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Abstract

The main objective of this thesis is to characterise the flow fields observed in an ab-
dominal aortic aneurysm (AAA) under different physiological conditions during its
progressive enlargement. An axisymmetric AAA, modeled as an inflation of gaus-
sian shape on a vessel of circular cross-section, is considered in the present study.
This means that the results are more significant for the early stages of growth of
an AAA. The model AAA is characterized by a maximum height H and width W,
made dimensionless by the upstream vessel diameter. To begin with, the flow char-
acteristics in AAAs are investigated using steady flows. The global linear stability of
the base flows is analysed by determining the eigenfrequencies and eigenfunctions of
small-amplitude perturbations. In order to understand the instability mechanisms,
the energy transfer between the base flow and the perturbations is computed. The
flow in relatively shallow aneurysms (of relatively large width) become unstable by
the lift-up mechanism and have a perturbation flow which is characterized by sta-
tionary, growing modes. More localized aneurysms (with relatively small width)
become unstable at larger Reynolds numbers, presumably by an elliptic instability
mechanism; in this case the perturbation flow is characterized by oscillatory modes.
For the case of pulsatile flows, two types of physiological flowrate waveforms are
considered in our study, corresponding to rest and exercise conditions. The flows
are observed to remain attached to the walls during the systolic phase, with flow
separation generally observed during the deceleration after the peak systole. Dur-
ing this phase, the vorticity is found to roll-up into a vortex at the proximal end.
This vortex enlarges with time and impinges at the downstream end of the AAA,
resulting in large spatial gradients of wall shear stress (WSS) along the wall, which
are not found in the healthy case. The flow conditions are observed to vary signifi-
cantly with Womersley (Wo) and Reynolds (Re) numbers, with the flow remaining
attached to the walls for longer times, as the Womersley number Wo increases. The
principal effect of increasing Re is that the primary vortex formed after peak systole
is stronger. Clinically relevant flow characteristics of aneurysmal flow, i.e. detache-
ment of flow and impingement on the distal end, the presence of low oscillatory
WSS within the AAA, are observed even for very shallow aneurysms. For deep
aneurysms, multiple vortices are observed throughout the cycle within the AAA
cavity. Stability analysis of pulsatile base flows reveals that the maximum values
of the perturbations are observed near the distal end of the AAA. However, they
are not entirely confined to the AAA cavity and extend downstream, implying that
once an AAA is formed, the disturbed flow conditions spread even to the unde-
formed arterial walls downstream of the AAA. Finally, by considering two equiva-
lent AAA shapes modeled by a sinusoidal and a gaussian function, the sensitivity
of these results with respect to the details of the geometry has been established.




Résumé

Le principal objectif de cette thése est de caractériser ’écoulement dans un
anévrisme abdominal aortique (AAA) sous différentes conditions physiologiques et
a différents stades de son développement. Cette étude est consacrée aux AAA ax-
isymétriques, modélisés comme une dilatation de profil gaussien et de section circu-
laire. Ainsi, les résultats s’appliquent surtout aux étapes précoces du développement
d’un AAA. Le modéle d’AAA est caractérisé par une hauteur maximale H et une
largeur W, l'unité de mesure étant le diamétre d’entrée de 'artére. Pour com-
mencer, la dynamique est étudiée pour les écoulements stationnaires. La stabilité
globale de ces écoulements de base est analysée en calculant les valeurs propres et
les fonctions propres pour des perturbations de faible amplitude. Pour comprendre
les mécanismes d’instabilité, le transfer d’énergie entre ’écoulement de base et les
perturbations est calculé. L’écoulement pour des AAA peu profonds (ou de grande
longueur) se déstabilise par un mécanisme de ‘lift-up’ et les perturbations ampli-
fiées sont stationnaires. Des anévrismes plus localisés (ou plus profonds) deviennent
instables pour des nombres de Reynolds plus élevés, sans doute par instabilité el-
liptique ; dans cette situation, les perturbations sont des modes oscillants. Dans
le cas des écoulements pulsés, deux types de profil de débit physiologique ont été
considérés dans cette étude, correspondant a une situation de repos ou d’exercice
physique. Ces écoulements restent collés aux parois pendant la phase de systole
et un écoulement décollé est généralement observé pendant la décélération aprés le
maximum de systole. Dans cette phase, un vortex se forme a l'extrémité aval. Ce
vortex s’agrandit au cours du temps et impacte extrémité aval de TAAA, ce qui
conduit a de forts gradients de contrainte pariétale, qui ne sont pas observés dans
les cas sains. Il a été observé que les conditions d’écoulement varient significative-
ment avec les nombre de Womersley (Wo) et de Reynolds (Re); ’écoulement reste
attaché aux parois plus longtemps pour des nombres de Womersley croissants. Le
principal effet d’une augmentation de Re est un renforcement du vortex primaire qui
se forme aprés le maximum de systole. Les décollements de I’écoulement, 'impact
de vortex au bord aval de PAAA ou encore de faibles contraintes pariétales oscil-
lantes (des caractéristiques importantes dans les cas d’anévrismes pathologiques)
sont observés méme pour des anévrismes de faible profondeur. Pour des anévrismes
plus développés, des vortex multiples sont observés tout au long du cycle dans la
cavité de 'AAA. Une analyse de stabilité de ces écoulements de base pulsés a mon-
tré que le maximum des perturbations se développe vers 'extérmité aval des AAA.
Cependant, les perturbations ne sont pas complétement confinées dans la cavité de
PAAA et se développent aussi au-dela en aval. On en déduit qu’une fois qu’'un
AAA sest développé, les perturbations affectent aussi les artéres saines en aval de
I’AAA. Enfin, en considérant deux profils équivalents d’AAA, de formes sinusoi-
dale et gaussienne, la sensibilité des résultats aux détails de la géométrie a pu étre
établie.
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CHAPTER 1

Introduction

This introduction begins with a description of an abdominal aortic aneurysm (AAA) along
with the various biological aspects involved in the pathogenesis of an AAA. Then a broad
overview of the role that fluid mechanics has played in understanding the nature of blood
flow is presented, with an emphasis on literature related to cardiovascular diseases. This
includes discussion of geometries other than aneurysms, including stenoses. The final section
describes the aims of the present thesis.

1.1 Abdominal Aortic Aneurysms

1.1.1 General introduction

Aneurysms are localized permanent arterial dilatations due to disease or other complex
processes that result in the weakening of the arterial walls (Lasheras, 2007). The word
aneurysm is from the Greek word aneurusma (ana throughout and eurus wide) and the
use of this word in medicine dates back to Guy de Chauliac (1373)(Duclaux et al., 2010).
Although this complex vascular disease forms in many blood vessels, it mainly appears in
arteries, primarily in the abdominal and thoracic portions of the aorta and in the intracra-
nial arteries surrounding the Circle of Willis. Aneurysms are often classified according to
their shape and location in the human body into two main groups: fusiform and saccular
aneurysms. Among these, fusiform aneurysms are characterised by a bulge about the vessel
centerline, whereas saccular aneurysms have a berry-like shape. The marked differences in
their shape and in their location in the human body suggest that their pathogenesis is likely
to be different.

Fusiform aneurysms are most commonly found in the abdominal portion of the aorta, below
the renal arteries and upstream of its bifurcation into the iliac arteries; these are known
as Abdominal Aortic Aneurysms (AAAs) (figurel.1(a)). A localized aortic dilatation is
clinically considered an aneurysm when its maximal diameter is greater than 1.5 times the
healthy diameter (Johnston et al., 1991). It is important to note that generally only the
maximum diameter is used as a criterion for risk of rupture associated with an AAA. The
length (width) of an AAA, which is indicative of the size, is not taken into account. As
about one fifth of large abdominal aneurysms are not limited to just the aorta, but have
extended to one or both of the common iliac arteries (Armon et al., 1998), it is believed
that the width of an abdominal aneurysm could also be an important parameter (figure
1.1(b)). However, a common iliac artery aneurysm is seldom seen in the absence of an AAA
(Huang et al., 2008).
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Figure 1.1: (a) An abdominal aortic aneurysm (Lasheras, 2007). (b) An abdominal
aortic aneurysm extending to the common iliac artery (www.drstandley.com).

1.1.2 Wall composition and associated changes with the
progression of an AAA

An arterial vessel wall is a complex structure, having a specific function for each body
location. All the vessel walls are composed of three layers (or tunicae): the tunica intima,
the tunica media (or muscular), and the tunica external (adventitia) (Fung, 1993, Holzapfel,
2002) (figure 1.2). The thickness and composition of each layer depends on its proximity
to the heart and on the specific function of the organ or tissue supplied by the vessel.
Arteries are generally thicker with varying degree of elasticity depending on function. The
innermost layer, intima, is composed of a single layer of endothelial cells that rests on a
thick basal membrane and a subendothelial layer whose thickness varies with topography,
age and disease. The endothelial cells are in direct contact with the blood. The media
is the thickest layer with different structures at different locations along the circulatory
system. It is composed of smooth muscle cells, a network of elastin and collagen fibrils
and elastic laminae which separate the media into a number of fiber-reinforced layers. The
primary constituents of the adventitia are thick bundles of collagen fibrils arranged in helical
structures. The adventitia, which is the outermost layer, is surrounded by loose connective
tissue.

The main cellular components of an arterial wall are smooth muscle cells and endothelial
cells. The high content of smooth muscle cells in the media is mainly responsible for the
viscoelastic behaviour of an arterial wall. The endothelial cells play an important role
in many physiological functions, like controlling the wall permeability and hemostasis.
They are semipermeable and allow for regulated transport of fluids and solutes into and
out of the blood, while at the same time acting as a barrier for the passage of large
molecules. A common function of the endothelium is to maintain blood in a fluid state, and
to promote limited clot formation when there is a breech in the integrity of the vascular wall.

Once an AAA is formed, the structural composition of the arterial wall undergoes
considerable changes. As the mechanical properties of the aortic wall depend largely
on its composition, an alteration in composition should cause changes in mechanical
properties. In this context, the elastin and collagen content are found to play a pivotal role
in controlling the elasticity of the walls. The elastin content decreases by about 91% in



1.1. Abdominal Aortic Aneurysms 3

Composite reinforced by
collagen fibers arranged
in helical structures

Helically arranged fiber-
reinforced medial layers

Bundles of collagen fibrils
External elastic lamina
Elastic lamina

Elastic fibrils

Collagen fibrils

Smooth muscle cell
Internal elastic lamina

Endothelial cell

Adventitia

Figure 1.2: Diagrammatic model of the major components of a healthy elastic artery
composed of three layers: intima, media and adventitia (Holzapfel, 2002).

terms of volume fraction when compared with a nonaneurysmal aorta (He & Roach, 1994).
The degradation of elastin has been associated with an increase in elastase activity which
accelerates the breakdown process of elastin, resulting in a low content of elastin in AAAs.
The collagen content has been observed to increase with the formation of an AAA by
about 77% (He & Roach, 1994). The vessel wall becomes stiffer and less distensible as the
ratio of elastin to collagen decreases with the progresssion of an AAA. Such an increase in
stiffness in the vessel wall alters the pulse wave propagation through the abdominal aorta,
leading to changes in hemodynamics.

1.1.3 Pathogenesis

There are many risk factors associated with cardiovascular diseases, like age, genetic
factors, high blood pressure, high cholesterol, obesity, diabetes, cigarette smoking, high
alcohol consumption, etc (Choke et al., 2005, Lasheras, 2007). Smoking is the risk factor
most strongly associated with abdominal aortic aneurysms, followed by age, hypertension,
hyperlipidemia, and atherosclerosis (Lederle et al., 1997). Sex and genetics also influence
aneurysm formation. Men are 10 times more likely than women to have an abdominal
aortic aneurysm of 4 cm or greater (Lederle et al., 2001) but women are more at risk. The
prevalence of abdominal aortic aneurysms is &~ 5% among men < 65 years of age screened
by ultrasound (Group, 2002). Those with a family history of abdominal aortic aneurysm
have an increased risk of 30% (Frydman et al., 2003), and their aneurysms tend to occur
at a younger age and carry a greater risk of rupture than do sporadic aneurysms.

The strength of the aortic wall lies in the elastin and collagen of its extracellular
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matrix. Consequently, degradation of these structural proteins weakens the aortic wall and
allows aneurysms to develop. Atherosclerosis has been associated with the pathogenesis of
abdominal aortic aneurysms as they are usually observed in the presence of an AAA. The
infrarenal abdominal aorta is most affected by the atherosclerotic process and is similarly
the most common site of abdominal aneurysm formation. Atherosclerosis is the process
in which fatty materials are deposited on the arterial walls resulting in plaque formation.
The propensity for plaque formation at bifurcations, branchings, and curvatures has led to
conjectures that local mechanical factors such as wall shear stress (WSS) and mural tensile
stress potentiate atherogenesis. Recent studies of the human vessels at high risk, and of cor-
responding models, have provided quantitative evidence that plaques tend to occur where
flow velocity and shear stress are reduced and flow departs from a laminar, unidirectional
pattern. Such flow characteristics tend to increase the residence time of circulating particles
in susceptible regions while particles are cleared rapidly from regions of relatively high
wall shear stress and laminar unidirectional flow (Glagov et al., 1988). The flow patterns
and WSS distributions associated with plaque localization are most prominent during
systole. However, current research suggests that genetic, environmental, hemodynamic,
and immunologic factors all contribute to the development of aneurysms (Isselbacher, 2005).

In this context, the endothelial cells which line the arterial vessel wall with direct
exposure to blood flow, are understood to play a key role in the wall physiology and
thereby influence the pattern of the stresses acting on the wall as they are affected by the
disturbed flow patterns (Chiu & Chien, 2011, Jilkova et al., 2013). Studies have identified
that endothelial cells are susceptible to damage under excessive levels of WSS (Fry, 1968,
Chiu & Chien, 2011). Among the various physiological functions that the endothelial cells
perform, one of them is the control of wall permeability (Aird, 2007). Regions of low
wall permeability are favored locations for atherosclerotic plaque deposits (Aird, 2007,
Pedley, 1979) as the discontinuity in the vessel wall enables the passage of low density
lipoproteins and cholesterol deposits, which in turn result in the formation of lesions,
thereby altering the wall physiology. The endothelial cells are more receptive to changes
in the WSS values than the flow rate, and the wall permeability is found to be affected by
the WSS variations along the vessel wall (Shaaban & Duerinckx, 2000). Atherosclerotic
deposits are found in some localized sites of the abdominal aorta. The comparison
of the sites of the disease with the local hemodynamic conditions reveals that the re-
gions of low WSS are strongly correlated with atherosclerotic intimal thickening (Ku, 1997).

There has also been evidence of inflammatory infiltrates within the wall or aortic
aneurysms resulting in the degradation of the extracellular part of the tissues (Isselbacher,
2005). Such inflammatory sites can result in the production of enzymes that may
participate in the abdominal aortic aneurysm formation. These can degrade the elastin
and collagen, eventually degrading the aortic wall.

In addition, the endoluminal thrombus lining the lumen of an AAA is also believed
to play an important role in the enlargement of an AAA (Thubrikar et al., 2003). The
presence of thrombus reduces the effective lumen area and consequently the pressure load
on the aneurysm wall may be reduced and reduces the wall stress by its ability to sustain
tensile loads. It has also been postulated that the thrombus may form fibrous connections
thereby preventing the aneurysm from further dilation. Such a reinforcing effect by the
thrombus has a marked reduction in the expansion rate of an AAA (Thubrikar et al.,
2003). Thus for two aneurysms of identical size, the one with a mural thrombus has a
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lower wall stress and is less likely to rupture than the one without the mural thrombus.
But, if the thrombus undergoes lysis, or breaks down, then the aneurysmal wall would
have to bear the stress previously borne by the thrombus, and hence resulting in a sudden
dilation of the aneurysm. Also, thrombus could act as a barrier to the normal oxygen
diffusion from the lumen to inner layers of the aortic wall, in which case the intima and
media may be deprived of oxygen supply, thereby weakening the arterial vessel wall (Vorp
et al., 2001).

Age is an important risk factor, and the incidence of abdominal aortic aneurysm
rises rapidly after the age of 55 years in men and 70 in women. This has led to the
hypothesis that the changes in the structure of the arterial vessel wall with the normal
aging process, results in different hemodynamics, which in turn initiates a feedback
loop that modifies the structure of the vessel wall. Though the associated biochemical
mechanisms contributing to the vascular diseases act systematically throughout the entire
vascular system, it is however observed that most cardiovascular diseases preferentially
develop at specific locations in the circulatory system. This striking ‘disease’s localization’
hints at specific hemodynamic conditions (mechanical stimuli) as one of the leading causes.
The influence of pulse pressure on cardiovascular prognosis has been well-established
(Nichols & O’Rourke, 1998, Amar et al., 2001). Since pulse pressure is partly determined
by artery stiffness, the elasticity of arterial walls is considered to be a relevant tool to
assess cardiovascular risk. The number of elastic laminae in the medial layer is found to
be smaller in the abdominal aorta than in the thoracic aorta, and therefore the latter has
a higher elastic modulus. This may account for much higher incidence of aneurysms in
the abdominal aorta than in the thoracic segment. For instance, an AAA is located in
the abdominal aorta, upstream of the iliac arteries, where the amplitude of the pressure
pulse is considerably modified as a result of the reflection of the wave in the bifurcation.
Such an increase in amplitude may initiate and accelerate the formation of the aneurysms
in the elderly population. As the ratio between the cross-sectional area of the bifurcated
arteries (iliacs) and the parent vessel (abdominal aorta) decreases, the amplitude of the
reflected wave in the abdominal aorta increases. The cross-sectional area of the iliac
arteries decreases with ageing, atherosclerosis and hypertension. The progressive changes
in the wave speed of the transmitted wave caused by ageing, together with the increase in
the ratio of cross-sectional areas may then result in an increase in peak systolic pressure in
the abdominal aorta causing an increase in the wall stresses. As a result, the wall tissue
loses integrity, initiating a positive feedback loop leading to further increase in the arterial
diameter.

1.1.4 Diagnosis and treatment

Aneurysms are usually detected incidentally on routine physical examination or on imaging
studies ordered for other indications. Steady and gnawing pain in the lower back is the
typical complaint. Actual rupture is associated with an abrupt onset of back pain along
with abdominal pain and tenderness. Most of the patients appear critically ill. Detection
of aneurysms on physical examination is usually made as a palpable, pulsatile abdominal
mass. Though aneurysms can be detected on physical examination, its sensitivity is
limited, as even large aneurysms may be difficult or impossible to detect in overweight
or obese individuals (Lederle & Simel, 1999). Also, a precise estimation of the size of an
aneurysm on physical examination is impossible and sizes are normally overestimated, as
sometimes, even normal aortas may feel enlarged.
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Figure 1.3: CT scan through an AAA revealing the presence of mural thrombus and
size of the lumen (YourSurgery.com).

Therefore several diagnostic imaging modalities are now available for detecting and
serially monitoring abdominal aortic aneurysms. Among these are abdominal ultrasonog-
raphy, computed tomography (CT) scanning, magnetic resonance (MR) angiography.
Abdominal ultrasonography is perhaps the most practical way to screen for aneurysms.
Its major advantages are that it is relatively inexpensive and noninvasive and does not
require the use of a contrast agent. Compared with ultrasonography, CT scanning has
the advantage that it can better define the shape and extent of the aneurysm, as well as
the local anatomic relationships of the visceral and renal vessels. It is also superior to
ultrasonography in imaging suprarenal aortic aneurysms. Disadvantages include its cost
and its use of ionizing radiation and intravenous contrast media. Nevertheless, although
CT is less practical than ultrasonography as a screening tool, its high accuracy in sizing
aneurysms makes it an excellent modality for serially monitoring changes in aneurysm
size. MR angiography is used as an alternative for patients who are contraindicated (e.g.
allergy). The image quality provided by CT scanning and MR angiography makes them
a superior tool in detecting abdominal aortic aneurysms. Figure 1.3 shows an image
obtained by CT scan that reveals the presence of the endoluminal thrombus and providing
an estimate of the size of an AAA.

Once an aneurysm is detected, the next major hurdle is its evaluation, i.e, to make predic-
tions on its growth rate, risk of rupture, when to provide surgical treatment etc. Presently,
surgery is recommended for patients with a maximum diameter > 5.5 cm (Isselbacher,
2005, Conway et al., 2001). The risk of rupture depends on the size of the aneurysm: with
aneurysms < 4 cm, 4 to 4.9 cm, and 5 to 5.9 cm, the annual risk of rupture was 0.3%,
1.5% and 6.5%, respectively (Brown et al., 1996). Although abdominal aneurysms are less
prevalent among women than men, when present they rupture 3 times more frequently and
at a smaller aortic diameters (mean of 5 versus 6 cm) (Isselbacher, 2005). Rupture is also
more common among current smokers and those with hypertension (Brown et al., 1996).
A rapid rate of expansion predicts aneurysm rupture. Although the mean rate of abdomi-
nal aortic aneurysm expansion is thought to approximate 0.4 cm/y, the rates of expansion
within a population are extremely variable. The prediction of expansion rate based on the
maximum diameter could be misleading. It is to be noted that the aneurysm growth rate
is not accurately predicted by means of size at initial presentation (Conway et al., 2001).
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Figure 1.4: An expanding endovascular stent-graft employed for the treatment of
an AAA (virchicago.com).

Also the growth rate is not usually observed to be uniform in time. However, a promising
new technique is based on the analyses of the wall stress. A 3-dimensional reconstruction
of the aortic aneurysm is performed with the use of CT angiography, and wall stress is
then determined by finite-element analysis and blood pressure (see Fillinger et al. (2003)
for more details). It is observed that the sensitivity and specificity of peak wall stress were
superior to maximum aortic diameter for predicting risk of aortic rupture (Fillinger et al.,
2003). Although this technique still needs to be refined and better studied, it holds promise
to become an important tool in determining the timing of aortic repair.

As mentioned previously, surgery is recommended for patients with the maximum aneurysm
diameter exceeding 5.5 cm(Isselbacher, 2005, Conway et al., 2001). However, these results
were based on a study carried out on men. As the risk of rupture is found to be higher in
women when compared to men, this observation is not generalizable to women (Thompson,
2003). Hence, it is recommended that women undergo selective surgery at a smaller aortic
diameter of 4.5 to 5 cm. Prior to surgery, medical management is essential to control the
growth of the aneurysm. This implies reducing the cholesterol levels, which contribute to
plaque formation, reducing hypertension (e.g discontinuing smoking), periodic surveillance
of the aneurysm through CT scanning. After these steps, if an aneurysm is deemed to
be unsafe, then surgical intervention is recommended. The more common method for the
treatment of aneurysms is by carrying out an open surgery. In this process, the surgeon
inserts a graft into the area where the aneurysm is detected. This ensures that the blood
flowing through the aorta does not affect the expanded part of the aneurysm thereby not
exerting pressure on the walls of the aneurysm. A less-invasive alternative to open surgery
for repair of abdominal aortic aneurysms is the use of percutaneously implanted, expanding
endovascular stent-grafts (White & Stavropoulos, 2009). An illustration of this technique
is shown in figure 1.4. Once deployed, the stent-graft serves to bridge the region of the
aneurysm, thereby excluding it from the circulation while allowing aortic blood flow to
continue distally through the prosthetic stent-graft lumen. One of the major technical
difficulty associated with the stent-graft technique is the presence of endoleaks, which is the
flow into the aneurysm sac because of the failure to completely exclude the aneurysm from
the aortic circulation, leaving the patient susceptible to aneurysm expansion or rupture.
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1.2 Role of Fluid Mechanics

In this section we discuss the role that fluid mechanics has played in understanding car-
diovascular flows. We begin by describing the work carried out on modeling blood flow,
followed by a discussion of flows in related geometries relevant to our present work and
finally providing a literature survey on work carried out on abdominal aortic aneurysms.

1.2.1 Modeling blood flow

Blood acts as a medium by which nutrients and wastes are transported within the human
body, and consists of a complex mixture of cells, proteins, lipoproteins and ions (Ku, 1997).
One of the major constituents of blood are the red blood cells, comprising about 40% of
blood by volume. The red blood cells affect the viscosity of blood significantly, making
it about four times more viscous than water. Though blood does have variable viscosity,
in most arteries it behaves in a Newtonian fashion, and the viscosity can be taken as a
constant, 4 centipoise. As the diameter of the abdominal aorta is typically around 2 cm, it
is deemed safe to assume the blood to be Newtonian in our study (Pedley, 1979, Berger &
Jou, 2000).

The description of the blood flow in the cardiovascular system is complicated by its
nature. Nichols & O’Rourke (1998) provide a detailed review of the earlier body of
work on quantifying the blood flow in arteries. Sexl (1930) developed an analytical
solution to the momentum equation for a Newtonian fluid flow subjected to an oscillatory
pressure gradient. A similar technique was later used by Szymanski (1932) to develop an
analytical solution to the momentum equation for a flow subjected to a step change in
pressure gradient, where the gradient jumps from zero to a constant value. However, the
experimental work of McDonald (McDonald, 1955) had identified localised flow reversals
in rabbit and dog arteries. The presence of a phase lag between the pulsatile pressure
gradient and the flow velocity, led the researchers to theorise that the observed flow
reversals resulted from the elastic nature of the artery walls. In an effort to explain
these observations, the intial foundation to explain the flow in mammalian blood vessels
was made by Womersley (1955). Womersley was one of the first to analyse the phase
relationship between the pressure gradient and the resulting velocity field. For a purely
oscillatory flow, the characteristic time is proportional to the reciprocal of the frequency
of the flow whereas if the flow is pulsatile, there are two time scales (imposed by the
mean flow velocity and by the frequency of the flow). The frequency used is the dominant
frequency in blood flow arising from the heart beat. The two dimensionless parameters
that are generally used to quantify the flow of blood in arteries, are the Womersley number
Wo, and the Reynolds number Re, that are given by

D |w
Wo = —4/— 1.1
o 2 V’ ( )
UD

Re = —, 1.2
) (12)
where D is the internal diameter of the cylindrical vessel, w is the pulsation of the unsteady
flow, v is the kinematic viscosity of blood and U is the average of fluid velocity. The
Womersley number is the ratio of the unsteady inertial forces to the viscous forces and
helps in characterising the unsteady nature of flows in blood vessels. An oscillating flow
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component leads to a boundary layer of thickness § = \/g . Thus the Womersley number
corresponds to the ratio of the vessel radius to the oscillating boundary layer as Wo = %.
A typical value of Wo in the aorta is between 10 and 15, and 1, for the smaller arteries. The
typical Reynolds number range of blood flow in the body varies from 1 in small arterioles to
approximately 4000 in the largest artery, the aorta (Ku, 1997). Whereas the peak Reynolds
numbers in the abdominal aorta can vary from 600 at rest and up to 6000 under exercise
conditions (Ku, 1997). Thus the flow spans a range in which viscous forces are dominant
on one end and inertial forces are more important on the other.

1.2.2 Analytical solution to pulsatile flow

A formal analysis to compute the velocity and flow rate within a blood vessel is presented
here, based on the work of Womersley (1955). Suppose that the pressure-gradient waveform
can be expressed as the Fourier series

9 _ > Gpe™t, (1.3)

where z is the axial coordinate. The axial momentum equation for parallel flow in a tube
reduces to

oU.  1dp <82UZ 10Uz>

00z or? +; or

o poz (14)

with r being the radial coordinate and p the density of the fluid. The boundary conditions
on the axial velocity U, (r,t) follow from the no-slip condition and axial symmetry

ou,
or

U.(D/2,t) =0, (0,1) = 0. (1.5)

The problem is linear and therefore its solution can be written as
Us(rit) = Y Uspn(r)e™, (1.6)

yielding a separate problem for each n. Introducing equations (1.3) and (1.6) into equation
(1.4) gives

&2U,, 1dU,, inw Gy
oy e Wy o Tn 1.
dr? r dr v Uz vp’ (1.7
to be solved for
du, ,
Uz’n(D/Q) =0, 7 . (0) 0. (1 8)
r

For n # 0, introduction of
Wo,, = D/2(nw/v)/?, $n = 1°/2 Wo,2r /D, (1.9)
into the homogeneous part of equation (1.7) yields

U, 1dU.,

2
ds? Sy dsp

+ Uz,n = 0; (110)
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which is the Bessel equation of order 0. By the symmetry condition the homogeneous
solution is the Bessel function of the first kind of order 0, Jy(s,). Together with the
particular solution of equation (1.7),

Gy
Uyn=——, (1.11)
pw
the general solution becomes
U (s)—AJ(s)—& (1.12)
z,n\°n) — AnJ0\°n pwa .

where the constants A,, follow from the boundary condition U, = 0 on the vessel wall
(5, = i*/? Wo,,). We get the solution as

Uy n(r)

G, D? [ _ Jo<i3/2Won2r/D>], (1.13)

" LivpWo? Jo (372 Woy,)

Adding the steady Poiseuille flow component, Uy(r) = %(1 — (2r/D)?), to the unsteady
flow, we get the net axial velocity in a tube as

2 [e§] .
R€G0D2 1— % + RBPQ Z an 1— JO(IB/% WONQT/D) einwt.
16 D 4i Wo? Jo(i3/2 Wo,,)

U,(r,t) =

(1.14)
The Fourier coefficients G,, of the pressure are thus related to the Fourier coefficients @,
of the flow rate as

128 161 Wo?
o= Tpige Gn = TD*Re(1 — F(Won))Qm (1.15)
where 3/
F(Woy) = ——2 17" Wou) (1.16)

i3/2 Wo,, Jo(i3/2 Wo,,)

The shape of flow profiles obtained using the Womersley solution have a strong dependence
on the Womersley number Wo. Figure 1.5 shows the velocity profiles at different phases in
a single cycle of a sinusoidally varying pressure gradient for three values of Wo. When the
Womersley number is less than 1, viscous forces dominate and a quasi-steady behaviour is
observed, and the velocity profiles approach the Poiseuille profile shape slowly modulated
in time. Also, the velocity profiles are in phase with the pressure gradient, with almost
zero velocity when the pressure gradient is zero. With an increase in Womersley number,
a phase lag appears between the velocity profiles and the pressure gradient, with non-zero
values of velocity even when the pressure gradient is zero. One can also observe that the
velocity profiles tend to become flatter, resembling a top-hat velocity profile in the bulk with
thin boundary layers near the walls. In this way, flows with different Womersley numbers
exhibit very different near-wall behaviour. We now present the various flow rate waveforms
that are used in the present work, along with the various flow parameters.

1.2.3 Physiological waveforms

The flow rate waveform significantly differs under rest and exercise conditions. One of the
objectives of the present study is to investigate the flow dynamics prevailing in a model
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Figure 1.5: Velocity profiles obtained at different phases in a single cycle of a sinu-
soidally varying pressure gradient for three values of the Womersley number.

abdominal aortic aneurysm (AAA) for different physiological waveforms, including rest and
exercise conditions. A number of studies have been carried out recently aiming to elucidate
these differences and to understand how doing exercises is helpful in reality. The studies
carried out by Salsac et al. (2006) and Sheard (2009), used an inlet flow rate waveform
obtained from a healthy male subject at rest. However, with the onset and progression
of the pathology, the flow rate waveforms could also be significantly modulated, due to
the changes in geometry associated with it. Therefore, we will use the data presented in
the recent article by Suh et al. (2011) where the flow rate waveforms were measured in
patients with AAAs, both at rest and at exercise conditions.

The flow rate waveform is also highly dependent on the location of the aorta where
it is measured. Figure 1.6 shows a scan of an abdominal aorta with an aneurysm, along
with its various branches. Suh et al. (2011) carried out analysis using waveforms measured
at two different locations of an aorta: supraceliac (upstream of the celiac artery) and
infrarenal. Approximately 70% of the blood that enters the abdominal aorta under resting
conditions is extracted by the celiac, superior mesenteric, and renal arteries. Most of
the remaining 30% flows down the infrarenal segment through the bifurcation into the
legs. Under lower limb exercise conditions, the total abdominal aorta flow increases and,
in addition, the amount of blood extracted by the celiac, superior mesenteric, and renal
arteries decreases, which further increases the infrarenal blood flow (Taylor et al., 1999).
Hence in our analysis, we have used the flow rate waveforms measured at the infrarenal
location, just upstream of the AAA as the input in our analysis (see figure 1.6), taken
from Suh et al. (2011). An interesting feature that one can observe from figure 1.6 is that
the shape of an AAA is quite complex and also varies from person to person. The AAA
geometries considered in the present study are discussed in detail in the following chapter
(see section 2.4.2).
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Celiac artery . ‘ “ Superior mesentric artery

Renal arteries
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Figure 1.6: A scan of the abdominal aorta with branches showing the location (IR)
where the waveforms are measured for analysis (from Suh et al. (2011)).
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Figure 1.7: The waveforms corresponding to rest (1) and exercise (2) conditions
measured at infrarenal location obtained from Suh et al. (2011).

In the study carried out by Suh et al. (2011), the waveforms were measured using the data
obtained from nine male and one female subjects, with a mean age of 71.2 £ 7.9 years with
small AAAs (maximum diameter < 5¢cm). The data corresponding to the rest condition
were obtained with the subjects seated, while for exercise, they were instructed to elevate
their heart rate to 30-40% greater than their resting rate. This was achieved by carrying
out lower limb exercises while being seated.

The waveforms corresponding to rest and exercise conditions presented in Suh et al. (2011)
are shown in figure 1.7. In their study, blood is assumed to be a Newtonian fluid with
a density of 1.06g/cm® and a dynamic viscosity u, of 0.04 Poise (0.004 Pa s). As the
measurements were made in 10 different AAA subjects, a precise value of the diameter of
the aorta at the location of measurement is not provided by them. However, to convert
the dimensional volumetric flow rates to non-dimensional values, one needs a value of the
diameter of the abdominal aorta, which depends on the location of its measurement, and
also depends on the person under consideration. We have assumed a value of 1.7 cm in our
analysis. This value corresponds to a typical inlet diameter of an AAA. The corresponding
values of various physiological quantities for rest and exercise conditions are summarized in
table 1.1. The non-dimensionalisation using inlet diameter D, and average velocity U, for
lengths and velocities respectively, yields the corresponding values for Re and Wo. Figure
1.8 shows the non-dimensional flow rate waveforms considered in the present study. It is
to be noted that the waveforms shown in figure 1.8 are such that the mean flow rate is
normalized to one. The Fourier coefficients of the flow rate (Q,,) corresponding to different
waveforms are provided in table 1.2. Ten Fourier coefficients were used for approximating
the inletwaveforms.

In order to check the sensitivity of the waveform that is used to flow parameters, we have
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Waveform D(cm) | Q(1/min) | Heart rate(min™') | u(Pas) | Re | Wo
Rest(Q1) 1.7 0.8 72 0.004 | 264 |12
Exercise(Q2) | 1.7 5.1 95 0.004 | 1700 | 13.8

Table 1.1: Physiologically relevant values.

Figure 1.8: Non-dimensional plot of the different waveforms considered in the present
study. The waveform corresponding to the rest condition (Q1) is shown using dotted
lines and the one corresponding to exercise (Q2) is shown using continuous lines.

Qo
Q1
Q2
Q3
Q4
Qs
Qe
Q7
Qs
Qo

1.0
0.4461 — 10.9481
—0.7231 —10.5638
—0.3046 +10.3181
0.0042 + 10.1447
0.0469 +10.1112
0.0780 +10.0169
0.0256 —10.0184
0.0192 —10.0104
—0.0021 —10.0119

1.0

0.0203 —10.4735
—0.1923 —10.0389
—0.0392 +10.0068
—0.0405 +10.0103
—0.0054 +10.0170
—0.0026 + 10.0008
—0.0009 + 10.0023

0.0013 +10.0003
—0.0002 —10.0022

1.0
1.5848 —10.7364
—1.6606 — 12.1846
—0.7096 +10.7976
—0.1835 +10.4286
—0.0354 4-10.1776
—0.0028 +10.0823
0.0047 +10.0416
0.0061 + 10.0224
0.0059 +10.0124

(a)

(b)

()

Table 1.2: The Fourier coefficients @), considered in the present study corresponding
to the waveforms Q1 (rest), Q2(exercise) and @3 shown in figures 1.8,1.9 are given
in (a), (b) and (c) respectively.
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Figure 1.9: The waveform considered in the study by Salsac et al. (2006), Sheard
(2009).

carried out simulations using the rest waveform Q1 albeit with different values of Re and
Wo. A different choice of the inlet diameter, for instance 2 cm (instead of 1.7 cm, see table
1.1), would result in Re = 250 and Wo = 15, for the same choice of the waveform. Hence,
we have carried out calculations using the waveform @1 for a range of Re between 200 and
500, and using three different Womersley numbers (10, 12, 15) to analyse the sensitivity of
our results to the choice of parameters. These are discussed in more detail in the chapter
on pulsatile base flow characteristics (chapter 4).

Salsac et al. (2006), Sheard (2009) carried out calculations using the waveform shown in
figure 1.9 which was obtained using the data presented in Maier et al. (1989). The Reynolds
number and Womersley number used in their analyses were 330 and 10.7 respectively. One
has to keep in mind that the flow rate waveform was measured in the abdominal aorta of a
healthy volunteer at rest, which is shown in figure 1.9 and is termed as Q3. As the waveform
and the flow parameters are altered due to the presence of an AAA, the flow characteristics
could be different too. We can see that the waveform (3 has a larger reversed flow when
compared to Q1. This illustrates that the waveforms considered in various studies in the
literature are not at all universal and the discrepancies between results obtained using
different waveforms may be worth investigating.

1.2.4 Further studies of flow in circular pipes

Before moving on to the discussion on flows through AAAs and other related geometries, it
is pertinent to have an idea on the various works carried out in literature on flows through
circular pipes following the work of Womersley, without any aneurysm. This would provide
us with some background on flows through a healthy abdominal aorta, in the absence of an
aneurysm.
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Flows in the arterial branches are found to undergo transition to turbulence which was
first observed by Nerem et al. (1972). This has stimulated the interest of the researchers to
study the stability of oscillatory and pulsatile flows in pipes (Yang & Yih, 1977, Grosch &
Salwen, 1968, Stettler & Hussain, 1986, Tozzi & von Kerczek, 1986). An excellent review
on the stability analyis of time-periodic flows is provided by Davis (1976). One of the
first works on understanding the stability of an oscillatory flow in a pipe was carried out
by Yang & Yih (1977). The analyses carried out for axisymmetric disturbances revealed
that the flows were stable for all Reynolds numbers and all frequencies of the primary
flow, and all wavenumbers of the axisymmetric disturbance. They also concluded that
time-periodic component stabilizes the flow, which had been observed earlier for the case of
time-dependent plane Poiseuille flow (Grosch & Salwen, 1968). These were also observed
experimentally by Stettler & Hussain (1986), who observed the transition to turbulence
based on the amplitude of the oscillation and made comparisons with theoretical work
on the transition Reynolds number. Tozzi & von Kerczek (1986) carried out a stability
analysis of an oscillatory pipe flow. They too observed that the time-periodic flow is
more stable than its steady counterpart and the flow transition to a turbulent regime is
suppressed. However, the addition of a mean flow component, to the oscillatory part is
seen to have drastic influence on the characteristics of the eigenmodes (Thomas et al.,
2011). For a purely oscillatory flow, the eigenmodes were relatively stationary with respect
to the base flow which is not observed with the addition of a mean flow component. These
observations may have an implication on the differences observed in experimental and
numerical simulations.

A more extensive work on the stability analysis of oscillatory pipe flows was carried
out by Fedele et al. (2005). They carried out the linear stability analysis of pulsatile
pipe flow to axisymmetric perturbations. They also observed the pulsatile pipe flow
to be slightly more stable than the steady flow. The flow structures corresponding to
maximum energy growth were found to be toroidal vortex tubes. These structures are
stretched along the streamwise direction by the shear stresses of the mean flow. A
transient growth analysis performed by them revealed that as the Womersley number is
decreased, the flow perturbation is characterized by successively smaller maximum energy
growth than its steady counterpart. This is in coherence with the observation made
by Tozzi & von Kerczek (1986) where the turbulent spots were suppressed in pulsatile
pipe flow transition for low frequency regimes. However, as their study was limited to
axisymmetric disturbances, there could be non-axisymmetric disturbances resulting in a
greater energy growth. An investigation into the stability analysis of an oscillatory pipe
flow to non-axisymmetric disturbances was carried out recently by Nebauer & Blackburn
(2009). They concluded that the periodic pipe flows are linearly stable. However, an error
was made in their analyses, as they carried out the stability analysis considering each
Fourier component of the base flow separately. To our knowledge, a systematic study of
the stability of oscillatory pipe flows to non-axisymmetric disturbances is not to be found
in the literature, let alone for physiologically relevant pulsatile flows.

We now turn our attention to the role that fluid mechanics has played in understanding an
arterial disease related to our present work: stenotic flows.
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1.2.5 Flows in stenotic geometries

Recently, there has been an increase in interest in the fluid mechanics community in un-
derstanding flow through arterial branches. This has been motivated by observations that
atherosclerotic lesions occurred in arteries and arterioles in regions of high curvature or
where there are bifurcations. In particular, the association of arterial disease with flow-
related mechanisms has motivated the study of steady and pulsatile flow within both model
and anatomically derived arterial model stenoses (Berger & Jou, 2000). A review of the
experimental work performed on idealised stenoses is provided in Berger & Jou (2000),
Griffith (2007).

1.2.5.1 Steady flows

With the advances in computational facilities, several numerical investigations have
been undertaken for simulating the flow characteristics in both axisymmetric and
non-axisymmetric stenoses. Sherwin & Blackburn (2005) carried out a stability analysis
of a steady flow through an idealised model of stenosis where the blockage was modeled
as a sinusoidal function. In that study, a 75% area reduction stenosis of length 2D was
used. They found that the steady flow was unstable at a Reynolds number 722 (based on
the mean velocity and the inlet pipe diameter) to m = 1 azimuthal Fourier mode. The
leading perturbation consists of a jet emanating from the stenosis accompanied by a loss
of symmetry of the jet. As an extension of this work, Blackburn & Sherwin (2007) carried
out a study to investigate the role of convective instability by periodically forcing the
steady flow at the inlet. They observed that the shear layer rolled up into vortices and
deduced that the flow is susceptible to convective instabilities.

To further verify the role of convective instability in steady stenotic flows, Griffith
et al. (2008) carried out a stability analysis, both numerically and experimentally, of a
steady flow through an axisymmetric stenosis. However, here the stenoses were modeled
as a semi-circular perturbation of the circular pipe rather than by a sinusoidal function,
resulting in a severer disruption of the flow leading to higher velocities. They observed
that with an increase in the blockage ratio, the flows become unstable at lower Reynolds
numbers. For lower values of blockage ratio, the m = 1 Fourier mode is the leading
unstable mode, while higher mode numbers become unstable with increasing blockage
ratios. Also, at a high stenosis degree, the perturbation consists of a deflection or
deviation of the jet from the tube centreline, while for lower stenosis degrees, it consists
of a pinching or flattening centred on the centreline. The role of convective instability
was verified using experimetal observations, which revealed large convective growth of
shear layer modes, leading to strong turbulence within a short distance downstream of
the stenosis. Similar to Sherwin & Blackburn (2005), they investigated the response of
their flow to a small amplitude forcing and found out that the strongest response was
observed when the forcing period was higher than the period of oscillation of the shear layer.

In another study by Varghese et al. (2007a), a direct numerical simulation was per-
formed on an idealised stenotic geometry (same as the one used in Sherwin & Blackburn
(2005)) to address the question of flow transition in arterial branches. Though earlier
experiments carried out at a Reynolds number of 1000 revealed evidence of flow tran-
sition, they observed their flow to remain laminar even downstream of the stenosis.
However, when a 5% eccentricity was introduced to their stenotic model, they observed
flow transition and localized turbulence downstream of the stenosis at a Reynolds
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number of 1000. This was manifested in large temporal and spatial variations in instanta-
neous wall shear stress levels, rising by more than a factor of ten within the turbulent region.

The role of eccentricity was investigated numerically in a very recent work by Grif-
fith et al. (2013). The motivation behind their work stemmed from the observation made
by Vétel et al. (2008), where the leading critical mode of a flow through an axisymmetric
stenosis was recovered experimentally which was similar to the one observed numerically
by Sherwin & Blackburn (2005), albeit at a much lower Reynolds number (= 250).
As small non-axisymmetric imperfections or perturbations present in the experimental
setup could account for an early breaking of the symmetry, a numerical simulation of
an eccentric stenosis would help in explaining the differences between numerical and
experimental simulations. They observed that the flow characteristics were highly sensitive
to eccentricity, in coherence with the non-axisymmetric states observed experimentally.

1.2.5.2 Pulsatile flows

A pulsatile flow consists of a mean flow to which an oscillating component is added.
Though a physiologically relevant pulsatile flow needs about ten Fourier modes for an
accurate representation, much of the work on stenotic flows used a single Fourier harmonic
oscillation for an ease in analysis of various parametric conditions. We present here only
the recent advances made in this field. For a review on earlier works, the interested reader
is referred to Berger & Jou (2000), Griffith (2007). The study carried out by Sherwin
& Blackburn (2005) was one of the first to explain the stability characteristics observed
in a pulsatile stenotic flow. They considered two waveforms, consisting of one and two
Fourier harmonics respectively, with different peak to mean ratio of flow rates. For all the
pulsatile cases considered, instability occurred through a period-doubling bifurcation, and
the nature of the instability was identified as alternating tilting of vortex rings generated
during sequential pulsatile cyclic ejections from the stenotic constriction. The role of
convective instability was investigated using an analysis of the response of the flow to
inlet forcing, revealing shear-layer oscillations. Varghese et al. (2007b) performed a direct
numerical simulation of an axisymmetric stenotic flow, and similar to the case of steady
flows, the observed flow field was laminar. Similarly, the introduction of an eccentricity
resulted in occurrence of localized transition to turbulence downstream of the stenosis.
The WSS values observed downstream of the stenosis were found to rise 75 times to the
values observed upstream at peak flow conditions, implying the significance of such work
in understanding the progression of diseases such as atherosclerosis.

A numerical and experimental analysis of a pulsatile flow through an axisymmetric
stenosis was carried out by Griffith et al. (2009). They used a single harmonic Fourier
mode in their inlet waveform, and varied the amplitude of the oscillation, the stenosis
degree (constriction of the pipe) and the time-period systematically. At lower stenosis
degrees, they observed that the flow was unstable to period-doubling vortex tilting modes
with an azimuthal Fourier mode m = 1. However, keeping the amplitude of the flow
waveform the same, when the stenosis degree was increased, the higher azimuthal Fourier
modes were found to be more unstable. Using an experimental analysis, they showed that
convective instability seemed to be the major cause of instability, along with the observation
of vortices in the shear layer bearing the hallmark of a Kelvin—Helmholtz type of instability.

One of the first works carried out on understanding the WSS distributions down-
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stream for a stenosis using a sinusoidal and a physiological flow rate waveform was by
Deplano & Siouffi (1999). The temporal evolution of WSS distributions was analysed both
experimentally and numerically. A key result of their study was that the presence of a
stenosis results in low and oscillatory WSS values during the cycle and high peak values
at the throat. Recently, Mao et al. (2011) carried out a transient growth analysis of a flow
through a sinusoidal stenosis, using a physiologically relevant pulsatile waveform. This
was motivated by the fact that significant transient growth of energy has been observed
in these geometries, even when the flows were globally stable (Blackburn et al., 2008).
The unstable modes arising due to a period-doubling instability were found difficult to be
excited, due to the large separation of fronts (Blackburn et al., 2008, Mao et al., 2011).
Under certain conditions, a combination of the vortex tilting instability and a transient
shear layer instability, corresponding to a Kelvin—Helmholtz instability in the shear layer,
can result in significant transient energy growths.

The investigations of Sherwin & Blackburn (2005), Griffith et al. (2009) have been
used to validate our Floquet stability solver and are discussed in more detail in the chapter
on methodology (chapter 2).

1.2.6 Flows in abdominal aortic aneurysms

In the pathogenesis of an abdominal aortic aneurysm (AAA), the hemodynamics within
an AAA is found to play an imporant role in the progression of an AAA. As the flows
observed in AAAs are complex, it is important to analyse these using simplified models
and hypotheses that would enable us to reach conclusions that encapsulate the underlying
physics. The goal of fluid dynamicists is to enhance our understanding of flows in
abdominal aortic aneurysms by means of mathematical modeling or by computation or
by experiment. A review on the various objectives of scientists in understanding blood
flow in arteries can be found in Lighthill (1972), Pedley (2003). The motivation behind re-
searchers in fluid mechanics in understanding this complex phenomenon are mainly twofold:

(a) Firstly, it is understood that the stresses acting on the vessel walls have a pro-
found influence in the pathology of an AAA, as discussed earlier. However, even with
the advances made in the field of medicine, due to the complexity of measuring the flow
inside an aneurysm, there has been no successful attempt at measuring the wall shear
stresses in vivo inside an AAA. The current radiological imaging techniques described
earlier (MRI, ultrasound, etc.) do not have a high enough spatial resolution to provide a
reliable measurement of the velocity fields. Hence, by making use of both simplified, and
patient-specific models, studies have focused on obtaining accurate flow fields by which a
reliable prediction of the stresses can be made.

(b) Secondly, for lack of any other reliable method, the maximum aneurysm diame-
ter is the current standard by which the risk associated with an AAA is estimated. As
the wall composition of an AAA changes with the progression of the disease, it is clear
that the aneurysmal rupture is due to the failure of the wall’s structure to support the
stresses resulting from the pulsatile internal blood flow. Hence, calculating the risk of
rupture requires the calculation of the tensile stresses on the aneurysm wall and knowledge
of the corresponding stress failures. This in turn could be affected by the flow fields
in AAAs. However, the relatively complex shape of the elastic walls of an AAA poses
some difficulties, due to the current inability of the various medical imaging techniques
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to provide precise information on not only the thickness of the wall, but also on the
composition and structure of the wall at various locations, which in turn determines the
mechanical properties.

1.2.6.1 Steady flows

As a first step, many studies involving steady flows through an AAA were conducted
(Schrader et al., 1992, Budwig et al., 1993, Peattie et al., 1994, 1996, Asbury et al., 1995,
Bluestein et al., 1996, Vorp et al., 1998). Though the steady flows may not be directly
relevant to the understanding of hemodynamics within an AAA, as the flow in the aorta
is pulsatile, it does provide us with information on the flow characteristics, without having
the complexity brought in by the unsteadiness of the flow. Budwig et al. (1993) studied
the flow patterns in four simplified AAA models subject to steady flows. They carried
out both experimental and numerical work to provide a good picture of the flow patterns
observable in aneurysms. They found that the WSS magnitude within the aneurysm zone
is about ten times less, than in the entrance tube. They also studied the transition to
turbulence in these models and observed that the presence of turbulent slugs within the
flow greatly altered the WSS values within the aneurysm. This was further investigated
by Peattie et al. (1994), who carried out experimental work on four different aneurysmal
geometries, subjected to steady flows, and investigated the critical Reynolds number for
the flow to become turbulent. The transition was first observed at the distal end, which
subsequently infiltrated the entire bulge region. The critical Reynolds numbers were around
2000, which decreased with increase in dilatation ratio. Asbury et al. (1995) carried out a
similar experimental investigation of steady flows within an AAA in which they varied the
bulge height systematically with a fixed bulge length. They estimated the critical Reynolds
numbers at which the flow becomes turbulent, and their observations agreed with Peattie
et al. (1994). Larger models were found to become unstable at a lower Reynolds number
than smaller models. An interesting study aimed at correlating the effect of eccentricity
on wall shear stress distributions in AAAs was carried out by Vorp et al. (1998). The flow
conditions corresponding to peak systolic flow rate were imposed in an AAA and the effect
of asymmetry on three-dimensional stress distribution on the wall of AAAs was quantified.
Their study indicated that the critical diameter criterion often used to guide decisions for
elective AAA repair could be misleading as the stress distributions depend on the shape of
the AAAs, which are generally much more complex in reality.

A study on correlation between fluid dynamics and blood platelet deposition was carried
out by Bluestein et al. (1996) for steady flows. The presence of coexisting high and low
wall shear stresses within the bulge region was found to promote thrombus formation. Also
platelet deposition was aggravated within the regions of low WSS, within the bulge region,
as they were found to be trapped within the recirculating zone. Yu (2000) carried out
an experimental study of a steady flow within an AAA, where the AAA was modeled as
a semi-circular dilatation of a straight circular pipe. Such a model involving geometric
singularities is not ideal, as flow separation is highly influenced by the presence of sharp
edges. Similarly, Finol & Amon (2002) performed a numerical study of a steady flow through
a double aneurysm, made out of two consecutive expansions which is not relevant to our
present work, as the geometries are very different. Sheard & Blackburn (2010) carried out
a global and transient stability of a steady flow through a model AAA. They found that
the flow is unstable to quasi-periodic global modes of azimuthal mode numbers 4 and 5,
at a Reynolds number of 3900 (based on area-averaged velocity and inlet pipe diameter).
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However, there are no studies in the literature where the various geometrical parameters
defining an AAA were varied systematically and the resulting changes in flow stabilities
recorded.

Another interesting point of view for this problem is that the limiting case of Poiseuille
flow in a pipe is linearly stable (Drazin & Reid, 1981). An investigation on the minimum
corrugation needed from a straight circular pipe for the flow to become unstable has re-
ceived much attention within the fluid dynamics community. This is augmented by the
fact that transient growth of disturbances have been observed, resulting in significant en-
ergy growth over short time intervals, even though the eigenmodes are in the stable regime
(Schmid & Henningson, 2001). Cho et al. (1988) carried out the linear stability analysis of
a flow through sinusoidal wavy-walled channels. They found that when the wall variation
is smaller than a critical value, the flow becomes unstable to three-dimensional stationary
disturbances and for higher values of wall corrugation, the flow becomes unstable to two-
dimensional oscillatory disturbances. Floryan (2003) studied the linear stability of Poiseuille
flow in a converging-diverging channel. In contrast to flows in a cylindrical geometry, plane
Poiseuille flow is unstable to two-dimensional disturbances. The study of Cotrell et al.
(2008) was mainly concerned with the instabilities in the low corrugation amplitude limit.
They found that a minimum critical amplitude for the corrugation was required for the flow
to develop a vortex in the bulge region which is almost identical to the value below which
the flow remains stable. Consequently, the instability is directly related to the formation
of a vortex in the bulge region and the cause of instability is likely to be vortex separation.
Also, according to their results, axisymmetric disturbances were the least stable at low and
finite corrugation amplitudes. More recently, Loh & Blackburn (2011) performed a stabil-
ity analysis of a steady flow through an axially corrugated pipe. They imposed an axial
periodicity on both the base and perturbation flows, with the same axial wavelength as the
corrugation. Contrary to the study of Cotrell et al. (2008), they concluded that at low-to-
moderate corrugation amplitudes, the flow is unstable to non-axisymmetric disturbances
with azimuthal mode numbers m = 3 or 4. The underlying mechanism was attributed
to centrifugal instability although no specific computations were carried out to clarify this
result. This has been another motivation for our present work, where we investigate the
minimum inflation of the vessel wall that is needed for a steady flow to become unstable
(chapter 3).

1.2.6.2 Pulsatile flows

As the nature of flow characteristics are drastically different under pulsatile conditions,
lot of studies in literature on flows in AAAs have used a time-dependent waveform. The
reviews by Lasheras (2007), Humphrey & Taylor (2008) provide an extensive database of
the various works carried out in literature. The first study to use a physiologically relevant
waveform to study the influence of the dilatation of an AAA was Fukushima et al. (1989).
They studied experimentally the flow through three different sized aneurysms in the range
of mean Reynolds numbers 289 < Re < 748 and Womersley numbers 4.07 < Wo < 10.6. It
was shown that the flow remained attached to the walls during the acceleration phase of the
cycle (systole), with detachment being observed at the onset of the deceleration (beginning
of diastole), resulting in a large primary vortex, followed by a weaker secondary vortex,
and a recirculation zone with low velocities. However, they did not make measurements of
the WSS, which was made only by using a numerical simulation of an idealized laminar
flow inside the AAA. It was seen that the peak WSS occurred at the downstream end
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(distal area) and the aneurysm wall was characterized by low WSS. Taylor & Yamaguchi
(1994) carried out simulations in a model three-dimensional AAA using both steady and
pulsatile flow rate waveforms. They observed that the regions of maximum pressure moved
within the aneurysm for a pulsatile flow, with local areas of maximum pressure observed
at the distal end straining the arterial walls. Also, shear stress values were highest at
the proximal and distal aneurysm points, in contrast to the steady flow case. In another
experimental study by Peattie et al. (2004), pulsatile flow conditions corresponding to
a rest state were simulated in rigid, axisymmetric models. They observed similar flow
features as presented in Fukushima et al. (1989), and in addition, they measured the
WSS for different sized aneurysms by varying the dilatation ratio. Apart from observing
that the maximum stress occurred at the distal end during the peak systole for different
sized aneurysms, they noted that disturbed flow conditions were present during a greater
percentage of each cardiac cycle with increase in dilatation ratio.

An excellent experimental study to quantify the variation of WSS systematically
during the progressive enlargement of an AAA was made recently by Salsac et al. (2004,
2006). They carried out an experimental investigation using rigid symmetric AAA models
and systematically investigated the spatial and temporal distribution of the WSS with
the growth of the AAA. They concluded that for all the aneurysm models characterized
by a dilatation ratio greater than 1.5, the mean WSS consistently dropped from the
healthy aorta value of 0.40 Nm~2 to values very close to zero, when averaged over the
whole aneurysm length. However, a minor limitation of their study was that the WSS
distributions at the arterial wall was underestimated, particularly at the point of impact of
the primary vortex, because of the very small size of the Stokes layer and of the resolution
of their measurements, which was pointed out by them. In another recent work, Duclaux
et al. (2010) addressed the questions of the localization and growth of an AAA using
a simplified physical experiment, and proposed a scaling argument that relates to the
aneurysm location. They also concluded that aneurysms develop only above a critical flow
rate.

The influence of wall compliance on hemodynamics in model AAAs was investigated by
Gaillard et al. (2007). They observed that the evolution of the vortices formed after the
systolic phase to be different when the AAA wall is compliant as opposed to a rigid wall.
Various other studies have aimed at developing models to capture the stress acting on the
vessel walls, to understand the mechanical behaviour of the aneurysm wall. Raghavan &
Vorp (2000) developed a finite strain material model for an AAA based on experimental
data to make predictions for WSS to describe the mechanical behaviour of the aneurysm
wall. They also extended this to three-dimensionally reconstructed patient-specific AAAs
to estimate the WSS (Raghavan et al., 2000). These were mainly aimed at predicting the
risk of rupture, by making use of WSS to estimate the wall strength. A review of the related
work is provided in Vorp et al. (2001).

It has been observed that the aneurysms tend to be symmetric at the early stages of
the disease, but they may become non-symmetric when they reach larger sizes (Salsac,
2005). Also, as the AAA shapes observed in vivo are complex in nature, some studies
have concentrated on comparing the flow features observed in a symmetrical AAA with an
asymmetrical one (Taylor & Yamaguchi, 1994, Salsac, 2005, Deplano et al., 2007, Vorp,
2007). The geometric asymmetry affects flow separation and prevents the formation of a
closed vortex ring as observed in symmetric AAAs. The vortex shed from the proximal
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end during flow deceleration is of a higher strength when compared to that formed in
a symmetric AAA, and is likely to generate a stronger transition to turbulence in the
diastole. However, most of the typical flow features observed in symmetric AAAs persist
in non-symmetric models, with significant deviations only observed for large values of
asymmetry. Due to these observations, and for simplicity, we have used a symmetric model
of AAA in our study, with the primary focus being on characterising the flow fields during
the early stages of growth of an AAA.

With the recent advances made in computing techniques, a few groups have per-
formed numerical simulations in AAAs to provide accurate measurements of the flow
fields. Sheard (2009) recently carried out a numerical study of a pulsatile flow through
an idealized AAA, where the dilatation was modeled using a sinusoidal function. The
geometry used in the study was one of the typical geometries considered in the study
by Salsac et al. (2006). Using well-resolved numerical simulations, they were able to
capture the vorticity and flow fields accurately. Sheard (2009) reported that the highest
wall shear-stress within an AAA is 2.4 times greater than the highest wall shear-stress
recorded in a healthy vessel. They also carried out a stability analysis of the pulsatile
baseflow and concluded that the most unstable mode corresponded to an azimuthal mode
number of m = 3. The critical modes were localized at the distal end of the bulge (Sheard
& Blackburn, 2010, Sheard & Ryan, 2008), though no information on the growth rates
were provided by them. To investigate whether a difference in the modelling of the AAA
wall could lead to changes in flow characteristics, we have carried out studies using the
model used by Sheard (2009) and have compared the flow characteristics with an equiv-
alent AAA modeled using a gaussian function. More details on this is provided in chapter 2.

One of the first groups to tackle the fluid-structure interaction problem of a flow
through an aneurysm was Martino et al. (2001). By taking into account the vessel
morphology, blood flow and wall thickness, they were able to estimate the effect of
thrombus layer on wall stresses. Patient-specific modeling of flows through aneurysms have
also attracted a lot of interest in the recent years, making use of numerical simulations to
analyse the complex flow patterns observed in vivo systems. The geometry is obtained
using image-based reconstructed models, with the aid of magnetic resonance angiography
(MRA). Some of the recent studies are (Stamatopoulos et al., 2011, Sheidaei et al., 2011,
Arzani & Shadden, 2012) to name a few. Stamatopoulos et al. (2011) carried out an
experimental work using realistic geometries, wherein they observed high stresses appearing
at the inlet and outlet of the aneurysms, along with a swirling motion at peak systole.
The expansion rate of a realistic AAA was computed numerically by Sheidaei et al. (2011)
along with analysing the changes of the aneurysm wall. Arzani & Shadden (2012) used six
different models of realistic AAA geometries and observed that similar aneurysm shapes
could still have very different flow topologies. The effect of the aortao-iliac bifurcation
downstream of an AAA was looked into by Deplano et al. (2013). The flow rates observed
in AAAs are influenced by the iliac bifurcation, thereby modifying the flow characteristics
and the stresses acting on the walls. In our present work, we use an idealized geometry to
model an aneurysm, as we believe that more general information on flow characteristics
could be extracted with such a study.

Another interesting aspect which has received much attention concerning research
on AAAs, is the effect of varying physiological conditions on the flow topology. As the
flow rate waveforms, the Reynolds numbers and the Womersley numbers are very different
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under rest and exercise conditions, the hemodynamics could be very different too. Some of
the notable works are those by Taylor et al. (1999), Egelhoff et al. (1999), Deplano et al.
(2007), Les et al. (2010), Suh et al. (2011). The study carried out by Taylor et al. (1999)
to investigate the effect of exercise on flow conditions in the abdominal aorta showed
that moderate levels of exercise eliminated flow reversal and hence regions of low WSS,
which prevail during resting conditions, which are conducive for arterial health. Egelhoff
et al. (1999) studied pulsatile flows, for both rest and exercise conditions, in two AAA
model shapes and four sizes, emulating early AAA development through moderately large
growth, using experiments. Their results showed that the flow remained attached over
the entire cardiac cycle in small AAAs at resting conditions, with vortex formation in
moderate size AAAs. However, under exercise conditions, turbulence was observed for
moderate size AAAs, which could be important for thrombogenesis. Recently, using MR
exercise imaging and image-based computational fluid dynamics, the effect of increase
in exercise intensity on flow conditions was quantified by Suh et al. (2011), using data
obtained from ten AAA subjects. As the level of exercise intensity increased, the mean
WSS increased and the oscillatory WSS decreased. Using this, they suggested that mild
exercise conditions could be helpful in removing oscillatory and stagnant hemodynamic
conditions in AAAs, thereby removing the disturbed flow conditions. In our present work,
we use the flow rate waveforms obtained by Suh et al. (2011) from AAA subjects under
rest and exercise conditions, which was discussed earlier (see section 1.2.3), to investigate
the effect of physiological conditions on flow characteristics.

Many of the above mentioned studies, notably Raghavan et al. (2000), Stamatopoulos et al.
(2011), Les et al. (2010), Suh et al. (2011), Sheidaei et al. (2011), Vorp (2007) have used
patient-specific models of AAA to investigate the distribution of wall shear stresses (WSS)
along the arterial wall. All of these studies have provided a good qualitative description
of the flow in an AAA, and the most relevant features like the concentration of WSS at
the distal end, low oscillatory WSS within the AAA cavity and the presence of disturbed
flow conditions, were captured. These studies are highly relevant as they help us to get a
clear picture of the true complexity present in vivo AAAs. However, a major drawback is
that it is often difficult to derive general conclusions using this approach due to the sheer
complexity of geometries used in these studies. Hence in the present work, we have used a
model AAA geometry, as the various geometrical parameters, namely the bulge height H
and bulge width W, of the AAA, can be varied systematically, and a precise description of
the flow characteristics under varying physiological flow conditions may be obtained.

1.3 Summary

1.3.1 Objectives

The above studies, for both steady and pulsatile flows, using experimental and numerical
tools, provide a good qualitative description of the flow in an AAA. However, nowhere in
the literature can be found a fundamental study that examines the stability of flows in
AAAs, even in the simplest case of an axisymmetric flow. The purpose of a linear stability
analysis of axisymmetric basic flows through AAAs (whether steady or pulsatile) is to
identify the flow conditions that lead to the temporal amplification of three-dimensional
perturbations. Comparison of critical flow parameters for onset of instability with those
prevailing in physiological conditions would help us in understanding the flow behaviour
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in more complex configurations.

The objectives of the present work are the following. An investigation of the base
flow characteristics for the case of steady flows for different sized AAAs is provided,
enabling us to analyse the flow characteristics in such a geometrical configuration without
the additional complexity of pulsatility. The stability of steady flows through model
AAAs and an investigation of the minimum deviation needed from a circular pipe for the
instability to develop is then carried out. A qualitative description of the various instability
mechanisms inherent in AAAs is provided. For the case of pulsatile flows, no comprehensive
study on the flow fields in an AAA under varying physiological flow conditions and during
the enlargement of an AAA has been reported, and more importantly, no fundamental
study that examines the stability of the flows, even in the simplest case of an axisymmetric
flow through a smooth AAA is to be found in the literature. The aim of this study is
therefore to provide precise description of the base flow characteristics, like wall shear
stress distributions, under varying flow conditions and geometrical parameters. This is
followed by an investigation on the stability characteristics of these pulsatile base flows.
The effect of the shape of AAA wall is also presented by considering two equivalent AAAs
modeled using a sinusoidal and a gaussian function.

1.3.2 Outline

The thesis is structured in the following manner. Chapter 2 provides a description of
the various numerical tools used in our analysis along with the various validation tests of
our numerical method. The stability of steady flows in AAAs are discussed in chapter 3
and a qualitative description of the instability mechanisms inherent in these geometries
is also provided. The pulsatile flow characterisitics in an AAA using a physiological flow
rate waveform corresponding to rest and exercise conditions is presented in chapter 4. The
effect of various geometrical parameters on flow characteristics is also investigated. Chapter
5 provides the results obtained from a linear stability analysis of these pulsatile base flows.
Finally some conclusions and general perspectives are provided in chapter 6.






CHAPTER 2

Methodology

The aim of the present thesis is to investigate the dynamics of steady and pulsatile flows
through different geometries using numerical simulations. The first part of this chapter
discusses the techniques used for obtaining the base flow fields, followed by details of the
methods used for stability analyses. The geometries and the boundary conditions are
discussed subsequently. The chapter concludes with the validation of our methods with
data published in literature. As similar methods have been used in the recent past, some
parts of this chapter are inspired from the theses by Marquet (2007), Derham (2011).

2.1 Numerical Method

The flow dynamics is assumed to be goverened by the incompressible Navier—Stokes equa-
tions, written in non-dimensional form as

1
Ju+ (uV)u = —-Vp+ EAU, (2.1a)
V.u 0, (2.1b)

where u is the non-dimensional velocity field, p is the non-dimensional pressure field and
the Reynolds number is defined as Re = UD/v, with v the kinematic viscosity of the
fluid, D the inlet diameter and U the average velocity through the inlet. Throughout our
study, a cylindrical coordinate system has been used, where z, r, 8 denote axial, radial and
azimuthal coordinates respectively.

2.1.1 Temporal discretization

A general outline of the numerical methods used to solve the time-integration of the
Navier—Stokes equations are presented here. The same procedure applies to the different
problems of interest: two-dimensional axisymmetric equations for the base flow (steady
and pulsatile), and three-dimensional Navier-Stokes equations linearized around these
base flows. These particular problems are discussed in further detail in the subsequent
sections of this chapter.

The Navier—Stokes equations given by (2.1) can be rewritten as

du+N(u)+ L(u,p) = 0, (2.2a)
Vu = 0, (2.2b)

where N (u) denotes the convective terms and £(u, p) = Vp— ﬁAu. If we denote the base
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flow velocity fields as U and the perturbation as u, the convective terms from the Navier—
Stokes equations for the base flow would be given by the nonlinear expression (U.V)U,
while for the linearized Navier—Stokes equations we have the linear term (U.V)u+ (u.V)U.
Equation (2.2) is discretized in time and we look for the solution (u"*! p"*+1) at time "1
as function of the previous solutions (u™,p"), (u"~!,p"~ 1), etc. The time-step is denoted
by At = t"*1 —¢" and is chosen as a fixed value. The time-derivative term is approximated

at order 1 by
ou u"t!l—u»
—_— = (2.3)
ot At
The £ term is treated implicitly and evaluated at time t = t"T1 while the N'(u) term is
evaluated using the flow fields obtained at previous time steps. At first-order, the discretized

Navier—Stokes equations for the base flow can then be written as

Un+1 1 Un
A —I—Vp"H—EAU"H = At—(U".V)U", (2.4a)
v.u*tt = o, (2.4b)

and for the linearized Navier—Stokes equations, we would have

IJ.7L+1 v n+l LA n+1l1 _ u7n _ (Un v) n_ ( n V)Un (2 5 )
A D Te B = A Vi)u u”. , .ba
va'tt = o. (2.5b)

For the case of second-order, the time derivative is approximated as

ou 3u"t! —4u” +ur!
— = . 2.6
ot 2A¢ ( )

The convective terms from the Navier—Stokes equations for the base flow are approximated
by 2(U".V)U" — (U~ 1.V)U" . Using these expressions, the equations for the base flow
become

3untt 1 2Uu» Ut
e~ n+l = n+1 — =
2At VP Re AU At 2At (2.72)
—2(U™.V)U" + (Urt.vyur,
v.urtt = o, (2.7b)

and for the linearized Navier—Stokes equations, we would have
3un+1

2At
2un unfl
Un+1' n+l n+1. Un+1 _ =
+( V)u (u"t.V) AL IAL

v.utt = o. (2.8b)

1
+ Vptt — EAu"Jr1 (2.8a)
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Y0 4! V2 B B2
BDF, 1 -1 1
BDF, 3/2 -2 1/2 2 -1

Table 2.1: Coefficients of the BDF, methods where g is the order of the scheme
Derham (2011).

ql ql
g2 g3
q2 q3 q4 q5 q6
Element P1 Element P2

Figure 2.1: Schematic of the elements P1 and P2 along with their nodes.

The above equations can be written in a concise form as

0 nt1 n+l ontly Vi nt1—j ] nt1—j
w4 L ) > Zut T 4 N @] (2:9)

j=1

0, (2.9b)

V.t
where the coefficients v and g are given in table 2.1.

2.1.2 Spatial discretization

A finite-element method has been employed in our present work for spatial discretization
of the governing equations. This involves two steps: (i) formulating the weak form of the
governing equations (44) spatially discretizing the resulting set of equations. The spatial dis-
cretization has been performed by using the free software FreeFem++ developed by Frédéric
Hecht, Olivier Pironneau, Antoine Le Hyaric and Kohji Ohtsuka (http://www.freefem.org
(Hyaric et al., 2011)). An excellent introduction to the finite-element method is presented
in the book by Reddy (2006).

The first step involved in the spatial discretization is the definition of a mesh. If we denote
the computational domain as 2, and its border by I, the finite element mesh is generated
using FreeFem++, which generates an automatic triangulation of the domain 2. The num-
ber of triangles is used to quantify the refinement of the mesh, which is adjusted by fixing
the number of vertices of the triangle on each edge of the domain. For a given mesh, the
flow field components, the velocity and pressure, are then discretized on a finite-dimensional



30 Chapter 2. Methodology

approximation of the state-space. The appropriate state-space (so that the variational ap-
proximations are not ill-posed) is P2-P1, namely the velocity fields are projected onto-six
node quadratic triangular elements with quadratic interpolation (P2 — elements) whereas
the pressure field is discretized using three-node triangular elements (P1 — elements). An
illustration of these elements is shown in figure 2.1. The basis functions ¥;(x,y) of the
state-space P1 are polynomial functions of order 1 on each triangle defined as

bilz,y) = af +bfz+cfy for (z,y) € Ty, (2.10a)
VYi(g)) = 1 and ¥i(g;) =0, if i j. (2.10b)

Similarly, the basis functions ¢;(x,y) of the state-space P2 are polynomial functions of
order 2 on each triangle such that

di(x,y) = af' + bfat + cfy + dfﬂc2 + efxy + fiky2 for (x,y) € Ty, (2.11a)
oi(q;) = 1 and #i(¢g;) =0, if i 7. (2.11b)

As a result, the pressure is represented by 3 degrees of freedom on each triangle while a
component of the velocity has 6 degrees of freedom.

We now consider the weak formulation of the Navier—Stokes equations, correspond-
ing to equation (2.9). For this, we consider the continuous state-spaces X = H1(€2) (H1(£2)
is the Sobolev space) and M = Ly(Q2) (L2(€?) is the linear space of 2nd order integrable
functions on ) in the physical domain. The velocity u and pressure fields p belong to X2
and M respectively (since we consider two components of the velocity field). Equations
(2.9) are multiplied by test functions v € X2 and ¢ € M which gives after integration and
application of Green’s formula

o vu"+1dQ /Vv 140

At
1
+—/ Vv.Vu"tdQ +/ )dr — —/ u"tn)dl =
Re [e) r
. 9 . . .

—,Y—J/ Zv.u”+1_JdQ - Bj/ Zv. [(u”H_].V)u”H_J}dQ, (2.12a)

At Jo j=1 Q=1

/ q(V.u"thdQ =0, YveX? and VgeM, (2.12b)
Q

where n is the outward normal unitary vector of the boundary. The boundary conditions
on the wall and at the inlet are Dirichlet conditions so that the components of the velocity
field are fixed. At the outlet a standard no-stress condition (Marquet et al., 2009) is used,
given by

1
pn — E(Vu).n =0, (2.13)

where n is the outward unit normal vector and u is the velocity field. This allows us to
cancel the boundary integrals in equation (2.12). The above equations can be written in a
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more concise form as

Yo

A vt +

1
ﬁd(v, u" ™ £ o(v,p" ) = a(v,f) Vv e &2, (2.14a)
bu"ttq) = 0 Vg e M, (2.14b)

where we have denoted the explicit convective terms by f and introduced the following
operators

a(v,u) :/Qv.udQ, d(v,u) :/QVV.VudQ, b(v,p) = —/Q(V.v)de. (2.15)

We now reform the above equations in the discrete state-spaces denoted by X} and My, for
the velocity and pressure fields respectively. Denoting the discretized forms of the previous
variables as uj, € X7, p, € My, and f, € A}, and introducing them into the equation (2.14),
we get

1
viupth) + Ed(wb, u ) +o(vi,pp ) = a(va, ) Vv, € X7, (2.16a)
bup™a) = 0 Van € My (2.16b)

The above numerical tools are used for the computation of our base flows and to perform
the stability analysis, which are discussed in subsequent sections.

2.2 Base flows

The base flows in our present study are assumed to be axisymmetric along with no ve-
locity component in the azimuthal direction. The Navier—Stokes equations in cylindrical
coordinates then become

U, ou, _oU,\ 0P 1 [10 [ 0U.\ &U, U,
o <U“ ar "0 > = o T Re [T@r (r or > T T ﬂ} (2.172)
U, ou. UL\ _ oP 1 [10 [ dU.\ 0.
o (U’” ar TV > = 79 T Re [T@r (T ar ) Tz } ;o (217)
ou, U, oU.
or +7+ 0z 0, (2.17¢)

where U, (r, z) and U, (r, z) denote radial and axial components of the velocities respectively,
and P(r, z) stands for the pressure field. For the case of pulsatile flows, the above equations
are time-marched till a time-periodic base flow is obtained using appropriate boundary con-
ditions that are discussed later in this section. However, for the case of steady flow fields,
the base flow was computed as in (Marquet et al., 2009) wherein a time-dependent simula-
tion of the two-dimensional Navier—Stokes equations is first used to obtain an approximate
solution of the steady flow at low Reynolds number, where it is stable to two-dimensional
perturbations. A Newton iteration method is then applied to solve the stationary Navier—
Stokes equations, starting the procedure with the approximate steady solution as a guess
which is discussed below.
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2.2.1 Steady flows: Newton method

The base flow fields at a small value of Reynolds number are computed first by
time-marching the Navier—Stokes equations for a sufficiently long time. Flow fields
at a slightly higher Reynolds number are obtained using a Newton method where the
solution obtained at a smaller Reynolds number being used as an initial guess for
the iteration. The same procedure is also applied for computing the base flow fields
at a slightly different geometrical setting wherein the bulge height is varied at small
increments. Also at times, this procedure has been used to compute the base flow fields
obtained by interpolation from other mesh grids, particularly in the eigenvalue analysis,
where the flow fields obtained on a highly refined grid are interpolated on to a coarser
grid. The Newton method used for the computation of the base flow field is discussed below.

Starting from an initial guess ®(, this method involves iterations of the guess value
®( + §Pg until the L?(2)- norm of the numerical residual R(®) in the flow field becomes
smaller than 107'2. The steady state solution of the Navier-Stokes equations can be
written as

R(®) = 0. (2.18)

The starting point of this method is to consider the numerical residual R(®g) of an initial
guess flow field of which the residual shall be driven to zero by imposing a §®( such that

R(®g + 0Dp) =0. (2.19)
After a first-order expansion, one obtains

R(®g) + R/ (®)5Dy = 0, (2.20)

where R/'(®g) = VR(®() states the Jacobian considering the O(1) terms, which has the
same form as the linearized Navier—Stokes equations, which we will see in the subsequent
section. The residual R(®q) accounts for the higher-order terms. An improvement in the
flow field solution can be obtained as

50y = —R' (Do) ' R(Dy), (2.21a)
g 4 = g + 5Dp. (2.21b)

This process is carried out until the residual error norm of an iterate basic flow solution
@ falls below the chosen threshold. Then, the flow field ®¢ 4 has converged to the final
base flow ®.

The steady Navier—Stokes equations governing the base flow (U, P) are given by

Uv)u = —vp+iv2U, 2.22a
R
€

VU = 0, (2.22D)

with associated boundary conditions. Let the initial guess for the Newton method be
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(Ug, Py). As this is an approximate solution, they do not satisfy the equations (2.22),
which can be written as

NS(Uy, Py) # 0, (2.23)

where the Navier—Stokes operator is defined by

(2.24)

_ 1 g2
NS(Up, Fy) ( (Uo-V)Ug + VP — 3-V2Uj )

V.U

Now we look for the correction (0U,dP) such that the flow state (Ug + 06U, Py + 0P) is
a solution of equation (2.22) resulting in NS(6U,0P) = 0. The linearized Navier—Stokes
equations about the approximate solution can be written as

LNS(UO’PO)(&[J’ 6P) = _NS(U07 PO)) (225)

where LNS(y,, p,) denotes the Navier-Stokes equations linearized about the state (U, Fy)
such that

NS(Uo, Py) # 0, (2.26)

where the Navier—Stokes operator is defined by

(Uo-V)oU + (§U.V)Us + V(6P) = 3, V*(3U) > : (2.27)

LN = Re
S(wo,) ( V.0Uq

As explained earlier, we compute (6U, d P) iteratively till NS(Ug, Py) = 0, reducing (U, Py)
to the base flow solution.

2.2.2 Boundary conditions

We now discuss the boundary conditions that are employed for steady and pulsatile flow
field calculations.

2.2.2.1 Steady flows

For the case of steady flows, no-slip conditions were employed on the walls. At the inlet,
an equilibrium Hagen—Poiseuille profile is prescribed, the axial velocity being given by

U.(r) =20 (1 - ﬁ) , (2.28)

where U is the average velocity, defined as U = 4Q /7 D? (Q being the flow rate in the tube).
At the outlet, a standard no-stress condition is employed (Marquet et al., 2009), given by

10U, U,
~ e =0 5 =0 (2.29)

On the axis, standard symmetry conditions are employed.



34 Chapter 2. Methodology

2.2.2.2 Pulsatile flows

The only difference for the case of pulsatile flows from steady flows is that a time-dependent
velocity profile is imposed at the inlet, with other boundary conditions being the same. As
discussed in detail in the previous chapter (see section 1.2.1), an analytical Womersley
solution is applied at the inlet. The time-dependent Dirichlet boundary condition for the
axial velocity component is completely determined by the frequency w and the Fourier
components @, of the imposed flow rate

i Qe (2.30)

n=—oo

More details on the derivation of these velocity profiles along with the coefficients @Q,, of
various flow rate waveforms are provided in the previous chapter 1.

2.3 Stability analysis

To analyse the stability of a base flow field, a small perturbation is added and
its evolution is monitored in time after linearization of the Navier—Stokes equations.
Consider the base flow field which is axisymmetric and time-dependent, U(r, z,t) =
(Up(r,2,t),0,U,(r, z,t), P(r, z,t)). To this basic flow, a linear disturbance vector is added,
u'(r,0,z,t) = (u,.(r,0,z,t),uy(r,0,z,t),u.(r,0,z1t),p (r,0, z2t)). The resulting velocity
field U(r, z,t) + u'(r, 0, 2,t) is substituted into the Navier-Stokes equations. Linearization
around the base flow field then yields the linearized Navier—Stokes equations as

ou, ou, oul. , OU, , 0U,

z = 2.31
o T+ U, —— o 4+ U. 5% + u, o + u, P (2.31a)
oy i(@QU;« N 1 Ouy, N 1 0%y, | Pup uy 38%)
or Or? r Or  r2 062 022 r2  r2 .00/’
ouy (’9u9 oup  U,uy
+U. 20 —  (2.31b)
ot " or 0z r
1oy i(@Qu’e 10up 1 Puy  Puy w2 8u’r)
r 00 or2 r Or  r?2 002 022 r2  r2 .00/’
ou, ou’ ou' , 0U, , 0U,
= 2.31
G HUg AU gl F U el (2:31c)
o i(@z w, 10u +i82u’z 82u;)
0z or? r Or  r? 002 0z2
A i
U Oup 10U OW 9319

r or r 00 0z

The perturbations are chosen as normal modes in the azimuthal direction with unspecified
time-dependence (general case) as

ul(r,0,z2,t) Uy (r, 2, t)
up(r, 0, z,t) Gg(r, z,t)
= 2.32
ul(r,0,z,t) G, (r, 2, t) expi(mf) +c.c. (2.32)
p(r,0,2,1) p(r; 2,t)
The equations governing the evolution of perturbations

(Gp(ry 2,t), Gg(r, 2, t), U (1, 2,t), p(r, z,t)) do not assume any axis of symmetry and are in
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general, complex variables. But without loss of generality, one may assume that there is a
plane of symmetry for the perturbations by considering (@, (r, z,t), 4, (r, 2,t), p(r, 2,t)) to
be purely real, and dg(r, z,t) to be purely imaginary. Rewriting the equations in terms
of these purely real variables reduces the computational cost. For this, the equation
for dg(r,z,t) is multiplied by i and dg(r,2,t) is replaced by itg(r,z,t). Using these
assumptions, yields

0ty 0ty ou, . oU.  0oU,

5 +UTW+UZ 92 + i, o + 1, 5 (2.33a)

- 25 N 2A 2 N .
R D
8;Z+UT%+UZ%+QT%+@% = (2.33¢)

. 2 . 2 25
%+%ﬁr+m7%+%% = 0. (2.33d)

The methods used when the base flow field is either steady or time-periodic are now detailed
separately.

2.3.1 Steady flows

For a steady axisymmetric base flow, the perturbations may be considered in normal mode
form with exponential time-dependence as

u;“ (T.v 07 Z, t) LALT(T, Z)

U/Q(T,H,Z,t) _ ﬂg(T, Z) . B

A (r0,20) | 7| alrz) | PO =D, (2.34)
p/(rv 97 Z, t) ]3(’1", z)

where m is an integer azimuthal mode number and w = w, +iw; a complex frequency. With
positive growth rate, w; > 0, the perturbation grows exponentially in time. Substitution
of expression (2.34) into the linearized Navier—Stokes equations (2.33) yields, in classical
fashion, a generalized eigenvalue problem of the form

—iwB.a= A, (2.35)
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where u = (4, Ug, U.,p) and A and B are the associated matrices which are defined as:

D-C-04,U, — ﬁl/rQ fﬁZm/TZ —0.U, 0,
1 2 _C_ _ 1 1/.2
A— Re2m/r D-C-U/r Rel/r 0 m/r . (2.36a)
-0,U. 0 D-C-9,U, -0,
1/r + 0, m/r 0. 0
10 0 0
01 00
B={0 01 ol (2.36b)
0 0 0 O

where D = ﬁ(arr + 1/7r0, — m?/r? + 0..) accounts for the viscous diffusion of the
perturbation and C = U,.0, + U, 9, for its advection by the base flow.

To compute the eigenvalues with the largest imaginary part of the eigenvalue prob-
lem given by expression (2.35), which determine the stability, a shift-and-invert strategy is
used as in Marquet et al. (2009), Ehrenstein & Gallaire (2005). The resulting generalized
eigenvalue problems are then solved using the Implicitly Restarted Arnoldi method of the
library. This method is discussed in more detail in Sorensen (1992), Nayar & Ortega
(1993).

2.3.2 Pulsatile flows

As discussed earlier, the perturbations are chosen as normal modes (equation (2.32)), using
which we obtain the linearized Navier—Stokes equations given by equation (2.33). To anal-
yse the stability of time-periodic base flows, the linearized Navier—Stokes equations (2.33)
are time-marched for a suitable number of pulse cycles and the perturbation fields are
monitored till they converge. Once the perturbations have converged, the evolution of the
perturbation velocity fields at a specific point in the computational domain is investigated
to determine the Floquet multiplier. According to Floquet theory, the velocity and pressure
perturbations grow or decay exponentially from period to period. Thus, the perturbation
fields are expected to satisfy the relationship

a(r, z,t +T) = exp(cT)i(r, z,1). (2.37)

The coefficient 1 = exp(oT) is often called the Floquet multiplier, where T is the time
period of the pulsatile base flow and ¢ = A 4 iw is the complex growth rate. Here, the
absolute value of the Floquet multiplier |u| is computed as

lul = Ex(t +T)/Ex(1), (2.38)

where Ej(t) is defined as,

Ex(t) = \//Q [ul. ()2 + up(t)? 4+ ul(t)?]d2. (2.39)

A Floquet multiplier |x| > 1 indicates an unstable flow, while |u] < 1 indicates a stable
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one. A Floquet multiplier || = 1 represents neutral stability. Also, depending on the value
of the Floquet multiplier u, several mode classifications are possible. A real bifurcation
(1 = 1) has the same period as the base flow. A subharmonic bifurcation is indicated by
a negative Floquet multiplier (1 = —1), where the perturbation is period-doubling, oper-
ating at a period twice that of the base flow. A subharmonic bifurcation can be detected
by investigation of the perturbation field, as the sign of a period-doubling bifurcation will
alternate from one base flow period to the next. A third-type, complex-conjugate bifur-
cations, consist of standing- or travelling-wave solutions. A complex Floquet multiplier
can be identified using the evolution of the absolute value of Floquet multiplier, |x|. An
oscillation around a mean value indicates a complex Floquet multiplier (Robichaux et al.,
1999, Sheard et al., 2005).

2.3.3 Energy-transfer analysis

To address the question of why the flow amplifies a particular type of perturbation, we
search for the regions within the flow domain where the kinetic energy is transferred from
the basic flow to the perturbation. This provides information regarding the instability
mechanisms involved in the evolution of disturbances (Lanzerstorfer & Kuhlmann, 2012a,b).
A brief description of this analysis is provided here, which follows from Lanzerstorfer &
Kuhlmann (2012a,b). The kinetic energy per unit mass of the perturbation flow is defined
as Eyin = fQ u’2dV//2, where the integration is carried out over the computational domain
denoted as €. Scalar multiplication of the linear perturbation equations (2.31) by u’ from
the left-hand side and integrating over the volume yields the Reynolds—Orr equation, which
can be solved for the rate of change of the kinetic energy dFy;,/dt (see e.g. Joseph, 1976)
to obtain

dE . 1
kin
=-D E,dQ — = E, 5dS. 2.40
dt i ;/Q " 2 /r ? 240
The term D represents the average dissipation given by
1 !/ 2./
= — . dQ 2.41
oo Qu Vu'dQ, (2.41)
and E, ; are given in equation (2.44) below. The surface integral
1 1
—= | E,5dS= —7/ u’?uds, (2.42)
2)r, 2 Jr,

represents the rate of change of the kinetic energy of the perturbations which is advected
out of the domain by the basic flow. In addition, no perturbation energy is convected into
the domain, either through the inlet or through the solid walls on which u’ = 0.

For an analysis of the energy transfer rates it is useful to decompose the pertuba-
tion velocity u’ into components parallel (uh) and perpendicular (u’,) to the basic flow
U,
, (u.U)U
uy = —,
I~ v.u

such that the local energy transfer terms are given by

u) =u' —uj, (2.43)

4
Y Epi=—M . (0. VU)+u) . (0. VU)+u| . (0. VU)+u| . (u] . VU)], (2.44)
=1
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Figure 2.2: Schematic of the geometry considered in Griffith et al. (2008), Griffith
(2007), Griffith et al. (2009) (Model A).

where 7 numbers all terms on the right-hand side consecutively. The local energy production
rates given by the terms E,, ; represent the coupling of the base flow U to the perturbation
u’ and each term represents a certain energy transport process. The use of the coordinates,
locally aligned with the flow direction U/U, is suitable, because no other distinguished
direction exists locally. As an example, E, > is the local rate of change of perturbation
energy density per unit mass by the convective transport due to a cross-stream perturbation
flow (u/, . V) of basic-state momentum (U). Hence, if u/, . VU has a component parallel
to and in the direction of uj, kinetic energy is locally transferred from the basic state to
the perturbation flow. If F, 2 < 0, the perturbation locally loses energy to the basic flow.

2.4 Flow geometries

The different geometries that are investigated during this project are described in this
section.

2.4.1 Stenotic flows

Flows through stenotic geometries were used in the present work to validate our numerical
solver. For this, we consider two geometries used in the literature: (a) stenosis modeled as
a semi-circular blockage (b) stenosis modeled using a sinusoidal function. Griffith et al.
(2008), Griffith (2007), Griffith et al. (2009) modeled the stenosis as an axisymmetric
blockage in the form of a semi-circle, whereas Sherwin & Blackburn (2005) used a sinusoidal
function. We use the term Model A and Model B correspondingly for these geometries.

Model A consists of a long, straight tube with an axisymmetric blockage described
by a single parameter, the stenosis degree, defined as

b=1-— (g)g, (2.45)

where D is the diameter of the tube and d is the diameter at the centre of the stenosis.
This is shown in figure 2.2.

The radius of the blockage, dependent on d,

n="20= 20 vitw), (2:46)
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Figure 2.3: Schematic of the geometry considered in Sherwin & Blackburn (2005)
(Model B).

The advantage of using this model is that the effect of the geometry can be analysed by
varying a single parameter, but at the same time, the use of a semi-circular constriction
introduces geometric singularities.

In the study carried out by Sherwin & Blackburn (2005), the stenosis is described
using a sinusoidal variation. The schematic of this geometry is shown in figure 2.3 which
is termed as Model B in our study. The radial variation r(z) is of the following form

d

1
r(z) = 5 §(D —d)sin®(nz/L) (=0.5<(2/L) <0.5). (2.47)
An axisymmetric geometry with a 50% reduction in radius leads to a 75% reduction in area.
The stenosis length defined by L is fixed at a value of L = 2D.

The main difference between the two stenotic geometries, Model A and Model B, is that
the former has a much shorter contraction and sharp corners, whereas the latter has a
longer, smoother contraction. This is expected to have a direct effect on the nature of the
separating shear layer which forms downstream of the stenosis. The inlet conditions used
in the analysis of flows through these geometries are the Hagen—Poiseuille flow profile for
steady flows and a Womersley solution for the case of pulsatile flows. However, only a single
Fourier component was used to define the flow rate waveform for the case of pulsatile flows,
given by

Q(t) = 1 + Asin(2rt/T), (2.48)

where the sectionally averaged velocity oscillates sinusoidally around the temporally aver-
aged flow velocity with a period T and an amplitude A.

2.4.2 Aneurysmal flows

An axisymmetric fusiform aneurysmal geometry is considered in the present study and
is shown in figure 2.4. The geometry is characterised by the inlet diameter D the bulge
height H (height of the bulge above the inlet diameter) and the width of the bulge W. The
shape of the wall is designed using a gaussian function as

r(z) = [12) + H exp ( 2;;)} , (2.49)
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Figure 2.4: A typical geometry considered in the present study.

where z and r denote axial and radial directions with the origin taken at the bulge center.
The dilatation ratio D g, which is the ratio of the maximum diameter to the inlet diameter,
is here given by Dr = 14+ 2H/D. Subsequently, distances are non-dimensionalized with
the inlet diameter D. To cover different sized aneurysms and to analyse the changes in the
hemodynamic forces at different stages of development, the following parameter ranges are
considered in the present investigation: 0.25 < W/D < 2 and 0.1 < H/D <1 (correspond-
ing to 1.2 < Dg < 3).

Sheard (2009) used a sinusoidal function to model an aneurysm (which was the same as
Model 8 in Salsac et al. (2006)), where the shape of the wall is given by

Dy, if |2/L| > 1/2,
r(z) = { Dutl 4 Du=loog(222)  if |z/L] < 1/2, (2.50)

where L is the length of the aneurysm and Dy, is the dilatation ratio (ratio of the maximum
diameter to the inlet diameter). The use of a gaussian function to model the walls ensures
that the shape of the walls is continuously differentiable to all orders. This is a desirable
feature, particularly in the context of hydrodynamic stability, to avoid any singularities due
to the geometry.

To investigate whether such a difference in the modeling of the wall could lead to changes in
flow characteristics, a study using the model used by Sheard (2009) is carried out and the
flow characteristics are compared with a gaussian equivalent (the parameter W appearing
in equation (2.49) is chosen such that the areas of both the geometries, in an axisymmetric
plane, are the same). This is shown in figure 2.5 where the geometry used in the study by
Sheard (2009) (which was the same as Model 3 in Salsac et al. (2006)) is shown using dotted
lines. The dilatation ratio Dy and the length ratio Lg, are 1.9 and 2.9 respectively. The
equivalent gaussian geometry is shown using continuous lines. One can see that both shapes
are hardly distinguishable but that the dilatation modeled using a gaussian function relaxes
to a straight pipe slightly more smoothly. We will see that despite very close similarity of
these shapes, the flow dynamics may display significant differences.
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Figure 2.5: The geometry considered in the study by Sheard (2009) is shown using
dotted lines, where the dilatation was modeled as a sinusoidal function. The gaussian
equivalent geometry is shown using continuous lines. Parameter settings: H = 0.45,

L =29, W =0.5785.

2.5 Code validation

In this section, the various validation tests carried out as part of the present study are pre-
sented. As mentioned earlier, flows through stenotic geometries were used to validate our
numerical codes, both for steady and pulsatile flows. This is followed by further tests per-
formed on aneurysmal geometries, as part of the present work, where the effect of temporal
and spatial resolution on base flows and stability calculations are analysed.

2.5.1 Stenotic flows
2.5.1.1 Steady flows

The results presented in this section are carried out with Model A using the boundary
conditions mentioned for steady flows earlier. For this problem formulation Griffith et al.
(2008) have shown that the critical Reynolds number for instability is Re. = 2350. The
base flow characteristics at a Reynolds number 2000 is shown in figure 2.6. The spatial
distribution of the axial velocity contours along with representative streamlines are shown in
figure 2.6(a) and the azimuthal vorticity component is shown in figure 2.6(b). As described
in Griffith et al. (2008), the flow can be characterized as a confined jet emanating from the
constriction, which expands downstream of the stenosis. The recirculation zone is apparent,
seen from the separating streamline. As the Reynolds number is increased, the length of the
recirculation zone downstream of the stenosis increases. As a result, long outlet lengths are
required for carrying out calculations on stenotic flows to remove any effect of the outlet.

We now turn our attention towards stability calculations. Though the outlet length needs
to be varied significantly with varying stenosis degree, we keep the outlet length fixed at a
value of 30D as sufficiently precise results were obtained using them. This is summarized
in table 2.2 where Ly denotes the length of the vessel outlet in units of vessel diameter.
The growth rate of the leading eigenvalue obtained by our calculations is denoted by w;,
whereas the value found in Griffith et al. (2008) is denoted as w1 g.
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Figure 2.6: Base flow characteristics. (a) Axial velocity contours along with rep-
resentative streamlines. (b) Azimuthal vorticity component. Parameter settings:
b =0.50, Re = 2000, Model A.

L, b Re
30 | 0.50 | 2000
30 | 0.50 | 2350
30| 0.75| 770

Wi Wiig
-0.014780 -0.014783
2.5731e-04 | 0.00000
-1.4151e-04 | 0.00000

»-nmws

Table 2.2: Results of the stability calculations for a steady flow through a stenosis.
wi4,g refers to the value presented in Griffith et al. (2008).
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Figure 2.7: Time trace of the axial velocity component at a point downstream of
the stenosis. Parameter settings: b = 0.50, Re = 2000, Model A.
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Figure 2.8: Leading global mode characteristics. (a) Axial velocity contours. (b) Az-
imuthal vorticity component. Parameter settings: b = 0.50, Re = 2000, m = 2,
Model A.

The time trace of the perturbation at a point in the domain gives us information regarding
the stability of the flow, similar to the kinetic energy norm defined in the previous section.
This is demonstrated in figure 2.7. The growth (in this case decay) of the perturbation,
w14, 18 given by the slope.

Figure 2.8 depicts the structure of the leading unstable mode corresponding to b = 0.50,
Re = 2000, m = 2 visualized by axial velocity and azimuthal vorticity components. The

perturbation flow structures are in good agreement with those presented in Griffith et al.
(2008).

2.5.1.2 Pulsatile flows
Model A
We start by presenting the results of our validation tests obtained using Model A. The

geometry and the inlet boundary conditions are described in the preceding sections. Figure
2.9 shows the azimuthal vorticity contours of the pulsatile flow fields for a stenosis degree
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(
'

Figure 2.9: Contours of the azimuthal vorticity of the flow through different stages
of the pulse, starting with ¢ = 0.07" with increments of 0.257 in each subsequent
frame from top to bottom. Parameter settings: b = 0.50, A = 0.75, T = 2.5,
Re = 300.

b = 0.5. The strong flow acceleration through the stenosis causes a flow separation to occur,
with a separating shear layer emanating from the blockage walls. The shear layer rolls up,
forming a vortex ring which propagates downstream and leaves a trail of positive vorticity
in its wake.

One can further observe that the extent to which the vortex emanating from the blocakge
walls convects downstream of the stenosis, depends strongly on the stenosis degree (see
figure 2.9). This indicates that the pulsatile flow through a stenosis is more dependent on
the outlet length. Also, for large stenosis degrees, a higher spatial resolution is required to
get accurate flow fields, as large velocities are involved. As the main purpose of our work
was to validate our stability solver for aneurysms, special efforts are not taken to obtain
very highly resolved flow fields in stenotic geometries.

Table 2.3 shows the values of the Floquet multipliers obtained by our calculations
(|p]) in comparison with the values presented in Griffith (2007)(||s). To be noted is that,
for the preliminary calculations, we have fixed the outlet length to 30D and subsequently
chosen the same values as used in the calculations by Griffith (2007). The Floquet
multiplier converges to the value cited by Griffith (2007) with increasing outlet length.
But the meshes used in the present study are not refined to a high degree, as would be
required for these constriction ratios. For the flow through aneurysms, the outlet length
and mesh refinement play a weaker role compared to the flow through a stenosis. So,
further tests are not carried out as a satisfactory agreement was obtained for small stenosis
degrees, with the differences being less than 1%. Discrepancies in the results may be due
to relatively coarser meshes used in our simulations.
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L, b A m | |y |1lg
30 050 1.25] 1 |1.0648 | —
40 | 050 | 1.25| 1 |1.1741 ] 1.1708
30 | 060 1.00| 1 |1.3495 |-
50 | 0.60 | 1.00| 1 |1.3757 | 1.3761

Table 2.3: Results of the stability calculations for a steady flow through a stenosis.
|p|g refers to the value obtained in Griffith (2007).
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(a) (b)
Figure 2.10: (a) Time trace of the axial velocity component at a point downstream of

the stenosis. (b) Floquet multiplier |u| converging to a value of exp oT. Parameter
settings: b =0.50, A =1.25, T'= 2.5, Re = 300, m = 1.

It is reported in Griffith et al. (2009) that, for the cases considered in table 2.3, the crit-
ical modes were found to be of period-doubling nature. Such subharmonic modes can be
detected by the investigation of the perturbation field; the sign of a period-doubling bifur-
cation will alternate from one base flow period to the next. Figure 2.10 shows the time trace
of the axial velocity component at a point in the domain, downstream of the stenosis, and
also the absolute value of the Floquet multiplier calculated using the ratio of amplitudes of
the kinetic energy between successive time periods. Figure 2.12 shows the axial component
of the base flow field and of the leading global mode at ¢t = 0.07.

Model B

The geometry and the inlet boundary conditions are described in detail in the preceding
sections. Figure 2.14 shows the azimuthal component of the vorticity of the basic pulsatile
flow at different stages of the pulse cycle. Once again, we can observe that a vorticity ring
is generated at the stenosis, due to the strong axial spatial gradient in velocity. The vortex
ring is found to propagate down the pipe for very long distances. The principal difference
between Model A and Model B is that in the former the length of the stenosis is shorter
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Figure 2.11: (a) Time trace of the axial velocity component at a point downstream of

the stenosis. (b) Floquet multiplier |u| converging to a value of exp oT. Parameter
settings: b =0.60, A =1.0, T = 2.5, Re = 300, m = 1.
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¢ .. -

Figure 2.12: Axial velocity contours of the base flow (top) and axial velocity com-

ponent of the leading critical mode (down). Parameter settings: b = 0.50, A = 1.25,
T = 2.5, Re = 300, m = 1.

- - .

Figure 2.13: Axial velocity contours of the base flow (top) and axial velocity com-

ponent of the leading critical mode (down). Parameter settings: b = 0.60, A = 1.0,
T = 2.5, Re =300, m = 1.
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Figure 2.14: Contours of the azimuthal vorticity of the flow through different stages
of the pulse, starting with ¢ = 0.07" with increments of 0.257 in each subsequent
frame (top to bottom). Parameter settings: A = 0.75, T' = 2.5, Re = 400.

Ly| A m | |y |11
30| 075 | 1 |1.1312 ] -
45 1 075 | 1 | 1.0787 | 1.073

Table 2.4: Results of the stability calculations for a pulsatile flow through a stenosis.
|pe|s refers to the value obtained in Sherwin & Blackburn (2005).

resulting in a severer disruption of the flow, whereas in the latter, the geometry is much
smoother, resulting in the propagation of the vortex ring for longer distances.

Table 2.4 shows the Floquet multipliers computed using our calculations (|u|) and those that
are presented in Sherwin & Blackburn (2005) (|x|s). They have used an outlet length, L,, of
45D. We can see that with the increase in value of the outlet length, our Floquet multiplier
converges to the value found in Sherwin & Blackburn (2005) showing that significant outlet
lengths are necessary for stenotic flows. This is more evident from figure 2.16 where the
axial component of the perturbation has not decayed at the outlet.

2.5.2 Aneurysmal flows

We now turn our attention to the flow through model abdominal aortic aneurysms (AAAs).
The geometries and the boundary conditions are already described in detail in the preceding
sections. Here, we present the tests that were carried out to check for spatial and temporal
convergence, for both steady and pulsatile flows through AAAs.
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Figure 2.15: (a) Time trace of the axial velocity component at a point downstream of
the stenosis. (b) Floquet multiplier |u| converging to a value of exp oT. Parameter
settings: A = 0.75, T = 2.5, Re =400, m = 1.

Figure 2.16: Axial velocity contours of the base flow (top) and axial velocity com-
ponent of the leading critical mode (down). Parameter settings: A = 0.75, T' = 2.5,
Re =400, m = 1.
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Mesh N N2 N1
M, | (—10,10) | 183061 | 46516
My | (—10,10) | 152449 | 38788
My | (—=10,10) | 66398 | 17050
My | (—10,10) | 17058 | 4490

My, (—5,5) | 136049 | 34613
My | (—20,20) | 229558 | 58515

Table 2.5: Meshes used to validate the computation of the base flow for H = 0.5,
W =0.5.

2.5.2.1 Steady flows

In this section we outline our convergence tests for both the base flow and stability calcu-
lations to establish that the numerical results we present are well resolved. There are two
central issues in checking convergence of the base flow calculations: the external dimensions
of the domain considered in our study and the degree of internal refinement. The check for
the external dimensions of the domain is of pivotal importance to make sure that the results
are not affected by the outlet conditions as a slight modification of the base flow could have
an impact on the eigenvalue computations. This is done by carrying out the calculations
on different domains with different sizes. In this section we present the validation tests
carried out on three different sized domains though we have performed a large number of
tests to establish our results. Carrying out the study for the internal refinement is a bit
more challenging as our study involves large values of Reynolds numbers.

The size of the computational domain is characterized by (2, which gives the axial extension
measured in vessel diameters with respect to the origin. The number of nodes associated
with the P2 and P1 elements of a mesh are denoted Ny and N, respectively. The subscript
b indicates that the mesh is associated with the computation of a base flow, the subscripts
s and [ indicate that the computational domain is smaller or larger than the ‘standard
domain’ (—10, 10).

We use the wall shear stress (WSS) distributions to check the convergence of the base flow
fields and as a sensitive measure of the overall grid resolution. The WSS distribution follows
from an evaluation of the expression

ou,  JU, R'(z) (90U, 9U.\ [1=R'(2)?
or 0z ) 1+ R/(2)? 0z or 1+ R/(2)?

WSS =2 < (2.51)

at the vessel wall r = R(z), and R'(z) stands for the first derivative. A negative value of
the wall shear stress corresponds to reversed flow. Though this quantity is measured only
along the walls, the distribution of WSS is significantly affected by the changes in the flow
fields in the core part of the flow through momentum transport.

Figure 2.17 presents the results of the computation of the wall shear stress distri-
bution in a vessel inflation using the meshes listed in table 2.5. This distribution is
normalized by the value of the wall shear stress exerted by the associated Hagen—Poiseuille



50 Chapter 2. Methodology

2 — 0 1 2
z

Figure 2.17: The distribution of WSS along the upper wall computed using different
meshes mentioned in table 2.5. Parameter settings: H = 0.5, Re = 2500, W = 0.5.

Mesh 9 Ng Nl W1 Wir
Mg | ( ) | 124566 | 31742 | —0.0301923 | 0.0310782
Mg | ( ) | 66398 | 17050 | —0.0301750 | 0.0311178
Mg | (—10,10) | 17058 | 4490 | —0.0293571 | 0.0304471
My | ( ) | 152449 | 38788 | —0.0302183 | 0.0310903
My (=5,5) | 136049 | 34613 | —0.0302199 | 0.0310871

Table 2.6: Size of the computational domain, as characterized by 2, and number of
nodes N1 and N, used in convergence tests of the stability analysis; wy; and wy, are
the computed imaginary and real parts of the eigenfrequency of the wavenumber
m = 1. Parameter settings: H = 0.5, W = 0.5, Re = 2500.

flow. The Reynolds number is 2500. It is observed that where the vessel is inflated, corre-
sponding roughly to the range —1 < z < 1, the wall shear stress is reduced significantly;
in fact, it becomes vanishingly small. Near the downstream end of the inflation, however,
a sudden change occurs from a negative relative value of —0.5 to a positive relative value
of 1.5. With the exception of the computations done with the rather coarse mesh Mg, all
other computations match perfectly to the computations carried out on the fine mesh Mj;.

We now turn our attention to the validation of our stability calculations. The tests
carried out using W = 0.5 are presented. Table 2.6 shows some of the different meshes
used for validating our stability calculations.

The results of tests carried out for the values W = 0.5, H = 0.5 and Re = 2500 are
presented. The meshes used in this case are specified in table 2.6, which also presents the
computed values of the real and imaginary parts of w, the eigenfrequency with the largest
imaginary part associated with wavenumber m = 1. With the exception of the coarse mesh
M3, all meshes yield values for the eigenfrequencies which agree up to the fourth digit.
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Mesh [0 N2 N1 W1g Wir

Mg | (-10, 10) | 124566 | 31742 | 0.000333584 | 0.0409547
Mg | (-10, 10) | 66398 | 17050 | 0.000358289 | 0.0412757
M3 | (-10, 10) | 17058 | 4490 | -0.001396340 | 0.0127780
Mg | (-20, 20) | 178112 | 31742 | 0.000355735 | 0.0411971

Table 2.7: Results of the convergence test on the stability calculations. Parameter
settings: W = 0.5, H = 0.5, Re = 5000, m = 4.

Mesh 0 Ny Ny W1 Wiy
M, | (-10, 10) | 122346 | 31187 | 0.00119180 | 0.0138370
Mg | (-10, 10) | 66310 | 17028 | 0.00110433 | 0.0138551

Table 2.8: Results of the convergence test on the stability calculations. Parameter
settings: W = 0.5, H = 0.8, Re = 5000, m = 3.

This finding permits us to use mesh M, for the stability computations.

Table 2.7 shows the convergence results of our stability calculations for H = 0.5 at a
higher Re for m = 4. We can see that the values corresponding to the coarse mesh M3
differ considerably from the rest. But a good agreement can be seen between the values
corresponding to Mg, and Mo, though mesh M, is considerably coarser than mesh Mg,
but sufficiently fine to obtain highly resolved flow fields. Also calculations were carried out
with a bigger domain corresponding to mesh M; and the eigenvalues obtained are in good
agreement with the values obtained using smaller domains as only the fifth digit varies.
This again stengthens our argument to use the mesh denoted by M, to be used for our
stability computations. Some further tests are shown in table 2.8 cementing the argument
to use mesh Mo for our stability calculations.

For different values of bulge widths, W, different sized domains were used for carrying out
the computations. Table 2.9 shows the domain sizes for different widths that were used to
carry out all the computations presented in this study.

W 7] Ny | N
0.25 | (-10, 10) | 64626 | 16607
0.50 | (-10, 10) | 66398 | 17050
1.00 | (-10, 10) | 68570 | 17593
2.00 | (-15, 15) | 57082 | 14721

Table 2.9: The meshes used for the base flow calculations for H = 0.5.
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2.5.2.2 Pulsatile flows

We have already validated our stability solver using flows through stenotic geometries
(see 2.5.1.2). We now turn our attention to pulsatile flows through AAAs. It is to be
reminded that flows through AAAs offer different challenges to the ones posed by flows
through stenotic geometries. In the former, as we have seen for the case of steady flows,
the base flow vorticity and perturbations are localized within the bulge, whereas in the
latter, vortex ring structures generated at the constriction of the stenoes propagate far
downstream. Hence, the dependence on outlet lengths and on spatial resolutions are very
different for the two flows.

Base flow fields

Before we move on to pulsatile flows through AAA geometries, we carried out some pre-
liminary checks using a pulsatile through a circular pipe flow, without any dilatation, as
it presents us with an opportunity to compare our results with analytical solutions. The
computations were carried out on domains that are 20D units in length. At the inlet, the
analytical Womersley solution is imposed using a single Fourier component and the flow is
integrated in time for about 10 cycles. The error E,;,. is calculated as an integral over the
domain given by

Epipg(?", Zat) = \//Q ((UZﬁxact - Uvz,DNS)2 + Uf,DNS)? (252)

where U, ezqct refers to the exact analytical solution obtained from the equation (1.13),
U. pns and U, pns stand for the axial and radial velocity profiles obtained from our DNS
solver. A second-order temporal scheme is employed to time-mach our DNS solver. The
variation of error with the time step size is shown in figure 2.18. The mesh density p denotes
the number of vertices per unit length. Figure 2.18(a) shows the order of magnitude of the
error for various values of dt that saturates with the decrease in dt and becomes independent
of dt. The second-order accuracy of the temporal scheme is demonstrated in figure 2.18(b).
A time-step size of dt < 0.0005 gives us flow fields having an error of the order of 10~°
which was then fixed for subsequent calculations.

Having established that our base flow solver works for the case of pulsatile flows through
circular pipes, using realistic flow rate waveforms at the inlet, we now discuss the tests
conducted in the presence of an AAA. The base flows for the case of pulsatile flows through
A AAs were time marched for a sufficient number of cycles so that the mean flow had time to
convect through the entire computational domain. For the parameter conditions explored
in the present study, the flow is integrated in time for 10 cycles to attain periodicity.
Time traces of the velocities at various points within the domain (corresponding to z/d =
—1,0,1,5,15 and r/d = 0.25) were then checked at a specific phase in the cycle to confirm
that the flows have converged to a time-periodic state. An inlet length of 10D units and
an outlet length of 20D units is considered to carry out the simulations. At the start of
the calculation, at ¢ = 0, the analytical solution of Womersley given by equation (1.2.2) is
applied within the domain corresponding to a circular pipe. A zero velocity field is imposed
within the bulge region. The waveform corresponding to the rest state, Q1 at Re = 264
and Wo = 12 was chosen. The different domains considered in the study are shown in table
2.10.
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Figure 2.18: (a) Plot of error E,,. for different time-steps dt. Parameter settings:

p = 30.

settings: p = 30.

Mesh 9 Ny Ny N
My, (-10, 20) | 7152 1941 | 16245
My (-10, 20) | 16752 | 4417 | 37921
M3 (-10, 20) | 26858 | 7020 | 60736
My, (-10, 20) | 38902 | 10081 | 87885
My (-10, 20) | 43254 | 11195 | 97703
Mg (-10, 20) | 60652 | 15621 | 136925
My, (-10, 20) | 105582 | 27006 | 238170
Mg (-10, 20) | 32006 | 8332 | 72344
Mg (-10, 20) | 32006 | 8332 | 72344
Mo | (-10, 20) | 32006 | 8332 | 72344

(b) Plot of log(dt) vs log(E) showing a second-order relation. Parameter

Table 2.10: The meshes used for pulsatile base flow calculations at H = 0.5, W =

0.5.
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Figure 2.19: The WSS at t = 0.27 computed using 3 representative meshes. Mesh
Mb3 represents a coarse mesh, whereas Mb6 and M7 represent relatively finer
meshes. The convergence of the WSS with increasing mesh refinement can be ob-
served. Parameter settings: H = 0.5, W = 0.5, Re = 264, Wo = 12.

The WSS distributions were used to check for spatial resolution of the base flow fields.
Figure 2.19 shows the spatial distribution of WSS obtained using three different meshes.
Mesh Mb3 corresponds to a coarse mesh, whereas Mb6 and Mb7 represent finer meshes.
For the coarse mesh, the WSS distribution differs significantly from those obtained using
finer meshes. We have used mesh M b6 for carrying out further tests on our stability solver,
which will be discussed subsequently

Stability analysis

We have already seen that our stability solver was able to reproduce the results presented
in the literature for the case of flows through stenoses. Some of the tests carried out using
a pulsatile waveform for the case of flow through an AAA are presented. Most of the tests
were carried out using the rest waveform, Q1 (see section 1.2.3), using the geometrical
configuration corresponding to a typical AAA (W = 0.5, H = 0.5). We begin by checking
for the spatial resolution of meshes needed for convergence of Floquet multipliers. Tables
2.11 show the values of |u| obtained using different meshes at various parameter conditions.
As seen earlier for the case of base flows, mesh corresponding to Mb6 provides us with a
good approximation of the Floquet multiplier.

Using mesh Mb6, we check for the temporal resolution needed for the convergence of
the Floquet multiplier. Table 2.12 shows the convergence of the Floquet multiplier with
time step At. For most of our calculations, we have used a time step that corresponds to
T/10000 to obtain accurate reuslts.
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Mesh | |y Mesh | |p] Mesh | |yl

My 10923 | | Mg | 1452 | | My | 2.225
My | 1199 | | Mys | 1.184 | | Myy | 1.677
My 11195 | | My | 1.190 | | My, | 1.683

(a) (b) (c)
Table 2.11: The convergence of the Floquet multiplier. (a) Parameter settings: @1,
Re = 264, Wo = 12, W = 0.5, H = 0.5, m = 1, (b) Q1, Re = 300, Wo = 15,
W =05, H=05 m=3, (c) Ql, Re = 300, Wo = 10, W = 0.5, H = 0.5, m = 2.

At 1]

0.0005 (7/3500) | 0.6240
3.5¢-04 (T/5000) | 0.6521
1.75e-04 (T/10000) | 0.6654

Table 2.12: The convergence of the Floquet multiplier with At using mesh Mb6.
Parameter settings: @1, Re = 250, Wo =15, W = 0.5, H = 0.5, m = 1.

Having established the validity of our flow solver, we now move on to the investi-
gation of the flow dynamics at various parameter conditions. We begin by a discussion on
steady flows through AAAs (chapter 3), followed by a discussion on pulsatile base flow
characteristics at various flow conditions (chapter 4) and subsequently an investigation of
stability characteristics (chapter 5).






CHAPTER 3

Steady Flows Through Model
AAAs

3.1 Introduction

In the present chapter we discuss the base flow characteristics and the results of our
stability calculations obtained for steady flows through model abdominal aortic aneurysms
(AAASs). Specifically, the changes in flow characteristics during the progressive enlargement
of an AAA is investigated.

Though the flows encountered in AAAs are highly pulsatile in nature, as a first
step it is worthwhile to investigate the flow characteristics encountered in these geometries
subject to steady inflow conditions. This will help us in analysing the flow features without
the additional complexity introduced by time-periodic inlet waveforms. As mentioned
in chapter 1, several studies can be found in the literature aimed towards this objective
(Schrader et al., 1992, Budwig et al., 1993, Peattie et al., 1994, 1996, Asbury et al., 1995,
Bluestein et al., 1996, Vorp et al., 1998, Yu, 2000). However, no study that examines the
stability of steady flows in model AAAs is to be found. Though Sheard & Blackburn
(2010) carried out a global and transient stability analysis of a steady flow through a
model AAA, information on the mode structures and the instability mechanisms inherent
in these geometries presented by them are very limited. Moreover, they do not take into
account the progressive enlargement of an AAA by varying the geometrical parameters,
namely the bulge height H and the bulge width W. This is the contribution of the present
chapter, where we discuss the changes in flow characteristics under varying geometrical
parameters and examine the stability of these flows, providing information on the origin
of the instability mechanisms. This would also help us in providing answers to another
perennial question present in fluid mechanics: the deviation needed from a circular pipe
for the flow to become unstable.

The aneurysm is modeled as an inflation of gaussian shape on a vessel of circular
cross-section. The fluid is assumed to be Newtonian and the flow far upstream and down-
stream of the inflation is a Hagen—Poiseuille flow. The model aneurysm is characterized by
a maximum height H and width W, made dimensionless by the upstream vessel diameter,
and the steady flow is characterized by the Reynolds number of the upstream flow. The
base flow through the model aneurysms is determined for non-dimensional heights and
widths in the physiologically relevant ranges 0.1 < H < 1.0 and 0.25 < W < 2.0, and
Reynolds numbers up to 7000, which corresponds to peak values recorded during pulsatile
flows under physiological conditions. The global linear stability of the base flows is
analysed by determining the eigenfrequencies of a modal representation of small-amplitude
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perturbations. The nature of instability mechanisms are investigated using the energy
transfer between the base flow and the perturbations.

The chapter is organized as follows. We begin by discussing the base flow charac-
teristics observed in a typical AAA and then move on to the effect of geometrical
parameters. Following this is a discussion of the stability characteristics of these base
flows, concluded by a discussion of the various instability mechanisms.

3.2 Base flow characteristics

3.2.1 Effect of dilatation parameter
3.2.1.1 Base flow fields

First, the flow characteristics are described by considering a typical value of the bulge width
W = 0.5. The base flow fields at three different bulge heights (H = 0.3, H = 0.5, H = 0.8)
are visualized in figure 3.1 at a Reynolds number of 5500 using streamlines and azimuthal
component of vorticity. It is to be noted that the typical Reynolds numbers (peak) in
the abdominal region of the aorta can vary from 600 at rest to up to 6000 under excercise
conditions (Ku, 1997). The base flow consists of a jet of fluid passing through the aneurysm
and a slowly recirculating vortex in the outer annulus. The radial velocity component is at
least two orders of magnitude lower than the axial component everywhere in the domain
except at the downstream end of the bulge where it is around one order of magnitude
smaller. This is the region where the vorticity increases. For higher bulge heights the
appearance of a secondary recirculation zone is seen which is also observed with increase in
Reynolds number at a fixed bulge height. This secondary recirculating zone is observed to
move towards the upstream end of the bulge, with increase in Reynolds number, thereby
pushing the primary recirculation towards the downstream end. This is further shown in
figure 3.2 where the base flow vorticity along with representative streamlines are shown for
two different bulge heights at three different Reynolds numbers.

Figure 3.3 shows a map indicating the presence of the number of recirculation zones as a
function of the bulge height and the Reynolds number. It is seen that as the bulge height
is gradually increased, two recirculation zones are present. The primary recirculation zone
with a positive vorticity migrates towards the distal end of the bulge with increase in
Reynolds numbers and pushes the secondary recirculation zone with a negative vorticity
towards the proximal end of the bulge. This observation is consistent with those provided
in the literature (Bluestein et al., 1996) who showed that the recirculation zones formed
inside the aneurysm create conditions that promote thrombus formation. As the aneurysm
develops, its wall becomes lined with a thrombus: an aggregate of blood cells, platelets,
blood protein and cellular debris, which has been considered as an attempt of the body to
increase the wall thickness, thereby reducing the likelihood of rupture. It has been argued
that the platelets approaching the recirculation zone get trapped in the recirculation zone
that allow prolonged contact with the wall, promoting adhesion to the wall.

3.2.1.2 Wall shear stress distributions

The above flow features within the aneurysm impact the WSS distributions. The WSS is
computed from our base flow fields using the expression given by equation (2.51). Figure
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Figure 3.1: Base flow visualized by the vorticity and streamlines at Re = 5500 for
W = 0.5. Parameter settings: (a) H =0.3 (b) H=0.5 (¢) H=0.8.

(i) (ii)

Figure 3.2: Base flow visualized by the vorticity and streamlines for W = 0.5 at
three different Reynolds numbers. Parameter settings: (i) H = 0.5 (ii)) H = 1.0.
(a) Re = 3000 (b) Re = 5000 (c) Re = 7000.
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Figure 3.3: The number of recirculation zones as a function of bulge height and
Reynolds number. Parameter settings: W = 0.5.

3.4 shows the WSS distributions at four different bulge heights as a function of the Reynolds
number. The WSS values were normalized with the values present in a circular pipe. The
variation in the WSS values with the Reynolds numbers is negligible and only significant
differences can be seen at the distal end where WSS values reach a minimum. The WSS
values within the bulge region are very low when compared with the value present in the
straight sections upstream and downstream of the bulge. They attain a negative value
reaching a minimum just upstream of the distal end. This is followed by a sharp gradient
resulting in a positive value for the WSS thereby reaching a maximum near the distal end of
the bulge. Also further downstream of the bulge, the WSS values slowly converge towards
the value observed in a straight circular pipe. Also the changes in the WSS distributions
as a function of H are more pronounced at lower values of bulge height.

Figure 3.5 shows the variation in the minima and the maxima of the WSS values as a
function of the bulge height H for four different Reynolds numbers. We can see that the
minima, given by figure 3.5(a) decrease with the increase in Reynolds number. Also there is
a sharp change in the minimum value once H becomes greater than 0.25. This is due to the
fact that for small bulge heights the minimum is attained at the upstream end of the bulge
whereas at larger bulge heights it is attained at the downstream end. The absolute value
of the minimum is an order of magnitude lower from the values in a circular pipe at larger
bulge heights. From figure 3.5(b) we can see that the maximum increases with the increase
in bulge height and is around 1.5 times greater than the values found in the upstream
and downstream of the aneurysm. Such low values for the minimum and high values for
the maxima of the WSS, at the downstream end of the bulge, can significantly affect the
physiology of the arterial walls as they tend to pull the walls in opposite directions.

The endothelial cells which line the arterial walls are more receptive to changes in the WSS
values than to flow rate. As a result, the WSS distributions form an important link between
pathological propagation of the disease and hemodynamics. The presence of low WSS
regions within the bulge are found to lessen the wall permeability. It is understood that these
regions of the wall, with a low wall permeability are favored locations for atherosclerotic
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Figure 3.4: The wall shear stress distributions as a function of Reynolds number.
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Figure 3.5: The minimum and maximum WSS values as a function of the bulge

height H at different Reynolds numbers are shown in (a) and (b) respectively.
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plaque deposits (Aird, 2007, Pedley, 1979, Ku, 1997). Also the presence of coexisting
regions of low negative WSS and high positive WSS at the distal end of the bulge, tends to
pull the walls apart thereby increasing the risk of rupture. The presence of such disturbed
flow patterns may induce differential molecular responses in endothelial cells that result in
preferential localization of atherosclerotic lesions (Chiu & Chien, 2011).

3.2.2 Effect of W on base flow characteristics

Streamlines and distributions of azimuthal vorticity of the steady axisymmetric base flows
through inflated vessels are shown in figures 3.6 — 3.8 for different values of W. In these
figures the values of the dimensionless width W and Reynolds number Re are: W = .25,
Re = 5500 (figure 3.6); W = 1.0, Re = 5500 (figure 3.7); W = 2.0, Re = 4000 (figure 3.8).
In each of these figures the dimensionless height H is: H = 0.3 in (a); H = 0.5 in (b); and
H = 0.8 in (¢). Note that, to bring out details, the horizontal scales in the figures have
been chosen differently.

The flow through the model aneurysms is qualitatively similar for all parameter values such
that H/W is relatively small: A jet-like core of diameter roughly that of the non-inflated
vessel, surrounded by slowly recirculating fluid in the inflation. In the recirculation region
the radial velocity is at least two orders of magnitude smaller than the axial velocity, except
near the downstream end of the inflation, where it is about one order of magnitude smaller.
The vorticity distribution in the core region is uniform with magnitude similar to that
in the Hagen—Poiseuille flow far upstream and downstream. The vorticity distribution in
the recirculation region is also approximately uniform, but of opposite sign and of smaller
magnitude. A stagnation point is observed at the downstream end of the inflation. This
flow structure has been observed by Budwig et al. (1993) and Bluestein et al. (1996) in their
experiments and numerical calculations. That a secondary recirculation region, with weak
vorticity of opposite sign to that in the primary recirculation zone, appears as the ratio
H/W or the Reynolds number Re is increased has not been reported before. The centre of
the primary recirculation zone is displaced towards the distal end of the inflation as H/W
or Re is increased further, while the centre of the secondary recirculation zone is displaced
towards the proximal end of the inflation.

The WSS for two different values of W are shown in figures 3.9 and 3.10. For a small value of
W = 0.25, the WSS distribution hardly varies with Re and H, and are qualitatively similar
to W = 0.5 (see figure 3.4). At a larger value of W = 2.0, the mimimum value of the WSS is
found to be dependent on the Reynolds number, as can be seen from figure 3.10(a). However
at larger bulge heights, the WSS variation is minimal as a function of the Reynolds number.

We now move on to the stability analyses of the base flows described above.

3.3 Stability analyses

3.3.1 Stability characteristics in a typical AAA

A typical eigenfrequency spectrum in the complex w-plane is shown in figure 3.11. In this
example W = 0.5, H = 0.5, Re = 5500, parameter values for which the basic flow is shown in
figure 3.1(b). Figure 3.11(b) shows a close-up view of the eigenvalue spectrum. Two modes
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Figure 3.6: Base flow visualized by the vorticity and streamlines at Re = 5500 for
W = 0.25. Parameter settings: (a) H = 0.3 (b) H =0.5 (¢) H =0.8.
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Figure 3.10: As in figure 3.9, but for W = 2.0.

with a positive temporal growth rate w; can be observed; they are associated with the
azimuthal wavenumbers m = 4 and m = 5. The real parts w, of these eigenfrequencies are
non-zero, so that the unstable modes represent three-dimensional oscillations. The spatial
distribution of the unstable mode corresponding to the azimuthal wavenumber m = 4 is
shown in figure 3.12. It can be observed that the modes are localized entirely within the
bulge region. This also strengthens our argument that larger domain sizes are not needed
for stability calculations.

With each azimuthal wavenumber m a leading mode can be associated; this is the mode
with the largest imaginary part w; of the eigenfrequency. The variation of the temporal
growth rate w; of these leading modes with Reynolds number is shown in figure 3.13(a),
again for W = 0.5, H = 0.5. Figure 3.13(b) shows the real part w, of the leading modes
associated with wavenumbers m = 4 and m = 5. The temporal growth rate of both of
these modes become positive at Re =~ 4875; both modes are found to switch abruptly from
stationary to oscillatory at much smaller Reynolds numbers.

Figure 3.14(i) shows the amplitude of the global mode defined as the square-root of the
energy density field at two different Reynolds numbers for the azimuthal mode number
m = 4. The Reynolds numbers are chosen in such a way that they belong to the two
different regimes, corresponding to a dominant stationary critical mode and an oscillatory
one, observed in figure 3.13. The bulge height chosen is H = 0.5. The amplitude of
the leading mode is found to reach its maximum slightly above the free shear layer and
slightly upstream of the reattachment point. The maximum is also seen to shift towards
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W =0.5, H=0.5, Re = 5500. (b) A close-up view of the eigenfrequency spectrum
showing the unstable modes corresponding to m = 4 and m = 5. The stable region
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components. Parameter settings: W = 0.5, H = 0.5, m = 4, Re = 5500.
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Figure 3.14: (i) The amplitude of the mode defined as the square-root of the energy
density field. Parameter settings: H = 0.5, m = 4; (a) Re = 2000 (b) Re = 5500.
(ii) Magnitude of the velocity of the global mode and of its components integrated
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line ([ |dp|?dr)'/2. Parameter settings: H = 0.5, m = 4; (a)Re = 2000 (b) Re =

5500.
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Figure 3.15: Basic streamlines and total local energy production rate Z?:l E,; for
H = 0.5 at an azimuthal mode number m = 4. (a)Re = 2000 (b)Re = 5500.

the downstream end of the bulge at a higher Reynolds number. The mode amplitude at
each axial position z, defined as ([ [|?dr)'/2, hereafter referred to as the z—amplitude,
is presented in figure 3.14(ii). The contribution of each of the velocity components to
the energy density field at each axial location is shown using different colored lines (see
caption). Three different zones can be noted. In the first zone starting from the inlet
to the upstream end of the bulge the mode is almost nil. Within the bulge region the
amplitude is maximum. The third region from the downstream end of the bulge to the exit,
the amplitude drops off significantly with z. In figure 3.14(iia) where the z—amplitude is
computed for a Reynolds number 2000 one can see that the axial velocity component of
the mode contributes almost entirely to the total energy density. Though the azimuthal
velocity component is more significant than the radial one its contribution to the total
energy density is minimal. Whereas in figure 3.14(iib) which corresponds to a Reynolds
number 5500 we can observe that the contribution coming from the azimuthal velocity
component is more significant. We believe that the shift in the flow characteristic from a
steady to an unsteady one at a Reynolds number around 2375 is related to the increase in
dominance of the azimuthal energy density and as such one may expect different instability
mechanisms to be present.

Figure 3.15 shows the regions in the flow where the energy transfer from the base flow to the
perturbations take place at two different Reynolds numbers corresponding to a dominant
stationary critical mode and an oscillatory one as in figure 3.14. We can see that in the
case of a stationary critical mode (figure 3.15(i)), the region of maximum energy transfer is
located around the separating streamline, whereas for the oscillatory critical mode (figure
3.15(ii)), the maximum energy transfer takes place within the primary recirculation region.
This further suggests that different instability mechanisms are at play at different regimes.
We come back to this point shortly when we make a comparison with other bulge heights
and discuss the various instability mechanisms.
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3.3.2 Stability boundaries and comparison with other
AAAs

The stability boundaries in the H — Re plane are shown in figure 3.16 for different
azimuthal mode numbers m at four values of the bulge width: W = 2.0 (a); W = 1.0 (b);
W = 0.5 (¢c); W = 0.25 (d). For small values of bulge height, the aneurysm geometry
can be viewed as a small perturbation to a circular pipe flow which is linearly stable for
all Reynolds numbers. We can see that this is indeed the case as the flow is found to
be stable to small values of H. Though a critical bulge height cannot be confirmed, as
higher Reynolds numbers were not investigated, it is deemed that all the perturbations
to the base flow are linearly stable for bulge heights H < 0.2. This critical value of bulge
height depends on the width W. As the bulge height is increased, the flow is found to
become unstable to stationary critical modes shown by dotted lines in figure 3.16. These
critical modes are characterized by larger azimuthal mode numbers. As the bulge height
is increased further, the flow is found to become unstable to smaller azimuthal mode
numbers and these are of oscillatory nature and shown using continuous lines in figure
3.16. Stationary disturbances were also found to be the least stable modes at very large
values of H. The critical Reynolds numbers for stationary unstable modes are found to be
lower than those for the oscillatory unstable modes. We find qualitatively the same nature
of flow instability as in the work carried out by Cho et al. (1988) in which stationary
disturbances dominated for small bulge heights and the oscillatory disturbances for larger
bulge heights.

For the case of W = 0.25, figure 3.16(d), the stable region in the H — Re plane is
significantly larger. This is expected as the flow passes through the aneurysm without
being significantly influenced by the presence of the dilatation. The critical bulge height
below which the flow remains stable to all Reynolds numbers and azimuthal mode number
is roughly around H = 0.5. The critical Re is around 4000 for which the flow becomes
unstable to m = 2 mode for a bulge height of H ~ 0.775. All the unstable modes have a
stationary nature.

With the increase in width, W, the stability characteristics remain qualitatively
similar, albeit with some exceptions. For W = 0.5, the stationary mode corresponding
to m = 4 is not observed for lower values of bulge height, unlike in the case of W = 1.0
and W = 2.0. With the increase in width, the stable region is found to increase gradually,
though we have not performed calculations for very large values of W to verify the
asymptotic features, as such aneurysms are highly unrealistic. As large values of W are
not physiologically relevant, we have have not gone beyond W = 2 in the present study.

3.3.3 Instability mechanisms

In this section, we attempt to discuss the various stability mechanisms that are at play
in these geometries. We use the energy-transfer analysis to decipher the physical nature
of instabilities. As shown earlier in figures 3.14 and 3.15, the distribution of the energy-
transfer differs when the base flow has a single recirculation region or two recirculation
regions. This can happen with the increase in Reynolds number or bulge height. We begin
by discussing the stability boundaries for W = 0.5 as it is representative of a typical AAA.
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Figure 3.16: Critical curves associated with different azimuthal wavenumbers m in

the Reynolds number Re versus inflation height H plane. The pink, green, black,
red and blue lines correspond to m = 1, m = 2, m = 3, m = 4 and m = 5,
respectively. The continuous curves indicate oscillatory modes, the dotted lines
stationary modes. The bulge width in these figures is: (a) W = 2.0; (b) W = 1.0;
(¢) W=0.5; (d) W =0.25.
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Figure 3.17: Left column: Amplitude of the mode defined as the square-root of the
perturbation energy density field. Right column: Variation with axial distance z of
the magnitude of the velocity of the global mode and of its components integrated

over r: ([ [a[2dr)Y/2 (black); ([ |aiz)2dr) /2 (red); ([ |dr|?dr)'/? (blue); ([ |aig)>dr)/?

(green); all normalized with the maximum value of ([ [@[?dr)!/2. Parameter values:

Re = 5500, m =3, W = 0.5, H=0.3 (a); H=0.8 (b).

3.3.3.1 W =05

First, two flows are compared at Re = 5500 through a model aneurysm with width W = 0.5,
one with height H = 0.3, the other with H = 0.8.

Figure 3.17 presents the perturbation energy density distribution associated to the ampli-
tude function (., g, @, ) for the two different cases, in (a) for the basic flow with a single
recirculation region (H = 0.3) and in (b) for the basic flow with also a secondary recircu-
lation region (H = 0.8). It is observed (left column) that in the first case the disturbance
energy is distributed all along the axis of the inflation, while in the second case it is local-
ized in a small region at the downstream end. This can be seen even more clearly from
the z—amplitude associated with the individual perturbation velocity components (right
column). Note also that in both cases most of the perturbation energy is in the axial per-
turbation velocity component, and that in the second case there is also a small contribution
of the radial velocity component, which is totally absent in the first case; in this first case
then, the disturbance motion takes place in circular planes.

That different mechanisms are involved in the instability of the two basic flows, is also
clear from figures 3.18 and 3.19, which provide information on the energy transfer between
the basic flow and the perturbation flow. Shown here are the total energy transfer rate,
in (d), and the three separate contributions E, 1 (a), Ep2 (b) and Ej, 4 (c), which have
been defined in expression (2.44). The global picture is the one that also emerges from
figure 3.17, but here it is seen further that the main energy transfer mechanism in both
cases is that represented by F), o; the locations where this mechanism is active are different,
though.
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Figure 3.18: Basic streamlines and local energy production rates for H = 0.3 at
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Figure 3.20: Velocity distribution at r = 0.5 of the most unstable mode associated
with wavenumber m = 3 in the form of streaks (arrows) and the total local energy
production Z?:l E,; (grey shading); H = 0.3, W = 0.5, Re = 5500.
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Figure 3.21: Velocity distribution (arrows) and streamwise perturbation velocity u,
(grey shading) at the axial location of maximum perturbation energy of the most
unstable mode associated with wavenumber m = 3; H = 0.3, W = 0.5, Re = 5500.

In the case with a relatively shallow inflation (H = 0.3), the unstable mode is stationary and
the disturbance motion primarily takes place on cylindrical planes. Figures 3.20 and 3.21
provide a more detailed view of this perturbation velocity field. The picture that emerges
is that of a flow with alternating slow and fast streamwise streaks (figure 3.20), and an
arrangement of alternately rotating vortices distributed in the layer between the core and
the recirculation zone (figure 3.21). These vortices transport low-velocity fluid to high-
speed regions within the perturbation flow. This is the familiar lift-up mechanism, first
described by Orr in 1907 (Schmid & Henningson, 2001). The lift-up mechanism has also
been identified by Lanzerstorfer & Kuhlmann (2012a) as governing the instability of two-
dimensional flow past a backward-facing step with small expansion ratio; cf. their figure 20
with our figure 3.18(d).

At larger bulge heights, H > 0.4, the energy-transfer from the basic flow to perturbation
is different, which can be seen from figures 3.14 and 3.19. It is seen that the energy
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Figure 3.22: (a) Base flow streamlines (continuous lines), critical velocity fields
(arrows) and total local energy production Z?:l E,;. (b) Critical velocity fields
(arrows) and the total local energy production Z?:l E,; (grey shading) at an axial
location where the energy transfer reaches its maximum. Parameter settings: H =
0.5, Re = 5500, m = 4.

Figure 3.23: Base flow streamlines (continuous lines), critical velocity fields (arrows)
and total local energy production Zle E, ;. Parameter settings: H = 0.975, Re =
5500, m = 1.
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Figure 3.24: Base flow streamlines (continuous lines), critical velocity fields (arrows)
and total local energy production Z?Zl E, ;. Parameter settings: W = 0.25, H =
0.8, Re = 5500, m = 2.

transfer occurs only in a small region, namely in the centre of the primary vortex. This is
typical for an elliptical instability mechanism. Lanzerstorfer & Kuhlmann (2012a) have also
demonstrated that the elliptical instability mechanism is involved in the global instability
of flow past a two-dimensional backward-facing step of moderately large expansion rates;
note the close correspondence to our figure 3.19(d) and their figures 13 and 14. This is
further exemplified in figure 3.22(a) where the total local energy production for H = 0.5
at a Reynolds number Re = 5500 for an azimuthal mode number m = 4 is shown along
with the critical velocity field vectors and the basic flow streamlines. The perturbation flow
is strongest where the energy transfer is maximum, which is entirely localized in the core
region of the primary recirculation region and they are aligned with the principal direction
of strain. Figure 3.22(b) shows the resulting perturbation flow that arises as a sequence of
counter-rotating vortices in the azimuthal plane. The same features are observed at larger
bulge heights (see figure 3.23) which indicates that the instability mechanism is of an elliptic

type.

3.3.3.2 Comparison with other widths

We begin by considering W = 0.25, by choosing the most unstable mode at H = 0.8 at
a Reynolds number of 5500 and m = 2. Figure 3.24 shows the energy transfer for these
parameters, along with the basic flow streamlines and critical perturbations. Once again we
can forward the arguments mentioned earlier for the case of elliptic instability mechanism
for the present parameters too. However, unlike in the previous cases, the energy transfer is
not entirely localized within the primary vortex and is slightly pushed towards the convex
streamline. We postulate the possibility of another instability mechanism that is centrifugal
in nature that could possibly account for these differences.

Figure 3.25(a) shows the regions where the maximum energy transfer from the basic flow
to the perturbation takes place. Unlike in the previous cases where the energy transfer is
localized along the separating streamline or within the primary vortex, here the energy
transfer is along the convex side of the streamlines, sufficiently displaced from the center
of the primary vortex. We believe that in this case, the instability mechanism could be
centrifugal in nature.

Centrifugal instability theory, as first developed by Rayleigh (1917) for axisymmet-
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Figure 3.25: (i) (a) Basic streamlines and local energy production rate Z?Zl E,;.
(b) Expression (3.1). (ii) (a) The amplitude of the mode defined as the square-root
of the energy density field. (b) Magnitude of the velocity of the mode and of its com-
ponents integrated over r (normalized with ([ [@|2dr)'/?) : black line ([ |a|?dr)'/?,
red line ([ |uis|2dr)/2, blue line ([ |4, |?dr)'/2, green line ([ |dg|?dr)'/?. Parameter
settings: W = 0.25, H = 0.8, Re = 5500, m = 2.

ric inviscid flows with circular streamlines, holds that a potentially unstable condition
results from the existence of a decrease in angular momentum of fluid particles, as the
radial distance from the centre of rotation of the flow increases, resulting in an imbalance
between the radial pressure gradient and the centrifugal force acting on the fluid particles.
This unstable condition triggers three-dimensional structures to form, which redistribute

the angular momentum between the inner and outer regions of such a vortex.

The

corresponding perturbations typically consist of a series of counter-rotating azimuthal
vortices located in the region of decreasing angular momentum and whose axial wavelength
scales on the radial extent of this region.

To support this argument, we use the criterion proposed in Lanzerstorfer & Kuhlmann
(2012b), which is a reformulation of Bayly (1988)’s criterion, which is a sufficient condition
for centrifugal instability for two-dimensional, inviscid flows. Accordingly, the inviscid flow

is centrifugally unstable if

U
ul¢ _
«

0,

(3.1)

is satisfied all along a closed streamline ¥ = const. Here ( stands for the vorticity of the

basic flow and « for the local algebraic radius of curvature, given by

[uP

(V¥) (U .VU)’

(3.2)

As a result, the quantity from the expression (3.1) is computed and is shown in figure
3.25(b). A good agreement between the regions where one would expect centrifugal in-
stability and the regions where maximum energy transfer takes place can be observed,




3.3. Stability analyses 77

1.0
0.5

(il

it

03

13

Figure 3.26: (a) Basic streamlines and local energy production rate 2?21 E,;.
(c) Critical velocity fields in the form of streaks (arrows) and the total local energy
production Z?:l E, ;. Parameter settings: H = 0.3, m = 2, Re = 5500. (b) Base
flow streamlines (continuous lines), critical velocity fields (arrows) and total local
energy production Z?:l E, ;. (d) Critical velocity fields (arrows) and the total local
energy production 23:1 E,; (grey shading) at an axial location where the energy
transfer reaches its maximum. Parameter settings: H = 0.8, m = 2, Re = 5500.

indicating centrifugal instability mechanism. Also, the term given by F), » dominates over
the rest (not shown here). The energy distribution of the mode and the contribution from
each component is shown in figure 3.25(c),(d). Also, we can see that the contributions
from the radial and the azimuthal components are more pronounced in the regions where
the centrifugal effects are more important. We would like to remind that both elliptic and
centrifugal mechanisms are dominant at small values of W for large bulge heights.

At a larger value of width, W = 1.0, we can see from figure 3.16(b) that at lower bulge
heights, the unstable modes are found to be stationary with m = 2,3. The least stable
configuration is for H ~ 0.7 and Re ~ 1500 for m = 2. For low values of H, the unstable
modes corresponding to m = 4 are found to be oscillatory and for higher values of H they
are found to be stationary. To compare the differences of the unstable modes at different
points in the parameter space, we consider the modes m = 2, 3 for the bulge heights H = 0.3
and H = 0.8 at a Reynolds number Re = 5500. Figure 3.26 shows the regions where the
energy transfer from the basic flow to the perturbations takes place giving insight into the
instability mechanisms. We can see that the energy distributions at small and large values
of H are qualitatively the same as in the case of W = 0.5. The maximum energy transfer
for stationary modes at small bulge heights are found to take place along the separating
streamline. For larger bulge heights, the energy transfer is more pronounced within the
primary vortex. Once again, one expects a lift-up mechanism to be present at small bulge
heights and elliptical mechanism to be dominant at large bulge heights. This is verified in
figure 3.26 where the formation of streaks and the regions of energy transfer are shown,
indicating lift-up mechanism at small heights and elliptic mechanism at larger heights. The
same features are also observed for W = 2.0.
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3.4 Conclusions

The steady axisymmetric flow through the model aneurysm studied here is unstable for
Reynolds numbers that correspond to the peak values observed during physiological condi-
tions. This occurs for dimensionless aneurysm ‘heights’ of about H = 0.3. Also, the flow in
relatively long aneurysms (i.e. with large widths W) is more susceptible to instability than
that through more localized aneurysms. The base flow in these extended aneurysms is char-
acterized by a single large recirculation region; this flow becomes unstable to a stationary
mode by the lift-up mechanism. Steady flows through shorter aneurysms also include a sec-
ondary recirculation zone; these flows become unstable to oscillatory modes which involve
energy transfer from the base flow to perturbations in a small region at the downstream
end of the aneurysm, presumably by an elliptical instability mechanism.

It may be tempting to draw conclusions concerning the pathophysiology of abdominal aortic
aneurysms from the results found in this study. However, in our opinion this idealized model
is too far removed from reality to do so. The motivation for the present study is to provide
a basis for further more realistic studies, which should permit to quantify the effects of
pulsatility of the flow (discussed in the following chapters), the non-axisymmetry and other
characteristics of the geometry of aneurysms, the presence of the iliac bifurcation and other
vasculature downstream of the aneurysm. Nevertheless, the present study does suggest that
in inflated arteries regions with slowly recirculating fluid occur, with very low wall shear
stresses.



CHAPTER 4
Pulsatile flows: Flow
characteristics

4.1 Introduction

The present chapter extends the work presented in the previous chapter by taking into
account pulsatile flow. Specifically, the changes in flow characteristics under varying
flow conditions and during the progressive enlargement of an abdominal aortic aneurysm

(AAA) are investigated.

One of the most fundamental questions that is still staring at researchers in the
field of bio-fluidmechanics of aneurysms is whether an aneurysm forms as a result of a
degradation process in the wall, or by anomalous changes in the hemodynamic stimuli re-
sulting in an unstable degenerative process on the vessel wall, or by a combination of both.
The prevailing consensus is that the cause is more likely to result from a coupling between
structural changes of the arterial wall and disturbed patterns of hemodynamic stresses
acting on the vessel wall. Changes in structure and etiology of the arterial wall influences
the flow through the arterial segment. Conversely, changes in flow characteristics alter the
pressure and shear stresses acting on the arterial wall, in turn resulting in wall degradation.
Thus, once an aneurysm is formed, the expansion process depends on an interplay be-
tween mechanical stimuli exerted by the pulsatile blood flow and physiological wall changes.

Several works probing at different points of view have been carried out, a review of
which is provided in Lasheras (2007), Humphrey & Taylor (2008). Many of these have
used patient-specific models of AAA to investigate the distribution of wall shear stresses
(WSS) along the arterial wall. Some of the more recent works are Raghavan et al. (2000),
Stamatopoulos et al. (2011), Les et al. (2010), Suh et al. (2011), Sheidaei et al. (2011),
Vorp (2007). All of these studies have provided a good qualitative description of the
flow in an AAA, and the most relevant features like the concentration of WSS at the
distal end, low oscillatory WSS within the AAA cavity and the presence of disturbed flow
conditions, were captured. These studies are highly relevant as they help us to get a clear
picture of the complexity present in vivo AAAs. However, a major drawback is that it
is often difficult to derive general conclusions using this approach due to the complexity
of geometries used in these studies. To overcome this, studies have also been carried
out using model AAA geometries, some of which are Taylor & Yamaguchi (1994), Salsac
et al. (2004), Salsac (2005), Sheard (2009), Duclaux et al. (2010), Deplano et al. (2007,
2013). Of these, the most comprehensive study on the evolution of the flow field during
AAA enlargement was reported by Salsac (2005), who provided changes in spatial and
temporal changes in WSS acting on the endothelial cells as the AAA grows. However, a
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minor limitation of that study was that the WSS distributions at the arterial wall were
underestimated, particularly at the point of impact of the primary vortex, because of the
very small size of the Stokes layer and of the resolution of their measurements, as was
pointed out by them. Hence, in the present work we have used a model AAA geometry,
as the various geometrical parameters, namely the bulge height H and bulge width W
of the AAA, can be varied systematically and a precise description of the various flow
characteristics can be provided.

As reported in Salsac (2005), it has been observed that aneurysms tend to be sym-
metric at the early stages of the disease, but may become non-symmetric when they reach
larger sizes. Also, as the AAA shapes observed in vivo are complex in nature, some studies
have concentrated on comparing the flow features observed in a symmetrical AAA with an
asymmetrical one (Taylor & Yamaguchi, 1994, Salsac, 2005, Deplano et al., 2007, Vorp,
2007, Deplano et al., 2013). Some of the typical flow features observed in symmetric AAAs
persisted in non-symmetric models, with significant deviations only observed for large
values of asymmetry. With these observations in mind, we have used a symmetric model
of AAA in our study with the primary focus being on characterising the flow fields during
the early stages of growth of an AAA.

Another aspect that has received much attention in recent years is to understand
the changes in flow hemodynamics under varying conditions of physical activity, i.e. under
rest and exercise conditions. The flow rates and associated flow parameters, namely the
Reynolds number Re, the Womersley number Wo and the waveform significantly depend
on these conditions. Some of the notable works are those by Taylor et al. (1999), Egelhoff
et al. (1999), Deplano et al. (2007), Les et al. (2010), Suh et al. (2011). The hypothesis
that prolonged exercise may eventually slow AAA growth has been mainly supported
using the following arguments: studies on animals have shown that artificial augmentation
of blood flow led to smaller sized aneurysms (Hoshina et al., 2003), elevation of blood flow
rate and WSS resulted in release of athero-protective factors such as nitric oxide (Taylor
et al.,, 1999), reduction in stagnation and recirculation of blood flow (factors related to
thrombosis (Reininger et al., 1994, Vorp et al., 2001)), reduction in incidence of platelet
aggregation (Suh et al., 2011), to name some. However, no study has been carried out
that looked into varying flow characteristics in an AAA under exercise conditions. This is
another aspect that we have investigated in our present work.

The chapter begins with a brief description of flow characteristics in a healthy ab-
dominal aorta under rest and exercise conditions. The observations are then compared
with the case of a typical AAA under resting conditions. The effect of varying geometrical
parameters, H and W, is then provided. As the flow parameters, Re and Wo, are found
to vary from person to person, even during resting conditions, we have investigated the
sensitivity of our observations, by varying Reynolds number and Womersley number for a
waveform characteristic of resting conditions. Then some results for exercise conditions
are obtained. The chapter concludes with a discussion on physiological implications of our
observations under varying flow conditions at various stages of growth of an AAA.
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Figure 4.1: Waveform (1 and Q)2 corresponding to rest and exercise conditions
respectively.

4.2 Flow characteristics in a healthy abdominal
aorta

The healthy abdominal aorta is idealized as a straight circular pipe with no inflation. Two
types of physiological flow rate waveforms were considered in our study, corresponding
to rest (Q1) and exercise ((2) conditions. These waveforms are taken from the article
by Suh et al. (2011), were measured for patients suffering from AAAs during resting and
exercise conditions and are summarized in figure 4.1. More details on the waveforms used
in our analysis and the Fourier coefficients corresponding to these waveforms are provided
in chapter 1 (see section 1.2.3). The important flow parameters that are investigated in the
present chapter are the Womersley number Wo and the Reynolds number Re, defined as

D |w
Wo = 2\/:, (4.1a)
UD

= —_— 4.1
Re o (4.1b)

where D is the vessel diameter at the inlet, w the frequency of the pulsation, v the kinematic
viscosity, and U the mean axial velocity. The Womersley number Wo can be interpreted as
the ratio of the radius D/2 to the oscillating boundary-layer thickness \/g . Typical flow
parameters for the present analysis derived from the physiological values provided in Suh
et al. (2011) are given in table 4.1.

As seen in figure 4.1, under resting conditions, the peak flow rate during systole (¢ = 0.18T)
goes up to 5 times the mean value. After this the flow rate decelerates and becomes
negative during peak diastole (¢t = 0.447'). At the end of the diastole, the flow sets forward
again and relaxes to zero during the resting period, before being accelerated again at the
beginning of the next cardiac cycle. Figure 4.2(a) shows the corresponding axial velocity
profiles across the aorta during various instants of the cycle. At the beginning of the cycle,
the fluid is almost at rest (¢ = 0.0T). During the acceleration portion of the systole, the
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Waveform Re | Wo
Q1(rest) 264 | 12
Q2 (exercise) | 1700 | 13.8

Table 4.1: Typical values of the flow parameters considered in our study.
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Figure 4.2: Axial velocity profiles across the healthy abdominal aorta at several
instants of time in one cardiac cycle calculated under (a) rest and (b) exercise
conditions.

flow develops into a characteristic top-hat velocity profile. For small Womersley numbers,
viscous forces dominate and the velocity profiles would be parabolic in shape. However,
the Womersley numbers observed in the abdominal aorta are in the range of 10 — 15, and
hence the unsteady forces dominate, and the flow is nearly top hat with thin boundary
layers. The thickness of the boundary layer scales as D/ Wo. After the peak systole, the
flow decelerates first along the walls and the bulk of the flow reverses at peak diastole.
Similar flow features were observed by Salsac et al. (2006), though a slightly different
waveform was considered in their study.

During exercise conditions different flow characteristics prevail. Unlike in the case
of rest, the flow rate remains positive throughout the cardiac cycle and does not reverse
during diastole (see figure 4.1). Also, at the beginning of the cardiac cycle at ¢ = 0.07,
the flow rate is significant and never vanishes during the entire cardiac cycle. The axial
velocity profiles across the aorta at different time instants are shown in figure 4.2(b). As
the flow rate reaches its maximum during the peak systole, the velocity profile resembles a
top-hat profile like in the case of rest. Another difference from the rest condition is that
the axial velocity remains positive throughout the cycle with the exception during diastole,
where negative values are observed close to the wall.

Wall shear stresses in a healthy abdominal aorta

The wall shear stress (WSS) has been established as the primary fluid mechanical char-
acteristic affecting biological arterial responses (Ku, 1997). The wall shear stresses were
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Condition | WSSpeak(Pa) | WSSyin(Pa) | WSS(Pa) | OSI
Rest 2.75 -1.37 0.11 0.41
Exercise 5.26 -1.85 0.71 0.27

Table 4.2: WSS characteristics under varying physiological conditions in a healthy
abdominal aorta.

calculated as a function of time from the velocity profiles described above as

ouU,
WSS(z,t) = —Wh:wan. (4.2)

The temporal evolution of the WSS under rest and exercise conditions is shown in figure
4.3 and follows the evolution of the flow rate. The convention is to assign a negative value
to WSS corresponding to reversed flow.

The various quantities used by different authors to investigate the effect of WSS on en-
dothelial cells are the time-averaged WSS (WSS) and magnitude of the time-averaged WSS
magnitude (|[WSS|). These quantities are defined as

T
WSS 1 / WSSdt, (4.3)
T 0

T
[WSS| = % /0 [WSS|dt. (4.4)

The pulsatility of the flow and the unidirectionality of the WSS is quantified using the
oscillatory shear index, defined as

ost= (1o W55 ) (4.5)
2\ [wss)

OSI ranges from 0 to 1, where 0 indicates that the WSS is unidirectional. An OSI index of
0.5 indicates that the flow is purely oscillatory with WSS = 0.

Figure 4.3 shows the WSS corresponding to rest (dotted lines) and exercise (solid lines)
conditions. The dimensionless WSS values plotted in figure 4.3(a) can be converted to
dimensional values by multiplying by uU/D. These WSS characteristics are summarized
in the table 4.2. As we have carried out computations using the waveforms presented by
Suh et al. (2011), it is reasonable to make a comparison with the values presented by
them. Their analysis based on realistic patient-specific AAA models predicted a mean
WSS value of 0.29 Pa and 1.54 Pa, under resting and exercise conditions respectively. The
values presented in table 4.2 are roughly half of their values, as they were obtained using
calculations made in a healthy abdominal aorta (without any aneurysm). This would
indicate that the presence of an aneurysm significantly elevates the WSS values. The OSI
index in their study was 0.29 and 0.15 under resting and exercise conditions respectively.
Once again differences could be due to the difference in geometries. The maximum
and minimum values of WSS predicted by Salsac et al. (2006) were -3 Pa and 4.9 Pa
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Figure 4.3: WSS during one cardiac cycle calculated using the Womersley solution.
Dotted and continuous lines correspond to rest (1) and exercise (Q2) conditions re-
spectively. The non-dimensional values are shown in (a) and physiologically relevant
values obtained using the data shown in table 1.1 are shown in (b).

respectively. However, different waveforms and physiological conditions were employed in
their study.

Despite intensive investigation over the past four decades, a definitive correlation
between arterial fluid mechanics and arterial wall dysfunction has remained elusive
(Barakat, 2013). Arterial wall dysfunction due to atherosclerotic lesions have been
correlated with the formation and growth of an aneurysm (Lasheras, 2007). As discussed in
Barakat (2013), the earliest investigations concluded that atherosclerotic lesions developed
in arterial regions where the WSS is particularly high, as high levels of WSS are damaging
to endothelial cells, thereby promoting the development of lesions. However, a competing
theory that rapidly emerged claimed that atherosclerosis developed in arterial regions
subjected to particularly low levels of shear stress. The thinking was that low shear
regions increase the residence time of molecules near the arterial wall, thus increasing
mass transport into the wall and leading to progressive accumulation of deposits. Further
fluid mechanical studies have demonstrated that the regions of low WSS oscillate in time
and have revealed that the endothelial cells are more receptive to spatial and temporal
gradients (Jilkova et al., 2013).

One can see from table 4.2 that the peak WSS under exercise conditions is almost
twice that of rest conditions. Though the minimum value of WSS does not change
drastically under varying conditions, the mean WSS is roughly 7 times higher during
exercise conditions than under resting conditions, as it is directly proportional to Re.
However, peak to mean ratio under resting conditions are almost 4 times higher than
under exercise. As a result, even though significantly higher WSS values are recorded
during exercise conditions, the temporal variations are significantly lower. Also OSI value
during exercise conditions are significantly lower than under resting conditions, thereby
reducing the oscillatory stresses experienced by the arterial wall. The effect of exercise on
the reduction of oscillatory shear stresses suggests one possible direct benefit of exercise —
namely, the elimination of hemodynamic conditions known to correlate with the location
of atherosclerotic plaques (Taylor et al., 1999). We now discuss the flow characteristics in
an AAA and compare the differences that arise from a flow through a healthy abdominal



4.3. Flow characteristics in an AAA during rest conditions 85

J% (a) t=0.0T _ i‘ () t=0.5T
'ﬁ‘ (b)t=0.1T A _____(_g) t :_0..6T_
3 ) t=02T - g (h)yt=0.7T
P (d)t=0.3T "N (D t=0.8T
(e)yt=04T Gyt=09T

7 _ _ae

RS

Figure 4.4: Dimensionless out-of-plane vorticity contours plotted at different time
instants in a pulse cycle. Contours are plotted between -20(blue) and +20(red)
within the axial range —3 < z < 7. Parameter settings: Q1, Re = 264, Wo = 12,
W =0.5, H=0.5.

aorta.

4.3 Flow characteristics in an AAA during rest
conditions

The flow characteristics in an AAA under resting conditions are presented in this section
beginning with a description of spatial and temporal features characterising the typical
flow field in an AAA. Subsequently, the parametric study of the flow characterisitics in an
AAA is presented, specifically the effects of varying the geometry, Reynolds number and
Womersley number.

4.3.1 Typical flow in an AAA

As in the case of steady flows, we consider an AAA with W = 0.5 and H = 0.5 to discuss
the typical flow features in an AAA. The flow conditions are chosen such that Re = 264
and Wo = 12, and the rest waveform Q1 is chosen (see figure 4.1).

Figure 4.4 shows the azimuthal vorticity component of the flow field at various time instants
in a pulse cycle. As the flow rate increases and reaches the peak systole (¢t =~ 0.2 T),
the presence of positive vorticity near the walls can be seen. Subsequently, as the flow
rate begins to decrease, the vorticity rolls up into a vortex located just downstream of
the middle of the aneurysm, as shown in frames 4.4(d) and 4.4(e). This vortex enlarges
with time, and results in a weaker vortex of opposite rotational direction located near the
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Figure 4.5: Streamlines at different time instants in a pulse cycle. Parameter set-
tings: Q1, Re =264, Wo =12, W =0.5, H = 0.5.

proximal (upstream) end of the bulge. This is a manifestation of the anti-clockwise rotation
of the primary vortex coupled with reversed flow in the aneurysm. This can be observed in
frames 4.4(g) and 4.4(h). The secondary vortex persists in the bulge, and as the flow rate
completes the pulse cycle, bulk of the primary vorticity is convected out of the aneurysm,
and the cycle repeats itself.

The above process is further illustrated using the basic flow streamlines at various instants
within the pulse cycle, which are shown in figure 4.5. It shows the complex flow patterns
that are generated during a cardiac cycle due to the presence of an aneurysm. During
the initial phase of the cycle, the flow within the aneurysm is mainly forward, as shown
in figures 4.5 (a—d). However, as the flow rate begins to decrease after the peak systole,
the direction of the flow reverses suddenly, especially near the walls, as seen in frames 4.5
(e—f). Subsequently, as the flow rate begins to increase again, there is forward flow at the
upstream end, coupled with reversed flow downstream of the aneurysm.

Before analysing the effects of these complex flow patterns on WSS distributions, it is
interesting to look at the variation of the axial velocity profiles across the AAA at various
axial locations, during various time instants in a pulse cycle. This is shown in figure 4.6.
The first observation is that the departure from the Womersley solutions is highly localized
to the bulge region. This can be seen by observing the variations recorded at points (a)—(b)
and (f)—(g), which roughly correspond to proximal and distal ends of the aneurysm. The
dotted lines shown at points (a) and (g) are the Womersley solutions calculated in a straight
circular pipe. Secondly, the bulge region is associated with not only spatial variations in
velocity profiles but also with significant temporal variations. Thirdly, these spatial and
temporal variations are dominant at the near wall region, inducing thin layers with high
stresses. Complex flow patterns due to the presence of disordered vortices within the
aneurysm bulge have been associated with weak turbulence, even during resting conditions



4.3. Flow characteristics in an AAA during rest conditions 87

(c @ &

(@ () @O (=)

07

4

=
~

IS DA .
o
—
N

LA

1

-5 0 5 -5 0 5 -5 0 5 -5 0 5 -5 0 5

=

Figure 4.6: Axial velocities across a transverse cut at various axial locations ((a) z =
—1.86 (b) z=—-1.24(¢c) 2=—0.62 (d) 2=0 (e) 2=0.62 (f) 2 = 1.24 (g) z = 1.86)
during a pulse cycle. It is to be noted that the radial extent is from the vessel
centerline to the AAA wall and hence varies across the AAA dilatation. Parameter
settings: Q1, Re = 264, Wo =12, W = 0.5, H = 0.5.

(Salsac et al., 2006).

The complex vorticity patterns and flow fields result in interesting WSS distributions. This
is shown in figure 4.7 at four different time instants within the cycle. With the increase
in flow rate, WSS reaches its maximum at the downstream end of the aneurysm. At peak
systole, the maximum value of WSS observed at the downstream end is about 1.7 times
the value recorded in a healthy abdominal aorta. The minimum value of WSS is observed
roughly at the center of the aneurysm, just upstream of the distal end. Close proximity
of peak low WSS values followed by peak maximum WSS values affect the physiology of
the arterial walls as it tends to pull the walls in opposite directions. As the pulse cycle
advances, the WSS values diminish. Sheard (2009) observed a peak WSS value that was
2.4 times that recorded in a healthy vessel at peak systole, using the waveform used in the
study carried out by Salsac et al. (2006) for a flow through a typical AAA during resting
conditions. The differences in the observations could be associated to different flow rate
waveform and geometry used in their study.

To determine how the WSS values in the aneurysm bulge differ from the levels recorded
in healthy vessels, the mean WSS values are shown in figure 4.8(a). It is interesting to
note that significant deviation from the values obtained in the straight tube sections are
isolated to the aneurysm bulge, roughly —1 < z < 1. The minimum and maximum values
of the magnitude of the WSS are 36% and 197% of the values found in the non-dilated
tube sections, respectively. However, when considering the mean of the WSS itself, a peak
is found 2.8 times greater than the mean level in the healthy vessel, and an opposite-signed
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Figure 4.7: WSS distributions at various instants in a pulse cycle. Parameter set-
tings: Q1, Re =264, Wo =12, W = 0.5, H = 0.5.

1

(b)

0.8]

0.6

WSS

08I

0.4

0.2]

=0 ) 0 2 4 6 R -2 0 2 4 6

Figure 4.8: (a) Mean WSS (WSS; solid line) and mean WSS magnitude (|JWSS|;
dotted line). (b) Oscillatory shear index, OSI, given by equation (4.5). Parameter
settings: Q1, Re = 264, Wo =12, W = 0.5, H = 0.5.
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Figure 4.9: (a) Maximum WSS values computed in a healthy abdominal aorta
compared with the values observed in the presence of an AAA during a pulse cycle.
(b) WSS distributions at various instants around the accelerating and decelerating
phases in a pulse cycle. Parameter settings: Q1, Re = 264, Wo = 12, W = 0.5,
H =0.5.

peak is found with a level 4.8 times greater than the healthy vessel. These extrema
are located along adjacent sections on the wall of the AAA at the downstream end.
Atherosclerotic lesions have usually been observed in the presence of an AAA (Lasheras,
2007). The presence of sharp spatial gradients along the aneurysmal wall caused due to the
presence of an AAA may damage the endothelial cells, providing a possible explanation
for the above observation (Jilkova et al., 2013).

The oscillatory shear index, OSI, is shown in figure 4.8(b). The OSI index points
out the regions of oscillatory WSS (OSI 2 0.5) as well as the regions of mean forward
(OSI < 0.5) or reversed (OSI > 0.5) WSS. Fluctuations in the OSI index were confined
within the bulge region. In the straight tube sections, the OSI index was 0.41. Moving
further down to the point where the mean WSS reaches its minima, the OSI index is found
to attain its maximum of 0.75. Further downstream at the distal end, where the WSS
mean reaches its maxima, the OSI index value drops again. Most of the aneurysm wall
experiences an OSI index larger than 0.5, which indicates that significant reversal of WSS
occurs during the cycle. This further corroborates our earlier observation on damaging
hemodynamic conditions, favorable for atherosclerosis, present within an AAA.

It is important to note that though the maximum WSS at peak systole is 1.7 times that of
the value observed in a healthy vessel, the maximum WSS observed in the presence of an
AAA is only 1.26 times the peak WSS observed in a healthy abdominal aorta. This is due
to the fact that the maximum WSS observed in a healthy abdominal aorta occurs slightly
before peak systole (Pedley, 1979)(see figure 4.9(a)). The slow-moving fluid near the wall
responds more readily to variations in the driving pressure gradient than the faster-moving
fluid in the core. This observation is further elucidated in figure 4.9(b) where the WSS
distributions around peak systole (¢ = 0.18 T') are shown. The maximum value observed in
the presence of an AAA is found to occur at peak systole. It has to be kept in mind that the
peak WSS values observed in the presence of an AAA (particularly at the distal end) are
significantly higher during most of the cycle, than when compared to the values observed in
a healthy abdominal aorta (see figure 4.9(a)). As mentioned earlier, dynamic low oscillatory
WSS distributions along with spatial gradients over the wall could contribute to an unstable
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Figure 4.10: Dimensionless out-of-plane vorticity contours plotted at different time

instants in a pulse cycle. Contours are plotted between -20(blue) and +20(red).
Parameter settings: Q1, Re = 264, Wo = 12, W = 0.5. (i) H = 0.3 (ii) H = 1.0.

progressive degradation of the arterial wall and to the formation of atherosclerotic lesions
(Lasheras, 2007, Barakat, 2013).

4.3.2 Effect of dilatation parameter
Flow fields

The effect of dilatation ratio, Dg, which is the ratio of the maximum diameter to the inlet
diameter and given by Dr = 1 4+ 2H*/D*, is investigated by varying the non-dimensional
bulge height H. For this the width of the aneurysm, W, is kept the same as the value
used for a typical AAA (W = 0.5). Figure 4.10 shows the vorticity at various time instants
for two different values of height: H = 0.3 and H = 1.0. A remarkable feature is that
the clinically relevant flow characteristics of aneurysmal flows, i.e. detachment of the flow
and impingement on the distal neck, occur even for a dilatation parameter as low as 1.6
(H = 0.3). However, for H = 0.3 as the bulge is shallow, the primary vortex is less localized
within the bulge and subsequently the primary vorticity gets convected out of the bulge
more easily. Also as there is less space within the bulge, the formation of a secondary vortex
is delayed further. On the other hand, for the case of H = 1.0, as the bulge is relatively
deeper, the vortices are trapped within the bulge. One can observe the presence of the
secondary vortex persisting at all times within the bulge, even during the peak systole, due
to the deeper cavity.

Figure 4.11 shows the streamlines at different time instants in a pulse cycle for two bulge
heights: H = 0.3 and H = 1. Once again it is seen that even an incipient aneurysm is
characterized by the formation of recirculating zones close to the wall. Flow separation oc-
curs around the peak systole for both the aneurysms. These observations are in congruence
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Figure 4.11: Streamlines at different time instants in a pulse cycle. Parameter
settings: Q1, Re =264, Wo =12, W =0.5. (i) H = 0.3 (ii) H = 1.0.

with the experiments carried out by Salsac (2005). However, at larger heights, multiple re-
circulating regions close to the wall can be observed. The presence of recirculating regions
of flow and stagnation points are known to promote thrombosis (Vorp et al., 2001). In the
region of stagnant fluid zone of low WSS, cholesterol may tend to accumulate, leading to
intimal thickening (Deplano & Siouffi, 1999).

We now take a closer look at the dynamics near the wall within the aneurysm. Figures
4.12 — 4.13 show the axial velocity across a transverse cut at various axial locations (same
as in figure 4.6 across the aneurysm for H = 0.3 and H = 1, respectively. Once again
the departure from the Womersley solution in a circular pipe is weak at the proximal
and distal ends of an AAA, which is shown using dotted lines at points (a) and (g)
respectively. As mentioned earlier, the features observed at a typical AAA persist even
for shallow aneurysms. However, at axial points within the aneurysm ((c)—(e)), the
temporal fluctuations near the wall are significant even for shallow aneurysms. These
observations indicate that the disturbed flow conditions that play a role in degradation
of the arterial wall and in the localization of atherosclerotic lesions are already present
during the incipient stages of an AAA and could play a role in its progression. The effect
of different velocity gradients close to the wall can lead to different WSS distributions,
which is discussed in the subsequent section.

WSS distributions

The WSS distributions at various instants in a pulse cycle are shown for H = 0.3
and H = 1 in figure 4.14(a) and (b) respectively. It is found that the WSS variation
along the aneurysm wall is similar to that observed for H = 0.5 (see figure 4.7).
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Figure 4.12: Axial velocities across a transverse cut at various axial locations ((a) —

(g), same as in figure 4.6) during a pulse cycle. Parameter settings: Q1, Re = 264,
Wo =12, W = 0.5, H = 0.3.
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Figure 4.13: Same as in figure 4.12 but for H = 1.
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Figure 4.14: WSS distributions at various instants in a pulse cycle. Parameter
settings: Q1, Re =264, Wo =12, W =0.5 (a) H=10.3 (b) H = 1.
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Figure 4.15: (a) Maximum WSS during a pulse cycle for various bulge heights.
(b) Time-averaged WSS along the aneurysm wall for various bulge heights. Param-
eter settings: Q1, Re = 264, Wo =12, W = 0.5.



94 Chapter 4. Pulsatile flows: Flow characteristics

During the deceleration phase just after peak systole (¢ = 0.25 T'), the minimum WSS
value is observed at the proximal end, which slowly migrates towards the distal end
during the pulse cycle. The principal effect of increasing H is that the spatial gradi-
ents along the wall are enhanced. However, the recirculation region does vary much with H.

The peak WSS observed along the aneurysm wall as function of time is shown in
figure 4.15(a) for different values of H. The peak WSS value which is observed at the
distal end of the aneurysm is seen to be largely independent of bulge height. The spatial
distribution of the time-averaged WSS is shown in figure 4.15(b). Once again the spatial
distributions are found to remain qualitatively similar for different H. Though the
minimum value of WSS which is usually observed slightly upstream of the distal end is
seen to increase sharply initially, when H is increased from 0.3 to 0.5. Two things emerge
from the above discussion. Firstly, peak WSS value does not seem to be a significant
quantity to be monitored during the growth of an aneurysm as it remains relatively
constant. Secondly, as the WSS distributions remain qualitatively similar for shallow
and deep aneurysms, it appears that the flow shear stresses may not be the determinant
factor controlling the expansion of fusiform aneurysms, especially during the later stages.
However, spatial distribution of WSS, particularly dynamic low oscillatory shear stresses
and sharp spatial gradients, could play a key role during the incipient stages of growth,
as these are associated with atherosclerotic plaque deposition and intimal thickening (Ku,
1997, Deplano & Siouffi, 1999).

4.3.3 Effect of aspect ratio
Flow fields

A large value of W and a small value of H is representative of an AAA during its initial
stage and hence it is important to understand the dynamics at larger W. The aspect ratio
is varied here by changing the value of bulge width W from 0.5 to 1. Figure 4.16 shows the
vorticity distributions at various instants in a cycle for two different bulge heights (H = 0.3
and H=1)at W =1.

It is seen that the vorticity distributions are very different from those observed for W = 0.5
(see figure 4.10). Firstly, the flow remains attached for longer times even after the peak
systole unlike at W = 0.5. Hence the primary vortex is formed much later during the
decelerating phase after peak systole and is hence much weaker. Due to this the primary
vortex does not travel till the downstream end and is not strong enough to induce vortices
of opposite sign within the bulge during the diastolic phase. Also, since it is weak by
the time it impinges at the distal end, the roll-up of the shear layer is absent. A similar
observation has been made by Salsac (2005) who found out the length traveled by the
vortex ring scales inversely with the aspect ratio. They also observed that the time at
which flow separation occurred during the pulse cycle is delayed with increasing aspect
ratio. The above phenomenon is further illustrated using some representative streamlines
shown in figure 4.17 at the same parameter settings. It is clearly seen that the flow
remains attached even after the systolic phase. The above discussion implies that longer
aneurysms are less pathological than short ones, even though the disturbed flow conditions
are already present for an incipient AAA.

Similarly, the near wall dynamics illustrated by transverse cuts of axial velocity at
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Figure 4.16: Dimensionless out-of-plane vorticity contours plotted at different time
instants in a pulse cycle. Contours are plotted between -20(blue) and +20(red).
Parameter settings: Q1, Re = 264, Wo =12, W =1.0. (i) H = 0.3 (ii) H = 1.0.
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Figure 4.17: Streamlines at different time instants in a pulse cycle. Parameter
settings: Q1, Re =264, Wo =12, W =1.0. (i) H = 0.3 (ii) H = 1.0.
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a pulse cycle. Parameter settings: Q1, Re = 264, Wo =12, W =1, H =0.3.

=

-i-—-‘
s | —

FETE

O i | mmenn—
B |—
.

| M

1) 1 £ i 7
T = .

| O
] 1 ] 1L |1 B

‘ 3
\ \ 15

-5 0 5 S5 0 5 -5 0 5 5 0 5 5 0 5 -5 0 5 5 0. 5

U,

Figure 4.19: Same as in figure 4.18 but for H = 1.
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Figure 4.20: WSS distributions at various instants in a pulse cycle. Parameter
settings: Q1, Re =264, Wo =12, W =1 (a) H=0.3 (b) H =1.

different axial locations within an aneurysm, differ from the situation at W = 0.5. This
is shown in figures 4.18 — 4.19 for H = 0.3 and H = 1 respectively. The axial locations
are mentioned in the caption. Note again that as the bulge height varies along an AAA
in the plots, the radial extent from the vessel centerline to the AAA wall is different
for different axial locations in the plots. Firstly, the temporal fluctuations near the wall
are less prominent. Secondly, variation along the aneurysm wall is also markedly less,
and is confined to the AAA cavity, as can be deduced from the Womersley flow profiles
shown at points (a) and (g) obtained from calculations made in a circular pipe. These
observations once again suggest that longer aneurysms are less pathological. Also the
temporal variations are more prominent at lower H as also seen at W = 0.5. This can be
clearly observed at the axial location (d). For H = 1, the temporal variation near the wall
is practically zero, unlike at H = 0.3. This indicates that the changes experienced on the
aneurysm wall during its incipient stages could have a higher influence on the arterial wall,
particularly with regards to endothelial cell alignment.

WSS distributions

The WSS distributions at two characteristic bulge heights H = 0.3 and H = 1 are shown in
figure 4.20(a) and (b) respectively, at a bulge width W = 1. The first striking difference from
the distributions observed at smaller widths (see figure 4.14) is that the spatial variations
along the arterial wall are weaker. The minimum and maximum values are observed at the
proximal and distal end respectively, though their values are significantly smaller than at
W = 0.5. Secondly, the temporal variations are also weaker during the pulse cycle at larger
widths. Except during the systolic phase, the WSS values are approximately the same as
the ones observed in a healthy abdominal aorta.

As seen earlier at W = 0.5, even for longer aneurysms the peak WSS value hardly depends
on bulge height as shown in figure 4.21(a). It is to be noted that the peak WSS value is
lower than at W = 0.5 and is close to the values observed in a healthy abdominal aorta.
The time-averaged WSS along the aneurysmal wall remains qualitatively similar at all H’s
at W = 1. Unlike at W = 0.5 where the minimum WSS value was observed slightly
upstream of the distal end, at W = 1 the minimum and maximum values of WSS are
well separated and are observed at proximal and distal ends respectively. This is another
favorable indication in relation to the effect of mechanical stimuli on arterial wall, as the
spatial gradients are weaker for longer aneurysms.
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Figure 4.21: (a) Maximum WSS during a pulse cycle for various bulge heights.
(b) Time-averaged WSS along the aneurysm wall for various bulge heights. Param-
eter settings: Q1, Re = 264, Wo =12, W = 1.
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Figure 4.22: Comparison of OSI values at two different bulge widths for various
bulge heights. Parameter settings: Q1, Re = 264, Wo =12 (a) W = 0.5 (b) W = 1.
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Figure 4.23: Dimensionless out-of-plane vorticity contours plotted at different time
instants in a pulse cycle. Contours are plotted between -20(blue) and +20(red).
Parameter settings: Q1, Re =264, H = 0.5, W = 0.5 (i) Wo = 10 (ii) Wo = 15.

The OSI parameters, indicative of oscillatory flow conditions, along the AAA wall at two
different widths W = 0.5 and W = 1 are shown in figure 4.22(a) and (b) respectively. These
figures once again show that shorter aneurysms have higher stress fluctuations within the
aneurysm bulge than longer aneurysms. All of the above discussion points to the fact that
longer AAAs are less pathological and have weaker effect on physical processes that occur
inside the AAA. These observations are in good agreement with those made by Salsac
(2005).

4.3.4 Effect of Womersley number
Flow fields

The flow characteristics in the abdominal aorta vary substantially over time, depending
on the physical activity that a person is engaged in. In this section we discuss how the
Womersley number Wo, influences the flow characteristics discussed in previous sections.
One of the principal parameters that change with physical activity is the pulsation frequency
that is directly related to the Womersley number. However, a change in Womersley number
is usually accompanied by a change in the flow rate waveform and the Reynolds number.
But in order to isolate the effects of various flow parameters, it has been decided to keep
the Reynolds number and the flow rate waveform fixed for the present discussion. The
Reynolds number and the geometrical parameters are those used to model a typical AAA:
Re =264, W = 0.5 and H = 0.5. The Womersley number is varied between 5 to 15. The
range of Wo usually observed in the abdominal aorta is 10 and 15, and hence forms the
main focus of our discussion.
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Figure 4.24: Streamlines at different time instants in a pulse cycle. Parameter

settings: Q1, Re =264, H = 0.5, W = 0.5 (i) Wo = 10 (ii) Wo = 15.

Figure 4.23 shows the vorticity evolution at various time instants during the pulse cycle
for two different values of Wo, 10 and 15. It can be seen that the characteristics are very
different as the Womersley number is increased. When all the other parameters are kept
fixed, an increase in Wo corresponds to an increase in the frequency of pulsation (as W02).
In that case, an increase in Womersley number from 10 to 15, results in an increase in
frequency by more than a factor of 2. At a lower frequency, the shear layer is seen to roll
up forming a primary vortex within the bulge, similar to the features observed at Wo = 12.
However with increase in frequency, the roll-up of the shear layer is less prominent and an
opposite signed vortex is not formed within the bulge. This is also due to the fact that the
flow separation is delayed at higher Womersley numbers. This once again indicates that
the primary vortex formed at a higher Wo is much weaker. These arguments are further
exemplified using snapshots of some representative streamlines at these two Womersley
numbers in figure 4.24. Higher spatial fluctuations within the aneurysm are observed at
lower Womersley numbers.

The dynamics prevailing near the wall are illustrated by transverse cuts of the axial velocity,
shown in figures 4.25 — 4.26. Firstly, when considering the spatial variations along the wall
at a fixed instant in the pulse cycle, it is seen that the fluctuations are more pronounced at
a lower Wo. Secondly, when considering the temporal changes at a fixed location along the
wall, it is also seen that these are higher at a lower Wo. The above discussion points that
the disturbed flow conditions within an AAA are reduced with an increase in Wo. As an
increase in Wo is usually associated with an increase in physical activity, these observations
point to one possible benefit of exercise.

Finally, streamlines and vorticity distribution at various instants in a pulse cycle for Wo = 5
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Figure 4.25: Axial velocities across a transverse cut at various axial locations ((a) —

(g), same as in figure 4.6) during a pulse cycle. Parameter settings: Q1, Re = 264,
W =05, H=0.5, Wo =10.
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Figure 4.26: Same as in figure 4.25 but for Wo = 15.
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Figure 4.27: (i) Streamlines and (ii) vorticity snapshots at different time instants

in a pulse cycle (contours are plotted between -20(blue) and +20(red)). Parameter
settings: Q1, Re =264, H = 0.5, W = 0.5, Wo = 5.

are shown in figure 4.27. Note that the vorticity contour levels are chosen differently at
different time instants. This is due to the fact the vorticity values observed are significantly
lower for such a small Wo. The flow remains attached for a longer duration and the roll-up
of the shear layer during the decelerating phase after the peak systole is weak. During this
phase, the streamlines and vorticity distributions resemble that of the limiting steady flow
case, where a jet-like flow is observed through the bulk of the AAA with a slowly rotating
vortex in the cavity.

WSS distributions

WSS distributions at Womersley numbers for the different flow conditions are shown in
figure 4.28. Notable difference is mainly during the diastolic phase at ¢ = 0.5 T" where for
Wo = 10, a minimum is observed slightly upstream of the distal end due to the formation of
the negative vortex. Whereas for Wo = 15, as no negative vortex is formed, a minimum in
the WSS is not observed. Also the WSS values within the AAA are comparable to the levels
found in a healthy abdominal aorta at a higher Wo during most of the pulse cycle. Both
the spatial and temporal oscillations of WSS are weaker at higher Wo. As usually higher
Womersley numbers are encountered during exercise conditions, this may be an indication
of the usefulness of doing exercise, though the waveform indeed would be different.

The above observations are again reflected in figure 4.29 where the time-averaged WSS
along the arterial wall along with OSI parameter are shown. Figure 4.29(a) shows that
the maximum and minimum values of the time-averaged WSS are lower at higher Wo.
The OSI parameter shown in figure 4.29(b) also points towards a weaker oscillatory flow
component in an AAA, at higher Wo. All the above observations point towards the
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Figure 4.28: WSS at different time instants during a pulse cycle for two different
Womersley numbers. Parameter settings: @1, Re = 264, H = 0.5, W = 0.5.
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Figure 4.29: (a) Mean WSS (WSS; solid line) and its magnitude (JWSS|; dotted
line). (b) OSI. Parameter settings: Q1, Re = 264, H = 0.5, W = 0.5.
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Figure 4.30: (a) WSS distributions at different time instants. (b) OSI. Parameter
settings: Q1, Re =264, H = 0.5, W = 0.5, Wo = 5.

fact that at higher Womersley numbers, usually observed during exercise conditions, the
oscillatory shear stresses are reduced, thereby reducing hemodynamic conditions known
to correlate with the location of atherosclerotic plaques and degradation of arterial wall.
Though one has to keep in mind that along with an increase in Wo, the Reynolds number
also increases with physical activity along with a change in flow rate waveform. Hence,
these observations do not directly correspond to exercise conditions, which are discussed
in the latter part of this chapter.

We conclude this section by a brief discussion on WSS characteristics observed at a
low Womersley number, Wo = 5. Note that Wo = 5 is below the relevant range observed
in the abdominal aorta. Figure 4.30(a) shows the WSS distributions at various time
instants. It is seen that the WSS values are smaller at Wo = 5. However, deviations from
a healthy abdominal aorta still prevail within the aneurysm cavity, though mainly during
the systolic phase. During the major part of the cycle the WSS values within the aneurysm
are hardly different from the upstream and downstream straight circular sections. The OSI
parameter shown in figure 4.30(b) indicates the presence of entirely forward and reverse
flows within the center of the aneurysm and at distal ends respectively. This is due to the
low levels of oscillations at such a low Womersley number as the flow moves slowly forward
and backward.

4.3.5 Effect of Reynolds number
Flow fields

As mentioned earlier, the Reynolds numbers observed in the abdominal aorta can vary
from 600 at rest up to 6000 under exercise conditions. Similar to our analysis of the
effect of Womersley number on flow characteristics, we fix all the other parameters in our
study and vary the Reynolds number to isolate its effect. For this, the flow rate waveform
corresponding to rest conditions is chosen, the geometry is the configuration corresponding
to a typical AAA, the Womersley number is fixed at a value of 12, and the mean Reynolds
number is varied from 200 to 500. This corresponds to a range of 1500 — 4000 for the peak
Reynolds number.

Figure 4.31 shows the flow characteristics at Re = 200 and Re = 500. The principal effect
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Figure 4.31: Dimensionless out-of-plane vorticity contours plotted at different time
instants in a pulse cycle. Contours are plotted between -20(blue) and +20(red).
Parameter settings: Q1, Wo =12, H = 0.5, W = 0.5 (i) Re = 200 (ii) Re = 500.
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Figure 4.32: Streamlines at different time instants in a pulse cycle. Parameter
settings: Q1, Wo =12, H = 0.5, W = 0.5 (i) Re = 200 (ii) Re = 500.
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Figure 4.33: Axial velocities across a transverse cut at various axial locations ((a) —

(g), same as in figure 4.6) during a pulse cycle. Parameter settings: Q1, Wo = 12,
W =05, H = 0.5, Re = 200.
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Figure 4.34: Same as in figure 4.33 but for Re = 500.
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Figure 4.35: WSS at different time instants during a pulse cycle for two differ-
ent Reynolds numbers. Parameter settings: Q1, Wo = 12, H = 0.5, W = 0.5.
(a) Re = 200 (b) Re = 500.

of increasing Reynolds number is that the primary vortex formed during the decelerating
phase after peak systole is stronger. This is probably due to the flow separation taking place
earlier at higher Reynolds numbers. The rolling up of the shear layer is more pronounced at
higher Re. The primary vortex impinges at the distal end and is strong enough to induce
vortices of opposite signs at higher Re. Omne can see from the snapshots of streamlines
shown in figure 4.32 the absence of secondary vortices at a lower Re. Also the flow remains
attached for a longer time at a lower Re. All these observations point out that the disturbed
flow conditions are increased significantly with increasing Reynolds number.

Transverse cuts of axial velocity profiles shown in figures 4.33 — 4.34 reveal that both
the spatial and temporal oscillations of the velocity gradients close to the wall are more
prominent at a higher Reynolds number. Thus the flow characteristics at a higher Re are
probably more detrimental to the arterial wall.

WSS distributions

The WSS distributions at Re = 200 and Re = 500 are shown in figure 4.35(a) and (b)
respectively. Firstly, the peak WSS value observed during the systolic phase is higher
at a higher Reynolds number. Secondly, significant positive WSS values appear near the
proximal end (between —1 < z < 0) during diastolic phase at a higher Re which are absent
at Re = 200. Thirdly, the peak minimum value observed upstream of the distal end is also
higher with increasing Re. These observations mean that both the temporal and spatial
gradients of WSS within the AAA increase with increase in Re.

The above observations are reflected in the time-averaged WSS distributions along the
aneurysmal wall, shown in figure 4.36(a). The OSI parameter shown in figure 4.36(b)
corresponds to highly oscillatory flow conditions within the AAA at a higher Re. These
flow conditions are known to affect the etiology of the arterial wall leading to its degradation
and formation of atherosclerotic lesions and could also play a role in the development of an
AAA.
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Figure 4.36: (a) Mean WSS (WSS; solid line) and its magnitude (JWSS|; dotted
line). (b) OSI. Parameter settings: Q1, Wo =12, H = 0.5, W = 0.5.

4.4 Flow characteristics in an AAA during ex-
ercise conditions

The flow characteristics in an AAA for a person in exercise conditions are presented in this
section. The flow features in a typical AAA are presented first, followed by an investigation
of the dependence of flow characteristics on geometrical configurations. The waveform
used in this analysis corresponds to 2 shown in figure 4.1. The associated Reynolds and
Womersley numbers are Re = 1700 and Wo = 13.8, as derived from the physiological values
provided in Suh et al. (2011) .

4.4.1 Typical flow in an AAA

First, the prominent features observed in a typical geometrical configuration are discussed,
with the bulge width and height both fixed at a value of 0.5. Figure 4.37 shows the vorticity
distribution during various instants in a pulse cycle. As the Reynolds number is high, a
strong vortex is formed at the proximal end during flow deceleration after peak systole.
The impingement of this strong vortex at the distal end results in high stresses along the
arterial walls, particularly at the distal end. Then, an oppositely signed secondary vortex
is formed similar to those observed during rest conditions in a typical AAA. However, as
these vortices are much stronger, even a tertiary vortex, similar in sign to the primary
vortex is formed within the bulge during the diastolic phase. This can be seen clearly in
frame (f) corresponding to ¢t = 0.5 T, where the negative vortex pulls the vorticity in the
shear layer to form a positive signed vortex. These positive vortices persist within the
bulge during the major part of the pulse cycle. These observations are further illustrated
in figure 4.38, where some representative streamlines are shown during the pulse cycle.
The most significant result from these observations is that due to the increase in strength
of the vortices at these elevated Reynolds numbers, along with the absence of reversed
flow during the pulse cycle, the resulting flow fields are highly complex and the mixing
of aneurysmal blood appears to be enhanced. Moderate levels of turbulence have been
observed under exercise conditions (Les et al., 2010). Such exercise-induced flow patterns
with increased flow magnitude and moderate turbulence reduce regions of flow stasis that
have been correlated with thrombus formation (Salsac et al., 2004, Deplano & Siouffi, 1999,
Reininger et al., 1994).
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Figure 4.37: Dimensionless out-of-plane vorticity contours plotted at different time
instants in a pulse cycle. Contours are plotted between -15(blue) and +15(red).
Parameter settings: 2, Re = 1700, Wo = 13.8, H = 0.5, W = 0.5.
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Figure 4.38: Streamlines at different time instants in a pulse cycle. Parameter
settings: @2, Re = 1700, Wo =13.8, H = 0.5, W = 0.5.
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Figure 4.39: Axial velocities across a transverse cut at various axial locations ((a) —
(g), same as in figure 4.6) during a pulse cycle. Parameter settings: 2, Re = 1700,
Wo =13.8, H=0.5, W = 0.5.

Since the flow fields observed within the AAA cavity appear to be complex, the near
wall dynamics needs to be further investigated, as it is expected to govern the response
of endothelial cells and subsequent degradation of the arterial wall. Figure 4.39 shows
transverse cuts of axial velocity profiles along the AAA (same locations as in figure 4.6) at
various instants in the pulse cycle. The first striking feature is that the velocity distribution
near the wall hardly changes within the AAA cavity. Secondly, for profiles at locations (c) —
(e), velocities are small near the wall and hardly depend on time. Hence, in this regard the
magnitude of the fluctuations seems to be lower during exercise conditions than observed
during resting conditions. Also, as expected, the deviation from a healthy abdominal aorta
is confined to the AAA cavity as illustrated using the Womersley flow solutions shown using
dotted lines at proximal (a) and distal ends (g).

To put these observations into perspective, the WSS distributions are monitored. The WSS
variation during a pulse cycle is shown in figure 4.40. It is seen that both the peak maximum
and minimum WSS values are localized at the downstream end. The spatial variations are
highly localized within the AAA cavity. Once again sharp temporal and spatial changes in
WSS occur along the wall. However, these changes prevail mainly at the distal end unlike
the case of rest conditions where the fluctuations were spread over the entire AAA cavity.

To determine how the WSS measured in the aneurysm bulge differs from the levels recorded
in healthy vessels, the mean WSS values are shown in figure 4.41(a). It is interesting to
note that significant deviation from the values obtained in the straight tube sections are
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Figure 4.40: WSS distributions during a pulse cycle. Parameter settings: 2, Re =
1700, Wo = 13.8, H = 0.5, W = 0.5.

(b)

OSI

42 2 0 _2 4 6 4 2 0 _2 4 6
Figure 4.41: (a) Mean WSS (WSS; solid line) and its magnitude (JWSS|; dotted
line). (b) OSI. Parameter settings: @2, Re = 1700, Wo = 13.8, H = 0.5, W = 0.5.
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Figure 4.42: Dimensionless out-of-plane vorticity contours plotted at different time

instants in a pulse cycle. Contours are plotted between -15(blue) and +15(red).
Parameter settings: Q2, Re = 1700, Wo = 13.8, W = 0.5 (i) H = 0.3 (ii) H = 1.0.

confined to the aneurysm bulge, roughly —1 < z < 1. The minimum and maximum values
of the magnitude of the WSS are 17% and 279% of the values found in the non-dilated
tube sections, respectively. However, when considering the mean of the WSS itself, a peak
is found double than the mean level in the healthy vessel, and an opposite-signed peak is
found with a level 3 times greater than the healthy vessel. The spatial distribution of the
OSI values shown in figure 4.41(b) were similar to those observed during rest conditions.
Though the OSI values reached a maximum value of 0.8, they were not reduced to zero in
the aneurysm in coherence with the observations made by Les et al. (2010).

4.4.2 Effect of variation in geometry

To begin with, the bulge height is increased while keeping the width fixed. The differences
in vorticity evolution at two bulge heights H = 0.3 and H = 1.0 are shown for W = 0.5
in figure 4.42. Even at a low bulge height, H = 0.3, flow characteristics are found to
be similar to those observed in a typical AAA during exercise conditions, namely strong
vortices, persistence of positive vorticity at the downstream end, formation of multiple
vortices within the cavity. The principal difference is that due to the deeper cavity at
H = 1.0, the negative vortex persists within the bulge for longer times, whereas at H = 0.3,
it gets flushed out of the aneurysm, when the flow rate increases in the beginning of the
cycle. In both the cases, the vortex impinges at the downstream end and rolls up, as in the
previous situation.

Now the above observations are compared to a longer AAA, at W = 1. The effect of increase
in width is illustrated in figure 4.43 for W = 1, using the same bulge heights. At a lower
bulge height, H = 0.3, the flow remains attached for a longer time as for rest conditions.
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Figure 4.43: Dimensionless out-of-plane vorticity contours plotted at different time
instants in a pulse cycle. Contours are plotted between -15(blue) and +15(red).
Parameter settings: @2, Re = 1700, Wo = 13.8, W = 1.0 (i) H = 0.3 (ii) H = 1.0.

The main difference from rest conditions for longer aneurysms under exercise conditions is
that the vortex formed during the deceleration phase of the pulse cycle is strong enough,
and travels till the distal end creating multiple vortices. Also, due to the larger space within
the AAA cavity, these disturbed flow conditions persist for longer times. Hence, it is not
evident that longer AAAs are less pathological under exercise conditions, in contrast to the
observations made under rest conditions.

The distribution of WSS for the different geometries considered is summarized in figure
4.44. The bulge height appears to have a weak influence, except for the peak minimum
value of the WSS. With an increase in H, the negative vorticity formed within the aneurysm
is able to persist for longer periods, thereby influencing the minimum value, as larger bulge
heights result in higher minima. The effect of width is to shift the spatial locations of the
maximum and minimum values observed in the aneurysm. The OSI values are summarized
in figure 4.45. It is seen that within the undilated sections of the aneurysm, the OSI values
are small indicating a uni-directional flow. With an increase in bulge height, the range
of fluctuation of the OSI value was found to increase with a mainly uni-directional flow
observed at the center of the bulge, indicated by an OSI value =~ 0, and reversed flow
observed at the upstream and downstream end, indicated by large (= 1) values.

4.5 Effect of wall modeling on flow dynamics

The effect of modeling the aneurysm geometry using different functions is briefly investi-
gated in the present section. As a study on flow characteristics in an AAA using a sinusoidal
function was carried out recently by Sheard (2009), we consider the same geometrical and
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Figure 4.44: Mean WSS (WSS; solid line) and its magnitude (|JWSS|; dotted line)

for two different bulge heights and widths. Parameter settings: 2, Re = 1700,
Wo =13.8 (a) W = 0.5 (b) W = 1.0.
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Figure 4.45: OSI values for two different bulge heights and widths. Parameter
settings: 2, Re = 1700, Wo = 13.8 (a) W = 0.5 (b) W = 1.0.
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Figure 4.46: The geometry considered in the study by Sheard (2009) is shown using
dotted lines, where the dilatation was modeled as a sinusoidal function. The corre-
sponding gaussian equivalent geometry is shown using continuous lines. Parameter
settings: H = 0.45, L =2.9, W = 0.58.
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Figure 4.47: The waveform considered in the study by Salsac et al. (2006), Sheard
(2009).

flow characteristics as in their study. For this, an aneurysm modeling using a sinusoidal
function (equation (2.4.2)) and an aneurysm modeled using an equivalent gaussian function
(equation (2.49)) is used. The geometries considered in the investigation are shown in figure
4.46.

The flow conditions correspond to the waveform 3 shown in figure 4.47 and the flow
parameters are Re = 330 and Wo = 10.7. The same geometry and flow conditions were
also employed in the study by Salsac et al. (2006). An important difference when comparing
the waveform @3 with the waveform @1 is that larger negative flow rates occur for )3 as
opposed to Q1.

Figure 4.48 shows the evolution of azimuthal vorticity over a pulse cycle at different time
instants in an AAA modeled using a sinusoidal and a gaussian function. For both cases,
as seen earlier for the case of Wo = 10, due to the smaller frequency, the vorticity rolls-up
within the bulge and is strong enough to induce secondary vortices. This is also aided by
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Figure 4.48: Dimensionless out-of-plane vorticity contours plotted at different time

instants in a pulse cycle computed using a (i) sinusoidal and a (ii) gaussian function.
Parameter settings: @3, Re = 330, Wo = 10.7.

the fact that the waveform @3 has a larger reversed flow rate, resulting in larger temporal
gradients. At the end of the cycle, as the flow rate once again starts to increase, the pri-
mary vortices are flushed out of the domain, even further, due to the significant differences
between diastolic and systolic flow rates. However, close inspection of figure 4.48 reveals
that the vorticity obtained in a gaussian AAA seems to be lagging slightly in phase when
compared with a sinusoidal AAA. This may be due to the fact that flow separation occurs
earlier in a sinusoidal AAA, as a gaussian AAA is smoother at the proximal and distal
ends of the AAA. Frame corresponding roughly to peak systole (¢ = 0.2 T) shows that
the flow remains attached at the proximal end for a gaussian AAA unlike in a sinusoidal
AAA for a longer time. As peak wall shear stress values in an AAA are usually observed
at the downstream end of an AAA, slight differences in the vorticity distributions arising
as a consequence of differences in the functions used to model an AAA could lead to rather
different WSS distributions.

Though roughly similar base flow fields are obtained for sinusoidal and gaussian AAAs, some
differences are observed in the WSS distributions shown in figure 4.49. The differences are
marked at the upstream and downstream end of the bulge, particularly during the systolic
phase (frame (b)), as expected from the discussion on the vorticity distributions. This
is probably due to the fact that a gaussian function converges more smoothly from the
bulge region to the straight circular pipe region, both at the upstream and downstream
ends. The distribution of WSS for the different geometries considered is summarized in
figure 4.50 using the mean WSS and its magnitude. The differences are confined entirely
to the bulge region, with the differences in absolute value being more prominent. Although
the AAA geometries corresponding to a sinusoidal and a gaussian function are almost
indistinguishable (figure 4.46), there are small but significant differences in the dynamics.
Thus the flow features appear to be very sensitive to geometrical details. We will see in the
next chapter that also differences arise in the stability characterisitics of the flows, while
modeling AAA shapes using different functions.



4.5. Effect of wall modeling on flow dynamics 117

400 400,
300l (a) t = 0.0 300 (b) t =0.27T 2
200
100
C 0 B T
—100]
—200
—300

—40_()5

WSS

S}
)

400

(¢) t = 0.4T

(d) t = 0.6T

(e) t =0.8T

(f) t =1.0T

300 300

200 200

o 100 o 100

—100] —100]

—200 —200]

—300| —300|
—400; 5 2 —400; 5 2

Figure 4.49: The WSS (dimensionless) distributions at different time instants are
shown in frames (a) - (f) obtained using gaussian (continuous lines) and sinusoidal
(dotted lines) functions. Parameter settings: @3, Re = 330, Wo = 10.7, W = 0.58,
H = 0.45.
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Figure 4.50: (a) Mean WSS (WSS) and its magnitude (b) (JWSS|) obtained us-
ing gaussian (continuous lines) and sinusoidal (dotted lines) functions. Parameter
settings: Q3, Re = 330, Wo = 10.7, W = 0.58, H = 0.45.
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4.6 Discussion

The past two decades have witnessed a large number of studies aimed at improving our
understanding of the relevant biomechanical processes that take place in the vascular
system. Studies have shown that the endothelial cells lining the walls of the abdominal
aorta are sensitive to local hemodynamic variations. Among the various flow characteris-
tics, the endothelial cells are known to have been most affected by the wall shear stresses
(WSS), not only on their magnitude, but also on their spatial and temporal variations.
The presence of “disturbed flow conditions”, i.e. regions where the WSS differ from healthy
conditions have been postulated to play a key role in the formation of atherosclerotic
lesions, associated with degradation of the arterial wall. Hence, the characterisation of
WSS during the progressive enlargement of an AAA, under varying flow conditions is
essential in understanding the etiology of AAAs, as well as the role that the hemodynamics
play in the progression of this disease.

Characterising the flow properties observed in a healthy abdominal aorta under
varying conditions is an important step to begin with. Our studies have shown that
the peak WSS value under exercise conditions is almost twice that observed during rest.
Though the minimum value of WSS does not change drastically, the mean WSS is roughly
7 times higher during exercise conditions. However, peak to mean ratio under resting
conditions is observed to be 4 times higher than under exercise. As the mechanisms
involved in the regularisation and alignment of the endothelial cells are known to be
receptive to temporal changes in WSS, rather than the magnitude, these studies have
shown a reduction in hemodynamic conditions known to promote atherosclerotic plaques
as a consequence of exercise.

Our computations of flow fields in idealized AAA models have shown that the flow
inside the aneurysm is characterized by the formation of regions of larger and lower
amplitude of WSS than in the healthy vessel. Regions with large spatial gradients in
WSS distributions are observed, particularly at the distal end of the AAA. These are not
present in the healthy aorta. The flows were observed to remain attached to the walls
during the systolic phase, with flow separation generally observed during the deceleration
after the peak systole. During this phase, the vorticity is found to roll-up into a vortex
at the proximal end. This vortex enlarges with time and impinges at the downstream
end of the AAA, resulting in large spatial gradients of WSS along the wall. Depending
on the strength of this primary vortex, even secondary vortices of opposite signs were
observed within the AAA. For a typical AAA under rest conditions, at peak systole, the
maximum WSS observed at the downstream end is about 1.7 times the value recorded
in a healthy abdominal aorta. However, when considering the time-averaged mean WSS,
a peak is found 2.8 times larger than the mean level in the healthy vessel, and an
opposite-signed peak that was 4.8 times greater. The oscillating shear index value, used to
characterise the oscillatory nature of the flow, is larger than 0.5 showing that reversed flow
conditions are dominant within the AAA. Such dynamic low oscillatory WSS distributions,
along with spatial gradients over the aortic wall, contribute to an unstable progressive
degradation of the arterial wall and to the formation of atherosclerotic lesions and aneurysm.

To investigate AAAs at different stages of their growth and progression, the geo-
metrical parameters, namely the bulge height H and bulge width W were varied. It is seen
that the clinically relevant flow characteristics of aneurysmal flow, i.e. detachement of flow
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and impingement on the distal neck, presence of low oscillatory WSS within the AAA,
are observed even for very shallow aneurysms. For shallow aneurysms, the primary vortex
formed during the deceleration phase is seen to be convected out of the bulge more easily.
For deep aneurysms, the presence of multiple vortices within the AAA cavity is observed
throughout the cycle. More importantly, the peak WSS hardly changes with increase
in bulge height and qualitatively similar WSS distributions are observed. However, the
minimum value of WSS, usually observed slightly upstream of the distal end, is seen to
increase sharply during the initial growth of an AAA. These studies indicate that the
spatial distributions of WSS and their gradients are relevant for AAAs during the incipient
stages, but may be less important during the latter stages. The minimum and maximum
values of WSS are found to decrease with increase in width of an AAA. Also, the spatial
variations along the arterial wall are weaker for longer aneurysms and, more importantly,
temporal fluctuations also diminish. Except during the systolic phase, the WSS values
observed in a long AAA are close to the values observed in a healthy abdominal aorta.
Our analysis suggests that longer AAAs are less pathological than shorter ones.

The flow conditions are known to vary from person to person, even under resting
conditions. The Womersley number usually varies within the range 10-15 in the abdominal
aorta. It is observed that the flow remains attached to the walls for longer times, with
an increase in Womersley number, Wo. Due to this, the primary vortex formed during
the deceleration phase is weaker and secondary vortices are not formed within the AAA
cavity at higher Wo. Inspection of axial velocity profiles close to the wall, also shows
that the spatial variations along the wall and temporal fluctuations at a fixed point are
more marked at lower Womersley numbers. These observations are reflected in the WSS
distributions which reveal that the peak maximum and minimum values increase with a
decrease in Wo. Also, the Reynolds number Re may vary from 600 up to 6000 within the
abdominal aorta. The principal effect of increasing Re is that the primary vortex formed
after peak systole is stronger. This was compounded with flow separation taking place
earlier in the pulse cycle. Hence, the disturbed flow conditions observed within the AAA
are stronger for higher Re. The peak WSS and spatial gradients of WSS along the arterial
wall are also found to increase with Re.

Another important aspect that has received much attention in recent years is to
understand the hemodynamic changes taking place during exercise conditions. Hence, we
have carried out studies using physiological waveforms observed during exercise conditions
to compare the observations with resting conditions. The most significant result from our
observations are an increase in the strength of vortices under exercise conditions and the
absence of reversed flow during the pulse cycle. Moreover, the flow fields are highly complex
and the mixing of aneurysmal blood appears to be enhanced. Such exercise-induced flow
patterns with increased flow magnitude and moderate turbulence reduce the regions of flow
that have been correlated with thrombus formation. An investigation of velocity profiles
close to the arterial wall reveals that the spatial and temporal gradients are significantly
lower during exercise conditions, thereby reducing hemodynamic flow conditions known
to promote arterial wall degradation. The WSS distributions observed are similar with a
peak maximum value observed at the distal end and a minimum value observed slightly
upstream. The effect of varying geometry on flow dynamics and changes in WSS is weaker
during resting conditions.

The effect of choice of functions used to model an AAA shape has also been inves-



120 Chapter 4. Pulsatile flows: Flow characteristics

tigated in the present analysis. For this, AAAs modeled using a sinusoidal and a gaussian
function are considered, as a sinusoidal AAA is used in the recent study by Sheard
(2009). For this analysis, the flow conditions and geometrical parameters are chosen as
in the recent works by Salsac et al. (2006), Sheard (2009). The flow rate waveform Q3
obtained from Salsac et al. (2006), Sheard (2009) corresponds to Re = 330 and Wo = 10.7.
Though both AAA geometries almost superpose, small but significant differences in flow
dynamics are observed. Flow separation is found to occur earlier in the pulse cycle
in a sinusoidal AAA, with the flow field obtained in a gaussian AAA lagging in phase
in comparison to a sinusoidal AAA. This is due to the fact that a gaussian function
converges more smoothly at the proximal and distal ends of the AAA cavity. As a
result, the WSS distributions are found to be different, particularly at the upstream and
downstream ends of the aneurysm. These observations point out the need to model an AAA
wall more precisely and put forward the question of what the choice of function needs to be.

Although this study is conducted using simplified models of AAAs, the changes in
flow characteristics under varying flow conditions, and during the growth of an AAA are
captured. Our computations provide a reference framework, to analyse quantitatively

the effects of the modifications in the mechanical stimuli on the formation and growth of
AAAs.



CHAPTER 5

Pulsatile lows: Stability analysis

5.1 Introduction

The stability of the pulsatile base flows discussed in the previous chapter is examined
in this chapter. The various geometrical parameters and flow conditions are varied
systematically, revealing a range of unstable modes.

Following the observation of transition to turbulence in the aorta by Nerem et al.
(1972), understanding flow transition has emerged as a common theme in studies of
flows at Reynolds numbers relevant to the larger arteries of the human physiology.
The desire to understand the dynamics of arterial flows has stimulated the interest of
researchers to study the stability of oscillatory and pulsatile flows in pipes (Yang &
Yih, 1977, Grosch & Salwen, 1968, Stettler & Hussain, 1986, Tozzi & von Kerczek,
1986, Fedele et al., 2005) to name a few (more details can be found in chapter 1). One
interesting observation made by Tozzi & von Kerczek (1986), who studied the stability of
an oscillatory pipe flow, was that the time-periodic flow was more stable than its steady
counter part, with transition to a turbulent regime being suppressed. This observation is
further supported by the study of Fedele et al. (2005), which revealed that the transient
energy growth was smaller in oscillatory flows. However, both these studies were based
on axisymmetric disturbances and on purely oscillatory flows. The addition of a mean
flow component is known to drastically change the stability characteristics (Thomas
et al., 2011). Apart from these, the desire to understand the flow characteristics in the
human aorta during various pathologies, especially with regards to stenosis, has also
lead to many stability analyses of these flows (Sherwin & Blackburn, 2005, Blackburn
& Sherwin, 2007, Griffith et al., 2009, 2013), including some studies carried out using
physiological waveforms (Mao et al., 2011). More literature on stability analyses car-
ried out on relevant geometrical configurations can be found in the introduction (chapter 1).

It has been observed that the flow remains laminar during resting conditions and
becomes moderately turbulent during exercise conditions (Les et al., 2010). However, the
presence of an abdominal aortic aneurysm (AAA) promotes the onset of turbulence, even
under resting conditions, enhancing the mixing of aneurysmal blood. These flow patterns
with increased flow magnitude and moderate turbulence reduce regions of flow stasis that
have been correlated with thrombus formation (Salsac et al., 2004, Deplano & Siouffi,
1999, Reininger et al., 1994). We have seen in the previous chapter that there has been
a lot of attention on understanding flow characteristics in AAAs, though nowhere in the
literature can be found a fundamental study that examines the stability of these flows,
even using model configurations. This is the main contribution of the present work. We
examine the stability of pulsatile base flows in model axisymmetric AAAs, under varying
geometrical configurations and for different flow conditions. This would give us an idea of
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the regions that are sensitive to fluctuations and disturbances at different flow conditions
during the growth and progression of an AAA. It is important to first address relatively
simple geometries: after understanding the dynamics that prevail in these idealized cases
we will be in a position to provide plausible explanations in more realistic configurations.

The present chapter is structured in the following manner: the effect of the flow
parameters (Reynolds number Re, and Womersley number Wo) are examined first,
followed by an investigation on the effect of geometry. This is followed by a brief
discussion on the stability characteristics of flows in an AAA under exercise conditions. A
comparison on stability characteristics observed while modeling an AAA using a sinusoidal
and a gaussian function is also provided. The chapter concludes with a discussion on
physiological implications of our observations.

5.2 Methodology

In this section a brief reminder of the various tools used in the stability analysis is provided
(more details can be found in chapter 2). In order to study the stability of the axisymmetric
time-periodic base flow to three-dimensional disturbances, the Navier—Stokes equations are
linearized around the base flow. The pulsatile base flows are time periodic with period
T such that U(r,z,t) = U(r,2,t + T). To this a three-dimensional perturbation field
u'(r, z,0,t) is added to form the composite field:

u(r,z,0,t) =U(r,z,t) +u'(r,2,0,t). (5.1)

Substituting the above expression in the Navier—Stokes equations and neglecting nonlinear
terms in the perturbations, we get the linearized Navier—Stokes equations

E Ll !/ / 1 !
— + \ .V = —-Vp+—A 2
; (U.V)u' + (v.V)U Pt R A, (5.2a)

v.au = 0. (5.2b)

The perturbations are chosen as normal modes with explicit time-dependence as

ul(r,0,2,t) (1, 2, 1)
up(r,8,z,t) | | de(r, z,t)
W (r 0.2 1) aa(r 2. ) expi(mb) + c.c. (5.3)
p'(r,0,z,1) p(r, z,t)

where m is the azimuthal mode number. The above expression is substituted into equations
(5.2). For the present computations a plane of symmetry for the perturbations is assumed
by considering (4. (r, z,t), 4 (r, z,t),p(r, z,t)) to be purely real, and @y (r, z,t) to be purely
imaginary. This permits us to rewrite the above equations in terms of purely real variables,
thereby reducing the computational cost.

To analyse the stability of the time-periodic base flows, the linearized Navier—Stokes
equations are time-marched for a suitable number of pulse cycles and the perturbation
fields are monitored till they converge. Once the perturbations have converged, the
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evolution of the perturbation velocity fields at specific points in the computational domain
is recorded to determine the Floquet multiplier u. According to Floquet theory, the
velocity and pressure perturbations grow or decay exponentially from period to period.
Thus, the perturbation fields satisfy the relationship

a(r, z,t +T) = exp(cT)u(r, z,1). (5.4)

The coefficient p = exp(oT') is often called the Floquet multiplier, where T is the time
period of the pulsatile base flow and o = A + iw is the complex growth rate. The absolute
value of the Floquet multiplier |u| is computed as

lul = Ex(t+T)/Ek(t). (5.5)
where Ej(t) is defined as,

Ei(t) = \/ / [ (1)2 + i (0)? + (2], (5.6)

A Floquet multiplier |x| > 1 indicates an unstable flow, while |u] < 1 indicates a stable
one. A Floquet multiplier || = 1 represents neutral stability. Also, depending on the value
of the Floquet multiplier u, several mode classifications are possible. A real bifurcation
(1 = 1) has the same period as the base flow. A subharmonic bifurcation is indicated by
a negative Floquet multiplier (4 = —1), where the perturbation is period-doubling, oper-
ating at a period twice that of the base flow. A subharmonic bifurcation can be detected
by investigation of the perturbation field, as the sign of a period-doubling bifurcation will
alternate from one base flow period to the next. A third-type, complex-conjugate bifur-
cations, consist of standing- or travelling-wave solutions. A complex Floquet multiplier
can be identified using the evolution of the absolute value of Floquet multiplier, |u|. An
oscillation around a mean value indicates a complex Floquet multiplier (Robichaux et al.,
1999, Sheard et al., 2005). However, most of the Floquet multipliers observed in this study
are real, with only a few exceptions.

5.3 Effect of flow parameters

As seen in detail in the previous chapter 4, the flow characteristics significantly depend on
Womersley number Wo and Reynolds number Re. So we begin by discussing the effect of
these parameters on the flow stability characteristics. For the present discussion, the AAA
geometry is fixed, using a value of 0.5 for both the bulge width W and bulge height H,
and flow rate waveform @1 corresponding to resting conditions is used. Recall that this
waveform is obtained from the data presented in the article by Suh et al. (2011) where the
flow rate was measured in patients with AAAs. The Reynolds number was varied between
200-300 and the Womersley number from 10-15, which covers the physiologically relevant
range.

5.3.1 Stability analysis: Wo = 15

The first section of the stability analysis focuses on flows at Womersley number Wo = 15,
which are already discussed in detail in the previous chapter (see section 4.3.4). Figure 5.1
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Figure 5.1: Floquet multiplier at Wo = 15 for different Reynolds numbers. Subhar-
monic modes are shown using filled circles. The dotted line demarcates the stable
region from the unstable one. Parameter settings: Q1, H = 0.5, W = 0.5, Wo = 15.

summarizes the results obtained at Wo = 15 for different Reynolds numbers. The flow is
stable at all Reynolds numbers except at Re = 300, where it is unstable to mode numbers
m = 2, 3, 4, with m = 3 being the most unstable. Sub-harmonic modes have a negative
Floquet multiplier and are shown using filled circles. The modes observed clearly arise from
two different sets of eigenmodes, with sub-harmonic modes dominating at small azimuthal
mode numbers and harmonic modes, at higher values. A similar trend was observed for
the case of stenotic flows (Sherwin & Blackburn, 2005, Blackburn & Sherwin, 2007, Griffith
et al., 2009) where the mode corresponding to m = 1 arose as a period-doubling bifurcation.

The spatial distribution of the modes at Re = 300 for various azimuthal mode numbers
are visualized using the contours of azimuthal vorticity in figure 5.2. The spatial structure
corresponding to mode m = 1 is different, as the perturbations are observed to extend
further downstream of the aneurysm bulge and the sign of the azimuthal vorticity changes
along an axial cut at a fixed radius downstream of the AAA dilatation. This seems to be
characteristic of subharmonic modes. It is interesting to see from figure 5.2 that though
the modes are dominant within the AAA cavity, they extend beyond the AAA. This is
different from the spatial distributions seen for steady flows, where the perturbations were
confined entirely to the AAA. As seen in figure 4.23, where the base flow for Wo = 15 is
shown, the primary vortex forms during the deceleration phase at a later instant in the
pulse cycle and is hence weaker. Subsequently, no secondary vortices are formed within
the cavity and the vortex passes through the AAA with less interaction with the distal end
of the AAA wall. This in effect results in less localization of the perturbations within the
AAA dilatation, and hence they are more prominent outside. What this implies is that the
presence of an AAA creates disturbed flow conditions that are not entirely restricted to the
AAA dilatation but rather extend even to the undeformed healthy region. AAA dilatation
acts as a wavemaker region causing the growth of disturbances downstream of it. As a
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Figure 5.2: Contours of azimuthal vorticity of the perturbation corresponding to
different azimuthal mode numbers at phase ¢ = 0.07 within the axial extent
—2.5D < z < 15D. Parameter settings: Q1, H = 0.5, W = 0.5, Re = 300,
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Figure 5.3: Contours of azimuthal vorticity of the perturbation at various instants
in a pulse cycle corresponding to (a) m = 1 (b) m = 3. Parameter settings: Q1,
H =0.5, W =0.5, Re =300, Wo = 15.

result, even the undeformed arterial wall might experience undesirable fluctuations of the
flow field, that could play part in thrombosis formation and platelet activation, and in turn
damage the endothelial cells leading to atherosclerosis (Deplano & Siouffi, 1999, Reininger
et al., 1994, Barakat, 2013).

These observations are further illustrated in figure 5.3 where the evolution of modes
m =1 and m = 3 during a pulse cycle is shown. During the systolic phase (= t = 0.25T)
the perturbations are less localized within the AAA cavity and are more prominent
downstream of it. The sign of the spatial distribution of vorticity corresponding to the
stable sub-harmonic mode m = 1, switches at the end of a pulse cycle and extends far
more downstream than the unstable m = 3 mode. However, as the mode m = 1 is stable,
any noise present in the flow through the AAA would eventually decay asymptotically,
with the flow being dominated by the unstable m = 3 mode.

The spatial structure of the harmonic m = 1 and m = 2 modes at Re = 200 is il-
lustrated in figure 5.4. Though the flow is stable to these perturbations at these parameter
conditions, it is seen that the axial velocity contours seem to be spatially growing, which
is different from those observed at higher Reynolds numbers. However, to verify this
phenomenon, some further tests were conducted by analysing the response of the system
to an impulse forcing, which is described in the following section.

Response to impulse forcing

The spatial distribution of the global modes downstream of the AAA dilatation could be
expected to be the same as those observed in a straight circular pipe, provided, at the
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Figure 5.4: Contours of axial velocity of the perturbation corresponding to m =1
and m = 2 at phase t = 0.07. Parameter settings: Q1, H = 0.5, W = 0.5,
Re = 200, Wo = 15.

entrance of the circular pipe a harmonic forcing, to mimick the AAA cavity is applied. In
effect, the AAA cavity could be thought of as a wavemaker region that forces the dynamics
downstream in the straight circular pipe region. Using this idea, we investigate whether
the spatial structures observed downstream of the AAA dilatation for m = 1 at Re = 200
(see figure 5.4) are indeed correct. For this, we consider a straight circular pipe of sufficient
length (40 D units), and apply a harmonic forcing, with a frequency derived from from
our linear stability analysis in the presence of an AAA, at an upstream axial location, and
observe the linear dynamics. The basic flow applied within the circular pipe corresponds
to the analytical Womersley flow solution, since the basic flow well downstream of an AAA
returns to this.

The external forcing can be modeled as a body force f(x,t) added to the linearized
Navier-Stokes equations (5.2) as

/
o UV + (. V)U

ot
v.u

—Vp' + éAu’ + f(x, 1), (5.7a)
0, (5.7b)

with f(x,t) = 1(x) exp(—iwt). The weight function ¢ (x) is used to restrict the flow region
where the forcing is applied and the forcing is time-harmonic, where the frequency w is real.
This frequency is chosen as the real part of the complex frequency obtained previously from
the linear stability analysis in the presence of an AAA.

Figure 5.5(b) shows the response of the Womersley solution in a straight pipe to such a
harmonic forcing. The spatial location where the harmonic forcing is applied is shown using
a filled black circle. It is seen that the spatial distribution of the perturbation observed
within the straight circular sections downstream of the aneurysm bulge in figure 5.5(a) is
the same as seen in a straight circular pipe forced harmonically using the same frequency
as of the perturbation. Though the perturbation is temporally stable, we can see that there
is a spatial growth as remarked earlier. However, this phenomenon is observed only at low
Reynolds numbers for which the flows are stable.
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Figure 5.5: (a) Energy of the axial velocity component of the leading critical mode
corresponding to m = 1. (b) Flow through a straight circular pipe with the cor-
responding harmonic forcing applied upstream of the domain (shown using a black
circle). Parameter settings: H = 0.5,WW = 0.5, Re = 200, Wo = 15.

Wo=12 | Wo =15
Re =200 | -0.0988 -0.2590
Re =250 | 0.4073 -0.1185
Re =300 | 0.3554 0.0809

Table 5.1: Growth rate o = % log i of the least stable mode.

5.3.2 Stability analysis: Wo = 12

We now explore the effect of lowering the Womersley number to 12 on the stability charac-
teristics. The base flows at Wo = 12 have been discussed in detail in the previous chapter
4. The first significant difference of the base flows in comparison with Wo = 15 is that the
primary vortex forms earlier during the deceleration phase after peak systole, and subse-
quently is stronger. As a result, once it impinges at the distal end of the AAA, secondary
vortices are formed that persist within the cavity for longer times in the pulse cycle.

Figure 5.6 summarizes the stability characteristics at Wo = 12 for various Reynolds num-
bers. The first significant observation is that the flows at Wo = 12 are way more unstable
than those at Wo = 15, with the only stable configuration occurring for Re = 200. As
already discussed, the base flows at these two Womersley numbers are very different. Sec-
ondly, the most unstable mode corresponds to m = 2. Though the absolute values of
Floquet multipliers || are much higher than at Wo = 15, one has to keep in mind that the
time-period at Wo = 12 is higher than that at Wo = 15. As the instability develops over
a time period, the growth rates (o = % log i) are significantly higher but not by orders of
magnitude, which is shown in table 5.1.

Figure 5.7 shows the modes visualized by their azimuthal vorticity at various azimuthal
mode numbers at Re = 250. The first significant difference from Wo = 15 is that the
perturbations are slightly more localized within the bulge region, though they still extend
downstream of the AAA cavity. This is probably due to the difference in base flow dynamics
at Wo = 12 where multiple vortices were formed within the cavity that persisted throughout
the pulse cycle.
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Figure 5.6: Floquet multiplier at Wo = 12 for different Reynolds numbers. Subhar-
monic modes are shown using filled circles. The dotted line demarcates the stable
region from the unstable one. Parameter settings: Q1, H = 0.5, W = 0.5, Wo = 12.
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Figure 5.7: Contours of azimuthal vorticity of the perturbations at various azimuthal
mode numbers. Parameter settings: Q1, H = 0.5, W = 0.5, Re = 250, Wo = 12.
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Figure 5.8: Contours of azimuthal vorticity of the perturbations at m = 2 at various
instants in a pulse cycle. Parameter settings: @1, H = 0.5, W = 0.5, Re = 250,
Wo = 12.

As remarked earlier, the dominant perturbations have an effect on the undeformed arterial
wall downstream of the AAA cavity as can be seen from figure 5.7. The evolution of the
mode at m = 2 during a pulse cycle is shown in figure 5.8. From the frame corresponding
to t = T'/4, one can observe that the perturbations are pushed out of the cavity during the
systolic phase. The period-doubling nature of m = 2 mode is also observed as the positive
and negative regions are swapped at each successive pulse cycle. Figures 5.7 — 5.8 reveal that
the modes extend downstream of the AAA cavity. This could be a significant observation
while extending these results to reality, as usually an AAA is observed upsteam of the iliac
bifurcation in the abdominal region. The presence of perturbations extending downstream
of the AAA dilatation to the regions where the bifurcation is observed indicates that this
bifurcation could have an important part to play in the pathology of AAAs (Deplano et al.,
2013). A closer look at the spatial distributions downstream of the AAA cavity for the
mode numbers m = 2 and m = 4 are shown in 5.9. Figure 5.9 shows the velocity vectors of
the eigenmode at a downstream location of the aneurysm bulge, superimposed on the axial
velocity contours of the base flow, for modes m = 2 and m = 4. For the case of m = 2, the
perturbation results as counter-rotating vortices downstream of the AAA as can be seen
from the perturbation velocity vectors, shown in figure 5.9(a). Whereas for the harmonic
m = 4 mode, the perturbation vectors are aligned with the axial velocity of the basic flow,
and hence the absence of counter-rotating flow.

Before moving on to flows at even lower Womersley numbers, we discuss the fact that at
Re = 300, the most unstable mode is a harmonic mode corresponding to m = 2 shown in
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Figure 5.9: The velocity vectors of the eigenmode at a downstream location of the

bulge (3D < z < 6D), superimposed on contours of axial veloctiy of the base flow.
Parameter settings: Q1, H = 0.5, W = 0.5, Re =

= 250, Wo = 12 (a) m = 2
(b) m = 4.
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Figure 5.10: Evolution of the absolute value of the Floquet multiplier for azimuthal

mode numbers m = 2 and m = 4. The shaded region indicates the stable region.
Parameter settings: @1, W = 0.5, H = 0.5, Re = 300, Wo = 12.
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Figure 5.11: Contours of azimuthal vorticity of the perturbation corresponding to

m = 2 and m = 4 at phase t = 0.07". Parameter settings: Q1, H = 0.5, W = 0.5,
Re =300, Wo =12 (a) m =2 (b) m = 4.
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Figure 5.12: Floquet multiplier at Wo = 10 for different Reynolds numbers. Sub-
harmonic modes are shown using filled circles. The dotted line separates the stable
region from the unstable one. Parameter settings: Q1, H = 0.5, W = 0.5, Wo = 10.

figure 5.6. This is different from Re = 250 where a sub-harmonic mode was found. Figure
5.10 shows the evolution of the absolute value of the Floquet multiplier |u| for m = 2
and m = 4. |u| oscillates around a mean value for m = 2, whereas for m = 4 (and other
azimuthal mode numbers), it converges to a constant value. This indicates that the Floquet
multiplier is a complex value, as suggested by Robichaux et al. (1999). As a result, m = 2
corresponds to a quasi periodic mode, with a complex Floquet multiplier (Sheard et al.,
2005).

The spatial distribution of the azimuthal component of the vorticity of the eigenmodes
m = 2 and m = 4 are shown in figure 5.11. The spatial distribution is similar to the
that observed at Re = 250, with m = 2 mode extending downstream of the bulge region.
The spatial distribution reveals that the perturbations arise in the form of counter rotating
vortices downstream of the AAA cavity. This is illustrated by the presence of alternating
positive and negative vorticity along the domain.

5.3.3 Stability analysis: Wo = 10

The effect of lowering the Womersley number even further to 10 on the stability character-
istics is discussed in this section, the base flows of which are already discussed in detail in
the previous chapter 4. As at Wo = 12, the primary vortex formed during the deceleration
phase after peak systole, that impinges at the distal end of the AAA, is much stronger
resulting in secondary vortices within the AAA cavity.

The results from our stability calculations are summarized for the case of Wo = 10 at
various Reynolds numbers in figure 5.12. The flow corresponding to Re = 200, 250 are
more unstable, when compared with the results obtained for Wo = 12 (see figure 5.6).
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Wo =10 | Wo =12
Re =200 | 0.6956 -0.0988
Re =250 | 1.2398 0.4073
Re =300 | 0.3559 0.3554

Table 5.2: Growth rate o = % log 1 of the least stable mode.

Figure 5.13: Contours of azimuthal vorticity along with the velocity vectors of the
= 2 at various Reynolds numbers.

perturbations corresponding to the mode m
Parameter settings: @1, H = 0.5, W = 0.5, Wo = 10, m = 2.
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However, the Floquet multipliers obtained for the case of Re = 300 are smaller and the
flow is observed to be more stable than at slightly lower Reynolds numbers. Mode m = 2
is observed to be subharmonic in nature for all the Reynolds numbers investigated. The
Floquet multiplier corresponding to m = 1 for Re = 300 is complex. The values of Floquet
multipliers are considerably higher resulting in large values of growth rates (though the
time period is higher too), that are summarized in table 5.2. The vorticity distributions of
the unstable mode m = 2 for various Reynolds numbers are shown in figure 5.13. Unlike
in the earlier cases at higher Womersley numbers, the perturbations are entirely localized
within the AAA cavity. With an increase in Re, the maximum value of perturbations are
seen to be more localized at the distal end.

5.3.4 Stability analysis: Wo =5

To conclude this section on the effect of flow parameters on stability characteristics, we
present some results obtained at Wo = 5. As mentioned in the previous chapter, the
Womersley numbers usually observed in the abdominal aorta are within the range 10-15.
Hence the investigation of stability characteristics at Wo = 5 is carried out mainly from
an academic point of view. We have seen that the flows are more and more unstable
with decreasing Womersley numbers, due to the differences in the base flow characteristics.
However, one would expect that the flows return to stability at sufficiently low values of
Womersley numbers.

Figure 5.14 shows the corresponding Floquet multipliers for Re = 200. Only a single value of
Reynolds number was chosen as it should provide us with sufficient qualitative information.
As expected, the flow is stable for all azimuthal mode numbers, with the values of Floquet
multipliers being very low (note the scale of the vertical axis in these plots). This agrees
with the fact that the flow remains attached during the major part of the cycle and the
vortices that are formed are very weak. The values of growth rates o, are given in table
5.3. Only the mode associated with m = 1 is observed to be sub-harmonic and the least
stable mode corresponds to m = 2.

The spatial distribution of the modes for various values of m are shown in figure 5.15 us-
ing the azimuthal component of the vorticity. As seen at other Womersley numbers, the
sub-harmonic mode corresponding to m = 1 extends downstream of the AAA dilatation.
However, all the other modes are found to be localized within the cavity. This is interest-
ing, as by reducing the Womersley number, one can think that asymptotically one would
converge to the case of steady flows, where the perturbations are entirely confined to the
AAA cavity.

5.4 Effect of dilatation parameter on stability
characteristics

Throughout the discussion so far, the bulge height, H, and the bulge width, W, were fixed
at a value of 0.5. However, as seen in the previous chapter (section 4.3.2), the base flow
characteristics considerably depend on bulge height. Hence it is interesting to see how the
stability characteristics of the flows in AAA vary during the growth of an AAA. For this
investigation, we choose the waveform corresponding to the rest conditions, and the flow
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Table 5.3: Growth rate o = %log p for various azimuthal mode numbers.
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Figure 5.14: (a) Temporal evolution of the maximum value of Floquet multiplier.
(b) Converged values of the Floquet multiplier. Sub-harmonic modes are showed
using filled circles. Parameter settings: @1, H = 0.5, W = 0.5, Re = 200, Wo = 5.
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Figure 5.15: Contours of azimuthal vorticity of the perturbation at phase ¢t = 0.0T
for various values of m. Parameter settings: Q1, H = 0.5, W = 0.5, Re = 200,
Wo = 5.

parameters chosen are: Re = 264 and Wo = 12. The values of bulge height investigated
are H = 0.3, 0.4, 0.5, 1 and the bulge width was fixed at 0.5.

Figure 5.16 summarizes the results of our stability calculations at various bulge heights. For
small values of H, the dominant modes are observed to be sub-harmonic. The first striking
result is that even at a very small value of H, the flow is not far from marginal stability.
The least stable mode at H = 0.3 corresponds to m = 1 arising through a period-doubling
bifurcation, with an absolute value of Floquet multiplier of 0.96. However, with increase in
H, the contribution from the m = 1 sub-harmonic mode is found to diminish, and for higher
values of H, m = 1 mode is harmonic, indicating that the eigenmodes are from different
branches in the spectrum. At higher values of H, the dominant mode corresponds to a
sub-harmonic mode of azimuthal mode number 2. The calculation at H = 0.4 was carried
out in addition as the change in values of Floquet multipliers from H = 0.3 to H = 0.5
was significant. As seen in the previous chapter, the flow characteristics persistent in large
AAAs are present even during the incipient stages. Here, the observed instability threshold
observed roughly corresponds to H = 0.4.

The least stable modes obtained for various values of H are shown in figure 5.17 using
azimuthal vorticity of the perturbations. Except for the case H = 0.3, the dominant mode
at other bulge heights corresponds to m = 2. It is interesting to see that even at a small
value of H = 0.3, the dominant mode extends downstream of the AAA cavity, affecting
even the healthy undeformed arterial wall. As remarked earlier, in reality, the presence of
the iliac artery bifurcation downstream of an AAA modifies the flow characteristics within
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Figure 5.16: Absolute value of the Floquet multiplier at various values of H. Pa-
rameter settings: Q1, W = 0.5, Re = 264, Wo = 12.

m=1 H=0.3
m=2 H=04
m=72 H=0.5
m=2 H=1.0

Figure 5.17: Azimuthal vorticity contours of the least stable eigenmode for various
bulge heights within an axial range —1.5D < z < 7D. Parameter settings: Q1,
Re =264, Wo =12, W = 0.5.
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Figure 5.18: Azimuthal vorticity contours of the least stable eigenmode for various

bulge heights within an axial range —1.5D < z < 10D. Parameter settings: @1,
Re =264, Wo =12, W =0.5 (a) H=0.4 (b) H=1.

an AAA. This points out that modeling an AAA along with the downstream bifurcation
might provide us with more realistic flow features to help us to understand the pathology
of AAAs.

The evolution of the unstable modes (m = 2) for two values of bulge height H = 0.4 and
H =1 are shown in figure 5.18 at various instants in a pulse cycle. Note that the axial scale
corresponds to —1.5D < z < 10D. It is seen that the stability characteristics pointed out
so far in this chapter are present even at a small value of H = 0.4. And more importantly,
the unstable mode is found to extend far more downstream of the AAA dilatation at a
smaller value of H, especially during the systolic phase (roughly around ¢ = 0.25 T'). This
is in coherence with our discussion on base flow characteristics. At a larger bulge height,
the base flow vortices are trapped within the AAA cavity for longer times before getting
advected out downstream. Firstly, this reinforces the significance of understanding the
effect of an AAA on the downstream segment of the arterial wall, in the presence of an iliac
bifurcation. Secondly, the role of fluid mechanical observations are more pertinent during
the initial stages of growth of an AAA, in coherence with our observations made on base
flow characteristics (see section 4.3.2).
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Figure 5.19: Floquet multiplier at W = 1.0 for different bulge heights. Subharmonic
modes are shown using filled circles. The dotted line demarcates the stable region.
Parameter settings: @1, W = 1.0, Re = 264, Wo = 12.

5.5 Effect of aspect ratio on stability character-
istics

The results of stability calculations performed at a larger value of bulge width, W = 1,

are discussed now. It was shown in the previous chapter (see section 4.3.3) that for longer

AAAs the vortices formed within the AAA cavity after peak systole are much weaker,

coupled with the fact that the flow remains attached for longer times. Also, the oscillatory

flow conditions within the AAA are weaker for longer aneurysms. These facts indicate that
the flows in longer AAAs might be more stable than short aneurysms.

Longer AA As with a small dilatation ratio are more resemblent of AAAs during the incipient
stages. The summary of our results made at W = 1 are shown in figure 5.19. As expected,
the flows are stable in comparison with the values observed for W = 0.5. This could be
primarily attributed to the weak primary vortex formed within the AAA cavity, resulting
in the absence of secondary vortices within the AAA dilatation. Once again, the dominant
modes correspond to smaller values of m that are sub-harmonic. The mode corresponding
tom =2 at H =1 is associated with a complex Floquet multiplier.

The spatial distribution of the modes at W = 1 for various values of H are shown in figure
5.20. The spatial distribution of the azimuthal vorticity shows that the perturbations are
less localized within the AAA cavity. The perturbations within the AAA dilatation have
their maxima at the same radial extent as the undeformed arterial wall. What this implies
is that the disturbances close to the wall are weaker. As the endothelial cells lining the
arterial wall are sensitive to disturbed flow conditions near the wall, these observations
indicate that longer AAAs would be less pathological. However, even these computations
show that the perturbations are not entirely limited to the AAA cavity. The presence of an
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Figure 5.20: Azimuthal vorticity contours of the least stable eigenmode for various
bulge heights within an axial range —1.5D < z < 10D. Parameter settings: @1,
Re =264, Wo =12, W = 1.

AAA initiates disturbed flow conditions on the healthy segment of the arterial walls even
in an incipient aneurysm, characterised by a large value of W and a small value of H.

5.6 Stability characteristics during exercise
conditions

The results of a linear stability analysis of flows in AAAs under exercise conditions is
discussed here. A high peak velocity, fine mesh structure within the AAA cavity and large
Reynolds numbers have meant that a very small time-step is required to satisfy CFL-type
stability restrictions, and hence requiring more time. Due to this reason, we present only
some preliminary results obtained for exercise conditions.

The Q2 waveform used is (see figure 4.1, chapter 4), obtained from the data provided in Suh
et al. (2011) where the flow rate waveforms were measured in patients with abdominal aortic
aneurysms (AAA) during exercise conditions. The Reynolds number corresponding to this
waveform is 1700 and the Womersley number is 13.8. To simplify the computations, we have
lowered the value of Reynolds number to 500. However, we expect that the characteristics
of the perturbations observed for these flow parameters would be qualitatively similar even
at a higher value of Re thereby providing us with sufficient information. Another interesting
aspect of this analysis is that it helps us in identifying the differences that arise due to a
change in the flow rate waveform. The geometry considered corresponds to a typical AAA,
where the bulge width and height are fixed at 0.5.

The stability characteristics at Re = 500 are summarized in figure 5.21. Figure 5.21(a)
shows the evolution of |u|, whose converged values are shown in figure 5.21(b). The flow
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Figure 5.21: (a) Evolution of the absolute value of Floquet multiplier. (b) Absolute
values of the Floquet multiplier. Sub-harmonic modes are showed using filled circles.
Parameter settings: Q2, H = 0.5, W = 0.5, Re = 500, Wo = 13.8.

is unstable for the azimuthal mode numbers 3-8. All the Floquet multipliers are real, as
|| converges to a constant value. The trend of the Floquet multiplier with respect to
the azimuthal mode number, shown in figure 5.21(b), shows that m = 5 corresponds to
the mode having the highest temporal growth rate. Also, for all the higher values of m
starting with m = 2 the global modes are sub-harmonic in nature with a negative value for
the Floquet multiplier. The period-doubling modes have a negative Floquet multiplier, u,
and are indicated using filled circles. This also indicates that the flows at Re = 1700 are
more likely to be unstable with even higher values of Floquet multipliers.

The spatial distributions of the perturbations for different azimuthal mode numbers
are shown in figure 5.22 using the azimuthal vorticity. Modes corresponding to m = 1 and
m = 2 are stable whereas modes 3, 4 and 5 are unstable. The distributions corresponding to
modes 6-8 are not shown as they resemble those seen at m = 5. Though the perturbations
are concentrated within the AAA cavity, they do extend downstream of the AAA to the
healthy undeformed sections of the arterial wall. These observations indicate that once an
aneurysm is present, the disturbed flow conditions affect even the undeformed AAA wall
which could be damaging and aiding in further progression of this disease. An observation
of interest is that the mode m = 3 is marginally unstable and extends further downstream
of AAA. Whereas modes 4 and 5 that have even higher temporal growth rates are more
localized within the AAA cavity. However, these snapshots present the picture only at
phase t = 07"

The distributions at various instants in a pulse cycle for modes m = 3 and m = 5 are shown
in figure 5.23. The spatial distributions corresponding to both the azimuthal mode numbers
are very similar. These snapshots show that during a pulse cycle the disturbances created
by the presence of an AAA extend far downstream of the AAA dilatation. The presence of
these disturbed flow conditions may promote thrombosis formation and platelet activation
even in the sections of healthy arterial walls. In stark contrast, for the case of steady flows,
where even at high Reynolds numbers, the modes were confined entirely to the AAA cavity.
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Figure 5.22: Azimuthal vorticity contours of the least stable eigenmode for various

azimuthal mode numbers within an axial range —2.5D < z < 10D. Parameter
settings: Q2, H = 0.5, W = 0.5, Re = 500, Wo = 13.8.
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Figure 5.23: Azimuthal vorticity contours of the least stable eigenmode for (a) m = 3
(b) m = 5 within an axial range —1.5D < z < 7.5D during a pulse cycle. Parameter
settings: 2, H = 0.5, W = 0.5, Re = 500, Wo = 13.8.
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Figure 5.24: The geometry considered in the study by Sheard (2009) is shown using
dotted lines, where the dilatation was modeled as a sinusoidal function. The corre-
sponding gaussian equivalent geometry is shown using continuous lines. Parameter
settings: H = 0.45, L =2.9, W = 0.58.

5.7 Effect of wall modeling on flow dynamics

In the previous chapter (section 4.5), we had discussed the changes that arise due to a
different choice of function used to model the AAA wall. Though the AAAs modeled using
a sinusoidal and a gaussian function were very similar, the base flow characteristics, in
particular the absolute values of the wall shear stresses (WSS) at the distal end, where the
differences in the two geometries are more prominent, were significantly different. The two
geometries are shown again in figure 5.24. More details regarding the geometries are given
in chapter 2, section 2.4.2. We now discuss the differences in stability characteristics that
arise in these geometries. As a study on flow characteristics in an AAA using a sinusoidal
function was carried out recently by Sheard (2009), we consider the same geometrical and
flow characteristics as in their study. The flow conditions correspond to the waveform @3
(shown in figure 4.47, chapter 4) and the flow parameters are Re = 330 and Wo = 10.7. The
same geometry and flow conditions were also employed in the study by Salsac et al. (2006).

The stability characteristics are summarized in figure 5.25. Figure 5.25(a) shows the evolu-
tion of |u|, obtained by modeling the AAA using a gaussian function. The absolute values of
the Floquet multipliers are summarized in figure 5.25(b), where the dotted line corresponds
to the values obtained using a sinusoidal function and the continuous line using a gaussian
function. Firstly, it is seen that all the modes except m = 1 are unstable, for the case of a
gaussian function. The least stable mode corresponds to m = 3. Secondly, for the case of a
sinusoidal function, the absolute values of Floquet multipliers are higher, with even m =1
being unstable, though the trends observed are quite similar. As discussed in the previous
chapter (see section 4.5), the WSS values obtained using a sinusoidal function are found
to be also higher, indicating slightly larger gradients near the wall, which is in congruence
with higher Floquet multipliers. Thirdly, from the evolution of |u|, we can deduce that all
the Floquet multipliers are complex. These observations agree with those made by Sheard
& Ryan (2008).

The spatial distributions of the eigenmodes obtained using a sinusoidal and a gaussian func-
tion are shown in figure 5.26 (a) and (b) respectively. The distributions of the perturbations
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Figure 5.25: (a) Ratio of kinetic energies showing the evolution of the absolute value
of Floquet multiplier obtained by modeling the aneurysm using a gaussian function.
The shaded region indicates the stable region. (b) The absolute value of Floquet
multipliers obtained by modeling the aneurysm using a sinusoidal (dotted line) and
a gaussian (continuous line) function. Parameter settings: @3, H = 0.45, W = 0.58,
Re = 330, Wo = 10.7.
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Figure 5.26: Azimuthal vorticity contours of the least stable eigenmode for different
mode numbers m within an axial range —2D < z < 10D. (a) Sinusoidal AAA

(b) Gaussian AAA. Parameter settings: @3, H = 0.45, W = 0.58, Re = 330,
Wo = 10.7.
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Figure 5.27: Azimuthal vorticity contours of the eigenmode corresponding to m = 3

at different phases. (a) Sinusoidal AAA (b) Gaussian AAA. Parameter settings:
Q3, H =0.45, W = 0.58, Re = 330, Wo = 10.7.

are found to be very similar but not indistinguishable for both the cases. The more unstable
modes corresponding to m = 2, 3, 4, 5 are localized within the bulge region and do not
extend downstream of the AAA dilatation. As a confirmation, we provide the snapshots
of the eigenmodes corresponding to m = 3 obtained using an AAA modeled using both
the functions at various time instants in a pulse cycle in figure 5.27. Once again, similar
spatial distributions are observed for both the AAAs. Throughout the pulse cycle the per-
turbations are confined entirely to the AAA cavity. The eigenmode seems to rotate in an
anti-clockwise direction as the cycle evolves. This comparison of stability characteristics
between sinusoidal and gaussian shapes shows again that small but significant differences
are due to minute changes in geometry.

5.8 Discussion

We have studied pulsatile flows in a smooth axiymmetric abdominal aortic aneurysm
(AAA) using three-dimensional stability analysis. Our objective here has been to establish
the stability characteristics and flow behaviour observed in an AAA under varying
geometrical parameters and flow conditions.

Two types of physiological flow rate waveforms are considered, corresponding to
rest (Q1) and exercise (Q2) conditions. The waveforms are obtained from the article
by Suh et al. (2011) which were measured in patients having AAAs during resting
and exercise conditions. Using the waveform (1, the Womersley number Wo and the
Reynolds number Re, are varied in the range 5-15 and 200-300 respectively. To the
basic flow computed at different conditions, which are discussed in detail in the previous
chapter 4, three-dimensional perturbations were superimposed and the temporal evolution
of these perturbations was computed by time-marching the linearized Navier—Stokes
equations. At a high Womersley number of 15, we have observed the flows to be stable
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at Reynolds numbers 200 and 250. For small values of the azimuthal mode number m,
the instability occurrs through a period-doubling bifurcation with a negative Floquet
multiplier. Similar flow features were observed in stenotic flows (Sherwin & Blackburn,
2005, Blackburn & Sherwin, 2007, Griffith et al., 2009, 2013). At a higher value of
Re = 300, the most unstable mode corresponds to m = 3 with the eigenmode having
a real positive Floquet multiplier, resulting in a harmonic bifurcation. An interesting
feature observed in these analyses is that the perturbations are not entirely confined to
the AAA cavity and extend well downstream, though the maximum values are observed
near the distal end of the AAA. This implies that once an AAA is formed, the disturbed
flow conditions may affect the undeformed arterial walls. These observations are in
stark contrast with those made using steady base flows, as in the latter, the modes
are entirely confined to the AAA. As a consequence the endothelial cells lining the
arterial walls, even downstream of the AAA, experience disturbed flow conditions. These
observations may be an important step in understanding the progression of this pathology
as such disturbed flow conditions are known to promote atherosclerosis and thrombosis
formation (Lasheras, 2007, Deplano & Siouffi, 1999, Barakat, 2013). These observations
also indicate the need to consider the iliac bifurcation downstream of the AAA in future
studies as they could play an important role in the spatial distribution of the perturbations.

The flows are found to be more unstable as the Womersley number is lowered to
10 and 12. The most unstable mode arises as a sub-harmonic bifurcation with an az-
imuthal mode number 2. As seen from the base flow characteristics, at a lower Womerlsey
number, the flow separation at the proximal end of the AAA is found to occur earlier in
the cycle resulting in stronger vortices within the aneurysm that persist for longer times.
This explains why the Floquet multipliers observed at a lower Womersley number are
higher. Also, for some parametric conditions, the Floquet multiplier is complex. The
complex Floquet multiplier is identified using the temporal evolution of the absolute value
of the Floquet multiplier. This shows the presence of different unstable modes and the
true complexity of the flows in AAAs. As the Womersley number is reduced even further
to a value of 5, as expected the flows are stable. The least stable modes are confined to
the AAA dilatation. This is in congruence with the fact that by reducing the Womsersley
number, asymptotically one would get a steady flow regime, where the perturbations are
confined entirely to the AAA cavity.

Using the waveform corresponding to rest conditions, @1, the effect of the dilata-
tion parameter and aspect ratio on stability characteristics has been investigated. The
flow becomes unstable as the dilatation ratio is increased for a fixed value of bulge
width W. Even at a small value of bulge height H, the spatial distributions of the
perturbations are similar to those observed in a typical AAA, with eigenmodes extending
downstream of the aneurysm to the healthy regions. These indicate the relevance of fluid
mechanics even for an incipient aneurysm. Increasing the bulge width results in more
stable flows. We have seen in the previous chapter that weaker disturbed flow condi-
tions prevail in longer AAAs. This is further confirmed from the stability calculations as
the perturbations are localized away from the arterial walls and the flows are globally stable.

Flows in AAAs during exercise conditions are investigated using the waveform Q2.
They are characterised by a high peak velocity and large Reynolds numbers. We observed
the flow to be unstable at Re = 500 and Wo = 13.8 to azimuthal mode numbers 2, 3, 4
and 5 through a period-doubling bifurcation. All the Floquet multipliers are real. The
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spatial distributions reveal that the perturbations are strong within the AAA cavity, near
the distal end and are prominent even downstream of the aneurysm. As remarked in
the last chapter on the base flow characteristics, during exercise conditions the flow may
be turbulent in AAAs. The presence of strong perturbations indicates that the mixing
of blood flow is more prominent during exercise conditions. These flow patterns with
increased flow magnitude and turbulence reduce regions of flow stasis that have been
correlated with thrombus formation (Salsac et al., 2004, Deplano & Siouffi, 1999, Reininger
et al., 1994). However, the final saturated states of these modes would be required to
investigate this further.

Finally, the sensitivity of these results with respect to the details of the geometry
has been investigated by considering two equivalent AAAs modeled, respectively, by a
sinusoidal and a gaussian function. For this analysis, the flow conditions and geometrical
parameters are chosen as in the studies by Salsac et al. (2006), Sheard (2009). The flow
rate waveform ()3 corresponds to Re = 330 and Wo = 10.7. The stability characteristics
observed in the sinusoidal and gaussian AAA are qualitatively similar. The Floquet
multipliers are all complex with the dominant mode observed for the azimuthal mode
number m = 3. The sinusoidal AAA has significantly higher growth rates than the
gaussian AAA, whereas both geometries are difficult to distinguish visually and the
discrepancy between the two models is negligible as compared to any real AAA. These
results highlight the difficulty to establish general conclusions based on simplified and
approximate models. The same difficulties are expected to prevail for patient-specific
computations. The difference between a real AAA and a geometry reconstructed from
CT-scans is at least of the same order than between our sinusoidal and gaussian shapes.






CHAPTER 6

Conclusions and Perspectives

6.1 Conclusions

It has now been recognized that abdominal aortic aneurysms (AAA) result from a
complex interplay between structural changes of the arterial wall and disturbed patterns of
hemodynamic stresses acting on the vessel wall. Hemodynamic stresses (pressure and wall
shear stresses) are thought to affect the mechanisms responsible for the formation, growth
and rupture of AAAs via changes in the structure of the arterial wall resulting in wall
degradation. Changes of the arterial wall in turn influence the flow through the arterial
segment. Despite intensive investigation, a definitive correlation between arterial fluid
mechanics and arterial wall dysfunction has remained elusive. Arterial wall dysfunction
due to atherosclerotic lesions has been correlated with the formation and growth of an
aneurysm. Recent studies have demonstrated that the endothelial cells that line the arterial
vessel wall are receptive to spatial and temporal gradients and in particular, regions of low
oscillatory wall shear stresses (WSS). The main objective of the dissertation has therefore
been to characterize the changes in flow characteristics resulting from the enlargement
of the abdominal aorta under physiologically varying flow conditions, in order to provide
some insights on the role that the hemodynamic forces may play in the etiology and
progression of the pathology. The WSS distributions and other base flow characteristics,
and the linear stability of the flows were analysed numerically. The motivation behind
linear stability analyses of the flows were to understand the mechanisms at the onset
of instability that would help us in understanding the flow behaviour in more complex
configurations. An axisymmetric AAA, modeled as an inflation of gaussian shape on a
vessel of circular cross-section, is considered in the present study with the primary focus
being on characterising the flow fields during the early stages of growth of an AAA. The
model AAA is characterized by a maximum height H and width W, made dimensionless
by the upstream vessel diameter. The use of a model AAA geometry, enabled us to
systematically quantify the effects of various geometrical parameters on flow characteristics.

As a first step towards understanding the flow fields in AAAs, a steady flow was
studied. Though steady flows may not be directly relevant to the understanding of
hemodynamics within an AAA, as the flow in the aorta is pulsatile, it does provide us
with information on the flow characteristics, without having the complexity brought in
by the unsteadiness of the flow. The fluid is assumed to be Newtonian and the flow far
upstream and downstream of the inflation is a Hagen—Poiseuille flow, characterized by
its Reynolds number. The base flow through the model aneurysms is determined for
non-dimensional heights and widths in the physiologically relevant ranges 0.1 < H < 1.0
and 0.25 < W < 2.0, and Reynolds numbers up to 7000, which corresponds to peak values
recorded during pulsatile flows under physiological conditions. It is found that the base
flow consists of a core of relatively fast moving fluid, surrounded by a slowly recirculating
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fluid that fills the inflation; for the larger values of the ratio H/W a secondary recirculation
region is observed. The wall shear stresses in the inflation are vanishingly small as
compared to those in the straight vessels. The global linear stability of the base flows
was analysed by determining the eigenfrequencies and eigenfunctions of small-amplitude
perturbations. In order to understand the instability mechanisms, the energy transfer
between the base flow and the perturbations was computed. As expected, the flows were
observed to be stable for small values of H. The modes corresponding to different values
of azimuthal mode numbers were observed to be dominant at various values of H and W.
Relatively shallow aneurysms (of relatively large width) become unstable by the lift-up
mechanism and have a perturbation flow which is characterized by stationary, growing
modes. More localized aneurysms (with relatively small width) become unstable at larger
Reynolds numbers, presumably by an elliptic instability mechanism; in this case the
perturbation flow is characterized by oscillatory modes.

For the case of pulsatile flows, two types of physiological flow rate waveforms were
considered in our study, corresponding to rest (Q1) and exercise (Q2) conditions. Using
the waveform @1, the flow parameters, the Womersley number Wo and the Reynolds
number Re, were varied in the ranges 5-15 and 200-500, respectively. The flows are
observed to remain attached to the walls during the systolic phase, with flow separation
generally observed during the deceleration after the peak systole. During this phase, the
vorticity is found to roll-up into a vortex at the proximal end. This vortex enlarges with
time and impinges at the downstream end of the AAA, resulting in large spatial gradients
of WSS along the wall. Our computations of flow fields for a range of AAA shapes have
shown that the flow inside the aneurysm is characterized by the formation of regions of
higher and lower values of WSS than in the healthy vessel. Regions with large spatial
gradients in WSS distributions are observed, particularly at the distal end of the AAA,
which are not found in the healthy case. For a typical AAA under rest conditions, at peak
systole, the maximum WSS observed at the downstream end is about 1.7 times the value
recorded in a healthy abdominal aorta. However, when considering the time-averaged
WSS, a peak is found 2.8 times greater than the mean level in the healthy vessel, and an
opposite-signed peak that is 4.8 times greater.

The flow conditions are observed to vary significantly with Womersley and Reynolds
numbers. It is observed that the flow remains attached to the walls for longer times, as
the Womersley number Wo increases. Due to this, the primary vortex formed during the
deceleration phase is weaker and secondary vortices are not formed within the AAA cavity
at higher Wo’s. Inspection of axial velocity profiles, close to the wall also showed that the
spatial variations along the wall, and local temporal fluctuations, are more marked at lower
Womersley numbers. These observations are reflected in the WSS distributions which reveal
that the peak maximum and minimum values increase with a decrease in Wo. The principal
effect of increasing Re is that the primary vortex formed after peak systole is stronger,
compounded by the fact that flow separation takes place earlier in the pulse cycle. As a
result, peak WSS and spatial gradients of WSS along the arterial wall are found to increase.

Clinically relevant flow characteristics of aneurysmal flow, i.e. detachement of flow
and impingement on the distal end, the presence of low oscillatory WSS within the AAA,
were observed even for very shallow aneurysms. For deep aneurysms, multiple vortices
are observed throughout the cycle within the AAA cavity. Moreover, it is seen that the
peak WSS hardly changes with increase in bulge height and qualitativley similar WSS
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distributions are observed. However, the minimum value of WSS, usually observed slightly
upstream of the distal end is seen to increase sharply during the initial growth of an AAA.
These studies indicate that the spatial distributions of WSS and their gradients, are more
relevant for AAAs during the incipient stages, and may not be an important parameter in
the expansion of AAAs during the latter stages. For longer aneurysms, weaker spatial and
temporal variations along the wall have been observed, with a decrease in minimum and
maximum values of WSS.

The analysis of pulsatile flows corresponding to exercise conditions revealed that
the strength of vortices formed increases under exercise conditions, and the absence
of reversed flow during the pulse cycle. The flow fields are more complex than under
rest conditions. Such exercise-induced flow patterns with increased flow magnitude and
moderate turbulence, reduce regions of flow stasis that have been correlated with thrombus
formation. Analysing the velocity profiles close to the arterial wall reveals that the spatial
and temporal gradients are significantly lower during exercise conditions, thereby reducing
hemodynamic flow conditions known to promote arterial wall degradation. The WSS
distributions observed are similar with a peak maximum value observed at the distal end
and a minimum value observed slightly upstream. The effects of varying geometry on
flow dynamics and consequently on the WSS distributions are smaller during exercise
conditions than during resting conditions.

In order to investigate the stability of these pulsatile base flows at different condi-
tions, the temporal dynamics of small-amplitude three-dimensional perturbations has been
computed via the linearized Navier—Stokes equations. For a typical AAA under resting
conditions, m = 2 is the leading azimuthal mode that is sub-harmonic with higher mode
numbers being harmonic. The maximum values of the perturbations are observed near
the distal end of the AAA. However, they are not entirely confined to the AAA cavity
and extend downstream. This implies that once an AAA is formed, the disturbed flow
conditions spread even to the undeformed arterial walls. These observations are in contrast
with those made using a steady base flow, as in the latter, the modes are entirely confined to
the AAA. As a consequence the endothelial cells lining the arterial walls, even downstream
of the AAA, experience disturbed flow conditions. The waveform corresponding to rest
conditions Q1 is used to investigate the effects of Womersley and Reynolds numbers
on the stability characteristics. The flows are found to be unstable as the Womersely
number is lowered from 15 to 10. At a relatively high Womersley number 15, the flow
is observed to become unstable at Re = 300 through a harmonic bifurcation and m = 3
is the leading azimuthal mode. For lower values of Wo, the most unstable mode arises
as a sub-harmonic bifurcation with an azimuthal mode number 2. When the Womersley
number is reduced even further to a value of 5, as expected the flows were stable for
the range of Re considered. The least stable modes are then confined to the AAA dilatation.

Similarly, the effect of the dilatation parameter and aspect ratio on stability char-
acteristics has been investigated using the waveform Q1. The flow becomes unstable as the
dilatation ratio is increased for a fixed value of bulge width W. Even at a small value of
bulge height H, the spatial distributions of the perturbations are similar to those observed
in a typical AAA, with eigenmodes extending downstream of the aneurysm to the healthy
regions. This indicates the relevance of a stability analysis even for an incipient aneurysm.
Increasing the bulge width results in more stable flows with weaker perturbations close to
the arterial walls.
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Flows in AAAs during exercise conditions, that are characterised by waveform @2
with a high peak velocity and larger Reynolds numbers, were also studied. The flow then
becomes unstable at Re = 500 and Wo = 13.8 to azimuthal mode numbers 3-8 through
a period-doubling bifurcation. The dominant mode corresponds to m = 5. The spatial
distributions reveal that the perturbations are strong within the AAA cavity, near the
distal end and are significant even downstream of the aneurysm.

Finally, the sensitivity of these results with respect to the details of the geometry
has been investigated by considering two equivalent AAAs modeled, respectively, by a
sinusoidal and a gaussian function. Though both the AAA geometries almost superpose,
small but significant differences in flow dynamics occur. Flow separation occurs earlier
in the pulse cycle in a sinusoidal AAA, with the flow field obtained in a gaussian AAA
slightly lagging in phase in comparison with a sinusoidal AAA. This is probably due to
the fact that a gaussian function converges more smoothly at the proximal and distal ends
of the AAA cavity. As a result, the WSS distributions are found to be slightly different,
particularly at the upstream and downstream ends of the aneurysm. The stability analyses
have shown that the Floquet multipliers are all complex with the dominant mode observed
for the azimuthal mode number m = 3. The sinusoidal AAA has significantly higher
growth rates than the gaussian AAA, whereas both geometries are difficult to distinguish
visually and the discrepancy between the two models is negligible as compared to any
real AAAs. These results highlight the difficulty to establish general conclusions based on
patient-specific computations. Simplified models that would permit us to isolate the effect
of a particular physical mechanism would probably be the best way forward to enhance
our understanding of flows in abdominal aortic aneurysms.

6.2 Perspectives

The goal of fluid dynamicists is to enhance our understanding of flows in abdominal aortic
aneurysms. As these flows are complex, it is important to analyse them using simplified
models and hypotheses that would enable us to reach conclusions that reveal the underlying
physics. Presented here are a number of possibilities for future work as a continuation of
the present research.

(1) As a direct continuation of the present work, a fully nonlinear three-dimensional analysis
could be implemented to investigate the saturated states that result from the instabilities
identified in this thesis. A detailed investigation of the nonlinear dynamics would shed light
on the disturbed flow conditions that prevail in these configurations.

(2) As seen in our present work, the data obtained using computations depend on the
physiological flow rate waveforms that is used. Particularly, these waveforms vary from
person to person, and also on the physiological activity that a person is engaged in. Hence
it is important for fluid dynamicists working in this field to have an active co-operation with
surgeons and doctors who have data on these waveforms observed in vivo AAAs. Ideally
if one has a substantial data set of these waveforms, statistically speaking, is it possible
to formulate a waveform that would encapsulate the characteristics present generally in
AAA subjects? At the same time, as computations could be performed over a wide range
of waveforms, is it possible to relate changes in flow characteristics to particular details of
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these waveforms?

(3) Similarly, more data on AAA geometries would also be beneficial to scientists working
in this field. As AAA geometries observed in reality are of complex shapes, information
on geometrical parameters like the aspect ratio and dilatation ratio could help fluid dy-
namicists in choosing model AAAs, and what function one must use to model the AAA
walls. However, it is important to understand the dependence of flow characteristics on
geometrical parameters, and also on the function used to model the AAA walls, to use the
physiological data in a better way.

(4) The effect of asymmetry on flow characteristics is another dimension that needs more
investigation during the progressive enlargement of an AAA. As different sized AAAs rup-
ture at different thresholds, this could be a significant parameter that would provide more
information on the growth rate of AAAs, by taking into account the stresses acting on
asymmetrical AAAs during its growth. Also, the presence of swirl in abdominal aorta has
been observed; could it possibly influence the dynamics within an AAA?

(5) Most of the works in this field have not considered non-Newtonian effects on flow
characteristics in AAAs, as they are deemed less significant in large arterial vessels. A
study quantifying these effects, especially when the flow rates are small during the diastolic
phase, could be necessary at some stage in providing a clearer picture on the flow dynamics.

(6) The influence of pulse pressure on cardiovascular prognosis is another point of view that
needs more investigation. Since pulse pressure is partly determined by artery stiffness, the
elasticity of arterial walls is considered to be a relevant parameter to assess cardiovascu-
lar risk. For instance, an AAA is located in the abdominal aorta, upstream of the iliac
arteries, where the amplitude of the pressure pulse is considerably modified as a result of
the reflection of the wave in the bifurcation. Such an increase in amplitude may initiate
and accelerate the formation of the aneurysms in the elderly population. This could be
investigated by a fluid-structure interaction problem considering elastic arterial walls.

(7) It has been observed that flows in AAAs are intermittently turbulent even during resting
conditions. A transient growth analysis providing information on the amplification of energy
and on the shapes of optimal perturbations would be useful in this regard. Also, if certain
perturbation shapes that are most dangerous could be identified, along with the regions
that are most sensitive, this could help identify “dangerous” features.

(8) The stability analysis carried out using pulsatile base flows revealed that the perturba-
tions extended downstream of the AAA cavity. This brings up the question of the effect
of the downstream iliac bifurcation on the flow dynamics observed in an AAA. Also, as an
AAA is always observed upstream of this bifurcation, an analysis taking this into account
could be appropriate.

(9) Finally, during the literature survey carried out during this work, it was seen that no
systematic study of the stability of pulsatile pipe flows to non-axisymmetric disturbances
is to be found, let alone for physiologically relevant pulsatile flows. Such a study would
help us in identifying the characteristics of perturbations observed in a healthy abdominal
aorta and how the perturbations triggered by the AAA bulge propagate in the upstream
and downstream regions.
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