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Abstract

This thesis aims at Multi-Objective Optimization under Uncertainty in structural design. We investigate
Polynomial Chaos Expansion (PCE) surrogates which require extensive training sets. We then face two
issues: high computational costs of an individual Finite Element simulation and its limited precision.
From numerical point of view and in order to limit the computational expense of the PCE construction
we particularly focus on sparse PCE schemes. We also develop a custom Latin Hypercube Sampling
scheme taking into account the finite precision of the simulation. From the modeling point of view,
we propose a multifidelity approach involving a hierarchy of models ranging from full scale simulations
through reduced order physics up to response surfaces. Finally, we investigate multiobjective optimization
of structures under uncertainty. We extend the PCE model of design objectives by taking into account
the design variables. We illustrate our work with examples in sheet metal forming and optimal design of
truss structures.
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1.1. Introduction

1.1 Introduction

Numerical models are extensively used in science disciplines such as physics, chemistry, computational
engineering, biological and social sciences, etc. These are aimed at providing a better understanding of
real world phenomena. In mechanical engineering, they are devoted to play a central role in the analysis
and design of structures and processes. They provide an invaluable tool to the engineer to the search
for the best performing structures and processes. In most of real-life applications, the performances are
assessed simultaneously by multiple criteria (cost, environmental impact, safety, robustness). It has been
now commonly admitted that uncertainties are inherent of this process and may have a non-negligible
influence on the design performances.

In this thesis work we explore two issues the engineer has to face: the quantification of the impact
of uncertainties on the design (Uncertainty quantification), and its incorporation into an optimization

process with multiple criteria (Multiobjective Optimization under Uncertainty).

Uncertainty Quantification (UQ) Along the elaboration process of the numerical models, approxi-
mations are made. They result from the implementation into a computer code of an imperfect abstrac-
tion (the mathematical model) of the reality (the real experiment). Figure 1.1 proposes to identify three

sources of approximations involved in the construction of a numerical model.

( Real Experiment \

Behavior
of the real system

Physics simplification
Choice of mathematical
formulation

Intrinsic variabilities
Measurements errors

f Mathematical Model\ (~ Numerical Experiment ™\
Mathematical formulation Implementation into a
of the experiment Approximation, computer code
Discretization,

Round-off,

Programming errors

Figure 1.1: A possible illustration for uncertainty sources

One of them is issued from the elaboration of the mathematical model of real experiment. It describes
the underlying physics of the observed phenomenon. The induced errors are due to simplifications or
lack of knowledge that the mathematical abstraction of the physical system may suffer from (simplified
physics error) but also to the choice of the underlying mathematical formulation (Galerkin formulation
instead of strong FEM formulation, etc). The implementation of the mathematical model into a computer
code also generates its own type of errors. It encompasses the necessary approximation/discretization
errors as well as the numerical and round-off errors, and programming errors. Finally, a third source of

errors may be emphasized by repeatedly performing the real experiment under the same configuration:
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different results may though be observed as a result of errors in measurements, of the evolution in time
and space of material properties, the environmental conditions, etc.

All these errors laid end to end, may lead simulation results to represent the underlying physics with a
low level of fidelity. The question of the accuracy of the simulation results must be inevitably confronted.
This topic is addressed in the literature by the Verification' and Validation domain? (V&V) [OTHO04] as
well as Uncertainties Quantification (UQ). This thesis work is concerned with the latter domain where
the errors are preferentially referred to “uncertainties”. Different theories to represent uncertainties are
provided in the literature (fuzzy logic, confidence theory, probabilistic,... ). This thesis focuses on
the probabilistic viewpoint: uncertainty sources are described by random variables characterized by a
probability density function®.

UQ provides the engineer with valuable tools to assess the impact of the designed process design and

sensitivity analysis, reliability based design and variability analysis:

e Robust design and Sensitivity analysis are aimed at quantifying the contribution of each random
input variable to the variability of the response [SAAT10]. One may distinguish between two
types of approaches addressing the sensitivity analysis from two different points of view. The local
sensitivity analysis focuses on small variations of the input parameters around a nominal value and
studies how the model response is affected; the global sensitivity analysis focuses on quantifying the
output uncertainty due to changes of input parameters (taken either separately or in combination)

in their entire range of variation.

e The reliability of a system is defined as the assessment of its failure probability, that is the non-
satisfaction of its expected performance [LCMO09]. As a system is usually composed of subsystems,
the failure of the system may be caused by different scenarii caused by the failure of one or more

components to be identified.

e Finally, the variability study aims at completely characterizing the output probability density func-

tion.

Achieving these tasks firstly requires the definition of the probabilistic model. It consists in identifying
the uncertain input data and to model them according to their respective (joint) probability density
function (Identification). Then, to assess their impact onto the model output, one has to transform
the modeled uncertainties on the input variables to output statistical (e.g. statistical moments) or
probabilistic quantities of interest (e.g. probability density function). This process forms the propagation
of uncertainties. Two approaches may then be distinguished: intrusive methods consist in adapting the
governing equations of the deterministic model to uncertainty propagation; and non-intrusive methods,
which make use of a series of calls to the deterministic model to propagate the uncertainties. In this thesis,
we consider the non-intrusive uncertainty propagation scheme enabling the use of complex in-house or

commercial simulation codes. In this context, the UQ process is illustrated in Figl.2.

I Verification aims at assessing the accuracy of the solution in the context of the study by comparing in some useful
sense the consistency of the numerically obtained results with some trustworthy experimental results at hand (Do we solve
right the equations?)

2 Validation consists in providing a quantitative description of the distance between the real experiment, the numerical
model or the real-life system it is aimed to represent (Do we solve the right equation?).

3The notions of random variables and probability density function are described in more details in Chapter 2
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Uncertainty propagation \

Identification / Design Of \
Assessing Nume.rlcal Deteministic /Post-Treatment "\
Input Parameters Experlment f( 1) Numerical y(f( 1 2 )
Experiment

variabilities Statistical output
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4] 1
e L e,
)24, ) ) ) Probabilistic output
Quantiles
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A 9 ./

— \—— /

Figure 1.2: Steps for non-intrusive uncertainty quantification

Once the stochastic model has been identified, a Design Of Experiment (DoE) is built on the stochastic
variables with respect to their probability density function. For each point in the DoE, deterministic
calls to the numerical model are performed. A post-treatment phase allows to retrieve the statistical
(histogram, mean, variance, etc.) and/or the probabilistic (quantiles, probability of failure, etc.) data
of interest. The uncertainty propagation phase is computationally expensive as a single call to the
numerical model may already be costly and numerous calls may be necessary to assess the stochastic

and/or probabilistic quantities of interest.

Optimization Under Uncertainty (OUU) The second issue addressed in this thesis concerns the
multiplicity of pontentially competing criteria required to assess the performances of a structure.
The incorporation of uncertainties [EGWJTO02] transposes the concepts of robustness, and reliability

into the optimization context.

e Robust design optimization is aimed at identifying the most performing responses with a particular

insight on their sensitivity to random perturbation of design variables or parameters.

o Reliability-based design optimization incorporates the failure probability as a constraint of the op-

timization problem.

Figure 1.3 plots a straightforward manner to perform optimization under uncertainty in a non intrusive

context.
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Optimizer
X / Outputs \

Statistical output

. , Efy(x..)],
Uncertainty Propagation Vi), ..

E-, Probabilistic data
Quantiles
Probability of

\ failure, ... /

Figure 1.3: Double-Loop optimization process under uncertainty

The assessment of robustness and reliability measure usually require the computation of statistical
data (mean/variance) and or probabilistic data such quantiles and probability of failure. The robustness
and the reliability enters the optimization problems either as objective of constraints and may then
be assessed each time a new solution is provided by the optimizer. The optimization and uncertainty
quantification loops may then be nested which leads to high computational costs. Strategies to overcome
this limitation have ben developed. One way to circumvent it consists in multifidelity approaches whose

numerical challenges are addressed in more details in the next section.

1.2 Numerical challenges

As in practice both OUU and UQ are performed by repeated calls to the (deterministic) numerical model,
the computational expense may rapidly become unaffordable. Multifidelity approaches address this issue
by combining in a hierarchical manner two levels of numerical models: a “high-fidelity” model which is
characterized by a high accuracy but also a high computational cost is combined with “low-fidelity” model

less accurate but also less computationally costly.

1.2.1 On the development of metamodel in multifidelity approaches

Categorization of surrogate models Non-intrusive schemes based on surrogate-based approaches

have been proposed in optimization and uncertainty propagation domains:

e on the UQ side, the Chapter 2 provides an overview of computational methods and shows that
the Polynomial Chaos Expansion (PCE) has been widely extended and adapted to deal with com-

putationally costly and high-dimensional black-box functions;

e on the optimization side, optimization strategies for computationally costly and high-dimensional
black-box simulations [SW10] as well as metamodeling techniques for optimization [WS07] are

proposed.

In the following the original computational model will be referred as the “high-fidelity” model, and

the surrogate model as the “low-fidelity” model as it is less accurate than the original numerical model.
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One may classify these approaches as “multi-fidelity” or “variable-fidelity” when physics-based and

non-physics surrogates are considered:

e physics-based surrogates built from partial convergence of the “high -fidelity” model [BBM™00],
those based on simplified physics [dSR08|, those based on a coarse discretization [ALGT99, VHS02,
SLZ*11];

e interpolating or regression-based response surface from a Design of Experiment (DoE) evaluated
with “high-fidelity” simulations. When the derivatives are available, one may build a first order
consistent approximation [WG95]. When only the function evaluation is available, general ap-
proaches, such as general least square, polynomial response surface][MAC09|, kriging [Ste99, Cre90],
moving least squares [LS81, NTV92|, radial basis function [B*00] may be used to build a global

approximation from the available set of points.

The non-physics based approaches do not perform well in high dimensions (“curse of dimensionality”).
Their accuracy depends on the underlying “high-fidelity” model and may be sensitive to the type and to
the size of the DoE used. Moreover, the computational expense related to the training phase depends on
the cost of the underlying “high-fidelity model”. Finally tuning such metamodel is not straightforward
(e.g. excessive smoothing, overfiting). Physics-based approaches do not suffer from these issues but have
to be specifically built for one application, thus may not be always available.

In the UQ domain, during the last two decades, the Polynomial Chaos Expansion (PCE) has been
widely used to propagate uncertainties (Chapter 2). Broadly speaking, the PCE [Gha91] is a metamodel
that is intended to give an approximation of the stochastic behavior of a function y (scalar random

process). When a single random variable ¢ is considered, the P*-order PCE of y is defined as:

y= 73 (§) (1.1)

where £ are standardized random variables, and v = {y}2 ! the set of PCE coefficients which have to

be computed during the training phase.

On the validation of surrogate based approaches Twofold challenge has to be tackled:
e ensuring the convergence of the multifidelity surrogates,

e ensuring the accuracy/stability of the underlying “high-fidelity” model.

Convergence of hierarchical approaches In the optimization field, the key point is to guarantee
that the surrogate-based optimization process converges to an optimum of the original model. In the
UQ field, the key point is to guarantee that the surrogate-based UQ approach converges in terms of
statistical measures of the system responses (e.g. the output variances, sensitivities, robustness measures,
probability measures)

In the optimization field, rigorous approaches combining in a hierarchical way a “low-" and “high-"" fi-
delity model are referred to surrogate-based optimization and/or model management framework [ALG*01].

The premise of this methodology is to claim that a surrogate based on a physics-based low-fidelity model
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and an interpolant of the discrepancy may provide a more cost-effective approximation of the high fidelity
model. A proof of convergence is ensured provided that one employs a sufficiently rigorous verification
(e.g. trust region methodology) and that the surrogate model satisfies first-order [ALO1] and sometimes
even second order [EGCT04] consistency conditions with the underlying high-fidelity model. In the trust
region methodology, the “low-fidelity” model values are corrected to fit the “high-fidelity” model values
(up to the second order if necessary) using either additive, multiplicative, or combined multiplicative-
additive correction functions on a set of collocation points. In addition, to guarantee that the progress
made with the “lower-fidelity” model also leads to an improvement with the “higher-fidelity” model, the
“lower-fidelity” model is regularly updated using systematical calls to the “high-fidelity” model.

In the UQ field, the use of non-physics based metamodel is usually not discussed or is highlighted
a posteriori by assessing error measures on the statistical or probability data of interest. Moreover, in
some cases, adaptive sampling is used in order to update the metamodels and control its accuracy in a
particular space region [DSB11b, WCS™13]. It is only recently that [NE12| investigates the extension of
the classic multi-fidelity optimization concepts to the uncertainty quantification fields. The “low-fidelity”
model values are corrected using combined additive-multiplicative correction function to match the high-
fidelity values on some collocation points, and the non-intrusive PCE is trained on the low-fidelity model

to propagate the uncertainty.

On the accuracy/stability of the “high-fidelity model”. In the optimization field, ensuring
the accuracy and/or the stability of the “high-fidelity” model and of the gradients in the whole domain
of interest belongs to the “good practice rules” (e.g. the minimum step size of the finite difference
scheme is assessed a priori). In UQ), these instabilities may be treated as epistemic uncertainties through
diverse approaches such as interval analysis, possibility theory, evidence theory or probability theory
[HJOS10, HDO3].

When considering the high-fidelity model as a black-box, no direct mapping is provided from the
input variables & = [£1,&,...,&n] to the derivatives of a selected output function y, except in seldom
cases where the black-box itself provides it. Thus a numerical scheme has to be used in order to compute
the sensitivities (i.e the derivatives) of the model. In this thesis, we are interested in the model output
stability with respect to the variation of the variable &;, i € {1,..., M} assessed by the following non

dimensional finite difference scheme :

_ Ay(&) | &nom

= 1.2
M AL T e 2
where £M°™, ¢ € {1,..., M} is a nominal value.

Au(e) =y (gom+ 55 ) -y (aom - 52). (13)

When decreasing the order of magnitude of the perturbation (—log(A¢) increasing), the non-dimensional
sensitivity p; computed for the “high-fidelity” model exhibits subsequent behaviors illustrated in a qual-

itative manner? on Fig.1.4:

4For a quantitative illustration see Fig.7 in Chapter 3 or Fig.13 in Chapter 4
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1. firstly, for “large” variation of A&;, the variation p,; reveals the non-linear behavior of the model.

No brutal variation of ; is observed and the model is considered as trustworthy.
2. secondly, u; stabilizes around a constant value j; where the model may be considered as linear.
3. thirdly, on reaching the threshold ®, 1; becomes unstable.

4. finally, the threshold ® shows the model sensitivity limit: for this range of variation, the model is

not sensitive anymore.
M ﬁ

Hi*| By

Full scale model —_—
Stable linear zone ——

Numerical
instabilities

Figure 1.4: Typical sensitivity results issued from actual computation

In both optimization and UQ domains, comparing the model error with the variation magnitude of
the output function is of paramount importance to ensure the validity of the approach. To do so, one may
arbitrarily define a resolution threshold ¢} on &; determined from an acceptable value of p; arbitrarily
defined. 6; is then defined as.

07 = argmin p;(Ag) > pl,ie{l,...,M}. (1.4)
Agi

When evaluating two sample points fi(l) and 552) one considers model response trustworthy when A¢ =
\551) - 552)| > 0} and erroneous otherwise.

In this work, we focus on the observation that the resolution threshold and the variation range of
the training data may be close. The number of achievable simulations by the “high-fidelity” model is not
only limited by the cost of an individual simulation but also by its intrinsic resolution. Thus one has to
face two issues: firstly, an insufficient number of “high-fidelity” simulations may harm the accuracy of the
response surface, secondly, a too high number of simulations may introduce numerical noise which also

directly leads to an inaccurate surrogate model.

1.2.2 MultiObjective Optimization under Uncertainty (MOOU)

In real-life applications the solution of the optimization problem involving possibly competing criteria is

not unique: a set of best compromise solutions (called Pareto set) is sought rather than a single solution.
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The Pareto set P* is then defined as the set of all non-dominated solutions in the design variable space €Q:
P ={z*c Q| Pz cQ;y(x) = y(z*)} and the Pareto front defines its representation in the objective
function space. The symbol “>” defines the dominance concept between the vectors y(x) and y(x*)
such as Vi € {1,...,m},y;(x) < wy;(z*) and 3i € {1,...,m} | yi(x) < y;(x*). The Fig.1.5 illustrates Pareto
fronts for two different values of a. The best performing solutions are obtained for a minimization of the

functions y; and ys.

__ A B Dominated
solution

— HPareto front

_II

Figure 1.5: Illustration of dominated and non dominated solutions. The red vector of objectives is

S

dominated by 3 green vectors. The green vectors are not dominated and form the Pareto front.

Extending the classical concepts for single objective robust design optimization and reliability based
optimization to multiobjective optimization is not straightforward. Notably, [DG05, HGB07| extends the
concept of reliability and robustness in the multi-objective space by defining y robustness frontiers of the
Pareto front and [RFC10] defines stochastic Pareto front ruled by a probability of dominance.

Moreover, in most of the studies (e.g. [YCL*11]), the influence of uncertainties is rarely considered
using a metamodel approach. The formulation of the optimization problem has to be adapted and the
notion of robustness and reliability has to be defined in conjunction with the dominance notion. Thus, the
development of a non-intrusive stochastic metamodel strategy, specially when a complete probabilistic
description might be useful to compute the probability of failure (e.g. in Reliability Based Optimization)

is a challenged we address in this thesis work.

1.3 Contributions of the thesis

The contribution of this thesis is twofold.

e The issue of Uncertainty Quantification with high fidelity model characterized by inadequate res-
olution for uncertainty propagation is illustrated in Chapter 3 and in Chapter 4. It highlights
that a careful attention has to be given to the validation of the high-fidelity model to perform
uncertainty quantification. In fact the variation range of the stochastic variables may be smaller

than the resolution to the model.

e The incorporation of uncertainty into a multi-objective optimization in a non intrusive framework

is addressed in Chapter 5, based on the hierarchical combination of two metamodels: one for
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the deterministic variation of design variables and the other to assess the variability of the model

response for each set of design variables.

In the following sections we discuss both issues.

1.3.1 A multifidelity approach for springback variability assessment

In this section we illustrate the first contribution of this thesis using an example of deep drawing of metal
parts. The deep drawing process is a manufacturing process which aims at permanently changing the
shape of a metal sheet through the action of a moving punch forming the metal against a motionless die
(Fig.1.6(a)). When the loading is removed, additional deformations appear and the so called springback
phenomenon occurs (Fig.1.6(b)).

Fixed Moving Fixed
L Blank holder Punch Blank holder J
+
Fixed Die Fixed Die
z

(a) Geometrical configuration of the modeled Numisheet’93 (b) Illustration of springback shape [Car09]

benchmark

Figure 1.6: Springback phenomenon for a 2D deep drawn U-shaped metal sheet

To perform a variability study of the post springback shape, we propose a two-pronged approach .

A first ingredient consists in defining a physics-based “low-fidelity” model with a finer resolution to
replace the “high-fidelity” model for small variation of parameters. A custom sparse stochastic surrogate
(Sparse PCE, where only the most relevant term of the PCE are retained) is then used to perform the
variability study onto the newly “low-fidelity” “high-resolution” model.

The simulation of the springback process provides a noisy numerical behavior against small thickness
variations. The FEM model may be considered as trustworthy for a resolution which represents a tolerance
on the thickness around % of its nominal value. The resolution of the numerical model is thus clearly
insufficient to perform a variability study on the tolerance range. Three aspects of the FE implementation
of the deep drawing process may be responsible for these numerical instabilities: the coarsity of the mesh,
the incorrect stress integration through the thickness and the contact algorithm. Improving the FE model
needs (among other) to refine the discretization of the model in every direction preserving the same aspect
ratio which leads to excessive computational cost. We choose to combine both models: the FE “high-
fidelity” model by a “lower-fidelity” physics-based metamodel with both features: a lower computational
cost and a higher resolution.

Such a metamodel has been recently proposed by [LQBRJ12|. It describes the deep drawing process

10
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of a 2D metal sheet as a 2D plain strain Bending-Under-Tension process (B-U-T) in a semi-analytical
framework combining an analytical approach with a FE model (assuming negligible shear stress).

The contact occurring during the deep drawing process is modeled here using an analytical approach
inducing consequently no numerical instabilities. Up to 200 integrations points are considered. In this
configuration, the impact the numerical noise on the springback shape parameters is drastically reduced.

We have trained the PCE model on the B-U-T physics-based surrogate in order to perform a variability
study of the springback shape parameters. The coefficients of the PCE are computed using a regression
based approach from a Design of Experiment (DoE) defined by a standard Latin-Hypercube Sampling.
We propose a stochastic model representing up to 8 independent random variables for the springback
shape parameter study.

A well known limitation of the PCE lies in the computational cost to compute the full set of coefficients
when the number of variables or the degree increases. We here choose to apply the Least Angle Regression
Stagewise (LARS) method [BS08c| on an 7*" order PCE and the empirical error estimate as the stopping
criterion.

The savings in computational cost is significant since in each case only a fourth of the coefficients are
needed to reach the convergence on each of the function representative of the springback shape with a
preserved accuracy.

This approach demonstrates that the use of simplified physics-based model allows for accurate UQ
and acceptable computational costs.This approach is not limited to 2D and opens the way to the use of

other types of physics-based metamodels such as one-step or PGD/POD.

1.3.2 Adapting the sampling to the model resolution: Fat-Latin Hypercube

sampling

To train the stochastic metamodel, a compromise has to be found in the distribution and the size of the
set of training points. In fact, a too small number of simulations leads to an excessive smoothing of the
response surface while a too high number of simulations may introduce numerical noise leading by the
way to the same lack of accuracy of the stochastic metamodel.

In Chapter 3, the compromise is addressed. A modified LHS scheme is proposed in order to take
into account the resolution of the model. It provides an upper bound on the sampling density. A coherent
metamodel scheme based on the PCE is built taking into account this upper bound on sampling density,
and the lower bound given by the regression approach to compute the PCE coefficients.

The main idea is to build around each sampling point a restricted area free from other samples
while preserving the LHS property. The characteristic size of each area is parameterized by the a priori
identified model resolution d;, {i =1,..., M} in each of the M dimensions.

Depending on the chosen norm, different shapes of the restricted area are considered. Here, an

illustration is given for the £, and the £5 norms.
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Figure 1.7: Sensitivity restricted area shape around two sampling points for L., and Lo in 2D

The “Fat-LHS” scheme provides a dense sampling along with a maximum number Sy, of samples
respecting the model resolution. With this limited number of samplings, we train a sparse version of
PCE where only the most significant terms are kept.

The efficiency of the Fat-LHS is illustrated on the variability assessment of springback of a 2D deep
drawn metal sheet. It exhibits a higher convergence rate to the two first statistical moments than a
similar size LHS (without taking into account the model resolution). On a higher dimension test case
(8D), the convergence results for the different truncation strategies are compared. The sampling is then
coupled with an adapted metamodel strategy in order to efficiently propagate the uncertainties at low

computational costs.

1.3.3 Towards Multi-objective Optimization Under Uncertainty

In this section, we address the incorporation of uncertainty treatment into a multi-objective optimization
process using surrogate-models in a non-intrusive framework. After a brief recall on the basics of the

multi-objective optimization under uncertainty, we present the following original contributions:

e the development of a non-intrusive hierarchical stochastic metamodels based on Moving-Least
Squares (MLS) and PCE;

e its application to multi-objective reliability based optimization of space truss structures.

Evolutionary population-based algorithms are designed to efficiently address multi-objective opti-
mization problems these optimization problems due to their ability to possibly provide many of the
Pareto-optimal solutions in a single algorithm iteration [Fog97, And02]. We use Non Sorted Genetic Al-
gorithm IT [Deb02] for 3 reasons: low computational complexity, elitist approach and ability to preserve
diversity in the population.

& = [&,..., &) are the M independent stochastic variables described by their probability density
function. @ represent the set deterministic design variables. y(x,&) = [y1(x,€),...,ym(x,£)] is the

vector of the m stochastic objective functions
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Instead of comparing each objective function separately, one may take into account of the intrinsic
multi-objective nature of the problem by checking the probabilistic non-dominance (|Tei01]) Phon-dominance =
Ply(x, &) = ] > « assessing that the vector of the objective functions y(x, &) = [y1(x, £), y2(x, £)] should
dominate the set of quantiles ¢ with a minimum probability level (user defined) a while satisfying con-
straints (such as reliability for example). The Fig.1.8 illustrates Pareto fronts for two different values of
a. The best performing solutions are obtained for a minimization of the functions y; and ys. When the
values of « increases, the stochastic Pareto front represented by the non dominated quantiles { moves

farther from the deterministic one being more and more conservative.

A
Y1

Deterministic Pareto front

/ (;i;ng Stochastic Pareto fronts
. - . — 0

Figure 1.8: Stochastic Pareto fronts

The proposed formulation is implemented into the Non Sorted Genetic Algorithm IT [Deb02] without
any modification.

The challenge consists in the computation of the non-dominance probability for each set of solution
produced by the algorithm. A straightforward approach would consist in building a polynomial chaos
expansion of each provided solution. The statistical quantities and non-dominance probability needed
are then computed exclusively using this approximation.

We propose a hierarchical metamodeling approach. It consists in a surrogate model providing an
original mapping from the mixed deterministic-stochastic variable space to the response function space.

The first step consists in building a metamodel of the PCE coeflicients:

e Filz), i=0,...,P—1 (1.5)

and then to reconstruct the PCE for each design variable provided by the algorithm:

"
L

(@,8) = y(@,8) = ) 7i(x)¥i(E) (1.6)

K2

Il
=]

resulting in an increased computational efficiency.

We validate the proposed approach by comparing the obtained stochastic Pareto set with a Monte
Carlo sampling under different probability levels. An explicit two-variable test case allows to analytically
compute the response surface and to compare it with those obtained by an MLS approximation of the
PCE coefficients. A perfect agreement is observed. A second test case deals with the multi-objective
sizing optimization of three 3D linear elastic truss structures. In most of the situations the combination

of second order MLS interpolation of the PCE coefficients provides the best results. The influence of the
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PCE order is investigated. In most of the cases the second order approximation is better, highlighting a
possible overfiting phenomenon when the approximation order increases or a sampling size is too small.

Finally, the sizing optimization of trusses is verified using Monte Carlo Simulations.

1.4 Thesis outline

The original contributions of this thesis are organized in the following manner:

e Chapter 2 presents a literature review with a special insight firstly on general UQ methodologies
and then a focus on the spectral methods for uncertainty propagation. For the latter approach the

numerous challenges are put into evidence as well as the concepts proposed in the literature.

e Chapters 3, 4 and 5 refer either to our published articles (Chapter 4, Chapter 5) or to papers
under review (Chapter 3). Chapter 3 and Chapter 4 rise the question of the trust to give
to the nominal model in the context of uncertainty propagation for variability study. Answers
are proposed in the field of metal forming where highly non linear phenomena such as material
non linearities, contact friction, springback, ... occur, and which makes in practice the stability
of the numerical model difficult to control. In fact, when considering the springback prediciton
of the 2D U-shaped deep drawn metal sheet, a large variety of results is observed [MNOW93]
when modifying the experiment parameters or when changing the software used to predict the
springback values. However the stochastic analysis of metal forming processes requires both a high
precision and low cost numerical models in order to take into account very small perturbations on
inputs (physical as well as process parameters) and to allow for numerous repeated analysis in a
reasonable time. Chapter 3 addresses this issue by presenting an original two-pronged approach
based on the combination of a semi-analytical model dedicated to plain strain deep drawing based
on a Bending-Under-Tension numerical model (B-U-T model) to accurately predict the influence of
small random perturbations around a nominal solution estimated with a full scale Finite Element
Model (FEM). A custom sparse variant of the Polynomial Chaos Expansion (PCE) is used to model
the propagation of uncertainties through this model at low computational cost. In Chapter 4, a
particular attention is given to the definition of an adapted Design of Experiment (DoE) taking the
model sensitivity into account which limits the number of sampling points. The construction of an

adaptive sparse PCE based on the limited set of data is investigated.

Chapter 5 proposes a metamodel based Multi-Objective Optimization under uncertainty based on

a hierarchical metamodel approach with respect to the deterministic and random input parameters.

e Finally, Chapter 6 gives the general conclusions and discussions/perspectives of the presented

work.
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2.1. Introduction and general concepts

2.1 Introduction and general concepts

In the past decades a copious amount of work has been devoted to the characterization of the impact
of uncertainties on the behavior of a mechanical system described by numerical models. A first step
in their quantification may consists in the categorization of the uncertainties. This topic is subjected
to many discussions by statisticians and engineers, but two concepts are clearly distinguished and com-
monly admitted : epistemic uncertainties are reducible uncertainties by means of gathering more data
or by refining the model; on the opposite, random or aleatory uncertainties are irreducible uncertainties,
intrinsic to the components or to the environment of the real experiment. However, the classification of
uncertainties into one of these two categories may depend on the context of the study but is of paramount
importance. [KD09] highlights that a correct a priori identification of the types of uncertainties allows
to identify (hence to elaborate) reasonable strategies in order to a priori reduce the uncertainties at the
end of the line: a wrong categorization may influence the results from several orders of magnitude.

To quantitatively assess their influence, one may classify the methodologies into two groups: intrusive
and non-intrusive methodologies. The formers require mathematical developments of the governing
equations to produce, most of the time, semi-analytical solutions for the stochastic analysis. This class
of methods present a major drawback: their implementation tends to become complex and analytically
cumbersome in case of highly non linear physical systems. One may then prefer the use non-intrusive
techniques which consider the numerical simulation process as a black-box. This section only deals with
the latter class of methodologies described on a probabilistic framework.

First and foremost, a brief recall on the probabilistic description of uncertainties is provided together
with a classification and a short review of the non-intrusive approaches for UQ. It essentially aims at
pointing out the notations and to provide the reader with an overview of non intrusive UQ.

The second section forms the heart of this chapter. It is dedicated to the class of spectral methodologies
taking their roots in functional evaluation of the stochastic data of interest. A special focus is provided on
the use of the Polynomial Chaos Expansion (PCE) in a non-intrusive context. Since the groundbreaking
work of [Gha91], this methodology has encountered a growing interest and has been used in many different
fields. This section highlights the evolution of the Polynomial Chaos Expansion from its initial formulation
as Hermite-Homogeneous Polynomial Chaos to the most recent advances. The goal of this section is not
to systematically provide a deep insight into each theoretical advances but more to guide the interesting

reader by providing him in an organized manner some fundamental references to the field.

2.1.1 Mathematical framework
2.1.1.1 Probabilistic space

The observation of a random phenomenon provides uncertain outcomes which nevertheless may follow
a regular distribution for a large number of trials. The set of all possible outcomes, denoted (2 is called
the “elementary sample space”. The result of one trial, is a subset w € Q) called “elementary event”. The
set of all admissible events associated to aprobability measure pr forms a o-algebra associated with €2

denoted by F. Finally, the triplet (Q, F, px) forms the “probability space”.
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2.1.1.2 Random variable, Stochastic process, Random field

Random Variable A random variable £ is a measurable function defined on the o-algebra F with
values in a Borel set B(R)
¢ F— B(R)
w i E(w).
In this thesis we assume that the uncertainties can be modeled using a finite number random variables

gathered into a M-sized random vector & = {&1,...,&y}. We thus define the random vector £ as a

measurable function defined on the o-algebra F with values in a Borel set of RM denoted B(RM).

(2.1)

¢ F — BRM)
w = E(w).

The dimensions of the random vector £ are denoted using subscript, while their realizations are
th

(2.2)

denoted by superscripts: gl(j ) denotes the 4t realization of the it component of the random vector

E={&, .- S}

Let € be any of the components of € and 7 one realization of £. In this thesis work, we consider that &
is completely characterized by a continuous probability density function (pdf) pe(§) whose integral over
the sample space R is called the cumulative probability density function (cdf). The mean value of the

random variable £ is given by:

n=Ele) = [ rdne(r) (2.3)

where {§ = 7} = {w € Ql¢(w) = {7}} and dp(§ = 7) = pe(7) = pr({§ = 7}).
The variance V of the random variable is given by:

V= /R(T — p)*dpe(T) (2.4)
The n-th order moment is given by
E[g"] = /RTndpg(T) (2.5)

In this thesis work, we only consider real random variables with finite second order moment (E[¢?] < 00).
We denote the corresponding vectorial space by £L2(B(R), T, P).
Considering now two random variables € = {£1, &2}, the joint probability density function is naturally

denoted pe¢, ¢, or more concisely pg. The covariance between these two random variables is denoted

C(&) = E(&1 — pey) x (&2 — pe,)] - (2.6)
The correlation factor pe, ¢, is given by:

() o
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A random field A random field y(z,w) [AdI81] may be defined as a collection of random variables
indexed by a continuous parameter = defined on a bounded set D € R? with value in R (Eq. 2.8). A

one-dimensional random field (D € R) is usually called a stochastic process.

yRIx Q>R
(2.8)
(z,w) = y(z,w).
For a chosen &g € D, y(xo, .) is a random variable. One denotes by y(xo) = {y(xo,w1),...,y(xo,ws)}
the set of S realizations of the random field. Its mean is then defined as:
(o) = /Q (o, w)dpy (0, ) (2.9)
The continuity of a random field is often characterized by its mean-square continuity:
Ellly(z, )|’] < co,Vz € D
(2.10)

lim E|ly(z,.) - y(xo,)|] =0

Tr—xo

The matrix-valued covariance function of the random field taken as the covariance function between
two distinct @1, xo:
Clz1,@2) = E(y(z1,.) — p(z1)) X (y(z2, ) — pl@2))] (2.11)

The correlation factor pe, ¢, is given by:

__CO@1,2) (2.12)

py(wl,-)ay(wz") Uy(m )Uy(m )

2.1.2 Common concepts for probabilistic approaches

Building a stochastic model usually consists in two steps. The first one is concerned with the proper
identification of the random inputs by a finite number M of random variables (such as parameters of
the system, material properties, etc.) or processes (random time dependent loading.etc.) [Fra65]. For
Gaussian random variables and processes, the identification is straightforward as they are completely
determined by the two first statistical moments (mean and covariance). This is however not the case
in general for non Gaussian processes and their identification still remains an open research area [YS88,
WC94, SG02a, PPS02, LCS07]

The second one consists in identifying the (joint) probability distribution of the random variables,

fields of interest. Two approaches may be distinguished:

o A direct approach consists in directly constructing the probability function p¢ based on information

theory (i.e using only the information at hand on &).

e An indirect approach consists in introducing a measurable mapping h between the random vector
y(§) of unknown probability density function (p.d.f) p, to the random vector & whose p.d.f pe is
known: y(§) = h(§). Then, p,(y) is the transformation of p¢(£) by h. This method is advantageous
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when experiments are available. It also allows to develop non-intrusive approaches by defining the

mapping function h independently from the physical model.

2.1.2.1 An overview of direct approaches

Maximum Entropy Principle The Maximum Entropy Principle [Jay82, Gif08] is based on the defini-
tion of a unique measure which quantifies the amount of uncertainties represented by a discrete probability
density function, namely the entropy measure. It follows the natural intuition that a “broad” probability
distribution represents more uncertainty than a “sharp” one. Let £ be any component of the random vec-
tor € = {&1,...,&u}. Let us assume now that £ has been evaluated in S samples denoted e €
each sample associated with the probability pe (@), i=1,...,8 such as Zis:l pg(g(i)) = 1. The entropy

measure is given by:

T(pe(€™,....6¥) = -K sz Nn(pe (67)) (2.13)

where K is a positive constant. To solve the inference problem stated in the direct approach, the
only possible unbiased assignment consists in searching the probability distribution which maximizes the
entropy with regards to the information at hand. The classical optimization problem to solve may then
be stated as:
max T(pe(€W, ..., £)
st Ely(§)] = Zizl y(f(i)) (2.14)
S peE) =1.

The use of Lagrange multipliers Ao and A; leads to the following optimal solution:

pe(§) = e o ME (2.15)

In the multi-variate case where & = {¢;,...,&} the maximum entropy probability distribution general-
izes to [Jay57]:

Zexp Do+ MED 4+ anel)) (2.16)

The set of Lagrangian coefficients, may be retrieved by solving the set of equation obtained by replacing

the expression of p¢(£) in the expressed constraints.

Maximum likelihood Let us consider the following problem (also referred as “forward problem”)
[Mill1]
y~f(&) +e (2.17)

where € = {&1,...,&u} represents here a vector of model parameters, y = {y1,...,y,} is a vector of
output of interests seen as realizations of random variables, f is a (non-linear) function R — R" and
€ € R" a random vector encompassing all possible kind of uncertainties.

Let us assume that a set of observed output is available. The goal of Maximum Likelihood estimation
is to retrieve the input parameters which has most likely generated the observed sample. To do so, one

has to maximize the following probability pe(y|€), which is called the Likelihood.
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A trivial (and common) assumption consists in assuming that the random vector € € R" representing
the components of the error produced are independent and identically distributed characterized by a
normal probability density function ( Ele;] = 0,4 = 1,...,r, the covariance matrix of the error is
C = 021, , where I, is the r x r identity matrix). In this case pe(y|€) € N(f(€)) and the likelihood

function becomes
L(§) = ﬁpsi(Q))
Hpeq yi — fi(§))
_ Hexp ( fz(E)) )
e ( 3 2{{;(5»2)

i=1

(2.18)

T

Searching for the maximum of this function is equivalent to finding the minimum of Z(yl — fi(€))? which
i=1
may be done by any appropriate optimization algorithm or by considering a classical minimum distance

leasts square problem. In the general case € is not supposed to be Gaussian, the Likelihood function
may be computed using Monte Carlo Simulations which may be too expensive. Another more efficient

consists in using a kernel approximation method.

Bayesian Inference This approach allows to determine the prior probability distribution of input
parameters & = {&1,...,&u} when the only information at hand concerns the output of the model
y = {y1(8),...,ys(&)}. This process is called inference. In the context of the Bayes’ framework, the
knowledge about the true values of the parameters before and after having observed the data are described
using probability. In the general case one may use inference only in order to refine the probability
distribution of the input knowing the outputs, but we present here this approach in the general case
where the whole probability density function of the input parameters are searched.

The Bayes’ theorem states that:

p(yl€)pe(§)
P = [ p(y|€)pe(&)dé (2.19)

where p(&|y) is the posterior distribution of the parameters values (obtained after having observed the
data), p(y|€) = L(£) is the likelihood function and pg (&) is the prior probability density function (ob-
tained before having observed the data) of the parameters values and [ p(y|€)pe(€)d€ is a constant (as
p(€|y) is a distribution on &, y is a constant)

Thus a more concise form of the Bayes theorem may be obtained by:

p(&ly) o< (y|€)pe(§) (2.20)

In the general case, the described inference process consists in refining an a priori given set of prob-

abilities (prior models) in the light of the observed outputs.
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In the case where the input probabilities are unknown, the Bayes’ inference approach methodology
may often be used in conjunction with the Maximum Entropy Principle. In general, the Bayes theorem
offers a robust mean for inference, however vague prior information on the parameter value the posterior
remains improper, which may cause serious problems for the verification of complex models [Gey92].
However, if a sufficient amount of information on the prior is available, the Bayes’ inference has been
successfully use in the literature to assess the confidence in model prediction by comparing the model
output with experimental data.

A first direct approach in order to compute the posterior distribution consists in using Monte Carlo
Sampling on the prior distribution. The sample produced is thus non optimal with regards to the posterior
distribution (many sample points may located in the tail of the posterior probability) and thus the chosen
set of parameters with higher posterior probability may not be relevant. The use of Markov Chain Monte
Carlo (MCMC) [Ahm08| based on the Metropolis-Hasting’s algorithm [CG95| may allow to increase the
computational efficiency. MCMC are used to directly sampling the posterior distribution, to build an

optimal sample with regards to the posterior distribution. Moreover, it eliminates the need of computing
the constant [ p(y|&)pe(&)dE.

2.1.2.2 A classification of indirect approaches

Simulation based methodology Monte Carlo Samplings (MCS) is the most direct approach for
uncertainty quantification. In the literature, the Monte Carlo simulation is widely used in order to
assess the two first statistical moment of a multi-dimensional random variable. These quantities are
extracted from S independent realizations of random inputs. These are generated from their a priori
prescribed probability density function. For each realization, the data are fixed and the problem becomes
deterministic: the is obtained from a set of deterministic calls to the considered model. From this set
of deterministic evaluations, statistical information are extracted (mean, variance, histograms). MCS is
then straightforward to apply but a large number of realizations are needed e.g. the mean value typically
converges in 1/ V/S. Slow convergence rates may incur excessive computational costs, specially when
one deterministic simulation is already computationally costly. To accelerate this computational cost,
different techniques have been developed in the literature. Among them, Quasi Monte Carlo Simulation,

Stratified Sampling and the Latin Hypercube Sampling.

Moment equations In this approach, the objective functional is replaced by its Taylor series expansion
around the mean value (of the input random variable). The mean and the variance of the output
function of interest are computed using the moments of the input variables. This leads to a more efficient
integration of the first and second order moment. The proof is done below only for the 2 first statistical
moments using a first order (yro) and a second order (yso) Taylor series expansion of the output function.
Let y the output function of interest where & = {&;,...,&y} with mean € = {&;,..., &y} and let us
define its first and second order Taylor series approximation by yro and by yso [PNTIG01, MD10]. It is
respectively assumed that y € C* and y € C2.

Uy _
yro(§) = y(§) + Z 7€, (& — &) (2:21)

K2
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2.1. Introduction and general concepts

B 1 M M B
yso(& )+ Z (‘3& 27 g g §2857 51)(5] - fj) (2.22)

After some algebra, the expected value from the mean (unbiased) and from the variance of the output y

are approximated by:
gro = yro(€) (2.23)

M 2
o”(yro) = Z (agg)o(&)) (2.24)

i=1

and by

) ) | M M 92y
Uso = yso(§) + 2 ; ; 8&6@0(&')0’(&‘) (2.25)

+

M oy 2 MM 2
2 SO

o = ; 2.26
(ys0) = Z ( o ° ) o g; (a&% &)o @)) (2.26)
In some special cases, where the first and second order derivatives are available, the integration
of the first and second order moment may be realized analytically as shown in equations Eq.2.23,2.25
and Eq.2.24, 2.26. However, in most of the case, finite difference schemes are required which leads to
unaffordable computational costs when M increases. Moreover, the issue of the truncation the Taylor
series expansion is still an open issue as in general no fundamental result proves the monotonic convergence

of the Taylor series expansion.

Methods dedicated to reliability studies Performing reliability analysis of a mechanical system
or process results in determining the probability of a particular event &g,;)... leading to the failure of
the structure (the “failure event”). This failure event may usually be expressed as the negative value
(by convention) of a criterion G(&giure).- The probability of failure Ppjure of the system is then the
probability that G(&gaiiure) < 0. The set Dy = {&€taiiure| G (Etaiture) < 0} defines the failure domain. The
function = = 0D¢ = {&€taiturel G (€faitare) = 0} defines the border of the failure domain also called limit

state function.

First and Second Order Reliability Method These methods consist in approximating the
failure domain G by a simpler domain whose probability may be computed analytically. A preliminary
step to the construction of the simpler domain consists in transforming the observed random variable &
into a vector of independent centered normalized Gaussian random variables. In this particular space,
the most probable failure point £* also called “conception point” has to be identified. In the transformed
space the conception point is the nearest point to the origin (this is due to the “bell symmetric” shape of
the Gaussian probability density function.) Computing this point may be done by solving the following

optimization problem

min(||£]|?)

. (2.27)
s.t G(gfailure) < 0
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Many algorithms have been proposed in the literature to solve this problem and find the £* which may
be referred in the literature as the conception point, the beta point of most probable point (MPP).

Once the MPP has been identified, the FORM consists in building a linear approximation of the limit
state function points by defining a hyperplane passing through the design point and orthogonal to the
vector £*. The probability of failure is then simply approximated by:

Pfailure ~ (I)(_ﬁ)a (228)

where @ is the standard Gaussian cumulative distribution function and g is the signed distance between
the origin and the conception point. The SORM improves the FORM methodology by proposing a second
order approximation of the limit state function defined by a paraboloid tangent to the limit state at the
conception point. The curvatures of the paraboloid at the design point are computed as the eigenvalues
of the Hessian matrix of the limit state function. In this context, the failure probability may then be

approximated by :

}Dfailurc ~ (I)(fﬂ) (1 - aiﬂ)il/Q (229)

.

I
—

?

where the «; are the principal curvatures of the paraboloid.

Figure 2.1: Illustration of FORM/SORM methodologies

For relatively small stochastic dimensions and smooth continuous limit state these methodologies
provide relatively accurate results with reasonable computational time. However, they are not adapted to
discontinuous or multi-modal limit state functions and may lead in these cases to an erroneous estimation
of the probability of failure. Moreover, they do not intrinsically provide an error estimator on the
probability of failure. Finally, these methodologies require the need of derivatives which are not always
available when the function of interest is given in an implicit way (as it is the case in non intrusive
approaches). Moreover, in high dimension the computation of the Hessian matrix for the SORM may
be prohibitively costly [Z099]. [KS91] proposes a more efficient iterative algorithm to compute the

curvatures at the design point without the need of the Hessian matrix.

Sampling based approach To keep the control on the error committed on the estimated prob-

ability of failure, direct integration techniques to assess the reliability of the system may also be used.
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The probability of failure is then written in its integral form as:

Pfailure = /GEdPE(S) = E[lG(g)]v (230)

where 14 is the indicator function on G.

The computation of the above integral using brute Monte Carlo simulation becomes rapidly prohibitive
in the transformed variable space as most of the sampling will concentrate around the origin of the domain.
It may be shown that for low Ppajiure, the coefficient of variation Cy of the MCS estimator converges in
%. For example, for Puiiure = 1074, and a targeted Cy = 107!, 10° samples may be needed.

The Importance Sampling methodologies| AB99][ER93] allow to improve the efficiency of the crude
MCS by centering the samples around the conception point following a translated probability density
function piransiated = pe(§ — &*). Directional sampling [Bje88], [Mel94, NEOO], line sampling [KPS04],
subset simulation [ABO1]. These advanced methodologies are extended by [SPK04]| to be efficient in high

dimensions.

Metamodel based approaches A metamodel is a response surface coupled with a sampling strat-
egy which is aimed at describing the behavior of a complex computational model while being less expensive
to evaluate. In the context of structural reliability a number of them has been developed in the last decade
in order to circumvent the costs and accuracy issues of the proposed FORM and SORM methodologies.
In the early 90’s, [BB90, Far89, Won85| proposes an adaptive second order polynomial response surface
to interpolate the limit state function. To increase the efficiency and the accuracy of the metamodel,
statistical information on the basic variables are used in order to update the obtained metamodel. Monte
Carlo simulations are then used in conjunction of the metamodel in order to assess the desired reliability
estimates. An obvious limitation of this methodology lies in the fact the limit state function has to be
smooth enough and continuous. In some practical problems this is clearly not the case: the performance
function may highlight multiple design points, and multiple regions that make significant contributions
to the failure probability. This question is addressed by [GM04] who proposes an algorithm to identify
the multiple points and regions and to interpolate these points using a second-order polynomial response
surface whose coefficients are determined using a least square analysis. A measure of the sensitivity of the
reliability index is also provided. However, for non-smooth limit state function, the use of second order
polynomial response surface may show insufficient accuracy in approximating the limit state function,
and large errors may be observed in the computation of the sensitivity of the reliability index, partic-
ularly. [YCO04a], [KKC10] used Moving Least Squares giving higher weight to the experimental points
closer to the design point and allowing the response surface function (RSF) to be closer to the limit state
function. The authors in [DSB11b| take advantage of the kriging intrinsic features in order to propagate
the approximation error on the limit-state surfaces to the failure probabilities estimates providing thus
an empirical error measure. In [LX10] the authors argue that the straightforward sampling on surrogates
models may lead to biased results and thus proposes a hybrid approach based on a large sampling of the
metamodel in the probability space and refining this sampling using the numerical model in some region
of interest. In [Sud12, DSD13] the author proposed an efficient scheme to solve the problem of the poten-
tial biasedness in the estimation of a probability of failure due to a direct substitution. It combines the

use of an importance sampling strategy guided by a kriging metamodel replacing the indicator function
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of the failure domain by a probabilistic function.

2.2 Spectral representation of stochastic field through Polyno-

mial Chaos Expansion

2.2.1 Introduction

This section reviews in more details the construction of the Polynomial Chaos Expansion (PCE). This
methodology has been widely used as an alternative to the Monte Carlo Simulation in order to propagate
the uncertainty through a deterministic numerical model. From its initial form, many obstacles have to be
circumvented for an efficient use. In this section we briefly review these obstacles and the circumventing

solutions.
2.2.2 Functional evaluation of a random variable by orthogonal polynomials

2.2.2.1 Functional evaluation of random variable

In practice, random variables of interest are seen as the output of a deterministic numerical model y(§).
They often belong to the set of square integrable functions denoted by £2(RM, dP¢) and defined by:

LXRM, dPg) = {y : € = y(€) € R;

2.31
Bl = [ (€2 dre) < ) .

where E € RM since in practice one often deals with a finite number of second order (with finite second
order moment) random variables & = {&1,...,&m}-

When this space is equipped with the following inner product, it becomes an Hilbert space:

< UV >p2RM P )= Eluv] = /]RM u(§)v(€)dPe () (2.32)

An Hilbertian basis {B;}icz of L2(RM,dPg) is a complete set of orthonormal functions verifying the

following properties:
< Bi, Bj >r2rM ap)= 0ij (2.33)
where J;, j is the Kronecker symbol and
Vu € L2(RM dPg), < Biju>=0,Yi €T =u=0 (2.34)

Finally, each function y € £2(RM, dP¢) admits an unique decomposition on this Hilbertian basis:

y(€) = vBi(¢) (2.35)

i€l

where v;, i € T are the coordinate of y projected on the orthonormal basis {B;};cz:
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2.2.  Spectral representation of stochastic field through Polynomial Chaos FExpansion

Yi =<7, Bi >r2@®™ ap,)= Ely, Bi

(2.36)
- [ neB©ire)

Several choices have been proposed in the literature in order to construct the Hilbertian basis. Among
the most popular, one may find the Karhunen Loéve (KL) expansion and the polynomial expansion
methods.

2.2.2.2 Link between random variable and orthogonal polynomials

In probability theory, since the preliminary work of Wiener on Brownian motion, the relationship between
orthogonal polynomials and random variables has been widely studied [Sch00].
Let P={HnN(§), N € N} be a set of monovariate polynomials whose maximal degree is N. Let ® be

a real positive measure. P forms a set of orthogonal polynomials with respect to the measure ® if:
JRAGEACEICEN RS (2.37)
Q

where 0y, is the Kronecker product and K is a non zero constant (if K=1, P is orthonormal). A well
known property of real orthogonal polynomial lies in the fact that they all may be built using a three

terms recurrence relationship on the form:

where b, ¢, # 0 and ¢, /b1 >0
In the space £?(RR, dP¢) of continuous second order random variable, the following classical polynomials
form an orthogonal basis: they are referred in the literature to the classical orthogonal polynomials of

the Askey-scheme:

Pdf type Density Function Orthogonal polynomial || Support
Uniform 1_11(8)/2 Legendre: Py (&) [—1;1]

Gaussian \/(12”)6’52/2 Hermite: Hy(€) [—00; o0
Gamma €281+ () Laguerre: LF (&) [0; +00]
Exponential e ” Gen. Laguerre L\ (x) || [0;400]
Bet 1 w J bi: J, —1:1
eta 1-1:11) FtaEm acobi: Ji(¢) [-1:1]

Table 2.1: Classical orthogonal polynomial of the Askey scheme with respect to their probability density

function

The resulting expansion of the random variable of interest is readily:

y(w) =Y 7Hi(€) (2.39)

€]

where J C N, {H;};¢y is an infinite series of one of the Askey-scheme polynomial, {s the associated
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2.2.  Spectral representation of stochastic field through Polynomial Chaos FExpansion

standard variable, {v; };cy the coordinate of the function on the orthogonal polynomial basis.

2.2.3 Construction of Wiener Polynomial Chaos Expansions (PCEs)

N. Wiener [Wie38] proposes for standard Gaussian variable the use of Hermitian polynomial as an Hilber-
tian basis to construct an approximation of the random variable y(¢) € L2(E, dPg¢). In the following we
describe the construction of the original PCE. It is usually named Hermite homogeneous PCE in the

literature.

2.2.3.1 Univariate case

Let ¢ be any component of & supposed to be a Gaussian standardized random variable (which may
be obtained using an iso-probabilist transformation [LCMO09]) the expansion is readily given by Eq.2.39

where {H;};en are the mono-variate Hermite polynomials. The first 5 Hermite’s polynomials are given

below:
Ho(§) =1
Hi(§)=¢ -1
Hy(§) = 53 -3¢
H3(§) = &' — 66 +3
Hy(§) = & —106% + 15¢

A fundamental result for the Hermite homogeneous PCE is established by the Cameron Martin theo-
rem [CM47]. It states that any second-order functional of the Brownian motion (Gaussian random field)
can be expanded as a mean-square convergent series in terms of infinite-dimensional Hermite polynomial
in Gaussian variables. Thus, the exact (in a mean square sense) PCE of the random variable y(§) is
readily:

y(&) =D wiHi(€) (2.40)
ieN
where H; is the i*" degree Hermite polynomial. Exploiting the polynomial orthogonality, the coefficients

of the expansion are defined as:

Vie N,y =008 7 (2.41)
' (| H|*
2.2.3.2 Multi-variate case
In the multi-variate case &€ = {&1,&a,...,&m} with M coordinates, according to the independence as-

sumption, the joint probability density function f¢(£) may be decomposed on a product of the marginal

probability density functions feu) (Eq.2.42):

M
f@=Hk@) (2.42)

Given the natural inner product for arbitrary function ¢ with respect to each of the marginal proba-

31



2.2. Spectral representation of stochastic field through Polynomial Chaos Expansion

bility function f¢(&) defined on D

<¢h@>:éﬁm&m@ﬁ@mg (2.43)

Using the tensor product on these mono-variate polynomials one may obtain an infinite set of
multi-variate polynomials (with a preserved orthogonality property) H = {H,,a € NM} where a =

{ag,...,an} € NM is a multi-index set.

Ha(€) = @1, Ha, (&) (2.44)

According to the theorem of Cameron Martin [CM44], the exact polynomial expansion of the functional

y is readily

y(g): Z ’VaHa(S)v (245)

aeNM

where {74}, @ € NM are the coefficients of the PCE to be identified
For practical use, one may truncate the full set of tensor product polynomials in order to only retain

a finite set of polynomial terms.

Classical truncation scheme Among all {H,,a € N} the classical truncation scheme [Gha9l,
BSL06a, SDK00a] retains only the multi-variate polynomial terms whose degree does not exceed an

arbitrarily fixed N leading to the following multi-index set:
Ayl ={a e N Jlall; < p}, (2.46)

M 1/q
where ||a||, = (Z a?) and ¢ = 1. Then, the truncated model may be written as:
i=1

A9~ Y vaHal€). (2.47)

acAM

Fig.2.2 gives an illustration of this scheme for a 2-variate 7** order PCE.
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Figure 2.2: Tllustration of the classical truncation scheme for a 7** order PCE
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The number P of coefficients in the PCE is given by

N
(N + M)!
P = chﬁ:l-i-k-‘rl = NIM!

k=0

and increases exponentially both with N and M.

A list of the multi-variate Hermitian monomials for M = 2 and N = 3 is provided below:

a={a,a}

=

© 00 3O Ui W= O

Table 2.2: Bi-variate Hermitian Polynomials Basis elements up to the order p = 3

{0,0} it
{1,0} H
{0,1} H,
{2,0} H
{1’1} Hl
H
H.
H
H
H
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=
= o
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{0,2}
{3,0}
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(2.48)

Note: One may imagine different ways to classify the obtained multi-variate monomials. When a M

dimensional expansion of order N is searched, one may classify the multi-variate monomial by making the

value of the M -digits of o evolving according to the “rain drop” algorithm. The previous tabular provides

an example with M =2 and N = 3.

2.2.3.3 PCE for stochastic field representation

PCE for random field The extension to the approximation of random process as may introduce an

additional non probabilistic variables such as design variable for example gives the following expression:

33



2.2.  Spectral representation of stochastic field through Polynomial Chaos FExpansion

y(@, &)~ D Yal(@)Valé) (2.49)

or alternatively

> YaValz,€) (2.50)

aeNM
where W may be built over the tensor product of optimal orthogonal polynomials with regards to the
probability measure for each &;, i = 1,..., M¢ and by Legendre polynomial (orthogonal with respect to
the uniform distribution) for the z;, i = 1,..., M, variables [Eld09]. The cost of the latter expansion
may become rapidly prohibitive as it increases exponentially with the number M¢ 4+ M, of variables (see
Eq.2.48).

Let y(x,w) : D x  — R be a mean-square continuous random field (i.e. with continuous covariance
function) where D denotes an open, bounded domain with values in R, and €2 is the set of elementary
events.

Let us give a set of points &1,...,zx € R? and wy,...,wg a set of S elementary events. Let y(*) =
y(wi) = {y(x1,w;),. .., y(xn,wi))} T, i=1,...,9 be a real column vector in RY. Let {,...,9yn}" the

vector of expectations:

S
Vie{l,...,N}, 5 = Z y(x;, w;). (2.51)

Karhunen-Loéve decomposition The full Karhunen-Loéve expansion [Loe63] is aimed at efficiently
reducing the statistical complexity of the random field by achieving its decomposition as a denumerable

sum of product functions of the form:

N
=g+ > Viki(w)e, (2.52)
i=1

decoupling the stochastic 2 and deterministic D spaces.

The suited decomposition may be obtained by orthogonal projection of the stochastic field of interest
onto separable Hilbert spaces. The convenience of the Karhunen Loéve (KL) expansion stays precisely
in the fact that KL expansion is toptimal with regards to the total mean square error. To construct,
the Hilbertian basis one performs an eigenvalue decomposition of the covariance operator which may be
defined as

Cla ;) = /D y(i, )y (5, 0)dp(@), (i, 7) € {1,..., N}2. (2.53)

Replacing y by its collocation vector y, an unbiased estimator of the covariance operator may be

obtained by:

S
Oz, ;) = Z Ty —g;), (G,5) € {1,...,N}2 (2.54)

By definition, the covariance kernel function (since D is bounded), symmetric and positive definite.
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It admits a decomposition of the form:

N
C= ZM%%‘T
=t (2.55)

where {\;}}¥, are the eigenvalues, and {,}}Y | the eigenfunctions. They constitute the elements of the
Hilbertian basis {¢,}}Y, = {V i},
From 2.55, one obtained the following decomposition ygy, of y(w):

Yk (W) =9+ oo (y(w) — )

N (2.56)
=y+ Z Ok (W)

i=1

where we have introduced {x;}Y, = {¢, (y(w) — 9)}¥,. Out of this definition one may deduce the

following properties:
e r; are second order random variables
e E[x;|=0
o Elrirj]=0i#j€eN

Consequently, the covariance matrix of k is the identity matrix insuring the independence between the
vector components. Moreover, since the underlying random field y(w) is generally not gaussian, the &
variables are in general non Gaussian variables. Due to the symmetry and to the positiveness of the

covariance kernel, the eigenfunctions ¢; form a complete set and exhibit an orthogonality property

¢d" = Inxn, (2.57)

where Iy« n is the N x N identity matrix.

Regarding the eigenvalues {)\;}Y; they form a decreasing sequence of positive values conventionally
ordered as follows: A1 > Ay > A3 > ... — 0. Moreover, with the additional assumption of mean-square
continuity of the random field, this sequence is convergent. From these assertion one may prove that the
Karhunen Loéve expansion is unique.

In the following we show that the Karhunen Loéve expansion is optimal in the mean square sense, i.e
increasing the truncation the order of the expansion reduces the total mean square error.

Let us first introduce the following additional notations:
- Let n < N and let us consider {¢}"_; the n first eigenvectors, we denote them ¢,,

- Let Y = {y(w1),...,y(ws)} and

S
-C=> W -9 -y =YY"

=1
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A truncated expansion yXM(w) of y(w) is readily

Yy (w) =y + ¢, 0] (y(w) — 7). (2.58)

The truncation error e is given by:

S
e=>lylw) — y*"(wi)|
i=1
) . T . .
= (v -5-0.8/ 0" -9) (v -7-¢0/ 4" -9)

S
=3 -9~ $,9)) (U~ 6,9y ~p)

Thus when increasing the order of the expansion one automatically reduces the total mean square

error. In practice one truncates the expansion to a finite number of summands leading to :

n

Yy(w) =gw) + Y piri(w) (2.59)

i=1

n
21 A

N .

=1

The truncated order may be chosen such that for some n < N, is closed enough to one.

Reduced PCE expansion Let the random n variables x; be collected in to a random vector « with

value in R™ and let us approximate them using a PCE of order P and dimension n:

"{j(’Y): Z 'YaHa(g) (2.60)

a,|al=1

M
where |a| = Zaj.
j=1

Injecting this reduced expansion into the KL decomposition of the field y, one obtains:
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n P
yw) =g+ | Y YeaHa () | & (2.61)
i=1 a;,la;]=1

We note that £ is valued in R™ where n is chosen sufficiently large in order to limit the accuracy loss

due to the dimension reduction process.

2.2.4 On the limitation of Wiener Hermite PCE for non Gaussian probability

measure
2.2.4.1 Convergence for non Gaussian random variable

According to the Cameron Martin theorem, the PCE converges in a mean square sense for £2 random
variables and stationary stochastic processes. However, as only a few terms of the PCE are retained
in many applications this statement is sometimes irrelevant. [KLOO] particularly shows on analytical
random non Gaussian variables that when increasing the number of terms of the PCE, some metrics
are systematically improved: among them, the mean square accuracy, the relative error accuracy, the
probability of the PCE approximation of taking non physical values, the probability that the PCE is
equal in probability to the true function, the difference between the tails of the true function and the
PCE to the upper 1% fractile, the relative errors in variance and kurtosis. When increasing the number
of terms all the considered metrics are improved in a monotonic way with different convergence rate,
some of them being highlighting particularly slow convergence rates.

Considering the difference between the tails of the true function and the PCE to the upper 1% fractile,
in some cases non monotonic convergence are observed: for some non-gaussian random variables increasing
the number of terms may not improve the distribution tails making the use of the PCE approaches risky
for reliability analysis. Moreover, the authors in [FGO07] provide mathematical proofs showing that higher-
order statistical moments (i.e., greater than two) computed using homogeneous hermitian PCE may not
always converge with the number of terms in the Hermite-PCE series. For example, it is shown that the
third absolute moment of the PC approximation for a lognormal random variable does converge, while
moments of order four and higher for uniform random variables do not converge. It has been previously
demonstrated through numerical study in [FJG04]) who proved that a lack of convergence in the higher-
order moments can have a profound effect on the rate of convergence of the tails of the distribution of

the PC approximation.

2.2.4.2 On the balance between computational costs and accuracy

The highest challenge consists then in the computation of the PCE coefficients. One may then have to

face many different problems:

e in high dimension, the number of terms to compute increases exponentially with the number of
variables and with the order of the PCE which may in some cases improve some metrics. This
problematic is called the “curse of dimensionality”. To tackle this issue, a special care has to be

simulatneously given to the reduction of the number of calls of the exact model in order to compute
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a fixed number of coeflicient, and to adapt the polynomial basis in order to only capture the basis

elements the most significant with regards to the stochastic function to be expanded.

e limited set of data or erroneous set of data introduces [RHB04] its own type of uncertainties. It is
then of paramount importance to build a PCE with regards to the data at hand and to be able to

evaluate the influence of missing and/or erroneous data on the PCE prediction capability.

2.2.5 PCE for independent non Gaussian probability measure
2.2.5.1 Variable transformation approach

It is possible to put into conformity a physical variable with a normal variable by an adequate transforma-
tion called Gaussian anamorphosis (or normal score transformation) [Wac96] or approximate parametric

transformation [DM96] but this usually decreases the convergence rate of the expansion [XK03a, XK02a].

2.2.5.2 Generalized PCE

The convergence rate (with the Wiener associated measure) is optimal (exponential) for gaussian process
only and degenerates when the probability density function describing the process goes away from the
Gaussian distribution. To address this limitation, the authors in [XK02b| and [XLSKO02| propose a
generalization of the classical PCE. The generalized Polynomial Chaos Expansion (gPCE) has become
one of the mostly used metamodel in order to perform UQ. It extends the Wiener-Hermite PCE to a finite
set of non gaussian field replacing the Hermite polynomials by more appropriate orthogonal polynomials
(with respect of the corresponding measures, see table 2.2.2.2 for correspondence between orthogonal
polynomial and associated measures). In a set of papers the authors [XLSK03, XK03a, XK03b, Xiu04,
XHO05, Xiu07a, Xiu09a, Xiu09b], showed (without providing mathematical proofs) that in many cases a
higher convergence rate may be obtained using the orthogonal polynomials of the Askey-scheme in lieu
of the Hermite polynomial.

However, for these generalized polynomial basis, despite the demonstration of their efficiency in many
cases no proof of convergence has been established until very recently. The authors in [EMSU12]| notably
show that an arbitrary random variable with finite variance may be expanded in generalized polyno-
mial chaos expansions if the underlying probability measure is uniquely determined by its moment and

continuous giving by the way the missing theoretical insight to the gPC.

2.2.5.3 arbitrary PCE (aPCE)

Finally, arbitrary Polynomial Chaos expansion (aPC) [ON12, Rie23] proposed the construction of a PCE
basis using only the statistical moments of the random variable computed from the data at hand. It
shows that the construction of a polynomial basis of degree d needs the knowledge of a finite number
(2d) of the statistical moments of the continuous random variable to be expanded without requiring
any knowledge of a probability density function. The degree of the expansion is also required to be not
greater than the number of available sampling points. The stochastic analysis is handled using only
the data at hand, hence avoiding the subjective association of a parametric probability function to the

limited set of data. The complexity of the stochastic analysis is thus aligned with the reliability and
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the detail level of the statistical information at hand. However, when limited or erroneous data sets are
available epistemic uncertainties are introduced in the model. The proposed methodology does not offer
any intrinsic property in order to assess the impact of these kind of uncertainties. External methods to
assess their impact are then proposed by the authors such as jacknife and bootstrap. Finally, the authors
highlight an improved convergence rate of this approach with regards to the gPC approach on the same
limited set of data, but no convergence proof of such an approach has been provided yet. At the current
state of the art, no work has been proposed yet in order to extend the aPC technique for correlated

random variable.

2.2.5.4 Multi-Element Generalized PCE

The previously proposed generalizations, the Hilbertian basis used for the projection of the random field
over the whole stochastic space is made of continuous polynomial functions: they do not allow to treat
non continuous probability density function. To address this limitation, the authors in [WKO05, WKO06a,
WKO06c, WKO06b| introduced Multi-Element generalized Polynomial Chaos Expansion (MEgPC) as an
extension of the gPC dedicated to the assessment of non continuous probability density function. It is
based on a decomposition of the random space into local elements, and subsequently implements gPC
locally within the individual elements. An error control has been developed for the ME-gPC in [WK09].

This methodology shows its limitation in high dimension when no other solution may exists in order

to build a partition of the stochastic space.

2.2.6 Computing the PCE coefficients in adequacy with computational ressources

Another well addressed limitation of the PCEs (Hermite, generalized, or arbitrary) appears when the
stochastic dimension increases. As shown by Eq. 2.48, when the dimension increases the number of
terms in the PCE increases exponentially and may rapidly lead to a situation where the construction of
the PCE metamodel itself may become too computationally expensive. This situation is often referred
to as an aspect of the “curse of dimensionality”. To circumvent this curse, a handfull of methodologies
are proposed in the literature proposing to retain only the number of polynomial in the expansion which

are significant to describe the response variability.

2.2.6.1 Low rank index set truncation

The most intuitive and direct approach relies on the “sparsity of effects principle”. It states that a
system is usually dominated by main effects and low-order interactions. @-norm generalizes the classical
truncation scheme by varying 0 < ¢ < 1 [BS08a|. Fig.2.3 illustrates a typical truncated index set different
for ¢ = 0.6 and a 7** order 2-variate PCE.

39



2.2.  Spectral representation of stochastic field through Polynomial Chaos FExpansion

g Active polynomial: |
Non-Active polynomial:00
O

o Polynomial degree in &)

0 Polynomial degree in &1
(a) ¢g=0.6

Figure 2.3: Ilustration of @—norm truncation with different values of the truncation parameter g for a

7t order PCE

The set of active polynomials in the PCE decomposition is decreased when ¢ decreases. Fig.2.4(a)
illustrates the evolution of the number of 2-variate polynomial terms in linear scale against ¢ values, and

Fig.2.4(b) shows it for an 8-variate polynomial in log scale.
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Figure 2.4: Number of polynomials terms in g-truncated PCE with regards to the ¢ truncation parameter

for 2 and 8 variables

Having performed this a priori truncation scheme, the PCE coefficients may then be computed using
either a projection scheme exploiting the orthogonality of the PCE basis, or using a collocation scheme.
The cost reduction is done using so called “sparse approaches” were the sparsity either characterizes the
Design of Experiment (DoE) used to compute the projection coordinates of the random data on the

orthogonal polynomial basis (PCE coefficients), or the polynomial basis itself.

2.2.6.2 Adressing the curse of dimensionality using sparse approaches

Non-intrusive spectral projection The projection method uses the orthogonality property of the
polynomial basis elements on the Hilbert space of finite variance random variables, {Hqa(§)}|a|<p to

compute the coefficients of the expansion {va }|a|<p:
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_<pHa0)> fo vOHKOUEE  Ely()Ha()
T CHal) Ha() > Jon Hal€PHa(€)d€ — B[]

Each tensor product involves the computation of a multi-dimensional integral over the support range

(2.62)

of the multivariate probability measure. Let us assume that the random variables € = {&1,...,&\} are
all independent standard Gaussian random variables, hence with Hf\il @(&) = ®(€) is a M-multivariate
standardized Gaussian probability density function obtained from the product of the M one-dimensional
standardized Gaussian probability density function.

The integral equation on the denominator is known and easy to compute in the Hermitian case:

EMHZ] = <Hg,Hy>
— [ H@Ha(e)de

I
T T

M
/: HHS‘J (&)e(61) .- p(Enr)déa - . - A (2.63)
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Only the integral equation on the numerator is still to be computed

|, vea(e)a (2.64)

The key point is to choose the collocation points. In one dimension the choice is straight forward. A
one dimensional quadrature rule is aimed at approximating an integrand of the form / y(&)p(&)dE by a
finite summand number of S terms composed by the product of “weights” {ws, ..., ws} and of evaluations

of the output function y(&) at some quadrature abscissas {€(1), ... ¢5)} € R,

s
Uy) => y(Ew; (2.65)

i=1
For example the Gaussian Quadrature rule abscissas are composed of the zeros of the polynomials
which are orthogonal to the probability density weighting function and referred in the Wiener-Askey

scheme. Numerous studies show that the Gaussian quadrature rule is usually the best choice.

The tensor product of one dimensional quadrature rule generalizes this approach in higher dimension.
Let &€ = {&1,...,&m ), be a M dimensional vector and 7 € {1,..., M} an index referring to the variables
dimensions. For each dimension i, let {fi(l), . ,flg"”)} be a sequence of abscissas for quadrature on R.

For f € C°(R) and n = 1 let us introduce a sequence of one dimensional quadrature operators.

Uity) = 3 yl€hu (2.66)
j=1
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with m; € N. The Gauss quadrature method allows to compute multivariate integrals by transforming

it into a weighted sum. In the M-dimension case such a weighted sum is written:

K K
JIGLAGLICIIED D) SRR (267
RM kjl k‘M
where {wyg, ... wk,, } and {&k,, - . ., &k, + are respectively the integration weights and integration points.

The integration order K in each direction is assessed by considering the following assertion: if the response
y(&) was polynomial of order p the terms to be integrated (y;£)¥,(€)) would be of maximal order 2p and
a K = p+ 1 order integration scheme would give the exact solution. The integration weights and points
are computed according to the probabilistic measure considered. In this context for each direction, the

integration weights are computed in the following way:

< Hp,H >
Wy =

" H (&) Hp-1 (&) (2.68)

with Hj, the &*" order mono-variate Hermitian polynomial.

Considering now the integration points, it is shown that they have to be taken as the roots of the
maximal possible order (2p) monomial Hermitian polynomial appearing in the terms to be integrated.

This approach has been used in a number of recent papers notably [GS93, MH03, MK05, XK03a| and
some investigations towards an error estimation has been analyzed in [BNT07].

The main limitation of this approach is the exponential growth of the computational cost with the
number of variables. If s collocation points are chosen in each of M-dimension, the number of total
calls to the exact model is S = sM. Realizing this number of simulations becomes rapidly unfeasible
particularly when high computational efforts are demanded for one evaluation of y(£) and thus limit the

use of the tensor product of integration rules to lower dimensions.

Sparse approaches based on Smolyak’s algorithm In projection based approaches, the chal-
lenge consists in computing at low computational costs the integral Eq.2.64 when the number of random
variables become moderately large. Smolyak [?] proposes to consider sparse tensor product of quadrature
rules.

The Smolyak sparse grid quadrature rule is aimed at drastically reducing the number of collocation
points while preserving a high level of accuracy. It consists in tensor product of quadrature rules retaining
only those where a small number of points are used by the following rules:

For 4% = 0 and for i > 1, and || =41 + ...,4,, the Smolyak quadrature formula is defined by:

Aw,n)= > (A"®...0AM) (2.69)
2| <w+n
where
A =u' -yt (2.70)
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which may be equivalently written as:
. —1 . .
Awn) = Y (~pwtnh ( " ' ) U@ ...oU™) (2.71)
w+1<|i|<w+n w+n— |

For each level index ¢, the number of points considered in the one dimensional quadrature is ruled by

a growth function which may be linear or non linear:

1li=1
Clenshaw-Curtis rules m = , (2.72)
27 1> 1
Gauss-Patterson rules m = 2° — 1, (2.73)
Gausisan rules m = 27 — 1. (2.74)

As an extension of this idea, [CEP12] re-examine the Smolyak’s algorithm in order to reconstruct
the coeflicients that naturally corresponds to the sparse grid integration rule. The number of terms
in the obtained expansion is consistent with the number of points in the sparse grid integration rule.
The key point of the proposed approach is to separately compute the coefficients of the tensor product
polynomial expansion for each tensor grid in the sparse grid. Then, the linear combination of the tensor
weight is used to linearly combine the coefficients of each tensor expansion. This method produces a
pointwise equivalent polynomial surrogate to the one constructed from a linear combination of tensor

product Lagrange polynomial.

Cubature rules Cubature rules are specifically adapted to the computation of integrand in high
dimension. As in Eq.2.66 they aim at transforming a multi-dimensional integral in a weighted sum,
without though using the tensor structure of the multivariate stochastic space. An extensive review of
cubature rules may be found in [Coo03, Hab70]. Cubature rules are characterized by a degree “d” for
which the equation 2.66 is exact if the integrand is any multi-variate polynomials of degree at most d but
not d+ 1. As an example, a set of d = 2 cubature rule discussed in [Xiu07b] are generalized for arbitrary
integration domain with arbitrary probability measures. Due to the excellent consistency between the
number of polynomials in the expansion and the number of required terms, these methods may be highly
efficient for smooth (the integration degree remains quite low) high dimensional problems. However these
cubature rules may only be built using homogeneous random variables. Moreover, the interpolation
accuracy can not systematically be reduced. These limiting assumptions make them superseded in the

literature and sparse grid integration rules are preferred.
Regression approach to compute PCE parameters
Classical Collocation Approach Another scheme referred as collocation (or regression scheme)

consists in performing least squares regression on the polynomial chaos coefficients. For each design point

x, a set of S scattered data in the standardized random variable space E = {5(1), . ,S(S)} are sampled.
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Then on each of these points the mechanical model (high fidelity simulations) PCE coefficients v are

obtained by minimizing the least square residual €y g

)] [HmE®) - mLED] (W) |

€Ls = : - : : : . (2.75)
y(ws) Hi(¢®) o )] 1y

It has to be noticed that the results issued from the collocation method is quite sensible to the samples

configuration of DOE points: for different sampling, different accuracies on the output can be obtained.

Moreover, the number of sampling points taken to solve the system, also influences the accuracy on the

outputs. An empirical rule shows that the number of numerical experiments Q) giving the best accuracy
has to be chosen such as Q ~ (M — 1) x P ([BSLO6b]).

Improved Collocation method Collocation methods can be improved by performing a smarter
sampling of the collocation points [BSL06a|. Another alternative for the choice of the collocation points

consists in constructing them from the roots of the P + 1"

order mono-variate Hermitian polynomial,
where P is the maximal order of the polynomial chaos. Having constructed the M-uplets formed by all
the possible combinations of the P + 1 roots for each stochastic variables &, only P of them are chosen
to solve the system. As £ follows a multi-normal standardized gaussian distribution, the P M-uplets
retained are those with the smallest norm . The number of optimal roots to consider in each direction
is an open research issue, but the results by Berveiller and al. suggest that this collocation approach
provide a number of collocation point which is more consistent with the number of terms in the PCE

than the classical one.

Sparse approaches based on model selection techniques Another method proposed by the au-
thors in [BS08b, BS, BS11] uses model selection techniques (Least Angle Regressions schemes [EHJT04a,
EHJT04b, HTF09, HCMF08]) to efficiently select the most relevant polynomial basis elements of the full
polynomial chaos expansion. The combination of these methods are particularly interesting since they
may be use to build iteratively a sparse polynomial chaos metamodel using a small number approximation.
By “small”; the authors the authors mean not greater than the number of terms in the expansion, or even
possibly significantly smaller. The selection of the most "relevant" polynomials coefficients are performed
using statistical correlation measures between the current models and the exact models evaluated on a
reference population of small size. The authors also build an adaptive algorithm to stop adding terms in
the polynomial expansion when overfitting is detected. This algorithm is applied to a rigid frame with 21
stochastic variables. The LARS adaptive algorithm is used to build a sparse polynomial representation
of the displacement of the structure. [HCMFO0§]

2.2.6.3 Adressing the limited number and erroneous training data

An alternative approach to compute the PCE coefficients, is to characterize them as a random variables.
Some approaches have been developed in very recent years in the literature tackling this problem most
of the time in an intrusive manner. A very interesting feature of this proposed approach is that they set

the computation of the PCE coefficients as a stochastic inverse problem. The coefficients of the PCE are
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seen as random variables. Following the same idea as for aPC, classical direct methods for (maximum
likelihood, maximum entropy, Bayes’ theorem) are applied in order to assess the most probable values of
these coefficients with regards to the data at hand. This approach has been investigated in the framework
of stochastic inverse problem where the characteristics of random fields have to be identified using some
of their realizations. Most of the time the complexity of the random data of interest is reduced using the

KL decomposition:

y(w) = Z K (w) ;. (2.76)

The random variables kK = {k1,...,K,} are then expanded onto a PCE leading to the following
approximation:
n P
Yy =g+> | D YaVald) | bi (2.77)
i=1 \ay,|la;|=1

The coefficients to be identified and seen as random variables are the I' = {7} ,. In a set of papers,
[DGST05b, DGS06, DSG106, DSG07] investigate the use of the maximum likelihood in order to identify
the coefficients T" of the reduced PCE expansion . The likelihood function is then written as a function

of the coefficients: v

£(r) = [[pe(x|r) (2.78)

i=1

where T' = {~,,, |a| < ¢}. Then identifying the « set of coefficients lead to the maximization of L(=):

' = argr;lax L(T). (2.79)
The authors in [DGS'05b| propose the use of the characteristic function to describe each probability
density function. Such a methodology may be costly in high dimension and is not always applicable. In
a general way, the computation of the probabilities involve Monte Carlo simulations, thus high computa-
tional costs. Moreover, another issue consists in performing efficiently the optimization problem on the
likelihood function. The authors in [PSBP07, PFS10, BSS07| specially address these issues.
To circumvent this issue, an alternative method has been proposed quite recently and encounter a
growing success. It consists in considering the Bayesian approach in order to estimate the posterior

probability of the coefficients knowing some evaluation of the x variables. The Bayes’ rule is used:

~ ply)py(v)
plly) = [ p(y|v)p(7)dy (2.80)
p(vly) o< p(ylv)p~(7) (2.81)

where p(v|y) is the posterior distribution of the parameters values (obtained after having observed
the data), p(y|vy) = L(7y) is the likelihood function and p~(7) is the prior probability density function
(obtained before having observed the data) of the parameters values.

The full characterization of the posterior probability density function allows to investigate the impact

of data limitations associated with the calibration of parameters on the overall predictive accuracy of the
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PCE. Moreover, the Gaussian variables of the PC basis may be seen as the part of the approximation
modeling the aleatory uncertainty, as the random PC coeflicients represent the epistemic uncertainty.

If no information is available on the set of « coefficients, the prior distribution p~ () a non-informative
probability distribution [AGS10] may be arbitrary defined. As usual, the likelihood

n

L) =[] pe(cP]y) (2.82)

Jj=1

may be performed using Monte Carlo simulation or more efficiently using the kernel density method
[Sco09]. This framework has firstly been proposed in [GD06] and further developed in [AGS10, MDMV12,
BSS10].

2.2.6.4 Adressing simultaneously the two problematics

Finally, [Soil0b, SD10] proposes a general framework based on the stochastic identification of the PCE
coefficients of a reduced random field expansion aiming at extending the originally proposed approach
to high-dimension (several millions of coefficients) polynomial chaos expansions with random coefficients
for non-Gaussian tensor-valued random fields using partial and limited experimental data. The proposed

methodology consists in the following steps:

e introducing a family of prior probability models,

e identifying an optimal prior model in the constructed family using the experimental data,

e constructing a statistical reduced order optimal prior model,

e constructing the polynomial chaos expansion with deterministic vector-valued coefficients of the
reduced order optimal prior model and finally,

e constructing the probability distribution of random coefficients of the polynomial chaos expansion

and identifying the parameters using experimental data.

2.2.7 Why is PCE efficient to perform UQ analysis?
2.2.7.1 PCE for robust design

Having computed the set of PC coefficients, a number of convenient analytical features allows to make
the use of these techniques particularly attractive for global and local sensitivity analysis, and design
under uncertainty in a general way. In fact, the analytical moments of the responses may be obtained in

closed form:

Eyw)] = Y EbheHa(©)] = T

>lelsr (2.83)
@] = Y, EheHa@P -EyW@)® = > 2ZEM]

olal<P olaf<P

Local sensitivity analysis Introducing non probabilistic variables such as design variable for example

gives the following expression:
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Y&~ D valr)Half) (2.84)

ola|<P

The sensitivity of the mean and variance responses may be obtained:

du d
- = — 2.85
1 = g 0®) (2.85)
do? d 9
dr Z %Va(x) (2.86)
o,|a|<P
where %’ya is defined as (the theorem of uniform convergence being verified):
ey = ) T T 2.87
dz <HZ > (2.87)

Due to the independence property, the coefficients computed in the last equation may be interpreted
either as the nonprobabilistic sensitivities of the chaos coefficients for the response expansion, or as the
chaos coefficients of an expansion for the nonprobabilistic sensitivities of the response. The resulting
expansion are valid only for a particular set of nonprobabilistic variables and must be in a first approach
computed again each time the nonprobabilistic variable are modified.

Another alternative to compute local sensitivities consists in building the stochastic expansion over
both stochastic £ and deterministic « variables. Considering a bounded domain Zypper bound < T <

Tlower bound With no probabilistic content the PCE expansion then becomes:

y@,w)~ > YaHa(,€) (2.88)

o|laf<P

where ¥ may be built over the tensor product of optimal orthogonal polynomials with regards to the
probability measure for each component of & and by Legendre polynomial (orthogonal with respect to
the uniform distribution) for each component of @. In this case, the statistical moment of interest are

computed using the scalar product only on the probabilistic variables:

Elyle(z) = > taFeHalé )]
lelsr 2.89
Ple(@) = D Ee[Ui(€ )] — Eelyé, 2))? (2:59)
a,|a|<P

Considering this approach one advantage is that the obtained expansion is valid for the full nonproba-
bilistic variable range and the sensitivity of the statistical moment does not need the sensitivity of the
response to be computed. However, by adding another type of variable, the dimension of the PCE is

increased which makes its construction more computationally expensive.

2.2.7.2 PCE for sensitivity study

Global sensitivity analysis Recent work from [Sud08] and [CLMMO09] introduces the use of PCE to

perform global sensitivity analysis. Two types of methodologies are exposed in the literature.
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e The regression based methods based on a linear regression of the output random vector on the
output vector. Among these methodologies, one may count the Pearson correlation coefficient and
the Partial Correlation Coefficient. These are useful to quantify the effect of random input onto
the random output if the stochastic model is nearly linear, but fails when in most of the case when

the model is non linear.

e The variance based methodologies are more general. Broadly speaking they are based on a decom-

position of the variance of the output of interest into summands

First of all let us give an overview of the Sobol decomposition. We consider & = {&;,...,&m} €
RM M independent identically distributed random variables and y(£¢) an output function. The Sobol

decomposition of the y function is given by:

PORRG) = Y waléw) (2.90)

uC{1,2,..,M}

where u is a set of integers, &, = (& .,&,,) with s=card(u). This summand counts 2" ele-

wpr
ments. Each of the terms of this summand (except the mean value yo = y) verifies for any &, the
following property: [, yu(&,,)P(&i)dé; = 0 Yu > i which implies the orthogonality of the functions y,:
fQM Yu (&) Yo (&0)p(€)dE = 0,YVu # v and thus the uniqueness of the Sobol decomposition. Each Sobol

function y, may be computed according to:

ne) = [ O = 3 i) (291)

vEU

where £.,, denotes the & vector without the w components.

We denote yo the mean of the output y, V' the total variance of the output y,

V= [ yEp&)de ~ 5 (2.92)

RM

and V,, the conditional variances of the Sobol functions y,,.

%:/ﬂmeM& (2.93)

Thanks to the orthogonality of the decomposition, we have:

v=" Y W (2.94)

uC{L,2,...,M}
u#D

The Sobol sensitivity indices are then defined as:

Va
Su =2 2.95
% (2.95)
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with the following property:

Y V=V (2.96)

uC{l,2,..,M}
uD

S denotes the s-order sensitivity index where s=card(u) and measures the sensitivity of the variance
of y due only to the interactions of the variables &,. One may count 2™ — 1 sensitivity indices. As this
number may increase rapidly with the number of variable, one defined the total sensitivity indices S,
by:

S, =Y Su. (2.97)

udi
These express the total sensitivity of the variance of y due to the variable &; alone, and all its interaction
with the other variables.

To compute the Sobol indices sampling methods may be used but rapidly become unaffordable.
Moreover one may exhibit a straightforward relationship between the polynomial chaos coefficients and
the Sobol indices [Sud08]. In fact, due to the orthogonality property of the {¥ i’; _01 the total variance D
may be approximated by:

Ve [ renei—i= Y ipm (2.98)

o, |lal<P

The Sobol decomposition of y is approximated by the Sobol decomposition of y*©F. The elements

PCE PCE

Y, ~~ of the Sobol decomposition of y may be simply obtained by:

UL (&) = > vsHp(8) (2.99)
BEBu
where the selected indices are
Bu={B (L. PLHs(¢) = [[ H,s(6n). 0f > 0} (2.100)
i=1

The approximated conditional variances may then be expressed as:

V.= Y 3E[H}] (2.101)
peB.

and thus the sensitivity indices as:

8 2E(H?
Sy~ S, = M (2_102)

P
> 51 V3 E[HE]
2.2.7.3 PCE for reliability study

As mentioned earlier, the PCE is not of suitable used to approximate distribution tails and thus may
be adapted in order to compute low probability of failure. Different strategies have been adopted in
order to adapt the PCE to the computation of small probabilites. A first attempt has been proposed by
the authors in [Gha91, Gha99b] to sample the orthogonal residuals in order to improve the prediction
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accuracy of the distribution tails. As a first step [PWO07] proposes the use of an adapted PCE to the
computation of the failure probability. It defines two methodologies: a “shifted” PCE and a “windowed”
PCE inspired from the space discretization in ME-gPC.

2.2.8 An open issue: Extension to correlated non Gaussian random variables

The polynomial chaos expansion extends the random process of interest on a set of polynomials depending
on standards random variables. However the observed random variables (denoted &,,,) are usually not
standards and may be correlated. One may then transform the random variable into standard non
correlated random variables and apply the stochastic expansion into the transformed probability space.
Two alternatives are briefly formulated.

One alternative consists in numerically generating optimal orthogonal polynomials and to compute
their Gauss points and weights using one of the approaches described in the literature. These approaches
produce optimal orthogonal polynomials for an arbitrary probability density function, but a gap in theo-
retical advances stays wide open concerning the assessment of joint probability distributions of correlated
random variables with arbitrary probability density functions.

Another alternative consists in using an non-linear transformation in order to transform non-normal
correlated distributions on normal independent distributions. These transformations are usually non
linear. Among them one may count, the Nataf transformation, the Rosenblatt transformation, and the
Box-Cox transformation.

The input of the Nataf transformation are the marginal density functions and the correlation matrix, it
does not need the knowledge of the joint probability density function. The traditional Nataf distribution
may be applied if and only if the copula relative to the random variables &1, ..., &y, is normal. However,
a generalized Nataf transform has been defined and relax the condition on the copula to the elliptical
cases.

The Rosenblatt transformation does not require any condition on the copula type of the random
variables but requires the knowledge of the cumulative distribution of conditional random variables,
which is usually not provided. The (generalized-)Nataf transformation is more suitable for the common
case.

Finally a last alternative has been proposed by [SG04] to generalize the polynomial chaos expansion.
It proposes a theoretical insight to construct multivariate orthogonal basis when the £ variables are

dependent. In this case, £2(RM, dpgn) has no more a tensor product structure.

2.3 Conclusion

This chapter offered an overview of the different categories of approaches developed in the literature in
order to quantify the impact of uncertainties. A special focus has been provided on the efficient use of the
Polynomial Chaos Expansion in Uncertainty Quantification in a probabilistic and non-intrusive frame-
work. Since the preliminary work of Wiener on the homogenous Hermite PCE many developments have
been made in order to alleviate some of its initial limitations. (Multi-Element) generalized Polynomial
Chaos and arbitrary Polynomial Chaos Expansion mainly addresses the issue of the approximation of

non smooth stochastic behaviors exploiting the flexibility in the choice of the polynomial basis. Sparse
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2.8. Conclusion

approaches based on adaptive strategies investigates the computational cost of the construction of the
PCE in high dimensional space aiming at circumventing the curse of dimensionality. Based on the spar-
sity of effect principle, these strategies aimed at identifying in the expansion terms that are the most
significant with regards to the response variability. Finally, an emerging set of methodologies consists in
considering the coefficients of the PCE themselves as random variable and to identify them by solving
an inverse stochastic problem. These approaches notably allows to quantify the impact of missing data
on the accuracy of the produced expansion. Significant contributions within this approach also allows to
tackle high dimensional problems. This chapter also points out the limitations of these methodologies
opening the way to future work. An open issue has still to be addressed concerning the spectral repre-
sentation of correlated random variables. A way to deal with this limitation would be to consider the

tensor decomposition of high-dimensional stochastic fields [GNLC13].
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Chapter 3

A physics-based metamodel approach

for springback variability assessment

In this chapter, we address the stochastic analysis of the U-shaped deep drawing process of a metal sheet
using a regression based Polynomial Chaos approach. In this context, very small perturbations of the
input variables provide the regression points used to build the PCE. We show that a careful attention
has to be paid to the resolution ® of the “high-fidelity” model used to produce those points. In the
following, the resolution of the model is of the same order of magnitude than the range of variation of the
stochastic variable. We show in this case, that one possible solution to perform the stochastic analysis,
consists in defining an intermediate surrogate model. We here consider a physics based metamodel which
highlights two advantages. The first one, is to improve the model resolution, and the second one, is to be
less computationally costly. This model may then be used in order to build a Polynomial Chaos of the

response.

5The resolution of a model has been defined on p.8.
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Abstract In this study, we show that stochastic analysis of
metal forming process requires both a high precision and
low cost numerical models in order to take into account very
small perturbations on inputs (physical as well as process
parameters) and to allow for numerous repeated analysis in
a reasonable time. To this end, an original semi-analytical
model dedicated to plain strain deep drawing based on a
Bending-Under-Tension numerical model (B-U-T model) is
used to accurately predict the influence of small random per-
turbations around a nominal solution estimated with a full
scale Finite Element Model (FEM). We introduce a custom
sparse variant of the Polynomial Chaos Expansion (PCE) to
model the propagation of uncertainties through this model
at low computational cost. Next, we apply this methodol-
ogy to the deep drawing process of U-shaped metal sheet
considering up to 8 random variables.

Keywords Springback variability assessment - Sparse
polynomial chaos expansion - Semi-analytical
bending-under-tension model

Introduction
In order to accurately assess the springback variability of

a formed metal sheet one has to take into account uncer-
tainties linked with the deep drawing process (blank-holder
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forces, tool radius tolerances, punch speed, etc.) as well as
those linked with the physical model parameters (material
properties, thickness of the metal sheet, etc.). The assess-
ment of the final springback shape variability relies on the
combination of two numerical tools: a numerical model
of the deep drawing process and a stochastic process to
propagate the uncertainties into this model.

In the context of variability study, the numerical model
has to be computed for very small variations of the input
parameters. Comparing the model error with the variation
magnitude of the output function is of paramount impor-
tance to ensure the validity of the variability study. The
Finite Element Method (FEM) is a standard tool to con-
struct the numerical model which is used consequently to
perform sensitivity analysis on springback of sheet metal
forming [1] or to perform reliability analysis (coupled to
classical reliability methodology) of the deep drawing pro-
cess [2]. However, the FEM shows important limitations
regarding the variability issues. First of all, to model the
highly non-linear phenomena involved (large strains, plas-
ticity, frictional contact, etc.) with a high sufficient accuracy
for small variations of the input parameters, the model has
to be refined in every direction (decreasing the mesh size
while preserving a good enough aspect ratio and increas-
ing the number of integration points). This rapidly leads
to unaffordable computational costs, specially when a high
number of calls is needed. To circumvent this cost issue,
alternative approaches have been proposed: in a sensibility
analysis context using an analytical model of the springback
[3]; in an optimization context using a “one step” inverse
approach for the analysis and optimum process design of
deep drawn industrial metal part [4], this model is also
used in [5] to train a Moving Least Square surrogate to
efficiently perform the optimization. A second limitation is
that FEM generates intrinsic errors such as a discretization

@ Springer
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error (due to mesh size) and computational errors (round-
off, quadrature, ...) [6] (page 93). Contact description and
through-thickness integration may play a leading role [7].

Common computational methods propagate the uncer-
tainties defined on the random parameters to the shape of the
formed metal sheet based on a sampling of the random input
parameters (Monte Carlo simulation, Importance Sampling,
etc.) and thus require a relatively high number of calls to
the underlying computational model. The authors in [3] use
Monte Carlo simulations to perform a sensitivity analysis
of the springback with regards to process parameters, [2]
and [8] use FORM methodology coupled with an enhanced
adaptive Monte Carlo methodology to assess the reliability
of the deep drawing process. The use of stochastic meta-
models combined with advanced sampling methods offers
an alternative to the crude sampling methods. The authors
in [9] proposes the use of linear and quadratic response sur-
faces combined with Monte Carlo Simulation to perform
the reliability assessment of sheet metal forming process. In
[10], a second order Polynomial Chaos Expansion (PCE) is
used as a stochastic response surface to assess the reliability
of the formed metal sheet with regards to tolerance criteria.
Howewer, in these studies, the number of random variables
taken into account by the stochastic response surface is
limited.

In this paper, we propose an original two-pronged
approach to accurately propagate the uncertainties into a
“high resolution” model at low computational cost. Our
approach is based on a combination of a stochastic surrogate
(PCE) and a physics-based Reduced Order Model (ROM).
We demonstrate, that in the case of variability study, as the
order of magnitude of the variation range decreases the full
scale model prediction becomes unstable. We investigate
then regularization features of a “high resolution” physics
based ROM, allowing us to reach numerical stability for
smaller variations of the input variables. Then, a stochastic
surrogate model is trained on the full parameter variation
range and it is then used to perform the variability study at
low computational cost.

In the second section, we introduce the Polynomial
Chaos Expansion (PCE) as a stochastic response surface
for the uncertainty propagation. We highlight the need of a
numerical model characterized by a high precision for small
perturbations of the input variables as well as low com-
putational cost. The third section quantifies the limitations
of the FEM modeling with regards to the variability prob-
lematic by considering “very” small variations of the input
parameters around a nominal value. The two following sec-
tions introduce the ingredients of the proposed approach: the
semi-analytical deep drawing model based on a plain strain
Bending-Under-Tension model (denoted semi-analytical B-
U-T in the sequel) and the sparse custom version of the
PCE (inspired from [11]) for an enhanced accuracy of the
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variability study at low computational cost. The fourth sec-
tion introduces the semi-analytical B-U-T and shows how
it allows to alleviate the FEM limitations by side stepping
the main numerical noise sources (contact description and
through-thickness integration). The fifth section discusses
a custom sparse version of the PCE, putting into evidence
the need to create a sparse polynomial chaos expansion
when the number of random variables increases. Finally,
the sixth section of the paper illustrates the methodology
on the deep drawing process of U-shaped metal sheet with
8 random variables to assess the variability of the spring-
back shape parameters considering a relatively large number
of random variables chosen among the most influential
ones [1, 10].

Assessing the springback variability using polynomial
chaos expansion

The purpose of this paragraph is to provide the necessary
evidence for the following rather than giving a compre-
hensive introduction to the PCE which may be found in
[12, 13].

The PCE is a stochastic metamodel, that is intended to
give an intrinsic representation of the stochastic behavior of
a function y (scalar random variable) that is defined as a
function of an input random vector § = {&1, &, ..., &y}
with M coordinates and with prescribed probability density
function f;(§) [14]. Its accuracy to predict the variabil-
ity of the scalar output function y highly depends on the
underlying “high fidelity model”.

Building the multi-variate Hermitian PCE

Assuming that & has independent Gaussian components and
that y is a second order random variable (E[y?] < 00), then
according to the Cameron Martin theorem, generalized in
M dimensions [15] an exact PCE of y is given by

0

YE =) vV, (1)
j=0

where {¥;(§), j = 0,1, ..., oo} are the multivariate poly-

nomials orthogonal with respect to the natural inner product

M
<w v o= [wewe[] e @)
i=1

with fz (&) the marginal distribution of the i’ " component
of the random vector &.

For M independent Gaussian random variables, multi-
variate Hermitian polynomials exhibit the orthogonality
property. Given a degree N, the multi-variate set of MY +!
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Hermitian polynomials are built using the tensor product
of mono-variate Hermitian polynomials. Practically, only a
finite P < M™T! number of terms is retained yielding to
the reduced expansion

P-1

YE YY), 3)
j=0

where

p_ (V4 M) @
NIM!

In order to properly interpret the sparse PCE algorithm,
an appropriate scheme for numbering the multi-variate poly-
nomials of degree d < N needs to be introduced. The
scheme used is illustrated in Table 1 on an example of a 3™
order Hermitian multi-variate PCE with 2 random variables

& and &;.
Computing the coefficients of the multi-variate PCE

The PCE accuracy highly depends on the precise com-
putation of its P coefficients. An intrusive Galerkin type
approach has been first proposed by [14]. Projections based
non-intrusive methods take benefit from the orthogonal
properties of the multivariate polynomials of the expansion.
Equivalent stochastic collocation is based on a Lagrangian
interpolation in the stochastic space [16]. These methods are
the most accurate but also become rapidly unaffordable in
relatievly high dimensions.

The regression based approach (emphasized in this
paper) consists in finding the best set of PCE coefficients

Y = [0, - .., ¥p—1] by minimizing the residual error in the
least square sense:

y =argmin(|y€) — ¥ @&y |*) (5)
yielding to

y=@¥EH T EYE) (©6)

Table 1 Illustration of the numbering scheme used for a 3rd order
PCE with 2 random variables

Bi-variate monomials W (&1, &)

1 & & -1 £ —3&
&1 &6 g5 -1)
& 1 E-1&
£ —3&
Corresponding number of W
2 3 6

0
1
5 8
9

where
.
y = [ED )] )
Yoty ..o wp_i(gM)
v = : : (8)

WoED) . wp_ (D)

with §(i), i €{l,..., Q} representing Q > P samples of the
M dimensional random vector §. These samples are gener-
ated using a Q sized M dimensional standard normal LHS
sampling.

The optimal Q number of samples needed to assess the
coefficients with a good accuracy is still an open research
area, but an empirical rule proposes Q > (M — 1) x P
[17]. Once the set of P coefficients {yy, ..., yp — 1} has been
determined, one may compute the statistical moments of y
analytically avoiding Monte Carlo simulations. The first two
moments are given by:

E(v) =70 ©
P—1

o2() =Y E(v]) ] (10)
j=1

For an accurate assessment of the statistical moments, a
special attention has to be given to the computations of the
P coefficients (9, 10). Thus, according to Eq. 6, the under-
lying model has to be as accurate as possible. Moreover,
computing the whole set of coefficients may require a high
number of calls Q = (M —1) x P to the underlying model as
P (4) increases exponentially with the number of variables
M and the degree N.

In the following section we introduce a test case and
we quantify the precision requirements for the simulation
model. We show that using typical FEM simulations may
lead to inaccurate results for a reasonable computational
cost when small perturbations are involved.

Inpact of through-thickness integration
on the springback prediction

Test case

To illustrate the issue of model variability with regards
to small perturbations, we choose to model a 2D deep
drawn U-shaped metal sheet. The example used here corre-
sponds to the B3 benchmark test proposed in the conference
Numisheet 93 [18] (blank made of mild steel, blank holder
force = 2.45 kN). We propose here to use the legacy soft-
ware ABAQUS v6.10. The model we use is directly based
on the implemented example [19].

The Fig. 1 gives the overall geometrical configuration of
the deep drawing process.

@ Springer
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Fig. 1 Geometrical configuration of the modeled Numisheet’93
benchmark (values in mm)

‘ Blank
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The problem is symmetric (Fig. 1), thus only a half
structure is modeled using appropriate symmetry boundary
conditions. The blank is modeled using a single row of 175
first-order shell elements (S4R) with Simpson integration
rules (7 integration points across the thickness). As the prob-
lem is essentially in plane strain state (the width of the blank
is 35 mm and its thickness nominal value is 0.8 mm), cor-
responding boundary conditions are applied on each node.
The blank is made of mild steel modeled as an elastic-
plastic material. Isotropic elasticity and the Hill 48 [20]
anisotropic yield criterion for the plasticity are considered.
The following values are used:

— Young’s modulus: 206 GPa,

— Poisson’s ratio: 0.3,

— Yield strength: 167 MPa,

— Anisotropic yield criterion: ro9 = 1.79, r45 = 1.51,
roo = 2.27.

The tools (punch, blank holder and die) are modeled as
rigid body surfaces. The contact occurring during forming
phase is modeled using contact pairs.

The punch velocity is taken here as 15 m/s and its dis-
placement is s = 70 mm. The blank holder force is defined
as Fj, = 2.45 kN and a mass of 5 kg is attached.

The whole deep drawing process is simulated in two
steps. The forming phase is modeled using the common
dynamic explicit approach to solve the problem in a rea-
sonable computational time. During this period, the blank
holder force is applied with a smooth ramp to minimize the
inertia effect and the punch velocity using a triangle step
definition starting and ending with 0 velocity and reaching
the 15 m/s with the half run.

To investigate the sensitivity limit of this model, we
choose to uniformly vary the thickness of the blank from
0.7 mm to 0.9 mm with an 0.002 mm increment size. For
each thickness value the springback shape parameters, the
curvature p, the angles 81 and 8, are measured as shown in
Fig. 2.
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Fig. 2 Definition of springback parameters, p, 81 and

The results of the simulations are depicted in Fig. 3 for 7
integration points across the thickness.

The observed responses (Fig. 3(leff)) highlight numer-
ical instabilities for small variations (0.04 mm) of the
thickness parameter. A deeper insight into the sensibilities
(Fig. 3(right)) shows that the model may be used for thick-
ness variations up to an order of Ax &~ 10™>m which is
insufficient to perform a variability study. Moreover, to per-
form a variability study, an unaffordable number of calls to
the fine FEM model may be necessary.

Investigation on the numerical instability on FEM modeling

We model a section of the metal sheet submitted to a typical
2D deep drawing process undergoing bending-unbending
loading path and focus on the in-plane stress oy, distribution
across the thickness.

When increasing the number of integration points across
the thickness, the in-plane stress oy, profile through the
section reaches numerical convergence shown in figure
Fig. 4(left) when the number of integration points through
the section is increased from 2 to around 200 (Fig. 4(right)).
The convergence is assessed using the following mean
square error

Zilzl (Gi B o'imf)2
ZiI:l (Uiref)z ’

where [ is the number of integration points and oiref cor-
responds to the stress profile obtained with 200 integration
points through the section.

This conclusion is in conformity with [7] where adap-
tive integration was investigated reducing the number of
integration points (from 50 to 11). Moreover, among other
numerical instability sources one may identify the coarsity

Err = (11)
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Fig. 3 Numerical instability for 7 VI 1 T s vEveR
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of the mesh. To reach a higher accuracy, the mesh of the
FEM model has to be refined in every direction (preserving
the same aspect ratio). Another limitation to FEM simu-
lations of deep drawing process is contact modeling, also
known to induce a non negligible numerical noise and low
convergence rates. This leads to the conclusion that using
a full scale refined FEM model to perform the variability
study becomes rapidly unaffordable.

In the following two sections we successively describe
the two ingredients of the proposed two-pronged approach:
the semi-analytical B-U-T model (introduced in [21]) to
alleviate the main FEM limitations for small variations
of input parameters, and the sparse PCE to propagate the
uncertainties at low computational cost.

Fig. 4 Evolution of the stress
across the section for different 15X 10°
number of integration points
(thickness 0.8 mm)

A semi-analytical bending-under-tension model
for deep drawing applications

In this section, we describe the first ingredient of the two-
pronged approach, namely, the physics based reduced order
model. We choose a semi-analytical approach introduced
n [21] based on a B-U-T model, and highlight how it
decreases numerical instabilities while preserving a reason-
able precision and low computational costs.

Semi-analytical bending-under-tension model (B-U-T)

The semi-analytical B-U-T model considers the deep draw-
ing process of a 2D U-shaped metal sheet as a 2D plain

—_ — —
(=] (=] (= =
| | | S
w 8] — =l

Mean Square error

_
9
L

S
=3
(=)

50 200 300 400

Thickness deep (m)

Number of Gauss points
through the thickness
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Fig. 5 Finite element description of one slice of the metal sheet

strain Bending-Under-Tension (B-U-T) forming process
with negligible shear stress (the width of the sheet being
sufficiently large). It is based on a semi-analytical numeri-
cal approach which combined an analytical approach with
finite element modeling taking benefit from material laws
independence and avoiding time consuming and low con-
vergence issues such as contact modeling and high number
of degrees of freedom. This model may be constructed in
three steps [21]:

1. The first step consists in identifying a finite (usually
small) number of regions of the metal sheet with an
homogeneous loading state in the length direction. For
the U-shaped sheet (as shown in the Fig. 5(left)) 5
regions are identified. Knowing the behavior of a single
typical section of one of these regions is sufficient to
deduce the behavior of the whole region as the loading
state is supposed homogeneous in each region. This sec-
tion (or slice) may be modeled by a handful of 2D/3D
solid element or even a single shell element as shown in
Fig. 5.

2. The second step consists in defining the loading path
that the region is subjected to and to divide it into a
sequence of loading states. For each sequence, particu-
lar boundary conditions are automatically applied (the
reader is invited to refer to [21] for more details on the
boundary conditions for each loading state.).

Integration points

Plate /shell element

7 (f

Integration points
in the thickness
direction

3)

2D volume elements

3. Finally, in the last step the whole model is integrated
and the springback shape is reconstructed.

Assessment of the numerical noise in the springback shape
parameters

Considering the semi-analytical B-U-T model, only very
few finite elements are needed to model the deep drawing
and springback phases. Moreover, the contact modeling of
metal sheet with the punch and/or with the die does not
induce numerical noise: the contact is modeled using an
analytical uniform pressure applied on the lower or upper
side of each slice. In this semi-analytical model no friction
is directly applied, but its main effect, the induced tensile
force, is taken into account [21]. To highlight the influ-
ence of the through-thickness integration, we use the B-U-T
model with the configuration described in Table 2 and com-
pare the springback shape parameters obtained for small
variations of the thickness.

The same range of thickness values as in Fig. 3 is
considered. Four nodes plate elements model each slice
of the B-U-T model. Pig, Pso, Psoo plates use respec-
tively 10, 50, 400 integration points across the sections. As
shown in Fig. 6, the through-thickness integration noise is
non-negligible for the B-U-T model. For a large range of
variation, numerical instabilities may be observed using 10
integration points, and a smooth response may be observed

Table 2 Geometrical, material,

loading and contact parameter Geometry Material Loading Contact
of the U-shaped B-U-T model
Ly 300 mm E 70.5 GPa Fy 300 kN W 0.15
ho 0.8 mm v 0.342 K 60 mm
Wi 1 mm 0 2700 kg/m?
p 10 mm H 1.5 GPa
Wy 62 mm
rd 10 mm
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Fig. 6 Evolution of p, 81 and B, with regards to small thickness
variation for different numbers of through-thickness integration points

-0.05F

0.1

Ap(x) / A(x)

—0.15f

-0.2 i i i i i
10710 107 1078 1077 1070 107 107
A(x)

Fig. 7 Evolution of Ap/A(x) with regards to different order of
magnitude of thickness variation Ax, around the nominal value of
0.8 mm

using 50 and 400 integration points. When focusing to
a smaller range of variation a smooth response is only
observed with 400 integration points.

As only one slice is considered at a time, considering
as many integrations points through the sections becomes
computationally affordable on the contrary to a full FEM.
Moreover a variability study is possible for a variation
range [10™*; 10~7] m uncovered by the refined FEM model
(Fig. 7). We thus retain the B-U-T model to construct the
custom PCE surrogate introduced in the next section.

Sparse polynomial chaos expansion approach
using least angle regression stagewise algorithm

In this section, the second ingredient of the two-pronged
approach, namely, the sparse PCE is described. When using
the regression scheme (6) in a high dimensional space,
the computational cost to compute the full PCE rapidly
becomes unaffordable. Strategies to truncate the PCE are
needed in order to reduce the number of terms by retaining
the most significant ones (Sparsity of effect principle).

Some methods inspired from model selection schemes
have been proposed to create a sparse approximation of
the PCE [11]. Among them /1 penalization methods are the
most popular. A review of these methods may be found in
[22] and also in [23]. These studies highlight that among the
great number of methods, Least Angle Regression Stage-
wise (LARS) is the most efficient method [24].

We build here a custom algorithm based on the Least
Angle Regression Stagewise.

Let us first define the J"-sparse approximation of the
output function y by:

FhE =)y (12)
jeA

where A is a sparse index set with card(A4) = J and J <
P. Then A only contains the set of J indices taken among
(V;,jef0,..., P —1}}.

The J' residual vector is then defined as:

_ <J
rp=y—Y4 (13)
and the corresponding J™ correlation vector as
@ =v" (vy-¥) (14)
The proposed algorithm proceeds as follows:

Offline phase:

1 Build a stochastic design of experiments. Q samples
on the hypercube [0, 11 are performed using a “space
filling” Latin Hypercube Sampling. The corresponding
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normal standard realizations are then retrieved using an
iso-probabilist transformation (using the invert multi-
variate Gaussian PDF):

1 1 1
£D gD
2 2 2
£D (OO

E=(",... ") =

(00 @

At this stage, & is a M-dimensional standard gaus-
sian random variable: § € Ay (0, 1) represented by
Q samples. Finally, the small random variations of the
parameters are modeled by scaling each random vari-
able to the desired means . = [u1,..., un] and
standard deviations ¢ = [o7, ..., oy] according to the
probabilistic model (see Table 3 as an example). We
denote &, ,, the set of random variables matching the
probabilistic models requirements.

2 For each Q — sized sample {EELI’)U, R ELA'{,)} the cor-
responding evaluations of the “high fidelity” model are
stored in'y (7).

3 Choose an arbitrary N (high) degree PCE composed of
P orthogonal multivariate monomials {Wg, ¥Yp_1}. In
the case where independent random Gaussian variables
are considered as, multivariate Hermitian polynomials
satisfy the orthogonality property (2) with regards to

ﬁe—%étz,i = 1,....M.

Build the ¥ matrix (8) by evaluating each orthogonal

multivariate monomial {Wy, Wp_1} on the Q — sized

sampling {1, ..., £},

the measures f¢ (&) =

Online phase:

1 Initialize the coefficients yy, ..., yp—1 = 0 which sets
the current residual r equals to y obtained in the offline
phase.

Table 3 Stochastic input normal random variables for the springback
shape parameter study

Parameters Mean Std dev
Blank thickness 0.8 mm 3%
Young’s modulus 70.5 GPa 3%
Yield Strength 0.180 GPa 3%
Poisson’s ratio 0.342 3%
Friction coefficient 1.50e-1 3%
Radius of the punch 10 mm 3%
Radius of the matrix 10 mm 3%
Clamp force 600 kN 3%
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2 Compute the correlation vector ¢y between each ele-
ment of ¥ and y. Retain the predictor ¥ ;+ where j* =

argmax|¢o|. The model then becomes y = y;¥; =
T
}’(1)'/’-

3 Update yj to y; = y; + €, where €} is the LARS
step: at this step, another predictor ¥+ has as much
correlation with the current residual as does ¥« (see
[24] for numerical computations of €*). Add wl* to the
current basis: y = y*y* + "y = ya)w.

4 Update jointly y ) = {y;*, 1} following the direction
u() (lue)|l = 1) defined by the joint least-square coef-
ficient on the current residual: y ) = y ) + €5, X u(2).
At this step another predictor ¥ is found to have much
correlation with the current residual and is added to the
model.

5 Repeat step 4 until m = min(P; Q) predictors have
been entered or until the empirical error (15) has reached
the desired threshold.

Each step of the algorithm allows us to add one term to
the basis chosen according to its correlation with the current
residual. The best obtained model y 4+ is chosen to give a
low enough empirical error

E[(fa—1?]
o7

Once the best model is obtained, the sparse coefficients
values are computed according to Eq. 6. If the number Q
of available simulations is too low to reach the condition
Q > (M — 1) x P then the design of experiment may
be enriched and the previous algorithm run again. As all
computations are analytical, running the algorithm as many
times as necessary is considered to have a negligible cost.

The combination of LARS and PCE allows us to prop-
agate the uncertainties through the model at low computa-
tional costs. Nevertheless the accuracy of the results highly
depends on the accuracy of the “high fidelity” model which
has to be accurate for small random variations on the input
parameters.

Erremp = (15)

Ilustration of the two-pronged B-U-T/sparse PCE
approach

In this section, we combine the ingredients of the two-
pronged approach on the springback variability assessment
of a 2D deep drawn U-shaped metal sheet introduced in
section “Test case”. We demonstrate the validity of the pro-
posed approach firstly when a single random variable (blank
initial thickness) is considered (mono-variate case) and then
the whole probabilistic model is considered (multi-variate
case) in which the standard variation has been arbitrarily
fixed at 3 % of the mean value for each variable so that the
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variation of each variable implies a variation in the input
parameters with a comparable order of magnitude.

Mono-variate case using full PCE

As an introductory example, we consider the thickness as
the unique random normal variable (according to the first
line of Table 3) and use Hermitian PCE to assess the
stochastic behavior of the springback shape parameters p,
B1 and B;. As shown in Fig. 8, for each of these responses,
the convergence is reached for the mean and standard devi-
ation respectively for a PCE of order 5, 5 and 7. A 7t
order polynomial chaos expansion may be chosen for all
the responses. This expansion contains 8 terms and thus
Q = 56 calls to the model are needed to compute the whole
set of coefficients (6). Additionally, the Fig. 8 also com-
pares the values for the mean and the standard deviation
obtained using a post-treatment of the coefficients (circles)

101

(using the equations 9 and 10) and 10* Monte Carlo sim-
ulations (line) on the PCE surrogate. A good agreement
is observed.

The Fig. 9(leff) compares the 7" order PCE surrogate to
simulations using the “high-fidelity” B-U-T model around
the nominal value of the thickness x = 8.10™*m. It shows
that the responses most affected by the thickness variation
are p and B. For these responses, a good fit is observed.
Considering the response f,, a slight error may be observed
specially when comparing the responses values correspond-
ing to low probable values of the thickness. These localized
errors on non probable values have a limited influence on
the evaluation of the mean and standard deviation as noticed
in Fig. 8.

The right side of the Fig. 9 illustrates good agreement
of the probability density function obtained with 103 Monte
Carlo simulations on the PCE metamodel with the one
obtained by sampling the B-U-T model directly.

92
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Fig. 8 Convergence in Mean and Standard deviation with regards to the polynomial degree for p, B, B2
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Fig. 9 PCE approximation of p, 81, B2 and its corresponding p.d.f in comparison the B-U-T simulations

Multi-variate case using LARS based sparse PCE

In order to illustrate the performance of the approach for an
increasing number of variables, we consider now the full set

of normal random variables described in Table 3.
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In this study, we choose an a priori N = 5" order PCE
with 8 variables yielding to P = 1287 polynomial terms.
Q0 = (M — 1) x P = 9000 simulations would be necessary
to compute the whole set of coefficients using the collo-
cation scheme (6). We apply the LARS strategy proposed
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Fig. 10 Evolution of the empirical error when increasing the number
of PCE terms using LARS algorithm

in the previous section, with a stopping criterion on the
empirical error. We stop the algorithm when the criterion
error reaches 1074,

The Fig. 10 exhibits the convergence rate of the empirical
error as the terms are added step by step during the LARS
procedure. The error threshold 10~# is reached for the num-
ber of PCE terms given in the second column of the Table 4
for p, B1. f2.

Considering this empirical error, the Fig. 11 illustrates for
each response the retained polynomials (numbered accord-
ing to the procedure described in the first section.)

A more general insight is given in Table 5 which exhibits
the number of polynomial terms with regards to their degree
in the LARS PCE expansion. We show a posteriori that
considering this level on the empirical error, a 4" order
polynomial approximation is enough to assess the spring-
back variability of responses 1 and B, while for p, only a
sparse 3" PCE approximation is needed.

Considering the obtained histograms (using 1, 000
Monte Carlo simulations on the B-U-T model and the PCE
model) in Fig. 12 a good agreement for each response
is observed. Comparing with the obtained histograms in

Table 4 Empirical error and number of retained coefficients using
LARS procedure

Springback parameters EtTemp Nb of terms
LARS Full PCE
P 1,042e-4 112 1287
B 1,009¢e-4 381 1287
B2 1,05e-4 383 1287

ST T P R —

1 200 400 600 800 1000 1287
PCE terms

Fig. 11 Representation of the sparsity of the polynomial basis after
the LARS algorithm (see section “Sparse polynomial chaos expansion
approach using least angle regression stagewise algorithm”) has been
applied for each response p, S, B2. A point corresponds to the pres-
ence in the basis of one polynomial according to the numbering
scheme illustrated in Table 1

Fig. 9(lefr) (when only the thickness was considered as a
random variable), we note that according to our stochastic
model, the same variables p and 8 are the most affected by
randomness on the input parameters. Moreover, the mean
value has moved for the responses 1/p, B, B> respec-
tively from4.36 mm~!, 100.83,91.74 t0 9.6 mm !, 112.28,
91.11. Except for B,, whose variation range is small com-
pared to p and B, considering the full stochastic model
highly affects the variability responses: the mean computed
in the mono-variate case corresponds to low probable val-
ues in the multi-variate case, and the type of the p.d.f for
these responses is highly modified. An exponential type
distribution is observed in the mono-variate case as with
the full stochastic probabilistic model, a nearly symmetric
distribution characterizes the responses variability.

Table 5 Proportion of terms sorted according to their degree in LARS
based PCE for each response p, B1, B2

Polynomial degree Number of terms in PCE

P Bi B2
0 1 1 1
1 8 6 8
2 33 28 31
3 69 92 97
4 0 254 245
5 0 0 0

@ Springer
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Fig. 12 Histograms of the springback shape responses obtained using the sparse PCE model

Conclusion and prospects

In this paper we combine a semi-analytical Bending-Under-
Tension model and a custom Polynomial Chaos Expansion
to accurately assess the springback parameters for small
variations on the input parameters. The B-U-T model allows
us to circumvent typical cost issues and numerical instabil-
ity from full FEM simulations (contact modeling, through
thickness integration). The use of such a model allows us to
reach a sufficient numerical stability for small variations of
the random parameters. Using these high resolution outputs,
we are able to accurately train a custom stochastic surro-
gate to efficiently propagate the uncertainties through the
model. Then, this approach allows us to accurately assess
the springback variability when multiple random variables
are taken into account with a limited budget.

In a more general way, our approach demonstrates that
the use of simplified physics based model for large strain
forming process allows to reduce the numerical instabil-
ity and makes possible an accurate and low cost variability
study. The approach is of course not limited to 2D plain

@ Springer

strain and sparse PCE could be combined with other types
of physics-based metamodels such as one-step or POD/PGD
approaches could possibly presenting similar smoothing
properties in 3D. In the current state of development we
have demonstrated the validity of our the approach from
numerical point of view using standard benchmarks. The
comparison with experiment requires an implementation of
the method within a specialized metal forming framework,
which is beyond the scope of the current study dedicated to
stochastic modeling. Moreover, further work is needed for
sensitivity analysis performed using the polynomial chaos
expansion to a priori identify the most influent input vari-
ables. Adaptive features may also be included in the sparse
construction algorithm to keep on reducing the number of
terms used, and increasing its prediction accuracy.
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Chapter 4

Adapting the sampling to the model
resolution: Fat Latin Hypercube

sampling.

In this section we propose an alternative methodology to solve the same problematic: the stochastic
analysis of the U-shaped deep drawing process of a metal sheet using a regression based Polynomial
Chaos approach.

In many cases, the model resolution is not of the same order of magnitude of the range of variation
of the random variable. In this case, the use of an intermediate non-physics based metamodel is not
mandatory. One may solve the problem by focusing on the design of experiment. We defined a custom
Latin Hypercube Sampling (LHS) taking the model resolution into account. A restricted area whose shape
is parameterized by the resolution of the model is defined around each sampling point. The resulting
LHS consists in sampling points, each characterized by a restricted area free of any other sampling points.
This limits the total number of available points. We then propose to build a consistent regression-based
PCE with the remaining number of samples points. This way this methodology aligns the stochastic
model complexity with the limited number of trustworthy data at hand.

This approach has been described into a paper submitted in july 2013 to the journal CMAME and is
currently under review.

The paper is given in its submitted version.
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Abstract

In the context of uncertainty propagation the random variable range of variation may be many
orders of magnitude lower than its nominal value. When evaluating the non-linear Finite Element
(FE) model involving contact/friction and material non linearity on such small perturbations of the
input data, a numerical noise alters the output data and consequently distorts the statistical quanti-
ties. In this paper, a particular attention is given to the definition of adapted Design of Experiment
(DoE) taking the model sensitivity into account and giving by consequence the maximum num-
ber of possible numerical experiments. In order to build acceptable Polynomial Chaos Expansion
(PCE) with such sparse data, we implement a hybrid LARS+Q-norm approach. We illustrate
our methodology using a deep drawing process of a 2D metal sheet, considering up to 8 random
variables.

Keywords: Uncertainty Quantification, Model Sensitivity, Springback Variability Assessment,
sensitivity-constrained Design of Experiment, Sparse Polynomial Chaos Expansion

1. Introduction

A profuse literature review reveals rigorous approaches to reduce the computational expense,
combining in a hierarchical way a ‘high-fidelity” (costly) model with a “lower-fidelity” model
(less accurate but also less expensive) to perform parametric studies dedicated either to the search
for optimal design [1, 2, 3] or to the characterization of system variability or finally to sensitivity
studies [4, 5, 6]. In an optimization context, rigorous convergence proofs may be established as
long as the “lower-fidelity” model is consistent (generally to the first [7] or second order [8]) with
the “higher-fidelity” model. With regards to the nature of the metamodel involved one may classify
these approaches as “multi-fidelity” or “variable-fidelity” when physical based surrogate model is
involved [9, 10, 11, 12, 13] or in surrogate-based approaches when non-physics interpolating or

Preprint submitted to CMAME January 9, 2014



regression-based metamodels built from a Design of Experiment (DoE) are considered. [14, 15,
16].

These latter approaches are widely spread in stochastic analysis. For example, [17] uses a
combination of Kriging model and subset simulations in order to efficiently assess structural fail-
ure probability at low computational costs. [18] uses Monte Carlo simulation and linear response
surface to detect the most significant variable and to give an approximation of the probabilistic
response. [19] uses the moving least square instead of the classical quadratic order response sur-
face to better fit the limit state function and perform reliability analysis of the sheet metal forming
process. [20, 21, 22, 6] demonstrates the advantages of adaptive scheme for Polynomial Chaos
Expansion (PCE) to perform robust, reliability, and sensitivity analysis. A second order PCE is
used in [23] to assess the variability of the tolerance prediction of the formed metal sheet submit-
ted to random parameters. In the field of metal forming applications, a classical approach consists
of using Monte Carlo simulation on a quadratic polynomial response surface method to quantify
probabilistic characteristics (mean and standard deviation), e.g. [24] uses this classical approach
to estimate the variability of the shape and dimensional errors in net-shape metal forming. In this
approach, the exactness of the statistical quantity mainly depends on the capability of the meta-
model of picking up the relationship between the dependent explanatory random variables. The
training data may thus play a leading role.

In this work we focus our attention on the quality of the “high-fidelity” training data. We
claim that there may exist a threshold on the magnitude of variation of the input variables below
which the “high-fidelity” simulations may not be trustworthy. Thus, the number of achievable
simulations using “high-fidelity” model is not only limited by the cost of a single simulation but
more importantly by its intrinsic sensitivity to small perturbations. In this case, we face two
competing issues. On one hand, a too small number of “high-fidelity” simulations harms the
accuracy of the response surface. On the other hand, a too high number of simulations introduces
numerical noise which also directly leads to a noisy response surface.

In the present paper, we address both issues simultaneously in order to propose a coherent PCE
scheme taking into account the upper bound on sampling density given by sensitivity considera-
tion, and the lower bound given by the regression approach to compute PCE coefficients.

The rest of the paper is organized as follows. In section 2, we investigate a sampling strategy
taking into account the model precision leading to a non-noisy reduced set of sampling. Then,
in section 3 we compare three sparse methodologies applied to PCE to efficiently and accurately
propagate the uncertainty with the few number of remaining simulations. Finally, in section 4 we
demonstrate the efficiency of the proposed methodology considering the deep drawing process of
a 2D- U-shaped metal sheet as a test case.

2. Sampling schemes taking into account of model sensitivities

In the scope of this work, the FE model is referred to as the “high-fidelity” model and is
used to train the analytical “lower-fidelity” model, namely the PCE. Firstly, we show that “very”
small random perturbations on the input parameters & = [¢1,£@, ..., &™] around a nominal value
Enom = [ffll))m,f(2)nom, e yield noisy training data set. We characterize the model output
stability by the non-dimensional sensitivity for each considered variable &7, i € {1,..., M} using
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When decreasing the order of magnitude of the perturbation (—log(A¢) increasing), the non-
dimensional sensitivity u; computed for the “high-fidelity” model exhibits different behaviors:

1. Firstly, for “large” variation of Aé&;, the variation y; reveals the non-linear behavior of the
model. No brutal variation of y; is observed and the model is considered as trustworthy.

2. Secondly, y; stabilizes around a constant value f; where the model may be considered as
linear.

3. Thirdly, on reaching the threshold , y; becomes unstable. Within the corresponding range of
variation noisy data estranged from physical reality is generated. These data points have to
be discarded to train a metamodel.

4. Finally, the threshold shows the model sensitivity limit: for this range of variation, the
model is not sensitive anymore.

The model output is considered to be unstable when the following criterion is satisfied:

Hi

> 3)

i — il > —=

The Fig.1 illustrates the tendencies obtained for y; against the order of magnitude of the varia-
tion range in A&;. The results are issued from actual computations shown for a real case (section
4).

ul& Full scale model —_—
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T
! Numerical
instabilities
>
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Figure 1: Typical sensitivity results issued from actual computation

3



We thus focus our attention on avoiding noisy training data which may lead to an inaccurate
response surface for small variation of the input parameters. We propose to modify the traditional
Latin Hypercube Sampling scheme in order to take into account model sensitivities.

2.1. A Fat-Latin Hypercube Sampling taking into account model sensitivities

Standard LHS. LHS ([25]) is an efficient technique to generate joint probability distributions by
distributing samples in equiprobable bins. Let

e (M)
) (&0 & - &

f (1) (2) (M)
N N N T e )
.l .2 . M
&) e &2 L gw
an S-sized and M-dimensional DoE and F'j, j = 1,..., M the joint cumulative distribution (as-

sumed to be known) of each of the random variables. Let =Y the special case where F is an
uniform joint distribution for all variables.

A possible 2D sampling for 2 independent uniform distributions laws is given in Fig.2(a) and
for 2 independent normal distributions in Fig.2(b). By construction there is exactly one observation
per row in each of the M directions.

amax
(Y; max 2
1 ‘ é;lﬂ éz é;ax
&
[ C)
@
[
é;l()m ._!
[ ] Q
[ ] o
[
& min . émin .
1 1
(a) Uniform distribution (b) Normal distribution

Figure 2: LHS sampling illustration for uniform distribution

The LHS advantages [26] are:

e as long as the number of samples §S is large compared to the number of variables M, LHS
eventually provides estimators with lower variances for any function with finite variance,
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e in any case S -sized LHS does not perform worse than (S — 1)-sized crude Monte Carlo.
However, LHS shows also some limitations:

e The error estimates may not be improved by iteratively increasing the number of samples:
the resulting sampling is not a LHS anymore (see [27, 28, 29] for Nested LHS).

e When used for training response surfaces, a space-filling optimal design is interesting in
order to sample the design space with a minimum number of response evaluations. When
using LHS there is a risk that some of the random samples form a cluster to the detriment of
some unexplored part of the design space. To circumvent these issues, some strategies may
be found [30, 31, 32].

In the following we propose to alleviate another fundamental limitation: when performing
stochastic studies small variations of the random input parameters result in noisy responses.

Fat-LHS. In the present paper, we propose to build a restricted area (free of other sampling points)
around each sampling point is defined. The shape of this restricted area is parameterized by o}
(Eq.3) and may be defined as follows:

67 = argmin p(AEY) > i€ f{l,..., M}. (5)
Af(")

Depending on the chosen norm, different shapes are obtained for the restricted area (Fig.3).
Fig.3(a) describes L., related restricted area, the lengths of the border of the hypercube being
07,i € {1,...,M}. Fig.3(b) defines an elliptic sensitivity region restricted area, where the 67,7 €
{1,..., M} define the lengths of the axes.

| min 52 max
) o 82* e 5 L—J &

3
& !
. - :
* — ) *  —
o : S o
& . 3
(a) Fat-LHS%= (b) Fat-LHSZ

Figure 3: Sensitivity restricted area shape around two sampling points for L., and £, in 2D
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This approach coupled with LHS requirements permits us to filter the spacial sensitivity but
limits the maximum number of samples available for PCE determination. In the remainder of the
paper we denote this upper bound on the number of samples at hand by S .

2.2. Implementation of the Fat-LHS

We propose here an algorithm to identify the maximum number of points to be sampled for a
given w;, i € {1,..., M}. We assume that for small variations of the input random parameters the
shape and size of the restricted area stays identical for each sampling point. The general idea of
the procedure is to start with a given LHS with a prescribed density probability on each random
variable and then to:

1. identify the restricted area for each sampled point (Fig.4(a)),
2. iteratively remove the illegal neighbors (Fig.4(b))

3. re-adapt the bin’s size to recover the equiprobability property (this makes the sampling loos-
ing in empty bins and over-occupied bins (Fig.4(c))),

4. reconstruct an LHS sampling by randomly allocating the samples from over-occupied bins
to the empty bins (Fig.4(d)).
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Figure 4: Illustration of the Fat Latin Hypercube Sampling procedure

The procedure is described in Algorithm 1.



Algorithm 1 Fat-LHS algorithm
e Let M be the number of stochastic variables
o Let sy (1) ={1,...,5} be the initial set numbering the sampling points and sy(2) = &
o Letu = [uw,u,...,uy] be the given sensitivity for each parameter

Generate a first LHS sampling with the desired properties

- Generate an S (iter1)—sized and M—dimensional LHS denoted ZE with minimum correlation
or maximin distance between points.

Find and suppress the illegal neighbors
-Leti=1

while card(s.(i)) > card(s.(i + 1)) do
for s = 1 : card(se.(i)) do

1 1 M M
||§§>—§§2>||—y<” I [ e Tl
1 M M
N L e i
- Compute: D = sign . ) .
1 1 M M
e = eV —p® e — M) - g™
if 3D (j,:) =[1,1,...,1] then
N ——
. rr}times_
- sset(l + 1) (1:) sset((zl)) - {]} o
gV &Y L8
(1) (2) (M)
W&y
— _ | e (2) (M)
"B =6y §L e S |
(1) §(2) (M)
i+1 i+l i+1
(1) (2) (M)
. S S S
end if
end for
1=i+1
end while

Re-build an LHS sampling

- Considering the number of remaining points, adapt the ’bin” size to recover the equiproba-
bility property.

- Identify the bins with more than one sampling and the empty bins

- Randomly distribute the points from the over occupied bins to the empty bins




3. Hybrid Q—norm+LARS Polynomial Chaos Expansion (PCE) scheme

In this section we introduce the theoretical aspects for the construction of a sparse PCE de-
creasing its computational cost and thus allowing us to consider only a limited number of sampling
points at hand.

3.1. Multivariate PCE

The PCE [33] is a stochastic metamodel, that is intended to give an approximation of the
stochastic behavior of a functional y (scalar random process) that is defined as a function of an
input random vector & = {£1,&,, ..., &y} with M coordinates. We assume that y is a second order
random variable (E(y?) < o) and that the probability density function f¢(£€) may be decomposed
on a product of the marginal probability density functions fz» (Eq.6):

M
&= ]re (©6)
i=1

Given the natural inner product for arbitrary function ¢ with respect to each of the marginal
probability function f:(£) defined on D

< br.ds >= f@ D1 (OB2(E) fu(E)dE o

one may define an infinite set of mono-variate orthogonal polynomials ¢ = {¢y, k € N} verifying
< @}, ¢r >= 0. Hermitian polynomials respect this condition for Gaussian random variables.

For other types of random variables, different orthogonal polynomials may be retained (Table
1) leading to the generalized PCE or Wiener-Askey scheme [34].

Probabilistic measure

Orthogonal Polynomial

Uniform: 1, ;(£)/2

iae 1 —E22
Gaussian: T ®

Gamma: &% *1g+(€)

Legendre: Pi(€)

Hermite: H,,(£)

Laguerre: Lk(&)
Jacobi: Ji (&)

| a-eriiey
Beta: 1J_1;1[(§)W

Table 1: Some orthogonal polynomial types with respect to different continuous probability density function types

Using the tensor product on these mono-variate polynomials one may obtain an infinite set
of multi-variate polynomials (with a preserved orthogonality property) ¥ = {¢/,, @ € N} where
@ € N™ is a multi-index set.

According to the theorem of Cameron Martin [35], the exact polynomial expansion of the
functional y is

YE) = D Yathal®). ®)

aeNM
where {y,}, @« € N™ are the coefficients of the PCE to be identified
9



3.2. Truncating multi-variate polynomials expansion

For practical use, one may truncate the full set of tensor product polynomials in order to only
retain a finite set of polynomial terms. For Fat-LHS sampling scheme, we need an economical
PCE scheme requiring less than S;, < §,, samples. In the following we revisit three classical
truncation schemes needed for the construction of our hybrid approach.

Classical truncation scheme. Among all {1, @ € NM} the classical truncation scheme [33, 21, 36]
retains only the multi-variate polynomial terms whose degree does not exceed an arbitrarily fixed
N leading to the following multi-index set:

Ay ={@ e N lall, < p}, €))

M /q
where |||, = [Z a?] and g = 1. Then, the truncated model may be written as:
i=1

Y@~ ) vathald). (10)

aey{g’!

Fig.5 gives an illustration of this scheme for a 2-variate 7" order PCE.

Active Polyndmial: [

Polynomial degree in &2

0

0 Polynomial degree in &1

Figure 5: Illustration of the classical truncation scheme for a 7" order PCE

The number P of coeflicients in the PCE is given by

(N + M)!
P = ZCM+/<+1 N'M‘ (11)

and increases exponentially both with N and M. So does the number of “high-fidelity” function
evaluations needed to compute the number of PCE coeflicients: whatever the method used, at least
S = P + 1 samples are necessary.

10



Q-norm based truncation. This approach relies on the “sparsity of effects principle”: a system
is usually dominated by main effects and low-order interactions. Q-norm generalizes the classical
truncation scheme by varying 0 < ¢ < 1 [37]. Fig.6 illustrates a typical truncated index set
different for ¢ = 0.6 and a 7" order 2-variate PCE.

7 7 7
« 6 g Active polynomial:m| ¢ O Acti.ve polyn‘omi‘alzl ~ 6 Active polynomial:
o Non-Active polynomial:0| ' Non-Active polynomial:0| 2
=5 O =5 oo =5
] [0 [
g 2 2
& 4 o o & 4 & 4
< < <
=3 m] =3 =3
g = =
s 2 e 2 S 2
> > >
g1 S 1 S 1
~ ~ ~
0 0 0
01 2 3 4 5 6 7 01 2 3 4 5 6 7 01 2 3 4 5 6 7
Polynomial degree in & Polynomial degree in &1 Polynomial degree in &1
q=0.4 q=0.6 g=1

Figure 6: Illustration of Q—norm truncation with different values of the truncation parameter g for a 7" order PCE

The set of active polynomials in the PCE decomposition is decreased when g decreases.
Fig.7(a) illustrates the evolution of the number of 2-variate polynomial terms in linear scale against
q values, and Fig.7(b) shows it for an 8-variate polynomial in log scale.

45

= 10 T
—=2"" order PCE nd
2l s —=2"" order PCE
—=3" order "
N 3" order PCE
: 350 4[h order PCE 5 10% |4 order PCE
g —=5" order PCE E th
B 300 o 3 —=5" order PCE
—6 order 3
8 N O [ |~6"orderPCE
s —7" order PCE o 10°F 7t o der PCE
8 ~8 order PCE 2 o 1
_g 20k -ﬂlé 8" order PCE
2 = FrFeaens
15 Z 102 -

0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
qnorm parameler qnm_m parameter
(a) 2-variate (b) 8-variate

Figure 7: Number of polynomials terms in g-truncated PCE with regards to the g truncation parameter for 2 and 8
variables

LARS truncation scheme. The Least Angle Regression Stagewise algorithm [39, 37] is issued from
the variable selection community [38]. Roughly speaking, it iteratively adds to the current model
the polynomial terms which are the most correlated with the residual response (Algorithm 2).

11



Fig.8 illustrates truncated index obtained after k = 24 iterations of the LARS algorithm applied
to a 2-variate 7" order polynomial chaos expansion.

Active polynomial: |
Non-active polynomial:Qd
D 1

[
O
|
O

Polynomial degree in &)

]

0 Polynomial degree in &]
(a) k=24

Figure 8: Illustration of Q—norm truncation with different values of the truncation parameter ¢ for a 7" order PCE

At step k, k predictors have been added to the approximated model

y‘ﬂﬁ/[ARS ky — Z Ve w?]}flARS (k) ( 1 2)

aeAM, . (k)

where ﬂﬁ”ARs(k) is the corresponding multi-index set whose cardinal is k. The current residual

response r'® and correlation vector ég‘) are respectively defined by

r(k) =y-— yﬂyARS(k) (13)

and
&® _ (y — ElyD@x® - E[r®])

* iy —Elyl2 x @® —E[r®]?

(14)

12



Algorithm 2 Least Angle Regression Algorithm
Offline phase

e Build a stochastic S-sized and M-dimensional design of experiments according to the
stochastic model denoted =.

For each § — sized sample {§,,...,&,,} store the corresponding evaluations of the “high-
fidelity” model in y.

* Build a (truncated) polynomial chaos basis ¥ 4u and evaluate it at each sample.

Online phase

e Initialize the coeflicients y, which sets the current residual r equals to y obtained in the
offline phase.

e Compute the correlation vector Eg‘). Retain the predictor ¢, where a* = argmaxIEg‘)l. The
model becomes y ars®)

e Update y, to v, = Yo + €, Where ¢, is the LARS step where another predictor g has
as much correlation with the current residual as does ¢, (see Tibshirani and al. 2009 for
numerical computations of €*). Add 8" to the current index set of retained polynomial and
update ytars®.

e Update jointly {y,}acat ) following the direction u® (u®|| = 1) defined by the joint
least-square coeflicient on the current residual. At this step another predictor ¢ is found to
have much correlation with the current residual and is added to the model.

e Repeat the previous step until m = min(P; Q) predictors have been entered or until a previ-
ously chosen error estimate has reached a minimal value.

3.3. Combining Q—norm and LARS

Considering the limited Fat-LHS sampling, we need to find the optimal sparse index set A"
such that the error produced on the resulting approximation model y#- is as low as possible. To
perform this optimization task, we combine in an iterative manner the Q— norm and LARS trun-
cations. We index by ﬂf the set of polynomials Wy iuncaed Obtained by a Q—norm. From this
set, one may apply the LARS which selects the most correlated polynomial. We thus index by
ﬂg{rL ars the sparser set of polynomials Wy obtained after a Q—norm and k steps using LARS.

Fig.9 illustrates this method by showing a sparse set of active polynomials obtained for g = 0.6
and k£ = 8.We note that card(ﬂgﬂk) < card(&zlgl ).
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R 1

Polynomial degree in &)

o

0 Polynomial degree in &1

(a) LARS+Q—-norm
(g=0.6,k=23)

Figure 9: Illustration of combined Q—norm + LARS truncation for a 7" PCE order

We thus face a combinatorial optimization problem:

argmin E rror(ﬂgﬁk)
N.q.k (15)
S.LSH<S <Sw

where Error is an estimator of the PCE quality that we describe in the section 3.4, and § is the
available number of samples.

Eq. 15 may be solved using any appropriate algorithm (genetic approach, simulated annealing,
etc.). The strategy we adopt here is inspired by [22] and is shown in Algorithm 3.

14



Algorithm 3 Optimization of Q—norm + LARS parameters
e Arbitrarily choose a set N = {Ny, ..., N,} of PCE orders, (N, possibly high).
e Store the response obtained using an Fat-LHS sampling in a vector y = [yy,...,yx]
for idx, =1 :ndo
e Choose a set of significant ¢ values
qg€fqepliel,...,0}
for idx,=1:Qdo
- Compute the Ng}xn order full polynomial basis Wg,.
- Truncate the full polynomial basis using the g(a,,) norm giving ¥ quncated
- Let Premain = card(ﬂg” ) be the number of remaining polynomials after truncation
- Perform a V-fold cross validation as follows, with K=2.
for idxp = 1 : min(Pyemain, N) do
- Divide the sampling in 2 populations of equal size &, and &
forv=1:Vdo
- Compute the LARS Algorithm on the P; population
- Verify the results on the P, population by computing the chosen error estimate.
end for
- Retain the best LARS step k* according to the selected error criterion
end for
end for
end for
¢ Retain the best model with the best N*, g*, k* according to the selected error criterion

verif

3.4. Error evaluation of the polynomial expansion

According to Cameron Martin’s theorem [35], when truncating the multi-index set, one may
not reach the convergence to the exact solution in the £, sense. We assess the results for an
another classical error estimate called the corrected Leave-One-Out (LOO) error estimate taking
into account the overfitting phenomenon [37].

Global error estimate. An estimation of the exact £, error is given by the empirical error:

1+ "
Bty = > (V(€) ~ ¥5(€)) (16)
i=1

However, this estimator is known to under-predict the exact £, error: when increasing the
complexity of the PCE, the empirical error is systematically reduced, as the exact £, error may
increase (overfitting phenomenon). By construction, the Leave-One-Out error (LOO error) [22]
may be less sensitive to the overfitting. It relies on the computation of the predicted residual

AD = y&) -y T e, (17)

M
for each evaluation &;, i € {1,..., N}, where yf.q“‘ (&,) denotes the approximated model evaluated
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in &, trained in 2/{&,}. The LOO error is then computed as
1 & 2
_ § @)
EI’I‘LOO = N L AV, (18)

In the general case, the computation of the predicted residuals is a greedy process. In our case,
these may be analytically computed

V(&) -y (g,

AV = 19
T (19)
-1
where £; is the i™ diagonal term of the | 24N (‘I’ﬂgﬁkT‘I’ﬂcﬁk) w74 matrix.
Finally, we compute the absolute LOO as
N ([ AM AM 2
1 y e (§) =y e (E)
E = — . 20
ITLo0 N;[ 1—h, (20)
and its relative counterpart
ErrLoo @1
€L00 = .
0T Ty

3.4.1. Computing the coefficients of the truncated multi-variate PCE

To compute the coefficients of the PCE, intrusive Galerkin type approach has been proposed by
[33]. Among non intrusive, projection based methods take advantage of the orthogonal properties
of the multivariate polynomials of the expansion. Stochastic collocation is based on a Lagrangian
interpolation in the stochastic space. It may be proved that this method is equivalent to the former
[40].

The regression based approach (on which we focus in this paper) consists in solving the overde-
termined system of equations, where each £, i € {1, ..., 5 } represent S > P samples of the random
vector 2 = {£, ..., &), }. The optimal number of realizations needed to assess the coefficients with
a good accuracy is still an open research area, but [21] proposes an empirical rule (Eq.22). In the
following, we consider this empirical requirement as a lower bound in the simulation requirements
(S = S) to build a PCE.

Sp=M-1)xP. (22)

The set of coeflicients may be computed as

y = argmin(ly(€) — Y&y "I (23)
yielding
7 = (YEOF¥EO ) YEyE) (24)

with €9,i € {1, ..., S} representing § > P samples of the M dimensional random vector £&. These
samples are generated using a S -sized M-dimensional Fat-LHS.
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The overdetermined system of equations (Eq.24) may be solved using a singular value decom-
position of the Y¥' matrix.

Once the set of P coefficients {y,}scn has been determined, one may compute the statistical
moments of y analytically avoiding Monte Carlo simulations. The first two moments are given by:

E@) =y (25)
Fy) = Y EW (26)
aeA-{0}

4. Results and discussions

4.1. Experiment description

We model the variability of the springback parameter of a 2D deep drawn U-shaped metal
sheet from the B3 Numisheet ’93 [41] benchmark.
The overall geometrical configuration of the deep drawing process is illustrated in Fig.10.

W, =50

55 r= 6
P P -
Blank holder unch, Blank holder ‘ Blank

y

Die Die
W52

| L/2=175 R
[ X

A

Figure 10: Geometrical configuration of the modeled Numisheet’93 benchmark (values in mm).

The process is modeled using a legacy software [42] (Fig.10) using appropriate symmetry
boundary conditions. A single row of 175 first-order shell elements is used to model the blank
with Simpson integration rule with 10 integration points across the thickness. As the problem is
essentially in plane strain state (the width of the blank is 35 mm and its thickness nominal value is
0.8 mm), corresponding boundary conditions are applied on each node. The blank is made of mild
steel modeled as an elastic-plastic material. Isotropic elasticity and the Swift isotropic hardening
law are considered

o = Ko(g + €,)"™. 27)
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Figure 11: Representation of the Swift hardening law for the parameters described in Table 2

The value of the geometrical, material, loading and contact parameters are summarized in
Table 2.

Geometry Material Loading | Contact
L, :300 mm E :71 GPa Fp 300N | u:0.15
ho : 0.81 mm v :0.342 s : 60 mm

Wy:1mm | p:2700 kg/m?
rp, : 10mm | Ky :576.79 MPa
W, : 62 mm 6 : 0.3593

rg : 10 mm ng : 0.01658

Table 2: Geometrical, material, loading and contact parameter of the U-shaped B-U-T model .

The tools (punch, blank holder and die) are modeled as rigid body surfaces. The punch velocity
is taken here as 15 m/s and its displacement is s = 70 mm. The blank holder force is defined as
F, =2.45 kN. The whole deep drawing process is simulated in two steps.

1. The forming phase is modeled using the explicit dynamic approach to solve the problem in
a reasonable computational time. During this period, the blank holder force is applied with
a smooth ramp to minimize the inertia effect and the punch velocity using a triangle step
definition starting and ending with O velocity and reaching the 15 m/s with the half run. The
contact occurring during forming phase is modeled using contact pairs.

2. The springback phase is modeled using an implicit approach. At the end at this phase, the
springback shape parameters (output functions of interest), the curvature p, the angles 3,
and B, are measured as shown in Fig.12.

4.2. Sensitivity analysis
Results of the sensitivity according to the method presented in section 2 are given in Table 3.
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Figure 12: Definition of springback parameters, p, 8; and §,.

. Responses

Variables 5 3 5
Thickness le-5 | 1le-5 | le-5
Young’s Modulus le6 | le6 | 1e6
Ky le6 | le6 | leb
€ le-2 | 1e-2 | 1le-2
Vo le-2 | 1e-2 | 1le-2
Poisson’s coefficient | 1e-2 | 1le-2 | le-2
Friction coefficient | le-2 | le-2 | 1le-2
Clamp force lel | lel | lel

Table 3: Sensitivity threshold obtained for u} = 2

4.3. Stochastic model

In Table 4, we identify the set of independent random variables considered in the model. If the
variation range of the parameters may be considered as realistic, the Gaussian hypothesis is only
illustrative.

The mean values correspond to the nominal values, and the standard deviations are adjusted so
that Emin = Emean — 30 and Emax = Emean + 30

4.4. 2D validation test case

In this paragraph, we consider only 2 random variables: the thickness of the blank and the
Young modulus. If we consider the identified sensitivity in section 4.2, the sampling methodol-
ogy developed in section 2.1 allows us to consider S, = 343 samples respecting the sensitivity
criterion Eq.3.
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Figure 13: Numerical instability for FEM simulations of the deep drawing process of 2-D U-shaped metal sheet
under small variations of the Thickness and Young modulus (MPa) for the p response. On the left side, the obtained
responses are depicted, as on the right side the numerical sensitivities of the model with regards to different order of

magnitude of thickness variation is plotted.

& min max E[£]
Thickness (h() 0.805 0.815 0.8 mm
Young’s Modulus (E}) 70.5 71.5 71 GPa
Ko 57579 | 577.79 | 576.79 MPa
€ 0.3493 | 0.3693 0.3593 -
Yo 0.015 0.017 0.01658
Poisson’s Coefficients (v) 0.325 0.335 0.33
Friction coefficients (1) 0.155 0.170 0.162
Clamp force (F) 34.5¢3 | 35.5¢3 35e3 kN

Table 4: Full stochastic model under study for the deep drawing process application

4.4.1. Validation of Fat-LHS
In order to illustrate the efficiency of the Fat-LHS, we propose to compare the value of the two
first statistical moments of each response and illustrates for two different sampling methodologies:
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a classical LHS sampling and the proposed sensitivity constrained LHS sampling. We illustrate
the results only on the 1/p response, the interpretation remaining unchanged for the other outputs.

10
x 10 10
7.15 ‘ 7 15x 107
2] » ;f
= =]
5 E
9 9
S T.1r o] 8
i S 7.1, .
5 £ ’
= =
> >
04 806 808 81 812 814 816 704 806 808 8.1 812 814 816
Thickness (m) -4 Thickness (m) —4
x 10 x 10
(a) Fat-LHS with 343 samplings (b) LHS with 343 samplings

Figure 14: Illustration of LHS samplings obtained with taking (a) and not taking (b) into account the sensitivity
constraint for 343 samplings. In red appears the illegal neighbors.

The Fig.15 is obtained using the classical LHS and Fat-LHS. For the same number of samples
a non-negligible bias in the mean value is observed when the number of sampling becomes high,
the classical LHS mean and standard deviation converges to the values produced by the Fat-LHS
for a smaller number of sampled points.

4
e | ‘ 105810
o LHS I --LHS
10.8! ~Fat LHS — o —Fat LHS
E 1 O . 6 [ ] E 0
—, e E 9.5t O
/= 10.4%— - S e — o
Bias due to
10.2} |numerical noise o
)
10 ‘ | 8.5 ‘ S
0343 2000 5000 0343 1000 . 2000
Number of samplings Number of samplings
(a) (b)

Figure 15: Comparison of the mean and the standard deviation evolution for different sampling size of classical LHS
with the Fat-LHS

21



4.5. 8D example

4.5.1. Comparison of sparse PCE strategies

We here compare the convergence results of the different truncation strategies for different 2-
variate PCE of increasing order. We consider a limited number of 457 simulations issued from the
Fat-LHS previously described.

We choose a polynomial order N € {1, ..., n} for the PCE approximation. For each PCE order
N we apply 3 truncation strategies:

1. We select the Q-norm parameters such that S, < S < §,,. For all the possible g parameters
we compute the approximate model y 4y, and retain the one with the lowest LOO error.

2. We use the LARS based algorithm on the classical truncation scheme and retain the best
model.

3. We combine the Q—norm and LARS approach and retain the best approximate model.

Fig.16 shows the evolution of the LOO corrected error with regards to the number of terms
contained in the best PCE approximation. Each point refers to the best model obtained during the
truncation for different PCE order. LARS alone provides the worst results, most of the time less
accurate and more costly than the two other methods. Comparing the Q—norm and the combined
LARS+Q—norm we observe similar results in terms of accuracy. However, a slight advantage may
be given to the Combined LARS+Q-norm as it gives similar accuracy for a sparse PCE expansion.
In addition, we note that due to smooth training data, we finally obtain the best results for truncated
low order PCE.
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Figure 16: Comparison of the evolution of the LOO error corrected for different polynomial degree with regards to
springback parameter p (a), 81 (b), B> (c). The parameters considered as random variable are depicted in table 4

The histograms (Fig.17) illustrate the variability obtained for the best retained model for each
response obtained using the Algorithm 3. A good agreement is observed with the exact “high-

fidelity” simulations as the relative error in mean is close to 0 and in standard deviation lower than
1% as depicted in table 5.
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Figure 17: Histograms obtained for the modified cross validation strategy for the 8-variate case using the €00 corrected
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5. Conclusions and prospects

In this paper, we highlighted a fundamental limitation of the surrogate-based approach for
uncertainty propagation. We showed that when using non linear FE scheme as “high-fidelity”
simulation, small variations of the random input parameters may lead to noisy input training which
alters the accuracy of the training data set and may distort the statistical quantities of interest. We
illustrate this claim using the non-linear FEM simulation (involving contact/friction and material
non linearities) of the springback of a 2D deep drawing process of U shaped metal sheet. We
propose a sampling methodology called Far-LHS allowing us to filter noisy data preserving their
LHS property. This heuristic strategy provides the maximum number of simulations available
considering the finite model sensitivity. We then use this limited number of non-noisy samples
to build a PCE in order to propagate the uncertainty. But, the low number of samples leads us to
consider sparse strategies to make affordable possible identification of the PCE terms. We compare
three different methodologies to build a sparse PCE (LARS, Q—norm and LARS+Q—-norm) and
retain the best possible PCE for each of them. The comparison of the results shows that generally
the Q—norm+LARS hybrid is more efficient. We obtain the best results for truncated low order
sparse PCE leading to unbiased estimation. Further work is required to

e economically compute the model sensitivity threshold,

e generate more space—filling LHS design (in this paper, only the min-max strategy has been
tested)

Finally, to assess the PCE accuracy, we use a LOO corrected PCE error in order to
e assess the goodness of fit of the PCE
e and to limit the overfilling phenomenon simultaneously.

Thus it is difficult to separate which part of the inaccuracy comes from the model misspecification
and which part comes from the overfitting phenomenon. A formulation of an overfitting measure
for PCE approximation inspired from [43] may open a new way to efficiently select the most
significant polynomials terms in a sparse PCE expansion.
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Chapter 5

Towards multi-objective optimization

under uncertainty

As a natural step forward, incorporating the treatment of uncertainties into an optimization process may
provide the engineer with additional valuable information concerning for example, the robustness and
the reliability performances of the system to design. Most of the time such studies are made in a single
objective context. However, in many real-life cases, the performance of a system is defined by multiple
criteria, some of them competing.

In this section we thus propose an efficient metamodel-based strategy in order to tackle the issue
of multi-objective optimization under uncertainty. Most of the time, evolutionary algorithms offer a
reasonable way to solve this multiobjective optimization problem. However, these populations based
algorithms are known to require a large number of evaluation of the numerical models. Inserting the
treatment of uncertainties as an inner loop of the multiobjective optimization process may make the
process become unaffordable. Moreover, the concepts defined in single objective optimization are not
directly appliable in multiobjective optimization as they usually do not take into account the intrinsic
multiobjective nature of the problem.

Both issues are addressed in this section. An original hierarchical metamodel approach is provided in
order to perform a multiobjective optimization task at affordable computational costs. It is then applied
in an original formulation to take uncertainties into account in a multiobjective context as well as an
efficient approach to solve it based on a hierarchical approach.

The following paper has been published in the journal Structural Multidisciplinary Optimization.

As a second author in this paper, I particularly focus my attention on the definition of the hierarchical

metamodel strategy for uncertainty propagation.
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Abstract While surrogate-based optimization has encoun-
tered a growing success in engineering design, the develop-
ment of stochastic metamodels, i.e. capable of representing
the complete random responses with respect to random
inputs, is still an open issue, although they could be fruit-
fully used in optimization under uncertainty, both with sin-
gle and multiple objectives. Therefore, the contribution of
the paper is twofold. First, hierarchical stochastic metamod-
els based on moving least squares and spectral decomposi-
tion (by polynomial chaos expansion) are proposed in order
to obtain a complete description of the random responses
with respect to the deterministic and random input parame-
ters. Then, these metamodels are incorporated into a novel
multiobjective reliability-based formulation leaning on the
concept of probabilistic nondominance. The whole proce-
dure is applied to an analytical test case as well as to the
design optimization of space truss structures, demonstrat-
ing the ability of the proposed method to provide accurate
solutions at an affordable computational time.
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1 Introduction

Despite the invaluable increase of computer hardware per-
formances, the growing demands in computational time
and memory resources required by structural and mul-
tidisciplinary optimization (involving numerical simula-
tions such as the finite element analysis) explain the
popularity of surrogate-based optimization (Breitkopf and
Filomeno Coelho 2010). The current challenges met in
surrogate-based optimization include the development of
metamodels (e.g. kriging, moving least squares, artificial
neural networks, radial basis function networks, support
vector regression (Forrester and Keane 2009)) or ensemble
of metamodels (Acar and Rais-Rohani 2008), the design
space sampling (before and during the optimization), the
selection, construction, tuning and validation of the surro-
gate models (Viana et al. 2009), and of course their efficient
combination with optimization algorithms.

In this paper, three key features are specifically inves-
tigated. First, the use of complex in-house or commercial
software often dictates the choice for non-intrusive strate-
gies, i.e. requiring no modification of the simulation code.
On this matter, a comprehensive survey covering the var-
ious modeling and optimization strategies available in the
literature to tackle high-dimensional and computationally-
expensive black-box simulations has recently been pub-
lished in this journal (Shan and Wang 2010).

However, the role of uncertainties—which may have a
significant impact on the optimal solutions, as investigated
in robust design optimization (RDO) and reliability-based
design optimization (RBDO) (Schuéller and Jensen 2008)—
is generally not considered in the development of metamod-
els, although complete probabilistic descriptions might be
useful, especially in reliability-based formulations where
safety index assessment is required.
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Finally, these issues should be extended to multiob-
Jjective optimization—generally handled by evolutionary
algorithms (Coello Coello et al. 2002)—both in terms of
formulation and practical implementations. This also rises
new challenges, for instance regarding the updating of
the metamodels when the region of interest is not a small
neighborhood around the optimum (as in single-objective
optimization), but a wider area surrounding the nondomi-
nated set.

From these considerations, the contribution of the paper
is twofold:

(1) developing non-intrusive hierarchical stochastic meta-
models based on moving least squares and polynomial
chaos expansion;

(2) applying the proposed stochastic metamodels to the
multiobjective reliability-based design optimization of
space truss structures.

The paper is organized as follows: after the com-
plete description of the stochastic metamodeling method-
ology (Section 2), their integration within a multiobjective
reliability-based formulation is presented (Section 3), fol-
lowed by the numerical results obtained for the optimization
of space truss structures (Section 4). Finally, the conclusions
and future prospects are discussed (Section 5).

2 Stochastic metamodels
2.1 Handling uncertainties through spectral decomposition

This study is concerned with random uncertainty modeled
by probability distributions (Der Kiureghian and Ditlevsen
2009). Without loss of generality, it will be assumed in the
remainder of the paper that the structural model inputs are
decomposed into deterministic design variables x;, and ran-
dom design variables & which can represent perturbations
around the design variables (e.g. random uncertainty around
the nominal values of cross-sections to be optimized),
or system parameter uncertainty (e.g. on material proper-
ties, loading or boundary conditions). We will make the
additional assumption that the & are uncorrelated normal
random variables.

Before building stochastic metamodels to approximate
random scalar functions at limited cost, a preliminary
step should be devoted to the representation of random
responses. A profuse research on decomposition methods
for random responses has been undertaken over the past
fifteen years, roughly separable in two major trends: per-
turbation methods and spectral methods (Stefanou 2009).

In the perturbation approach, the sensitivities are used
to compute probability measures by means of classical
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reliability methods (First-Order Reliability Methods or
FORM, and Second-Order Reliability Methods or SORM),
as stated in Haldar and Mahadevan (2000). In spectral
decomposition, the aim is rather to obtain complete prob-
ability distributions for the random outputs. The main
decomposition strategy available in the literature is the poly-
nomial chaos expansion (PCE) (Ghanem and Kruger 1996).
In structural mechanics, where models are solved by finite
elements, the stochastic Krylov subspaces or stochastic
reduced basis methods also encounter a growing interest;
specifically adapted to stochastic finite elements, the ran-
dom response is expressed using basis vectors spanning the
stochastic Krylov subspace (Sachdeva et al. 2007). Other
decomposition schemes have been proposed for highly non-
linear or discontinuous random processes, like piecewise
approximations for example (Acharjee and Zabaras 2007).

In this paper, the use of polynomial chaos expansion is
investigated in combination with metamodeling techniques
in a hierarchical framework.

Let us focus first on random variables. A response s
depending on a single normal variable £ can be decomposed
exactly as follows:

sE =5+ yiHE =) yiHj® (1
j=0

J=1

where 5(= y;)) is the mean of s, {y}, ...} are coefficients
independent from & and H;(§) is the jth Hermite polyno-
mial. The first five Hermite polynomials are explicitly given
below:

Ho(§) =1;

H\(§) = &;

Hy§) =& —1;

H3(§) = & — 3¢;

Hy(§) = 4 — 682 + 3. )

Of course, for real-life applications, an approximation of
s is produced by keeping only a finite number of PCE terms:

N
sE) =)y H;@®), 3)
j=0

where N is the maximum degree of & appearing in the PCE.

Extended to M random variables, the complete N-order
PCE is defined as the set of all multidimensional Hermite
polynomials whose degree does not exceed N (Eldred et al.
2008):

P—1
SEL.E) =Y YY), )

j=0
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where P is the number of terms whose degree < N:

N
(M + N)!
P=Y Ciyi= TMINT ®)
k=0
and where:
M
V€1, ) = [ | Ha o), (6)

k=1

for which all combinations of {«1, ..., ks } are covered with

Kkr > 0 Vk and:
M

O = ZKk < N. (7
k=1

Other families of polynomials (e.g. Legendre, Jacobi,
Laguerre) could be adopted depending on the nature of the
random distribution (e.g. uniform, beta, exponential). The
construction of PCE in the general case is referred to as
the Wiener—Askey scheme (Eldred et al. 2008).

The key point in PCE lies in the determination of the
coefficients yj?' , which can be achieved by the Galerkin
method, by non-intrusive spectral projection (e.g. Monte
Carlo sampling, importance sampling, Gauss quadrature,
Smolyak’s coarse tensorization), or by collocation (Crestaux
et al. 2009).

The collocation method has been selected in this study
due to its flexibility and limited computational cost. For
a sample (= collocation point) £, the corresponding
N-order PCE approximation is defined as follows:

P—1
sED) =D viviED), ®)
j=0

where P is given by (5). In matrix form, for Q collocation
points, this leads to:

sED) Yo" vro1 M)
s(§9) Vo(€'?) vro1(6'9)
Yo
X : &)
VP
or, in compact form:
S(E) =¥ (E)y’, (10)
where Z is the set of collocation samples {8(1), ceey E(Q)}.

The Q collocations points are computed by the “high-
fidelity” simulation to obtain s (E) = [s(E(l)) .. .s(§(Q))]T.
If 0 = P, V¥ is a square matrix, and the corresponding lin-
ear system can be solved by Gauss algorithm for example.
For Q > P (i.e. there are more samples than the number of
coefficients to determine), a linear least squares problem is
set up:

I

(11)

s _ : _ l s _
Yy’ =argminers = H\Ily s
v 2

The solution y* of system (11) is typically found by sin-
gular value decomposition or SVD, with ¥ decomposed
as follows:

D

vou[ D

]VT =[U, Us] [ ]3 }VT =U,DV", (12

where U and V are respectively Q x Q and P x P orthogonal
matrices, U; contains the first P columns of U, Uy, its last
Q — P columns, and D is a P x P diagonal matrix, with
ranked diagonal elements d; > ...> dp > 0.

The solution y* can be written explicitly as:

7' =VD'U;"s(E) = C(E)s(E). (13)

In the optimization context, when multiple responses
fi, ..., fm (objectives), g1, ..., gp (constraints) are con-
sidered, the C matrix (depending only on the & sites) can be
computed once for all if common sites {& ™., ’;‘Q} are
chosen for all responses. The coefficients for the objectives
and constraints are then retrieved directly by (13):

y = C(EM(E)
yn = C(E), (E)
(14)
Y& = C(8)g (8)
y& = C(8)g,(8)
or simply:
Ir=C(E)S(8), (15)

where T = [p/1 ... y8r]isa P x (m + p)-matrix, C is a
P x Q-matrixand S = [f} ... g,]isa[Q x (m+ p)]-matrix.

2.2 Hierarchical stochastic metamodels

The use of PCE, through a methodology similar to what
is described above, has already been applied to robust
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multiobjective optimization by Poles and Lovison (2009),
but by considering PCE of all uncertain design variables
and calculating the PCE coefficients at each function evalu-
ation through a collocation method. The computational cost
can be decreased through this decomposition, but a further
gain can still be achieved through an hierarchical reduction
strategy, as advocated in this paper.

In the general case, the responses depend on random
variables &, but also on deterministic variables x. The
multivariate PCE should thus be re-written as follows:

P—1

SO E) =1 (0 + Y v 0Y;(&).

Jj=1

(16)

For any set x of design variables, the whole proce-
dure described in the previous section can be repeated,
and assuming a common set = of random samples
(€W, ..., €9} for all PCE developments, the coefficients

are directly computable as follows:

I'(x) = C(E)S(x, E). 17

Therefore, a mapping can be traced out between the
deterministic parameters x (to be optimized), and the
PCE coefficients y;f representing the different components
of the random responses projected in the PCE basis; in
other words, the PCE coefficients contain all the infor-
mation about the stochastic behavior of the objectives and
constraints.

Therefore, the idea proposed in this paper is to build hier-
archical metamodels of the PCE coefficients with respect to
the design variables x:

stochastic metamodels PCE reconstruction

I'(x)

s(x,§).  (18)

This has similarities to what has been accomplished for
multidisciplinary design optimization (Filomeno Coelho
et al. 2008, 2009), where surrogate models were built by
kriging or moving least squares interpolation of Proper
Orthogonal Decomposition (POD) coefficients, through a
bi-level reduction approach. Related work concerned with
geometric filtration using POD for aerodynamic design
optimization (Toal et al. 2010) also discusses the compari-
son between direct approximation and decomposition-based
screening of geometric variables.

Surrogate model development for optimization purposes
has been extensively discussed in recent contributions by
Schuéller and Jensen (2008) as well as Forrester and Keane
(2009), showing that the notion of stochasticity in metamod-
eling is still an open issue. In this topic, a feature worth
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pointing out is the ability of kriging metamodels to pro-
vide statistical information on the output predictions, since
the response functions can be seen as the realization of a
random process (Jones 2001).

However, in this study, the role of the general metamod-
eling technique is played by the moving least squares (MLS)
method (Lancaster and Salkauskas 1981), also called dif-
fuse approximation (Nayroles et al. 1992). It consists in a
generalization of the least squares technique.

In univariate problems, the moving least squares approx-
imation of a PCE coefficient y (x) can be written as follows
(Breitkopf et al. 2002):

y(X) ~ ymrs(x) = p' (v)a(x), (19)
where:
pre=[1 x x*...1 (20)

a(x) are the minimizers of functional J, (a) defined by:

@ =3 Y w0 (pTaMa )@

where:

—  p(x) is the polynomial (here, a second-order basis has
been selected);

—  x are the sample points;

— w; are the weights depending the Euclidean norm
between x) and x:

<”x(i) _x)”>
Wi = Wref )
r

where wyer is chosen here as a piecewise cubic spline
expressed by (23):

(22)

1 —3s2 4253
Wref(s) = 0

if0<s <1,

ifs > 1, (23)
and r is a radius defining the (local) influence zone.
In this study, r is defined at each evaluation point x
such that the influence zone covers the k closest sample
points x), with k = n, + d (n, is number of terms
in the polynomial basis whereas d is the dimension of
the inputs).

The surrogate surface established by this technique will
usually not pass through all sample points. Therefore, to
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xX* —p

(x7,%;) (x,%,)

Approximation / Interpolation of the PCE coefficients

Stochastic response s(x*,&) expressed
by a polynomial chaos expansion (PCE)

v | —e sy =2;§(X*)V/i(§)

Fig. 1 Synthesis of the hierarchical stochastic metamodels

make the approximation interpolating, singular weights can
be specifically scaled from the initial weights to fit the data
points (Breitkopf et al. 2002):

Winit

Winterpolating = EETT (24)
where ¢ is set to 10710 in this study. Should the singu-
lar weights approach lead to numerical difficulties, other
techniques (e.g. Shepard weights) could be used to ensure
interpolation.

To build the approximate model for the PCE coefficient
matrix (Fig. 1), a two-step procedure is thus necessary:

(I) first, a design of experiments (DOE) or sampling in
the variable domain is carried out: {x1 ... x(poe)},
These samples are selected in order to cover as widely
as possible the design space, for instance through
Latin Hypercube Sampling (LHS) (Swiler and Wyss
2004). For each x'¥), Q collocation points are calcu-
lated for a predefined set of normal random variables
{5(1), e £(Q)] (according to a LHS), and the corre-
sponding PCE coefficients for all responses T'*) are
calculated following (17). This results in a database
relating npog design points to their corresponding
PCE coefficient matrices:

(x®, ... xtwoe)} — fr® rEooe)}.  (25)

(II) by using the information gathered in step (I), MLS
response surfaces can be devised to predict the PCE
coefficient matrix for any vector x in order to recon-
struct complete descriptions s;(x, &) of the random
responses.

The next section discusses the integration of these
stochastic metamodels within a multiobjective formulation
accounting for uncertainties.

3 Multiobjective reliability-based design optimization
3.1 A state of the art

The general formulation of a multiobjective optimization

problem with deterministic and random variables can be
written as follows (Beyer and Sendhoff 2007):

f(x, §)

g(x, £) <0, (26)

miny
subject to:

where:

— x is the deterministic design variable vector (to be
optimized);

— & is the vector of random variables encompassing all
uncertainties;

= =i, .o f,,,]T is a vector of m objective functions;

- g = [gl, e ,gp]T is a vector of p inequality con-
straints (it is assumed that all equality constraints are
converted into inequalities).

To solve system (26), the first approach consists in the
elimination of the random variables. The optimization can
be undertaken deterministically at an upper level, leaving
the uncertainty quantification at a basic stage. For instance,
Achenie and Ostrovsky (2005) achieved a global optimiza-
tion on objectives f; depending only on the deterministic
variables x, where each f; has been obtained by a local-
level maximization of f; (worst case analysis) with respect
to the random variables &.

Another approach to deal with uncertainties consists
in incorporating robust measures or reliability indexes as
additional objectives or constraints. For instance, Barakat
et al. (2004) performed the reliability-based design of
pre-stressed concrete beams by an a priori multicriteria
technique (the e-constraint method), where the objectives
included the system, flexural strength and tensile strength
reliability indexes. Other examples are provided in Sinha
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(2007), where the reliability-based multiobjective optimiza-
tion of automotive crash-worthiness and occupant safety
was undertaken by imposing an additional constraint on
the probability of failure, or Kumar et al. (2008) concern-
ing robust design using Bayesian Monte Carlo simulations
to analyze the trade-off between mean performance and
variability for compressor blades.

A similar approach mentioned in Achenie and
Ostrovsky (2005) in the case of robust optimization con-
sists in considering the objective function means (1) and
standard deviations (o) as objectives to be minimized:

min [ (] 0 [A]. [l o ]l @7)

For instance, Parashar and Bloebaum (2006) devised a
Robust Multi-Objective Genetic Algorithm Concurrent Sub-
space Optimization (R-MOGACSSO) by integrating means
and standard deviations in the multiobjective formulation,
within a multidisciplinary architecture.

A theoretical insight into robust multiobjective optimiza-
tion has been accomplished by Deb and Gupta (2005, 2006),
who suggest a variant of this idea in the context of mul-
tiobjective evolutionary optimization, and advocated two
definitions of multiobjective robustness:

— Xx* is a multiobjective robust solution of type I if it is
a global feasible Pareto-optimal solution to the follow-
ing multiobjective problem defined with respect to a
8-neighborhood #(x, §) (of hypervolume | Z(x, §)|):

miny f°T(x) = f:(xhdx/,

|B(x,0)| Jyen.s)
i=1,....m

subject to: x € .# (= feasible domain);

(28)

— x* is a multiobjective robust solution of type II if it is
a global feasible Pareto-optimal solution to the follow-
ing multiobjective problem defined with respect to a
8-neighborhood A(x, 3):

ming ) = [/1X), ... fu®]"

[foo -]
Ifol

(29)
subject to:

The integration of these formulations within NSGA-II
(Nondominated Sorting Genetic Algorithm-II, Deb et al.
2002), and their application to several analytical test cases
showed that it is an easy-to-implement and efficient way to
obtain robust Pareto fronts (Deb and Gupta 2006). However,
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the number of function evaluations necessary to estimate the
effective functions f; makes this method expensive if finite
element models are used to retrieve the values of the func-
tions. Therefore, the use of an archive of points calculated
in the former generations of the evolutionary algorithm is
advised to decrease the global CPU time, as proposed by
Gunawan and Azarm (2005).

Another method set up to decrease the computational
effort consists in building surrogates based on a limited
number of “exact” fitness evaluations, as performed by
Paenke et al. (2006) with local linear and quadratic regres-
sion models.

In comparison with the aforementioned strategies, a dif-
ferent scenario is considered in Basseur and Zitzler (2006),
where the objective vector is inherently associated with an
unknown probability distribution, and where the optimiza-
tion goal is specified by a quality indicator (namely: the
e-indicator). Practically, the fitness of an individual x is
defined as the estimated expected loss in quality if x would
be removed from the population.

Finally, a possible axis of research for multiobjec-
tive optimization under uncertainty would be to re-define
the Pareto dominance criterion, as in the fuzzy-Pareto-
dominance developed in the context of high numbers of
objectives (Kdppen et al. 2005), or in the epistemic uncer-
tainty management (Limbourg 2005).

3.2 Formulation and implementation

As sketched above in the literature review, the current
investigations are generally concerned with the robustness
of the objective functions, and preferably for uncertain-
ties defined by intervals. However, as the uncertainties
are often described by probability distributions, robustness
measures are not always prone to furnish sufficient insight
on probability levels (what is the probability of attaining
a specific value f’? or: for a given probability level p/,
what is the worst-case value of f?). In those situations,
a reliability-based approach might be a more convenient
option.

A reliability-based procedure is proposed in Deb et al.
(2007, 2009), using objective means and probability-based
constraints:

ming a  (p (Ux), - i, (1x)
Plgix,d,p)=0]=R;,j=1,....J,
he(d)>0k=1,... K,

xB) < py <x@),

subject to:

d@ <d< d(U),
(30)
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where d, p are respectively the deterministic design vari-
ables and parameters, and x are the random design variables.

Minimume-risk optimal solutions are also defined in Levi
et al. (2005) and Caballero et al. (2001) by maximizing
the probability of keeping the objectives below a given
threshold (in a minimization context).

However, in probability-based formulations, the compu-
tation of quantiles is an expensive task, usually involving an
iterative process. This issue can be easily circumvented by
introducing slack variables ¢; to account for probability lev-
els. More fundamentally, the presence of multiple objectives
could lead to a different handling of the objective proba-
bilities, accounting for the inherent multicriteria nature of
the problem to address. Instead of comparing each objective
function separately, the key point would rather be to check
the probabilistic nondominance (Teich 2001):

E=[e,. ol
Prondominance = P [f(x’ &) > C] > af,

Pafety = P [g(x, &) < 0] > b,

miny ¢

subject to:

€2))

where the nondominance condition means that the objec-
tive vector f(x, &) should dominate (>) ¢ with a minimum
probability level equal to af. The constraints can also
be embraced into a single probabilistic constraint Psafety
defined by a minimum threshold «®. Both parameters of
and «® are reliability levels determined by the user.

The probability of Pareto nondominance with respect to

a given vector ¢ is thus equal to:

Prondominance = f p(&)dé, (32)
f(x.8)~¢

where p(&) is the joint probability density function of &,
while the probability of safety is given by:

Patey = / p(E)ds. (33)
g(x,£)<0

Formulation (31) could be applied directly within a
multiobjective evolutionary algorithm (Coello Coello et al.
2002); in that case, each individual tested during the
optimization process is represented by a chromosome con-
taining the values of all design variables for this specific
individual, through a coding defined in the evolutionary
algorithm (e.g. binary coding, real coding, etc.). Conse-
quently, each chromosome contains at once the parameters
x;, and the guess values ¢; for the corresponding quantiles
of f;. Nevertheless, since design variables within chromo-
somes might be interchanged and modified throughout the
generations by the crossover and mutation operators, the

guess values ¢; may not correspond at all to the values of
the objectives f; (x, &), leading to a majority of unnecessary
points with extreme probability values (0 or 1).

To alleviate this difficulty, a more efficient albeit equiv-
alent formulation can be set up by considering relative
additional variables 7;:

ming, & =1[¢1 ..., nl"
subject to:  Prondominance = P [f(x, &) = ¢] > o,
Pagety = P [g(x, §) < 0] > a8,
and with: ¢ = n[fix, )] +ni.o [fi(x, §)],

(34)

where [ fi(x,€)] and o [fi(x, §)] are respectively the
mean and standard deviation at x (with respect to the ran-
dom variables &). The use of relative coefficients n; leads to
a more active search for the quantiles, since they remain in
the vicinity of the objectives f; corresponding to the current
design parameters x;.

To solve (34), a multiobjective evolutionary algorithm
can be implemented without modification; NSGA-II (Non-
dominated Sorting Genetic Algorithm-II) will be used for
this purpose (Deb et al. 2002) .

The probability measure Prondominance can be further
expressed by considering the notion of Pareto dominance:
a vector f4 is said to dominate f (f4 > £5) if and only if
Viel ={l,...,m}: fiA < fiB,andforatleastonej el:
f Jf“ <f jB . Therefore, Pyondominance is equivalent to:

Prondominance
=P [f(x, &) > ;]
=P{AGE <t} A Afu(X &) < in)]
=P{AKE - <0A...]

=P {_r{lax (%6 — ) < 0] . (35)
Similarly, for the probability of safety:
Peafety = P [g(x, §) < 0]
=P|:_max {gj(x. &)} 50:|. (36)
Jj=l...p

Since the max{...} expressions in (35) and (36) may
lack of regularity (in the general case, it is only C°-
continuous with respect to &), a smoother formulation can
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be obtained by using Kreisselmeier—Steinhauser aggrega-
tion (Haftka and Giirdal 1992), classically encountered in
constrained optimization to aggregate a set of constraints
into a single one:

gi<0,j=1,....,p— gks
| q
:;ln Zexp(,ogj) <0, (37)

where p (> 1) is a parameter of the method.

An example of Kreisselmeier—Steinhauser aggregation
function gkgs of constraints is illustrated in Fig. 2. gks is
guaranteed by construction to be greater (or equal) than
the maximum of the g;. A control of the relation between
gks and max {g;} can be made through the parameter p:
by increasing the value of p, gks gets closer to the max-
imum of the functions g;. In any case, the KS-function is
bounded by:

In(p)

8gmax = 8KS = &max T (38)

The maximum functions appearing in (35) and (36) are
thus replaced by:

1  m
fKS (Xv g) = ; In Z €Xp [)O(fl(x? E) - é‘l)]i|
'_lj (39)
1
gks (x, &) = - In ZGXP [pgj(x. 8]
=1
6,

constraints

Fig. 2 Example of Kreisselmeier—Steinhauser aggregation for two
constraints g =5 — x2% and 9 =x

@ Springer

Moreover, since any function s(x, §) depending on ran-
dom variables & can be approximated through a PCE:
P—1

> viyie), (40)

j=0

s(x, §) =

where its mean and variance are expressed by:

E[sx.®] = w

Y e[ ()

Jj=1

(41)

o? [s(x, 8]

formulation (34) can be made explicit by substituting the
stochastic responses by their corresponding PCE devel-
opments within the Kreisselmeier—Steinhauser aggregation
functions:

P-1
mingy ¢FF =y 0 +m | 3 E[vd]y) @
j=1
1 m P—1
st ; Z exp pZI/f](E)VJ’(X)
_ pgiPCE>> < 0} > of
1 q P—1
— Z exp [0 ) v ®r X
p P =
< 0} > at,

(42)
equivalent to:
P—1
miny y yoﬁ(x)-l-n,- ZE[wf]y]ﬁ(x)z, i=1,....,m
j=1
1 m P—1
st: P ;ln Zexp ,OZl/fj(E))/ji(X)

j=1

Vi@ || <0] zdf

i=1
2
q
Lin Zexp

P—1
PO ViEY®
=0

IA
[
v
Q
uUQ

(43)
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or more concisely:

P—1

ming, ' 0+ | Y E[v}]y) @

=1

~.

i=1,...,m
m
ZCXP pu}’CE(x, &)) < 1} > of

i

q
[Z (oF . 8) < 1} > at

(44)

where:

P—1
=D vi®y®

j=1

nPCE(x, §)

P—1
AP AEASS (43)
j=1
P—1
=Y ¥i@®ri®.

j=0

i (x, §)

The probabilities in formula (44) could be calculated
by importance sampling (Tsompanakis and Papadrakakis
2004), FORM/SORM (First-Order/Second-Order Reliabil-
ity Methods) or sparse grid (Xiong et al. 2010); however,
in this work, simple Monte Carlo simulations (with 10,000
samples) are performed on the PCE.

However, it is worth mentioning that since the proba-
bilities of nondominance and safety are defined by limit
surfaces b(x, &) = 0:

bnondominance (Xa § )

p| Do vi®rim

j=1

g [v2]vfi0? || -1,

m
= Zexp
i=1

biafety (X, §) = Zexp {p Zw,<s>y/(x) —1,

(46)

the sensitivities of these functions b with respect to &;
can be derived explicitly (for example for further use with
gradient-based methods to calculate the reliability index).
The derivatives 2 5 S are detailed in the Appendix.

3.3 Adaptive sampling of the metamodels

The two-step procedure consisting in: (a) creating a
database of computer experiments and (b) training the
metamodels and use them for optimization might not be
accurate enough for large number of variables and/or highly
nonlinear responses. In those situations, an updating of
the database with additional data from the high-fidelity
simulation is mandatory to guarantee reliable predictions.

Infill criteria (i.e. conditions to add new points in the
training set) include:

— minimizing the prediction error of the metamodels (e.g.
by leave-one-out cross validation);

— exploring new regions of the design space, not yet
covered in the sampling set;

— Dbuilding a compromise between exploration and
exploitation, accounting for the fact that it is gener-
ally not necessary to have an accurate description of
suboptimal areas of the search space;

— maximizing the probability of improvement of the
objective function (Jones 2001); this idea has also
been proposed for multiobjective improvement by
Forrester and Keane (2009). Metamodel assisted fitness
evaluation procedures and adaptive design of experi-
ments have also been successfully combined with a
multiobjective genetic algorithm (Li et al. 2009).

In this work, a simple updating scheme is proposed,
consisting in performing PCE collocation (with the high-
fidelity simulation) for a fixed percentage of the genetic
algorithm population at each generation. The individuals
undergoing this process are the ones endowed with the
highest fitness value, i.e. the feasible individuals of the
population characterized by the best nondominance ranking.

The next section illustrates the proposed methodology on
four test cases.

4 Numerical results
4.1 Description of the validation process

The flow-chart of the general optimization methodology is
depicted in Figs. 3, 4 and 5 following the approach used to
calculate the stochastic responses:

(A) for each design point {x, n}, the stochastic responses
are computed by Monte Carlo simulations of the high-
fidelity responses (objectives and constraints);

(B) for each design point {x, 5}, a set {§1,... £} of
collocation points are defined and sent to the high-
fidelity simulation. From the results obtained, the PCE
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Table 1 Genetic parameters used for the multiobjective evolutionary
optimizer endowed with the simulated binary crossover and mutation
(Deb et al. 2002)

Genetic parameter Value
Number of generations 30
Population size 200
Probability of SBX crossover 0.9
Probability of SBX mutation 0.5
Distribution index 7. for SBX crossover 10
Distribution index 7., for SBX mutation 20

coefficients are derived and used to build explicit PCE
of the responses. Finally, the response means and
standard deviations can be directly calculated from
the PCE coefficients, while probability measures are
computed by Monte Carlo simulations on the PCE;
before the optimization, a LHS design of experiments
(DOE) is performed on the deterministic variables x;
for each of the DOE point, Q collocation points are
evaluated by the high-fidelity simulation, the corre-
sponding PCE are derived, and MLS response sur-
faces are carried out for each of the PCE coefficients.
Then, during the optimization, these metamodels are
used to get an approximation of the PCE coefficients
for further assessments of the probabilistic mea-
sures required by the multiobjective reliability-based
formulation.

©)

In this study, the number of collocation points Q is equal
to the minimum number of samples necessary to build the
polynomial chaos, while the degree of the (moving) least
squares polynomial basis is equal to two (Table 1).

First, an analytical example available in Coello Coello
et al. (2002) is presented to illustrate the principle of the
proposed method (Section 4.2). Then, three space truss

Optimizer xX,n

structures are investigated in detail in two steps: a validation
of the hierarchical stochastic metamodels (including a com-
parison with a direct approach of the structural responses
with respect to the deterministic and random variables alto-
gether, see Section 4.3.1), followed by their application in
multiobjective optimization under uncertainty (Section 4.4).

4.2 Case 1: analytical example

The goal of this first test case is to illustrate the hierarchi-
cal stochastic metamodeling methodology on a two-variable
example where the analytical expression of the outputs
will allow for calculating the theoretical expressions of the
PCE coefficients (with respect to the design variables x{
and x3). These expressions will then be confronted to the
corresponding response surfaces obtained by least squares
approximation of the PCE coefficients.

The analytical test case is defined as follows (Coello
Coello 2002):

fix, &) = —u—u3
miny

frx, &) = —ud—us
s.t: uyp4uy—12<0,

—u% — 10u; +u% — 16uy +80 <0,

ui =x; +§&,x1 €[2,7],x2 € [5,10],

&= (p=0,0; =0.05x"* — x;“i“)) :
(47)
In this simple example, no adaptive scheme is used

for the PCE-based metamodels, which are based on least
squares approximation with a second-degree polynomial

(NSGA-II)

|

Stochastic analysis (A)

Monte Carlo simulations

{x,ﬁ(l)} — HFF — {1 g

{x’e(NMc)} —+ HFF — fWae) g(Numc)

Post-processing
? C» B nondominance) Psafet.y

Fig. 3 Flow-chart of the general methodology developed for multiobjective reliability-based optimization—approach (A): the responses are
obtained by Monte Carlo simulations on the “high-fidelity” functions HFF
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Optimizer xX,n

(NSGA-II)

l

Stochastic analysis (B)
Collocation-based PCE

{x,e(‘)} — HFF — {1 g

{x,f(é)} =y TR —= .f.(é)’g(Q)

PCE decomposition T Monte Carlo on PCE

Cy Pnondomina.nccy Psafcly

Fig. 4 Flow-chart of the general methodology developed for multiobjective reliability-based optimization—approach (B): the responses are
obtained by Monte Carlo simulations on the collocation-based PCE (built on the “high-fidelity” functions HFF)

basis. Furthermore, a second-degree polynomial chaos basis
is selected.

The Pareto fronts found through deterministic and non-
deterministic optimizations are exhibited in Fig. 6. The
interpretation of the results is the following: for each point
¢ (=1, ;le) of the nondeterministic Pareto front, there is
a probability equal to af that the actual value of the objec-
tive vector dominates ¢ (with a probability «# of satisfying
the constraints). Therefore, the values of ¢ drawn in the
figure represent accurate estimates of the objective quantiles
(assessed with respect to the nondominance concept). Of
course, for higher levels of & (99% compared to 90%), the
nondeterministic Pareto front moves farther from its deter-
ministic counterpart. Besides, the Pareto fronts obtained
for the three approaches (A), (B), and (C) are very sim-
ilar, showing the accuracy of the PCE approaches in this
example.

In this example, as stated above, the explicit form of
the model responses (here: first- and second-order poly-
nomials) allows for calculating analytically all non-zero
PCE coefficients since the Hermite polynomials constitute
a complete polynomial basis. Indeed, a further investiga-
tion (on f for instance) can be performed by comparing
a closed-form of the PCE coefficients to the numerical

Optimizer x,n

results. The second-degree polynomial chaos is expanded
as follows:

I Vo) =1, i)=&, V@ =¢ -1, i
Vi) =&, va) =&k, YsE) =& -1
Consequently, objective f7 is explicitly given by:
fi(x, &) = —(x1 + &) — (2 + &)?
=—x1 —x3 — & — 2006) — &2
= (—x1 —x3 — DY0(&) — 1 (§)
— 229r3(8) — ¥5(8)
5
=Y v/ ®v;®
j=0
o fi i 3
= ¥ ® Y@+ vy 1)
— —~——
quadratic in x constant
+ @ v® + v vs@). (49)
linear in x c?m:nt

The response surfaces are depicted in Fig. 7 for the first

six PCE coefficients yof 'to ySf ! of objective fi: the nature

(NSGA-II)

Stochastic analysis (C)
Metamodel-based PCE

(M)LS
X >

T Monte Carlo on PCE

4 C) P, nondominances P, safety

Fig. 5 Flow-chart of the general methodology developed for multiobjective reliability-based optimization—approach (C): the responses are

obtained by Monte Carlo simulations on the metamodel-based PCE
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Fig. 6 Analytical test case: 0=90% — LS Non-adaptive =99% — LS Non—-adaptive
non-adaptive least squares -10 : : : -10 2 : :

3 : i = Deterministic . inisti
approximation for probability TR St TN e Ty o Deterministic
thresholds & = 90% (leff) and N e, | 1% PCE-baned 15 S TN o PCE-based Metamodels

= 99% (righ -20 e Larlo _20 ve....| * Monte Carlo
o = 99% (right) > | PCE-based collocation “s| + PCE-based collocation
= B .
= Ted gy -25 i e
) o g
f,-30 S5 ; 1,-30 S X i,
-35 " -35 ™
% N
—40 Sk —40 YT
45 kW VY 3
*
X 5 _50 e
-55 -55
100 -90 80 -70f —-60 50 40 -30 —100 -9%90 80 —70f —60 50 —40 30
1 1

of the surrogates for yof 1 y]f v y3f ', and y{' correspond  —

to the theoretical prediction, while absolute values close to
zero (< 10~13 due to numerical and round-off errors) are
logically observed for yzf ! and y4f Y =

4.3 Case 2: sizing optimization of space truss structures

The space truss sizing optimization problems treated in this
section are characterized by the following features: -

— the trusses are made of a linear elastic material (steel),
but a geometrically nonlinear behavior is considered, —
by means of nonlinear shallow truss element endowed
with Green’s definition of the strain tensor (Crisfield
2000);

the dead load of the bars is taken into account by
adding for each bar half of the weight as a vertical force
distributed on the nodes;

the examples are two truss benchmarks—t25b and t72b
(Haftka and Giirdal 1992)—and a dome (Greco et al.
2006);

the boundary conditions are (x, y, z)-fixations on given
nodes (depicted as dots in Figs. 8,9, 10, 11, 12 and 13);
the design variables are groups of common cross-
section areas, identified by different line styles in
Figs. 8-13;

there are two objectives (the mass and the maxi-
mum vertical displacement), and two constraints (the
Eulerian buckling critical load is checked, as well as
the maximum axial stress).

Fig. 7 Response surfaces of the first six PCE coefficients of objective f; with respect to the design variables x| and x; (for the analytical
test case)
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Bo i .

Fig. 8 Truss configuration for test case t25b

4.3.1 Validation of the hierarchical stochastic metamodels

Before incorporating the stochastic metamodeling strategy
within a multiobjective process for truss design optimiza-
tion, the pertinency of the proposed method has to be vali-
dated. Generally speaking, three main options are available

Fig. 10 Truss configuration for test case t72b

when the estimation of statistical measures is performed
with approximation techniques:

(I) direct approximation of the responses: metamodels
for the structural responses are built with respect to
the deterministic and random variables (altogether).

Fig. 9 Test case t25b: adaptive 107 a=90% — LS Adaptive 10° a=90% — MLS Adaptive
LS (left) vs. adaptive MLS 365 e 367 T
(right) for probability thresholds 3 D coitall + wle it iin ey EREPEY
@ = 90% (top) and @ = 99% 34 \ R Srg erhs 34 \ 3 « Monte Carlo i
(down) 32 + PCE-based collocation 3.2 :‘ + PCE-based collocation |
* “b.
53 N it 1 N\ i
2.8 \ 2.8 N \,
) i % \
\ N
26 & R 2.6 %
\ e, "
2.4 2.4
\ N

2'550 500 550 600f650
I

700 750 800 2'i50 500 550 600f 6. 700 750 800
1

] =99% — LS Adapti = 99% — MLS Adapti
36'101 o= Idapv.e ) 36xMJ o= . 've
* Deterministic \ * Deterministic
34l = PCE-based Metamodels FdflaA = PCE-based Metamodels |
\ * Monte Carlo \ * Monte Carlo
3.2 \ + PCE—based collocation 3.2 \ + PCE—based collocation |

\ Y
26 *

bl A AN

24 \. ;

2'350 500 550 600 ! 650
I

700 750 800 2‘350 500 550 600 _ 650 700 750 800

@ Springer



720

Fig. 11 Test case t72b:
adaptive LS (left) vs. adaptive
MLS (right) for probability
thresholds & = 90% (top) and
o = 99% (down)

Fig. 12 Test case t72b:
non-adaptive MLS (left) vs.
adaptive MLS (right) for
probability thresholds @ = 90%
(rop) and & = 99% (down)
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Fig. 13 Truss configuration for test case dome

The corresponding metamodels y(x, &) are then used
to evaluate the statistical outputs (e.g. means and
standard deviations) by Monte Carlo simulations on
y(x, §);

(I) direct approximation of the statistical outputs: the
statistical measures of the responses (e.g. mean E,
standard deviation o) can be approximated with
respect to the deterministic and random variables:
Ey(x, &), oy(x,§). This is not suitable here since
probabilities of nondominance need eventually to
be calculated within the multiobjective reliability-
based formulation in this study, which requires an
(explicit) expression of the responses with respect to
all variables;

(IIT)  hierarchical stochastic metamodels: a two-level
decomposition is performed, assuming that the
PCE coefficients can be accurately approximated
by general metamodeling strategies: y(x,§&) =

> 7 W ().

Based on these considerations, the validation process
consists in:

(a) comparing the errors obtained with the direct approx-
imation of the responses (I) and the hierarchical
stochastic metamodels (II1);

(b) investigating the influence of the main parameters of
the approximation, i.e. least squares (LS) / moving
least squares (MLS), approximating MLS vs. interpo-
lating MLS, degree of the (M)LS polynomial basis,
degree of the PCE, etc.

The numerical results of the comparison between the
direct approximation of the responses and the use of hier-
archical stochastic metamodels are collected in Tables 2, 3,
4,5, 6 and 7, by focusing on the means, standard deviations
and 90%-quantiles of two structural responses (the maxi-
mum displacement in direction z and the maximum stress
constraint), for the three truss design test cases, and with
1i0° samples for the Monte Carlo simulations. It is clearly
observed that a combination of second-order MLS interpo-
lation of the PCE coefficients provide the most accurate
results in almost all situations investigated.

To further analyze the parameters of the proposed
method, the following aspects are discussed (and tested
when applicable on the dome example):

— the influence of the PCE polynomial basis order: the
results obtained with second-degree and third-degree
PCE bases (both with a MLS interpolation) are com-
pared in Tables 8 and 9, showing that although better
accuracy would be expected with higher order terms,
their approximation through metamodeling techniques
also reveal to be more difficult, and suggests to use
larger design of experiments to correctly estimate their
values;

— the approximation used in the stochastic metamodels:
moving least squares methods interpolation is com-
pared with kriging (see Tables 10 and 11), as initially
proposed by the authors in a previous study (Filomeno
Coelho et al. 2010). The kriging method used in this
work is a universal kriging with second-order polyno-
mial basis and Gaussian kernel functions, as available
in DACE toolbox. (Lophaven et al. 2002). The results
show that due to its specific parameter determination

Table 2 Validation error for

test case t25b: means, standard Error (in %) Means Standard deviations 90%-quantiles

deviations and 90%-quantile of . . . . . . . . .

the maximum z-displacement Direct  Hierarchical Direct Hierarchical Direct  Hierarchical

(direct approximation of the

responses vs. hierarchical Ist-order least squares (LS) 4.49 4.25 26.6 4.18 5.12 4.26

stochastic metamodels based on 2nd-order least squares (LS) 0.617  0.658 2.72 0.645 0.685  0.658

a Slecond-degtee PCEg (ltge best Ist-order MLS approximation 0469  0.39 3.16 0.385 0466  0.39

tt

values are written in bold) 2nd-order MLS approximation  0.053  0.0308 0.000776  0.0303 0.0488  0.0308
Ist-order MLS interpolation 0.415  0.0411 3.26 0.0409 0.398  0.0412
2nd-order MLS interpolation ~ 0.0461 0.00298 0.2 0.00295 0.0448  0.00298
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Table 3 Validation error for
test case t25b: means, standard
deviations and 90%-quantile of
the stress constraint (direct
approximation of the responses
vs. hierarchical stochastic
metamodels based on a
second-degree PCE) (the best
values are written in bold)

Table 4 Validation error for
test case t72b: means, standard
deviations and 90%-quantile of
the maximum z-displacement
(direct approximation of the
responses vs. hierarchical
stochastic metamodels based on
a second-degree PCE) (the best
values are written in bold)

Table 5 Validation error for
test case t72b: means, standard
deviations and 90%-quantile of
the stress constraint (direct
approximation of the responses
vs. hierarchical stochastic
metamodels based on a
second-degree PCE) (the best
values are written in bold)

Table 6 Validation error for
test case dome: means, standard
deviations and 90%-quantile of
the maximum z-displacement
(direct approximation of the
responses vs. hierarchical
stochastic metamodels based on
a second-degree PCE) (the best
values are written in bold)

@ Springer

Error (in %) Means Standard deviations 90%-quantiles

Direct Hierarchical Direct Hierarchical Direct Hierarchical
Ist-order least squares (LS) 2.15 2.14 46.3 1.58 1.15 2.06
2nd-order least squares (LS) 5.85 5.71 0.709  5.03 5.73 5.49
Ist-order MLS approximation ~ 4.82 3.81 5.46 3.25 4.51 3.66
2nd-order MLS approximation — 2.49 1.61 16.9 1.39 1.88 1.55
Ist-order MLS interpolation 3.53 0.615 8.88 0.534 2.81 0.591
2nd-order MLS interpolation 1.79 0.529 26.3 0.461 0.942  0.508
Error (in %) Means Standard deviations 90%-quantiles

Direct Hierarchical Direct Hierarchical Direct  Hierarchical
Ist-order least squares (LS) 2.05 1.89 5.78 1.8 1.97 1.88
2nd-order least squares (LS) 0.127 0.0628 1.78 0.0221 0.096  0.0609
Ist-order MLS approximation 1.8 1.2 4.77 1.25 1.64 1.2
2nd-order MLS approximation  0.00885 0.042 0.691  0.0423 0.0244 0.04
Ist-order MLS interpolation 1.42 0.133 5.47 0.121 0.996 0.133
2nd-order MLS interpolation ~ 0.0165  0.0103 0.399  0.0146 0.0102  0.00974
Error (in %) Means Standard deviations 90%-quantiles

Direct  Hierarchical Direct Hierarchical Direct Hierarchical
Ist-order least squares (LS) 0.148 0.127 247  3.01 0.141 0.129
2nd-order least squares (LS) 0.0041  0.00221 3.6 0.207 0.000416 0.00247
Ist-order MLS approximation 0.141 0.0925 4.57 1.22 0.123 0.0926
2nd-order MLS approximation 0.00489 0.00386 0.612 0.0309 0.00375  0.00383
Ist-order MLS interpolation 0.11 0.00896 527  0.122 0.0751 0.00897
2nd-order MLS interpolation ~ 0.00479 0.00113 0.206  0.0105 0.00114  0.00113
Error (in %) Means Standard deviations 90%-quantiles

Direct Hierarchical Direct Hierarchical Direct  Hierarchical

Ist-order least squares (LS) 2.25 2.2 16.7 3.36 1.94 2.18
2nd-order least squares (LS) 0.498  0.504 4.93 0.947 0.62 0.494
Ist-order MLS approximation  1.82 1.24 3.81 1.8 1.6 1.22
2nd-order MLS approximation  0.209  0.0479 2.92 0.106 0.231  0.0469
Ist-order MLS interpolation 1.31 0.128 4.7 0.202 1.03 0.126
2nd-order MLS interpolation 0.152  0.0305 2.98 0.0602 0.197  0.0295
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Table 7 Validation error for ] - ]
test case dome: means, standard Error (in %) Means Standard deviations 90%-quantiles
deviations and 90%-quantile of . . . . . . . . .
the stress constraint (direct Direct Hierarchical Direct Hierarchical Direct Hierarchical
approximation of the responses
vs. hierarchical stochastic Ist-order least squares (LS) 1.09 0.831 15.4 2.93 0.971  0.801
metamodels based on a 2nd-order least squares (LS) 0.574  0.499 1.18 2.34 0.572 0476
SeTond-degre? PCE) Igthlz best Ist-order MLS approximation ~ 0.751  0.519 262 1.84 0639 0.5
values are written in bold) 2nd-order MLS approximation  0.232  0.00837 103 0.0807 0.168  0.00919
Ist-order MLS interpolation 0.527  0.0502 4.33 0.193 0.391  0.0482
2nd-order MLS interpolation 0.146  0.00987 1.11 0.0681 0.115  0.00914
Table 8 Influence of the PCE
order for test case dome: Error (in %) Means Standard deviations 90%-quantiles
means, standard deviations and . . . . . . . . .
90%-quantile of the maximum Direct Hierarchical Direct Hierarchical Direct Hierarchical
z-displacement (the best values ]
are written in bold) Second-order PCE (with 2nd-order 0.152  0.0305 2.98 0.0602 0.197  0.0295
MLS interpolation)
Third-order PCE (with 2nd-order ~ 0.152  0.0308 298  0.0213 0.197 0.0312
MLS interpolation)
Table 9 Influence of the PCE ] o ]
order for test case dome: Error (in %) Means Standard deviations 90%-quantiles
means, standard deviations and . . . . . . . . .
90%-quantile of the stress Direct Hierarchical Direct Hierarchical Direct Hierarchical
constraint (the best values are ]
written in bold) Second-order PCE (with 2nd-order 0.146  0.00987 .11 0.0681 0.115 0.00914
MLS interpolation)
Third-order PCE (with 2nd-order ~ 0.146  0.00716 1.11 3.25 0.115 0.0463
MLS interpolation)
Table 10 Influence of the . ] .
metamodel (MLS vs. kriging) Error (in %) Means Standard deviations 90%-quantiles
for test case dome: means, . . . . . . . . .
standard deviations and Direct Hierarchical Direct Hierarchical Direct Hierarchical
90%-quantile of the maximum .
z-displacement (the best values Kriging 0.0831 0.000313 1.72 0.00579 0.0248 0.000782
are written in bold) 2nd-order MLS 0.152 0.0305 2.98 0.0602 0.197 0.0295
interpolation
Table 11 Influence of the
metamodel (MLS vs. kriging) Error (in %) Means Standard deviations 90%-quantiles
for test case dome: means, . . . . . . . . .
standard deviations and Direct Hierarchical Direct Hierarchical Direct Hierarchical
90%-quantile of the stress o
constraint (the best values are Kriging 0.0439 0.0177 19.9 0.00929 0.163 0.0175
written in bold) 2nd-order MLS 0.146 0.00987 1.11 0.0681 0.115 0.00914
interpolation
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features (Jones 2001), kriging interpolation is an excel-
lent competitor to MLS interpolation. Therefore, the
main motivation for using MLS in this work lies in
its flexibility in the definition of the polynomial basis.
Indeed, with a higher number of deterministic design
variables, the number of polynomial terms can dra-
matically increase (the same phenomenon occuring for
the number of PCE terms when the number of random
variables increases). Fortunately, to address this major
issue, LARS (Least-Angle Regression) or other so-
called model selection methods can be used to reduce
the number of terms in the basis by keeping only the
most significant terms; in that case, similar method-
ologies (already proposed PCE basis reduction, see
Blatman and Sudret (2008)) can be applied both for the
MLS and the PCE in order to end up with a limited
number of basis functions in both levels of the hier-
archical stochastic metamodels. A dramatic reduction
of the computational cost is expected by following this
methodology;

— the computation of the PCE coefficients during the
design of experiments phase: as indicated above, other
methods than collocation can be used to determine the
values of the PCE coefficients, like sparse grid quadra-
tures (Klimke 2008), etc., and are expected to furnish
more accurate results. In this study, as the number of
collocation points is equal to the number of the PCE
terms, the number of high-fidelity simulations is set to
its minimum, hence limiting the computational effort
required to calculate the PCE coefficients needed to
train the hierarchical stochastic metamodels;

—  the number of samples in the Monte Carlo simulations:
in this study, because of the relatively low probability
levels used eventually in the multiobjective optimiza-
tion test cases (Section 4.4), a sample size of Ny ¢ =
103 has been selected. Additional results obtained for
Nyc = 10* did not reveal significant differences
for the truss examples studied here, but this could be
an issue for test cases with higher numbers of ran-
dom variables, and should require specific care (Keane
2009). In that case, the Monte Carlo simulations used
to assess the statistical responses could be accelerated,
e.g. through importance sampling techniques (Tokdar
and Kass 2010).

4.4 Application to multiobjective optimization under
uncertainty

Due to the relatively high CPU cost of the function evalua-
tion (i.e. making unaffordable the systematic use of Monte
Carlo simulations within a multiobjective optimization
procedure), the strategy followed to validate the reliability-
based multicriteria optimization combined with PCE-based
metamodeling consists in:

— launching the nondeterministic multiobjective opti-
mization on the PCE-based metamodels;

— once the corresponding reliability-based Pareto set has
been found, five selected points (whose images in the
objective space are distributed along the nondeterminis-
tic Pareto front) are recomputed for comparison through
Monte Carlo simulations and PCE-based collocation.

A second-degree polynomial chaos basis is selected for
all examples, and the rate of individuals used at each gen-
eration for the updating of the database (in the adaptive
scheme) is equal to 20%.

4.4.1 25-bar truss

The 25-bar truss (see Fig. 8) is characterized by three design
variables (cross-sections), and two normal random variables

&1 and &;:

— & is related to the external forces F; and F> applied to
the structure:

Fi=Fi(1+&), F,=F(0+§&), (50)

— & isrelated to the material density p (assumed to share
the same value for all bars):

p=p+8) G

The results are exhibited in Fig. 9. A simple least
squares approximation of the PCE coefficients is clearly
not sufficient to furnish the dense and well spread fronts
observed with moving least squares. Concerning the mul-
tiobjective reliability-based formulation, as shown in the

Table 12 Comparison of the results obtained with adaptive/non-adaptive (moving) least squares: average error on five optimal points located on

the nondeterministic Pareto front (¢ = 90%)

Test case # Design var. # Objectives # Constraints Non-adaptive LS Adaptive LS Non-adaptive MLS Adaptive MLS
t25b 3 5.9296e-06 6.3871e-06 6.1225¢-06 6.2308¢-06
t72b 3 4.5038¢-06 5.1425e-06 4.7918e-06 4.9987¢-06
dome 4 6.3327¢-06 5.8209¢-06 6.0269¢-06 7.0233e-06
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Table 13 Comparison of the results obtained with adaptive/non-adaptive (moving) least squares: average error on five optimal points located on

the nondeterministic Pareto front (¢ = 99%)

Test case # Design var. # Objectives # Constraints Non-adaptive LS Adaptive LS Non-adaptive MLS Adaptive MLS
t25b 3 2 8.4394e-06 1.0349e-05 1.0073e-05 9.6280e-06
t72b 3 7.5687e-06 7.7400e—-06 7.6762e-06 7.6251e-06
dome 4 2 9.7939e-06 9.7474e-06 1.0105e-05 9.4782e-06
analytical example, an increase of the probability threshold ~ where:
o (= af = ®) from 90 to 99% leads to a trade-off surface _
e . NN min

located farther from the deterministic Pareto front. o= fi = (53)

The results obtained for standard and moving least ! f;ma — fmm

squares (without and with adaptivity) are compared in
Tables 12 and 13 for probability thresholds of 90 and 99%.
The numerical values display the error e between the objec-
tive function values obtained by the hierarchical stochastic
metamodels (HSM) and the reference Monte Carlo simu-
lations (MCS), averaged over Neya = 5 points distributed
along the nondeterministic Pareto front:

Neval

1 _ . 2 . . 2

e— S Z \/(leSM _ flMCS) + (fZHSM _ f2MCS) ’
eval i—1

(52)

Fig. 14 Test case dome:
adaptive LS (left) vs. adaptive 0.028

a=90% — LS Adaptive

and fl.mi“ and f;"™ are respectively the minimum and
maximum value found in the nondeterministic Pareto front
for objective f;. All values collected in Tables 12 and 13
demonstrate the good agreement between the hierarchical
stochastic metamodels and the reference simulations.

4.4.2 72-bar truss
The 72-bar truss (see Fig. 10) is characterized by three

design variables (cross-sections), and two normal random
variables: &1 is related to the external force F applied at the

0=90% — MLS Adaptive
0.028¢

MLS (right) for probability
thresholds @ = 90% (top) and

* Deterministic
o PCE-based Metamodels
* Monte Carlo

* Deterministic
0.0261 o PCE-based Metamodels
* Monte Carlo

o = 99% (down) + PCE-based collocation 0.024" + PCE-based collocation
f2 0.022r
0.02
0.018
L 0.0167
*
—— T e
L e L Il 0' 014 L L L L bl L Il
200 220 240 260 140 160 180 200 220 240 260
5 1
0=99% — LS Adaptive 0=99% — MLS Adaptive
0.028; 0.028¢
¢ Deterministic * Deterministic
0.026} o PCE-based Metamodels 0.026 . o PCE-based Metamodels
* Monte Carlo * Monte Carlo
0.024 + PCE-based collocation 0.024 ,\\ % + PCE-based collocation
0.0227 0.022} \J
fZ f2
0.021 0.021
0.018} \*\ 0.018}
oo
0.016} T saman o 0.016;
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top of the structure through F = F (1+£;) while & is related
to the material density p (assumed to share the same value
for all bars) by p = p(1 + &).

Again, the results show the benefit of moving least
squares to approximate the PCE coefficients and thus pro-
vide dense and well distributed solutions. Additionally, in
order to look at the effects of adaptivity of the metamodels
in terms of size, accuracy and spread of the nondeterministic
Pareto solutions, Fig. 12 depicts the results obtained with-
out/with an updating strategy, demonstrating the need to
update the database with new points during the optimization
process to capture the whole Pareto front.

4.4.3 Dome

The last example is the dome shown in Fig. 13, parame-
terized by four design variables (cross-sections), and two
normal random variables: &; is related to the external forces
F (by F = F(1+£))) whereas & is related to Young’s mod-
ulus E (assumed to share the same value for all bars) by E
=E(+&).

The same trend as in the previous examples is observed
in Fig. 14 in the objective space, demonstrating for this
problem that moving least squares outperforms its stan-
dard counterpart, due to the fact that the outputs cannot
be modeled by quadratic responses throughout the whole

Fig. 15 Test case dome:

domain. An insight on the Pareto set is also depicted in
Fig. 15. The deterministic Pareto-optimal solutions are dif-
ferent from the reliability-based solutions (especially with
respect to variable x1), which motivates the use of this mul-
tiobjective formulation under uncertainty to provide more
reliable Pareto-optimal solutions.

4.5 Discussion

The numerical experiments have illustrated the prominent
features of the proposed methodology. First, a formulation
based on reliability levels applicable both to the objec-
tives (according to probabilistic nondominance) and to the
constraints is advocated. The user can define probabil-
ity thresholds, which makes the method well adapted to
structural engineering problems constrained by probabilistic
safety requirements.

Regarding the computational time, the hierarchical meta-
modeling technique (C) helps diminishing drastically the
amount of simulations Ngjy, with respect to Monte Carlo
simulations on the high-fidelity models (A) or collocation
for each individual (B), as expressed below:

(A) Ns?m = NgeanopNMC,

N+M)!
(B) Nsl?m: genNPOPkQ%a

(C) NC = Npop(1 + Ngen-Rupdating)kQ %,

sim

Ir Ir
deterministic (eft) vs. y e |xl
nondeterministic (by adaptive ] i ‘fj’ —+x2 ] ‘T |
MLS; right) Pareto sets S 0.8 }‘w; %u, —°x3 S 0.8 %
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thresholds & = 90% (top) and S 0.6/ iy $ 0.6/ :
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e ! |
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where:

— M is the number of random variables;

— N is the degree of the polynomial chaos expansion;

—  Ngen is the number of generations of the genetic algo-
rithm;

—  Npop is the size of the population of the genetic algo-
rithm (also set as the size of the initial training database
for the surrogate models);

— Ny 1s the number of Monte Carlo simulations;

—  Rypdating 1s the rate of individuals undergoing the updat-
ing scheme at each generation;

— ko > 1 is the ratio between the number of collocation
points Q and the minimum number of points P neces-
sary to build the polynomial chaos, i.e. Q = ko P (in
this study: kg = 1).

According to these expressions, the number of simula-
tions required by the dome example is the following:

(A) Nz =200 x 30 x 10,000 = 6.107 (not affordable);

(B) NB =200 x30x 1 x 15 =90,000;

sium
(C) N& =735 (observed for @ = 90%).

sim

Although the theoretical number of simulations required
by method (C) with a rate of updating equal to 20% and 30
generations is 1,400, a much lower value is observed dur-
ing the numerical experiments (735 for « = 90%) due to
the presence in the offspring of individuals already present
in the previous generations; these duplicates, already mem-
bers of the database, are thus detected and not recomputed
through the high-fidelity simulation.

It is also interesting to observe that the nondeterministic
Pareto sets (i.e. the optimal solutions in the design space) are
different from the deterministic ones, justifying the need for
an alternative reliability-based formulation (see Fig. 15).

5 Conclusions and future prospects

In this paper, a non-intrusive procedure has been proposed
to construct hierarchical stochastic metamodels based on
a moving least squares interpolation of polynomial chaos
expansion coefficients. This procedure is achieved for all
simulation responses required by the optimization (objec-
tives and constraints). Furthermore, those metamodels have
been thoroughly validated and incorporated into an original
multiobjective reliability-based formulation, and success-
fully applied to the structural design optimization of space
trusses.

Our current investigations are mainly concerned with the
following topics:

— the examples treated in this work are characterized
by small numbers of variables and rather smooth
responses. For more complex problems, higher degrees
of PCE and MLS bases might be required, which would
considerably increase the size of the training database,
hence the overall CPU cost. In that case, considering
sparse PCE to discard from the PCE coefficient matrix
the terms that bring no significant contribution to the
random response might be an option, in addition to a
finer updating process during the optimization;

— for wider design spaces, improving the adaptive strat-
egy of the stochastic metamodels should also be con-
sidered, for example by including a prediction error
procedure to validate the surrogate model accuracy dur-
ing the optimization. Another approach could imply
screening or space reduction techniques (Shan and
Wang 2010);

— tackling correlated non-normal random variables;

— applying the proposed methodology to large-scale civil
engineering applications, also characterized by higher
safety constraints.
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Appendix

To give the closed-form expression of the sensitivities of the
limit surfaces b with respect to &; (Section 3.2), the chain
rule is applied:

b b by 5
& — 0Yj 0&;

Since v/; is expressed as a product of Hermite polynomi-
als of each variable &;:

M

;& =[] Happ @, (55)
=1

the derivative of ¥; with respect to a variable &; is given by:

Wi _ 0 (P
3_&' = a%_l <l:1 HK;(J)($1)>

M
= H Hyqjy (&)

I=1,1%i

dH ()

0 (56)
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Ifk;i(j) =0, 33% = 0; otherwise, the definition of Hermite

polynomials leads to:

o, _

9%, 7

M
[T Haoi@& | (ki) Hejy—1ED).-

I=1,15i
Therefore, we obtain explicitly:

abnondominance

08k

9 m P—1 .
= 1 p;w,@)y;(x)

i=1 j

— o PZ_IE[w}] rior -1

j=1

oy,

P-1
exp(...)p ) vi'(X)
; J 0&

P—1
exp(...)p Yy yi'®

i=1 j=1

M
< | [T Hao) @) |k He-1ED g (58)
1=1,1#k

and:

9b . m P—1

safety i

—ZE CXP(n-)pE i (x)
98k i—1 =1 !

M
< | T Hao) @) kel He-1E) g -
1=1,1#k

(39)

where the expression (ki (j)Hy,(j)—1) is equal to 0 when
kx(j) = 0.
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6.1. Conclusions

6.1 Conclusions

In this thesis we investigated the following question in the scope of variability studies when small variations
are concerned: how far may we trust the “high-fidelity” models? We have shown on a classical metal
forming test problem than when using the non-linear FE scheme as “high-fidelity” simulations, small
variations of the random input parameters lead to noisy training data and may distort the statistical
data of interest.

When using non linear FE scheme as “high-fidelity” simulation, small variations of the random input
parameters may lead to noisy input training data which alters the accuracy of the training data set
and may distort the statistical quantities of interest. We have illustrated this claim using the non-linear
FEM simulation (involving contact/friction and material non linearities) of the springback of a 2D deep
drawing process of U shaped metal sheet.

We have introduced two methodologies in order to bypass this limitation. The first methodology con-
sists in combining a physical reduced order metamodel (semi-analytical Bending-Under-Tension model)
and a custom Polynomial Chaos Expansion to accurately assess the springback parameters for small
variations on the input parameters. The B-U-T model allowed us to circumvent typical cost issues and
numerical instability from full FEM simulations (contact modeling, through thickness integration). The
use of such a model has allowed us to reach a sufficient numerical stability for small variations of the
random parameters. Using these high resolution outputs, we have been able to accurately train a custom
stochastic surrogate to efficiently propagate the uncertainties through the model. Then, this approach
allowed us to accurately assess the springback variability when multiple random variables are taken into
account with a limited budget.

However, physics-based metamodels with higher resolution are not always available. To circumvent
this issue, one opportunity is to take into account the model sensitivity in the sampling scheme. We
proposed a modified Latin Hypercube Sampling methodology called Fat-LHS allowing to filter noisy
data and to preserve their Latin Hypercube Sampling property. This heuristic strategy provides the
maximum number of simulations available considering the finite model sensitivity. We then used this
limited number of non-noisy samples to build a PCE in order to propagate the uncertainty. But, the low
number of samples has lead us to consider sparse strategies to make affordable possible identification of
the PCE terms. We have compared three different methodologies to build a sparse PCE (LARS, @-norm
and LARS+@-norm) and have retained the best possible PCE for each of them. The comparison of the
results has shown that generally the Q-norm+LARS hybrid is more efficient. We have obtained the best
results for truncated low order sparse PCE.

Moreover, the combination of optimization and uncertainty quantification has been addressed. In
most of the studies, these both fields have been combined when only one objective function is consid-
ered. However, most of real life problem involved the simultaneous optimization of possibly competing
objectives. Then two issues have to be tackled: the definition of a formulation of MOOU, and its res-
olution. In this thesis, we particularly focused on the resolution phase. Most of the time this task is
achieved using a nested combination of metamodels constructed separately either in the deterministic
design variables space or in the stochastic variables space. Here, we have proposed a computationally
efficient non-intrusive procedure to construct a metamodel in both deterministic and stochastic spaces. It

is based on a moving least squares interpolation of polynomial chaos coefficients. Those metamodels have
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been thoroughly validated and incorporated into an original multi-objective reliability-based formulation,

and successfully applied to the cost-effective structural design optimization of space trusses.

6.2 Prospects

To deal with real-life multi-objective optimization problem under uncertainty, one has to take into account
the eventually high dimensionality of the problem and to develop robust methodologies to this purpose.
The examples treated in this work are characterized by small numbers of variables and rather smooth
responses. For more complex problems, higher degrees of PCE and MLS bases might be required, which
would considerably increase the size of the training database, hence the overall CPU cost. In that case,
considering sparse PCE to discard from the PCE coefficient matrix the terms that bring no significant
contribution to the random response might be an option, in addition, to a finer updating process during the
optimization; Moreover, tackling wider design spaces, improving the adaptive strategy of the stochastic
metamodels should also be considered, for example by including a prediction error procedure to validate
the surrogate model accuracy during the optimization. Another approach could imply screening or space
reduction techniques in a MOOU framework.

Finally, focusing on the UQ part of the problem, our approach demonstrates that the use of simplified
physics based model for large strain forming process allows to reduce the numerical instability and
makes possible an accurate and low cost variability study. The approach is of course not limited to
2D plain strain and sparse PCE opens the way to a combination with other types of physics-based
metamodels such as one-step or POD/PGD approaches presenting similar smoothing properties in 3D.
The consistency between the different fidelities levels in the approach have not been addressed as [NE12]
recently investigates this issue. In the current state of development we have demonstrated the validity
of our the approach from numerical point of view using standard benchmarks. The comparison with
experiment requires an implementation of the method within a specialized metal forming framework,
which is beyond the scope of the current study dedicated to stochastic modeling, but may be done in

further studies.
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