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Équipe BACCHUS

Directeur de thèse: Rémi Abgrall
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V

Abstract

In this manuscript, three main contributions are illustrated concerning the propa-
gation and the analysis of uncertainty for computational fluid dynamics (CFD) ap-
plications. First, two novel numerical schemes are proposed: one based on a collo-
cation approach, and the other one based on a finite volume like representation in
the stochastic space. In both the approaches, the key element is the introduction of a
non-linear multiresolution representation in the stochastic space. The aim is twofold:
reducing the dimensionality of the discrete solution and applying a time-dependent
refinement/coarsening procedure in the combined physical/stochastic space.

Finally, an innovative strategy, based on variance-based analysis, is proposed for
handling problems with a moderate large number of uncertainties in the context of
the robust design optimization. Aiming to make more robust this novel optimization
strategies, the common ANOVA-like approach is also extended to high-order central
moments (up to fourth order). The new approach is more robust, with respect to
the original variance-based one, since the analysis relies on new sensitivity indexes
associated to a more complete statistic description.

Keywords: Uncertainty propagation, Multiresolution, Adaptivity, Finite Volume,
Fluid Dynamics, Statistics, Sensitivity Analysis, Robust Optimization

Résumé

Ce manuscrit présente des contributions aux méthodes de propagation et d’analyse
d’incertitude pour des applications en Mécanique des Fluides Numérique. Dans un
premier temps, deux schémas numériques innovantes sont présentées: une approche
de type ”Collocation”, et une autre qui est basée sur une représentation de type ”Vol-
umes Finis” dans l’espace stochastique. Dans les deux, l’élément clé est donné par
l’introduction d’une représentation de type ”Multirésolution” dans l’espace stochas-
tique. L’objective est à la fois de réduire le nombre de dimensions et d’appliquer
un algorithme d’adaptation de maillage qui puisse être utilisé dans l’espace couplé
physique/stochastique pour des problèmes non-stationnaires. Pour finir, une stratégie
d’optimisation robuste est proposée, qui est basée sur une analyse de décomposition
de la variance et des moments statistiques d’ordre plus élevé. Dans ce cas, l’objectif
est de traiter des problèmes avec un grand nombre d’incertitudes.

Keywords: Propagation de l’incertitude, Multirésolution, Adaptativité, Volumes
Finis, Dynamique des Fluides, Statistiques, Analyse de sensibilité, Optimisation ro-
buste
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Résumé étendu

Ce travail est focalisé sur les méthodes de quantification des incertitudes dans le con-
texte de la dynamique des fluides computationnelle. Ce manuscrit est divisé en deux
parties. La première partie décrit les éléments principaux pour le développement
d’une approche intrusif multi-résolution de la propagation des incertitudes. La deu-
xième partie du manuscrit inclut une collection de sept articles, qui contiennent les
détails du travail développé dans le cadre de cette thèse.

Depuis les années 60, le développement des ordinateurs programmables a per-
mis de coupler, à la théorie et les expériences, le calcul scientifique comme un outil
supplémentaire de l’investigation scientifique. Actuellement, le calcul scientifique
joue un rôle prédominant à la fois dans la recherche scientifique et dans la concep-
tion en ingénierie. Dans plusieurs cas, il n’est pas possible de refaire des expériences
pour des systèmes complexes à gérer, ou dans des conditions particulières et poten-
tiellement catastrophique (par exemple l’explosion d’un réacteur nucléaire ou l’effon-
drement d’un barrage).

L’impact du calcul scientifique a été considérablement augmenté au cours des
dernières années grce au développement d’algorithmes numériques plus efficaces et
la construction d’ordinateurs de plus en plus puissants. Cependant, la simulation
numérique présente encore beaucoup de limitations pour être vraiment prédictive.
Cette limitation vient de l’impossibilité de représenter, avec un système déterministe,
un système physique générique. L’approche classique du calcul scientifique est basé
sur la modélisation d’un système physique à l’aide d’un système d’équations qui
décrivent le comportement physique. Ce système d’équations doit alors être traduit
dans un modèle numérique avec des conditions d’entré. Un schéma de ce processus
est montré dans la figure 1 dans lequel l’input y se traduit, à travers le modèle, dans
le sortie u(y).

Figure 1: Schéma d’un modèle numérique classique avec une entrée déterministe. Figure
reproduite à partir de [45].

Cependant, ce type d’approche est insuffisant pour la description des systèmes
physiques. La modélisation de phénomènes complexes est inévitablement affectée
par les limitations dans la connaissance exacte d’un système et dans la conception du
modèle. Par exemple, l’aérodynamique d’un avion en vol transsonique est soumise à
l’effet de nombreux facteurs qui ne peuvent pas être déterminées avec une précision
absolue. Par exemple, il est impossible de connatre exactement les propriétés phy-
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siques et chimiques du fluide, la vitesse de l’avion, sa géométrie, etc. Il est clair
que, en général, la prise en compte de paramètres qui sont caractérisés au niveau
statistique, est indispensable. Ainsi, il est nécessaire un changement de perspectif
dans la simulation numérique, pour prendre en compte la caractérisation statistique
des input du système (voir la figure 2).

Figure 2: Schéma d’un modèle numérique général soumis à un input stochastique avec la
caractérisation stochastique de la sortie. Figure reproduite à partir [45].

L’ensemble des activités, dédiées à l’analyse de l’effet de la présence d’incertitudes
dans les simulations numériques, peut être appelé comme ”quantification des incer-
titudes”. Il y a trois étapes fondamentales à considérer:

• Caractérisation des sources d’incertitude;

• Propagation de l’incertitude;

• Caractérisation statistique de la sortie de la simulation.

Le travail présenté dans cette thèse a contribué à la quantification des incerti-
tudes à travers deux actions. Le premier objectif était de développer des algorithmes
efficaces pour la propagation des incertitudes pour des problèmes spécifiques à la dy-
namique des fluides. La deuxième contribution a été liée à la conception de stratégies
pour l’optimisation robuste, avec un nombre modéré de paramètres incertains.

Le travail présenté dans cette thèse a été développé dans le but de contribuer à
la quantification de l’incertitude dans le domaine de la dynamique des fluides. Dans
ce contexte, la présence des incertitudes est très importante. Les problèmes liés à
la dynamique des fluides sont caractérisés par des phénomènes non-stationnaires,
multi-échelle et non-linéaires. Dans ce travail, un accent particulier a été mis sur les
phénomènes liés aux fluides compressibles dans lequel l’apparition d’ondes de choc,
peut provoquer le développement de régions relativement minces avec de gradients
élevés de la solution. En particulier, on a considéré des lois conservation. Ces lois
expriment la conservation de plusieurs quantités physiques à l’aide d’équations aux
dérivées partielles de type hyperbolique. En particulier, les solutions d’équations de
conservation de type hyperbolique, peuvent présenter des discontinuités, même avec
des conditions initiales régulières.

La propagation des incertitudes, historiquement, a été traitée avec des méthodes
basées sur l’échantillonnage (techniques de type Monte Carlo). Dans ce type de
méthode, un code numérique est appelé plusieurs fois pour de différents jeux de
paramètres. A la fin, les calculs sont post-traités pour pouvoir caractériser statis-
tiquement la quantité d’intérêt qui est une sortie du calcul numérique. Ces familles
de méthodes, bien que facile à appliquer et flexibles, peuvent être chères en terme
de cot de calcul. Actuellement, deux types de méthodes sont utilisés: non-intrusive
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et intrusive. En ce qui concerne la propagation non-intrusive, dont les méthodes
d’échantillonnage sont les archétypes, la caractérisation statistique de la solution
est réalisée en lançant plusieurs fois un code de calcul pour des jeux de paramètres
différents. Ces méthodes sont indispensables quand on ne peut pas accéder aux
sources d’un code numérique, car le code est vu comme une bote noire. Pour résoudre
le problème de propagation des incertitudes avec un cot de calcul plus faible, des
techniques intrusives ont été récemment introduites. Ces techniques intrusives sont
basées sur la modification du code numérique. Parmi les méthodes plus connues, on
peut mentionner les techniques de chaos polynômial. Dans ce type de techniques,
la solution est développée en série polynomiale et, en utilisant une projection de
Galerkin, les coefficients sont calculés en résolvant un système d’équations (géné-
ralement) couplé. Dans cette famille de techniques, le nombre d’équations à résoudre
est plus grand que celui du système initial et est lié essentiellement à la troncature
de l’expansion choisie pour représenter les paramètres d’input. En même temps,
cette famille de techniques peut présenter une perte de la convergence spectrale de
la solution en présence de discontinuité.

Afin de résoudre à moindre cot le problème de la propagation des incertitudes
dans le cas d’écoulements compressibles en présence de discontinuité, Abgrall et
Congedo ont proposé une approche dite semi-intrusive (SI), dans laquelle, la solu-
tion est représentée, dans l’espace des paramètres, à travers une reconstruction de
type volumes finis. Cette technique permet d’obtenir un schéma, dans lequel le nom-
bre d’équations à résoudre ne change pas mais, qui permet également une grande
flexibilité en terme de distributions de probabilités qui caractérisent les entrées du
système. Cette généralité du schéma permet l’utilisation théorique de paramètres et
des distributions arbitraires, par exemple à partir de mesures expérimentales.

La méthode semi-intrusif proposé par Abgrall et Congedo, même si permet de
résoudre certaines limites des approches intrusives classique, reste très couteuse
quand on ’augmente le nombre de paramètres incertains. Ce type de problème est
connu dans la littérature comme ”curse of dimensionality”. Le but de ce travail
de thèse a consisté dans la modification du schéma semi-intrusive pour obtenir un
schéma numérique plus efficace. En particulier, on préserve les caractéristiques
positives mentionnées précédemment, mais en plus cela permet la résolution des
problèmes avec un nombre d’incertitudes modéré. En particulier, la contribution fon-
damentale de ce travail a été l’intégration d’une représentation multi-résolution dans
le système semi-intrusive original.

Pour cette raison, l’approche multi-résolution proposé par Harten a été modifié
pour l’utiliser dans le cadre de la quantification des incertitudes et utilisé. En par-
ticulier, une approche multi-résolution non-linéaire a été employée. Les opérateurs
de reconstruction adoptés ont été formulées pour être dépendants des données. Dans
ce contexte, une reconstruction d’ordre élevé et des techniques ENO/WENO ont été
introduites. Premièrement, un schéma basé sur une représentation multi-résolution
par points, a été employé pour construire une méthode basée sur une technique simi-
laire à la collocation. Cette méthode, appelée spatial-TE, a été conçue pour conserver
les propriétés de l’approche semi-intrusive, bien qu’elle soit différente en raison de
l’application d’une reconstruction de la solution de type lagrangienne dans l’espace
des paramètres. Le développement de la méthode sTE a permis de développer et
de vérifier les algorithmes de cette méthode intrusive basée sur la multi-résolution
dans le contexte d’équations aux dérivées partielles, en présence de paramètres et de
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solutions aléatoires discontinues.
Le second résultat obtenu pendant cette thèse a été le développement d’une nou-

velle méthode adaptative semi-intrusive (adaptive-SI), avec une représentation de
type volumes finis et avec une approche multi-résolution. L’effet de l’introduction de
la multi-résolution est double. Le premier effet est de réduire la dimensionalité de
l’espace de représentation de fonctions discrètes dans l’espace stochastique. Cette
réduction permet un gain, en terme d’efficacité de calcul, en diminuant le nom-
bre d’évaluations explicites du modèle pour représenter les variables dans l’espace
stochastique. En même temps, la multi-résolution est la base pour représenter les
fonctions exploitant la localité de la base. L’approche multi-résolution est un outil
naturel pour étudier la régularité locale d’une fonction et peut être utilisée pour
définir une procédure d’adaptation. Le deuxième avantage, lié à l’introduction de
la multi-résolution, est de pouvoir définir une procédure générale de raffinement
et de-raffinement du maillage dans l’espace stochastique dans le cas de problèmes
instationnaires. La caractéristique principale de l’approche proposée est la possi-
bilité d’adapter la discrétisation de l’espace stochastique, en fonction des coordonnées
physiques et spatiales. Ce type d’adaptation est particulièrement adapté pour des ap-
plications dans lesquelles des phénomènes multi-échelle avec des gradients et/ou des
discontinuités qui se propagent dans l’espace peuvent apparatre, comme c’est le cas
pour la dynamique des fluides.

Les deux schémas proposés, sTE et aSI, ont été appliqués pour modéliser des
problèmes à difficulté croissante. Les premiers cas ont été des fonctions-test qui
ne dépend que de l’espace des paramètres. D’autres problèmes ont été des systèmes
d’équations différentielles. Dans le cas de l’approche sTE, les équations différentielles
ordinaires (tels que le système non-linéaire de Kraichnan-Orszag) et partielles ont été
résolues. En plus, le schéma sTE a été également appliqué au système d’équations
qui régit la propagation des ondes élastiques dans un matériel hétérogène. Tous les
problèmes résolus ont été formulés dans un espace de paramètre 1D. Pour le schéma
aSI, des équations aux dérivées partielles ont été résolues: équation d’advection
linéaire, équation de Burgers et le système d’Euler avec d’espaces de paramètres
1D, 2D et 3D (dans le cas de l’équation d’advection). Dans tous les cas testés, les
schémas proposés ont été comparés avec des approches non-adaptatives pour mon-
trer l’augmentation de l’efficacité et une réduction de cot de calcul quand on utilise
une approche multi-résolution.

La deuxième contribution de cette travail de thèse est la conception d’une méthode
d’optimisation robuste en présence d’un nombre modéré d’incertitudes. En parti-
culier, une stratégie basée sur la réduction de la taille de l’espace stochastique à
travers une analyse stochastique des indices de sensibilité ANOVA, a été proposé.
La procédure est constituée de deux étapes. Dans la première étape, une surface de
réponse est construite pour les indices de sensibilité, pour chaque variable stochas-
tiques du problème, dans l’espace d’optimisation. Ensuite, pendant le processus
d’optimisation basé sur un algorithme génétique, la surface de réponse est utilisée
pour fournir des indices de sensibilité pour un individu de l’espace d’optimisation.
En utilisant un critère de réduction pour réduire la dimension stochastique, pour
chaque individu de l’espace d’optimisation, en connaissant les indices de sensibilité,
il est possible de réduire le cot globale de l’analyse stochastique. L’évaluation de la
fonction objectif, est une fonction des statistiques associées à l’individu. L’évaluation
des statistiques peut donc être effectuée sur une espace stochastique de taille réduite,
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ce qui nécessite, pour la même précision, un nombre d’évaluations inférieur. Cette
procédure a été proposée en utilisant un critère qui était lié à la contribution de
chaque incertitude à la variance globale. La stratégie a été appliquée avec succès à
un problème d’optimisation robuste multi-objectif d’une turbine à gaz réel.

Afin d’améliorer la qualité du critère de réduction de la dimension stochastique, de
différents critères de réduction ont été étudiés et proposés. En particulier, l’approche
de décomposition de la variance a été étendue au cas de moments centraux de troisiè-
me et de quatrième ordre. On a pu vérifier que l’effet de réduction de la dimension sur
la base de la variance pourrait négativement affecter le calcul de la queue de proba-
bilité. On a donc proposé des critères plus robustes pour la réduction dimensionnelle
basés sur les moments d’ordre supérieur. Pour le futur, l’objectif est d’intégrer ces
nouveaux critères de réduction dimensionnelle dans le processus d’optimisation ro-
buste.





Although this may seem a paradox, all exact science is
dominated by the idea of approximation. When a man tells

you that he knows the exact truth about anything, you are
safe in inferring that he is an inexact man. Every careful

measurement in science is given with the probable error, which
is a technical term, conveying a precise meaning. It means:

that amount of error which is just as likely to be greater than
the actual error as to be less. It is a characteristic of those

matters in which something is known with exceptional accuracy
that, in them, every observer admits that he is likely to be wrong,

and knows about how much wrong he is likely to be.

Bertrand Russell, The Scientific Outlook, 1931.





Introduction and motivation

Since ancient times, the primary method to design has been the so-called trial & error
approach. Moving from theoretical observations for preliminary design, during and
after the production of a new system, a number of tests were conducted to understand
its characteristics and responses. Around 1700 the calculus was introduced and the
era of the mathematical modeling of physics slowly began the main way of analyzing
a complex system. However, only around the 1960s programmable digital computers
started to widespread in academic and industrial organizations. The scientific com-
puting era finally took place. This initial stage, of the modern scientific computing,
also coincided with the growth in aerospace and military applications. One of the an-
gular stone of the development of the scientific computing in its modern view is the
paper Computer Experiments in Computational Fluid Dynamics [37] where, for the
first time, the scientific computing has been recognized as the third pillar of science,
along with theory and experiments. Computational fluid dynamics (CFD) played a
central role already in the first phase of the development of the scientific computing.
One of the first success, in the computational aerodynamics context, was the design
of the aircraft called Highly Maneuverable Aircraft Technologies (HiMAT) (see figure
3) designed by the National Aeronautics and Space Administration (NASA). This air-
craft has been designed, in the late ’70, to test concepts of high maneuverability for
the next generation of fighter planes [14]. Once built, the wind tunnel tests showed
that it would have unacceptable drag at speed near the speed of sound. The cost of
redesigning using wind tunnel tests would have been around $150,000. Redesigning
entirely the wing, by means of computer simulations, cost has been of $6,000.

The impact of the scientific computing has also increased with an astonishing
speed. Nowadays is well established for safety and reliability applications or to re-
duce the time (and the cost) of products design. For instance, specialized mathe-
matical model can be formulated and solved to obtain data instead of carrying out
expensive or impractical experimental tests. Actually, in many advanced technologi-
cal sector, as aerospace, military systems, automotive, nuclear devices etc., scientific
computing plays an even increasing supporting role. This role can be to support ex-
perimental applications, or to analyze complex systems which experimental set-up
would be impractical or even impossible. For instance a failure of a dam or the explo-
sion of a nuclear reactor. However, the scientific computing cannot be truly predictive
without a coupling between theory and experiments; this coupling procedure is called
validation in [77]. The question of the credibility of the scientific computing, under
these circumstances, becomes fundamental.

Even if in the last four decades a strong effort has been devoted to develop effi-
cient, faster and more accurate numerical algorithms, the challenging question of the
confidence of the scientific computing is still demanding a final answer. As pointed
out in [65], only in more recent years the problem of the credibility of the scientific
computing has received the attention it deserves. Again the CFD has been chosen
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Figure 3: HiMAT experimental vehicle designed in the late ’70 to test high-maneuvering con-
ditions. Its wing has been entirely designed by numerical simulation after a not
fully satisfactory initial design. Figure reproduced from BOEING FRONTIERS,
May 2007.

as subject of a research study. In 1986 the NASA funded a study to evaluate the
maturity of the CFD computational framework, for different physical models and
increasing complexity engineering systems. The result was quite surprising show-
ing that the degree of maturity, i.e. development of the CFD techniques, could vary
enormously changing the kind and the complexity of the applications.

To understand the actual level of confidence of scientists in the scientific comput-
ing context and the need for a systematic investigation of the quality of the computa-
tional results, Oberkampf and Roy in their book [65] wrote

Claims of high maturity in CFD for complex systems, whether from
commercial software companies or any other organization, are, we believe,
unfounded. Companies and agencies that sell programs primarily based
on colorful graphics and flashy video animations have no skin in the game.
We also claim that this is the case in essentially all fields of scientific com-
puting.

To rigorously assess the quality and accuracy of computational results, the frame-
work of Verification & Validation has been developed and nowadays it is receiving
an always increasing attention by the numerical community. One of the core aspect
of the Verification & Validation framework is the emerging field of the Uncertainty
Quantification which is the context of this thesis. The Verification & Validation (V&V)
framework is the subject of the next section.

Verification & Validation: from the general context to the numerical
paradigm

The context of this research work is the scientific computing and, in particular, the
CFD. However, from an historical perspective, the scientific computing borrowed
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(with some obvious adaptations) fundamental concepts already well established in
the engineering field. For instance, in a paper published in 2004 Bahill and Hen-
derson presented consolidated definitions of V&V for both requirements and sys-
tems [81]. As natural, an engineering system is the (complex) physical counterpart of
a (simplified) physical system represented by mathematical models. The numerical
solution of mathematical models is the subject of the present thesis, hence it is in-
teresting to consider the evolution of the basic concepts, related to the (engineering)
systems, to make evident their correct declination in the scientific computing context.
Quoting Bahill and Henderson [81]

Verifying a system: building the system right, ensuring that the system
complies with the system requirements and conforms to its design.

Validating a system: building the right system, making sure that the
system does what it is supposed to do in its intended environment. Valida-
tion determines the correctness and completeness of the end product, and
ensures that the system will satisfy the actual needs of the stakeholders.

The two definitions deal with the need of achieving certain requirements (Verifica-
tion) and the correct context of employment of a system (Validation). The importance
of both procedures is made evident from the analysis of famous failure of complex
systems for which, the authors in [81], collect the causes in three categories: require-
ments development (RD), verification (VER) and validation (VAL) of the system. The
figure 4, extracted from [81], reports the table with the analysis of these famous fail-
ures.

Figure 4: Famous failures of complex systems and their causes. Table reproduced from [81].

Some systems, reported in figure 4, failed for multiple causes, but several among
them failed for only one of the aspects considered. This behavior clearly confirms the
complementarity of the procedures of V&V for complex systems and also motivated
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the more recent effort in the Validation technique with respect to the more consoli-
dated framework of Verification. Verification still remains a core activity for design,
but needs to be supported by the other Validation activities.

Once recognized the importance of the V&V framework, how this methodology
has been adopted in the scientific computing community? The first effort, in term of
both methodology and terminology, has been realized by the community of operations
research. This community in 1960s faced out to the development of the general con-
cepts having in mind the application in systems involving many, intrinsically hard to
model, phenomena such as the interaction between the human behavior and physical
systems or computed controlled systems. The novelty has been, for the first time, the
key role credited to the computerized model. The seminal paper has been published
in 1979 by Schlesinger [73]

Model verification: substantiation that a computerized model repre-
sents a conceptual model within specified limits of accuracy.

Model validation: substantiation that a computerized model within its
domain of applicability possesses a satisfactory range of accuracy consis-
tent with the intended application of the model.

Due to the nature of the systems the definition appears, nowadays, vague. However,
the changing in the scientific thinking took place and, after the beginning of the
massive employment of computed-controlled system during 1970s, the Institute of
Electrical and Electronics Engineers (IEEE), between 1984 and 1991, and then the
US Department of Defense (DoD) in 1994 led to more refined definitions

Verification: the process of determining that a model implementation
accurately represents the developers conceptual description of the model.

Validation: the process of determining the degree to which a model is
an accurate representation of the real world from the perspective of the
intended uses of the model.

In the last definitions key aspects finally emerge: the model implementation, its
accuracy and the real world environment. For the purpose of this presentation, the
last concepts naturally lead to the definitions adopted by the CFD community after
six years (1992-1998) of work and debate committed by the American Institute of
Aeronautics and Astronautics (AIAA):

Verification: the process of determining that a model implementation
accurately represents the developers conceptual description of the model
and the solution to the model.

The previous definition adds the missing element: the accuracy must regard the nu-
merical solution of the model. The Validation definition adopted by the AIAA has
been borrowed from the DoD definition, but its application is strictly different. The
AIAA guide Guide for the Verification and Validation of Computational Fluid Dynam-
ics Simulations [11] explicitly refers to the experimental data to represent the real
world. Moreover, the self-explaining concept of prediction has been formally defined
in [11]:

Prediction: use of a computational model to foretell the state of a phys-
ical system under conditions for which the computational model has not
been validated.
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The definition of prediction contains all the elements which make clear the motiva-
tion for a research work as like the one conducted in this thesis: the final aim of the
scientific computing should be to foretell (without knowing the results) the state of a
physical system in conditions different from the set of Validation test cases. Valida-
tion procedures alone cannot furnish the evidence of the predictive capability of a nu-
merical procedure, but they represent a reproducible evidence that a prescribed accu-
racy can be reached for specified problems. The contrast, even if sometimes ignored,
with the common calibration techniques should be evident. Even if the ubiquity of
calibration always induces an impact on the confidence related to the predictive capa-
bility of the numerical simulations, without doubt the calibration procedure should
not be intended as a ’technique’ ables to hide the weakness of a model: [calibration]
is like drawing the bulls-eye afterwards, whereas in prediction the target is there in
advance [56].

Less formally, the following questions help to clarify the previous concepts when
dealing with a physical system represented by its mathematical form [45]:

Verification: are we solving the equations correctly? (it is an exercise
in mathematics)

Validation: are we solving the correct equations? (it is an exercise in
physics)

The range of interest of the two procedures is quite different; while the Verification
procedure deals with the solution of a prescribed set of equations by numerical algo-
rithm, only Validation can assure that the simplified representation (mathematical
model) is adequate to this purpose. Therefore, it follows that the adequate model
cannot exist without fixing a purpose. In this respect, the fluid dynamics context is
quite different from other physical (at least of the classical physics) branches. The
fluid flow problems are intrinsically rich of multiscale phenomena (small turbulent
scales, shock waves etc.) and many different behaviors can occur in apparently very
similar situations. For instance, the laminar and turbulent regimes could take place
for the same phenomenon, the same object immersed in a flow for instance, changing
only (even not too much) the free stream velocity in a wind tunnel experiment or the
properties of the fluid, i.e. its viscosity. Moreover, the assumptions made to model a
fluid flow phenomenon are quite important to circumvent the range of application of
a model and, consequently, to determine the adequacy of its numerical counterpart.
For instance, the same fluid, for example air, could be modeled with an increasing
level of complexity from a thermodynamics point-of-view, ranging from ideal gas hy-
pothesis to the inclusions of real gas effects or also ionization and dissociations of
molecules. In many cases fluid flow simulations are dependent on models and lack
of knowledge. A relevant class of fluid flow problems, where the lack of knowledge is
always present, are the turbulent flows. Quoting Pope [69]

In any turbulent flow there are, unavoidably, perturbations in initial
conditions, boundary conditions and material properties.

As it is evident, in any turbulent flow, only a statistical description is of interest. This
aspect, among many others, strongly introduces the importance of the randomness
in fluid dynamics and its numerical counterpart, the CFD. More generally, it is not
forced to state that, virtually, any kind of fluid flow is subject to randomness (bound-
ary conditions, initial conditions, thermodynamics properties, chemical composition,
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manufacturing tolerances etc). While this should be true even for many other fields,
the intrinsically non-linear nature (shock waves, complex thermodynamics behaviors
etc.) of the fluid dynamics makes this aspect crucial. Numerical fluid dynamics simu-
lations are nowadays demanded to face out this complex situation interacting, more
deeply, with experimental settings.

This brief introduction has been conceived for introducing some highlights of the
UQ framework, particularly for the CFD. The knowledge of many different phenom-
ena, as said, is intrinsically non deterministic, while naturally computer simulations,
provided necessary input data, are deterministic. Even the experimental data, whose
constitute the comparison set for Validation purpose, cannot be stated as determin-
istic measure, but very often they can be viewed as known only in a statistical sense.
The complete management of the randomness from its characterization (in the input
data) to its propagation (in the computer model) and its analysis, in term of outputs, is
the subject of UQ. UQ itself represents a broad field undergoing an outstanding evo-
lution in recent years involving competence flowing from different areas. Iaccarino
sketched [45] the concurring areas in the figure 5.

Figure 5: Areas concurring to the Uncertainty Quantification analysis (from [45]).

The description of the UQ, in its general sense, is the subject of the next session.

Uncertainty quantification

The first concept related to the UQ procedure is its object of analysis: the uncertainty.
It could seem obvious, but an uncertainty it is not an error and this difference very
often can generate misunderstandings in the scientific computing context as well as
in other fields. The AIAA [11] defined also the concepts of error and uncertainty: the
error is a recognizable deficiency of the model or algorithm employed, while the un-
certainty is a potential deficiency due to a lack of knowledge. These definitions are
hard to decline in the context of scientific computing because there is no separation
between what involves the mathematics and what involves the physics. Iaccarino
in [44] identified the error as an entity associated to the translation of the math-
ematical formulation into a numerical algorithm and its counterpart given by the
numerical code. Uncertainties are instead related to the choice of the physical model,
including the input parameters required. The errors can arise form, for instance,
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round-off, limited convergence of iterative algorithms, but also form implementation
or usage mistakes. Examples of uncertainties are, for instance, the flight conditions
of a cruising airplane, the chemical composition of the atmospheric layer surrounding
a planet, the initial conditions relative to a shock tube problem, the thermodynamical
properties of a fluid and so on. Uncertainty is then associated to the concept of non
deterministic in a broad sense. Uncertainty is a concept related to the variability of
the system, but the variability itself can bring within different information. If the
variability present in the system is not related to a lack of knowledge, then it cannot
be reduced and a probabilistic framework is adequate to represent it (in this case the
uncertainty is referred as of a stochastic type). For instance, the input parameters
of a physical experiment can be known only by a probability density function over
an interval. Otherwise, if the variability is related to a potential lack of knowledge,
it is called epistemic uncertainty. In the latter case the variability can arise from
(strong) assumptions introduced during the derivation of the mathematical model
and, in principle, it could be reduced improving the model. A paradigmatic exam-
ple in CFD could be the level of complexity employed to represent the turbulence
equations (Reynold-Averaged Navier-Stokes, Large Eddy Simulations, DNS). Again,
it is important to remark that the quality of the model cannot be determined a pri-
ori, but only after that certain requirements are fixed. Despite the broad range of
applications, the UQ is commonly based on three fundamental activities

• Characterization of the sources of uncertainty;

• Propagations of the uncertainties in the input data/model through the model
itself;

• Analysis of the model outputs.

Regarding the characterization of uncertainties both direct and inverse methods
are at disposal. Among the direct methods, the experimental observations, theoret-
ical arguments and also expert opinions are the principal; inference and calibration
are, instead, the fundamental techniques to translate observed data in statistical in-
put parameters. The propagation process is the ensemble of operations which allows
to obtain the uncertain outputs prescribing, to the uncertain model, the uncertain in-
puts. In this work the focus is totally devoted to aleatory, i.e. stochastic uncertainties,
so in this case the probability framework plays a special role not only for the charac-
terization of the sources of uncertainties, but also for their propagation. The final UQ
step involves the analysis of the ensemble of output quantities of interest in term of
probability distributions, cumulative distributions or other statistic characterization
of data. Moreover, also sensitivity analysis (SA) of the data could be of interest. In
the Part II of this thesis examples, of how the SA analysis can be employed to im-
prove the understanding of complex system, will be provided. However, even if they
are related, it is important to underline the difference between UQ and SA. Sensitiv-
ity analysis investigates the connection between inputs and outputs of a model and,
in particular, it makes possible to relate the variability of the outputs to the vari-
ability of the inputs. SA does not need input data and can be conducted on purely
mathematical analysis, while the UQ, given a system, aims to quantify its output
uncertainty. The meaning of SA in the design context appears clear: large variations
of some (identified) parameters generate large variations of the outputs. In the UQ
context, however, a large sensitivity of a parameter is not strictly connected to large
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uncertainties. In fact uncertainties related to input parameters, to which the system
is greatly sensitive, could be so small to induce no uncertainty on the outputs at all.
Moreover, it could be important determining how the uncertain structure of all the
inputs maps the uncertain structure of all the outputs. In this case the SA is named
global SA and its importance becomes crucial in the light of improving the quality of
the model itself identifying the sources of a lack of knowledge. For instance, in the
case of complex coupled physics phenomena, a global SA can indicate the relevant
physical experiments to conduct to most reduce the epistemic uncertainty.

The present thesis illustrates some new numerical algorithms and techniques
to propagate and analyze uncertainties in the stochastic framework with particular
emphasis to fluid flow applications. From a mathematical point-of-view, it is univer-
sally recognized the importance of the hyperbolic problems for CFD applications; this
class of problems embeds many fundamental characters of more complex situations
like the propagation of waves and the possibility to handle (forming) discontinuity
(as for example in transonic aerodynamics simulations). For these reasons, the work
is mainly focused on this paradigmatic class of problems having in mind a virtually
easy extension to more complex models.

Hyperbolic problems, and CFD applications in general, result to be very challeng-
ing for UQ analysis even in presence of efficient and well-established deterministic
schemes. The reason is the high computational cost, even employing parallel algo-
rithms, to perform very accurate deterministic simulations in presence of complex
physics (turbulence, shock waves, unsteadiness etc.). As it will be clear in the next
chapter, the UQ analysis requires, at least simplifying, the knowledge of the numer-
ical solution in a set of points. If the solution in each points corresponds to a CFD
simulations, it is easy to see that the UQ analysis can be very often prohibitive. This
problem is closely connected with the cubature, i.e. the numerical integration of a
function in a multi-dimensional space. It is also well known that the number of
degree-of-freedoms needed for a such a numerical problem, employing a tensoriza-
tion approach, increases exponentially with the number of dimensions. The number
of dimensions, i.e. independent random parameters of the problem, plays a funda-
mental role and leads rapidly to intractable problems in real CFD application cases.
Richard Ernest Bellman referred to the exponential growth of data in multidimen-
sional spaces coining the term curse of dimensionality in [21]. Actually, the curse
of dimensionality is an open problem for different fields, as for instance, numeri-
cal analysis, sampling, combinatorics, machine learning, data mining and databases;
this issue is also common to virtually any kind of UQ propagation technique at the
state-of-the-art and, only with the introduction of the adaptive strategies in recent
years, it has been preliminary addressed. One of the key contributions of the present
work is precisely the introduction of a multiresolution adaptive procedure, for a novel
semi-intrusive UQ propagation approach, aiming to tackle the curse of dimensional-
ity.

Thesis Outline

This manuscript is based on seven papers previously introduced. In different chap-
ters, the central ideas, which drive this thesis work, are presented and discussed. It
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is important to remark that all the details of the algorithms and numerical exam-
ples are reported in the joint papers. In particular, in Chapter 1, the state-of-the-art
of the UQ propagation techniques is introduced. Both non-intrusive and intrusive
techniques are presented; particular attention is devoted to the introduction of the
so-called the semi-intrusive scheme, which constitutes a pillar of the present work.
Chapter 2 presents the introduction of the Harten’s inspired multiresolution frame-
work adopted, in both point-value and cell-average settings. Chapter 2 contains also
the introduction of the sTE scheme, i.e. the point-value collocation based approach
developed in this work. The cell-average approach is then formulated for yielding
a time-dependent adaptive semi-intrusive scheme in the overall physical/stochastic
space, based on the semi-intrusive scheme recalled in Chapter 1, i.e. the aSI scheme.
The aSI scheme is fully presented in Chapter 3. Several numerical test cases are
finally presented and discussed in Chapter 4 for the point-value and the cell-average
schemes. The numerical test cases, reported in Chapter 4, contain only results not
yet published and not reported in papers.

This manuscript does not contain a presentation of what is reported in papers
P6 and P7. These papers deal with UQ propagation and analysis and the identi-
fication of the most influent uncertainties in problems with a moderate number of
parameters. The two main contributions are illustrated. In paper P6, a novel robust
optimization strategy, constituting in a dimension reduction of the set of uncertain-
ties by using variance ANOVA decomposition, is presented. This strategy is applied
to the design of a turbine with complex real gas thermodynamics. Moreover, paper P7
presents a potential extension of this work to high-order statistical moments. New
sensitivity indexes, based on the identification of the conditional contributions re-
lated to high-order central moments of third and fourth order, are introduced. The
importance of this analysis is highlighted on several numerical examples.





Part I: Propagation
techniques/schemes for

Uncertainty Quantification





CHAPTER 1

Uncertainty propagation: state of
the art

In this chapter, after a brief introduction of the mathematical setting of the problem
in §1.1, some techniques for the uncertainty propagation are presented in §1.2. Then,
in section §1.3, the semi-intrusive (SI) approach, developed more recently by Abgrall
and co-authors [3,4] (and C13) is introduced. The semi-intrusive approach represents
the core of the adaptive-SI scheme which is one of the final accomplishments achieved
of this thesis.

In the following section, the mathematical framework on which the stochastic UQ
analysis is commonly based, is described. Although, many test cases presented in
the papers on which the thesis is based, are only simplified model equations, the
focus of the work is devoted to Computational Fluid Dynamics (CFD) simulations. In
the CFD context partial differential equations (PDEs) are of interest, so, despite the
applicability of UQ technique to very general problems, its generic presentation is
carried out having in mind PDEs.

1.1 Mathematical setting

Mathematical theory of probability furnishes the basis of the statistic and, in its
modern (axiomatic) vision, following the work of Kolmogorov [48], extensively relies
on the measure theory. The basics concepts for the measure theory are the measure
and the measurable space. The measurable space can be defined giving a sample
space Θ and a (non-empty) collection of its subsets Σ. The collection Σ is a σ−algebra
(or σ−field) if

• 0 ∈ Σ;

• A ∈ Σ⇒ Ā ∈ Σ (Ā is the complement of A);

• Ai ∈ Σ for all i ∈ I ⇒ ⋃
i∈I Ai ∈ Σ.

The pair (Θ,Σ) is a measurable space. An example of σ−algebra, corresponding
also to the smallest possible σ−algebra, is {0,Θ}. A specific σ−algebra is the Borel
σ−algebra in which the σ−algebra is generated by all the open sets of a topological
set. This concept becomes functional to the probability theory if the sample space is
the real line R (or one of its sub-interval). In this case the Borel σ−algebra becomes
B(R) and form a measurable space (R,B(R)) with the real line. A measure µ is a
real-valued non-negative function defined over a set with the following properties
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• µ(A) ≥ 0 for A ∈ Σ;

• Countable additivity: if Ai ∈ Σ are disjoint sets then µ(
⋃
iAi) =

∑
i µ(Ai).

A measure µ is called probability measure if µ(A) ∈ [0, 1] and µ(Θ) = 1. A measurable
space, equipped with a measure, it is called measure space (Θ,Σ, µ). Given a couple
of measurable space (Θ,Σ) and (Θ′,Σ′) a measurable function g : Θ → Θ′, for any
event A′ ∈ Σ′, is

g−1(B)
def
= {x : g(x) ∈ A′} ∈ Σ. (1.1)

The measurable function g induces a probability measure P : Σ′ → [0, 1] on (Θ′,Σ′)

P(A′ ∈ Σ′) def
= µ(g−1(A′)); (1.2)

the probability induced by g it is also called its distribution. If the measurable func-
tion is ξ : Θ→ R, between the couple of measurable spaces (Θ,Σ) and (R,B(R)), then
ξ is a random variable. The random variables specify a set of events that happen
with a corresponding probabilities; if there are some events {θ} that ξ maps to B ∈ R
then the probability of B it the total probability of those event {θ}. The distribution
of a random variable ξ is then the probability measure P induced by the mapping ξ
itself on the measurable space (R,B(R))

P(A) = µ(ξ−1(A)) = µ(θ : ξ(θ) ∈ A). (1.3)

As shorthand the induced probability P(A) it is common not written at all and re-
placed by µ(ξ ∈ A). Even if the probability induced by the random variable is called
distribution, more useful concepts of distribution can be introduced. The cumulative
distribution function F of a random variable ξ is defined as

F (x) = µ(ξ < x), (1.4)

from which follows µ([a, b]) = F (b)−F (a). Very often random variables can be known
in term of probability density functions p(ξ)

F (b)− F (a) =

∫ b

a
dµ =

∫ b

a
p(ξ)dξ, (1.5)

where p(ξ) > 0, it is a Lebesgue measurable function and F is absolutely continu-
ous. All the concepts presented can be extended, in a straightforward manner, to
random vectors ξ ⊂ Ξ ⊂ Rd where all the components are random variables and the
corresponding probability space Ξ can be obtained as product probability spaces of
the probability spaces associated to each random variable, i.e. it is the support of the
joint probability density function. In this thesis the case of independent inputs will
be considered. This assumption reflects in the possibility to obtain the joint pdf p(ξ)
as a product of the probability distributions of each random variable

p(ξ) =
d∏

i=1

pi(ξi). (1.6)

However, in many situations expansions in terms of independent variables may not
be possible. Many limitations occur in a such situation, as for instance, the need
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to an analytical knowledge of the joint pdf; the numerical method designed in this
thesis are not based on the independent distribution assumption, however all the
numerical tests have been performed in this situation. Hereafter the independence
of the random parameters is always implicitly stated.

The mathematical setting of probability, briefly sketched above, allows to general-
ize the problem statement for a generic PDE including the presence of randomness.
In a general case the randomness can affect the PDE itself through, for instance,
some coefficients not exactly known or even initial and boundary conditions. More-
over, the randomness can have a spatial variability and/or a time variability to which
can correspond a variability in term of probability density function in space and time.
In general, an unknown u, depending on the physical space x ∈ Ω ⊂ Rn and the time
space t ∈ T ⊂ R+ and irrespective from the sources of uncertainties (if any), it will
be itself a function of the random parameter ξ employed to describe the sources of
uncertainties. In a case like this it is possible to generally state

L(x, t, ξ;u(x, t, ξ)) = S(x, t, ξ) (1.7)

where L is a differential/algebraic operator and S a source term, both defined on the
domain Ω× T ×Ξ. The operator L can involve differentiations in space and time and
can be non linear. Obviously, mathematical well-posed problems are obtained impos-
ing proper boundary and initial conditions. One of the aims of the UQ analysis is to
obtain a statistic characterization of the unknown u (or eventually other variables of
interest referred in the following as outputs). Depending on the scope of the analy-
sis, the statistical outcomes could be different. For instance, it could be necessary to
compute the probability distribution of the output or, for instance for reliability and
safety applications, the failure probability or the probability to exceed a certain level
and so on. However, very often, a characterization in term of statistic moments is a
first step. In all the numerical test cases presented in this work, except for those con-
cerning explicitly the high-order moments, the quantities of interest, systematically
computed on the output u, have been the expected value E(u,x, t) and the second
central moments, i.e. the variance Var(u,x, t)

E(u,x, t) =

∫

Ξ
u(x, t, ξ)p(ξ, t)dξ

Var(u,x, t) =

∫

Ξ
(u(x, t, ξ)− E(u))2 p(ξ, t)dξ.

(1.8)

In the following section a brief review of the state-of-the-art of the well established
techniques for the propagation of uncertainties will be presented.

1.2 State of the art

In this section, a brief review of the numerical methods developed in recent years for
UQ propagation is presented. Two alternative philosophies took place for UQ propa-
gation, namely the intrusive and non-intrusive approach. Propagating uncertainties
in the framework of the scientific computing gives, in principle, an alternative to the
employment of multiple calls of the numerical model: the modification of the numeri-
cal code itself to obtain the propagation of the uncertainties. Unlike the experimental
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counterpart, in which the only possibility is to run experiments (realizations) of the
physical system with different input data, when a mathematical model is at disposal
another approach could be possible. In some situations the mathematical model itself
can be modified to obtain, as outputs, statistical properties of interest, instead of only
a realization of the system. In this latter case the input data are constituted by the
representation of the input variables, for instance an interval with a probability dis-
tribution, and the approach is said to be intrusive, because it intrusively propagates
uncertainties in the model requiring the modification of the model itself. From a com-
putational point-of-view, the difference between the two approaches is evident. The
non-intrusive approach requires only multiple runs of the numerical code, while an
intrusive approach could require to reformulate entirely also the theoretical formu-
lation of the problem other than requiring a more deep modification of the numerical
code.

1.2.1 Sampling methods

The archetypal method for the non-intrusive class is the Monte Carlo (MC) approach
[64]. The principles and the application of the MC methods are very simple. A set of
random points {ξi}Ni=1 in the stochastic space is generated in accord to the probability
distribution of the uncertain parameters. Multiple runs of the code are performed, to
obtain ui = u(ξi) and the statistics are finally computed as

E(u) ' 1

N

N∑

i=1

ui

Var(u) = E(u2)− (E(u))2 ' 1

N

N∑

i=1

u2
i −

(
1

N

N∑

i=1

ui

)2

,

(1.9)

and so on for the higher moments. The MC method is universally applicable and
is provable convergent for N → ∞, however the rate of convergence is quite slow
O(1/

√
N) [23, 36, 64]. The advantage of MC, which makes it still attractive, is its

independence from the number of uncertain parameters. The main reasons, for the
slow convergence of the MC method, are a non well distributed set of points, showing
clustered regions or holes in the stochastic space, and multiple occurrences for low
probability samples. To overcome this issue many methods, derived from the MC,
have been introduced. Among of them, a popular family of method is the so called
quasi-MC (QMC) family. The QMC method differs from the original MC only for the
points generation. In particular, the random generator of points1 is substituted by
a low-discrepancy sequence [23, 36]. A low discrepancy sequence is a sequence in
which the number of points in a set is proportional to its measure. A well known low
discrepancy sequence has been introduced by Sobol and it is named Sobol sequence
[75]. The convergence rate can be improved to O(1/N) [23, 36], however they cannot
totally tackle the prohibitively cost of the MC approach. Another strategy, to force the
distribution of random points covering better the stochastic space, is the so-called
Latin Hypercube sampling (LHS) strategy. In the case of LHS the ’uniformity’ of

1To be more precise in MC method pseudorandom generators are employed. A sequence is pseu-
dorandom if it shares the statistical properties of a random sequence, but it is generated in a totally
deterministic way.



Uncertainty propagation: state of the art 17

distribution of the samples is obtained requiring that each equiprobable bin contains
a realization. In the figure 1.1, the comparison between MC, QMC and LHS sampling
is reported for two uniform random variables and a number of samples equal to 200.

ξ
1

ξ
2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a)

ξ
1

ξ
2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b)

ξ
1

ξ
2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

Figure 1.1: Comparison between Monte Carlo (a), quasi-MC (b) and Latin Hypercube sam-
pling (c) for two uniform random variables for a set of 200 samples.

In figure 1.1, the QMC distribution of the samples appears to be the most uniform,
while both MC and LHS exhibit some holes and cluster regions. However, the LHS
sampling, unlike MC, for construction assures the most uniform distribution of the
samples along the range of each random variable.

1.2.2 Stochastic collocation approach

In the collocation methods, the aim is to satisfy the governing equations in a set of
discrete points in the stochastic space. In this respect, the sampling methods are
collocation methods. However, instead of employing a random distribution of points,
the polynomial approximation theory can be adopted to locate the nodes and obtain
higher accuracy. Two different approaches are commonly employed in literature [93].
The first is based on the Lagrange interpolation technique, while the second one
relies on a pseudo-spectral expansion. In the following, for simplicity of exposure
and clarity of notation, the model function u = u(ξ) is assumed to be dependent only
on the random vector ξ, while the methods presented can be applied to solve, for
instance PDEs, depending on physical space and time (recursively employing it at
each physical-time location).

A well known result from the interpolation theory (in 1D) states (see for instance
[71]) that given N + 1 separate points ξi, then a single polynomial ΠN ∈ PN exists
satisfying ΠN (ξi) = u(ξi) = ui for all i = 0, . . . , N . The interpolation polynomial ΠN (ξ)
takes the form, named Lagrange form,

ΠN (ξ) =

N∑

k=0

ukLk(ξ), (1.10)
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where the Lagrange polynomials Lk ∈ PN are defined as

Lk(ξ) =

N∏

j=0
j 6=k

ξ − ξj
ξk − ξj

. (1.11)

A relevant property of the Lagrange polynomial is Lk(ξj) = δjk where δ is the Kro-
necker symbol.

Once the Lagrange interpolation is at disposal, i.e. the N deterministic runs of
the code have been performed and each single Lagrange polynomial Lk(ξ) has been
computed, the statistics can be evaluated directly on ΠN (ξ). For instance, for the
expected value

E(u) =

∫

Ξ
u(ξ)p(ξ)dξ '

∫

Ξ
ΠN (ξ)p(ξ)dξ =

N∑

k=0

uk

∫

Ξ
Lk(ξ)p(ξ)dξ, (1.12)

where the integral terms have the role of weights in the discrete sum. Even if the
application of the method can seem straightforward several drawbacks limit the di-
rect application of the technique as presented in (1.12). The first problem is relative
to the choice of the nodes; in multidimensional problems even some aspects of the
theory related to the Lagrange interpolation remain unclear. Moreover, the weights
can be obtained only if the analytical expression for the Lagrange polynomial is at
disposal; the polynomial can be obtained numerically by inverting a Vandermonde-
type matrix, but the procedure results to be cumbersome. Aiming to overcome these
issues, choosing the nodes as a set of cubature points has been proposed in literature
(see for instance [19, 94]). In this case, the integrals in (1.12) become the weights of
the cubature (multiplied by the pdf evaluated in ξk) thanks to the properties of the
Lagrange polynomials. Furthermore, the direct knowledge of the Lagrange basis is
not more required and the method reduces to be a truly sampling one.

If reduced to a sampling technique, the stochastic collocation approach loses its
capability to reproduce the random output over the entire stochastic space. If some
characterizations of the output are needed, as for instance its distribution, the knowl-
edge of the model in a discrete set of points could not be enough. A pseudo-spectral
approach can be introduced as proposed in [92]. The pseudo-spectral approach relies
on the homogeneous chaos theory proposed by Wiener, for Gaussian random vari-
ables, in the seminal work [89] and successively generalized, for different measures,
by Xiu and Karniadakis in [96]. According to the theorem of Cameron and Mar-
tin [24], Hermite-chaos provides a means of expanding any second-order, i.e. with
finite variance, random process in terms of orthogonal polynomials with a conver-
gence in L2 sense. However, if the random inputs are not Gaussian, the optimal
exponential convergence can be lost, so in [96] the Wiener-Askey polynomial chaos
expansion has been proposed to deal with more general random inputs. In the fol-
lowing this technique is referred as generalized Polynomial Chaos (gPC) expansion
(non-intrusive in this context).

The general expansion for a second order random output u(ξ) ∈ L2(Ξ) can be
obtained as

u(ξ) =
∞∑

k=0

βkΨk(ξ), (1.13)
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where {Ψk(ξ)} represents a Wiener-Askey polynomial chaos basis (see the figure
1.2). Having reduced the attention to independent input random variables, each
multi-dimensional polynomial Ψ(ξ), of total degree n0, involves tensorization of (cor-
responding) one-dimensional ones φ(ξ) by multi-index m = (m1, . . . ,md), which de-
termines the degree of the approximation along each separate dimension

Ψ(ξ) =
d∏

i=1

φmi(ξi). (1.14)

Figure 1.2: Wiener-Askey scheme for different distributions of random variables. Table re-
produced from [96].

The set of polynomials {Ψk(ξ)} forms an Hilbert basis on L2(ξ, p(ξ)) and the inner
product in Ξ can take advantage from the orthogonality of the terms with respect the
weighting function which, in this context, is easily identified as the joint pdf p(ξ) of
the random input variables ξ, having

〈Ψi,Ψj〉 =

∫

Ξ
Ψi(ξ)Ψj(ξ)p(ξ)dξ = δij

〈
Ψ2
i

〉
. (1.15)

In practical applications, the (1.13) needs to be truncated after a finite term P

u(ξ) '
P∑

k=0

βkΨk(ξ), (1.16)

depending from the number of stochastic dimensions d and the maximum polynomial
order n0 to achieve

P + 1 =
(n0 + d)!

n0! d!
. (1.17)

Thus WP , the subspace of L2(ξ, p(ξ)) of the orthonormal polynomials of total degree
n0, has cardinality P + 1. Unlike the Lagrange interpolation approach, the random
output u(ξ) is fully characterized, over the entire stochastic space Ξ, once the coef-
ficients βk are computed. In the Lagrange interpolation case, instead, the approxi-
mation and the approximation space are implicitly prescribed by the selected points,
i.e. the Lagrange polynomials depend on the collocation points. In the gPC case the
polynomial basis, and the approximation space WP , are fixed a priori irrespective of
the collocation points. The random output is then approximated by an orthogonal
projection ontoWP by the (1.16) where

〈u(ξ),Ψk〉 = βk 〈Ψk,Ψk〉 (1.18)
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is the relation useful to compute the coefficients βk of the expansion. The problem
reduces to compute P + 1 multi-dimensional integrals

∫
Ξ u(ξ)Ψk(ξ)p(ξ)dξ, while the

normalization factor 〈Ψk,Ψk〉, depending on the basis employed, can be computed
analytically.

Giving the set of coefficients βk and the polynomial basis, the statistics can be
easily computed. For instance, the expected value and the variance can be obtained
as

E(u) ' β0

Var(u) '
P∑

k=1

β2
k

〈
Ψ2
k(ξ)

〉
.

(1.19)

More complicated expressions can be employed to compute high-order central mo-
ments; the expressions relative to the third and fourth central moments are explicitly
obtained in the paper P7. These expressions are reduced, in P7, taking into account
the contributions always equal to zero.

Even if in principle a least square approximation can be employed to compute the
coefficients βk of the expansion, this possibility does not exploit the orthogonality of
the basis and in general it is not a preferable choice [27] with respect to the spectral
projection approach. To avoid the slow convergence related to the sampling meth-
ods, the most efficient techniques to compute the coefficients βk are related to the
cubatures, i.e. multi-dimensional extension of 1D integration rules.

Remarks on quadrature/cubature formulæ

In the context of non-intrusive spectral projection techniques, a natural choice is con-
stituted by Gauss type quadratures [27, 51]. The Gauss quadrature formulæ are
high-order approximations for integrals in which a strictly positive weight function
is present. The Gauss quadrature achieves the highest possible degree of exact-
ness integrating polynomial functions of degree less than 2N giving N points. Gauss
quadrature formulæ are closely related to the orthogonal polynomial family for the
weight function, which is identified as the joint pdf p(ξ). Both Gauss quadrature
polynomial basis and the gPC basis are the same and they are identified in function
of the polynomial basis, for instance Gauss-Legendre, Gauss-Hermite and so on (see
also the figure 1.2). The nodes ξi and the weights wi can be computed by solving an
eigenvalue problem; in particular the nodes ξi for a N−point rule are the zeros of the
polynomial φ(ξ) of order N + 1 [45] and

wk =

∫

Ξ
φk(ξ)p(ξ)dξ. (1.20)

Finally, the approximation by Gauss quadrature, irrespective of the measure, can be
written as ∫

Ξ
u(ξ)p(ξ)dξ '

N∑

i=1

u(ξi)wi. (1.21)

The advantage related to the Gauss quadrature is the highest possible accuracy
for polynomial integrands, however the maximum polynomial accuracy could not be a
fundamental requirement if the random output is not polynomial. This consideration
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opens the way to other attractive possibilities as the so-called nested quadratures. A
nested quadrature family is one in which high-order accuracy formulæ, i.e. formulæ
with more nodes, can be obtained adding the missing points to the previous low-
accuracy formulæ. Examples of this quadrature families are the Cleanshaw-Curtiss
and Fejèr rules, or the Newton-Cotes formulæ on equally spaced points. This latter
family is employed in the work P4 to build nested sequences of meshes for mul-
tiresolution purpose (see also §3.2 for the importance of the choice of the quadrature
formula for efficient adaptive schemes).

The remaining aspect, related to the quadrature techniques for the spectral pro-
jection purpose, is obtaining multi-dimensional cubature formulæ. Techniques able
to achieve this goal in a data-independent context, i.e. without employing the knowl-
edge of the integrand function as for instance in adaptive techniques, are the full
tensorization and sparse grids [74]. The full tensorization approach involves the
straightforward tensorization of 1D quadrature formulæ. This approach constitutes
the most robust one to extend 1D quadrature formulæ, but it has the disadvantage
to be infeasible for high-dimensional problems, exhibiting exponential increase of the
nodes with the dimensions, and to be non-optimal in the sense that the same exact-
ness can be obtained with a lower number of nodes. On the contrary, in the sparse
grids approach, the multi-dimensional tensorial product is constructed as a linear
combination of tensor product interpolants, each of them with relatively few points
in its respective points set. This greatly reduces the total number of nodes, while
retaining the accuracy and convergence of the 1D interpolants. The sparse grid tech-
nique has been explored at the beginning of this research work and some results,
of its coupling with the gPC method, can be found in RR3. Moreover, the detailed
description of the sparse grid approach is also presented in RR3. The sparse grid
concept can be extended to build anisotropic grids; this possibility constitutes still an
active research field. Anyway, some results can be found in [51].

The sparse grid technique can be seen historically as the first attempt to tackle
the so-called curse of dimensionality. This aspect is one of the predominant issues
regarding the UQ analysis and affects, in a broad sense, all the UQ propagation tech-
niques. The curse of dimensionality also has been one of the fundamental drives for
the motivation of the present thesis work; in the context of the semi-intrusive (SI)
approach, proposed by Abgrall and co-authors [3, 5] (and C13), the multiresolution
framework is injected into it to reduce the computational associated with the expo-
nential growth of the degree-of-freedoms of the original SI scheme. One of the aims
of the introduction of the multiresolution is representing the discrete data, over the
stochastic space, by means of a discrete space with lower cardinality. The original SI
scheme will be presented in the §1.3, while in the following section the intrusive gPC
approach is recalled.

1.2.3 Stochastic Galerkin approach

The gPC expansion can also be employed in a Galerkin fashion, i.e. in a weighted
residual formalism, to obtain systems of governing equations with respect to the un-
known coefficients βk. Galerkin projection, in the context of UQ propagation, has
been introduced by Ghanem and Spanos in [35]. The key difference of this technique,
with respect to the others presented above, is that the Galerkin stochastic methods
do not rely on the individual, i.e. decoupled, realizations of the numerical model. The
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main idea is to transfer the randomness into the polynomial basis obtaining a system
of deterministic equations.

Recalling the (abstract) problem statement (1.7) for differential problems, the so-
lution u(x, t, ξ) can be interpreted as a random process and expanded by the Wiener-
Askey chaos approach (as already seen for the non-intrusice gPC)

u(x, t, ξ) =
P∑

k=0

ui(x, t)Ψk(ξ). (1.22)

The previous expansion can be injected into the governing equation obtaining

L
(
x, t, ξ;

P∑

k=0

ui(x, t)Ψk(ξ)

)
= S(x, t; ξ). (1.23)

In general, unless P → ∞, the residual associated to the previous discretization is
not equal to zero, so, in weak form, it is necessary to require it being orthogonal to
any test function φ(ξ) spanning Ξ. Due to the infinite dimensionality of Ξ, a finite
approximation must be chosen for the test functions Ψ(ξ); in the classical Bubnov-
Galerkin context, the test functions coincide with the approximation basis {Ψk(ξ)}.
The following set of coupled problems can be obtained
〈
L
(
x, t, ξ;

P∑

k=0

ui(x, t)Ψk(ξ)

)
,Ψi(ξ)

〉
= 〈S(x, t; ξ),Ψi(ξ)〉 for i = 0, . . . , P (1.24)

from which, exploiting the orthogonality of the polynomial basis, a set of P + 1 cou-
pled equations for each mode ui(x, t) can be obtained. One of the main drawbacks
of the stochastic Galerkin approach is the size of the set of equations to solve, which
results to be P + 1 times larger than the corresponding deterministic problem. The
occurrence of large system of equations is the source of an increase in the compu-
tational cost and also poses problems in the solution strategies to adopt. To tackle
the increasing of the computational cost strategies, decoupling each spectral mode
ui(x, t) results to be very effective [51]. However in several cases, the approach is
not feasible due to theoretical difficulties. Moreover, a larger system (even linear)
cannot be solved with direct resolution method requiring iterative techniques. Other
issues are related to the projection of non-linearities on the expansion basis [51]. The
stochastic Galerkin method, as presented in this brief sketch, represents nowadays
de facto the standard intrusive technique [29,62,95]. However, as pointed out in [51],
as for Fourier expansion where Gibbs phenomena can occur, also the gPC expansion
can exhibit a lack of suitability due to its high regularity if the functional to approx-
imate admits a bifurcation or a discontinuity. The consequences can be both a slow
convergence in the infinite case or the presence of parasitic oscillations in the finite
case. Moreover, for problems involving the time-integration of dynamical systems
with random frequencies, the broadening of the solution spectrum can cause the loss
of the spectral convergence after a finite time. This problem has been discussed, for
instance in [33,88].

Both bifurcations, discontinuities or in general steep variations with random in-
puts are common phenomena in fluid dynamics applications among other fields. Form-
ing shocks, energy cascades or also combustion problems, for instance, can lead to
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these behaviors and constitute challenging applications for UQ propagation. The
presence of this kind of issues for non-smooth problems has been one of the key as-
pects which motivated the introduction of the semi-intrusive scheme in the seminal
work of Abgrall [3]. The semi-intrusive method will be introduced in §1.3, while in
the next section a brief review of the techniques adopted to improve the stochastic
Galerkin method in presence of non-smooth solution will be presented.

1.2.4 Some cures proposed for non-smooth problems

The introduction of suitable techniques, which can be able to improve the efficiency
and accuracy of the UQ propagation schemes in presence of non-smooth functions
in the stochastic space, is a very recent and actual field of research. The book [51]
constitutes a systematic introduction to some possible cures for non-smooth solu-
tions in stochastic space for stochastic Galerkin methods. Basically, in this text
both Haar wavelet basis and multiwavelets have been introduced and analyzed. The
first attempt to obtain a multiscale scheme, for UQ propagation, has been [50]. A
wavelet-based expansion has been developed introducing piecewise functions, the
Haar wavelets, in stochastic Galerkin methods. This method is robust, but it ex-
hibits lower rate of convergence, with respect to a global spectral approximation,
for smooth problems. The same authors of [50] refined the approach proposing to
generalize the strategy to arbitrary polynomial order expansions [49]. This improved
strategy results in a h-p refinement techniques where, the level of resolution gives the
h-refinement, while the polynomial order guarantees the p-refinement. A related con-
cept of h-p refinement has been proposed by Wan and Karniadakis to obtain a Multi-
Element generalized PC (ME-gPC) scheme [88]. In this context, the h-refinement is
due to the size of the random elements, while the p-refinement is performed by a local
gPC approximation of arbitrary order. An a posteriori heuristic criterion is employed
in ME-gPC to guide the partitioning. An original hp-refinement has also been intro-
duced by Lucor and co-authors (see for instance [61]). Closely related to the concept
of h-refinement by local basis refinement, methods based on of hierarchical sparse
grids are proposed in [10, 63]. A different approach has been proposed in [60, 67] to
directly tackle the presence of Gibbs oscillations in the neighboring of a discontinu-
ity, aiming to avoid unphysical values. The novel stochastic Galerkin method has
been introduced relying on entropy variables, which are related related to the main
variables through the entropy of the system. This approach shows an interesting
alternative, to bound unphysical oscillations, unlike adapting (in both senses) in the
stochastic space.

In [83], to tackle the presence of discontinuities in both physical and stochas-
tic space, a finite-volume approach in the physical space has been coupled with a
stochastic Galerkin method in the stochastic space using a piecewise polynomial ba-
sis and an original Roe-type solver [85]. Despite improvements, with respect to the
standard Galerkin approach, the method is still very expensive from a computational
cost point-of-view. However, the same authors, in successive works [84, 86], intro-
duced the adaptivity anisotropic feature formulated in the multiresolution context.
This scheme represents the state-of-the-art for the stochastic Galerkin method. Any-
way, some issues are still present; the Roe-type stochastic solver requires the explicit
knowledge (a priori) of the eigenstructure of the stochastic hyperbolic system, which
derives from the Galerkin projection. If this is not an issue for equations like Burgers
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and Euler, it can be unfeasible for general conservation laws. Another limitation is re-
lated to the spatial discretization of the method. Only the first order can be obtained
incurring in both theoretical and practical difficulties generalizing the approach. This
limitation, from a practical point-of-view, makes the high-order convergence in the
stochastic space of reduced utility because the overall error appears rapidly dom-
inated by the physical spatial accuracy. More recently, adopting the multiwavelet
basis, Petterson and co-authors in [66] obtained an intrusive Galerkin method for
two-phase flows. Unlike the work [86], in [66] the problem is solved with a hybrid
method coupling the continuous phase region with the discontinuous phase region
through a numerical interface. The non-smooth region is solved with the HLL-flux
and MUSCL-reconstruction in space; finite-difference operators in summation-by-
parts form are used for the high-order spatial discretization.

In the non-intrusive context, the issue related to discontinuous surfaces in the
stochastic space is also present. Many solutions have been proposed in several dif-
ferent frameworks. For instance, Chantrasmi and Iaccarino in [25] proposed a multi-
dimensional approach based on Pade-Legengre approximation for CFD applications
in presence of shock waves. A new iterative formulation, improving the convergence
of standard stochastic collocation approach, has been presented by Poëtte and Lucor
in [68]. The authors demonstrated the capability of the method to achieve a bet-
ter convergence with no additional cost, i.e. the additional operations with respect
the standard spectral method are all preformed in the post-processing phase. The
method has been successfully applied to Euler system of equations in [59, 68]. More
recently, in the context of the simplex approach [90], Witteveen and Iaccarino intro-
duced the concept of sub-cell resolution for problems in which the discontinuities in
the random space are directly related to their physical counterparts [91]. The pres-
ence of a sparsity character of the solution, i.e. only few coefficients in the PC basis
are really non-null, has been employed by Doostan and Owhadi in [31] to obtain a
non-adapted sampling method. If the assumptions of mild dimensionality and spar-
sity are still valid, and in the presence of sharp gradients and/or discontinuities, an
adaptive important sampling strategy can be introduced to increase the efficiency of
this techniques [72]. A direct comparison between the iterative spectral approach,
the sub-cell resolution technique within the simplex method and the adaptive impor-
tant sampling for compressing sensing has been proposed for some test cases in [59].

1.2.5 Remarks on other (less general) intrusive approaches

Other less general techniques exist for intrusive UQ propagation. A popular non-
sampling method is the so-called perturbation method in which the random field is
approximated by a Taylor expansion. However, the related system of equations be-
comes cumbersome beyond second-order and also the approach is limited to narrow
magnitude of uncertainties, both for input and output variables. Some engineering
applications of the method can be found in [47]. Similarly to perturbation problems
are the operator based methods. This family of methods is based on the expansion of
the stochastic operators, for instance by Neumann expansion [97] or weighted inte-
gral methods [30]. They share with the perturbation method the limited applicability
in term of magnitude of uncertainties. A direct averaging of the governing equations
can lead to a system of equations in which the unknowns are the moments of the
solution. However this approach poses issues related to the closure of the problem,
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i.e. information about higher-moments are very often required. Despite its limited
applicability, in [98] some application examples are presented.

1.3 Semi-intrusive scheme (a hierarchical interpretation)

In this section, the semi-intrusive (SI) method proposed by Abgrall and co-workers
in [3, 4] (and C13) is presented. The SI scheme has been further investigated dur-
ing this thesis research work since its original development in [3]. The SI scheme
constitutes the building block of the overall scheme developed during this thesis, the
so-called adaptive-SI (aSI) scheme, which will be presented in the Chapter 3. The aSI
scheme can be seen essentially as a semi-intrusive scheme based on a multiresolu-
tion approximation space for the basis of the function in the random space. However,
the original formulation of the scheme presented in [3] does not make possible a di-
rect connection within the multiresolution framework developed during this thesis
work. Despite the idea of a general finite volume (FV) reconstruction in the stochas-
tic space is retained, in the aSI scheme the original SI method needs to be, at least,
reformulated in a hierarchical way. The hierarchical re-arrangement of the scheme
translates in a change of focus from the physical to the stochastic space. The numer-
ical algorithm is not performed for all the physical locations with a fixed stochastic
coordinate, but instead for (some) stochastic locations for fixed physical coordinates.
In this respect the aSI scheme is certainly more intrusive than its SI counterpart and
it is closely related to the deterministic formulation because, in general, it is neces-
sary to enforce a decoupling between the values along the physical coordinates. All
these aspects will be discussed in more detail in the Chapter 3, while in this section
the hierarchical reinterpretation of the SI scheme is presented. In this thesis, the
focus has been devoted to time-dependent problems with a particular emphasis on
hyperbolic problems. It is well known that this class of problems is of fundamental
importance, among other fields, for fluid dynamics applications. Moreover, this class
of problems, both for linear and non-linear equations, can deal with discontinuous
solutions. Several numerical methods are nowadays at disposal for hyperbolic sys-
tems of conservation laws [14, 32, 43, 53, 55, 80, 82]. In this thesis, aiming to develop
a general stochastic scheme, without loss of generality, the focus has been restricted
to FV scheme. The reasons are the well-established theory and numerical knowl-
edge of this class of methods, their widespread use in the CFD context (nowadays
they are the standard CFD technique). Moreover, the Monotone Upstream-centered
Scheme for Conservation Laws (MUSCL) [82] is a FV approach allowing an easy ex-
tension of standard Godunov methods to second the order of accuracy. A very robust
MUSCL method is the so-called MUSCL-Hancock method (MHM) [52]. The following
introduction of the (hierarchical recasted) SI scheme will be presented for the MHM
employed in the thesis papers P3 and P4.

The deterministic MHM is first introduced in §1.3.1 and, afterwards it is formu-
lated and extended in the stochastic space with the SI approach in §1.3.2. Anyway,
a standard MUSCL method [87] is instead employed (as deterministic basis for the
aSI) in the paper P5 in which the Discrete Equation Method (DEM) [7,8] formulation
is adopted for multiphase flow simulations.
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1.3.1 MUSCL-Hancock deterministic numerical formulation

The MUSCL-Hancock method consists, as the classical MUSCL approach, of two fun-
damental steps: a predictor and a corrector step. However, the main difference among
the two schemes is that the MHM does not require the solution of a Riemann prob-
lem at each interface during the predictor stage. On the contrary, in the predictor
stage the only fluxes required at the interfaces can be computed analytically evaluat-
ing the flux function relative to an opportune extrapolated value of the conservative
variable (or vector of variables). The following derivation is made for a scalar 1D
conservation law because the extension to system of conservation laws is straightfor-
ward, while the multidimensional extension can be carried out with a dimensional
splitting approach (on Cartesian grids). The interested reader can find many details
in a reference book as [82].

A general 1D scalar conservation law reads
∂u(x, t)

∂t
+
∂f(u(x, t))

∂x
= 0, (1.25)

where x ∈ Ω ⊂ R is the physical space and t ∈ T ⊂ R+ is the time space. The physical
space is divided in a set of non-overlapping cells Ci with Ω =

⋃
i Ci. The classical

first order Godunov scheme, applied to (1.25), is obtained introducing the so-called
cell-average ūi on each cell Ci:

ūi(t) =
1

|Ci|

∫

Ci
u(x, t)dx, (1.26)

where |Ci| indicates the volume of the cell. The Godunov method is only first order
accurate in space due to the constant approximation of the solution u(x, t) over each
spatial cell. Following the idea of Van Leer, high-order schemes can be constructed
employing non-constant data. If a piecewise linear approximation is used for the
solution u(x, t), on the cell |Ci| it is possible to write:

u(x, tn) = ūni + σni (x− xi) with xiL ≤ x ≤ xiR , (1.27)

with σni the so-called slope in the cell Ci = [xiL , xiR ]. Of course, the choice of σni =
0 leads to the Godunov scheme; the approach is always conservative because the
value of the slope σni does not affect the cell average value ūni . To obtain a second-
order accurate method, a nonzero slope σni must be computed in a way in which it
approximates ∂u(x, t)/∂x over the ith cell. A slope limiter should be introduced near
the discontinuities to avoid oscillations. In this work, both the Roe’s superbee limiter
and the van Leer limiter are employed. The superbee limiter in its limited slope form
is 




σni = maxmod
(
σn(1), σ

n
(2)

)

σn(1) = minmod

((
ūni+1 − ūni
|Ci|

)
, 2

(
ūni − ūni−1

|Ci|

))

σn(2) = minmod

(
2

(
ūni+1 − ūni
|Ci|

)
,

(
ūni − ūni−1

|Ci|

))
,

(1.28)

where the minmod and maxmod functions are defined as follows

minmod(a, b) =





a if |a| < |b| and ab > 0

b if |a| > |b| and ab > 0

0 if ab <= 0
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maxmod(a, b) =





a if |a| > |b| and ab > 0

b if |a| < |b| and ab > 0

0 if ab <= 0.

The van Leer limiter, in the form of slope limiter, is defined as (see Toro [82] for
further details)

σni =





min

(
2R

1 +R
,

2

1 +R

)
ūni+1 − ūni−1

2|Ci|
if R > 0

0 if R ≤ 0,

(1.29)

where R is the ratio between successive slopes R = (ūni − ūni−1)/(ūni+1 − ūni ). Anyway,
other approaches are also possible as the so-called flux-limiter formulation (see for
instance [53,55]).

At the interfaces, the conservative variable can be reconstructed both employing
the right or the left cell. To avoid the solution of a Riemann problem at the interface,
the MHM is based on a prediction step totally interior to each cell; after reconstruct-
ing the slope σni , the two values at the interfaces of the cell are obtained. The values
extrapolated at the interfaces are employed to evaluate the net flux into the ith cell
evolving their value for half time step (∆t/2). Finally, the updated value for the ith
cell average ūn+1

i is obtained solving the Riemann problems at the interfaces em-
ploying the evolved values. In conclusion, the fully discrete second order MHM, for
computing the cell averaged solution ūn+1

i , consists of the following three steps:

• Step 1 - For each cell C` ∈ {Ci−1, Ci, Ci+1}, the solution at the interface is com-
puted according to 




un`L = ūn` − σn`
|C`|
2

un`R = ūn` + σn`
|C`|
2

(1.30)

• Step 2 - On each cell C` ∈ {Ci−1, Ci, Ci+1}, the solution is evolved of a half time
step employing the flux function f = f(u):





u⇑`R = un`R +
1

2

∆t

|C`|
(
f(un`L)− f(un`R)

)

u⇑`L = un`L +
1

2

∆t

|C`|
(
f(un`L)− f(un`R)

) (1.31)

• Step 3 - The cell-averaged value on the cell Ci evolves following

ūn+1
i = ūni −

∆t

|Ci|
(
FRM

(
u⇑i−1R

, u⇑iL

)
−FRM

(
u⇑iR , u

⇑
i+1L

))
. (1.32)

The symbol FRM is employed to indicate the flux evaluated at the interface, after
the solution of the Riemann problem defined by two constant states based on the
evolved extrapolated values. Both exact or approximated Riemann solvers can be
employed. For instance, in this thesis exact Riemann solvers are employed in the
papers P3 and P4 for the advection and Burgers equations, while a Roe-Pike method
with the Harten-Hyman entropy fix following [82] is employed in the paper P4 and a
DEM [7,8] solver is employed in P5 for multiphase flows.
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The time advancing formula is limited to a stencil of only three cells Ci−1, Ci and
Ci+1, but the computation of the slopes for the cells Ci−1 and Ci+1 requires (see (1.28)
and (1.29)) also to know the solutions on the two surrounding cells Ci−2 and Ci+2.
The average solution ūn+1

i , on each cell Ci at time tn+1 = tn + ∆t, can be computed
knowing only the solution on the augmented stencil

{
ūni−2, ū

n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2

}
. In the

following, the notation ūn+1
i = MHM

(
ūni−2, ū

n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2,∆t

)
is used to identify

the ensemble of the operations described above. The aim is to evaluate the updated
value in time of a certain cell ūn+1

i , knowing the solution at the previous time step
(only in the augmented stencil).

1.3.2 Semi-intrusive formulation for the MHM

The fundamental ingredient of the (hierarchical) SI scheme is, at deterministic level,
to make evident the connection between a stencil of cell average values at time n
and the updated value at time n + 1 depending on it. This has been accomplished
in the previous section. The remaining step is to equip the problem with further
dimensions, the stochastic coordinates, in which a finite volume like representation
can be obtained. It should be clear that the equation (1.25) must be intended, in this
context, dependent on the vector of random variables ξ

∂u(x, t, ξ)

∂t
+
∂f(u(x, t, ξ))

∂x
= 0, (1.33)

as already introduced in (1.7). The finite volume approximation of the stochastic
space Ξ requiring to introduce a tessellation, constituted by Nξ cells Ξj with j =
1, . . . , Nξ, with the following properties

Nξ⋃

j=1

Ξj = Ξ

µ(Ξi ∩ Ξj) = 0 for i 6= j,

(1.34)

where the first condition expresses the fulfillment of the stochastic space Ξ, while
the second one requires the mutual independence between cells. From a topological
point-of-view, the latter condition means that the cells must be disjoint. The measure
µ(Ξj) > 0 represents the probability measure as already introduced at the begin-
ning of the chapter. Mimicking the deterministic FV approach, a generalized cell
average operator is introduced E (• |Ξj); the linear operator E (• |Ξj) represents the
conditional expected value (of a random function) with respect to the cell Ξj :

E(• |Ξj) =
1

µ(Ξj)

∫

Ξj

•(x, ξ, t) p(ξ, t) dξ. (1.35)

If the conditional expected value operator is applied to the step three of the MHM
scheme (1.32), the following scheme is obtained:

E
(
un+1
i |Ξj

)
= E (uni |Ξj)

− ∆t

|Ci|
(
E
(
FRM

(
u⇑i−1R

, u⇑iL

)
|Ξj
)
− E

(
FRM

(
u⇑iR , u

⇑
i+1L

)
|Ξj
))

.
(1.36)
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The evaluation of the updated conditional expected value E
(
un+1
i |Ξj

)
is possible

knowing its value at the previous time step E (uni |Ξj) and the conditional expected
value of the fluxes. The value E (uni |Ξj) is always at disposal both for initial value
problems, in which the initial condition is analytically known, or in steady problems,
in which an iterative procedure can be initialized from an analytically known solu-
tion. The computation of the conditional expected values of the fluxes requires more
attention. Basically, a cubature rule needs to be applied to evaluate the integrals;
as it has been already seen, this reduces to the computation of the flux functions
FRM

(
u⇑i−1R

, u⇑iL

)
and FRM

(
u⇑iR , u

⇑
i+1L

)
in a set of quadrature points. The key ele-

ment, to evaluate the set of flux values in the quadrature points, is the introduction
of a reconstruction of the solution u(x, tn, ξ) knowing only its conditional expected
values E (uni |Ξj). In particular, a polynomial Pj(ξ) can be introduced on the cell Ξj
to reconstruct, in a conservative fashion, the solution over the cell. When Pj(ξ) is at
disposal its value can be evaluated in the quadrature points and their values injected
into the Step 1 (1.30) and Step 2 (1.31) of the MHM. At this point, a multiresolution
representation over Ξ of the unknown function u(x, t, ξ) can be employed and this
aspect has been one of the key features introduced during this thesis work. For this
reason, at this level, it is not useful to introduce further details on the quadrature
rule to employ or on the conservative interpolation procedure for the polynomial re-
construction (they can be of any kind). However, these aspects are closely related
with the multiresolution framework and they will be introduced in the Chapter 3.

1.4 Closing remarks

In this section, a brief review of the state-of-the-art has been presented. The main
limitations of the actual strategies for UQ simulations are related to the discontinu-
ous responses and the possibility to handle whatever form of pdf, as for instance when
experimental data are at disposal. Despite the great flexibility of the non-intrusive
techniques for UQ propagation, allowing a virtually infinite range of application, the
potentially efficiency gain of the intrusive methods demands for an improvement of
the actual algorithms. The present thesis work moves in this direction. In particu-
lar, actually, the established class of intrusive stochastic Galerkin approach remains
limited to specific applications for the theoretical and algorithmic effort required for
each specific application. Even if the recent introduction of the MR setting partially
solved the issues related to the presence of discontinuous responses, the main limi-
tation related to the growing number of equations is still present. In this sense, the
SI scheme has been developed having in mind the need for an easy adaptation to
general applications without requiring to solve a more complex system of equations.
Moreover, the possibility to handle very general pdf, as discontinuous time varying
pdf, has not been faced at all in spectral methods. All these aspects motivated the
introduction of the SI. However, as all the other intrusive techniques, its numerical
cost reflects the increase of the degree-of-freedoms with the growth of the stochastic
dimensions. In this respect, one of the main goals of this thesis is to develop an adap-
tive version, of the original SI scheme, ables to increase the computational efficiency.
Having in mind the fluid dynamics applications, the multiresolution framework ap-
pears a natural choice due to its capability to represent multi-scale phenomena. The
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multiresolution framework is introduced in the following chapter.



CHAPTER 2

From the Harten multiresolution
framework to the Truncate and

Encode approach

Historically, one of the most basic and powerful tool, for a great variety of applications
in many different scientific fields, is the Fourier analysis. The drawback, related to
the non-compact support of the basis functions (sines and cosines in the Fourier anal-
ysis, but also Wiener-Askey polynomials in gPC theory), is the oscillatory behavior in
the truncated series for functions with isolated singularities. The wavelet basis can
be employed to analyze square-integrable functions as in the Fourier analysis [28],
but they perform better. The reason is due to the localized support of the wavelet ba-
sis. The wavelet decomposition features a multiresolution/multiscale property that
can be exploited in many ways in the numerical analysis. The building blocks of the
theory remains a scaling function, also called mother wavelet, and a dilation relation.
The orthonormal wavelet basis is composed by dilating and translating the mother
function. In some sense, the construction of such orthonormal basis is equivalent to
searching for the solution of the dilating equation [78]. However, conceptual difficul-
ties arise in extending wavelets to bounded domains and general geometries [26], and
in obtaining adaptive (data-dependent) representations1. A generalized multiresolu-
tion (MR) framework has been obtained by the contribution of many researchers from
the seminal idea of Ami Harten in the ’90. The Harten’s framework combines ideas
from multigrid methods, numerical schemes for conservation laws, hierarchical bases
in finite element and the theory of wavelets resulting in a more general framework,
which is able to represent discrete multiscale data. Within this MR framework, the
dilation equation loses its central role and the connection between different (adja-
cent) resolution levels is associated to the decimation and the prediction operators.
Moreover, these two operators rely on a discretization and a reconstruction operator.

In this chapter, the multiresolution framework of Harten is briefly introduced fol-
lowing [6, 38–40] focusing on UQ analysis in the section §2.1. Depending on the dis-
cretization procedure adopted, two different frameworks can be proposed: the point-
value and the cell-average frameworks. The extension to the point-value setting is
presented in §2.2, while the cell-average framework is described in §2.3. The MR
framework can be considered a rearrangement of (discrete) information [16] corre-
sponding to different resolution levels. If a procedure for the identification of the
non-significant data is introduced, the original representation can be reduced in its
dimensionality. This kind of procedure, if related to numerical algorithms, can allow

1In more recent years, the so-called lifting scheme emerged as a tool for the construction of more
general wavelets, which are not related to translation and dilation of a single function (see [79]).
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an increasing of efficiency in terms of computational cost (only the significant data
are processed) and memory requirement (only significant data are stored). The high-
quantity of degrees-of-freedoms in the combined physical/stochastic space for time-
dependent problems makes this approach very attractive for designing intrusive UQ
schemes.

In the following, some basic ingredients are presented, while further details are
reported in the papers P1, P2, P3 for the point-value setting and P4 and P5 for
the cell-average framework. However, some extensions have not yet been published
and are reported here for the first time2: the introduction of the Weighted Essen-
tially Non-Oscillatory (WENO) reconstruction in the point-value setting, presented
in §2.2.1, and the conservative reconstruction in two and three stochastic dimensions,
for the cell-average framework, reported in section §2.3.1.

2.1 Multiresolution framework for stochastic problems

The building blocks of the framework are the operators of discretization Dk, which
allows the transfer of information from the continuous to the discrete space, and the
reconstruction operator Rk which performs the inverse operation. Using both opera-
tors of discretization Dk and reconstruction Rk, the discrete operators of decimation
Dk−1
k and prediction Pkk−1, which operate between consecutive levels of resolutions k

(higher resolution) and k − 1 (lower resolution), can be defined.
Let us consider a function f ∈ F , where F is a proper space of functions. A set of

discrete operators of discretization {Dk}Lk=0, each of them defined on a vectorial space
of finite dimension Jk, is defined as

Dk : F → Vk with dim(Vk+1) > dim(Vk) = Jk. (2.1)

The sequence {Dk}Lk=0 is nested according to the following properties:

• Dk is onto

• the null space of each level includes the null space associated to the previous
resolution level N (Dk) ⊂ N (Dk+1).

These properties reflect in the following relation between discretization operators

Dk+1(f) = 0⇒ Dk(f) = 0 ∀f ∈ F . (2.2)

Thanks to the onto property of each operator Dk, the reconstruction operator Rk can
be defined as follows

Rk : Vk → F . (2.3)

The reconstruction operator is not required to be linear, in the sense of having a
data-dependent basis; this point makes the Harten’s multiresolution more general
with respect to the wavelet framework [34].

Both operators Dk and Rk need to satisfy the following consistency relationship

(DkRk)(v) = v ∀v ∈ Vk, (2.4)
2WENO reconstruction procedure has been presented at the HONOM 2013 workshop on high-order

methods (see also C5).
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thus implying DkRk = Ik, where Ik is the identity operator on Vk.
In the case of nested sequences, whose elements are defined in (2.1), the decima-

tion operator Dk−1
k can be defined as a linear mapping between Vk onto Vk−1:

Dk−1
k : Vk → Vk−1, (2.5)

where
Dk−1
k vk = Dk−1f ∈ Vk−1 ∀vk = Dkf ∈ Vk. (2.6)

The decimation operator is used to generate recursively the set of discrete data
from the highest resolution level (k = L) to the lowest one (k = 0) {vk}L−1

k=0

vk−1 = Dk−1
k vk ∀k = L,L− 1, . . . , 1. (2.7)

Inversely, the prediction Pkk−1 allows to approximate the set of data vk from vk−1

vk = Dkf ≈ Dk(Rk−1v
k−1). (2.8)

This leads to the definition of the prediction operator Pkk−1 between discrete data on
successive resolution levels as

Pkk−1
def
= DkRk−1 : V k−1 → V k. (2.9)

The role of the operators Dk, Rk, Dk−1
k and Pkk−1 in transferring information be-

tween the discrete levels and the continuous space is schematically represented in
the figure 2.1.

Figure 2.1: Sketch of the role played by the operators Dk, Rk, Dk−1
k and Pkk−1 between the

discrete and continuous spaces. Figure reproduced from [12].

A consistency properties can be found between the discrete operators, i.e. Dk−1
k Pkk−1 =

Ik, following from

vk−1 = Dk−1
k vk = Dk−1

k Dkf = Dk−1
k DkRk−1v

k−1 = Dk−1
k Pkk−1v

k−1. (2.10)

Now, an error prediction in the MR framework, ek, can be defined as

ek
def
= vk − Pkk−1v

k−1 = (Ik − Pkk−1Dk−1
k )vk. (2.11)
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The prediction error satisfies (from the consistency property (2.10))

Dk−1
k ek = Dk−1

k (vk − Pkk−1v
k−1) = vk−1 − vk−1 = 0, (2.12)

then it is in the null space of the decimation operator ek ∈ N (Dk−1
k ). Remembering

the definition (2.5), and applying the rank theorem, it is possible to find that

dim(Vk) = dim(N (Dk−1
k )) + dim(Vk−1)

→ dim(N (Dk−1
k )) = dim(Vk)− dim(Vk−1) = Jk − Jk−1.

(2.13)

The linear Jk − Jk−1 independent coordinates of ek are called wavelets or details
dk. Two operators can be defined to link the prediction error to the details, Ek and
Gk, as follows

ek
def
= Ekdk, dk

def
= Gkek with EkGk : V k → N (Dk−1

k ). (2.14)

A multiresolution representation of data can be defined using the operators de-
fined above to perform the encoding and the decoding procedures. The encoding
moves from the highest resolution level to the lowest one applying recursively (for
all k = L, . . . , 1) the decimation operator and computing the details

{
vk−1 = Dk−1

k vk

dk = Gk(Ik − Pkk−1Dk−1
k )vk.

(2.15)

The encoding procedure results in a hierarchical representation, i.e. decomposition,
of a function on nested resolution levels. The decoding procedure is the dual proce-
dure with respect to the encoding: it recursively moves from the lowest resolution
level v0 together with the prediction error ek, as function of the details dk for all the
levels k = 1, . . . , L

vk = Pkk−1v
k−1 + Ekd

k. (2.16)

The decoding procedure allows to obtain the finest resolution level knowing only the
discrete data on the coarsest level and the details dk. The one-to-one correspondence
between the highest resolution level vL and the sequence of the details dk in addition
to the lowest resolution level v0 turns directly in the possibility to define a multires-
olution representation vMR:

vMR
def
= {v0, d1, . . . , dL}. (2.17)

The vMR represents an alternative and equivalent form of the original function,
but the details dk also contain information relative to the presence of different scales.
Introducing an operator of data truncation, the non-significant information, under
a certain tolerance, can be eliminated and the dimensionality, i.e. number of non
null details of the multiresolution representation vMR, can be greatly reduced. This
compact representation can be either employed as a compact representation in the
signal/image representation schemes [17] or injected into a numerical scheme involv-
ing multi-scale phenomena as in the seminal work of Harten [39,40].
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2.1.1 Note on the Truncation and stability requirements

The most important applications of the multiresolution framework are connected to
its compression capabilities. The main idea is to eliminate all the redundant informa-
tion keeping only the significant ones. It is remarkable that the compression process,
despite the algorithm used to obtain it, always generates an approximation of the
original data. With particular reference to what has been presented in the previous
sections, if a function f , discretized on the finest resolution level vL = DLf , is repre-
sented in its multiresolution form vL = vMR the aim of the truncation procedure is to
produce an approximated multiresolution representation v̂L = v̂MR. The truncation
procedure should yield, after the application of the encoding algorithm on v̂MR, a data
set v̂L which is close, in some norms and under certain accuracy requirements, to the
original data vL. Different truncation procedures can be designed to achieve the cor-
rect reproduction of the data obtaining the desired level of compression. In this work,
despite the possibility to use more exotic (with respect to the pure classical numerical
scheme) procedures as the quantization (see for instance [41]), the truncation based
on the elimination of the wavelets dk under a prescribed tolerance is addressed. The
problem statement is the following: given a sequence of scale coefficients or wavelets
for a fixed level dk and assigned a level dependent tolerance criterion εk, generating

d̂k =
{
d̂kj

}Jk−Jk−1

j=1
in accord to

d̂kj = tr(dkj , εk) =

{
0 |dkj | ≤ εk
dkj otherwise,

(2.18)

where tr(dkj , εk) indicates the truncation of dkj with respect to the local resolution
threshold εk.

Different choices are described in literature for the threshold εk: a level indepen-
dent choice εk = ε or a dependent criterion εk = ε/2L−k. Since the original work
of Harten, the question for the stability of the MR representation of the data has
been analyzed. Harten proposed [38] to modify the encoding procedure to preserve a
condition as follows

||vL − v̂L|| ≤ Cε, (2.19)

with a constant C and measured in some norms as the L1 and L∞.
Classically the effectiveness of a MR approach is measured in term of its compres-

sion capability, i.e. the number of activated waveletsNw with respect to the dimension
of the discrete space at the finest level dim(VL) = JL. The compression ratio µcr is
usually defined as follows:

µcr =
JL

Nw + J0
. (2.20)

This ratio is useful to measure the gain in terms of memory requirements.
However, in the Truncate and Encode (TE) approach presented in this work, the

algorithm does not require the knowledge of the solution at the finest level. This is
a totally original feature of the present approach, with respect to all the other MR
schemes in literature. This leads to another ratio, an evaluation ratio τ , measuring
the number of evaluations Neval of the model with respect to the dimension of the full
discrete space JL

τ =
JL
Neval

. (2.21)
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In Chapter 4, results on both the compression ratio µcr and the evaluation ra-
tio τ are provided for different applications of the TE algorithm in the point-value
framework.

In a general MR framework, another aspect is crucial: the stability of the algo-
rithm, i.e. when a function is compressed obtaining v̂MR, the decoding procedure
on v̂MR should recover the exact original vL. This aspect becomes crucial for non-
linear, i.e. data-dependent MR schemes. In the general framework presented here,
the situation is slightly different: the algorithm searches for the smallest possible (in
terms of evaluations required) representation v̂L moving, recursively, from the level
v0. Once obtained, the discrete function v̂L is not more manipulated, i.e. compressed;
there is not a stability problem, concerning the duality between encoding and decod-
ing procedures, however it remains crucial the question related to the convergence
||vL − v̂L|| in some norms. The interested reader can find a detailed analysis on the
stability of the Harten framework with the relative error bounds in [16], while the
convergence property of the TE algorithm, depending on the regularity of the func-
tion to reproduce, and on the order of the polynomial reconstruction employed to
build the predictor operator, can be obtained. The derivation of these properties is
explicitly made in the paper P1 and numerically demonstrated, also in Chapter 4, for
the so-called steady functions, i.e. functions depending only on the random space. In
the following sections the MR framework, as described in this section, is discussed
focused on UQ applications.

2.1.2 Limitation of the pure Harten’s framework for UQ propagation

Two main properties of MR are of great interest in this thesis work. First, the com-
pact MR representation of the functions permits to handle data with a great dimen-
sionality (in term of the cardinality in the discrete space). Moreover, an adaptive
time-dependent procedure can be designed exploiting the capability of the prediction
error ek to carry information relative to the (local) regularity of the functions. This
quantity can be analyzed in order to guide the topological refinement in the stochas-
tic space when the computation of the object function is performed. In particular,
focusing on the reconstruction of an unknown function, the refinement is reached
moving from the coarsest level towards the finest one, by comparing two resolution
levels at once in terms of prediction error ek. In this case, it is possible to identify
the regions where the attained resolution is not sufficient to guarantee a prescribed
tolerance criterion. A fundamental difference exists between this approach and the
classical MR framework: in the latter, a MR representation can be obtained only
if the finest resolution is available. This procedure can be directly applied in im-
age compressing applications, where an image in high resolution is first translated
in its MR representation and then, after the application of the truncation operator,
compressed. However, in the case of initial value problems, as in the solution of
time evolving PDEs, the procedure just described is useful only for the initial condi-
tion [39]. The initial solution should evolve in time and a proper MR scheme must
exploit the scale decomposition of the function in order to update only the significant
information. However, this approach employs a procedure to guess the movement of
the significant points from a time n to a time n + 1; generally a CFL based criterion
is used for deterministic problems. A similar approach would fail if directly adopted
for time-evolving problems in presence of random parameters; there is no possibility
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to obtain a pure evolution equation, with a CFL-like criterion, in the only stochastic
space. Let us consider, for instance, a stochastic ODE. There is no way to predict
the movement of significant points in the stochastic space. The reason is that each
ODE (for a fixed random vector) is independent from the others. Moreover, the MR
representation could vary due to the dependence of the pdf in time, or the presence
of a bifurcation behavior with respect to the random parameters could produce an
unexpected/unpredictable change in the function regularity. One of the main point to
address is to build a procedure, in order to produce a MR representation of a time-
dependent function at time n+1, without guessing its multiscale form at the previous
time step n, but identifying it in real-time. In this sense, a Truncate and Encode (TE)
algorithm permits to obtain a (already truncated) MR representation of a function,
which is obtained by moving progressively from the coarsest resolution level to the
finest one. The first step is to design the TE procedure in both the frameworks (point-
values and cell-averages). This is sketched in §2.2 and §2.3. The TE procedure can be
also coupled with a collocation-like approach to obtain the so-called spatial-TE (sTE)
algorithm, as it is demonstrated in the papers P1, P2 and P3 (presented in §2.2.2).
This method is the fundamental step to bring a MR approach into the semi-intrusive
scheme [4], where a direct link between the MR representation, the deterministic
scheme and its stochastic extension is needed. It yields the adaptive-SI (aSI) scheme
presented in the following chapter. The remaining part of the present chapter will
be devoted to the development of the TE algorithm within a discussion of the proper
reconstruction procedure to obtain the operator Rk in both the frameworks (point-
value and cell-average) and in a linear and a non-linear fashion. As discussed in the
previous chapter, a fundamental role in UQ propagation is played by the pdf of the
input parameters. Further comments on the pdf are reported in the following section.

2.1.3 Remarks on the presence of non-uniform pdf

The general framework sketched above does not consider explicitly the presence of a
probability measure. In UQ propagation problems, the presence of a distribution of
the random parameters should be taken into account. Two different cases can occur:
bounded or unbounded pdf. In the case of bounded pdf both regular, i.e. uniform,
meshes based on the Lebesgue or probability measure can be built. In the first case
the mesh is always uniform irrespective of the probability distribution of the param-
eters, while in the latter case the uniform tessellation is obtained directly on the
probability measure. In this situation, each interval has the same probability, but
the Lebesgue measure is not constant. If the probability distribution is not bounded,
as for instance in the case of Gaussian distribution, the tessellation can be performed
only on the probability measure [3]. Dealing with uniform meshes is conceptually
and practically easier than handling non-uniform tessellation, so when possible, the
uniform partition of the stochastic space should be employed. In this sense, even
if the schemes developed here are designed also to deal with unbounded pdf, only
bounded probability distributions are employed. However, non-standard and even
discontinuous pdf are analyzed in the papers P1 and P2 where the point-value set-
ting is adopted. In this case, the framework described above in an abstract way, is
applied to the product between the function and the pdf of the random parameters
hence represented on a regular (in the Lebesgue sense) mesh on the random space.
In the cell-average framework, the connection between the probability measure and
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the MR representation is closer. The discretization operator Dk (see below) is based
on a weighting function for the averaging step that, in this context, it is not difficult
to identify with the pdf. More general averaging procedures are also possible, as the
hat-based discretization [18, 34], but they are not investigated during this work be-
cause less adapted for UQ purpose (see [34], in particular, for a generalization of the
discretization procedure based on averaging). In the original SI scheme [3], Abgrall
employs an uniform tessellation on the measure probability, however the scheme is
developed for fixed meshes in times. When dealing with the adaptation, the pdf is
involved in the refinement procedure because each interval in the stochastic space
can be divided again according to the Lebesgue or the probability measure. In the
case of uniform distribution of the parameters obviously the two measures are equal
(see the papers P3, P4 and P5).

2.2 Point-value setting

The point-value setting represents, since its introduction by Harten in [39], a very
flexible setting to build numerical schemes with a multiresolution rearrangement of
the information. Conceptually, the point-value setting is the most natural one with
only discretized data, i.e. data known in a set of finite points.

The appropriate functional space for this framework is the space of the bounded
functions f ∈ F = B(Ξ) with

f : Ξ ⊂ Rd → R, (2.22)

where Ξ must be also intended bounded with respect to its probability measure dµ.
On the domain Ξ, let us suppose to generate nested sequences of points, also referred
as a mesh of resolution level k, Gk =

{
ξkj

}
where ξkj ∈ Ξ. The sequence is nested if

the following condition is satisfied

Gk−1 = Gk ∩ Gk−1, (2.23)

that allows the possibility to increase (decrease) the resolution level only adding (re-
moving) a finite set of points for a fixed level k. For instance, in a 1D stochastic space,
the situation is sketched in the figure 2.2. Hereafter, the exposition is made for a 1D
stochastic problem for simplicity of exposure.

vk−1
j−1 vk−1

j

vk2jvk2j−1vk2j−2

k

k − 1
vk−1
j−2 vk−1

j+1

Figure 2.2: Example of 1D stochastic nested meshes for the point-value setting.

The nested property of the meshes directly turns into the nested character of the
discretization operator

(Dkf)j = f(ξkj ) = vkj , (2.24)

from which the discretization operator Dk−1
k is obtained directly removing from vk all

the components vkj = f(ξkj ) where ξkj ∈ Gk \ Gk−1.
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The reconstruction operator Rk can be associated to the polynomial interpolation
Pkj on a fixed stencil Skj relative to the interval [ξkj−1, ξ

k
j ]. More details, about the

selection of the stencil and the construction of the polynomial Pkj , are reported in the
following sections. In this case, the prediction operator Pkk−1 can be defined as:

(Pkk−1v
k−1)2j−1 = (DkPk−1

j )2j−1 = Pk−1
j (ξk2j−1). (2.25)

In this setting, the error ek is equal to zero for all the points ξkj ∈ Gk−1, while
the number of non-redundant, i.e. linear independent, coordinates dk is equal to
card(Gk \ Gk−1), where the wavelets are defined as follows

dkj = vk2j−1 − (Pkk−1v
k−1)2j−1 ∀ξk2j−1 ∈ Gk \ Gk−1. (2.26)

The components of the error ek can be employed as an indicator for the enrichment
of the discrete space following the TE algorithm. This algorithm is employed in the
papers P1, P2 and P3 where its formal definition can be found. In the Algorithm 1
the conceptual sketch of the strategy is provided.

Algorithm 1: Truncate and Encode algorithm for the point-value setting.
while k < L do

Encoding (vk−1, vk)→ dk

Truncation (dk, εk)→ d̂k

for ξk+1
j ∈ Gk+1 do

vk+1
j =

{
Evaluation→ f(ξk+1

j ) if ek` (ξ
k+1
j ) > εk

Decoding(vk, d̂k) otherwise

end
end

The error vector ek contains components equal to zero, if a point belongs to both
the resolution levels compared ξkj ∈ Gk ∩ Gk−1, or equal to the wavelet. In the Algo-
rithm 1, the component associated to the interval to which ξk+1

j belongs is indicated
as ek` (ξ

k+1
j ). More formally there is a unique non-null component 0 6= ek` ∈ I 3 ξk+1

j

with I ⊂ Ξ for ξk+1
j ∈ Gk+1 \ Gk. Obviously, the decoding procedure relies on the

reconstruction operator Rk (locally the polynomial Pj) through the predictor Pkk−1.
This MR point-value setting shows a great flexibility in terms of reconstruction

operators Rk. In this work, this flexibility is exploited and both linear and non-linear
families of polynomial reconstructions are built to obtain Pkk−1, and hence Rk. Well
established techniques for this scope are the essentially non oscillatory ENO or the
WENO reconstruction procedures [42, 46, 57], extended in [6, 9, 58] for virtually any
kind of meshes. The next section presents the techniques employed in the present
work to perform the polynomial reconstruction in the point-value setting.

2.2.1 Non-linear polynomial reconstruction

The reconstruction operator Rk, useful to perform the MR analysis, can be obtained
as the union of all the polynomial interpolants Pkj on each jth interval on the mesh Gk.
The strategy to obtain Pkj is here described, for linear and non-linear cases, in the 1D
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context. During this work, the reconstruction procedure, for point-values setting, is
not extended to multiple dimensions, but the general procedures to obtain efficiently
Lagrangian interpolants, even in the non-linear case, are described in [6,9].

The generic stencil S for a polynomial interpolation of order r > 0 is

S = S(r, s) = {−s,−s+ 1, . . . ,−s+ r} , with r ≥ s > 0. (2.27)

On the stencil S it is possible to define a number of NS = card(S) Lagrange poly-
nomials:

Lm(y) =
−s+r∏

l=−s
l 6=m

(
y − l
m− l

)
with Lm(i) = δi,m and i ∈ S. (2.28)

For each ξ ∈ [ξj−1, ξj ] the generic polynomial Pj (hereafter referred as qj to distinguish
from the cell-average setting) is defined as

qj(ξ; f, r, s) =
−s+r∑

m=−s
vj+m Lm

(
ξ − ξj
h

)
, (2.29)

where qj(ξl) = vl = f(ξl). To each qj(ξ; f, r, s) ∈ [ξj−1, ξj ] the topological stencil as-
sociated is Sj = {ξj−s, ξj−s+1, . . . , ξj−s+r} with card(Sj) = r + 1. The degree of the
polynomial reconstruction has direct consequences on the accuracy of the interpo-
lation (see for instance [71]) and on the property of the MR reconstruction (see the
paper P1 where the convergence properties of the point-value TE scheme is obtained
with respect to the polynomial reconstruction and the regularity of the function f ).

If the stencil is fixed a priori, choosing both the degree r and the type of sten-
cil s, the multiresolution framework is said to be linear (hence not data-dependent).
It is well known (but further investigated in the paper P3) that the error is mini-
mized by selecting centered stencils. However, this general criterion is not sufficient
for optimal polynomial interpolations for non smooth functions. This reflects also
the difficulty to compute very small divided differences, which can be dominated by
round-off errors.

In the MR context, a measure of the degradation of the interpolation is contained
in the r+1 divided difference f [Sj , ξ]. From this observation, Harten et al. introduced,
in [42], the so-called Essentially non oscillatory (ENO) interpolation in the context of
the numerical methods for conservation laws. The idea is to adapt the stencil, in
presence of discontinuity, to avoid crossing it; the interpolation is carried out only us-
ing the regions of smoothness. Two different algorithms have been presented in [42]:
a hierarchical selection and a non-hierarchical one. The non-hierarchical selection is
demonstrated [17] to be able to detect even jump in the derivative of the functions.
However, the non-hierarchical selection is, in the same paper, claimed to produce bi-
ased stencils away from discontinuity regions. For this reason, aiming to introduce
the ENO technique in the MR context to gain in term of compression capabilities, the
focus, in the present work, is on a hierarchical selection of the stencil employing the
following algorithm [42]
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Algorithm 2: Hierarchical selection of the stencil
s0 = j
for l = 0, . . . , r − 2 do

if |f [ξsl−2, . . . , ξsl+l]| <
∣∣f [ξsl−1

, . . . , ξsl+l+1
]
∣∣ then

sl+1 = sl

end
end
sj = sr−1

to obtain the stencil SENO
j =

{
ξsj−1, ξsj , . . . , ξsj+r−1

}
and where, the generic di-

vided difference, is

f [ξ0, . . . , ξn] =
n∑

j=0

f(ξj)∏
k∈{0,...,n}\{j} (ξj − ξk)

. (2.30)

In papers P1 and P2, the linear reconstruction (r = 1) is adopted for the point-
value setting. Paper P3 presents the extension, to the high-order (r = 3) non-linear
(ENO) procedures, to select the stencil obtaining better results with respect to both
the low order and the linear schemes. The ENO interpolation consists in comparing
r stencils each containing r + 1 points. The overall stencil (virtually) visited during
the ENO evaluation contains 2r points that, at least in the smooth regions, could be
used to produce high-order approximations. To exploit this possibility the resulting
method, called Weighted-ENO, has been introduced in 1994 by Liu, Osher and Chan
[57] in which they presented a third order accurate finite volume WENO scheme, and
the generalization to arbitrary order in [46]. In the following the WENO technique is
presented and extended to the TE scheme purpose, following [15].

WENO interpolation

The WENO interpolation techniques have been introduced to take advantage from
all the information collected during the selection of the (best) stencil in a ENO algo-
rithm (see for instance the Algorithm 2). Restricting the presentation to 1D case3,
and avoiding to explicitly reporting the kth resolution level, the ENO procedure to
obtain the polynomial Pj(ξ) with ξ ∈ [ξj−1, ξj ] of order r selects the smoothest stencil
among Sj(s) = {ξj−s, ξj−s+1, . . . , ξj−s+r} where r ≥ s > 0. The union of the r stencils
Sj(s) is the set S∪ = {ξj−r, ξj−s+1, . . . , ξj−1+r} with cardinality 2r. Despite the ENO
algorithm employs information originating from 2r points, the maximum accuracy
possible is limited by the cardinality r + 1 of each single stencil Sj(s) because, at the
end of the procedure, only one of them is retained to build the polynomial qj(ξ). The
seminal idea proposed in [57] was to build a convex combination of all the possible
polynomials qj(ξ; f, r, s) obtained on the stencils Sj(s) in a way to recover the poly-
nomial of the maximum possible order on the stencil S∪ while, in the presence of a
lack of regularity, reducing to the ENO selection. Basically, the combination of the
polynomials is based on the smoothness of the function on each stencil in a way to
obtain, practically, no influence from the stencil containing singularity points. It is

3This assumption is not so strong as it would appear. In the context of point-value MR, the multidi-
mensional schemes are obtained through a recursive application of 1D algorithm via tensorial product
(see for instance [12,13,22]).
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important to note that both the original paper [57] and its generalization [46] han-
dle cell-average interpolations as of interest for the solution of the conservation laws.
In this thesis, however, the approach follows what has been proposed by Aràndiga,
Belda and Mulet in [15] where the procedure is adapted to the Lagrangian interpo-
lation and the (non-linear) weights, for the convex combinations of the polynomials,
are obtained adapting also the smoothness criterion.

The formal definition of the WENO interpolant qW
j (ξ) (omitting the explicitly de-

pendence from the function and the polynomial order) is the convex combination of
all the polynomial qj(ξ; s) defined over each stencil Sj(s)

qW
j (ξ) =

r∑

s=1

ωs qj(ξ; s) where ωs ≥ 0 and
r∑

s=1

ωs = 1. (2.31)

The first requirement consists in determining the optimal coefficients ωs defined as
the coefficients for which the convex combination (2.31) recovers the highest order
(2r) of accuracy on S∪. The optimal weights ωopt

s are recovered as

ωopt
s =

1

22r−1

(
2r

2s− 1

)
. (2.32)

Note that the equation (2.32) contains a slightly change of notation with respect to its
counterparts reported in [15] because in this work the weights are directly obtained
as function of the stencil index s. The optimal weights for r, up to four, are reported
in the table 2.1.

s = 1 s = 2 s = 3 s = 4

r = 2 1/2 1/2 - -
r = 3 3/16 10/16 3/16 -
r = 4 1/16 7/16 7/16 1/16

Table 2.1: Optimal weights for the WENO interpolation (2.31) obtained by the (2.32).

Non linear weights can be obtained to emulate the ENO interpolation, i.e. the
polynomial corresponding to a stencil containing a discontinuity should have a negli-
gible influence in (2.31). In both [57] and [15], the non-linear weights are defined as
follows

ωs =
αs∑r
i=1 αi

, where αs =
ωopt
s

(νh + SIs)t
, (2.33)

where the smoothest indicator SIs = SIs(h) depends on the function to interpolate
over the stencil Sj(s) and νh is introduced, in principle, only to avoid null denomina-
tors. However a proper dependence from h is of a crucial importance for the choice of
νh. The following property holds (adapted from [15])

Proposition 1 Let SIs be the smoothness indicators of f(ξ) on Sj(s) that verify SIs =
O(h2), if f(ξ) is smooth at Sj(s); SIs 9 0 for h→ 0 if f(ξ) is not smooth at Sj(s) and

SIp − SIq = Om+2, ∀1 ≤ p, q ≤ r,

for some m ≥ r − 1 whenever f is smooth at all the stencils Sj(s), 0 < s ≤ r. Moreover,
choosing νh = h2 then f

(
ξj−1+ξj

2

)
− qW

j

(
ξj−1+ξj

2

)
= O(h2r) if f is smooth, otherwise



From Harten MR to the Truncate and Encode algorithm 43

f
(
ξj−1+ξj

2

)
− qW

j

(
ξj−1+ξj

2

)
= O(hmin(2t,r+1)) if f it is smooth at least at one of the

stencils Sj(s).
Proposition 1 drives the choice of the parameters for determining the non-linear

weights (2.33): νh should be a function of the size of the mesh h and in particular
νh = h2, while the exponent t influences the order of the interpolation in the case of
non smooth functions. In particular, it appears convenient to choose 2t ≥ r + 1 (and
νh = h2) to guarantee an accuracy at least equal to the ENO interpolation (r) in the
same case, while in the smooth region the order 2r can be (theoretically) achieved
also with a fixed νh. In practice, in standard WENO applications, as the solution of
systems of conservation laws on fixed regular meshes, the parameter νh is usually
fixed as 10−5 ∼ 10−6 to realize νh ≈ h2 for meshes of the size h ≈ 10−3. However, in
this context, the most robust choice is a function νh depending on h in order to obtain
the highest accuracy even on the meshes of the coarser resolution levels.

The remaining term to compute is the smoothness indicator SIs for each stencil.
In [57], the authors proposed the following definition for cell-average applications

SIs =

r−1∑

l=1

∫ ξj+1/2

ξj−1/2

h2l−1(q
(l)
j (ξ; s))2dξ, (2.34)

while in [15] the previous definition is adapted to the point-value case. Only shifting
the interval it is possible to write

SIs =
r−1∑

l=1

∫ ξj

ξj−1

h2l−1(q
(l)
j (ξ; s))2dξ, (2.35)

where the term h2l−1 is retained to remove the h−dependence in the lth derivative of
qj . The integration in the equation (2.35) can be approximated by the mid-point rule
or the trapezoidal rule obtaining quite equivalent versions of the index. In this the-
sis, a comparison between the three indicators proposed in [15] has been performed,
but they show to be equivalent in the TE algorithm framework. After some manipu-
lations, in the case of r = 3 adopted in this thesis, the smoothness indicator yields

SIs = (δ1 (s) + δ2 (s) + δ3 (s))2 +
13

3

(
δ2(s)− 3

2
δ3(s)

)2

+
781

20
δ2

3(s), (2.36)

where δ1, δ2 and δ3 depend on the values of the function f on the points belonging
to each stencil, hence they vary between the stencils Sj(s). In the following, the
expressions as functions of the stencil Sj = {ξj−s, ξj−s+1, . . . , ξj−s+r} are reported:

s = 3→





δ1 = −1

3
vj−3 +

3

2
vj−2 − 3vj−1 +

11

6
vj

δ2 = −1

2
vj−3 + 2vj−2 −

5

2
vj−1 + vj

δ3 = −1

6
vj−3 +

1

2
vj−2 −

1

2
vj−1 +

1

6
vj ,

s = 2→





δ1 =
1

6
vj−2 − vj−1 +

1

2
vj +

1

3
vj+1

δ2 =
1

2
vj−1 − vj +

1

2
vj+1

δ3 = −1

6
vj−2 +

1

2
vj−1 −

1

2
vj +

1

6
vj+1,
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and

s = 1→





δ1 = −1

3
vj−1 −

1

2
vj + vj+1 −

1

6
vj+2

δ2 =
1

2
vj−1 − vj +

1

2
vj+1

δ3 = −1

6
vj−1 +

1

2
vj −

1

2
vj+1 +

1

6
vj+2,

Numerical results, concerning the WENO interpolation introduced in the point-
value resolution scheme, are not present in any of the papers which constitutes this
manuscript. For this reason some numerical results to highlight the difference be-
tween linear and non-linear (ENO and WENO) reconstructions, in the point-value
framework, are reported in Chapter 4 of this manuscript. The point-value MR frame-
work, presented in §2.2, is the fundamental brick of the spatial-TE (sTE) scheme
introduced to solve problems where the solution depends also from the physical and
time space. The sTE algorithm is depicted in the following section summarizing what
is done in P2 and P3.

2.2.2 Introducing the spatial-TE algorithm for stochastic partial
differential equations

The TE algorithm, as shown in the previous sections, allows to reconstruct with a
low computational cost, i.e. a less number of functional evaluations, a function over
the stochastic space on a mesh with a certain finest resolution level, moving from the
coarsest to the finest resolution. When dealing with stochastic PDEs, as introduced
in (1.7), the solution of the problem depends also on the physical space Ω and the
time space T . Conceptually, the stochastic space can be viewed as a supplementary
dimension and the solution, at each time step, could be represented on a coupled
physical/stochastic space. However, this approach becomes a pure multidimensional
approach even if Ω ⊂ R and Ξ ⊂ R. In paper P3, this approach is defined as strong
coupling. During this thesis, the focus is concentrated to a weak coupling approach:
each space, physical or stochastic, remains discretized by its own representation.
Despite its conceptual simplicity, the weak coupling yields a very flexible approach
allowing to introduce a MR representation in problems where the spatial formulation
has already been obtained. In this sense, the weak coupling shares the same vision
of the original semi-intrusive scheme of Abgrall [3]. To make clear the idea, let us
imagine a tessellation of the physical space Ω ⊃ T =

⋃Nx
i=1 Ti in which Nx is the

number of elements. The overall space Ω× Ξ can be approximated as

Ω× Ξ '
(
Nx⋃

i=1

Ti
)
× Ξ =

Nx⋃

i=1

Ti × Ξ. (2.37)

The discrete solution u(x, t, ξ) can be approximated as

u(x, t, ξ) '
Nx⋃

i=1

u(xi, t, ξ). (2.38)

If the time space T = [0, tF ] is also discretized (let us suppose Nt constant intervals
∆t = tF /Nt for a sake of simplicity of exposure) and tn = n∆t for n = 0, . . . , Nt, the
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semi-discrete (time-physical space) solution reads

u(x, tn, ξ) =

Nx⋃

i=1

u(xi, tn, ξ). (2.39)

Fixing a spatial coordinate xi and a time step tn, the semi-discrete solution is
a collection of function defined over Ξ; all the functions u(xi, tn, ξ) are discretized
on resolution level L. Hence, the TE algorithm described above can be applied on
each u(xi, tn, ξ) to obtain their compressed representation. As it is evident, the ap-
proximation procedure just described is not influenced by the spatial discretization.
For instance, in P2 a finite-element discretization is employed, while in P3 a finite-
volume tessellation is adopted for the space Ω. For the stochastic space Ξ, the MR
basis, defined on different discrete resolution spaces V k, is the approximation space.

From an algorithmic point-of-view, the TE procedure plays two fundamental roles:
first it drives the overall algorithm to locate points in the stochastic space where the
solution should be computed; secondly the MR representation, obtained through the
TE algorithm, consists in a reduced set of points which represents the independent
expansion coefficients for each solution u(xi, tn, ξ) on the space of the piecewise poly-
nomials of degree r. The approximation space, in the case of the non-linear MR
setting, will be dependent on the physical space and the time, as well as from the
stochastic space. In the point-value framework, the approximation of u(xi, tn, ξ) is
fully determined knowing the value of {u(xi, tn, ξj)} on a set of Nξ collocation points
in the stochastic space. As already shown, each function is represented on a finest
resolution level through a hierarchical representation on the lower levels. Main dif-
ference, with respect to the pure TE algorithm, is that in the sTE, each u(xi, tn, ξ

k
j )

depends (explicitly) on u(xi, t, ξ
L
j ) for t < tn when evaluating. Conceptually, the only

additional step, with respect to the TE algorithm, consists in the introduction of the
spatial discretization and time discretization, but at a fixed stochastic coordinate; this
approach makes possible to employ the same theoretical and numerical framework
adopted in the deterministic counterparts. To make things clear, let us consider a
scalar random conservation laws discretized by a Godunov method in a node-centered
approach on a regular mesh where each cell is Ci = [xi−1/2, xi+1/2] and xi±1/2 are the
interfaces. If a standard first order discretization is adopted in space and time, for a
fixed random coordinate ξj , it is possible to write

u(xi, tn+1, ξj) = un+1
i (ξj) = uni (ξj) +

∆t

∆x

(
FL(xi− 1

2
, tn, ξj)− FR(xi+ 1

2
, tn, ξj)

)
. (2.40)

In the case of standard Godunov method, each numerical flux evaluated at the inter-
faces is function of only the cell average values on the cell sharing the same interface,
i.e. FL(xi− 1

2
, tn, ξj) = FL(uni−1, u

n
i , ξj) and FR(xi+ 1

2
, tn, ξj) = FL(uni , u

n
i+1, ξj). The value

of un+1
i (ξj) can be obtained as a series of operations providing the stencil of values{

uni−1, u
n
i , u

n
i+1

}
. For a general space discretization, if the time discretization is ex-

plicit, a proper stencil can be identified. In papers P3, this stencil is called physical
vector and indicated with PV. The application with different PV can be found in P2,
P3.

It important to note that the physical vector contains elements always belonging
to different MR representations because each MR representation is performed at dif-
ferent spatial coordinates. In general, a procedure of physical assembling PhAs is



46 Chapter 2

needed (see for instance P2 and P3). Conceptually, the PhAs procedure is the search-
ing for each element of PV in the relative MR structure. In general, the problem cor-
responds (turning to the notation employed for the TE algorithm) to find the value of
vkj knowing, i.e. having stored, a different resolution level. Dealing with time-varying
problems with traveling discontinuities or high gradient regions for each spatial lo-
cation, the final resolution level can vary. However, a sequence of decimations Dk
can be applied to obtain the value from an higher resolution level, or a sequences of
prediction Pkk−1 can be employed to obtain the value from a lower resolution level. If
the latest level obtained by the TE algorithm is retained, the sequences of prediction
is exactly (under the tolerance prescribed via ε) the value searched because all the
(truncated) details for the higher resolution levels are zero; this is not the case if the
solution would be further compressed at the end of the TE algorithm. In this case,
clearly, the truncated details are not all zero. More formally searching for the value
vkj on a generic level k knowing vk̄, yields

vkj =





(Dk
k+1 · · ·Dk̄−2

k̄−1
Dk̄−1
k̄

vk̄)j with k < k̄

(Pkk−1Pk−1
k−2 · · ·Pk̄+1

k̄
vk̄)j with k > k̄.

(2.41)

The PhAs algorithm is then performed to obtain all the elements belonging to
PV employing the (2.41). The final sTE algorithm is the recursive execution of the
TE Algorithm 1 for all the time steps n < Nt and for all the spatial points i < Nx

where, the evaluation step is the application of the deterministic scheme providing
the physical vector PV obtained recurring to the PhAs procedure. The complete sTE
algorithm described in this chapter is reported in P3.

2.3 Cell-average setting

In section §2.2, the case of discretization in a point-value setting has been presented.
However, another approach to represent discrete data relies on cell-average frame-
work. This approach recovers an important role for all the class of methods where
integral quantities are a more natural way to deal with the discrete equations, as for
instance, finite volume methods. In this case the function f = f(ξ) is f : Ξ ⊂ Rd → R
with d the number of dimensions of the stochastic problem, i.e. the number of un-
certain parameters. The functional space F is defined as F = L2(Ξ), because of the
cell-average setting, and the need to have functions with finite variance in the UQ
framework. In the cell-average setting, a weighting function should be adopted. In
the UQ context, this weighting function is easily identified as the joint pdf of the ran-
dom inputs. However, general averaging procedures, as the hat-based [18, 34], exist
in literature. In particular in paper [34], generalizations of the discretization proce-
dure, based on averaging, are reported. Choosing the pdf as the weighting function,
the space Ξ is equipped with the measure

dµ(ξ) = p(ξ)dξ. (2.42)
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Hence, a tessellation of the stochastic space Ξ, satisfying the classical non overlap-
ping requirements, can be considered

Ξ =

Nξ⋃

j=1

Ξj , with Ξi ∩ Ξj = 0 if i 6= j. (2.43)

In this setting, the discretization operator on the k-th level can be defined over the
j-th cell Ξkj as

(Dkf)j
def
=

1

µ(Ξkj )

∫

Ξkj

f(ξ)dµ(ξ) = vkj . (2.44)

By an agglomeration (splitting) procedure with a generic mesh, even unstructured,
it is always possible to obtain a less (higher) resolution level. In a general case, to
each cell Ξkj at the lower resolution level corresponds a certain number of cells at the
higher resolution level. In order to preserve the nested character between levels, the
following properties between meshes must hold:

Ξkj =

l̄c∑

l=1

Ξk+1
jl

. (2.45)

In this case, the decimation operator could be obtained as follows (see figure 2.3
for a representation in the 1D case) thanks to the additivity of integrals

(Dk−1
k vk)j = (Dk−1

k Dkf)j = (Dk−1f)j =
1

µ(Ξk−1
j )

∫

Ξk−1
j

f(ξ)dµ(ξ)

=
1

µ(Ξk−1
j )

l̄c∑

l=1

µ(Ξkl )(Dkf)l.

(2.46)

Note that in the general case of an arbitrary pdf p(ξ), even the 1D case sketched in
figure 2.3, the nested sequence produces nested relations with non constant coeffi-
cients even for the same level of resolution depending on the measure. To recover
the counterparts of the physical space case, the splitting/agglomeration of each cell,
based on a Lebesgue measure, should be replaced by a splitting based directly on the
probability measure. The nested sequence of the meshes, even in this case, is totally
independent on the function and can be generated a priori with the only requirement
to know the probability distribution p(ξ).

Ξk
2j−1 Ξk

2j

Ξk−1
j

ξk−1
jξk−1

j−1

ξk2jξk2j−1ξk2j−2

k

k − 1

Figure 2.3: Example of 1D stochastic nested meshes for the cell-average setting decimation
procedure.

However, in this work, uniform pdfs are employed for the numerical test cases,
then the two criteria, the splitting/agglomeration based on the Lebesgue or proba-
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bility measure, are the same. In particular, the corresponding discretization opera-
tor can be defined by the convolution of the function f with an Haar scaling func-
tion. This approach constitutes a direct link between the Harten framework and the
wavelet one.

In the cell average framework, historically, the reconstruction operator Rk has
been introduced by Harten in the 1D case invoking a primitive function. This ap-
proach can be extended quite easily, to multidimensional spaces, in the case of regu-
lar meshes, i.e. tensorial product meshes [16,22]. However, as pointed out in [12], the
primitive function is only a design tool and, in practice, the reconstruction reduces to
a relation between the cell-average values. In the case of unstructured meshes, the
problem becomes very complicated. To avoid Gibbs-like phenomena the introduction
of the ENO procedure for multidimensional unstructured grids is necessary. Quoting
van Leer in [52]

The ENO procedure is the only known non-oscillatory interpolation
that allows a truly multidimensional extension, albeit very costly. The
single paper about this subject is due to the French numerical analyst
Rémi Abgrall [1].

In this work, the MR scheme is applied to regular mesh, even if not structured, as it
will be evident in the following. However, the general procedure to obtain the conser-
vative polynomial reconstruction, without employing the primitive function, has been
described in [9] even for multidimensional problems on unstructured meshes [6].

The schemes adopted during this thesis are non-linear in the 1D case (see papers
P4 and P5), while the linear case, with r = 1 has been used in the multidimensional
2D and 3D (stochastic space) case. In the following, the general reconstruction proce-
dure is described, while the other details, as for instance the selection of the stencils,
are reported in section §2.3.1. Fixed a polynomial degree of reconstruction r, a stencil
Skj of cells with cardinality card(Skj ) can be fixed. On each stencil Skj , a polynomial
Pkj (ξ; f) of degree r can be constructed. The admissibility of this kind of stencils re-
mains subject to a Vandermonde type condition (see [9] for further details). Here,
supposing the stencils admissible, the conditions to satisfy, for the computation of
the unique polynomial Pkj , attaining the conditional average Dk(f)l

Dk(Pkj (ξ; f))l = Dk(f)l, ∀l ∈ Skj . (2.47)

The reconstruction operator Rk is exactly equal to the union of all the polynomials
Pkj defined on all the cells Ξkj . This makes possible, without introducing confusion, to
change Rk with Pkj when the cell Ξkj is of interest.

The prediction operator Pkk−1 is obtained following its definition (2.9), using first
the reconstruction procedure (2.47) for the level k − 1, and then applying the dis-
cretization operator Dk(Pk−1

j ) relative to the level k.
The remaining step is to define a relation between the error ek and its, linear

independent, coordinates dk (the wavelets). In the general case (2.45), a number of
l̄c − 1 linear dependent relations for the components of ek must hold. In this work,
the case of tensorial dyadic splitting (l̄c = 2d) is addressed and for each cell the linear
independent components of the error vector ek, the wavelets dk, are l̄c − 1, hence 1, 3,
7 respectively in 1D, 2D and 3D stochastic spaces.
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To obtain a relation between the error component ek
l̄c

= vk
l̄c
− (Pkk−1v

k−1)l̄c with
respect to the l̄c−1 linear independent wavelets, it is necessary to recall the following
relation (referring to the splitting of the generic cell Ξk−1

j at level k − 1 in l̄c cells at
level k)

l̄c∑

l=1

µ(Ξkl )v
k
l = µ(Ξk−1

j )vk−1
j → vkl̄c =

1

µ(Ξk
l̄c

)


µ(Ξk−1

j )vk−1
j −

l̄c−1∑

l=1

µ(Ξkl )v
k
l


 , (2.48)

while the predicted value (Pkk−1v
k−1)l̄c can be obtained as combination of the predicted

values of the remaining l̄c − 1 cells at level k

(Pkk−1v
k−1)l̄c =

1

µ(Ξk
l̄c

)


µ(Ξk−1

j )vk−1
j −

l̄c−1∑

l=1

µ(Ξkl )(P
k
k−1v

k−1)l


 . (2.49)

The final expression for ek
l̄c

is obtained as

ekl̄c = − 1

µ(Ξk
l̄c

)



l̄c−1∑

l=1

µ(Ξkl )(v
k
l − (Pkk−1v

k−1)l


 = −

l̄c−1∑

l=1

µ(Ξkl )

µ(Ξk
l̄c

)
dkl . (2.50)

Again, for each cell, it is necessary to compute only l̄c− 1 details to know all the error
components. From an implementation point-of-view, it is important to remark that in
the present work the MR framework is introduced not only to represent in a compact
way functions defined in the stochastic space, but also to refine the tessellation in
the regions with the highest gradients or discontinuities. Hence, the TE algorithm
is performed from the coarsest to the finest resolution level and, according to the nu-
merical evaluation of the cell averages, the relation expressed by the equation (2.48)
should be imposed. For this reason, the so-called Discretize Agglomerate Decimate
(DAD) algorithm is introduced. The DAD algorithm can be summarized as follows

Algorithm 3: DAD algorithm
Discretization:

vkl = 1
µ(Ξkl )

∫
Ξkl
f(ξ)dµ(ξ) for l = 1, . . . , l̄c

Agglomeration:
µ(Ξk−1

j ) =
∑l̄c

l=1 µ(Ξkl )

Decimation:
(Dk−1

k vk)j = vk−1
j = 1

µ(Ξk−1
j )

∑l̄c
l=1 µ(Ξkl )v

k
l

The DAD algorithm force the relation (2.48) to hold, preventing from round-off
and approximation errors in the computations of the integral quantities. In practice,
when a prediction operator should be computed (through the reconstruction operator)
the cell values of the previous resolution level k−1 are obtained via the more accurate
values (agglomerating the relative cells) at the finer resolution level k. The DAD
algorithm permits to obtain the error vector in the null space of its resolution level
with the advantage to express it by only its wavelets components.

Moving from the coarsest to the finest resolution level can be performed in two
ways. The first possibility is to compute each resolution level entirely, i.e. evaluating
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the value in each cell having a local error greater of the threshold and predicting the
values in the other cells. In this case, data structure evolves, towards the highest
resolution levels, through levels constituted of equally spaced cells (in the measure
chosen). Otherwise, only the cells to evaluate are retained in the evolving data struc-
ture, while the other cells are maintained at their last resolution level reached. In
the figure 2.4, the two approaches are presented. Both strategies have advantage
and disadvantages. The first one is the most expensive among the two, because the
number of operations could be very high if the highest resolution level is very refined.
Moreover this aspect could be prohibitive in a multi-dimensional context in which the
number of cells would grow exponentially.

DkDk

Dk Dk

Dk Dk

Dk DkPk
k−1Pk

k−1

v̂L

Pk
k−1P

k
k−1 Pk

k−1 Pk
k−1 Dk Dk Pk

k−1P
k
k−1 Dk Dk

DkDk DkDkPk
k−1 Pk

k−1 Pk
k−1 Pk

k−1 Dk Dk Pk
k−1 Pk

k−1

Figure 2.4: Two different level advancing techniques. On the left the approach with the entire
resolution level (employing recursively the prediction operator Pkk−1 to obtain the
discrete values in the cells where Dk is not applied) and on the right the approach
based on the refinement dependent data-structure.

Concerning memory requirement, the effort can be drastically reduced storing
the value of only the significant cells. For this reason, in this work, both in the 1D
and the multi-D cases, the approach chosen is to employ an evolving data structure.
However, an evolving data structure requires a major implementation effort and also
makes more difficult the reconstruction step. This is due to the presence of non-
uniform grids in 1D context while, in the case of multidimensional problems, the
mesh becomes non conformal. In the 1D case, the reconstruction can be obtained via
a generalization of the reconstruction procedure with non constant coefficients, while
in the multidimensional case, in this work, the issue is solved choosing a proper
stencil, for a linear reconstruction procedure, entirely contained in the mother cell.

Let us consider a generic cell Ξkj ∈ Gk. The TE algorithm in the cell-average
setting can be obtained by the following Algorithm 4
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Algorithm 4: TE algorithm for the cell-average setting
while 1 ≤ k ≤ L do

for Ξkj ∈ Gk do
DAD

end
=⇒ vk−1, vk

if k 6= L then
Encoding (vk−1, vk)→ dk

Truncation (dk, εk)→ d̂k

Level advancement (Gk, d̂k)→ Gk+1

end
end

As evident from the Algorithm 4, if the discrete structure is updated at each time
step, then the sequences of meshes {Gk} is not known a priori and an advancement
procedure must be introduced. This compares the local components of the error with
the local threshold by dividing the cell (at the finer resolution level) if the accuracy
criterion is not respected. The reconstruction operator Rk, contained in the encoding
step, is mandatory for comparing the predicted value and the exact one. The local
polynomial reconstruction must be performed on non uniform meshes and the coeffi-
cients of the interpolation cannot be computed once at the beginning, but they vary
at each resolution level for each different distribution of the cells in the level. Details
of the reconstruction procedure, in all the cases considered in this work, are provided
in the following section.

2.3.1 Further comments on the conservative reconstruction step

In this section, further details on the conservative reconstruction step are provided.
The problem definition requires two steps: the identification of a proper stencil and
the solution of the linear system obtaining the polynomial coefficients. Without loss
of generality, the problem is presented as follows. Knowing the conditional expected
value of a function f(ξ) in a proper stencil Skj ⊆ Ξkj , at the kth resolution level, the

polynomial Pkj for which E
(
Pkj |Ξj

)
= E (f(ξ) |Ξj) is computed. A generic polyno-

mial, obtained including all the contributions up to a rth order, contains (r+d)!
r!d! coef-

ficients, hence a stencil Skj with this cardinality should be chosen. In the case of the
1D stochastic space, see papers P4 and P5, the second order polynomial has been
selected:

Pj = a(ξ − ξj)2 + b(ξ − ξj) + c, (2.51)

where ξj is the coordinate of the center of the stochastic cell. In the case of centered
reconstruction, the stencil is Skj = {Ξj−1,Ξj ,Ξj+1}. This kind of reconstruction is for-
mally third order accurate in the stochastic space provided a smooth enough function.
However, in the case of functions with high-gradients or discontinuities, to avoid an
oscillatory behavior, the stencil needs to be biased avoiding the discontinuities re-
gion. Following [1, 2], such a stencil can be obtained selecting the one on which the
polynomial Pj contains the lowest high order coefficient, i.e. min(|a|) in the (2.51).
The problem reduces to collect a set of stencils on which the Pj must be recovered
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after selecting among the ones available. For the 1D case the choice is quite easy: the
three candidate stencils are

{
Ξkj−2,Ξ

k
j−1,Ξ

k
j

}
,
{

Ξkj−1,Ξ
k
j ,Ξ

k
j+1

}
and

{
Ξkj ,Ξ

k
j+1,Ξ

k
j+2

}
.

At the boundaries the collection of the admissible stencils needs to be properly re-
duced. In this work, to maintain the highest order of accuracy (at least for smooth
problems), the stencil at the boundary is only biased. However, in principle, it is pos-
sible to reduce locally the order of interpolation when the number of cells available is
reduced.

The coefficients for the polynomial Pj can be obtained solving the linear system
obtained as

E
(
Pkl |Ξkl

)
= E

(
f(ξ) |Ξkl

)
= vkl for Ξkl ∈ Skj . (2.52)

The implementation results very easy because

E
(
Pkl |Ξkl

)
= E

(
a(ξ − ξj)2 |Ξkl

)
+ E

(
b((ξ − ξj)) |Ξkl

)
+ c for Ξkl ∈ Skj . (2.53)

The resulting linear system Ax = b contains a matrix A in which the elements are
analytically known and are only function of the coordinate ξj and the boundaries of
the cell Ξkl . The structure of the inverse matrix A−1 is also analytically known as
function of ξj . For each cell Ξkj , fixing the coordinate ξkj , the inverse matrix A−1 can
be analytically evaluated as well as the vector of coefficients x = {a, b, c}T.

The extension to multi-dimensional problems (2D and 3D cases) requires the defi-
nition of a proper stencil in a multi-dimensional space. In this work, only preliminary
results are obtained in the multi-dimensional context and only for linear reconstruc-
tion r = 1. Even if the stochastic reconstruction should be pushed towards higher
interpolations to gain in terms of compression capabilities of the MR scheme (and
hence with an increase of computational efficiency), from an accuracy point-of-view
the resulting scheme presented in Chapter 3 appears well balanced by achieving (for-
mal) second order accuracy in space, time and stochastic space. Moreover, in the
multi-dimensional case, the reconstruction is performed over a fixed stencil. This
choice is motivated by the need to avoid difficult selection of stencils on non confor-
mal meshes. In the multidimensional case two neighboring cells could be splitted or
not independently; the situation in which the resulting mesh can be non conformal
is not rare. However, considering that the polynomial reconstruction Pkj is needed
only to build the prediction operator Pkk−1, it is easy to note that Ξkjl ∈ Ξk−1

j where

Ξk−1
j =

∑l̄c
l=1 Ξkjl . The l̄c cells in which the mother cell Ξk−1

j is splitted are, for con-
struction, conformal and on them a proper defined stencil can be defined. In the 2D
and 3D cases, the linear reconstruction can be obtained providing a stencil with car-
dinality respectively of 3 and 4 cells. In figures 2.5 and 2.6, the stencils employed are
represented, for all the possible positions of the cell Ξkj , on which the polynomial Pkj
must be recovered.

The coefficients for the polynomial Pkj are obtained by the same procedure of the
1D case. In particular, a system of three or four equations should be solved, respec-
tively, for the 2D and 3D cases. The polynomials Pkj for the 2D and 3D cases result

Pkj =

{
a(ξ1 − ξ1,j) + b(ξ2 − ξ2,j) + c if ξ ∈ R2

a(ξ1 − ξ1,j) + b(ξ2 − ξ2,j) + c(ξ3 − ξ3,j) + d if ξ ∈ R3,
(2.54)

where the centroid of the cell Ξkj is indicated as (ξ1,j , ξ2,j) and (ξ1,j , ξ2,j , ξ3,j) in the 2D
and 3D case, respectively. Of course, even in the multi-dimensional case, the system



From Harten MR to the Truncate and Encode algorithm 53

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������������

������
������
������
������

������
������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

k − 1

Ξk
j Ξk

j

Ξk
j

Ξk
j

Figure 2.5: Stencil identification for the 2D stochastic linear reconstruction. On the left the
mother cell at level k − 1 is represented, while on the right the four possible posi-
tions for the cell Ξkj and their stencil Skj are reported.

k − 1

Figure 2.6: Stencil identification for the 3D stochastic linear reconstruction. On the left the
mother cell at level k − 1 is represented, while on the right the eight possible
positions for the cell Ξkj (in green) and their stencil Skj (red) are reported.

can be written as Ax = b and the matrix A can be obtained analytically as function of
the centroid coordinates (and the boundaries of Ξkj ) and the same holds for its inverse.
Once identified the centroid coordinates of the cell Ξkj , the vector of coefficients can
be obtained analytically without matrix inversion. In this section, the procedure to
select the stencil, for all the cases taken in consideration in this work, is presented.
The polynomial reconstruction plays a fundamental role for both the MR framework,
allowing to detect the regions in which a strong effort (more cells) is needed, and also
in the SI scheme, where the reconstruction of the variables, explicitly known only in
terms of conditional expectancies, over the stochastic space, is a mandatory step to
compute the fluxes expectancies. In particular, the link between the MR and the SI,
is presented in Chapter 3.
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2.4 Closing remarks: choosing between point-value and the
cell-average

In this chapter, the framework for a MR representation in the stochastic space, by
means of both point-value or cell-average setting, has been presented. In papers P1,
P2 and P3, the point-value setting is used, while in papers P4 and P5, the cell-
average setting constitutes the fundamental brick to design the aSI scheme. Even if
only a rigorous comparison between the two approaches could provide some elements
in order to evaluate the performances of the sTE and the aSI scheme, it is important
to notice that the two approaches appear to be complementary.

Despite the virtually universal applicability of both the reconstruction techniques
to any kind of numerical scheme, some further comments are necessary. Dealing with
discrete data in many context is easier with point-value quantities. This is the case,
for instance, of finite difference (FD) schemes or finite element (FE) methods (or even
ODE). At the same time, even the discrete representation of a function is normally
obtained by its point values. For instance, if a numerical model is available, the point
values could be relatively easy to obtain, while the cell-average value could be known
only after a numerical integration relying on (again) point-values. In this sense the
sTE scheme appears to be the most general and natural one and the less intrusive
between the two approaches. However, the introduction of a finite volume (FV) re-
construction in the seminal work of Abgrall [3], opened a new way of interpreting the
representation of functions over the random space. Mimicking what normally is done
in the deterministic context, the Abgrall’s method, unifying the representation in the
overall physical/stochastic space, should be viewed as a way to build well-balanced
stochastic scheme. It is clear that the high-order representation of the data in the
stochastic space cannot improve the overall accuracy of a numerical scheme in which
the spatial accuracy is of a low order. This aspect has been pointed out, for instance,
in the work [86] to comment the limit of their multiwavelet approach. Moreover,
when dealing with adaptive strategies in the overall physical/stochastic space it is
important to be able to preserve the coherence of the data. It is well known, in the
deterministic context, the importance of the conservative reconstruction of the func-
tion for the flux evaluation, while an approach like the sTE algorithm a priori could
generate non-conservative interpolations due to a Lagrange interpolation procedure.
For this reason, the SI method appears to be more robust and potentially more ef-
ficient. The sTE scheme, despite its good results as a stand-alone scheme, is used
in this work as a test ground to develop the new ideas and the algorithms. For in-
stance, the TE algorithm for the cell-average setting is only an adaptation (improved)
of the TE for the point-value setting. As a concluding remark, to resume the previous
comments, the point-value setting remains very attractive in obtaining less intru-
sive schemes for applications where a function should be reproduced with the lowest
number of evaluations (code running) or in problems where there is not a spatial de-
pendence, as in the ordinary differential equations context (see for instance P1 and
also P2). On the contrary, in the stochastic partial differential context, the difference
between the two approaches are not so evident. Further investigation to compare
the two scheme are necessary. However, the possibility to represent, in a unified way
and with a prescribed total accuracy, the solution of stochastic PDE makes the SI
very attractive. For this reason, the MR cell-average framework is introduced in the
SI scheme to obtain the overall aSI formulation presented in the next chapter. The
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MR approach is useful to drive the refinement/coarsening of the random space, as a
function of the evolution of the variables, permitting to represent the discrete data
and to obtain conservative reconstructions.





CHAPTER 3

The adaptive semi-intrusive scheme

In this chapter, the SI scheme, briefly re-called in Chapter 1 with the MUSCL-
Hancock method (MHM), is extended for including the MR representation of (dis-
crete) data over the stochastic space. In this way, the aSI scheme is obtained. Two
main elements should be clarified: the role of the discretization operator Dk and the
link between the conservative reconstructions, performed in both the MR and SI.
In particular the discretization operator Dk can be identified with the time-update
step of the SI (see equation (1.36)), while the reconstruction operator can be chosen
to be the same for MR and SI. The aim of the aSI scheme is to compute the condi-
tional expectancies of the solution of partial differential equations. Let us suppose
a tessellation of Nx cells Ci of the entire physical space Ω =

⋃Nx
i=1 Ci and a constant

subdivision of the time line in Nt intervals of length ∆t = tF /Nt, tn = n∆t. The
overall aSI scheme is constituted by two external loops on time and physical space
coordinates. For each couple of physical and time coordinates (xi, tn), the TE algo-
rithm (in the cell average framework) is performed. At this level, the aSI scheme
appears to be equivalent to the sTE algorithm (see the papers P2 and P3). However,
the effect of the presence of the MR framework in the cell average setting is more
evident analyzing the operation needed to perform the TE algorithm. In particular,
the DAD algorithm presented in the Algorithm 3 is constituted, in the discretization
step, by the time update step of the SI scheme (1.36). Moreover, the nested mesh
sequence {Gk}Lk=0 will be dependent on the time tn and also on the spatial coordinate
xi, instead of only depending from the resolution level k. In this sense, the aim is to
obtain an adaptive refinement/coarsening of the stochastic space ables to capture the
function regularity. For instance, the scheme applied to non-linear hyperbolic prob-
lems must be able to catch the development of a shock wave and to track it during
the time evolution. Moreover, the scheme should be able to identify high-gradient or
shock regions in the stochastic space even if they have no counterparts in the phys-
ical space. This property constitutes a strong difference with respect to the subcell
resolution approach proposed by Witteven and Iaccarino in [91] where a shock sensor
in the physical space is employed to reconstruct the position of discontinuities in the
stochastic space. In the following Algorithm 5, the aSI scheme is presented, and the
operations related directly to the SI scheme are reported in red.
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Algorithm 5: Schematic presentation of the aSI algorithm
for n = 1, . . . , Nt do

for i = 1, . . . , Nx do
while 1 ≤ k ≤ L do

for Ξkj (xi, tn) ∈ Gk(xi, tn) do
DAD

Discretization
Agglomeration
Decimation

end
=⇒ vk−1(xi, tn), vk(xi, tn)

if k 6= L then
Encoding (vk−1(xi, tn), vk(xi, tn))→ dk(xi, tn)
Truncation (dk(xi, tn), εk)→ d̂k(xi, tn)
Level advancement (Gk(xi, tn), d̂k(xi, tn))→ Gk+1(xi, tn)

end
end

=⇒ vLj (xi, tn) ∀ΞLj (xi, tn) ∈ GL(xi, tn)

Statistics computation for vLj (xi, tn)

end
end

In the next, sequences of operations needed to obtain the Discretization §3.1 and
the Level advancement §3.2 steps are reported. In particular, section §3.1 contains
the details concerning the evaluation of the discrete data (the cell-averages) at a fixed
physical/time coordinate (xi, tn) knowing the set of MR representations vL(xi, tn−1) of
the solution at the previous time step tn−1 and for each physical coordinate xi with
i = 1, . . . , Nx. This problem concerns some operations between resolution levels at
the same physical/time location and some operations between MR at different time
and resolution levels. In this step, the conservative reconstruction procedure is also
contained. The Level advancement step, instead, does not concern only the genera-
tion of a new resolution level knowing the actual resolution and the wavelet defined
on it, as in the TE algorithm. On the contrary, it concerns also the distribution of the
degrees-of-freedom of each cell between a level k− 1 and the successive one k. A brief
discussion of this issue is made in §3.2, while in §3.3 some comments on the statistics
computations are reported. In the following section the discretization step is further
analyzed.

3.1 From SI to the Discretization step of the aSI

In this section, the discretization step of the aSI scheme, Algorithm 5, is described in
more details. In the general MR framework, the discretization is performed by means
of the operator Dk described in the previous chapter. It is possible to note that the
SI scheme naturally embeds a discretization operator: the conditional expected value
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operator E (• |Ξj) (see equation (1.35)). However, recalling the equation (1.36) of the
SI scheme, the conditional expected value of the (spatial) cell average at time n + 1
is expressed as a function of quantities at time n. Making evident the dependence
of the mesh from a specific spatial position, the ith cell Ci, and the time step tn, on a
generic resolution level kth, the stochastic cell can be indicated as Ξk,nj . The equation
(1.36) can be recasted as follows

E
(
ūn+1
i |Ξk,n+1

j

)
= E

(
ūni |Ξk,n+1

j

)
− ∆t

|Ci|
(
E
(
FRM

(
u⇑i−1R

, u⇑iL

)
|Ξk,n+1

j

)

− E
(
FRM

(
u⇑iR , u

⇑
i+1L

)
|Ξk,n+1

j

))
.

(3.1)

It is important to remark that each stochastic cell depends explicitly from the spatial
coordinate xi. For simplifying the notation, the index i is not explicitly reported as
sub-index to the cell, because it is naturally evident considering the operator E (• |Ξj).
For instance, the term E

(
ūn+1
i |Ξk,n+1

j

)
refers to the conditional expected value of the

cell average ūn+1
i on the spatial cell Ci at time tn+1 over the stochastic cell Ξkj (xi, tn+1).

The explicit dependence from the time cannot be eliminated from the notation of the
stochastic cell because, as it will be more evident later, the time-advancement of the
solution at the time step n+1 requires to update the conditional expected value, of the
spatial cell-average, at time n, but computed on the stochastic cell at n+ 1. In princi-
ple, this stochastic cell Ξkj (xi, tn+1) could not exist at the final resolution level L at the
same spatial location at the previous time step n. This case, for instance, commonly
occurs when the low resolution levels should be computed at time n+1, while the solu-
tion at the previous time step has been obtained over a more refined stochastic space.
The procedure to obtain, in an accurate way, the term E

(
ūni |Ξk,n+1

j

)
is of a crucial

importance and the problem will be addressed explicitly in the following. The time
update (3.1) also requires the computation of the flux expectancies of the numerical
fluxes over the interfaces. In this sense, the notation E

(
FRM

(
u⇑i−1R

, u⇑iL

)
|Ξk,n+1

j

)

indicates the expected value of the numerical (Riemann) fluxes over the jth stochas-
tic cell at resolution level k and time n + 1 between the spatial cells Ci−1 and Ci. It
is important to note that, even if the SI scheme formulation is based on cell-average
quantities over the combined physical/stochastic cells, the flux contribution is present
only in the spatial direction, i.e. through the interfaces dividing the spatial cells. The
flux contribution through the interfaces dividing two stochastic cells is always equal
to zero because it does not exist. In figure 3.1, the typical pattern of the combined
physical/stochastic cells in 1D spatial problem and 1D, 2D and 3D stochastic prob-
lems are reported.

The computation of both contributions, the cell-average value E
(
ūni |Ξk,n+1

j

)
and

the expectancies of the fluxes E
(
FRM

(
u⇑i−1R

, u⇑iL

)
|Ξk,n+1

j

)
and

E
(
FRM

(
u⇑iR , u

⇑
i+1L

)
|Ξk,n+1

j

)
, are closely connected to the quantities at the previ-

ous (coarser) resolution level. This aspect will be discussed in the next section and is
determined by the quadrature rule used to compute the integral quantities. In this
sense, the following exposition is carried out considering each resolution level as in-
dependent from the previous (coarser) ones at the same time step, while the efficient
redistribution of the degrees-of-freedom is presented in §3.2.
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Figure 3.1: Schematic representation of the combined physical/stochastic cells for 1D-1D, 1D-
2D and 1D-3D problems. The face through which a flux exists are colored in red.

The first contribution to compute is the conditional cell-average value
E
(
ūni |Ξk,n+1

j

)
. The conditional cell-average value should be computed knowing a

sequence of discrete data vL on the tessellation of the stochastic space

Ξ =

Nξ(xi,tn)⋃

j=1

ΞLj (xi, tn), (3.2)

where the smaller (in a measure sense) cell is equal to the resolution level L and the
dependence of the tessellation on the number of the elements Nξ of the tessellation,
from the physical and time coordinate, is explicitly reported. Two possibilities are of
interest1:

Ξk,n+1
jn+1

(xi) ⊆ ΞL,njn (xi) or

Ξk,n+1
jn+1

(xi) =

l̄n⋃

ln=1

ΞL,nln (xi).
(3.3)

The reason is evident considering that each cell at the coarsest level can be divided at
most until reaching the finest level L, but where, locally, the function is more regular
even at a lower level (k < L). In any case, each divided cell is always formed by
an entire number of cells. For this reason, if at the time step n + 1 the function is
more regular than at the previous time step, then a set of l̄n cells, forming the cell
Ξk,n+1
jn+1

(xi) at time n + 1, will exist. Otherwise, if a high-gradient or a shock region
appears, the cell Ξk,n+1

jn+1
(xi) will be entirely contained in a cell (to identify) ΞL,njn (xi).

In this last case, the value can be obtained employing directly the predictor operator
Pkk−1; if a prediction operator is applied on the resolution level L, the cell ΞL,njn (xi) has

1It is important to note the introduction of the subscript jn or jn+1 to make evident the change of
numeration of the tessellation at the same spatial location xi for different time steps. Hereafter this
complete subscript will be introduced to avoid possible misunderstandings.
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been generated at a lower resolution level and has not been divided any more arriving
at the resolution level L carrying its original measure. The reconstruction operator
Rk on the tessellation at time n, obtained at resolution level L, can be discretized on
the cell Ξk,n+1

jn+1
(xi) to obtain the prediction

E
(
ūni |Ξk,n+1

jn+1

)
=

1

µ(Ξk,n+1
jn+1

)

∫

Ξk,n+1
jn+1

ūni (ξ)dµ(Ξk,n+1
jn+1

)

' 1

µ(Ξk,n+1
jn+1

)

∫

Ξk,n+1
jn+1

(
RL,nvL,n

)
jn+1

dµ(Ξk,n+1
jn+1

).

(3.4)

The other situation that can occur is the existence of an entire number l̄n of cells,
at time n, forming Ξk,n+1

jn+1
(xi) at time n+1. This is always the case when, for instance,

the TE algorithm starts at the new time step n + 1 from the lowest resolution level.
In this case, the conditional expected value can be obtained by assembling the con-
ditional expectancies of each cell at time n thanks to the additivity of integrals as
follows

E
(
ūni |Ξk,n+1

jn+1

)
=

1

µ(Ξk,n+1
jn+1

)

l̄n∑

ln=1

∫

ΞL,nln (xi)
ūni (ξ)dµ(ΞL,nln (xi))

=
1

µ(Ξk,n+1
jn+1

)

l̄n∑

ln=1

µ(ΞL,nln (xi)) E
(
ūni |ΞL,nln (xi)

)
.

(3.5)

The set of values E
(
ūni |ΞL,nln (xi)

)
is, of course, already available belonging to vL,n.

Resuming, the value of E
(
ūni |Ξk,n+1

jn+1

)
can be computed as

E
(
ūni |Ξk,n+1

jn+1

)
=





1

µ(Ξk,n+1
jn+1

)

∫

Ξk,n+1
jn+1

(
RL,nvL,n

)
jn+1

dµ(Ξk,n+1
jn+1

) if Ξk,n+1
jn+1

(xi) ⊆ ΞL,njn (xi)

1

µ(Ξk,n+1
jn+1

)

l̄n∑

ln=1

µ(ΞL,nln (xi)) E
(
ūni |ΞL,nln (xi)

)
if Ξk,n+1

jn+1
(xi) =

l̄n⋃

ln=1

ΞL,nln (xi).

(3.6)

The time update (3.1) requires also the computation of the expectancies of the
fluxes. The evaluation of these contributions appears to be much more complex and
intimately related to the deterministic scheme with respect to the previous contri-
bution (3.6). The evaluation of the integral quantities cannot be performed without
considering a proper quadrature formula. In this section, a generic set of quadrature
points (on each cell) {ξng}Ng

q=1 and a proper set of weight {wng}Ng
q=1 are considered. In

the next section, the choice of the quadrature rule will be discussed for obtaining, in
an efficient way, the nodal value from the previous resolution level. Fixing a spatial
cell xi, the aim is to compute the expected value of the flux contributions at time n,
at a generic local resolution level k. For simplicity of exposure, as already made in
§1.3.2, the following exposition is made for a 1D conservation law. The sequence of
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operations, to compute the flux expected values, is reported in the Algorithm 6.

Algorithm 6: Computation of the flux expected values in the aSI scheme.
for ng = 1, . . . ,Ng do

• Physical Vector assembling PV(ξng) =
{
ūni−2(ξng), ūni−1(ξng), . . . , ūni+2(ξng)

}
:

ūn` (ξng) =
(
RnL(x`)v

L,n(x`)
)

(ξng) with ` ∈ {i− 2, i− 1, . . . , i+ 2}
• Imposition of the boundary conditions (if xi = {x1, x2, xNx−1, xNx})
• Slope computations (and limiting) ∀C` ∈ {Ci−1, Ci, Ci+1}:

σn` (ξng) = σ
(
ūn`−1(ξng), ūn` (ξng), ūn`+1(ξng)

)

• Extrapolation ∀C` ∈ {Ci−1, Ci, Ci+1} (STEP 1 - MHM):




un`L(ξng) = ūn` (ξng)− σn` (ξng)
|C`|
2

un`R(ξng) = ūn` (ξng) + σn` (ξng)
|C`|
2

• Semi-time step evolution ∀C` ∈ {Ci−1, Ci, Ci+1} (STEP 2 - MHM)a:




u⇑`R(ξng) = un`R(ξng) +
1

2

∆t

|C`|
(
f(un`L(ξng), ξng)− f(un`R(ξng), ξng)

)

u⇑`L(ξng) = un`L(ξng) +
1

2

∆t

|C`|
(
f(un`L(ξng), ξng)− f(un`R(ξng), ξng)

)

end
Flux Quadrature:





E
(
FRM

(
u⇑i−1R

, u⇑iL

)
|Ξk,n+1

jn+1

)
'

Ng∑

ng=1

wng FRM
(
u⇑i−1R

(ξng), u⇑iL(ξng)
)

E
(
FRM

(
u⇑iR , u

⇑
i+1L

)
|Ξk,n+1

jn+1

)
'

Ng∑

ng=1

wng FRM
(
u⇑iR(ξng), u⇑i+1L

(ξng)
)

aThe flux function can depends separately from the vector of the random parameters and from the
unknown, as in the linear advection equation solved in the Chapter 4, where a random advection veloc-
ity is present.

When the expected values of the fluxes are computed and the conditional expected
value E

(
ūni |Ξk,n+1

jn+1

)
is evaluated via the equation (3.6), the time update can be ob-

tained by the equation (3.1). In the previous Algorithm 6, the numerical flux has
been indicated as FRM referring the flux obtained by a Riemann solver, exact or ap-
proximated, as made in paper P4. However, all the other techniques developed in the
deterministic context can be applied. In this sense, the aSI scheme shows a flexibil-
ity equivalent to a non-intrusive technique. Moreover, in paper P5, the aSI scheme is
formulated for a classical predictor-corrector MUSCL approach and a more complex
flux function is obtained by the Discrete Equation Method for multiphase flows. The
procedure just described constitutes the discretization step of the Algorithm 5, while
the level advancement step will be discussed in the next section.
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3.2 Level advancement: the role of the quadrature formula

In this section, the level advancement step of the Algorithm 5 is analyzed more in de-
tails. The TE algorithm, in both point-value and cell-averages frameworks, is based
on the comparison between the local coordinates of the error vector ek at a resolu-
tion level k with the threshold εk. In the cell-average framework, if the local error
is greater than the local threshold, then the cell is divided into a number of l̄c cells.
In this work, the number of l̄c has been fixed to 2d, where d is the number of the
stochastic dimensions. In the SI scheme, as already shown in the previous section,
the discretization operator on a generic cell Ξkj is exactly equal to the conditional
expected value operator applied on the same stochastic cell. The set of all the con-
ditional expected values, over all the cells belonging to the entire stochastic space Ξ,
is constituted by the discrete values indicated with vk in Chapter 2. However, the
computation of the discrete data at a time step n + 1 depends also on some integral
quantities that are not available: the flux expected values (described in previous sec-
tion). These quantities are closely related to the quadrature rule. In the seminal
work of Abgrall [3], a Gauss quadrature rule with two nodes has been proposed. The
1D Gauss quadrature with two points for each cell can integrate exactly a polynomial
function of third order. However, this kind of choice does not appear convenient to
build efficient aSI scheme. Let us suppose to have a generic cell defined on the inter-
val [a, b]. The quadrature points will be ξng = a+b

2 ±
√

3
2
b−a

2 . It is easy to verify that
if the cell is divided in two cells, defined on [a, a+b

2 ] and [a+b
2 , b], the Gauss quadra-

ture points of the two new cells will be, for both the two couples, different from the
quadrature points of the mother cell. From a computational point-of-view, it is evi-
dent that a nested sequence of quadrature points would be preferable. For instance,
if a trapezoidal rule is applied, i.e. the nodes are the two points a and b, they are
also quadrature points for the children cells. In such a case, the splitting of a cell,
from a quadrature points, is equivalent to add another cell. In general, from a com-
putational point-of-view related to the degrees-of-freedoms belonging to each cell, a
sequence of subdivisions of the cells has a cost that is equivalent to the number of
cells obtained at the finest resolution level. Then, when the TE algorithm is applied
to obtain the (optimal) non-uniform distribution of cells in the stochastic space, it has
required a number of degrees-of-freedom exactly equal to an uniform distribution of
the same number of cells.

The quadrature rules in the aSI scheme cover an important role to compute the
flux expected values as shown in the previous section. The quadrature rule are ap-
plied in a space of 2d dimensions, for each interface of each physical cell (see also the
figure 3.1). For this reason, the quadrature rules have to be designed to be nested and
easily extensible in many dimensions. In this context, as a first attempt, the family
of Newton-Cotes rules could be a proper choice [71]. These formulæ are based on La-
grange interpolation with equally spaced nodes in [a, b]. Examples of Newton-Cotes
formulæ are the midpoint, trapezoidal and the Cavalieri-Simpson rules with, respec-
tively, one, two and three points. A significant properties of the Newton-Cotes rules
is that the weights can be computed one time for all fixing the number of points.
Moreover, considering a rule with Ng ≥ 2 nodes, the weights wng and the nodes
ξng = a + b−a

(Ng−1)(ng − 1) are symmetric with respect to the interval [a, b]. In this
work, the case of closed rules is of interest, in which both a and b belongs to the the
set of quadrature nodes ξng. In the table 3.1, the first four quadrature formulæ of the
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Newton-Cotes family are reported.

wng \Ng 2 3 4 5
w1 1/2 1/6 1/8 7/90
w2 1/2 2/3 3/8 32/90
w3 - 1/6 3/8 12/90
w4 - - 1/8 32/90
w5 - - - 7/90

Table 3.1: First four closed formulæ of the Newton-Cotes family with Ng nodes ξng = a +
b−a

(Ng−1) (ng − 1).

Finally, to integrate a function f(ξ) on the interval [a, b], the Newton-Cotes rules
are of the form

∫ b

a
f(ξ)dξ ' (b− a)

Ng∑

ng=1

wngf(ξng), (3.7)

where weights are reported in the table 3.1. The degree of exactness m of a Newton-
Cotes rules rule with Ng nodes is

m =

{
Ng − 1 if Ng is even

Ng if Ng is odd.
(3.8)

The extension to multidimensional space can be obtained by tensorization of the
previous relation (3.7). If each rule applied over the ith generic direction and the
approximated integral is indicated as Ii, over the hypercube [a, b]d of dimension d, it
follows that

∫

[a,b]d
f(ξ)dξ ' I1 ⊗ · · · ⊗ Id = (b− a)d

Ng∑

ng1=1

· · ·
Ng∑

ngd=1

wng1 · · ·wngdf(ξ1, . . . , ξd). (3.9)

This tensorization approach in general is not efficient because the number of the
nodes exhibits an exponential growth with the dimensional increase, i.e. the so-called
curse of dimensionality. However, in the context of the present work, the overall
number of cells is strongly limited by the aSI scheme itself. In this work, the aSI
scheme is designed employing a number of nodes (for each dimension) equal to Ng = 3.
Finally, in figure 3.2, the redistribution of the nodes of each cell at the resolution
level k − 1 is represented. In particular, the full dots indicates the nodes in which
the functional evaluations have to be performed, while the circles indicate the nodes
in which the functional evaluations have been already performed for the cell at level
k − 1 and the corresponding values are already available.

The so-called reallocation of the nodes, from a cell at level k − 1 to the others at
level k, has the direct consequence to reduce the loop over the quadrature nodes Ng (in
the Algorithm 6 for the computation of the flux expected values) to only the unknown,
i.e. not yet evaluated, quadrature points. The number of the unknown points varies
from the position of the child cell in the original cell, at resolution level k; the policy
of redistribution is presented in figure 3.2.
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Figure 3.2: Repartition of the degrees-of-freedoms for the stochastic cells in the aSI scheme
in 1D, 2D and 3D stochastic spaces. The full dots indicate the quadrature points
to compute, while the white circles represent the quadrature points obtained by
the mother cell at level k − 1.

3.3 Statistics computations in the aSI scheme

In this section, some further comments on the computation of statistics are reported.
In the last step of the internal loop of the aSI Algorithm 5, the statistics are computed
for the discrete solution over the entire stochastic space. At the end of the internal
loop, i.e. the application of the TE algorithm at each spatial location at a fixed time
step, the result is the discrete solution vL(xi, tn) over the tessellation ΞLj (xi, tn). The
final tessellation contains cells with different measures, because some among them
derive directly from coarse level, being the local error under the threshold, while
others are obtained at the resolution level L. One of the aim of the UQ analysis
is to compute the quadrature of the solution over the stochastic space. Obviously,
the quadrature rules described in the previous section can be applied knowing the
continuous representation of the function u(ξ) ∈ F . The continuous representation
can be obtained applying the reconstruction operator RL to the discrete data vL. As
already described in Chapter 2, in the Harten MR framework and hence in the ap-
proach developed in this work, the reconstruction operator is obtained locally by an
eventually non-linear reconstruction, i.e. a local polynomial interpolant Pj . This lo-
cal reconstruction, as already shown, has a key role in the MR itself to obtain the
predictor operator Pkk−1. Moreover, in the aSI scheme, it has a role in order to ob-
tain the conservative reconstruction useful to the computation of the fluxes and their
expected values. The local conservative polynomial reconstruction can be employed
also to compute statistics. In particular, at the last level of the TE algorithm, the
reconstruction operator RL is explicitly computed and the local polynomial is stored
in each cell: obviously many of the local polynomial interpolants have already been
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computed to obtain the predictor operator Pkk−1 and hence stored in the corresponding
cell. The statistics, for each spatial coordinate xi and time step tn, are then computed
injecting the continuous reconstructed solution ūni (ξ) ' RnL(xi)v

L,n(xi), on the tessel-
lation obtained at level L, into the integrals as follows in the case of the expected
value and the variance

E(ūni ) =

∫

Ξ
ūni (ξ)dµ(ξ) '

∫

Ξ

(
RnL(xi)v

L,n(xi)
)

dµ(ξ)

Var(ūni ) =

∫

Ξ
(ūni (ξ)− E(ūni ))2 dµ(ξ) '

∫

Ξ

(
RnL(xi)v

L,n(xi)
)2

dµ(ξ)− E2(ūni ).

(3.10)

Moreover the reconstruction operator will be employed at the successive time step
in the Algorithm 6, in the Physical Assembling PV step, to obtain the values of the
physical cell average. Finally the integral quantities can be computed employing
a quadrature rule or even analytically knowing the expression for the polynomial.
For instance in papers P4 and P5, the Newton-Cotes rules with Ng = 5, the so-called
Boole’s rule, has been applied to compute the variance, while in the multidimensional
cases (reported in Chapter 4) the integration is performed analytically.



CHAPTER 4

Numerical results

In this chapter, some numerical results are presented. It is important to remark here
that the complete set of numerical results can be found in the attached journal pa-
pers. In this chapter, only the unpublished results are presented. In particular, in
Section §4.1, numerical results concerning the point-value framework with WENO
interpolation are presented: the scheme is applied to steady functions in §4.1.1 and to
a system of non-linear elastic wave propagation in a heterogeneous media in §4.1.2.
The aSI scheme, obtained by the cell-average framework, is presented in §4.2 for
2D/3D results, while the 1D is discussed in paper P4. Some steady functions are
presented in section §4.2.1 for both 2D and 3D cases to demonstrate the convergence
properties of the TE algorithm for cell-average discrete data. Three classical CFD
test cases are also presented in §4.2.2 for a 2D stochastic space: the linear advec-
tion problems, with both continuous and discontinuous initial conditions, the Burgers
equation and the Euler system of the gasdynamics equations. Finally, the 3D case for
the linear advection equation is presented in §4.2.3.

4.1 Point-value TE/sTE scheme

In this section, the results obtained in the point-value setting are presented. First,
the analysis of some steady problems, i.e. function depending only from the random
variable ξ, is presented in terms of convergence properties. Different reconstruction
operators are also described highlighting the importance of non-linear operators.

4.1.1 Steady-functions

In this section, a steady problem, in which a function f = f(ξ) with ξ ∈ Ξ ⊂ R
describes the stochastic output, is presented. The system is affected by an uncertain
parameter ξ with distribution p(ξ) here assumed uniform, i.e. ξ ∼ U [0, 1]. The model
function is discontinuous with the following equation

f(ξ) =

{
sin(2ξ2π) if ξ ≤ 11/20

sin(2ξ2π) + 1 otherwise.
(4.1)

In Figure 4.1, the function defined in (4.1) is represented. Hereafter the resolution
levels are designed indicating the index m ∈ N where, the coarse level contains 2m0

intervals, while the finest one contains 2mL intervals. The TE algorithm has been
applied with the following parameters: coarser level m0 = 3, finest level mL ranging
between 6 and 20 and a threshold equal to ε = 10−1.
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Figure 4.1: Representation of the steady functions f = f(ξ) defined in the equation (4.1).

In the table 4.1, the results related to the application of the point-value TE Algo-
rithm, 1, are reported. Different reconstruction operators are employed: the linear
reconstruction (r = 1), the centered cubic polynomial reconstruction (r = 3), the ENO
selection of the less oscillatory cubic polynomial (r = 3) and the WENO interpolation
based on the cubic polynomials. The advantages of employing an high-order recon-
struction operator is evident, considering the high compression ratios obtained, both
µ and τ , for the cubic-based interpolation with respect to the linear one. Moreover,
the non-linear, i.e. data-dependent interpolations, are clearly superior both in terms
of compression and errors in L1 and L∞ norms. The two ratios of compression µ and of
evaluations τ , defined in (2.20) and (2.21), are also reported. Knowing the analytical
description of the function, the norms in L1 and L∞ can be measured as follows





errL1 = ||vL − v̂L||L1 =
1

NL + 1

NL∑

j=0

|vLj − v̂Lj |

errL∞ = ||vL − v̂L||L∞ = max
j
|vLj − v̂Lj |,

(4.2)

in which vL represents the function discretized on the finest level and v̂L its counter-
part obtained by the application of the TE algorithm.

To make evident the reason of the superiority of the data-dependent interpolation
techniques the patterns, of the non-null wavelets, i.e. the points in which the dis-
cretization operator Dk is applied, are reported in the figure 4.2. The parameters are
m0 = 3, mL = 13 with a threshold equal to ε = 10−1. In the first row the comparison
between the linear interpolation 4.2(a) and the high-order one 4.2(b) is evident: the
linear scheme need the entire k = 3 resolution level and the most part of the level
k = 4, while in the smooth regions the interpolation with r = 3 achieve the required
accuracy with a lower resolution level. However, in correspondence of the disconti-
nuity, the number of activated wavelets is greater in the high-order scheme than in
the linear one. This is due to the degradation of the interpolation in all the intervals,
belonging to the stencil, when the discontinuity is present in one of them. In the case
of linear interpolation, the stencil is formed by only one cell and the number of acti-
vated wavelets is only two. In the case of r = 3 the stencil is formed by three intervals
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(with four point1); when the discontinuity is present, in at least one of them, two new
points are generated for each interval. This produces a total of six new wavelets re-
ducing the compression with respect the linear interpolation. This behavior is well
known in the MR context and it is called pollutted region (see for instance [16]). The
non-linear multiresolution schemes aims to avoid the generation of the pollutted re-
gions: if the discontinuity is located, the stencil can be biased and the interpolation
would be degraded only in the interval containing the discontinuity, but not in the
others. The result is quite evident comparing the centered interpolation 4.2(b) with
the ENO interpolation 4.2(c). The ENO selection of the stencil is able to locate, and
avoiding, the discontinuity with the direct result to eliminate the pollutted region.
However, the ENO selection of the stencil is well-known in literature to be very de-
pendent to the round-off errors in the computation of the divided differences useful
to identify the smoothest stencil (see the Algorithm 2). The drawback is evident in
the smooth regions where, due to the round-off error, a biased stencil is selected in-
stead of the centered one. As demonstrated in the paper P4, the interpolation error
is the smaller possible for centered stencils (or the one biased by one interval for r
even), for smooth function. For instance, at the resolution level k = 3, at the left
side of the discontinuity, the ENO interpolation 4.2(c) performs worst than the cen-
tered one 4.2(b). To recover the best possible interpolation, the WENO interpolation
can be introduced. The pattern of the activated wavelets is presented in 4.2(d) and
the direct comparison, with both the centers interpolation 4.2(b) and the ENO one
4.2(c), demonstrates that the WENO interpolation combine the advantage of both
the strategies (high-order interpolation and non-linear stencil selection).

In a UQ perspective, the interest is not only to obtain a compressed representation
of the function at a fixed time, but to have the possibility to compute statistics in a
more efficient way, i.e. with the lower possible number of simulations for a prescribed
accuracy. Results in terms of the error for computing the expected value and variance,
with respect to the analytical solution, are reported in figure 4.3 (as a function of the
number of applications of the discretization operator Dk)





errE =
E− Eex

Eex

errVar =
Var−Varex

Varex
.

(4.3)

The errors are reported for the TE algorithm with r = 1, r = 3 (with and without
the ENO selection of the stencil and for the WENO reconstruction). Moreover, as com-
parison, also a non-intrusive Polynomial Chaos (PC), with a number of simulations
between 6 and 1041 (with steps of 15 simulations), and a quasi-Monte Carlo method,
with Sobol sequences and simulation ranging between 10 and 1050 (with steps of 20
simulations), have been employed.

The TE algorithm achieves the best efficiency in term of reached accuracy, with
a prescribed number of simulations, i.e. with a fixed number of exact evaluations of
the model via the discretization operator Dk, with respect to both the MC and the PC.
The introduction of the high-order interpolation (r = 3) for the reconstruction oper-
ator increases the performances, for both the computation of expected value E and
variance Var, with respect to the linear (r = 1) scheme. Moreover, the non-linear re-

1See the paper P3 for further details on the cubic interpolation.
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Figure 4.2: Distribution of the evaluated points for the steady function (4.1) with mL = 13,
m0 = 3 and ε = 10−1 for the linear reconstruction (a), the cubic centered recon-
struction (b), with the ENO selection (c) and with WENO interpolation (d).

construction techniques allows to reach a stronger compression then a greater overall
efficiency.

The TE algorithm can be employed as the basis to build an efficient algorithm
solving also stochastic ordinary differential equations. In the paper P1, some exam-
ples of stochastic ODEs, even with discontinuous and time dependent pdfs, have been
reported. Other examples, of stochastic ODEs, are reported also in the paper P2 and
P3 with, respectively, linear and high-order (non-linear) reconstructions.

In the next section, instead, the solution of the non-linear system of partial differ-
ential equations governing the propagation of elastic waves in heterogeneous media,
in presence of random input, will be presented.
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Figure 4.3: Statistical errors for the expected value (a) and variance (b) following the defini-
tions (4.3).

4.1.2 Non-linear elastic wave propagation in heterogeneous media

In this section the non-linear equations, governing the elastic wave propagation in
a heterogeneous media in the Lagrangian frame, are solved in presence of uncer-
tainty in the constitutive laws of the material. The propagation of compressional
waves, in a one dimensional rod with density ρ(x) > 0 and a stress-strain relation

σ(ε, x) satisfying
∂σ(ε, x)

∂ε
> 0 everywhere, is addressed. Dealing with heterogeneous

media implies the presence of non-autonomous fluxes, i.e. fluxes depending directly
from the physical space. From a FV point-of-view the problem can be modeled with
both cell-centered flux functions or cell-edge fluxes. If the equations are written in
a Lagrangian frame the cell-centered flux functions, in which a flux function holds
throughout each cell and can jump only between cells, can be chosen.

The system can be written as

∂u(x, t)

∂t
+
∂f(u, x)

∂x
= 0, (4.4)

where u(x, t) ∈ R2 and f(u, x) ∈ R2 × R → R2. In particular, if the conservative
variables are the strain ε(x, t) and the momentum m = ρ(x)u(x, t) (where u(x, t) is
the longitudinal velocity), it follows

u(x, t) =

[
ε

ρu

]
=

[
ε

m

]
f(u, x) =

[
−m/ρ(x)

− σ(ε, x).

]
(4.5)

The two equations (4.4) express the kinematic relation
∂ε(x, t)

∂t
=

∂u(x, t)

∂x
and the

Newton’s second law. The Jacobian matrix for the system is

fu(u, x) =

(
0 −1/ρ(x)

−σε(ε, x) 0

)
(4.6)
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and the speed of sound can be expressed as c(u, x) =
√

σε(ε,x)
ρ(x) .

To solve the system (4.4) employing a MUSCL-Hancock approach, the fluxes at the
interfaces must be provided. The problem reduces to the solution of a Riemann prob-
lem between two cells (with eventually discontinuous material properties) in which
the conservative variables u(x, t) are constant in each cell. Formally the problem is
to find the solution u(x, t), of the system (4.4), for t > 0 with the following initial
condition

u(x, 0) =

{
uL if x < 0

uR if x > 0,
(4.7)

where the interface between the cells is located at x = 0 and the material properties
are constant in each cell:

ρ(x) =

{
ρL if x < 0

ρR if x > 0,
and σ(ε, x) =

{
σL = σ(εL) if x < 0

σR = σ(εR) if x > 0,
(4.8)

Let consider the situation sketched in the figure 4.4, where the structure of the
Riemann solution between a left and a right cell is illustrated. The Riemann solution
consists in general of two waves (shocks or rarefactions) one moving in the left cell
and the other moving in the right cell. Being each waves confined entirely in each cell
(there is always a negative and a positive eigenvalues λ1,2 = ∓c(u, x)) this will be a
standard shock or rarefaction relative to each own material; the characteristic speeds
never cross zero (the eigenvalues never changes sign in the Lagrangian frame) and
hence no entropy fix needs to be designed.

u⋆
L u⋆

R

uR

ρL, σL(ǫL) ρR, σR(ǫR)

uL

Figure 4.4: Structure of the Riemann solution for the elastic waves propagation problem (4.4).

The Riemann problem (4.7) can be solved exactly solving a system of two non-
linear equations, for the strain in both sides of the star region, arising from the
continuity of the fluxes at the interface [54]. It is important to note that, due to
the heterogeneous properties of the material at two neighboring cells, two stationary
waves are present at the interface carrying one a jumps in the strain ε and one a jump
in the momentumm. However, the flux must be continuous for t > 0 and this is physi-
cally reasonable in which the flux components are the momentum and the stress that
need to be continuous at the interface. In [20, 54] an approximate Riemann problem
has been proposed for this kind of problems. The same is employed in this work and
it is described in the following. Defining the impedance as Z(u, x) = ρ(x)c(u, x) the
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eigenvectors of the Jacobian matrix (4.6) are (for the two eigenvalues λ1,2 = ∓c(u, x))

r1(u, x) =

[
1

Z(u, x)

]
r2(u, x) =

[
1

−Z(u, x)

]
. (4.9)

If in each cell the wave speed s1,2 is chosen to be the sound speed in the appropriate
cell (this is a good approximation it the non-linearity is not too strong)

s1 = −
√
σL(εL)

ρL
s2 =

√
σR(εR)

ρR
, (4.10)

the corresponding impedances can be computed as

ZL(uL) = −ρLs1

ZR(uR) = ρRs2.
(4.11)

Finally it is possible to define the Jacobian matrix, at the interface, in terms of its
eigenvalues (s1,2) and eigenvectors

R =

(
1 1
ZL −ZR

)
. (4.12)

The standard approach consists in decomposing the jump of the conservative vari-
ables u in term of eigenvectors

uR − uL = Rα, (4.13)

where α ∈ R2. However, the scheme will result conservative only if the Jacobian
matrix at the interface f?u satisfies

f?u (uR − uL) = f(uR)− f(uL). (4.14)

A such approach will fail for conservation laws with non-autonomous flux functions
due to the presence of stationary waves at the interface that are not explicitly taken
into account in the decomposition (4.13). A more convenient decomposition in term
of flux differences can be searched as

fR − fL = Rβ, (4.15)

where β ∈ R2. This decomposition, in term of flux difference, is already adequate to
compute the flux at the interface (as needed in the MHM):

f(x = 0) = fL(uL) + β1

[
1

ZL

]
= fR(uL)− β2

[
1

−ZR

]
. (4.16)

The conservative properties (4.14) is then satisfied defining α as

f?u (uR − uL) = f(uR)− f(uL) = f?uRα = RΛα = Rβ, (4.17)

where f?u = RΛR−1 with Λ = Diag(s1, s2).



74 Chapter 4

In this work, the non-linear propagation of the compressional waves is considered
for a rod (defined on Ω = [0, 1]), with heterogeneous material (there is a discontinuity
in the density of the material, see figure 4.6)

ρ(x) =





1.4 if
1

2
≤ x ≤ 4

5
1 otherwise,

(4.18)

within a quadratic constitutive relation (equal over the whole physical domain Ω) of
the form

σ(ε) = K1ε+K2ε
2, (4.19)

where K1 = 2 and K2 = K2(ξ) = ξ with ξ ∼ U(0, 1). The following initial condition
(independent from the random parameter) is considered (see also the figure 4.5)

u(x, 0) =




2e
−(x−7/20)2

1/250

−2e
−(x−7/20)2

1/250


 (4.20)

Boundary conditions of solid wall type are imposed to model a clamped rod situa-
tion.

V1
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Figure 4.5: Initial condition for the elastic waves propagation in a heterogeneous rod (4.18).

The problem, in presence of the random parameter ξ, is represented in the figure
4.6.

The physical space has been discretized on a mesh of Nx = 201 equally spaced
points with a resolution of ∆x = 5 × 10−3, while the time space T = [0, 0.5] has been
divided in Nt = 500 time steps of length ∆t = 10−3. A reference solution has been
obtained considering a resolution level equal to ∆ξ = 1/(5 × 218) corresponding to
Nξ = 1 310 721 equally spaced points on Ξ. The reference solution, in term of expected
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Figure 4.6: Sketch of the rod with heterogeneous material. The red part indicates the inclu-
sion with the abrupt change in the density (4.18).

value and variance, for the two components of the vector of the conservative variables
u, is reported in figure 4.7 in the plane x− t.

From the figure 4.7, the effect of the change in the density of the rod is evident.
The impedance, itself, results to be a non-linear random function

Z(u, x, ξ) = ρ(x)c(u, x, ξ) =

√
ρ(x)

∂σ

∂ε
(u, x, ξ) =

√
ρ(x) (K1 + 2K2(ξ)ε(x, t, ξ)). (4.21)

A traveling elastic wave moves locally with a speed dependent from the local speed
of sound c(u, x, ξ), hence, in the region of the rod with different density, the waves
decelerate (where ρ = 1.4) or accelerate. However, a secondary effect appears: there
is a partial reflection of the waves when passing through an interface dividing two
materials with different impedance.

Knowing the reference solution on the uniform tessellation of Nξ = 1 310 720 in-
tervals, the error norms for the statistics are computed on the whole physical-time
space x− t using the following relations

errµm |Lp = ||µm − µmref ||Lp =


 1

Nt ×Nx

Nt∑

i=1

Nx∑

j=1

∣∣µmij − µmref,ij

∣∣p



1/p

errµm |L∞ = ||µm − µmref ||L∞ = max
ij

∣∣µmij − µmref,ij

∣∣ ,
(4.22)

with µij = µ(xj , ti) the generic statistical moment. The sTE algorithm is applied
with the following parameters: m0 = 3, mL = [6, 14] (with step of 2) and ε = 10−1.
All the reconstruction operators are employed: linear r = 1, centered cubic r = 3,
ENO and WENO based on cubic polynomials. For comparison, both the quasi-MC
(Nξ = [20, 140]) and the PC (with degree between 20 and 60 with step of 10) results
are also reported in the figures 4.8 and 4.9.

To demonstrate the efficiency of the sTE algorithm the results, obtained without
compression (W/O compression), are also reported in the figures 4.8 and 4.9. It is
evident that, even without compression, the scheme performs better then the MC,
but worse with respect to the PC. The results of the non-compressed scheme are im-
proved by the sTE scheme with linear reconstruction, but the overall performance
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Figure 4.7: Statistics for the compressional wave propagation problem in a heterogeneous
rod. In the first row the expectancies for the strain ε (a) and the momentum m (b)
are reported, while in the second row their variance are shown. The two bold line
indicates the region in which the density of the rod changes (see also the equation
(4.18)).

of the scheme remain worse with respect to the PC. The introduction of the high-
reconstruction operator improves the results and in particular the introduction of
the WENO reconstruction allows to recover the better convergence without loosing
accuracy in the smooth regions. The introduction of the ENO causes a slight deterio-
ration of the compression capabilities, due to non-optimal selection of the stencils in
the smooth regions, producing a scheme that does not perform well as the centered
scheme. However, the optimal compression is recovered by the WENO reconstruc-
tion. Obviously, the application of the sTE algorithm produces a time-space varying
mesh in the stochastic space, hence in all the numerical results the number of points
indicates the average number of points employed during the entire simulation.

In this section some results on the sTE scheme have been presented for the non-
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Figure 4.8: Error for the statistics of the strain ε in norms L1 and L∞ following (4.22).

linear elastic wave propagation problem. However the sTE is demonstrated to per-
forms better than the MC and PC for a wide range of problems (also for stochastic
ODEs). Several examples are reported in the papers P1, P2 and P3. Numerical re-
sults for the Euler system of equations have been obtained and presented during the
25th Summer Program 2012 of the Center for Turbulence Research at the Stanford
University and they are also reported in C8. In the next section some results for the
TE/aSI schemes, in the context of cell-average MR framework, in the multidimen-
sional 2D and 3D stochastic cases, will be presented. For the results relative to the
1D stochastic aSI scheme, it is necessary to refer to the paper P4.
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Figure 4.9: Error for the statistics of the momentum m in norms L1 and L∞ following (4.22).
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mL Nw Neval µ τ errL1
errL∞

r = 1
6 18 33 0.3611111E+01 0.1969697E+01 0.1076455E-01 0.2036121E-02
7 24 45 0.5375000E+01 0.2866667E+01 0.5504224E-02 0.1247305E-02
8 27 51 0.9518518E+01 0.5039216E+01 0.3773556E-02 0.1120426E-02
9 32 61 0.1603125E+02 0.8409836E+01 0.3072174E-02 0.9275682E-03

10 42 81 0.2440476E+02 0.1265432E+02 0.1877892E-02 0.4878891E-03
11 54 105 0.3794444E+02 0.1951429E+02 0.9460814E-03 0.2630980E-03
12 63 123 0.6503175E+02 0.3330894E+02 0.7898986E-03 0.2049418E-03
13 85 167 0.9638824E+02 0.4905988E+02 0.3863797E-03 0.1053899E-03
14 103 203 0.1590777E+03 0.8071429E+02 0.2366288E-03 0.6703958E-04
15 122 241 0.2685984E+03 0.1359709E+03 0.1965388E-03 0.5040153E-04
16 161 319 0.4070621E+03 0.2054451E+03 0.9923035E-04 0.2763382E-04
17 196 389 0.6687398E+03 0.3369486E+03 0.5915678E-04 0.1750254E-04
18 237 471 0.1106097E+04 0.5565711E+03 0.4904217E-04 0.1264509E-04
19 315 627 0.1664410E+04 0.8361866E+03 0.2434267E-04 0.6904394E-05
20 383 763 0.2737799E+04 0.1374282E+04 0.1478987E-04 0.4403922E-05

r = 3
6 18 33 0.3611111E+01 0.1969697E+01 0.7117425E-03 0.8735547E-04
7 21 39 0.6142857E+01 0.3307692E+01 0.7117425E-03 0.9449274E-04
8 24 45 0.1070833E+02 0.5711111E+01 0.7554024E-03 0.9610891E-04
9 31 59 0.1654839E+02 0.8694915E+01 0.2774332E-03 0.3455729E-04

10 36 69 0.2847222E+02 0.1485507E+02 0.1440048E-03 0.1581990E-04
11 41 79 0.4997561E+02 0.2593671E+02 0.5072283E-04 0.7745037E-05
12 44 85 0.9311364E+02 0.4820000E+02 0.5072283E-04 0.7747611E-05
13 47 91 0.1743192E+03 0.9003297E+02 0.5072283E-04 0.7748743E-05
14 57 111 0.2874561E+03 0.1476126E+03 0.5072513E-04 0.3817509E-05
15 64 125 0.5120156E+03 0.2621520E+03 0.1184295E-04 0.1398270E-05
16 75 147 0.8738267E+03 0.4458299E+03 0.4712994E-05 0.4914680E-06
17 79 155 0.1659152E+04 0.8456323E+03 0.3622172E-05 0.4409493E-06
18 84 165 0.3120774E+04 0.1588758E+04 0.2246242E-05 0.3779013E-06
19 101 199 0.5190980E+04 0.2634618E+04 0.1560115E-05 0.1507988E-06
20 110 217 0.9532519E+04 0.4832152E+04 0.7982875E-06 0.9490253E-07

r = 3 (ENO)
6 14 25 0.4642857E+01 0.2600000E+01 0.3700040E-02 0.3713698E-03
7 16 29 0.8062500E+01 0.4448276E+01 0.7526094E-03 0.1680260E-03
8 18 33 0.1427778E+02 0.7787879E+01 0.8017963E-03 0.1342630E-03
9 23 43 0.2230435E+02 0.1193023E+02 0.2852286E-03 0.5378220E-04

10 28 53 0.3660714E+02 0.1933962E+02 0.1601275E-03 0.1929446E-04
11 31 59 0.6609677E+02 0.3472881E+02 0.4692711E-04 0.1011992E-04
12 32 61 0.1280312E+03 0.6716393E+02 0.4692711E-04 0.1012630E-04
13 35 67 0.2340857E+03 0.1222836E+03 0.4408086E-04 0.7037415E-05
14 42 81 0.3901190E+03 0.2022840E+03 0.2570142E-04 0.3276826E-05
15 47 91 0.6972128E+03 0.3600989E+03 0.1224823E-04 0.1940414E-05
16 57 111 0.1149772E+04 0.5904234E+03 0.4841718E-05 0.6950600E-06
17 59 115 0.2221576E+04 0.1139765E+04 0.2960107E-05 0.6360469E-06
18 65 127 0.4033000E+04 0.2064134E+04 0.2399054E-05 0.4181538E-06
19 79 155 0.6636570E+04 0.3382510E+04 0.1513161E-05 0.1847706E-06
20 86 169 0.1219276E+05 0.6204598E+04 0.8283872E-06 0.1256176E-06

r = 3 (WENO)
6 15 27 0.4333333E+01 0.2407408E+01 0.1637357E-02 0.8552741E-04
7 16 29 0.8062500E+01 0.4448276E+01 0.1637357E-02 0.9293030E-04
8 18 33 0.1427778E+02 0.7787879E+01 0.7678849E-03 0.3087795E-04
9 21 39 0.2442857E+02 0.1315385E+02 0.2378888E-03 0.1082544E-04

10 26 49 0.3942308E+02 0.2091837E+02 0.4168824E-04 0.2128466E-05
11 28 53 0.7317857E+02 0.3866038E+02 0.4168824E-04 0.2008684E-05
12 30 57 0.1365667E+03 0.7187719E+02 0.4168824E-04 0.1306688E-05
13 32 61 0.2560312E+03 0.1343115E+03 0.4168824E-04 0.1080161E-05
14 36 69 0.4551389E+03 0.2374638E+03 0.1079712E-04 0.2653878E-06
15 38 73 0.8623421E+03 0.4488904E+03 0.2284037E-05 0.1415316E-06
16 42 81 0.1560405E+04 0.8090988E+03 0.2284037E-05 0.8807150E-07
17 47 87 0.2788787E+04 0.1506586E+04 0.2284037E-05 0.6575382E-07
18 55 103 0.4766273E+04 0.2545097E+04 0.2284039E-05 0.3413663E-07
19 60 113 0.8738150E+04 0.4639726E+04 0.3728225E-06 0.1972595E-07
20 66 125 0.1588753E+05 0.8388616E+04 0.3728225E-06 0.1949176E-07

Table 4.1: Results of the application of the TE algorithm on the steady functions f = f(ξ) (see
equation 4.1).
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4.2 Preliminary results for the multidimensional TE/aSI schemes

In the previous section, some numerical results on the TE and sTE schemes are pre-
sented. The MR framework can be formulated relying on discretization operators of
cell-average kind, as described in the previous chapters. The aim of this section is
to present some preliminary results on the TE scheme obtained in the context of the
cell-average framework. In particular, in Section §4.2.1, the TE algorithm is applied
on steady functions in 2D and 3D stochastic spaces to show the convergence prop-
erties of the approach. In Sections §4.2.2 and §4.2.3, the aSI scheme is applied to
stochastic PDE problems. The aim is to demonstrate the applicability and the effi-
ciency of the scheme to the classical CFD test case: the linear advection equation,
the Burgers equation and the Euler system of equations. These are only preliminary
results and the work on multidimensional aSI scheme is still in progress. However, a
complete set of results, demonstrating the efficiency of the aSI scheme, with respect
to the original SI approach, is presented in paper P4.

4.2.1 2D/3D steady functions

In this section the TE algorithm based on the cell-average discretization is applied
to some steady functions, i.e. functions depending only on the stochastic space f =
f(ξ) where ξ ∈ Ξ ⊂ Rd with d = 2, 3. The numerical results concern the statistics
(expected value and variance) and the error norms between the exact function and
the reconstructed function RLv̂L.

The functions are the following

circles: f(ξ) =





1 if ξ21 + ξ22 ≤ 1

16
or (ξ1 − 1)2 + (ξ2 − 1)2 ≤ 1

16
or

(ξ1 − 1)2 + ξ22 ≤ 1

16
or ξ21 + (ξ2 − 1)2 ≤ 1

16

0 otherwise

spheres: f(ξ) =





1 if ξ21 + ξ22 + ξ23 ≤ 1

16
or (ξ1 − 1)2 + (ξ2 − 1)2 + (ξ3 − 1)2 ≤ 1

16
or

(ξ1 − 1)2 + ξ22 + (ξ3 − 1)2 ≤ 1

16
or ξ21 + (ξ2 − 1)2 + (ξ3 − 1)2 ≤ 1

16

(ξ1 − 1)2 + (ξ2 − 1)2 + ξ23 ≤ 1

16
or (ξ1 − 1)2 + ξ22 + ξ23 ≤ 1

16

ξ21 + (ξ2 − 1)2 + ξ23 ≤ 1

16
or ξ21 + ξ22 + (ξ3 − 1)2 ≤ 1

16

0 otherwise

corner peak: f(ξ) =
1(

1 +
∑d
i=1 ciξi

)q

discontinuous: f(ξ) =





1

50
e
∑d

i=1 ciξi if ξ ≤ ξ0

0 otherwise,

(4.23)

where both the corner peak and discontinuous functions are employed in 2D and
3D stochastic spaces with the following parameters: q = 4 with c = {1, 6} (2D) or
c = {1, 6, 12} (3D) for the corner peak while ci = 5 (2D/3D) and ξ0 = (0.53, 0.33) (2D)
or ξ0 = (0.53, 0.33, 0.63) (3D) for the discontinuous function.

All the functions chosen are analytical and the statistics can be computed ex-
actly, hence the error can be evaluated, as already done in the point-value case (see
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equations (4.3)). In this case the convergence properties of the scheme are presented
computing the norms of the error as

|f |1 =

∫
Ξ |f(ξ)− f̂(ξ)|dξ∫

Ξ |f(ξ)|dξ '
∑N

j=1 |f(ξj)− f̂(ξj)|
∑N

j=1 |f(ξj)|

|f |2 =

∫
Ξ |f(ξ)− f̂(ξ)|2dξ∫

Ξ |f(ξ)|2dξ
'
∑N

j=1 |f(ξj)− f̂(ξj)|2
∑N

j=1 |f(ξj)|2
,

(4.24)

where the reconstructed function is obtained applying the reconstruction operator
Rk at the last resolution level L: f̂(ξ) = RLv̂L. The norms (4.24) are computed on
a fixed set of points (N = 10000) generated by a quasi-MC Sobol sequence. In the
figures 4.10, 4.11 and 4.12 the results relative to the 2D cases are reported. In each
figure the error for the statistics (mean and variance) and the errors in norms L1 and
L2 following (4.24) are reported. The parameters for the TE algorithm are m0 = 1,
mL = 10 and ε = 10−4. To make evident the advantage of the application of the
TE algorithm, the results relative to the full approach are also reported. The full
approach consists in generating a uniform tessellation on which the reconstruction
operator is applied directly, obtaining the linear approximation of the function on
each cell. This reconstruction operator is employed to perform the quadrature and
also the computation of the point values for the norm computations. In both cases,
and in all the multidimensional stochastic cases presented in this manuscript, the
reconstruction operator is based on local linear polynomial (conservative) interpola-
tion as described in §2.3.1. Of course, this is actually a limitation of the approach,
but the extension, as already made in the 1D case, is underway. However, from a
global accuracy point-of-view of the aSI scheme, the conservative linear interpolation
is the same employed in the physical space and hence it appears less restrictive for
the solution of stochastic partial differential equation; at the same time the recon-
struction operator plays a fundamental role in the compression, i.e. efficiency, of the
scheme. For that reason the extension of the algorithm to high-order reconstruction
techniques appears to be a necessary further step. Moreover, in the figures 4.10, 4.11
and 4.12 the patterns of the cells, obtained applying the TE scheme with the parame-
ters m0 = 1, mL = 7 and ε = 10−4, are also reported, for all the cases, making evident
the capability of the algorithm locating the discontinuous/high-gradient regions and
concentrating the computational effort. In the figures 4.13, 4.14 and 4.15 the results
for the 3D cases are reported.

For all the cases presented, the results are quite similar. In particular, it is ev-
ident the capability compression of the scheme with respect the full approach and
the consequent improvement in term of efficiency. The effect is a translation of the
curves towards left (less functional evaluations) for all the quantities. The advan-
tage increases augmenting the number of evaluations. This results is valid for both
the statistics and the error norms. In this section, the TE algorithm has been pre-
sented to show its capability to reduce the computational cost with respect the full
approach. The SI scheme (see Chapter 1), with the introduction of the TE algorithm,
as described in the previous chapters, results in the aSI scheme allowing a reduction
of the global computational cost. In the following sections some preliminary multidi-
mensional results are presented.
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Figure 4.10: Error on the statistics (a), the norms L1 and L2 (b) and the adapted cell with
m0 = 1, mL = 7 and ε = 10−4 of the 2D circles function (4.23).

4.2.2 2D test problems for stochastic PDE

In this section the numerical results for the aSI scheme in two stochastic dimensions
are presented. The test cases are an extension of the classical (deterministic) CFD
problems (see the paper P4 for the 1D stochastic space analysis). The test cases are
of increasing complexity and ranging from the linear advection problem, with both
random advection velocity and initial conditions, the Burgers equation, with uncer-
tain smooth initial condition, and the Euler equations of the gasdynamics. For all
the test cases the physical space is one-dimensional. This is only a simplification in
term of computational cost, because in principle the aSI scheme does not suffer from
any problem regarding the extension of the physical space. However, the application
of intrusive adaptive schemes in one-dimensional physical space, represents actually
the state-of-the art, see for instance [66,86].
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Figure 4.11: Error on the statistics (a), the norms L1 and L2 (b) and the adapted cell with
m0 = 1, mL = 7 and ε = 10−4 of the 2D corner peak function (4.23).

Linear advection equation

The first test case is the classical linear advection problem





∂u(x, ξ, t)

∂t
+ a(ξ, t)

∂u(x, ξ, t)

∂x
= 0 t > 0

u(x, ξ, 0) = u0(x, ξ) x ∈ Ω ⊂ R and ξ ∈ Ξ ⊂ R2,
(4.25)

where both the advection velocity a and the initial condition u0 can depend on a
random vector ξ. Each of the random parameter is uniformly distributed ξi ∼ U(0, 1)
with i = 1, 2. Two case are considered: the first one with smooth random initial
condition u0 = u0(x, ξ)

u0(x, ξ) = sin(2πx+ ξ2
1 + ξ2

2), (4.26)
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Figure 4.12: Error on the statistics (a), the norms L1 and L2 (b) and the adapted cell with
m0 = 1, mL = 7 and ε = 10−4 of the 2D discontinuous function (4.23).

with constant advection velocity a = 0.1; the second one has a discontinuous initial
condition u0 = u0(x)

u0(x) =





1
2

5
≤ x ≤ 3

5
0 otherwise

(4.27)

and uncertain advection velocity

a(ξ) = ξ2
1ξ

2
2 − ξ2

1ξ2 − ξ1ξ
2
2 − c ξ2

1 − c ξ2
2 + ξ1ξ2 + c ξ1 + c ξ2 + c2, (4.28)

where c = 0.75 in the numerical examples. Both the cases are solved in this section
with periodic boundary conditions.

In the following the norms L1 of the statistics are computed as following (for the



Numerical results 85

N

e
rr

ε,
e
rr

V
a
r

10
2

10
3

10
4

10
5

10
6

10
3

10
2

10
1 Full  err

ε

Full  err
Var

TE  err
ε

TE  err
Var

(a)

N

|f
| 1
,
|f
| 2

10
2

10
3

10
4

10
5

10
1

10
0

Full  |f|
1

Full  |f|
2

TE  |f|
1

TE  |f|
2

(b)

ξ 1

0

0.2

0.4

0.6

0.8

1

ξ
2

0

0.2

0.4

0.6

0.8

1

ξ
3

0

0.2

0.4

0.6

0.8

1

f

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

(c)

Figure 4.13: Error on the statistics (a), the norms L1 and L2 (b) and the adapted cell with
m0 = 1, mL = 7 and ε = 10−4 of the 3D spheres function (4.23).

final time step t = tF )

|errE|1 =

∫

Ω
|E(u(x, tF ))− Eex(u(x, tF ))|dx

' ∆x

Nx∑

i=1

|E(ū(xi, tF ))− Eex(ū(xi, tF ))|

|errVar|1 =

∫

Ω
|Var(u(x, tF ))−Varex(u(x, tF ))| dx

' ∆x

Nx∑

i=1

|Var(ū(xi, tF ))−Varex(ū(xi, tF ))|

(4.29)

In the figure 4.16, the results for the application of the aSI scheme are reported in
term of statistical error L1 norms, and statistics over the whole physical space. The
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Figure 4.14: Error on the statistics (a), the norms L1 and L2 (b) and the adapted cell with
m0 = 1, mL = 7 and ε = 10−4 of the 3D corner peak function (4.23).

smooth advection problem is solved for increasing spatial resolutions on meshes ofNx

equal to 21, 51 and 101 points, dividing the time line T = [0, 1/2] in Nt = 100 intervals
with equal length ∆t = 5 × 10−3. The centered limiter can be employed due to the
smooth properties of the solution. The parameters for the aSI scheme are m0 = 3,
mL = 7 and ε = 10−4. The exact solution can be computed by means of integration of
the exact solution

u(x, ξ, t) = sin
(
2π(x− at) + ξ2

1 + ξ2
2

)
. (4.30)

In this analytical case the integral are computed with the software MAPLE.
In the figure 4.16 it is evident that the effect of the adaptation, i.e. the time-

dependent stochastic refinement/coarsening (see the figure 4.16(d)), does not modify
the expected second order convergence rate of the solution in space.

The advection linear equation can be also solved with discontinuous initial condi-
tion and the random advection equation (4.28). The problem is solved for Nt = 350
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Figure 4.15: Error on the statistics (a), the norms L1 and L2 (b) and the adapted cell with
m0 = 1, mL = 7 and ε = 10−4 of the 3D discontinuous function (4.23).

and ∆t = 1 × 10−3 for the equally spaced meshes with Nx, equal to 51, 101, 201
and 501, points. In this case the limiter is the Roe’s superbee limiter (1.28). The
reference (numerical) solution is obtained employing the scheme with the following
parameters: Nx = 1001 physical points and the aSI scheme on uniform stochastic
mesh with Nξ = 64× 64 cells (this is equivalent to the level mL = 6). The aSI scheme
is applied with m0 = 1, mL = 6 and ε = 10−4. The error L1 norm for the statistics, the
expected value and the variance, over the whole physical domain, and the evolution
of the number of stochastic cells employed, for each physical location, are reported in
4.17.

From the figure 4.17 it is evident that the scheme converges to the reference so-
lution with the expected second order rate of convergence and the solutions with 201
and 501 physical points appear nearly indistinguishable from the reference solution
for the expected value 4.17(a) while the difference is more evident for the variance
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Figure 4.16: The expected value (a) and the variance (b) for the linear advection problem with
smooth initial condition (4.26) are reported for different physical space resolu-
tions over Ω. The statistic errors in L1 norms, computed with respect the exact
analytical solution following (4.29), are reported in (c). The number of stochastic
cells Nξ at each physical location is reported, for all the spatial resolutions, in
(d).

4.17(b). The number of stochastic cells over the physical space 4.17(d) reveals the
effect of the representation in the combined physical/stochastic space: finer grids
in the physical space allow sharper representations of the discontinuities even in
the stochastic space. The computational effort can be concentrated in these high-
gradients regions, in the stochastic space, obtaining a narrow region, over the physi-
cal space, in which a large number of stochastic cells needs to be placed. For instance,
comparing the solution with 51 and 501 physical points the maximum number of
stochastic cells required is about 4 000 and 2 600 respectively. Moreover, the high-
gradient region in the stochastic space, for the case of 51 points, smear in a very
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Figure 4.17: The expected value (a) and the variance (b) for the linear advection problem
with random advection velocity (4.28) are reported for different physical space
resolutions over Ω. The statistic errors in L1 norms, computed with respect the
numerical reference solution (Nx = 1001) following (4.29), are reported in (c).
The number of stochastic cells Nξ at each physical location is reported, for all
the spatial resolutions, in (d).

broad region leaving the domain from the right side and re-entering through the left
boundary due to the periodic boundary conditions. The aSI scheme, as already noted
in the paper P4 for the 1D stochastic case, results to be more and more efficient as
the physical resolution increases. In this section the classical linear advection prob-
lem has been presented, even in the presence of a non-linear random velocity in the
stochastic space. A classical scalar non linear case, for hyperbolic problems, is the
inviscid Burgers equation. This case is presented in the following section.
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The inviscid Burgers equation

In this section the aSI scheme is applied to the solution of the inviscid Burgers equa-
tion

∂u(x, ξ, t)

∂t
+
∂f(u(x, ξ, t))

∂x
= 0 x ∈ Ω and t ∈ [0, tF ], (4.31)

where the random flux function is defined as f = f(u(x, ξ, t)) = 1
2u

2(x, ξ, t) and ξ ∈
Ξ ⊂ R2. Each of the random parameter is uniformly distributed ξi ∼ U(0, 1) with i =
1, 2. The physical domain considered here is Ω = [0, 1] with wall boundary conditions.
The time line is discretized by means of Nt = 600 intervals of equal length ∆t =
7.5× 10−4. The following initial condition is employed

u(x, ξ, 0) =





0 if x <
1

10
2

5
ξ2

1 +
1

10000
ξ1 +

9

10
if

1

10
≤ x ≤ 1

2
1

5
ξ2 if x >

1

2

(4.32)

This initial condition is the extension of the test case presented in the paper P4
where, its 1D stochastic counterparts, is employed to obtain a stochastic exact so-
lution even for shocked problems. Here the problem is solved for increasing spatial
resolutions corresponding to equally spaced meshes with Nx, 51, 101, 201 and 501,
points. For this test case, the limiter is the Roe’s superbee (1.28). The aSI scheme is
applied with the following parameters m0 = 1, mL = 6 and ε = 10−4. A numerical ref-
erence solution is computed, without compression, on a resolution level correspond-
ing to mL = 6 with Nξ = 64 × 64 stochastic cells on a physical mesh of 1 001 equally
spaced points. The initial condition (4.32) is chosen to produce a random shock front
for t > 0 on the right side of the hat, while a random expansion fan is produced at
the left side (see the paper P4 for more details). The error norms in L1, for both the
expected value and the variance, are presented in the figure . The scheme exhibits
the expected rate of convergence even if the adaptive procedure refines and coarsens
the mesh in the stochastic space according to the local regularity of the function. The
expected value 4.18(a) and the variance 4.18(b) are also reported for the different
spatial resolutions. The expected value for the solutions on the mesh of 201 and 501
points is almost indistinguishable from the reference solution while, for the variance,
the effect of the physical discretization is more evident. Even in this case, higher spa-
tial resolutions, correspond to narrow regions of high number stochastic cells. This is
evident from the figure 4.18(d) where the evolution of the stochastic cells is reported
over the physical domain.

All the test cases, presented until this points, are scalar test cases. In the next
section the Euler equations of the gasdynamics are solved to obtain the statistics of
the vector of conservative variables.

Euler equations of the gasdynamics

In this section a vectorial case is presented. The Euler equations of the gas dynamics
are solved here to analyze a classical (random) shock tube problem. The problem can
be modeled by the well-known 1D Euler equations

∂u

∂t
+∇ · f(u) = 0 (4.33)
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Figure 4.18: The expected value (a) and the variance (b) for the inviscid Burgers equation
with random initial condition (4.32) are reported for different physical space
resolutions over Ω. The statistic errors in L1 norms, computed with respect the
numerical reference solution (Nx = 1001) following (4.29), are reported in (c).
The number of stochastic cells Nξ at each physical location is reported, for all
the spatial resolutions, in (d).

where the vector of conservative variables, the density ρ, the momentum m = ρu
and the total Energy Et, u ∈ R3 and the flux vector f(u) ∈ R3 → R3 are

u =



ρ

m

Et


 f(u) =




m

m2

ρ
+ Π(u)

m

ρ

(
Et + Π(u)

)
.




(4.34)

The pressure Π(u) (as function of the conservative variables) can be derived for a
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polytropic ideal gas [70] as follows

Π(u) = (γ − 1)

(
Et − 1

2

|m2|
ρ

)
. (4.35)

The initial condition, for the uncertain shock tube problem, is derived from the
classical Sod test case [76], where both the density and the pressure at the left side
of the diaphragm are uncertain. The left state (x < xd for t = 0) and the right side
are defined as follows:

uL(x, ξ, t) =




ρL(ξ1)

0

pL(ξ2)

γ − 1


 uR(x, t) =




ρR

0
pR
γ − 1

.


 (4.36)

In particular, the density on the left state is dependent from an uniformly dis-
tributed random parameter ξ1 ∼ U [0, 1]: ρL(ξ1) = 0.9 + 0.4ξ1. The values of the
pressures is instead dependent from the random parameter ξ2 ∼ U [0, 1] as ρL(ξ2) =
0.8 + 0.4ξ2. The other data are the right pressure pR = 0.1 and the right value of the
density is ρR = 0.125. The total energy Et is obtained (considering the gas at the rest
in the whole domain) as a function of the local pressure and the ratio between specific
heats, that for a diatomic gas can be assumed equal to γ = 1.4. The initial position of
the diaphragm is fixed to xd = 0.42.

Simulations are performed, over a physical domain Ω = [0, 1], for Nt = 3 900 time
steps of length ∆t = 6.25× 10−5. The simulations are carried out over equally spaced
meshes of Nx, 51, 101, 201 and 501, points employing the aSI scheme based on the
MHM with a van Leer limiter (see equation (1.29)). The reference solution is obtained
over a physical mesh of 1 001 equally spaced nodes and a stochastic mesh of Nξ =
32×32 cells. The aSI scheme is applied with the following parameters m0 = 1, mL = 6
and ε = 10−3. The statistics, expected values and variances, for all the conservative
variables are reported in the figure 4.19.

For the Euler test case the influence of the spatial resolution is more evident:
the error on the maximum values for the variance of all the conservative variables
is quite high for the 51 points mesh. The situation improves rapidly obtaining very
close values with respect to the reference solution for the 501 case. The error norms
computed in L1 following (4.29), for all the conservative variables, for both expected
value and variance, with respect to the reference solution, are reported in the figure
4.20(a). In the figure 4.20(b) the evolution of the number of points over the physical
space is reported for all the physical resolutions. Even here, as in the previous cases,
the higher physical resolution allows to recover a sharp representation of the high-
gradients and shocks regions in the combined space and a local computational effort
more concentrated in their neighboring.

Another test case is performed to make evident the ability of the aSI scheme.
The Euler problem is solved for a different initial condition: the initial position of
the diaphragm is placed at xd = 0.65. The simulation is carried out for Nt = 6000
time steps of length ∆t = 6.25 × 10−5 to obtain the reflection of the random shock
waves at the right boundary (wall boundary conditions are employed). The physical
mesh is constituted by 401 equally spaced points in Ω and the parameter for the aSI
scheme are m0 = 1, mL = 6 and ε = 10−3. Some results, for three different time



Numerical results 93

steps, are reported in the figure 4.21. In the left column, the adapted mesh in the
overall x − ξ1 − ξ2 space is shown, while in the right one the number of stochastic
cells, over the whole physical space is reported. In particular the first time step cor-
responds to a time of t = 0.1875 (Nt = 3000) 4.21(a) where the front of the shock
waves (well captured) start to interact with the right boundary and reflects. This is
evident in the upper corner at the right boundary in the figure 4.21(a) where each
point represents the center of a cell, in the overall Ω − Ξ space, and its color is the
local value of the conditional expected value for the density E(ρ(xi)|ΞLj ). In the figure
4.21(b) the aSI scheme captures the three main structures that are, starting from
left, the expansion fans, the contact discontinuities and the shock fronts. At the sec-
ond time step t = 0.2875 (Nt = 4600) 4.21(c) the shock front is totally reflected and,
in the upper domain (ξ2 > 0.5 roughly), already interacted with the incoming contact
discontinuities front. In the figure 4.21(d) the corresponding evolution of the number
of stochastic cells over Ω is reported and the aSI scheme is demonstrated to be able
coarsening, the local stochastic mesh, just after the reflection of the shock front from
the boundary. At the final time step the shock front entirely passed through the con-
tact discontinuity front and appears well captured 4.21(f). The contact discontinuity
front starts to interact with the right boundary and it is partially reflected. In this
region, the number of stochastic cells is quite high due to the presence of not yet well
separated structures. However, it is evident the ability of the aSI scheme in track-
ing the different structures capturing also new high-gradient regions when forming
4.21(f).

4.2.3 Preliminary 3D results: the smooth advection case

In this section some preliminary results for the linear advection equation are pre-
sented. The problem is formulated as already discussed in the previous section (see
equation (4.25)). The stochastic problem is obtained considering the following ran-
dom initial condition

u0(x, ξ) = sin(2πx+ ξ2
1 + ξ2

2 + ξ2
3), (4.37)

where each random parameter is ξi ∼ U(0, 1) for i = 1, 2, 3. As the 2D problem the
advection velocity is fixed to a = 0.1. The simulation is carried out for Nt = 500 time
steps of constant length ∆t = 5× 10−3. Even in this case, the exact reference solution
can be obtained by integration of the solution over the physical space at each physical
cell location

u(x, ξ, tF ) = sin
(
2π(x− atf ) + ξ2

1 + ξ2
2 + ξ2

3

)

−→





Eex(ūi(tF )) =

∫

Ξ
u(xi, ξ, tF )dµ(ξ)

Varex(ūi(tF )) =

∫

Ξ
u2(xi, ξ, tF )dµ(ξ)− (Eex(ūi(tF )))2

(4.38)

The aSI scheme is applied with increasing physical meshes of Nx equal to 11, 21, 51
and 101 equally spaced points and the following parameters m0 = 1, mL = 5 and ε =
10−2. As evident, due to the computational cost of the code not heavily parallelized,
the maximum resolution level it is not fine enough and the threshold is higher than
the previous 2D test cases. The effect is evident in the figure 4.22(a) where the norms
L1 for both the statistics, expected value and variance, are reported following the
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definitions (4.29). The rate of convergence very soon decreases and, already with
51 and 101 physical points, the error related to the stochastic space discretization
is so high to produce a stagnation of the physical space error. These preliminary
results are added to the present manuscript to demonstrate the possibility to extend
the analysis to 3D stochastic cases with time-dependent adaptivity in the combined
space, as evident from the figure 4.22(d) where the evolution of the stochastic cells
over Ω is reported. In the figures 4.22(a) and 4.22(b) the expected value and the
variance, of the solution, are reported respectively. For the mean the solutions are
almost indistinguishable from the exact solution for the 51 and 101 cases. However,
the error on the variance is higher: in the peaks regions the differences with respect
the analytical solutions are evident even for the mesh with 101 physical points.
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Figure 4.19: Expectancies for the shock tube (4.36) for the density (a), momentum (c) and
total energy (e). Their variances are reported respectively in (b), (d) and (f).
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Figure 4.20: The statistical L1 norms, computed with respect the numerical reference solu-
tion (Nx = 1001) following (4.29), are reported in (a). The numbers of stochastic
cells Nξ at each physical location are reported for all the spatial resolutions in
(b).
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Figure 4.21: Center of the cells and number of stochastic cells over Ω for Nt = 3000 (a) and
(b), Nt = 4600 (c) and (d) and Nt = 6000 (e) and (f). The color of each cell is based
on the value of the conditional expected value for the density E(ρ(xi)|ΞLj ).
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Figure 4.22: The expected value (a) and the variance (b) for the linear advection equation
with smooth random initial condition (4.37) are reported for different physical
space resolutions over Ω. The statistic errors in L1 norms, computed with respect
the analytical reference solution following (4.29), are reported in (c). The number
of stochastic cells Nξ at each physical location is reported, for all the spatial
resolutions, in (d).



CHAPTER 5

Concluding remarks and
perspectives

This thesis deals with efficient weakly intrusive numerical schemes, based on Harten
multiresolution framework, to propagate uncertainties in the context of stochastic
differential equations. The use of multiresolution framework has a twofold aim.
First, there is the reduction of the dimensionality of the discrete space of function
representation, defined in a proper stochastic space. This reduction permits a gain
in terms of computational efficiency, i.e. by reducing the number of explicit evalua-
tions required to represent the function. Multiresolution constitutes also the basis
for representing the function by exploiting the locality of this basis. Moreover, the
multiresolution analysis offers a natural tool to investigate the local regularity of a
function and can be employed to build an efficient refinement strategy. Second aim
is a general procedure to refine/coarsen the stochastic space in unsteady problems.
The strategy has been verified, by means of several test cases, on both ordinary and
partial stochastic equations. Main feature, of the proposed approach, is the possibil-
ity to adapt the discretization of the stochastic space, in function of the physical and
time coordinates. This approach suits very well fluid dynamics applications, where
the problems are intrinsically multi-scale and also non-linear with traveling high-
gradient/discontinuities. This strategy is able to capture and follow all types of flow
structures.

Let us describe the main differences of the proposed approach, with respect to the
other multiresolution/multiwavelet techniques proposed in literature. The approach
presented here, is not limited to intrusive propagation of uncertainties and is not
limited to independent random parameters. In principle, any stochastic space can
be employed, even containing holes. However, in this thesis, the random parameters
are always considered independent and no holes can be present. The possibility to
consider general geometries, for the stochastic space, represents a great difference
with respect to more classical multiresolution/multiwavelet approaches present in
literature. These latter could require the solution of a dilating equation to obtain the
basis of approximation; this solution, on general geometries, could be cumbersome.
Moreover, the classical multiresolution approaches, present in literature, are limited
to linear scheme, i.e. data-independent basis. However, it is well demonstrated in
literature, and it is shown in some numerical test cases in this thesis, the superiority
of the non-linear multiresolution approaches in terms of compression capabilities,
specially for non-smooth problems.

Finally, the present approach opens a novel way to build efficient intrusive tech-
niques. Its generality well suits multi-scales applications not limited to fluid flows
problems, as demonstrated in the numerical section. Another interesting property,
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with respect to all the other intrusive techniques, remains the moderate intrusive
behavior, unlike for example in spectral Galerkin projection, where a theoretical ma-
nipulation of the original system is needed. This could be of great interest for very
complex applications, where the deterministic scheme is already available and can-
not be easily modified. In some sense, an example of this kind of flexibility could
be found in paper P5 where the aSI scheme is coupled with the Discrete Equation
Model.

5.1 Perspectives

The approach presented in this thesis demands several improvements in the future.
Concerning the aSI scheme, the first improvement should be devoted to a strong par-
allelization of the numerical code. The aSI scheme is conceived to be highly parallel
due to the external loop on the spatial coordinates. In principle, a number of paral-
lel threads, equal to the number of spatial cells, could be employed. The numerical
computation presented in this thesis are performed on 12 processors (in the multidi-
mensional case) employing the automatic parallelization of the Intelr ifort compiler
(-parallel). This approach could be heavily improved by a parallelization ’by hand’
of the code.

Potentialities of the aSI approach could be exploited when treating unsteady and
discontinuous probability density functions, as already made for the sTE scheme. The
other key distinctive element, with respect to the other approaches, i.e. the possibility
to employ dependent random variables should be further exploited.

Both the compression capabilities and the accuracy of the scheme (in the stochas-
tic space) could be, in a straightforward manner, extended employing an high-order
polynomial reconstruction. To obtain a multidimensional conservative reconstruc-
tion of high-order, and possibly non-linear (ENO/WENO), two different approaches
seem to be feasible. The first one should be to recover the stencil on the resolution
level to which the cell belong. Otherwise, the stencil could be built employing the
non-conformal mesh obtained at a certain resolution level employing an algorithm of
’crystal grown’ type, i.e. moving from each cluster of cells and adding the neighboring
one allowing the least oscillatory reconstruction. These two possibilities have both
advantages and disadvantages and should be verified before on the so-called steady
functions.

Another interesting possibility, potentially capable to greatly increase the effi-
ciency of the scheme, is the anisotropic refinement of the mesh. Limiting to the
stochastic space, the importance of the different dimensions could be locally differ-
ent. In literature, several criteria exist for the anisotropic refinement in different
context (also in the UQ framework) and a preliminary study of the literature should
be performed to choose the best option.

The final goal of this kind of intrusive approach is to obtain very accurate numer-
ical schemes by performing a strong coupling between the physical and stochastic
spaces, with an unsteady procedure for refinement (coarsening). Of course this pos-
sibility, even if very attractive, remains very complex from both the theoretical and
algorithmic point-of-view.
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[7] Rémi Abgrall and Vincent Perrier. Asymptotic Expansion of a Multiscale Nu-
merical Scheme for Compressible Multiphase Flow. Multiscale Modeling & Sim-
ulation, 5(1):84–115, January 2006.
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[17] Francesc Aràndiga, G. Chiavassa, and Rosa Donat. Harten framework for mul-
tiresolution with applications: From conservation laws to image compression.
Boletı́n SEMA, 31(31):73–108, 2009.
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In this work a novel adaptive strategy for stochastic problems, inspired from the classical
Harten’s framework, is presented. The proposed algorithm allows building, in a very general
manner, stochastic numerical schemes starting from a whatever type of deterministic
schemes and handling a large class of problems, from unsteady to discontinuous solutions.
Its formulations permits to recover the same results concerning the interpolation theory of
the classical multiresolution approach, but with an extension to uncertainty quantification
problems. The present strategy permits to build numerical scheme with a higher accuracy
with respect to other classical uncertainty quantification techniques, but with a strong
reduction of the numerical cost and memory requirements. Moreover, the flexibility
of the proposed approach allows to employ any kind of probability density function,
even discontinuous and time varying, without introducing further complications in the
algorithm. The advantages of the present strategy are demonstrated by performing several
numerical problems where different forms of uncertainty distributions are taken into
account, such as discontinuous and unsteady custom-defined probability density functions.
In addition to algebraic and ordinary differential equations, numerical results for the
challenging 1D Kraichnan–Orszag are reported in terms of accuracy and convergence.
Finally, a two degree-of-freedom aeroelastic model for a subsonic case is presented. Though
quite simple, the model allows recovering some physical key aspect, on the fluid/structure
interaction, thanks to the quasi-steady aerodynamic approximation employed. The injection
of an uncertainty is chosen in order to obtain a complete parameterization of the mass
matrix. All the numerical results are compared with respect to classical Monte Carlo
solution and with a non-intrusive Polynomial Chaos method.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, the prediction of the numerical simulations is a fundamental task to attain for the optimization and the
control of engineering devices. However, estimating the confidence of a numerical simulation remains very challenging. In
recent years, a strong effort has been devoted to develop efficient numerical methods for taking into account the random-
ness in the numerical simulations.

The most popular and known method for the uncertainty quantification (UQ) is the Monte Carlo. Its development led
back to the research on the nuclear devices in the context of the Manhattan project and is due to Fermi, von Neumann
and Ulam. This method is based on a stochastic procedure to represent realizations of the solution for which the statistic
moments can be computed. Despite its solid mathematical framework it represents a very expensive approach for most
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practical application because it requires a great number of realizations. Several improved versions of the classical Monte
Carlo method have been proposed in literature for increasing the convergence rate, see for instance the recent work pre-
sented in [1], but they still remain unfeasible for complex problems when the evaluation of samples is expensive, as in most
engineering problems.

One of the most important class of methods for UQ is based on the Polynomial Chaos (PC) representation. In the original
work of Wiener [2], the solution is expanded in a polynomial Hermite basis, the so-called homogeneous chaos expansion. In
recent years, Xiu and Karniadakis [3] demonstrated that the optimal convergence, with respect to non-Gaussian probability
distributions, can be achieved if orthogonal basis are chosen following the so-called Wiener–Askey scheme. This leads to the
well-known generalized Polynomial Chaos (gPC). Following the procedure introduced by Xiu and Karniadakis, i.e. employing
the probability density function as a weight function for searching the orthogonal basis, an optimal expansion basis could be
virtually obtained from every kind of pdf, see for details [4,5]. Actually the gPC is often used in combination with Galerkin
projection [6] techniques following the idea of Ghanem and Spanos [7], who first extended the applications of the PC in
combination with finite elements. The gPC is recognized as one of the most efficient techniques thanks to its exponential
rate of convergence. However, problems with discontinuities in the random space can lead to slow convergence. Similarly
long-time integration problems could be encountered [8], where this behavior is due to the modification in time of the
statistic properties of the solution that induces an efficiency loss of the polynomial basis in time. Recently, Gerritsma et
al. [9] proposed a time-dependent generalized Polynomial Chaos scheme based on the research of a time varying optimal
polynomial basis.

Another class of method for the UQ is based on the stochastic collocation (SC) approach [10]. This strategy is based on
building interpolants (polynomial), of the same dimensionality as the stochastic space, in order to approximate the solution.
In order to reduce the computational cost for high-dimension problems, these methods are often coupled to sparse grids
techniques. The sparse grid strategy has been proposed by Smolyak [11] allowing interpolation of the function in a reduced
subset of points with respect to the full tensorization set. This strategy is a cure against the so-called curse of dimensionality
[12] problem, i.e. the exponential growth of the number of points with respect to the stochastic dimensions [13,14].

Actually, handling a non-smooth behavior for high-dimension problems remains a very challenging issue. It is not
completely solved even for low or moderate dimension problems. In the context of gPC schemes, Wan and Karniadakis in-
troduced an adaptive class of methods for solving the discontinuity issues by using local basis functions, the multi-element
generalized Polynomial Chaos (ME-gPC) [15]. This strategy deals with an adaptive decomposition of the domain on which lo-
cal basis are employed. In order to treat discontinuous response surfaces, Le Maître et al. applied a multiresolution analysis
to Galerkin projection schemes [16,17]. This class of schemes relies on the projection of the uncertain data on a multi-
wavelets basis consisting of piecewise polynomial (smooth) functions. This approach is shown to be very CPU demanding.
Consequently, two cures are then explored in the context of adaptive methods: automatically refine the multi-wavelets basis
or adaptively partitioning the domain.

More recently, unsteady stochastic problems have been solved by means of multi-elements techniques, employing the
collocation simplex method [18]. Also for these stochastic collocation methods, adaptive strategies have been proposed in
order to tackle the discontinuity issues. In the work of Agarwal and Aluru [19], an adaptive stochastic collocation method,
based on the recursive splitting of the domain, has been proposed. In this case the splitting of the domain and the adaptivity
is applied directly to the sparse grid basis. A sparse grid collocation strategy, based on piecewise multi-linear hierarchical
basis functions, has been adopted by Ma and Zabaras [20] to recover the convergence loss by a global polynomial approxi-
mations in presence of discontinuities.

Recently, Abgrall et al. [21–23] introduced a new class of finite volume schemes capable to deal with discontinuous
problems both in the physical and stochastic space for shock-dominated flows. The so-called semi-intrusive scheme (SI)
exhibits promising results in term of accuracy and efficiency compared to more classical Monte Carlo and gPC methods.
The idea is to extend to the stochastic space the finite volume representation used for the deterministic scheme. The
established framework of the reconstruction techniques (ENO/WENO) in finite volume schemes can be, very easily, employed
in the stochastic space with the SI scheme. This approach can lead to some advantages such as an extreme flexibility with
respect the form of the pdf (that can be discontinuous and unsteady), an easy implementation, a slight modification of the
deterministic solver preserving the number of equations.

The aim of the present work is to provide a framework, inspired from the classical multiresolution representation of
Harten [24], capable to recover the same results of this theory but including new features for the extension to stochastic
problems. The proposed algorithm, the Truncate and Encode (TE) strategy, displays very good properties in terms of conver-
gence and efficiency. Moreover, it allows handling adaptively a stochastic mesh in a very general way. This could allow in
the future a very easy coupling with different kinds of numerical methods as, for example SC and SI schemes. While in this
work no dependence on the physical spaces is considered, the long-term objective is to build accurate numerical scheme,
for low or moderate number of uncertainties, permitting to deal with unsteady discontinuous solutions and using unsteady
refinement/derefinement capabilities both in the physical and stochastic space.

The approach proposed in the present work is based on a multiresolution concept, as already made in Le Maître’s work.
However, the approach differs completely since here no spectral projection is employed, as it will be explained in the next
section. Moreover, the possibility to reject a wavelets (equal to an interpolation error as in the original Harten framework)
is based only on local tests, then is different from Galerkin projection approach where 1D energy estimator along stochastic
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Fig. 1. Harten’s multiresolution classical notation.

dimensions are used. For details on the multiresolution approach applied to Galerkin projection schemes, the reader can
refer to the extremely exhaustive reference [6].

The paper is organized as follows. In Section 2, the classical multiresolution framework of Harten is illustrated. Some
remarks are pointed out over the analytical results associated to the compression procedure. The algorithm proposed in this
work, i.e. the Truncate and Encode (TE) strategy is presented in Section 3, while the accuracy preserving time-advancement
procedure in Section 4. Differences between the classical MR framework and the present approach are discussed in Section 5.
Accuracy and efficiency of the TE algorithm are verified on several numerical experiences in Section 6. In particular, algebraic
and ordinary differential equation (both scalar and vectorial) and the 1D Kraichnan–Orszag problem with uniform and
discontinuous unsteady probability distribution functions are considered. Finally, a two degree-of-freedom aeroelastic model
is used to estimate the unsteady statistics for the motion. Remark that all the presented results are compared with respect
to classical Monte Carlo methods and with gPC non-intrusive approach. Some concluding remarks and perspectives are
reported in Section 7.

2. Harten’s multiresolution framework

In this section, we briefly recall the classical Harten MR framework [25,24] extended here to the case of non-uniform
measure. Consider a function u(ξ) defined on a domain Ξ = [0,1]. Let us suppose to know the values u0 = {u0

j }N0
j=0 on a

uniform grid, defined as follows

G0 = {
ξ0

j

}N0

j=0, ξ0
j = jh0, h0 = 1/N0.

This grid is assumed as the finest one, i.e. the highest resolution level. Now, let us consider the set of nested dyadic grids
Gk with 0 � k � L

Gk = {
ξk

j

}Nk

j=0, ξk
j = jhk, hk = 2kh0, Nk = N0/2k,

where k = 0 represents the finest level and L the coarsest. Remark that the use of a nested dyadic structure allows obtaining
a grid Gk from the finest adjacent level Gk−1 by removing only the odd points and preserving the condition Gk ∩Gk−1 = Gk .
The following relation holds

uk
j = uk−1

2 j for 0 � j � Nk.

In this paper, only structured uniform nested grids are employed, but the algorithm can be extended to an unstructured
mesh as already shown in [26] provided that a nested structure is used between successive levels. The assumption of a
regular mesh is then not exhaustive even in the 1D context. It is made here only for the sake of simplicity. The algorithm
presented in this work, even described only in the 1D context, could be extended in a straightforward way following, for
example, [27] or [28]. These works show how the classical Harten’s framework is extended to 2D using a tensor product
approach.

The convention adopted in this work is reported in Fig. 1.
In a general way, an approximation problem can be solved on the mesh to obtain an interpolation operator I(ξ ; u)

chosen to approximate the function u at the coordinate ξ . The problem can be formulated (for the generic level kth) as
follows: find I j(ξ ; uk) ∈ Pr(Ξ) such that for any point ξ j one has L j(I(ξ ; uk)) = L j(uk) for 0 � j � Nk , where {L j}1� j�r

is a family of linear forms defined on C r̄(R) (r̄ > r). With this assumption, two different kinds of linear forms could be
considered:

• Lagrange interpolation: the linear form is directly equal to the point value of the function

L j
(
uk) = u(ξ j) 0 � j � Nk.



22 R. Abgrall et al. / Journal of Computational Physics 257 (2014) 19–56

• (Conditional) average reconstruction, where at each point ξ j , its surrounded cell Ξ j is associated such that

L j
(
uk) = ūk

j =
∫
Ξ j

uk dξ∫
Ξ j

dξ
. (1)

In the following, no distinction is made by the two reconstruction procedures, because they are similar even if not exactly
equivalent. An exact equivalence between the two reconstruction procedures is not possible, even in the case of constant
reconstruction. In fact, a set of nested cells cannot be obtained on the same set of nested meshes, using the operator
I(ξ ; uk). In particular, it is necessary to predict the value of the function in the missing points, i.e. the points ξ ∈ Gk−1

but not to Gk ∩ Gk−1 or its cell averaged value in its cell. The expression for both predicted values are the following (for
1 � j � Nk):

ũk−1
2 j−1 = I

(
ξk−1

2 j−1; uk),
ũk−1

2 j−1 =
∫
Ξk−1

2 j−1
Ik−1

2 j−1(ξ ; uk)dμ∫
Ξk−1

2 j−1
dμ

. (2)

The interpolation errors dk
j can be defined as follows

dk
j = ūk−1

2 j−1 − ũk−1
2 j−1, for 1 � j � Nk, (3)

and generally they are called wavelets coefficients or details.
In this work, the point-value setting is employed. Anyway, the presented approach holds also when a cell average setting

is employed.
The MR strategy is based on the observation that the knowledge of the couple (dk, uk), where dk = {dk

j} and uk = {uk
j},

called multiresolution representation of uk−1, permits to compute the solution on the grid Gk−1. Of course, the vice versa
also holds

uk−1 ↔ (
dk, uk).

Proceeding recursively from u0 to uL

u0 ↔ (
d1, u1) ↔ (

d1,d2, u2) ↔ ·· · ↔ (
d1,d2, . . . ,dL, uL) def= (uM)T

it is possible to obtain the multi resolution representation of the solution (uM)T.
Remark that it is possible to obtain the multiresolution representation (uM)T with any interpolation technique, i.e. any

degree of interpolation is allowed provided the appropriate stencil. In this framework two different operations can be
defined: the encoding procedure that allows obtaining the multiresolution representation from the knowledge of u0 (the
solution at the finest level) and the decoding procedure that allows obtaining the function at the finest resolution level from
the multiresolution representation. If a matrix notation is employed the encoding procedure could be formulated as

uM = Mu0, (4)

where M is an (N0 + 1) × (N0 + 1) matrix. The decoding procedure is the inverse procedure, then obviously

u0 = M−1uM . (5)

This matrix form is possible if the set of stencil is fixed and there is no adaptation, as for instance it happens in ENO
reconstructions. In the case of automatic procedure to adapt the stencil the matrix M , that would not be linear, could be
computed term by term in a closed form. The same is valid for the ‘inverse’ operator, see [29].

The MR framework, as presented in this section, could be seen only as hierarchical evaluation of a solution or, if applied
to a numerical scheme, a hierarchical recasting of the same scheme. However one of the main advantages of the MR is the
possibility to obtain more efficient schemes introducing a truncation procedure. The data compression capabilities of MR
framework are then treated in the next section.

2.1. Data compression

As depicted in the previous section, the finest level can be reconstructed by the decoding procedure exploiting the mul-
tiresolution representation of the function, that is constituted by all the details dk

j and all the point values of the function uk
j .

If we consider Eq. (3) rearranged in the following form

uk−1
2 j−1 = dk

j + ũk−1
2 j−1, (6)
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it is evident that the value of the function uk−1
2 j−1 can be obtained directly from ũk−1

2 j−1 through the detail dk
j . The approximate

value is obtained by interpolation, as shown in (2), from the adjacent level.
The storage memory, required for the multiresolution representation, can be reduced using the following procedure. Let

us choose a certain threshold ε. Then, the details can be compared to the threshold imposed for the kth level εk , yielding a
truncated details d̂k

j defined as follows:

d̂k
j =

{
dk

j if |dk
j | > εk,

0 if |dk
j | � εk.

(7)

If the procedure is recursively followed for each level, a new multiresolution representation is obtained, with a large number
of zero details, that do not need to be stored

ˆuM = tr(uM) = (
d̂1, d̂2, . . . , d̂L, uL).

If the result of the decoding procedure, after the truncation, is denoted as û0

û0 = M ˆuM = M tr(uM)

the following estimation holds (see [29] for a proof), both in the L1 and L∞ norms

∥∥u0 − û0
∥∥ � Cε, (8)

where the constant C is independent on the coarsest level L and the local threshold εk is defined as

εk = ε/2k.

As a result, one needs only to fix a threshold ε for the finest level k = 0 and, moving from the finest to the coarsest, the
threshold for the other levels is directly obtained from the finer one.

Details in this framework are of strong importance not only to compress data, but because they can be associated to
the local regularity of the function. This feature will be presented in more detail in Section 5, where the regularity of the
function plays a fundamental role. However, thanks to the ability to capture the regularity properties of the function, the
wavelets are employed in the refinement step, as presented in the following section.

3. A one-time truncated-encoding strategy

The aim of this work is to develop a more flexible strategy, in the context of uncertainty quantification for compressible
flow problems, in which the classical multiresolution framework Section 2 is employed as a basis to build a non-intrusive
technique for steady and non-steady problems. However in the following (Section 4) a procedure to extend the present
strategy to unsteady problems is also presented, introducing a proper advancing procedure, and some numerical results will
be reported in Section 6.

A representation of the solution on a finest grid is computed starting from a coarsest grid, with a lower number of
evaluation of the function. This implies that only a reduced set of point values, on the finest grid, is evaluated, while
the remaining set is obtained by interpolation. This procedure moves recursively, with a combination of interpolation and
evaluation, from the coarsest level to the finest. The direction here (from the coarsest to the finest) is the opposite with
respect the classical Harten’s framework, where, as shown in the previous section, the algorithm can start with an encoding
procedure on the initial condition and successively the original system of equation is transformed into an equivalent set of
equations on the wavelets coefficients. Then at each time step the scheme allows computing the solution on the finest level
by the decoding procedure, i.e. the computation is explicitly performed only on the coarsest level and only the significative
coefficients are computed.

Let us consider a scalar function u = u(ξ) with ξ ∈ Ξ = [0,1]. The proposed strategy is constituted by the following
steps (the notation is the same of the Harten’s multiresolution framework, i.e. k = 0 for the finest level and k = L for the
coarsest):

• Parameters assignment (the procedure can start only if the condition mL < mmax is satisfied)

– Fix a threshold ε (the solution is assumed to be solved with this threshold on the finest grid1);
– Fix an index mmax ∈ N for the maximum allowed level (Nmax = N0 = 2mmax );
– Fix an index mL ∈ N for the coarsest level (NL = 2mL ).

1 This is the same hypothesis as in the classical MR framework.
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Fig. 2. Example of application of the adaptive strategy on a triangular function f = f (ξ).

• Initialization of the function u at each location at the coarsest level u(ξ L
j ) = uL

j with j = 0, . . . , NL where

GL = {
ξ L

j

}NL

j=0, ξ L
j = jhL, hL = 2Lh0, NL = N0/2L, (9)

and h0 = 1/N0. Each level can be labeled computing the equivalent index keq

Nkeq = N0

2keq
→ 2keq = N0

Nkeq

→ log2 2keq = keq = log2

(
N0

Nkeq

)
,

and then the coarsest level can be labeled by kL where L = mmax − mL .
Evaluation of the function at the subsequent level, with respect to the coarsest one, i.e. the function should be evaluated
at the new set of mid points GL−1 \ GL

GL−1 = {
ξ L−1

j

}NL−1

j=0 , ξ L−1
j = jhL−1, hL−1 = 2L−1h0, NL−1 = N0/2L−1. (10)

• Starting of the adaptive strategy by means of a recursive procedure (k < L − 1)
(A) The wavelets coefficients are computed for the present level k as

dk
j = uk

j − 1

2

(
uk+1

j+1
2

+ uk+1
j−1

2

)
for 0 � j � Nk with j odd;

(B) The wavelets coefficients are compared with the threshold εk = ε/2k . If |dk
j | > εk then the two nodes ξk−1

2 j+1 and

ξk−1
2 j−1 will be flagged as active on the next finer mesh Gk−1. If |dk

j | < εk then the wavelets is truncated, i.e. its value
is posed zero.

(C) The new level k − 1 is generated if k > 0 and only on the activated points the function u is evaluated.
(D) Moving from a level k to the finer adjacent one k − 1, three different cases are possible:

∗ If ξk
j ∈ Gk ∩ Gk+1 then uk

j = uk+1
2 j (shifting).

∗ If ξk
j /∈ Gk ∩ Gk+1 and it is not flagged then interpolate

uk
j = 1

2

(
uk+1

j+1
2

+ uk+1
j−1

2

)
.

∗ If ξk
j /∈ Gk ∩ Gk+1 and it is flagged as active (by the step B of the algorithm) then evaluate, i.e. call the model.

(E) The algorithm stops when the maximum level is reached or when all the wavelets coefficients can be truncated (at
a certain level k > 0).

In order to make things clearer, the application of the proposed strategy is illustrated on a triangular function f = f (ξ)

in Fig. 2. The following parameters, mL = 0, mmax = 3 then L = mmax − mL = 3, are chosen. Full circles indicate an activated
evaluation point, performed during the first steps of the algorithm when levels k = 3 and k = 2 are evaluated. Remark the
exclusion of the shifted points of the level 2 from 3. The interpolation operator is linear and the threshold is fixed. At the
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last (finest) level, the algorithm stops because the maximum level is reached, however no other points in level k = 0 are
marked as active and then the procedure would be stopped in any case. Remark that, at the level k = 1, a square with a
cross indicates an evaluated, but non-activated point, in fact in this position the interpolation error is zero (the function is
linear). The two neighborhood points at the next levels are then only interpolated (squares) and not evaluated by reducing
the global computational cost.

3.1. Application to the uncertainty quantification

In the present work the case of equations with a solution depending only from the stochastic (and not physical) space
is addressed. Due to the presence of a weight function, i.e. the probability density function, this case could be seen as a
generalization of the classical approach in which function defined in the physical space (with unitary weight function) are
considered.

One of the aim of UQ is to quantify the statistic moments of a quantity of interest. Let us assume to have a solution
u(ξ, t) for which the aim is to compute the statistics, i.e. for example the expectancy E :

E(t) =
∫
Ξ

u(ξ, t)p(ξ, t)dξ ,

where ξ ∈ Ξ is the parameter (or vector of parameters) and p(ξ) is the probability density function (pdf) related to ξ .
Remark that the pdf could assume a whatever form, including discontinuity and time-dependent properties.

Remark that the normalization condition, i.e.
∫
Ξ

p(ξ, t)dξ = 1, must be always fulfilled for each pdf and time step.
The above integrals could be computed when the solution is already computed at the finest resolution level, by means

of true evaluations of the model or interpolations. In particular, using the trapezoidal rule, the integrals can be computed.
Moreover, variance can be obtained applying the following relations

E(t) =
∫
Ξ

u(ξ, t)p(ξ, t)dξ,

Var(t) =
∫
Ξ

(
u(ξ, t) − E(t)

)2
p(ξ, t)dξ =

∫
Ξ

u(ξ, t)2 p(ξ, t)dξ − E2(t). (11)

Note that the integrals are evaluated with the solution discretized at the finest level. In the case of the variance, the
expectancy of the squared function u(ξ, t) is computed applying the quadrature rule to the square of the values u(ξ, t), that
are already stored.

Now, let us show how the use of TE algorithm allows handling pdf’s of whatever form with, eventually, traveling unsteady
discontinuities in the stochastic space. Let us consider a solution u(ξ) defined on the domain Ξ = [−1,1] with a jump
discontinuity located in ξ = −1/2 and smooth in the remaining part of the stochastic domain. If the pdf is uniform, the
correct representation of the function, also in the neighborhood of its discontinuity becomes fundamental. However, let
us imagine to have a different pdf distribution, for instance still a uniform pdf, but now defined only on the positive
sub-domain Ξ ⊃ Ξ̄ = [0,1], i.e. the pdf would be uniform and unitary in [0,1] and equal to zero in [−1,0]. Despite the
possibility to solve accurately the solution in the neighborhood of the discontinuity, this effort it is not motivated, because
the weight function, i.e. the pdf, would lead to zero the contribution to Eqs. (11) in each point of the domain [−1,0].
Therefore, in the general case of a non-smooth time-dependent pdf, it is more convenient to apply the TE algorithm to the
product between the solution u(ξ, t) and the pdf p(ξ) considering a unitary measure dμ = 1 dξ . In particular, the wavelet,
for the level k, is computed as follows

dk
j = uk

j p
(
ξk

j

) − ˜uk
j p

(
ξk

j

)
for 0 � j � Nk with j odd, (12)

where ˜uk
j p(ξk

j ) for the point-value setting is

˜uk
j p

(
ξk

j

) = 1

2

(
uk+1

j+1
2

p
(
ξk+1

j+1
2

) + uk+1
j−1

2

p
(
ξk+1

j−1
2

))
for 0 � j � Nk with j odd. (13)

The scheme is modified only when wavelets are computed, i.e. in the significant points where the solution needs to be
explicitly evaluated. However, the solution u(ξ) is the only quantity retained, so computation of the statistics is not affected
by the presence of a non-classical pdf. The present approach is justified because an analytical form of the probability density
function p = p(ξ, t) is assumed. Anyway, if the pdf itself is governed by an evolutionary equations, also the value of the pdf
should be stored in the activated points, following the wavelets computed by (12). As a consequence, the evaluation of the
statistics remain the same and relations (11) hold.

The computation of the wavelets should take into account the evolution, both in time and stochastic space, of the pdf
and also of each component of a vectorial solution (if the system has several outputs). This can be performed by means of
slight modifications of the TE algorithm, as presented in the next section.
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3.1.1. Application to vectorial solutions
In this section, we focus our attention to a vectorial solution problem. Let us study the stochastic response of a system

that has many outputs. In this case, the application of the algorithm is straightforward if different runs of the algorithm are
performed, one on each component of the response vector. The final adding step would be to merge together the different
multiresolution representations of each scalar components of the solution. Let us consider a vector of responses u ∈ Rn

defined as u(ξ) = {u1(ξ), u2(ξ), . . . , un(ξ)}T. The final MR representation should be, in this case, Gk = ⋃n
i=1 Gk

i , where Gk
i

is used to indicate the multiresolution representation associated to ui(ξ). The union of the different representations of the
scalar components can be obtained in a very efficient way computing only the solution at the smallest possible set of
points. This set of points is identified as the union of all the points, where at least one of the scalar components ui(ξ)

should be explicitly evaluated. The consequence of such approach is to compute explicitly the entire vectorial solution in a
point ξ ∈ Gk , if and only if one component ui(ξ) cannot be reconstructed with the prescribed accuracy ε. In practice, this
can be done performing only two modifications to the algorithm described in Section 3 for a scalar function.

Step A is formulated as follows: evaluate the wavelets coefficients dk
j for each element of u by introducing a new index i

for the component ui :

dk
i, j = uk

i, j − ˜uk
i, j for i = 1, . . . ,n and 0 � j � Nk ( j odd).

The other modification concerns the step B where the criterion for the truncation is computed for all dk
i, j : |dk

i, j | > εk . If

almost one of dk
i, j (for i = 1, . . . ,n) cannot be truncated, i.e. |dk

i, j| > εk , the two successive nodes (ξk−1
2 j+1 and ξk−1

2 j−1) are
activated at the subsequent level.

Remark that all the other steps remain the same presented for the scalar function and that for non-uniform distributed
parameter Eq. (12) should be employed.

At the end of the algorithm, the mesh that allows recovering the finest one with the prescribed accuracy regarding each
component ui is obtained. Remark that in practical cases, this procedure, even if general, could not be very efficient. For
example, when compressible fluid dynamics problem are considered (under the hypothesis of ideal gas), the density could
be used as the unique parameter in order to detect smooth region, contact discontinuity and shock waves. In Section 6,
this procedure has been applied to the 1D Kraichnan–Orszag problem and to an aeroelastic problem where the transverse
deflection (that models the bending of the wing) and the torsional angle should be computed to recover the aerodynamic
loads. In these cases, the TE algorithm has been applied on all the components following the procedure described in this
section.

4. An accuracy preserving time-advancement strategy

In this section we focus on a procedure able to deal with time dependent probability density functions employing the
TE algorithm.

4.1. Harten framework

The original Harten framework provides a procedure based on updating the solution based on the CFL condition. The set
of important coefficients is modified, at each time step, in order to capture the correct evolution of the solution. Then, the
original numerical scheme can be reduced to a scheme on the wavelets coefficients [29].

Let us consider the case of linear interpolation. In this case, the multiresolution representation uM = {d1,d2, . . . ,dL, uL}T

can be obtained multiplying the matrix M , of dimension (N0 + 1) × (N0 + 1) with the solution at the finest level u0

uM(t) = Mu0(t).

The time advancing procedure, used to obtain u0 at the successive time steps, is based on the computation of the coarsest
level uL and the wavelets coefficients dk with k = 1, . . . , L. These terms recasted in the multiresolution vector can be used
to compute the solution at the finest level

u0(t) = M−1uM(t). (14)

In the case of compressed values, i.e. the multiresolution representation after the truncation procedure, the procedure
remains the same, but the multiresolution vector uM is truncated, then ˆuM is obtained from the truncated counterparts of
the details (see Eq. (7)).

As a result, the key part of the Harten algorithm is to identify and compute the important coefficients at each time step.
This is made by a CFL based algorithm described in detail in [29]. The general idea is to identify the nodes in which an
information can propagate and enlarge this stencil for stability reasons applying some empirical rules, the so-called safety
set [29].

Many authors showed the efficiency of this procedure, but in the context of stochastic equations, finding a CFL condition
can be hard. Then, it is not possible to apply directly this technique. In particular, the evolution of the probability density
function is not governed by evolutionary equations. In the next section, we show how to extend the TE algorithm in order
to follow the evolution of an unsteady pdf.
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4.2. Extension of TE algorithm to unsteady problems

Let us assume an unsteady differential equation L( f (ξ)) = 0 in which the random parameter has a probability distribu-
tion p = p(ξ). The statistics of the output f will be time-dependent according to the solution of the differential equation
governed by the operator L. In this case, the expectancy E should be computed as E(t) = ∫

Ξ
f (ξ, t)p(ξ)dξ , then the mul-

tiresolution approach can be applied directly to f (ξ, t) using a CFL-like condition. What happens if the output f of the
system is steady but the pdf is unsteady, i.e. f = f (ξ) with p = p(ξ, t)? In this case the expectancy should be computed as
E(t) = ∫

Ξ
f (ξ)p(ξ, t)dξ . The pdf of the input could be imposed, but is not governed by a differential equation from which

a CFL-like condition can be derived. In this case, the classical Harten framework cannot be used. However, if the evolution
of the product function f̃ (ξ, t) = f (ξ)p(ξ, t) is considered, an extended TE algorithm can be introduced.

The idea is to perform, for each time step, the TE algorithm on the product function f̃ (ξ, t). This allows minimizing
the number of points to recover the finest mesh set of points, with an ad hoc interpolation technique, within a prescribed
accuracy. At the successive steps, the integration in time could be performed starting from the knowledge of the solution at
the previous step known with the prescribed tolerance.

Let us consider the solution of a Cauchy problem, i.e. find statistics for y ∈ C(0, T ){
ẏ
(
t, ξ(t)

) = f
(
t, y(t), ξ

)
t ∈ [0, T ] and ξ ∈ Ξ = [0,1],

y(0) = y0.
(15)

The first step is to identify, as in the pure deterministic case, the time-integration technique. If the time space is
discretized as tn = n�t with a constant step �t according to the stability condition, and if an explicit Euler scheme is
considered, Eq. (15) becomes

y(tn+1, ξ) = y(tn, ξ) + �t f
(
tn, y(tn), ξ

)
(16)

where each time integration is performed at a fixed location in the stochastic space. The TE algorithm must be, in the
unsteady case, applied at each time step starting from the coarsest level to the finest one. According to the time-integration
technique, the choice of a stencil in time is needed in order to evaluate a solution in the point of the space Ξ–t . In the case
of the explicit Euler scheme shown before, only the previous time step tn (at the same stochastic location ξ ) is needed to
evaluate the solution y(tn+1, ξ). For each location in the stochastic space ξ j ∈ Gk = {ξk

j }Nk
j=0, corresponding to the stochastic

mesh at the kth level2 of the MR representation by the TE algorithm, two cases could occur:

1. At the previous time step the TE algorithm have reached a level equal or finer than the level k.
2. At the previous level a level coarser than k has been reached.

In the first case the solution can be computed as

y
(
tn+1, ξ

k
j

) = y
(
tn, ξk

j

) + �t f
(
tn, y(tn), ξ

k
j

)
, (17)

while in the second case the value y(tn, ξk
j ) was not computed at the previous time step and it is not available to evaluate

y(tn+1, ξ
k
j ). However at each time step the representation of the solution, thanks to the TE algorithm, is known with

a prescribed accuracy with respect the solution on the finest level as reported in Eq. (8). The relation (8) justifies the
possibility to interpolate the value of the function y at the previous time step y(tn, ξk

j ) as

y
(
tn, ξ

k
j

) ≈ I
(
ξk

j ; yk(tn)
)
, (18)

where, using the same notation of Section 2, the solution discretized at level kth at the time tn , y(tn, ξk
j ), is indicated as

yk(tn).
In the case of linear interpolation, considering the maximum level k̄ reached at the time step tn , the algorithm that can

be used in order to compute the value of y at the position ξk
j , is the following (see Fig. 3):

• Determination of the left value ξ k̄
jL

as the maximum of the set {ξ k̄
j | ξ k̄

j < ξk
j };

• Determination of the right value ξ k̄
jR

as ξ k̄
jR

= ξ k̄
jL

+ hk̄ where hk̄ = 1/2k̄ .

The value of the function y at the time step tn , interpolated by means of the values y(tn, ξ jL ) and y(tn, ξ jR ) already
known, is then recovered by linear interpolation as

y
(
tn, ξ

k
j

) ≈ I
(
ξk

j ; yk(tn)
) = y(tn, ξ

k̄
jR

) − y(tn, ξ
k̄
jL
)

hk̄

ξk
j + y

(
tn, ξ k̄

jL

) − jL
(

y
(
tn, ξ

k̄
jR

) − y
(
tn, ξ k̄

jL

))
, (19)

2 The index of the level hereafter must be intended as equivalent indexes as presented in Section 3.
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Fig. 3. Linear interpolation stencil and convention adopted to perform the time integration. Stencil identification (a) and linear interpolation (b).

Fig. 4. Time advancing. In bold the arrows for the advancing in time from interpolated value (Eq. (20)).

where jL = ξ k̄
jL
/hk̄ . In the case of evaluation of the value y(tn+1, ξ

k
j ), starting from the interpolated value at the previous

time step, the scheme can be written as

y
(
tn+1, ξ

k
j

) = I
(
ξk

j ; yk(tn)
) + �t f

(
tn,I

(
ξk

j ; yk(tn)
)
, ξk

j

)
. (20)

After some time steps the pattern of the different paths, corresponding to different stochastic location ξ , appear as a
discontinuous succession of time integration. A typical pattern, for a Cauchy problem as the one considered in this section,
employing an explicit Euler formula, is sketched in Fig. 4. An arrow means a time-advancement from a known, i.e. already
computed point, while a bold arrow means an evaluation from an interpolated value.

We point out that this procedure permits to solve the long-time integration problem if a proper threshold is provided
and if the number of refinements is large enough, according to the regularity of the solution. In the following, some results
concerning the long-time integration problem will be illustrated for the 1D Kraichnan–Orszag problem.

The proposed time-advancement strategy can be easily used to build numerical scheme with automatic refinement/dere-
finement. The refinement/derefinement technique is shown in Fig. 4 where the time evolution, once fixed a certain po-
sition ξ , could not appear as a continuous sequence of advancing operations (arrows) on computed points (circles). It,
instead, looks like a sequence of arrows and blank spaces (interpolation operations). This property is very promising for sys-
tems where unsteady discontinuities can appear only in a limited part of the domain, as for example in some compressible
fluid dynamics problems.

5. Some remarks on the difference between the classical and adaptive MR approach

In this section, some differences between the classical approach discussed in Section 2 and the adaptive procedure
presented in Section 3 are illustrated. The TE algorithm is an encoding procedure with an embedded truncation capability.
The application of the TE strategy produces a multiresolution representation ˆuM = (d̂1, d̂2, . . . , d̂L, uL), already truncated
with respect to the accuracy governed by the threshold ε. This structure allows reconstructing the solution at the finer
level u0 starting from the coarsest level with the classical decoding procedure. Remark that in this case the encoding and
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decoding procedures move from the coarsest to the finest level, while in the classical MR approach the encoding procedure
is performed starting from the finest level to the coarsest one.

Provided the differences between the two representations, one key question is if the multiresolution structures uM are
or not the same.

To make the analysis, we assume in this section to know the exact solution f . The problem is: given the L∞ norm, what
is the behavior of the quantity ‖u0 − ûk‖∞ . The next question is: given ε > 0, is there a coarsest level k for which, for any
l � k, we have ‖u0 − ûk‖∞ � ε. For this reason, let us focus on the stability of the reconstruction procedure in the context
of the classical framework. In Harten’s framework, the concept of stability is related to the possibility of controlling the
norm ‖u0 − û0‖. Here, we address explicitly the case of a linear operator of reconstruction, i.e. the case in which the stencil
is fixed, in particular focused on Lagrangian interpolation. However, similar results hold also for an average reconstruction
procedure, as explained in Section 2. The aim is to quantify the L∞ norm for ‖u0 − û0‖∞ , where the hat solution ûk

represent the reconstruction of the function u at the level of resolution k obtained with the application of the TE algorithm.
Starting from the coarsest level k = L until to the finest k = 0 by means of the TE strategy, the solutions discretized on the
first two levels k = L and k = L − 1 is computed explicitly. The following relation must hold: uL = ûL and uL−1 = ûL−1. By
means of the TE strategy, the solution in a point ξk

2 j−1 ∈ Gk \ Gk+1 is computed as follows

ûk
2 j−1 =

{
uk

2 j−1 if |dk+2
j� | > εk+2,

I(ξk
2 j−1; ûk+1) if |dk+2

j� | � εk+2.
(21)

The generic notation dk
j� indicates that the wavelet at level k, if marked as active, generates the two successive evaluations

at level k − 2.3

For all the points, it holds ξk
2 j ∈ Gk ∩ Gk+1, due to the shifting of data ûk

2 j = ûk+1
j . Obviously, the last relation must hold

for the original function u discretized between two consecutive resolution levels uk
2 j = uk+1

j .
The difference between the original function u and its TE counterpart û is then as follows

uk − ûk =

⎧⎪⎪⎨
⎪⎪⎩

0 ξk
2 j−1 ∈ Gk \ Gk+1 and |dk+2

j� | > εk+2,

dk+1
j ξk

2 j−1 ∈ Gk \ Gk+1 and |dk+2
j� | � εk+2,

uk+1
j − ûk+1

j ξk
2 j ∈ Gk ∩ Gk+1.

(22)

Therefore, the norm ‖uk − ûk‖ in the L∞ space holds∥∥uk − ûk
∥∥∞ � max

{∣∣dk+1
j

∣∣,∥∥uk+1 − ûk+1
∥∥∞

}
�

{∣∣dk+1
j

∣∣, ∣∣dk+2
j

∣∣, . . . , ∣∣dL−1
j

∣∣,∥∥uL−1 − ûL−1
∥∥∞

}
= max

{∣∣dk+1
j

∣∣, ∣∣dk+2
j

∣∣, . . . , ∣∣dL−1
j

∣∣}. (23)

Previous wavelets should be dependent on a wavelets dk
j� , that is bounded by the threshold εk , as already reported in (22).

Depending on the degree of polynomial reconstruction employed, each wavelets can be expressed, following the classical
interpolation results (see for instance [30]), as follows

dk
j = uk−1

2 j−1 − I
(
ξk−1

2 j−1; uk) = u
[
Sk

j , ξ
k−1
2 j−1

]
ωr+1

(
ξk−1

2 j−1

)
, (24)

where u[Sk
j , ξ

k−1
2 j−1] is the r + 1th divided difference on the stencil Sk

j , evaluated at the point ξk
2 j−1 − 1 and the nodal

polynomial ωr+1. These quantities are

u
[
Sk

j , ξ
k−1
2 j−1

] =
∑

ξm∈S j

u(ξm)

ω′
r+1(ξm)

,

ω′
r+1(ξ j) =

∏
ξm∈S j
ξm �=ξ j

(ξ j − ξm),

ωr+1(ξ) =
∏
ξ∈S|

(ξ − ξm). (25)

It is important to remark that the stencil S j must contain r + 1 points. Supposing the function to be regular on the
stencil Sk

j , i.e. u ∈ Cr+1(S j), following relations hold

3 Note that the step between k and k − 2 is only a matter of notation in which the generic wavelet dk
j can be associated directly to the point ξk−1

2 j−1 and

stored on this level, or associated directly to the interval containing the point ξk−1
2 j−1 at level k.
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u
[
Sk

j , ξ
k−1
2 j−1

] = u(r+1)(ξ ′)

(r + 1)! with ξ ′ ∈ convex hull
{

Sk
j, ξ

k−1
2 j−1

}
,

ωr+1
(
ξk−1

2 j−1

) ∼ O
(
hr+1

k−1

)
. (26)

The same should hold for the wavelet dk+1
j� which generates dk

j , i.e.

dk+1
j� ∼ u(r+1)(ξ ′′)

(r + 1)! O
(
hr+1

k

)
with ξ ′′ ∈ convex hull

{
Sk+1

j , ξk
j

}
. (27)

The ratio between the wavelets is (note that this result is valid only if the resolution level is not too coarse, this point is
discussed in the following)

|dk
j|

|dk+1
j� | ≈ |u(r+1)(ξ ′)|

|u(r+1)(ξ ′′)|
hr+1

k−1

hr+1
k

. (28)

Remembering that hk = 2hk−1, the wavelet dk
j can be generated from the generative wavelet dk+1

j� as follows

∣∣dk
j

∣∣ ≈ C
|dk+1

j� |
2r+1

� C
εk+1

2r+1
. (29)

As a consequence, norm ‖u0 − û0‖∞ is bounded by∥∥u0 − û0
∥∥∞ � max

{∣∣d1
j

∣∣, . . . , ∣∣dL−1
j

∣∣} = ∣∣d1
j

∣∣ � C
ε2

2r+1
= C

2r+4
ε. (30)

In the case of non-smooth function u, the r + 1th divided difference can be related to the jump in the pth derivative of
the function [u(p)]:

u
[
Sk

j ; ξk−1
2 j−1

] ≈
{

O([u(p)])/hr+1−p
k−1 if r + 1 > p,

O(‖u‖∞) if r + 1 < p.
(31)

In this case, the norm ‖u0 − û0‖ remain bounded using the jump in the pth derivative.
This means that, in a smooth region, the wavelets decreases with a rate determined by the local regularity and by the

order of the interpolation, while in a region near the discontinuity the wavelet remains of the same order for all the levels of
refinement. This information could permit to build adaptive procedures for evaluating the numerical fluxes in the framework
of finite volumes schemes. One could shift from the centered to non-oscillatory schemes (ENO, WENO) in the neighborhood
of a discontinuity [29]. In this work, this property is not exploited but it could be used to extend adaptivity of the stochastic
space in the semi-intrusive method [21–23] recently proposed. However, in this case the procedure could become highly
non-linear.

The estimation of a bounded norm, although with different bounds, guarantees the stability of the algorithm in the sense
of the classical MR framework. The prominent difference with the classical framework is that the function is not known at
the finest level. This property allows to gain in terms of memory and computational resources. Anyway, it is clear that a
proper coarsest level must be chosen, i.e. the parameter mL must be chosen in order to guarantee the reproduction of the
function without the presence of aliasing effects, i.e. the discrete values uL−1 should contain enough information to recover
the original function u0 without loss of frequency information. From a direct application of the classical Nyquist–Shannon
sampling theorem, this should display that the spatial frequency of the level L − 1 (the second level of the TE algorithm and
the last fully evaluated by default) should be sampled with a frequency doubled with respect to the maximum frequency
of the signal. In practice, the TE algorithm is designed to relax this condition capturing automatically the regions where
the maximum spatial frequencies occur. In particular, this can be valid only if the function reproduced at the level L − 1
is not aliased, i.e. confused, with its zero frequency counterpart. In this last case, none of the wavelets at level L can be
activated, thus stopping the algorithm. Different cures could be applied: for example, forcing the activation of wavelets if
the frequency is zero or introducing a randomization in the process of generating new ‘mid’ points xik−1

j ∈ GGk − 1 \ Gk . In
practice, good results are already obtained with the proposed algorithm and we left to a future work further investigations
in this direction. Of course, the estimation proposed in this section is valid only in the case of not aliased representation of
the function. Let us focus on the parameter m0. This parameter fix the maximum resolution that can be reached, when the
function is fully discretized at the level k = 0. This is the same role played by the resolution level in Harten’s framework.
In practice, the quality of the TE algorithm is limited by the resolution k = 0 as the solution cannot be improved over this
level. At the level k = 0 is also associated the value of the threshold ε that can be interpreted as the desired accuracy
related to the representation of the function at the finest level ε. The same parameter play a role in the bound estimation
of both algorithms, the classical Harten MR and the TE.

An important aspect to clarify remains why a novel and different MR approach is required in the context of stochastic
differential equations. Let us consider the response of a system dependent from a random parameter (or a vector of param-
eter) in a steady configuration. The aim of this kind of analysis is the computation of statistics, for example the expectancy.
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To compute statistics it is necessary to (numerically) integrate the solution in the space of the parameters. Seeing the cost
that can be associated to the computation of the solution in the space of the parameters (imagine the response of a complex
numerical code), one issue of UQ is to reduce the computational cost of the global algorithm. In this case, the entire classical
MR framework cannot be used. In fact, from a theoretical point of view, it is always possible to compress a well-resolved
solution, as for example in image processing applications, but this could be done only after the complete calculation at the
finest level. For this reason, the TE algorithm is formulated, because it allows increasing computational efficiency preserving
the same saving in term of memory requirement with respect the classical MR approach. In fact, the computation starts
with the coarsest level and, only where required, the solution can be refined. At the end of the algorithm, the multiresolu-
tion representation will be the same as the classical MR framework, but the number of points in the space of parameters
would be, hopefully, less.

In this case, such a strategy should be intended as a non-intrusive UQ method, where the TE algorithm allows the
reconstruction of a response surface of a scalar or vectorial outputs. For instance, the output could be a physical quantity
related to a complex CFD simulation performed by a code where any modification is forbidden.

This advantage is shown in Fig. 2. The classical framework would consist in nine computations, the entire finest level
k = 0, in order to obtain a multiresolution representation of four point (the two points at the coarsest level k = 3 and the
two wavelets activated at the levels k = 2,3). The same results, in term of multiresolution representation, would be obtained
by means of the TE algorithm with only seven computations (the full circles and crossed squares).

Classically the efficiency of the MR approach is measured by a compression ratio μcr that is computed as the ra-
tio between the number of points in the finest level (N0 + 1) and the number of significative wavelets (Nw = card{dk

j:

|dk
j | > εk, 0 � k � L − 1}),4 i.e. the number of active wavelets coefficients

μcr = (N0 + 1)

Nw + (NL + 1)
. (32)

For the case reported in Fig. 2 the compression ratio is μcr = 9/4.
This ratio is always the same for the classical approach and the present strategy as the MR representation is the same

in both cases (see the discussion above). However, another ratio can be introduced, i.e. an evaluation compression ratio τ ,
that measures the computational saving to obtain the MR strategy defined as the ratio between the number of points in
the finer level and the number of evaluations needed (Neval = card{ξk

j : u(ξk
j ) evaluated, 0 � k � L}) to construct the MR

representation

τ = (N0 + 1)

Neval
. (33)

In the previous example, reported in Fig. 2, the evaluation compression ratio is τ = 1.29. Of course, for the classical MR
approach this ratio is always one because the solution must be known at the finest resolution level according to Harten’s
framework. Even if the compression capabilities of this strategy is the same than the classical approach, in this way it
is possible to reduce computational cost for non-necessary functional evaluations. This is a very important property for
treating UQ problems where a functional evaluation can be associated to a high computational cost.

For solving efficiently conservation laws systems, some techniques have been proposed ([31] and Cohen et al. [32]) with
a high CPU and memory efficiency.

It could be useful to remark here that the TE algorithm differs significantly from other adaptive refinement techniques
like, for example, the automatic mesh refinement (AMR) techniques. In the MR context, the solution is refined and an
accuracy requirement is fulfilled, not only locally as in AMR, but with respect to the representation at a specific level (the
finest). This is the key idea that allows building the time-advancement algorithm described in Section 4. In this context,
remark that the strategy, even if weakly, is considered intrusive and the deterministic code itself becomes a part of the TE
strategy, when associated to the accuracy preserving time integration strategy described in Section 4.

Let us consider now unsteady problems. In this case, the MR classical framework seems to work properly. At the first
time step, the MR algorithm could obtain a multiresolution representation of the initial solution and, then, the adding cost
related to non-necessary evaluations would be very small if the initial solution is known analytically. For the subsequent
time steps, the first to be really computed, some differences could exist between the MR classical approach and the present
one. In fact, as already explained in the previous section, the MR strategy is based on a CFL approach for moving the
significative wavelets. Then, if the problem is dominated by an unsteady pdf, the algorithm could move points basing only
on the temporal evolution of the solution and not on the evolution of the product with the pdf. For this reason, the classical
MR algorithm could totally fail having no CFL condition to follow, i.e. it is not possible to predict the grid from one step to
the next one as well as it can be accomplished in the physical space according to the direction of information propagation.

For this reason the time-advancement algorithm, presented in the previous section, is of great interest for unsteady pdf.
A specific test-case is presented in Section 6.

4 Note that in the TE framework here presented, a wavelet dk
j is associated directly to the point ξk

j at the finer level, i.e. the level at which the missing
point is located, instead of the coarser level of the classical MR framework. This reflects on a different threshold εk definition.
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6. Numerical results

In this section, the TE algorithm is applied to several numerical test-cases in order to check its accuracy and conver-
gence rate with respect to some classical stochastic methods, such as quasi-Monte Carlo and Polynomial Chaos [6]. In the
case of probability distribution not belonging to the so-called Wiener–Askey scheme [3], a PC method is used in order to
evaluate the statistics as in a collocation method (the function is multiplied by the pdf). This correspond in practice to the
computation of the first coefficient of the polynomial expansion that is equal to the expectation. Let us consider a truncated
polynomial expansion in terms of Legendre polynomials Ψk:

f (ξ) =
P∑

i=0

βkΨk(ξ), (34)

where, in the case of full tensorization, the number of term P + 1 = (n0 + d)!/(n0!d!), in which n0 is the total polynomial
degree and d is the number stochastic dimensions. In the 1D case, P = n0 and in all the numerical results presented in this
work the number of simulations N relative to the PC is N = n0 + 1. The coefficients βk for the expansion are computed
exploiting the orthogonality of the Legendre basis with respect to a uniform pdf. The numerical integration is performed
with a Gauss–Legendre quadrature with the integrand function evaluated at the zeros of the polynomial basis.

In the case of probability distribution not belonging to the Wiener–Askey scheme, the polynomial expansion (34) is used
to represent the product between the function and the probability density function. Computing the variance requires the
expectancy of the squared function times the pdf; this is accomplished expanding the function as follows

f 2(ξ)p(ξ) =
P∑

i=0

β̄kΨk(ξ), (35)

from which the β̄0 coefficient, i.e. the expectancy, can be extracted.
Finally, the following relations allow to compute the expectancy and the variance of the function f = f (ξ) with ξ

described by a non-classical pdf p(ξ):

E =
∫
Ξ

f (ξ)p(ξ)dξ = β0,

Var =
∫
Ξ

(
f (ξ) − E

)2
p(ξ)dξ =

∫
Ξ

f 2(ξ)p(ξ) − E2 = β̄0 − β2
0 . (36)

This procedure is indicated generally as Polynomial Chaos Method in the following.
First, some steady algebraic problems (Section 6.1) are considered where analytical discontinuous functions are evaluated

in terms of their expectancy and variance; for this case the performances in terms of compression and evaluation ratios are
also evaluated. The capability of the TE algorithm to preserve accuracy for time-evolving solutions is displayed in two test-
cases. The first-one (see Section 6.2) deals with an ordinary differential equation (ODE), i.e. taken from [6] but with some
modifications in order to obtain a more stiff ξ–t pattern of the function. The second test-case (see Section 6.3) for check-
ing the convergence properties in long-time integration problem is the so-called Kraichnan–Orszag 1D ODE, a well-known
problem in literature for testing UQ methods properties. Different kinds of pdf, i.e. uniform and discontinuous, are consid-
ered. Finally, a simplified model for aeroelastic study (Section 6.6), a two degree-of-freedom typical wing section coupled
with a quasi-steady strip theory model for aerodynamics, is proposed to compute the statistics of the motion considering
uncertainties on mass properties for discontinuous probability distribution. For all the examples, exhaustive comparisons
with quasi-Monte Carlo and Polynomial Chaos are performed.

6.1. Steady problems

Let us consider a function of the form f = f (ξ), where the parameter ξ ∈ Ξ takes uniform values between 0 and 1, i.e.
ξ ∼ U [0,1]. The aim is to compute expectancy E and variance Var for f according to the following definitions

E =
∫
Ξ

f (ξ)p(ξ)dξ,

Var =
∫
Ξ

(
f (ξ) − E

)2
p(ξ)dξ. (37)

All the numerical integrals are computed with the trapezoidal rule on the points distribution generated by means of
the TE algorithm. Results are compared with respect to the reference-solutions obtained from Monte Carlo and Polynomial
Chaos methods.
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Fig. 5. Model function f1 (a) with its MR representation on the left (b).

Two model functions, with one or two discontinuities in the stochastic space, are considered. The function f1 (see
Fig. 5(a)), is a piecewise smooth function with one discontinuity located at ξ = 2/5

f1(ξ) =
{− 15

2 ξ2 + 11
2 ξ 0 � ξ � 2/5,

− 35
12ξ2 + 13

4 ξ − 1
3 2/5 < ξ � 1.

The second function f2 (see Fig. 7(a)) is constituted by a sinus function and a fourth-order polynomial form, then
contains two discontinuities at ξ = 1/5 and ξ = 3/4:

f2(ξ) =
{

10 sin(ξπ) ξ � 1/2 or ξ � 3/4,

10ξ4 + 79/4 otherwise.
(38)

Starting with the coarsest level mL = 1 and with a maximum level between 3 and 12, using a threshold equal to ε =
10−1, the TE algorithm is used to generate the points distribution. The MC method is used to generate reference-values for
the expectancy and the variance with a number of points bounded between 5 and 101, while a PC approach is employed
to evaluate the integrals with a degree between 5 and 100 with a step equal to 5. The results are evaluated in terms of
percentage errors, computed as follows

errE = |E − Eexact|
Eexact

100,

errVar = |Var − Varexact|
Varexact

100. (39)

In Fig. 6, we reported the errors for the mean E and for the variance Var with respect to the total amount of evaluations
required N to compute statistics on the left and on the right, respectively.

All the methods exhibit a non-monotone convergence to the exact value both for E and Var. The present MR algorithm
allows reaching lower levels of error with a fixed number of evaluations N and, moreover, allows obtaining the smoothest
decrease of the error with the number of evaluations both for mean and variance. The MC method displays strong oscilla-
tions with respect to all the other methods while the PC exhibit a faster convergence with respect to the MC, but is affected
by numerous oscillations.

In Fig. 6, the results of applying the trapezoidal rule without the TE algorithm, are also reported. It is possible to
appreciate that the good performances obtained with TE are not related to the choice of quadrature formula (seeing that
trapezoidal rule is not so accurate), but the efficiency in terms of computational cost can be attributed globally to the
proposed algorithm. The trapezoidal rule results display several oscillations even if the errors are lower with respect to both
the MC and PC methods.

To better understand the TE algorithm, in figure (b), the pattern of the computed points and the activated wavelets
are reported. The maximum level was fixed, in this case, to mmax = 8 equal to 257 evaluations. As shown in figure (b),
the adaptive algorithm do activate all the points until to the third refinement. At the fourth refinement, the accuracy
requirement (ε = 10−1) is reached for all the points but not for the point closer to the discontinuity. Then, the algorithm
stops after that the maximum level is reached. It is remarkable that the stored points in Fig. 5(b) are the set of wavelets
of the Harten framework after the truncation procedure. However, the TE algorithm needs some extra points to generate
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Fig. 6. Errors for the mean (a) and variance (b) for the first function f1.

Table 1
Results for the function f1. The compression ratio μcr and the evaluation compression ratio τ are computed as shown in Eqs. (32) and (33), respectively.

mmax Nw Neval μcr τ errL1 errL∞

3 7 9 0.1285E+01 0.1000E+01 0.3331E−15 0.9252E−16
4 8 13 0.2125E+01 0.1308E+01 0.1139E−01 0.2681E−02
5 11 19 0.3000E+01 0.1737E+01 0.7324E−02 0.2022E−02
6 15 27 0.4333E+01 0.2407E+01 0.2848E−02 0.1236E−02
7 16 29 0.8063E+01 0.4448E+01 0.2848E−02 0.1384E−02
8 21 39 0.1224E+02 0.6590E+01 0.1831E−02 0.7150E−03
9 28 53 0.1832E+02 0.9679E+01 0.7121E−03 0.3828E−03

10 29 55 0.3534E+02 0.1863E+02 0.7121E−03 0.3854E−03
11 39 75 0.5254E+02 0.2732E+02 0.4578E−03 0.1860E−03
12 52 101 0.7879E+02 0.4056E+02 0.1780E−03 0.1004E−03

the MR representation, i.e. the wavelets not activated (the withe circles). At the end of the procedure, the compression
ratio μcr is equal to μcr = 257/21 = 12.24. Moreover, the TE algorithm allows saving computational cost reaching the MR
representation without knowing all the points at the maximum level (28 + 1 = 257 in this case). The evaluation ratio τ is
equal to τ = 257/39 = 6.59.

Table 1 summarizes the results obtained for the function f1 starting with a coarsest level equal to 1 and with a maximum
level between 3 and 12. Errors in the norms L1 and L∞ are reported in terms of the number of the activated wavelets Nw ,
the number of the evaluated points Neval and the compression μcr and evaluation τ ratios. Errors in the norms L1 and L∞
are computed as follows

errL1 = ∥∥ f 0 − f̂
∥∥

L1
= 1

N

∣∣ f 0
i − f̂ i

∣∣,
errL∞ = ∥∥ f 0 − f̂

∥∥
L∞ = max

i

∣∣ f 0
i − f̂ i

∣∣, (40)

where f 0 is the function at the finest level k = 0 and f̂ is the truncated function, i.e. the function evaluated only in the set
of points corresponding to the activated wavelets.

For the function f2 (see Eq. (38)), the pattern of the MR representation is reported in Fig. 7(b) using a threshold equal
to ε = 10−1 and the coarsest and the maximum level equal to 1 and 8, respectively. Remark that the TE algorithm follows
the two discontinuities, where more points are generated until reaching the maximum level. The advantage of such a
distribution of points can be clearly seen in Fig. 8, where the percentage errors for the mean E and variance Var are
reported.

Also in this case the error displays strong oscillations, but the TE algorithm shows a monotone decrease of the errors
with respect to the number of evaluations. For the other methods, convergence is attained only in terms of mean values.
Even in this case, the effect of the TE algorithm in the points distribution allows obtaining better results with respect to
the same trapezoidal quadrature technique. The detailed results in term of compression μcr and evaluation τ ratios and the
corresponding errors in norm L1 and L∞ are reported in Table 2.

In the next section some unsteady problems with continuous and discontinuous pdf are taken into account.
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Fig. 7. Function f2 (a) and its MR representation (b).

Fig. 8. Errors of the mean (a) and variance (b) for the function f2.

Table 2
Results for the function f2. The compression ratio μcr and the evaluation compression ratio τ are computed as shown in Eqs. (32) and (33), respectively.

mmax Nw Neval μcr τ errL1 errL∞

3 9 9 0.1000E+01 0.1000E+01 0.3997E−14 0.1283E−14
4 15 17 0.1133E+01 0.1000E+01 0.2487E−13 0.4415E−14
5 17 29 0.1941E+01 0.1138E+01 0.1398E−01 0.1133E−02
6 21 37 0.3095E+01 0.1757E+01 0.1203E−01 0.2795E−02
7 30 55 0.4300E+01 0.2345E+01 0.6193E−02 0.1551E−02
8 37 69 0.6946E+01 0.3725E+01 0.3011E−02 0.1019E−02
9 39 73 0.1315E+02 0.7027E+01 0.3011E−02 0.1070E−02

10 57 109 0.1798E+02 0.9404E+01 0.1611E−02 0.4983E−03
11 69 133 0.2970E+02 0.1541E+02 0.8033E−03 0.3005E−03
12 75 145 0.5463E+02 0.2826E+02 0.7529E−03 0.2647E−03

6.2. A scalar ordinary differential equation

In this section, the time-advancing strategy presented in Section 4 is applied to some ordinary differential equations. In
this section, the scalar case is analyzed, while the results for the vectorial cases are reported in Sections 6.3 and 6.6.

The first ODE example is extracted from [6] with some slight modifications in order to achieve a variable final state, as
follows
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Fig. 9. Errors for the mean (a) and variance (b) in the L1 norm for Eq. (41) with mL = 1 and ε = 10−2.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dρ

dt
= α(ρ̄ − ρ) − γρ − β(ρ − ρ̄)ρ2,

ρ̄ = 1 + 1

2
sin (5ω + 8/5),

β = 20ω,

(41)

where α = 1, γ = 0.01 and ω ∼ U [0,1]. The original problem [6] is related to the evolution of the surface coverage ρ for a
given species. A discontinuous initial solution in the stochastic space is chosen in order to obtain a discontinuous response

ρ(t = 0) =
{

3/4 if 0.3 < ω < 0.7,

0 otherwise.
(42)

In this case of unsteady problems, the aim is to compute the temporal evolution of the mean and the variance following

E(t) =
∫
Ξ

f (ξ, t)p(ξ)dξ,

Var(t) =
∫
Ξ

(
f (ξ, t) − E(t)

)2
p(ξ)dξ. (43)

The MC converged solution, ρref(t), is retained as reference for mean and variance solutions. The errors are computed as
follows

errμm |L p = ∥∥μm(ρ, t) − μm(ρref, t)
∥∥

L p
=

(
1

Nt

Nt∑
i=1

∣∣∣∣μm
i (ρ, t) − μm

i (ρref, t)

μm
i (ρref, t)

∣∣∣∣
p
)1/p

, (44)

where μm are the statistic moments, i.e. mean E or variance Var, and p = 1,2 is referred to the spaces L1 or L2, respectively.
The number of time steps is indicated with Nt and the total time of the simulation is equal to T = 2 where the time step
is equal to �t = 0.01 (Nt = 200). Moreover, the L∞ norm is computed as

errμm |L∞ = ∥∥μm(ρ, t) − μm(ρ̄, t)
∥∥

L∞ = max
i

∣∣∣∣μm
i (ρ, t) − μm

i (ρref, t)

μm
i (ρref, t)

∣∣∣∣, (45)

for both mean and variance.
In Figs. 9, 10 and 11, the results for the errors in L1, L2 and L∞ are reported for MC, PC and TE. The number of

points N in this case is equal to the total number of points in the grid ω − t , i.e. the product of the number of points
in the stochastic space Nξ and the number of time intervals Nt = 200 employed N = Nξ × Nt . The reference solution is
obtained with a number of stochastic points equal to Nξ = 2.5 × 106. Several set of points are chosen in order to study the
convergence of the different methods, in particular Nξ is varied between 10 and 450 with step of 10 for both MC and PC,
while computations are performed with ε = 10−2 and a maximum levels between 3 and 15. The integration in time was
performed by means of an explicit Euler formula.
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Fig. 10. Errors for the mean (a) and variance (b) in the L2 norm for Eq. (41) with mL = 1 and ε = 10−2.

Fig. 11. Errors for the mean (a) and variance (b) in the L∞ norm for Eq. (41) with mL = 1 and ε = 10−2.

The TE algorithm allows reaching a lower level of error for the same number of points. In the case of L∞ norm for the
variance, at the same number of points it corresponds an order of magnitude of the error inferior up to three degrees of
magnitude. The convergences plots exhibit the smoothest behaviors with respect to MC and PC despite to the presence of
two discontinuities in the function ρ(ξ, t).

A plot of the function ρ(ω, t) is reported in Fig. 12(a) displaying only the evaluated points. The same plot is reported
in two dimensions (Fig. 12(b)), where the time evolution of the evaluations is clearer. In both cases, the maximum level
was fixed to 8 with ml = 1 and ε = 10−2. It is possible to recognize the two discontinuities located in ω = 0.3 and ω = 0.7
where more points are collocated by the TE algorithm. One discontinuity at ω = 0.3, disappears before the second one. At
t = 1, the TE algorithm is capable to respect the accuracy requirements without collocating more points in these ω stations
because the function reaches a smoother state.

The behavior shown in Fig. 12 displays the refinement/derefinement capability of the algorithm to move and collocate
points in the stochastic space with respect to the time evolution. For example, in Fig. 13, the evolution of the evaluated
points in time is reported employing a maximum level equal to 8, corresponding to a total number of evaluations equal
to 257, with ml = 1 and ε = 10−2. It is evident that in proximity of t = 1, when both the discontinuity disappear, the
number of points changes abruptly. However, after t = 1, the development of a region characterized by higher gradient (see
Fig. 12(a)), requires a greater number of points as it is evident in Fig. 13.

The pattern of the evaluated points and the activated ones, with respect to the time evolution, is reported in Fig. 14. The
parameters are the same of the previous cases, i.e. ml = 1, mmax = 8 and ε = 10−2. Obviously, due to the discontinuities,
the TE algorithm generates all the levels up to mmax.

Now, let us apply the TE algorithm to a vectorial case, i.e. the stiff Kraichnan–Orszag problem in one stochastic dimension.
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Fig. 12. Patterns of the evaluations of ρ(ω, t) in the space ω–t in a 3D (a) and 2D (b) frames.

Fig. 13. Time evolutions of the evaluations.

6.3. A time dependent vectorial ODE: the Kraichnan–Orszag problem

The so-called Kraichnan–Orszag problem was proposed in 1967 [33] by Orszag as a three mode problem which can be
seen as an inviscid turbulence model given by a set of ordinary differential equations. Actually this differential model is
considered a stiff problem for the solution of stochastic problems, due to its high non-linearity. The original system, rotated
by π/4 around the axis y3 can be written following [4] as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dy1

dt
= y1 y3,

dy2

dt
= −y2 y3,

dy3

dt
= −y2

1 + y2
2.

(46)

To formulate the 1D problem, Eq. (46) must be correlated with the following (uncertain) initial condition y(t = 0) =
(1,0.1ξ,0)T, in which the parameter ξ is uniformly distributed between −1 and 1, ξ = 2ω − 1, where ω ∼ U [0,1]. The
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Fig. 14. Pattern of the computed (a) and activated (b) points in time for the application of the TE algorithm on Eq. (41).

Fig. 15. Pattern of the computed points for the solution of Eq. (41).

numerical integration scheme used in this work is the classical Runge–Kutta (RK4) with a time step of 0.05, chosen after a
convergence study not reported here for brevity.

The pattern of the solution is reported (in the state space) in Fig. 15, where the TE algorithm performed with a maximal
level equal to 8 starting with mL = 4 and a threshold ε = 10−1.

The evolution of the three variables in time is reported in Fig. 16, where the TE algorithm is applied with mmax = 8,
mL = 4 and ε = 10−1. Remark that this set of parameter is chosen only to show qualitatively the pattern of points even if
better results could be obtained using a higher maximal level mmax.

Observing Fig. 16, it is evident that discontinuities occur crossing the plane at ξ = 0. Moreover, the variables distributions
are even with respect to the axis ξ = 0 for the variables y1 and y3 while is odd for the variable y2. This behavior produces
a zero mean for the variable y2.

The global behavior of the mean and variance in time for the three variables has been reported in Fig. 17. The number
of simulations used by the TE algorithm with ε = 10−1, mL = 4 and mmax = 8 is equal to Nξ = 89. In order to assess the
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Fig. 16. Time evolution of the variables y1 (left), y2 (middle) and y3 (right) at different time steps: t = 10 ((a), (b) and (c)), t = 20 ((d), (e) and (f)) and
t = 30 ((g), (h) and (i)). x interpolated points and · evaluated ones.

results obtained for the mean and variance of the three variables, the PC and MC methods are applied by using the same
number of points. The statistics for the three variables are reported in Fig. 17, where the reference solution obtained with
Nξ = 20 × 106 is also reported. Concerning the variable y2, the MC is not capable to predict a zero-value at the machine
accuracy even in the case of the reference solution (Nξ = 20×106); in particular, the solution for the reference case is of the
order of 10−8, while for the case Nξ = 89 is of the order of 10−3. For this reason, only the PC and MR results are reported
in Fig. 17(c). Remark that only the TE algorithm is capable to compute zero-values, accurate at the machine accuracy.

For this vectorial ODE case, the error in norms are computed for the three variables according to the definitions (44) and
(45). We remark that normalizing the norms for the mean is not easy because the reference value could be equal, or almost
equal to zero. In particular E(y2) should be exactly zero, while E(y3) cross periodically zero. Moreover, the variances for all
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Fig. 17. Time evolution of the mean (left) and variance (right) for the three variables y1 (up), y2 (middle) and y3 (bottom).
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Fig. 18. Error norms of the mean of the variable y1 for the 1D Kraichnan–Orszag problem with uniform pdf in the L1 (a), L2 (b) and L∞ (c) spaces.

Fig. 19. Error norms of the variance of the variable y1 for the 1D Kraichnan–Orszag problem with uniform pdf in the L1 (a), L2 (b) and L∞ (c) spaces.

Fig. 20. Error norms of the variance of the variable y2 for the 1D Kraichnan–Orszag problem with uniform pdf in the L1 (a), L2 (b) and L∞ (c) spaces.

the variables start from zero. For these reasons, we report in Fig. 18 the results for the mean E(y1) and all the variances,
but in this last case the norms are computed in a bound time interval [8,30] (as chosen by [4]). Note that the value Nt

considered in Eqs. (8) is, nevertheless, equivalent to the overall time interval [0,30].
In Fig. 18, the errors for the mean of the variable y1 are reported measured in the L1, L2 and L∞ spaces.
In Figs. 19, 20 and 21, the error norms of the variance in the time interval [8,30] (and in the L1, L2 and L∞ spaces)

are reported for the variables y1, y2 and y3, respectively. As it can be observed, MR results display best performances with
respect to PC and MC.
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Fig. 21. Error norms of the variance of the variable y3 for the 1D Kraichnan–Orszag problem with uniform pdf in the L1 (a), L2 (b) and L∞ (c) spaces.

Fig. 22. Patterns of the evaluations in the space t–ω (a) and number of points in the stochastic space Nξ employed by the TE algorithm with mmax = 8 (b).

The points distribution, where the function is evaluated, are reported in Fig. 22. Even in this vectorial case, the TE
algorithm displays good derefinement properties. Therefore, the points are distributed in the regions of higher gradients, or
discontinuity and locally, between successive time levels (see Fig. 22(b)).

All the results of this section were obtained for stochastic parameters characterized by a uniform distribution. A more
challenging problem, where a time varying and discontinuous pdf is considered, is reported in Section 6.5.

6.4. Some remarks on the long-time integration problem

The aim of this section is to show how the TE algorithm can tackle the long-time integration problem. For this reason,
the 1D Kraichnan–Orszag problem, with uniform probability density function for the random parameter ξ , is been solved
for a time up to 500. Remark that intrusive techniques like the PC, as demonstrated in [4], fails to perform this kind
of computation, even for smaller time. The proposed approach can lead to the correct evolution in time of the statistics
only if the error cumulated at each time step remains bounded. As described in Section 4, the time integration procedure to
advance in time allows moving a compressed solution with a prescribed accuracy requirement. These accuracy requirements
allow bounding the error that can accumulate during several time integrations: the final results is a strong decreasing of
the number of total evaluations employed to reproduce the exact solution even for long time.

As in the previous case, the MC method, with Nξ = 2 × 106 points, is used as reference solution.
In Fig. 23, the time evolution of the variance for the three variables y1, y2 and y3 is reported for the last part of the

simulation, i.e. t ∈ [450,500]. The results in Fig. 23 are obtained employing the TE algorithm with mL = 4, a maximum level
with mmax = 12 and a threshold ε = 10−3.

In Fig. 24, the errors for the mean of the variable y1 are reported measured in the L1, L2 and L∞ spaces.
The error norms of the variances computed in the time interval [8,500] (in the L1, L2 and L∞ spaces) are reported for

the variable y1 in Fig. 25.
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Fig. 23. Comparison of the time evolution for the variance of the variables y1 (a), y2 (b) and y3 (c) in the Kraichnan–Orszag problem with uniform
distribution (T = 500). The last time steps are computed with the Monte Carlo, Polynomial Chaos and TE algorithm, ε = 10−3, mL = 4 and mmax = 12
(Nξ = 3760), and compared to the Monte Carlo reference solution Nξ = 20 × 106.

Fig. 24. Error norms for the mean of the variable y1 of the 1D Kraichnan–Orszag (for long time T = 500) problem with uniform pdf in the L1 (a), L2 (b)
and L∞ (c) spaces.

Fig. 25. Error norms of the variance of the variable y1 for the 1D Kraichnan–Orszag (for long time T = 500) problem with uniform pdf in the L1 (a), L2 (b)
and L∞ (c) spaces.

Remark that, in the case of long-time integration, the advantages of the application of the TE algorithm appear very poor
with respect to the short-time case reported in Section 6.3 or the unsteady pdf reported in Section 6.5. Nevertheless despite
to the very high complexity of the solution (see Fig. 26), all the norms of the errors computed for the three variables are
smaller in the case of the application of the TE algorithm.
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Fig. 26. Time evolution of the variables y1 (left), y2 (middle) and y3 (right) at different time steps: t = 300 ((a), (b) and (c)), t = 400 ((d), (e) and (f)) and
t = 500 ((g), (h) and (i)).

In Figs. 24, 25, the TE algorithm is applied with different thresholds in order to display the different convergence proper-
ties with a fixed coarsest level correspondent to mL = 4 and a maximal level equal to mmax between 6 and 11. According to
the theoretical prediction, a higher threshold correspond to a higher error. However, we remark that, in the long time case
reported in this section, a lower threshold is needed in order to obtain better results with respect to a PC method. Instead,
for the other numerical experiences reported in Sections 6.3 and 6.4, a higher threshold (ε = 10−1) is sufficient to ensure
the best trade-off between a reduced number of points and the lowest error. In general, we can say that long-time highly
non-linear problems require a lower threshold due to control the interpolation error cumulated during the time integration.

The evolution of the number of evaluations in time, for the TE algorithm, is reported in Fig. 27, where the refine-
ment/derefinement properties of the algorithm can lead to a reduced number of simulations with respect to the finest
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Fig. 27. Number of points in the stochastic space Nξ employed by the TE algorithm with mmax = 12.

Table 3
Time elapsed for the Kraichnan–Orszag problem (with final time T = 500) with the performances of the TE algorithm with different thresholds ε.

mmax Neval tε [s] τ �t%

ε = 10−1

6.0000E+00 6.3788E+05 4.0400E+00 1.0190E+00 4.3866E−01
8.0000E+00 2.3891E+06 1.1664E+01 1.0757E+00 5.6885E+00
1.0000E+01 8.3288E+06 3.7696E+01 1.2307E+00 1.9874E+01
1.2000E+01 2.2681E+07 1.0149E+02 1.8064E+00 4.5052E+01

ε = 10−2

6.0000E+00 6.4681E+05 4.0569E+00 1.0049E+00 2.2180E−02
8.0000E+00 2.5113E+06 1.2081E+01 1.0234E+00 2.3110E+00
1.0000E+01 9.5236E+06 4.4494E+01 1.0763E+00 5.4243E+00
1.2000E+01 3.3905E+07 1.5353E+02 1.2084E+00 2.2288E+01

ε = 10−3

6.0000E+00 6.4848E+05 4.0533E+00 1.0023E+00 1.1016E−01
8.0000E+00 2.5484E+06 1.2087E+01 1.0085E+00 2.2672E+00
1.0000E+01 9.9572E+06 4.6031E+01 1.0294E+00 2.1558E+00
1.2000E+01 3.7604E+07 1.7134E+02 1.0895E+00 7.2291E+00

resolution level in the initial stage of the computation (for t less than about 120). While, for increasing t , a higher number
of simulation is required with no possibility to reduce, even locally, the number of evaluations due to the high non-linearity
of the solution (see Fig. 26 in which all the points consist in evaluations). However, the reduction of the number of evalua-
tions in the first part of the computation is sufficient to ensure a good reduction of the overall number of computations.

6.4.1. Some additional remarks on the computational cost
In this case, we report explicitly the computational cost associated to TE algorithm in terms of time. In Table 3, the

number of points evaluated (Neval), the evaluation compression ratio (see Eq. (33)) and a measure of the saved time �t% by
using the TE algorithm are reported. If we indicate with TFULL the time employed without compression for a certain level
mmax and tε the time needed by the TE algorithm for a certain threshold ε (obviously with the same maximum level), then
�t% is computed as

�t% = TFULL − tε
TFULL

× 100. (47)

All the data are relative to the simulations performed on a personal laptop embedded with Intel(R) Core(TM)2
Duo CPU P9700 @ 2.80 GHz and 4 GB of RAM. The evolution of the saved time using the TE algorithm is reported, as
function of the maximum level mmax for different threshold in Fig. 28.

6.5. Kraichnan–Orszag 1D problem with a discontinuous unsteady pdf

In this section, the 1D Kraichnan–Orszag problem presented in the previous section is solved employing a discontinuous
unsteady probability distribution. In particular, the following pdf is retained
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Fig. 28. Time saved using the TE algorithm on the Kraichnan–Orszag problem with different threshold and different maximal levels. The coarsest level is
equal to mL = 4 for all the computations.

Fig. 29. Probability density function (a) of Eq. (48) and point distribution with TE (ε = 10−1, mL = 4 and mmax = 8) (b).

p(ω, t) =
{

pI ω � ωd,

pII ω > ωd,
(48)

where

pI =
{

NpII 0 � t � t̄,
pII/N t̄ � t � T

(49)

in which N = 5, t̄ = 10, T = 30 and ωd(t) = 11
2500 t2 − 11

200 t + 1
3 . Obviously, the normalization condition

∫
Ξ

p(ξ)dξ = 1 is
satisfied at each time step.

In Fig. 29(a), a contour of the function p = p(ω, t) is reported. The discontinuity has a parabolic shape and it disappears
at nearly t = 21. At t = 10, the inversion between the left and right part of the discontinuity occurs creating a discontinuity
also in time. After the disappearance of the discontinuity, the function reduces to a uniform classical distribution.

The solutions for the statistics of the three variables y1, y2 and y3 are reported in Fig. 30. In Fig. 30, the exact solution
obtained with a MC with Nξ = 20 × 106 is reported as reference. The results obtained with the TE algorithm with ε = 10−1,
mL = 4 and mmax = 8, corresponding to a number of points equal to Nξ = 88, are compared to MC and PC results, computed
with the same number of Nξ .

In this case of unsteady pdf, the point distribution is affected by the presence of a moving discontinuity as well as the
high gradients generated by the system responses. This creates a different distribution of points that becomes equal to the
previous one (the uniform case) in the last part of the computation. The evolution of points distribution in time is reported
in Fig. 29(b).
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Fig. 30. Time evolutions of the mean (left) and variance (right) of the three variables y1 (up), y2 (middle) and y3 (bottom) for the 1D Kraichnan–Orszag
problem with the unsteady pdf of Eq. (48).
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Fig. 31. Error norms of the mean of the variable y1 for the 1D Kraichnan–Orszag with unsteady pdf problem in the L1 (a), L2 (b) and L∞ (c) spaces.

Fig. 32. Error norms of the variance of the variable y1 for the 1D Kraichnan–Orszag problem with unsteady pdf in the L1 (a), L2 (b) and L∞ (c) spaces.

Even in the case of discontinuous pdf, the variance for all the variables starts from zero and the mean of the variables
y2 and y3 could assume some zero-values. For this reason, all the normalized errors are computed for time intervals equal
to [8,30], as done previously for uniform distributions.

In Fig. 31, the errors of the mean of the variable y1 are reported measured in the L1, L2 and L∞ spaces.
In Fig. 32, the error norms of the variance (computed in the time interval [8,30], in the L1, L2 and L∞ spaces) are

reported for y1. For all the simulations, the TE algorithm shows better results with respect both MC and PC. In particular
a lower error is reached for all the norms for each variable. For all the variable, in the case of L1 and L∞ norms the error
reached by the TE algorithm is up to an order of magnitude inferior to the correspondent errors, at the same number of
points, by the MC and PC methods.

The evolution of points in time is reported in Fig. 33. Remark the increase of the number of points with respect to the
points of the uniform distributed case, reported in Fig. 22(b). Remark also the different local behavior in the two cases.

6.6. A two degree-of-freedom subsonic airfoil model for aeroelasticity

In this section, we present the results obtained with the TE algorithm to the motion of a typical wing section with two
degree-of-freedom in a subsonic flight condition (see Fig. 34 for a sketch of the problem and the convention adopted).

This simplified model can be employed to perform preliminary aeroelastic computations. The wing section is capable to
reproduce the deflection and the torsional motion of a wing by two springs of stiffness kh and kt (see Fig. 34). The equations
of motion can be derived by an energetic method as the Lagrangian approach. If a lift L and an aerodynamic moment Ma are
applied to the wing section in the aerodynamic center AC supposed to be located at the first quarter of the cord (in theory
this assumption is valid only for the subsonic motion of a thin plate), the equations of motion, describing the traversal h (in
meters) and torsional α (in radiants) motion for a wing in flight at speed U in air with density ρ , are as follows[

m −S
−S I

]{
ḧ
α̈

}
+

[
kh 0
0 kt

]{
h
α

}
=

{
L

eL + Ma

}
, (50)

in which m is the total mass of the wing section, S is the static inertia moment of the section computed as S = m(d−e), q is
the dynamic pressure q = 1/2ρU 2 and the polar inertia moment I is obtained summing the moment referred to the center
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Fig. 33. Evolution of the number of points in time for the TE algorithm with ε = 10−1, mL = 4 and mmax = 8, 1D Kraichnan–Orszag problem with discon-
tinuous unsteady pdf.

Fig. 34. Sketch of the wing section aeroelastic problem with the forces and the convention adopted.

of gravity ICG and the transport contribution m(d − e)2. The aerodynamics load are computed by means of a simplified
quasi-steady strip theory in which the influence of the traversal velocity directly affects the angle-of-attack of the wing
section but the memory effect is neglected, i.e. the aerodynamic loads are not dependent from the history of the fluid
motion but only from the actual condition. Assuming a lift coefficient CL0, measured with respect to an incidence equal to
zero, and a moment coefficient CM , assumed to be independent from the angle-of-attack, the aerodynamics loads can be
written as

L = qcCL = qc(CL0 + CL/ααe),

Ma = qc2CM (51)

in which the slope of the lift coefficient is indicated as CL/α and the effective angle-of-attack αe is relative to the local
stream velocity

αe = α − ḣ

U
. (52)

Obviously, in Eq. (50), the contribution to the lift due to αe can be recasted to constitute the dumping matrix and can
contribute to the stiffness matrix in the following final form

[
m −S
−S I

]{
ḧ
α̈

}
+

[ 2πqc
U 0

2πqce
U 0

]{
ḣ
α̇

}
+

[
kh −2πqc
0 kt − 2πqce

]{
h
α

}
=

{
qcCL0

qceCL0 + qc2CM

}
. (53)

It was assumed that the slope of the CL–α curve is equal to 2π as demonstrated in the classical thin airfoil theory. This
assumption is valid for small angle-of-attack, i.e. roughly speaking between −10◦ and 10◦ . This condition is satisfied in the
numerical tests reported below.

In Table 4, all the numerical values employed to perform the numerical tests are reported. All the forces are expressed
for unit span.
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Table 4
Physical characteristics and flight conditions for
the wing section.

Geometrical properties

c [m] 1
e [m] 0.2
d [m] 0.35

Structural properties

kh [N/m2] 1480
kα [N/rad] 1000

Aerodynamics properties

CL [–] 0.1
CM [–] −0.001

Flight conditions

U [m/s] 30
ρ [kg/m3] 1.2

A parameterization of the mass properties of the section are chosen as follows:

m = ξ,

S = m(d − e),

ICG = ξ2c2 + d(d − e)2 (54)

where the random parameter ξ = 200ω + 200 [kg/m] in which ω is distributed in [0,1] with the following probability
density function

p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6/5 for ω < 1
3 ,

3/2 for
1

3
� ω � 2

3 ,

3/10 for ω > 2
3 .

(55)

This kind of parameterization influences the mass matrix and then modifies the oscillation frequency of the system; the
parameters (see Table 4) are chosen in order to have a stable system, i.e. the system after the impulsive start oscillates
entering in a transitory state and after some cycles reaches another equilibrium state. Of course, for lower parameters of the
parameter ξ , the oscillation frequency is greater and the vice versa occurs for greater value. In fact, the oscillatory frequency
f [Hz] is proportional to root mean square of the ratio between the stiffness of the system and its mass.

Eq. (53) can be written as

Mẍ + C ẋ + K x = Q, (56)

where M , C and K are the mass, dumping and stiffness matrix, respectively. The unknown vector is x = {h,α}T while the
external forces are collected in the vector Q = {qcCL0,qc(eCL0 + cCM)}T.

An explicit time discretization is applied, with Nt constant time steps tn ∈ [0, T ] where tn = n�t

M
xn − 2xn−1 + xn−2

�t2
+ C

xn − xn−1

�t
+ K xn = Qn. (57)

This formulation leads to(
1

�t2
M + 1

�t
C + K

)
xn −

(
2

�t2
M + 1

�t
C

)
xn−1 + 1

�t2
Mxn−2 = Qn (58)

from which the actual value of the unknown vector x(tn) = xn can be computed explicitly from xn−1 and xn−2 as

xn =
(

1

�t2
M + 1

�t
C + K

)−1((
2

�t2
M + 1

�t
C

)
xn−1 − 1

�t2
Mxn−2 + Qn

)
. (59)

Even in this case the TE algorithm is very straightforward to apply. However, attention must be devoted to the interpola-
tion of both the term xn−1 and xn−2 in order to compute the actual value of xn , as already done in the case of the examples
reported above, but only for one value at the previous time step. The two values of xn−1(ξ

k
j ) and xn−2(ξ

k
j ) are approximated

by interpolation (here linear) obtaining
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xn−1
(
ξk

j

) ≈ I
(
ξk

j ;xk(tn−1)
)
,

xn−2
(
ξk

j

) ≈ I
(
ξk

j ;xk(tn−2)
)
. (60)

As shown in Section 4, the left and right values, with respect to the maximal level reached at each time step, should

be used. So, in this case, the left value ξ
k̄(tn−1)

jL
and the right one ξ

k̄(tn−1)

jR
are considered for the time tn−1 with respect the

point ξk
j (tn) on the maximum level k̄(tn−1) reached at the time tn−1. As a consequence, the same is done at the time tn−2.

We remark here that in the general case k̄(tn−1) �= k̄(tn−2). The following steps are performed in order to interpolate the
value of x(ξk

j ) at the two time levels tn−1 and tn−2.

• For both time levels, the left and right values are determined as:

ξ
k̄(tn−1)

jL
(tn−1) = max

{
ξ

k̄(tn−1)

j

∣∣ξ k̄(tn−1)

j < ξk
j

}
,

ξ
k̄(tn−2)

jL
(tn−2) = max

{
ξ

k̄(tn−2)

j

∣∣ξ k̄(tn−2)

j < ξk
j

}
. (61)

• For both the time levels the right values are determined as

ξ
k̄(tn−1)

jR
(tn−1) = ξ

k̄(tn−1)

jL
(tn−1) + hk̄(tn−1),

ξ
k̄(tn−2)

jR
(tn−2) = ξ

k̄(tn−2)

jL
(tn−2) + hk̄(tn−2). (62)

• The values of x(ξk
j )(tn−1) and x(ξk

j )(tn−2) are interpolated

x
(
ξk

j , tn−1
) ≈ I

(
ξk

j ;xk(tn−1)
) = x(ξ

k̄(tn−1)

jR
, tn−1) − x(ξ

k̄(tn−1)

jL
, tn−1)

hk̄(tn−1)

ξk
j + x

(
ξ

k̄(tn−1)

jL
, tn−1

)
− jL(tn−1)

(
x
(
ξ

k̄(tn−1)

jR
, tn−1

) − x
(
ξ

k̄(tn−1)

jL
, tn−1

))
,

x
(
ξk

j , tn−2
) ≈ I

(
ξk

j ;xk(tn−2)
) = x(ξ

k̄(tn−2)

jR
, tn−2) − x(ξ

k̄(tn−2)

jL
, tn−2)

hk̄(tn−2)

ξk
j + x

(
ξ

k̄(tn−2)

jL
, tn−2

)
− jL(tn−2)

(
x
(
ξ

k̄(tn−2)

jR
, tn−2

) − x
(
ξ

k̄(tn−2)

jL
, tn−2

))
, (63)

where the indexes jL(tn−1) = ξ
k̄(tn−1)

jL
/hk̄(tn−1) and jL(tn−2) = ξ

k̄(tn−2)

jL
/hk̄(tn−2) . The expression obtained in Eq. (63) inserted in

Eq. (59) allows recovering the final form of the numerical scheme.
In this numerical test, the section is assumed to be at rest, i.e. zero deflection and torsion with no transversal and angular

velocity, and subject to impulsive start, i.e. xn−2(ξ) = xn−1(ξ) = 0 for all ξ ∈ Ξ . Of course, this condition is equivalent to an
impulsive start of the system that has no physical counterpart, but it represents, mathematically, a well-posed problem. The
numerical tests are performed with a final time T = 18 s and a time step equal to �t = 0.001 chosen after a convergence
study not reported here for brevity.

The time evolution of the variables h and α is reported in Fig. 35. In Fig. 35, the solution for MC, PC and the TE algorithm
are reported with a number of point Nξ , in the stochastic space, equal to 86 (equivalent to a TE algorithm of maximal level
mmax = 16 with the coarsest level mL = 3 and a threshold equal to ε = 10−1). The reference solution obtained with a full
converged Monte Carlo computation of Nξ = 20 × 106 points in the stochastic space is also reported.

The mean value of h and α computed by means of the three methods nearly coincide, but, for the variance, a stronger
difference appears concerning the PC computations. Even if the shape of the evolution is well solved, the actual values are
larger than the exact ones.

As already reported for the other numerical tests, the error of the mean and variance, measured in the L1, L2 and L∞
(see Eqs. (44) and (45)), are computed for the three methods. In this case, the norms are computed for the time interval
[5,18], in order to avoid the normalization with values too close to zero, with an Nt = 18 000.

In Figs. 36 and 37, the errors for the mean and variance in norms L1, L2 and L∞ are reported for the variable h and
α, respectively. In the figures, the total number of points in the grid t–ω is reported N = Nξ × Nt . The value ranges of Nξ

ranges from 50 to 190 with a step of 20 for the MC, from degree 49 to 169 with step 20 for the PC. In order to compute
different solutions employing the TE algorithm, the coarsest level is fixed as mL = 3 and the threshold equal to ε = 10−1,
while the maximum allowed level, i.e. the finest level, is varied between 12 and 20.

All the numerical results display a superiority of the TE approach with respect to both the MC and PC in terms of
level of error and convergence. In particular, all the error curves exhibit a smoother convergence with an error level lower
than about an order of magnitude with respect to MC. Provided that the error on the mean remains of the same order of
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Fig. 35. Time evolution of the mean (left) and variance (right) of the three variables h (up), α (bottom) for the aeroelastic motion described by Eq. (53).

magnitude than MC, the PC shows larger errors for all the norms of the variance for both the variables, as already observed
in Fig. 35. Finally, in the range of points considered, only the TE algorithm displays a good convergence behavior while both
MC and PC exhibit a very poor rate of convergence and a too oscillatory pattern of the error.

Also in this case, the application of the TE algorithm exhibits good refinement/derefinement properties. For instance,
the pattern of the points (Fig. 38(a)) and their number in time (Fig. 38(b)) are reported. Despite to a maximum number
of points allowed equal to Nξ = 216 + 1 = 65 536, the number of points remains always lower than 100 obtaining good
compressing results (in term of evaluation compression).

7. Conclusions

In this work an innovative adaptive strategy for stochastic problem, the TE algorithm, inspired to the classical Harten’s
framework, is presented. A representation of the solution on a finest grid is computed starting from a coarsest grid, with
a low number of evaluation of the function. Then, only a reduced set of point values, on the finest grid, is evaluated,
while the remaining set is obtained by interpolation (from the previous levels). This procedure moves recursively, with a
combination of interpolation and evaluation, from the coarsest level to the finest and from each time step to the successive
one. At each time step, the scheme allows to recover the solution on the finest level with a one-time scheme that embeds
the encoding and the truncation procedures of the classical Harten framework. First, this basic algorithm is extended in
order to solve a vectorial problem, i.e. computing the stochastic response of a system that has many outputs. Then, slight
modifications are suggested for unsteady problems. The TE algorithm must be, in the unsteady case, applied at each time
step starting from the coarsest level to the finest one. According to the time-integration technique, the choice of a stencil
in time is needed in order to evaluate a solution in the point of the time-stochastic space. The proposed time-advancement
strategy can be easily used to build numerical scheme with automatic refinement/derefinement. The proposed formulations
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Fig. 36. Error norms of the mean (top) and variance (bottom) of the variable h of the aeroelastic problem in the L1 ((a) and (d)), L2 ((b) and (e)) and L∞
((c) and (f)) spaces.

permits to recover the same results concerning the interpolation theory of the classical multiresolution approach, but with
an extension to uncertainty quantification problems.

The interest of the present strategy is shown by performing several numerical problems where different forms of uncer-
tainty distributions are taken into account, such as discontinuous and unsteady custom-defined probability density functions.

The TE algorithm is applied to several numerical test-cases in order to check its accuracy and convergence rate with
respect to some classical stochastic methods, such as quasi-Monte Carlo and Polynomial Chaos. First, some steady algebraic
problems are considered where analytical discontinuous functions are evaluated in terms of their expectancy and variance;
for this case the performances in terms of compression and evaluation ratios are also evaluated. The TE algorithm displays a
monotone decrease of the errors with respect to the number of evaluations. The capability of the TE algorithm to preserve
accuracy for time-evolving solutions is displayed in two test-cases. The first-one deals with an ordinary differential equation
(ODE), i.e. taken from [6] but with some modifications in order to obtain a more stiff ξ–t pattern of the function.

In this case, the TE algorithm allows reaching a lower level of error at the same number of points. In the case of L∞
norm for the variance, at the same number of points it corresponds an order of magnitude of the error inferior up to three
orders of magnitude. The convergences exhibit the smoothest behaviors with respect to MC and PC despite the presence of
two discontinuities in the inputs. The observed behavior displays the refinement/derefinement capability of the algorithm
to move and collocate points in the stochastic space with respect to the time evolution.

The second test-case for checking the convergence properties in long-time integration problem is the so-called
Kraichnan–Orszag 1D ODE, a well-known problem in literature for testing UQ methods properties. Different kinds of pdf,
i.e. uniform and discontinuous, are considered for both test-cases. For uniform distribution, TE displays better results in
terms of accuracy and convergence of the solution with respect to MC and PC. In the case of long-time integration, the
advantages of the application of the TE algorithm appear very poor with respect to the short-time case. Anyway, despite to
the very high complexity of the solution, all the norms of the errors computed for each variable are smaller in the case of
the application of the TE algorithm.

In the case of unsteady discontinuous pdf, the point distribution is affected by the presence of a moving discontinuity
as well as the high gradients generated by the system responses. This creates a different distribution of points that reduces
the global computational cost when using TE algorithm. As a consequence, performances of TE are very much better with
respect to MC and PC solutions in terms of convergence.
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Fig. 37. Error norms of the mean (top) and variance (bottom) of the variable α of the aeroelastic problem in the L1 ((a) and (d)), L2 ((b) and (e)) and L∞
((c) and (f)) spaces.

Fig. 38. Patterns of the evaluations in the space t–ω (a) and the number of points in the stochastic space Nξ employed by the TE algorithm with mmax =
16 (b).

Finally, a simplified model for aeroelastic study, a two degree-of-freedom typical wing section coupled with a quasi-
steady strip theory model for aerodynamics, is used to compute the statistics of the motion considering uncertainties on
mass properties for discontinuous probability distribution.

All the numerical results display a superiority of the TE approach with respect to both the MC and PC in terms of
level of error and convergence. In particular, all the error curves exhibit a smoother convergence with an error level lower
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than about an order of magnitude with respect to MC. Provided that the error on the mean remains of the same order of
magnitude than MC, the PC shows larger errors for all the norms of the variance for both the variables. Finally, in the range
of points considered, only the TE algorithm displays a good convergence while both MC and PC exhibit a very poor rate of
convergence and a too oscillatory pattern of the error.
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Abstract

In the present work, an innovative method for solving stochastic partial differential equations is presented. A mul-
tiresolution method permitting to compute statistics of the quantity of interest for a whatever form of the probability
density function is extended to permit an adaptation in both physical and stochastic spaces. The efficiency of this
strategy, in terms of refinement/derefinement capabilities, is displayed for stochastic algebraic and differential equa-
tions with respect to other more classical techniques, like Monte Carlo (MC) and Polynomial Chaos (PC). Finally, the
proposed strategy is applied to the heat equation, displaying very promising results in terms of accuracy, convergence
and regularity.

Keywords: Multiresolution, Ordinary Differential Equations, Partial Differential Equation, Uncertainty
Quantification, Heat Equation

1. Introduction

In the last fifty years, a strong effort has been devoted to develop efficient numerical methods for solving partial
differential equations. Estimating the predictivity of a numerical simulation remains very challenging. One of the most
important issues is that the physical model and/or the initial/boundary conditions are strongly affected by uncertainties.
A general agreement is reached on the necessity to take into account experimental and modeling uncertainties in the
numerical simulation. The so-called Uncertainty Quantification (UQ) is a branch of the numerical analysis that has
been developed more recently to quantify the uncertainty and to estimate the confidence interval of a certain quantity
of interest.

The first and most known UQ method is the Monte Carlo method. The Polynomial Chaos (PC) techniques has
acquired great popularity in last years. In the original work of Wiener [18], the solution is expanded in a polyno-
mial Hermite basis, the so-called homogeneous chaos expansion, while in recent years, Xiu and Karniadakis [19]
demonstrated that the optimal convergence can be achieved if orthogonal basis are chosen following the so-called
Wiener-Askey scheme. This leads to the well-known generalized Polynomial Chaos (gPC) approach. However, prob-
lems with discontinuities in the random space can lead to slow convergence. Similarly, long-time integration problems
could be encountered [17], where this behavior is due to the modification in time of the statistic properties of the so-
lution inducing an efficiency loss of the polynomial basis in time. Recently, Gerritsma [7] proposed a time-dependent
generalized Polynomial Chaos scheme based on the research of a time varying optimal polynomial basis. The majors
drawbacks related to the application of the PC to real-like cases is related to the presence of discontinuities, in both
physical and stochastic spaces, to long-time integration problems and to the use of a custom-defined form of probabil-
ity density function (for example discontinuous and unsteady). Actually, handling a discontinuity in both physical and
stochastic spaces remains a very challenging issue. In the context of gPC schemes, Wan and Karniadakis introduced
an adaptive class of methods for solving discontinuities by using local basis functions, the multi-element generalized
Polynomial Chaos (ME-gPC) [6]. This strategy deals with an adaptive decomposition of the domain on which local

∗Corresponding author
Email address:gianluca.geraci@inria.fr (G. Geraci)

Preprint submitted to Elsevier June 20, 2012

Manuscript
Click here to view linked References



basis are employed. In order to treat discontinuous responsesurfaces, Le Maı̂tre et al. applied a multiresolution anal-
ysis to Galerkin projection schemes [12, 11, 16]. This class of schemes relies on the projection of the uncertain data
on a multi-wavelets basis consisting of piecewise polynomial (smooth) functions. This approach is shown to be very
CPU demanding. Consequently, two cures are then explored in the context of adaptive methods: automatically refine
the multi-wavelets basis or adaptively partitioning the domain.

More recently, Abgrall et al. [1, 2, 3] introduces a new class of finite volume schemes capable to deal with
discontinuous problems for shock-dominated flows. The so called semi-intrusive scheme (SI) exhibits promising
results in term of accuracy and efficiency compared to more classical Monte Carlo and PC methods. A step-forward
for reducing the computational cost and preserving accuracy is made by the authors with a new technique inspired
to the Multiresolution framework of Harten [8, 9, 10]. Preliminary results in this direction [4], for problems with
custom-defined probability density functions, displays promising results with respect to classical techniques like MC
and PC.

In this work, this method is extended to solve not only ordinary differential equations, as made in [4] using the
Truncate and Encode (TE) technique, but also partial differential equations. A new stochastic technique, called spatial-
TE (sTE), is presented with refinement/derefinement capabilities in time for both the physical and stochastic spaces.
The main advantage is the overall reduction of the total number of points needed to reach a certain level of accuracy
for the complete stochastic solution.

The approach proposed in the present work is based on a multiresolution concept, as already made in Le Maı̂tre
et al. [16]. Anyway, the approach differs completely since here no spectral projection is employed, as it will be
explained in the next section. Moreover, the possibility to reject a wavelets (equal to an interpolation error as in the
original Harten framework) is based only on local tests, then is different from Galerkin projection approach where
1D energy estimators along stochastic dimensions are used. For details on the multiresolution approach applied to
Galerkin projection schemes, the reader can refer to the extremely exhaustive reference [13].

This paper is organized as follows. In Section 2, the mathematical problem is defined. The new strategy,i.e. the
sTE, is illustrated in Section 3. Then, the application to the stochastic heat equation is presented in Section 4. Section
5 presents several numerical results for different test-cases. Finally, some conclusions and perspectives are drawn in
Section 6.

2. Mathematical setting

Consider the following problem for an output of interestu(x, t, ξ(ω))1:

L(x, t, ξ(ω); u(x, t, ξ(ω))) = S(x, t, ξ(ω)), (1)

where the operatorL can be either an algebraic or a differential operator (in this case we need appropriate initial and
boundary conditions). The operatorL and the source termS are defined on the domainD×T×Ξ, wherex ∈ D ⊂ Rnd,
with nd ∈ {1, 2, 3}, andt ∈ T are the spatial and temporal dimensions. Randomness is introduced in (1) and its initial
and boundary conditions in term ofd second order random parametersξ(ω) = {ξ1(ω1), . . . , ξd(ωd)} ∈ Ξwith parameter
spaceΞ ⊂ Rd. The symbolω = {ω1, . . . , ωd} ∈ Ω ⊂ R denotes realizations in a complete probability space (Ω,F ,P).
HereΩ is the set of outcomes,F ⊂ 2Ω is theσ-algebra of events andP : F → [0, 1] is a probability measure. In our
case the random variablesω are by definition standard uniformlyU(0, 1) distributed. Random parametersξ(ω) can
have any arbitrary probability density functionp(ξ(ω)), in this wayp(ξ(ω)) > 0 for all ξ(ω) ∈ Ξ andp(ξ(ω)) = 0 for
all ξ(ω) < Ξ; we can now drop the argumentω for brevity. The probability density functionp(ξ(ω)) is defined as a
joint probability density function from the independent probability function of each variable:p(ξ(ω)) =

∏d
i=1 pi(ξi).

This assumption allows an independent polynomial representation for each direction in the probabilistic space with
the possibility to recover the multidimensional representation by tensorization. The aim of UQ is to find the statistical
moments of the solutionu(ξ).

1In the following the exposition is made for a scalar output variable (u) for brevity, but the extension to the multidimensional output case is
straightforward.
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3. The spatial-TE (sTE) strategy

The aim of the present work is to propose an efficient strategy to solve efficiently stochastic partial differential
equation.

In [4], we presented a technique inspired to the classical multiresolution framework of Harten [9, 10], but adapted
to the computation of statistics in the stochastic spaceΞ in the case of time dependent and eventually discontin-
uous probability density functions. This so-called truncate and encode strategy (TE) can be employed to obtain
non-intrusive solutions in the case of problems defined only in the stochastic space. This basic algorithm is briefly
presented in Section 3.1 and 3.2, where the strategy describing the evolution in time is shown.

In this paper, we show how this algorithm could be extended in order to solve stochastic partial differential equa-
tion. A detailed description of this new algorithm is then illustrated in Section 3.3.

3.1. The Truncate and Encode strategy

Here, for simplicity, only the 1D case with uniform distribution of points is considered, even if the same conclu-
sions hold for higher dimensional meshes of non structured type (see [5]). In the following, we indicate the generic
mesh levelk of Nk equally spaced intervals of lengthhk as

Gk =
{
ξkj

}Nk

j=0
, ξkj = jhk, hk = 2kh0, Nk = N0/2k.

A representation of the solution on a finest grid is computed starting from a coarsest grid, with a lower number of
evaluation of the function (in the spaceΞ). The remaining points can be obtained by interpolation under the hypothesis
to make an error that can be driven by a threshold parameterε. The Harten framework consists of three different steps:

• Encoding: the solution represented on the finest meshG0 is employed to obtain a hierarchical representation on
a nested sequence of levelsk = 1, . . . , L whereGk are obtained directly fromGk−1 without considering the odd
points. For eachmissing pointξkj ∈ Gk+1 − Gk, a detail or waveletis computed asdk

j = uk−1
2 j−1 − ũk−1

2 j−1, where

ũk−1
2 j−1 is an approximation of the value employing a whatever interpolation operatorI(ξ; uk) that interpolates the

functionu on the levelk in the pointξ. In the present work, we have chosen, in order to simplify the exposure,
the simplest example, namely a linear interpolation operator. However, the extension to more complex and
more accurate interpolation would lead to similar algorithms. The final result of theencodingprocedure is to
obtain a multiresolutionuM representation ofu: (uM)T = (d1, d2, . . . , dL, uL) wheredk = {dk

j } andk = L is the

coarsest level. For brevity, the procedure can be re-arranged in matrix form:uM = Mu0.

• Truncation: to obtain a data compression of the solution at the finest level ˆu0, a threshold can be introduced to
eliminate the non-significantwavelets. In particular, a truncateddetail is defined as follows

d̂k
j =

{
dk

j if |dk
j | > εk

0 if |dk
j | ≤ εk.

(2)

As a consequence, the truncated multiresolution representation consists in ˆuM = (d̂1, d̂2, . . . , d̂L, uL).

• Decoding: once the truncation is performed, the solution on the finest level can be obtained directly from the
coarsest one ˆu0 = M−1ûM. The following estimation holds (see [8] for a proof)

||u0 − û0|| ≤ Cε, (3)

if εk = ε/2.

Now, we can introduce our procedure permitting to perform the encoding and truncation procedure at the same
time starting from the coarsest level to the finest. This is necessary if the system is affected by unsteady probabil-
ity density function, so at each time step a new multiresolution representation should be computed without using
information from the previous time steps.

Let us consider only the dependence of a scalar functionu = u(ξ) from the stochastic spaceΞ = [0, 1]. The TE
strategy is constituted by the following steps (the notation is the same of the Harten’s multiresolution framework, i.e
k = 0 for the finest level andk = L for the coarsest):
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• Initialization

- Fix a thresholdε (the solution is assumed to be solved with this threshold on the finest grid2);

- Fix an indexmmax ∈ N for the maximum allowed level (Nmax = N0 = 2mmax);

- Fix an indexmL ∈ N for the coarsest level (NL = 2mL);

- The conditionmL < mmax must be satisfied.

• Evaluationof the functionu at each location at the coarsest levelu(ξLj ) = uL
j with j = 0, . . . ,NL where

GL =
{
ξLj

}NL

j=0
, ξLj = jhL, hL = 2Lh0, NL = N0/2L, (4)

andh0 = 1/N0. Each level can be labeled computing the equivalent indexkeq

keq = log2

(
N0

Nkeq

)
.

• Evaluation of the subsequent level, with respect to the coarsest

GL−1 =
{
ξL−1

j

}NL−1

j=0
, ξL−1

j = jhL−1, hL−1 = 2L−1h0, NL−1 = N0/2L−1. (5)

• Starting of the adaptive strategy by means of a recursive procedure

A - Thewavelets coefficientsare computed for the present levelk as

dk
j = uk

j −
1
2

(
uk+1

j+1
2

+ uk+1
j−1
2

)
for 0≤ j ≤ Nk with j odd; (6)

This is one of the occurrences where the linear interpolation is used. If more accurate interpolants are
used, the detail in (6) will still be the difference between the actual value and the value of the interpolant
at the interpolation location.

B - The wavelets coefficients are compared with the thresholdεk = ε/2k. If |dk
j | > εk then the two nodesξk−1

2 j+1

andξk−1
2 j−1 will be flagged as active on the next finer meshGk−1. If |dk

j | < εk then thewaveletsis truncated,
i.e. its value is posed zero.

C - The new levelk− 1 is generated ifk > 0 and only on the activated points the functionu is evaluated.

D - Moving from a levelk to the finer adjacent onek− 1, three different cases are possible:

∗ If ξkj ∈ Gk ∩ Gk+1 thenuk
j = uk+1

2 j (shifting)

∗ If ξkj < Gk ∩ Gk+1 and it is not flagged then interpolate

uk
j =

1
2

(
uk+1

j+1
2

+ uk+1
j−1
2

)
(7)

The relation (7) is the second, and last, occurrence where the interpolant is used. In case of more
accurate interpolant, (7) is replaced by the value of the interpolant onGk+1 at ξkj .

∗ If ξkj < Gk ∩Gk+1 and it is flagged as active (by the step B of the algorithm) then evaluate, i.e. call the
model.

2This is the same hypothesis of the classical MR framework.
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E - The algorithm stops when the maximum level is reached or when all thewaveletscoefficients can be
truncated (at a certain levelk > 0).

Some remarks could be done at this point to make things consistent with the application of this strategy to the
computation of statistics. For computing a statistics quantity, the following integrals should be computed,

E =
∫

Ξ

u(ξ)p(ξ)dξ, (8)

whereE is the expectancy ofu dependent on the random parameterξ with pdf p(ξ) in the spaceΞ. The TE strategy
presented above is applied to the product ofu(ξ) andp(ξ). In the general case of unsteady pdf, this procedure must
be also applied at each time step and the information between successive time steps must be exchanged by the time
advancing technique presented in the next section.

3.2. An accurate preserving time advancing technique

The aim of the TE strategy and the time stepping technique is to minimize the number of points in the spaceΞ×T.
The unsteady solution should be solved on all the possible trajectories in the spaceT, then this implicitly involves to
know the solution in all the points inΞ × T. The procedure we propose relies on the application of a multiresolution
encoding and truncation of the solution at each time steps. This ensures that the overall error is bounded by (3).
Moving from the initial condition toward the ultimate time step can be performed, for each trajectory, by advancing
the overall spaceΞ time step by time step. This reflects, in the case of an ordinary differential equation, in the
computation of the solutionu(ξ̄, t̄) in a fixed pointξ̄ at the timet̄ knowing the solution at the previous time steps for
all ξ ∈ Ξ andt < t̄. In a rigorous sense, the solution is known only in a limited set of points,i.e. the activated points
of the TE strategy. However, relying on the result (3), if a point in the portion of the spaceΞ × T with t < t̄ is needed,
an interpolation can be performed, with the same operatorI employed by the TE strategy, with an error bounded by
ε. The final result is to obtain, for each pointξ ∈ Ξ, some trajectories inT where the evaluations could stop and
interpolations could start (from the adjacent ones). Eventually these sequences of interpolations and evaluation can
continue to invert virtually at each time step.

A schematic view of these sequences of interpolation and evaluations is reported in figure 1. The points shown are
related to the activated points at each time step while the lines indicate the advancing in time that can be performed
from a known point (continuous line) or from an interpolated value (dashed lines).

ξ

t

Figure 1: Time advancing. In dashed line the advancing in timefrom interpolated values and with continuous line the integration from computed
value.
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3.3. Extension to physical dependent solutions
In this section, we show how the TE strategy, presented in the last two sections, can evolve in the spatial-TE

(sTE)strategy,i.e. can be extended to partial differential equations. Let us consider partial differential equation
defined on 1D physical and stochastic spaces. Obviously, the numerical scheme associated to an adaptive distribution
of points in the spaceD × T × Ξ, cannot be independent from the specific equation to solve. In this section, the
procedure is described in a general way supposing to have a deterministic numerical scheme able to compute the
solutionu(x̄, t̄, ξ̄) knowing all the solutionsu(x, t, ξ) for all x ∈ D, ξ ∈ Ξ andt < t̄. In the section§4, an example of the
application of the present strategy to the heat equation is illustrated.

The key idea of the algorithm is to fix a finer enough spatial discretization, as well as a time discretization, in order
to solve the deterministic problem with the desired accuracy. These requirements are the same of the classical MR
approach. In fact, it is clear that the MR scheme cannot produce more accurate solutions than the non compressed
finest level solution (remember the estimation (3)). Once the deterministic scheme is provided, the parameters for
the TE algorithm, in the stochastic space, must be provided: a maximum levelmmax, a minimum levelmL and a
thresholdε. According to the mathematical setting of the problem, the initial condition must be discretized on the grid
D × Ξ employing the finest resolution level (mmax) in the stochastic space and the fixed spatial discretization chosen.
Two different cases can arise here: the initial condition is affected by uncertainty or not. However in both cases we
can suppose to know analytically the initial condition. After these preliminaries, the spatial-TE (sTE)strategy can
be employed as follows. At each time step and for each spatial node, the TE strategy is applied to the associated
stochastic spaceΞ obtaining the MR representation of the solutionu(x̄, t̄, ξ), i.e. the representation of the 1D (in this
case) stochastic function obtained at a fixed physical space ¯x and timet̄ location (see figure 2).

Once all the physical points are used by the algorithm, the solutionu(x, t̄, ξ) is known. In fact, if a point is
evaluated, anexactsolution is provided for it, otherwise it can be interpolated, employing the operatorI of the
TE strategy along the stochastic space with an error bounded by the thresholdε. This procedure continues until
the final time step is reached. Obviously, depending on the spatial and time discretization adopted for the problem,
different stencils in the physical space could be required. This stencil must be assembled, knowing the solution at
the previous time step, eventually by interpolation along the stochastic space. For instance, in the case of a finite
element discretization with a fourth order Runge-Kutta scheme the stencil can be identified in an automatic way
using only the finite element mass matrix and stiffness matrix. All the details are reported in the section§4. Once
the stencil is reconstructed, the value of the function in all the nodes belonging to the stencil must be computed.
Two different situation are possible: the point has been already computed or an interpolation must be performed
(with the interpolation operatorI along the stochastic space). We remark that the interpolation must be performed
always in the stochastic direction while the stencil assembling procedure could require to use different multiresolution
representation at different physical locations (see figure 2).

TE strategy/interpolation

vector assembling procedure

ξ

x

Figure 2: Sketch of the interpolation (same direction of the TE strategy) and stencil assembling procedures.

The entire sTE strategy can be summarized as follows :
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• Preliminary
- Choose a deterministic solver with a spatial fixed discretization and a proper time discretization technique;
- Fix the parameters for the TE strategy: finest levelmmax, coarsest levelmL and thresholdε;

• sTE
- For each time step and for each spatial node, the TE strategy should be applied in order to represent the
solution along the stochastic space;
- The proper stencil must be assembled using different spatial locations (see figure 2); some interpolations along
the stochastic space could be necessary at this stage.

In the next section, this algorithm will be adapted to the heat equation discretized by a finite element method in
the physical space and a fourth order Runge-Kutta method in time.

4. A finite element deterministic solver

In this section, we present the discretization of the heat equation, described by a parabolic partial differential
equation with a random initial condition.

Let us describe the equations for the homogeneous 1D case (x ∈ D = [0, 1]) and temporal domaint ∈ T = [0, t f ]:



∂u(x, t, ξ)
∂t

= ν
∂2u(x, t, ξ)
∂x2

, ξ ∈ Ξ
u(0, t, ξ) = u(1, t, ξ) = 0, for t ∈ T

u(x, 0, ξ) = u0(x, ξ),

(9)

where the initial conditions is supposed uncertain.
The problem (9) can be recast in the weak form multiplying both side for a test functionv ∈ V = H1

0(0, 1), i.e.
the spaceH1(0, 1) with null elements at the boundary of the domain, and then integrating over the physical space
D = [0, 1]: ∫

D

∂u(x, t, ξ)
∂t

v dx+
∫

D
ν
∂u(x, t, ξ)
∂x

∂v
∂x

dx = 0. (10)

The Galerkin formulation of the problem can be obtained searching the (approximated) solution in the finite dimen-
sional space:uh =

∑Nh

i=1 ui(t; ξ)φi(x) ∈ Vh. The spaceVh is the so-called finite element space of basis{φ j}Nh

j=1.
After some manipulations (for more details see 6), the following algebraic problem is obtained :

M
dU(t)

dt
= −νAU, (11)

where the so-called mass M and stiffness A matrices are of (Nh×Nh) dimension and the vectorU is employed to collect
all the degree of freedom of the problemU(t) = {u1(t), u2(t), . . . , uNh(t)}T. We remark here that the present formulation
is quite general not depending on the number of physical space dimensions. As reported in 6, the matrices M and K
are quite sparse and symmetric. In particular, if the finite element space of linear functions is employed, the matrices
are both tridiagonal.

Finally, the initial parabolic partial differential system of equations, is reduced to a system of ordinary differential
equations (ODEs). In the next section, the time integration technique is illustrated.

4.1. A recast fourth-order Runge-Kutta

In this section, we aim to use a time integration technique permitting to apply the sTE strategy in order to solve
the stochastic partial differential problem (9). The TE technique, described in Section 3, requires the solution of the
problem in a specific point of the space ( ¯x, t̄, ξ̄), whenever all the solution at the previous time stepst < t̄ are available.
This means that the numerical scheme adopted to solve the system of ODEs should be able to compute the solution in
a certain nodēi at the timet̄ knowing the solution in all the nodes at timet < t̄. As it has been described in§3, the TE
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strategy is employed in the stochastic direction, while, obviously, the deterministic solver produces solutions in the
physical space. The coupling between these two spaces will be described more in details in Section§4.3.

For instance, let us suppose to know the solutionU(t) for t < t̄ and that the deterministic solver is able to compute
the ī-th coefficient of the vectorU(t̄), i.e. the ī-th degree of freedom of the finite element expansion of the solution
uh ∈ Vh. In this work, we choose to use an explicit time integration technique, in particular the fourth order Runge-
Kutta scheme [15], described as follows for a Cauchy problem :

{
ẏ(t) = f (t, y(t)) t ∈ [0, t f ]
y(0) = y0,

(12)

wherey ∈ C(0, t f ) can be formulated as [15]

yn+1 = yn +
∆t
6

(k1 + 2k2 + 2k3 + k4) , (13)

whereyn = y(tn) with tn = n∆t and 

k1 = f (tn, yn)

k2 = f

(
tn +
∆t
2
, yn +

∆t
2

k1

)

k3 = f

(
tn +
∆t
2
, yn +

∆t
2

k2

)

k4 = f (tn + ∆t, yn + ∆tk3) :

(14)

In this form, the Runge-Kutta (RK4) method is extended to a system of ODEs in a straightforward manner.
In the case of the heat equation, the system of ODEs (11) can be recast to a set of decoupled equations if the

so-calledmass lumpingtechnique is adopted. In particular, as shown in 6, if a trapezoidal integration technique is
employed to compute the term of the mass matrix M, a diagonal matrix can be obtained and, in the case of linear
element, each term of the mass matrix can be computed as the summation by rows of the elements

m̂ii =

Nh∑

i=1

mi j , (15)

wheremi j indicates the generic element of the mass matrix M at thei−th row andj−th column.
If we indicate withM̂ the corresponding lumped mass matrix, the system of ODEs can be written as

dU(t)
dt
= −νM̂−1AU(t) = f(U(t)) (16)

and the corresponding RK4 scheme is


Un+1 = Un +
∆t
6

(k1 + 2k2 + 2k3 + k4)

k1 = −νM̂−1AUn

k2 = −νM̂−1A
(
Un − νM̂−1AUn

)
= k1 + ν

2∆t
2

(
M̂−1A

)2
Un

k3 = −νM̂−1A

(
Un +

∆t
2

k1 + ν
2∆t2

4

(
M̂−1A

)2
Un

)
= k2 − ν3∆t2

4

(
M̂−1A

)3
Un

k4 = −νM̂−1A

(
Un + ∆t k1 + ν

2∆t2

2

(
M̂−1A

)2
Un − ν3∆t3

4

(
M̂−1A

)3
Un

)

= k1 + ν
2∆t

(
M̂−1A

)2
Un − ν3∆t2

2

(
M̂−1A

)3
Un + ν

4∆t3

4

(
M̂−1A

)4
Un

(17)

To compute thēi−th term of the vectorU(tn+1) is then necessary to compute the corresponding termī−th term of each
vectork1, k2, k3 andk4. This can be done efficiently if four matrices are stored at the beginning of the computation
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(
M̂−1A

)
,
(
M̂−1A

)2
,
(
M̂−1A

)3
,
(
M̂−1A

)4
. We remark that̂M−1 indicates the inversion of a diagonal matrix and then the

productM̂−1A can be done in a very non expensive way. Once the four matrices are computed, theī−th term of the
four vectorsk1, k2, k3 andk4, can be computed (less than a multiplying factor), as the scalar product between the
ī−th row vector (of each of the fourk1, k2, k3 andk4 matrices) and the vectorUn (already known from the stencil
assembling procedure). This procedure allows to select automatically the stencil needed by the time integration
technique. For adapting this deterministic scheme to the solution of the stochastic parabolic equation by the sTE
strategy, the reconstruction of the vectorUn from the different multiresolution representation (one for each physical
node) of the solution is needed; this will be described in detail in section 4.3.

Obviously, if the deterministic scheme described above is applied for each time step to each node of the physical
grid, the time dependent solution of the problem on the whole physical spacex ∈ D = [0, 1] can be computed when
a fixed value for the parameterξ ∈ Ξ = [0.2, 0.8] is chosen. The sTe strategy, as shown in§3, needs to fix a physical
mesh on which the deterministic solution can be represented with the desired accuracy. To identify the proper mesh
to employ in the section§5, a spatial convergence study is reported in the next section.

4.2. Space convergence for the deterministic solver
In this section, the space convergence properties of the deterministic scheme is presented. For this reason, a

reference solution should be computed. Then, the equivalent modal problem using the method originally proposed by
Fourier is solved.

The solution can be searched as a product of two functions depending only from the space and time, respectively.
This technique, called separation of variable, withu(x, t) = f (x)g(t), leads to

1
g(t)

dg(t)
dt
= ν

1
f (x)

d2 f (x)
dx2

= −λ, (18)

whereλ must be a constant value not depending neither byx or t. Non trivial solution exist only ifλ > 0 as


f (x) = Asin(
√
λx) + Bcos(

√
λx)

g(t) = Ce−νλt.
(19)

The application of the boundary condition to the spatial functionf (x) makes possible to computeB = 0 andλ = n2π2

where the integern indicates then−th mode of the functionf (x):

f (x) =
∞∑

n=1

An sin(nπx). (20)

The solutionu(x, t) is the product of the two functions (f (x) andg(t)) and it becomes

u(x, t) = C
∞∑

n=1

An sin(nπx)e−νλt =
∞∑

n=1

Hn sin(nπx)e−νλt =
∞∑

n=1

HnΨn(x) (21)

The amplitudeHn for each mode can be obtained by normalization employing the orthogonality between modes,i.e.∫ 1

0
ΨiΨ jdx = Hnδi j whereδi j is the Kronecker delta function, and the initial conditionu0(x)

Hn

∫ 1

0
sin(nπx) sin(nπx)dx =

1
2

Hn =

∫ 1

0
u0(x) sin(nπx)dx −→ Hn = 2

∫ 1

0
u0(x) sin(nπx)dx. (22)

The modal truncated solution with a large number of modesNmod = 10 000 with each termHn computed by a
trapezoidal rule on an equally spaced mesh of 100 000 points has been employed as reference solution. In the figure
3, different solutions computed on uniform meshes of 51, 101 and 201 points are reported in 3(a), while the errors
measured in normL2 are shown in 3(b) for the same meshes.

As it can be observed from these results, the mesh with 101 points shows to be finer enough to achieve a good
spatial accuracy and then it will be adopted for the computations. For stability and accuracy requirements, a time step
equal to∆t = 0.001 (the same employed in the spatial convergence results) is a good trade-off.

The coupling between the deterministic scheme and the TE strategy described in section 3 is described with more
detail in the next section.
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Figure 3: Space convergence for the FE deterministic solver. (a) Solutions with different spatial resolutions and (b)L2 error norm of the solution
with respect the reference modal solution (ν = 0.01 anda = 1).

4.3. sTE strategy applied to the 1D heat equation

In this section, the algorithm for the stochastic heat equation is presented. The deterministic solver employs a
spatial finite element discretization and a Runge-Kutta method to integrate the solution in time. The scheme is able to
compute a specific degree-of-freedomuī(tn+1) when the vector of all the degree-of-freedomU(tn) at the previous time
step is provided. This is not dependent on the finite element space,i.e. the degree of the basis functions. A sequence
of evaluations must be performed for all the activated points (in the TE strategy) at different locations in the physical
and stochastic space. However, the vectorU(tn) could not be available for each parameterξ (see figure 2). This issue
is solved in the sTE strategy performing an interpolation, along the stochastic space, in order to compute the value at
a certain physical location by means of the stencil assembling procedure.

The complete algorithm for the sTE strategy applied to the heat equation (9) is as follows :

• Preliminary

- A fixed uniform spatial resolution is fixed with points:{xi}N+1
i=0 ;

- A uniform time discretization is chosentn = n∆t, where∆t = t f /Nt with Nt number of time steps;

- The parameters for the TE strategy are fixed:mL, mmax andε;

- The mass matrixM is computed, lumped and inversed obtainingM̂−1;

- The stiffness matrixA is computed;

- The four matrices (̂M−1A), (M̂−1A)2, (M̂−1A)3, (M̂−1A)4 are computed and stored.

• sTE strategy

- For each time step all the (internal) spatial nodes{xi}Ni=1 are considered;

- For each spatial nodex̄i considered, a MR representation is obtained foru(x̄i, tn+1, ξ) in the stochastic
space;

A- To evaluate the solution in (x̄i , tn+1, ξ j̄), the vectorU(tn, ξ j) must be assembled;

B- k1ī , k2ī , k3ī , k4ī are computed employing thēi−th row of the four matrices (̂M−1A)n andU(tn, ξ j);

C- Evaluation:u(x̄i , tn+1, ξ j̄) = U ī(tn, ξ j̄) +
∆t
6

(k1ī + 2k2ī + 2k3ī + k4ī).
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The vector assembling procedure for the vectorU(tn, ξ j̄), is illustrated in the case of linear interpolation as follows:

• For all the nodes{xi}Ni=1, if the point (xi , tn, ξ j̄) has been already computed, the value is stored inUi(tn, ξ j̄);

• Otherwise the left and right values are identified for interpolation as follows:

- Left value: greater value ofξ j at thei−th spatial position less thanξ j̄ ;

- Right value: pointξ j+1 at thei−th spatial position;

- Interpolation: linear interpolation betweenξ j andξ j+1 at the stochastic positionξ j̄ .

The procedure described in this section is able to reduce the overall number of evaluations in the spaceD × T × Ξ
by determining the important point,i.e. the points that cannot be interpolated within the prescribed error with the
chosen interpolation operator. The final result is an unsteady pattern of the activated points in the spaceD × Ξ on
which the solution is computed by means of the deterministic solver, while the remaining point are interpolated.

5. Numerical results

In this section, the sTE strategy is applied to some numerical problems: a steady discontinuous function (§5.1);
an ordinary differential equation (§5.2) with the application of the time integration strategy reported in§3.2. Finally,
the stochastic partial differential equation (9) describing the heat conduction and the evolving temperatureu along a
1D rod subjected to an uncertain and discontinuous initial condition, is solved by means of the sTE strategy in (§5.3).

In this section, the expectancyE and the variance Var for a generic functionf (ξ), are computed according to the
following definitions

E( f (ξ)) =
∫

Ξ

f (ξ)p(ξ)dξ

Var( f (ξ)) =
∫

Ξ

( f (ξ) − E( f (ξ)))2p(ξ)dξ,
(23)

where the probability distributionp(ξ) is chosen systematically as uniform.
All the results reported in this section are compared to two classical methods in uncertainty quantification, namely

Monte Carlo (MC) and Polynomial Chaos (PC). These two methods are employed in a complete non-intrusive way
and the reference solution is assumed to be the fully converged Monte Carlo solution.

5.1. Steady problem

The first example is a functionf (ξ) : Ξ → R whereξ is a random parameter having an uniform distribution
ξ ∼ U [0, 1]. Function f3 is a piecewise function, composed by a tangent and a wave sine function with decreasing
wavelength (see figure 4(a)):

f3(ξ) =

{
tan (ξπ) ξ ≤ 0.41234
sin (5πξ4) ξ > 0.41234 (24)

The coarsest level is assumed to be equal to 21 (ml = 1) intervals, while the finest one to 28 (mmax = 8). The
threshold is fixed toε = 10−1 with a variation related to the refinement level (k) equal toεk = ε/2k. In figure 4(b),
the sequence of evaluated points (Neval) is reported. The circles represent the evaluations of the functionf (ξ), while
a full black dots indicate the activated, i.e. greater than the thresholdεk, wavelets Nw. It is evident that the algorithm
is capable to follow the discontinuity and to add some points where needed,i.e. in regions with high gradients in the
stochastic space.

In the table 1, the compression properties of the sTE strategy are reported when applied to the functionf3. In
particular, the compressionµcr and the evaluationτ ratios reported in the table 1 are computed as follows

µcr =
2mmax + 1

Nw + 2mL + 1

τ =
2mmax + 1

Neval
.

(25)
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Figure 4: Functionf3(ξ) (a) and the pattern of computed and activated (stored) points (b).

They indicate the ratio between the number of points of the non-compressed solution and the number of activated
wavelets (these sets include the points of the coarsest level) and the ratio between the number of points at the finest
level and the number of evaluationsNeval needed by the TE strategy, respectively.

The error norms reported in the table 1 are computed in theL1 andL∞ space as

errL1 = || f 0 − f̂ ||L1 =
1
N
| f 0

i − f̂i |
errL∞ = || f 0 − f̂ ||L∞ = maxi | f 0

i − f̂i |,
(26)

where f 0 is the function at the finest level and̂f is the compressed function, i.e. the function evaluated only in the set
of points corresponding to the activated wavelets.

mmax Nsto Neval µ τ err L1 err L∞
5 21 29 1.571429 1.137931 0.1341053E-01 0.7356531E-03
6 31 49 2.096774 1.326531 0.1160966E-01 0.8490046E-03
7 39 73 3.307692 1.767123 0.1003391E-01 0.1228993E-02
8 49 95 5.244898 2.705263 0.1291483E-01 0.1506392E-02
9 58 113 8.844828 4.539823 0.8991428E-02 0.1307482E-02

Table 1: Final result for the functionf3 (ε = 10−1)

Thanks to the adaptive distribution of points, the present strategy allows computing the statistical moments very
efficiently even with a simple quadrature formula (like the composite trapezoidal rule [15]). This is not the case for
MC or PC methods.

The percentage errors with respect the reference MC solution with 2× 106 deterministic runs is computed as
follows

errE =
|E−Eexact|
Eexact

100

errVar =
|Var−Varexact|

Varexact
100.

(27)

They are reported in figure 5 both for mean and variance. The number of points for the PC method areN = n0 + 1,
wheren0 is the total degree of the polynomial representation. Concerning the proposed algorithm, several solutions
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Figure 5: Percentage error with respect the reference MC solution for the mean (a) and the variance (b).

are obtained by varying the maximal level allowed between 22 and 29 with the coarsest level equal to 21 and the
thresholdε = 10−1.

The adaptive strategy displays better results both in terms of accuracy and efficiency with respect to the MC and
PC methods. For MC and PC, an high non smooth behavior arises when increasing the number of point. This is due
to the presence of discontinuities that can prevent the convergence of these quadrature techniques.

5.2. A differential ordinary equation (0D-1D)

In this section, the case of an ordinary differential equation is addressed. In the following, this case is indicated as
0D in the physical space and 1D in the stochastic space, because there is only one uncertainty affecting the solution
of the problem. An ordinary differential problem, extracted from [13], has been modified as follows



dρ
dt = α(ρ̄ − ρ) − γρ − β(ρ − ρ̄)ρ2

ρ̄ = 1+ 1
2 sin (5ω + 8/5)

β = 20ω,

(28)

whereα = 1, γ = 0.01 andω ∈ U[0, 1]. A discontinuous initial solution in the stochastic space is chosen in order to
address a more challenging problem with respect to the one proposed in [13] :

ρ(t = 0) =



3/4 if 0.3 < ω < 0.7

0 otherwise.
(29)

The time integration is performed by means of an explicit Runge-Kutta scheme, the so-called RK4, with a time
step∆t = 0.01. The multiresolution representation at each time step allows advancing the solution in time along
patches constituted by true evaluations and interpolations thanks to the accuracy reconstruction embedded in the
multiresolution framework. The final results is a refine/derefine capability in the time-stochastic domain that suits
very well the efficiency requirement needed in complex and high costly applications. In the figure 6, the pattern in the
spacet − ω of the computed, i.e. evaluated points, is reported.

The error of the statistical moments, are reported in figure 7 with respect to a MC reference solution of 2× 106

points at each time step (N = 400× 106 evaluations in theω − t space). Dealing with an unsteady solution, aL1 norm
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Figure 6: Pattern in thet − ω space of the computed points of equation 29.

(in time) is employed according to the following definitions

errE|L1
= ||E(ρ) − E(ρ̂)||L1 =

1
Nt

Nt∑

i=1

∣∣∣∣∣
Ei(ρ) − Ei(ρ̂)
Ei(ρ̂)

∣∣∣∣∣ ,

errVar|L1
= ||Var(ρ) − Var(ρ̂)||L1 =

1
Nt

Nt∑

i=1

∣∣∣∣∣
Vari(ρ) − Vari(ρ̂)

Vari(ρ̂)

∣∣∣∣∣ ,

where errE and errVar are the errors for the expectancy and the variance. The solutionρ is compared to the reference
solution ρ̂ discretized with the same total number of time steps equal toNt = ∆t × t f , where the total time of the
simulationt f is assumed equal to two.

The strategy presented in this work exhibits the fastest convergence and a smoother behavior with respect to Monte
Carlo and the Polynomial Chaos both for mean and variance. Similar results are obtained for different norms (L2, L∞)
not reported here for brevity.

5.3. A partial differential equation (1D-1D)

In this section, the solution of the stochastic parabolic partial differential equation described in (9) is addressed.
This unsteady problem is 1D in the physical space and 1D in the stochastic space.

The diffusivity is assumed to be equal toν = 0.01 and the parameter of amplitude related to the initial condition
(30) toa = 1.

Let us consider a discontinuous initial condition as follows

u0(x, ξ) =



0 if x < ξ
a
ξ − 1

(x− 1) if x ≥ ξ, (30)

with the stochastic parameterξ ∈ Ξ = [0.2, 0.8] with uniform distribution inΞ.
For instance, the initial condition for the parameterξ = 0.5 is reported in figure 8 (fora = 1). Relying on the

convergence study reported in section 4.2, let us consider a physical domain defined inD = [0, 1] discretized by an
uniform mesh ofNx = 101 nodes and a uniform time step equal to∆t = 0.001 for a total time of simulation equal to
t f = 0.5 (Nt = 500 time steps).

14



N

er
r ε

(L
1)

0 20000 40000 60000 80000

10-5

10-4

10-3

10-2

10-1

MC
PC
MR

(a)

N

er
r <

V
ar

(L
1)

0 20000 40000 60000 80000

10-5

10-4

10-3

10-2

10-1

MC
PC
MR

(b)

Figure 7:L1 norm of the errors for the mean and variance ofρ(t).

Concerning the sTE strategy, the initial condition should be discretized on the finest mesh (Nx × (2mmax+ 1)) in the
spacex− ξ. The initial condition 9(a) of the problem and the meshes corresponding to the solution at timet = 0.001
9(b),t = 0.25 10(a) andt = 0.5 10(b) are reported for the parametersmL = 3, mmax= 11 andε = 10−1.

For performing more accurate comparison, a signal is extracted at fixed space locations. Three different probes
at the spatial locationsx = 0.2 (P1),x = 0.5 (P2) andx = 0.8 (P3) are considered. For each one of these probes,
the mean and variance are stored as functions of the time. The error norms (in time) for theL1 andL2 spaces are
computed as follows

errµm

∣∣∣
Lp
= ||µm(u, t) − µm(ū, t)||Lp =


1
Nt

Nt∑

i=1

∣∣∣∣∣∣
µm

i (u, t) − µm
i (ū, t)

µm
i (ū, t)

∣∣∣∣∣∣
p


1/p

, (31)

while for theL∞ space

errµm

∣∣∣
L∞
= ||µm(u, t) − µm(ū, t)||L∞ = max

i

∣∣∣∣∣∣
µm

i (u, t) − µm
i (ū, t)

µm
i (ū, t)

∣∣∣∣∣∣ , (32)

where the reference solution is indicated as ¯u andµm indicates both mean and variance. The reference solution is
obtained in this case with a fully converged MC solution with the same spatial grid (Nx = 101), the same time
discretization (∆t = 0.001) but a number of points in the stochastic space equal toNξ = 2.5× 106.

The results for mean corresponding to the three probes are reported in the figures 11, 12 and 13, respectively. The
sTE strategy is applied withmL = 6, mmax between 8 and 16 with a threshold equal toε = 10−1. MC and PC results
obtained on the same physical mesh and with the same time discretization are also reported. In particular, the two
methods are employed with a number of points, in the stochastic space, varying betweenNξ = 100 andNξ = 300 for
MC and degree between 100 and 300 for PC. In all the presented results, the number of pointsN represent the overall
number of point of the grid inD × T × Ξ equal toN = Nx × Nt × Nξ.

All the results display systematically very good performances of the presented approach both in term of accuracy
and efficiency. The sTE strategy converges smoothly (and in a monotone way) to higher accurate solutions when a
large number of points is considered. This is not the case for MC and PC.

The results concerning the variance for the probes P1, P2 and P3 are reported in figures 14, 15 and 16, respectively.

Except for the variance computed at the probe P2, the behavior of the proposed approach is monotone and
smoother than both MC and PC. A lower error with a lower global number of points is attained by the sTe strategy
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Figure 8: Initial condition for the problem (9) with the stochastic parameterξ = 0.5 on a mesh with 101 equally spaced points.
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Figure 9: Meshes corresponding to the initial condition (a) of the problem (9) and the derefined mesh after the first time step (b).

with respect to MC and PC. The worse behavior of MC and PC can be justified with the presence of discontinuities in
the physical space.

We expect that the sTE strategy will perform much more better, with respect the MC and PC methods, if the
solution exhibits a non smooth behavior along the stochastic space. In order to clarify the problem at the probe P2,
the solution relative to this probe (x = 0.5) is reported as a function of the stochastic space in the figure 17 at the final
time step. As clearly shown in figure 17, several discontinuities arise in this case in the stochastic space, even if all
the solutions of the heat problem are smooth in the physical space, except for the initial conditions.

6. Concluding remarks

This paper presents an innovative adaptive strategy for stochastic differential equations, the sTE algorithm, in-
spired to the classical Harten’s framework. A representation of the solution on a finest grid is computed starting
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Figure 10: Meshes corresponding to the half time (t = 0.25) simulation (a) and the final time (t = 0.5) pattern (b).
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Figure 11: Error norms of the mean of the variableu, corresponding to the probe P1, for the 1D heat equation problem with uniform pdf in theL1
(a), L2 (b) andL∞ (c) spaces.

from a coarsest one, with a reduced number of function evaluations. As a consequence, only a reduced set of point
values on the finest grid is evaluated, while the remaining set is obtained by interpolation (from the previous levels).
This procedure moves recursively, with a combination of interpolation and evaluation, from the coarsest level to the
finest and from each time step to the successive one. At each time step, the scheme allows to recover the solution
on the finest level with a one time scheme that embeds the encoding and the truncation procedures of the classical
Harten framework. Afterwards, this strategy is extended to the partial differential equation. A spatial discretization
is chosen, as well as the time discretization, in order to solve the deterministic problem with a desired accuracy. The
initial condition is discretized on the gridD × Ξ employing the finest resolution level in the stochastic space and the
chosen spatial discretization. Then, the sTE strategy is applied to the associated stochastic space obtaining the MR
representation of the solution at each time step, for each spatial node,i.e. the representation of the stochastic function
obtained at a fixed physical space and time.

The sTE strategy is applied to some ”simplified” numerical test-cases and compared to classical stochastic meth-
ods. Finally, it is applied to the stochastic heat equation discretized by finite elements and integrated in time by means
of a fourth order Runge-Kutta method. A discontinuous initial condition is considered. The sTE displays very promis-
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Figure 12: Error norms of the mean of the variableu, corresponding to the probe P2, for the 1D heat equation problem with uniform pdf in theL1
(a), L2 (b) andL∞ (c) spaces.
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Figure 13: Error norms of the mean of the variableu, corresponding to the probe P3, for the 1D heat equation problem with uniform pdf in theL1
(a), L2 (b) andL∞ (c) spaces.
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Figure 14: Error norms of the variance of the variableu, corresponding to the probe P1, for the 1D heat equation problem with uniform pdf in the
L1 (a), L2 (b) andL∞ (c) spaces.
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Figure 15: Error norms of the variance of the variableu, corresponding to the probe P2, for the 1D heat equation problem with uniform pdf in the
L1 (a), L2 (b) andL∞ (c) spaces.
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Figure 16: Error norms of the variance of the variableu, corresponding to the probe P3, for the 1D heat equation problem with uniform pdf in the
L1 (a), L2 (b) andL∞ (c) spaces.

ing results in terms of accuracy, convergence and regularity. Future works will focus on the extension of the present
strategy to hyperbolic partial differential equations.
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Appendix. Finite element discretization of the 1D heat equation

In this section, we want to provide more details about the finite element scheme employed to solve the heat
problem (9). For an exhaustive analysis of the problem, the reader may refer to [14].

Let us consider first, how to reduce the problem (9) from the weak form to the algebraic form (11). The weak
formulation can be obtained by multiplying the equation (9), for the test functionv ∈ V. As a consequence, the
equation (10) is computed by integrating over the physical space

∫

D

∂u(x, t, ξ)
∂t

v dx =
∫

D
ν
∂2u(x, t, ξ)
∂x2

v dx. (.1)
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Figure 17: Solutionu(0.5, 0.5, ξ) corresponding to the probe P2 at the final time step obtained with 1000 MC samples.

The right-hand side can be decomposed using the integration by parts as follows
∫

D
ν
∂2u(x, t, ξ)
∂x2

v dx =
∫

D
ν
∂

∂x

(
∂u
∂x

v

)
dx−

∫
ν
∂u
∂x

dv
dx

dx

= ν

[
∂u
∂x

v

]1

0

−
∫

D
ν
∂u
∂x

dv
dx

dx

= −
∫

D
ν
∂u
∂x

dv
dx

dx,

(.2)

where the test functions are equal to zero at the boundaries (v(0) = v(1) = 0) and a Dirichlet boundary condition is
applied. The integrals are well-posed ifv ∈ H1

0(0, 1):

H1
0(0, 1) =

{
v ∈ H1(0, 1) : v(0) = v(1) = 0

}
. (.3)

The problem reduces to searchu ∈ V = H1
0(0, 1)

∫

D

∂u(x, t, ξ)
∂t

v dx = −
∫

D
ν
∂u
∂x

dv
dx

dx ∀c ∈ V. (.4)

The Galerkin approximation of the problem can be obtained by searching for an approximate solutionuh ∈ Vh ⊂ V,
where the spaceVh has a finite dimensionNh, with the test functionsv in the same spaceVh. In the latter case,i.e.
using the same space for the solution and the tests functions, the approximation is the so-called Bubnov-Galerkin
approximation.

If the Lagrangian finite element space is chosen forVh, the classical basis{φi} (in the linear case ) is equal to

φi =



x− xi−1

xi − xi−1
xi−1 ≤ x ≤ xi

xi+1 − x
xi+1 − xi

xi ≤ x ≤ xi+1

0 otherwise.

(.5)

If the tessellation of the domain is obtained with the nodes{xi}N+1
i=0 , the solution can be expanded as a linear

combination of the Lagrangian functions (for all the internal nodes)uh(x, t) =
∑N

i=1 ui(t)φi(x) that, inflated into (.4),
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becomes
N∑

i=1

∫

Di j

φiφ jdx = −ν
N∑

i=1

ui(t)
∫

Di j

dφi

dx

dφ j

dx
dx, ∀φ j ∈ Vh (.6)

whereDi j indicates the non-null support of the product functionφiφ j .
If a mass M and a stiffness A matrices are defined as follows

M =
[
mi j

]
, mi j =

∫

Di j

φiφ j dx

A =
[
ai j

]
, ai j =

∫

Di j

dφi

dx

dφ j

dx
dx,

(.7)

the algebraic form (11) can be found as

M
dU(t)

dt
= −νAU(t), (.8)

where the vectorU(t) = {ui(t), . . . , uN(t)}T ∈ RN is the collection of all the degrees of freedom of the linear expansion
for uh(t). The original (9) parabolic partial differential problem is recast in a set of (coupled) ordinary differential
equations.

Thanks to the compact support of the Lagrangian basis both M and A have a regular pattern of sparsity. In par-
ticular they are symmetric tridiagonal matrices. For recasting the system of ODEs in a set of decoupled ordinary
differential equations, the mass matrix can be approximated by a diagonal matrixM̂, i.e. the so-called mass lumping
technique. Thanks to the properties of the linear Lagrangian element (

∑N
j=1φ j = 1) the mass matrix can be approxi-

mated by

M̂ = Diag(m̂ii ) with m̂ii =

N∑

j=1

mi j =

∫

Di j

φi

N∑

j=1

φ j dx =
∫

Di j

φi dx. (.9)

The lumped matrix becomeŝM = Diag(5/6, 1, . . . , 1, 5/6)∆x, while for the stiffness matrix we have

A =



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



1
∆x
, (.10)

where we employed a uniform tessellation of the physical spacexi = i∆x with i = 0, . . . ,N + 1 and∆x = 1/N.
The finite element formulation of the problem is obtained here in the physical 1D case only for the sake of

simplicity, but both the deterministic scheme and the sTE strategy, described in 4.3, can be easily extended to physical
(and even stochastic) multidimensional cases replacing the mass and stiffness matrices with their multidimensional
counterparts and providing a nested set of meshes inΞ.
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Abstract In this paper, the Harten multi-resolution framework is generalized and extended for taking into
account uncertainties into partial stochastic differential equations (sPDE). Innovative ingredients are given by
an algorithm permitting to recover the multiresolution representation without requiring the fully resolved so-
lution, the possibility to treat a whatever form of pdf, the use of high-order reconstruction in the stochastic
space. Moreover, the sTE method is introduced, that is a weak coupling in spatial/stochastic space for minimiz-
ing the computational cost in sPDE and is particularly attractive when treating discontinuities (such as shock
in compressible flows). Flexibility of the proposed method is demonstrated by proposing a simple algorithm
coupling together high-resolution schemes in the physical and in the stochastic spaces at the same time. Var-
ious numerical experiences are performed (algebraic functions and ordinary differential equations), including
stochastic partial differential equations. Then, efficiency of the proposed strategy for solving stochastic linear
advection and Burgers equations is estimated by comparing with some classical techniques, such as Monte
Carlo or Polynomial Chaos method.

Keywords Multiresolution· Uncertainty Quantification (UQ)· Adaptive grid· Hyperbolic conservation laws·
Shock tube.

1 Introduction and motivation

Handling uncertain operating conditions, material properties and manufacturing tolerances poses a tremendous
challenge to the scientific computing community. In the last year, a great effort has been devoted to the prop-
agation of uncertainties through numerical codes. Two complementary philosophies are actually employed:
a non-intrusive propagation approach that consists in using the numerical code as a black box with several
and indipendent calls to the code; an intrusive approach that requires the modification of the numerical code
to include the propagation of the uncertainties. For the non-intrusive side, different methods are nowadays
commonly employed: Monte Carlo family of techniques [13], the collocation family [9] and the non-intrusive
Galerkin projection methods. This last family of methods has been introduced for the first time by Ganem and
Spanos [12] for the analysis of structural dynamics systems and has been generalized by Xiu and Karniadakis
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2 Pietro Marco Congedo et al.

[29] to general probability distributions. Actually, the non-intrusive Galerkin projection represents the state-
of-the art of the stochastic analysis for systems with a smooth response surface due to its spectral convergence
property.

The Galerkin projection is also the most important technique in order to manage intrusively the uncertainty
propagation into a numerical code. In practice, this means that it is possible to obtain an equivalent set of gov-
erning equations for the coefficients of a truncated polynomial representation of the quantities of interest [20].
Then, the number of equations is related to the number of coefficients employed in the polynomial expansion,
and the numerical code should be deeply modified. In many cases, this leads to complex problems regarding
the generality of the approach whenad hoc solvers are proposed [27]. More recently, Abgrall and Congedo
proposed a novel semi-intrusive approach that extend in a straightforward and natural way the representation
of the variables in the physical space also along the stochastic space [1]. This approach leads to a very flexible
scheme able to handle whatever form of probability density function even time varying and discontinuous. One
of the prominent advantage of this kind of approach is the possibility to extend in an easier way an existing
deterministic code to its stochastic counterparts.

Thanks to its intrinsic capability to manage discontinuous responses, the semi-intrusive methods represents
a promising alternative to the Galerkin projection techniques for all the applications in which the system is
dominated by shocks. A prominent class of application of the semi-intrusive scheme could be, for instance, the
computational fluid dynamics for transonic flows. However, actually every class of UQ method suffers from
the so-calledcurse of dimensionality [10], i.e. the exponential growth of the number of degree of freedom
required, associated to the increase of the number of uncertain parameters. In order to propose a cure for
the semi-intrusive scheme capable to tackle the curse of dimensionality, in this work we introduce a general
multiresolution framework to reduce the number of degrees of freedom necessary for the representation of data
along the stochastic space.

Many works focused on multiresolution techniques to reduce the computational cost associated to UQ sim-
ulations. In [20], a multiresolution basis is employed to represent the solution of a partial differential equations
after fixing the physical coordinate. This representation is very efficient but limited to the case in which the
stochastic representation is used at a fixed physical location. To overcome this issue, more recently, Tryoen
et al. introduced in [27] a multiresolution wavelets representation in the context of intrusive Galerkin projec-
tions. However, the Galerkin approach presented remains very problem-dependent. In fact, using a Roe-type
solver requires to know the eigenstructure of the Roe matrix explicitly; this can be very complex. Moreover,ad
hoc entropy fix should be adopted, thus increasing the numerical cost associated to the representation of dis-
continuous solution [25]. This original approach has been further improved to obtain a more efficient scheme
employing a multiresolution adaptive strategy [26]. However, this approach is limited by the spatial and time
discretization accuracy (only first order) that could dominate the overall accuracy.

This work is heavily inspired by the classical Harten’s multiresolution framework in the basic principles,
but a series of original elements are introduced to make adequate and efficient this technique for UQ purpose.
First, there is the introduction of an algorithm capable to recover the multiresolution representation without
requiring the fully resolved solution (allowing to consider discontinuous time-varying probability distribution
functions). Secondly, the probability distribution function is used as a key element for determining the quality
of the representation of the solution. Other main advantages are the following: handling easily a whatever form
of pdf, even non classical; treating in a straightforward way correlated uncertainties without solving specific
equations for obtaining the wavelet basis as should be required, for example, in a classical wavelet framework
as [26]. This last point is even more important when dealing with general geometries in the stochastic space. In
fact, the Harten framework allows the extension to general meshes, while the pure wavelets approach via the
solution of a dilating equation could be not feasible in a general case. Finally, the general framework presented
in this paper allows an easy extension to high-order representations both in physical and time spaces (without
any kind of modification of the deterministic scheme), thus proposing a general method for building efficient
intrusive scheme in complex applications.

This paper is organized as follows. In section 2, the mathematical setting for the stochastic differential
equation is given. Section 3, illustrates the multi-resolution framework of Harten, generalized for the stochastic
space. In particular, the following elements are detailed: cell-average and point-values settings, the truncation
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and stability requirements, the non-linear approach with the introduction of ENO reconstructions. In section
4, the weak coupled spatial/stochastic scheme is presented, extending the basic Truncate and Encode (TE)
Algorithm to the spatial-TE (sTE) for treating partial stochastic differential equations. Various results are pro-
vided in Section 5. Some algebraic and ordinary differential equation, both scalar and vectorial, are presented
and compared with classical Monte Carlo methods and, where possible with gPC non intrusive approach. The
challenging monodimensional Kraichnan-Orszag problem is also reported in the classical case of uniform dis-
tribution. Then, some partial stochastic differential equations are considered,i.e. the advection and the Burgers
equations. Some concluding remarks and perspectives have been reported in section 6.

2 Mathematical setting for a stochastic differential problem

Let us consider the following problem for an output of interestu(x, t,ξ(ω))1:

L (x, t,ξ(ω);u(x, t,ξ(ω))) = S (x, t,ξ (ω)), (1)

where the operatorL can be either an algebraic or a differential operator (in this case we need appropriate
initial and boundary conditions). The operatorL and the source termS are defined on the domainΩ ×T ×Ξ ,
wherex ∈ Ω ⊂ Rnd , with nd ∈ {1,2,3}, andt ∈ T are the spatial and temporal dimensions. Let us consider
a measurable space(Ξ ,Σ , p) whereΞ is the sample space,Σ is its σ−algebra of events andp a probability
measure with the following properties:

– p(A)≥ 0 for all A ∈ Σ ;
– Countable additivity: ifAi ∈ Σ are disjoint sets thenp(

⋃
i Ai) = ∑i p(Ai);

– as probability measurep is normalized onΞ : p(Ξ) = 1.

The Rd−valued random variableξ specifies a set of events with a corresponding probability. More for-
mally, the random variableξ is a measurable function that maps the measurable space(Ξ ,Σ , p) to another
measurable space,i.e. the BorelBd σ−algebra of the real space(Rd ,Bd,P). A set of eventsω exists thatξ
maps to an output eventA ∈ Bd with the probability of occurrence ofA, whereP(A) is equal to the probability
of ω :

P(A) = p(ξ−1(A)) = p(ω : ξ (ω) ∈ A). (2)

As usual in literature, it is possible to write onlyp(ξ ∈ A) and not the induced probabilityP(A).
The probability density functionp(ξ ) is defined as a joint probability density function from the inde-

pendent probability function of each variable:p(ξ ) = ∏d
i=1 pi(ξi). This assumption allows an independent

representation for each direction in the probabilistic space with the possibility to recover the multidimensional
representation by tensorization. The aim of UQ is to find the statistical moments of the solutionu(x, t,ξ ).

For instance, assumingu(ξ ) ∈ L2(Ξ , p), the following first two central moments can be always defined

E(u,x, t) =
∫

Ξ
u(x, t,ξ)p(ξ )dξ

Var(u,x, t) =
∫

Ξ
(u(x, t,ξ )−E(u))2 p(ξ )dξ .

(3)

3 The Generalized Harten MultiResolution approach

In this section, the generalized multiresolution framework of Harten [15–17,4] is briefly recalled. The basic
principles are first defined. Then, the whole set of operators are formulated and extended in the UQ framework.
They are described in§3.1 and§3.2 in cell-average and point-value, settings.

1 In the following the exposition is made for a scalar output variable (u) for brevity, but the extension to the multidimensional
output case is straightforward
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The Harten framework can be considered, as pointed out by Aràndiga and Donat in [7], as a rearrangement
of the information in a set of discrete data representing different resolution levels. This approach suits the gen-
eral scope of a compact representation of the data allowing to neglect information relative to non significative
level of resolution.

The building blocks of the framework are the operators of discretizationDk, that allows the transfer of
information from the continuous to the discrete space and the reconstruction operatorRk that performs the
inverse operation. Note that these operators need to satisfy certain properties as well as a consistency relation.
The multiresolution can be seen as a pyramidal rearrangement of the data making use of a direct transfer of
information between different resolution levels. Using both operators of discretizationDk and reconstruction
Rk, the discrete operators of decimation Dk−1

k and prediction Pkk−1 between consecutive levels of resolutionsk
(higher resolution) andk−1 (lower resolution) can be defined.

More formally, let us start by considering a functionf ∈ F , whereF is a proper space of functions. Let
us consider a set of discrete operators of discretization{Dk}L

k=0 each of them defined of a vectorial space of
finite dimension

Dk : F →Vk with dim(Vk+1)> dim(Vk) = Jk. (4)

The sequence{Dk}L
k=0 is nested according to the following properties:

– Dk is onto
– the null space of each level includes the null space associated to the previous resolution levelN (Dk) ⊂

N (Dk+1).

These properties reflect in the following relation between discretization operators

Dk+1( f ) = 0⇒ Dk( f ) = 0 ∀ f ∈ F . (5)

Thanks to the onto property of each operatorDk, the reconstruction operatorRk can be defined as follows

Rk : Vk → F . (6)

The reconstruction operator is not required to be linear and this makes the Harten’s multiresolution more
general with respect to the wavelets framework [11].

Both operatorsDk andRk need to satisfy the following consistency relationship

(DkRk)(v) = v ∀v ∈Vk, (7)

thus implyingDkRk = Ik where Ik is the identity operator onVk.
In the framework of nested sequences whose elements are defined in (4), the decimation operator Dk−1

k can
be defined as a linear mapping betweenVk ontoVk−1:

Dk−1
k : Vk →Vk−1, (8)

where
Dk−1

k vk = Dk−1 f ∈Vk−1 ∀vk = Dk f ∈Vk. (9)

The decimation operator is used to generate recursively the set of discrete data from the highest resolution
level (k = L) to the lowest (k = 0) {vk}L−1

k=0

vk−1 = Dk−1
k vk ∀k = L,L−1, . . . ,1. (10)

Inversely, the prediction Pkk−1 allows to approximate the set of datavk from vk−1

vk = Dk f ≈ Dk(Rk−1vk−1). (11)

This leads to the definition of the prediction operator Pk
k−1 between discrete data on successive resolution levels

as
Pk

k−1
def
= DkRk−1 : V k−1 →V k. (12)
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A consistency properties can be found between the discrete operators,i.e. Dk−1
k Pk

k−1 = Ik, following from

vk−1 = Dk−1
k vk = Dk−1

k Dk f = Dk−1
k DkRk−1vk−1 = Dk−1

k Pk
k−1vk−1. (13)

Now, an error prediction in the MR framework,ek, can be defined as

ek def
= vk −Pk

k−1vk−1 = (Ik −Pk
k−1Dk−1

k )vk. (14)

The prediction error satisfies (from the consistency property (13))

Dk−1
k ek = Dk−1

k (vk −Pk
k−1vk−1) = vk−1− vk−1 = 0, (15)

then it is in the null space of the decimation operatorek ∈ N (Dk−1
k ). Remembering the definition (8) and

applying the rank theorem, it is possible to find that

dim(Vk) = dim(N (Dk−1
k ))+dim(Vk−1)→ dim(N (Dk−1

k )) = dim(Vk)−dim(Vk−1) = Jk − Jk−1. (16)

The linear independent coordinates ofek are called wavelets or detailsdk. Two operators can be defined to
link the prediction error to the details,Ek andGk, as follows

ek def
= Ekdk, dk def

= Gkek with EkGk : V k → N (Dk−1
k ). (17)

Using all the operators described in this section, a multiresolution representation of data can be defined.
This is obtained by two procedure: theencoding and thedecoding. The encoding moves from the high-

est resolution level to the lowest one applying recursively (for allk = L, . . . ,1) the decimation operator and
computing the details {

vk−1 = Dk−1
k vk

dk = Gk(Ik −Pk
k−1Dk−1

k )vk.
(18)

The multiresolution representationvMR refers to the possibility to obtain a one-to-one correspondence between
the highest resolution levelvL and the sequence of the detailsdk in addition to the lowest resolution levelv0:

vMR
def
= {v0,d1, . . . ,dL}. (19)

The decoding procedure is the dual procedure with respect to theencoding: recursively moves from the
lowest resolution levelv0 together with the prediction errorek for all the levelsk = 1, . . . ,L

vk = Pk
k−1vk−1+Ekdk. (20)

Ideally,decoding andencoding permit an ideal exchange of information among different resolution levels.
In order to be useful, these operations are coupled with an operator of data truncation. This additive operator
allows, under a certain tolerance, to eliminate the over abundant information. The compression capability
opens several possibilities to the application of the multiresolution framework to compress the data as, for
instance, in the signal/image representation schemes [6] or as a fundamental brick in the solution of intrinsically
multi scales problems, as demonstrated already in the first seminal works of Harten [16,17]. In this paper,
focused on stochastic partial differential equations, the truncation procedure is even more important. In fact,
the prediction error is no more an estimationa posteriori of the prediction operation, but an indicationa
priori of the possibility to predict the solution. In the following, the multiresolution framework is extended
to the partial differential equation solved by conservation methods, in the cell-average and the point-value
settings. The approach proposed in the present work remains anyway a weak-coupling approach between the
physical and stochastic space. This should be interpreted as follows. In the present paper the multiresolution is
employed only for the representation of data in the stochastic space, while the physical space is not affected by
it. This approach reflects the situation in which the discretizations between the two spaces remain independent.
However Abgrall et al. introduced a novel method for UQ in which the physical and stochastic space are
considered as a unique space [2,1]. In a such context the multiresolution of data could be applied not only on
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the stochastic dimension, but also for the discrete representation of data in the overall physical/stochastic space.
The need for a compact representation of data along the stochastic space makes very attractive and natural the
choice of the probability density function as weight function for the cell average setting. For these reasons,
more general averaging procedures as the hat-based discretizations [11,8] are not investigated in this work (see
[11], in particular, for a generalization of the discretization procedure based on averaging).

3.1 Cell average framework

Consider a functionf = f (ξ), f : Ξ ⊂ Rd → R with d the number of dimensions of the stochastic problem,
i.e. the number of uncertain parameters. The functional spaceF is defined asF = L2(Ξ) because of the cell-
average setting, and the need to have functions with finite variance in the UQ framework. Let us consider the
space equipped with a measure

dµ(ξ ) = p(ξ )dξ , (21)

whereξ ∈ Ξ ⊂Rd is the vector of uncertain parameters andp(ξ ) is the associated probability density function.
Let consider a tessellation, of the stochastic spaceΞ , satisfying the classical non overlapping requirements

Ξ =

Nξ⋃

j=1

Ξ j, with Ξi ∩Ξ j = 0 if i 6= j. (22)

A similar approach, reminiscent of a classical finite volume approach in the physical space [1], allow a natural
treatment of even unbounded stochastic spaceΞ . This is accomplished using the measure dµ which is always
bounded holding the following relation for the probability function:

∫

Ξ
p(ξ )dξ =

∫

Ξ
dµ(ξ ) = ∑

j
µ(Ξ j) = 1, (23)

where the additivity of the integrals is applied considering also the measure of each cell through

µ(Ξ j) =

∫

Ξ j

dµ(ξ ). (24)

In this setting, the discretization operator on thek-th level can be defined over thej-th cellΞ k
j as

(Dk f ) j
def
=

1

µ(Ξ k
j )

∫

Ξ k
j

f (ξ)dµ(ξ ) = vk
j. (25)

By an agglomeration (splitting) procedure with a generic mesh, even unstructured, it is always possible to
obtain a less (higher) resolution level. In a general case, to each cellΞ k

j at the lower resolution level corresponds
a certain number of cell at the higher resolution level. In order to preserve the nested character between levels,
the following properties between meshes must hold:

Ξ k
j =

l̄c

∑
l

Ξ k+1
l . (26)

Let us consider, for example, a 1D case of equally splitted cells between levels in the case of regular nested
meshes (the number of cells of the levelk+1 impinging at the lower levelk is fixed to two (̄lc)).

In this case, the decimation operator could be obtained as follows (see figure 1)

(Dk−1
k vk) j = (Dk−1

k Dk f ) j = (Dk−1 f ) j =
1

µ(Ξ k−1
j )

∫

Ξ k−1
j

f (ξ)dµ(ξ )

=
1

µ(Ξ k−1
j )

(
µ(Ξ k

2 j)(Dk f )2 j +µ(Ξ k
2 j−1)(Dk f )2 j−1

)
.

(27)
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Note that in the general case of an arbitrary PDFp(ξ ), even the 1D case sketched in figure 1, the nested se-
quence produces nested relations with non constant coefficients even for the same level of resolution depending
from the measure. To recover the counterparts of the physical space case, the splitting/agglomeration of each
cell, based on a Lebesgue measure, should be replaced with a splitting based directly on the probability mea-
sure. The nested sequence of the meshes, even in this case, is totally independent from the function and can be
generateda priori with the only requirement to know the probability distributionp(ξ ).

Ξk
2j−1 Ξk

2j

Ξk−1
j

ξk−1
jξk−1

j−1

ξk2jξk2j−1ξk2j−2

k

k − 1

Fig. 1 Example of 1D stochastic nested meshes for the cell-average setting decimation procedure.

However, in this paper uniform PDFs are employed for the numerical test cases, then the two criterion,
the splitting/agglomeration based on the Lebesgue or probability measure, are the same. In particular, the
corresponding discretization operator can be defined by the convolution of the functionf with an Haar scaling
function. This approach constitutes a direct link between the Harten framework and the wavelets one.

The reconstruction operatorRk for the cell average setting has been introduced originally by Harten in the
1D case, using a reconstruction via primitive function. This means that the cell averaged function is replaced
by a point valued function that corresponds to its primitive in the nodes of the mesh. This approach, despite
its simplicity in the 1D case, results to be difficult to apply in the multidimensional case if the meshes are not
structured. To overcome this issue Abgrall and Sonar generalized the reconstruction procedure in [5] even for
multidimensional problems on unstructured meshes [4]. Fixed a polynomial degree of reconstructionr, a stencil
S k

j of cells with cardinalitys = s(r) = card(S k
j ) can be fixed. On each stencilS k

j , a polynomialPk
j (ξ ; f ) of

degreer can be constructed. The admissibility of this kind of stencil remains subject to a Vandermonde type
condition (see [5] for further details). Here, supposing the stencils admissible, the conditions to satisfy for the
computation ofPk

j is the following

Dk(P
k
j (ξ ; f ))l = Dk( f )l, ∀l ∈ S k

j . (28)

Further details on the choice of a proper polynomial form in the 1D case is reported in section§3.4. The
reconstruction operatorRk is exactly equal to the union of all the polynomialsPk

j defined on all the cellsΞ k
j .

This makes possible, without introducing confusion, to changeRk with Pk
j when the cellΞ k

j is of interest.

The prediction operator Pkk−1 is obtained following its definition (12), using first the reconstruction pro-
cedure (28) for the levelk −1, and then applying the discretization operatorDk(P

k−1
j ) relative to the level

k.
The remaining step is to define a relation between the errorek and its, linear independent, coordinatesdk

(the wavelets). In the general case (26), a number ofl̄c −1 linear dependent relations for the components ofek

must hold. If the case of the dyadic splitting (l̄c = 2) is addressed, then for each cell only one component ofdk

is present. Referring directly to the figure 1, on each cellΞ k−1
j , the value of(Dk f )2 j−1 can be obtained via the

prediction operator

(Dk f )2 j = (Pk
k−1vk−1)2 j =

1

µ(Ξ k
2 j)

∫

Ξ k
2 j

Pk−1
j dµ , (29)

where the polynomialPk−1
j is obtained according to (28). The last relation (29) permits to write




dk
2 j = vk

2 j − (Pk
k−1vk−1)2 j

vk
2 j−1 =

1

µ(Ξ k
2 j−1)

(
µ(Ξ k−1

j )vk−1
j −µ(Ξ k

2 j)v
k
2 j

)
.

(30)
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Relations (30) are useful both in theencoding and decoding procedures. The cell average framework
described in this section permits a direct link between this representation and a numerical scheme for con-
servations laws. Morevoer, other techniques, such as the sub-cell resolution (SR), introduced by Harten and
co-workers [14], for representing a discontinuous response to the cell interfaces allowing to resolving the dis-
continuity within the cell that contains it, could be easily applied in this context. However, in this paper, the
point value setting best suits the scope of weak coupling between the physical space and the stochastic one,
since a best exploitation of the information in the only stochastic space is possible. Essentially, in the physical
space, it is common to deal with spatially cell averaged value (as in finite volume schemes) while their interpre-
tation in the stochastic space is more commonly a natural point value setting. The approach of a combined finite
volume discretization for both the spatial and stochastic space, has been proposed by Abgrall and co-workers
in [1,2]. The natural extension of the cell average framework, here described, is its application to the so called
semi intrusive method of Abgrall, that, however, is left to further works.

3.2 Point-value framework

The point value setting represents since its introduction by Harten in [16] a very flexible setting to build nu-
merical scheme with a multiresolution rearrangement of the information despite its simplicity. Conceptually
the point value setting is the most natural dealing with only discretized data.

Let us consider bounded functionsf ∈ F = B(Ξ) and a number of stochastic parameters equal tod

f : Ξ ⊂ Rd → R (31)

whereΞ must be intended bounded with respect the measure dµ previously introduced in (21). On the domain

Ξ , let us suppose to generate nested sequences of pointsG k =
{

ξ k
j

}
whereξ k

j ∈ Ξ . The sequence is nested if

the following condition is satisfied
G k−1 = G k ∩G k−1, (32)

that allows the possibility to increase (decrease) the resolution level only adding (removing) a finite set of
points for a fixed levelk.

The nested property of the meshes directly turns into the nested character of the discretization operator

(Dk f ) j = f (ξ k
j) = vk

j, (33)

from which the discretization operator Dk−1
k is obtained directly removing fromvk all the componentsvk

j =

f (ξ k
j ) whereξ k

j ∈ G k \G k−1.

The reconstruction operatorRk can be associated to the polynomial interpolationPk
j on a fixed stencil

S k
j relative to the interval[ξ k

j−1,ξ
k
j]. More details about the selection of the stencil and the construction of the

polynomialPk
j are reported in the section§3.4. In this case, the following prediction operator can be used:

(Pk
k−1vk−1)2 j−1 = (DkP

k−1
j )2 j−1 = Pk−1

j (ξ k
2 j−1). (34)

In this setting, the errorek is equal to zero for all the pointsξ k
j ∈ G k−1, while the number of non-redundant,

i.e. linear independent, coordinatesdk is equal to card(G k \G k−1), where the wavelets are defined as follows

dk
j = vk

2 j−1− (Pk
k−1vk−1)2 j−1 ∀ξ k

2 j−1 ∈ G k \G k−1. (35)

The point value setting shows a great flexibility in terms of polynomial reconstruction where well estab-
lished techniques as the essentially non oscillatory (ENO) reconstructions procedure can be introduced [4,5]
for virtually any kind of meshes. In the following section, a brief introduction to the truncation procedure is
provided.
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3.3 Truncation and stability requirements

One of the most important objective of multiresolution framework is the compression capability. The essential
idea is to eliminate all the redundant information keeping only the significative one. Note that the compression
process always generates an approximation of the initial data. Let us consider to have a functionf , discretized
on the finest resolution levelvL =DL f , that is represented in its multiresolution formvMR. The aim of the trun-
cation procedure is to generate an approximated multiresolution representation ˆvMR. The truncation procedure
yields, after the application of theencoding algorithm on ˆvMR, a data set ˆvL which is close, in some norms and
under certain accuracy requirements, to the original datavL. Different truncation procedure can be designed
to achieve the correct reproduction of the data obtaining the desired level of compression (see for instance
[18]). In this paper, the truncation based on the elimination of the waveletsdk under a prescribed tolerance
is addressed. The problem statement is the following: given a sequence of scale coefficients or wavelets for a

fixed leveldk and assigned a level dependent tolerance criterionεk, the idea is to generatêdk =
{

d̂k
j

}Jk−Jk−1

j=1
according to

d̂k
j = tr(dk

j ,εk) =

{
0 |dk

j | ≤ εk

dk
j otherwise.

(36)

Different choices exist in literature for the threshold parameterεk: a level independent choiceεk = ε or a
dependent criterionεk = ε/2L−k. Since the original work of Harten, the problem of the stability of the MR rep-
resentation of the data has been analyzed. Harten proposed [15] to modify theencoding procedure to preserve
the following condition

||vL − v̂L|| ≤Cε , (37)

with C as a constant with a norm asL1 or L∞. The interested reader can found a detailed analysis on the stability
questions of the Harten framework with the relative error bounds in [7].

Classically, the effectiveness of a MR approach is measured in term of its compression capability,i.e.
the number of activatedwavelets Nw with respect to the dimension of the discrete space at the finest level
dim(VL) = JL. The compression ratioµcr is usually defined as follows:

µcr =
JL

Nw + J0
. (38)

However, in the TE approach presented in this work, the algorithm does not require to know the solution at
the finest level. This leads to the definition of an evaluation ratioτ , measuring the number of evaluationsNeval

of the model with respect to the dimension of the full discrete spaceJL

τ =
JL

Neval
. (39)

In section§5.1, results on both the compression ratioµcr and the evaluation ratioτ are provided for different
applications of the TE algorithm.

3.4 From the linear approach to the non linear one: introduction of the high-order ENO reconstruction

As previously described, the reconstruction operatorRk is related to the polynomial interpolant on a fixed
stencil. The stencil must be intended as a set of cells or points depending from the setting.

In the following, the details for the selection, even non linear, of the stencil are presented in the case of 1D
regular meshes. The reader can find further details on the multidimensional case in [5,4]. The case of the point
value setting is explicitly addressed in the following; the cell average setting can be obtained substituting the
point notion with the cell one.

The generic stencilS for a polynomial interpolation of orderr > 0 is

S = S (r,s) = {−s,−s+1, . . . ,−s+ r} , with r ≥ s > 0. (40)
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On the stencilS it is possible to define a number ofNS = card(S ) Lagrange polynomials:

Lm(y) =
−s+r

∏
l=−s
l 6=m

(
y− l
m− l

)
with Lm(i) = δi,m andi ∈ S . (41)

For eachξ ∈ [ξ j−1,ξ j] the generic polynomial is defined as

q j(ξ ; f ,r,s) =
−s+r

∑
m=−s

v j+m Lm

(
ξ −ξ j

h

)
, (42)

whereq j(ξl) = vl = f (ξl) (this condition must be replaced for the cell average setting imposing a (28)-like con-
dition). To eachq j(ξ ; f ,r,s) ∈ [ξ j−1,ξ j] the topological stencil associated isS j =

{
ξ j−s,ξ j−s+1, . . . ,ξ j−s+r

}

with card(S j) = r+1.
The interpolation error is defined as follows [23]

E(ξ ) = f (ξ )−q j(ξ ) = f [S j,x]ωr+1(ξ ), (43)

where f [S j,x] is ther+1st divided difference off on the stencilS j andξ :

f [S j,ξ ] = ∑
ξm∈S j

f (ξm)

ω ′
r+1(ξm)

, (44)

where
ω ′

r+1(ξ j) = ∏
ξm∈S j
ξm 6=ξ j

(ξ j −ξm). (45)

The so-called nodal polynomialωr+1(ξ ) in (43) is defined as follows

ωr+1(ξ ) = ∏
ξm∈S j

(ξ −ξm). (46)

Then, using the notation employed in§3.2, without a lack of generality, let us considerΞ = [0,1], the
polynomial interpolantPk

j (ξ ) = q j(ξ , f ,r,s) with ξ ∈ [ξ k
j−1,ξ k

j ] and the reconstruction operatorRk obtained

as the union of each polynomial
{

Pk
j (ξ )

}Jk

j=1
onG k =

{
ξ k

j

}Jk

j=0
with ξ k

j = jhk andJk = 1/hk .

If the stencil is fixeda priori, choosing both the degreer and the type of stencils, the multiresolution
framework is said to be linear. Looking at the form of the interpolation error (43), it is evident that the error
is minimized by selecting centered stencils (once a divided difference is fixed). However, this general criterion
is not sufficient for optimal polynomial interpolations for non smooth functions. The innovative contribution
of Harten has been to provide a general non-linear alternative to the wavelet framework. This is accomplished
just at level of the selection of the stencil shifting from a data-independent to a data-dependent selection.

The pivotal idea is constituted by the analysis of the interpolation error (43). Classical numerical analysis
(see for instance [23]) results allow to link ther + 1st divided differencef [S j,ξ ] with the regularity of the
function (if it is smooth enough to be differentiable at leastr+1 times), that is:

f [S j,ξ ] =
f (r+1)(ξ̄)
(r+1)!

, (47)

whereξ̄ is in the convex hull of the setS j ∪{ξ}.
The equations (47) and (46) inflated in (43) lead to

E(ξ ) =
f (r+1)(ξ̄ )
(r+1)!

O(hr+1). (48)
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The case of non smooth function is dramatically different. If the stencilS j, with cardinality equal tor + 1,
contains a jump discontinuity,i.e. the stencil crosses it, the following relation holds

E(ξ ) = f [S j,ξ ]ωr+1(ξ ) = f [ξi−s, . . . ,ξi−s+r,ξ ]ωr+1(ξ ) =
f [ξi−s+1, . . . ,ξi−s+r]− f [ξi−s, . . . ,ξi−s+r−1]

rh
ωr+1(ξ )

= · · ·= O([ f ])
hr+1 ωr+1(ξ ) = O([ f ]).

(49)

The equation (49) is obtained consideringξi−s+1 < ξ < ξi−s+r, where the jump of the functionf in a point in
the convex hull ofS j ∪ξ is indicated as[ f ]. If the jump is only at some derivativep, it follows that

f [S j,ξ ] =

{
O([ f (p)])/hr−p if r > p

O(|| f (r)||) otherwise.
(50)

The presence of discontinuities generates a degradation of the accuracy in each interval[ξ j−1,ξ j] associated
to a stencilS j which crosses discontinuity. However, a relevant aspect is the locality of the loss of accuracy
for the interpolation in presence of non-smooth functions; this is a crucial aspect in the comparison between
local approximation technique with respect to global approximation, like the generalized Polynomial Chaos
(PC) [20].

In the MR context, a measure of the degradation of the interpolation is contained in ther + 1 divided
difference f [S j,ξ ]. From this observation, Harten et al. introduced, in [19], the so-called Essentially non
oscillatory (ENO) interpolation in the context of the numerical methods for conservation laws. The idea is
to adapt the stencil, in presence of discontinuity, to avoid crossing the discontinuity; the interpolation is then
carried out only using the regions of smoothness. Two different algorithms have been presented in [19]: a
hierarchical selection and a non-hierarchical one. The non-hierarchical selection is demonstrated [6] to be able
to detect even jump in the derivative of the functions. However, the non-hierarchical selection is, in the same
paper, claimed to produce biased stencils away from discontinuity regions. For this reason, aiming to introduce
the ENO technique in the MR context to gain in term of compression capabilities, the focus, in the present
paper, is on a hierarchical selection of the stencil employing the following algorithm [19]

Algorithm 1: Hierarchical selection of the stencil

s0 = j ;
for l = 0, . . . ,r−2 do

if
∣∣ f [ξsl−2, . . . ,ξsl+l ]

∣∣<
∣∣ f [ξsl−1, . . . ,ξsl+l+1]

∣∣ then
sl+1 = sl ;

end
end
s j = sr−1 ;

to obtain the stencilS ENO
j =

{
ξs j−1,ξs j , . . . ,ξs j+r−1

}
.

In the present paper, two different interpolations are used: the linear interpolation (r = 1) and the cubic
interpolation(r = 3). In the linear case, the stencil is constituted by only two points and no ENO selection is
possible. In case of a discontinuity, the interpolation degrades, as all the other techniques, but no influence on
the adjacent intervals exists. The situation changes for the cubic interpolation. In this case, the stencil contains
four points, than the presence of a discontinuity has the effect to degrade the interpolation in three intervals:
the interval that contains the discontinuity and the two neighborings. In practice all the intervals contained in
the stencilS j are affected by the presence of the discontinuity.

The direct effect is to generate three significative coefficients for each discontinuity with a systematic lost
in terms of compression capabilities in presence of non-smooth solutions, thus demanding the use of a ENO
selection. In the A, the coefficients for the cubic interpolation case are reported with some further details on
the selection of the stencils at the boundaries.
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In this section, the generalized Harten framework has been reformulated with respect to the stochastic
problem. Now, in the next section, a weak coupled scheme in the spatial/stochastic space with multiscale
capabilities is presented.

4 Design of a weak coupled spatial-stochastic scheme

In this section, a MR scheme based on the elements presented in§3 is illustrated. First, the procedure to obtain
a multi-scale representation of the solution performing the truncate and encode (TE) algorithm, is presented
(§4.1). The time-advancing strategy is presented in section§4.2. Then, the TE strategy is extended in§4.4 to
the case when solution depends on both physical space and stochastic space. The introduction of the physical
space naturally leads to multi-scale schemes based on different physical discretizations. The general idea can
be applied to virtually any kind of spatial discretization. However, in this paper, standard (Godunov first order)
and high-resolution (MUSCL) finite volume schemes for fluid-dynamics are considered.

The aim of the present paper is the introduction of efficient schemes to address the solution of stochas-
tic partial differential equations in presence of uncertain parameters. Classically the Harten’s MR scheme has
been introduced to allow the compact representation of a function in the physical space. In the case of time
dependent problems, the evolution of the significant details has been connected to the equation by means of
a CFL-based criterion. This criterion is not adapted to the stochastic space. The approach here presented is to
obtain, at each time step and for each physical location, a compact discrete representation of the function of
interest in the stochastic space. The compact representation is obtained in a way to require a reduced number of
true evaluations of the model and, by means of the reconstruction operatorRk, it can be considered, under the
prescribed toleranceε , to be equivalent to the full discrete solution. For each time step and for each physical
location the so-called truncate and endode (TE) algorithm (see section§4.1) must be applied to obtain a com-
pact representation of the discrete data in the stochastic space. The basic algorithm is extended to the partial
differential equations, the spatial-TE (sTE), in the section§4.4.

4.1 The fundamental brick: a one time Truncate and Encode approach in the stochastic space

In this section, the truncate and encode TE algorithm is presented. The pivotal idea of the algorithm is to identify
in the prediction errorek, trough its linear independent componentsdk, of a certaink−th level a measure
of the quality of the predictor operator Pk

k−1. The results presented in§3.4 show that the interpolation error
diminishes, moving from a coarser level to a finer one, with respect to the local regularity of the function and
the local order of the polynomial employed for the interpolation. On the contrary, in presence of discontinuities,
the error remains constant and of the orderO[1]. This allows to claim that, starting from the exact knowledge
of a finer enough levelk, and using the discretization operatorsDk, the recursive combinations of prediction
operations via the operators Pk

k−1 and evaluations of the errorek are sufficient to determine the region where
the the solution is well-known (under a certain criterion) or not.

In the following the algorithm is presented in an abstract way, while, in§4.3, the 1D algorithm is more
precisely described. The focus is devoted to the point-value setting, while the cell-average framework and, in
particular, its link with the semi-intrusive method [1] is left to further research. Moreover the point value setting
is explicitly addressed and employed in the numerical test cases reported in§5. The algorithm starts with the
definition of the coarsest level of resolutionk = 1. On this level, the discretization operator is applied obtaining
the discrete datav1: v1 = D1 f . By decimation, it is also possible to obtain the discrete data on the levelk = 0
knowing onlyv1:

v0 = D0
1v1. (51)

An encoding step analogous to what is normally done in the MR classic context (see (18)) is then completed
computing the linear independent coefficientsdk of ek for k = 1:

dk = Gk(Ik −Pk
k−1Dk−1

k )vk. (52)
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The truncation is applied ond1 with respect to the thresholdε defined by the user and to the relationεk =
εk(ε ,k):

d̂1 = tr(d1,εk). (53)

This operation however is based on the knowledge of the resolutionk = L of the finest level on which the
threshold is always equal toε (see (36)). The knowledge of the resolution is intended to be exactly the integer
k = L assigned to the finest level if the coarsest is marked ask = 0 and at each refinementk is increased by one.

The datad1 are investigated to locate the region of the domain in which the accuracy of the prediction
via Pk

k−1 is not adequate. The non-zero waveletsd1
j are identified. At each non-zero wavelets corresponds a

region in which the knowledge of the solution is insufficient under the criterion used in the truncation (53),
thus demanding more information. In particular, after the generation of the mesh on the levelk = 2, on all the
cells/points inside the regions of the domain (at levelk = 0) used to generate the corresponding waveletsd1

j

(this correspond in the 1D case to the interval[ξ 0
j−1,ξ

0
j ]), the discretization operatorD2 is applied, while in the

region marked as well-represented, thedecoding procedure is performed:

v2 = P2
1v1+E2d2 ≃ P2

1v1. (54)

The assumption in the equation (54) is that for every null wavelets at a levelk−1, the corresponding wavelets
at levelk are null too. In the case of non null details, the equation (54) is not applied, but substituted by a direct
(exact) discretization of the function by the operatorDk for k = 2.

Knowing v2 andv1, theencoding is performed computingd2 and their truncated counterpartd̂2 by means
of (36). The algorithm is then repeated until reaching the finest levelL or a full satisfactory prediction,i.e.
dk

j = 0 for all j = 1, . . . ,Jk − Jk−1.
The preliminary sequence of operations is the following:

– Generation of a nested set of meshesG k for k = 0, . . . ,L (0 is the coarsest mesh);
– Definition of the operatorDk, Rk, Dk−1

k and Pk
k−1 according to the setting (cell-average or point value) as

described in sections§3.1 and§3.2;
– Setting a proper thresholdε and a proper relation forεk = εk(ε ,k;L)
– Discretization of the levelk = 1: v1 = D1 f ;
– Decimation of the discrete datav1 to obtainv0 = D0

1v1

The Truncate and Encode algorithm can be resumed as follows:

Algorithm 2: General Truncate and Encode algorithm

while 2≤ k ≤ L do
Encoding: dk−1 = Gk−1(Ik−1−Pk−1

k−2Dk−2
k−1)v

k−1;

Truncation: d̂k−1 = tr(dk−1,εk−1) ;
for j = 1, . . . ,Jk do

if vk+1
j = (vk+1) j ∈V k+1\V k then
if dk

j⋆ > 0 then
vk+1

j = (Dk+1 f ) j ;

else
vk+1

j = (Pk+1
k vk) j ;

end
else

vk+1
j = (Pk+1

k vk) j ;
end

end
end

The index j⋆ is used to indicate, in this abstract version of the algorithm, the index of the wavelet at level
k to the point at levelk+1. The explicit example is reported in the 1D case in§4.3. Obviously, the algorithm
stops whend̂k = 0, i.e. no further discretization are needed to reach the proper accuracy.
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Note that the last step of the algorithm is possible only in presence of the consistency between the oper-
ators of prediction Pkk−1 and decimation Dk−1

k (see (13)); the decimation operator is never used (except in the
preliminary stages D01) to obtain a levelk − 1 from the finerk. Moreover, the consistency property between
the discrete operator Pk

k−1 and Dk−1
k guarantees that is always possible to obtaink−1 from k by decimationa

posteriori and that the waveletsdk represent the linear independent components of the error vector.

4.2 Time advancing strategy with accuracy preserving properties

In this section, the time advancing procedure applied to the TE algorithm is described. Here, the case of ordinary
differential equations is considered to present the main idea, while the most complex case of partial differential
equations is presented in§4.4, where the full spatial-TE algorithm (sTE) is presented.

Let us consider a stochastic Cauchy problem,i.e. find statistics fory ∈ C (0,T )





dy(t,ξ )
dt

= f (t,y(t,ξ ),ξ )

y(0,ξ ) = y0(ξ ),
(55)

whereξ is the vector ofd stochastic parametersξ ∈ Ξ ⊂ Rd with probability distribution functionp(ξ , t)> 0
for all t ∈ [0,T ].

Let us consider a uniform discretization ofNt intervals of length∆ t on the time spacet = [0,T ]: tn = n∆ t
with T =Nt∆ t. The solution can be discretized in time for fixed position in the stochastic space:yn(ξ) = y(tn,ξ )
and fn(ξ ) = f (tn,yn,ξ). In the general case of linear multistep method ofq+1 (q ≥ 0) steps [23], it can be
written:

yn+1(ξ) =
q

∑
r=0

αryn−r(ξ )+∆ t
q

∑
r=0

β j fn−r(ξ )+∆ t β−1 fn+1(ξ), (56)

where ifβ−1 = 0 then the scheme is explicit. Note that the presence of an implicit scheme in time do not pose
any problem in this context while it could represent an issue in the case of partial differential equation.

The TE algorithm (Algorithm 2) applied at each time steptn provides the truncated multiresolution repre-
sentation ofy(tn,ξ). However, the application of the discretization operatorDk at a certain levelk in a certain
point j requires the knowledge of the solution inq+1 previous time steps (see (56)). In theory, these values
are always known if thedecoding procedure is applied to obtain the truncated solution at levelL, and then by
applying a sequence of decimation operators:

(yk) j = (Dk
k+1 · · ·DL−2

L−1DL−1
L yL) j with k < L. (57)

As described in§4.1, the algorithm could stop at a levelk < L if the information related to the wavelets are
sufficient to build the multiresolution representation of the solution within a prescribed accuracy. In this case,
despite the possibility todecode (until L) and decimate (applying (57)) it is still possible to move directly from
the maximum level reached̄k to the level neededk (k > k̄). The solution in a generic pointj on the levelk is
then obtained applying a sequence of prediction operators

(yk) j = (Pk
k−1Pk−1

k−2 · · ·Pk̄+1
k̄

yk̄) j with k > k̄. (58)

The equation (56) can be recasted, considering explicitly the random vectorξ k
j ∈ G k:

yn+1(ξ k
j) =

q

∑
r=0

αry
k
n−r(ξ

k
j)+∆ t

q

∑
r=0

βr f k
n−r(ξ

k
j)+∆ t β−1 f k

n+1(ξ
k
j)

=
q

∑
r=0

αr(y
k
n−r) j +∆ t

q

∑
r=0

βr( f k
n−r) j +∆ t β−1( f k

n+1) j,

(59)
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where each term(yk
n) j is obtained via the decimation or prediction sequences reported in the equations (57)

and (58) and( f k
n ) j = f (tn,(yk

n) j,ξ k
j).

Practical applications of the described algorithm are given in the next two sections, in cell average and
point-value settings.

4.3 1D TE example in point-value setting

Let us consider the stochastic ordinary problem (55) with one uncertain parameterξ ∈ Ξ ⊂ R. First, let us
focus on the generation of the nested set of meshes. Equally spaced intervals can be defined both with respect
to a Lebesgue or a probability measure. In the case of unbounded stochastic spaces the tessellation can be
performed only on the basis of the probability measure. On the contrary, in the case of bounded distribution,
both the approaches are still possible. When the stochastic space is bounded, it is always possible to map it, with
a linear transformation, in the unitary hypercube[0,1]d , so, without loss of generality to make the things clear
unitary stochastic space are considered in the following. In both the point-value setting and the cell-average
setting, when time dependent pdf are considered, if the measure is used to build the meshes, then the set of
nested meshesG k is a function of the time:

G k = G k(t). (60)

This possibility can be applied in the TE algorithm, using at each time step nested set of meshes and consistent
operators. In this paper, only uniform probability distributions are used, then the Lebesgue measure coincides
with the probability measure. Some results on bounded time dependent and even discontinuous distributions
can be found in [3] where they are afforded with the topological approach.

The preliminary operations for the TE algorithm are the following:

– Generation of a nested set of meshesG k for k = 0, . . . ,L (0 is the coarsest mesh):

G k =
{

ξ k
j

}Jk

j=0
where ξ k

j = j
1
Jk
. (61)

– Definition of the operatorDk, Rk, Dk−1
k and Pk

k−1 according to§3.2:




(Dky(t,ξ )) j = y(t,ξ k
j )p(ξ k

j , t)

Rk : (Rkvk)l = (Dky(t,ξ ))l = y(t,ξ k
l )p(ξ k

l , t) with l ∈ S k
j

(Pk
k−1vk−1) j = (Rk−1vk−1) j

(62)

In the case of point-value setting, as presented in§3.2 the reconstruction operatorRk is, in each interval
ξ ∈ [ξ k

j−1,ξ
k
j ], a polynomial of orderr with a stencil of cardinality #Sk

j = r+1.

vk−1
j−1 vk−1

j

vk2jvk2j−1vk2j−2

k

k − 1
vk−1
j−2 vk−1

j+1

Fig. 2 Example of 1D stochastic nested meshes for the point-value setting decimation procedure.

Let us consider the situation sketched in figure 2, the decimation operator Dk−1
k is simply obtained as

(Dk−1
k vk) j = vk−1

j = y(t,ξ k
2 j) ∀ j = 0, . . . ,Jk (63)

– Setting of a proper thresholdε and a proper relation forεk = εk(ε ,k;L)
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– Discretization of the levelk = 1: (v1) j = (D1y) j for all j = 0, . . . ,J1;
– Decimation of the discrete datav1 to obtain(v0) j = (D0

1v1) j for all j = 0, . . . ,J0.

The TE algorithm in this case is resumed as follows

Algorithm 3: Truncate and Encode algorithm for the point value setting in 1D stochastic space.

while 2≤ k ≤ L do
for j = 1, . . . ,Jk−2 do

Encoding: (dk−1) j = vk−1
2 j−1− (Pk−1

k−2vk−2)2 j−1 = vk−1
2 j−1−

(
Rk−2vk−2

)
(ξ k−1

2 j−1) ;

Truncation: d̂k−1
j = tr(dk−1

j ,εk−1) ;
end
for j = 1, . . . ,Jk do

if (vk) j ∈V k \V k−1 then
if dk−1

j⋆ > 0 then
Discretization: vk

j = (Dky(t,ξ )) j = y(t,ξ k
j )p(ξ k

j ) ;
else

Reconstruction: (Rk−1(t)vk−1)l = (Dk−1(t)y(t,ξ ))l with l ∈ S k−1
j ;

Prediction: vk
j = (Pk

k−1vk−1) j = (Rk−1vk−1)(ξ k
j ) ;

end
else

Prediction: vk
j = (Pk

k−1vk−1) j = (Rk−1vk−1)(ξ k
j ) ;

end
end

end

The index j⋆ is relative to the wavelets corresponding to the common interval. The typical situation is
sketched in the figure 3 where the two discrete data generated by the generic waveletsd j⋆ are explicitly re-
ported. It is remarkable that in the case of(vk) j /∈V k \V k−1 the prediction, due to the Lagrangian interpolation,
produces exactly the shifting of the value at the previous resolution level (vk+1

2 j = vk
j).

k

k − 1

vkj vkj+2

dk−1
j⋆

Fig. 3 Correspondence between thej⋆ index of the wavelet and the discrete data dependent from it at the successive higher resolu-
tion level.

Also in this setting, if the problem is time dependent as in (55), each evaluation depends on a finite number
of previous time step at the same stochastic location. It is again possible to employ the time stepping procedure
described in 4.2 (see equation (59)).

A cubic ENO-interpolation for the reconstruction operatorRk is presented in A with all the coefficients
and details. The Lagrangian cubic interpolant described in A has been employed to obtain both the linear and
non-linear (ENO) multiresolution schemes.
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4.4 Extending the TE to partial stochastic differential equations of the solution

In this section, the TE strategy is applied to partial stochastic differential equations. In particular, the TE algo-
rithm is applied to each physical coordinate, at each time step in the stochastic space with a proper technique to
exchange data between different time steps with respect to the chosen spatial discretization for the deterministic
solver. The overall strategy is named spatial-Truncate and Encode (sTE).

Note that in this work the case of a weak coupling between the physical and stochastic space is addressed;
this means that it is possible to obtain a different multiresolution representation of the function of interest in the
stochastic space for each physical space point while the MR representation remains explicitely addressed only
in the stochastic space. However at each time step, the union of all the multiresolution representation for all the
physical coordinates represents a compressed,i.e. more compact, representation of the solution in the overall
space, both physical and stochastic. Another approach could consist in a strong coupling: represent at each
time step the overall solution in the physical/stochastic space with only one multiresolution representation,
applying a TE algorithm on the overall space. But, it demands a reformulation of the framework§3, and a
much higher complexity in the implementation (definition of a new scheme on the coupled stochastic/physical
space, building of a complex mesh). On the contrary, the sTE is very flexible and efficient.

The following stochastic problem, written in a conservative form, is considered:





∂ u(x, t,ξ)
∂ t

+
∂ f (u(x, t,ξ))

∂x
= 0

+ initialcondition

+boundaryconditions,

(64)

where the vector of the physical coordinates isx ∈ Ω ⊂ Rn, t is the coordinate on the time spacet ∈ T ⊂ R+

and the vector of the stochastic parametersξ ∈ Ξ ⊂ Rd . Let us suppose that the flux function could be a non
linear function of the solution as this is the case in Burgers’ equation.

First, the tessellation is generated for the physical space. This tessellation can be, without limitation, based
on a whatever kind of grid,i.e. structured, non structured and even conformal or not. The tessellation is anyway
a set of points or cells in the physical space depending on the deterministic scheme employed. From hereafter,
the generic tessellation is indicated asT ⊂ Ω .

An overall threshold,ε , and the minimumk = 0 and maximumk = L level of resolutions have to be chosen
in terms of the number of elements in the stochastic meshes,i.e. choosingJ0 andJL.

The sTE algorithm consists in the application, for all the time stepstn = n∆ t ≥ 0, of the TE algorithm to
each elementxi in T representing the function in the only stochastic space:u(xi, tn,ξ).
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A sketch of the algorithm forNt time intervals andNx elements of the physical tessellationT is the
following:

Algorithm 4: Generic spatial Truncate and Encode algorithm.

while n = 1, . . . ,Nt do
for i = 1, . . . ,Nx do

Preliminary operationsfor TE: ;

– Generation ofG k for k = 0, . . . ,L
– Discretization onk = 1: v1 = D1u(xi, tn,ξ )
– Decimationv0 = D0

1v1

while 2≤ k ≤ L do
Encoding: dk−1 = vk−1−Pk−1

k−2vk−2 ;
Truncation: d̂k−1 = tr(dk−1,εk−1) ;
for j = 1, . . . ,Jk do

if vk
j ∈V k \V k−1 then
if dk−1

j/star
> 0 then

Discretization: vk
j = (Dku(xi, tn,ξ )) j ;

else
Reconstruction: (Rk−1vk−1)l = (Dk−1u(xi, tn,ξ ))l with l ∈ S k−1

j ;

Prediction: vk
j = (Pk

k−1vk−1) j ;
end

else
Prediction: vk

2 j = (Pk
k−1vk−1)2 j ;

end
end

end
end

end

The sTE, as described in the algorithm 4, could be seen as an ordinate sequence of applications of TE
algorithm at different spatial locationsxi and at different time stepstn. Obviously, being the problem (64) time
dependent in general the solution at certain time steps has a dependence from the solution discretized at a
previous time step. However in this case, the situation is slightly different from (59). Depending on the spatial
discretization chosen, the solution, for a fixed time and spaceu(xi, tn,ξ), could depend from different spatial
locations at the previous time step. This dependence is directly related to the spatial discretization chosen. In
theory, this is not a problem, since the solution is represented knowing the multi-scale representation for each
spatial location at each previous time step of interest. From an implementation point-of-view, an additional
algorithm is demanded, the physical assembling (PhAs) algorithm, able to reconstruct at a time steptn, when
required a general vector containing the values of the functionu(x, t,ξ j) for the opportune spatial locations at
the previous time stepst < tn for an assigned stochastic locationξ j. Without any limitations the required vector
could be the full discrete solution at the previous time stepvk(x, t,ξ j) (for a generic level k andt < 0). The
procedure assembles the value at different spatial locations that could be, in principle, not all already computed.
In this case, the reconstruction operator is used to compute the values of the function where needed. The
accuracy of the procedure is guaranteed by the previous application of the TE algorithm to the different spatial
locations of interest at the previous time steps. Also in this case, it could be necessary to use the decimation or
prediction cascade already presented in (57) and (58).

To make things clearer, let us consider a finite difference scheme with a second order spatial discretization
for the fluxes. The equation (64) on an uniform 1D spatial mesh with step∆x, with an explicit Euler scheme in
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time (β−1 = 0 andq = 0 to reference to (59)), becomes:

u(xi, tn+1,ξ) = u(xi, tn,ξ)−
∆ t

2∆x

(
f (u(xi+1, tn,ξ))− f (u(xi−1, tn,ξ ))

)
. (65)

The stencil for each spatial pointxi at timetn+1 is then constituted by the points{xi−1,xi,xi+1} at timetn. These
three points belong to the three different multi-scale representations associated to three different applications
of the TE algorithm. If in some positions in the stochastic spaceξ j at a certain timetn+1 the function should be
evaluated by the application of the operatorDk, the exact (i.e. obtained by the solution of the equation) solution
is computed using the values of the solutions{u(xi−1, tn,ξ j),u(xi, tn,ξ j),u(xi+1, tn,ξ j)}. The role of the PhAs
algorithm is to enter in the three multi-resolution representationsv(xi−1, tn,ξ ), v(xi, tn,ξ ) and v(xi+1, tn,ξ)
and obtain by the cascade decimation (57) or prediction (58) the three values atξ j. More complex spatial
discretization could be employed. In this paper, in the context of high-resolution FV scheme, the MUSCL-
Hancock method (MHM), described in B, is used to solve the linear advection equation presented in section
§5.

In section§5 an example of the application of the PhAs algorithm for the MHM is also presented.

5 Numerical results

In this section, various numerical results are presented. First, a so-called steady stochastic equation is presented
in §5.1. In this case, various aspects of the application of the TE algorithm are presented on a function depend-
ing only from the stochastic spacef = f (ξ ). This case is, in some sense, the equivalent of an image or signal
compression case in which the classical MR framework can be applied knowing the full solution at the finest
level. Here, the TE algorithm is applied showing the stability properties and the compression capabilities in
term of both the compression ratio of evaluation and storage. This simple steady case is optimal to present
the effect of the introduction of a non-linear approach, via the ENO interpolation to obtain the reconstruction
operatorRk, with respect to the linear one in term of the compression capability for discontinuous functions.
The time advancing strategy presented in§4.2 is applied to two different stochastic ordinary differential equa-
tions in §5.2.1 for a scalar case and§5.2.2 for a vectorial one. Successively the solution of stochastic partial
differential equations is addressed introducing the complete sTE algorithm. Two scalar cases are presented: the
linear advection equation presented in§5.3 while the non-linear inviscid Burgers equation is presented in§5.4.

All the meshes are obtained using the agglomeration/splitting based on the Lebesgue measure,i.e. the
points are equally spaced with respect to the parameter spaceΞ and the number of intervals of each meshG k

is chosen in order to be equal to

Nk = 2mk , where mk+1 > mk and mk ∈ N. (66)

If a unitary stochastic space is considered, each meshG k is then defined as the set of pointsG k =
{

ξ k
j

}Nk

j=0

with ξ k
j = j 1

Nk
= jhk.

The relation used to generate the threshold levelεk is

εk =
ε

2L−k . (67)

All the results reported here, are compared with two standard non-intrusive UQ techniques, namely the
Monte Carlo (MC) approach and the Polynomial Chaos method (PC). In this paper, a quasi-MC method based
on Sobol sequences is used for all the numerical tests. For an exhaustive theoretical background of the two
method the reader can refer to the book [20].
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5.1 An introductory example: a steady stochastic function

The first problem is a steady equation in which a functionf = f (ξ ) with ξ ∈ Ξ ⊂ R describes the stochastic
output. The system is affected by an uncertain parameterξ with distribution p(ξ ) here assumed uniform,i.e.
ξ ∼ U [0,1].

The aim is to compute the two first statistical moments, namely the expectancyE and the varianceVar
following the definitions (3).

Two steady functions are studied. A continuous onef1 = f1(ξ ) = sin(2ξ 2π) and its discontinuous coun-
terpart f2 = f2(ξ ) where

f2 =

{
sin(2ξ 2π) if ξ ≤ 11/20

sin(2ξ 2π)+1 otherwise.
(68)

In figure 4, both functionsf1 and f2 are plotted.
For both cases, the exact solutions for the expectancy and the variance can be computed. These are used as

reference values for computing normalized statistical errors, as follows





errE =
E−Eex

Eex

errVar =
Var−Varex

Varex
.

(69)
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Fig. 4 Representation of the two steady functionsf1 (a) andf2 (b).

The TE algorithm is then applied by varying the following parameters: a coarsest level withm0 = 3, a finest
level with an increasingmL = 6, . . . ,20 andε = 10−1 for the linear case (r = 1) and the high-order (r = 3), with
and without the ENO interpolation to build the reconstruction operatorRk. In table 1, results for the function
f1 are reported. In particular, different information are reported for each maximum levelmL employed: the
number of activated waveletsNw, i.e. the total number of detailsdk

j which are greater than the thresholdεk,
the number of evaluated pointsNeval, i.e. points in which the value of the function is obtained applying the
discretization operatorDk. The two ratio of compressionµ and of evaluationsτ , defined in (38) and (39), are
also reported. Knowing the analytical description of the function, the norms inL1 andL∞ can be measured as
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follows 



errL1 = ||vL − v̂L||L1 =
1
N

NL+1

∑
j=0

|vL
j − v̂L

j |

errL∞ = ||vL − v̂L||L∞ = max
j

|vL
j − v̂L

j |,
(70)

in which vL represents the function discretized on the finest level and ˆvL its counterpart obtained by the appli-
cation of the TE algorithm.

From the table 1, it is evident the advantage of the application of the TE algorithm employing the high-order
interpolation as reconstruction operatorRk. This can be seen by comparing the compressionµ and evaluation
τ ratios. However, differences between the high-order with and without the ENO selection of the stencil are
negligible. In this case, the function is continuous and the ENO selection of the stencil obviously produces a
slightly less accurate interpolation with respect to the high-order without ENO. As already described, this is
due to the presence of the nodal polynomial in the error estimation (43).

In a UQ perspective, the interest is not only to obtain a compressed representation of the function at a
fixed time, but to have the possibility to compute statistics in a more efficient way,i.e. with the lower possible
number of simulation for a prescribed accuracy. Results in terms of the error for computing the expectancy and
variance of the functionf1 with respect to the analytical solution are reported in figure 5 (as a function of the
number of applications of the discretization operatorDk). The errors are reported for the TE algorithm with
r = 1, r = 3 (with and without the ENO selection of the stencil) and for the MC method. The MC results in
figure 5 are obtained with an increasing number of simulations from 10 to 1050 (with step of 20 simulations).
Of course, in this smooth case a direct comparison with the PC is not significative because it is well-known
that PC represents the best polynomial approximation, with a spectral convergence.

The TE algorithm achieve the best efficiency in term of reached accuracy with a prescribed number of
simulations,i.e. with a fixed number of exact evaluations of the model via the discretization operatorDk, with
respect to the MC. The introduction of the high-order interpolation (r = 3) for the reconstruction operator
increases the performances for both the computation of expectancyE and varianceVar with respect to the
linear (r = 1) scheme. In this particular case no advantage is seen introducing the ENO selection of the stencil,
as already discussed, due to the interpolation error (43).
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Fig. 5 Statistical errors for the expectancy (a) and variance (b) following the definitions (69).

Then, the TE algorithm is applied to the functionf2. In table 2, the results are reported. Note that the
parameters employed in this case are the same of the previous one.
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mL Nw Neval µ τ errL1 errL∞

r = 1
6 16 31 0.4062500E+01 0.2096774E+01 0.1076455E-01 0.2208432E-02
7 21 41 0.6142857E+01 0.3146342E+01 0.5951887E-02 0.1444001E-02
8 24 47 0.1070833E+02 0.5468085E+01 0.3773556E-02 0.1146526E-02
9 28 55 0.1832143E+02 0.9327272E+01 0.3072174E-02 0.9540855E-03
10 37 73 0.2770270E+02 0.1404110E+02 0.1877892E-02 0.5144779E-03
11 49 97 0.4181633E+02 0.2112371E+02 0.9460814E-03 0.2664874E-03
12 57 113 0.7187719E+02 0.3625664E+02 0.7898986E-03 0.2083328E-03
13 78 155 0.1050385E+03 0.5285806E+02 0.3863797E-03 0.1087813E-03
14 96 191 0.1706771E+03 0.8578534E+02 0.2366288E-03 0.6745963E-04
15 114 227 0.2874474E+03 0.1443568E+03 0.1965388E-03 0.5082159E-04
16 152 303 0.4311645E+03 0.2162937E+03 0.9923035E-04 0.2805389E-04
17 187 373 0.7009251E+03 0.3514021E+03 0.5915678E-04 0.1755482E-04
18 227 453 0.1154824E+04 0.5786865E+03 0.4904217E-04 0.1269737E-04
19 304 607 0.1724635E+04 0.8637380E+03 0.2434267E-04 0.6956671E-05
20 372 743 0.2818755E+04 0.1411275E+04 0.1478987E-04 0.4410474E-05

r = 3
6 12 23 0.5416667E+01 0.2826087E+01 0.1633177E-02 0.1789895E-03
7 13 25 0.9923077E+01 0.5160000E+01 0.7117425E-03 0.1119303E-03
8 13 25 0.1976923E+02 0.1028000E+02 0.7554024E-03 0.1135765E-03
9 17 33 0.3017647E+02 0.1554545E+02 0.2774332E-03 0.5256011E-04
10 19 37 0.5394737E+02 0.2770270E+02 0.2718788E-03 0.3384478E-04
11 22 43 0.9313636E+02 0.4765116E+02 0.2718788E-03 0.2265925E-04
12 24 47 0.1707083E+03 0.8717021E+02 0.5072283E-04 0.8208742E-05
13 24 47 0.3413750E+03 0.1743192E+03 0.5072283E-04 0.8209936E-05
14 31 61 0.5285484E+03 0.2686066E+03 0.5072513E-04 0.4289376E-05
15 36 71 0.9102500E+03 0.4615352E+03 0.1184295E-04 0.1585562E-05
16 44 87 0.1489477E+04 0.7532988E+03 0.6027842E-05 0.6814684E-06
17 47 93 0.2788787E+04 0.1409387E+04 0.3622172E-05 0.4827021E-06
18 50 99 0.5242900E+04 0.2647929E+04 0.2246242E-05 0.3843166E-06
19 64 127 0.8192016E+04 0.4128260E+04 0.1560115E-05 0.1572141E-06
20 70 139 0.1497967E+05 0.7543719E+04 0.7982875E-06 0.1013178E-06

r = 3 (ENO)
6 12 23 0.5416667E+01 0.2826087E+01 0.1633177E-02 0.2377694E-03
7 13 25 0.9923077E+01 0.5160000E+01 0.7526094E-03 0.1674474E-03
8 14 27 0.1835714E+02 0.9518518E+01 0.8017963E-03 0.1342711E-03
9 18 35 0.2850000E+02 0.1465714E+02 0.2852286E-03 0.5381801E-04
10 21 41 0.4880952E+02 0.2500000E+02 0.1601275E-03 0.2512965E-04
11 24 47 0.8537500E+02 0.4359575E+02 0.6364479E-04 0.1202350E-04
12 25 49 0.1638800E+03 0.8361224E+02 0.4692711E-04 0.1017512E-04
13 27 53 0.3034445E+03 0.1545849E+03 0.4408086E-04 0.7086252E-05
14 33 65 0.4965151E+03 0.2520769E+03 0.2570142E-04 0.3325651E-05
15 37 73 0.8856486E+03 0.4488904E+03 0.1224823E-04 0.1989242E-05
16 45 89 0.1456378E+04 0.7363708E+03 0.6257585E-05 0.8766845E-06
17 48 95 0.2730688E+04 0.1379716E+04 0.2960107E-05 0.6389484E-06
18 53 105 0.4946132E+04 0.2496619E+04 0.2399054E-05 0.4202189E-06
19 66 131 0.7943773E+04 0.4002206E+04 0.1513161E-05 0.1868357E-06
20 72 143 0.1456357E+05 0.7332706E+04 0.8283872E-06 0.1276827E-06

Table 1 Results of the application of the TE algorithm on the steady functionsf1 (see figure 4(a)).

In this case, the function is discontinuous and the best performances are achieved with the ENO selection
of the stencil for the reconstruction operatorRk. The effect of the ENO interpolation is then to obtain the same
level of error with a lower number of evaluations. This is due to the degradation of the stencil in just one interval
of the mesh respectiveness of the cardinality of the stencil associated to the polynomial degree chosen for the
reconstruction operatorRk. To make explicit the advantage related to the non-linear MR framework associated
to the ENO selection, in the figure 6 the distribution of evaluated points is shown for both the TE algorithm
with r = 3 with and without the ENO selection (the maximum level is equal tomL = 13). It is evident how the
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mL Nw Neval µ τ errL1 errL∞

r = 1
6 18 33 0.3611111E+01 0.1969697E+01 0.1076455E-01 0.2036121E-02
7 24 45 0.5375000E+01 0.2866667E+01 0.5504224E-02 0.1247305E-02
8 27 51 0.9518518E+01 0.5039216E+01 0.3773556E-02 0.1120426E-02
9 32 61 0.1603125E+02 0.8409836E+01 0.3072174E-02 0.9275682E-03
10 42 81 0.2440476E+02 0.1265432E+02 0.1877892E-02 0.4878891E-03
11 54 105 0.3794444E+02 0.1951429E+02 0.9460814E-03 0.2630980E-03
12 63 123 0.6503175E+02 0.3330894E+02 0.7898986E-03 0.2049418E-03
13 85 167 0.9638824E+02 0.4905988E+02 0.3863797E-03 0.1053899E-03
14 103 203 0.1590777E+03 0.8071429E+02 0.2366288E-03 0.6703958E-04
15 122 241 0.2685984E+03 0.1359709E+03 0.1965388E-03 0.5040153E-04
16 161 319 0.4070621E+03 0.2054451E+03 0.9923035E-04 0.2763382E-04
17 196 389 0.6687398E+03 0.3369486E+03 0.5915678E-04 0.1750254E-04
18 237 471 0.1106097E+04 0.5565711E+03 0.4904217E-04 0.1264509E-04
19 315 627 0.1664410E+04 0.8361866E+03 0.2434267E-04 0.6904394E-05
20 383 763 0.2737799E+04 0.1374282E+04 0.1478987E-04 0.4403922E-05

r = 3
6 18 33 0.3611111E+01 0.1969697E+01 0.7117425E-03 0.8735547E-04
7 21 39 0.6142857E+01 0.3307692E+01 0.7117425E-03 0.9449274E-04
8 24 45 0.1070833E+02 0.5711111E+01 0.7554024E-03 0.9610891E-04
9 31 59 0.1654839E+02 0.8694915E+01 0.2774332E-03 0.3455729E-04
10 36 69 0.2847222E+02 0.1485507E+02 0.1440048E-03 0.1581990E-04
11 41 79 0.4997561E+02 0.2593671E+02 0.5072283E-04 0.7745037E-05
12 44 85 0.9311364E+02 0.4820000E+02 0.5072283E-04 0.7747611E-05
13 47 91 0.1743192E+03 0.9003297E+02 0.5072283E-04 0.7748743E-05
14 57 111 0.2874561E+03 0.1476126E+03 0.5072513E-04 0.3817509E-05
15 64 125 0.5120156E+03 0.2621520E+03 0.1184295E-04 0.1398270E-05
16 75 147 0.8738267E+03 0.4458299E+03 0.4712994E-05 0.4914680E-06
17 79 155 0.1659152E+04 0.8456323E+03 0.3622172E-05 0.4409493E-06
18 84 165 0.3120774E+04 0.1588758E+04 0.2246242E-05 0.3779013E-06
19 101 199 0.5190980E+04 0.2634618E+04 0.1560115E-05 0.1507988E-06
20 110 217 0.9532519E+04 0.4832152E+04 0.7982875E-06 0.9490253E-07

r = 3 (ENO)
6 14 25 0.4642857E+01 0.2600000E+01 0.3700040E-02 0.3713698E-03
7 16 29 0.8062500E+01 0.4448276E+01 0.7526094E-03 0.1680260E-03
8 18 33 0.1427778E+02 0.7787879E+01 0.8017963E-03 0.1342630E-03
9 23 43 0.2230435E+02 0.1193023E+02 0.2852286E-03 0.5378220E-04
10 28 53 0.3660714E+02 0.1933962E+02 0.1601275E-03 0.1929446E-04
11 31 59 0.6609677E+02 0.3472881E+02 0.4692711E-04 0.1011992E-04
12 32 61 0.1280312E+03 0.6716393E+02 0.4692711E-04 0.1012630E-04
13 35 67 0.2340857E+03 0.1222836E+03 0.4408086E-04 0.7037415E-05
14 42 81 0.3901190E+03 0.2022840E+03 0.2570142E-04 0.3276826E-05
15 47 91 0.6972128E+03 0.3600989E+03 0.1224823E-04 0.1940414E-05
16 57 111 0.1149772E+04 0.5904234E+03 0.4841718E-05 0.6950600E-06
17 59 115 0.2221576E+04 0.1139765E+04 0.2960107E-05 0.6360469E-06
18 65 127 0.4033000E+04 0.2064134E+04 0.2399054E-05 0.4181538E-06
19 79 155 0.6636570E+04 0.3382510E+04 0.1513161E-05 0.1847706E-06
20 86 169 0.1219276E+05 0.6204598E+04 0.8283872E-06 0.1256176E-06

Table 2 Results of the application of the TE algorithm on the steady functionsf2 (see figure 4(b)).

ENO selection of the stencil is associated to the locality of the degradation of the interpolation that traduces
in a less polluted stencil,i.e. only the two wavelets generated at a levelk + 1th in the interval containing a
discontinuity at levelkth are affected by the degradation of the interpolation. Outside the interval containing
the discontinuity, the interpolation is performed without degradation limiting the polluted region [6]. For the
TE with a centered stencilr = 3, at each stencil containing a jump discontinuity corresponds three interval in
which the interpolation degrades; of course in each degraded interval two active wavelets are generated. This
means six active wavelets for each jump discontinuity against the two in presence of the ENO selection.
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Fig. 6 Distribution of the evaluated points for the functionf2 with mL = 13,m0 = 3 andε = 10−1 without (a) and with (b) the ENO
selection of the stencil.

The results in terms of statistics for the functionf2 are reported in figure 7 where the PC with a number of
simulation between 6 and 1041 (with steps of 15 simulations) and the MC with simulation between 10 and 1050
(with steps of 20 simulations) are reported. Also in this case the error are computed according to (69) using the
exact solution for the statistics. It is evident how the TE algorithm works better than the MC and PC. Moreover,
the high-order TE improves the performances of the linear TE. An increasing in terms of efficiency,i.e. lower
error with the lower possible number of evaluations, is achieved with the introduction of ENO interpolation for
Rk. The direct effect is to increase, at the same level of error, the compression capability of the scheme (see
also the table 2).
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Fig. 7 Statistical errors for the expectancy (a) and variance (b) following the definitions (69).

In the next section, the TE algorithm is employed in conjunction with the time integration procedure,
presented in§4.2, to solve stochastic ordinary differential equations.
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5.2 Scalar and vectorial ordinary differential equations

In this section, the TE algorithm is employed to solve ordinary differential equations. Two cases are analyzed:
a scalar case§5.2.1 and a vectorial one§5.2.2.

The first case is inspired by the time evolution of the coverage surface presented in [20], while the vectorial
case is the well-known Kraichnan-Orszag system of differential equations introduced in the 1967 by the authors
as an inviscid turbulence model.

In both cases, the aim is to compute statistics of the solution in presence of an uncertain parameter (here
supposed to be uniform distributed). The statistics are time dependent:





E(t) =
∫

Ξ
f (ξ , t)p(ξ )dξ

Var(t) =
∫

Ξ
( f (ξ , t)−E(t))2p(ξ )dξ .

(71)

In both cases the analytical solution is not known, then a fully converged MC solution is employed as
reference solution in order to compute the error of the statistics at each time step. To measure the global error,
three different norms,i.e. namely theL1, L2 andL∞, are used according to the following definitions





errµm
∣∣
Lp

= ||µm(t)−µm
ref(t)||Lp =

(
1
Nt

Nt

∑
i=1

∣∣∣∣∣
µm

i (t)−µm
ref,i(t)

µm
ref,i(t)

∣∣∣∣∣

p)1/p

errµm
∣∣
L∞

= ||µm(t)−µm
ref(t)||L∞ = max

i

∣∣∣∣∣
µm

i (t)−µm
ref,i(t)

µm
ref,i(t)

∣∣∣∣∣ ,
(72)

where the integerp can be equal to one or two andµm indicates the generic statistical moment.

5.2.1 A volume coverage evolution equation

The scalar case here analyzed is extracted from [20]




dρ
dt

= α(1−ρ)− γρ −β (ρ −1)ρ2

ρ(t = 0) = ρ0,
(73)

whereρ ∈ [0,1] represents the surface coverage for a species. The evolution is governed by the surface absorp-
tion rateα , the desorption rateγ and the recombination rateβ . This model is modified in this paper to obtain a
non constant final state 




dρ
dt

= α(ρ̄ −ρ)− γρ −β (ρ − ρ̄)ρ2

ρ̄ = 1+ 1
2 sin(5ξ +8/5)

β = 20ξ ,

(74)

whereα = 1, γ = 0.01 andξ ∼ U [0,1]. A discontinuous initial solution in the stochastic space is chosen in
order to obtain a discontinuous response

ρ(t = 0) =





3/4 if 0.3< ξ < 0.7

0 otherwise.
(75)

In this test case, the time spaceT = [0,20] is discretized by a constant step equal to∆ t = 10−2 and an
explicit Runge-Kutta with four increments,i.e. the classical RK4 method, is used. In the following, the results
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are presented in terms of total number of exact evaluations of the model,i.e. number of applications of the
discretization operatorDk, indicates withN. However, the total number of evaluations corresponds to a number
of points in the stochastic spaceNξ that is constant in the case of the MC and PC and vary in time for the TE
algorithm, i.e. Nξ = Nξ (t). To make the comparisons clear both the number of points are reported in the
following.

The results of the application of the TE algorithm form0 = 4 and a maximum level between 6 and 16, with
ε = 10−1, are reported in figures 8 and 9 for the mean and variance, respectively. The quasi-MC Sobol and PC
are also reported. In all the cases, the TE algorithm displays better performances than both the MC and PC.
The high-order algorithms (r = 3) performs also better than the linear one (r = 1). The non linear version of
the scheme, the TE-ENO, shows the best performances for both the statistics.
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Fig. 8 Errors for the expectancyE of the surface coverage (74), with normsL1 (a), L2 (b) andL∞ (c) following (72). The overall
number of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper axis)
for each time step are reported.
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Fig. 9 Errors for the variance of the surface coverage (74), with normsL1 (a),L2 (b) andL∞ (c) following (72). The overall number
of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper axis) for each
time step are reported.

In figure 10, the distribution of the discretization operations are represented. For each time, each applica-
tion of the operatorDk is marked by a point. Once fixed the minimum levelm0 = 4, the maximummL = 12 and
the thresholdε = 10−1, it is possible to compare the distribution of points for the three different TE schemes,
namely linearr = 1, high-orderr = 3 and high-orderr = 3 with ENO selection of the stencil. It is evident how
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the introduction of the higher-order reconstruction forRk reduces the number of points with the lower possi-
ble number of evaluations in the smooth regions. However, the presence of the two discontinuities causes the
formation of a polluted region,i.e. in which the interpolation degrades, then no high compression in the discon-
tinuous region 10(b) can be obtained. The introduction of the ENO selection of the stencil for the reconstruction
operatorRk recover the narrow polluted region of the linear (r = 1) scheme 10(c).
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Fig. 10 Distribution, in the combined time-stochastic spaceT −Ξ , of the application of the discretization operatorDk for the TE
algorithm withr = 1 (a),r = 3 (b) and withr = 3 and the ENO selection of the stencil (c).

5.2.2 An inviscid turbulence model: the Kraichnan-Orszag problem

The present section deals with the solution of vectorial stochastic differential equations. The extension of the
scalar TE strategy is straightforward. In a general case, it is sufficient to compute a wavelets for each component
of the vectorial function and to choose, for each cell/point, the maximum of the wavelets. If a vectorial function
y = (y1,y2, . . . ,yn) ∈ Rn is of interest, the TE algorithm is applied to each componentyi and the waveletsdk

j

are computed as the maximum of the waveletsdk
j,i relative to eachith component,i.e.

dk
j = max(dk

j,1, . . . ,d
k
j,n). (76)

The text case proposed in this section is the Kraichnan-Orszag problem proposed in 1967 [22] by Orszag.
It is a three mode problem modeling an inviscid turbulence system given by a set of ordinary differential
equations. The original system [22], rotated byπ/4 around the axisy3 can be written following [28] as





dy1

dt
= y1y3

dy2

dt
=−y2y3

dy3

dt
=−y2

1+ y2
2.

(77)

The equation (77) is correlated to the following (uncertain) initial conditiony(t = 0) = (1,0.1ξ ,0)T, where the
parameterξ is uniformly distributed between−1 and 1,ξ = 2ω −1, andω ∼U [0,1]. A classical RK4 formula
is used for the time integration. The timeT = [0,30] is divided inNt = 600 equal steps of length∆ t = 0.05.

The TE algorithm is applied with the following parameters:m0 = 4, mL between 6 and 17 and a threshold
equal toε = 10−1. As in the previous section, three reconstruction operatorsRk are employed: linearr = 1,
centered cubicr = 3 and cubic with ENO selection of the stencil. The MC and PC are also used with a number
of simulationNξ , for each time step between 50 and 1000 for the MC and a degree between 50 and 1000
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for the PC. The reference solution is a fully converged solution withNξ = 20×106 samples generated with a
quasi-MC Sobol sequences.

In this section, the equations (72) are employed to compute errors norms for the expectancy and variance
for all the variables. However, due to the presence of null values for the expectancy of the secondy2 and third
y3 variable, the norms are computed on the time interval[8,30], that correspond to 440 time steps.

In figure 11, the error norms for the expectancy ofy1 are reported in the three normsL1 11(a),L2 11(b)
andL∞ 11(c). The TE algorithm shows better convergence rate with respect to both MC and PC method and
for all the norms. Moreover, the introduction of the cubic reconstruction improves the rate of convergence of
the method, instead the ENO selection of the stencil does not introduce an improvement with respect to the
centered cubic reconstruction. It is possible to note that the improvement of the ENO selection of the stencil in
the region nearξ = 0 (where a jump discontinuity is present) does not compensate the slightly degradation of
the interpolation due to the employment of non-symmetric stencils.
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Fig. 11 Errors for the expectancyE of the variabley1 of the problem (77), with normsL1 (a),L2 (b) andL∞ (c) following (72). The
overall number of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper
axis) for each time step are reported.

The error norms for the variance ofy1 are then reported in figure 12 where the same qualitative results of
the norms for the mean hold.
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Fig. 12 Errors for the varianceVar of the variabley1 of the problem (77), with normsL1 (a),L2 (b) andL∞ (c) following (72). The
overall number of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper
axis) for each time step are reported.
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For the variablesy2 andy3, only the norms for the variance are reported in figures 13 and 14 respectively.
The TE algorithm again shows the better convergence properties with respect to both MC and PC methods.
The application of higher reconstruction operators makes possible to achieve better convergence properties and
again the ENO selection of the stencil does not introduce any improvements. Fory3, the ENO selection of the
stencil causes a slightly increase of the error with respect to the cubic centered reconstruction. A cure could be
to employ an adaptive shifting between centered and ENO selection of the stencils based on some regularity
criterion of the function.
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Fig. 13 Errors for the varianceVar of the variabley2 of the problem (77), with normsL1 (a),L2 (b) andL∞ (c) following (72). The
overall number of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper
axis) for each time step are reported.
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Fig. 14 Errors for the varianceVar of the variabley3 of the problem (77), with normsL1 (a),L2 (b) andL∞ (c) following (72). The
overall number of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper
axis) for each time step are reported.

In order to compare the compression capabilities of the different TE schemes, in the figure 15 the dis-
tribution of the discretized values in the planeT −Ξ are reported. The pattern of points corresponds to the
application of the TE algorithm with the following values for the parameters:m0 = 4, mL = 12 andε = 10−1.
The overall number of pointsN is equal to 148746 for the TE (r = 1) (figure 15(a)), 90638 for TE (r = 3)
(figure 15(b)) and 86880 for TEr = 3 with ENO selection (figure 15(c)). Note that the pattern of the point
is symmetric for the first two cases, but, due to the application of the TE selection of the stencil loses its
symmetric pattern, with a slightly increasing of the errors, as evident in figures 11, 12, 13 and 14.
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Fig. 15 Distribution, in the combined time-stochastic spaceT −Ξ , of the application of the discretization operatorDk for the TE
algorithm withr = 1 (a),r = 3 (b) and withr = 3 and the ENO selection of the stencil (c).

The TE algorithm is very efficient in dealing with multi-scale problems in the context of stochastic dif-
ferential equations. The aim of the next sections is to show how the extension ot the TE algorithm, namely
spatial-TE method (sTE), allows to obtain the same efficiency also for stochastic partial differential problems.

5.3 A (spatial) linear pde: the linear advection equation

In this section, the TE algorithm is applied to partial stochastic differential equations. In this kind of problem,
the solution depends on both physical and stochastic spaces.

The first problem is a linear advection equation in one spatial dimensionx and affected by the presence of
one uncertain parameterξ

∂ u(x, t,ξ )
∂ t

+
∂ f (u(x, t,ξ ))

∂ x
= 0, (78)

where the flux is formulated as follows





f (u(x, t,ξ )) = a(ξ )u(x, t,ξ )

a(ξ ) =
1
40

e5ξ 2
+

1
5

(79)

with the random parameterξ uniformly distributed,i.e. ξ ∼ U [ 1
5 ,

4
5] and the (physical discontinuous) initial

condition

u(x,ξ ,0) =





1 if
2
5
≤ x ≤ 3

5
0 if otherwise.

(80)

Physically, the problem (78) and (79) represents a linear advection equation, where the velocitya is uncer-
tain.

The deterministic solver is a second order MUSCL-Hancock method (MHM) with a Roe superbee slope
limiter [24]. More details are given in B. Now, let us focus on the physical assembling algorithm in this case (see
Section§4.4). As in a classical FV scheme, the MHM deterministic scheme, once fixed a pointxi in the physical
space, requires the solution at the two adjacent pointsxi−1 andxi+1. Moreover, the MHM scheme requires the
slope associated to the three points at the physical coordinatesxi−1, xi andxi+1. Each of these slope can be
computed only basing on the values of adjacent points. Finally, to compute the solutionun

i (ξ j) = u(xi, tn,ξ j) in
the pointxi, the overall stencil is constituted by five points{un

i−2,u
n
i−1,u

n
i ,u

n
i+1,u

n
i+2}. The physical assembling
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procedure is then performed by means of the following algorithm:

Algorithm 5: Physical assembling algorithm applied to the MUSCL-Hancock method for the function
u(xi, tn,ξ j) at levelkth: (vn

i j)
k = Dku(xi, tn,ξ k

j ).

for l = i−2, . . . , i+2 do
if k < k̄ then

(vn
l j)

k = (Dk
k+1Dk+1

k+2 · · ·Dk̄−1
k̄

(vn
l )

k̄) j ;

else
(vn

l j)
k = (Pk

k−1Pk−1
k−2 · · ·Pk̄+1

k̄
(vn

l )
k̄) j ;

end
end

At the end of the algorithm 5, the physical vector PVk
i j = {(vn

i−2 j)
k,(vn

i−1 j)
k,(vn

i j)
k,(vn

i+1 j)
k,(vn

i+2 j)
k} is

obtained with the generic discrete function equal to(vn
i j)

k = Dku(xi, tn,ξ k
j ). Using the discretization operator

Dku(xi, tn,ξ j) can be interpreted as the application of the physical vector assembling in order to obtain PVk
i j and

the consequent application of the deterministic scheme as follows

(vn+1
i j )k+1 = MHM((PVk

i j)
n,∆ t), (81)

where MHM indicates the sequence of operations of the MUSCL-Hancock method (see B).
The linear advection equation (78) is solved here for a fixed spatial mesh ofNx = 101 cells equally spaced

in Ω = [0,1]. The time space is discretized withNt = 250 time steps of length∆ t = 4×10−3. The reference
solution is chosen as the solution obtained withNξ = 221+1= 2097153 equally spaced points in the stochastic
space with the same physical space and time discretization.

In this case, the error norms for the statistics are computed on the whole physical-time space using the
following relations





errµm
∣∣
Lp

= ||µm −µm
ref||Lp =

(
1

Nt ×Nx

Nt

∑
i=1

Nx

∑
j=1

∣∣µm
i j −µm

ref,i j

∣∣p
)1/p

errµm
∣∣
L∞

= ||µm −µm
ref||L∞ = max

i j

∣∣µm
i j −µm

ref,i j

∣∣ ,
(82)

with µi j = µ(x j, ti) the generic statistical moment.
In figure 16, the error norms of the expectancyE of u (78) are reported. The sTE algorithm is applied with

m0 = 3, mL between 5 and 15 (with increment of 2) andε = 10−4. The MC (PC) curves are obtained with
a number of points (degrees) between 20 and 400 with increments of 10. For each norm, the error for MC is
higher than for sTE and PC, and sTE displays the best performances. In this case the advantage of an high-
order reconstruction operatorRk are less evident because the solution is formed by a series of plateaux. As a
consequence, the compression capability of the scheme is already accomplished with a linear reconstruction
operator, while it remains useful to introduce the ENO stencil selection when higher-order reconstruction are
employed.

In figure 17, the error norms are computed for the variance of the solutionu (78). Also in this case the
qualitative results are the same described for the expectancy (the sTE algorithm performs better than PC).

The pattern of the points in the combined physical-stochasticΩ −Ξ space are reported in figure 18 (m0 = 3,
mL = 9 andε = 10−4). A very good compression, associated to an high-order reconstruction operator employ-
ing an ENO stencil selection, is limited to a narrow region relative to the moving hat (see equation (78)). This
could reduce the advantage of an high-order TE scheme compared to a linear scheme due to the presence of
the constant regions where the linear reconstruction is already accurate.

In the next section, the sTE is applied to a non-linear partial differential equation where the advantage of
the application of the sTE scheme over the MC and PC is more evident. At the same time, the introduction of
high-order reconstruction operatorsRk with an ENO selection of the interpolation stencil improves the quality
of the results.
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Fig. 16 Errors for the expectancyE of the solution of Eq. (78), with normsL1 (a), L2 (b) andL∞ (c) following (82). The overall
number of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper axis)
for each time step are reported.
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Fig. 17 Errors for the varianceVar of the solutionu (78), with normsL1 (a), L2 (b) andL∞ (c) following (82). The overall number
of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper axis) for each
time step are reported.
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Fig. 18 Distribution, in the combined physical-stochastic spaceΩ −Ξ , of the application of the discretization operatorDk for the
TE algorithm withr = 1 (a),r = 3 (b) andr = 3 (ENO selection of the stencil) (c) for the solutionu (78) at a timet = 2.

5.4 A fully non-linear pde: the inviscid Burgers equation

In this section, the sTE scheme is applied to non-linear Burgers equations considering an uncertain smooth
initial solution.
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The problem is formulated as follows




∂ u(x, t,ξ )
∂ t

+
∂ f (u(x, t,ξ ))

∂ x
= 0

u(x,0,ξ ) = u0(x,ξ ) = sin(xπξ ),
(83)

where the flux function is the non-linear Burgers fluxf (u(x, t,ξ )) = 1
2u2(x, t,ξ ) and the uncertain param-

eterξ is uniformly distributedξ ∼ U [ 3
2,

5
2].

In this case, a first order Godunov scheme is used with an explicit Euler formula for the integration in time.
The physical spaceΩ = [0,1] is constituted byNx = 101 cells constructed around 101 equally spaced points.
Periodic boundary conditions are also used. The time spaceT = [0,2] is divided inNt = 500 equal intervals of
length∆ t = 4×10−3.

The physical assembling algorithm is the same presented for the linear advection equation in§5.3. The

unique difference is constituted by the stencil PVk
i j that is constituted by only three points: PVk

i j =
{
(vn

i−1 j)
k,(vn

i j)
k,(vn

i+1 j)
k
}

.

Recalling the notation of section§5.3, the deterministic scheme is

(vn+1
i j )k+1 = GO((PVk

i j)
n,∆ t), (84)

where GO represents the ensemble of the operations of the first order Godunov deterministic scheme.
The reference solution in this case is the solution obtained on an uniform grid in the stochastic space with

Nξ = 221+1 points with the same physical and time resolution. The error norms are computed as done for the
linear case, see definitions (82).

In figure 19, the error norms (82) for the expectancy of the solutionu are reported (parameters for the sTE
algorithm:m0 = 3, mL between 5 and 21 (with increment equal to 2) and threshold equal toε = 10−1). The
MC and PC are applied with a number of simulations for the MC and a degree for the PC between 15 and 275
(with an increment of 10). The sTE algorithm performs better than both MC and PC. The MC method produces
always the worst results, while the PC only in the case ofL∞ norms displays results comparable with the sTE
algorithm and with the lower (r = 1) interpolation reconstructionRk. The higher reconstructions perform better
than the lower ones. Moreover, advantages are remarkable in the case of ENO selection of the stencil.
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Fig. 19 Errors for the expectancyE of the solutionu (83), with normsL1 (a),L2 (b) andL∞ (c) following (82). The overall number
of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper axis) for each
time step are reported.

In figure 20, the error norms (82) for the variance of the solutionu are reported. The parameters are the
same already described for the expectancy. The sTE algorithm performs always better than the MC and PC
for all the norms and reconstruction. The higher reconstruction operatorRk allows to attain a better accuracy
with a lower number of simulation. The sTE algorithm with high reconstruction and ENO selection displays
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an error reduction of more than one order of magnitude with respect to the PC method at the same number of
points.
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Fig. 20 Errors for the expectancyVar of the solutionu (83), with normsL1 (a),L2 (b) andL∞ (c) following (82). The overall number
of discretizationN via the application of the operatorDk (lower axis) and the number of stochastic pointsNξ (upper axis) for each
time step are reported.

In figure 21, the pattern for the distribution of points where the discretization operator is applied are re-
ported for the three cases,r = 1 (Fig. 21(a)),r = 3 (Fig. 21(b)) andr = 3 with ENO selection of the stencil (see
figure 21(c)) at a timet = 2 (parameters:m0 = 3, mL = 15 andεk = 10−1). Main differences between the three
patterns are associated to the presence of large derefined zones for higher order scheme, but consequently to a
larger pollutted region near the discontinuity line. The polluted region reduces, as for ther = 1 case, with the
introduction of the ENO stencil selection as evident in figure 21(c).
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Fig. 21 Distribution, in the combined physical-stochastic spaceΩ −Ξ , of the application of the discretization operatorDk for the
TE algorithm withr = 1 (a), r = 3 (b) and withr = 3 and the ENO selection of the stencil (c) for the solution of the stochastic
problem (83) at the timet = 2.

6 Concluding remarks

This paper illustrates a general extension of the Multi-resolution framework proposed by Harten to take into ac-
count uncertainty quantification in differential equations. The TE algorithms allows to obtain a multi-resolution
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representation of the solution not related to the knowledge of the solution at the finest level. This is well fitted
to the UQ framework, where the issue is to reduce the global number of points in the stochastic space. Two
formulations in terms of cell-average and point values have been provided. While in the physical space, it is
common to deal with spatially cell averaged value, in the stochastic space it is more common a point value
setting. Moreover, high-order reconstruction with ENO selection of the stencil in the stochastic space has been
illustrated.

The HO reconstruction efficiency has been verified, first on some algebraic functions, and then on some
ordinary differential equations, thus using the TE algorithm with HO. The HO-TE performs better than MC
and PC, in terms of number of simulations for a prescribed level of accuracy. Moreover, the effect of HO
reconstruction increases the convergence speed. Concerning the ODE, the use of an ENO selection of the
stencil has been shown to slightly degrades the performances, with respect to a third-order reconstruction, for
the Kraichnan-Orszag test case. This is due to a deterioration of the interpolation due to the employment of
non-symmetric stencils.

Finally, the sTE algorithm has been presented in this paper for solving sPDE. This algorithm features a
high-order reconstruction in the stochastic space, a weak coupling in physical and stochastic space,i.e. the
number of points in the stochastic space is adaptive with respect to time and to the location in the physical
space. Moreover, ENO selection of the stencil permits to treat properly the discontinuities propagating in the
coupled physical/stochastic space.

The sTE has been applied on two sPDE, the linear advection equation and the Burgers equation. In par-
ticular, a deterministic scheme, a second order MUSCL-Hancock method (MHM) with a Roe superbee slope
limiter has been coupled with sTE for the linear advection equation. For the advection, sTE works systemat-
ically better than MC and PC, but the advantage of an high-order reconstruction are less evident because the
solution is formed by a series of plateaux. For Burgers equation, the sTE algorithm with high reconstruction and
ENO selection displays an error reduction of more than one order of magnitude with respect to the PC method
at the same number of points, thus making evident the interest of using this kind of approach for discontinuities
propagating in sPDE.

Future developments will be focused on the coupling between the sTE strategy and the SI finite-volume
scheme proposed in [1], and on the number of dimensions in the stochastic space.
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A Cubic interpolation coefficients

In this section, some further details on the cubic interpolation used in the present work are introduced. Recalling the equation (42)

q j(ξ ; f ,r,s) =
−s+r

∑
m=−s

v j+m Lm

(
ξ −ξ j

h

)
, (85)

here a nested sequences of mesh is considered (see figure 2).
The aim is to evaluate the polynomialqk−1

j (ξ ; f ,r,s) of degreer = 3, defined on the interval[ξ k−1
j−1 ,ξ

k−1
j ], in the stochastic

point ξ k
2 j−1 in order to interpolate the functionf = f (ξ ).

The first case is relative to the centered stencilS k−1
j = S k−1

j (r = 3,s = 2) =
{

ξ k−1
j−2 ,ξ

k−1
j−1 ,ξ

k−1
j ,ξ k−1

j+1

}
.
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The polynomial (85) becomes

qk−1
j (ξ k

2 j−1; f ,3,2) =
1

∑
m=−2

vk−1
j+m Lm

(
ξ k

2 j−1−ξ k−1
j

∆ ξ

)
, (86)

where f (ξ k−1
j+m) = vk−1

j+m andLm indicates the Lagrange polynomial (see (41)).

The values for the Lagrange polynomials can be evaluated fory =
ξ k

2 j−1−ξ k−1
j

∆ξ =− 1
2 as follows:

L−2(y) =−1
6

y(y+1)(y−1)→ L−2(−
1
2
) =− 1

16

L−1(y) =
1
2

y(y−1)(y+2)→ L−1(−
1
2
) =

9
16

L0(y) =−1
2
(y−1)(y+1)(y+2)→ L0(−

1
2
) =

9
16

L1(y) =
1
6

y(y+1)(y+2)→ L1(−
1
2
) =− 1

16

(87)

obtaining

qk−1
j (ξ k

2 j−1; f ,3,2) =
1
16

(
−vk−1

j−2+9vk−1
j−1+9vk−1

j − vk−1
j+1

)
. (88)

The cubic polynomialqk−1
j (ξ k

2 j−1; f ,3,2) (88) is used to build the reconstruction operatorRk for the TE algorithm (and its
sTE extension) withr = 3. The ENO selection is used to obtain less oscillatory interpolants. For the cubic case here of interest the

stencil selection is performed, employing the algorithm 1, between the stencilsS k−1
j = S k−1

j (r,s) =
{

ξ k−1
j−s , . . . ,ξ

k−1
j−s+r

}
. In the

case ofs = 1, the Lagrange polynomials evaluated iny =
ξ k

2 j−1−ξ k−1
j

∆ξ =− 1
2 , are the following

L−1(y) =−1
6

y(y−1)(y−2)→ L−1(−
1
2
) =

5
16

L0(y) =
1
2
(y+1)(y−1)(y−2)→ L0(−

1
2
) =

15
16

L1(y) =−1
2

y(y+1)(y−2)→ L1(−
1
2
) =− 5

16

L2(y) =
1
6

y(y−1)(y+1)→ L2(−
1
2
) =

1
16

.

(89)

Moreover, the interpolation polynomial becomes

qk−1
j (ξ k

2 j−1; f ,3,1) =
1
16

(
5vk−1

j−1 +15vk−1
j −5vk−1

j+1+ vk−1
j+2

)
. (90)

For symmetry, it is simple to obtain the polynomial in the cases = 3:

qk−1
j (ξ k

2 j−1; f ,3,3) =
1
16

(
vk−1

j−3 −5vk−1
j−2+15vk−1

j−1 +5vk−1
j

)
. (91)

Note that in the stochastic space the periodicity of the function f cannot be considered, then, at the boundaries the stencil is
always modified to be admissible: for[ξ k−1

0 ,ξ k−1
1 ] the only possible choice iss = 1; for [ξ k−1

1 ,ξ k−1
2 ] the ENO selection concerns

the stencilss = 1,2; while symmetric considerations hold for the two intervals at the other boundary.

B The high-order MUSCL Hancock Method (MHM)

In this section the MUSCL Hancock Method (MHM) is briefly recalled. A very interesting and exhaustive presentation of this
method could be found in [24].

Let us consider a 1D scalar conservation law

∂u(x,t)
∂ t

+
∂ f (u(x,t))

∂x
= 0, (92)

wherex ∈ Ω ⊂ R is the physical space andt ∈ T ⊂R+ is the time space. In the context of finite volume scheme the physical space
is divided in a set of non-overlapping cellsCi with Ω =

⋃
i Ci. The classical first order Godunov scheme, applied to (92), is obtained

introducing the so-called cell-average ¯ui on each cellCi:

ūi(t) =
1
|Ci|

∫

Ci

u(x,t)dx, (93)
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where|Ci| indicated the volume of the cell.
After the integration on each cellCi, it can be written

|Ci|
dūi

dt
+ f (u(xL,t))− f (u(xR,t)) = 0, (94)

with Ci = [xiL ,xiR ] and wherexiL andxiR indicate the left and right interfaces.
Integrating in time the equation (94) betweentn andtn+1 = tn +∆ t, it follows that

|Ci|(ūn+1
i − ūn

i )+
∫ tn+1

tn
f (u(xL,t))dt −

∫ tn+1

tn
f (u(xR,t))dt =

|Ci|(ūn+1
i − ūn

i )+∆ t(Fn
iL −Fn

iR) = 0,

(95)

where a numerical approximation for the flux along the interfacexiL (andxiR ) holds

Fn
iL ≈ 1

∆ t

∫ tn+1

tn
f (u(xiL ,t))dt . (96)

The final form for the first order Godunov scheme is

ūn+1
i = ūn

i −
∆ t
|Ci|

(
Fn

iL −Fn
iR

)
. (97)

As pointed out by LeVeque in [21] for hyperbolic problem the information propagates with finite speed and it is reasonable to
suppose that each numerical flux, at the interface, is function of the solution on the two cells to which it belongs:Fn

iL
= Fn

iL
(ūn

i−1, ū
n
i )

andFn
iR
= Fn

iR
(ūn

i , ū
n
i+1).

In this work, an exact Riemann solver is used to compute the numerical flux. In particular, given two constant state ¯un
i−1 andūn

i
separated by the interface, the exact solution of the problem, the so-called Riemann problem, can be found and the solution at the
interface computed. The numerical flux is then equal to the flux function evaluated knowing the exact solution at the interface. In the
following, the numerical flux function obtained via the solution of the exact Riemnn problem is indicated asFn

iL
= FRM(un

i−1,u
n
i )

for the left interface orFn
iR
= FRM(un

i ,u
n
i+1) for the right interface.

The first order Godunov scheme introduces a great amount of numerical diffusion and then val Leer [21,24] proposed to
consider non constant data on each cell to achieve a higher accuracy. From this idea, the so-called Monotone Upstream-centred
Scheme for Conservation Laws (MUSCL) has been proposed. In this work, a piecewise linear approximation is used for the solution
u(x,t) on the cell|Ci|:

u(x,tn) = ūn
i +σn

i (x− xi) with xiL ≤ x ≤ xiR , (98)

in which σn
i is the slope. The choice ofσn

i = 0 lead to the Godunov scheme. Computing the slopeσn
i as a function of only the

cell averaged solution in the neighboring cells,i.e. σn
i = σn

i (ū
n
i−1, ū

n
i+1), is not the best choice. If centered slope are used, spurious

oscillations can be introduced in discontinuous solution. In practice, a slope limiter should be introduced near the discontinuity to
avoid oscillations. In this work the Roe’s superbee limiter is employed in which





σn
i = maxmod

(
σn
(1),σ

n
(2)

)

σn
(1) = minmod

((
ūn

i+1− ūn
i

|Ci|

)
,2

(
ūn

i − ūn
i−1

|Ci|

))

σn
(2) = minmod

(
2

(
ūn

i+1− ūn
i

|Ci|

)
,

(
ūn

i − ūn
i−1

|Ci|

))
,

(99)

where the minmod and maxmod are defined as follows

minmod(a,b) =





a if |a| < |b| and ab > 0

b if |a| > |b| and ab > 0

0 if ab <= 0

maxmod(a,b) =





a if |a| > |b| and ab > 0

b if |a| < |b| and ab > 0

0 if ab <= 0.

(100)

The fully discrete second order MHM, to compute the cell averaged solution ¯un+1
i , consists of the following three steps:

– For each cellCℓ ∈ {Ci−1,Ci,Ci+1} the solution at the interface is computed according to





un
ℓL

= ūn
ℓ −σn

ℓ

|Cℓ|
2

un
ℓR

= ūn
ℓ +σn

ℓ

|Cℓ|
2

(101)
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– On each cellCℓ ∈ {Ci−1,Ci,Ci+1} the solution is evolved using an half time step:





u⇑ℓR
= ūℓR +

1
2

∆ t
|Cℓ|

(
f (un

ℓL
)− f (un

ℓR
)
)

u⇑ℓL
= ūℓL +

1
2

∆ t
|Cℓ|

(
f (un

ℓL
)− f (un

ℓR
)
) (102)

– The cell averaged value on the cellCi is evolved following

ūn+1
i = ūn

i −
∆ t
|Ci|

(
FRM

(
u⇑i−1R

,u⇑iL

)
−FRM

(
u⇑iR ,u

⇑
i+1L

))
. (103)

The time advancing formula is then limited to a stencil of only three cellsCi−1, Ci andCi+1 but the computation of the slopes
for the cellsCi−1 andCi+1 requires (see (99)) also to know the solution on the two sourrounding cellsCi−2 andCi+2. The av-
erage solution ¯un+1

i , on each cellCi at time tn+1 = tn + ∆ t, can be computed knowing the solution on the augmented stencil{
ūn

i−2, ū
n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2

}
that constituted the stecil obtained via the physical assembling algorithm (see algorithm 5).
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SUMMARY

This paper deals a multiresolution strategy applied to a semi-intrusive scheme recently introduced by the
authors in the context of uncertainty quantification (UQ) analysis for compressible fluids problems. The
mathematical framework of the multiresolution framework is presented for the cell-average setting and
the coupling with the existing semi-intrusive scheme is described from both the theoretical and practical
point-of-view. Some reference test-cases are performed to demonstrate the convergence properties and the
efficiency of the overall scheme: the linear advection problem for both smooth and discontinuous initial
conditions, the inviscid Burgers equation and the 1D Euler system of equations to model an uncertain shock
tube problem obtained by the well-known Sod shock problem. For all the cases presented, the convergence
curves are computed with respect to semi-analytical solutions obtained for the stochastic formulation of the
test cases. In the case of the shock tube problem, an original technique to obtain a reference high-accurate
numerical stochastic solution has also been developed. Copyrightc© 2013 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Finite volume, Uncertainty Quantification, linear advection, Burgers equation, Euler
equations, shock tube

1. INTRODUCTION AND MOTIVATION

In recent years, the scientific numerical community faced a new challenge, the effect and
propagation of uncertain parameters in the numerical models. Nowadays, the attention is focused
not only on the accurate solution of the equations, but also on the effect of uncertain parameters in
boundary or initial conditions and in the model.

Among the non-intrusive approaches,i.e.where uncertainties are quantified practically by making
multiple calls to a deterministic code, several methods are commonly employed: Monte Carlo family
of techniques [1], the collocation family [2] and the non-intrusive Galerkin projection methods.
This last family of methods has been introduced for the first time by Ganem and Spanos [3] for
the analysis of structural dynamics systems and has been generalized by Xiu and Karniadakis [4]
to general probability distributions. Actually, the non-intrusive Galerkin projection represents the
state-of-the art of the stochastic analysis for systems with a smooth response surface due to its
spectral convergence property.

The Galerkin projection is also the most important technique in order to manage intrusively the
uncertainty propagation into a numerical code. In practice, this means that it is possible to obtain an
equivalent set of governing equations for the coefficients of a truncated polynomial representation of
the quantities of interest [5]. Then, the number of equations is related to the number of coefficients

∗Correspondence to: INRIA Bordeaux–Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talcence CEDEX, FRANCE
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employed in the polynomial expansion, and the numerical code should be deeply modified. In many
cases, this leads to complex problems regarding the generality of the approach whenad hocsolvers
are proposed [6]. More recently, Abgrall and Congedo proposed a novel semi-intrusive approach
that extend in a straightforward and natural way, the representation of the variables in the physical
space also along the stochastic space [7]. This approach leads to a very flexible scheme able to
handle whatever form of probability density function even time varying and discontinuous. One of
the prominent advantage of this kind of approach is the possibility to extend in an easier way an
existing deterministic code to its stochastic counterparts.

Following the general idea of a semi-intrusive propagation of the uncertainties, recently, Abgrall
et al. [8, 9, 10] introduced a point-value setting in the multiresolution (MR) framework to represent
data in the stochastic space. The multiresolution representation of data permits to increase the
efficiency of the numerical code for the solution of stochastic partial differential equations. The
idea of introducing the MR representation of data, in the context of stochastic problem, is not totally
new. In [5], a multiresolution basis is employed to represent the solution of a partial differential
equations after fixing the physical coordinate. This representation is very efficient but limited to the
case where the stochastic representation is used at a fixed physical location. To overcome this issue,
more recently, Tryoen et al. introduced in [6] a multiresolution wavelets representation in the context
of intrusive Galerkin projections. However, the Galerkin approach presented remains very problem-
dependent. In fact, using a Roe-type solver demands the computation of the eigenstructure of the
Roe matrix explicitly; this can be very complex. Moreover,ad hocentropy fix should be adopted,
thus increasing the numerical cost associated to the representation of discontinuous solution [11].
This original approach has been further improved to obtain a more efficient scheme employing a
multiresolution adaptive strategy [12]. However, this approach is limited by the spatial and time
discretization accuracy (only first order) that could dominate the overall accuracy. Moreover, the
approach proposed by Abgrall et al [8, 9, 10] has the advantage to remain very general, not limited
from the order of the spatial and time discretization, from the probability density function (that can
be even discontinuous and time varying) and, eventually, from the geometry of the stochastic space
in the case of multidimensional problems.

In this paper, the MR is extended to the cell-average framework and the representation is
implemented in the semi-intrusive scheme [7]. Thanks to its intrinsic capability to manage
discontinuous responses, the semi-intrusive methods represents a promising alternative to the
Galerkin projection techniques for all the applications where the system is dominated by shocks,
as for example in computational fluid dynamics for transonic flows.

In this paper, we demonstrate the advantages of the introduction of a real-time adaptivity in the
stochastic space, by following the evolution of the solution in the overall physical and stochastic
space. This is shown by comparing the accuracy, at a fixed computational cost, with and without
the adaptivity based on the MR framework on the original SI scheme. Different reference test-cases
are performed for which the reference solution can be obtained in an analytical or semi-analytical
approach.

This paper is organized as follows. In section2, the mathematical setting for the stochastic
differential equation is given. Section3 illustrates the multi-resolution framework of Harten,
generalized for the stochastic space, where a cell-average setting is chosen. In particular the
Truncate and Encode algorithm is presented in section3.1 where the representation of the discrete
data is obtained from the coarsest level towards the finest. The semi-intrusive scheme is briefly
sketched in section4 where the formulation is detailed for the MUSCL-Hancock method. The
overall formulation of the adaptive semi-intrusive scheme is presented in5. Several numerical
results are presented in section6. In particular, the introduction of the adaptive representation of
data in the stochastic space is demonstrated to improve the spatial convergence and to cure the
staircase approximation phenomenon with respect to an equivalent not adapted solution. The linear
advection equation, the inviscid Burgers equation and an uncertain version of the Sod shock tube
are performed as test-cases. Concluding remarks are reported in§7.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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2. UNCERTAINTY QUANTIFICATION FOR PARTIAL DIFFERENTIAL EQUATIONS

In this section, we introduce the mathematical setting, used for the UQ analysis in the context of
partial differential equations. Let us consider an output of interestu(x, t, ξ(ω)) depending from the
physical spacex ∈ Ω ⊂ Rnd , the timet ∈ T and a vector of parametersξ ∈ Ξ whereΞ is the sample
space. The output of interestu can be a conserved (or primitive, or another flow variable) variable
of a system of conservation laws.

We suppose that the output of interest is governed by an algebraic or differential operatorL with
a source termS:

L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)). (1)

Initial and boundary conditions, that could depend from the parameter vectorξ, should be provided
for a well-posed problem. Both the operatorsL and the source termS are defined on the domain
Ω× T × Ξ.

Let us define a measurable space(Ξ,Σ, p) whereΣ is itsσ−algebra of events andp a probability
measure with the following properties:

• p(A) ≥ 0 for all A ∈ Σ;
• Countable additivity: ifAi ∈ Σ are disjoint sets thenp(

⋃
iAi) =

∑
i p(Ai);

• as probability measurep is normalized onΞ: p(Ξ) = 1.

The Rd−valued random variableξ specifies a set of events with a corresponding probability.
More formally, the random variableξ is a measurable function that maps the measurable space
(Ξ,Σ, p) to another measurable space, the BorelBd σ−algebra of the real space(Rd,Bd,P). There
is some set of eventsω, thatξ maps to an output eventA ∈ Bd with the probability of occurrence of
A, P(A) equal to the probability ofω:

P(A) = p(ξ−1(A)) = p(ω : ξ(ω) ∈ A). (2)

As usual in the literature, we consider thatP(A) = p(ξ ∈ A) = p(ξ).
The aim of UQ analysis is to find statistical quantities of the solutionu(x, t, ξ), the statistical

moments or the probability distribution.
Assumingu(ξ) ∈ L2(Ξ, p), mean and variance can be computed as follows:

E(u,x, t) =
∫

Ξ

u(x, t, ξ)p(ξ)dξ

Var(u,x, t) =

∫

Ξ

(u(x, t, ξ)− E(u))2 p(ξ)dξ.
(3)

3. THE CELL-AVERAGE MULTIRESOLUTION SETTING

In this section, the multiresolution framework in a cell-averaged representation of data is presented.
The original Harten’s framework [13, 14, 15, 16] is here modified to allow an efficient representation
of data with respect to a general weighted function. In the context of UQ, the weighted function is
easily identified as the probability distribution of the input parameters.

In this paper, only the cell-average framework is analyzed and this choice allows a straightforward
extension of the finite volume representation of data in the coupled physical/stochastic space as
already shown in [7] employing only uniform meshes in both spaces (see later§4).

The Harten framework can be considered, as pointed out by Aràndiga and Donat in [17], as a
rearrangement of the information in a set of discrete data representing different resolution levels.
This rearrangement of data with the addition of a truncation procedure could yield a reduction of
the computational cost and of the memory usage associated to the representation/calculation and
memorization of discrete data.

The Harten framework can be viewed as a more general framework with respect to the classical
wavelets framework in which the hierarchical representation of data is obtained by means of a

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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functional basis based on a dilating equation and a so called mother wavelets. As presented in [18]
the dilating equation in a general space can be difficult to solve, especially for domains of complex
geometries. The Harten framework is capable to avoid the solution of a dilating equation obtaining
a local polynomial basis for general geometries with, eventually, data-dependent strategies for the
representation of data. All this features makes the Harten framework, an optimal starting point for
the development of a general framework for the representation of data.

Two building blocks exist: a discretization operatorDk and a reconstruction operatorRk. Both
operators operates between the continuous space to represent (the stochastic space in this context)
and one of its discrete representation, for instance the resolution levelk−th. The knowledge of
the these two operators allow to define in an unique way two other operators working on data
rearrangement between different resolution levels. These discrete operators between consecutive
levelsk (higher resolution) andk − 1 (lower resolution) are the operators of decimationDk−1

k and
predictionPk

k−1.
In this paper, we consider the cell-average framework. Let us consider a functionf = f(ξ),

f : Ξ ⊂ Rd → R with d the number of uncertain parameters. In the classical MR cell-average
framework,f ∈ F whereF is the functional space of the absolutely integrable functionsF =
L1(Ξ). However, in the context of UQ,F is identified withL2 to deal with function with finite
variance. Let us consider the probability density functionp(ξ) and let us define the following
measure:

dµ(ξ) = p(ξ)dξ. (4)

If the stochastic space is represented by means of a non-overlapping tessellation

Ξ =

Nξ⋃

j=1

Ξj , with Ξi ∩ Ξj = 0 if i 6= j. (5)

the measure of each element of the tessellation can be found as follows

µ(Ξj) =

∫

Ξj

dµ(ξ). (6)

Let us consider a set of discrete operators of discretization{Dk}Lk=0, each of them defined on a
vectorial space of finite dimension

Dk : F → Vk with dim(Vk+1) > dim(Vk) = Jk. (7)

The sequence{Dk}Lk=0 has to be nested according to the following properties:

• Dk is onto
• the null space of each level include the null space associated to the previous resolution level
N (Dk) ⊂ N (Dk+1).

These properties reflect in the following relation between discretization operators

Dk+1(f) = 0 ⇒ Dk(f) = 0 ∀f ∈ F . (8)

A such operator on thek-th level can be defined over thej-th cellΞk
j as

(Dkf)j
def
=

1

µ(Ξk
j )

∫

Ξk
j

f(ξ)dµ(ξ) = vkj . (9)

Thanks to the onto property of each operatorDk, the reconstruction operatorRk can be defined
as its right-inverse

Rk : Vk → F . (10)

The reconstruction operator is not required to be linear and this makes the Harten’s multiresolution
more general with respect to the wavelets framework [19].

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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The reconstruction operatorRk for the cell average setting originally has been introduced by
Harten in the 1D case employing the concept of reconstruction via primitive function. In practice,
the cell-averaged function is replaced by a point valued function that corresponds to its primitive in
the nodes of the mesh. A more convenient approach can be adopted, following Abgrall and Sonar
[20], even for multidimensional problems on unstructured meshes [16]. Fixed a polynomial degree
of reconstructionr, a stencilSk

j of cells with cardinalitys = s(r) = card(Sk
j ) can be fixed. On each

stencilSk
j , a polynomialPk

j (ξ; f) of degreer can be constructed. The admissibility of this stencil
obeys to a Vandermonde condition (see for further details [20]). Supposing the stencils admissible,
the conditions to satisfy for the computation ofPk

j is

Dk(Pk
j (ξ; f))l = Dk(f)l, ∀l ∈ Sk

j . (11)

The reconstruction operatorRk in this case is exactly equal to the union of all the polynomialPk
j

defined on all the cellsΞk
j .

The two operatorsDk andRk should satisfy a consistency relationship between them

(DkRk)(v) = v ∀v ∈ Vk, (12)

thus implyingDkRk = Ik whereIk is the identity operator onVk.
For the nested sequence whose elements are defined in (7), the decimation operatorDk−1

k can be
defined, which is a linear mapping betweenVk ontoVk−1:

Dk−1
k : Vk → Vk−1, (13)

where
Dk−1

k vk = Dk−1f ∈ Vk−1 ∀vk = Dkf ∈ Vk. (14)

The decimation operator, independent from the particularf , is employed to generate recursively
the set of discrete data from the highest resolution level (k = L) to the lowest (k = 0) {vk}L−1

k=0 ,

vk−1 = Dk−1
k vk ∀k = L,L− 1, . . . , 1. (15)

By an agglomeration (splitting) procedure, for a generic mesh, even non structured, it is always
possible to obtain a less (higher) resolution level. To each cellΞk

j at the lower resolution level
corresponds a number of cell (l̄c) at the higher resolution level. To preserve the nested character
between levels, the following properties between meshes should hold:

Ξk
j =

l̄c∑

l

Ξk+1
l . (16)

In the following, without loss of generality,̄lc = 2. This happens naturally for the 1D case of equally
splitted cells between levels in the case of regular nested meshes.

In this case, the decimation operator (see figure1) could be obtained as follows

(Dk−1
k vk)j = (Dk−1

k Dkf)j = (Dk−1f)j =
1

µ(Ξk−1
j )

∫

Ξk−1
j

f(ξ)dµ(ξ)

=
1

µ(Ξk−1
j )

(
µ(Ξk

2j)(Dkf)2j + µ(Ξk
2j−1)(Dkf)2j−1

)
.

(17)

Moreover, the predictionPk
k−1 allows to approximate the set of datavk from vk−1

vk = Dkf ≈ Dk(Rk−1v
k−1). (18)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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6 R. ABGRALL ET AL.

This leads to the definition of the prediction operatorPk
k−1 between discrete data on successive

resolution level as
Pk
k−1

def
= DkRk−1 : V k−1 → V k. (19)

The prediction operatorPk
k−1 is obtained following the definition (19) and using first the

reconstruction procedure (11) for the levelk − 1th, and then applying the discretization operator
Dk(Pk−1

j ) relative to the levelk.
A consistency property can be defined,Dk−1

k Pk
k−1 = Ik, that follows from

vk−1 = Dk−1
k vk = Dk−1

k Dkf = Dk−1
k DkRk−1v

k−1 = Dk−1
k Pk

k−1v
k−1. (20)

The last element of the MR framework is constituted by the prediction errorek

ek
def
= vk − Pk

k−1v
k−1 = (Ik − Pk

k−1D
k−1
k )vk. (21)

The prediction error satisfies (from the consistency property (20))

Dk−1
k ek = Dk−1

k (vk − Pk
k−1v

k−1) = vk−1 − vk−1 = 0, (22)

then it is in the null space of the decimation operatorek ∈ N (Dk−1
k ). Using the definition (13) and

applying the rank theorem, it is possible to write

dim(Vk) = dim(N (Dk−1
k )) + dim(Vk−1) → dim(N (Dk−1

k )) = dim(Vk)− dim(Vk−1) = Jk − Jk−1.
(23)

The linear independent coordinates ofek are called wavelets or detailsdk. Two operators can be
defined to link the prediction error to the details,Ek andGk, as follows

ek
def
= Ekdk, dk

def
= Gkek with EkGk : V k → N (Dk−1

k ). (24)

Using all the operators described in this section, a multi-resolution representation of data can be
defined.

This is obtained by two procedure: theencodingand thedecoding. Theencodingmoves from the
highest resolution level to the lowest one applying recursively (for allk = L, . . . , 1) the decimation
operator and computing the details

{
vk−1 = Dk−1

k vk

dk = Gk(Ik − Pk
k−1D

k−1
k )vk.

(25)

The multi-resolution representationvMR refers to the possibility to obtain a one-to-one
correspondence between the highest resolution levelvL and the sequence of the detailsdk in addition
to the lowest resolution levelv0:

vMR
def
= {v0, d1, . . . , dL}. (26)

The decodingprocedure is the dual procedure with respect to theencoding: recursively moves
from the lowest resolution levelv0 together with the prediction errorek for all the levelsk =
1, . . . , L

vk = Pk
k−1v

k−1 + Ekd
k. (27)

Ideally, decodingand encodingpermit an ideal exchange of information among different
resolution levels. In order to be useful, these operations are coupled with an operator of data
truncation. This additive operator allows, under a certain tolerance, to eliminate the over abundant
information. The compression capability opens several possibilities to the application of the multi-
resolution framework to compress the data as, for instance, in the signal/image representation
schemes [18] or as a fundamental brick in the solution of intrinsically multi scales problems, as
demonstrated already in the first seminal works of Harten [14, 15].

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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The truncation is instead based on the elimination of the waveletsdk under a prescribed tolerance.
The problem statement is the following: given a sequence of scale coefficients or wavelets for
a fixed leveldk and assigned a level dependent tolerance criterionεk, we should generatêdk ={
d̂kj

}Jk−Jk−1

j=1
according to

d̂kj = tr(dkj , εk) =

{
0 |dkj | ≤ εk

dkj otherwise.
(28)

Different choices exist in literature for the threshold parameterεk: a level independent choice
εk = ε or a dependent criterionεk = ε/2L−k. Since the original work of Harten, the stability of
the MR representation of the data has been studied. Harten proposed [13] to modify theencoding
procedure in order to preserve the following condition

||vL − v̂L|| ≤ Cε, (29)

with a constant C and measured in some norms as theL1 andL∞.
In this work, the main contribution is to adapt this framework performing the one-time encoding

and truncated procedure in order to obtain a compact representation of the data in the stochastic
space. This fundamental brick of the algorithm is described in the following section.

3.1. A one-time truncate and encode cell-average representation

In this section, the truncate and encode TE algorithm is described in the case of cell-average
quantities. The pivotal idea of the algorithm is to identify in the prediction errorek at a certain
k−th level, a measure of the quality of the predictor operatorPk

k−1.
From classical interpolation results (see for instance [21]), note that the interpolation error

diminishes, moving from a coarser level to a finer one, with respect to the local regularity of the
function and to the local polynomial order of the interpolation. On the contrary, in presence of
discontinuities, the error remains constant and of the orderO[1]. This means that, starting from the
knowledge of a fine levelk (using the discretization operatorsDk), the recursive combinations of
prediction operations via the operatorsPk

k−1 and evaluations of the errorek permits to determine
the region, where the solution respects a certain accuracy criterion. In particular, if the criterion is
equal to the truncation operation described above, at the end of the algorithm, the discretized set of
data{vk}Lk=0 is directly related to the data{v̂k}Lk=0 obtained under the same truncation criterion by
the classical MR framework.

The algorithm starts with the definition of the coarsest level of resolutionk = 1. On this level the
discretization operator is applied obtaining the discrete datav1: v1 = D1f . By decimation, it is also
possible to obtain the discrete data on the levelk = 0 knowing onlyv1:

v0 = D0
1v

1. (30)

An encodingstep (analogous to what is normally done in the classical MR (see (25))) is then
completed, by computing the linear independent coefficientsdk of ek for k = 1:

dk = Gk(Ik − Pk
k−1D

k−1
k )vk. (31)

The truncation is applied ond1 with respect to the thresholdε, defined by the user, and to the relation
εk = εk(ε, k):

d̂1 = tr(d1, εk). (32)

This operation relies on the knowledge of the finest level (k = L), where the threshold is always
equal toε (see (28)). The integerk = L is assigned to the finest level if the coarsest is marked as
k = 0 and at each refinementk is increased by one.

The datad1 are analyzed in order to locate the region of the domain, where the accuracy of the
prediction, viaPk

k−1, is not adequate. This is accomplished in a very simple way after the truncation,

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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by identifying the non-zero waveletsd1j . At each non-zero (truncated) wavelets, corresponds a region
where the knowledge of the solution is not sufficient under the criterion used in the truncation (32).
Then, further information are added. In particular, after the generation of the mesh on the level
k = 2, on all the cells/points inside the regions (at levelk = 0) used to generate the corresponding
waveletsd1j , the discretization operatorD2 is applied. On the contrary, in the region marked as
well-described, thedecodingprocedure is performed:

v2 = P2
1v

1 + E2d
2 ≃ P2

1v
1. (33)

The assumption in the equation (33) means that for every null wavelets at a levelk − 1, the
corresponding wavelets at levelk are null too. In the case of non null details, the equation (33)
is not applied, but substituted by a direct (exact) discretization of the function by means of the
operatorDk for k = 2.

Knowingv2 andv1, theencodingis performed by computingd2 and their truncated counterpart
d̂2 by (28). The algorithm is then repeated until reaching the finest level L or a full satisfactory
prediction,i.e.dkj = 0 for all j = 1, . . . , Jk − Jk−1.

To make things clear, the algorithm is now presented in the case of 1D stochastic space. Some
preliminary operation are first performed:

• Generation of a nested set of meshesGk for k = 0, . . . , L (0 is the coarsest mesh):

Gk =
{
Ξk
j

}Jk

j=1
where Ξk

j = [ξkj−1, ξ
k
j ]. (34)

In this case the case of bounded probability density function is addressed and a topological
tessellation for the mesh can be obtained,i.e. each cell has the same Lebesgue measure equal
to 1/Jk. Otherwise, in the case of unbounded pdf, the set of meshes can be built on a nested
sequence of cells with the same probability measuredµ.

• Definition of the operatorDk, Rk, Dk−1
k andPk

k−1 according to§3:




(Dkf(ξ))j =
1

µ(Ξk
j )

∫

Ξk
j

f(ξ)p(ξ)dξ

Rk : (DkRkv
k)l = (Dkf(ξ))l with l ∈ Sk

j

(Pk
k−1v

k−1)j = (DkRk−1v
k−1)j =

1

µ(Ξk
j )

∫

Ξk
j

Rk−1v
k−1p(ξ)dξ.

(35)

The decimation operator can be defined when the topological relation between the cells at
two different resolution levels is known. Let us consider the situation sketched in figure1. We
assume that the cells generated by the splitting ofΞk−1

j , are named asΞk
2j−1 andΞk

2j even
if this numeration does not correspond to the indexj of the generating stochastic cell at the
lower resolution level. The indexes numeration in figure1 is exactly matched only if all the
cells are splitted from a resolution level to the higher one. In that case, the dimensions of the
spaces of the two levelsk − 1 andk are related by the following relation,Jk/Jk−1 = 2. In the
following, the abstract indexes2j and2j − 1 are employed to make evident the dependence
of the two cells, at levelk, from the generating cellΞk−1

j . However, the indexes should always
be intended in the sense described above. When a cell is split to obtain the higher resolution
level (see figure1), the measuredµ is defined as follows:

{
µ(Ξk−1

j ) = µ(Ξk
2j−1) + µ(Ξk

2j)

µ(Ξk
2j−1) = µ(Ξk

2j).
(36)

Then, the decimation operator is simply obtained as

(Dk−1
k vk)j = vk−1

j =
1

µ(Ξk−1
j )

(
µ(Ξk

2j)v
k
2j + µ(Ξk

2j−1)v
k
2j−1

)
(37)
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Prepared usingfldauth.cls DOI: 10.1002/fld

Page 8 of 38

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

AN ADAPTIVE MR SEMI-INTRUSIVE SCHEME FOR UQ 9

Ξk
2j−1 Ξk

2j

Ξk−1
j

ξk−1
jξk−1

j−1

ξk2jξk2j−1ξk2j−2

k

k − 1

Figure 1. Example of 1D stochastic nested meshes for the cell-average setting decimation procedure.

• Setting a proper thresholdε and a proper relation forεk = εk(ε, k;L)
• Discretization of the levelk = 1: (v1) = (D1f);
• Decimation of the discrete datav1 to obtain(v0) = (D0

1v
1).

The TE algorithm for cell-average setting in 1D stochastic space can be explicitly written as:

Algorithm 1: Truncate and Encode algorithm for the cell average setting in 1D stochastic space.

while 2 ≤ k ≤ L do
for j = 1, . . . , Jk−2 do

Encoding:

(dk−1)j = vk−1
2j − (Pk−1

k−2v
k−2)2j = vk−1

2j −
(

1

µ(Ξk−1
2j )

∫
Ξk−1

2j
Rk−2v

k−2p(ξ)dξ

)
;

Truncation: d̂k−1
j = tr(dk−1

j , εk−1) ;
end
for j = 1, . . . , Jk−1 do

if d̂k−1
j > 0 then
Discretization:vk2j = (Dkf)2j =

1
µ(Ξk

2j)

∫
Ξk

2j
f(ξ)p(ξ)dξ ;

Discretization:vk2j−1 = (Dkf)2j−1 = 1
µ(Ξk

2j−1)

∫
Ξk

2j−1
f(ξ)p(ξ)dξ ;

end
end

end

At this level, remark that the sequence of discretization operators should be nested andN (Dk) ⊂
N (Dk+1). This means that the error vectorek can be represented by means of only its independent
components, the waveletsdk, thanks to the relation (24). It is always possible to write, recalling the
definition of the error vectorek (21) and the nested property of the discretization operator (17), as
follows

ek2j−1 = vk2j−1 − (Pk
k−1v

k−1)2j−1

=
1

µ(Ξk
2j−1)

(
µ(Ξk−1

j )vk−1
j − µ(Ξk

2j)v
k
2j

)
− 1

µ(Ξk
2j−1)

(
µ(Ξk−1

j )vk−1
j − µ(Ξk

2j)(P
k
k−1v

k−1)2j
)

=
µ(Ξk

2j)

µ(Ξk
2j−1)

(
Pk
k−1v

k−1)2j − vk2j
)
= −

µ(Ξk
2j)

µ(Ξk
2j−1)

dkj .

(38)

The first loop should be performed in order to compute all thewaveletsdkj , while the second
loop is performed over the whole set of cells belonging to the resolution level. In particular, the
error vector component is compared with the threshold for deciding whether the discretization
via the model evaluation is necessary. In the second loop, in the case of a nested sequence, with
splitting based on the probability measure, the local error is equal towaveletcomputed over the
same cellΞk−1

j (see equation (38)). Therefore, the truncated wavelet is exactly equal to the truncated
component of the error.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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In the classical framework, the first step is theencodingprocedure moving from the finest
level to the coarsest. In this case, the explicit evaluation of the functionf is performed at
the finest level while the other levels are obtained by agglomeration. In the present paper,
the encoding is performed proceeding from the coarsest level. Each time a higher resolution
level is added,i.e k, the function is explicitly evaluated via the discretization operatorDk.
Due to numerical errors, the relation (14) could not hold. In such a case, the wavelets
dk are not the linear independent components of the error vectorek. For representing the
error vector in terms of its independent componentsdk, the Discetrize Agglomerate Decimate
(DAD) algorithm is introduced. The DAD algorithm consists in the following operations

Algorithm 2: DAD algorithm.
Discretization:

vk2j =
1

µ(Ξk
2j)

∫
Ξk

2j
f(ξ)p(ξ)dξ ;

vk2j−1 = 1
µ(Ξk

2j−1)

∫
Ξk

2j−1
f(ξ)p(ξ)dξ ;

Agglomeration:
µ(Ξk−1

j ) = µ(Ξk
2j−1) + µ(Ξk

2j) ;
Decimation:

(Dk−1
k vk)j = vk−1

j = 1
µ(Ξk−1

j )

(
µ(Ξk

2j)v
k
2j + µ(Ξk

2j−1)v
k
2j−1

)

The DAD algorithm should be always performed before theEncodingin the TE algorithm2. The
introduction of the DAD algorithm is a peculiarity of the cell-average framework, while the point-
value setting does not require any similar procedure because two successive levels are constituted
by a set of points in the intersection of the two spaces.

Another peculiarity of the cell average framework is the presence of integral quantities that
requires different evaluation in each cell, according to the numerical rule used to obtain the integrals
in the discretization operator (9). The family of Newton-Cotes formula, employing only equally
spaced points, is the best choice in term of computational cost; this family of quadrature rule is both
nested and based on equally spaced points. The three point quadrature rule of Newton Cotes, known
also as the Cavalieri-Simpson rule, is employed in this work:

∫ b

a

f(ξ)dµ(ξ) ≈ b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
. (39)

When a cell is split, it is easy to see that only three of the six points required (three for each cells)
should be computed again. On the contrary, the points employed at the previous level can be re-
employed thanks to the nested nature of the meshes. This makes the sequence of cell evaluations
from the coarsest resolution level to the finest one, only a hierarchical representation without extra
computational effort. For instance, if a Gauss (two points) quadrature rule would be employed,
the point of a previous level could not be used for the evaluation, of the integrals, at successive
resolution levels. This feature is a key aspect when the MR framework is coupled (see section§5)
with the semi-intrusive scheme presented in the following section.

3.2. ENO polynomial reconstruction for the MR setting

In this section, further details on the polynomial interpolation are provided. TheRk operator, from
a practical point of view, can be obtained by the union of all the polynomial obtained by the
conservative interpolation techniques described by the equation (11). Two different operations are
relative to the piecewise polynomial approximationPj. The first is to obtainPk

j from the mesh at the
resolution levelk and, of course, from the cell average quantities at this resolution level. The second
operation is the prediction of a cell average value (for a cell entirely contained in the support of the
polynomialPk

j ) at the successive resolution level (see equation (19)). To make things clearer, the
case of uniform probability distribution is here addressed. The first task is to define the polynomial
representation for a second order polynomial piecewise approximations (r = 2), over the stochastic
cellΞj :

Pj = a(ξ − ξj)
2 + b(ξ − ξj) + c, (40)

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
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whereξj is the coordinate of the center of the stochastic cell.
To obtain the coefficientsa, b andc, the conditions (11) must be fulfilled for a certain stencil. In

the case of centered reconstruction, the stencil is fixed and equal toSj = {Ξj−1,Ξj ,Ξj+1}. A linear
system can be obtained as





E(Pk
j |Ξj−1) =

1

µ(Ξk
j−1)

∫

Ξk
j−1

Pk
j dξ = µ(Ξk

j−1)v
k
j−1

E(Pk
j |Ξj) =

1

µ(Ξk
j )

∫

Ξk
j

Pk
j dξ = µ(Ξk

j )v
k
j

E(Pk
j |Ξj+1) =

1

µ(Ξk
j+1)

∫

Ξk
j+1

Pk
j dξ = µ(Ξk

j+1)v
k
j+1,

(41)

where the linear operatorE(• |Ξ) becomes (on the generic cellΞj )

E(Pk
j |Ξj) = a E((ξ − ξj)

2 |Ξj) + b E((ξ − ξj) |Ξj) + c. (42)

If the integration is performed analytically, with respect to the parameter(ξ − ξj), the system
becomes




E((ξ − ξj)
2 |Ξj−1) E((ξ − ξj) |Ξj−1) 1

E((ξ − ξj)
2 |Ξj) E((ξ − ξj) |Ξj) 1

E((ξ − ξj)
2 |Ξj+1) E((ξ − ξj) |Ξj+1) 1






a
b
c


 = A(ξ − ξj)



a
b
c


 =




µ(Ξk
j−1)v

k
j−1

µ(Ξk
j )v

k
j

µ(Ξk
j+1)v

k
j+1


 ,

(43)
where the matrixA = A(ξ − ξj) is dependent from the stochastic cellΞj via its coordinateξj . From
a practical point of view, when the polynomial reconstruction should be performed over a cellΞj ,
the matrixA−1(ξ − ξj) is first evaluated and then the vector of coefficients is obtained by the matrix
vector product with the right hand side that depends from both the resolution levelk and the stencil
Sj .

However, the procedure described above should be modified if the ENO interpolation is required.
The only modification concerns the choice of the stencil: the procedure select the less oscillatory one
between the following{Ξj−2,Ξj−1,Ξj} , {Ξj−1,Ξj ,Ξj+1} and{Ξj ,Ξj+1,Ξj+2}. The smoothest
one is selected choosing the one withmin(|a|) following [22]. Obviously, at the boundaries of the
domain, the stencil is always modified to be inside the domain. This is a key aspect if the higher
accuracy is desired. With the modification of the stencil, the scheme preserves its maximal accuracy
as it is shown for the solution of the stochastic linear advection equation with smooth solution in
§6.1.

The second task to solve is the prediction of a cell averagevk+1
j at the next following

resolution level, if the polynomialPk
j reconstruction at the previous resolution level is available

(the cell Ξk+1
j ⊂ Ξk

j as required by the nested character of the discretization procedure). This
task is accomplished analytically in the following way. The expectancy operator is applied to the
polynomialPk

j over the stochastic cellΞk+1
j ⊂ Ξk

j

E(Pk
j |Ξk+1

j ) = a E((ξ − ξkj )
2 |Ξk+1

j ) + b E((ξ − ξkj ) |Ξk+1
j ) + c, (44)

where the termsE((ξ − ξkj )
2 |Ξk+1

j ) andE((ξ − ξkj ) |Ξk+1
j ) + c) can be analytically evaluated when

the cellΞk+1
j is defined.

The procedure described in this section is used in SI scheme in order to obtain the polynomial
representation of the functions along the stochastic space to evaluate the expectancy of the flux
function.
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4. THE SEMI-INTRUSIVE FINITE VOLUME FORMULATION FOR PDE

In this section, the semi-intrusive (SI) method of Abgrall and Congedo is sketched. The interested
reader can refer to [7] for a complete presentation of the numerical scheme and its application to
different test cases.

The SI method is an intrusive scheme for the propagation of uncertainties, that requires only a
limited number of modification to an existing numerical code. In particular, the SI scheme relies
on the deterministic formulation available in a numerical code. Moreover, the number of equations
remains equal to the original deterministic formulation, not as in the intrusive polynomial chaos
method (see [5]). This feature permits to obtain intrusive stochastic formulation even for high order
schemes. In the present work, a second order MUSCL-Hancock method (MHM) is employed to
formulate the deterministic part of the scheme. This result, to the best of our knowledge, is the
first adaptive intrusive scheme of high-order. Another adaptive intrusive strategy based on data-
independent wavelets limited only to first order in time and space is the work of Tryoen et al. [11].
This work is the first to introduce wavelets adaptivity into an intrusive stochastic formulation by
means of the polynomial chaos technique, but remain very limited in its generality requiring for
each casead hocmodifications.

4.1. MUSCL-Hancock deterministic numerical formulation

The MHM is a slightly different approach with respect to the classical predictor-corrector MUSCL
approach. It requires only the computation of slopes in the predictor step. Moreover, it does not
require the solution of Riemann problems in the predictor step. The corrector step is based on
the evolution of cell-average quantities, taking into account their contribution related to the flux at
interfaces obtained by the solution of a Riemann problem. Let us consider a 1D scalar conservation
law

∂u(x, t)

∂t
+

∂f(u(x, t))

∂x
= 0, (45)

wherex ∈ Ω ⊂ R is the physical space andt ∈ T ⊂ R+ is the time space. The physical space
is divided in a set of non-overlapping cellsCi with Ω =

⋃
i Ci. The classical first order Godunov

scheme, applied to (45), is obtained introducing the so-called cell-averageūi on each cellCi:

ūi(t) =
1

|Ci|

∫

Ci

u(x, t)dx, (46)

where|Ci| indicates the volume of the cell. Van Leer [23, 24] proposed to consider non-constant data
on each cell to achieve a higher accuracy in the so-called Monotone Upstream-centred Scheme for
Conservation Laws (MUSCL). The piecewise linear approximation is used for the solutionu(x, t)
on the cell|Ci|:

u(x, tn) = ūn
i + σn

i (x− xi) with xiL ≤ x ≤ xiR , (47)

with σn
i the so-called slope. Of course, the choice ofσn

i = 0 leads to the Godunov scheme. A slope
limiter should be introduced near the discontinuity to avoid oscillations. In this work, both the Roe’s
superbee limiter and the van Leer limiters are employed. The superbee limiter in its limited slope
form is 




σn
i = maxmod

(
σn
(1), σ

n
(2)

)

σn
(1) = minmod

((
ūn
i+1 − ūn

i

|Ci|

)
, 2

(
ūn
i − ūn

i−1

|Ci|

))

σn
(2) = minmod

(
2

(
ūn
i+1 − ūn

i

|Ci|

)
,

(
ūn
i − ūn

i−1

|Ci|

))
,

(48)

where theminmod andmaxmod functions are defined as follows

minmod(a, b) =





a if |a| < |b| and ab > 0

b if |a| > |b| and ab > 0

0 if ab <= 0
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maxmod(a, b) =





a if |a| > |b| and ab > 0

b if |a| < |b| and ab > 0

0 if ab <= 0.

The van Leer limiter, in the form of slope limiter, is defined as (see Toro [24] for further details)

σn
i =





MIN

(
2R

1 +R
,

2

1 +R

)
ūn
i+1 − ūn

i−1

2∆x
if R > 0

0 if R ≤ 0,

(49)

whereR is the ratio between successive slopesR = (ūn
i − ūn

i−1)/(ū
n
i+1 − ūn

i ).
The MHM is then introduced in order to avoid the problem related to the solution of the so-called

generalized Riemann problem, in which the two states are not constant. The fully discrete second
order MHM, for computing the cell averaged solutionūn+1

i , consists of the following three steps:

• Step 1 - For each cellCℓ ∈ {Ci−1, Ci, Ci+1}, the solution at the interface is computed according
to 




un
ℓL = ūn

ℓ − σn
ℓ

|Cℓ|
2

un
ℓR = ūn

ℓ + σn
ℓ

|Cℓ|
2

(50)

• Step 2 - On each cellCℓ ∈ {Ci−1, Ci, Ci+1}, the solution evolved of a half time step employing
the flux functionf = f(u):





u⇑
ℓR

= ūℓR +
1

2

∆t

|Cℓ|
(
f(un

ℓL)− f(un
ℓR)
)

u⇑
ℓL

= ūℓL +
1

2

∆t

|Cℓ|
(
f(un

ℓL)− f(un
ℓR)
) (51)

• Step 3 - The cell-averaged value on the cellCi evolves following

ūn+1
i = ūn

i − ∆t

|Ci|
(
FRM

(
u⇑
i−1R

, u⇑
iL

)
−FRM

(
u⇑
iR
, u⇑

i+1L

))
. (52)

The symbolFRM is employed to indicate the flux evaluated at the interface, after the solution of
the Riemann problem defined by two constant states based on the evolved extrapolated values. For
the linear advection§6.1and Burgers equation§6.2, an exact Riemann solver is used. Moreover, in
the case of the Euler system of equations§6.3, the Roe-Pike method is employed with the Harten-
Hyman entropy fix following [24].

The time advancing formula is then limited to a stencil of only three cellsCi−1, Ci and
Ci+1 but the computation of the slopes for the cellsCi−1 and Ci+1 requires (see (48) and
(49)) also to know the solution on the two sourrounding cellsCi−2 and Ci+2. The average
solution ūn+1

i , on each cellCi at time tn+1 = tn +∆t, can be computed knowing the solution
on the augmented stencil

{
ūn
i−2, ū

n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2

}
. In the following, the notation̄un+1

i =

MHM
(
ūn
i−2, ū

n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2,∆t

)
is used to identify the ensemble of the operation described

above. The aim is to evaluate the updated value in time of a certain cellūn+1
i , knowing the solution

at the previous time step.

4.2. Semi-intrusive formulation for the MHM

The SI version of the MHM (here presented in the 1D stochastic case without loss of generality)
can be obtained adding one dimension more (the stochastic space) with a finite-volume like
representation. In particular, the conditional expectancy operator, defined on the stochastic cellΞj ,
is introduced according to the following definition:

E(• |Ξj) =
1

µ(Ξj)

∫

Ξj

•(x, ξ, t) p(ξ, t) dξ. (53)
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If the conditional expectancy operator is applied to the step three of the MHM scheme (52), the
following scheme is obtained:

E(un+1
i |Ξj) = E(un

i |Ξj)−
∆t

|Ci|
(
E(FRM

(
u⇑
i−1R

, u⇑
iL

)
|Ξj)− E(FRM

(
u⇑
iR
, u⇑

i+1L

)
|Ξj)

)
.

(54)
The evaluation of the updated conditional expectancy value on the cellΞj , is obtained

by evaluating the conditional expectancy contribution related to the numerical fluxes

E(FRM
(
u⇑
i−1R

, u⇑
iL

)
|Ξj) andE(FRM

(
u⇑
iR
, u⇑

i+1L

)
|Ξj). To evaluate this integral contribution,

a polynomial representation of the physical averaged solution with respect to the stochastic
dimensions, has to be obtained. The conservative interpolation procedure, already presented in§3
to obtain the reconstruction operatorRk, can be adopted requiring for the polynomialPj(ξ):

E(Pℓ(ξ) |Ξℓ) = E(u |Ξℓ) ∀Ξℓ ∈ Sj (55)

If the stencilSj is chosen with a cardinalitys = s(r) = card(Sj) = r + 1 (for a 1D space), a
polynomialPj(ξ) of degreer can be built.

The polynomial representationPj(ξ) can be injected into the steps 1 (50) and 2 (51) of the MHM.
If the Cavalieri-Simpson rule (using three quadrature pointsng = 3) is adopted for the quadrature,
the SI scheme for the MHM can be recasted in a form that makes easy the use of MR stochastic
representation of data.

We assume a uniform tessellation for the physical and stochastic space, with a number of cells
equal toNx andNξ, respectively and a constant time step∆t. The first step is to evaluate the initial
condition in terms of conditional expectancies. This can be obtained easily via a tensorization of
the quadrature rule and evaluating the analytical value of the functionu(x, ξ, 0). This step yields the
stochastic initial conditionE(ui(x, ξ, 0) |Ξj) for all i = 1, . . . , Nx andj = 1, . . . , Nξ.

The SI algorithm becomes:

Algorithm 3: Semi-intrusive version of the MUSCL-Hancock method for a 1D stochastic space.

for n = 1, . . . , Nt do
for i = 1, . . . , Nx do

for j = 1, . . . , Nξ do
Polynomial reconstruction (via (55)) overΞj = [ξj−1, ξj ] ⇒ Pj(ξ) ;
for ng = 1, . . . , 3 do

ξng = ξj−1 +
ξj−ξj−1

2 (ng − 1) ;
Step 1 (see (50)) ⇒ ∀Cℓ ∈ {Ci−1, Ci, Ci+1, } →

{
un
ℓL
(ξng), u

n
ℓR
(ξng)

}
;

Step 2 (see (51)) ⇒ ∀Cℓ ∈ {Ci−1, Ci, Ci+1, } →
{
u⇑
ℓL
(ξng), u

⇑
ℓR
(ξng)

}
;

end
Flux expectancy computation:

E(FRM
L |Ξj) =

∑3
ng=1 wng FRM

(
u⇑
i−1R

(ξng), u
⇑
iL
(ξng), ξng

)
;

E(FRM
R |Ξj) =

∑3
ng=1 wng FRM

(
u⇑
iR
(ξng), u

⇑
i+1L

(ξng), ξng

)
;

Time update:
E(ūn+1

i |Ξj) = E(ūn
i |Ξj)− ∆t

|Ci|
(
E(FRM

L |Ξj)− E(FRM
R |Ξj)

)

end
end

end

where E(FRM
L |Ξj) = E(FRM

(
u⇑
i−1R

, u⇑
iL

)
|Ξj) and E(FRM

R |Ξj) =

E(FRM
(
u⇑
iR
, u⇑

i+1L

)
|Ξj).
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5. THE OVERALL MULTIRESOLUTION ADAPTIVE-SI SCHEME

In the previous section, the SI scheme applied to the MHM is presented. In this section, the adaptive
version of the numerical algorithm (aSI) is described. The main difference, referring to the algorithm
3 is in the internal loop, onj, concerning the stochastic cells. This loop should be substituted by
the application of the TE algorithm1. The discretization step is performed by the application of the
MHM, as presented in the internal loop (onj), in the algorithm3. The complete aSI scheme is:

Algorithm 4: Semi-intrusive version of the MUSCL-Hancock method for a 1D stochastic space.

for n = 1, . . . , Nt do
for i = 1, . . . , Nx do

while 2 ≤ k ≤ L do
for j = 1, . . . , Jk−2 do

Encoding:

dk−1
j = vk−1

2j − (Pk−1
k−2v

k−2)2j = vk−1
2j −

(
1

µ(Ξk−1
2j )

∫
Ξk−1

2j
Rk−2v

k−2p(ξ)dξ

)
;

Truncation: d̂k−1
j = tr(dk−1

j , εk−1) ;
end
for j = 1, . . . , Jk−1 do

if d̂k−1
j > 0 then
Discretization:
for Ξq ∈

{
Ξk
2j−1,Ξ

k
2j

}
do

for ng = 1, . . . , 3 do
Polynomial evaluation:̄u(x, ξng , tn) ≃ (DkRLv

L(tn))(ξng)

Step 1 (see (50))
⇒ ∀Cℓ ∈ {Ci−1, Ci, Ci+1, } →

{
un
ℓL
(ξng), u

n
ℓR
(ξng)

}

Step 2 (see (51))

⇒ ∀Cℓ ∈ {Ci−1, Ci, Ci+1, } →
{
u⇑
ℓL
(ξng), u

⇑
ℓR
(ξng)

}

end
Flux expectancy computation:

E(FRM
L |Ξq) =

∑3
ng=1 wng FRM

(
u⇑
i−1R

(ξng), u
⇑
iL
(ξng), ξng

)

E(FRM
R |Ξq) =

∑3
ng=1 wng FRM

(
u⇑
iR
(ξng), u

⇑
i+1L

(ξng), ξng

)

Cell agglomerationof E(un
i |Ξq) via equation (56)

Time update:
E(ūn+1

i |Ξq) = E(ūn
i |Ξq)− ∆t

|Ci|
(
E(FRM

L |Ξq)− E(FRM
R |Ξq)

)

end
end

end
end
Reconstruction:(DLRLv

L)l = (DLū(xi, ξ, tn+1))l with l ∈ SL
j ;

end
end

The reconstruction operatorRk for each cellΞj is the polynomialPj reconstructed for the SI
scheme. A link between the MR representation and the SI scheme exists since the polynomial
representation of the data in the stochastic space is the same for the SI and TE. The polynomial
reconstruction is carried out when the algorithm attain the highest resolution level (indicated in
the algorithm byk = L) and the reconstruction operatorRL is then obtained and stored. The
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reconstruction operator is then used, for the polynomial evaluation before Step 1. The physical cell-
averaged values are obtained, for each quadrature pointsξng, applying the discretization operator
Dk. Moreover, a conservative interpolation is also present into the MR algorithm, where the operator
Rk is used to obtain the wavelets during theencodingprocedure.

One important feature of the aSI algorithm is the possibility to locally refine/derefine the
stochastic space, as a function of the variation of the solution during the computation. At the end
of each time step, for each physical location, the algorithm produces a sequence of conditional
expectanciesE(un |Ξj) with different measuresµ(Ξj), due to the local refinement/derefinement of
the tessellation. The TE strategy starts from the coarsest level to the finest (until some cell have
to be split or the maximum resolution level is reached). In practice, if a cell has not to be splitted,
it is moved at the highest resolution level. The local variation of the cell measure yields a strong
relation between the actual level of evaluation of the scheme, and the maximum level (locally)
reached at the previous time step (and consequently the measure of each cell). Two problems exist:
the agglomeration of a cell at a timen, and the splitting of a cell at a timen+ 1. The MR framework
presented is based on a nested subdivision of the cell. Then, at the end of the TE algorithm, each cell
belonging to the coarsest levelk = 0, will result in a set of cells. When the TE algorithm requires
the application of the SI-MHM at a generic levelk, an equivalent conditional expectancyE(u |Ξk

j )
evaluated at timen is computed by applying the equation (54). This conditional expectancy should
be obtained by the agglomeration of all the stochastic cells belonging toΞk

j at timen, following the
exact definition:

E(u |Ξk
j ) =

1

µ(Ξk
j )

∑

Ξℓ⊆Ξk
j

µ(Ξℓ)E(u |Ξℓ). (56)

Obviously, it is easy to verify that the limit case is the one with a cell not subdivided, then the
equation (56) reduces to an identity. Due to the nested sequences of operators and meshes, a cell
would be always constituted by an integer number of cells at the end of the TE algorithm (see
algorithm1). A sketch of a possible situation for the agglomeration of a cell Ξk

j is reported in figure
2.

Ξk
j

Ξℓ

dµ(Ξℓ)
dµ(Ξk

j )

Figure 2. Example of the agglomeration procedure to obtain a coarser cellΞj even if the TE algorithm yields
a set of children cells.

The other issue is related to reduce the computational cost basing on the computed quantities,
when a cell has to be split. For this reason, the quadrature rule of Newton-Cotes is adopted. In this
case, the entire set of degrees of freedom (dof) can be saved, if the cell has to be split. Let us consider
the figure3, where the Cavalieri-Simpson rule is used. On the left, the cell at levelk is represented
with its dof, the circles are used for the value ofūi obtained via the polynomialPj (the polynomial
evaluation step in the algorithm4), and squares for the fluxes obtained after the application ofthe
step 1 and 2 of the MHM. When the cell is split in two cells, only three points have to be added
(the numerical scheme has to be applied). On the contrary, the other points can be obtained directly
from the mother cell at levelk. In the figure3, the black circle/squares represent the new points to
compute. In practice, the black points are associated to the values forūi obtained by interpolation
and the fluxes are obtained via the Step 1 and 2; otherwise, they are only recovered from the mother
cell. Finally, the fluxes conditional expectancy computation is performed easily combining the new
fluxes (black) and the old ones (white) with the correct weights for the quadrature.
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F 1
L

F 2
L

F 3
L

F 2
R

F 1
R

F 3
R F 3

L

F 6
L

F 5
L

F 2
L

F 4
L

F 1
L F 1

R

F 4
R

F 2
R

F 5
R

F 6
R

F 3
R

Figure 3. Example of a splitting procedure to save the computational cost associated to the degree of freedom
already computed. On the left the cell at level of resolutionk is reported while on the right the corresponding

split cells are reported with the new points to explicitly add (black symbols).

The nested procedure described above allows to extend the accuracy of the quadrature rule even
to high-order Newton-Cotes formula. Moreover, in the present work, the three points Cavalieri-
Simpson rule (see (39)) is employed. The error is proportional to the fourth derivative of the
integrand, so the rule is fully accurate to polynomial function of order equal or less than three
(see [21] for further details). In the following, the variance of the outputs of interest is computed. In
this case, the quadrature of the polynomialPj squared has to be evaluated on each cellΞj = [ξa, ξb].
In order to attain the exact integration ofP2

j , the closed four points Newton-Cotes rule (also known
as the Boole’s rule) is employed

∫

Ξj

f(ξ)dξ =
ξb − ξa
90

(
7f(ξa) + 32f

(
ξa +

ξb − ξa
4

)

+ 12f

(
ξa +

ξb − ξa
2

)
+ 32f

(
ξa + 3

ξb − ξa
4

)
+ 7f(ξb)

)
.

(57)

The last five points rule has an errorO(f (6)(η)), whereη ∈]ξa, ξb[, so it is able to integrate exactly
polynomial function of order equal to five.

6. NUMERICAL RESULTS

In this section, the aSI scheme derived in§5 is applied to a set of test problems. The aim is to show
the convergence properties and to provide some evidence of the advantage to employ an adaptive
representation of the solution in the stochastic space. For all the problems, the expectancy and the
variance of the some outputs are computed according to the definitions (3) with respect to their exact
value. Different 1D-1D test cases are taken into account. The linear advection problem is solved for
both smooth and discontinuous initial conditions in section§6.1. In the first case, the uncertainty is
considered in the initial condition, while in the discontinuous case an uncertain advection velocity
is considered. For this test case, both the convergence curves for the first order Godunov method
and the MHM are reported to demonstrate the ability of the scheme to maintain the convergence
properties of the deterministic scheme. The Burgers equation is then solved employing a smooth
initial, but uncertain, initial condition (§6.2). This case is chosen to demonstrate the ability of the
scheme to capture (refining the stochastic space) a discontinuous solution (along the stochastic
dimension) even if the discontinuities form during the evolution of a smooth solution. This property
is a key feature in the development of numerical schemes for UQ in compressible flows applications.
The last test case is the stochastic analysis of the uncertain shock tube problem solving the Euler
system of equations in section§6.3. In this case, the statistics of the density are compared to the
semi-analytical solution of the Euler equations, considering an uncertain parameter on the initial
conditions (see Appendix.1).
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Systematically in this paper, the spatial norms are computed employing the following definitions





errEm |Lp
= ||Em(x) − Em

ref(x)||Lp =

(
1

Nx

Nx∑

i=1

|Em(ūi)− Em
ref(ūi)|p

)1/p

errEm |L∞
= ||Em(x) − Em

ref(x)||L∞ = max
i

|Em(ūi)− Em
ref(ūi)| ,

(58)

where the integerp = 1, 2 for the L1 and L2 norms in the physical space andEm indicates a
statistical moment,i.e. the expectancy or the variance.

6.1. Linear advection

The first test case is the linear advection problem here reported, forΩ = [0, 1], in its general
stochastic formulation





∂u(x, ξ, t)

∂t
+ a(ξ, t)

∂u(x, ξ, t)

∂x
= 0

u(x, ξ, 0) = u0(x, ξ),

(59)

where both the advection velocitya and the initial conditionu0 can depend on a random parameter.
Let us consider first the smooth test-case with an initial condition equal tou0(x, ξ, t) =

sin(4πx+ 20ξ), with the random parameter uniformly distributedξ ∼ U [0, 1]. The problem is
solved until the timet = 1 with a constant advection velocity equal toa = 0.1 and with periodic
boundary conditions. The exact solution can be computed analytically as follows

u(x, ξ, 1) = sin(4(x− 0.1t)π + 20ξ) (60)

The exact statistics can be computed as function of thei−th cell Ci = [xi − |Ci|
2 , xi +

|Ci|
2 ],

integrating first with respect to the stochastic space and then with respect to the space




E(ūi) =
1

|Ci|

∫

Ci

∫

Ξ

u(x, ξ, 1) dξ dx

Var(ūi) =
1

|Ci|

∫

Ci

∫

Ξ

u2(x, ξ, 1) dξ −
(∫

Ξ

u2(x, ξ, 1) dξ

)2

dx.

(61)

Expressions for both statistics are obtained using the MAPLE software. Numerical simulations are
carried out on equally spaced spatial meshes of 51, 101, 201 and 401 points, withNt = 200 time
steps and∆t = 5× 10−3.

In figure4, both the expectancy of the solution4(a)and the variance4(a)for the linear advection
problem (59) with smooth initial condition and constant advection velocity are reported. The
continuous lines indicate the solution obtained via the scheme without compression, while with
the dashed lines the solution obtained via the application of the aSI algorithm. In particular,
the polynomial reconstruction is taken as a centered second-order polynomial except for the two
boundary cells where the stencil is fully shifted into the numerical domain in order to maintain the
order of accuracy. In particular, both the Godunov first order scheme and the MHM are reported
to show that the numerical scheme is able to preserve the expected order of convergence even with
compression. To preserve the formal second order of accuracy, the slope for the MHM is evaluated
by a centered approximation without any limiter function. The full solution is obtained on an equally
spaced mesh of 128 stochastic cells while the aSI algorithm is applied starting from a coarse level of
16 cell (m0 = 4) to a higher resolution level of 128 cells (m = 7) and a threshold equal toε = 10−3.
Note that the finest level is indicated asm. This case is reported in order to show the formal
accuracy of the method because the solution is regular enough to minimize the gain associated
to the compression of the solution. In particular, the average number of cells employed by the aSI
scheme is 126 against the 128 of the full solution. Of course, the level of compression could be easily
increased in this case employing a higher order polynomialPj for the reconstruction. Remark that,
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looking at the accuracy, the stochastic reconstruction (quadratic polynomial) is sufficiently accurate
with respect to the spatial and time accuracy (second order in the case of MHM). On the contrary,
looking at the compression, a higher polynomial order can yield a stronger compression keeping the
second order convergence rate.

dx

er
r ε(

L 2)

10-3 10-2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

full m=7 (1st order)
full m=7 (2nd order)
aSI (1st order)
aSI (2nd order)
1st order
2nd order

(a)

dx

er
r ε(

L 2)

10-3 10-2
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

full m=7 (1st order)
full m=7 (2nd order)
aSI (1st order)
aSI (2nd order)
1st order
2nd order

(b)

Figure 4. Spatial convergence for the linear advection problem with smooth initial condition (60). The
statistics of the solution (mean(a) and variance(b)) obtained with (aSI) and without (full) compression

are reported for both the Godunov first order scheme and the MHM method with a centered slope.

Let us consider now the linear advection problem (59), that is solved with an uncertain advection
(ξ ∼ U [ 15 , 4

5 ]) velocity defined as

a(ξ) =
1

40
e5ξ

2

+
1

5
, (62)

considering a discontinuous initial condition (in the physical space)

u(x, ξ, 0) =





1 if
2

5
≤ x ≤ 3

5
0 if otherwise.

(63)

In this case, the problem is solved until the final time oft = 0.4 with 200 equal steps of
∆t = 2× 10−3. The exact solution is derived for the first two statistical moments employing the
following procedure. Referring to the figure5, starting from the initial condition (defined by the
pointsA1, A2, B2, B1) the new points (coordinates in the physical space) at the final time (t = 0.4)
can be computed as follows





A′,x
1 = Ax

1 + a

(
1

5

)
t =

12

25
+

1

100
e

1
5

A′,x
2 = Ax

2 + a

(
1

5

)
t =

12

25
+

1

100
e

1
5

B′,x
1 = Bx

1 + a

(
1

5

)
t =

12

25
+

1

100
e

16
25

B′,x
2 = Bx

2 + a

(
1

5

)
t =

12

25
+

1

100
e

16
25 .

(64)

At the final time step, four different regions can be identified (see figure5(b)). The solution in the
external region, wherex ≤ A′,x

1 andx ≥ B′,x
2 , is easily identified asu(x, ξ, t) = 0. For the remaining
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Figure 5. Schematic representation of the evolution between the initial condition (pointsA1, A2, B1, B2)
and the final condition at timet = 0.4 (pointsA′

1, A
′
2, B

′
1, B

′
2) (a). The regions in which the exact solution

should be computed, at the final timet = 0.4, are reported in(b).

regions, the position of the discontinuity has to be computed. In particular, it is possible to define the
two functionsξ1d = ξ1d(x) andξ2d = ξ2d(x) as the positions of the discontinuities for eachx belonging
respectively to the intervals[A′,x

1 , B′,x
1 ] and[A′,x

2 , B′,x
2 ]. If x belongs to the interval defined above,

the following relations must hold





x = A′,x
1 + a

(
ξ1d
)
t =

12

25
+

1

100
e(ξ

1
d)

2

if x ∈ [A′,x
1 , B′,x

1 ]

x = A′,x
2 + a

(
ξ2d
)
t =

17

25
+

1

100
e(ξ

2
d)

2

if x ∈ [A′,x
2 , B′,x

2 ].

(65)

As a consequence, the position of the discontinuities, for a certain physical position can be derived





ξ1d = ξ1d(x) =

√
ln

(
100

(
x− 12

25

))

ξ2d = ξ2d(x) =

√
ln

(
100

(
x− 17

25

))
.

(66)

The exact statistics of the physical cell averageūi can be computed exactly for each cell

Ci =
[
xi − |Ci|

2 , xi +
|Ci|
2

]
(in the limit of |Ci| → 0). For the mean, they are defined as

E(ūi) =





0 if xi ≤ A′,x
1 or xi ≥ B′,x

2

5

3

(
ξ1d(xi)−

1

5

)
if xi ∈ [A′,x

1 , A′,x
2 ]

5

3

(
ξ1d(xi)− ξ2d(xi)

)
if xi ∈ [A′,x

2 , B′,x
1 ]

5

3

(
4

5
− ξ2d(xi)

)
if xi ∈ [B′,x

1 , B′,x
2 ].

(67)

Concerning the variance, they can be obtained as (and not asVar = E((ūi)
2)− (E(ūi))

2)

Var = E(ūi)− (E(ūi))
2 ∀xi ∈ [0, 1], (68)
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because in this specific case (ū(x, ξ, t) = 1)
∫

Ξ

ū(xi, ξ, t)
2p(ξ)dξ =

∫

Ξ

ū(xi, ξ, t)p(ξ)dξ = E(ūi). (69)

In figure6, the spatial convergence for the aSI scheme and for the full scheme, employing only
the MHM with the superbee limiter (48), are reported for the mean6(a)and the variance6(b) (L2

norms). Similar curves are obtained forL1 andL∞ norms but are not reported here for brevity.
The computations are performed over equally spaced meshes in the physical spaceΩ with 51, 101,
201, 401 and 601 points. The aSI scheme is applied with a coarsest level of 16 cells (m0 = 4),
a finest level of 256 stochastic cells (m = 4) and a threshold equal toε = 10−3. The polynomial
reconstruction is the quadratic polynomial with and without ENO selection of the stencil. The
average number of stochastic cells employed is equal to39 when the ENO selection is employed
and 40 with the centered stencil.
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Figure 6. Spatial convergence for the linear advection problem with discontinuous initial condition (63). The
statistics of the solution (mean(a) and variance(b)) obtained with (aSI) and without (full) compression are

reported for the MHM method with the superbee limiter (48).

The figure6 shows that the aSI scheme is able to preserve the accuracy and the order of
convergence of the full scheme with a reduction of the computational cost with respect to the
full solution obtained over a grid of 256 cells (m = 8). The aSI scheme requires a computational
effort equivalent to a computation carried out on about 40 equally spaced stochastic cells. The full
solutions on 32 (m = 5) and 64 (m = 6) cells are then reported in order to compare the efficiency
of the scheme with respect to a solution obtained with a similar computational effort. However, the
aSI scheme performs better with respect to both the full solution at 32 and 64 cells. Moreover,
the quality with respect to the full solution of 256 cells is only slightly degraded. In figures7
and8, the statistics of the solution are reported over the entire physical space (the mesh of 601
points) and compared to the exact solution (see (67)) obtained on 2001 equally spaced points in the
physical space. The solutions obtained with the full scheme with 32 and 64 stochastic cells exhibit
the well-known staircase phenomenon, i.e. in presence of discontinuous solutions the statistics
are constituted by a series ofplateau. The presence of the plateau is due to the lower resolution
associated to the discretization of the stochastic space with respect to the resolution of the physical
space. The staircase phenomenon is more evident for the coarser case (32 cells), reduces slightly
with 64 cells, and disappear with 256 cells. The aSI scheme automatically refines the space where a
higher resolution is required. Remark that the staircase problem disappears by using aSI even if the
(average) number of cells employed is lower than 64 (see figure7(b) and8(b)).
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Figure 7. Expectancy for the cell averaged solution of the linear advection equation with discontinuous initial
condition (63) at the final timet = 0.4. The whole physical domain is represented in(a), while in the figure

(b) a zoom in the shock region is reported. The mesh is constitutedby 601 equally spaced points.

x

V
ar

(u
i)

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25
exact
full m=5
full m=6
full m=8
full m=5 (ENO)
full m=6 (ENO)
full m=8 (ENO)
aSI
aSI (ENO)

(a)

x

V
ar

(u
i)

0.84 0.86 0.88 0.9 0.92

0

0.01

0.02

0.03

0.04

0.05

0.06 exact
full m=5
full m=6
full m=8
full m=5 (ENO)
full m=6 (ENO)
full m=8 (ENO)
aSI
aSI (ENO)

(b)

Figure 8. Variance for the cell averaged solution of the linear advection equation with discontinuous initial
condition (63) at the final timet = 0.4. The whole physical domain is represented in(a), while in the figure
(b) a zoom in the shock region is reported. The physical mesh is constituted by 601 equally spaced points.

The ability of aSI scheme to refine only locally the space allows to increase locally the resolution
along the stochastic space. In figure9, the distribution of the stochastic cells overΩ at the final
time stept = 0.4 is reported. It is evident that the higher computational effort is located in the
region of the strong gradients; comparing the figure8 and 9, it is evident that the two peaks
associated to the local higher computational effort (in terms of stochastic cells) corresponds to the
two peaks in the variance of the solution. In figure9, the number of points employed by the aSI
scheme with and without the ENO selection of the stencil are also reported. The ENO selection
of the stencil reduces the number of cells employed. Morevoer, comparing the average number of
stochastic cells employed for each computation, it is evident that the efficiency of the ENO selection
increases with the spatial resolution. This is due to the global representation of the solutionu(x, ξ, t)
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over cellsCi × Ξj . Higher is the spatial resolution, sharper are the resulting discontinuities, so the
ENO becomes more useful in order to gain in terms of accuracy (with the SI algorithm) and in
terms of compression capabilities (with the TE algorithm). Figure9(b) displays that for too coarse
spatial resolution, the ENO selection of the stencil can be negative in terms of both accuracy and
compression. The solution becomes smoother and smoother by decreasing the spatial resolution, so
a centered stencil becomes the best choice.

x

N
ξ
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60
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aSI (ENO)
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N
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Figure 9. Evolution of the number of stochastic cells employed in each physical location for the aSI scheme
with and without the ENO reconstruction(a) for the linear advection equation with discontinuous initial
condition. The average number of stochastic cells employed by the aSI scheme as function of the physical

space resolution is reported in(b).

6.2. Inviscid Burgers equation

In this section, the aSI algorithm is applied to the solution of the inviscid Burgers equation

∂u(x, ξ, t)

∂t
+

∂f(u(x, ξ, t))

∂x
= 0 x ∈ [0, 1] and t ∈ [0, T ], (70)

where the flux function is defined asf = f(u(x, ξ, t)) = 1
2u

2(x, ξ, t).
We assume the following uncertain initial condition, with the random parameter uniformly

distributedξ ∼ U [0, 1],

u(x, ξ, 0) =

{
H(ξ) if x ∈ [Ax

1 , A
x
2 ]

0 if otherwise.
(71)

The initial condition is represented by a hat function with a different amplitude dependent (non
linearly) from the random parameter,H(ξ) = 1

3ξ
2 + 1

100 ξ +
9
10 . To obtain the exact solution it is

necessary to consider the two elementary solutions of the Riemann problem of the inviscid Burgers
equation (see [23] for further details). The first case at the left of the hat function (x = 1

10 ) is
the Riemann problem withul < ur that admits as solution a rarefaction wave (depending on the
uncertainty parameter) as follows

u(x, ξ, t) =





0 if x ≤ Ax
1

F (x) if x ∈ [Ax
1 , A

x
1 +H(ξ)t]

H(ξ) if x > Ax
1 +H(ξ)t,

(72)

where the solution inside the rarefaction wave isF (x) = (x+Ax
1) /t.
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Knowing the functionH(ξ), the exact solution for the uncertain rarefaction wave can be
computed. Let us consider now the right of the hat initial function (x = 1

2 ), where the solution of
the Riemann problem is a shock wave traveling with an uncertain speeds = H(ξ)/2. The complete
solution of the Riemann problem is then

u(x, ξ, t) =

{
H(ξ) if x < Ax

2 + st

0 if x > Ax
2 + st.

(73)

ξ
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Figure 10. Schematic representation of the evolution between the initial condition (pointsA1, A2, B1, B2)
and the final condition at timet = 0.6 (pointsA′

1, A
′
2, B

′
1, B

′
2) (a). The regions in which the exact solution

should be computed, at the final timet = 0.6, are reported in(b).

We solve the problem (70) until a time equal toT = 0.6, with the initial condition (71) defined
by Ax

1 = Bx
1 = 1

10 and Ax
2 = Bx

2 = 1
2 . The solution appears as sketched in figure10, where the

tail of the fan is at rest (x = 1
10 ) while the position of the head is a function of the random

parameter and its value is bounded between the slower moving fan (A′,x
1 = 1

10 +H(0)t) and the
fast moving fan (B′,x

1 = 1
10 +H(1)t). The random parameter corresponding to a physical position

x ∈ [A′,x
1 , B′,x

1 ] can be found after some algebraic manipulations analytically, by solving forξ
the equationx = Ax

1 +H(ξ)t for A′,x
1 ≤ x ≤ B′,x

1 , ξF = ξF (x) (see figure10 for the locusξF ).
Following a similar procedure, the value of the random parameter corresponding to the shock
position ξSW = ξSW (x) can be found analytically, solving forξ the equationx = Ax

2 + 1
2H(ξ)t

for A′,x
2 ≤ x ≤ B′,x

2 .
The statistics of the solution can be computed analytically for each cellCi as follows. For the

expectancy of the physical cell averaged valueūi, it holds that

E(ūi) =





0 if xi ≤ Ax
1 or xi ≥ B′,x

2

F (xi) if xi ∈ [A1, A
′,x
1 ]

∫ ξF (xi)

0

H(ξ)dξ + F (xi)(1 − ξF (xi)) if xi ∈ [A′,x
1 , A′,x

2 ]

∫ ξSW (xi)

ξF (xi)

H(ξ)dξ + F (xi)(1 − ξF (xi)) if xi ∈ [A′,x
2 , B′,x

1 ]

∫ 1

ξSW (xi)

H(ξ)dξ if xi ∈ [B′,x
1 , B′,x

2 ].

(74)

All the integrals in the equation (74) can be computed analytically.
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Moreover, the variance is easily analytically computed, due to the polynomial behavior ofH(ξ),
as follows

Var(ūi) =





0 if xi ≤ A′,x
1 or xi ≥ B′,x

2∫ ξF (xi)

0

H2(ξ)dξ + F 2(xi)(1 − ξF (xi))− E2(ūi) if xi ∈ [A′,x
1 , A′,x

2 ]

∫ ξSW (xi)

ξF (xi)

H2(ξ)dξ + F 2(xi)(1 − ξF (xi))− E2(ūi) if xi ∈ [A′,x
2 , B′,x

1 ]

∫ 1

ξSW (xi)

H2(ξ)dξ − E2(ūi) if xi ∈ [B′,x
1 , B′,x

2 ].

(75)
The (stochastic) inviscid Burgers problem (70) is solved over a set of equally spaced physical

meshes with 51, 101, 201, 401 and 601 points. The time space is discretized using 600 time steps of
constant length∆t = 1× 10−3. The error norms inL2, with respect to the exact stochastic solution
(see equations (74) and (75)), are reported in figure11. Similar results are obtained forL1 and
L∞ norms, but are not reported here for brevity. The reference solution is the full computation
performed with the SI scheme and a 256 (m = 8) equally spaced stochastic cells. This solution is
compressed by means of the aSI scheme with a coarsest level ofm0 = 4 and a finest level ofm = 8
with a threshold equal toε = 10−4. For both the full SI and the aSI schemes the computations are
performed employing quadratic polynomial reconstruction with and without the ENO selection of
the stencil. For each computation, the average number of stochastic cells is evaluated obtaining
the equivalent number of equally spaced stochastic cells (with the same computational cost). The
evolution of the number of stochastic cells associated to the different (physical) spatial resolutions
are reported in figure14(b)for the aSI scheme with and without the ENO procedure. Moreover, SI
scheme is applied over 16 (m = 4) and 32 (m = 5) equally spaced stochastic cells. These resolutions
are chosen because the average number of stochastic cells employed by the aSI scheme varies
between these values. The SI scheme fails to converge with the expected first order slope both
with and without the ENO, because of the appearance of the staircase phenomenon. The stochastic
resolution is not high enough with respect to the physical resolution, as evident looking at the three
last spatial resolutions in figure11.
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Figure 11. Spatial convergence for the Burgers equation with an uncertain hat initial condition (71). The
statistics of the solution (mean(a) and variance(b)) obtained with (aSI) and without (full) compression are

reported for the MHM method with superbee limiter (48).
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The staircase phenomenon is evident in figures12and13, where the expectancy and the variance
of the solution are reported over the 601 points physical mesh (the exact solution is evaluated
over a mesh of 2001 equally spaced points). In particular, figures12(b) and13(b) show a zoom
of the curves in the region, where the (uncertain) shock wave propagates (see figure10). As
expected, increasing the number of stochastic cells, even equally spaced, reduces the staircase
phenomenon (from 16 to 32 cells). It disappears at 256 cells. Note that the aSI scheme, with an
overall computational cost similar to the two coarse full simulations, produces better results (without
the appearance of the staircase phenomenon) concentrating the computational effort,i.e. the number
of cells, in the regions where the solution is less regular. The capability to refine and derefine during
the simulation following the evolution of the solution in the physical/stochastic space makes the aSI
scheme more efficient, yielding results that nearly coincide with the full reference solution.
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Figure 12. Expectancy for the cell-averaged solution of the inviscid Burgers equation at the final time
t = 0.6. The whole physical domain is represented in(a), while in figure(b) a zoom in the shock region

is reported. The physical mesh is constituted by 601 equally spaced points.

As already discussed for the solution of the linear advection equation with discontinuous initial
condition, the presence of the ENO selection of the stencil makes the computations progressively
more efficient increasing the physical resolution. This effect is evident in figure14(b), where the
(average) number of stochastic cells employed is reported as a function of the physical resolution.
In figure14(a), the direct comparison between the aSI scheme with and without the ENO selection
of the stencil over the finest 601 points physical mesh is shown. With lower resolution meshes, there
is no advantage in using the ENO procedure due to the representation of the solution over cells in the
overall physical/stochastic space. However, the slope associated to the average number of stochastic
cells shows that the solutions are represented by a narrow discontinuity (due to the increase of the
spatial resolution). As a consequence, the non-oscillatory interpolation helps to avoid the so-called
pollution of the stencil,i.e. the propagation of the interpolation error in the neighboring cells of a
discontinuity. Again, the combination of the aSI scheme and the use of the ENO procedure for the
polynomial interpolation, becomes even more efficient as the spatial resolution is increased. This is
a desired property for any intrusive UQ scheme.

In the following section, the aSI scheme is applied to non linear system of stochastic partial
differential equations.
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Figure 13. Variance for the cell-averaged solution of the inviscid Burgers equation at the final timet = 0.6.
Two different zooms in the shock region are reported. The physical mesh is constituted by 601 equally

spaced points.
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Figure 14. Evolution of the number of stochastic cells employed for each physical location for the aSI
scheme with and without the ENO reconstruction(a) for the inviscid Burgers equation. The average number
of stochastic cells employed by the aSI scheme as a function of the physical space resolution is reported in

(b).

6.3. Uncertain shock tube

In this section, the solution of the uncertain shock tube problem is reported. The problem can be
modeled by the well-known 1D Euler equations

∂u

∂t
+∇ · f(u) = 0 (76)
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where the vector of conservative variables, the densityρ, the momentumm = ρu and the total
EnergyEt, u ∈ R3 and the flux vectorf(u) ∈ R3 are

u =




ρ

m

Et


 f(u) =




m

m2

ρ
+Π(u)

m

ρ

(
Et +Π(u)

)
.




(77)

The pressureΠ(u) (as function of the conservative variables) can be derived for a polytropic ideal
gas as follows

Π(u) = (γ − 1)

(
Et − 1

2

|m2|
ρ

)
. (78)

The initial condition for the uncertain shock tube problem is derived from the classical Sod test
case [25], where an uncertainty of the density at the left state (x < xd for t = 0) is introduced:

uL(x, ξ, t) =




ρL(ξ)

0
pL

γ − 1


 uR(x, ξ, t) =




ρR

0
pR

γ − 1
.


 , (79)

In particular, the density on the left state is dependent from an uniformly distributed random
parameterξ ∼ U [0, 1]: ρL(ξ) = 0.3 + 1.6ξ. The values of the pressures arepL = 1 andpR = 0.1,
while the right value of the density isρR = 0.125. The total energyEt is obtained (considering the
gas at the rest in the whole domain) as a function of the local pressure and the ratio between specific
heats, that for a diatomic gas can be assumed equal toγ = 1.4.

As pointed out by Toro [24], analyzing the eigenvalue structure of the Euler equations, the
Riemann problem for the 1D Euler equations (see figure15) generates (fort > 0) four states, where
two are not known (variables are indicated with a star in the following). The Riemann problem for
the solution of the 1D Euler equation can be reduced to the solution of a single non-linear algebraic
equation for the pressure in the star regionp⋆ from which the other quantities can be computed.
With an uncertain shock tube problem, the dependence ofp⋆ from the random parameterp⋆ = p⋆(ξ)
should be considered. Unfortunately, this dependence cannot be computed explicitly. In this paper,
only the case involving a left moving rerefaction fan and a right moving shock wave are considered.
Moreover, initial conditions (79) produce this wave structure for all the random parameter taken into
account. The problem is further complicated by the presence of complex functions that should be
integrated to compute the exact statistics required. The solution strategy employed is the following.
For each physical location, where the exact statistics should be computed, the solution along the
stochastic space is divided into smooth regions (where the numerical quadrature with a large number
of points produces fair well-converged results even for non-polynomial functions). The main issue
is to determine the location of a discontinuity. This task can be accomplished solving an algebraic
non-linear equation for the random parameter that can be formulated to involve all (but not only) the
derivative available for the solution of the deterministic Riemann problem. After the subdivision of
the random space in more regions, where the quadrature can be done numerically without accuracy
loss (to the desired global accuracy), the statistics are computed in order to obtain the desired
reference solutions.

Details of the numerical procedure to obtain the reference solution of the stochastic Riemann
problem are reported in the Appendix.1.

Simulations are performed over a physical domainΩ = [− 1
5 ,

6
5 ] until a final timet = 0.31 with

the position of the diaphragm equal toxd = 0.42. The time space is divided in 6200 equal time steps
of length∆t = 5× 10−5. The simulations are carried out over equally spaced meshes of 201, 401,
801 and 1001 points employing the aSI scheme based on the MHM with a van Leer limiter (see
equation (49)).
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Figure 15. Riemann wave structure for the 1D Euler equation.

In figure16, the spatial convergence is reported for both the mean (16(a)) and the variance (16(b))
in L2 for the densityρ. The aSI method is obtained with a coarsest level of 4 (m0 = 2) cells and
a finest level of 256 (m = 8) stochastic cells withε = 10−4, while the reference solution is the
full SI scheme with 256 cells. The aSI scheme has used an average number of stochastic cells
between the two levelsm = 5 andm = 6 (see figure19(b)), so the other solutions are computed
by means of the SI scheme for comparison. For all the schemes, both the centered second order
polynomial reconstruction and the non-linear ENO one are used. The difference between the two
polynomial reconstructions is difficult to appreciate because the spatial resolution is too poor for
a sharp representation of the discontinuities. In this sense, there is no advantage in using the ENO
reconstruction (for the aSI scheme and the SI scheme). The first order of convergence is attained for
the expectancy of the densityρ, while, even with the SI scheme, the variance exhibits a lower rate of
convergence16(b). This behavior clearly indicates that even the solution employing 256 stochastic
cells is not fully converged for moments higher than the expectancy.

dx

er
r V

ar
(L

2)

0.002 0.004 0.006 0.008

0.002

0.003

0.004

0.005

0.006

0.007

full m5
full m6
full m8
full ENO m5
full ENO m6
full ENO m8
aSI
aSI (ENO)
1st order

(a)

dx

er
r V

ar
(L

2)

0.002 0.004 0.006

0.002

0.003

0.004

0.005

0.006

0.007
full m5
full m6
full m8
full ENO m5
full ENO m6
full ENO m8
aSI
aSI (ENO)
1st order

(b)

Figure 16. Spatial convergence for the stochastic shock tube problem equation with uncertain initial
condition (79). The statistics of the solution (mean(a) and variance(b)) obtained with (aSI) and without

(full) compression are reported for the MHM method with van Leer limiter (49).
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However, the aSI scheme displays the required properties: it saves the order of accuracy of the
full SI scheme, both for mean and variance (see figure16), and the degradation of the accuracy is
strongly limited. Moreover, as already shown in the previous numerical results, the phenomenon of
the staircase approximation of the statistics is prevented by the adaptation in the stochastic space. As
shown in figure17, note that all the numerical solutions are very similar to theexact solution17(a)
obtained over a mesh of 2001 equally spaced points in the physical space. By zooming (17(b)), the
presence of the typical staircase phenomenon for both the SI scheme with 32 and 64 stochastic cells
appears. The solution obtained with the aSI scheme agree very well with its full counterparts.

x

ε(
ρ)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
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Figure 17. Density Expectancy for the cell averaged solution of the uncertain shock tube problem at the final
time t = 0.31. The whole physical domain is represented in(a), while in the figure(b) a zoom in the shock

region is reported. The physical mesh is constituted by 1001 equally spaced points.

As already demonstrated for the mean, even for the variance, the presence of the staircase
approximation is prevented by the refinement of the stochastic space (see figure18). Even if curves
nearly coincide in figure18(a), in the shock region the presence of the typical step pattern is evident
for the full SI solution with 32 and 64 equally spaced stochastic cells (see18(b)).

The lower order of convergence attained for the variance, even for the non compressed solution,
highlights that the error in the stochastic space dominates the global error. As already demonstrated,
the efficiency of the ENO selection of the stencil is related to the sharp representation of the
discontinuities. In this case, the results with and without the ENO selection of the stencil are very
similar. No advantages, even in term of compression, are observed. This issue is evident in figure
19(a), where the number of stochastic cells, along the physical domain, are reported. The region
associated to the discontinuity spreads over a larger domain and, globally, the presence of non-
centered stencils degradates the quality of prediction. This issue is well known in the ENO literature
[26]. A possible cure, outside the scope of the present paper, would be the introduction of WENO
type of interpolation. Employing a WENO type of interpolation, the correct centered stencil could
be recovered without strong degradation of the prediction (the author already introduced a WENO
interpolation in [10] in the context of the MR point-value setting).

The evolution of the average number of stochastic cells employed by the aSI scheme with and
without the ENO interpolation is reported in19(b). In this case, there is no intersection between
the two curves, revealing that in this case the ENO interpolation gives no advantage, even for high
physical space resolutions.
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Figure 18. Density Variance for the cell averaged solution of the uncertain shock tube problem at the final
time t = 0.31. The whole physical domain is represented in(a), while in the figure(b) a zoom in the shock

region is reported. The physical mesh is constituted by 1001 equally spaced points.
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Figure 19. Evolution of the number of stochastic cell employed for each physical location for the aSI scheme
with and without the ENO reconstruction for the shock tube problem. The average number of stochastic cells

employed by the aSI scheme as function of the physical space resolution has been reported in (b).

7. CONCLUDING REMARKS

In this paper, a novel adaptive intrusive numerical scheme for Uncertainty Quantification has been
presented. The classical MR Harten framework, in its cell average setting, has been here extended to
include the dependence from a generic probability density function. Moreover, an original algorithm
has been developed to obtain the solution at the finest resolution level starting from the coarsest one.
The aim is to obtain, at the same time, a saving in memory requirements and in the computational
cost associated to the true model evaluation of the system. This general algorithm has been coupled
with the Semi-Intrusive (SI) scheme for UQ proposed by Abgrall and Congedo [7]. The overall
numerical scheme is the so-called adaptive-SI scheme. We demonstrated that it preserves the
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convergence properties of the original SI scheme with a strong saving in term of computational
cost. Different test-cases have been presented to demonstrate the efficiency and the accuracy
properties of the aSI scheme. The linear advection equation has been solved for initial smooth
and discontinuous solution to demonstrate the capability of the stochastic scheme to preserve the
accuracy related to the deterministic MUSCL-Hancock method (MHM). A second test-case has
been focused on the inviscid Burgers equation. We demonstrated the capability of the method to
automatically refine/derefine following the changes in the regularity of the solution in the coupled
stochastic/physical space. In particular, a smooth solution has been considered, in the stochastic
space, as initial condition, where shock waves velocities are directly related to the parameter in
the stochastic space. The final test case proposed has been the Euler system of equation to solve an
uncertain shock tube problem. The aSI scheme has been demonstrated to be efficient also in the case
of vectorial problems. For the computation of the convergence curves, an original strategy for the
semi-analytical solution of the stochastic shock tube problem has been also developed following and
extending the classical numerical procedure for the solution of the Riemann problem for the Euler
equations. This paper constituted the first effort to introduce a MR framework into the SI method.
The generality of the approach is not limited to second order scheme, but can be easily extended to
higher order numerical formulation for the physical space and time discretizations. In the present
work, both the linear and non-linear MR framework have been presented in which the selection of
the stencil to obtain the reconstruction operators can be obtained by a data-dependent procedure. The
ENO selection of the stencil has been also introduced. Considering the numerical results presented,
note that the advantages related to the non-linear schemes are very limited. This issue is related not
to the non-linear procedure itself but to the peculiarity of the SI scheme that produces representations
of the solution in a combined physical stochastic space. The representation of discontinuous solution
along the stochastic space can recover a smoother behavior when the physical spatial resolution is
not high enough. This has been demonstrated showing that the importance of the ENO scheme
increases with the physical space resolution. To improve the global properties of the scheme, two
further steps seem useful. The first is the introduction of the WENO reconstruction instead of the
ENO interpolation recovering the correct stencil in all the regions in which the solution is smooth,
as it has been already presented for the point-value setting [10]. The other step could be to increase
the polynomial order for the reconstruction. This should improve both accuracy and compression
capabilities. The extension and the analysis of the aSI scheme for a moderate number of dimension
is actually underway.
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.1. Accurate numerical solution for the 1D stochastic Riemann problem for the Euler equations

In this section, let us illustrate the numerical procedure to obtain the reference solution for the stochastic
shock tube problem (the interesting reader may refer to [24] for a complete description of the deterministic
problem). Let us consider a deterministic Riemann problem for the 1D Euler equations, in particular the case
of a left going rarefaction wave and a right moving shock wave. This assumption do not pose any limitation
on the general procedure for the solution of the stochastic problem presented here.

The solution of the deterministic Riemann problem (for gas initially at the rest) consists in solving a
non-linear equation for the pressure in the region between the shock and the contact discontinuity. Remark
that each quantity is dependent on the random parameter. In the deterministic case, the random parameter is
obviously assumed as a constant. In the following, the explicit dependence of each quantity with respect the
random parameterξ is explicitly reported for the uncertain initial left stat (see equation (79)). However
the dependence of all the quantities from the random parameter must be considered redundant if the
deterministic case is of interest because in that case all the uncertain parameters assume a fixed value.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
Prepared usingfldauth.cls DOI: 10.1002/fld

Page 32 of 38

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

AN ADAPTIVE MR SEMI-INTRUSIVE SCHEME FOR UQ 33

The non-linear equation to solve for the pressure in the star regionp⋆ is the following

f(p⋆(ξ),uL(ξ),uR) = fL(p
⋆(ξ),uL(ξ)) + fR(p⋆(ξ),uR)

=
2aL(ξ)

γ − 1

[(
p⋆(ξ)

pL

) γ−1
2γ

− 1

]
+
(
p⋆(ξ) − pR

)
[

2
(γ+1)ρR

p⋆(ξ) + γ−1
γ+1pR

] 1
2

= 0,
(80)

with the speed of soundaL(ξ) =
√

γ pL

ρL(ξ) .

The equation (80) is solved by means of an iterative Newton-Raphson scheme following [24]




∆p⋆ = −
(
df(p⋆(ξ),uL(ξ),uR)

dp⋆

∣∣∣
p⋆(ξ)=p⋆

k(ξ)

)−1

f(p⋆k(ξ),uL(ξ),uR)

p⋆k+1(ξ) = p⋆k(ξ) + ∆p⋆.

(81)

The initial condition is systematicallyp⋆0 = pL+pR

2 ) and∆p⋆ ≤ 10−14 is chosen as convergence criterion.
Derivative of the functionf(p⋆(ξ),uL(ξ),uR) with respect top⋆ that can be computed as follows





df(p⋆(ξ),uL(ξ),uR)

dp⋆(ξ)
=

dfL(p
⋆(ξ),uL(ξ))

dp⋆
+

dfR(p⋆(ξ),uR)

dp⋆

dfL(p
⋆(ξ),uL(ξ))

dp⋆
=

1

γp⋆(ξ)

√
γ
pL
ρL

(
p⋆(ξ)

pL

) γ−1
2γ

dfR(p⋆(ξ),uR)

dp⋆
=

2

(γ + 1)ρR

(
p⋆(ξ) + γ−1

γ+1pR

)


1 − (p⋆(ξ) − pR)(

p⋆(ξ) + γ−1
γ+1pR

)


 .

(82)

Once computed the pressurep⋆, the particle velocityu⋆ can be computed according to

u⋆(ξ) =
1

2

(
fR(p⋆(ξ),uR) − fL(p

⋆(ξ),uL(ξ))
)
, (83)

while the density in the star region is defined as

ρ⋆L(ξ) = ρL(ξ)

(
p⋆(ξ)

pL

) 1
γ

ρ⋆R(ξ) = ρR

[ p⋆(ξ)
pR

+ γ−1
γ+1

γ−1
γ+1

p⋆(ξ)
pR

+ 1

]
.

(84)

Now, let us determine the positions of the rarefaction wave, of the contact discontinuity and of the shock
wave. In the following,HF, TF, CD and SW are used to name the head and tail of the rarefaction fan,
the contact discontinuity and the shock waves respectively. These coordinates can be computed only as a
function of the variable in the star region,p⋆ andu⋆, and of the left and right statesuL anduR at a certain
time t:





HF(ξ, t) = xd − aL(ξ)t

TF(ξ, t) = xd − (u⋆(ξ) − a⋆L(ξ))t

CD(ξ, t) = xd + u⋆(ξ)t

SW(ξ, t) = xd + aR

[
γ + 1

2γ

p⋆(ξ)

pR
+

γ − 1

2γ

]
where





aL(ξ)
⋆ = aL(ξ)

(
p⋆(ξ)

pL

) γ−1
2γ

aR =

√
γ
pR
ρR

.

(85)

The complete solution of the Riemann problem is then (see also figure20)

u(x, ξ, t) =





uL(x, ξ, t) if x < HF(ξ, t)

uF (x, ξ, t) if HF(ξ, t) < x < TF(ξ, t)

u⋆
L(x, ξ, t) if TF(ξ, t) < x < CD(ξ, t)

u⋆
R(x, ξ, t) if CD(ξ, t) < x < sw(ξ, t)

uR(x, ξ, t) if x > SW(ξ, t),

(86)
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where the solution inside the rarefaction fan is as follows

uF (x, ξ, t) =




ρL(ξ)

[
2

γ + 1
− γ − 1

aL(ξ)(γ + 1)
r(x, t)

] 2
γ−1

2ρL(ξ)

γ + 1
[aL(ξ) + r(x, t)]

pL
γ − 1

[
2

γ + 1
− γ − 1

aL(ξ)(γ + 1)
r(x, t)

] 2γ
γ−1




=



ρF (ξ)

mF (ξ)

Et(ξ),


 (87)

while in the star region

u⋆
L(x, ξ, t) =




ρ⋆L(ξ)

ρ⋆L(ξ)u
⋆(ξ)

p⋆(ξ)

γ − 1


 and u⋆

R(x, ξ, t) =




ρ⋆R(ξ)

ρ⋆R(ξ)u⋆(ξ)

p⋆(ξ)

γ − 1


 . (88)

A similarity variabler(x, t), defined asr(x, t) = x−xd
t , is introduced.

Note that if a value for the random parameter is fixed, the previous procedure coincide with the classical
solution of the Riemann problem as reported in [24]. However, here the interest is the computations of the
statistics, the expectancy and the variance, of the solutionu(x, ξ, t). To obtain the statistics, the solution
u(x, ξ, t) has to be integrated numerically splitting the random space. In particular, the integration is carried
out by dividing the computational domain of the stochastic space according to (86). The complete solution of
the stochastic Riemann problem for the Euler equation using the initial conditions (79), consists in capturing
four structures: the region of points describing the position of the head and tail of the rarefaction wave, the
contact discontinuity and the shock wave. For each zone, it is necessary to find the random parameter

ξd : x = g(ξd, t) ∀(x, t) ∈ Ω ⊇ D(t) × T, (89)

where the functiong(ξ, t) can be one of the region reported in (85). It is assumed here that functionsg
are monotone functions with respect to the random parameter. The subset of the physical spaceD(t) can
be defined considering the union of all the images of the functions describing the physical position of the
discontinuities

D(t) = [HFmin(t),HFmax(t)] ∪ [TFmin(t),TFmax(t)] ∪ [CDmin(t),CDmax(t)] ∪ [SWmin(t),SWmax(t)].
(90)

Note that for each(x, t), more than oneξd corresponding to the intersections with different regions could
exist, but not multiple intersections with the same region. The case of multiple intersections is determined by
a non-null intersection between two or more images of theg functions. The monotonicity of theg function
implies that the extrema ofg correspond to the bounds of the stochastic space. This property is useful from
a practical point of view because for each time step the domainD(t) can be easily determined by (90).

Intersections should be computed solving the non-linear algebraic equations (89) by using Newton-
Raphson techniques. Let us focus now on the four regions.

The intersection between the linex and the head fanHF(ξ, t) can be obtained as follows

x = HF(ξ, t) = xd − aLt = xd −
√

γ
pL

ρL(ξ)
→ ρL(ξ) =

γpL
r2(x, t)

. (91)

If density ρL is linearly dependent on the random parameterξ ∼ U [0, 1] (as presented in section6.3) the
value of the intersection is equal to

ξd =
1

ρL(1) − ρL(0)

(
γpL

r2(x, t)
− ρL(0)

)
. (92)

Concerning the tail of the rarefaction wave, it follows that

x = xd +

(
1

2

[
fr(p

⋆(ξ), ξ) − fL(p
⋆(ξ), ξ)

]
− aL(ξ)

(
p⋆(ξ)

pL

) γ−1
2γ

)
t (93)

where both functionsfL andfR are dependent on the random parameter (omitting the dependence from the
left uL(ξ) and right statesuR).

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(2013)
Prepared usingfldauth.cls DOI: 10.1002/fld

Page 34 of 38

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

AN ADAPTIVE MR SEMI-INTRUSIVE SCHEME FOR UQ 35

The problem is to find the root of the functionF (p⋆(ξ), ξ)

F (p⋆(ξ), ξ) = r(x, t) − fR(p⋆(ξ)) +

√
γ

pL
ρL(ξ)

(
p⋆(ξ)

pL

) γ−1
2γ

= r(x, t) − fR(p⋆(ξ)) +C(p⋆(ξ), ξ) = 0,

(94)

where the relation (83) is injected in the previous equation.
The iterative procedure for the solution of (94) is the following





∆ξ = −
(
dF (p⋆(ξ), ξ)

dξ

∣∣∣
ξ=ξk

)−1

F (p⋆(ξk), ξk))

ξk+1 = ξk +∆ξ,

(95)

where the differential is equal to

dF (p⋆(ξ), ξ)

dξ
=

∂F (p⋆(ξ), ξ)

∂ξ
+

∂F (p⋆(ξ), ξ)

∂p⋆
dp⋆(ξ)

dξ

=
∂C(p⋆(ξ), ξ)

∂ξ
+

(
−dfR(p⋆(ξ))

dp⋆
+

∂C(p⋆(ξ), ξ)

∂p⋆

)
dp⋆(ξ)

dξ
.

(96)

The derivative of the functionC(p⋆(ξ), ξ) has to be computed as well as the derivative
dp⋆(ξ)

dξ
, while

dfR(p⋆(ξ))

dp⋆
is already available (see equation (82)).

The derivatives ofC(p⋆(ξ), ξ) are

∂C(p⋆(ξ), ξ)

∂ξ
= −1

2

(
p⋆(ξ)
pL

) γ−1
2γ

γpL (ρL(1) − ρL(0))

ρ2L(ξ)
√

γ pL

ρL(ξ)

∂C(p⋆(ξ), ξ)

∂p⋆
=

1

2

√
γ pL

ρL(ξ)

(
p⋆(ξ)
pL

) γ−1
2γ

(γ − 1)

γp⋆(ξ)
,

(97)

while, at each time step, the derivative
dp⋆(ξ)

dξ
can be approximated by means of a backward difference

dp⋆(ξ)

dξ
≃ p⋆(ξk+1) − p⋆(ξk)

ξk+1 − ξk
, (98)

sincep⋆ is not known explicitly.
From a practical point of view, the initial guessξ0 is chosen as the solution of the linear approximation

for TF(ξ, t) between the extrema of the stochastic domain, with
dp⋆(ξ0)

dξ
= 0.1.

Considering the intersection with the contact discontinuity, it follows that

F (p⋆(ξ), ξ) = r(x, t) − u⋆(ξ)

= r(x, t) − 1

2

(
fR(p⋆(ξ)) − fL(p

⋆(ξ), ξ)
)
= r(x, t) − fR(p⋆(ξ)) = F (p⋆).

(99)

The iterative procedure is formally equal to (95) (even if here the dependence is not explicit with respect
to ξ), with a different differential term

dF (p⋆(ξ))

dξ
=

dF (p⋆(ξ))

dp⋆
dp⋆(ξ)

dξ

= −dfR(p⋆(ξ))

dp⋆
dp⋆(ξ)

dξ
.

(100)

This differential can be computed according to (82) and (98).
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Finally, the intersection with the shock waves is demanded. The non linear algebraic equation results

F (p⋆(ξ), ξ) = r(x, t) − aR

[
γ + 1

2γ

p⋆

pR
+

γ − 1

2γ

] 1
2

= r(x, t) − A(p⋆(ξ)) = F (p⋆(ξ)).

(101)

Again, the formal iterative procedure (95) can be employed with
dF (p⋆(ξ))

dξ
=

dF (p⋆(ξ))

dp⋆
dp⋆(ξ)

dξ
=

−dA(p⋆(ξ))

dp⋆
dp⋆(ξ)

dξ
, where

dA(p⋆(ξ))

dp⋆
=

1

4

γ + 1

γpR

√
(γ+1)p⋆(ξ)

2γpR
+ γ+1

2γ

. (102)

Let us sketch the reference solution in the planξ − x at a final time equal tot = 0.31, with the initial
position of the diaphragmxd = 0.42 in the figure20.

x

ξ

HFmin TFmin CDmin SWmin

HFmax TFmax CDmax SWmax

ρL

ρF

ρ⋆L ρ⋆R

ρR

Figure 20. Schematic representation of the density of the uncertain shock tube problem in the combined
physical/stochastic space. The regions where the solution should be subdivided are reported with the explicit
identification of all the zones defining the variation of the solution as a function of the uncertain parameter

ξ.
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The expectancy of the-cell averaged physical solution (at timet = 0.31) u(x, ξ, t), for each cellCi =
[xi − |Ci|

2 , xi +
|Ci|
2 ] is computed as follows (here reported explicitly only for the density)

E(ūi) =





ρL(0) + ρL(1)

2
if xi ≤ HFmin

∫ ξd(xi)

0

ρF (x, ξ)dξ + ρL(0)(1 − ξd(xi)) +
(ρL(1) − ρL(0)) (1 − ξ2d(xi))

2
if HFmin ≤ xi ≤ HFmax

∫ 1

0

ρF (x, ξ)dξ if HFmax ≤ xi ≤ TFmin

∫ ξd(xi)

0

ρ⋆L(ξ)dξ +

∫ 1

ξd(xi)

ρF (x, ξ)dξ if TFmin ≤ xi ≤ TFmax

∫ 1

0

ρ⋆L(ξ)dξ if TFmax ≤ xi ≤ CDmin

∫ ξd(xi)

0

ρ⋆L(ξ)dξ +

∫ 1

ξd(xi)

ρ⋆R(ξ)dξ if CDmin ≤ xi ≤ CDmax

∫ 1

0

ρ⋆R(ξ)dξ if CDmax ≤ xi ≤ SWmin

∫ ξd(xi)

0

ρ⋆R(ξ)dξ(1 − ξd(xi))ρR if SWmin ≤ xi ≤ SWmax

ρR if xi ≥ SWmax,
(103)

where the variance can be computed in a similar way (see what is done for the linear advection equation
§6.1and the Burgers equation (6.2)). All the numerical quadratures are performed over the stochastic (sub-
domain discretized by means of5000 equally spaced intervals employing a three points Gauss formula:

∫ b

a

f(ξ)dξ =
b − a

2

3∑

k=1

wkf(ξk), (104)

wherew1,3 = 5/9, w2 = 8/9, ξ1,3 = b+a
2 ± b−a

2

√
3
5 and ξ2 = b+a

2 .
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Stochastic Discrete Equation Method (sDEM) for two-phase flows
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aINRIA Bordeaux Sud-Ouest, Talence, 33405 Cedex, France

Abstract

A new scheme for the numerical approximation of a five-equations model taking into account uncertainty
quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization
of the five-equations model is modified for including a formulation based on the adaptive Semi-intrusive
(aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some
reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of
the overall scheme. The propagation of initial uncertainties is evaluated in terms of mean and variance of
several thermodynamic properties of the two phases.

Keywords: Uncertainty quantifications, adaptive Semi-Intrusive scheme (aSI), DEM (discrete equation
method), multi-resolution, Two-phase compressible flows.

1. Introduction

This work is devoted to the numerical resolution of a stochastic two-phase flow, using an adaptive semi-
intrusive scheme. The context of this work is in the interface problems characterized by the coexistence of two
separated phases. In some particular conditions, heat and mass transfer between the two phases can appear,
increasing the complexity of observed phenomenon. The two-phase flow problems have been addressed by
many authors [1–8], because of their use in a large number of engineering devices. The prediction of this flow
is particularly important for some specific physical problems, such as cavitation phenomena, wall corrosion,
efficiency deterioration and so on.

Several studies have been focused on formulations yielding a good trade-off between physical accuracy
and mathematical/numerical difficulties.

In this study, we deal with a class of methods based on compressible approach, treating the interface like
a diffused zone (i.e. an artificial transition region where the thermodynamic conditions are unknown). This
class of methods is principally affected by two important numerical issues: (i) how to define the closure laws
for the average interfacial velocity and pressure and (ii) the approximation of the non-conservative terms,
involving the volume fraction gradient, for shock interaction with volume fraction discontinuities.

In this field, Baer and Nunziato proposed a model [9] that was unconditionally hyperbolic and able to
deal with a wide range of application. Many variants have been proposed [2, 10–12] and thanks to its ability
to solve the interface problems, the model was extended to other interesting application as the evaporation
fronts [13].

An original variant to Baer and Nunziato model has been proposed by Abgrall and Saurel [14]. Instead of
following the most classical way, i.e. discretization of an averaged model, the authors developed a numerical
scheme using the so-called discrete equation method (DEM): starting with a semi-discrete scheme for the
compressible Navier-Stokes equations for each phase, a statistical average is performed in order to obtain
an approximation of the mean quantities.

Anyway, the numerical complexity and implementation issues motivate the formulation of new simplified
approaches. Kapila et al. [8] proposed a five-equations model supposing the pressure and velocity equilibrium
between the phases. This model is unconditionally hyperbolic. This type of model has been used by many
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authors (see [1, 5, 15]) and extended to the numerical approximation of two-phase flow problem with viscous
effects [16, 17].

Prediction and accuracy of these models are anyway strongly affected by the presence of numerous
uncertainties. First, the models can be affected by some uncertainties, as, for example, the initial gas volume
fraction (it is not possible to measure, with a good accuracy, the initial fraction during the experience) or
some tuning coefficients that, for simplicity, are taken constant in the simulation (as the drag force coefficient
in the drift-flux model or the heat exchange coefficient). Secondly, some uncertainties can be directly driven
by the physics, geometric tolerances or experimental measurements.

Taking into account these uncertainties in the numerical simulation, is of fundamental importance for
an accurate estimation of the simulation with respect to the experimental data. Anyway, this analysis is
complicated by the crossing between the stochastic region (linked to the uncertainties) and shock-dominated
multiphase flow.

Concerning uncertainty quantification methods, we can distinguish between non-intrusive approaches,
i.e. where uncertainties are quantified practically by making multiple calls to a deterministic code (see the
Monte Carlo family of techniques [18], the collocation family [19] and the non-intrusive Galerkin projection
methods), and intrusive approaches, i.e. where the original deterministic code is completely modified in
order to consider in the model the uncertainties and to quantify them. Concerning shock-dominated flows,
the problem is to find an efficient representation of the stochastic solution, when the flow presents some
discontinuities, thus producing a shock evolving in the coupled physical/stochastic space. Probabilistic
uncertainty quantification (UQ) approaches represent the inputs as random variables and seek to construct
a statistical characterization of few quantities of interest.

Wan and Karniadakis have introduced an adaptive class of methods for solving the discontinuity issues
by using local basis functions, the multi-element generalized Polynomial Chaos (ME-gPC), see [20]. This
strategy deals with an adaptive decomposition of the domain on which local basis are employed. In order
to treat discontinuous response surfaces, [21, 22] applied a multiresolution analysis to Galerkin projection
schemes. The intrusive Galerkin approach may lead to optimal representation of the solution, exhibiting
an exponential convergence, if a proper basis is chosen. However the intrusive Galerkin approach results
in a larger system of equations than in deterministic case with, in addition, a different structure that
requires a new class of solver and numerical code. Despite this issue, the intrusive Galerkin approach can
be demonstrated to have substantial advantages with respect non-intrusive approach, not only for idealized
systems, but also for large-scale applications [21]. Advancements have been achieved in the Galerkin intrusive
scheme where the wavelets formulation has been introduced in order to modify the basis of approximation
[23]. It modifies the basis, by enriching the space with a hierarchical structure according to the regularity
of the solution. However the Galerkin approach presented in [23] remains very problem-dependent. In fact,
using a Roe-type solver requires to know the eigenstructure of the Roe matrix explicitly; this can be very
complex. More over, ad hoc entropy fix should be adopted, thus increasing the numerical cost associated
to the representation of discontinuous solution [24]. This original approach has been further improved to
obtain a more efficient scheme employing a multiresolution adaptive strategy [23]. However actually this
approach is limited by the spatial and time discretization accuracy that could dominate the overall accuracy
of the global scheme. In [25], an intrusive formulation of the stochastic Euler equations based on Roe
variables is presented. It is shown that the Roe variable formulation is robust for supersonic problems where
the conservative variable formulation fails, but only for localized basis functions of the generalized chaos
representation. For global Legendre polynomials, the discontinuities in stochastic space lead to oscillations
and unphysical behavior of the solution and numerical instability. Wavelet functions are more robust in this
respect, and do not yield oscillations around discontinuities in stochastic space, but need very regular grids.

More recently, in the context of uncertainty quantification studies, Abgrall and Congedo [26] proposed
a novel semi-intrusive approach that extend in a straightforward and natural way, the representation of the
variables in the physical space also along the stochastic space. This approach leads to a very flexible scheme
able to handle whatever form of probability density function even time varying and discontinuous. One of
the prominent advantage of this kind of approach is the possibility to extend in an easier way an existing
deterministic code to its stochastic counterparts.

Recently, a cell-average setting multiresolution framework has been coupled with the SI scheme. Some

2



reference test-cases are performed to demonstrate the convergence properties and the efficiency of the overall
scheme: the linear advection problem for both smooth and discontinuous initial conditions, the inviscid
Burgers equation and the 1D Euler system of equations to model an uncertain shock tube problem obtained
by the well-known Sod shock problem [27].

Actually, for the stochastic investigation in a two-phase flow, the non-intrusive approach has been, clearly,
favored, but the number of contributions is actually low [28–32]. However, the non-intrusive method result
in a expensive computational cost, compared to intrusive method. To our knowledge, in literature there
is only one contribution about an intrusive method applied to a two-phase flow investigation proposed by
Petterson et al. [33]. They proposed a five equations model (one pressure and one velocity) coupled to a
perfect gas equation of state for both the phases. Then, in order to obtain the stochastic formulation of the
two-phase problem, they modified the fluxes, including the stochastic variable.

In this study, a new scheme for the numerical approximation of a five-equation model based on the DEM
method using an adaptive semi-intrusive scheme for the uncertainty quantification is presented.

In particular, the MR framework with real-time adaptivity in the stochastic space, is adapted and coupled
with the DEM scheme for the discretization of one dimensional two-phase five-equations model [14].

This paper is organized as follows. In section 2, at first, a description of the five equation model and of
the semi-discrete equation obtained with the DEM method is explained. Then, in Section 3, main elements
of the adaptive-semi-intrusive scheme (aSI) are presented. In particular, the key element of this new scheme,
i.e. the expectancy flux computation with the link between the DEM formulation and the aSI scheme, is
highlighted. Thermodynamic closure is addressed in section 4. In section 5, three test-cases are considered
for the assessment of the proposed formulation.

2. Mathematical model

In this section, we illustrate the coupling of the two-phase flows resolution scheme with the adaptive
multiresolution semi-intrusive scheme.

The two-phase model is based on a five-equation model with a single pressure and a single velocity. It
is obtained imposing the asymptotic reduction of a seven equation model and it is discretized with a DEM
approach, following Abgrall [5].

In this section, we recall briefly the governing equations and the principles of the DEM approach, since
it has already been extensively explained in [5, 14, 34].

2.1. The five equations model

The well-known Baer & Nunziato [9] model is composed by the conservative equations of each phase
and one transport equation for each volume fraction of phases (in this case no heat and mass transfer is
considered):
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∂α1

∂t
=− uI · ▽α1 + µ(p1 − p2)

∂α1ρ1
∂t

+ div(α1ρ1u1) = 0

∂α1ρ1u1

∂t
+ div(α1ρ1u1 ⊗ u1) + ▽(α1p1) = pI▽(α1) +λ(u2 − u1)

∂α1ρ1E1

∂t
+ div(α1(ρ1E1 + p1)u1) = pIuI · ▽(α1) +λuI · (u2 − u1)+

−µpI(p1 − p2)

∂α2

∂t
+ uI · ▽α2 = − µ(p1 − p2)

∂α2ρ2
∂t

+ div(α2ρ2u2) = 0

∂α2ρ2u2

∂t
+ div(α2ρ2u2 ⊗ u2) + ▽(α2p2) = pI▽(α2) −λ(u2 − u1)

∂α2ρ2E2

∂t
+ div(α2(ρ2E2 + p2)u2) = pIuI · ▽(α2) −λuI · (u2 − u1)+

︸ ︷︷ ︸
Non conservative terms

+µpI(p1 − p2)︸ ︷︷ ︸
Relaxation terms

(1)

where the subscripts 1 and 2 refer to the two phases k. Quantities αk, ρk, uk, pk, Ek are the volume
fraction, the density, the velocity vector, the pressure and the total energy, respectively for each phase k.
The last one is defined as Ek = ek+0.5u2

k. The interface velocity and the pressure are indicated with uI and
pI , respectively. These ones are defined in [9] as uI = u2 and pI = p1, with 1 and 2 corresponding to the
gas and the liquid phases, respectively. Other possible definitions of interface variables are given in [4, 14].

Parameters λ and µ represent the dynamic compaction viscosity and the relaxation velocity parameter,
respectively.

The system (1) can be expressed in vectorial form as follows:

∂U

∂t
+

∂

∂x
F (U) +B(U)

∂α1

∂x
= S(U) (2)

or, after some manipulation:

∂U

∂t
+ FT (U) = S(U) (3)

where

U =




α1

α1ρ1
α1ρ1u1

α1ρ1E1

α2

α2ρ2
α2ρ2u2

α2ρ2E2




, FT (U) =
∂

∂x
F (U) +B(U)

∂α1

∂x
,

4



F (U) =




0
α1ρ1u1

α1(ρ1u1 ⊗ u1) + p1
α1(ρ1E1 + p1)u1

0
α2ρ2u2

α2(ρ2u2 ⊗ u2) + p2
α2(ρ2E2 + p2)u2)




B(U) =




uI

0
−pI

−pIuI

uI

0
−pI

−pIuI




, S(U) =




µ(p1 − p2)
0

λ(u2 − u1)
λuI · (u2 − u1)− µpI(p1 − p2)

−µ(p1 − p2)
0

−λ(u2 − u1)
−λuI · (u2 − u1) + µpI(p1 − p2)




.

Supposing the mechanical equilibrium, the equality of pressure and velocity can be obtained in the limit
of a stiff mechanical relaxation as in [1, 8], i.e. the relaxation parameters, λ and µ are taken as infinite:

µ =
1

ǫ
, λ =

1

ǫ
, where ǫ → 0+. (4)

As a consequence, the asymptotic development allows to find the solution such that the relaxation terms
go to zero (for more details concerning asymptotic development, Refs. [1, 5, 17] are strongly recommended).
Then, after some algebraic manipulations of system (1), the reduced model is thus obtained:





∂α1

∂t
+ u · ▽α1 =

ρ2c
2
2 − ρ1c

2
1

ρ1c21
α−1 +

ρ2c22
α2

div u

∂α1ρ1
∂t

+ ▽(α1ρ1u) = 0

∂α2ρ2
∂t

+ ▽(α2ρ2u) = 0

∂ρu

∂t
+ ▽(ρku⊗ u+ p) = 0

∂E

∂t
+ ▽((E + p)u) = 0

(5)

where ρ = α1ρ1 + α2ρ2, E = α1ρ1e1 + α2ρ2e2, p and u are the mixture density, mixture total energy, the
mixture pressure and the mixture velocity, respectively. Finally, ck is the sound of speed of each phase.

We remember that α1 + α2 = 1, so only a single phase is considered in the unknowns of the system
that, for the system 5 are: α1, ρ1, ρ2, e1, e2, p and u. There are seven unknowns. Then, in order to
close the system (5), an equation of state (EOS) for each pure phase is demanded in order to define all the
thermodynamic properties. This model involves mechanical equilibrium between the phases at any time, as
it is evident looking at the presence of only one pressure p and only one velocity vector, u, in the system 5.
Finally, the computations presented in this work rely on the five-equation model.

2.2. The numerical scheme

The DEM approach has been derived in [14] and in [5] for the five-equations model. We recall here the
main lines of the scheme.

First, we remember that the DEM consists in applying at a discrete level, the same procedure used to
obtain a compressible multiphase model, i.e.:
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1. Suppose that each pure fluid is governed by the Euler equations.
2. Introduce, for each phase, the characteristic function Xk that satisfies the topological equation:

∂Xk

∂t
+ σ · ▽Xk = 0, with Xk =

{
1 if (~x,t) belongs to phase k

0 otherwise
(6)

where σ is the interface velocity between the two phases.
3. An averaging procedure, E(·), as in Drew and Passmann [35], is applied to the Euler equations (see

[14]).
4. A statistical average is performed in order to obtain an approximation of the mean quantities.

Obtaining the semi-discrete numerical approximation of the two-phase system (5) demands a two-steps
procedure. First, the DEM method, previously described, is applied to a seven equations model, i.e. to the
system (1). After obtaining its semi-discrete numerical approximation, a relaxation procedure is applied,
always at a discrete level, in order to reach a mechanical equilibrium.

Now, let us suppose that at time t, the computational domain Ω is divided into the cells Ci =]xi−1/2, xi+1/2[.
At a time t = t + s (with s small), we assume that the interface in xi+1/2 moves at a velocity σi+1/2

and the interface in xi−1/2 moves at a velocity σi−1/2. As a consequence, the cell Ci evolves in C̄i =
]xi−1/2 + sσi−1/2, xi+1/2 + sσi+1/2[ (see figure 1). The cell may be either smaller or larger than the original
ones Ci, depending on the signs of the velocities. Then, we denote with F (UL, UR) the Godunov numerical

Figure 1: a) Subdivision of computational domain. b) The various states in the Riemann problem between states UL and UR.

flux between the states UL and UR, and with F lag(UL, UR) the flux across the contact discontinuity between
the states UL and UR (see figure 1). The relation between the two fluxes is equal to :

F lag(UL, UR) = F (U+
LR)− σ(UL, UR)U

+
LR = F (U−

LR)− σ(UL, UR)U
−
LR, (7)

where the superscripts ± denote the state on the right and on the left of the contact discontinuity as in
figure 1.

The semi-discrete scheme for the reduced five equations model in 1D is:




∂α1

∂t
= FT (U1) +

α1α2

α2ρ1a2
1 + α1ρ2a2

2

{
FT (U8)

α2ρ2χ2
− u2FT (U7)

α2ρ2χ2
+

u2
2

2
− e2 − ρ2κ2

α2ρ2χ2
FT (U6)+

+
ρ22κ2FT (U1)

α2ρ2χ2
− FT (U4)

α1ρ1χ1
+

u1FT (U3)

α1ρ1χ1
−

u1
2

2
− e1 − ρ1κ1

α1ρ1χ1
FT (U2) − ρ21κ1FT (U5)

α1ρ1χ1

}

∂α1ρ1
∂t

= FT (U2)

∂α2ρ2
∂t

= FT (U6)

∂ρu

∂t
= FT (U3) + FT (U7)

∂ρE

∂t
= FT (U4) + FT (U8)

(8)
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where χk and κk, are defined as follows:

χk =

(
∂ek
∂Pk

)

ρk

; κk =

(
∂ek
∂ρk

)

Pk

(9)

where ek is the phase internal energy.
As explained before, the vector FT (Uj), with j = 1, ..., 8, is the sum of two contributions, i.e. the flux

of hyperbolic system (conservative term) and the non-conservative terms, obtained for each equation of the
system (1).

The correspondence of the semi-discrete system (8) with the model (5) has been demonstrated in [5].
Note that this method features initially two different thermodynamic states of phases, attaining, finally,
a mechanical equilibrium. On the contrary, a direct discretization of the system (5) means directly the
equality of initial pressure and velocity of the phases.

Following the adaptive multiresolution semi-intrusive scheme step is, now, to define the vector FT (Uj)
that for each component is composed by a conservative and a non-conservative terms:

FT (Uj) =
1

△x
E
(
X(xi+1/2, t)F (U∗

i+1/2)−X(xi−1/2, t)F (U∗
i−1/2)

)
+

+
1

△x

(
E([X ]j=0)F

lag(U−
i , U+

i−1)− E([X ]j=N )F lag(U+
i , U−

i+1)
)
, (10)

where U∗
i+1/2 (or U∗

i+1/2) denotes the solution of Riemann problem between U+
i and U−

i+1 (respectively,U+
i−1

and U−
i ). Quantities [X ]j=0 and [X ]j=N are the jump ofX at the beginning and at the end of computational

cell, respectively.
Following the procedure demonstrated in [5, 14], the idea of DEM method is to avoid the introduction

of approximated estimation of fluxes expectancy. This is estimated basing on the probability to find in
two neighbor cells the same phase or two different phases (see the ”flow patterns” in the table 1). As a
consequence, we can define the flux indicator as in the following:

β
(l,r)
i+1/2 = sign(σ(U l

i , U
r
i+1)) =

{
1 if σ(U l

i , U
r
i+1) ≥ 0,

−1 if σ(U l
i , U

r
i+1) < 0,

where l and r indicate the phase at the left and the right of interface, respectively. Then, conservative and
non-conservative terms of (10) can be developed supposing the four instances. Again, for sake of clarity, we
briefly recall the main ideas of this strategy [5, 14].

Flow Patterns Jump indicator Flux Indicator

Σ1 − Σ2 [X ]1,1 = 0
(
β
(1,2)
i+1/2

)

Σ1 − Σ1 [X ]1,2 =

{
−1 if σ(1, 2) > 0
0 otherwise

1

Σ2 − Σ1 [X ]2,1 =

{
1 if σ(2, 1) > 0
0 otherwise

(
β
(2,1)
i+1/2

)

Σ2 − Σ2 [X ]2,2 = 0 0

Table 1: The various flow configurations at cell boundary i+ 1/2.

The terms of the vector FT (Uj) (see (10)) can be defined as:

E
(
X(xi+ 1

2
, t)F (U∗

i+ 1
2
)
)
= Pi+ 1

2
(Σ1 − Σ1)F (U

(1)
i , U

(1)
i+1)+

+ Pi+ 1
2
(Σ1 − Σ2)

(
β
(1,2)

i+ 1
2

)
F (U

(1)
i , U

(2)
i+1) + Pi+ 1

2
(Σ2 − Σ1)

(
β
(2,1)

i+ 1
2

)
F (U

(2)
i , U

(1)
i+1)
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E
(
X(xi− 1

2
, t)F (U∗

i− 1
2
)
)
= Pi− 1

2
(Σ1 − Σ1)F (U

(1)
i−1, U

(1)
i )+

+ Pi− 1
2
(Σ1 − Σ2)

(
β
(1,2)

i− 1
2

)
F (U

(1)
i−1, U

(2)
i ) + Pi− 1

2
(Σ2 − Σ1)

(
β
(2,1)

i− 1
2

)
F (U

(2)
i−1, U

(1)
i )

E
(
[X ]NF lag(U

N(w)
i , U−

i+1)
)
= P1+1/2(Σ1,Σ2)

(
β
(1,2)
i+1/2

)
F lag(U

(1)
i , U

(2)
i+1)+

− P1+1/2(Σ2,Σ1)
(
β
(2,1)
i+1/2

)
F lag(U

(2)
i , U

(1)
i+1)

E
(
[X ]0F

lag(U+
i−1, U

0
i )
)
= −P1−1/2(Σ1,Σ2)

(
β
(1,2)
i−1/2

)
F lag(U

(1)
i−1, U

(2)
i )+

+ P1−1/2(Σ2,Σ1)
(
β
(2,1)
i+1/2

)
F lag(U

(2)
i−1, U

(1)
i )

It remains to evaluate the term of probability, Pi±1/2(Σp,Σq) (see [14]). For simplicity, we show the final
formulation for i+ 1/2:

Pi+1/2(Σ1,Σ1) = min
(
α
(1)
i , α

(1)
i+1

)

Pi+1/2(Σ1,Σ2) = max
(
α
(1)
i − α

(1)
i+1, 0

)

Pi+1/2(Σ2,Σ1) = max
(
α
(2)
i − α

(2)
i+1, 0

)

Pi+1/2(Σ1,Σ2) = min
(
α
(2)
i , α

(2)
i+1

)
.

where Σk indicates the phase, with k = 1, 2.
The system (8) can be written in vectorial form as follows:

Wn+1
i −Wn

i

∆t
+

∆F (W )i
∆x

= 0 (12)

where

W =




α1

α1ρ1
α2ρ2
ρu
ρE




is the conservative variables vector of the reduced five equations model and

∆F (W ) = ∆x




FT (U1) +
α1α2

α2ρ1a2
1 + α1ρ2a2

2





FT (U8)

α2ρ2χ2
− u2FT (U7)

α2ρ2χ2
+

u2
2

2 − ε2 − ρ2κ2

α2ρ2χ2
FT (U6) +

ρ2
2κ2FT (U1)

α2ρ2χ2
+

−FT (U4)

α1ρ1χ1

+
u1FT (U3)

α1ρ1χ1

−
u1

2

2 − ε1 − ρ1κ1

α1ρ1χ1

FT (U2) − ρ2
1κ1FT (U5)

α1ρ1χ1





FT (U2)
FT (U6)

FT (U3) + FT (U7)
FT (U4) + FT (U8)




.

The numerical flux F(U) is obtained thanks to an approximate Riemann solver. It defines the contact
speed σ(UL, UR), allowing to define the Lagrangian flux F lag (see equation (7)). The Riemann problems
solution is sought for times that satisfy a CFL conditions of the type:

|λmax|
∆x

∆t
6 1

2
.

In this paper, we have used the relaxation solver [36] for all computations (see [5] for more details).
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2.2.1. Extension to second order

Now, we extend the approximation of the scheme (12) to a second order following an extension of a
MUSCL approach. This approach for a multiphase flow had been proposed in [14] and in this study we
apply exactly the same extension. Anyway we recall here the main lines.

The following scheme is an extension of a predictor-corrector scheme for a general conservation law
∂U/∂t+ ∂F/∂x=0 (see [37]). We assume an uniform mesh ∆x and we define four steps :

Step 1 : From Un
j , compute the limited slope δU and evaluate:

Un
i− 1

2
= Un

i − ∆x

2
δUn

i and Un
i+ 1

2
= Un

i +
∆x

2
δUn

i

.
Step 2 : Evaluate the solution over half a time step:

U
n+ 1

2

i = Un
i − ∆t

2∆x

(
F (Un

i+ 1
2 ,l
, Un

i+ 1
2 ,r

)− F (Un
i− 1

2 ,l
, Un

i− 1
2 ,r

)
)

.
Step 3 : From U

n+ 1
2

j , evaluate the limited slope δU
n+ 1

2

j and compute:

U
n+ 1

2

i− 1
2 ,r

= U
n+ 1

2

i − ∆x

2
δU

n+ 1
2

i and U
n+ 1

2

i+ 1
2 ,l

= Un
i +

∆x

2
δU

n+ 1
2

i

.
Step 4 : Compute the final solution :

Un+1
i = Un

i − ∆t

∆x

(
F (U

n+ 1
2

i+ 1
2 ,l

, U
n+ 1

2

i+ 1
2 ,r

)− F (U
n+ 1

2

i− 1
2 ,l
, U

n+ 1
2

i− 1
2 ,r

)
)

.
Observe that the step 1 and 2 are identical to step 3 and 4, respectively. Let us focus now on the scheme

adapted to a multiphase flow, in particular on the predictor step (steps 1 and 2).

The predictor-corrector scheme for the multiphase flows
The reconstruction of variables is done on the primitive variables V n

i , where Vk = (αk, ρk, uk, Pk)
T for

each phase k, because the volume fraction, α, should be between 0 and 1 and because the constraint ρk > 0
and Pk > 0. We extrapolate the primitive variables by using their limited slope δiV at most left (l) or right
(r) points of the cell ]xi−1/2, xi+1/2[:

V n
i− 1

2 ,r
= V n

i − ∆x

2
δiV and V n

i+ 1
2 ,l

= V n
i +

∆x

2
δiV

.
As a consequence, denoting by Un

i±1/2,r (resp. U
n
i±1/2,l) the vector of conservative variables corresponding

to V n
i±1/2,r (resp. V n

i±1/2,l), we can write the final formulation of the predictor step, as follows:

W
n+ 1

2

i −Wn
i

∆t
+

∆F (W )i
∆x

= 0 (13)

where the arguments are defined by the reconstructed left and right states at xi±1/2. Since the components
of the vector ∆F (W ) should be defined at xi±1/2, so the components of vector FT (Uj) (see (10)) are defined
as follows:

E (XF )i− 1
2
=P1− 1

2
(Σ1,Σ1)F (U

(1),n

i− 1
2 ,l
, U

(1),n

i− 1
2 ,r

)+

+ P1− 1
2
(Σ1,Σ2)

(
β
(1,2)

i− 1
2

)
F (U

(1),n

i− 1
2 ,l
, U

(2),n

i− 1
2 ,r

)+

+ P1− 1
2
(Σ2,Σ1)

(
β
(2,1)

i− 1
2

)
F (U

(2),n

i− 1
2 ,l
, U

(1),n

i− 1
2 ,r

)

(14)
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E (XF )i+ 1
2
=P1+ 1

2
(Σ1,Σ1)F (U

(1),n

i+ 1
2 ,l

, U
(1),n

i+ 1
2 ,r

)+

+ P1+ 1
2
(Σ1,Σ2)

(
β
(1,2)

i+ 1
2

)
F (U

(1),n

i+ 1
2 ,l
, U

(2),n

i+ 1
2 ,r

)+

+ P1+ 1
2
(Σ2,Σ1)

(
β
(2,1)

i+ 1
2

)
F (U

(2),n

i+ 1
2 ,l
, U

(1),n

i+ 1
2 ,r

)

(15)

∆x
(
E([X ]j=0)F

lag(U−
i , U+

i−1)− E([X ]j=N )F lag(U+
i , U−

i+1)
)
= (16)

= Pi+ 1
2
(Σ1,Σ2)

(
β
(1,2),n

i+ 1
2

)
F lag(U

(1),n

i+ 1
2 ,l
, U

(2),n

i+ 1
2 ,r

) +

−Pi+ 1
2
(Σ2,Σ1)

(
β
(2,1)

i+ 1
2

)
F lag(U

(2),n

i+ 1
2 ,l

, U
(1),n
i+1/2,r) +

−Pi− 1
2
(Σ1,Σ2)

(
β
(1,2)

i− 1
2

)
F lag(U

(1),n

i− 1
2 ,l
, U

(2),n

i− 1
2 ,r

) +

+Pi− 1
2
(Σ2,Σ1)

(
β
(2,1)

i− 1
2

)
F lag(U

(2)

i− 1
2 ,l
, U

(1)

i− 1
2 ,r

) +

+max
(
0,∆α1

i

)
F lag(U2

i , U
1
i )−max

l=1∑

N−1

(
0,∆α2

i

)
F lag(U1

i , U
2
i ),

where ∆α1
i = α1

i+1/2,l − α1
i+1/2,r and ∆α2

i = α2
i+1/2,l − α2

i+1/2,r are the limited slope of α1 and α2 in

the cell Ci. The coefficient β
(1,2)
i±1/2 represents the sign on the contact speed evaluated at xi±1/2. For more

details, Refs. [14] is strongly recommended.

3. Adaptive-Semi-Intrusive formulation

In this section, some elements for the stochastic formulation of the DEM scheme, presented in the
previous section, are reported. The adaptive-Semi-Intrusive (aSI) scheme is a novel intrusive numerical
method to propagate uncertainties. In particular, the aSI scheme is based on the semi-intrusive approach
[26], introducing the multiresolution (MR) basis. The aim of introducing the MR basis is twofold. First,
for compressible CFD problems, the propagation of narrow discontinuity region is a common issue. The
MR basis offers a natural compact representation of this kind of functions, as already demonstrated in the
seminal papers of Harten [38–40]. Moreover, another interesting feature of the MR is the possibility to
analyze locally the regularity of a function. This feature can be employed to drive a topological refinement
of the mesh in a time-dependent way.

The MR framework, here employed, is ispired from the classical Harten framework [39, 40] where several
building blocks are used as operators. First, the discretization operator Dk features the mapping between
the continuous space of definition of the function in the analysis and discrete tessellation of resolution level
k. The inverse operation is performed by a reconstruction operator Rk. It is clear that the two operators
should be consistent, i.e. RkDk = I. Moreover, operations between discrete levels are also demanded. The
decimation operator Dk−1

k allows obtaining a coarser level from a finer one, while the prediction operator
is designed to predict the value of a discrete element, for instance a cell-average, from a coarser resolution
level. The main difference, with respect to the classical Harten framework, is the possibility to move directly
(at each time step) from the coarser to the finest resolution level. This possibility well suits the scope of the
UQ propagation analysis, as already demonstrated in [27, 41–43].

In the aSI scheme, the MR basis is injected in the SI method in order to represent function in the
stochastic space. The aSI scheme allows to refine and derefine the overall physical-stochastic space with a
good efficiency.

The key elements, featuring the coupling between the pure SI scheme and the MR framework, are
the following. First, the SI scheme is based on representation of the quantities in terms of conditional
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expectancies. For the fluxes computations, a conservative reconstruction is then necessary. This step is fully
demanded to the MR framework by the use of the reconstruction operator Rk. Basically, the aSI scheme,
driven by the MR analysis, locally identifies the region (of the combined physical-stochastic space), where
the function is less regular. In these regions, a refinement of the stochastic space is performed and multiple
calls of a time-update step of the SI are invoked.

Let us assume, for a generic resolution level k, a tessellation of the stochastic space as

Ξk =

Nξ⋃

j=1

Ξk
j , with Ξk

i ∩ Ξk
j = 0 if i 6= j. (17)

Let now suppose to consider the final step (13). If a conditional expectancy operator

E(• |Ξj) =
1

µ(Ξj)

∫

Ξj

•(x, ξ, t) p(ξ, t) dξ (18)

is applied on a generic cell Ξk
j of the tessellation, the final step (13), for the corrector, becomes

E
(
Wn+1

i |Ξk
j

)
= E

(
Wn

i |Ξk
j

)
+

∆t

∆x
E
(
∆F (W )i |Ξk

j

)
. (19)

The time-update, reported in Eq. (19), concerns the time-advancing strategy to increment the conditional
expectancy of the solution, in a generic cell Ξk

j , by knowing its value at the previous time step and the
expectancy of the fluxes at the interfaces. Let us imagine to formulate an initial value problem, i.e. a
differential problems in which the initial condition is known. If a proper quadrature rule is chosen, in
the combined physical-stochastic space, the value of the conditional expectancy of the initial solution can
be obtained. The remaining step is to compute the computational expectancy of the fluxes. At this
level, the interaction of the aSI formulation with the deterministic scheme is evident. In the particular
case of DEM method (see the previous sections), solved by a predictor-corrector approach, it is possible
to compute the value of the vector of conservative variables in a cell Ci, knowing only the solutions at
the cells {Ci−3, . . . , Ci+3}. This derives from the need to compute a half time updated solution (for the
predictor) in the cells {Ci−2, . . . , Ci+2}, and then applying the corrector (on the updated values) on the cell
{Ci−1, . . . , Ci+1}. Remark that the computation of the slopes yields the enlargement of the stencil of one
cell for side. The predictor step can be performed after that the local physical cell-average are computed.
In principle, the scheme handles only conditional expectancy. By means of the reconstruction operator of
the MR framework, the physical cell average values, for the stencil {Ci−3, . . . , Ci+3} are evaluated. The
problem is equivalent to the deterministic one: the seven cell-average values are updated of half time step
and the extrapolated values at the interfaces, of the cell of interest, can be computed. If this procedures
is performed for all the Ng quadrature points of each physical interfaces, between spatial cells along the
stochastic coordinate, the quadrature of the term ∆F can be easily obtained. The final step (19) can be
finally applied. In the Algorithm 1, the set of operation, to compute the difference of the fluxes expectancies,
is reported.
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Algorithm 1: Computation of the fluxes expectancies in the aSI scheme for the DEM formulation
with a predictor-corrector MUSCL approach.

for ng = 1, . . . ,Ng do

• Physical Vector assembling:
Conservative reconstruction from MR reconstruction operator Rk

Conversion in primitive variables Vi

PV(ξng) =
{
V n
i−3(ξng), . . . , V

n
i+3(ξng)

}

• Imposition of the boundary conditions

• Slope computations (and limiting) ∀Cℓ ∈ {Ci−2, . . . , Ci+2}:
δnℓ (ξng) = δ

(
V n
ℓ−1(ξng), V

n
ℓ (ξng), V

n
ℓ+1(ξng)

)

• Extrapolation ∀Cℓ ∈ {Ci−3, . . . , Ci+3} (Step 1 )
• Semi-time step evolution ∀Cℓ ∈ {Ci−2, . . . , Ci+2}a (Step 2 ):
• Extrapolation ∀Cℓ ∈ {Ci−1, . . . , Ci+1} (Step 3 )
• Delta flux computation: ∆F (W (ξng))i (DEM solver)

end
Flux Quadrature:

E
(
∆F (W )i |Ξk

j

)
=

Ng∑

i=ng

wng∆F (W (ξng))i

aThe flux function can depends separately on the vector of the random parameters and from the unknown.

Once the time-update step is formulated, this step can be considered as the result of the application
of the discretization operator in MR. Performing, at each time step and for each physical coordinate, a
MR driven refinement/derefinement (using the discretization operator Dk or relying only on prediction by
Pk
k−1), the compact (with respect to the discrete dimensionality) representation of each conservative variable

can be obtained. The final step of the UQ propagation process is the computation of statistics. They
can be computed, even analytically, knowing the reconstruction operator in each cell along the stochastic
coordinates. In this paper, the numerical test cases are carried out introducing a non-linear Essentially
Non-Oscillatory (ENO) reconstruction based on cubic polynomials. The advantage of a such reconstruction
technique, in the context of the MR approach proposed here, have been already shown in papers [27, 43].

4. Thermodynamic Closure

Defining thermodynamic properties is necessary in order to close the system describing compressible
flows. Here, we consider as the equation of state (EOS), the Stiffened Gas (SG) to describe both liquid and
gas phases:

ρkek =
(Pk + γPk,∞)

γk − 1
(20)

where ek is the phase internal energy, Pk is the phase pressure, γk and Pk,∞ are two constants characterizing
each fluid. The constants for these fluids are provided in table 2. The mixture SG-EOS can be easily obtained
using the EOS of the single phases, by applying the definition of the total mixture energy equation:

ρE = α1ρ1e1 + α2ρ2e2. (21)

The internal energy of each phase, ek, can be replaced by the Eq.(20), obtaining the mixture total energy
as a function of the phase pressure. Under pressure equilibrium, we obtain the following expression for the
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Constant Fluid Conditions
γ P∞ uL = uR [m/s]

All TC
Liq 4.4 6×109

0
Gas 1.4 0

n Fluid
Test Case (TC) conditions

UncertaintyLeft Right

α ρ [ kg
m3 ] P [Pa] α ρ [ kg

m3 ] P [Pa]

TC1
G=Air 1-ǫ 0.3

1.0
1-ǫ 0.125

0.1
ρG(ξ) = 0.3 + 1.6ξ

L=Water ǫ 1000 ǫ 1000

TC2
G=Air 0.5 50

1.0E+9
50 50

1.0E+5
αG(ξ) = αG ± 0.1ξ

L=Water 0.5 1000 0.5 1000

TC3
G=Air 0.2 1

1.0E+9
0.8 1

1.0E+5
PLeft(ξ) = PLeft ±
0.5%

L=Water 0.8 1000 ǫ 1000

Table 2: Initial conditions for all test cases. ǫ = 10−8. For all test cases, in the right and left part, uk=0.

pressure mixture:

P (ρ, e, αk) =
ρ(E − α1ρ1q1

ρ − α2ρ2q2
ρ )−

(
α1γ1P∞,1

γ1−1 +
α2γ2P∞,2

γ2−1

)

α1

γ1−1 + α2

γ2−1

(22)

In this paper, the term q is supposed equal to zero for each phase.

5. Results

In this section, we show the results obtained for three test cases. Initial conditions and working fluids
are specified for each test-case and summarized in table 2.

First, the implementation of the scheme is validated by running a stochastic test case well known in
literature, for which the exact solution can be computed in the stochastic and physical spaces.

The other test-cases deals with a two-phase shock tube using a mixture of air and water as working fluid.
Influence of uncertainty on the left gas volume fraction and on the left pressure, is investigated. Moreover
stochastic and grid convergence are explored in different conditions.

5.1. TC1: validation of the scheme in a quasi-single phase fluid

The original test case [27] reproduces a single-phase (air) shock tube where the density on the left state
is dependent on an uniformly distributed random parameter ξ. This test case is of interest since the exact
solution in the stochastic space can be computed [27], thus, permitting to estimate scheme convergence. In
particular, in this work, we consider a quasi single-phase shock tube, i.e. a mixture of air and water, where
in each chamber of the tube a reduced liquid fraction is supposed (typically 10−8).
This test-case has been modified in this sense for two different reasons:

• in order to verify that the coupling works well, i.e. that global stochastic/physical scheme is sufficiently
robust to capture two-phase flow, eve, with a very reduced liquid fraction.

• Accuracy in the stochastic space can be assessed by making a comparison with respect to the exact
solution (hypothesis that stochastic solution in a single-phase or quasi-single fluids are very similar).

Initial conditions of this test case are specified in table 2. Left and right sides of the shock tube are filled out,
principally, with air (αair = 1 − 10−8) and with a very low percentage of water (αwater = 10−8). Density
on the left state is dependent on an uniformly distributed random parameter ξ ∼ U [0, 1]: ρL(ξ) = 0.3+1.6ξ
kg/m3. Values of the pressures are pL = 1 and pR = 0.1, while the right value of the density is ρR = 0.125.
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Figure 2: Evolution of the density expectancy (a) and density variance (b) for the cell averaged solution of an uncertain shock
tube problem at the final time t = 0.31 and for different physical meshes.
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Figure 3: Spatial convergence for the stochastic shock tube problem with density uncertain initial condition [27]. L1 (a) and
L2 (a) norms are shown for the statistic (mean and variance) of the solution.

Simulations are performed over a physical domain Ω = [− 1
5 ,

6
5 ] until a final time t = 0.31 with the position of

the diaphragm equal to xd = 0.42. The time space is divided in 6200 equal time steps of length ∆t = 5×10−5.
Simulations are carried out over equally spaced meshes of 51, 101, 201 points employing the aSI scheme

based on the MUSCL method (see 2.2.1 section) with a Superbee limiter.
In figure 2, the evolution of the density expectancy and density variance are reported. Note that the

exact solution is reported over a mesh of 2001 equally spaced points in the physical space. As it is evident,
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by increasing the number of points in the physical space, stochastic solution converge to the exact one, for
both mean and variance.

In figure 3, the spatial convergence is reported for both the mean and the variance in L1 and L2 for the
density ρ. The aSI method is obtained with a level of 128 (m = 7) stochastic cells with ε = 10−4, while the
reference solution is the exact solution obtained in [27].

5.2. TC2: two phase flow with uncertainty on gas volume fraction

In this case, the shock tube is filled out with water and air at the same volume fraction (αk = 0.5) on
the right and on the left of diaphragm, located at x=0.5m. Initial conditions of this test case are described
in the table 2. The deterministic solution has been validated in [17].
The gas volume fraction on the left state is dependent on an uniformly distributed random parameter
ξ ∼ U [0, 1]: αG(ξ) = αG±0.1ξ and its propagation in the shock tube is observed. Simulations are performed
over a physical domain Ω = [0, 1] until a final time t = 193.744 µs. The time space is divided in 1900 equal
time steps of length ∆t = 1× 10−7. The simulations are carried out over equally spaced meshes of 101, 201,
401 and 801 points employing the aSI scheme based on the MUSCL method with a Van Leer limiter.

In figure 4(a), the spatial convergence is reported for both the mean and the variance in L1 for the
density ρ. It has been obtained with the aSI method with a level of 128 (m = 7) stochastic cells. Results
obtained by the aSI method have been compared with the ones obtained by a full SI scheme, in terms of
L1 norm (figure 4(b)) and of density mean and variance curves (figure 5), showing a perfect overlapping of
the curves. For this reason, since we observed for all computations the same behavior of both the methods,
hence, the figures and the observations will be presented only the aSI scheme results.
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Figure 4: (a) Spatial convergence for the stochastic shock tube problem with an uncertain volume fraction as initial condition.
L1 norms are shown for the density expectancy and variance of the solution.(b) Comparison between aSI and full SI scheme
obtained with a level of 128 (m=7) is shown on the stochastic spatial convergence of the density expectancy.

The figures 6 and 7 show the deterministic spatial convergence in terms of mean and variance carried
out over equally spaced meshes of 101, 201, 401 and 801 points employing the aSI scheme with a level of
512 (m = 9) stochastic cells.The most significant differences can be observed on the liquid and gas densities
for both the statistics (mean and variance) of the solution (see figures 6(c)-6(d) and 7(c)-7(c)). The coarser
mesh shows a behavior very different compared with the finest mesh for 0.6 < x < 0.75, corresponding to
the contact discontinuity and the shock wave.
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Figure 5: Comparison between aSI and full SI scheme obtained with a level of 128 (m=7) on a deterministic space grid of 801
points, for (a) density expectancy and (b) density variance.

The scheme allows to evaluate clearly the propagation of uncertainty and with this test case we study the
influence of inlet left gas volume fraction, αg. Observing the variance profiles of thermodynamic variables,
all of them present a pick in correspondence to the shock (see figure 7), but the phase density profiles and,
of course, the gas volume fraction profile show a significant variation in correspondence to x = 0.6 m (see
figure 7(a)-7(d)). These differences are more evident in figure 8, where the mean and standard deviation
curves are compared on all the deterministic space. It is evident that the pressure is not influenced by
the uncertainties. On the contrary, the phase densities profiles change especially in correspondence to
0.6 < x < 0.75 (see figures 8(c) and 8(d)), while the inlet uncertainty influence the gas volume fraction
behavior before and after the shock (see figure 8(a)).

5.2.1. TC3: two-phase flow with pressure uncertainty

The last test case has been proposed in [1] and it reproduces a two-phase shock tube with initial conditions
summarized in table 2. Simulations are performed over a physical domain Ω = [0, 1] until a final time t=200
µs. The time space is divided in 20000 equal time steps of length ∆t = 1 × 10−8. The simulations are
carried out over equally spaced meshes of 101, 201, 401 and 801 points employing the aSI scheme based on
the MUSCL method with a VanLeer limiter.
An uncertainty of 5% is supposed for the initial left pressure and its propagation in the shock tube is
observed.

In figure (9), the spatial convergence is reported for both the mean and the variance in L1 for the mixture
density ρ and the gas volume fraction αg. It has been obtained with the aSI method with a level of 512
(m = 9) stochastic cells.

Figures 10 and 7 show the deterministic spatial convergence in terms of mean and variance carried out
over equally spaced meshes of 101, 201, 401 and 801 points employing the aSI scheme with a level of 512
(m = 9) stochastic cells. The most significant differences between the coarsest and the finest meshes in
term of gas density and gas volume fraction in correspondence to 0.8 < x < 0.9 m (see figures 10(a) and
10(c)). In this test-case, we study the influence of inlet left pressure variation. On the contrary of previous
case, the profiles of all thermodynamic variables do not show a significant variation of curves, except in
correspondence of shock (see figures 11 and 12).
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6. Conclusions

This paper deals with a scheme for simulating stochastic two-phase compressible flows. This scheme
relies on a DEM formulation, but reformulated for including an adaptive semi-intrusive scheme (aSI), thus
efficiently capturing the propagation of uncertainties. Several test-cases have been investigated. In particu-
lar, shock tube configuration has been considered in order to explore the stochastic and grid convergence in
different conditions. This scheme displays good convergence properties in each test case for both stochas-
tic and physical spaces. Convergence curves are shown in the physical and stochastic spaces, respectively.
Moreover, the variability (in terms of mean and standard deviation) of several properties, such as density,
pressure and velocity is computed by considering different kinds of uncertainty, i.e. on the initial volume
fraction, density or pressure.

Thanks to the robustness of the scheme and to its ability to solve the interface problems, this scheme
will be extended to a multi-dimensions investigation in the stochastic and physical spaces.
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Figure 6: Deterministic spatial convergence of the expectancy for the (a) gas volume fraction, (b) mixture density, (c) gas
density, (d) liquid density, (e) mixture pressure and (f) mixture velocity. aSI scheme obtained with a level of 512 (m=9).
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Figure 7: Deterministic spatial convergence of the variance for (a) gas volume fraction, (b) mixture density, (c) gas density,
(d) liquid density, (e) mixture pressure and (f) mixture velocity. aSI scheme obtained with a level of 512 (m=9).
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Figure 10: Deterministic spatial convergence of the expectancy for (a) gas volume fraction, (b) mixture density, (c) gas density,
(d) liquid density, (e) mixture pressure and (f) mixture velocity. aSI scheme obtained with a level of 512 (m=9).
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Figure 11: Deterministic spatial convergence of the variance for (a) gas volume fraction, (b) mixture density, (c) gas density,
(d) liquid density, (e) mixture pressure and (f) mixture velocity variance, respectively. aSI scheme obtained with a level of 512
(m=9).
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Figure 12: Confidence intervals (µ± σ) for (a) gas volume fraction, (b) mixture density, (c) gas density, (d) liquid density, (e)
mixture pressure and (f) mixture velocity. aSI scheme obtained with a level of 512 (m=9).
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Abstract

Purpose – This paper aims to deal with an efficient strategy for robust optimization when a large
number of uncertainties are taken into account.

Design/methodology/approach – ANOVA analysis is used in order to perform a variance-based
decomposition and to reduce stochastic dimension based on an appropriate criterion. A massive use of
metamodels allows reconstructing response surfaces for sensitivity indexes in the design variables
plan. To validate the proposed approach, a simplified configuration, an inverse problem on a 1D nozzle
flow, is solved and the performances compared to an exact Monte Carlo reference solution. Then, the
same approach is applied to the robust optimization of a turbine cascade for thermodynamically
complex flows.

Findings – First, when the stochastic dimension is reduced, the error on the variance between the
reduced and the complete problem was found to be roughly estimated by the quantity
ð1 2 �TTSI Þ £ 100, where �TTSI is the summation of TSI concerning the variables respecting the TSI
criterion. Second, the proposed strategy allowed obtaining a converged Pareto front with a strong
reduction of computational cost by preserving the same accuracy.

Originality/value – Several articles exist in literature concerning robust optimization but very few
dealing with a global approach for solving optimization problem affected by a large number of
uncertainties. Here, a practical and efficient approach is proposed that could be applied also to realistic
problems in engineering field.

Keywords ANOVA, Kriging, Metamodel, Robust optimization, Uncertainty quantification

Paper type Research paper

1. Introduction
Dealing with moderate and high dimensional stochastic spaces is actually one of the
most important problem in uncertainty quantification (UQ) community. Several
methods are proposed in Agarwal and Aluru (2009), Baglietto et al. (2010), Blatman and
Sudret (2011), Caflisch et al. (1997), Cao et al. (2003), Foo et al. (2008), Ma and Zabaras
(2010) and Wang and Sloan (2003), but their accuracy on realistic problems with highly
non-linear effects is still not proven. This problem is even more challenging when
coupled to the robust design optimization, where conventional optimization procedures
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aims at taking in account uncertainty in the design procedures (for a detailed review
see Verstraete and Périaux (2010) and Schuëller and Jensen (2008)). Finding a design
which is relatively invariant with respect to parameter variability, production
tolerance, and other uncertain conditions is referred to as robust design optimization.
Robust design method, also called the Taguchi method, was pioneered in Taguchi
(1989) even if it suffers important limitations from an optimization efficiency point of
view. Several methods incorporate the uncertainties into the optimization problem. For
example, the metamodel approach uses the data to build a metamodel of the robustness
measures by using a set of given design points. In this context, the response surface
methodology, neural networks, Kriging models, have been proposed as metamodeling
techniques (Jensen and Catalan, 2007; Namura et al., 2011; Xu and Albin, 2003). In
general, metamodeling techniques are not well suited for large-scale robust
optimization problems when the number of design variables is large. Another class
of methods, usually referred to as the deterministic approach to robust optimization,
calculate explicitly the desired robustness measures. In this class, several methods
prove their efficiency for high-dimensional uncertain parameter (Sankaran et al., 2010).

The large amount of computational effort required for considering a large number of
uncertainties is well known in literature as curse of dimensionality (Bellman and Richard,
1961). Two different methodologies have been proposed to tackle this issue in the UQ
framework. First, a strategy to reduce the number of points required for the numerical
integration, named sparse grid (Gao and Hesthaven, 2010; Ma and Zabaras, 2010), has
been introduced. This technique can lead to a strong reduction of the quadrature points for
moderate dimensional problem, provided that the function has some regularity. It is based
essentially on some results of the interpolation theory. Certainly the sparse grid allows to
avoid the exponential growth of the number of points with the stochastic dimension, so in
this sense prevents from the curse of dimensionality, but for high dimensional stochastic
spaces the number of simulations required could be equally prohibitive. More recently, the
attention has shifted to both the number of points required and the number of stochastic
dimensions. There are a few studies (Congedo et al., 2011c; Foo et al., 2008; Gao and
Hesthaven, 2010), exploring the possibility to identify the most important uncertainties
and as a consequence reducing the number of dimension of the stochastic space. If the
number of uncertainties could be reduced, a better statistics estimation could be achieved
with a lower computational cost. This reduction strategy can be used into a robust
optimization framework, thus decreasing the final cost for obtaining the optimal
individual. Generally, ANOVA-based approaches are used in order to decompose the
variance according to the different contributions, permitting to create a ranking of the
most predominant uncertainties (Congedo et al., 2011b).

In this work, the focus is to propose an optimization technique, partially presented
in Congedo et al. (2011c), applied to stochastic partial differential equations (PDE), for
which evaluating fitness function is very expensive. An innovative algorithm is
proposed based on the following steps:

. computing the ranking of most predominant uncertainties (via ANOVA) for
some samples in the design space;

. building a response surface of the sensitivity indexes (associated to each
uncertainty) in the design space; and

. solving the reduced stochastic problem for each design during the optimization.
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This strategy is applied first to a simple test-case where the computation of the
reference solution is feasible: the optimization of a 1D compressible nozzle flow. Then,
it is applied to the optimization of the working conditions of a thermodynamically
complex flow in a turbine cascade.

In Section 2, the problem is defined and the main numerical ingredients, i.e. ANOVA
decomposition, Sobol sensitivity indexes and description of the criterion used for
judging whether one uncertainty should be discarded in the reduced stochastic problem,
are presented. The algorithm proposed in this paper, with a discussion over the
computation cost, is described in Section 3. Then, a simple test-case, i.e. the optimization
of a compressible nozzle flow, is presented in Section 4. Section 5 deals with the
application of the proposed strategy to a realistic configuration: the optimization of a
turbine cascade. Finally, conclusions and perspectives are depicted in Section 6.

2. Problem formulation
Let us consider to have a system of equations and an output of interest, i.e. a fitness
function f ¼ f ð y; jÞ, where the vector y is the ensemble of N design parameters
y [ Q , R

N . Moreover, let us suppose that the output of the system can be dependent
by d uncertainties parameters ji assumed so that j ¼ {j1; . . . ; jd} [ J , R

d with
p(ji) the probability density function associated to the ith stochastic dimension. If
independent distributed random variables ji [ Ji are considered, the space J can be
obtained by tensorization of monodimensional spaces, i.e. Ji , R, J ¼ J1 £ · · · £Jd

and it follows that pðjÞ ¼
Q

ipðjiÞ.
Let us formulate the robust optimization problem as follows:

y
min gð f ð y; jÞÞ; ð1Þ

where:

gð f ð y; jÞÞ ¼

Z
J

f kpðjÞdj; ð2Þ

i.e. minimizing (for example) some statistical moments (of order k), g, of the fitness
function f with respect to j.

Computation of the statistical moments can be prohibitive if d is too high, because of
the well-known problem of curse of dimensionality (Bellman and Richard, 1961). One
possibility is to compute a reduced set of predominant uncertainties, jr, for calculating
g with a lower computational cost as follows:

gð f ð y; jÞÞ <
Z
Jr

f kpðjrÞdjr; ð3Þ

In this work, an efficient model reduction in the stochastic space and an efficient
optimization algorithm are proposed. In this section, we illustrate how a model
reduction (solving equations (2) and (3)) can be performed, in terms of ANOVA
decomposition (Section 2.1), total sensitivity index (TSI) computation (permitting to
identify the most important uncertainties in terms of contribution to the variance)
(Section 2.2) and a reduction criterion (Section 2.3). Then, the complete algorithm for
solving equations (1)-(3) is described in Section 3.
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2.1 ANOVA analysis
Let us assume, with no loss of generality, that the fitness function is dependent only on
the stochastic vector j : f ¼ f ðjÞ.

Assuming f ðjÞ [ L 2ðj; pðjÞÞ, a Sobol unique functional decomposition exists:

f ðjÞ ¼
X

u#ð1; ... ;d Þ
f uðjuÞ ð4Þ

here u is a set of integers with cardinality v ¼ juj and ju ¼ {ju1
; . . . ; juv}. Each

function fu is computed by using the following relation (Crestaux et al., 2009):

f uðjuÞ ¼

Z
Ju

f ðjÞpðjuÞdju 2
X

w,u
f wðjwÞ ð5Þ

where Ju , J is obtained directly by tensorization of the monodimensional spaces Ji

associate to the multi-index u, i.e. Ju ¼ Ju1
£ · · · £Juv .

The mean of the function f ðjÞ can be computed using the definition:

f 0 ¼

Z
J

f ðjÞpðjÞdj: ð6Þ

This functional decomposition is called ANOVA if each of the 2d elements of the
decomposition, except f0, verifies for every ji:Z

Ji

f uðjuÞpðjiÞdji ¼ 0; ;i [ u ð7Þ

From equation (7), it follows the orthogonality:
Z
J

f uðjuÞf wðjwÞpðjÞdj ¼ 0; u – w ð8Þ

The Sobol functional decomposition (equation (4)) allows to identify the contribution of
each single variable and all the coupled interactions. The great advantage of the
ANOVA decomposition is the possibility to link each term of the representation
(equation (4)) to the corresponding contribution to the variance of the original function.
Employing the decomposition defined in equation (4), it is possible to decompose the
variance of f ¼ f ðjÞ (obviously proportional to f 2ðjÞ) as follows:

s 2ð f Þ ¼
u–0

X
u#{1; ... ;d}

s2
uð f uÞ ð9Þ

where:

s2
uð f uÞ ¼

Z
Ju

f 2
uðjuÞpðjuÞdju ð10Þ

and Ju ¼ Ju1
£ · · · £Juv .

Now, the contribution of each term in equation (9) can be evaluated by means of the
so-called Sobol sensitivity indexes (SI) defined as:
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Su ¼
s2
u

s2
: ð11Þ

They measure the sensitivity of the variance due to the v-order ðv ¼ jujÞ interaction
between the variables in ju. Remark that the summation of the 2d 2 1 Sobol indexes is
equal to one. Another index, called TSIs, can be computed summing all the SI terms
where the uncertainty j [ u appears:

TSI j ¼
j[u

X
Su: ð12Þ

This index allows to estimate the overall importance of a single stochastic variable.
It can be used (as done in this work) as an estimator for judging whether one
uncertainty could be discarded. The total amount of the TSI, defined as follows:

TTSI ¼
Xd
j¼1

TSI j ð13Þ

can be used for evaluating the non-linearity of the system. It takes always values
greater than 1 (it could be equal to 1 only in case of no interactions among the
uncertainties, so TSI should be equal to SI for each uncertainty).

To make things clearer, let us apply this analysis to a specific case, where f(j) is
dependent only on two stochastic variables. The Sobol decomposition (equation (4))
becomes:

f ðjÞ ¼ f 0 þ f 1 þ f 2 þ f 12

where:

f 1ðj1Þ ¼

Z
J2

f ðjÞpðj2Þdj2 2 f 0; f 2ðj2Þ ¼

Z
J1

f ðjÞpðj1Þdj1 2 f 0;

f 1;2 ¼ f ðjÞ2 f 0 2 f 1 2 f 2

For this example, the property (equation (7)) reduces to:
Z
J1

f 1ðj1Þpðj1Þdj1 ¼

Z
J2

f 2ðj2Þpðj2Þdj2 ¼

Z
J

f 12ðj1; j2ÞpðjÞdj ¼ 0

and the orthogonality is expressed as follows:
Z
J

f 1ðj1Þf 2ðj2ÞpðjÞdj ¼

Z
J

f 1ðj1Þf 12ðj1; j2ÞpðjÞdj ¼

Z
J

f 2ðj2Þf 12ðj1; j2ÞpðjÞdj ¼ 0

In this case, variance can be decomposed as follows:

s2ð f Þ ¼ s2
1ð f 1Þ þ s2

2ð f 2Þ þ s2
12ð f 12Þ

As a consequence, the first-order contribution of each uncertainty and the contribution
of the interaction can be easily computed.
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2.2 TSI computation from polynomial chaos expansion
Sobol indexes can be computed by using a whatever sampling stochastic method
(Monte Carlo, quasi-Monte Carlo), as shown in the paper of Sobol (2001), but can be
done more efficiently when a polynomial chaos expansion (PCE) is used (Crestaux et al.,
2009). Let us remember the PCE:

f ðjÞ ¼ �fðjÞ þ OT ¼
XP
k¼0

bkfkðjÞ þ OT ; ð14Þ

where the number of terms is related to the maximal degree of the polynomial
reconstruction n0 and the dimension of the system:

d : P þ 1 ¼
ðn0 þ d Þ!

n0!d!
:

In this work, the coefficients of the PCE are computed by a quadrature employing the
points generated by a full tensorization of monodimensional quadrature rules. In
particular, employing uniform distribution for the stochastic variables, a Legendre
quadrature is chosen as monodimensional quadrature rule following the so-called
Wiener-Askey scheme (Askey and Wilson, 1985). After the evaluation of f in each point
of the full tensorization, the coefficients can be computed exploiting the orthogonality
of the basis, as follows:

bk ¼
kf ðjÞ;CkðjÞl
kCkðjÞ;CkðjÞl

; k ¼ 0; . . . ;P; ð15Þ

where:

kf ðjÞ; gðjÞl ¼
Z
J

f ðjÞgðjÞdj

indicates the inner product.
For further details on the polynomial chaos techniques see Le Maı̂tre (2005). Each

element fu of the functional decomposition of f(j) is approximated by the relative term fu:

f uðjuÞ < �fuðjuÞ ¼
k[Ku

X
bkCkðjuÞ; ð16Þ

where the set of indexes Ku is given by:

Ku ¼ {k [ {1; . . . ;P}jCkðjuÞ} ð17Þ

where each term Ck(ju) represents the polynomial term of the expansion (equation (14))
dependent only from the set of variables ju.

Because of the orthogonality, the variance ð �s 2ð f Þ ¼ s 2ð�fÞ < s 2ð f ÞÞ and the
conditional variance ð �s2

uð f uÞ ¼ s2
uð
�fuÞ < s2

uð f uÞÞ can be computed as follows:
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s 2ð f uÞ ¼
XP
k¼1

b2
kkCk;Ckl

s2
uð f uÞ ¼

k[Ku

P
b2
kkCk;Ckl

: ð18Þ

Sobol sensitivity indexes can be computed directly from equation (18):

Su < �Su ¼
s2
uð f uÞ

�s 2ð f uÞ
¼

P
k[Ku

b2
kkCk;CklPP

k¼1b
2
kkCk;Ckl

ð19Þ

where the TSI is defined by equation (12).

2.3 Sensitivity index criterion for PDE
Once TSIj is computed (for each uncertainty j), the problem is to specify the threshold
that TSIj must not exceed, before the uncertainty j could be discarded, i.e. to choose a
criterion for the reduction of the stochastic dimension. In a recent work, Gao and
Hesthaven (2010) proposed a criterion based on TSI in order to identify the most
important parameters in the resolution of stochastic ordinary differential equations.
They proposed to freeze, i.e. replace with their mean values, all the stochastic variables
whose TSIj is inferior to 2 percent. This permits to obtain a good prediction of the
statistical moment at a lower computational cost.

The aim is to reduce f ¼ f(j) in the problem f R ¼ f R(jr) where dimðjrÞ # dimðjÞ,
n ¼ dimðjÞ2 dimðjrÞ, jr [ Jr ¼ Jr1

£ · · · £Jrd2n
, R

d2n and n is equal to the
number of uncertainties that are discarded. In this case, the relative total TSI, ð �TTSI Þ,
that is the total amount of the TSI for the reduced problem normalized by the total
amount of TSI for the complete problem, TTSI, is equal to[1]:

�TTSI ¼

Pd2n
j¼1 TSI j

TTSI

, 1: ð20Þ

Here, the approach proposed in Gao and Hesthaven (2010) is applied to several PDE,
doing systematically the following steps:

. Solve the complete stochastic problem using a quasi-Monte Carlo method and
compute reference mean and variance.

. Apply the ANOVA analysis computing the ranking of most predominant
uncertainties in terms of TSIj.

. Solve the reduced stochastic problem, obtained by discarding progressively the
less influent uncertainties basing on TSIj (2 percent criterion) and compute mean
and variance.

. Compute the relative error between the reduced and complete stochastic problem
in terms of mean and variance.

The efficacy of the 2 percent criterion is widely investigated on elliptic, parabolic and
hyperbolic PDE. This campaign, not reported here for brevity and whose details are
reported in Abgrall et al. (2012) leads to these conclusions:
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. the error on the mean is always inferior to 1 percent except for the parabolic case;
and

. the error on the variance can be roughly estimated as equal to ð1 2 �TTSI Þ £ 100.

Finally, the estimation proposed in Gao and Hesthaven (2010), remains valid also for
different kinds of PDE. Hence, it is used in the algorithm described in the next section.

3. Optimization algorithm
In this section, the algorithm for multi-objective robust design optimization is
described. Then, let us illustrate how to solve equations (1)-(3). The algorithm is
constituted by two main steps, that are schematically shown in Figure 1.

During the first step (reported in Figure 1(a)), the focus is on building a response
surface for each TSIj, T ~SI j, in the design space. This step is constituted by the
following actions:

(1) An initial set of N designs (design variables yl with l ¼ 1, . . . , N) in the design
space, i.e. a design of experiment (called hereafter DOE), is generated.

(2) Equation (2) is solved for each design yl using the PC expansion or other
techniques (quasi-Monte Carlo, collocation, etc.).

(3) TSIj is computed for each uncertainty j and for each yl.

(4) A response surface in the design space for each uncertainty j, T ~SI jð yÞ, is built
by using a Kriging method based on a DACE approach (Novak and Ritter, 1996)
and the set of TSI jð ylÞ, that are computed at the previous step. The advantage
of DACE approach is the possibility of implementing an adaptive response
surface in order to minimize the statistical error between the real function and
the extrapolated one.

Figure 1.
Compact scheme for the

Kriging procedure (a) and
the overall optimization

strategy (b)

2% Criterion

1. DOE

5. PCE on reduced problem

6. GA

TSIj (y) y

µ(y), σ(y)

1. DOE

2. ANOVA

3. KRIGING

4. TSIj (y)

yl

TSIj (yl)

∆ξi = 1,..., nξ

(a) (b)
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During the second step of the algorithm (reported in Figure 1(b)), the focus is on solving
equation (1). The optimizer is the NSGA-II algorithm (Deb et al., 2002). The main tuning
parameters of the algorithm are the population size, the number of generations, the
crossover and mutation probabilities and the distribution indexes for crossover and
mutation operators. Typical values for the last four parameters are, respectively, 0.9, 1,
20 and 20. Remark that the global strategy proposed in this work can be applied for a
whatever kind of optimizer.

In order to initialize the genetic algorithm, the same initial set of N samples, yl,
considered during the first step, are taken into account.

Now, at each iteration of the proposed algorithm (i.e. for each evaluation of the
fitness function), the following operations are performed:

(5) Supposing a given design yn, the response surface is used to compute the
approximated value of TSIj, i.e. TSI jð ynÞ ø T ~SI jð ynÞ, for each uncertainty.
Moreover, the 2 percent criterion on TSIj is applied to build the reduced set of
uncertainties to consider, i.e. jr. Finally, the stochastic problem, expressed in
equation (3), is solved by means of PC expansion.

(6) Fitness functions, in terms of mean and variance, are computed and used by the
optimizer.

When convergence is reached, the fitness functions of the optimal designs are
re-computed by considering the whole set of uncertainties.

3.1 Estimated savings in terms of computational cost
The computational cost of solving the optimization problem expressed in equations (1)
and (2) can be roughly estimated as follows:

Cost ¼ Ndes £ Ns £ Cdet;

where Ndes is the number of designs generated during the optimization, Ns is the
number of stochastic samples used for solving equation (2), and Cdet is the cost of a
deterministic simulation. Moreover, Ns requires ð pþ 1Þd deterministic computations,
with a polynomial expansion of order p (sufficient for the convergence of the statistics
estimation (equation (2))) and d the total number of uncertainties. Remark that, since
g( f ) depend on y, p and then Ns could be different between two different designs. As a
consequence, a more correct estimation is the following:

Cost ¼ Cdet £
XNdes

i¼1

ð pð yÞ þ 1Þd:

The use of the proposed approach could reduce Ns. In particular, using the same
notation introduced in Section 2, if r is the number of uncertainties in the reduced
problem, the savings in terms of computational cost can be estimated as follows:

1 2

PNdes

i¼1 ð prð yÞ þ 1Þrð yÞPNdes

i¼1 ð pð yÞ þ 1Þd
; ð21Þ

where prð yÞ is the order of the polynomial expansion (sufficient for the convergence of
the statistics estimation (equation (3))) for the reduced problem. Remark that
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prð yÞ # pð yÞ. Remark also that the cost of the first step described in this section, is
equal to the cost for initializing the complete robust optimization (taking into account
the whole set of uncertainties), i.e. applying ANOVA analysis for the computation of
TSIj is not an adding cost with respect to the computation of the statistical moments.
As a consequence, savings in terms of computational cost of the proposed algorithm
exist only when the second step is applied.

If we suppose a minimal order of p equal to 2 for ensuring statistics convergence,
savings should be at least greater than 1 2

PNdes

i¼1 ð3Þ
rð yÞ=

PNdes

i¼1 ð3Þ
d . To illustrate some

practical example, if one uncertainty can be systematically discarded when d ¼ 5 (then
r ¼ 4), the savings is at least greater than 67 percent.

4. Verification of the proposed approach on a nozzle design
The algorithm proposed in Section 3 is validated on a simplified configuration, namely,
transonic flow through a quasi-1D nozzle. For this configuration, a fast exact
deterministic solution is available, which allows to perform a robust optimization with
a complete stochastic analysis of a flow problem affected by a large number of
uncertain parameters at a moderate computational cost. As a consequence, the fully
complete optimization (i.e. fitness functions are always evaluated on the whole set of
uncertainties) and the proposed algorithm, can be compared in terms of accuracy and
computational cost.

The reduced cost of the exact solver enables also the computation of the reference
solution for the complete and reduced strategy with a quasi-Monte Carlo approach with
Sobol sequences.

Let us consider the steady flow of a perfect gas (with heat coefficient ratio g) in the
following convergent-divergent nozzle geometry:

y ¼ ðAe=At 2 1 2 a2 bÞx 3 þ bx 2 þ axþ 1; ð22Þ

where Ae and At are the cross-sectional exit area and the throat area, respectively.
Moreover, a and b are two geometric parameters. The nozzle pressure ratio (exit
pressure over reservoir pressure) is denoted by pe/p0. The values it can take are
constrained so that a shock is always created in the nozzle divergent.

Stochastic solutions for the flow field inside the nozzle are computed by assuming
that the following parameters can be considered as uniformly distributed random
variables: Ae/At, a and b (representative of geometric tolerances), the gas specific heat
ratio g (it represents the thermodynamic properties of the gas), pe/p0 (defining the
operating conditions of the nozzle), with variation ranges given in Table I.

The only design parameter is the geometric parameter a (that can assume a value
a0 between 0.05 and 0.1). The optimization problem is formulated as follows:

Variable Min. Max.

g 1.3 1.5
pes/p0 0.8181855 0.8347145
Ae/At 1.75 1.96
a ^3 percent
b 0.4 0.6

Table I.
Min./max. values for the

uncertainties in the nozzle
flow problem
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a
min s 2ðxsÞ2 s2

tar

�� ��: ð23Þ

where xs is the shock position in the divergent part, s2
tar (equal to 1.045 £ 10204) is the

target variance, and the uncertainties are the ones given in Table I, where a is assumed
to vary between 0:97 ·a0 and 1:03 ·a0.

The fully complete robust optimization and the proposed algorithm have produced
a very similar optimal design (the exact one is obtained with a equal to 0.055), with a
relative error of 0.008 percent. A very promising reduction of 99.1 percent in terms of
computational cost is obtained, because the complete stochastic problem (equation (2))
with five uncertainties is systematically reduced to only one uncertainty-problem
(equation (3)). Remark that in this case, one predominant uncertainties, pe/p0, exist, then
this is the best case scenario in order to show the proposed algorithm advantages. For
more realistic cases, where highly non-linear effects could exist, the gain could be
strongly reduced. For this reason, a complex configuration is considered in the next
section.

5. Results on complex flows in a turbine cascade
5.1 Base configuration
Our final test-case deals with the simulation of complex flows in a turbine cascade of a
ORCs cycle. ORCs are Rankine cycles that use properly chosen low-boiling molecularly
heavy organic compounds to drive the turbine in place of steam. This makes them
suitable for the exploitation of low grade heat sources like biomass combustion,
geothermal reservoirs and heat recovery from industrial processes (we refer, e.g. to
Angelino and Paliano (1998) and Hung et al. (1997) for a complete description of the
properties and applications of ORCs and of ORC working fluids). A thermodynamically
complex flow in a ORCs turbine cascade is characterized by a significant uncertainty
on the physical parameters and on the operating conditions at the turbine inlet
(Congedo et al., 2011a). Indeed, the ORCs are mainly used in biomass and geothermal
applications where the renewable heat sources display a non-negligible level of
variability. Besides, the thermophysical properties of the working fluids are
themselves characterized by a strong uncertainty (Colonna et al., 2006;
Guardone et al., 2004). When designing a turbine specifically adapted to ORCs
cycles, a meaningful numerical prediction of the performance must take into account
these uncertainties on the thermophysical properties but also on the inlet boundary
conditions. In Congedo et al. (2011b), some efficient procedures to perform shape
optimization in a 2D complex flow with multiple-source uncertainties (thermodynamic
model, operating conditions and geometry) have been presented.

In the present work, the turbine blade under consideration is the two dimensional
VKI LS-59 cascade, a configuration which has been widely studied (Congedo et al.,
2011a; Kiock et al., 1986). An unstructured computational fluid-dynamics (CFD) solver
(that solves the Euler equations) is used to ensure the reliability of the computed results
for dense gas flows through a turbine cascade (Congedo et al., 2011a). The
two-dimensional flow domain is discretized by a structured C-grid comprised of
192 £ 16 cells. The boundary conditions are imposed as follows: at the inlet and outlet
boundaries, non-reflecting boundaries are applied using the method of characteristics;
a slip condition is imposed at the wall, which uses multi-dimensional linear
extrapolation from interior points to calculate the wall pressure; periodicity conditions
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are prescribed at the inter-blade passage boundaries. The Euler equations are
completed with the Peng-Robinson (PRSV) equation of state for taking into account
complex effects. It is defined as follows:

p ¼
RT

v2 b
2

a

v2 þ 2bv2 b 2
: ð24Þ

where p, T and v denote, respectively, the fluid pressure, the fluid temperature and its
specific volume, a and b are substance specific parameters related to the fluid
critical-point properties. This model is completed with a model describing the caloric
behavior of the fluid, approximated through a power law for the isochoric specific heat
in the ideal gas limit, defined as follows cv1ðTÞ ¼ cv1ðTcÞ £ ðT=TcÞ

n. Globally, PRSV
depends on the following parameters, the fluid acentric factor v (a and b depend on this
parameter), the isobaric specific heat in the ideal gas state at the critical temperature
Tc, i.e. cv1ðTcÞ, and a fluid-dependent parameter n.

The siloxane dodecamethylcyclohexasiloxane (C12H36Si6O6), commercially known
as D6, is the fluid considered in this study. The physical properties of D6 are reported in
Table II, while PRSV coefficients for this fluid are reported in Table III.

Performance of the turbine cascade, that can be computed as a result of the CFD
simulation, can be evaluated by using several output criteria. Here, the power output
per unit depth (PO) expressed as Dh · _m=wmol (W) is taken into account, where Dh is the
enthalpy variation through turbine stage, _m is the mass flow rate and wmol is the
molecular weight.

5.2 Sources of uncertainties
Three main sources of uncertainties are considered in this study (globally eight
uncertainties):

(1) the uncertainties on the turbine inlet conditions, i.e. inlet total temperature,
Tin/Tc, inlet total pressure, pin/pc, angle of incidence b and the stagger angle u;

(2) the uncertainties on the thermodynamic model, i.e. v, cv1 and n; and

(3) uncertainties on turbine geometrical parameters, i.e. the blade thickness f.

n cv1 v

Mean 0.5729 105.86 0.7361
Range 0.5385-0.6073 99.50-112.20 0.7214-0.7508

Source: Data taken from Cinnella et al. (2011)

Table III.
Thermodynamic

constants for D6, PRSV
equation of state, mean

and min./max. values
using an uniform

probability density
function

M (g/mole) Tc (K) Pc (kPa) Tb (K)

444.9 645.8 961 518.1

Source: Properties are taken from Guardone et al. (2004)

Table II.
Thermodynamic data for

D6, where M is the
percentage molecular
weight and Tb is the

boiling temperature at
1 atm
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Since no experimental estimation are available, we assume systematically uniform
probability density functions.

Basing on Colonna et al. (2008), the 3.0 percent of uncertainty for the temperature
and pressure at the inlet conditions are taken into account. The PRSV thermodynamic
model is considered as a good trade-off between the accuracy of thermodynamic
properties and the functional complexity since it depends on a limited number of
parameters, hence a reduced number of uncertainty sources (Cinnella et al., 2011). The
following uncertainties are retained for this model (see Table III and Cinnella et al.
(2011) and Colonna et al. (2008)), listed with their associated error bars: the acentric
factor v (2 percent), the isobaric specific heat in the ideal gas state cv1 (6 percent) and a
fluid-dependent parameter n (6 percent). For the other parameters, it is assumed an
uncertainty of 3 percent for the angle of incidence b and the stagger angle u, and an
uncertainty of 2 percent for the thickness f (varying from 0.98 to 1.02 with the mean
equal to 1.0).

5.3 Problem definition
Optimization problem is defined as follows:

Tin
Tc

;
pin
pc
;b;q

maxjmðPOÞj and
Tin
Tc

;
pin
pc
;b;q

minjs 2ðPOÞj;

i.e. to find the optimal values for Tin/Tc, pin/pc, b and u (four design variables) in order
to maximize the mean of power output, m(PO), and to minimize its standard deviation,
s(PO) (two objective-optimization problem). Ranges for each design variable are
defined in Table IV. Remark that the lower limit for the temperature is given by the
saturation curve limit (SCL). Seeing that CFD code can compute only one-phase flows,
it has to be verified that the uncertainty region does not cross the maximal saturation
curve (that can be computed as the upper limit of the 100 percent confidence intervals
when uncertainties on thermodynamic model are taken into account).

Finally, the optimization problem consists in finding the optimal values for four
design variables where the output to maximize is dependent from eight uncertainties.

5.4 ANOVA decomposition over the geometric plan and construction of Kriging
response surface
The algorithm described in Figure 1(a) is applied on the problem defined in Section 5.3.

First, an initial DOE of 50 samples ( yl with l ¼ 1, . . . , 50) in the design space
constituted by the four design variables, i.e. Tin/Tc, pin/pc, b and u, is generated. Then,
equation (2) is solved for each design yl, considering a stochastic space constituted by
the eight uncertainties defined in the previous section. A quasi-Monte Carlo plan (based
on Sobol sequences) of 200 individuals in the stochastic space is considered, and the
PCE is used to compute TSIj( yl) for each uncertainty. The convergence of TSI indexes
for each uncertainty and design is verified by increasing the number of individuals

pin/pc Tin/Tc b q

0.7-0.98 SCL-1.15 258-358 298-398

Table IV.
Ranges of design
variables in the
optimization plan
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to 500. Remark that, during this stage, the convergence of TSI is more important than
the convergence of the variance since only the correct assessment of the response
surface is necessary to perform the second step of the algorithm. Finally, using the set
of TSIj( yl), a response surface in the design space for each uncertainty j, T ~SI jð yÞ, is
built using a Kriging method.

In Figures 2 and 3, TS̃Ij( y) contours are reported for each uncertainty j, in the plan
p-T, where a point in the plan p-T is associated to the design y, characterized by a
couple ( pin, Tin) of inlet thermodynamic conditions. As shown in Figure 2(a) and (b),
T ~SI jð yÞ associated to the uncertainty on pin varies from 8 to 44 percent while varies
from 39 to 83 percent for the uncertainty on Tin. Concerning the uncertainties on two
geometrical parameters, u and f (Figure 2(c) and (d)), T ~SI jð yÞ varies from 7 to 25
percent and from 0.7 to 2.9 percent, respectively. T ~SI jð yÞ associated to the
uncertainties on the thermodynamic model, i.e. v, cv1 and n (Figure 3), and on the
geometrical parameter f, are lower than 0.29 percent, then they could be discarded
using the 2 percent criterion (Section 2). The influence of the uncertainty on the

Figure 2.
T ~SI jð yÞ contours in the

plan p-T for pin (a), Tin (b),
u (c), f (d)

1.2

0.9 1 1.1 1.2

0.7

0.8

0.9

1 TSI1
0.44
0.42
0.4
0.38
0.36
0.34
0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08

T/Tc

T/TcT/Tc

0.9 1 1.1

0.7

0.8

0.9

1

TSI2
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.69
0.67
0.65
0.63
0.61
0.59
0.57
0.55
0.53
0.51
0.49
0.47
0.45
0.43
0.41
0.39

p
/p

c

p
/p

c

p
/p

c

p
/p

c

0.9 1 1.1 1.2

0.7

0.8

0.9

1
TSI7
0.25
0.24
0.23
0.22
0.21
0.2
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11
0.1
0.09
0.08
0.07

0.9 1 1.1

0.7

0.8

0.9

1

TSI8
0.0295
0.0285
0.0275
0.0265
0.0255
0.0245
0.0235
0.0225
0.0215
0.0205
0.0195
0.0185
0.0175
0.0165
0.0155
0.0145
0.0135
0.0125
0.0115
0.0105
0.0095
0.0085
0.0075
0.0065

(a)

T/Tc

(b)

(c) (d)

Robust
optimization

1045



thermodynamic model is limited with respect to that on the inlet thermodynamic
conditions. Note this hierarchy is likely to depend on the choice of equation of state: the
PRSV model has been found in Congedo et al. (2011b) to be less sensitive than other
models to uncertainties on its parameters and the present conclusion is consistent with
these previous findings.

The response surface T ~SI jð yÞ and the 2 percent criterion are used in the second step
of the algorithm as explained in the following paragraph.

5.5 Optimization
At this stage, the second step of the algorithm described in Section 3 (Figure 1(b)) is
applied.

The genetic algorithm is initialized with the same DOE of 50 samples ( yl with
l ¼ 1, . . . , 50), generated during the first step. At each iteration n, the response surface
T ~SI jð ynÞ and the 2 percent criterion are used to define equation (3), i.e. jr, for the design
yn. The stochastic problem, expressed in equation (3), is solved by means of PC

Figure 3.
T ~SI jð yÞ contours in the
plan p-T for cv1 (a), n (b),
v (c), b (d)
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expansion, and m(PO) and s(PO) are computed. For reaching convergence, 20 designs y
evolved during 40 generations.

The converged Pareto front is shown in Figure 4. Various configurations are
obtained with a large variation of the PO, going from 0.91 to 1.46.

Four individuals are extracted from the Pareto front in order to evaluate differences
in the solution: one individual at the lowest variance (denoted hereafter LV), one at the
largest mean (denoted HM), and two others, denoted BT1 and BT2, representing
potential trade-off between mean and standard deviation.

In Figure 5, the mean dimensionless pressure (normalized with respect to the critical
pressure) is shown in the computational domain for LV, HM, BT1 and BT2. Remark
that high inlet turbine pressure are associated to high mean of PO, displaying a strong
dependence of turbine performances from thermodynamic inlet conditions. In a similar
way, standard deviation of the dimensionless pressure is reported in Figure 6.
Standard deviation is higher around the compression shock location near the trailing
edge. Moreover, the standard deviation of PO seems related to the peak of maximal
standard deviation of the pressure, i.e. when the maximal standard deviation is lower,
standard deviation of PO is lower too.

5.6 A posteriori validation and computational cost reduction
Finally, statistics of the optimal designs, LV, HM, BT1 and BT2, are computed by
considering the whole set of uncertainties, i.e. performing a complete stochastic
computation (equation (2)) without uncertainty reduction. The interest is twofold, i.e. to
verify that:

(1) the reduced problem statistics of the optimal individuals are well computed
with respect to the complete stochastic problem; and

(2) LV, HM, BT1 and BT2 designs still belong to the Pareto front when statistics
are computed with a greater accuracy.

Figure 4.
Pareto front in the plan
mðPOÞ½W �2 sðPOÞ½W �

µ (PO)
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In Figure 7, the Pareto front constituted by LV, HM, BT1 and BT2 designs are
reported, where statistics are computed by means of the reduced (grey square) and the
complete stochastic problem (circle). As shown in Figure 7, these four designs still
belong to the Pareto front even if statistics are evaluated by taking into account all the
uncertainties. This represents a validation of the proposed algorithm. Moreover, the
relative error of the mean and standard deviation are lower than 0.5 percent, that
confirms the efficacy of the reduction strategy. In Figure 8, the coefficient of variation
(ratio of the standard deviation to the mean) for the dimensionless pressure (normalized
with respect to the critical pressure) is computed for the LV design by means of the
complete and reduced stochastic problem in order to display the similarity of the two
solutions (a relative error always lower than 0.2 percent is found).

Now, let us focus on the savings in terms of computational cost by comparing the
proposed algorithm and the complete stochastic problem (using the whole set of
uncertainties). Considering a whatever design y obtained during the optimization, the
number of uncertainties of the reduced problem, i.e. r (Section 3.1), varies from 3 to 4,
where 8 is the global number of uncertainties, as it can be clearly seen in Figures 2
and 3. Remark that the polynomial expansion order can be different between two
designs, then only equation (21) (Section 3.1) can be used to compute an estimation of
the savings in terms of computational cost. The reduction is around 87 percent with

Figure 5.
Mean of p/pc for LV (a),
BT2 (b), BT1 (c), HM (d)
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Figure 7.
Pareto front in the plan
mðPOÞ½W �2 sðPOÞ½W �
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Figure 6.
Standard deviation of p/pc

for LV (a), BT2 (b), BT1 (c),
HM (d)
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respect to the complete robust optimization, where the global number of deterministic
simulations is nearly equal to 650,000 (5 millions) for the proposed approach (the
complete robust optimization). Then, the proposed approach is very promising also in
realistic configurations, permitting a strong reduction of the computational cost by
preserving nearly the same order of accuracy.

6. Conclusions
In this work, a stochastic optimization method is developed in order to efficiently
perform optimization in the presence of uncertainties. The idea is to reduce the number
of dimensions in the stochastic problem associated to a given design. ANOVA analysis
is used to perform a variance-based decomposition and to compute the TSIs for each
uncertainty and an initial set of designs. Then, a response surface is generated for each
TSI in the design space, that is used during the optimization loop. In this way, the
uncertainties with a TSI lower than 2 percent (TSI criterion) can be discarded in the
reduced stochastic problem associated to a whatever design. Through an experimental
campaign on PDE, the error on the variance is roughly estimated by the quantity
ð1 2 �TTSI Þ £ 100, where �TTSI is the summation of TSI concerning the variables
respecting the TSI criterion. During the optimization, the stochastic problem
associated to a given design is reduced, thus decreasing the cost of the statistics
estimation. This method is general and can be used with a deterministic black box
solver.

The optimization method is successfully tested on two problems in fluid mechanics:
a 1D compressible nozzle flow, and a thermodynamically complex flow in a turbine
cascade.

With this technique, a computational gain of the order of 10-90 is obtained, for
problems with some predominant uncertainties with respect to a full PCE. This
approach can be further improved by employing an algorithm for the reduction of the
number of points required for the quadrature, i.e. a sparse grid technique or an
adaptive algorithm. For very high-dimensional problems, this strategy can be easily
applied, provided that convergence on sensitivity indexes is attained. In this case,
computational cost for computing sensitivity indexes is similar to that one for
computing the various statistical moments. As a consequence, this strategy does not
require an adding cost with respect to more classical techniques, thus it is expected to
work well also for very high-dimensional problems.

Figure 8.
Coefficient of variation of
p/pc for LV design, reduced
(a) and complete (b)
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In future work, the aim is to make the optimization process more robust by improving
the construction of the TSI response surface. The plan is also to extend the algorithm to
include high-order decomposition.

Note

1. Remark that each TSI j is computed only on the complete problem. The total amount of TSI
of the reduced problem is a measure of the interactions that a reduced function can capture
with respect to the complete one.
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Abstract

ANOVA analysis is a very common numerical technique for computing a hierarchy of most important input pa-
rameters for a given output when variations are computed in terms of variance. This second central moment can not be
retained as an universal criterion for ranking some variables, since a non-gaussian output could require higher order
(more than second) statistics for a complete description and analysis.

In this work, we illustrate how third and fourth-order statistic moments,i.e. skewness and kurtosis, respectively,
can be decomposed. It is shown that this decomposition is correlated to a Polynomial Chaos (PC) expansion, permit-
ting to easily compute each term. Then, new sensitivity indexes are proposed basing on the computation of skewness
and kurtosis. PC-based numerical technique is used in order to compute the convergence of the sensitivity indexes
according to the polynomial order by using the exact solution as the reference one. Then, a functional decomposition
based on variance, skewness and kurtosis is applied on several test-functions, displaying how sensitivity indexes vary
according to the order of the statistical moment. Then, the problem of how reducing the complexity of a stochastic
problem is considered. In particular, two strategies are considered, one focused on the reduction of the number of
dimensions, the other on the reduction of the order of interaction. The impact on the statistics of the reduced function
is then assessed.

Keywords: high-order statistics, skewness, kurtosis, Uncertainty Quantification.

1. Introduction

Optimization and design in the presence of uncertain operating conditions, material properties and manufacturing
tolerances poses a tremendous challenge to the scientific computing community. In many industry-relevant situations
the performance metrics depend in a complex, non-linear fashion on those factors and the construction of an accurate
representation of this relationship is difficult. Probabilistic uncertainty quantification (UQ) approaches represent the
inputs as random variables and seek to construct a statistical characterization of few quantities of interest. Several
methodologies are proposed to tackle this issue, most of all focused on stochastic spectral methods [1, 2, 3, 4, 5],
that can provide considerable speed-up in computational time when compared to Monte Carlo (MC) simulation. In
realistic situations however, the presence of a large number of uncertain inputs leads to an exponential increase of
the cost thus making these methodologies unfeasible [6]. This situation becomes even more challenging when robust
design optimization is tackled [7, 8].

Several UQ methods have been developed with the objective of reducing the number of solution required to obtain
a statistical characterization of the quantity of interest, such as Sparse grid techniques or adaptive mesh generation.
These techniques can lead to a dramatical reduction of the quadrature points for moderate dimensional problem,
provided that the function has some regularity. Classical sparse grids [9] are constructed from tensor products of one-
dimensional quadrature formulas. Some Galerkin-based methods deals with multi-resolution wavelet expansions [10,
11], domain decomposition in the random space [12], adaptive h-refinement [3] for dealing with arbitrary probability
distributions.
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Among the collocation-based stochastic spectral methods, in [13] they proposed the use of sparse grid quadrature
for stochastic collocation. Older studies show the errors and efficiency of sparse grid integration and interpolation
[14, 15], Smolyak constructions based on one-dimensional nested Clenshaw-Curtis rules [14, 16] and the integration
error of sparse grids based on one-dimensional Kronrod-Patterson rules [17].

An alternative solution for reducing the cost of the UQ method is based on approaches attempting to identify the
relative importance of the input uncertainties on the output. If some dimensions could be identified as negligible, they
could be discarded in a reduced stochastic problem. If the number of uncertainties could be reduced, a better statistic
estimation could be achieved with a lower computational cost.

Concerning the computation of the most influent parameters, it is important to determine the uncertain inputs
which have the largest impact on the variability of the model output. In literature, Global sensitivity analysis (GSA)
aims at quantifying how uncertainties in the input parameters of a model contribute to the uncertainties in its output
(see for example [18]), where global sensitivity analysis techniques are applied to probabilistic safety assessment
models). Sometimes, GSA classifies the inputs according to their importance on the output variations and it gives a
hierarchy of most important ones.

Traditionally, GSA is performed using methods based on the decomposition of the output variance [19],i.e.
ANOVA. The ANOVA approach involves splitting a multi-dimensional function into its contributions from different
groups of subdimensions. In 2001, Sobol used this formulation to define global sensitivity indices [19], displaying
the relative variance contributions of different ANOVA terms. In [20], they introduced two High-Dimensional Model
Reduction (HDMR) techniques to capture input-output relationships of physical systems with many input variables.
These techniques are based on ANOVA-type decompositions.

Since it requires a large number of function evaluations, several techniques have been developed to compute the
different so-called sensitivity indices at low cost [21]. In [22, 23, 24], generalized Polynomial Chaos Expansions
(gPC) are used to build surrogate models for computing the Sobol’s indices analytically as a post-processing of the
PC coefficients. In [6], they combine multi-element polynomial chaos with analysis of variance (ANOVA) functional
decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low
stochastic regularity. In [25], the use of adaptive ANOVA decomposition is investigated as an effective dimension-
reduction technique in modeling incompressible and compressible flows with high-dimension of random space. In
Sudret [26], sparse Polynomial Chaos (PC) expansions are introduced in order to compute sensitivity indices. An
adaptive algorithm allows to build a PC-based metamodel that only contains the significant terms whereas the PC
coefficients are computed by least-square regression.

Other approaches are developed if the assumption of independence of the input parameters is not valid. New
indices have been proposed to address the dependence [27, 28], but this attempts are limited to a linear correlation.
In [29], they introduce a global sensitivity indicator which looks at the influence of input uncertainty on the entire
output distribution without reference to a specific moment of the output (moment independence) and which can be
defined also in the presence of correlations among the parameters. In [30], a gPC methodology to address global sen-
sitivity analysis for this kind of problems is introduced. A moment-independent sensitivity index that suits problems
with dependent parameters is reviewed. Recently, in [31], a numerical procedure is set-up for moment-independent
sensitivity methods.

The ANOVA-based analysis create a hierarchy of most important input parameters for a given output when varia-
tions are computed in terms of variance. A strong limitation of this approach is the fact that it is based on the variance
since the second central moment can not be considered like a general indicator for a complete description of output
variations. For example, any Gaussian signal is completely characterized by its mean and variance. Consequently the
3rd order moment of a Gaussian signal is zero. Unfortunately, many signals encountered in practice have non-zero
high-order statistics, but second-order statistics contain no phase information. As a consequence of this, phase signals
cannot be correctly identified by a 2nd-order technique. Remark also that many measurement noises are Gaussian,
and so in principle the high-order statistics are less affected by Gaussian background noise than the 2nd order mea-
sures. For well describing the complexity of engineering systems, computation of Higher-Order (HO) statistics are
of primary importance, for example the third order, theskewness(measure of the non-symmetry of the distribution,
i.e. any symmetric distribution will have a third central moment of zero), and the fourth order, thekurtosis(measure
of whether the distribution is tall or short, compared to the normal distribution of the same variance). Now, let us
imagine to compute the more influential parameters for a given output. The hierarchy of important parameters based
on 2nd-order statistical moment (like in ANOVA analysis) is not the same if a different statistic order is considered.
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Depending on the problem, a n-order decomposition could be ofinterest. It seems of primary importance to col-
lect the set of hierarchies obtained from n-order statistical moment decomposition, for a correct ranking of all the
uncertainties.

For computing HO statistics, the most diffused methods are related to Monte Carlo and quasi-Monte Carlo ap-
proaches. Very few papers exist showing the application of polynomial-chaos techniques to the computation of HO
statistics [32, 33].

First objective of this paper is to provide a general method in order to compute the decomposition of high-order
statistics, then to formulate an approach similar to ANOVA but forskewness and kurtosis. The idea is to compute the
most influential parameters not only for the variance but also for higher orders permitting to improve the sensitivity
analysis. This is a fundamental step in order to formulate also innovative optimization methods for obtaining very
robust designs by taking into account a complete description of the output statistics. Second objective is to illustrate
the correlation between the high-order functional decomposition and the PC-based techniques, thus displaying how
to compute each term from a numerical point of view. Finally, two reduction strategies are considered for reducing i)
the number of dimensions in the stochastic space and ii) the order of interactions. These strategies are tested on some
test-cases and their performances evaluated with respect to the complete non-reduced model.

The paper is organized as follows. Section§2 illustrates some definitions for high-order statistics. In section§3,
functional decomposition for variance, skewness and kurtosis are presented. In section§4, the correlation between
the functional decomposition and a Polynomial Chaos framework is depicted. Section§5 extend some sensitivity
indices to high-order decomposition. Then, Section§6 presents several results showing how the Polynomial Chaos
expansion can be used practically to compute high-order statistics, and the importance of considering skewness and
kurtosis sensitivity indices when ranking a set of uncertainties. In section§7, conclusions and perspectives are drawn.

2. High-order statistics definition

Let us consider a real functionf = f (ξ) with ξ a vector of random inputsξ ∈ Ξd = Ξ1 × · · · × Ξn (Ξ ⊂ Rd) and
ξ ∈ Ξd 7−→ f (ξ) ∈ L2(Ξd, p(ξ)), wherep(ξ) =

∏d
i=1 p(ξi) is the probability density function ofξ.

The central statistical moment off of ordern can be defined as follows

µn( f ) =
∫

Ξd
( f (ξ) − E( f ))np(ξ)dξ, (1)

whereE( f ) indicates the expected value off

E( f ) =
∫

Ξd
f (ξ)p(ξ)dξ. (2)

In the following, we indicate withσ2, s, andk, the variance (second-order moment), the skewness (third-order),
and the kurtosis (fourth-order), respectively. Skewness and kurtosis (see Appendix A for more details) can be also
computed as follows

s= E( f 3) − 3E( f 2)E( f ) + 2E( f )3

s= E( f 3) − 3σ2E( f ) − E( f )3,
(3)

k = E( f 4) − 4E( f 3)E( f ) + 6E( f 2)E( f )2 − 3E( f )4

k = E( f 4) − 4sE( f ) − 6σ2E( f )2 − E( f )4.
(4)

These expressions are used for the functional decomposition described in the following sections.
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3. Functional decomposition

Let us apply the definition of the Sobol functional decomposition [19] to the functionf as follows

f (ξ) =
N∑

i=0

fmi (ξ · mi), (5)

where the multi-indexm, of cardinalitycard(m) = d, can contain only elements equal to 0 or 1. Clearly, the total
number of admissible multi-indicesmi is N + 1 = 2d; this number represent the total number of contributes up to
thedth-order of the stochastic variablesξ. The scalar product between the stochastic vectorξ andmi is employed to
identify the functional dependences offmi . In this framework, the multi-indexm0 = (0, . . . , 0), is associated to the
mean termfm0 =

∫
Ξd f (ξ)p(ξ)dξ. As a consequence,fm0 is equal to the expectancy off , i.e. E( f ). Let us assume, in

the following, to order theN multi-indicesmi in the following way:

m1 = (1, 0, . . . , 0)

m2 = (0, 1, . . . , 0)
...

md = (0, . . . , 1)

md+1 = (1, 1, 0, . . . , 0)

md+2 = (1, 0, 1, 0, . . . , 0)
...

mN = (1, . . . , 1).

(6)

Except the termm0, that should be the first in the series, the remainingN multi-indicesmi should be classified with
respect to a prescribed criterion. However, this criterion does not affect in any way the successive ANOVA functional
decomposition.

The decomposition (5) is of ANOVA-type in the sense of Sobol [19] if all the members in Eq. (5) are orthogonal,
i.e. as follows ∫

Ξd
fmi (ξ · mi) fm j (ξ · m j)p(ξ)dξ = 0 with mi , m j , (7)

and for all the termsfmi , exceptf0, it holds
∫

Ξd
fmi (ξ · mi)p(ξ j)dξ j = 0 with ξ j ∈ (ξ · mi) . (8)

Each termfmi of (5) can be expressed as follows

fmi (ξ · mi) =
∫

Ξd−card(m̂i )
fmi (ξ · mi)p(ξ̄i)dξ̄i −

∑

m j,mi
card(m̂ j )<card(mi)

fm j (ξ · m j), (9)

where the multi-indexes ˆmi, have a cardinality equal to the number of non-null elements inmi andξ̄i contains all the
variables not contained in (ξ · mi), i.e. (ξ · mi) ∪ ξ̄i = ξ.

Hereinafter in order to substantially reduce the complexity of the notation, the integrals are written with respect to
their probability measure (relative to the multi-indexmi):

dµi = p(ξ · mi)d(ξ · mi) (10)

The functional decomposition (5) is usually employed [19] to compute the contribution of each term to the overall
variance, as shown in the next section.
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3.1. Variance decomposition

ANOVA analysis is based on the variance decomposition in its conditional contributions. Variance can be written
in terms of conditional expectancy off and f 2 as (see Appendix A for more details):

σ2 = E( f 2) − E( f )2. (11)

As a consequence, the problem is to computeE( f 2), seeing thatE( f ) is known and equal tofm0. Starting from Eq.
(5), it is easy to compute

f 2(ξ) =
N∑

i=0

f 2
mi

(ξ · mi) + 2
N∑

i=0

N∑

j=i+1

fmi (ξ · mi) fm j (ξ · m j). (12)

If the equation (12) is integrated in the stochastic space and the orthogonality property (7) is applied, variance can be
decomposed as

σ2 =

N∑

i=1

∫

Ξd
f 2
mi

(ξ · mi)p(ξ)dξ =
N∑

i=1

∫

Ξ̂i

f 2
mi

(ξ · mi)p(ξ · mi)d(ξ · mi), (13)

where the symbol̂Ξi is employed to indicateΞcard(m̂i ) for brevity.
Variance can be expressed as the summation of all the conditional contributions

σ2 =

N∑

i=1

σ2
mi
. (14)

So, a comparison with the equation (13) shows that

σ2
mi
=

∫

Ξ̂i

f 2
mi

(ξ · mi)p(ξ · mi)d(ξ · mi). (15)

Then, the same type of analysis is applied to skewness and kurtosis.

3.2. Skewness decomposition in conditional terms

In this section, the same procedure already presented in the previous section for the variance, is extended to the
computation of the skewness. In this case, the major drawbacks is the presence of an higher number of terms to
compute with respect to the variance case. In the case of the variance, due to the properties of the ANOVA terms, all
the mixed contributions are zero due to orthogonality. This is not the case of the mixed contribution for the skewness.
However some terms can be identified as orthogonal, as well as the case of the variance reducing the overall number
of terms to compute.

The first step in order to obtain the skewness in terms of the ANOVA components of the functionf (ξ) is to raise
the ANOVA functional decomposition of the functionf (ξ) to the third power by employing the multinomial theorem
as follows

s= ( f (ξ) − f0)3 =


N∑

i=1

fmi (ξ · mi)


3

=

N∑

i=1

∫

Ξ̂i

f 3
mi

(ξ · mi)dµi + 3
N∑

i=1

N∑

j=1
j,i

∫

Ξ̂i j

f 2
mi

(ξ · mi) fmj (ξ · m j)dµi j

+ 6
N∑

i=1

N∑

j=i+1

N∑

k= j+1

∫

Ξ̂i jk

fmi (ξ · mi) fmj (ξ · m j) fmk(ξ · mk)dµi jk ,

(16)

whereΞ̂i j = Ξ
card( ˆmi j) andΞ̂i jk = Ξ

card( ˆmi jk). In the following, the notation is simplified by omitting the explicit
dependence of the functionfmi with respect to its coordinates,i.e. fmi = fmi (ξ · mi).
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Here, a special notation is introduced in order to compute multi-indexes asmab···z as follows

mab···z = ma ⊞ mb ⊞ · · ·⊞ mz =


ma1 +mb1 + · · ·mz1∣∣∣∣

∣∣∣∣ma1 +mb1 + · · · +mz1

∣∣∣∣
∣∣∣∣
,0

, . . . ,
mad +mbd + · · · +mzd∣∣∣∣

∣∣∣∣mad +mbd + · · · +mzd

∣∣∣∣
∣∣∣∣
,0

 , (17)

where the norm
∣∣∣∣
∣∣∣∣ ·

∣∣∣∣
∣∣∣∣
,0

is defined as
∣∣∣∣
∣∣∣∣α

∣∣∣∣
∣∣∣∣
,0
=


|α| if α , 0

1 if α = 0.
(18)

The expression presented in (16) includes some terms always equal to zero due to the orthogonality of the ANOVA
functional components. In particular, a more compact final expression can be obtained as:

s=
N∑

p=1

∫

Ξ̂p

f 3
mp

dµp + 3
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f 2
mp

fmqdµpq + 6
N∑

p=1

N∑

q=p+1

N∑

r=q+1
mpq=mr

∫

Ξ̂pq

fmp fmq fmr dµpq. (19)

In the Appendix B, it is illustrated how obtaining equation (19) starting from (16). One of the most important
contribution of this kind of approach is the possibility to identify the conditional terms related to each single variable
or group of variables as expressed for the variance by means of relation (15). In the case of skewness, the conditional
terms have a more complex expression (except the first order terms,i.e. the terms related to the single variables). This
complexity arises from the presence of mixed contribution. For obtaining an additional form of the kind

s=
N∑

i=1

smi , (20)

it is mandatory to identify all the set of indexes whose interactions become part of an assigned multi-indexmi.
Considering that to each multi-indexmi is associated a set of 2|mi| − 1 sub-interactions and denoting this set asPi

(for instance ifmi = (1, 1) then the setPi = {(1, 0), (0, 1), (1, 1)}) holds, from the equation (19) it is possible to identify
each contribution as follows

smi =

∫

Ξ̂i

f 3
mi

dµi + 3
∫

Ξ̂i

f 2
mi

∑

mq∈Pi,,

fmq dµi + 6
∑

mp∈Pi,,

∑

mp,mq∈Pi,,
mpq=mi

∫

Ξ̂i

fmi fmp fmq dµi . (21)

Note that the equation (21) is explicitly obtained in the Appendix B.

3.2.1. Kurtosis decomposition in conditional term
In this section, how decomposing the kurtosis is described. The functional decomposition based on the functional

Sobol form (Eq. (5)), after the application of the multinomial theorem, is equal to
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k = ( f (ξ) − f0)4 =


N∑

i=1

fmi (ξ · mi)


4

=

N∑

i=1

∫

Ξ̂i

f 4
mi

(ξ · mi)p(ξ · mi)d(ξ · mi) + 4
N∑

i=1

N∑

j=1
j,i

∫

Ξ̂i j

f 3
mi

(ξ · mi) fmj (ξ · m j)p(ξ · mi j)d(ξ · mi j)

+ 6
N∑

i=1

N∑

j=i+1

∫

Ξ̂i j

f 2
mi

(ξ · mi) f 2
mj

(ξ · m j)p(ξ · mi j)d(ξ · mi j)

+ 12
N∑

i=1

N∑

j=1
j,i

N∑

k= j+1
k,i

∫

Ξ̂i jk

f 2
mi

(ξ · mi) fmj (ξ · m j) fmk(ξ · mk)p(ξ · mi jk)d(ξ · mi jk)

+ 24
N∑

i=1

N∑

j=i+1

N∑

k= j+1

N∑

h=k+1

∫

Ξ̂i jkh

fmi (ξ · mi) fmj (ξ · m j) fmk (ξ · mk) fmh (ξ · mh)p(ξ · mi jkh)d(ξ · mi jkh).

(22)

As already made for the skewness, the previous expression includes some terms always equal to zero thanks to the
orthogonality properties of the ANOVA contributions. The final expression for the kurtosis (for more details see the
Appendix C) is equal to

k =
N∑

p=1

∫

Ξ̂p

f 4
mp

dµp + 4
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f 3
mp

fmq dµpq + 6
N∑

p=1

N∑

q=p+1

∫

Ξ̂pq

f 2
mp

f 2
mq

dµpq

+ 12
N∑

p=1

N∑

q=1
q,p

N∑

r=q+1
mqr\∩qr⊆mp

∫

Ξ̂pqr

f 2
mp

fmq fmr dµpqr + 24
N∑

p=1

N∑

q=p+1

N∑

r=q+1

N∑

t=r+1
mpq\∩pq⊆mrt⊆mpq⊞∩rt

∫

Ξ̂pqrt

fmp fmq fmr fmt dµpqrt.

(23)

Note that the operator of subtraction by set is employed with the standard notation\.
Let us provide the relations to identify the conditional contribution related to a variable or a set of variables. In

particular, if a specific multi-indexmi is provided, then the conditional expression for the kurtosiskmi is equal to (see
the Appendix C for more details)

kmi =

∫

Ξ̂i

f 4
mi

dµi + 4
∫

Ξ̂i

f 3
mi

∑

mq∈Pi,,

fmq dµi + 6
∑

mp∈Pi

∑

mp,mq∈Pi
mpq=mi

∫

Ξ̂i

f 2
mp

f 2
mq

dµi

+ 12
∑

mp

∑

mp,mq∈Pi

∑

mr∈Pi ,r>q
mp⊞∩qr=mi

∫

Ξ̂i

f 2
mp

fmq fmr dµi

+ 24
∑

mp∈Pi

∑

mq∈Pi ,q>p

∑

mr∈Pi ,r>q

∑

t>r,mr∈Pi
mi⊆mpq⊞∩rt

mi⊆mrt⊞∩pq

∫

Ξ̂i

fmp fmq fmr fmt dµi

(24)

4. Correlation with Polynomial Chaos Framework

This section is devoted to illustrate how variance, skewness and kurtosis from the functional decomposition are
correlated with the polynomial chaos framework. If a polynomial chaos formulation is used, an approximationf̃ of
the functionf is provided

f (ξ) ≈ f̃ (ξ) =
P∑

k=0

βkΨk(ξ), (25)
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where P is computed according to the order of the polynomial expansionn0 and the stochastic dimension of the
problemd

P+ 1 =
(n0 + d)!

n0!d!
. (26)

Each polynomialΨk(ξ) of total degreeno is a multivariate polynomial form which involve tensorization of 1D poly-
nomial form by using a multi-indexαk ∈ Nd, with

∑d
i=1α

k
i ≤ n0:

Ψk(ξ · m⋆,k) =
d∏

i=1

ψαk
i
(ξi) (27)

where the multi indexm⋆,k = m⋆,k(αk) ∈ Nd is a function ofαk: m⋆,k = (m⋆,k
1 , . . . ,m⋆,k

d ), with m⋆,k
i = αk

i /
∣∣∣∣
∣∣∣∣αk

i

∣∣∣∣
∣∣∣∣
,0

.

Remark that, for each polynomial basis,ψ0(ξi) = 1 and thenΨ0(ξ) = 1. Then, the first coefficientβ0 is equal to the
expected value of the function,i.e. E( f ). The polynomial basis is chosen according to the Wiener-Askey scheme in
order to select orthogonal polynomial terms with respect to the probability density functionp(ξ) of the input. Thanks
to the orthogonality, the following relation holds

∫

Ξ

Ψi(ξ)Ψk(ξ)p(ξ)dξ = δi j 〈Ψi(ξ),Ψi(ξ)〉 (28)

where〈·, ·〉 indicates the inner product andδi j is the Kronecker delta function.
The orthogonality can be advantageously used to compute the coefficients of the expansion in a non-intrusive PC

framework as follows

βk =
〈 f (ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉 , ∀k. (29)

4.1. Variance decomposition

First, we compute the termE( f 2) as follows

∫

Ξd
f (ξ)2p(ξ)dξ =

∫

Ξd


P∑

k=0

βkΨk(ξ)


2

p(ξ)dξ. (30)

This term can be computed easily due to the orthogonality :

∫

Ξd


P∑

k=0

βkΨk(ξ)


2

p(ξ)dξ =
P∑

k=0

β2
k〈Ψ2

k(ξ)〉. (31)

As a consequence, variance can be easily computed as

σ2 = E( f 2) − E( f )2 =

P∑

k=1

β2
k〈Ψ2

k(ξ)〉. (32)

Finally, an explicit correlation between the last expression and the Eq. (13) is found. As done for the the functional
decomposition of the variance (see§3.1), let us compute each conditional term of the variance. Remembering the
equation (14), each conditional term can be computed as

σ2
mi
=

∑

k∈Kmi

β2
k〈Ψ2

k(ξ)〉, (33)

whereKmi represent the set of indices associated to the variable included in the vector (ξ · mi):

Kmi =
{
k ∈ {1, . . . ,P} |m⋆,k = m⋆,k(αk) = mi

}
(34)
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4.2. Skewness decomposition
In this section, following what already reported for the variance, the decomposition of the skewness is performed

with respect to a PC expansion. The PC expansion can be raised to the third power to obtain (by applying again the
multinomial theorem)

s=
∫

Ξ

( f (ξ) − β0)3 p(ξ)dξ =
∫

Ξ


P∑

p=1

βpΨp(ξ)


3

p(ξ)dξ

=

P∑

p=1

β3
p〈Ψ3

p(ξ)〉 + 3
P∑

p=1

β2
p

P∑

q=1
q,p

βq〈Ψ2
p(ξ),Ψq(ξ)〉 + 6

P∑

p=1

P∑

q=p+1

P∑

r=q+1

βpβqβr〈Ψp(ξ),Ψq(ξ)Ψr (ξ)〉.
(35)

As already shown for the ANOVA functional decomposition, also in this case there are several terms always equal
to zero thanks to the orthogonality properties of the PC basis. The final form, explicitly obtained in the Appendix D
is equal to

s=
P∑

p=1

β3
p〈Ψ3

p(ξ)〉 + 3
P∑

p=1

β2
p

P∑

q=1
q,p

βq〈Ψ2
p(ξ),Ψq(ξ)〉∆p

q + 6
P∑

p=1

P∑

q=p+1

P∑

r=q+1

βpβqβr〈Ψp(ξ),Ψq(ξ)Ψr (ξ)〉∆pqr, (36)

where two functions are introduced for the selection. The first one∆
p
q is defined as follows

∆
p
q =


0 if α

p
j = 0 and mq j = 1

1 otherwise
(37)

while the function∆pqr is defined as

∆pqr =


0 if mp j + mq j + mr j = 1, 2

1 otherwise.
(38)

If a fixed multi-indexmi is of interest, the previous expression reduces to

s=
∑

p∈Kmi

β3
p〈Ψ3

p(ξ)〉+3
∑

p∈Kmp

β2
p

∑

q∈Kmq
mpq=mi

βq〈Ψ2
p(ξ),Ψq(ξ)〉∆p

q+6
∑

p∈Kmp

∑

q∈Kmq
q≥p+1

∑

r∈Kmr
mpqr=mi

βpβqβr〈Ψp(ξ),Ψq(ξ)Ψr (ξ)〉∆pqr. (39)

Note that the two functions∆p
q and∆pqr, should be computed before computing the integral associated to each

term for an efficient implementation. Only if this value is one then the integral need to be truly computed. However,
it is clear that a brute force approach in which all the terms are computed still works even if it is not efficient from a
computational point of view.

4.3. Kurtosis decomposition
The conditional terms for the kurtosis are presented in this section. After the application of the multinomial

theorem, the expression for the kurtosis is obtained from the PC series expansion as follows

k =
∫

Ξ

( f (ξ) − β0)p (ξ)dξ =
∫

Ξ


P∑

p=1

βpΨp(ξ)


4

p(ξ)dξ

=

P∑

k=1

β4
k〈Ψ4

k(ξ)〉 + 4
P∑

i=1

β3
i

P∑

j=1
j,i

β j〈Ψ3
i ,Ψ j〉 + 6

P∑

i=1

β2
i

P∑

j=i+1

β2
j 〈Ψ2

i ,Ψ
2
j 〉

+12
P∑

i=1

β2
i

P∑

j=1
j,i

β j

P∑

k= j+1
k,i

βk〈Ψ2
i ,Ψ jΨk〉 + 24

P∑

i=1

P∑

j=i+1

P∑

k= j+1

P∑

h=k+1

βiβ jβkβh〈ΨiΨ j ,ΨkΨh〉.

(40)
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Also in this case, many integrals have not to be computed if theorthogonal contributions are clearly identified.
Hereafter the final expression, obtained in Appendix E, is equal to

k =
∫

Ξ

( f (ξ) − β0)p (ξ)dξ =
∫

Ξ


P∑

p=1

βpΨp(ξ)


4

p(ξ)dξ

=

P∑

p=1

β4
p〈Ψ4

p(ξ)〉 + 4
P∑

p=1

β3
p

P∑

q=1
q,p

βq〈Ψ3
p,Ψq〉∆p

q + 6
P∑

p=1

β2
p

P∑

q=p+1

β2
q〈Ψ2

p,Ψ
2
q〉

+12
P∑

p=1

β2
p

P∑

q=1
q,p

βq

P∑

r=q+1
r,p

βr〈Ψ2
p,ΨqΨr〉∆p

qr + 24
P∑

p=1

P∑

q=p+1

P∑

r=q+1

P∑

t=r+1

βpβqβrβt〈ΨpΨq,ΨrΨt〉∆pqrt,

(41)

where the function∆p
q is already introduced in (37), while the others two functions are defined as follows

∆
p
qr =


0 if α

p
j = 0 and mq j + mr j = 1, 2

1 otherwise
and ∆pqrt =


0 if mp j + mq j + mr j + mt j = 1, 2

1 otherwise
(42)

In the case of the conditional contribution associated to a specific multi-indexmi, it holds

kmi =
∑

k∈Kmi

β4
k〈Ψ4

k(ξ)〉 + 4
∑

p∈Kmp

β3
p

∑

q∈Kmq−{p}
mp⊞mq=mi

βq〈Ψ3
p,Ψq〉∆p

q + 6
∑

p∈Kmp

β2
p

∑

q∈Kmq−{p}
mp⊞mq=mi

β2
q〈Ψ2

p,Ψ
2
q〉

+12
∑

p∈Kmp

β2
p

∑

q∈Kmq−{p}
βq

∑

r∈Kmr
r≥q+1

mpqr=mi

βr〈Ψ2
p,ΨqΨr〉∆p

qr + 24
∑

p∈Kmp

∑

q∈Kmq
q≥p+1

∑

r∈Kmr
r≥q+1

∑

t∈Kmt
t≥r+1

mpqrt=mi

βpβqβrβt〈ΨpΨq,ΨrΨt〉∆pqrt.
(43)

5. Introducing more sensitivity indices

As introduced by Sobol [19], sensitivity indexes for variance can be computed for each conditional contribution
following Eq. (14):

σ2,SI
mi
=
σ2

mi

σ2
. (44)

Here, we introduce new sensitivity indexes, basing on the decomposition of skewness and kurtosis and using the
definition of the conditional term in (21) and (24), as follows

sSI
mi
=

smi

s

kSI
mi
=

kmi

k
.

(45)

If a total sensitivity index is needed,i.e. it is necessary to compute the overall influence of a variable, it can be
computed summing up all the contributions in which the variable is present

TSIj =
∑

ξ j∈(ξ·mi)

σ2,SI
mi

TSIsj =
∑

ξ j∈(ξ·mi)

sSI
mi

TSIkj =
∑

ξ j∈(ξ·mi)

kSI
mi
.

(46)
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6. Numerical results

In this section, the importance of considering high-order statistics for global sensitivity analysis is demonstrated
through some numerical examples. The numerical test cases are chosen in order to highlight the importance of the
analysis related to the high-order conditional contributions for the analysis of systems including multiple sources of
uncertainties. The focus will be devoted to the analysis of variance-based reduction strategies, where the importance
of considering high-order contributions is demonstrated. The numerical test section is organized as follows. In section
§6.1, the previous relations for the computation of the high-order conditional terms are demonstrated numerically by
showing the convergence properties of PC with respect to the analytical conditional high-order statistics. In section
§6.2, a comparison is performed between the information obtained by an analysis based on the variance or on high-
order conditional contributions, by solving some numerical test problems with different kind of interactions between
parameters. Finally, how reducing the model dimension is addressed in sections§6.3 and§6.4, where the reduction
procedure in the truncation (by reducing the number of dimensions) and in the superposition (by reducing the order
of interactions) sense is presented, respectively.

6.1. Computing conditional statistics by means of PC

In this section, the problem of the computation of high-order conditional terms is analyzed by means of the
PC expansion series (see section§4). If the aim is to compute the high-order statistics (the values of variance,
skewness or kurtosis) employing the same set of deterministic evaluation of the models,i.e. the same number of
functional evaluationf = f (ξ) in the same sample points, their values can be obtained only by computing the first order
coefficients of the PC expansion forf , f 2, f 3 and f 4 corresponding to the expected values of the four functions. The
combination of the expectancies of the functionf raised up to an increasing power can be employed to compute the
total variance, skewness and kurtosis according to the relations reported in Appendix A. Hereinafter, the combination
of central moments in order to obtain high-order statistic employing only evaluation of the functionf in the same
quadrature points of the PC expansion is referred ascollocation. It is important to remark that the collocation approach
does not provide any kind of metamodel for the functionf , nor the possibility to compute conditional terms. Then,
this approach is employed only for a comparison with respect to the PC series and for assessing the convergence of
the expansion.

Consider the following function

f (ξ) =
d∏

i=1

sin(πξi) (47)

where each variableξi ∼ U(0, 1) with an increasing dimensiond up to three. In the following, statistical moments as
well as sensitivity indexes (relative) errors are systematically computed with respect to the analytical solution.

In figure 1, statistical moments convergence are reported as a function of the number of functional evaluations for
the dimensiond = 2. A number of simulations equal toN = 120 is needed to reach a relative order of the error of order
O(10−4) for the kurtosis while for lower statistics is reached with few realizations. Also the collocation approach, as
expected, converges faster, but, as already discussed, is limited to the computation of the full central moments.

Now, conditional statistics can be computed using a PC approach using Eqs. (36) and (41). In Figure 2, we show
first-order statisticsv1, s1 andk1 (where for symmetryσ2

1 = σ
2
2 = v1, s1 = s2 andk1 = k2) and interaction terms (v12,

s12, k12) errors computed with respect to the analytical solution. These statistics are well converged atN = 120. Then,
the case withd = 3 is taken into account. In Figures 3 and 4, convergence of statistical moments and conditional
statistics are reported, respectively. As observed earlier, collocation gives higher convergence rate with respect to the
PC (Figure 3(a)). Convergence, for both statistical moments and conditional statistics, is attained at nearlyN = 1500.
This illustrates how it becomes computationally expensive to have well-converged statistics terms when the number
of dimension increases.

In the following sections, the high-order conditional statistics are employed to show the importance of the high-
order interactions between uncertain parameters for the reduction of a numerical model.

6.2. On the advantages of high-order indexes for global Sensitivity analysis

The importance of including high-order conditional terms computation in the statistics analysis is demonstrated in
this section by means of several model functions. Note that this kind of approach is conceived in order to extend the
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Figure 1: Statistical moments error vs number of function evaluations in the cased = 2.

global sensitivity analysis based on the variance. Anyway, in some situations, criteria based on statistical moments
are not adequate and moment independent criteria should be adopted. The interested reader should refer to [34] for a
discussion in this sense.

The first model function is the well-known Ishigami function

f (ξ) = (1+ 0.1ξ4
3) sin(ξ1) + 7 sin(ξ2)2 where ξi ∼ U(−π, π). (48)

For this function, the first-order Sensitivity Indexes (SI) contribution (for variance, skewness and kurtosis) computed
for to the third variableξ3 are equal to zero. In Figure 5, sensitivity indexes are reported for variance, skewness and
kurtosis.

Remark that the interaction between the third and the first variable is not negligible, obtaining akSI
mi

, for mi =

(1, 0, 1), higher than 0.4. Also the interaction between the three variables is almost equal to 0.2 for the kurtosis but it
is zero for both variance and skewness. It is also interesting to note that, even if the ranking of the variables it is not
directly affected by the choice of the order of Sensitivity Indexes (SI) (i.e. for the variance, skewness or kurtosis), the
three indexes provide complementary results. For instance, the relative importance of first-order terms is about 0.75
for the variance, while it is only 0.15 for the kurtosis. This different impact on high-order interactions is even more
evident when the problem is to reduce the model, as it will be shown in Section 6.4.

The analysis of the table 1, where the total sensitivity indexes are reported, confirms that the ranking of the
variables is nearly the same for each statistical moment.

Variable TSI TSIs TSIk

ξ1 0.57 0.00 0.91
ξ2 0.43 1.00 0.50
ξ3 0.25 0.00 0.64

Table 1: Total sensitivity indexes for the Ishigami function (48) based on a PC series with total degreen0 = 7.

Let us consider now, the classical Sobol function (four dimension)

f (ξ) =
4∏

i=1

|4ξi − 2| + ai

1+ ai
, (49)

whereξi ∼ U(0, 1). Two possible choices of the coefficients are considered here
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Figure 2: Conditional statistics vs number of function evaluations in the cased = 2.
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Figure 3: Statistical moments (a) and conditional statistics (b) error vs number of function evaluations in the cased = 3.
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Figure 4: Sensitivity indices vs number of function evaluations in the cased = 3.
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Figure 5: Sensitivity indexes for the Ishigami function (48)obtained with a PC series with total degreen0 = 7.

• ai = (i − 1)/2 the so called linear g-functionfglin

• ai = i2 the so called quadratic g-functionfgquad.

In figure 6, Sensitivity Indexes (SI) for the linear g-functionfglin are reported. Looking at figure 6, several differ-
ences can be noticed between the sensitivity indexes computed on the variance or on other high-order moments. The
variance-based ranking illustrates that the first-order sensitivity indexes are higher than the second order one, while
these last ones are higher than the third and fourth order ones. This is not the case for skewness and kurtosis, where the
second-order contributions are higher than the first-order and third-order ones. This behavior reveals that the variance
is able to catch the absolute ranking of the variables in terms of first-order contributions, but the importance associated
to higher-order interactions between the parameters is totally lost. From a practical point of view, underestimating the
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importance of high-order interactions between variables can lead to wrong decisions in a dimension reduction strategy
as it will be shown in Sections 6.3 and 6.4. The variance based only on first-order contributions exceeds 0.8, while
skewness and kurtosis do not attain 0.1. This can be demonstrated to be very influential if the probability distribution
for reduced models is considered. However, in table 2, the total sensitivity indexes for the four variables are reported.
It is evident that the ranking of variables is not influenced by the statistical moment, but their relative importance can
vary significantly.
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Figure 6: Sensitivity indexes for the linear g-functionfglin (49) obtained with a PC series with total degreen0 = 5.

Variable TSI TSIs TSIk

ξ1 0.57 0.79 0.86
ξ2 0.29 0.56 0.64
ξ3 0.17 0.36 0.44
ξ4 0.11 0.24 0.31

Table 2: Total sensitivity indexes for the linear g-function function (49) based on a PC series with total degreen0 = 5.

The same functional form can lead to slightly different results if the quadratic function coefficients are considered.
In Figure 7, the sensitivity indexes for the g-function with a quadratic dependence of the coefficients are reported. In
this case, the difference between the first order contribution and high-order terms is even more evident. Considering
the variance, first-order contributions exceed 0.98, while a value larger than 0.5 is computed for high-order interactions
when considering skewness and kurtosis. In this case, the contribution of the first variable exceeds 0.8, but in order
to attain this level, it is necessary to include contributions related to the first variable and the second-order interaction
between the first and second variable. In the table 3, total sensitivity indexes are reported for the four variables. In
this case, variance contributions for both the third and fourth variables are below 0.05, while for both skewness and
kurtosis, only the fourth variable contribution takes a TSI value of 0.04. A low level of TSI for the variablesξ3 andξ4

could suggest to truncate the dimensionality of the model to the first two variables or neglect the contributions related
to the order higher than one. This case is analyzed in the following section in order to demonstrate the importance of
high-order sensitivity indexes analysis.
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Figure 7: Sensitivity indexes for the quadratic g-functionfgquad (49) obtained with a PC series with total degreen0 = 5.

Variable TSI TSIs TSIk

ξ1 0.82 0.95 0.97
ξ2 0.14 0.47 0.44
ξ3 0.04 0.13 0.12
ξ4 0.01 0.04 0.04

Table 3: Total sensitivity indexes for the quadratic g-functionfgquad (49) based on a PC series with total degreen0 = 5.

Let us now consider the following functions:

f1 = ξ1e
ξ2
ξ23+1 + ξ1ξ2

f2 =
3∏

i=1

2ξi + 1
2

,
(50)

where the parameters areξi ∼ U(0, 1).
Sensitivity indexes associated to the first functionf1 are reported in Figure 8. For the functionf1, the most

important variable isξ1. For the variance, the first-order sensitivity index relative toξ1 is also the most important SI.
On the contrary, for both skewness and kurtosis, the highest SI is associated to the second-order interaction between
the first and the second variable. In this case, the inspection of the total sensitivity indexes, reported in the table 4,
suggests that the third variableξ3 is meaningless with respect to the variance. The TSI associated toξ3 are lower than
the limit proposed in [35] to identify a negligible uncertainty that could be frozen. However, if this information is
used together with the high-order total sensitivity indexes information, the choice of freezing the third variable should
be considered more carefully. This reflects the importance of the third variable in the actual form of the probability
density function off1 even if its variance is not heavily influenced by it. The results of a model reduction decision,
totally based on variance measures, is further discussed in the following section.

The last example,i.e. the functionf2, is reported here to underline the difference between the measure of sensitivity
associated to the variance and to the higher-order moments. In particular, the functional form off2 (50) includes an
equal contribution of three variables. However, looking at the figure 9, it is possible to note that the variance is
concentrated only on first-order contributions of the single variables and their sum exceeds 0.9. The skewness and
kurtosis contributions, on the contrary, are concentrated on second-order interaction. For kurtosis, the third-order
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Figure 8: Sensitivity indexes for the first functionf1 (50) obtained with a PC series with total degreen0 = 7.

Variable TSI TSIs TSIk

ξ1 0.79 0.96 0.97
ξ2 0.26 0.96 0.67
ξ3 0.02 0.10 0.10

Table 4: Total sensitivity indexes for the first functionf1 (50) based on a PC series with total degreen0 = 7.

interaction is the highest contribution. Remark that even if the sum of the first-order variance contribution exceeds
0.9, a reduction of the model in the superposition sense (i.e. by neglecting the high orders of interaction), could lead
to wrong conclusions, as explained in Section 6.4. The skewness associated to a model including only first-order
contribution does not include the skewness information about the probability distribution of the output.

Values for the total sensitivity indexes are reported in table 5 for this case. It is interesting to note that the sum of
the total sensitivity indexes over the three variables is much more higher for skewness and kurtosis with respect to the
variance. Then, they refer, correctly, to an intrinsically high-order (of interaction) function (see equation (50) forf2
definition).

Variable TSI TSIs TSIk

ξ1 0.36 0.70 0.71
ξ2 0.36 0.70 0.71
ξ3 0.36 0.70 0.71

Table 5: Total sensitivity indexes for the first functionf2 (50) based on a PC series with total degreen0 = 7.

Numerical test-cases presented in this section illustrate how information relative to variance-based sensitivity in-
dexes seem to be incomplete in order to understand the true dependence of a model from its variables. In particular,
variance seems to be more associated to low order interaction with respect to the sensitivity indexes associated to
skewness and kurtosis. Then, for a whatever function that is known by points,i.e. for example experimental observa-
tions or computer runs of a code, the sensitivity indexes on the skewness and on the kurtosis could be very helpful to
capture some interactions between subset of variables, much more than the variance.

This could be even more important if the aim is to reduce the dimensionality of the problem and to build an
accurate metamodel. The following sections are focused on the advantages in using the high-order sensitivity indexes
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Figure 9: SI for the functionf2.

in a truncation strategy framework.

6.3. Dimensional reduction in the truncation sense

In this section, the problem of reducing the number of dimensions is analyzed through some numerical test-cases
based on the results obtained in the previous section. The first test-case is represented by the quadratic g-function
(49). From the analysis conducted in the previous section (see table 3), note that the third and fourth variables seem to
be meaningless for the variance-based indexes. Their total sensitivity indexes sum up to 0.05 for the variance, while
exceed 0.15 for both skewness and kurtosis. Considering only the sensitivity indexes computed on the variance, the
decision-maker could be tempted to neglect the variablesξ3 andξ4. In this case, the ANOVA expansion does not
include the terms containingξ3 andξ4, as follows

fG1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2)

fG2 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2) + f3(ξ3) + f13(ξ1, ξ3) + f23(ξ2, ξ3) + f123(ξ1, ξ2, ξ3),
(51)

where in the first casefG1 both are neglected; on the contrary forfG2 only ξ4 is neglected. In this case, the ANOVA
terms and the statistics can be computed analytically. In the table 6, the percentage errors, for the first four central
moments, are reported with respect to the analytical exact solution for both the reduced modelsfG1 and fG2.

Function Variance Skewness Kurtosis
fG1 4.7997 29.236 15.039
fG2 1.2369 7.7705 4.0632

Table 6: Percentage
(

abs(µ−µex)
µex

× 100
)

errors related to the reduced g-functionfG1 and fG2.

In table 6, it is evident that an error of only 5% on the variance can correspond to a much greater error on the higher
moments. This behavior is justified looking at the Figure 10, where the probability density function is computed for
both fG1 and fG2 and compared with the complete function (49). In this case, the model with only the first two variables
can not reproduce the tails while a good approximation is attained in the middle part. However, this test-case clearly
shows that considering only the sensitivity indexes based on the variance could be very risky in a decision-making
process. In this case, the pdf results to be analytically bounded between 0.4 and 1.8. If the third variable is included
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in the reduced model, both variance and skewness are computedwith an error lower than 5%, while the error on the
kurtosis remains lower than 8%. The total sensitivity indexes associated to the fourth variable is reported in table 3
and it is lower than 5% for the three moments. The improvement of the model given by including the third variable
is evident in Figure 10, where the pdf of the reduced model allows recovering much better the pdf of the complete
function.
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Figure 10: PDFs for the complete g-function and the reduced models (see equations 51).

From a practical point-of-view, the dimension reduction is commonly applied by freezing the neglected parame-
ters. For an analytical function, it is possible to compute the constant values to choose, for bothξ3 andξ4, in order
to obtain a reduced model that preserves both the expectancy and the variance of the original complete model. Of
course, both requirements cannot be satisfied at the same time, but a set of values satisfying the mean and the variance
can be obtained analytically requiring that

|4ξ̄ j − 2| + a j

1+ a j
= 1

( |4ξ̄ j − 2| + a j

1+ a j

)2

=

∫ 1

0

( |4ξ j − 2| + a

1+ a j

)2

dξ j.

(52)

The following values can be analytically computed for the two variables:ξ3 = {1/4, 3/4, 91/120, 29/120} and
ξ4 = {1/4, 3/4, 77/102,25/102}.

In Figure 11, the pdf associated to the complete quadratic g-function with parametersξ3 andξ4 frozen, are reported
with the complete pdf and the totally reduced one.

From Figure 11, it is evident that freezing some parameters in order to assure the correctness of the mean and
the variance, yields pdf very close to that one obtained by neglecting entirely the ANOVA terms. From a practical
point-of-view, the analysis of the reduced model can be carried out both with the ANOVA reduced model (if it is
analytically possible to compute the integrals) and by freezing the parameter to neglect by satisfying the require-
ment on the expectancy and variance. In both cases, results make evident that a variance-based sensitivity analysis
should be supplemented by high-order sensitivity analysis for building a reduced model which does not deteriorate
the distribution of the realizations, especially in the tails.
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Figure 11: PDFs for the complete g-function and the reduced models.

Now, let us analyze the functionf1. In the previous section, the total sensitivity indexes for the three variables has
been reported in the table 4. For the third variable, the level of the TSI of 1.55%, is inferior to the threshold of 2%,
indicated in [35], to detect meaningless parameters. A reduced model can be obtained by freezing the third parameter,
or equivalently as shown in the first part of this section, by neglecting all the ANOVA terms in which the variableξ3

is present
f̂1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2). (53)

For a variableξ3 recovering the exact value of the mean and the variance of the complete model, the following values
are obtained:ξ3 = {0.4283, 0.4166}. In the figure 12, the pdf for the complete model and the one obtained by freezing
the third parameters are reported. Even in this case,i.e. with a model permitting to obtain an error on the variance
inferior to 2%, the information about the tails of the distributions are, again, totally lost. This is a further confirmation
that the information about high-order sensitivity indexes should be considered for building an accurate metamodel.
In all the case proposed here and in others not reported here for brevity, it appears evident that only when even the
high-order sensitivity indexes have reached a safety threshold (about 5%), the model can be really (and more safely)
truncated.

6.4. Dimensional model reduction in the superposition sense

In this section, the problem of the truncation is analyzed from a different perspective, in a so-calledsuperposition
sense. This means that the dimension of the model is not reduced in terms of number of variables, but in terms of
order of interaction between variables. Note also that, if the function is approximated by means of a PC series of total
degreen0, all the interactions of ordern0 + 1 are lost.

One could choose to truncate the model, neglecting all the interaction of higher order, if the error on the statistics
has already attained a specific threshold associated to the application of interest.

Consider the contribution up to the ordert, i.e.

f (ξ) =
∑

mi

fmi ≃
∑

|mi|≤t

fmi = f̂ (ξ). (54)
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Figure 12: PDFs for the completef1 and the reduced models freezing the third parameter.

From a practical point of view, the error related to the truncation of the PC series is greater than the error of the
truncation of the ANOVA approximation at a certain order. This is due to the approximation of each single term of
the ANOVA expansion via a truncated polynomial series so the ANOVA functional decomposition contains only 2d

terms while they are approximated by a finite PC series. This means that the PC approximation up to a certain order
t could be considered a good approximation to the ANOVA functional expansion up to the ordert only if the series
approximating each single function in the ANOVA is well converged.

For this reason, even if the analysis is based on the information presented in the previous section and based on
the computation of the sensitivity indexes by a PC approximation, the reduced model are computed analytically.
This represent the best case scenario, since it relies on a perfect knowledge of the reduced model. However, the
analytical knowledge of the model represent the case where the differences between the complete and reduced model
are minimized. To obtain an equivalent result for a generic function a non truncated PC series would be necessary.

The first example considered is the linear g-function (49). Results presented in Section§6.2 in terms of sensitivity
indexes (see figure 6) and total sensitivity indexes (see table 2) illustrate some main features: the first order interaction
seems to be enough to represent the model; the contributions related to the first order interactions exceeds 0.8 for the
variance, but it is much more reduced for both skewness and kurtosis. Two different reduced model are considered in
this case: the first-order modelfO1 and the second-order onefO2, described by the following equations

fO1 = f0 + f1(ξ1) + f2(ξ2) + f3(ξ3) + f4(ξ4)

fO2 = fO1 + f12(ξ1, ξ2) + f13(ξ1, ξ3) + f14(ξ1, ξ4) + f23(ξ2, ξ3) + f24(ξ2, ξ4) + f34(ξ3, ξ4)
(55)

In the table 7, the error relative to the first and second order models are reported, where the models are obtained
by a truncated PC series and their exact counterparts,f ex

O1 and f ex
O2 are computed analytically.

The figure 13 illustrates the PDF for the complete and the reduced model. Note that including a large amount of
variance could lead to very bad metamodel if the information on the variance are not supplemented by those obtained
by the analysis of high-order methods. From the table 7, it is evident that even if the variance related to the first order
terms exceeds the 80% of the total variance, the corresponding skewness and kurtosis is very low. The situation is
evident in the probability density function associated to the reduced modelfO1 reported in figure 13 where the pdf
corresponding tofO1 completely looses information about the skewness (it is perfectly symmetric) and reveals to be a
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Function Variance Skewness Kurtosis
fO1 86.46 8.02 7.83
fO2 100.00 95.47 67.00

f ex
O1 82.76 0.00 31.51
f ex
O2 98.78 81.32 76.52

Table 7: Total contribution for the variance, skewness and kurtosis up to the first and second order (total degree 5) as computed in section§6.2 and
their analytical counterparts.
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Figure 13: PDFs for the complete linear g-functionfglin (see equation (49)) and the reduced modelsf ex
O1 and f ex

O2 (see equations (55)).

very inaccurate approximation of the complete function. The situation greatly improves including contributions up to
the second order of interactions between variables. This is supported by the value of the statistics reported in the table
7 where, even if the improvement in terms of variance is reduced, a better approximation of both skewness and kurtosis
are achieved. This first example again demonstrates as even in the case of reduction of a model in the superposition
sense, the higher-order sensitivity index can furnish useful information on the quality of reduced metamodels.

The second example is the functionf2 (see equation (50)). The results reported in the section§6.2 show than
the first order terms represent more than 90% of the variance while they correspond to the 0% for the skewness and
they contribute to a value inferior than 15% for the kurtosis. In this case, looking at the sensitivity indexes relative
to the variance, a first order model could appear as a good approximation of the complete function. However, the
quantification of the higher moments sensitivity indexes is instead very important. Considering the first and the
second order defined as follows

fO1 = f0 + f1(ξ1) + f2(ξ2) + f3(ξ3)

fO2 = fO1 + f12(ξ1, ξ2) + f13(ξ1, ξ3) + f23(ξ2, ξ3),
(56)

the computation of the pdf clearly reveals the importance of the high order terms.
In the figure 14, the pdf for the complete model and the first and second orders are reported. Even if more than

90% of the variance is included in the first order model, its pdf contains no information about the skewness and the
tails appear to be totally lost. However, including the second order interactions between variables, the quality of the
pdf improves a lot as it can be observed.
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Figure 14: PDFs for the completef2 and the reduced models up to the first and second orders.

7. Conclusions

This paper deals with the decomposition of high-order statistics and with the importance of using this information
for reducing the complexity of a stochastic problem.

First, it is illustrated how third and fourth-order statistical moments,i.e. skewness and kurtosis, can be decom-
posed. Secondly, a correlation was found between the functional decomposition, as depicted by Sobol, and the
polynomial chaos development. This permitted to identify clearly each term of the decomposition, drawing also a
practical way to compute all these terms. This procedure is assessed on several test-cases computing the convergence
curves obtained by using PC with respect to the reference solution, that is the exact analytical one.

Moreover, sensitivity indices based on skewness and kurtosis decomposition were introduced. The importance
of ranking the predominant uncertainties in terms not only of the variance but also of higher order moments (then
extending the ANOVA analysis also to higher order statistic moments), was demonstrated with several functions,
where all the decomposition terms can be calculated analytically.

Two different strategies for reducing the complexity of the stochastic problem are considered: i) to reduce the
number of dimensions, or to reduce the order of interactions between different variables. For the proposed test-
cases, the influence of different choices in terms of some simplifying assumptions, is assessed by computing the
error between the global and the reduced problem. Considering high-order statistics is shown to be of fundamental
importance for saving the statistics properties of the reduced problem with respect to the complete one.

Future works will be directed towards adaptive strategies for the reduction of the global computational cost, and
the use of High-Order statistics in robust design optimization.
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Appendix A. Definition of High-order statistics

This section illustrates how statistics (of ordern) of f can be computed from the conditional expectancy of n-
powers off . First, let us consider the definition of the variance

σ2 =

∫

Ξd
( f (ξ) − E( f ))2p(ξ)dξ. (A.1)
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As a consequence, it can be easily computed that

σ2 = E( f 2) − E( f )2. (A.2)

In the same way, starting from the definition of the skewness, the following formula can be obtained

s=
∫

Ξd
( f (ξ) − E( f ))3p(ξ)dξ

=

∫

Ξd

(
f 3(ξ) − 3 f 2(ξ)E( f ) + 3 f (ξ)E( f )2 − E( f )3

)
p(ξ)dξ

= E( f 3) − 3E( f 2)E( f ) + 3E( f )E( f )2 − E( f )3

= E( f 3) − 3E( f 2)E( f ) + 2E( f )3.

(A.3)

This means that skewness, as defined in Eq. A.3, depend only on the expected values of the functionf , f 2 and f 3.
Using the formula forE( f 2) obtained from Eq. A.2, equation A.3 becomes

s= E( f 3) − 3E( f 2)E( f ) + 2E( f )3

= E( f 3) − 3σ2E( f ) − 3E( f )3 + 2E( f )3

= E( f 3) − 3σ2E( f ) − E( f )3.

(A.4)

Following the same procedure, kurtosis can first be written as follows

k =
∫

Ξd
( f (ξ) − E( f ))4p(ξ)dξ

=

∫

Ξd

(
f 4(ξ) − 4 f 3(ξ)E( f ) + 6 f (ξ)2E( f )2 − 4E( f )3 f (ξ) + E( f )4

)
p(ξ)dξ

= E( f 4) − 4E( f 3)E( f ) + 6E( f 2)E( f )2 − 4E( f )4 + E( f )4

= E( f 4) − 4E( f 3)E( f ) + 6E( f 2)E( f )2 − 3E( f )4.

(A.5)

Then, using the value ofE( f )3 obtained from Eq. A.4 and the value ofE( f 2) from Eq. A.2, kurtosis can be
computed as follows

k = E( f 4) − 4E( f )s− 6σ2E( f )2 − E( f )4. (A.6)

Appendix B. Third central moment expression for the ANOVA functional decomposition

In this section, the final expression of the skewness as reported in (19), is computed using the expression obtained
via the multinomial theorem applied to the functional ANOVA decomposition (16).

Equation (16),i.e.

s=
N∑

p=1

∫

Ξ̂p

f 3
mp

dµp + 3
N∑

p=1

N∑

q=1
q,p

∫

Ξ̂pq

f 2
mp

fmq dµpq + 6
N∑

p=1

N∑

q=p+1

N∑

r=q+1

∫

Ξ̂pqr

fmp fmq fmr dµpqr,

displays interaction between variables and sub-sets of variables for the third central moment of the function de-
composed via the multinomial theorem. In particular, the second and the third term of (16) could be simplified to
highlight the contributions that are always equal to zero.

The second term of the right hand side of the previous equation can be simplified as follows

3
N∑

p=1

N∑

q=1
q,p

∫

Ξ̂pq

f 2
mp

fmq dµpq = 3
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f 2
mp

fmq dµpq. (B.1)
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Proof. This term presents the interaction between two multi-indexesmp andmq, where one of them is raised to the
second power. The two multi-indexes should be different for construction: ifmq is not a subset ofmp then a set of
coordinatesmq − ∩pq belong only tomq (if the set is totally disjointed, the term∩pq is the null set). Note that the
symbol∩pq indicate the coordinates contained in both the multi-indexesp andq.

The integral can be than reformulated into the form

∫

Ξ̂pq

f 2
mp

fmq dµpq =

∫

Ξ̂p+∩pq

f 2
mp


∫

Ξ̂q−∩pq

fmq dµq−∩pq

 dµp+∩pq = 0, (B.2)

where the internal integral is equal to zero due to the orthogonality of the ANOVA contributions (see equation (8)).

Now, the case of the identification of the contributions to a specific multi-indexmi is addressed, wherempq = mi

must hold. If all the sub-sets of variables and their interactions ofmi are collected in the setPi , the contributions to
mi are a sub set of the 2|Pi | − 1 simple combinations of class two. For instance, in the multi-indexmi = (1, 1, 1), even
if the two subset (1, 0, 0) and (1, 1, 0) are contained inPi , their interactions does not contribute to the conditional term
of the skewnesssmi , i.e. (1, 0, 0) ⊞ (1, 1, 0) , mi. Requirementsmq ⊂ mp andmpq = mi allow to identify the only
non-null contributions as follows

3
∑

mp∈Pi

∑

mpq=mi
Pi∋mq⊂mp

∫

Ξ̂pq

f 2
mp

fmq dµpq = 3
∫

Ξ̂i

f 2
mi

∑

mq∈Pi,,

fmq dµi , (B.3)

wherePi,, is employed as shorthand forPi,, = Pi − {mi}.
The last term of (16) can be written as follows

6
N∑

p=1

N∑

q=p+1

N∑

r=q+1

∫

Ξ̂pqr

fmp fmq fmr dµpqr = 6
N∑

p=1

N∑

q=p+1

N∑

r=q+1
mpq=mr

∫

Ξ̂pq

fmp fmq fmr dµpq. (B.4)

Proof. This case can be demonstrated (extending what already done for the dyadic interaction between multi-indexes)
easily as follows ∫

Ξ̂pqr

fmp fmq fmr dµpqr =

∫

Ξ̂pq+∩pqr

fmp fmq


∫

Ξ̂r−∩pqr

fmr dµr−∩pqr

 dµpq+∩pqr = 0, (B.5)

by using the orthogonality property.

If a specific indexmi is of interest, the conditional contribution is identified requiringmpqr = mi (then to obtain
only non null contribution,mpq = mr = mi should be considered):

smi = 6
∑

mp,mi

∑

mp,mq,mi
mpq=mi

∫

Ξ̂i

fmp fmq fmi dµi . (B.6)

In conclusion, the final form for the skewness is equal to

s=
N∑

p=1

∫

Ξ̂p

f 3
mp

dµp + 3
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f 2
mp

fmqdµpq + 6
N∑

p=1

N∑

q=p+1

N∑

r=q+1
mpq=mr

∫

Ξ̂pq

fmp fmq fmr dµpq,

where each conditional contribution is as follows

smi =

∫

Ξ̂i

f 3
mi

dµi + 3
∫

Ξ̂i

f 2
mi

∑

mq∈Pi,,

fmqdµi + 6
∑

mp,mi

∑

mp,mq,mi
mpq=mi

∫

Ξ̂i

fmp fmq fmi dµi .
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Appendix C. Fourth central moment expression for the ANOVA functional decomposition

In this section, the equation (24) is obtained starting from the equation (22),i.e.

k =
N∑

p=1

∫

Ξ̂p

f 4
mp

dµp + 4
N∑

p=1

N∑

q=1
q,p

∫

Ξ̂pq

f 3
mp

fmq dµpq + 6
N∑

p=1

N∑

q=p+1

∫

Ξ̂pq

f 2
mp

f 2
mq

dµpq

+ 12
N∑

p=1

N∑

q=1
q,p

N∑

r= j+1
r,p

∫

Ξ̂pqr

f 2
mp

fmq fmr dµpqr + 24
N∑

p=1

N∑

q=p+1

N∑

r=q+1

N∑

t=r+1

∫

Ξ̂pqrt

fmp fmq fmr fmt dµpqrt,

(C.1)

after having identified the orthogonal contributions,i.e. the terms always equal to zero.
Looking at the kurtosis, the first three terms are easy to handle: the first and the third on the right side of the

previous equation cannot be further simplified, while the second one can be analyzed as already done for the similar
skewness term. It is then possible to write

4
N∑

p=1

N∑

q=1
q,p

∫

Ξ̂pq

f 3
mp

fmq dµpq = 4
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f 3
mp

fmq dµpq, (C.2)

as already demonstrated for the skewness term.
More attention should be devoted to the last two terms. The first one can be written as follows

12
N∑

p=1

N∑

q=1
q,p

N∑

r= j+1
r,p

∫

Ξ̂pqr

f 2
mp

fmq fmr dµpqr = 12
N∑

p=1

N∑

q=1
q,p

N∑

r=q+1
mqr\∩qr⊆mp

∫

Ξ̂pqr

f 2
mp

fmq fmr dµpqr. (C.3)

Proof. It is easy to note that if the multi-indexesmq andmr are totally independent from the variables contained in
the multi-indexmp,

∫
Ξ̂qr

fmq fmr dµqr = 0 holds (due to the orthogonality of the ANOVA functional components). In

the general case, whenmqr ∩ mp , 0, the existence of a null integral is related to the presence of variables in the
multi-indexesmq or mr not contained inmp. If mpq \ ∩qr * mp then it is possible to write as follows

∫

Ξ̂p

f 2
mp


∫

Ξ̂mpq\∩qr

fmq fmr d(mpq \ ∩qr)

 dµp = 0. (C.4)

Note that the internal integral is carried out with respect to a variable contained only in one ofmp or mq, then is always
zero due to orthogonality. Obviously, the case with the subsets related tomqr andmp totally disjointed, is included in
the previous condition.

If the specific multi-indexmi is provided, then in this case the contribution of this term is computed as follows

12
∑

mp

∑

mp,mq∈Pi

∑

mr∈Pi ,r>q
mp⊞∩qr=mi

∫

Ξ̂i

f 2
mp

fmq fmr dµi . (C.5)

Proof. The previous equation can be obtained considering the requirementsmpqr = mi and mqr \ ∩qr ⊆ mp. It is
easy to verify that if the second equation is true, then it must followmp ⊞ mqr \ ∩qr ⊆ mp ⊞ mp = mp, from which
mi \ ∩qr ⊆ mp. Finally, mi = mp ⊞ ∩qr holds (the equality sign follows frommp, mq andmr ∈ Pi). Remark that great
attention must be paid in manipulating expressions with the summation of multi-indexes⊞. Generally, consider that
mp \ mq = mr ⇒ mp = mr ⊞ mq holds but the contrary is not guaranteed.

The last term of the kurtosis can be also reformulated as follows

24
N∑

p=1

N∑

q=p+1

N∑

r=q+1

N∑

t=r+1

∫

Ξ̂pqrt

fmp fmq fmr fmt dµpqrt = 24
N∑

p=1

N∑

q=p+1

N∑

r=q+1

N∑

t=r+1
mpq\∩pq⊆mrt⊆mpq⊞∩rt

∫

Ξ̂pqrt

fmp fmq fmr fmt dµpqrt. (C.6)
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Proof. This term can be obtained with some constraints on the multi-indexes: they should share, two by two, some
sets of coordinates:mpq \ ∩pq ⊆ mrt andmrt \ ∩rt ⊆ mpq. The fulfillment of the previous conditions assures that the
integral cannot be divided into a product between integrals of orthogonal contributions. These conditions could be
applied choosing randomly two couple of indexes. Using the second constraint,mrt ⊆ mpq ⊞ ∩rt is obtained. Using
this relation with the first requirement,mpq \ ∩pq ⊆ mrt ⊆ mpq ⊞ ∩rt holds.

If a set of variables is specified by using the multi-indexmi, then the conditional contribution that arises from the
previous term can be identified as follows

24
∑

mp∈Pi

∑

mq∈Pi ,q>p

∑

mr∈Pi ,r>q

∑

t>r,mr∈Pi
mi⊆mpq⊞∩rt

mi⊆mrt⊞∩pq

∫

Ξ̂i

fmp fmq fmr fmt dµi . (C.7)

Proof. As already shown, the set of all the possible sub-sets of variables relative to a multi-indexmi is represented by
Pi , so all the contributions should belong toPi . However, not all the possible combinations of four elements selected
from the setPi are relative to the multi-indexmi; a first condition is to require thatmpqrt = mi. From the previous
proof, it is clear that only the non-null elements need to satisfy the two requirementsmpq \ ∩pq ⊆ mrt andmrt \ ∩rt ⊆
mpq. If the two latter requirements are manipulated asmrt ⊞ mpq \∩pq ⊆ mrt ⊞ mrt andmpq ⊞ mrt \∩rt ⊆ mpq ⊞ mpq,
the following conditions can be written

mi \ ∩pq ⊆ mrt ⇒ mi ⊆ mrt ⊞ ∩pq

mi \ ∩rt ⊆ mpq ⇒ mi ⊆ mpq ⊞ ∩rt .
(C.8)

In conclusion, summing up all the contributions, the final form for the kurtosis can be written as

k =
N∑

p=1

∫

Ξ̂p

f 4
mp

dµp + 4
∑

mp

∑

mq⊂mp

∫

Ξ̂pq

f 3
mp

fmq dµpq + 6
N∑

p=1

N∑

q=p+1

∫

Ξ̂pq

f 2
mp

f 2
mq

dµpq

+ 12
N∑

p=1

N∑

q=1
q,p

N∑

r=q+1
mqr\∩qr⊆mp

∫

Ξ̂pqr

f 2
mp

fmq fmr dµpqr + 24
N∑

p=1

N∑

q=p+1

N∑

r=q+1

N∑

t=r+1
mpq\∩pq⊆mrt⊆mpq⊞∩rt

∫

Ξ̂pqrt

fmp fmq fmr fmt dµpqrt,

(C.9)

where each conditional contribution, with respect to a fixed multi-indexmi, is equal to

kmi =

∫

Ξ̂i

f 4
mi

dµi + 4
∫

Ξ̂i

f 3
mi

∑

mq∈Pi,,

fmq dµi + 6
∑

mp∈Pi

∑

mp,mq∈Pi
mpq=mi

∫

Ξ̂i

f 2
mp

f 2
mq

dµi

+ 12
∑

mp

∑

mp,mq∈Pi

∑

mr∈Pi ,r>q
mp⊞∩qr=mi

∫

Ξ̂i

f 2
mp

fmq fmr dµi

+ 24
∑

mp∈Pi

∑

mq∈Pi ,q>p

∑

mr∈Pi ,r>q

∑

t>r,mr∈Pi
mi⊆mpq⊞∩rt

mi⊆mrt⊞∩pq

∫

Ξ̂i

fmp fmq fmr fmt dµi .

(C.10)

Appendix D. Skewness from the PC expansion

In this section, the final form for the skewness relying on the PC series expansion is presented. By applying
the multinomial theorem, the skewness can be written as a sum of contributions generated by the interactions of the
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polynomial basis components. This yields (equal to (35))

s=
∫

Ξ

( f (ξ) − β0)3 p(ξ)dξ =
∫

Ξ


P∑

p=1

βpΨp(ξ)



3

p(ξ)dξ

=

P∑

p=1

β3
p〈Ψ3

p(ξ)〉 + 3
P∑

p=1

β2
p

P∑

q=1
q,p

βq〈Ψ2
p(ξ),Ψq(ξ)〉 + 6

P∑

p=1

P∑

q=p+1

P∑

r=q+1

βpβqβr〈Ψp(ξ),Ψq(ξ)Ψr (ξ)〉.
(D.1)

Looking at this equation, it seems that no orthogonal contributions are present, because the interactions involve
only polynomial forms raised to a power higher than one ortriadic interaction. However, the second and third terms
should be further investigated.

Following from the definition of each polynomial term (27), the product between two polynomial terms of the
basis, where the first one is raised to the powern with 1 < n ∈ N, can be written as follows

〈Ψn
p(ξ),Ψq(ξ)〉 =

∫

Ξ


d∏

i=1

ψn
α

p
i
(ξi)




d∏

i=1

ψαq
i
(ξi)

 p(ξ)dξ

=

∫

Ξ


d∏

i=1

ψn
α

p
i
(ξi)ψαq

i
(ξi)

 p(ξ)dξ =
d∏

i=1

∫

Ξi

ψn
α

p
i
(ξi)ψαq

i
(ξi) p(ξi)dξi .

(D.2)

Due to the orthogonality of the PC basis with respect toΨ0 = 1, it follows that ifαp
i = 0 then the integral with

respect to the variableξi becomes ∫

Ξ

ψαq
i
(ξi) p(ξi)dξi = 0 for α

q
i , 0. (D.3)

From this relation, the orthogonality of〈Ψn
p(ξ),Ψq(ξ)〉 follows. The non-null existence of the corresponding skewness

(and kurtosis term) can be efficiently identified by means of the function∆p
q defined in§4.2.

The third term of the skewness from the PC series involvestriadic interaction of polynomial terms raised to the
power one

〈Ψp(ξ),Ψq(ξ)Ψr (ξ)〉 =
∫

Ξ


d∏

i=1

ψαp
i
(ξi)ψαq

i
(ξi)ψαr

i
(ξi)

 p(ξ)dξ =
d∏

i=1

∫

Ξi

ψαp
i

(ξi)ψαq
i
(ξi)ψαr

i
(ξi) p(ξi)dξi . (D.4)

The last equation suggest that the term can be analyzed after the inspection of the relative multi-indexesmp, mq

andmr. If the sum of the respective components of the multi-indexes,i.e. mpi + mq i + mri , is equal to zero, then the
variable is not present and no information can be obtained (the previous integral would be equal to 1 in such a case).
If the summpi + mq i + mr i is equal to 1, this means that the variable is present in only one polynomial term between
ψp, ψq andψr , while it should not be present in the others (the relative coefficientαi = 0). This leads to a null integral
due to the orthogonality of the basis with respect to the probability density function. However, another possibility
can be associated to a null integral: if the summpi + mq i + mri = 2, the orthogonality between two polynomial terms
guarantees that the integral is zero. The previous results can be resumed in the function∆pqr introduced in§4.2.

Appendix E. Kurtosis from the PC expansion

In this section, as already shown for the skewness in§Appendix D, the kurtosis structure relying on the PC series
is described. By applying the multinomial theorem to the PC series expansion, the kurtosis is computed as follows

k =
P∑

p=1

β4
p〈Ψ4

p(ξ)〉 + 4
P∑

p=1

β3
p

P∑

q=1
q,p

βq〈Ψ3
p,Ψq〉 + 6

P∑

p=1

β2
p

P∑

q=p+1

β2
q〈Ψ2

p,Ψ
2
q〉

+12
P∑

p=1

β2
p

P∑

q=1
q,p

βq

P∑

r=q+1
r,p

βr〈Ψ2
p,ΨqΨr〉 + 24

P∑

p=1

P∑

q=p+1

P∑

r=q+1

P∑

t=r+1

βpβqβrβt〈ΨpΨq,ΨrΨt〉.
(E.1)
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The first, the second and the third terms are easy to handle because they cannot be identified as null (first and
third) or has been already analyzed (second) in the case of the skewness.

The terms with a different structure with respect to the terms existing in the variance or in the skewness are the
last two ones. The first contains the interaction between three polynomial terms, where the first of them is raised to
the second power. In the general case of 1< n ∈ N, it holds that

〈Ψn
p(ξ),Ψq(ξ)Ψr (ξ)〉 =

∫

Ξ


d∏

i=1

ψn
α

p
i

(ξi)ψαq
i
(ξi)ψαr

i
(ξi)

 p(ξ)dξ =
d∏

i=1

∫

Ξi

ψn
α

p
i
(ξi)ψαq

i
(ξi)ψαr

i
(ξi) p(ξi)dξi . (E.2)

From the last equation, it is possible to note that the orthogonality between polynomial term can be advocated if
the term raised to then−th power is zero. Ifαp

i = 0 and the sum of the remaining termsmq i + mr i , 0, then a null
integral exist irrespectively of the coefficientsαp

i andαq
i

∫

Ξi

ψαq
i
(ξi)ψαr

i
(ξi) p(ξi)dξi = 0. (E.3)

Note that the function∆p
qr has been introduced in§4.3.

The last term of the kurtosis expansion involves the interaction of four polynomials terms. This case represent
an extension of the term already analyzed for the skewness (see Appendix D) where the interaction between three
polynomial terms has been discussed. Even in the case of interaction between four polynomial terms, by inspecting
the sum of the coefficients of the multi-indexesmp, mq, mr andmt , it is possible to determine if the integral are always
equal to zero. In particular, if the sum relative to thei−th coordinates,i.e. mpi + mq i + mri + mt i , is equal to 1 or
2, the orthogonal properties of each terms with respect to the pdf or a couple of them with respect to the pdf can be
employed to identify a non null integral (this is true irrespectively of the values of theαk

i coefficients). This result has
been used in the section§4.3 to define the function∆pqrt.
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