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"We’re forever teetering on the brink of the unknowable,

and trying to understand what can’t be understood.

It’s what makes us men"

Isaac Asimov
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Abstract

A time-domain numerical modeling of Biot poroelastic waves is proposed. The viscous dissipation occur-
ring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen
(JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency:
in the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convo-
lution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of
memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive
approximation) model. The properties of both the Biot-JKD model and the Biot-DA model are analyzed:
hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation,
different methods of quadrature are analyzed: Gaussian quadratures, linear or nonlinear optimization pro-
cedures in the frequency range of interest. The nonlinear optimization is shown to be the better way of
determination. A splitting strategy is then applied numerically: the propagative part of Biot-JKD equations
is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved
exactly. An immersed interface method is implemented to discretize the geometry on a Cartesian grid and
also to discretize the jump conditions at interfaces. Numerical experiments are presented, for isotropic and
transversely isotropic media. Comparisons with analytical solutions show the efficiency and the accuracy
of this approach. Some numerical experiments are performed to investigate wave phenomena in complex
media: influence of the porosity of a cancellous bone, multiple scattering across a set of random scatterers.

Key-words: porous media, elastic waves, Biot-JKD model, fractional derivatives, time splitting, finite
difference methods, immersed interface method
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Résumé

Une modélisation numérique des ondes poroélastiques, décrites par le modèle de Biot, est proposée dans
le domaine temporel. La dissipation visqueuse à l’intérieur des pores est décrite par le modèle de perméabil-
ité dynamique, développé par Johnson-Koplik-Dashen (JKD). Certains coefficients du modèle de Biot-JKD
sont proportionnels à la racine carrée de la fréquence : dans le domaine temporel, ces coefficients intro-
duisent des dérivées fractionnaires décalées d’ordre 1/2, qui reviennent à un produit de convolution. Basé
sur une représentation diffusive, le produit de convolution est remplacé par un nombre fini de variables
de mémoire, dont la relaxation est gouvernée par une équation différentielle ordinaire locale en temps, ce
qui mène au modèle de Biot-DA (approximation diffusive). Les propriétés du modèle de Biot-JKD et du
modèle de Biot-DA sont analysées : hyperbolicité, décroissance de l’énergie, dispersion. Pour déterminer
les coefficients de l’approximation diffusive, différentes méthodes de quadrature sont proposées : quadra-
tures de Gauss, procédures d’optimisation linéaire ou non-linéaire sur la plage de fréquence d’intérêt. On
montre que l’optimisation non-linéaire est la meilleure méthode de détermination. Le système est modélisé
numériquement en utilisant une méthode de splitting : la partie propagative est discrétisée par un schéma
aux différences finies ADER, d’ordre 4 en espace et en temps, et la partie diffusive est intégrée exactement.
Une méthode d’interface immergée est implémentée pour discrétiser la géometrie sur une grille cartésienne
et pour discrétiser les conditions de saut aux interfaces. Des simulations numériques sont présentées, pour
des milieux isotropes et isotropes transverses. Des comparaisons avec des solutions analytiques montrent
l’efficacité et la précision de cette approche. Des simulations numériques en milieux complexes sont réalisées
: influence de la porosité d’os spongieux, diffusion multiple en milieu aléatoire.

Mots clés : milieux poreux, ondes élastiques, modèle de Biot-JKD, dérivées fractionnaires, splitting en
temps, méthodes de différences finies, méthode d’interface immergée
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Chapter 1

Introduction

1.1 Dynamic poroelasticity

A porous medium is a solid (often called matrix) permeated by an interconnected network of pores filled
with a fluid, as illustrated in figure 1.1.

(a) (b)

Figure 1.1: examples of porous media. (a): ceramic, (b): cancellous bone

The theory of poroelasticity is initiated by the experimental observations carried out by Darcy, in 1856,
on the flow of water in sands [44]. The concept of porous medium emerges from the works of Terzaghi in
soil mechanics, where the notion of effective stress is introduced to account for the influence of pore fluid
on the quasi-static deformation of soils [135]. This theory is generalized to three-dimensions by Rendulic
in 1936 [118]. In 1935, Biot presents a more general quasi-static theory of poroelasticity [11, 12]. In 1941,
Kosten and Zwikker propose two coupled force-balance equations for the average fluid and solid response of
a porous material, and thus predict the existence of two compressional modes. But this scalar theory fails to
predict a shear mode. Consequently, the effective compressibility moduli in terms of drained and undrained
experiments can not be determined. In 1944, Frenkel is the first author to have developed a complete set of
dynamic equations governing the acoustics of isotropic porous media, in which two compressional waves and
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18 CHAPTER 1. INTRODUCTION

one shear wave propagate. Biot then expands his own theory to dynamic poroelasticity (now known as the
Biot theory), which gives a complete and general description of the mechanical behaviour of a poroelastic
medium [13, 15, 14].

The Biot theory ignores the microscopic scale. The continuum mechanics concepts - existence of potentials
and principle of stationary action - are assumed to be verified at the macroscopic scale. Biot equations are
then derived from equations of linear elasticity for the solid matrix, Navier-Stokes equations for the viscous
fluid, and Darcy’s law for the flow of fluid through the porous matrix. Based on these contributions, the Biot
model predicts three types of elastic waves: a shear wave, and two types of compressional waves, denoted
Pf and Ps waves. The shear wave and the fast compressional wave Pf are similar to the usual shear and
compressional waves in an elastic solid, respectively. On the contrary, the slow compressional wave Ps (also
known as the Biot’s slow wave) is a key feature of this theory.

Rice and Cleary reformulate the Biot theory in rock and soil mechanics [119], giving an interpretation of
the two limiting behaviors, drained and undrained, of a porous material saturated by fluid. This formula-
tion considerably simplifies the interpretation of asymptotic poroelastic phenomena. The prediction of the
Biot’s slow wave has generated some controversy, until the experimental observation by Plona in 1980 [114].
Moreover, a rigorous homogeneization method, proposed by Burridge and Keller in 1981, has given solid
theoretical foundation to the Biot equations [20].

Two frequency regimes have to be distinguished in the Biot theory, separated by the characteristic
frequency fc. In the low-frequency range (LF), the flow in the pores is of Poiseuille type. The viscous efforts
are then proportional to the relative velocity of the motion between the fluid and the solid components
[13]. In the high-frequency range (HF), modeling the dissipation is a more delicate task. Biot presents an
expression for particular pore geometries: 2D flow between parallel walls, 3D flow in a circular duct [15].
In 1987, Johnson, Koplik and Dashen (JKD) publish a general expression for the dissipation in the case of
random pores [80], leading to the widely-used Biot-JKD model. In this model, the viscous efforts depend on
the square root of the frequency of the perturbation, and only one additional physical parameter is involved.
When writing the evolution equations in the time domain, shifted time-fractional derivatives are introduced,
which involves convolution products in time [95]. The fractional derivatives will be underlined later in the
introduction. The two following sections focus on the usual methods to solve the Biot equations.

1.2 Analytical methods

Various analytical approaches have been proposed. In the frequency-domain, Green’s functions for poroe-
lastic media are derived by several authors. Zimmerman and Stern obtain several semi-analytical solutions for
some basic problems of harmonic wave propagation in a poroelastic medium [146]. Then, two-dimensional
dynamic Green’s functions for a poroelastic half-plane are derived by Senjuntichai and Rajapakse [126].
Boutin, Bonnet and Bard compute the semi-analytical transient solutions in a stratified medium, and Kazi-
Aoual, Bonnet and Jouanna [82] extend the solution of Boutin et al. to the transversely isotropic case.

In 1992, Deresiewicz and Rice [48] write the Green’s function at a fluid/porous plane interface, and found
that the Rayleigh wave is dissipative and dispersive due to losses by mode conversion of the slow wave.
This work is extended by Stoll and Bryan [129], Burridge and Vargas [21], Norris [110, 112], Boutin and al.
[18], Pride and Haartsen [115] and Sahay [122]. A semi-analytical solution for multilayered porous media
is proposed by Lefeuve-Mesgouez and Mesgouez, based on Helmholtz decomposition, exact stiffness matrix
and approximation of oscillating integrals [100, 85].

In the HF regime, which involves fractional derivatives, the first analytical solutions in the time-domain
have been derived by Fellah and Depollier. The authors consider the case where the solid phase is rigid and
motionless, leading to the so-called "equivalent fluid model" [58]. This work is generalized to the Pride-
Lafarge model, which introduces a correction to the JKD model [59], and to the Johnson-Allard model that
takes the thermal effects into account [60]. Recently, the authors extend their method to the case where the
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solid phase is not rigid [57].

1.3 Numerical methods in the low-frequency regime

One of the first papers about the simulation of Biot waves with direct grid methods dates to the 1970’s,
where Garg, Nayfeh and Good [66] use a finite-difference method. In the 1980’s, Mikhailenko [101] solves
Biot equations in cylindrical coordinates, with a finite Hankel transform along the radial coordinate, and a
finite-difference scheme along the vertical direction. Hassanzadeh solves the Biot-LF equations, written in
the dilatation formulation, by using a finite-difference scheme [75]. Zhu and McMechan solve the 2D Biot-LF
equations using the displacement formulation and a finite-difference scheme similar to that of Hassanzadeh
[145]. Dai, Vafidis and Kanasewich use a McCormack predictor-corrector scheme, based on a spatial splitting
technique, and the free surface is discretized with finite differences [43]. Ozdenvar and McMechan develop a
pseudo-spectral staggered-grid algorithm expressed in the displacement formulation [113]. The time deriva-
tives are computed with a second-order Euler forward approximation. Carcione and Quiroga-Goode show
that the stiffness of the Biot equations requires a special treatment [27, 79]. Chiavassa and Lombard solve
the Biot-LF equations using a velocity-stress formulation and a time-splitting coupled with a finite-difference
scheme [37, 35]. Finite-element approaches are proposed since the 1980’s, with Santos and Oreña’s work
[124], and in 2005 by Ezziani [55]. Boundary element methods are also used, such as in the work of Atten-
borough, Berry, and Chen [5]. Spectral element methods are also used in both the frequency domain [47]
and the time domain [106]. With their recent rise, discontinuous Galerkin methods have been applied to
poroelasticity in several works, for instance by de la Puente, Dumbser, Käser and Igel [46].

In the HF regime, the fractional derivatives greatly complicate the numerical modeling of the Biot-JKD
equations. The numerical methods in the HF regime will be addressed later in the introduction. The two
following sections focus on the fractional operators and on a mathematical means to compute them: the
diffusive representation.

1.4 Fractional calculus

In a letter dated September 30th, 1695, L’Hospital wrote to Leibniz asking him about a particular
notation he had used in his publications for the nth-derivative of the linear function x. L’Hospital asked to
Leibniz, what would the result be if n = 1/2. Leibniz’s answered:

"An apparent paradox, from which one day useful consequences will be drawn,
because there are no useless paradoxes."

In these words, fractional calculus was born. Following L’Hospital’s and Leibniz’s first questioning, fractional
calculus is primarily a study reserved for the best minds in mathematics. Euler suggests in 1730 a general-
ization of the rule used for computing the derivative of the power function. He used it to obtain derivatives
of order 1/2. Laplace proposes in 1812 an integral formulation, based on the Gamma function. Fourier
generalizes this work to arbitrary-order fractional operators. Fourier and Laplace transformations relate
fractional derivatives to multiplication by (j ω)α, where α is not an integer. In the 1830’s, Liouville takes the
exponentials as starting point for introducing the fractional derivative, and applies it to the computation of
functions represented by series with exponentials (later called Dirichlet series).

In another attempt, Liouville presents a formula for fractional integration similar to the above, using the
Gamma function, and considers for the first time the solution of fractional differential equations. Similar
ideas are recovered in 1868 by Grünwald and Letnikov. In a paper published after his death, Riemann reaches
a similar expression for the integral, that becomes the more important basis for the fractional integration.
In the 1860’s, Holmgren and Letnikov puts in a correct statement the fractional differentiation as inverse
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operation of the fractional integration. The Causal Fractional Derivatives rule for the fractional derivative
of the product of two functions was published by Liouville. The Mittag-Leffler function, which arises as
the solution of fractional order differential equations, is then introduced in 1903 [102]. These functions
interpolate between a purely exponential law and power-law-like behavior.

However, engineering and scientific applications have been mostly found in the last 100 years. Caputo
reformulated the more classical definition of the Riemann-Liouville fractional derivative in order to use
initial conditions of fractional order differential equation [22]. If u is a causal differentiable function, then
the Caputo definition of half-order fractional derivative is

D1/2u(t) =
H(t)√
π t
∗ du
dt

=

∫ t

0

1√
π (t− τ)

du

dτ
(τ) dτ, (1.1)

where ∗ denotes the convolution product, and H(t) is the Heaviside step function. In most of the articles, the
authors use the backward Grünwald-Letnikov scheme to discretize fractional derivatives [24]. The series that
define the Grünwald-Letnikov derivative is truncated into a finite number of terms, leading to a first-order
finite-difference scheme. The Gear finite-difference scheme is adapted to fractional derivatives by Galucio,
Deü, Mengué and Dubois [64], leading to the second-order Gα scheme. These two schemes require to store
the past values of the solution over a finite number of time steps. Consequently, no general theoretical
results can be established concerning the stability of these schemes: the stability has to be analyzed for each
particular problem.

For theoretical analysis and numerical implementation purposes, a radically different approach has been
developed since the end of the 1980’s: the diffusive representation of fractional operators. Now, we detail
the basic principles of this local-in-time formulation.

1.5 Diffusive representation

The fractional operators are a particular case of pseudo-differential operators H , for which efficient
tools have been developed. Here, we focus mainly on the diffusive representation of the operator kernels,
introduced by Desch and Miller in 1988 [49] and by Staffans in 1994 [128] under the name of completely
monotone kernel. Independently, the diffusive representation was also developed by Audounet, Matignon
and Montseny since 1997 [105, 104]. It is intrinsically related to the existence of a continuous spectrum
of H(s) on the negative real axis. The diffusive representation thus corresponds to a decomposition of a
function into a continuum of decreasing Mittag-Leffler exponentials, where the weights are obtained by the
inverse Laplace transform of the impulse response related to the operator H

(
d
d t

)
. For instance, the diffusive

representation of the order 1/2 fractional derivative is

D1/2 u(t) =
1

π

∫ ∞

0

1√
θ
ψ(θ, t) dθ. (1.2)

The diffusive variable ψ in (1.2) is defined as

ψ(θ, t) =

∫ t

0

e−θ(t−τ)
du

dτ
(τ) dτ, (1.3)

and satisfies the local-in-time ordinary differential equation





dψ

dt
= −θ ψ +

du

dt
,

ψ(θ, 0) = 0.

(1.4)
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Thanks to the locality of the diffusive representation, a step-by-step numerical integration (which does
not need to store the past of the solution) can be implemented. In fact, the past of the solution is memorized
in the diffusive variable ψ. This methodology is of general scope. It offers a unified and useful mathematical
framework in which, first, the standard algebraic operations about integral operators are well defined, and
second, efficient numerical approximations can be built. Moreover, the stability of such schemes can be
analyzed in the general case, unlike for the Grünwald-Letnikov schemes.

This diffusive representation has been applied to various physical models, for instance in musical acous-
tics. The Webster-Lokshin system is a dissipative model that describes acoustic waves traveling in a duct
with visco-thermal losses at the lateral walls. This system couples a wave equation with spatially-varying
coefficients to absorbing terms involving fractional derivatives. In [73], Haddar and Matignon proves the
existence and uniqueness of the solution to the Webster-Lokshin system. In [72], the fractional derivative is
approximated using the diffusive representation, requiring to evaluate an integral over the Laplace variable
domain. Two different schemes are then proposed, based on the choice of the quadrature rule associated
with this integral. The first one is inspired by the continuous stability analysis of the initial boundary value
problem of the system system. This scheme is constructed so that it preserves the energy balance at the
discrete level. This is done, however, at the expense of a poor first-order accuracy. The second approach is
numerically more efficient and provides uniform control of the accuracy with respect to the simulation time
[72].

1.6 Numerical methods in the high-frequency regime

Let us go back to the resolution of the Biot equations in the high-frequency regime. The Biot-JKD
model involves fractional derivatives. Consequently, the past of the solution needs to be stored, increasing
the memory requirements. To our knowledge, only two numerical approaches have been proposed so far in
the literature to integrate the Biot-JKD equations directly in the time-domain. The first approach consists
in a straightforward discretization of the fractional derivatives, defined by a convolution product in time
[99]. In the example given by the authors, the solution is stored over 20 time steps.

The second approach is based on the diffusive representation of the fractional derivative [74, 136]. The
convolution product in (1.1) is replaced by a continuum of diffusive variables satisfying local differential
equations [72]. This continuum is then discretized using Gaussian quadrature formulae [142, 51, 16], resulting
in the Biot-DA (diffusive approximation) model. In the example given by the authors, 25 memory variables
are used, which is equivalent, in terms of memory requirement, to storing 25 time steps.

1.7 Contribution of the thesis

A research collaboration between the Laboratoire de Mécanique et d’Acoustique (Marseille, France) and
the Laboratoire de Mécanique, Modélisation et Procédés Propres (Marseille, France) was initiated in 2006
concerning the modeling of the Biot-LF equations [37, 35]. It has led to a 2D code modeling wave propagation
in isotropic heterogeneous poroelastic media. Following this framework, the aim of my thesis was to develop
a numerical strategy in the HF regime. An additional feature was also to introduce the anisotropy.

At the beginning of the thesis, the method based on a straightforward discretization of the convolution
product [99] has been tested in the one-dimensional case. As said previously, it requires to store a large
number of time steps, making large-scale simulations out of reach. Moreover, some properties of the model,
such as the high-frequency limit of the phase velocities, are modified by the method.

Then, the method based on a diffusive approximation proposed in [74] has been implemented. Three
major drawbacks were observed and analyzed. Firstly, the quadrature formulae make the convergence
towards the original fractional operator very slow. Secondly, the number of memory variables required to
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control the accuracy is not quantified. Lastly, the Biot-DA model does not converge towards the Biot-LF
model at low frequencies.

After these unsuccessful trials, my goal was then to develop a new method to account for the fractional
derivatives in the Biot-JKD equations, that does not suffer from the previous drawbacks. In particular, I
wanted the method to satisfy the following specifications:

• the number of additional arrays must be as small as possible, typically much smaller than the 20 arrays
in [99] or the 25 arrays in [74];

• given the desired accuracy, the number of additional arrays (time store or diffusive variables) must be
determined a priori;

• at low frequencies, one must recover the Biot-LF model;

• the stability of the numerical scheme must be analyzed and ensured easily;

• the main physical properties of the Biot-JKD solution must not be modified substantially;

• lastly, and if possible, few modifications of the existing code for the 2D Biot-LF equations must be
needed.

As explained previously, the diffusive representation has convenient properties. Consequently, I based my
work on this diffusive representation of fractional derivatives. As we will see further, the way to determine
the quadrature coefficients leads to an optimum number of additional arrays. In the numerical experiments
presented in the thesis, 3 diffusive variables ensure an error of model smaller than 4%.

1.8 Plan

The thesis manuscrit is organized as follows. The original Biot-JKD model is outlined in chapter 2. The
diffusive representation of fractional derivatives is described. The energy decrease and the hyperbolicity are
proven, and a dispersion analysis of Biot-JKD system is done. The Beltrami-Michell equation is derived,
and the jump conditions along interface are written.

In chapter 3, the method used to approximate the diffusive model is presented. The properties of
the Biot-DA system are also analyzed: well-posedness, hyperbolicity, dispersion. As a consequence, the
diffusive approximation does not modify qualitatively the properties of the solution. We first recall Gaussian
quadrature formula [16, 51, 142] to determine the coefficients of the diffusive approximation. Then, following
a similar approach than in viscoelasticity [53, 69], we propose new methods of determination using an
optimization procedure.

The numerical modeling of the complete Biot-DA system is addressed in chapter 4, where the equations
of evolution are split into two parts: a propagative part is discretized using a fourth-order finite-difference
scheme, and a diffusive part is solved exactly. An immersed interface method is implemented to account for
the jump conditions and for the geometry of the interfaces on a Cartesian grid.

Numerical experiments are presented in chapter 5, for isotropic and transversely isotropic media. In
academic configurations, the numerical solution is compared with an analytical one, thus validating the
method developed in this thesis.

In section 6, a conclusion is drawn and some futures lines of research are suggested.



Chapter 2

Problem statement

2.1 Introduction

We consider the widely-used poroelastic model proposed by Biot in 1956 [13, 15]. Two frequency regimes
have to be distinguished when dealing with poroelastic waves. In the low-frequency range (LF), the flow
inside the pores is of Poiseuille type [13]. The viscous efforts are then proportional to the relative velocity
of the motion between the fluid and the solid components. In the high-frequency range (HF), modeling the
dissipation is a more delicate task. Biot first presented an expression for particular pore geometries [15].
In 1987, Johnson–Koplik–Dashen (JKD) published a general expression for the HF dissipation in the case
of random pores [80]. In this model, the viscous efforts depend on the square root of the frequency of the
perturbation.

When writing the evolution equations in the time domain, time fractional derivatives are introduced,
which involves convolution products [95]. A straightforward discretization is computationally inefficient,
as explained in the general introduction. Instead, we follow a diffusive representation of the fractional
derivatives. The convolution is replaced by a continuum of memory variables that satisfy local-in-time
ordinary differential equations [72].

In this chapter, we first recall the hypotheses and the system of equations modeling the propagation of
elastic waves in a porous medium. In section 2.2, our description is based on the work of Biot [13, 15, 14]
in the low-frequency range. The JKD theory [80] is used to model the high-frequency regime in section 2.3.
The description and notations of a transversely isotropic medium follow [27]. In section 2.4, the equations
of evolution are written in the form of a first-order system. The section 2.5 is devoted to the derivation of
a Beltrami-Michell equation [42, 119]. In section 2.6, the jump conditions along an interface are written in
the porous/porous and fluid/porous cases, for various hydraulic contacts. Then, in section 2.7, the diffusive
representation of the fractional derivative introduced by Biot-JKD model is presented. Lastly, the section
2.8 is dedicated to the theoretical properties of the system: existence of an energy and hyperbolicity. A
dispersion analysis ends this chapter.

The sections 2.2 to 2.6 are of bibliographical nature. The original contributions mainly concern the
diffusive representation of the fractional derivatives applied to poroelasticity and the analysis of the properties
of the model.

2.2 Biot model

We consider an orthotropic porous medium, consisting of a solid matrix saturated with a fluid that cir-
culates freely through the pores [13, 17, 27]. The perturbations propagate in this medium with a wavelength

23
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λ  
REV

fluid

 solid matrix

Figure 2.1: sketch of a porous medium. REV: representative elementary volume, λ: wavelength of pertur-
bations.

λ (figure 2.1). In this figure, the representative elementary volume (REV), of dimension L, is the smallest
domain large enough to enable the averaging process. This medium has three orthogonal symmetry planes.
In addition, we assume that it has a symmetry z-axis. The material is therefore transversely isotropic.
This particular case of anisotropy usually describes natural rocks under the influence of gravity, engineering
composites [68] and biological materials [32]. The subscripts 1, 2, 3 represent the x, y, z axes.

The Biot model then involves 15 positive physical parameters:

• the density ρf , the dynamic viscosity η and the bulk modulus Kf of the fluid;

• the density ρs and the bulk modulus Ks of the grains;

• the porosity 0 6 φ 6 1, the tortuosities T1 > 1, T3 > 1, the absolute permeabilities at null frequency
κ1, κ3, and the symmetric definite positive drained elastic matrix C

C =




c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c55 0 0
0 0 0 0 c55 0

0 0 0 0 0
c11 − c12

2




. (2.1)

The linear Biot model is valid if the following hypotheses are satisfied [14]:

• H1: the wavelength λ is large in comparison with the characteristic radius of the pores r;

• H2: the amplitude of the perturbations in the solid and in the fluid are small;

• H3: the single fluid phase is continuous;

• H4: the solid matrix is purely elastic;

• H5: the thermo-mechanical effects are neglected, which is justified when the saturating fluid is a liquid.

In the validity domain of homogeneization theory (H1), two frequency ranges have to be distinguished. In
the low-frequency range, the wavelengths are large in comparison with the dimension of the REV: the viscous
effects are preponderant. In the high-frequency range, the wavelenghs are comparable to the dimension of
the REV: the inertial effects are preponderant. The validity domain in terms of frequency of the differents
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models is summarized in figure 2.2. The frontier between the LF and HF ranges is reached when the viscous
efforts and the inertial efforts are similar. The frequency transitions are given by [27]

fci =
η φ

2 π Ti κi ρf
=
ωci
2 π

, i = 1, 3. (2.2)

f

Low-frequency

Biot-LF

H1: λ≫ L≫ r

High-frequency

Biot-HF

H1: λ ∼ L≫ r

Very high-frequency

Multiple scattering

H1 : λ ∼ r ≪ L

Figure 2.2: Validity domain of the models

Denoting us and uf the solid and fluid displacements, the unknowns in a velocity-stress formulation are
the solid velocity vs = ∂ us

∂ t , the filtration velocity w = ∂W

∂ t = ∂
∂ tφ (uf − us), the elastic symmetric stress

tensor σ and the acoustic pressure p. Under the hypothesis of small perturbations (H2), the symmetric
strain tensor ε is

ε =
1

2
(∇us +∇us

T ). (2.3)

Using the Voigt notation, the stress tensor and the strain tensor are arranged into vectors σ and ε



σ = (σxx , σyy , σzz , σyz , σxz , σxy)

T ,

ε = (εxx , εyy , εzz , 2 εyz , 2 εxz , 2 εxy)
T .

(2.4)

Setting ξ the rate of fluid change
ξ = −∇.W , (2.5)

the poroelastic linear constitutive laws are

σ = Cu ε−mβ ξ, (2.6a)

p = m
(
ξ − βT ε

)
, (2.6b)





where

Cu = C +mβ βT , (2.7a)

β = (β1 , β1 , β3 , 0 , 0 , 0)
T , (2.7b)

β1 = 1− c11 + c12 + c13
3Ks

, β3 = 1− 2 c13 + c33
3Ks

, (2.7c)

K = Ks (1 + φ (Ks/Kf − 1)), (2.7d)

m =
K2
s

K − (2 c11 + c33 + 2 c12 + 4 c13)/9
. (2.7e)




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Using (2.7a) and (2.7b), we obtain equivalently



σ = C ε− β p,

p = m
(
ξ − βT ε

)
.

(2.8)

Introducing the average density
ρ = φρf + (1− φ) ρs, (2.9)

the conservation of momentum yields




ρ
∂ vs
∂ t

+ ρf
∂w

∂ t
= ∇ .σ,

ρf
∂ vs
∂ t

+ d = −∇ p.
(2.10)

The force d in (2.10) is decomposed into an inertial force da and a drag force dv (also called dissipation
force). In both LF and HF models, the inertial force is equal to [13]

da =




ρw1 0 0

0 ρw1 0

0 0 ρw3




∂w

∂ t
, (2.11)

where

ρwi =
Ti
φ
ρf , i = 1, 3. (2.12)

On the contrary, the drag force depends of the frequency range. In the general case, dv is related to the
relative velocity between the fluid and the solid matrix:

dv =




η

κ1
F1(t) 0 0

0
η

κ1
F1(t) 0

0 0
η

κ3
F3(t)


 ∗w, (2.13)

where ∗ denotes the time convolution product and Fi(t) are viscous operators. In LF, the flow in the pores
is of Poiseuille type, hence the drag force dv is [13]:

dv = −




η

κ1
0 0

0
η

κ1
0

0 0
η

κ3


 w, (2.14)

which amounts to the Darcy’s law. As a consequence,

FLFi (t) = δ(t), (2.15)

where δ is the Dirac distribution. In HF, a Prandtl boundary layer occurs at the surface of the pores, where
the effects of viscosity are significant. Its width is inversely proportional to the square root of the frequency.
Biot first presented in 1956 an expression of the drag force dv for particular pore geometries [15]. In 1987,
a general expression has been proposed by Johnson, Koplik and Dashen, valid for random networks of pores
with constant radii [80], detailed in the next section.
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2.3 High-frequency viscous dissipation: JKD model

Applying the Fourier transform in time

F(f) = f̂(ω) =

∫

R

f(t) e−j ω tdt (2.16)

to (2.13), one obtains

d̂v =




η

κ1
F̂1(ω) 0 0

0
η

κ1
F̂1(ω) 0

0 0
η

κ3
F̂3(ω)


 ŵ. (2.17)

Using (2.11) and (2.17), the total force d is written in the frequency domain

d̂ = d̂a + d̂v =

(
η ŵ

κ̃1(ω)
,
η ŵ

κ̃1(ω)
,
η ŵ

κ̃3(ω)

)T
, (2.18)

where the frequency-dependent dynamic permeabilities κ̃1(ω) and κ̃3(ω) are defined by

κ̃i(ω) =
κi

j ω
κi
η
ρwi + F̂i(ω)

, i = 1, 3. (2.19)

The following properties must be satisfied by the viscous operators [80]:

• LF limit: F̂LFi (0) = 1 (2.15);

• HF limit: F̂i(ω) ∼
ω→+∞

2 κi Ti
Λi φ

(
j ω ρf
η

)1/2

.

The viscous characteristic lengths Λi are the new parameters introduced in the HF range. The lengths
Λi/2 may be interpreted, approximately, as the pore-volume to pore-surface ratio. This approximation
is exact for an isotropic medium with circular pores of constant radius r.

• Causality requirement: κ̃i(ω) is an analytic function for all ω in the lower half-plane;

• Real-valued signal: κ̃i(−ω) = κ̃i(ω), where z denotes the complex conjugate of z.

The viscous operators proposed in the JKD model are the simplest ones that satisfy these four properties:

F̂i(ω) = F̂ JKDi (ω) =

(
1 + j

ω

Ωi

)1/2

, (2.20)

with

Pi =
4 Ti κi
Λ2
i φ

, Ωi =
ωci
Pi

=
η φ2 Λ2

i

4 T 2
i κ

2
i ρf

, i = 1, 3. (2.21)
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P1 and P3 are the Pride numbers, with typical values Pi ≈ 1/2. In the time domain, the drag force dv (2.17)
is finally given by

dv =




η

κ1
F JKD1 (t) 0

0
η

κ1
F JKD1 (t) 0

0 0
η

κ3
F JKD3 (t)


 ∗w(t),

= F−1




η

κ1

1√
Ω1

(Ω1 + j ω)1/2 0 0

0
η

κ1

1√
Ω1

(Ω1 + j ω)1/2 0

0 0
η

κ3

1√
Ω3

(Ω3 + j ω)1/2



ŵ,

=




η

κ1

1√
Ω1

(D +Ω1)
1/2

0 0

0
η

κ1

1√
Ω1

(D +Ω1)
1/2

0

0 0
η

κ3

1√
Ω3

(D +Ω3)
1/2



w.

(2.22)

The last relation in (2.22) is an operator, where D1/2 is a fractional derivative in time of order 1/2, gener-
alizing the usual derivative characterized by ∂ w

∂ t = F−1 (j ω ŵ). The notation (D +Ωi)
1/2 accounts for the

shift Ωi in (2.22). A detailed expression of this operator is given in section 2.7.

2.4 Biot-JKD equations of evolution

2.4.1 2D transversely isotropic medium

Since the medium is assumed to be isotropic in the bedding plane (x-y plane) and anisotropic in the x-z
and y-z planes, we consider only the plane strain problem in the x-z plane. The governing equations are
obtained by suppressing the y component of the velocities and by suppressing the derivatives with respect
to y in (2.6), (2.10) and (2.22). The out-of-plane stress σyy is still non-zero, but it does not produce in-plane
motion and can be ignored for purposes of studying the in-plane dynamics of the medium. Setting




σ = (σxx , σzz , σxz)

T ,

ε = (εxx , εzz , 2 εxz)
T ,

(2.23)

the equations (2.6), (2.10) and (2.22) leads to the governing equations in the x-z plane:

σ = Cu ε−mβ ξ, (2.24a)

p = m
(
ξ − βT ε

)
, (2.24b)

ρ
∂ vs
∂ t

+ ρf
∂w

∂ t
= ∇.σ, (2.24c)

ρf
∂ vs
∂ t

+ (ρw1 , ρw3)
T ∂w

∂ t
+

(
η

κ1

1

Ω1
(D +Ω1)

1/2 ,
η

κ3

1

Ω3
(D +Ω3)

1/2

)T
w = −∇ p, (2.24d)




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where Cu is given by (2.7), and
β = (β1 , β3 , 0)

T . (2.25)

The system (2.24) is rearranged by taking the derivatives with respect to time of (2.24a) and (2.24b):




∂ σ

∂ t
= Cu ∂ ε

∂ t
−mβ ∂ ξ

∂ t
,

∂ p

∂ t
= m

(
∂ ξ

∂ t
− βT ∂ ε

∂ t

)
.

(2.26)

Using the definitions of ε (2.3) and ξ (2.5), the derivatives with respect to time ∂ ε
∂ t and ∂ ξ

∂ t are expressed in
terms of the velocities vs and w:

•
∂ ε

∂ t
=

∂

∂ t
(εxx, εzz, 2 εxz)

T ,

=
∂

∂ t

(
∂ usx
∂ x

,
∂ usz
∂ z

,
∂ usx
∂ z

+
∂ usz
∂ x

)T
,

=

(
∂

∂ x

(
∂ usx
∂ t

)
,
∂

∂ z

(
∂ usz
∂ t

)
,
∂

∂ z

(
∂ usx
∂ t

)
+

∂

∂ x

(
∂ usz
∂ t

))T
,

=

(
∂ vsx
∂ x

,
∂ vsz
∂ z

,
∂ vsx
∂ z

+
∂ vsz
∂ x

)T
,

•
∂ ξ

∂ t
= − ∂

∂ t
∇ .W ,

= − ∂

∂ t

(
∂Wx

∂ x
+
∂Wz

∂ z

)
,

= −
(
∂

∂ x

(
∂Wx

∂ t

)
+

∂

∂ z

(
∂Wz

∂ t

))
,

= −
(
∂ wx
∂ x

+
∂ wz
∂ z

)
.

(2.27)

Injecting (2.27) in (2.26) leads to




∂

∂ t

(
∂ σxx
∂ t

,
∂ σzz
∂ t

,
∂ σxz
∂ t

)T
= Cu

(
∂ vsx
∂ x

,
∂ vsz
∂ z

,
∂ vsx
∂ z

+
∂ vsz
∂ x

)T
−mβ

(
∂ wx
∂ x

+
∂ wz
∂ z

)
,

∂ p

∂ t
= m

(
∂ wx
∂ x

+
∂ wz
∂ z

)
−mβT

(
∂ vsx
∂ x

,
∂ vsz
∂ z

,
∂ vsx
∂ z

+
∂ vsz
∂ x

)T
.

(2.28)

On the other hand, the x-component of (2.24c) and (2.24d) are rewritten in the form




ρ ρf

ρf ρw1







∂ vsx
∂ t

∂ wx
∂ t


+




0

η

κ1

1√
Ω1

(D +Ω1)
1/2 wx


 =




∂ σxx
∂ x

+
∂ σxz
∂ z

− ∂ p
∂ x


 . (2.29)

Setting
χi = ρ ρwi − ρ2f > 0, i = 1, 3, (2.30)
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equation (2.29) yields 


ρ ρf

ρf ρw1




−1

=
1

χ1




ρw1 −ρf

−ρf ρ


 . (2.31)

The terms ∂ vs

∂ t and ∂w
∂ t are then separated:




∂ vsx
∂ t

∂ wx
∂ t


+



−ρf
χ1

ρ

χ1




η

κ1

1√
Ω1

(D+Ω1)
1/2 wx =




ρw1

χ1

−ρf
χ1



(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
+




ρf
χ1

− ρ

χ1




∂ p

∂ x
. (2.32)

The same operations are done for the z-component of (2.24c) and (2.24d):




∂ vsz
∂ t

∂ wz
∂ t


+



−ρf
χ3

ρ

χ3




η

κ3

1√
Ω3

(D+Ω3)
1/2 wz =




ρw3

χ3

−ρf
χ3



(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
+




ρf
χ3

− ρ

χ3




∂ p

∂ z
. (2.33)

Taking

γi =
η

κi

ρ

χi

1√
Ωi
, i = 1, 3, (2.34)

the equations (2.28), (2.32) and (2.33) yield the following system of evolution equations

∂ vsx
∂ t
− ρw1

χ1

(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
− ρf
χ1

∂ p

∂ x
=
ρf
ρ
γ1 (D +Ω1)

1/2 wx + fvsx ,

∂ vsz
∂ t
− ρw3

χ3

(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
− ρf
χ3

∂ p

∂ z
=
ρf
ρ
γ3 (D +Ω3)

1/2 wz + fvsz ,

∂ wx
∂ t

+
ρf
χ1

(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
+

ρ

χ1

∂ p

∂ x
= − γ1 (D +Ω1)

1/2 wx + fwx
,

∂ wz
∂ t

+
ρf
χ3

(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
+

ρ

χ3

∂ p

∂ z
= − γ3 (D +Ω3)

1/2 wz + fwz
,

∂ σxx
∂ t

− cu11
∂ vsx
∂ x

− cu13
∂ vsz
∂ z

−mβ1

(
∂ wx
∂ x

+
∂ wz
∂ z

)
= fσxx

,

∂ σxz
∂ t

− cu55
(
∂ vsz
∂ x

+
∂ vsx
∂ z

)
= fσxz

,

∂ σzz
∂ t
− cu13

∂ vsx
∂ x

− cu33
∂ vsz
∂ z

−mβ3

(
∂ wx
∂ x

+
∂ wz
∂ z

)
= fσzz

,

∂ p

∂ t
+m

(
β1
∂ vsx
∂ x

+ β3
∂ vsz
∂ z

+
∂ wx
∂ x

+
∂ wz
∂ z

)
= fp.

(2.35)

The terms fvsx , fvsz , fwx
, fwz

, fσxx
, fσxz

, fσzz
and fp have been introduced to model the forcing. Taking

the vector of unknowns
U = (vsx, vsz , wx, wz, σxx, σxz , σzz, p)

T (2.36)
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and the forcing
F = (fvsx , fvsz , fwx

, fwz
, fσxx

, fσxz
, fσzz

, fp)
T , (2.37)

the system (2.35) is written in the form:

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= −S(U) + F , (2.38)

where A and B are the 8× 8 propagation matrices

A =




04,4 A1

A2 04,4


 , A1 =




−ρw1

χ1
0 0 −ρf

χ1

0 −ρw3

χ3
0 0

ρf
χ1

0 0
ρ

χ1

0
ρf
χ3

0 0




, A2 =




−cu11 0 −β1m 0

0 −cu55 0 0

−cu13 0 −β3m 0

β1m 0 m 0




,

(2.39)

B =




04,4 B1

B2 04,4


 , B1 =




0 −ρw1

χ1
0 0

0 0 −ρw3

χ3
−ρf
χ3

0
ρf
χ1

0 0

0 0
ρf
χ3

ρ

χ3




, B2 =




0 −cu13 0 −β1m

−cu55 0 0 0

0 −cu33 0 −β3m

0 β3m 0 m




,

(2.40)
and S(U) is a vector incorporating the shifted fractional derivatives

S(U) =




ρf
ρ
γ1 (D +Ω1)

1/2wx

ρf
ρ
γ3 (D +Ω3)

1/2wz

−γ1 (D +Ω1)
1/2wx

− γ3 (D +Ω3)
1/2wz

04,1




. (2.41)

2.4.2 2D isotropic medium

An isotropic medium is a particular case of transversely isotropic medium with the parameters:

T1 = T3 = T , κ1 = κ3 = κ,

c11 = c33 = λf + 2µ, c12 = c13 = λf , c55 = 1
2 (c11 − c13) = µ,

(2.42)

where λf is the Lamé coefficient of the undrained matrix, and µ is the shear modulus. In a 2D isotropic
medium, the Biot-JKD system is still in the form (2.38), where the A, B and S(U) are built with

χ1 = χ3 = χ, ρw1 = ρw3 = ρw, β1 = β3 = β, Ω1 = Ω3 = Ω, γ1 = γ3 = γ. (2.43)
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2.4.3 1D medium

The 1D Biot-JKD system is obtained by suppressing the z component of the velocities and by suppressing
the derivatives with respect to z in (2.38). The out-of-plane stress σzz is still non-zero, but it does not produce
motion along x and can be ignored. This leads to

∂U

∂ t
+A

∂U

∂ x
= −S(U) + F , (2.44)

with
U = (vs , w , σ , p)

T (2.45)

and

A =




0 0 −ρw
χ

−ρf
χ

0 0
ρf
χ

ρ

χ

− (λf + 2µ) −β m 0 0

β m m 0 0




, (2.46)

S(U) =




ρf
ρ
γ (D +Ω)1/2w

− γ (D +Ω)1/2w

0

0



. (2.47)

2.5 Beltrami-Michell equation

In this section, we derive an equation satisfied by the spatial derivatives of the stresses and the pressure.
Contrary to the Biot-JKD system (2.35), the equation derived in this section is not directly used to simulate
wave propagation. However, this equation is useful in the immesed interface method (§ 4.5.3), used to
discretize the interface conditions.

First, (2.6a) is developed 



σxx = cu11 εxx + cu13 εzz −mβ1 ξ,

σzz = cu13 εxx + cu33 εzz −mβ3 ξ,

σxz = 2 cu55 εxz.

(2.48)

Using the definitions of ε (2.3) and ξ (2.5) yields





σxx = cu11
∂ usx
∂ x

+ cu13
∂ usz
∂ z

−mβ1∇ .W ,

σzz = cu13
∂ usx
∂ x

+ cu33
∂ usz
∂ z

−mβ3∇ .W ,

σxz = cu55

(
∂ usx
∂ z

+
∂ usz
∂ x

)
.

(2.49)
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Second, (2.6b) is developed

m∇ .W = −
(
mβ1

∂ usx
∂ x

+mβ3
∂ usz
∂ z

+ p

)
. (2.50)

Injecting (2.50) in (2.49) leads to

σxx = (cu11 −mβ2
1)
∂ usx
∂ x

+ (cu13 −mβ1 β3)
∂ usz
∂ z

− β1 p, (2.51a)

σzz = (cu13 −mβ1 β3)
∂ usx
∂ x

+ (cu33 −mβ2
3)
∂ usz
∂ z

− β3 p, (2.51b)

σxz = cu55

(
∂ usx
∂ x

+
∂ usz
∂ z

)
. (2.51c)





Using (2.7a), the equations (2.51a) and (2.51b) are written




c11 c13

c13 c33







∂ usx
∂ x

∂ usz
∂ z


 =




σxx + β1 p

σzz + β3 p


 . (2.52)

The positive definite matrix C is invertible, hence the system (2.52) has a unique solution



∂ usx
∂ x

∂ usz
∂ z


 =

1

c11 c33 − c213




c33 −c13

−c13 c11






σxx + β1 p

σzz + β3 p


 . (2.53)

Differentiating (2.51c) with respect to x and z, and using (2.7a), leads to

∂2σxz
∂ x ∂ z

= c55

(
∂2

∂ z2
∂ usx
∂ x

+
∂2

∂ x2
∂ usz
∂ z

)
. (2.54)

Injecting (2.53) in (2.54), we obtain

∂2σxz
∂ x ∂ z

= Θ0
∂2σxx
∂ x2

+Θ1
∂2σzz
∂ x2

+Θ2
∂2p

∂ x2
+Θ3

∂2σxx
∂ z2

+Θ0
∂2σzz
∂ z2

+Θ4
∂2p

∂ z2
, (2.55)

where 



Θ0 = −c55
c13

c11 c33 − c213
,

Θ1 = c55
c11

c11 c33 − c213
,

Θ2 = c55
β3 c11 − β1 c13
c11 c33 − c213

,

Θ3 = c55
c33

c11 c33 − c213
,

Θ4 = c55
β1 c33 − β3 c13
c11 c33 − c213

.

(2.56)
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Equation (2.55) is the Beltrami-Michell equation [42, 119]. It is a necessary and sufficient condition for the
symmetry of the stress tensor σ. If the medium is isotropic, the coefficients in (2.56) are simplified into

Θ0 = − λ0
4 (λ0 + µ)

, Θ1 = Θ3 =
λ0 + 2µ

4 (λ0 + µ)
, Θ2 = Θ4 =

β µ

2 (λ0 + µ)
, λ0 = λf −mβ2. (2.57)

In the elastic limit case (β = 0), we recover the usual equation of Barré de Saint-Venant.

2.6 Interface conditions

Figure 2.3: interface Γ separating two poroelastic media Ω0 and Ω1.

We consider a 2D domain with two media Ω0 and Ω1. The stationary interface Γ separating Ω0 and Ω1

in figure 2.3 is described by a parametric equation (x(τ), z(τ)). Tangential vector t and normal vector n are
defined at each point P along Γ by

t = (x′, z′)T , n = (z′,−x′)T . (2.58)

The derivatives x′ = dx
d τ and z′ = d z

d τ are assumed to be continuous everywhere along Γ, and to be dif-
ferentiable as many times as required further. The governing equations (2.35) in each medium have to be
completed by a set of jump conditions.

In a porous/porous configuration, six waves are involved: three waves in each medium (§ 2.8.3). Conse-
quently, six independent conditions need to be defined along Γ. The widely-used perfect bonding and perfect
hydraulic contact jump conditions in porous/porous configuration are [17, 70]:

[vs] = 0, [w.n] = 0, [σ.n] = 0, [p] = − 1

κs

w.n

|n| , (2.59)

where [.] denotes the jump from Ω0 to Ω1. The conditions on normal velocities follow from the conservation
of fluid mass. The equation involving the stress tensor expresses the continuity of normal efforts. The jump
of pressure is a local Darcy’s law. It models the hydraulic contact, and involves an additional parameter κs,
called the hydraulic permeability of the interface. The division by |n| ensures that the hydraulic contact is
independent from the choice of the parametric equation of Γ. A physical meaning of κs is given in [120], as
well as a discussion about the frequency-dependence of this parameter. According to the value of κs, various
limit-cases are encountered:

• if κs → +∞, then the last equation of (2.59) becomes [p] = 0, modeling the commonly used open
pores;

• if κs → 0, then no fluid exchanged occurs across Γ, and the last equation of (2.59) is replaced by
w.n = 0, modeling sealed pores;
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• if 0 < κs < +∞, then an intermediate state between open pores and sealed pores is reached, modeling
imperfect pores.

In a fluid/porous configuration, four waves are involved: one acoustic wave in Ω0 and three poroelastic
waves in Ω1. Consequently, four independent interface conditions need to be defined along Γ. The jump
conditions in fluid/porous configuration are [61]:

v0.n = vs1.n+w1.n, −p0 n = σ1.n, [p] = − 1

κs

w1.n

|n| , (2.60)

where the subscripts 0 and 1 refer to the traces on the Ω0 or Ω1 sides.

2.7 Diffusive representation

Using the Caputo definition (1.1), the shifted fractional derivative (D +Ω)1/2 writes [52]

(D +Ω)1/2 w(t) =
1√
π

∫ t

0

e−Ω(t−τ)
√
t− τ

(
∂ w

∂ t
(τ) + Ωw(τ)

)
dτ. (2.61)

This convolution product is not local in time and involves the entire time history of w. As we will see in
section 3.2, a different way of writing this derivative is more convenient for numerical evaluation. Based on
Euler’s Γ function, the diffusive representation of the totally monotone function1 1√

t
is [49, 72, 76, 128]

1√
t
=

1√
π

∫ ∞

0

1√
θ
e−θtdθ. (2.63)

Substituting (2.63) into (2.61) gives

(D +Ω)1/2 w(t) =
1

π

∫ t

0

∫ ∞

0

1√
θ
e−θ(t−τ) e−Ω(t−τ)

(
∂ w

∂ t
(τ) + Ωw(τ)

)
dθ dτ,

=
1

π

∫ ∞

0

1√
θ
ψ(θ, t) dθ,

(2.64)

where the diffusive variable is defined as

ψ(θ, t) =

∫ t

0

e−(θ+Ω)(t−τ)
(
∂ w

∂ t
(τ) + Ωw(τ)

)
dτ. (2.65)

For the sake of clarity, the dependence on Ω and w is omitted in ψ. From (2.65), it follows that the diffusive
variable ψ satisfies the ordinary differential equation

∂ ψ

∂ t
= −(θ + Ω)ψ +

∂ w

∂ t
+Ωw, (2.66a)

ψ(θ, 0) = 0. (2.66b)





The diffusive representation therefore transforms a non-local problem (2.61) into a continuum of local prob-
lems (2.66a)). It is emphasized that no approximation has been made up to now. The computational
advantages of the diffusive representation will be seen in sections 3.2 and 5, where the discretization of
(2.64) and (2.66a) will yield a tractable formulation.

1Total monotonicity of a function f means that f is continuous on [0,+∞[, infinitely differentiable on [0,+∞[, and satisfies

(−1)n
dn

dtn
f(t) 6 0, (2.62)

for all nonnegative integer n and for all t > 0.
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2.8 Properties

In this section, all the proofs are given for a 2D transversely isotropic medium. They are easily simplified
in the case of 2D isotropic or of 1D media. Problems with interfaces have been treated for isotropic media
in the LF range in [36].

2.8.1 Energy of Biot-JKD

According to (2.64), the fractional derivatives involved in (2.24) are rewritten:




1√
Ω1

(D +Ω1)
1/2 0

0
1√
Ω3

(D +Ω3)
1/2


 w =

1

π




1√
Ω1

0

0
1√
Ω3



∫ ∞

0

1√
θ
ψ dθ. (2.67)

Using (2.66a), the diffusive variable ψ = (ψx , ψz)
T satisfies the ordinary differential equation

∂ψ

∂ t
− ∂w

∂ t
+

(
θ +Ω1 0

0 θ +Ω3

)
ψ −

(
Ω1 0
0 Ω3

)
w = 0. (2.68)

Proposition 1. [Decrease of the energy] Let us consider the Biot-JKD model (2.24) without forcing,
and let us denote

E = E1 + E2 + E3, (2.69)

with

E1 =
1

2

∫

R2


ρvTs vs + 2 ρf v

T
s w +wT




ρw1 0

0 ρw3


 w


 dx dz,

E2 =
1

2

∫

R2

(
(σ + pβ)T C−1 (σ + pβ) +

1

m
p2
)
dx dz,

E3 =
1

2

∫

R2

η

π

∫ ∞

0

(w −ψ)T




1

κ1
√
Ω1 θ (θ + 2Ω1)

0

0
1

κ3
√
Ω3 θ (θ + 2Ω3)


 (w −ψ) dθ dx dz.

(2.70)
Then, E is an energy which satisfies

dE

d t
= −

∫

R2

η

π

∫ ∞

0




ψT




θ +Ω1

κ1
√
Ω1 θ (θ + 2Ω1)

0

0
θ +Ω3

κ3
√
Ω3 θ (θ + 2Ω3)


 ψ

+wT




Ω1

κ1
√
Ω1 θ (θ + 2Ω1)

0

0
Ω3

κ3
√
Ω3 θ (θ + 2Ω3)


 w




dθ dx dz ≤ 0.

(2.71)



2.8. PROPERTIES 37

Proof. The equation (2.24c) is multiplied by vTs and integrated

∫

R2

(
ρvTs

∂ vs
∂ t

+ ρf v
T
s

∂w

∂ t
− vTs (∇.σ)

)
dx dz = 0. (2.72)

The first term in (2.72) is written

∫

R2

ρvTs
∂ vs
∂ t

dx dz =
d

dt

1

2

∫

R2

ρvTs vs dx dz. (2.73)

Integrating by part and using (2.8), we obtain

−
∫

R2

vTs (∇.σ) dx dz =

∫

R2

σT
∂ ε

∂ t
dx dz,

=

∫

R2

σT
(
C−1 ∂ σ

∂ t
−C−1 β

∂ p

∂ t

)
dx dz,

=
d

dt

1

2

∫

R2

σT C−1σ dx dz +

∫

R2

σT C−1 β
∂ p

∂ t
dx dz,

=
d

dt

1

2

∫

R2

σT C−1σ dx dz +
d

dt

1

2

∫

R2

2σT C−1 β p dx dz −
∫

R2

(
∂ σ

∂ t

)T
C−1 β p dx dz.

(2.74)
Equation (2.24d) is multiplied by wT and integrated

∫

R2



ρf w

T ∂ vs
∂ t

+wT




ρw1 0

0 ρw3


 ∂w

∂ t
+wT ∇p

+wT




η

κ1

1

Ω1
(D +Ω1)

1/2 0

0
η

κ3

1

Ω3
(D +Ω3)

1/2


 w




dx dz = 0.

(2.75)

The second term in (2.75) can be written

∫

R2

wT




ρw1 0

0 ρw3


 ∂w

∂ t
dx dz =

d

dt

1

2

∫

R2

wT




ρw1 0

0 ρw3


 w dx dz. (2.76)
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Integrating by part the third term of (2.75), we obtain

∫

R2

wT ∇p dx dz = −
∫

R2

p∇.w dx dz,

=

∫

R2

p
∂ ξ

∂ t
dx dz,

=

∫

R2

p

(
1

m

∂ p

∂ t
+ βT

∂ ε

∂ t

)
dx dz,

=
d

dt

1

2

∫

R2

1

m
p2 dx dz +

∫

R2

pβT
(
C−1 ∂ σ

∂ t
+C−1 β

∂ p

∂ t

)
dx dz,

=
d

dt

1

2

∫

R2

1

m
p2 dx dz +

∫

R2

βT C−1 ∂ σ

∂ t
p dx dz +

∫

R2

βT C−1 β p
∂ p

∂ t
dx dz,

=
d

dt

1

2

∫

R2

1

m
p2 dx dz +

∫

R2

βT C−1 ∂ σ

∂ t
p dx dz +

d

dt

1

2

∫

R2

βT C−1 β p2 dx dz.

(2.77)
We add (2.72) and the three first terms of (2.75). Using the symmetry of C, there remains

∫

R2

ρf

(
vTs

∂w

∂ t
+wT ∂ vs

∂ t

)
dx dz =

d

dt

1

2

∫

R2

2 ρf v
T
s w. (2.78)

Equations (2.64) and (2.72)-(2.78) yield

d

dt
(E1 + E2) = −

∫

R2

∫ ∞

0

η

π
√
θ
wT




1

κ1
√
Ω1

0

0
1

κ3
√
Ω3


 ψ dθ dx dz. (2.79)

To calculate the right-hand side of (2.79), equation (2.68) is multiplied by wT or ψT





wT ∂ ψ

∂ t
−wT ∂w

∂ t
+wT




θ +Ω1 0

0 θ +Ω3


 ψ −wT




Ω1 0

0 Ω3


 w = 0,

ψT
∂ψ

∂ t
−ψT ∂w

∂ t
+ψT




θ +Ω1 0

0 θ +Ω3


 ψ −ψT




Ω1 0

0 Ω3


 w = 0.

(2.80)

Some algebraic operations on (2.80) yield

ψT




θ + 2Ω1 0

0 θ + 2Ω3


 w =

∂

∂ t

1

2
(w −ψ)T (w −ψ)

+ψT




θ +Ω1 0

0 θ +Ω3


 ψ +wT




Ω1 0

0 Ω3


 w.

(2.81)
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Injecting (2.81) in (2.79) leads to the relation (2.71)

d

dt
(E1 + E2 + E3) = −

∫

R2

∫ ∞

0

η

π
√
θ




ψT




θ +Ω1

κ1
√
Ω1 (θ + 2Ω1)

0

0
θ +Ω3

κ3
√
Ω3 (θ + 2Ω3)


 ψ

+wT




Ω1

κ1
√
Ω1 (θ + 2Ω1)

0

0
Ω3

κ3
√
Ω3 (θ + 2Ω3)


 w




dθ dx dz.

(2.82)
It remains to prove that E (2.69) is a positive definite quadratic form. Concerning E1, we write

ρvTs vs +w
T




ρw1 0

0 ρw3


 w + 2 ρf v

T
s w =XT HxX +ZT Hz Z, (2.83)

where

X = (vsx wx)
T , Z = (vsz wz)

T , Hx =




ρ ρf

ρf ρw1


 , Hz =




ρ ρf

ρf ρw3


 . (2.84)

Taking S and P to denote the sum and the product of the eigenvalues of matrix Hx, we obtain




P = det Hx = ρ ρw1 − ρ2f = χ1 > 0,

S = trHx = ρ+ ρw > 0.
(2.85)

The eigenvalues of Hx are therefore positive. The same operations are done on Hz, proving that its eigen-
values are also positive. This proves that E1 is a positive definite quadratic form. The terms E2, E3 and
− dEdt are obviously positive definite quadratic form because the involved matrices are definite positive. �

Equation (2.71) calls for the following comments:

• the Biot-JKD model is well-posed;

• when the viscosity of the saturating fluid is neglected (η = 0), the energy of the system is conserved;

• the terms E1 and E2 in (2.70) have a clear physical significance: E1 is the kinetic energy, and E2 is
the strain energy;

• the energy E1 + E2 can be written compactly in the form

E1 + E2 =
1

2

∫

R2

UT
E U dx dz, (2.86)

where E is the Hessian of the positive definite quadratic form E1 + E2:
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E =




ρ 0 ρf 0 0 0 0 0

0 ρ 0 ρf 0 0 0 0

ρf 0 ρw1 0 0 0 0 0

0 ρf 0 ρw3 0 0 0 0

0 0 0 0
c33

c11 c33 − c213
0 − c13

c11 c33 − c213
β1 c33 − β3 c13
c11 c33 − c213

0 0 0 0 0
1

c55
0 0

0 0 0 0 − c13
c11 c33 − c213

0
c11

c11 c33 − c213
β3 c11 − β1 c13
c11 c33 − c213

0 0 0 0
β1 c33 − β3 c13
c11 c33 − c213

0
β3 c11 − β1 c13
c11 c33 − c213

1

m
+
β2
1 c33 + β2

3 c11 − 2 β1 β3 c13
c11 c33 − c213




;

(2.87)

• the energy analysis is valid for continuously variable parameters.

2.8.2 Hyperbolicity

The hyperbolicity means that the waves propagate at finite velocities. Proving hyperbolicity is important,
in particular for the numerical discretization: stability of many useful finite-difference schemes depends on
the upper bound of the wave velocities [130].

Proposition 2. [Hyperbolicity] The system (2.35) is hyperbolic.

Proof. First we recall that a first-order system

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= 0 (2.88)

is hyperbolic if and only if the matrix

M = cos(ϕ)A + sin(ϕ)B (2.89)

is diagonalizable for all ϕ with real eigenvalues in [0, 2 π[; see [50]. Let v be an eigenvector of M related to
the eigenvalue λM . Then

M v = λM v, (2.90)

or, multiplying by E (2.87),
EM v = λM E v. (2.91)

Since E is invertible, the eigenproblem (2.90) and the generalized eigenproblem (2.91) are equivalent. Using
(2.87), (2.39) and (2.40), the matrix EM is

EM =




0 0 0 0 − cos(ϕ) − sin(ϕ) 0 0

0 0 0 0 0 − cos(ϕ) − sin(ϕ) 0

0 0 0 0 0 0 0 cos(ϕ)

0 0 0 0 0 0 0 sin(ϕ)

− cos(ϕ) 0 0 0 0 0 0 0

− sin(ϕ) − cos(ϕ) 0 0 0 0 0 0

0 − sin(ϕ) 0 0 0 0 0 0

0 0 cos(ϕ) sin(ϕ) 0 0 0 0




. (2.92)



2.8. PROPERTIES 41

Since the matrices EM and E are symmetric and E is definite positive, the generalized eigenvalues λM are
real and the generalized eigenvectors v form an orthogonal basis. The matrix M is therefore diagonalizable
over R. �

Since the system (2.35) is hyperbolic, the waves propagate at finite velocities. The non-zero eigenvalues
of the matrix M are the phase velocities of the homogeneous system

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= 0, (2.93)

which correspond also to the high-frequency limit of the phase velocities in the direction ϕ, as seen in § 2.8.3.
We verify that the rank of EM is six (one of the eigenvalues is zero with multiplicity two). Denoting I4 the
identity matrix, (2.39)-(2.41) and (2.89) lead to the characteristic polynomial of M

det (M − λM I4) = det
(
λ2M I4 − (cos(ϕ)A2 + sin(ϕ)B2) (cos(ϕ)A1 + sin(ϕ)B1)

)
, (2.94)

which is a biquadratic function. The non-zero eigenvalues of M are denoted ±c∞pf (ϕ), ±c∞ps(ϕ) and ±c∞s (ϕ).
When ϕ = 0 (M ≡ A) and ϕ = π/2 (M ≡ B), the analytical expression of the eigenvalues of M can be
obtained: 




c∞pf (0) = ±
√
−ρ

A
11 + ρA22

2
+

1

2

√
(ρA11 + ρA22)

2 − 4 (ρA11 ρ
A
22 − ρA12 ρA21),

c∞ps(0) = ±
√
−ρ

A
11 + ρA22

2
− 1

2

√
(ρA11 + ρA22)

2 − 4 (ρA11 ρ
A
22 − ρA12 ρA21),

c∞s (0) = ±
√
cu55

ρw3

χ3
,

c∞pf (π/2) = ±
√
−ρ

B
11 + ρB22

2
+

1

2

√
(ρB11 + ρB22)

2 − 4 (ρB11 ρ
B
22 − ρB12 ρB21),

c∞ps(π/2) = ±
√
−ρ

B
11 + ρB22

2
− 1

2

√
(ρB11 + ρB22)

2 − 4 (ρB11 ρ
B
22 − ρB12 ρB21),

c∞s (π/2) = ±
√
cu55

ρw1

χ1
,

(2.95)

where 



ρA11 = β1m
ρf
χ1
− cu11

ρw1

χ1
, ρB11 = β3m

ρf
χ3
− cu33

ρw3

χ3
,

ρA22 = β1m
ρf
χ1
−m ρ

χ1
, ρB22 = β3m

ρf
χ3
−m ρ

χ3
,

ρA12 = β1m
ρ

χ1
− cu11

ρf
χ1
, ρB12 = β3m

ρ

χ3
− cu33

ρf
χ3
,

ρA21 = β1m
ρw1

χ1
−m ρf

χ1
, ρB21 = β3m

ρw3

χ3
−m ρf

χ3
.

(2.96)

The stability of the numerical scheme, detailed in chapter 4, depends on the upper bound of the phase
velocities max

ϕ∈[0,π/2]
c∞pf (ϕ).

2.8.3 Dispersion analysis

In this section, we derive the dispersion relation of the waves which propagate in a poroelastic medium.
This relation describes the frequency dependence of phase velocities and attenuations of waves. For this
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purpose, we search for a general plane wave solution of (2.35)




V = (vx , vz , wx , wz)

T = V0 e
j(ωt−k.r),

T = (σxx , σxz , σzz , −p)T = T0 e
j(ωt−k.r),

(2.97)

where k = k (cos(ϕ) sin(ϕ))T is the wavevector, k is the wavenumber, V0 and T0 are the polarizations,
r = (x z)T is the position, ω = 2 π f is the angular frequency and f is the frequency. On one hand, (2.97)
is injected in the last four equations of (2.35). We obtain the 4× 4 linear system:

ω T = −k




cu11 cϕ cu13 sϕ β1mcϕ β1msϕ

cu55 sϕ cu55 cϕ 0 0

cu13 cϕ cu33 sϕ β3mcϕ β3msϕ

β1mcϕ β3msϕ mcϕ msϕ




︸ ︷︷ ︸

V ,

C

(2.98)

where cϕ = cos(ϕ) and sϕ = sin(ϕ). On the other hand, substituting (2.97) into the second equation of
(2.10) gives another 4× 4 linear system:

−k




cϕ sϕ 0 0

0 cϕ sϕ 0

0 0 0 cϕ

0 0 0 sϕ




︸ ︷︷ ︸

T = ω




ρ 0 ρf 0

0 ρ 0 ρf

ρf 0
Ŷ JKD1 (ω)

j ω
0

0 ρf 0
Ŷ JKD3 (ω)

j ω




︸ ︷︷ ︸

V ,

L Γ

(2.99)

where Ŷ JKD1 and Ŷ JKD3 are the viscodynamic operators [111]:

Ŷ JKDi = j ω ρwi +
η

κi
F̂ JKDi (ω), i = 1, 3. (2.100)

The equations (2.98) and (2.99) lead to the generalized eigenproblem

LC V =
(ω
k

)2
ΓV . (2.101)

Setting

VB =




vs ϕ

wϕ

vs ζ

wζ




=




cϕ sϕ 0 0

0 0 cϕ sϕ

−sϕ cϕ 0 0

0 0 −sϕ cϕ



V , (2.102)

the system (2.101) is written

LB CB VB =
(ω
k

)2
ΓB VB. (2.103)
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Equations (2.99) and (2.102) lead to

ΓB =




ρ ρf 0 0

ρf
Ŷ JKD1 (ω)

j ω
0 0

0 0 ρ ρf

0 0 ρf
Ŷ JKD3 (ω)

j ω




, (2.104)

and

LB CB =




f1(ϕ) m (β1 c
2
ϕ + β3 s

2
ϕ) f2(ϕ) 0

m (β1 c
2
ϕ + β3 s

2
ϕ) m mcϕ sϕ (β3 − β1) 0

f2(ϕ) mcϕ sϕ (β3 − β1) f3(ϕ) 0

0 0 0 0




, (2.105)

with





∆i = χi + ρ
η

κi

F̂ JKDi (ω)

j ω
,

f1(ϕ) = cu11 c
4
ϕ + cu33 s

4
ϕ + 2 (cu13 + 2 cu55) c

2
ϕ s

2
ϕ,

f2(ϕ) = cϕ sϕ
(
−cu11 c2ϕ + cu33 s

2
ϕ + (c2ϕ − s2ϕ) (cu13 + 2 cu55)

)
,

f3(ϕ) = (cu11 + cu33 − 2 cu13) c
2
ϕ s

2
ϕ + cu55 (c

2
ϕ − s2ϕ)2.

(2.106)

The matrix ΓB is invertible, so (2.104) leads to

(
Γ
−1
B LB CB −

(ω
k

)2
I4

)
VB = 0, (2.107)
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where the non-zero components of Γ−1
B LB CB are





(
Γ
−1
B LB CB

)
00

=
1

∆i

Ŷ JKD1 (ω)

j ω
f1(ϕ)−

ρf
∆1

m (β1 cϕ + β3 sϕ),

(
Γ
−1
B LB CB

)
01

=
1

∆1

Ŷ JKD1 (ω)

j ω
m (β1 cϕ + β3 sϕ)−

ρf
∆1

m,

(
Γ
−1
B LB CB

)
02

=
1

∆1

Ŷ JKD1 (ω)

j ω
f2(ϕ) −

ρf
∆1

mcϕ sϕ (β3 − β1),

(
Γ
−1
B LB CB

)
10

= − ρf
∆1

f1(ϕ) +
ρ

∆1
m (β1 cϕ + β3 sϕ),

(
Γ
−1
B LB CB

)
11

= − ρf
∆1

m (β1 cϕ + β3 sϕ) +
ρ

∆1
m,

(
Γ
−1
B LB CB

)
12

= − ρf
∆1

f2(ϕ) +
ρ

∆1
mcϕ sϕ (β3 − β1),

(
Γ
−1
B LB CB

)
20

=
1

∆3

Ŷ JKD3 (ω)

j ω
cϕ sϕ f2(ϕ),

(
Γ
−1
B LB CB

)
21

=
1

∆3

Ŷ JKD3 (ω)

j ω
m cϕ sϕ (β3 − β1),

(
Γ
−1
B LB CB

)
22

=
1

∆3

Ŷ JKD3 (ω)

j ω
f3(ϕ),

(
Γ
−1
B LB CB

)
30

= − ρf
∆3

cϕ sϕ f2(ϕ),

(
Γ
−1
B LB CB

)
31

= − ρf
∆3

mcϕ sϕ (β3 − β1),

(
Γ
−1
B LB CB

)
32

= − ρf
∆3

f3(ϕ).

(2.108)

Searching for a non-zero solution of the system (2.107) gives the dispersion relation:

det

(
Γ
−1
B LB CB −

(ω
k

)2
I4

)
= 0. (2.109)

In the transversely isotropic case, the matrix Γ
−1
B LB CB is not block diagonal. Therefore, there is no

purely compressional or purely shear wave. The two quasi-compressional waves are denoted qPf (fast)
and qPs (slow), and the quasi-shear wave is denoted qS. The equation (2.109) is solved numerically. The
wavenumbers thus obtained depend on the frequency and on the angle ϕ. One of the eigenvalues is zero with
multiplicity two, and the other non-zero eigenvalues correspond to the wave modes ±kpf (ω, ϕ), ±kps(ω, ϕ)
and ±ks(ω, ϕ). Therefore three waves propagates symmetrically along the directions cos(ϕ)x+sin(ϕ) z and
− cos(ϕ)x − sin(ϕ) z.

The wavenumbers give the phase velocities cpf (ω, ϕ) = ω/ℜe(kpf ), cps(ϕ) = ω/ℜe(kps), and cs(ϕ) =
ω/ℜe(ks), with 0 < cps < cpf and 0 < cs. The attenuations αpf (ω, ϕ) = −ℑm(kpf ), αps(ϕ) = −ℑm(kps)
and αs(ϕ) = −ℑm(ks) are also deduced. Both the phase velocities and the attenuations of Biot-LF and
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Biot-JKD are strictly increasing functions of the frequency. The high frequency limits of phase velocities
(ω →∞ in (2.109)) are the eigenvalues of the matrix M = cos(ϕ)A+ sin(ϕ)B:





lim
ω→∞

cpf (ω, ϕ) = c∞pf (ϕ),

lim
ω→∞

cps(ω, ϕ) = c∞ps(ϕ),

lim
ω→∞

cs(ω, ϕ) = c∞s (ϕ).

(2.110)

In the isotropic case, the matrix Γ
−1
B LB CB writes

Γ
−1
B LB CB =




1

∆

Ŷ JKD(ω)

j ω
(λf + 2µ)− ρf

∆
mβ

1

∆

Ŷ JKD(ω)

j ω
mβ − ρf

∆
m 0 0

−ρf
∆

(λf + 2µ) +
ρ

∆
mβ −ρf

∆
mβ +

ρ

∆
m 0 0

0 0
1

∆

Ŷ JKD(ω)

j ω
µ 0

0 0 −ρf
∆
µ 0




.

(2.111)
In this case, the eigenvalues no more depend of the angle ϕ. The block diagonal structure of the matrices
Γ
−1
B LB CB means there are two purely compressional waves denoted Pf and Ps, and one purely shear wave

denoted S. Equation (2.109) can be solved exactly. Setting




D4 = m (λ0 + 2µ),

D2(ω) = − ((λf + 2µ) ρw +m (ρ− 2 ρf β)) ω
2 + j ω

η

κ
F̂ JKD(ω) (λf + 2µ),

D0(ω) = χω4 − j ω3 η

κ
ρ F̂ JKD(ω),

(2.112)

the dispersion relation of compressional waves in isotropic media takes the form

De(k, ω) = D4 k
4 +D2(ω) k

2 +D0(ω) = 0. (2.113)

Setting 



D4(ω) = ω2 (ρ+ φρf (T − 2))− j ω φ2 η
κ
F̂ JKD(ω),

D2(ω) = −ω2 φρf (T − 1) + j ω φ2
η

κ
F̂ JKD(ω),

D0(ω) = ω2 φρf T − j ω φ2
η

κ
F̂ JKD(ω),

(2.114)

the dispersion relation of shear wave takes the form

k2 =
1

µ

D4D0 −D2
2

D0
. (2.115)

In figures 2.4, 2.5 and 2.6, the physical parameters are those of medium Ω3 (cf table 5.2), where the
frequencies of transition are fc1 = 25.5 kHz, fc3 = 85 kHz, and the central frequency of the source is
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f0 = 200 kHz. Figure 2.4 shows the dispersion curves in terms of the frequency at ϕ = 0 rad. Note that
the vertical scales of the figures are radically different for the three waves. The high-frequency limit of the
phase velocities are c∞pf (ϕ) and c∞ps(ϕ). For instance, c∞pf (0) = 5244 m/s and c∞ps(0) = 975, which justifies the
denomination "fast" and "slow". Figure 2.4 calls the following comments:

• when f < fci, the Biot-JKD and Biot-LF dispersion curves are very similar as might be expected,
since F̂ JKDi (0) = F̂LFi (0) = 1;

• the frequency evolution of the phase velocity and of the attenuation is radically different for the three
waves, whatever the chosen model (LF or JKD): the effect of viscous losses is negligible on the fast
wave, small on the shear wave, whereas it is very important on the slow wave;

• when f ≪ fci, the slow compressional wave is almost static [31, 119]. When f > fci, the slow wave
propagates but is greatly attenuated.

Figure 2.5 shows the slowness ℜe(k)/ω and the attenuation −ℑm(k) in terms of the angle of observation ϕ
at f = 200 kHz, for both Biot-LF and Biot-JKD models.

Taking

U1 =




1 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0



, U3 =




0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1



, (2.116)

the energy velocity vector Ve is [26, 28]:





Ve =
< P >

< Es + Ek >
=
< P >

< E >
,

< P >= −1

2
ℜe
((−→ex (U1.T )

T +−→ez (U3.T )
T
)
.V
)
,

< E >=
1

4
ℜe

((
1 +

(ω/k)2

| ω/k |2
)
V T ΓV

)
,

(2.117)

where V is the complex conjugate of V , < P > is the Umov-Poynting vector, < Ek > and < Es > are the
average kinetic and strain energy densities, and < E > is the mean energy density. The theorical wavefronts
are the locus of the end of energy velocity vector Ve multiplied by the time of propagation, as we will see
in chapter 5. Figure 2.6 shows the energy velocity for the Biot-LF and Biot-JKD models, in terms of the
angle ϕ at f = 200 kHz. The waves qPs and qS show cuspidal triangles: at any given time, there exists
propagation directions for which these waves are located at several places (for instance, ϕ = 0 rad for the
slow compressional wave qPs).

2.8.4 Analytical solution of the 1D Biot-JKD equations

In this section, one computes the exact solution for a 1D media, with a forcing applied on the stress in
(2.44). Denoting aij the components of A, and taking the Fourier transform of (2.44) in time and in space,
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Figure 2.4: dispersion curves in terms of the frequency. Comparison between Biot-LF and Biot-JKD models
at ϕ = 0 rad.
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Figure 2.6: energy velocity of the Biot-JKD model at f = 200 kHz.

we obtain

j ω v̂s + j k a13 σ̂ + j k a14 p̂ =
ρf
ρ
γ
√
Ω F̂ JKD(ω) ŵ, (2.118a)

j ω ŵ + j k a23 σ̂ + j k a24 p̂ = − γ
√
Ω F̂ JKD(ω) ŵ, (2.118b)

j ω σ̂ + j k a31 v̂s + j k a32 ŵ = ĝ(ω) ĥ(k), (2.118c)

j ω p̂+ j k a41 v̂s + j k a42 ŵ = 0. (2.118d)





Using (2.118c) and (2.118d), σ̂ and p̂ are expressed in terms of v̂ and ŵ:




σ̂ =
1

j ω
ĝ(ω) ĥ(k)− k

ω
a31 v̂s −

k

ω
a32 ŵ,

p̂ = − k
ω
a41 v̂s −

k

ω
a42 ŵ.

(2.119)

Injecting (2.119) in (2.118a) and (2.118b) leads to




v1 v̂ + w1 ŵ = c1 ĝ(ω) ĥ(k),

v2 v̂ + w2 ŵ = c2 ĝ(ω) ĥ(k),
(2.120)

where

v1 =
k2

ω
(a13 a31 + a14 a41)− ω, v2 =

k2

ω
(a23 a31 + a24 a41), c1 = −j k

ω
a13, c2 = −j k

ω
a23,

w1 =
k2

ω
(a13 a32 + a14 a42)− j

ρf
ρ
γ
√
Ω F̂ JKD(ω),

w2 =
k2

ω
(a23 a32 + a24 a42)− ω + j γ

√
Ω F̂ JKD(ω).

(2.121)
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Setting

De(k, ω) = ω2 (v1 w2 − v2 w1), j Pv(k, ω) = ω2 (w2 c1 − w1 c2), j Pw(k, ω) = ω2 (v1 c2 − v2 c1), (2.122)

the equation (2.29) writes

De(k, ω) v̂ = j Pv(k, ω) ĝ(ω) ĥ(k), (2.123a)

De(k, ω) ŵ = j Pw(k, ω) ĝ(ω) ĥ(k). (2.123b)





Then the dispersion relation is De(k, ω) = 0. We recover the dispersion relation of compressional waves in
isotropic medium (2.112)-(2.113). Using (2.121) and (2.122), the dispersion relation takes the form

De(k, ω) = D4 k
4 +D2(ω) k

2 +D0(ω) = 0, (2.124)

where




D4 = a31 a13 a24 a42 − a31 a42 a23 a14 + a41 a32 a23 a14 − a41 a32 a13 a24,

D2(ω) = ω2 (a14 a41 + a24 a42 + a31 a13 + a32 a23)

+j ω (a13 a31 + a14 a41 +
ρf
ρ

(a23 a31 + a24 a41)) γ
√
Ω F̂ JKD(ω),

D0(ω) = ω4 − j ω3 γ
√
Ω F̂ JKD(ω).

(2.125)

The biquadratic polynomial (2.124) has 4 complex roots ±kp1 et ±kp2. The wavenumbers kpi, i = 1, 2, are
defined so that ℑm(kpi) > 0. Taking

Pw(k, ω) = k3 (a13 a24 a41 − a23 a14 a41) + k ω2 a23, (2.126)

equation (2.123b) leads to

ŵ(k, ω) = j
Pw(k, ω)

De(k, ω)
ĝ(ω) ĥ(k). (2.127)

In what follows, the spatial repartition of the forcing is assumed to be a Dirac distribution: h(x) = δ(x−x0),
hence

ĥ(k) = e−j k x0 . (2.128)

The inverse Fourier transform in space of (2.128) gives

ŵ(x, ω) =
j

2 π
ĝ(ω)

∫

R

Pw(k, ω)

De(k, ω)
ej k (x−x0) dk. (2.129)

The integral (2.129) is computed with the Cauchy’s residue theorem. The function

Θw(k, ω) =
Pw(k, ω)
∂
∂kDe(k, ω)

(2.130)

is an even function of k. The residues at point ±kd therefore write

Res(kd) = Θw(+kd, ω) e
j kd (x−x0), Res(−kd) = Θw(+kd, ω) e

−j kd (x−x0). (2.131)
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• If x > x0, the closed contour of integration is a half-circle, such as ℑm(k) > 0. Equations (2.129)-
(2.131) lead to

ŵ(x, ω) =
j

2 π
ĝ(ω) (2 j π) (Res(+kp1) +Res(+kp2)) ,

= −ĝ(ω)
(
Θw(+kp1, ω) e

+j kp1 (x−x0) +Θw(+kp2, ω) e
+j kp2 (x−x0)

)
.

(2.132)

• If x < x0, the closed contour of integration is a half-circle, such as ℑm(k) 6 0. Equations (2.129)-
(2.131) lead to

ŵ(x, ω) =
j

2 π
ĝ(ω) (−2 j π) (Res(−kp1) +Res(−kp2)) ,

= ĝ(ω)
(
Θw(+kp1, ω) e

−j kp1 (x−x0) +Θw(+kp2, ω) e
−j kp2 (x−x0)

)
.

(2.133)

Consequently, ŵ(x, ω) is given ∀x by

ŵ(x, ω) = −sign(x− x0) ĝ(ω)
(
Θw(kp1, ω) e

j kp1 |x−x0|) +Θw(kp2, ω) e
j kp2 |x−x0|)

)
. (2.134)

The time evolution of the filtration velocity is then obtained by taking the inverse Fourier transform of
(2.134):

w(x, t) = − sign(x− x0)
π

∫ ∞

0

ℜe
(
Θw(kp1, ω) e

j(ω t+kp1 |x−x0|ĝ(ω) + Θw(kp2, ω) e
j(ω t+kp2 |x−x0| ĝ(ω)

)
dω.

(2.135)
The other components of the solution are computed similarly. Setting





Pv(k, ω) = k3 (a23 a14 a42 − a13 a24 a42) + k ω2 a13 − j k ω γ
√
Ω F̂ JKD(ω) γ

√
Ω (

ρf
ρ
a23 + a13),

Pp(k, ω) =
k

ω
a41 Pv(k, ω) +

k

ω
a42 Pw(k, ω),

Pσ(k, ω) = − 1

ω
De(k, ω)−

k

ω
a31 Pv(k, ω)−

k

ω
a32 Pw(k, ω),

(2.136)
and

Θv(k, ω) =
Pv(k, ω)
∂
∂kDe(k, ω)

, Θp(k, ω) =
Pp(k, ω)
∂
∂kDe(k, ω)

, Θσ(k, ω) =
Pσ(k, ω)
∂
∂kDe(k, ω)

, (2.137)

one obtains




vs(x, t) = − sign(x− x0)
π

∫ ∞

0

ℜe
(
Θv(kp1, ω) e

j(ω t+ kp1 |x−x0|)ĝ(ω) + Θv(kp2, ω) e
j(ω t+kp2 |x−x0|) ĝ(ω)

)
dω,

p(x, t) = − 1

π

∫ ∞

0

ℜe
(
θp(kp1, ω) e

j(ω t+ kp1 |x−x0|) ĝ(ω) + θp(kp2, ω) e
j(ω t+kp2 |x−x0|) ĝ(ω)

)
dω,

σ(x, t) =
1

π

∫ ∞

0

ℜe
(
Θσ(kp1, ω) e

j(ω t+kp1 |x−x0|) ĝ(ω) + Θσ(kp2, ω) e
j(ω t+kp2 |x−x0|) ĝ(ω)

)
dω.

(2.138)
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2.9 Conclusion

The Biot’s equations are detailed in § 2.2. In the HF range, the frequency-dependent JKD dynamic
permeability models the viscous dissipation into the pores (§ 2.3). It introduces shifted fractional derivatives
of order 1/2. The Beltrami-Michell equation is derived in § 2.5, and we give the interface conditions between
two different media in § 2.6. The diffusive representation of fractional derivatives, detailed in 2.7, yields a
formulation of the Biot-JKD model useful to derive a system tractable numerically. The properties of the
Biot-JKD model are then studied: decrease of the energy in § 2.8.1, hyperbolicity in § 2.8.2, and dispersion
in 2.8.3. Lastly, an analytical solution is derived for 1D homogeneous media excited by a source point.

A key feature is to discretize the diffusive representation of the Biot-JKD model. It is the aim of the
next chapter.



Chapter 3

Diffusive approximation of the Biot-JKD

model

3.1 Introduction

Many numerical methods have been developed in the LF regime: see [29] and the introduction of [35]
for general reviews. In the HF regime, the fractional derivatives greatly complicate the numerical modeling
of the Biot-JKD equations in the time-domain. The past values of the solution are indeed required in
order to evaluate convolution products, which means that the time evolution of the solution must be stored.
This of course greatly increases the memory requirements and makes large-scale simulations impossible.
To our knowledge, only two approaches to this problem have been proposed so far in the literature. The
first approach consists in discretizing the convolution products [99]. The second one is based on a diffusive
representation of the fractional derivative [74, 136]. In the latter approach, the convolution products are
replaced by a continuum of diffusive variables - or memory variables - satisfying local differential equations
[72]. This continuum is then discretized using appropriate quadrature formulas, resulting in the Biot-DA
(diffusive approximation) model.

However, the diffusive approximation proposed in [74] has three major drawbacks. First, the quadrature
formulas make the convergence towards the original fractional operator very slow, leading to a large number
of diffusive variables. Secondly, in the case of small frequencies, the Biot-DA model does not converge towards
the Biot-LF model, which is physically inacceptable. Lastly, the number of required memory variables for a
given accuracy is not analyzed in terms of the desired accuracy. The aim of the present study is therefore
to develop a new diffusive approximation method in which these drawbacks are eliminated.

This chapter is organized as follows. The aim of the sections 3.2 and 3.3 is to derive the Biot-DA model
from the Biot-JKD model using diffusive approximation of the fractional derivative and quadrature formula.
This new model will be used for the numerical simulations in the following chapter (4 and 5) and some of its
properties must be studied carefully. This is done in section 3.4, where the energy of the system is derived
(§ 3.4.1) and the eigenvalues of the new diffusive matrix S are computed (§ 3.4.2). Hyperbolicity is proven
in § 3.4.3. A dispersion analysis of Biot-DA model is also performed in 3.4.4 and an analytic plane wave
solution is obtained. In the last section 3.5, we propose five practical methods to determine the quadrature
coefficients introduced by the Biot-DA model. The methods 1 to 3 are based on Gaussian quadrature formula
(§ 3.5.1), while the methods 4 and 5 use an optimization procedure in the frequency range of interest. One
is based on a linear least-squares procedure (§ 3.5.2), while the second (§ 3.5.3) uses a nonlinear constrained
optimization. These five methods are carefully compared in section 3.5.4.

All the sections of this chapter are original contributions.
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3.2 Diffusive approximation of fractional derivatives

The starting point is to modify the Biot-JKD model, so that the obtained partial differential equations are
well-suited for numerical discretization. For this purpose, the diffusive representation of fractional derivatives
(2.64) is approximated by using a quadrature formula on N points, with weights aℓ and abcissae θℓ:

(D +Ω)1/2w(t) =
1

π

∫ ∞

0

1√
θ
ψ(t, θ) dθ,

≃
N∑

ℓ=1

aℓ ψ(t, θℓ),

≡
N∑

ℓ=1

aℓ ψℓ(t).

(3.1)

From (2.66a), the N diffusive variables ψℓ(t) = ψ(t, θℓ) satisfy the ordinary differential equations

∂ ψℓ
∂ t

= −(θℓ +Ω)ψℓ +
∂ w

∂ t
+Ωw, (3.2a)

ψℓ(0) = 0. (3.2b)





In other words, the continuum of local problems (2.64) is approximated by a finite number of local problems
(3.1). This formulation is equivalently obtained by approximating the function 1√

π t
introduced in (2.63)

1√
π t

=
1

π

∫ ∞

0

1√
θ
e−θ t dθ,

≃
N∑

ℓ=1

aℓ e
−θℓ t.

(3.3)

Indeed, injecting (3.3) in (2.61) gives

(D +Ω)1/2w(t) =

∫ t

0

e−Ω (t−τ)
√
π (t− τ)

(
∂ w

∂ t
(τ) + Ωw(τ)

)
dτ,

≃
∫ t

0

N∑

ℓ=1

aℓ e
−θℓ (t−τ) e−Ω(t−τ)

(
∂ w

∂ t
(τ) + Ωw(τ)

)
dτ,

≃
N∑

ℓ=1

aℓ

∫ t

0

e−(Ω+θℓ) (t−τ)
(
∂ w

∂ t
(τ) + Ωw(τ)

)
dτ,

≃
N∑

ℓ=1

aℓ ψℓ(t),

(3.4)

which corresponds to (3.1).

Replacing the exact viscous operator F JKD (2.20)-(2.22) by (3.1) or (3.4) yields the approximate viscous
operator FDA, which satisfies

FDA(t) ∗ w(t) = 1√
Ω

N∑

ℓ=1

aℓ ψℓ. (3.5)
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Taking the Fourier transform in time of (3.5) leads to

F̂DA(ω) ŵ =
1√
Ω

N∑

ℓ=1

aℓ ψ̂ℓ, (3.6)

where the expression of ψ̂ℓ in terms of ŵ is deduced from (3.2a):

j ω ψ̂ℓ = −(θℓ +Ω) ψ̂ℓ + j ω ŵ +Ω ŵ. (3.7)

Injecting (3.7) in (3.6) yields

F̂DA(ω) ŵ =
1√
Ω

N∑

ℓ=1

aℓ
Ω+ j ω

θℓ +Ω+ j ω
ŵ. (3.8)

In the frequency domain, the viscous operator F̂DA(ω) is therefore given by

F̂DA(ω) =
Ω + j ω√

Ω

N∑

ℓ=1

aℓ
θℓ +Ω+ j ω

. (3.9)

The only difference between the three models (Biot-LF, Biot-JKD, Biot-DA) is thus the viscous operator
introduced by the drag force dv (2.13):

F̂ (ω) =





F̂LF (ω) = 1 Biot-LF,

F̂ JKD(ω) =
1√
Ω

(Ω + j ω)1/2 Biot-JKD,

F̂DA(ω) =
Ω + j ω√

Ω

N∑

ℓ=1

aℓ
θℓ +Ω+ j ω

Biot-DA.

(3.10)

3.3 Biot-DA equations of evolution

3.3.1 2D transversely isotropic medium

The fractional derivatives involved in the Biot-JKD system of evolution equations (2.35) are then ap-
proximated using (3.1): 




(D +Ω1)
1/2wx(x, z, t) ≃

N∑

ℓ=1

axℓ ψ
x
ℓ (x, z, t),

(D +Ω3)
1/2wz(x, z, t) ≃

N∑

ℓ=1

azℓ ψ
z
ℓ (x, z, t).

(3.11)

Therefore a quadrature formula on N points leads to N additional vectorial diffusive variables ψℓ =
(ψxℓ , ψ

z
ℓ )
T . The quadrature coefficients are usually different in each direction because Ω1 6= Ω3: θxℓ 6= θzℓ and

axℓ 6= azℓ . According to (3.2), the diffusive variables ψℓ satisfy the following ordinary differential equations:





∂ψℓ

∂ t
= −




θxℓ +Ω1 0

0 θzℓ +Ω3


 ψℓ +

∂w

∂ t
+




Ω1 0

0 Ω3


 w,

ψℓ(x, z, 0) = 0.

(3.12)
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The fractional derivatives involved in the original system (2.35) are replaced by their diffusive approximation
(3.11). The equations (3.12) are then injected. After some algebraic operations, this leads to the Biot-DA
system (i = 1, · · · , N), used in the numerical simulations of chapter 5.

∂ vsx
∂ t
− ρw1

χ1

(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
− ρf
χ1

∂ p

∂ x
=
ρf
ρ
γ1

N∑

ℓ=1

axℓ ψ
x
ℓ + fvsx ,

∂ vsz
∂ t
− ρw3

χ3

(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
− ρf
χ3

∂ p

∂ z
=
ρf
ρ
γ3

N∑

ℓ=1

azℓ ψ
z
ℓ + fvsz ,

∂ wx
∂ t

+
ρf
χ1

(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
+

ρ

χ1

∂ p

∂ x
= − γ1

N∑

ℓ=1

axℓ ψ
x
ℓ + fwx

,

∂ wz
∂ t

+
ρf
χ3

(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
+

ρ

χ3

∂ p

∂ z
= − γ3

N∑

ℓ=1

azℓ ψ
z
ℓ + fwz

,

∂ σxx
∂ t

− cu11
∂ vsx
∂ x

− cu13
∂ vsz
∂ z

−mβ1

(
∂ wx
∂ x

+
∂ wz
∂ z

)
= fσxx

,

∂ σxz
∂ t

− cu55
(
∂ vsz
∂ x

+
∂ vsx
∂ z

)
= fσxz

,

∂ σzz
∂ t
− cu13

∂ vsx
∂ x

− cu33
∂ vsz
∂ z

−mβ3

(
∂ wx
∂ x

+
∂ wz
∂ z

)
= fσzz

,

∂ p

∂ t
+m

(
β1
∂ vsx
∂ x

+ β3
∂ vsz
∂ z

+
∂ wx
∂ x

+
∂ wz
∂ z

)
= fp,

∂ ψxi
∂ t

+
ρf
χ1

(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
+

ρ

χ1

∂ p

∂ x
= Ω1 wx − γ1

N∑

ℓ=1

axℓ ψ
x
ℓ − (θxi +Ω1)ψ

x
i + fwx

,

∂ ψzi
∂ t

+
ρf
χ3

(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
+

ρ

χ3

∂ p

∂ z
= Ω3 wz − γ3

N∑

ℓ=1

azℓ ψ
z
ℓ − (θzi +Ω3)ψ

z
i + fwz

.

(3.13)

Taking the vector of unknowns

U = (vsx , vsz , wx , wz , σxx , σxz , σzz , p , ψ
x
1 , ψ

z
1 , · · · , ψxN , ψzN )T , (3.14)

the system (3.13) is written in the form:

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= −SU + F , (3.15)
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where A and B are the (2N + 8)× (2N + 8) propagation matrices

A =




04,4 A1 04,2N

A2 04,4 04,2N

02N,4 A3 02N,2N


 , A3 =




ρf
χ1

0 0
ρ

χ1

0
ρf
χ3

0 0

...
...

...
...

ρf
χ1

0 0
ρ

χ1

0
ρf
χ3

0 0




, (3.16)

B =




04,4 B1 04,2N

B2 04,4 04,2N

02N,4 B3 02N,2N


 , B3 =




0
ρf
χ1

0 0

0 0
ρf
χ3

ρ

χ3

...
...

...
...

0
ρf
χ1

0 0

0 0
ρf
χ3

ρ

χ3




, (3.17)

and S is the diffusive matrix

S =




04,4 04,4 S1

04,4 04,4 04,2N

S3 02N,4 S2


 , S3 =




0 0 −Ω1 0

0 0 0 −Ω3

...
...

...
...

0 0 −Ω1 0

0 0 0 −Ω3




, (3.18)

S1 =




−ρf
ρ
γ1 a

x
1 0 · · · −ρf

ρ
γ1 a

x
N 0

0 −ρf
ρ
γ3 a

z
1 · · · 0 −ρf

ρ
γ3 a

z
N

γ1 a
x
1 0 · · · γ1 a

x
N 0

0 γ3 a
z
1 · · · 0 γ3 a

z
N




,
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S2 =




γ1 a
x
1 + (θx1 +Ω1) 0 · · · γ1 a

x
N 0

0 γ3 a
z
1 + (θz1 +Ω3) · · · 0 γ3 a

z
N

...
...

...
...

...

γ1 a
x
1 0 · · · γ1 a

x
N + (θxN +Ω1) 0

0 γ3 a
z
1 · · · 0 γ3 a

z
N + (θzN +Ω3)




.

The matrices A1, A2, B1, B2 are still defined by (2.39)-(2.40). Contrary to the Biot-JKD system (2.38),
the diffusive term SU is here a classical matrix-vector product. The number of unknowns increases linearly
with the number of diffusive variables. Only the matrix S depends on the quadrature coefficients θx,zℓ and
ax,zℓ .

3.3.2 2D isotropic medium

In this case, the quadrature coefficients are the same in each direction. The fractional derivatives involved
in the Biot-JKD system of equations (2.38) are approximated using (3.1):





(D +Ω)1/2wx(x, z, t) ≃
N∑

ℓ=1

aℓ ψ
x
ℓ (x, z, t),

(D +Ω)1/2wz(x, z, t) ≃
N∑

ℓ=1

aℓ ψ
z
ℓ (x, z, t).

(3.19)

According to (3.2), the diffusive variables ψℓ satisfy the following ordinary differential equations




∂ ψℓ

∂ t
= −




θℓ +Ω 0

0 θℓ +Ω


 ψℓ +

∂w

∂ t
+




Ω 0

0 Ω


 w,

ψℓ(x, z, 0) = 0.

(3.20)

Injecting (2.42) and (2.43) in (3.16)-(3.18), we recover the matrices A, B and S of an isotropic medium.

3.3.3 1D medium

The fractional derivative involved in the Biot-JKD system of equations (2.44) is approximated using
(3.1):

(D +Ω)1/2w(x, t) ≃
N∑

ℓ=1

aℓ ψℓ(x, t). (3.21)

Therefore a quadrature formula on N points leads to N scalar diffusive variables ψℓ. According to (3.2),
they satisfy the following ordinary differential equations





∂ ψℓ
∂ t

= −(θℓ +Ω)ψℓ +
∂ w

∂ t
+Ωw,

ψℓ(x, 0) = 0.

(3.22)

The Biot-DA first-order system in 1D is then

∂U

∂ t
+A

∂U

∂ x
= −SU , (3.23)
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where the (N + 4)× (N + 4) propagation matrix is

A =




02,2 A1 02,N

A2 02,2 02,N

0N,2 A3 0N,N


 , A1 =




−ρw
χ

−ρf
χ

ρf
χ

ρ

χ


 , (3.24)

A2 =



−(λf + 2µ) −β m

βm m


 , A3 =




ρf
χ

ρ

χ
...

...
ρf
χ

ρ

χ




;

and the (N + 4)× (N + 4) diffusive matrix is

S =




02,2 02,2 S1

02,2 02,2 02,N

S3 0N,2 S2


 , S3 =




0 −Ω
...

...

0 −Ω


 , (3.25)

S1 =



−ρf
ρ
γ a1 · · · −ρf

ρ
γ aN

γ a1 · · · γ aN


 ,

S2 =




γ a1 + (θ1 +Ω) · · · γ aN

...
...

...

γ a1 · · · γ aN + (θN +Ω)


 .

3.4 Properties

In this section, all the proofs are given for a 2D transversely isotropic medium. They are easily simplified
in the case of a 2D isotropic medium and of a 1D medium.

3.4.1 Energy of Biot-DA

In the previous chapter (§ 2.8.1), the well-posedness of the Biot-JKD model was analyzed by the energy
method. Here, we adapt the energy method to the Biot-DA system. The following proposition occurs.

Proposition 3. Let us consider the Biot-DA model (3.13) without forcing, and let us denote

E = E1 + E2 + E3, (3.26)
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where

E1 =
1

2

∫

R2


ρvTs vs + 2 ρf v

T
s w +wT




ρw1 0

0 ρw3


 w


 dx dz,

E2 =
1

2

∫

R2

(
(σ + pβ)

T
C−1 (σ + pβ) +

1

m
p2
)
dx dz,

E3 =
1

2

∫

R2

η

π

N∑

ℓ=1

(w −ψℓ)
T




axℓ
κ1
√
Ω1 θxℓ (θ

x
ℓ + 2Ω1)

0

0
azℓ

κ3
√
Ω3 θzℓ (θ

z
ℓ + 2Ω3)


 (w −ψℓ) dx dz.

(3.27)
Then, E satisfies

dE

d t
= −

∫

R2

η

π

N∑

ℓ=1




ψTℓ




axℓ (θ
x
ℓ +Ω1)

κ1
√
Ω1 θxℓ (θ

x
ℓ + 2Ω1)

0

0
azℓ (θ

z
ℓ +Ω3)

κ3
√
Ω3 θzℓ (θ

z
ℓ + 2Ω3)


 ψℓ

+wT




axℓ Ω1

κ1
√
Ω1 θxℓ (θ

x
ℓ + 2Ω1)

0

0
azℓ Ω3

κ3
√

Ω3 θzℓ (θ
z
ℓ + 2Ω3)


 w




dx dz.

(3.28)

The proof of the proposition 3 is similar to the proof of the proposition 1 and will not be repeated here.
Proposition 3 calls the following comments:

• the terms E1 and E2 are the same in both the Biot-DA and Biot-JKD models;

• E3 and the time evolution of E are modified by the diffusive approximation;

• the abscissae θx,zℓ are always positive, as explained in § 3.5, but not necessarily the weights ax,zℓ .
Consequently, in the general case, we cannot say that the Biot-DA model is well-posed. However, in
the particular case where the coefficients θx,zℓ , ax,zℓ are all positive, E is an energy, and dE

d t < 0: the
Biot-DA model is therefore well-posed in this case.

3.4.2 Eigenvalues of the diffusive matrix

We will see in chapter 4 that the propagative part and diffusive part of the Biot-DA system will be
treated separately by the numerical scheme. For stability reasons, it is therefore important to understand
the dependence of the eigenvalues of the diffusive matrix S (3.18) in terms of the quadrature coefficients.
We obtain the following result.

Proposition 4. Let us assume that the abscissae θx,zℓ have been sorted in increasing order

θx1 < θx2 < · · · < θxN ,

θz1 < θz2 < · · · < θzN ,
(3.29)
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and that the coefficients θx,zℓ , ax,zℓ of the diffusive approximation (3.11) are positive. Then zero is an eigen-
value with multiplicity 6 of S (3.18). Moreover, the 2N + 2 non-zero eigenvalues of S (denoted sxℓ , s

z
ℓ ,

ℓ = 1, · · · , N + 1) are real, and satisfy

0 < sx1 < θx1 +Ω1 < · · · < sxN < θxN +Ω1 < sxN+1,

0 < sz1 < θz1 +Ω3 < · · · < szN < θzN +Ω3 < szN+1.
(3.30)

In particular, all the eigenvalues of S are positive or zero, and the spectral radius of S satisfies

R(S) > max(θxN +Ω1, θ
z
N +Ω3). (3.31)

Proof. We denote PB the change-of-basis matrix satisfying

U = PB (Ux , Uz , σ , p)
T
, (3.32)

with
Ux = (vsx , wx , ψ

x
1 , · · · , ψxN )T , Uz = (vsz , wz , ψ

z
1 , · · · , ψzN )T . (3.33)

The matrix PB is thus invertible, and the matrices S (3.11) and SB = P−1
B SPB are similar. The matrix

SB writes

SB =




Sx 0N+2,N+2 0N+2,3 0N+2,1

0N+2,N+2 Sz 0N+2,3 0N+2,1

03,N+2 03,N+2 03,3 03,1

01,N+2 01,N+2 01,3 0




(3.34)

with

Sx =




0 0 −ρf
ρ
γ1 a

x
1 −ρf

ρ
γ1 a

x
2 · · · −ρf

ρ
γ1 a

x
N

0 0 γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N

0 −Ω1 γ1 a
x
1 + (θx1 +Ω1) γ1 a

x
2 · · · γ1 a

x
N

0 −Ω1 γ1 a
x
1 γ1 a

x
2 + (θx2 +Ω1) · · · γ1 a

x
N

...
...

...
...

...
...

0 −Ω1 γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N + (θxN +Ω1)




, (3.35)

Sz =




0 0 −ρf
ρ
γ3 a

z
1 −ρf

ρ
γ3 a

z
2 · · · −ρf

ρ
γ3 a

z
N

0 0 γ3 a
z
1 γ3 a

z
2 · · · γ3 a

z
N

0 −Ω3 γ3 a
z
1 + (θz1 +Ω3) γ3 a

z
2 · · · γ3 a

z
N

0 −Ω3 γ3 a
z
1 γ3 a

z
2 + (θz2 +Ω3) · · · γ3 a

z
N

...
...

...
...

...
...

0 −Ω3 γ3 a
z
1 γ3 a

z
2 · · · γ3 a

z
N + (θzN +Ω3)




. (3.36)
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The characteristic polynomial of S is

PS(s) = s4 PSx
(s)PSz

(s). (3.37)

Using elementary properties of the determinant, the characteristic polynomial of Sx is

PSx
(s) = det(Sx − s I),

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s 0 −ρf
ρ
γ1 a

x
1 −ρf

ρ
γ1 a

x
2 · · · −ρf

ρ
γ1 a

x
N

0 −s γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N

0 −Ω1 γ1 a
x
1 + θx1 + Ω1 − s γ1 a

x
2 · · · γ1 a

x
N

0 −Ω1 γ1 a
x
1 γ1 a

x
2 + θx2 +Ω1 − s · · · γ1 a

x
N

...
...

...
...

...
...

0 −Ω1 γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N + θxN +Ω1 − s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

= −s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N

−Ω1 γ1 a
x
1 + θx1 +Ω1 − s γ1 a

x
2 · · · γ1 a

x
N

−Ω1 γ1 a
x
1 γ1 a

x
2 + θx2 +Ω1 − s · · · γ1 a

x
N

...
...

...
...

...

−Ω1 γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N + θxN +Ω1 − s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.38)
The operations on the lines of the determinant (3.38)

Lℓ ← Lℓ − L0, ℓ = 1, · · · , N, (3.39)

yield

PSx
(s) = −s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N

s− Ω1 θx1 +Ω1 − s 0 · · · 0

s− Ω1 0 θx2 +Ω1 − s · · · 0

...
...

...
...

...

s− Ω1 0 0 · · · θxN +Ω1 − s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.40)

The determinant (3.40) can be simplified by elementary operation on its columns. Straightforward operations
involve division by zero for some values of s. To avoid this difficulty, the first column of the determinant is
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multiplied by
N∏
ℓ=1

(θxℓ +Ω1 − s):

PSx
(s)

N∏
ℓ=1

(θxℓ +Ω1 − s) = −s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−s
N∏
ℓ=1

(θxℓ +Ω1 − s) γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N

(s− Ω1)
N∏
ℓ=1

(θxℓ +Ω1 − s) θx1 +Ω1 − s 0 · · · 0

(s− Ω1)
N∏
ℓ=1

(θxℓ +Ω1 − s) 0 θx2 +Ω1 − s · · · 0

...
...

...
...

...

(s− Ω1)
N∏
ℓ=1

(θxℓ +Ω1 − s) 0 0 · · · θxN +Ω1 − s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.41)
Then, the operations on the columns

C0 ← C0 − (s− Ω1)

N∏

i=1
i6=ℓ

(θxi +Ω1 − s)Cℓ, ℓ = 1, · · · , N, (3.42)

lead to

PSx
(s)

N∏
ℓ=1

(θxℓ +Ω1 − s) = −s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q(s)
N∏
ℓ=1

(θxℓ +Ω1 − s) γ1 a
x
1 γ1 a

x
2 · · · γ1 a

x
N

0 θx1 +Ω1 − s 0 · · · 0

0 0 θx2 +Ω1 − s · · · 0

...
...

...
...

...

0 0 0 · · · θxN +Ω1 − s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.43)
Since the matrix is triangular, the determinant (3.43) is equal to the product of the diagonal elements:

PSx
(s)

N∏

ℓ=1

(θxℓ +Ω1 − s) = −sQ(s)
N∏

ℓ=1

(θxℓ +Ω1 − s). (3.44)

The characteristic polynomial PSx
(s) is therefore

PSx
(s) = −sQ(s),

= s2
N∏

ℓ=1

(θxℓ +Ω1 − s) + γ1 s (s− Ω1)

N∑

ℓ=1

axℓ

N∏

i=1
i6=ℓ

(θxi +Ω1 − s).
(3.45)

Equation (3.45) calls for the following comments:

• if the coefficients θxℓ , a
x
ℓ are positive, zero is obviously an eigenvalue of S, with multiplicity 1

PSx
(0) = 0; (3.46)



64 CHAPTER 3. DIFFUSIVE APPROXIMATION OF THE BIOT-JKD MODEL

• an asymptotic behavior of PSx
(s) at zero gives

PSx
(s) ∼

s→0+
−γ1 Ω1 s

N∑

ℓ=1

axℓ

N∏

i=1
i6=ℓ

(θxi +Ω1) < 0; (3.47)

• from (3.45), we verify that θxℓ + Ω1 is not an eigenvalue of Sx. Assuming that abscissae have been
sorted in increasing order θx1 < · · · θxN , the numbers PSx

(θxℓ +Ω1) and (−1)ℓ+1 have the same sign

PSx
(θxℓ +Ω1) = γ1 θ

x
ℓ (θ

x
ℓ +Ω1) a

x
ℓ

N∏

i=1
i6=ℓ

(θxi − θxℓ ). (3.48)

In particular, PSx
(θx1 + Ω1) is positive, and the numbers PSx

(θxℓ + Ω1) and PSx
(θxℓ+1 + Ω1) have an

opposite sign;

• an asymptotic behavior of PSx
(s) at infinity proves that PSx

(s) and (−1)N have the same sign

PSx
(s) ∼

s→+∞
(−1)N sN+2. (3.49)

We summarize these properties in table 3.1.

s 0 0+ θx1 + Ω1 · · · θxN + Ω1 +∞

PSx(s) 0 − + · · · (−1)N+1 (−1)N

Table 3.1: sign of PSx
(s) in (3.45).

We denote the intervals

Iℓ =





]θxℓ , θ
x
ℓ+1 +Ω1], ℓ = 1, · · · , N − 1,

]0, θx1 +Ω1], ℓ = 0,

]θxN +Ω1,+∞[, ℓ = N.

(3.50)

The real-valued continuous function PSx
changes of sign on each interval Iℓ. Consequently, according to the

intermediate value theorem, PSx
has at least one zero in each interval. Since PSx

has at the most N + 1
distinct zeros in ]0,+∞[, we deduce that ∃ ! sℓ ∈ Iℓ/PSx

(sℓ) = 0, ℓ = 1, · · · , N + 1. The same operations
can be done on the matrix Sz. Using equation (3.37), the characteristic polynomial of S (3.45) is therefore

PS(s) = s6
N+1∏

i=1

(s− sxi ) (s− szi ), (3.51)

which concludes the proof. �

The figure 3.1 represents the characteristic polynomial PS (3.45) of S (a), and a zoom on the eigenvalues
(b), (c), (d) for the medium Ω0. The physical parameters are issued from table 5.1, with N = 3 diffusive
variables. The coefficients are determined by nonlinear constrained optimization; see section 3.5.3. We



3.4. PROPERTIES 65

(a) (b)

10
4

10
5

10
6

10
7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

s

P
S
(s

)

θ
1
 + Ω θ

2
 + Ω θ

3
 + Ω

10
4

10
5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
−9

s

P
S
(s

)

θ
1
 + Ω

s
2

s
1

(c) (d)

10
6

10
6.1

10
6.2

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−6

s

P
S
(s

)

s
3

θ
2
 + Ω

10
7.3

10
7.4

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

s

P
S
(s

)

θ
3
 + Ω

s
4

Figure 3.1: characteristic polynomial PS (3.45) of S (3.18). Zooms on the eigenvalues in (b), (c) and (d).
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observe that the eigenvalues sℓ+1 are close to θℓ +Ω for ℓ = 1, 2, 3.

As will be seen in section 4.4, eigenvalues of S with positive real part ensure stability of the numerical
method. By proposition 4, positivity of the weights ensure this property. In the case where there are negative
weights, we obtain the following result.

Proposition 5. Let us assume that the abscissae θx,zℓ of the diffusive approximation (3.11) are positive.
Then the eigenvalues of S (3.18), which can be complex, are in the right half-space.

Proof We consider the diffusive part (see § 4.4)

∂U

∂ t
= −SU , (3.52)

where U is given by (3.14) and S by (3.18). With the change of basis (3.32)-(3.36), the system (3.52) can
be rewritten in the form

∂

∂ t




Ux

Uz

σ

p




=




−Sx 0N+2,N+2 0N+2,4 0N+2,1

0N+2,N+2 −Sz 0N+2,4 0N+2,1

04,N+2 04,N+2 04,4 04,1

01,N+2 01,N+2 01,4 0







Ux

Uz

σ

p



, (3.53)

The first line of (3.53) is developed

∂ vsx
∂ t

=
ρf
ρ
γ1

N∑

ℓ=1

axℓ ψℓ , (3.54a)

∂ wx
∂ t

= −γ1
N∑

ℓ=1

axℓ ψ
x
ℓ , (3.54b)

∂ ψxi
∂ t

= Ω1 wx − γ1
N∑

ℓ=1

axℓ ψ
x
ℓ − (θxj +Ω1)ψ

x
j , j = 1, ..., N. (3.54c)





Equation (3.54b) is multiplied by wx and (3.54c) by ψxj

wx
∂ wx
∂ t

= −γ1wx
N∑

ℓ=1

axℓ ψ
x
ℓ ,

ψxj
∂ ψxj
∂ t

= Ω1 wx ψ
x
j − γ1 ψxj

N∑

ℓ=1

axℓ ψ
x
ℓ − (θxj +Ω1) (ψ

x
j )

2, j = 1, ..., N.

(3.55)

Summing the equations of (3.55) gives

wx
∂ wx
∂ t

+ ψxj
∂ ψxj
∂ t

= Ω1 wx ψ
x
j − (θxj +Ω1) (ψ

x
j )

2 − γ1 (wx + ψxj )

N∑

ℓ=1

axℓ ψ
x
ℓ , j = 1, ..., N. (3.56)

The left-hand-side of (3.56) is equal to ∂
∂t

1
2 (w

2
x + (ψxj )

2). Then equation (3.54b) is multiplied by ψxj and
(3.54c) by wx

ψxj
∂ wx
∂ t

= −γ1 ψxj
N∑

ℓ=1

axℓ ψ
x
ℓ ,

wx
∂ ψxj
∂ t

= Ω1 w
2
x − γ1 wx

N∑

ℓ=1

axℓ ψ
x
ℓ − (θxj +Ω1)wx ψ

x
j , j = 1, ..., N.

(3.57)
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Summing the equations of (3.57) gives

wx
∂ ψxj
∂ t

+ ψxj
∂ wx
∂ t

= Ω1 w
2
x − (θxj +Ω1)wx ψ

x
j − γ1 (wx + ψxj )

N∑

ℓ=1

axℓ ψ
x
ℓ , j = 1, ..., N. (3.58)

The left-hand-side of (3.58) writes ∂
∂ t (wx ψ

x
j ). Adding (3.56) and (3.58), summing for j = 1, · · · , N , and

then integrating yields

d

dt

∫

R2

N∑

ℓ=1

(
1

2
(w2

x + (ψxℓ )
2)− wx ψxℓ

)
dx dz = −

∫

R2

N∑

ℓ=1

(
Ω1 w

2
x − (θxℓ + 2Ω1)wx ψ

x
ℓ + (θxℓ +Ω1) (ψ

x
ℓ )

2
)
dx dz.

(3.59)
The energy

Ex =
1

2

∫

R2

N∑

ℓ=1

((wx − ψxℓ )2 dx dz > 0 (3.60)

thus satisfies
dEx
d t

= −
∫

R2

N∑

ℓ=1

XT
ℓxHℓ xXℓ x dx dz, (3.61)

with

Xℓ x = (wx ψ
x
ℓ )
T , Hℓ x =




Ω1 −(θxℓ + 2Ω1)

0 θxℓ +Ω1


 . (3.62)

The two eigenvalues of Hℓ x are positive if and only if θxℓ > −Ω1. The quadratic form XT
j HjXj is therefore

positive, which means that the left-hand-side of (3.60) is negative. Doing the same operations on the second
line of (4.73), we obtain that the energy

Ez =
1

2

∫

R2

N∑

ℓ=1

(wz − ψzℓ )2 > 0 (3.63)

satisfies
dEz
d t

= −
∫

R2

N∑

ℓ=1

XT
ℓ zHℓ zXℓ z dx dz, (3.64)

with

Xℓ z = (wz ψ
z
ℓ )
T , Hℓ z =

(
Ω3 −(θzℓ + 2Ω3)

0 θzℓ +Ω3

)
. (3.65)

If θx,zℓ > 0, the energy E = Ex+Ez derived from system (3.52) is decreasing, and hence (3.52) is well-posed.
It follows that the solution of system (3.52) is bounded and the eigenvalues of S (3.18) are then in the right
half-space. �

3.4.3 Hyperbolicity

The system (3.15) is still hyperbolic. The proof is similar to the proof for the Biot-JKD system. In
practice, as seen in chapter 4, we discretize the Biot-DA system, and not the Biot-JKD one. Consequently,
the conservation of hyperbolicity is crucial for the numerical discretization.
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One of the eigenvalues of A (3.16) and B (3.17) is zero with multiplicity 2N + 2. The other non-zero
eigenvalues of A and B are the same than the eigenvalues of the propagation matrices (2.95) of the Biot-JKD
system. Consequently, the diffusive approximation does not change the high-frequency limits of the phase
velocities: c∞pf (ϕ), c

∞
ps(ϕ) and c∞s (ϕ) are the same for both Biot-LF, Biot-JKD and Biot-DA models. As said

in section 2.8.2, the stability of the numerical scheme depends on the upper bound of the phase velocities
max

ϕ∈[0,π/2]
c∞pf (ϕ). Then the stability condition does not depend on the viscous operator 3.10. In particular,

for a given mesh-size ∆x, the time step ∆t is the same for the three models. The overcost in terms of
computational time is thus only due to the additional diffusive variables ψℓ.

3.4.4 Dispersion analysis

We search a general plane wave solution





V = (vx, , vz, , wx, , wz)
T = V0 e

j(ωt−k.r),

T = (σxx, , σxz, , σzz , ,−p)T = T0 e
j(ωt−k.r),

Ψ = (ψx1 , , ψ
z
1 , , · · · , , ψxN , , ψzN )T = Ψ0 e

j(ωt−k.r),

(3.66)

where k = k (cos(ϕ), , sin(ϕ))T is the wavevector, k is the wavenumber, V0, T0 and Ψ0 are the polarizations,
and r = (x, , z)T is the position. The JKD viscodynamic operators Ŷ JKDi (ω) (2.100) are replaced by the
DA ones

Ŷ DAi (ω) = j ω ρwi +
η

κi
F̂DAi (ω), i = 1, 3, (3.67)

where F̂DAi (ω) are given by (3.9). The equations (2.98)-(2.109) are still valid. Injecting (3.66) in the Fourier
transform of (3.12) yields

Ψ =




Ω1 + j ω

θx1 +Ω1 + j ω
0

0
Ω3 + j ω

θz1 +Ω3 + j ω
...

...
Ω1 + j ω

θxN +Ω1 + j ω
0

0
Ω3 + j ω

θzN +Ω3 + j ω




w. (3.68)

One of the eigenvalues of Γ−1
B LB CB (2.109)-(3.67) is still zero with multiplicity two, and the other non-zero

eigenvalues correspond to the wave modes ±kpf (ω, ϕ), ±kps(ω, ϕ) and ±ks(ω, ϕ). Consequently, the diffusive
approximation does not introduce spurious wave.
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3.4.5 Analytical solution of the 1D Biot-DA equations

Replacing F̂ JKD(ω) by F̂DA(ω) (3.10), the equations (2.135) and (2.138) are still valid. Using (2.129)
and (3.7), we obtain

ψ̂ℓ =
Ω+ j ω

θℓ +Ω+ j ω
ŵ,

=
Ω+ j ω

θℓ +Ω+ j ω
j
Pw(k, ω)

De(k, ω)
ĝ(ω) ĥ(k),

= j
Pψℓ

(k, ω)

De(k, ω)
ĝ(ω) ĥ(k).

(3.69)

The function

Θψℓ
(k, ω) =

Ω + j ω

θℓ +Ω + j ω
Θw(k, ω), (3.70)

where Θw(k, ω) is given by (2.130), is symmetric with respect to k. Applying the Cauchy’s residue theorem
leads to

ψ̂ℓ(x, ω) = −sign(x− x0) ĝ(ω)
(
Θψℓ

(kp1, ω) e
+j kp1 |x−x0| +Θψℓ

(kp2, ω) e
+j kp2 |x−x0|

)
, (3.71)

and the inverse Fourier transform of (3.71) gives

ψℓ(x, t) = −
sign(x− x0)

π

∫ ∞

0

ℜe
(
Θψℓ

(kp1, ω) e
j(ω t+kp1 |x−x0|) ĝ(ω) + Θψℓ

(kp2, ω) e
j(ω t+kp2 |x−x0|) ĝ(ω)

)
dω.

(3.72)

3.4.6 Summary

As seen in sections 3.4.3 and 3.4.4, the propagative part of (3.15) is unchanged:

• the diffusive approximation does not introduce spurious wave;

• the diffusive approximation does not change the high-frequency limits of the phase velocities.

The quadrature coefficients θℓ and aℓ are only involved in the diffusive part. As seen in sections 3.4.1 and
3.4.2, the following properties hold if the coefficients are positive:

• the Biot-DA model is well-posed in terms of energy;

• the eigenvalues of the diffusive S are positive, which ensure the stability of the numerical scheme.

The aim of the next section is to propose efficient methods to determine positive coefficients θℓ and aℓ of the
diffusive approximation (3.1).

3.5 Determination of the Biot-DA coefficients

For the sake of clarity, the subscripts due to the anisotropy are omitted. We recall that these coefficients
are issued from § 2.7 and § 3.2, and aim to approximate improper integrals of the form

(D +Ω)1/2w(t) =
1

π

∫ ∞

0

1√
θ
ψ(t, θ) dθ ≃

N∑

ℓ=1

aℓ ψ(t, θℓ). (3.73)
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This issue is crucial both for the accuracy of the modeling and for the computational efficiency of the method.
Many strategies exist for this purpose. We begin by recalling three known methods based on orthogonal
polynomials, and then we propose different methods based on optimization.

The Biot-DA model has been derived as an approximation of the Biot-JKD model. As explained in
the previous section, the only difference between Biot-JKD and Biot-DA models is contained in the viscous
operators F̂ JKD(ω) and F̂DA(ω) in (3.10). Therefore, one possibility to quantify the error between both
models in terms of ω is to introduce the quantity

Q(ω)− 1 =
F̂DA(ω)

F̂ JKD(ω)
− 1, (3.74)

which can be easily be expressed in terms of the quadrature parameters:

Q(ω)− 1 =

N∑

ℓ=1

aℓ
(Ω + j ω)1/2

θℓ +Ω + j ω
− 1. (3.75)

The error of model εmod is then defined by

εmod = || Q(ω)− 1 ||L2
=

(∫ ωmax

ωmin

| Q(ω)− 1 |2 dω
)1/2

, (3.76)

where
I = [ωmin, ωmax], ωmin =

ω0

10
, ωmax = 10ω0, (3.77)

is the frequency range of interest. For a given N , the goal is therefore to minimize the error of model (3.76)
in terms of the parameters θℓ and aℓ. Firstly, we prove in § 3.5.1 that what is done in [74, 94], based
on Gaussian quadrature formula, is not efficient. Then, we propose in § 3.5.2 and § 3.5.3 better ways to
determine the coefficients of the diffusive approximation.

In all the figures of this section, the isotropic medium used is Cold-Lake sandstone (Ω0 in table 5.1,
fc = 3.84 kHz), and the central frequency of the source is f0 = ω0

2π = 200 kHz.

3.5.1 Gaussian quadratures

To be compatible with the litterature, the following notations are introduced: α is the order of the
fractional derivative, ⌈α⌉ is the ceiling function that rounds up to the next integer not less than its argument,
and lastly

α = 2α− 2⌈α⌉+ 1. (3.78)

Since α = 1/2 in (3.73), then α ≡ 0.

Gauss-Laguerre

The first method, proposed in [142], is to use the Gauss-Laguerre quadrature formula, which approximates
improper integrals over R+. It writes

∫

R+

xγ e−x g(x) dx ≃
N∑

ℓ=1

wℓ g(xℓ), (3.79)

where γ is a parameter. The abscissae xℓ are the zeros of the Gauss-Laguerre polynomials, and the weights
wℓ can be easily evaluated [62]. Numerically, theses quantities are obtained by Newton’s method [141], whose
efficiency depends on initial values of the solution. For this purpose, the Stroud and Secrest routine [131]
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provides an initial approximation of the roots. For instance, numerical values of the abcissae xℓ and the
weights wℓ of the Laguerre quadrature are given in [1, 123] for N 6 15.

Equation (3.79) yields
∫

R+

g(x) dx ≃
N∑

ℓ=1

wℓ x
−γ
ℓ exℓ g(xℓ). (3.80)

The equations (3.73) and (3.80) lead to

∫ ∞

0

1

π

1√
θ
ψ(θ, t) dθ ≃

N∑

ℓ=1

aℓ ψ(θℓ, t),

≃
N∑

ℓ=1

1

π
x
−(γ+1/2)
ℓ exℓ wℓ ψ(xℓ, t).

(3.81)

The coefficients of the diffusive approximation θℓ and aℓ are therefore related to the coefficients of the
Laguerre quadrature xℓ and wℓ by 




θℓ = xℓ,

aℓ =
1

π
x
−(γ+1/2)
ℓ exℓ wℓ.

(3.82)

The value γ = 0 is used in [142] whatever the order α of the fractional derivatives.

Gauss-Jacobi

A more efficient approach has been proposed and analysed in [51]. It consists in replacing the Gauss-
Laguerre quadrature by a Gauss-Jacobi quadrature, more suitable for functions which decrease algebraically.
The Gauss-Jacobi quadrature approximates integrals over [−1, 1]. It write

∫ 1

−1

(1− x)γ(1 + x)β g(x) dx ≃
N∑

ℓ=1

wℓ g(xℓ). (3.83)

The substitution

z =
1− x
1 + x

(3.84)

is used to transforms the integration domain ]0,+∞[ into ]−1, 1[. The integral thus obtained is approximated
by the Gauss-Jacobi formula (3.83)

∫ ∞

0

g(z) dz =

∫ 1

−1

2

(1 + x)2
g

(
1− x
1 + x

)
dx,

≃
N∑

ℓ=1

2wℓ
(1− xℓ)γ(1 + xℓ)β+2

g

(
1− xℓ
1 + xℓ

)
.

(3.85)

The author of [51] suggests to use γ = α ≡ 0 and β = −α ≡ 0. The fractional derivative (3.73) involved in
the Biot-JKD model, of order 1/2, is then approximated by

∫ ∞

0

1

π

1√
θ
ψ(θ, t) dθ ≃

N∑

ℓ=1

aℓ ψ(θℓ, t), (3.86)
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where 



θℓ =
1− xℓ
1 + xℓ

,

aℓ =
1

π

(
1 + xℓ
1− xℓ

)1/2
2wℓ

(1 + xℓ)2
.

(3.87)

Modified Gauss-Jacobi

An improvement of method 3.5.1 has been proposed in [16], to enlarge again the range of nodes. It
consists in using a modified Gauss-Jacobi quadrature formula (3.83). The authors propose the following
substitution instead of (3.84):

z =

(
1− x
1 + x

)2

, (3.88)

which leads to ∫ ∞

0

g(z) dz =

∫ 1

−1

4(1− x)
(1 + x)3

g

((
1− x
1 + x

)2
)
dx,

≃
N∑

ℓ=1

4wℓ
(1− xℓ)γ−1 (1 + xℓ)β+3

g

((
1− xℓ
1 + xℓ

)2
)
.

(3.89)

In [16], the author suggests to use γ = 2α+ 1 ≡ 1 and β = 1 − 2α ≡ +1. The fractional derivative (3.73)
involved in the Biot-JKD model, of order 1/2, is then approximated by

∫ ∞

0

1

π

1√
θ
ψ(θ, t) dθ ≃

N∑

ℓ=1

aℓ ψ(θℓ, t), (3.90)

where 



θℓ =

(
1− xℓ
1 + xℓ

)2

,

aℓ =
1

π

(
1 + xℓ
1− xℓ

)
4wℓ

(1 + xℓ)4
.

(3.91)

Comparison

In this section, we compare the three methods based on orthogonal polynomials. In table 3.2, the
coefficients of the diffuse approximation are written for N = 5. Figure 3.2 represents the relative error in
terms of the number N of diffusive variables for each method of quadrature,

Figure 3.3 shows the influence of the method of quadrature on the physical properties, when N = 5
diffusive variables are used. We focus on the slow compressional wave, since this is the wave the most
modified by the quadrature coefficients (see 2.8.3). The methods based on Gaussian quadrature call for the
following comments:

⊕ increasing quality is obtained, from the Laguerre quadrature to the modified Gauss-Jacobi quadrature.
Figure 3.4 represents the weights aℓ in terms of the nodes θℓ, for N = 5. This figure shows that the
nodes deduced of the modified Gauss-Jacobi quadrature (3.91) cover a larger interval than those for
Gauss-Jacobi (3.87) and than those for Gauss-Laguerre (3.82). This explains qualitatively why the
slowly decreasing diffusive variable in (3.73) is better approximated with the modified Gauss-Jacobi
quadrature [16];
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Gauss-Laguerre Gauss-Jacobi modified Gauss-Jacobi

θ1 2.64 10−1 4.92 10−2 8.60 10−3

θ2 1.41 10+0 3.00 10−1 1.31 10−1

θ3 3.60 10+0 1.00 10+0 1.00 10+0

θ4 7.09 10+0 3.33 10+0 7.65 10+0

θ5 1.26 10+1 2.03 10+1 1.16 10+2

a1 4.21 10−1 1.87 10−1 1.05 10−1

a2 4.39 10−1 2.35 10−1 2.55 10−1

a3 4.65 10−1 3.62 10−1 6.21 10−1

a4 5.16 10−1 7.83 10−1 1.95 10+0

a5 6.46 10−1 3.80 10+0 1.22 10+1

Table 3.2: abscissae θℓ and weights aℓ of the diffusive approximation with N = 5, for various quadratures:
Gauss-Laguerre, Gauss-Jacobi, and modified Gauss-Jacobi.
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Phase velocity Attenuation
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⊖ when the frequency tends towards zero, it is expected that the Biot-DA model tends towards the
Biot-LF model. This condition leads to the consistency relation

∣∣∣F̂DA(0)− F̂LF (0)
∣∣∣≪ 1 (3.92)

i.e. ∣∣∣∣
√
Ω

aℓ
θℓ +Ω

− 1

∣∣∣∣≪ 1. (3.93)

The coefficients computed with Gaussian quadrature formula do not depend on Ω. Therefore, in the
general case, the consistency relation (3.93) cannot be true, which is not satisfactory from a physical
point of view.

3.5.2 Linear least-squares optimization

A different method to determine the 2N coefficients θℓ and aℓ in the diffusive approximation (3.73) is
proposed. Following a similar approach than in viscoelasticity [53, 69], we want to approach F̂ JKD(ω) by
F̂DA(ω), defined in (3.10), in the frequency range of interest I (3.77). First, the abcissae θℓ are fixed and
distributed linearly in I on a logarithmic scale of N points





θ1 =
√
ωmin ωmax if N = 1,

θℓ = ωmin

(
ωmax

ωmin

) ℓ−1

N−1

else.
(3.94)

To obtain the weights aℓ, we implement a linear least-squares optimization procedure [53, 69, 93]. One wants
to minimize the quantity

χ2 =
K∑

k=1

∣∣∣∣∣
F̂DA(ω̃k)

F̂ JKD(ω̃k)
− 1

∣∣∣∣∣

2

,

=

K∑

k=1

|Q(ω̃k)− 1|2 ,

=

K∑

k=1

∣∣∣∣∣

N∑

ℓ=1

aℓ
(Ω + j ω̃k)

1/2

θℓ +Ω + j ω̃k
− 1

∣∣∣∣∣

2

,

=

K∑

k=1

∣∣∣∣∣

N∑

ℓ=1

aℓ qℓ(ω̃k)− 1

∣∣∣∣∣

2

,

=

K∑

k=1

(
N∑

ℓ=1

aℓ qℓ(ω̃k)− 1

)(
N∑

ℓ=1

aℓ qℓ(ω̃k)− 1

)
,

(3.95)

where the angular frequencies ω̃k are distributed linearly in I on a logarithmic scale of K points




ω̃1 =
√
ωmin ωmax if K = 1,

ω̃k = ωmin

(
ωmax

ωmin

) ℓ−1

K−1

else.
(3.96)

Since the functions qℓ(ω) are complex, optimization is performed simultaneously on the real and imaginary
parts. Therefore a square system is obtained when 2K = N , whereas 2K > N yields an overdetermined
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system, which is solved by LU decomposition [62]. The minimum of χ2 (3.95) occurs where its derivatives
with respect to the weights vanish. This condition gives

∂ χ2

∂ ai
= 2

K∑

k=1

ℜe

(
qi(ω̃k)

(
N∑

ℓ=1

aℓ qℓ(ω̃k)− 1

))
, i = 1, · · · , N,

= 0.

(3.97)

Setting 



a = (a1 , · · · aN )T ,

b = ℜe
K∑
k=1

(q1(ω̃k) , · · · , qN (ω̃k))
T
,

A = ℜe
K∑

k=1




q1(ω̃k) q1(ω̃k) · · · q1(ω̃k) qN (ω̃k)
...

. . .
...

qN (ω̃k) q1(ω̃k) · · · qN (ω̃k) qN (ω̃k)


 ,

(3.98)

where A is the design matrix and b the objective vector, (3.97) is written

Aa = b. (3.99)

The symmetric definite positive definite matrix A is invertible. Consequently, there exists a unique vector
a which minimizes χ2 (3.95).

Figure 3.5 illustrates the influence of N and K on the accuracy of the linear optimization procedure.
As observed in this figure, the error is smaller with the overdeterminated system (K = N, 2N, 3N) than
with the square one. However, increasing the size of the system does not really improve the accuracy. For
this method, we will always use the value K = N . The influence of the number of diffusive variables on
the physical properties of the system is presented in figure 3.6. As was to be expected, the accuracy of
the approximation of the phase velocity and attenuation given by the Biot-DA model increases with N . To
determine N in terms of the required accuracy, the relative error εmod (3.76) is measured. With N 6 20, this
error decreases with N , as observed in figure 3.7-a. At larger values of N , the system is poorly conditioned
and the order of convergence deteriorates; in practice, this is not penalizing since large values of N are not
used. An example of the parametric determination of N in terms of both the frequency range and the desired
accuracy is also given in figure 3.7-b. The case N = 0 corresponds to the Biot-LF model. In the LF range
(where f0/fc is small), the Biot-DA model approximates accurately the Biot-JKD model.

In conclusion, the determination of the 2N coefficients θℓ and aℓ in the diffusive approximation (3.73),
based on linear least squares optimization, calls for the following comments:

⊕ a small number of diffusive variables is required to approximate the Biot-JKD model accurately (N = 6
leads to εmod ≃ 6.8%);

⊕ by construction, the absissae θℓ are positive;

⊖ only the weights aℓ are optimized, but not the abscissae θℓ;

⊖ the sign of weights aℓ was examined in a large number of configurations. In each case, some negative
values were obtained. As stated in proposition 3, the well-posedness of Biot-DA cannot therefore be
proven.
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Figure 3.6: dispersion curves. Comparison between the Biot-DA model and the Biot-JKD model.
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3.5.3 Nonlinear constrained optimization

All the weaknesses of the two previous approaches (Gaussian quadratures and linear optimization) can be
avoided by using the following method. In order to approach F̂ JKD(ω) by F̂DA(ω) (3.10) in the frequency
range of interest I (3.77), one wants to minimize the quantity χ2 (3.95) with respect to the abcissae θℓ
and to the weights aℓ. The angular frequencies ω̃k are still given by (3.96). The coefficients θℓ and aℓ are
constrained to be positive to ensure the well-posedness of the Biot-DA model. In addition, the abcissae θℓ
are only constrained to be less or equal than 100ω0 to ensure the computational accuracy in the forthcoming
numerical method (chapter 4). Consequently, we have to solve the minimization problem with 3N constraints





min
(θℓ,aℓ)

χ2,

χ2 =

K∑

k=1

∣∣∣∣∣

N∑

ℓ=1

aℓ
(Ω + j ω̃k)

1/2

θℓ +Ω + j ω̃k
− 1

∣∣∣∣∣

2

,

0 6 θℓ 6 100ω0,

aℓ > 0.

(3.100)

Setting
θℓ = (θ′ℓ)

2, aℓ = (a′ℓ)
2, (3.101)

(3.100) can be written as a minimization problem with N constraints





min
(θ′

ℓ
,a′

ℓ
)
χ2,

χ2 =
K∑

k=1

∣∣∣∣∣

N∑

ℓ=1

(a′ℓ)
2 (Ω + j ω̃k)

1/2

(θ′ℓ)
2 +Ω+ j ω̃k

− 1

∣∣∣∣∣

2

,

θ′ℓ 6
√
100ω0.

(3.102)

Both (3.100) and (3.102) are nonlinear (and non-quadratic) with respect to the abcissae. To solve nonlinear
constrained minimization problem, we implement the program SolvOpt [81, 127], used in viscoelasticity [117].
This Shor’s algorithm computes a solution which minimizes a nonlinear, possibly non-smooth, objective
function. The constraints, either equalities or inequalities, are imposed on the solution by the method of
exact penalization. The number of constraints has a strong influence on the convergence of the algorithm.
Numerically, the constrained minimization problem (3.102) is therefore the most suitable, and we always use
(3.102) instead of (3.100). Since the Shor’s algorithm is iterative, it requires an initial estimate θ′0ℓ =

√
θ0ℓ ,

a′0ℓ =
√
a0ℓ of the coefficients which satisfies the constraints of the minimization problem (3.102). For this

purpose, θ0ℓ and a0ℓ are initialized with the method based on the modified Gauss-Jacobi quadrature formula
(§ 3.5.1), which provides the most accurate positive initial estimates. The equations (3.91) and (3.101) lead
to 




θ0ℓ =

(
1− xℓ
1 + xℓ

)2

> 0,

a0ℓ =
1

π

(
1 + xℓ
1− xℓ

)
4wℓ

(1 + xℓ)4
> 0,

⇐⇒





θ′0ℓ =
1− xℓ
1 + xℓ

,

a′0ℓ =

√
1

π

(
1 + xℓ
1− xℓ

)
4wℓ

(1 + xℓ)4
.

(3.103)

As for the linear optimization (§ 3.5.2), we still optimize simultaneously the real part and the imaginary
part of a complex quantity on K angular frequencies ω̃k. But contrary to the linear optimization, the 2N
coefficients are optimized simultaneously by this procedure. A square system is therefore obtained when
K = N , whereas K > N yiels an overdetermined system. Figure 3.8 illustrates the influence of K and N
on the accuracy of the optimization procedure. The same comments than for the linear optimization can be
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Figure 3.8: nonlinear constrained optimization error | Q(ω)− 1 | in (3.74) for various values of (K, N).
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done concerning the choice of K. For nonlinear optimization method, we will always use the value K = 2N .
The influence of the number of diffusive variables on the physical properties of the system is presented in
figure 3.9. To determine N in terms of the required accuracy, the relative error εmod is measured. When
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Figure 3.9: dispersion curves. Comparison between the Biot-DA model and the Biot-JKD model.

N 6 8, this error decreases with N , as can be seen in figure 3.10-(a). A parametric determination of N in
terms of the frequency range and of the desired accuracy is also given in figure 3.10-(b).

This method to determine the 2N coefficients θℓ and aℓ in the diffusive approximation (3.73), based on
a nonlinear constrained optimization, calls for the following comments:

⊕ a small number of diffusive variables is required to approximate the Biot-JKD model accurately (N = 3
leads to εmod ≃ 3.75%);

⊕ the coefficients θℓ and aℓ are optimized simultaneously;

⊕ by construction, the coefficients θℓ and aℓ are always positive. As stated in proposition 3, the Biot-DA
model is therefore well-posed.

3.5.4 Discussion

We will focus on the modified Gauss-Jacobi quadrature (as shown in § 3.5.1, it is the best choice of
Gaussian quadrature), the linear least-squares optimization, and the nonlinear constrained optimization.
The criteria of the quadrature coefficients are

C1: convergence towards the Biot-JKD model at small N (computational efficiency);

C2: convergence towards the Biot-LF model when f0 → 0;

C3: positivity of the quadrature coefficients θℓ, aℓ, required to ensure that the Biot-DA model is well-posed.

Figure 3.11 represents the relative error εmod (3.76) in terms of the number N of diffusive variables, at
f0 = 200 kHz (fc = 3.84 kHz). With the modified Gauss-Jacobi quadrature, a large number of diffusive
variables is required to approximate the Biot-JKD model (N = 8 leads to εmod ≃ 69.44%), resulting in a
huge computational cost. For both the linear optimization and the nonlinear optimization, a small number
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least-squares optimization, and the nonlinear constrained optimization.
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of diffusive variables is required, giving an optimum number of additional computational arrays. The relative
error decreases faster for the nonlinear optimization than for the others: at N = 8 the relative error of the
nonlinear optimization (εmod ≃ 6.33 10−3%) is 683 times smaller that the error of the linear optimization
(εmod ≃ 4.32%). Consequently, considering criterion C1, the nonlinear constrained optimization is the best
method.

In the LF limit (f0 → 0), we want that the Biot-DA model approximates accurately the Biot-LF model,

i.e.
∣∣∣F̂DA(0)− 1

∣∣∣≪ 1 in (3.93). Figure 3.12 represents
∣∣∣F̂DA(0)− 1

∣∣∣ in terms of N at f0 = 10 Hz for both

three methods. The Biot-DA model rapidly converges towards the Biot-LF model for both the linear opti-
mization and the nonlinear optimization, but not for the modified Gauss-Jacobi quadrature. Consequently,
concerning criterion C2, the linear optimization and the nonlinear optimization are the best methods.

∣∣∣F̂DA(0)− 1
∣∣∣ zoom
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Figure 3.12:
∣∣∣F̂DA(0)− 1

∣∣∣ in (3.93) in terms of the number N of diffusive variables, for both the modified

Gauss-Jacobi quadrature, the linear least-squares optimization and the nonlinear constrained optimization.
Comparison with the Biot-JKD model.

To ensure that the Biot-DA model is well-posed, we require that the quadrature coefficients θℓ, aℓ, are
positive. In table 3.3, the coefficients are written for N = 5, at f0 = 200 kHz. By construction, for both
the modified Gauss-Jacobi quadrature and the nonlinear optimization, the coefficients are positive. For the
linear optimization, the abscissae θℓ are positive by construction, but not the weights aℓ. For instance,
in table 3.3, a2 and a4 are negative. Consequently, only the modified Gauss-Jacobi quadrature and the
nonlinear optimization satisfy criterion C3.

These properties are summarized in table 3.4. Accounting for the three criteria, the nonlinear constrained
optimization is therefore the better way to determine the coefficients of the diffusive approximation.

3.6 Conclusion

In the first part of this chapter, the diffusive approximation has been approximated by a quadrature
formula. Analysis of hyperbolicity and dispersion have shown that the qualitative properties of the original
Biot-JKD system are not modified by the diffusive approximation. The aim of the second part of this chapter
was to determine the quadrature coefficients. First, we have shown that quadrature based on orthogonal
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modified Gauss-Jacobi linear optimization nonlinear optimization

θ1 8.60 10−3 1.26 10+5 2.95 10+4

θ2 1.31 10−1 3.97 10+5 3.09 10+5

θ3 1.00 10+0 1.26 10+6 1.48 10+6

θ4 7.65 10+0 3.97 10+6 6.68 10+6

θ5 1.16 10+2 1.26 10+7 5.97 10+7

a1 1.05 10−1 5.64 10+2 2.17 10+2

a2 2.55 10−1 −4.10 10+2 3.01 10+2

a3 6.21 10−1 1.36 10+3 5.79 10+2

a4 1.95 10+0 −1.12 10+3 1.30 10+3

a5 1.22 10+1 5.06 10+3 9.42 10+3

Table 3.3: abscissae θℓ and weights aℓ of the diffusive approximation when N = 5, for both the modified
Gauss-Jacobi quadrature, the linear least-squares optimization and the nonlinear constrained optimization.

modified Gauss-Jacobi linear optimization nonlinear optimization

fast convergence ✗ ✓ ✓

degenerescence when f0 → 0 ✗ ✓ ✓

positive coefficients ✓ ✗ ✓
(well-posed model)

Table 3.4: properties of the methods of determination of the quadrature coefficients: the modified Gauss-
Jacobi quadrature, the linear least-squares optimization and the nonlinear constrained optimization.
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polynomials are not efficient. Second, we have proposed other ways to determine the coefficients, based
on optimization procedure. As seen in section 3.5.4, the nonlinear constrained optimization is the better
method. In the following chapters, the coefficients of the diffusive approximation are then always determined
by this nonlinear optimization. The resulting Biot-DA model is well-suited to numerical discretization, which
is the aim of the next chapter.
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Chapter 4

Numerical modeling

4.1 Introduction

The aim of this chapter is to develop a numerical strategy based on finite-differences to solve the hyper-
bolic first-order Biot-DA system in the time-domain. As said in the general introduction, various time-domain
methods have been proposed since the 1970’s, based on finite differences [43, 139, 143], finite elements [144],
discontinuous Galerkin methods [46], boundary elements [125], pseudospectral methods [79, 27] and spectral
element methods [106]. In the LF regime, the major difficulties are:

• the viscous effects greatly influence numerical stability, imposing a restrictive time step. In some
physically relevant cases, computations cannot be carried out in a reasonable time;

• maximum computational efficiency is obtained on a Cartesian grid; in counterpart, the interfaces are
coarsely discretized, which yields spurious diffractions. Alternatively, unstructured meshes adapted to
the interfaces provide accurate description of geometries and jump conditions. However, the compu-
tational effort greatly increases, due to the cost of the mesh generation and to the Courant-Friedrichs-
Lewy (CFL) condition of stability;

and these drawbacks remain in the HF regime. The general strategy presented in [37, 35] removes these
inconvenients. The work presented in this chapter extends this strategy to the full range of frequencies,
modeled by the Biot-DA system.

Section 4.2.1 highlights the restriction due to the viscosity of the saturating fluid. As in the LF case,
a time splitting of the Biot-DA system is introduced (§ 4.2) to separate the propagative part and the
diffusive part of the original system. The integration of the propagative part by a ADER scheme is detailed
in section 4.3 in the case of 1D media and 2D media. The properties of this scheme are then analyzed:
stability, numerical dispersion and numerical attenuation. The diffusive part is solved exactly (§ 4.4), the
exponential matrices being computed by a Padé approximation. Lastly, section 4.5 presents an immersed
interface method. The latter provides a subcell resolution of the interfaces and accurately enforces the jump
conditions between the different media. To conclude, the interactions between these methods in the global
algorithm are summarized in section 4.6.

4.2 Splitting

A uniform grid is introduced, with mesh-size ∆x, ∆z and time step ∆t. The approximation of the exact
solution U(xI = I∆x, zJ = J ∆z, tn = n∆t) is denoted by Un

IJ .

87
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4.2.1 Unsplit method

A toy-model is studied to enlight the stability condition of explicit finite-difference schemes, when a
source term is discretized explicitly. For the sake of simplicity, we consider the discretization of the 1D
scalar advection-reaction partial differential equation:

∂ u

∂ t
+ c

∂ u

∂ x
= −s u, (4.1)

with c > 0 and s > 0. Equation (4.1) is discretized by an upwind finite difference scheme:

un+1
i − uni

∆t
+ c

uni − uni−1

∆x
= −s uni . (4.2)

Setting ν = c ∆t
∆x and µ = ∆t s, the equation (4.2) is written

un+1
i = uni − ν (uni − uni−1)− µuni . (4.3)

A discrete spatial Fourier transform of (4.3) yields

ûn+1 =
(
1− ν (1− e−jΘ)− µ

)
ûn, (4.4)

where Θ = k∆x and k is the wavenumber. The amplification factor is then

g(Θ) = 1− ν (1 − e−jΘ)− µ. (4.5)

The Von-Neumann analysis of stability states that the numerical scheme (4.2) is stable if and only if

∀Θ ∈ [0, 2 π[, |g(Θ)| 6 1. (4.6)

The condition (4.6) can be written

∀Θ ∈ [0, 2 π[, |g(Θ)|2 = g(Θ) g(Θ),

= 1 + µ(µ− 2)− 2 ν (1− cos(Θ))(1− ν − µ),
6 1,

(4.7)

which is satisfied for all Θ if and only if

f(ν, µ) = µ(µ− 2)− 4 ν(1− ν − µ),
= (2 ν + µ) (2ν + µ− 2),

6 0.

(4.8)

The condition (4.8) is then satisfied iff

0 6 2ν + µ = ∆t
(
2
c

∆x
+ s
)
6 2. (4.9)

The first inequality of (4.9) is unconditionally satisfied, and the second inegality yields

∆t 6
1

c

∆x
+
s

2

. (4.10)
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A necessary condition for (4.10) to be satisfied is

∆t 6 min

(
∆x

c
,
2

s

)
, (4.11)

which means that the usual CFL condition c∆t
∆x 6 1 is penalized by the source term.

A similar Von-Neumann stability analysis can be done on the Biot-DA system (3.15), discretized by other
explicit finite-difference scheme. If ∆x = ∆z, it leads to necessary conditions of stability of the form

∆t 6 min


Υ

∆x

max
ϕ∈[0,π/2]

c∞pf (ϕ)
,

2

R(S)


 , (4.12)

where the CFL number Υ depends on the explicit finite-difference scheme used. The first term of (4.12),
which depends of the propagation matrices A (3.16) and B (3.17), is the classical CFL condition. The
second term of (4.12) depends only on the diffusive matrix S (3.18). As seen in proposition 4, the spectral
radius of S satisfies

R(S) > max
ℓ=1,··· ,N

(θxℓ +Ω1, θ
z
ℓ +Ω3) (4.13)

if the coefficients θx,zℓ and ax,zℓ of the diffusive approximation are positive. This condition can be very
restrictive. For instance, we compare the terms of the stability condition (4.12) for the isotropic medium Ω2

in table 5.1, at f0 = 200 kHz. When the coefficients are determined by nonlinear constrained optimization
(§ 3.5.3) with N = 3, equation (4.13) leads to

R(S) > max
ℓ=1,2,3

(θℓ +Ω) = θ2 +Ω = 4.07 107 ⇐⇒ 2

R(S)
< 4.91 10−8, (4.14)

whereas numerically we obtain (see figure 3.1 (d))

R(S) = 4.84 107⇐⇒ 2

R(S)
= 4.13 10−8. (4.15)

In this case, the lower bound max
ℓ=1,2,3

(θℓ +Ω) is close to the spectral radius R(S). Figure 4.1 represents each

term of the stability condition (4.12) in terms of the number of grid points by slow compressional wave Nps.
If Nps 6 68, the term 2/R(S) is more restrictive than the CFL condition. For instance, Nps = 29 (value
used in chapter 5) gives

∆x

max
ϕ∈[0,π/2]

c∞pf (ϕ)
≃ 7.29 10−8, (4.16)

if Υ = 1. Equations (4.15) and (4.16) show that the term 2/R(S) increases the computational time of
approximatively 75%. Moreover, the spectral radius of S increases with the viscosity of the saturating fluid:

R(S) = max
ℓ=1,··· ,N

(θxℓ +Ω1, θ
z
ℓ +Ω3),

> max
i=1,3

Ωi,

> max
i=1,3

(
η φ2 Λ2

i

4 T 2
i κ

2
i ρf

)
.

(4.17)

With highly dissipative fluids, the term 2/R(S) can be so small that numerical computations are intractable.
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Figure 4.1: contribution of each term of the stability condition (4.12) in terms of the number of grid points
by slow compressional wave.

4.2.2 Splitting of order N
An efficient strategy is adopted here to avoid the restrictive stability condition coming from the diffusive

part. It consists in splitting the original system (3.15) into a propagative part

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= 0 (Hp), (4.18)

and a diffusive part
∂U

∂ t
= −SU (Hd), (4.19)

where Hp and Hd are the operators associated with each part. One solves alternatively the propagative
part and the diffusive part. A splitting of order N can be written as [86]





U (0) = Un,

U (2 k−1) =Hd(dN−k+1 ∆t)U
(2 k−2), k = 1, · · · ,N ,

U (2 k) =Hp(cN−k+1 ∆t)U
(2 k−1), k = 1, · · · ,N ,

Un+1 = U (N ).

(4.20)

Concisely, the splitting algorithm (4.20) takes the form

Un+1 =

( N∏

k=1

Hp(cN−k+1 ∆t) ◦Hd(dN−k+1 ∆t)

)
Un. (4.21)
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The coefficients ck et dk involved in (4.21) satisfy [63]

N∑

k=1

ck = 1,

N∑

k=1

dk = 1. (4.22)

In (4.21), the position ofHp andHd can be interchanged. Another possible splitting algorithm, still of order
N , is then

Un+1 =

( N∏

k=1

Hd(cN−k+1 ∆t) ◦Hp(dN−k+1 ∆t)

)
Un. (4.23)

For practical reasons, detailed in § 4.2.4, we always use (4.21).

4.2.3 First-order splitting

The first-order splitting, also called Godunov splitting, is obtained by taking N = 1. The coefficients are
given by

c1 = 1, d1 = 1. (4.24)

Equations (4.21) and (4.24) lead to the numerical scheme

Un = (Hp(∆t) ◦Hd(∆t))
n
U0. (4.25)

We recall the well-known analysis of splitting error [86]. Taking operators P = −A ∂
∂x
−B ∂

∂z
and D = −S,

the unsplit system (3.15) is written
∂U

∂ t
= (P +D)U , (4.26)

whereas the split equations (4.18)-(4.19) are

∂U

∂ t
= DU (4.27)

and
∂U

∂ t
= P U . (4.28)

The exact solution of the unsplit system (4.26) is given by

U(xI , zJ , tn+1) = e∆t (P+D)U(xI , zJ , tn), (4.29)

while the exact solution of the split system (4.25)-(4.27)-(4.28) is

U∗(xI , zJ , tn+1) = e∆tP e∆tD U(xI , zJ , tn). (4.30)

The error introduced by the splitting is therefore

U(xI , zJ , tn+1)−U∗(xI , zJ , tn+1) =
(
e∆t (P+D) − e∆tP e∆tD

)
U(xI , zJ , tn),

=
1

2
∆t2 (DP −P D) U(xI , zJ , tn) +O(∆t3).

(4.31)

When the matrices A, B commute with the matrix S, which is not the case here, the error (4.31) is zero.
Otherwise, each time step introduces an errorO(∆t2). At a fixed time T (after T/∆t iterations), all the errors
accumulate to a total error O(∆t). The splitting is therefore first-order accurate whatever the numerical
methods Hp and Hd used to integrate each subproblems.
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4.2.4 Strang splitting

The second-order splitting, also called Strang splitting, is obtained by taking N = 2. The coefficients are
given by

c1 = 0, d1 = 1/2,

c2 = 1, d2 = 1/2.
(4.32)

One of the coefficients is zero. In terms of computational time, the integration of the propagative part Hp is
more expensive than the integration of the diffusive part Hd (detailed in § 4.3 and § 4.4). To minimize the
CPU time, the coefficients ck are therefore related to Hp. In this case, the propagative part is integrated
only once by time step. For this reason, we always use (4.21) instead of (4.23). The equations (4.21) and
(4.32) lead to the numerical scheme

Un =
(
Hd

(
∆t
2

)
◦Hp(∆t) ◦Hd

(
∆t
2

))n
U0,

=Hd

(
∆t
2

)
◦Hp(∆t) ◦ (Hd(∆t) ◦Hp(∆t))

n−1 ◦Hd

(
∆t
2

)
U0.

(4.33)

The Strang splitting (4.33) requires only one more step than the Godunov splitting (4.25). The computational
cost of the both splittings is therefore approximately the same. The exact solution of the split system (4.27)-
(4.28)-(4.33) is

U∗(xI , zJ , tn+1) = e
∆t
2

D e∆tP e
∆t
2

DU(xI , zJ , tn). (4.34)

Comparing (4.29) and (4.34) shows that the error introduced by the splitting is

U(xI , zJ , tn+1)−U∗(xI , zJ , tn+1) =
(
e∆t (P+D) − e∆t

2
D e∆tP e

∆t
2

D

)
U(xI , zJ , tn),

=
1

6
∆t3

(
1

4
D

2
P +

1

4
P D

2 − 1

2
DP D − 1

2
P

2
D − 1

2
DP

2 +P DP

)
U(xI , zJ , tn) +O(∆t4).

(4.35)
Each time step introduces an error O(∆t3). At a fixed time T (after T/∆t iterations), all the errors
accumulate to a total error O(∆t2). The Strang splitting is therefore second-order accurate whatever the
numerical methods Hp, Hd used to integrate each subproblems.

4.2.5 Higher-order splittings

For the sake of generality, we introduce higher-order splittings. The coefficients of the third-order splitting
(N = 3) are given by [121]

c1 = 7/24, d1 = 2/3,

c2 = 3/4, d2 = −2/3,
c3 = −1/24, d3 = 1.

(4.36)

Setting χs = (21/3 + 2−1/3 − 1)/6 ≈ 0.1756, the coefficients of the fourth-order splitting (N = 4) are given
by [63]

c1 = 0, d1 = χs + 1/2,

c2 = 2χs + 1, d2 = −χs,
c3 = −4χs − 1, d3 = −χs,
c4 = 2χs + 1, d4 = χs + 1/2.

(4.37)

Both the third-order and the fourth-order splittings involve negative coefficients ck and dk. It may cause
numerical instabilities to integrate the propagative part Hp(ck∆t) and the diffusive part Hd(dk∆t). Con-
sequently, in the numerical experiments (chapter 5), only second-order splitting will be used.
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4.3 Propagative part

In this section, we detail the Arbitrary DERivatives (ADER) scheme used to integrate the propagative
part (4.18). The structure of the propagation matrice A (3.16) and B (3.17) calls the following comments:

• the time derivatives of the physical variables vs, w, σ, p do not depend of the diffusive approximation.
They are therefore the same for both the Biot-LF, Biot-JKD and Biot-DA models;

• the time derivatives of the filtration velocity w and of the diffusive variables ψℓ are the same:

∂ wx
∂ t

=
∂ ψxℓ
∂ t

=
ρw1

χ1

(
∂ σxx
∂ x

+
∂ σxz
∂ z

)
+
ρf
χ1

∂ p

∂ x
,

∂ wz
∂ t

=
∂ ψzℓ
∂ t

=
ρw3

χ3

(
∂ σxz
∂ x

+
∂ σzz
∂ z

)
+
ρf
χ3

∂ p

∂ z
.

(4.38)

Numerically, we compute only the evolution of the physical variables with the ADER scheme, using the
matrices A (2.39) and B (2.40) of the Biot-LF model. The evolution of the diffusive variables is then
deduced from (4.38). Compared with the numerical method for Biot-LF model [35], integration of the
propagative part is therefore almost unchanged.

4.3.1 One-dimensional ADER scheme

We consider the 1D hyperbolic system

∂U

∂ t
+A

∂U

∂ x
= 0 (4.39)

in homogeneous media, with A constant. The regularity of U is the same than the regularity of the Cauchy
initial condition U(x, t = 0) = U0(x). We assume it is sufficiently for the further derivation. A Taylor
expansion in time of U at order 2K leads to

U(xI , tn+1) =
2K∑

m=0

∆tm

m!

∂m

∂ tm
U(xI , tn) +O(∆t2K+1). (4.40)

Taking the derivatives of 4.39 with respect to time gives

∂mU

∂ tm
= (−1)mAm ∂mU

∂ xm
. (4.41)

Injecting (4.41) in (4.40) leads to

U(xI , tn+1) = U(xI , tn) +

2K∑

m=1

(−∆t)m
m!

Am ∂m

∂ xm
U(xI , tn) +O(∆t2K+1). (4.42)

Then the spatial derivatives in (4.42) are approximated by centered finite-difference of order 2K. In the
next lemma, we provide a means to determine such approximations.

Lemma 1. Setting si = −K, · · · ,K and V the (2K + 1)× (2K + 1) Vandermonde matrix

V =




1 · · · (−K)m · · · (−K)2K

...
...

...
...

...
1 · · · smi · · · s2Ki
...

...
...

...
...

1 · · · Km · · · K2K



, (4.43)
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the centered finite-difference approximation of the spatial derivatives is

∂m

∂ xm
U(xI , tn) =

m!

∆xm

K∑

si=−K
γm,si U(xI+si , tn) +O(∆x2K+1−m), (4.44)

where γm,si (m = 0, · · · , 2K) are the components of V−1.

This lemma is proven in Appendix A.2. The coefficients γm,si introduced in lemma 1 verifiy the following
properties (m = 0, · · · , 2K, si = −K, · · · ,K):

• γm,si = (−1)m γm,−si ,

• γ0,si = 0 if si 6= 0, γ0,0 = 1, γm,0 = 0 if m even,

•
K∑

si=−K
γm,si = 0,

2K∑
m=0

γm,si = 0.

Injecting (4.44) in (4.42) yields

U(xI , tn+1) = U(xI , tn) +

2K∑

m=1

(−∆t)m
m!

Am

(
m!

∆xm

K∑

si=−K
γm,si U(xI+si , tn)

)

+O(∆tm∆x2K+1−m) +O(∆t2K+1).

(4.45)

Injecting O(∆t) = O(∆x) in (4.45) gives

U(xI , tn+1) = U(xI , tn) +

2K∑

m=1

(−∆t)m
m!

Am

(
m!

∆xm

K∑

si=−K
γm,si U(xI+si , tn)

)
+O(∆t2K+1),

= U(xI , tn) +

K∑

si=−K

2K∑

m=1

(−1)m γm,si
(
A

∆t

∆x

)m
U(xI+si , tn) +O(∆t2K+1).

(4.46)

One denotes

Csi = −
2K∑

m=1

(−1)m γm,si
(
A

∆t

∆x

)m
. (4.47)

Replacing the exact solution by the numerical one and removing the Taylor rests, we obtain the general 1D
expression of 2K-th order ADER schemes

Un+1
I = Un

I −
K∑

si=−K
Csi U

n
I+si . (4.48)

For K = 1 and K = 2, the coefficients γm,si are given in tables 4.1-4.2. If K = 1, the classical second-order
Lax-Wendroff scheme is exactly recovered.

4.3.2 Two-dimensional ADER scheme

The 2D homogeneous hyperbolic system is

∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= 0, (4.49)
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γ2,m,si m = 0 m = 1 m = 2

si = −1 0 −1/2 1/2

si = 0 1 0 −1

si = +1 0 1/2 1/2

Table 4.1: coefficients γm,si of the Lax-Wendroff scheme (K = 1).

γ4,m,si m = 0 m = 1 m = 2 m = 3 m = 4

si = −2 0 1/12 −1/24 −1/12 1/24

si = −1 0 −2/3 2/3 1/6 −1/6

si = 0 1 0 −5/4 0 1/4

si = +1 0 2/3 2/3 −1/6 −1/6

si = +2 0 −1/12 −1/24 1/12 1/24

Table 4.2: coefficients γm,si of the ADER 4 scheme (K = 2).

where U and A, B are given by (2.36)-(2.39)-(2.40). A Taylor expansion in time of U at order 2K leads to

U(xI , zJ , tn+1) = U(xI , zJ , tn) +

2K∑

m=1

∆tm

m!

∂m

∂ tm
U(xI , zJ , tn) +O(∆t2K+1). (4.50)

Using (4.49), the temporal derivatives involved in (4.50) are replaced by spatial derivatives

U(xI , zJ , tn+1) = U(xI , zJ , tn) +

2K∑

m=1

(−∆t)m
m!

(
A

∂

∂ x
+B

∂

∂ z

)m
U(xI , zJ , tn) +O(∆t2K+1),

= U(xI , zJ , tn) +

2K∑

m=1

(−∆t)m
m!

m∑

ℓ=0

CℓmA
m−ℓBℓ ∂m

∂ xm−ℓ∂ zℓ
U(xI , zJ , tn) +O(∆t2K+1),

(4.51)
with Cℓm = m !

ℓ !(m−l) ! . Using the lemma 1, the spatial derivatives in (4.51) are approximated by centered
finite-difference of order 2K:

∂m

∂ xm−ℓ∂ zℓ
U(xI , zJ , tn) =

∂m−ℓ

∂ xm−ℓ


 ℓ!

∆zℓ

K∑

sj=−K
γℓ,sj U(xI , zJ+sj , tn) +O(∆z2K+1−ℓ)


 ,

=
ℓ!

∆zℓ

K∑

sj=−K
γℓ,sj

(
(m− ℓ)!
∆xm−ℓ

K∑

si=−K
γm−ℓ,si U(xI+si , zJ+sj , tn)

)

+
1

∆xm−ℓ∆zℓ
(
O
(
∆x2K+1

)
+O

(
∆z2K+1

))
,

=
K∑

si=−K

K∑

sj=−K

(m− ℓ)!
∆xm−ℓ

ℓ!

∆zℓ
γm−ℓ,si γℓ,sj U(xI+si , zJ+sj , tn)

+
1

∆xm−ℓ∆zℓ
(
O
(
∆x2K+1

)
+O

(
∆z2K+1

))
.

(4.52)
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Injecting O(∆t) = O(∆x) = O(∆z) in (4.51) yields

U(xI , zJ , tn+1) = U(xI , zJ , tn)

+
2K∑

m=1

m∑

ℓ=0

(−∆t)m
m!

CℓmA
m−ℓBℓ

K∑

si=−K

K∑

sj=−K

(m− ℓ)! ℓ!
∆xm−ℓ∆zℓ

× γm−ℓ,si γℓ,sj U(xI+si , zJ+sj , tn)

+O(∆t2K+1),

= U(xI , zJ , tn)

+

K∑

si=−K

K∑

sj=−K

2K∑

m=1

m∑

ℓ=0

(m− ℓ)! ℓ!
m!

Cℓm
(−∆t)m

∆xm−ℓ∆zℓ
γm−ℓ,si γℓ,sj ×Am−ℓBℓU(xI+si , zJ+sj , tn)

+O(∆t2K+1).

(4.53)

We denote

Csi,sj = −
2K∑

m=1

m∑

ℓ=0

(
−∆t

∆x

)m (
∆x

∆z

)ℓ
γm−ℓ,si γℓ,sj A

m−ℓBℓ. (4.54)

The exact solutions are replaced by the numerical ones, and the Taylor rests in (4.53) are removed. Then,
we obtain the 2D ADER scheme of 2K-th order

Un+1
IJ = Un

IJ −
K∑

si=−K

K∑

sj=−K
Csi,sj U

n
I+si,J+sj . (4.55)

The implementation of ADER scheme of 2K-th order (4.54)-(4.55) calls the following comments:

• the matrices Am−ℓBℓ involved in (4.54) are computed during a preprocessing step;

• since Am−ℓBℓ have many zeros, the matrix-vector products Csi,sj U
n
I+si,J+sj

are optimized: only the
non-zero components are stored;

• ADER are one time-step schemes. To compute Un+1, only Un needs to be stored;

• the stencil of the 2K-th order scheme involves (2K + 1)2 points.

In practice, we always use the fourth-order ADER 4 scheme in the numerical experiments (chapter 5).

4.3.3 Stability

In 1D, we perform a Von-Neumann analysis of the scheme (4.48). The spatial Fourier transform of (4.48)
yields

Ûn+1 =

(
I −

K∑
si=−K

Csi e
j k si ∆x

)
Ûn,

=

(
I +

K∑

si=−K

2K∑

m=1

(−1)m γm,si
(
A

∆t

∆x

)m
ej si Θ

)
Ûn,

= g(Θ) Ûn,

(4.56)
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where k is the wavenumber, Θ = k∆x and g(Θ) is the amplification matrix. The necessary condition of
stability is then

∀Θ ∈ [0, 2 π[, R(g(Θ)) 6 1. (4.57)

Setting

ν = R(A)
∆t

∆x
= c∞pf

∆t

∆x
, (4.58)

the equations (4.56)-(4.58) lead to the condition

∀Θ ∈ [0, 2 π[, R(g(Θ))2 =

∣∣∣∣∣1 +
K∑

si=−K

2K∑

m=1

(−1)m γm,si νm ej si Θ
∣∣∣∣∣

2

6 1. (4.59)

For the Lax-Wendroff scheme (K = 1), the coefficients γ2,m,si are given in the table 4.1. The condition
(4.59) can be written

R(g(Θ))2 =

∣∣∣∣1− ν2 +
1

2
ν (ν − 1) ejΘ +

1

2
ν (ν + 1) e−jΘ

∣∣∣∣
2

,

=
∣∣1− ν2 (1 − cos(Θ))− j ν sin(Θ)

∣∣ ,

=
(
1− ν2 (1− cos(Θ))

)2
+ (ν sin(Θ))

2
,

= 1− (1 − cos(Θ))2 ν2 (1− ν2),

6 1.

(4.60)

Using the equations (4.58) and (4.60), we obtain the necessary condition of L2 stability the Lax-Wendroff
scheme (4.48):

ν = c∞pf
∆t

∆x
6 1. (4.61)

For the ADER 4 scheme (K = 2), the same operations are done, and we recover the condition of stability
(4.61).

In 2D, the Von-Neumann stability condition is not analyzed theoretically, but it is investigated by inten-
sive numerical experiments. The stability condition of (4.55) is then obtained:

ν = max
ϕ∈[0,π/2]

c∞pf (ϕ)
∆t

∆x
6





√
2

2
≈ 0.707 if K = 1,

1 if K = 2,

(4.62)

where c∞pf (ϕ) is the spectral radius of M (2.89). The number of time iterations required with the Lax-
Wendroff scheme is therefore 40% times larger than with the ADER 4 scheme.

4.3.4 Numerical dispersion and attenuation

In the one-dimensional case, four unknowns are involved in (4.39). Consequently, the plane wave solution
of the exact system (4.39) is given by

U(x, t) = U0 e
j(ωd t−kd x), d = 1, · · · , 4, (4.63)
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where the angular frequencies ωd and the wavenumbers kd satisfy (2.109) with F̂i(ω) = 0 in (2.100). The
eigenvalues λd = ωd/kd of the matrix A (2.46) are the exact phase velocities. The plane wave solution of
the discrete system (4.48) is given by

Un
I = U0 e

j(ŵd n∆t−k̂d I ∆x), (4.64)

where ŵd are the discrete angular frequencies and k̂d are the discrete wavenumbers. We denote

νd = λd
∆t

∆x
, Gd =

k̂d∆x

2 π
,

∆P
i =

K∑

q=1

γ2q,−i ν
2q
d , ∆I

i =

K∑

q=1

γ2q−1,−i ν
2q−1
d ,

(4.65)

where Gd is the inverse of the number of grid points by spatial wavelength of the wave of phase velocity λd
(Gg ∈]0, 0.5]). With this notation, the relation dispersions of the discrete plane waves (4.64) are [90]

ℜe(ω̂d) = k̂d λ̂d = −
1

∆t
arctan




2
K∑
i=1

∆I
i sin(2 i π Gd)

1−∆P
0 − 2

K∑
i=1

∆P
i cos(2 i π Gd)


 , d = 1, · · · , 4. (4.66)

The discrete phase velocities λ̂d, which depend of ∆t and ∆x, are usually not equal to the exact ones. For
d = 1, · · · , 4, these notations give

qd(νd, Gd) =
λ̂d
λd

= − 1

2 π νdGd
arctan




2
K∑
i=1

∆I
i sin(2 i π Gd)

1−∆P
0 − 2

K∑
i=1

∆P
i cos(2 i π Gd)


 . (4.67)

In practice, Gd is small, and a Taylor expansion of the ratio λ̂d/λd leads to

qd(νd, Gd) =
λ̂d
λd

=





1 +
2 π2

3
(ν2d − 1)G2

d +O(G4
d) if K = 1,

1− 2 π4

15
(ν2d − 1) (ν2d − 4)G4

d +O(G6
d) if K = 2.

(4.68)

Figure 4.2 represents the exact numerical dispersion (4.67) and its Taylor expansion (4.68), when νd = 0.95,
for the Lax-Wendroff scheme (a) and the ADER 4 scheme (b). Equations (4.67) and (4.68) call the following
comments:

• if νd = 1 then qd = 1: the discrete phase velocity is therefore equal to the exact one ("magic time
step");

• given νd, then
lim
Gd→0

qd(νd, Gd) = 1. (4.69)

If the number of grid points by wavelength 1/Gd is tall, then the numerical dispersion is small;

• given Gd, the function νd → qd(νd, Gd) is strictly increasing and tends to 1. The numerical dispersion
is therefore small if νd is large. However, νd is bounded by the CFL condition of stability νd 6 1;
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Figure 4.2: numerical dispersion of the Lax-Wendroff scheme (a) and of the ADER 4 scheme (b), when
νd = 0.95. Comparison between exact values (solid line) and approximated values (circle).

• the numerical dispersion of the K-th order ADER scheme is of order G2K
d [130].

The numerical attenaution of the discrete plane wave (4.64) is given by ℑm(ŵd). With the notation
(4.65), we obtain for d = 1, · · · , 4 [90]

ad(νd, Gd) =
∆x

λd
ℑm(ŵd) = −

1

2 νd
ln



(
1−∆P

0 − 2
K∑

i=1

∆P
i cos(2 i π Gd)

)2

+ 4

(
K∑

i=1

∆I
i sin(2 i π Gd)

)2

 .

(4.70)
A Taylor expansion of (4.70) gives

ad(νd, Gd) =





−2 π4 νd (ν
2
d − 1)G4

d +O(G6
d) if K = 1,

4 π6

9
νd (ν

2
d − 1) (ν2d − 4)G6

d +O(G8
d) if K = 2.

(4.71)

Figure 4.3 represents the exact numerical dispersion (4.70) and its Taylor expansion (4.71), when νd = 0.95,
for the Lax-Wendroff scheme (a) and the ADER 4 scheme (b). Equations (4.70)-(4.71) call the following
comments:

• if νd = 1, then ad = 0: the numerical attenuation is zero ("magic time step");

• given νd,
lim
Gd→0

ad(νd, Gd) = 0. (4.72)

If the number of grid points by wavelength 1/Gd is tall, then the numerical attenuation is small.

4.3.5 Summary of the properties

The main results of § 4.3.3 and § 4.3.4 are summed up into the table 4.3.



100 CHAPTER 4. NUMERICAL MODELING

(a) (b)

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

10

12

14

16

18

x 10
−4

G
d

a d(β
d,G

d)

 

 

K=1 exact

K=1 Taylor

0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

10

12

x 10
−5

G
d

a d(β
d,G

d)
 

 

K=2 exact

K=2 Taylor

Figure 4.3: numerical attenuation of the Lax-Wendroff scheme (a) and of the ADER 4 scheme (b), when
νd = 0.95. Comparison between exact values (solid line) and approximated values (circle).

Lax-Wendroff (K = 1) ADER 4 (K = 2)

order of convergence 2 4

order of the numerical dispersion 2 4

order of the numerical attenuation 4 6

stability 1D ν = c∞pf
∆t

∆x
6 1 ν = c∞pf

∆t

∆x
6 1

stability 2D ν = max
ϕ∈[0,π/2]

c∞pf (ϕ)
∆t

∆x
6

√
2

2
ν = max

ϕ∈[0,π/2]
c∞pf (ϕ)

∆t

∆x
6 1

Table 4.3: summary of the properties of the Lax-Wendroff and ADER 4 schemes.
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4.4 Diffusive part

4.4.1 Without forcing

Without forcing, the vector F involved in (3.15) is zero. With the change of basis (3.32)-(3.36), the
diffusive equation (4.19) is rewritten

∂

∂ t




Ux

Uz

σ

p




=




−Sx 0N+2,N+2 0N+2,4 0N+2,1

0N+2,N+2 −Sz 0N+2,4 0N+2,1

04,N+2 04,N+2 04,4 04,1

01,N+2 01,N+2 01,4 0







Ux

Uz

σ

p



. (4.73)

Since the matrices Sx (3.35) and Sz (3.36) do not depend on the time, the exact solution of (4.73) is

Ux(., t+∆t) = e−∆tSx Ux(., t), (4.74a)

Uz(., t+∆t) = e−∆tSz Uz(., t), (4.74b)

σ(., t+∆t) = σ(., t), (4.74c)

p(., t+∆t) = p(., t). (4.74d)





As seen in § 3.4.2, if the coefficients θxℓ , θ
z
ℓ of the diffusive approximation (3.11) are positive, then all the

eigenvalues of Sx and Sz have positive real parts. As a consequence, the diffusive part (4.19) of the splitting
is well-posed.

The exponential matrices e−∆tSx and e−∆tSz involved in (4.73) are computed using a scaling and squaring
algorithm with a (p/q) Padé approximation [77, 103]. The matrix −∆tSx is normalized

Smx = −∆t Sx
2sx

, (4.75)

where the scaling integer and the real-value 1/4 6 K < 1/2 are such as

|| −∆tSx ||∞= K 2sx . (4.76)

The scaled matrix Smx satisfies

|| Smx ||∞<
1

2
. (4.77)

Since the norm of Smx is small, the exponential matrix eSmx is well computed by a Padé approximant near
the origin. The Padé approximation Rpq(Smx) of the exponential matrix is known explicitly for all p and q





eSmx ≈ Rpq(Smx) = (Dpq(Smx))
−1Npq(Smx),

Npq(Smx) =

p∑

k=0

(p+ q − k)! p!
(p+ q)! (p− k)!

Skmx
k!

,

Dpq(Smx) =

q∑

k=0

(p+ q − k)! q!
(p+ q)! (q − k)!

(−Smx)k
k!

.

(4.78)

The error of the (p/q) Padé approximation is

∣∣∣∣eSmx − Rpq(Smx)
∣∣∣∣
∞ = (−1)q p! q!

(p+ q)! (p+ q + 1)!
|| Smx ||p+q+1

∞ +O
(
|| Smx ||p+q+2

∞
)
. (4.79)
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Using (4.75), the exponential matrix e−∆tSx involved in (4.73) is approximated by

e−∆tSx ≈
(
Rpq

(
−∆t Sx

2sx

))2sx
. (4.80)

The same approximation is used to compute e−∆tSz

e−∆tSz ≈
(
Rpq

(
−∆t Sz

2sz

))2sz
. (4.81)

Using (3.32), (4.73) and (4.75)-(4.81), the discrete operator Hd of the diffusive part (4.19) writes now

Hd(∆t)U
n = PB




(
Rpq

(
−∆t Sx

2sx

))2sx
0N+2,N+2 0N+2,4 0N+2,1

0N+2,N+2

(
Rpq

(
−∆t Sz

2sz

))2sz
0N+2,4 0N+2,1

04,N+2 04,N+2 04,4 04,1

01,N+2 01,N+2 01,4 0




P−1
B Un.

(4.82)
In [77], the following properties are proven:

• the approximants Rpq (p 6= q), and RII (I = max(p, q)) can be evaluated at the same cost;

• the approximant Rpq (p 6= q), is less accurate than RII (I = max(p, q));

• if the real part of the eigenvalues of Sx (resp. Sz) are positive, then the spectral radius ofRII(Smx)(resp.
RII(Smz)) is less than one.

According to these three properties, we use diagonal approximants. For practical purpose, we choose the
(6/6) Padé approximation, which corresponds to the expm function of Matlab. The third property ensures
that the numerical integration (4.82) of the diffusive part (4.19) is unconditionally stable.

Numerically, the matrices e−∆tS and e−
∆t
2

S involved in the Strang splitting are computed during a
preprocessing step. Moreover, since the matrix involved in (4.82) has many zeros, the matrix-vector product
is optimized: only the non-zeros components are stored.

4.4.2 With forcing

In section 4.4.1, the vector F has been omitted for the sake of simplicity. If it is taken into account, the
diffusive part is

∂U

∂ t
= −SU + F . (4.83)

In this case, the operator D involved in the diffusive part depends on the time. The error analysis performed
in section 4.2 is therefore not true anymore. The splitting algorithm must be modified to take into account
time-dependent operator. No theoretical numerical analysis result has been established to analyse the order
of the modified splitting algorithm. However, the error has been measured numerically: the splittings (4.25)
and (4.33) are still first-order and second-order accurate respectively.
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Using the method of variation of parameter, the solution of (4.83) is given by

U(t) = e−S tK(t), (4.84a)

∂K

∂ t
= eS t F (t). (4.84b)





Integrating (4.84b), the function K(t) is explicitly known:

K(t) =

∫ t

t0

eS τ F (τ) dτ. (4.85)

Injecting (4.85) in (4.84a) gives

Hd(t− t0)U(t0) = U(t),

=

∫ t

t0

e−S (t−τ)F (τ) dτ.
(4.86)

Consequently, the diffusive part with forcing (4.83) is integrated exactly. The exponential matrix e−S (t−t0)

is approximated by a (6, 6) Padé approximation during a preprocessing step. For the same reasons as
previously, the integration of (4.83) is unconditionally stable.

4.5 Discretization of the interface conditions

The discretization of the interface conditions requires special care. A straightforward stair-step represen-
tation of interfaces introduces first-order geometrical errors and yields spurious numerical diffractions. In
addition, the jump conditions - (2.59) in the porous/porous case and (2.60) in the fluid/porous case - are
not enforced numerically if no special treatment is applied. Lastly, the smoothness requirements to solve
(4.18) are not satisfied, decreasing the convergence rate of the ADER scheme.

4.5.1 Immersed interface method

To remove these drawbacks while maintaining the efficiency of Cartesian grid methods, immersed interface
methods constitute a possible strategy [87, 88]. Various formulations have been proposed in the literature;
here, we follow the methodology proposed in acoustics / elastic media [92], viscoelastic media [93], and
poroelastic media [35]. To illustrate the basic principle of this method, let us take an irregular point

(xi, zj) ∈ Ω0, where the ADER scheme uses the value at (xI , zJ) ∈ Ω1 (figure 4.4). Instead of using U (1)
IJ ,

the discrete operator Hp uses a modified value U∗
IJ . This latter is a r-th order extension of the solution

from Ω0 into Ω1. In a few words, U∗
IJ is build as follows. Let P be the orthogonal projection of (xI , zJ)

on Γ, and consider the disc D centered on P with a radius d (figure 4.4). Based on the interface conditions
(2.59) or (2.60) at P and on the numerical values U (1) at the grid nodes inside D, a matrix M is build so
that

U∗
IJ =M

(
U (1)

)
D
. (4.87)

The derivation of matrixM is detailed in § 4.5.2 to § 4.5.5. Some comments are done:

• the immersed interface method does not use the diffusive part (4.19). The interface conditions (2.59)
or (2.60) do not therefore depend on the frequency regime. Consequently, no changes are required on
the high-frequency range compared to the low-frequency range. The algorithm is the same as in the
low-frequency range [35];
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Figure 4.4: irregular point M(xI , zJ) ∈ Ω1 and its orthogonal projection P onto Γ. The grid nodes used to
compute U∗

IJ are inside the circle with radius d and centered on P ; they are denoted by +.

• a similar algorithm is applied at each irregular point along Γ and at each propagative part of the
splitting algorithm (4.18). Since the jump conditions do not vary with time, the evaluation of the
matrices in (4.87) is done during a preprocessing step. Only small matrix-vector products are therefore
required at each splitting step. After optimization of the computer codes, this additional cost is made
negligible, lower than 1% of the time-marching;

• the matrixM in (4.87) depends on the subcell position of P inside the mesh and on the jump conditions
at P , involving the local geometry and the curvature of Γ at P . Consequently, all these insights are
incorporated in the modified value (4.87), and hence in the scheme;

• no theoretical stability analysis is known. But numerical experiments indicate that two ingredients are
crucial to ensure the stability of the immersed interface method. First, the stability depends on the
number of grid nodes inside the disc D. Here we use a constant radius d. Taking r = 2, numerical
experiments have shown that d = 3.2∆x is a good candidate, while d = 4.5∆x is used when r = 3.
Second, the use of the Beltrami-Michell equation (2.55) is essential;

• the order r plays an important role on the accuracy of the coupling between the immersed interface
method and a k-th order scheme. If r ≥ k, then a k-th order local truncation error is obtained at the
irregular points. However, r = k − 1 suffices to keep the global error to the k-th order [71], and hence
r = 3 is required by the ADER 4 scheme when S = 0.

The forthcoming sections (§ 4.5.2) to § 4.5.5) are rather technical. The method is directly adapted from [35].

4.5.2 High-order interface conditions

The interface conditions (2.59) or (2.60) are written in a matrix way. On the side Ωi (i = 0, 1), the
boundary values of the spatial derivatives of U up to the r-th order are put in a vector Ur

i

Ur
i = lim

M→P
M∈Ωi

(
UT , · · · , ∂l

∂ xl−m ∂ zm
UT , · · · , ∂r

∂ zr
UT

)T
, (4.88)
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where l = 0, · · · , r and m = 0, · · · , l. The vector Ur
i has nv = 4 (r + 1) (r + 2) components. Based on this

formalism, the zero-th order interface conditions (2.59) or (2.60) are written

C0
1 U

0
1 = C0

0 U
0
0 , (4.89)

where the 6× 8 matrices C0
0 , C0

1 depend on the local geometry of Γ. It follows from (2.58)

C0
0 (τ) = C

0
1 (τ) =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 z′ −x′ 0 0 0 0
0 0 0 0 z′ −x′ 0 0
0 0 0 0 0 z′ −x′ 0
0 0 0 0 0 0 0 1



. (4.90)

Thanks to the conservation law
∂U

∂ t
+A

∂U

∂ x
+B

∂U

∂ z
= 0 (4.91)

where A (2.39) and B (2.40), the jump condition (4.89) is differentiated with respect to time, and then time
derivatives are replaced by spatial derivatives. For example, we obtain

∂

∂ t

(
C0

0 U
0
0

)
= −C0

0 A0
∂U0

0

∂ x
−C0

0 B0
∂U0

0

∂ z
, (4.92)

where Ai and Bi are the propagation matrices in Ωi. The jump condition (4.89) is also differentiated in
terms of τ . Taking advantage of the chain-rule, we obtain e.g.

∂

∂ τ

(
C0

0 U
0
0

)
=

(
∂C0

0

∂ τ

)
U0

0 +C0
0

(
x′
∂U0

0

∂ x
+ z′

∂U0
0

∂ z

)
. (4.93)

From (4.89), (4.92) and (4.93), we build matrices C1
i such as C1

1 U
1
1 = C1

0 U
1
0 , which provides first-order

jump conditions. By iterating process r times, r-th order interface conditions are obtained

Cr
1 U

r
1 = Cr

0 U
r
0 , (4.94)

where Cr
i are nc × nv matrices (i = 0, 1), and nc = 3 (r + 1) (r + 2). The computation of matrices Cr

i is a
tedious task when r > 2, that can be greatly simplified using computer algebra tools.

4.5.3 High-order Beltrami-Michell equations

The equation (2.55) is satisfied anywhere in the poroelastic medium. Under sufficient smoothness re-
quirements, it can be differentiated with respect to x and z, as many times as required

∂rσxz
∂ xr−i−m ∂ zm+1

= Θ0
∂rσxx

∂ xr−m ∂ zm
+Θ1

∂rσzz
∂ xr−m ∂ zm

+Θ2
∂rp

∂ xr−m ∂ zm

+Θ3
∂rσxx

∂ xr−m−2∂ zm+2
+ Θ0

∂rσzz
∂ xr−m−2∂ zm+2

+Θ4
∂rp

∂ xr−m−2∂ zm+2
,

(4.95)

where r > 2 and m = 0, · · · , r − 2. The equations (4.95) are also satisfied on both sides of Γ. They can be
used to reduce the number of independent components in Ur

i . For this purpose, we define the vectors V r
i

such that
Ur
i = Gr

i V
r
i , (4.96)

where Gr
i are (nv×(nv−nb) matrices, and nb = r (r−1)/2 if r > 2, nb = 0 otherwise. In the case of isotropic

media, an algorithm to compute the non-zero components of Gr
i , based on (4.88) and (4.95), is proposed in
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Appendix A.1. In the case of transversely isotropic media, the matrix Gr
i are not generated automatically,

they are computed at each order and the results are directly implemented in the code. For instance, in the
medium Ω0, the second-order matrix G2

0 is

(
G2

0

)
ij
=





1 if (j = i and i 6 37) or (j = i− 1 and 39 6 i 6 48),

Θ0 if (i = 38 and j = 29) or (i = 28 and j = 46),

Θ1 if i = 38 and j = 31,

Θ2 if i = 38 and j = 32,

Θ3 if i = 38 and j = 44,

Θ4 if i = 38 and j = 47,

0 otherwise.

(4.97)

4.5.4 High-order boundary values

Based on (4.94) and (4.96), the vectors of independent boundary values satisfy

Sr1 V
r
1 = Sr0 V

r
0 , (4.98)

where Sri = Cr
i G

r
i are nc × (nv −nb) matrices. Since the system (4.98) is undetermined, the solution is not

unique, and hence it can be written

V r
1 =

(
(Sr1)

−1Sr0 |KSr
1

)
(
V r
0

Λr

)
, (4.99)

where (Sr1)
−1 is the least-squares pseudo-inverse of Sr1 , KSr

1
is the matrix filled with the kernel of Sr1 , and

Λr is a set of nv − nc − nb Lagrange multipliers that represents the coordinates of V r
1 onto the kernel. A

singular value decomposition of Sr1 is used to built (Sr1)
−1 and the kernel KSr

1
[62].

4.5.5 Construction of the modified values

Let Πr
ij be the matrix of r-th order 2D Taylor expansions

Πr
ij =

(
I8, · · · ,

1

l! (l−m)!
(xi − xp)l−m(zj − zp)m I8, · · · ,

(zj − zp)r
r!

I8

)
, (4.100)

where I8 is the 8× 8 identity matrix, l = 0, · · · , r and m = 0, · · · , l. Since the modified values at (xI , zJ) is
a smooth extension of the solution on the other-side of Γ (figure 4.4), they are defined by

U∗
IJ = Π

r
IJ U

r
0 . (4.101)

To determine the trace Ur
0 in (4.101), we consider the disc D centered at P with radius d (figure 4.4). At

the grid points of D ∩ Ω0, r-th order Taylor expansions at P and (4.96) give

U
(1)

ij = Πr
ij U

r
0 ,

= Πr
ij G

r
0 V

r
0 ,

= Πr
ij G

r
0 (1 |0)

(
V r
0

Λr

)
,

(4.102)
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where 1 is the (nv − nb)× (nv − nb) matrix of ones and 0 is the (nv − nb)× (nv − nc − nb) zeros matrix. At
the grid points of D ∩ Ω1, r-th order Taylor expansion of the solution P , (4.96) and (4.99) give

U
(1)

ij = Πr
ij U

r
1 ,

= Πr
ijG

r
1 V

r
1 ,

= Πr
ijG

r
1 ((S

r
1)

−1Sr0 |KSr
1
)

(
V r
0

Λr

)
.

(4.103)

The equations (4.102) and (4.103) are written using an adequate 8Nd × (2nv − 2nb − nc) matrix M

(U (1))D =M

(
V r
0

Λr

)
, (4.104)

To ensure that the system (4.104) is overdetermined, the radius d of the disc is chosen to satisfy

ε(d, r) =
8Nd

2nv − 2nb − nc
> 1. (4.105)

The least-squares inverse of M is denoted by M−1. Since the Lagrange multipliers Λr are not involved in
(4.101), M−1 is restricted to the (nv − nb)× 8Nd matrix M −1, so that

V r
0 =M −1 (U (1))D. (4.106)

The modified values follows from (4.96), (4.101) and (4.106), recovering (4.87):

U∗
IJ = Πr

IJ G
r
0M

−1 (U (1))D,

=M (U (1))D.
(4.107)

4.6 Summary of the algorithm

The numerical strategy proposed in this section couples three numerical methods: a splitting (§ 4.2),
a fourth-order finite-difference scheme (§ 4.3), and an immersed interface method (§ 4.5). To clarify the
interaction between these methods, the global algorithm is summarized as follows:

• Preprocessing

– Computation of matrices involved in (4.54), used to integrate the propagative part

– Computation of exponential matrices (4.80) and (4.80), used to integrate the diffusive

part

– Detection of irregular grid points if interfaces are present

– Computation of extrapolation matrices in (4.107) if interfaces are present

– Initialization of the solution at t = 0

– Diffusive step (4.82) with ∆t/2

• Time iterations

– Computation of modified values (4.107) if interfaces are present

– Solving the propagative step for the physical variables (4.55)
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– Solving the propagative step for the diffusive variables (4.38)

– Diffusive step (4.82) with ∆t

• End of time iterations

– Diffusive step (4.82) with ∆t/2

4.7 Conclusion

A global numerical method has been presented in this chapter to discretize the hyperbolic Biot-DA
system (3.13). The propagative part (4.18) and the diffusive part (4.19) of the system are treated separately
during the time-stepping, using a splitting method. Specific scientific computing methods dedicated to each
part, can then be applied. The propagative part is solved with a fourth-order in space and time ADER
scheme, whose efficiency on a Cartesian grid has been proven in many situations, while the diffusive part
is solved exactly. A (6, 6) Padé approximation is used to compute the exponential matrix that appears in
the resolution. In addition to the large accuracy of this procedure, no stability restriction is related to the
diffusive part. The global algorithm is therefore stable under the classical CFL condition associated to the
maximum of the high-frequency limit of the phase velocities. This is not the case if an unsplit scheme is used
instead of a splitting method. It is important to notice that the high-frequency limits of the phase velocities
do not depend on the quadrature coefficients introduced by the diffusive approximation. Consequently, the
stability condition is always independent of the quadrature coefficients. To take into account the interfaces
between different media, an immersed interface method is used. No modification compared to the method
proposed in the LF regime [37, 35] has been made since it is only based on the propagative part of the
equations. Nevertheless, since only isotropic media were involved in [37, 35], the method has been adapted
to model transversely isotropic media.

In the next chapter, numerous experiments are proposed to illustrate the reliability of this approach.



Chapter 5

Numerical experiments

5.1 Introduction

When considering the numerical approximations of the solutions of Biot-JKD system by the method
presented in previous chapters, two errors of different nature should be mentioned. On one hand, the
modeling error εmod (3.76) is defined as the difference between the Biot-DA and the Biot-JKD models:

εmod = ||UJKD(tn)−UDA(tn)|| , (5.1)

where UJKD(tn) and UDA(tn) are the exact solutions of the Biot-JKD model and of the Biot-DA model,
respectively. The error εmod is only due to the diffusive approximation. It has been studied in section 3.5.
On the other hand, the numerical error εnum results from the discretization of the Biot-DA model:

εnum = ||UDA(tn)−Un|| , (5.2)

where Un is the numerical solution of the Biot-DA model. In homogeneous media, εnum only comes from the
time splitting and from the fourth-order ADER scheme used to integrate the propagative part. Moreover, in
heterogeneous media, εnum depends also on the immersed interface method. The total error εtot, defined as
the difference between the numerical solution and the analytical solution of the physical Biot-JKD model,
writes

εtot = ||UJKD(tn)−Un|| ,

6 ||UJKD(tn)−UDA(tn)||+ ||UDA(tn)−Un|| ,

6 εmod + εnum.

(5.3)

Consequently, the total error is bounded by the sum of the modeling error and the numerical error. The aim
of this chapter is to validate numerically the discretization of the Biot-JKD model, based on all the elements
introduced in the previous chapters.

Three points are investigated successively. Firstly, the numerical method is validated: coupling between
Strang splitting (§ 4.2.4), fourth-order ADER scheme (§ 4.3) and integration of the diffusive part (§ 4.4).
For this purpose, the numerical solution of the Biot-DA is compared to the analytical solution of the Biot-
DA system, computed by Fourier synthesis. In this case, we measure the numerical error εnum and the
order of convergence of the algorithm. Secondly, the diffusive approximation is checked. The numerical
solution of the Biot-DA is compared to the analytical solution of the original Biot-JKD system. Lastly, the
case of heterogeneous media is considered. The immersed interface method is validated by comparison of
numerical solution and analytical solutions of the Biot-DA model, available in the case of plane interfaces.

109
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Interfaces separating fluid/porous media or porous/porous media are illustrated for various geometries:
plane, ellipsoidal, sinusoidal.

In this chapter, we first introduce in section 5.2 the general configuration of the numerical experiments:
physical parameters of the porous media and numerical parameters of the discretization (§ 5.2.1), sources and
initial conditions (§ 5.2.2). Then the numerical experiments are detailed. Section 5.3 focuses on 1D media.
Both the Biot-DA model and the numerical methods are validated in § 5.3.1. The order of convergence of the
scheme is measured, and the computational CPU time of the Biot-DA algorithm is compared to the one of
the Biot-LF model. The numerical experiment presented in § 5.3.2 shows that the numerical method is well-
suited to continuously variable medium, for which no analytical solution exists. Section 5.4 focuses on 2D
isotropic media. The coupling between the numerical method in homogeneous medium and the immersed
interface method is validated in § 5.4.1. Several experiments are detailed for various geometries: plane
interface, multilayered porous media, bone specimen with plane boundaries immersed in water, cylinder or
circular shell, multiple ellipsoidal scatterers and sinusoidal interface with ellipsoidal scatterers. Section 5.5
focuses on 2D transversely isotropic media. The coupling between the numerical method in homogeneous
medium and the immersed interface method is validated. Numerical experiments with cylinder scatterer,
circular shell scatterer and multiple ellipsoidal scatterers are detailed.

The series of tests in academic configuration gives confiance in the reliability of the full method to
investigate wave phenomena in complex media, where no analytical solution is available. A preliminary
example is given, with multiple scattering across a set of random scatterers.

5.2 General configuration

5.2.1 Physical and numerical parameters

In order to demonstrate the ability of the present method to be applied in a wide range of applications,
the numerical tests will be run on five different porous media (Ωi, i = 0, · · · , 4), issued from geophysical,
biomedical and manufactured context. Either isotropic and transversely isotropic media are used, validating
the method in each case. The media Ω0 and Ω4 are water saturated Berea sandstones, which are sedimen-
tary rocks commonly encountered in petroleum engineering. The grains are predominantly sand sized and
composed of quartz bonded by silica [26, 43]. The medium Ω1 is a sandstone found in the Cold Lake area,
which consists of continuous, massive salt, pepper, glauconitic sands and interbedded shales, with bitumen
resources [85]. The medium Ω2 is a cancellous bone, often found at the ends of rounded bones, such as on
the leg and arm bones. It is composed of a lattice of trabeculae saturating by bone narrow [84]. The medium
Ω3 is composed of thin layers of epoxy and glass, stongly anisotropic if the wavelengths are large compared
to the thick of the layers [26].

The values of the physical parameters are given in table 5.1 for isotropic media Ω0, Ω1, Ω2, and in table
5.2 for transversely isotropic media Ω3, Ω4. The viscous characteristic length Λ is obtained by setting the
Pride number P = 0.5. We also report in these tables some useful values, such as phase velocities, critical
frequencies, and quadrature parameters computed for each media. The central frequency of the source is
always f0 = 200 kHz, and the quadrature coefficients θℓ, aℓ have been determined by nonlinear constrained
optimization with N = 3 diffusive variables. The error of model εmod (3.76) is also given for each medium.
We note that the frequency transitions fc1 and fc3 are the same for both Ω3 and Ω4. In this particular
case, the coefficients of the diffusive approximation are therefore also the same. In all the numerical
simulations, the time step is computed from the physical parameters of the media through relations (4.61)
or (4.62), setting the CFL number to Υ = 0.95. The numerical experiments are performed on an Intel Core
i7 processor at 2.80 GHz.
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Parameters Ω0 Ω1 Ω2

Saturating fluid ρf (kg/m3) 1040 1000 930
η (Pa.s) 1.5 10−3 10−3 1.5
Kf (GPa) 2.37 2.25 2.00

Grain ρs (kg/m3) 2650 2644 1960
Ks (GPa) 48.9 36.5 20.4

Matrix φ 0.335 0.2 0.81
T 2 2.4 1.06
κ (m2) 10−11 3.6 10−13 5 10−9

λf (GPa) 6.14 10.6 2.71
µ (GPa) 2.93 7.04 0.238
Λ (m) 2.19 10−5 5.88 10−6 2.29 10−4

r (m) 1.72 10−8 1.13 10−9 2.57 10−6

Dispersion c∞pf (m/s) 2384.17 3269.89 1715.93

cpf (f0) (m/s) 2384.14 3268.29 1693.22
c∞ps (m/s) 758.95 814.95 1213.16
cps(f0) (m/s) 731.83 744.06 976.68
c∞s (m/s) 1229.00 1776.16 758.77
cs(f0) (m/s) 1225.50 1769.87 652.95
fc (Hz) 3.84 103 3.68 104 3.93 104

Optimization θ1 (rad/s) 7.86 104 3.24 106 2.08 105

θ2 (rad/s) 1.52 106 2.00 105 4.03 107

θ3 (rad/s) 2.49 107 3.95 107 3.33 106

a1 (rad1/2/s1/2) 3.72 102 1.26 103 6.25 102

a2 (rad1/2/s1/2) 1.01 103 6.14 102 7.77 103

a3 (rad1/2/s1/2) 6.15 103 7.70 103 1.27 103

εmod (%) 3.75 1.21 1.15

Table 5.1: Physical parameters of the isotropic media used in the numerical experiments. The phase velocities
cpf (f0), cps(f0) and cs(f0) are computed at f = f0 = 200 kHz.
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Parameters Ω3 Ω4

Saturating fluid ρf (kg/m3) 1040 1040
η (Pa.s) 10−3 10−3

Kf (GPa) 2.5 2.5
Grain ρs (kg/m3) 1815 2500

Ks (GPa) 40 80
Matrix φ 0.2 0.2

T1 2 2
T3 3.6 3.6
κ1 (m2) 6. 10−13 6. 10−13

κ3 (m2) 10−13 10−13

c11 (GPa) 39.4 71.8
c12 (GPa) 1 3.2
c13 (GPa) 5.8 1.2
c33 (GPa) 13.1 53.4
c55 (GPa) 3 26.1
Λ1 (m) 6.93 10−6 2.19 10−7

Λ3 (m) 3.79 10−6 1.20 10−7

r (m) 1.44 10−9 4.79 10−10

Dispersion c∞pf (0) (m/s) 5244.40 6004.31

cpf (f0, 0) kHz (m/s) 5227.10 5988.50
c∞pf (π/2) (m/s) 3583.24 5256.03

cpf (f0, π/2) (m/s) 3581.42 5245.84
c∞ps(0) (m/s) 975.02 1026.45
cps(f0, 0) (m/s) 901.15 949.33
c∞ps(π/2) (m/s) 604.41 745.59
cps(f0, π/2) (m/s) 534.88 661.32
c∞s (0) (m/s) 1368.36 3484.00
cs(f0, 0) (m/s) 1361.22 3470.45
c∞s (π/2) (m/s) 1388.53 3522.07
cs(f0, π/2) (m/s) 1381.07 3508.05
fc1 (Hz) 2.55 104 2.55 104

fc3 (Hz) 8.50 104 8.50 104

Optimization θx1 (rad/s) 1.64 105 1.64 105

θx2 (rad/s) 2.80 106 2.80 106

θx3 (rad/s) 3.58 107 3.58 107

ax1 (rad1/2/s1/2) 5.58 102 5.58 102

ax2 (rad1/2/s1/2) 1.21 103 1.21 103

ax3 (rad1/2/s1/2) 7.32 103 7.32 103

εxmod (%) 1.61 1.61
θz1 (rad/s) 3.14 105 3.14 105

θz2 (rad/s) 5.06 107 5.06 107

θz3 (rad/s) 4.50 106 4.50 106

az1 (rad1/2/s1/2) 7.57 102 7.57 102

az2 (rad1/2/s1/2) 8.79 103 8.79 103

az3 (rad1/2/s1/2) 1.38 103 1.38 103

εzmod (%) 0.53 0.53

Table 5.2: Physical parameters of the transversely isotropic media used in the numerical experiments. The
phase velocities cpf (f0, ϕ), cps(f0, ϕ) and cs(f0, ϕ) are computed at f = f0 = 200 kHz when the wavevector
k makes an angle ϕ with the horizontal x-axis, and c∞pf (ϕ), c

∞
ps(ϕ), c

∞
s (ϕ) denote the high-frequency limit

of the phases velocities.
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5.2.2 Sources and initial conditions

Two types of forcing and initial conditions are considered in the simulations.

• All the physical fields are set to zero, and a varying forcing F = F0 g(t)h(x, z) is applied in (3.15).
The temporal evolution of the source g(t) will be described afterwards. In 1D experiments, the spatial
repartition of the source is a Dirac distribution:

h(x) = hD(x) = δ(x). (5.4)

This source generates symmetric rightward and leftward moving compressional waves. In 2D exper-
iments, we use a truncated Gaussian centered at point (x0, z0), of radius R0 = 3.79 10−3 m and of
standard deviation Σ = 1.90 10−3 m:

h(x, z) = hG(x, z) =





1

πΣ2
exp

(
− (x− x0)2 + (z − z0)2

Σ2

)
if 0 6 x2 + z2 6 R2

0,

0 otherwise,

(5.5)

rather than a Dirac distribution. Doing so avoid numerical artifacts localized around the source point,
due to the singularities of the solution at the origin. This source generates cylindrical waves. The size
of the domain and the duration of the simulations are defined so that no special attention is required
to simulate outgoing waves. This could be improved using Perfectly-Matched Layers [98];

• No forcing in (3.15), but initial conditions corresponding to an incident plane wave as :

Uϕ(x, z, t0) = F−1
(
Ûϕ(ω) ĝ(ω) e

i(ω t0−k x cos(ϕ)−k z sin(ϕ)
)
, (5.6)

where ϕ is the angle between the wavevector and the x-axis, and t0 adjusts the location of the plane
wave. The vector Ûϕ(ω) is obtained by the dispersion analysis (§ 3.4.4). By Fourier synthesis performed
numerically, Uϕ(x, z, t0) is then obtained. Periodic computational edges are imposed along x-direction
if ϕ = π/2 rad or z-direction if ϕ = 0.

Whatever the forcing and the initial conditions, two different temporal evolution of source are used in the
simulation: a Ricker signal or a combination of truncated sinusoids. The Ricker signal, of central frequency f0
and of time-shift t0 = 2/f0, is the most widely used in several fields: seismology, biomechanical applications,
underwater acoustics, and writes

g(t) = gR(t) =





(
2 π2 f2

0

(
t− 1

f0

)2

− 1

)
exp

(
−π2 f2

0

(
t− 1

f0

)2
)

if 0 6 t 6 t0,

0 otherwise.

(5.7)

The frequency evolution of the source is then

ĝ(ω) = ĝR(ω) = −
2√
π

ω2

ω3
0

e−ω
2/ω2

0 e−j ω t0 , (5.8)

where ω0 = 2 π f0. Since this signal is discontinuous at t = 0 and at t = 2 t0:

|g(0)| = |g(2 t0)| = (2 π2 − 1) e−π
2 ≈ 9.69 10−4, (5.9)
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it introduces numerical inaccuracy and can not be used for convergence error measurements. For this purpose,
we use a second type of temporal evolution, which is a C6 combination of truncated sinusoids:

g(t) = gS(t) =





6∑

k=1

ck gSk(t) if 0 6 t 6
1

f0
,

0 otherwise,

(5.10)

where
gSk(t) = sin

(
2k−1 ω0 t

)
,

c1 = 1, c2 = −21

32
, c3 =

63

768
, c4 = − 1

512
.

(5.11)

In this case, the frequency evolution of the source is

ĝ(ω) = ĝS(ω) =

6∑

k=1

ck ĝSk(ω), (5.12)

where

ĝSk(ω) =





−j π

ω0
if ω = 2k−1 ω0,

2k−1 ω0

ω2 − (2k−1 ω0)
2

(
e−2 j π ω/ω0 − 1

)
otherwise.

(5.13)

Figure 5.1 shows the time evolution and the spectrum of both sources, at a central frequency f0 = 200 kHz.

5.3 1D experiments

The motivations for 1D numerical simulations concern the validation of the Biot-DA model approximation
and its numerical discretization. Indeed, for a 1D homogeneous porous medium, an accurate analytical
solutions, derived in sections 2.8.4 and 3.4.5, can be computed for both Biot-JKD and Biot-DA equations.
The Fourier synthesis is done numerically with Nf = 512 modes and with a frequency step ∆ f ≃ 4000 Hz.

5.3.1 Validation

The unbounded medium Ω1 is excited by a source point located at x0 = 0 m. The only non-null component
of the vector of source F is fσ = gR(t)hD(x). Adopting the high-frequency regime is therefore completely
justified since f0 ≃ 5 × fc. This source emits symmetrically rightward and leftward moving fast and slow
compressional waves, which are denoted by Pf and Ps, respectively, in figure 5.2. The computational do-
main [−0.04, 0.04] m is discretized on Nx = 700 grid points, which amounts to 32 points per slow wavelength.

We first check the accuracy of the numerical method presented in the previous chapter for the approx-
imation of the Biot-DA model, i.e. we compare the numerical pressure with the semi-analytical Biot-DA
pressure. Both solutions are represented on figure 5.4 for the pressure at two different times: t1 > 1/f0 and
t2 > t1. The dispersion and attenuation of the slow wave can be clearly observed. An excellent agreement
is observed whatever the different kind of waves.

In order to give more quantitative results, we run a second serie of tests to measure the convergence order
of the numerical scheme. The computational domain is [0, 0.1] m, and an incident plane right-going wave (§
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Figure 5.1: time evolution (left) and frequency evolution (right) of the sources. (a-b) represents a Ricker
signal, and (c-d) represents a C6 combination of truncated sinusoids.
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Figure 5.2: section 5.3.1. Fast waves Pf and slow waves Ps emitted by a source point at t1 ≃ 9.96 10−6 s
(a-b) and t2 ≃ 1.25 10−5 s (c-d). Comparison between the numerical Biot-DA pressure (circle) and the exact
Biot-DA pressure (solid line). Right row: zoom on the slow wave.
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3.4.5) solution of the Biot-DA system is used as initial conditions, with t0 ≃ 1.25 10−5 s and g(t) = gS(t).
The simulation is stopped at t1 ≃ 1.61 10−5 s. Initial and final values of the stress σ are represented on figure
5.3-(a). The discrete L2 norm of the error between exact Biot-DA and numerical values are then computed
at t1, for various values of grid points Nx. The obtained relative error values and convergence orders are
summed up in table 5.3, and represented in figure 5.3-(b). As explained in chapter 4, the Strang splitting
used to integrate the Biot-DA system decreases the theoretical order of the global scheme from 4 to 2, if the
fourth-order ADER scheme is used for the propagative part. This is exactly what is observed on 5.3-(b) and
table 5.3.

The same order is obtained if the second-order Lax-Wendroff scheme is used, but much less accurate
results are obtained, since the error is about 100 times larger than the ADER 4 ones for a given Nx. Even
tough the global error is limited by the Strang splitting, it is important in practice to use a robust and
accurate numerical method for the propagative part.
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Figure 5.3: section 5.3.1. (a): snapshots of the stress σ at initial time (red) and at t1 ≃ 1.61 10−5 s (blue).
(b): error measured between exact and numerical solutions of Biot-DA model in terms of 1/Nx.

Nx Lax-Wendroff order ADER 4 order

100 1.357 10+1 - 3.027 10+0 -
200 4.095 10+0 1.72 2.963 10−1 3.35
400 1.065 10+0 1.94 2.379 10−2 3.63
800 2.685 10−1 1.98 3.273 10−3 2.86
1600 6.722 10−2 1.99 7.768 10−4 2.07
3200 1.680 10−2 2.00 1.953 10−4 1.99
6400 4.201 10−3 2.00 4.897 10−5 1.99

Table 5.3: section 5.3.1. Error measurements in L2 norm and convergence orders.

These tests indicate that the numerical solution converges towards the Biot-DA solution. It is now neces-
sary to check if this numerical solution approximates the solution of the initial Biot-JKD model. We therefore
compare the numerical solution of the source point test presented before, to the semi-analytical solution of
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1D Biot-JKD system. Figure 5.4 represents both the numerical Biot-DA and the analytical Biot-JKD pres-
sure p, at two different times: t1 and t2 > t1. An excellent agreement is observed whatever the different kind
of waves. We measure the numerical error εnum ≃ 1.62 10−1% and the total error εtot ≃ 8.33 10−1%. Since
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Figure 5.4: section 5.3.1. Fast waves Pf and slow waves Ps emitted by a source point at t1 ≃ 9.96 10−6 s
(a-b) and t2 ≃ 1.25 10−5 s (c-d). Comparison between the numerical Biot-DA pressure (circle) and the exact
Biot-JKD pressure (solid line). Right row: zoom on the slow wave.

the error of model is εmod = 1.21% (table 5.1), the inequality (5.3) is satisfied, but not optimally: the overall
results are more accurate than those predicted by (5.3). The results of this test confirm that the method
presented above efficiently approximates the transient solutions of the Biot-JKD model.

Due to the introduction of the diffusive variables, the size of the system increases from 4 (Biot-LF) to
4 + N (Biot-DA). Figure 5.5 shows the computational time in terms of the number of diffusive variables
N , for Biot-DA model. It is compared with the value of CPU time for low-frequency Biot model, where no
diffusive variables are required. The same parameters as in figure 5.4-(c-d) are used. The complexity of the
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Biot-DA scheme is found to be in O(N2). Nevertheless, for a few number of diffusive variables, the CPU
time remains comparable to those of LF method: for N = 3, the computational times of both the Biot-LF
and the Biot-DA methods are equivalent.
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Figure 5.5: section 5.3.1. CPU time in terms of the number of diffusive variables N.

5.3.2 Variable medium

The numerical methods developed in the previous chapters can be used to handle more complex media.
As an example, we use the Biot’s parameters of the medium Ω1, listed in table 5.1, except for the ratio η/κ,
which now varies linearly from 2.78 108 Pa.s.m−2 at x = −0.01 m to 2.78 1010 Pa.s.m−2 at x = 0.01 m. These
values are purely numerical and are not based on real data. Since only the diffusive part is modified, the
diffusive matrix S (3.25) differs between the grid points, but the propagation matrix A remains unchanged.
Consequently, the significant modifications of the method are only:

• at a given level of accuracy εmod, the most-penalizing number of diffusive variables N has to be
determined;

• the quadrature coefficients θℓ, aℓ have to be computed and stored at each grid point.

When dealing with a real continuously variable medium, which occurs in the case of many applications [67],
the present ADER scheme would also have to be modified in order to handle the spatial changes in the matrix
A. Figure 5.6 shows the pressure p at t1 ≃ 1.25 10−5 s. As expected, the rightward-moving slow wave is
more strongly attenuated than the leftward-moving one, because the values of η/κ are higher in the right
part of the domain. Since the effect of viscous losses are negligible for the fast wave, the rightward-moving
and left-moving fast waves have almost the same amplitude. The present numerical tool therefore provides
useful means for computing solutions of this kind, where no analytical expressions are available.
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Figure 5.6: section 5.3.2. Fast waves Pf and slow waves Ps emitted by a source point at x0 = 0 m. Snapshot
of pressure at t1 ≃ 1.25 10−5 s. Right: zoom on the slow wave.

5.4 2D isotropic media

Many numerical experiments will be presented in this section to demonstrate the ability of the method to
simulate accurately the propagation of waves in 2D isotropic heterogeneous media. For all the experiments
presented here, the computational domain [−0.1, 0.1]2 m is discretized with Nx×Nz grid points, Nx = Nz =
1600, which amounts to 29 points per slow compressional wavelength in Ω0 and in Ω1, and to 26 points in
Ω2.

5.4.1 Homogeneous medium

We first consider an homogeneous medium (Ω0) excited by a source point located at (0 m, 0 m). The
only non-null component of the vector of forcing F is fσxz

= gR(t)hG(x, z). This source generates cylindrical
waves of all types: fast and slow compressional waves and shear waves, which are denoted by Pf , Ps and S,
respectively, in figure 5.7. Fast and slow compressional waves are observed for instance in the pressure field,
while the additional shear wave is present in the σzz component of the stress tensor. Exact solution has not
been computed. Nevertheless, the theoretical wavefront, represented by a black dotted line in figure 5.7, can
be evaluated as the locus of the end of energy velocity vector Ve (2.117) multiplied by the time of propagation
t1 ≃ 3.98 10−5 s. As observed on figure 5.7, the end of the numerical computed waves corresponds to this
theoretical wavefront.

5.4.2 Fluid/porous plane interface

The second test concerns an heterogeneous media composed by the porous medium Ω0 and pure water.
They are separated by a horizontal plane interface located at z = 0.02 m. A source point is located in the
water, at (0 m, 0.022 m). The only non-null component of the source vector F is fp = gR(t)hD(x, z). This
source emits cylindrical waves that interact with the medium Ω0. Reflected, transmitted and surface waves
are observed on figure 5.8. This configuration has been investigated in [85] in the low-frequency regime, and
numerical simulations have been compared to a semi-analytical solution. This solution is based on Helmholtz
decomposition, exact stiffness matrix and accurate approximation of oscillating integrals. Development
and modification for the high-frequency Biot-JKD model has been made by G. Lefeuve-Mesgouez and A.



5.4. 2D ISOTROPIC MEDIA 121

p σzz

Ω0

Pf

S

Ps

Ω0

Pf

S

Ps

Figure 5.7: section 5.4.1. Fast and slow compressional waves, respectively Pf and Ps, and shear wave S
emitted by a source point at (0 m, 0 m). Pressure (a-c) and σzz component of the stress tensor (b-d) at
t1 ≃ 3.98 10−5 s. (c), (d): section in z = 0.015 m.

Figure 5.8: section 5.4.2. Snapshot of pressure at t1 ≃ 4.18 10−5 s. The interface is denoted by a straight
black line, separating the water and the porous medium Ω0.
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Mesgouez. Thanks to this improvement, we are able to compare time evolution of the pressure at a given
receiver, obtained by numerical simulation, to the semi-analytical results.

The receivers are located at points R1 (0.025 m, 0.021 m) and R2 (0.025 m, 0.019 m), and the comparison
is drawn on figure 5.9. The numerical solution has been computed with Nx = Nz = 400 grid points (figure
5.9-(a-b)) and with Nx = Nz = 1600 grid points (figure 5.9-(c-d)). The numerical solution tends toward
the semi-analytical one when Nx, Nz are large. With Nx = Nz = 1600, a excellent agreement is observed,
validating the numerical method in this configuration. From the physical point of view, figure 5.9 presents
three peaks due to the following waves: Pf for the fast compressional wave, F for the direct fluid wave, and
St for the pseudo-Stoneley wave.

(a) (b)

(c) (d)

Figure 5.9: section 5.4.2. Time evolution of pressure at recorder R1 (a-c) and at recorder R2 (b-d). Com-
parison between the numerical Biot-DA pressure (circle) and the semi-analytical Biot-JKD pressure (solid
line). (a-b): Nx = Nz = 400, (c-d): Nx = Nz = 1600. The fast compressional wave is denoted Pf , the direct
fluid wave F and pseudo-Stoneley wave St.

We recall the surface waves at liquid-porous media interfaces classify into three kinds. The first one is a
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true surface wave that travels slower than all the other waves: it is the generalization of the Scholte wave.
The second one is a pseudo-Scholte wave, also called pseudo-Stoneley wave, that travels with a velocity
between the shear-wave velocity and the slow-wave velocity (leaking energy to the slow wave). The last one
is a pseudo-Rayleigh wave, which becomes the classical Rayleigh wave if the liquid density goes to zero [61].

5.4.3 Multilayered porous media

The semi-analytical method can be applied also to multilayered media if the interfaces are parallel. Such
geometries occur for instance in underwater acoustics or civil engineering, since natural or artificial media
presenting unidirectional varying properties can be modelled as multilayered structures. We investigate such
situation by introducing horizontal layers of media Ω1 inside Ω0. Interfaces are located at z = 0.02 m,
z = 0 m, z = −0.01 m, and z = −0.04 m. Snapshot of the pressure field at time t1 ≃ 3.63 10−5 s is
represented on figure 5.10, and comparison with semi-analytical method at receivers R1 (0.025, 0.021) and
R2 (0.025,−0.001) is shown on figure 5.11. Time evolution of the complex pressure field generated by the
different interfaces is accurately computed by the numerical method.

Figure 5.10: section 5.4.3. Snapshot of pressure at t1 ≃ 3.63 10−5 s. The plane interfaces are denoted by
straight black lines.

5.4.4 Cancellous bone

Ultrasonic wave propagation is a commonly used noninvasive method for cancellous bone characterization.
Considering that the beam axis is parallel to one of the principal directions of the bone specimen, an isotropic
set of Biot’s parameters Ω2 can be used [84]. The dependence on the porosity of the physical parameters of
cancellous bone has been addressed by several authors. The skeletal frame parameters are related to those



124 CHAPTER 5. NUMERICAL EXPERIMENTS

(a) (b)

(c) (d)

Figure 5.11: section 5.4.3. Time evolution of the pressure at the recorderR1 in water (a-c) and at the recorder
R2 in Ω0 (b-d). Comparison between the numerical Biot-DA solution (circle) and the semi-analytical Biot-
JKD solution (solid line) pressure. (a-b): Nx = Nz = 400, (c-d): Nx = Nz = 1600. The fast compressional
wave is denoted Pf , the direct fluid wave F and pseudo-Stoneley wave St.
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of the solid bone material and the marrow bone by the relations [4, 10]





µ =
Es (1− φ)n
2 (1 + νb)

,

Kb =
Es (1− φ)n
3 (1− 2 νb)

,

T = 1− r (1− 1/φ),

(5.14)

where νs and νb are the Poisson’s ratio of the solid bone and of the skeleton, Kb is the bulk modulus of the
skeleton, n ≈ 2.14 is a variable depending on the geometrical structure of cancellous bone [78] and r ≈ 0.25
is a variable calculated from a microscopic model of a frame moving in the fluid [140]. For instance, the
parameters given in table 5.1 correspond to the particular case φ = 0.81.

A slice of cancellous bone is located between interfaces z = −0.02 m and z = −0.03 m, and immersed in
water. A source point located at (0 m, 0 m) emits cylindrical pressure waves. The thickness of the bone and
the distance with the source have been preserved in comparison to realistic in vitro ultrasonic test [109]. The
strong influence of the bone porosity on the behavior of the waves is illustrated in figure 5.12, which shows
the pressure field computed at t1 ≃ 4.17 10−5 s, for φ = 0.3 (a) and φ = 0.81 (b). The time evolution of the

(a) (b)

water

water

Ω2

water

water

Ω2

Figure 5.12: section 5.4.4. Snapshot of pressure at t1 ≃ 4.17 10−5 s. The plane interfaces separating the
water and the bone specimen are denoted by straight black lines. (a): porosity φ = 0.3, (b): porosity
φ = 0.81.

pressure at receivers R1 (0.005,−0.019) (a) and R2 (0.005,−0.031) (b), in the water, is shown on figure 5.13
for the both porosities.

5.4.5 Diffraction of a plane wave by cylinders

In the previous tests, the interfaces were always plane, but more complex geometries can be handled on
a Cartesian grid thanks to the immersed interface method. As an example, we simulate the interaction of
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Figure 5.13: section 5.4.4. Time evolution of the pressure at receivers R1 (0.005,−0.019) (a) and
R2 (0.005,−0.031) (b) in water, for the porosities φ = 0.3 (blue) and φ = 0.81 (red).

a plane wave with a cylindrical scatterer filled by medium Ω1, and immersed in medium Ω0. The cylinder,
of radius 0.015 m, is centered at point (0.01 m, 0 m). An incident plane right-going fast compressional wave
(3.66) is used as initial conditions, with t0 ≃ −2.52 10−6 s and g(t) = gR(t) and propagates in medium Ω0.
The initial conditions are illustrated in figure 5.14-(a), while the snapshot of σzz at time t1 ≃ 3.38 10−5 s is
represented on figure 5.14-(b). Classical waves conversions and scattering phenomena are observed. Since the
phase velocity cpf in the medium Ω1 is greater than in the medium Ω0, the transmitted fast compressional
wave has a curved wavefront. The cylindrical scatterer can easily be replaced for instance by a shell of
external radius 0.03 m and of internal radius 0.015 m, centerd at point (0.025 m, 0 m). The results are
presented on figure 5.15. In both cases, the immersed interface method ensures that no spurious diffractions
are created during the interaction of the incident wave with the scatterers, despite the non-null curvature of
the interfaces.

5.4.6 Multiple scattering

To illustrate the ability of the proposed numerical strategy to handle even more complex geometries, 250
ellipsoidal scatterers of medium Ω1 are randomly distributed in a matrix of medium Ω0. Scatterers have
major and minor radii of 0.003 m and 0.002 m. The same incident plane wave than in the previous test is
used as initial conditions, illustrated on figure 5.16. The σzz component of the stress tensor is represented
on figure 5.17 at time t1 ≃ 3.74 10−5 s. This simulation has taken approximately 11.5 h of preprocessing and
8.5 h of time-stepping.

Performing such a simulation with hundreds of scatterers has physical applications. If the size of the
inclusions is similar to that of the wavelength, the effective field therefore corresponds to waves propagating
in an effective homogeneous medium. This effective field is obtained by averaging the fields in all the
possible disordered configurations. Then the phase velocities and attenuations of the effective medium can
be determined numerically, and compared with predictions obtained with multiple scattering models [96, 33].
such as the Independent Scattering Approximation, the Waterman-Truell [138] and the Conoir-Norris [40]
models.
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(a) (b)

Ω0

Ω1

Ipf

Figure 5.14: plane wave impacting a cylinder. Snapshot of σzz at initial time (a) and at t1 ≃ 3.38 10−5 s
(b). The cylinder is denoted by a black circle, separating the porous media Ω0 (outside) and Ω1 (inside).

(a) (b)

Ω0

Ω1

Ω0 Ipf

Figure 5.15: section 5.4.5. Plane wave impacting a circular shell. Snapshot of σzz at initial time (a) and
at t1 ≃ 3.38 10−5 s (b). The porous media are Ω0 (outside the shell), Ω1 (between the two circles) and Ω0

(inside the circle with smaller radius).
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IpfΩ0

Figure 5.16: section 5.4.6. Snapshot of σzz at the initial time. The matrix is Ω0, whereas the scatterers are
Ω1.

5.4.7 Fluid/porous sinusoidal interface

These tests focus on the propagation of 2D acoustic waves in water half-space over the porous medium
Ω0. In the first test, no scatterer is in the porous medium, whereas three ellipsoidal scatterers of water
are embedded in Ω0 in the second test. Similar configurations are commonly encountered in underwater
acoustics. The influence of the scatterers is illustrated by these qualitative tests.

The equation of the sinusoidal interface between the water and the porous medium is

(z − zs)−As sin (ωs (x− xs)) = 0, (5.15)

with xs = 0 m, zs = −0.01 m, As = 0.01 m, ωs = 50 π rad/s. The ellipsoidal scatterers are centered at
points (xi, zi), of major radius Ai and of minor radius Bi, with angles ϕi between the x-axis and the minor
axis of the ellipse (5.16). The subscripts 1, 2 and 3 are associated to the ellipse at the left, the center and
the right of figure 5.18, respectively.

x1 = −0.05 m, x2 = −0.01 m, x3 = 0.045 m,

z1 = −0.045 m, z2 = −0.04 m, z3 = −0.045 m,

A1 = 0.015 m, A2 = 0.02 m, A3 = 0.03 m,

B1 = 0.01 m, B2 = 0.01 m, B3 = 0.01 m,

ϕ1 = π/6 rad, ϕ2 = 5 π/14 rad, ϕ3 = −π/3 rad.

(5.16)

A source point located at (0 m, 0.015 m) in water emits cylindrical waves. The only non-null component of
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Figure 5.17: section 5.4.6. Multiple scattering in random media. Snapshot of σzz at time t1 ≃ 3.74 10−5 s.
The matrix is Ω0, whereas the 250 scatterers are Ω1.
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the forcing F is fp = gR(t)hD(x, z). The time evolution of the pressure at receivers R1 (−0.01, 0) located

(a) (b)

water

Ω✞

water

Ω�

wa
ter

water

w
a
te
r

Figure 5.18: section 5.4.7. Snapshot of pressure at t1 ≃ 8.97 10−5 s. The interfaces are denoted by straight
black lines, separating the water and the porous medium Ω0. (a): without scatterer, (b): with scatterers.

in the water (a), and R2 (0.01,−0.005) located in Ω0 (b), is shown on figure 5.19. For the two receivers, the
influence of the scatterers is significant only for time t > 4 10−5 s.

5.5 2D transversely isotropic media

This section presents the numerical experiments in 2D transversely isotropic media. In the first test,
the computational domain [−0.15, 0.15]2 m is discretized on Nx = Nz = 2250, which amounts to 20 points
per slow compressional wavelength in Ω3. In the other tests, the computational domain [−0.1, 0.1]2 m is
discretized on Nx = Nz = 1500, which amounts also to 20 points per slow compressional wavelength in Ω3

and in Ω4.

5.5.1 Homogeneous medium

In the first test, the homogeneous medium Ω3 (table 5.2) is excited by a source point located at (0 m, 0 m).
The only non-null component of the forcing F is fσxz

= gR(t)hG(x, z). This source generates cylindrical
waves of all types: fast and slow quasi-compressional waves and quasi-shear waves, which are denoted by
qPf , qPs and qS, respectively, in figure 5.20. The three waves are observed in the pressure field. Comparison
with the theoretical wavefront, represented by a black dotted line in figure 5.20, shows that the computed
waves are well positionned at this instant (t1 ≃ 2.72 10−5 s). The cusp of the shear wave is seen in the
numerical solution.
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Figure 5.19: section 5.4.7. Time evolution of the pressure at receivers R1 (−0.01, 0) in water (a) and
R2 (0.01,−0.005) in Ω0 (b).

p zoom
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Figure 5.20: section 5.5.1. Fast and slow quasi-compressional waves, respectively qPf and qPs, and quasi-
shear wave qS emitted by a source point at (0 m, 0 m). Pressure at t1 ≃ 2.72 10−5 s.
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5.5.2 Diffraction of a plane wave by a plane interface

In the second test, the validity of the method is checked for a very particular case of heterogeneous
transversely isotropic media, where a semi-analytical solution can be obtained easily. The media Ω3 and Ω4

are separated by a vertical wave plane interface at x = 0 m. An incident plane right-going fast compressional
wave (3.66) is used as initial conditions, with t0 ≃ −9.99 10−7 s and g(t) = gR(t). The wavevector k makes
an angle θ = 0 rad with the horizontal x-axis. The incident Pf -wave (Ipf ) propagates in the medium Ω4.
The figure 5.21 shows a snapshot of the pressure at t1 ≃ 1.48 10−5 s, on the whole computational domain.
The reflected fast and slow quasi-compressional waves, denoted respectively Rpf and Rps, propagate in
the medium Ω4; and the transmitted fast and slow quasi-compressional waves, denoted respectively Tpf
and Tps, propagate in the medium Ω3. In this case, we compute the exact solution of Biot-DA thanks to

(a) (b)

Ω4 Ω3Ipf
Rpf Rps Tps Tpf

Figure 5.21: section 5.5.2. Snapshot of pressure at initial time (a) and at t1 ≃ 1.48 10−5 s (b). The plane
interface is denoted by a straight black line, separating Ω4 (on the left) and Ω3 (on the right).

standard tools of Fourier analysis. The figure 5.22 shows the excellent agreement between the analytical
and the numerical values of the pressure along the line z = 0 m. Despite the relative simplicity of this
configuration (1D evolution of the waves and lack of shear waves), it can be viewed as a validation of the
numerical method which is fully 2D whatever the geometrical setting.

5.5.3 Diffraction of a plane wave by cylinders

To end this section, we run the tests involving cylindrical, shell or ellipsoidal scatterers presented in the
previous section. Isotropic media are replaced by transversely isotropic ones Ω3 and Ω4. In each case, an
incident plane right-going fast compressional wave (3.66) is used as initial conditions, with t0 ≃ −1.14 10−6

s and g(t) = gR(t). Initial condition and snapshots of the pressure are represented in figures 5.23-(a,b),
5.24-(a,b), 5.25 and 5.26. As in section 5.4.5, classical waves conversions and scattering phenomena are
observed. Since the phase velocity cpf in the medium Ω1 is greater than in the medium Ω0, the transmitted
fast compressional wave has a curved wavefront, but the shape of the reflected waves shows here the strong
anisotropy of the medium Ω3.
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Figure 5.22: section 5.5.2. Pressure along the line z = 0 m; vertical line denotes the interface. Comparison
between the numerical values (circle) and the analytical values (solid line) of p at t1 ≃ 1.58 10−5 s.

(a) (b)

Ω3

Ω4

Ipf

Figure 5.23: section 5.5.3. Snapshot of pressure at initial time (a) and at t1 ≃ 1.69 10−5 s (b). The cylinder
is denoted by a black circle, separating the porous media Ω3 (outside) and Ω4 (inside).
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(a) (b)

Ω3

Ω4

Ω3 Ipf

Figure 5.24: section 5.5.3. Snapshot of pressure at initial time (a) and at t1 ≃ 1.69 10−5 s (b). The porous
media are Ω3 (outside the shell), Ω4 (between the two circles) and Ω3 (inside the circle with smaller radius).

Ω3 Ipf

Figure 5.25: section 5.5.3. Snapshot of the pressure at initial time. The matrix is Ω3, whereas the scatterers
are Ω4.
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Figure 5.26: section 5.5.3. Snapshot of pressure at t1 ≃ 1.88 10−5 s (b). The matrix is Ω3, whereas the
scatterers are Ω4.

5.6 Conclusion

The numerical experiments presented in this chapter illustrate the properties of the method developed
in chapters 3 and 4.

For 1D media (§ 5.3), the diffusive approximation is validated by comparison of numerical solution and
analytical solution of the Biot-JKD model. The numerical method in homogeneous medium is validated by
comparison of numerical solution and analytical solution of the Biot-DA model. The order of convergence and
the computational time are measured. An example of continuously variable medium, for which no analytical
solutions exists, ends this section. For 2D isotropic media (§ 5.4) and transversely isotropic media (§ 5.5), the
numerical method with plane interfaces is validated in various academic configurations. Both porous/porous
and fluid/porous interfaces are considered. Examples of simulations in non-academic configurations, for
which no analytical solution are available, are presented. As seen in section 5.4.6, the computational time of
simulations can be large, even with only N = 3 additional arrays. Such simulations are not realizable with
20 [99] or 25 [74] additional arrays.
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Chapter 6

Conclusion and prospects

6.1 Results

An explicit finite-difference method has been developed here to simulate transient poroelastic waves in
the full range of validity of the Biot-JKD model, which involves order 1/2 fractional derivatives. In the
chapter 2, the mathematical properties of this model are analyzed: the mechanical energy decreases, which
ensures that the problem is well-posed, and the system is hyperbolic, which states that the waves propa-
gate at finite velocities. A dispersion analysis describes the properties of the two compressional waves and
of the shear wave. Moreover, it provides a plane wave solution of the Biot-JKD model. Beltrami-Michell
equation is derived, and the jump conditions between different media are written. In chapter 3, a diffusive
representation transforms the fractional derivatives, non-local in time, into a continuum of local problems,
approximated by quadrature formulae. The Biot-JKD model is then replaced by an approximate Biot-DA
model, much more tractable numerically. The properties of the Biot-DA model - energy, hyperbolicity,
dispersion - are also studied, proving that the diffusive approximation does not introduce spurious waves,
and that the high-frequency limits of the phase velocities are unchanged. It provides also a sufficient con-
dition on the quadrature coefficients for the well-posedness of the Biot-DA problem. The coefficients of
the diffusive approximation are determined by a nonlinear constrained optimization procedure, depending
on the frequency range of interest. In the chapter 4, the hyperbolic Biot-DA system of partial differential
equations is discretized using efficient tools of scientific computing: Strang splitting, fourth-order ADER
scheme, Padé approximation of exponential matrix, immersed interface method. In chapter 5, the diffusive
approximation of the Biot-JKD model and the numerical method are validated in academic configurations,
by comparison between numerical and analytical solutions. Preliminary numerical experiments indicate also
that the methodology developed in this thesis can handle efficiently wave propagation in complex media,
such as multiple scattering in random media.

An important point in this thesis concerns the discretization of the fractional derivatives using a diffusive
approximation, where the quadrature coefficients are determined by optimization procedure on the frequency
range of interest. Doing so provides a way to determine a priori the number of diffusive variables in terms of
the error of model εmod. Putting together all the tools of scientific computing leads to an efficient numerical
strategy. A practical application of this work has been the development of a code, implemented in C language.
The matrices involved in the numerical methods are computed during a preprocessing step (see § 4.6), and
the matrix-vector products are optimized. Taking into account complex dissipative mechanism obviously
introduces a computational extra-cost, in terms of both the memory requirement and the computational time.
Controlling the number of diffusive variables is therefore the key feature of the numerical implementation.
In the example of section 5.3.1, taking N = 3 diffusive variables leads to:

• a memory requirement 1.75 times larger than for the Biot-LF model (the number of variables increases
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from 4 to 4 +N);

• a CPU times 2.5 times larger than for the Biot-LF model.

The number N = 3, frequently used in this thesis, is to be compared with the 25 diffusive variables used
in [94], and with the 20 time-step stored in [99]. The program developed in this thesis is currently being
deposited at the french Agence pour la Protection des Programmes.

6.2 Improvements of the method

Some improvements of the method are suggested:

6.2.1 Mathematical analysis

The existence, uniqueness, and regularity of the solution of both the Biot-JKD model and the Biot-DA
model remain to be addressed. The usual means relies on the Hille-Yosida theorem, which characterizes
the semigroups of unbounded linear operators on Banach spaces [19]. In the thesis [55], the Hille-Yosida
theorem is applied, proving the existence and uniqueness of strong solutions of the Biot-LF model. This
proof, partially based on the decreasing of the mechanical energy, can be applied directly to the Biot-DA
model, which is also a first-order hyperbolic system. For the Biot-JKD model, involving order 1/2 fractional
derivatives, the proof is more tedious. The existence and uniqueness of the solution of the Webster-Lokshin
fractional differential equation has been proven in [73], using the diffusive representation, the Hille-Yosida
theorem and the decreasing of the mechanical energy. This proof can a priori be extended to the Biot-JKD
equations.

6.2.2 Perfectly Matched Layer

In the numerical experiments presented in chapter 5, periodic boundary conditions are used if the sim-
ulation is initialized by a plane wave. Otherwise, the size of the domain and the duration of the simulation
are defined so that no special attention is required at the boundary of the domain. Perfectly Matched Layer
(PML) provides a way to simulate outgoing waves. The PML, first introduced for Maxwell’s equations by
Bérenger [9], has been developed to simulate outgoing waves reaching the artificial edges of the computa-
tional domain. The outgoing waves are then perfectly absorbed from the interior of a computational region
without reflecting them back into the interior, for all angles of incidence and all frequencies. Unfortunately,
after discretization, the numerical efficiency is reduced drastically at grazing incidence. The classical PML
was introduced in [39] for a velocity-stress formulation of general wave equations, written as a first-order
hyperbolic system [39]. This method was improved at grazing incidence in [98], which is advantageous in
terms of memory storage, and implemented in a fourth-order finite-difference numerical scheme. Since the
velocity-stress formulation of the Biot-DA equations is also a first-order hyperbolic system, the PML method
could be easily applied to the Biot-DA equations by following a similar approach than in [98]. However, in
anisotropic elastic media, stability constraints on the elastic coefficients have been obtained [7]. Extension
of the PML method to anisotropic poroelastic media therefore requires a preliminary theoretical analysis.

6.2.3 Parallelization

For in vitro ultrasonic tests on bones (see § 5.4.4), the central frequency of the source is typically f0 = 1
MHz. The thickness of the bone specimen is 0.01 m, and the distance of propagation is typically 0.02 m.
Consequently, sizing of the experiment leads to Nx × Nz = 50002 grid nodes to ensure 20 points per slow
compressional wavelength in Ω2, and 12000 time iterations are required. As a second example, a preliminary
simulation of multiple scattering in random media has been presented in § 5.4.6 and § 5.5.3. Based on
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simulated data, the properties of the effective medium could be deduced, validating model of effective
medium [33, 96]. However, realistic configurations would involve approximately 1500 scatterers, and sizing
of the experiments leads to Nx×Nz = 100002, and 10000 time iterations are required. According to the CPU
time for the pre-processing step and for the computational time obtained in section 5.4.6, such a simulation
would take approximately two days of pre-processing and four months of computational time. As a third
example, the numerical strategy remains unchanged in the three-dimensional case, but the computational
time and the memory requirement increase considerably.

These three examples show that practical applications are out of reach on a simple processor. Con-
sequently, the numerical method has to be parallelized, for instance by Message Passing Interface (MPI).
Since the method is fully explicit, no conceptual difficulties are expected concerning the parallelization of
the numerical scheme. Nevertheless, implementing the immersed interface method for complex geometries
in a multi-processor environment is not a trivial task.

6.3 Future lines of research

Various future lines of research are suggested. Some are direct applications of the methodology developed
in this thesis, in the field of mechanics (§ 6.3.1 and § 6.3.2), or not (§ 6.3.3). Some others are more
adventurous, involving fractional derivatives in space (§ 6.3.4).

6.3.1 Thermic boundary-layer

In cases where the saturating fluid is a gas, the effects of thermal expansion of both pore fluid and the
matrix have to be taken into account. In the literature, the thermal effects were studied for "equivalent
fluid" models. When the density of the solid phase is much greater than the one of the saturated fluid, the
solid phase can be considered as rigid and motionless: vs = 0. The wave equation for motionless skeleton
materials can be recovered from the Biot theory. Under these displacements and strains conditions, only
one compressional wave propagate in the fluid phase. An equation linking the acoustic pressure p to the
temperature T of the fluid has been established in [30]:

φ
(
T̂ − T0

)
=
κ̂T (ω)

kT
j ω p̂, (6.1)

where T0 is the fluid temperature at rest, kT is the coefficient of thermal conduction and κ̂T (ω) is the dynamic
thermal permeability, which varies from the isothermal to the adiabatic value when frequency increases. In
1991, Champoux and Allard propose an expression of κ̂T (ω) [30], by analogy with the work of Johnson,
Koplik and Dashen [80]. The expression of κ̂T (ω) is then modified in 1997 by Lafarge, who introduces a new
parameter, to describe the low-frequency behavior of thermal effects [83]. Setting

MT =
8 k0
φΛ2

T

, ΩT =
φ ν

k0 Pr
, (6.2)

the dynamic thermal permeability κ̂T (ω) proposed by Lafarge is given by




κ̂T (ω) =
φ ν

j ω (γT − 1)Pr

(
β̂T (ω)− γT

)
,

β̂T (ω) = γT − (γT − 1)

(
1 +

ΩT
j ω

(
1 + j

MT

2

ω

ΩT

)1/2
)−1

,

(6.3)

where γT is the static heat ratio, k0 is the static thermal permeability, ν = η/ρ0 is the kinematic viscosity,
ρ0 is the fluid density at rest, Pr is the Prandtl number, and ΛT is the thermal characteristic length. In
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the HF regime, the thermal exchanges between fluid and solid phase occur in a small layer close to the
surface of the pores. The definition of the thermal characteristic length ΛT is inspired by the definition of
the viscous characteristic length Λ. In the time-domain, the Johnson-Champoux-Allard-Lafarge system of
partial differential equations [56] is

1

Kf

∂ p

∂ t
+

2 (γT − 1)

Kf ΛT

√
η

Pr ρ0

(
D +

2ΩT
MT

)1/2

p = −∇ .vf , (6.4a)

T ρ0
∂ vf
∂ t

+ φ
η

κ
(D +Ω)1/2vf = −∇ . p, (6.4b)

∂ T

∂ t
+

√
MT ΩT

2

(
D +

2ΩT
MT

)1/2

(T − T0) = −
ν

kT Pr

∂ p

∂ t
. (6.4c)





Equations (6.4a) and (6.4b), linking the velocity vf and the pressure p, does not depend explicitly on the
temperature. Consequently, it can be solved independently from (6.4c). Since this reduced system involves
two fractional derivatives of order 1/2, the method presented in this thesis can be applied without any
difficulty by introducing 2N diffusive variables (N for each fractional derivative in the one-dimensional case).
To have access to the temperature field, equations (6.4a), (6.4b) and (6.4c) must be solved simultaneously.
In this case, 3N diffusives variables are required. Time-domain analytical solution of this system has been
computed by Fellah and Depollier [56].

6.3.2 Viscoelasticity

The dynamic properties of viscoelastic materials depend on the frequency. The most popular models
developed for describing the dynamic behaviour of materials consist of combinations of elastic springs and
viscous dashpots; see for instance the Maxwell, Kelvin-Voigt and Zener models.

But in some cases, these models do not accurately describe the dynamic behavior of viscoelastic materials.
The reason for this inaccuracy can be found in the stress-strain relationship defined in the time-domain by a
linear differential equation of integer order. To generalize the existing constitutive laws, the series of integer
order derivatives can be replaced by a fractional-order derivative [3, 6, 25]. The fractional viscoelastic models
are widely used in the literature [65, 116, 132, 142], but usually to describe only the mechanical behavior,
and not the wave propagation in such materials.

As a first example of fractional viscoelastic model, the fractional Andrade model is a generalization of
the Maxwell model in viscoelasticity [3], used to describe the behavior of steel or of the Earth’s mantle [2, 8].
In the time-domain, the constitutive law is given by

∂ ε

∂ t
= Ju

∂ σ

∂ t
+
σ

η
+AΓ(2− α) ∂

ασ

∂ tα
, (6.5)

where Ju is a unrelaxed compliance, η is the viscosity, A > 0 and 0 6 α 6 1. Typically, α ≈ 2/3 is used.
The linear constitutive law (6.5) involves one fractional derivative of order α 6= 1/2.

As a second example, the fractional Kelvin-Voigt model is introduced by Caputo in 1981 to model under-
ground nuclear explosions [23], and is currently widely used [41, 134]. A numerical method is proposed in [24],
combining a pseudospectral method and the Grüwald-Letnikov approximation of the fractional derivative.
In the time-domain, the constitutive law is given by

σ =M ε+ η
∂α ε

∂ tα
, (6.6)
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where M is the stiffness and 0 6 α 6 1. The limit α = 0 gives the Hooke’s law, and the limit α = 1 recovers
the classical Kelvin-Voigt model. The linear constitutive law (6.6) involves one fractional derivative of order
α 6= 1/2.

As a third example, the four-parameter fractional Zener models is [116]

σ + ταr
dα σ

d tα
=M0 ε+M∞ ταr

dα ε

d tα
, (6.7)

where 0 6 α 6 1, M0 is the static modulus of elasticity, M∞ is the high-frequency limit value of the dynamic
modulus of elasticity, τr is the relaxation time. In [116], the author uses α = 0.335. The linear constitutive
law (6.7) involves two fractional derivatives of order α 6= 1/2.

Both these three models involve fractional derivatives of order α other than 1/2. The methodology
presented in this thesis can be easily extended to this case. Each fractional derivative introduces N diffusive
variables, and the coefficients of the diffusive approximation are determined by a slightly modification of the
optimization procedure. This work in currently in progress for the Andrade model [8].

6.3.3 Maxwell equations

The Maxwell equations, which form the foundation of classical electromagnatism, describe how electric
and magnetic fields are generated and altered by each other and by charges and currents. The equations
have two major variants. The microscopic Maxwell equations, linking the electric field E and the magnetic
field B, use total charge and total current, including the complicated ones in materials at the atomic scale. It
has universal applicability, but may be too complex for computations. The macroscopic Maxwell equations
introduce two new auxiliary fields - the displacement field D and the magnetizing field H - that describe
large-scale behavior without having to consider these atomic scale details, but it requires constitutive laws
to define these additional fields. In the general case, the macroscopic Maxwell’s equations write





∇ .D = ρf (Gauss’s law for electricity),

∇ .B = 0 (Gauss’s law for magnetism),

∇×E = −∂B
∂ t

(Faraday’s law of induction),

∇×H = Jf +
∂D

∂ t
(Ampère law),

(6.8)

where ρf is the free charge density and Jf is the free current density. The definitions of the auxiliary fields
are 




D = ε0E + P ,

H =
1

µ0
B −M ,

(6.9)

where ε0 is the vacuum’s permittivity, µ0 is the vacuum permeability, the polarization field P and the
magnetization field M are defined in terms of microscopic bound charges and bound current respectively.
A dielectric is an insulating material. When a dielectric is placed in an electric field, no current will flow
inside the material, unlike metals, and no free current density is created:

M = 0, Jf = 0. (6.10)

The positive charges within the dielectric are displaced in the direction of lower voltage, and the negative
charges are displaced in the opposite direction. When the molecules constituting the dielectric are polar,
such as water, they will align in the field. No free charge density is therefore created: ρf = 0. Instead,
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electric polarization occurs. Dielectric material is characterized by the complex relative susceptibility χr(ω),
that describes the polarization of the material

P̂ (ω) = ε0 χ̂r(j ω) Ê(ω). (6.11)

The relation proposed by Debye in 1913 introduces integer power of j ω:

χ̂r(j ω) =
εs − ε∞
1 + j ω τ

, (6.12)

where εs and ε∞ are the static and infinite frequency relative dielectric constants, and τ is the relaxation
time. Consequently, in the time-domain, an integer-order differential equation is obtained. In 1941, the Cole
brothers state that, at ultrasonic frequencies, many experiments on biological tissues indicate that Debye
relation does not correctly represent the frequency-dependence of dispersion processes. Thus, they propose
a modified form of Debye relation, called Cole-Cole relation, which allows the experimental data to be fitted
more accurately [38]. The Cole-Cole model of complex relative susceptibility is widely used to extrapolate the
measured values in biological tissues to higher frequencies. The Cole-Davidson model has been alternatively
proposed in the literature [45], and the Havriliak-Negami model is a generalization of both the Cole-Cole
and the Cole-Davidson models. In these models, the complex relative susceptibility is given by





χ̂r(j ω) =
εs − ε∞

1 + (j ω τ)α
(Cole-Cole),

χ̂r(j ω) =
εs − ε∞

(1 + j ω τ)α
(Cole-Davidson),

χ̂r(j ω) =
εs − ε∞

(1 + (j ω τ)α)β
(Havriliak-Negami).

(6.13)

The complex relative susceptibility χ̂r(s) must satisfy the Kramers-Kronig relations to describe the behavior
of a causal system. The causality of both the three models has been addressed by several authors [97, 137].

In the time domain, these three models introduce fractional derivatives of order different from 1/2. For
instance, the Cole-Cole model is written

τα
∂αP

∂ tα
+ P = ε0 (εs − ε∞)E. (6.14)

where α, which depends on the considered medium, is assumed to be between 0 and 1. The special case
α = 1 corresponds to the Debye’s relation, and α = 0.8 is used in [136]. These three models could be easily
treatable by the method presented in this thesis.

6.3.4 Fractional derivatives in space

The local Johnson-Champoux-Allard-Lafarge theory is very efficient to predict the macroscopic behavior
of long-wavelength sound propagation in porous medium with relatively simple microgeometries. However,
it remains far to describe correctly the coarse-grained dynamics of the medium when the microgeometry
of the porous medium become more complex. For rigid-framed porous media permeated by a viscothermal
fluid, a generalized macroscopic nonlinear and nonlocal theory of sound propagation has been developed in
the recent thesis of Nemati to take into account not only temporal dispersion, but also spatial dispersion
[108]. In the local theory, (6.4a) and (6.4b) lead to

∆ p̂+ ω2 ρ̂eq(ω)

K̂eq(ω)
p̂ = 0, (6.15)
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where ρ̂eq(ω) is the equivalent-fluid density and K̂eq(ω) is the equivalent-fluid bulk modulus. In the nonlocal
theory, both ρ̂eq(ω) and K̂eq(ω) depend on the frequency and on the wavenumber. In this case, the spatial
Fourier transform of (6.15) yields

k2 ∆ p̂+ ω2 ρ̂eq(ω, k)

K̂eq(ω, k)
p̂ = 0, (6.16)

taking into account the wavenumber-dependence of the coefficients. Inverse Fourier transforms on (6.16)
introduce not only time fractional derivatives, like in the Johnson-Champoux-Allard-Lafarge model, but
also space-fractional derivatives.

As a second example of space-fractional derivatives, one introduces a coupled system of Burgers equations:




∂α1 u

∂ tα1
=
∂2 u

∂ x2
+ 2 u

∂α2 u

∂ xα2
− ∂ (u v)

∂ x
,

∂β1 v

∂ tβ1
=
∂2 v

∂ x2
+ 2 v

∂β2 v

∂ xβ2
− ∂ (u v)

∂ x
.

(6.17)

It model sedimentation or evolution of volume concentrations of two kinds of particles in fluid suspensions or
colloids, under the effect of gravity. The system of two coupled Burgers equations (6.17) has rich dynamics,
and has been widely studied in the literature [34, 54, 107]. The coupling between the fractional derivatives
and the nonlinear terms in (6.17) is not a major difficulty, see for instance [91] where a system describing
nonlinear acoustics across a set of Helmholtz resonators is numerically addressed.

Both the time-domain version of (6.16) and the coupled Burgers equations (6.17) involve space-fractional
derivatives. Numerical modeling of space-fractional differential equations has been addressed by several au-
thors [89, 133], by using a Grünwald-Letnikov approximation. The diffusive approximation of such derivatives
is an interesting challenge. Indeed, the Caputo time-fractional derivatives are defined for causal temporal
functions u(t), where t ∈ R

+. What happens for functions u(x), where x ∈ R ?
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Appendix

A.1 Algorithm for the Beltrami–Michell equations

The following algorithm is proposed to compute the non-zero components of matrices Gr
i , (i = 0, 1)

involved in the second step of the immersed interface method (see § 4.5.3):
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α = −1, β = −1,
for γ = 0, ..., r, for δ = 0, ..., γ

if δ = 0 then for ε = 1, ..., 8

α = α+ 1, β = β + 1, Gr
i (α, β) = 1

if ζ 6= 0 and δ 6= 0 and ζ 6= δ then

if ζ = 2 then ν = 0, η = 0,

else if δ = 1 then ν = 0, η = 1,

else if δ = γ − 1 then ν = 1, η = 0,

else ν = 1, η = 1,

for ε = 1, ..., 5

α = α+ 1, β = β + 1, Gr
i (α, β) = 1

α = α+ 1, β = β − 8 + ν, Gr
i (α, β) = Θ0

β = β + 2− ν, Gr
i (α, β) = Θ1

β = β + 1, Gr
i (α, β) = Θ2

β = β + 12, Gr
i (α, β) = Θ1

β = β + 2− η, Gr
i (α, β) = Θ0

β = β + 1, Gr
i (α, β) = Θ2

α = α+ 1, β = β − 9 + η, Gr
i (α, β) = 1

α = α+ 1, β = β + 1, Gr
i (α, β) = 1

if ζ 6= 0 and ζ = δ then for ε = 1, ..., 8

α = α+ 1, β = β + 1, Gr
i (α, β) = 1.

(A.1)
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A.2 Proof of lemma 1

The lemma 1 provides a means to approximate spatial derivatives by centered finite-difference of order
2K (§ 4.3.1). Here, this lemma is proven. A Taylor expansion in space of U(xI+si , tn), si = −K, · · · ,K, at
order 2K leads to

U(xI+si , tn) =

2K∑

m=0

(si∆x)
m

m!

∂m

∂ xm
U(xI , tn) +O(∆x2K+1). (A.2)

The equations (A.2) are written in a matricial form




U(xI−K , tn)
...

U(xI+si , tn)
...

U(xI+K , tn)




=




1 · · · (−K∆x)m

m!
· · · (−K∆x)2K

(2K)!
...

...
...

...
...

1 · · · (si∆x)
m

m!
· · · (si∆x)

2K

(2K)!
...

...
...

...
...

1 · · · (K∆x)m

m!
· · · (K∆x)2K

(2K)!







U(xI , tn)
...

∂m

∂ xm
U(xI , tn)

...
∂2K

∂ x2K
U(xI , tn)




+




O(∆x2K+1)
...

O(∆x2K+1)
...

O(∆x2K+1)



,

= V




1 · · · 0 · · · 0
...

...
...

...
...

0 · · · ∆xm

m!
· · · 0

...
...

...
...

...

0 · · · 0 · · · ∆x2K

(2K)!







U(xI , tn)
...

∂m

∂ xm
U(xI , tn)

...
∂2K

∂ x2K
U(xI , tn)




+




O(∆x2K+1)
...
O(∆x2K+1)
...
O(∆x2K+1)



.

(A.3)
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The system (A.3) gives




U(xI , tn)
...

∂m

∂ xm
U(xI , tn)

...
∂2K

∂ x2K
U(xI , tn)




=




1 · · · 0 · · · 0
...

...
...

...
...

0 · · · m!

∆xm
· · · 0

...
...

...
...

...

0 · · · 0 · · · (2K)!

∆x2K




V
−1







U(xI−K , tn)
...

U(xI+si , tn)
...

U(xI+K , tn)




+




O(∆x2K+1)
...
O(∆x2K+1)
...
O(∆x2K+1)






,

=




K/2∑

si=−K/2
γ0,si U(xI+si , tn)

...

m!

∆xm

K/2∑

si=−K/2
γm,si U(xI+si , tn)

...

(2K)!

∆x2K

K/2∑

si=−K/2
γ2K,si U(xI+si , tn)




+




O(∆x2K+1−m)
...
O(∆x2K+1−m)
...
O(∆x2K+1−m)



,

(A.4)
which completes the proof. �
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