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 Résumé en français de la thèse 
 
 
Cette thèse présente un travail expérimental sur le graphène. Le 

graphène est un cristal bidimensionnel atomiquement fin d’atomes de 
carbone liés dans un réseau covalent de symétrie hexagonale. Les propriétés 
nouvelles et les applications potentielles de ce matériau sont nombreuses, 
grâce à la combinaison de propriétés optiques, mécaniques et électroniques 
exceptionnelles. C’est un semi-conducteur à gap nul, qui présente tout à la 
fois une excellente mobilité électronique et une faible absorbance optique [1, 
2]. Son épaisseur monoatomique le rend tout à fait compatible avec une 
électronique à très haute fréquence ainsi que pour des capteurs. En effet, le 
graphène rentre déjà dans la réalisation de composants innovants pour 
l’électronique sur substrat flexible et transparent [3, 4], des transistors 
analogiques fonctionnant à 100 GHz [5], des détecteurs photoniques pour 
l’imagerie Terahertz [6], des composants pour le photovoltaïque [7], des 
resonateurs nano-mécaniques [8], des étalons de résistance basés sur l’effet 
Hall Quantique [9, 10], etc. 

Du point de vue de la physique fondamentale, le graphène est un 
système électronique vraiment unique, implémentant un gaz bidimensionnel 
« exotique » car peuplé de fermions de Dirac à masse nulle. De plus son 
épaisseur ultimement fine supprime tout écrantage des charges et autorise 
l’ajustement du signe et de la densité de porteurs via une tension électrique 
appliquée sur une électrode de grille [11]. Par conséquent, le graphène est un 
objet d’étude idéal pour la physique de la matière condensée de basse 
dimensionnalité. De plus, de part l’absence de liaisons pendantes, le 
graphène est chimiquement et physiquement stable, ce qui offre une 
possibilité originale de le coupler à d’autres matériaux pour réaliser des 
systèmes hybrides. Comme on le montrera plus tard dans ce manuscrit, le 
graphène décoré par des nano-particules supraconductrices s’est révélé être 
un système 2D supraconducteur tout à fait original [12, 13, 14]. 
Dans ce travail de thèse, nous cherchons à fabriquer puis à mesurer le 
transport électronique à très basse température dans des dispositifs 
quantiques à base de graphène, entièrement fonctionnalisés et intégrés sur 
puce. Pour atteindre cet objectif, nous avons mis en place un protocole 
expérimental complet  permettant de synthétiser du graphène à haute 
mobilité électronique, de le transférer sur des supports compatibles avec les 
applications, tout en contrôlant le désordre électronique et enfin, de l'intégrer 
dans des dispositifs quantiques hybrides présentant des propriétés inédites. 
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Les questions au centre de cette thèse 

 
A ce jour, la technique de dépôt par vapeur chimique réactive (CVD) du 

graphène sur feuille de cuivre [15] est sans aucun doute la meilleure 
technique pour une monocouche polycristalline de taille macroscopique, qui 
peut être par la suite transposée sur un substrat isolant de taille et de 
composition arbitraires (silicium, verre, films plastiques, etc.). Cependant, 
cette technique présentent une série d’inconvénients : le graphène réalisé 
présente des défauts structurels, tels que des lacunes, des joints de grains, des 
zones multicouches etc.. Avant d’envisager une production de masse de 
dispositifs électroniques à base de graphène, il faut adresser ces problèmes et 
trouver des solutions. Par exemple, est-il possible de faire croître par CVD 
des couches continues de graphène présentant une mobilité électronique 
comparable à celles des petits échantillons obtenus par la technique 
traditionnelle d’exfoliation du graphite ? Pour une intégration du graphène 
dans des applications à grande échelle, le but ultime serait la production d'un 
monocristal de graphène à l'échelle d’une galette (wafer) entière de silicium 
de 300mm. Est-il déjà possible d'améliorer la CVD sur Cu pour se débarrasser 
de ces défauts et d'obtenir une monocouche de graphène homogène ? Ces 
questions sont examinées dans le premier chapitre de cette thèse, dans lequel 
on abordera des détails sur notre nouvelle méthode de croissance CVD 
pulsée permettant de supprimer complètement les zones multicouches.  

 
D'autre part, le graphène déposé sur le métal doit être transféré sur 

des substrats isolants pour applications en nanoélectronique. Comment cela 
peut t-il être réalisé ? Si nous visons les applications à plus court terme du 
graphène, le transfert sur des substrats transparents flexibles est également 
un point critique. Dans quelle mesure est-t-il possible d’obtenir un graphène 
sur ces substrats d’aussi bonne qualité que celle présentés dans les résultats à 
l’état de l’art ? Nous aborderons ces sujets dans le chapitre 2. Nous 
discuterons des procédés de transfert secs et humides sur substrats variés et 
nous examinerons les performances de conduction d’électrodes de graphène 
transparentes et flexibles.  Le graphène est essentiellement un matériau 
constitué de deux interfaces, sans aucun volume propre, par conséquent 
l’influence de l’environnement (tant physico-chimique qu’électromagnétique) 
sur ce matériau est considérable. De plus, de part sa structure carbonée des 
adsorbats peuvent se lier facilement physiquement ou chimiquement sur la 
surface. Ceci pose des questions importantes concernant la pureté du 
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graphène. Est-il possible de produire du graphène véritablement "neutre" 
c’est à dire présentant de très faibles niveaux de dopage (c’est à dire moins de 
1011 electron/cm-2) ? Comment peut-on obtenir le graphène le plus propre 
possible, avec une surface sans contamination visible et ainsi compatible avec 
des études de surfaces aussi exigeantes que sont les techniques de 
microscopies à sonde locale telle que le STM ? Pour y répondre, nous allons 
explorer dans le chapitre 4 une série de méthodes de nettoyage optimisées, et 
notamment détailler la mise au point d’une méthode basée sur des 
traitements acides, permettant l'élimination des résidus de polymère.  

 
Une autre problématique, importante pour l’utilisation du graphène en 

tant que matériau pour la nanoélectronique, concerne le contrôle des défauts 
à l’échelle de la maille cristalline (tels que des trous, la rugosité, les joints de 
grains). 

En effet, la présence de désordre à cette échelle dans un tel système de 
basse dimension affecte considérablement le libre parcours moyen des 
électrons, générant de la diffusion visible dans la conductance électronique. 
Parmis ceux-ci on peut citer la localisation faible ou forte qui, associés au 
contrôle de la densité de porteurs, permet d’induire une transition 
métal-isolant contrôlée par la tension de grille. Dans ce cadre, il est 
intéressant de savoir s’il est possible de concevoir des méthodes qui 
permettent d'adapter précisément le niveau du désordre, en induisant une 
quantité bien contrôlée de défauts à l'échelle atomique ? Le chapitre 5 de cette 
thèse va traiter de ce problème. Nous allons présenter les méthodes 
classiques pour induire des défauts basés sur des plasmas réactifs puis nous 
allons montrer nos résultats basés sur une voie chimique induisant des 
lacunes. 

Le graphène est le premier gaz d’électrons bidimensionnel 
entièrement nu, ce qui représente un énorme intérêt de ce matériau pour 
l’élaboration de systèmes hybrides à 2D. Par exemple, si ce tapis électronique 
est décoré par des nanoparticules supraconductrices, celle-ci vont induire 
localement des fluctuations supraconductrices par effet de proximité et le 
graphène peut devenir par percolation de ces fluctuations un 
supraconducteur macroscopique à 2D. Quelle sera la physique dominante 
dans un tel système et comment cette physique dépendra-t-elle de 
paramètres intrinsèques présents dans le graphène tels que le niveau du 
désordre structural, le signe et la densité des porteurs de charge ? 

Dans le dernier chapitre, nous allons montrer nos expériences sur la 
transition supraconducteur – isolant dans le graphène décoré par des 
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nanoparticules d’étain. Dans ce système hybride, du graphène synthétisé par 
les techniques CVD présentés au début du manuscrit est décoré d’un réseau 
de nanoparticules d’étain supraconductrices. Suivant la densité de particules 
et sa superstructure spatiale (réseau aléatoire ou triangulaire), de nombreuses 
phases distinctes peuvent être obtenues et étudiées, notamment la présence 
d’une phase métallique exotique entre les phases isolantes et 
supraconductrices. Nous allons comparer ces résultats avec des prédictions 
théoriques récentes.  

Je présente dans ce qui suit les principaux résultats obtenus dans cette thèse 
en détaillant chaque chapitre. 

 

1. Croissance d’une monocouche homogène de graphène sur cuivre par une 

technique innovante de CVD pulsée.  

 

Après un état de l’art rapide sur les progrès récentes dans la fabrication 

du graphène sur cuivre, nous allons décrire notre technique innovante basée sur 

de la CVD pulsée. Cette technique nous a permis d’obtenir pour la première fois 

des monocouches de graphène exemptes de zones multicouches habituellement 

présentes lors de la croissance sur cuivre.  

 

Les techniques CVD (dépôt chimique en phase vapeur) sont 
maintenant devenues les méthodes parmi les plus efficaces et prometteuses 
pour produire du graphène de haute qualité et de grande taille [15]. C'est un 
domaine de recherche en plein essor pour le graphène; on note par exemple 
que plus de 1600 articles ont été publiés au cours des trois dernières années 
contenant dans leur titre les mots « Graphène » et « CVD ». 

Le meilleur substrat pour le dépôt catalytique du graphène est 
inconstestablement une feuille laminée de cuivre, principalement parce 
qu’elle fournit un substrat sacrificiel soluble qui permet ensuite la libération 
de la couche macroscopique de graphène et son report sur substrat isolant. 
Les mécanismes de croissance du graphène sur cuivre sont complexes et ont 
fait l’objet d’une fraction importante des 1600 articles sus-cités. Certains 
points font encore débats : par exemple, une seule monocouche de graphène 
est censée croître sur Cu en raison de l'auto-limitation du procédé lié à la très 
faible solubilité du carbone dans le volume de cuivre [16]. Cependant, les 
observations expérimentales montrent lors du procédé CVD du graphène sur 
feuille de cuivre, des multicouches sont toujours présentes et peuvent couvrir 
une fraction importante de la surface (de 5% jusqu’à 30%), en recouvrant 
notamment les sites de défauts de surface du métal. Ces multicouches 
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apparaissent quelles que soient les conditions de croissance. Jusqu’à présent, 
seuls les substrats monocristallins (incompatibles avec un caractère sacrificiel 
et peu adaptées pour une utilisation industrielle) permettaient de s’en 
affranchir. La croissance de zones multicouches dans le graphène sur Cu 
semble a priori en contradiction avec le mécanisme d’auto-limitation, qui 
suppose en effet que toute zone recouverte d’une monocouche de carbone 
devient inerte vis à vis d’une croissance supplémentaire. 

Ces zones multicouches constituent pourtant des défauts 
considérables en ce qui concerne les applications potentielles du graphène. 
Nous montrons en effet que  ces multicouches sont néfastes pour les 
propriétés optiques et électroniques du graphène, et doivent donc être 
éliminées. En comparant nos observations expérimentales avec d'autres 
résultats rapportés dans la littérature [17], nous avons compris que la 
formation des multicouches pendant le processus CVD est due à la 
ségrégation dans les sites de défauts de la surface de Cu, où le carbone peut 
être piégé, et puis relargué durant la phase de ségrégation. Ainsi, des 
multicouches de graphène se forment sous la monocouche macroscopique 
aux points du nucléations des grains de graphène, comme le montre la Figure 
1.  

 

 
 

Figure 1: a) et b) Représentation schématique en coupe des mécanismes de croissance du 

graphène à la proximité d'un site de défaut sur le cuivre pour le processus standard 

sur Cu (CVD continue). La ségrégation conduit à la formation d’un multicouche sous 

la couche macroscopique de   . c) Image MEB d'un grain héxagonal de graphène 

après transfert sur silicium oxydé. Notez que les multicouches apparaissent dans le 

centre de l’hexagone, ce qui coïncide avec la position du site de nucléation. 

 

Par conséquent, on peut tester plusieurs stratégies pour d'éviter la 
formation de multicouches:  

(a) Soit supprimer entièrement tous les défauts possibles sur la surface 
du Cu, ce qui a été effectivement prouvé pour le Cu monocristalin ou pour 
des films minces épitaxiés [18]; 
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(b) Soit interdire aux atomes de carbone d'être pris au piège dans les 
sites de défauts en limitant leur présence. 

Le premier choix est tout à fait abordable dans un laboratoire de 
recherche, mais se servir des couches sacrificielles epitaxiées ou de substrats 
monocristallines reste trop coûteux si des applications industrielles sont 
envisagées.  

 
Dans un premier temps, nous avons construit un prototype « fait 

maison » de réacteur CVD optimisé pour la croissance de graphène par 
méthane sur cuivre, que nous avons entièrement automatisé. L’automate 
permet le contrôle en temps réel du flux des gaz réactifs et diluants ainsi que 
de la température et la pression de l’enceinte comme le montre la Figure 2. 
Un tube en quartz de diamètre de 80 mm de diamètre et de 1 m de long sert 
de réacteur de croissance autorisant la production d’échantillons de grande 
taille (typiquement 2 pouces et jusqu’à 20×20 cm pour des feuilles de cuivre 
enroulées en cylindre). Il est équipé d’un four à trois zones de 
chauffage/contrôle, autorisant des températures jusqu’à 1050°C sur une zone 
homogène de 0,3 m de longueur. La pression de la chambre de croissance est 
réglable par ajustement de la vitesse de la pompe indépendamment du flux 
des gaz. Quatre contrôleurs de débit massique sont utilisés pour régler avec 
précision et en temps réel l'injection de chaque gaz (en de diffusion).  

 

 

 
Figure 2: Réacteur CVD automatisé pour la fabrication du graphène par technique 

CVD continue et pulsée. A) vue de la partie du four ouverte c) Substrat de Cu 

typique chargé pour la croissance de graphène. d) et e) Transfert de graphène 

CVD sur une plaquette de silicium oxydée de 2 pouces de diamètre. 
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Grace à la flexibilité apportée par notre réacteur prototype, nous avons 

pu développer une nouvelle technique de synthèse basée sur une croissance 
non continue obtenue par injection d’impulsion de gaz précurseur, que nous 
avons appelée ‘CVD pulsée’, et pour laquelle nous avons déposé un brevet et 
soumis une publication (arXiv : 1205.1337) à paraître dans la revue 
« Advanced Functional materials » . Le procédé revient donc à exposer le 
substrat catalytique à une vapeur de carbone de manière intermittente, tout 
en gardant l’hydrogène présent. Le procédé global est basé sur une 
succession de plusieurs centaines de cycles, chaque cycle étant caractérisé par 
la répétition de deux étapes respectivement de durée t1 (présence de carbone) 
et t2 (absence de carbone), comme le montre la Figure 3a. Ce procédé tire 
profit du caractère réducteur de l’hydrogène pur, présent durant la phase t2, 
au cours de laquelle le gaz précurseur du carbone est retiré, comme indiqué 
sur la Figure 3. La Figure 3 montre également des résultats des structures 
obtenues avec notre procédé CVD pulsé, pour un échantillon obtenu pour 
deux régimes de croissance distincts, le premier effectué à basse pression 
conduisant à des grains de morphologie dendritique et le deuxième effectué à 
haute pression et à faible teneur en carbone, conduisant à des grains 
hexagonaux. Pour ces deux régimes de croissance très distincts, on note 
l’absence totale de multicouche sur l’ensemble du substrat de plusieurs 
dizaines de centimètres carrés.  

 
Lorsque le nombre de cycles est suffisamment grand (typiquement 

plusieurs centaines), une couche continue et homogène à l’échelle 
macroscopique de graphène peut être atteinte, comme l'illustre la Figure 4. Le 
mécanisme de croissance pulsée est le suivant: l'absence intermittente de 
méthane permet d'éviter que les défauts du cuivre se saturent en carbone, 
limitant ainsi davantage la ségrégation et la production de zones 
multicouches. Lors de la première étape de la croissance (durée t1), seule une 
quantité faible de carbone peut arriver à s’adsorber sur la surface puis à 
diffuser. Cette quantité est cependant suffisamment élevée pour déclancher 
la nucléation, mais suffisamment faible pour éviter qu’une quantité massive 
de C vienne se dissoudre dans les défauts. Lors de l’étape suivante 
(deuxième partie du cycle, ou seul l’hydrogène est présent), les atomes de 
carbone libres sont évacués, et seuls ceux liés aux liaisons sp2  de surface 
subsistent car ils sont beaucoup plus stables énergétiquement. Si cette 
procédure est repétée d'une manière contrôlée, les îlots de graphène obtenus 
s’élargissent à 2D, mais sans carbone dissous dans les défauts, jusqu'à ce 
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qu'une couverture complète de la surface soit obtenue par percolation des 
grains. 

 
 

Figure 3: a) « Process-flow » montrant le chronogramme du flux des gaz  lors d’une 

CVD standard (ligne verte) et d’une CVD pulsée (ligne bleue). b) à e) 

micrographies MEB (microscope électronique à balayage) du graphène 

sur Cu; la croissance a été interrompue avant d'atteindre une couverture 

sur toute la surface, pour montreer la morphologie de croissance dans la 

CVD standard (colonne de gauche) et dans la CVD pulsée (colonne de 

droite). Les flèches en b) indiquent les différentes formes de multicouches. 

Les barres d'échelle sont de 10 µm. 

 
Les cartographies Raman (Figure 5) d'un grain de graphène 

typiquement obtenu par cette méthode CVD pulsée montre des intensités 
homogènes des bandes G et 2D, avec une intensité de bande D négligeable, ce 
qui suggère la bonne qualité cristalline du graphène obtenu. En outre, nous 
avons réalisé des statistiques de mesures à effet de champ sur 20 dispositifs 
fabriqués à partir de la technique CVD standard et de la technique CVD 
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pulsée, respectivement. Comme le montre la Figure 6, la mobilité 
électronique des porteurs dans les transistors de graphène obtenus par la 
méthode pulsée est supérieure à celle de transistors obtenus par la méthode 
standard. La meilleure mobilité obtenue dans le graphène par CVD-pulsée 
est 6781 cm2V-1s-1 ce qui se rapproche de la valeur maximale obtenue à l’état 
de l’art pour du graphène CVD.  

 

 
 

Figure 4: Micrographies optiques de couches continues de graphène après report sur substrat 

de silicium oxydé, obtenues par la CVD classique (à gauche) et pulsée (à droite). Les 

multicouches créent des distorsions optiques sur la gauche, tandis qu'à droite, seules 

les ridules sont présentes. Le logo CNRS a été obtenu par lithographie optique suivi 

par une gravure plasma oxygène. 

 
La technique CVD pulsée que nous avons développée évite donc la 

formation des multicouches, grâce à la faible solubilité du carbone sur 
certains métaux comme le cuivre. En plus d’éviter l’apparition des 
multicouches, ce qui est un des problèmes majeurs du graphène, cette 
technique est facilement implantable dans un milieu industriel.  

 



10 Résumé de la thèse!

!

 

Figure 5: Cartographie Raman sur un grain de graphène hexagonal (fixé par les paramètres de 

croissance); les bandes D (a), G (b) et 2D (c). d) Unique spectre pris dans la zone bleue dans 

l’image (c). La faible intensité de la bande D, qui indique les défauts, suggère la bonne qualité 

du graphène obtenu. 

 

 

Figure 6: a) Distribution statistique de la mobilité électronique extraite dans des transistors à canal 

de graphène déposé sur 285nm de SiO2 (10µm de longueur, 5µm de largeur). Des dispositifs 

obtenus pas la CVD standard et pulsée ont été réalisés et testés. La meilleure mobilité 

obtenue à température ambiante (6781 cm2V-1s-1) a été relevée pour un dispositif en 

configuration 4 pointes, obtenu par CVD pulsée.  
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2. Graphène de haute mobilité reporté sur substrat souple et transparent 

 
Pour valoriser les couches de graphène obtenues par croissance CVD pour des 

applications, nous devons être en mesure de les transférer sur les substrats adaptés. 

Dans cette partie, nous évaluons la performance des couches de graphène transférées 

sur substrat transparent souple, ainsi que la possibilité de les transférer sur des 

supports non classiques tels que des grilles pour l’observation en microscopie 

électronique à transmission.  

 

 
 

Figure 7: a) Substrat de verre recouvert de graphène transféré couche par couche, jusqu'à 

trois empilements successifs au centre du disque. b) Graphène transféré sur un film 

plastique présentant de bonnes propriétés de conductions sous contrainte mécanique. 

Les caractéristiques de ces couches sont présentées dans le graphique suivant. 

 
Pour toutes les applications, de la physique fondamentale à l’industrie, 

le graphène doit être transféré sur un substrat isolant, soit rigide (plaquettes 
de silicium, de saphir, plaques de verre, etc) soit souples (sur la surface de 
films polymère ou bien laminé entre deux couches plastiques). Même si les 
équipes de recherche tentent actuellement d'obtenir une croissance de 
graphène directement sur les isolants, les films de graphène qui en résultent 
sont encore loin de montrer une bonne cristallinité [19, 20], ou une grande 
taille [21]. Par conséquence, la plupart des applications de graphène sur 
isolant sont réalisées en détachant le graphène à partir de la surface du métal 
(essentiellement à base de cuivre comme décrit dans la partie 1).  

Dans ce chapitre, nous allons évaluer  le transfert de graphène sur 
des substrats souples et transparents, comme le montre la Figure 7. Des 
caractérisations électriques complètes indiquent que la résistance de notre 
couche de graphène transférée sur film de polyéthylène descend jusqu’à 
200"/carré pour un sandwich de 4 monocouches empilées et en l’absence de 
tout dopage intentionel. Ces performances sont à l’état de l’art, comme le 
montrent les données rapportées dans la Figure 8. 
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Outre le transfert réussi sur des films plastiques, nous démontrons 
également le transfert de graphène sur des grilles de microscopie 
électronique à transmission (TEM). Deux types de réseaux TEM ont été testés: 
le Lacey-carbone et le Si4N3. Il s'est avéré que le graphène est capable de 
coller sur les deux types de surface de grilles de TEM, et entièrement 
suspendu au-dessus des zones de plusieurs µm carrés. Cela nous a donné 
l'occasion d'introduire des structures sur graphène pour l'observation au 
TEM. De plus, la grille de TEM à base de graphène représente une 
plate-forme prometteuse [23] pour des analyses TEM d’échantillon 
biologiques (ADN, proteines, etc…)  grâce à la possibilité d’éliminer le 
signal cristallin du support de graphène par analyse des données 
informatiques. 

 

Figure 8: a) Figure de mérite pour l’utilisation du graphène en tant qu’électrode 

transparente. Le graphe montre la transmitance optique pour des multicouches en 

fonction du nombre de couches de graphène produit par notre technique de CVD 

pulsée puis transféré sur film plastique. b) Evaluation de notre echantillon par 

rapport à l’état de l’art (figure adaptée de la ref. [22]). L’étoile noire montre les 

données correspondantes à notre graphène à 4-couches et se trouve sur la courbe de 

performance de l’oxyde d’indium et d’étain (ITO), matériau standard pour la 

réalisation d’électrodes transparentes.  
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De plus, comme le graphène forme une membrane étanche aux 
liquides et aux gaz [24], il peut servir de membrane utile pour des études de 
« matière molle » permettant de séparer des liquides, des molécules ou des 
nanoparticules. Un exemple de nanoparticules de Sn déposées sur le 
graphène a été testé sur une grille Si4N3 TEM avec des trous de 4 mm2 (voir 
Figure 9b). 

 
La facilité de transfert qu’offre le graphène réalisé par CVD présentée 

dans ce chapitre ouvre la voie pour des usages polyvalents et des 
nombreuses futures applications tel que des heterostructures empilées avec 
du graphène. Les parties suivantes de cette thèse sont réalisées sur du 
graphène réalisée par CVD et transféré sur les plaques avec oxydes de 
silicium.  

 

         

 

Figure 9: a) Image TEM du graphène réalisée par notre procédé CVD et transféré sur une 

grille en carbone (tension d’accélération de 80 kV). b) Graphène décoré par de l’étain, 

transféré sur grille de TEM en Si4N3. Les nanoparticules d’étain sont déposées sur le 

graphène par évaporation thermique et présentent un parfait démouillage. Encart de 

b) est une image large champ de la grille Si4N3 avec le graphène transféré par-dessus.  

 
 

3 Contrôle par voie chimique de la contamination de surface et du désordre 

électronique dans le graphène 

 
Les parties précédentes démontrent que nous sommes en mesure de fabriquer 

et de transférer des monocouches de graphène macroscopique présentant une haute 

mobilité électronique. Dans cette partie, nous discutons d'abord plusieurs techniques 

de nettoyage de la surface du graphène et nous montrons que par un traitement 
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chimique, on peut générer une densité controlée de lacunes dans le graphène donnant 

des propriétés électroniques bien spécifiques.  

 

Le graphène est connu pour être un matériau facilement dopé ou 
contaminé, à cause de l’absence de volume et par le fait que ses surfaces 
supérieure et/ou inférieure qui sont dans la plupart des cas exposées à 
l'environnement. Le nettoyage du graphène par des techniques non invasives 
constitue une tâche délicate mais incontournable pour les études de transport 
électronique dans du graphène ultra-propre, telles que l'effet de Hall 
quantique, transport balistique mais également les études par microcopie à 
sonde locale (AFM, STM) . Il existe plusieurs voies pour parvenir à ce 
nettoyage faisant appel à trois phases de la matière: par chimie humide 
(solvants, acides faibles), par chimie sèche (gaz réactifs chauds, tels que le 
recuit à haute température dans de l'hydrogène dilué) et par attaque plasma 
(plasma réactif en présence d’hydrogène ou oxygène). 

Nous avons étudié l'effet de plusieurs traitements sur des dispositifs à 
base de graphène, conduisant notamment à la suppression du PMMA 
présent en surface. Nous montrons par exemple que le traitement à l'acide 
acétique [25], permet d’obtenir une surface plutôt propre, ce qui est 
compatible avec des études STM, comme le montre la Figure 10. 

Le contrôle des défauts dans le réseau cristallin (comme des trous, la 
rugosité des bords, les lacunes, les joints de grains) constitue un enjeu 
important dans la nanoélectronique à base du graphène. 

 
 

Figure 10: Image AFM en mode tapping sur des surfaces de graphène réalisées par CVD et 

transférées sur SiO2 avec une méthode assistée par PMMA. a) Le PMMA est 

éliminé par l'acétone. b) Le PMMA est éliminé par l'acide acétique pur pendant 48 

heures. Par rapport au traitement à l'acétone, la rugosité de la surface est beaucoup 

plus faible avec le traitement par l'acide acétique. c) image STM du graphène de 

l’image b). (Remerciements à C. Tonnoir et C. Chapellier du CEA-INAC pour cette 

image).  
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Pour le transport des électrons, la présence d'un défaut conduit à la 
diffusion puis à la localisation des ondes électroniques. La corrélation entre le 
désordre induit par un traitement physico-chimique et l’observation de 
signatures de localisation faible ou forte ont été étudiées [26]. De plus, les 
défauts dans le graphène peuvent jouer le rôle de moments magnétiques 
effectifs, donnant lieu à un effet Kondo contrôlable par une grille [27]. Par 
conséquent, il est important d'adapter précisément le niveau de désordre 
dans le graphène pour les études de transport. 

 
Normalement, pour créer des défauts dans le graphène, un 

bombardement ionique ou une irradiation par plasma sont utilisés [26]. Ici, 
nous montrons que lorsque le graphène est plongé dans un bain d’acide 
Na2S2O8 (0.1 g/ml), on crée des défauts dont la densité augmente avec le 
temps du traitement, comme le montre la Figure 11. Une nette augmentation 
de l'intensité du pic D Raman avec la durée de séjour dans la solution de 
gravure peut être observée dans la Figure 11a, ce qui est la caractéristique de 
la densité croissante de défauts dans le graphène. On remarque que, à droite 
du pic G, il y a un petit pic dont l’intensité augmente également (bande D'), 
ce qui constitue une autre signature de la présence de défauts structuraux. Il 
a été démontré que le rapport d'intensité D/D' reflète la nature du type de 
défaut [28]. Dans le cas du graphène mesuré après 19 heures de traitement 
chimique, le ratio d'intensité D/D' est d'environ 13, ce qui est  compatible 
avec un défaut de type sp3 [28]. La résistance surfacique de ces mêmes 
échantillons a été également mesurée en fonction du temps d’attaque. Une 
augmentation quasi-linéaire de la résistivité avec le temps de traitement peut 
être observée dans la Figure 11b. L’augmentation de la résistivité est connue 
pour être directement liée à la diffusion des électrons par le désordre. Ce 
résultat, compatible avec l’apparition du pic D dans les spectres Raman, 
prouve que par simple trempage dans un solvant chimique, des défauts 
peuvent être induits dans le graphène. Qu’elle est la nature réelle et la taille 
typique de ces défauts ?  

Pour vérifier la structure de ces défauts à l’échelle microscopique, 
nous avons procédé à l'observation TEM du graphène traité pour différents 
temps de gravure. Le graphène sans traitement montre une bonne 
cristallinité (Figure 12a), tandis qu’au bout de 14 heures de gravure (Figure 
12b), des lacunes de taille atomique apparaissent sur l'échantillon. 
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La méthode chimique (Na2S2O8 - solvant) permet donc de contrôler 
facilement le niveau des défauts sur une échelle et une densité tout à fait 
interessantes pour le transport électronique. Une dépendance quasi linéaire 
des défauts est visible dans la mesure de résistance carrée des échantillons. 
Cette méthode a déjà été mise à profit par notre équipe pour des études 
fondamentale basées sur le graphène désordonné, telles que la transition 
quantique de phase supraconducteur-isolant [13]. 

 

 
Figure 11 : a) Spectres Raman du graphène traité dans 0.1 g/ml Na2S2O8 pour des différentes 

durées, et leur résistances carré (b) correspondante. Une augmentation presque 

linéaire de la résistivité à température ambiante est obtenue avec le temps de gravure 

dans le solvant Na2S2O8. 
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Figure 12: a) Image TEM du graphène sans défauts sur grille de carbone dentelée. Le 

graphène a été réalisée par CVD pulsée, nettoyé par l'acétone et recuit à 120 oC sous 

vide pendant 2 heures. Les images TEM ont été prises par Hanako OKUNO de 

CEA-INAC. b) Image TEM du graphène après immersion dans 0.1 g/ml Na2S2O8 

pendant 14 heures. La zone entourée souligne le site d’une lacune probablement 

induite par une réaction avec solution. 

 
 
 

4. Phase métallique quantique dans le graphène décoré par un réseau 

régulier de nanoparticules supraconductrices d’étain.  

 
Dans le dernier chapitre, nous abordons enfin la clé de voûte de cette thèse : 

l’étude plus fondamentale du transport à basse température d’un réseau triangulaire 
régulier des îlots supraconducteurs sur graphène. A basse température, nous 
montrons une transition de phase quantique supraconducteur – métal, contrôlée par 
la grille ; cette transition est induite par des fluctuations de phase quantique de la 
phase supraconductrice et peut être expliquée par un modèle théorique. 

 
Dans les métaux usuels à 2D, l’état métallique est rendu instable par la 

localisation électronique par les défauts structuraux [29]. Toutefois, un état 
métallique intermédiaire est souvent observé expérimentalement dans la 
région proche de la transition supraconducteur-isolant (SIT) dans des films 
minces désordonnés [30, 31, 32, 33]. Pour comprendre la physique présente 
derrière cet état quantique métallique, un modèle basé sur une transition de 
phase quantique (TPQ) a été proposé dans un réseau d'îlots 
supraconducteurs couplés par effet de proximité via un métal « sale » [34, 35, 
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14]. Ce modèle prédit que les fluctuations de phase quantique à l'intérieur de 
chaque îlot provoqueront une disparition progressive de la cohérence de 
phase, qui diminue l’intensité du couplage supraconducteur, et qui donc 
conduit à un état métallique à température nulle. 

Des études récentes [36] sur des réseaux de pastilles de niobium 
déposés sur un film mince d’or ont démontré que la température critique de 
ces réseaux de proximité couplés diminue lorsqu'on augmente la distance 
inter-îlots ; elle arrive à zéro pour une distance inter-îlots finie. Ceci indique 
une transition de phase quantique vers un état métallique à  2D [37]. 
Toutefois, en raison de l’absence de modulation de la densité de porteurs 
dans les films d’Au, ce système expérimental ne permet pas d’obtenir des 
résultats expérimentaux compatibles avec la théorie complète décrite 
ci-dessus. 

Or le graphène offre une plate-forme idéale pour les études de la 
supraconductivité de proximité à 2D, notamment parce que sa faible densité 
de porteur permet d’éviter l’appauvrissement des particules 
supraconductrices par effet de proximité inverse. Par exemple il est prédit 
que le graphène décoré avec 1% de sa surface par des îlots supraconducteurs 
peut devenir facilement supraconducteur à l’échelle macroscopique [14]. 

 

 

 

Figure 13 : Imagerie optique (a) et au MEB (b) des réseaux ordonnés d’étain sur graphène. c) 

dépendance de la résistance à polarisation nulle avec la tension de grille, pour plusieurs 

températures. d) Cartographie de la résistance à polarisation nulle en fonction de la 

température et de la tension de grille. La ligne en pointillés est la température de transition 

BKT calculée à partir de la théorie [14]. Les lettres "S" et "M" représentent les états 

respectivement supraconducteurs et métalliques. 
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Dans ce cadre, nous avons conçu un réseau triangulaire d'îlots 
supraconducteurs déposés sur graphène pour étudier l’influence du couplage 
supraconducteur par effet de proximité. Les couches de graphène obtenues 
par CVD sont transférées sur une plaque de silicium recouverte de 285 nm 
d’oxyde servant de diélectrique de grille. La couche de graphène ainsi 
obtenue sert de métal 2D à résistance variable. La surface du graphène 
entière a été décorée par lithographie avec un réseau de nanodisques de Sn 
de 50 nm d'épaisseur. Ces nanodisques d’étain ont un diamètre de 400 nm et 
sont séparées par 1µm entre leurs centres (Figure 13a) (soit 16% de 
couverture). Ce type de réseaux supraconducteur régulier sur le graphène est 
un système modèle pour étudier les fluctuations quantiques de la phase 
supraconductrice ; il se prête parfaitement à des comparaisons quantitatives 
avec la théorie. En effet, le couplage de proximité à travers le métal 
désordonné 2D est longue portée (décroissance en 1/r2), et est donc idéal 
pour un traitement théorique dans l’approximation des champs moyens. 

Trois caractéristiques principales sont observées: 
1) la très bonne concordance de la température de transition 

supraconductrice à 2D (de type Berezinski-Kosterlitz-Thouless) entre les 
données expérimentales et les prédictions théoriques (Figure 13.d) 

2) la saturation de la résistance à basse température pour des tensions 
de grille voisines du point de neutralité de charge, ce qui est un signe de l'état 
métallique, 

3) l’apparition d’un effet de ré-entrance de la phase supraconductrice 
aux plus basses températures et en présence de champ magnétique, en accord 
avec les prédictions théoriques [38]. 

 
5 Conclusions 

 
Après avoir rattrapé l’état de l’art de la croissance CVD et du transfert 

du graphène sur substrat isolant, nous avons développé une nouvelle 
méthode de CVD pulsée, qui est capable d'éliminer totalement les 
multicouches présentes dans ce matériau. Cette méthode réduit 
considérablement les défauts sur le graphène CVD et conduit à la réalisation 
du graphène avec des propriétés optiques et électriques supérieures. Nous 
avons examiné les questions techniques relatives à la fabrication de 
dispositifs de graphène, comme le processus de transfert et du nettoyage. Des 
électrodes transparentes et flexibles avec des propriétés de transport à l’état 
de l’art ont été démontrées. En outre, diverses méthodes pour la purification 
du graphène ont été introduites. 



20 Résumé de la thèse!

!

Que ce soit en termes de fabrication ou de la caractérisation du 
matériau, nous avons pu faire contrôler la densité de défauts aussi bien sur la 
surface qu’au sein du matériau ceci d'une manière contrôlée par des 
traitement par voie humide. Nous avons découvert une nouvelle façon 
chimique d’introduire des défauts dans le graphène par simple immersion 
dans du Na2S2O8. Cette méthode ouvre la possibilité d’obtenir une large 
variété d’échantillons présentant des propriétés physiques différentes et de 
faire le lien entre structure et propriétés électroniques. Cela nous permet 
d'avoir un paramètre supplémentaire pour contrôler les caractéristiques du 
graphène, et dont nous avons profité pour nos études du transport 
électronique à basse température.  

Grâce l’usage du graphène obtenu par CVD suivi du contrôle du 
désordre, de la densité et de la symétrie des réseau de grains, nous avons 
réussi à obtenir un dispositif quantique macroscopique, montrant une 
transition supraconducteur-isolant contrôlée en tension de grille avec dans 
certains cas, une phase métallique intermédiaire. Cette expérience a deux 
conséquences importantes: la démonstration d’un supraconducteur 2D de 
taille illimitée, et la manifestation d'un switch quantique. 

Pour compléter davantage notre étude, nous avons réussi à décorer 
notre graphène avec un réseau triangulaire régulier de nanodisques de Sn, 
qui est un système prototype pour l’étude des transitions de phase quantique. 
Nous avons compris le comportement en comparant à des travaux théoriques 
et constaté l'existence d'un état métallique induit par la fluctuation des 
phases quantique et qui est contrôlable par une grille électrostatique.  

 
En conclusion, le point clé de cette thèse consiste en une étude 

générale du graphène, allant de la mise au point d’une technique de synthèse 
innovante par CVD pulsée, jusqu'aux mesures de transport électronique à 
très basse température sur des dispositifs quantiques hybrides. 



S Y N O P S I S O F T H I S T H E S I S

This experimental work deals with graphene. Graphene is a monolayer of
graphite, and thus can be considered as a bi-dimensional crystal of carbon atoms
organized in a honeycomb lattice. It is a promising material for future electronic
applications due to a unique combination of optical, mechanical and electrical
properties. It is almost transparent [1, 2], a zero-gap semiconducting, and its
atomic thickness is compatible with ultra-high frequency analogue electronics.
Consequently, it could be widely used in fields such as transparent flexible elec-
tronics [3, 4], 100 GHz transistors [5], THz imaging systems [6], photovoltaics [7],
nano-mechanical systems [8], quantum resistance standards [9, 10], etc.

From the fundamental physics point of view, graphene exhibits the unique
characteristics of 2D massless Dirac fermions, combined with gate tunability
of the charge carrier density [11]. Therefore, it is of great importance for low
dimension condensed matter physics. Furthermore, graphene offers physically
and chemically stable 2D electron gas exposed to air, which can be coupled to
other materials, thus leading to hybrid systems. For example, as we will see
in this dissertation, graphene combined with superconducting nanoparticles has
been reported to be able to serve as an ideal media for implementing tunable 2D
superconductivity [12, 13, 14].

In this thesis work, we indeed aim at measuring very low temperature elec-
tronic transports of fully functionalized and integrated graphene quantum de-
vices. To achieve this goal, we have built an experimental protocol allowing us
to grow high mobility graphene, transfer it on substrates, and control the amount
of electronic disorder and integrate it in quantum devices.

THE QUESTIONS ADDRESSED IN THIS WORK

Today, CVD of graphene on Copper [15] is undoubtedly the best technique to
grow macroscopic monolayers that can be further transposed on arbitrary sub-
strates. However, this technique is still plagued with a series of flaws and draw-
backs: the produced graphene still show structural defects such as wrinkles, mo-
saic of multi-grains, multilayers patches, etc. Therefore, many challenges remain
before one could use this technique for mass production of electronic devices.
For example, is it possible to grow continuous layers of graphene with mobility
comparable to exfoliated devices? For production of graphene useful for large
scale integration, the ultimate goal would be the production of a pure single
crystal of graphene at the wafer scale. Is it possible to improve the CVD on Cu
to get rid of these defects, for example, to have absolute monolayer graphene?
These issues are reviewed in the first chapter of this thesis, in which details of
the CVD growth methods will be introduced, as well as a novel method to fully
suppress the multilayers patches which is known to cover a significant surface
amount of CVD graphene.

21
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Graphene grown on metal has to be transferred onto insulator substrates for
nanoelectronics applications. How can this be realized? And how can the
graphene we produce compare with state-of-the-art, since the most promising
short-term application prospect of graphene concerns transparent electrodes?
We address these issues in chapter 2. Graphene dry/wet transfer processes are
discussed, and we will also show our demonstration of flexible transparent elec-
trodes made of CVD graphene.

Graphene consists of basically two surfaces and no bulk, therefore it is eas-
ily influenced by the environment, such as adsorbates (physically or chemically
bound to the surface). This raises another question of whether it is possible
to produce really "neutral" graphene with a very low doping level (i.e., below
1011cm−2)? How can one get it as clean as possible, with a surface free from
contaminations and compatible with STM studies? To answer this, we will ex-
plore a series of cleaning methods in chapter 4, with emphasis on the method of
acetic acid removal of PMMA residues.

Another important issue in graphene nanoelectronics is the control of lattice
disorder (such as hole, edge roughness, vacancies, grain boundaries). As disor-
der in a low dimensional system drastically affects the electron mean free path,
phenomena such as weak- or strong-localization will appear while cooling or
tuning the carrier density. This could also lead to a metal-to-insulator transition.
Is it possible to devise methods which allow tailoring precisely the level of dis-
order by inducing well-controlled amount of atomic scale defects? Chapter 5 in
this dissertation will deal with this problem. We will introduce the background
of conventional plasma methods of inducing disorder, and will show our results
using a chemical route.

The discovery of graphene has produced for the first time, a fully naked 2D
electron gas, which is of great interest for the investigation of graphene hy-
brid systems. For example, when decorated with superconducting nanoparticles,
graphene is able to extend a tunable 2D superconductivity to a macro scale by
percolation of the local superconducting proximity effect. What kind of physics
will dominate when superconductor-decorated onto CVD graphene is coupled
to another physical parameter, such as the level of disorder?

In the final chapter, we will show our experiments on superconductor-to-
insulator quantum phase transition when a disordered CVD graphene is deco-
rated with random network of tightly-packed non-percolating superconducting
nanoparticles. Moreover, we will also discuss the new generation of graphene
hybrid devices, i.e., sparsely-distributed regular triangle arrays of superconduct-
ing nanoparticles decorated CVD graphene. In this kind of device, due to the
quantum phase fluctuations inside each superconducting island, global phase
coherence is broken, and a new metallic state is established.

In the following sections, I will detail one after another the main results for
each chapter of my thesis.
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1 growth of homogeneous monolayer graphene on copper by in-
novative pulsed-cvd.

In this part, we introduce the mechanism and recent progresses of graphene grown on

Cu foils. We were the first to conceive a new method based on the pulsed-CVD technique

to completely suppress the parasitic multilayers of graphene during growth on normal

Cu foil.

Figure 0.1: a) and b) Schematics highlighting the growth mechanisms near a defect site
on copper for standard process on Cu (continuous CVD), leading to a real
graphene flake with multi-layers in c) SEM picture of a graphene grain after
transfer on oxidized silicon. Notice that the multilayers appear in the center,
which indicates the site of nucleation.

CVD, in full terms "Chemical Vapour Deposition", has become one of the most
efficient way to produce large-size, high-quality graphene [15]. It is a booming
research area for graphene as more than 1600 papers have been published during
the last three years.

Copper foil is chosen to grow graphene mainly because it provides a sacrificial
catalytic substrate. Moreover, a strictly monolayer graphene is believed to grow
on Cu due to the self-limiting process due to the low carbon solid solubility in
Cu [16]. However, experimental observations show that, so far, in CVD process
of graphene on Cu foils, multilayers are often covering a significant fraction of
the surface, preferentially at the defect sites on Cu surface, regardless of the
growth conditions. The occurrence of multilayer patches in graphene grown on
Cu seems in contradiction with the above mentioned "self-limiting" mechanism.
Most importantly, we found that those multilayers are detrimental for optical
and electronic properties in graphene, and therefore has to be removed by some
means.

By comparing our experimental observations with other results reported in the
literature [17], we understood that multilayers formation during CVD process is
due to the segregation at the Cu foil defect sites, such as grains boundaries,
grooves, where carbon can be trapped, and then released, leading to carbon
segregation.

Thus graphene multilayers form below the macroscopic layer, as shown in
Figure 0.1. Consequently, one has two choices in order to avoid multilayers
formation:

(a) to remove all possible defects in Cu foil, which is indeed proven to be true
for single crystal Cu or epitaxial thin films [18];
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(b) to prohibit the carbon atoms from being trapped at the defect sites. The
first choice is affordable in a laboratory-scale, but too costly to serve as sacrificial
layers, especially if industrial applications are envisioned.

Figure 0.2: a) and b) Our home-designed and home-assembled fully-automatized setup
for graphene CVD growth, built up from separate parts. c) a typical Cu foil
loaded for graphene growth. d) and e) transfer of CVD graphene onto 2”
SiO2 wafer.

As a start, we built a home-made automatized CVD prototype, as shown in
Figure 0.2. A 80-mm diameter quartz tube serves as the growth chamber for
large size graphene growth. A three-zone furnace with PID-controlled temper-
atures allows processes up to 1050 ◦C, with a heating zone of about 0.5 m in
length. Pressure of the growth chamber is tunable by adjusting the pump speed.
Four mass flow controllers are used to precisely tune in real time the injection of
each reacting and dilution gases.

With our home-made CVD prototype, we were able to develop a new method
for which we have filed for a patent application, called "pulsed-CVD". The
method consists in exposing the catalytic substrate to the carbon precursor in
an intermittent fashion of short time periods of alternative durations t1 and t2
Figure 0.3a. This method takes advantage of the etching nature of hydrogen gas
separated by duration t2, during which the carbon precursor gas is removed, as
indicated in Figure 0.3. Neither graphene obtained by the pulsed-CVD method
with parameters for dendritic (t1=10 s, t2=50 s) and hexagonal (t1=5 s, t2=55

s) graphene growth show multilayers (Figure 0.3). When making the number of
pulses large enough, continuous and homogeneous layer of large scale graphene,
with macroscopically homogeneous one layer can be achieved, as illustrated in
Figure 0.4.

The pulsed growth mechanism is proposed as follows: the intermittent ab-
sence of methane avoids the defect sites to be saturated with carbon, therefore
limiting further segregation and production of multilayer patches. When the
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Figure 0.3: a) Work flow of standard and pulsed-CVD. b)-e) Scanning electron Micro-
graph (SEM) of graphene on Cu for which growth was interrupted be-
fore reaching full surface coverage, showing morphology for standard-CVD
growth (left column) and pulsed-CVD growth (right column). Arrows in b)
indicate the different shapes of small multilayers. Scale bars are 10 µm.

Figure 0.4: Optical micrograph of patterned continuous sheets of graphene grown by
conventional (left) and pulsed (right) CVD methods. The multilayer patches
create optical distortions on the left, while on the right only wrinkles remain.
The CNRS logo was made by lithography and oxygen plasma etch.

first growth step is triggered, a very small amount of carbon can become surface
adatoms and diffuse on the Cu surface, whose amount is high enough to trigger
some nucleation, but small enough to avoid massive dissolution into defects. The
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following idle step thus evacuates free carbon atoms, except for the as-nucleated
sp2 bondings, as they are much more stable energetically. If this procedure is
repeated in a controlled manner, graphene islands will get expanded in 2D, but
without any dissolved carbon underneath, until a complete coverage is fulfilled.

Raman maps (Figure 0.5) of a typical graphene grain grown by the pulsed-
CVD method exhibit homogeneous G and 2D band intensity, with negligible
D band intensity, suggesting good quality of graphene obtained by this method.
Moreover, statistics of field effect measurements were carried out over 20 devices
made from standard- and pulsed-CVD techniques, respectively. As shown in
(Figure 0.6), charge mobility of graphene obtained by pulsed-CVD method is
superior to the one grown by standard method. The best mobility obtained in
pulsed-CVD graphene is 6781 cm2V−1s−1.

Figure 0.5: Raman map of a) D, b) G, and c) 2D bands for a transferred graphene grain
grown using parameters leading to hexagonal grains. d) is a single spectrum
taken at the blue-dotted area. The weak intensity of D band (denotes for
defects) intensity suggests good quality of graphene.

The pulsed-CVD technique we developed is based on the formation mecha-
nism of multilayers on low carbon solid solubility metals, and it provides an
easy and industrially affordable way of obtaining strictly monolayer graphene.
So far, the main sources of defects in CVD graphene are 1) wrinkles, 2) grain
boundaries, and 3) multilayers. Our pulsed-CVD method ultimately solves the
third one.

2 flexible and transparent high mobility graphene .

In order to use graphene layers obtained by CVD growth for applications, we must be

able to transfer them on substrates. In this part, we are assessing the performance of

graphene sheets transferred on flexible transparent substrate, and the possibility of trans-

ferring them onto non-classical substrates such as a TEM grid.
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Figure 0.6: a) Distribution of electronic mobility extracted by a semiconducting like
fit (see b) of graphene transistor (10 µmlength× 5 µm width) on 285 nm
SiO2, grown by standard and pulsed-CVD, respectively. b) the best room-
temperature mobility was obtained in a four-probe device made of pulsed-
CVD graphene, which is 6781 cm2V−1s−1.

For all industrial and fundamental physics applications, graphene has to be
supported on a substrate, either solid (silicon or sapphire wafers, glass plates,
etc.) or flexible (laminated inside or at the surface of polymer films). Even
though research teams are currently trying hard to get graphene directly grown
on insulators, their resultant graphene films are still far from showing good crys-
tallinity [19, 20], or from large size [21]. And therefore, most of the applications
are realized by detaching graphene from metal surface such as Cu, as described
in part I.

Here we will show the transfer of graphene onto flexible and transparent sub-
strates, as shown in Figure 0.7. Full characterizations indicate that sheet resis-
tance of our CVD graphene transferred onto plastic film (polyethylene) scales
down to 200 Ω/square for 4 monolayer stack, whose performance is state-of-the-
art, as compared to other reported data Figure 0.8.

Figure 0.7: a) A glass window covered with CVD graphene transferred layer by layer, up
to three layer stack. b) CVD graphene transferred onto a plastic film. Figure
of merit of these layers are presented in next graph.

Besides the successful transfer on plastic films, we also demonstrate the trans-
fer of CVD graphene onto transmission electron microscopy (TEM) grids. Two



28 contents

Figure 0.8: a) Sheet resistance versus number of layers of our CVD graphene transferred
onto plastic film.Solid line is guide to the eye. b) Performance of transparent
conductive electrodes [22]. The data point of our 4-layer transferred CVD
graphene is indicated by the black star.

Figure 0.9: a) TEM micrograph of CVD graphene transferred onto a lacey carbon TEM
grid, imaged with 80 kV acceleration voltage. b) CVD graphene transferred
onto a Si4N3 TEM grid. Sn nanoparticles are deposited onto graphene by
thermal evaporation. Inset of b) is a picture of the zoomed-out Si4N3 TEM
grid with CVD graphene transferred on it.

kinds of TEM grids were tested, the lacey-carbon one, and the Si4N3 one. It
turned out that graphene is able to stick on both kind of surfaces of TEM grids,
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and fully suspended over areas up to several µm. This provides us an opportu-
nity to introduce materials on graphene for TEM observation, and the produced
graphene-based TEM grid is a promising platform [23] for biological studies, as
the deterministic light carbon background can be removed by computer analysis.
Moreover, since graphene is penetration-proof (actually almost no molecules can
penetrate the graphene lattice [24]), it can serve as a load membrane of micro-
liquid, molecular, or nanoparticles. An example of Sn nanoparticles deposited
onto graphene was tested on a Si4N3 TEM grid with 4 µm2 holes, is shown in
Figure 0.9b.

The easy-transferable nature of CVD graphene is shown in this chapter to be
of versatile uses. And it is of interest for many future applications, such as
graphene stacked hetero-structures. The following parts of this thesis is based
on the transferred CVD graphene on silicon oxide wafers.

3 chemical control of graphene surface contamination and in-
ternal disorder .

The previous parts demonstrate that we are able to fabricate and transfer high mobility

monolayer graphene. We are also able to make the crossover from "clean" graphene to

"dirty" graphene, in a controlled manner. In this part, we discuss first several ways of

cleaning graphene, and we show that by chemical treatment, one can control the density

of vacancies in graphene.

It is known that graphene is easily doped or contaminated, since its top
(and/or bottom) surface is in most cases exposed to the environment. Non-
invasive cleaning of graphene is a challenging but mandatory task for transport
studies of ultra-clean graphene, such as fractional quantum Hall effect, ballistic
graphene junction, etc. There are several routes to achieve that: wet chemistry
(solvent, weak acids), dry chemistry (hot reactive gases, such as annealing in
hydrogen gas), plasma chemistry (hydrogen, oxygen).

We investigated the field effect of graphene devices by several means, i.e., the
acetone removal of PMMA, and thermal annealing. And we show that by acetic
acid treatment [25], one can get rather clean surface, which is compatible with
STM studies, as shown in Figure 0.10.

Control of lattice disorder (such as hole, edge roughness, vacancies, grain
boundaries) is an important issue in graphene nanoelectronics. For electron
transport, the presence of disorder scatters the propagation of electron waves,
and makes the electrons less mobile (localized). Weak- or strong-localization
while cooling or tuning the carrier density in disordered graphene has been
studied [26]. Moreover, defects in graphene can play the role of effective mag-
netic moments, giving rise to the gate-tunable Kondo effect [27]. Therefore, it is
of importance to precisely tailor the level of disorder in graphene for transport
studies.

Normally, to create defects in graphene, ion bombardment or plasma irradi-
ation is used [26]. Here, we show that when CVD graphene is dipped into a
Na2S2O8 acid solvent (0.1 g/ml), it becomes defective by increasing the dipped
time, as shown in Figure 0.11. A clear increase of the D-peak intensity with in-



30 contents

Figure 0.10: AFM tapping mode scan of surfaces of CVD graphene transferred with
PMMA assisted method on SiO2. a) PMMA is removed by acetone, and
b) PMMA is removed by pure acetic acid for 48 hours. Compared to the
acetone treatment, surface roughness is much lower with the treatment of
acetic acid. c) STM image of the graphene in b). Image a) is measured by
Dipankar Kalita in our group, and image c) is measured by C. Toonoir and
C. Chapellier, from CEA-INAC.

Figure 0.11: a) Raman spectra of graphene treated in 0.1 g/ml Na2S2O8 for different
durations, and b) their corresponding sheet resistance, showing an almost
linear increase of room temperature sheet resistivity with etching time in
Na2S2O8 solvent.

creasing etching time can be seen in Figure 0.11a, which is characteristic of the
increasing amount of defects in graphene. It is noticed that at the right shoulder
of the G-peak, there is an increasing small peak called D’, which is also related
to defects. It is reported that the ratio of D/D’ intensity reflects the nature of the
defect type [28]. In the case of graphene etched for 19 hours, the ratio is about
13, which is believed to be the sp3 type [28].
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Figure 0.12: a) TEM image of a non-defected graphene membrane transferred on lacey
carbon grid. The graphene was grown by pulsed-CVD, cleaned by normal
acetone and annealed at 120 ◦C in vacuum for 2 hours. TEM images taken
by Hanako OKUNO from CEA-INAC. b) TEM image of the CVD graphene
after dipped in 0.1 g/ml Na2S2O8 for 14 hours. Boxed area highlights the
defect site.

Sheet resistivity for samples dipped into 0.1 g/ml Na2S2O8 for different du-
rations (same set of samples used for the Raman measurement) were also mea-
sured. An almost linear increase of room temperature sheet resistivity with
etching time can be seen in Figure 0.11b. The resistivity is known to be directly
related to the electron scattering by disorder. The increasing sheet resistance and
Raman D-peak intensity proves the fact that by simply dipping in a chemical sol-
vent, defects can be induced in graphene.

To check the defects microscopically, we have performed the TEM observation
of graphene sheets treated by Na2S2O8 for different etching time. As shown
in Figure 0.12a, graphene without treatment shows good crystallinity, while the
one after 14 hours etching in Na2S2O8, in Figure 0.12b, exhibits defect sites
throughout the sample.

The chemical method (Na2S2O8 solvent) enables easy control of defect level.
Almost linear dependence of disorder against time is found in the sheet-resistance
of the samples. This method provides opportunities in studies such as superconducting-
to-insulating quantum phase transitions [13].

4 gate controlled quantum metallic state in superconducting

tin array decorated graphene .

In the last chapter, we finally address the main course of this thesis, which is devoted

to a more fundamental study of low temperature transport of a regular triangle array of

superconducting islands on CVD graphene. We demonstrate a gate-controlled quantum

phase transition from superconductor to a low-temperature metal state which is induced

by quantum phase fluctuations.
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In usual 2D metals, the metallic state is unstable with respect to localization in
the presence of disorder [29]. However, an intervening metallic state is often ob-
served experimentally in the region close to superconductor-insulator transitions
(SIT) in disordered thin films [30, 31, 32, 33]. To understand the physics behind
this quantum metallic state, a model of a quantum phase transition (QPT) in
an array of superconducting islands coupled by proximity effect through a dirty
metal [34, 35, 14] has been proposed. It predicts that quantum phase fluctuations
inside each island will cause a phase de-coherence, which gives rise to the failure
of superconducting coupling, leading to a zero-temperature metallic state.

Recent studies [36] of proximity arrays made of Au thin film covered with Nb
nano-islands have demonstrated that the critical temperature of such proximity
coupled arrays decreases upon increasing the inter-island distance and extrap-
olates to zero for a finite inter-island distance. It indicates a quantum phase
transition to a non-superconducting, 2D metallic ground state [37]. However,
due to the lack of carrier density in Au film, they did not have the opportunity
to relate experimental results with the above mentioned theory.

Figure 0.13: a) Optical micrograph and b) zoomed-in SEM image of the Sn arrays of
superconducting dots on graphene sample. c) Gate dependence of zero-
bias resistance at several temperatures. d) Colour-scaled map of zero-bias
resistance versus temperature and gate voltage. Dashed line is the BKT
temperature calculated from theory [14]. The letters "S" and "M" denote
superconducting and metallic states.

Graphene is an ideal platform for 2D superconductivity studies. Amazingly
it is predicted that graphene decorated with 1% of superconducting dots can be
easily made macroscopically superconducting [14].

Here, we designed a proximity-induced array, which consists in a triangular
lattice of circular superconducting islands on CVD graphene. The CVD-grown
graphene sheets transferred onto 285 nm oxidized silicon wafer serves as 2D dif-
fusive metal. The entire graphene surface was decorated with lithography by an
array of 50 nm thick Sn nanodisks. These Sn nanodisks have a diameter of 400

nm and are separated by 1 µm between their centres (Figure 0.13a). This kind of
regular superconducting arrays on graphene is a model system to study quan-
tum fluctuations of phases, and it is convenient for quantitative comparison with
theory. Indeed, proximity coupling through 2D disordered metal is long-range
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(decays as 1/r2), and thus is amenable to quantitative mean field approximation
theoretical descriptions.

Three main features are observed:
1) the good match of superconducting transition temperature between experi-

mental data and theoretical predictions (Figure 0.13.d),
2) the low temperature saturation of resistance at gate voltages close to the

Dirac point, which is a sign of metallic state,
3) the formation of a re-entrant superconducting glass state at the lowest tem-

peratures, in agreement with expectations [38].
With the above three experimental observations, we conclude that by study-

ing low density ordered arrays of superconducting islands coupled through
graphene, we realized macroscopic superconducting state at high gate voltages.
Its transition temperature and critical current are in good agreement with a re-
cently developed theory. We demonstrate a gate-controlled quantum phase tran-
sition from superconductor to a low-temperature metallic state with quantum
phase fluctuation enhanced conductivity, and discovered a re-entrant supercon-
ducting state induced by magnetic frustration.





1
S U P P R E S S I N G M U LT I L AY E R S I N C V D G R A P H E N E O N C U

The aim of this chapter is to find a solution for the challenge in suppressing the parasitic

multi-layers during CVD growth of graphene on Cu. We will first briefly introduce

the recent progress on CVD growth of graphene on Cu. Then we will describe a novel

pulsed-CVD process which allows for the growing of fully homogeneous and continuous

single-layer graphene up to the macroscale. Graphene grown by this method is then used

for further studies in the next chapters.

CVD, in full terms "Chemical Vapor Deposition", has become in the last few
years the most efficient way to produce large-size, high-quality graphene. It
is a booming research area for graphene, more than 1600 papers can be found
in literature in just 2 or 3 years [39, 40]. However, this field is not really new as
systematic studies of graphene growth can be traced back to 1980’s. For example,
Gall et al. [41] tried graphene growth on Ni, Pt, Au, Ru, Rd, It, etc., characterized
by Auger spectroscopy, revealing that graphene can grow on many kinds of
metals. Among those metals, graphene can have totally different growth kinetics,
crystal shape, number of layers, and different coupling with the underneath
substrates.

1.1 brief introduction to cvd of graphene

In general, graphene preparation can be classified into two opposite and comple-
mentary classes: bottom-up, and top-down routes.

Top-down means thinning or isolating graphene layer from bulk graphite, for
example, by means of the legendary scotch tape technique [42]. Other ways to
produce graphene can be found in chemical liquid-phase exfoliation of graphite,
known also as a top-down method [43]. Even though presenting the best quality
among all kinds of ways of preparing graphene, top-down method gives micro-
meter size flakes, which is not compatible with the batch-producing of large
size graphene. Therefore, this method is rather popular in laboratories, but not
compatible with the scaling up required for industrial applications.

Meanwhile, bottom-up is rather a complementary approach aiming at build-
ing nano-devices from elemental components, which uses a template substrate
to let one deposit or epitaxially grow the target materials. CVD belongs to the
family of bottom-up techniques as it makes possible the growth of a material
by local reaction and deposition on a surface of precursors present in a gaseous
phase.

Principle of CVD graphene is quite simple. One can imagine that in our three
dimensional world, a solid can sublimate into the gas phase, with the driving
force consisting of thermal fluctuations at the phase boundaries. For example,
ice can turn into water molecules and vice-versa. This is very similar to the case
of CVD growth of graphene. Only that in the latter case, the "gas" phase is actu-

35
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ally chemisorbed carbon atoms, while the "solid" phase are graphene domains.
We call it "chemisorbed", because in general, carbon precursors (CH4, for exam-
ple) will be trapped onto the catalytic surface and hence de-associate, leaving
carbon atoms covalently bonded with the surface. The binding energy of this
chemisorption can be as high as 6 eV on Iridium [41]. More than that, those
chemisorbed atoms are mobile, behaving like a two dimensional gas. If one con-
tinues to inject the precursors, the concentration of carbon atom gas will reach
a critical value, and trigger nucleations. It has long been debated in the case
of graphene growth, that before nucleation into the initial state of graphene sp2

bonds, carbon atoms tend to form some dimers, trimers, or even 5-atom clusters
[44, 45]. It is only for sure that once sp2 bonding starts to form, the chemisorbed
carbon atoms will get unbound from the metal surface, instead rearranging into
sp2 lattices. This can be simply understood by the fact that graphene is valence
saturated and cannot have extra bonding with the underneath substrate [46].
However, it is believed that in Ni or Co, the case is different, because carbon
adatoms are actually strongly bonded to the metal. Even though they still form
a hexagonal array, strictly, it is not graphene since sp3 hybridizations exist [47].

1.2 cvd growth of graphene on cu

Figure 1.1: Carbon solubility in some metals for high temperatures. Adapted from [48].
Cu has the lowest carbon solid solubility at around 1000◦C among these
metals.

Carbon solubility varies a lot in different metals, ranging from 10−4 to 10−2

atomic fraction [48]. Therefore, the picture of a 2-dimensional chemisorbed car-
bon atom gas introduced in the previous section is partially true for many kinds
of metals. Carbon atoms can not only "swim" on the metal surface, but also
"dive" into the bulk via diffusion. The activation energy of such bulk diffusion
is of the order of sub-mili-electron-volts [41]. Therefore, the exchange of surface
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carbon adatoms and bulk carbon atoms can take place, namely, some of those
dissolved carbon atoms will come out to the surface. When they come out from
the bulk in a large amount, they start to nucleate at the surface. This behaviour
is called segregation. And segregation can happen as long as the nucleation con-
dition is met, regardless of whether there is already a first layer grown there or
not. This can actually give rise to the formation of patches of multilayers. The
segregation process repeats as the self limiting factor as surface diffusion is no
longer active, and eventually thick graphite can form, similar to the case of Ni
[49].

As described above, to achieve the growth of graphene with strictly one mono-
layer on the full surface, one needs a metal with low carbon solubility. Cu, Au, Ir,
Ag are good candidates. Among all kinds of CVD growth of graphene demon-
strated so far, huge progress has been made so far in the topic of CVD growth
of graphene on Cu. For example, the 30-inches wide graphene sheets laminated
on polymer, largest size ever reported, were grown on Cu. It opens the doors of
mass production of graphene and unleashing its uses for flexible electronics [4].
A modification of this process by SONY also resulted in a 100 m long graphene
laminated film [50].

Morphology control of graphene has also been extensively studied (as dis-
cussed in Section 1.2.1). According to different growth conditions, graphene do-
mains vary from dendritic to hexagonal shapes, with different edge roughness.
The consequence of those domains is the eventual formation of multi-grain mo-
saicity when growing continuous layers by percolation and stitching [51]. And
the detrimental effect of the grain boundaries on electron transport is now well
known [52]. Therefore, single crystal graphene with large size is the ultimate
goal of CVD graphene. So far, several methods have been tried to achieve large
single crystal graphene domain, for example, Prof. James Tour’s group at Rice
University reported a 2.3 mm wide single crystal graphene on Cu by reducing Cu
surface roughness [53]. These methods will be discussed in section Section 1.2.2.

Here, our study focuses on Cu, for several reasons:

1. Cu foil is a low cost material and fully accessible industrially, with arbitrary
size and thickness.

2. Cu can be easily etched by some standard etchants, such as Na2S2O8,
(NH4)2S2O8, etc., which makes the transfer of graphene onto arbitrary
surfaces a routine task in many labs.

3. Great amount of work can be found in the literature, with all kinds of
recipes. This is like cooking guides, which helps to find a set of good
parameters according to specific set-ups.

1.2.1 Controlling the shape of graphene domains

The very first paper of graphene growth on Cu was published in 2009 by the
group of Prof. Rodney S. Ruoff at the University of Texas at Austin [15]. It
was shown that after being transferred onto SiO2 wafer, electronic mobility of
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graphene can reach 4000 cm2V−1s−1. The dominantly monolayer and easy trans-
fer nature of this work instantly triggered a race of growing graphene on Cu all
around the world.

Figure 1.2: The 2D surface limited growth of graphene on Cu evidenced using isotopic
labelling of carbon followed by Raman spectroscopy. The growth was made
using a succession of 13C and 12C gases. Picture taken from [16].

Shortly after, Ruoff’s group released another work on CVD growth of graphene
on Cu [16], in order to discriminate between different growth mechanisms using
methane enriched in 13C. Instead of a constant 12C precursor, they used consec-
utive injections of 12C and 13C isotope precursors. Those carbon isotopes ap-
peared in a form of contour rings according to the injection sequence, as shown
in Figure 1.2. This means carbon atoms do not dissolve into Cu bulk (and there-
fore became a mix, which is the case for Ni, where no clear contour ring of
isotopes can be seen). This is a first and direct proof that indeed on a Cu surface
the growth of graphene is confined in a 2D manner. Note that in Figure 1.2, there
are wrinkles in the upper-left panel, which does not have any relation to grain
boundaries of graphene, since the grain boundaries are indicated by the star-like
rings in the Raman mapping (Introduction of Raman will be given in Chapter
2).

It was soon realized that when doing CVD growth of graphene on Cu, differ-
ent growth conditions lead to totally different shapes: either dendritic [54, 57, 56],
or hexagonal [52, 58], as shown in Figure 1.3. In fact, given the dendritic shape
of graphene islands, one would immediately think of the very popular theory of
fractal growth of crystal developed in 1981 by Witten and Sander, the so-called
Diffusion Limited Aggregation (DLA) model [59]. The algorithm begins with
fixing one particle at the center of coordinates in d-dimensions, and follows the
creation of a cluster by releasing random walkers from infinity, allowing them
to walk around until they hit any particle belonging to the cluster. In existing lit-
erature, the crystallinity of the dendritic graphene flower is still debated, mainly
focusing on whether they are single crystal or not [60, 56].
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Figure 1.3: Various grain morphologies of graphene domains under different growth
conditions. a) taken from [54], b) taken from [55], c) taken from [56], d) taken
from [52]. Growth conditions of each can be found in Table 1.

Dendritic graphene islands are always found in a condition of either low total
pressure or low hydrogen concentration [54, 57, 56]. Table 1 lists a summary of
data, which shows the parameters for obtaining either dendritic or hexagonal
shaped graphene islands. All pressures are normalized to the partial pressure of
each reacting gases. If neglecting the effect of temperature (suppose the variation
of temperature around 1000◦C has a negligible effect on growth), then partial
pressure pi and the ratios between gases Γ i,j are the only parameters. One can
see from this table that, to get hexagonal graphene, there must be two conditions:

1. a low carbon concentration should be achieved, for example, PCH4
<0.1

mbar, for example.

2. when the first condition is fulfilled, the ratio of ΓH,C should be large (larger
than 200, for example).

An example of pressure dependence of graphene island morphology is given
in Figure 1.4. The word "Hexagonality" is a measure of how much the graphene
grain is close to a hexagonal shape. As can be seen, hexagonality increases with
increasing total pressure, while keeping all other growth parameters the same,
except that the growth durations are different. Higher pressure gives much faster
growth speed than lower pressure growth.

The above empirical growth conditions are extracted from part of the data
existing in the literature. One can see that, to some extent, the dendritic growth
requires more chemisorbed carbon atom concentration, or relatively low ΓH,C.
The fact that Cu pocket growth gives fractal growth will then indicate qualitative
diffusion rates of carbon and hydrogen in polycrystalline Cu foils. It therefore
resembles a lot to the so-called vapor-trapped CVD growth of graphene on Cu,
in which the Cu foil is either sandwiched by two quartz plates, or domed with a
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Figure 1.4: Dependence of the morphology of our CVD graphene islands on total pres-
sure for standard growth.

quartz tube [56]. However, this way of growing graphene is not so controllable in
terms of growth parameters, as the concentration of gases in the confined zone
is unknown, and can vary from sample to sample.However, this diffusion

method of growing

graphene directly on

insulator can not

produce well controlled

continuity and number

of layer of graphene, so

far.

Low total pressure is sometimes realized by extracting graphene from the in-
ner wall of an enclosure [56]. In other words, the process is such that there is
no direct exposure to gas precursors of the Cu surface. All nucleations can only
happen through diffusion of carbon atoms from the outer surface of Cu foil into
the inner surface. Grain boundaries will play an important role here, since they
can serve as a "speedway" for carbon/hydrogen atoms. Carbon atoms travel
through the whole thickness (25 µm) of the Cu foil, while some of them gain
mobility and become surface adatoms in the inner wall.

Figure 1.5: Schematic pictures of how the graphene can grow between Cu thin film and
SiO2 through diffusion. Picture taken from [62].
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Figure 1.6: PMMA seeds pre-patterned by lithography are preferential places for
graphene to nucleate, and regular 2D arrays of graphene grains are obtained
after growth. Pictures taken from [63].

This diffusive nature of Carbon atoms can be used as another advantage, i.e.,
direct growth of graphene on insulator. For example, C. Y. Su et al have achieved
a fraction of full coverage of dominantly monolayer graphene by using a thin film
of Cu deposited onto insulator surface: normal CVD growth of graphene was
performed, except that the thin film of Cu was finally etched away, leaving some
graphene layers formed by diffused carbon atoms through the thin film [62].

1.2.2 Control of graphene nucleation

As discussed in the previous section, graphene is supposed to nucleate when a
critical point is reached. Unfortunately, the nucleation cannot be well controlled
so far. For example, the grain size of graphene is limited by the nucleation
density, since the neighbouring grains will merge and make a grain boundary
(composed of a chain of pentagon/heptagon defects ) in order to accommodate
the change in crystallographic direction, unless they perfectly match each other,
which does not seem to be easily achieved.

Experimental efforts have been done to better understand the nucleation of
graphene during CVD growth. One of the most important experiments is the
"PMMA seeds" technique [63]. PMMA arrays were pre-patterned on Cu to help
initiate graphene nucleations. Interestingly, with proper size (∼ 1 µm) of PMMA
dots and appropriate distance (∼ 20 µm) between them, graphene is confined
to grow only at the place with pre-patterned PMMA dots. These PMMA dots
are successfully "guiding" carbon atoms to nucleate at the seeds. This technique
unambiguously proves that nucleation of graphene happens at places with a
higher carbon concentration. However, when the distance between PMMA dots
is increased above a critical value (tens of µm), this guiding effect breaks down.
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Figure 1.7: SEM Micrographs of copper foil after growth showing the dependence of
graphene grain morphology with crystalline orientation of copper. Symme-
try difference of graphene islands on neighbouring Cu grains with different
orientations. Dashed line highlights boundaries delimiting an isolated grain,
within which the graphene domains are four-lobe like, while those outside
are six-lobe like.

Surface roughness is believed to have strong impact on graphene nucleation
density, as it is straightforward to link the nucleation centers to the rough sites.
Ways to avoid roughness include:

(1) Heat treatment, i.e. annealing, at high pressure [53];
(2) Polishing (mechanical or electro-chemical) [53, 64];
(3) Growth of single crystal Cu instead of normal polycrystalline Cu [65]. This

is because Cu orientation has an impact on the graphene above it, due to differ-
ent lattice constant mismatch in between carbon and Cu atoms [66]. We show
an SEM picture (Figure 1.7) of graphene islands on neighbouring Cu grains ob-
tained during the same growth batch. One can see that some of the graphene
flowers are four-lobe, while in other Cu grains one finds six-lobe symmetry. This
symmetry difference clearly shows the influence of Cu orientation on graphene
morphology.

(4) Cu enclosed growth (as discussed in Section 2.1) is also an effective way to
achieve low nucleation density [54].

While the nucleation density can be affected by Cu substrate defect density
and orientation, the injection sequence of gas precursors is also believed to have
an influence on the nucleation. A two-step method was described by X. S. Li et
al to initiate nucleation via low carbon concentration injection, then increase the
carbon partial pressure to achieve large grain size [67].
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1.2.3 Role of hydrogen in the CVD graphene growth process

In most reported recipes of CVD graphene, the reacting gases injected consist
not only of a carbon precursor, but also hydrogen, sometimes mixed with an-
other inert gas, such as Ar for dilution purpose. Inert gases are used as they
can reduce the partial pressure while keeping a reasonable global pressure (at
least compatible with the system which is only design to withstand primary vac-
uum). One may wonder whether hydrogen is really necessary in graphene CVD
growth? The answer is negative. Examples of graphene growth without hydro-
gen were reported [68, 69]. However, it does not mean that hydrogen is trivial in
the process of CVD graphene growth [70, 58]. On the contrary, hydrogen has a
direct or indirect involvement in the graphene growth, as discussed below.

First of all, hydrogen is needed before growth, i.e., during the annealing proce-
dure. Hydrogen is not only able to remove the oxide at the surface of copper foil,
but also able to enlarge the grain size of Cu. The as-received Cu foil from the
factory has typical grain sizes of 10 µm. After annealing in hydrogen at 1000◦C
for half an hour or more, the grain size can increase to cm scale (they can be
checked by the bare eye by tilting the sample). However, normal pressure an-
nealing will not fully eliminate the surface terraces (up to 100 nm in lateral size)
of Cu foil, as shown in Figure 1.8. To remove the surface roughness (terraces),
one has to do either high pressure annealing of Cu [53], or to melt the Cu into
liquid form [61]. Interestingly, graphene can grow over these copper terraces like
a carpet (also on Ir terraces [71]), resulting in a continuous film even though the
landscape beneath is somehow rough. A scanning tunnelling micrograph (STM)
image of a graphene covered local area on the copper foil is shown in Figure 1.9.

More than just the cleaning action of an annealing gas, hydrogen can help to
fine tune, for example, the morphology of graphene domains, as already listed in
Table 1. Experimentally, hydrogenation of graphene can be realized by hydrogen
plasma treatment, thus giving the so-called graphAne [72], a material useful for
its reversible electronic properties from insulating to metallic like, as it can be
easily reversed to graphene by dehydrogenation.Some experimentalists

[73] claim that

hydrogen would never

be cracked by Cu

catalyst. Instead, they

propose it is rather

oxygen impurities in

the hydrogen gas who

plays the role of

graphene etchant.

However, their

arguments need to be

further confirmed by

other experimental

results [74].

Moreover, hydrogen plasma is reported to act as a reducing agent capable of
etching back graphene. It etches graphene at the pre-defined defect sites, and
produce hexagonal pits anisotropically along supposedly zigzag edges. Recent
reports show similar results by hydrogen gas during CVD graphene growth at
high temperature. So far, it is still disputable how exactly hydrogen is taking
effect during growth. It is known that bonding energy in hydrogen is about
5 eV [75], while thermal energy at 1000◦C is only about 0.1 eV. Therefore, the
catalytic metal surface must play an important role in cracking the very stable
hydrogen molecules. A widely accepted mechanism is that hydrogen and/or
hydro-carbon is dissociated by the hot metal surface, which can be described as
[70]:

M+H2 ⇋M+ 2H (1)

CxHy ⇋ xC+ yH (2)
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Figure 1.8: Optical micrographs of Cu grains. a) before and b) after annealing in hydro-
gen at 1000◦C for half an hour. c) original Cu foil, d) the SEM image of the
Cu terraces after hydrogen annealing, terraces can be clearly seen, leaving
atomically smooth copper in between sharp and high steps. e) An AFM scan
of local area in d).

Figure 1.9: STM scan of a local area on graphene-covered Cu. Step edges can be seen
in a). Atomic resolution of graphene lattice in the flat region in a) is shown
in b), with a zoomed-in micrograph shown in the inset. STM measurements
were carried out by Jean Yves Veuillen and Pierre Mallet (Néel Institute).

The above reaction tells that chemisorbed hydrogen can "take away" already
deposited carbon, giving rise to a graphene back-etching effect [70, 58]. Due to
the very stable sp2 bonding in graphene lattice, it is easier to etch away carbon
atoms which are not valence-saturated, such as defected graphene or graphene
edges [76, 77].
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Figure 1.10: Back etching of a graphene crystal by hydrogen, which shows the fractal
shapes induced by hydrogen reduction. Picture taken from [78].

In particular, as far as edges are concerned, it is known that zigzag or arm-
chair edges of graphene have different stability energies. It is preferential to
form zigzag edges when annealed in the atmosphere of Ar/N2 [79], but there is
no preferential orientation under tear force or TEM irradiation [80], nor by hydro-
gen plasma etching under certain conditions [76]. When carbon precursors are
injected together with hydrogen, growth of graphene and hydrogenation/etch-
ing of dangling-bonded carbon atoms happen at the same time. The competition
between these two reactions induce differences in the final graphene shape. In-
terestingly, a recent experiment showed that by engineering the parameters of
injected gases, graphene can be etched into well controlled anti-flowers, some-
times even a fractal pit [78, 64], shown in Figure 1.10.

1.2.4 Other methods of growing CVD graphene

As previously discussed, transferable nature of graphene on Cu was thought to
be one of its major merits, since Cu can be easily etched by chemicals which seem
not possible for noble metals like Pt, Au, etc. This etchable nature is especially
important when transparent electrodes are needed.

However, a recent experiment shows that graphene grown on Pt foil can be
peeled off safely by hydrogen bubbling without hurting the Pt substrate [81].
Furthermore, graphene grown on Pt can reach mm single hexagonal crystal in
lateral size, which is only possible on Cu when Cu foil is specially treated by
electro-chemical polishing plus high pressure (2 bar) annealing [53].

Except for metallic substrates such as Ir [82], Au [83], Pt [81], direct growth of
CVD graphene onto insulator has aroused intensive interests of experimentalists
[84, 21, 19, 62, 85, 86, 87, 88]. As the final step of graphene electronics is always
to transfer graphene from a metal onto an insulating wafer, it would be great if
one could obtain graphene with good quality directly on an insulator. Indeed



1.3 multi-layers seen in graphene grown on cu 47

recent progress in this area is rapid and fruitful. Representative works for direct
growth of graphene on insulators is listed below:

(1) The diffusion method described in [62, 89].
(2) Plasma enhanced 1575◦C growth on sapphire [90]; 950◦C growth on sap-

phire [91],
(3) Dewetting of Cu [20],
(4) Self-assembled monolayer of butyltriethoxysilane with a Ni capping layer

[92],
(5) Direct growth of graphene nanopads on exfoliated BN [21], as shown in

Figure 1.11. Very recently, epitaxially grown graphene directly on h-BN was
reported by Yuanbo Zhang and co-workers [93]. It is supposed that when lying
on BN, graphene is least influenced by environmental doping, not only because
of the inertness of BN, but also because BN has a similar lattice parameter to
graphene, which provides a super-flat matrice for graphene.

(6) Non-contact Cu vapour assisted direct growth on SiO2 [85].

Figure 1.11: AFM image of graphene nanopads grown directly on BN. Picture taken
from [21]. Note the size of flakes make the applications difficult.

Apparently, some of the above experimental observations about direct growth
of graphene on insulators are in contrast to the conception of CVD as described
in section 1.1. Maybe the conventional CVD is in crisis – how can carbon atoms
rearrange themselves without a catalyst surface? The answer is not trivial, and
further studies are needed.

1.3 multi-layers seen in graphene grown on cu

So far, we have mainly discussed in this chapter the basics of CVD graphene
growth on Cu. Even though in the past few years it has progressed a lot techni-
cally, graphene produced following this growth method is far from ideal: defect-
free macroscopic monolayer single crystal graphene. It rather comprises of di-
verse types of disorders, namely:

(1) mosaicity due to presence of disoriented grains (thus presence of grain
boundaries);

(2) wrinkles;
(3) multilayered patches.
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All these three types of disorders are recognized as important and timely is-
sues since they limit device engineering and applications. They should be con-
trolled and eventually suppressed to further promote the use of CVD-grown
graphene in applications requiring homogeneity.

Considerable efforts during the last few years have been undertaken to try
to avoid the above three types of inhomogeneities, and have achieved remark-
able improvements since the seminal experiments [15]. For example, the forma-
tion of wrinkles, that hamper electron transport [94], may be circumvented by
modifying the transfer procedure over the desired substrate [95]. The recent ex-
ploration of the growth parameter space allows one to prepare millimeter-size
single-crystal graphene [53], thus reducing the influence of grain boundaries
which are known to generate electron scattering barriers that limit large scale
electron mobility [52].

One of the highlights of the present thesis work is the success in completely
preventing multilayer patches from formation via a facile method during CVD
growth of graphene on Cu. To address our work in this section, we will first
demonstrate the disadvantages of those multilayers in Section 1.3.1. Secondarily,
we propose the mechanism of how these parasitic multilayers are formed during
CVD process in Section 1.3.2. Finally, we will describe in detail how to suppress
them in Section 1.3.3.

1.3.1 The drawbacks of multilayer in CVD graphene

Before going any further, we will show here an optical image that is commonly
seen for CVD graphene transferred onto a 285 nm SiO2/Si wafer (transfer of
graphene onto arbitrary substrate will be discussed in Chapter 3), as shown
in Figure 1.12. It can be seen that except for a background layer of graphene,
there are two other features: (1) wrinkles, and (2) multilayer patches randomly
scattered throughout the sample surface.

Figure 1.12: Optical micrograph of graphene transferred onto SiO2 wafer. The graphene
was grown by the standard CVD method, with parameters shown in Table
2 (Page 53).
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Figure 1.13: a) Optical micrograph of Hall-bar device made using standard-CVD on Cu
followed by transfer, plasma etching in Hall bar shape and connection to
gold electrodes with two adjacent regions (indicated by an arrow). A multi-
layer patch is present between electrode 2 and 3, indicated by the arrow. b)
Differential resistance of the two adjacent regions with (green) and without
(red) multi-layer patch.

Due to the minimum conductivity, light absorption in graphene is quantized
to about 2.3 %, which makes the number of layers easy to recognize under optical
or scanning-electron microscope (see Chapter 2.1.2). Thus those multilayers are
seen as a higher contrast spot, proportional to their number of layers.

Some may argue that it could be useful to have such multilayers. For example,
bilayer graphene with a Bernal-stacking order (i.e., the top layer of graphene is
sitting in a manner that the top atoms are right in the center of the hexagonal
ring of the bottom ones) is believed to have interest in band-gap engineering.
Unfortunately, experimental observation show that in CVD-grown multilayer
graphene, the stacking order between layers is rather random [58]. So far only
one group claims that they can grow absolutely Bernal-stacking graphene up to
wafer scale, which, never been reproduced, seems very unlikely to be true [96].

Except for the optical disorder, we also find that the multilayers are leading to
disorder in electronic transport properties of graphene.

Effect of multilayer patches on electron transport

To demonstrate the detrimental effect of multilayers on the transport properties
of graphene, we have grown graphene based on the seminal CVD process (we
will refer to this as standard-CVD) [15]. 10 devices such as the one depicted in
Figure 1.13.a were fabricated, with two Hall bars on the same graphene grain,
using electron beam lithography followed by oxygen plasma etching. One of
them includes a multilayer patch, while the other device serves as a control.
We compared the field effect curves in the two parts and observed a systematic
reduction of the mobility in the samples with multilayered regions.

As can be seen in Figure 1.13.b, the room temperature mobility decreases
from 5000 (R12) to about 1000 cm2V−1s−1(R23). Furthermore, this reduction
of mobility is associated with the appearance of several resistance maxima in
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Figure 1.14: a) Optical micrographs of a graphene transistor with two pairs of voltage
terminals, one of the pairs (12) is in contact with the central multi-layers
region, while another (34) is relatively further from that multi-layer region.
b) and c) are field effect measured from each pair of voltage terminals at
different temperatures from 300 K down to 4 K.

the field effect curves, indicating that multilayer patches introduce a significant
inhomogeneity in the local doping.

It is noticed that such multi-maxima behavior in field effect becomes more
pronounced at lower temperature, and/or when the electrodes get closer to the
multilayer patch, as shown in Figure 1.14. We understand these features are
related to the presence of a p-n junction at the multilayer edge [97].

It is known that randomly stacked graphene layers do not allow coherent
interlayer transport [98], but tend to remain decoupled monolayers with only
poor interlayer conduction [99, 100, 101, 102]. Therefore, one expects that the
multilayer region only participates marginally to the transport, and is under the
protection of the top layer from environmental contamination, thus giving rise
to a differently doped region. This inhomogeneity in the local doping explains
the multi-Dirac-peak structure, increased resistance and decreased mobility.

1.3.2 Mechanism of multi-layer formation on Cu

For improving the CVD process, one pursues to remove these parasitic multilay-
ers which are optically and electronically contaminating. Before doing that, we
need first to understand how the multilayers are formed during CVD growth of
graphene on Cu.

Experimentally, standard-CVD process consists of mainly three steps. The first
can be called pre-growth stage, when temperature is ramped up and Cu foil is
annealed. Second step is the growth stage, when all reacting gases (hydrogen,
carbon precursor, CH4 in this work, and/or Ar) are injected in one shot, with
a certain time period. After that, the final post-growth stage is mainly cooling
down. Our typical work diagram is shown in Figure 1.15.

As described in Section 1.2.1, with this standard CVD growth, one can get
either dendritic or hexagonal graphene domains, if the growth is stopped before
the graphene domains merge into a continuous layer. In this manuscript, we
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Figure 1.15: Process flow comparing the time evolutions of furnace temperature and
injected gases for standard-CVD (continuous) growth.

use two growth conditions to have both regimes of graphene shape, as listed in
tables 2 and 3.

Cu foil (25 µm) of 99.8 % purity (Alfa-Elsar) is used in the CVD process. A
home-made CVD reactor with a 4-inch diameter quartz tube and effective heat-
ing length of about 30 cm was built during the first months of this thesis. Tem-
perature is kept constant using a 3-zone furnace with independent PID feedback
control loops. All components are automated by a home-made program, which
enables real-time control of flow rate (electronic mass-flow controller) and injec-
tion time of reacting gases, as well as pressure (by adjustment of pump speed)
and temperature control. Cu foils are loaded into the CVD reactor after acetone
cleaning, followed by forming gas annealing at 1000◦C for 2 hours. For safety
reasons, hydrogen is used diluted in Ar at 10%.

Regime CH4 (sccm) H2 (sccm) Ar (sccm) Total
pressure
(mbar)

Dendritic 2 70 630 1

Hexagonal 2 1000 0 25

Table 2: CVD conditions to obtain dendritic or hexagonal graphene domains.

Regime CH4 (µbar) H2 (mbar)

Dendritic 2.8 0.1

Hexagonal 50 25

Table 3: CVD conditions transformed into partial pressure according to table 2.

Scanning electron microscopy (SEM) images of the two regimes are given in
Figure 1.16. Notice that except for the shape difference in the two regimes, there
are also growth time duration difference, since in hexagonal regime growth the
dynamic is much faster due to higher partial pressure.
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Figure 1.16: SEM micrographs showing a) dendritic and b) hexagonal graphene do-
mains, following growth conditions in table 2, for 20 min and 5 min, re-
spectively. Scale bars are 10 µm.

Figure 1.17: Optical micrographs of a) dendritic and b) hexagonal graphene domain
transferred onto 285 nm SiO2/Si.

One common point of the two SEM images is that multilayers can be easily
recognized, mostly in the center of the graphene domain. The same effect can
be seen after the graphene is transferred (for details about transfer method see
Chapter 2) onto SiO2 wafers, as shown in Figure 1.17.

Confocal micro-Raman (discussed in Chapter 3) mapping provides an effi-
cient tool to assess for the quality of the obtained graphene. Intensity mapping
of graphene specific Raman bands, shown in Figure 1.18, was performed on
the hexagonal-regime using standard-CVD and subsequently transferred onto
SiO2/Si. The defect-activated D band is hardly detectable except at some edges
for both batches. Except for the central region of flakes grown by standard-CVD,
the G and 2D bands shows a single Lorentzian shape and are also uniform and
narrow. Their full-width at half maximum (FWHM) are 18 and 30 cm−1, respec-
tively, with a typical deviation of about ± 2 and ± 4 cm−1 over the surface of
a single flake. These features are typical for high quality single-layer graphene
[103]. The central part of the flakes prepared by standard-CVD exhibits non-
uniform G and 2D bands, pointing out the presence of few-layer (two, three, or
even more) graphene.

Due to the low carbon solubility in copper [48], CVD of graphene on Cu is a
surface-confined process which is self-terminated once no more catalytic surface
(bare Cu) is available, i.e., once a single layer of graphene covers the whole
surface [16]. The occurrence of multilayer patches in graphene prepared by CVD
on Cu seems in contradiction with this common wisdom.

A scenario reconciling this apparent contradiction has been proposed recently:
carbon adatoms were argued to intercalate in between graphene and Cu via the
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Figure 1.18: Intensity maps (scan area is 20×20 µm2) obtained by scanning confocal
micro-Raman of graphene grains obtained in the hexagonal regime. Top
panel, from left to right, are D, G, and 2D bands. Bottom panel, single
spectrum of dotted area.

edges of graphene and condense in the form of a graphene multi-layer patches
at the center of the large flake [17].

However, this scenario can hardly account for the fact that multilayer regions
of similar shape and size are not only observed at the center of large dendritic
flakes, but also in between them (Figure 1.16a), which seem to be a different
growth mode than those dendritic flower-like domains.

Actually, all the self-limiting growth mechanism is based on the assumption
that Cu surface has a very low carbon solid solubility everywhere, which is not
the case as defects are present on normal Cu foils. We therefore interpret this
observation by invoking an alternative scenario, in which extended defects in
Cu play a central role. Such defects (e.g. Cu grain boundaries) have been shown
to be pathways for carbon atoms during CVD of graphene [62]. Another exam-
ple was demonstrated by manually introducing scratches on Cu surface, which
resulted in preferential nucleation sites for multilayer graphene [104]. It can be
understood that high carbon solubility and large diffusion coefficient of carbon
are taking place at defects such as grain boundaries, dislocations, surface rough-
ness, etc. Prolonged exposure to methane at high temperature during standard
CVD, must hence lead to a carbon saturation of the defects. A carbon super-
saturation at these defects during CVD, a decrease of the carbon equilibrium
concentration along these defects upon cooling down, or a combination of the
two, will lead to surface segregation of carbon yielding the observed multilayer
graphene patches.

We carried out an easy "scotch-tape" experiment, i.e., to rip off the as-grown
continuous standard CVD graphene which is then transferred onto a SiO2 wafer.
The result directly proves that those multi-layers are indeed underneath the top
layer, since most of them stayed while their "capping-layer" is partially ripped
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off (Figure 1.19). This is consistent with the observation elsewhere [17], and also
reveals that it is logical to assume the defect-driven formation of the multilayers.

Figure 1.19: Optical micrograph showing the result of scotch-tape exfoliation of our CVD
graphene after transferred on silica. The top layer has been partially ripped
off on purpose, leaving those multi-layers underlying the continuous layer
still on the substrate.

According to all above considerations, we can now draw a schematic picture
of how the multilayer can be formed (Figure 1.20). According to this schematic,
we may also draw a simple conclusion – to get rid of the multilayer formation,
one has two choices:

(a) to remove all possible defects in Cu foil, which is indeed proven to be true
in single crystal Cu thin films [18];

(b) to prohibit the carbon atoms from "diving" into those defect sites.
The first choice is affordable in a laboratory-scale, but too costly for industrial

application, imaging for example a large scale 30-inch touch screen.

Figure 1.20: Schematics highlighting the comparison of growth mechanisms near a de-
fect site on copper for standard CVD.

1.3.3 Removing multilayer graphene on Cu by a novel Pulsed-CVD method

As already discussed in Section 1.2.3, hydrogen is supposed to be a powerful
element to etch away carbon atoms that are valence-nonsaturated [58, 70, 76, 77].
Moreover, hydrogen etching can lead to well-defined zigzag and/or armchair
edges in graphene, as shown in Figure 1.21
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Figure 1.21: Hexagonal pits made by annealing our as-grown graphene in hydrogen
gas for 40 min at 1000◦C. Dashed straight lines indicate the hexagonal pits
that have their edges aligned in the same direction. The three series of
straight lines confirm the polycrystalline nature (mosaic like) of continuous
graphene films.

At first thought, if one can control the first etch step, which makes a zigza-
g/armchair edge, and let carbon precursors come again, then a new line of
zigzag/armchair can be added if everything is under perfect control. Thus, an
epitaxial-like growth could happen, which will only expand along the frontier
of one zigzag edge line, as shown in Figure 1.22.

Figure 1.22: a) to d) Schematics about the conjecture of having "epitaxially" grown fron-
tier of graphene edges via alternative "hydrogen etching" and "carbon addi-
tion" steps. Here we suppose a zigzag edge.

Inspired by the above idea, we designed a pulsed manner of injecting the car-
bon precursors. We call it "pulsed-CVD", as it consists in exposing the catalytic
substrate to the carbon precursor (methane) in an intermittent fashion during
the growth steps (Figure 1.23). More precisely, pulsed-CVD is composed of a
sequence of methane injection pulses of time duration t1 (typically a few sec-
onds) separated by idle steps of duration t2, during which methane injection is
halted while the hydrogen flux is kept constant to the same value as that during
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the growth steps. We have found optimal (in terms of multilayer removal) sets
of parameters for dendritic, and hexagonal regimes to be (t1=10 s, t2=50 s) and
(t1=5 s, t2=55 s), respectively. More experimental details such as the influence of
t1 and t2 on the growth will be discussed later.

Figure 1.23: Schematic workflow of pulsed-CVD, which is characterized by carbon in-
jection pulse time t1, and idle time without carbon exposure t2, and total
growth time tg = N(t1 + t2), with N being the total pulse numbers.

Surprisingly, the result of our as-designed pulsed-CVD growth was not the
one we expected at all. As shown in Figure 1.24, instead of the expected epitax-
ially grown graphene along a specific edge, graphene grown in both dendritic
and hexagonal regime shows smoothed edges compared to the standard one. A
significant modification of grain shape is observed for pulsed-CVD in the hexag-
onal regime, in which the hexagonal shape is partially removed, giving rise to a
more rounded polygon, a shape that we attribute to be the hallmark of pulsed
CVD growth. Such a shape results from the back-etching by hydrogen during
idle time, as it shows a multi-faceted grain with an almost circular general shape.
After being transferred onto SiO2/Si wafers, one can see that the shape of the
pulsed-grown graphene at both dendritic and hexagonal regimes are the same
as observed by SEM.

Notice that when looking into the sample throughout the wafer surface (cm
size), one could find only one contrast of graphene flakes on silicon wafer. This
means that, the number of layers is homogeneous.

Figure 1.24: SEM micrographs of graphene domains grown by pulsed-CVD at a) den-
dritic and b) hexagonal regimes.
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Figure 1.25: Optical micrographs of graphene domains transferred onto SiO2/Si wafers,
grown by pulsed-CVD at a) dendritic and b) hexagonal regimes.

To cross-check the number of layers, we carried out Raman measurements on
the pulsed-grown samples. Taking the hexagonal regime sample for example, it
turns out that the Raman signal of the sample shows uniform intensity as seen in
the mapping of D, G and 2D bands in Figure 1.26. Single-Lorentzian profiles of G
and 2D peaks unambiguously show a monolayer graphene feature. Furthermore,
no noticeable D band can be found in the graphene domains, suggesting high
quality graphene obtained by this pulsed-CVD method.

At this point, we have observed a totally new phenomenon rather than what
we were thinking at the very beginning: an absolute single-layered graphene
was obtained. To understand it, our assumption of defect-driven segregation of
multi-layer during CVD still holds.

Figure 1.26: Raman maps of a) D, b) G, and c) 2D band of pulsed-CVD grown graphene
grains at the hexagonal regime. d) is a single spectrum taken at the blue-
dotted area. Faint D band is found along grain ripples but overall quality is
good.

By means of pulsed CVD, the carbon concentration at Cu defects is reduced,
most probably due to the presence of the reducing H2 atmosphere, so that no
segregation takes place. In that case, only surface-confined growth mode is
activated. The smoother edges of graphene domains in pulsed CVD can be
understood as the hydrogen not only etches carbon away at the defect sites in
Cu, but also at the edges of the already-grown graphene islands. Except for the
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lowest coordination sites, at corners, the cohesion of graphene, both inside the
flake due to the stable carbon sp2 bonding (∼ 5.9 eV [75]), and at their edge,
presumably due to stabilizing Cu-C bonds, makes the etching of the as-grown
graphene a relatively slow process. Thus, an adequate choice of the methane
pulse and idle times allows consuming the whole carbon feedstock inside the
extended defects in Cu, while only marginally etching the pre-existing graphene
flakes. The subsequent methane pulse will then further extend the graphene
flake, and so on until full coverage by a single-layer of graphene free of any
multilayer patch, as shown in the schematic picture in Figure 1.27. Notice that
the pulses are not meant to be identical in their flow rate, one can also adjust
them in an incrementally pulsed-growth.

Figure 1.27: Schematics of growth mechanism near a defect site on copper during pulsed
CVD. The idle time leads to discharge of the carbon content that is trapped.

The key point is that, the times t1 and t2 must be well controlled. Indeed
we found that a good tuning of t1/t2 ratio is crucial to achieve exactly one
monolayer, since too long t1 will let C segregation at defects re-appear, while
too long t2 will lead to low coverage of graphene and prevent formation of
continuous films. For example, when t1 is kept at 10 s, while t2 is increased to
180 s, one can see no graphene coverage is obtained, as shown in Figure 1.28.

The fact that t1 needs to be kept very short is easy to understand, since one
has to let the carbon atoms to have no chance to dissolve in an extended defect
site. Therefore, a high enough concentration of reductive hydrogen environment
should be present before any carbon precursor is injected. When the first t1
is triggered, carbon in a very small amount can become surface adatoms and
"swim" on the Cu surface. This amount is high enough to trigger some nucle-
ation, but small enough to avoid massive dissolution into defects. Following t2
thus evacuates all free carbon atoms, except for the as-nucleated sp2 bondings,
as they are much more stable energetically. If this procedure is repeated in a
controlled manner, graphene islands will get extended in 2D, but without any
dissolved carbon covered underneath, until a complete coverage is obtained.

The short injection time of a few seconds, but hundreds of cycles are controlled
by a home-made program. However, CVD growth conditions can vary from
one set-up to another, due to a different chamber size, different controller for
gas injection, carbon precursor concentration, etc. Figure 1.28 lists several t1/t2
ratios, which is a simple guide-line for a starting point to search for a monolayer-
parameter point according to one’s own CVD set-up. A more complete diagram
for our set-up may be given in the future.
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Figure 1.28: SEM micrographs showing that different t1-to-t2 ratios lead to different sur-
face coverage of graphene on Cu. a) No graphene coverage can be found
when idle time t2 is too long. d) When t1 is too long, reappearance of multi-
layers occurs. Growth conditions for the four cases are based on same par-
tial pressure, temperature, and same total dose of carbon precursor, namely,
flow rate multiplied by total injection time of 6000 sccm·s.

As a control experiment, graphene devices made from pulsed-CVD are also
measured at room temperature on SiO2/Si substrates, showing the best mobil-
ity of 6780 cm2V−1s−1, and a mean value of about 5000 cm2V−1s−1 (see Fig-
ure 1.29). This suggests that the pulsed-CVD technique does not degrade the
graphene quality, in agreement with the previous Raman measurements.

Figure 1.29: a) Statistics of electronic mobilities of graphene devices on 285 nm SiO2,
grown by standard and pulsed-CVD, respectively. b) The best mobility ob-
tained in pulsed-CVD graphene, which is 6781 cm2V−1s−1.
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Figure 1.30: Square resistance versus transmittance at 550nm for 4-layer and 5-layer
FeCl3-FLG (GraphExeter), comparing with ITO, carbon-nanotube films, and
other doped graphene materials. FeCl3-FLG outperforms the current limit
of transparent conductors, which is indicated by the grey area. Adapted
from [105].

1.3.4 Optical properties of graphene improved by Pulsed-grown graphene

The inhomogeneity in the number of layers has also important consequences on
the optical transparency of transferred graphene layers. Indeed, due to quan-
tized optical absorption (see Ref. [1], N-layered regions at patches show optical
density increased N times compared to the monolayered zone, at least for N<10

as formed in our patches), as shown in Figure 1.31. Our pulsed-CVD technique
provides the opportunity to suppress such dark spots for applications in a low-
cost and easy-accessible way.

Taking as an example the prospect of using these layers for transparent and
flexible electrode applications, which appear as one of the most realistic short-
term industrial use of graphene, we have fabricated a graphene stack by repeat-
ing transfers on top of each other.

The importance of stacking graphene layer by layer is to reduce the effective
sheet resistance R�, while keeping a reasonable total transparency. It is therefore
suitable for flexible transparent electrode applications.

The optical transparency of five monolayer-thick samples becomes comparable
to that of ITO-based materials while presenting a superior electronic conductiv-
ity [4]. Recently, it has been shown that when ferric chloride molecule doped
few layer graphene, the so-called GraphExeter, the optical performance reported
is better than ITO, see Figure 1.30 [105]. Due to random position of patches,



1.4 conclusion of chapter 1 61

Figure 1.31: Optical micrographs of the continuous standard a)-c) and pulsed d)-f) mul-
tilayers CVD graphene transferred layer by layer (up to three layers) onto
SiO2/Si. Scale bars are 50 µm. The random position of multi-layer patches
worsen the optical homogeneity in a)-c).

the stacking of graphene prepared by standard-CVD further amplifies the fill-
ing factor of the multi-layer inhomogeneity, resulting in high density of dark
spots. This effect can be clearly seen in Figure 1.31.a-c, in which optical images
of full-coverage standard-CVD graphene transferred layer-by-layer (up to three
layers) onto SiO2/Si are shown. On the contrary, as shown in Figure 1.31.d-f, ho-
mogeneous optical contrast is seen without any multi-layer patch dots for those
grown by pulsed-CVD. Notice however some faint lines showing higher contrast,
which come from wrinkles or folds without direct connection to the graphene
grain boundaries [16].

1.4 conclusion of chapter 1

We have developed a novel CVD process which allows growing fully homoge-
neous and continuous single-layer graphene up to the macroscale, totally free of
multilayer patches that are usually ubiquitous to standard-CVD on copper foils.
This method is based on the repeated pulsed injection of methane, under a con-
stant hydrogen/argon atmosphere. Pulses allow suppressing carbon segregation
above the extended defects in bulk Cu.

We have found that the parasitic multilayers in standard-CVD, which were
widely overlooked thus far, have noticeable consequences on both the electronic
and optical properties of graphene: they reduce the electron mobility, induce
local doping, and yield large deviations of the optical transparency of graphene.
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Graphene prepared by pulsed-CVD exhibits high mobility on SiO2 substrate
(mean value of 5000 cm2V−1s−1) as well as exceptional optical homogeneity
from microscopic to macroscopic scales. Pulsed-CVD is a versatile technique
which can be readily implemented in CVD reactors employed routinely in graphene
research, under a broad range of pressure conditions, and presumably also on a
variety of substrates for graphene growth (e.g. Pt, Ni).

The pulsed process is rather easy to scale up and lead to unprecedented high
quality monolayer. We have thus applied to a US patent on this technique. This is
a scalable technique literally allowing "vacuuming multilayer graphene patches
that are usually hidden under the carpet", which enables precise monolayer-by-
monolayer engineering for future applications such as physical layer deposition
of graphene heterostructures, and engineering of transparent electrodes.



2
T R A N S F E R A N D C H A R A C T E R I Z AT I O N O F
C V D - G R A P H E N E

In this chapter, we introduce several methods of transferring graphene from the metal sur-

face onto arbitrary substrates. We demonstrate our prototype flexible transparent elec-

trode made of CVD graphene. Cross-characterization techniques such as TEM, AFM,

Raman are also introduced. Eventually, we discuss the perspective of a novel type of

graphene hetero-structure made by the so-called physical atomic layer deposition.

Since the first isolation of graphene in 2004 [106], the outstanding properties
of graphene have been explored by extensive research works. It thus has made
graphene the cutting-edge topic in condensed matter physics and in future nano-
electronic applications, such as:

1) Nanomechanical engineering. In modern technology, microscopic mechanical
machines, such as smart-phone motion sensors, are among the most important
components. The emergence of one atom thick graphene layer has dramatically
reduced the mass of resonators, but with the highest Young’s modulus [107]. It
enables super-sensitive mass detection down to around 1 zeptogram (10−21 g),
which is about two gold atoms, at low temperature [8]. Recently, batch fabri-
cation of MHz frequency resonator arrays was realized thanks to the large size
CVD graphene [108].

2) Optical systems. Graphene is known as a zero-gap semiconductor. It has
the gate-tunable charge carrier density of 2D electron gas. It is easily coupled
with optical systems and leads to new generation of optical devices. For example,
graphene has been manifested in prototypical devices such as broad band optical
modulator [109], optical cantilever [110], etc. The open surface of graphene is
also amenable to be coupled with moleculars for optical studies [111].

3) Biology platforms. Being a carbon material, graphene has good biological
compatibility with cells and various biomolecules. It is widely studied in gene
and drug-delivery, cancer treatment [112, 113], and nanoporous membrane for
study of DNA translocation [114].

4) Anti-corrosion coating. Graphene is stable against oxidation, and leak-proof.
Therefore, a coating of graphene can protect the metal from being corroded [115].
The development in CVD-grown graphene has also enabled one to transfer, layer
by layer, the thinnest ever anti-corrosion coating.

5) Transparent conducting electrodes. Nowadays, transparent electrodes are ubiq-
uitous as they are key components for front panel displays. The material used
is a thin film of ITO (indium tin oxide), which offers a transparency of 80% for
a sheet resistance of 10 Ω. Indium mining has increased from 70 to 500 tons
per year over the last 20 years to meet demand and the estimated resources are
20,000 tons, putting indium in the class of non-sustainable resources. Analysts
are warning that global supplies of indium could be exhausted sooner than ex-
pected. As a result, the price of indium has rocketed in recent years: it went from

63
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Figure 2.1: a) Flexible electrode made of graphene on polymer, reproduced from [3]. b)
Demonstration of a 30-inch-size graphene continuous sheet transferred on
PET film, reproduced from [4].

$ 60 per kilogram in 2003 to $ 1,000 in just three years. Worldwide production
of indium metal is currently 475 tons per year from mining and a further 650

tons per year from recycling. However, a single LCD monitor screen typically
contains less than 0.5 g of ITO, so recovering such a tiny amount from electronic
products is expensive and energy-intensive. Finally indium salts are known to
be toxic therefore there is a clear need to find a replacement.

Graphene seems to be the light in the tunnel as it may play a role in the
substitution of ITO. The quantized light transmittance [1], together with the con-
ducting nature, will probably push doped graphene to become a new generation
of transparent conducting material, shown in Figure 2.1 [4, 3].

For almost all kinds of industrial and fundamental physics applications, CVD
graphene is transferred onto a substrate, either a polymer, or an insulator such
as SiO2, sapphire, etc. Some groups have also tried to get graphene directly
grown on insulators, yet their resultant graphene is still far from high crys-
tallinity [19, 20], or far from large size [21]. Most of the applications are realized
thus far by transferring graphene from a metal surface such as Cu, as described
in Chapter 1.

Despite the fast-development of CVD graphene growth and transfer activities,
the challenge remains in obtaining a high quality, large size graphene transfer.
Moreover, a recently raised topic of hetero-structures based on graphene has trig-
gered new interests for fundamental physics, such as ultra clean 2D electron gas
[116], super-lattice induced pseudo-potential [117], and electron-electron interac-
tions [118].
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2.1 wet transfer of graphene polycrystalline membranes and

crystalline grains

2.1.1 Transfer onto SiO2/Si substrates

Various transfer methods are currently developed to prepare graphene onto di-
electric substrates for device fabrication. One way to reach this goal is to cover
the graphene with a polymer supporting layer (PMMA, for example) to prevent
graphene from collapsing, and then etch the underneath Cu foil. Besides increas-
ing visibility and facilitating the handling, the supporting layer is also necessary
as bare graphene may collapse due to surface tension. As shown in schematic
Figure 2.2, and a real work flow Figure 2.3.

The graphene transfer procedure is well described in the literature [15], so we
will not discuss in details here, but only describe two important issues: wafer
cleaning and etchant-selection.

Figure 2.2: A work-flow of polymer-assisted wet transfer technique. Here we use PMMA
as the supporting layer.

In this manuscript, Cu is the metal of interest as it provides at the same time
a catalyst for monolayer graphene CVD growth and a sacrificial layer leading to
a clean removal. We have tested several etchants to remove Cu, such as FeCl3,
Na2S2O8, (NH4)2S2O8. All of them can efficiently remove Cu, however, not
all of them are ideal for the job of graphene transfer. For example, we found
that FeCl3 leaves some dark colour on graphene, which may be residual Fe ions
based salts, as shown in Figure 2.4. Na2S2O8 is cleaner compared to FeCl3, but
long time etching of Na2S2O8 will induce disorder in graphene, which will be
discussed in Chapter 5. Among the above, (NH4)2S2O8 is the best choice for
Cu removal. A proper concentration and etching duration can range from 0.02

g/ml and about 12 hours, to 0.1 g/ml and about 2 hours.

Since this transfer method is based on a liquid phase target substrate, its four
main steps are listed below:

1) Etching and swimming. This step is to remove Cu underneath graphene.
PMMA/Graphene/Cu layer is floating on the etchant for a desired duration, as
shown in Figure 2.3a.

2) Fishing. This step is to scoop out from below the floating graphene/PMMA
stack after Cu is totally removed, as shown in Figure 2.3b.
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Figure 2.3: A work-flow of PMMA-assisted transfer technique. Graphene up to 20-30

cm2 transferred on 2 inches wafer have been successfully produced in our
group. Step a) is the etching and swim process of removing Cu from un-
derneath of the graphene, b) depicts the step of fish and lubricating process.
Graphene/PMMA stack is fished onto a target wafer. c)-d) let the stack dried
in air. Eventually PMMA is removed by acetone, only graphene stays.

3) Lubricating the film. This means that when graphene is fished onto the
substrate, there is a water layer between graphene and substrate, thus allowing
one to adjust the position of graphene.

4) Drying and PMMA-removing. This layer of water will wick out after some
time. However, there might be doping effect of the remaining salt molecules
from the water solution. PMMA is eventually removed for example by acetone.

When placed onto target substrate, water is inevitably trapped below. It is
therefore called "wet-transfer". Thus even when the whole stack is later dried,
water residues (probably loaded with ions) can stay below graphene and will
act as scattering centers for electron transport. Yet this is the most popular and
industrially-compatible method to transfer graphene from Cu.

Figure 2.4: a) PMMA/Graphene/Cu floating on Cu etchant solution of 0.1 g/ml FeCl3.
Graphene transferred onto SiO2 from b) FeCl3, and c) (NH4)2S2O8. It can
be seen in b) the colour of graphene shows a bright bluish colour compared
to the one in c).
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Figure 2.5: a) Three layers of CVD graphene transferred layer by layer onto a transparent
glass substrate. b) Transmission spectrum of a monolayer CVD graphene in
the wavelength range of 300 to 900 nm. Data measured with the help of
Valéri Reita.

2.1.2 Graphene transferred on transparent substrates

The transfer method mentioned in Section 2.1 was first developed by Rodney
Ruoff’s group at Austin in 2009 [15], and has been modified into many other
manners according to the needs. For example, a roll-to-roll lamination technique
was developed based on it [4], that led to the production of continuously long
and large size graphene. As the previous subsection mainly introduces the trans-
fer of CVD graphene from Cu onto SiO2/Si for transistors. Here, we will briefly
describe the transfer of CVD graphene onto polymer substrate for flexible trans-
parent electrodes application. The basic ideas are the same as for wet-transfer
of graphene onto SiO2/Si, but the substrate is now a transparent layer, either
flexible (PDMS, Polyethylene) or rigid (Glass soda lime, Quartz plate, etc.).

In Figure 2.5.a, we demonstrate a layer by layer transfer, up to a 3 layer stack
of graphene onto a glass window. It can be seen that the layers of graphene
are easily identified by the bare eye. This is due to the nature of quantized
absorption of graphene monolayer [1].

Optical transmittance of graphene monolayers

Suppose the space is separated by graphene with each half space of reflection
coefficient of ǫ1 and ǫ2. Graphene has an ac conductivity σ(ω), which is e2/4 h
([119]) at charge neutrality. In the thin film limit, Fresnel’s equations can be
written in the form of transmittance T as [120]:
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If both sides of graphene are in free space, i.e., ǫ1 = ǫ2 = 1, Equation 3 re-
duces to T = (1+ 2πσ/c)−2, where c is the speed of light, σ is the conductivity.
Therefore, absorptance turns out to be 1− T = πα ≈ 2.3%, where α is the fine
structure constant defined as e2/ hc. That is to say, by measuring T of graphene,
one can extract the exact number of π (Figure 2.6), as the other parameters are
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well-defined physical constants. The measured optical transmittance with wave-
length from 300 nm to 800 nm in a monolayer graphene transferred onto glass
(Figure 2.5.b) shows a good agreement with the above theory. This quantized
absorption has been widely examined to be true [1, 4]. Interestingly, there is a
small dip in the transmission spectrum at wavelength of about 300 nm. This is
discussed to be related to inter-band scattering in graphene [121].

Figure 2.6: a) Quantized transmittance with number of layers of graphene. The step
height between two levels is πe2/hc, adapted from [1]. b) Measuring π by
looking through a monolayer graphene window.

Figure 2.7: Top: number of layers of graphene are easily identified optically because of
the quantized optical contrast. Bottom: cross section of the optical micro-
graph (shown as yellow line), indicated as grey value extracted by an image
analysis software (Gimp).
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The quantized 2.3 percent optical absorption is a very important physical prop-
erty of graphene, as it explains the easy identifiable number of layers by means
of optical and/or electronic measurements, such as transmission electron micro-
scope (TEM), SEM. Most importantly, when graphene is placed on SiO2 with an
appropriate thickness (90 and 285 nm, due to interference of light [122]), one can
just select the number of layers by "looking" at it, according to the color and con-
trast without any other technical assistance, as shown in Figure 2.7. This directly
helped Geim and Novoselov during their pioneering studies to sort graphene
multilayers and successfully identify and isolate a monolayer graphene, and that
eventually led to their Nobel Prize in 2010.

However, if one looks into the 2.3 % absorption carefully, the minimum con-
ductivity of e2/4 h is actually only valid close to the Dirac point (see Chapter 3,
electronic structure of graphene) That is to say, if graphene is gate-tuned into a
high doping level, the transmission can be changed. Indeed, experimental ob-
servation shows that the reflectance of graphene on SiO2 wafer is gate-tunable
[123]. Therefore, based on the above idea, one can design an experiment by using
a transparent conductive substrate, to study the optical absorbance of graphene
as a function of the charge carrier density. For example a sandwiched structure
involving Indium Tin Oxide (ITO), insulating spacer and graphene can be used.
It is possible to gate graphene with ITO and at the same time light transmit-
ted through the whole structure can be tuned, giving rise to a graphene "smart
window".

Figure 2.8: In-situ measurement of the electrical conductivity during mechanically fold-
ing an undoped CVD graphene layer transferred onto polyethylene film.
Prospect of using graphene for flexible electrodes is great, as ITO is brittle
and cannot be folded.

Among many perspective applications of graphene, the flexible transparent
electrode is the closest to the real market. Touch- or flexible-screens need neither
a very high crystallographic quality of graphene, nor a very high mobility. This
makes their use in wide spread applications the most technically feasible. We
demonstrate here graphene on a plastic membrane for flexible electrode appli-
cations, as shown in Figure 2.8. One can see that with a monolayer graphene,
sheet resistance of about 3 k Ω is easy to achieve without any gating or chemical
doping.
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Figure 2.9: a) Sheet resistance versus number of layers of our CVD graphene transferred
onto a plastic film. Solid line is to guide the eye. b) Performance of trans-
parent conductive electrodes. The data point of our 4-layer transferred CVD
graphene is highlighted by the black star.

To have the state-of-the-art properties for transparent electrodes ready for in-
dustrial applications, one should achieve as low a sheet-resistance as possible
(severalΩ/� to several tens), as well as the highest possible transparency (higher
than 90 %). To compensate the relatively high sheet-resistance of monolayer
graphene, one can either increase the doping, or increase the number of layers.
Of course the latter will sacrifice the transparency.

We transferred layer by layer graphene monolayers, and the sheet resistance is
indeed significantly decreasing from 3 kΩ/� for a monolayer, to 200 Ω/� for 4

layers, as indicated in Figure 2.9.a. Our data point is indicated by the black star
in Figure 2.9. b, and compares favourably with the state-of-the-art.

2.1.3 Transfer onto TEM Grids

Using the same wet-transfer method, we also demonstrated the transfer of CVD
graphene membranes onto TEM grids. Two kinds of TEM grids were tested, the
lacey-carbon one, and the Si4N3 one. It turned out that graphene is able to stick
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Figure 2.10: a) TEM micrographs of CVD graphene transferred onto a lacey carbon TEM
grid, imaged with 80 kV acceleration voltage. b) CVD graphene transferred
onto a Si4N3 TEM grid. Sn nanoparticles are deposited onto graphene by
thermal evaporation. See last chapter for details. Inset of b) is an SEM micro-
graph of the zoomed-out Si4N3 TEM grid with CVD graphene transferred
on it.

on the surface of both kinds of grids, and can be fully suspended over areas up
to several µm2 (Figure 2.10). The wet-transfer method is used, and the surface
of lacey carbon TEM grids does not need specific treatment. Surface of Si4N3

TEM grids can be cleaned by acetone, and a short period of plasma or pirahna
etching, which can help graphene to stick.

Since graphene is impermeable to almost all kinds of molecules [24]), it can
serve as a load membrane for micro-liquids, molecular, or nanoparticles [13,
23]. An example of Sn nanoparticles sprayed onto graphene was tested on a
Si4N3 TEM grid with 4 µm2 holes, as shown in Figure 2.10b. It can be seen
that graphene is robust enough to support a mass load which is much heavier
than itself. Graphene is also quite homogeneous and transparent as a TEM
back ground, which is already better than the lacey carbon (amorphous carbon
mainly).

Interestingly, by accident, one of the Si4N3 TEM grid was broken and curled
up, with Sn nanoparticles deposited on it. This enables us to image at a grazing
angle and make a cross section imaging of the interface between graphene and
Sn nanoparticles. As shown in Figure 2.11.c, it is observed that Sn nanoparticles
are in a pie-shape, with negative wetting angles. This trick may be used for
studying interface of other kinds of small objects loaded onto graphene. Details
of physical attachment and electrical doping of these nanoparticles to graphene
will be discussed in Chapter 6.

2.2 dry transfer of graphene

Besides the wet transfer method, a dry transfer technique has also been devel-
oped [57, 124]. Here, we briefly introduce two ways of doing a dry transfer. Both
are modified from wet-transfer, but with the advantage that graphene is free of
water before being placed onto the target substrate.
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Figure 2.11: a) Optical micrograph of CVD graphene transferred onto a commercial
Si4N3 TEM grid. b) SEM image of the grid, whose center is broken and
curls up, with Sn nanoparticles loaded. This provides us the grazing angle
view of the interface between graphene and nanoparticles. c) TEM image of
the nanoparticle from the side-view.

2.2.1 Transfer using thermal release tape

The thermal release tape is a special kind of plastic tape which contains glue film
that permanently looses its adhesion properly when heated above a threshold
temperature. This allows for graphene that is sticking on it, to be released when
heated to a certain temperature, as shown in Figure 2.12.

The reason that motivated the use of thermal release tape is because PMMA
is too soft and does not hold together with further handling. For example, if one
needs to flip the PMMA/graphene stack, it is almost impossible, since PMMA
(hundreds of nm in thickness) will be folded and will never be recovered in
its original flat state. Therefore, a layer that is stiff enough, but leaves no con-
taminations is desired. Thermal release tape meets these requirements for that
purpose.

We tested the Thermal Release Tape REVALPHA (Nitto Denko) for graphene
transfer, by the following steps:

1) Spin coat PMMA onto graphene on Cu.
2) Apply the thermal release tape on the PMMA/graphene/Cu stack, press

with gentle force as homogeneous as possible.
3) Put the whole sample into Na2S2O8, to etch away Cu.
4) The thermal release tape/PMMA/graphene stack, floating on etchant, should

be flipped and thoroughly rinsed by DI water, followed by a gentle N2 gas blow
dry. This is critical, and thanks to the thermal release tape, we do not have to
undergo the water lubricating step, thus no water will be trapped in between
graphene and substrate any more.
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Figure 2.12: a) Photo of the Thermal Release Tape REVALPHA (from Nitto Denko Corp.).
b) Its adhesive strength versus temperature curve, duplicated from the web-
site of Nitto Denko company.

5) Place the dried graphene onto a cleaned wafer, press again with gentle force
as homogeneous as possible.

6) Bake the sample on a hot-plate at 100 ◦C for 1 min. This thermal release
tape looses its adhesiveness by the baking.

7) Removal of the PMMA can be done by acetone. Rinse the sample with
Isopropanol (IPA) after the PMMA has been removed, and blow dry it, leading
to a final sample as shown in Figure 2.13.

Figure 2.13: Optical micrograph of CVD graphene transfer using thermal release tape.
Graphene used here is grown by pulsed-CVD method (short growth leading
to non percolating grains).

In terms of optical observation and Raman, the quality of graphene transferred
by dry-transfer method is almost the same as wet-transfer. However, electronic
performance is reported to be much improved with respect to the wet-transferred
samples: one order of magnitude larger electronic mobility is observed [57],
because the interface between graphene and SiO2 is now free of water. However,
thermal release tape still has its limitations. For example, when dealing with
large size continuous CVD graphene, the force applied onto the tape cannot be
microscopically homogeneous. Therefore, some parts of graphene cannot stick
well to the target wafer, leading to cracks or torn micro-parts.
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2.2.2 Polymer (PMMA) assisted dry-transfer method

Recent studies of graphene/BN heterostructures are developing rapidly. How-
ever, even if BN is flat and neutral, it is not effective if you have water trapped
at the interface by wet-transfer. Here we focus on the dry-transfer method devel-
oped especially in this area.

Basically, it is the same idea as using thermal release tape, with the purpose of
removing residual water trapped between graphene and the substrates. PMMA
with a stiff enough frame is used instead of thermal release tape. For example,
Kapton tape for cryogenics can be an option, as demonstrated in Figure 2.14.a.
Work flow of such transfer is shown in Figure 2.14.b.

Figure 2.14: a) PMMA/Graphene is floating on the Cu etchant held by the supporting
frame made by Kapton tape. b) Work flow of this kind of dry-transfer,
adapted from [57].

By using this dry-transfer technique, the electronic mobility of graphene can
be as high as 24500 cm2V−1s−1 on SiO2, and as high as 44900 cm2V−1s−1 on
h-BN [57], at 1.6 K temperature. Note that the wet-transferred graphene shows
mobility ranging from only 500 to 10000 cm2V−1s−1 on SiO2 [51, 15, 125, 52].

One of the major advantages of dry-transfer in graphene/BN heterostructure
studies is that even though the surface of BN-hosted substrate is not hydrophilic
(that is the common case for wafers after exfoliation), transfer can still work.
Meanwhile, this is rather difficult for wet-transfer, since de-wetting of DI water
tends to shrink up the water below the PMMA/graphene stack, leading to failed
transfer. Of course one can try to make the BN-loaded wafer hydrophilic by
using, for example, Piranha etching, but in that case, BN is no more pristine and
its interface with graphene might be less clean due to interface charge.

2.3 transfer graphene onto other kinds of substrates

In our group, we also demonstrated successful transfer of graphene onto exotic
substrates. Two examples are given below.

One is by patterning arrays of nano-pillars with distance d (kind of nano-
Fakir-carpet). When distance d is less than a critical value dc, a graphene mem-
brane can be macroscopically suspended, theoretically up to an unlimited size,
as shown in Figure 2.15.
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Figure 2.15: SEM micrographs of CVD graphene transferred onto Fakir carpet. When
distances between the nano pillars is reduced from a) to d), full suspension
of graphene is achieved. Picture credit: Dipankar Kalita (Néel Institute).

Another example is the demonstration of a nanodrum: a graphene membrane
is suspended over nano holes on a silicon substrate. With this nanodrum, one can
tune the pressure difference between inside and outside the drum, thus allowing
stress engineering of graphene. Furthermore, via an AC gate, the nanodrum can
be actuated into resonance, which allows for studies of NEMS. An AFM image
is shown in Figure 2.16.

Figure 2.16: AFM image of a nanodrum made of graphene suspended over a nanohole
on silicon substrate. Notice that the graphene is making a dome shape, be-
cause outside the nanodrum is vacuumed, and because of the leak-proof
properties of graphene, trapping residual gas in the volume below. It be-
comes "inflated" like a balloon. Inset shows a schematic picture of the cross
section. Image courtesy: Cornelia Schwarz (Néel Institute).
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2.4 cross characterization of cvd graphene

2.4.1 Transmission electron microscopy studies

Figure 2.17: a) High-resolution TEM micrograph of monolayer graphene, and b)bilayer
graphene, as clearly seen by the Moiré pattern. Graphene is grown by the
standard-CVD method. The holes may come from electron beam irradiation,
or from the transfer process. Image taken by Hanako Okuno (MINATEC-
INAC).

A question often arises: how do you know you have a monolayer or bilayer
graphene? The answer seems trivial for the experts, but not at all for people who
are new in graphene field.

We have already shown in this chapter that, due to the quantized absorbance,
one can distinguish from the optical and/or SEM images the number of layers.
However, these 2 techniques need a calibration of the background level, namely,
a as-proved monolayer, to counter another image. Otherwise, people may still
question that the monolayer you claim is actually a bilayer that is perfectly over-
lapped! Therefore, we need cross characterizations of graphene.

One method could be provided by the transmission electron microscope (TEM).
For example, when doing atomic resolution image, one can easily see the honey-
comb lattice of a monolayer graphene, while the Moiré pattern will show up if it
is bilayer graphene, as shown in Figure 2.17. If one does electron diffraction or
Fourier transform of the spot, the twisting angle of the bilayer can be obtained.
This twisting angle of bilayer has aroused great interests for both experimen-
talists and theoreticians, due to the properties such as van Hove singularities
[126]. TEM can definitely distinguish graphene number of layers and its local
crystallinity, but still has its limitation because of the localized observation, and
the difficulty in sample preparation (especially for CVD graphene, lots of con-
taminations are present due to the use of PMMA).
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2.4.2 Atomic force microscopy of transferred graphene layers

Figure 2.18: AFM image of a graphene flower, same growth condition as in Fig. 1.14a.

As well as other scanning probe microscopy techniques, AFM is another widely
used technique to characterize graphene. It has several advantages. It has both
contact and non-contact modes. It can scan areas up to 100 µm in lateral size.
Therefore, it is a very powerful tool to map the morphology, such as surface
cleanliness or number of layers, of graphene. As shown in Figure 2.18, an ex-
ample of dendritic graphene was scanned by AFM and flower-like structure of
the graphene domain can be seen. Moreover, those nanoparticles contamination,
PMMA residues, wrinkles and/or cracks are also seen by this technique. The
monolayer graphene often shows a thickness below 0.5 nm in the AFM height
measurement.

More than just for morphology mapping, AFM can be used to perform lithog-
raphy by locally oxidizing graphene or to clean the surface by sweeping the
residues out of the surface.

2.4.3 Raman spectroscopy

In this section, we will come to another powerful tool for characterizing graphene:
Raman spectroscopy. Raman scattering of phonons can be coupled to the move-
ment, interference and scattering of electrons. Therefore, defects, edges config-
urations, doping or magnetic field can all influence the final Raman scattering
procedure, allowing one to probe the phonon, in order to understand the elec-
tron behaviour deep behind.

When a light with frequency ω and polarization P is incident onto any mate-
rial, it generates elastically scattered light (Rayleigh) and inelastically scattered
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light (Raman), which can be written as P = PRayleigh + PRaman. PRayleigh
is the polarization vector with same frequency as the incident light, when the
system returns to its initial state, and the frequency of the emitted photon re-
mains the same as the incident one. PRaman is the polarization modified by the
lattice vibration of the target material. Raman scattering has two inelastically
scattered components with frequency ω−ω0 (Stokes) and ω+ω0 (anti-Stokes),
as shown in Figure 2.19. Feynman diagram of the Stokes and Anti-Stokes pro-
cesses are shown in Figure 2.20. In the literature, most Raman spectra are Stokes
measurements plotting the intensity of the scattered light versus the difference
between incident and scattered photon energy, the so called "Raman shift".

Figure 2.19: Schematics of the scattering of an incident light with frequency omega:
Rayleigh scattering, and Raman scattering with two components ω −ω0

(Stokes) and ω+ω0 (anti-Stokes). Picture adapted from [127].

Figure 2.20: Feynman diagram of a) Stokes scattering. An incoming photon ω excites
an electron-hole pair e− h. The pair decays into a phonon Ω and another
electron-hole pair e− h ′. The latter recombines, emitting a photon ωSc. (b)
Anti-Stokes. The phonon is absorbed by the e − h pair. Picture adapted
from [128].

Raman scattering can be treated back to the calculation of light absorption
of an electron (with charge −e) on a generic crystal using the Shrödinger equa-
tion with a time dependent perturbation. First-order approximation describes
phonons at the center of the first Brillouin zone. Second order expansion then
leads to two different phonons contributed to the Raman scattering with wave
vectors qa and qb and frequencies ωa and ωb. This two-phonon Raman scatter-
ing has the selection rule qa ± qb ∼ 0. The second order Raman in the case of
graphene often has high intensity, because of (one phonon, double phonon, or
triple phonon) resonant Raman scattering. When there exists a defect with wave
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vector d, the Raman selection rule is then qa ± d ∼ 0, which corresponds to the
Raman D band.

The above is about the basic conceptions of Raman scattering on any material.
It becomes specific when dealing with graphene, because graphene is an atomic
structure. Graphene has two atoms per unit cell, thus six normal modes (3
degrees of freedom for each atom, but actually two of the modes are doubly
degenerate) at the Brillouin zone centre Γ Figure 2.21. These vibrating modes
come from the phonon dispersions of single-layer graphene, which comprises
three acoustic (A) and three optical (O) branches, as shown in Figure 2.22.

Figure 2.21: Lattice vibrating modes of graphene.

Figure 2.22: Phonon dispersion of graphene [129].

Confocal micro-Raman spectroscopy was performed with a commercial Witec
Alpha 500 spectrometer set-up. A measured Raman spectrum of monolayer
graphene on 285 nm SiO2/Si wafer, with a 532 nm laser, is shown in Figure 2.23.
One can see that there are several characteristic bands as below:
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Figure 2.23: Typical Raman single spectrum of our defected monolayer CVD graphene,
as the D peak at around 1300 cm−1 has high intensity, together with a D’
peak at the right shoulder of the G peak. The method of inducing defect in
CVD graphene is introduced in Chapter 5.

Figure 2.24: Schematics of Raman scattering processes involved in the different Raman
peaks of graphene. Picture adapted from [127].

(1) The G band (∼ 1582 cm−1, for laser excitation at 2.41 eV) can be found in
all sp2 carbon allotropes, whose energy is insensitive to the incident laser, but
can be influenced by factors that can affect the C-C bond, such as strain, doping,
or temperature. Moreover, G band intensity is proportional to the number of
graphene layers (up to about 10 layers). The G band is associated with the
doubly degenerate (iTO and LO) phonon mode (E2g symmetry) at the Brillouin
zone center, which is the only band coming from a normal first order Raman
scattering process in graphene systems [130].

(2) The D band (∼ 1350 cm−1, for laser excitation at 2.41 eV) is due to the
breathing modes of six-atom aromatic rings. It comes from iTO phonons around
the Brillouin zone corner K (A1g symmetry), it requires a defect to activate the
double resonance, which is strongly dispersive with excitation energy, due to a
Kohn anomaly at K.
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(3) The 2D (also called G ′, ∼ 2700 cm−1, for laser excitation at 2.41 eV) band
originate from a second-order process, involving two iTO phonons near the K
point. As mentioned before, 2D is a second order Raman process and is less
probable than a first order one, but due to the resonance effect it is present and
more intense then the G band. 2D is also dispersive with excitation energy.

(4) The D ′ band located near the right shoulder of G band (∼ 1350 cm−1, for
laser excitation at 2.41 eV), and is due to double resonance of an intra-valley
process connecting two points at the same cone (K or K ′).

The 2D peak is the D-peak overtone, and the 2D ′ peak is the D ′ overtone.
Because the 2D and 2D ′ peaks originate from a process where no defects are re-
quired, they are thus always present in a monolayer graphene Raman spectrum.

Figure 2.25: Comparison of Raman single spectra of our 13C graphene and 12C
graphene grown on Cu, showing clear isotopic effect, as the down-shift
of Raman mode is seen for 13C graphene.

Raman can non-invasively probe graphene, to understand the electron-phonon
interactions. It contains profound information by measuring a single spectrum.
For example, doping [131, 132, 133, 134] and/or strain [135, 136] can affect the
full-width at half-maximum, peak area, peak position of G and 2D band. More-
over, for multilayers, the 2D band gives information on the twisting angle be-
tween layers. One can de-convolute the peaks into sub-peaks and assign the
number of layers [137], etc. When performing Raman mapping, one can col-
lect spatially the information, and thus map sample quality, sample doping,
etc. Moreover, Raman is a good method to probe the isotope of carbon sp2

bondings, for example, 13C graphene and 12C graphene can be easily identi-
fied, as shown in Figure 2.25. The frequency shift of the Raman bands in the
13C enriched material originates from the increased mass of atom mass [138]:
ω0 −ω/ω0 = 1− [(12 + c0)/(12+ c)]

1/2, where ω0 is the frequency of a par-
ticular Raman mode in the 12C sample, c = 0.99 is the concentration of 13C in
the enriched sample, and c0 = 0.0107 is the natural abundance of 13C. Therefore,
the down-shift of the G, and the 2D bands is expected to be 56, and 95 cm−1,
respectively. Our experimental results give down-shifts of G and 2D bans of 57,
and 114 cm−1, in good agreement with the above estimation. Notice that the
larger shift in our case originates from the larger wavelength of excitation laser.
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2.5 physical atomic layer deposition of graphene

As already mentioned at the beginning of this chapter, graphene hetero-structures
seem to be a topic enriched with profound physics and the possibility for poten-
tial applications. For example, graphene-BN systems have been reported not
only to have ultra-clean graphene [116], but also graphene with Moiré super-
lattices [139, 117] or electron-electron interaction systems [118]. Recently, in-
plane [140] and lateral [141] graphene-BN heterostructure have been fabricated
in a controlled manner, which significantly promotes the kind of heterostructures
needed for future applications.

Figure 2.26: Principle of the PALD technique: step 1 is a direct transfer of a CVD
graphene stripe on an oxidized silicon wafer. Step 2 is a physicochemi-
cal treatment to clean (and optionally functionalize) the bottom graphene
surface. Step 3 is a wet (or dry) second transfer (with or without function-
alization) of the top graphene layer leading to a fully addressable stacked
bilayered heterostructure.

Here, we show that by transferring one layer onto another, i.e, Physical Atomic
Layer Deposition (PALD), graphene can serve as a new platform for nanoelec-
tronics. The aim is to obtain 2D macroscopic bilayer hetero-structures which
contain two layers of graphene stacked on top of each other (and that can be scal-
able to any number of stacked layers). Each graphene layer, previously grown
on metal by chemical vapour deposition (CVD) will be transferred on a substrate
that can be polarized with an electrostatic back gate (for doping control) while
remaining accessible from the top-side for subsequent in-depth sample character-
ization (optical and scanning probe) and post-preparation (chemical) treatments.
A schematic picture is given in Figure 2.26.

Actually, the idea of making stacked graphene heterostructure has been con-
ducted by several research groups, such as the nanoparticle-encapsulated graphene
multilayers [142], cross-bar structure of bilayer graphene stack for quantum Hall
measurement [143], stacked CVD graphene domains for Raman twisting angle
studies [144], etc., as shown in Figure 2.27.

However, above examples either do not focus on the electronic transport of
such kind of cross-bar [142, 144], or do not include external intercalates in be-
tween graphene crossing layers [143]. Moreover, the twisting angle, which de-
termines the consequent Moiré super-lattice, is neither included in the electronic
transport of graphene cross-bar. Based on the above discussions, we designed a
four-probe crossed structure of bilayer graphene, as indicated in Figure 2.28.
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Figure 2.27: Demonstrations of graphene as encapsulating layers for nano-
heterostructures. a) Nanoparticles encapsulated by transferring CVD
graphene layer by layer, adapted from [142]. b) Cross-bar stack of bilayer
exfoliated graphene, adapted from [143]. c) Raman studies of twisting
angle between manually stacked CVD graphene domains, adapted from
[144].

With this kind of structure, one can investigate various devices. For example, if
the overlapping zone is filled with optical-sensitive molecules, one can measure
the optical properties of those molecules by measuring the electronic transport
of graphene. Furthermore, since graphene is playing the role of protecting the
materials from the environment, those non-stable metals, such as Ca, K, etc., can
be filled and protected from oxidization in the overlapping zone. This is one
of the major advantages of this structure, as normally the study of alkali metal
intercalated graphite [145] requires a high vacuum environment, which hampers
the thinning down and transport measurements of graphene intercalated with
alkali metals.

So far, our preliminary results show the success in fabricating such cross bars
(Figure 2.28), and further works are ongoing.

2.6 conclusion of chapter 2

As a conclusion to this chapter, we have shown the process of transferring CVD
graphene onto arbitrary substrates. Transparent electrode is given as a special
example as it is one of the most promising applications in the near future. We
have illustrated the principle of making wet- and dry-transfer of CVD graphene
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Figure 2.28: a) Schematic picture of two graphene layers stacked with an overlapping
zone, where target materials can be wrapped. The crossbar structure is
designed in a four-probe configuration, thus current flowing in the bottom
layer can be detected in the top one. b) Real device made by transferring
CVD graphene one after another. Image courtesy of Shelender Kumar (Néel
Institute).

onto target substrates. In addition, we have demonstrated cross characterization
techniques, such as AFM, TEM, and Raman. This chapter is the base of technical
knowledge for this thesis. We also proposed a new generation of graphene het-
erostructure with a cross-bar geometry, which provides possibilities in exploring
electronic or optical properties of the encapsulated materials.



3
E L E C T R O N I C P R O P E RT I E S O F G R A P H E N E

In this chapter, we briefly introduce the fundamental electronic properties of graphene.

Electronic transport measurements, such as the field effect and the quantum Hall effect,

are discussed in monolayer graphene. The basic concepts and formulas in this chapter

will be very useful for the further studies presented in this thesis.

Graphene consists of hexagonally organized carbon honey-comb lattice in 2D.
The unit cell of a graphene layer, as shown in Figure 3.1, contains two sub-sets
of identical triangle lattice related to each other with a displacement transition.
The two atoms inside a unit cell are defined as A and B atoms spaced by a
distance of a = 1.42 Å[146]. Within the graphene plane, each atom has 3 σ-bonds
formed from sp2 hybrid orbitals, which are tied up between the neighbouring
carbon atoms. The unbound fourth electrons are called π-bonds, formed from pz

orbitals extending vertically above and below the graphene plane, as shown in
Figure 3.1c. The conducting nature of graphene comes from the hybridization of
these π-bonds spreading across the whole graphene sheet, in a periodic potential
(i.e. the energy bands described below).

Figure 3.1: Schematics of graphene lattice in real (a) and reciprocal space (b). Its first
Brillouin zone is in hexagonal shape, with two inequivalent corners called K
and K’, while the central point is called Γ point. Red dotted line delimits the
unit cell. c) σ and π bonds in graphene.

85
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3.1 band structure of graphene

The band structure of a crystal is decided by its lattice configuration. Graphene’s
band structure has been calculated extensively, based on the tight-binding model
developed since the 1940s [147]. Details about the derivation can be found in the
literature [148, 149, 150, 151]. Here we directly give the result, which is the
energy dispersion relation in k space:

ε±(k) = ±t
√

3+ 2cos
(√
3kxa

)

+ 4cos
(√
3kxa/2

)

cos (3kya/2), (3.1)

where t is the hopping parameter between nearest neighbours. Experimental
value of the hopping parameter is about 3 eV. The 3D plot of Eq. (1) is shown
in Figure 3.2.a, which is known as the band structure of monolayer graphene.
The conduction band is touching the valence band at the 6 corners of the first
Brillouin zone (K and K’ points), without any band gap.

Figure 3.2: a) Band structure of graphene plotted from Equation 3.1. Picture taken from
[152]. b) Zoom of the low energy region around K point. Valence band (Red
cone) and conduction band (blue cone) intersect at the K point (so-called
Dirac point). For neutral graphene, the Fermi level is at the Dirac point. d)
The band structure plotted as a cut of the 3D picture in a), along the high-
symmetry Γ −M− K− Γ directions in c), with the DoS plotted on the right
side. Picture reproduced from [153, 154, 155].

Low energy expansion of Eq. (1) at K(K’) yields the famous relation of energy
versus the k-vector (with respect to K(K’) point):

ε(k) =  hvFk, (3.2)

as plotted in Figure 3.2.b. Unlike the conventional 2D electron gas (whose dis-
persion relation is parabolic, written as  h2

2mk2), the dispersion of graphene at low
energy is linear and has a point contact between upper and lower bands, simi-
lar to the band structure of photons. Instead of the Schrödinger equation, the
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quasi-particles in this low-energy regime are formally described by the Dirac-
like Hamiltonian H = −i hvFσ▽, where σ = (σx,σy) are the Pauli matrices
[156, 151, 157]. And vF is the Fermi velocity, defined as

vF =

∣

∣

∣

∣

∂ε

∂k

∣

∣

∣

∣

K point

=
√
3at/2 ≈ 106 m/s. (3.3)

Graphene is often referred to as a massless Dirac fermion. This is mainly be-
cause of (in the low energy regime) the linear band structure. However, effective
mass (or cyclotron mass) of graphene is not zero [9]. In usual nanoelectronics,
graphene Fermi energy is small compared to 1 eV. That makes the validity of the
low energy approximation always hold. So far, graphene is one of the only few
examples of condensed matter that are known to be a Dirac fermion 2D system.

3.2 from density of states to electron transport

From the dispersion relation, it is now easy to count for the density of states
(DOS). First of all, in a 2D electron gas, the total number of states n is the area
of a cut at certain energy, as indicated by the shadowed plane in Figure 3.2.b,
divided by per unit:

n = g
︸︷︷︸

degeneracy

· πk2
︸︷︷︸
area

· 1

(2π)2
︸ ︷︷ ︸

per unit

, (3.4)

where g = 4, since graphene has 2 spin and 2 valley degeneracies. As a result,
the Fermi vector in k-space is:

kF =
√
πn. (3.5)

According to Equation 3.2, the DOS (shown in Equation 3.5), i.e., the number of
states available at each energy level can then be written as [157]:

N(ε) =
∂n

∂ε
=

2

π h2v2F
ε =

2

π hvF
|k| . (3.6)

Equivalently, DOS can be derived from the definition [158]N(ε) =
∑

k

δ [ε− ε(k)] =

1
4π2

∫π
−π dθ

∫+∞

0 kdkδ[ε− ε(k)], which gives the same result as Equation 3.6. Only
the electrons near the Fermi level participate in electron transport.

Interestingly, as can be seen from Equation 3.6, the energy dependence of DoS
(ǫ vs DoS) in pristine graphene at low Fermi energy is linear, similar to the
dispersion relation (ǫ vs k) shown in Equation 3.2. A plot of electron dispersion
beside its DoS is shown in Figure 3.2d.

We first start with the diffusion equation (Fick’s Law), that is, flux of a species
jx in a concentration/potential gradient (here is the charge carrier concentration):
jx = D∂ne

∂x , where D is the diffusion constant, e is the elementary charge. The
above formula can be written into

jx = D
∂(n · e)
∂x

= De
∂n

∂ε

∂ε

∂x
= De ·N(ε)

∂ε

∂x
. (3.7)
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For simplicity, we only consider the transport along the x direction. By the
definition of the electric field eE = ∂ε

∂x , and that Ohm’s law gives j = σE. σ is
therefore related to D and N(ε) as:

σ = D ·N(ε)e2. (3.8)

As a result, combining Equation 3.6 and Equation 3.8, conductivity of graphene
is decided by its Fermi energy (tuned by doping), which is:

σGraphene =
2e2D

π hvF
|kF| =

2e2D

π hvF

√
πn. (3.9)

if we replace the D with l by using [159]:

D = v2Fτsc/2 = vFl/2, (3.10)

where τsc is the scattering time, and l is the distance an electron wave travels
until its initial momentum is destroyed, called mean free path. One gets

σGraphene = 2
e2

h
kFl. (3.11)

In the right part of Equation 3.11, e2/h is known to be the quantum of conduc-
tance, and the quantity kFl is an important value in mesoscopic physics, which
will be discussed later. A more explicit deduction of Equation 3.11 can be found
in [158], using the Landauer formula. However, Equation 3.11 is a crude approx-
imation, since random charged impurities are not taken into account [160].

3.2.1 Graphene field effect transistor

One of the most fascinating properties of graphene is due to the linear band
structure of graphene. Combined with the absence of charge screening due to
atomically thin layer, the charge can be adjusted in density and sign with an
applied gate voltage on a large range. This makes graphene the first atomic thin
ambipolar field effect transistor. From Equation 3.5, it is clear that by changing
n, the Fermi level of graphene is tuned toward a certain energy as shown in the
shadowed cut in Figure 3.2.b, and thus the electronic conductivity. When n is
tuned into a minimum, minimum σ is achieved. This very point in field effect
curve is often referred to as the Dirac point Vd, or the charge neutrality point
VNP.

Experimentally, by transferring graphene on top of a thick dielectric layer (e.g.
285 nm SiO2), by capacitive coupling Q = CV , the charge carrier concentration
induced per unit area, per unit Volt, is:

n
unit

=
ǫǫ0

de
∼ 7.56×1010cm−2V−1(for a typical 285nm capping oxide silica).

(3.12)

where d and ǫ are the thickness, and the dielectric constant of SiO2, respectively.
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Figure 3.3: a) Field effect curve measured at 70 K, plotted in conductivity versus gate
voltage, data taken from [106]. b) Sample measured at 300 K, from our CVD-
grown graphene single crystal grain. A graphene flake is etched in a Hall bar
shape by oxygen plasma etching, followed by Au 50nm/Ti 5nm electrodes
deposition. A final device is shown in the inset of b). c) Same data as b), but
plotted in resistivity versus gate voltage.

Notice that n is proportional to the gate voltage. An example of the field effect
of graphene sample is given in Figure 3.3.a, showing that actually within a large
gate voltage range, the conductivity is quite linear.

If one looks back to Equation 3.9, one can see that the transport of graphene
is determined by its charge carrier density, as well as diffusion constant D. The
latter quantity is a measure of the electron scattering inside graphene, which is
also a function of kF. For example, to have linear σ against Vg, one has to have
a D proportional to

√
n. If we consider that the charge mobility is defined by

σ = neµ (we assume mobility for electrons and holes is the same due to the
symmetric band structure), then for the sample in Figure 3.3.a, µ is a constant
throughout Vg.

Actually, in many cases, the σ-Vg field effect curve is not very linear, as shown
in Figure 3.3.b, due to different scattering mechanisms. One can make a linear
fit near to Vd, but it diverges from linearity at higher Vg. In this case, a constant
µ is only approximately valid close to Vd. One has to use a variable µ to do
fittings over a large range of Vg.

Another feature, as can be seen from Figure 3.3, is that none of the conductivity
curves really go to zero at VNP, which should appear according to the band
structure, i.e., a zero-DOS at the Dirac point. This is because the substrate that
supports graphene is not free of charge. It often causes the so-called charge-
puddles in graphene [161], leading to a non-zero minimum conductivity.

3.2.2 Mobility extraction

In graphene, the scattering mechanisms include [162]:

Elastic scattering, including:
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(1) charge impurities, which are long range scattering (Long range means an
interaction which is decaying slower than r−d, where d is the dimensionality.
Coulomb interaction is proportional to r−2, therefore it is long range),

(2) Neutral defects, which are short range,
(3) charge transfer from doping or scattering, and (4) surface roughness.

Inelastic scattering, including:
(1) graphene phonons,
(2) substrate phonons.
According to Matthiessen’s rule, the effective mobility is then written as

1

µeff
=

∑ 1

µi
(3.13)

where µi denotes one of the scatterings described above.
It is rather complicated to fully explain the measured graphene field effect

curve. Since effective mobility is depending not only on the various scattering
inside graphene, but also on the electrodes contact, and the size of graphene.
For example, when the distance d between electrodes is smaller than the mean
free path l, the system reaches a so-called ballistic regime. In the mean time, elec-
trons start to interference with themselves and give Fabry-Perot resonances [163].
Moreover, mobility in the ballistic regime is defined as two terms, i.e., µn, and
µbal. The latter is called ballistic mobility, and is defined as µbal = 2πed/(hkF)
[164, 165]. Assuming a graphene with good quality, for example, n = 1012cm−2

and µn = 10000cm2V−1s−1 when there is no confinement due to the electrodes.
Once the electrode width is narrowed down to 10 nm, µbal is about a few hun-
dreds of cm2V−1s−1. According to 1

µeff
= 1

µn
+ 1

µbal
, the effective mobility is

also at the same order of magnitude, even though the graphene is of good qual-
ity.

Below is the protocol that we used to fit a field effect curve by the approxima-
tion of a constant mobility. One can extract mobility (diffusive regime) through
the following:

G =
1

R− RC
= σ

Wt(= 1)

L
= neµ

W

L
, (3.14)

while the charge carrier is often written as

ne =

√

(n0e)2 + [C(Vg − VNP)]2. (3.15)

By re-formalizing Equation 3.14 and Equation 3.15, one will get

R =
L

Weµ
√

(n0)2 + [7.56× 1010(Vg − VNP)]2
+ RC, (3.16)

where W/L is the width divided by length (aspect ratio) of device, RC is the
contact/residual resistance (can be gate dependent [166]), and n0 is residual
carrier concentration. By measuring resistivity-Vg, one can then fit the mobility
as well as RC and n0. Notice that field effect curve of graphene devices are
often asymmetric. That can be attributed to the inhomogeneity of the graphene
sample, and/or the asymmetric Schottky barrier formed between electrodes and
graphene for electron and hole sides [166].
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3.2.3 Liquid ionic gating on graphene

Besides the conventional back/top gate, charge carrier concentration of a transis-
tor can also be tuned by electrolyte gating.

Electrolyte gating is a method to induce ultra-high carrier concentration in
low dimension systems, which provides a platform to investigate electron corre-
lations in a regime that ordinary gating can not reach.

Normally, an electrolyte consists of a matrix (in liquid or gel form), with the
mobile ions embedded. The electrolyte is in direct contact with the surface of a
target material (graphene, for example). Ions inside get polarized once an elec-
trical field is applied, giving rise to the negatively and positively charged layers,
i.e., the so-called electric double layer (EDL) on the surface of target material.
By tuning the externally applied electrical field, EDL can be tuned into different
concentration, thus playing the role of gating.

The difference between normal oxide gating and EDL is that the thickness
of an oxide ranges from tens of nm to several hundreds of nm. Taking the
standard 285 nm SiO2 for example, as already discussed in the previous section
in Equation 3.12, maximum induced n can be in the order of 1013 cm−2, since
the breakdown voltage of 285 nm SiO2 is usually no more than 100 V. Sheet
carrier density that swings up to 1015cm−2 can be induced [167].

However, in the case of EDL, the distance between the two ionic layers is only
around 1 nm, therefore the coupling capacitance per unit area C = ǫ0ǫ/d is then
2 orders of magnitude stronger than the case of SiO2. That is to say with only a
few Volts, the same charge carrier density as that of 100 Vg in oxides gate can be
reached, as shown in Figure 3.4.

Figure 3.4: Schematic picture comparing different types of electrostatic doping using: a)
conventional oxide gate and b) EDL. c) and d) show the polarized charges via
conventional oxide gate, with the opposite charges separated by the thickness
of oxide. Note that in b) the distance between the two ionic layers is only
around 1 nm. Picture Courtesy of Shimpei Ono.

Recently, electrolyte gating has aroused intensive interests in various meso-
scopic systems, for example, electrolyte gate-controlled Kondo effect in SrTiO3
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[167], electric field controlled superconductivity in insulators such as SrTiO3

[168], KTaO3 [169], La2−xSrxCuO4 [170, 171], ZrNCl [172], and MoS2 [173, 174],
etc.

It is also believed that when electron carrier concentration of graphene has
reached a critical value, i.e., doped into a nested Fermi surface and the den-
sity of states is singular, d-wave superconductivity can emerge from repulsive
electron-electron interactions. The consequence may be, for example, a chiral su-
perconductivity [175], namely, the resistance-free current flows in one direction,
but not the opposite. This effect breaks time-reversal symmetry, and could be
useful in constructing quantum computers. This predicted peculiar supercon-
ductivity in graphene has inspired many groups to perform EDL experiment on
CVD graphene.

Actually, studies of electrolyte gating in graphene have been launched sev-
eral years ago. For example, a T4 temperature dependence of electron transport
in graphene at carrier densities n up to 4×1014cm−2 was reported in exfoli-
ated graphene[176, 177], and more recently, charge scattering mechanism in sus-
pended graphene was studied by EDL [178], as well as the relations between
quantum- and EDL-capacitances [179]. Kondo like behavior of graphene is also
seen in graphene gated up to 3×1015 cm−2 charge carrier density [180]. How-
ever, superconductivity induced by this mean has not been reported so far.

3.2.4 EDL on CVD graphene for low temperature transport

CVD graphene with a dimension of about 200 µm × 400 µm was patterned into
a Hall bar geometry. Pt/Au electrodes are deposited by thermal evaporation. A
side pad is also evaporated for biasing the ionic liquid, which is provided by our
collaborator Shimpei ONO. A carrier concentration of about 2×1013cm−2 can be
induced. The device is shown in Figure 3.5.a-c.

We measured the room temperature field effect curve of the EDL graphene
samples, with two of them illustrated in Figure 3.5.d-e. First of all, compared
with Figure 3.3.c, whose width of the peak in the R-Vg curve is about 30-40 V.
With EDL gating, it is less than 1 V. This indicates a much stronger coupling
via electrolyte gating. Secondarily, the Dirac point differs a lot from sample to
sample. For example, there is about 1 V difference between the two figures in
Figure 3.5.d-e. Moreover, the hysteresis also differs from sample to sample.

The goal of our study is to probe R-T dependence at high carrier concentration
in CVD graphene, and try to look for new superconductivity inside this system.
To achieve that, one has to apply a gate voltage on the side-pad, and cool down
the sample while keeping the voltage. The measurement is carried out in a
vacuum probe-station, and the probes may move around during cooling down,
resulting in the lost of contact. Special care on this issue should be taken while
measuring. Furthermore, since a chemical reaction can happen at the electrode
(Au, or Pt in our experiment), 3 V is the upper limit of the gate voltage.

Unfortunately, the cooling of all our devices fails at a certain temperature. As
shown in Figure 3.6.a, a R-T curve at linear response (small V-bias ), EDL gating
shows quite constant relation until the sample is cooled down to about 100 K.
At this point an abrupt increase of resistance takes place, with an open circuit
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Figure 3.5: a) Schematic picture of the EDL-gated graphene device. b) Real device with
the droplet of ionic liquid on it. Back dashed line indicates the contour of the
ionic liquid, blue dotted lines indicate graphene. c) Device with photo-resist
covering graphene during the fabricating process. d) and e) are field effect
curves of two samples measured at room temperature. Arrows in field effect
curves denote trace and re-trace. Collaboration with Shimpei ONO.

occurring. The circuit could not be recovered when warmed up again, and the
optical image (Figure 3.6.b) of the sample after removing the EDL liquid shows
there is peeling-off of the Au/Pd electrodes, as well as random holes and cracks
in the graphene. This problem is systematic to us, since repeating the same
experiment gives similar result: the sample becomes an open-circuit at a non-
fixed low temperature. According to Figure 3.6.b, we attribute this problem to a
possible shrinking of the liquid when it is frozen, as illustrated in Figure 3.6.c.

To avoid this from happening, there might be two ways:
1) replace the present liquid by another one, which has a smaller thermal

expansion coefficient;
2) reduce the graphene size to a smaller area, for example, leave only a small

transversal line between the electrodes.
Works on these issues are now in progress.
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Figure 3.6: a) R-T curve of the device with EDL at zero gate voltage. Curve shows a
dramatic increase in resistance at around 100 K, which is due to the open
circuit. b) Optical image of the sample surface after EDL cooling, cracks and
holes can be seen clearly. c) Schematic picture showing the possible situation.

3.3 landau level and quantum hall effect in graphene

In the history of physics, there are only few examples like the Hall effect, which
has been already entitled to the Nobel prize for a total of 3 times (and probably
will be more). Edwin Hall in 1879 won the first one because of his discovery of
the conventional Hall effect [181]. More than a hundred years later, in 1985, the
second one was given to the integer quantum Hall effect (QHE) discovered in
MOSFET heterostructure by Klaus von Klitzing and co-workers. 13 years after
that, the fractional quantum Hall effect (FQHE) won a Nobel prize, due to its
challenge posed to the validity of symmetry breaking theory [182]. Unlike the
above three kinds of Hall effect, there exist also anomalous Hall effect, which
originates from spin-orbit interaction and does not require an external magnetic
field. In 2013, the so-called "quantum Hall Trio", i.e., quantum Hall, quantum
spin Hall, and quantum anomalous Hall, were finally completed [183], as shown
in Figure 3.7.

3.3.1 Classical picture of Hall effect

We first start with a classical approach of the QHE.
Suppose an electron is the only type of carrier inside a conducting slab. Un-

der an external perpendicular magnetic field, the motion of the electron will be
distorted by the Lorentz force -ev × B, and will thus go towards the edge (at the
same time holes will accumulate at the other edge) until the equilibrium of the
electrical static force is balanced by Lorentz force:

eE = eB × v, (3.17)
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Figure 3.7: The three main types of quantum Hall effect (classical vs quantum, with
dates of observation). Adapted from [183].

where v is the velocity of the electrons. Given that current density is defined as
j = −nev, and Ohm’s law σ =

j
E , one can re-write the conductivity σ into:

σ =
j

E
= −

nev

Bv
= −

nh

eB
· e

2

h
= ν · e

2

h
= −

h/e

B/n
·G0, (3.18)

where G0 = e2/h = 1/(25812.807572 Ω) is the quantum conductance (h/e2 is the
Von Klitzing constant RK), and ν is the filling factor in QHE. Here the electrical
conductivity tensor is simplified into a scaler quantity.

The physical picture of the electron motion in the classical Hall effect can be
described as the electrons undergoing the cycloid motion, i.e., a superposition of
a circular motion and a constant drift, as shown in Figure 3.8.

Figure 3.8: Schematic picture of classical Hall effect. Current I flows through a slab of a
conductor subjected to a perpendicular magnetic field B. Electrons and holes
are induced at the two edges, leading to a transverse voltage drop VH.
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Notice that the quantity in the right part of Equation 3.18 can be written as:

h

e
= Φ0, (3.19)

B

n
= Φe, (3.20)

where Φ0 is defined as the quantum flux (the minimum flux quanta), and Φe is
defined as flux per electron. Therefore, Φ0/Φe is a measure of flux quanta per
electron.

3.3.2 Landau levels and quantum Hall effect

Let’s consider the free 2D electron gas situation first. Quantum mechanically, the
Hamiltonian of a free electron is H =

(P+ieA/c)2

2m , where P is momentum and A

is the vector magnetic field. By solving the Schrödinger equation, one will get
the eigenstates of the simple harmonic oscillator:

En = (L+ 1/2) hωc, L = 0, 1, 2, . . . , (3.21)

with ωc = eB
m the cyclotron frequency of electrons, and L is an integer number

called the Landau Level (LL) index, with each Landau energy separated with
∆E =  heB/m, shown in Figure 3.9.a.

Figure 3.9: a) Schematic pictures of Landau levels of 2D free electron gas in a magnetic
field for the non-relativistic case. b) Typical example of quantized trans-
verse resistivity ρxy and the corresponding longitudinal resistivity ρxx. Inset
shows the sample configuration. Adapted from [40].

The total number of states Equation 3.4 of a free 2D electron is written as:

Ns =
mEF

π h2
, (3.22)

with EF the Fermi energy equals to the highest occupied LL. Combing Equa-
tion 3.22 and Equation 3.21, and substituting the carrier concentration n with Ns

in Equation 3.18, one gets the conductivity that is contributed by every LL:

σ = −
Nse

B
= −

L · e2
h

L = 0, 1, 2, . . . (3.23)
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As a result, the Hall conductivity is quantized. The precisely quantized plateaus
(Figure 3.9.b), despite sample preparation and defects, have been widely ob-
served experimentally and become an important metrological standard of elec-
tron resistance with precision as high as 10−9 (RK=25812.807557(18) Ω).

The above very simplified derivation does relate the kinetic-energy quantiza-
tion to the resistance quantization. However, it does not take into account the
fact that the quantum Hall plateau is affected neither by a particular disorder
distribution nor a particular sample geometry. In fact, the topological protection
of the integer QHE can be viewed as a quantization of averaged charge transfer,
which is related to the so-called topological quantum number (Laughlin Theory
and Chern number [184]).

3.3.3 Visualization of quantum Hall effect

One way to visualize the electron motions in the quantum Hall effect, is to imag-
ine that the electrons are confined to iso-potential lines, as shown in Figure 3.10a
[185]. Due to the existence of negatively and/or positively charged impurities
in the 2D sample, there are closed isopotential lines, which form the "potential
landscape" in the 2D bulk. Electrons are then localized inside these isopotential
lines, and do not participate in transport (a bulk insulator). This is proven by
experimental observations in a 2D electron gas quantum Hall system, as shown
in Figure 3.10c.

However, the sample edge plays a role of confinement potential, which opens
the isopotential lines of charge impurities, and makes a continuous line along the
edge. As shown in Figure 3.10b, energy dispersion along the transverse direction
shows that the LLs are bent upwards when approaching the sample edge.

Electrons with fixed chemical potential will occupy, for example, from 0 to
nth LLs. When increasing the magnetic field, the cyclotron orbital reduces, thus
evacuating electrons from the nth LL. This will lead to the loss of one quantum
of conductance e2/h (since one LL contributes to one G0), seen as a jump of a
plateau in the Hall resistance (Figure 3.9b).

If the magnetic field is fixed, one can also tune the chemical potential of the
electrons by gating, this plays the role of pumping electrons or holes into the
occupied LLs, therefore influencing the quantized Hall resistance.

We now come to the longitudinal resistance (Rxx). As can be seen in Fig-
ure 3.9b, corresponding to each plateau in Rxy, Rxx shows a zero-resistance
state. To understand this, we recall the Landauer-Buttiker formula of quantum
transport:

G =
∑ e2

h
Tn. (3.24)

In this equation, conductance of a mesoscopic system is described by the sum in
all the conduction channels of quantum conductance multiplied by the transmis-
sion coefficient Tn in each conduction channel. Comparing with the transport
formula for integer QHE Equation 3.23, one can see the Tn in quantum Hall
regime is equal to 1, meaning a ballistic transport in each Landau channel, with



98 electronic properties of graphene

Figure 3.10: a) Schematic picture of the potential landscape in a 2D sample, reproduced
from [186]. b) The energy dispersion of Landau level along transverse y-axis
in a sample shown in a), in which Landau levels are bent upwards at the
edges due to the confinement potential. Picture reproduced from [187, 188].
c) Scanning probe map of the local potential of a 2D electron gas sample by
SPM microscopy (Scanning capacitive mode). Image courtesy: Prof. Gleb
Finkelstein [189, 190].

no scattering or reflection of the electrons along the longitudinal axis. That ex-
plains the zero-resistance Rxx in each LL.

3.3.4 Quantum Hall effect of graphene

Graphene as a 2D material, it has a QHE which was reported by Kim’s and
Geim’s group simultaneously in 2005 [10, 9]. Unlike the non-relativistic 2D
free electron described in the previous section, graphene follows the pseudo-
relativistic theory. Therefore, specific quantum mechanical treatment is needed.
The quantized LL for massless Dirac fermions is [191]:

EL = ±
√
L ·  hωc =

√

L · 2 heBv2F, L = 0, 1, 2, . . . (3.25)

An important difference from the non-relativistic Landau levels is the exis-
tence of an energy state with E=0 (when L=0). The schematic picture of the
relativistic LL is shown in Figure 3.11. In graphene, the above mentioned zero
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Figure 3.11: Schematic pictures of Landau levels of 2D massless Dirac fermoins.

energy state is shared by both electrons and holes, that is to say, degeneracy of
this zero-energy LL are twice smaller than all the other LLs. Thus, the quantized
sequence of conductance is defined as:

σxy = gsgv(L+
1

2
)
e2

h
, L = 0, 1, 2, . . . (3.26)

where gs = 2 and gv = 2 are the degeneracy of spin and valley. In the follow-
ing, we will focus only on the QHE in monolayer graphene. More information
about the QHE in bilayer graphene, and the fractional QHE in graphene can be
found in [148, 192, 193, 194, 195].

3.3.5 CVD monolayer graphene: towards a resistance standard

As described in previous sections, the quantum Hall plateau is determined by
two fundamental physical constants: the Planck constant h and electron charge
e. It therefore provides high precision of resistance metrology, which is of great
importance in industrial, scientific and technological applications.

Due to the unique band structure, graphene exhibits large LL spacing with
high charge mobility, which can demonstrate QHE at a surprisingly high tem-
perature [196], and thus makes this system much more favourable compared to
the conventional semiconductor case [197, 196].

Here, we show an example of the QHE on mm-size CVD graphene. The
graphene was grown using the standard-CVD on Cu, and was transferred on a
285 nm SiO2/Si wafer. Lateral size of the CVD graphene sheet is about 6 mm
× 3 mm. Silver paint was put onto the edge of graphene to define a Hall bar
geometry, as shown in Figure 3.12.

The measurements were done with the help of Cecile Naud in her 4 K cryo-
stat with maximum 14 T magnetic coil. As shown in Figure 3.13, field effect at
4 K suggests a mobility of about 1000 cm2s−1V−1, using the fitting formula in
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Figure 3.12: Optical photograph of a CVD graphene sample for quantum Hall measure-
ments. 6 mm × 3 mm graphene layer (dashed lines) was transferred onto a
SiO2/Si chip, loaded on a 2.5 mm diameter holder. Graphene is grown by
standard-CVD, with multilayer-patches. Electrodes of a Hall bar geometry
were patterned by silver paint. Sample was measured at low temperature
with the help of Cecile Naud.

Figure 3.13: Longitudinal resistance at 4 K temperature as a function of gate voltage of
the sample shown in Fig. 3.12.

Equation 3.16.

When subjected to a magnetic field perpendicular to the sample surface, the
Dirac fermions inside graphene start to be quantized into LLs. It can be seen
that a small split of the Dirac peak starts to develop at about 4 T in Figure 3.14b.

Usually, to observe QHE, one has to reach three conditions [40]:
1) high quality of the sample, in order to minimize scattering of electrons,
2) strong enough magnetic filed, in order to lift off the LLs, i.e., to have electron

cyclotron frequency ωc be higher than the broadening of the LLs (ωcτsc ≫ 1),
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Figure 3.14: a) Transverse conductivity ρxy, and b) longitudinal resistivity ρxx at differ-
ent magnetic fields. c) ρxx and σxy in the same plot, under magnetic field
of 14 T. In the Hall plateau regime, longitudinal resistivity ρxx is not zero,
which may be due to the scattering at graphene boundaries, indicated by
schematics in c). All measurements were carried at 4 K.

3) low enough temperature to avoid broadening of LLs by thermal fluctuations
(KBT ≪ ωc).

QHE was observed at room temperature in a magnetic field of 39 T for exfoli-
ated graphene sample with a 10,000 cm2V−1s−1 mobility [196]. In a ultra-clean
suspended graphene sample, QHE was seen at only 0.5 T at 2K [194]. In our
case, the Hall plateau was fully developed at magnetic field of 14 T, as shown in
Figure 3.14a.

Quantization of Hall resistance at 14 T is shown in Figure 3.14c. Clear filling
factors of 2, 6, 10 can be found in the blue curve, known as the half-integer QHE
in monolayer graphene [10, 9]. Multilayer patches in the sample did not affect
the QHE, since they are inside the 2D surface, and not affecting the edge chan-
nels. Notice that in the longitudinal resistance there is a residual resistivity of
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Figure 3.15: a) Transverse and longitudinal magneto-resistance at gate voltage of -40 V.
b) Rxx plotted against the inverse of magnetic field. c) 1/B plotted as a
function of Landau index, extracted from b). Instead of going through the
origin (dashed line), the line extrapolates to 1/2 Landau index, due to the
Berry’s phase in monolayer graphene [9].

about 1-2 kΩm instead of 0 (Figure 3.14c). This non-zero resistivity is also seen
in other works ([198]), which may be due to the scattering of graphene grain
boundaries at the edge channel. Suppose there is a conventional defect, such as
a vacancy, at the edge channel, the iso-potential line will not be affected, and
electrons can pass around it, while keeping the ballistic transport in the longitu-
dinal edges. However, if the defect is a crack or a grain boundary (commonly
seen in CVD graphene due to the poly-crystallinity) that plays a role of high
barrier, transmission of the electron can be less than 1, even in the quantum Hall
regime, thus leading to a residual Rxx, as illustrated in Figure 3.14d.

Magneto-resistance of the sample at -40 Vg was examined in Figure 3.15a.
Shubunikov de-Hass Osillations (SdHOs) can be clearly seen at high magnetic
filed. It is known that the SdHOs are periodic as a function of the inverse mag-
netic field 1/B, with the frequency 1/BF called the SdHO frequency [10]. Ac-
cording to the 0.02 T−1 SdHO frequency in Figure 3.15b, BF is then about 50 T.
Thus one can assign the SdHO peak at 0.08 T−1 as the 4th Landau index. The
SdHO frequency is then plotted against the Landau index in Figure 3.15c, which
appears to be linear. This is in agreement with the LLs in monolayer graphene
in Equation 3.26, and also agrees with reports in the literature [10, 9, 198]. No-
tice that the linear dependence of SdHO and Landau index in Figure 3.15c does
not go through the origin of the coordinates: instead it intersects with the 1/2

Landau index, which is due to the Berry’s phase in graphene [9].
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3.3.6 ν = 1 filling factor in the QHE in our CVD monolayer graphene

Figure 3.16: a) Field effect of the Hall bar sample, with the x-axis renormalized to the
unit of carrier concentration. The extracted mobility is plotted in the same
figure, showing the mean value of 2000 cm2V−1s−1 away from the Dirac
point. Inset in a) shows the schematics of the sample geometry. b) Trans-
verse and longitudinal conductivity plotted in the same figure. Filling factor
of ν = 0 and ν = 1 are indicated by the arrows. Image from F. Lafont and
W. Poirier at LNE.

Our collaborators from LNE Paris measured one of our CVD samples. The
sample they used is 200 µm in lateral size (inset of Figure 3.16a), which is much
smaller compared with the one we measured in the previous subsection. The
sample shows a mobility with a mean value of about 2000 cm2V−1s−1, as shown
in Figure 3.16a.

Interestingly, at 0.3 K, plateaus at filling factors ν = 1 and ν = 0 appear.
These two plateaus are rarely reported in CVD graphene, especially on the CVD
samples supported by SiO2 wafer. More details for understanding this behavior
are needed and this will be an important part of our future collaborations.
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3.4 raman of monolayer graphene under magnetic field

In the previous chapter, we have briefly introduced Raman scattering (optical
phonons) in monolayer graphene without the presence of a magnetic field. When
high enough magnetic filed is applied perpendicular to graphene, the linear DOS
transforms into discrete LLs with a degeneracy of eB

h . Therefore, the continu-
ous interband electronic excitation spectrum transforms into discrete excitations
along LLs. When its energy matches the optical phonons, the large electron den-
sity of states in the LLs dramatically enhances the electron-phonon interaction,
giving rise to the magneto-phonon resonance (MPR) [199].

In this section, we will introduce first the Kohn anomaly induced by electron-
phonon interaction, then the inter LLs excitation under magnetic field. So far,
the existing literatures are mostly focusing on magneto-phonons in graphene/-
graphite that are fixed in the Fermi energy while sweeping magnetic field. Al-
ternatively, here, we will show that by tuning the Fermi level in monolayer
graphene with a back gate, one can probe the effects on MPR under fixed mag-
netic fields.

3.4.1 Kohn Anomaly

Kohn anomaly is an anomaly in the dispersion relation of a phonon branch in a
metal. It is seen as a discontinuity in the derivative of phonon dispersion, pro-
duced by the abrupt change in the screening of lattice vibrations by conduction
electrons [200, 201]. It is demonstrated by calculations and experimentally ver-
ified that graphene phonon dispersions have two Kohn anomalies at the Γ -E2g

and K-A ′
1 modes [200].

Figure 3.17: Calculated Raman spectra in the high-frequency region including the G-
mode for different Fermi energy shifts EF from -0.3 to 0.3 eV, adapted from
[201].

When electric field is applied onto graphene, the Fermi level is tuned away
from the neutral point. The carriers therefore interact with long-wavelength
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optical phonons in a tuned manner, which can be probed by Raman scattering
experiments. G band is found to be markedly sensitive to coupling with Dirac
fermion excitations at small wave vectors (long wavelengths close to the Γ point
in reciprocal space), while the 2D band has reduced impact, but offers insights
on the coupling to particle-hole pairs at large wave vectors [202].

According to the time dependent perturbation theory, at the approximation
of linear dispersion near the Dirac point, change of G band phonon energy is
described by [203]:

 hωG −  hω0
G = χ

{

|EF|+
 hωG

4
ln
∣

∣

∣

∣

2|EF|−  hωG

2|EF|+  hωG

∣

∣

∣

∣

}

, (3.27)

where ω0
G is ωG at the Dirac point, χ = 9Aucλ

2/4π hωGMv
2
F, with M the carbon

atom mass, Auc the area of the graphene unit cell, and λ the electron-phonon
coupling strength. At high Fermi energy, the linear term dominates over the
logarithm term. When |EF| < ωG/2, the E2g phonons can decay into electron-
hole pairs, thus the phonon lifetime decreases. Experimentally, when the Fermi
level is approaching zero, the Raman G peak is down shifted with the peak
intensity decreased, together with a broadening of the peak width, as shown in
Figure 3.17.

3.4.2 Inter Landau Level Excitations

Now we come to the discussion of inelastic Raman scattering on inter-LL excita-
tions (the so-called magneto-plasmons).

In magnetophonon measurements, circularly-polarized Raman is often used,
because it allows to control the angular momentum transfer. Crossed-circular
polarization configurations are often noted as σ±/σ∓, i.e., incident and outgo-
ing photons have opposite circular polarization. While co-circular polarization
configurations are noted as σ±/σ±, i.e., incident and outgoing photons have the
same polarization. Notice that Raman E2g

(G band) phonons carry

angular momentum of

±1. It is therefore seen

only in σ±/σ∓

configuration [204].

Raman scattering selection rules for inter-LL electronic excitations have been
well established. Graphene LLs are illustrated in Figure 3.18. Three types of
excitations according to the change in the absolute value of the LL index ∆|n| =
|nf|− |ni| are illustrated, where the subscript f and i are the index of the final and
initial LL index, with the corresponding transition labelled as ni → nf. ∆|n| = ±
2 and ∆|n| = ± 1 excitations are expected to be active in the crossed-circular
polarization configuration σ±/σ∓, and ∆|n| = ± 0 excitations are expected to be
active in the co-circular polarization configuration σ±/σ± [205].

3.4.3 Magnetic phonon resonance of Raman G band in graphene

When the energy spacing between LLs (electronic excitations) is tuned to match
the energy of optical phonons, the inter-LLs electron excitations interact strongly
with optical phonons, which is called magneto-phonon resonance (MPR) phe-
nomenon. At the resonant magnetic fields for which the energy of inter LL
excitations match that of optical phonons, electronic excitations hybridize with
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Figure 3.18: Schematic graphene LL spectrum with three types of electronic excitations.
Selection rules for the inelastic light-scattering processes are indicated. Pic-
ture adapted from [204].

optical phonons. Experimentally, this electronic-optical phonon hybridization
is seen as an avoided crossing behavior between these modes as seen through
Raman scattering experiments, as shown in Figure 3.19.

Early works predicted that only the inter-LL excitation with Li → Lf = -n-1→n,
and -n→n+1 can be hybridized with Raman G band (E2g phonons) [203, 199].
However, recent report shows that -n→n series was also possible for having
MPR on the surface layer of graphite [206].

Figure 3.19: Schematics of avoided cross in the G band Raman shift at resonances with
the inter-LL excitations. Dashed lines are inter-LL excitation energy, while
solid red lines are the hybridized E2g Raman mode. Picture adapted from
[204].

For electronic excitations with energy of ∆i,f, the energy of electron-phonon
coupled modes can be described, in the case of a neutral graphene system, by
[206]:

ǫ2 − ǫ20 − 4ǫ0

∞∑

k=0

λ

2
E21

(

f(ν)Tk

ǫ2 − T2k
+
1

Tk
+
f ′(ν)Ik
ǫ2 − I2k

)

= 0,
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where E1 = vF
√
2e hB, Tk = (

√
k +

√
k+ 1)E1 stands for inter-LL excitations,

Ik = (
√
k+ 1−

√
k)E1 stands for intra-LL excitations, ǫ0 is the G band energy

of the neutral system at zero magnetic field, λ is the electron-phonon coupling
constant, f(ν) and f ′(ν) take values between 0 and 1, describing the occupancy
of the Landau levels. According to Equation 3.27, at high EF, the second term on
the right part reduces to zero, the G band energy has a linear dependence with
EF. Therefore, one can experimentally extract the slope and thus λ.

MPR of graphene with fixed Fermi energy while sweeping the magnetic field

For neutral graphene, the Fermi level is always pinned in L0 Landau level, it
thus allows all inter-LL excitations, and MPR takes place at each time when the
energies match: ∆−n(−n−1),n+1(n) = ǫ0. However, when the Fermi energy of
graphene is tuned away from neutrality, some of the electronic excitations are
forbidden due to the Pauli blocking effect. P. Kossacki et al [204] have shown
that MPR in graphene can be classified into three distinct regimes (Figure 3.20),
according to the Fermi energy at zero magnetic field EF0:

1). 2|EF0| < ǫ0. In this regime, all L−n−1(n) → Ln(n+1) transitions are active
and can be hybridized with G band phonon.

2).
√
2ǫ0 < 2|EF0| <

√
6ǫ0. Only L−1 → L0 transition is active, and reasonably

hybridize with the G band phonon. All other excitations are Pauli blocked, be-
cause no electrons are available in the LLs that can have excitations with energy
matches ǫ0.

3). 2|EF0| >
√
6ǫ0. In this regime, electron/hole concentration is high enough,

all resonant hybridizations of the E2g phonon with L−n−1(n) → Ln(n+1) excita-
tions are quenched.

MPR of graphene with fixed magnetic field while tuning the Fermi energy

As described above, by tuning Fermi energy in graphene, filling factors of carri-
ers in each LL is tuned, thus leading to different amplitudes of the anti-crossing
in the MPR [199]. This is actually our aim of study in the next subsections: to
study the filling factor dependence of MPR in CVD graphene by gating. Here
we focus on the excitations of L−1(0) → L0(1) (B ∼ 25T), since the Raman G mode
splitting is most pronounced at this magnetic field [199].

It is known that in monolayer graphene, fully filled Landau level (L) corre-
sponds to filling factor ν = 4(1/2+ L). The general trend of G band splitting at
the MPR of L−1(0) → L0(1) transition can be summarized as follows:

1). At ν= 0, corresponding exactly to a half-filled n = 0 LL, the coupling
strengths of σ+/σ− and σ−/σ+ polarizations are equal.

2). 0 <ν< 2 corresponds to more than half-filled n = 0 LL, the L−1 → L0
transition becomes partially blocked, while the L0 → L+1 transition is enhanced,
giving rise to different splitting in the fine structure of σ+/σ− and σ−/σ+ polar-
izations.
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Figure 3.20: Three regimes of the Fermi energy (only hole doping is shown, but it should
be the same for electron doping) and its impact on the magneto-phonon ef-
fect. Left panels represent fan charts of the Landau levels with marked
excitations being in resonance with the E2g phonon. Solid and dashed ar-
rows represent excitations in σ−/σ+, and σ+/σ− polarizations, respectively.
The purple line shows the Fermi level. Right panels show the evolution of
the phonon energy versus the magnetic field. Picture adapted from [204].

3). For 2 <ν< 6, n = 0 LL is fully occupied, no MPR takes place for the σ−/σ+

phonon, whereas n = +1 LL is partially occupied, resulting in an MPR-induced
fine structure in the σ+/σ− phonon lineshape (with maximum splitting at ν= 2).

Experimentally, it is predicted that the G mode splitting in the vicinity of MPR
at L−1(0) → L0(1) transition behaves as illustrated in Figure 3.21. In the figure,
λ is the electron-phonon coupling constant, and γ = 3

√
3a2eB/2π with a = 1.4

Åthe distance between neighbouring carbon atoms.

3.4.4 Gating CVD graphene at the vicinity of MPR

As we mentioned, so far, the existing works on the MPR of graphene are mainly
focused on samples that are fixed in the Fermi energy while sweeping the mag-
netic field. Here, we show that by tuning the Fermi level in monolayer graphene
with a back gate, one can probe the effects of MPR on G band Raman spectrum
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Figure 3.21: a) Schematics of the Landau index. b) Raman G mode splitting at the vicin-
ity of MPR at the transition of L−1(0) → L0(1), under a fixed magnetic field
of B ∼ 25− 30T). Picture adapted from [199].

of graphene under fixed magnetic fields.

Non-percolated CVD graphene domains are grown by the standard-CVD method
at the hexagonal regime, same as shown in Figure 1.15b. After being transferred
onto doped silicon oxide wafer, those randomly scattered graphene grains are fi-
nally contacted with arrays of long metallic leads (50 nm Au/5 nm Ti), with each
lead serving as an individual ground when performing Raman measurements,
as illustrated in Figure 3.22a.

Figure 3.22: a) Schematic picture of the graphene domains contacted with separated elec-
trodes for gated Raman measurements. b) A typical Raman single spectrum
of the sample under test. The low D band indicates good quality of the CVD
graphene sample. Inset in b) shows a Raman G-band map of the sample.
Spectrum in b) is taken at the position of the green dot in the inset.

Magneto-Raman scattering measurements were carried out in collaboration
with Clément Faugeras and Przemyslaw Leszczynski at the LNCMI-CNRS, Greno-
ble. The gated graphene sample was mounted on x-y-z piezo stages in a 4He
vacuum cryostat, kept at 4.2 K. Raman measurements were performed using an
excitation laser beam with λ = 514.5 nm at the power of 4 mW and a laser spot
of about 1 µm diameter. For more experimental details, one can refer to [206].
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Zero magnetic field Raman measurements

A typical single spectrum of the graphene sample in this study is shown in Fig-
ure 3.22b. Good quality of the CVD graphene can be seen from the very low
Raman D band intensity. We first mapped the sample surface to locate the elec-
trode which was grounded (numbered with lithography), and then focused our
laser beam on a fixed point of one of the monolayer graphene grains to do the
magneto-Raman measurements.

As shown in Figure 3.23a, the Raman G band spectra are plotted as a function
of gate voltages. Similar behavior as in Figure 3.17 can be seen: minimum Ra-
man shift of G band is observed close to the Dirac point (about -10 V). We know
that according to Equation 3.2, 3.6 and 3.13, gate voltage can be renormalized
into Fermi energy. Therefore, one can plot the single-Lorentzian-fitted peak po-
sition and FWHM of Raman G band as a function of Fermi energy, shown in
Figure 3.23b.

Figure 3.23: a) Gate dependence of Raman G band spectra at zero magnetic field. b) The
peak position and FWHM fitted with single Lorentzian from the measured
G band spectra, plotted as a function of Fermi energy. Solid lines are fitted
by Equation 3.27, with a Gaussian convolution of the Lorentzian shape [207].

Taking the hole side of Figure 3.23b, the linear part at high EF can be fitted as
 hωG = 1585.78+ 0.043× EF (cm−1). According to Equation 3.27, this slope of
0.043 gives an electron-phonon coupling constant of about 0.6 eV/ Å.

G band splitting at the L0(−1) → L1(0) transition MPR

We now come to the part of filling factor dependence of Raman G mode at
several different magnetic field: 14 T, 22 T, 26 T, and 28 T. Gate voltages can
be transformed from carrier concentrations n, which is determined by the gate
voltage according to Equation 3.13. It is known that for each LL in graphene,
electron degeneracy is eB/h ∼ B× 2.418× 1010cm−2 · LL−1. Therefore, filling
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factors can be transformed from n, obeying the relation ν = (7.56×Vg)/(2.418×
B).

The key points of our observation are listed below:
(1) At B=22 T, we observe an additional feature at higher energy,
(2) At B=26 T (very close to the resonance at 25 T) we observe both high and

low energy additional components,
(3) At 28 T, we observe only the low energy additional feature.

These above features are actually well described by the theory [203]. As shown
in Figure 3.24b, the Raman mode shift for neutral graphene is given. Arrows
below and above the resonance at 25 T indicates the high energy or low energy
shifts. When tuning the Fermi energy of the graphene at each fixed magnetic
field, G mode splitting happens as described in Figure 3.21. Color maps of
Raman G band as a function of filling factor at 22, 26, and 28T are plotted in the
left panel of Figure 3.25.

Figure 3.24: a) Schematics of the electron excitations: solid arrows are inter-Landau level
excitations, and dashed arrows are intra-Landau level excitations (Cyclotron
excitations). b) Raman G-band shift for neutral graphene.

G-peak positions fitted from the color map shows that the splitting is sym-
metric with respect to polarization (Figure 3.26), being maximum at ν=-2 in one
polarization and at ν=+ 2 in the other polarization. Our global experimental
results fit reasonably well with Ando’s theory [203] (Figure 3.25) in the resonant
regimes (between ν = -6 and ν = 2 in one polarization and between ν = -2 and ν
= +6 in the other polarization). Outside of the resonance (for high or lower fill-
ing factors), we see some deviations, probably due to cyclotron resonance or to
confined plasmons (see Figure 3.26). To better understand these large deviations,
further studies are needed.

3.5 conclusion of chapter 3

As a conclusion, we have briefly introduced the band structure of mono-layer
graphene, and related the electron transport properties of gaphene to the fun-
damental electronic structures. Examples of graphene transistors on conven-
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Figure 3.25: Color Map of G band Raman shift as a function of filling factor at ± 22,
26, and 28 T with σ+/σ− polarizations. The left panels are measured data,
while the right panels are simulated from [203].

Figure 3.26: Raman G-peak position fitted from the left panel of Figure 3.25 for a) σ−/σ+,
and b) σ+/σ− polarizations. Solid lines are calculated curves according to
[203].

tional SiO2, or by EDL method were introduced. So far, the EDL on large scale
CVD graphene needs further optimization in terms of experimental conditions
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Figure 3.27: a) Arrays of CVD graphene Hall bar with Au electrodes, fabricated by op-
tical lithography. b) Zoom-in optical micrograph of the boxed area in a),
showing a graphene Hall bar with three pairs of transverse electrodes and
one pair of source and drain electrodes.

to avoid problems such as frozen liquid caused cracks in graphene. Finally, we
discussed about the Landau level and quantum hall effect in graphene, with the
demonstration of centi-meter sacle graphene sample. We show that with the
high mobility CVD-grown graphene, batch fabrication of Hall bars is possible,
as shown in Figure 3.27. CVD graphene provides great opportunity for quantum
resistance standard applications.

We have briefly reviewed the electronic excitations between LLs and the Magneto-
phonon resonances of monolayer graphene. We are able to tune the Fermi energy
in the CVD monolayer graphene transferred on silicon oxide with a back gate.
We studied the change of electron-phonon coupling in non-resonant regime of 14

T, 22 T, and also the resonant regime at 26, 28 T. A splitting behavior of G band
as a function of filling factor is observed at σ+/σ− and σ−/σ+ polarizations. We
also found that the asymmetry observed in G-mode splitting is having much
higher amplitude than described by theory. This is not yet fully understood. We
speculate that it may be an effect of confined plasmons.





4
C L E A N I N G G R A P H E N E

The aim of this chapter is to summarize the most popular methods of cleaning graphene.

In many studies, the surface of graphene is open to the environment. It is easily con-

taminated and thus its electronic properties will be degraded. It is therefore important to

have graphene as clean as possible, especially for the studies that require high electronic

mobility and low doping. Among the methods reported in the literature, we found that

the acetic acid cleaning process seems to be an efficient way of cleaning graphene.

Graphene consists of basically two surfaces and no bulk. In real life applica-
tions, its top (and/or bottom) surface is in most cases exposed to the environ-
ment. Therefore it is very sensitive to environmental doping, yet it is easily con-
taminated during sample fabrication process. For example, the typical problem
of PMMA residues adhering on the surface, encountered in graphene transis-
tors, degrades a lot of the charge mobility and has aroused recent interests to
remove it [208, 209, 210, 211, 25]. Another issue of the cleanliness of graphene
is not about graphene itself, but about the substrate on which graphene is rest-
ing. It is known that SiO2 is rough, corrugated, and sometimes charged. There-
fore, graphene on SiO2 often experiences many scattering centers for electron
transport. To solve this problem of substrate scattering, several methods have
been developed: a novel way of cleaning the SiO2 wafer [212], the suspension
of graphene over two electrodes, or transferring graphene onto other suitable
materials, such as hexagonal Boron Nitride (h-BN) [116, 213, 214].

In this chapter, we will briefly introduce several popular methods we applied
to our devices for cleaning graphene, in order to improve the electronic perfor-
mances of graphene devices [215, 216, 214].

4.1 thermal annealing

Thermal annealing is a rather traditional method, as it is easily accessible in most
labs. It is argued that by thermal annealing. PMMA or other lithography resists
can be efficiently removed and thus improve the mobility of graphene [217, 218].

Among the thermal annealing recipes, the annealing gases are mainly hydro-
gen and/or Ar [116, 213], while some use only high vacuum [218]. We have
performed a test of such kind of thermal annealing. The conditions we used are
140 ◦C, 10 sccm Hydrogen and 100 sccm Ar gas under 1 mbar pressure for 12

hours. Indeed the Dirac point of the sample was brought closer to 0 V, and the
mobility has increased from several hundreds to 3800 cm2V−1s−1, as shown in
Figure 4.1. When the annealing temperature is increased to, for example 400◦C,
defects start to show up in graphene. And hexagonal pits (confirmed to be zig-
zag edge by STM) start to form at even higher temperature [79], as shown in
Figure 4.2. These hexagonal pits are very similar to those reported after hydro-
gen plasma treatment [77].
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Figure 4.1: Evolution of the field effect for the CVD graphene same sample transferred
on SiO2 wafer, with different annealing steps. Degradation of field effect
happens after stored in air for 3 days. Annealing in 10 sccm H2/ 100 sccm
Ar gas under 1 mbar pressure for 12 hours however brings the Dirac point
closer to neutral.

Figure 4.2: Hexagonal pits with zig-zag edges show up after thermal annealing in
O2/N2 mixture at 500 ◦C for 40 min, followed by a consecutive Ar annealing
at 700 ◦C. Picture adapted from [79]. Notice that there might be a reaction of
graphene with silicon.

The problem is that thermal annealing depends a lot on the cleanness of the
oven, and also on the purities of the gases used. Results from thermal annealing
are not so reproducible. Sometimes graphene becomes more doped after anneal-
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Figure 4.3: A bad example of thermal annealing of CVD graphene, whose field effect
performance degraded after annealing. Picture adapted from [219].

ing [219], as shown in Figure 4.3. Therefore, a dedicated annealing chamber is
highly needed for graphene cleaning.

4.2 current annealing

The second way of cleaning graphene was first developed by J. Moser et al [211],
and ever since is has been widely adopted in the field of cleaning suspended
graphene. It has been shown that the electronic temperature can be as high as
2000 K when graphene is biased with high current densities in the saturation
regime [220].

During the current annealing, a current or voltage is applied to the sample and
at the same time, the real-time power or resistance of the sample are monitored
in order to estimate Joule heating and avoid possible runway of the annealing
(similar to the electro-migration process for preparing a nanogap). One should
increase by small steps so that heating of the sample can be stopped as soon
as there is a sudden drop of sample resistance. Once there is a resistance drop,
one should ramp current/voltage back to zero, and check the mobility of the
sample. If it is not improved enough, current annealing should be executed once
more. Notice that it may need to sweep current/voltage towards both positive
and negative signs, as shown inFigure 4.4.

Even though current annealing is widely used, it still has its limitations. For
example, when the sample is patterned into a Hall bar geometry, due to the
geometry nature, current can not pass through the whole sample surface homo-
geneously, leaving some dead-space with dirt that never gets off. Also, when
the sample is not suspended, the efficiency of current annealing is significantly
decreased. Figure 4.5 gives an example of a graphene Hall bar that is manually
decorated with some low melting-point metal nanoparticles (Sn) with the same
diameters. One can monitor the heat flow by looking at the change of those
nanoparticles. Indeed, as can be seen, the places where contacts are made seem
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Figure 4.4: Joule heating steps and their effect on mobility at 4 K. a) Typical I(V) curve
recorded during the annealing process. The vertical lines correspond to
places where the voltage ramping was paused to let the system get clean.
Inset: last annealing step. The maximum dissipated power was 19 mW. b)
Field effect curve before annealing, and c) after the last annealing step. Fig-
ure adapted from Adrien Allain’s PhD thesis, page 204.

"hotter" than other places on the sample surface. This is simply because of the
Ohm’s law that states that when the resistance is higher (the case for contact re-
sistance), it dissipates more current, and thus makes the nanoparticles melt and
change in size. However, when the contacts are good, the most dissipative zone
is in the centre of the sample surface [221].

4.3 hexagonal boron nitride substrate

h-BN is a semiconductor with 5.97 eV band gap and a very similar lattice ge-
ometry to graphene, with only 1.7 % lattice mismatch. It is free of dangling
bonds and free of charge traps, thus it is much more suitable as a substrate for
graphene nanoelectronics [116, 213, 214].

To have an idea about the improvement, we compared two field effect curves
on SiO2 and on BN side by side in Figure 4.6. It can be seen that the Dirac
peak is much sharper for the graphene devices made on h-BN. As already in-
troduced in Chapter 2, dry-transfer method is usually applied in graphene/BN
heterostructures. Studies show that graphene will be even better protected by
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Figure 4.5: a) CVD graphene Hall bar, the Sn nanoparticles decorating graphene are
made by electron beam lithography. It is seen that most heated parts are close
to the electrodes, which are dominated by contact resistance. Arrows indicate
the partially evaporated Sn nanoparticles. The sample here is fabricated for
use in the last chapter in this thesis. b) Raman 2D band position as a function
of the biased current in two-probe graphene device. Electron temperature is
extracted from the position of Raman 2D peak position. Picture adapted
from [221].

BN from environmental doping if one can make a BN-Graphene-BN sandwich
structures. Notice that even placed on BN, at each step of device fabrication,
thermal annealing is still needed.

However, given the fact that BN crystals used in nano-electronic studies are
mostly obtained by mechanically exfoliating a bulk BN, the size of devices is
therefore very much limited. Efforts are now devoted to the growth of CVD BN
and even graphene directly on BN by CVD methods [222, 21].

Figure 4.6: a) and b) Field effect curves of graphene device on SiO2 and on BN, respec-
tively. Data on BN are adapted from [116].
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4.4 hydrogen plasma etching

If hydrogen plasma is irradiated onto graphene with a considerably strong power,
graphene will be hydrogenated, leading to the so-called graphAne [72]. How-
ever, if one exposes graphene to a mild hydrogen plasma, it will only etch along
the edges that are energetically favourable for hydrogen to etch, giving rise to
hexagonal pits, and nano-ribbons [77].

Indeed, recent work shows that a controlled hydrogen plasma reaction at
300◦C can etch graphene or its nano-ribbons selectively at the edges over the
basal plane [76]. They also show that Raman mapping reveals no D band in the
planes of single-layer or few-layer graphene after the plasma reaction, confirm-
ing that the controlled hydrogen plasma does not introduce defects in the basal
plane. It is reasonable that the PMMA contaminations are less stable than the
sp2 bonding inside graphene plane, and they could be removed by mild hydro-
gen plasma etching. A recent work showed the possibility of this method, but
their results are still far from ideal [223].

4.5 afm sweeping cleaning

Mechanical sweeping with an AFM tip with contact mode is also proven to be
able to remove most of the resist on top of graphene. Field effect curve taken
after the AFM contact mode sweeping is indeed much improved than before
[208, 209]. However, this mechanical technique is limited to the lateral size of
the order of 100 µm.

4.6 acetic acid treatment

Non-invasive cleaning of graphene is a challenging but a mandatory task for
transport studies of ultra-clean graphene, such as fractional quantum Hall effect,
ballistic graphene junction, etc. Among the methods mentioned in the previous
sections, thermal annealing and hydrogen plasma cleaning are compatible with
large scale CVD graphene. Moreover, we know that STM is a powerful tech-
nique to probe local tunnelling spectrum of a conducting sample, and to achieve
atomic resolution of sample topography. However, when the PMMA residues
are present, STM tips have difficulties in finding a tunnelling current, and most
of the cases they crash.

Here, we introduce another chemical route of removing the residual resist
on graphene, which is also compatible with large size graphene treatment. We
first tried to remove PMMA by solvents, as PMMA is usually dissolved in Ethyl
Lactate or Anisole. However, it seems that the remaining parts of PMMA on
graphene is extremely difficult to dissolve in the two above solvents. For exam-
ple, after being dipped in Ethyl Lactate for 48 hours, there are still bluish PMMA
contaminations on the graphene surface.

Recently, a research group found that by using acetic acid instead of con-
ventional acetone, the graphene surface can be cleaned resulting in much less
PMMA residues [25]. Following their method, we tested one of our CVD graphene
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Figure 4.7: AFM tapping mode scan of surfaces of CVD graphene transferred with
PMMA assisted method on SiO2. a) PMMA is removed by acetone, and
b) PMMA is removed by pure acetic acid for 48 hours. c) a zoomed-in look
of the graphene surface cleaned by acetic acid. Image a) is measured by Di-
pankar Kalita in our group, and image c) is measured by Toai Lequang and
Claude Chapellier, from CEA-INAC, Grenoble.

transferred onto SiO2/Si wafer. The sample is dipped into pure Acetic acid for
48 hours, and rinsed with acetone, IPA, respectively, follow by N2 blow dry.

As shown in Figure 4.7a, before acetic acid treatment, there is a lot of gran-
ular like contamination, which can actually be removed by AFM contact mode.
That means these contaminations are soft matter, and very likely to be PMMA
residues. After putting into pure acetic acid for 48 hours, the sample surface
becomes rather clean, as shown in Figure 4.7b. A roughness measurement of
the cleaned graphene shows that Rq is about 0.39 nm. Knowing that the Rq for
bare SiO2 wafer is about 0.23 nm, it indicates good flatness of graphene surface.
After the acetic acid treatment, the graphene surface is compatible with STM
measurements, as shown in Figure 4.7c.

4.7 conclusion of chapter 4

Cleaning is a crucial technical problem in graphene studies, as graphene is often
exposed to the environment and easily gets doped. For studies such as STM, the
sample is very easily contaminated, which makes the STM tip crash. Moreover,
the electronic properties of graphene will be degraded without a proper cleaning
process.

To have as clean CVD graphene as possible is very challenging, since the na-
ture of the transfer and sample fabrication usually make graphene inevitably
comes in touch with lithography resists - that are extremely hard to be atomi-
cally removed. We found that among many methods reported in the literature,
acetic acid cleaning seems to be the most efficient way of cleaning graphene.

We have summarized most of the popular methods of cleaning graphene, in-
cluding:

(1) Mechanical way by AFM.
(2) Boron nitride sandwiching.
(3) Physical way by current annealing, or thermal annealing.
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(4) Hydrogen plasma etching
(5) Acetic acid treatment.
These last two methods are compatible with large scale CVD graphene clean-

ing, and may be the future direction of cleaning CVD graphene.



5
C H E M I C A L C O N T R O L O F D I S O R D E R I N G R A P H E N E

This chapter makes the crossover from "clean" graphene to "dirty" graphene in a con-

trolled manner. We have discovered a new chemical way of inducing disorder in graphene

by simply dipping graphene into the Na2S2O8 solution. This enables us to have one more

knob of tuning graphene properties, which opens the possibility of a variety of physics.

Graphene consists of two sub-lattices that lead to quasi-particles described by
a Dirac equation. When graphene is free of disorder, its band structure at low
energy is the well-known Dirac-cone structure, with a Fermi velocity of 1/300 the
speed of light [11]. However, the above standard picture of graphene electronic
structure is based on a single-particle model in ideal graphene, i.e., electrons are
free of interactions.

Thanks to the pseudo-spin, ideal graphene should be immune to back scat-
tering. In real applications, graphene is however never ideal, and its properties
are affected by intrinsic and extrinsic disorders. Surface ripples (bending of π
orbital) and topological defects (structural defects of the honeycomb lattice like
pentagons, heptagons) are the major types of intrinsic disorder. Extrinsic disor-
der then includes: adatoms, environmental charges, and extended defects such
as cracks and edges.

Defects such as vacancies in graphene locally modify the on-site potential, and
they act as scattering centres, which may cause a reduction of the Fermi velocity.
Nevertheless, when a defect is present in graphene, enormous new physical phe-
nomena are predicted theoretically and observed experimentally. For example, 1)
magnetism is predicted to emerge due to the interplay of pseudo-relativistic elec-
trons [224, 225, 226, 227], and 2) band gap opening is seen in graphene nanomesh
[228, 229, 230]. On the other hand, lattice distortions of graphene can also mod-
ify the Dirac equation that describes its low-energy band structure, giving rise
to the so-called gauge field disorder [11].

As discussed above, electronic properties of graphene depend largely on dis-
order. It is therefore of great interest to control the microscopic disorder in
graphene, thus controlling the electronic properties. In this chapter, we focus on
the transport properties of disordered graphene. We briefly introduce electron
localization mechanisms, and ways of inducing disorder in graphene. A new
chemical method of controlling disorder in CVD graphene is discussed in detail
with indepth and detailed characterizations.

5.1 scattering mechanisms in graphene : weak and strong local-
ization

When electron waves propagate in imperfect crystalline materials, they are scat-
tered by the defects, which causes the so-called localization of electrons [231].
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To characterize the strength of localization, a decay length ξ is defined since the
localized electron wave can be described as:

|ψ(r)| ∼ exp(|r − r0| /ξ). (5.1)

When ξ is short, i.e. disorder is strong, the conductance G exhibits an expo-
nential temperature dependence because electron transport occurs via thermally
activated hopping between the localized states. The general thermal activation
law in 2D systems can be expressed as below:

σ ∝ exp[−(T0/T)
α], α =






1 Arrhenius− like hopping [232]

1/3 Mott ′s variable range hopping [233]

1/2 Efros− Shklovskii correction [234]

.

(5.2)

On the other hand, in the weak disordered limit, ξ can be quite long, exceeding
either the electron mean free path le, or the sample size LS. In the weak disorder
case, the conductance decreases logarithmically with decreasing temperature.

5.1.1 Abrahams’s Localization Scaling Theory

Let us first introduce the conception of dimensionless conductance gL. In a
system with size L, gL is defined as:

g =
ET

δ
, (5.3)

where ET =
 hD
L2 is the Touless energy, while δ = 1

N(ǫ)Ld is the mean level spacing,
with N(ǫ) the density of state, D diffusion coefficient, and d the dimension.
According to the definition of conductance G = σ · Ld−2, together with Equation
3.9, g can be rewritten as:

g =
 hDN(ǫ)Ld

L2
=

 hG

e2
=
G

G0
, (5.4)

where G0 = e2

 h is the quantum of conductance. In the absence of spin-orbit
interaction, Abrahams et al proposed a single-parameter scaling equation [235]

β(g) =
∂ln[g(L)]

∂ln(L)
. (5.5)

The above equation approaches to d− 2 for large g. That is to say, in the 2D
case, β is always negative. Integrating both sides, the resultant g is then 0 for
large L. This is the famous argument that all states in 2D are localized.
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5.1.2 Influence of the electron-electron interactions

The localization theory described in the previous subsection deals only with
non-interacting electrons. Its validity was soon questioned by other works using
real-space re-normalization-group transformations [236].

B.L. Altshuler and co-workers studied a fermion system subjected to random
external potential interacting with a weak short-range potential. Within the
metallic regime, i.e., kFl ≫ 1, a disordered two-dimensional conductor has a
logarithmically temperature dependent correction [237, 238]:

δσee = −
e2

2π2 h
· g2D · ln(

 h

kBTτ
), (5.6)

where g2D is a pre-factor, τ is the electron scattering time, which satisfies the
relation with mean free path l = τ · vF.

5.1.3 Weak localization effect

Assuming the system is sufficiently clean, then the Fermi wavelength is much
shorter than the mean free path kFl≫ 1. Within a total distance Lφ the electron
waves can still preserve their phase coherence, then interferences can take place
if electrons are propagating along closed trajectories. This quantum effect is
called weak localization. It becomes more obvious at low temperatures, leading
to corrections to the classical expressions for the conductivity.

Weak localization is usually due to the positive interference between two paths
along closed loops, traversed in opposite directions, shown in Figure 5.1 [239].
As a result, the probability that the electron goes back to the origin is enhanced
(localized), giving rise to a decrease of conductivity. Therefore, in most metals,
the weak localization effect gets destroyed by applying a small magnetic field,
leading to a negative magneto-resistance.

Figure 5.1: The trajectories of an electron scattered by impurities that give rise to a quan-
tum correction to the conductance. Adapted from [239].

However, graphene has an additional Berry’s phase of π [10]. As a conse-
quence, the motion of electrons along two closed paths interfere destructively in
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graphene, leading to a suppression of backscattering. Hence, a positive magneto-
resistance, i.e., weak anti-localization is expected. However, the Berry’s phase
comes from the chirality of valleys [11, 240]. Therefore, in order to observe anti-
localization, an electron should not be subjected to strong inter-valley scattering,
which requires clean graphene.

The magneto-resistance at high charge carrier concentration has been well de-
veloped in graphene [241]. The correction to the Drude conductivity reads as:

δσ =
e2

πh

[

F

(

τ−1
B

τ−1
φ

)

− F

(

τ−1
B

τ−1
φ + 2τ−1

inter

)

− 2F

(

τ−1
B

τ−1
φ + τ−1

inter + τ
−1
intra

)]

. (5.7)

Here F(z) = ln(z) +Φ(0.5 + z−1), with Φ the di-gamma function. τ−1
B =

4eDB/ h, and τφ = L2φ/D the phase coherence time.
Experimentally, when weak localization dominates the correction to graphene

conductivity, one can fit the measured magneto-resistance at different gate volt-
ages with Equation 5.7. Using the fitted time scales τx, one can extract the
parameters such as phase coherence length, etc.

5.1.4 Inter- and intra-valley scatterings in graphene

Graphene’s band structure has two valleys, and electrons propagating in the
energy band can be scattered either within one valley (intra-valley), or between
valleys (inter-valley) [242].

Intra-valley scattering is characterized by the time τintra, which originates
from charge impurities, and ripples [239]. Inter-valley scattering (characterized
by τinter) is caused by short-range defects (such as the edges of the sample)
that are able to scatter electrons between the two valleys. While small τintra

suppresses interference within a valley, small enough τinter restores it by mixing
the two valleys, which have opposite chirality.

Different scattering mechanism leads to different time scale. For example,
when weak point disorder is the major source of inter-valley scattering, τinter is
defined by τinter = σsr · h/(2e2 · vF

√
πn). If charge-impurity is the intra-valley

scattering source, τintra = h/(2e · vF
√
π) · µ · √n [26]. Here σsr denotes short-

range conductivity, and µ is the electronic mobility.

5.2 ways of inducing disorder in graphene

Recently, a few works have been devoted to functionalizing graphene by disorder.
For example, defect scattering centres were introduced in graphene using Ne
and He ion irradiation [243]. Oxidizing graphene is also an effective approach
to make graphene disordered [244, 245]. Interestingly, graphene oxides can be
easily reduced back to sp2 graphene by thermal annealing or chemical reactions.
Very similar behaviours are found in hydrogenated graphene with partially sp3

bonds via hydrogen plasma irradiation [72]. Ozone treatment was recently used
to induce defects, in order to make the transition of weak-localization to strong-
localization in graphene [26].
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In this section, rather than plasma treatment, graphene grown by the CVD
method shows an increased disorder by being dipped in the Cu etchant for
longer time. This method of inducing disorder gives first a hint to the CVD
graphene device fabrication process: since the solution we used to induce dis-
order is also the Cu etchant, graphene quality may be degraded during transfer
process, as Cu removal is a routine process. That is to say, many of reported
poor quality graphene is possibly due to this reason.

CVD graphene was grown under the standard-CVD condition in Chapter 1,
and was then transferred onto SiO2/Si wafer for further measurement. The sam-
ples were then dipped in a 0.1 g/ml Na2S2O8 solution for a controlled duration.
We found that the disorder in graphene increases with increasing etching time,
as we will discuss in details in the following subsections.

5.2.1 Field effect in disordered graphene

Figure 5.2: a) Gate dependence of resistance of the sample dipped in 0.1 g/ml Na2S2O8

for 1.5 h, 6 h, and 14 h, respectively. Dashed lines in a) are fitted curves using
Equation 3. 17. b) shows the optical micrograph of the device under test. c)
Charge mobility extracted from fitted curves in a), plotted as a function of
etching time. Clear decreasing trend can be seen, and the dashed line in c) is
a guide to the eye.

Graphene devices with four-probe electrode configuration are fabricated (see
Figure 5.2b) for transport studies. The sample was dipped in the Na2S2O8 solu-
tion, and was taken out at different durations for field effect curves measurement
at room temperature. As shown in Figure 5.2a, there is an increase of total re-
sistance with increasing etching time. Notice that the Dirac point of the three
curves are normalized to 0 V, since residual doping is not under control, and the
measure of residual doping is meaningless.

By fitting the curves with Equation 3.17, we found that room temperature
mobility of the sample decreased from about 500 to 30 cm2V−1s−1, for etching
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times from 1.5 h to 14 h. The degradation of mobility can be simply explained
by increased scattering by defect sites.

5.2.2 Raman characterization of defected graphene

As described in Chapter 3, Raman peak position at around 1300 cm−1 stands for
defect-activated phonons, whose intensity is a measure of the level of disorder.
Intensity maps of D band are measured for the same set of samples as shown in
Figure 5.2.

As it can be seen, when graphene is let in etchant for only 1.5 hours, no strong
D peak can be found except for the edges. This is due to the oxygen plasma
etching procedure when patterning graphene into a Hall bar geometry. Oxygen
plasma creates random defects along the edges and leaves a strong Raman D
signal. When the etching time is increased to 6 hours, graphene shows a higher
Raman D peak. The D band becomes strong and homogeneous in the sample
etched for 14 hours, where the D band intensities at the edges and inside the 2D
bulk were hardly distinguishable before, as shown in Figure 5.3c. The Raman
map was performed with a resolution of 300 nm. Homogeneous D-band maps
indicate homogeneous microscopic defects in the graphene. This provides a
controllable way to induce disorder in CVD graphene in applications such as
quantum switches [13].

Figure 5.3: Raman D-band intensity map of the same sample etched in 0.1 g/ml
Na2S2O8 for a) 0 hours, b) 6 hours, and c) 14 hours. Image size 15 × 15

µm2. Data obtained with the help of Dipankar Kalita (Néel Institute).

Another set of samples are examined by both Raman and resistance measure-
ments. Single Raman spectra were taken for samples etched for different du-
rations. As shown in Figure 5.4a, D band intensity increases as a function of
etching time, consistent with the maps in Figure 5.3. At each point of etching
time, sample sheet resistance was also measured, as shown in Figure 5.4b. An al-
most linear increase of room temperature sheet resistance with etching time was
seen. Unlike the field effect shown in Figure 5.2a, sheet resistance in Figure 5.4b
was measured with no gate-polarization, meaning a natural doping in the sam-
ple. However, the general trend is clear with the error bar included in the plot.
Figure 5.4c exhibits the corresponding D-peak area for different etching times.
In agreement with the sheet resistance, D-peak area is also increasing, from 0 to
200 counts, for etching times of 1.5 to 19 hours, respectively.
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Figure 5.4: a) Raman spectra of graphene treated in 0.1 g/ml Na2S2O8 for different time
durations, and b) their corresponding sheet resistance, showing an almost
linear increase of room temperature sheet resistivity with etching time in
Na2S2O8 solvent. c) The D peak area extracted from a), plotted as function
of etching time. Measured by Jinxing Liu (Néel Institute).

Figure 5.5: Deconvolution of Raman single spectrum for the sample etched in 0.1 g/ml
Na2S2O8 for 16 hours. D-to-D’ intensity ratio is fitted to be around 13.

When etched for a long enough time (16 hours for example), a D’ peak starts
to show at the right shoulder of G peak. It is reported that by evaluating the
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peak intensity of D/D’ ratio, one can extract the information of the defect type,
which is sp3 when D/D’ is higher than 6, vacancies if D/D’ is around 3 [28]. In
our case, we performed the same analysis in the sample etched for 16 hours. It
turned out that D/D’ ratio is about 13, indicating sp3 type defects, as shown in
Figure 5.5.

5.2.3 TEM observation of defected graphene

Figure 5.6: a) TEM image of a non-defected graphene on lacey carbon grid. The
graphene was grown by pulsed-CVD, cleaned by normal acetone and an-
nealed at 120 ◦C in vacuum for 2 hours. b) TEM image of the CVD graphene
after dipped in 0.1 g/ml Na2S2O8 for 14 hours. Boxed area highlights the
defect site. TEM images taken by Hanako Okuno from CEA-INAC, Greno-
ble.

To check the defects microscopically, we performed the TEM observation of
graphene sheets treated by Na2S2O8 for different etching times. As shown in
Figure 5.6a, graphene without treatment shows good crystallinity, while the one
after 14 hours etching in Na2S2O8, in Figure 5.6b, exhibits defect sites through-
out the sample. However, here we do not have high enough resolution to image
the type of defects.

5.2.4 XPS measurements of the defected graphene

X-ray photoelectron spectroscopy (XPS) is another common tool for surface char-
acterization. The working principle can be described as follows. When monochro-
matic X-ray photon is incident onto the sample surface, electrons get knocked
out due to a photoelectric effect:

Ebinding = EX−ray photon − (Ekinetic +φ), (5.8)
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where Ebinding is the binding energy of the electron emitted, EX−ray photon

is the energy of the X-ray photons being used, Ekinetic is the kinetic energy
of the electron measured by the instrument and φ is the work function of the
spectrometer (not the material). Measuring the kinetic energy and number of
electrons that escape from the top 1 to 10 nm of sample surface then gives the
information of chemical composition and amounts of certain elements. For most
applications, it is a non-invasive technique that measures the surface chemistry
of materials.

We performed XPS measurements on the sample etched by 0.1 g/ml Na2S2O8

for 2 hours and 14 hours, respectively. The peak intensity at binding energy of
about 285 eV, corresponding to sp2 bonding, is normalized to unity. A clear in-
crease of peak intensity at binding energy of 287.2 eV can be seen, indicating the
C-O bonds have a higher ratio in the defected sample, as shown in Figure 5.7a.

According to the Raman spectra, together with the XPS measurement, we
found that our CVD graphene etched by Na2S2O8 behaves similarly to graphene
oxide (GO). Indeed, very high D peak intensity in Raman, and strong CO bond
in XPS are found in GO [246]. Also, the field effect is found to have huge resis-
tance with low mobility [244, 245]. D-to-D’ Raman peak intensity ratio indicates
the sp3 type C-C bonds, as described in Section 5.2.2. With all the above ev-
idence, we presume that, after 14 hours of etching in 0.1 g/ml Na2S2O8, we
have graphene oxide. This seems to be rather possible since Na2S2O8 is a strong
oxidizer.

5.3 electronic transport properties of defected graphene

5.3.1 Temperature dependence of the field effect

Temperature dependence of resistivity contains information such as electron-
phonon and electron-electron interactions, as described earlier in this chapter.
Here, we measured samples etched in 0.1 g/ml Na2S2O8 for 1.5, 4, and 14 hours,
respectively. Field effect curves are taken at temperatures from 300 down to 10

K in a cryostat probe station, as shown in Figure 5.8. For the sample with 1.5 h
etching time, the field effect is kept almost unchanged from room temperature
to 10 K. However, for the ones with more disorder, i.e., 4 h and 14 h samples,
sheet resistance increases from several kΩ to several tens of kΩ, in general. The
sample also becomes more resistive by lowering the temperature, especially near
the Dirac point. Notice that the Dirac point shifts a bit while cooling down for all
the three samples, probably due to the environmental doping inside the cryostat.

For the sample etched for 4 hours, we recorded the temperature dependence
at two fixed gate voltages, namely, V-Vd= 0 and -70 V. Data are plotted as a
function of T−1/3, as shown in Figure 5.9. It is interesting that for the gate
voltage close to the Dirac point, the dependence is quite linear, in agreement
with the Mott’s variable range hopping correction of resistance Equation 5.2.
However, at gate voltage far away from the Dirac point, the dependence is no
longer of the Equation 5.2, which may be a mix of electron-electron interaction
and hopping transport due to localization.
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Figure 5.7: a) XPS spectra of sample etched in 0.1 g/ml Na2S2O8 for 2 and 14 hours. b)
XPS of graphene oxide and reduced-graphene oxide, taken from [246].

We performed even lower temperature (from 200 mK to 10 K) characteriza-
tion of a macroscopic sample with dimension of 9 mm × 5 mm, dipped in 0.1
g/ml Na2S2O8 for 14 hours. A macroscopic sample was chosen in this case, in
order to avoid universal conductance fluctuations, which are commonly seen in
mesoscopic systems at low temperature. As can be seen in Figure 5.10a, near the
Dirac point, sample sheet resistance increases by 3 orders of magnitude when
cooled from 10 K down to 200mK, going to an insulating state.

Magnetic response of the macroscopic sample was also measured. The mag-
netoresistance was recorded at a single temperature T = 200 mK. Figure 5.10a
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Figure 5.8: Temperature dependence of field effect curves for samples etched in 0.1 g/ml
Na2S2O8 for 1.5, 4, and 14 hours, respectively. The sample in c) was broken
after the 150 K cooling.

shows the magnetoresistance taken at the Dirac point, where the sample is al-
ready in the MΩ range, and Figure 5.10b shows it in the region far from the
Dirac point, where the sample is still weakly localized.

The curve in Figure 5.1b was simply impossible to fit to the weak localization
theory of McCann [241]. However, by changing the aspect ratio of the sample
from L/W = 1.8 to L/W = 10.5, the fitting worked quite well and gave reasonable
values. The value of the phase coherence time τφ is in good agreement with the
values found in [248]. The inter-valley τinter and intervalley τintra scattering
times are found to be both smaller than 10−14 s. This corresponds to mean free
paths smaller than 10 nm. The small mean free path seems to be consistent with
the TEM observations in Figure 5.6b.

5.4 conclusion of chapter 5

To summarise, we have studied the effect of etchant on graphene quality. We
speculate that the defects are of sp3 type, with a increasing density when graphene
is let in the etchant for longer times. The evolution of Raman spectra, field ef-
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Figure 5.9: Temperature dependence of resistance for the sample etched by 0.1 g/ml
Na2S2O8 for 4 hours. 0 V (top), and -70 V (bottom) away from the Dirac
point. The dashed straight line is a guide to the eye.

fect, temperature dependence of resistance, and XPS, are studied as a function
of etching time.

In the transfer process of CVD graphene on Cu surface, graphene has to be
inevitably exposed to the etchant for removing the metal. Therefore, the final
device obtained often suffers from damages both physically and chemically. The
chemical damage to graphene is often overlooked in the literature.

We conclude that in order to get high quality graphene, not only the growth,
but also the transferring process is crucial. Graphene is more defected with
longer etching time. Nevertheless, this opens another door to design graphene
with controllable disorder. Based on this, gate-tunable defected 2DEG, metal-
insulator transition, or superconducting-insulator transition can be realized when
coupled with superconductors [13].
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Figure 5.10: a) Low temperature 3D map of the sheet resistance as a function of gate
voltage and temperature. Magnetoresistance of the sample at T = 200 mK:
b) at the Dirac point in the strongly localized regime, and c) far from the
Dirac point in the weakly localized regime. The black line is a fit to equation
Equation 5.7. Data taken from Adrien Allain’s thesis [247], Page 78.





6
Q U A N T U M P H A S E T R A N S I T I O N I N P R O X I M I T Y A R R AY
C O U P L E D G R A P H E N E

In this chapter, we will explore the most fundamental part of the thesis. The techniques

developed in the previous chapters including graphene synthesis, transfer, cleaning, etch-

ing and functionalizing will be applied to generate hybrid devices composed of metal

decorated graphene. The low temperature properties of these devices will be explored here.

Our studies start from some recent theoretical advances [35, 34], which pre-
dict when an array is built with a network of hybrid superconductor/normal-
metal/superconductor (SNS) junctions, a quantum phase transition from super-
conducting to metallic state can take place above a critical junction normal state
resistance RN. The ensuing quantum state terminating superconductivity is a
new metallic state ruled by quantum fluctuations.

To experimentally observe the above mentioned effect, one has to engineer
Josephson junctions made from a material with a tunable RN on a rather wide
range. Graphene is an ideal platform to study the transition between ground
states, because of its two-dimensional electronic transport and its gate-tunable
resistance. Moreover, graphene has two surfaces that are open to the environ-
ment, thus enabling direct coupling with exterior materials.

6.1 introduction to mesoscopic josephson junctions arrays

A tunnel junction in general is composed by two conductors separated by a
thin insulating layer. When the two conductors are made superconducting, the
resulting device may let superconducting current flow though the insulating
barrier, a very peculiar non linear effect known as the Josephson junction (JJ), as
was first studied by B. D. Josephson [249]. When a series of JJs are connected
spatially into networks, the resulting device is referred to as Josephson junction
arrays (JJA). Their superconducting properties depend on a series of parameters
such as the intensity of the coupling, the topology of the network, the applied
magnetic field and the electrostatic properties of the "metallic islands" isolated
from each other by the set of JJs. Such arrays have been extensively studied
for the last 30 years and are prototypical systems to study 2D quantum phase
transitions [250, 251, 252].

Josephson junctions, originally made of metal/insulating/metal junctions, have
recently moved towards other materials, where the insulating layer is replaced
by materials like normal metals, semiconductors, molecules, carbon nanotubes
etc [253, 254]. In such "hybrid" systems, the Josephson effect is somewhat dif-
ferent as the materials sandwiched in between the two superconductors behave
very differently from the insulator. For example, in a normal metal, supercon-
ducting correlations can extend to large distances (of the order of µm) due to the
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proximity effect. There are also peculiarities due to the quantum confinement
inside this sandwiched system.

6.2 metal decorated graphene : a model system to study proximity-
induced superconductivity in two-dimension

In our group, three PhD theses have been previously published on metal deco-
rated graphene to study the onset of superconductivity by percolation of super-
conducting islands by the proximity effect. Brian Kessler and Caglar Girit [255]
have shown in 2009 that graphene decorated by tin nanoparticles exhibits a 2D
superconducting state (governed by the so-called Berezinskii-Kosterlitz-Thouless
transition), in which the superconducting temperature is controlled by the elec-
tric field applied to the graphene layer. Later, in 2012 Adrien Allain [247] (using
samples prepared by the techniques developed in chapter 5) discovered that in-
ducing defects within the graphene layer allows control of the quantum phase
transition from superconducting to a strongly insulating state. All these exper-
iments were done by decorating graphene with a dense and random array of
tin nanoparticules (Figure 6.1), a situation far away from the theoretical studies
that triggered initial studies (Figure 6.2). The idea in this chapter is to pursue
these initial studies by looking to other limits and better controlled samples, as
a system proposed by theory [34, 35].

Figure 6.1: Schematic picture showing the previously studied hybrid system in our
group: graphene decorated by random array of superconducting nano-
islands. Possible tuning parameters are the island materials, the graphene
disorder. Picture credit to A. Allain.

Due to the specific electronic properties of graphene, it is endowed with pro-
found physics when coupled with superconductivity. It has a gate-tunable kF,
according to Equation 3.10 and 3.11, mean free path le = σh/2e2kF, i.e., the dif-
fusion constant D = vFle/2 is tunable. Therefore, the coherence length of prox-
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imity effect ξN =
√

 hD/kBT is tunable. As a result, as shown in the system
depicted in Figure 6.1, one can vary the parameters such as the materials of
the islands (which determines the superconducting gap), and the disorder in
graphene (which determines le). However, there is another important parameter
one can modulate: the geometry of the islands. How would the system behave
if the islands are designed as a regular array as shown in Figure 6.2?

Figure 6.2: Schematic picture showing graphene film decorated by regular array of su-
perconducting nano-islands. Picture adapted from [14].

Figure 6.3: A diagram showing the main differences between thesis conducted in our
group previously (B. Kessler [255], and A. Allain [247]) and the work in this
thesis.

In this chapter, we show that decorating graphene with a sparse and regu-
lar array of superconducting nano-islands, as illustrated in Figure 6.2, enables
one to continuously gate-tune the resulting superconducting Josephson junction
array into a zero-temperature metallic state, in which superconductivity is sup-
pressed by quantum fluctuations of the superconducting phase of the islands. A
diagram summarizing the differences between the systems previously studied
and this work is shown in Figure 6.3
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We know that zero temperature metallic states are reported in systems such
as amorphous superconducting thin films. In our proximity-array/graphene
hybrid system, at some critical RN, the superconducting states will collapse
into a metallic state. What is the essential difference between those metallic
states found in thin superconducting films and the proximity arrays coupled to
graphene discussed in this manuscript? This question is our major contribution
of this manuscript work, and will be explained in detail in the coming parts of
this chapter.

As a general structure, we will arrange our work in the following two parts by
several key questions, and answer them accordingly.

1. With respect to the conventional one dimensional SNS junction, what are the new

features when the system is built up with a periodic array? Namely, how does the so-

called collective proximity effect play a role? What is the theoretical density needed to

still get superconductivity?

2. What is the origin of quantum phase fluctuation? How does it affect the quantum

phase transition from superconducting state to metallic state?

3. Since a magnetic field is supposed to decrease Josephson coupling between islands,

how does the superconducting state evolve as a function of magnetic field?

We will divide this chapter into two parts. Part one is the theoretical introduc-
tion about the proximity array coupled 2D diffusive metal (Graphene), which
deals with conceptional introductions. Part two will focus on the experimental
observations in our tin-decorated CVD graphene transistor.



Chapter 6, Part I

T H E O R E T I C A L P R E PA R AT I O N S
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6.3 superconductor-(metal)-insulator transitions in two-dimensions

When space is reduced to two dimensions, all kinds of electronic interactions
behave differently. For example, non-correlated electrons in a perfect 2D crystal
are propagating in a Bloch-wave fashion. At zero temperature, they can still
move throughout the crystal. However, once there is a tiny disorder, the electron
waves become exponentially decaying, and are thus spatially localized, leading
to a 2D insulating state [235].

Nevertheless, 2D electrons are sometimes correlated between each other and
their behavior is changed completely. One example is the attractive correlation
described by the BCS superconducting mechanism. Namely, electrons, normally
repelling each other via Coulomb interaction, become paired at low temperature,
giving rise to a non dissipative zero resistance state. The so-called Cooper pairs
are actually condensed in a single ground state, sharing the same wave function
described by Ψ = |∆| eiϕ [256]. Its breakdown can be either the diminish of am-
plitude |∆| in a mean field fashion, or the lost of coherence due to fluctuations
of phase ϕ. At very low temperatures, amplitude can be seen as constant, thus
making it a phase-only problem.

One thing that needs to be clarified is that the formation of Cooper pairs does
not necessarily mean a zero-resistance state. Only a global phase coherence can
induce superconductivity. Moreover, quantum uncertainty principle tells that
the number of Cooper pairs n and their phase ϕ are conjugate variables, i.e.,
they follow the Heisenberg relation: ∆n · ∆ϕ > 1. Only one of the two vari-
ables can be well defined at a given time, the other being affected by quantum
fluctuations. It can then be pictured that when the system is superconducting,
the phase must be well defined, thus strong fluctuations of n is allowed. On the
other hand, once the Cooper pairs are unable to move freely, due to, for example,
an isolating barrier, a strong quantum fluctuation of phases takes over, leading
to the breakdown of superconductivity and thus an insulating state.

The transform from superconducting to insulating state is caused solely by the
quantum uncertainty principle, and can take place at zero temperature, termed a
quantum phase transition (QPT). On the contrary, classical phase transitions are
normally driven by thermal agitation. A scaling theory was proposed in QPT
[257]. Briefly speaking, near any critical point, the correlation length ξ diverges.
As a non-temperature parameter g in the Hamiltonian is brought close to its
critical value gc, ξ can be scaled with a power ν:

ξ ∼ |g− gc|
ν. (6.1)

Here g is a general parameter, which can be, for example, thickness of a thin
film (effective disorder) [257, 258], magnetic field [259, 260], charging energy
and Josephson coupling EC/EJ [261], etc.

In the past decades, superconductivity has been one of the most popular sys-
tems for studying QPT, especially in 2D.
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Why 2D superconductivity is interesting?

Notice that, in 2D

Josephson junction

arrays, BKT transition

can lead to 2e charge

insulating phase, or

vortex superconducting

phase, according to the

ratio of EJ/EC [262].

BKT transition is not a

phenomenon only

observed in the

superconducting state,

but also in the single

electron state, which

shows a dipole

insulating state below

the transition

temperature [262].

2D superconducting systems are of special interest, because of the unique
physics that does not exist in 3D or 1D, making them ideal platform for study-
ing quantum fluctuations, dissipation, Coulomb interaction, and various phase
transitions. Also, in 2D, the screening of electrons is absent, thus allowing for
electrostatic control of superconductivity.

For example, when charges (or vortices) are interacting logarithmically in dis-
tance, the Berezinski-Kosterliz-Thouless (BKT) transition of Tc exists in only 2D,
due to vortex-antivortex pairing [263]. Moreover, as described in chapter 5, Abra-
hams’s re-normalization group theory argument suggests that a 2D electron gas
tends to be an insulator when disorder is present [29]. It is therefore a funda-
mental issue to investigate the 2D superconductivity, especially when disorder
and/or quasi-particle dissipation is present.

6.3.1 Pioneering works on superconducting thin films

Even though a 2D superconducting state is highly susceptible to quantum phase
fluctuations, it is thought to exist at the atomic scale. It has been recently proven
to exist in thin layers down to one or two atomic layer [264, 265], or down to a
few molecules [266].

Early studies on superconductor-to-insulator transition are mainly conducted
in amorphous thin films with thickness at the order of few Å, which in many
cases are not strictly an atomic monolayer.

The interests of studying the disordered 2D superconducting thin films can be
traced back to the 1980’s. By varying the thickness of amorphous or granular
superconducting thin films, a superconductor-to-insulator (SI) phase transition
that can be extrapolated to zero-temperature. Since thermal fluctuations are sup-
pressed, the transition is then seen as a quantum phase transition (QPT). Strik-
ingly, the SC and IN phases are often separated by a universal resistance close
to RQ = 4e2/h, which is the quantum resistance of charge 2e. Such separation
can be a temperature-independent R-T line, seen, for example, in homogeneous
ultrathin Bi films, as shown in Figure 6.4a [267, 269].

Even if the SI QPT are not separated by a temperature-independent R-T line,
the normal state resistance can still sometimes be normalized to RQ in the plot
of RT→0 against RN, shown in Figure 6.4 b-c.

At the same time, SI QPT in thin films were also often found without a critical
resistance of RQ [31]. The observations in SI QPT then aroused extensive argu-
ments with respect to the 4e2/h critical resistance. For example, a theory based
on the quantum transport of a quasi-stable Cooper pair fluid was proposed to
explain the case in homogeneous thin films [270].
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Figure 6.4: a) SI transition in Bi homogeneous film, with a critical resistance separating
superconducting and insulating states at R=RQ, adapted from [267]. b) SI
transition with no temperature independent R-T curve, as the dashed red
line in a), but renormalized to RQ in the plot of RT=0.7K vs RT=14K in c),
adapted from [268].

6.3.2 The Josephson junction arrays

A Josephson junction array is composed of a 2D arrangement of interconnected
JJ. It is a model system for 2D superconductivity. BKT transition as well as SI
QPT are found in it. In general, in micro-fabricated Josephson junction arrays,
SI transitions very similar to Figure 6.4b were observed [271, 261].

Naturally, the amorphous or granular thin films are thought to be a type of
superconducting islands separated by insulators [268, 272, 252]. Such kind of
quenched thin superconducting films can be modelled as random network of
metallic clusters coupled by Josephson tunnelling junctions (SIS junctions), and
the SI transition comes from the competition between charging energy EC =

e2/2C and Josephson coupling EJ [251, 252, 250]. A review on the relative

theoretical models on

QPT in Josephson

junction arrays can be

found in Ref [273], by

Fazio et al.

Extensive works on the subject of SI QPT were performed by modelling the
resistively shunted Josephson junction (SNS junctions) arrays [274, 272]. The
normal metal serves as a medium for correlated electrons (Andreev current) and
a dissipative channel (shunt resistor). Superconducting phase in 2D Josephson
junction array is predicted [275] to exist as long as shunting resistance RS is
lower than RQ = 4e2/h, regardless how weak the Josephson coupling is. An
opponent theory was soon reported [276] with no universal critical conductivity,
which is claimed to be a new universality class of the SI transition, by adding
a local Ohmic dissipation for the phase of the superconducting order parameter
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[277].

Experimental results did agree with Fisher [275] that zero-resistance state of
the array develops with a critical normal state resistance RC below RQ = 4e2/h =

6.5kΩ, but it develops sometimes when RC is almost 2RQ [278, 279].

6.3.3 Mattew Fisher’s dirty boson theory

Fisher and co-workers proposed a "dirty boson" model based on strong super-
conducting correlations. This is also referred to as the bosonic scenario, in which
Cooper pairs persist in both the superconducting and insulating phase, via a du-
ality in Cooper pairs and vortices. On the superconducting side, Cooper pairs
are free while vortices (the representation of superconducting phase) are pinned,
while on the insulating side, vortices are mobile, but Cooper pairs are localized
[269, 280, 281]. The Hamiltonian of this model contains no dissipation terms, as
no quasi-particle excitations are allowed.

Fisher’s theory is in favour of a universal critical resistance of RQ = 4e2/h

for the SI phase transition, provided that both Cooper pairs and vortices are
interacting logarithmically.

6.3.4 Finkelstein’s fermionic theory

Also popular is the fermionic scenario developed by Finkelstein et al [282, 283].
In fact, this is an elaborated version of the BCS theory, neglecting quantum phase
fluctuations. It lies on the fact that the Cooper pairs disappear at a critical film
resistivity, thus differing from the bosonic approach [284, 285], and often quoted
as the fermionic scenario.

The qualitative idea behind this theory is that disorder enhanced Coulomb
repulsion breaks the Cooper attraction and thus the Tc, i.e., the superconductor
becomes a normal metal. Notice that it differs from a quantum phase transition
at zero temperature.

Specifically, the superconductive transition temperature vanishes when a criti-
cal dimensionless conductance (g =  h/e2R�) reaches gc = 1/4π2 ln2(1/TC0τsc)

[282], where τsc is the elastic scattering time. And TC0 is the BCS transition
temperature for the bulk.

6.3.5 Is there an universal critical resistance in SI QPT?

As we have mentioned in the previous subsections, SI QPT are extensively stud-
ied both experimentally and theoretically over the past decades. However, as an
universal conclusion could not be drawn, it remained an unsolved problem till
now. In the three main types of samples, i.e., homogeneous/granular thin films
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and 2D Josephson junction arrays, SI QPT are observed, but the issue of RQ is
not at all conclusive (Table. 1).

- Homogeneous film Granular film 2D Josephson junction arrays

RQ=6.5 kΩ [267] [268] [278]

No RQ [286, 260] [31, 287, 288, 289] [261, 279]

Table 4: In the three main type of samples, i.e., homogeneous/granular thin films, and
2D Josephson junction arrays, SI QPT are all observed, but the critical resistance
of RQ is not universal and still under debate.

6.4 the intervening metallic state

The problem which interests us in this chapter is the focus on the intervening
metallic state that could appear in between S & I, as indicated by the red dashed
line in Figure 6.4a, which can be extrapolated to zero temperature. A zero-
temperature metallic behavior means the levelling off of the tail of the R-T curve,
i.e., a finite resistance at zero temperature.

It is known that, in a typical 2D metal, the metallic state is unstable with re-
spect to localization in the presence of weak disorder [235]. Then the intervening
zero-temperature metallic ground state is of fundamental interest to physics by
the following question:

Is it always present in the SI QPT? If yes, what is the mechanism behind it, making

it in direct contrast to the conventional 2D electron localization scenario?

Indeed, if one looks back to Figure 6.4 again, one can see that the levelling
off behavior of R-T curves at zero temperature is seen in both samples. But is it
necessary that this intervening metallic state is only a by-product of SI QPT? Are
there superconducting-to-metal (SC-M) quantum phase transitions? The answer
is yes, as will be discussed in the next section.

6.5 quantum (bose) metal theories

There is the family of

oxide-interface

(MOSFET,

p-GaAs/AlGaAs, etc.),

which exhibit

metal-insulator

quantum phase

transition in 2D

[290, 291]. However, it

is out of the scope of

this thesis, since no

superconductivity is

included there.

For a long period, people believe that only two ground states can exist for bosons
at zero temperature: either superconductor with long-range phase coherence,
or insulator with disordered quantum phases. However, as depicted in the
previous section, the often experimentally observed intervening metallic state
[268, 292, 261] started to trigger new discussions, in which a 2D quantum metal
at zero temperature ground state is described.

For example, Denis and Philip [293, 294] suggested that the argument of the
insulating phase of bosons, based on the quantum fluctuations, was not strong
enough. Instead, the quartic interaction between the bosons in the quantum dis-
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ordered regime (i.e. the insulating side in SI QPT) leads to a so-called Bose metal.

Their work is established on a Josephson junction array with quasi-particle
collisions coming from the quartic term in the Landau-Ginzburg action, which,
somehow strikingly, gives an universal finite conductivity σ = (2/π)4e2/h ∼ 10

kΩ. However, no dissipation was included in their model, since this is based
on the Bosonic scenario. Another phenomenological discussion on SI QPT was
performed by A. Kapitulnik and co-workers with consideration of the effects of
dissipation [295], which gives a phase diagram with the tuning parameter of
disorder α, shown in Figure 6.5. A similar phase diagram can be found in the
review paper on SI QPT by Gantmakher and Dolgopolov [258].

Figure 6.5: Phenomenological phase diagram of SI QPT at zero temperature. Y-axis is
the disorder, while the x-axis denotes the tuning parameter in the system’s
Hamiltonian. gc marks the SI QPT critical point, and αm marks the critical
dissipation above which a metallic phase is obtained. Adapted from [295].

Alternatively, by applying a model of Josephson junction array without dis-
order, D. Das et al developed a theory in favor of the existence of a Bose metal.
They pointed out that both phase and charge of bosons are disordered as a result
of quantum frustration, which leads to a metallic state [296, 297].

6.6 summary on the historical problems

Up to now, we have briefly reviewed the historical problems on the issue of
superconductor-to-insulator quantum phase transition in 2D. As we can see, so
far, the model systems are basically thin films and Josephson junction arrays.
They have somehow similar properties, since they have similar Hamiltonian. In
the mean time they both suffer from different technical difficulties. For example,
the tuning parameters for thin films are mostly the thickness (or the level of dis-
order). Therefore, in order to obtain a complete set of data, one has to make a
series of samples. The reproducibility and homogeneity of the amorphous thin
films are always questionable. For the case of Josephson junction arrays, the
same problem can occur: even though it is cleaner than thin films, the shunt
resistor can not be tuned in-situ.
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In the Hamiltonian of Josephson junctions arrays, several ingredients are often
taken into account: 1) quantum fluctuations, 2) dissipation, 3) quasi-particle col-
lisions, etc. Different models therefore give different predictions. The essential
divergence focuses on:

1) is there a critical resistance in the QPT? If yes, is it 4e2/h or not?
2) is there a 2D metallic phase in the zero-temperature? If yes, what is its

origin?

To investigate the above two questions, new more elaborated theories are
needed.

6.7 theories on the proximity-coupled array

Let us now consider a model, in which superconductors are distributed in an
array-like manner onto a 2D diffusive metal, as shown in Figure 6.2. The 2D
metal below the superconducting (SC) islands can be 2DEG such as oxide-interface,
or, fashionably, graphene.

The advantage in this model is that it contains all the ingredients, that exist
in thin films and conventional micro-fabricated JJA, for QPT studies. It includes
Josephson coupling EJ between islands, and dissipation channels that exist in the
2D metal. Yet it differs from conventional systems, since it can be highly well
defined in geometry, thus encouraging analytic modelling. It is similar but not
equal to the micro-fabricated JJA. Here, instead of tunnelling junctions, the SC
islands interact with each other through the proximity effect in the long junction
limit.

Most importantly, when the 2D metal is made of 2DEG, its carrier density
can be tuned electrically, thus enabling in-situ tuning of parameters that can
trigger QPT at zero temperature. This makes the present system much more
powerful in QPT studies compared to the traditional quasi-2D thin films/JJA
that require a set of samples with different thicknesses/shunt-resistors. Based on
this proximity-coupled array model, recent theoretical advances have predicted
a quantum superconductor-to-metal transition [34, 35]. This will be discussed in
detail in the following subsections.

6.7.1 Proximity effect in S/N interfaces

When a normal metal (N) is brought into contact with a superconductor (S), in
most cases, there is an interface that exists between S and N, which serves as
a potential barrier. The transparency of the interface plays an important role.
For example, if the barrier is an insulator (SIN junction), then the wave function
on each side barely overlap [256]. On the S side, the DoS exhibits a gap of 2∆,
within which there exists no state for a single electron but only Cooper pairs. As
a result, no transport can happen below the energy of ∆ in SIN junction.
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However, when the interfacial transparent is high enough in SN junctions, the
influence of the wave functions on each side becomes significant. Sometimes the
N is rendered into S, or vice-versa, giving rise to the so-called proximity effect.

As in the subgap energy scale, only pairs are allowed to enter the S. In the case
of SN contact (with no barrier), the electron transport DOES happen. A typical
process involves the incoming electron being reflected as a hole, back along the
same trajectory. This phenomena is called an Andreev reflection (AR). In the
manner of AR transport, the phase of a superconducting contact can be kept
throughout the normal metal until reaching the other superconducting contact,
making coherence of the two. For more information about AR, see (A. Allain,
Thesis).

It is very important to bare in mind that the overall effect of charge transfer
2e from N to S, via AR, is totally different from the conventional SIS junction,
in which the transport is due to Cooper pair tunnelling (same process as single-
particle tunnelling), called the Josephson effect.

6.7.2 Theoretical approaches of the eigenstates in NS junction

Because of the SN boundary, the original BCS formula fails to include the broken
Cooper pairs in the normal part. To describe the superconducting behaviour in
SN junction, several theories have been developed.

Bogoliiubov-de Gennes Equation

Bogoliiubov-de Gennes (BdG) equations [298] are normally used to describe
a superconductor system close to the boundaries or to the inhomogneities. The
essential concept in BdG equations is to treat the superconductor as a coherent
mixture of electrons and holes. The eigenfunctions are given by an electron-like
part, ψe(r), and a hole-like part, ψh(r), expressed as

(

H0 ∆(r)

∆(r)∗ −H0

)(

ψe(r)

ψh(r)

)

= E

(

ψe(r)

ψh(r)

)

, (6.2)

where H0 is the Hamiltonian of a single particle, and ∆ is the gap of the su-
perconductor.

Blonder-Tinkham-Klapwijk Model

Based on BdG equations, Blonder, Tinkham, and Klapwijk developed their
(BTK) model [299] for solving the transport at N/S interface with arbitrary inter-
face barrier potentials.

By solving the BdG equations (see, for example, [300]), one gets the conduc-
tance of the SN interface as a function of voltage-bias:

σSN = 1+A−B, (6.3)
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where the terms A and B are written as:

A =






∆2

E2+(∆2−E2(1+2Z2)2)
; E < ∆

f2ef
2
h

f2e+(f2e−f2h)Z
2 ; E > ∆

B =






4Z2(1+Z2)(∆2−E2)

E2+(∆2−E2(1+2Z2)2)
; E < ∆

(f2e−f2h)Z
2(1+Z2)

f2e+(f2e−f2h)Z
2 ; E > ∆

,

(6.4)

where E the bias energy, Z the height of the barrier in between S and N parts,
fe and fh the distribution weight of electrons and holes in the superconducting
side, and f2e ≡ 1/2

(

1+
√
E2−∆2

E

)

≡ 1− f2h.

Figure 6.6: Normalized conductance as a function of the voltage applied across the in-
terface calculated using Equation 6.3, at zero temperature, for a) Z=0, and b)
Z=2.

An example of the BTK model solution is shown in Figure 6.6. It can be
seen that when there is no barrier (Z=0), the normalized conductance in the
subgap range is actually doubled compared to the above-gap single-particle con-
ductance. When Z→ ∞, the structure reduces to a SIS junction.

Notice that BTK is very handy and popular in many systems, it however
breaks down when transport is dominated by impurity scattering [301]. To
include the impurity scatterings, more sophisticated mathematical treatments
are needed. Modern ways to describe this problem is the use of quasi-classical
Green functions. For example, using Green’s functions, Gor’kov showed that
the phenomenological Ginzburg-Landau theory can be microscopically derived
from the BCS theory for temperatures close to the transition temperature.

Usadel equation in the dirty limit

When we say dirty limit, it means that the coherence length ξ is larger than the
mean free path le in a material. A particle undergoes a lot of scattering before los-
ing its phase coherence and this results in the loss of the initial momentum direc-
tion. Based on this dirty limit assumption, a set of isotropic impurity-averaged
Green’s functions were introduced by Usadel [302], which are the so-called Re-
tarded, Advanced, and Keldysh Green functions: ĝRS , ĝAS , and ĝKS .
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Nazarov [303] then introduced the parametrization of two position- and energy-
dependent complex functions θ(x,E), and ϕ(x,E), and reformulate the ĝRS , and
ĝAS into:

ĝRS =

(

cos θ sin θeiϕ

sin θe−iϕ − cos θ

)

, (6.5)

and

ĝAS =

(

− cos θ∗ sin θ∗eiϕ
∗

sin θ∗e−iϕ∗
cos θ∗

)

. (6.6)

While the Keldysh function is given by:

ĝKS = ĝRSĥ− ĥĝAS , (6.7)

with the distribution matrix ĥ defined as :

ĥ =

(

1− 2fe 0

0 2fh − 1

)

, (6.8)

where fe and fh are the distribution functions for electrons and holes, respec-
tively.

For a SN interface, θ is determined by solving the Usadel-equation [304]:

 hD

2
▽2 θ+

(

iE−
 h

τsf
cos θ

)

sin θ+∆(x) cos θ = 0, (6.9)

where τsf is the spin-flip time.
The Usadel-equation is very powerful in solving the problem of SN interface

with a large variety of scattering, as it does not require to solve the Schrodinger
equation, and is even more popular if projected to the Nambu

⊗

spin space, with
⊗

the tensor product.
More details on other formalisms of the Usadel equation, such as the Nambu

⊗

spin
space representation, can be found in [305, 306].

6.8 anticipated behaviors in s-n junction

6.8.1 Energy scales

It is well known that Andreev pairs can diffuse into a normal metal with length
scale much larger than the superconducting coherence length in the supercon-
ductor side. What is then the maximum distance a Andreev pair can propogate
into a normal diffusive metal?

Here, we first compare several energy scales, in order to understand better the
physical picture. Usually, in the diffusive limit, the energy ǫ and its quantum
scale Lǫ are related by:

Lǫ =
√

Dτǫ, (6.10)
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Figure 6.7: Relevant length scales with their schematic respective amplitudes in a metal-
lic thin film. The energy-dependent coherence length ξN is the length over
which the two components of the Andreev pair acquire a phase difference of
order π. Picture adapted from [307].

where τǫ is a time scale described by τǫ ∼  h/ǫ. D is the diffusion coefficient
defined in Equation 3.11.

For example, if the 2D system has size L, an energy corresponding to its size
is called the Thouless energy, written as ETh =  hD/L2. As already introduced
in Section 5.1.1, the Thouless energy is an important quantity since it directly
relates the mean level spacing and dimensionless conductance in a mesoscopic
system.

Coherence length in the diffusive normal metal (we will note ξN and ξ0 as the
coherence length in the normal, and superconducting parts respectively in the
rest of this thesis) are usually treated as [36, 304] Coherence length in the

clean limit in a

proximity normal metal

is given by  hvF/2πT

[308]. While the bulk

BCS coherence length

ξ0 is defined as

2 hvF/π∆, with vF the

Fermi velocity of

Cooper pairs, and ∆ the

BCS gap [256].

ξN =

√

 hD

kBT
, (6.11)

since the whole electron distribution is at thermal equilibrium [307].

However, other than the thermal energy which depends on temperature, and
ETh which depends on the normal metal itself, there are other energy scales that
need to be taken into account. For example, the electron itself looses coherence
on a scale of lφ, which is called the phase-coherence length, same as in Equation
5.7. A schematic picture comparing the different scales is shown in Figure 6.7.

Notice that lφ diverges

to infinity at zero

temperature, as

theoretically predicted

[309].

Other arguments can be found ([306]):

ξN = min
{
√

 hD/kBT ,
√

 hD/∆,
√

Dτsf,
√

Dτee

}

, (6.12)

where ∆ is the pair correlation energy. τsf and τee are the spin-flip scattering
times due to magnetic impurities, and the electron-electron inelastic scattering
time, respectively. In this case, at the zero-temperature limit, ξN is dominated
by other energies rather than the thermal one.
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6.8.2 Minigap due to proximity effect

Since Cooper pairs manage to "leak" from S to N, it would be rather interesting
to see how the local density of states in the N part looks like once they have been
affected by the superconducting proximity effect.

Early experiments in a nanowire show that a suppression of DoS was found on
the mesoscopic scale [310], which can be well explained by the Usadel equation
in the framework of non-equilibrium superconductivity [302, 311]. Namely, a
gapless-superconductor-like DoS was found in their system.

In the mean time, the DoS in the normal part in an SN junction was theoret-
ically studied by W. Belzig et al, using the Usadel equation [312]. The model
says that when a thin film (size L ∼ ξN) is in good contact with a bulk super-
conductor, a mini-gap develops at the order of the Thouless energy ETh, and is
position-independent. Similar results were reported elsewhere [313].

In another calculation, the contact barrier strength is included in a model
which couples 2DEG and superconducting islands, and the mini-gap induced
in the 2DEG is reduced to a large degree with increasing interfacial barrier [314].
However in that work no spatial dependence of the mini-gap was mentioned.

6.9 proximity-coupled arrays on graphene

As depicted at the beginning of this chapter, our work is motivated by the fol-
lowing model: imaging a graphene layer that is decorated with regular arrays of
superconductor islands of a certain radius a separated by distance b, as shown
in Figure 6.2.

In this model, theory has been fully developed for studying the behaviours of
superconductivity [14]. For the convenience of modelling, several assumptions
are superimposed. First of all, assume the model is at the limit of b ≫ a. This
implies that the mean free path le in graphene should be less than b. Moreover,
the model requires:

1. Fermi energy of graphene EF ≫ ∆, with ∆ being the superconducting gap
of the islands.

2. Diffusion coefficient of graphene should be at the order of 100 cm2/s.

3. Dimensionless conductance of graphene g = ( h/e2R�) > 3 with a high
Thouless energy ETh ∼  hD/b2, namely a small enough b (at the mesocopic
scale).

The reason why we use graphene is that graphene is strictly a 2D material and
its DOS will not have a reverse-proximity effect into the SC islands. SC islands
can be in direct contact with graphene, and by selecting the correct SC material,
the interface can be very transparent [12]. Traditional 2DEG is of much less use
in this sense, since they are always embedded/sandwiched by insulators.

Most importantly, the reason we chose graphene is that its charge carrier can
be gate tuned, which can be controlled with a desired amount of disorder, as de-
scribed in Chapter 5. All the above physical properties, together with a number
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of well-established theoretical models, make the present system of great inter-
est. In the following, we will describe the predicted phenomena, such as BKT
transitions, and quantum superconductor-to-metal (SC-M) transition.

6.9.1 BKT transition in SC arrays on graphene

For the single SC island on graphene, the Matsubara-space Usadel equation for
the spectral angle θω and corresponding boundary conditions reads as [315]

D▽2 θω − 2|ω| sin θω = 0, (6.13)
[

g
∂θω

∂r
+
Gint

2πa
cos θω

]

∣

∣

∣

r=a
= 0. (6.14)

Here Gint is the SC-island-graphene interface conductance - which is the only
parameter that we can not control experimentally so far. Linearization of the
above two equations can be realized when b ≫ a. The Josephson coupling, EJ,
of the two-island problem with a high interface transparency can be analytically
solved by:

EJ(b, T) = 4πgT
∞∑

n=0

π2

ln2 ( hD/2a2ωn)
P
(

√

ωn/2ETh

)

, (6.15)

here the function P(z) = z
∫∞
0 K0(z cosh t)K1(z cosh t)dt, where Kn(x) is the Mac-

Donald Bessel function. And ωn = πT(2n+ 1) is the Matsubara energy.
It is known that when extended to a 2D array, such islands with coupling EJ

undergo BKT transition at

TBKT = γEJ(b, TBKT ), (6.16)

where γ is a geometrical constant. In the case of a triangle array, γ ∼ 1.47 [316].
Combing Equation 6.15 and Equation 6.16, one gets

6πg

∞∑

n=0

π2

ln2 ( hD/2a2πTBKT (2n+ 1))
P
(

√

πTBKT (2n+ 1)/2ETh

)

= 1, (6.17)

In the above formula, parameters such as D and ETh can be experimentally
extracted, leaving only one parameter TBKT , which can be easily computed.

Moreover, by neglecting quantum phase fluctuations, the pair-wise Josephson
coupling at zero-temperature can be accessed by calculating the critical current
jc [14]

jc(0) =
π3

2

egD

b3ln2(b/a)
, (6.18)

According to the definition of the Josephson coupling energy [317]

EJ = ( h/2e)I1, (6.19)
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where I1 is the supper current of a pair-wise islands. One gets the pair-wise
Josephson coupling energy at zero temperature:

EJ,T=0 =
π3

4

g hD

b2ln2(b/a)
. (6.20)

6.9.2 Minigap inside graphene decorated with regular SC array

The authors in [14] also calculated the minigap inside graphene at low temper-
atures when global phase coherence was reached. We will not show detailed
mathematics, but briefly, by using the periodic boundary conditions in the array
(assume it is triangle, ideal interface), one can get the zero-temperature spectral
gap in graphene:

Eg ≈ 4 hD/b2

1.52 ln(b/2a) − 1.2
≈ 2.6ETh

ln(b/4a)
. (6.21)

This minigap is rather large, since if one lets b/a = 10, it leads to ∼ 2.88ETh,
much larger than the one expected in Section 6.8.2. This large minigap comes
from the collective proximity effect. However, to observe it experimentally, one
has to perform low temperature STM measurements.

6.9.3 Weak charge quantization and quantum phase fluctuations

In the previous section, the model based on Usadel equation does not take into
account any quantum phase fluctuations, which will to some extent fail to ex-
plain the SC-M quantum phase transitions. Here, we will introduce another
consideration which contains the quantum fluctuation in the model.

Since we are studying the proximity array at a very low temperature, the
phase-only Hamiltonian of inter-island coupling for such an array is given by:

H = −
1

2

∑

ij

E
ij
J cos(φi −φj). (6.22)

At T=0, the Josephson coupling through a 2D metal is a long range interaction,
as EijJ (rij) ∝ 1/|rij|

2 [318]. Such a long range interaction makes it possible to the-
oretically treat it by the mean field approximation (MFA).

That is to say, all the interactions from other islands will be "felt" by one certain
island as:

J 〈cosφ〉
∫

cosφ(t)dt, (6.23)

which is determined by the condition [34]:

1 6
1

2 h
J ·C(T) = 1

2 h
J

∫1/T

0

c0(t)dt; (6.24)

J =
∑

j

E
ij
J , (6.25)
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and c0 is the imaginary-time autocorrelation function describing the phase fluc-
tuations of a single SC island, written as:

c0(t) = 〈cos(φ(0) −φ(t))〉 = 2 〈cosφ(0) cosφ(t)〉 . (6.26)

The physical meaning of C(0) is an effective charging energy E∗Cwhich is re-
lated by:

E∗C =
 h

C(0)
. (6.27)

In our model system, we have the following features:

1. Existence of a non-zero effective charging energy at zero temperature, which
plays a role of weak Coulomb blockade, or the so-called weak charge quan-
tization [319].

2. Existence of Andreev conduction, which means only a charge of 2e can be
transferred in/out of the SC islands at low temperature.

3. Existence of quantum phase fluctuations due to the quantized 2e charge
transfer, which results in an exponentially renormalized effective charging
energy[319].

Similar to the conventional picture of quantum phase transition driven by
EJ/EC [250], our equation Equation 6.24 has the competition between J and E∗C,
while the effective charging energy is determined by the normal resistance of the
2D metal and the geometry of the SC array. That means, at a critical bc, or gc,
the condition J ∼ E∗C will be fulfilled. Therefore, the system will be driven from
SC into the normal metal state, where the driving force is the quantum phase
fluctuations. An imaginary-time dissipation description can be used to repre-
sent the phase fluctuations, which is similar to the process of a single-electron
tunnelling in normal tunnelling junctions [320].

Technically, the key problem of this model is to find the zero-temperature
condition of Equation 6.24, J(0) and C(0).

At the limit of a large interface transparency between the SC island and the
2D metal, J(0) can be obtained by solving the Usadel equation at the limit of
ln(b/a) ≪ 1 [34]:

J(0) =
π4

2

g hD

b2 ln(b/a)
, (6.28)

where g =  h/(e2g�) and D is the dimensionless conductance and diffusion co-
efficient of the 2D metal.

To obtain C(0), specific re-normalization group treatments [35] are needed.
The resulting C(0) is given by:

C(0) ∼
ρ · a2
D

e2π
√
gs, (6.29)
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where ρ is a pre-factor close to 1, and s is a parameter related to the RG equation
of GA (calculated in [35]). One gets the critical dimensionless conductance gc
according to the condition in Equation 6.24

gc ∼

(

1

π
ln
b

a ′

)2

, (6.30)

where a’ is a reduced diameter of the island with a pre-factor, see appendix.

The above equation is an important result, since it predicts that critical sheet
resistance R�c =  h/e2gc can be much less than RQ, when ln(b/a) 6 3. This
is contrary to the argument that superconductivity always persists in a JJA as
long as RN < RQ [321, 275]. We will use this to estimate the critical resistance in
graphene in the second part of this chapter.

Compared to the conventional models of resistively shunted Josephson junc-
tion arrays, the above theoretical treatment has a unique and crucial feature:

The dissipative channel in the above model is periodic in the phase difference that only

2e quanta of charge transfer is allowed, which is the case of Andreev conductance [34].

The conventional models of resistively-shunted Josephson junctions do not have this fea-

ture.

6.9.4 Quantum phase fluctuations in mesoscopic system under magnetic field

It is well known that in the framework of the mean-field BCS theory, the critical
field is temperature dependent [322]:

Hc2(0) −Hc2(T) ∝ (T/Tc0)
2. (6.31)

It says that Hc2 saturates at zero temperature, with a finite value.

In this section, we emphasize that in our system - proximity array coupled
graphene - except for the predicted SC-M quantum phase transition driven by
quantum phase fluctuations at zero magnetic field, there is also predicted quan-
tum phase fluctuation on the upper critical magnetic field Hc2, which gives rise
to the unconventional zero temperature Hc2 compared to the BCS theory.

Theoretical considerations on the disordered 2D SC films [38] predict that
quantum fluctuations of the phase of the order parameter plays a role in the
value of Hc2, which can lead to an infinite Hc2 at zero temperature.

The main ideas thus far can be summarized as the following: due to the ran-
dom phase of the Green’s function which describes the order parameter, the
Josephson coupling between SC clusters exist even under a magnetic field on
the order of the glass field HGlass = Φ0/L

2, where L is the size between two
SC clusters. It is called glass because full frustration is achieved at the scale of
√

Φ0/HGlass, and the system shows a glassy superconducting behavior, such as
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a long relaxation time of resistance [323].

In the glassy SC region, the Josephon coupling is enhanced due to quantum
phase fluctuations, and can be written as [38]:

EGlass
J = [

〈

(EJ − 〈EJ〉)2
〉

]1/2 ∼ (ETH/2)e
−L/LT , (6.32)

where LT =
√

 hD/kBT is the thermal length. At zero temperature e−L/LT → 1.
The EGlass

J therefore can reach the order of Thouless energy - a rather high
value.

Figure 6.8: At zero temperature, quantum phase fluctuations cause reentrant of SC re-
gion at zero-temperature in the presence of a weak magnetic field, meaning
that the conventional concept of upper critical magnetic field H0

c2 does not
apply. Picture adapted from [38].

The result predicted in [38] shows that there will exist regions (with probability
close to 1) above H0

c2 at zero temperature, like reentrant behavior, where the
interval δH∗ can be written as:

δH∗ = H0
c2g

−2, (6.33)

where g is the dimensionless conductance of the film. This reentrant behavior is
pictured in Figure 6.8.

Estimation of Hc2 was measured for the proximity coupled array. When a
weak magnetic field is present, the Josephson coupling term J(0) can be written
as [35]:

J(0,H) = J(0)
ln(lH/b)
ln(lH/a)

, (6.34)

with the magnetic length scale lH =
√

π hc/eH =
√

Φ0/H. Solving the same
Equation 6.24, with J(0) replaced by J(0,H), one gets:

ln
Φ0

Hc2b2
≈ 2 ln(b/a)

(bc(g)/b)2 − 1
, (6.35)
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with bc(g) ∼ a · eπ
√
g.

The corresponding Hc2 is then approximately:

Hc2 ∼ (Φ0/b
2)e

√
g ≫ HGlass. (6.36)

Figure 6.9: Schematic phase diagram of the graphene sheet with SC islands, adapted
from [14].

The overall behaviour of the Hc2 for the proximity coupled SC array is then
expected to follow the same behavior as the one depicted in Figure 6.9. Notice
there is a lower bound in the picture, which is due to the existence of lower
energy caused by the minigap, giving rise to a Hg ≈ 0.4Φ0

b2ln(b/4a)
. Below this Hg,

the system is supposed to behave like a inhomogeneous 2D bulk superconductor
[14].

With these two expected outcomes (i.e., upturn of Hc2 or reentrant SC above
Hc2) we will see in the next part what is the experimental behavior of Hc2 in our
SC array coupled with graphene.
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6.10 graphene proximity devices

Shortly after the isolation of graphene, a Josephson junction made of graphene
and Al electrodes was demonstrated [324, 325]. In the past few years, quantum
transport [326], current-phase relationship [327, 328, 329, 330], Andreev bound
states [331], a prototype SQUID device [332], transport in the QHE regime [333,
334], and BKT transition [12], were all studied in graphene Josephson junctions. Graphene is also

predicted to be

intrinsically

superconducting

[335, 336, 175].

However, definitive

experimental proof is

still lacking, so far

[337, 338].

Figure 6.10: Graphene proximity devices using a) [330] and b) [327] Pb-Pd electrodes,
c) Al electrodes [332], and d) tin nanoparticles decoration with normal Au
electrodes [13], with scale bar in the inset of 100 nm.

Several graphene based superconducting proximity devices are illustrated in
Figure 6.10. It is seen that most of them are mesoscopic in size and graphene
serves as a normal metal junction, sandwiched by two superconducting leads
(S-N-S). However, there is another idea, which involves the use of normal elec-
trodes and graphene. This realization of superconductivity is to deposit on top
of graphene a thin layer of electrically non-percolating superconducting nanopar-
ticles. An illustration of the above two approaches to realize superconductivity
in graphene is shown in Figure 6.11.

Due to the open surface of graphene, which can be well coupled with exter-
nal metals, graphene is able to have a microscopically random network of SC
nanoparticles. Each of those SC nanoparticles becomes superconducting below
the TC of the bulk SC material. They can make global phase coherence between
islands, and turn the whole graphene sheet into a strictly 2D superconductor
[12]. Previous reports demonstrated that the global SC of such a device follows
the BKT transition, which is gate dependent [12, 13].
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Figure 6.11: Schematics of the two approaches to realize superconductivity in graphene
devices: a) S-N-S and b) N-N’-N with superconducting islands decoration.

6.10.1 Graphene: macroscale 2D superconductor and more

Following the same method as [12], we managed to extend the 2D SC in graphene
into the macro-scale via using CVD graphene. This is the first time a macro-
scaled (Figure 6.10d) 2D superconductor was made.

Moreover, we purposely made the CVD graphene heavily defected using the
method introduced in Chapter 5, which turns the graphene into a very resistive
state, but still remains gate tunability in the field effect. As a result, defected
graphene decorated with random network of Sn nano-islands has a change of
7 orders of magnitude in resistance when gate tuned in the range of about 40

V at 40 mK. This quantum phase transition behavior demonstrates a new type
of quantum switch from insulating to superconducting state, as shown in Fig-
ure 6.12.

6.11 proximity array on cvd graphene

Unlike the device in the previous section, here we take a different approach:
instead of utilizing a tight disordered array, we designed a sparse regular array
on graphene. As described in Part I in this chapter, a sparse array is rich in
physics, and a number of theoretical models are available [34, 35, 14], which is
convenient for further comparison.

Recently, proximity arrays made of Au thin film covered with Nb nano-islands
were studied, in order to search for the zero-temperature metallic state [36].
However, in their work, major drawbacks are incurred and include: (1) lack
of gate-tunability, (2) existence of an inverse proximity effect, and (3) lack of a
truly 2D metal substrate.

Several geometries were tested for our study, as shown in Figure 6.13. We
found that if the thickness of the sample, d, is less than 30 nm (Figure 6.13b),
sub-islands due to dewetting will show up inside each designed unit nanodisk
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Figure 6.12: Macroscale graphene with controlled defect shows superconductor-to-
insulator quantum phase transition when decorated with Sn nanoparti-
cles. a) Temperature dependence of resistance at several gate voltages, and
b) field effect curves at several temperatures. Adapted from [13]. CVD
graphene was etched in 0.1 g/ml Na2S2O8 for about 20 hours.

similar to those seen in [12, 13]. Meanwhile, samples with a nanodisk diameter
of 2a < 100nm (Figure 6.13c-d) are not superconducting at 60 mK (possibly
because of the oxidation or a poor interface).

Figure 6.13: a) Hexagonal CVD graphene single domain (outlined by dashed lines) con-
tacted with Au 50 nm/Ti 5 nm electrodes, decorated with Sn nanoparticles
by standard electron beam lithography. b) Zoom-in of the boxed area in
a). From b) to d), the Sn nanodisk geometries 2a/b/d are 400/600/10,
100/600/10, and 100/400/10 nm, respectively. Subislands are seen in b),
while c) and d) are not superconducting.

In the coming part, we will report mainly on the measured data of the sample
with 2a/b/d=400/1000/50 nm.

As shown in the inset of Figure 6.14a, the sample was fabricated by patterning
a single grain of CVD graphene (transferred onto 285 nm oxidized silicon) into
a Hall bar with an aspect ratio of 1 in the central part. This allows one to
obtain the square resistance by a four-probe measurement. Normal leads (50nm
Au/5nm Ti) were then patterned in a second step, followed by a final 50 nm
thick Sn array deposition with standard electron-beam lithography Figure 6.14b-
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c. These Sn nanodisks have a diameter of 400 nm, separated by 1 µm between
their centres.

Figure 6.14: Graphene Hall bar devices with triangle array of tin nanodisk decorated on
top. a) As-patterned Hall bar of CVD graphene on 285 nm oxidized silicon,
b) optical micrograph of the final device, and c) SEM micrograph of boxed
area in b).

The sample was tested in a vacuum 3He-4He dilution fridge system imple-
mented with lock-in measurements. A picture of the setup is shown in Fig-
ure 6.15.

Figure 6.15: The dilution fridge setup. A Chinese spy is hidden behind the helium bottle.

6.11.1 Overview of electronic transport properties of the sample

We now have an overall description of the sample electronic transport properties
while cooling down. As can be seen in Figure 6.16a, the sample shows a field
effect curve with resistance from 4 kΩ at Vg=30 V, to about 19 kΩ at Vg=-14 V.
Upon cooling down to 4 K, the field effect curve does not change dramatically.
A fit using Equation 3.17 shows that the sample has a mobility of about 678

cm2V−1s−1 at 4 K. We will use the 4 K field effect curve as a normal state RN
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for all gate voltages. At even lower temperatures, we see that the sample turns
into an SC state at gate voltages higher than about -3 V.

Figure 6.16: a) Field effect curves of the sample at 300 K, 4 K, 1 K and 60 mK. b) Tem-
perature dependence of the sample resistance at several gate voltages. c)
Differential resistance as a function of bias current at the specific T and Vg
points marked in b). d) A full R-T curve from 300 K down to 60 mK, at
Vg=10 V.

Notice that there is some hysteresis in the field effect curve in Figure 6.16a.
However, after some days, the hysteresis becomes negligible. We attribute this
hysteresis to some unstable doping from the environment while cooling, which
stabilizes with increasing time. With the exception of the initial data shown in
Figure 6.16a, there is nearly no further occurrence of a hysteresis.

Figure 6.16b was measured by taking field effect curves while heating up the
sample with a PID heat-controller and a 10 mK step from 60 mK to 1 K, 20 mK
step from 1 to 2K, and 50 mK step from 2 to 4 K range. The curves are cuts along
the temperature axis at several gate voltages. It can be seen that at around 3.6 K
a gate-independent resistance drop was found (as indicated by the two vertical
dashed lines), which is very close to the TC=3.7 K of bulk Sn.

Full superconductivity (zero resistance state) only develops at a certain range
of gate voltage below 1 K. As shown in Figure 6.16b, the curve at Vg=30 V
goes down to zero at about 0.7 K. This downward trend connected with a zero
resistance through a cusp (Figure 6.16d) is typical of a BKT transition. This has
been proven in the system under study [12, 13].
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Transport curves of the sample close to the Dirac point, shown in Figure 6.16c,
were taken at 1 K and 60 mK, respectively. There is a Coulomb-peak at zero
bias, while a dip appears at 60 mK. This gives a hint that even if Sn islands are
superconducting at the Diract point (since a drop of R at 3.6 K is seen), supercon-
ductivity coherence does not exist at 1 K, and only some SC fluctuations were
found at 60 mK, which accounts for the central dip in the current-bias curve.

Our question is: what is the actual state of the red square point in Figure 6.16b? Is it

metallic, or insulating? And how is this state driven from a full superconducting state

at Vg=30? It will be answered in the coming sections.

6.11.2 Interface of Sn islands and graphene

Figure 6.17: a) Field effect curves along the two dashed lines in Figure 6.16b. b) The
percentage of resistance change by subtracting the two field effect curves.

To further validate our result with theoretical models, we have to access the trans-
parency of the interface between Sn islands and the graphene, since it directly
affects the modelling described in Part I. Because the interface is buried below
Sn, direct measurements of (S-N) Andreev transparency is rather difficult. We
therefore qualitatively estimate by the total resistance change before and after
the SC transition near 3.6 K.

As shown in Figure 6.17a, field effect curves at 4 K and 3.3 K are plotted. Their
difference is shown in Figure 6.17b.
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Since the geometry of our triangle Sn arrays are of the dimensions of a =

200nm, b = 1µm, then the total surface coverage is ∼ 15%. This value is in
reasonable agreement with the ∆R plotted in Figure 6.17b. It is interesting to
see that there is a difference in ∆R = (R4K − R3.3K)/R4K at the hole side and
electron side, while the transparency is about twice higher in the electron side.
We understand this by the fact that Sn is an electron donor, and once graphene is
tuned into the hole side, the pinning of the Fermi level starts to be significant and
the resulting p-n junction that is formed does so in order to reduce the interface
transparency. Similar result was obtained by Kessler [255].

6.11.3 The crossing of R-Vg curves between 1 and 3 K

Figure 6.18: a) Gate voltage dependence of the resistance for different temperatures. b)
Detail of the field effect curves between 1 and 3 K. c) Attempt to plot the
curves in b) according to the scaling theory described by Equation 6.1.

We now come back to the cooling of the sample. As shown in Figure 6.18a,
at gate voltages from 0 to 30 V, the resistance decreases when the temperature
is lowered from 3 K to 1 K. An opposite trend is seen for gate voltages close to
the Dirac point (namely, -30 V to 0 V), where the resistance is increasing, mak-
ing a crossing-point at about 0V (green and blue, outlined by dashed lines, Fig-
ure 6.18a). Interestingly, this crossing-point corresponds to about 6.4 kΩ, close to
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the quantum resistance for charge-2e RQ = h/4e2 = 6.5kΩ (Figure 6.18b). Sim-
ilar behaviour was found in densely packed random arrays of Sn nanoparticles
on disordered graphene, whose superconducting state resembles those encoun-
tered in some superconducting films [13, 30, 260].

We tried to treat our data at 1 to 3 K range with the scaling theory described
by Equation 6.1, using the gate voltage as a critical parameter. It turns out that
the critical component zν can be 7/3, 1/2, or 1/3 (Figure 6.18c), which makes
little sense because no clear information can be extracted. However, multi critical
components of quantum phase transition at different temperature ranges were
indeed reported [339].

Further cooling extends the proximity effect through the graphene, which
eventually leads to percolation of superconductivity, shown in Figure 6.18a, the
brown curve at 60 mK.

6.12 btk transition : experimental and theoretical

We now check the superconductivity transition temperature in our proximity
array. To visualize it, we plot the temperature dependence of field effect curves
in a color-scaled map within the temperature range of 60 mK to 4 K, shown in
Figure 6.20, where TBKT is drawn by the yellow contour. One can see that higher
positive gate-voltages lead to higher Tc, whereas Tc vanishes in the region close
to the Dirac point, ranging from -30 to -3 V.

In order to calculate the theoretically predicted TBKT in our array by using
Equation 6.17, we first extract the parameters of diffusion constant D, and mean
free path l, according to Equations 3.10-3.12. Here, a 4 K field effect curve is
used as the normal state, assuming that the scattering is from impurities and
thus the diffusion coefficient does not change at lower temperature.

Figure 6.19: Mean free path l extracted in the normal state field effect curve at 4 K tem-
perature, by using the formula le = σh/2e2kF, here kF =

√

ǫǫ0Vgπ/ed is
the Fermi wavelength in graphene, with ǫ ∼3.8 the dielectric constant, and
d=285 nm the thickness of SiO2 wafer. b) Diffusion coefficient D (calculated
from D = vFl/2, with l the mean free path, and vF the Fermi velocity, 106

m/s in graphene) between Sn islands in the graphene sheet.
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Our extracted data shows that D is in the range of 50-140 cm2/s, and g is
around 2, which satisfy the conditions needed for the model [14], as discussed
in Section 6.4. Moreover, we can estimate our ξ0. If we consider our Sn nanodisk
as dirty as the Pb nanoparticles studied in [340], then the mean free path lSn in
Sn should be around 2-3 times the height (50 nm) of the islands. ξSn0 is known
to be about 300 nm [12]. The effective coherence length inside Sn islands should

be around
√

lSn × ξSn0 ∼ 200nm.

Figure 6.20: Color-scaled map of resistance versus temperature and gate voltage. Black
dashed line is calculated from the theoretical prediction in Equation 6.17.
White dashed line is fitted from Equation 6.37, with fitting parameter
ǫnu=25.

The above conditions allow us to use the model described in Section 6.4. By
summing up the n of the Matsubara energy to several orders (higher orders of
n do not affect the sum significantly since the function P decays rapidly with
increasing n), one gets the black-dashed line as the unique solution of Equa-
tion 6.17 from experimentally extracted g and D in Figure 6.19. The calculated
TBKT shows gate dependence which reaches a minimum around charge neutral-
ity point where graphene conductance and diffusion coefficient are minimal. For
high gate voltage, that is, Vg > 10 V, this theoretical value of TBKT is in excellent
agreement with the sample critical temperature without any fitting parameter,
thereby validating the theoretical description. The discrepancy at gate voltages
lower than 10 V will be further discussed in the next sections.

For comparison, we also adopted the formula Kessler et al used to fit their
data [12], which was developed on a JJA model [341], written as

Tc0

TBKT

[

∆(TBKT )

∆(0))
tanh

(

∆(TBKT )

2kBTBKT )

)]

=
ǫνRN

R0
. (6.37)
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Here, R0 = 2.18 h/e2 ∼ 8.96kΩ, and ǫν is an effective dielectric constant that
describes the material dependent screening of the attractive vortex-antivortex
interaction. Qualitatively good fit to the measured data with an ǫν ∼ 25 is used.
However, this fitting parameter ǫν is 10 times higher than the one reported in
[12], which is unlikely to be physical.

6.13 zero temperature behaviours

60 mK is the base temperature we can reach in our fridge, and we will use it as
a quasi-zero-temperature for further analysis.Critical current Ic is

the maximum

suppercurrent a

superconductor carries.

However, due to the

inertia of electrons or

the self-heating effect

[342], a hysteresis, or

the so-called

trapping-retrapping

current, smaller than

Ic, is often seen in

Josephson junctions,

noted as switching

current ISW .

We now show the dV/dI-Ibias curves as a function of gate voltage at 60 mK.
A color map for full gate voltage range is demonstrated in Figure 6.21a. The
letter "S" denotes the region where supercurent exist, with maximum switching
current reached at about 135 nA at Vg=30 V.

Figure 6.21: a) Gate-dependance of current-biased dV/dI curves at 60 mK. b) and c) are
individual current-bias dV/dI curves at gate voltages from -13 V to 0 V, and
5 V to 30 V, at 60 mK temperature.

Not surprisingly, the maximum switching current ISW (notice there is a small
difference of ISW for positive and negative Ibias due to hysteresis) at 60 mK
decreases with decreasing gate voltages from 30 V to the Dirac point of ∼ -13

V. Notice that starting from about Vg=-4 V, the zero differential resistance dis-
appears, in agreement with the feature observed in Figure 6.20. However, the
quasi-gap feature (the gap feature in transport does not equal to the spectral gap
in DoS, which has to be measured by STM) in the dVdI-Ibias curve persists, even
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close to the Dirac point, as shown in Figure 6.21b.

Figure 6.22: Similar paraconductivity behavior was seen in graphene Josephson junction
with ReW electrodes at 55 mK. a) dV/dI-Ibias. b) I-V curve for different
gate voltages. c) Color plot emphasizing the suppression of the supercur-
rent around the charge neutrality point. d) Normal state field effect curve
achieved with a small magnetic field. Image adapted from [333].

This quasi-gap (with non-zero differential resistance) effect can be interpreted
as a zero-temperature version of the Aslamazov-Larkin paraconductivity [343].
Such an effect is not seen in uniformly disordered superconducting films near
the upper critical field, where T=0 paraconductivity is overcome by the op-
posite effect due to suppression of the density of states [344]. Recent experi-
ment in graphene Josephson junction gives similar behavior, as shown in [333].
We conjecture that in our inhomogeneous system the contribution of the den-
sity of states correction is less singular near a quantum critical point than the
Aslamazov-Larkin paraconductivity [345], which therefore leads to a strong pos-
itive contribution to conductivity even in the zero-temperature limit.

We also measured the temperature dependence of ISW at Vg=30 V. Supercur-
rent was found to disappear at a temperature of about 0.75 K, in good agreement
with the previous data Figure 6.20. Individual Ibias-dV/dI curves at 0.4, 0.6 and
0.75 K are illustrated in Figure 6.23b. A cut along zero bias current is shown in
Figure 6.23c, showing the BKT transition.

Interestingly, the ISW has a quite linear dependence of temperature for high
temperatures, which is not so often seen. It has been shown that in the long
diffusive junction limit (length of junction b ≫ ξ0), which is roughly our case,
since ξSn0 ∼ 300nm, the product of critical current Ic and normal resistance RN
follows the dependence [346]: For comparison, in a

ballistic tunnel

junction, the

IcRN = π∆/e [317].
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Figure 6.23: a) Temperature dependence of Ibias-dV/dI curve at Vg=30 V. Supercurrent
disappears at a temperature of about 0.75 K, in agreement with the previous
images. The fit in a) is using formula Equation 6.39, with RN = 2kΩ and
T0 = 0.145K. b) Individual Ibias-dV/dI curves at 0.4, 0.6 and 0.75 K. c) Line
cut along zero bias current in a), with the red solid line fitted by Equation
6.39. d) Rescaling of the sheet resistance versus temperature to extract TBKT .

IcRN ∝
{

πETh/e, kBT ≪ ETh ≪ ∆

Tq exp−
√

T/T0, ETh ≪ kBT ≪ TC
, (6.38)

where q and T0 are originally derived to be 3/2 and ETh/2π. Here, we have RN ∼

2.6kΩ, and ETh =  hD/b2 ∼ 1× 10−34m2kg/s × 145cm2/s /10−12m2 of about
150× 10−26m2kg/s2, divided by the Boltzmann constant kB = 1.38× 10−23 J/K.
The Thouless energy is about 0.1 K.

The best fit using Ic ∝ αTq exp−
√

T/T0 to the measured data on the positive
bias current side is found to be T0 = ETh/2π = 0.0159K, with a pre-factor α of
4.4×10−5.

Here, our system is actually a row of 6 Josephson junctions perpendicular to
the current flow. Therefore, it is reasonable to have the above fitted value of
2π · T0 to be very close to the experimentally extracted ETh. We understand this
by the fact that at a finite temperature, the array system can be treated as a sum
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of every unit pairs, whose Josephson couplings are identical. A row of 6 islands
enhances the total critical current, however, the IcRN product is still proportional
to the right side of Equation 6.38. The collective behavior only plays a role on
the minigap inside graphene when T → 0. That is why we can use a pair-like EJ
to calculate and fit the BKT transition of the whole array.

Notice that at the negative bias current side, there are some irregular ISW , as
indicated by arrow in Figure 6.23a, which may be due to some thermal instabili-
ties.

We have been talking about BKT transition from the very beginning of this
chapter. Now, we are going to examine the data shown in Figure 6.23c, which is
a cut along the temperature axis at zero bias current. It is known that for a BKT
transition, the resistance (which is proportional to the vortex population) grows
as:

R(T) ∝ A exp
(

b√
T − TBKT

)

, (6.39)

where A, b and TBKT are fitting parameters. A fitting of the measured data
is shown as the dashed line in Figure 6.23c, with A = 9033.4, b = 2.472, and
TBKT = 0.6K. According to Equation 6.39, the plot of [d(ln(R)/dT ]−2/3 versus T
should give a straight line with TBKT given by the intercept with x-axis. Indeed,
such plot leads to consistent TBKT , as shown in Figure 6.23d.

Another hallmark of the BKT transition is a nonlinear I-V characteristics: V ∝
Iα(T), with α(TBKT ) = 3 and growing with lowering temperature. At the tran-
sition, the exponent α drops from 3 to 1, and the system transforms into a
dissipative state. This is because the finite energy barrier correponding to the
vortex-antivortex binding energy needs to be overcome before the sample be-
come dissipative via the vortex motion. The bias current overcomes that barrier
when the opposite Magnus force exerted on the vortices and anti-vortices breaks
them apart.

We plot the IV curves in Figure 6.23a in another manner, as shown in Fig-
ure 6.24a. α is fitted with V ∝ Iα(T), at the low voltage part for different tem-
peratures, as shown in Figure 6.24b. Indeed an exponent of 3 is found close to
the foot of the BKT transition at about 0.73 K. However, no clear jump from 3 to
1 is seen. The jump of α in a BKT transition is rarely observed in real samples
[347, 348]. Moreover, if one looks into Figure 6.24b, a change in α from 3 to 2 or
4 does not dramatically affect the TBKT , we therefore will not dwell too much on
this issue of critical exponent in IV dependence.

We now look back to the switching current shown in Figure 6.21a. Assuming
that in our system the maximum switching current is very close to the theoreti-
cal critical current, then we can compare the measured ones with theory.
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Figure 6.24: a) IV curves at Vg = 30V , for different temperatures. Dashed line is the
curve of V ∝ I3, best fitted to the T = 0.75 K one. b) Exponent α is fitted at
the low voltage part in a), with a TBKT ∼ 0.735 K.

Figure 6.25: Product of IcRN extracted from Figure 6.21 and diffusion coefficient in Fig-
ure 6.19b, as a function of gate voltage in the same graph.

As discussed in [14], when at zero temperature, Josephson coupling for each
pair of islands is given as:

EJ,T=0 =
π3

4

g hD

b2ln(b/a)
, (6.40)

Josephson coupling energy is also defined as [317]:

EJ = ( h/2e)I1, (6.41)
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where I1 is the maximum supercurrent between neighboring islands. Our array
contains 6 islands in the direction perpendicular to the direction of current flow
and its total critical current Ic can be estimated (neglecting small contribution to
Ic from non-nearest pairs of islands) as:

Ic ≈ 6I1 =
3π3geD

b2ln2(b/a)
. (6.42)

According to the above relations, at T ≪ Tc, the product of IcRN should only
depend on D for a given geometry (N denotes normal state, RN = R� since the
sample is a square). The use of graphene as a 2D diffusive metal enables one to
gate-tune the diffusion coefficient while keeping the geometrical aspects of the
array constant. By extracting at the base temperature 60 mK, the experimental
Ic from Figure 6.21, and measuring RN at 4 K, we plot IcRN and D as a function
of gate voltage in the same graph, as shown in Figure 6.25.

Indeed this shows a very similar gate-dependence for Vg > 10 V, with the
eIcRN/ hD ratio of about 3.7 · 109cm−2, which is close to the theoretical value
3π3/b2 ln2(b/a) = 3.6 · 109cm−2, that depends only on the geometrical aspects
(Figure 6.26). We therefore find full agreement at high gate voltages between the
experimental observations and theoretical predictions for such proximity cou-
pled arrays.

Figure 6.26: Experimental (green circles) and theoretical value (dashed line) of the
eIcRN/ hD ratio. Dashed line is the theoretically predicted value of
3.6 · 109cm−2.

However, the good agreement of Ic breaks down between experiment and the-
ory at gate voltages lower than about 8 V. Similar breakdown of the model is
seen for the BKT transition. The question is:

What makes this break down of superconductivity? And why does the model proximity

array on a diffusive 2D metal fail to explain the measured data? We will give an answer

in the coming sections.
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6.14 behavior of the array under perpendicular magnetic field

Before we go to the final section about quantum breakdown of superconductiv-
ity, we add characterization of the sample under a perpendicular magnetic field.

Figure 6.27: a) I-V curves at several magnetic fields, and b) dV/dI-Ibias curves at several
magnetic fields. Data maesured at Vg=30 V, 60 mK.

First of all, we start with a small field, and begin with examining the sample
at 60 mK and at Vg=30 V. As can be seen in Figure 6.27a, the I-V characteristic
at zero field shows a typical under-damped Josephson junction behavior, with a
hysteresis in the I-V curves. When a magnetic field is applied perpendicularly,
the I-V curves become more damped, and supercurrent is completely suppressed
at the order of about 3 mT.

When continuing to increase the magnetic field, the zero bias dip persists, as a
sign of superconductivity fluctuations, up to about 80 mT. The central Ibias dip
becomes a Coulomb peak at 100 mT, as shown in Figure 6.27b.

We further carry out higher field magnetoresistance measurements up to 2 T.
Due to the heating of the magnetic coil, we have to measure the 2 T data at 100

mK. As shown in Figure 6.28a, the magnetoresistance at Vg=-10, 0, and 30 V
are taken. A central dip in the superconducting region can be clearly seen at
Vg=0 and 30 V. While a zoomed-in Figure 6.28b shows that even at Vg=-10 V,
the central dip persists. Notice that in Figure 6.28c we get a fitted de-phasing
length of about 200 nm. However, by tweaking the fitting parameters, one can
get very different results range from 100 nm to several micrometers.

The general shape of the magnetoresistance curve looks like a superposition
of weak localization of diffusive graphene and a superconductor. We performed
the weak localization fit (Equation 5.7) for the curve at Vg=-10 V, assuming a
resistive state without SC, as it turns out the phase coherence length Lφ is about
200 nm, which is of the order of ξ0 estimated in the previous section.
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Figure 6.28: a) Magnetoresistance at Vg=-10, 0, and 30 V. and b) Zoom-in of the red box
area in a). c) Fit of the magnetoresistance curve at Vg=-10 V, using Equation
5.7.

Figure 6.29: a) Hall resistance as a function of magnetic field. b) Electronic mobility
fitted from 4 K field effect curve, using Equation 3.17, µ = 624cm2V−1s−1.

Electron carrier density is also extracted at gate voltage of 30 V via Hall mea-
surement. As shown in Figure 6.29a. Carrier density n is defined as

−
1

ne
=
Vxy

IxxB
, (6.43)

where Vxy is the Hall voltage, i.e., transverse voltage drop of the sample, and
Ixx is the longitudinal current that is biased on the sample. n is extracted from
Figure 6.29a to be about 3.19×1012cm−2. According to the definition σ = neµ,
the electronic mobility is then estimated to be about 675 cm2V−1s−1.
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Mobility extracted by fitting the 4 K field effect curve using Equation 3.17 is
624 cm2V−1s−1. We found the two methods consistent since there might be a
small mix of longitudinal and transverse voltage.

6.15 quantum breakdown of superconductivity & quantum metal-
lic state

Figure 6.30: a) Temperature dependence of resistance at different gate voltages in a tem-
perature range of 70 mK - 500 mK. b) Temperature dependence of resistance
at gate voltage of about -8 V, with perpendicular magnetic field of 0, 1, 5 ,30

mT. Temperature range in b) is 70 mK -350 mK.

As discussed in the previous sections, superconductivity breaks down in the
system at zero-temperature at gate voltages from -30 to -3 V. In the following we
investigate the nature of this state terminating superconductivity.

We systematically measured the T-dependence of the resistance for gate-voltage
close to the critical Vg = -3V. As shown in Figure 6.30a, the R-T curves in the
non-superconducting regime at Vg < -3V show a resistance drop around 0.4 K
reminiscent of the superconducting transition of those at Vg > -3V, which indi-
cates that superconducting fluctuations develop in the graphene.

However, instead of falling to a zero-resistance superconducting state, the R-T
curves saturate at finite and gate-dependent values that can reach the resistance
quantum h/e2. Importantly we can exclude the possibility of electron heating
as the origin of this metallic tail at low temperature, since in a weak magnetic
field no such saturation was measured (Figure 6.30b). This saturation therefore
conspicuously extrapolates to a zero-temperature 2D metallic state - as predicted
by theories described in Section 6.7.3.

At this point, we can review our experimental observations:
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1. At a finite temperature, the BKT transition shows agreement with theory
from Vg = 10 V to 30 V. While the theoretical prediction breaks down at
Vg <∼ 10V .

2. At zero temperature, critical current shows agreement with theory from Vg

= 8 V to 30 V. While the theoretical prediction breaks down at Vg <∼ 8V .

3. At zero temperature, A metallic state develops at Vg <∼ −3V .

All these three effects are due to the gate-tuning of the graphene carrier den-
sity (corresponding to different sheet resistance).

Notice that in effects (1) and (2), the theory we applied is an Usadel equation
without quantum phase fluctuations, while effect (3) is an important behavior
predicted by the model focusing on zero-temperature quantum phase transition.

Therefore, we have good reason to believe that the collapse of superconductiv-
ity at zero temperature in (3) is due to quantum phase fluctuations described in
Section 6.7.3. This is also the reason why, in effects (1) and (2), the data fails to
be fitted by a theory without quantum phase fluctuations.

Figure 6.31: a) Color-scaled map of resistance versus temperature and gate voltage. b)
R�c defined by measuring the 4 K resistance (green curve) at the critical
gate voltages Vgc, which are the points where SC breaks in the 60 mK field
effect (red curve). Inset in b) is a log-scale of the plot.

Now, let us use the main prediction in Section 6.9.3, which is a critical resis-
tance between two SC islands RijN = (R�c/π) ln(b/a). We have measured the
sample in a gate range from -70 to 70 V. However, this measurement was done
after the fridge was warmed up to room temperature, and there is a shift of the
Dirac point. We define the R�c by measuring the 4 K resistance at the critical
gate voltages Vgc: i.e., the Vg at which SC breaks down at 60 mK. The result is
shown in Figure 6.31.

The RijN is lower in the

hole side than in the

electron side, simply

because part of the total

resistance in between

two SC islands is

shared by the interface

resistance. Here we

assume that interface is

not fully opaque in the

hole side.

It can be seen that, on the electron side, where the interface of Sn and graphene
is supposed to be rather transparent, R�c−e ∼ 10.1 kΩ, while on the hole side
(less transparent interface), R�c−h ∼ 4.6kΩ. The two R�c values correspond
to the critical resistance between two neighbouring Sn islands RijN−e ∼ 5kΩ,
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and RijN−h ∼ 2.3kΩ respectively. Both are lower than RQ = 6.5kΩ. This result
supports the theory in [35]. The prediction that SC always persists as long as
RN < RQ [321, 275] is actually invalid.

6.16 reentrant superconductivity under weak magnetic field

Figure 6.32: When a mesocopic system is subjected to a magnetic field, a) reentrant of SC
above Hc2 adapted from [38], and b) "tail"-like up-turn of Hc2 adapted from
[14], are expected due to quantum phase fluctuations. c) Plot of zero-bias
magneto-resistance versus temperature of the sample at Vg=30 V. The solid
line is a fit of Hc2-T dependence of dirty BCS superconductor. Dashed line
is a guide for the eyes for highlighting the reentrant of superconductivity
above Hc2.

As we discussed in section 6.7.4, our system - proximity array coupled graphene
- is a model system to see the quantum phase fluctuation effect on the critical
field Hc2. We hope to see either the reentrant of SC above Hc2 (Figure 6.32a), or
a "tail"-like up-turn of Hc2 (Figure 6.32b) at zero temperature.

When our array is subjected to a magnetic field, two different effects appear.

• First, Josephson couplings become frustrated up to the degree determined
by the value of f = HS0/Φ0 where S0 =

√
3b2/2 is the area of the array

elementary cell.

• Second, the magnitude of each individual Josephson coupling E
(ij)
J be-

tween two islands i, j becomes suppressed at the length-scale Lij > LH =
√

Φ0/H (the glass field length).
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Figure 6.33: a) Magnetic field dependence of current-biased differential resistance at Vg

=30 V, 60 mK. b) Individual dV/dI curves at 2, 2.7, and 3.3 mT. Critical cur-
rent is first suppressed at around 2.7 mT (green curve in Figure 6.33b), then
is enhanced at around 3.3 mT. In the "reentrant" region (H ∼ 3 mT), criti-
cal current is much weaker in comparison with the main superconductive
region (0 mT < H < 2.2 mT).

Whereas the second effect always leads to enhancement of quantum phase
fluctuations, the first one may lead to non-monotonic behaviour upon increasing
H, see e.g. [33]. Thus we may expect either reentrant transitions between the su-
perconducting and normal states [38], or low-temperature up-turn of the critical
field [349, 14].

We performed, at 60 mK, the zero-bias magneto-resistance versus tempera-
ture of the sample at Vg=30 V, as shown in Figure 6.32c. The zero-resistance
state is demonstrated in blue colour, indicated by "S". The qualitative feature
is seen: low-temperature "superconductivity reentrance" into the region of rela-
tively high field does exist, as highlighted by the dashed line.

A BCS fit of Hc2 is plotted in Figure 6.32c by the black solid line. One can see
that the high-temperature part is well fitted, while a discrepancy is seen at the
low temperature part. Moreover, the fitted Hc2 is about 2.2 mT, close to the full-
frustration value H0 = Φ0/S0 = 2.4 mT. High-field reentrant superconductive
region seen around H= 3 mT at temperatures below 200 mK qualitatively agrees
with predictions of [38]. Notice that, the

quantum fluctuations

that induce reentrant

superconductivity at

Hc2 has nothing to do

with the quantum

fluctuations that causes

the collapse of SC at

zero field. The latter

comes from the

Andreev conduction

induced weak charge

quantization, while the

former comes from the

random phase

fluctuation (under a

magnetic field) of

Josephson coupling

between SC clusters.

Moreover, the critical current in this reentrant region is strongly suppressed
in comparison with the main superconductive region at the same temperature
(Figure 6.33a), which is consistent with a low-temperature superconducting glass

state [350, 351, 349] due to frustration of Josephson couplings, which originates
from quantum phase fluctuations.

Q & A of Chapter 6

After having shown all the above measurements, we would like to answer all
the questions we asked in the begining of this chapter.
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1. With respect to the conventional one dimensional SNS junction, what are the new

features when the system is built up with an periodic array? Namely, how does the

so-called collective proximity effect play a role? What is the theoretical density needed to

still obtain superconductivity?

The collective proximity effect mainly works on the spectral minigap, which
will be seen by STM measurements, and is the object of our future studies. The
density needed to still get SC, so far, we can say, is above 10 percent. However,
we believe that even at less than 1 percent surface coverage, the system should
still be superconducting. Of course, the interface plays an important role.

2. What is the origin of the quantum phase fluctuation? How does it affect the quan-

tum phase transition from a superconducting state to a metallic state?

The origin of quantum phase fluctuation is the nature of the Andreev 2e charge
transfer in/out of each SC island. This feature is never considered in the conven-
tional JJA models.

The 2D metal conductance determines Andreev conductance, and the Andreev
conduction (2e charge transfer) induces SC-phase fluctuations. These fluctua-
tions play a role of an effective charging energy. Therefore, at a critical effective
charging energy (which is of the order of Josephson coupling energy) at zero
temperature, a SC-M quantum phase transition takes place.

3. Since a magnetic field is supposed to decrease Josephson coupling between islands,

how does the superconducting state evolve as a function of magnetic field?

Normally a magnetic field suppresses Josephson coupling. However, due to
the existence of quantum phase fluctuations, random signs of Josephson cou-
pling is possible. The result is the appearance of SC clusters, that exist even
above the HGlass when the fluctuation is strong enough, a global SC can be seen
as a reentrant of SC, or reentrant of Hc2, at zero temperature.

4. Is there a critical resistance in the S(M)I quantum phase transition? If yes, is it

4e2/h or not?

Yes, but it is not necessarily RQ. See details in Section 6.15.

5. Does there exist a 2D metallic phase at zero-temperature? If yes, what is its origin?

Yes! And the answer is given in 2.

6.17 conclusion of chapter 6

To conclude, we have reviewed at the beginning of the chapter the historical
problem about the intervening metallic state in the superconductor-to-insulator
quantum phase transition.
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Then, a recent model on proximity coupled diffusive 2D metal was introduced.
Using the Usadel equation without quantum phase fluctuations, the theory [14]
predicts:

a) a BKT transition at finite temperature;

b) an IcRN product proportional to the diffusion constant D of the system at
zero temperature.

When quantum phase fluctuations are taken into account, the theory [35] says
that, in the diffusive limit, the phase coherence of Andreev pairs will fluctuate
strongly because of the weak 2e charge quantization. The quantum phase fluc-
tuations have an effect similar to the conventional charging energy in the JJA
models, which is tuned by the 2D metal conductance. The theory then predicts
that:

c) at a critical normal state conductance of the 2D metal (which can be lower
than RQ = 4e2/h = 6.5kΩ), the superconductivity collapses between SC islands,
leading to a metallic state.

To experimentally achieve the conditions needed for the above theories, we
have fabricated triangular arrays of Sn nanodisks (diameter-to-distance ratio of
400 nm/1 µm) on diffusive graphene (mean free path at the order of ∼ 25 nm,
D ∼ 100 cm2/s). The graphene has a gate-tunable carrier concentration, thus
making it an amenable system to see the effect of SC-M quantum phase just by
electrostatic gating.

Our experimental observation shows quantitative agreements with the theoret-
ical predictions (a) and (b) at the high gate voltage side (Vg > 10V). Nevertheless,
a breakdown between theory and measured data is seen in the gate range of -30

V < Vg <10 V.

We see a collapse of superconductivity in the gate range of -30 V < Vg < -3 V,
where a metallic state establishes, and conspicuously extrapolates to zero tem-
perature.

All the above experimental observations strongly support the quantum phase
fluctuations induced is an SC-M quantum phase transition.

Moreover, when checking the RijN between islands, we found that at electron
and hole side, RijN is 5 and 2.3 kΩ respectively. This result steadily validates the
theoretical predictions based on the model of proximity array coupled 2D metal.

Finally, we have shown that, when subjected to a small perpendicular mag-
netic field, our system shows, for the first time, experimental observation of a
reentrant behavior ofHc2 at a magnetic field above theHGlass. This added value
suggests that the present system under study is very rich in mesoscopic physics,
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and a prototype for several kinds of quantum phase fluctuations theories.
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6.18 appendix : derivation of Equation 6 .30

Zero temperature superconductivity breaks at the critical condition [34]:

1 =
1

2 h
J(T) ·C(T). (6.44)

J(0) can be obtained by solving the Usadel equation at the limit of ln(b/a) ≪ 1

[34]

J(0) =
π4

2

g hD

b2 ln(b/a)
, (6.45)

C(0) is given by:

C(0) =
ρ · a2
D

e2π
√
gs, (6.46)

where ρ is a unknown factor, and s is a parameter related to the RG equation
of GA. By substituting Equation 6.45 and Equation 6.46 into Equation 6.44, one
gets:

1

2 h
· π

4

2

g hD

b2 ln(b/a)
· ρ · a

2

D
e2π

√
gs = 1, (6.47)

which reduces to:

π4

4

gρ

ln(b/a)
· a

2

b2
· e2π

√
gs = 1, (6.48)

which goes to:

π2

2

[

gρ

ln(b/a)

]1/2

· eπ
√
gs =

b

a
. (6.49)

If one introduces a self-consistent relation:

eπ
√
gs ∼

b

a
, (6.50)

and replace the above relation into Equation 6.49, it turns out to be:

b2

a2
∼
π2

2

[√
gρ

πs

]1/2

· eπ
√
gs. (6.51)

This equation can be reformed into:

gc ∼

(

1

π
ln
b

a ′

)2

, (6.52)

with

a ′ =
a · π3ρ1/2 · g1/4

2s1/2
. (6.53)

Notice the relation gc ∼
(

1
π ln b

a ′
)2

is only valid when a ∼ a ′, i.e., ρ1/2 ·g1/4 ∼ 1,
since s is calculated to be close to 1[35].
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G E N E R A L C O N C L U S I O N A N D P E R S P E C T I V E S

In this thesis, we have demonstrated a full chain of graphene activities starting
from building up a CVD machine, developing our own pulsed-CVD method
to achieve fully monolayer graphene, transferring CVD graphene onto arbitrary
substrates, functionalization of CVD graphene, fabricating micro-devices, and fi-
nally the work finishes by the low temperature measurements of a new quantum
metallic state, on CVD graphene decorated with a regular array of superconduct-
ing nanoislands.

In chapter 1, we described the material preparation, which is the basis of this
thesis work. We have reviewed the CVD growth technique developed in the area
of graphene research in recent years. We have developed a novel pulsed-CVD
method, which is able to suppress completely the multi-layer patches during
growth. This method shortens the check-list of remaining defects in graphene re-
search, and leads to superior optical and electrical properties of CVD graphene.

We have then shown in chapter 2 that with the CVD-grown graphene, we are
able to transfer it onto different kinds of substrates. The state-of-the-art flexible
transparent electrodes were demonstrated. This chapter provides the most im-
portant technical basis for the rest of this thesis, since further sample fabrication
and characterization is based on this chapter.

In chapter 3, we turned to the electronic measurements of graphene. The fun-
damental electronic properties are briefly introduced, such as the band structure,
relationship between the theoretical DOS and measured field effect, etc. Both
conventional oxide back-gate and the recently popular ionic gating on graphene
are briefly introduced. We also spend some time describing the quantum Hall
measurements of monolayer graphene, which is an important aspect of the elec-
tronic properties of graphene. The basic conceptions and formulas in this chapter
are very useful for the further studies presented in chapter 5 and chapter 6.

Chapter 4 summarizes the most popular methods to clean graphene. Cleaning
is a crucial technical problem in graphene studies, as graphene is a 2D electron
gas usually open to the environment. It is easily contaminated and thus its elec-
tronic properties will be degraded. To have graphene as clean as possible is very
challenging. We found that among many methods reported in the literature,
acetic acid cleaning seems to be the most efficient way of cleaning graphene.

Chapter 5 actually makes the crossover from "clean" graphene to "dirty" graphene,
in a controlled manner. We have discovered a new chemical way of inducing dis-
order in graphene by simply dipping graphene into Na2S2O8. This enables us
to have one more knob of tuning graphene properties, and opens the possibil-

189
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ity of a variety of physics. With the disordered CVD graphene, we managed to
achieve macroscopic graphene quantum device decorated with random network
of Sn nanoparticles, showing superconductor-to-insulator transition.

In the last chapter of this thesis, we focus on the most important part of this
thesis work: electrical properties in our CVD grown graphene decorated with
a regular triangle array of Sn nanodisks. By comparing our experimental mea-
surements to theoretical works, we have understood a new quantum metallic
behaviour, which is induced by quantum phase fluctuations.

Here, the importance of our observation stems from the direct coupling be-
tween artificial superconducting array (with well-defined geometry by electron
beam lithography) to a truly 2D diffusive metal whose resistance can be in-situ
gate-tuned. In this new hybrid system, we realized a macroscopic supercon-
ducting state at high gate voltages, whose characteristic parameters such as BKT
transition temperature, and critical supercurrent are in quantitative agreement
with a recently developed theory based on the Usadel equation with no quantum
phase fluctuations. Furthermore, the collapse of superconductivity at gate volt-
ages closer to the Dirac point are qualitatively in agreement with the theory of a
quantum-fluctuation-driven 2D superconductor-to-metal quantum phase transi-
tion.

Our experimental results demonstrate the existence of a metallic ground state
terminating the 2D superconducting state, whose origin is for the first time ex-
perimentally proven to be quantum phase fluctuations, with the critical resis-
tance not necessarily being RQ(this gives a negative answer to the long-standing
question: whether there is an universal critical resistance in QPT).

Moreover, we have shown that, when subjected to a small perpendicular mag-
netic field, our system exhibits a re-entrant superconductivity above the BCS-
type Hc2. This suggests that the present system is a prototypical system for
several kinds of quantum phase fluctuation theories.

As a final remark, by exploring the parameters along the full chain of graphene
studies in this thesis, we are able to control from the raw material quality, to the
sample fabrication and functionalization, the low temperature measurements.
CVD grown graphene is shown to be very promising in both future industrial
applications, and mesoscopic physics.

Perspectives

Toward even better CVD graphene.

As we have shown in chapter 1, three main defects, i.e., grain boundaries,
wrinkles, and multi-layer patches, are usually present in CVD grown graphene.

We have found the solution for preventing the third kind of defect from hap-
pening during growth, but there is still room to improve the quality of CVD
graphene. The problem of grain boundaries has to be solved by reducing nucle-
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ation density on the metal substrate. While the wrinkles are rather difficult to be
fully removed. Ultra clean, single crystal graphene remains a challenging task.

However, real application of CVD may not be far. We believe that with high
electrical and optical homogeneity, the pulsed-CVD graphene is going to help
boost the future market for applications, in areas such as touch screen and flexi-
ble electrodes.

Making graphene intrinsically superconducting.

As we mentioned in chapter 6, graphene itself is expected to be superconduct-
ing via alkali metal doping - which is absolutely reasonable since graphite doped
with alkali metal was found to be superconducting long time ago - yet no direct
transport has been conducted in doped graphene or few-layer graphene.

It is highly interesting and promising that graphene will show stronger or
more exotic superconductivity by either electrostatic doping or elemental dop-
ing. This is one perspective we would like to emphasize, because intrinsic super-
conducting graphene will provide us a new platform of correlated 2D electron
gas, which is exposed to the environment, and probably retains the gate tunabil-
ity.

Proximity coupled arrays: more experiments.

As described in the theory, less than one percent surface coverage by supercon-
ducting islands will be enough to induce global superconductivity in graphene.
However, our arrays showed no superconductivity with diameters less than 100

nm, as discussed in Section 6.10.1. There might be some interface oxidation
which causes poor Andreev conduction. We can vary the distance between is-
lands to approach another limit with less than one percent surface coverage of
Sn.

On the other hand, we also wonder how the system will behave if the graphene
becomes ballistic, or strongly disordered. In the latter case, we expect a superconductor-
metal-insulator phase transition, with clear three phases. And for the ballistic
graphene case (for example graphene on h-BN, or suspended), the theory based
on diffusive Usadel equations ceases to be valid. Therefore, completely new
physics is expected.

Probing the interface between graphene and superconducting islands.

Due to technical difficulties, we can now only estimate the interface conduc-
tance between graphene and Sn nanoparticles via the resistance drop at around
3.6 K.

However, experimental observations are in principle feasible. As one can de-
sign such a system: suspend the graphene on a TEM grid, and then deposit
Sn nanoparticles on one side of graphene. Then one can flip the sample and
perform STM measurements on the other side. That is exactly the purpose of
our Figure 2.10. This is going to be our future work to better understand our
proximity coupled arrays.
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