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Résumé

Récemment, il y a eu une hausse massive du trafic dans les réseaux mobiles à cause
de nouveaux services et applications. Les architectures actuelles des réseaux cellulaires
ne sont plus capables de gérer de façon satisfaisante ce trafic. Les Réseaux de Petites
Cellules (RPC), basées sur un déploiement dense de stations de bases portables, auto-
organisantes et efficaces en termes d’énergie apparait comme une solution prometteuse
à ce problème. Les RPC augmentent la capacité du réseau, réduisent sa consommation
énergétique et améliorent sa couverture. Par contre, elles posent des défis importants
en termes de design optimal.

Dans cette thèse, des aspects liés au design cellulaire et à l’allocation de ressources
dans les RPC sont traités. La thèse se compose de deux parties.

Dans la première partie, le design cellulaire est étudié: une population statique
d’utilisateurs est considérée, et la taille optimale de cellule maximisant le débit spa-
tial est donnée en fonction du modèle de récepteur, des conditions radio et des par-
titions indoor/outdoor. En considérant des utilisateurs mobiles, la taille de cellule
optimale est étudiée afin de minimiser le temps de service, et minimiser le blocage
et la déconnexion en cours de communication, en fonction de la vitesse des utilisa-
teurs et du type de trafic. Le problème de placement des stations de base optimal est
traité en fonction de différents critères de qualité (maximisation de débit total, équité
proportionnelle, minimisation de délai, équité max-min) pour différentes distributions
d’utilisateurs et partitions de cellules. Le problème de scaling de capacité dans un RPC
limité par l’interférence avec pré-codage est étudié, et la quantité optimale d’antennes
par utilisateurs en fonction de l’interférence inter-cellules est dérivée. Dans le cadre
d’un réseau “green”, pour une charge du réseau donnée, on étudie les politiques op-
timales en boucle ouverte, afin de maximiser soit une fonction coût du système (con-
trôle centralisé) soit des fonctions de coût de chacune des stations de base (contrôle
distribué).

Dans la seconde partie, nous étudions l’allocation de ressources, nous introduisons
les concepts de d’équité T-échelle et équité multi-échelle. Ces concepts permettent
de distribuer les ressources équitablement pour les différentes classes de trafic. Ces
concepts sont illustrés par des applications au partage de spectre et à l’allocation de
ressources dans les femto-cellules indoor/outdoor. L’allocation de puissance pour sat-
isfaire les demandes de trafic des utilisateurs avec un grand nombre d’interféreurs est
une tâche difficile. Ce problème est abordé, et nous proposons un algorithme universel

9



qui converge vers une configuration de puissance optimale qui satisfait les demandes
des utilisateurs dans toutes les stations de base. Les performances de l’algorithme sont
illustrées pour différentes configurations du système et différents niveaux de coopéra-
tion entre les stations de base.
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Abstract

An ever increasing demand for mobile broadband applications and services is lead-
ing to a massive network densification. The current cellular system architectures are
both economically and ecologically limited to handle this. The concept of small-cell
networks (SCNs) based on the idea of dense deployment of self-organizing, low-cost,
low-power base station (BSs) is a promising alternative.

Although SCNs have the potential to significantly increase the capacity and cov-
erage of cellular networks while reducing their energy consumption, they pose many
new challenges to the optimal system design.

Due to small cell sizes, the mobile users cross over many cells during the course of
their service resulting in Frequent handovers. Also, due to proximity of base stations
(BS), users (especially those at cell edges) experience a higher degree of interference
from neighboring base stations. If one has to derive advantages from small networks,
these alleviated effects have to be taken care either by compromising on some aspects
of optimality (like dedicating extra resources) or by innovating smarter algorithms or
by a combination of the two.

The concept of umbrella cells is introduced to take care of frequent handovers. Here
extra resources are dedicated to ensure that the calls are not dropped within an um-
brella cell. To manage interference, one might have to ensure that the neighboring
cells always operate in independent channels or design algorithms which work well
in interference dominant scenarios or use the backhaul to incorporate base station co-
operation techniques. Further, small cell BS are most often battery operated, which
calls for efficient power utilization and energy conservation techniques. Also, when
deployed in urban areas, some of the small cells can have larger concentration of users
throughout the cell, for example, hot-spots, which calls in for design of small cell net-
works with dense users. Also, with portable base stations, one has the choice to install
them on street infrastructure or within residential complexes. In such cases, cell design
and resource allocation has to consider aspects like user density, distribution (indoor-
outdoor), mobility, attenuation, etc.

We present the thesis in two parts. In the first part we study the cell design aspects
while the second part deals with the resource allocation. While the focus is on small
cells, some of the results derived and the tools and techniques used are also applicable
to conventional cellular systems.
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In the first part, we study various aspects of cell design like cell dimensioning, base
station placement, optimal fraction of users per transmit antenna, base station(s) acti-
vation policies etc.

For cell dimensioning, we consider two scenarios based on the mobility pattern
of the users. For systems supporting only static users (Chapter 2), under fluid limits
(i.e., when the number of users is large), we compute the cell size that maximizes the
spatial throughput density. For systems that support mobile users (Chapter 3), we
use the concept of umbrella cells. We model the small cell network using queueing
theoretic models and obtain cell size that optimizes various performance measures like
expected waiting times, service times, call block and drop probabilities, etc. We next
forego this umbrella assumption and obtain the cell size that optimizes call block and
drop probabilities. We make some interesting observations like that the optimal cell
size is independent of the traffic type and that for a given power there is a limit velocity
beyond which useful communication ceases.

Once the cell dimensioning is done, further design rules tend to assume that the BS
is centrally located. But, does the placement of BS matter? Does it change depending
on some criteria? We analyze this in the context of locating base stations (Chapter
4) according to some fairness criterion. We show that the location of the base station
converges to the center of the cell as the fairness parameter tends to infinity; i.e, the
max-min fair BS placement is the center of the cell. Further, this is true independent of
the underlying user density or characteristics of the cell (eg. indoor-outdoor partitions,
hot-spots, etc.).

While, it is well known that dividing a large cell into number of small cells enhances
the system capacity, the spatial dimension can be exploited to enhance the capacity fur-
ther. In this aspect, we consider a MIMO broadcast channel (Chapter 5) and investigate
the effect of multi-cell interference in precoded small cell networks. We show that their
exists an optimal ratio of number of antennas at the BS to the number of users for a
given interference level. The problem is solved in the asymptotic limit using random
matrix theory and we show via numerical simulations that the asymptotic expressions
are reliable even in the finite case.

Cell design considering dense deployment of BS as in small cell networks need to
be energy efficient. We come up with optimal open loop BS activation policies (Chapter
6), which depends on the system load. We use tools from multimodularity to derive the
structure of the optimal policies.

In the second part of the thesis, we address resource allocation. Resources are to be
allocated so as to fair share the average utilities that corresponds to the assignments.
But the exact definition of average share depends on the application! Different applica-
tions require averaging over different time periods or time scales (eg., real time voice,
file downloads, gaming, multimedia streaming). Hence fairness need to be defined
over mixed timescales. In this context, we introduce T-scale and multiscale fairness
(Chapter 7). This new concept allows one to distribute the network resources fairly
among different classes of traffic. We illustrate this concept via some example applica-
tions in spectrum allocation and in indoor-outdoor femtocells.
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Futher, given that we have users with varying QoS demands, how do we allocate
power to satisfy their demands? What if we have different system architectures, sup-
porting various standards and interfering with each other?. Is there a simple and effec-
tive self-organizing power allocation mechanism, which can work for any or a combi-
nation of these systems? We address this problem of power allocation to satisfy user
demand rates (Chapter 8) in a multicell network. We propose a simple and universal
power allocation algorithm which guarantees convergence to user demands, whenever
the demands lie within the system specific rate region. This algorithm can work from a
completely centralized to a fully distributed setting. Further, with macrocells and small
cells co-existing, we propose an extension of the algorithm to multi-tier networks.

We have used a variety of tools to model and analyze the problems that arise in
dimensioning and resource allocation. Specifically, queueing theory, random matrix
theory, stochastic approximation, etc, have been used to understand, characterize and
derive asymptotic results and practically implementable algorithms for self organizing
networks.

Our hope is that this thesis will form a initial framework to explore and exploit the
many dimensions that arise in designing optimal small cell systems, which will satisfy
the next generation mobile broadband user.

13



14



Contents

I Prologue 5

Preface 7

Résumé 9

Abstract 11

1 Introduction 25
1.1 General introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Recent innovations and advances in wireless communication . . . . . . . 26
1.3 Small cell networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.5 Tools used in the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6 Organization and Contributions . . . . . . . . . . . . . . . . . . . . . . . 37

II Cell Design 41

2 Cell Dimensioning with Static Users, a fluid perspective 43
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Received Power computation . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Single frequency (SF) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2 Frequency reuse (FR) . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.1 Matched filter (MF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Multi-user detection (MD) . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.5 Comments on the fluid approach . . . . . . . . . . . . . . . . . . . 50

2.4 Impact of cell size on throughput . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.2 Optimizing the cell size . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Indoor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.1 BS located inside the building . . . . . . . . . . . . . . . . . . . . . 53
2.5.2 BS located outside the building . . . . . . . . . . . . . . . . . . . . 54

2.6 Dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

15



2.6.1 A simple approximation to the hexagonal grid . . . . . . . . . . . 55
2.6.2 A more precise approximation for the 2-D hexagonal grid . . . . 57
2.6.3 Throughput density with reuse . . . . . . . . . . . . . . . . . . . . 57
2.6.4 Indoor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 Coverage and capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.7.1 Coverage and capacity in a single cell . . . . . . . . . . . . . . . . 59
2.7.2 Coverage and capacity on a line segment (1D) . . . . . . . . . . . 61
2.7.3 Coverage and capacity in two dimension . . . . . . . . . . . . . . 62

2.8 Conclusions and future perspectives . . . . . . . . . . . . . . . . . . . . . 62
2.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Spatial Queueing Analysis for Design and Dimensioning of Small Cell Net-
works with Mobile Users 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Time required for communicating S bytes (Bc) . . . . . . . . . . . 70
3.3.3 Maximum velocity handled by the system . . . . . . . . . . . . . 72
3.3.4 Service time : The time of the Macrocell spent for user’s service . 73
3.3.5 Macro Handovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.6 Moments of Service time . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.7 Cell size optimizing the moments of the service time . . . . . . . 74
3.3.8 ES Calls : Average Waiting time . . . . . . . . . . . . . . . . . . . 75
3.3.9 NES Calls : Block and Drop Probabilities . . . . . . . . . . . . . . 77

3.4 Mobility on a street grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Mobility Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Call drops at Small cell boundaries (NES calls) . . . . . . . . . . . . . . . 80

3.6.2 Service Time : Time of the Small cell spent for user’s service . . . 81
3.6.3 Small cell Handovers . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6.5 Stability Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.6 New Call Block Probability . . . . . . . . . . . . . . . . . . . . . . 83
3.6.7 Drop Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7 Conclusions and Future work . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8 Appendix M: Calculations related to Macro queue . . . . . . . . . . . . . 86

3.8.1 M.1 Proof of Theorem 3.3.3.1 . . . . . . . . . . . . . . . . . . . . . 86
3.8.2 M.2 Moments of service time and its derivatives . . . . . . . . . . 86
3.8.3 M.3 ν has an unique maximizer: . . . . . . . . . . . . . . . . . . . 87
3.8.4 M.4 Derivatives db(k)/dL vanish only at L∗

ν(v̄) when V ≡ v̄ . . . . 87
3.9 Appendix P: Calculations for Small cell queue . . . . . . . . . . . . . . . 88

3.9.1 P.1 Small cell Handover Speed Distribution . . . . . . . . . . . . . 88
3.9.2 P.2 Small cell Stability Factor . . . . . . . . . . . . . . . . . . . . . 89
3.9.3 P.3 Drop probability . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.10 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Fair Assignment of Base Station Locations 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

16



4.2 Our model and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Large population limits and problem statement . . . . . . . . . . . . . . . 93

4.3.1 Power computation : . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2 Throughput computation: . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.3 α-fair placement criterion : . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.4 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Analysis : Single BS Placement . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 Ptot(z) is independent of BS location z : . . . . . . . . . . . . . . . 96
4.4.5 Ptot(z) is dependent on BS location z : . . . . . . . . . . . . . . . . 98

4.5 Optimal and fair placement of a single BS . . . . . . . . . . . . . . . . . . 99
4.5.1 Outdoor cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.2 Indoor-outdoor cell (Split-cell) . . . . . . . . . . . . . . . . . . . . 102

4.6 Optimal and fair placement of two BS in an outdoor cell . . . . . . . . . 106
4.7 Conclusions and future perspectives . . . . . . . . . . . . . . . . . . . . . 110
4.8 Appendix A : Large population limits - power, throughput and α-fair

placement of two base stations: . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Asymptotic Analysis of Precoded Small Cell Networks 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Random Matrix Theory Tools . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3 System model and assumptions . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Channel inversion precoding . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Single cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4.2 Asymptotic analysis for a single-cell . . . . . . . . . . . . . . . . . 118
5.4.3 Optimizer β∗ for the single cell . . . . . . . . . . . . . . . . . . . . 119
5.4.4 Multi-cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.5 Asymptotic analysis for the multi-cell . . . . . . . . . . . . . . . . 121
5.4.7 Optimizer β∗ for the multi-cell . . . . . . . . . . . . . . . . . . . . 122
5.4.8 Some observations: . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.9 Single cell and multi-cell with unequal power . . . . . . . . . . . 124

5.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Open Loop Control of BS Deactivation 131
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Multimodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3 Centralized optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4 Decentralized optimal control . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

17



III Resource Allocation 143

7 Multiscale Fairness and its Application in Wireless Networks 145
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Resource Sharing model and different fairness definitions . . . . . . . . . 147

7.2.1 Fairness over time: Instantaneous Versus Long term α-fairness . 148
7.2.2 Fairness over time: T-scale α-fairness . . . . . . . . . . . . . . . . 150
7.2.3 Fairness over different time scales: Multiscale fairness . . . . . . 152

7.3 Instantaneous α-fairness for linear resources . . . . . . . . . . . . . . . . 153
7.4 Application to spectrum allocation in random fading channels . . . . . . 155
7.5 Application to indoor-outdoor scenario . . . . . . . . . . . . . . . . . . . 160

7.5.1 Instantaneous Fairness . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.5.2 Long term Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.6 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . . . 164
7.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8 Satisfying Demands in Multicell Networks: A Universal Power Allocation
Algorithm 165
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.3 System specific problem formulation . . . . . . . . . . . . . . . . . . . . . 169

8.3.1 Game theoretic formulation . . . . . . . . . . . . . . . . . . . . . . 171
8.4 Universal Algorithm : UPAMCN . . . . . . . . . . . . . . . . . . . . . . . 173

8.4.1 UPAMCN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.4.3 Analysis of the specific systems . . . . . . . . . . . . . . . . . . . 174
8.4.5 Extensions to UPAMCN . . . . . . . . . . . . . . . . . . . . . . . . 175

8.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.7 Appendix A: Example Systems . . . . . . . . . . . . . . . . . . . . . . . . 178
8.8 Appendix B: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

IV Epilogue 183

9 Conclusions 185

Appendix 189

Publications 195

References 197

18



List of Figures

1.1 Evolution of wireless applications and services (Qualcomm [112]) . . . . 30
1.2 Example of heterogeneous network deployment with macrocells com-

plemented by relays and pico/femto cells (Guillaume de la Roche, et.
al., [50]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Traffic demand (Claussen [44]) . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Mobile data forecast (Cisco [154]) . . . . . . . . . . . . . . . . . . . . . . . 32
1.5 Example of Pico cell deployment serving static and moving users . . . . 33
1.6 Possible alternatives to support mobility in small cells (Alcatel Lucent -

Bell Labs [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Frequency allocation in 1D. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Total power received at the BS in C0 vs L (α = 2, 4; single frequency). . . 54
2.3 Total power density from C0 vs L (α = 2, 4; single frequency, matched

filter). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Total throughput of cell C0 vs L (α = 2). . . . . . . . . . . . . . . . . . . . 55
2.5 Throughput density vs L (α = 2). . . . . . . . . . . . . . . . . . . . . . . . 56
2.6 Throughput density vs L (α = 4). . . . . . . . . . . . . . . . . . . . . . . . 56
2.7 Throughput density vs L (α = 2, wall attenuation 12dB, BS indoors). . . 56
2.8 Throughput density vs L (α = 2, wall attenuation 12dB, BS outdoors). . . 56
2.9 Optimal cell size L∗ vs path-loss factor α (reuse factor m = 1) . . . . . . . 56
2.10 width=7cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.11 Frequency allocation in 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.12 Throughput density vs L for different α and decoding schemes compar-

ing MethodA with MethodB. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.13 Throughput density vs L for α = 4.1 and different reuse factors. . . . . . 60
2.14 Throughput density vs L for α = 4.1 and different reuse factors (BS in-

doors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.15 Throughput density vs L for α = 4.1 and different reuse factors (indoor

cell, BS outdoors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.16 Capacity vs cell coverage x for α = 2, 4. . . . . . . . . . . . . . . . . . . . 60
2.17 Throughput density vs L for 100 % and 75 % cell coverage (α = 2, 1D). . 61
2.18 Throughput density vs L for 100 % and 75 % cell coverage (α = 4.1,

multi-user detection, 2D). . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 User moving with velocity V along a line . . . . . . . . . . . . . . . . . . 68

19



3.2 Approximation of Communication time, Bc . . . . . . . . . . . . . . . . . 72
3.3 2D network for rectangular-grid small cell networks . . . . . . . . . . . . 79
3.4 Moments of the service time and the expected waiting time versus L. . . 79
3.5 Optimal cell size versus mean velocity for different variances. . . . . . . 80
3.6 Optimal cell size versus variance of the velocity. . . . . . . . . . . . . . . 80

4.1 Open-cell: BS located at z, user density λ(x) = x . . . . . . . . . . . . . . 100
4.2 Open cell: Global throughput (4.3) as a function of the BS location. User

density λ(x) = x and β = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Proportional fair objective function fα given by (4.4) with α ≈ 1, as func-

tion of BS location z. User density λ(x) = x, β = 2) . . . . . . . . . . . . 101
4.4 Harmonic fair objective function fα given by (4.4) with α = 2, as function

of BS location z. User density λ(x) = x, β = 2) . . . . . . . . . . . . . . . 101
4.5 α-fair BS location, z∗(α) as a function of α. . . . . . . . . . . . . . . . . . 101
4.6 Split-cell: BS located at z, wall located at y . . . . . . . . . . . . . . . . . . 103
4.7 Split-cell: Global throughput (Objective function fα(z) (4.6) with α = 0)

as a function of BS location z. . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 Split-cell: Objective function fα(z) (4.7) for proportional fairness (α =

0.99) as a function of BS location z. . . . . . . . . . . . . . . . . . . . . . . 104
4.9 Split-cell: Objective function fα(z) (4.7) for harmonic fairness (α = 2) as

a function of BS location z. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.10 Split-cell: α-fair BS location z∗(α) as a function of α. . . . . . . . . . . . . 104
4.11 Split-cell: Global throughput (4.6) as a function of BS location z and wall

location y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.12 Split-cell: Global throughput (4.6) as a function of BS location z and at-

tenuation η. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.13 Open-cell: BS1 located at z1, BS2 located at z2, user density λ(x) ≡ 1/2D 107
4.14 Outdoor cell, two BS: Global throughput (objective function fα(z1, z2)

with α = 0) as a function of BS1 location (z2 = −z1)). . . . . . . . . . . . 108
4.15 Outdoor cell, two BS: Global throughput (objective function fα(z1, z2)

with α = 0) as a function of BS2 location(z1 = −z2)). . . . . . . . . . . . . 108
4.16 Outdoor cell, two BS: 3-D contour plot of global throughput (objective

function fα(z1, z2) with α = 0) as a function of BS locations (z1, z2) . . . . 108
4.17 Outdoor cell, two BS: α-fair BS location z∗2(α) as a function of α (Place-

ment of BS2 shown here). . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 System model: multi-cell network. BS with M antennas, serving K users.
Users at X experience nominal interference and users at Y experience
high interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 β∗ vs SNR for various interference factors (M = 16) . . . . . . . . . . . . 123
5.3 K∗ vs SNR for various interference factors (M = 16) . . . . . . . . . . . . 123
5.4 Sum rate at β∗ for various interference factors (M = 16) . . . . . . . . . . 124
5.5 Sum rate at β = 2 for various interference factors (M = 16) . . . . . . . . 124
5.6 Rate per antenna vs β at SNR of 20 dB for various interference factors γ 128
5.7 Rate per antenna vs γ, when, β = 2, SNR ρ = 20 dB for various interfer-

ence factors γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

20



5.8 Sum rate per antenna as a function of M for β = 2 at SNR of 0 dB for
various interference factors . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.9 Sum rate per antenna as a function of M for β = 2 at SNR of 20 dB for
various interference factors . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1 Performance index of [2,1] (dashed line) and [1,2] (solid line) assign-
ments as a function of α (horizontal axis) . . . . . . . . . . . . . . . . . . 151

7.2 Performance index of [2,1] (dashed line) and [2,2] (solid line) assign-
ments as a function of α (horizontal axis) . . . . . . . . . . . . . . . . . . 151

7.3 Throughput(θ) as a function of α for instantaneous, mid-term, long-term
and (1,∞)-scale fairness criteria (Case 1). . . . . . . . . . . . . . . . . . . . 160

7.4 Throughput(θ) as a function of α for instantaneous, mid-term, long-term
and (1,∞)-scale fairness criteria (Case 2). . . . . . . . . . . . . . . . . . . . 160

7.5 Throughput(θ) as a function of α for instantaneous, mid-term, long-term
and (1,∞)-scale fairness criteria (Case 3). . . . . . . . . . . . . . . . . . . . 161

7.6 Coefficient of variation in expected throughput as a function of α for in-
stantaneous, mid-term, long-term and (1,∞)-scale fairness criteria (Case
3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.7 Scheduler s∗ for the indoor and outdoor user with instantaneous fairness
as a function of α for α > 1. Wall attenuation 6 dB, path-loss β = 3,
position of outdoor user x = −3. . . . . . . . . . . . . . . . . . . . . . . . 162

7.8 Throughput θ for the indoor and outdoor user with instantaneous fair-
ness as a function of α for α > 1. Wall attenuation 6 dB, path-loss β = 3,
position of outdoor user x = −3. . . . . . . . . . . . . . . . . . . . . . . . 162

7.9 l(α) for long-term fairness as a function of α (α > 1) and wall attenuation
of 6 dB ,path-loss β = 2, position of outdoor user x = −2. . . . . . . . . . 163

8.1 2D Wyner model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.2 Rate convergence for Systems S1, S2 and S3 (H1 Network) . . . . . . . . 176
8.3 Power convergence for Systems S1, S2 and S3 (H1 Network) . . . . . . . 176
8.4 Demand satisfying NE. System S2. (L1, L2 & H1 networks) . . . . . . . . 176
8.5 Rate convergence for System S4 and S5 (H2 Network) . . . . . . . . . . . 177
8.6 Power convergence for Systems S4 and S5 (H2 Network) . . . . . . . . . 177

21



22



List of Tables

1.1 Evolution of wireless generations . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 total received power as a function of α . . . . . . . . . . . . . . . . . . . . 46
2.2 Interference contribution for different reuse factors. . . . . . . . . . . . . 58

4.1 Outdoor cell: The α-fair BS locations and normalized throughput. User
density λ(x) = x, L = 10 and path-loss β = 2 . . . . . . . . . . . . . . . . 100

4.2 Outdoor cell: BS placement for globally-fair throughput for various path-
loss β. User density λ(x) = x and L = 10 . . . . . . . . . . . . . . . . . . 102

4.3 Outdoor cell: BS placement for globally-fair throughput for various noise-
variance σ2. User density λ(x) = x, path-loss β = 2 and L = 10 . . . . . 102

4.4 Split-cell: The α-fair BS location and normalized throughput. User den-
sity λ(x) ≡ 1/2D, L = 10, y = 0.75L, path-loss β = 2 and wall attenua-
tion η = 12dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Split cell: BS placement for globally-fair throughput for various path-loss
β. User density λ(x) ≡ 1/2D and L = 10 . . . . . . . . . . . . . . . . . . 106

4.6 Split cell: BS placement for globally-fair throughput for various noise-
variance σ2. User density λ(x) ≡ 1/2D, path-loss β = 2 and L = 10 . . . 106

4.7 The α-fair BS location(s) and normalized throughput for outdoor cell
with two BS, user density λ(x) = 1/2L, L = 10, path-loss β = 2 . . . . . 109

4.8 Outdoor cell with two BS: BS placement for globally-fair throughput for
various path-loss β. User density λ(x) = 1/2L and L = 10 . . . . . . . . 109

7.1 Case 1,2 & 3: Shannon capacity (q)/probability(π) . . . . . . . . . . . . . 159

23



24



Chapter 1

Introduction

1.1 General introduction

Emergence of a variety of standards for Wireless Communication Networks in culmina-
tion with advances in Radio Access Technologies offer increased reach, higher capacity,
improved quality of service and many more things, while reducing energy consump-
tion and deployment costs, paving the way for new applications and services in mobile
broadband access.

A pioneer of a computer networking systems is ALOHAnet [2], popularly known
as ALOHA, developed at the University of Hawaii, which became operational in 1971,
providing the first demonstration of a wireless data network.

ALOHA used experimental UHF frequencies to begin with; as frequency assign-
ments for commercial applications were not available in the 1970s. Further, ALOHA
was used in cable (Ethernet based) and satellite (Immarsat) applications. In the early
1980s frequencies for mobile networks became available, and in 1985 frequencies suit-
able for Wi-Fi were allocated in the US. These regulatory developments made it possible
to use ALOHA in both Wi-Fi and in mobile telephone networks. Since then ALOHA
has found applications across a multitude of wireline and wireless technologies.

While ALOHA has been a pioneer networking system, which spanned across wire-
line and wireless networks, the wireless technology itself has evolved over the past few
years from using analog FM transmission for voice telephony to OFDM / OFDMA for
mobile intenet and video streaming applications in the recent years. In table 1.1, we
summarize the evolution of wireless generations over the past few decades [158].
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Generation Period Transmission Services Examples
1G 1980’s Analog FM Voice AMPS

FDMA / FDD
2G 1990’s Digital modulation Voice, SMS GSM, IS-95

TDMA/CDMA GPRS, EDGE
3G 2000+ Wideband Internet, email, WCDMA

modulation Multi-media HSDPA, HSUPA
streaming, etc.

4G 2005+ OFDMA Mobile internet LTE, WiMAX
Mobile video, etc.

Table 1.1: Evolution of wireless generations

1.2 Recent innovations and advances in wireless communica-
tion

In this section, we shall discuss a number of recent innovations and advances in in-
formation theory and signal processing that have enabled reliable and fastet commu-
nication. While the initial advancement was to push channel coding to achieve near
Shannon limits, the recent ones focus on exploiting the inherent properties of the wire-
less channel: fading and interference, which form the basic ingredients of Opportunistic
communication.

The first big thing that comes to our mind is Turbo codes [23], followed by Gal-
lager’s forgotten LDPC codes [61]. Both of these came within 0.5 dB of the Shannon
capacity limit. Though these codes came to light in the late 90’s and early 2000, the ad-
vancement of VLSI, made its realisability in practice and they have become an integral
part of todays and future wireless standards. Of late, there has been a lot of exitement
about fountain codes [38] and polar codes [16]. They not only pack the technologi-
cal breakthrough of turbo and LDPC codes, but also promise simpler implementation
complexity. In fact, they are shown to come even closer to Shannon limits.

The spatial component of the wireless channels has seen tremendous advancement
in recent, starting from Telatar’s landmark paper [144] and became popular with the
famed Alamouti [3] code. The Alamouti code has the unique property of being the
simplest space time code [142, 109] which offers full diversity and multiplexing gain.
Thus started the exploration and exploitation of spatial diversity, brought about by
multiple antennas.

Multiple Input Multiple Output (MIMO), based on Multiple antennas at the trans-
mitter and / or receiver is a technique which achieves diversity and / or multiplexing
gains. This enables higher data rates between transmitters and receivers. The trade-
off between diversity and multiplexing has been well captured by the landmark paper
of Tse [148]. Of late, MIMO has become a standard component of research problems
and simpler versions of it (upto 4 X 4 tx/rx configurations) including Alamouti codes,
Rate-2, Rate-3, Rate-4 space time codes (STC) have become part of WiMAX and LTE
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standards. Multiple antenna transmissions also makes it possible to offer better QoS to
cell edge users by cleverly beamforming or precoding the transmissions towards them.

Coming to multiplexing techniques, CDMA (Code Division Multiple Access) was
the popular choice of 90’s, while OFDM (Orthogonal Frequency Disision Multiplexing
[40]) has become the defacto in the 2000s. The advancement in signal processing in cul-
mination with the gains of narrow band signalling has made OFDM a popular choice
in todays modems. The biggest disadvantage comes from fluctuations in the signal lev-
els when the frequency domain information is converted to time domain via FFT. The
extent of these fluctuations are measured by the metric peak to average power ratio
(PAPR), which can be as high as 15-20 dB and large PAPR leads to problems with the
design of power amplifiers (larger dynamic range). With the advancement in PAPR re-
duction techniques, using both signal processing and RF techniques and with improved
power amplifier technology, this issue seems to be well taken care off and OFDM is here
to stay.

OFDMA [169] is a multiple access technique based on OFDM. Here, the available
sub carriers spreading across the spectrum of interest is split amongst multiple users.
With this it is possible to choose a cluster of sub-carriers and users in an optimal way
to combat fading and achieve diversity as well.

Ultra wide band (UWB) [163] was talked about a lot in recent years. This is a mod-
ulation scheme which uses narrow (time domain) pulses spreading over multiple GHz
of frequency spectrum. They were proposed for multiple applications including short
range communications (Personal Area Networks: communication over few tens of me-
ters). Though there was a huge surge of interest initially, in recent years, it is still wait-
ing to take off owing to spectral and economic viability issues.

We come back to our initial discussion about the two fundamental properties of
wireless channel and discuss how in recent years, these are further exploited to improve
spectral efficiency and resource utilization.

The fading nature of wireless channels is exploited to advantage via Opportunistic
communication [72]. This involves the transmitters being aware of the channel towards
its users (via feedback) and favoring those users with better channel conditions. Since
fading is a time/frequency varying phenomenon, everyone stands to benefit over some
averaging duration. Further, fair schedulers [91] can be employed to guarentee certain
QoS, even to disadvantaged users (cell edge or non LOS).

The other interesting idea of opportunistic communication is the principle of Cog-
nitive radio [83]. This exploits unused spectrum and transmission opportunities of
primary subscribers to schedule secondary users.

Relaying [80], yet another aspect of Opportunistic communication, manages inter-
fernce and improve end to end QoS. Signals from transmitters to receivers are routed
through relays which offer the best channel conditions. Also, due to the reduced trans-
mission ranges, power budgets are reduced and hence interfernce. The disadvantage is
the extra resouces needed to setup and maintain relays.
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Of late, co-operative as well as distributive strategies are gaining popularity. Co-
operative strategies like multi cell co-opertion [67, 80] aim at managing interfernce ac-
tively. At any given time the channel state of the entire system is known and a cen-
tral controller can now decide the most optimal way the communciation happens be-
tween individual transmitters and receivers. Recently, using these strategies, it has been
shown that the multicell capacity is same as the single cell capacity multiplied by the
number of cells [67]. However, in practice, due to multiple limitations involving back-
haul, latency, processing power, etc., sub-optimal schemes like clustering [67, 80], where
few neighboring base stations (e.g, clustering) share the channel state or schemes that
use a very minimal form of channel states like channel statistics have been proposed
to make it possible for practical realization. Some of these are already underway for
standardization.

Decentralized and distributed processing is becoming popular to manage the com-
plexity of central control. Here, each agent (base station), simultaneously updates its
parameters (runs an algorithm) to achieve a certain purpose. For example, each base
station could run a power allocation algorithm to meet its users demands with power
budget contraints, while exchanging minimal information (channel statistics, rates allo-
cated, etc.,) with its neighbours. Thus distributed processing becomes an essential part
of a self organizing system, guaranteeing a certain minimum QoS to each user. Each
agent (base station / mobile) learns and adapts to the environment and thus manages
to do the best. This is where the concepts of learning and adaptive algorithms come
in. Reinforcement learning [165, 138], stochastic approximation [93], etc are becoming
an integral part of new generation base stations. Game theory [11] and ODE (Ordinary
Differntial Equations) tools are extensively used to formulate, analyze and understand
the behaviour of these algorithms.

Another point to mention is the recent surge in usage of tools like stochastic ge-
ometry to analyze cellular networks [17]. The traditional methods of network analysis
assumes linear or hexagonal networks. Stochastic geometry takes into account the ran-
dom location (distribution) of transmit and receive nodes, which is a more realisitc
assumption and many a times, it is possible to obtain explicit expressions for impor-
tant system metrics. For example, one can compute explicit expressions for the total
interference at a base station with simultaneous transmissions from randomly located
nodes, distributed according to a poisson process [17]. This can be plugged into the
Signal to Interference plus Noise (SINR) equations to get a more realistic value as com-
pared to a idealized value with regular placement of nodes. Thus the upper bounds
and lower bounds of system metrics become more tighter. Though this is an emerging
idea, it is still very difficult to analyze systems with spatial randomness and one often
is comfortable using the popular Wyner-type cellular modelling [166] to get first cut
understanding of new advancements like multi cell co-operation strategies [67].

Current view: With all these discussions, a point to ponder is that some of the inno-
vations and advancements are a promise for the future, what about today? We need to
find a quicker solution to meet todays smart phones, gaming devices and tablets needs.
This is where topology comes to aid technology. Dividing a large cell into number of
small cells [107, 49, 44, 82, 52] fits the old adage ’divide and conquer’. The reduced
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cell sizes improve capacity and coverage. There are drawbacks related to infrastruc-
tural costs, backbone, mobility induced frequent handovers, etc. Some of these, we
shall address in due course. But, small cells appear promising to overcome coverage
and capacity bottlenecks of todays applications. Also, it is a matter of time before the
technical advancements we discussed become integral part of the small cell technology.

A recent survey: With so many new and exiting possibilites as discussed in previ-
ous paragraphs, we wanted to know what were the most landmark innovations and
advancements in recent years as seen by experts in the research and engineering com-
munity. We prepared a simple survey to identify the top few innovations and advance-
ments in wirless communications and predict the next big thing in Information theory.
We got some very interesting view points (See Appendix 9). Some said the survey itself
was very thought provoking and needs careful thinking. Others felt that the guessing
game is difficult, citing examples of LDPC. Few others opined that it is all related to
simplicity of the idea, ease of implementation, standardization and economics of de-
ployment. Citing from law of large numbers (of opinions), the top five without any
particular order were Turbo/LDPC codes, OFDMA, MIMO, Opportunistic communi-
cation and Multicell co-operative networks. The answer for the next big thing: Network
information theory.

Topology vs. Technology: Let us now illustrate via a few examples as to how reduc-
ing the cell size turns out to be more beneficial when combined with recente technical
advancements.

For example, opportunistic communication aims at scheduling and allocating users
which have good channel conditions. Users close to the base station enjoy the benefits
of such schemes owing to better channel conditions (better signal strength, LOS compo-
nents, etc.), while users at cell edge are disadvantaged. To circumvent this, a base sta-
tion can employ a proportional-fair scheduler to improve the QoS of the cell edge user,
but, this will be at the cost of decreasing the QoS for users with better channel condi-
tions. Thus decreasing the cell size benefits opportunistic communication schemes and
also increases the fairness in the system.

Another example, OFDMA, aims at dividing the available sub-carriers amongst the
users to avail the benefits of frequency non-selective transmissions. But, again the lim-
itations are apparent as one has to allocate more number of sub-carriers to cell edge
users to maintain the QoS of the link. Shrinking the cell size translates to meeting the
same QoS with lesser number of sub-carriers. The left over sub-carriers can be used to
support additional users for example.

Multiple antennas at the base station and users can dramatically improve the achiev-
able capacity on a given link. Beam forming or precoding can effectively focus a beam
to create better SINR conditions for cell edge users, while reducing interference towards
other users. But, this comes at the cost of using more resources at the transmitter. For
example, a significant portion of the available power from the total power budget at the
base station is used towards the cell edge users. Bringing the cell edges closer, power
allocation towards the cell edge users dramatically decreases.
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Figure 1.1: Evolution of wireless applications and services (Qualcomm [112])

.

Takeaway point: From our discussions so far, the aim behind these successive gener-
ations and technology advancement is to simplify the mode of communication, equip
the user with versatile features and finally satisfy him or her on the move. With the
rapid growth in the number of wireless applications, services and devices, using a
single wireless technology such as 2G or 3G will be inadequate to meet the data rate
and QoS constraints in a seamless manner (see [79]). To provide seamless broadband
connectivity to mobile users, the next generation wireless systems (4G and beyond)
are being devised with the vision of heterogeneity (see figure 1.2) in which a mobile
user/device will be able to connect to multiple wireless networks. This ensures that
the user is always connected to the best network. Further, cell edge users can constrain
the system to a very great extent and the benefits of technical advances still limit the
system performance, especially to meet the traffic demands of recent mobile broadband
applications. System designers have to exploit new dimensions to manage this.

Thus topology aiding technology advancement is seen as the next key step in meet-
ing the capacity requirements of next generation wireless networks.

1.3 Small cell networks

While, advances in technology in culmination with heterogeneous networks adds new
capabilities and features, the innovation in new services and applications always leave
some users uncovered, under served and dissatisfied. Here is where the Small Cell
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Figure 1.2: Example of heterogeneous network deployment with macrocells complemented by relays and
pico/femto cells (Guillaume de la Roche, et. al., [50])

.

Networks (SCNs) fit in. They fill these gaps [107, 49, 44, 82]. At the end of the day (or
the week), the operators know how and where the network is loaded, the user behavior
and demands. The best way to handle this is to put in some smart, portable base sta-
tions, which are self-configuring, self-organizing and self-healing. They are sufficiently
intelligent to sense, learn and respond to the environment. Be it urban hotspots, so-
cial events, sports, malls, etc, small cells are the smart answer to an adapting wireless
network.

The trend in traffic demand for wireless data and video services have seen an expo-
nential growth in the recent years (e.g. figure 1.3 [44]). Market forecasts from industry
leaders like CISCO (e.g. figure 1.4 [154]), predict the trend to continue in the coming
years. In addition, users tend to expect a LAN-like experience on the move. The exist-
ing network with its backhaul capabilities has reached a bottleneck and the emerging
networks, apart from being able to deliver high data throughput are expected to be
energy efficient and environment friendly. Thus the design and deployment of next
generation networks need to address contrasting requirements like increasing capacity
and coverage, while keeping the energy consumption and emissions within reasonable
limits.

Current 3G and emerging 4G wireless networks (like WiMAX and LTE) are unable
to meet the demand. One of the promising solutions to this is to divide a large cell into a
number of small cells ([107, 49, 44, 82]), thereby increasing the capacity and coverage in
the existing network. To be cost effective and efficient, such a network needs to employ
self-organizing, low-cost, low-power base stations (BSs). But, such a deployment poses
many a new challenges to the optimal system design. In subsequent paragraphs, we
will address some of the problems and challenges that arise in the deployment of small
cell networks. We specifically address problems in cell design and resource allocation
in this thesis.

Managing a dense network is a difficult task. Thus self configuring, organizing
and healing mechanisms need to be built into small cell base stations. These networks
should be able to configure radio, system parameters, optimize resource allocation and
handover procedures, have energy conservation mechanisms and be capable of recov-
ering from node failures. Also, since SCNs are connected via backhaul, challenges
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Figure 1.3: Traffic demand (Claussen [44])

.

Figure 1.4: Mobile data forecast (Cisco [154])

.

posed by delay sensitive traffic needs to be addressed as well.

One of the major challenges is managing frequent handovers when users are mo-
bile. With cell sizes from 10’s of meters to a couple of 100 meters, every few seconds
is a potential handover. Thus new mechanisms need to be built to manage frequent
handovers and HO signalling overhead. Grouping slow speed users to small cells and
high speed to macro cells [44] is one of the solutions. Another alternative is the forma-
tion of virtual cells, i.e., a cluster of cooperating small cells that appears to the user as a
single distributed BS [41][4]. In this setting, handovers would occur only at virtual cell
boundaries. Further fast bast-station switching (FBSS) is also a possible solution. Cell
dimensioning involving static and mobile users is a key issue to address.

Some of the other key challenges include interference management, resource alloca-
tion, energy conservation, etc. (refer [107, 49, 44, 82] for more details).
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Figure 1.5: Example of Pico cell deployment serving static and moving users

.

Typically, small cells comprise micro, pico and femto cells. Micro cells are miniature
counterparts of large macrocells. The idea of micro cells is to ensure enhanced data
rate and better coverage services in dense urban areas. Pico cells (see figure (1.5)) are
smaller when compared to micro cells. Pico base stations are designed to be portable
and easy to mount on existing street and outdoor infrastucture. Further, they can effec-
tively manage mobile users. Thus, they are intended to provide capacity and coverage
gains in dense urban areas with both static and mobile users. Such pico cells, while
serving the outdoor users better, fall short to achieve higher throughputs and wider
coverage while serving indoor users due to signal attenuation. Thus, indoor users can
be better served with an even smaller form factor indoor base stations, the femtos. Thus
Femto cells cater to indoor coverage serving homes and small offices. The future small
cell base stations design can be configured to function either as a micro, pico or a femto
BS. One of the key challenges to address is managing mobile users among these hetero-
geneous networks.

Thus small cell networks are a paradigm shift from the conventional network design
and pose many a new challenges in optimal system design. In this context, we address
cell design and resource allocation in small cell networks. In the rest of the thesis, we
model, analyze and study key performance measures in SCNs (with static and mobile)
related to cell deisgn and resource allocation. We use how tools from queuing theory,
random matrix theory, multimodularity, stochastic approximation and new concepts in
fairness can be effectively used to study cell design and resource allocation in Small
Cell Networks.

33



Figure 1.6: Possible alternatives to support mobility in small cells (Alcatel Lucent - Bell Labs [4])

.

1.4 Thesis Overview

In this thesis, we address cell design and resource allocation for small cell networks.

One of the key issues addressed in this thesis is cell dimensioning. This aspect is
studied with respect to achievable capacity using fluid models [90] with static users
with different receiver structures, frequency reuse, path-loss effects and various type of
cell partitions. Cell dimensioning with mobile users is studied in the context of differ-
ent classes of traffic and various pedestrian and vehicular velocity profiles. Assuming
random but fixed velocity of mobiles, we use tools from spatial queueing theory [164]
to derive cell sizes which minimizes key performance metrics like expected waiting
times, call block and drop probabilities, etc.

Next, we address the base station location problem. Where do we locate base sta-
tions to be throughput optimal? which location minimizes the delay? Is the center
of the cell proportionally fair or max-min fair? We address this interesting base sta-
tion location problem using the popular alpha-fair fairness criterion [105]. Using large
population limits, we compute the base station locations that are optimal for a given
degree of fairness. We indeed show that the center of the cell is a max-min fair BS
location, while considering varying density of users and cell partitions.

How does the capacity scale in an interference limited multi-antenna precoded small
cell network? Is there an optimal user density per antenna for a given degree of interfer-
ence? We answer these questios via asymptotic analysis via random matrix theory [46].
Simulations establish the results to be true in the finite regime. Further, the asymptotic
expressions are used to study power allocation to satisfy user rate demands.

Different applications need their utilities to be averaged over different time scales.
Thus the amount of resource that a user gets depends on his application and each appli-
cation has a different timescale. In this context, we introduce the concept of multiscale
fairness, which encapsulates short-term, long-term and other notions of fairness. We
demonstrate the application of this concept in some example applications in spectrum
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allocation and indoor-outdoor femto cells.

How do we allocate power to satisfy user demands in a multi-cell, heterogeneous
network?. We address this problem and propose a stochastic approximation [93] based
universal power allocation algorithm. We demonstrate the working of this algorithm
for systems with various degree of co-operation. This self-organizing algorithm fits the
paradigm of self organizing small cell networks.

Dense deployment of small cell’s address capacity and coverage holes. But, the
system load varies over time. Hence, from a greener perspective, one can switch off a
fraction of base stations via a central control or put a base station in an idle mode via
decentralized control, depending on the load. We derive the structure of this control
using tools from multimodularity [12].

High speed mobiles are subjected to frequent handovers due to the dimension of
small cells during the course of their service. We address this problem of managing high
speed mobility. We propose novel ways of power and resource allocation to manage
high speed users in small cells.

1.5 Tools used in the thesis

In this section, we present a brief overview of the tools used in the thesis. We have used
fluid limits [90] to address cell dimensioning with static users in chapter 2. Fluid lim-
its many a times yield explicit expressions for relevant performance measures, which
are tractable and are a good starting point to study complex problems (e.g, cell dimen-
sioning). Further they reduce the simulation overhead. Similar tools are also used in
chapter 4 to address the base station placement problem.

Fluid limits are asymptotic limits and hence are valid when some underlying quan-
tities tend to infinity. For example when the user density or base station density in-
creases to infinity. Alternatively, queueing tools are useful when asymptotics are not
valid. In chapter 3, we use queueing tools to derive cell dimensions that optimize ser-
vice times, waiting times, call block and drop probabilities, while considering mobile
users. Explicit expressions for various performance metrics can be easily found in most
of the books on queueing theory, e. g., [164] and can be straightaway used if a system
can be modeled as a certain type of a queue.

To analyze capacity scaling and per antenna user density that can be supported in
interference limited multicell precoded systems in chapter 5, we have used random
matrix theory [149, 46]. Most often, the limiting spectral distribution of these large
random matrices, representative of the system under consideration can be expressed
explicitly by the popular Stieltjes or other transforms. The asymptotic results obtained
via such an approach has been shown to be quite effective even in the finite regime.

For the problem of deriving the structure of the control policy for base station ac-
tivation in chapter 6, we have used tools from Multimodularity. Multimodularity ad-
dresses convex functions over integer spaces and if applied to systems whose cost func-
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tion evolves in a max-plus algebra, the axioms of Multimodularity can be proven and
the result is a simple well structured policy. This tool, introduced in [75] has been used
to address many problems in admission control, routing and other applications [12].

Fairness comes at the cost of efficiency. But, users can demand the same QoS ir-
respective of their location w.r.t the serving base station. So, the resource allocation
policies at the base stations cannot always be selfish to maximize their own revenue.
To keep the user satisfied, they have to sometimes maximize the utility of the weakest
user. So, it is necessary to be fair on many counts (global, proportional, delay minimiz-
ing, max-min, etc., ). These different notions of fairness are encapsulated in the concept
of alpha fairness [105]. Further, different applications need the utilties to be averaged
over different time scales. With this view, the concept of alpha fairness in conjunction
with traffic type and averaging durations has been used to come up with new fairness
concepts; the T-scale and multiscale fairness in chapter 7. The concept of alpha fairness
is also used in fair location of base stations chapter 4.

Stochastic approximation (e.g., [93]) analysis are powerful and are used extensively
in a variety of applications with iterative algorithms. They are handful in obtaining
the transient as well as steady state behaviour of the iterative algorithms. Ordinary
differential equation (ODE) approach is a popular one while studying the stochastic
approximation based algorithms. In this approach, either the iterative algorithm is ap-
proximated by the trajectory of an appropriate ODE or the time asymptotic limits of
an algorithm are obtained via the attractors of a ODE. In chapter 8, we proposed a
universal (one which works in variety of systems) power allocation algorithm, which
while running independently and simultaneosly at all the base stations of the network,
assymptotically satisfies the demands of all the users of the network. We obtained the
analysis of the proposed algorithm via the ODE analysis. The same chapter also uses
Game theoretic tools to obtain the demand satisfying power profile as a nash equilib-
rium of an appropriate game.

These analysis are used for obtaining the For our power allocation problem to sat-
isfy user demands with base station power constraints i we have proposed a stochas-
tic approximation based universal algorithm which can work in a variety of systems.
This algorithm converges to a power profile, which is the zero of the function being
addressed in this case. Also, specific to this problem, we have used a simple game the-
oretic framework [11] to formulate the problem and as has been a popular approach,
we use an ordinary differential equation (ODE) [93] approach to analyze the algorithm.

For the purpose of simulations, we have used MATLAB and MAPLE extensively.
Especially MAPLE is a favorite tool to check if explicit expressions are possible for
seemingly difficult integrals and other mathematical functions. We further propose to
use the LTE system level simulator [161] to validate some of the ideas and algorithms
developed during the course of our thesis.
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1.6 Organization and Contributions

This dissertation focuses on cell design and resource allocation for small cell networks.
The chapters are organized in two parts. The first part deals with cell design, while the
second part discusses resource allocation. Our main contributions and the outline of
the chapters content are the following

Part A: Cell design and dimensioning

1. Cell dimensioning with static users: A fluid perspective [115].

2. Cell dimensioning with moving users: A Spatial queuing approach [89], [119],
[118].

3. Where to locate the base station?: A large population perspective [116].

4. Capacity scaling and per-antenna user density in multi-antenna precoded net-
works: A random matrix approach [117].

5. BS activation control for green networking: A multimodularity approach [120].

Part B: Resource allocation

1. Multiscale Fairness and its Application to Resource Allocation in Wireless Net-
works [8], [10], [9], [114].

2. Satisfying Demands in a Multicellular Network: A Universal Power Allocation
Algorithm [121].

In Introduction 1, we provided a brief overview of the generation of wireless net-
works, the need for small cells, an overview of the thesis, tools used to address prob-
lems in the thesis and chapter highlights.

In Chapter 2, we present a systematic study of the uplink capacity and coverage of
pico-cell wireless networks. Both the one dimensional as well as the two dimensional
cases are investigated. Our goal is to compute the size of pico-cells that maximizes the
spatial throughput density. To achieve this goal, we consider fluid models that allow us
to obtain explicit expressions for the interference and the total received power at a base
station. We study the impact of various parameters on the performance: the path loss
factor, the spatial reuse factor and the receiver structure (matched filter or multiuser
detector).

In Chapter 3, we characterize the performance of Picocell networks in presence of
moving users. We model various traffic types between base-stations and mobiles as
different types of queues. We derive explicit expressions for expected waiting time,
service time and drop/block probabilities for both fixed as well as random velocity of
mobiles. We obtain (approximate) closed form expressions for optimal cell size when
the velocity variations of the mobiles is small for both non-elastic as well as elastic
traffic. We conclude from the study that, if the expected call duration is long enough,
the optimal cell size depends mainly on the velocity profile of the mobiles, its mean and
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variance. It is independent of the traffic type or duration of the calls. Further, for any
fixed power of transmission, there exists a maximum velocity beyond which successful
communication is not possible. This maximum possible velocity increases with the
power of transmission. Also, for any given power, the optimal cell size increases when
either the mean or the variance of the mobile velocity increases.

In Chapter 4, we address the problem of fair assignment of base station locations
in a cellular network. We use the generalized α-fairness criterion, which encompasses
the different notions of fairness: that of global, proportional, harmonic or max-min
fairness in our study. We derive explicit expression for α-fair BS locations under ’large
population’ limits in the case of simple 1D models. We show analytically that as α
increases asymptotically, the optimal location for a single BS converges to the center of
the cell. We validate our analysis via numerical examples. We further study throughput
achievable as a function of α-fair BS placement, path-loss factor β and noise variance σ2

via numerical examples. We also briefly address the problem of optimal placement of
two base stations and obtain similar conclusions.

In Chapter 5, we study precoded MIMO based small cell networks. We derive the
theoretical sum-rate capacity, when multi-antenna base stations transmit precoded in-
formation to its multiple single-antenna users in the presence of inter-cell interference
from neighboring cells. Due to an interference limited scenario, increasing the num-
ber of antennas at the base stations does not yield necessarily a linear increase of the
capacity. We assess exactly the effect of multi-cell interference on the capacity gain for
a given interference level. We use recent tools from random matrix theory to obtain
the ergodic sum-rate capacity, as the number of antennas at the base station, number
of users grow large. Simulations confirm the theoretical claims and also indicate that
in most scenarios the asymptotic derivations applied to a finite number of users give
good approximations of the actual ergodic sum-rate capacity.

In recent years there has been an increasing awareness that the deployment as well
as utilization of new information technology may have some negative ecological im-
pact. This includes awareness to energy consumption which could have negative con-
sequences on the environment. In recent years, it was suggested to increase energy
saving by deactivating base stations during periods in which the traffic is expected to
be low. In Chapter 6, we study the optimal deactivation policies, using recent tools
from Multimodularity (which is the analog concept of convexity in optimization over
integers). We consider two scenarios: In the first case, a central control derives the opti-
mal open loop policies so as to maximize the expected throughput of the system given
that at least a certain percentage of Base stations are deactivated (switched OFF). In the
second case, we derive optimal open loop polices, which each base station can employ
in a decentralized manner to minimize the average buffer occupancy cost when the
fraction of time for which the BS station is deactivated (idle mode) is lower bounded.
In both the cases, we show that the cost structure is Multimodular and characterize the
structure of optimal policies.

Fair resource allocation is usually studied in a static context, in which a fixed amount
of resources is to be shared. In dynamic resource allocation one usually tries to assign

38



resources instantaneously so that the average share of each user is split fairly. The exact
definition of the average share may depend on the application, as different applica-
tions may require averaging over different time periods or time scales. In Chapter 7,
we study dynamic resource allocation in wireless networks. Our main contribution
is to introduce new refined definitions of fairness that take into account the time over
which one averages the performance measures. We examine how the constraints on the
averaging durations impact the amount of resources that each user gets.

Power allocation to satisfy user demands in the presence of large number of inter-
ferers in a multicellular network is a challenging task. Further, the power to be allo-
cated depends upon the system architecture, for example upon components like cod-
ing, modulation, transmit precoder, rate allocation algorithms, available knowledge of
the interfering channels, etc. This calls for an algorithm via which each base station in
the network can simultaneously allocate power to their respective users so as to meet
their demands (when they are within the achievable limits), using whatever informa-
tion is available of the other users. In Chapter 8, we propose one such algorithm which
in fact is universal: the proposed algorithm works from a fully co-operative setting
to almost no co-operation and or for any configuration of modulation, rate allocation,
etc. schemes. The algorithm asymptotically satisfies the user demands, running simul-
taneously and independently within a given total power budget at each base station.
Further, it requires minimal information to achieve this: every base station needs to
know its own users demands, its total power constraint and the transmission rates al-
located to its users in every time slot. We formulate the power allocation problem in
a system specific game theoretic setting, define system specific capacity region and an-
alyze the proposed algorithm using ordinary differential equation (ODE) framework.
Simulations confirm the effectiveness of the proposed algorithm.

Summary and future research directions are discussed in Conclusion 9. A list of
publications during the course of the thesis is available in Publications 9
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Part II

Cell Design
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Chapter 2

Cell Dimensioning with Static
Users, a fluid perspective

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Received Power computation . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Impact of cell size on throughput . . . . . . . . . . . . . . . . . . . . . 51

2.5 Indoor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Dimension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Coverage and capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8 Conclusions and future perspectives . . . . . . . . . . . . . . . . . . . 62

2.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.1 Introduction

In a Small cell, the shorter transmission distance coupled with lower transmit power,
enhances both capacity as well as the Signal to Interference Noise Ratio (SINR) achiev-
able within the cell. But, a designer or a system architect would like to answer questions
such as: What is the optimum number of cells that one would want to divide the macro-
cell?, What is the optimum cell size which maximizes the throughput achievable at a
Small cell?. Does the receiver configuration matter? How is throughput affected when
one moves from a deployment of Small cells on a street (1D) to a deployment in a office
space or shopping mall (2D)?. What if the entire cell is located indoors? What happens
if the Small cell BS is within the building or located outside? What is the implication of
frequency reuse on the throughput achievable?

In this chapter, we try to address several of these questions. In particular, we derive
explicit expressions for the up-link (UL) SINR and throughput for simple 1D and 2D
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Figure 2.1: Frequency allocation in 1D.

models and analyze the achievable throughput as a function of the cell size, coverage,
etc. The goal of this work is to develop an analytical framework that can be used for
preliminary dimensioning purposes in planning the Small cell network and thus pro-
vide an insight for answering the above questions. We derive closed form expressions
of useful performance metrics considering free space path loss. We believe that the in-
sight brought from our approach can be used as inputs for a more detailed model to
include detailed propagation effects, fading, shadowing, mobility, etc.

We begin our study with the computation of the received power in single frequency
and frequency reuse in Section 2.2. Next, in Section 2.3, we derive expressions for the
throughput for both the modes with base-station (BS) receivers using the matched filter
and multi-user detector. Using expressions derived in Section 2.3, we study the impact
of cell size on the achievable throughput at the BS in Section 7.2.1 and propose a simple
optimization criteria for both receiver configurations. In Section 2.5, we analyze the
impact of cell size on the throughput in indoor scenarios. We derive expressions for
the received power and throughput for a 2D model in Section 2.6 and use it to study
the throughput as a function of cell size. Finally in Section 2.7, we look at the trade-
off between capacity and coverage for the models presented in previous sections. We
conclude our observations in Section 2.8.

2.1.1 Related work

We use a fluid model approach similar to the one used in [90], [69]. The simplicity of
the fluid model approach eases laborious and time consuming simulations. Typically
the cell structures are uniformly placed base-stations on a line segment (1D) or hexagons
(2D). This model is simplistic. One can also use a Poisson-Voronoi model. Both mod-
els are discussed for example in [87]. The principal behind the hexagon approach is
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to construct a disc with an equivalent area similar to the hexagon (OR hexagons of in-
terest). While in the Poisson-Voronoi model, the base station locations and cell sizes
are random. These two are extreme and complementary architectures: The hexagonal
model represents perfectly structured networks, whereas the Poisson-Voronoi model
takes into account irregularities of real networks in a statistical way. We shall treat in
detail the hexagonal model in this work.

An alternative fluid model has been introduced in [31, 30] to study the performance
and optimal cell size for CDMA networks. The model includes fading, and the fluid
limits are those obtained when the density of mobiles become large. The main tool
there has been random matrix theory. The approach in [31, 30] requires complete ho-
mogeneity within each cell: the gain from a mobile to a base station does not depend on
the location of the mobile. In contrast, in our work, we take into account the detailed
impact of the distance on the channel gains. In [135] the authors address a related
problem of optimizing the spectral efficiency of cellular indoor wireless networks by
adjusting the location and power of the base-stations. They apply both continuous and
combinatorial approaches to find a solution to the optimization problem.

2.2 Received Power computation

We compute the total power received at the base station for single frequency and fre-
quency reuse modes as a function of the cell size. The single frequency or frequency
reuse modes can employ single carrier or OFDM modulation for transmission.

2.2.1 Single frequency (SF)

Assume a single frequency deployment. There is a uniform density of mobiles on
the line L = ((−∞, 0), (∞, 0), each transmitting at a unit power (similar to the fluid
model approach used in [90], [31]). There are base stations (BS) located at (nL, 1), n =
...,−1, 0, 1, .... Since we consider Small cells, we explicitly include in the geometric
model the vertical distance (normalized to one) of the base station (which could be
negligible in large cells). Let α represent the attenuation factor or path loss factor in
the given wireless environment (for practical values of alpha one can refer for ex. to
[123]). Thus the power received at the BS from a mobile at a distance of x is equal to
(1 + x2)−α/2.

Denote β1 = (α − 1)/2 and β2 = (α + 1)/2. The total power received at the BS is

Ptot
bs =

∫ ∞

−∞
(1 + x2)−α/2dx =

√
πΓ(β1)

Γ(α/2)
(2.1)

In particular, we have in Table 4.1 explicit expressions for some integer valued α’s:
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Table 2.1: total received power as a function of α

α 2 3 4 5 6

Total received π 2
π

2
4
3

3
8

π

power

Power received at the BS in C0

Define the cell C0 to be the segment [−L/2, L/2] on the line L. The total power received
at the BS in C0 from mobiles in C0 is

PC0
bs (L) =

∫ L/2

−L/2
(1 + x2)−α/2dx

=
1
β1

(

L

2

)1−α

hypergeom
( [α

2
, β1

]

, β2,− 4
L2

)

−
π3/2sec

(

πα
2

)

Γ( α
2 )Γ
(

3−α
2

) (2.2)

For the special case of α = 2 this simplifies to

PC0
bs (L) = π + i log

(

L + 2i

L − 2i

)

(2.3)

Where L is the cell size and i =
√
−1. In figure (2.2) we depict this case for L taking the

values from 0.01 to 10 for α = 2, 4. We can see that PC0
bs (L) → Ptot

bs as L increases.

2.2.2 Frequency reuse (FR)

We consider some time slot and a given frequency and assume that this same frequency
is not used at the same time slot in all cells: it is separated by m − 1 cells. In figure (2.1),
we present a typical frequency allocation for a one dimensional (1D) case. m = 1 is the
single frequency case, whereas, any m > 1 represents frequency reuse. We show in the
figure a typical reuse-3 case. i.e, every third cell uses the same frequency.

The total power received at the BS is

Ptot
bs = PC0

bs (L) +
∞

∑
i=−∞,i 6=0

P
C(im)
bs (L) (2.4)

where P
C(j)
bs (L) is the power received at the BS from cell j that has size L. We note that

P
C(im)
bs (L) + P

C(−im)
bs (L) = PC0

bs ((2m + 1)L)

−PC0
bs ((2m − 1)L) (2.5)
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2.3 Throughput

We compute the total achievable throughput at a cell in the case where the BS receiver
uses a matched filter or employs a multi-user detection scheme like successive interfer-
ence cancellation.

2.3.1 Matched filter (MF)

We model the power received at BS in cell C0 from a mobile at x as the total power
received from [x, x + dx], i.e. dP(x) = (1 + x2)−α/2dx. We use the Shannon capacity
to compute the throughput while treating the interferences from all other mobiles at
the same frequency and time as noise. Using a detection scheme based on the matched
filter, the achievable throughput from the mobile at x is

dθ(x) = log
(

1 +
dP(x)

σ2 + Ptot
bs

)

where, σ2 is the noise power.

Since the quantity
dP(x)

Ptot
bs

<< 1, we use log(1 + x) ≈ x and rewrite

dθ(x) =
dP(x)

σ2 + Ptot
bs

(2.6)

Hence the total throughput at the cell is given by

Θ(L) =

∫ L/2
−L/2 dP(x)dx

σ2 + Ptot
bs

=
PC0

bs (L)

σ2 + Ptot
bs

. (2.7)

and the throughput density is given by

ΨMF(L) =
ΘC

L
=

PC0
bs (L)/L

σ2 + Ptot
bs

. (2.8)

Let L∗ denote the cell size which maximizes the throughput density.
Lemma 2.3.2. In the case of the matched filter, the throughput density is maximized by taking
base stations as dense as possible. i.e, L∗ → 0.

Proof : From equation (2.8),

L∗ = arg max
L

PC0
bs (L)/L

(

σ2 + Ptot
bs

)

= arg max
L

PC0
bs (L)/L

= arg max
L

(

1
L

∫ L

0
(1 + x2)

−α
2 dx

)
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as σ2 and Ptot
bs are independent of L. Clearly,

∫ L

0
1

−α
2 dx >

∫ L

0
(1 + x2)

−α
2 dx >

∫ L

0
(1 + L2)

−α
2 dx

and hence,

1 >
PC0

bs (L)

L
> (1 + L2)

−α
2 .

From the above, it is easy to see that,

PC0
bs (L)

L
< 1 if L > 0,

PC0
bs (L)

L
→ 1 as L → 0.

And thus, L∗ = 0. �

2.3.3 Multi-user detection (MD)

We assume that all the signal received at BS in cell C0 from mobiles out of C0 are consid-
ered noise; however within C0, some multi-user detection scheme that maximizes the
cell throughput is used. For example, successive interference cancellation is assumed.
Then the SINR is given by

SINR =
PC0

bs (L)

σ2 + Ptot
bs − PC0

bs (L)
. (2.9)

and the throughput achievable using the Shannon capacity limit with the multi-user
detection constraint [153]

Θ(L) = log (1 + SINR) (2.10)

and the throughput density is

ΨMD(L) =
Θ

L
=

log (1 + SINRC)

L
(2.11)

Lemma 2.3.4. In the case of multi-user detection, the cell size which maximizes throughput
density is such that L∗

> 0

Proof : From equation (2.11),

L∗ = arg max
L

1
L

log

(

1 +
PC0

bs (L)

σ2 + Ptot
bs − PC0

bs (L)

)

(2.12)

Let σ2 + Ptot
bs = K. By monotonicity of log function,

L∗ = arg max
L

(

K

K − PC0
bs (L)

) 1
L

.
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Clearly,
L > PC0

bs (L) > L(1 + L2)
−α
2

and hence,
(

K

K − L(1 + L2)
−α
2

) 1
L

>

(

K

K − PC0
BS(L)

) 1
L

>

(

K

K − L

) 1
L

From the above, it is easy to see that

(

K

K − PC0
BS(L)

) 1
L

> 1 if L > 0,

(

K

K − PC0
BS(L)

) 1
L

→ 1 as L → 0.

Thus there is an L∗
> 0, which maximizes the throughput density. �

Computation of L∗: By virtue of Lemma 2.3.4, L∗
> 0, i.e., the maximizer is not

at the boundary point and the objective function is clearly a differentiable function.
Hence, the cell size which maximizes the throughput density is a zero of the derivative
dΨMD/dL and hence is a zero of

Ω(L∗; α, σ2) = 0 (2.13)

where

Ω(L; α, σ2) := L

(

1 +
L2

4

)

−α
2

−
(

σ2 + Ptot
bs − PC0

bs

)

log

(

σ2 + Ptot
bs

σ2 + Ptot
bs − PC0

bs

)

Finding an explicit expression for L∗ is not easy. We outline a simple procedure to
compute L∗ iteratively.

Lk+1 = Lk + ǫ Ω(Lk; α, σ2) (2.14)

L0 > 0 is the initial value for the first iteration and L∗ is the converged value. One can
confirm the above iteration has converged whenever the error |Lk+1 − Lk| < µ for some
small enough positive constant µ.

For example, with α = 2, σ2 = 1, L0 = 0.1 and ǫ = 0.1, we converge to L∗ = 0.85 in
150 iterations. This matches with the optimal (max) value for the curve labeled SF_MD
in figure (2.5).

Asymptotic Approximations for L∗ in Small cells: We derive approximations for
L∗ as the path-loss factor α converges to 0 or to ∞. We recall from equation (2.11),

L∗ = arg max
L∈[0,Lmax ]

1
L

log

(

1 +
PC0

bs (L)

σ2 + Ptot
bs − PC0

bs (L)

)

.
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In the above, Lmax represents the maximum cell size that we can design. Since we are
dealing with Small cells Lmax itself is a small number and hence PC0

bs (L) ≪ Ptot
bs . So we

can use the approximation log(1 + x) ≈ x and re-write

L∗ = arg max
L∈[0,Lmax ]

1
L

(

PC0
bs (L)

Kα − PC0
bs (L)

)

,

where Kα := σ2 + Ptot
bs .

For large values of α : By bounded convergence theorem as α → ∞, PC0
bs (L)− L(1 +

L2)−α/2 → 0. Therefore for large values of α,

L∗ ≈ arg max
L

1
L

(

L(1 + L2)−α/2

Kα − L(1 + L2)−α/2

)

or L∗ approximately solves

d
(

(1+L2)−α/2

Kα−L(1+L2)−α/2

)

dL

∣

∣

∣

∣

∣

∣

L=L∗

= 0.

Solving this yields

L∗ ≈ 1
αKα

for large values of α. (2.15)

For small values of α : By bounded convergence theorem again as α → 0, PC0
bs (L) → L.

Therefore, L∗ ≈ arg max
L

(

1
Kα − L

)

for small values of α. Hence

L∗ ≈ Lmax for small values of α. (2.16)

In figure (2.9), we plot L∗ as a function of α computed using equations (2.15), (2.16)
and compare it with the value of L∗ computed via numerical simulations. We see that
the numerically evaluated values lie within the two bounds. Also, for smaller values
of α, the simulation results are closer to the α small bound and for larger values, the
simulation results are closer to the α large bound.

2.3.5 Comments on the fluid approach

So far we have been working with a fluid model which had the advantage (over a more
detailed discrete stochastic model) of being sufficiently simple to allow us to obtain
explicit expressions for performance measures related to the system capacity. We now
address the question of the validity of the fluid approximation: can we estimate what
these expressions say on the original discrete system? To address the question we first
define our stochastic model. We assume a Poisson arrival process with constant inten-
sity.
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Assume that mobiles are located according to a uniform Poisson point process X =
{Xi} with intensity λ which we normalize to one unit. Nx(A) denotes the number of
points of the process X in a set A. Consider first the single frequency setting of Section

2.2.1. Then the total power received at the BS is given by
∞

∑
i=−∞

(1 + X2
i )

−α/2 and its

expectation equals precisely to
∫ ∞

−∞
(1 + x2)−α/2dx, for which equation (2.1) provides

an explicit expression (for integer α’s).

The power and the interferences received at the BS according to the fluid approxi-
mation are thus precisely the expectation of those corresponding to the discrete model.
In particular, the remaining equations of Section 2.2.1 also hold for the expectations of
the corresponding objects in the discrete model.

The total throughput of the cell is then given by equation (2.7) and its expectation
satisfies

E[Θ(L)] = E[PC0
bs (L)]E

[

1
σ2 + Ptot

bs

]

≥ E[PC0
bs (L)]

σ2 + E[Ptot
bs ]

where the first equality follows from the independence properties due to the Poisson
assumption on the location of mobiles, and the last step follows by Jensen’s inequality.
We conclude that the throughput results of the fluid model provide lower bounds to
those of the discrete model.

2.4 Impact of cell size on throughput

In this section, we use the expressions obtained in the previous sections to study the
impact of the cell size on throughput. This analysis will allow us to optimize the cell size
for the different modes and receiver schemes considered. We perform the throughput
analysis via some numerical examples.

2.4.1 Numerical results

In figure (2.4), we plot the total achievable throughput in C0 as a function of the cell
size L which is obtained using equation (2.7), (2.10). We consider two cases, the first
case when all the cells deployed use the same frequency and the second case where we
use a reuse factor of 3. i.e, every third cell uses the same frequency. We compute the
throughput for the matched filter as well as the multi-user detection scheme in both
single frequency and frequency reuse. We plot the throughput as a function of L in
figure (2.4) for α = 2. As expected, the throughput increases with L and multi-user
detection performs better than the matched filter.

Next, we look at the total throughput density achievable in C0 as a function of L.
For the single frequency case, when the BS receiver uses a matched filter (SF_MF), we
note that the numerator in the throughput density (equation (2.8)) depends on L; it
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represents the useful power density received. By Lemma 1, we know that the optimal
cell size that maximizes the throughput density, L∗ → 0. Figure (2.3) plots the power
density as a function of L. We observe that the power density decreases with L and
is maximum when L∗ → 0. Thus we can conclude that the throughput density is maxi-
mized by taking base stations as dense as possible for a BS receiver which uses a matched
filter. With frequency reuse, the throughput density also depends upon L via the total
received power (see equations (2.4), (2.8)). Hence, we directly compute the throughput
density in this case.

As before, we consider the two cases described previously. We plot the through-
put density as a function of L in figure (2.5), for α = 2. We also plot the throughput
density for a single frequency with a matched filter (SF_MF), frequency reuse with a
matched filter (FR_MF), single frequency with multi-user detection (SF_MD) and fre-
quency reuse with multi-user detection (FR_MD) in the same figure.

By Lemma 2, we would expect that the cell size which maximizes the throughput
density, L∗

> 0, for the BS receiver which employs multi-user detection. From the
numerical example we conducted (figure (2.5) ), we indeed see that L∗

> 0 and in
fact, there is a unique optimal L for a certain frequency reuse which maximizes the
throughput density. The effect is more pronounced in the frequency reuse case. Also,
we achieve a higher throughput density for smaller cell sizes for the more practical case
of α = 4 in contrast to α = 2.

2.4.2 Optimizing the cell size

Matched filter: We see from figure (2.5) that in the matched filter case, the throughput
density is maximized for smaller cell sizes. However there is a cost for deploying base
stations. So it is more natural to pose the problem of maximizing

J(L) =
1
L
(c1Θ(L)− c2) (2.17)

where c1/L is the revenue per throughput density and c2 is the cost of each BS.

We note from figure (2.10)

that the throughput density is not sensitive at all to the reuse parameter m in the
matched filter case. (the cell size, L∗, which maximizes the throughput density is always equal
to the smallest L considered in the numerical analysis). Also, note that the optimization is
over the integers and L is typically not larger than a few hundreds. This allows one to
solve the optimization problem in a very short time even if exhaustive search is used.

Multi-user detection: For a BS which employs multi-user detection, we observe
from numerical analysis (see figure (2.10)) that L∗ decreases as the reuse factor m in-
creases. So, as the reuse factor increases, one would prefer to reduce the cell size in
order to maximize throughput density (densify base stations). However, this increases
deployment costs. Hence, our problem is to find an optimal cell size which balances
the throughput and deployment costs over the reuse factors of interest. Assuming that
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the deployment cost is proportional to the frequency reuse factor m, we can formulate
this problem as:

J(L, m) =
1
L
(c1Θ(L)− c2 − mc3) (2.18)

as before, c1/L is the revenue per throughput density and c2 is the cost of each BS. The
additional cost mc3 is incurred due to reuse co-ordination where m is the reuse factor
and c3 is the cost per reuse.

2.5 Indoor analysis

2.5.1 BS located inside the building

Next, we consider the cell of interest to be enclosed within a wall. All the interferers are
located outside of the wall. We use our earlier received power and throughput compu-
tation to analyze the performance of the desired cell for both the matched filter as well
as the multi-user detection schemes. Here again, we consider single frequency as well
as frequency reuse, first in the 1D case. We add to the gain, a constant multiplication
term to take into account the attenuation due to penetration through walls (refer [131],
[1], [168] for some example values).

Thus the throughput density equations (2.8) and (2.11) change as

ΨMF(L) =
PC0

bs (L)/L

σ2 + ηPtot
bs + (1 − η)PC0

bs (L)
.

and

ΨMD(L) =
1
L

log

(

1 +
PC0

bs (L)

σ2 + η(Ptot
bs − PC0

bs (L))

)

, where η is the wall attenuation factor .

We plot the numerical results in figure (2.7) for attenuation η = 12dB

Observations:

• When the interference is attenuated, there does not exist an optimal cell size
which maximizes the throughput density for both the matched filter as well as
multi-user detection schemes in single frequency and frequency reuse respec-
tively.

• Throughput density increases with path-loss α.

• Throughput density increases with attenuation η.
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Figure 2.2: Total power received at the BS in C0
vs L (α = 2, 4; single frequency).
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Figure 2.3: Total power density from C0 vs L
(α = 2, 4; single frequency, matched filter).

2.5.2 BS located outside the building

Another interesting case is the one where we assume that the serving BS is located
outside of the wall, but geometrically within the cell (example, BS mounted on top
of the roof, served mobiles inside the building (cell)). The throughput density equa-

tions (2.8) and (2.11) change as ΨMF(L) =
ηPC0

bs (L)/L

σ2 + Ptot
bs − (1 − η)PC0

bs (L)
. and ΨMD(L) =

1
L

log

(

1 +
ηPC0

bs (L)

σ2 + Ptot
bs − PC0

bs (L)

)

.

We plot the throughput density as a function of the cell size in figure (2.8) for 12 dB
attenuation.

Observations:

• For both the matched filter and multi-user detection, the maximum throughput is
achieved for a certain optimal cell size.

• As expected, the achievable throughput density increases with path-loss α.

• The optimal cell size decreases as path-loss α increases.

• The advantage of multi-user detection over the matched filter diminishes as the
attenuation η increases.

• The optimal cell size increases as the attenuation η increases.

Remarks: From the above two cases, it is interesting to note that the placement of
the BS matters, when the cell of interest is located indoors.

2.6 Dimension 2

In this section, we want to compute the optimal cell sizes in two dimension (2D). We
begin our study with the power and throughput computation similar to the 1D case.
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Figure 2.4: Total throughput of cell C0 vs L (α = 2).

• The total power received for α > 2,

Ptot
bs =

∫ ∞

0
2πx(1 + x2)−α/2dx =

2π

α − 2

. Whereas, for α ≤ 2 the total received power is infinite.

• Consider a cell C0 centered at the origin with radius L. The power received at the
origin from mobiles within the cell is

PC0
bs =

∫ L

0
2πx(1 + x2)−α/2dx =

2π

α − 2

(

1 − (1 + L2)1−α/2
)

• The total throughput achievable at a cell when decoding each mobile using the
matched filter (considering all the rest as noise) is

Thp
adapt− f ilter
C =

1 − (1 + L2)1−α/2

σ2 2−α
2π + 1

• The total throughput achievable at a cell when multi-user detection is used (con-
sidering all the mobiles out of the cell as noise) is

ThpMult−Acc
C = log

(

1 +
1 − (1 + L2)1−α/2)

σ2 2−α
2π + (1 + L2)1−α/2

)

.

For the two dimensional case, we consider frequency reuse only.

2.6.1 A simple approximation to the hexagonal grid

In this case, we approximate the hexagon cells with virtual circles (similar to the exam-
ples used in [31], [100] or [69]). Given that we consider a circle with radius L, we can
construct a hexagon with side L′, such that the area of the hexagon and the circle are the
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Figure 2.5: Throughput density vs L (α = 2).
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Figure 2.6: Throughput density vs L (α = 4).
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Figure 2.7: Throughput density vs L (α = 2, wall
attenuation 12dB, BS indoors).
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Figure 2.8: Throughput density vs L (α = 2, wall
attenuation 12dB, BS outdoors).
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Figure 2.9: Optimal cell size L∗ vs path-loss fac-
tor α (reuse factor m = 1)
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same [87]. One can easily see that L′ =
(

√

2π

3
√

3

)

L. For example, if L = 1, L′ = 1.0996L.

Also, the number of hexagons grow by 6 for each tier.

The infinite hexagonal grid representation is shown in figure (2.11). The inner most
hexagon is the cell of interest, where we desire to compute the throughput density. We
consider a reuse 4 scenario. The subsequent hexagonal cells surrounding the cell of in-
terest has the frequency allocation as shown in figure (2.11). As we see, every alternate
tier repeats the frequency of the inner-most cell, thus contributing to interference to the
cell of interest. We can also observe that the amount of interference is 1/2 of the total
contribution from this tier of hexagons.

The interference power from this annular ring is given by

P
C(j)
bs =

1
m

1
2

2π

α − 2

{(

(1 + (ajL)
2)1−α/2

)

−
(

(1 + (bjL)
2)1−α/2

)}

(2.19)

where aj =
√

(2j)6 + 1, bj =
√

(2j − 1)6 + 1 and j takes the value 1, 2, 3 ... representing

the power from the jth odd hexagonal tier. Note that m is the reuse factor.

2.6.2 A more precise approximation for the 2-D hexagonal grid

In this section, we propose an alternate approach to derive a more precise approxima-
tion for the 2-D hexagonal grid and compare it with the previously used approxima-
tion. In figure (2.11), every tier of hexagons around the cell of interest is enclosed by

an hexagon (shown dotted), whose side L′′ = (
2√
3
+ N

√
3)L′. Where, N is the index

of the hexagonal tier. As before, we replace these hexagons with annular rings, where,

the radius of the annular rings is related to the enclosed hexagons by L′′ =
(

√

2π

3
√

3

)

L.

Using these relationships, we can see that the radii of the equivalent annular ring’s for

this model grows as
1√
3
(2r, 5r, 8r, ... (MethodB) as compared to r,

√
7r,

√
13r,

√
19r...

(MethodA) in the previous case.

The numerical results are shown in figure (2.12). We conclude from this new ap-
proximation for the choice of radii in the earlier case Method A was conservative. Thus
using Method B would result in a lower throughput density.

2.6.3 Throughput density with reuse

In this section, we would like to compare how the throughput density changes as as
function of the reuse factor. We use the 2-D hexagonal model proposed (Method B) in
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Table 2.2: Interference contribution for different reuse factors.

tier no. 1 2 3 4 5 6 7 8 9 10
reuse 1 1 1 1 1 1 1 1 1 1 1
reuse 2 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3
reuse 3 0 1/2 1/3 1/4 2/5 2/6 2/7 3/8 3/9 3/10
reuse 4 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2
reuse 7 0 0 1/3 0 1/5 1/6 1/7 1/8 1/9 2/10

our numerical simulations. For this study, we construct hexagonal grid with 10-tiers
around the cell of interest. This would encompass 331 cells in total. So we would be
considering interference from a possible 330 cells surrounding our cell of interest. For
the numerical analysis, we use reuse 1, 2, 3, 4 and 7.

The amount of interference contributed from each tier for different reuse factors are
listed in the table 4.4.

Now equation (2.19) is modified to accommodate the reuse factor, m and re-written
as shown

P
C(j)
bs =

1
m

cj
2π

α − 2

{(

(1 + (ajL)
2)1−α/2

)

−
(

(1 + (bjL)
2)1−α/2

)}

(2.20)

now, aj =
√

(3j) + 2, bj =
√

(3(j − 1) + 2, to make it generic to accommodate all pos-
sible reuse factors and j, the tier number goes from 1, 2, .., 10. cj is the interference con-
tribution from the jth tier (ex. from table 4.4, for reuse 4, the interference contribution is
1/2 for every odd tier). We use equation (2.20), to compute the throughput density.

We see from figure (2.13) that the throughput density increases with the reuse factor.
The other interesting point to note is that the throughput density for higher reuse does
not fall rapidly as compared to the lower reuse factors.

2.6.4 Indoor analysis

For our next analysis, we assume that the cell of interest is located indoors and that
the walls offer an attenuation of η = 12dB to the interferer’s. figure (2.14) captures
this case for all reuse factors. We would also like to know what is the benefit or gain
in throughput density when the interferer’s are attenuated. This can be captured by
including the case of reuse factor 4 from the previous numerical analysis. We see that
for smaller cell sizes, this is almost a factor of 2 (see the region ellipse in the figure). But,
one loses this advantage as the cell sizes tend to increase. Finally, we look at the case of
the cell of interest located indoors, but the BS located outside, say, mounted on top of
the roof. Now the signals from mobiles inside the building are attenuated by η = 12dB.
figure (2.15) captures this analysis. The reduction in throughput density in such a case
is very drastic as one can observe for the case of reuse factor 4. The benefit of reuse
hardly seems to help in such situations (see the ellipse in the figure). In conclusion, we
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Figure 2.11: Frequency allocation in 2D.

see that the gain in throughput density when the BS is located indoors is more than
compensated when one moves it outside. This would mean that one would need to
plan appropriate BS placement, depending on the nature of user’s demand.

2.7 Coverage and capacity

Next, we want to study the trade-off between capacity and coverage. We assume that
some portion towards the periphery of the cell is not covered by the BS and hence these
mobiles are switched off (in power saving mode). We want to look at the throughput
per mobile as a function of coverage and the total capacity achievable at the cell, again as a
function of coverage.

2.7.1 Coverage and capacity in a single cell

We assume power control. i.e, mobiles at the boundary of the coverage area (distance x
from BS) transmit with power P and the received power at the BS is

p = P(1 + x2)−α/2. (2.21)
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Figure 2.13: Throughput density vs L for α = 4.1
and different reuse factors.
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Figure 2.14: Throughput density vs L for α = 4.1
and different reuse factors (BS indoors).
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Figure 2.15: Throughput density vs L for α = 4.1
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Figure 2.17: Throughput density vs L for 100 %
and 75 % cell coverage (α = 2, 1D).

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

L

th
ro

u
g
h
p
u
t 
d
e
n
s
it
y

MD, α=2.1
MD, α=4.1,
MD, α=2.1, 75%
MD, α=4.1, 75%

Figure 2.18: Throughput density vs L for 100 %
and 75 % cell coverage (α = 4.1, multi-user de-
tection, 2D).

Since we assume power control, any mobile within this coverage area will transmit
with a power P′ lesser than P, such that the received power at the BS will always satisfy
equation (2.21). The throughput per mobile can be computed as

dθ(x) =
p

1 +
∫ x

0 pdx
=

p

1 + px
(2.22)

while, the capacity of the cell as a function of coverage x can be computed as

C(x) = xdθ(x) =
px

1 + px
(2.23)

We observe that (figure (2.16)) the capacity of the cell increases with increase in cover-
age.

2.7.2 Coverage and capacity on a line segment (1D)

Next, we want to extend the argument for the entire line segment. For the ease of
analysis, we assume no power control and as before, the mobiles, which are not in
the coverage area are in a power-down state. In this context, we want to analyze how
the throughput density changes as a function of coverage for both multi-user detection
(MD) and the matched filter (MF) case. We consider frequency reuse of 3.

We use equations (2.2), (2.3), (2.4) and (2.5) and account for the coverage by replac-
ing L with L + δL or L − δL appropriately. In our numerical examples, we compare full
coverage with 75 % coverage.

Figure (2.17) shows the throughput density. We observe that for the multi-user de-
tection scheme, the full as well as the 75 % coverage exhibits certain cell size for max-
imum throughput density, while in the matched filter case, the throughput density is
maximized by densifying the cells. Hence, we conclude that coverage does not alter
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the behavior of achievable maximum throughput, albeit at a different cell size for the
multi-user detection case.

We observe that for small cell sizes, the throughput density (refer to figure (2.17))
is proportional to the coverage. But, as cell size increases, the throughput density for
different coverage tends to converge.

2.7.3 Coverage and capacity in two dimension

Next, we look at coverage and capacity in 2-dimension. As before, we have an infinite
hexagonal grid and our analysis assumes interference coming from hexagonal rings
surrounding the cell of interest. Here again, we consider full and 75 % cell coverage
and compute throughput density for different values of α

The following are note-worthy observations (see figure (2.18)).

1. The achievable throughput density falls very sharply in the vicinity of a small cell
radii, irrespective of the coverage.

2. We achieve a maximum throughput density proportional to the coverage. i.e
for example, the MD scheme with 75 % coverage achieves about 75 % of maximum
throughput density of the full coverage case at small cell radii. But, as the cell size
increases, the achieve throughput density with 75 % coverage starts moving closer to
the full coverage case.

2.8 Conclusions and future perspectives

We study aspects of cell dimensioning with static users under fluid limits. We char-
acterize the throughput achievable at the BS as a function of the cell size. The aim of
this study is to investigate if there exists a cell size which maximizes the achievable
throughput. We derived explicit expressions for power and throughput for both single
frequency and frequency reuse with different receiver configurations and numerically
analyze the impact of the cell size on throughput for various 1D, 2D models in both
indoor and outdoor scenarios. Our first cut analysis used free space path loss and we
did not consider the impact of shadowing, fading, etc. The analysis shows that the
throughput achievable is not always maximized by densifying the base-stations (BS),
but rather depends on a case to case basis on factors like deployment (1D, 2D, indoor,
outdoor), frequency reuse, etc. Our initial analysis did not incorporate radio fading,
shadowing effects, mobility of users, etc. It would be interesting to study the behavior
of throughput achieved as a function of cell size with these effects. Further, we as-
sumed continuum of users, which would enable us to use fluid limits and thus obtain
simple explicit expressions and an initial insight into cell design. A more realistic situ-
ation is to assume users at discrete points or users distributed randomly according to
some distribution. Properties of such distributions can be used to analyze and obtain
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dimensioning rules. It would be interesting to compare these results in the limiting
regime.

2.9 Publications

1. Sreenath Ramanath, Eitan Altman, Vinod Kumar, Merouane Debbah, "Optimiz-
ing cell size in pico-cell networks", proceedings of the Workshop on Resource
Allocation in Wireless Networks (RAWNET’09), Jun 27, Seoul, South Korea.
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Chapter 3

Spatial Queueing Analysis for
Design and Dimensioning of Small
Cell Networks with Mobile Users
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3.1 Introduction

In this chapter, we study cell design and dimensioning with mobile users.

To prevent a large number of handovers that would result from the small size of the
cells ([127, 4]), it has been proposed to group together a number of Small cells in one
virtual Macrocell and to restrict the effort of preventing losses due to the handover only
to those handovers that occur between Small cells of the same virtual cell. In between
the Small cells some fast switching mechanisms are proposed such as frequency follow-
ing mechanism where the frequency used by a mobile follows it from one Small cell to
the next. This requires reserving the same channel for a user in the entire Macrocell.
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In this chapter, we consider a large Macrocell divided into a number of Small cells
and study the impact of mobility on such systems, especially the effect of frequent han-
dovers. We assume that the ongoing call is never dropped at the Small cell boundary,
however base station switching (BSS) at any Small cell boundary requires some fixed
amount of information (in terms of bytes) to be exchanged. There is however a possibil-
ity of calls being dropped at Macrocell boundaries. We further assume that the active
users cross Macrocell boundaries at maximum once, i.e., the calls always end before
reaching the second Macro boundary. The handovers at the Macrocell boundaries are
modeled as independent Poisson process (this is a commonly made assumption, for
example see [108, 53]).

We have several goals. First, to model the system so as to predict its performance
measures. We are thus interested in developing tools using spatial queuing , that take
into account not only the instantaneous geometry but also the way it varies in time. It
should thus account for the impact of the speed of the users. We model the Macrocells
by various types of queues and well known results from queuing theory (for example
[164]) are used to obtain performance measures like expected waiting time , expected
service time , drop or blocking probabilities , etc. We shall use these results for prelimi-
nary dimensioning purposes in planning the Small cell network catering to pedestrian
and vehicular mobility, typical of urban and sub-urban areas. We derive closed form
expressions of useful performance metrics considering free space path loss, handover
constraints, traffic type etc. We also obtain closed form expressions for optimal cell size,
optimal for various performance metrics, when all the users move at the same fixed ve-
locity. To derive these performance measures, we would require the moments of the
time taken by the system to serve1 the customers, which in our case will equivalently
be the time the Macrocell spends on a call. We derive the expressions for these service
times, during which the information is exchanged between the moving user and the
set of appropriate base stations (which it encounters during its journey), using variable
rate of transmission. We further simplify the expressions for service time under the
following assumption: in a typical Small cell network, a moving user would have tra-
versed across a number of cells before the completion of call. In this system, arrivals
occur in space and the service time depend on the position, movement of the user and
the serving base station(s). The queues modeling these systems are referred to as spa-
tial queues and have been used in interesting applications ([170, 88, 125, 18]). We make
the following theoretical and or simulation based observations:

1) Maximum possible velocity: For any fixed power of transmission P, there exists a
maximum user velocity Vlim(P) and the users moving at speeds greater than Vlim can
not successfully communicate with the BS;

2) Larger cells for larger velocities: Given P, the optimal cell size increases with an in-
crease in the highest velocity that the system has to support. This is true as long as
the highest velocity is less than Vlim(P). However the system cannot cater for velocities
above the limit Vlim(P), even if one increases the cell size indefinitely;

3) Insensitivity to application: The optimal cell size remains the same for non-elastic

1Throughout we use the terms from queuing theory like arrivals, service time etc.
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(NES) as well as elastic (ES) calls for large file sizes, when the rest of the parameters
remain same;

4) Two dimensional Manhattan Grid: The one dimensional results can be applied di-
rectly to a two dimensional regular street grid (for example [103, 14]).

We extended the analysis to systems, where (negligible number of ) call drops can
also occur at Small cell boundaries, and obtained some initial results. To completely
avoid call drops at Small cell boundaries, one needs a centralized call admission con-
trol (a control based on the total number of calls in the entire Macrocell). This require-
ment can be relaxed if one can design a system delivering required QoS, in spite of
(negligible) call drops at Small cell boundaries. We consider one such system (with de-
centralized call admission control) and obtain closed form expressions for the optimal
cell size catering to non elastic traffic.

In [118], we extended the analysis to a hexagonal 2D cellular structure in which the
users can move in any direction across the cell. The 2D system also considers possible
drops at Small cell boundaries as well as works with a more distributed call manage-
ment system.

Several authors have examined the impact of mobility on the performance of wire-
less networks. The authors in [72], have shown that mobility in fact increases the ca-
pacity in ad hoc networks. In [21], the authors discuss the trade off between delay and
achievable throughput in the presence of mobility in wireless ad-hoc networks. Fur-
ther, In [28, 29, 36, 35], the authors discuss the impact of inter and intra-cell mobility on
capacity, flow level performance, trade-off between throughput and fairness, etc. They
show that mobility tends to increase the capacity with globally optimal as well as fair
sharing policies, when the base stations interact. In conclusion, we see that the mobility
(via multiuser diversity, opportunistic scheduling etc) can in fact improve the overall
performance of the system. However, most of the work assume that the handovers
occurs without extra cost. But in reality, each handover requires exchange of some in-
formation between the user and the new BS and has a risk of not finding free resources
in the new cell. Our work mainly focuses on these issues which become significant
whenever the frequency of handovers increases, as in the case of Small cell networks.

We describe our system in Section 3.2 while the service time is discussed in Sub-
section 3.3.1 and is optimized in 3.3.6. The NES, ES calls are modeled by appropriate
queuing models and performance measures are derived in Subsections 3.3.8, 3.3.9 re-
spectively. The two dimensional regular street grid is studied in Section 3.4 while the
numerical examples are provided in Section 3.5. Some initial results on a system with
possible call drops at Small cell boundaries and with a decentralized call admission
control are in Section 3.6. Some lengthy derivations are provided in two appendices
(Appendix M and P) placed at the end of the chapter.
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Figure 3.1: User moving with velocity V along a line

.

3.2 System Model

We consider a Macrocell, [−D, D], divided into a number of Small cells of length L. Each
Small cell has a base station (BS) located at the center and all these BS communicate to a
central unit (CU), which controls the entire system. We assume that there is no interference
between any two transmissions.

Traffic Types: Define the waiting time as the duration between the arrival of the call
and the instance its service starts. We consider two types of traffic: elastic (ES) and
Non-elastic (NES). The two types of calls result from two different types of applica-
tions. The non-elastic traffic (multimedia streaming, voice calls etc) is very sensitive to
the waiting time. These callers can tolerate some errors in transmission (for example
in voice calls the ears can’t distinguish the errors when they are up to a certain perse-
verance limit) but are very impatient. They infact drop the call if not picked up within
a small waiting time. An elastic traffic (e.g., a data call) on the other hand can wait
for some time before it is picked up, but is very sensitive to errors in transmission. In
such calls, the natural performance metric is either the expected waiting time or the
expected sojourn time, while the probability of a call being blocked, PB and the drop
probability, i.e., the probability that an ongoing call is dropped before completion, PD

are important performance measures for NES calls. Systems are designed with more
stringent requirements on PD than PB. The two types of users are assumed to be served
using independent set of resources.

Arrivals: The two (ES, NES) arrivals are modeled by two independent Poisson arrivals
with rates λ. Every arrival is associated with Marks (X, V, S): X ∈ [−D, D] the location
of arrival, S the file size requirement and V the user velocity, distributed respectively
according to Pn,X, Pn,V and Pn,S with respective densities fn,X, fn,V and fn,S. Let Pn :=
(Pn,X, Pn,V , Pn,S). We assume symmetry in both directions, i.e., that Pn((X, V, S) ∈ A) =
Pn((X, V, S) ∈ −A) for all Borel sets A. We thus calculate and analyze without loss of
generality (w.l.g.) for V ≥ 0.

Handovers: In major parts of this research (except for Section 3.6), we assume that han-
dovers are completely successful at Small cell boundaries. However, we do not assume
the same for Macrocell boundaries, i.e., a crossover into a new Macrocell results in a
successful handover only if the new Macrocell has free servers. We model each han-
dover into a Macrocell as a Poisson arrival, stochastically independent of the new call
arrivals (as done for example in [108, 53]). We further assume that there can be at max-
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imum one handover, i.e., the calls get finished before reaching the second Macrocell
boundary. This simplifies the analysis to a good extent and is quite a good assumption
as the Macrocells are typically large in dimension. We consider generalization of this
assumption in our future work. Lastly in Section 3.6 we obtain some initial results by
relaxing the ’handovers at Small cell boundaries are completely successful’ assumption.

Radio Conditions: The BS communicates with the mobiles using a wireless link, at a rate
that depends upon the distance between the two. Since our primary focus is on mobil-
ity we implicitly consider Small cells deployed outdoors, for example urban, suburban
scenarios. Hence we can assume significant line of sight signal. Further, Small cells be-
ing small in size, it will be sufficient to consider only the direct path for communication.
A user located at x communicates with BS of cell m using unit transmit power (when
receiver noise variance is one) at rate2 given by,

R̄(x; m) := 1{|x−(mL− L
2 )|≤d0} + 1{|x−(mL− L

2 )|>d0}d0
β

∣

∣

∣

∣

x −
(

mL − L

2

)∣

∣

∣

∣

−β

, (3.1)

where β ≥ 1 represents path loss factor and d0 > 0 is a small distance up to which there
is no propagation loss. The above model is valid for systems with low signal to noise
ratios, where in the rates are directly given by the SNRs.

3.3 System Analysis

The users are moving continuously with a fixed but random velocity. The Macrocell
can handle at maximum K parallel calls. Transmission always occurs at fixed power
P. Since Small cells are small in size, the movement of the users results in frequent
handovers. The number of handovers will be quite large that it would be complicated
to design a reliable system without redundancy: We assume that every BS can also
handle K parallel calls3. This ensures that, once a call is picked up it is not dropped at
any Small cell boundary: when a user crosses over to a new BS, the new BS would at
maximum be handling K − 1 calls and hence will have at least one free server. However
it is important to note that the maximum power used at any time in the system equals
KP. We further assume that :

1) Every BSS (base station switching at a Small cell boundary) requires fixed Bh bytes
of information to be communicated (independent of the user’s velocity), after which the

2The analysis will go through for any other rate functions, for example like R(x; 1) =

(1 + (x − L/2)2)−β/2 ([115]), R(x; 1) = log
[

1 + (1 + (x − L/2)2)−β/2
]

([115]), R(x; 1) =

log
[

1 +
(

d
β
0 |x − L/2|−β 1{|x−L/2|>d0} + 1{|x−L/2|≤d0}

)]

etc. Some of the simplifications that we
obtain in subsequent sections, may not be possible with these rate functions. However one can always
conduct Monte Carlo simulations to obtain the required inferences.

3In practical systems, each BS will have M backup servers to manage handovers. This means each
BS can handle M parallel calls. In general M need not be equal to K, however M has to be chosen large
enough to ensure negligible call drops at Small cell boundaries, taking into consideration the large number
of handover associated with Small cells. With this large enough M the system’s behavior will be close to
the system considered in this work (the case with M = K).
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user’s service is resumed by the BS of the cell it just entered;

2) The user is served by the BS of the Small cell in which it is moving, as it is physi-
cally nearest to this BS.

In the following sections up to and excluding Section 3.6, all the results are derived
under the assumption that, no call drops ever happen at Small cell boundaries.

3.3.1 Time required for communicating S bytes (Bc)

Define by Bc(S, X, V) the time required to communicate a packet of length S bytes to
a user located at X (when the service starts) and moving with velocity V. If the user
can communicate at a fixed rate r bytes/sec then the communication time would have
been S/r. The maximum rate at which a user can communicate with the BS in cell m is
given by (3.1). This position dependent rate varies: minimum when the user is at the
cell edges and increases as the user moves towards the cell center. This poses a need
to calculate the communication time considering the variable rates. The location of the
user (under service) will change according to X(t) = X + Vt (Figure 3.1). At time t, if

the user is in cell m, i.e. if X(t) ∈ [(m − 1)L, mL], it communicates with the BS of mth

cell. Hence the user gets service at time varying rate given by

R(t; X, V) := PR̄(X(t); m) if t ∈
[

(m − 1)L − X

V
,

mL − X

V

]

.

Without loss of generality we consider the users, whose communication started in the
first Small cell, i.e., with X ∈ [0, L]. The communication time Bc required by the user,
i.e., the time required to communicate S bytes satisfies :

S =
∫ Bc

0
R(t; X, V)dt. (3.2)

Let, g(l) :=
∫ l/V

0
PR̄(Vt; 1)dt = P

∫ l

0
R̄(l′; 1)

dl′

V
,

represent the number of bytes communicated while the mobile traverses interval [0, l].
Note that (throughout it is assumed that L > 2d0: one can easily show that the optimal
cell size has to be greater than 2d0),

g(L) =
Pd

β
0

V

∫ L/2−d0

0

(

L

2
− l

)−β

dl +
Pd

β
0

V

∫ L

L/2+d0

(

l − L

2

)−β

dl +
2Pd0

V

=















2Pd0

V(β − 1)

(

β −
(

L

2d0

)1−β
)

when β > 1

2Pd0

V
(log(L/2)− log(d0)) when β = 1.

(3.3)

For any m, the number of bytes communicated as the user traverses through mth Small
cell (by change of variable l = X + Vt − (m − 1)L),

∫ mL−X
V

(m−1)L−X
V

R(t; X, V)dt =
∫ mL−X

V

(m−1)L−X
V

PR̄(X + Vt; m)dt =
P

V

∫ L

0
R̄(l; 1)dl = g(L)
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and thus is independent of m. Out of this number, Bh number of bytes are dedicated for
BSS. Hence, irrespective of the cell which the user traverses, g(L)− Bh number of bytes
are transmitted during the user’s journey via one Small cell. Thus the communication
time can have three components : 1) Time taken in the originated cell: (L − X)/V, 2)
Time taken to travel N full cells, where (with ⌊t⌋ representing the largest integer in t)

N = N(S, X, V) :=
⌊

(S − (g(L)− g(X)))

g(L)− Bh

⌋

represents the number of cells traveled during the communication of S bytes and 3)
Time taken in the cell in which the call terminates, i.e., time taken to communicate
leftover bytes

Sl := S − (g(L)− g(X))− N(g(L)− Bh).

Further a call can be handled only if the bytes that can be communicated while
traversing through a cell g(L), is greater than the number of bytes required for BSS Bh.
From (3.2), the communication time Bc(S, X, V) can be calculated as:

Bc(S, X, V) =























1
V

arg inf
l∈(X,L]

{(g(l)− g(X)) ≥ S} if S < (g(L)− g(X))

∞ if Bh > g(L)
L − X

V
+ N

L

V
+

1
V

arg inf
l∈(0,L]

{g(l)− Bh ≥ Sl} else.

From (3.3), g is continuous and monotonically increasing function, so g−1 exists and
thus:
Theorem 3.3.1.1. Time to communicate S bytes with a user initially located at X and moving
with velocity V is,

Bc(S, X, V) =



















g−1 (S + g(X); V)− X

V
if S < (g(L)− g(X))

∞ if Bh > g(L)
(L − X) + NL + g−1 (Sl + Bh; V)

V
else, where

g−1(s; v)
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Figure 3.2: Approximation of Communication time, Bc

Approximation : In Small cell based systems, a user traverses a large number of Small
cells while receiving service. Hence the communication time can be approximated by
the product of number of cells, S/(g(L)− Bh), and the time taken for traversing each
cell L/V:

Bc(S, X, V) ≈ S

g(L)− Bh

L

V
when g(L) > Bh. (3.4)

In Figure 3.2 we show that this approximation is very good. We plot the expected value
of actual communication time (given in Theorem 3.3.1.1) and the expected value of the
approximation (3.4), for two different velocity profiles. As expected the approximation
is very good, in fact for all velocity profiles (one can hardly distinguish the two lines in
the figure).
Remark 3.3.2. If a call is originated at position X and moves with velocity V 6= 0 then, in
case of ES applications, the call will be picked up at a position Xs (= X + VW; W the waiting
time) different from X. It is difficult to estimate Xs (as W is unknown) and the time taken to
communicate S bytes, Bc, actually depends upon Xs but not on X. However with the above
approximation, Bc(S, Xs, V) = Bc(S, V), i.e., Bc does not depend upon the location of the user
when its communication started.

3.3.3 Maximum velocity handled by the system

Communication time, Bc, is finite only if the number of bytes transfered g(L) per cell is
strictly greater than the bytes required for BSS, Bh. The system can not handle velocities
for which the communication times are infinite and hence we obtain (proof in Appendix
M.1):
Theorem 3.3.3.1. When β = 1, for any transmit power P, system can handle all velocity
profiles. When β > 1, there exists a bound Vlim(P) < ∞ (increasing linearly with P) on the
maximum velocity that can be handled by system, where

Vlim(P) :=
2Pd0β

β − 1
. � (3.5)

Henceforth we consider only the velocity profiles that satisfy:

Pn,V(V < Vmax) = 1, where Vmax < Vlim(P). (3.6)
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3.3.4 Service time : The time of the Macrocell spent for user’s service

The user reaches the boundary of the Macrocell starting from a point X in time:

B∂(X, V) :=
D − X

V
. (3.7)

The Macrocell has to serve the user either until all its S bytes are transmitted (which
takes time Bc) or till the user reaches the boundary. Thus, the overall service time re-
quirement of the user in a Macrocell is BD := min{(D − Xs)/V, Bc(V, S)}, where Xs

(defined in Remark 3.3.2) is the user position when its service starts. By Remark 3.3.2,
Bc does not depend upon Xs. For NES applications Xs = X the position of arrival. For
ES applications, it is difficult to estimate Xs, instead we approximate Xs with X, i.e.,
BD(X, V, S) ≈ min{B∂(X, V), Bc(V, S)}. The error in this approximation is given (with
W representing the waiting time) by:

Err = W1{Bc>
D−X

V } +

(

Bc −
D − Xs

V

)

1{ D−Xs
V <Bc<

D−X
V }

and so for any k,

E[Ek
rr] ≤ E

[

Wk1{Bc>
D−X

V −W}
]

.

The error is small either whenever the number of servers is large (so waiting times are small) or
when the Macrocell is large in size (which usually is the case).

3.3.5 Macro Handovers

Handover are modeled as Poisson arrivals (as done in [108, 53]). In this subsection we
derive the other characteristics of the handover calls.

Distribution of handover call marks (X, S): In general handover densities will be differ-
ent from the new call densities fn,X, fn,S and fn,V . As the users move in either direction
with equal probability, Ph,X the position of handover arrival occurs either at −D or
at D with half probability. If handover occurs at −D the corresponding velocity will
be positive, which is the case we consider w.l.g. We assume fn,S is exponential, i.e.,
fn,S(s) = µe−µs for some µ > 0, in which case by memoryless property, fh,S = fn,S.

Rate of handovers: Let

ν(v, L) :=
η(L)− vBh

L
= v

g(L)− Bh

L
. (3.8)

Then from (3.4) and (3.7),

Pho := Prob(B∂ < Bc) = En,X,V

[

e−µν(V,L)(D−X)/V
]

(3.9)

gives the probability that a call is not completed in one Macrocell. This precisely repre-
sents that fraction of new arrivals which get converted into handover calls. So

λho := λPho
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is the rate at which handovers occur.

Speed of handover arrival : A handover call arrives at X = −D with velocity v > 0
only if a new call with velocity v is not completed before reaching the boundary. Here
we use the assumption that handover occurs at maximum at one Macrocell boundary,
i.e., an handover call is not converted to another handover. Let

Pho,v := Prob(B∂ < Bc|v) = En,X

[

e−µν(v,L)(D−X)/v
]

(3.10)

represent the conditional probability given V = v. Then the handover speed distribu-
tion,

fh,V(v) =
fn,V(v)Pho,v

Pho
.

3.3.6 Moments of Service time

Under assumption (3.6), the kth moment of BD exists (whenever the corresponding
for S and V−1 exist) and equals, b(k) := EX,V,S[(BD(X, V, S))k], where EX,V,S is the
expectation w.r.t. the (new call and handover call) joint distribution,

PX,V,S :=
λ(Pn,X, Pn,V , Pn,S) + λho(Ph,X,V , Ph,S)

λ + λho
.

In Appendix M.2 we obtain (recall En is expectation w.r.t. Pn, the new call distribution):

b(k) = En

[

BD(x, v, s)k + BD(−D, v, s)kPho,v

1 + Pho

]

and (3.11)

db(k)

dL
= En

[

d

dL

(

BD(x, v, s)k + BD(−D, v, s)kPho,v

1 + Pho

)]

. (3.12)

3.3.7 Cell size optimizing the moments of the service time

The number of bytes that can be communicated in a cell increases with the increase
in cell size: from (3.3) g is continuous and monotonically increasing w.r.t. L. For any
given velocity there exists a minimum cell size (the smallest cell size at which one can
transmit more than Bh bytes per cell), below which successful communication is not
possible. When cell size is closer to this smallest one, the useful bytes transmitted per
cell (g(L) − Bh) are very small and hence it takes more time to transmit S bytes, i.e.,
the communication time Bc will be large. As the cell size increases from this smallest
size, the communication time Bc starts reducing. However after some point, due to
path loss, the number of bytes per cell starts saturating and hence the gain in terms
of useful bytes transmitted per cell will be small in comparison with the extra time
taken to traverse each cell, resulting in increasing the communication time again. Thus
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there exists an optimal cell size for every fixed velocity. One can extrapolate similar things
even for random velocity. We derive the optimal cell size L∗

b(1)
and relate the same to

the optimizer of more interesting performance measures for ES and NES calls in the
subsequent sub-sections.

Define L∗
ν(v) := arg max

L
ν(v, L), the maximizer of the function ν given by (3.8). In

Appendix M.3 we show that, there exists an unique L∗
ν(v) > 0 for every velocity v.

In the Appendix M.4 we further show that, for fixed velocities (i.e., when V ≡ v̄), the

derivatives of all the (existing) kth moments of the service time vanish only at L∗
ν(v̄).

Thus for fixed velocities, all the (existing) moments of the service time have unique and common
minima:

L∗
b(k)

:= arg min
L

b(k) = arg max
L

ν(v̄, L) = L∗
ν(v̄) for all k.

The common optimizer L∗ (for example for β > 1) satisfies

∂ν(v̄, L)

∂L

∣

∣

∣

∣

L=L∗
= 0 or 2P

(

L∗

d0

)−β

L∗ − η(L∗) + v̄Bh = 0 and therefore

Theorem 3.3.7.1. For fixed velocity profile, i.e., Pn,V(V = v̄) = 1 the optimal cell size for the
expected service time is,

L∗
b(1)

= L∗
ν =



















2





2Pd
β
0

β
β−1

2Pd0
β

β−1 − v̄Bh





1
β−1

when β > 1

2d0e
v̄Bh

2Pd0 when β = 1.

Further, if the kth moment of the service time exists then L∗
b(k)

= L∗
b(1)

. �

For velocity profiles with small variance, the optimizers of all the moments of the service
time will be equal approximately. Hence when Pn,V has small variance with mean v̄ then
L∗

b(1)
is close to L∗

ν(v̄) . From the above it is clear that L∗
b(1)

increases when the mean v̄ increases.

Having obtained the service time, we now turn our attention to model various
configurations of the Macrocell with appropriate queues to further obtain their per-
formance measures.

3.3.8 ES Calls : Average Waiting time

Each Macrocell can handle at maximum K parallel calls. The CU of the Macrocell keeps
a record of the users entered into the system and serves them in FIFO (first in first out)
order via the BSs of the Small cells. When a new user initiates a call, it is immediately
picked up if there are less than K active calls in the system. If not the user will have
to wait. Its service will start at the time : 1) when one of the active K users finish their
service and exit 2) if there are no other waiting users arrived before it. The BS nearest to
the user, at the time of its service start, will initiate the call. Hence after, its call is served
(by the Macrocell under consideration) as discussed in subsection 3.3.1 either till its
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service is over or till it reaches the Macrocell boundary. When it reaches the boundary
the call will be transfered to the next Macrocell as a handover call and the handover
call is treated by the new cell similar to that of a new call. Thus each Macrocell can be
modeled by a M/G/K queue with service time BD and Poisson arrivals at rate λ + λho.
This queue has been analyzed to a good extent and the system is stable only if ([140])

ρ :=
(λ + λho)b

(1)

K
< 1.

For stable queues, the expected waiting time of a randomly arrived customer can be
approximated by ([140]):

E[W]K =

(

b(2)

2(b(1))2

)(

b(1)

K(1 − ρ)

)

(

(Kρ)K

K!

)

π0; π−1
0 =

(Kρ)K

K!
+ (1 − ρ)

K−1

∑
i=0

(Kρ)i

i!
.(3.13)

where b(1), b(2) are given by (3.11). If the system is unstable the number of waiting
customers grows towards infinity and thus one should consider only the cell sizes L
with ρ < 1. Hence, the optimal size, which minimizes (3.13) is

L∗
ES := arg min

{L:ρ<1}
E[W]K.

We saw in the previous section that the optimizer of b(2) is same as that of b(1) for fixed
velocities and will be close to each other for smaller velocity variances. In a similar way
the same thing is true for ρ, i.e., for fixed velocities,

L∗
ρ := arg min

{L:ρ<1}
ρ = L∗

b(1)
.

The expected waiting time (3.13) is continuously differentiable in b(1), b(2) and ρ. Thus
(minimizer of (3.13) is a zero of its derivative and E[W]K depends upon L only via b(1),
b(2), ρ),
Theorem 3.3.8.1. Optimal cell size for a system with elastic traffic, with Pn,V(V = v̄) = 1 is,

L∗
ES = arg min

{L:ρ<1}
E[W]k = L∗

b(1)
.

So, L∗
b(1)

minimizes both expected waiting time and expected service time. Also, it minimizes
the expected sojourn time, as it is the sum of expected waiting and service times. �

Also from (3.13), when L∗
b(1)

and L∗
b(2)

are close, it is easy to see that the optimizer of
E[W]K will be close to that of the expected service time, b(1). Thus even for low velocity
variances,

L∗
ES ≈ arg min

{L:ρ<1}
b(1) = L∗

b(1).

We see that this is true even for many general velocity profiles in examples section 3.5.
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3.3.9 NES Calls : Block and Drop Probabilities

As before the system can handle at maximum K parallel calls. The call is picked up
immediately (by the BS of the Small cell in which the call is originated) only if the
Macrocell is serving lesser than K users at the time of its arrival. If all the K servers are
busy it is dropped. When an active customer reaches the boundary of a Macrocell, its
call is continued in the next Macrocell only if the new Macrocell has free servers. Each
Macrocell can thus be modeled by an M/G/K/K queue. And its call block probability
is given by the Erlang Loss formula (ρ was defined in previous section),

PB(L) =
ρ(L)K/K!

∑
K
k=0 ρ(L)k/k!

.

It is interesting to note that PB(L) and ρ are both differentiable w.r.t. L and further that
if the derivative dρ/dL is zero at a L∗ so is the derivative dPB/dL. By taking the second
derivative, we can in fact show that their minimizers are the same. Hence,

L∗
PB

= arg min
{L:ρ(L)<1}

PB(L) = L∗
ρ.

Further at fixed velocities, L∗
ρ = L∗

b(1)
and so we have,

Theorem 3.3.9.1. The minimizer, L∗
b(1)

also minimizes the block probability, PB, for fixed veloc-
ities. For any velocity profile, L∗

ρ also minimizes the block probability. �

Drop Probability : Under the assumptions stated earlier, only a new call can reach
the boundary and not a call which was already handed over once. Further, an active
call is dropped only when it reaches the Macrocell boundary and the new Macrocell is
busy. By independence of the two events (status of the new Macrocell prior to handover
is independent of the call that is handed over), the drop probability is

PD(L) = PhoPB(L).

One can design an optimal system, catering to NES calls, either by jointly mini-
mizing both the block and drop probabilities or by minimizing one of the probabilities
while placing a constraint on the other. Usually systems are designed with more strin-
gent requirements on PD than on PB. We note from the above calculations that PD is
directly proportional to PB and will be smaller than PB by a factor Pho. We make in
the rest of this subsection, a commonly made assumption that, the location of the call
arrivals is uniformly distributed, i.e. that X ∼ U [−D, D]. Under this assumption:

Pho = Pn (B∂(X, V) < Bc(V, S)) = En,S,V [PX(D − X < VBc(V, S))]

=
En,S,V

[

min
{

2D, VSL
η(L)−VBh

}]

2D

= En,V

[

e−µ2D(η(L)−VBh)/VL
]

+
E
[

1 − e−µ2D(η(L)−VBh)/VL
(

1 + 2Dµ(η(L)−VBh)
VL

)]

2Dµ

< En,V

[

e−µ2D(η(L)−VBh)/VL
]

+
1

2Dµ
.
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Thus Pho decreases with 2D, the Macrocell size. Macrocells are large in dimension and
hence PD can be ensured to be within the prescribed limits (the limit is a design param-
eter) by directly minimizing PB itself. Thus we propose to choose cell size L to minimize
PB and hence equivalently ρ:

L∗
NES := L∗

ρ = arg min
{L:ρ(L)<1}

ρ(L) ≈ L∗
b(1)

.

Remark 3.3.10. Thus for both ES and NES applications one needs to minimize the first moment

of the service time, b(1), to obtain the optimal cell size. This optimal cell size has been discussed
in the previous section for fixed velocities and for velocity profiles with small variances. The
general situation is studied in section 3.5 via numerical examples.

3.4 Mobility on a street grid

We assume that users are moving in a rectangular grid overlaying a large area [−D, D]×
[−D, D] with grid size b, d as shown in Figure 3.3. This example is typical of urban ar-
eas where the streets are in a criss-cross manner (this is a well known model, see for
example [103, 14]) and hence is an interesting example for study.

In this case, we assume that the location of arrival X is uniformly distributed on the
lines, i.e, X ∼ U [G], where the grid

G := ∪D/d
i=1 [−D, D]×

{

id +
d

2

}

∪ ∪D/b
i=1

{

ib +
b

2

}

× [−D, D].

A one dimensional vector V represents the speed of the vehicle, which is uniformly
distributed, i.e., V ∼ U [0, Vmax] . It’s direction depends upon the position of arrival
X: it is horizontal if X is on horizontal line and is vertical if on vertical line. One can
easily extend the analysis to include zig-zag paths. In either case we assume it be equi-
probable in the two possible directions; towards left or right in case of horizontal line
and towards up or down in case of vertical line.

Any Small cell is a line segment of a street and a base station is placed at the center
of this cell (if we neglect the small number of Small cells that might possibly span across
two intersecting streets). The mobiles may change directions as they take a turn, but
the rate they obtain with their BS once again follows periodic pattern as explained in
section 3.3.1. Hence the time to reach the boundary B∂, the time to serve S bytes BS and
hence the service time BD are just the same as those derived in the previous sections.
Thus the analysis and the results of all the previous sections is applicable to the grid structure.
So in the grid structure, the 2 dimensional analysis actually boils down to one dimensional
analysis itself.
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Figure 3.3: 2D network for rectangular-grid small cell
networks

.

Figure 3.4: Moments of the service time and the
expected waiting time versus L.

3.5 Mobility Examples

In the numerical examples of this section, we consider uniformly distributed veloc-
ity profiles. The position of arrival X is also uniformly distributed in the Macrocell
[−D, D]. We use Monte Carlo simulations to estimate b(1), b(2) and use exhaustive
search to find the optimizers. In figure 3.4 we plot normalized values of b(1), b(2) and
E[W]K versus L. As discussed earlier we notice that the various performance measures
decrease with cell size initially, reach an optimal value and increase again from then on.
In fact, all the performance measures have unique minimum at the same L. We study
more details of these minimizers in the following.

In figure 3.5 we plot the optimal cell size (optimal with respect to the moments
of the service time b(1), b(2), block and drop probabilities PB, PD of NES calls and the
expected waiting time E[W]K of ES calls) versus mean velocity for two different values
of variance. We set d0 = 5, λ = 0.1, Bh = 2, P = 1, µ = 5, K = 20 and consider a
Macrocell of size D = 1000. We also plot L∗

ν, which is the maximizer of ν(En[V], L).
Note that L∗

ν is a single curve in the figure while the remaining 5 optimizers (L∗
b(1)

,
L∗

b(2)
, L∗

PB
, L∗

PD
and L∗

E[W]) are plotted for two values of variance and hence there are two
curves for each of these 5 optimizers. In fact, L∗

ν is not visible separately as it completely
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coincides with the minimizer L∗
E[W], plotted for variance equal to 1. For small velocity

variance (variance equal to 1), all the minimizers are close to L∗
ν. For large velocity

variance, we notice that all the minimizers (together) are away from L∗
ν, but however

are close to each other for most cases. That is, the minimizers of expected waiting time
are the same as that of block as well as drop probabilities and all of them equal L∗

b(1)
.

This suggests that even for velocity profiles with high variances, it is sufficient to optimize

the average service time b(1) for both ES as well as NES calls and hence the optimal cell size
again remains independent of the application. However for high variance it is not sufficient to

minimize ν(En[V], L), rather one needs to minimize b(1) directly.

In Figure 3.6 we further illustrate the same, by plotting the various optimizers now
as a function of velocity variance. We set mean, E[V] = 10, d0 = 5, λ = 0.1, Bh = 2,
P = 1, µ = 5, K = 20. We once again note that all the minimizers are close to each other
for many cases. We also note that all the minimizers are close to L∗

ν for low velocity
variances. We further observe that the optimal cell size increases with increase in the
variance also. Thus larger the velocities the system has to support, the larger are the optimal
cell sizes.

We notice that, in both the figures (3.5 and 3.6) only the optimizer of the second
moment L∗

b(2)
, is some times different from the rest of the minimizers. However, even

when L∗
b(2)

is different from L∗
b(1)

, the minimizer L∗
EW (minimizing the expected waiting

time) is equal to L∗
b(1)

and thus for both the types of traffic L∗
b(1)

(minimizer of expected
service time) gives the optimal cell size.
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Figure 3.5: Optimal cell size versus mean velocity
for different variances.

Figure 3.6: Optimal cell size versus variance of
the velocity.

3.6 Call drops at Small cell boundaries (NES calls)

So far in our analysis, we have assumed that there are no call drops during handover
when the mobile traverses across Small cells. We hence called it as just BSS (Base sta-
tion switching). In practice even the handovers at Small cell boundaries can fail, even
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though with an extremely small probability. In this section we obtain some initial re-
sults considering possible Small cell drops for the special case of uniform arrivals, uni-
form velocity profile and the networks catering to NES calls. We further assume that
the velocity profile does not include 0 so that E[1/V] < ∞.

Every Small cell handover, as before, needs Bh bytes to perform the BS switching and
in addition has a (small) possibility of not being successful. We now call the BSS near a
Small cell boundary also as a handover. The BS of the Small cell admits a call (handover
or a new one), as before K calls at maximum, however some of the new calls are not
picked up to reserve resources for the handover calls, now to keep the overall Drop
probability under the required limit. Further in this case the call admission control can
also be distributed: 1) in a centralized scheme the CU directs the Small cell BS as in the
previous section, either to admit or not admit the new calls (base stations possibly are
using fewer number of servers); 2) in a decentralized scheme, the Small cell BS always
reserves K1 servers exclusively for handover calls. That is, in a decentralized scheme,
the Small cell BS (independent of the other Small cells) admits a new call if more than
K1 servers are free while a handover call is admitted whenever any server is free.

In this work we consider a call admission control scheme that is decentralized and is
different from the above two schemes. A new call is considered for picking up with prob-
ability p independent of everything else. And a call considering for picking up will be
picked up when any one of the servers is free. This scheme is close to the decentralized
scheme described above when p is close to one, i.e., when K1 is close to 0. The central-
ized scheme (with Small cell drops) on the other hand has to be handled using totally
different queuing models and is not considered in this research. Note that smaller p
implies larger priority to handover calls. In this case each Small cell itself is modeled as a
separate M/G/K/K queue.
Remark 3.6.1. We considered a simple, analytically tractable and a decentralized call admission
control in this section. One can try to analyze a system which reserves K1 servers for the
handover calls using priority queues. On the other hand it will be more difficult to analyze
a system with centralized control (with possible Small cell drops), in which the CU directs to
admit new calls or not depending upon the total number of calls in the system. One will need
the theory of interacting queues for such a study.

3.6.2 Service Time : Time of the Small cell spent for user’s service

The service time BL, now represents the overall time of a Small cell used by the mobile.
Thus the service time will be much smaller in comparison with the previous section and
its analysis will be significantly different. There is no more periodicity while obtaining
the service time, however the analysis in this case also simplifies, now due to small
values of L. The service time components Bc and B∂ are:

B∂ =
L − X

V
and Bc =

g−1 (S + g(X); V)− X

V
when Bc ≤ B∂

with the overall service time as before equal to BL = min{B∂, Bc}. We use notation BL

instead of BD for service time, to emphasize that this is the service time of a Small cell
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of length L. Further,

Pho = Prob(B∂ < Bc) = Prob(g(L)− g(X) < S) = E[e−µ(g(L)−g(X))] = E[e−µ
η(L)−η(X)

V ]

and Pho,v also changes similarly. However it is easy to see that as the cell size decreases
towards zero the function inside the expectation converges to 1 for all the realizations
and hence by BCT Pho, Pho,v (for all v) converge to 1 as L → 0. Thus for Small cells we
approximate Pho, Pho,v by 1.

The service time in a Small cell with high probability (the probability increasing as
L → 0) will be equal to the time taken to traverse the cell itself, as with high probability
the user has to pass through many Small cells before completing his request and thus:

BL(S, X, V) ≈ L − X

V
.

3.6.3 Small cell Handovers

Handover arrival rate : There is a major difference in the analysis while calculating the
handover rate λho: now we should consider that the (Small cell) handovers can happen
many times (and not at most once as in case of a Macro handover) during a call dura-
tion. The calculations though different can easily be carried out. We introduce some
new notations for this purpose. Let Pho,∂, Pho,∂,v respectively represent terms equivalent
to Pho and Pho,v for a call that is already handed over (at least once). It is easy to see that
(when P(V < Vlim(P)) = 1) by BCT again (using equation (3.8)):

Pho,∂ = Prob(g(L) < S + Bh) = E
[

e−µ(g(L)−Bh)
]

= E
[

e−µ
Lν(L)

V

]

→ 1 as L → 0

and similarly Pho,v,∂ → 1 as L → 0 (for all v). By Taylor series, e−x ≈ 1 − x for small
values of x and this is used for obtaining another approximation for Pho,∂ again using
BCT:

(1 − Pho,∂)− µLE

[

ν(L, V)

V

]

→ 0 as L → 0. (3.14)

This approximation is more appropriate when we consider terms like 1/(1 − Pho,∂).
From (3.8) for L small using (3.14),

1 − Pho,∂ ≈ µLν(v̄inv, L)

v̄inv
where v̄inv :=

1
E
[ 1

V

] . (3.15)

Let, λL := pLλ/D be the effective rate at which the users arrive into the Small cell of
interest [0, L]. Note in the above that Lλ/D represents the actual rate at which the new
calls arrive in [0, L] while λL represent the arrival rate of those sampled users who are
considered for picking up. The handover rate λho in this case can be calculated as: 1)
due to symmetry, the handovers from Small cell 0 ([0, L]) to cell 1 ([L, 2L]) are stochasti-
cally same as those from cell -1 ([−L, 0]) to cell 0; 2) the same is true for handovers when
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a mobile travels from right to left; 3) so, the handovers into a cell of interest (cell 0) are
stochastically same as those that go out of the cell 0; 4) thus under the assumption that
handovers are Poisson in nature, the handover rate should satisfy the following fixed
point equation:

λhLPho,∂ + λLPho = λhL.

Using the approximation in equation (3.15),

λhL =
λLPho

1 − Pho,∂
≈ λ

pv̄inv

Dµν(v̄inv, L)
. (3.16)

Remark 3.6.4. Note that L∗
λhL

:= arg min
L

λhL = L∗
ν(v̄inv) and that for fixed velocities (when

V ≡ v̄) v̄inv = v̄. Thus for fixed velocities, interestingly for any value of p, the cell size
optimizing the the handover rate λhL (considering the Small cell drops) is the same one that is
optimal for NES as well as ES calls, obtained by neglecting the Small cell drops.

Handover Speed distribution: Note in equation (3.16) the expectation E[1/V] in the last
term is w.r.t. to the distribution corresponding to the handover calls and hence one
needs to calculate these distributions. The handover arrivals are either at 0 or at L with
half probability and since we are considering the positive velocities without loss of generality
the position is always at 0. The (Small cell) handover speed distribution, fh,V(v), (after
considering the drops at Small cells) once again satisfies another fixed point equation
due to the statistical similarity between the arrivals into and out of the cell 0. In Ap-
pendix P, this fixed point equation is derived and the Small cell handover speed dis-
tribution is shown to converge to uniform speed distribution as the cell size L tends to
zero. Thus the (Small cell) handover arrivals have approximately uniform speed distribution.

3.6.5 Stability Factor

The stability factor ρ in a Small cell queue is calculated in Appendix P using the ap-
proximations for small cell sizes and we obtain:

ρ
pico

(L) =
(λL + λhL)b

(1)

K
≈ λpL

KDµν(v̄inv, L)
. (3.17)

Define

L∗
ν/L(v) := arg max

L

ν(v, L)

L
.

Thus the optimal cell size for stability factor is,

L∗
ρ,pico := arg min

L
ρ

pico
(L) = L∗

ν/L(v̄inv).

3.6.6 New Call Block Probability

The Small cell can be modeled by an M/G/K/K queue as in the previous section. Let
PBusy,pico represent the probability that an arrival (a new or an handover call) finds all
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the K servers busy in the Small cell. This probability can be calculated using the results
from queuing theory as done in the previous section using Erlang Loss formula,

PBusy,pico(L) :=
ρ

pico
(L)K/K!

∑
K
k=0 ρ

pico
(L)k/k!

.

A new arrival is not picked up either with probability 1 − p when the BS intentionally
does not consider it for picking up or with probability pPBusy,pico when all the servers
are busy. Thus, the new call block probability for system when considering Small cell
drops will be given by,

PB,pico(L) = (1 − p) + pPBusy,pico(L).

From the above the cell size optimizing the block probability PB,pico will be same as that
optimizing PBusy,pico, which further is same as L∗

ρ,pico (using the logic as in section 3.3.9).
Thus it is clear that, L∗

PB,pico = L∗
ν/L(v̄inv) and from (3.17) this optimizer is a zero of

dρ

dL
= c1

2L(η(L)− v̄invBh)− L2η′(L)

(η(L)− v̄invBh)2 ,

where c1 is an appropriate positive constant. Hence we have,
Theorem 3.6.6.1. The cell size optimizing the block probability of the NES calls considering
the possible drops at Small cell boundaries, when resources are reserved for handover calls by
intensionally dropping some of the new arrivals, is given by,

L∗
PB,pico

= L∗
ρ,pico = L∗

ν/L =



















2





Pd
β
0

β+1
β−1

2Pd0
β

β−1 − v̄invBh





1
β−1

when β > 1

2d0e
v̄inv Bh−Pd0

2Pd0 when β = 1.

�

When this optimal cell size is compared at fixed velocities with that obtained after
neglecting the Small cell drops (that obtained in Theorem 3.3.7.1) we find that: 1) when
β > 1, the two cell sizes matches except for a factor of ((β + 1)/(2β))1/(β−1); 2) when
β = 1, the difference is in the power of the exponent, an extra −Pd0 factor for the cell
size with Small cell drops. This differences are negligible only when β is close to 1 (but
not equal to 1). The two systems use different call admission control mechanisms and
hence the difference. Nevertheless the optimal cell size of the Theorem 3.6.6.1 is valid for a
distributed call management system and further it gives the cell size even for velocity profiles
with non zero variance.

3.6.7 Drop Probability

It was straight forward to calculate the drop probability for the previous case (i.e., with-
out Small cell drops) as the drop could have occurred at maximum at one Macro bound-
ary. It is more tedious to calculate the same when drops are also possible at Small cell
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boundary. This tedious job is carried out in Appendix P, wherein the drop probability
is obtained by conditioning on two events. We obtain (see Appendix P):

PD,pico =
PBusy,pico

µ(η(L)−v̄invBh)
v̄inv

+ PBusy,pico

It is interesting to see that both the call drop and the new call block probabilities depend
upon the busy probability PBusy,pico and one can thus design a optimal system (consid-
ering Small cell drops) by minimizing the busy probability or equivalently the stability
factor ρ

pico
. We thus propose to choose the optimal cell size:

L∗
NES,pico := L∗

ρ,pico = L∗
PB,pico,

which is obtained in Theorem 3.6.6.1.

3.7 Conclusions and Future work

We looked at the problem of characterizing the performance of Small cell networks
in the presence of mobility. We modeled various traffic types between base-stations
and mobiles as different types of queues. We derived explicit expressions for expected
waiting time, service time and drop/block probabilities for the various queuing models
considered for both fixed as well as random velocity of mobiles. We showed that there
exists an optimal cell size for a given velocity profile, which minimizes the service time
for elastic applications as well as the drop and block probabilities of non-elastic appli-
cations. We obtained (approximate) closed form expressions for this optimal cell size
when the velocity variations of the mobiles is very small. We find that if the call is
long enough, the optimal cell size depends mainly on the velocity profile of the mo-
biles, its mean and variance.; It is independent of the traffic type or duration of the
calls. We show that for any fixed power of transmission, there exists a maximum veloc-
ity beyond which successful communication between the mobile and the system is not
possible. This maximum possible velocity increases with the power of transmission.
Further, for any given power, the optimal cell size increases when either the mean or
the variance of the mobiles velocity increases.

The mobility models considered in this work are suitable for modeling users trav-
eling continuously with considerable speeds (example users traveling in a car). The
movement of slower users (e.g., pedestrians) can be better captured by either Random
Walk or Random Way-point model. Still better would be to consider systems with het-
erogeneous users (slow moving, fast moving and users that are at rest). We considered
two dimensional Small cell networks in [118] catering to non elastic users, in which the
users can move in any direction across the cell. In that work, we brought out some
issues while designing the Small cell networks that are specific to two dimensional cel-
lular networks. It would be interesting to extend those results for elastic users and
further for heterogeneous users.
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3.8 Appendix M: Calculations related to Macro queue

3.8.1 M.1 Proof of Theorem 3.3.3.1

The communication time is finite with probability one if and only if

Prob(Bh > g(L)) = Pn,V(VBh > η(L)) = 0, where η(L) := Vg(L).

Note from (3.3) that η is only a function of P, L and hence that this probability depends
only upon the velocity profile V, cell size L and the transmit power P. Because of the
path loss, for any fixed P, η(L) increases as L increases and finally saturates (when
β > 1). Thus for all L (when β > 1),

η(L) ≤ η∞ := lim
L→∞

η(L) < ∞.

When β = 1, η∞ = ∞ and this proves the first statement of the Theorem. As Prob(Bh >

g(L)) = Prob (VBh > η(L)), there exists a cell size L with P(Bh > g(L)) = 0 if and only
if

Prob

(

V >
η∞

Bh

)

= 0.

Thus with a given power P, the system can handle all velocities that are strictly less
than

Vlim :=
η∞

Bh
=

2Pd0β

β − 1
. �

3.8.2 M.2 Moments of service time and its derivatives

The moments can be rewritten as,

b(k) =
1

(1 + Pho)

∫ ∞

0

∫ D

−D

∫ Vmax

0

[

BD(x, v, s)k + BD(−D, v, s)kPho,v

]

fn,V(v)dv fn,X(x)dx µe−µsds.

= En

[

BD(x, v, s)k + BD(−D, v, s)kPho,v

1 + Pho

]

.

By Bounded Convergence Theorem (BCT), all b(k) are continuously differentiable
(c.d.) in L and the derivative is

db(k)

dL
= En

[

d

dL

(

BD(x, v, s)k + BD(−D, v, s)kPho,v

1 + Pho

)]
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because: 1) BD is almost surely c.d.; 2) Pho,v is c.d. everywhere in L; 3) Pho is c.d. and 4)
all the derivatives involved are uniformly bounded almost surely; 4) hence by virtue of
mean value theorem, the terms like

|BD(X, V, S; L + δ)− BD(X, V, S; L)|
δ

,
|Pho,v(L + δ)− Pho,v(L)

δ
etc

can be bounded uniformly by a constant.

3.8.3 M.3 ν has an unique maximizer:

From equation (3.3), g and hence η = vg are both concave in L on (0, ∞) for every v.
Thus from (3.8), for any fixed velocity v, ν has a unique maxima,

L∗
ν(v) := arg max

L
ν(v, L),

which satisfies ∂ν/∂L = 0 (as clearly L∗
ν(v) > 0 for all v).

3.8.4 M.4 Derivatives db(k)/dL vanish only at L∗
ν(v̄) when V ≡ v̄

Define Ψ(L) := En

[

BD(X, V, S)k + BD(−D, V, S)kPho,V

]

. Then from (3.11)

b(k) =
Ψ(L)

1 + Pho
.

From (3.4), Bc depends upon L only via the function ν given by (3.8) and hence so is the
service time BD(x, v, s) = min{Bc(v, s), B∂(x, v)} for all x, v, s. Similarly from (3.10) and
(3.9), Pho,v and Pho depend upon L only via the function ν. Hence with

Θ(v) := −∂Pho,v

∂ν
=

µ

v
En,X

[

(D − X)e−µν(v,L)(D−X)/v
]

db(k)

dL
=

1
1 + Pho

En

[

∂ν(V, L)

∂L

(

∂BD(X, V, S)k

∂ν
+ Pho,V

∂BD(−D, V, S)k

∂ν
+

∂Pho,V

∂ν
BD(−D, V, S)k

)]

− 1
(1 + Pho)2 Ψ(L)

dPho

dL

=
1

1 + Pho
En

[

∂ν(V, L)

∂L

(

−kBD(X, V, S)k−1 S1{SV<(D−X)ν(V,L)}
ν(V, L)2

− kPho,V BD(−D, V, S)k−1 S1{SV<2Dν(V,L)}
ν(V, L)2 − BD(−D, V, S)kΘ(V)

)]

+
1

(1 + Pho)2 Ψ(L)En

[

∂ν(V, L)

∂L
Θ(V)

]

= En







∂ν(V, L)

∂L
( −k

Sk1{SV<(D−X)ν(V,L)}
ν(V,L)k+1 − kPho,V

Sk1{SV<2Dν(V,L)}
ν(V,L)k+1 − BD(−D, V, S)kΘ(V)

1 + Pho

+
Ψ(L)Θ(V)

(1 + Pho)2 )


 . (3.18)
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Thus the derivatives will have the form

db(k)

dL
= En,V

[

∂ν(V, L)

∂L
En,X,S[Γ

(k)(X, V, S, ν(V, L))]

]

(3.19)

for some functions Γ(k). Thus for fixed velocities, i.e., when V ≡ v̄

db(k)

dL
=

∂ν(v̄, L)

∂L
En,X,S[Γ

(k)(X, v̄, S, ν(v̄, L))]. (3.20)

Claim : The term En,X,S[Γ
(k)(X, v̄, S, ν(v̄, L))] is strictly negative.

Proof of Claim: For any velocity v, BD(X, v, S) ≤ BD(−D, v, S) for all (X, S). Thus, for
fixed velocities,

Ψ(L) ≤ (1 + Pho,v̄)En,S[BD(−D, v̄, S)k].

Further Pho = En,V [Pho,V ] = Pho,v̄. Hence the sum of the last two inner terms of the
equation (3.18),

En,X,V

[

−BD(−D, V, S)kΘ(V)

1 + Pho
+

Ψ(L)Θ(V)

(1 + Pho)2

]

≤ 0.

The remaining two inner terms of (3.18) are always negative and this proves the Claim.
�

From (3.20), by the virtue of the Claim, derivative db(k)/dL is zero only at a zero of
∂ν/∂L. But ∂ν/∂L has a unique zero at the maximizer L∗

ν(v̄). Thus L∗
ν(v̄) is the only

zero of all the service time moments.

3.9 Appendix P: Calculations for Small cell queue

3.9.1 P.1 Small cell Handover Speed Distribution

In the following the event {∂ arrival} = {∂} means that the arrival in cell 0 was at the
boundary (i.e., it was an handover arrival from cell -1), the event {int arrival} = {int}
meant a new arrival in cell 0 and the event {ho} implies the cell 0 active user has reached
the next boundary before finishing his service (i.e, has to be handed over to cell 1). Note
that an handover from cell 0 occurs either due to an already handed over call or new
call, whose service could not be completed before reaching the (other) boundary of cell
0 and thus:

Prob(ho) =
λLPho + λhLPho,∂

λL + λhL
.
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Note that Prob(ho) → 1 as L → 0 (as both Pho, Pho,∂ converge to 1). With the above
notations, the fixed point equation for the handover speed density can be obtained as:

fh,V(v) = Prob(V ∈ vdv|ho f rom cell 0)

= Prob(V ∈ vdv int arrival|ho) + Prob(V ∈ vdv ho arrival|ho)

=
Prob(ho V ∈ vdv int) + Prob(V ∈ vdv ∂ ho)

Prob(ho)

=
Prob(ho|int v)Prob(V ∈ vdv|int)Prob(int)

Prob(ho)

+
Prob(ho|∂ v)Prob(V ∈ vdv|∂)Prob(∂)

Prob(ho)

=
Pho,v fn,V(v)

Prob(ho)

λL

λL + λhL
+

Pho,v,∂ fh,V(v)

Prob(ho)

λhL

λL + λhL

Solving (when fn,V(v) = 1/Vmax for all v ≤ Vmax) the handover speed density is,

fh,V(v) =

λL

Prob(ho)(λL+λhL)Vmax
Pho,v

1 − λhL
Pho,v,∂

Prob(ho)(λL+λhL)

Thus as L tends to zero (Pho,v, Pho,v,∂, Prob(ho), Pho → 1), the speed of an handover arrival
will tend to uniform distribution. This effect is seen faster if the packet sizes S are larger.

3.9.2 P.2 Small cell Stability Factor

The stability factor ρ in a Small cell queue is given by:

ρ
pico

(L) =
(λL + λhL)b

(1)

K
=

1
K

EV [λLEX[ES[BL(S, X, V)]] + λhLES[BL(S + Bh, 0, V)]]

≈ 1
K
(λL(L − E[X]) + LλhL) E

[

1
V

]

=
1
K

(

λL
L

2
+ LλhL

)

E

[

1
V

]

= c0L(λL + 2λhL)
as Pho ≈ 1

≈ c0LλL
1 − Pho,∂ + 2

1 − Pho,∂
≈ 2c0λLL

1 − Pho,∂

where c0 = 1/(2K)E[1/V] is a constant independent of L. Using the approximation in
(3.15),

ρ
pico

(L) =
λpL

KDµν(v̄inv, L)
. (3.21)

3.9.3 P.3 Drop probability

The drop probability PD,pico considering possible Small cell drops can be calculated as
below:

PD,pico = Prob( Call ever Dropped before completion| Call is picked up)

= Pho

(

Pho,D(1 − PBusy,pico) + PBusy,pico

)

+ (1 − Pho)(0)
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where Pho,D is defined as the probability of call drop at any of the future instances of
handovers, given that the current handover (first handover in the context of the above
equation) is successful. Because of the memoryless nature of S, this probability does
not depend upon the number of the handover. Probability Pho,D can be calculated by
first conditioning on the event that the call is completed in the current cell (call it as C)
and then on the event that the call is not picked up in the next cell (call it as S). Note
that Pho(Cc) = Pho,∂ and Pho(S|Cc) = Pho, f ail = 1 − PBusy,pico. Thus, by conditioning

Pho,D = Pho( Call dropped ∩ C) + Pho( Call dropped ∩ Cc)

= 0 + Pho,∂Pho( Call dropped |Cc)

= Pho,∂ (Pho( Call dropped ∩ S c|Cc) + Pho( Call dropped ∩ S|Cc))

= Pho,∂
(

Pho,D(1 − PBusy,pico) + 1PBusy,pico

)

Solving
=

PBusy,picoPho,∂

1 − Pho,∂(1 − PBusy,pico)
and hence,

PD,pico =
PhoPBusy,pico

1 − Pho,∂(1 − PBusy,pico)
≈ PBusy,pico

1 − Pho,∂ + PBusy,pico
. (3.22)

=
PBusy,pico

µLν(v̄inv,L)
v̄inv

+ PBusy,pico

=
PBusy,pico

µ(η(L)−v̄invBh)
v̄inv

+ PBusy,pico
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Chapter 4

Fair Assignment of Base Station
Locations

Contents
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4.8 Appendix A : Large population limits - power, throughput and α-fair
placement of two base stations: . . . . . . . . . . . . . . . . . . . . . . 110

4.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.1 Introduction

In a cellular network, models used to derive analytic expressions for capacity, coverage,
etc, often assume base station (BS) locations to be at the center of the cell. Such a model
brings in a regular geometry to the problem being addressed and many a times results
in closed-form analytic expressions for metrics of interest.

While, this indeed facilitates analysis, the actual throughput achievable at the BS,
tends to vary significantly, depending on the BS placement and cell geometry. The
regular geometric model with a centrally located BS is a good model, when one assumes
uniform density of users. But, today’s cellular networks have concentration of users, for
example hot-spots or indoor-outdoor partitions that offer various levels of attenuation
to radio signals, not to mention the ever present channel fading and shadowing effects
above this.
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The goal of our research is to place the BS in a manner which is optimal for any
general fairness criterion; that of α-fairness [105, 147], which addresses popular fairness
criterion like global, proportional, harmonic and max-min fairness. We show that the
α-fair BS location varies continuously with fairness parameter α and moves close to the
center of the cell as α increases asymptotically. This implies that, the regular geometric
models (which place BS at the center) have max-min fair BS placement.

We further observe (via some numerical examples) that α-fair BS location varies
significantly based on system parameters like path-loss, noise variance. However we
show that the max-min fair BS placement is close to the center of the cell irrespective of
the system parameters.

To bring in the importance of BS placement, we consider cells which are completely
outdoors or which have indoor-outdoor partitions (Split cells). We consider cases where
user density can be uniform or tend to increase along the cell (a simplistic model for a
hot spot) [99]. We consider cases where adjacent cells can use the same frequency or
different frequencies. For the later case, we look at the problem of fair assignment
of two base stations (BS), where the cell gets divided into sub-cells from the users’
perspective based on SINR association criteria. We limit our study to free space path-
loss and the analysis with fading and shadowing would be our subsequent focus.

We derive simplified expressions for α-fair objective functions using large popula-
tion limits , i.e., as the number of users become large. We use Strong Law of Large Num-
bers (SLLN) to replace summation of large number of terms in the objective function
with appropriate expected value almost surely (AS). The expected value is expressed as
integrals. Using these large population limits, we obtain both theoretical and numeri-
cal results. The α-fair BS locations obtained are optimal for almost all realizations of the
users locations.

We begin our study by introducing our model and review the generalized α-fair
fairness criterion in Section 4.2. In Section 4.3, we derive the α-fair placement crite-
rion under large population limits. In Section 4.4, we analyze α-fair placement of base
stations as α increases asymptotically and come across some interesting insights. In
Section 4.5, we study the α-fair BS locations for the case of a) an outdoor cell and b) a
mixed partition cell (split-cell) via some numerical examples. Next, in Section 4.6, we
derive the α-fair BS locations for an outdoor cell which has two BS. We conclude our
study in Section 4.7.

4.2 Our model and assumptions

Our focus is on communication in the uplink (UL) direction. Large number, N, of users
are located on i.i.d. locations on the line segment [−D, D]. The line segment is divided
into cells of length L and one or more base stations, each of unit height, are placed in
every cell.

The placement of the BS(s) is the issue that we address in this work. One is usually
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interested in maximizing global throughput (the sum throughput due to all users) at
each BS, i.e., place the BS(s) such that the global throughput is maximized. However,
maximizing the global throughput can result in starving the users at a far away location,
which in turn can reduce the network efficiency. Hence, several fairness criterion have
been suggested and implemented in various network architectures ([105, 147]).

In [105] it is shown that all these fairness criterion are special cases of a generalized
fairness concept: the α-fairness . Given a positive constant α 6= 1, consider for example
the problem of determining z so as to maximize

max
z∈[0,L]

∑
xi∈[0,L]

θ(xi, z)1−α

1 − α
(4.1)

where, θ(xi, z) is the throughput at the BS located at z from a user located at xi. Note
that the above objective function is defined over the convex set [0, L]. Further, when the
objective function is concave (we will show in later sections that this is the case most of
the times) and the constraints are linear, this defines a unique allocation which we call
the α-fair allocation. It turns out that α-fairness gives global optimum for α → 0, pro-
portional fairness when α → 1, harmonic (delay minimization) fairness indexHarmonic
fairnessfor α = 2 and max-min fairness when α → ∞.

We begin our study by first deriving explicit expressions for power, throughput and
α-fair placement criterion under large population limits (as the number of users become
large). Throughout the work, we use large population limits for analytical purposes.
The idea is similar to fluid limits (see [90]), where summation of large number of terms
is approximated by appropriate integrals.

4.3 Large population limits and problem statement

Large number, N, of users are located at {Xi}i≤N , where the locations Xi of the users
are i.i.d., according to some probability measure P(dx) = λ(x)dx. We assume that each
user uses the same power for transmission. Without loss of generality, the total power in
the system equals 1 and hence the power used by each user is 1/N.

We first consider the case of a single BS in the cell and compute the total power
received, throughput achievable and the α-fair placement for the BS under large popu-
lation limits. The case of two base stations follows in a similar way and is addressed in
Appendix.

4.3.1 Power computation :

The power received at a BS located at z from a user at Xi is given by,

P(Xi, z) =
1
N
(1 + (z − Xi)

2)
−β
2 .
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Thus the total power received at the BS is

Ptot(z) =
N

∑
i=1

P(Xi, z) =
1
N

N

∑
i=1

(1 + (z − Xi)
2)

−β
2 .

This is a random power. By the Strong Law of Large Number (SLLN) this converges
P-a.s. to a constant limit

lim
N→∞

Ptot(z) = E
[

(1 + (z − Xi)
2)

−β
2

]

=
∫ D

−D
(1 + (z − x)2)

−β
2 λ(x)dx. (4.2)

Hence for large values of N one can approximate Ptot(z) almost surely with the above
integral.

4.3.2 Throughput computation:

The signal to interference noise ratio (SINR) at the BS located at z from a user at Xi is

SINR(Xi, z) =
P(Xi, z)

σ2 + Ptot(z)− P(Xi, z)
,

where σ2 is the noise variance. In the above, Ptot(z) is approximated P−almost surely
by a constant value, i.e., by the integral of (4.2). However SINR(Xi, z) is still random
because of the term P(Xi, z). The Shannon capacity or throughput achievable at the BS
located at z from a user at Xi is

θ(Xi, z) = log (1 + SINR(Xi, z))

Considering a receiver with an adapted filter and using the approximation log(1 +
x) ≈ x (for smaller values of x), the throughput achievable is

θ(Xi, z) =
P(Xi, z)

σ2 + Ptot(z)− P(Xi, z)

The total (global) throughput achievable at the BS from all the users in the cell of
interest is:

f (z) =
N

∑
i=1

1{Xi∈[0,L]}θ(Xi, z)

=
1
N

N

∑
i=1

1{Xi∈[0,L]}
(1 + (z − Xi)

2)
−β
2

σ2 + Ptot(z)− P(Xi, z)

≈ 1
N

N

∑
i=1

1{Xi∈[0,L]}
(1 + (z − Xi)

2)
−β
2

σ2 + Ptot(z)
,
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as for large values of N, P(Xi, z) is negligible in comparison with Ptot(z). Again, the
above Random sum can be approximated using Strong Law of Large Numbers when-
ever the number of users inside the cell is large P-almost surely, giving rise to the fol-
lowing large population approximation:

f (z) ≈ E
[

I{X1∈[0,L]}ψ(X1, z)
]

=
∫ L

0
ψ(x, z)λ(x)dx with (4.3)

ψ(x, z) :=
(1 + (z − x)2)

−β
2

σ2 + Ptot(z)
.

4.3.3 α-fair placement criterion :

The α-fair objective function of (4.1) in a similar way can be approximated almost surely
under large population limits by:

f̃α(z) := Nα 1
1 − α

∫ L

0
ψ(x, z)(1−α)λ(x)dx

Thus α-fair placement of the BS is given by,

z∗(α) = arg max
z

f̃α(z)

= arg max
z

fα(z) where (4.4)

fα(z) :=
1

1 − α

∫ L

0
ψ(x, z)(1−α)λ(x)dx.

Important point to note here is that, for almost all realizations of the locations of the users
the objective function is approximated by the constant integral and hence z∗(α) is optimal α-fair
location for almost all users locations.

4.3.4 Problem statement

Now with this background, we pose the following problems:

1. Find BS location z so as to maximize global throughput f (z). See large population
limit (4.3).

2. Find the α-fair BS location z∗ which maximizes fα(z) for various fairness criterion.
See large population limit (4.4)

In subsequent sections, we analyze and apply the α-fair placement criterion to ob-
tain BS locations which are both optimal and fair in various cellular environments con-
sidered.
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4.4 Analysis : Single BS Placement

We notice that both the global throughput (large population limit (4.3)) and the α-fair
placement (large population limit (4.4)) of the BS is dependent on the total power re-
ceived Ptot(z) at the BS, which in-turn depends on its location z. In many cases, the
total-power received can be assumed independent of the location of the BS, whenever
the cell size is small (which is typical of pico cells). This for example is true for cells

with user density λ(x) being symmetric about
L

2
(uniform being the trivial case) and

completely located outdoors.

The above assumption simplifies analysis to a good extent and is considered in the
first subsection, while an approximate analysis is given in the following subsection
without this assumption.

We consider asymptotic analysis in this section and hence consider only the cases
with α > 1. For notational simplicities, we redefine fα(z) of equation (4.4) after drop-
ping the division by (1 − α) factor and now,

z∗(α) := arg max
z∈[0,L]

(− fα(z)) .

4.4.1 Ptot(z) is independent of BS location z :

As Ptot(z) is independent of z, the α-fair location is obtained by minimizing the function,

f̄α(z) :=
∫ L

0

(

1 + (z − x)2)−
β
2 (1−α)

λ(x)dx

We can easily show that f̄α(z) is concave in z. We also have joint continuity in (α, z) by
Bounded Convergence theorem. Hence, by maximum theorem [137] under convexity,
we get
Lemma 4.4.2. The function z∗(α) is continuous in α. �

By differentiability of f̄α(.),

g(α, z∗(α)) = 0.

where with γ :=
β

2
(α − 1)− 1 (for some appropriate c 6= 0),

g(α, z) := c
∂ f̄α(z)

∂z

=
∫ L

0
(z − x)

(

1 + (z − x)2)γ
λ(x)dx.
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If z <
L

2
then,

(

1 +
(

L

2

)2
)−γ

g(α, z) =
∫ L

2 +z

0
(z − x)

(

1 + (z − x)2

1 + ( L
2 )

2

)γ

λ(x)dx

+
∫ L

L
2 +z

(z − x)

(

1 + (z − x)2

1 + ( L
2 )

2

)γ

λ(x)dx

tends to −∞ as α ↑ ∞, because the first term tends to zero while the later tends to −∞

(by bounded convergence theorem). Therefore there exists α0 > 0 such that, g(α, z) < 0
and hence such that,

g(α, z) 6= 0 for all α > α0.

Similarly if z >
L

2
then,

(

1 +
(

L

2

)2
)−γ

g(α, z) tends to ∞ as α ↑ ∞ and hence we

have,

g(α, z) 6= 0 for all α > α0(z) whenever z 6= L

2
.

However

(

1 +
(

L

2

)2
)−γ

g

(

α,
L

2

)

→ 0 as α ↑ ∞.

In fact, we have (by monotonicity arguments) for all z0 <
L

2
:

g(α, z) 6= 0 for all α > α0(z0), z ∈ [0, z0] ∪ [L − z0, L],

and hence the optimizer lies in a smaller interval around
L

2
for all larger values of α and

thus we get the following:

Lemma 4.4.3. For every ǫ <
L

2
there exists an α0(ǫ) (depending upon ǫ), such that for all

α > α0(ǫ)

z∗(α) ∈
[

L

2
− ǫ,

L

2
+ ǫ

]

.

i.e, the optimizer lies in a smaller interval around
L

2
for all larger values of α. That is, z∗α(z) →

L

2
as α → ∞. �

Whenever the density λ(x) is symmetric about
L

2
within the cell [0, L], using similar

derivative arguments one can get,
Lemma 4.4.4. The partial derivatives under symmetric conditions, for all α

∂ f̄α(z)

∂α

∣

∣

∣

∣

z=z0

= 0

and hence optimal locations for all α are at
L

2
. �
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Summary of the results :

1. α-fair location is continuous in α (by Lemma 4.4.2).

2. When the density function λ is symmetric about
L

2
then by Lemma 4.4.4 all the

α-fair locations are at the center of the cell.

3. If density is not symmetric about
L

2
then, by Lemma 4.4.3, the α-fair locations

tend to
L

2
as α tends to infinity.

4. Lemma 4.4.3, 4.4.4 are correct as long as the support of measure λ contains both

the end points, i.e., {0, L} ⊂ supp(λ). If not, the same results are true with
L

2
replaced

with length(supp(λ))/2.

4.4.5 Ptot(z) is dependent on BS location z :

Next, we consider cases when the total power Ptot(z) is dependent on base station lo-
cation z. This is true for cases with non-symmetric user densities, cells with partitions,
etc.

Let h(.; z) represent the following parametrized function :

h(x; z) :=
(

σ2 + Ptot(z)
) (

1 + (x − z)2)
β
2 .

and let ||h(.; z)||p represent its Lp norm with respect to the probability measure
λ(x)dx
∫ L

0 λ(x)dx
.

With the above definitions, for α > 1, we can equivalently write the optimal α-fair
location as,

z∗(α) = arg min
z∈[0,L]

||h(.; z)||α−1.

As α → ∞, ||h(.; z)||α−1 → ||h(.; z)||∞ and one can show that,

lim
α→∞

z∗(α) ≈ arg min
z∈[0,L]

||h(.; z)||∞.

Since,

||h(.; z)||∞ =
(

σ2 + Ptot(z)
)

sup
x∈[0,L]

(

1 + (x − z)2)
β
2

=
(

σ2 + Ptot(z)
)

(

1 + (max{z, L − z})2
)

β
2

=
(

σ2 + Ptot(z)
)

max{(1 + z2)
β
2 , (1 + (L − z)2)

β
2 },
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the asymptotic α-fair location approximately equals:

lim
α→∞

z∗(α) ≈ arg min
z∈[0,L]

(

σ2 + Ptot(z)
)

max {z, L − z} .

and note that,

max {z, L − z} = 1{z≥ L
2} (z) + 1{z< L

2} (L − z) .

Clearly if Ptot(z) was independent of z, asymptotic α-fair location would be at
L

2
.

In the subsequent sections, we consider some interesting examples and show the
validity of the results of this Section. We also derive many more interesting conclusions
using the large population limits of Section 4.3 for those examples.

4.5 Optimal and fair placement of a single BS

In this section, we consider two cases. In the first, we consider an outdoor cell, while in
the second, we consider a cell which spans over both indoor and outdoor environment
(split-cell).

4.5.1 Outdoor cell

An outdoor cell is typically characterized by a cell placed in open environment/free
space, i.e., the signals from the users are attenuated only due to path-loss. We assume
a cellular deployment which uses the same frequency throughout. i.e., the power re-
ceived from the entire line segment [−D, D] will interfere with the power received from
the user under consideration.

By Lemma 4.4.4, the α-fair solution for uniform user density, λ(x) ≡ 1/2D, is trivial

(all the α-fair locations are at the center of the cell
L

2
).

Next, we consider another interesting case where user density λ(x) = x; to mimic a
simplistic hot-spot (i.e, the user density proportionally increases towards the hot-spot,
which is located around L). Figure 4.1 depicts the scenario. We want to place the BS
such that the locations are optimal and fair.

By Lemma 4.4.2, the α-fair location varies continuously w.r.t. α. Also, by Lemma

4.4.3 and discussions in Section 4.4.5, the α-fair locations should tend to
L

2
as α increases

to infinity. We will indeed show that this is the case in the following numerical example.
We further make some more interesting observations.

Numerical example: We evaluate equation (4.4) for some typical cases: for α = 0
(global), α = 0.99 (proportional), α = 2 (harmonic) and α = 128 (max-min). The
example considers cell length L = 10, noise variance σ2 = 1 and path-loss exponent β =

99



 
 
 
 
 
 
 
 
 
 

 

��������	�
��
������������������������������

�
�����
����

0 L Z X Y 

Figure 4.1: Open-cell: BS located at z, user density λ(x) = x

2, 4. Fig 4.2 - 4.4 shows example plots for the α-fair objective functions f (z) (equation
(4.3) corresponding to α = 0), fα(z) (equation (4.4)) for α = 0.99, 2. Note that the case
of global fairness (α = 0) is also the case which maximizes sum throughput. Also, note
that Fig 4.2 gives the global throughput as function of BS location z.

We compute the α-fair BS placement for increasing values of α. In Figure 4.5, we plot
the α-fair BS location as a function of α. As given by Lemma 4.4.2 the α-fair location is
continuous in α. We further, observe that the BS location shifts rapidly going from

optimally fair to proportionally fair and finally tends to
L

2
for being max-min fair.

We tabulate normalized throughput (ratio of the global throughput with BS at α-fair
location, z∗(α) to the maximum achievable global throughput, i.e., the total throughput
achieved when BS is placed at z∗(0)) achievable for these α-fair BS locations in Table
4.1.

We show the impact of path-loss factor β and noise variance σ2 on the optimally-
fair BS placement in Table 4.2 and Table 4.3, respectively. In those tables f (z; β, σ2)
represents the global throughput when BS is placed at z and with path-loss factor β
and noise variance σ2.

Table 4.1: Outdoor cell: The α-fair BS locations and normalized throughput. User density λ(x) = x,
L = 10 and path-loss β = 2

α-fairness BS lox Normalized
throughput

global (α = 0) 7.4 1.000
proportional (α = 0.99) 6.8 0.998
harmonic (α = 2) 6.3 0.995
max-min (α = 128) 5.0 0.981

Observations:

a. We observe that the placement of BS affects the throughput achievable in case of
an outdoor cell, modeling a hot-spot.

b. The BS location shifts rapidly going from globally fair to proportionally fair and

finally settles close to
L

2
for being max-min fair (Refer Figure 4.5). This is an interest-
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Figure 4.2: Open cell: Global throughput (4.3)
as a function of the BS location. User density
λ(x) = x and β = 2)
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Figure 4.3: Proportional fair objective function fα

given by (4.4) with α ≈ 1, as function of BS loca-
tion z. User density λ(x) = x, β = 2)
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Figure 4.4: Harmonic fair objective function fα

given by (4.4) with α = 2, as function of BS loca-
tion z. User density λ(x) = x, β = 2)
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Figure 4.5: α-fair BS location, z∗(α) as a function of
α.
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Table 4.2: Outdoor cell: BS placement for globally-fair throughput for various path-loss β. User density
λ(x) = x and L = 10

Path-loss β BS lox Throughput ratio
f (z∗(0); β, 1)/ f (z∗(0); 2, 1)

(w.r.t β = 2)
2 7.4 1.00
4 8.2 0.99
6 8.8 0.98

Table 4.3: Outdoor cell: BS placement for globally-fair throughput for various noise-variance σ2. User
density λ(x) = x, path-loss β = 2 and L = 10

Noise BS lox Throughput ratio
variance σ2 f (z∗(0); 2, σ2)/ f (z∗(0); 2, 1)

(w.r.t σ2 = 1)
1
4

6.9 1.05

1 7.4 1.00
4 7.9 0.58

ing observation which implies that the regular geometric models, which assume cen-
trally placed BS are actually positioned to be max-min fair. But, such assumptions does
not seem to impact the throughput achievable as seen in this case. The max-min fair
throughput is just about 2% below the maximum achievable global throughput. For
the other fair locations, the reduction in throughput is quite negligible (Refer Table 4.1).

c. The optimal throughput does not seem to be sensitive to path-loss (Refer Table
4.2)

d. The achievable optimal throughput is very sensitive to noise variance σ2. A four
fold increase in noise variance degrades the throughput by 40%.

4.5.2 Indoor-outdoor cell (Split-cell)

In this section, we consider a cell which covers both indoor and outdoor environments,
partitioned by solid structures like walls etc. We consider a cell which has a single
partition or wall, located at y within the cell [0, L] and offers an attenuation of η dB.
Here again, a single BS of unit height is located at z. The scenario is depicted in figure
4.6. We want to find BS locations which optimize various fairness criterion.

The total power, throughput and α− fair objective function for this case can be de-
rived exactly in the same way as before to obtain the following large population limits
:
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Figure 4.6: Split-cell: BS located at z, wall located at y

Ptot(z) =
∫

[−D,y)∪[L,D)
(1 + x2)

−β
2 λ(x)dx

+η
∫ L

y
(1 + x2)

−β
2 λ(x)dx (4.5)

f (z) =
∫ y

0
ψ(x, z)λ(x)dx + η

∫ L

y
ψ(x, z)λ(x)dx (4.6)

fα(z) =
1

1 − α

[

∫ y

0
ψ(x, z)1−αλdx

+η
∫ L

y
ψ(x, z)1−αλ(x)dx

]

(4.7)

The equations (4.5), (4.6) and (4.7) are similar respectively to (4.2), (4.3) and (4.4) if
λ(x) is replaced by (an appropriate constant multiple of) λ(x)(1{x/∈[y,L] + η1{x∈[y,L]}).
Hence the results of Section 4.4 hold good here also. From Lemma 4.4.2, Lemma 4.4.3
and discussions in Section 4.4.5, we would expect the α-fair location to vary continu-

ously w.r.t. α and tend close to
L

2
as α increases asymptotically. We shall validate this

via the following numerical example for uniform user density, i.e., for λ(x) ≡ 1/2D.

Numerical example: We evaluate equation (4.7) for some typical cases: for global
(α = 0), proportional (α = 0.99) and harmonic (α = 2) fairness with path-loss exponent
β = 2, 4, noise variance σ2 = 1 ,wall attenuation η = 12dB and wall located at y =
0.75L. The results are presented in Fig 4.7 - 4.12. Note that the case of global fairness
(α = 0) is also the case which maximizes global throughput (Refer Figure 4.7).

In Fig 4.10, we plot the α-fair BS location as a function of α. We observe that the
BS location shifts rapidly going from globally fair to proportionally fair and finally

converges close to
L

2
for max-min fair.

Next, we plot global throughput as a function of BS location z and wall location y in
Figure 4.11. In Fig 4.12, we show global throughput as a function of BS location z and
attenuation η.

Table 4.4 tabulates the normalized throughput achievable for various α-fairness cri-
terion along with the α-fair BS locations, While, Tables 4.5 and 4.6 tabulate the BS place-
ment for globally-fair throughput for various path-loss factors β and noise variance σ2,
respectively.
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Figure 4.7: Split-cell: Global throughput (Objec-
tive function fα(z) (4.6) with α = 0) as a function
of BS location z.
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Figure 4.8: Split-cell: Objective function fα(z)
(4.7) for proportional fairness (α = 0.99) as a
function of BS location z.
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Figure 4.9: Split-cell: Objective function fα(z)
(4.7) for harmonic fairness (α = 2) as a function
of BS location z.
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Figure 4.10: Split-cell: α-fair BS location z∗(α)
as a function of α.
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Figure 4.11: Split-cell: Global throughput (4.6)
as a function of BS location z and wall location y.
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Figure 4.12: Split-cell: Global throughput (4.6)
as a function of BS location z and attenuation η.

In the tables, Normalized throughput, f (z; β, σ2) represent similar terms as in the
previous section.

Table 4.4: Split-cell: The α-fair BS location and normalized throughput. User density λ(x) ≡ 1/2D,
L = 10, y = 0.75L, path-loss β = 2 and wall attenuation η = 12dB

α-fairness BS lox Normalized
throughput

global (α = 0) 4.35 1.0000
proportional (α = 0.99) 3.90 0.9983
harmonic (α = 2) 3.88 0.9983
max-min (α = 128) 5.00 0.9981

Observations:

a. We observe that the BS location shifts rapidly going from globally fair to propor-

tionally fair and finally settles at
L

2
for being max-min fair (Refer Figure 4.10).

b. Further, we observe that the placement of BS does not seem to affect the through-
put achievable in case of an indoor-outdoor cell.

c. The price in throughput is negligible and the deployment can satisfy various
fairness criterion (Refer Table 4.4).

d. The reduction in globally-fair throughput is quite significant (as much as 20%)
with an increase in path-loss factor β (Refer Table 4.5)

e. As the indoor portion of the split-cell reduces, the globally-fair throughput re-
sponse tends to become flat. (Refer Figure 4.11)
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Table 4.5: Split cell: BS placement for globally-fair throughput for various path-loss β. User density
λ(x) ≡ 1/2D and L = 10

Path-loss β BS lox Throughput ratio
f (z∗(0); β, 1)/ f (z∗(0); 2, 1)

(w.r.t β = 2)
2 4.35 1.00
4 4.15 0.93
6 4.00 0.83

Table 4.6: Split cell: BS placement for globally-fair throughput for various noise-variance σ2. User
density λ(x) ≡ 1/2D, path-loss β = 2 and L = 10

Noise BS lox Throughput ratio
variance σ2 f (z∗(0); 2, σ2)/ f (z∗(0); 2, 1)

(w.r.t σ2 = 1)
1
4

4.65 1.30

1 4.35 1.00
4 3.90 0.21

f. Wall attenuation does not seem to alter the globally-fair BS placement much,
though one can observe a significant reduction in throughput initially (Refer Figure
4.12)

g. The reduction in globally-fair throughput is quite drastic (as much as 80%) with
an increase in noise variance σ2 (Refer Table 4.6)

4.6 Optimal and fair placement of two BS in an outdoor cell

In this section we consider optimal placement of two BS in a single cell for various α-fair
criterion. We consider a new scenario in this section, that of a single isolated cell (i.e.,
no interference from the other cells). One can easily study a single BS problem with
this new scenario and vice versa using the tools of this research. This new scenario is
considered for covering all varieties of the settings/scenarios.

Users are located on this segment with density λ(x), x ∈ [−L, L]. Assume BS1 and
BS2 are located at z1 and z2, respectively and uses the same frequency and cooperate
with each other. Further, we assume that the neighboring cells do not use the same
frequency. The users associate themselves with one of the two base stations which
maximize their SINR.

Under these assumptions, we first calculate the global (sum) throughput from all the
users associated with a particular BS. Under cooperative setting, the sum of these two
global throughputs would be the appropriate criteria for optimization. In Appendix A,
we derived simplified expressions f (z1, z2), for this sum of global throughputs, under
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Figure 4.13: Open-cell: BS1 located at z1, BS2 located at z2, user density λ(x) ≡
1/2D

large population limits. In a similar way, a general simplified α-fair objective function
fα(z1, z2) is also derived in the same Appendix. We now re-state the problem of Section
4.3 for the two BS case :

1. Find location (z1, z2) so as to maximize global throughput f (z1, z2). See large
population limit (4.10) (same as fα(z1, z2) with α = 0) of Appendix A.

2. Find the α-fair location (z∗1 , z∗2) which maximizes fα(z1, z2) for various fairness
criterion. See large population limit (4.13) of Appendix A.

We reproduce from Appendix A, the α-fair location as given by

(z∗1α, z∗2α) = arg max
z1,z2

fα(z1, z2).

where,

fα(z1, z2) =

∫

C(z1,z2)

(

1 + (x − z1)
2
)1−α

λ(x)dx

(σ2 + Ptot(z1))
1−α

+

∫

C(z1,z2)c

(

1 + (x − z2)2
)1−α

λ(x)dx

(σ2 + Ptot(z2))
1−α

Numerical example: We evaluate equation (4.13) for some typical cases: for global
(α = 0), proportional (α = 0.99) and harmonic (α = 2) fairness with path-loss exponent
β = 2 and noise variance σ2 = 1.

For the numerical analysis we have assumed that the BS are located symmetrically
about the origin to ease the SINR based user association criteria (See Appendix A).

The results are presented in Fig 4.14 - 4.17. Note that the case of global fairness
(α = 0) is also the case of sum global throughput (Refer Figure 4.14). From the plots,
we observe that the BS locations for global fairness is (−6.5, 6.5).

In Figure 4.17, we plot the α-fair BS2 location as a function of α. We observe that the
BS location shifts rapidly going from globally fair to proportionally fair and finally set-
tles at L/2 for being max-min fair. In a similar way, the BS1 tends to −L/2 as α increases
to infinity. In fact, we observe that the BS location exhibits max-min fair placement for
values of α = 8 and beyond.

Table 4.7 tabulates the normalized throughput achievable for various α-fairness cri-
terion along with the α-fair BS locations, while, Table 4.8 tabulates the BS placement for
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Figure 4.14: Outdoor cell, two BS: Global
throughput (objective function fα(z1, z2) with
α = 0) as a function of BS1 location (z2 = −z1)).
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Figure 4.15: Outdoor cell, two BS: Global
throughput (objective function fα(z1, z2) with
α = 0) as a function of BS2 location(z1 = −z2)).
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Figure 4.16: Outdoor cell, two BS: 3-D con-
tour plot of global throughput (objective function
fα(z1, z2) with α = 0) as a function of BS loca-
tions (z1, z2)
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Figure 4.17: Outdoor cell, two BS: α-fair BS lo-
cation z∗2(α) as a function of α (Placement of BS2
shown here).
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globally-fair throughput for various path-loss factors β.

Table 4.7: The α-fair BS location(s) and normalized throughput for outdoor cell with two BS, user density
λ(x) = 1/2L, L = 10, path-loss β = 2

α-fairness BS1 lox BS2 lox Normalized
global (α = 0) -6.45 6.45 1.0000
proportional (α = 0.99) -5.15 5.15 0.9970
harmonic (α = 2) -5.10 5.10 0.9950
max-min (α = 128) -5.05 5.05 0.9940

Table 4.8: Outdoor cell with two BS: BS placement for globally-fair throughput for various path-loss β.
User density λ(x) = 1/2L and L = 10

Path-loss β BS1 lox Throughput ratio
f (z∗(0); β, 1)/ f (z∗(0); 2, 1)

(w.r.t β = 2)
2 -6.45 1.00
4 -5.55 0.85
6 -5.35 0.76

Observations:

a. We observe that the BS locations shift rapidly going from globally fair to propor-
tionally fair and finally settles at (−L/2, L/2) for being max-min fair. In fact, the BS
location exhibits max-min fair placement for values of α = 8 onwards (Refer Figure
4.17).

b. Further, we observe that the placement of BS does not seem to affect the through-
put achievable in case of an outdoor cell with two BS.

c. The price in throughput is negligible and the deployment can satisfy various
fairness criterion.

d. The globally-fair throughput reduces by 25% with an increase in path-loss expo-
nent β from 2 to 6 (Refer Table 4.8).

e. We observe that for a uniform distribution of users, when placing fairly two
base stations on the segment [−L, L], the distance between the stations decrease as
α increases (Refer Table 4.7). In particular, we note that a model similar to this has
been already studied in [13] where the equilibrium location was computed in a non-
cooperative context (each base station tries to maximize its own throughput) instead of
the fair location. As in the fair placement case that we study here, it was shown there
that the equilibrium distance is also closer than the distance corresponding to the glob-
ally fair location. As an example, the equilibrium location of the BS that corresponds to
the data of Fig 4.17 here is 5.5 in Table 1 of [13] (the globally fair being around 6.4). This
means that the non-cooperative equilibrium location is fairer than the globally fair one
- it corresponds to the α fair placement where α is seen from Fig 4.17 to be around 0.5.
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Further, our work can be extended to find the α-fair BS locations when multiple BS
are to be located on a line segment or on a 2D grid. This is a step towards optimal
BS placement to satisfy various fairness criteria when a macro-cell is divided into a
number of small cells. For example, the optimal placement of BS in pico-cell networks.

4.7 Conclusions and future perspectives

We studied the problem of optimal BS placement, optimal for various α-fair criterion
in cellular networks. We considered simple 1D models which characterize both indoor
and outdoor cellular environments with mixed partitions. We derived explicit expres-
sions for α-fair criterion under large population limits. These limits were used to obtain
the theoretical asymptotic analysis of the α-fair locations. We show that the α-fair lo-
cations converge close to center of the cell as α increases to infinity (which basically
represents the max-min fair location).

The large population limits were also used to numerically compute BS locations
which satisfy global, proportional, harmonic and max-min fairness. For the models
considered, we presented results via plots and tables to show the variations in achiev-
able throughput for the different fairness criterion. We also confirmed, via numerical
examples, that the α-fair locations converge to the center of the cell as α tends to infinity.

We next considered a two base station optimal placement problem again for vari-
ous α-fair criterion. We obtained large population limits under cooperative setting and
using this we showed, via numerical examples, that the α-fair BS locations converge to
a pair of locations which divide the cell once again into equal regions.

We used large population limits to get some initial insight into this problem. An-
other interesting way would be to consider users distributed accord to a stochastic pro-
cess according to some distribution. One can try to use tools like stochastic geometry or
the likes to analyze the problem. It would be interesting to compare the results obtained
via different approaches in the limiting regime.

4.8 Appendix A : Large population limits - power, throughput
and α-fair placement of two base stations:

In Section 4.3, we derived power, throughput and α-fair placement expressions for a
single BS located in the cell. In this appendix section, we derive the same for two BS.
For simplicity, we consider the cell of interest to span [−L, L]. Also, in this case, we
assume that neighboring cells use different frequencies (i.e, there is no frequency reuse)

As before, the power from a user located at Xi received at BS1 located at z1 is

P(Xi, z1) =
1
N
(1 + (z1 − Xi)

2)
−β
2 .
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The total power received at BS1 under large population limits is

Ptot(z1) =
∫ L

−L
(1 + (z1 − x)2)

−β
2 λ(x)dx,

assuming no frequency re-use.

The throughput (which is approximately equal to the SINR in case of an adaptive
filter) at BS1 is

θ(Xi, z1) ≈ SINR(Xi, z1) =
P(Xi, z1)

σ2 + Ptot(z1)
.

Similarly throughput at BS2 is,

θ(Xi, z2) ≈ SINR(Xi, z2) =
P(Xi, z2)

σ2 + Ptot(z2)
.

The user at Xi will associate itself with BS1 if

SINR(Xi, z1) > SINR(Xi, z2). (4.8)

Let

C(z1, z2) := {x : SINR(x, z1) ≥ SINR(x, z2)} (4.9)

represent the set of users which associate themselves with BS1.

Under cooperative setting, the total sum throughput received at both the base sta-
tions is,

f (z1, z2) :=
1

(1 − α)

N

∑
i=1

[

θ(Xi, z1)1{Xi∈C(z1,z2)}

+θ(Xi, z2)1{Xi∈C(z1,z2)c}
]

(4.10)

The α-fair solution in this case is given by the BS location pair (z∗1 , z∗2) which maxi-
mizes fα where,

f̃α(z1, z2) :=
1

(1 − α)

N

∑
i=1

[

θ(Xi, z1)1{∈C(z1,z2)}

+θ(Xi, z2)1{Xi∈C(z1,z2)c}
]1−α

=
1

(1 − α)

N

∑
i=1

[

θ(Xi, z1)
1−α1{Xi∈C(z1,z2)}

+θ(Xi, z2)
1−α1{Xi∈C(z1,z2)c}

]
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which under large population limits is approximated by,

f̃α(z1, z2) (4.11)

≈ Nα

(1 − α)





∫

C(z1,z2)

(

1 + (x − z1)
2
)1−α

λ(x)dx

(σ2 + Ptot(z1))
1−α

+

∫

C(z1,z2)c

(

1 + (x − z2)2
)1−α

λ(x)dx

(σ2 + Ptot(z2))
1−α





(4.12)

Thus α fair placement of the two BS is given by,

(z∗1α, z∗2α) = arg max
z1,z2

fα(z1, z2) where

fα(z1, z2) =

(−1)1{α>1}





∫

C(z1,z2)

(

1 + (x − z1)
2
)1−α

λ(x)dx

(σ2 + Ptot(z1))
1−α

+

∫

C(z1,z2)c

(

1 + (x − z2)2
)1−α

λ(x)dx

(σ2 + Ptot(z2))
1−α





(4.13)
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Chapter 5

Asymptotic Analysis of Precoded
Small Cell Networks
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5.1 Introduction

While, dividing a macro-cell into multiple small cells enhances the capacity, the spatial
dimension has been exploited in the recent past to enhance the capacity further. It is
now well established that Multiple antenna at the transmitter (Nt) and the receiver (Nr)
achieve capacity gains which grow linearly as min(Nt, Nr).

Recently, the MIMO broadcast channel [155, 160, 77], where, a multi-antenna base
station, transmitting on M antennas to K single antenna users is shown to achieve ca-
pacity gains which grow linearly as min(M, K), provided the transmitter and receivers
all know the channel [85]. To achieve this, several methods have been proposed among
which linear precoders offer a good compromise between complexity and performance
trade-off [156],[110].

Further, MIMO based systems have been studied in the framework of multi-cell
networks. In a multi-cell scenario, the achievable sum-rate in the downlink, diminishes
due to interference from neighboring base stations. Thus increasing the number of
antennas at the base-stations does not necessarily yield a linear increase in capacity.
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Figure 5.1: System model: multi-cell network. BS with M antennas, serving K users. Users at X
experience nominal interference and users at Y experience high interference

Frequency reuse and various forms of interference co-ordination [132], [86] have been
proposed to achieve linear growth in capacity.

In our contribution, we want to asses exactly the effect of multi-cell interference
in MIMO based small cell networks. Small cells being in close proximity experience
higher levels of interference, which would bring down the capacity gains significantly.
We want to study the impact of multi-cell interference when base-stations employ linear
precoding techniques, such as channel inversion (CI) at the base station.

As mentioned before, linear precoding techniques such as channel inversion(CI)
and regularized channel inversion (RCI) offer a convenient trade-off between complex-
ity and achievable sum-rate performance [77, 110]. The behavior of CI in uncorrelated
MIMO broadcast channels (MIMO-BC) has already been studied in [77, 110] for i.i.d.
Gaussian channels. In particular, the authors in [77] showed that CI achieves linear
growth in multiplexing-gain. Further, authors in [48], extended the case to include an-
tenna correlations due to dense packing of the antennas at the transmitter. The analysis
carried out considers single cell systems and they show that for the case of CI, the sum-
rate is maximized when the number of antennas M on the BS is equal to the number of
users K.

For the multi-cell case, the problem of interference co-ordination in uplink has been
discussed at length in [152]. In [86], authors address downlink macro-diversity in cel-
lular systems. They study the potential benefit of base-station (BS) cooperation for
downlink transmission in a modified Wyner-type [166] multicell model. They compare
various precoders and obtain analytical sum rate expressions for both the fading and
the non-fading case. They demonstrate via monte-carlo simulations the effectiveness of
linear precoding. Authors in [155] suggests that asymptotically, equal power allocation
is optimal when the channel is i.i.d. Gaussian.

In our work, we are interested in studying the impact of interference from adja-
cent base stations, which is more pronounced in MIMO based small cell networks on
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the achievable sum-rate capacity. We consider multiple-input multiple-output (MIMO)
multi-cell systems, each cell composed of a transmitter equipped with M antennas and
K single-antenna receivers. We consider Wyner-type cellular models in our study. We
neglect the effects of channel correlation due to densely packed antennas at the base-
station transmitter, with a view to keep the analysis tractable.

The analytic expressions of the sum-rates for CI are derived by applying recent tools
from random matrix theory (RMT . These expressions are independent of the specific
channel realizations.

In our study, we find that

• The achievable sum-rate is significantly diminished by the effect of multi-cell in-
terference in MIMO based small cell networks.

• The sum-rate capacity tends to grow sub-linearly with respect to the number of
base-station antennas as long as the interference is non-zero.

• Also, there is an optimal number of users for a given number of antennas at the
transmitter, which maximizes the sum-capacity. This depends on the interference
level and the transmit power at the base-station.

The remainder of this chapter is organized as follows: Section 5.2 briefly reviews
various tools of random matrix theory which will be used in later derivations. Section
5.3 introduces the multi-cell system model. In Section 5.4 we study channel inversion
precoding. Section 5.5 provides simulation results which are shown to corroborate the
theoretical derivations. Finally in Section 5.6 we provide our conclusions.

Notations: In the following, boldface lower-case symbols represent vectors, capital
boldface characters denote matrices (IN is the N × N identity matrix). The Hermitian
transpose is denoted (·)H. The operator tr[X] represents the trace of matrix X. The
eigenvalue distribution of an Hermitian random matrix X is µX(x). The symbol E[·]
denotes expectation. The derivative of a function f (x) of a single variable x is denoted
f ′(x). All logarithms are base-2 logarithms.

5.2 Random Matrix Theory Tools

In this work, we are interested in the behavior of large random Hermitian matrices,
and particularly in the asymptotic distribution of their eigenvalues. Specifically, the
eigenvalue distribution of large Hermitian matrices converges, in many practical cases,
to a definite probability distribution, hereafter called the empirical distribution of the
random matrix, when the matrix dimensions grow to infinity.

A tool of particular interest in this work is the Stieltjes transform SX of a large Hermi-
tian non-negative definite matrix X, defined on the half the space C

+ = C \ R+ = {z ∈
C, Re(z) < 0}, as

SX(z) =
∫ +∞

0

1
λ − z

µX(λ)dλ (5.1)
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where µX is the empirical distribution of X.

Couillet et al. [47] derived a fixed-point expression of the Stieltjes transform for
Gaussian matrices with correlations in the following theorem,
Theorem 5.2.0.1. Let the entries of the K × M matrix W be i.i.d. Gaussian with zero mean
and variance 1/M. Let X and Q be respectively K × K and M × M Hermitian non-negative
definite matrices with eigenvalue distributions µX and µQ. We impose further that the largest
eigenvalues of X and Q are bounded independently of K, M. Let Y be an K × K Hermitian
matrix with the same eigenvectors as X and let f be some function mapping the eigenvalues of
X to those of Y. Let z ∈ C

+ = C \ R
+. Then, for M, K large with K/M = 1/β, the Stieltjes

transform SH(z) of H = X1/2WQWHX1/2 + Y is given

SH(z) =
∫

(

f (x) + x
∫ q · µQ(q)q.

1 + 1
β qTH(z)

− z

)−1

µX(x)x. (5.2)

where TH is a solution of the fixed-point equation

TH(z) =
∫

x

(

f (x) + x
∫ q · µQ(q)q.

1 + 1
β qTH(z)

− z

)−1

µX(x)x. (5.3)

An immediate corollary, when only right-correlation is considered, unfolds natu-
rally as follows,
Corollaire 5.2.1. [130] Let the entries of the K × M matrix W be i.i.d. Gaussian with zero
mean and variance 1/M. Let Y be an K × K Hermitian non-negative matrix with eigenvalue
distribution µY(x). Moreover, let Q be a M × M non-negative definite matrix with eigenvalue
distribution µQ(x), such that the eigenvalues of Q are bounded irrespectively of M. Then, for
large K, M, such that K/M = α, the Stieltjes transform on C

+ of the matrix

H = WQWH + Y (5.4)

verifies

SH(z) = SY

(

z −
∫

q

1 + αqSH(z)
µQ(q)dq

)

(5.5)

5.3 System model and assumptions

We discuss the system model in this section. We consider a multi-cell Wyner-type
model, for example as shown in figure (5.1). For simplicity and to be able to keep
the analysis tractable, we consider a three-cell network. The cell at the center is our ref-
erence. The users in this cell experience interference from the neighboring base stations
as shown. Each cell serves K users from a base-station with M antennas. We assume
that the base station antennas are uncorrelated. The information from the base-station
to its user set is precoded assuming perfect channel state information at the transmit-
ter (CSIT). i.e, each base station knows perfectly the channel towards the users in its
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cell, but not the interfering channels. Users receive desired signal plus interference sig-
nals from adjacent base stations. We assume channel inversion (CI) precoding at the
transmitter. The transmitted signals from the base stations undergo Rayleigh fading
and path-loss. Further, we assume that the channel is constant for some interval long
enough for the transmitter to learn and use it until it changes to a new value. We are
interested in the behavior of the system and its sum-rate capacity. Many of our results
are obtained for large limits, because the limiting results are often tractable. Neverthe-
less, we often consider M, K small in our simulation examples. Further, all users are
assumed to have the same average (but not instantaneous) received signal power, so
our model assumes that the users are similar distances from the base station and are
not in deep shadow fades.

5.4 Channel inversion precoding

Channel inversion precoding, also referred to as zero-forcing (ZF) precoding, annihi-
lates all the inter-user interference by performing an inversion of the channel matrix H
at the transmitter. We begin our analysis with the single cell case, which is discussed in
detail in [48], [77], and further we shall consider the multi-cell case.

5.4.1 Single cell

Without loss of generality, we consider cell 0. The signal received by users in this cell is

y = Hx + n. (5.6)

where, H is the K× M channel matrix with zero-mean unit-variance i.i.d complex Gaus-
sian entries, x = Gs is the transmit vector obtained by linear precoding of the symbol
vector s with the precoding matrix G. Symbol sk ∈ s for any user k is complex Gaussian
with zero mean and unit variance. The M × K linear precoding matrix is defined as

G = αHH

(

HHH

)−1
. (5.7)

where α is chosen appropriately to satisfy the total transmit power constraint tr(E[xxH ]) ≤
tr(GGH) ≤ P.

Now the received vector in Cell 0

y = αs + n. (5.8)

The parameter α which satisfies the transmit power constraint and depends only on
the channel realization H is given by

α2 =
P

tr ((HHH)−1)
(5.9)
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The SNR (signal to noise ratio) for any user k is defined as

ηk =
Es

[

|αsk|2
]

E|nk|2
=

α2

σ2 . (5.10)

is independent of the selected user. σ2 is the noise variance.

The ergodic capacity for user k is

Ck = log(1 + ηk). (5.11)

and the sum-rate is

Rci =
K

∑
k=1

log(1 + ηk). (5.12)

5.4.2 Asymptotic analysis for a single-cell

α is a function of H and as M, K → ∞, α tends to a constant. Thus the sum-rate can be
written as

Rci = K log (1 + ηk) (5.13)

Let us denote H′ =
1√
M

H. It follows from (5.9) that When M is large with M/K =

β,

1
M

tr
(

H′H′H
)−1

=
1
M

K

∑
i=1

1
λi

=
K

M

(

1
K

K

∑
i=1

1
λi

)

=
K

M

∫ 1
λ

(

1
K

K

∑
i=1

δ(λ − λi)

)

dλ

=
1
β

∫ 1
λ

µK
H′H′H(λ)dλ

=
1
β
SH′H′H(0)

As a consequence, for large (K, M)

α2

σ2 → ρβ

SH′H′H(0)
, where ρ = P/σ2 (5.14)

and the sum-rate is

Rci = K log
(

1 +
ρβ

SH′H′H(0)

)

(5.15)
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According to Corollary 5.2.1, SH′H′H(0) is the solution of1

SH′H′H(0) =

(

∫

λ

1 + λ
βSH′H′H(0)

µ(λ)dλ

)−1

=

(

∫

λ δ(λ − 1)
1 + λ

βSH′H′H(0)

)−1

=

(

1 +
SH′H′H(0)

β

)

(5.16)

Solving for SH′H′H(0) yields,

SH′H′H(0) =
β

(β − 1)
(5.17)

and the sum-rate is re-written as

Rci = K log (1 + ρ(β − 1)) for β ≥ 1 (5.18)

The rate-per-antenna is

Rci

M
=

1
β

log (1 + ρ(β − 1)) . (5.19)

As β → 1, Rci/M → 0, which implies that the sum rate of channel inversion does
not increase linearly with M (or K)

5.4.3 Optimizer β∗ for the single cell

Following [77] we now look for a value β⋆ of the ratio M/K such that, for a fixed num-
ber of transmit antennas M, the sum-rate Rci(β) is maximized. By differentiating eqn
(5.19) with respect to β and setting the derivative to zero, β∗ is the solution of the im-
plicit equation

ρβ∗ = (1 + ρ(β∗ − 1)) log (1 + ρ(β∗ − 1)) (5.20)

1it is important to note here that we slightly misapply Corollary 5.2.1 since the result is only proven
valid outside for any z > 0.
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5.4.4 Multi-cell

In this section, we study the effect of multi-cell interference. Without loss of generality,
we consider users in Cell 0 affected by interference from adjacent base-stations. We
consider a 3-cell Wyner-type model as shown in figure 5.1. Cell C0 is at the center.
Adjacent cells are designated Cell C1 and Cell C−1.

Following our analysis of the single cell case, the received vector for users of cell C0,
is

y = H0G0s0 +
√

γH01G1s1 +
√

γH0−1G−1s−1 + n. (5.21)

As before, H0 is the channel matrix from base station in cell C0 to its users. H01 and
H0−1 are interfering channels from cell C1 and C−1, respectively. G1 and G−1 are pre-
coding matrices for users in cell C1 and C−1, respectively. γ is the signal (interference)
attenuation.

As stated earlier, all users in cell C0 are assumed to have the same average received
signal power, so our model assumes that the users are similar distances from the base
station and are not in deep shadow fades.

The precoding matrices in cell i can be written as

Gi = αiHH

i (HiHH

i )
−1 (5.22)

The ergodic capacity for user k in cell C0 is expressed as

Ck = log
(

1 +
α2

0

E[|nk|2]

)

(5.23)

Where, nk is the kth element of the covariance matrix n. The expectation of this matrix
can be written as

E[nnH] = γH01G1GH

1 HH

01

+ γH0−1G−1GH

−1HH

0−1 + σ2I (5.24)

Expanding and simplifying,

E[nnH] = γα2
1H01HH

1 (H1HH

1 )
−2H1HH

01

+ γα2
−1H0−1HH

−1(H−1HH

−1)
−2H−1HH

0−1

+ σ2I (5.25)

Since,

E[|n1|2] = E[|n2|2] . . . = E[|nk|2] (5.26)

We can write,

E[|nk|2] → 1
K

K

∑
k=1

E[|ni|2]

=
1
K

tr
(

E[nnH]
)

(5.27)
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E[|nk|2] =
1
K

tr
(

γα2
1H01HH

1 (H1HH

1 )
−2H1HH

01

+ γα2
−1H0−1HH

−1(H−1HH

−1)
−2H−1HH

0−1

)

+σ2I (5.28)

5.4.5 Asymptotic analysis for the multi-cell

Lemma 5.4.6. As K, M → ∞

1
K

tr
(

H01HH

1 (H1HH

1 )
−2H1HH

01

)

→ 1
β − 1

Proof: Denote
A = HH

1 (H1HH

1 )
−2H1

Now,

1
K

tr
(

H01AHH

01

)

=
1
K

E
[

tr
(

H01AHH

01

)]

=
1
K

tr
(

E
[

H01AHH

01

])

=
1
K

tr (E [tr(A)] IK×K)

= E [tr(A)]

= E
[

tr
(

HH

1 (H1HH

1 )
−2H1

)]

= E
[

tr
(

H1HH

1 )
−1
)]

If K × M matrix H1 is zero-mean, i.i.d. Gaussian, then W = H1HH

1 is a Wishart matrix.
For a Wishart matrix 2,

E
[

tr
(

W)−1
)]

=
K

M − K

E
[

tr
(

H1HH

1 )
−1
)]

=
K

M − K
=

1
β − 1

and hence,

1
K

tr
(

H01HH

1 (H1HH

1 )
−2H1HH

01

)

→ 1
β − 1

�

2Refer section 2.1.6, equation (2.9) of [149] and the references there-in ([71, 97])
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Thus the expectation in eq. (5.28) reduces to,

E[|nk|2] → α2
1γ

1
β − 1

+ α2
−1γ

1
β − 1

+ σ2 (5.29)

And hence, the sum-rate is

Rci = K log

(

1 +
α2

0(β − 1)
α2

1γ + α2
−1γ + σ2(β − 1)

)

(5.30)

Following (5.14), for large (K, M),

α2
0

σ2 =
α2

1
σ2 =

α2
−1

σ2 → ρβ

SH′H′H(0)
, where ρ = P/σ2 (5.31)

Thus the above sum-rate expression can be simplified as

Rci = K log
(

1 +
ρβ(β − 1)

(β − 1)SH′H′H(0) + 2γρβ

)

(5.32)

Substituting for SH′H′H(0),

Rci = K log
(

1 +
ρ(β − 1)
1 + 2γρ

)

(5.33)

Re-writing,

Rci

M
=

1
β

log
(

1 +
ρ(β − 1)
1 + 2γρ

)

(5.34)

We observe that when γ = 0, that is when there is no interference, the capacity formula
is that of the single-cell case.

As β → 1, Rci/M → 0, which implies that the sum rate of channel inversion does
not increase linearly with M (or K)

5.4.7 Optimizer β∗ for the multi-cell

Following on similar lines of the single-cell case, we now look for a value β⋆ of the
ratio M/K such that, for a fixed number of transmit antennas M, the sum-rate Rci(β)
is maximized. By differentiating eqn (5.34) with respect to β and setting the derivative
to zero, β∗ is the solution of the implicit equation

ρβ∗ = [ρ(β∗ − 1) + (1 + 2γρ)] log
[

1 +
ρ(β∗ − 1)
1 + 2γρ

]

(5.35)

One can observe that by setting γ = 0, we fall back to the implicit equation (5.20) of the
single cell case.
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Figure 5.2: β∗ vs SNR for various interference
factors (M = 16)
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Figure 5.3: K∗ vs SNR for various interference
factors (M = 16)

5.4.8 Some observations:

Following our single cell and multi-cell analysis, we plot in figure 5.2, the optimal β,
i.e, β∗ (refer equation 5.35), which maximizes the sum rate and in figure 5.3 the cor-
responding optimal number of users K∗ = M/β∗ for M = 16 and different SNR. We
observe that,

1) With increasing SNR more and more users should be served to maximize the sum
rate.

2) Also, the number of users required to maximize the sum rate tends to saturate
with an increase in the interference factor γ.

Next, we plot the optimal sum rate (refer equation 5.34), i.e, the sum rate achieved
when β = β∗ in figure 5.4. We compare this for example with β = 2, shown in figure 5.5.
We obtain the sum-rate by computing the rate per user in the asymptotic regime and
then multiplying this with a finite number of antennas M at the BS. For this example
we have used M = 16.

There are some interesting observations here:

1) The sum-rate tends to increase at a constant rate when β = β∗, when there is no
interference (γ = 0).

2) The sum-rate tends to saturate with interference and the saturation occurs sooner
when the interference is higher.

3) The sum-rate with interference for any other β, for example β = 2 (fig 5.5), is
not much different from β = β∗ (fig 5.4) in the presence of interference. The rate per
transmit antenna tends to saturate with interference.
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Figure 5.4: Sum rate at β∗ for various interfer-
ence factors (M = 16)
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Figure 5.5: Sum rate at β = 2 for various inter-
ference factors (M = 16)

5.4.9 Single cell and multi-cell with unequal power

We re-define the power-constraint as

tr[xPxH] ≤ tr[GPGH] ≤ P (5.36)

such that the kth diagonal element of P represents power pk for user k with
K

∑
k=1

pk =

tr(P).

Expanding tr[GPGH],

tr
(

GPGH

)

= tr
(

HH(HHH)−1P(HHH)−1H
)

= tr
(

(HHH)−1P
)

= tr(HHH)−1 1
K

tr(P)

=
1
M

tr(H′H′H)−1 1
K

tr(P)

=
1
β
SH′H′H(0)

1
K

tr(P) (5.37)

From eqn (5.36) and (5.37), we see that

1
K

tr(P) ≤ Pβ

SH′H′H(0)

With ρ = P/σ2,

1
σ2 ≤ ρβ

1
K tr(P) SH′H′H(0)

(5.38)
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Substituting SH′H′H(0) = β/(β − 1), the ergodic capacity for user k in the single-cell
case is

Ck = log
(

1 +
pk

σ2

)

= log

(

1 +
pkρ(β − 1)

1
K tr(P)

)

. (5.39)

and the sum-rate is

Rci =
K

∑
k=1

log

(

1 +
pkρ(β − 1)

1
K tr(P)

)

. (5.40)

We can easily see that with equal power for all users,
1
K

tr(P) = p = pk and the above

expression will reduce to the expressions derived for the single-cell case with equal
power constraint (eqn 5.18).

The rate per antenna is

Rci

M
=

1
β

1
K

K

∑
k=1

log

(

1 +
pkρ(β − 1)

1
K tr(P)

)

(5.41)

For the multi-cell case, the ergodic capacity eqn (5.23) for user k is

Ck = log
(

1 +
pk

E[|nk|2]

)

(5.42)

Where,

E[nnH] = γH01G1P1GH

1 HH

01

+ γH0−1G−1P−1GH

−1HH

0−1

+ σ2I (5.43)

After suitable simplification similar to the multi-cell analysis in the previous section,
we can re-write the above expression as

E[|nk|2] =
1
K

tr
(

H01HH

1 (H1HH

1 )
−1

P1(H1HH

1 )
−1

H1HH

01

+H0−1HH

−1(H−1HH

−1)
−1

P−1(H−1HH

−1)
−1

H−1HH

0−1

)

+σ2I (5.44)

As M, K → ∞,

tr
(

H01HH

1 (H1HH

1 )
−1Pi(H1HH

1 )
−1H1HH

01

)

→ 1
β − 1

tr(Pi) (5.45)
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Therefore, the expectation can be written as,

E[|nk|2] = γ
1

β − 1
tr(P1)

K
+ γ

1
β − 1

tr(P−1)

K

+σ2I. (5.46)

The capacity of user k is

Ck = log

(

1 +
(β − 1) pk

γ tr(P1)
K + γ tr(P−1)

K + σ2(β − 1)

)

(5.47)

Substituting eqn (5.38) for 1/σ2,

Ck = log

(

1 +
ρ(β − 1) pk

γρ tr(P1)
K + γρ tr(P−1)

K + tr(P)
K

)

(5.48)

and the sum-rate is expressed as

Rci =
K

∑
k=1

log

(

1 +
ρ(β − 1) pk

γρ tr(P1)
K + γρ tr(P−1)

K + tr(P)
K

)

(5.49)

Notice that if
1
K

tr(Pi) = p = pk, the above expression will reduce to the expressions

derived for the multi-cell case with equal power constraint (eqn 5.33).

The sum-rate per antenna is

Rci

M
=

1
β

1
K

K

∑
k=1

log

(

1 +
ρ(β − 1) pk

γρ tr(P1)
K + γρ tr(P−1)

K + tr(P)
K

)

(5.50)

We observe two things here. 1) One can come up with an optimal power allocation
policy (for ex. based on the channel characteristics) which maximizes the sum-capacity
in the unequal power allocation scheme. 2) If some of the users in the adjacent base sta-
tions are not being serviced, i.e, their respective antenna at the transmitter is switched
off, the interference comes down (for ex. if one or more user links are inactive in cell 1,
then tr(P1) < P1) and hence the sum-capacity scales up.

5.5 Simulation results

In this section we evaluate by simulation how interference from neighboring base sta-
tions impacts the behavior of the sum-rate of linearly precoded MIMO small cell net-
works when the antenna array at the transmitter are large. We compare numerical
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results obtained by Monte-Carlo simulations with our previously derived asymptotic
expressions for finite (K, M). In particular, we have the following cases.

1) We fix the SNR (ρ = 20 dB) and calculate rate achieved per antenna as we vary
β = M/K (refer equation (5.34)). We plot this in figure (5.6) for various interference
factors γ. We observe that the rate per antenna is maximized for a certain β = β∗. This
matches with the β∗ computed by solving the implicit eqn (5.35). It is also interesting
to observe that β∗ increases with increasing interference. Also, beyond β∗, the capacity
growth is not in proportion to the growth in number of antennas M at the base station.

2) We fix the SNR (ρ = 20 dB) and the ratio M/K = β = 2. We compute the rate
achieved per antenna as we vary the interference factor γ. We compare asymptotic
results via monte-carlo simulations. We plot this in figure 5.7. We observe that the
achievable rate is very sensitive to interference. The drop in rate is very steep in the
beginning and tends to saturate for higher interference. Thus, the rate per antenna
saturates with γ. This seems to indicate that the high amount of interference envisaged
in small cells might not be as harmful. Many of the proposed interference management
and co-ordination schemes might work well even in the case of small cells.

3) Next we show how the sum-rate increases with increasing number of base-station
antennas M at SNR (ρ = 0, 20dB) for various interference factors γ, when β = 2. We
compute the rate per antenna from equation (5.34) for the asymptotic part to compare
it with monte-carlo simulations. The observations are plotted in figures (5.8), (5.9). We
observe that the increase in sum-rate is linear when interference is nil. The increase
is sub-linear for other interference factors. Since the number of antennas at the base
station and number of users are increasing simultaneously, the capacity is expected to
grow in proportion to min(M, K), scaled by a factor, that depends on the interference
factor γ and the SNR ρ.

In all the cases, we observe that in all simulations the asymptotic results closely
match the numerical results even for small values of (K, M).

5.6 Conclusions

We looked at the problem of inter-cell interference in MIMO based small cell networks.
We started our analysis with a single cell, where multi-antenna base station employ
channel inversion precoding to communicate with multiple single-antenna users. We
extended the case to multi-cell scenario, using a simple wyner-type model. We derived
the sum-rate capacity in the asymptotic regime, i.e, when the number of antennas at the
base station and number of user grow large, but, with a fixed ratio. We used recent tools
from random matrix theory, which have proven to give reliable results even when the
quantities involved are practical and finite. We further derived β∗, the ratio of number
of transmit antennas to users, which maximizes the achievable sum-rate. This ratio
provides the user density per antenna at the BS. The asymptotic analysis was validated
with monte-carlo simulations in the finite regime.
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dB for various interference factors γ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
Rate per antenna vs γ (SNR=20dB)

γ

R
a
te

 p
e
r 

a
n
te

n
n
a
 (

b
it
s
/s

e
c
/H

z
)

sim

asy

Figure 5.7: Rate per antenna vs γ, when, β = 2,
SNR ρ = 20 dB for various interference factors γ

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16
Sum−rate vs M (SNR=0dB)

M

s
u

m
−

ra
te

 R
c
i (

b
it
s
/s

e
c
/H

z
)

γ=0

γ=0.1

γ=0.5

γ=1

Figure 5.8: Sum rate per antenna as a function of
M for β = 2 at SNR of 0 dB for various interfer-
ence factors

5 10 15 20 25 30
0

20

40

60

80

100

120
Sum−rate vs M (SNR=20dB)

M

s
u

m
−

ra
te

 R
c
i (

b
it
s
/s

e
c
/H

z
)

γ=0

γ=0.1

γ=0.5

γ=1

Figure 5.9: Sum rate per antenna as a function of
M for β = 2 at SNR of 20 dB for various inter-
ference factors

128



We conclude that the achievable sum-rate is significantly diminished by the effect of
multi-cell interference in MIMO based small cell networks. The sum-rate capacity tends
to grow sub-linearly with increasing interference. Also, there is an optimal number of
users for a given number of antennas at the transmitter, which maximizes the sum-
capacity. This depends on the interference level and the transmit power at the base-
station. For a given number of transmit antenna, moving away from the optimal, β∗,
tends to saturate the capacity growth at high SNR. The saturation occurs sooner with
higher interference.
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1. Sreenath Ramanath, Merouane Debbah, Eitan Altman, Vinod Kumar, "Asymp-
totic analysis of precoded small cell networks", proceedings of InfoCom 2010, Mar
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Chapter 6

Open Loop Control of BS
Deactivation
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6.1 Introduction

In recent years, there is a paradigm shift towards greener and denser networks [39,
81]. While green networks aim at reducing overall power and energy consumption in
networks, denser networks increase the capacity and coverage of networks. Typically,
dense networks, popularly referred to as small cell networks comprise Femto and pico
cells serving indoor, hot-spot and urban mobility regions. The base stations used in
such cells are compact and small portable devices, which can be easily installed on
existing infrastructure and are often battery operated. They recharge periodically and it
would be beneficial from a greener perspective if this can be as less frequent as possible.
Thus these base stations need to judiciously use the available battery power. Further,
if one assumes that all these base stations are accessible to a central control unit via a
back haul link, depending on the load, some of these devices can be switched OFF to
conserve their battery life.

In our current work, we derive optimal policies to conserve energy in two scenarios.
1) A central control unit, which, depending on the load in the system can switch OFF
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certain base stations to reduce overall energy conservation in the system, but, with
an objective to maximize the expected throughput. 2) Each base station can derive its
policy independent of its neighbors to minimize an average cost metric (for example,
its buffer occupancy), while keeping a lower bound on the fraction of time the it is
switched OFF. To address these problems, we use tools from Multimodularity.

The natural counterpart of convex functions over integer sets turn out to be the so
called Multimodular functions ([75]) and for such functions we have indeed the property
that local minima are global minima. The property of Multimodularity can handle the
control of discrete events and we utilize the same to obtain optimal activation policies
for base stations. These tools were earlier used in the context of stochastic control of
Queuing systems ([12] and reference therein). In a recent work [34], while addressing
the problem of energy limited wireless handsets, the authors use tools from Multimod-
ularity to address open loop control and establish optimality of bracket sequences based
control.

We consider a regular network, wherein the base stations form a linear network and
here the tools of Multimodularity fit in. Tools like stochastic geometry can be used to
address networks which have base stations and mobiles distributed stochastically ac-
cording to some given process (for eg. Poisson) and this study is not addressed here.
Our objective is to obtain open loop policies. Later, we plan to derive closed loop poli-
cies for the same. The main results from this chapter are:

1. We show that the cost structure for the both centralized and decentralized scenar-
ios is Multimodular.

2. For the central control, among all feasible policies with at least an asymptotic
fraction ρ of the base stations being switched OFF, the bracket policy with rate ρ
is optimal.

3. For the decentralized control, among all feasible policies with the BS switched
OFF for at least an asymptotic fraction ρ of the time, the bracket policy with rate
ρ is optimal.

4. In both the cases, the optimal policy is given by (⌊x⌋ denotes the largest integer
smaller or equal to x)

an = ⌊nρ⌋ − ⌊(n − 1)ρ⌋.

Here, an = 0(1), if the n-th BS (centralized) or BS in the n-th time slot (decentral-
ized) is switched OFF (ON).

5. The optimal policies depend only upon the conservation factor ρ and are inde-
pendent of all other system parameters, for example path loss coefficient, power
per transmission, etc.

In both the problems, we call ρ, the switch OFF fraction (the total fraction of base
stations to be switched OFF in central control or the fraction of time a base station is
switched OFF in decentralized control), as the conservation factor. In the first case, this
is decided by the central control based on system statistics (like traffic type, load distri-
bution, QoS, time of hour, day of week, power saving, etc.), while in the decentralized
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case, it is derived based on resources available and the QoS setting (memory, power
saving, waiting time, sojourn time, etc.). Further, in our analysis, we assume that this
factor is known a priori.

Organization of the chapter: In Section 6.2, we introduce Multimodularity concepts
and the tools relevant in this work. In Section 6.3, we address the central control prob-
lem, while Section 6.4 studies the decentralized control. In Section 6.5, we discuss some
possible future directions and we conclude our work in Section 6.6.

Notations: Bold letters, for example a, represent an infinite sequence while ak
j rep-

resents a part of this sequence defined by (aj, · · · , ak). Let 1n
1 represent a n vector of all

ones while 1 represents the infinite sequence of all ones. In the sections, where the infi-
nite sequences are not used and where all the vectors used are of the same length, then
bold letters (for example a) themselves are used to represent the finite length vectors.
lim, lim is limit infimum and supremum, respectively.

6.2 Multimodularity

Multimodularity can be used to address a wide class of control problems over se-
quences of integer numbers. Multimodular functions turn out to be the natural counter
part of Convex functions, in the case of integer valued functions, for which the existence
of a local minima guarantees a global minima. Also, they induce a particular form of
optimal policies, which turn out to be very regular, and are described by the well known
bracket sequences. We reproduce the related definitions (see [12] for general definitions)
specific to the spaces considered in this work.

In this section, we use notation a to represent the N−length vector aN
1 as here we do

not need the infinite length sequences.
Definition 6.2.0.1. A function f : {0, 1}N → R is Multimodular if

f (a + v) + f (a + u) ≥ f (a) + f (a + u + v) (6.1)

for all a ∈ {0, 1}N and for all u, v ∈ F with u 6= v and such that a + u, a + v, a + u + v ∈
{0, 1}N .

The Multimodular base F contains the vectors {−e1, s2, s3, · · · , sN , eN}, where,

−e1 = (−1 0 0 0 0 . . . 0 0),
s2 = (1 − 1 0 0 0 . . . 0 0),
s3 = (0 1 − 1 0 0 . . . 0 0),
· · · ,
sN = (0 0 0 0 0 . . . 1 − 1) and
eN = (0 0 0 0 0 . . . 0 1)

Definition 6.2.0.2. The bracket sequence a(ρ, θ) := {an(ρ, θ)} with rate ρ ∈ [0, 1) and initial
phase θ ∈ [0, 1) is defined as

an(ρ, θ) = ⌊nρ + θ⌋ − ⌊(n − 1)ρ + θ⌋ (6.2)
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In this work, we mainly use Theorem 6, pp. 25, [12] which establishes the optimality
of bracket sequences and the same is reproduced here.
Theorem 6.2.0.3. A bracket sequence a(ρ, θ) for any θ ∈ [0, 1) minimizes the cost

lim
N→∞

1
N

N

∑
n=1

fn(a1, · · · , an)

over all the sequences that satisfy

lim
N→∞

1
N

N

∑
n=1

an ≥ ρ,

when ρ ∈ [0, 1), under the following assumptions:

A.1 fn is Multimodular ∀n.

A.2 fn(a1, . . . , an) ≥ fn−1(a2, . . . , an), ∀n > 1 and

A.3 for any sequence {an}, ∃ a sequence {bn} such that ∀n, m with n > m,

fn(b1, . . . , bn−m, a1, . . . , am) = fm(a1, . . . , am)

A.4 all functions fn(a1, · · · , an) are increasing in all ai.

6.3 Centralized optimal control

We have uniformly placed points on a line, which are separated by a distance d. Each
point can potentially contain a BS and / or a mobile. The mobile at any point is active
(i.e., has a communication request) with probability q and this process is identical and
independent across the space. Some of the base stations are switched OFF to optimize
the battery performance. Every BS that is ON is associated to some of the mobiles based
on the nearest distance criterion. Further the BS uses directional antennae and can only
communicate with the users to its right. The throughput at the base station from a
mobile located at distance r is given by

θ = q log
(

1 +
pr−β

σ2

)

,

where p, r, β, σ2 respectively represent the transmit power from mobile, distance be-
tween BS and mobile, path loss factor and the noise variance. Further we assume that
there is no intra or inter-cell interference. Note that the throughput is achieved only
when the mobile has a request, which occurs with probability q.

Our goal is to find an optimal switch OFF pattern of the base stations so as to maximize the
sum of the expected throughputs of all the mobiles when one has to at least switch OFF a fraction
ρ of the base stations. The conservation factor ρ at any time period will be decided by the

134



network based on the load and for a given ρ the network prefers to adopt an optimal
ON-OFF pattern.

We obtain this answer in the asymptotic as N, the number of points in the space tend
to ∞. Consider a sequence a ∈ {0, 1}∞ to represent the control sequence in the follow-
ing sense: ai, the action at ith point is 1 if BS is switched OFF and 0 if BS is ON. The goal
is to find an optimal sequence a∗ which maximizes the expected throughput (defined
via Cesaro limit) such that the total fraction of the base stations, that are switched OFF,
is lower bounded by ρ. We assume that the system starts at point 0 where a BS is always
switched ON and we control the ON-OFF status of the remaining base stations, i.e., the
ones starting from point 1 onwards. We neglect the throughput due to the mobile at 0
as it does not contribute to optimization. Thus, we maximize

max
a

lim
N→∞

1
N

N

∑
n=1

θn(a) (6.3)

subject to lim
N→∞

1
N

N

∑
n=1

an ≥ ρ (6.4)

where θn(a) is the throughput due to the mobile at position n (which depends upon
the position of the nearest base station). This depends upon the sequence a and equals
(note the base station at point 0 is always ON):

θn(a) = q log

(

1 +
p
(

1 + r2
n

)−β/2

σ2

)

where (6.5)

rn :=

{

nd if an
1 = 1n

1
inf

1≤j≤n

{

|n − j|d : aj = 0
}

else. (6.6)

We use tools from Multimodularity [12] to address this problem. The related defi-
nitions are summarized in section 6.2. We use Theorem 6.2.0.3 and obtain (proof is in
Appendix A)
Theorem 6.3.0.4. The function fn(an

1) := −θn(a) is Multimodular for every n. Further, the
centralized problem (6.3) is optimized by a bracket sequence (6.2),

a∗ = a(ρ, θ) for some θ ∈ [0, 1). ⋄

From the above theorem it is clear that the optimal sequence depends only upon
the conservation factor ρ and nothing else. We now give some examples of bracket se-
quences. Example 1: The bracket sequence 100100100 maximizes the expected through-
put for (ρ, θ) = (0.33, 0.9) . Example 2: The bracket sequence 1001001000 maximizes the
expected throughput for (ρ, θ) = (0.3, 0.9) . If the factor ρ is rational, then the sequence
is periodic ([75]). In this case the optimal policy is to switch OFF the base stations in a
periodic fashion, for example with ρ = 0.33 one needs to switch OFF every third BS.
The optimality of bracket sequence is established in the limit N, the number of points,
tending to infinity. This would imply the bracket sequence would be nearly optimal for
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Sequence a 100100100 101000100 010010010 101000010 100010001 001001001
Throughput Θ 5.1 5.0 4.9 4.86 4.6 4.4

Table 1: Expected system throughput Θ =
1
N

N

∑
1

θN(a) for different sequences.

The underlined sequence is the bracket sequence which optimizes the throughput.

systems with large N. It would also be optimal for not so large values of N and this
is established using a numerical example. We consider a system with N = 9 points in
the space, ρ = 1/3 and obtain the optimal control sequence by exhaustive search. The
results are tabulated in Table 1. We observe that the system throughput is maximized
again for the bracket sequence 100100100.

6.4 Decentralized optimal control

We have base stations deployed in a network. Each BS is powered by a battery and
can transmit up to a maximum of B bytes during a transmission opportunity, which
are slotted over time. The BS can either be in an active (ON) state where it transmits
packets or in an idle state where it shuts OFF its activity to conserve the battery. Note
that whenever a BS enters idle (OFF) mode, more number of packets get stored in the
buffer and the buffer occupancy cost increases. What is an optimal policy to minimize the
average buffer occupancy such that the BS is switched OFF at least for a fraction ρ of the time ?

Let a = {at}t≥1, at ∈ {0, 1}, be a sequence of controls such that at = 1 indicates
BS is OFF at the tth time slot and at = 0 indicates that the BS can serve at maximum B
packets. With any general ON-OFF policy, a, the buffer occupancy, xt evolves as

xt(a) = (xt−1(a)− (1 − at)B)+ + wt

and it begins with x0 = w0. (6.7)

In the above, wt represents the new arrivals in t-th time slot. We assume {wt}n≥0 is an
Identically and Independently distributed (IID) sequence and that it is bounded by B,
i.e., wt ≤ B with probability one. We now have the following problem of minimizing

min
a

lim
T→∞

1
T

T

∑
t=1

E[xt(a)]

subject to lim
T→∞

1
T

T

∑
t=1

at ≥ ρ. (6.8)

One needs to choose the conservation factor, ρ such that B(1− ρ) > E[W]. This has to be
done to ensure that the system can be stable at least for some of the control sequences
a. With the above condition, the system for example is stable for all those sequences
whose switch OFF fraction exactly equals ρ. We again use the Multimodularity Theo-
rem 6.2.0.3 and obtain (proof is in Appendix B)
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Theorem 6.4.0.5. The function ft(at
1) := E[xt(a)] = E[xt(at

1)] is Multimodular for every t.
And, the decentralized problem (6.8) is optimized by a bracket sequence.

a∗ = a(ρ, θ) for some θ ∈ [0, 1). ⋄

Thus the optimal sequence is again a bracket sequence which depends only on ρ,
the conversation factor. Hence, in both centralized and decentralized problems, we
have similar optimal control pattern which in both the cases depends only upon the
conservation factor ρ and none of the other design parameters.

6.5 Future Directions

We saw in previous examples how individual BS can decide switch OFF (in time) or
a central control can switch OFF base stations (in space) to conserve the energy. In
future, one can consider some more interesting problems which can be solved using
Multimodularity tools.

Optimization in space and time: We have uniformly placed M points on a line, which
are separated by a distance d. Each point can potentially contain a BS and a queue of
waiting mobiles. We assume that the BS service is directional and they can potentially
serve up to a maximum of B mobiles to the right in every time slot. The service order
of the mobiles depend on their proximity to the BS (to its left). Further, to conserve
power, a central control can decide to switch OFF certain number of BS every time
slot. This scenario results from a network equipped with cooperative base stations
and in this case one needs to design an ON-OFF control that not only spans across the
space but also across time. We expect to obtain again a bracket sequence as the optimal
sequence and now we further expect this sequence to have ’periodicity’ along space
(when confined to the same time slot), have a small phase change in the next time slot
and the periodicity in space continues.

Coverage problems: A mobile is covered, i.e., serviced when it is within a distance nd
from a BS that is ON. One can study the optimal ON-OFF pattern which optimizes the
fraction of the mobiles covered.

Closed Loop Policies: For the decentralized problem we would like to obtain the
closed loop policies. That is, we obtain the optimal policies, which at any time t de-
pend upon the history up to time t − 1, (a∗t−1

1 , xt−1
1 ). We here consider minimizing the

finite time horizon problem

min
aT

1 ∈AT

T

∑
t=1

E
[

xt(aT
1 )− λat

]

where,

AT := {aT
1 ; for every t ≤ T, at : (at−1

1 , wt−1
1 ) 7→ {0, 1}},

that is for every t the action at time t, at is a function of the history (at−1
1 , wt−1

1 ).
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One can again use the tools of Multimodularity to obtain the structure of close loop
optimal policy. We propose to use Theorem 64, page 214, [12] to show that the optimal
policy is a threshold policy in the following sense: for any given t and history a∗t−1

1 , xt−1
1

(optimal actions and optimal state trajectory till time t − 1), the optimal action at time
t, a∗t is 0 until the state xt is above a threshold and is 1 otherwise.

6.6 Conclusions

In this chapter, we derived energy conserving policies for Base stations in regular green
networks using tools from Multimodularity. We considered two example scenarios and
show how the cost functions are Multimodular. In the first case, for the case of cen-
tral control, we derived the optimal open loop policies so as to maximize the expected
throughput of the system given that at least a certain percentage of Base stations are
switched OFF. In the second case, we derived optimal open loop polices, which each
base station can employ in a decentralized manner to minimize buffer occupancy costs,
while keeping the long term average fraction of the BS switch OFF time at least above
a given threshold. We established the optimality of bracket policies for both the cases.
We established that these regular sequences optimize the (respective) performance(s)
and these sequences depend only upon the conservation factor and nothing else. We
conclude that Multimodularity can be applied in several interesting example scenarios
to derive optimal control in Green Networks and provide some examples for future
direction of research in this area.

Appendix A: Proofs related to centralized control

Proof of Theorem 6.3.0.4: The proof is obtained using Theorem 6.2.0.3 of section 6.2.
By Theorem 6.6.0.6, the function fn(a1, · · · , an) = −θn(a) is Multimodular and hence
assumption A.1 of Theorem 6.2.0.3 is satisfied.

Given an
1 , define a0 = 0 and then define nb := arg inf

0≤j≤n
{|n − j| : aj = 0}, to denote

the index of the nearest base station in the left for the mobile at point n. When nb > 1,
assumption A.2 is satisfied as then fn(an

1) = fn−1(an
2) = f (an

nb
). When nb = 1 (i.e., when

an
1 = (0, 1, · · · , 1)) the equality still holds in A.2 by the definition (6.5) of θn(a). When

an
1 = 1n

1 , then the assumption A.2 is satisfied with inequality as θn(1n
1) < θn−1(1n−1

1 ).

Assumption A.3 is satisfied by taking {bn} to be all zeros and clearly fn satisfies A.4.
Thus all the hypothesis of Theorem 6.2.0.3 are satisfied and hence the theorem follows.
⋄
Theorem 6.6.0.6. For every n, fn is Multimodular.

Proof: All the sequences in this proof are n length vectors and hence we use the short
notation a in place of an

1 . Consider any sequence a. We need to show for u 6= v ∈ F
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(see section 6.2 for definitions) fn satisfies

fn(a + u) + fn(a + v) ≥ fn(a) + fn(a + u + v)

whenever, a + u, a + v, a + u + v are all in {0, 1}n.

Without loss of generality let v = sj (see section 6.2) which result in shifting an ON
position of the base station from j − 1 location to location j. Since we can only consider
such sj for which a + sj is in {0, 1}n the sequence a should have aj−1 = 0 and aj = 1.
Further, (a + v)j−1 = 1 and (a + v)j = 0 while for every i 6= j or i 6= j − 1, ai = (a + v)i.
Thus, addition of vector v to a results in changes in the base station associations and
hence the throughputs, only for the the mobiles located in (j − 1, · · · , ηr

j − 1), where ηr
j

is defined as the nearest base station to the right of the location j that is switched ON in
a:

ηr
j :=

{

arg inf
n>j

{|n − k| : ak = 0} if set is non empty

n + 1 else.
(6.9)

Hence,

fn(a)− fn(a + v) =
n

∑
k=1

θk(a)−
n

∑
k=1

θk(a + v)

=

ηr
j −1

∑
k=j−1

θk(a)− θk(a + v).

Let u = sl with l > j + 1 (l 6= j + 1 as then it is not possible that both a + u and a + v
are in {0, 1}n). The addition of u to a will introduce changes in mobile throughputs
only at locations (l − 1, · · · , ηr

l ), which do not overlap with locations changed by v,
(j − 1, · · · , ηr

j ). Further, the addition of v to a + u also changes the mobile throughputs
only in locations (j − 1, · · · , ηr

j ) (w.r.t. the mobile throughputs under a + u). Because
of the independence of the locations of the changes due to v and u and because the
mobile throughputs only depend upon the distance w.r.t. the serving BS, the mobile
throughput changes from a + u to a + u + v will be same as that when a is changed to
a + v. Thus,

fn(a + u) − fn(a + u + v) =
ηr

j

∑
k=j−1

θk(a + u)− θk(a + u + v) =

ηr
j

∑
k=j−1

θk(a)− θk(a + v) =

fn(a)− fn(a + v). (6.10)

The second vector u can either be sl with l > j + 1 or l < j − 1 (as both a + u and
a + v have to be in {0, 1}n) or u can be en when j < n or it can e1 when j > 1. In
all the combinations, addition of vectors u and v results in changes to the base station
association at independent locations as above. Thus for any u 6= v, as in (6.10), one can
show that fn(a + u) + fn(a + v) = fn(a) + fn(a + u + v). ⋄
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Appendix B: Proofs related to decentralized control

Proof of Theorem 6.4.0.5: The proof is obtained using Theorem 6.2.0.3 of section 6.2. By
Theorem 6.6.0.7, the function gt(a1, · · · , at) = xt(a) is Multimodular for every sample
path of wt

0. The sample path wise Multimodularity implies the Multimodularity of the
average function ft(at

1) = E[xt(at
1)] and thus the first part of the theorem is established

as well as the Assumption A.1 is satisfied.

The initial buffer size is w0, i.e., x0(a) = w0 for all sequences a and all samples. The
function value ft(at

1) is the average buffer size at t− 1 time slot, obtained by progressing
(Lindley’s recursion) t − 1 time slots using the control sequence at

2 and when initial
buffer size is given by x1(a1) ≥ w1 while the function value ft−1(at

2) is the average
buffer size at the same time slot obtained again by progressing t − 1 time slots using
the same control sequence ak

2 but now with initial buffer size equal to w0. Note that
w1 is distributed same as w0 and hence ft(at

1) ≥ ft−1(at
2). Thus, the assumption A.2 is

satisfied.

For assumption A.3 take {bt} to be an all zero sequence. When the control sequence
is all zeros, i.e., the BS serves in all the time slots, since the maximum number of arrivals
in a slot is B, the buffer size at the end of every slot t, will exactly be wt, the new arrivals.
Thus the function value ft(bt−τ

1 , aτ
1) represents the average buffer size after τ time slots

when the control sequence is aτ
1 and when the initial buffer size is wt−τ while fτ(aτ

1)
represents the same after τ time slots and with the same control sequence aτ

1 but with
initial buffer size w0 and hence the two average values are equal. Thus, assumption A.3
is satisfied.

Clearly, assumption A.4 is also satisfied and hence the theorem follows by Theorem
6.2.0.3. ⋄
Theorem 6.6.0.7. For every t and for every sample path wt

0, the function gt is Multimodular.

Proof: In [34], while addressing the problem of energy limited wireless handsets,
the authors show that the function xt(at

1) is Multimodular for every sample path of the
arrival sequence {wt}. The functions used in describing their Cesaro limit (see [34]) are
exactly the same as the functions {xt} of the decentralized problem. The sample path
wise Multimodularity is proved as Theorem 17, page 6 [34] (details of this proof are in
their technical report, Theorem 20, [33]). The proof there is little difficult to read and
hence we provide a brief overview of the same below:

If xt−1 ≤ B then at = 0 results in an empty queue and xt = wt. On the other hand, if
xt−1 > B, some part ∆xt−1 = xt−1 − B, remains in the queue and thus xt = ∆xt−1 + wt.
Using this one can show that

xt(a) = xt(a + sj) if xj−2 > B

and xt(a) = xt(a + sj) if xj−2 ≤ B (6.11)

Without loss of generality, let v = sj with j = 2, · · · , t. Then, there are three possible
cases: i) u = −e1, ii) u = sk, k > j and iii) u = et and we need to show for every
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combination that the equation (6.1) is satisfied, by the function gt = xt, to complete the
Multimodularity proof. In the following we present the proof for the case (ii) and the
remaining cases are much simpler and follow similar logic.

Note that xl(a + u) = xl(a) for all l < k − 1. Thus, xj−2(a) ≥ B if and only if
xj−2(a + v) ≥ B. Note further that this case is possible only if aj−1 = 0, aj = 1 and
ak−1 = 0, ak = 1.

a) If xj−2(a) ≥ B then xt(a + v) = xt(a) and xt(a + u + v) = xt(a + u). Thus (6.1) is
satisfied with equality.

b) If xj−2(a) < B and further if xk−2(a) ≥ B and xk−2(a + v) ≥ B then again xt(a +
u) = xt(a) and xt(a + v + u) = xt(a + v) and so again (6.1) is satisfied with equality.
On the other hand, if xk−2(a) ≥ B and xk−2(a + v) < B we have xt(a + u) = xt(a) and
xt(a+ v+ u) ≤ xt(a+ v) and then (6.1) is satisfied, but need not be with equality. Now
if xk−2(a) < B and xk−2(a + v) < B then because ak−1 = 0 so is (a + v)k−1 = 0 (the
controls in a, a + v are same after j + 1), xk−1(a) = xk−1(a + v) as they both result only
because of new arrivals at k − 1 and older ones (which might be different) were flushed
out completely. Since there is no difference in both the controls a, a + v after the time
point j, xt(a) = xt(a + v). From (6.11) we do have xt(a + u) ≥ xt(a + u + v) and so
again (6.1) is satisfied. ⋄
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Chapter 7

Multiscale Fairness and its
Application in Wireless Networks
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7.1 Introduction

Fair resource allocation is usually studied in a static context, in which a fixed amount
of resources is to be shared. In dynamic resource allocation one usually tries to assign
resources instantaneously so that the average share of each user is split fairly. The exact
definition of the average share may depend on the application, as different applications
may require averaging over different time periods or time scales. We study dynamic
resource allocation and examine how the constraints on the averaging durations impact
the amount of resources that each user gets.

Let us consider some set S of resource that we wish to distribute among I users
by assigning user i a subset Si of it. We shall be interested in allocating subsets of the
resource fairly among the users. The set S may actually correspond to one or to several
resources. We shall consider standard fairness criteria for sharing the resources among
users. We shall see, however, that the definition of a resource will have a major impact
on the fair assignment.
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We associate with each user i a measurable function xi that maps each point in S to
some real number. Then, we associate with each i a utility ui which maps all measurable
subsets Si to the set of real numbers. We shall say that S is a resource if ui(Si) can be
written as

ui(Si) = f

(

∫

Si

xi(s)ds

)

for each Si ⊂ S.

As an example, consider I mobiles that wish to connect to a base station between
9h00 and 9h10 using a common channel. The time interval is divided into discrete
time slots whose number is N. Assume that the utility for each mobile s of receiving a
subsets Ni of slots depend only on the number of slots Ni it receives. Then the set of N
slots is considered to be a resource.

Next assume that if mobile i receives the channel at time slot t then it can transmit at
a throughput of Xi

t. Assume that the utility of user i is a function of the total through-
put it has during this fraction of an hour. Then again the N slots are considered as a
resource.

We adopt the idea that fair allocation should not be defined in terms of the object
that is split but in terms of the utility that corresponds to the assignments. This is in
line with the axiomatic approach for defining the Nash bargaining solution for example.
With this in mind, we may discover that the set of N slots cannot always be considered
as a resource to be assigned fairly. Indeed, a real time application may consider the N
slots as a set of n resources, each containing B = N/n consecutive slots. A resource
may correspond to the number of time slots during a period of 100 msec. The utility
of the application is defined as a function of the instantaneous rate, i.e. the number of
slots it receives during each period of 100 msec. (With a playout buffer that can store
100 msec of voice packets, the utility of the mobile depends only on how many slots are
assigned to it during 100 msec and not which slots are actually assigned to it.)

What is the impact on data transfer applications of splitting the resource of N slots
into B smaller resources? We shall show that allocating fairly each of these B resources
results in performance degradation for the data transfer applications. This raises the
question of how to define fair assignment when the very notion of a resource varies
from one user to another.

Another example where this question arises is frequency allocation. Assume that
frequency bandwidth needs to be split between users, who bid for N carriers, each of
bandwidth b. There may be users who need carriers of bandwidth mb. They can make
use of a carrier only if they receive a set of m consecutive carriers. For these users, a
resource may correspond to the set of N/m group of carriers, each of which containing
m consecutive carriers.
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Related work

Our work is based on the α-fairness notion introduced by Mo and Walrand [105]. This
notion provides a continuum of fairness definitions through the real parameter α and it
includes various known fairness concepts that are obtained for some specific values of
the real parameter α (the max-min fairness, the proportional fairness and the harmonic
fairness). This, as well as other fairness notions can be defined through a set of axioms,
see [94]. This work is inspired by several papers which already observed or derived
fairness at different time-scales [7, 5, 6, 37, 113, 91]. However, we would like to mention
that the T-scale fairness (a unifying generalization of long- and short- term fairness)
and multiscale fairness are new concepts introduced in the present work.

Structure of the chapter

The chapter is organized as follows: In the next Section 7.2 we introduce a resource
sharing model which is particularly suitable for wireless network applications. In Sec-
tion 7.2 we also define several fairness criteria, illustrate them by examples and prove
theoretical properties of the introduced fairness criteria. In Section 7.3 we derive ex-
plicit formulae for instantaneous α-fairness in the case of linear resources. The case of
linear resources corresponds to the frequency as a resource in wireless networks. In
Sections 7.4 and 7.5 we apply different fairness criteria to spectrum allocation in fad-
ing channels and to indoor-outdoor scenario, respectively. Section 7.6 concludes the
chapter and provides avenues for future research.

7.2 Resource Sharing model and different fairness definitions

Consider n mobiles located at points x1, x2, ..., xn, respectively. We assume that the util-
ity Ui of mobile i depends on its location xi and on the amount of resources si it gets.

Let S be the set of assignments; an assignment s ∈ S is a function from the vector
x to a point in the n-dimensional simplex. Its ith component, si(x) is the fraction of
resource assigned to mobile i.
Definition 7.2.0.8. (α-fair assignment) An assignment s is α-fair if it is a solution of:

Z(x, α) := max
s

∑
i

Zi(si, xi, α)

s.t. ∑
i

si = 1, si ≥ 0∀i = 1, ..., n (7.1)

where,

Zi(xi, si, α) :=
(Ui(xi, si))

1−α

1 − α

for α 6= 1. For α = 1 we define

Zi(xi, si, α) := log(Ui(xi, si))
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We shall assume throughout that Ui is non-negative, strictly increasing and is con-
cave in si. Then for any α > 0, Zi(xi, si, α) is strictly concave in si. We conclude that
Z(xi, si, α) is strictly concave in s for any α > 0 and therefore there is a unique solution
s∗(α) to (7.1).
Definition 7.2.0.9. (Mo and Walrand [105]) We call Zi(si, ·, α) the fairness utility of mobile i
under si, and we call Z(s, ·, α) the instantaneous degree of α-fairness under s.

In applications, the state X will be random, so that the instantaneous amount of
resource assigned by an α-fair allocation will also be a random variable. Thus, in addi-
tion to instantaneous fairness we shall be interested in the expected amount assigned
by being fair at each instant.
Definition 7.2.0.10. We call E[Z(s, X, α)] the expected instantaneous degree of α-fairness un-
der s.

In Section 7.2.1 we introduce the expected long-term fairness in which the expected
amount of resource is assigned fairly.
Definition 7.2.0.11. We say that a utility is linear in the resource if it has the form:

Ui(xi, si) := siqi(xi).

For example, consider transmission between a mobile source and a base station, and
assume
(i) that the base station is in the origin (x = 0) but at a height of one unit, whereas
all mobiles are on the ground and have height 0. Thus, the distance between the base

station and a mobile located on the ground at point x is
√

1 + ||x||2.
(ii) that the Shannon capacity can be used to describe the utility. If the resource that is
shared is the frequency then the utility has the linear form:

U(C, x) := Cq(x)

where q(x) = log
(

1 +
P(x2 + 1)−β/2

σ2

)

Note: if the power and not the frequency, were taken to be the resource then we
would not obtain the linear form of the resource.

In the linear case, we write Zi as:

Zi(s, x, α) := s1−α
i vi(x), vi :=

(qi(xi))
1−α

1 − α

7.2.1 Fairness over time: Instantaneous Versus Long term α-fairness

Next we consider the case where xi(t), i = 1, ..., n, may change in time.

148



Definition 7.2.1.1. We define an assignment to be instantaneous α-fair if at each time t each
mobile is assigned a resource so as to be α-fair at that instant.

Consider the instantaneous α-fair allocation and assume that time is discrete. We
thus compute the instantaneous α-fair fair assignment over a period of T slot as the
assignment that maximizes (for α 6= 1)

n

∑
i=1

(Ui(xi(t), si(t)))
1−α

1 − α
.

for every t = 1, ..., T. This is equivalent to maximizing

T

∑
t=1

n

∑
i=1

(Ui(xi(t), si(t)))
1−α

1 − α
. (7.2)

For α = 1 the same is true but where we replace

(Ui(xi(t), si(t)))
1−α

1 − α

by
log[Ui(xi(t), si(t))]

We make the following surprising observation: The optimization problem (7.2) corre-
sponds to the α-fair assignment problem in which there are nT players instead of n
players, where the utility of player i = kn + j (k = 0, ..., T − 1, j = 1, ..., n) is defined as

Ui(xi, si) = Uj(xj(k + 1), sj(k + 1))

. Thus the expected instantaneous fairness criterion in the stationary and ergodic case
regards assignments at different time slots of the same player as if it were a different
player at each time slot!

Note that when considering the proportional fair assignment, then the resulting
assignment is the one that maximizes

n

∏
i=1

T

∏
t=1

Ui(xi(t), si(t))

Definition 7.2.1.2. Assume that the state process X(t) is stationary ergodic. Let λi be the
stationary probability measure of X(0). The long term α-fairness index of an assignment s ∈ S
of a stationary process X(t) is defined as

Zλ(s) :=
n

∑
i=1

Z
i
λ(s)

where Zi
λ(s) =

(

Eλ [Ui(Xi(0), si(X(0)))]
)1−α

1 − α

An assignment s is long-term α-fair if it maximizes Zλ(s) over s ∈ S.
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As we see, instead of attempting to have a fair assignment of the resources at every
t, it is the expected utility in the stationary regime that one assigns fairly according to
the the long-term fairness. Under stationarity and ergodicity conditions on the process
X(t) this amounts in an instantaneous assignment of the resources in a way that the
time average amount allocated to the users are α-fair.

7.2.2 Fairness over time: T-scale α-fairness

Next we define fairness concepts that are in between the instantaneous and the ex-
pected fairness. They are related to fairness over a time interval T. Either continuous
time is considered or discrete time where time is slotted and each slot is considered to
be of one time unit. Below, we shall understand the integral to mean summation when
ever time is discrete.
Definition 7.2.2.1. The T-scale α-fairness index of an assignment s ∈ S is defined as

ZT(s) :=
n

∑
i=1

Zi
T(s)

where Zi
T =

[

1
T

∫ T
0 Ui(Xi(t), si(X(t)))dt

]1−α

1 − α

The expected T-scale α-fairness index is its expectation. An assignment s is T-scale α-fair if it
maximizes ZT(s) over s ∈ S.
Definition 7.2.2.2. The T-scale expected α-fairness index of an assignment s ∈ S is defined as

ZT(s) :=
n

∑
i=1

Zi
T(s)

where Zi
T =

[

1
T

∫ T
0 E[Ui(Xi(t), si(X(t)))]dt

]1−α

1 − α

We shall consider the following simple example of 2-scale fairness
Example 7.2.2.3. Consider two time slots and two mobile stations. To whoever the first time
slot will be allocated, that mobile would send or receive 25 units. At the second slot, a rate of 5
(resp. 10) units will be used if the slot is assigned to mobile 1 (resp. 2). We make the following
observations. By [i,j] we shall denote the allocation that assigns slot 1 to mobile i and slot 2
to mobile j. The allocation [1,2] maximizes the global utility and moreover, the α-fair 2-scale
utility for any α.

Thus, we observe that the α-assignment is not monotone: The player with larger
utilities received less at the α-fair utility, for all values of α!
Example 7.2.2.4. (Example 7.2.2.3 continued) We now change a single utility in the last ex-
ample: assume that if mobile 2 receives the first slot then it earns 102 units.

(i) Now the global optimal solution is the assignment [2,2].

(ii) The proportional fair solution (α = 1) is [2,1].
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(iii) The maxmin fair assignment is [1,2].

We depict in Figure 7.1 the performance index of the assignments [1,2] and [2,1]. We see
that the max-min fair assignment [2,1] is 2-scale α-fair for all α larger than 1.36, whereas the
assignment [1,2] is α fair for α ∈ [1, 1.36].

For α < 1 the two best assignments are [2,1] and [2,2]. The former is optimal over α ∈
[0.17, 1] and the latter over α ∈ [0, 0.17]. This is seen from Figure 7.2.

1.4 1.6 1.8 2
0

1

2

3

4

5

6

 

 

assignment [2,1]
assignment [1,2]

1.36

Figure 7.1: Performance index of [2,1] (dashed
line) and [1,2] (solid line) assignments as a func-
tion of α (horizontal axis)
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Figure 7.2: Performance index of [2,1] (dashed
line) and [2,2] (solid line) assignments as a func-
tion of α (horizontal axis)

Assume that the state processes is stationary ergodic. Then for any assignment s ∈ S
we would have by the Strong Law of Large Numbers:

lim
T→∞

1
T

∫ T

0
Ui(Xi(t), si(X(t)))dt

= Eλ [Ui(Xi(0), si(X(0)))]

P-a.s. Hence, for every i and s, we have P-a.s.

lim
T→∞

Zi
T(s) = lim

T→∞

[

1
T

∫ T
0 Ui(Xi(t), si(X(t)))dt

]1−α

1 − α

=
(Eλ [Ui(Xi(0), si(X(0)))])1−α

1 − α

= Z
i
T(s).

Assume that Ui is bounded. Then Zi
T is bounded uniformly in T. The bounded con-

vergence then implies that

lim
T→∞

E[Zi
T(s)] = Z

i
T(s). (7.3)

Theorem 7.2.2.5. Assume that the convergence in (7.3) is uniform in s. Let s∗(T) be the
T-scale α fair assignment and let s∗ be the long term α-fair assignment. Then the following
holds:
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• s∗ = lim
T→∞

S∗(T)

• For any ǫ > 0, s∗ is an ǫ-optimal assignment for the T-scale criterion for all T large
enough.

• For any ǫ > 0, s∗(T) is an ǫ-optimal assignment for the long term fairness for all T large
enough.

Proof. According to [145], any accumulation point of s∗(T) as T → ∞ is an optimal
solution to the problem of maximizing ZT over S. Due to the strict concavity of ZT in s it
has a unique solution and it is coincides with any accumulation point of s∗(T). This im-
plies the first statement of the theorem. The other statements follow from Appendices
A and B in [145]. ⋄

7.2.3 Fairness over different time scales: Multiscale fairness

We consider real time (RT) and non-real time (NRT) traffic. Resource allocation pol-
icy for RT traffic is instantaneous-fair, while for the NRT traffic, it is expected-fair. The
available resources are divided amongst the RT and NRT traffic so as to guarantee a
minimum quality of service (QoS) requirement for the RT traffic and to keep service
time as short as possible for the NRT traffic.

The real time traffic would like the allocation to be instantaneously α-fair. For α > 0,
this guarantees that at any time it receives a strictly positive allocation.

The non-real time traffic does not need to receive at each instant a positive amount
of allocation. It may prefer the resources to be assigned according to the T-scale α-fair
assignment where T may be of the order of the duration of the connection. Moreover,
different non real time applications may have different fairness requirements. For in-
stance, bulk FTP transfer can prefer fairness over time scale longer than a time scale for
some streaming application.

In order to be fair, we may assign part (say half) of the resource according to the
instantaneous α-fairness and the rest of the resources according to the T-scale α-fairness.
We thus combine fairness over different time scales.

We may now ask how to choose what part of the resource would be split according
to the instantaneous assignment and what part according to the T-scale assignment.
We propose to determine this part using the same α-fair criterion.

Specifically we define the multiscale fairness as follows:
Definition 7.2.3.1. The multiscale α-fairness index of an assignment s ∈ S is defined as

ZT1,...,Tn(s) :=
n

∑
i=1

Zi
Ti
(s)

where Zi
Ti

=

[

1
Ti

∫ Ti

0 Ui(Xi(t), si(X(t)))dt
]1−α

1 − α
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The expected multiscale α-fairness index is its expectation. An assignment s is multiscale α-
fair if it maximizes ZT1,...,Tn(s) over s ∈ S. We also say that multiscale α-fair assignment is
(T1, ..., Tn)-scale fair assignment.
Example 7.2.3.2. Let us consider an example of multiscale fairness. Say, we have in total N
time slots. The allocation happens in a bundle of 6 slots, such that, either we allocate all of it to
an outdoor user located at x1 or fair share them amongst 3 indoor users located at (y1, y2, y3)
with yi ∈ (0, L), with any user getting two consecutive slots. Now the question is "Given that
we fair-share among the indoor users, how do we fair share between the outdoor and the indoor
users?".

In this example, we assume any user gets a throughput q ∈ [0, 1]. Let {U1, U2}, represent
the utility of user 1 and sum utility of users 2− 4 and let {T1, 1− T1} represent their respective
assignment of resources. Now, utility of user 1,

U1(T1) = 6T1q1(x1).

Let s̄ = {s1, s2, 1 − s1 − s2} represent the assignment of resources for the indoor users. Then,
utility of users 2 − 4 is

u2(T1, s̄) = 6s1(1 − T1)q2(y2),

u3(T1, s̄) = 6s2(1 − T1)q3(y3)

and

u4(T1, s̄) = 6(1 − s1 − s2)(1 − T1)q4(y4)

Now the α-fair share s̄∗ = {s∗1 , s∗2 , 1 − (s∗1 − s∗2)} is given by,

s̄∗ = arg max
s̄

4

∑
i=2

E[ui(T1, s̄)]1−α1

1 − α1

The sum utility of users 2 − 4 is,

U2(T1) =
4

∑
i=2

6s̄i
∗(1 − T1)qi(yi)

The α-fair share between the outdoor and indoor users is,

T∗
1 = arg max

T1

E [U1(T1)]
1−α + E [U2(1 − T1)]

1−α

1 − α

7.3 Instantaneous α-fairness for linear resources

In the case of linear resources the instantaneous α-fairness has a nice explicit expression.
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Theorem 7.3.0.3. (i) The α-fair share is given by

s∗i =
vi(xi)

1/α

∑j vj(xj)1/α
=

qi(xi)
1/α−1

∑j qj(xj)1/α−1

(ii) The utility for mobile i under the fair assignment is then

Ui(s
∗, x) =

vi(xi)
1/α

∑j vj(xj)1/α
qi(xi) =

qi(xi)
1/α

∑j qj(xj)1/α−1

(iii) The optimal value Z is given by

Z =
1

1 − α ∑
i

(

qi(xi)
1+1/α

∑j qj(xj)1/α

)1−α

Proof. We relax the constraint and use KKT condition. s is optimal if and only if
there is some λ > 0 such that s maximize Lλ s.t. si ≥ 0 for all i, where

Lλ = ∑
i

s1−α
i vi + λ(1 − ∑

i

si)

Equating the derivative w.r.t. si to zero gives

s−α
i vi(xi) =

λ

1 − α

so that si =

(

1 − α

λ
vi(xi)

)1/α

Since the sum of si is 1, we conclude that

λ

1 − α
=

(

∑
j

vj(xj)
1/α

)α

Substituting in the previous equation yields (i), which then implies the rest. ⋄
Example 7.3.0.4. Consider as an example a path loss β = 2 and let the base station be located
one unit above the mobiles. We assume that qi(x) is proportional to the attenuation between the
mobile and the base station: qi(x) = ciq(x) where q(x) = (1 + x2)−1/2. For β = α = 2 we
have

s∗i (x) =
c−1/2

i (1 + x2
i )

−1/2

∑j c−1/2
j (1 + x2

j )
−1/2

.

Furthermore,

Ui(s
∗, x) = s∗i (x)qi(xi) =

c1/2
i (1 + x2

i )

∑j c−1/2
j

√

1 + x2
j

.
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7.4 Application to spectrum allocation in random fading chan-
nels

We consider two users: fast-changing user and slowly-changing user. The users’ chan-
nels are modeled by the Gilbert model. The users can be either in a good or in a
bad state. The dynamics of the fast-changing user is described by a Markov chain
{Y1(t)}t=0,1,... with the following transition matrix

P1 =

[

1 − α1 α1
β1 1 − β1

]

.

Its stationary distribution is given by

π1 =

[

β1

α1 + β1

α1

α1 + β1

]

.

The slowly-changing user is described by a Markov chain {Y2(t)}t=0,1,... with the fol-
lowing transition matrix

P2 =

[

1 − ǫα2 ǫα2
ǫβ2 1 − ǫβ2

]

.

Its stationary distribution is given by

π2 =

[

β2

α2 + β2

α2

α2 + β2

]

.

Note that the parameter ǫ does not have an effect on the stationary distribution but it
influences for how long the slowly-changing user stays in some state. The smaller ǫ, the
more seldom the user changes the states. If we choose α1 = α2 and β1 = β2, then the
fast-changing user and the slowly-changing user have the same stationary distribution.

We assume that state 1 is a bad state and state 2 is a good state. When the fast-
changing user is in the bad state, its channel gain coefficient is h11 and when the fast-
changing user is in the good state, its channel gain coefficient is h12. Of course, we have
h11 < h12. Thus, the achievable throughputs in different states are given by

U11 = s11q11 = s11 log
(

1 +
h11P1

σ2

)

,

U12 = s12q12 = s12 log
(

1 +
h12P1

σ2

)

where P1 is the power applied by the fast-changing user.

Similarly, for the slowly-changing user we associate with the bad state (state 1) the
channel gain h21 and with the good state (state 2) the channel gain h22. Again we have
h21 < h22, and the achievable throughputs in different states are given by

U21 = s21q21 = s21 log
(

1 +
h21P2

σ2

)

,

U12 = s22q22 = s22 log
(

1 +
h22P2

σ2

)
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where P2 is the power applied by the slowly-changing user.

First, we would like to analyze T-scale fairness and to see the effect of the time
scale on the resource allocation. Specifically, we consider the following optimization
criterion

2

∑
i=1

1
1 − α

[

1
T

T

∑
t=0

Ui(t)

]1−α

→ max
s1,s2

(7.4)

with Ui(t) = si(t)qi,Yi(t) and s1(t) + s2(t) = 1.

Let us consider several options for the time horizon T:

Instantaneous fairness. If we take T = 1 we obtain the instantaneous fairness. Namely,
the criterion (7.4) takes the form

1
1 − α

[

U1−α
1 (0) + U1−α

2 (0)
]

→ max
s1,s2

The solution of the above optimization problem (follows from Theorem 1) is given by

si(0) =
q
(1−α)/α

i,Yi(0)

q
(1−α)/α

1,Y1(0)
+ q

(1−α)/α

2,Y2(0)

This allocation results in the following expected throughputs

θ1 = ∑
i,j

q1/α
1,i

q
(1−α)/α
1,i + q

(1−α)/α
2,j

π1,iπ2,j,

θ2 = ∑
i,j

q1/α
2,j

q
(1−α)/α
1,i + q

(1−α)/α
2,j

π1,iπ2,j. (7.5)

Mid-term fairness. Let us take the time horizon as a function of the underlying dy-
namics time parameter ǫ, that is T = T(ǫ), satisfying the following conditions: (a)
T(ǫ) → ∞ and (b) T(ǫ)ǫ → 0. The condition (a) ensures that

1
T(ǫ)

T(ǫ)

∑
t=0

1{Y1(t) = i} → π1,i, as ǫ → 0,

and the condition (b) ensures that

1
T(ǫ)

T(ǫ)

∑
t=0

1{Y2(t) = i} → δY2(0),i, as ǫ → 0.

This follows from the theory of Markov chains with multiple time scales (see e.g., [58]).
It turns out to be convenient to take the following notation for the resource allocation:
We denote by s(t) the allocation for the fast-changing user and by 1 − s(t) the resource

156



allocation for the slowly-changing user. Thus, we have s1(t) = s(t) and s2(t) = 1− s(t).
We denote by s̄i,j = E[s(t)|Y1(t) = i, Y2(t) = j]. We note that since the fast-changing
user achieves stationarity when T(ǫ) → ∞ we are able to solve (7.4) in stationary strate-
gies. Then, the criterion (7.4) takes the form

1
1 − α

[

(π1,1q1,1s̄1,Y2(0) + π1,2q1,2s̄2,Y2(0))
1−α

+ ((1 − π1,1s̄1,Y2(0) − π1,2s̄2,Y2(0))q2,Y2(0))
1−α
]

→ max
s̄1,Y2(0)

, s̄2,Y2(0)

The above nonlinear optimization problem can be solved numerically. The expected
throughputs in the mid-term fairness case are given by

θ1 = (π1,1q1,1s̄1,1 + π1,2q1,2s̄2,1)π2,1

+ (π1,1q1,1s̄1,2 + π1,2q1,2s̄2,2)π2,2

θ2 = (1 − π1,1s̄1,1 − π1,2s̄2,1)q2,1π2,1

+ (1 − π1,1s̄1,2 − π1,2s̄2,2)q2,2π2,2 (7.6)

Long-term fairness. In the case of long-term fairness we set T = ∞ which results in the
following criterion

1
1 − α

[

E[U1]
1−α + E[U2]

1−α
]

→ max
s1,s2

Due to stationarity, we can solve the above optimization problem over sequences in
stationary strategies. Namely, we have the following optimization problem

1
1 − α

((π1,1π2,1s̄1,1 + π1,1π2,2s̄1,2)q1,1

+ (π1,2π2,1s̄2,1 + π1,2π2,2s̄2,2)q1,2)
1−α

+ ((π2,1 − π1,1π2,1s̄1,1 − π1,2π2,1s̄2,1)q2,1

+ (π2,2 − π1,1π2,1s̄1,1 − π1,2π2,2s̄2,2)q2,2)
1−α]

→ max
s̄1,1, s̄1,2, s̄2,1, s̄2,2

The expected throughputs in the long-term fairness case are given by

θ1 = (π1,1π2,1s̄1,1 + π1,1π2,2s̄1,2)q1,1

+ (π1,2π2,1s̄2,1 + π1,2π2,2s̄2,2)q1,2

θ2 = (π2,1 − π1,1π2,1s̄1,1 − π1,2π2,1s̄2,1)q2,1

+ (π2,2 − π1,1π2,1s̄1,1 − π1,2π2,2s̄2,2)q2,2 (7.7)

Let us also consider the expected instantaneous fairness which is given by the criterion

1
1 − α

[

E[U1−α
1 (t)] + E[U1−α

2 (t)]
]

→ max
s1,s2
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which is equivalent to

1
1 − α

[

∑
ij

π1,iπ2,j

∫ 1

0
(sq1,i)

1−αdFij(s)

+∑
ij

π1,iπ2,j

∫ 1

0
((1 − s)q2,j)

1−αdFij(s)

]

→ max
Fij

where Fij(s) is the distribution for s(t) conditioned on the event {Y1(t) = i, Y2(t) = j}.
The above criterion is maximized by

Fij(s) =

{

0, if s < q
(1−α)/α
1,i /(q(1−α)/α

1,i + q
(1−α)/α
2,j ),

1, if s ≥ q
(1−α)/α
1,i /(q(1−α)/α

1,i + q
(1−α)/α
2,j ).

Thus, we can see that the expected instantaneous fairness criterion is equivalent to
instantaneous fairness.

Let us consider a numerical example. The parameters are given in Table 1. We con-
sider three typical cases. For these three cases, we plot the expected throughput of the
mobiles for various fairness criteria (see Figures 7.3-7.5). The first case corresponds to
the symmetric scenario. Since in this scenario the users have the same stationary dis-
tributions and the same conditional Shannon capacities, the expected throughputs are
the same when we use either instantaneous fairness criterion or long-term fairness cri-
terion. Interesting, in the long-term fairness case, both users experience degradation in
throughput when α increases. In the case of mid-term fairness, the expected through-
put of the fast-changing user is higher as in the mid-term fairness criterion the utility
of the fast-changing user is the α-fairness function of the expected throughput. In the
second case, the fast-changing user has in general better channel conditions. In this
case, different fairness criteria provide different resource allocation. We observe that
instantaneous and mid-term fairness allocations are more sensitive with respect to the
parameter α than the long-term fairness allocation. In the third scenario the slowly-
changing user (user 2) is more often in the good channel state than the fast-changing
user (user 1). Now, for all the criteria the slowly-changing user has better expected
throughput.

Next, let us consider multiscale fairness over time. Specifically, (T1, T2)-scale fair-
ness is defined by the following criterion

1
1 − α





(

1
T1

T1

∑
t=0

U1(t)

)1−α

+

(

1
T2

T2

∑
t=0

U2(t)

)1−α


 → max
s1,s2

In this particular example, there are 6 possible combinations of different time scales.
It turns out that in this example only the (1, ∞)-scale fairness gives a new resource
allocation. The other combinations of time scales reduce to some T-scale fairness. Thus,
let us first consider the multiscale fairness when we apply instantaneous fairness to the
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Table 7.1: Case 1,2 & 3: Shannon capacity (q)/probability(π)

Case-1 state-1 state-2
(bad) (good)

User-1 2/0.2 8/0.8
User-2 2/0.2 8/0.8
Case-2 state-1 state-2

(bad) (good)
User-1 3/0.1 9/0.9
User-2 1/0.3 7/0.7
Case-3 state-1 state-2

(bad) (good)
User-1 3/0.9 9/0.1
User-2 1/0.3 7/0.7

fast-changing user and long-term fairness to the slowly-changing user. The (1, ∞)-scale
fairness corresponds to the following optimization criterion

1
1 − α

[

U1(0)1−α + E[U2(t)]
1−α
]

→ max
s1,s2

which is equivalent to

1
1 − α

[

(q1,Y1(0)(s̄Y1(0),1π2,1 + s̄Y1(0),2π2,2))
1−α

+(q2,1(1 − s̄Y1(0),1)π2,1 + q22(1 − s̄Y1(0),2)π2,2)
1−α
]

→ max
s̄Y1(0),1

, s̄Y1(0),2

The expected throughputs in the (1, ∞)-scale fairness case are given by

θ1 = q1,1(s̄1,1π1,1π2,1 + s̄1,2π1,1π2,2)

+ q1,2(s̄2,1π1,2π2,1 + s̄2,2π1,2π2,2)

θ2 = (q2,1(1 − s̄1,1)π2,1 + q22(1 − s̄1,2)π22)π1,1

+ (q2,1(1 − s̄2,1)π2,1 + q22(1 − s̄2,2)π22)π1,2.

As we have mentioned above, the other combinations of time scales reduce to some
T-scale fairness. In particular, (1, T(ǫ))-fairness reduces to the instantaneous fairness,
(T(ǫ), ∞)-fairness reduces to long-term fairness, and (T(ǫ), 1)-, (∞, 1)- and (∞, T(ǫ))-
fairness all reduce to mid-term fairness.

We also plot the expected throughputs for (1, ∞)-scale fair allocation for the numer-
ical example with three cases (see Figures 7.3-7.5). We observe that in the symmetric
case (1, ∞)-scale fairness criterion provides an allocation which is opposite to the al-
location provided by the mid-term fairness criterion. This indicates that the T-scale
fairness and multiscale fairness concepts provide a versatile framework for resource al-
location which takes into account the dynamics of the users. From Figures 7.4 and 7.5
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Figure 7.3: Throughput(θ) as a function of α
for instantaneous, mid-term, long-term and (1,∞)-
scale fairness criteria (Case 1).
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Figure 7.4: Throughput(θ) as a function of α
for instantaneous, mid-term, long-term and (1,∞)-
scale fairness criteria (Case 2).

we conclude that multiscale fairness provide good sensitivity to the variation of the
fairness parameter and good performance in expected throughput.

Coefficient of variation: We compute the coefficient of variation for short-term, mid-
term, long-term and multiscale fairness. For this, we first compute the second moment
of the throughput and then find the ratio of the standard deviation to its mean. For any
user i, the coefficient of variation is

Γi =

√

E[θ2
i ]

E[`i]

In Figure 7.6, we plot the coefficient of variation in throughput for the considered
above various fairness criteria. It is very interesting to observe that except the (1, ∞)-
scale fairness criterion all the other fairness criteria behave similarly with respect to the
coefficient of variation. Only in the case of (1, ∞)-scale fairness the coefficient of varia-
tion decreases for sort-term fairness oriented user. This is a very desirable property of
the multiscale fairness as a short-term fairness oriented user is typically a user with a
delay sensitive application.

7.5 Application to indoor-outdoor scenario

Let Ω be the line segment [−L, L], and let there be a wall at x = 0. Assume that the base
station is located just to the left of the wall. Mobile 1 is at some point x ≤ 0 outdoor and
user 2 remains always indoor and is located at some Yt which is uniformly distributed
over [0, L]. We let qi(x) = ciq(x) with c1 = 1 and c2 is equal to some large fixed number.
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Figure 7.6: Coefficient of variation in expected
throughput as a function of α for instantaneous,
mid-term, long-term and (1,∞)-scale fairness cri-
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Thus the presence of the wall between the base station and mobile 2 is modeled by a
multiplicative attenuation by some constant c2. Assume that the mobility pattern of
mobile 2 is uniform over the indoor part [0, L].

We consider allocation of the fraction of time between the two mobiles.

7.5.1 Instantaneous Fairness

Example 7.3.0.4 (continued). We compute the expected utility for each user when as-
signing the channel so as to achieve instantaneous fairness. The expected utility for
mobile 1 under the instantaneous optimal fairness s is given by

U1(s
∗, x) = s∗(x)q1(x), where s∗(x) :=

a

a + b

a := c−1/2
1 log

(

1 +
1
x2

)−1/2

b := c−1/2
2

[

log(1 +
1
L2 ) +

2
L

tan−1(L)

]−1/2

Note that mobile 2 has a mobility pattern which is uniform over the indoor part

[0,L] and hence its utility is given by
1
L

∫ L

0
log(1 +

1
x2 )dx = log(1 +

1
L2 ) +

2
L

tan−1(L),

which is the second term in the denominator.

⋄
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Figure 7.7: Scheduler s∗ for the indoor and outdoor
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Figure 7.8: Throughput θ for the indoor and out-
door user with instantaneous fairness as a function
of α for α > 1. Wall attenuation 6 dB, path-loss
β = 3, position of outdoor user x = −3.

In figure (7.7) and (7.8), we plot the scheduler and the instantaneous throughput
for the indoor and outdoor user, as a function of α. We fix the location of the outdoor
user at x = −3, path-loss β = 3. We set L = 3 for this example. The indoor user
is located at some point which is uniformly distributed over [0, L]. When the fairness
index α is small, we observe that the instantaneous throughput achieved is higher as
the outdoor user is located at the boundary (−L). But, as the fairness index increases,
the throughput of the indoor and the outdoor user starts to converge. Notice that the
scheduler starts to schedule the outdoor user more as α increases, which results in an
increase in the outdoor users throughput.

7.5.2 Long term Fairness

Next we consider the long-term fairness. The long term allocation s ∈ S (which is a
function of x and Yt) is given by maximizing

Z(s) :=

[

1
L

∫ L
0 dys1(x, y)q(x)

]1−α
+
[

1
L

∫ L
0 dyc2s2(x, y)q(y)

]1−α

1 − α

Theorem 7.5.2.1. The long term α-fair policy is given by s2(x2) = 1 for x2 ≤ l(α) and is
otherwise zero, where l(α) is the solution of the fixed point equation

l(α) = c
1− 1

α
2

(

q(l(α))

q(x)

)−β(1− 1
α )

where q(x) is a monotone decreasing function of the form x−β

Proof. It is easy to see that α-fair policy has to have the form mentioned in the
theorem statement. If not, for example say there exists an optimal policy which allocates
mobile 2 in two disjoint intervals. Then, one can construct a better policy by shifting
the right most interval to the end of the left interval and this contradicts the optimality.
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Thus the optimization simplifies to one-dimensional optimization

max
s

Z(s) = max
l∈[0,L]

Z(sl) where sl
2(x) = 1 for {x ≤ l}.

It is easy to see that

Z(sl) =
1

1 − α

[

(

L − l

L
q(x)

)1−α

+

(

1
L

∫ l

0
c2 q(y)dy

)1−α
]

.

The optimal l(α) is obtained by differentiating the above equation w.r.t l and equat-
ing to zero, which results in the fixed point equation

(

(L − l(α))q(x)
)−α

q(x)−
(

c2

∫ l(α)

0
q(y)dy

)−α

q(l(α)) = 0.

Specially when q(x) = x−β then the fixed point equation simplifies to

l(α) = c
1− 1

α
2

(

q(l(α))

q(x)

)−β(1− 1
α )

⋄
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Figure 7.9: l(α) for long-term fairness as a function of α (α > 1) and wall attenuation of 6 dB ,path-loss
β = 2, position of outdoor user x = −2.

We plot in figure (7.9) a numerical example to observe how l(α) varies with α for α >

1. In this example, we consider path loss β = 2, location of outdoor user x = −2 and
wall attenuation of 6 dB. We observe that as α increases, the value of l(α) monotonically
decreases and starts to saturate. It is interesting to note that the indoor user is scheduled
when its mobility and the fairness of resource allocation, (l(α), α), lie within the dashed
region below the curve. Also, when the user exhibits higher mobility, the range of
fairness applicable reduces.
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7.6 Conclusion and Future Research

We have introduced T-scale fairness and multiscale fairness. The notion of T-scale fair-
ness allows one to address in a flexible manner requirements of emerging applications
(like YouTube) which demand quality of service requirement between strict real time
traffic and best effort traffic. The notion of multiscale fairness allows one to use a single
optimization criterion for resource allocation when different applications are present in
the network. We have compared the new fairness notions with previously known cri-
teria of instantaneous and long-term fairness criteria. We have illustrated the new no-
tions by their application in wireless networks. Specifically, we have considered spec-
trum allocation when users with different dynamics are present in the system. We have
demonstrated that the multiscale fairness provides a versatile framework for resource
allocation. We have also considered the resource allocation in indoor-outdoor scenario
and have observed how the spacial component influences the resource scheduling un-
der different fairness criteria. In the near future we plan to investigate in detail how
multiscale fairness criterion allocates resources when a number of applications with
different QoS requirements are present in the network. It is also interesting to investi-
gate T-scale fairness in the non-stationary regime.
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Chapter 8

Satisfying Demands in Multicell
Networks: A Universal Power
Allocation Algorithm
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8.1 Introduction

Multi-input multi-output (MIMO) combined with network densification promise im-
proved network coverage and capacity for mobile broadband access. But, due to an
increased number of transmit antennas and or the proximity of base stations (BS), users
at cell edges experience a higher degree of interference from neighboring base stations.

Network MIMO or other forms of BS co-operation enable sharing complete or sta-
tistical knowledge of channel states (CS) amongst neighbors via back-haul links to alle-
viate interference and offer better rates to users. When back-haul is not available, each
BS may estimate the local channel state information and use the same for better perfor-
mance. In some cases, a low rate feedback from the receiver indicating the QoS of the
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current transmissions is utilized, while in the worst case the transceivers are designed
with no CS information. Thus we have a variety of systems with varying degrees of
the information about the interfering channels. However the goal in each is the same:
satisfy the demands of all the users. We may require higher power profiles to satisfy the
same demands when working with lesser information. Further diverse situations can
arise because of the system configuration like modulation, precoding, channel coding,
resource allocation etc.

For a given vector of power constraints at various base stations, Shannon capacity
gives the maximum achievable rate, i.e., the capacity region. This is an upper bound.
We define "system specific capacity region" (achievable rate region of a given system)
which depend on coding (space-time, channel), modulation, channel state information
availability, synchronization, feedback errors and many other things. Given a system
architecture with a chosen set of parameters which define its rate allocation, modula-
tion, etc, the achievable rates are usually inferior to the theoretical rates and the system
specific capacity region is defined based on these rates. The system-specific capacity
region for the same power constraint varies: for example it shrinks if the number of
supported discrete rates reduce. Thus, the power allocated to any user to achieve the
same demand rate varies with the set of system parameters.

The main contribution of this work is an universal algorithm which can work with
many of the systems mentioned above. It satisfies asymptotically the demands of all
the users irrespective of the system in which it is operating, albeit with different power
profiles. Each base station requires minimal information: its user’s demands, its total power
constraint and the current transmission rates to its users. The current transmission rates
are decided by the serving base stations either using complete CSIT (algorithm can also
be used as a centralized scheme in this case) or has to be estimated completely blindly
or using some partial information. The following are the contributions of this work:

1) A system specific game theoretic problem formulation using the system specific
capacity region.

2) A Stochastic Approximation based universal power allocation algorithm in an in-
terference limited multi-cell network.

3) Various properties (eg., convergence) of the proposed algorithm is analyzed using
an ODE framework.

4) Simulation results demonstrate the effectiveness of the proposed algorithm for a
variety of systems.

Related Work: For an excellent survey on power control in wireless networks, the
reader is referred to [43] and the references there-in (eg. [60, 165, 78, 150, 55]). In recent
years, several authors have addressed distributed power control strategies with various
levels of co-operation for a given system configuration (eg. [171]). Typically, the design
objective is to maximize the total sum rate of all the users subject to BS power constraints
or to minimize the total transmit power satisfying some SINR constraints of the users.

Most of the existing algorithms aim at either optimizing the total power spent keep-
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ing the QoS above a required level and or optimize the QoS while keeping the power
utilized within a given budget. But our algorithm does not optimize, it only meets
the demands (in the form of average transmission rates) on average asymptotically1.
This relaxation helps us in proposing an algorithm that requires minimal information
(hence has minimal complexity) at the transmitters: rates at which the information is
correctly transmitted to the user in every slot. Data is pumped out from the transmitter
and hence these rates are readily known to the transmitter. Hence this algorithm does
not require any extra information and this can be exploited in many more ways. For
example, one can probably use this algorithm in networks with heterogeneous cells,
i.e., when each cell has a system configuration that can be different from the other cells.

Organization: We introduce the system model in section 8.2. In section 8.3, we
describe the system specific problem formulation. The algorithm and its analysis is
presented in section 8.4. Section 8.5 provides simulations. Appendix contains example
systems and proofs.

Notations: Boldface lower-case symbols represent vectors, capital boldface symbols
denote matrices (IN is the N × N identity matrix). Hermitian transpose is denoted (·)H
while tr[X] represents the trace of matrix X. All logarithms are base-2 logarithms. Small

letters represent the scalars. Let ak represent the kth component of the vector a. If the

vector is already indexed like for example in pj, then pk,j represents its kth component.
Let (p.s) represent the component-wise product, i.e., (p.s)k = pksk for all k while

√
p

represents component wise square root. E[·] denotes expectation and Es is expectation
w.r.t to s when conditioned (if any) on the other random variables.

8.2 System model

We consider a multi-cell MIMO system. Each base station has M transmit antennas and
is communicating with K single-antenna users (see figure 8.1). Every user experiences
both intra-cell (transmissions from parent BS) and inter-cell (transmissions from neigh-
boring BS) interference. Each user in a cell demands a certain rate and all these rates
have to be jointly satisfied by the BS (present in the cell) while operating within a total
power constraint.

Let Hj,l represent the K × M channel matrix, when the users in cell j receive signals
from the BS of cell l and let its elements be given by zero-mean unit-variance i.i.d.
complex Gaussian entries. Let nj represent the additive white Gaussian noise at the
receivers of cell j, xj be the M length transmit vector in cell j and γl ∈ [0, 1] be the
interference factor, representative of the level of interference from cell l. For example,
as base stations become denser, interference increases and hence γl → 1. The signal

1We show that the demand meeting power profile to be a NE of a ’leaky’ game. We call this game
’leaky’, because the utility of the game is upper bounded by the demands (see definition (8.5), section
8.3.1). In summary our aim is to provide a channel, to each one of the users, whose (system specific)
capacity is more than or equal to the user’s demand.
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vector (of length K) received by users in cell j is given by,

yj = Hj,jxj +
N

∑
l=1,l 6=j

γlHj,lxl + nj for all j ≤ N. (8.1)

In the above the first term represents the useful signal part as well as the intra-cell
interference while the second term (summation) represents the inter-cell interference to
the jth cell from its neighbors.

If P̄j represents the total power constraint in cell j, then tr(E[xjxH
j ]) ≤ P̄j to satisfy

the power constraint. As an example if the BS in cell j uses power levels specified
by pj and a precoding matrix Gj (of size M × K), then the transmit vector is given by
xj = Gj(

√
pj.sj) (sj is a K length independent symbol vector of zero mean and unit

variance components). In this case the power constraint leads to,

tr(E[xjxH
j ]) ≤ tr(E[Gj

√
pj(Gj

√
pj)

H ]) ≤ P̄j for any j.

Given a precoding scheme, this constraint can equivalently be represented by (for a
possibly different P̄j) ∑

k

pk,j ≤ P̄j. The symbol, yk,j, received by the user k of cell j is,

yk,j = hH

k,j,jxj +
K

∑
i=1,i 6=k

hH

i,j,jxj +
N

∑
l=1,l 6=j

K

∑
i=1

γlh
H

i,j,lxl + nk,j

= uk,j + ik,j,j + ∑
l 6=j

ik,j,l + nk,j (8.2)

where hk,j,l , the kth row of matrix Hj,l, represents the M length channel vector for user k
of cell j as received from the BS of cell l. In the above, uk,j, ij,j,k and ik,j,l respectively rep-
resent the useful, intra-cell interference and inter-cell interference signal, respectively.

System with No Precoding:

This work proposes an algorithm which works for any system in general. By system, we
mean a particular multi-cell network with a given configuration like, precoding scheme, channel
coding, resource allocation etc. We will derive the exact received signal characteristics for
one such example system. The received signal characteristics of the others system can
be derived in a similar way. We consider a system with no precoding (for example,
systems which does not have access to channel state information). Further we consider
a system with M = K and with xj = (

√
pj.sj). The average power in the useful, intra-

cell, inter-cell interference signals of the received signal (after channel coding at the
transmitter and channel decoding at the receiver) after averaging w.r.t. to the symbol
statistics {sj} for any given channel state:

Esj,1≤j≤N [|uk,j|2] = pk,j|hk,j,j,k|2,

Esj,1≤j≤N [|ik,j,j|2] = ∑
k̄ 6=k

pk̄,j|hk,j,j,k̄|2 and

Esj,1≤j≤N [|ik,j,l |2] = ∑
k̄

γl pk̄,l |hk,j,l,k̄|2 (8.3)
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where, hk,j,l,k̄ is the (k, k̄)th component of the matrix Hj,l. In the above we used E[sk,js
∗
k′,j′ ] =

1{k=k′,j=j′}.

Figure 8.1: 2D Wyner model

I CSIT II TX rate III Precoder
A Asymptotic I Ideal ZF Zero-forcing
C Full CSIT D Discrete NO No precoder
L Local CSIT RA Rate adaptation
N No CSIT RAE RA with errors

Table 1: System specification (I-II-III)

8.3 System specific problem formulation

Every BS has to meet its users demands, for example BS j has to meet its users demand
rates represented by rj := {rk,j, k ≤ K}. It has to tune its power levels pj to achieve
this. But the rates achieved will also depend upon the powers used by the other base
stations. Our goal is to find a simple universal power allocation algorithm which runs
independently and simultaneously at all the base stations and tunes the power levels
to achieve the user demands using minimal information. The power levels depend
upon the system configuration (for example channel precoding scheme, rate allocation
scheme). We consider some interesting example systems briefed in Table 2 and de-
scribed in Appendix A. These systems are referred using a three part code, I-II-III, as
explained below:

1) The first part (I) represents the availability of channel state information at trans-
mitter2: a) A represents an asymptotic (large number of antennas/users) system, where
achievable rates for all most all CS are approximated by a constant (see [117] and refer-
ences there in), b) C for systems with complete CSIT, c) L, systems with local CSIT, i.e.,
BS j knows Hj,j part of the CS, d) N, systems with no CSIT.

2One can also consider systems which have an estimate of the CS.
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System Description (more details in Ap-
pendix A)

R
sys
k,j (P ,H)

A-I-ZF: Large no. of antennas and users with
M > K. Asymptotic rates of [117] approximate the
instantaneous rates for almost all CS and trans-
mission at ideal rates. Zero forcing precoder.

log



1 +
pk,j

1
β−1 ∑

N
l=1,l 6=j γl

tr(Pl)
K + σ2

k,j





C-I-ZF : Number of antennae/users not large
enough. Asymptotic results not accurate. Every
BS has CSIT, computes theoretical rates and trans-
mits at ideal rates. ZF precoder.

log






1 +

pt
k,j

∑
N
l=1,l 6=j γl

tr
(

Ht
j,l QlHt

j,l
H
)

K + σ2
k,j







C-D-ZF: Similar to C-I-ZF, but TX rate allocation
from discrete set R.

inf
r∈R

{r ≤ RC−I−ZF
k,j (P ,H)}

C-I-NO: Similar to C-I-ZF, but without Precoder. log

(

1 +
Esj

[|uk,j|2]
∑l Esl

[|ik,j,l |2] + σ2
k,j

)

C-D-NO: Similar to C-I-NO, but TX rate allocation
from discrete set R.

inf
r∈R

{r ≤ RC−I−NO
k,j (P ,H)}

N-RA-NO: Rate adaptation w/o CSIT. Uses blind
methods to adapt to the correct rate as long as the
underlying channel can support the same. No TX
precoder.

RC−D−NO
k,j (P ,H)

L-RA-ZF: Rate adaptation with local CSIT. BS has
local CS, Uses blind methods to assign rates (as in
N-RA-NO) and local CS for precoding.

RC−D−ZF
k,j (P ,H)

N-RAE-NO: Similar to N-RA-NO, but with rate
estimation errors, Ek,j(r).

RN−RA−NO
k,j (P ,H)− Ek,j(RN−RA−NO

k,j (P ,H))

L-RAE-ZF: Similar to L-RA-ZF, but with rate esti-
mation errors, Ek,j(r).

RL−RA−ZF
k,j (P ,H)− Ek,j(RL−RA−ZF

k,j (P ,H))

Table 2: Some example Systems.
Right column gives the rate at which data is transmitted when CS is H and system uses power profile P

2) The second part (II) represents the transmission rates used at the system3: a) I for
ideal systems which can channel code to achieve any feasible rate, b) D for the those
systems which can only operate at one of the discrete rates in the set R = {r1, r2, · · · rNR

}
(arranged in decreasing order), c) RA for systems which estimate the current rate (i.e.,
pick the current maximum possible rate from the set R) using (blind) rate adaptation
schemes (eg. [19]) without CSIT, d) RAE when there are estimation errors in the rate
adaptation algorithm.

3) The third part (III) represents the precoder4: a) ZF for zero forcing precoding, b) NO
for no channel precoding.

3We illustrate these concepts using simple rate allocation schemes. One can extend it to other rate
allocations, for eg. schemes that incorporate fairness.

4One can also consider other types of precoders (eg. MMSE). Our analysis and proofs hold for these
configurations as long as they satisfy the assumptions A.1 to 4 (refer Section 8.4).
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8.3.1 Game theoretic formulation

As the base stations influence each other, the problem can best be captured using a
game theoretic formulation. We begin by introducing the components of the game. The
calligraphic letters (for example P) represent the ensemble of either vectors, matrices
or scalars for all the base stations.

Power profile, P := {pk,j}k≤K, j≤N , represents the vector comprising of the powers
used at all the base stations and for all the users. Recall, pk,j represents the power used
by the BS of cell j for user k in cell j.

Channel State (CS), H := {H1,1, H1,2, · · · , HN,N}, arranged as a matrix of dimension
KN × MN, represents the channel state of the entire system.

Rate for a given power profile and system, R
sys
k,j (P ,H), represents the

transmission rates allocated, to the user k by the base station j, in system represented
by sys (eg. N-RAE-NO in Table 2) when the base stations use powers P and when the
CS is H. These rates are given in the right column of the Table 2 for various example
systems, whose detailed descriptions are provided in Appendix A.

Average Rate for a given system and power profile, is the rate that is achieved on
average when a given system uses the power profile P : R

sys
avg,k,j(P) = EH[R

sys
k,j (P ,H)].

Let R
sys
avg := {R

sys
avg,k,j}k,j.

Power constraint (P ≤ P̄) We use ≤ in a special manner to facilitate defining the
power constraint. We say a power profile P is "less that or equal to" and hence satisfies
the constraint defined in terms of another power profile P̄ if the two profiles satisfy the
constraints for each base station as: ∑

k

pk,j ≤ ∑
k

p̄k,j for all j ≤ N.

System Specific Capacity Region for any given power profile constraint P̄ and a sys-
tem, sys, is defined as the collection of all possible tuple of average rates while using
powers that satisfy the constraints defined in terms of P̄ , i.e.,

C
sys(P̄) := { {Rk,j} ∈ RNK : for all k, j

Rk,j = R
sys
avg,k,j(P) for some P with P ≤ P̄}. (8.4)

This region is different for different systems. For a system with ideal rates the capacity
region coincides with the theoretical one. A system with discrete rates cannot always
achieve the maximum possible rate and hence its capacity region shrinks. It further
depends upon R, the set of supported rates. If the system has estimation errors, the
capacity region shrinks further.

Utilities and Players : Each BS j is a player and its strategy is K-dimensional power
vector, pj := [p1,j, · · · , pK,j]. Note that P = [p1, p2, · · · , pN ]. Define the utility of player
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j as5,

U
sys
j (pj,P−j) := ∑

k

min
{

R
sys
avg,k,j(pj,P−j), rk,j

}

with P−j := [p1, p2, · · · , pj−1, pj+1, · · · , pN ]. (8.5)

In the above, P−j is the power vector profile excluding only the powers of BS of cell
j and rk,j is the demand of user k of cell j. Every system with given power constraint
P̄ and demand vectors {rk,j} defines an N-player non cooperative strategic form game:
([1, 2 · · · N], {U

sys
j }j≤N). The Nash equilibrium (NE) of this game is a power profile P∗

that satisfies,

p∗
j ∈ arg max

P≤P̄
U

sys
j (pj,P∗

−j) for all j. (8.6)

From the above definitions, it is evident that,
Lemma 8.3.2. For any given system and power constraints P̄ , if the vector of the demands
{rk,j}k,j is in the corresponding capacity region C

sys(P̄), then there exists a P∗ ≤ P̄ , which is
a NE satisfying all the demands:

R
sys
avg,k,j(P∗) = rk,j for all k, j. ⋄

Thus, when all the base stations use the NE power profile P∗ of Lemma 8.3.2, all
the users in each cell achieve an average rate which equals their demand, i.e., will be
able to receive the information at the demand rate on average. The main aim of this work
is to obtain this NE (time) asymptotically (if required in a completely distributed way) for any
given system when the demands satisfy Lemma 8.3.2. This NE depends on the system
considered (for example higher amount of power may be required if one uses discrete
rates in the place of ideal rates) even if the power constraint and demands are same.
The proposed algorithm is a general iterative algorithm which works irrespective of the system
considered, i.e, the proposed algorithm converges to the system specific NE.

Remark on hypothesis of Lemma 8.3.2: It requires that the demands equal one of the
average rates of the capacity region. Lemma 8.4.4 of the next section gives an easily
verifiable assumption which ensures this hypothesis of Lemma 8.3.2.

Set of demand meeting NE, L
sys ⊂ C

sys(P̄), is the set of NE which meet the demands
as in Lemma 8.3.2.

We now present the Universal Power Allocation algorithm for power constrained
Multi Cell Networks (UPAMCN).

5The utility of an user is the average rate at which its data is transferred. The user k of cell j requires
transmission at maximum at its demand rate rk,j and hence his utility is upper bounded by the same.

172



Type Intf Tx Users
BS Ant

L1 Linear 2 16 8
L2 Linear 2 32 8
H1 Hexagon 6 16 8
H2 Hexagon 6 2 2

Table 3: Network configurations

S1 Asymptotic Ideal with ZF Precoder (A-I-ZF)
S2 Rate adaptation with local CSIT and ZF pre-

coder (L-RA-ZF)
S3 Rate adaptation with local CSIT, ZF Precoder

and with estimation errors (L-RAE-ZF)
S4 Rate adaptation without CSIT (N-RA-NO)
S5 Rate adaptation without CSIT and estimation

errors (N-RAE-NO).

Table 4: System configurations

8.4 Universal Algorithm : UPAMCN

We consider a quasi-static channel and obtain the NE of Lemma 8.3.2 asymptotically by
iteratively updating the power profile at the beginning of every slot, during which the
CS is assumed constant.

Basic idea6 : Each BS j in every time slot knows the rates at which data is transmit-
ted to its users, {R

sys
k,j (P ,H)}k. The characterization of these rates is provided for some

examples in Table 2. An iterative algorithm can find the average value of it. One can
then update the power vectors to force this average towards the demands {rk,j}.

Let dt+1
k,j represent the number of bytes of data transmitted successfully in time slot

t + 1 by the jth base station to its user k divided by the duration of the time slot. This
ratio depends upon the power profile of the entire system in the previous slot (P t)
and the entire CS in the current slot (Ht+1), but (P t, Ht+1) are only partially known at
the base stations. However dt+1

k,j is still known at base station j as it is the source that

pumps out the data. Infact, it will be precisely equal to dt+1
k,j = R

sys
k,j (P t,Ht+1) of Table

2 by definition. Let {µt} represent the step sizes.

8.4.1 UPAMCN algorithm

With ΠA representing the projection in to the set A

pt+1
k,j = ΠAj

[

pt
k,j − µt

(

dt
k,j − rk,j

)]

with

Aj :=

{

p ∈ RK :∑
k

pk ≤ P̄j

}

; A := A1 × A2 · · · × AN . (8.7)

6Most of the cases stochastic approximation algorithms obtain optimum of a function as the zero of
its derivative. In contrast, this algorithm obtains the profile that satisfies the demands, as the zero of the
function given by the average rate minus demand.
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8.4.2 Analysis

We obtain the asymptotic analysis of the algorithm using the ordinary differential equa-
tions (ODE) approach of [93]. We establish Theorem 8.4.2.1 given below, under:

A.1 There exists a sequence

αt → ∞ with lim
t

sup
0≤i≤αt

µt+i/µt = 0.

A.2 The channel state {Ht} is an independent and identically distributed (IID) se-
quence with finite mean and variance.

A.3 The instantaneous rates are bounded by the same constant, i.e., |Rsys
k,j (P ,H)| ≤ B

for all k, j, P and H.

A.4 The average rate R
sys
avg,k,j is continuous in P for all k, j.

We will show that the UPAMCN trajectory (8.7) can be approximated by the solution
(P(t)) of the following ODE (to be precise a differential inclusion).

�

pk,j = rk,j − Ravg,k,j(P) + zk,j(P) for all k, j (8.8)

where zk,j(P) represents the projection term. Define the limit set of this ODE :

L
ODE := lim

t→∞
∪P∈A{P(s) : s ≥ t and P(0) = P}.

The δ-neighborhood of this set is defined as:

Bδ(L
ODE) :=

{

P : |P − P̄| ≤ δ for some P̄ ∈ L
ODE

}

.

Theorem 8.4.2.1 establishes that the trajectory ultimately spends time in this limit set.
We first establish the theorem and later study the systems of previous section using this
Limit set.
Theorem 8.4.2.1. Assume A.1-4. Then for every δ > 0, the fraction of time the tail of the
algorithm (for any initial power profile with P̃ < P̄)

{Pτ}τ≥t with initialization P t = P̃

spends in the δ-neighborhood of the limit set Bδ(L
ODE) tends to one (in probability) as t → ∞.

Proof: Refer Appendix B.

8.4.3 Analysis of the specific systems

Most of the systems considered in this chapter (for example, C-D-ZF) transmit at one of
rates from a discrete set R depending on the instantaneous CS and for these one need
to explicitly prove the continuity of the average rates. This is achieved in the following
(proof in Appendix B).
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Lemma 8.4.4. Assume A.1 and A.2. Then, for all the systems considered in Table 2, assump-
tions A.3 and A.4 are satisfied, Theorem 8.4.2.1 applies and hence for the UPAMCN trajectory
(8.7) asymptotically spends most of its time in the limit set, L

ODE.

Further, the demand meeting NE set, L
sys, is non empty and these form the stationary points

of the ODE (8.8), whenever for all k, j the demands satisfy

rk,j ≤ sup
P≤P̄

Ravg,k,j(P). ⋄

For further analysis, one needs to study the limit set of ODE (8.8). A limit set of a
ODE usually contains limit cycles or attractors. The demand meeting NE of L

sys would
be in the limit set if further we could show that they are attractors. In that case, the
algorithm spends most of its time in these attractors or in other words the UPAMCN
algorithm asymptotically meets the demands of all the users. Right now, we can only say
that, every stationary point of ODE (8.8) is a demand meeting NE and any attractor
of the ODE must be a stationary point. We will show via numerical examples in the
next section that the algorithm indeed converges to a demand meeting NE for all the
systems considered in this work.

8.4.5 Extensions to UPAMCN

The UPAMCN algorithm works under the basic assumption that the BS always has
sufficient data to transmit. But in reality, data often arrives in real time and hence there
can be situations when the BS can transmit at a higher rate but does not have sufficient
data. In this case we propose the following extension to UPAMCN:

bt+1
k,j = bt

k,j + Bt+1
k,j − min

{

dt
k,j, bt

k,j

}

and

pt+1
k,j = ΠAj

[

pt
k,j + µt

(

min{dt
k,j, bt

k,j} − rk,j

)]

(8.9)

where bt
k,j represents the remaining (accumulating) bytes of data to be transmitted by

BS j to the user k at the begining of time slot t and Bt
k,j represents the fresh sample of

data added to the corresponding buffer.

8.5 Simulation

We consider two types of cellular networks in our simulations (Table 3). The first
one is a Hexagonal network, where users in each cell experience interference from BS
transmissions of surrounding cells (typically assumed to be from the 1st tier of sur-
rounding 6 cells (see for example figure (8.1)). The second one is a linear network,
where users in each cell experience interference from BS transmissions of adjacent
cells (typically two adjacent neighbors). The system configurations are summarized
in Table 4. Each BS equipped with M transmit antennas is serving K users in its cell.
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System Demand satisfying NE (converged power)
ID .015 .032 .049 .067 .085 .105 .126 .147
D1 .017 .035 .053 .072 .092 .113 .135 .158
D2 .031 .049 .071 .097 .121 .146 .174 .203

Table 5: System S2

ID: Ideal, D1: Discrete - 100 levels, D2: Discrete - 20 levels

In all the simulations we also compute the average rates via the following iteration:

φt+1
k,j = φt

k,j + µt
(

dt
k,j − φt

k,j

)

for all k, j. This iteration is only a measurement procedure
that is used for the purpose of calculating average rates of the system for the numerical
examples considered. That it represents the average rate can be understood by noticing
that φt

k,j is actually a weighted average of all the instantaneous rates {dτ
k,j; τ ≤ t} up

to time t. These average rates are used to illustrate that systems considered in these
examples, asymptotically (as time progresses) satisfy the user’s demands on average.

The power limit on each BS is set to 1 unit. Interference factor γl from each inter-
fering BS, l, is set to 0.5. For the simulations considered here, we choose the demand
rate vector (to lie within the capacity region and is common for all the base stations) as:
r = [.065 .130 .195 .260 .325 .389 .454 .520] .

In the first set of simulations, we consider the hexagonal network (H1). The rate and
the power convergence behavior of the algorithm for systems S1, S2 and S3 is plotted
in figure 8.2 and 8.3, respectively. We observe that: (1) The algorithm converges to
the demand meeting NE: we see in Figure 8.2 that for all the systems, the average rate
achieved asymptotically converges towards the demand rates. (2) As discussed in the
previous sections, we notice from Figure 8.3, that the converged power profile (demand
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meeting NE) is system specific. S3 is a system with errors, the proposed algorithm still
satisfies the demands asymptotically, however, the converged power profile has higher
power levels in comparison with the error free systems S2 and S1. (3) Note that S2 can
also represents C-D-ZF, a complete CSIT system (see details on Table 2 and Appendix
A). From figure 8.3, we observe that the converged power profile of C-D-ZF (S2) is close
to that of A-I-ZF (S1) system. Thus the demand meeting power profile of systems with
large number of transmit antennas and or users and large number of discrete levels
in R is close to that of the asymptotic ideal rate system. Further convergence is faster
with S1 system. Thus for such systems, UPAMCN algorithm can be used to estimate
(approximately) the demand meeting power profile, much faster, using the asymptotic
rate expressions in place of instantaneous transmit rates allocated, {dt

k,j}. Note that this
further avoids the need of complete CSIT, as we need only local CSIT for precoding. (4)
As the discrete levels increase, the power profile decreases and finally converges to that
of the ideal rate. This is tabulated in Table 5.

In the second set of simulations, for given demand rates, we compare the algorithm
behavior for different network configurations L1, L2 and H1 with system S2. We ob-
serve that: to satisfy the same demands, the base stations in L2 expend the least power,
followed by L1 and then H1. L2 performs better than L1 due to improved transmit
diversity. H1 is the worst (larger number of interfering base stations).

In the final set of simulations, for network configuration H2, we consider the least
informed (No CSIT) systems, the rate adaptation systems S4 and S5. We choose the
common demand rate vector as [0.1694 0.1936] . Figures 8.5and 8.6 illustrate the av-
erage rate and power profile convergence. As CSIT (even local) is not available at the
base stations, they cannot use any precoders. Thus, it is a totally interference dominated
system and hence the achievable capacity region is small. But the UPAMCN algorithm
works even for this least informed system: it asymptotically satisfies the demand rates,
albeit using a higher power profile. Further, the rate estimation errors in system S5 de-
mand higher power levels in comparison with the error free system S4 to achieve the
same demands.
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Further, we observe that the convergence to the demand meeting NE is quicker in
those systems where base stations have more information (see for eg. figure 8.3).

8.6 Conclusions

Mobile broadband users demand certain rates depending on the end application and
QoS requirements. The base station serving these users has to allocate power to satisfy
user demands operating within its own total power budget. Intra-cell and inter-cell
interference diminish the available rates in multicell networks. Neighboring base sta-
tions can co-operate to exchange some form of channel state information depending
on backhaul capacity and processing power to alleviate interference and thus enhance
achievable rates. Further, system specific components like modulation, coding, rate
allocation, channel estimation and synchronization impacts the achievable rates and
hence the power allocation. In our work, we propose an universal power allocation
algorithm which works in this setting. The stochastic approximation based univer-
sal power allocation algorithm runs at each BS, independently and simultaneously to
meet the user demands as long as the demands are achievable. The power allocation
is formulated as a game problem. A system specific capacity region is defined and
the proposed algorithm is analyzed with an ODE framework. The proposed algorithm
works well in a multitude of system configurations as demonstrated via simulations
and analysis.

Our algorithm assumes that the serving BS always has sufficient amount of data
to transmit. However, in many applications, the data is available in real time. We
mentioned a possible extension of the same in the work.

8.7 Appendix A: Example Systems

1) Asymptotic Ideal Rate system : In a multicellular system with large number of antennas
at the BS and large number of users, the rate for a given CS can be obtained using
random matrix theory. For example, in [117] the asymptotic rates are derived for a zero
forcing (ZF) precoder. It is shown that for almost all realizations of CS, the rate can be
approximated by the expression given below in equation (8.10). Further, we consider a
system in which, the base stations use channel coding schemes to transmit very close
to the theoretical rates. When this system (which we call as asym-ideal-zeroforcing or in
short A-I-ZF according to our notations) uses power profile P and when the channel
state (CS) is H, the BS j transmits to the user k at rate ([117]) (when M > K):

RA−I−ZF
k,j (P ,H) ≈ log



1+
pk,j

1
β−1 ∑

N
l=1,l 6=j γl

tr(Pl)
K + σ2

k,j



 (8.10)

where, β = M/K is the ratio of number of transmit antennas on the BS to the number
of users and γl ∈ (0, 1) represents the interference from cell l. This rate is same for
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almost all CS H as it is an asymptotic rate. Similar expression is available for the case
with M = K in [117].

2) Ideal rates using complete CSIT : If the number of antennae/number of users is not large
enough, the asymptotic results are not accurate. If BS has access to CSIT (and if each
BS could channel code to obtain rates closer to the ideal rate) then with ZF precoder it
transmits at rate:

RC−I−ZF
k,j (P ,H) = log









1 +
pt

k,j

∑
N
l=1,l 6=j γl

tr
(

Ht
j,l Ql Ht

j,l
H
)

K + σ2
k,j









Ql := Ht
l
H
(Ht

l H
t
l
H
)−1Pt

l(H
t
l H

t
l
H
)−1Ht

l

For the same configuration, but without transmitter precoding, the the instantaneous
transmission rate (as obtained using Shannon’s capacity expression), from equation
(8.2) is:

RC−I−NO
k,j (P ,H) = log(1 + ηk,j) where (8.11)

SINR, ηk,j :=
E[|uk,j|2]

ρk,j
with noise + interference, ρk,j := ∑

l

E[|ik,j,l |2] + σ2
k,j.

3) Finite number of Rates : Ideal rate systems are not realistic, they can’t be implemented
in practice. We consider a system, in which the BS can transmit at one of the available
discrete rates from the set R. When transmitter has CSIT, it knows the exact theoretical
rate and hence will pick the largest rate from set R that is smaller than the current
theoretical rate:

RC−D−ZF
k,j (P ,H) = inf

r∈R

{r ≤ RC−I−ZF
k,j (P ,H)}, (8.12)

RC−D−NO
k,j (P ,H) = inf

r∈R

{r ≤ RC−I−NO
k,j (P ,H)}. (8.13)

4) Rate adaptation Without CSIT : It is once again not realistic to assume the knowl-
edge of complete CSIT. There are many schemes that estimate the rate blindly or using
some partial CSIT (eg. [19]). The UPAMCN algorithm is a very general algorithm and
works with all those systems which satisfy assumptions A.1-4. These are quite simple
assumptions and most of the systems can satisfy these and hence the algorithm works
for majority of the blind/partial CSIT systems.

We explain one such blind system wherein, the BS estimates the transmission rates
without knowledge of CSIT. Each time, the BS begins by attempting at the highest avail-
able rate r1. If the data is not received correctly (information obtained via a feedback
from the receiver), the BS sends some more information about the same data packet
so that the overall rate now is the second highest r2. This procedure repeats until the
two agree upon the correct rate. We assume that this rate adaptation system is always
successful, i.e, it can estimate the actual rates without errors. Such a system does not re-
quire CSIT, however the final rate at which the transmission takes place depends upon
the current channel state in exactly the same way as in the case of C-D (or A-D for large
antenna and user case and note there is no channel coding in this case as there is no
CSIT) and hence,

RN−RA−NO
k,j (P ,H) = RC−D−NO

k,j (P ,H) (8.14)
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5) Rate Adaptation with local CSIT: All the base stations have local CSIT, i.e., BS j knows
the Hj,j part of CS. However they can’t estimate the current rates just based on local
CSIT. So, they once again use rate adaptation technique as in the system (4). They can
however design a better system by using for example a zero forcing precoder. In this
case, as in system (4) the rate will be adapted to the actual underlying rate and hence
will be same as that in C-D-ZF:

RL−RA−ZF(P ,H) = RC−D−ZF
k,j (P ,H) (8.15)

6) Rate Adaptation with errors : There can be some errors in rate adaptation algorithm
of system (4) or (5). In this case

RN−RAE−NO
k,j (P ,H)

= RN−RA−NO
k,j (P ,H)− Ek,j(RN−RA−NO

k,j (P ,H)) (8.16)

RL−RAE−ZF
k,j (P ,H)

= RL−RA−ZF
k,j (P ,H)− Ek,j(RL−RA−ZF

k,j (P ,H)) (8.17)

where (assuming independent errors) Ek,j(r̄) can take values in the subset R ∩ {r ≤ r̄}
with a given probability distribution.

8.8 Appendix B: Proofs

Proof of Theorem 1: As a first step, we rewrite the algorithm as in [93]:

Yt
k,j := rk,j − dt

k,j, pt+1
k,j = ΠAj

[

pt
k,j + µtYt

k,j

]

.

Define, Ft := σ
(

Pτ, {Yτ−1
k,j }k,j, for all τ ≤ t

)

and let Et represent the expectation w.r.t.
Ft, the filtration. Under the assumptions A.2 and A.3 clearly the condition expectation

Et[Y
t
k,j] = g

p
k,j(P t) := rk,j − Ravg,k,j(P t)for all k, j and t.

For every j, the constrain set Aj satisfies the assumption (A3.2), page 107 of [93]. By
assumption A.3 {Yt

k,j; t} is uniformly integrable and hence satisfies assumption A.2.1,
pp. 258 [93]. They also satisfy the assumption A.2.3 to A.2.7 of pages 258, 259 [93] with
gt = ḡ = gp and with βt = 0 ξt = 0 for all time t. Assumption A.2.2, pp 258, [93] is
satisfied because of our Assumption A.4. Let zj represent the projection or constraint
term, the minimum force needed to keep the vector pj in Aj. Then by Theorem 2.3,
pp. 259, [93] the UPAMCN algorithm trajectory P t converges weekly to the trajectory
of the solution of the ODE (8.8) (in the sense as explained in [93]). Further by the same
theorem of [93], for any δ > 0, the fraction of time that the tail sequence {Pτ}τ≥t, with
initializations pt

k,j = p̃k,j for every (k, j), spends in the δ-neighborhood of the limit of set

of the above ODE (8.8), Bδ(L
ODE), goes to one (in probability) as t → ∞. ⋄
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Proof of Lemma 8.4.4: The boundedness assumption A.3 is direct for discrete rate
systems and is also true for ideal rate systems as seen from the formulas. The ideal
rates are point wise continuous and are bounded and hence by bounded convergence
theorem satisfy the continuous assumption A.4. The same for the discrete rates is given
by Lemma 8.8.1.

The continuity assumption A.4 now also holds for the rate adaptation system with er-
rors, L-RAE-NO, whenever the statistics of the errors {Ek,j} are independent of the
power profile or when they are continuous in P . Thus for all the systems considered in this
work Theorem 8.4.2.1 applies.

Conditions for existence of demand meeting NE : For all the systems considered so
far, the hypothesis of Lemma 8.3.2 is satisfied, i.e., L

NE is non empty whenever the
power constraints are sufficient to cater to the demand rates. This fact is established by
the continuity of the average rates w.r.t. the power profile, i.e., the establishment of the
assumption A.4. To be precise Lemma 8.3.2 is satisfied, i.e., L

NE is non empty whenever for
all k, j rk,j ≤ sup

P≤P̄
Ravg,k,j(P). ⋄

Lemma 8.8.1. The average rates R
sys
avg,k,j for systems C-D-ZF and C-D-NO are continuous

w.r.t. power profile P for all k, j.

Proof : Let Rk,j(P ,H) represent the corresponding ideal rate (the rate before dis-
cretization) for the given CS H. From all the rate formulas in this work, we can see that
these rates bounded and are continuous in P , for all H. For the discretized systems, the
average rates can be written as,

Ravg,k,j(P) = ∑
i≤N

q(i,P)ri where

q(i,P) :=
∫

1{ri−1≤Rk,j(P ,H)≤ri}dΓ(H) (8.18)

with dΓ representing the Gaussian measure. For a given P , the probability of the sets
of the type (the boundaries of the sets used while defining the indicators in (8.18))

Γ
({

H : Rk,j(P ,H) = ri

})

= 0,

because of the continuity of the Gaussian measure. Hence, the point wise functions of
integral (8.18) are continuous w.r.t. to P for almost all H. Thus the lemma follows by
bounded convergence theorem. ⋄
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Chapter 9

Conclusions

Summary and general discussion

Small cell networks are a promising alternative to increasing data demands arising due
to new applications and services in mobile broadband. Optimal design of small cells is
a challenging task. In this thesis we addressed two important aspects of small cells: cell
dimensioning and resource allocation.

We began our discussion with dimensioning of static and moving users. For the case
of static users, in chapter 2, we used fluid limits to derive explicit expressions for own
cell and interference power and computed throughput achievable as a function of cell
size. Our analysis considered frequency reuse, path-loss, different receiver structures,
indoor-outdoor partitions, etc. Our results showed that optimal cell sizes exist in some
configurations, while in the others, the way to maximize achievable throughput was to
increase the base station density. A scope for future directions is to consider more so-
phisticated radio propagation models, fading and shadowing effects, etc. Further, fluid
models were used to get first-cut results for cell dimensioning, but one can consider a
more closer to realistic situations, like the users are distributed according to a stochastic
process and thus meaningful results can be obtained using tools like stochastic geome-
try [17].

For the case of mobile users, in chapter 3, we used queuing theoretic tools to de-
rive optimal cell sizes which optimize important system metrics like expected wait-
ing/service times, call drop/block probabilities, etc. Our analysis was predominantly
for users traversing in single dimensions and further once a velocity is chosen by a cer-
tain user, it is assumed that the user continues with the same velocity until his service
is completed or until the time he is blocked or dropped. Many interesting possibili-
ties exist as scope towards future research. Some of these have been mentioned in our
work [89]. Extensions would include analysis in 2-dimensions and further assuming
that users travel with a velocity with a certain mean and variance. We have carried out
partial analysis of some of these in our work [118]. Further, it would be interesting to
consider more sophisticated and realistic user movements which can be modeled by
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random-walk, random way point or Brownian motion.

Similar to our observations in the previous discussion on chapter 2 and chapter 3, for
the location of base station(s), it would be interesting to study with discrete/random
distribution of users, instead of the continuum approach and extend it to the case of
2-dimensions.

In chapter 5, we derived the per antenna user density via asymptotic analysis of an
interference limited precoded small cell network. Our analysis considered the simplest
case of zero force precoders (ZF). Zero force precoders, can churn up unreliable re-
sults when there are channel realizations with deep fade, due to the matrix inversion in
computing an estimate of the channel matrix. A more reliable precoder is the Minimum
Mean Square Error (MMSE) precoder, which has an additional scaling term to take care
of such situations. A single cell analysis for such cases has already been explored in
[48]. It would be interesting to extend this work for the multicell case. Further, in our
analysis, many aspects like the transmit correlation, path-loss, etc, have been avoided
to keep the analysis simple and tractable. A more eloborate model to take these things
into account would throw up some interesting observations. Further, we used Wyner-
type cellular layouts, where we assume that users are experiencing same interference
on an average. It would be worthwhile to see for possible approaches that can relax
these assumptions.

For the case of energy conservation towards green cellular initiative, our work con-
sidered simple models to derive open loop control of base station activation in chapter
6. In the case of central control, we made an assumption that each BS has a unidirec-
tional antenna. This assumption simplified the problem and gave rise to a very nice
analytic form of the control policy in bracket sequences. It would be worthwhile to
explore if the assumptions to be satisfied for the cost functions to be multimodular still
hold with omni-direction antenna. Further, one can explore closed loop control policies
by including state information.

In chapter 7, we defined T-scale and multiscale fairness. We believe these new fair-
ness concepts allows one to share resources fairly, depending on the traffic type. We
demonstrated some applications, which included spectrum sharing and resource allo-
cation in indoor-outdoor femtocells. These concepts can be extended to frequency or
time-frequency systems (OFDMA). Further our analysis considered utilities are linear
in resources. It would be interesting to deal with the case when this is not true. For
example, if the resource to be shared is not the throughput, but the power. We also
discussed an application of this new concept to an indoor-outdoor femtocell [114]. We
can apply these new concepts to other variants of cell partitions.

We propose stochastic approximation based power allocation algorithm in chapter
8. These algorithms are shown to satisfy user demand rates assymptotically, while op-
erating within power constraints at each base station. We could obtain partial analysis
(via ordinary differential equation (ODE) approximation approach) and relied more on
simulations to show that the algorithm indeed works. It would be interesting to attempt
and show that the converged power profiles are indeed stationary points or elements in
the limit set of the approximating ODE, which completes the analysis. Further, the ex-
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tension to multi-tier and heterogeneous networks, considering this algorithm is again
demonstrated via simulations. It would be challenging to analyze this problem via
some sort of two-time scale stochastic approximation based analysis (e.g., see [32]).

Finally, some of the ideas developed during the process of study should find use in
practical implementation of small cell networks. It would be of great value to demon-
strate few key ideas used in cell dimensioning and resource allocation on a more com-
prehensive evaluation platform, like an LTE simulator [161].
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Appendix

Recent Innovations and Advances in Wireless Communications

Inspired by a review comment, we conducted a survey inviting leading experts in the
research community to share their views on the recent innovations and advances in
Wireless Communications. The questions we posed were:

1. What according to you are the top 5 innovations or advances in Information the-
ory / Signal processing in recent years that has pushed up the spectral efficiency?

2. What according to you is the next ’big bang’ in Information theory which can
push it further?

In the table (following page), we collate the responses.

Perspectives: We got some very interesting view points from the Survey. Some said
the survey itself was very thought provoking and needs careful thinking. Others felt
that the guessing game is difficult, citing examples of LDPC. Few others opined that
it is all related to simplicity of the idea, ease of implementation, standardization and
economics of deployment. Citing from law of large numbers (of opinions), the top five
without any particular order were Turbo/LDPC codes, OFDMA, MIMO, Opportunistic
communication and Multicell co-operative networks. The answer for the next big thing:
Network information theory.

We wish to thank the experts for their opinions and participating in the Survey.
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