substances (typically drugs or toxics).
Depending on the nature of the substance, these models are usually referred as "physiologically based pharmacokinetic"

(PBPK) or "toxicokinetic models" (PBTK). The body is subdivided in a number of compartments through which sub-
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stances move and are transformed (e.g. well-perfused tissues, poorly perfused tissues and fat), connected by blood and
lymphatic circulation.

For both types of models the importance of accounting for uncertainties due to lack of knowledge and/or variabil-
ity among human beings is considered paramount. In particular, an established practice of Bayesian calibration (e.g.
[Bois 2001, Micallef ez al. 2005]) exist for PBPK and PBTK models. Advanced methods of uncertainty propagation and

sensitivity analysis are also commonly used for both kinds of models [Brochot et al. 2007, Loizou et al. 2008, Jala 2013].

2 Advanced numerical simulation at EDF R&D

Among the French industrial companies, EDF has one of the largest R&D Units, with a permanent staff of about 2000
engineers and researchers and 150 PhD students, organized in 15 thematic Departments. One of the distinctive features
of the EDF R&D activity is the great number of areas of interest it copes with. That is due to the great variety of EDF’s
activity: energy production, transmission, distribution and sale, as well as to the great complexity of the nuclear produc-
tion process, involving a number of different physics: neutron transport, solid and fluid mechanics, thermo-hydraulics,
shallow-water hydraulics, electromagnetism.

Consequently, EDF R&D makes an intensive use of computer modelling and simulation. More than being simple
users, research teams develop most of the codes used in the applied studies and put them at the disposal of the engineering
and business Units of the EDF Group and (as far as most of the codes are concerned) of the technical and scientific
community. More than being just working tools, numerical codes play a paramount role in the organization and the
structuring of R&D activities.

The motivations of this strong effort are of different natures [Andrieux 2011]:

* First, the necessity to realize very complex simulations, anticipating and eventually prototyping industrial studies,
which demands proper and specific models, often not yet developed nor implemented in software "available on the
shelf".

 Second, the need for capitalizing R&D modelling efforts and making them available for future engineering studies.

This double goal can be reached by implementing and referencing specific software libraries and platforms which
naturally become repositories of knowledge and skills. As a consequence, software also becomes a structuring tool for
researchers and engineers working in the same disciplinary field; the thematic community meets up around different
software-related activities: code implementation, documentation, diffusion, presentation of examples and studies (for
instance) during informal and formal meetings (seminars, project reviews, users’ days).

Most of the software developed by EDF R&D is open source!; the motivations for this strong open source positioning
are numerous. First, this allows the possibility of external contributions of different nature (development of new features
and algorithms, case studies and examples, bugs reporting) and thus sharing the R&D effort with the technical and
scientific community. Second, this facilitates the cooperation with industrial and academic partners in collaborative
frameworks, e.g. funded projects, PhD or post-doctoral programs. Third, it facilitates the dissemination (and consequently
the acceptability) of methods and tools. In few words, the open source positioning gives rise to a technical environment

naturally more attractive, collaborative, international.

ICf. http://chercheurs.edf.com/logiciels/tous-les-logiciels-41436.html for an overview of the main open source codes of EDF
R&D and the links to the download web-pages.
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N4S - GEOSIMULATION FOR ENERGY RESEARCH

© Médiateque EDF

Figure IV.1 — Some examples witnessing the R&D efforts in computer simulation carried by a great industrial company as
EDF in the last years: (a) 23.9 million pixels Visualization Wall in Clamart for large scale visualization of complex computer
experiments, (b) geo-planning simulation in Karlsruhe, (c) one of the IBM BlueGene® supercomputers of EDF R&D.

The open source codes of EDF R&D cover a large variety of physics: solid mechanics and structural analysis
(Code_Aster), computational fluid dynamics (Code_Saturne), conduction and radiation heat transfers (Syrthes), acous-
tics (Code_TYMPAN), shallow-water hydraulics (Mascaret and Telemac).

Together with these physical calculation codes, EDF R&D also develops (in cooperation with CEA and Open Cascade
Company) the SALOME platform [Ribes & Caremoli 2007, Chauliac et al. 2011], a fully integrated open source environ-
ment for numerical simulation, integrating a number of generic tools for pre- and post-processing (importing, modifying
and exporting CAD models, meshing , parallel visualisation, models couplings, supervision of distributed computations)

as well as specific tools for data assimilation and uncertainty analysis (in particular OpenTURNS).

In the domain of uncertainty and sensitivity analysis, the home-made software is OpenTURNS, key product of the

projects Incertitudes since 2005. Its main features are sketched in Section 6.

It is worth noting to conclude this short introduction to advanced simulation at EDF R&D that the effort on numerical
codes development is completed by the putting at the disposal of researchers and engineers powerful high performance
computing (HPC) facilities. Thanks to a long-standing cooperation with IBM [Vezolle & Berthou 2008], three different
families of the BlueGene® supercomputers, BG-L (25 Tflops, 2007), BG-P (110 Tflops, 2008), BG-Q (800 Tflops, 2012),
have been successively deployed, as well as the x86 technology machines Ivanohe (200 Tflops in 2010) and Athos (400
Tflops, 2013).

In November 2013 (last data available when writing this manuscript), three EDF supercomputers appear in the list
of 500 world most powerful machines ranked by their performance on the a standardized benchmark (http://www.
top500. org/) at the rank number 46 (Zumbrota machine), 91 (Athos) and 257 (Ivanohe), respectively.
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3 Different kinds of problems

Even though the fundamentals of these topics are rooted since decades in probabilistic and statistic literature, in the last
years there has been a considerable rise of interest in industries and academia in the uncertainty quantification (UQ) of
computer models’ results.

At least in theory, one can think that the (statistical) uncertainty analysis of outputs of predictive computer models is
essentially done for supporting decisions. For instance, a shallow-water hydraulic model which returns predictions of the
water levels in different sections of a river, for a given discharge, can be used for evaluating the height of the protection
embankment as the solution of a decision problem: the optimal height is the one that minimizes the expected loss, sum
of the cost of the dike and the (possible) damages in case of overflowing. In practice, this vision is quite theoretical: in
general, analysts coping with computer simulation are quite far from the actual decision problem and/or this problem may
be not enough well-posed to be solved in a strict mathematical decision setting; one can think at climate modelling or the
modelling of very rare events of human and/or natural origin with catastrophic consequences. In both cases, it is hardly
possible to encapsulate the stakes motivating the study into a (even complicated) loss function.

In many cases, the study to be realised by means of computer simulation is clearly not related to a decision problem

(at least in its initial stages). For instance:

* In modern measurement science, computer codes for indirectly measuring quantities which cannot be directly
measured are more and more used [Désenfant er al. 2007]; the issue is to find out the uncertainty tainting the
mesurand (output) value by propagating the measurement uncertainties of the inputs. Since 2008, the reference
handbook within the measurement science community [JCGM 2008a], the "Guide to the expression of uncertainty
in measurement” (also known as GUM, first edited in 1993), has a specific Supplement [JCGM 2008b] concerning
the use of Monte Carlo methods to propagate uncertainties in measurement models, presented as an alternative to the
standard approach in metrology (the so called "law of propagation of uncertainty", actually based on the first-order
Taylor decomposition of the measurement model). The publication of this reference document witnesses the place
that more and more complex (namely highly non-linear and of non-trivial differentiation) computer codes take in
metrology today. Definitely, metrologists are today more and more concerned with intensive numerical simulation
[Cox et al. 2012].

In safety studies, one has often to answer to specific questions about the probability distribution function of the out-
put variable of a generally highly complex code, e.g. what is the probability for the output to be greater than a fixed
threshold? Actually, probabilistic studies are more and more used for regulatory purposes [Cunningham 2012],
often as a complement of classical penalized deterministic safety assessments. It is worth noting that in some cases,
the initial questions asked by the regulation authority are not fully formalized by a mathematical viewpoint and it
is up to the analyst to propose the proper mathematical framework for coping with the issue. See, for instance the
example shown by [Helton & Sallaberry 2012] concerning the safety requirement for the Yucca Mountain nuclear
waste repository (Nevada, USA). One of the requirements of the regulation authority (Nuclear Regulatory Com-
mission, NRC) was formally expressed as follows:

"Department of Energy must demonstrate, using performance assessment, that there is a reasonable expectation
that the reasonably maximally exposed individual receives no more than the following annual dose from releases
from the undisturbed Yucca Mountain disposal system: (1) 0.15 mSv (15 mrem) for 10,000 years following disposal;
and (2) 3.5 mSv (350 mrem) after 10,000 years, but within the period of geologic stability."

Here, an important part of the analysts’ work has been to propose and justify a mathematical formulation of terms
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like "reasonable expectation” or "reasonably maximally exposed individual” following the requirement formulated
above. It is interesting to see that methods for quantitative uncertainty assessment may sometimes provide not only
the answer but also (part of) the question. This approach (compliance with a more or less initially formalized risk
criterion) could be qualified as "normative", even if the term "norm" is to be interpreted in a broader sense.

A quite similar situation arises in financial studies, in which the analyst is asked to provide a very specific risk
criterion, as the popular "Value at Risk" (VaR), i.e., roughly speaking, a quantile of the probability distribution of
gains (or losses) of a given portfolio, over a given time period (cf. for instance [Linsmeier & Pearson 2000]). Even
if the relevance of this "simple" criterion can be challenged by other risk summaries for theoretical and practical
reasons in real-world complex situations [Rockafeller & Uryasev 2002], VaR has rapidly become very common in

the financial community and is largely used for both internal studies and regulatory purposes [Lopez 1996].

* In some other cases, one just wants to "explore" the code for better understanding its behaviour with respect to the
variability of the inputs. The purpose of the study is here mainly a sensitivity analysis of the computer model (and
of the underlying phenomenon). Actually, when the complexity of the code increases, even though it is reasonable
to expect that the model provides a more and more accurate representation of the reality, the analyst more and
more needs effective mathematical tools to identify and summarize results. Which are the actually influential input
parameters? Which are the sets of the inputs that transform into sets of high (and/or low) values of the output?
Hence, sensitivity analysis is a precious tool to let the analyst be more aware of his/her model, to eventually suggest
modifications or simplifications and to identify the input variables on which further R&D efforts must be put to
improve the quality of the results (cf., for instance, the review article of [looss 2011] and the numerous references
therein, as well as [Saltelli ef al. 2004] and [Faivre et al. 2013]).

An interest taxonomy of the main initial questions and expected goals of uncertainty analyses, strongly dependent on
the context of the study, can be found in the collective work edited by [de Rocquigny et al. 2008] summarizing the activity
of a thematic working group within the scientific society ESReDA (European Safety, Reliability and Data Association).

Here, four different goals are distinguished:

e Understand. Better understand the behaviour of the model and rank the input variables with respect to their
contribution to the output "variable of interest" (this term will be clarified hereinafter) in order to prioritize further

engineering or R&D efforts.

¢ Accredit. Give credit to a numerical predictive code or to a measurement model by: properly assessing uncertainties
of input measures or input variables, simplifying the model, fixing some values of the inputs and finally validating
the model with respect to the expected outcomes and the stakes of the problem (not-exhaustive list of actions to be

made depending on the context).

* Select. Compare performances of systems and strategies and choose among alternative options in both early (e.g.

design, deployment) and mature (e.g. operating and/or maintenance policy) stages of the lifetime.

e Comply. Demonstrate the system complies with a more or less explicit regulation criterion, typically formulating

as an inequality (e.g. the annual CO; emissions are below a fixed threshold).

Of course, in real problems, the distinction between the goals listed above may be fuzzy: analysts can strive towards
different nested goals in the same study. For instance, in a safety study aiming at verifying the compliance with a

regulatory fixed threshold, one first has to show the relevance of the used codes and methodologies. In any case, as a
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final recommendation, the contributors to the ESReDA working group particularly highlighted the importance of the prior
identification of the goal of the study, before planning any calculation efforts. Actually that is a fundamental step for
choosing the mathematical methods to be put into practice for solving the problem.

From a more methodological viewpoint, it can be interesting, for several reasons, to define a common and simple
step-by-step framework. It focuses on so-called parametric uncertainties, i.e. the ones affecting the input parameters of a
model, whatever it is: a complex numerical code which requires an approximated resolution or an analytical expression.
It does not question explicitly uncertainties attached to the computer model itself, coming from the necessarily simplified
modelling of the physical phenomenon under investigation, nor numerical uncertainties due to its practical implementation
into a computer code. The methodology is based on the probabilistic paradigm, i.e. uncertainties are modelled by means
of probability distribution functions (pdf).

This common framework of uncertainty management is conveniently seen as a four-steps process (Figure IV.2): (i)
Step A "Problem’s Specification” defines the structure of the study by selecting the random parameters, the outcomes of
interest and the features of the output’s pdf which are relevant for the analysis; (ii) Step B "Input Uncertainty Quantifi-
cation" defines the probabilistic modelling of the random inputs; (iii) Step C "Uncertainty Propagation” evaluates the
criteria defined at Step A; (iv) Step C’ "Uncertainty Importance Ranking" determines which uncertainty sources have the

greatest impact on the outcome (sensitivity analysis).

Step C : Propagation
of uncertainty sources

\'4

Step A : Problem’s specification

Step B:
Quantification of
uncertaint Model
Y Variables of Quantity of
sources Input variables Grod) Intorost interest

Uncertain : x z=G(x,d) e.g.: variance,

quantile ..

Modeled by a joint
probability distribution

Step C’ : Sensitivity analysis,
Ranking

Decision criterion 1
L e.g.: probability < 10

Figure IV.2 — The common methodological four-steps framework for uncertainty analysis, used in common practice.

The code G(x, d) relying the output variable of interest, noted Z to uncertain (X) and fixed inputs (d) is at the heart
of the study. In the most general case Z is a vector. However, in the remainder we will consider the case of a scalar
variable of interest, noted Z, for the sake of simplicity and also because, most of the times, it is the case in actual industrial
studies.

It is worth noting that the separation between uncertain and fixed inputs proves useful in practice. The vector d (de-
pending on the particular problem to be solved) can include "certain" variables (which are known with absolute certainty)

and/or "not-significant" variables (which do not contribute significantly to the output uncertainty) and/or "scenario vari-
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ables", the values of which are fixed a priori to describe a scenario (e.g. penalizing values of temperatures and pressures
in a safety study) conditional to which the probabilistic calculation is made.

Of course this scheme is somehow reductive with respect to the complexity of most of the underlying problems to be
solved. Nevertheless, it proves adapted to industrial practice for different reasons. In particular, the separation of the steps
is clear for the engineers and useful (in project management) to identify different work-stages demanding different skills;
of course, this kind of study require a multidisciplinary team but the cooperation of engineers specialist of the domain of
application (e.g. a specific physics) during step A is extremely important, while the other steps, more technical, demand
rather mathematics and software engineering skills.

Another important feature of this scheme is its genericity. Actually, it is not intended to specific problems and serves
as a common base for treating a number of very different questions. This scheme is actually inspired by the organization
of the uncertainty analysis activities in many industrial companies that, because of the complexity and the variety of
their business core (let us think for instance of EDF, CEA or Airbus-Group), deal with problems involving several initial
questions and stakes and different physics. This generic approach is consistent with the work organization of these
companies which have set in the last year specific "uncertainty analysis" project-teams. Actually this organization proved
to be more effective than the one consisting in having inside each disciplinary team one or two experts in statistics and
probabilities for coping with uncertainty quantification in a given well-specified technical framework. For this same reason
of genericity, this scheme is "non-intrusive", i.e. it considers the numerical code G(x,d) as a "black box" transferring
uncertainties from the inputs to the outputs.

This non-intrusive setting inspired the works of a generation of researchers [Sudret 2007, Iooss 2009, Roustant 2011,
Morio 2013] at the interface between industrial R&D and academic research. The software OpenTURNS (cf. Section 6)
is also fully consistent with this methodology.

As also sketched above, the methodology is also rooted into the practice of metrologists (uncertainty propagation
of measurement errors). Here, Z is the final measurand and X the directly measured variables, related to Z by the
measurement function G(-). The problem is generally posed as the estimation of the variance or the standard deviation
of Z, given the (joint) pdf p(x), by means of or Monte Carlo simulation or using the so-called "law of propagation of
uncertainty”, as advocated by the GUM [JCGM 2008a]:

no 3G\ nl w96 A6
ol=Y (ax) 012+2i:21 j;la—ﬂgjciojp,-ﬁ (IV.1)
in which the partial derivatives are evaluated for x = E(X), o; is the standard deviation of X; and p; ; the correlation
coefficient of the random pair (X;, X;).

The methodology sketched in Figure IV.2 also owes a lot to a well-known technical and research framework: the
Structural Reliability (see the works of [Ditlevsen & Madsen 1996] and [Lemaire et al. 2010] or [Sudret 2007] for an
overview of stakes and mathematical methods). Developed within the probabilistic mechanics community since the 70’s,
this discipline focuses on the reliability of mechanical and civil structures and in particular on the probability for a given
structure to attend a limit state, beyond which it does not fulfil anymore its safety or capability requirements. One can
think for instance to the elementary case of the "R — § state limit function": the structure fails when the the mechanical
solicitation S is greater than the resistance R. The probability of failure is then the probability for the state limit function,
G(x,d), tobe < 0:

Py = /D p(x)dz, with: Dy:= {x;G(x,d) <0}, (Iv.2)
f

69



Chapter IV. Uncertainties in numerical simulation

in which p(z) is the joint pdf of the uncertain input variables and Dy is the so-called domain of failure. Generally, the
probability Py is small (orders of magnitude from 10=2 down to 10~7) and a single evaluation of the function G(-) is
computationally expensive. As a consequence, very specific mathematical and software tools shall be used.

It is worth noting that the scheme represented in Figure IV.2 contains both the evaluation of a measurement uncertainty
and a probability of failure. From a methodological viewpoint, the main difference between the two problems consists in
the choice of the quantity of interest: a standard deviation in the first case, a probability for the output to exceed a fixed
threshold in the second case. According to the introduced methodological framework the goal of an uncertainty analysis
is to estimate a given quantity of interest; far from solving a decision problem, the analyst is asked to solve a much
more "humble" estimation problem. Notice also that in the seminal paper of [Kennedy & O’Hagan 2001], the uncertainty
analysis is defined as "the study of the distribution of the code output that is induced by probability distributions on input.”
The formalization of the problem as the estimation of a quantity of interest, somehow specifies what the "study of the

distribution" actually is.

4 The pioneering works of Jacques Bernier

The rapid expansion in industrial engineering and R&D of the discipline nowadays called "uncertainty analysis" or
"computer experiments" started in the 90’s. This is mainly due to the more and more easy access to powerful com-
puting machines and the large diffusion of reference works on fundamental mathematical tools as response surfaces,
based on polynomial chaos expansion [Ghanem & Spanos 1990] or kriging [Sacks et al. 1989], FORM/SORM? struc-
tural reliability methods [Dolinski 1983, Madsen et al. 1986], accelerated Monte Carlo sampling [McKay et al. 1979,
Ditlevsen et al. 1988, Bucher 1988, Melchers 1990], sensitivity analysis [Cacuci 1981, Morris 1991, Sobol 1993].

In the industrial R&D community, the most known intensive uncertainty analysis studies involving complex models
have been made since the late 80’s by Jon Helton and his colleagues of SANDIA National Laboratory (USA). Among the
very first studies published in this domain in international journals, one can find the uncertainty and sensitivity analysis
of numerical codes modelling: (i) the movements of chemical releases between different zones of a boiling water nuclear
reactor in accidental conditions (station blackout) [Helton & Johnson 1989], (ii) the consequences of a major nuclear ac-
cident in terms of atmospheric dispersion, dry and wet deposition, biospheric transport of radioactive materials as well as
health effects (short and long term fatalities and injuries) and costs, given the weather conditions and the "source term" of
pollution (i.e. amounts, heat content and timing of the accidental release) [Helton ef al. 1992], (iii) the release of radionu-
clides to the accessible environment (i.e. atmosphere, land surfaces, water bodies etc.) for 10000 years after disposal from
a number of possible events (typically drilling intrusions) that may affect the Waste Isolation Pilot Plant (Carlsbad, New
Mexico, USA), a deep geological repository of transuranic waste from military applications [Helton 1996].

The works evoked hereinbefore are well known within the technical and scientific community. Here, I would rather
insist on other early and pioneering works, much less known and actually extremely interesting, carried in the 70’s and
early 80’s by Jacques Bernier, former senior researcher at EDF R&D and retired since 1991.

J. Bernier is mainly known for his numerous works on stochastic hydrology. A synthetic survey of his career is given
in [Jacquet et al. 1998], the preface of a collective work collecting the proceedings of a conference organized in his honour
in Paris in September 1998. The authors insist in particular on three key contributions of Prof. Bernier, the paternity of
which was quite poorly known: the use of the Fréchet distribution (which can in some cases prove better than the Gumbel

one) for modelling flood discharges since the mid of the 50’s, the use of the so-called "renewal methods" in hydrology

2First/Second Order Reliability method: approximate methods for fast computing a failure probability (in the sense of structural reliability).
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since the end of the 60’s, the application of Bayesian analysis methods in stochastic hydrology since the end of the 60’s
for effectively coping with the two engineering concerns of incomplete or poorly informative data and decision making.

When, some years later, I decided to organise, together with E. Parent (AgroParisTech) and J.J. Boreux (University
of Liege) a new conference in the honour of J. Bernier, ("Decision statistics and engineering under uncertainties", Paris,
October 2012), I had the opportunity to discover a number of quite unknown works of him, where he explicitly copes with
the problem of uncertainties tainting the output of predictive (deterministic) models. The great difference between this
works and the ones (much more known) of J. Helton in the 90’s cited above stands in the methodology used. SANDIA’s
works are much more similar to the ones carried today in the industry, as they involve complex computer models and
intensive simulation-based techniques.

Nevertheless, it seems interesting to briefly remind some works not only for historical reasons but also because their
are rich in teachings and a source of inspiration. Some of them, directly dealing with partial differential equations, made
stochastic by adding a random error term or by making aleatory some of their coefficients, were rooted in a quite common
practice at that time (cf. the works in the domain of the statistical mechanics cited by [Frisch 1968]). Other ones, more

perspective (and quite innovative), are more concerned with sampling-based techniques.

Water quality forecast. In [Bernier & Sabaton 1972] the technical problem under investigation is the simulation of the
water quality of a river, in terms of biological oxygen demand (BOD) and dissolved oxygen (DO). According to the

popular Streeter and Phelps model, the phenomenon is governed by the following equations:

dz

—=ky—kyz
dt 1y—hz
(IV.3)
dy
—:—k
dt 3,

z being the oxygen deficit (i.e. the difference between the saturation and actual DO concentration), y the current BOD and
ki, k2, k3 model’s parameters.

The authors insist on the importance to account for uncertainties when making prediction using the model above and
distinguish the case of long term prediction (here the dominant source of uncertainties is the variability of parameters
intervening in Equations IV.3 and more generally environmental parameters) and the case of short term prediction, in
which the main errors may come from the discrepancy between the model and the physical reality. For coping with
uncertainties in short term predictions the authors propose a stochastic version of Equations IV.3 by adding a random error
term to each of the two original equations. These errors, for each value of the time ¢, follow a joint bivariate Gaussian
distribution with means and standard deviations equal to (1, Up) and (07, 07), respectively (they can be correlated for a
given value of the time 7):

dz = (kiy—kaz+w)dt +o1\Vdre ()
(Iv.4)

dy = (—ksy+ W) dt + o2V des (1),

in which & (7) and &(¢) follow a standard Gaussian distribution. By definition, & (#) and & () can be dependent for a
fixed ¢ but both are independent on & (t + dt) and & (¢ + dt) respectively. According to these assumptions, the authors
provided the solution of the stochastic differential Equations IV.4, i.e. the (bivariate Gaussian) probability distribution of

the couple (y,z). The model is used for evaluating the probability for the maximum value of the deficit to be greater than a
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given (and unacceptable) threshold value z*, under the initial conditions on the pollution source terms: y = yy and z = zp.
This maximum is reached, according to Equations IV.4, for t = ¢, (critical time):

1 ka zo(kz—k3)>
te=———1og| — ]—-— ). IV.5
C k—ks g(k3>< k1yo (IV-3)

This kind of study is made for design purposes, i.e. fixing y = yop and z = zo under the probabilistic constraint:
Plz(te) > 2] < o

Thanks to the assumptions above, the criterion can be written as:

7 — ()

o) 2@, (IV.6)

where L1, (2.) and o,(z.) are the mean and standard deviation of the oxygen deficit for = 7. and u( ) the -quantile of the
standard Gaussian distribution.

The authors also discuss the problem of the uncertainties tainting the criterion formulated in Equation IV.6 (nowadays
qualified as "epistemic"). The source of these uncertainties is the imperfect knowledge of the so-called state of Nature
0, i.e. the set of the overall parameters of the model (here 0 is made by the k;’s, the 1;’s and the 0;’s, estimated by data
coming from in situ measures). A Maximum Likelihood and a Bayesian plug-in estimator (cf. Chapter VI) are proposed,

i.e. the criterion is estimated by replacing 6 with its Maximum Likelihood estimator or its Bayesian posterior mean.

Thermal pollution forecast. The same intrusive approach for coping with uncertainties has been used, in the same
period in some studies concerning the evaluation of thermal pollution caused by the releases of power stations, located
seashore [Bernier 1975]. If one notes z the sea temperature increase in the 2-dimensional (x, y) domain of interest, the

phenomenon is ruled by the convection-dispersion equation:

dz dz dz 1[0 dz d dz A
E +Vx£ +Vyaiy — z |:8x (thax> + aiy <Dyhay>:| = @Z, (IV7)

in which the first terms model the convection (depending on the component v, and vy, of the velocity vector v) and the
three terms in the brackets governs the dispersion (depending on the dispersion coefficients D, and D, and the water level
h). The right-hand-side term concerns the atmospheric heat exchange (A is the exchange coefficient and C, the water
volumetric heat capacity). The limit conditions are that in the release point, the released power W is known, and that very

far from the rejection point, the temperature increase tends to be null:

Cp0Q(z—zp) =W
(IV.8)

z— 0 for x,y — oo.

The problem becomes stochastic by considering the uncertainty tainting the velocity field, the dispersion coefficients
and the atmospheric exchange coefficient. Taking into account the complexity of the problem of finding the probability

distribution of the spatial and temporal process z(x,y,), the recommended approach is to solve the differential equations
A
for the moments E[B"] of the random variable defined by the equation b = z- exp <Cht) .
p
In particular, in [Lencioni et al. 1979], the problem is solved under the assumption that the velocity fields can be
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expressed by the product of a deterministic function H (x,y) and of a time-dependent Markov process q(¢). This seemingly
restrictive condition was considered as satisfied, under the basis of the available data, for the Channel seashore.
In this case, the introduced stochastic term has a physical interpretation, as the random convection is equivalent to an

additional dispersion term, which proved to be much greater than the physical dispersion.

Methodological issues and recommendations. Methodological issues and perspectives are discussed in a more method-
ological paper [Bernier 1980] which also gives the impression of the end of this early period of interest for uncertainties
in simulation. Together with the approaches (qualified as probabilistic) consisting in randomizing differential equations
governing physical phenomena, the statistical methods, actually sampling-based, are proposed as a more and more attrac-
tive way to cope with complex models and namely for estimating the probability for a model output z = G(x) to be in a
given set of values, P4 = P[Z € A].

A method, apparently used in the 70’s for the study of the atmospheric dispersion of cooling tower plumes is described.
It is based on the partition of the input space in m classes C; of probability p; = f@[_ p(x)dx. An approximate, but

demanding a limited number of simulations, technique consists in (i) choosing in each class one representative point mi’),

then (ii) evaluating G(azy)) and finally (iii) using the following estimator for Pg:

m
Fa= gpi Liieay (Vo)
=

which actually presents a non-controlled bias.

From this method which "deterministically” states the class C; contributes to the event {Z € A} under the basis of a
single evaluation in a chosen point of €;, a method based on random allocations of points of €; is proposed. In practice,
it consists in random sampling n; points ("1, ..., x(t")) within each class €; and evaluating the probability P4 as:

R m 1 n;
P = _X}pi; Z,l H{G(m(w))eﬂ}- (IV.10)
i= Lj=

The properties of this sampling method, as well as the optimal allocation of the number of random points between the
m classes are discussed. The reader familiar with Monte Carlo variance reduction technique can recognize the proposed
technique as a "stratified sampling", a method which will become popular in the computer simulation and structural relia-
bility communities between late 80’s and 90’s (e.g. [Schuéller ez al. 1989, Decker 1991, Ye et al. 1993]). Even though the
method is rooted in the fundamentals of Monte Carlo simulation, it is worth noting that its use in the industrial "computer
experiments" community was quite innovative in that period. As an historical point of reference, the seminal paper (we
do not think J. Bernier was aware of when writing the cited report) introducing the Latin Hypercube Sampling as a variant
of the stratified sampling in the context of uncertainty analysis dates from the end of the 70’s [McKay et al. 1979].

This report ends with a discussion concerning the difficult compromise between using the best model available for
representing the physics of a phenomenon and the quantitative uncertainty assessment of its results. The more complex
the model is, the more expensive a single run will be and thus the more difficult the probabilistic calculations will be.
The use of response surfaces, named "semi-empirical” or "statistical” models in [Bernier 1980], fitted on data generated
by the original model is presented as a methodological prospective for the years to come. That will be actually one of
the mainstream of the work of scientists and engineers in the following three decades! Notice that the first known article
explicitly concerned with response surfaces in computer experiments dates from the mid of the 80’s [Downing et al. 1985].

Of course, the discussion about who was the first one to discover or rather apply one method or another to a given
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technical domain is questionable and actually not interesting. Indisputably, the diffusion of these works, published in
French and as internal reports, has been limited and that is why they have been rather forgotten. Nevertheless, it was

interesting to give them here a tribute which, to the best of my knowledge, has not been done yet.

5 The need for specific methods

In the remainder, relying on the terms of the scheme represented in Figure IV.2, some elements about the practical

implementation of the different steps of uncertainty analyses are given.

Step A - Problem’s specification. This step first requires to select the input parameters to be modelled as uncertain
variables. The remaining parameters are considered as fixed either because they are supposed to be known with a neg-
ligible uncertainty or (as it is typical in safety study) because they are given values, generally conservative, which are
characteristic of a given accidental scenario.

Step A requires also to select the relevant features of the outputs’ pdf, depending on the stakes which motivated the
study (the so-called quantities of interest). In most cases they formalize, in a quite normative and simplified way, some
decision criteria. For instance, within the design stage of a system, the analyst is often required to provide the mean and
the standard deviation (or the range) of a given performance indicator of the system (e.g. fuel consumption), whereas
in operating stages, one has to check if the system meets or not some regulatory requirements attached to licensing or
certification. Then, depending on the context of the study, the decision criteria may be: (i) a min-max criterion, i.e. the
range of the outcomes given the variability of the inputs; (ii) a central dispersion criterion, i.e. central tendency and
dispersion measures; (iii) a threshold exceedance criteria, i.e. the probability for a state variable of the system to be
greater than a threshold safety value.

A short analysis of the computer code is also necessary: does it require a high CPU time for a single run, does it
provide a precise evaluation of its gradient with respect to the probabilistic input parameters are primordial questions.

Depending on the previous specifications, the methodology will be implemented through different algorithms.

Step B - Input’s uncertainty quantification. The methods used for the probabilistic modelling of the inputs depend on
the nature and the amount of available information.

In case of scarce information, the analyst first needs to interview experts. The literature proposes numerous pro-
tocols (e.g. [O’Hagan et al. 2006]) that can help to get (hopefully) unbiased and relevant informations which are then
translated into a pdf. In addition, a very simple and commonly used approach [JCGM 2008a] consists in applying the
Maximum Entropy Principle, that leads to the pdf maximizing the lack of information (encoded by the Shannon’s entropy
[Shannon 1948]), given the available expertise on the variable to be modelled. Whatever the chosen model, it is important
to come back to the experts and "validate" it by establishing a dialogue on some clearly understandable key features of
the established pdf (e.g. mean and quantiles, rather than shape or scale parameters).

When data set are available, the analyst can use the classical statistical inference tools following a parametric or non
parametric approach.

We insist on the fact that the random input parameters Xi, ..., X,, form a random vector X with a multivariate pdf,
the dependence structure of which must be taken into account. A common way is to define the multivariate pdf p(X) by
means of its univariate marginal distributions py(x1),..., pm(x») and its copula C(-), encoding the dependence structure

[Genest & Favre 2007]. In practice, the inference on copula’s parameters could be tricky and Kendall’s T or Spearman’s
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p coefficients are not sufficient to completely determine the dependence structure, as shown in [Dutfoy & Lebrun 2009].
Mismodelling the dependence structure is potentially dangerous as it can lead to an error of several orders of magnitude
in the estimate of a threshold exceedance probability [Lebrun & Dutfoy 2009b]. Actually, the copula inference should be

performed using the same techniques (e.g. Maximum Likelihood Estimation) as those for the univariate marginals.

Step C - The Uncertainty Propagation Once quantified, uncertainties are propagated to the model outcomes. The
choice of the appropriate propagation algorithms depends on the quantity of interest to be estimated and on the model
characteristics specified in Step A.

In case of a min-max analysis, the range of the outcome is determined either thanks to an optimization algorithm or
by sampling techniques. The input sample may come from a deterministic scheme (factorial, axial or composite grid) or
randomly generated according to the input vector distribution. The choice of the method is imposed by the CPU time the
model G(-) requires for a single run.

In case of a central dispersion analysis, the mean value and the variance of the outcome can be evaluated using Monte
Carlo sampling, which also provides confidence intervals of the estimated values. As an alternative, it is possible to
evaluate the mean of the outcomes thanks to the Taylor variance decomposition method (Equation IV.1) that requires the
additional evaluation of the partial derivatives of the model G(-).

Finally, in case of a threshold exceedance criteria P[Z > z*], the most widespread techniques are the sampling-based
ones, that is the Monte Carlo method and its variants that reduce the variance of the probability estimator (LHS, impor-
tance sampling, stratified sampling, directional sampling, subset simulation ...). All sampling-based techniques provide
confidence intervals. The variance reduction techniques (or accelerated Monte Carlo methods) constitute a very active
research field, the interest of which has gained importance in the last ten-twenty years, thanks to the rapid expansion of
the computer experiments discipline (cf. for instance [Morio 2013] and the numerous references therein).

In case of high CPU runtime, popular alternatives (namely FORM and SORM methods) exist to estimate the ex-
ceedance probability.

They are based on isoprobabilistic transformations (the generalized Nataf transformation [Lebrun & Dutfoy 2009a,
Lebrun & Dutfoy 2009b] in case the copula of the input random vector belongs to the elliptical family and the Rosenblatt
one [Lebrun & Dutfoy 2009¢] in the other cases) which maps the input random vector into a standard space of spheri-
cal standard Gaussian distributions. In that space, the integral defining the exceedance probability or failure probability
(Equation IV.2) is approximated thanks to geometrical considerations [Dolinski 1983, Madsen et al. 1986]. These pop-
ular techniques provide approximations of very low exceedance probabilities with very few calls to the model, but no

confidence interval is provided in order to validate the geometrical approximations.

Step C’ - Sensitivity Analysis The ranking of the uncertainty’s sources is based on the evaluation of some importance
factors, correlation coefficients and sensitivity factors, the choice of which varies according to the quantities of interest
specified in Step A. Sensitivity analysis is a wide area of investigation in the technical and scientific community. One
can refer to review articles and books provided by experts in the domain (e.g. [Saltelli et al. 2004, Helton et al. 2006b,
Tooss 2011, Faivre et al. 2013]).

Following [Tooss 2011], we distinguish the following families of methods.

* Screening methods, aiming at establishing a coarse hierarchy between a large number of input variables, with
respect to their contribution to the output by means of a relatively small amounts of model’s runs. Among them,

it is worth noting the popular method, first proposed by [Morris 1991], consisting in randomly repeating a limited
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number of times (4 or 5) one-at-a-time experimental designs (in which the values of each input are modified one-
by-one, independently on the other inputs) in the (previously discretized) input space.

Methods based on the evaluation of importance measures, based on (i) regression indices, e.g. standard regression
coefficients (SRC), standard rank regression coefficients (SRRC), which provide useful informations when the
relation between Z and X is linear or (at least) monotonic, or on (ii) the functional decomposition of the variance of
the output Z [Hoeffding 1948, Sobol 1993]:

VIZ] = LiVilZ] + Lic; Vij[Z] + ...

(IV.11)
VilZ] = V[E[Z|Xi]]
VijlZ = VIE[Z|X;, X;]] - V;[Z] - V;[Z].

According to this decomposition (which nevertheless requires the independence of the X;’s), the interpretation of
the so-called Sobol sensitivity indices [Sobol 1993] S; = V;[Z]/V[Z], Si; = Vi;j[Z]/V[Z] is immediate: the first
quantifies the part of the variance coming from the contribution of each of the inputs X;’s taken one-by-one, the
second the part coming from the contribution of couples (X;, X;) and so on.

The main issue in practice when evaluating these indices is the computational burden as many runs of the model
are required to obtain a good Monte Carlo estimation of the variances of conditional expectations above. Among
the computational methods proposed to cope with these issues: the FAST method, based on Fourier transformation
of the function G(-), or the use of quasi-random sequences.

Another class of powerful and popular methods for dealing with the computational burden of estimating Sobol
indices and more generally quantities of interest theoretically demanding a very high number of Monte Carlo
simulations (as probabilities of failure or low-probability quantiles) is based on building response surfaces, as

sketched hereinafter.

Metamodelling. Building a response surface or a metamodel or an emulator (the three terms are equivalent in practice)

of the actual CPU time-consuming model G(-) is another viewpoint of challenging computational issues: the compu-

tational budget is used for building an analytical function G(-) (demanding a negligible time for a single run) which

provides an approximation of the model, considered satisfactory for the purposes of the study. The idea is quite intuitive

and started diffusing in the computer experiments community since the 80’s [Downing ez al. 1985, Box & Draper 1987];

cf. also Section 4.

Many families of surface responses exist. They can be based on polynomials, splines, neural networks, support vector

machines or fuzzy rule-based techniques. The most popular ones in the modern practice of computer experiments are

polynomial chaos expansion and kriging.
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* Polynomial chaos. The principle [Wiener 1938, Ghanem & Spanos 1990] at the base of the so-called polynomial

chaos expansion is that, under the assumptions that X;’s are independent, their pdf’s belong to the same parametric

family and the second order moment of Z is finite, Z can be expressed as:

Z=Y o D), (IV.12)

k=0

where the @ (-) are orthogonal polynomials, belonging to a base that depends on the parametric family of the X;’s
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pdf (e.g. the Hermite’s family if the pdf’s are Gaussian or the Legendre’s family it the pdf’s are uniform). The term
"orthogonal" here means that:

/@k(w)-cbl(zc)-p(w)dx:l if k=1 and 0 otherwise.

In practice, the infinite sum of Equation I'V.12, is truncated. The use of polynomial chaos approximation is particu-
larly suited for the evaluation of the Sobol indices: thanks to the orthogonality properties of the polynomials & (-),
the indices are evaluated by means of elementary algebraic operations of the coefficients oy [Sudret 2008]:

1 1

Si=— Z(X]g, S,'J:i Z OC,?
V[Z] ked; V[Z] kGJi‘j

where J; is the set of the indices of all polynomials containing only terms in x;, J; ; is the set of the the indices of of

all polynomials containing only terms in (x;, x;) and so on.

Thus, the only problem to be solved is the estimation of the coefficients ¢. In the non-intrusive setting, popular
in the computer experiments community (cf. Section 3), once a sample of numerical experiments results has been
obtained, that can be done by using projection or regression (also known as collocation) techniques, as summarized
in [Sudret 2007]. Among the recent research works in this field, one can notice the ones focused on defining
optimal strategies for the design of numerical experiments taking advantage of the sparsity of the polynomial chaos
coefficients [Blatman & Sudret 2010, Crestaux 2011].

« Kriging. Initially developed in the framework of geostatistics [Matheron 1963], the kriging method? is applied to
computer experiments since the late 80’s [Sacks ez al. 1989]. According to this method the output Z = G(x) of a

computer model with random input is modelled as:
Z=m(x)+Y(x), (Iv.13)

where m(x) is a deterministic function of x, typically a polynomial of degree 0 or 1, and Y () is a zero-mean

Gaussian process, characterized by its correlation function R(x,u), such as:
Cov[Y(z),Y (u)] = 6*R(x,u),

where 62 is the variance of Y (). A typical choices for the correlation function is the power exponential: R(x,u) =
exp (—Y; 6;]x; — u;|%). When a set of realizations of the actual model {m(i) , G(m(i))}i:17_._7,1 is available, the kriging
predictor of the function G(+) in a given point x is evaluated by first considering the (n+ 1)-dimensional Gaussian
joint distribution of the vector (G(:B),G(w(l)), ...,G(zc<"))), then writing the (Gaussian) conditional distribution
of G(x)|G(x),...,G(x™). The mean and the variance of this conditional distribution, which can be explicitly
written as a function of the parameters of the kriging model and of the G(x")), are taken as the predictor of G(z)
and as the prediction error respectively.

The kriging predictor is unbiased and its variance can be estimated. Thus, it gives an interesting additional in-
formation (the prediction error) with respect to other classes of metamodels. The Gaussian hypothesis simplifies

the estimation problem in both frequentist and Bayesian settings. Moreover, as for the polynomial chaos, the ex-

3The method is named kriging in honor of Prof. Danie Gerhardus Krige (1919-2013), South-African mining engineer who first proposed it in the
50’s in the domain of mining exploration.
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pression of some quantities of interest (as the Sobol indices) can be explicitly obtained [Oakley & O’Hagan 2004,
Marrel et al. 2009, Le Gratiet et al. 2013]. Many research works are carried on the use of Gaussian processes meta-
models in computer experiments. In Sections 7.1 and 7.2 some elements are given about specific collaborative R&D
frameworks, in which researches on this class of metamodels are carried.

It is worth noting, among current research topics [Roustant 2011], works concerned with the problem of effectively
coping with high dimension problems. In these cases, common techniques, based on exponential or Matérn kernels
may not be not suitable and a valuable alternative can be the decomposition of the kernel in a sum of kernels of
lower dimension. Inference properties of additive kriging models are discussed in [Durrande et al. 2012]. In this
context, the data-driven methodology proposed by [Muehlenstaedt et al. 2012] is also of particular interest: the idea
is to represent interactions between variables as edges of a graph (named FANOVA graph), the cliques of which
identify groups of variables with respect to which, the kriging model is additive.

Another vast area of research is concerned with the problem of effectively planning the numerical experiments
needed to fit kriging metamodels. As also recalled in Chapter VIII, the strategies currently investigated aimed at
exploring the input space for better approximating the response of the model in a particular area of interest (e.g.
close to the limit threshold in a problem of structural reliability) [Picheny ef al. 2010, Bect et al. 2012] or at satis-
fying space-filling properties [Roustant ez al. 2010, Pronzato & Miiller 2012].

The kriging metamodelling is also one of the main ingredient of the Bayesian statistical framework for model’s
validation proposed by [Kennedy & O’Hagan 2001] (cf. Chapter VIII).

6 The need for specific tools

By a practical viewpoint, the main difficulty in uncertainty analysis is the computational burden. Actually, adding a
"probabilistic layer" to a deterministic calculation results in multiplying the number of the necessary calculations for
obtaining the desired results. In the previous section a quick overview has been given of the specific mathematical tools
needed for effectively cope with the problem. For the practical implementation of computations, it seems essential to
have access to a software which at the same time (i) includes in its library advanced methods for Monte Carlo sampling,
uncertainty analysis and metamodelling, (ii) makes as easy as possible the link between the probabilistic models of the
inputs X and the black-box numerical code G(-), (iii) makes as easy at possible the distribution of computations on HPC
facilities.

Actually, the experience of several years of industrial practice is that do-it-yourself solutions prove to be inefficient and
may lead to very time-consuming studies. Nowadays, several software tools specifically intended to uncertainty analysis
in simulation exist. A quite exhaustive review is given by [looss ef al. 2011]. The software tools can be compared with
respect to a number of different features: methodological content of the library, easiness to use, licence (commercial, free,
open source), users community, software interface with HPC facilities.

Among the software platforms, specifically intended to non-intrusive uncertainty analysis, we particularly remind
here: (i) DAKOTA®, developed by SANDIA National Laboratory [Eldred et al. 1996], (ii) Uranie, developed by CEA
[Gaudier 2010], as well as (iii) Sunset © [Chojnacki & Ounsy 1996] and (iv) Promethee’ [Richet & Munoz-Zuniga 2013]
developed by IRSN . They are all distributed under free licenses.

“http://dakota.sandia.gov
Shttp://sourceforge.net/projects/uranie/
Shttps://gforge.irsn.fr/gf/project/sunset/
"http://promethee.irsn.org
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In the remainder of this section, the focus is put on the OpenTURNS software.

OpenTURNS: Treatmet of Uncertainties, Risk’N Statistics. OpenTURNS?® [Dutfoy ef al. 2009] is an open source
software specifically designed to put into practice the methodology sketched in Section 3 (Figure IV.2). It is jointly
developed since 2005 by EDF R&D, Airbus Group and Phimeca, and distributed since 2007. Running under the Windows
and Linux environments, OpenTURNS is basically a C++ library proposing a Python textual interface. It can be linked to
any code communicating through input-output files (thanks to generic wrapping files) or to any Python-written functions.
It also proposes standard interface for complex coupling with external black-box computer codes.

Gradients of the external code are taken into account when available and otherwise can be approximated automatically
by finite differences schemes. In addition to its more than 40 continuous/discrete univariate/multivariate distributions,
OpenTURNS proposes several dependence models based on copulas (independent, empirical, Clayton, Frank, Gaussian,
Gumbel, Sklar). It offers a great variety of definitions of a multivariate distribution, in particular: list of univariate
marginals and the copula and linear combination of probability density functions or random variables. The propagation
step is covered through numerous simulation algorithms (importance and directional sampling, subset simulation, Latin
hypercube sampling, quasi Monte Carlo sampling etc.). The innovative Generalized Nataf and Rosenblatt isoprobabilistic
transformations are implemented for performing the FORM/SORM methods and, more generally, methods based on
sampling in the standard Gaussian space. For the ranking analysis, Sobol indices, and the usual statistical correlation
coefficients are available.

A rich documentation of more than 1000 pages is at users’ disposal; it is dispatched within a number of documents
covering all the aspects of the platform: scientific guidelines (Reference Guide), end-user guides (Use Cases Guide,
User Manual and Example Guide) and some software documentations (Architecture Guide, Wrapper Guide, Contribution
Guide and Windows port Guide).

OpenTURNS implements some high performance computing facilities such as the parallelism of algorithms manip-
ulating large data set (up to 10® scalars) using the threading building blocks (TBB) technology. For the distribution of
computations, many strategies are possible [Barate 2013]; among them: (i) the distributed Python wrapper and (ii) the use
of the supervision module YACS of the SALOME platform (cf. Section 2).

The software is innovative by its input data model, based on the multivariate cumulative distribution function (cdf),
which enables the usual sampling-based approach (statistical manipulation of large data set) but also the analytical ap-
proach: if possible, the exact final cdf is determined (thanks to characteristic functions implemented for each distribution,
the Poisson summation formula, the Cauchy integral formula ...). Furthermore, different sophisticated mechanisms are
proposed: aggregation of copulas, composition of functions from R” into R”, extraction of copula and marginals from
any distribution.

OpenTURNS implements some up-to-date efficient sampling algorithms: it uses the Mersenne Twister Algorithm
to generate uniform random variables [Saito & Matsumoto 2006], the Tsang & Marsaglia method for Gamma vari-
ables [Marsaglia & Tsang 2000], the Ziggurat method for normal variables [Doornik 2005] and the Sequential Rejection
Method for binomial variables. The exact Kolmogorov statistics is evaluated with the Marsaglia Method and the Non Cen-
tral Student and Non Central y2 distribution with the Benton & Krishnamoorthy method [Benton & Krishnamoorthy 2003].

OpenTURNS is the repository of some recent results of PhD researches carried at EDF R&D as sparse polynomial
chaos expansion based on the Least-angle regression (LARS) method [Blatman 2009, Blatman & Sudret 2010] and Adap-

tive Directional Stratified sampling for estimating failure probabilities [Munoz-Zuniga 2011, Munoz-Zuniga et al. 2012].

$http://www.openturns.org/
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Figure IV.3 — Some Open TURNS snapshots: (a) the Open TURNS logo inspired by Galton’s box experience, (b) modelling a
multi-modal random vector of RZ, (c) copula’s fitting, (d) importance sampling in the Standard Space around the FORM design
point, (e) FORM importance factors, (f) cobweb plots for visual and intuitive sensitivity analysis.

7 A very active research community

7.1 Working groups and research consortia

As already stated hereinbefore, the practice of uncertainty analysis and (more generally) probabilistic calculation is firmly
fixed in the engineering studies of several industrial companies, in most cases within risk assessment contexts (e.g. hy-
draulic, nuclear or financial risk). The underlying mathematical tools are also well established theoretical and applied
research topics since several years.

Indeed (cf. page 69), there has been a considerable rise of interest in many industries in the last years for these
problems. Facing the questioning of their internal and/or external control authorities in an increasing number of different
domains or businesses, large industrial companies have felt that domain-specific approaches were no more appropriate. In
spite of the diversity of terminologies, most of these methods do share many common algorithms: a rather new need for a
more adapted methodological support and mathematical tools arose quite simultaneously in several industrial companies
and public establishments (with a major role, among others, of EDF, CEA, Airbus-Group), which decided to work more
closely and, at the same time, turned to academic research as the growing complexity of the raised problems clearly put
into evidence the limit of the standard mathematical tools belonging to engineers’ background.

The first premises of these collaborative frameworks were put around 2003, and most of the dedicated working groups
started their activity in 2005-2006, under different configurations: thematic group of scientific societies (IMdR, ESReDA,
SFdS), industry-academic research (DICE) or software-development consortia (Open TURNS).

The project group Uncertainty (2005-2008) hosted by the ESReDA society (European Safety, Reliability & Data
Association) and the working group Incertitudes et industrie (since 2006) of the IMdR (Institut pour la Maitrise des
Risques) were both driven by the same needs: defining a common methodological framework for uncertainty analysis and

largely spreading the "uncertainty analysis viewpoint" in the scientific and industrial communities.
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The main result of the ESReDA group (EDF, CEA, Airbus-Group, JRC, SAFRAN, Delft and Duisburg-Essen Univer-
sities) has been the collective book [de Rocquigny et al. 2008] which, starting from several industrial needs and examples,
sketches the principles of the common methodological framework summarized in Section 3. The most significant achieve-
ment of the IMdR group, (with participants, among others, from EDF, CEA, EADS, IFP, IRSN, ONERA, INERIS) has
been the definition of specialized training course about uncertainties in simulation (in three sessions), named "Managez
les incertitudes dans vos études", to largely share and transfer the more common methods and tools.

In 2009 a new thematic group Fiabilité et Incertitudes was founded within the Société Francgaise de Statistique (SFdS).
The group contributes to spread and to promote uncertainty analysis in simulation within the French statistical community.
Nowadays, special sessions about these topics are held within the annual Journées de Statistique or in congress supported
by SFdS (e.g. ISI World Congress).

The DICE consortium (Deep Inside Computer Experiments, 2006-2009) was essentially devoted to research works
about the design of computer experiments and the exploration of large and time consuming numerical code. Mainly
driven by advanced research problems, under the lead of the Ecole des Mines de St. Etienne (EMSE), the consortium
gathered academic and industrial partners (Total, Renault, EDF, IRSN, ONERA) which funded the project. The main
results of DICE are collected in open source packages of the R software [Roustant er al. 2012]. The activities of the DICE
consortium continue in the framework of the ReDICE® project (2011-2015), also particularly focused on metamodelling
techniques, under the lead of the University of Bern with almost the same hard core of academic and industrial partners
as DICE.

Finally, concerning more specifically advanced research works, the most important French structuring framework is
nowadays the GAR MASCOT-NUM!'® (Méthodes d’Analyse Stochastique pour les Codes et Traitements Numériques).
Created in 2008, under the supervision of CNRS, it aims at coordinating research efforts in the scientific area of design,
modelling and analysis of computer experiments. Mainly positioned on advanced research methods, it provides a frame-
work for discussing and presenting research works, by organizing events like the Annual GdR meeting, as well as seminars
and workshops. It is worth noting that, to the best of our knowledge, no academic Department exists specifically intended
to uncertainty analysis and computer experiments, that is, in practice, the GdAR MASCOT-NUM acts as a sort of "Infor-
mal Laboratory", gathering researchers dispersed in Applied Mathematics Departments of several French institutions and
provide a paramount role in structuring the community.

A similar role is played by the MUCM Community (Managing Uncertainties in Computer Model) in UK (and hope-
fully at European scale in a next future) and the SIAM (Society for Industrial and Applied Mathematics) Activity Group

on Uncertainty Quantification in USA.

7.2 The ANR OPUS project

This Section provides a quick overview of the ANR OPUS project (acronym of Open source Platform for Uncertainty
treatment in Simulation) that I coordinated between January 2009 and September 2011. More details can be found in the

final report of the project [OPUS 2011] and the references therein.

7.2.1 Context and background

The idea of the OPUS project raised within the French uncertainty analysis community in late 2006. Under the basis of a

consolidated common framework, OPUS partners had the ambition to work together in a more structured way by building

“http://wuw.redice-project.org/
Ohttp: //www.gdr-mascotnum. fr
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a funded research program.

The project is the merging of two different projects, both proposed to the Agence Nationale de la Recherche (ANR)
in 2007: OPUS (mainly oriented towards software issues) submitted to the Program Software Technologies and COPRIN
(COnception en PRésence d’INcertitudes de systemes complexes multi-physiques) submitted to the Program Intensive
Computing and Simulation (mainly focused on research works).

Taking into account the technical proximity and the interesting complementarity between the two projects, the ANR
asked to the project teams to merge their technical programs in an unique project. That gives raise to the OPUS project,
in its actual form (duration: from April 2008 to September 2011, global budget: 2.24 M€, ANR’s fundings: 0.94 M€).

The OPUS project team reflected an interesting variety of points of view, scientific backgrounds and possible utiliza-
tions of project’s results. The OPUS consortium comprised ten partners:

* four industrial partners: CEA, Airbus-Group, EDF R&D (coordinator), Dassault-Aviation (DA),

* five academic partners: Ecole Centrale Paris (ECP), SUPELEC, Université Diderot Paris 7 (UP7), Université Joseph
Fourier Grenoble 1 (UJF), INRIA, which took part in OPUS through the Scilab team (Foundation Digitéo),

» one SME working in the computer science service business: Softia.

The interesting "biodiversity" of the OPUS partners allowed an actual interaction between industry and research. That
has been, finally, together with the "classical” deliverables of the project (reports, software codes, scientific papers etc.),
the major result of the project. The generic aim of OPUS was "to create and sustain an activity around generic uncertainty

treatments by building and maintaining an integrated open source platform"; more specifically:

* creating and disseminating open source tools for uncertainty, treatment, using cutting-edge algorithms provided by

the scientific community,
* capitalizing the French know-how in uncertainty analysis and let a reference community arises,
* creating a lasting dynamics between different academic, industrial and business partners.

According to these principles, the OPUS collaborative works were based on a "loop" (cf. Figure IV.4) that starts
from real industrial use-cases, arising from different business areas (energy production, nuclear safety, aerospace). The
complex mathematical and numerical treatments to be performed within these use-cases let rise the need for advanced
methods, coming from academic and scientific research. Once these methods have been developed and tested, they are
integrated and perpetuated inside lasting software platforms, to be reused in other similar industrial studies. It is worth
noting that in this figure the "OPUS world" (represented by the light-blue ellipse) has been widely open to contributions,

represented by blue arrows in Figure IV.4, coming from the whole "uncertainty analysis" community.
7.2.2 Project Structure

The OPUS works were organized in the following work-packages:

*« WP0 and WP0’: Coordination, Dissemination & Communication (WP0) and Expert College (WP0’). Besides
the common charges of technical and administrative follow-up, animation and reporting, a great place has been left
within OPUS to dissemination and communication activities. That is strictly related to the particular context of
the activities around Uncertainty Analysis and Computer Experiments. As several thematic working groups exist

in France and abroad, it was essential to involve a larger community than the OPUS team. For better defining the
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Figure IV.4 — The OPUS loop: from the industrial needs to reusable software contributions.

content and the targets of these works, a specific work-package (WP0’) was created to host the permanent activity of
project team specialists within an Expert College, lead by Anestis Antoniadis (UJF). WP0’s mission also included
the reviewing and endorsement of project deliverables. Besides scientific communications and publications (main
outcomes of the WP2), the dissemination activities have been: six thematic workshops, the editing of a special issue
of the scientific review Statistics and Computing, a special session of the 42th Journées de Statistique (2010), as

well as several presentations during the periodical meetings of ANR and Systématic Paris-Région Business Cluster.

WP1: User requirements and specifications. The goal of this work-package was to identify, throughout the first
year of the project, a number of methodological and software needs and to fix the bases of partners’ common work

(in particular, a set of industrial use-cases, cf. Figure IV.5).

WP2: Scientific developments. This was the "Research" work-package of OPUS, the major part of its content
coming from the COPRIN project. The activities turned around several classes of problems/methods with different

degrees of maturity:

» "pre-industrial research" (WP2.1): problems and methods already relatively mature and, in some way, ready
to be spread within the industrial community: metamodels based approximation, sensitivity analysis, proba-

bilistic inverse modelling,

 "upstream research" (WP2.2): more prospective methods and problems, to be treated in a rather academical
framework: robust low probability quantiles estimation, uncertainty quantification in heterogeneous models
couplings, robust and real-time implementation of parametric partial differential equations (intrusive meth-
ods).
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¢ WP3: Validation / Demonstration. This work-package hosted the activity of testing and validating the methods
and the algorithms (at least, the ones the WP2.1 dealt with) by putting into practice exemplary studies on the
use-cases proposed by the industrial partners (WP1).

* WP4: Industrialization / Product durability. Here the word "Industrialization" is not to be interpreted in the
strict sense of software engineering. The works carried on this work-package aimed at: (i) defining and structuring
the types of contribution, (ii) making the software contributions interoperable with other commonly used software
components and environments, (iii) ensuring a certain durability to the results of the project.

It is worth noting that the OPUS works followed two mainstreams (see Figure IV.4). The first one followed the logical
chain of the work-packages from WP1 to WP4. The second mainstream (work-packages WP0 and WPO0’) concerned
the transverse activities of communication and dissemination which took place all along the project duration and were
constantly fed by the works of the other work-packages.
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Figure IV.5 — The five industrial use cases proposed by the industrial partners of the OPUS project.

7.2.3 Some achievements

Research and dissemination. The research works, mainly carried within the WP2, provided many interesting method-
ological and algorithmic results.

An innovative adaptive strategy for building "specialized" kriging metamodels (i.e. specifically intended to the ef-
fective estimation of a given quantity of interest, as a probability of failure, by improving the approximation properties
in proximity of the failure threshold) was formalized [Bect et al. 2012] and applied to a flood risk assessment prob-

84



IV.7 A very active research community

lem [Arnaud et al. 2010]. The strategy, named SUR (stepwise uncertainty reduction) is actually based on the Bayesian
decision-theory formulation of the estimation problem

A method, based on multi-element generalized polynomial chaos (gPC) metamodel, for estimating low-probabilities
o-quantiles zq, of the output of a CPU time consuming numerical code G(x), has been proposed by [Ko & Garnier 2013].
The ordinary non-intrusive strategy is improved by combining a "global" metamodel in the standard Gaussian space of
the inputs with auxiliary "local" metamodels constructed in bounded domains about the design points (i.e. values of the
input X likely to be mapped into values close to zy).

The reduced bases method - a discretization approach consisting in approximating the solutions of parametrized partial
differential equations (PDE’s) with a linear combination of the elements of a basis formed by previously known (offline)
solutions of the equation for given and ad hoc chosen parameters - has been also investigated in the framework of the OPUS
project. This work lead to significant improvements in terms of methodology (analysis of the convergence properties of
the so-called greedy algorithm, the mainly used strategy to choose the elements of the basis [Buffa et al. 2012]) and
diffusion (application to use-cases [Vallaghé et al. 2011] and contribution to the development of the software library
Feel++ [Prud’Homme et al. 2012])

The already cited works concerning the effective building of sparse non-intrusive polynomial chaos expansions and
the adaptive directional sampling for estimating probabilities of failure were also partially hosted by OPUS.

The scientific production of the project has been significant: 10 papers published in peer-reviewed journals, as well
as 15 communications to national and international conferences and several overall presentations of the project during
institutional workshops organized by ANR and the Business Cluster Systématic Paris - Région.

The OPUS project organized six workshops including the closing one, covering both scientific/methodological and
software implementation issues (it is worth highlighting that some of them have been jointly held with the GdAR MASCOT-
NUM and the working group Fiabilité et Incertitudes of the SFdS):

* Metamodelling and free software, EDF R&D, Clamart, October 2008,
* Learning and model selection, CEA, Saclay, April 2009,
* Spectral methods and polynomial chaos, Airbus-Group, Suresnes, November 2009,

 Uncertainty propagation, estimation of rare quantiles and low probabilities of failure, Institut Henri Poincaré, Paris,
June 2010,

* Uncertainty quantification, high performance computing, calculation environments and software, University Joseph
Fourier, Grenoble, March 2011,

* Numerical simulation and uncertainty analysis, OPUS closing workshop, Institut Henri Poincaré, Paris, October
2011.

Largely opened also to public and contributors not officially involved in the project, these biannual workshops have

been a regular meeting place for the French technical and scientific community all along the period 2008-2011.

Algorithms and computer codes. The algorithmic contributions to OPUS project have been grouped into three cate-
gories, named OPUS: OPUS-Lib, OPUS-Contrib and OPUS-Forum respectively. These categories correspond to different
levels of compliance to more and more strict coding rules. OpenTURNS (cf. Section 6) is considered as a prerequisite of

the platform. The main requirements the code must fulfil (depending on the category) are sketched below.
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¢ OPUS-Lib. The code fulfils a high level of quality, following established OPUS programming rules. This means a
high level of quality and integration. In a nutshell, it must present the following features: (i) functionality demon-
strated in an academic and/or R&D environment, possibly with a preliminary code proposed to the community for
reviewing purpose, (ii) system software architecture development initiated to include interoperability, reliability,
maintainability, extensibility, scalability, and security issues, (iii) a high level of documentation, (iv) basic software
components are integrated to establish that they will work together.

e OPUS-Contrib. The code has a fair level of quality but most of restricting rules proper to to the -Lib level are
released. Contributions at this level can be written in any of the following supported languages: C++, Python, R,
Scilab, Matlab/Octave, and can have different levels of integration with respect to the other ones (compatibility or

interoperability), for instance, a C++ code (as well as a Python or Scilab script) using -Lib and -Contrib features.

¢ OPUS-Forum. The contributor uses the forum space available in the OPUS web site, to discuss and propose
features or ideas in a completely free way, from a simple algorithm to a piece of code or even a complete module
(albeit incompatible with other OPUS contributions).

Table IV.1 presents a schematic view list of the contributions to the OPUS project.

Name Language Description Level
RPyWrapper Python Wrap R in Python/Op. TURNS | Lib
PC OpenTURNS | C++, Python Polynomial Chaos Lib
NISP C++, Scilab, Python | Polynomial Chaos Lib
Feel++/Opus C++, Python, Octave | Reduced Basis metamodel Lib
Kriging STK Matlab, Octave Kriging-based metamodels Contrib
MLE Inverse R Maximum likelihood Contrib
estimations for
inverse problems
MCMC Inverse R Monte Carlo Markov chain Contrib
for inverse problems
Quantile Quantile estimations Forum
Funct. SA R Functional sensitivity analysis | Forum

Tableau IV.1 — Production of algorithms and computer codes of the OPUS project.

Part of the development of the polynomial chaos expansion in the OpenTURNS software was done within the OPUS
framework!! It is worth noting also the development of the library NISP (Non Intrusive Spectral Projection) under the
form of a Scilab package [Baudin & Martinez 2010]. Definitely, the OPUS project gave a strong contribution to the
diffusion of the non-intrusive polynomial chaos towards the technical community.

Feel++/OPUS is a framework for the reduced basis approximation of PDE’s. It essentially provides a C++ inter-
face for finite element codes and an implementation of some specific methods. The software is provided with several
test-cases, mainly concerned with heat transfer. For each test-case, the user can manipulate various features of the ap-
proximation method (e.g. the reduced basis of functions) using different software environment as Python (using Open
TURNS wrapping system) or Octave. Python and Octave scripts are also provided as examples

Among the OPUS-Contrib contributions, it is worth noting the development of a toolbox for kriging metamodelling in
Matlab® language (and fully compatible with the free software Octave), named STK ("Small" Toolbox for Kriging). The

"Notice that this is a joint work of Airbus-Group, EDF and Phiméca. The contribution of Airbus-Group to these developments has been mainly
funded by OPUS, while the contribution of EDF and Phiméca has been funded by own resources and by the ANR project MIRADOR (Modélisation
interactive des risques associés au développement d’ouvrages robustes).
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main features of STK are the implementation of: (i) a number of covariance functions, and tools to compute covariance
vectors and matrices, (ii) a specific procedure (named REMAP) for estimating the parameters of the covariance from
available data, (iii) advanced prediction procedures.

Other significant OPUS-Contrib contributions are R scripts for solving probabilistic inverse problems using differ-
ent numerical methods (likelihood maximization by means of ECME Expectation Conditional Maximization Either
and S(A)EM Stochastic Approximation of Expectation Maximization) and Bayesian posterior sampling by means of
Metropolis-Hastings algorithm. These methods have been applied to the hydraulic use case (Garonne river) for infer-

ring the probability distribution of the Strickler roughness coefficient [Couplet ez al. 2010].

7.3 Other collaborative funded projects

OPUS has been the first French multi-partners project specifically focused on generic methods and tools for assessing un-
certainties in numerical simulation. Other related projects on this topic were launched in the years 2009-2011. The CSDL
project (Complex Systems Design Lab, 2009-2012), gathering 28 partners (large, intermediate and small companies and
research institutes) under the coordination of Dassault-Aviation, has been one of the biggest project of the Business Clus-
ter Systématic - Paris Région. Several OPUS partners were involved in CSDL, as EDF R&D, Airbus-Group, SUPELEC.
This project was mainly oriented to design issues with application to aerospace and automotive manufacturing, and had
a specific workflow concerning uncertainty quantification and metamodelling. Indeed, taking into account uncertainties
tainting the predicted performance of a system, since the very early stage of the design process, is considered an important
and challenging issue by manufacturers.

The Costa-Brava ANR project (Complex spatio-temporal dynamics analysis by model reduction and sensitivity analy-
sis) [Gamboa 2013] aims to provide novel mathematical tools combining stochastic and deterministic approaches to sen-
sitivity analysis for particularly complex computer models (complex physics involved, high CPU-time consuming, large
dimension of both inputs and outputs). Computer models representing complex spatio-temporal dynamics are particularly
targeted (e.g. large scale meteorological models).

Costa-Brava started in January 2010 for a duration of four years, involving the Institut de Mathématiques de Toulouse
(coordinator), the University Joseph Fourier, CEA and IFP Energies Nouvelles.

The HAMM ANR project (Hybrid Architectures and Multiscale Methods, 2010-2014) deals with more specific soft-
ware features concerning computer experiments. In particular, it aims at the development, analysis and software imple-
mentation of mathematical models for multiscale applications on hybrid architectures. Large scale multiscale applications
are indeed within reach thanks to the emerging computing infrastructures, but they require accurate and robust multiscale
numerical methods that take into account these new architectures. This is very challenging as current software tools were
not designed for these methods and architectures. Algorithmic and software developments of reduced bases methods ini-
tiated during OPUS continue within the HAMM framework. The project gathers four partners: University Joseph Fourier
(coordinator), IFP Energies Nouvelles, Bull and CEA.

The same will of getting closer future software requirements and future HPC hardware and middleware solutions in-
spires the European projects EESI (European Exascale Software Initiative, 2010-2011) and its sequel EESI2 (2012-2015).
It is worth noting that EESI2 hosts a specific transverse task "Verification, Validation and Uncertainty Quantification".

Finally, on November 2013, the CHORUS (Common Horizons of Research on Uncertainties in Simulation) ANR
project (actually, the sequel of OPUS) officially started for a duration of four years. Built around a hard core constituted
by former OPUS partners, the project will be concerned from a methodological viewpoint with statistical validation of

numerical codes, complexity reduction using structured approximations for non intrusive metamodelling, weakly intru-
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sive and goal-oriented model reduction for parametrized partial derivatives equations, goal-oriented sampling and multi-
fidelity models. From a software viewpoint a great attention will be given to high performance computing issues as well
as the industrialization of the developed codes within the OpenTURNS platform. For this reason, the project team has

been reinforced, with respect to OPUS, with additional software engineering skilled partners.
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Chapter V

The extra-probabilistic temptation

Lo que pretendo decir es que ese hombre seria capaz, a su manera, de calcular con bastante exactitud el marco
de probabilidades. Imagine una maquina donde metiera todos sos datos de los que hemos hablado y diese como
resultado un lugar exacto y una hora aproximada [...]

Una bocanada de humo vela las facciones del policia. Apoya los codos en la mesa, interesado.

- Probabilidades, dice... ;Eso es calculable?

- Hasta cierto punto.

Arturo Pérez-Reverte, El Asedio (2010)

What I was trying to say is that this man is somehow capable of calculating the range of probabilities with
considerable accuracy. Imagine you could feed all the data we discussed earlier into a machine that would give
you an exact location and an approximate time [...]

A cloud of smoke briefly veils the policeman’s face. He leans his elbows on the table.

- Probabilities, you say, and this can be calculated?

- Up to a point.

Arturo Pérez-Reverte, The Siege (translated by Frank Wynne, 2013)

Reading notes

Technical context. Most of the works concerned with the problem of uncertainties in simulation are made within the
probabilistic framework; that is, the uncertainties tainting all quantities than act in the problem are described by prob-
ability distributions. Other mathematical settings exist for describing and quantifying uncertainties. These settings are
often proposed by scientists and practitioners as an alternative to the mainly used probabilistic methods and tools. Some-
times, the proposal is also accompanied with a (more or less harsh) criticism of probabilities, which could prove possibly
inappropriate for dealing with some kinds of problems, alternately for theoretical and practical reasons.

I won’t take part in this technical quarrel. Adopting a pragmatic viewpoint, I have been interested in studying and
using these alternative settings for solving specific problems. In particular, in the remainder some details will be given
on works that I carried on (i) fuzzy rule-based metamodelling and (ii) the propagation of "hybrid" uncertainties, i.e. a
framework in which some uncertainties are described by probability distributions and other by possibility distributions.

The study concerned with fuzzy metamodelling was carried in 1999-2000 when I worked for the Dept. of Civil
Engineering of the "Seconda Universita di Napoli", within the framework of a research project focused on the simulation
of pollutants dispersion processes occurring in rivers and estuaries.

The works about hybrid possibilistic-probabilistic uncertainty propagation were part of my activity at EDF R&D

since 2008-2009 about uncertainties in numerical simulation. They have been carried in cooperation with the Politecnico
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di Milano (2010-2012), then with the the Chair on Systems Science and the Energy Challenge (Ecole Centrale Paris /
SUPELEC). Extra-probabilistic frameworks are topics of great interest within the safety and risk analysis communities

and their investigation proved useful to have an engineer’s viewpoint of the state of the art methods and tools.

Contributions. As far as my communications and publications related with these topics and activities, are concerned:

¢ the works on fuzzy metamodelling of pollutants dispersion have been presented at the Belgium Fuzzy 2000 con-
ference [Di Natale et al. 2000] and later published in the Belgian Journal of Operations Research, Statistics and
Computer Science! [Di Natale et al. 2001];

* the works on hybrid possibilistic-probabilistic uncertainty quantification have been the subject of three communica-
tions [Baraldi et al. 2011, Pedroni et al. 2012, Pedroni et al. 2013b] at the ESREL (European Safety and Reliability
Conference) conferences, as well as an article [Pedroni ef al. 2013a] published in the journal Computers and Struc-

tures and a second article [Pedroni et al. 2014], submitted and currently under revision.

Structure of the chapter and credits. Most of Section 1 is excerpted from the article [Di Natale et al. 2001] while
Section 2 is a summary of a a number of papers and presentations co-authored with colleagues of the Politecnico di
Milano and Ecole Centrale Paris / SUPELEC (especially, [Pedroni et al. 2013a] and [Pedroni ez al. 2014]).

1 A very early study: fuzzy rule-based metamodel of river pollution

Fuzzy sets logic is essentially a mathematical tool imagined for coping with uncertainty. Formalized in the 60’s, first
applied to control problems, then as a modelling technique, fuzzy rules prove to be valuable tools to model complex
systems in presence of uncertainties, as well as to build approximate models of deterministic "well defined" systems.

The monograph of [Bardossy & Duckstein 1995] provides a synthetic but complete overview of the fundamentals of
fuzzy rule-based models and present some applications in different engineering domains (e.g. soil water movement, reser-
voir operation). Basically, one can distinguish two different approaches in fuzzy metamodelling, that could be somehow
qualified (using currently popular terms in the framework of computer experiments) as "intrusive" and "non-intrusive"
respectively. In the first case, fuzzy rules are built (more or less directly) from the structural equations of the phenomenon
under investigation. For instance, [Ozelkan & Duckstein 2001] developed a fuzzy rainfall-runoff model, designed from
physically based equations aiming at modelling the hydrologic cycle. As another example, [Tran et al. 2002] revisited in
a fuzzy fashion the popular "universal soil loss equation”, improving its predictive properties.

In the second case, fuzzy rules are determined from data coming from actual or computer experiments, e.g. rule-based
modelling of the link between large-scale atmospheric circulation patterns (and possibly climate anomalies as El Nifio -
Southern Oscillation) and regional-scale precipitations [Pesti ef al. 1996, Galambosi et al. 1999], link between raw mate-
rial properties and manufacturing process variables and the hardness of steel sintered components [Chatterjee et al. 2008],
link between regional-scale environmental and human health indicators [Canavese & Ortega 2013] etc.

This second use (metamodelling) is the one we are mainly interested in, within the context of this document.

Fuzzy metamodels are often advocated in optimization problems, possibly demanding a high number of runs of
a numerical code. For instance, [Kamali et al. 2005] makes use of a fuzzy rule-based metamodelling for finding out

I'This journal, also known as JORBEL, has been published, up to 2003, by the Belgian Operation Research Society. In 2003 it has been "merged"
with its French and Italian counterparts, giving rise to the 4OR Journal (Quarterly Journal of the Belgian, French and Italian Operations Research
Societies).
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the best set of parameters of hydrologic models. Here, metamodels allow a quite exhaustive exploration of the input
space. [Haberlandt et al. 2002] used a fuzzy rule-based response surface to model nitrogen leaching from arable lands.
The issue is to provide forecasts at a regional level by means of several leaching assessments made at the patch scale,
depending on very local parameters as climate, nature of soils or management conditions (crop rotations, fertilization).
The upscaling of the patch scale models is computationally heavy and the CPU time needed makes the use of the actual
models inappropriate for being integrated in a decision support system at regional scale.

As an interesting example of joint use of fuzzy and probabilistic methods, [Wang & Simpson 2004] propose to use
fuzzy clustering techniques to identify interesting zones in the input space, on which refining kriging metamodels in
design-optimization problems.

The motivation for the work presented hereinafter is slightly different: in some cases for different practical reasons,
one could need very fast forecasts of variables of interest for bringing some light about decisions to be made in a very
short period. For instance, in case of accidental release of a pollutant in a river, a fast evaluation of the arrival time of the
pollutant front to a given point of the river or the estuary can bring more light to the decision of fast risk mitigating mea-
sures (e.g. bathing prohibition). The usefulness of fuzzy rule-based fast predictive models in environmental management
and control is also advocated by [Woldt et al. 1997] or [Theisen & Glesner 1998].

1.1 The problem

The goal of water quality models is the simulation of changes in pollutants concentration as they move through the liquid
environment [James 1993]. Some pollutants are practically inert and so the concentration variations are due only to
advective-diffusive transport phenomena. Such a behaviour is typical of heavy metals (Cr, Cu, Ni, Hg) and many other
substances dangerous for human health. The problem becomes more complex for the pollutants whose concentration
changes depend also on chemical and biological processes which are superimposed to transport phenomena.

We do not deal here with the specific problem of reactive pollutants.

Introducing a polluting substance to environment gives rise to a chain of interactions between several environmental
components, the effects of which can not always be fully taken in account in modelling. The main mechanisms which
intervene in the pollutant transport in a water body are: (i) advection (transport due to the bulk movement of the water
in which solute is contained), (ii) diffusion (transport due to the migration of particles essentially under the effects of
turbulent eddies) and (iii) dispersion (migration of particles due to velocity shears).

I cannot resist the temptation of quoting the following description, full of imagery, of diffusion and dispersion by
[Fischer 1968]: "suppose that randomly walking drunks are getting on and off of busses in a random way, but that the
busses operate on a fixed schedule. [...] Dispersion in a river is very similar to the ’drunk on a bus’ problem. [...] The bus
schedule is analogous to the variation of longitudinal velocities within the cross section. Dispersion is caused primarily
by ’bussing’ of the particles, that is, convection at the different velocities of different stream lines. The primary effect of
the turbulence is to cause the particles to change busses."

Let us consider the problem of the propagation of a pollutant front in a river or a channel, due to the release of a
pollutant at the abscissa x = 0. Depending on the distance from the release point, the influence of the diffusion and
dispersion is different. According to standard practice, three zones are distinguished (named near, mid and far zones
of mixing respectively, cf. Figure V.1) in which the dominant phenomenon (besides advection) is vertical diffusion,
transversal diffusion and longitudinal dispersion respectively. This distinction, based on a deep theoretical understanding
of mixing phenomena [Fischer et al. 1979, Rutherford 1994] allows simplifying models but may be tricky to transpose

in practice to real large rivers for evaluating actual water quality indicators for regulatory purposes (cf. the interesting
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discussion in [Jirka ef al. 2004]). If one is mainly interested in what happens quite far from the release point, the pollutant
transport can be well enough described by the 1D advection-dispersion equation:

oC aC 0%C

§+"X$_ xW:O, (V.1)

in which C and v, are the cross sectional averaged values of the concentration and the velocity, and D, is an effective
longitudinal dispersion coefficient which takes into account the effects on C of variations of velocity across the channel
cross-section [Rutherford 1994]. In practice, D, depends on mean velocity v, as well as geometrical and physical river
features, i.e. depth, width, shear velocity [Fischer et al. 1979, Kashefipour & Falconer 2002]. Even in its simplified
form (Equation V.1) the advective-diffusive transport equation has no general analytical solution and it has to be solved
numerically [Hirsch 1988, Fletcher 1990].

A
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diffusion diffusion spersion
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Loading

Figure V.1 — Schematic view of the different zones ("zones of mixing") concerned with the different phenomena involved in the
transport of a pollutant in a river or a channel with respect to the distance from the point of release.

In the remainder, a fuzzy rule-based methodology is described for studying dispersion phenomena of a non-reactive
pollutant in a water course. A numerical example of this methodology is given, related to a particular case. The method-
ology consists in the construction of a rule system by means of a "calibration data set", that is a number of previously run
computer experiments. The rules are then combined to generate approximate forecasts of the concentration for any values
of the inputs.

The goal of this study was to demonstrate the feasibility of fuzzy metamodelling for fast prediction of river pollution
starting from a very limited amount of information, easily available from the viewpoint of a decision maker. In particular,
the study concerns the case of an accidental continuous release at the point x = 0, starting at time ¢t = 0. As the case
study is the environmental management of a well defined river (and also for sake of simplicity), in this demonstration the
considered input variables were only abscissa, time and mean velocity. The dispersion coefficient was not explicitly taken

as an input of the metamodel, because (at least theoretically) it completely depends (for a determined water course) on
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the velocity. It is worth noting that, strictly speaking, this assertion may not be true for natural rivers, the morphological
conditions of which can be highly variable (due for instance to seasonal effects) but can be retained, for the exemplary

purposes of the study, for an artificial channel.

1.2 The fuzzy model

In a nutshell (cf. [Bardossy & Duckstein 1995] for an exhaustive introduction), in a fuzzy rule-based model physical
equations linking inputs X1, X>, ... (also called "premises") to an output Z are replaced by propositions:

If Xy is Sy ;and X5 is S5 ; ... then Z is S, V.2)

in which 1,8, ;... and S_; are fuzzy numbers defined in the input and the output space respectively. A fuzzy number
(a particular case of fuzzy set) is defined by a support S and a "membership function" mg(x) which maps x € S to [0, 1],
with the additional assumptions of "normality” (i.e. 3x € S; mg(x) = 1) and quasi-concavity. A real value x of the variable
X (also qualified as a "crisp" value) belongs to different fuzzy input sets (with different "degrees of fulfilment", i.e. the
values of the membership functions for X = x) and thus activates, or "fires", a certain number of fuzzy rules. The fuzzy
results (right-hand side of rules) of each activated rule are first composed into a single fuzzy set, then "defuzzified" to get,
as the output of the metamodel, a real value z.

An interesting property of the fuzzy metamodels is that they are "universal approximators", i.e. under some additional
assumptions of the function G(X) (in particular, the continuity over a product of intervals) there exists a rule system able
to approximate the actual function with a fixed precision. That is, for any £ > 0, for any method of combination of rules
and defuzzification, there exists a rule system leading to a metamodel G(X) such as | G(x) — G(x) |< &, Vx.

In the remainder a particularly intuitive way for building a metamodel from a set of numerical (or physical) experi-

ments is presented and applied.

1.2.1 Learning

The learning phase consists in submitting to a rule system a given data set which simulates the process under known
conditions. The better these data represent the phenomenon, the more precisely the fuzzy model is able provide realistic
responses. First of all, a two input variables (x and ¢) model has been developed. Both variables have been normalized
in the [0,1] interval and later on fuzzified, by dividing the interval [0, 1] into 20 parts. Learning has been implemented
with the so called "counting algorithm" [Bardossy & Duckstein 1995] that operates in two different phases. First, the
couples input-output are transformed into logical propositions (If ... Then ...). In general a single input (x, ) belongs to a
certain number of fuzzy sets in the input space. So, a number of different propositions are obtained in which the left-hand
side is fuzzy and right-hand side is crisp. Each proposition has a given degree of fulfilment (DOF), intuitively defined as
the fulfilment of its conditions, or antecedents and calculated as the product of the membership functions of variables x
and 7. A filter provides for eliminating propositions which present a DOF smaller then a given value in order to improve
precision and speed of calculations.

In the second step of learning the output variable C is fuzzified and the hybrid propositions, previously obtained,
are transformed into propositions in which both left-hand side and right-hand side are fuzzy, that is, the rule system.
The methodology consists in combining all propositions which have the same left-hand side and calculate minimum,
maximum and mean of crisp right-hand sides. The corresponding fuzzy set (Figure V.2) is represented as a so-called

triangular fuzzy number TEN(Cin, Cnean,Cimax ). Subsequently, using the same principles, a three-premise model has
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been developed in which also the input variable v, is fuzzified. The number of triangular membership functions for the
variable v, has been selected as 11, so that the normalized universe of v, is divided into 10 equal parts.

If #is 7; and x is X; then C=0.10
Ifzis T; and x is X; then C=0.12 1
IftisTl-andxis/\j-thenCZO.IS 0.8 |

0.6

If tis T; and x is X; then C = 0.35 o4

Il

If #is 7; and x is X; then C is C;; 0

Figure V.2 — Schematic representation of the way rules are built according to the simple "counting algorithm".

1.2.2 Fuzzy rule-based computing

Once the learning phase is achieved and the rule system has been generated, the fuzzy algorithm allows, for a given
vector (x, t), or (x, vy, t) in the three-premise model, to calculate the corresponding value of the output variable C. Inputs
fuzzification is made by singling out fuzzy sets to which x and ¢ belong and their DOF. Then, for each rule whose premise
is fired, DOF is calculated as product of membership functions of input variables. For the defuzzification a particular
method has been chosen in order to take in account a peculiarity of the fuzzy responses. As it is clear from the description
of the learning step, fuzzy responses are very different from one another. In fact, the bases, or supports, of the triangular
membership functions of the output depend on the dispersion of the model response when the left-hand side of each rule
is fixed. So, some of them are practically singletons, i.e. Cyin & Cimean = Cmax, While other ones have a very large base.
The use of the classical centroid methods has not been able to give satisfactory results and little changes have been made
to weights of the responses provided by each of the fired rules.

So, the fuzzy inference system is of the following form:

G~(x ) t) _ Z,jea(x,vx,t) COGJ'DOFJ' (I/Aj)w
Y Y jeg(eres) DOF; (1/4,)

(V.3)

in which: (i) G(x, vy,?) is the output of the metamodel, i.e. the predicted concentration, given (x,vy,?), (i) J(x, vy, ) is the
set of the indexes of the rules fired by the input vector (x,vy,), (iii) COG; is the "center of gravity" of the fuzzy response
of the rule j, (iv) A; is the area subtended by the triangular membership function corresponding to the right-hand side of
the rule j (if the triangular membership function degenerates in a singleton, then an arbitrary value Ay is assigned) and
(iv) o is a calibration coefficient.

Thus, each fuzzy response is weighted by a coefficient which increases with the DOF of the rule and decreases with the
area of the fuzzy number in the right-hand side of the rule. For the choice of the parameters A; and ®, several trials have
been made in order to obtain the best fit between fuzzy results and validation data. In particular it has been empirically
found that A has to be, obviously, small (basically smaller than any other value of A;) ... but not too much. In fact the use
of value of A; which are several orders of magnitude smaller then the other terms in Equation V.3 risks to give too much

importance to responses which are generated by only one point of the calibration test and which are not representative

94



V.2 Propagation of '""hybrid'' uncertainties

enough of the phenomenon. The introduction of the term w has improved the results. After a number of trials, it has been

empirically found that the best results can be obtained for values between 0.4 and 0.6.

1.2.3 Numerical example

The (extremely simplified) exemplary case study is related to a 1D flow in a 1000 m long channel during an observation
time of 900 s (15 minutes). The value of the turbulent diffusion coefficient has been taken as constant and equal to
0.35 m?/s. Using a specific CFD finite-difference code (based on an Explicit-Upwind scheme) concentration profiles,
for different value of time and velocity, have been obtained. The values of velocity which have been taken into account
belong to the interval [0,2 m/s]. Part of the data have been set aside for the validation phase. Concentration is provided
in a non-dimensional form with values between 0 and 1. Both two-premise model and three-premise model have been
tested. In the two-premise model all data refer to a particular value of mean velocity v,. In particular the following values
have been taken into account: 1.0 m/s, 1.5 m/s and 2.0 m/s. Different simulations, with different value of A; and @, have
been run in order to improve fitting the actual model and the metamodel. Depending on the value of v, the mean absolute
prediction error is between 8- 1072 and 9 - 1073, Some results are graphically shown in Figure V.3.

The same validation data set has been used for testing the three-premise model. For A; = 0.005 and @ = 0.5, the

average error on the whole validation test is equal to 1.1- 1072

1.2.4 Discussion

Both 2 and 3 premise fuzzy rule-based models seem to reproduce the phenomenon with acceptably small errors. Errors
are due to the high non linearity of the functions which have to be identified by the fuzzy model. In fact, it has to be
noticed how fuzzy profiles tend to be smoother, softer, than numerical ones, which is typical of fuzzy models. However,
in practical applications, these errors may not be relevant (and less important than ones which occur because of a poor
estimation of the dispersion coefficient).

The fuzzy model in comparison to numerical models has the advantage that it is able to calculate directly the value of
concentration for given inputs without calculating the value of the function in the whole space-time grid. So the evaluation
of particular results of interest (as for instance the arrival time of the pollution at a given x) is easier and faster; that can
be valuable in environmental control. Although the example refers to a particular situation, because of its generality, the
same procedure can be applied to other cases of pollution of water course. The possibility to train the fuzzy model with a

"calibration data set" including both experimental and simulated data has also been considered.

2 Propagation of ""hybrid'' uncertainties

2.1 Motivations

Quantitative uncertainty assessment in engineering is commonly probabilistic, i.e. uncertain quantities are assumed to be
random variables, described by probability distributions. This is also the main viewpoint of this manuscript.

In practice, in engineering (and simply in common life) uncertainty can be related to the inherent randomness of a
phenomenon or to the imprecise knowledge of quantities which are definitely not-random but conveniently represented
by means of random variables.

According to an usual terminology, the first are referred as aleatory uncertainties, the latter as epistemic uncertainties.

A particularly interesting case of epistemic uncertainty (largely discussed in Chapter VI) is represented by the the one
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2 premise model. v.= 1 m/s. Av. Err. = 0.009 2 premise model. v.=2 m/s. Av. Err. = 0.009
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Figure V.3 — Comparison between the results of the fuzzy metamodel (blue solid line) and numerical finite difference code (red
dotted line) for the two-premise model (inputs: distance from the source and time) and the three-premise model (inputs: distance
from the source, time and mean velocity). The results are pollutant concentration longitudinal profiles (i.e. C vs. x) for different
values of the time #. As one can see the arrival of the "pollutant front" is fairly well predicted by the metamodel.

tainting the estimation of the parameter @ of a probabilistic model p(X |@) from an observed sample of the variable X .

In spite of their very different nature, in common practice, all sources of uncertainty are assessed in a probabilistic
framework: actually, this means that the analyst makes the implicit assumption of the existence of a joint probability
distribution for the vector of all uncertain variables.

The justification of this fully probabilistic framework is definitely rooted in the rationale of Bayesian theory and
namely in the "de Finetti’s representation theorem", first proposed for binary sequences [de Finetti 1930a], then gener-
alized by [Hewitt & Savage 1955] (cf. [Bernardo & Smith 1994] for a full introduction). Taking inspiration from the
pedagogical presentation of [Bernardo 1996], roughly speaking, this theorem (in its parametric form) states that if one
considers a sequence of exchangeable random quantities (xy, ..., Z,), i.e. such as the joint probability p(x;,...,x,) of the
sequence does not depend on the order in which the x;’s have been observed, then there exists a parametric model p(+|80)

and a (prior) distribution 7(0) such as:

wlv - /HP ml|0

As highlighted by [Bernardo 1996], "if the observations are conditionally independent - as it is implicitly assumed
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when they are considered to be a random sample from some model - then they are necessarily exchangeable". Hence,
exchangeability appears as a rather not-restrictive condition. The existence of m(0) is an extremely powerful result.
Besides all the important methodological and practical consequences, it can provide a justification to the probabilistic
treatment of non-random albeit unknown quantities (the so called "state of Nature"), conditional on which random samples
of a variable of interest (e.g. the output of a computer code) can be generated.

Prior distribution represents the initial knowledge of the analyst about 6 and it is updated by means of the Bayes
formula. Probability is seen as a numerical quantification of a state of knowledge. This "translation" is not arbitrary but
obeys some rationality principles. This "subjective" probability is associated to the idea of odd: the probability of an event
depends on the amount that a rational individual is ready to bet on it>.

Moreover, the full-probabilistic (Bayesian) setting proves adapted to the statistical practice in industry, business,
biomedical, environmental applications, for both theoretical (it is rooted in a decision-making framework) and practical
reasons (the prior distribution can be used to add expert knowledge to the statistical analysis).

We will come back to these points on the next chapter. Here, we simply highlight some arguments which are often
raised against the probabilistic assessment of epistemic uncertainties and motivate the exploration of alternative settings,
seemingly less informative than probability theory.

The exchangeability can be challenged in risk analysis, especially when dealing with extremely unlikely (and often
also extremely costly) events: "a probability model presumes some sort of model stability, populations of similar units
need to be constructed (in the Bayesian context, formally an infinite set of exchangeable random variables). But this
stability is often not fulfilled. [...] In a risk assessment context the situations are often unique and the establishment of
chances means the construction of fictional populations of non-existing similar situations" [Aven & Zio 2011]. Let us
think, for instance, to the probability of a terrorist attack. In this case, "one should need to define a large set of identical
(exchangeable) attack situations, where some aspects (for example related to the potential attackers and the political
context) are fixed and others (for example the attackers motivation) are subject to variation" [Aven & Steen 2010].

In other terms (but definitely raising the same issue) other authors challenge the relevance of probabilistic assessments
in presence of very poor knowledge and/or scarce data [Dubois 2006], [Baudrit e al. 2008], [Roy & Oberkampf 2011].

Another interesting point, raised, for instance, by [Regan er al. 2004], [Baudrit ef al. 2008] or [Helton ef al. 2011,
Helton & Sallaberry 2012], is that epistemic and aleatory uncertainties must be differently treated in engineering studies:
the common probabilistic practice of the nested Monte Carlo propagation, in practice the use of the predictive distribution
of the quantity of interest as a summary of the overall uncertainty (cf. Section 2.2 of the Chapter VI), must be avoided.
Although we fully agree on this point, we think that Bayesian theory can bring an appropriate answer to this question,
which can properly fit theoretical and practical requirements of a risk analysis.

However, without taking any dogmatic position, we think that investigating of the use of alternative approaches (un-
fortunately, often introduced "in opposition" to probabilistic methods) for uncertainty quantification and propagation is
an interesting field of research in engineering. These methods are appealing as the restitution of results under the form of
"simple" bounds (not associated to a probability) is seemingly easier to understand and interpret for the practitioner. In
addition, institutions concerned with regulation issues in different business areas seem to be more and more interested in
non-probabilistic methods.

The works sketched in the remainder have been mostly carried within the framework of a three-year partnership with

the Politecnico di Milano. The methods have been explored in this exploratory study from the practitioner’s viewpoint.

2"Let us suppose that an individual is obliged to evaluate the rate p at which he would be ready to exchange the possession of an arbitrary sum
S (positive or negative) dependent on the occurrence of a given event E, for the possession of the sum pS; we will say by definition that this number
p is the measure of the degree of probability attributed by the individual considered to the event E, or, more simply, that p is the probability of E"
[de Finetti 1930b], translated into English in [Kyburg & Smokler 1980].

97



Chapter V. The extra-probabilistic temptation

Therefore, emphasis has been more placed on the understanding of the algorithmic aspects rather than on the underlying
mathematical foundations (which are definitely quite complex).

2.2 Hybrid possibilistic-probabilistic framework

As usual, let us consider a system, the behaviour of which is described by a deterministic black-box function Z =
G(Xy,...,X,), mapping n input variables to R.

The inputs are ordered in such a way that the first £ form a random vector, represented by a probability distribution
p(-) and the last n — k are represented by "possibility distributions": @y 1(-), ..., Pa(-).3

The possibility distribution assigns to each value (let us say x) of a variable X € A C R a degree of possibility
¢(x) € 0,1], such that ¢(x) = 0 means that x is an impossible value for X, whereas @(x) = 1 means that {X = x}
"is just unsurprising, normal, usual, a much weaker statement than when probability is 1" [Dubois 2006]. The possibility
distribution is "normalized" in the sense that 3 x, ¢(x) = 1.

Possibility distributions are linked to fuzzy intervals: under the (mild) condition of quasi-concavity, a possibility
distribution is the membership function of an interval of A. For sake of simplicity, we will admit this condition fulfilled,
in the remainder. Another fashion to interpret this, is that a quasi-concave possibility distribution defines a set of nested
interval with various credibility levels a € [0, 1].

From the possibility distribution ¢(-), one defines for any subset A C A the so-called possibility and necessity mea-
sures, noted ITI(A) and N(A) respectively:

I1(A) = sup@(x)
XEA

V.4)
N(A) =1 ~TI(4°) = inf(x).

The link between possibility and probability distributions is made by considering that from the pair [N(-),II(-)] one
can defines a family of probability distributions Py, completely determined by the function ¢(-):

Py ={psuchas VA,N(A) < p(A)} = {p such as VA, p(A) <TI(A)},

such that:

V.5)

which means that N(A) and TI(A) are lower and upper bounds, respectively, for the probability p(A). For further de-
tails concerning the link between possibility and probability theories, one can refer to [Baudrit 2005], [Dubois 2006] or
[Dubois & Prade 2011].

The propagation of hybrid possibilistic-probabilistic uncertainties can be made by means of the algorithm described

hereinafter, proposed by [Baudrit 2005, Baudrit ef al. 2006], based on two steps: Monte Carlo simulation for propagating

3Notice that the notation usually dedicated to possibility distribution is 7(-). Here, we preferred the symbol ¢(-) to avoid any confusion with
Bayesian prior and posterior distribution, noted 7(-) and 7(+|-) in this manuscript. Nevertheless, according to usual notations, we keep noting I1(-) the
possibility measure (cf. Equation V.4).
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random (probabilistic) inputs and Fuzzy Interval Analysis for propagating possibilistic inputs.

More precisely, one first generates a m-random sample of the random inputs {x@, ...7x,(j) }, with i =1,...,m. Then, the
interval [0, 1] is subdivided in my, intervals of length Aa. For o = 0, Act, 2A« etc., the so-called c-cuts of the possibility
distributions @11 (-), ..., @(") are to be found, i.e. the n—k sets AT = {x;, @;(x;) = o}, with j =k +1,...,n (we note
"j > k" this collection of indexes in the remainder).

Then, for each i = 1,...,m the following procedure is applied:
(a) First, set a =0.

(b) If o < 1: find the a-cut intervals of Z: [z imn),zr(nax)] with:

Z(i’.a): min G(xii),...,x,(j),ka,...,xn) and zf]i;{i?: max G(xii),...,x,(j),ka,...,xn) (V.6)

min
{xj€AY} ok {xj€A%} ok

(c) if @ > 1: stop, otherwise set ¢ = ¢t + Ao and go to step (b).

Thus, in the end, one has m random realizations of mq, ¢t-cuts, i.e. for any random sample {xgi), ...,x,(:)}, mg (nested)
intervals of values of the output Z, corresponding to the credibility levels Ao, 2Ac.... These intervals defines m possibility
distributions ¢! (z) of the output Z.

Let us now consider sets of possible values for Z, in particular intervals | — co,z*]. From the m possibility distri-
butions built according to the procedure described hereinbefore, one can build m necessity and possibility measures
(Equation V.4):

N0(—e,z2]) = sup ¢0(z)

Z€]7M7Z*]

NO(—wz)) = inf o)(z).
Zg]_oovz*]

That allows proposing m bounds for the probability distribution of Z, each pair of bounds depending on the value of
the "probabilistic" inputs.
Let us consider the following way for combining these pairs of necessity-possibility measures, that is evaluating the

averages: m ]
Bel(] —c0,2"]) = g% (] —o0,2%])
(V.7)
P 2) = £ 10 - 0,27,

It can be shown (cf. [Baudrit 2005, Baudrit ez al. 2006, Baudrit et al. 2008]) that these quantities define lower and upper
bounds for the probability P[Z < z*] (and thus for the cumulative distribution function of Z):

Bel(] —e0,2"]) < P[Z < "] < PI(] —e,2"]),

and, namely, they can be interpreted as the "Belief" and the "Plausibility" functions in the sense of the so-called "Dempster-
Shafer Theory" (cf. Appendix, page 157).

Example. We consider here an oversimplified case of flood risk analysis excerpted from [Baraldi ef al. 2011]. One

wants to evaluate the probability that a water level in a given section of a water course exceed a fixed threshold. The
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quantity of interest (here, the water level, noted Z.) depends on some uncertain inputs, by means of the following analytic

formula:

Z.=7,+ {Q/ (BKS Zn —ZV)/L) }0'6 : (V.8)
where:

* Zmn,Z, are the riverbed levels (in m a.s.l.) in the upstream and downstream section respectively of the river portion

under investigation;
* Qs the yearly maximal water discharge (in m%/s);
* Bare L the width and the length respectively of the river section (in m);
¢ K is the Strickler friction coefficient.

This exemplary case is also used in the next chapter (cf. page 112) with different data. It has also been used (pos-
sibly with slight modifications) for exemplary purposes in several recent papers (e.g. [Limbourg & de Rocquigny 2010,
Munoz-Zuniga et al. 2012, Ko & Garnier 2013])

We consider B and L as constant parameters (equal to 300 and 5000 m respectively), while Q and (Z,,,Z,) are random
variables, modelled by a Gumbel and a bi-variate Gaussian distribution respectively. Actually, Q and (Z,,,Z,) are supposed
to be tainted with aleatory uncertainties, in the sense they are random in themselves.

As far as Strickler friction coefficient is concerned, it is not known with certainty by the analyst, but it can be imagined
that it is not random in "itself" and its uncertainty is rather related to a lack of knowledge (of course, this interpretation can
be challenged in some practical situations [Fu 2012], in which K, can be supposed to be actually random in the common
sense of the term). It is supposed that the analyst has a vague initial knowledge, under the form of a reference value
(K; = 30) and (large) bounds [5,60] outside which it is extremely unlikely to find any value of Kj.

Four different elicitation strategies have been performed, leading to the possibility distributions ¢(Kj) shown in the
upper right corner of Figure V.4. For more details about these techniques, and particularly the ones based on probabilistic-
possibilistic transformation or probabilistic inegalities (Chebyschev and Camp-Meidel), cf. [Dubois et al. 2004], as well
as [Baudrit 2005] and references therein.

Some results are shown in Figure V.4: bounds for the cumulative distribution function of the variable of interest Z,
(namely, Belief and Plausibility functions, cf. Equation V.7) as well as intervals for the 99% quantile and the flooding
probability P[Z, > 55.5 m], i.e. the probability for the water level to exceed a fixed threshold (the height of an existing
dike). The cumulative distribution function of Z, (green curve between the red and the blue one) is obtained as the
predictive distribution (cf. page 108) of Z. ,under the assumption that the Strickler’s coefficient is normally distributed

with mean and standard deviation equal to 30 and 7.5 respectively.

2.3 Hybrid possibilistic-probabilistic '"hierarchical' framework

The hybrid framework sketched hereinbefore can be "extended" by considering that purely epistemic uncertainties taint
also the parameters of the probability distribution assigned to random variables Xi, ..., X; [Baudrit ef al. 2008]. Thus, in

this framework, the variables X;. 1, ..., X, are possibilistic, while parametric probability distributions are given to X1, ..., Xj:
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Figure V.4 — Some examples of results of hybrid uncertainty propagation excerpted from [Baraldi e al. 2011]. Left and center
graphs (numbered a, b, c, d): bounds for the probability distribution of Z. according to different possibility distributions of K
(shown in the upper-right graph) built from the same preliminary information. The values shown in the lower-right table are

directly obtained by the left and center graphs (cf. [Baudrit 2005] for the interpretation of this method).

the parameters of which, @;’s, are uncertain and modelled by possibility distributions ¢;(-). The propagation algorithm

is very similar to the one depicted in the previous section (cf. page 99). The only difference is that random samplings
are not made independently on possibilistic variables. For instance, let us focus on the random sampling of the variable
X;. For simplifying the presentation, let us consider the case where 6 is scalar (noted 6;). In practice, first «-cuts A;?‘ are

determined for 6;; then the random interval of X; corresponding to A;?‘ and to the sample number i is bounded by:

~16))

§l> is randomly sampled from the uniform distribution over [0, 1] and F~'(-|6;) is the inverse of the cumulative
distribution function of X;.
In the end, this algorithm produces, as the one described in the previous section, a number of random realizations of

a-cuts of the output variables, which are interpreted as random realizations of the possibility distribution of the output

in which u

and processed by formulas in Equation V.7 for obtaining probability bounds.

Example. The case study sketched hereby, fully described in [Pedroni ef al. 2012] and [Pedroni ef al. 2013a], is con-
cerned with the same problem of flood risk assessment, sketched in the previous Section 2.2. The variable Q, K;, Z,, and
Z, are supposed random and distributed according to Gumbel (Q) and Gaussian densities. In Table V.1 some details are
given on the way possibility distributions on the parameter of such densities have been built from the available knowledge.

The situation is, of course, exemplary and the example provided below has more methodological than practical relevance.
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Variable and probability distribution

Available information and elicitation technique used

Discharge: Q ~ Gu(n, 3)
(Gumbel)

Likely values for the mean and the standard dev. of 1 and f from previous studies
are available [Pasanisi e al. 2009a, Limbourg & de Rocquigny 2010].
"Normalization" of the (truncated) corresponding Gaussian distributions, i.e. dividing
the expression of the density by its max, such as: 31,8, 0(n) =1,¢(8) =1.

Zy ~ Norm(lz,, 0z, )
Z, ~ Norm(lz,,0z,)

Riverbed up- and down-stream levels:

Likely values for the mean and the standard dev. of (uz,,0z,) and (uz,,0z,) are
available (cf. same referen