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Introduction

This thesis mainly deals with the development of a strategy for the optimal design of ad-
vanced engineering structures and, more precisely, the optimal design of modular systems.

Two questions immediately arise: what is a modular system? And why do we focus
on the design of modular systems? Let us start by trying to give an answer to the first
question: a modular system is a system composed by “elementary units” (the modules)
where each module is characterised by the same vector of unknowns (the constitutive
parameters or design variables of the module) that can get different values for each module.
Hence, the modules composing the system share the same general vector of unknowns,
but they can be defined by different values of these unknowns.

The researches made within this thesis essentially concern a special class of engineer-
ing modular systems: structures. Modular structures are widely used in engineering,
especially in aeronautics, helicopter and automotive fields. Classical examples of modular
systems are:

• laminates made of n elementary plies, where each ply represents the module char-
acterised by different constitutive parameters like, for instance, the material of the
layer, its thickness and the fibre orientation angle;

• the structural parts of an aircraft, namely the stiffened panels composing the fuse-
lage or the wings, where each panel can be seen as a modular system where the
elementary unit is the stiffener;

• the hybrid active/passive systems, generally composed of a plate whose vibrations
are damped by bonding in some well-chosen regions some viscoelastic (passive damp-
ing) or piezoelectric (active/passive damping) patches where each patch represents
the module;

• etc.

The optimisation of a modular system is, often, an hard task which can be math-
ematically formalised as a non-classical optimisation problem. When dealing with this
kind of problems the goal is to optimise the system, on one hand in terms of the number
of modules N and on the other hand in terms of the constitutive parameters of each
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module. From a mathematical point of view, this means to look for a global optimum
configuration of the system over a search space having a variable dimension Nvar, where
the total number of design variables Nvar strictly depends on the number of modules N
composing the system. In addition, the unknowns can be of different nature: continuous,
discrete and so on.

Therefore, in order to deal with the optimal design of modular systems, we need to
conceive a procedure that includes on one side the number of modules N among the design
variables of the problem (this implicitly corresponds to solve an optimisation problem
defined over a domain of variable dimension Nvar, i.e. a variable number of unknowns
have to be determined), while on the other side it has to be able to deal with design
variables of different nature.

Considering all the previous aspects and taking into account the fact that, often,
the optimisation problems of modular systems are highly non-linear and non-convex, we
decided to develop a numerical strategy in the framework of metaheuristics, and more
precisely, in the context of genetic algorithms (GAs).

Nevertheless, standard GAs are not able to deal with optimisation problems of modu-
lar structures when they are stated in the most general way, i.e. they are not able to face
optimisation problems defined over a search space having a variable dimension. In order
to overcome such an issue, in this thesis we try to go beyond the classical structure of the
standard GA, by introducing the concept of species and also by developing new genetic
operators allowing the reproduction among individuals of different species: such operators
will allow the parallel evolution of species and individuals. Our choice was inspired by an
extended interpretation of the Darwinian concept of the evolution of the species. These
particular operators have been developed in the framework of the genetic code BIANCA
(Biologically Inspired ANalysis of Composite Assemblages), originally developed by Vin-
centi et al. to solve design problems of composite laminated structures [1, 2].

As we will discuss in Chapter 1, in BIANCA, the concept of species is linked to the
number of individual’s chromosomes which is, on its turn, linked to the number of modules
composing the system and, hence, to the overall number of design variables which uniquely
defines the behaviour of the system.

In some sense, we have been guided in this choice by a double natural paradigm:
the evolution of individuals and of species. This consideration has conducted us to a
simultaneous two-level Darwinian strategy. For this reason, the first part of this thesis
concerns the development of new genetic operators able to deal with optimisation problems
of modular systems and to include the number of modules among the design variables of
the problem. These operators introduce substantial changes into the reproduction phase
which represents the heart of the numerical procedure of a GA. In other words, they
modify the phases of crossover and mutation by extending them and, thus, allowing the
reproduction between individuals belonging to different species.

In this way, the new genetic operators are actually problem-independent since they
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are strictly related to the concept of species that transcends the physical nature of the
problem at hand. Therefore, BIANCA becomes a GA that allows the parallel evolution
of species and individuals.

The points of originality and innovation of this first part of the thesis are several and
articulated at different levels. The first one is the proposed numerical strategy, which is
fully “genetic” and completely problem-independent. Another new feature introduced in
the code BIANCA is the generalisation to the multi-constraint case of a new constraint-
handling technique called Automatic Dynamic Penalisation (ADP) strategy, firstly pre-
sented in [1], which belongs to the class of penalty-based strategies. The key-point of
the ADP method is that it is a very general technique that automatically chooses and
updates the penalty coefficients, without the intervention of the user.

In the second part of the thesis, the algorithm has been applied to the solution of some
problems. The main topic of the thesis being the design of modular structures, we have
considered the following problems: the design of laminates with the least number of layers
satisfying some given requirements, the design of stiffened composite structures having the
least weight, the design of hybrid elastomer/composite laminates for maximising damping
and, finally, the design of composite plates with bonded elastomer patches, also in this
case for the optimisation of damping. We have also applied our strategy to a different
kind of problem which does not concern the design of modular systems, i.e. the problem
of identifying the constitutive properties of piezoelectric devices.
The previous problems share a common point of innovation: in all the considered cases
the problem is formulated in the most general way without any simplifying hypotheses,
unlike what is normally done, especially for the design of composite structures.

Therefore, the present thesis is organised as follows:

• in Chapter 1, after a literature overview on the different types of metaheuristic
(and in particular on the evolutionary strategies), and a recall of the mathematical
foundations of GAs, we introduce the GA BIANCA, describing its classical features
and the new ones that we have developed in the framework of the present thesis.
In particular, we detail the new genetic operators that perform the crossover and
mutation among individuals belonging to different species and we also describe the
very general ADP constraint-handling technique implemented within BIANCA. We
test the ADP strategy with some well-known benchmark problems taken from the
literature. Then, we briefly describe the structure of the interface between BIANCA
and external software which can be used when the value of the objective function
and/or constraints cannot be computed analytically, but it has to be evaluated using
numerical codes (for example finite element codes). Finally, we briefly discuss the
architecture and the main features of the BIANCA Graphical User Interface (GUI)
that has been created in order to develop a tool that can be easily handled and
employed by the user which wants to use the code BIANCA;

• in Chapter 2 the problem of identifying the electromechanical properties of piezoelec-
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tric devices is studied. We propose a method to predict the whole three-dimensional
set of electromechanical properties of active plate structures. The elastic properties
of the patches, along with their piezoelectric properties, have significant effect on
the dynamic response of the global structure; the inverse problem of the identifi-
cation of those properties is stated as a constrained minimisation problem of an
error function expressing the difference between the measured eigenfrequencies and
the corresponding numerical values. Hence, this strategy relies on the dynamic re-
sponse of the structure in terms of undamped natural frequencies and makes use of
BIANCA. The numerical simulation is carried on for a laminated plate with surface
mounted piezoelectric patches, in order to validate the accuracy and the reliability
of the proposed numerical tool. This problem does not belong to the class of opti-
misation problems of modular systems, thus the new genetic operators that perform
the crossover and mutation between different species are no longer required since
the overall number of design variables (i.e. the electromechanical properties of the
piezoelectric material) is fixed a priori ;

• in Chapter 3 the problem of designing laminates having the minimum number of
layers for obtaining given elastic properties is addressed. In this study, the problem
is treated and solved in a general case, since no simplifying hypotheses are made
on the type of the stacking sequence. This is a non-linear programming problem,
where a unique objective function includes all the requirements to be satisfied by the
solutions. The optimal solutions are found in the framework of the polar-genetic
approach, since the objective function is written in terms of the laminate polar
parameters, while BIANCA is used as numerical tool. The design variables include
the number of layers, the layers orientations and the layers thickness. Some examples
concerning some prescribed elastic symmetries, like orthotropy, bending-extension
uncoupling, quasi-homogeneity and so on, are carried out in order to show the
effectiveness of the proposed approach;

• in Chapter 4 a problem concerning a least-weight wing-box section is studied. The
case-study considered is the least weight design of a stiffened wing-box section for
an aircraft structure. The method is based on the use of the polar formalism and
on the GA BIANCA and it is organised as a two-level approach. At the first level
of the procedure, the optimal structure is designed as it was composed by a single
equivalent layer, while a laminate realising the optimal structure is found at the
second level. The method is able to automatically find the optimal number of
modules, no simplifying assumptions are used and it can be easily generalised to
other problems;

• in Chapter 5 the problem of designing the damping capabilities of hybrid elas-
tomer/composite laminates is studied. The goal of the procedure is to maximise
the first N modal loss factors of the laminate subject to constraints on the stiffness
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and on the weight of the plate. The problem is considered in the most general case:
no simplifying hypotheses are made on the behaviour of the hybrid laminate, thus
allowing us to consider as design variables the number of layers (both of the elastic
and viscoelastic layers), their thickness and orientations as well as the position of
the viscoelastic plies within the stacking sequence. The proposed approach relies on
one hand, upon the dynamic response of the structure in terms of natural undamped
frequencies and modal loss factors, and on the other hand on the use of BIANCA
as optimisation tool. The method is applied to the design of a rectangular plate;

• in Chapter 6 the problem of designing the damping capabilities of laminated plates
with bonded viscoelastic patches is studied. As in Chapter 4, also in this case we
adopt a two-level procedure for the design of hybrid elastomer/composite modular
structures. The goal of the procedure consists again in maximising the first N
modal loss factors of the plate subject to constraints on its bending stiffness, on
its weight along with geometric constraints on the position of the rubber patches
bonded over the plate. The problem is considered in the most general case: no
simplifying hypotheses are made on the behaviour of the structure, thus allowing us
to consider as design variables the number of viscoelastic patches, their sizes, their
positions over the plate, besides the laminate thickness and polar parameters. Once
again the second-level phase concerns the design of the laminated plate that has
to be designed in order to have the optimal elastic properties and thickness issued
from the first-level design problem.

Each Chapter composing this document corresponds to a scientific paper published
and/or submitted to an International Journal. The only exception is Chapter 4 that
corresponds to two scientific publications. A complete list of these publications is provided
at the end of the manuscript.

A last remark about the structure of each Chapter. The Chapters concerning the
engineering applications, namely Chapters from 2 to 6, are characterised by a complete,
but not exhaustive, literature overview on the problem at hand and all of them are ended
with some conclusive remarks.
The general conclusions and some future perspectives concerning the numerical genetic
strategy used in this thesis are provided at the end of this manuscript.
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and at Université de Versailles St. Quentin-en-Yvelines.

7



8



Chapter 1

On the use of genetic algorithms in
engineering applications

1.1 Introduction

1.1.1 Literature overview

Many researchers and scientists in the field of mechanics and mathematics are used to
live into a “mathematical” world governed by precise laws based on cause-effect relation-
ships. For this reason, they are, very often, unable to adapt their vision and their way
of conceiving the world to the one proposed by biologists wherein the “hazard” plays a
crucial role and imposes itself as a “master” of the natural evolution.

The encounter between mechanics and biology is not a present fact, but goes back to
some great scientists of the past, founders of the modern sciences, namely Galilei, Hooke
and Maupertuis, see [3].
Among the wide class of studies that Galilei conducted in the fields of mechanics and
mathematics, he was the first which tried to apply its results on the problem of maximal
dimensions not only to the structures, but also to the trees and animals dimensions [4].
For its part, Hooke can be viewed as one of the founders of the modern biology [5], be-
cause he introduced in 1665, for the first time, the term “cell” to describe the repetitive
texture of the cork, observed with a microscope built by himself.
Maupertuis [6] was the first that formulated and demonstrated the transmission of genetic
traits by the father and mother together, and he was also the first that formulated exact
predictions about the transmission of a peculiar trait, namely the polydactyly in a Berlin
family, and the albinism observed in black populations in Senegal, see [7]. Moreover, he
was the first that had the intuition about the mutation as the main cause of the species
diversity.
Nevertheless, these three great scientists can be counted among the early initiators of me-
chanics (and generally they are known for this) and it is anecdotal and, in a certain sense,
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10 1. On the use of genetic algorithms in engineering applications

emblematic to look at what they did in biology, showing themselves that the distance
between the two sciences is very small.

The concept of Natural Selection was developed and introduced, independently, in the
second half of the 19th century by Darwin [8] and Wallace [9]. The famous naturalist
Charles Darwin [8] defined Natural Selection or Survival of the Fittest as the

“... preservation of favorable individual differences and variations, and the
destruction of those that are injurious.”

In nature, individuals have to adapt to their environment in order to survive within a
process known as natural evolution, wherein those features that make an individual more
suited to compete and survive are preserved when it reproduces, and those ones which
make it weaker are removed. Such features are controlled, at the genotype level, by
units called genes which form, on their turn, structures called chromosomes. Through
subsequent generations not only the fittest individuals survive, but also their fittest genes
which are passed to their descendants during the sexual recombination process. This is a
very complex and articulated but effective process which includes the meiotic cell divisions,
the crossover phase, the mutation phase and the dominance mechanism. However, it is
worth noting that in nature the mutation mechanism is almost always a deadly event and,
in any case, it happens “accidentally”.

During the last forty years, an increasing interest in problem solving systems based
on the principles of evolution and hereditary has been emerged. Such systems are char-
acterised by a population of potential solutions, they use some selection processes based
on the fitness of individuals and some particular genetic operators. Among these systems
we can include Evolution Algorithms (EAs) [10, 11, 12], i.e. algorithms that imitate the
principles of natural evolution for parameter optimisation problems, Fogel’s Evolutionary
Programming [13] which is an exploring search technique within a space of finite-state
machines, Glover’s Scatter Search techniques [14] that, starting from an initial population
of reference points, create a new generation of offspring through weighted linear combina-
tions. Besides these techniques, one of the most popular and well-known evolution-based
strategies is the Holland’s Genetic Algorithm (GA) [15, 16].
More recently, other types of evolution-based search techniques have been developed. In
literature we can find, for example, Bacteriologic algorithms (BAs) [17] inspired by evolu-
tionary ecology and, more particularly, bacteriologic adaptation; Gaussian adaptation [18]
(normal or natural adaptation, abbreviated NA to avoid confusion with GA) algorithms
which rely on a certain theorem valid for all regions of acceptability and all Gaussian
distributions: the NAs efficiency is defined as information divided by the work needed
to get the information [18]. Because the NA maximises the average fitness rather than
the fitness of the individual, the landscape is smoothed such that valleys between peaks
may disappear, therefore it has a certain “ambition” to avoid local peaks in the fitness
landscape.



1.1. INTRODUCTION 11

An useful and common term often used for all the evolution-based systems cited before-
hand is Evolution Programs (EPs).

The idea of evolution programming is not new and many researchers have studied and
dealt with this subject in the last forty years. Several EPs have been conceived and devel-
oped for many different problems. However, despite many different EPs can be formulated
to deal with a given problem, and even though these EPs can differ for several features
(e.g. representation of the single individual, operators for transforming the individuals,
methods for creating the initial populations and so on), all EPs share a common principle:
a population of individuals undergoes a certain number of transformations and, during
this evolution, each individual “fights” to survive.

Besides EPs, several kinds of metaheuristics can be found in literature. For example,
among the so-called swarm intelligence we have: the Ant Colony Optimisation (ACO)
method [19] which uses many ants (or agents) to pass through the solution space and find
locally productive areas; the Particle Swarm Optimisation (PSO) strategy [20] which em-
ploys a population (swarm) of candidate solutions (particles) moving in the search space,
and the movement of the particles is influenced both by their own best-known position and
swarm’s global best-known position; the Intelligent Water Drops (IWD) algorithm [21]
which is an optimisation algorithm inspired from natural water drops which change their
environment to find the near optimal or optimal path to their destination (in this method
the memory is the river’s bed and what is modified by the water drops is the amount of
soil on the river’s bed).
Other Metaheuristic methods, falling within the class of stochastic optimisation meth-
ods, are Simulated Annealing (SA) [22] and Tabu Search (TS) [23] algorithms. The SA
method is a global optimisation technique that goes through the search space by testing
random mutations on an individual solution. A mutation that increases fitness is always
accepted. A mutation that lowers fitness is accepted probabilistically based on the dif-
ference in fitness and a decreasing temperature parameter. The TS strategy is similar to
the simulated annealing method. While simulated annealing generates only one mutated
solution, tabu search generates many mutated solutions and moves to the solution with
the lowest energy of those generated. In order to prevent cycling and encourage greater
movement through the solution space, a tabu list is maintained of partial or complete
solutions.

In this Chapter, we do not discuss the different features characterising each Meta-
heuristic, neither we do not talk about any philosophical and/or conceptual differences
between the various Metaheuristics. Rather we will focus our attention on EPs and, par-
ticularly, on a special class of EPs: the Genetic Algorithms. There is a huge literature on
GAs, we cite only the fundamental texts of Holland [15], Goldberg [16], Michalewicz [12],
Renders [24] and the independent contribution of Rechenberg [25].
GAs are search techniques, based on a simulation of the Darwinian concept of survival
of the fittest and upon genetics, which operate on a population of points defined within
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the definition domain of the considered problem [16, 15]. The GAs belong to the class of
Artificial Intelligences (AI).

In these last thirty years, GAs have gained increasing popularity and have been ex-
tensively applied in the field of structural optimisation.
As an example, concerning the topology optimisation of structures, we can find, amongst
others, the works of Chapman et al. [26] which use a GA for continuum topology opti-
misation with domain refinement, Lin and Hajela [27, 28] and Ryoo and Hajela [29] that
use a GA for large scale problems and truss topology optimisation problems, Kim and
Weck [30] which developed a Variable Chromosome Length GA (VCL-GA) and applied
this technique to structural topology optimisation problems, i.e. a short cantilever pro-
blem and a bridge problem.
In the field of composite materials, GAs have been successfully applied to a wide class
of problems. Several authors have considered different laminate design problems (rather
complete but not exhaustive reviews on the state of the art can be found in [31, 32, 33]).
Here we cite only the works of Le Riche and Hatfka [34], Todoroki and Hatfka [35] and Liu
et al. [36] on the design of composite plates in order to maximise the first buckling load
using the lamination parameters, and also the works of Muc [37], Tabakov [38], Nagendra
et al [39], Kaletta and Wolf [40], Lillico et al [41] and Bisagni and Lanzi [42] which have
employed GAs to study the problem of designing the least-weight composite stiffened pan-
els. Still in the field of the optimal design of composite structures, we note the work of
Vannucci [43] who has considered the problem of designing the general elastic properties
of a laminate. In that work, a general approach based on polar tensor invariants was pro-
posed: no simplifying hypotheses nor special stacks or orientations were used, hence the
method allows to find a general solution to a given problem. This approach was applied
in other works and extended in [1] to the constrained optimisation of laminated plates
and in [44] to the optimal design of laminates with given elastic moduli.
In addition, GAs have been quite successfully applied to a wide class of optimisation
problems that do not belong to the field of mechanics, for instance wire routing, schedul-
ing, adaptive control, game playing, cognitive modeling, traveling salesman problems,
database query optimisation, optimal control problem and so on (see [45, 46, 47, 48, 49,
50]).
Nevertheless, in this section we do not claim to provide a complete and exhaustive state
of the art about all possible engineering applications wherein GAs have been successfully
applied. An adequate literature overview concerning some peculiar real-world engineer-
ing applications will be given at the beginning of the next Chapters of the present thesis,
depending on the considered application.

In this Chapter we want to provide, on one side a brief overview on GAs, their funda-
mental operators and the mathematical foundations which underlie the formulation of the
standard GA. On the other side, we describe the main features of the GA BIANCA (BIo-
logical ANalysis of Composite Assemblages), originally developed by Vincenti et al. [1, 2],
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and particularly we detail the new features and the new genetic operators conceived and
developed in the framework of this thesis in order to deal with a special class of optimi-
sation problems: the design problems of engineering modular structures. When dealing
with this kind of problems two main difficulties arise: one one side we have to determine
the optimal number of modules composing the modular system, and on the other side,
each module has to be optimised with respect to its constitutive parameters, namely any
geometrical, material and other physical variables characterising the module.

To deal with this class of problems the standard GA needs of some modifications
in terms of representation of informations restrained in the single individual, i.e. the
structure of the genotype, along with the creation of some peculiar genetic operators able
to optimise, simultaneously, the number and the characteristics of each module. The
problem of modular structures will be described in details in Chapters 3, 4, 5 and 6. We
remark that, in this Chapter we focus our attention on the presentation and description
of the new genetic operators by analysing the effect that they have on the individuals
restrained in the populations during their evolution along the generations.

Along with the previous aspects we introduce, in the second part of the Chapter,
a brief overview on the handling constraints techniques, usually adopted in the frame-
work of genetic-based optimisation strategies, that can be found in the literature. After
introducing the most common methods, we explain in detail an original technique for
handling constraints implemented within BIANCA, i.e. the Automatic Dynamic Penal-
isation (ADP) method, originally presented in [1] and extended and generalised in the
present work. Some benchmark problems, taken from the literature, are considered to
show the effectiveness of the proposed technique.

Moreover, since in the most part of the real-world engineering optimisation problems
the objective and constraint functions cannot be evaluated in a closed analytical form,
while it is often possible to have an estimation of such functions via a numerical process,
e.g. via a Finite Element (FE) calculation, we decided to develop an interface between
BIANCA and some well-known FE commercial codes. Finally, a detailed description of
this interface along with a short presentation of the Graphical User Interface (GUI), that
we have developed in order to use the code BIANCA more easily, end the Chapter.

1.1.2 Genetic Algorithms (GAs): a brief description

Genetic Algorithms were introduced and studied first by Holland and his co-workers and
students, see [15, 16].

As said beforehand, GAs are search algorithms based on one side on the Darwinian
concept of the Natural Selection and on the other side upon the mechanisms of genetics.
In a certain sense, GAs make their own the concept of the Survival of the most adapted
structures (Survival of the Fittest) to a given environment and they employ a pseudo-
random exchange of informations in order to create an exploration algorithm that shows
some characteristics of the Natural Selection.
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Even though they start from a pseudo-random exchange of informations and, con-
sequently, from a pseudo-random exploration, GAs are not purely random algorithms:
they effectively and smartly handle the information obtained through the exploration in
order to investigate upon the possible presence and position of new and more performing
individuals towards which the evolution is naturally oriented.

As previously said, the GA is based on a pseudo-random exploration of the domain
of the problem at hand, and starting from this kind of search it handles in an effective
way the information in order to find the desired solution. Nevertheless, it can be noticed
that a pseudo-random search does not implies a blind exploration or, in other words, an
exploration without directions.

In his book, Michalewicz [12] describes in a concise and ironic way the idea that
underlies the GAs:

“The idea behind the genetic algorithms is to do what nature does. Let
us take rabbits as an example: at any given time there is a population of
rabbits. Some of them are faster and smarter than other rabbits. These
faster, smarter rabbits are less likely to be eaten by foxes, and therefore more
of them survive to do what rabbits do best: make more rabbits. Of course,
some of the slower, dumber rabbits will survive just because they are lucky.
This surviving populations of rabbits starts breeding. The breeding results in
a good mixture of rabbit genetic material: some slow rabbits breed with fast
rabbits, some fast with fast, some smart rabbit with dumb rabbits, and so on.
And of the top of that, nature throws in a ‘ wild hare ’ every once in a while
by mutating some of the rabbit genetic material. The resulting baby rabbits
will (on average) be faster and smarter than these in the original population
because more faster, smarter parents survived the foxes. (It is a good thing
that the foxes are undergoing similar process - otherwise the rabbits might
become too fast and smart for the foxes to catch any of them).”

GAs employ a vocabulary taken from genetics. The population evolving along the
generations is composed of individuals and each individual, on its turn, is composed of
chromosomes which constitute the individual’s genotype. Very often, in standard GAs,
the individual shows a genotype made of a single-chromosome, i.e. a haploid individual.
This fact might be a little misleading: in nature, each cell of a given organism, belonging
to a particular species, presents a certain number of chromosomes (e.g., man has 46
chromosomes). Such chromosomes are organised according to diploidy : each chromosome
has a double, but only the genetic information restrained in one of the two is used,
according to the biological mechanism of dominance. For more details and information
on haploidy, diploidy, dominance and other related issues, in connection with GAs, the
reader is referred to [16, 51]. Every chromosome is made of genes arranged in linear
succession: each gene controls the inheritance of a particular character and it is located
in a precise position within the chromosome (such positions are called loci).
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GAs employ an alphabet of cardinality k (usually, in standard GAs k = 2, i.e. they
employ a binary alphabet) to code the information restrained in the individuals’ genotype.
Each genotype codes a particular phenotype (i.e. the physical expression of the individual’s
genotype whose meaning is defined externally by the user) and represents a potential
solution to the considered optimisation problem. In organisms, the phenotype includes
physical characteristics, such as eyes color, hair color and so on, whilst in the framework
of GAs the phenotype represents the set of all possible values (real, discrete and so on)
that the variables of the considered problem can assume.

The evolution of a population of individuals along the generations corresponds to a
search through a space of potential solutions. Such a search requires a balance among
two objectives: exploring the whole domain and exploiting the best solutions within this
space [16]. It can be noticed that GAs belong to a class of domain independent search
strategies which realise an effective balance between exploration and exploitation of the
search space.
In the next subsection we will explain the behaviour of the standard GA as well as its
main genetic operators.

1.1.3 The standard GA

The standard GA is composed by the union of 3 fundamental operators:

1. the selection operator;

2. the crossover operator;

3. the mutation operator.

Let us introduce, firstly, the selection operator. Such an operator acts according to a
precise rule: if we consider a population of size Nind (i.e. composed of Nind individuals),
using the value of the fitness function of each individual, the selection operator selects,
with a higher probability, the individuals having a high value of the fitness function. It
can be noticed that the Nind individuals composing the population are randomly created
in the initial generation (this is just one choice among the different methods of creating
the initial population that can be found in the literature, see for example [12]).
The fitness function is a particular function which can be defined in different ways de-
pending on the considered optimisation problem, being the fitness closely related to the
objective function. The fitness plays the same role that the environment plays within the
framework of the Natural Selection: the fitness function gives a numerical value at each
individual-point of the design space, and consequently the most adapted individuals (i.e.
points which are candidates to be potential optimal solutions) will be the points having
higher values of the fitness function. After assigning a fitness value to each individual
of the population, the selection operator determines which individuals will take part into
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the real reproduction process, which will have, as a final result, the creation of the new
generation of individuals. Even though the fitness function can be defined in different
ways, generally such a function represents a “filter” which on one side can influence the
GA convergence process and on the other side (depending on the definition employed for
its expression) can “normalise” the optimisation process (for example the fitness can be
defined in such a way that the worst individual has a fitness equal to 0 while the best one
has a fitness equal to 1).

An easily way to realise a selection operator consists in using a purely random-process
known as roulette-wheel selection. Let us consider, as an example, a population made of
4 individuals. The fitness values for each individual and the percentage of its fitness with
respect to the global fitness of the population (i.e. the sum of each individual’s fitness)
are listed in Table 1.1.

ID of individual Fitness % of the fitness with respect to the total fitness

1 10 0.1 (10%)
2 10 0.1 (10%)
3 20 0.2 (20%)
4 60 0.6 (60%)

Total fitness 100 1.0 (100%)

Table 1.1: Fitness values and percentages for every individual of the population

The roulette-wheel selection operator is built as follows: at each individual corresponds
a portion of the wheel equal to the percentage of its fitness with respect to the total fitness
of the population. Generally speaking, if the population is composed of Nind individuals
we have Nind values of the fitness {f1, f2, ..., fNind

}: so, the kth individual will occupy a
portion of the wheel proportional to the ratio:

rk =
fk

Nind∑
i=1

fi

, (1.1)

where fk is the fitness of the kth individual. The roulette-wheel for the example described
above is shown in Fig. 1.1.

The selection operator simply works by turning the roulette-wheel. It seems obvious
that, according to this schema (which is only one among the different ways to realise the
selection operator), the individuals which have greater probability of reproduction (and
hence to pass their traits to the next generation) are those which show higher values of the
fitness function. Since we assume that, during the evolution process along the different
generations, the size of the population is constant and equal to Nind, to give rise to the
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Figure 1.1: Roulette-wheel for the example listed in Table 1.1.

reproduction process we need to turn the wheel exactly Nind times. At each turn of the
wheel, an individual is extracted according to the portion that it occupies on the wheel
and an exact copy of this individual is then realised.

The next phase of the process is the crossover phase, so let us describe the crossover
operator. Such a operator achieves, concretely, the creation of new individuals. After the
choice of the Nind individuals for the reproduction process by the selection operator, the
crossover phase takes place and it is articulated in two steps:

• the Nind individuals are randomly coupled, forming in this way the couples of par-
ents;

• for both individuals composing the generic couple, every single gene of each chro-
mosome of the individual’s genotype is randomly cut, with a probability pcross, in
one ore more locations (the same positions for each homologous gene of the couple
genotype): at this point two new individuals are created by mixing and crossing
the information restrained in the genes composing the chromosomes of the parents’
genotype.

The effect of the crossover operator on two homologous genes of the parents’ couple is
depicted in Fig. 1.2. In this example we tacitly assume that the GA employs an alphabet
of cardinality k = 2 to code the information. In this case, the position of the cut randomly
occurs between the third and the fourth bit of the chain.

At the end of the crossover phase we obtain, by recombination of the Nind/2 couples
of parents, the Nind individuals composing the new generation.
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Figure 1.2: Effect of the crossover operator on two homologous genes of the parents’
couple.

The third and last phase of the process is the mutation phase wherein the mutation
operator acts on the structure of the individuals’ genotype. Such a operator acts in a
random way, with a probability pmut (often this probability is very low), at the level
of the genes of the new individuals generated after the crossover phase. The mutation
operator works on the single bit of the chain, by switching it from 0 to 1 or vice-versa.
The effect of the mutation operator is shown in Fig. 1.3. We can see that, in this case,
the mutation randomly occurs on the fifth bit.

Figure 1.3: Effect of the mutation operator on the bits of the single gene.

The main aim of the mutation process consists in increasing biodiversity among the
individuals composing the population. In addition, it can be noticed that such a process
represents a random search process in the space of individuals’ genes and plays the role
of a second-order adaptation mechanism within the whole genetic search process, see [16].
It is worth noting that introducing and increasing biodiversity, through the mutation
mechanism, within the population is a crucial point for what concerns the GA search
process: in fact, through the biodiversity it is possible to avoid a premature convergence
of the algorithm towards local minima and/or pseudo-optimal solutions, a phenomenon
often called genetic drift.

Finally, we can assert, according to [12, 16], that a standard GA must have the fol-
lowing five features:

• a genetic representation for potential solutions to a given problem;

• a way to create an initial population of potential solutions;

• an evaluation (objective) function that plays the role of the environment (ranking
solutions in terms of their fitness) along with a selection operator that chooses, ac-
cording to a certain criterion, the individuals involved into the reproduction process;
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• genetic operators that alter the composition of the individuals;

• values for various parameters employed by the GA (population size, crossover prob-
ability, mutation probability and so on).

1.1.4 The schemata within GAs

When dealing with genetic-based search processes, one could be interested to understand
how the similarities or the analogies between the most performing chain of bits (and,
hence, the information coded and restrained in those chains) could help the GA in ex-
ploring the definition domain of the considered problem and, simultaneously, leading the
GA towards potential optimal solutions.
However, how do we assert that two chains (or strings) are similar? In other words, ac-
cording to which criterion we can say that a given chain belongs to a particular “class” of
chains which show some invariants concerning the position of particular bits within the
chain itself?

Holland [15, 16] gave an answer to these questions, introducing the definition of
schema. A schema is a “pattern of similarity” among two or more chains (belonging to
different genes of different individuals) describing a set of sub-chains having some analo-
gies between the elements (bits) located in well-defined positions. Generally speaking,
two chains are similar, i.e. they belong to the same schema, if they have some elements
(bits) in the same position within the chain.

To better describe the concept of schema, let us introduce the wildcard symbol ∗. We
can easily describe the concept of schema using the ternary alphabet composed by the
elements {0, 1, ∗}. The wildcard symbol ∗ is only a meta-symbol that can assume a value
of either 0 or 1, and it is used to describe the potential schemata included into a chain
of length lc. As an example, the schema ∗0111 corresponds to the following two chains
of bits: 00111 and 10111. Conversely, we can say that the strings 00111 and 10111 are
similar because they share the same schema ∗0111.

In the following we assume that the individual’s genotype has only one chromosome.
Let us consider a binary alphabet and a string of bits of length lc. Since every bit can
assume the values ∗, 0 or 1, the number of potential schemata for a binary alphabet,
included within a chain of length lc, is (2 + 1)lc . Generally speaking, for an alphabet
of cardinality k the number of potential schemata, restrained into a string of length lc,
is (k + 1)lc . Nevertheless, this quantity represents the number of potential schemata
associated to a chain of length lc, but not the number of effective schemata.

Starting from these considerations a question arises: how many schemata does the GA
handle in a population of Nind individuals (i.e. Nind chains) of length lc? To understand
how many schemata are handled by the GA for a population of Nind chains of length lc we
must know the real structure of each string at each generation. Despite it is not possible
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to know the details of each chain, we can only fix the upper and lower bounds to the
number of effective schemata treated by the GA at each generation.

Holland [16] has demonstrated that the number of effective schemata, for an alphabet
of cardinality k, associated to the single chain of length lc, is k

lc . Moreover, the population
is composed of Nind chains: thus, the number of effective schemata associated to a chain of
length lc, is, at most, Nind×klc at each generation. Finally, we can assert that the number
of effective schemata, nschemata, included within a string of length lc, for a population of
Nind strings (handled by the GA at each generation) is in the following range:

nschemata ∈
[
klc , Nind × klc

]
. (1.2)

After having clarified that issue, another question arises: what is the effect of each
genetic operator on the number of effective schemata (included within a string of length
lc, for a population of Nind strings) handled by the GA at each generation? We give an
answer to this question in Section 1.2

1.2 Genetic Algorithms: mathematical foundations

Before describing in details the mathematical aspects that underlie GAs, it is appropriate
to introduce some definitions which will give a more rigorous nature to our discussion.
Without loss of generality, we assume to use a binary alphabet to describe the genotype
of individuals. Such a alphabet is represented as:

V = {0, 1} . (1.3)

We assume that the population is composed of Nind mono-chromosome individuals
whose genotype is described by a single chain of bits. In addition all chains have the same
length lc. The population, at the generation t, can be expressed as:

{A(t)} = {A1(t), A2(t), ..., ANind
(t)} . (1.4)

The elements (bits) of the chain are represented using lower case letters with a sub-
script identifying the position of the element within the chain. Each individual is described
by a string of bits of length lc as follows:

Aj = {ai}j , j = 1, ..., Nind , i = 1, ..., lc . (1.5)

As an example, the chain of 4 bits A = 0110 can be written as A = a1a2a3a4, with
a1 = a4 = 0 and a2 = a3 = 1.
To describe all the potential schemata restrained in the population, we introduce the
ternary alphabet:

V+ = {0, 1, ∗} . (1.6)
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We remind that the number of potential schemata associated to a string of length
lc is (k + 1)lc , where k is the cardinality of the considered alphabet. Since we use a
binary alphabet, the number of potential schemata is 3lc . Moreover, we recall that the
number of effective schemata (associated to a chain of length lc) handled by the GA at
each generation is expressed by Eq. (1.2). However, not all the schemata have the same
meaning. The generic schema is indicated by the letter H. For example, the schema
H1 = 0 ∗ 110 ∗ ∗ hold more information than the schema H2 = 0 ∗ ∗ ∗ ∗ ∗ ∗. In order to
univocally define a schema H, we need to introduce the following quantities:

• order of the schema: it represents the number of fixed bits within the chain and it
is indicated by o(H);

• defining length of the schema: it represents the distance between the first and the
last position of the fixed elements within the chain and it is indicated by δ(H).

As an example, the schema H1 = 0 ∗ 110 ∗ ∗ is of order o(H1) = 4 and it has a defining
length of δ(H) = 5 − 1 = 4, while the schema H2 = 0 ∗ ∗ ∗ ∗ ∗ ∗ is of order o(H1) = 1
and it has a defining length of δ(H) = 1− 1 = 0. It can be noticed that the length of the
whole chain for both schemata is lc = 7. Clearly, the above quantities can vary within
the following ranges:

o(H) ∈ [1, lc] ,
δ(H) ∈ [0, lc − 1] .

(1.7)

In the next Subsections, we describe the effect produced by each genetic operator of the
standard GA (i.e. selection, crossover and mutation operators) on the generic schema H.

1.2.1 Effect of the selection operator on schemata

Let us consider a generic schema H at the tth generation. Let us suppose that, at this

generation, we have
∼

N ind individuals-chains possessing that schema within the whole

population of size Nind, with
∼

N ind ≤ Nind. In other words, we can express the number of
chains having the schema H, at generation t, as:

∼

N ind =
∼

N ind (H, t) . (1.8)

As said beforehand, the selection operator, depending on the values of the fitness
function, chooses a chain within the population and makes an exact copy of it in order
to pass that chain to the next step of the process: the crossover phase. Mathematically
speaking, the ith chain is selected by the selection operator with a probability:
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pi =
fi

Nind∑
j=1

fj

, (1.9)

where fi is the fitness of the i
th chain, whilst

Nind∑
j=1

fj is the fitness of the whole population.

The fitness of the schema H can be defined as:

f(H) =

∼

N ind∑
j=1

fj

∼

N ind

. (1.10)

Eq. (1.10) means that the fitness of the schema H corresponds to the average value of

the fitness of the
∼

N ind chains whereto the schema H is associated. The average value of
the fitness of the whole population of chains can be expressed as:

f =

Nind∑
j=1

fj

Nind

. (1.11)

According to what we already said about the selection of the ith chain, we expect that
the schema H will be selected by the selection operator with a probability:

p(H) =
f(H)
Nind∑
j=1

fj

. (1.12)

At this point, in the next generation, i.e. the t + 1 generation, the number of chains
possessing the schema H, due to the action of the selection operator, will be equal to:

∼

N ind (H, t+ 1) = ⌈
∼

N ind (H, t) p(H)Nind⌉ . (1.13)

where the ⌈ ⌉ operator is the ceiling function (rounding to the next largest integer). Eq.
(1.13) can be simplified. Indeed, considering Eq. (1.11) and (1.12) we can finally write:

∼

N ind (H, t+ 1) = ⌈
∼

N ind (H, t)
f(H)

f
⌉ . (1.14)

The schema H is passed to the next generation with a rate proportional to the ratio
between the fitness of the schema H itself (i.e. the average fitness of the chains pos-
sessing that schema), and the average fitness of the whole population. For this reason,
the schemata belonging to a group of individuals-chains having an average value of the



1.2. GENETIC ALGORITHMS: MATHEMATICAL FOUNDATIONS 23

fitness (evaluated with respect to this group of chains) greater than the average fitness
of the population will be most probably transmitted to the new generation. On the con-
trary, those schemata with a fitness lower than the average fitness of the population will,
probably, extinguish.

Without loss of generality, we can assume that the fitness of the schema H is propor-
tional to the average fitness of the population as follows:

f(H) = f (1 + C) , (1.15)

where C is an arbitrary real constant. In such a case, Eq. (1.14) becomes:

∼

N ind (H, t+ 1) = ⌈
∼

N ind (H, t) (1 + C)⌉ . (1.16)

If we assume, now, that the quantity C remains unchanged through the generations,
starting from the initial generation, i.e. t = 0, we can assert that, at the current generation
t, the number of chains having the schema H is equal to:

∼

N ind (H, t) = ⌈
∼

N ind (H, 0) (1 + C)t⌉ . (1.17)

From Eq. (1.17) we can see that the schema H is transmitted along the generations
according to a geometric series relationship. This result has an interesting interpretation:
the schemata which posses a fitness greater than the average fitness of the population will
be passed exponentially to the next generation.

Finally, we remark that if the quantity C is not constant along the generations, the
number of chains having the schema H, at the current generation t, can be expressed as:

∼

N ind (H, t) = ⌈
∼

N ind (H, 0)
t∏

k=0

(1 + Ck)⌉ . (1.18)

1.2.2 Effect of the crossover operator on schemata

Let us consider a chain A of length lc = 7, which contains two (among the others) different
schemata H1 and H2 as follows:

A = 0111000

H1 = ∗1 ∗ ∗ ∗ ∗0

H2 = ∗ ∗ ∗10 ∗ ∗

the crossover randomly combines two different chains, Ai and Aj, by cutting them in a
randomly-chosen position. For a string of length lc, there are lc−1 possible points wherein
the cut can take place. Concerning our example, we have 6 possible points wherein the
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crossover operator can cut the chains. Let us suppose that the cut is done in position 3,
i.e. between the third and the fourth bit of the chain A. The effect of the crossover on
the schemata H1 and H2 is the following:

A = 011/1000

H1 = ∗1 ∗ / ∗ ∗ ∗ 0

H2 = ∗ ∗ ∗/10 ∗ ∗

as it can be noticed, the schema H1 is destroyed, while the schema H2 is retained. It is
easy to understand that the schemata with a higher defining length δ(H) have a higher
probability to be destroyed than the ones having a shorter defining length. Considering
our example, the defining length of the schemata H1 and H2 are δ(H1) = 5 and δ(H2) = 1,
respectively. The probability of disruption of the schema H1 is δ(H1)/(lc−1) = 5/6, while
the one of the schema H2 is δ(H2)/(lc − 1) = 1/6.

Generally speaking, if the crossover process takes place with a probability pcross, the
disruption probability of the generic schema H (i.e. the probability that the crossover will
destroy that schema) can be defined as:

pd(H) = pcross
δ(H)

lc − 1
. (1.19)

The probability of retain the schema H, after the action of the crossover operator, is
defined as the complement to 1 of the disruption probability:

psc(H) = 1− pd(H) = 1− pcross
δ(H)

lc − 1
. (1.20)

If we assume that, the selection and crossover processes are completely independent,
we can deduce a lower bound for the number of individuals-chains possessing the schema
H passed to the next generation:

∼

N ind (H, t+ 1) ≥ ⌈
∼

N ind (H, t)
f(H)

f

[
1− pcross

δ(H)

lc − 1

]
⌉ . (1.21)

From Eq. (1.21) we can conclude that, due to the effect of selection and crossover opera-
tors, the schemata which posses a fitness greater than the average fitness of the population
and reduced defining length will be transmitted exponentially to the next generation.

1.2.3 Effect of the mutation operator on schemata

The mutation operator acts on the single bit of the chain by changing it with a probability
pmut. In order to transmit a schema H to the next generation, none of the fixed elements
of the chain must be changed.
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It can be noticed that the survival probability of the single bit is 1 − pmut. Since in
a schema H we have o(H) fixed elements, and since the mutation of the different fixed
elements of the scheme are statistically independent events, the probability of retaining
the schema H, after the action of the mutation operator, is:

psm(H) = (1− pmut)
o(H) . (1.22)

From Eq. (1.22) we can conclude that the low-order schemata have a higher probability
to be passed to the next generation, after the action of the mutation operator.

If we assume that, the selection, crossover and mutation processes are completely
independent, we can deduce a lower bound for the number of individuals-chains possessing
the schema H passed to the next generation:

∼

N ind (H, t+ 1) ≥ ⌈
∼

N ind (H, t)
f(H)

f

[
1− pcross

δ(H)

lc − 1

]
(1− pmut)

o(H)⌉ . (1.23)

If the mutation probability pmut is very low, i.e. pmut << 1, Eq. (1.23) writes:

∼

N ind (H, t+ 1) ≥ ⌈
∼

N ind (H, t)
f(H)

f

[
1− pcross

δ(H)

lc − 1
− pmuto(H)

]
⌉ . (1.24)

1.2.4 The theorem of schemata and the Implicit Parallelism

After describing the effect of each genetic operator of the standard GA on the generic
schema H, we can enunciate the well-known Holland’s theorem of schemata [15, 16]. This
theorem can be expressed as follows:

Theorem 1.2.1 (Holland’s Theorem of Schemata) The low-order schemata with short
defining length and fitness greater than the average fitness of the population increase ex-
ponentially in successive generations.

Eq. (1.23) or, equivalently, Eq. (1.24) are the natural result of this theorem.
As already discussed in the previous subsections, for a population composed of Nind

individuals-chains of length lc the GA handles, at each generation, a number of effective
schemata that varies between the bounds expressed by Eq. (1.2). As stated by the
Holland’s theorem of schemata, not all the chains are handled by the GA in the same
way: as an example, the high-order schemata or the ones having long defining length show
a high disruption probability due to the action of the mutation and crossover operators,
respectively.

Nevertheless, Holland defined more precisely the lower bound of Eq. (1.2). Indeed, he
demonstrated [15, 16] that the following assert subsists:
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Theorem 1.2.2 (Holland’s Implicit Parallelism) The number of schemata usefully pro-
cessed by the GA in a population of Nind binary strings has a lower bound proportional to
N3

ind.

Let us consider a population of size Nind composed of chains of length lc. We consider
only the subset of chains associated to a particular schemaH having a survival probability,
after the crossover operation, greater than or equal to psc. This fact lead us to evaluate
the defining length of the generic schema H (and hence the length of the subset of chains
possessing this schema) that satisfy the previous condition:

1− pcross
δ(H)

lc − 1
≥ psc =⇒ ls ≤ (lc − 1)⌈1− psc

pcross
⌉ , (1.25)

where ls is the useful length of the schemata (or the length of the subset of chains) which
have a probability to be retained after the crossover not less than psc.

In order to see how many sub-chains having an useful length ls are contained within
a chain of length lc > ls, let us consider the following example. Suppose we have a chain
A of length lc = 10 and a sub-string retaining the scheme H of useful length ls = 5. In
addition, we assume that only the last element of this sub-chain is fixed. As an example,
the sub-chain H could be:

H = %%%%1,

where the percent sign % is a jolly symbol that can assume the values either 0, 1 or ∗.
Since the last bit is fixed, one can notice that the number of schemata retained within
the sub-string of useful length ls is 2

ls−1. For the above example, the number of possible
schemata associated to the sub-chain H is 25−1 = 16. Consider, now, a string A of length
lc = 10, holding the sub-chain H, with the following structure:

A = %%%%1 ∗ ∗ ∗ ∗∗.

How many times the sub-chain H of useful length ls = 5 is contained into the string A?
To give an answer to this question, we can imagine to translate the sub-string H along
the chain A as follows:

A = %%%%1∗∗∗∗∗, A = ∗%%%%1∗∗∗∗, A = ∗∗%%%%1∗∗∗, A = ∗∗∗%%%%1∗∗,
A = ∗ ∗ ∗ ∗%%%%1∗, A = ∗ ∗ ∗ ∗ ∗%%%%1.

It can be noticed that the chain A retains the sub-chainH six times. Generally speaking, a
string of length lc retains a sub-string of useful length ls, (lc− ls+1) times. In conclusion,
we can assert that the number of possible schemata of a sub-chain of useful length ls
retained within a chain of length lc is:
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(lc − ls + 1)2ls−1 . (1.26)

For a population made of Nind chains of length lc the number of schemata retained within
a sub-chain of useful length ls is at most:

Nind(lc − ls + 1)2ls−1 . (1.27)

Nevertheless, Eq. (1.27) still offers an overestimation of the number of schemata retained
within a sub-chain of useful length ls belonging to the population. Suppose, now, to
consider a population of strings of length lc having the following size:

Nind = ⌈2ls/2⌉ . (1.28)

If we assume that the distribution of the number of schemata is a binomial distribution, we
can easily see that half of these schemata will have an useful length greater than ⌈ls/2⌉.
So, we can conclude that, at each generation, the GA handles a number of schemata
retained within a sub-chain having useful length ls greater than or equal to:

nschemata ≥ ⌈(lc − ls + 1)

2
Nind2

ls−1⌉ = ⌈(lc − ls + 1)

4
Nind2

ls⌉ . (1.29)

Substituting Eq. (1.28) into Eq. (1.29) yields:

nschemata ≥ ⌈(lc − ls + 1)

4
N3

ind⌉ . (1.30)

Eq. (1.30) demonstrates the validity of the Holland’s assertion (for more details see [16]).
We can conclude that, despite GAs destroy the high-order long schemata due to the
combined action of crossover and mutation operators, they can handle a huge number of
schemata, starting from a relatively low number of chains.

As conclusive remark, it can be noticed that in 1993 Bertoni and Dorigo [52] showed
that the lower-bound on the number of schemata of Eq. (1.30) evaluated by Holland has
not general validity. Indeed, they demonstrated that the Holland’s Implicit Parallelism
is only a particular case of a more general rule found by the authors. Roughly speak-
ing, Bertoni and Dorigo found that the number of schemata handled by the GA, for a
population of Nind = 2βlc chains, is at least of order:

nschemata ≥ ⌈ N
f(β)
ind√

log2(Nind)
⌉ , (1.31)

where f(β) is a particular function defined as:
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f(β) =





1 +
2

β
0 < β < 1 ,

1 + 2
−β/2logβ/2− (1− β/2)log(1− β/2)

β
1 < β < 4/3 ,

2log23

β
β > 4/3 .

(1.32)

They showed that the Holland’s Implicit Parallelism is a particular case that subsists
when the following condition on the parameter β is satisfied: β ≥ 1. For a deeper insight
in the matter the reader is addressed to [52].

1.2.5 Advantages and drawbacks of GAs

Very often, in many different fields, GAs have proved to be more effective and robust
than classical deterministic and/or gradient-based methods in the search of solutions for
a given optimisation problem. To understand the reasons behind this fact, we have to
analyse the main differences between classical methods and GAs:

• GAs employ a coding of the optimisation variables of the considered problem, in-
stead of directly using them;

• GAs work on a population of points instead of a single point. For this reason
GAs are well-suited when dealing with non-convex and/or non-smooth optimisation
problems: the distribution of a population of points over the whole design space
prevents the algorithm to converge towards a local minimum;

• GAs are “zero-order” methods, i.e. they only need of the evaluation of the ob-
jective function without any auxiliary information (e.g the calculation of the first
derivatives of the function). This circumstance avoids the problem of the numer-
ical calculation of the function derivatives and allows to deal with different types
of variables (integer, discrete, scattered and so on) as well as a more wide class of
functions (discontinuous, non-smooth, non-differentiable and so on);

• GAs uses probabilistic transition rules instead of deterministic ones. However, GAs
are not completely blind in searching the solutions within the definition domain:
they simultaneously explore several points belonging to different regions of the de-
sign space and, making simple evaluations of the objective function on such points,
they are able to exploit these informations in order to drive the search of optimal
solutions on some convenient sub-domains of the design space wherein the global
optimum/optima is/are located.
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Along with the previous advantages, as it happens in each numerical technique, GAs
have the following drawbacks:

• repeated objective (and also fitness) function evaluation for complex problems is of-
ten the most prohibitive and limiting segment of GAs. Finding the optimal solution
to complex high dimensional, multi-modal problems often requires very expensive
fitness function evaluations. In real world problems such as structural optimisation
problems, one single function evaluation may require from several hours to several
days for a complete simulation. Typical optimisation methods cannot deal with
such types of problem. In this case, it may be necessary to forgo an exact evalua-
tion and use an approximated objective function that is computationally efficient.
It is apparent that amalgamation of approximate models may be one of the most
promising approaches to convincingly use GA to solve complex real life problems;

• GAs cannot effectively deal with problems wherein the only fitness measure is a sin-
gle right/wrong measure (like decision problems), since there is no way to converge
to the solution (no hill to climb). In such cases, a random search may find a solution
as quickly as a GA;

• GAs require an adequate setting of the parameters which control the correct be-
haviour of the algorithm itself, namely the crossover and mutation probabilities, the
size of the population, the choice of the selection operator and so on.

In the next Section we describe the main features of the GA BIANCA, originally
presented in [1, 2], and particularly we introduce the new features and the new genetic
operators conceived and developed in the framework of this thesis in order to deal with a
special class of optimisation problems: the design problems of modular systems.

1.3 BIANCA: a genetic algorithm for engineering op-

timisation

As suggested by its name, the genetic code BIANCA (Biologically Inspired ANalysis of
Composite Assemblages), was originally developed by Vincenti et al. in order to deal
with design problems of composite laminated structures [1, 2]. BIANCA was based on
the structure of the standard GA, see Fig. 1.4, and had some original features concerning
the representation of the genotype for composite laminates and also a new strategy in
the treatment of inequality constraints [1, 2]. The authors performed a large campaign of
numerical tests using BIANCA which proved that this code is very effective and robust
when dealing with design problems of composite laminates. Nevertheless, new laminates
design problems led the authors to make some modifications to the GA BIANCA that
renovate its structure in order to improve its performance and robustness [1].
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Figure 1.4: The architecture of the standard GA.

This first version of BIANCA (which is written in FORTRAN language) was based on
a single population evolving along the generations and subject to the action of the genetic
operators of crossover, mutation and elitism. Selection was based on the roulette-wheel
method and the stop criterion was formulated as a maximum number of generations.
In this form, the GA allowed the authors to treat unconstrained optimisation problems.
Later on, due to the introduction of additional design criteria in the study of laminates
elastic symmetries, the authors developed an original technique for handling constraints
based on the combination between classical penalisation methods and the exploitation of
the information retained within the population. Originally this strategy, whose authors
called Automatic Dynamic Penalisation (ADP) technique [1], was conceived in order to
handle both inequality and equality constraints as an equivalent single inequality con-
straint. A detailed description of the architecture of BIANCA in its first version can be
found in [1, 2].

In engineering optimisation problems, the objects of the optimisation process can be
often considered asmodular systems. This is the case, for example, of composite laminated
structures, which are an assembly of anisotropic layers: each ply can be considered as a
module, and the whole structure is described in terms of number of constitutive modules as
well as the properties (orientation angles, thickness and material) of each module. Other
examples of modular structures are stiffened panels, often used in structural systems (e.g.
in aeronautical applications): these structures are composed of plates stiffened by a set
of longitudinal beams (stiffeners). Again, the global structure is characterised by the
number of constitutive stiffeners along with the geometrical and material properties of
each stiffener and the plate.

The optimisation of modular systems is the main topic of the present thesis. Neverthe-
less, as described below, when dealing with such problems some difficulties arise. In order
to overcome these issues we searched for a solution inspired by a more rigorous and (at
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the same time) deeper interpretation of the Darwinism and of the Natural Selection. To
this purpose, we took advantage of the intrinsic capabilities of “algorithmic adaptation”
of GAs: basically, a richer and well-structured encoding of the genetic information repre-
sents the necessary preamble for building an improved GA able to deal with optimisation
problems concerning modular systems.

The optimisation of engineering modular systems/structures is a difficult task because
it implies the optimisation of each constitutive module composing the system, as well
as the optimisation of the number of constitutive modules. More precisely, all modules
share a “common structure” in terms of the “constitutive parameters” characterising each
module, such as geometrical dimensions, material properties and so on. However, and this
is very important, the constitutive parameters of modules can assume different values
for each module composing the system. Moreover, the number of constitutive modules
is an integer value, i.e. a discrete variable, and the design space of such optimisation
problems is therefore populated by points representing engineering systems/structures
made of different numbers of modules. As a consequence, the number of constitutive
parameters (variables of the optimisation problem) can be different for distinct points,
thus the associated mathematical optimisation problem is defined over a design space of
vectors of variable dimension.

According to the metaphor adopted by GAs, each point in the design space corresponds
to an individual and its genetic structure is composed of chromosomes and genes [12,
16]. If the object of the optimisation problem is a modular system, each constitutive
module can be represented by a chromosome, while a chromosome will be composed of
genes corresponding to the constitutive parameters of the module. The most part of
GAs perform the reproduction operations on a couple of individuals selected within the
population according to a certain criterion. This way of working is surely correct in
the context of the standard GA, but it may result to be not well-suited to deal with
optimisation problems of modular systems. Moreover, another point of interest is that,
in the most part of GAs, the concept of Darwinian selection is not properly employed.
In fact, originally, the concept of natural selection is strictly linked to the concept of
species : during a sufficiently long time interval, the selection, by operating on a certain
number of individuals, can lead to the appearance of new species, better fitted to the new
environmental conditions.

Then, to reproduce all the qualities of the Darwinian selection, one should conceive
a GA wherein individuals and species evolve at the same time: in these terms the real
natural selection is more closely synthetically reproduced in the context of the numerical
algorithm. In this framework, the first step is the translation of the concept of species in
the context of GAs. The fundamental consequence of this point is an adequate change
of the structure of the individual’s genotype. Chromosomes and genes must be organ-
ised in such a way that different species can be clearly identified. In agreement with
the paradigm of Nature, within BIANCA the species is characterised by the number of
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chromosomes of the individual’s genome. So, individuals having a genotype composed
of different number of chromosomes belong to different species. It appears clearly that
a GA which performs the evolution of species and at the same time, but independently,
the evolution of individuals, must be ruled by genetic operations able to cross species and
individuals independently and simultaneously: to this purpose new genetic operators that
allow the crossover and mutation among individuals belonging to different species have
been developed.
The idea to develop a GA able to deal with a wide class of optimisation problems lead us
to enrich and modify the original architecture of the code BIANCA in order to build a
more general and adaptable numerical tool specially able to handle problems concerning
modular systems.

Before describing the classical main features and the new ones that we have intro-
duced in BIANCA, we briefly discuss the mathematical formulation of the non-linear
programming problem (NLPP) which represents the main focus for which our code has
been conceived.

1.3.1 The Non-Linear Programming Problem (NLPP)

Let us consider a constrained optimisation problem stated as follows:

min
x

Φ (x) ,

subject to :




gi (x) ≤ 0 i = 1, ..., r ,

hj (x) = 0 j = 1, ...,m ,

xL ≤ x ≤ xU ,

(1.33)

where vectors and matrix terms are marked in bold typeface. In this formulation x
is the n-dimensional vector of design variables, while xL and xU are the n-dimensional
vectors representing the lower and upper bounds of the design variables, i.e. the whole
definition domain or search space. The full set of equality and inequality constraints
along with the box constraints represents the feasible domain or design space Ω . Design
variables can be of different type: continuous, regular discrete, scattered (i.e. discrete
variables without a discretisation step) or “grouped”, these last being a sort of “abstract”
variables representing a group of different variables, such as, for example, in the case of
the constitutive material of a structure, when the material is chosen within a database:
once a particular material is associated to a part, the whole set of the properties of the
material are determined, i.e. elastic moduli, mass density and so on.

The goal of the optimisation consists in minimising the objective function Φ (x) subject
to a given number of constraints: gi (x) (i = 1, ..., r) are the r functions of inequality
constraints, while hj (x) (j = 1, ...,m) are the m functions of equality constraints. For
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any solution x in the feasible domain Ω , all equality constraints hj (x) = 0, are active
at all points of Ω , and an inequality constraint that satisfies gi (x) = 0, is said an active
constraint.

An optimisation problem can be characterised either by the type of constraints in the
problem formulation or by the linearity or non-linearity of the objective and constraint
functions. A problem where at least some of the objective and constraint functions are
non-linear is called non-linear programming problem (NLPP). These NLPPs predominate
in real-world engineering applications and constitute the primary focus of BIANCA.

1.3.2 The architecture of BIANCA

As said previously, the GA BIANCA is substantially constructed on the classical scheme
of the standard GA, but it has however several original features. The classical features,
already implemented in the previous version of the code (see [1] for more details) are:

• fitness evaluation: the choice of the fitness determines the kind of problem, i.e. if
it is a minimisation or maximisation one, and the selection pressure that the user
decides to introduce. The fitness is evaluated in such a way that the it can assume
all the possible values in the range [0, 1], with the value 0 characterizing the least
fitted individual and 1 the most fitted one. In BIANCA the fitness function is
defined as:

f =


1−

Φ −min
pop

Φ

max
pop

Φ −min
pop

Φ




C

, minimisation

f =


1−

max
pop

Φ − Φ

max
pop

Φ −min
pop

Φ




C

, maximisation

(1.34)

where Φ is the objective function of the considered problem, while C ≥ 1 is the
exponent tuning the pressure’s selection;

• selection: two known techniques of selection are included, i.e. roulette wheel and
tournament;

• standard genetic operators: the main genetic operators are crossover and muta-
tion, used with a certain probability on each gene of the individual’s genotype, i.e.
independently on each design variable;

• additional genetic operators: the elitism operator, used to preserve the best indi-
vidual at each generation;

• handling constraints: the aforementioned ADP method is implemented;
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• handling multiple populations: the need to simultaneously explore different regions
of the design space, as well as the search of optima responding to distinct design
criteria, led us to introduce the option of working with multiple populations in
BIANCA. Moreover, a classical ring-type migration operator has been introduced
in order to allow exchanges of informations between populations evolving through
parallel generations;

• stop criterion: maximum number of generations reached or test of convergence, i.e.
no improvements of the mean fitness of the population after a given number of
cycles.

What mostly characterises BIANCA, is the representation of the information, which
is particularly rich and detailed, though non redundant. Moreover, the information re-
strained in the population is treated in such a way to allow for a deep mixing of the
individual genotype. In fact, as said above, the reproduction operators, i.e. crossover and
mutation, act on every single gene of the individuals, so allowing for a true independent
evolution of each design variable.
The reason underlying such a choice are substantially three: a) the crossover directly
made at the chromosome level (we remind that, generally in the literature the most part
of GAs work on individuals having a mono-chromosome genome) strongly limits the total
number of “successful” combinations of the design variables satisfying the requirements
expressed by the considered problem, b) the variables coded by the genes of the chromo-
some can be of different type and nature, thus they can code quantities having different
physical meaning and, finally, c) the crossover directly made on each individual’s gene can
lead the GA to find more quickly and effectively an optimal solution for those problems
wherein the objective and/or constraint functions depend, independently, upon a subset
of the whole set of design variables.

In the version of BIANCA presented in this thesis, the structure of the individual and,
consequently, the representation of the information, as well as the reproduction operators
of crossover and mutation, have been modified in order to deal with evolution not only of
the individuals, but of the species too; crossing individuals belonging to different species
is now possible, thanks to new genetic operators that we have introduced in BIANCA. In
particular, the new features introduced within BIANCA are:

• a new structure of the individual’s genotype adapted and extended to represent the
concept of species, described in Sec. 1.4;

• new genetic operators of crossover allowing the reproduction among individuals
belonging to different species, detailed in Sec. 1.5;

• new mutation operators allowing the evolution of the different species restrained
within the population, see Sec. 1.5;
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• a generalisation of the ADP strategy, modified to handle inequality and equality
constraints without evaluating an equivalent single constraint, see Sec. 1.6;

• a very general interface that makes BIANCA able to exchange input/output in-
formations with mathematical models supported by external software (indeed, in
several problems, the value of the objective function and/or constraints, cannot be
computed analytically, but it has to be evaluated using special numerical codes, e.g.
finite element (FE) codes), see Sec. 1.8;

• a Graphical User Interface (GUI), that we have developed in order to use the code
BIANCA more easily, see Sec. 1.9.

1.4 Representation of individuals and species within

BIANCA

In GAs, a crucial phase consists in the encoding step which translates the design variables
from the phenotypic space to the genotypic one resulting, for example, in a binary, real
or hexadecimal chromosome. The length of the chromosome, i.e. the number of genes,
represents in the genotype space the amount of the information, restrained in the indi-
vidual’s genotype, coding a particular quantity in the corresponding phenotype space.
In standard GAs, for individuals having a single-chromosome genotype, the chromosome
length Lchrom can be expressed as:

Lchrom =
nvar∑

i=1

⌈ln
(
xiUB − xiLB

∆xi

)
/ln dEB⌉ , (1.35)

where nvar is the number of decision variables, xi and ∆xi are the i
th decision (or design)

variable and its resolution level, respectively, whilst dEB is the dimensionality of the
encoding base. xiLB and xiUB are the lower and upper bounds for the ith decision variable.

Traditionally in GAs the chromosome length is fixed a-priori by the total number
of variables along with their resolutions and cannot change during the whole genetic
process. As described in other existing works on this subject (see for example [29, 30])
the traditional approach has, substantially, two drawbacks:

• the best achievable fitness is inherently limited by the chromosome length and hence
by the total number of variables. Therefore, the genetic asymptote, which is typical
of the genetic process, is a direct consequence of the constraints of the problem as
well as the number of design variables and their level of resolution;

• we do not know a priori how many decision variables are required, and consequently
how long the chromosome should be, for a given problem, in order to obtain a real
global optimum.
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In these last years, different research studies have been developed in the field of im-
proved GAs which take into account for the variable chromosome length. Among them,
Kim and Weck [30] developed a GA that can change the chromosome length using a ”pro-
gressive refinement” technique. They assumed that significant fitness improvements can
be obtained by gradually increasing the chromosome length. They achieved the increase
in the chromosome length mainly in two way: either by increasing the resolution level
of the existing design variables or by adding new design variables during the process. In
every case these operations were realised by a particular mutation operator acting on the
chromosome structure: the concept consists in seeding the design space of finer resolu-
tion with mutated best designs from the domain of coarser resolution. They applied their
strategy to two structural topology optimisation problems: a short cantilever and a bridge
problems. Despite Kim and Weck developed an effective GA technique in their context,
they did not develop genetic operators which perform the classical reproduction phase,
i.e. crossover and mutation operations, among individuals having different chromosome
lengths. The variation of the number of variables is obtained through a mutation process
which is linked to the concept “from coarse to fine” that is doubtless very effective when
dealing with topology optimisation problems, but could appear not very effective for other
types of problems.
Ryoo and Hajela [29] developed a GA for topology optimisation that also handles variable
chromosome lengths. This GA allows only crossover between chromosomes of different
lengths. Even though they implemented an inter-species crossover operator, they did not
obtain an effective evolution of the species along the generations. In other words, the
number of chromosomes with different length remains the same from the beginning until
the end of the process, i.e. from the initial population until the final one.
Park et al. [53] developed an improved GA able to cross chromosomes with different
lengths. Within their GA the individual is characterised by a single chromosome: at each
generation the change in the length of the chromosome was realised by means of a special
mutation operator acting directly on the number of genes composing the chromosome.
Their strategy was applied to the weight minimization of laminated plates manufactured
by the Resin Transfer Moulding (RTM) process, considering the technological require-
ments as constraints of the optimisation problem.

In the following subsections, we show the new structure of the individuals in BIANCA,
which can also take into account for individuals belonging to different species.

1.4.1 The new structure of the individual’s genotype

Unlike what is done in the most part of GAs presented in literature, that have a mono-
chromosome algebraic structure, in BIANCA the information is organized in a genome
composed of chromosomes which in turn are made of genes and, finally, each gene is
a binary representation of a design variable. As an example, when the object of the
optimisation problem is a modular system, each constitutive module is represented by a
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chromosome, while each gene (composing a chromosome) codes a design variable related
to the specific module.

In agreement with the paradigms of natural sciences, individuals characterised by dif-
ferent number of chromosomes belong to different species. BIANCA has been conceived for
crossing also different species, and it is able to make in parallel (and without distinction)
the optimisation of the species and individuals. In particular, the typical reproduction
operators of crossover and mutation have been specially conceived for crossing species and
individuals during the same iterations. Such operators are detailed in Sec. 1.5.

Considering what said above, from a practical point of view in BIANCA an individual
is represented by an array of dimensions nchrom × ngene. The number of rows, nchrom, is
the number of chromosomes, while the number of columns, ngene, is the number of genes.
Basically, each design variable is coded in the form of a gene, and its meaning is linked
both to the position and to the value of the gene within the chromosome. In principle,
there are no limits on the number of genes and chromosomes for an individual. A number
Nind of individuals compose a population, and in BIANCA it is possible to work, at the
same time, with several populations whose number, Npop, can be defined by the user.

In order to include the number of chromosomes (i.e. of modules, and hence of design
variables) among the design variables, and then to allow the reproduction among indi-
viduals belonging to different species, some modifications of the individual genotype were
necessary. The genotype of each individual in BIANCA is represented by a binary array,
shown in Fig. 1.5. In this picture, the quantity (gij)

k represents the jth gene of the ith

chromosome of the kth individual. Letter e stands for empty location, i.e. there is no gene
in this location while nk is the kth individual chromosomes number. Each individual can
have a different number of chromosomes, i.e. it can belong to a different species.

Figure 1.5: Structure of the individual’s genotype with variable number of chromosome
in BIANCA.

As an example, for a composite laminate, one can assume, as design variables, the
number of layers, their orientation angles and thickness. The genotype of the individual-
laminate is structured as shown in Fig. 1.6. In this case the number of layers of the
kth laminate is nk while the orientation and the thickness of the ith ply are δi and hi,
respectively. One can notice that the number of layers nk is the number of chromosomes
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of the kth individual, while the orientation and thickness of the ith layer correspond to
the two genes of the ith chromosome.

Figure 1.6: Example of individual-laminate with variable number of layers in BIANCA.

1.4.2 Encoding/decoding of the optimisation variables

In BIANCA, the representation of the definition range of each design variable is realised
using the pointers, which represent integer quantities. It exists a one-to-one relationship
between variables and pointers. This relationship is immediate in the case of discrete
or grouped variables, in fact if the domain of definition have a finite dimension N , it is
possible to enumerate all admissible values vi, (i = 1, ..., N) and build a link between each
value vi and the corresponding index i, i.e. the pointer of that value. When the design
space is unbounded, we need to restrict it, defining lower and upper bounds to the space
of admissible values for vi, i.e. vmin and vmax, respectively. In the case of continuous
variables, the first step is the discretisation of the definition domain by choosing a given
precision p, and then it is possible to apply the same representation (i.e. through pointers)
as for the case of discrete and grouped variables, see Fig.1.7.
In BIANCA pointers constitute the phenotype that is the physical expression of the
individual’s genotype, more precisely the single pointer is coded by a gene, and all the
genetic operators are directly applied on the genes representing the variables. Therefore,
we have two encoding/decoding steps: firstly, a encoding/decoding step is necessary to
translate the binary value of the gene into the corresponding value of the pointer, and
vice-versa, then the second step take place to translate the value of the pointer into the
corresponding value of the design variable. More details can be found in [1, 2].
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Figure 1.7: One-to-one relationship between continuous variables and pointers in
BIANCA.

1.5 Evolution of individuals and species in BIANCA:

new operators of crossover and mutation

In this Section, we present the new genetic operators introduced in BIANCA, for crossover
and mutation on species. Some of these operators are inspired by the work of Park et
al [53] and could be considered as a generalisation of those presented in [53]. These
operators have, however, some original features because we intended to preserve, in this
new version of the algorithm, a deep genetic recombination strategy, which proved to be
effective in the previous version of the code.

In standard GAs, the classical reproduction phase takes place by means of crossover
and mutation operators, which act on the genotype of the individuals.

In particular, in BIANCA crossover and mutation operate on a pair of homologous
genes, with a given probability, pcross and pmut respectively, whose values are fixed by
the user. Crossover and mutation are performed by means of Boolean operators, based
on the computer-embedded binary representation of numbers. In this way, any decod-
ing/encoding process, from binary to integer representation and vice-versa, is no longer
needed and the genetic operations of crossover and mutation are much faster. The reader
is addressed to [1] for more details on these aspects.

As previously said, with the introduction of the concept of reproduction between dif-
ferent species, new genetic operators are required in executing the reproduction phase.
We remind that the number of design variables determines the number of chromosomes,
i.e. the biological species. So, if the number of variables has to be included among the
optimisation variables, and has to evolve during generations, a reproduction among the
species has to be performed. In particular, the classical reproduction phase has been
changed introducing new genetic operators called Chromosome Shift operator, Chromo-
some Reorder, Chromosome Number Mutation and Chromosome Addition-Deletion. A
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brief description of these new operators and their use in the reproduction phase is given
below.

1.5.1 The new crossover phase and the role of Chromosomes
Shift and Reorder Operators

To explain the way whereby the reproduction phase takes place one can consider the
following case. There are two parents, P1 and P2, with 3 and 5 chromosomes respectively,
see Fig. 1.8 (a). In this example the maximum number of chromosomes is assumed equal
to 6, while the minimum number can be chosen arbitrarily between 1 and 6: therefore in
Fig. 1.8 (a), parent P1 shows 3 empty locations, while parent P2 only one. Moreover,
there are two different variables for each individual, i.e. each chromosome has two different
genes α and β. Before realizing the crossover on these two individuals, it can be noticed
that there are different ways to pass the information restrained in the parents’ genotype
to the next generation, i.e. to their children. Here, at the next generation, two new
individuals will be produced from this couple, one with 3 chromosomes and another
one with 5 chromosomes. To improve the efficiency of the GA in terms of exploration
and exploitation of the informations on the design space, the concept of shift factor is
introduced. The shift factor (which is an integer number) is randomly sorted, with a given
probability pshift, in the range

[
0, |nP1 − nP2|

]
, where |nP1 − nP2| is the absolute value

of the difference of the parents’ chromosomes number. Using the shift factor, various
combinations of crossover are possible and the shift operator acts on the individual with
the smaller number of chromosomes. In the example mentioned before, the minimum
shift factor is 0 and the maximum is 2. For example, if the sorted value of the shift factor
is 1, all the genes of P1, which has the smaller number of chromosomes, are shifted by a
quantity equal to 1 up-to-down as shown in Fig. 1.8 (b).

After the shift operation, the crossover phase takes place. The crossover operator
acts separately and independently on every single gene. The position of crossover is
randomly chosen for each gene of both individuals. Naturally this operator involves all
the chromosomes of the parent with the smaller number of them, i.e. in the case shown
in Fig. 1.8 (c) all the genes of P1, while only the homologous genes of P2 undergo the
action of crossover operator. At this point two new individuals are created, C1 and C2
that have 3 and 5 chromosomes respectively, see Fig. 1.8 (d). It can be noticed that
the 1st and 5th chromosome of P2 have not undergone the crossover phase, so according
to the notation of Fig. 1.8 (c) and (d) it is possible to write the following equalities,
(α1)

P2 = (α1)
C2,(α5)

P2 = (α5)
C2 and (β1)

P2 = (β1)
C2, (β5)

P2 = (β5)
C2.

Before the mutation phase a readjustment of the chromosomes position is required. The
chromosome reorder operator achieves this phase by a translation of all chromosomes
down-to-up in the structure of the individual with the smaller number of them, see Fig. 1.8
(e).
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Figure 1.8: Crossover among species: (a) parents couple, (b) effect of the shift operator,
(c) crossover on homologous genes, (d) children couple and (e) effect of the chromosome
reorder operator.

1.5.2 The new mutation phase and the role of Chromosomes
Number Mutation and Addition-Deletion Operators

Mutation is articulated in two phases: at a first stage, it acts on the number of chromo-
somes and then on the genes values.

During the first phase the chromosomes number is arbitrarily changed by one at time
for each individual, with a given probability (pmut)chrom, then the chromosome addition-
deletion operator acts on the genotype of both individuals, by adding or deleting a chromo-
some. The location of chromosome addition-deletion is also randomly selected. Naturally,
if the chromosomes number is equal to the maximum one, only deletion can occur. Sim-
ilarly if the chromosomes number is equal to the minimum one, only addition can be
applied. In the case shown in Fig. 1.9 (a) the number of chromosomes of C1 is decreased
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by one and the chromosome deletion is randomly done at position 3, while the number

of chromosomes of C2 is increased by one and a new one,
{
(αa)

C2 , (βa)
C2
}
, is randomly

sorted and randomly added, in this example in correspondence of position 2.

Figure 1.9: Mutation of species: (a) mutation of the number of chromosomes and effect of
the chromosome addition-deletion operator, (b) effect of the mutation operator on every
gene

During the second phase, the mutation of the genes value takes place, for instance
one-bit change, with a probability pmut, after a rearrangement of chromosomes position.
In the example of Fig. 1.9 (b) the mutation occurs on the gene (α2)

C1 of the individual
C1 and on the genes (α1)

C2 and (β3)
C2 of the individual C2.

1.6 Handling constraints in BIANCA

1.6.1 Literature overview on constraints-handling techniques

Several authors put an effort in developing appropriate and effective strategies, in the
framework of GAs, in order to deal with constrained optimisation problems. A certain
number of surveys on constraint-handling techniques is available in the specialised liter-
ature, see for example [12, 54, 55, 56]. In this Section, we do not provide a complete
and exhaustive survey on constraint-handling techniques that were developed in the last
years to handle all types of constraints (linear, non-linear, equality and inequality) in the
context of GAs. Rather, we focus our attention on penalty-based strategies for handling
constraints.

The most common approach in the GA community to handle constraints (particu-
larly, inequality constraints) consists in using penalties. Penalty functions were originally
proposed by Courant in the 1940s [57] and later generalised by Carroll [58] and Fiacco
and McCormick [59]. The idea that underlies such approaches consists in transforming
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the constrained optimisation problem into an unconstrained one by adding some given
values to the objective function, based on the amount of constraints violation (for each
considered point within the design space).

In classical optimisation, two kinds of penalty functions are considered: exterior and
interior. The exterior methods start by considering an infeasible solution and from there
they move towards the feasible region. The interior methods set the penalty terms in such
a way that their values are small at points located far from the constraint boundaries and
go to infinity as the constraint boundaries are approached. Thus, if we start from a feasible
point, the subsequent points generated will always belong to the feasible region since the
constraint boundaries act as barriers during the optimisation process. Nevertheless, the
requirement of starting from an initial feasible solution is precisely the main drawback of
interior penalties. For this reason the method most commonly employed, in the framework
of GAs, is the exterior penalty approach and therefore, we focus our discussion only on
such a technique.

In the framework of the penalty-based approach the constrained NLPP of Eq. (1.33)
is transformed into an unconstrained one, by defining a new modified objective function
as follows:

min
x

Φp (x) ,

where :

Φp (x) =





Φ (x) if gi (x) ≤ 0 and hj (x) = 0 ,

Φ (x) +
r∑

i=1

ciGi (x) if gi (x) > 0 and hj (x) = 0 ,

Φ (x) +
m∑
j=1

qjHj (x) if gi (x) ≤ 0 and hj (x) ̸= 0 ,

Φ (x) +
r∑

i=1

ciGi (x) +
m∑
j=1

qjHj (x) if gi (x) > 0 and hj (x) ̸= 0 ,

i = 1, ..., r , j = 1, ...,m ,

(1.36)

where Φp is the penalised (or expanded) objective function, while ci and qj are the penalty
coefficients for inequality and equality constraints, respectively. The quantities Gi (x) and
Hj (x) are defined as:

Gi (x) = max [0, gi (x)] i = 1, ..., r ,

Hj (x) = max [0, |hj (x)| − ϵ] j = 1, ...,m .
(1.37)

It can be noticed that in Eq.(1.36) and (1.37) equality constraints were transformed (as
normally done in the literature) into inequality ones having the form:

|hj (x)| − ϵ ≤ 0 , (1.38)
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which is numerically “acceptable” until the allowed tolerance ϵ assumes a sufficient small
value that does not affect the quality of the solution of the problem. The advantage is
that at this point all constraints are of the same nature (inequalities) and they can be
treated by the same technique of constraint-handling.

As specified in [56], the penalty should be kept as low as possible, just above the
limit below which infeasible solutions are optimal (this is called, the minimum penalty
rule [60]). This is due to the fact that if the penalty is too high or too low, then the GA
might have some difficulties in finding an appropriate feasible optimal solution [12, 60].

In fact, on one hand, if the penalty is too high and the optimum point is placed on the
boundary of the feasible region, the GA is pushed inside the feasible region very quickly,
and it is not able to move back towards the boundary between the feasible and infeasible
regions, i.e. a large penalty discourages the exploration of the infeasible region since the
beginning of the search process. As an example, if there are several disjointed feasible
regions in the search space, the GA tends to move only to one of them, and, probably, it
is not able to move towards a different feasible region unless they are very close to each
other.

On the other hand, if the penalty is too low, a lot of the search time is spent in
exploring the infeasible region because the penalty term is often negligible with respect
to the objective function and the algorithm might converge to an optimum outside the
feasible domain. These issues are very important in GAs, because in several problems the
optimal solution lies close to or on the boundary between the feasible and the infeasible
regions. The minimum penalty rule is conceptually simple, but it is not necessarily easy to
implement. The main reason is that, in the most part of real-world engineering problems,
we do not know a priori the exact location of the boundaries among feasible and infeasible
regions (e.g. very often the constraints as well as the objective function are not given in
algebraic form, but are the outcome of a numerical process).

Several researchers conducted different studies focused on the design of penalty func-
tions: among them, the most well-known is the one conducted by Richardson et al. [61].
From this work the following guidelines were derived:

1. penalties which depend upon the distance of the current point-solution from the
feasible region of the domain perform better than those which only depend on the
number of violated constraints;

2. for a problem having few constraints, and few feasible solutions, penalties which are
only functions of the number of violated constraints are not likely to produce any
solutions;

3. good penalty functions can be built starting from two quantities: the maximum
completion cost and the expected completion cost. The completion cost has to be
intended as the distance of the considered point from the feasible region;
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4. penalties should be close to the expected completion cost, but should not frequently
fall below it. The more accurate the penalty, the better will be the solution found.
When a penalty often underestimates the completion cost, then the search may fail
to find a solution.

Following these guidelines, several researchers tried to derive good techniques to build
penalty functions. In this Section we do not provide the mathematical details of each
approach, rather, we briefly describe the different types of penalty-based strategies that
can be found in the literature, along with the corresponding advantages and drawbacks.

The main and most common used penalty-based approaches are:

• static penalties. Under this category, we consider approaches wherein the penalty
factors do not depend on the current generation and, therefore, they remain constant
during the entire optimisation process. Several researchers have proposed different
methods to define the expanded objective function using the static penalty approach,
see for instance [61, 62, 63, 64]. In all cases the main drawback of those approaches
consists in the fact that these strategies rely on some extra-parameters (namely
one or more penalty factors) which are difficult to generalise and normally remain
problem-dependent;

• dynamic penalties. Within this category, we consider penalty functions wherein
the penalty factors depend upon the current generation (normally the extended
objective function is defined in such a way that it increases over time, i.e. along the
generations). Examples of dynamic penalties approaches can be found in [65, 66].
Some researchers argued that dynamic penalties work better than static penalties.
Nevertheless, in practice it is difficult to built good dynamic penalty functions as it
is difficult to produce good penalty factors for static functions. It seems that the
problems associated to static penalty functions are also present in dynamic penalties
strategies. All the techniques described in the works cited above depend on a certain
number of extra-parameters: if a bad penalty factor is chosen, the GA may converge
to either non-optimal feasible solutions (if the penalty is too high) or to infeasible
solutions (if the penalty is too low);

• adaptive penalties. Such a strategy employs a penalty function which takes a feed-
back from the search process during the generations. Several researchers have tried
to develop a penalty function that, taking some information from the population
at the current generation (e.g. the amount of constraints violation, the number of
violated constraints for each individual and so on), performs better than the pre-
vious methods, see [55, 67, 68, 69, 70, 71]. However, in all the previous works the
expanded objective function depends upon a certain number of parameters that the
user must set before starting the calculation (again, we have the same issues as in
the case of static penalty approach);
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• death penalty. The rejection of infeasible individuals is probably the easiest way to
handle constraints and it is also computationally efficient, because when a point of
the domain violates a constraint the GA assigns it a fitness equal to zero. Therefore,
no further calculations are necessary to estimate the level of constraint violation of
such a solution. Normally, the GA iterates recursively, generating a new point,
until a feasible solution is found [72]. This might be a rather lengthy process in
problems wherein is very difficult to approach the feasible region. Moreover, this
method is limited to problems wherein the feasible region is convex and constitutes a
reasonably large portion of the whole domain [56]. The main drawback of the death
penalty strategy consists in a lack of exploitation and exploration of any information
coming from the infeasible region that might be generated by the GA to guide the
search. In fact, a common issue of such an approach is that if there are no feasible
solutions in the initial population (which is normally randomly generated) then the
evolutionary process will “stagnate” because all the individuals will have the same
fitness (i.e., zero).

Within the framework of penalty-based approaches we can enumerate also other
strategies like, for instance, Segregated genetic algorithm, Annealing penalties and Co-
evolutionary penalties, see [56]. Nevertheless an adequate analysis of such methods falls
outside the scopes of the present work (in fact, they represent particular numerical strate-
gies originally developed to deal with particular kind of optimisation problems). For a
deeper insight in the matter the reader is addressed to [56].
In the next subsection we introduce the Automatic Dynamic Penalisation (ADP) strategy
for handling constraints that we have implemented within BIANCA.

1.6.2 The Automatic Dynamic Penalisation (ADP) strategy

The ADP strategy is an original method, firstly presented in [1], that we have developed
and generalised in this work for automatically choosing and updating the penalty coef-
ficients. The basic idea is that some infeasible individuals can be anyway important to
drive the exploration towards interesting zones of the feasible domain, namely when the
optimum point lies on its boundary, i.e. on an active constraint. For this reason, in the
context of the ADP strategy, infeasible points are not automatically excluded from the
population and are used to dynamically update the penalty coefficients in an automatic
way, i.e. without the intervention of the user. This is especially important at the early
stages of the search in order to widely explore the whole search space.

Concerning the penalty coefficients ci and qj of Eq.(1.36), in classical penalty-based
methods, the user have to properly set their values in order to ensure that the search of
solutions is forced within the feasible domain. Nevertheless, the choice of these coefficients
is very difficult and it is common practice to estimate their values by trial and error.
Moreover, it could be useful to adjust penalty pressure along the generations by tuning
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these coefficients, but this is directly linked to a deep knowledge of the nature of the
optimisation problem at hand.

The main concept that underlies the ADP strategy is that it is possible to exploit
the information restrained in the whole population (also the infeasible part of it), at the
current generation, to better guide the search through the whole search space. Generally,
at the first generation the population is randomly generated. The individuals are more
or less uniformly distributed over both feasible and infeasible regions of the definition
domain and the corresponding values of objective and constraints functions can be used
to estimate an appropriate level of penalisation, i.e. the values of the penalty coefficients
ci and qj.

At each current generation, inside the population we can separate feasible and infea-
sible individuals, see Fig. 1.10, and we can also classify each one of the two groups in
terms either of the values of the objective function or of the amount of constraint viola-
tion. Thus, the best individual of each group is the potential candidate to be solution of
the optimisation problem on the feasible and infeasible sides of the domain, respectively.
Then, we choose the following definition of the penalty coefficients:

ci (t) =
|ΦF

best − ΦNF
best|

(Gi)NF
best

i = 1, ..., r ,

qj (t) =
|ΦF

best − ΦF
best|

(Hj)NF
best

j = 1, ...,m .

(1.39)

In Eq.(1.39) the coefficients ci and qj are evaluated at the current generation t, while the
superscripts F and NF stand for feasible and non-feasible, respectively. ΦF

best and ΦNF
best

are the values of the objective function for the best individuals within the feasible and
the infeasible side of the domain, respectively, whilst (Gi)

NF
best and (Hi)

NF
best represent the

violated inequality and equality constraints for the best infeasible solution.
The main reason that underlies the definition of Eq.(1.39) is that some performing

infeasible solutions (in terms of objective function values, i.e. infeasible minima) are
retained within the population and act as “attraction points”, improving in this way the
search properties of the GA. In other words, the presence of such infeasible points within
the population improves the exploration of the whole search domain, particularly around
the boundaries between feasible and infeasible sides. In particular, it is worth noting
that substituting Eq.(1.39) into Eq.(1.36), the value of the objective function for the best
infeasible individual is forced to be equal to that of the best feasible individual. Such a
situation is very convenient, mostly for what concerns the case of non-linear, non-convex
optimisation problems wherein the global unconstrained minimum is located within the
infeasible region and, potentially, the global constrained minimum lies on the boundary.
In such conditions, the best individual of the infeasible side owns the same fitness as the
best feasible individual, and thus the same probability to be selected in order to take
part into the genetic operations of crossover and mutation. As a consequence, its genetic
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patrimony is likely to be inherited by the following generation. Consequently, the GA
can handle the information coming from the infeasible region in order to drive the search
towards more convenient sub-domains (namely towards the boundaries between feasible
and infeasible sides).

It appears clearly that the estimation of the penalty factors, according to Eq.(1.39),
can be repeated at each generation, thus tuning the appropriate penalty pressure on the
current population. The main advantages of such an approach are substantially two:

• this procedure is automatic and problem-independent because the GA can automat-
ically calculate the values of the penalty coefficients without the intervention of the
user by simply exploiting the values of the objective and constraint functions in the
current population;

• the method is dynamic since the evaluation of the penalty level is updated at each
generation, and this allows the values of the penalty coefficients to be the most
suitable to the current distribution of feasible and infeasible individuals in the pop-
ulation, the expected effect being eventually to extinguish the infeasible group in
the population or to limit infeasible individuals to regions close to the boundary
between feasible and infeasible domains.

Figure 1.10: Feasible and infeasible regions of the definition domain

From a practical point of view, the ADP strategy is implemented within BIANCA
according to the following logical steps:

• Case 1 : feasible individuals (with respect to the kth constraint function) within the
current population

1. the individuals of the whole population are firstly classified with respect to the
violation or non-violation of the kth constraint function;
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2. the individuals which are infeasible with respect to the kth constraint function,
are then grouped and ranked with respect to their objective function values:
the objective function of the best individual of such a sub-space is ΦNF

best, while
the kth violated constrain function is (Gk)

NF
best (or (Hk)

NF
best in the case of equality

constraints);

3. the individuals which are feasible with respect to the kth constraint function,
are then grouped and ranked with respect to their objective function values:
the objective function of the best individual of such a group is ΦF

best;

4. the penalty coefficient ck (or qk) is then evaluated according to Eq.(1.39).

• Case 2 : no feasible individuals (with respect to the kth constraint function) within
the current population

1. the individuals of the whole population are firstly classified with respect to the
violation of the kth constraint function;

2. the individuals are then sorted into two different groups: the individuals having
smaller values of the kth violated constraint are grouped in a sub-space of
“virtually feasible” individuals (with respect to the kth constraint function),
while the rest are grouped in the sub-space of infeasible individuals. The
number of individuals grouped in the “virtually feasible” region corresponds
to 10% of the population size;

3. the remaining 90% individuals in the population, which are considered ”ef-
fectively infeasible” with respect to the kth constraint function are ranked in
terms of their objective function values: the objective function of the best in-
dividual of such a sub-space is ΦNF

best, while the k
th violated constraint function

is (Gk)
NF
best (or (Hk)

NF
best in the case of equality constraints);

4. the individuals within the “virtually feasible” region (with respect to the kth

constraint function) are ranked with respect to their objective function values:
the objective function of the best individual of such a group is ΦF

best;

5. the penalty coefficient ck (or qk) is then evaluated according to Eq.(1.39);

It is worth noting that, in the context of the ADP strategy, each constraint is treated
separately and independently from each other.

To understand the way whereby the ADP strategy acts on the individuals within the
population, and also to show its effectiveness, let us consider the following optimisation
problem:
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min
x

Φ (x1, x2) = −eka
√

x2

1
+x2

2 sin (ax1) cos (2bx2) ,

subject to :




g (x1, x2) = ecx
2

1 − 1− x2 ≤ 0 ,

0 ≤ x1 ≤ 4π ,

0 ≤ x2 ≤ 2π ,

(1.40)

where a = 1, b = 0.6, c = 0.012 and k = 0.2 are constant parameters. A 3D plot of the
objective function Φ (x1, x2) and of the constraint g (x1, x2) is given in Fig. 1.11. It can
be noticed that such a function is highly non-linear and non-convex with several local
minima into the feasible region, while the global unconstrained minimum is placed on the
infeasible side. However, the global constrained minimum lies on the boundary between
the two regions and very close to the global unconstrained (infeasible) minimum.

Figure 1.11: a) 3D plot and b) contour plot of the objective and constraint functions on
the definition domain

To solve problem (1.40), we used the GA BIANCA with a population of Nind =
200 individuals evolving along Ngen = 100 generations. In addition, the crossover and
mutation probabilities are pcross = 0.85 and pmut = 1/Nind, respectively. The selection is
performed through the roulette-wheel operator, the elitism is active and the ADP method
has been used for handling constraints.

The values of the constrained global minimum and of the constraint function found by
BIANCA are Φ = −8.09933 and g = −0.00443, respectively, whilst the optimal values of
the design variables are x1 = 10.71119 and x2 = 2.96646. Fig. 1.12 shows the evolution
of the distribution of the individuals over the definition domain along the generations. It
can be noticed that at the initial generation the population is uniformly distributed over
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the design space (Fig. 1.12 (a)). After 20 generations (Fig. 1.12 (b)) some individuals
move towards the local feasible minimum, while the rest of the population moves towards
the global constrained minimum. It can be noticed that after 20 generations we still have
some infeasible individuals placed around the global unconstrained (infeasible) minimum
that acts as an attractor for the solution search process. The GA uses such points (and
the related genetic information) in order to drive the search to the regions placed near
the boundary. After 50 generations (Fig. 1.12 (c)) all the individuals are very close to
the true constrained minimum.

Figure 1.12: Distribution of the individuals over the search space along the generations
for problem (1.40): a) initial generation, b) after 20 generations, c) after 50 generations,
d) final generation
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1.7 Some benchmark problems to test the ADP strat-

egy

To have an idea of the effectiveness of the ADP strategy, we consider three benchmark
problems belonging to the engineering world, which were extensively studied in the liter-
ature.

Such benchmark problems are: the welded beam problem, originally proposed by
Rao [73], the pressure vessel problem, firstly studied by Kannan and Kramer [74], and
the tension-compression spring problem taken from Arora [75] and Belugundu [76].

Concerning the genetic parameters employed in all the simulations, the population is
composed of Nind individuals evolving along a fixed maximum number of generation Ngen.
For each considered benchmark we perform 30 runs of our GA, and, for each run, 80000
fitness evaluations are carried out. This implies that such a number of fitness evaluations
can be obtained with various combinations of number of individuals and maximum number
of generations, i.e. the parameters Nind and Ngen must satisfy the following relationship:

Ngen ×Nind = 80000 . (1.41)

In addition, the crossover and mutation probabilities are pcross = 0.85 and pmut =
1/Nind, respectively. The selection is performed by the roulette-wheel operator, the
single-individual elitism is active and, of course, the ADP method is used for handling
constraints. Moreover, since for such problems the genotype of the individual is composed
by a single chromosome, the genetic operators that perform the crossover and mutation
among individuals belonging to different species are no longer required.

For each test-case, we compare our results with the ones reported in the literature
and obtained by other researchers by the use of several EA-based methods which employ
different constraint-handling techniques.

1.7.1 The welded beam problem

The welded beam problem was originally studied by Rao [73]. In such a problem a welded
beam is designed for minimum cost subject to constraints on shear stress (τ), bending
stress in the beam (σ), buckling load on the bar (Pc), end deflection of the beam (δ), and
side constraints. There are four design variables as shown in Fig. 1.13 : x1 = h, x2 = l,
x3 = t and x4 = b.

The problem can be stated as follows:
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min
x

Φ (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) ,

subject to :



g1 (x) = τ (x)− τmax ≤ 0 ,

g2 (x) = σ (x)− σmax ≤ 0 ,

g3 (x) = x1 − x4 ≤ 0 ,

g4 (x) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0 ,

g5 (x) = 0.125− x1 ≤ 0 ,

g6 (x) = δ (x)− δmax ≤ 0 ,

g7 (x) = P − Pc (x) ≤ 0 ,

0.1 ≤ x1 ≤ 2.0 ,

0.1 ≤ x2 ≤ 10.0 ,

0.1 ≤ x3 ≤ 10.0 ,

0.1 ≤ x4 ≤ 2.0 ,

(1.42)

where:

τ (x) =

√
τ 21 + 2τ1τ2

x2

2R
+ τ 22 ,

τ1 =
P√
2x1x2

, τ2 =
MR

J
, M = P (L+

x2

2
) ,

R =

√(x2

2

)2
+

(
x1 + x3

2

)2

,

J = 2

{
√
2x1x2

[
x2
2

12
+

(
x1 + x3

2

)2
]}

,

σ (x) = 6
PL

x4x2
3

, δ (x) =
4PL3

Ex4x3
3

,

Pc (x) =
4.013E

√
x2
3x

6
4/36

L2

(
1− x3

2L

√
E

4G

)
.

(1.43)

The quantities P , L, δmax, τmax, σmax, E and G are constant parameters and their nu-
merical values, in the appropriate units [56], are: P = 6000, L = 14, δmax = 0.25,
τmax = 13600, σmax = 30000, E = 30× 106 and G = 12× 106.

The approaches employed to deal with such a problem are: geometric programming
(Ragsdell and Phillips [77]), standard GA with static penalty function (Deb [78]), an
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Figure 1.13: Rough sketch of the welded beam considered within the optimisation problem
(1.42), taken from [56]

improved GA with a feasibility-based tournament selection scheme inspired by the multi-
objective optimisation techniques (Coello and Montes [79]), a co-evolutionary particle-
swarm strategy for constrained optimisation problems (He and Wang [80]), a hybrid
particle-swarm optimisation with feasibility rules (He and Wang [81]) and a hybrid GA
with flexible allowance technique (Zhao et al. [82]).

Concerning the GA BIANCA, in order to satisfy the condition on the maximum num-
ber of fitness evaluations of Eq.(1.41), we consider a population of Nind = 250 individuals
evolving along Ngen = 320 generations.
The best solution found by BIANCA as well as the best solutions obtained by the afore-
mentioned approaches are listed in Table 1.2, while the statistical results for each consid-
ered strategy are detailed in Table 1.3. Fig. 1.14 shows the variation of the best solution
along the generations. It can be noticed that the global minimum is found after 260
generations.



1.7. SOME BENCHMARK PROBLEMS TO TEST THE ADP STRATEGY 55

Figure 1.14: Best values of the objective function along the generations for the optimisa-
tion problem (1.42)

Design variables BIANCA Zhao He and He and Coello and Deb [78] Ragsdell and
et al. [82] Wang [81] Wang [80] Montes [79] Phillips [77]

x1 0.205501 0.205730 0.205730 0.202369 0.205986 0.248900 0.245500

x2 3.475070 3.470489 3.470489 3.544214 3.471328 6.173000 6.196000

x3 9.037540 9.036624 9.036624 9.048210 9.020224 8.178900 8.273000

x4 0.205751 0.205730 0.205730 0.205723 0.206480 0.253300 0.245500

Constraints

g1(x) −0.021384 N.A. N.A. −12.839796 −0.074092 −5758.603777 −5743.826517

g2(x) −9.195431 N.A. N.A. −1.247467 −0.266227 −255.576901 −4.715097

g3(x) −0.000250 N.A. N.A. −0.001498 −0.000495 −0.004400 0

g4(x) −3.432263 N.A. N.A. −3.429347 −3.430043 −2.982866 −3.020289

g5(x) −0.080501 N.A. N.A. −0.079381 −0.080986 −0.123900 −0.120500

g6(x) −0.235546 N.A. N.A. −0.235536 −0.235514 −0.234160 −0.234208

g7(x) −2.269075 N.A. N.A. −11.681355 −58.666440 −4465.270928 −3604.275002

Objective

Φ(x) 1.725436 1.724852 1.724852 1.728024 1.728226 2.433116 2.385937

Table 1.2: Comparison between the best solutions found with different penalty-based
approaches for the optimisation problem (1.42) (N.A. stands for “Not Available”).
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Method Best Mean Worst Standard deviation

BIANCA 1.725436 1.752201 1.793233 0.023001

Zhao et al. [82] 1.724852 1.724852 1.724852 5.8× 10−16

He and Wang [81] 1.724852 1.749040 1.814295 0.040000

He and Wang [80] 1.728024 1.748831 1.782143 0.012926

Coello and Montes [79] 1.728226 1.792654 1.993408 0.074713

Deb [78] 2.433116 N.A. N.A. N.A.

Ragsdell and Phillips [77] 2.385937 N.A. N.A. N.A.

Table 1.3: Statistical results found with different penalty-based approaches for the opti-
misation problem (1.42) (N.A. stands for “Not Available”).

1.7.2 The pressure vessel problem

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Fig. 1.15.
The goal of this problems consists in minimising the total cost of the structure, including
the cost of the material, forming and welding. The design variables are: the thickness of
the shell x1 = Ts, the thickness of the head x2 = Th, the inner radius x3 = R and the length
of the cylindrical section of the vessel (not including the head) x4 = L. Moreover, Ts and
Th are real discrete design variables discretised with a precision ∆x1 = ∆x2 = 0.0625
(which corresponds to the available thickness of rolled steel plates), while R and L are
continuous.

Using the same notation adopted by Kannan and Kramer [74], the problem can be
stated as follows:

min
x

Φ (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x4x

2
1 + 19.84x3x

2
1 ,

subject to :




g1 (x) = −x1 + 0.0193x3 ≤ 0 ,

g2 (x) = −x2 + 0.00954x3 ≤ 0 ,

g3 (x) = −πx2
3x4 −

4

3
πx3

3 + 1296000.0 ≤ 0 ,

g4 (x) = x4 − 240.0 ≤ 0 ,

0.0625 ≤ x1 ≤ 6.1875 , with ∆x1 = 0.0625 ,

0.0625 ≤ x2 ≤ 6.1875 , with ∆x2 = 0.0625 ,

10.0 ≤ x3 ≤ 200.0 ,

10.0 ≤ x4 ≤ 200.0 .

(1.44)
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Figure 1.15: Rough sketch of the pressure vessel considered within the optimisation pro-
blem (1.44), taken from [56]

The approaches used in the literature to solve this problem are: an augmented La-
grangian multiplier approach (Kannan and Kramer [74]), a genetic adaptive search (Deb [83]),
and, again, the aforementioned approaches of Coello and Montes [79], He and Wang [80,
81] and Zhao et al. [82].

In order to satisfy the condition on the maximum number of fitness evaluations of
Eq.(1.41), the size of the population Nind and the maximum number of generations Ngen

in BIANCA are chosen equal to 400 and 200, respectively.
The best solution found by BIANCA as well as the best solutions obtained by the afore-
mentioned approaches are listed in Table 1.4, while the statistical results for each consid-
ered strategy are detailed in Table 1.5. Fig. 1.16 shows the variation of the best solution
along the generations. It can be noticed that the global minimum is found after only 20
generations.
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Figure 1.16: Best values of the objective function along the generations for the optimisa-
tion problem (1.44)

Design variables BIANCA Zhao He and He and Coello and Deb [83] Kannan and
et al. [82] Wang [81] Wang [80] Montes [79] Kramer [74]

x1 0.812500 0.812500 0.812500 0.812500 0.812500 0.937500 1.125000

x2 0.437500 0.437500 0.437500 0.437500 0.437500 0.500000 0.625000

x3 42.096800 42.098456 42.098456 42.091266 42.097398 48.329000 58.291000

x4 176.658000 176.636596 176.636596 176.746500 176.654050 112.679000 43.690000

Constraints

g1(x) −0.000032 N.A. N.A. −0.000139 −0.000020 −0.004750 0.000016

g2(x) −0.035897 N.A. N.A. −0.035949 −0.035891 −0.038941 −0.068904

g3(x) −5.631534 N.A. N.A. −116.382700 −27.886075 −3652.876838 −21.220104

g4(x) −63.342000 N.A. N.A. −63.253500 −63.345953 −127.321000 −196.310000

Objective

Φ(x) 6059.9384 6059.7143 6059.7143 6061.0777 6059.9463 6410.3811 7198.0428

Table 1.4: Comparison between the best solutions found with different penalty-based
approaches for the optimisation problem (1.44) (N.A. stands for “Not Available”).

1.7.3 The tension-compression spring problem

The design problem of a tension-compression spring was firstly studied by Arora [75] and
Belegundu [76]. The main goal is to minimise the weight of the tension-compression spring
(as shown in Fig. 1.17) subject to constraints on the minimum deflection, the shear stress,
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Method Best Mean Worst Standard deviation

BIANCA 6059.9384 6182.0022 6447.3251 122.3256

Zhao et al. [82] 6059.7143 6059.7143 6059.7143 2.8× 10−12

He and Wang [81] 6059.7143 6099.9323 6288.6770 86.2000

He and Wang [80] 6061.0777 6147.1332 6363.8041 86.4545

Coello and Montes [79] 6059.9463 6177.2533 6469.3220 130.9297

Deb [83] 6410.3811 N.A. N.A. N.A.

Kannan and Kramer [74] 7198.0428 N.A. N.A. N.A.

Table 1.5: Statistical results found with different penalty-based approaches for the opti-
misation problem (1.44) (N.A. stands for “Not Available”).

the surge frequency and the outside diameter. The design variables are: the wire diameter
x1 = d, the mean coil diameter x2 = D and the number of active coils x3 = Ncoil.

Adopting the same notation of Arora [75], the problem can be stated as follows:

min
x

Φ (x) = (x3 + 2) x2x
2
1 ,

subject to :



g1 (x) = 1− x3
2x3

71785.0x4
1

≤ 0 ,

g2 (x) =
4x2

2 − x1x2

12566.0(x3
1x2 − x4

1)
+

1

5108.0x2
1

− 1 ≤ 0 ,

g3 (x) = 1− 140.45x1

x2
2x3

≤ 0 ,

g4 (x) =
x1 + x2

1.5
− 1 ≤ 0 ,

0.05 ≤ x1 ≤ 2.0 ,

0.25 ≤ x2 ≤ 1.3 ,

2.0 ≤ x3 ≤ 15.0 ,

(1.45)

We compare our results with the ones carried out through the following strategies taken
from the literature: the numerical optimisation technique proposed by Belegundu [76], a
numerical optimisation technique called “constraint correction at constant cost” (Arora [75])
and, again, the aforementioned approaches of Coello and Montes [79], He and Wang [80,
81] and Zhao et al. [82].

Concerning the GA BIANCA, in order to satisfy the condition on the maximum num-
ber of fitness evaluations of Eq.(1.41), we consider a population of Nind = 320 individuals
evolving along Ngen = 250 generations.
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Figure 1.17: Rough sketch of tension-compression spring considered within the optimisa-
tion problem (1.45), taken from [80]

The best solution found by BIANCA as well as the best solutions obtained by the afore-
mentioned approaches are listed in Table 1.6, while the statistical results for each consid-
ered strategy are detailed in Table 1.7. Fig. 1.18 shows the variation of the best solution
along the generations. It can be noticed that the global minimum is found after only 50
generations.

Figure 1.18: Best values of the objective function along the generations for the optimisa-
tion problem (1.45)
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Design variables BIANCA Zhao He and He and Coello and Arora [75] Belegundu [76]
et al. [82] Wang [81] Wang [80] Montes [79]

x1 0.051613 0.051689 0.051689 0.051728 0.051989 0.053396 0.050000

x2 0.354839 0.356717 0.356717 0.357644 0.363965 0.399180 0.315900

x3 11.404700 11.288966 11.288966 11.244543 10.890522 9.185400 14.250000

Constraints

g1(x) −0.000256 N.A. N.A. −0.000845 −0.000013 0.000019 −0.000014

g2(x) −0.000112 N.A. N.A. −0.000013 −0.000021 −0.000018 −0.003782

g3(x) −4.048164 N.A. N.A. −4.051300 −4.061338 −4.123832 −3.938302

g4(x) −0.729032 N.A. N.A. −0.727090 −0.722698 −0.698283 −0.756067

Objective

Φ(x) 0.012671 0.012665 0.012665 0.012675 0.012681 0.012730 0.012833

Table 1.6: Comparison between the best solutions found with different penalty-based
approaches for the optimisation problem (1.45) (N.A. stands for “Not Available”).

Method Best Mean Worst Standard deviation

BIANCA 0.012671 0.012681 0.012913 5.123200× 10−5

Zhao et al. [82] 0.012665 0.012665 0.012665 3.200000× 10−7

He and Wang [81] 0.012665 0.012707 0.012719 1.608500× 10−5

He and Wang [80] 0.012675 0.012730 0.012924 5.198500× 10−5

Coello and Montes [79] 0.012681 0.012742 0.012973 5.900000× 10−5

Arora [75] 0.012730 N.A. N.A. N.A.

Belegundu [76] 0.012833 N.A. N.A. N.A.

Table 1.7: Statistical results found with different penalty-based approaches for the opti-
misation problem (1.45) (N.A. stands for “Not Available”).

1.7.4 Discussion of results

Concerning the effectiveness and robustness of the GA BIANCA, we can see that for all
the three considered benchmark problems, the quality of the results found using BIANCA
is, practically, of the same order as that obtained via the hybrid strategies of He and
Wang [81] and Zhao et al. [82]. Indeed, the relative errors (evaluated with respect to the
solutions found by Zhao et al. [82]) are 0.0034% for the welded beam problem, 0.0004%
for the pressure vessel problem and 0.0047% for the tension-compression string problem.
In addition, one can notice that the average searching quality and the standard deviation
of the results found by BIANCA in 30 independent runs are of the same order as the
other methods (with the exception of the hybrid strategies).
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Concerning the pressure vessel problem, it can be noticed that the strategy of Kannan
and Kramer [74] produces a solution with a significantly lower value of L. This solution is,
however, not feasible since the first constraint is slightly violated. The results produced
by the other methods (including the ones found using BIANCA) indicate that it is more
reasonable to variate the other design variables, allowing larger values of L because this
leads to find feasible designs having a lower cost.

Concerning the tension-compression spring problem, it can be noticed that the solution
found by Arora [75] has a lower value of the number of active coils Ncoil. Indeed, such
a solution is infeasible since the first constraint is slightly violated. We can see that
the results produced by the other approaches (including the ones found using BIANCA)
indicate that allowing greater values of the number of active coils Ncoil leads the algorithm
to find feasible designs showing a lower weight.

The hybrid GA with flexible allowance technique developed by Zhao et al. [82] is a
hybrid GA with Levenberg-Marquardt mutation operator which creates new feasible in-
dividuals (offspring) by considering the auxiliary information coming from the evaluation
of the constraints gradient. Such a strategy allows to obtain a numerically “exact” min-
imum for all the considered benchmarks. The authors assert that such solutions were
found after only 20000 evaluations of the objective function (which corresponds to 1/4 of
the number of evaluations carried out by the other considered methods).
Nevertheless, for such benchmark problems the objective and constraint functions are
available in a closed algebraic form. Generally, this is not the case when dealing with
optimisation of complex engineering systems (which require, for example, finite element
calculations for the constraints and/or the objective function evaluation). In such cases,
the results obtained via a hybrid GA, as the one proposed in [82], could be affected by the
way wherein the derivatives of the constraints and objective function are evaluated (which
represent a key-point for the Levenberg-Marquardt mutation operator). Moreover a more
accurate analysis of the effectiveness and performances of such techniques (in terms of
time spent to find a solution) could be made on the basis of the effective computing time
rather than on the basis on the number of fitness evaluations, because the effective cal-
culation cost includes also the evaluation of derivatives for the gradient-based operations
of constraint repair.

Finally, we can assert that the main advantage of our approach relies on the fact that
it remains a “purely” genetic approach: on one side, we do not need an estimation of
auxiliary quantities, such as the derivatives of the constraint or objective functions, while
on the other side, we practically have the same quality as the hybrid strategies in finding
optimal solutions.
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1.8 The interface of BIANCA with external software

In several problems, the value of the objective function and/or constraints, cannot be
computed analytically, but it has to be evaluated using special numerical codes. Typi-
cally, this is the case of structural optimisation, where the most part of times the struc-
tural response is numerically assessed using finite-element (FE) codes. For these cases,
a very general interface has been developed, which renders BIANCA able to exchange
input/output informations with mathematical models supported by an external software.

Fig. 1.19 shows the structure of the data-exchange between BIANCA and a generic
external software. For each individual, BIANCA performs the genetic operations, such
as selection, crossover, mutation and so on, and then passes the design variables to the
mathematical model built within the external environment. At this point, the external
software evaluates the objective and the existing constraint functions values, and then
passes them back to BIANCA. The data-exchange between BIANCA and the external
software is simply done by means of two text files.

The first one is the text file written from BIANCA and passed to the external software,
i.e. the input file, which contains the informations related to the current individual at the
current generation, i.e. the number and the values of the design variables restrained in
that individual’s genotype. This input file contains also additional information such as
the number of objective functions, inequality constraints and equality constraints.

The second one is the text file written from the external software and passed to
BIANCA, i.e. the output file, wherein are written the values of the objective functions,
equality and inequality constraints.

Figure 1.19: Structure of BIANCA interface with external software.

The writing operations of these files are made for each individual in the current gen-
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eration, so the external software, during the whole optimisation process, is called from
BIANCA Nind × Ngen times, where Nind is the number of individuals while Ngen is the
number of generations. Up to now, some current and well known software packages have
been interfaced with BIANCA in this way like, for instance, MATLAB, ABAQUS and
ANSYS packages.

1.9 The Graphical User Interface (GUI) of BIANCA

In this Section we briefly describe the architecture and the main features of the BIANCA
GUI. The main reason that underlies our choice of creating a GUI for the code BIANCA
consists in developing a tool that can be easily handled and employed by the user which
wants to use BIANCA as a numerical technique to perform the search of solutions for a
given optimisation problem.

The BIANCA GUI has been realised in MATLAB environment [84]. The layout of
the main window, that appears when the user launch the GUI, is depicted in Fig. 1.20.

As other standard GUI, the BIANCA GUI is organised in a certain number of sub-
windows which the user can call by clicking on the appropriate buttons of the main
window. In particular, after having chosen a name, e.g. job-name, for the current job
session and after writing it in the text-box indicated by the number 1 in Fig. 1.20, in
order to set correctly the various options of the code the user has to realise the following
operations.

By clicking on the “Genetic parameters” button (number 2 in Fig. 1.20) it is possible
to open the corresponding window, as shown in Fig. 1.21.

After having properly set the genetic parameters (like, for instance, number of popu-
lation, population size, stop criterion, crossover and mutation probabilities and so on) for
the current job session, to save such parameters we have to click on the “save” button.
In this way the GUI creates an input file for BIANCA which contains all selected genetic
parameters. Such a file has the same name of the current job session with the extension
.gen, i.e. job-name.gen.

The second step consists in setting the optimisation parameters for the considered
problem. To realise this operation, the user must click on the “Optimization parameters”
button (number 3 in Fig. 1.20): in this case the corresponding window, depicted in Fig.
1.22, appears.

In this window the user can set the optimisation parameters concerning the consid-
ered optimisation problem. The user can choose: the problem type (minimisation or
maximisation), the number of constraint functions, the nature and the number of design
variables, the structure of the individual’s genotype (number of chromosomes and genes),
the working environment wherein the optimisation problem is implemented and, hence,
if the interface between BIANCA and an external software has to be activate (e.g. this
is the case wherein we want to optimise a model realised within a FE code). Again, by
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Figure 1.20: BIANCA GUI main window layout.

clicking on the “save” button a file having the same name of the current job session with
the extension .opt, i.e. job-name.opt, is created.

Finally, by clicking on “Postoprocessing parameters” button (number 4 in Fig. 1.20)
the window shown in Fig. 1.23 appears. In such window the user can set the options
concerning the post-processing operations on the results, namely the plotting operations
on the trend of the best solution along the generations as well as the trend of the average
of the objective function along the generations. By clicking on the “save” button the file
postprocessing.inp, containing such information, is then created.

Moreover, if the optimisation problem is written in FORTRAN environment, before
running BIANCA by clicking on the “run” icon (number 6 in Fig. 1.20), we need to
compile BIANCA by clicking on the “compile” icon (number 5 in Fig. 1.20). Finally, to
quit the GUI we have to click on the “exit” icon indicated by number 7 in Fig. 1.20.
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Figure 1.21: BIANCA GUI genetic parameters window layout.
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Figure 1.22: BIANCA GUI optimization parameters window layout.

Figure 1.23: BIANCA GUI post-processing parameters window layout.
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Chapter 2

Identification of constitutive
properties of piezoelectric structures

2.1 Introduction

2.1.1 Literature overview

A great number of researches have been devoted to improve the characteristics of piezo-
electric transducers. Piezocomposites have been developed to overcome many of the
drawbacks of the standard monolithic piezoelectric wafer, in terms of flexibility and dura-
bility. The modelling of such smart structures equipped with piezoelectric transducers
necessitates an accurate prediction of the electromechanical properties of the transducer
itself.

The first attempts to model flat piezocomposites were carried out by using various
homogenisation approaches, including the uniform field method (UFM) [85, 86], the self
consistent approach [87], the asymptotic homogenisation method [88, 89] and finite ele-
ment based techniques [90].

Moreover, piezocomposite transducers are composed of multi-layers of different mate-
rials including the active layer, the electrode layers, and the adhesive between different
layers. The accurate modelling resides into the precise description of each layer in terms
of geometry, dimensions and material properties which are usually not fully provided
by the manufacturer. In such a case, an identification process based on numerical and
experimental analyses can be used to obtain the overall electromechanical properties of
such piezoelectric transducers. The study conducted in this Chapter aims to exploit the
effective electromechanical properties of monolithic piezoelectric transducer attached to
a thin composite plate-like structure. Such an approach can also be easily extended to
piezocomposite structures.

Different numerical strategies, basically inverse problem procedures, have been devel-
oped for the identification of materials elastic moduli. A rather complete survey of such

69
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approaches, concerning identification methods for the estimation of mechanical properties
on different kind of laminated structures, can be found in [91]. Many techniques [92] use
an optimisation procedure in order to minimise the difference between the measured eigen-
frequencies and the corresponding ones obtained via a FE calculation. An improvement
of these approaches has been proposed by Araújo et al. [93, 94]. The authors combined
numerical analysis, using a finite element model, and experimental analysis, using exper-
imental vibration data, in order to formulate the identification problem for a composite
plate equipped with surface mounted piezoelectric transducers. In-plane properties have
been obtained using a gradient-based optimisation algorithm, for which a sensitivity anal-
ysis with respect to the design variables is required. This analysis is delicate when dealing
with optimisation of complex structures. Concerning the estimation of both elastic and
piezoelectric properties of surface bonded sensors and actuators in active structures, other
gradient-based methods, applied to a circular plate model, have been proposed by Banks
et al. [95].

Other eigenfrequency-based approaches for the identification of elastic constants in
laminated composite materials include methods based on response surfaces [96] and the
use of model updating techniques [97]. Another class of inverse techniques is based on
ultrasonic and wave propagation measurements along with optimisation techniques, in
particular global optimisation strategies such as GAs [98, 99]. Artificial neural networks
have also been applied to the identification problem of elastic properties of anisotropic lam-
inated plates using surface displacement response in a wave propagation simulation [100].
A rather complete review on inverse problem procedures for the identification of elastic
and piezoelectric properties of active structures can be found in [101].

The main focus of the study conducted in this Chapter concerns the definition of an
identification technique based upon an optimisation procedure for the evaluation of the
full 3D set of electromechanical properties of surface bonded sensors in active plates. Our
strategy relies upon the dynamic response of the structure in terms of undamped natural
frequencies and makes use of GAs as global optimisation techniques. The inverse pro-
blem of the identification of elastic and piezoelectric properties is stated as a constrained
minimisation problem of an error function expressing the difference between the measured
eigenfrequencies and the corresponding numerical values.
Starting from the strategy conceived by Araújo et al. [93, 94], which is a multi-step identi-
fication strategy, we consider the parameter estimation problem in the most general case,
without simplifying hypotheses on the mechanical behaviour of the structure. To this
purpose we built a 3D Finite Element (FE) model for the piezoelectric patches, in order
to capture (with a good level of accuracy and reliability) the true mechanical response of
the physical system.
The second innovative aspect of our approach (about the formulation of the inverse pro-
blem as a constrained minimisation problem) consists in the use of the full set of con-
straints that must be imposed to ensure the positive definiteness of the stiffness tensor of
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the piezoelectric material of the transducers.
Concerning the optimisation tool, the new version of the GA BIANCA is employed in

each phase of the optimisation procedure. On one side we want to test the effectiveness of
the ADP strategy for handling constraints when dealing with the problem of identifying
the electromechanical properties of piezoelectric structures, while on the other side we
test the interface of BIANCA with external codes, especially when the objective as well
as the constraint functions are not available in an algebraic form and are evaluated via a
numerical process, e.g. a FE calculation, as the one shown in this Chapter.

The Chapter is organised as follows: firstly, the constitutive law for piezoelectric
materials is briefly described in Sec. 2.2, then Sec. 2.3 details the aspects concerning
the FE model adopted for the active plate along with the mathematical statement of the
parameter estimation problem as an optimisation problem as well as the description of the
adopted numerical strategy. The numerical results applied on an active plate with surface
mounted piezoelectric patches are shown in Sec. 2.4, in order to validate the accuracy
and the reliability of the proposed numerical tool and, finally, Sec. 2.5 ends the Chapter
with some concluding remarks.
Starting from Sec. 2.3, this Chapter is substantially taken from the article [102].

2.2 Constitutive law for piezoelectric materials

2.2.1 Piezoelectric materials

The piezoelectric effect can be seen as a transfer of energy from electrical to mechanical
energy and vice-versa. Such transfers can only occur if the material is composed of charged
particles and can be polarised.

The necessary condition that a material must satisfy in order to show the piezoelectric
behaviour is that its crystal structure must have no centre of symmetry, see [103]. In
nature, 21 crystal structures out of 32 are non-centrosymmetric. A crystal having no
center of symmetry possesses one or more crystallographically directional axes. All 21 non-
centrosymmetric crystal classes, except 1, show piezoelectric effect along the directional
axes. Out of the 20 piezoelectric classes, only 10 have one unique directional axis. Such
crystals are called polar crystals because they show spontaneous polarization. The value
of the spontaneous polarization depends on the temperature (this is called the pyroelectric
effect). The pyroelectric crystals for which the magnitude and direction of the spontaneous
polarization can be reversed by an external electric field are said to show the ferroelectric
behaviour.

Most of the piezoelectric materials are crystalline solids. They can be single crystals
(either naturally or artificially formed) or polycrystalline materials like ferroelectric ce-
ramics which can be made piezoelectric and, in this case, they show, at a macroscopic
scale, a single crystal symmetry obtained through the so-called process of poling (by sub-
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jecting to a high electric field not far below the Curie temperature, see [103] for more
details).
The piezoelectric effect can also appear in crystals composed of only one type of element
(in this case, the polarization is due to a distortion in the electronic distribution). Certain
polymers can also be made piezoelectric by stretching them under an electric field.

In the following we consider only the piezoelectric effect in the framework of the linear
piezoelectric theory. Further additional aspects, like for instance, types of polarisation of
piezoelectric materials (e.g. electric polarisation, ionic polarisation and so on), domain
reorientation, hysteresis, doping effect and other kinds of non-linearity fall outside the
scopes of the present thesis. For a deeper insight in the matter the reader is addressed
to [103].

2.2.2 General constitutive equations

According to the first law of thermodynamics for a piezoelectric material, the variation of
the stored internal energy dUint depends upon three different contributions, i.e. the work
of the external forces, the work of the electric field and the thermal energy brought to the
system:

dUint = σijdεij + ÊidDi +Θdς , (2.1)

where σij and εij are the second-order tensors of stress and strain, respectively, while Êi

and Di are the vectors of the electric field and electric displacement, respectively. Θ =
Θ0+θ is the temperature of the piezoelectric continuum (Θ0 is the reference temperature,
whilst θ ≪ Θ0 is a small perturbation around the reference value) and ς represents the
entropy. In Eq. (2.1) the Einstein’s summation convention on repeated indices is assumed
and i, j = 1, 2, 3.

Let us now consider the constitutive equations taking εij, Êi and θ as state variables:

dσij =
∂σij

∂εkl
dεkl +

∂σij

∂Êm

dÊm +
∂σij

∂θ
dθ ,

dDi =
∂Di

∂εkl
dεkl +

∂Di

∂Êm

dÊm +
∂Di

∂θ
dθ ,

dς =
∂ς

∂εkl
dεkl +

∂ς

∂Êm

dÊm +
∂ς

∂θ
dθ .

(2.2)

To completely describe the behaviour of the piezoelectric continuum, we have to con-
sider the thermoelectric Gibbs state function Gfree (or free energy) defined as follows:

Gfree = Uint − ÊiDi −Θς . (2.3)

From Eq. (2.1) and (2.3) we get:
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dGfree = σijdεij −DidÊi − ςdθ , (2.4)

and therefore,

σij =
∂Gfree

∂εij
,

Di = −∂Gfree

∂Êi

,

ς = −∂Gfree

∂θ
.

(2.5)

By deriving a second time the previous expressions we get:

∂σij

∂Êm

= −∂Dm

∂εij
,

∂σij

∂θ
= − ∂ς

∂εij
,

∂Di

∂θ
=

∂ς

∂Êi

.

(2.6)

In Eq. (2.2) and (2.6) each partial derivative has a peculiar physical meaning:

• CÊ,θ
ijkl =

∂σij

∂εkl
is the fourth-order elasticity (or stiffness) tensor at constant electric

and temperature fields;

• eijm = − ∂σij

∂Êm

=
∂Dm

∂εij
is the third-order piezoelectric tensor (coupling between

mechanical and electric behaviours);

• λij = −∂σij

∂θ
=

∂ς

∂εij
is the second-order thermal stress tensor (coupling between

mechanical and thermal behaviours);

• κσ,θ
im =

∂Di

∂Êm

is the second-order permittivity tensor at constant stress and temper-

ature fields;

• pi =
∂Di

∂θ
=

∂ς

∂Êi

is the pyroelectricity vector (coupling between thermal and electric

behaviours);

• ασ,Ê =
∂ς

∂θ
is the specific heat capacity at constant stress and electric field.
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Considering the previous definitions, the free energy can be written as:

Gfree =
1

2
CÊ,θ

ijklεijεkl − ekijÊkεij −
1

2
κσ,θ
ij ÊiÊj −

1

2
ασ,Êθ2 − λijεijθ − piEiθ . (2.7)

From Eq. (2.7) and (2.5) we finally get the relationship expressing the linear thermopiezo-
electric behaviour of the continuum:

σij = CÊ,θ
ijklεkl − ekijÊk − λijθ ,

Dm = emijεij + κσ,θ
mkÊk + pmθ ,

ς = λijεij + pkÊk + ασ,Êθ .

(2.8)

Eq. (2.8) can be expressed in a more compact form by adopting the matrix (or Voigt’s)
notation for tensors. Thus, neglecting the effect of the temperature (i.e. considering a
temperature Θ equal to the reference temperature Θ0) in Eq. (2.8) through such a notation
the previous tensor components can be expressed as follows:

CÊ
ijkl = CÊ

pq i, j, k, l = 1, 2, 3 , p, q = 1, ..., 6 ,

eikl = eiq i, k, l = 1, 2, 3 , q = 1, ..., 6 ,

σij = σp i, j = 1, 2, 3 , p = 1, ..., 6 ,

εij = εp i, j = 1, 2, 3 and i = j , p = 1, ..., 6 ,

2εij = εp i, j = 1, 2, 3 and i ̸= j , p = 1, ..., 6 .

(2.9)

According to the matrix notation the constitutive equations read (expressed with
respect to the state variables εp and Êi):

{σ} = [CÊ]{ε} − [e]T{Ê} ,

{D} = [e]{ε}+ [κσ]{Ê} ,
(2.10)

or, with a different choice of the state variables (e.g. σp and Êi),

{ε} = [SÊ]{σ}+ [d]T{Ê} ,

{D} = [d]{σ}+ [κσ]{Ê} .
(2.11)

Eq. (2.10) and (2.11) represent the direct and inverse form of the constitutive equa-

tions for a piezoelectric material. In those equations [CÊ] and [SÊ] are the stiffness and
compliance matrices (at constant electric field), respectively, while [e] and [d] are the
direct (charge/strain) and converse (charge/stress) piezoelectric coefficient matrices, re-
spectively. [κσ] is the permittivity matrix at constant stress field, while {ε}, {σ}, {Ê} and
{D} are the strain, stress, electric field and electric displacement vectors, respectively.



2.2. CONSTITUTIVE LAW FOR PIEZOELECTRIC MATERIALS 75

Moreover, the following relationships between stiffness, compliance and piezoelectric
matrices occurs:

[SÊ] = [CÊ]−1 ,

[e] = [d][CÊ] .
(2.12)

In the following, in order to express the behaviour of the piezoelectric material we
consider the inverse form of the constitutive equations of the linear piezoelectricity, i.e.
Eq. (2.11). In addition, due to crystal symmetries, the piezoelectric coupling matrices
[d] and [e] may have only few non zero elements (see [104, 105]). In the material frame
R : {O; x1, x2, x3} of the patches, if the constitutive material is orthotropic and assuming

the x3 axis as the direction of the polarization of the material, the matrices [SÊ], [d] and
[κσ] can be written as:

[SÊ] =




1

E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1

E2

−ν23
E2

0 0 0

−ν13
E1

−ν23
E2

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G13

0

0 0 0 0 0
1

G12




,

[d] =




0 0 0 0 d15 0

0 0 0 d24 0 0

d31 d32 d33 0 0 0


 ,

[κσ] =




κ11 0 0

0 κ22 0

0 0 κ33


 .

(2.13)

Since the main goal of this work is to identify the electromechanical properties of the
piezoelectric patches of an active plate-like structure, an estimation of the parameters of
the tensors of Eq. (2.13) will be performed. These parameters represent the design vari-
ables of the optimisation problem. In Sec. 2.3 further details about the design variables
and the mathematical statement of the optimisation problem are presented.
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2.3 Identification of electromechanical properties of

active plates

2.3.1 Problem description

The optimisation strategy presented in this Chapter allows to find a solution for the
material parameters identification problem and it is applied to the active plate structure
depicted in Fig. 2.1. In particular we are concerned in identifying the electromechanical
properties of the piezoelectric patches, the elastic moduli of the composite plate being
completely known. The composite plate is made of highly anisotropic unidirectional
carbon-epoxy plies (T300/5280), with 12 layers having the following stacking sequence:
[0◦/90◦/45◦/− 45◦/0◦/90◦]S . For both the composite base plate and the piezoelectric
patches, a linear elastic behaviour is assumed as constitutive material law. The material
properties for the elementary ply of the composite plate are listed in Table 2.1 and are
taken from [106].

Figure 2.1: Geometry of the active plate.

As shown in Fig. 2.1, the active plate has 9 equally spaced electroded piezoelectric
patches bonded to one of the exterior surfaces of the laminate. The constitutive law for
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Young’s modulus E1 [GPa] 132.40
Young’s modulus E2 [GPa] 10.70
Young’s modulus E3 [GPa] 10.70
Shear modulus G12 [GPa] 5.65
Shear modulus G23 [GPa] 3.38
Shear modulus G13 [GPa] 5.65
Poisson’s ratio ν12 0.24
Poisson’s ratio ν23 0.49
Poisson’s ratio ν13 0.24
Density ρ [kg/m3] 1580
Ply thickness tply [mm] 0.133

Table 2.1: Material properties for unidirectional carbon/epoxy ply T300/5208

the material of the patches is described by Eq. (2.11) and (2.13).

2.3.2 Mathematical statement of the problem and solving strat-
egy

Mathematical statement of the parameter estimation problem

In this section, the problem of the estimation of the electromechanical properties of an ac-
tive plate structure is stated as a constrained minimisation problem. The inverse problem
considered here belongs to the class of the minimum distance problems. Our strategy
consists in finding, through a genetic process, the physical parameters that, entering into
a FE model, minimise the distance between the real model and the numerical one. This
distance depends upon the measured and evaluated eigenfrequencies (and this choice is
just one among others). For such problems, the existence of a solution is not guaranteed
a priori. Moreover, it is rare that any parameter set can exactly match given data. On
the contrary, the parameter set matching a given observed state might not be unique.

In particular, the goal of our strategy is to identify the electromechanical properties
of the piezoelectric patches (in terms of the components of stiffness, piezoelectric and
dielectric tensors) through the measurement of a set of N undamped natural frequencies
of the reference structure, which represents the system response or the observed state.
Indeed, the parameter estimation technique consists in minimising the difference between
the response of the physical system and the finite element numerical model which simulates
the system response as function of the elastic and piezoelectric coefficients. The set of
coefficients minimising, i.e. putting to zero, this difference is assumed to be the set of
the actual physical parameters to be identified. The reference values of the undamped
natural frequencies can be measured experimentally or can be obtained numerically (via
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a FE calculation on a reference structure).
In the general 3D case, the design variables of the optimisation process are the technical

constants of elasticity, i.e. E1, E2, E3, ν12, ν23, ν13, G12, G23, G13, and the charge
coefficients of the piezoelectric patches, i.e. d31, d32, d33, d24, d15. We do not need
to estimate the dielectric coefficients at constant stress κσ

ij, because these values are,
normally, provided by manufacturers and can be easily obtained through capacitance
measurements, so they do not take part into the optimisation process as parameters to
be identified. The vector of design variables can be written as:

x = {E1, E2, E3, ν12, ν23, ν13, G12, G23, G13, d31, d32, d33, d24, d15} . (2.14)

Concerning the expression of the objective function, we consider an error estimator of
least-square type:

Φ (x) =
N∑

i=1

(
λi − λi(x)

λi

)2

, (2.15)

where λi and λi(x) are the eigenfrequencies of the reference structure and of the FE model,
respectively, whilst N is the total number of natural frequencies used in the analyses.

At this point a fundamental question arises: how can we choose the number N of
measured state variables (or data points) in order to have a good estimation of the system
parameters? Unfortunately, no proved theoretical rules exist in the literature, see [107,
108], to define the number of data points N for a given number of design variables n that
have to be identified. Generally, the inverse problem is stated as a non-linear least-square
problem and it can be viewed as an over-determined system of equations [107, 108]. Since
more observation points exist than parameters (N is usually much greater than n) there
are more equations than unknowns. If an optimal point exists, it may be not unique, thus
implying the existence of many combinations of parameters that result to be equivalent
optimal solutions for the non-linear least-square problem.

According to the aforementioned considerations, we considered a number of natural
frequencies N (the observed state) greater than the number of the parameters to be
identified. In particular, the number of eigenfrequencies N is chosen in such a way that
the numerical model shows a certain level of redundancy, i.e. the number of considered
natural frequencies is at least twice the number of the design variables.

Along with the previous remarks, we have to consider the existence constraints that
must be imposed on the technical constants of elasticity of the piezoelectric patches, in
order to ensure the positive definiteness of the stiffness tensor CÊ = (SÊ)−1, see [109]. In
particular, for an orthotropic material, they can be expressed as:
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g (x) ≤ 0 ,

with :




g1 (x) = −E1 ,

g2 (x) = −E2 ,

g3 (x) = −E3 ,

g4 (x) = E2 − E1 ,

g5 (x) = E3 − E1 ,

g6 (x) =| ν12 | −
√

E1

E2

,

g7 (x) =| ν23 | −
√

E2

E3

,

g8 (x) =| ν13 | −
√

E1

E3

,

g9 (x) = −G12 ,

g10 (x) = −G23 ,

g11 (x) = −G13 ,

g12 (x) = 2ν12ν23ν13
E3

E1

+ ν2
12

E2

E1

+ ν2
23

E3

E2

+ ν2
13

E3

E1

− 1 ,

g13 (x) = ν12 + ν23 + ν13
E3

E1

− 3

2
.

(2.16)

Several works, that can be found in literature, make use only of some of the previous
constraints. In particular, in these studies, only the g1, g4, g6, g9, g10 and g11 constraints
are considered. Nevertheless, they are not sufficient in order to ensure the positive def-
initeness of the tensor CÊ. To this purpose, in this work we adopt, for the first time,
the full set of constraints that have to be imposed to ensure the existence of the tensor
CÊ (even if higher-order 2D theories are employed to model the piezoelectric patches) in
agreement with the formulation reported in [109]. To our knowledge, this is the first time
that the whole set of constraints of Eq. (2.16) is used in such kind of problems.

It can be noticed that, in Eq. (2.16), constraints g4 and g5 do not represent ther-
modynamic existence conditions, but they are anyway imposed in order to ensure that
the Young’s moduli E2 and E3 have to be less than or equal to the Young’s modulus E1

measured along the main orthotropy axis of the material.
Finally, the problem of the identification of the electromechanical properties of the
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patches for the active plate can be stated as a classical constrained Non-Linear Program-
ming Problem (NLPP) as follows:





min
x

Φ (x) ,

subject to :

g (x) ≤ 0 .

(2.17)

Numerical strategy

To search a solution for the parameter identification problem of Eq. (2.17) we use the code
BIANCA interfaced with the FE code ANSYS: for every individual at each generation,
the evaluation of the objective and constraint functions is performed via a FE calculation.
In addition, since the number of decision variables (i.e. the parameters to be identified) is
fixed a priori the new genetic operators that perform the crossover and mutation among
different species are no longer required.

The structure of the individual’s genotype is depicted in Fig. 2.2, whilst Table 2.2
shows the design domain for the optimisation problem of Eq. (2.17).

Figure 2.2: Structure of the individual’s genotype for the optimisation problem (2.17).

The behaviour of the active plate in terms of natural frequencies is, substantially, a
purely mechanical phenomenon: in fact the elastic properties of the piezoelectric material
have a stronger effect on the response of the structure, when compared to the one of the
piezoelectric coefficients. Thus, due to the different order of magnitude of the sensitivities
of the eigenfrequencies to the different types of design variables, in agreement with the
strategy conceived by Araújo et al. [93, 94], we divided the optimisation process into two
phases (we recall that the elastic properties of the composite plate are known a priori):

• in the first phase, only the elastic properties of the sensors are identified, imposing
the closed-circuit condition (in order to obtain the elastic constants at constant
electric field);

• in the second phase we impose the open circuit condition on the piezoelectric sensors
in order to estimate the value of the piezoelectric charge coefficients of the material.

In this way, the inverse problem of the identification of material parameters is solved
separately in two different subspaces: in other words, we try to find a solution for the
problem of minimum distance (between target values of the eigenfrequencies and the
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Design variable Type Lower bound Upper Bound

E1 [GPa] continuous 1.0 100.0

E2 [GPa] continuous 1.0 100.0

E3 [GPa] continuous 1.0 100.0

ν12 continuous −1.0 0.5

ν23 continuous −1.0 0.5

ν13 continuous −1.0 0.5

G12 [GPa] continuous 1.0 50.0

G23 [GPa] continuous 1.0 50.0

G13 [GPa] continuous 1.0 50.0

d31 [10−12m/V] continuous −500.0 −100.0

d32 [10−12m/V] continuous −500.0 −100.0

d33 [10−12m/V] continuous 100.0 800.0

d24 [10−12m/V] continuous 100.0 800.0

d15 [10−12m/V] continuous 100.0 800.0

Table 2.2: Design variables and their bounds for the optimisation problem (2.17)

numerical ones) by solving the problem firstly in the space of elastic parameters (which
have the strongest effect on the values of natural frequencies) and then, using the elastic
parameters found in the first step, in the subspace of piezoelectric parameters (whose effect
on the dynamic response of the structure is negligible when compared to the previous one).

To prove the convergence of this approach we could restart the whole process by
inserting in the first phase, for the piezoelectric charge coefficients, the values issued
from the second phase. Then we could evaluate the new set of elastic constants of the
piezoelectric material and we could use them in the second phase and so on, until to reach
the convergence between two consecutive values of the design variables. We have always
checked that only one step, i.e. solving the optimisation problem only one time in closed
and open circuit conditions, is sufficient to obtain good values of the electromechanical
properties of the patches.

2.3.3 Finite element model of the active plate

The FE model of the active plate is realised in ANSYS environment. The structure is
modelled with a combination of shell and solid elements. In particular, the laminate is
modelled using SHELL281 elements with 8 nodes and 6 degrees of freedom (DOFs) per
node with 3 integration points along the thickness of each ply. The piezoelectric patches
are modelled using SOLID226 elements which are solid elements with 20 nodes used for



82 2. Identification of constitutive properties of piezoelectric structures

coupled-field analyses with a variable number of DOFs per node that depends upon the
kind of analysis that has to be performed: for a coupled-field analysis with piezoelectric
materials this solid element has 4 DOFs per node, i.e. the three displacements and the
electric potential.

The choice of using solid elements to model the piezoelectric patches is strictly related
to the main goal of our optimisation strategy: since we have to estimate the electrome-
chanical properties of the patches in the most general case, i.e. in the 3D case, we need to
build a mathematical model able to describe (with a good level of accuracy and reliability)
the mechanical response of the physical system. To this purpose the FE model of the ac-
tive plate has to be able to catch those phenomena which normally, even with higher-order
2D theories, are not well described, e.g. the effect of the out-of-plane Poisson’s ratios, the
effect of the shear response through-the-thickness and so on.

As said previously, we conduct a free-vibration analysis in order to evaluate the first
N eigenfrequencies of the FE model of the active plate. It is worth noting that when
electroded surfaces exist in a given patch, equipotential conditions must be imposed.
Moreover, in order to minimise the errors linked to the modelling of boundary conditions,
a completely free-edge plate is considered and the extraction of the non-rigid modes from
the FE analysis is carried-out.

As conclusive remark, it can be noticed that the compatibility of the displacement field
between the patches (modelled with solid elements) and the plate (modelled with shell
elements) is realised by means of constraint equations on each corresponding node belong-
ing to contiguous solid and shell elements. In particular, we specified rigid constraints
between the nodes of the middle surface of the plate structure and the corresponding ones
of the bottom surface of the patches (only for what concerns the displacement DOFs).
Rigid constraints equations are specified according to the classical scheme implemented
within the ANSYS code: the master nodes are those belonging to the middle plane of the
composite plate, whilst the slave nodes are those located on the bottom surface of every
patch. Through these constraint equations, the displacement of the nodes belonging to
the top surface of the plate (in the region wherein the patch is bonded) is equal to that
of the nodes belonging to the bottom surface of the patch.

2.4 Numerical results

With the purpose of validating our optimisation strategy, in this section we present a
simulated case study. The geometry of the active plate and the material properties of the
elementary layer of the base laminate are those discussed in Sec. 2.3. In order to find a
solution to the optimisation problem of Eq. (2.17) we need to define the reference values
of the eigenfrequencies λi in Eq. (2.15). Moreover, these values must be estimated for
both the phases of the whole procedure, i.e. for both closed and open circuit conditions.

Concerning the piezoelectric patches we use as target material (and hence as reference
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solution) the PZT-5H piezoelectric alloy [106], which is a transversely-isotropic material
and whose properties are listed in Table 2.3. For both phases of the optimisation procedure
we perform a free-vibration analysis and we evaluate the first N = 30 eigenfrequencies.
Moreover, after a preliminary mesh sensitivity study, the dimensions of the shell elements
are chosen equal to 2.5 × 2.5 mm2, while the dimensions of solid elements are 2.5 ×
2.5 × 1.0 mm3 (we have previously checked that a single element in the thickness of the
patch is sufficient to capture the correct mechanical response of the patch). Finally, the
number of DOFs of the whole model is 148876. We remark that, as said in Sec. 2.3, the
design variables are only the technical constants of elasticity and the piezoelectric charge
coefficients: for both open and closed-circuit conditions we assume that the values of the
permittivity coefficients are those of the reference material shown in Table 2.3.

Elastic coeff. Charge coeff. Permittivity coeff. Density

E1 [GPa] 62.0 d31 [10−12m/V] −240.0 ϵ11 [10−9F/m] 15.0 ρ [kg/m3] 7730
E2 [GPa] 62.0 d32 [10−12m/V] −240.0 ϵ22 [10−9F/m] 15.0
E3 [GPa] 57.0 d33 [10−12m/V] 500.0 ϵ33 [10−9F/m] 13.0
G12 [GPa] 23.3 d24 [10−12m/V] 730.0
G23 [GPa] 23.0 d15 [10−12m/V] 730.0
G13 [GPa] 23.0
ν12 0.33
ν23 0.44
ν13 0.44

Table 2.3: Electromechanical properties for the reference material PZT-5H

2.4.1 Phase I: closed-circuit conditions

The main goal of this phase is the estimation of the elastic material properties of the
piezoelectric sensors at constant electric field. Concerning the genetic parameters for
this first calculation, we use Npop = 2 different populations with Nind = 50 individuals
for each population evolving along 100 generations. The exchange of information among
the populations is performed through a ring-type operator every 20 generations, with a
probability which is automatically evaluated by the GA itself. The crossover and mutation
probability are pcross = 0.85 and pmut = 1/Nind, respectively.

The choice of using multiple populations of small size, i.e. with a small number of
individuals, is motivated by the fact that we want to find the global minimum with a
good level of accuracy without increasing too much the time of calculations. Indeed, the
exchange of informations between the best individuals of different populations (through
the use of the ring-type operator), and hence the possibility of crossing them, allow the
GA to explore the feasible design domain and to handle the genetic information in the
best way. More details about the use of multiple populations can be found in [110, 1].
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Table 2.4 shows the values of the technical constants estimated in this phase compared
to the target values, along with the values of the natural frequencies of free vibration and
the residuals ri obtained after the identification. Residuals are defined as:

ri =
λi − λi

λi

× 100 , (2.18)

where λi and λi are the eigenfrequencies produced by the FE model after identification
and the corresponding reference values, respectively. In this simulated test case, for
both phases of the optimisation procedure, λi are evaluated using in the FE model the
properties of the reference material listed in Table 2.3. The definition of the residuals of
Eq. (2.18) is also used in the second phase of the optimisation procedure.

Fig. 2.3 shows the variation of the best solution along the generations and that of the
average of the objective function on the whole population vs. the number of generations.
It can be noticed that the second population reaches the optimal solution after only 15
generations.

Figure 2.3: (a) Best and (b) Average values of the objective function along generations
for the active plate FE model, closed-circuit conditions.

2.4.2 Phase II: open circuit conditions

In this second phase of the optimisation process, open circuit conditions are imposed on
the electroded piezoelectric patches in order to identify the piezoelectric charge/stress
coefficients. Thus, the design variables of this phase are the components of the matrix [d].
Concerning the stiffness properties of the patches, they are defined using the values of the
technical constant of elasticity issued from the first phase. Moreover, also in this phase
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Material properties

Goal Identified

E1 [GPa] 62.0 61.5

E2 [GPa] 62.0 61.5

E3 [GPa] 57.0 51.0

ν12 0.33 0.33

ν23 0.44 0.43

ν13 0.44 0.43

G12 [GPa] 23.3 23.12

G23 [GPa] 23.0 23.0

G13 [GPa] 23.0 23.0

Eigenfrequencies

Mode n. λi [Hz] ri [%]

1 98.54 0.01

2 127.76 0.06

3 238.96 0.02

4 245.67 0.03

5 315.55 0.02

6 356.06 0.05

7 468.77 0.02

8 498.06 0.01

9 683.44 0.03

10 734.69 0.10

11 744.79 0.02

12 771.95 0.03

13 802.68 0.07

14 932.58 0.02

15 1031.77 0.04

16 1165.48 0.08

17 1223.70 0.04

18 1273.27 0.03

19 1371.70 0.07

20 1371.86 0.05

21 1468.10 0.03

22 1505.67 0.05

23 1532.24 0.04

24 1689.08 0.07

25 1708.42 0.04

26 1763.72 0.05

27 1918.89 0.04

28 1996.46 0.03

29 2070.39 0.04

30 2172.20 0.04

Table 2.4: Identified properties, simulated eigenfrequencies and residuals obtained after
identification, closed-circuit conditions
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the reference values of the natural frequencies λi are evaluated using in the FE model
(with open circuit conditions) the properties of the target material listed in Table 2.3.

Concerning the genetic parameters, they are strictly those used in the previous phase.
Table 2.5 shows the values of the piezoelectric charge coefficients estimated in this phase
compared to the target values, along with the values of the eigenfrequencies and the
residuals ri obtained after the identification. Fig. 2.4 shows the variation of the best
solution along the generations and that of the average of the objective function on the
whole population vs. the number of generations. It can be noticed that the second
population reaches the optimal solution after only 20 generations.

We remark that the use of the stacking sequence discussed in Sec. 2.3 for the composite
base plate along with its geometrical dimensions avoids the problem of having double
modes.

The results of the simulated test case show that, for both the phases of the optimisation
process, the error function is drastically minimised. From Tables 2.4 and 2.5, it can be
noticed that we have a good agreement among the target properties and the identified
ones. Moreover, our GA leads us to reach, with a high precision, the values of the reference
natural frequencies of the active plate for both closed and open circuit conditions (the
highest residual on the eigenfrequencies in the whole process is about 0.1%). This means
that the proposed approach is very effective in finding a real global minimum when dealing
with such optimisation problems.

Nevertheless, looking at the results presented in Tables 2.4 and 2.5, we can conclude
that the identification of E3 and d33 is not very good, because these quantities are es-
timated with a relative error of about 10%. This is due to the fact that, despite 3D
elements are employed to model the piezoelectric transducers, the effect of E3 and d33 on
the dynamical response of the plate, in terms of natural frequencies, is negligible: in fact,
the thickness-to-length ratio of such a patch is low, i.e. the patch itself is a thin plate.

2.4.3 Effect of the noise on the identified properties

The presence of noise on the target data (in the present problem, the measured eigen-
frequencies of the plate) in inverse problems can cause difficulties for the identification
process. The existence of a solution is not guaranteed, particularly if the observed data
contains errors or if the mathematical model, used to describe the physical system, is
grossly incorrect. Parameter identification is an inherently noisy process. There are sev-
eral unavoidable sources of error, including observation error, model structure error and
forward solution error. For a deeper insight in the matter the reader is addressed to [107].

Though parameter identification problems are subject to several source of noise, any
optimisation problem that depends upon numerical approximations can also be prone to
the presence of noise. Optimisation in presence of noise is a well known topic that has
already been treated by several authors, see for example [111, 112, 113].
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Material properties

Goal Identified

d31 [10−12m/V] −240.0 −250.0

d32 [10−12m/V] −240.0 −250.0

d33 [10−12m/V] 500.0 550.0

d24 [10−12m/V] 730.0 750.0

d15 [10−12m/V] 730.0 750.0

Eigenfrequencies

Mode n. λi [Hz] ri [%]

1 98.63 0.01

2 128.93 0.04

3 239.97 0.01

4 247.28 0.01

5 316.61 0.01

6 359.07 0.03

7 471.02 0.02

8 500.20 0.01

9 687.66 0.01

10 748.10 0.02

11 751.98 0.06

12 776.09 0.01

13 815.18 0.04

14 935.12 0.01

15 1046.41 0.02

16 1182.78 0.05

17 1227.95 0.03

18 1284.39 0.02

19 1393.57 0.02

20 1395.16 0.03

21 1475.51 0.02

22 1523.47 0.03

23 1538.22 0.03

24 1703.98 0.05

25 1717.81 0.03

26 1778.60 0.04

27 1939.95 0.02

28 2014.98 0.02

29 2090.25 0.02

30 2186.37 0.03

Table 2.5: Identified properties, simulated eigenfrequencies and residuals obtained after
identification,open circuit conditions
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Figure 2.4: (a) Best and (b) Average values of the objective function along generations
for the active plate FE model, open circuit conditions.

Noise might strongly affect identification when the optimisation problem is solved by
the use of a gradient-based algorithm. On the contrary, even if the performances of GAs
can be affected by numerical noise, the absence of gradient approximations reduces the
effect of noise on the evolutionary strategies. Spurious local minima or discontinuities
caused by noise will not preclude the use of the metaheuristics. Noise, however, can affect
the decisions made during exploration of the search space, thus affecting the outcomes of
the algorithm. Evolutionary algorithms have been hailed as effective in the presence of
numerical noise [113, 98].

Even if we use an evolutionary strategy, namely a GA-based approach, in order to
solve the identification problem of Eq. (1.33), it is interesting to evaluate the effect of
noise on the performances of the optimisation process: therefore we artificially introduce
statistical errors within the observed data, and we study the effect on the values of the
identified electromechanical parameters found at the end of the optimisation process.

The influence of the noise on the reference values of the eigenfrequencies λi (both for
closed and open circuit conditions) is considered through the following steps:

• firstly, a subset of m eigenfrequencies is extracted from the whole set of N = 30
reference eigenfrequencies considered in the previous analyses. The number m as
well as the involved natural frequencies composing this subset are randomly chosen.
The number m of frequencies of the subset can randomly vary between 8 and 16;

• secondly, the eigenfrequencies composing this subset are perturbed with a given
level of noise. We consider 3 different cases: in the first case each one of the m
natural frequencies is disturbed with a noise that can vary randomly between 0.1%
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and 1.0% of the corresponding unperturbed reference value, in the second case the
noise on each frequency can vary between 0.1% and 2.0%, and finally in the last one
the noise level can vary between 0.1% and 5.0%.

Concerning the genetic parameters, they are strictly those used in the previous calcu-
lations. Fig. 2.5 shows the variation of the best solution along the generations (both for
closed and open circuit conditions) in presence of noise for each of the three considered
noise levels within the response data, whilst the effect of the noise on the identified elec-
tromechanical properties is detailed in Table 2.6. From Fig. 2.5, we can see that if the
noise level is smaller than 2%, the GA converges toward the global feasible minimum af-
ter about 15 generations. Moreover, concerning the first two cases, the objective function
for the best individual is still within acceptable values, the estimated electromechanical
properties being within reasonable relative errors.

We can conclude that if the noise level on the natural frequencies is smaller than
2%, the GA leads to obtain a good estimation of the electromechanical properties of the
patches, the maximum relative error on the identified parameters being always on the
values of E3 and d33 (about 10%). Nevertheless, if the noise level is greater than 2%
the electromechanical properties are not well estimated, particularly the in-plane elastic
constants, i.e. ν12 and G12, whose relative errors become greater than 54% and 21%,
respectively.

Figure 2.5: Best values of the objective function along generations in presence of noise for
the active plate FE model, (a) closed-circuit conditions and (b) open circuit conditions.
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Reference value 1% noise 2% noise 5% noise
(% error) (% error) (% error)

E1 [GPa] 62.0 62.5 62.7 65.0
(0.81) (1.13) (4.83)

E2 [GPa] 62.0 62.5 62.7 65.0
(0.81) (1.13) (4.83)

E3 [GPa] 57.0 51.0 51.5 60.0
(−10.53) (−9.65) (5.26)

G12 [GPa] 23.3 24.03 24.11 28.26
(3.13) (3.48) (21.29)

G23 [GPa] 23.0 23.0 23.3 23.5
(0.0) (1.3) (2.17)

G13 [GPa] 23.0 23.0 23.3 23.5
(0.0) (1.3) (2.17)

ν12 0.33 0.30 0.30 0.15
(−9.09) (−9.09) (−54.55)

ν23 0.44 0.43 0.43 0.42
(−2.27) (−2.27) (−4.55)

ν13 0.44 0.43 0.43 0.42
(−2.27) (−2.27) (−4.55)

d31 [10−12m/V] −240.0 −255.0 −256.0 −283.0
(6.25) (6.67) (17.92)

d32 [10−12m/V] −240.0 −255.0 −256.0 −283.0
(6.25) (6.67) (17.92)

d33 [10−12m/V] 500.0 551.0 551.0 542.0
(10.2) (10.2) (8.4)

d24 [10−12m/V] 730.0 750.0 751.0 785.0
(2.74) (2.88) (7.53)

d15 [10−12m/V] 730.0 750.0 751.0 785.0
(2.74) (2.88) (7.53)

Table 2.6: Effect of noise on the identified electromechanical properties

2.5 Concluding remarks

In this Chapter, an investigation to identify the overall electromechanical properties of
piezoelectric transducers in the full three dimensional case has been conducted. The
problem of the estimation of the electromechanical properties of an active plate is stated as
a constrained minimisation problem: the objective function is built as an error estimator
of the least squares type and it is based on the dynamic response of the structure in terms
of its eigenfrequencies. The GA BIANCA is employed to solve the minimum problem so
formulated. The numerical strategy is articulated into two phases: the first part concerns
the identification of the elastic properties of the transducer under short circuit condition
of the electrodes, while the second one is done under open circuit condition in order to
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increase the effect of the electric field on the dynamic responses of the structure.
The GA BIANCA leads us to reach, with a high precision, the values of the reference

natural frequencies of the active plate for both closed and open circuit conditions: this
means that the proposed strategy results very effective when dealing with such kind of
problems. Moreover, we have a good agreement among the target properties and the
identified ones.

The key points of this research are, on one hand the estimation of the whole 3D
set of electromechanical properties of the piezoelectric transducers and, on the other
side, concerning the formulation of the inverse problem as a constrained minimisation
problem, the use of the full set of constraints that must be imposed to ensure the positive
definiteness of the stiffness tensor of the material of the patches.

This approach is not limited to monolithic piezoelectric transducers but can be easily
applied to the identification of the electromechanical properties of piezocomposite trans-
ducers, even in the case of active structures with complex geometry.
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Chapter 3

Optimal design of elastic properties
of laminates

3.1 Introduction

The design of elastic properties is very important in many applications, e.g. for aircraft
and space structures. Unlike classical materials, composite laminates can be designed
to obtain certain properties: this design process is known in the literature as tailoring.
Some classical examples of elastic properties that can be tailored are bending-extension
uncoupling, in-plane and/or bending orthotropy, isotropy and so on. Tailoring can be
mainly done by a correct design of the stacking sequence of the laminate. The problem of
tailoring a composite plate to realise a given elastic or hygral-thermal-elastic behaviour
has attracted the attention of several researchers. A wide though not complete state of
the art, at least for what concerns the design with respect to stiffness, can be found in two
recent papers by Ghiasi et al. [32, 33]. The design of laminates considered as an optimisa-
tion problem is rather cumbersome and difficult to be solved due to the high non-linearity
and non-convexity of the objective function; these circumstances are brought by the fact
that the laminate properties depend upon a combination of powers of circular functions
of the layers orientations, these last being normally the natural design variables. As a
consequence, designers generally limit the search of solutions to a restricted class of lam-
inates, usually to symmetric stacking sequences to ensure bending-extension uncoupling,
or balanced sequences to have in-plane orthotropy and so on. In other words, difficulty
has almost always suggested to the designers to avoid dealing with the real, complete
design problem and to simplify it using some simple but limiting rules.

The problem of designing laminates elastic properties as a global optimisation problem
has received a general formulation, especially concerning the design of elastic symmetries,
with the works of Vannucci, Vincenti and Verchery [43, 114, 115]. They have shown that
it is possible to built, through the so-called “polar method”, a unique objective function

93



94 3. Optimal design of elastic properties of laminates

which takes into account several design criteria, e.g. elastic properties, such as uncoupling,
orthotropy and many others, and given hygral-thermal responses in extension and/or in
bending. The general problem is therefore reduced to a classical Non-Linear Programming
Problem (NLPP) and its solutions are the minima of a non-linear, non-convex function in
the design space of the layers orientations. In these studies many optimal solutions were
found for several different problems.
In all the aforementioned research studies the number of plies was always fixed a priori, the
design process focusing only on the importance of the geometry of the stacking sequence,
i.e. the only design variables were the layers orientation angles.

As a natural continuation of [43, 114, 115, 116] the focus of this Chapter consists
in a new formulation of the problem of designing the laminate elastic symmetries that
can be attained with the minimum number of plies. To this purpose the number and
orientations of plies, as well as the thickness of each layer, are taken into account as
design variables. More precisely, this Chapter tries to give an answer to a question which
is usually left apart by designers, but which is a classical and fundamental question in any
mathematical problem, i.e. the question about the existence of a solution. In the case of
laminates design, this question should be: which is the minimum number of layers that
guarantees the existence of at least one solution to a given problem of tailoring the elastic
properties of a laminate?

To our best knowledge, only in one case the minimal number of layers to obtain some
prescribed properties is known exactly thanks to a theoretical result. This is the case of
in-plane isotropy, solved by Werren and Norris [117]: at least three unidirectional plies
are needed to obtain a laminate that will be isotropic in extension, although membrane-
bending coupled. Nevertheless, if we consider an additional or a different requirement,
like for instance uncoupling or bending isotropy, the result is unknown. Finding the
minimum number of layers for which a given optimum laminate design problem can be
solved is actually a very difficult task. In fact, the minimum number of layers varies
with the type of elastic requirements to be obtained: the results are strictly problem-
dependent and unfortunately in all the cases, the optimal solutions are unknown and there
is no analytical model describing their evolution with the number of layers. Therefore, a
numerical investigation seems to be an appropriate approach.

It is worth noting that the optimal design of a laminate in terms of number and prop-
erties (orientation, material and thickness) of its layers is a combinatorial optimisation
problem, which is arduous to solve for small numbers of layers. In fact, the fewer the
number of plies, the smaller becomes the design space, and the number of available solu-
tions decreases. However, solutions with minimum number of plies are important when
the problem of minimum weight of laminates is addressed.

The main focus of this Chapter is to formulate the problem in the form of a search for
the minima of a positive semi-definite form, including the number of layers n among the
variables. The function takes into account the variable n as a penalty term, in order to
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strongly drive the search of optimal solutions towards laminates with the lowest number
of layers.

The GA BIANCA is still used for the solution search. In addition, to obtain an
effective formulation, the polar formalism has been employed. Such a formalism is based
upon an algebraic formulation making use of tensor invariants for representing plane
tensors (see [114, 118]) and it has been successfully employed in the resolution of several
design problems concerning laminates [43, 115, 116].

In particular, concerning the GA BIANCA, in this Chapter we test the effective of the
new genetic operators of crossover and mutation between individuals belonging to different
species when dealing with the problem of tailoring multilayer plates, which attain given
elastic symmetries with the minimum number of plies. Indeed, as we will explain in detail
in Sec. 3.4, since the number of layers n is included among the design variables, the
related optimisation problem is formulated over a definition domain composed of vectors
having different lengths.

The Chapter is organised as follows: in Sec. 3.2 the polar formalism is introduced.
In Sec. 3.3 the general equations of the Classical Laminated Plate Theory (CLPT) are
recalled, while in Sec. 3.4 the design problem of laminates elastic symmetries with mini-
mum number of plies is stated in the framework of the polar method and formulated as an
optimisation problem. Finally several numerical examples are given in Sec. 3.5 in order
to show the effectiveness of the proposed approach and then some general considerations
end the Chapter.
Starting from Sec. 3.4, this Chapter is substantially taken from the article [119].

3.2 Polar representation of the plane anisotropy

The polar formalism is a mathematical technique introduced in 1979 by Verchery [114].
Through this method, it is possible to express any plane tensor (of any order) by means
of its polar invariants. Such a technique has already been employed in several design
problems concerning laminates, see for example [43, 115, 120]. A complete survey on the
polar method and on the applications of such a technique to tensors of various order can
be found in [3]. In this section, we briefly recall some fundamental expressions of the
polar representation, which we need in order to formulate the optimisation problem of
designing the elastic symmetries of laminates having the minimum number of plies.

Usually, the Cartesian formulation is the most used method to express tensors of any
order. However, the main drawback of such a representation is that the tensor components
are frame-dependent. Starting from such an issue, the main idea that underlies the polar
formalism consists in expressing the tensor components through other parameters which
are frame-independent, i.e. which are tensor invariants. Clearly, the tensor invariants can
be chosen in different ways. The quantities introduced by Verchery are directly linked to
the elastic symmetries of the tensor and to the strain energy decomposition.



96 3. Optimal design of elastic properties of laminates

Before the Verchery’s polar formalism, different empirical-nature algebraic techniques
were proposed by others researchers in order to represent plane tensors, see for instance
the works of Tsai and Pagano [121], Wu [122] and Hahn [123]. The work of Verchery com-
pletes and deepens the results of the previous studies, but, and this is very important,
it employs a more rigorous approach that it is classical in physics and mathematics: the
polar formalism is a mathematical technique based upon a complex-variable transforma-
tion (this is also the main reason that explains why the polar formalism can be used only
in the case of bi-dimensional tensors). Such an approach finds its starting point in the
works of Michell [124], Kolosov [125], Muskhelishvili [126] and the well-known treatise of
Green and Zerna [127].
However, a detailed description of the mathematical aspects of the polar formalism falls
outside the scope of the present Thesis. For a deeper insight in the matter the reader is
addressed to [3].

3.2.1 Polar representation of second-order tensors

Let us consider a second-order plane symmetric tensor L. The polar representation of
such a tensor, in its material frame {O; x1, x2}, is:

L11 = T +R cos 2Φ ,
L12 = R sin 2Φ ,
L22 = T −R cos 2Φ ,

(3.1)

where Lij (i, j = 1, 2) are the Cartesian components of the tensor L, while T , R and Φ
are its polar components. T and R are the polar moduli and represent tensor invariants,
whilst Φ is the polar angle which depends on the choice of the frame. The converse of
Eq. (3.1) is:

2T = L11 +L22 ,
2Re2iΦ = L11 −L22 +2iL12 ,

(3.2)

Representation (3.1) can be applied to any plane second-order tensor. Let us consider
the plane stress tensor expressed (in the framework of the well-known Mohr’s circle repre-
sentation) in terms of principal stresses σI and σII (with σI > σII ) and the corresponding
principal directions in the form:

2T = σI +σII ,
2Re2iΦ = σI −σII .

(3.3)

As stated by Eq. (3.3), T and R represent the spherical and the deviatoric parts of
the plane stress tensor σ , respectively. The polar angle Φ corresponds to the direction
of the principal stress σI .

Eq. (3.1) can also be applied to the plane strain tensor ε, whose polar components
are indicated using the lower-case characters t, r and ϕ.
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3.2.2 Polar representation of fourth-order tensors

Let us consider, now, a fourth-order plane elasticity-like tensor L, i.e. possessing the
major and minor symmetries o, the indexes. In such a case, the polar formalism states
that the Cartesian components of the tensor L can be expressed through 4 polar moduli,
i.e. T0, T1, R0 and R1, and 2 polar angles, Φ0 and Φ1 (see [3, 118] for more details).
The relationship between the Cartesian components Lijkl (i, j, k, l = 1, 2) in the material
frame {O; x1, x2} and the polar parameters is:

L1111 = T0 +2T1 +R0 cos 4Φ0 +4R1 cos 2Φ1 ,
L1122 = −T0 +2T1 −R0 cos 4Φ0 ,
L1112 = R0 sin 4Φ0 +2R1 sin 2Φ1 ,
L2222 = T0 +2T1 +R0 cos 4Φ0 −4R1 cos 2Φ1 ,
L2212 = −R0 sin 4Φ0 +2R1 sin 2Φ1 ,
L1212 = T0 −R0 cos 4Φ0 .

(3.4)

The converse of Eq. (3.4) is:

8T0 = L1111 −2L1122 +4L1212 +L2222 ,
8T1 = L1111 +2L1122 +L2222 ,

8R0e
4iΦ0 = L1111 +4iL1112 −2L1122 −4L1212 −4iL2212 +L2222 ,

8R1e
2iΦ1 = L1111 +2iL1112 +2iL2212 −L2222 .

(3.5)

A rotation of the frame by an angle δ causes the following changes in the expression
of the tensor components (which are expressed now in the rotated frame {O; x, y}):

Lxxxx = T0 +2T1 +R0 cos 4(Φ0 − δ) +4R1 cos 2(Φ1 − δ) ,
Lxxyy = −T0 +2T1 −R0 cos 4(Φ0 − δ) ,
Lxxxy = R0 sin 4(Φ0 − δ) +2R1 sin 2(Φ1 − δ) ,
Lyyyy = T0 +2T1 +R0 cos 4(Φ0 − δ) −4R1 cos 2(Φ1 − δ) ,
Lyyxy = −R0 sin 4(Φ0 − δ) +2R1 sin 2(Φ1 − δ) ,
Lxyxy = T0 −R0 cos 4(Φ0 − δ) .

(3.6)

Eq. (3.6) shows that a rotation of the frame influence only the polar angles by changing
them from Φ0 and Φ1 into Φ0 − δ and Φ1 − δ, respectively. In addition, from Eq. (3.6)
it is apparent that T0 and T1 are the polar moduli of the isotropic part of the tensor,
while R0 and R1 are the polar moduli of the tensor anisotropic part. T0, T1, R0 and R1 as
well as the angular difference Φ0 −Φ1 are the tensor invariants. These features represent
two advantages of the polar formalism, especially when such a technique is employed to
describe the plane anisotropy of composite laminated structures, as the ones discussed in
this Chapter.

Along with the previous aspect, another advantage of the polar formalism concerns the
expression of the elastic symmetries of a tensor. Indeed, such conditions are expressed in
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a simple way when using polar invariants and a summary of elastic symmetry conditions
for a fourth-order elasticity-like tensor is given in Table 3.1. Here, we recall that square
symmetry corresponds, in the context of plane elasticity, to the cubic syngony, i.e. such
a symmetry is characterised by a periodicity of π/2 of the elastic moduli, while R0-
orthotropy is a special case of plane orthotropy, see [128, 129]. From Table 3.1, we can

Elastic symmetry Polar condition

Orthotropy Φ0 − Φ1 = K
π

4
, with K = 0, 1

R0-orthotropy R0 = 0

Square symmetry R1 = 0

Isotropy R0 = R1 = 0

Table 3.1: Conditions for elastic symmetries in terms of polar invariants

notice that a fourth-order elasticity-like tensor can have (for a given set of polar moduli
T0, T1, R0 and R1) two different types (or shapes) of ordinary orthotropy, depending on
the value of the parameter K: this is a very important aspect, especially when dealing
with the problem of designing the elastic properties of a given structure, because the
shape of orthotropy normally has opposite effects on the final result for a given optimum
problem, see [130] for more details.
It is worth noting that the mathematical formalisation of the ordinary orthotropy differs
from the one of the special symmetries, i.e. the square symmetry and the R0-orthotropy,
these last being linked to the conditions on the quadratic invariants of the tensor, namely
R1 and R0, respectively, whilst the ordinary orthotropy arises from a condition on the
cubic invariant of the tensor, i.e. the angular difference Φ0 −Φ1 (see [3] for more details).

The norm of the fourth-order tensor can be evaluated using the tensor norm proposed
by Kandil and Verchery [131]:

∥L∥ =
√

T 2
0 + 2T 2

1 +R2
0 + 4R2

1 . (3.7)

Eq. (3.4) and (3.5) can be applied to the layer reduced stiffness tensor Q as well as
to the compliance tensor S = Q−1. Let us consider the reduced stiffness tensor of the
ply. In the framework of the Voigt’s representation of stress and strain tensors (matrix
notation), the relationships between the Cartesian components Qij, (i, j = 1, 2, 6) and the
polar components of such a tensor T0, T1, R0, R1, Φ0 and Φ1 are:
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Q11 = T0 +2T1 +R0 cos 4Φ0 +4R1 cos 2Φ1 ,
Q12 = −T0 +2T1 −R0 cos 4Φ0 ,
Q16 = R0 sin 4Φ0 +2R1 sin 2Φ1 ,
Q22 = T0 +2T1 +R0 cos 4Φ0 −4R1 cos 2Φ1 ,
Q26 = −R0 sin 4Φ0 +2R1 sin 2Φ1 ,
Q66 = T0 −R0 cos 4Φ0 .

(3.8)

In an analogous way, the relationship between the Cartesian components of the compliance
tensor Sij, (i, j = 1, 2, 6) and the corresponding polar parameters t0, t1, r0, r1, ϕ0 and ϕ1

are:

S11 = t0 +2t1 +r0 cos 4ϕ0 +4r1 cos 2ϕ1 ,
S12 = −t0 +2t1 −r0 cos 4ϕ0 ,
S16 = 2r0 sin 4ϕ0 +4r1 sin 2ϕ1 ,
S22 = t0 +2t1 +r0 cos 4ϕ0 −4r1 cos 2ϕ1 ,
S26 = −2r0 sin 4ϕ0 +4r1 sin 2ϕ1 ,
S66 = 4t0 −4r0 cos 4ϕ0 .

(3.9)

Finally, we can express the polar components of the compliance tensor S in terms of
those of the reduced stiffness tensor Q as follows:

t0 = 2
T0T1 −R2

1

∆
,

t1 =
T 2
0 −R2

0

2∆
,

r0e
4iφ0 = 2

R2
1e

4iΦ1 − T1R0e
4iΦ0

∆
,

r1e
2iφ1 = −R1e

2iΦ1
T0 −R0e

4i(Φ0−Φ1 )

∆
,

(3.10)

where ∆ is the determinant of the reduced stiffness tensor Q having the following expres-
sion:

∆ = 8T1

(
T 2
0 −R2

0

)
− 16R2

1 [T0 −R0cos 4(Φ0 − Φ1 )] . (3.11)

3.2.3 Thermodynamic existence conditions

Let us consider a layer made of linear anisotropic elastic material subject to a plane stress
field having components T , R and Φ and submitted to a strain field of components t, r
and ϕ. The elastic energy density of such a layer is:

W =
1

2
σ · ε = Tt+Rrcos2(Φ − ϕ) . (3.12)
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Eq. (3.13) can be written in terms of polar components of the reduced stiffness tensor Q
and of the strain tensor as follows:

W = 2T0r
2 + 4T1t

2 + 2R0r
2cos4(Φ0 − ϕ) + 8R1trcos2(Φ1 − ϕ) . (3.13)

Eq. (3.13) lets us understand the different roles played by each polar parameter in the
decomposition of the elastic energy density. In particular it is possible to show that the
spherical part, WS, and the deviatoric part, WD, of W can be written as:

WS = 4T1t
2 + 4R1trcos2(Φ1 − ϕ) ,

WD = 2T0r
2 + 2R0r

2cos4(Φ0 − ϕ) + 4R1trcos2(Φ1 − ϕ) .
(3.14)

From Eq. (3.14) we can deduce a result that it is classical in plane elasticity: for an
anisotropic material it is not possible to decompose the elastic energy W in spherical
and deviatoric parts. In addition, from Eq. (3.14) we can see that the spherical part
WS depends directly upon the isotropic polar modulus T1, while the deviatoric part WD

depends directly on the polar moduli T0 and R0 as well as the polar angle Φ0 . The polar
parameters R1 and Φ1 are responsible of the coupling between the two parts. Therefore, it
seems clear that we can decompose the elastic energy into two distinct parts at least when
the material satisfies the condition (in terms of elastic symmetry) of square-symmetry,
i.e. when R1 = 0.

Through the positive definiteness of W , we can deduce the existence conditions which
ensure the positive definiteness of the reduced stiffness tensor of the ply Q, expressed in
terms of its polar parameters. The result is that it must be:




T0 −R0 > 0 ,

T1 (T
2
0 −R2

0)− 2R2
1 [T0 −R0cos4(Φ0 − Φ1 )] > 0 .

(3.15)

For a deeper insight in the matter on all the previous aspects the reader is addressed
to [3].

3.3 The polar formalism for the mechanics of lami-

nates

3.3.1 The Classical Laminated Plate Theory (CLPT)

A multilayer plate is a thin structure composed of a stack of elementary plies, as shown
in Fig. 3.1. Each layer is characterised by its position k within the stack, its orientation
angle δk with respect the global reference frame of the plate, its thickness tk and its elastic
properties, expressed through the reduced stiffness tensor of the ply Q(δk).
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Figure 3.1: (a) Sketch of the laminate layers and interfaces and (b) internal actions per
unit length.

The mechanical response of a composite laminated plate can be described in the
framework of the Classical Laminated Plate Theory (CLPT), see for instance [109]. The
fundamental hypotheses that underlies such a theory include small displacements and
strains as well as the Kirchhoff assumptions on the kinematics of the plate. Thus, the
general equations describing the behaviour of a composite laminate are:

{
N
M

}
=

[
A B
B D

]{
ε

χ

}
, (3.16)

where:

N =





Nx

Ny

Ns



 , M =





Mx

My

Ms



 , ε =





εx
εy
εs



 , χ =





χx

χy

χs



 . (3.17)

In Eq. (3.16) all the quantities are expressed in the laminate global frame, i.e. R =
{O; x, y, z}, see Fig. 3.1 (b). N and M are the in-plane forces and bending moment
tensors, whilst ε and χ are the in-plane strain and the curvature tensors of the plate
middle plane, respectively. A and D are the extension and bending stiffness tensors,
respectively, while B is the membrane-bending coupling tensor. If B is not null, as an
effect of the application of in-plane forces, the laminate will stretch and bend. In addition,
tensors A, B and D depend on the layer mechanical and geometrical properties, namely
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on the orientation of the layers. For a laminate with n plies the expression of A, B and
D are:

A =
p∑

k=−p

Qk (δk) (zk − zk−1) ,

B =
1

2

p∑
k=−p

Qk (δk)
(
z2k − z2k−1

)
,

D =
1

3

p∑
k=−p

Qk (δk)
(
z3k − z3k−1

)
.

(3.18)

In Eq. (3.18) Qk (δk) is the kth ply reduced stiffness tensor oriented at the angle δk
with respect to the global reference of the laminate, while p is linked to the number of
plies n as follows:

n =

{
2p if even ,

2p+ 1 if odd .
(3.19)

In Eq. (3.18) zk and zk−1 are the z coordinates of the top and bottom surfaces of the kth

layer. Fig. 3.1 (a) shows the definition of zk used here.
The converse relationship of Eq. (3.16) is:

{
ε

χ

}
=

[
a b
bT d

] {
N
M

}
, (3.20)

where:
a = (A − BD−1B)

−1
,

b = −aBD−1,

d = (D − BA−1B)
−1
.

(3.21)

In Eq. (3.20) a, b and d are the in-plane, coupling and bending compliance tensors,
respectively. To remark that, generally speaking, tensor b has not the major symmetries:
bijkl ̸= bklij, hence its component cannot be represented by Eq. (3.4).

Finally, in order to compare the extension and the bending mechanical behaviours of
the laminate we can consider the homogenised stiffness tensors A∗, B∗, D∗ along with
the homogeneity tensor C, defined as follows:
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A∗ =
1

htot

A ,

B∗ =
2

h2
tot

B ,

D∗ =
12

h3
tot

D ,

C = A∗ − D∗ .

(3.22)

where htot is the laminate total thickness. Tensors A∗, B∗, D∗ and C have all the same
units, those of a stress. A laminate is said to be quasi-homogeneous whenever B∗ = O
and C = O. In such a case the laminate behaves just like an homogeneous plate (though,
generally speaking, anisotropic): it is uncoupled and its behaviours in bending and in
extension are perfectly identical, for each direction [132].

3.3.2 Polar expression of the laminate tensors

The polar representation (3.4) can be applied to a generic plane tensor. Namely, it can
be applied also to the stiffness tensors of the laminate A, B and D as well as to their
homogenised counterpart A∗, B∗, D∗.

It is possible to deduce the polar components of the laminate stiffness tensors A, B
and D as functions of the polar components of the plies reduced stiffness tensors Q, using
Eq. (3.18):

TA
0 , TB

0 , TD
0 =

1

m

p∑
k=−p

T0k

(
zmk − zmk−1

)
,

TA
1 , TB

1 , TD
1 =

1

m

p∑
k=−p

T1k

(
zmk − zmk−1

)
,

RA
0 e

4iΦA
0 , RB

0 e
4iΦB

0 , RD
0 e

4iΦD
0 =

1

m

p∑
k=−p

R0ke
4i(Φ0 k + δk)

(
zmk − zmk−1

)
,

RA
1 e

2iΦA
1 , RB

1 e
2iΦB

1 , RD
1 e

2iΦD
1 =

1

m

p∑
k=−p

R1ke
2i(Φ1 k + δk)

(
zmk − zmk−1

)
,

(3.23)

where the superscripts A, B and D indicate the polar components of A, B and D,
respectively. In Eq. (3.23), m = 1, 2, 3 for the extension, coupling and bending stiffness
tensor, respectively.

In a similar way, also the homogeneity tensor C admits a polar representation and its
polar components can be expressed as functions of the polar parameters of tensors A∗

and D∗ as follows:
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TC
0 = TA∗

0 − TD∗

0 ,

TC
1 = TA∗

1 − TD∗

1 ,

RC
0 e

4iΦC
0 = RA∗

0 e4iΦ
A
0 −RD∗

0 e4iΦ
D
0 ,

RC
1 e

2iΦC
1 = RA∗

1 e2iΦ
A
1 −RD∗

1 e2iΦ
D
1 ,

(3.24)

where TA∗

0 , TA∗

1 , RA∗

0 , RA∗

1 , ΦA
0
, ΦA

1
and TD∗

0 , TD∗

1 , RD∗

0 , RD∗

1 , ΦD
0
, ΦD

1
are the polar

parameters of the homogenised extension and bending stiffness tensors, respectively, whose
expression can be easily obtained by combining Eq. (3.22) and Eq. (3.23). To remark
that the polar angles of the homogenised tensors coincide with the ones of their non-
homogenised counterparts.

It is interesting to consider the case of a laminate with identical layers, i.e. a laminate
whose plies are made of the same material and have the same thickness but not the same
orientation. In such a case the polar parameters of tensors A, B and D are:

TA
0 = htotT0 ,

TA
1 = htotT1 ,

RA
0 e

4iΦA
0 =

htot

n
R0e

4iΦ0

p∑
k=−p

e4iδk ,

RA
1 e

2iΦA
1 =

htot

n
R1e

2iΦ1

p∑
k=−p

e2iδk ,

(3.25)

TB
0 =

1

2

(
htot

n

)2

T0

p∑
k=−p

bk ,

TB
1 =

1

2

(
htot

n

)2

T1

p∑
k=−p

bk ,

RB
0 e

4iΦB
0 =

1

2

(
htot

n

)2

R0e
4iΦ0

p∑
k=−p

bke
4iδk ,

RB
1 e

2iΦB
1 =

1

2

(
htot

n

)2

R1e
2iΦ1

p∑
k=−p

bke
2iδk ,

(3.26)
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TD
0 =

1

12

(
htot

n

)3

T0

p∑
k=−p

dk ,

TD
1 =

1

12

(
htot

n

)3

T1

p∑
k=−p

dk ,

RD
0 e

4iΦD
0 =

1

12

(
htot

n

)3

R0e
4iΦ0

p∑
k=−p

dke
4iδk ,

RD
1 e

2iΦD
1 =

1

12

(
htot

n

)3

R1e
2iΦ1

p∑
k=−p

dke
2iδk ,

(3.27)

where:

bk =





2k if n = 2p+ 1 ,

2k − k

|k| , b0 = 0 if n = 2p ,
(3.28)

and

dk =

{
12k2 + 1 if n = 2p+ 1 ,
12k2 − 12|k|+ 4 , d0 = 0 if n = 2p .

(3.29)

To remark that the following properties subsist for the coefficients bk and dk:

p∑
k=−p

bk = 0 ,

p∑
k=−p

dk = n3 .
(3.30)

Considering the definition of tensors A∗, B∗, D∗ and C of Eq. (3.22) and also the
properties (3.30) we can easily deduce the expression of the polar parameters of the
homogenised stiffness tensors for a laminate with identical plies:

TA∗

0 = T0 ,

TA∗

1 = T1 ,

RA∗

0 e4iΦ
A
∗

0 =
1

n
R0e

4iΦ0

p∑
k=−p

e4iδk ,

RA∗

1 e2iΦ
A
∗

1 =
1

n
R1e

2iΦ1

p∑
k=−p

e2iδk ,

(3.31)
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TB∗

0 = 0 ,

TB∗

1 = 0 ,

RB∗

0 e4iΦ
B
∗

0 =
1

n2
R0e

4iΦ0

p∑
k=−p

bke
4iδk ,

RB∗

1 e2iΦ
B
∗

1 =
1

n2
R1e

2iΦ1

p∑
k=−p

bke
2iδk ,

(3.32)

TD∗

0 = T0 ,

TD∗

1 = T1 ,

RD∗

0 e4iΦ
D
∗

0 =
1

n3
R0e

4iΦ0

p∑
k=−p

dke
4iδk ,

RD∗

1 e2iΦ
D
∗

1 =
1

n3
R1e

2iΦ1

p∑
k=−p

dke
2iδk ,

(3.33)

TC
0 = 0 ,

TC
1 = 0 ,

RC
0 e

4iΦC
0 =

1

n
R0e

4iΦ0

(
p∑

k=−p

e4iδk − 1

n2

p∑
k=−p

dke
4iδk

)
,

RC
1 e

2iΦC
1 =

1

n
R1e

2iΦ1

(
p∑

k=−p

e2iδk − 1

n2

p∑
k=−p

dke
2iδk

)
.

(3.34)

From Eq. (3.32) and (3.34) we can notice that for a laminate with identical layers
the isotropic part of tensors B∗ and C is identically zero, while from Eq. (3.31) and
(3.33) we can see that the isotropic parts of tensors A∗ and D∗ are equal and coincide to
that of the elementary layer. In other words, the “average behaviour” (i.e. the isotropic
part) of the laminate thought as an equivalent single layer is the same as that of the
elementary layer. In addition, it is worth noting that, for a laminate with identical plies,
the design of the elastic symmetries is always reduced to the design of the anisotropic
part of tensors A∗, B∗ and D∗, since the isotropic one is strictly related to that of the
elementary lamina and, hence, is known whenever we fix the material of the ply: this
aspect is very important especially when the design problem of laminated structures is
conceived within the framework of a two-level procedure, as we will discuss in Chapters
4 and 6, because the number of material design variables (i.e. those characterising the
laminate behaviour) involved into the optimisation process is reduced since the isotropic
moduli are known a priori (indeed, we need to determine 12 polar parameters instead of
18).
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From Eq. (3.23), it can be noticed that the elastic symmetries of the laminate in
terms of extension, coupling and stiffness behaviour depend on the stacking sequence,
i.e. on the layer materials, orientation, thickness and of course on the number of plies.
When dealing with laminate design, a designer has to satisfy several conditions at the
same time, including not only common objectives, like buckling load or strength, but also
general properties of the elastic response of the laminate, such as uncoupling, extension
orthotropy, bending orthotropy and so on. It is not easy to take into account all these
aspects, and normally designers use some short-cuts, to get automatically some properties
such as uncoupling or extension orthotropy. Vannucci and Vincenti have shown in previous
studies (see [43, 115, 116]) that it is possible, in the framework of the polar method, to
formulate in a completely general way all the problems of optimal design of laminates,
including the requirements on elastic symmetries; therefore, a general approach to the
design of laminates is possible. The reader is addressed to the previously cited works for
a deeper insight in the matter. In Section 3.4 we present an important modification to
this approach that also includes the number of layers among the design variables.

3.3.3 Existence and geometric bounds on laminate polar param-
eters

The existence constraints of Eq. (3.15) can be applied also to the laminate polar pa-
rameters, more precisely to the polar parameters of tensors A∗ and D∗ which have to
satisfy, independently, the requirement of positive definiteness, as any other elastic ten-
sor. Such conditions bound an elastic domain containing the admissible values of the
elastic parameters. Therefore, A∗ and D∗ can be considered as the elastic tensors of two
fictitious materials whereby one can imagine to build an equivalent single-layer plate with
thickness htot, having the same extension and bending elastic responses of the laminate in
all directions. The case of B∗ is different, because it is not positive-definite, actually it is
simply not definite. In addition, the idea of a fictitious material for the coupled response
has not a precise and direct mechanical meaning, thus for these reasons, the case of the
coupling tensor will not be considered in the following.

Vannucci [133] has shown that when a laminate is tailored by bonding together iden-
tical layers of a given material, the aforementioned elastic domain is impossible to be
entirely covered, because some more restrictive bounds are given by the combinations of
the trigonometric functions appearing in (3.23). Such more restrictive bounds are called
geometric bounds because they arise from the combination of the layer orientations and
position in the stack. In particular, for an uncoupled, fully-orthotropic laminate, the
independent bounds are:
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



TA∗

1

[
TA∗

0 + (−1)K
A∗

RA∗

0

]
− 2RA∗

1
2
> 0 ,

R0 −RA∗

0 > 0 ,

(−1)(K
A∗

−K)R
A∗

0

R0

+ 1− 2

(
RA∗

1

R1

)2

> 0 ,

RA∗

0 > 0 ,

RA∗

1 > 0 .

(3.35)

Eq. (3.35) is written for the polar parameters of the in-plane homogenised stiffness tensor
A∗, but it can be applied to the polar parameters of the tensor D∗, too. In Eq. (3.35)
the first constraint is an elastic constraint, while the last four conditions are geometrical
constraints. The previous bounds can be written using the well-known lamination pa-
rameters, introduced by Tsai and Hahn [134], and a wide discussion about the geometric
bounds is given in [135].

Moreover, Vannucci showed that the geometric domain is always smaller than the
elastic domain, and more precisely he proved that the geometric domain is always entirely
contained within the elastic domain. Mechanically, this means that laminates constitute
a sort of smaller elastic class, in the sense that they never can cover the whole elastic
parameters range that can be covered by a single elementary layer.

Finally, the complete set of constraints that we have to consider, in the case of uncou-
pled, fully-orthotropic laminates is:





R0 −RA∗

0 > 0 ,

(−1)(K
A∗

−K)R
A∗

0

R0

+ 1− 2

(
RA∗

1

R1

)2

> 0 ,

RA∗

0 > 0 ,

RA∗

1 > 0 .

(3.36)

3.4 Design of elastic properties of laminates with min-

imum number of plies

The problem of designing the elastic properties of laminates with the minimal number of
plies, discussed in this Section, belongs to the class of design problems concerning modular
systems. In fact, the laminate can be seen as a modular structure whose constitutive
modules are the layers that, in the most general case, can be different from each other:
they can have different thickness, orientation angle and can be made of different material.
More precisely, in the following, we formulate the optimisation problem assuming that
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the layers are made of the same material: in such a case the only variables characterising
the generic module-layer are the thickness and the orientation.

3.4.1 Mathematical statement of the problem and numerical
strategy

In order to formulate the design of laminate elastic properties as an optimisation problem,
the key point is the construction of the objective function. For a laminate with n plies
the design variables can be: the number of layers n, the vector of layers orientations δ,
the vector of layers thickness h. In order to formulate a laminate design problem in the
most general way, the objective function f = f (n, δ,h) should include all the design
requirements, and, in particular, those on the elastic symmetries.

Vannucci [43] has shown that the problem of designing the laminate elastic symmetries
can be reduced to the search of the minima of a positive semi-definite function in the space
of the laminate polar parameters. In the aforementioned work and in some subsequent
others, like [115, 116], the number, the thickness and the material of the layers were fixed
and the orientations were assumed as the only optimisation variables. The optimisation
problem was defined as:

min
δ

[f (δ)] . (3.37)

Since the objective function f (δ) is positive semi-definite, its minima are also the zeros
of the function. For more details on the definition of this objective function for different
combinations of elastic symmetries, see [43, 115, 116].

As previously specified, the objective of this Chapter consists in designing a laminate
having assigned symmetries with the minimum number of layers. In such a case, the
number of the plies and, eventually, the thickness of each layer must belong to the set
of design variables, thus a modification of the objective function is necessary. The new
unconstrained optimisation problem is:

{
min
n,δ,h

[F (n, δ,h)] , with :

F (n, δ,h) = f (n, δ,h)ns .
(3.38)

It can be noticed that the new objective function F (n, δ,h) is still a positive semi-definite
function in the polar parameters space, whose zeros are still solutions of our problem
and are also zeros of the function. It is worth noting that the function F (n, δ,h) (as
well as the function f (n, δ,h)) is a dimensionless, homogenised, convex function of the
polar parameters of the tensors A, B and D, while it is a highly non-linear, non-convex
function of the design variables, i.e. number of layers n, orientations δ and thickness h.
The influence of the number of layers n is introduced as a penalty term, where s is an
exponent whose value can be chosen in a certain range. The large number of numerical
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tests that we conducted, show that the best results are obtained when s belongs to the
interval [1 ; 4].

Eq. (3.38) formalises a classical unconstrained NLPP for which several numerical
solving techniques are available. It can be noticed that, being f (n, δ,h) a non-convex
function having several non-global minima, a suitable and robust solving algorithm must
be employed to perform the search process. To this purpose, for all the calculations
presented in this Chapter we have employed the GA BIANCA.

In addition, concerning the GA BIANCA, in this Chapter we test the effectiveness
of the new genetic operators of crossover and mutation between individuals belonging
to different species. Indeed, since the number of layers n is included among the design
variables, the related optimisation problem is then defined over a space composed of vec-
tors (i.e. vectors of decision variables) having different lengths. Mathematically speaking,
such a problem corresponds on one side to determine the optimal dimension of the domain
(i.e. the number of layers n) and on the other side to determine the optimal values of
the constitutive parameters of the layers (orientations and thickness) which satisfy, with
a good level of accuracy, the requirements imposed by the optimisation problem.

The structure of the individual’s genotype for such a problem is the one depicted
in Fig. 1.6 in Chapter 1. As shown in that picture, the genotype of the generic kth

individual for the optimisation problem (3.38) has n chromosomes. Chromosomes from 2
to n are composed of 2 genes representing the design variables for each constitutive ply:
orientation angle and thickness. An exception is chromosome 2 that has 3 genes: the
third additional gene codes the number of modules, i.e. for our problem the number of
layers n for the kth individual. Hence, individuals with a different value of n belong to
different species.

As a concluding remark of this section, it can be noticed that the proposed approach
is general, i.e. no simplifying assumptions are introduced such as, for example, the re-
striction to a given set of stacks like symmetric, balanced, cross-ply or angle-ply stacking
sequences.

3.5 Studied cases

To demonstrate the effectiveness of the polar formulation and that of our code BIANCA in
order to obtain composite laminates with variable number of plies and with certain elastic
properties, several calculations have been carried out and a great number of solutions that
satisfy different combinations of design objectives are found. Among all the possible design
cases, the following ones are discussed in this Section:

1. uncoupling, total orthotropy with K = 0 and axis coincidence, i.e. in-plane and
bending orthotropy with the same axes;
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2. uncoupling, total orthotropy with K = 1 and axis coincidence, i.e. in-plane and
bending orthotropy, with the same axes;

3. uncoupling and total isotropy, i.e. in-plane and bending isotropy;

4. uncoupling and quasi-homogeneity, i.e. identical behaviour for the homogenized
in-plane and bending stiffness tensors.

We remind that uncoupling is intended to be the bending-extension uncoupling deter-
mined by the fact that the stiffness tensor B is null.

3.5.1 Sample problems

Here we specify the expression of the objective function F (n, δ,h) for each one of the
four cases cited beforehand. In all the cases the value of the power s in Eq. (3.38) is
assumed equal to 2.

The objective function for each case is defined in such a way that the solutions, i.e.
the minima, are also the zeros of the function. Since each case corresponds to a given
combination of elastic symmetries, the global objective function is constructed as a sum
of partial objective functions, and each partial objective function is normalised, in such a
way that its value varies in [0, 1].

Cases n.1 and n.2

In order to obtain elastic uncoupling, i.e. B = 0, the norm of the coupling tensor B must
be zero. To obtain orthotropy the difference between polar angles Φ0 and Φ1 must be a

multiple of
π

4
, both for membrane and bending stiffness tensors. The last required elastic

property, considered here, is the coincidence of the orthotropy axes, i.e. angle Φ1 has to
be the same for A and D. The expression of the global objective function including all
these conditions is:

F (n, δ,h) =



(∥B∗∥

∥Q∥

)2

+



ΦA∗

0
− ΦA∗

1
−KA∗ π

4
π

4




2

+

+
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0
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1
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4
π

4


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2

+


ΦA∗

1
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1

π

4




2

n2 .

(3.39)

In Eq. (3.39), ∥B∗∥ is the norm of the homogenised coupling tensor, while the normal-
isation factor ∥Q∥ is the one of the layer stiffness tensor. Both norms are calculated
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according to Eq. (3.7). All the other polar parameters are referred to their respective
homogenised tensors, i.e. A∗ and D∗. The constants KA∗

and KD∗

can assume the values
0 or 1, depending upon the different kind of orthotropy (case 1: KA∗

= KD∗

= 0; case 2:
KA∗

= KD∗

= 1). The normalisation factor of the orthotropy and of the coincidence of

the orthotropy axes requirements is assumed equal to
π

4
.

Case n.3

In this case, along with the elastic uncoupling the total isotropy requirement has been
formalised. The partial objective function for uncoupling is expressed as in cases 1 and
2, see Eq. (3.39). In order to attain the isotropy requirement for in-plane and bending
stiffness, the anisotropic part of tensors A∗ and D∗ must be zero. Therefore, the global
objective function has the following form:

F (n, δ,h) =

[(∥B∗∥
∥Q∥

)2

+

(
RA∗

0
2
+ 4RA∗

1
2

RQ
0

2
+ 4RQ

1

2

)
+

(
RD∗

0
2
+ 4RD∗

1
2

RQ
0

2
+ 4RQ

1

2

)]
n2 . (3.40)

In Eq. (3.40), RA∗

0 , RA∗

1 and RD∗

0 , RD∗

1 are referred to the laminate homogenised in-plane
and bending stiffness tensors, respectively. The polar moduli RQ

0 and RQ
1 are referred to

the layer reduced stiffness tensor and they are employed for the normalisation sake.

Case n.4

In this last case, the requirements are uncoupling and homogeneity, i.e. the laminate has
the same behaviour in extension and bending. To realise the objective of homogeneity,
the polar parameters T0, T1, R0, R1, Φ0 , Φ1 must assume the same value for both the
tensors A∗ and D∗, thus the homogeneity tensor is equal to zero, C = 0. The objective
function is:

F (n, δ,h) =

[(∥B∗∥
∥Q∥

)2

+

(∥C∥
∥Q∥

)2
]
n2 , (3.41)

where ∥C∥ is the norm of the homogeneity tensor.

3.5.2 Numerical results

Since the laminate elastic behaviour depends upon the elastic properties of the elementary
ply, the results must refer to a given material. For all the cases, a highly anisotropic
unidirectional carbon/epoxy ply (T300/5208) [134] has been chosen. Its properties are
shown in Table 3.2.
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Technical moduli Polar parameters

Young’s modulus E1 [MPa] 181000 T0 [MPa] 26880
Young’s modulus E2 [MPa] 10300 T1 [MPa] 24744
Shear modulus G12 [MPa] 7170 R0 [MPa] 19710
Poisson’s ratio ν12 0.28 R1 [MPa] 21433
Density ρ [kg/m3] 1580 Φ0 [deg] 0
Ply thickness tply [mm] 0.125 Φ1 [deg] 0

Table 3.2: Technical moduli and polar parameters for unidirectional plies of carbon-epoxy
T300/5208

For each case two kinds of simulations have been performed. In the first one, the
thickness of the elementary ply is assumed equal to 0.125 mm, thus the design variables
are only the number and the orientations of the layers. In the second one, also the thickness
is included among the design variables of the optimisation. We have considered also this
possibility in order to evaluate the influence of such a variable on the determination of
the minimum number of layers that we need to obtain some specified elastic properties.
Practically, this corresponds to increase the number of design variables for the same
kind of problem, and should result in a better quality of the results, with respect to the
corresponding cases of fixed thickness, and perhaps in a lower final minimum number of
layers. Actually, the results shown below indicate that this is the case. Of course, in
doing this we do not consider the practical and technical (e.g. manufacturing) aspects of
such a choice, because here we are merely concerned with the theoretical solution of the
mathematical problem of finding the laminate having the minimum number of layers to
satisfy some elastic requirements. We assume only that the layers have the same elastic
properties but different thickness, which implies the assumption that the volume fraction
and arrangement of the fibres are constant for all the plies.

For each simulation, the number of plies n varies in the range [4 ; 16], while the
orientation of each layer δk (k = 1, .., n) can assume any value in [−90◦ ; 90◦] discretised
by a step of 1◦. For the simulations wherein also the layer thickness is a design variable,
the thickness hk (k = 1, .., n) varies in a continuous way in the range [0.1 ; 0.2] mm.

Concerning the genetic parameters, the population size is Nind = 500 and the max-
imum number of generations is Ngen = 500. The crossover and mutation probabilities
are pcross = 0.85 and pmut = 1/Nind, while the shift operator and chromosomes number
mutation probabilities are pshift = 0.5 and (pmut)chrom = (nchrommax − nchrommin) /Nind,
where nchrommin and nchrommax correspond to the lower and upper bound defined for the
number of layers n. Selection is performed by the roulette-wheel operator and the elitism
is active.

Tables 3.3 and 3.4 show examples of stacking sequences for laminates responding to
design criteria from cases n. 1 to 4, in the case of fixed and variable layer thickness,
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respectively. The residual in the last column is the value of the global objective function
F (n, δ,h) for the solution indicated aside (we recall that exact solutions correspond to
zeros of the objective function). As in each numerical technique, the real solution is found
within a small numerical tolerance that represents the residual. For a discussion on the
importance of the numerical residual in such a kind of problems, see [43, 2].

Tables from 3.5 to 3.12 show the polar parameters values for all the stacking sequences
found in both cases of constant and variable ply thickness. It is possible to see that
all the laminates are extension-bending uncoupled although the stacking sequences are
not symmetric. Actually, some of these sequences are anti-symmetric (a condition that
guarantees bending orthotropy, but not always bending-extension uncoupling, see [136]).
For instance, the sequence of case n. 1, with plies of constant thickness, can be reduced
to the sequence [2/-7/11/-11/7/-2], which is anti-symmetric, simply by a rotation of -7◦.
Actually, such an angle corresponds to the value of the polar angle Φ1 , see Table 3.5, and
in this case, having imposed K = 0, also of Φ0 . In fact, for a given elastic tensor L, in
the case of orthotropy with K = 0, the direction determined by the angle Φ1 corresponds
to the main orthotropy axis, i.e. to the direction of the highest value of the component
Lxxxx, as it can be easily seen from Eq. (3.6), see also [118]. An analogous result is
valid also for case n. 2, always when the plies have a constant thickness, as well as for
cases n.1 and n.4, when the plies have variable thickness. Nevertheless, the condition of
antisymmetrical stacks is a sufficient condition to obtain bending orthotropy that is valid
only for laminates with identical layers, while, normally, this condition cannot be applied
for laminates having plies with variable thickness.

In our calculations, we do not fix the orthotropy direction, because the properties that
we are looking for are intrinsic, i.e. frame independent. The use of the polar formalism
allows, in fact, not only for fixing the frame, for instance imposing a given value of the

polar angle Φ1 simply adding a term of the type
(
Φ1 − Φ1

)2
to the definition of f ,

but also (as in the considered cases) to make completely abstraction from the frame,
whenever intrinsic properties are sought for independently from any frame. Of course, a
post-processing operation of frame rotation, as the one described above, can always been
done, if one wishes to have the final result in a particular frame.

Figs. from 3.2 to 3.9 show the directional plots of some of the elastic properties for
the laminates solution for cases from n. 1 to 4. For the sake of clarity and shortness,
not all the elastic properties have been plotted, but those presented here are sufficient to
show that the prescribed elastic properties have really been obtained.

For the sake of brevity, a detailed discussion of the results is presented only for the
laminates obtained as solution of cases 2 and 3, but similar considerations can be done
also for the other cases.

One can consider first the requirement expressed by the case n.2. In Tables 3.7 and 3.8,
it is possible to notice that the laminate solution, in both cases of constant and variable
ply thickness, respects the design criteria:
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Objective Stacking sequence (angles [◦]) n. of plies Residual

Case n. 1 [9/0/18/− 4/14/5] 6 3.5873× 10−6

Case n. 2 [−16/− 65/− 67/− 8/− 10/− 59] 6 1.7547× 10−2

Case n. 3 [0/− 50/61/42/− 87/− 90/− 49/− 10/− 12/36/26/− 47/83] 13 1.6117× 10−2

Case n. 4 [64/71/74/65/66/63/70] 7 1.7547× 10−2

Table 3.3: Best stacking sequences for the design problems 1 to 4, fixed layer thickness

Objective Stacking sequence (angles [◦] and thickness [mm]) n. of plies Residual

Case n. 1 [−9/− 6/− 4/− 11/− 9/− 6] 6 3.2976× 10−7

[0.118/0.126/0.140/0.126/0.103/0.152]

Case n. 2 [−24/− 73/− 18/− 67] 4 7.3315× 10−3

[0.100/0.200/0.200/0.100]

Case n. 3 [−19/− 74/45/20/75/− 17/− 53/− 83/2/51] 10 2.0476× 10−3

[0.113/0.168/0.200/0.137/0.149/0.190/0.199/0.113/0.106/0.116]

Case n. 4 [−15/− 2/− 12/− 10/− 21/− 6] 6 2.9945× 10−5

[0.156/0.188/0.158/0.151/0.111/0.182]

Table 3.4: Best stacking sequences for the design problems 1 to 4, variable layer thickness

1. in-plane orthotropy with KA = 1:

• plies with identical thickness, ΦA
0
− ΦA

1
= 7.50◦ − (−37.50◦) = 45.00◦;

• plies with non-identical thickness, ΦA
0
− ΦA

1
= −0.50◦ − (−45.50◦) = 45.00◦;

2. bending orthotropy with KD = 1:

• plies with identical thickness, ΦD
0
− ΦD

1
= 7.50◦ − (−37.50◦) = 45.00◦;

• plies with non-identical thickness, ΦD
0
− ΦD

1
= −0.50◦ − (−45.50◦) = 45.00◦;

3. elastic uncoupling expressed by polar condition ∥B∗∥ = 0. The norm of tensor B∗

is really negligible compared to the one of tensor A∗ or D∗:

• plies with identical thickness,
∥B∗∥
∥A∗∥ = 0.0270;

• plies with non-identical thickness,
∥B∗∥
∥A∗∥ = 0.0260;

4. coincidence of orthotropy axes, polar condition ΦA
1
= ΦD

1
:

• plies with identical thickness, ΦA
1
= ΦD

1
= −37.50◦;

• plies with non-identical thickness, ΦA
1
= ΦD

1
= −45.50◦.
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For the case n. 2 it is worth noting that, concerning the laminate with identical layers
thickness, the solution which satisfies all the requirements with the minimum number of
plies is only made by 6 layers, see Table 3.3. When the ply thickness becomes a design
variable the solution found has many improvements as shown in Table 3.4. First, the
minimum layers number to obtain a solution is decreased from 6 to 4, then, this solution
has a lower value of the residual, i.e. the laminate satisfies the requirements in a more
satisfactory way. Figs. 3.4 and 3.5 show the polar diagrams of the elastic properties of
the laminates solution of this case.

Let us turn the attention to the case n. 3. In Table 3.9 and 3.10 one can notice
that the laminate solution of the problem n.3, in both cases of constant and variable ply
thickness, respects the design criteria:

1. in-plane isotropy, expressed by the polar condition that the anisotropic part of the
tensor A∗ must be zero, i.e. RA∗

0
2
+ 4RA∗

1
2
= 0. The ratio between the tensor

anisotropic and isotropic part is very close to zero, i.e. the anisotropic components
are negligible compared to the isotropic ones:

• plies with identical thickness,

√
RA∗

0
2
+ 4RA∗

1
2

TA∗

0
2
+ 2TA∗

1
2 = 0.0023;

• plies with non-identical thickness,

√
RA∗

0
2
+ 4RA∗

1
2

TA∗

0
2
+ 2TA∗

1
2 = 0.0017;

2. bending isotropy, expressed by the polar condition that the anisotropic part of the
tensor D∗ must be zero, i.e. RD∗

0
2
+ 4RD∗

1
2
= 0. The ratio between the tensor

anisotropic and isotropic part is very close to zero, i.e. the anisotropic components
are negligible compared to the isotropic ones:

• plies with identical thickness,

√
RD∗

0
2
+ 4RD∗

1
2

TD∗

0
2
+ 2TD∗

1
2 = 0.0040;

• plies with non-identical thickness,

√
RA∗

0
2
+ 4RA∗

1
2

TD∗

0
2
+ 2TD∗

1
2 = 0.0007;

3. elastic uncoupling expressed by polar condition ∥B∗∥ = 0. The norm of tensor B∗

is negligible compared to the one of tensor A∗ or D∗:

• plies with identical thickness,
∥B∗∥
∥A∗∥ = 0.0130;

• plies with non-identical thickness,
∥B∗∥
∥A∗∥ = 0.0060;
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In such a case, concerning the laminate with identical layers thickness, the solution
which satisfies all the requirements with the minimum number of plies is made by 13
layers, see Table 3.3. When the ply thickness becomes a design variable, the best solution
is really improved, as shown in Table 3.4. As in the previous case, the minimum layers
number to obtain a solution is decreased from 13 to 10 and the value of the residual is
lower, i.e. the laminate satisfies the requirements more accurately. Figs. 3.6 and 3.7 show
the polar diagrams of the elastic properties of the laminates solution of this case.

3.6 Concluding remarks

The problem of determining which is the lowest number of layers ensuring some given
elastic properties of a laminate has been addressed in this Chapter. The approach pro-
posed to deal with such a problem consists in reducing it to a classical unconstrained
NLPP by searching the minima of a semi-definite positive function over the space of the
design variables. Such a method is totally general, i.e. no simplifying assumptions are
required.

The formulation of the problem is based on the polar representation of plane tensors
while, as numerical strategy to perform the solutions search for the considered cases, we
have employed the new version of the GA BIANCA. In particular, we have tested and
proved the effectiveness of the new genetic operators for crossover and mutation among
different species when dealing with the problem of designing the elastic properties of
composite laminates having the minimum number of layers.

The numerical results presented in this Chapter, which are completely new and non-
classical examples, show the effectiveness of the proposed approach.

Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 17033.4619 19.5909 18772.4089

R1 [MPa] 20683.2749 2.83 21173.5205

Φ0 [◦] 7 − 7

Φ1 [◦] 7 − 7

Table 3.5: Polar parameters for the laminate case n.1, constant ply thickness
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Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 19437.9543 2.5019 19583.8459

R1 [MPa] 21358.8283 0.90806 21398.6655

Φ0 [◦] −7.32 − −7.32

Φ1 [◦] −7.32 − −7.32

Table 3.6: Polar parameters for the laminate case n.1, variable ply thickness

Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 4873.3071 1407.9761 1122.9394

R1 [MPa] 13002.5339 113.5579 14626.7514

Φ0 [◦] 7.5 − 7.5

Φ1 [◦] −37.5 − −37.5

Table 3.7: Polar parameters for the laminate case n.2, constant ply thickness

Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 4035.9329 1345.8389 1029.8979

R1 [MPa] 13420.7539 158.8238 14673.2203

Φ0 [◦] −0.5 − −0.5

Φ1 [◦] −45.5 − −45.5

Table 3.8: Polar parameters for the laminate case n.2, variable ply thickness
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Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 101.0911 536.0837 120.9914

R1 [MPa] 9.3146 90.7468 63.6677

Φ0 [◦] − − −
Φ1 [◦] − − −

Table 3.9: Polar parameters for the laminate case n.3, constant ply thickness

Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 45.4948 253.7272 30.4769

R1 [MPa] 29.3042 46.5314 6.8212

Φ0 [◦] − − −
Φ1 [◦] − − −

Table 3.10: Polar parameters for the laminate case n.3, variable ply thickness

Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 18929.7208 6.4786 18921.6397

R1 [MPa] 21219.3737 0.8899 21217.4539

Φ0 [◦] −22.15 − −22.14

Φ1 [◦] 67.85 − 67.85

Table 3.11: Polar parameters for the laminate case n.4, constant ply thickness
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Elastic properties Tensor A∗ Tensor B∗ Tensor D∗

T0 [MPa] 26880.4311 0 26880.4311

T1 [MPa] 24743.8933 0 24743.8933

R0 [MPa] 18090.7546 44.438 18088.1731

R1 [MPa] 20982.3915 19.2386 20983.6104

Φ0 [◦] −10.05 − −10.05

Φ1 [◦] −10.08 − −10.08

Table 3.12: Polar parameters for the laminate case n.4, variable ply thickness

Figure 3.2: Polar variations for laminate n.1, identical ply thickness. (a) Stiffness com-
ponents, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.
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Figure 3.3: Polar variations for laminate n.1, non-identical ply thickness. (a) Stiffness
components, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.

Figure 3.4: Polar variations for laminate n.2, identical ply thickness. (a) Stiffness com-
ponents, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.
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Figure 3.5: Polar variations for laminate n.2, non-identical ply thickness. (a) Stiffness
components, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.

Figure 3.6: Polar variations for laminate n.3, identical ply thickness. (a) Stiffness com-
ponents, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.
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Figure 3.7: Polar variations for laminate n.3, non-identical ply thickness. (a) Stiffness
components, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.

Figure 3.8: Polar variations for laminate n.4, identical ply thickness. (a) Stiffness com-
ponents, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.
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Figure 3.9: Polar variations for laminate n.4, non-identical ply thickness. (a) Stiffness
components, (b) membrane Young’s modulus E11 and shear modulus G12 and (c) bending
Young’s modulus E11 and shear modulus G12.



Chapter 4

Optimal design of modular systems:
application to stiffened composite
structures

4.1 Introduction

The design of modular systems is a difficult task whenever the number of modules is
unknown. The difficulty increases even more when the modules can have different di-
mensions. Similar problems arise in several engineering domains. Modular systems (or
structures) are widely used in engineering field: classical examples are modular structures
employed in the aeronautical field (such as, for example, stiffened panels for wing and
fuselage, covering panels of the aircraft tail, modular components of the landing gear
structure, modular systems for the flaps and slats actuators and so on), in the helicopter
field (stiffened and sandwich-like panels employed for the blades, modular structure of
the rotor hub) and also in the automotive field (the car engine itself can be viewed as a
modular system, other examples are the repetitive units of the car chassis, the modular
components of the brake system and so on).

In this Chapter we consider the most general case of modular systems whose constitu-
tive modules are “structurally identical” (i.e. they are characterised by the same physical
parameters) but, at the same time, they can be “quantitatively different” (namely, the
physical parameters describing each module can assume different values). As an illustra-
tive example of our approach to the design of modular systems, we consider here a case
which can be viewed as paradigmatic: the design of a least weight wing-box girder, with
an unknown number of stiffeners, that has to be realized by composite laminates.

Stiffened panels are widely used in many structural applications, mostly because they
allow for a substantial weight saving. Of course, this point is of paramount importance
especially in aircraft design, where an important reduction of the structural weight can be
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achieved if composite laminates are used in place of aluminum alloys. A drawback of such
a choice is that the optimal design of the structure is much more cumbersome than that
of a classical metallic structure. In fact, though the use of laminated structures is not a
recent achievement in structural mechanics, up to now no general rules and methods exist
for their optimal design, and engineers always use some simplifying assumptions or rules.

These assumptions are used on one side to obtain a short-cut to a possible solution,
i.e. to eliminate from the true problem some particularly difficult points or properties to
be obtained. On the other side, some of such rules are considered to prevent the final
structure from some undesired phenomena, though this is never clearly and rigorously
stated and proved. Unfortunately, the most part of times the use of such simple rules
leads only to a sub-optimal solution, i.e. to a solution which is not a real global optimal
one. Two examples are the use of symmetric stacking sequences, a sufficient but not
necessary condition for bending-extension uncoupling, and the use of balanced stacks to
obtain orthotropic laminates in extension. When symmetric stacking sequences are used,
the design is done using half of the layers, which means also half of the design variables.
Once half of the stack has been designed, the other half is simply added, symmetrically
with respect to the mid-plane, in order to obtain uncoupling. Of course, it is very difficult
to obtain the lightest structure using a similar strategy.

The use of balanced stacks, on the other side, leads systematically to mechanically false
solutions: whenever such a rule is used, bending orthotropy, a rather difficult property
to be obtained [136], is simply understated, assumed, but not really obtained, as in [137]
or [138], sometimes ignored, like in [139] (about this topic, see [116] for more details).
In aircraft structural design, some other rules are imposed to the design of laminated
panels, see for instance [138]; none of them are mechanically well justified. Certainly, an
appropriate mathematical formulation of the design process could take into account the
mechanical and technological problems that such drastic, empirical rules want to prevent.

Several studies have been conducted on the optimisation of composite stiffened panels
subject to buckling and/or strength constraints. A minimum-weight design was performed
by Butler and Williams [140] using VICONOPT, a program for buckling and strength
analyses based on the direct solutions of the governing equations assuming a sinusoidal
law for the deformed shape of the structure. Another minimum-weight design approach,
with a constraint on the buckling load, was proposed by Wiggenraad et al [141] using
the code PANOPT which is based on Riks’ derivation for finite-strip analyses. Damage
tolerance and soft-skin concepts were introduced to take into account the technological
limits on ply thickness and geometry. Nevertheless, the presence of integers or discrete
variables, such as the number and the orientation of the layers, number of the stiffeners
and so on, makes the use of methaeuristics, in particular genetic algorithms (GAs), more
profitable in the optimisation of composite structures [37, 38]. Nagendra et al [39] studied
the weight-optimisation problem of composite stiffened shells and they found a solution
through an improved GA and a finite-strip element method implemented in PASCO, a
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program used for the evaluation of the buckling load and strain constraints. Kaletta and
Wolf [40] used a parallel computing GA to solve the minimum weight design problem of
a stiffened composite plate panel, considering constraints on buckling load and maximum
strength. They applied this technique using directly a finite element (FE) analysis to
evaluate objective and constraint functions. Lillico et al [41] studied the problem of the
optimal design of the stiffened panel made of aluminium alloy, with constraints on buckling
load and post-buckling maximum strength, and solve them through the code VICONOPT.
More recently, Bisagni and Lanzi [42] developed a global approximation strategy in order
to find a minimum-weight design for low curvature composite stiffened panel considering,
at the same time, the constraints on the buckling load, pre-buckling stiffness and post-
buckling collapse load. They developed a neural network system, trained by means of FE
analyses, which reproduced the structural response of the whole panel. They used this
model, coupled with a standard GA, in order to find the optimal configuration.

The research presented in this Chapter has been motivated by the following purpose:
to show that an appropriate optimisation procedure can lead to a substantial weight saving
in the design of modular composite structures. The case that we have considered is that
of a wing-box stiffened girder made of composite laminates. The objective of the optimal
problem is to design the lightest structure, submitted to a constraint on the buckling
load, which is a classical problem in aircraft structural engineering. The same procedure,
however, can be applied to other problems and also other requirements (in the form of
additional constraints to the optimisation problem) can be taken into account.

The design procedure that we propose is inspired by a radical point of view: to design
a modular composite laminated structure by a mathematically rigorous numerical opti-
misation procedure that will not use any simplifying assumption. Only avoiding the use
of a priori assumptions one can hope to obtain the true global optimum for a given pro-
blem: this is a key-point in our approach. The design process that we propose is, on one
side, completely free, i.e. not submitted to restrictions, and on the other side completely
automatic: the operator does not need to take any preliminary decision, for instance on
the number of the layers or of the stiffeners, because the method will do that for him, in
the best way. In fact, the approach presented in this Chapter can automatically optimise
also the number of design variables during the iterations.

Actually our hope is twofold: first, to show that, if old design rules and a priori
assumptions are abandoned in the design of structural laminates, interesting solutions
can be obtained, especially in weight saving. Then, that modern numerical methods
allow such an approach and make it possible to substitute old simplifying and limiting
assumptions with more rigorous requirements that can be included into the numerical
procedure.

Concerning the optimisation code BIANCA, the aims of the work presented in this
Chapter are substantially two: on one side we test the effectiveness of the genetic operators
allowing the crossover and mutation between different species when dealing with the
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problem of the least-weight design of composite modular structures, while on the other
side we test the effectiveness of the ADP handling-constraint strategy as well as that of
the interface with external software.

The Chapter is organised as follows: the mechanical problem considered in the study
is introduced in Sec. 4.2 and the optimisation strategy is explained in Sec. 4.3. The
mathematical formulation of the minimum weight design problem is detailed in Sec. 4.4
and the problem of determining a suitable laminate is formulated in Sec. 4.5. A concise
description of the FE model of the wing-box structure is given in Sec. 4.6, while in Sec.
4.7 we show the numerical results of the whole optimisation procedure. Finally, Sec. 4.8
ends the Chapter with some concluding remarks and perspectives.
This Chapter is substantially taken from the publications [142, 143].

4.2 Description of the problem: application to the

design of an aircraft wing

The optimisation procedure is applied to a classical long-range aircraft wing-box stiff-
ened panel. Fig. 4.1 shows the conceptual steps which lead to the construction of the
approximate model of the wing-box section. In particular, we have considered the wing-
box section located at the 60% of the wing span, whose typical dimensions are shown
in Fig. 4.1. These values represent specific dimensions for a long-range aircraft with a
design range of about 9300 km, 350 passengers, two engines, cruising altitude between
∼ 7600÷ 10700 m and Mach number of about 0.82. For more details see [144].

The structure has a width w of 2610 mm, height hb of 720 mm and a length L of 700
mm. The wing-box section represents a portion of the wing between two consecutive ribs.
We consider the wing-box simply-supported on these ribs. Fig. 4.1 shows also the loads
acting on the structure in normal flight conditions: in such a case, only the upper panel
can undergo buckling phenomena. The whole wing-box is made of composite laminates
composed of highly anisotropic unidirectional carbon-epoxy layers T300/5280 [134]. The
material properties of the elementary layer are shown in Table 3.2. Both upper and lower
panels have Z-shaped stiffeners with equal flanges. The core and the flanges of each
stiffener have the same thickness.

As previously said, no simplifying assumptions are used for the panel: indeed each
stiffener can be different from any other, in terms of geometrical and mechanical be-
haviour, but for evident mechanical reasons we impose that each plate composing the
structure is orthotropic both in bending and in extension, and with the orthotropy axes
aligned with the axes of the wing-box. Indeed, about the geometry of the structure, we
only assume that, for constructive reasons, the wing-box section is symmetric with respect
to the global x− y plane, as shown in Fig. 4.1.
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Figure 4.1: (a) Conceptual phases which lead to the construction of the wing-box model
(b) Structure of the wing-box stiffened panel and applied loads.

4.3 The two-level optimisation strategy

The optimal design of a stiffened wing-box section made of composite laminates is an hard
task, if no simplifying assumptions are used. Actually, such a problem, like many other
similar problems in structural engineering, has some peculiarities and the optimisation
strategy must take into account all of them:

• the structure is a mechanical system composed by modules. Actually, there are two
types of modules in this system: the modules of the first type are the stiffeners.
All the stiffeners are modules because they have the same function and geometry,
but not necessarily the same dimensions and mechanical properties. In fact, in the
most general case each stiffener can be different from another one, because it can
have different dimensions, number and orientation of the plies and hence different
mechanical properties. The modules of the second type are the layers: all the layers,
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composing each part of the structure, are identical, but each member of the structure
(stiffeners, skins) can be composed by a different number of layers that normally
are differently oriented;

• the design process must be able to completely determine the optimal configuration
of each module and their optimal number : this point is of a particular importance
whenever the objective is the least weight, because dimensions and number of mod-
ules greatly affect the final weight of the structure;

• the design process must be able to take into account all the mechanical prescriptions
imposed to the structure, without using simplifying assumptions: namely, it must be
possible to take into account general properties concerning the elastic symmetries,
like orthotropy for both bending and extension behaviour, uncoupling and so on;
this can be done effectively by a proper choice of the anisotropy representation;

• the design procedure must be able to handle the direction of anisotropy, namely the
orientation of the orthotropy axes, without imposing particular stacking sequences
and/or orientation angles that automatically fix the anisotropy direction in a par-
ticular direction, like cross-ply, angle-ply or balanced quasi-isotropic sequences;

• all the constraints imposed to the problem, of either mechanical or technological
nature (inequality and/or equality constraints), must be effectively handled by the
procedure;

• the numerical tool used for the solution of the optimisation problem must be able
to simultaneously handle design variables of different nature: continuous, discrete
or grouped variables, these last being a sort of pointers that, when chosen in a list,
imply the automatic choice of a set of variables;

• the numerical strategy used to solve the optimisation problem must be able to
effectively handle highly non-convex problems.

Another point is very important when the design concerns composite laminated struc-
tures: there is not a bijective correspondence between the elastic properties of the laminate
and the stacking sequence, see for instance [145]: the same mechanical behaviour in bend-
ing, coupling or extension can be obtained by several different laminates, all composed of
the same identical plies but not necessarily by the same number of plies or with the same
orientations.

All the above points have suggested us the optimisation strategy to be used to deal
with structural problems like the one considered in this Chapter (the same strategy is
also adopted for a different application shown in Chapter 6). In particular, they have
inspired us in the choice of the general organisation of the procedure, of the mathematical
formulation, of the mechanical parameters and of the numerical algorithm.
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Concerning the general organisation of the procedure, we adopted a two-level strategy :
the problem of finding the lightest stiffened wing-box, composed of identical layers of a
chosen material, is split into two different but linked optimisation problems:

• First level: at this stage, we consider each part of the structure, skins and stiffen-
ers, as composed of a single equivalent homogeneous layer ; the problem of finding
the least-weight structure with imposed constraints is formulated and solved. The
output of this step is, hence, the geometry of the structure, i.e. the number of
stiffeners as well as the stiffeners and skins dimensions in terms of number of consti-
tutive layers, mechanical properties (i.e. the components of the stiffness tensors of
the skin and of each stiffener). Thus, this is the step where the true optimal design
of the structure is done, in terms of its overall properties.

• Second level: during this phase, we look for one stacking sequence giving the
optimal overall properties found during the first step, and this is done for all the
laminates composing the structure, i.e. for each laminate of skin and stiffeners. At
this stage, the design variables are the layers orientations and we can add some
requirements concerning different aspects. For instance, more constraints on the
elastic behaviour can be added for different reasons, or the orientations of the layers
can be restricted to a set of possible values and so on. This is possible because the
fact that several laminates share the same overall elastic behaviour allows us a large
panel of possibilities in terms of suitable laminates, and this panel rapidly increases
with the number of plies.

It is worth noting that such a strategy has already been used in other works, with
various approaches to the first and second level, see for example [120, 145, 146].

Concerning the mathematical formulation, this will be detailed, for both the first and
second step, in the next Section.

4.4 Mathematical formulation of the first-level pro-

blem

The overall characteristics of the optimal structure are to be designed during this phase.
For the problem at hand, this means that in this phase we have to determine the optimal
values of the following parameters:

• the number of stiffeners;

• the thickness, and hence the number of layers, of the skin and of each stiffener;

• the geometrical dimensions of each stiffener;
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• the mechanical properties of the skin and of each stiffener.

It is worth noting the peculiarity of this structural optimisation problem: unlike clas-
sical optimisation problems of structural engineering, where the only design variables are
the geometrical dimensions of the structure, in this case we need also determine the op-
timal number of modules and their mechanical characteristics, besides their dimensions.
We recall, in fact, that in the most general situation, the stiffeners share the same form
but can have different dimensions and mechanical properties.

We can immediately see that during this stage of the optimisation procedure, the
design of the thickness of the different parts of the structure must be done using discrete
variables, with a step equal to the thickness of the material layer used for the fabrication
of the structure. Of course, this responds to a technological need and, moreover, this
will give us also another important result: the number of layers to be used during the
second-level design.

We recall that the objective of the procedure consists in minimising the weight of the
wing-box section: this must be done satisfying on one side the constraint on the buckling
load, and on the other side the geometric bounds for the elastic moduli. Such aspects are
described in detail in the following subsections.

4.4.1 Geometrical design variables

Before specifying the mathematical formulation, we introduce the design variables; these
are of two types: geometrical and mechanical. Concerning the geometrical design vari-
ables, they are shown in Fig. 4.2 and are:

Figure 4.2: Geometrical design variables of the wing-box stiffened panel.

• the number of stiffeners N ;
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• the thickness of each stiffener tSi , i = 1, ..., N ;

• the height of each stiffener hS
i (i = 1, ..., N);

• the thickness of the skin t.

All these variables are discrete valued: the ranges of their variation, along with their
steps, are shown in Table 4.1. As previously said, the step of the thickness is equal to the
thickness of the carbon-epoxy T300/5208 layers, the material chosen for the structure,
see Table 3.2.

Design variable Type Lower bound Upper Bound Step

N discrete 18 23 1

tSi [mm] discrete 2.0 5.0 0.125

hS
i [mm] discrete 40.0 90.0 0.5

(RA∗

0K)
S
i [MPa] continuous −19710 19710 −

(RA∗

1 )Si [MPa] continuous 0.0 21433 −
t [mm] discrete 2.0 5.0 0.125

(RA∗

0K) [MPa] continuous −19710 19710 −
(RA∗

1 ) [MPa] continuous 0.0 21433 −

Table 4.1: Design variables for the first optimisation problem.

For technological reasons, the width of the flange of each stiffener, dSi (i = 1, ..., N),
is not a design variable and depends on the height of the stiffener as shown in Fig. 4.2.
The stiffeners are automatically equispaced, with a step b which depends on the number
of stiffeners through the following relation:

b =
w

N + 1
, (4.1)

where w is the width of the whole wing-box section.
An important point to be remarked: the dimension of the design space, i.e. the number

of the design variables, depends on the number of modules, the stiffeners, and must be
optimally determined by the procedure. The determination of the optimal number of the
second type of modules, i.e. the layers, is implicitly done by determining the optimal
value of the thicknesses.
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4.4.2 Mechanical design variables

Concerning the mechanical variables, we adopt the polar formalism, already introduced
in Sec. 3.3 of Chapter 3, to represent the homogenised stiffness tensors A∗, B∗, D∗ which
describe the mechanical behaviour of the laminate in the framework of the CLPT. As
previously said, the polar formalism gives a representation of any planar tensor by means
of a complete set of independent invariants. These invariants are called polar parameters
and a great advantage in the design of anisotropic structures is that they are directly
linked to the different symmetries of the tensor [114, 118].

The structural problem considered in this Chapter mainly concerns, through the con-
straint on the buckling load, the bending behaviour of the different laminates that com-
pose the structure. Nevertheless, we have also imposed a condition on the extension
behaviour of the laminates: each laminate is required to be quasi-homogeneous. Quasi-
homogeneity is a property first introduced by Kandil and Verchery [131]: a laminate is
quasi-homogeneous when its extension and bending behaviours are uncoupled and iden-
tical in each direction [132]. In this way, only the extension tensor A has to be designed,
the bending one, D, is automatically obtained. So, the choice of using quasi-homogeneous
sequences, a mechanical assumption, has two direct mathematical consequences on the
optimisation problem: (a) it reduces to only six the elastic parameters to be designed
for the laminate (instead of the 18 polar parameters that we need to completely describe
the behaviour of a laminate, see also Eq. (3.23) of Chapter 3), and (b) transforms the
problem from the design of the bending tensor to that of the extension tensor, much easier
to be done.

Another mathematical consequence, important for a correct definition of the con-
straints to be imposed to the optimum problem, as specified below, is the fact that with
quasi-homogeneity the interdependency of the elastic parameters of extension and bending
is complete. Finally, it must be noticed that this choice does not diminish the generality
of the approach under a mechanical point of view, because for the bending behaviour, the
fundamental one for this kind of problems, no restrictions are given and all the situations
are still possible.

Along with the condition of quasi-homogeneity we assume that each laminate com-
posing the structure is orthotropic, thus mathematically such conditions can be expressed
as:

B∗ = O uncoupling condition,
A∗ = D∗ homogeneity condition,

ΦA∗

0 − ΦA∗

1 = KA∗ π

4
orthotropy condition.

(4.2)

If the first two conditions of Eq. (4.2) are satisfied, the laminate is said to be quasi-
homogeneous. As already discussed in Sec. 3.3, the invariant KA∗

determines the type of
ordinary orthotropy, see [118], and it can assume only the values 0 or 1. Vannucci [130], has
shown the importance of this material invariant parameter in some problems of optimal
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design; namely, if a solution is optimal for K = 0, it is normally anti-optimal for K = 1
and inversely, in some cases, the change of K can lead to a loss of uniqueness of the
solution of an optimisation problem. To be remarked that the second and third of Eq.
(4.2) give also bending orthotropy.

A simple result of the polar formalism is that, for the general case of laminates with
identical layers, the isotropic moduli TA∗

0 and TA∗

1 are equal to those of the elementary
layer, T0 and T1 respectively, see [132]. TA∗

0 and TA∗

1 are hence fixed by the choice of the
material of the layers, so they are no more design variables: the polar formalism allows
for easily eliminating some redundant mechanical variables from a design problem of a
laminate composed of identical layers.

From the third condition of Eq. (4.2), we get:

cos 4ΦA∗

0 = (−1)K
A∗

cos 4ΦA∗

1 ,

sin 4ΦA∗

0 = (−1)K
A∗

sin 4ΦA∗

1 ,
(4.3)

relations that can be used in Eq. (3.4), valid for any fourth-order elasticity-like tensor, so

for tensor A∗ too. Therefore, introducing the quantity RA∗

0K = (−1)K
A∗

RA∗

0 (see also [44])
thanks to the quasi-homogeneity condition, we reduced to only 3 the number of mechan-
ical design variables for each laminate: the polar parameters RA∗

0K , R
A∗

1 , concerning the
anisotropic part, and the polar angle ΦA∗

1 , that represents the direction of the orthotropy
axis. A theoretical remark: RA∗

0K is still a tensor invariant, because it is a combination of
two distinct tensor invariants, KA∗

and RA∗

0 .
Another important point is constituted by the feasibility conditions : during the first

step, an anisotropic equivalent layer is designed and, as for any other elastic material, some
bounds are to be imposed to the search, in order to obtain elastic parameters that satisfy
physical existence conditions. Nevertheless, this is not sufficient because the fictitious
homogeneous anisotropic material designed during the first step, is not really fabricated.
In fact, the optimal mechanical properties obtained as results of the first-level problem
are realised in practice using composite laminates, that in general are different for the
skin and for the stiffeners. So, in the second level problem, a laminate having the overall
elastic properties optimised in the first step is looked for, and this is done for the skin
and for each stiffener.

As said in Sec. 3.3, Vannucci [133] has shown that laminates constitute a sort of
restricted elastic class : the elastic bounds valid for a homogeneous anisotropic material
can never be attained by a laminate composed by the same material. This happens
because the stacking sequence imposes some links among the different elastic moduli of
the extension and/or the bending tensor, links that shrink the existence domain of the
elastic moduli of the tensor. Such links are of geometrical nature, because they depends
on the geometry of the stack, i.e. upon the orientation angle and the position of each
layer in the stacking sequence. Since the fictitious material focus of the first-level design
will be (in the second-level problem) realised by a laminate, in order to obtain a feasible
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laminate, the geometric constraints of Eq. (3.36) (already introduced in Sec. 3.3) on the
feasibility of the laminate are to be imposed directly to the first-level problem, otherwise
one could get an optimum elastic tensor that cannot be obtained using a laminate of the
same material.

To this purpose, it is worth noting also the importance of the quasi-homogeneity
requirement: the bounds for the elastic moduli of the extension and bending tensors
taken together are not known, and it should be impossible to specify them correctly
in the first step problem. The assumption of quasi-homogeneity allows for considering
in the first phase a fictitious material that has the same properties for bending and
extension, for which the same geometric bounds are valid for both the tensors and hence
are mathematically correct.

Thus, we must introduce in this phase the geometric bounds for the design of the
laminate, that will be done during the next second-level problem. Such bounds can be
written independently for tensors A∗ or D∗, and are of course the same for the case of
quasi-homogeneous laminates.

Here, we recall the expression of such bounds using the polar formalism that in the
case of an orthotropic tensor A∗ can be expressed as follows (the quantities without the
superscript A∗ refer to the elementary layer):





−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗

1 ≤ R1 ,

2

(
RA∗

1

R1

)2

− 1− RA∗

0K

R0

≤ 0 .

(4.4)

These constraints are to be considered for the optimal design of every laminate composing
either the skin or the stiffeners of the wing-box section.

4.4.3 Mathematical statement of the problem

As said previously, the goal of the global structural optimisation is to find a minimum-
weight wing-box configuration respecting the buckling and geometric constraints. To
state the optimisation problem in a standard form, we first reorder the design variables
according to the following scheme (the superscript S stands for stiffeners, the quantities
without this superscript are referred to the skin):

• the vector x collects the following design variables, concerning the overall structure
and the skin:

x =





x1 = N
x2 = t

x3 = RA∗

0K

x4 = RA∗

1





, (4.5)
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• each one of the vectors yi collects the design variables of the ith stiffener, i = 1, ..., N :

yi =





y1 = hS
i

y2 = tSi
y3 = (RA∗

0K)
S
i

y4 = (RA∗

1 )Si





. (4.6)

Then, we introduce the following functions:

• the objective function W , expressing the overall weight of the structure:

W = W
(
x,yi

)
, (4.7)

• the function that expresses the constraint on the critical buckling load:

f
(
x,yi

)
= pref − pcr

(
x,yi

)
, (4.8)

• the functions expressing the five geometric constraints (4.4) on the polar parameters
of the skin:

g1 (x3) = −x3 −R0 , (4.9)

g2 (x3) = x3 −R0 , (4.10)

g3 (x4) = −x4 , (4.11)

g4 (x4) = x4 −R1 , (4.12)

g5 (x3, x4) = 2

(
x4

R1

)2

− 1− x3

R0

, (4.13)

• the functions expressing the five geometric constraints (4.4) on the polar parameters
of the ith stiffener, with i = 1, ..., N :

hi
1

(
yi3
)
= −yi3 −R0 , (4.14)

hi
2

(
yi3
)
= yi3 −R0 , (4.15)

hi
3

(
yi4
)
= −yi4 , (4.16)

hi
4

(
yi4
)
= yi4 −R1 , (4.17)

hi
5

(
yi3, y

i
4

)
= 2

(
yi4
R1

)2

− 1− yi3
R0

. (4.18)
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In (4.8), pref is a reference value for the critical buckling load of the structure, pcr.
Finally, the problem can be stated in the standard form:





min W
(
x,y1, ...,yN

)
,

s.t.

f
(
x,yi, ...,yN

)
≤ 0 ,

gj(x) ≤ 0 , j = 1, ..., 5 ,

hi
l(y

i) ≤ 0 , i = 1, ..., N, l = 1, ..., 5 .

(4.19)

Problem (4.19) is non-linear, in terms of both geometrical and mechanical variables.
Its non-linearity is given not only by the objective function and the geometrical constraints
like those in (4.13) and (4.18), but, in a stronger way, by the constraint on the value of the
buckling load, pcr ≥ pref . The value of the buckling load can be computed analytically
if it has a theoretical expression, which happens for some particularly simple structures,
like beams or plates of simple form. Unfortunately, no analytical solution is known for
the buckling load of a structure as complicate as the one considered in this research, see
Fig. 4.1. Hence, for the solution of problem (4.19) we need a tool for the numerical
evaluation of pcr. To this purpose, the structure, a continuum, is discretized in finite
elements and the computation of pcr is done using the well known technique of the finite
elements method.

From a mathematical point of view, the transformation of a continuum, i.e. of a body
having infinite degrees of freedom, into a discrete structure, that has a finite number of
degrees of freedom, transforms the search of the buckling load into a classical algebraic
problem: pcr is the smallest eigenvalue λ of

[[K]− λ] {u} = {0} . (4.20)

[K] is the stiffness matrix of the discretised structure, it is symmetric, positive definite
and its dimension is equal to the number of the degrees of freedom of the structure, while
{u} is the vector of the state variables of the problem which, in the classical formulation
of the finite element method, are physically the displacements, i.e. the degrees of freedom
of the discrete structure. In our case, as we will specify in Sec. 4.6, the discretisation of
the structure leads to a model having some hundreds of thousands of degrees of freedom.
The solution of the Laplace’s equation for a matrix having a so great dimension is clearly
a non-linear problem whose solution can only be obtained numerically.

In addition, we impose that the fictitious material designed in this first step must
be orthotropic, with the orthotropy axes aligned with the axes of the structure, and
uncoupled. Thus, we fix the orthotropy direction, for both the skin and the stiffener
laminates, simply posing:

ΦA∗

1 = (ΦA∗

1 )Si = 0, ∀i = 1, ..., N, (4.21)
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which means that the principal orthotropy axis of each laminate composing the structure
is aligned with the global x axis of the whole wing-box section, see Fig. 4.1. In this way,
we eliminate from the problem a mechanical design variable for each laminate.

Finally, the dimension of the design space, i.e. the number of design variables, and
the number of constraint equations depend on the number N of stiffeners. In particular
the total number of design variables is 4N + 4 (there are in fact 4 variables for each
stiffener, 3 variables for the skin and the number of stiffeners, N), while the total number
of constraint equations is 5N + 6: the buckling constraint, 5 constraints for the skin and
finally 5 constraints for each stiffener, see the second, third and fourth of Eq. (4.19),
respectively. Nevertheless, though the number of constraints is variable, each constraint
added by the addition of a module depends only on the unknowns concerning that module,
not on the other ones too, see again the fourth of Eq. (4.19).

Concerning the GA BIANCA, in the case of the first-level problem we need the use
of the new genetic operators of crossover and mutation between individuals belonging
to different species. In fact, since the number of stiffeners N is included among the
design variables, the related optimisation problem is defined over a space having variable
dimension (the dimension of such a space is 4N + 4). Mathematically speaking, such a
problem corresponds on one side to determine the optimal dimension of the domain (i.e.
the number of stiffeners N) and on the other side to determine the optimal values of the
constitutive parameters of the stiffeners which satisfy the requirements imposed by the
optimisation problem. In addition, we use the code BIANCA interfaced with the FE code
ANSYS, because for each individual at each generation, the evaluation of the constraint
function on the buckling load needs a numerical evaluation, as said above.

Fig. 4.3 shows the genotype of the generic rth individual for the optimisation problem
of the wing-box structure. This individual has Nr+1 chromosomes. The first chromosome
is composed by 3 genes representing the design variables for the skin, i.e. thickness and
polar parameters. Chromosomes from 2 to Nr + 1 contain 4 genes which are the design
variables for each stiffener: thickness, height and the two anisotropy polar parameters.
An exception is chromosome 2 that has 5 genes: the fifth additional gene codes the
number of modules, i.e. for our problem the number of stiffeners (we remind the use of
the superscript S for all quantities related to the stiffeners).

4.5 Mathematical formulation of the second-level pro-

blem

The second problem of the optimisation procedure concerns the design of the laminates.
Of course, this second problem depends upon the results of the first one, because the
laminates to be designed must have the optimal elastic properties and thickness obtained
as results of the first-level design problem.
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Figure 4.3: Structure of the individual genotype for the first-level optimisation problem.

It is to be highlighted that in our approach, that wants to be completely general, hence
not using special stacking sequences nor orientations, also general elastic properties are
concerned by the design problem, in particular quasi-homogeneity and orthotropy.

As already done in Chapter 3, also in this case we use the approach introduced by
Vannucci [43] to deal with the problem of designing the general elastic properties of
a laminate, later extended Vannucci [146] and by Julien [44] to the optimal design of
laminates with given piezoelectric or elastic properties. By this approach, the design
of a laminate conceived to have some given properties is reduced to an unconstrained
minimisation problem. Mathematically, the technique is very simple: in the space of the
polar parameters, a target tensor is fixed in some way. Then, the distance from this
target is minimised, this leading to the evaluation of the optimal design variables. For
the problem that we consider in this second step of the procedure, the target is fixed
by the optimal values of the polar parameters of the laminate, issued from the first-level
problem.

The key-point of this phase is hence the construction of the distance function, objective
of the minimisation problem. This function drives the search for a quasi-homogeneous,
orthotropic laminate, having the optimal elastic polar moduli issued from the first step.
The design variables of this second level problem are the layer orientations δj, see Eq.
(3.23), and the optimisation process has to be repeated for the laminates of each stiffener
and of the skin.

To construct the distance function in this case, we recall that we need to find a
stacking sequence which satisfies the conditions of Eq. (4.2), and that has the optimal

polar parameters found in the first step, K̂A∗

, R̂A∗

0 and R̂A∗

1 . The relation among the

polar parameters R̂A∗

0 and K̂A∗

, and the polar quantity R̂A∗

0K is of course

R̂A∗

0 = |R̂A∗

0K | , K̂A∗

=

{
0 if R̂A∗

0K > 0 ,

1 if R̂A∗

0K < 0 .
(4.22)
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In addition, we need to orient the orthotropy axes, imposing:

ΦA∗

1 = Φ̂A∗

1 . (4.23)

In our case Φ̂A∗

1 = 0, which means that the principal orthotropy axis of each laminate has
to be aligned with the x axis of the whole structure. Unlike in other more common ap-
proaches, where the orthotropy and its direction are normally imposed choosing particular
sequences that automatically place the orthotropy axes in a direction, normally aligned
with the axes of the laminate, with the polar formalism orthotropy and its direction are
imposed by simple independent conditions, and any direction different from the axes of
the laminate can be easily imposed, simply choosing an angle Φ̂A∗

1 different from zero (see
also Sec. 3.5).

We remind that from the first-level problem we know also the thickness of the skin
and of the stiffener laminates. Being each laminate thickness a multiple of that of the
elementary ply, the number of the laminate plies is also known.

Considering all these points, the tensor distance, objective function of the second-level
problem, can be stated, for each laminate of the skin and of the stiffeners, as:

min
δ

F (δ) =
6∑

j=1

fj (δ) with :

f1 (δ) =

(∥B∗∥
∥Q∥

)2

, f2 (δ) =

(∥C∥
∥Q∥

)2

,

f3 (δ) =



ΦA∗

0 − ΦA∗

1 − K̂A∗ π

4
π

4




2

, f4 (δ) =

(
RA∗

0 − R̂A∗

0

R̂A∗

0

)2

,

f5 (δ) =

(
RA∗

1 − R̂A∗

1

R̂A∗

1

)2

, f6 (δ) =


ΦA∗

1 − Φ̂A∗

1
π

4




2

.

(4.24)

In (4.24), δ is the vector of layer orientations, while fj (δ) is the jth partial term of the
objective function, j = 1, ..., 6. The terms f1 (δ) and f2 (δ) are related to the quasi-
homogeneity conditions, while the third one, f3 (δ), is linked to the orthotropy condition,

see Eq. (4.2). The function f3 (δ) takes also into account the prescribed value K̂A∗

of
parameter KA∗

issued from the first optimisation phase. The terms f4 (δ) and f5 (δ)

correspond to the prescribed optimal values R̂A∗

0 and R̂A∗

1 of the polar moduli RA∗

0 and
RA∗

1 . The term f6 (δ) corresponds to the imposed direction of orthotropy of the laminate:

ΦA∗

1 = Φ̂A∗

1 = 0. Finally, ∥B∗∥ is the norm of the homogenised coupling tensor and ∥C∥
is the norm of the homogeneity tensor.

The function defined in Eq. (4.24) is actually the square of a dimensionless tensor
distance. In fact, we have normalised all the terms, which allows for all the terms to



142 4. Optimal design of composite modular systems

have a similar weight in the function. The tensor norms have been transformed into
dimensionless quantities dividing them by the normalisation factor ∥Q∥, that is the norm
of the layer reduced stiffness tensor. All the norms have been computed using Eq. (3.7).

The normalisation factor of the orthotropy requirement is assumed equal to
π

4
, while

for the anisotropy parameters of tensor A∗, it is equal to the corresponding target polar
parameter.

We recall that, the quadratic form of Eq. (4.24) is a non-dimensional, positive semi-
definite function of the polar parameters of the laminate. It depends on all the mechanical
and geometrical properties of the laminate, i.e. stacking sequence, ply orientations, ma-
terial and thickness of the plies. In addition, the objective function of Eq. (4.24) is
non-convex in the space of layer orientations, since the polar parameters of the laminate
depend upon circular functions of the orientations, see Eq. (3.23).

A true advantage of formulation (4.24) is that the global minima of the function are
zero valued. This is important for the numerical search strategy, because the knowledge
of the value of the global minima is useful on one side to stop the numerical search, and
on the other side to ensure that the solution so found is really a global minimum.

Finally, we remark that, unlike the first-level problem, this second problem is an
unconstrained problem with a known number of design variables, but the objective is still
a highly non-convex function; a simple glance at Eq. (3.23) is sufficient to realise this. For
what concerns the nature of the design variables, the operator is free to chose continuous,
discrete equally stepped variables or variables whose possible values belong to a defined
set; actually, such a choice is mostly a practical, technological choice.

The code BIANCA has also been used in the search for the laminates, i.e. for the
second step of the procedure. The structure of the genotype of the individual-laminate
is shown in Fig. 4.4. The genotype is made of n chromosomes, which correspond to the
number of layers, determined in the first step, and each chromosome is composed, on its
turn, by a single gene which represents the ply orientation.

Figure 4.4: Structure of the individual genotype for the second-level optimisation problem.
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4.6 Finite element model of the structure

The finite-element analysis is used for evaluating the objective and constraint functions
for each individual at each iteration of the first-level problem. The need to analyse, within
the same generation, different geometrical configurations, each one corresponding to an
individual, requires the creation of an ad-hoc input file for the FE code, that has to be
interfaced with BIANCA. Since the number of modules is included among the decision
variables, the FE model must be conceived in order to take into account for variable
geometry and mesh. Indeed, for each individual at the current generation, depending on
the number of chromosomes and, hence, on the number of stiffeners the FE code has to be
able to vary in a correct way the number of elements wherein the structure is discretised,
thus a correct parametrisation of the model has to be done.

The geometry, mesh, loads and boundary conditions of the wing-box FE model are
shown in Fig. 4.5. The structure is modeled using ANSYS SHELL99 elements with 8
nodes having 6 degrees of freedom per node. These shell elements have 3 integration points
along the thickness. The mechanical properties of the material are defined specifying the
Cartesian components of tensors A∗, B∗ and D∗ that are functions of the mechanical
unknowns, the polar parameters.

Figure 4.5: (a) Mesh and (b) loads and boundary conditions for the wing-box FE model.

The wing box is considered simply supported at its terminal sections on two wing
ribs. The upper panel is loaded with a uniform compression unit force per unit length
and the lower one with a uniform tensile unit force per unit length. Under such kind of
loads, which are representative of the loads that the structural elements of the wing-box
undergo in normal flight conditions, only the upper panel and the corresponding stiffeners
can undergo compression instability phenomena. Both upper and lower panels have N
Z-shaped stiffeners.



144 4. Optimal design of composite modular systems

After a preliminary mesh sensitivity study, the average dimensions of the shell elements
have been chosen equal to 14× 14 mm2. The number of shell elements in the whole wing-
box structure can vary from 14080 to 17680, depending on the number of stiffeners N ,
whilst the number of degrees of freedom of the whole model can vary from 270744 to
340164. For each individual, a linear buckling analysis is performed for assessing the first
buckling load of the structure.

In order to fix a correct reference value of the first buckling load, i.e. of the quantity
pref appearing in the formulation of the first level problem, see Eq. (4.19), a preliminary
buckling analysis on a reference wing-box section model has been performed for the type
of wing-box section considered here and represented in Fig. 4.5. The reference wing-
box, which represents a standard structure, is made by Al-7075-T6 alloy with Young’s
modulus E = 72395 MPa, Poisson’s ratio ν = 0.33, yield stress σy = 475 MPa and
density ρ = 2760 kg/m3. Concerning the geometrical properties, the whole wing box has
the global dimensions shown in Fig. 4.1, while the upper and lower panels are made by 20
identical stiffeners having the following dimensions: tS = 2.96 mm and hS = 62.33 mm for
the stiffeners thickness and height respectively, and t = 4.93 mm for the skin thickness.
The reference values pref of the first buckling load and Wref of the wing-box weight are
the outcomes of this preliminary simulation: pref = 1928 N/mm and Wref = 1222.62 N.

This structure is also compared in the following Section with the solutions found for
the considered examples. Actually, our goal is to compare the optimal solutions that we
find with a case that carries the same buckling load and that can be considered as a usual,
typical situation, briefly a standard wing-box section for a standard aircraft structure. Of
course, other comparisons could be done, nevertheless it is really significant to compare
what can be done as an optimum with what is usually done as a standard: that was our
goal.

4.7 Studied cases and results

For our optimisation problem we have considered three different examples. The design
variables, their nature and bounds for the optimisation problem at hand are detailed in
Table 4.1.

• Example 1: the stiffeners are identical, i.e. they have the same value of thickness
tS, height hS and polar parameters, i.e (RA∗

0K)
S and (RA∗

1 )S. Therefore, in this
case, we have 8 design variables: the number of stiffeners N , the geometrical and
polar parameters for the stiffeners, i.e. tS, hS, (RA∗

0K)
S, (RA∗

1 )S and the geometrical
and polar parameters for the skin, i.e. t, RA∗

0K , RA∗

1 . In addition, for this first
case, the total number of constraints is 11: 1 constraint on the buckling load, 5
geometric constraints for the skin and 5 for the stiffener polar parameters. However,
8 constraints on 11 are box-constraints, so they are not treated by the ADP method,
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but simply used to specify the variation range of the anisotropy design variables RA∗

0K

and RA∗

1 .

• Example 2: the problem of the minimum weight for the wing-box stiffened panel
is now formulated in the most general case, i.e. with non-identical stiffeners. The
total number of design variables depends on the number of stiffeners N , as ex-
plained in Sec. 4.4, and can vary between 76 and 96. Moreover, also the number of
constraint equations is variable with the number of stiffeners: the minimum num-
ber of constraints is 96 and the maximum 121, respectively 19 and 24 without the
box-constraints.

• Example 3: we still consider the problem of the minimum weight for the wing-
box stiffened panel with non-identical stiffeners. Nevertheless in this last case,
for obvious mechanical reasons, we assume that the whole wing-box section has
a symmetric distribution of the geometrical and polar parameters for the stiffeners
with respect to the x − z plane of the global reference system, see Fig. 4.5. With
this assumption the total number of design variables and constraints is considerably
reduced and can vary between 40 and 52 for the design variables, and between 51
and 66 for the constraints, respectively 10 and 13 without the box-constraints.

The three different cases are detailed hereafter separately, for both the first and the
second step. We precise that in all the three cases, the design is guided by the buckling
constraint, regardless if it appears as a global or local phenomenon, which means that the
best solution should belong to the boundary between the feasible and infeasible domain.
This is a precise choice for the mechanical design of the structure, though other situations
can be considered, for instance admitting the possibility of a post-buckling design.

Concerning the second-level problem, in all the three examples, the design variables
are the layers orientations, which can vary between −90◦ and 90◦ with a step of 1◦. In all
the cases, the population size has been set to Nind = 500 and the maximum number of
generations to Ngen = 500. The crossover and mutation probability are pcross = 0.85 and
pmut = 1/Nind, respectively. Selection is performed by the roulette-wheel operator and
the elitism is active. Moreover, always concerning the second-level problem, as in each
numerical technique, the quality of solutions found by BIANCA can be estimated on the
basis of a numerical tolerance, that is the residual. For a discussion on the importance
of the numerical residual in problems of this type, see [116]. It is worth noting that,
being F (δ) a non-dimensional function, the residual of the solution is a non-dimensional
quantity too. It is worth to recall that the second-level problem must be solved for the
skin and for each stiffener separately, when they are not identical.
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4.7.1 Case 1: identical stiffeners

In this first case, since the stiffeners are identical, the genetic operators that perform the
crossover between different species are no longer required: the genotype of each individual
is composed by only one chromosome with 8 genes: the first gene represents the number
of stiffeners N , the genes from 2 to 4 represent the skin design variables, i.e. t, RA∗

0K and
RA∗

1 , while the last 4 genes represent the stiffeners design variables, i.e. tS, hS, (RA∗

0K)
S

and (RA∗

1 )S.

Figure 4.6: Example 1: deformed shape of the a) whole wing-box section and b) upper-
panel stiffeners.

Concerning the genetic parameters that regulate the iterations of the GA BIANCA,
the population size is set to Nind = 50 and the maximum number of generations is
assumed equal to Ngen = 80. The crossover and mutation probability are pcross = 0.85
and pmut = 1/Nind, respectively. Selection is performed by the roulette-wheel method,
the elitism is active and the ADP method is used for handling constraints.

The best solution found by BIANCA is shown in Table 4.2. The optimal number of
stiffeners for the weight minimization is 22. The buckling load and the wing-box weight
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Figure 4.7: Example 1: (a) best and (b) average values of the objective function along
generations.

are pcr = 1943 N/mm and W = 587.28 N, respectively. Fig. 4.6 shows the deformed shape
of the structure when the applied load is equal to pcr: we can see that, during the buckling
phenomenon, the wing-box section is characterised by a local skin buckling around the
stiffeners.

Considering that the value of the ply thickness is 0.125 mm, we can notice that the
laminate of each stiffener is made of 29 plies and has the orthotropy with K̂A∗

= 1,
because the value of the polar quantity (RA∗

0K)
S is negative. Instead, the skin laminate is

made of 32 layers and has K̂A∗

= 0, because RA∗

0K is positive.
The global constrained minimum has been found after 32 generations, see Fig. 4.7

a). This solution gives a reduction of the weight of the whole structure of about 52%,
when compared to the reference solution, and the solution found is practically on the
boundary of the feasible domain, pcr ≃ pref . From Fig. 4.7 b), it can also be noticed
that the variation of the average value of the weight over the whole population along
generations firstly increases (for about 9 iterations) and then decreases. This trend is
due to the presence of a large amount of infeasible individuals within the population in
the initial generations: infeasible points represent solutions which are lighter than the
feasible ones but that violate the constraint on the buckling load, thus these individuals
are penalised by the ADP strategy and this results in an increase of the average of the
objective function. However, though these individuals belong to the infeasible region, they
are preserved within the population because they can be useful for driving the search for
the optimum point towards regions close to the boundary of the feasible domain, see
Section 1.6.

Table 4.3 shows the best stacking sequences found using BIANCA for the second level
problem. The residual in the last column is the value of the global objective function F (δ)
for the solution indicated aside (we remind that exact solutions correspond to the zeroes
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Figure 4.8: Example 1: first component of the homogenised stiffness tensors of the lami-
nate for a) stiffeners and b) skin.

of the objective function). Fig. 4.8 shows the first component of the homogenised stiffness
tensors of the laminate, i.e. A∗, B∗ and D∗, for stiffeners and skin: the solid line refers to
the extension tensor, the dashed one to the bending tensor, while the dash-dotted one is
linked to the coupling stiffness tensor. We can see that both laminates are uncoupled (the
dash-dotted curve is reduced to a small black point in the center of the plot, because B∗

11

is practically null), homogeneous (the solid and dashed curves are practically coincident)
and orthotropic (there are two orthogonal axes of symmetry in the plane). Moreover, the
main orthotropy axis is aligned with the x axis of the structure, in fact it is oriented at 0◦.
Similar considerations can be done for the other components of these tensors, not shown
in Fig. 4.8 for the sake of brevity.

Fig. 4.9 shows the variation of the best solution during iterations, for stiffener and skin
laminates, respectively. The best solution is found after 340 generations for the stiffener
laminate, while for the laminate of the skin it is found after 250 generations.

4.7.2 Case 2: non-identical stiffeners

Since the number of stiffeners is variable and they are not identical, a crossover between
species is required and the optimal value of N is an outcome of the optimal search: the
most adapted species automatically issues as a natural result of the Darwinian selection.
The genotype of an individual for this case has been detailed in Sec. 4.4 and shown in
Fig. 4.3.

Concerning the genetic parameters, the population size is Nind = 70 and the maximum
number of generations is Ngen = 80. The crossover and mutation probability are still
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Figure 4.9: Example 1: best values of the objective function during iterations for a)
stiffeners and b) skin laminates.

Design variable Value

N 22

tS [mm] 3.625

hS [mm] 40.0

(RA∗

0K)
S [MPa] −984.36

(RA∗

1 )S [MPa] 6425.22

t [mm] 4.0

RA∗

0K [MPa] 16399.8

RA∗

1 [MPa] 1293.26

Table 4.2: Example 1: best values of the design variables.

pcross = 0.85 and pmut = 1/Nind, while the shift operator and chromosomes number
mutation probability are pshift = 0.5 and (pmut)chrom = (nchrommax − nchrommin) /Nind.
Once again, selection is performed by the roulette-wheel method, the elitism is active and
the ADP method has been used for handling constraints.

The best solution found by BIANCA is shown in Table 4.4. The optimal number of
stiffeners for the weight minimisation is 23. The buckling load and the wing-box weight
are pcr = 1931 N/mm and W = 620.19 N respectively. Fig. 4.10 shows the deformed
shape of the structure when the applied load is equal to pcr. From Table 4.4, it can be
noticed that the orthotropy type can be different for the stiffener laminates: despite every
laminate is quasi-homogeneous and orthotropic, there are some orthotropic laminates
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Stiffeners

N. of plies Stacking sequence (◦) Residual

29 [−8/28/26/− 45/− 58/− 3/55/− 31/76/34/− 39/− 87/− 7/6/30/ 2.9× 10−4

−12/− 21/− 51/18/− 55/49/− 8/18/12/57/44/− 27/− 79/− 18]

Skin

N. of plies Stacking sequence (◦) Residual

32 [−81/7/− 3/− 12/82/86/− 87/20/− 6/76/− 7/85/− 6/90/− 7/87/ 8.4× 10−5

10/− 82/− 4/− 7/− 82/18/− 11/− 84/− 83/7/70/85/1/− 12/1/89]

Table 4.3: Example 1: best stacking sequences for the optimal solution.

with (KA∗

)S = 1 and others with (KA∗

)S = 0. The global constrained minimum has been
found after 57 generations, see Fig. 4.11 a). This solution gives a reduction of the weight
of the whole structure of about 49%, when compared to the reference solution and it is
very close to the boundary of the feasible domain, pcr ≃ pref .

Fig. 4.12 a) shows the evolution of species restrained in the whole population from
the initial until the final generation. Since the individuals are randomly sorted in the first
generation, also the species are uniformly distributed over the population, i.e. the number
of individuals belonging to different species is equiprobable. We can notice that all the
species can be found in the initial generations, whilst some of them extinguish during the
generations and cannot be found within the final population: only solutions with 20 to 23
stiffeners can be found within the population in the last generation. In addition, thanks
to the genetic operators detailed in Sec. 1.5, the number of individuals belonging to the
fittest species is increased when compared to the initial population. Fig 4.12 b) shows the
variation of the optimal number of stiffeners along the generations: it can be seen that
for the first 15 generations the best species is the one showing 22 stiffeners, while from
the 16th iteration until the end of the optimisation process the best number of stiffeners
is 23.

Another point deserves attention; comparing the plots in Fig. 4.11 a) and 4.12 b), one
can notice something that systematically happens: convergence, towards the best value,
of the number of modules (here, the number of stiffeners) and of the objective function
are independent. They never occur at the same time, and the optimisation of the number
of modules happens always before that of the objective function. In other words, the
strategy used in BIANCA for evolving at the same time species and individuals, normally
let attain first the best species, and then continues to evolve individuals within the best
species towards the best individual.

Concerning the second problem for this case, since the stiffeners are not identical,
we have solved the second level problem for each laminate of the stiffeners and for the
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Figure 4.10: Example 2: deformed shape of the a) whole wing-box section and b) upper-
panel stiffeners.

skin. Table 4.5 shows the best stacking sequences found by BIANCA. The number of
plies for each laminate, indicated in column 3, is computed considering that the value of
the thickness of the elementary layer is 0.125 mm. For the sake of brevity, we do not
show the polar diagrams and the variation of the best solution for the stiffener and skin
laminates. Nevertheless, they are quite similar to those obtained for the wing-box section
of the previous example and the same considerations can be done for this second case too.

4.7.3 Case 3: non-identical stiffeners, symmetric distribution

In this last case, we consider a wing-box section with symmetric distribution of the ge-
ometrical and polar parameters for the stiffeners with respect to the x − z plane of the
global reference system, see Fig. 4.5. The genotype of an individual and the genetic
parameters are precisely the same of the previous case.



152 4. Optimal design of composite modular systems

Stiffeners

ID tS [mm] hS [mm] (RA∗

0K)S [MPa] (RA∗

1
)S [MPa]

01 2.75 86.5 −7052.03 11899.10

02 4.75 55.5 −9565.0 1970.67

03 2.625 55.0 −1129.82 14037.45

04 2.125 73.5 18888.6 14574.8

05 3.625 46.0 −5404.69 2750.73

06 4.625 49.0 5701.86 13261.0

07 2.125 58.0 5924.73 11249.3

08 2.0 65.0 −8450.64 8847.51

09 4.0 48.0 14876.8 4495.6

10 4.0 43.0 −1578.69 739.0

11 3.0 43.5 1801.56 7574.78

12 3.75 41.5 8042.03 4290.32

13 3.0 59.0 −1095.8 11495.6

14 4.25 52.0 17811.3 1149.56

15 4.375 54.0 10865.1 2832.84

16 4.0 84.0 12536.7 13178.9

17 2.125 48.5 3993.16 10633.4

18 3.125 48.5 12276.6 14349.0

19 3.0 56.0 12610.9 11536.7

20 2.125 56.5 −6333.33 7615.84

21 4.375 43.0 15322.6 8950.15

22 3.375 56.0 17551.3 5994.13

23 3.625 41.0 13242.4 7020.53

Skin

t [mm] RA∗

0K [MPa] RA∗

1
[MPa]

4.0 12945.3 882.70

Table 4.4: Example 2: best values of the design variables.
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Stiffeners

ID N. of plies Stacking sequence (◦) Residual

01 22 [28/− 29/− 30/28/25/− 29/− 29/28/− 26/42/− 26/ 1.5× 10−3

26/24/27/− 29/− 26/− 27/25/30/− 31/− 22/29]

02 38 [40/− 36/− 72/− 38/59/− 45/24/42/85/− 20/12/56/43/13/− 41/− 35/− 41/45/− 61/ 3.3× 10−4

−39/56/39/− 65/7/51/− 70/− 50/45/− 28/− 20/− 24/45/− 32/45/41/− 74/32/− 31]

03 21 [20/20/− 17/− 35/− 16/38/− 23/− 24/− 10/17/ 1.9× 10−3

29/22/19/− 23/26/− 27/24/− 42/− 18/− 18/30]

04 17 [0/− 7/0/86/5/2/2/89/2/0/− 24/1/0/2/− 87/6/− 3] 2.1× 10−3

05 29 [37/− 57/− 3/40/58/− 44/− 11/− 87/50/− 22/− 65/− 38/− 41/23/ 2.9× 10−4

−33/− 70/18/29/63/41/42/2/61/− 14/− 50/87/− 19/29/− 48]

06 37 [6/8/1/61/− 45/5/− 24/22/− 50/6/− 7/8/7/51/− 21/− 34/12/− 21/ 2.4× 10−5

−11/6/33/− 6/16/78/5/7/− 6/− 51/25/− 4/6/18/− 42/54/− 12/− 20/9]

07 17 [5/38/− 27/− 56/− 9/7/60/16/− 8/7/− 29/27/9/− 40/81/− 8/6] 1.5× 10−3

08 16 [−25/− 47/28/45/− 16/23/35/1/− 42/48/− 41/− 36/0/− 33/45/24] 5.6× 10−4

09 32 [6/− 1/3/6/77/− 74/− 85/− 21/71/− 17/− 86/− 1/90/− 1/67/− 85/ 1.4× 10−4

83/1/1/3/3/1/3/− 66/− 6/23/8/− 77/− 11/− 12/85/83]

10 32 [−37/79/36/− 77/− 1/− 43/46/52/− 35/− 13/90/30/− 31/− 45/− 3/36/ 1.3× 10−3

69/− 76/87/89/− 28/− 57/51/21/− 34/35/14/17/9/− 73/− 37/71]

11 24 [7/65/15/− 66/− 10/− 9/− 49/− 45/− 22/50/13/5/ 6.8× 10−4

70/− 22/49/17/19/89/6/− 33/− 5/− 5/− 45/43]

12 30 [2/− 89/81/− 15/− 83/− 50/− 19/29/6/34/10/4/− 10/19/75/ 5.0× 10−4

−10/86/3/90/− 69/− 39/3/− 32/87/84/51/0/− 33/4/21]

13 24 [34/− 45/5/5/− 30/40/28/3/− 29/− 9/− 25/25/ 1.0× 10−3

9/− 21/− 24/− 56/29/20/55/48/4/− 39/− 5/− 15]

14 34 [85/− 4/− 75/4/− 2/84/− 2/83/88/− 16/6/2/− 83/0/87/4/3/ 1.9× 10−4

84/− 7/84/− 85/− 74/86/− 9/15/− 86/10/1/− 6/88/− 3/− 89/88/5]

15 35 [4/− 79/82/37/− 2/− 10/− 38/− 70/76/90/10/− 9/2/− 2/18/− 77/− 5/ 1.6× 10−4

90/− 3/78/81/− 21/− 87/28/9/− 66/− 13/45/8/− 14/82/− 71/78/− 2/− 2]

16 32 [12/11/− 7/5/− 85/− 9/− 14/− 66/50/− 5/− 5/− 16/2/87/4/3/ 2.8× 10−4

3/− 8/− 6/19/17/− 15/17/− 9/17/14/− 67/− 9/67/− 12/4/− 6]

17 17 [−19/20/− 29/20/− 71/− 4/35/62/− 7/− 8/3/7/− 45/− 35/7/70/12] 9.2× 10−4

18 25 [13/0/4/− 23/− 31/82/18/22/− 1/2/− 3/− 3/ 4.4× 10−4

−30/2/3/14/− 7/18/3/70/− 77/− 2/− 14/− 6/12]

19 24 [2/− 79/− 17/27/− 5/− 2/− 5/− 4/68/− 5/24/− 2/ 3.7× 10−5

−83/− 1/4/− 69/− 9/8/− 18/− 10/25/81/− 11/7]

20 17 [31/46/− 14/− 61/− 38/− 22/− 17/25/− 50/30/47/6/62/28/− 29/3/− 44] 7.4× 10−4

21 35 [89/− 10/9/5/5/− 6/− 75/58/− 4/− 3/− 3/− 2/73/− 74/− 2/− 86/− 2/ 2.2× 10−4

−3/− 1/− 3/22/22/− 5/− 11/− 6/− 86/− 82/− 6/71/− 9/16/4/− 82/5/− 10]

22 27 [−5/7/− 83/5/10/− 15/− 85/75/90/− 4/− 4/83/0/ 9.3× 10−4

3/3/3/2/− 85/− 85/− 85/− 6/1/3/83/7/− 8/89]

23 29 [89/0/12/− 25/62/10/− 6/− 10/− 1/− 74/− 3/− 1/− 82/73/− 86/ 3.3× 10−4

22/− 1/26/− 2/86/10/− 23/− 8/− 10/− 18/− 81/13/− 89/9]

Skin

N. of plies Stacking sequence (◦) Residual

32 [3/− 79/9/− 12/85/47/78/− 5/− 8/− 78/81/− 73/85/− 37/− 86/− 4/ 9.6× 10−5

−2/− 90/6/6/− 90/5/− 5/25/86/40/− 8/− 5/− 69/90/− 10/88]

Table 4.5: Example 2: best stacking sequences for the optimal solution.
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Figure 4.11: Best values of the objective function along generations; a) Example 2, b)
Example 3.

The best solution found by BIANCA is shown in Table 4.6. The optimal number of
stiffeners for the weight minimisation is 22, but in Table 4.6 only one half of the stiffeners,
11 on a whole of 22, is detailed, the other half being symmetrically placed with respect to
the x − z plane. The buckling load and the wing-box weight are pcr = 1933 N/mm and
W = 619.26 N, respectively. Fig. 4.13 shows the deformed shape of the structure when
the applied load is equal to pcr. Despite this solution has a symmetric distribution of the
geometrical and polar parameters of the stiffeners, the buckling shape is not symmetric.
This happens because the structure is not perfectly geometrically symmetric, because the
Z-shaped stiffeners are not symmetrically disposed, for practical reasons; consequently
the buckling deformed shape is not symmetric too.

As in the previous case, the stiffeners do not all belong to the same orthotropy type,
some of them having (KA∗

)S = 1 while others (KA∗

)S = 0. The global constrained
minimum has been found after 78 generations, see Fig. 4.11 b). This solution gives a
reduction of the weight of the whole structure of about 49%, when compared to the
reference solution, and the solution is still very close to the boundary of the feasible
domain, pcr ≃ pref .

Table 4.7 shows the best stacking sequences found by BIANCA when the second step
is solved for this example. Furthermore, in Table 4.7, only one half of the stiffeners is
detailed. The remarks done for the case of Example 2 can be rephrased verbatim also for
this case.

4.7.4 Verification of the optimal stacking sequences

For the sake of completeness, we have verified the best solution of each one of the three
examples above by a finite element analysis, though this is not strictly necessary. The FE
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Figure 4.12: Evolution of species, Example 2; a) Number of individuals belonging to the
same species in initial and final populations, b) Best number of stiffeners vs. generations.

model is exactly the same as in the first optimisation phase, namely for what concerns
boundary and loading conditions. For both the cases of the wing-box section with identi-
cal and non-identical stiffeners, the quality of the solution of the second-level problem is
evaluated. This is done in the following way: the buckling load and the deformed shape of
the FE model created directly with the stacking sequences of the laminates, are compared
to those obtained with the FE model used in the first optimisation phase, where the me-
chanical characteristics were entered through the Cartesian components of tensor A∗. So,
entering directly the stacking sequences we can assess the effect of the small imperfections
of the final stacks with respect to the optimal solution found in the first-level problem,
imperfections that give rise to the residuals shown in Tables 4.3, 4.5 and 4.7.

For the case of Example 1, the deformed shape is identical to that of Fig. 4.6, while
the value of the buckling load now is pcrver = 1949 N/mm, which is slightly greater than
pcr = 1943 N/mm found at the end of the first optimisation step.

Furthermore, for the case of Example 2 the deformed shape practically does not change
with respect to that presented in Fig. 4.10, and the buckling load is now pcrver = 2124
N/mm, about 10% greater than pcr = 1931 N/mm, found at the end of the first step
problem.

Finally, in the case of Example 3, the buckling load is now pcrver = 2115 N/mm,
which is 9.4 % greater than pcr = 1933 N/mm, the value found at the end of the first
optimisation step; also in this case, the deformed shape does not change with respect to
that shown in Fig. 4.13.
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Figure 4.13: Example 3: deformed shape of the a) whole wing-box section and b) upper-
panel stiffeners.

4.7.5 Some remarks on the type of laminate stacking sequence

In this section we want to highlight the importance of the use of non-standard stacking
sequences for composite laminated panels. To this purpose, we consider again the Example
1, comparing the results already obtained with the ones that can be found using standard
stacking sequences often employed in the aeronautical field, i.e. symmetric sequences
with only the values 0◦, ±45◦ and 90◦ for the ply orientations. The aim is to obtain
the outcomes of the first optimisation step for Example 1, shown in Table 4.2. It can
be noticed that, for symmetric stacking sequences the coupling stiffness tensor of the
laminate is null, so the first term in Eq. (4.24) is identically zero. Concerning the genetic
parameters, they are strictly those already used in the previous calculations.

To obtain a standard sequence solution to the second-level problem with a sufficiently
small residual, we have found that 30 layers are necessary for the stiffeners and 40 for
the skin. Table 4.8 shows the best stacking sequences found by BIANCA when using
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Stiffeners

ID tS [mm] hS [mm] (RA∗

0K)S [MPa] (RA∗

1
)S [MPa]

01 4.0 40.0 −10642.20 5850.44

02 2.375 45.0 −5999.02 9648.09

03 4.875 46.5 −3101.66 4844.57

04 2.0 57.0 650.049 14266.9

05 4.25 42.0 16102.6 8211.14

06 2.5 63.0 −1578.69 11557.2

07 4.125 82.5 17477.0 4741.94

08 2.625 55.5 −14545.20 6656.71

09 3.25 52.5 −2990.22 13363.6

10 4.75 53.5 −2581.62 6343.11

11 4.625 43.5 15619.7 11228.7

Skin

t [mm] RA∗

0K [MPa] RA∗

1
[MPa]

4.0 9527.86 205.279

Table 4.6: Example 3: best values of the design variables.

symmetric stacking sequences with standard orientations. What is apparent is that we
need now a higher number of layers than the solution shown in Table 4.3. This means
that the solution found using symmetric stacking sequences with standard orientations is
not a global minimum. Indeed, in this case, the weight of the whole wing-box section is
710.23 N, with an increase of about 20% of the weight of the structure when compared to
the non-standard stacking sequence solution shown in Table 4.3, whose weight is 587.28
N.

Fig. 4.14 is the equivalent of Fig. 4.8 for the present case of symmetric sequences;
the remarks previously done for the Example 1 can be rephrased verbatim, with the only
difference that now coupling is exactly null.

Fig. 4.15 shows the variation of the best solution during the iterations, for stiffeners
and skin laminates. In particular, we can notice that the best solution is found after 40
generations for the stiffener laminate, while for the laminate of the skin it is found after
150 generations.

To remark that the solutions so found are not balanced, as often used to obtain in-
plane orthotropy, but not bending orthotropy. Nevertheless, they are orthotropic, and not
only in extension, but also in bending. The assumption of balanced stacks will obviously
lead to a further increase of the final weight of the structure. Therefore, the use of
unconventional stacking sequences, as done in this work, is really more convenient for the
reduction of the weight, as proved by the results shown above.
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Stiffeners

ID N. of plies Stacking sequence (◦) Residual

01 32 [31/− 39/35/− 54/− 38/− 12/− 30/41/20/− 56/− 26/55/55/38/37/31/ 3.1× 10−4

−30/− 38/39/− 9/− 44/− 43/− 44/− 50/19/8/23/35/50/− 45/54/− 23]

02 19 [28/− 33/− 40/42/− 23/0/− 20/26/33/17/ 1.4× 10−3

34/− 32/− 39/72/− 52/8/6/− 26/36]

03 39 [−3/− 37/39/50/88/29/48/− 59/9/− 60/− 38/3/− 15/ 2.7× 10−4

25/− 29/− 26/− 7/33/− 27/− 36/− 71/34/57/− 55/34/81/
53/50/12/8/8/− 61/− 17/76/− 26/− 35/− 1/− 55/38]

04 16 [30/− 22/− 28/− 27/23/5/− 10/27/− 14/27/− 52/− 13/14/32/− 22/7] 2.8× 10−3

05 34 [10/− 12/− 1/6/− 82/2/− 11/77/90/− 86/− 88/− 88/− 3/1/6/− 19/10/ 1.1× 10−3

46/5/6/− 65/3/− 6/1/2/− 3/− 16/90/89/− 18/− 10/9/87/13]

06 20 [−7/26/17/− 42/69/− 38/22/− 19/10/− 6/ 8.1× 10−4

−33/3/36/− 40/28/1/46/− 33/17/− 29]

07 33 [5/1/85/− 4/− 4/90/− 86/− 18/− 77/8/82/6/− 3/85/1/7/0/ 2.3× 10−4

81/1/2/79/− 3/− 69/− 87/0/0/− 90/− 21/4/2/− 88/83/5]

08 21 [35/33/− 38/− 37/35/− 36/35/− 38/− 38/51/ 5.4× 10−3

10/− 42/34/35/34/34/− 38/− 38/− 36/− 36/34]

09 26 [−39/34/17/− 21/34/− 7/− 23/− 14/− 21/24/1/33/39/ 8.9× 10−4

10/− 46/− 35/− 26/26/− 27/15/27/34/− 34/− 24/− 10/23]

10 38 [13/39/− 57/1/− 19/− 55/77/24/10/− 43/− 25/55/48/ 4.3× 10−4

−78/− 15/− 15/− 23/35/− 42/33/8/28/− 55/− 12/− 29/− 80/
18/61/− 16/7/37/21/− 55/64/− 31/47/− 4/− 35]

11 37 [16/− 16/7/− 1/− 7/− 18/85/9/− 4/− 81/3/88/ 5.9× 10−4

−88/2/0/9/9/− 4/− 24/1/− 8/− 2/41/− 2/
−2/− 2/9/73/− 4/− 72/− 4/83/− 4/− 3/− 89/− 5/9]

Skin

N. of plies Stacking sequence (◦) Residual

32 [80/− 9/85/− 1/− 63/19/7/14/− 34/54/− 59/85/89/− 83/87/− 13/ 3.9× 10−5

78/− 4/− 90/4/6/71/− 11/16/− 70/36/− 15/− 70/− 26/79/13/− 90]

Table 4.7: Example 3: best stacking sequences for the optimal solution.
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Figure 4.14: Example 1 with symmetric stacking sequence and standard orientations: first
component of the homogenised stiffness tensors of the laminate for a) stiffeners and b)
skin.

Figure 4.15: Example 1 with symmetric stacking sequence and standard orientations: best
values of the objective function during iterations for a) stiffeners and b) skin laminates.

4.8 Concluding remarks

The optimisation procedure presented in this work is characterised by several points that
make it an innovative, effective, general method for the design of composite stiffened
panels. Our motivation was to create a general procedure for the optimisation of modular
systems, with the number of modules that belongs to the set of the design variables and
without using special assumptions to get some results. The numerical method is, however,
a fundamental part of the procedure, because it is thanks to an appropriate numerical tool
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Stiffeners

N. of layers Stacking sequence Residual

30 [−45/45/03/90/45/− 45/45/0/− 45/0/− 45/0/45/]s 6.6× 10−4

Skin

N. of layers Stacking sequence Residual

40 [0/90/0/90/0/902/0/45/− 45/90/0/90/0/902/02/90/0]s 9.6× 10−5

Table 4.8: Example 1: best symmetric stacking sequences with standard orientations.

that the simultaneous optimisation of the number of modules and of their characteristics
is possible. We briefly recall the features of the procedure:

• no simplifying assumptions nor standard rules are used to design the composite
structure; this allows for looking for a true global minimum, hard to be obtained
otherwise;

• the procedure is composed by two distinct but linked non-linear minimisation prob-
lems: the first one is a constrained problem that uses a free material approach to the
design of the geometric and material properties of the anisotropic structure, consid-
ered as composed by a single-layer fictitious anisotropic material; the second step is
an unconstrained problem formulated to design a laminate able to realise the overall
optimal mechanical properties designed in the first step; the link between the two
problems is twofold: the second step makes use of the mechanical parameters found
in the first step for determining a laminate and in the first step the geometrical
constraints for the search of a suitable laminate are directly used in the formulation
of the minimum problem, in order to have mechanical parameters that can really
be obtained with a laminate in the second step;

• quasi-homogeneous sequences are used; this allows for writing exact geometric bounds,
valid for both the extension and bending behaviour and for reducing the number of
mechanical design variables in the first step;

• bending orthotropy is really obtained, its type specified and the orthotropy direction
directly managed, without using special sequences or orientations;

• the number of the modules, i.e. the number of layers and of stiffeners, is directly
optimised by the procedure, and this is entirely done by a genetic approach able to
select not only individuals, but also species; in practice, the algorithm determines
automatically the optimal number of design variables;



4.8. CONCLUDING REMARKS 161

• the mechanical characteristics are represented by the polar formalism, that gives
several advantages, namely to explicit elastic symmetries, elastic and geometric
bounds, and to eliminate from the procedure redundant mechanical properties;

• the numerical computations are carried on by a special GA, the code BIANCA, able
to cross simultaneously species and individuals, to handle continuous and discrete
valued variables during the same iterations and to effectively handle the constraints
imposed to the problem;

• for the solution of the first-level problem, the code BIANCA has been interfaced with
a FE code, in order to numerically compute some mechanical quantities, namely the
buckling load;

• the mathematical formulation of the second step problem allows for taking into
account for all the possible combinations of elastic requirements and properties; it
is stated as an unconstrained minimum problem of a positive semi-definite function,
whose absolute minimum is equal to 0, which renders possible to know if a true
global minimum has been attained.

The results presented in this Chapter show that when standard rules for the stacks of
laminates are abandoned and the design of the optimal number of the modules composing
the structure is included into the design procedure, significant savings of the weight of
the structure can be obtained: up to 50%, when compared with a classical solution using
an aluminium alloy, and up to 20% when compared with standard aeronautical stacking
sequences.

Nevertheless, it is worth noting a fundamental point, already introduced in section
4.5: the correspondence between an elastic tensor and a laminate is not bijective. This is
extremely important, because it renders the two-level approach feasible and effective. In
fact, at the first level we can consider the structure as it was formed by a fictitious single
layer, while the second level concerns the other properties to be designed, just because
the mechanical parameters are not uniquely determined by the stacking sequence. For
instance, in our case this allows us to use quasi-homogeneous laminates: at the first level
this assumption let us consider only one elastic tensor to be designed, at the second level
this property has to be obtained, but this would be, generally speaking, impossible to be
done if only one sequence should give the elastic tensor found at the first level. On the
contrary, because several laminates share the same elastic behaviour obtained at the first
step, we can look for one of them which is also quasi-homogeneous.

Of course, in the same way, we could add at the second step other requirements
to select, among the possible laminates, one having some other additional properties,
for instance on the laminar strength or something else. Nevertheless, there is not any
guarantee of finding a laminate satisfying all the requirements: mathematical conditions
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ensuring that a given optimal design problem for a laminate has at least one solution are
in general unknown. Anyway, the condition for not having an overdetermined problem is

n− 1 ≥ nr, (4.25)

where n is the number of layers and nr the number of requirements imposed to the search
of the layer. Actually, one layer must be subtracted because the requirements have to
be frame independent, and eventual conditions on the direction of the anisotropy are not
to be considered; in our case, this is the condition given by f6(δ) in Eq. (4.24). For the

problem considered here, we have 7 requirements: 3 for getting K̂A∗

, R̂A∗

0 and R̂A∗

1 , 2 for
imposing that D∗-A∗ = O and 2 for having B = O, see [132]. Hence, we can hope to
obtain a solution if, for the skin and for each one of the stiffeners, we obtain a number of
layers not less than 8. For this reason, but also for technological reasons, we have put, for
the ply thickness, a lower bound of 2 mm, that gives a minimum of 16 layers of T300/5208
carbon-epoxy, see Table 4.1.

The proposed approach appears to be very flexible and applicable to various problems
of structural engineering. Moreover, the procedure has a high level of versatility: more
constraints could be easily added to the optimisation problem, e.g. constraints on the
strength, yielding or de-lamination of the laminates which compose the structure, without
reducing the power and the robustness of the proposed approach. This is a substantial
part of the future developments that we intend to study.

Some final remarks: the structural problem considered here, namely the one concerning
the first level of the procedure, is actually one of the oldest structural optimum problems.
In fact, the first to study a problem of this type was Lagrange in 1770 [147]. He considered
the case of a column subjected to a tip compressive load; the objective was to design the
lightest column able to withstand a given load without buckling, which is just the problem
that we have considered at the first level. He gave an erroneous result, subsequently
corrected by Clausen in 1851 [148]. All along the last century, several other authors
considered the same or a closely similar problem. The dual of the problem originally
considered by Lagrange has also been treated: to maximize the buckling load for a column
composed by a fixed amount of matter and charged by a compressive force at its top.
A rather complete bibliography on this topic can be found in the classical book from
Banichuk [149].

The problem that we have considered in this Chapter, however, is slightly different
from the classical ones considered since Lagrange. In fact, the constraint on the minimum
buckling load is not the only one, see Eq. (4.19). The geometrical constraints, namely
those in the third of Eq. (4.4), are particularly important. They change, of course, the
problem and its dual too. To our best knowledge, it is the first time that a similar problem
has been formulated in the form given in this Chapter, and the formulation of its dual is
still an open problem.

There are at least two other reasons that render the problem considered here different
from those, more classical, cited beforehand. In fact, normally the authors consider the
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case of the optimal shape of the structure, and look for a function defining the best form
to be given to it. In our problem, the shape is known and the dimensions are to be
determined along with the number of the modules, the stiffeners. In some sense, the
number of modules changes the shape, but the changes are not continuous, because the
number of modules is an integer.

The second reason, is the fact that our structure is anisotropic, while normally isotropic
structures are considered. Hence, in our problem we need at the same time to optimise
geometrical and mechanical quantities (in our case, we have chosen the polar invariants to
represent the physical properties of the structure). Hence, we deal with a problem which
is at the same time mechanical and geometrical, for its design variables.

The anisotropic nature of the problem, which in particular enters directly, though
not explicitly, in the definition of the buckling constraint, is important also for another
reason. In fact, we have already said that the first-level problem is non linear; this is
easy to be understood, simply considering the objective function and the geometrical
constraints. About the buckling constraint, we have already recalled that it is impossible
to be explicitly written: the buckling load can be computed only by a numerical approach.
Nevertheless, it depends upon the stiffness of the structure, which in turns depends on
the mechanical and geometrical variables. It is well known, for instance, that stiffness is a
non-convex function of the orientation of the anisotropy. So, it is likely that the buckling
load is a non-convex function of the design variables.

Finally, concerning the second-level problem, it is always strongly non-convex. To our
best knowledge, its dual is not known. More generally, in laminate design duality is an
unexplored domain: no dual methods are known in this field. In the reference book on
laminated composite design and optimisation [150], the word duality is never employed.

In addition, the solution is almost never unique, nor isolate. This is still an open
mathematical problem in laminates design. Actually, no rules are known up to day to
state if a problem like (4.24) has a solution and if it is unique or not. Such problems
are, in fact, constituted by a sum of optimisation sub-problems that are not independent
and that are, in some cases, compatible. In other words, if the number of layers, i.e.
of unknowns, is sufficiently large, a problem of this type will have at least one solution.
In this case, all the sub-objectives that compose the objective function are compatible.
On the contrary, if the number of unknowns is not sufficiently large, the sub-objectives
become incompatible and the global problem becomes a multi-objective one without any
mechanical meaning nor interest.

The minimum number of unknowns, i.e. the minimum number of layers, to ensure
the existence of the solution to a given problem of the type (4.24) is not known; of
course, it depends upon the type of sub-objectives composing the global objective function.
An attempt to give a numerical answer to such kind of questions have already been
discussed in Chapter 3. In that Chapter the general problem is stated in a slightly different
manner from (4.24), including the number of layers among the design variables. The
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result is a laminate with the least number of layers satisfying the imposed requirements.
Nevertheless, this is just a numerical approach, and a general rigorous theoretical study
of the conditions for a laminate design problem like that in (4.24) have a solution, is still
lacking.

What we have observed in all the cases that we have solved, is that when the solution
exists, it is not unique nor isolate. Actually, there exist some functional relations among
the solutions, that allows to change solutions changing with continuity some of the design
variables. Unfortunately, it is possible, in general, to express analytically such relations
only in very elementary cases [3], while in some other cases, very simple too, a graphical
representation of the locus of all the solutions has been found numerically [136].

All these aspects have also influenced the choice of the numerical procedure used for
solving the problem described in this Chapter.



Chapter 5

Optimal design of hybrid
elastomer/composite laminates

5.1 Introduction

Even though polymer-based materials exhibit internal damping, the amount of damping
often appears to be not sufficient for some applications involving noise and vibration
phenomena. In order to improve the damping characteristics of composite materials, the
most common solution consists in bonding an elastomer patch (a rubber-like material)
combined with a stiffer layer (which constrains the elastomer patch) in particular locations
of the structure.

Several works have been carried out on the study of damping properties of hybrid
plates, shells and beams. Rather complete, but not exhaustive reviews on this subject
can be found in [151, 152, 153, 154, 155]. As it can be noticed from the large amount
of papers published on this subject in the last years, an improvement of the damping
properties of composite materials can be obtained either by changing the laminate lay-
up [156], or by introducing layers of material with pronounced damping properties, e.g. a
high damping rubber material [157]. In addition, such viscoelastic plies can be constrained
on their outer surfaces by stiffer layers [158], thus increasing the damping capacity of the
structure: in fact, the constrained layer introduce shear deformation in the rubber material
and thereby a significant amount of the damping in the structure. Through this solution,
which is often called Constrained-Layer Damping (CLD) treatment, an effective passive
control of the vibratory levels of the structure is performed, but, at the same time, the
resulting structure shows an increase of the weight and costs.

Several numerical studies have been conducted on the effect of adding viscoelastic
layers to vibrating beams and plates. In [159, 160, 161] simulations based on the finite
element method (FEM) are carried out. In particular, in the work of Zhang et al. [162] the
dynamical response of a hybrid beam with integral viscoelastic layers is studied, taking
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into account the frequency dependence of the rubber material and the contribution of
energy dissipation due to fibre-reinforced composite plies. The dynamical response of the
structure is evaluated using the Iterative Modal Strain Energy (IMSE) method. Moreover,
the effect of the thickness and position of the viscoelastic layers on the modal loss factors
of the structure is analysed. Ganapathi et al. [163] predicted the system loss factors
of sandwich and laminated composite beams by using geometrical non-linear dynamic
analysis. Cho et al. [164] presented a damping analysis of laminated plates with fully
and partially covered damping layers based on layerwise displacement theory. Kristensen
et al. [165] studied the influence of the position of the partially constrained viscoelastic
layer over a composite beam along with the effect of the thickness of the stiff layer on the
loss factors of the structure. Concerning the behaviour of the rubber layer, they used the
Kelvin-Voigt model and carried out the numerical simulations for both semi-analytical
and FEM models of the structure.

Considering the large number of parameters involved in viscoelastically damped sys-
tems, it is desirable to carry out multi-parameter optimisation analyses, with specified
geometrical and physical constraints in order to arrive at a dynamically optimum con-
figuration. A possible solution consists in inserting a certain number of damping layers
within the stack of the laminate during the design of the structure [166, 167]. Neverthe-
less, such solution needs the determination of the more relevant positions and thickness of
the viscoelastic layers in order to maximise the modal loss factors without degrading the
mechanical properties and increasing too much the weight of the structure. Lunden [168]
conducted optimisation studies to find an optimal configuration of unconstrained dis-
tributed damping on beams and frames by minimising resonant vibrations subject to
constraints on weight or cost of the additive damping along with a constraint on the loss
factor of the available material. Lall et al. [169] carried out an optimal design study on a
sandwich plate with constrained viscoelastic core. The objective function was built on the
basis of the system’s displacement response and also on the loss factors of the structure
considering the densities and thickness of each layer as design variables. Linear relation-
ship between material density and Young’s modulus of Krokosky [170] were employed in
addition to the temperature-frequency principle [171] in order to simplify the problem.
Chen et al. [172] studied the problem of the optimal placement of CLD treatment to
reduce the vibratory levels in plate-like structures. The main goal was to maximise the
damping ratios of the structure subject to constraints on resonant frequencies shift and
CLD thickness, considering as design variables the position as well as the thickness of the
CLD patch. In [173] optimisation studies were performed in order to determine the opti-
mum parameters of a four-element model used to represent the viscoelastic characteristics
of the core for the sandwich plate: the material properties of the core, i.e. the parameters
describing the shear modulus and the material loss factor as function of the time were
kept as design variables. Recently, Le Maoût et al. [174] carried out an optimisation study
of a hybrid sandwich plate: the objective was to maximise the modal loss factors of the
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plate, in a given frequency range, with constraints on the weight and on the stiffness of the
structure. They used as optimisation variables the orientation and the thickness of elastic
plies and the thickness of viscoelastic layers. An optimal solution was found for different
number of layers of the plate. A FEM model of the plate was built within the ABAQUS
environment and the damping of the structure was evaluated through the IMSE method.

As it can be resumed from the state of the art, until now, the problem of designing
the damping characteristics of the hybrid laminates has been stated so far considering
as design variables only the thickness and orientations of the elastic plies along with the
thickness and/or the material properties (shear modulus, material loss factor, density) of
the viscoelastic layers. The main objective of the present work consists in determining
also which are the best number of the constitutive layers of the hybrid laminate and the
best positions of the elastomer layers within the stacking sequence (along with the values
of orientation and thickness for each ply) in order to maximise the damping properties
of the structure. Moreover, constraints on the in- and out-of-plane stiffness along with
a constraint on the total mass of the hybrid plate are considered in order to avoid the
degradation of the mechanical properties and the increase of the weight of the structure.
The problem is formulated in the most general case: no simplifying hypotheses are made
on the behaviour of the hybrid laminate and on the position of the viscoelastic plies within
the stack, differently from which is usually done in literature where it is a-priori assumed
that the positions of elastomer layers within the stack are always located between two
consecutive stiffer plies. In addition, since the material properties of the elastomer plies
depends on the frequency, the evaluation of the undamped eigenfrequencies and of the
structural loss factors leads us to consider a non-linear modal analysis, thus the IMSE
method is employed to overcome this difficulty.

As in Chapters 3 and 4 here we deal with an optimisation problem concerning modular
structures. More precisely in this case the design problem concerns the hybrid laminates
that can be viewed as modular systems, the modules being the layers. Again, in order to
obtain a configuration that represents a global optimum and also to include the number
and position of layers among the design variables we use, as optimisation tool, the genetic
algorithm (GA) BIANCA (see also [142, 143]) with crossover on species. As already
said in the previous Chapters, the main difficulty, when dealing with the optimisation of
modular structures, is how to take into account the variable number of modules, even
in the case in which the modules are non-identical, as the case of hybrid laminates with
variable number of plies made of different materials. In the framework of GAs, such a
problem corresponds to the search of solutions in a design space made up of individuals
with variable number of chromosomes and, hence, belonging to different species.

Just like in the application considered in Chapter 3, in the case of the problem of
designing the damping properties of hybrid laminates the number of modules-layers is
directly related to the number of the individual’s chromosomes and, hence, the optimal
number of layers is an outcome of the genetic process, which automatically issues the best
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species. Moreover, during the optimisation process, the GA is coupled with the FE code
ANSYS in order to evaluate the objective and constraint functions.

The Chapter is organised as follows: firstly geometry, material properties and loading
conditions along with the FE model adopted for the hybrid plate are described in Sec.
5.2, then the mathematical formulation of the design problem of the damping properties
of the structure as an optimisation problem as well as the description of the numerical
strategy are detailed in Sec. 5.3. In Sec. 5.4 the numerical results concerning the case of
a rectangular hybrid plate are shown to validate the accuracy and the reliability of the
proposed approach, and, finally, some concluding remarks end the Chapter.
This Chapter is substantially taken from the article [175].

5.2 Description of the problem: application to the

design of a hybrid laminate

5.2.1 Geometry and materials

The optimisation strategy presented in this Chapter allows to find a solution for the
problem of designing the damping properties of hybrid laminates and it is applied to a
rectangular hybrid plate, whose dimensions are depicted in Fig. 5.1.

Figure 5.1: Geometry of the hybrid plate.

Concerning the typical dimensions of the plate, the thickness of each layer is con-
strained to remain sufficiently small compared to both width and length of the plate, in
order to keep valid the assumptions of the thin plate model. Moreover, we assume that
the fibre-reinforced plies have linear elastic orthotropic behaviour. Adopting the vectorial
notation for strain ε and stress σ tensors and introducing the compliance tensor S, the
constitutive law can be stated as follows:
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, (5.1)

where εii and γij are the strain components and σij are the stress components, with
i, j = 1, 2, 3. The parameters used to describe the behaviour of the material are the
technical constants of elasticity: the Young’s moduli Ei, the Poisson’s ratios νij and the
shear moduli Gij. The subscripts (1, 2, 3) correspond to the direction of the axes in the
material frame of the single layer. Concerning the material of the elastic plies, a glass-
epoxy lamina has been used, whose material properties are listed in Table 5.1 [153].

Young’s modulus E1 [GPa] 29.9
Young’s modulus E2 [GPa] 7.5
Young’s modulus E3 [GPa] 7.5
Shear modulus G12 [GPa] 2.25
Shear modulus G23 [GPa] 2.25
Shear modulus G13 [GPa] 2.25
Poisson’s ratio ν12 0.24
Poisson’s ratio ν23 0.24
Poisson’s ratio ν13 0.24
Density ρ [kg m−3] 1500

Table 5.1: Material properties for the glass-epoxy lamina, taken from [153]

The material used for the viscoelastic layers is a rubber-like material having linear
isotropic behaviour. In addition, the properties of that material are considered depen-
dent upon the loading frequency f . Introducing the fourth-order complex viscoelasticity
stiffness tensor Dv the constitutive law is:

σ = Dv (f) · ε , (5.2)

with:
Dv (f) = Dv

r (f) + iDv
i (f) , (5.3)

whereDv
r (f) andDv

i (f) are the fourth-order tensors which characterise the energy storage
and the dissipative response of the material, respectively. Similarly to Eq. (5.1), the use
of the vectorial notation yields:
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(5.4)

with:

Λ =
E(f)

(1 + ν(f)) (1− 2ν(f))
,

ν(f)∗ = ηv(f)ν(f) ,

Λ∗ =
E(f)

(1 + ν(f)∗) (1− 2ν(f)∗)
.

(5.5)

In Eq. (5.4) and (5.5), E(f) and ν(f) are the frequency-dependent Young’s modulus and
Poisson’s ratio, while ηv(f) is the material loss factor. The material properties used for
the viscoelastic layers are taken from [174]. The variation of the Young’s modulus with
the frequency is expressed as:

E(f) = Es + Edlog

(
f
∽

f

)
, (5.6)

where Es = 0.0041 GPa is the steady-state value of the Young’s modulus, Ed = 0.0322

GPa is the amplitude of the part that depends upon the frequency, while
∽

f = 1 Hz is a
reference value for the frequency. The Poisson’s ratio and the material loss factor are kept
constants and equal to ν = 0.3 and ηv = 0.3, respectively, whilst the density is ρ = 968.1
kg m−3.

5.2.2 Loading conditions

The design of the hybrid laminate represents a compromise between its damping capa-
bility and the ability of keeping good mechanical properties in terms of stiffness, without
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increasing too much the weight.
The dynamic response of the structure is evaluated through a classical free vibra-

tion analysis. Only the first N = 5 non-rigid modes are calculated considering free-
displacement boundary conditions on the edges of the plate. It is worth noting that,
since the material properties of the viscoelastic layers depend upon the frequency, the
calculation of the eigenfrequencies, as well as the modal loss factors, needs an iterative
procedure for each eigenfrequency.

Concerning this kind of problems, several numerical strategies are available in litera-
ture. These approaches are substantially divided in frequency-domain and time-domain-
based approaches. Since in this work the dynamic response of the structure is evaluated
through a free vibration analysis, we look for a numerical strategy belonging to the class
of the frequency-domain-based approaches. A detailed description of the different solu-
tion strategies is available in [154]. Among all the possible frequency-domain-based ap-
proaches, the most suited for our problem are the Iterative Modal Strain Energy (IMSE)
and the Iterative Complex Eigensolution (ICE) methods.

The IMSE method is an extension of the MSE method originally introduced by Ungar
and Kerwin [176]. The MSE approach is based on the principle that the undamped natural
modes of the viscoelastically damped structure are representative of the damped model
and, thus, a frequency-independent stiffness matrix might be used. Nevertheless, this
assumption is valid only for low to moderate additions of damping materials. Moreover,
in order to obtain more realistic values of the modal loss factors, the variation of the
stiffness matrix of the damped structure with the frequency has to be taken into account.
To this purpose, a modification of the original MSE algorithm was proposed in [154, 162],
by introducing an iterative approach, i.e. the IMSE approach, which more appropriately
considers the dependence of the energy storage and the dissipative response of the material
upon the frequency. As a consequence, an iterative calculation of the real (undamped)
eigensolution is performed using the continuously iteratively updated real part of the
stiffness matrix of the rubber layers. The material properties are updated according to
the adopted material law, in our case the law of Eq. (5.6), at the value of frequency of
the current iteration, in the neighbourhood of the considered natural mode. Once the
convergence on the ith undamped natural frequency is reached, the corresponding modal
loss factor ηi is evaluated as:

ηi = ηv(fi)
Wv(fi)

Wtot(fi)
, (5.7)

where ηv(fi) is the material loss factor at the current frequency, while Wv(fi) and Wtot(fi)
are the strain energy of the viscoleastic layers and the total strain energy of the structure
for the ith mode, respectively.

The ICE strategy appears as a sound alternative to evaluate the modal loss factors of
the structure. The ICE method is exact in the sense that it does not determine the modal
loss factors according to the definition of the MSE approach, but it employs directly the
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evaluated complex eigenvalues to calculate the exact modal loss factors of the structure.
In other words, in the framework of the IMSE approach an iterative calculation of the
real eigensolution is performed, while in the context of the ICE approach an iterative
calculation of the complex eigensolution is carried out. Therefore, the resultant ICE
strategy can be seen as a more accurate and generally applicable method when dealing
with such problems.

Nevertheless, since the FE model of the hybrid plate is built within a commercial FE
code, i.e. ANSYS, we choose to employ the IMSE approach to evaluate the modal loss
factors of the structure. Even though the ICE strategy is more robust than the IMSE
one in evaluating the loss factors, the IMSE method is doubtless easier to implement
within a commercial code. In addition, the ICE method is time-consuming and requires
a higher computational effort because, for each mode, repeated complex eigensolutions
have to be performed before reaching the convergence. Moreover, we recall that this
non-linear process has to be included in the framework of a genetic-based optimisation
process which often requires a high number of evaluations of the objective and constraint
functions. Finally, the IMSE method leads to obtain a good estimation of the damping
properties of the structure (for structures with low or moderate damping capabilities), in
terms of natural frequencies and modal loss factors, as shown in [155, 162, 174]. The
previous considerations have oriented our choice on the IMSE approach as numerical
strategy used to calculate the modal loss factors of the hybrid laminated plate considered
in this work. The logical flow of the IMSE approach, which we have implemented within
the ANSYS environment, is shown in Fig. 5.2.

Along with the increase of damping capability, the structure must withstand to the
application of static loads, i.e. the structure has to exhibit good properties in terms of
stiffness. To this purpose, extension as well as bending stiffness properties are studied by
considering three different static loading conditions, as shown in Fig. 5.3. In particular,
two simulations are performed under uniaxial prescribed displacement in x and y direc-
tions, and in both cases the corresponding reactions Rx and Ry are evaluated, having
in this way informations about the in-plane stiffness of the hybrid plate. Moreover, to
have a measurement of the out-of-plane stiffness, a bending calculation is performed: a
prescribed deflection is imposed along the z direction in the center of the laminate and
the corresponding reaction Rz is then determined. In each one of the three considered
static loading conditions, the imposed displacement is δ = 1 mm.

A conclusive remark: it is worth noting that employing a different strategy to evaluate
the modal loss factors of the structure (namely the use of an alternative and more accurate
strategy as the ICE approach) does not imply any change in the optimisation procedure
that we will describe in the next Section.
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Figure 5.2: Flow of the IMSE strategy for the prediction of the loss factors of the structure.

5.2.3 Finite element model of the hybrid plate

As shown in Fig. 5.4, two different mechanisms of dissipating the vibratory energy can
essentially be observed in viscoelastically damped structures, see [151]: the first dissipation
phenomenon is linked to the shear strains, which are predominant in the constrained
viscoelastic materials, while the second one is related to the direct normal strains, in the
case of unconstrained viscoelastic materials.



174 5. Optimal design of hybrid elastomer/composite laminates

Figure 5.3: Static tests for the evaluation of the optimisation constraints: (a) uniaxial dis-
placement along x direction, (b) uniaxial displacement along y direction and (c) uniaxial
displacement along z direction.

Figure 5.4: Basic mechanisms for viscoelastic damping: (a) constrained and (b) uncon-
strained treatment.
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In order to predict these phenomena, 3D brick elements have been considered to model
the rubber layers: we need to build a mathematical model able to describe (with a good
level of accuracy and reliability) the mechanical response of the physical system. To this
purpose the FE model of the hybrid plate has to be able to catch those aspects which
normally, even with higher-order 2D theories, are not well described, e.g. the damping
response associated to the shear strains through-the-thickness.

Since the model is built in ANSYS environment, we use SOLID185 elements, which
are solid elements with 8 nodes and 3 degrees of freedom (DOFs) per node. Moreover,
this type of element is also employed for the elastic plies.

In addition, since the FEM model is built with solid elements, the number of DOFs
could be large, thus implying significant CPU time for each calculation. To this purpose,
after a preliminary mesh sensitivity study, the optimal in-plane sizes of brick elements
are chosen equal to 3 × 3 mm2. Moreover, we have previously checked that a single
element in the thickness of each layer is sufficient to capture in correct way the damping
mechanisms associated to the viscoelastic plies. Finally, as we will explain in Sec. 5.3,
since the number of layers is one of the design variables of the optimisation process, the
total number of DOFs of the whole model will vary along with the number of plies.

5.3 Formulation of the optimal damping properties

problem

In this section, the problem of designing the damping properties of a hybrid plate is stated
as a constrained optimisation problem. The goal of our strategy consists in maximising
the first N modal loss factors of the structure, without degrading the stiffness properties
of the plate and increasing too much its weight.

The problem is stated in the most general case, thus the design variables are:

• the total number of layers (both elastic and viscoelastic), n;

• the position and the number of the viscoelastic layers within the stack, which are
directly linked to the variable IDk, (k = 1, ..., n), that identifies the nature of the
kth ply, i.e. IDk = 1 if the kth ply is viscoelastic, IDk = 0 otherwise;

• the thickness of each layer, tk (k = 1, ..., n);

• the fibre orientation of the elastic plies, δk (k = 1, ..., n).

It is worth noting that, since the number of layers is included among the optimisa-
tion variables, the total number of design variables of the whole optimisation process
can change for each possible point-solution in the design space, or, in other words, the
procedure determines by itself the optimal number of design variables.
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5.3.1 Mathematical statement of the problem and solving strat-
egy

The optimisation problem can now be established. The maximisation of the first N modal
factors can be expressed as the minimisation of the following objective function:

Φ = −
N∑

i=1

ηi , (5.8)

that represents the opposite of the sum of the first N modal loss factors. Moreover, the
constraints on the maximum decrease of the stiffness properties and on the maximum
increase of the mass of the plate have to be considered. Therefore, the constrained mini-
misation problem can be stated as a classical non-linear programming problem (NLPP)
as follows:

min Φ (n, IDk, tk, δk) (with k = 1, ..., n) ,

subject to :




g1(n, IDk, tk, δk) =
Rx

ref −Rx (n, IDk, tk, δk)

Rx
ref

− ϵx ≤ 0 ,

g2(n, IDk, tk, δk) =
Ry

ref −Ry (n, IDk, tk, δk)

Ry
ref

− ϵy ≤ 0 ,

g3(n, IDk, tk, δk) =
Rz

ref −Rz (n, IDk, tk, δk)

Rz
ref

− ϵz ≤ 0 ,

g4(n, IDk, tk) =
M (n, IDk, tk)−M ref

M ref
− ϵM ≤ 0 .

(5.9)

In Eq. (5.9) Rx, Ry and Rz are the reactions of the plate, evaluated as shown in Fig. 5.3,
which represent a measure of the stiffness of the structure, whileM is the mass of the plate.
The superscript ref stands for reference value. The reference values of the reactions and
mass are calculated, before the optimisation process, on a reference undamped structure,
i.e. a plate without elastomer layers. The quantities ϵx, ϵy, ϵz and ϵM are the user-defined
tolerances on each constraint. The meaning of the constraints on the reaction forces and
on the mass of the hybrid plate are the following: the maximum loss in stiffness and the
maximum increase in mass of the optimised structure are superiorly bounded by the value
of the corresponding tolerances.

It can be noticed that the NLPP of Eq. (5.9) is highly non-linear and non-convex
in the space of design variables. In fact, for a given eigenfrequency the strain energy,
and hence the loss factor of the structure, depends upon circular functions of the plies
orientation. Moreover, depending on the number of layers n, the dimension of the design
space, and hence the number of design variables can change. Indeed, in the objective and



5.3. MATHEMATICAL FORMULATION OF THE PROBLEM 177

constraint functions, we can enumerate three variables for each ply (the nature of the
ply IDk, the thickness tk and the orientation δk), besides the variable number of layers
n. Therefore, in the most general case, the overall number of design variables for the
problem (5.9) is 3n+ 1.

The previous considerations on the nature and on the varying number of design vari-
ables involved into the optimisation process oriented our choice on GAs, as numerical
tool, in order to search solutions for the problem (5.9).

As said in the previous Chapters, the optimisation of engineering modular systems is
a difficult task since it implies the optimisation of each constitutive module composing
the system, as well as the optimisation of the number of constitutive modules, as the
case of the design of the hybrid plate considered here. As a matter of fact, the number
of constitutive modules (the number of layers in our case) is an integer value and the
design space of such optimisation problems is therefore populated by points representing
structures composed of different numbers of modules (layers). As a consequence, the
number of constitutive parameters (variables of the optimisation problem) is different for
distinct points and the associated mathematical optimisation problem is defined over a
design space of variable dimension.

Taking into account all the previous aspects, even in this Chapter we use the GA
BIANCA with crossover and mutation between species as optimisation tool to perform
the search of solutions for the problem at hand. Here we want to highlight the structure
of the individual’s genotype, and, consequently, the representation of the information for
the problem (5.9) and how the GA is interfaced with the FEM code ANSYS.

Fig. 5.5 shows the genotype of the generic rth individual representing the hybrid plate
with nr plies. This individual has nr chromosomes and each chromosome is composed of
3 genes coding the design variables of each ply: the nature of the layer, IDk, the thickness
of the layer, tk and the orientation of the layer, δk. An exception is the first chromosome
that has 4 genes: the fourth additional gene codes the number of layers for the generic
rth individual. Letter e stands for empty location. It can be noticed that the variable IDk

is a discrete variable which can assume only the values 0 or 1 depending on the nature
of the kth ply. When the kth layer is viscoelastic, i.e. IDk = 1, only the gene coding the
thickness is treated by the GA for all genetic operations, whilst the third gene representing
the orientation is ignored.

As conclusive remark, it is worth noting that for every individual at each generation,
the evaluation of the objective and constraint functions is performed via a FEM analysis.
Hence, also for this application the GA BIANCA is coupled with the FEM code ANSYS
that we used as FEM tool to simulate the mechanical response of the hybrid plate.
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Figure 5.5: Structure of the individual’s genotype for the optimisation problem (5.9).

5.4 Studied cases and results

In order to demonstrate the capabilities of our strategy we study the optimisation of the
damping properties of a rectangular hybrid plate whose in-plane dimensions are those
shown in Fig 5.1. In particular we performed the optimisation process for the three
following cases:

1. the case wherein the total number of layers, the orientations of the elastic laminae
along with the positions and the number of viscoelastic plies are fixed a-priori, thus
the only design variables of the problem (5.9) are the layers thickness. For this first
simple case, we perform the optimisation calculations using two different GAs: the
GA BIANCA and the GA available in the MATLAB Optimisation Toolbox [177],
in order to compare the quality of results obtained with these two codes;

2. the case wherein we assume a-priori that the stacking sequence of the laminate
is symmetric. In this case the total number of design variables depends upon the
number of layers. Nevertheless, due to the assumption of the symmetry of the stack,
the global number of variables is considerably reduced;

3. the most general case wherein no simplifying assumption on the stacking sequence
of the hybrid plate is made. Even in this case the total number of design variables
depends upon the number of layers.

These test cases are chosen according to the problems often treated in literature and also
according to the will of testing new problems which are more general and complex than
the ones often presented in literature.

It can be noticed that the design variables of the cases 2 and 3 are those discussed
in Sec. 5.2. Concerning the optimisation problem of Eq. (5.9), in order to establish
correct reference values for the reactions and the mass of the hybrid plate, three static
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analyses have been conducted on a reference structure before starting the optimisation
process, for each one of the considered cases. The undamped reference plate (without
viscoelastic layers) considered here is made of 6 glass-epoxy laminae (see Table 5.1 for the
material properties) with the following stacking sequence: [90/45/0]S. Moreover, for the
first studied case, the thickness of the elementary ply is 0.27 mm, whilst for cases 2 and
3 it is equal to 0.3 mm. Finally, the value of the reference reactions and mass for these
cases are:

• Rx
ref = −15617 N, Ry

ref = −40032 N, Rz
ref = −18.51 N, M ref = 0.06075 Kg for

case 1;

• Rx
ref = −17352 N, Ry

ref = −44480 N, Rz
ref = −23.06 N, M ref = 0.0675 Kg for

cases 2 and 3.

As conclusive remark, it can be noticed that the user-defined tolerances on the constraints
of the problem (5.9) are set as follows: ϵx = ϵy = ϵz = ϵM = 0.05, i.e. the maximum loss
in stiffness and the maximum increase in mass between the optimised structure and the
reference one are limited to 5% for all cases.

5.4.1 Case 1: fixed number of plies

In this first calculation we consider the simple case of the optimisation of the first modal
loss factor of the structure, thus we consider only the first non-rigid mode, N = 1 in Eq.
(5.9), in order to compare the results of the optimisation process obtained using both
MATLAB and BIANCA GAs. Since the number of layers of the laminate is fixed, the
new genetic operators that perform the reproduction among different species are no longer
required. Moreover, we have also fixed the number and the position of the viscoelastic
plies within the stacking sequence as well as the orientations of the elastic laminae. As
a result of these considerations, the only design variables are the layers thickness which
can vary continuously between 0.1 and 1.0 mm. In addition, the hybrid plate has 5 layers
with the following stacking sequence (V stands for viscoelastic layer): [0/V/90/V/0]. For
this first case, since we have only 5 layers, the number of DOFs of the FEM model of the
plate is 47970.

Concerning the BIANCA GA, the structure of the individual is organised in a simpler
way: the genotype is made up of 5 chromosomes, each composed of a single gene coding
the thickness of the corresponding ply.

The genetic parameters of the BIANCA GA are chosen as follows: the population
size is set to Nind = 30 and the maximum number of generations is assumed equal to
Ngen = 80. The crossover and mutation probability are pcross = 0.85 and pmut = 1/Nind,
respectively. Selection is performed by roulette-wheel operator and elitism is active. The
ADP method is used for handling constraints. Concerning the genetic parameters of the
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MATLAB GA they are the same already used for the GA BIANCA, with the exception
of the mutation operator and of the method for handling constraints: in order to force the
solution to belong to the feasible region we have used the @mutationadaptfeasible operator
along with the standard penalty scheme developed within the MATLAB GA (for more
details see [177]).

The best solutions found using BIANCA and MATLAB GAs are detailed in Table 5.2.
Fig. 5.6 shows the variation of the best solution vs. generations found using these two
codes. It can be noticed that the solution found using BIANCA shows better damping
capabilities when compared to the one found by MATLAB. Moreover, the solution found
using MATLAB converges after only 3 generations, whilst BIANCA found a better value
of the objective function after about 25 generations and reaches the real global minimum
after 73 generations.

Such results are mainly linked to the biodiversity of the population during the gen-
erations: clearly, for this kind of problem, the procedure for handling constraints, im-
plemented within the MATLAB GA, causes a lack of diversity in the current population
(we have several clone-individuals) which induces, on its turn, a premature convergence
of the GA toward a local minimum. On the contrary, as it appears clearly from Fig. 5.6,
BIANCA preserves a certain biodiversity through the generations and this aspect lead us
to find a better solution.

Reference BIANCA MATLAB

n 6 5 5

stack [90/45/0]S [0/V/90/V/0] [0/V/90/V/0]

tk [mm] [0.27/0.27/0.27]S [0.398/0.342/0.632/0.301/0.253] [0.250/0.327/0.664/0.303/0.378]

η1 0.00976 0.00960

f1 [Hz] 92.30 91.13

Rx [N] −15617 −15159 (−2.9%) −14860 (−4.8%)

Ry [N] −40032 −38079 (−4.9%) −39326 (−1.8%)

Rz [N] −18.51 −19.96 (+7.8%) −20.21 (+9.2%)

M [Kg] 0.06075 0.06378 (+5.0%) 0.06374 (+4.9%)

Φ −0.00976 −0.00960

g1 −0.02066 −0.00157

g2 −0.00120 −0.03235

g3 −0.12843 −0.14193

g4 −0.00014 −0.00077

Table 5.2: Best solutions found using BIANCA and MATLAB GAs for the optimisation
problem (5.9), case 1 (V denotes the position of the viscoelastic ply).



5.4. STUDIED CASES AND RESULTS 181

Figure 5.6: Best values of the objective function along generations for problem (5.9), case
1: comparison between BIANCA and MATLAB results.

5.4.2 Case 2: variable number of plies, symmetric stack

In this second case we assume a symmetric stack for the hybrid plate. The goal of this
second calculation consists in optimising the first N = 5 modal loss factors of the structure
for problem (5.9). The design variables, their nature and bounds are detailed in Table
5.3.

Design variable Type Lower bound Upper Bound Discretisation Step

n integer 4 8 −
IDk integer 0 1 −
tk [mm] discrete 0.1 1.0 0.01

δk [deg] discrete −75 90 15

Table 5.3: Design variables for the optimisation problem (5.9), cases 2 and 3.

In particular, we remark that the number of layers n can vary between 4 and 8. Since
the number of plies is included among the design variables, the new genetic operators that
perform the crossover and mutation among species are required and the optimal value of
n is an outcome of the biological selection: the most adapted species automatically issues
as a natural result of the Darwinian selection. The structure of the individual’s genotype
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is the one discussed in Sec. 5.2 and shown in Fig. 5.5. Moreover, due to the assumption
of the symmetry of the stack, the number of design variables is reduced when compared
to the most general case (discussed in the next subsection): in this case the total number
of design variables can vary between 7 and 13.
As said previously, the number of DOFs of the FEM model of the plate varies along with
the number of plies. Indeed, for this case it varies between 39975 and 71955.

Concerning the genetic parameters, the population size is Nind = 30, while the maxi-
mum number of generations is increased, Ngen = 100, due to the higher number of variables
in the present case. The crossover and mutation probability are still pcross = 0.85 and
pmut = 1/Nind, while the shift operator and chromosomes number mutation probability
are pshift = 0.5 and (pmut)chrom = (nmax − nmin)/Nind, where nmax and nmin are the
upper and lower bounds on the number of layers, i.e. the maximum and the minimum
number of chromosomes for the generic individual. Once again, we applied the roulette-
wheel operator for selection, a single-individual elitism and the ADP method for handling
constraints.

The best solution found by BIANCA is shown in Table 5.4. The optimal number
of plies is 6. Fig. 5.7 shows the variation of the best solution and of the best species
(the optimal number of plies) along the generations: the global constrained minimum has
been found after 45 generations, whilst the optimal number of plies is found after only 13
generations, i.e. also in this case the best species converge faster than the best individual.

In addition, we can see that the optimal configuration of the hybrid plate, under
the assumption of having a symmetric stack, shows 2 viscoelastic plies in the middle of
the structure. Indeed, this is a sandwich-plate-like configuration, whose typical damping
mechanism is shown in Fig. 5.8: for this configuration the damping phenomenon is asso-
ciated to the shear strains through-the-thickness εxz and εyz.
As conclusive remark, it can be noticed that such a solution is equivalent to a 5 layers solu-
tion with the following stack and thickness: [0/90/V/90/0] and [0.36/0.36/0.68/0.36/0.36],
respectively.
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Reference Best solution

n 6 6

IDk [0/0/1]S

δk [90/45/0]S [0/90/V]S

tk [mm] [0.3/0.3/0.3]S [0.36/0.36/0.34]S

η1 0.01071

η2 0.00553

η3 0.01170

η4 0.01042

η5 0.01280

f1 [Hz] 112.81

f2 [Hz] 240.79

f3 [Hz] 329.07

f4 [Hz] 478.78

f5 [Hz] 525.68

Rx [N] −17352 −16832 (−3.0%)

Ry [N] −44480 −43090 (−3.1%)

Rz [N] −23.06 −23.36 (+1.3%)

M [Kg] 0.0675 0.0705 (+4.4%)

Φ −0.05117

g1 −0.02002

g2 −0.01874

g3 −0.06302

g4 −0.00618

Table 5.4: Best solution found using BIANCA for the optimisation problem (5.9), case 2
(V denotes the position of the viscoelastic ply).

5.4.3 Case 3: variable number of plies, non-symmetric stack

This is the most general studied case: no simplifying hypotheses are made on the stack
of the laminate. Also in this case, the goal consists in optimising the first N = 5 modal
loss factors of the structure for problem (5.9).

The design variables, their nature and bounds are detailed in Table 4.1. Even in this
case, the total number of design variables varies along with the number of plies: it can
vary between 13 and 25. As the previous case, the number of DOFs varies between 39975
and 71955.

Due to the greater complexity of the optimisation process in the present case, the
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Figure 5.7: (a) Best values of the objective function and (b) number of layers along
generations for problem (5.9), case 2.

Figure 5.8: Maximum strain components in the viscoelastic plies for the optimised plate,
case 2.

population size is increased up to Nind = 60. For the rest, the genetic parameters are
strictly those already used in the previous case.

The best solution found by BIANCA is shown in Table 5.5. The optimal number of
plies is 6. Fig. 5.9 shows the variation of the best solution and of the best species along
the generations: the global constrained minimum has been found after 62 generations,
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whilst the optimal number of plies is found after only 7 generations, i.e. once again the
best species converge more quickly than the best individual.

Moreover, for this case, the optimal configuration of the hybrid plate shows 2 vis-
coelastic plies at the top of the structure. Indeed, this is a non-conventional configuration,
whose damping mechanism is shown in Fig. 5.10: for this configuration the damping phe-
nomenon, depending on the considered eigenfrequency, involves all the strain components.
As conclusive remark, it can be noticed that such a solution is equivalent to a 5 layers solu-
tion with the following stack and thickness: [V/0/90/90/0] and [0.63/0.43/0.42/0.31/0.30],
respectively.

Reference Best solution

n 6 6

IDk [1/1/0/0/0/0]

δk [90/45/0]S [V/V/0/90/90/0]

tk [mm] [0.3/0.3/0.3]S [0.32/0.31/0.43/0.42/0.31/0.30]

η1 0.01756

η2 0.00483

η3 0.01228

η4 0.01066

η5 0.01298

f1 [Hz] 70.09

f2 [Hz] 164.87

f3 [Hz] 217.90

f4 [Hz] 317.45

f5 [Hz] 346.97

Rx [N] −17352 −17065 (−1.6%)

Ry [N] −44480 −43688 (−1.7%)

Rz [N] −23.06 −28.31 (+22.7%)

M [Kg] 0.0675 0.07 (+3.7%)

Φ −0.05831

g1 −0.03349

g2 −0.03218

g3 −0.27763

g4 −0.013

Table 5.5: Best solution found using BIANCA for the optimisation problem (5.9), case 3
(V denotes the position of the viscoelastic ply).
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Figure 5.9: (a) Best values of the objective function and (b) number of layers along
generations for problem (5.9), case 3.

Figure 5.10: Maximum strain components in the viscoelastic plies for the optimised plate,
case 3.

5.4.4 Discussion of results

Concerning the results of the first case, even though in both GAs the same size of popu-
lation as well as the same probability of crossover and mutation and the same number of
generations are used, the better result found by BIANCA is mainly due on one side to the
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organisation and exploitation of the genetic information restrained in the population and
on the other side to the ADP method for handling constraints which allows for exploring
in a better way the whole domain, feasible and unfeasible regions, with respect to the
classical penalty methods, like those implemented within the MATLAB GA.

For what concerns the cases 2 and 3, since the number of layers (and thus the number
of optimisation variables of the whole process) is included among the design variables,
standard GAs are not able to deal with this kind of problems, thus we need to use the
new genetic operators for the evolution of the species implemented within BIANCA.

It can be noticed that, thanks to the genetic operators that perform the crossover and
mutation among species, we do not need to perform the optimisation process discussed
in Sec. 5.3 for each number of layers. Indeed, the optimal number of layers is an outcome
of the genetic process, which automatically issues the best species.

In both cases 2 and 3 the optimal orientations of the elastic plies are equal to 0◦ or
90◦. This result is due on one side to the choice of the static tests considered within
the optimisation process and on the other side to the small range of variation of the
number of layers considered in the procedure. Indeed, specifying several stiffness tests
in different directions or increasing the range of the number of layers of the hybrid plate
leads probably to other different orientations.

A final remark arises from the comparison of the results obtained in cases 2 and 3.
Despite both plates are made of 6 layers (whereof 2 are viscoelastic plies) the better
damping capabilities of the hybrid plate solution of case 3 are due to a different damping
mechanism when compared to the solution of case 2. As it can be noticed from Fig. 5.8,
the damping of the hybrid plate of case 2 is linked to the classical shear mechanism, i.e.
since the elastomer layers are constrained by stiffer elastic plies the major mechanism
for damping is due, for each eigenfrequency, to the shear strains through-the-thickness
εxz and εyz. On the contrary, as shown in Fig. 5.10, for the optimised plate of case
3, depending on the considered mode, all the strain components are involved into the
damping phenomenon and, in addition, the shear strains through-the-thickness εxz and
εyz do not represent the major contribution for each eigenfrequency: this is due to the
fact that for this configuration the viscoelastic layers are not constrained with stiffer plies.
These considerations, along with the fact that in this last case we make no simplifying
hypotheses on the stacking sequence of the hybrid plate, explain the better performance
of the non-symmetric configuration.

5.5 Concluding remarks

In this work, an optimisation procedure for the design of damping properties of hybrid
elastomer/composite laminates is presented. The goal of the procedure is to maximise
the first N modal loss factors of the laminate subject to constraints on the in-plane and
out-of-plane stiffness along with a constraint on the weight of the plate. The proposed
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strategy relies on one hand, upon the dynamic response of the structure in terms of
natural undamped frequencies and modal loss factors evaluated using the well-known
Iterative Modal Strain Energy (IMSE) method, and on the other hand on the use of
genetic algorithms as optimisation tool to perform the solution search.

The main key points of our strategy consist in determining which are: a) the best
number of layers of the hybrid plate, and b) the best number and positions of the elastomer
layers within the stacking sequence. The main difficulty, when dealing with this kind of
problems, is how to take into account the variable number of layers among the optimisation
variables. In order to deal with such a problem we used our improved GA BIANCA, which
presents new genetic operators that perform the crossover and mutation operations among
individuals of different species. Indeed, in this way the number of layers is directly related
to the number of the individual’s chromosomes and, hence, the optimal number of layers
is an outcome of the genetic process, which automatically issues the best species. Due to
the presence of integer and discrete variables (as the number of plies, the nature of the
plies and the thickness and orientations of the elastic layers) the use of GAs appears to
be particularly profitable. In particular, the use of BIANCA coupled directly with the
FEM model, results to be very convenient when dealing with constrained optimisation
problems of modular structures, as the one presented in this work.

The use of an evolutionary strategy along with the fact that the problem is stated
in the most general case, lead us to find some non-conventional configurations, i.e. non-
constrained layer configurations, which show better damping properties when compared
to the classical constrained layer treatments.



Chapter 6

Optimal design of modular systems:
application to hybrid
elastomer/composite plates

6.1 Introduction

One of the most important challenges for automotive and aerospace industries is the
reduction of noise pollution. In particular, the vibration of the structural parts composing
systems represents one of the major sources of noise: when structural components moves,
they produce elastic (or air) waves and hence noise. Moreover, due to their lightness and
their high stiffness, composite materials are very sensitive to this phenomenon.

To this purpose, several passive solutions have been proposed in the literature: such
solutions consist in bonding elastomer patches in some well-chosen regions of the structure.
Even though these solutions are proved to be quiet effective [178], they are often the result
of a design process made a posteriori which substantially modifies some fundamental
properties of the structure: if on one side one can observe an increasing of the damping
capabilities of the structure, contrary on the other side a degradation of its mechanical
properties (in terms of reduction of the stiffness and increasing of the weight) occurs.

Recently, Le Maoût et al. [179] studied the problem of laminated plates damped by
using rubber patches: more precisely the main goal of that work is the maximisation
of the modal loss factors of the structure (in a given range of frequencies) employing
a periodical pattern of viscoelastic material. They considered a three-layer plate with
the following design variables: thickness and orientation angle for the elastic plies and
thickness, diameter and distribution for the rubber patches (they assumed that the patches
are identical and equally spaced). The modal loss factors are evaluated according to
the well-known Iterative Modal Strain Energy (IMSE) method. Also in this work two
different cases were considered: the case wherein the gaps between the patches are filled
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by composite material and the case wherein such gaps are unfilled. The authors showed
that a simultaneous design of both elastic and viscoelastic properties of the structure
can lead to obtain better damping capabilities with respect to the case of employing
continuous viscoelastic layers.
Even though the work of Le Maoût et al. is characterised by some original aspects, the
optimisation problem is solved introducing several simplifying assumptions which affect
the quality of the final solution. Namely, such assumptions strongly limit the search
capabilities of their algorithm which converges towards a local or near-optimal solution
instead of the global optimum.

The study presented in this last Chapter could be placed within the context of the
works originally proposed by Le Maoût et al. and can be seen as a generalisation and
also as an extension of those works. In particular we propose a global optimisation
technique for the design of damping properties of hybrid elastomer/composite structures,
i.e. composites laminated plates equipped with bonded elastomer patches. The goal of
the procedure is to maximise the first Nf modal loss factors of the structure subject to
constraints on the flexural stiffness and on the weight of the plate, constraints on the
material design variables describing the behaviour of the composite plate and, finally,
geometric constraints on the position of the patches over the composite plate.

The design problem considered in this Chapter belongs to the class of design problems
of modular system. The hybrid structure studied here has two different types of modules:
the modules of the first type are the patches. All the patches are modules because they
have the same function and geometry, but not necessarily the same dimensions (diameter
and thickness) and the same position. In addition also the number of patches is included
among the design variables of the optimisation problem. The modules of the second type
are the layers: all the layers, composing the composite plate, are identical, but normally
they are differently oriented.

The design procedure that we propose is inspired by the radical point of view that
has already inspired the works discussed in the previous Chapters: to design a modular
hybrid structure by a mathematically rigorous numerical optimisation procedure that will
not use any simplifying assumption. Only avoiding the use of a priori assumptions one
can hope to obtain the true global optimum for a given problem: this is a key-point in
our approach.

As in Chapter 4 we adopt a two-level procedure for the global optimum design of the
hybrid structure. At the first level of the procedure, the optimal design of the hybrid
structure in terms of its damping capabilities is carried out, the design variables in this
phase being the constitutive parameters characterising each patch-module (number, po-
sition, thickness and diameter) along with the parameters describing the composite plate
that is designed as it was composed by a single equivalent layer (namely the laminate po-
lar parameters and the total thickness of the plate). At the second level of the procedure
we look for at least one stacking sequence realising the global optimum structure found
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at the first level. The proposed approach relies on one hand, upon the dynamic response
of the structure in terms of natural undamped frequencies and modal loss factors which
are evaluated using the IMSE method, and on the other hand on the use of the polar
formalism and of the GA BIANCA as optimisation tool to perform the solution search.

The Chapter is organised as follows: the mechanical problem considered in the study
as well as the optimisation strategy are introduced in Sec. 6.2. The mathematical formu-
lation of the first-level problem is detailed in Sec. 6.3 and the problem of determining a
suitable laminate is formulated in Sec. 6.4. A concise description of the FE model of the
hybrid structure is given in Sec. 6.5, while in Sec. 6.6 we show the numerical results of the
whole optimisation procedure. Finally, Sec. 6.7 ends the Chapter with some concluding
remarks and perspectives.

6.2 Design of composite plates with bonded elastomer

patches

6.2.1 Description of the problem

The optimisation procedure presented in this work is applied to the hybrid structure
depicted in Fig. 6.1.

Figure 6.1: Geometry and design variables of the hybrid structure.
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Such a hybrid structure is composed of a laminated plate with surface-bonded vis-
coelastic patches. The length of the plate sides are L = 200 mm and w = 20 mm,
respectively. The plate is made of glass-epoxy laminae, whose material properties are
listed in Table 6.1. For evident mechanical reasons, we assume that the laminated plate
is quasi-homogeneous and fully-orthotropic, with the main orthotropy axis aligned with
the x axis of the structure.

Technical moduli Polar parameters

Young’s modulus E1 [MPa] 29900 T0 [MPa] 5412
Young’s modulus E2 [MPa] 7500 T1 [MPa] 5200
Shear modulus G12 [MPa] 2250 R0 [MPa] 3162
Poisson’s ratio ν12 0.24 R1 [MPa] 2841
Density ρ [kg m−3] 1500 Φ0 [deg] 0
Thickness tply [mm] 0.125 Φ1 [deg] 0

Table 6.1: Material properties for the glass-epoxy lamina

As previously said, no simplifying assumptions are made: indeed each patch can be
different from any other, in terms of the constitutive geometrical parameters. The material
used for the viscoelastic patches is a rubber-like material having linear isotropic behaviour.
In addition, the material properties depend upon the loading frequency f and they are
taken from [162]. The variation of the complex Young’s modulus with the frequency,
E(f), is expressed as:

E(f) = ER(f) + iEI(f) ,

with :

ER(f) = Es
R + Ed

Rlog

(
f
∽

f

)
,

EI(f) = Es
I + Ed

I log

(
f
∽

f

)
.

(6.1)

The superscripts R and I stand for real and imaginary part, respectively. The subscripts
s and d represent the steady-state value and the amplitude of the part that depends upon

the frequency for both the real and imaginary part of the Young’s modulus, while
∽

f = 1
Hz is a reference value for the frequency.
In Eq. (6.1) Es

R = 4.1 MPa and Ed
R = 32.2 MPa are the steady-state value and

the amplitude of the real part, while Es
I = −7.7 MPa and Ed

I = 43.3 MPa are the
corresponding quantities for the imaginary part. The Poisson’s ratio and the density are
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equal to ν = 0.3 and ρ = 968.1 kg m−3, respectively, whilst the material loss factor ηv(f)
can be determined as:

ηv(f) =
EI(f)

ER(f)
. (6.2)

6.2.2 The two-level optimisation strategy

The main aim of the optimisation strategy consists in maximising the damping capabilities
of the structure (in terms of the first Nf modal loss factors) without degrading too much
its stiffness and without increasing too much its weight. Concerning the organisation of
the whole optimisation procedure, as already done in Chapter 4, we adopt a two-level
approach. The problem of designing the damping properties of the hybrid structure is
formulated into two distinct problems:

• first-level problem: the aim of this phase is the design of the structure in order to
maximise the first Nf modal loss factors, satisfying, simultaneously, the constraint
on the bending stiffness and on the final weight. At this stage the laminated plate is
considered as an equivalent single layer, whose mechanical properties are described
by means of the classical stiffness tensor A, B and D. We use the polar formalism
to represent such tensors and we assume that the laminate is quasi-homogeneous
and fully-orthotropic with the main orthotropy axis aligned with the x axis of the
structure. The output of this step is, hence, the geometry of the structure, i.e.
the number N of elastomer patches along with their positions over the plate and
their geometrical characteristics (diameters and thickness). Further outcomes of
this phase are the geometrical and the polar parameters of the laminate, i.e. its
total thickness (and hence the number n of plies composing the laminate) and its
anisotropic polar moduli. Thus, this is the step where the true optimal design of
the structure is done, in terms of its overall properties;

• second-level problem: the goal of this phase is to find at least one stacking sequence,
for the multilayer plate, giving the optimal overall elastic properties issued from the
first step. At this stage, the design variables are the layers orientations.

Concerning the mathematical formulation, this will be detailed, for both the first and
second step, in the next Sections.

6.3 Mathematical formulation of the first-level pro-

blem

The overall characteristics of the optimal structure have to be designed during this phase.
For the problem at hand, this means that in this phase we have to determine the optimal
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values of the following parameters:

• the number of viscoelastic circular patches;

• the geometrical properties of each patch;

• the thickness, and hence the number of layers, of the laminated plate;

• the mechanical properties of the laminate, namely the anisotropic polar moduli of
the plate.

As in the case of the problem of the least-weight wing-box section presented in Chap-
ter 4, we need also to determine the optimal number of modules and their mechanical
characteristics, besides their dimensions. We recall, in fact, that in the most general
situation, the patches share the same form but can have different sizes and positions.

It is worth noting that for the sake of simplicity, we only consider circular patches.
Indeed, the aim of this study is to demonstrate the relevance of using patches to damp
composite plates and not to discuss their possible geometry. More precisely, circular
patches are representative of all regular polygons without the complexity of their orien-
tation, so this choice minimises the number of geometrical characteristics of the patches.

We can immediately see that during this stage of the optimisation procedure, the
design of the thickness of the plate h must be done using discrete variables, with a step
equal to the thickness of the material layer used for the fabrication of the structure, see
Table 6.1. Of course, this responds to a technological need and, moreover, this will give
us also another important result: the number of layers to be used during the second-level
design phase.

We recall that the goal of the procedure is the maximisation of the first Nf modal
loss factors of the structure and this must be done satisfying on one side the mechanical
constraints on the bending stiffness and on the weight of the structure, and on the other
side the geometric bounds for the elastic moduli along with the geometric constraints
on the position of the centre of each patch. Such aspects are described in detail in the
following subsections.

6.3.1 Geometrical design variables

Before specifying the mathematical formulation of the first-level problem, we introduce
the design variables. These are of two types: geometrical and mechanical. Concerning
the geometrical design variables, they are shown in Fig. 6.1 and are:

• the number of patches N ;

• the position of the centre of each patch xi, i = 1...N ;

• the diameter Di and the thickness ti of the generic patch, i = 1...N ;
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• the thickness of the laminated plate h;

The design variables, their nature and bounds for the first-level problem are detailed
in Table 6.2.

Design variable Type Lower bound Upper Bound Step

N discrete 1 10 1

xi [mm] discrete 0.1 200.0 0.1

Di [mm] discrete 5.0 20.0 0.1

ti [mm] discrete 0.5 3.0 0.05

h [mm] discrete 1.0 4.0 0.125

RA∗

0K [MPa] continuous −3162.0 3162.0 −
RA∗

1 [MPa] continuous 0.0 2841.0 −

Table 6.2: Design space for the first-level problem.

It is worth noting that the viscoelastic patches cannot have an arbitrary distribution
over the plate, but they must satisfy certain geometrical conditions in order to avoid
overlapping between two consecutive patches. Moreover, we have to impose that the
patches do not come outside the geometrical contour of the plate (along the direction of
the x axis). Such constraints can be written as follows:





D1

2
− x1 ≤ 0 ,

xi−1 +
Di−1 +Di

2
− xi ≤ 0 , (i = 2, ..., N) ,

xN +
DN

2
− L ≤ 0 .

(6.3)

6.3.2 Mechanical design variables

Concerning the mechanical variables, we adopt the polar formalism, already introduced
in Sec. 3.3 of Chapter 3, to represent the homogenised stiffness tensors A∗, B∗, D∗ which
describe the mechanical behaviour of the laminate in the framework of the CLPT.

The mechanical design variables are the same as the problem of the minimum-weight
wing-box section: also for the problem considered in this Chapter we assume that the
laminate is quasi-homogeneous (hence, in this way, only the extension tensor A∗ has to
be designed, the bending one D∗ being automatically obtained) and orthotropic with the
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main orthotropy axis aligned with the x axis of the plate. Thus, the conditions (4.2) and
(4.21) can be applied also in this case.

Under such assumptions, as already explained in Sec. 4.4, we need only two polar
quantities to completely describe the behaviour of the laminated plate, i.e. the anisotropic
parameters RA∗

0K and RA∗

1 . Moreover, as discussed in Sec. 4.4 (and also in Sec. 3.3),
we have to consider the geometric and feasibility constraints of Eq. (4.4) on the polar
parameters which arise from the combination of the layer orientations and positions within
the stack. We recall here the expression of such constraints (the quantities without the
superscript A∗ refer to the elementary layer):





−R0 ≤ RA∗

0K ≤ R0 ,

0 ≤ RA∗

1 ≤ R1 ,

2

(
RA∗

1

R1

)2

− 1− RA∗

0K

R0

≤ 0 .

(6.4)

It is worth noting that the first two bounds of Eq. (6.4) can be easily taken into
account as box-constraints, i.e. by properly setting the range of variation of the polar
quantities RA∗

0K and RA∗

1 , see also Table 6.2.
All the considerations concerning the mechanical design variables made in Sec 4.4 can be
repeated verbatim for the present case.

6.3.3 Mathematical statement of the problem

As said previously, the goal of the global structural optimisation is the maximisation of
the damping capabilities of the structure without degrading too much its stiffness nor
increasing too much its final weight.

The damping capabilities are estimated in terms of modal loss factors of the structure
ηk, (k = 1, ..., Nf ) as already done for the problem of hybrid laminates presented in
Chapter 5. The modal loss factors are evaluated according to Eq. (5.7) and, since the
material properties of the patches depend upon the frequency, the calculation of the
loss factors needs an iterative procedure: to this purpose we use the well-known IMSE
approach already discussed in Sec. 5.2.

The optimisation problem can now be formulated. The maximisation of the first Nf

modal factors can be expressed as the minimisation of the following objective function:

Φ = −
Nf∑

k=1

ηk , (6.5)

that represents the opposite of the sum of the first Nf modal loss factors.
Along with the increase of the damping capabilities, the structure must withstand to

the application of static loads, i.e. the structure has to exhibit good properties in terms
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of stiffness. Indeed, the design of the hybrid structure represents a compromise between
its damping capability and the ability of keeping good mechanical properties in terms of
stiffness, without increasing too much the weight. Thus, constraints on the maximum
decrease of the bending stiffness and on the maximum increase of the mass of the plate
have to be considered. Such constraints can be stated as follows:





My
ref −My

My
ref

− ϵMy
≤ 0 ,

M −M ref

M ref
− ϵM ≤ 0 .

(6.6)

In Eq. (6.6) My is the bending moment around the y axis measured at the root section
of the plate when a unitary displacement δ = 1 mm is imposed at the tip. Thus, the
bending moment is evaluated as shown in Fig. 6.2 and it represents a measure of the
bending stiffness of the structure. In Eq. (6.6) M is the mass of the whole structure. The
superscript ref stands for reference value. The reference values of the reaction moment
and mass are calculated, before the optimisation process, on a reference undamped struc-
ture, i.e. a laminated plate without elastomer patches. The quantities ϵMy

and ϵM are the
user-defined tolerances on each constraint. The meaning of the constraints on the reaction
moment and on the mass of the hybrid structure are the following: the maximum loss
in stiffness and the maximum increase in mass of the optimised structure are superiorly
bounded by the value of the corresponding tolerances.

Figure 6.2: Static test for the evaluation of the bending moment: imposed unitary dis-
placement along z direction.

To state the optimisation problem in a standard form, firstly we reorder the design
variables according to the following scheme:

• the vector ξ collects the following design variables, concerning the plate and the
number of patches:

ξ =





ξ1 = N
ξ2 = h

ξ3 = RA∗

0K

ξ4 = RA∗

1





, (6.7)
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• each one of the vectors ζi collects the design variables of the ith viscoelastic patch,
i = 1, ..., N :

ζi =





ζ1 = xi

ζ2 = Di

ζ3 = ti



 . (6.8)

Then, we introduce the following functions:

• the objective function Φ, expressing the damping capabilities of the structure:

Φ = Φ
(
ξ, ζi

)
, (6.9)

• the functions expressing the two constraints (6.6) on the bending stiffness and on
the weight:

Ψ1

(
ξ, ζi

)
=

My
ref −My

(
ξ, ζi

)

My
ref

− ϵMy
, (6.10)

Ψ2

(
ξ, ζi

)
=

M
(
ξ, ζi

)
−M ref

M ref
− ϵM , (6.11)

• the functions expressing the five geometric constraints (6.4) on the polar parameters
of the plate:

g1 (ξ3) = −ξ3 −R0 , (6.12)

g2 (ξ3) = ξ3 −R0 , (6.13)

g3 (ξ4) = −ξ4 , (6.14)

g4 (ξ4) = ξ4 −R1 , (6.15)

g5 (ξ3, ξ4) = 2

(
ξ4
R1

)2

− 1− ξ3
R0

, (6.16)

• the functions expressing the N + 1 geometric constraints (6.3) on the positions of
the patches bonded over the plate:

h1

(
ζ11 , ζ

1
2

)
=

ζ12
2

− ζ11 , (6.17)

hi

(
ζ i−1
1 , ζ i−1

2 , ζ i1, ζ
i
2

)
= ζ i−1

1 +
ζ i−1
2 + ζ i2

2
− ζ i1 , (i = 2, ..., N) , (6.18)

hN+1

(
ζN1 , ζN2

)
= ζN1 +

ζN2
2

− L . (6.19)
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Finally, the problem can be stated in the standard form:





min Φ
(
ξ, ζ1, ..., ζN

)
,

s.t.

Ψk

(
ξ, ζ1, ..., ζN

)
≤ 0 , k = 1, 2 ,

gj(ξ) ≤ 0 , j = 1, ..., 5 ,

hi(ζ
1, ..., ζN) ≤ 0 , i = 1, ..., N + 1 .

(6.20)

Problem (6.20) is non-linear, in terms of both geometrical and mechanical variables.
Its non-linearity is given not only by the objective function but also by the geometrical
constraints on the laminate polar parameters as that in Eq. (6.16) and by the mechanical
constraints on the bending moment and on the weight of the structure, see Eq. (6.10)
and (6.11).

Finally, the dimension of the design space, i.e. the number of design variables, and
the number of constraint equations depend on the number N of patches. In particular,
the total number of design variables is 3N + 4 (there are in fact 3 variables for each
patch, 3 variables for the laminated plate and the number of patches, N), while the
total number of constraint equations is N+8: the constraint on the bending moment, the
constraint on the weight, 5 constraints for the laminate polar parameters and finally N+1
constraints for the position of the patches over the plate, see the second, third and fourth
of Eq. (6.20), respectively. Moreover, unlike the case of the least-weight wing-box section
problem (4.19), though the number of constraints is variable, each constraint due to the
addition of a module depends also on the unknowns concerning the others modules, not
only on the ones of that module, see again the fourth of Eq. (6.20) and also Eq. (6.18).

Concerning the GA BIANCA, in the case of the first-level problem we need the use
of the new genetic operators of crossover and mutation between individuals belonging to
different species. In fact, since the number of viscoelastic patches N is included among the
design variables, the related optimisation problem is defined over a space having variable
dimension (the dimension of such a space is 3N + 4). Mathematically speaking, such
a problem corresponds on one side to determine the optimal dimension of the domain
(i.e. the number of patches N) and on the other side to determine the optimal values
of the constitutive parameters of the patches which satisfy the requirements imposed by
the optimisation problem. In addition, we use the code BIANCA interfaced with the
FE code ANSYS, because for each individual at each generation, the evaluation of the
objective function as well as that of the constraint function on the bending moment needs
a numerical evaluation.

Fig. 6.3 shows the genotype of the generic rth individual for the optimisation pro-
blem of Eq. (6.20). This individual has Nr + 1 chromosomes. The first chromosome is
composed by 3 genes representing the design variables for the plate, i.e. thickness and
polar parameters. Chromosomes from 2 to Nr + 1 contain 3 genes which are the design
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variables for each patch: position, diameter and thickness. An exception is chromosome
2 that has 4 genes: the fourth additional gene codes the number of modules, i.e. for our
problem the number of patches.

Figure 6.3: Structure of the individual genotype for the first-level optimisation problem.

6.4 Mathematical formulation of the second-level pro-

blem

The mathematical formulation of the second-level problem is exactly the same as the one
discussed in Sec. 4.5, hence the reader is addressed to that Section for all the related
mathematical details.

Here we recall that the main focus of the second-level phase concerns the design of the
laminated plate in terms of its stacking sequence. In this phase the design of a laminate
conceived to have some given properties is reduced to an unconstrained minimisation
problem. Of course, this second problem depends upon the results of the first one, because
the laminate to be designed must have the optimal elastic properties and thickness issued
from the first-level design problem. We remind also that the design variables of this
second-level problem are the layer orientations.

Concerning the code BIANCA the structure of the genotype of the individual-laminate
is exactly the same discussed in Sec. 4.5 and shown in Fig. 4.4.

6.5 Finite element model of the hybrid structure

The finite element analysis is conducted in order to evaluate the objective and constraint
functions for each individual, i.e. for each point in the design space at the current gener-
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ation. The FE model is built in ANSYS environment, see Fig. 6.4. The need to analyse,
within the same generation, different geometrical configurations (plates with different
number of patches), each one corresponding to an individual, requires the creation of an
ad-hoc input file for the FE code, that has to be interfaced with BIANCA. Since the num-
ber of modules is included among the decision variables, the FE model must be conceived
in order to take into account for variable geometry and mesh. Indeed, for each individual
at the current generation, depending on the number of chromosomes and, hence, on the
number of patches the FE code has to be able to vary in a correct way the number of
elements wherein the structure is discretised, thus a correct parametrisation of the model
has to be done.

The structure is modelled with a combination of shell and solid elements. In particular,
the laminate is modelled using ANSYS SHELL99 elements with 8 nodes and 6 degrees
of freedom (DOFs) per node and its mechanical behaviour is described specifying the
Cartesian components of tensors A∗, B∗ and D∗ that are functions of the mechanical
unknowns, i.e. the polar parameters. The viscoelastic patches are modelled using ANSYS
SOLID186 elements with 20 nodes and 3 DOFs per node.

Figure 6.4: Mesh and rigid constraint equations for the FE model of the structure.

The choice of using solid elements to model the viscoelastic patches is strictly related
to the main goal of our optimisation strategy: since we have to estimate the loss factors
of the structure, for each natural frequency, we need to build a mathematical model able
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to describe (with a good level of accuracy and reliability) the mechanical response of the
physical system, i.e. the energy dissipation due to the different components of the strain
tensor.

It is worth noting that, during the optimisation process, for each individual, we perform
two FE calculations: a non-linear modal analysis, according to the logical flow of the IMSE
method shown in Fig. 5.2, together with a linear static analysis in order to compute
the reaction moment My, according to the scheme shown in Fig. 6.2. Concerning the
boundary conditions (BCs) of the model, they can vary depending on the considered
case-study as we will explain in the next Section. In any case, the extraction of the first
Nf = 5 non-rigid modes for the FE model is carried-out.

We recall that the number of elements as well as the number of DOFs of the whole
structure depends on the number of patches N . In particular, the size of the shell ele-
ments can vary over the plate surface: in the regions without the viscoelastic patches the
dimensions of the shell elements are 2 × 2 mm2, while a local refinement occurs in the
regions where the patches are bonded. Moreover, the in-plane size of the solid elements
used for the rubber patches exactly matches the one of the refinement realised for the
shell elements of the laminate, see Fig. 6.4. In addition, we have previously checked that
a single element in the thickness of each patch is sufficient to capture in correct way the
damping mechanisms linked to the behaviour off the viscoelastic material. Finally, the
number of degrees of freedom of the whole model can vary from 18006 to 56688.

Differently from what is usually done in the literature, we do not need to create
fictitious elements to model the ”air”, which are used to fill the gaps between the elements
that constitute the elastomer patches. With a correct parametrisation of the FE model, in
terms of geometry and mesh, we can avoid all these difficulties and we are able to consider
the exact circular geometry of the patches, without considering polygonal approximation
and without introducing additional elements with fictitious properties that should alter
the results of the analyses.

As conclusive remark, it can be noticed that the compatibility of the displacement
field between the patches (modelled with solid elements) and the plate (modelled with
shell elements) is realised by means of constraint equations on each corresponding node
belonging to contiguous solid and shell elements, see Fig. 6.4. In particular, we specified
rigid constraints between the nodes of the middle surface of the laminated plate and the
corresponding ones of the bottom surface of the patches. Rigid constraints equations
are specified according to the classical scheme implemented within the ANSYS code:
the master nodes are those belonging to the middle plane of the composite plate, whilst
the slave nodes are those located on the bottom surface of every patch. Through these
constraint equations, the displacement of the nodes belonging to the top surface of the
plate (in the region wherein the patch is bonded) is equal to that of the nodes belonging
to the bottom surface of the patch.
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6.6 Studied cases and results

For our optimisation problem we have considered three different examples. It is worth
noting that such cases are different from a conceptual point of view. More precisely, in the
first two examples the laminated plate has not to be designed and we must determine the
optimal distribution of the rubber patches in order to maximise the damping capability
of the system (as explained below the first two examples differ only for what concerns
the BCs applied on the plate in order to study the effect of the BCs on the distribution
of the patches). On the contrary, in the last one we perform the simultaneous design of
both the elastic and the viscoelastic parts of the structure, namely the laminate and the
patches, in order to show that we can obtain a more effective optimal configuration in
terms of damping capabilities of the system. We recall that the design variables, their
nature and bounds for the optimisation problem at hand are detailed in Table 6.2. Now,
let us introduce the three examples.

• Case 1: as said previously, the goal of this example consists in maximising the first
Nf modal loss factors of a given plate by simply bonding some rubber patches over
the plate. Nevertheless, since the characteristics of the laminated plate (in terms of
number of layers and stacking sequence and, hence, in terms of stiffness) are known
a priori, we do not consider the constraint (6.10) on the bending stiffness as well
as constraints from (6.12) to (6.16) on the laminate polar parameters. Of course,
being the laminate stack given a priori, we do not need to solve the second-level
problem of the optimisation procedure. Therefore, in this example the addition of
the damping material is limited only by weight and geometrical requirements: in
other words we consider only the constraint (6.11) on the weight of the plate as well
as constraints from (6.17) to (6.19) on the positions of the patches for what concerns
the mathematical formulation of the optimisation problem. Moreover, concerning
the BCs of the FE model, in this first case the plate is clamped at the root section.
We remind that the overall number of design variables depends on the number of
patches N . Thus, for the present case we have 3N+1 unknowns: since the laminated
plate has not to be designed, the only design variables are the number of patches N
along with their constitutive parameters, namely 3 design variables for each patch,
i.e. the position xi, the diameter Di and the thickness ti. In addition, for this first
case, the total number of constraints is N + 2: 1 constraint on the weight of the
structure and N + 1 constraints on the positions of the patches over the plate. In
particular, according to the bounds on the number of patches listed in Table 6.2,
the number of design variables varies between 4 and 31, while the minimum number
of constraints is 3 and the maximum one is 12.

• Case 2: the assumptions and the considerations done for the first example are
still valid for this second one. The only difference concerns the BCs applied to the
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laminated plate: in the present case the plate is considered simply-supported at
both root and tip sections. Therefore, our aim consists in studying the effect of the
BCs of the model on the optimal distribution of the patches over the plate, and,
hence, their influence on the damping capabilities of the system.

• Case 3: in this last example we consider the most general case where the optimum
design of the system is realised simultaneously for what concerns both the elastic and
viscoelastic properties of the structure: on one hand we look for the best distribution
of the rubber patches and on the other hand we search for the optimal elastic
properties of the laminate (in terms of its polar parameters RA∗

0K and RA∗

1 and its
thickness h) which maximise the damping capabilities of the structure satisfying,
at the same time, the requirements on the weight and on the bending stiffness of
the system. Therefore, for this example the first-level problem is formulated in the
most general case, according to Eq. (6.20), considering all kinds of constraints.
Of course, for this example we need to solve the second-level problem because the
laminate stack has to be designed in order to attain the optimal elastic properties
and thickness issued from the first phase of the procedure. In addition, concerning
the BCs of the FE model, in this last case the plate is clamped at the root section.
For the present case, the total number of design variables as well as the number of
constraint equations depend on the number of patches N , as explained in Sec. 6.3:
the number of unknowns can vary between 7 and 34, while the number of constraints
varies between 9 and 18.

These test cases are chosen according to the problems often treated in the literature and
also according to the will of testing new problems which are more general and complex
than the ones often presented in the literature.

Concerning the optimisation problem of Eq. (6.20), for the first two examples the lam-
inated plate has a quasi-homogeneous, fully-orthotropic unsymmetric stacking sequence
made of 18 plies: [−45/0/45/− 45/0/453/02/− 452/0/− 452/452/0]. The reference value
for the mass of the system is evaluated considering the laminate without the rubber
patches: the reference mass is M ref = 0.0135 Kg.

Concerning the third example, in order to establish correct reference values for the
reaction moment around the y axis and the mass of the hybrid plate, a static analysis
is conducted on a reference structure before starting the optimisation process. The un-
damped reference plate, i.e. a plate without elastomer patches, considered here is made
of 32 glass-epoxy laminae (see Table 6.1 for the material properties) with the following
stacking sequence: [02/902/02/452/− 452/02/902/02]S. Finally, the reference values of the
reaction moment and mass of the system for this last example are My

ref = −163.0 Nmm
and M ref = 0.0240 Kg, respectively.

As conclusive remark, it can be noticed that the user-defined tolerances on the con-
straints of the problem (6.20) are set as follows: ϵMy

= ϵM = 0.05, i.e. the relative
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maximum loss in stiffness (only for the last example) and the relative maximum increase
in mass (for all cases) between the optimised structure and the reference one are limited
to 5%.

6.6.1 Case 1: clamped quasi-homogeneous orthotropic plate

As said previously, in this case the laminated plate is clamped at the root section. Since
the number of patches is variable and they are not identical, a crossover between species
is required and the optimal value of N is an outcome of the search process: the most
adapted species automatically issues as a natural result of the Darwinian selection. The
genotype of the individual for this case is the one shown in Fig. 6.3 without the first
chromosome coding the variables of the laminated plate, i.e. the thickness and the polar
parameters.

Concerning the genetic parameters, the population size is Nind = 40 and the maximum
number of generations is Ngen = 100. The crossover and mutation probability are pcross =
0.85 and pmut = 1/Nind, while the shift operator and chromosomes number mutation
probability are pshift = 0.5 and (pmut)chrom = (Nmax −Nmin) /Nind, where Nmax and
Nmin are the upper and lower bounds on the number of patches, i.e. the maximum and
the minimum number of chromosomes for the generic individual. Selection is performed
by the roulette-wheel method, the elitism is active and the ADP method has been used
for handling constraints.

The best solution found by BIANCA is shown in Table 6.3. The optimal number of
viscoelastic patches for the damping maximisation is 3. The global constrained minimum
has been found after 90 generations, see Fig. 6.5 a). Fig 6.5 b) shows the variation of the
optimal number of viscoelastic patches along the generations: it can be seen that the best
number of patches N varies between 2 and 3 and that the optimal value of N is reached
after 80 generations.

In addition, comparing the plots in Fig. 6.5 a) and 6.5 b), one can notice that the con-
vergence towards the best value of the number of modules (here, the number of patches)
and that of the objective function are independent. They never occur at the same time,
and the optimisation of the number of modules happens always before that of the ob-
jective function. Thus we can conclude that the strategy used in BIANCA for evolving
simultaneously species and individuals normally let attain first the best species, and then
continues to evolve individuals within the best species towards the best individual.

Fig. 6.6 shows the optimal distribution of the patches over the plate for the present
case, at the first and at the last generation. We can see that the dimensions (diameter
and thickness), the positions and the number of patches change during the generations.
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Best solution

N 3

xi [mm] {12.5, 37.5, 62.5}
Di [mm] {17.7, 10.1, 15.7}
ti [mm] {1.46, 0.66, 1.47}

η1 0.01060

η2 0.00846

η3 0.00129

η4 0.01061

η5 0.01440

f1 [Hz] 29.43

f2 [Hz] 181.85

f3 [Hz] 256.09

f4 [Hz] 503.74

f5 [Hz] 558.53

M [Kg] 0.014174 (+4.99%)

Φ −0.04538

Table 6.3: Best solution found using BIANCA for the optimisation problem (6.20), case
1.

Figure 6.5: (a) Best values of the objective function and (b) optimal number of patches
along generations for problem (6.20), case 1.
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Figure 6.6: Optimal distribution of viscoelastic patches at the (a) initial and (b) final
generation for problem (6.20), case 1.

6.6.2 Case 2: simply supported quasi-homogeneous orthotropic
plate

In this second case the laminate is simply-supported at its ends. The aim of such an
example is to study how the distribution of the viscoelastic material changes when we
consider different BCs for the model. The genotype of the individual and the genetic
parameters are exactly the same as the previous case.

The best solution found by BIANCA is shown in Table 6.4. For this case, the optimal
number of viscoelastic patches for the damping maximisation is 2. Fig. 6.7 a) and b)
show the variation of the best solution and that of the best species along the generations,
respectively. We can see that the global constrained minimum was found after 73 gener-
ations, while the number of viscoelastic patches N converges to its optimal value after 13
generations. Again, the convergence towards the best value of N and that of the objective
function are independent, and the convergence towards the best species is faster than the
convergence towards the best individual.

Fig. 6.8 shows the optimal distribution of the patches over the plate for the present
case, at the first and at the last generation. Again, according also with Fig. 6.7 b), it can
be noticed that the geometry (in terms of diameter and thickness), the positions and the
number of patches change during the generations.
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Best solution

N 2

xi [mm] {25.0, 175.0}
Di [mm] {17.8, 16.8}
ti [mm] {1.50, 1.45}

η1 0.00196

η2 0.00854

η3 0.01563

η4 0.01620

η5 0.01808

f1 [Hz] 80.78

f2 [Hz] 319.34

f3 [Hz] 712.52

f4 [Hz] 1078.07

f5 [Hz] 1268.08

M [Kg] 0.014172 (+4.98%)

Φ −0.06041

Table 6.4: Best solution found using BIANCA for the optimisation problem (6.20), case
2.

Figure 6.7: (a) Best values of the objective function and (b) optimal number of patches
along generations for problem (6.20), case 2.
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Figure 6.8: Optimal distribution of viscoelastic patches at the (a) initial and (b) final
generation for problem (6.20), case 2.

6.6.3 Case 3: general case

This is the most general case where the design of both the elastic and viscoelastic parts
of the structure is realised simultaneously in order to maximise its damping capabilities.
We recall that in this last example also the constitutive parameters of the laminate, i.e.
its total thickness and the anisotropic polar parameters, are included among the design
variables. The genotype of the individual is the one discussed in Sec. 6.3 and shown in
Fig. 6.3.

Due to the greater complexity of the optimisation process in the present case, the
population size and the maximum number of generations are increased up to Nind = 60
and Ngen = 150, respectively. For the rest, the genetic parameters are strictly those
already used in the previous examples.

The best solution found by BIANCA is shown in Table 6.5. The optimal number
of viscoelastic patches for the damping maximisation for this last case is 7. The global
constrained minimum has been found after 111 generations, see Fig. 6.9 a). Fig 6.9 b)
shows the variation of the optimal number of viscoelastic patches along the generations: at
the first generation the best species shows 3 patches bonded over the plate. Then, one can
see that the best number of patches N varies between 5 and 7 and that the optimal value
of N is reached after 42 generations. Thus, as in the previous examples, the convergence
towards the best value of N and that of the objective function are independent, and
the convergence towards the best species is faster than the convergence towards the best
individual.

Fig. 6.10 shows the optimal distribution of the patches over the plate for the present
case, at the first and at the last generation. Once again, the dimensions (diameter and
thickness), the positions and the number of patches change during the generations.
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Best solution

N 7

xi [mm] {12.5, 37.5, 62.5, 87.5, 112.5, 137.5, 162.5}
Di [mm] {17.0, 16.3, 16.3, 16.3, 16.1, 17.6, 17.7}
ti [mm] {3.00, 3.00, 3.00, 3.00, 3.00, 2.20, 2.50}
h [mm] 3.5

RA∗

0K [MPa] 3131.09

RA∗

1
[MPa] 2768.79

η1 0.01350

η2 0.00298

η3 0.01652

η4 0.09163

η5 0.01815

f1 [Hz] 59.54

f2 [Hz] 327.51

f3 [Hz] 367.71

f4 [Hz] 557.45

f5 [Hz] 1022.21

M [Kg] 0.02518 (+4.93%)

My [Nmm] −158.87 (−2.53%)

Φ −0.14278

Table 6.5: Best solution found using BIANCA for the optimisation problem (6.20), case
3.

The first five non-rigid modes for the optimal configuration of whole structure are
shown in Fig. 6.11. It can be noticed that we have different kinds of mode-shapes: the
first, the third and the fifth mode are bending modes in the x − z plane of the plate,
while the second one is a bending mode in the x − y plane of the plate and finally the
fourth mode is a torsional mode around the x axis. Of course, the optimal distribution of
the viscoealstic material, i.e. the distribution of the rubber patches over the plate, along
with the elastic properties of the composite plate are influenced by all the modes and the
related damping mechanisms.

Considering that the value of the ply thickness is 0.125 mm, from Table 6.5 we can
notice that the laminated plate is made of 28 plies (the total optimum thickness of the

laminate is h = 3.5 mm) and has the orthotropy with K̂A∗

= 0, because the value of the
polar quantity RA∗

0K is positive.
Concerning the second-level problem, the design variables are the layers orientations,
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Figure 6.9: (a) Best values of the objective function and (b) optimal number of patches
along generations for problem (6.20), case 3.

Figure 6.10: Optimal distribution of viscoelastic patches at the (a) initial and (b) final
generation for problem (6.20), case 3.

which can vary between −90◦ and 90◦ with a step of 1◦. The population size has been
set to Nind = 500 and the maximum number of generations to Ngen = 500. The crossover
and mutation probability are still pcross = 0.85 and pmut = 1/Nind, respectively. Selection
is performed by the roulette-wheel operator and the elitism is active. Moreover, always
concerning the second-level problem, as in each numerical technique, the quality of solu-
tions found by BIANCA can be estimated on the basis of a numerical tolerance, that is
the residual. For a discussion on the importance of the numerical residual in problems
of this type, the reader is addressed to [116]. It is worth noting that, being F (δ) a
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Figure 6.11: First five non-rigid modal deformed shapes of the whole structure for the
optimal configuration, case 3.

non-dimensional function, the residual of the solution is a non-dimensional quantity too.
Table 6.6 shows the best stacking sequence found using BIANCA for the second-level

problem. The residual in the last column is the value of the global objective function F (δ)
for the solution indicated aside (we remind that exact solutions correspond to the zeroes
of the objective function). Fig. 6.12 a) shows the first component of the homogenised
stiffness tensors of the laminate, i.e. A∗, B∗ and D∗: the solid line refers to the extension
tensor, the dashed one to the bending tensor, while the dash-dotted one is linked to
the coupling stiffness tensor. We can see that the laminate is uncoupled (the dash-
dotted curve is reduced to a small black point in the center of the plot, because B∗

11 is
practically null), homogeneous (the solid and dashed curves are practically coincident)
and orthotropic (there are two orthogonal axes of symmetry in the plane). Moreover, the
main orthotropy axis is aligned with the x axis of the structure, in fact it is oriented at 0◦.
Similar considerations can be done for the other components of these tensors, not shown
in Fig. 6.12 a) for the sake of brevity.

Fig. 6.12 b) shows the variation of the best solution during iterations: the best solution
is found after 470 generations.

N. of plies Stacking sequence (◦) Residual

28 [0/− 1/0/− 2/0/0/17/− 1/2/− 4/0/− 2/− 1/− 6/ 1.3× 10−3

−16/− 1/− 1/17/2/17/− 4/− 3/− 1/0/0/− 2/0/0]

Table 6.6: Case 3: best stacking sequences for the optimal solution.
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Figure 6.12: (a) First component of the homogenised stiffness tensors of the laminate
and (b) best values of the objective function during iterations, case 3.

6.6.4 Discussion of results

Concerning the influence of the BCs of the model on the optimal distribution of the
viscoelastic patches we can immediately see this effect by considering the results of the
first and the second examples. In the first case the patches are placed near to the root
section of the plate, i.e. in the region where the strains are higher and, consequently,
where the damping phenomenon linked to those strain components is stronger, see also
Sec 5.2 of Chapter 5 for a quick glance on the different damping mechanisms in viscoelastic
materials.
The same considerations can be done also for the distribution of the patches for the second
example: in this case the distribution is almost symmetric for what concerns the values
of the diameters, thickness and positions, see Table 6.4. As in the previous case, also in
this second example the patches are placed in the regions of the plate where the strains
are higher.

Fig. 6.13 a) and b) show the maximum strain components in the rubber patches for
what concerns examples 1 and 2. It can be noticed that, when we consider bending modes
in the x− z plane (i.e. modes n. 1, 3 and 4 for case 1 and modes n. 1, 3 and 5 for case 2)
despite all the strain components are involved into the damping phenomenon, the major
contribution is due to the axial strain εxx and to the shear strain through-the-thickness
εxz. The same thing happens when we look at the bending modes in the x − y plane,
i.e. mode n. 2 for both cases 1 and 2. On the contrary, when we consider torsional
modes, i.e. mode n. 5 for the first example and mode n. 4 for the second example,
the major contribution to the damping mechanism of the structure is associated to the
in-plane shear strains εxy and, secondly, to the shear deformations εxz and εyz, being
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the effect of the longitudinal strains negligible for the torsional mode. It is worth noting
that, differently from what is usually done in the literature where only bending modes
are considered when studying the damping capabilities of viscoelastic materials, all the
different modes, i.e. bending and torsional ones, are taken into account into the proposed
optimisation procedure because they have the same influence on the damping response of
the structure in terms of the values of the modal loss factors.

Figure 6.13: Maximum strain components in the viscoelastic patches for the optimised
plate, (a) case 1, (b) case 2 and (c) case 3.

Concerning the third example, the simultaneous optimisation of the viscoelastic and
elastic properties of the structure allows to find better damping capabilities when com-
pared to the first two cases. Only by considering the overall design of the structure one can
hope to find a real global optimum configuration: for this last case, in fact, the damping
capability of the structure (and, hence, the values of the modal loss factors) is practically
doubled with respect to that of the first two examples.

Fig. 6.13 c) shows the maximum strain components in the rubber patches for what
concerns case 3. The considerations made for the first two examples can be applied also to
this third case. Nevertheless, we can notice that the major contribution to the damping
phenomenon of this last case is due to the torsional mode, i.e. mode n. 4 in Fig. 6.13 c):
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the value of the modal loss factor associated to that mode is nine times the value of the
others loss factors, see Table 6.5. This means that the torsional mode of the plate has a
strong effect on the final distribution of the patches over the plate, in terms of diameters,
thickness and positions.

As conclusive remark, for what concerns the third example, it can be noticed that,
differently from what is usually done in the literature, we do not make any simplifying
assumption on the laminate stacking sequence which is completely free, neither we use
standard orientation angles for the elementary plies (like for instance 0◦, ±45◦ and 90◦).

All the previous circumstances lead us to find a non-standard optimal solution which
represents a real global optimum (in terms of the overall properties of the system) for the
problem at hand.

6.7 Concluding remarks

The optimisation procedure presented in this work is characterised by several points that
make it an innovative, effective, general method for the design of hybrid modular struc-
tures. Our motivation was to create a general procedure for the optimisation of modular
systems, with the number of modules that belongs to the set of the design variables and
without using special assumptions to get some results. The numerical method is, however,
a fundamental part of the procedure, because it is thanks to an appropriate numerical tool
that the simultaneous optimisation of the number of modules and of their characteristics
is possible. We briefly recall the features of the procedure:

• no simplifying assumptions nor standard rules are used to design the laminated plate
(this allows for looking for a true global minimum, hard to be obtained otherwise);

• the procedure is composed by two distinct but linked non-linear minimisation prob-
lems: the first one is a constrained problem that uses a free material approach to
the design of the geometric and material properties of the system; the second step is
an unconstrained problem formulated to design a laminate able to realise the overall
optimal mechanical properties designed in the first step;

• quasi-homogeneous sequences are used; this allows for writing exact geometric bounds,
valid for both the extension and bending behaviour and for reducing the number of
mechanical design variables in the first step;

• bending orthotropy is really obtained, its type specified and the orthotropy direction
directly managed, without using special sequences or orientations;

• the number of modules, i.e. the number of viscoelastic patches and of layers of the
laminated plate, is directly optimised by the procedure, and this is entirely done by
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a genetic approach able to select not only individuals, but also species; in practice,
the algorithm determines automatically the optimal number of design variables;

• the mechanical characteristics are represented by the polar formalism, that gives
several advantages, namely to explicit elastic symmetries, elastic and geometric
bounds, and to eliminate from the procedure redundant mechanical properties;

• the numerical computations are carried on by a special GA, the code BIANCA, able
to cross simultaneously species and individuals, to handle continuous and discrete
valued variables during the same iterations and to effectively handle the constraints
imposed to the problem;

• for the solution of the first-level problem, the code BIANCA has been interfaced with
a FE code, in order to numerically compute some mechanical quantities, namely the
modal loss factors of the structure and the bending moment around the y axis;

• the mathematical formulation of the second step problem allows for taking into
account for all the possible combinations of elastic requirements and properties; it
is stated as an unconstrained minimum problem of a positive semi-definite function,
whose absolute minimum is equal to 0, which renders possible to know if a true
global minimum has been attained.

To our best knowledge, this is the first time that the problem of maximising the
damping capabilities is formulated considering a discontinuous aperiodic distribution of
viscoealstic material, namely by considering elastomer patches bonded over the structure
which share the same form but, at the same time, they can be characterised by different
values of their constitutive geometrical parameters, i.e. diameters, thickness and positions.
Moreover, this is also the first time that the optimisation problem is stated considering
the geometrical requirement, in the form of constraint functions, on the position of the
patches bonded over the plate. Thus, the main key points of our strategy consist in
determining which are: a) the best number of rubber patches, b) their best dimensions
and positions over the structure as well as c) the best values of the thickness and of the
polar parameters of the laminated plate which play an important role in the determination
of the damping capability of the system.

The use of an evolutionary strategy along with the fact that the problem is stated in
the most general case, leads us to find some non-conventional configurations, which show
better damping properties when compared to the classical constrained layer treatments,
namely classical hybrid elastomer/composite laminates.

Another point deserves attention: the passive solution consisting in patches bonded
over composite plates is a good alternative with respect to introducing viscoelastic layers
in sandwich plates, especially in terms of manufacturing because the patches can be
deposited a posteriori on the plate surface. Nevertheless, we can see by the example
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treated in this Chapter, that such technology is relevant only if the structure is optimised
a priori, i.e. if the simultaneous design of both elastic and viscoelastic properties of the
structure is taken into account.

The proposed approach appears to be very flexible and applicable to various problems
of structural engineering. Moreover, the procedure has a high level of versatility: more
constraints could be easily added to the optimisation problem, e.g. constraints on the
strength, yielding or de-lamination of the laminate, without reducing the power and the
robustness of the proposed approach.
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General conclusions and future
perspectives

The main subject of this thesis is the optimal design of advanced engineering modular
systems through a new genetic approach.

In particular, in the present thesis we have developed a new version of the genetic code
BIANCA able to deal with optimisation problems of modular systems. Firstly, we have
introduced the concept of species : it is linked to the number of individual’s chromosomes
which is, on turn, linked to the number of modules composing the system and, hence, to
the overall number of design variables which uniquely defines the behaviour of the system.
This has lead us to a reformulation of the structure of the individual’s genotype, i.e. of
the representation of the information within BIANCA, in order to properly represent its
belongings to a given species.

Secondly, we developed new genetic operators allowing the reproduction between two
individuals of different species. These operators have substantially changed the crossover
and mutation phases of the standard GA. Thanks to such operators, BIANCA is now able
to determine automatically and simultaneously the best species and the best individual
within the best species.

Moreover, since very often the optimisation problems have a certain number of con-
straint equations (both equality and inequality constraints) to be satisfied, we developed
a very general method which can handle the constraints in a very effective way: the Auto-
matic Dynamic Penalisation (ADP) constraint-handling technique. The main advantages
of such an approach (which belongs to the class of exterior penalty-based approaches) are
substantially two:

• the procedure is automatic and problem-independent because the GA can automat-
ically calculate the values of the penalty coefficients without the intervention of the
user by simply exploiting the values of the objective and constraint functions in the
current population;

• the method is dynamic, since the evaluation of the penalty level is updated at each
generation; this allows the values of the penalty coefficients to be the most suitable to
the current distribution of feasible and infeasible individuals in the population, the
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expected effect being eventually to extinguish the infeasible group in the population
or to limit infeasible individuals to regions close to the boundary between feasible
and infeasible domains.

The ADP strategy has been tested on several benchmark problems, showing very good
search capabilities compared to the best solutions provided in the literature. In addition,
the ADP strategy showed to be very effective when dealing with both inequality and
equality constraints, also when such constraints are expressed by non-linear, non-convex
functions.

Finally, we developed a very general interface which renders BIANCA able to exchange
input/output informations with mathematical models supported by external codes and
also a graphical user interface for our code. Thanks to the interface with external codes
BIANCA is now able to face optimisation problems where the value of the objective
function and/or constraints cannot be computed analytically. Typically, this is the case
of structural optimisation, where the most part of times the structural response is nu-
merically assessed using finite element codes. In addition, thanks to the graphical user
interface, BIANCA can now be easily handled and employed by any user.

The numerical strategy developed in this thesis has proved to be versatile and effective
and it has been applied to a certain number of problems of different nature concerning
advanced modular structures. In all the cases, the fact that the problem is every time
stated in the most general case, i.e. without using any simplifying hypotheses, together
with the fact that the solution search is performed by a numerical strategy which is
“purely genetic” and fully problem-independent, led us to find, for each case-study, non-
conventional solutions which are better than the classical ones that can be found in the
literature.

The main non-classical features and results characterising each considered case can be
resumed as follows:

• the identification of the electromechanical properties of piezoelectric structures (Chap-
ter 2): the key points of this research are the estimation of the whole 3D set of
electromechanical properties of the piezoelectric transducers and the use of the full
set of constraints that must be imposed to the minimisation problem to ensure the
positive definiteness of the stiffness tensor of the material of the patches. For such
a problem, BIANCA leads us to reach, with a high precision, the reference val-
ues of the natural frequencies of the active plate for both closed and open circuit
conditions;

• the design of laminates having the minimum number of layers for obtaining given
elastic properties (Chapter 3): the key-point of this problem consists in reducing
it to a classical unconstrained non-linear programming problem by searching the
minima of a semi-definite positive function over the space of the design variables.
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The numerical results obtained in this case, which are completely new and non-
classical examples, show the effectiveness of the proposed approach;

• the least-weight wing box section design problem (Chapter 4): the key-point of this
study is the development of a two-level procedure composed by two distinct but
linked non-linear minimisation problems. The first one is a constrained problem
that uses a free material approach for the design of the geometric and material
properties of the anisotropic structure, considered as composed by a single-layer
fictitious anisotropic material; the second step is an unconstrained problem formu-
lated to design a laminate able to realise the overall optimal mechanical properties
designed in the first step. The results presented in this Chapter show that when
standard rules for the stacks of laminates are abandoned and the design of the op-
timal number of the modules composing the structure is included into the design
procedure, significant savings of the weight of the structure can be obtained: up to
50%, when compared to a classical solution using an aluminium alloy, and up to
20% when compared to a solution with standard aeronautical stacking sequences;

• the design of damping capabilities of hybrid elastomer/composite laminates (Chap-
ter 5): the key-points of our strategy consist in determining which are the best num-
ber of layers of the hybrid plate, along with the best number and positions of the
elastomer layers within the stacking sequence. The fact that the problem is stated
in the most general case leads us to find some non-conventional configurations, i.e.
non-constrained layer configurations, which show better damping properties when
compared to the classical constrained layer treatments;

• the design of damping capabilities of laminated plates with bonded viscoelastic
patches (Chapter 6): the key-points of this work are, on one side, the application
of the two-level procedure discussed in Chapter 4 and, on the other side, the for-
mulation of the problem considering, for the first time, a discontinuous aperiodic
distribution of viscoealstic material (the patches) and, at the same time, the ge-
ometrical requirement, in the form of constraint functions, on the position of the
patches bonded over the plate. Thus, we have determined: the best number of rub-
ber patches, their best dimensions and positions over the structure as well as the
best values of the thickness and of the polar parameters of the laminated plate. Also
in this case, the fact that the problem is stated in the most general case, leads us to
find some non-conventional configurations, which show better damping properties
when compared to classical hybrid elastomer/composite laminates.

Concerning the future perspectives, we think that our numerical approach for design-
ing modular systems could be applied to other different problems. Further applications
may occur, for example, in the case of the design of active structures actuated using piezo-
electric devices (in the form of patches bonded over the structure) where we can imagine
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to maximise the displacement and/or the actuated force in particular regions of the struc-
ture, satisfying simultaneously others requirements expressed in the form of constraints
as, for instance, constraints on the overall weight of the system, on the positions of the
piezoelectric actuators, on the energy required for the actuation and so on. The design
variables of such a problem could be the number and the positions of the piezoelectric
patches, their sizes, the control law which governs the electric signal transmitted to the
actuators, the geometrical and material parameters of the structure where the patches
are bonded and so on.
Moreover, we can imagine to extend the studied problems by considering different sit-
uations. If we consider, for instance, the problem of the least-weight wing-box section
or the problem of designing the damping capabilities of laminated plates with bonded
viscoelastic patches, the two-level procedure adopted to face the problem allows us to
easily introduce some additional constraints both into the first and the second step of
the procedure. For example, we could consider further requirements as constraints on
the strength of the structure at the first step or constraints on the delamination, on the
fatigue damage and so on at the second step, without changing the structure of two-level
procedure.

Another possible axis of research concerns the interface of BIANCA with external
codes. In particular, when it is interfaced with huge FE models or when it is used coupled
with non-linear FE analyses, the time spent to find a global optimum configuration may
require from several hours to several days for a complete simulation. A possible solution
to reduce the computational cost is the parallelisation of the code: we can imagine to
divide each population in groups of individuals which are handled by different processors,
reducing in this way the time required to find the solution. Another possible alternative
could consist in using metamodels as, for example, neural networks, which simulate the
behaviour of the considered FE model and that provide the “same” response as that of
the FE model (i.e. an approximation of the response of the FE model with a good level
of accuracy) in a shorter time.

To conclude, we can assert that the works developed within this thesis led us on one
hand, to find original and completely new and non-classical results for what concerns
all the considered real-world engineering applications and on the other hand, to define
a new genetic procedure specially conceived for the optimal design of modular systems
which, on its turn, leads to explore new horizons in such a framework and whose power
and effectiveness can be tested only by studying and dealing with new, more complex
problems.
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[101] A.L. Araújo, C.M.M. Soares, and C.A.M. Soares. Inverse techniques for the char-
acterization of mechanical and piezoelectric properties on composite and adaptive
structures: A survey. Computational Technology Reviews, Saxe-Coburg Publications,
2:103–123, 2012.

[102] M. Montemurro, H. Nasser, Y. Koutsawa, S. Belouettar, A. Vincenti, and P. Van-
nucci. Identification of electromechanical properties of piezoelectric structures
through evolutionary optimisation techniques. International Journal of Solids and
Structures, 49(13):1884–1892, 2012.

[103] J. van Randeraat and R. Setterington. Piezoelectric Ceramics. Mullard Ltd, London,
UK, 2nd edn, 1974.

[104] W. G. Cady. Piezoelectricity: an Introduction to the Theory and Applications of
Electromechanical Phenomena in Crystals. Mc Graw-Hill, New York, London, 1946.

[105] J. F. Nye. Physical Properties of Crystals: Their Representation by Tensors and
Matrices. Clarendon Press, Oxford, 1957.

[106] V. Piefort. Finite Element Modeling of Piezoelectric Active Structures. PhD thesis,
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