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Abstract

Testing stationarity is important in signal processing and in many areas of environmen-

tal sciences. In real world applications, a special attention should be given to the non-

parametric methods, and also to the fact that we often do not know whether a change

has occurred, nor do we have any idea where the possible change point(s) could be.

The purpose of this thesis is to develop methods to test stationarity and to estimate the

change point of real world signals, more specifically, environmental ones. In this work,

the stationarity test and the change point detection are treated as two distinct steps.

The stationarity tests are performed by using two different frameworks: a modified

version of an existing technique and a novel one. The existing technique makes use

of surrogate resampling for testing stationarity. We propose different contributions to

the original method for improving its performance, and for evaluating the robustness

of the test against changing outcomes. For the novel framework, we propose to use

empirical mode decomposition and block bootstrapping for testing stationarity. This

new stationarity test detects trends or evolutions of the local energy of the signal. By

comparing with other approaches in the literature, the new method allows for a better

detection of slowly-varying nonstationarities of first and second-order.

The tests developed in this thesis reject the stationarity of the whole observation

interval. Thus, we propose a framework for change point detection in nonstationary sig-

nals, which is based on an existing method called Robust Singular Spectrum Transform

(RSST). The method that we develop is nonparametric, data-driven, can detect multiple

change points and has shown to work for first and second-order nonstationarities.

Finally, we apply all the developed techniques to an environmental dataset, which

corresponds to rainfall signals generated by the Canadian Regional Climate Model (CRCM),

a very realistic model that allows for the study of climate change. The consistency of the

obtained results confirms the potential of the developed methods.

Key words: stationarity test, time-frequency analysis, marginals, distances, trend de-

tection, empirical mode decomposition, bootstrapping, change point detection, robust

singular spectrum transform
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Résumé étendu

Dans l’analyse des signaux d’origine naturelle, nous sommes souvent confrontés à des

situations où nous ne savons pas si un changement s’est produit, ni où le possible point

de changement peut être localisé. Cependant, diverses méthodes en traitement du sig-

nal reposent implicitement sur une hypothèse de stationnarité, car le cas stationnaire

est bien défini dans une perspective théorique. D’un autre côté, tous les processus du

monde réel sont a priori non-stationnaires et, dans la majorité des cas, cette supposi-

tion se révèle vraie. Etant donné qu’il existe de nombreuses façons par lesquelles la

propriété de stationnarité peut être enfreinte, différents tests de stationnarité ont été

développés pour tester les différentes formes de non-stationnarité. Cette thèse se con-

centre sur la conception et l’amélioration des techniques qui peuvent être appliquées aux

signaux environnementaux, plus spécifiquement, les signaux hydrométéorologiques.

Les techniques qui ont été développées présentent certaines caractéristiques qui sont

préférables pour tester les données environnementales (i.e. être non-parametrique, être

capable d’extraire automatiquement les informations des données disponibles, être ca-

pable d’identifier un changement dans les moments statistiques du premier et du second

ordre). Dans cette thèse, le test de stationnarité et la détection de point de change-

ment ont été abordés séparément: les tests de stationnarité rejettent la stationnarité de

tout l’intervalle d’observation, tandis que pour détecter les points de changement, nous

testons les signaux pour les quels la stationnarité a déjà été rejetée. Dans ce manuscrit,

de nombreuses contributions et de nouvelles approches de ces sujets sont proposées.

Dans la première partie de la thèse, plusieurs contributions sont proposées au test

de stationnarité par la méthode des substituts. Cette méthode consiste à échantilloner

des signaux stationnaires disposant de la même densité d’énergie que l’observation.

Après avoir décrit les principes de la technique considérée, nous effectuons une étude

exploratoire pour identifier des métriques appropriéés pour caractériser la distance d’un

spectre instantané à la densité spectrale du signal. Puis, nous appliquons la méthode

en utilisant les métriques choisies sur différents exemples de séries temporelle non-

stationnaires, où nous constatons les limitations de cette aproche. En particulier, la

méthode difficilement détecter des non-stationnarités du premier ordre et celles cor-
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respondant à des évolutions lentes. Ansi, une modification de la méthodologie origi-

nale est proposée. Cette modification consiste à accroitre le contraste du test grâce à

une forme de métrique dépendant de l’énergie instantanée du signal à analyser. Cette

métrique est neutre dans la caractérisation d’un signal stationnaire et met en évidence

les effets d’un comportement non-stationnaire que se traduit également sur l’énergie in-

stantanée. La dernière contribution du chapitre consiste à développer une méthode de

bootstrap sur les vecteurs de paramètres extraits des substituts, afin d’évaluer l’évolution

des résultats qui peuvent apparaître en appliquant le test plusieurs fois.

Indépendamment des améliorations apportées par les modifications proposées, la

méthode des substitus présente toujours des limitations que impactant la détection des

changements lents des moments du premier et du second ordre. Néanmoins, la détec-

tion de ces formes de nonstationnarité est d’une grande importance pour de nombreuses

applications du monde réel. Par conséquent, dans la deuxième partie de la thèse, nous

proposons un test original de stationnarité pour tester les dérives lentes. Cette nouvelle

approche consiste à décomposer en tendances une estimée lissée de l’énergie instanta-

née du signal analysé (ou la marginale en temps de sa représentation temps-fréquence)

en utilisant de la décomposition modale empirique, qui est une méthode de décompo-

sition non-paramétrique dictée par la série temporelle analysée). Après avoir expliqué

les principes de la nouvelle approche, nous définissons comme statistique décisionnelle

la fraction des variances du signal d’énergie instantanée sur ce qu’il en reste lorsqu’on

y a neutralisé les possibles tendances non-stationnaires. Il est démontré que, en cas

d’un signal non-stationnaire, la statistique décisionnelle prendra une valeur supérieure

à l’unité, sa valeur nominale en présence d’un signal stationnaire. Par ailleurs, il est

vérifié que la distribution de la statistique décisionnele sous l’hypothèse de stationarité

peut être modélise par une distribution de type generalized extreme value (GEV). Enfin,

la nouvelle approche est comparée à deux techniques paramétriques de la littérature, et

de très bons résultats sont obtenus.

Aprés avoir présenté les deux tests de stationarité qui sont abordés dans cette thèse,

nous proposons une méthode pour la détection de changements dans les signaux qui

auraient été qualifiés de non-stationnaires. Cette partie de la thèse est destinée à com-

pléter l’étude développée dans les deux chapitres précédents, où les tests de station-

narité proposés sont faits pour rejeter la stationnarité de tout l’intervalle d’observation.

Par conséquent, un algortihme spécifique pour détecter les points de changement se fait

nécessaire. L’approche proposée est une évolution de la méthode non-paramétrique qui

s’appelle Robust Singular Spectrum Transform (RSST). Cette dernière consiste à fenêtrer

les données en amont et en aval de l’instant de temps consideré, de manière à définir un

sous-espace généré par les données en amont et l’autre par les données en aval. Pour

designer si l’instant courant est ou non un point de changement, nouns prenons en

compte la valeur d’un paramètre d’intrication des deux sous-espaces. Nous proposons
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d’analyser la valeur du degré d’intrication en fonction des deux fenêtres choisies pour

analyser le signal, où le domaine de variation des deux fenêtres est automatiquement

défini au moyen d’un critère empirique. Les instants de changement sont sélectionnés

en considérant que l’incertitude associée aux degrés d’intrication observés devra aug-

menter si l’instant courant est un point de changement. Enfin, la méthode proposée est

comparée à l’autre approche non-paramétrique de la littérature.

La dernière partie de la thèse consiste à appliquer toutes les approaches dévelop-

pées sur des données environnementales. Les séries temporelles considérées sont les

précipitations journalières maximales par année, sur une période de 139 annés et en

1631 points distribués sur la province du Québec. Les données ont été générées par le

Canadian Regional Climate Model (CRCM), un modéle très réaliste qui prend en compte

de nombreuses interactions physiques complexes. Les donnés générées par ce modèle

ont été utilisées pour les prévisions climatiques sur différentes échelles de temps. Les

simulations sont effectuées en deux réalisations distinctes du CRCM. La cohérence des

résultats obtenus confirme le potentiel des approches proposées au regard des approches

concurrentes. Finalement, nous présentons le lieux où des séries non-stationnaires ont

été détectées, ainsi que les instants de rupture correspondants.

Mots clés: test de stationnarité, analyse temps-fréquence, marginales, distances,

détection de tendance, décomposition modale empirique, bootstrapping, détection de

point de changement, robust singular spectrum transform
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Notations

Some notations used in the Thesis.

• j:
√
−1

• t: time variable

• f : frequency variable

• I: number of surrogates, or number of IMFs (depending on the application)

• T: length of the observed signal

• N: length of the time marginal (or number of points in time where the spectro-

grams are computed). Also, number of of points in time where the change point

scores are computed (depending on the application)

• hk(t), k = 1, ..., K: first K Hermite window functions

• nh: length in time of the Hermite window functions

• E{·}: stochastic expectation

• Var{·}: stochastic variance

• Cov{·}: stochastic covariance

• Wx(t, f ): Wigner-Ville Spectrum

• D(., .): dissimilarity measure in frequency

• c
(x)
n : vector in time containing values of D(., .) computed for the original signal

• c
(si)
n : vector in time containing values of D(., .) computed for the ith surrogate
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• c̃
(x)
n : weighted version of c

(x)
n

• c̃
(si)
n : weighted version of c

(si)
n

• ξ1 and ξ2: initial and final parameter values for the Lombard’s nonstationarity

models

• S(t, f ): time-varying spectrum

• SK(t, f ): multitaper spectrogram

• Shk(t, f ): short-time Fourier transform using Hermite functions as windows

• Θ0: vector of variances of the distances between two spectra under null hypothesis

• INS: index of nonstationarity (for the surrogate-based test of Chapter 2)

• γ: threshold for the gamma hypothesis test

• nh0: free parameter of the surrogate-based test

• ⌊x⌋: floor function, i.e., the largest integer not greater than x

• ⌈x⌉: ceil function, i.e., the smallest integer not less than x

• y(t): time marginal

• ydt(t): detrended time marginal

• c(t): trend component

• r(t): stationary (detrended) fluctuation

• Ex: energy of the signal x (i.e. 〈x, x〉)

• m(i)(t): ith IMF

• ρI(t): EMD residual

• P: number of bootstrap resamples

• Bk: kth block of the block bootstrap technique

• ℓ: length of the block Bk

• θ̂TI: trend importance estimator

• INS: index of nonstationarity (for the new stationarity test of Chapter 3)
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• B2: Zémpleni statistic

• ΘTI: vector of the estimates of the importance of the trend under null hypothesis

• T : GEV threshold for the hypothesis test (for the new stationarity test of Chapter 3)

• z(t, w, n): change point score at time t and window values w and n

• pi: proportion of change point scores at the ith iteration

• ζ: point at which pi achieves its maximum (stopping point)

• Tz: change score threshold for significant event

• Z : final collection of scores that is used for estimating the change point

• Zt: matrix with change point scores at time t

• Yt: matrix with change point scores at time t − 1

• H(·|·): conditional entropy

• i.i.d.: independent and identically distributed

• WGN(0,1): white Gaussian noise with zero mean and unity variance

• AR(1): first-order autoregressive process

• FFT: fast Fourier transform

• PSD: power spectrum density

• EMD: empirical mode decomposition

• IMF: intrinsic mode function

• GEV: generalized extreme value distribution

• AMD: absolute mean deviation

• CP: change point

• SST: singular spectrum transform

• RSST: robust singular spectrum transform

• SSA: singular spectrum analysis

• PCA: principal component analysis
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• CRCM: Canadian Regional Climate Model

• i, l, q: dummy indices used throughout the Thesis
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This chapter presents an introduction to the concepts and applications concerned in

the PhD’s research. In this chapter, the importance of testing for stationarity is discussed

and the nonstationary analysis is put in the context of environmental science. A brief
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overview of the common approaches available in the literature is presented, and based

on the application of interest we outline the required profile of the stationarity tests

developed in the PhD’s research.

1.1 Motivation

Over the last few decades much has been done in developing methods to test signals

with respect to stationarity. Considering stationarity is important not only in signal

processing and in many areas of technical science (e.g. telecommunications, electronics,

automatic control, power systems) but also in the domain of environmental science (e.g.

the study of biological and physical processes, the analysis of time series corresponding

to rainfalls, global warming indicators or sunspot records. . .), to cite just a few. Many

techniques devoted for analyzing the signals encountered in these fields simply assume

the process to be stationary [1]. However, the assumption of stationarity often fails to be

true, and the physical character of the signal requires a nonstationary approach [2].

One could expect a large number of stationarity tests to be available in the literature

because stationarity is an important property of many signals. Nevertheless, one could

suggest that a simple way to check the stationarity of a given signal is to investigate the

physical mechanism underlying this signal. If the mechanism is time-invariant, then the

resulting signal is stationary [3]. Unfortunately, drawing conclusion based on physical

considerations is often impossible due to the following limitations:

• the inaccessibility of such information,

• the limited knowledge due to the unavoidable finite observation interval,

• the lack of precision in evaluating the time-invariance of the generative process.

While the latter point seems to be a technical or engineering problem, the first and

second ones are inherent limitations when analyzing real world process. Therefore, we

are forced to rely on statistical methods to evaluate the stationarity [3].

This thesis focuses on nonparametric methods for analyzing nonstationary signals

that are suitable for real world processes, more specifically, hydro-meteorological ones.

Probing this kind of data with respect to stationarity is important in many regards,

as environmental time series can undergo changes in first and second-order statistics

that reflect the behavior of natural phenomena in particular ways. Historically, the

interest on practical tests for stationarity used to be under the scope of engineering

and related disciplines. However, it has been long ago that the nonstationarity analysis
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has came to the attention of the environmental sciences, mostly due to the increasingly

interest in climate change over the past two decades. Thus, developing methods for

identifying particular nonstationary behaviors is of a high importance in many areas of

both technical and environmental sciences.

1.2 Why is it important to test stationarity?

The classical interpretation of stationarity refers to the invariance of the statistical pro-

perties relative to an absolute time. Even though the stationarity property could be

defined for all orders, the most important properties of a stationary process are those of

second order, which means that only the statistical properties of first and second orders

should be time-invariant.

In practice, we often consider only the wide-sense stationarity (WSS). The conditions

for a random signal x(t) to be WSS are as follows:

1. its expectation is a constant, independent of the time

E{x(t)} = µx , (1.1)

2. its autocovariance function depends only on the difference of the two considered

instants

E{x(t)x∗(s)} = γx(t − s). (1.2)

Assuming the classical definition of stationarity for many processes, specially those

corresponding to real world phenomena, is an illusion and so far from the reality that

one could think at a first moment that signal analysis techniques relying on the station-

ary assumption are the exception, rather than the default. In reality, a large amount of

work assume stationarity for applying standard algorithms. Moreover, while the sta-

tionary case is well-defined from a theoretical perspective, the nonstationarity is not a

well-defined concept [4]. Even without a rigorous definition, a basic truth has to be

acknowledged: all real world processes are a priori nonstationary, and in most cases this

assumption turns out to be true. We may wonder what does it mean that a signal is

nonstationary? This question has no unique answer, because the stationarity property

can be violated in many ways [5]. Hence, instead of trying to define what a nonsta-

tionary process is in a general sense, we analyze how its properties differ from those

of a stationary one [4]. Thus, having stationarity tests that are sensitive to different
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forms of nonstationarites is required in order to approach the analysis of nonstationary

phenomena [6].

1.2.1 Application to environmental data

1.2.1.1 Motivation

Scientists are concerned that the impact of human activity on nature may cause major

changes [5]. This concern has been growing in popularity, as climate change became a

prominent topic in both scientific and public discourses. In different areas of environ-

mental science, researchers are interested in methods for identifying nonstationarity in

hydrologic and climatic time series [7]. One climate-related aspect of nonstationarity

that has been reported, for example, is that a change in the rain and snow dynamics

can be seen [8]. Over the last years, the nonstationary analysis has been the subject of

much discussion in the hydrological community, specially after the much cited paper

in Science entitled "Stationarity is Dead: Whither Water Management?" [9], which has cast

doubt on the value of historical data, and has defended the importance of recognizing

the inherent nonstationary nature of the hydroclimatic processes.

1.2.1.2 Nonstationarities seen in environmental data

In environmental applications, we are mostly interested in testing for first and second-

order stationarity. Although identifying changes in high-order statistics might be of

particular interest (e.g. a change in the skewness might indicate a modification in the

annual cycles induced by climate change, while a change in the kurtosis might indicate a

modification in the behavior of the tails, which is related to the occurrence of floods), this

Thesis is focused on methods for identifying changes specifically in the mean and the

variance. When processing real world data, one has to consider not only the existence

of many different types of nonstationarities, but also the fact that an important quantity

of information can be found in the nonstationarity itself [4], like modulations, trends,

abrupt changes and change points. Recognizing such nonstationary behaviors is of

major importance in many areas of environmental science. For example, in climatology,

the identification of a change point might indicate the beginning of a possible climate

change [10]. In meteorology, characterizing periodic seasonal effect in time series of

monthly atmospheric temperature can improve already existing forecasting models [11].

In hydrology, a proper identification of trends in hydrological processes is a crucial point

for water resources management [12]. It is well-known that hydrological behaviors can

also undergo abrupt changes [8], as the one that occurred in the series of the annual
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volume discharge from the Nile River, which has been widely analyzed in the literature

[13, 14, 15], and referred to as a consequence of an abrupt change that occurred in the

rainfall regime near the turn of the 20th century [10, 16].

1.3 What we require from a method for analyzing real world

signals?

1.3.1 A brief overview of the literature

In the analysis of real world signals, we are often in a situation where we do not know

whether a change occurred nor do we have any idea where the possible change point could

be. Putting in this form, one could clear envision the problem in two separate phases:

the stationarity test followed by the change point detection. However, it is common

practice in the literature to have methods encompassing both stages, which are often

presented simply as algorithms for change point detection [17, 5, 18, 19]. In a slightly

different point of view, some methods are concerned in deciding whether a segment of

the observed time series is nonstationary [20, 21], where the change points are deemed

as the start and end points of the nonstationary segment. One could carry this analysis

further, by studying separately the two parts of the signal (before and after the non-

stationary segment), and trying to decide (automatically) whether these two parts can

be considered stationary, or whether another one can be discovered [6]. This practice

is very important in recognition-oriented signal processing, and refers to the automatic

segmentation of signals, i.e. the automatic decomposition of a given signal in local sta-

tionary pieces, the length of which varies according to the local characteristics of the

signal [22, 23, 24].

Despite the alternatives presented, in real world applications, where often none in-

formation is given about the data, one needs to probe signals with respect to more

general forms of stationarity, for larger classes of signals. In this regard, the choice of an

efficient representation is a crucial point, since a good representation can provide much

valuable information about the structure of the underlying signal in the absence of an

external specification [4]. To this end, time-frequency (TF) approaches have been consid-

ered as powerful tools, as opposed to time-based techniques, which are more commonly

found in the statistical literature. Regardless of the domain of analysis, the techniques

can be broadly classified as parametric or nonparametric, depending on whether or not

the probability distribution of the process can be completely specified by a finite num-

ber of parameters. Considering the categories of interest, we present in Table 1.1 a short
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list of examples of applications and problems of methods for analyzing nonstationary

signals.

Table 1.1: Comparison between different approaches for analyzing nonstationary sig-
nals. We list common applications and problems of parametric and nonparametric me-
thods that analyze the process in the time or in the time-frequency domain.

Parametric approaches Nonpararametric approaches

• Time domain • Time domain

Applications: Detection of slowly-
varying nonstationarities [20], and abrupt
changes in the mean and in the variance
[25]. Tests for trend stationarity [26, 27].
Tests for change in the mean [28, 29].

Applications: Detection of a changing
mean [17, 30]. Detection of smooth and
abrupt changes in the mean and in the
variance [10, 18]. Detection of change
points with linear trends [31].

Problems: In cases of signals presenting
dependence structure. The necessity of
strong assumptions about the statistical
distribution of the data. Lack of robust-
ness under unstable parameters.

Problems: In some cases, with signals
dependence structure. Lack of sensitivity
to outliers in the data.

• Time-frequency domain • Time-frequency domain
Applications: Analysis of narrowband
data, such as vibration signals [32], short
signals with high frequency resolution
[33], and slowly time-varying processes
[22]. Segmentation in local stationary
pieces [34, 35], applications in speech pro-
cessing [23, 36]. Analysis of AM and FM
signals [37]

Applications: Detection of abrupt
changes [21]. Detection of transients
embedded in noise [38, 39, 40]. Analysis
of AM and FM signals [41, 42].

Problems: The successful application,
without accurate a priori information, is
very difficult in practice. Analysis of tran-
sient signals.

Problems: The necessity of a larger repre-
sentational space than used for the origi-
nal data. The inherent tradeoff related to
the TF localization.

1.3.2 Outlining the desired technique

Having taken a look at some of the methods available in the literature, let us now have

an idea of the type of time series we are aiming at testing. In Chapter 5, we apply

the techniques developed in this Thesis and other ones found in the literature to rainfall

time series generated by a climate model. More specifically, time series corresponding to

the annual maximum daily precipitations simulated by the Canadian Regional Climate

Model (CRCM) [43], corresponding to 1631 grid points in Canada. The signals we are

interested in have a short length, which refers to a time span of 140 years (1961–2100).
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This dataset is explained in details in Chapter 5, but in Fig. 1.1 we plotted as an example

three annual maximum daily precipitation time series together with the corresponding

location in Canada.
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Figure 1.1: An illustration of the rainfall data analyzed in this Thesis: three annual
maximum daily precipitation time series and the corresponding location in Canada.

Usually, visual inspection is the first step in the analysis of stationarity, as it can reveal

or suggest possible nonstationary behaviors in the data, and make it easier to choose

appropriate tests for stationarity [7]. However, only by visual inspection of the rainfall

signals in Fig. 1.1, it is extremely difficult to identify any particular temporal structure,

such as a sudden (abrupt) change, a modulation, or a trend, for example. In this case,

representing the signal in TF domain is a good choice, as TF representations could tell

us something about the structure of the signal that cannot be seen at a first glance: the

time variation of the frequency content. It could be seen in Table 1.1 that a variety

of options are given by TF techniques, which allow for testing more general forms of

stationarity. Also, we shall confine ourselves to the class of nonparametric approaches, as

we do not have any a priori knowledge about the functional forms of the signals, and all

the information has to be determined entirely from the data [3]. Finally, we should have

at our disposal methods that are robust against possible serial correlations in the data.

Thus, some desired characteristics of a method for testing the signals shown in Fig. 1.1

could be listed as follows:

• Nonparametric,

• Possibly be given in TF domain, so as to offer a richer representation of the signal,

• Fully data-driven,

• Work for short samples,
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• Allow for the (off-line) detection of possible change points or nonstationary seg-

ment,

• Sensitive to different types of nonstationarity,

• Account for potential serial correlations in the data.

Developing a framework that attend all the items shown above is particularly dif-

ficult, as there exist some conflicting requirements. For example, different from pa-

rametric techniques, nonparametric ones are not well-suited to test datasets of small

size. Furthermore, in general, techniques that allow for the characterization of change

points or nonstationary segments are either i) time-based and nonrobust under serial

dependence [10, 18], ii) parametric and suited only to specific types of nonstationarities

[20, 21], or iii) are not very reliable when testing small data records [6]. In order to

take into account the different criteria listed above, the stationarity test and the change

point problem are approached separately in this Thesis. In the following, we give a brief

overview of the techniques proposed in this Thesis.

1.4 Stationarity tests

In the statistical literature, testing for stationarity usually means testing the null hypo-

thesis of no change, against the alternative that there exists a time instant when the

distribution of the time series changes. Stationarity tests in the TF domain usually con-

sist in testing if a given observed characteristic in the time-varying spectrum of the

signal is in accordance with what would be expected in a stationary situation. Thus one

can usually compute a "distance from the stationary case" [4], which can be used as a

statistic for testing the null hypothesis of stationarity.

1.4.1 First approach: Testing stationarity with surrogates

1.4.1.1 A brief description

The method of Chapter 2 tests if Ŝ(tn, f ) – the time-varying spectrum estimated at N

different time positions {tn, n = 1, ..., N} – is statistically similar to the global spectrum

obtained by time averaging. The reason is that, under the null hypothesis, the time vary-

ing spectrum reduces to a stationary power spectral density (PSD): Ŝ(t, f ) ≃ PSD( f ).

Ideally, stationarity should correspond to an equivalence of the local spectra Ŝ(tn, f ) eval-

uated at every instant {tn, n = 1, ..., N}, and the global spectrum 〈Ŝ(tn, f )〉n obtained by
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time averaging. Thus, the distance from the stationary case could be measured by making

use of the l2-distance:

L(cn, 〈cn〉n) =
1

N

N

∑
n=1

(cn − 〈cn〉n)
2, (1.3)

where cn is a given dissimilarity measure D(., .) between local (Ŝ(tn, f )) and global spec-

tra (〈Ŝ(tn, f )〉n) computed for each time point: cn = D(Ŝ(tn, f ), 〈Ŝ(tn, f )〉n), and 〈cn〉n is

computed by averaging cn over all n = 1, ..., N. In practice, even for stationary sitatua-

tions, the equality of (1.3) with zero for all cases will not exist. Fluctuation will always

exist, and we should rather expect a statistical similarity between local and global spectra

under the null hypothesis of stationarity. The stationarity test is performed by gathering

a collection of (1.3) in stationary situations (by making use of surrogates resampling), and

deriving its distribution under the null hypothesis. This distribution allows for the char-

acterization of a given threshold γ, above which the null hypothesis is rejected. Hence,

the test is based on the statistics Θ1 = L(cn, 〈cn〉n), and could be written as a one-sided

test [44] as follows: 



1 if Θ1 > γ, "nonstationary",

0 if Θ1 ≤ γ, "stationary".
(1.4)

1.4.1.2 Advantages of the method and contributions

This nonparametric method was originally proposed in [41], and uses a data-driven re-

sampling technique (surrogates) for testing stationarity relatively to a global horizon of

observation. The original surrogate method presents a good performance in detecting

second-order nonstationarities, modulations and sudden changes. In Chapter 2, we

present a number of contributions to the original framework:

• we perform an empirical study using many distances D(., .) of different classes, so

as to have an idea of the appropriateness of each distance in testing different types

of nonstationarity,

• we propose a modification of the method that allows for the detection of first-order

nonstationarities, and improves the detection of slowly-varying nonstationarities

in certain cases,

• we develop a measure of the robustness of the test, which is useful when only a

single realization of the process is available.
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1.4.2 Second approach: Testing for trend-based nonstationarity

1.4.2.1 A brief description

The stationarity test developed and described in Chapter 3 is a new technique suited

to detect trends and slow nonstationary evolutions. The basic idea of the method is to

identify the presence of a trend and/or an evolution of the local energy of the signal.

We thus test for trends in the time marginal y(t) obtained by summing the time-varying

spectrum S(t, f ) over all frequencies: y(t) = ∑ f S(t, f ). In the framework we are in-

terested in, we cannot specify any a priori model to y(t). Thus, we propose to use the

empirical mode decomposition (EMD) to estimate trends in y(t) (according to the EMD

interpretation). We consider that stationarity should correspond to the case of a trendless

time marginal. On the other hand, the cases where a significant trend is detected in the

time marginal should correspond to nonstationarity. The distance from the stationary case

could be evaluated by using the following measure:

θTI =
Var{y(t)}

Var{y(t)− c(t)} , (1.5)

which evaluates the trend importance in y(t). In (1.5), c(t) is the trend component.

We should have θTI ≥ 1 for the case of a trended time marginal (nonstationarity), and

θTI ≈ 1 for the case of a trendless time marginal (stationarity). The stationarity test is

performed by gathering a collection of (1.5) under the null hypothesis (by making use

of block bootstrap technique), and obtaining its distribution in order to characterize a

given threshold T , above which the null hypothesis of stationarity is rejected. The test

itself is based on the statistics θTI, and could be written as a one-sided test as follows:





1 if θTI > T , "nonstationary",

0 if θTI ≤ T , "stationary".
(1.6)

1.4.2.2 Advantages of the new stationarity test

The original method developed in Chapter 3 presents a good performance in detec-

ting trends and slowly nonstationary evolutions. In comparison to other approaches

described in the literature devoted to detect such type of nonstationarity, the proposed

method has the advantage of being nonparametric and data-driven. Moreover, this ap-

proach exhibits an overall better performance in detecting nonstationarities of first and

second-order. Also, it is faster than other TF approaches (as the one of Chapter 2),

as the computation of many TF representation is not required (the time marginal is
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estimated directly by numerical convolution with the chosen window). Finally, the pro-

posed method works even in the case of short time series.

1.5 Change point detection

The common procedures for change point estimation are based on statistical hypothesis

testing [5]. Usually, the same hypothesis described in the first paragraph of Section 1.4 is

considered, but it is assumed that a change does take place in the sample of observation.

The problem of estimating the change point could be written as follows: let {xt, t =

1, ..., T} be a time series with conditional density pθ(xt|xt−1, ..., x1) with parameter θ = θ0

before the unknown change time t0, and parameter θ = θ1 after t0. The problem consists

in estimating the change point t0 from {xt, t = 1, ..., T} with the maximum possible

accuracy [25]. Thus, the common statistical approach for change point detection can be

seen as a typical estimation problem for a discrete parameter. Hence, the accuracy of the

estimation is dictated by the probability that the estimate belongs to a given confidence

interval, or by the bias and variance of the change point estimator.

The approach described above assumes the presence of at most one change point

[25, 45]. However, if the time series is long, or other change points are plausible, such

strategy can lead to erroneous results, as the effects of the first change point are heavily

biased when other unaccounted change points occur [45]. In this thesis, we have not

considered the traditional statistical approach for estimating the change points. The

framework proposed in Chapter 3 allows for the detection of multiple change points,

and aims at analyzing those signals in which stationarity have already been rejected

by the hypothesis tests of Chapter 2 and Chapter 3. Also, we consider a more general

interpretation of change point, which is not restricted to the one defining the time instant

where a change in the conditional density occurs. Instead, we consider change points as

"time discontinuities in a time series that can be induced from changes in observation locations,

equipment, measurement techniques, environmental changes, and so on" [45].

1.5.1 Detection by using the robust singular spectrum transform

1.5.1.1 A brief description

The framework for change point detection of Chapter 4 is based on the robust singular

spectrum transform (RSST). The RSST is an improved version of the singular spectrum

transform (SST), which consists of using principal component analysis (PCA) to measure

the anomaly between past and future patterns of the signal around a given time instant
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t. This anomaly measure is called change point score and is given by z(t). The RSST has

two free parameters (w and n), which can be interpreted as two windows of analysis.

In Chapter 4, we propose to represent the output of the RSST in the space spanned by

its two parameters and the time, as different change patterns can be captured if we let

w and n vary. The result will be a modified transform T : x(t) → z(t, w, n), where the

anomaly measure between the past and the future is represented in a space spanned by

the t (time), w and n (the two windows of analysis). For estimating the change points,

we first propose a procedure for filtering significant values z(t, w, n) (significant change

patterns). Then, we compute the conditional entropy (conditioned on the past values)

of the observed change scores in time. The conditional entropy is chosen because we

consider that the uncertainty associated with the change patterns captured by different

windows w and n should increase around the change point.

1.5.1.2 Advantages of the proposed framework

This framework is nonparametric, data-driven and has shown to be sensitive to both

changes in the mean and in the variance. Also, the proposed framework does not require

the observations of the data to be independent. Thus, the proposed method is very

flexible and suited to real world applications. Another advantage is that the method

offers a richer representational space for the signal, allowing us to visualize the change

patterns as function of time and window of analysis.
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As the first part of the Thesis, Chapter 2 presents various contributions to the sur-

rogate approach for testing stationarity. It starts in Section 2.1 with an introduction on

the stationarity test, explaining which aspects of the original framework this Thesis has

focused on, and briefly describing the interpretation of stationarity associated with the

framework. In Section 2.2, the stationarity test itself is present. Then, in Section 2.4,

2.5 and 2.7, the contributions to the original framework are proposed, which not only

improve the detection of nonstationarity, but also allow for a better understanding of

the surrogate-based approach.

2.1 Introduction

As pointed out in Section 1.2, real world signals are predominantly nonstationary, which

require the introduction of time as explicit parameter for the analysis. Also, in real world

applications we have to deal with complex processes with many spectral components,

which are often given without any a priori information. In such situations, TF techniques

are natural tools, which consider the temporal dependence of the spectral content of the

process [4].

Given its applicability, a variety of options in nonstationary signal analysis are of-

fered by TF methods. Different from the PSD of WSS signals, there are several ways

to represent the time-varying spectrum of a nonstationary process. The advantages

and disadvantages of different TF representations are discussed in [4, 46]. Among the

emerging alternatives in the literature [47, 38, 48], one could easily categorize parame-

tric [33, 32, 20] and nonparametric approaches [49, 50, 51] for analyzing nonstationary

signals. In the latter category, the estimates of the Wigner-Ville Spectrum (WVS) for rep-

resenting the time-varying spectrum are often considered [52, 53, 54]. In the past, the

Wigner-Ville Spectrum has already been used for the analysis of nonstationary processes

[2, 42]. Recently, a novel stationarity test based on WVS estimates was published [41].

The test is performed by gathering a collection of surrogates as stationary versions of

the signal [55, 56]. Then the surrogates are used to learn the statistics of a null hypothe-

sis of stationarity. The key point of this method is to use the local and global spectral

properties of the time-varying spectrum for identifying the stationarity. As these local

and global characteristics will not be completely identical, even for stationary situations,

a hypothesis test is designed to specify whether or not the observed fluctuations are due

to a nonstationarity. The stationarity test is described in details in Section 2.2.

The method presented in [41] considers that stationarity should not be regarded as
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an absolute property. Instead, a more empirical interpretation of stationarity is adopted

for taking into account some practical considerations often faced in real world applica-

tions. For instance, it is assumed that stationarity not only refers to stochastic processes

with time-invariant statistics, but also to deterministic signals with spectral properties

that are time-invariant. Also, since stationarity is a property being evaluated over a finite

time interval, it should be given relatively to a scale of time or observation. Moreover,

we should be able to test for stationarity given only one observable realization of the

process, as it is generally the case in many applications. This generalized notion of sta-

tionarity has been referred to as operational stationarity , which can be more conveniently

tested in practice.

2.1.1 Detailing the contributions of this chapter

The original framework leaves room for further improvements in various aspects. As

it will be seen in the following Section, the procedure contains many different steps,

so there are many points in the original methodology deserving a deeper investigation.

It should be remarked that [41] proposes two approaches for testing stationarity with

surrogates: i) the use of suitably chosen distances between local and global spectra for

measuring the spectral fluctuation, ii) the implementation of a one-class classifier that

uses the surrogates as a learning set for stationarity. All the contributions presented in

this Chapter are made considering only the first case. Although putting the stationarity

test in the context of learning theory is an interesting alternative, we have not led this

work towards that direction. Instead, we have carried out a deeper analysis on the use of

a proper distance for comparing local and global time-frequency features. In this regard,

we have proposed three contributions to the original method:

• We study in detail the effects of using different distances. The chosen ones are

described in Section 2.3, and the results of using the selected distances are shown

in Section 2.4. This study highlights how difficult it is for the original framework to

detect first-order nonstationarities, and nonstationarities varying slowly as a trend.

• We propose a modification that improves the performance of the test in certain

cases, and increases the detection rate of first-order nonstationarities. In Sec-

tion 2.5, we start by defining what we expect from the modified method in an

ideal case. Then, we establish a condition for the parameters of the modified test

to attend. In Section 2.6, we propose a procedure for changing the test that would

attend the defined condition. In Appendix A.1, we demonstrate why this proposed

procedure works.
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• Finally, we develop a measure to evaluate the robustness of the test due to the

different results that may appear by applying the method sequentially. This con-

tribution is described in Section 2.7.

2.2 Testing stationarity with surrogates

For developing a framework in TF domain, while taking into account the considerations

on the operational stationarity presented in Section 2.1, one should design a method that

works for one realization of finite duration of a given signal. As far as the representation

is concerned, it is common to consider the general class of estimators belonging to the

Cohen’s class. All distributions in this class can be interpreted as estimators for the WVS

[4]. The WVS of a given signal {x(t), t ∈ R} is expressed as:

Wx(t, f ) =
∫ ∞

−∞
E

{
x
(

t +
τ

2

)
x∗

(
t − τ

2

)}
e−j2πτ f dτ (2.1)

where E{·}, t and f stand for the expectation operator, time and frequency, respectively.

The WVS possesses many good properties that are extensively explained in the literature

[4, 46, 2, 57]. Thus, estimates of the WVS are commonly used for representing the time-

varying spectrum of nonstationary signals. For estimating the WVS, one can make use

of the spectrogram (a member of Cohen’s class), or its modified (improved) version, the

multitaper spectrogram:

SK(t, f ) =
1

K

K−1

∑
k=0

Shk(t, f ), (2.2)

which is obtained by averaging K different spectrograms (Shk(t, f )) at the time instants

{tn, n = 1, ..., N}. The spectrograms are the squared magnitude of the Short-Time

Fourier Transform (STFT) of the signal, computed by using K different window func-

tions hk(t):

Shk(t, f ) =

∣∣∣∣
∫

x(s)hk(s − t)e−j2π f sds

∣∣∣∣
2

. (2.3)

The multitaper spectrogram reduces the variance of the estimation by projecting the

observation on a family of orthonormal basis functions {hk(t), k ∈ N} [49, 58]. In

[41], the Hermite functions were chosen as such basis. These functions are not only

orthonormal, but also maximally concentrated in TF domains with elliptic symmetry.

By construction, the length nh of the windows hk(t) should contain an odd number

of samples. For computing the time positions tn, the spacing ∆t = tn+1 − tn, and the

number of points in frequency (NFFT) used for the multitaper spectrograms, we need

to specify the parameter nh0, which is one degree of freedom of this method. The
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expression of nh0 associates the length of the signal (T) with an adjustable fraction of the

chosen window (nh) [41]:

nh = 2nint

(
Tnh0

2

)
− 1, (2.4)

where the function nint(x) returns the nearest integer to x. Then, for obtaining NFFT

and ∆t, we use, respectively, the following expressions:

NFFT = 2⌈log2 nh⌉, (2.5)

∆t =

⌊
nh + 1

8

⌋
, (2.6)

where the functions ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively.

The rationale behind this technique is the following: for a given signal x(t), testing

for stationarity in the operational sense amounts for testing the temporal invariance of

SK(t, f ) over the chosen observation interval T. Quantitatively, it means that the local

spectra S(tn, f ) at every time instant {tn, n = 1, ..., N} are statistically equal to the global

average spectrum

〈S(tn, f )〉n :=
1

N

N

∑
n=1

S(tn, f ). (2.7)

In practical applications we will always observe fluctuations in the local spectra.

The originality of the method consists in giving significance to these fluctuations by

constructing stationarized references of the signal using only the available data. The

stationary signals are computed by means of the surrogate technique, a resampling

method introduced originally in nonlinear physics [55, 56]. Each surrogate s(t) has the

same global PSD as the original signal while being stationary.

A comparison between the stationary surrogates and the original signal is performed.

The idea is to elaborate a hypothesis test to check if fluctuations of the local time-varying

spectra around the global average spectrum are consistent with what is expected under

stationarity. If it is not, we say that the variation between local and global spectra is

probably due to the nonstationarity of the original signal.

Nonstationary processes have their spectral content spread in time differently from

stationary ones. Hence, for an identical marginal spectrum over the same observation

interval, we may expect some time-organized structure in nonstationary signals that are

not present in stationary ones. Thus, we obtain the surrogates by destroying this orga-

nized phase structure controlling the supposed nonstationarity [41]. More precisely, for

a given signal observed in discrete time {x[n], n = 1, ..., NT}, the corresponding surro-
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gate s[n] is obtained by first computing the Fourier transform of the observed signal:

X[k] = A[k]e−jΦ[k], and then by replacing its phase Φ[k] by the random sequence Ψ[k]

which is uniformly distributed over [−π, π]. By applying the inverse Fourier transform

we can obtain as many stationary surrogates as phase randomizations are performed:

x[n] =
1

NT
∑

k

X[k]ej2πnk/NT → s[n] =
1

NT
∑

k

A[k]ejΨ[k]ej2πnk/NT . (2.8)

In [41], it is shown that by adopting Ψ[k] as phase sequence, the covariance function of

the surrogate s[n] reduces to:

Cov(s[n], s[m]) =
1

N2
T

∑
k

E{A2[k]}ej2π(n−m)k/NT , (2.9)

and the stationarity of the surrogate s[n] can be verified since its covariance is function of

n − m only. In order to perform the hypothesis test we create a collection of I surrogates

{si(t), i = 1, ..., I}, and then we compute a distance between local and global spectra for

each surrogate. The result will be a collection of distance vectors being function of both

time indices and randomizations:

{c
(si)
n := D [Ssi ,K(tn, f ), 〈Ssi ,K(tn, f )〉n] , n = 1, ..., N, i = 1, ..., I}. (2.10)

In (2.10), the distance D(., .) is a dissimilarity measure in frequency, being one of the

principal aspects of the method under consideration in this work. The null hypothesis

of stationarity will be characterized by the statistical distribution of the estimate of (2.10)

in time. For the signal itself, the distances between spectra are given in the following

vector:

{c
(x)
n := D [SK(tn, f ), 〈SK(tn, f )〉n] , n = 1, · · · , N}, (2.11)

corresponding to the same time instants where the multitaper spectrograms are being

computed. Now, the variance of the distance vector in (2.11) is taken as a measure of the

spectral fluctuation of the time-varying spectrum of the signal itself:

Θ1 = Var
{

c
(x)
n

}
, (2.12)

where in practice, (2.12) is estimated by:

Θ̂1 =
1

N − 1

N

∑
n=1

[
c
(x)
n − µ̂cx

]2
, (2.13)
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where µ̂cx stands for the sample mean of c
(x)
n . Putting it in the form of a one-sided test,

this variance will be the test statistic.

The hypothesis test is given by:

d(x) =





1 if Θ1 > γ, "nonstationary",

0 if Θ1 ≤ γ, "stationary".
(2.14)

The threshold γ above which the null hypothesis of stationarity is rejected is obtained

from (2.10), the collection of distances of the surrogate set. To compute γ, the variance

of each distance vector {c
(si)
n , i = 1, ..., I} is calculated, leading to a vector of I variances:

{
Θ0(i) = Var{c

(si)
n }, i = 1, ..., I

}
, (2.15)

In practice, the individual variances Var{c
(si)
n } in (2.15) are estimated by

σ̂2
si
=

1

N − 1

N

∑
n=1

[
c
(si)
n − µ̂csi

]2
, i = 1, ..., I,

where µ̂csi
is the sample mean of the ith distance vector in the collection {c

(si)
n , i = 1, ..., I}.

We do not use the crude histograms from (2.15) for approximating the distribution under

the null hypothesis. Instead, it is proposed to model the distribution of Θ0(i) by a

gamma pdf, where its two parameters are estimated by maximum likelihood . An

empirical study carried out by [44] has shown that the distribution of Θ0(i) can be fairly

well approximated by a gamma pdf. Assuming the gamma model holds, a threshold γ

is derived above which the null hypothesis of stationarity is rejected [41].

Finally, an index of nonstationarity (INS) is proposed. It is a function of the ratio

between the test statistic Θ1 and the mean value of Θ0(i), obtained from the surrogate

set. If the signal happens to be stationary, INS is expected to take a value close to unity.

On the other hand, the more nonstationary the signal, the larger the index [41].

INS =

√
Θ1

〈Θ0(i)〉i
(2.16)

An application of the stationarity test is illustrated in Fig. 2.1, where we have consid-

ered a false alarm rate of 5%. The test was applied to two time series with length

T = 300. The first one is a zero-mean stationary Gaussian process with σ2 = 1

(Fig. 2.1(a)). The second one is a nonstationary Gaussian process with µ = 0 and an

ever-growing variance increasing linearly in time from t = 1 to t = 300 (Fig. 2.1(c)).
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Notice that the value of Θ1 (the test statistic estimated from the original signal), is in

the middle of the distribution in the stationary case (Fig. 2.1(b)). On the other hand,

for the nonstationary signal, the value of Θ1 appears clearly as an outlier (Fig. 2.1(d)).

Notice that the INS value is significantly larger for the nonstationary signal. Also, one

can verify the gamma fit applied to the histograms of Θ0. As pointed in [41], we only

need a reduced number of surrogates (I ≈ 50) for obtaining a reasonable approximation

with the gamma model.
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Figure 2.1: An illustration of the proposed stationarty test. (a) Stationary Gaussian
process. (b) Results of the test: the test statistic Θ1 is in the middle of the distribution.
(c) Gaussian process with a nonstationary variance. (d) Results of the test: the test
statistic Θ1 is beyond the threshold γ (which corresponds to 95%).

Having presented the stationarity test of [41], it can be seen that the framework con-

tains many different steps (i.e. surrogate resampling, computation of a distance between

local and global spectra, gamma modeling), which call for a deeper investigation. In this

regard, in the next Section, we investigate the effects of using different distances. This

effort is the first contribution of this Thesis, and aims at finding an appropriate distance

for a given application.

2.3 The influence of choosing an adequate distance

The dissimilarity measure between the local and the global spectra is a significant aspect

of the proposed approach. In fact, the fluctuation of the distances is the key point to

reject or accept the hypothesis of stationarity. Consequently, for the same signal and

test parameters, different results can be obtained by using different distances, be they
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completely different or similar in nature [6].

Choosing the most appropriate distance for a given test application is not an easy

task. Insofar, one would consider many aspects to support the choice of a given distance.

Without entering into many details, we could roughly list them as: the features from the

signal being tested (its length, spectral content, etc.), which kind of nonstationarity we

are aiming at detecting (exclusively first or second-order, or up to the second-order).

2.3.1 A robust distance

One may suggest to always use a dissimilarity measure that leads to a good perfor-

mance. Unfortunately, the notion of "good performance" itself might be dubious at

certain occasions. For example, by applying the test to a nonsynthetic signal with no

a priori information about it or its generative system, we cannot be sure if the signal is

being correctly classified as being stationary/nonstationary. Nevertheless, the result of

the test may vary at every application due to the randomness of the surrogate set, even

if we are testing the same realization of the signal. Considering all the drawbacks, we

could at least search for a distance that leads to less fluctuations in the results, be the

test signal synthetic or not. So, in the sense of test consistency, we propose here to call

it a robust distance. A deeper analysis on robust distances is carried out in Section 2.7,

where different measures for evaluating the robustness are presented. By now, it should

be remarked that repeating the test with different distances and comparing the results

is highly advisable in any situation.

2.3.2 The different classes of distances

Dissimilarity measures of different types have been commonly used in signal processing

for solving problems such as pattern recognition, segmentation, classification, detection,

etc. Hence, there is a variety of distances available in the literature [6]. The various

distances could be classified in different ways, the classical manner being based on

probability vs. frequency-based or symmetric vs. nonsymmetric classes [6]. In this

section we briefly present the different classes of distances that are considered in this

work.

2.3.2.1 Frequency and probability-based distances

Probability-based distances (often referred to as divergences) quantify the dissimilarity

between two statistical objects, as probability distributions, for instance. Although the

distances are essentially computed in the frequency domain, dissimilarity measures of
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probability nature can be conceived due to the probabilistic interpretation of TF distri-

butions [4]. As the two spectra to be compared are always positive, they only need to be

normalized to the unity for characterizing a probability distribution. The remoteness of

two probability distributions is commonly measured by using divergence functions [59].

The divergence in the context of statistics establishes a notion of distance different from

the classical one, as the divergence not necessarily satisfy metric requirements. There

exist different classes (or families) of divergences, the most common one being the so-

called f-divergence class [60]. In this work, all the probability-based distances belong to

the family of f-divergences [6].

Frequency-based distances are computed directly from the spectra, and consequently

their understanding is more intuitive. However, even though spectral distances are eas-

ily defined in the frequency domain, they are most of the time computed numerically,

without reference to this domain [6]. Spectral distances are aimed at comparing distri-

butions in both shape and level. It is an advantage, since in the application considered

here, the spectra from where the distances are being computed share the same band.

2.3.2.2 Symmetric and nonsymmetric distances

It should be remarked that distance in the context being used in this work, refers to a

measure of how far away from each other two spectra are (with the inherent probabilistic

interpretation). So, a given distance may not satisfy the necessary conditions to be a

metric (i.e. positive-definiteness conditions, symmetry condition and triangle inequality

[61]). In fact, many statistical distances are not metric, since they do not attend one or

more requisites to be classified as so. One of the metric properties that are not presented

by all distances is the symmetry. Here, we used symmetric and nonsymmetric distances.

However, it should be noted that a nonsymmetric distance between two spectra H and

G could be easily symmetrized as follows [6]:

d(q)(H, G) =
1

2
{d(H, G)q + d(G, H)q}1/q , with q ≥ 1. (2.17)

2.3.2.3 Mixed domain distances

Finally, a mixture of distances could also be performed, combining symmetric, nonsym-

metric, frequency and probability-based ones, so as to take advantages of the different

classes. Usually, one sets a trade-off parameter in order to control the significance given

to a particular distance.
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Table 2.1: Name, expressions and classes of the different distances used in this study

PROBABILITY-BASED DISTANCES
Distance Expression

Kullback-Leibler DKL(G̃, H̃) = ∑
f

[
G̃( f )− H̃( f )

]
log

G̃( f )

H̃( f )(symmetric)

Kolmogorov DKM(G̃, H̃) = ∑
f

∣∣∣H̃( f )− G̃( f )
∣∣∣

(symmetric)

Matusita DMT(G̃, H̃) = ∑
f

[√
H̃( f )−

√
G̃( f )

]2

(symmetric)

FREQUENCY-BASED DISTANCES
Distance Expression

Itakura-Saito DIS(G, H) = ∑
f

[
G( f )

H( f )
− log

G( f )

H( f )
− 1

]

(nonsymmetric)

Log-Spectral DLS(G, H) = ∑
f

∣∣∣∣log
G( f )

H( f )

∣∣∣∣(symmetric)

Diffusion
DDF(G, H) =

L

∑
l=0

||dl( f )||, where dl( f ) =





|G( f )− H( f )| for l = 0,

dl−1( f ) ∗
[

e− f 2/2σ2

(2π)1/2 f

]
for l = 1, ..., L.(symmetric)

Itakura-Saito DSIS(G, H) =
1

2 ∑
f

[
G( f )

H( f )
+

H( f )

G( f )
− 2

]

(symmetric)

MIXED DOMAIN DISTANCES
Distance Expression

Combined
DCB(G, H) = DKL(G̃, H̃) [1 + DLS(G, H)]

(symmetric)

2.3.3 Selected distances

There are many distances in the literature belonging to the previous classes. In this

work, we have selected a total of eight distances, covering a variety of classes (three

probability and four frequency-based distances, one symmetrized and one combined

distance). The chosen dissimilarity measures, in comparison with others of the same

class, present a better performance. They are presented in Table 2.1. The expressions

include two positive spectra H( f ) and G( f ), and their modified versions H̃( f ) and

G̃( f ), which were normalized to unity in order to be in accordance with those distances

of probability nature [6].

The distances of probability nature in Table 2.1 belong to the f-divergence class; the

well-known Kullback-Leibler divergence (DKL), the Kolmogorov distance (DKM), which

is probably the simplest one, and a generalization of the Kolmogorov case, which is the

Matusita distance (DMT). Usually, the Kullback-Leibler divergence is used as a nonsym-

metric measure, whereas here DKL is symmetric, as originally adopted in [41].

The chosen distances of frequency nature were the Itakura-Saito (DIS), Log-Spectral
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(DLS), Diffusion (DDF) and the symmetrized version of the Itakura-Saito (DSIS). The

Itakura-Saito distance measures the percentual difference between a spectrum and its

approximation. It is a nonsymmetric dissimilarity measure, however we can easily sym-

metrize it by means of (2.17) (with q = 1), leading to the symmetrized Itakura-Saito

distance. The Log-Spectral deviation is defined by the Lq norm of the difference be-

tween the logarithms of the spectra, and this is probably the oldest one used in speech

processing [6]. The diffusion distance treats the difference between G( f ) and H( f ) as

an isolated temperature field and considers the diffusion process on that field. For dis-

cretizing the continuous diffusion process, we use a Gaussian pyramid with l = 0, ..., L

different layers [d0( f ), ..., dL( f )], and a constant standard deviation (σ). The diffusion

distance is then considered as the sum of norms over all pyramid layers [62].

Finally, the chosen combined distance DCB stands for the dissimilarity measure orig-

inally used in [41]. Performing a mixture of distances is considered as a way to take

advantage of the different characteristics of distances belonging to distinct classes. The

two distances combined are the Kullback-Leibler and Log-Spectral ones.

2.4 Testing with different distances

After presenting the selected distances in Table 2.1, we show the results of the statio-

narity test described in Section 2.2 by using different measures. Various nonstationary

signals were created to assess the performance of the test. We considered nonstation-

ary time series corresponding to various situations: nonstationarity of the mean, of

the variance, of both the mean and the variance, following the Abrupt-change and the

Onset-of-trend model. These are special cases of the more general smooth-change model

proposed by Lombard [18]. The temporal patterns represented by the Lombard’s model

is similar to what is observed in many areas of environmental science, such as hydrol-

ogy and climatology. More specifically, given the time series X = (x1, ..., xT) of length

T, with observations taking equal time intervals, where Fi(x) = P(xi ≤ x). If one is

interested in changes of a given parameter θi = Θ(Fi), i ∈ [1, T], where Θ is a func-

tional of a particular interest, e.g. the mean or the variance, the series is said to follow a

smooth-change model if

θi =





ξ1, i ∈ {1, ..., κ1},

ξ1 +
(i − κ1)(ξ2 − ξ1)

(κ2 − κ1)
, i ∈ {κ1 + 1, ..., κ2 − 1},

ξ2, i ∈ {κ2, ..., T}.

(2.18)
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where ξ1 and ξ2 are the parameter values before and after change, respectively [10]. The

abrupt-change model is obtained when κ1 = κ and κ2 = κ1 + 1, where the κ represents

the change point:

θi =





ξ1, i ∈ {1, ..., κ},

ξ2, i ∈ {κ + 1, ..., T}.
(2.19)

On the other hand, the onset-of-trend model represents a gradual transition from the

initial parameter value ξ1 to the final value ξ2. This refers to the special case when one

sets κ2 = T:

θi =





ξ1, i ∈ {1, ..., κ},

ξ1 +
(i − κ)(ξ2 − ξ1)

(T − κ)
, i ∈ {κ + 1, ..., T − 1}.

ξ2, i = T,

(2.20)

The synthetic signals have a Gaussian distribution and two different lengths T = 300

and T = 1050. The short signals were chosen in order to be in accordance with several

areas of applications like biomedicine, climatology and hydrology. Moreover, by testing

short series we can evaluate the test performance under unfavorable situations. Three

different sets of signals were generated by considering the Abrupt-change and the Onset-

of-trend models. The first one consists of time series having a fixed variance (σ2 = 1)

and a varying mean ranging from ξ1 = 0 to ξ2 = 4. The second set is also formed by

Gaussian series, but now with a fixed mean (µ = 0) and a varying variance taking values

from ξ1 = 1 to ξ2 = 41. The third one contains signals having both a varying mean and

variance, taking the same parameter values of the first and second sets. Realizations of

the synthetic signals with T = 300 and T = 1050 are shown in Fig. 2.2(a) and Fig. 2.2(b),

respectively.

The stationarity test has been applied to 1000 realizations of the signals presented

in Fig. 2.2 and also to a stationary AR(1) process. For the simulation, we have set

nh0 = 0.1, as this value has given a good classification accuracy. The results are shown

in Table 2.2 as percentage (%) of "nonstationary" outcomes and arithmetic averages

(〈INS〉) of INS over all realizations. As it can be seen, the stationarity test could not

detect properly those signals whose nonstationarities follow the Onset-of-trend model,

i.e. signals with statistical properties evolving gradually as an ever-growing "trend". On

the other hand, the nonstationary processes following the Abrupt-change model could

be detected more easily. Moreover, note that the performances of the frequency-based

1These values were chosen empirically. We observed that, in general, the choice of parameter values
ranging from ξ1 = 0 to ξ2 = 4 gives a good compromise between keeping the detectability of the test for
all the adopted models, while having small variations in the series.



30 Chapter 2. New perspectives on testing stationarity with surrogates

0 150 300

−8

0

8

A
b
ru

p
t−

c
h
a
n
g
e

M
id

d
le

Mean

0 150 300

−8

0

8

Variance

0 150 300

−8

0

8

Mean and variance

0 525 1050

−8

0

8

A
b
ru

p
t−

c
h
a
n
g
e

M
id

d
le

Mean

0 525 1050

−8

0

8

Variance

0 525 1050

−8

0

8

Mean and variance

0 150 300

−8

0

8

O
n
s
e
t−

o
f−

tr
e
n
d

M
id

d
le

0 150 300

−8

0

8

0 150 300

−8

0

8

0 525 1050

−8

0

8

O
n
s
e
t−

o
f−

tr
e
n
d

M
id

d
le

0 525 1050

−8

0

8

0 525 1050

−8

0

8

0 150 300

−8

0

8

O
n
s
e
t−

o
f−

tr
e
n
d

B
e
g
in

n
in

g

0 150 300

−8

0

8

0 150 300

−8

0

8

0 525 1050

−8

0

8

O
n
s
e
t−

o
f−

tr
e
n
d

B
e
g
in

n
in

g

0 525 1050

−8

0

8

0 525 1050

−8

0

8

Nonstationary signals with T = 300 Nonstationary signals with T = 1050

(a) (b)

Figure 2.2: Synthetic signals following the Abrupt-change and the Onset-of-trend models.
(a) Signals with length T = 300. (b) Signals with length T = 1050.

distances were notably better, specially in detecting those signals following the Onset-

of-trend model. Most importantly, the overall performance in detecting a nonstationary

mean was considerably poor. In the next Section, we propose a modification in the

methodology of the stationarity test for improving its performance. This modification

allows for a better detection of first-order evolutions and nonstationarities evolving as a

trend.

2.5 Modifying the method

As it can be seen in Table 2.2, the test could not detect some nonstationarities even by

using different distances. Not surprisingly, first-order nonstationarities were the most

difficult ones to be detected. However, even second-order nonstationarities could not be

detected properly by using some distances. Clearly, the performance of the test has to be

improved, and it can be achieved by modifying the method according to the procedure

proposed in this Section.

An interesting way to start with is by defining what we expect from the stationarity

test after modifying it. Consider that the test has been accepting the null hypothesis for

a given signal, and we want to increase the sensitivity to nonstationarity. Ideally, we

search for a procedure that improves the method in a sense that:

• If the process is nonstationary, it will be more likely for the test to reject the null

hypothesis of stationarity,
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Table 2.2: Results of applying the stationarity test to 1000 realizations of each process
shown in Fig. A.4. The results are given as percentage (%) of "nonstationary" outcomes
and arithmetic averages (〈INS〉) of INS over all realizations.

Nonstationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

V
ar

y
in

g
m

ea
n

Abrupt-change % 0 0 0 0 0 0 85.0 88.5 10.0 15.0 97.0 100 10.0 10.0 5.00 0

Middle 〈INS〉 0.50 0.48 0.64 0.63 0.65 0.51 1.61 1.65 1.20 1.10 1.67 1.75 1.01 1.07 0.58 0.55

Onset-of-trend % 0 0 0 0 0 0 1.00 2.00 1.00 3.00 0 0 1.00 0 0 0

Middle 〈INS〉 0.58 0.46 0.74 0.61 0.59 0.43 0.85 0.90 0.85 0.93 0.69 0.70 0.66 0.76 0.49 0.52

Onset-of-trend % 0 0 0 0 0 0 0 5.00 0 3.00 0 0 3.00 0 1.00 0

Beginning 〈INS〉 0.59 0.47 0.77 0.61 0.64 0.46 0.85 0.93 0.87 0.93 0.70 0.66 0.65 0.69 0.52 0.45

V
ar

y
in

g
v

ar
ia

n
ce

Abrupt-change % 17.0 12.0 10.0 14.0 15.0 15.0 100 100 100 100 100 100 99.0 100 90.0 100

Middle 〈INS〉 1.05 1.02 1.03 1.01 1.03 1.02 4.39 7.85 3.82 7.11 2.04 2.16 12.1 21.9 2.40 3.41

Onset-of-trend % 15.5 14.0 6.00 12.0 8.00 10.0 100 100 100 100 100 100 97.5 100 45.0 97.0

Middle 〈INS〉 1.02 1.05 0.98 1.03 0.99 1.01 3.44 5.41 2.22 3.48 2.63 3.88 4.56 6.54 1.62 2.10

Onset-of-trend % 5.00 5.00 10.0 12.0 8.00 10.0 100 100 100 100 98.5 100 99.0 100 35.0 83.0

Beginning 〈INS〉 0.95 0.97 1.01 1.02 1.03 0.99 2.40 3.71 2.03 3.42 1.74 2.12 3.49 6.00 1.47 1.75

V
ar

y
in

g
m

ea
n

an
d

v
ar

ia
n

ce

Abrupt-change % 100 100 99.0 100 100 100 100 100 94.0 100 100 100 100 100 100 100

Middle 〈INS〉 2.20 3.32 1.74 2.40 2.37 3.25 3.70 7.46 3.07 6.62 1.71 1.67 9.21 21.3 5.28 11.3

Onset-of-trend % 15.0 30.0 14.0 40.0 22.5 30.0 100 100 100 100 97.0 100 95.5 100 63.0 100

Middle 〈INS〉 1.06 1.14 1.05 1.13 1.15 1.16 3.24 5.00 2.00 3.33 2.14 1.82 3.46 5.56 1.86 2.58

Onset-of-trend % 60.0 100 55.0 100 46.0 100 95.5 100 97.0 100 68.0 87.0 92.0 100 78.5 100

Beginning 〈INS〉 1.45 2.23 1.25 1.62 1.34 2.00 2.01 3.44 1.60 3.07 1.55 1.62 2.66 5.22 2.25 4.90

Stationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

Type: % 7.00 4.50 7.00 5.00 7.00 3.00 9.50 5.50 7.00 6.00 7.00 5.00 5.00 5.00 6.50 4.00

AR(1) process 〈INS〉 0.95 0.96 0.96 0.91 0.95 0.97 0.98 0.97 0.98 0.98 0.92 0.98 0.93 0.95 0.93 0.94

• If the process is stationary, the test will keep accepting the null hypothesis.

This expected profile of the modified method can be put in terms of the gamma model.

More specifically, let us denote k, θ, γ, Θ1 and k′, θ′, γ′, Θ′
1 the gamma parameters (shape

and scale), threshold and test statistic obtained before and after modifying the method,

respectively. Thus, we will more likely reject the stationarity if, in comparision to Θ1

and γ, Θ′
1 is closer to or greater than γ′. Hence, in this case we should have:

F(Θ′
1; k′, θ′)− F(γ′; k′, θ′) > F(Θ1; k, θ)− F(γ; k, θ) (2.21)

where F(x; k, θ) is the gamma cdf of a random variable x. Conversely, we will keep

accepting the null hypothesis if, after modifying the test we have:

F(Θ′
1; k′, θ′)− F(γ′; k′, θ′) ≤ F(Θ1; k, θ)− F(γ; k, θ). (2.22)

Note that for a stationary signal Θ1 is expected to stand in the middle of the distri-

bution and F(Θ1; k, θ)− F(γ; k, θ) should be negative. Since the gamma cdf evaluated at

the chosen threshold (say, 0.95) should be necessarily F(γ; k, θ) = F(γ′; k′, θ′) = 0.95, we
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can rewrite (2.21) and (2.22) as F(Θ′
1; k′, θ′) > F(Θ1; k, θ) and F(Θ′

1; k′, θ′) ≤ F(Θ1; k, θ),

respectively. So, now we can rephrase what we expect from the test after modifying it

in terms of the gamma distribution:

• If the process is nonstationary, obtain F(Θ′
1; k′, θ′) > F(Θ1; k, θ) , which means that

the test is more susceptible to reject stationarity,

• If the process is stationary, obtain F(Θ′
1; k′, θ′) ≤ F(Θ1; k, θ) which means that the

test keeps accepting the null hypothesis.

Therefore, a methodology for improving the stationarity test can be envisioned by

developing a procedure that gives F(Θ′
1; k′, θ′) > F(Θ1; k, θ) if the signal is indeed non-

stationary, or keeps F(Θ′
1; k′, θ′) ≤ F(Θ1; k, θ) otherwise. This scheme is illustrated in

Fig. 2.3, where the conditions above and the gamma cdf are shown. Now, it is straight-
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Figure 2.3: Enhancing the stationarity test. (a) Example of the situation before modifying
the test and the original gamma parameters. (b) After modifying the test, if the signal is
stationary, the test will keep accepting the null hypothesis. (c) After modifying the test,
if the signal is nonstationary, the test will more likely reject the null hypothesis.

forward to extend these conditions to the gamma parameters. To do so, we represent

the gamma cdf evaluated at Θ1 as:

F(Θ1, k, θ) =
1

θkΓ(k)

∫ Θ1

0
uk−1e−

u
θ du =

γ(k, Θ1
θ )

Γ(k)
, (2.23)

where γ(k, Θ1
θ ) is the lower incomplete gamma function. Then, we can express the

condition F(Θ′
1; k′, θ′) > F(Θ1; k, θ) for the gamma cfds simply as:

γ
(

k′, Θ′
1

θ′

)

Γ(k′)
>

γ
(

k, Θ1
θ

)

Γ(k)
. (2.24)
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A key point is that the function γ(k, s)/Γ(s) (if one sets s = Θ1/θ), decreases with k

and increases with s. It can be seen in Fig. 2.4, where we have plotted γ(k, s)/Γ(s) for

k, s > 0. It can be also verified by representing the incomplete gamma functions in (2.24)

by their homomorphic expansions, and then by rewriting (2.24) as follows:

∞

∑
i=0

(Θ′
1/θ′)i+k′e−Θ′

1/θ′

Γ(k′ + i + 1)
>

∞

∑
i=0

(Θ1/θ)i+ke−Θ1/θ

Γ(k + i + 1)
, (2.25)

where the decaying with k could be verified due to the rapid growth of Γ(k + i + 1) as

k grows. Hence, based on the behavior of the incomplete gamma function, a sufficient

but not necessary condition for the inequality (2.24) to hold is given if both relations are

attended:

k′ < k and
Θ′

1

θ′
>

Θ1

θ
. (2.26)
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Figure 2.4: Behavior of γ(k, s)/Γ(s), i.e. decreases with k and increases with s = Θ1/θ.
(a) γ(k, s)/Γ(s) as function of k and s. (b) γ(k, s)/Γ(s) decreasing with k for different
"slices" over s. (c) γ(k, s)/Γ(s) increasing with s for different "slices" over k.

For improving the nonstationarity detection, one could change the stationarity test

in a sense that, after its application, the new parameters of the approximated gamma

model (k′, θ′) and the new test statistic Θ′
1 follow the conditions shown in (2.26) if the

underlying signal is nonstationary, but not necessarily otherwise. Note that, while sta-

tionarity is a well-defined property, nonstationarity can be seen as a non-property [4],

and there are many ways by which the stationarity can be violated. Thus, in practice,

as we do not know a priori about the stationarity/nonstationarity of the signal, we have

to search instead for a nonstationary characteristic. More specifically, for enhancing the
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nonstationarity detection, one could develop a procedure that gives:

k′ < k and
Θ′

1

θ′
>

Θ1

θ

If the underlying process presents a clear

nonstationary characteristic. This condi-

tion means that the modified test will more

likely reject the stationarity,

(2.27)

where many different types of nonstationary behaviors can be imagined. In this work,

we analyze if the time-varying spectrum undergoes a structured evolution in time. Ha-

ving extended the conditions for improving the test to the gamma parameters, we define

in the following Section the procedure developed to guarantee (2.27).

2.6 Weighted distances

When computing Θ0, the vector of variances of the distances between local and global

spectra (from where the gamma distribution is approximated), no consideration was taken

about the spectral content of the signal. Different nonstationary processes can have a spec-

tral content spread in time in a particular way. For example, let us consider the signals

and TF representations shown in Fig. 2.5, corresponding to Gaussian processes exhibit-

ing an exclusively varying mean (Fig. 2.5(a)), varying variance (Fig. 2.5(b)) and a jointly

varying mean and variance (Fig. 2.5(c)). In general, a signal with a varying mean is not

expected to have a spectral content as significant at high frequencies as a signal with

varying variance. However, if the mean varies sufficiently fast at a given time location,

as it is shown in Fig. 2.5(a), there will be strong high frequency components around

that local in the TF spectrum. Nevertheless, even for signals possessing a slowly vary-

ing variance, gradually changing according to the onset-of-trend model, the time-varying

spectrum will undergo a structured evolution in time, as it can be seen in Fig. 2.5(b).

Therefore, we propose to use this temporal information of the TF spectrum to modify

the distance vectors (and consequently Θ0), according to the following procedure:

1. Given an observed signal x(t) with TF spectrum S(tn, f ) evaluated at N time po-

sitions {tn, n = 1, ..., N}, compute the time marginal series y(tn) = ∑ f S(tn, f ) and

normalize it to the unity [ỹ(tn) = y(tn)/ max y(tn)] to obtain the weighting vector

{ỹn, n = 1..., N}.

2. Use ỹn to weight the distance vectors multiplicatively, i.e. {c̃
(x)
n = ỹnc

(x)
n , n =

1, ..., N} and {c̃
(si)
n = ỹnc

(si)
n , n = 1, ..., N}, where c̃

(x)
n and c̃

(si)
n are, respectively, the

weighted distance vectors for the original signal and the ith surrogate.
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3. Collect the vector of weighted distances for i = 1, ..., I surrogates and compute

their variances. The result will be a new vector {Θ′
0(i), i = 1, ..., I}. Differently

from Θ0, the vector Θ′
0 carries information about the time location of the spectral

content.

If we modify the stationarity test according to the procedure above, we attend the

conditions for k, θ and Θ1 shown in (2.26), and consequently enhance the nonstation-

arity detection (mainly for first-order nonstationarity). The demonstration of why the

weighting procedure improves the stationarity test is given in Appendix A.1. It should

be remarked, however, that in most of the cases the improvement in the performance of

the test is only achieved by using frequency-based distances. By weighting the probability-

based distances according to the procedure above, we end up affecting significantly the

performance of the method. The explanation of why the weighting procedure is not

appropriate for probability-based distances is also given in Appendix A.2.
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Figure 2.5: Different nonstationary signals and their particular TF representation. (a)
Varying mean. (b) Varying variance. (c) Varying mean and variance.

One could have noted that there are other ways to obtain the required information

from the TF plane, and consequently, to modify the method. Recall that the distances are

computed from local spectra at specific time instants. Hence, while the distances take

as input functions of frequency, their output are functions of time. Thus, there are two

strategies to create the weighting vector: either to build it in time (as proposed above) or

in frequency.

If we sum over time (which gives the marginal in frequency), and use the resulting

vector to multiply the spectra at the input of a given distance, we will be giving more

importance to the most significant frequencies of the TF representation (globally). How-

ever, the spectral content of the surrogates has to be randomly spread over the TF plane,
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and this randomness is affected by forcing the spectra of the surrogates to be concen-

trated around a certain frequency. Moreover, the marginal spectrum of the surrogates

will not be equal to the one of the original signal. The procedure for choosing the correct

marginal is shown in Fig. 2.6. Notice that temporal structure exhibited by the TF spec-

trum of Fig. 2.6(a) can be view in the time marginal illustrated in Fig. 2.6(b). Also, it

can be seen in Fig. 2.6(d), that by weighting the spectra of the surrogates the equality

between the marginal spectrum of the signal and the ones of the surrogate is lost.
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Figure 2.6: Two different ways in which the marginals can be used for building a weight
vector. (a) Time-frequency representation of a given nonstationary signal. (b) Time
marginal obtained by summing over frequency. (c) Frequency marginal obtained by
summing over time. (d) By weighting the spectra at input of the distance, the marginal
spectrum of the surrogate will be different from the one of the signal. (e) Weighted
distance obtained by choosing the appropriate marginal.

2.6.1 Testing the modified approach

For evaluating the modified method, we reapply the stationarity test to the same signals

shown in Fig. 2.2. The results are presented in Table 2.3 as percentage of observed "non-

stationary" outcomes over all realizations, for both the original and modified stationarity

test. Note that, due to the aforementioned problem involving weighting probability-

based distances (see Appendix A.2), the performance of the modified test was indeed

much worse for distances of probability nature than it was before or compared to the

distances of frequency nature. Nevertheless, it can be seen that the overall performance

of the modified approach was improved for the frequency-based distances (these cases

are highlighted in Table 2.3), at the expense of a slight increase in the misclassification
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rate of the statationary signals. In order to verify if the estimated gamma parameters

really attended the conditions set in (2.27) for improving the test, we show in Table 2.4,

for the frequency-based distances, the arithmetic average of (k, Θ1/θ) and (k′, Θ′
1/θ′)

computed for the 1000 realizations of the signals with T = 300 and T = 1050 shown in

Fig. 2.2. Note that, despite a few exceptions, the proposed procedure gives k′ < k and

Θ′
1/θ′ > Θ1/θ in the average.

Finally, it can be seen that the detection of trend-based nonstationarities represen-

ted by the onset-of-trend models still has to be improved. One could point out that the

surrogate approach is not the most appropriate choice for testing slowly-varying non-

stationarities that appear as trends, while there exist parametric methods for testing this

kind of nonstationarity [27, 20]. As model-based approaches often fails at representing

real world processes, we propose in Chapter 3 a new nonparametric stationarity test that

allows for the detection of the trend-based nonstationarities that could not be detected

in Table 2.3.

Table 2.3: Results of applying the original (shown as cn (%) ) and modified (shown as
c̃n (%) ) stationarity test to 1000 realizations of each process shown Fig. 2.2. The results

are given as percentage of observed "nonstationary" outcomes over all realizations.

Nonstationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

V
ar

y
in

g
m

ea
n

Abrupt-change cn (%) 0 0 0 0 0 0 85.0 88.5 10.0 15.0 97.0 100 10.0 10.0 5.00 0

Middle c̃n (%) 2.00 5.50 0 0 0 2.50 0 100 100 60.0 80.0 100 100 62.0 2.00 3.00

Onset-of-trend cn (%) 0 0 0 0 0 0 1.00 2.00 1.00 3.00 0 0 1.00 0 0 0

Middle c̃n (%) 0 0 0 0 0 0 38.0 24.0 4.50 5.00 37.5 21.0 2.00 0 0 0

Onset-of-trend cn (%) 0 0 0 0 0 0 0 5.00 0 3.00 0 0 3.00 0 1.00 0

Beginning c̃n (%) 0 0 0 0 0 0 31.0 18.5 3.00 6.00 32.0 4.00 3.00 0 0 0

V
ar

y
in

g
v

ar
ia

n
ce

Abrupt-change cn (%) 17.0 12.0 10.0 14.0 15.0 15.0 100 100 100 100 100 100 99.0 100 90.0 100

Middle c̃n (%) 8.00 7.50 3.00 5.00 9.00 7.00 100 100 100 100 100 100 56.0 45.0 13.0 12.0

Onset-of-trend cn (%) 15.5 14.0 6.00 12.0 8.00 10.0 100 100 100 100 100 100 97.5 100 45.0 97.0

Middle c̃n (%) 3.00 4.50 2.00 5.00 6.00 0 100 100 100 100 100 100 100 100 18.0 45.0

Onset-of-trend cn (%) 5.00 5.00 10.0 12.0 8.00 10.0 100 100 100 100 98.5 100 99.0 100 35.0 83.0

Beginning c̃n (%) 7.00 3.00 4.00 7.00 5.00 8.00 100 100 87.5 100 100 100 39.5 54.0 12.0 14.0

V
ar

y
in

g
m

ea
n

an
d

v
ar

ia
n

ce

Abrupt-change cn (%) 100 100 99.0 100 100 100 100 100 94.0 100 100 100 100 100 100 100

Middle c̃n (%) 15.0 25.0 4.00 8.50 14.0 25.0 100 100 100 59.0 91.5 97.0 100 80.5 37.0 100

Onset-of-trend cn (%) 15.0 30.0 14.0 40.0 22.5 30.0 100 100 100 100 97.0 100 95.5 100 63.0 100

Middle c̃n (%) 0 0 3.00 4.00 0 0 100 100 100 100 100 100 100 100 17.0 21.5

Onset-of-trend cn (%) 60.0 100 55.0 100 46.0 100 95.5 100 97.0 100 68.0 87.0 92.0 100 78.5 100

Beginning c̃n (%) 0 3.00 2.00 3.00 0 2.00 100 100 100 78.0 100 100 97.0 93.0 14.5 76.0

Stationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

Type: cn (%) 7.00 4.50 7.00 5.00 7.00 3.00 9.50 5.50 7.00 6.00 7.00 5.00 5.00 5.00 6.50 4.00

AR(1) process c̃n (%) 1.00 0 0 0 5.50 4.00 14.5 9.00 7.50 4.50 16.5 14.5 0 0 7.00 5.00
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Table 2.4: Verifying the condition of (2.27) after applying the weighting procedure. The
results are given as arithmetic averages (〈k〉 , 〈Θ1/θ〉) and (〈k′〉 , 〈Θ′

1/θ′〉) of the esti-
mates of (k, Θ1/θ) and (k′, Θ′

1/θ′), over 1000 realizations of the signals with length
T = 1050 and T = 300 tested in Table 2.3.

Nonstationary signals

Distance IS LS DF SIS
Parameters 〈k〉

〈
k′
〉

〈Θ1/θ〉
〈
Θ′

1/θ′
〉

〈k〉
〈
k′
〉

〈Θ1/θ〉
〈
Θ′

1/θ′
〉

〈k〉
〈
k′
〉

〈Θ1/θ〉
〈
Θ′

1/θ′
〉

〈k〉
〈
k′
〉

〈Θ1/θ〉
〈
Θ′

1/θ′
〉

V
ar

y
in

g
m

ea
n

Abrupt-change T = 300 7.47 2.50 21.3 44.9 12.6 3.39 13.2 14.1 9.19 2.50 25.5 37.3 3.19 1.64 3.47 5.61

Middle T = 1050 11.7 3.85 30.5 43.7 16.1 6.52 17.2 18.3 8.06 2.17 24.7 36.1 5.99 2.64 6.37 8.22

Onset-of-trend T = 300 7.31 4.08 5.58 6.39 11.5 5.98 8.69 9.01 5.87 3.54 3.22 6.43 2.39 1.80 1.26 0.79

Middle T = 1050 12.2 7.08 10.2 11.1 15.7 10.4 14.1 9.90 5.25 3.48 2.59 5.40 4.05 3.20 2.48 1.92

Onset-of-trend T = 300 6.86 4.17 5.16 6.80 10.8 6.33 8.41 8.86 5.04 3.43 2.52 5.85 2.21 1.77 1.18 1.20

Beginning T = 1050 11.8 7.07 10.4 11.1 15.7 10.7 14.1 10.3 4.42 3.12 1.97 4.25 3.57 2.90 1.84 1.94

V
ar

y
in

g
v

ar
ia

n
ce

Abrupt-change T = 300 5.77 3.28 11.3 59.7 9.93 7.85 85.2 21.3 6.88 5.16 30.2 78.9 2.39 1.54 3.80 5.67

Middle T = 1050 11.6 10.3 7.19 13.7 16.2 3.68 8.18 68.9 10.1 19.8 47.6 172 5.47 5.12 2.64 9.91

Onset-of-trend T = 300 5.63 2.17 69.9 137 10.3 4.97 51.92 52.41 6.81 3.53 48.6 99.8 2.41 1.18 54.1 64.6

Middle T = 1050 11.3 6.32 337 451 15.6 14.1 19.2 21.4 9.83 9.66 151 241 5.24 3.32 23.3 46.8

Onset-of-trend T = 300 5.73 3.03 34.6 40.5 10.1 6.16 42.5 13.4 7.09 4.34 22.6 50.5 2.37 1.58 34.2 36.3

Beginning T = 1050 11.6 8.29 16.1 18.3 16.3 20.1 19.1 35.1 10.5 11.8 48.8 96.5 5.33 4.11 2.03 9.45

V
ar

y
in

g
m

ea
n

an
d

v
ar

ia
n

ce

Abrupt-change T = 300 5.89 3.27 60.7 81.4 10.6 8.00 96.3 98.2 7.91 5.74 24.4 59.6 2.61 1.70 78.3 79.4

Middle T = 1050 11.8 11.4 63.8 95.8 16.1 14.1 7.03 4.41 8.55 7.23 24.2 7.89 5.64 5.39 25.7 33.1

Onset-of-trend T = 300 6.00 2.26 65.4 121 10.3 4.78 41.1 45.4 6.77 3.31 33.3 64.1 2.49 1.21 33.3 43.4

Middle T = 1050 11.7 6.19 299 366 15.7 14.1 17.5 6.73 4.79 2.93 16.7 28.8 5.08 2.99 16.1 36.8

Onset-of-trend T = 300 5.71 2.96 24.1 37.8 10.5 6.03 13.2 27.6 13.2 7.21 4.28 18.5 2.52 1.62 20.8 4.63

Beginning T = 1050 16.6 7.35 14.1 72.7 15.7 14.3 15.7 28.4 6.43 5.96 17.9 35.7 5.11 3.52 14.6 15.7

2.7 On the robustness of the test

One drawback of the surrogate-based approach is that the outcome ("stationary" or "non-

stationary") can vary at every application of the test, even if one is testing the same re-

alization of the same process. The fluctuation of the results can be a critical point if we

are testing real world signals, where in the absence of a priori information, we would at

least require consistent outcomes from one application of the test to another. According

to the point view of distances that has been adopted in this work, it has been defined in

Section 2.3.1 that a robust distance is the one that leads to less variation of the results.

As illustration, in Table 2.5, we applied the stationarity test repeatedly (1000 times)

to a single realization of each test signal. The results are given as percentage of non-

stationary outcomes. Considering the definition of robustness given in Section 2.3.1,

it can be noticed that: i) the case of a nonstationary mean is the least robust one, ii)

the probability-based distances (KL, KM and GM) are considerably less robust than the

frequency-based ones, and iii) for a few cases, we lose the robustness by weighting the

distance. In this Section, we propose a method to evaluate the robustness of the dis-

tances that uses classical bootstrap analysis. Before deriving the robustness measure,

however, we analyze how the changing outcomes occur.
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Table 2.5: Results of applying the original (shown as cn (%) ) and modified (shown as
c̃n (%) ) stationarity test repeatedly (1000 times) to a single realization of each process

shown in Fig. A.4. The results are given as percentage of observed "nonstationary"
outcomes.

Nonstationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

V
ar

y
in

g
m

ea
n

Abrupt-change cn (%) 0 0 0 0 0 0 95.0 100 30.0 35.0 97.0 100 0 0 0 0

Middle c̃n (%) 0 0 0 0 0 0 100 100 52.0 56.0 100 100 95.0 98.0 0 0

Onset-of-trend cn (%) 0 0 0 0 0 0 4.00 5.00 0 0 2.00 3.00 0 0 0 0

Middle c̃n (%) 0 0 0 0 0 0 80.0 88.0 0 0 2.00 5.00 0 0 0 0

Onset-of-trend cn (%) 0 0 0 0 0 0 3.00 2.00 0 0 0 0 0 0 0 0

Beginning c̃n (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

V
ar

y
in

g
v

ar
ia

n
ce

Abrupt-change cn (%) 0 2.00 0 0 0 0 100 100 95.0 100 100 100 98.0 100 0 0

Middle c̃n (%) 0 0 0 0 0 0 100 100 100 100 100 100 90.0 95.0 0 0

Onset-of-trend cn (%) 0 0 0 0 0 0 50.0 100 20.0 100 45.0 100 15.0 100 0 100

Middle c̃n (%) 0 0 0 0 0 0 5.00 100 5.00 100 8.00 100 5.00 100 0 90.0

Onset-of-trend cn (%) 0 5.00 0 0 0 0 5.00 100 0 100 10.0 100 0 100 5.00 100

Beginning c̃n (%) 0 0 0 0 0 0 90.0 0 5.0 100 0 100 0 0 0 5.00

V
ar

y
in

g
m

ea
n

an
d

v
ar

ia
n

ce

Abrupt-change cn (%) 0 0 0 0 0 0 5.00 100 5.00 100 0 100 0 100 0 100

Middle c̃n (%) 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100

Onset-of-trend cn (%) 0 0 0 0 0 0 45.0 100 85.0 100 90.0 100 0 100 0 100

Middle c̃n (%) 7.00 0 49.0 0 55.0 0 100 100 5.00 100 100 100 0 100 82.0 0

Onset-of-trend cn (%) 0 100 0 100 0 100 83.0 100 44.0 100 97.0 95.0 55.0 100 5.00 100

Beginning c̃n (%) 0 0 0 0 0 0 100 100 100 10.0 100 100 0 100 0 100

Stationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

Type: cn (%) 0 0 0 0 0 0 0 0 0 0 4.00 3.00 2.00 3.00 0 0

AR(1) process c̃n (%) 0 0 0 0 0 0 4.00 5.00 5.00 2.00 6.50 5.50 6.00 7.00 2.00 2.50

2.7.1 Understanding the changing outcomes

The different outcomes are due to the randomness of the surrogate set, and as a conse-

quence, at every application of the test, a different vector Θ0 of variances is obtained.

Since the gamma fit is performed on Θ0, the approximated gamma model changes at

every test. The effect of this varying distribution is observed as fluctuations of the

threshold γ, which would lead to different results if the test statistics Θ1 is close enough

to the range of fluctuations. Since Θ1 is fixed for all test applications (Θ1 is a non-random

quantity computed directly from the signal), one could evaluate how likely it is for Θ1 to

be inside the range of fluctuations of γ. This scheme is illustrated in Fig. 2.7, where the

distance d between Θ1 and the threshold γ, the range of fluctuation of γ, and the gamma

fit are shown. In this case, it is desired to have d stretching outside the fluctuation limits

for both stationary (Fig. 2.7(a)) and nonstationary (Fig. 2.7(b)) cases. On the other hand,

having Θ1 embraced by the fluctuation range (Fig. 2.7(c)) might lead to changing outcomes.

The latter happens every time the threshold crosses the value of Θ1 (Fig. 2.7(d)).
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Figure 2.7: Scheme representing how the fluctuations of the threshold may change the
results. In (a) and (b), the value of Θ1 is in a safe distance d from the fluctuations of γ

for both stationary and nonstationary cases, respectively. In (c), Θ1 can be reached by
the threshold line, causing changing outcomes. In (d), it is shown that such situation
happens whenever γ crosses the fixed value of Θ1.

2.8 Deriving a robustness measure

The fluctuations of the threshold γ need to be taken into account when evaluating the

distances. In this sense, one could suggest, for instance, to compute the histograms of

γ, and to analyze how likely it is for Θ1 to be inside the range of fluctuations of γ. To

do so, we could check if the value of Θ1 has a low probability of being crossed by the

threshold, when compared with the histograms. If it does, the dissimilarity measure

being used is robust.

For the nonstationary signals following the Onset-of-trend model, we computed the

histograms of the values taken by the threshold γ, when using the Itakura-Saito, Sym-

metrized Itakura-Saito and Combined distances. For the sake of simplicity the analysis

was carried out with the original distances, not the weighted ones. The histograms are

shown in Fig. 2.8, where the dashed line in black stands for the 95% line of the empirical

distributions approximated by the histograms. If Θ1 (red line) is beyond this thresh-

old (to the right-hand side), it means that the corresponding distance seldom leads to

changing results, being consistent with the definiton of robustness. Notice in Fig. 2.8

for the case of a nonstationary mean (first column), that all values of Θ1 are lying in
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the left-hand side of the histograms, outside of the range of fluctuation of γ. This is in

accordance with the results shown in Table 2.5, where most of the distances could not

detect properly the nonstationarity exclusively in the mean. Moreover, as also observed

in Table 2.5, by symmetrizing the Itakura-Saito distance we lost the robustness of its

original form. However, for the case of a nonstationarity exclusively in the variance,

for example, the Symmetrized Itakura-Saito distance is more robust than the Combined

one.
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Figure 2.8: Analyzing the robustness of three distances: Itakura-Saito, Symmetrized
Itakura-Saito and Combined. The nonstationary signals follow the Onset-of-trend model
and exhibit three types of nonstationarities: exclusively in the mean (µ), exclusively in
the variance (σ), and both in the mean and in the variance (µ,σ). The dashed line in
black corresponds to the 95% line of the empirical distribution approximated by the his-
tograms. The solid line in red represents Θ1, which is expected to lie beyond the dashed
line (to the right-hand side), for a robust distance when analyzing a nonstationary signal.

Unfortunately, evaluating the robustness like in Fig. 2.8, i.e., by using the crude his-

tograms of γ, can be considerably time-consuming. The reason is because the statio-

narity test has to be applied a number of times, and at every test application, a TF

representation is computed for each surrogate signal of the collection. Ideally, we would

like to be able to evaluate the robustness after the first realization. Doing so, the time-

consuming part of computing the TF spectrum repeatedly would be avoided. Evalu-

ating the robustness while having only one record of the threshold γ, would require

a statistical characterization of this variable, and some extra knowledge regarding the

method. We propose in the following Section, an approache where these two points are
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addressed, providing a useful measure of robustness.

2.8.1 An approach based on bootstrapping

For evaluating the robustness like in Fig. 2.8, we have estimated different thresholds

γ from a collection of vectors Θ0. We have then used the crude histograms to check

whether the fluctuations of γ could or could not change the results. Now, we propose

an alternative (and simpler) method, which consists in computing the vector Θ0 once,

and estimating the threshold values by resampling with bootstrap.

The classical bootstrap technique [63, 64] is well-suited to this end, as the samples

of Θ0 are i.i.d. The method is performed by randomly sampling the data with replace-

ment, and then gathering equally-sized resamples. Such procedure is done thousands of

times and treated as repeated experiments [65]. By bootstrapping we simulate repeated

observations from an unknown population using only the obtained sample as basis. It

allows us to estimate different threshold values from the same basis vector Θ0, skipping

the time-consuming part of computing different TF spectra. Also, bootstrap replicates

can be easily computed and the empirical confidence intervals are straightforwardly ob-

tained even for complex estimators. Finally, the method does not require a large number

of observations in order to invoke asymptotic results. In fact, theoretical and practical

works have shown that bootstrap techniques can outperform large-sample ones [65].

With a collection of bootstrap replicates of the threshold γ, we can compute empirical

confidence intervals or observe the fluctuation of γ using histograms. Then, we can

evaluate the robustness by checking how likely it is for Θ1 to be crossed by γ. However,

a natural question arises: How many bootstrap replicates are necessary? In order to

estimate the required number of replicates, it would be reasonable to first derive a proper

robustness measure, and then check the effect of using different sample sizes.

The surrogates are random sequences that are stationarity, and due to their "well

behaved" randomness we could characterize some properties of interest. For instance,

since Θ0 is computed directly from the surrogate set, it should be a stationary random

series as well. Also, it is intuitive to address smooth changes to its mean value. Thus,

we propose to measure how far Θ1 (a fixed quantity) is from the mean value of the γ

estimates obtained by bootstrapping, by computing the absolute mean deviation (AMD)

for Θ1. The AMD expression is given as follows:

AMD =
|Θ1 − M|

M
, (2.28)

where M stands for the sample mean of the γ estimates. Note in (2.28), that the ex-
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Figure 2.9: Robustness evaluation with bootstraps. (a) A robust case and its AMD value.
(b) A nonrobust case and its AMD value.

pression was divided by M in order to avoid discrepancies when comparing cases with

large differences between M and Θ1. Otherwise, a small value of M could lead to a

small value of AMD. An illustration of the use of (2.28) for measuring the robustness

is given Fig. 2.9, where the histograms of the bootstrap replicates, M, Θ1 and the AMD

value are shown for a robust (Fig. 2.9(a)), and a nonrobust case (Fig. 2.9(b)), respectively.

Notice that Θ1 is far from M for the robust case, which gives a larger value of AMD. On

the other hand, for the nonrobust case, Θ1 is closer to M.

After defining the robustness measure, we need to check how many bootstrap repli-

cates are necessary. To this end, we have bootstrapped Θ0 and estimated the values of

γ for three samples of different sizes: 1000, 5000 and 10, 000. Although bootstrapping is

faster than the procedure shown in Fig. 2.8, we have observed that the computation time

increases notably by using more than 10000 replicates. For illustration, in Fig. 2.10, we

show the results and the running time (in seconds) for the Itakura-Saito, Log-Spectral

and Diffusion distances when testing the signals with a nonstationary mean following

the onset-of-trend model (which was the least robust case according to Table 2.5). Notice

that, in general, the gain in accuracy obtained by using the largest number of replicates

cannot be identified clearly, while, on the other hand, the gain in the running time is well

noticed. Thus, we have considered 1000 replicates as a good trade-off between compu-

tational time and robustness assessment. Increasing the number of replicates does not

increases the amount of information from the data, but reduces the random sampling

error from bootstrapping.

Having presented the approach to evaluate the robustness, now we compute the

AMD for all the distances, the original and the weighthed ones. Naturally, the largest

AMD values are expected to occur for the least changing cases, be they stationary or

nonstationary. The results are shown in Table 2.6. Note that, in general, the nonrobust

cases for each distance have low AMD values. Furthermore, as expected, the frequency-
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Figure 2.10: For the Itakura-Saito, Log-spectral and Diffusion distances, and signals with
varying mean, the gamma threshold fluctuations obtained by bootstrapping, the running
time and the AMD values computed by means of (2.28). The mean of the fluctuations is
given by M.

based distances presented most of the largest AMD values (especially the Itakura-Saito

and the Diffusion distances). As previously observed, for this class of distance we had

the least changing (nonstationary) outcomes. Finally, note that for some cases, we have

large AMD values for the probability-based distances, which reflects how constantly the

null hypothesis is accepted for this class of distances.

2.8.2 Conclusions

We have seen that many signals found in the real world have a rich spectral content, are

very often nonstationary, and are frequently given without any a priori information about

their structure. Given these circumstances, TF techniques excel at providing a useful rep-

resentation for nonstationary signals, and different approaches have emerged for testing

stationarity in TF domains. In this Chapter, we have proposed various contributions to

one of these approaches, more specifically, to the surrogate-based method presented in

[41]. The surrogate method makes use of the so-called surrogates for characterizing the

null hypothesis of stationarity, whereas the possible nonstationary behavior is verified

by comparing the local and global spectral properties of the TF representation.

The original framework presented in [41] leaves room for improvements in various

points. So in this Chapter, we have proposed several contributions to some aspects of

the original method that deserved a deeper investigation. We have carried out the ana-
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Table 2.6: AMD values computed for the original (shown as cn ) and modified (shown as
c̃n stationarity test.

Nonstationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

V
ar

y
in

g
m

ea
n

Abrupt-change cn AMD 0.93 0.86 0.75 0.79 0.81 0.79 1.17 0.81 0.41 0.38 0.96 0.87 0.13 0.56 0.84 0.88

Middle c̃n AMD 0.95 0.69 0.83 0.63 0.87 0.83 9.72 1.20 0.47 4.49 5.12 7.12 3.42 0.76 0.85 0.74

Onset-of-trend cn AMD 0.74 0.71 0.67 0.69 0.49 0.84 0.51 0.61 0.42 0.23 0.74 0.71 0.70 0.67 0.24 0.93

Middle c̃n AMD 0.89 0.82 0.79 0.71 0.42 0.82 0.63 0.63 0.40 0.37 0.85 0.61 0.30 0.28 0.29 0.94

Onset-of-trend cn AMD 0.84 0.92 0.69 0.76 0.23 0.89 0.48 0.49 0.81 0.14 0.91 0.77 0.90 0.68 0.99 0.92

Beginning c̃n AMD 0.76 0.87 0.57 0.63 0.88 0.89 0.94 0.33 0.69 0.32 0.41 0.47 0.72 0.63 0.89 0.88

V
ar

y
in

g
v

ar
ia

n
ce

Abrupt-change cn AMD 0.32 0.33 0.36 0.22 0.64 0.16 15.3 36.4 6.22 27.7 0.22 3.20 29.7 25.4 0.98 4.52

Middle c̃n AMD 0.48 0.42 0.50 0.18 0.44 0.36 25.5 10.1 1.14 0.41 3.65 5.92 0.54 2.77 0.23 0.41

Onset-of-trend cn AMD 0.54 0.33 0.05 0.60 0.55 0.09 9.73 26.7 0.94 6.00 3.59 7.77 6.64 14.3 1.20 1.74

Middle c̃n AMD 0.94 0.12 0.65 0.60 0.23 0.72 42.8 78.6 1.21 1.74 17.2 12.1 1.47 2.14 0.87 4.68

Onset-of-trend cn AMD 0.27 0.48 0.32 0.20 0.06 0.35 1.70 7.18 2.45 7.02 1.08 3.62 0.11 16.1 0.75 0.84

Beginning c̃n AMD 0.21 0.68 0.62 0.35 0.85 0.56 3.16 4.65 0.12 0.29 4.13 6.19 0.21 0.07 8.46 0.67

V
ar

y
in

g
m

ea
n

an
d

v
ar

ia
n

ce

Abrupt-change cn AMD 1.77 6.92 0.19 3.96 0.63 7.18 7.02 50.5 5.54 33.0 1.08 38.7 115 324 22.5 75.7

Middle c̃n AMD 0.06 0.11 0.27 0.41 0.57 0.29 4.11 5.08 0.33 8.53 8.29 3.00 1.63 1.96 0.37 2.76

Onset-of-trend cn AMD 0.57 0.18 0.54 0.25 0.05 0.22 3.84 10.2 3.31 6.89 1.01 8.15 3.93 15.1 0.17 1.62

Middle c̃n AMD 0.70 0.86 0.32 0.50 0.46 0.75 14.0 19.4 2.34 1.86 14.1 11.7 1.21 4.20 0.92 0.72

Onset-of-trend cn AMD 0.58 1.67 0.60 0.74 0.44 0.98 2.68 6.95 0.47 6.05 0.10 1.16 2.15 13.2 5.51 1.16

Beginning c̃n AMD 0.75 0.70 0.43 0.47 0.69 0.47 7.61 4.10 2.48 0.72 1.61 2.59 0.42 1.33 0.80 0.22

Stationary signals

Distance KL KM MS IS LS DF SIS CB
Length 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050 300 1050

Type: cn AMD 0.93 0.94 0.56 0.54 0.63 0.82 2.03 1.33 0.67 0.58 2.01 2.88 1.39 1.45 0.89 0.23

AR(1) process c̃n AMD 0.98 0.97 0.72 0.74 0.88 0.93 1.44 1.39 0.89 0.37 2.56 1.01 2.78 0.88 0.44 0.34

lysis from the point of view of the distances between local and global spectra. The first

contribution of the Chapter consisted of an investigation on the effect of using distances

of different natures (frequency and probability-based). In this first part, it was observed

that the original framework could hardly detect a changing mean and nonstationarities

varying slowly as a trend, regardless of the chosen distance. Hence, as a second con-

tribution, we have proposed to modify the methodology and to weight the distances

by a vector built from the time marginal of the TF representation. Doing so, we could

improve the performance of the test and increase the detection rate of first-order non-

stationarities, but only for the frequency-based distance. The last contribution consisted

in evaluating the robustness of the test against the changing results that may appear by

applying the test sequentially to the same realization of the signal. We have proposed

a robustness measure that makes use bootstrapping for estimating a collection gamma

thresholds from a single realization of the process. Doing so, we have successfully as-

sessed the least and most robust cases.

Although this Chapter contributed to the search of a "good" distance, and to modify

the method in a way that its performance is improved for the frequency-based dis-

tances, one could say that the classification accuracies were not high for some cases. The
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surrogate-based method does not work particularly well for the types of nonstationarity

that were the most problematic in this Chapter, i.e., first-order evolutions and slowly-

varying nonstationarities. For detecting such types of nonstationarities, we develop in

the next Chapter a new nonparametric, data-driven technique for testing stationarity.
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In Chapter 3, a new nonparametric approach for detecting slowly-varying nonsta-

tionarities is proposed. Different from the surrogate-based method, the proposed tech-

nique does not require the computation of many TF representation for assessing statio-

narity, which fastens the procedure. Instead, the idea is to quickly estimate the time

marginal (Section 3.2) and to identify temporal patterns (Section 3.3). In comparison to

other approaches in the literature, the developed framework shows to be more versatile,

due to its sensitivity to first and second-order nonstationarities and its nonparametric

nature.

3.1 Introduction

The basic idea of testing stationarity in TF domain with surrogates was to use this data-

driven resampling method for learning the statistics of a null hypothesis of stationarity.

While the original test in [41] was designed for second-order stationarity and stationarity

relatively to a global observation scale, we have proposed some modifications to the ori-

ginal framework for allowing the characterization of nonstationarities that also appear in

the mean, and for only portions of the time series (i.e. nonstationarities with particular

start and end points, such as κ1 = T/2 and κ2 = T in Fig. 2.2, respectively). As it could

be seen, the proposed modified approach presented an overall improved performance,

but only for frequency-based distances. Regardless of the improvements brought by

the modifications proposed in the last Chapter, a drawback faced by nonparametric TF

methods using surrogate resampling is their computational load, as one need to compute

many TF representations, one for each surrogate. Also, the framework discussed in the

previous Chapter could not detect properly a varying mean and slowly-varying nonsta-

tionaries simply because it was not designed to this end. The surrogate-based technique

works particularly well for modulations, and it has been seen in Section 2.6 that signals

following the abrupt-change model could be fairly well detected.

Although many practical problems arising in signal processing are actually con-

cerned in detecting abrupt-changes [25], the detection of slowly-varying nonstation-

arities, specially those of second-order and for short time series, remains a challenge.

Detecting slowly-varying changes of first and second-order statistics is a critical point
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when analyzing real world time series, as changes of a given order could reflect very

specif behaviors of natural phenomena. This kind of time series has usually a short

length, and as consequence, only a few stationarity tests compatible to this application

can be found in the literature. A first suggestion would be to apply the classical KPSS

test [27]. However, the latter is not suited to detect changes of second-order (see Sec-

tion 3.9). Other alternatives are also given by recent parametric methods, such as the

nonstationarity detector of S. Kay [20], which is conveniently suited to short time series.

Unfortunately, the performance of a parametric method depends on the accuracy of the

chosen model, which is hardly assessed for real world processes (as it will be verified

in Chapter 5). Therefore, the purpose of this Chapter is to propose a new nonpara-

metric stationarity test, which is particularly designed for testing trend-based and slow

nonstationary evolutions. The proposed method is data-driven and more sensitive to

first-order nonstationarities than other nonparametric methods.

3.1.1 Detailing the contributions of this chapter

For slowly-varying cases, full TF representations are not needed to assess for nonstation-

ary behaviors. The stationarity test that is developed in this Chapter is more efficient in

this regard. We designed the test for a specific nonstationary pattern: presence of a trend

and/or an evolution of the local energy of the signal. The proposed approach works for

short time series and allows for the detection of first and second-order nonstationarities

of slowly-varying signals. The proposed methodology is illustrated in Fig. 3.1. More

specifically, in Section 3.2.1, we recall some elements of TF analysis for assessment of

stationarity, and we explain the method of [66] for extracting the trend in the time mar-

ginal of the TF representation. Further, we propose a measure to quantify the trend

contamination. We then compare this quantity with the ones that are likely to be found

in stationary references, which are obtained by block bootstrapping the original signal.

In Section 3.7, we show that the distribution of possible trend contaminations can be

approximated by a generalized extreme value (GEV) model, allowing us to design a

hypothesis test in Section 3.8 to detect these second-order trend nonstationarities. We

also derive a typical index of nonstationarity. The experimental study is shown in 3.9.
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Figure 3.1: Flowchart representing the procedure for testing operational stationarity by
evaluation of the trend importance in the time marginal.

3.2 On a test suited to trends and slow nonstationary evolutions

3.2.1 Background Elements

Consider that a given random process {x(t), t = 1, ..., T} possesses a slowly varying

type of nonstationarity, in a sense that its power spectral density (PSD) varies slowly in

time, as opposed to an abrupt change, for instance. For example, let us assume that x(t)

is a nonstationary Gaussian process with a slowly-varying variance starting at t = T/2

following the onset-of-trend model, and xa(t) and xw(t) are two strict stationary signals,

an autoregressive AR(1) process and a white Gaussian noise WGN(0,1), respectively.

Realizations of xa(t), xw(t) and x(t) are shown in Fig. 3.2 (a), while their TF spectra esti-

mated by multitaper spectrogram (see (2.2)) are shown in Fig. 3.2 (b). The time marginals

obtained by integration of the TF spectra over frequency are shown inFig. 3.2 (c), and

a temporal structure in the time marginal of the nonstationary signal can be clearly ob-

served through the fitted trend curve (this trend fitting will be explained further in this
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Figure 3.2: (a) Two stationary processes (xa(t) and xw(t)) and a nonstationary one (x(t)).
(b) Estimated TF spectra of all signals. (c) Time marginal distribution obtained by inte-
gration in the frequency (in gray, thick line), and estimated trend (in black, thin line).

Chapter).

For this type of nonstationary signals, the TF spectrum should generally read as:

S(t, f ) = α(t)2δ( f ) + β(t)(P̃SD( f ) + ǫ(t, f )) (3.1)

where ·̃ is the normalization of the PSD. In (3.1), α(t) can be interpreted as a first-order

trend (time-varying mean), β(t) is a second-order trend (time-varying variance), P̃SD( f )

is possibly the PSD of the stationary component (or, if the signal is nonstationary, it is the

frequency marginal of the TF spectrum) and ǫ(t, f ) are the fluctuations in the TF domain

that might code for other types of nonstationarities, such as frequency modulations [41].

We are interested here only in second-order trend (non)stationarities, where α and β

evolve possibly in time, but changes in frequency as coded in ǫ(t, f ) are not relevant.

The type of nonstationarities we are interested in reduce to test for the presence of

time evolving α or β. The time marginal of eq. (3.1) is obtained by summing S(t, f ) over

all frequencies and it reduces to: y(t) = α(t)2 + β(t) as ∑ f ǫ(t, f ) ≃ 0 as there are no

changes in frequency. The situation is not that simple as we cannot specify a priori a

model for the time marginal in general situations. However, it is possible to use trend
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estimation to first extract trends, before testing its statistical relevance.

Reducing the study of trend stationarity to the study of the time marginals of the

TF spectrum is able to considerably fasten the computations needed in that situation:

instead of computing an estimate of the full TF spectrum by means of the multitaper

spectrogram given in (2.2), one needs only an estimate of y(t). Thanks to the well-

known marginal properties of TF distributions [4], this is easily computed by numerical

convolution of the signal x(t) by the window of analysis. The latter was chosen to be the

same family of Hermite functions {hk(t), k ∈ N} with a length nh used in Section 2.2.

Then, the time marginal is computed by squaring x(t) ∗ hk(t) averaging over the different

K, i.e.:

y(t) =
1

K

K

∑
k=1

[x(t) ∗ hk(t)]
2 , (3.2)

this solves one drawback of the nonparametric stationarity test in TF domain, which is

the computational load of having to estimate full TF representations. Nevertheless, for

dealing with any type of real world signal, we need a model-free approach for extracting

the trend. Among the different nonparametric approaches for trend estimation, the Sin-

gular Spectrum Analysis (SSA) [67] and the Empirical Mode Decomposition (EMD) [66]

are known for decomposing the time series into oscillatory components. Both methods

have their qualities, however, the SSA depends on a free parameter, while the EMD is

fully data driven [66]. Due to the latter, and to the simplicity of the EMD algorithm, we

have chosen the EMD technique for trend estimation.

3.3 Estimating trends in the time marginal

3.3.1 Trends in the time marginal: Definition

Before explaining the EMD technique, however, we should define the trend component

properly. Since "trend" itself is a concept that is context-dependent, we shall adopt a

definition that is in consonance with the proposed framework. The definition of trend

adopted in this work is that of a smooth additive component that carries information about

global changes in the time series [68]. Also, it is assumed that the detrended series should

have generic stationary features [66]. We represent trend component by c(t), the sta-

tionary (detrended) fluctuation by r(t), and the trended time series by y(t). Then, we

consider the following additive model to hold:

y(t) = c(t) + r(t). (3.3)
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Testing for second-order trend stationarity can be done by first estimating a trend

c(t) from the time marginal y(t) (see Section 3.3.2), then by proposing a way to quantify

whether c(t) is relevant or not (see Section 3.4). In the rest of this Chapter, we discuss

stationarity in regard to trend stationarity only.

3.3.2 Trends in the time marginal: Estimation

The EMD is an algorithm introduced in [69] for decomposing time series into a su-

perposition of oscillatory terms known as intrinsic mode functions (IMFs). The IMFs

are computed iteratively and must satisfy two conditions regarding the number of zero

crossing versus extrema and the mean values of local envelopes [70]. The algorithm for

extracting the IMFs (known as sifting process [69]) can be described as follows [71]:

1. Identify all the local extrema in the time series y(t)

2. Interpolate all the local maxima and minima by a cubic spline to produce an upper

envelope eup(t) and a lower elo(t) envelope, respectively

3. Compute the mean m(t) = [eup(t)− elo(t)]/2

4. Compute the detail d(t) = y(t)− m(t)

5. Repeat steps 1 to 4 until the detail d(t) can be considered to be a zero-mean signal

according to some stopping criterion. If so, d(t) is called an IMF and the procedure

continues by iterating on the residual m(t).

The sifting process stops when the slowly-varying residual function has no more oscil-

lations. We represent this last residual function by ρI(t), and the result of the sifting

algorithm is a collection of I IMFs {m(i), i = 1, ..., I} plus ρI(t). For the time marginal

y(t), the EMD gives the following representation:

y(t) =
I

∑
i=1

m(i)(t) + ρI(t), (3.4)

where the IMFs ranging from m(1)(t) to m(I)(t) represent local oscillations going from

the shortest period (m(1)(t)) to the longest one (m(I)(t)) [66]. There are two important

points concerning the IMFs that we further recall in this work:

1. each IMF is a zero-mean waveform by construction [70],

2. for all practical purposes, the consecutive IMFs can be considered to be locally

orthogonal to each other [69].
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As we have defined trend as a slowly-varying component, we shall follow here the

same idea of [66], which considers the trend component as being the superposition of the

last few IMFs and the residual ρI(t). Therefore, estimating the trend will be equivalent

to estimating the index i = i∗ in (3.4) that gives the best approximation of the trend

component c(t):

c(t) =
I

∑
i=i∗

m(i)(t) + ρI(t). (3.5)

The criterion for obtaining i∗ is to select the smallest common index of two independent

approaches, namely the Ratio and the Energy approach. The former verifies deviations of

the expected ratio of zero crossing performed by successive IMFs. The latter considers

that the energy of a given IMF generally increases for i near to i∗ [66].

In Fig. 3.2(c) we have illustrated the EMD approximation of trends components esti-

mated from the three time marginals of the stationary and nonstationary signals. Now,

for the same test signals, we present in Fig. 3.3 the time marginals y(t) computed with

(3.2) by using windows hk(t) of different lengths (nh = 3, 5, 7, 9), and also the corre-

sponding trend components c(t) estimated by the EMD-based method. Notice that the

trend estimated by the EMD does not need to be monotonic. Having defined the proce-

dure of estimating the trend component c(t), we now have to quantify its contamination

in the time marginal and to decide whether or not it is significant enough to reject

stationarity.

3.4 Testing for trend relevance

3.4.1 Overview

Existence of an additive trend in y(t) conveys a breakdown in the trend stationarity we

are interested in. A key point of the method is to estimate the importance of that trend,

and further test for stationarity by means of a hypothesis test. More specifically, we

build a one-sided test where the null hypothesis of no trend (stationarity) refers to the

situation where trends in the time marginal cannot be distinguished statistically from

those induced by random fluctuations.

We need to approximate different realizations of the signal to perform the hypothesis

test. To do so, we apply the block bootstrap technique to the original signal to obtain

a collection of virtual realizations (Section 3.5). The bootstrap replicates are stationary,

so trends in their time marginals are unlikely to be found. We analyze the resamples

individually by measuring the importance of the trend in y(t) by means of the trend

importance estimator (Section 3.4.2). Then, by studying the behavior of this estimator
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Figure 3.3: Time marginal y(t) (in gray), trend component c(t) (dashed line in black),

histograms of θ̂TI and its average value (dashed line in red) for the signals shown in
Fig. 3.2. (a) Nonstationary Gaussian process. (b) Stationary AR(1) process. (c) Stationary
WGN(0,1) process.

(Section 3.6), we see that its distribution can be approximated by a generalized extreme

value (GEV) model (Section 3.7.1).

3.4.2 Estimating the importance of the trend

Here, we propose the following measure to quantify the importance of the trend:

θTI =
Var{y(t)}

Var{ydt(t)}
=

Var{y(t)}
Var{y(t)− c(t)} , (3.6)

where ydt(t) = y(t)− c(t) stands for the detrended time marginal series. Such expres-

sion measures the importance of the trend component in the data in comparison to

the total variance, by computing the fraction of the original variance of y(t) accounted

for by the approximated trend [72]. The estimation of (3.6) is carried out by the trend
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importance estimator:

θ̂TI =

N

∑
t=1

[
y(t)− µ̂y

]2

N

∑
t=1

[ydt(t)− µ̂dt]
2

, (3.7)

where µ̂y and µ̂dt are the sample mean of the time marginal series and its detrended

counterpart, respectively. In Fig. 3.3 we illustrate the performance of (3.7) in evaluating

trended time marginals. Besides of computing the time marginals and trends compo-

nents for different window lenghts (nh = 3, 5, 7, 9), we have estimated the importance

of the trend for P = 1000 realizations of each process, so in Fig. 3.3 we also show the

histograms of θ̂TI and its average value (〈θ̂TI〉P) over all the realizations.

It can be noticed in Fig. 3.3 that θ̂TI is greater for the nonstationary process (x(t))

than it is for the stationary ones (xa(t) and xw(t)). Also, the value θ̂TI tends to decrease

when the window of analysis becomes shorter, or to increase otherwise. One could

suggest to always use larger windows, but larger values of θ̂TI are not desirable for the

case of stationarity. Hence, as usual for methods developed in TF domain, there exists a

necessary trade-off regarding the choice of the window of analysis.

More precisely, a trend (a global and slowly-varying component) will be more likely

accused by using larger windows, whereas a narrow window of analysis hk(t) will cap-

ture better the local variability in time of the spectra, which will give in return a non-

smooth time marginal with an abundance of spikes. In this case, the portion of the

variance of y(t) accounted for by the slowly varying component c(t) (the approximated

trend) will be smaller, which will decrease the value of θ̂TI. One could also interpret

this behavior in terms of the IMFs, as the EMD of a time marginal with many spikes

and fluctuations will likely use more energetic IMFs to represent fast oscillation modes,

rather than slowly varying ones. The analysis of θ̂TI from the point of view of the IMFs

and their energies will be carried out in Section 3.4.2.

In practice, one needs a window sufficiently large for visualizing any significant

trend component c(t) in y(t) (whereas the significance of c(t) is to be assessed), while

keeping the best possible time resolution. By now, we have to consider that there is no

a priori value for nh, but allowing the window length vary is an extra degree of freedom

of the proposed method.
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3.5 Generating virtual realizations with bootstrapping

Among the various resamples techniques, the classical bootstrap introduced by Efron

[63] remains as one of the most popular methods to derive the distribution of a given

estimator. Its attractiveness lies in its simplicity, as the bootstrap can be easily computed

[65]. Unfortunately, the classical bootstrap is not applicable for dependent time series,

since the original resampling technique could destroy the underlying correlation struc-

ture. Therefore, for obtaining approximated realizations of the data while preserving

any possible correlation, we propose to use the block boostrap method.

The rationale behind the block bootstrap technique is to divide the time series into

blocks prior to resampling. Doing so, we preserve the dependence in the original time

series within a block, without having to guess the correlation structure.

There are different approaches available for blocking the time series [73, 74]. They

can be broadly categorized into overlapping and nonoverlapping block bootstrap. In this

Chapter, we chose the latter method in order to obtain bootstrap replicates containing

as many different samples as possible, while approximating (or equaling) the original

length of the time series. The latter is an important point for the time marginal compu-

tation. Also, both blocking techniques have the same amount of bias asymptotically for

a given block length [74].

3.5.1 The block boostrap technique

For generating the stationary counterparts, let us assume that the original time series is

given by X = (x1, ..., xT). The nonoverlapping approach consists in dividing the data

into b disjoint blocks, where b = ⌊T/ℓ⌋, T and ℓ stands for the length of the time series

and the length of the block, respectively. The kth block is then given by

Bk = [x(k−1)ℓ+1, ..., xkℓ] for 1 ≤ k ≤ b.

To build the bootstrap replicate, we select blocks
{

B∗
k , k = 1, ..., b

}
by randomly re-

sampling with replacement the blocks {Bk, k = 1, ..., b} gathered from the original data.

The symbol "∗" is used to make a distinction between the resampled blocks and the

original ones. After resampling, the bootstrap replicate is given by [75]:

X ∗ = (x∗11
, ..., x∗ℓ1

, x∗12
, ..., x∗ℓ2

, ..., x∗1b
, ..., x∗ℓb

),

where x∗11
and x∗

ℓ1
are the first and the ℓth samples of B∗

1 (the first resampled block), x∗12

and x∗
ℓ2

are the first and the ℓth samples of B∗
2 (the second resampled block), and so on.
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Clearly, the choice of the block length ℓ is a crucial point. Roughly speaking, we want

blocks long enough to account for a significant portion of the correlation, while short

enough to reduce the variability [76]. Thus, the optimal block length depends strongly

on the context. In this work, we have adopted the criterion presented in [75], which

states that if one wants to estimate a one-sided distribution (which is the case here), the

mean squared error of the block bootstrap estimator is asymptotic to:

T−1(C1ℓ
−2 + C2T−1

ℓ
2), (3.8)

where C1 and C2 are two positive numbers that do not depend on the length of the time

series (T), the number of blocks (b) and their length (ℓ). It is shown in [75] that the

optimal block length that minimizes (3.8) is of order of T1/4. It can be simply checked in

(3.8) by minimizing the expression over ℓ. Thus, in this work, we have chosen ℓ = T1/4.

For each bootstrap replicate X ∗, we estimate the trend importance in the time mar-

ginal by means of (3.7), which allows for the determination of the distribution of trend

contaminations under the null hypothesis of stationarity. We remark that using the em-

pirical distribution to elaborate the hypothesis test is not judicious, as it would require

many computations for deriving a reliable threshold from the crude histograms. Fortu-

nately, we have observed that the empirical distribution of (3.7) can be approximated by

a generalized extreme value (GEV) model, which simplifies the selection of a threshold.

To understand the choice of a GEV model, we take a closer look at the behavior of θ̂TI in

the following Section.

3.6 Behavior of the trend importance estimator

We analyze the behavior of θ̂TI in two situations. The first one stands for the case of a

trendless time marginal (which indicates stationarity), where a significant trend cannot

be detected in y(t). The second situation happens if we have a trended time marginal

(which indicates nonstationarity), where a significant trend can be detected in y(t).

3.6.1 Trendless time marginal

For the case of a trendless time marginal we have θ̂TI ≈ 1, as y(t) ≈ ydt(t). In this case,

the EMD returns only the residual ρI(t) as an approximation of the trend component

c(t). Hence, the detrended time marginal ydt(t) series is given only by:

ydt(t) = y(t)− c(t) =
I

∑
i=1

m(i)(t) + ρI(t)− ρI(t) =
I

∑
i=1

m(i)(t) (3.9)
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For illustration, we could write the quantity that we want to estimate – the impor-

tance of the trend given in (3.6) – according to the EMD notation:

θTI =
Var{y(t)}

Var{ydt(t)}
=

Var

{
I

∑
i=1

m(i)(t) + ρI(t)

}

Var

{
I

∑
i=1

m(i)(t)

} , (3.10)

where the slowly-varying residual ρI(t) shown in the numerator of (3.10) is nearly a

constant in comparison to the sum of the IMFs, specially on the absence of trends. Now,

if we recall that for a given constant a, we have

Var

{
I

∑
i=1

m(i)(t) + a

}
= Var

{
I

∑
i=1

m(i)(t)

}
,

and it could be easily verified in (3.10) that θTI ≈ 1. This is the most common case in the

bootstrapped data1.

3.6.2 Trended time marginal

For the case of a trended time marginal we have θ̂TI ≥ 1. Now, the EMD might not only

use the residual ρI(t), but also different IMFs to approximate c(t). Thus, the algorithm

returns an index i∗ ≤ I as the one which gives the best approximation of the trend. In

this case, the detrended time marginal series ydt(t) = y(t)− c(t) is given by:

ydt(t) =
I

∑
i=1

m(i)(t) + ρI(t)−
[

I

∑
i=i∗

m(i)(t) + ρI(t)

]
=

i∗−1

∑
i=1

m(i)(t). (3.11)

By using (3.11), we can rewrite (3.7) as:

θ̂TI =

N

∑
t=1

[
y(t)− µ̂y

]2

N

∑
t=1

[ydt(t)− µ̂dt]
2

=

N

∑
t=1

[
I

∑
i=1

m(i)(t) + ρI(t)− µ̂y

]2

N

∑
t=1

[
i∗−1

∑
i=1

m(i)(t)− µ̂dt

]2
, (3.12)

1It should be noted that due to approximation errors in the EMD algorithm, we might obtain values of
θTI that are slightly lower than 1. In anyway, the approximation θTI ≈ 1 is still reasonable.
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where µ̂y and µ̂dt are, respectively, the sample mean of y(t) and ydt(t) as shown in (3.11).

The length of y(t) and ydt(t) is given by N. We can expand (3.12), thus obtaining:

θ̂TI =

N

∑
t=1

[
I

∑
i=1

m(i)(t)

]2

+ 2
N

∑
t=1

[
ρI(t)− µ̂y

] [ I

∑
i=1

m(i)(t)

]
+

N

∑
t=1

[
ρI(t)− µ̂y

]2

N

∑
t=1

[
i∗−1

∑
i=1

m(i)(t)− µ̂dt

]2
(3.13)

Now, let us define µ̂i as the sample mean of the ith IMF:

µ̂i =
1

n

N

∑
t=1

m(i)(t) for i = 1, ..., i∗, ..., I. (3.14)

If we recall that each IMF is a zero-mean waveform by construction, it becomes straight-

forward to verify that

µ̂i = 0 for i = 1, ..., i∗, ..., I

µ̂dt = µ̂1 + · · ·+ µ̂i∗−1 = 0

µ̂y = µ̂1 + · · ·+ µ̂I + µ̂ρ = µ̂ρ,

(3.15)

where µ̂ρ is the sample mean of the residual ρI(t). We can rewrite (3.13) by considering

(3.15), which gives:

θ̂TI =

N

∑
t=1

[
I

∑
i=1

m(i)(t)

]2

+ 2
N

∑
t=1

[
ρI(t)− µ̂ρ

] [ I

∑
i=1

m(i)(t)

]
+

N

∑
t=1

[
ρI(t)− µ̂ρ

]2

N

∑
t=1

[
i∗−1

∑
i=1

m(i)(t)

]2
. (3.16)

If we expand the squared terms in (3.16), we obtain:

θ̂TI =
N

∑
t=1

I

∑
i=1

[
m(i)(t)

]2
+ 2

N

∑
t=1

I

∑
i<l

m(i)(t)m(l)(t) + 2
N

∑
t=1

I

∑
i=1

[
ρI(t)− µ̂ρ

]
m(i)(t) +

N

∑
t=1

[
ρI(t)− µ̂ρ

]2

N

∑
t=1

i∗−1

∑
i=1

[
m(i)(t)

]2
+ 2

N

∑
t=1

i∗−1

∑
i<l

m(i)(t)m(l)(t)

(3.17)

By noting that µ̂i = 0 for the i = 1, ..., I IMFs, one can verify that (3.17) is given as func-

tion of the sample variances {σ̂2
i , i = 1, ..., I} and covariances {γ̂i,l , i < l, i, l = 1, ..., I}

between the IMFs, and the sample variance σ̂2
ρ and covariances {γ̂ρ,i, i = 1, ..., I} between
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the residual ρI(t) and the IMFs:

I

∑
i=1

σ̂2
i =

1

N − 1

I

∑
i=1

N

∑
t=1

[
m(i)(t)− µ̂i

]2
=

1

N − 1

N

∑
t=1

I

∑
i=1

[
m(i)(t)

]2

I

∑
i<l

γ̂i,l =
1

N − 1

I

∑
i<l

N

∑
t=1

[
m(i)(t)− µ̂i

] [
m(l)(t)− µ̂l

]
=

1

N − 1

N

∑
t=1

I

∑
i<l

m(i)(t)m(l)(t)

I

∑
i=1

γ̂ρ,i =
1

N − 1

I

∑
i=1

N

∑
t=1

[
ρI(t)− µ̂ρ

] [
m(i)(t)− µ̂i

]
=

1

N − 1

N

∑
t=1

I

∑
i=1

[
ρI(t)− µ̂ρ

]
m(i)(t)

σ̂2
ρ =

1

N − 1

N

∑
t=1

[
ρI(t)− µ̂ρ

]2
,

(3.18)

Thus, according to (3.18), we can express (3.17) simply as:

θ̂TI =

I

∑
i=1

σ̂2
i + 2

I

∑
i<l

γ̂i,l + 2
I

∑
i=1

γ̂ρ,i + σ̂2
ρ

i∗−1

∑
i=1

σ̂2
i + 2

i∗−1

∑
i<l

γ̂i,l

, (3.19)

where the terms 1/(N − 1) were canceled out in (3.19) due to the division. In (3.19), the

covariance estimate γ̂i,l between consecutive ith and lth IMFs should be close to zero, as

for all practical purposes the IMFs can be considered to be locally orthogonal to each

other [69]. Hence, the following could be assumed:

I

∑
i=1

σ̂2
i ≫ 2

I

∑
i<l

γ̂i,l and
i∗−1

∑
i=1

σ̂2
ρ′ ≫ 2

i∗−1

∑
i<l

γ̂i,l .

Then, one could approximate (3.19) as:

θ̂TI =

i∗−1

∑
i=1

σ̂2
i +

I

∑
i=i∗

σ̂2
i + σ̂2

ρ + 2
I

∑
i=1

γ̂ρ,i

i∗−1

∑
i=1

σ̂2
i

= 1 +

I

∑
i=i∗

σ̂2
i + σ̂2

ρ

i∗−1

∑
i=1

σ̂2
i

+ 2

I

∑
i=1

γ̂ρ,i

i∗−1

∑
i=1

σ̂2
i

, (3.20)

where the terms corresponding to the trended (i = i∗, ..., I) and to the detrended (i =

1, ..., i∗ − 1) counterparts were rearranged. It is simple to verify that (3.20) could be

expressed as function of the individual energies of the IMFs and the residual. To do

so, one could first define the slightly shifted slowly varying residual ρ′I(t) = ρ(t)− µ̂ρ.

Then, by recalling the zero mean property of the IMFs, one can easily verify that:

σ̂2
i =

N

∑
t=1

[
m(i)(t)

]2
= Ei and σ̂2

i =
N

∑
t=1

[
ρ′I(t)

]2
= Eρ′ , (3.21)
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where Ei and Eρ′ are the energies of the ith IMF and of ρ′I(t), respectively. Also, one can

verify that:
I

∑
i=1

γ̂ρ,i =
I

∑
i=1

N

∑
t=1

[
ρ′I(t)m(i)(t)

]
=

√
Ei

√
Eρ′ cos αi, (3.22)

where αi is the angle of the ith scalar product. The terms 1/(N − 1) were omitted in

(3.21) and (3.22) since they are anyway canceled out in the expression of θ̂TI. According

to (3.21) and (3.22), we can express (3.20) as:

θ̂TI = 1 +
Ei∗ + · · ·+ EI + Eρ′

E1 + · · ·+ Ei∗−1
+ 2

√
E1

√
Eρ′ cos α1 + · · ·+√

EI
√

Eρ′ cos αI

E1 + · · ·+ Ei∗−1
, (3.23)

where, in general, the angles αi are approximately 90◦, and the terms cos αi are close to

zero due to the aforementioned properties of the IMFs, and to the fact that the residual is

nearly constant in comparison to the other IMFs, which capture faster oscillation modes.

In this regard, recall that the scalar product terms come from the covariance estimates

γ̂i,ρ, and in a limit case, for a given constant a, we should have Cov{m(i)(t), a} = 0. In

Table 3.1, we present, for different window lengths, the angles αi (in degrees) obtained in

the estimation of θTI for the nonstationary Gaussian signal shown in Fig. 3.2. The EMD-

based trend filtering algorithm has returned I = 6 IMFs and the residual. In (3.23), the

energies of the IMFs of the trend component (Ei∗ , ..., EI) and residual (Eρ′), are being

divided by those of the detrended one (E1, ..., Ei∗−1). According to [66], the energies

are in general increasing for IMFs with index i ≥ i∗. Hence, if the energy criterion for

choosing i∗ holds, the ratio in (3.23) should be maximized, increasing the value of θ̂TI,

which indicates the presence of a trend.

Table 3.1: Verifying the angles (in degrees) of the scalar product terms in the estimation
of θTI for the nonstationary Gaussian signal shown in Fig. 3.2.

nh / IMF α1 α2 α3 α4 α5 α6

nh = 3 89.9◦ 90.0◦ 92.0◦ 88.0◦ 87.0◦ 91.1◦

nh = 5 93.0◦ 95.0◦ 87.0◦ 87.1◦ 89.0◦ 91.1◦

nh = 7 90.0◦ 92.1◦ 89.2◦ 88.1◦ 90.0◦ 92.3◦

nh = 9 89.9◦ 91.3◦ 88.5◦ 88.5◦ 90.5◦ 89.5◦

3.7 The generalized extreme value distribution

Having analyzed the behavior of the trend importance estimator for the cases of statio-

narity (trendless time marginal) and nonstationarity (trended time marginal), it is now

necessary to derive the statistical distribution of θ̂TI under the null hypothesis for per-
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forming the hypothesis test. Drawing conclusions from the crude histogram of θ̂TI is not

practical, so we propose to model this distribution of θ̂TI by an appropriate model.

Due to their stationarity, the bootstrap resamples are supposed to return trendless

time marginals. Therefore, we should have necessarily θ̂TI ≈ 1 in most of the cases.

Thus, any resample with a significantly trended time marginal could be interpreted as

an extreme event, very unlikely to be found in such stationary references. Nevertheless,

for cases where trended time marginals occur, it is very likely to have large values of

θ̂TI due to the EMD methodology. A heuristic argument suggests that the distribution

of θ̂TI could be modeled by a heavy tailed pdf with a peak and a lower bound around

the unity. These features match those from the Fréchet or GEV type II distribution [77].

This type of pdf is one of the three belonging to the GEV family, which is governed by

its shape, scale and location parameters (ǫ, σ and µ, respectively). The type II, or the

Fréchet case occurs for ǫ > 0, and its cdf is given in (3.24). This distribution has no

upper bound, however, a lower limit is given by its location parameter µ [78], which

should be close to the unity in this application.

F(x; ǫ, σ, µ) =





0 if x < µ

exp

[
−

(
x−µ

σ

)−ǫ
]

if x ≥ µ.
(3.24)

The three parameters of the Fréchet distribution are estimated by maximum likelihood

from the collection of the values of θ̂TI obtained from p = 1, ..., P (stationary) bootstrap

resamples. We represent this collection by:

{
ΘTI(p) = θ̂

(p)
TI , p = 1, · · · , P

}
, (3.25)

where the GEV pdf fitted to ΘTI(p) allows for the selection of a threshold above which

the null hypothesis of trendless time marginal is rejected. An example of the GEV

modeling is illustrated in Fig. 3.4, where the importance of the trend was estimated in

the time marginals of P = 1000 and P = 100 bootstrap replicates of a stationary AR(1)

process with length T = 1050 and pole at a = 0.8. The approximated GEV pdf and the

histograms are shown in Fig. 3.4(a) for the case of P = 1000, and in Fig. 3.4(b) for the

case of P = 100.

3.7.1 Adherence of the GEV fit: Asymptotic regime analysis

The three parameters of the Fréchet pdf are estimated by maximum likelihood. In this

section, we illustrate the results of an empirical study on the behavior of the parameter
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Figure 3.4: Fitting a GEV pdf of type II. (a) P = 1000 bootstrap resamples. (b) P = 100
bootstrap resamples.

estimators (ǫ̂, σ̂ and µ̂) as a function of the number of bootstrap replicates. The simu-

lations were conducted using 1000 realizations of an AR(1) process of length T = 1050.

The results are presented for windows hk(t) of different sizes nh = (3, 5, 7). The mean

and the standard deviation of the parameter estimators are shown in Fig. 3.5. The nor-

malized bias (B̃ias) and the normalized variance (Ṽar) are shown in Fig. 3.6. In this

work, we make use of (3.26) and (3.27) for computing B̃ias and Ṽar, respectively. To do

so, the expected value of 1000 realizations (approximately in the asymptotic regime) was

considered as a reasonable approximation of the real parameter value.

B̃ias
[
θ̂(nh, P)

] ∣∣∣∣∣
θ̂=ǫ̂,σ̂,µ̂

=
E

{
θ̂(nh, P)

}
− E

{
θ̂(nh, 1000)

}

E

{
θ̂(nh, 1000)

} (3.26)

Ṽar
[
θ̂(nh, P)

] ∣∣∣∣∣
θ̂=ǫ̂,σ̂,µ̂

=

E

{{
θ̂(nh, P)− E

[
θ̂(nh, P)

]}2
}

{
E

{
θ̂(nh, 1000)

}}2
(3.27)

It can be seen in Fig. 3.5 and Fig. 3.6 that, as the number of bootstrap replicates grows,

we have a convergence towards the asymptotic regime for all simulations. This behavior

is in favor of the assumption that the distribution of θ̂TI can be fairly well modeled by a

Fréchet pdf. Moreover, it can be seen that the normalized bias and variance are weakly

dependent on the length of the window. Finally, notice that by using 100 bootstrap

replicates we would have a reasonable precision, and the values taken by (3.26) and

(3.27) become inferior to 5% for more than 100 replicates. This reduced number of

bootstrap resamples can be considered for saving the computational time, since it leads

to an acceptable approximation of the asymptotic distribution [44]. For now on, we shall
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Figure 3.5: Analysis of the parameter estimators as function of the number of bootstrap
replicates for windows hk(t) of different lengths (as indicated in the legend). The mean
and standard deviation of the three parameter estimators are shown in (a), (c), (d), and
(b), (d), (f), respectively.

use this number of bootstrap resamples to perform the stationarity test.

It is also interesting to confirm if the proposed framework verifies the null hypo-

thesis of stationarity. To do so, we have used Monte Carlo simulations to verify the

reproduction of the prescribed false alarm rate. The analysis was conducted on 1000

independent realizations of the stationary AR(1) process used in Fig. 3.6 and Fig. 3.5.

We have chosen a threshold of 95% for the test, corresponding to a false alarm rate fixed

a priori to 5%. The results are shown in Fig. 3.7, as function of the number of bootstrap

resamples. It can be seen that the real level of confidence remains aproximately as low

as 6.8%, if we use 100 or more bootstrap replicates. We have thus obtained an acceptable

false alarm rate, but the proposed method is a little pessimistic, as the rejection of the

null hypothesis occurs a little more frequently than necessary.
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3.7.2 Adherence of the GEV fit: the Zempléni test

There are just a few goodness-of-fit tests for GEV distributions available in the literature.

A test based on the stability property of the GEV pdf is proposed in [79]. One could

also apply the Anderson-Darling test, which is not specifically made for testing GEV

distributions. However, a reasonable performance can be nevertheless obtained, since

the Anderson-Darling test gives more weight to the tails of the distribution [80]. Still,

in many cases, only one of the tails of the distribution is important. This is the case

of the Fréchet pdf. In this sense, Zempléni proposed a modification of the Anderson-

Darling test that accounts for discrepancies at the relevant tail of the distribution [81].

The Zempléni statistic B2 allows for testing the hypothesis that a cdf F ∈ GEV against

the null hypothesis of F being an arbitrary continuous cdf. The statistic B2 is computed
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Figure 3.7: Verifying the null hypothesis of stationarity. For a false alarm rate fixed a
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Carlo estimation of the number of observed “nonstationary” outcomes is performed as
function of the number P bootstrap resamples. The obtained level of confidence remains
under 6.8% for P ≥ 100.

as:

B2 = −P/2 −
P

∑
i=1

(2i − 1) log(1 − z[P+1−i])/P −
P

∑
i=1

z[i]/P (3.28)

where z[i] = F(x[i]) is the cdf evaluated at the ith ordered sample of the collection

{ΘTI(p), p = 1, · · · , P}. The critical values of B2 for rejecting F /∈ GEV are given in

[81] for different values of the shape parameter (ǫ = −0.6,−0.2, 0.2, 0.5). The critical

values for a significance level of 5% are reproduced in Table 3.2. Notice in Table 3.2

that, in general, the critical values increase with the sample size, but there is no significant

variation for ǫ = 0.2 or ǫ = 0.5. In Fig. 3.8, we show the histograms of the estimates of

ǫ, computed for all different types of stationary and nonstationary signals tested in this

Chapter. It can be seen that the values of ǫ̂ are around 0.5 for all signals. In this regard,

notice Fig. 3.5 that the average value ǫ̂ tends indeed to 0.5 in asymptotic regime. Most

importantly, in all cases the average value of the statistic B2 was much larger than the

ones shown in Table 3.2 (as it will be seen in Section 3.9). This supports the assumption

that the distribution of θ̂TI can be approximated by a GEV model.

Table 3.2: Critical values of B2 for different values of ǫ.
ǫ / sample size 25 50 100 200 400

0.2 0.307 0.311 0.317 0.323 0.324
0.5 0.297 0.308 0.312 0.316 0.320
−0.2 0.313 0.320 0.331 0.333 0.340
−0.6 0.812 0.390 0.383 0.385 0.389
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3.8 Hypothesis test and index of nonstationarity

It was shown that the Fréchet model approximates fairly well the distribution of the

trend contaminations in the stationary references. Now, it is simple to derive a threshold

above which the null hypothesis of stationarity is rejected under a given prescribed

level. Putting it in the form of a one-sided test, we use as test statistic the estimated

importance of the trend in the original signal. The hypothesis test is given in (3.29),

where the threshold T is computed given a false alarm rate of 5%.

d(x) =





1 if θ̂TI > T , "nonstationary",

0 if θ̂TI ≤ T , "stationary".
(3.29)

If the null hypothesis of stationarity is rejected, it is also interesting to derive an

index of nonstationarity. To do so, we could compute the minimum value of θ̂TI and then

compare with the one returned by the method. Due to the fact different IMFs can be

used to approximate the trend at each realization of the process, the minimization of

θ̂TI should take into account the particular energy profile of the IMFs. Since θ̂TI is given

in (3.23) as function of the individual energies of the IMFs, we define the energy vector

e = [E1, ..., Ei∗ , ..., EI , Eρ′ ] and consider the problem of computing min θ̂TI(e) given that:

θ̂TI(e) = 1 +
Ei∗ + · · ·+ EI + Eρ′

E1 + · · ·+ Ei∗−1
. (3.30)

where min θ̂TI(e) could be computed without using the scalar product terms, since in

general cos αi ≈ 0. However, the terms {cos αi, i = 1, ..., I} have been used as argu-

ments to parametrize the objective function. We treat the minimization of θ̂TI(e) as a
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constrained optimization problem. There are different algorithms for solving the con-

strained optimization problem [82]. For the simulations presented in this work we used

the Quasi-Newton algorithm. Due to the nature of the EMD, we can define a set equality

and inequality constraints that need to be satisfied by the energy terms given in e. We

consider that f (e) = θ̂TI(e), the scalar valued objective function to be minimized. The

constrained optimization problem is given as follow:

minimize f (e)

subject to gl(e) ≤ 0, l = 1, ..., pIN

hl(e) = 0, l = 1, ..., pEQ

0 ≤ e ≤ ET,

(3.31)

where ET is the total energy of the decomposition (see (3.33)), {gl , l = 1, ..., pI} and

{hl , l = 1, ..., pE} are the set of pI inequality and pE equality constraints that need

to be satisfied, respectively. The inequalities are obtained by sorting the vector e =

[E1, ..., Ei∗ , ..., EI , Eρ′ ] in the ascending order (which, in general, is already the case for

e1, ..., ei∗). We then define the inequality considering this energy profile of the represen-

tation:

gl(e) = el+1 − el , (3.32)

where g1(e) = e2 − e1 ≤ 0, g2(e) = e3 − e2 ≤ 0, and so on. Clearly, the number of

inequality constraints pIN depends on the number of IMFs. On the other hand, we have

only pEQ = 1 equality constraint:

h1(e) = e1 + · · ·+ eI+1 = ET, (3.33)

which states that the sum of e should be equal to the total energy of the decomposition.

The index of nonstationarity INS is given by:

INS =
θ̂TI(e)

min θ̂TI(e)
. (3.34)

In Fig. 3.9, we illustrate the performance of (3.34) in evaluating different nonstation-

ary processes if different window lengths nh are chosen. In Fig. 3.9(a) and (b), we show,

respectively, the stationary Gaussian process (x1(t)) and the nonstationary one (x2(t))

that were originally shown in Fig. 3.2. The signal (x2(t)) has a variance that changes

slowly from σ2
1 = 1 to σ2

2 = 2. In Fig. 3.9(c) and (d) we increase the values of σ2
2 to

σ2
2 = 3, and then to σ2

2 = 4, respectively. It can be observed that INS follows the increase
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of the level of nonstationarity.

0 100 200 300

−10

−5

0

5

10

x
1
(t

) 
(µ

 =
 0

, 
σ

2
 =

 1
)

(a)
0 100 200 300

−10

−5

0

5

10

x
2
(t

) 
(σ

i2
 =

 1
, 

σ
i2
 =

 2
)

(b)

0 100 200 300

−10

−5

0

5

10

x
3
(t

) 
(σ

i2
 =

 1
, 

σ
i2
 =

 3
)

(c) (d)
0 100 200 300

−10

−5

0

5

10

x
4
(t

) 
(σ

i2
 =

 1
, 

σ
i2
 =

 4
)

n
h
 = 5n

h
 = 3

n
h
 = 7n

h
 = 3 n

h
 = 5 n

h
 = 7n

h
 = 5n

h
 = 3

n
h
 = 5n

h
 = 3

I
NS

=0.98 I
NS

=0.99 I
NS

=1.01 I
NS

=1.14

n
h
 = 7

I
NS

=1.50

I
NS

=1.22 I
NS

=1.37

n
h
 = 7

I
NS

=1.61 I
NS

=1.67 I
NS

=1.63 I
NS

=1.71 I
NS

=1.78

Figure 3.9: Results of using INS to evaluate different nonstationary processes with an
increasing transition of the parameters.

The convexity of f (e) is verified automatically by testing the positive semi-definiteness

of the Hessian matrix at the solution vector. We have observed that in the vast majority

of the cases f (e) is convex. Having explained the methodology of the stationarity test,

we shall now present the experimental study. In the following section, we test different

nonstationary signals, evaluate the performance of our method and compare with the

ones of other approaches.

3.9 Testing the new stationarity test

Different nonstationary signals were generated to assess the performances of the test.

We have tested stationary signals and nonstationary ones with a varying mean, varying

variance, and varying mean and variance, following the onset-of-trend model of (2.20).

Two configurations were chosen for (2.20): κ = 1 and κ = T/2, corresponding to a

nonstationarity starting at the beginning or at the middle of the signal with length T.

The test signals are gamma or Gaussian processes of two lengths (T = 300 or

T = 1050). In particular, the gamma processes were chosen because many natural

phenomena are modeled by a gamma pdf. Realizations of the synthetic signals with

T = 300 and T = 1050 are shown in Fig. 3.10(a), (b) and Fig. 3.10(c), (d), respectively.

Notice that three cases were considered for the Gaussian processes: i) a fixed variance
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(σ2 = 1) and a varying mean (first row), ii) a fixed mean (µ = 0) and a varying variance (sec-

ond row), and iii) a varying mean and variance (third row). The gamma signals (fourth

row) also have a varying mean and variance, since the shape and scale parameters of

the gamma pdf jointly determine the first and second-order moments.

The parameter values for the Gaussian and gamma processes vary according to two

different ranges (see (2.20)):

Gaussian gamma

Parameters Mean Variance Shape Scale

Short range ξ1 = 0 to ξ2 = 3 ξ1 = 1 to ξ2 = 3 ξ1 = 0.355 to ξ2 = 0.532 ξ1 = 19.94 to ξ2 = 29.91

Long range ξ1 = 0 to ξ2 = 5 ξ1 = 1 to ξ2 = 5 ξ1 = 0.355 to ξ2 = 0.710 ξ1 = 19.94 to ξ2 = 39.88,

(3.35)

where parameter values were chosen to give a good trade-off between test sensitivity

and slowly-varying behavior, in a sense that the resulting nonstationary signals could

be hardly detected by others stationarity tests. In (3.35), the gamma values of ξ1 came

from real world applications (i.e. gamma models applied to rainfall series [83]). Thus,

we are aiming at detecting nonstationarity if a gradual increase of 50% (short range) or

100% (long range) occurs in the parameters of gamma models used in practice.
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Figure 3.10: Realizations of the synthetic signals following the onset-of-trend model for
two different ranges shown in (3.35) and two different start points: κ = 1 and κ = T/2.
Two different lengths (T = 300 and T = 1050) and two different distributions (Gaussian
and gamma) were also considered.

We have compared proposed approach with the nonstationarity detector proposed

by S. Kay [20] and the classical KPSS test [27, 26]. These approaches are commonly used

for testing trends and slowly-varying nonstationarities. These approaches are briefly
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explained below.

3.9.1 Kay’s nonstationarity detector

The Kay’s approach aims at determining the stationary segment of the signal. The

idea is to make use of a time-varying autoregressive model (TVAR) for representing the

alternative hypothesis. The TVAR process is given as follows [84]:

x[n] =
p

∑
i=1

ai[n − i]x[n − i] + b[n]w[n], (3.36)

where w[n] is white Gaussian noise with unity variance and p is the order of the model.

The TVAR parameters in (3.36) are given as:

ai[n] =
m

∑
j=0

ai,j f j[n] b[n] =
m

∑
j=0

bj f j[n] i = 1, ..., p, (3.37)

for some collection of basis functions { f0[n], f1[n], ..., fm[n]} [20]. A nonstationary pro-

cess will result whenever the parameters in (3.37) are nonzero for j = 1, ..., m, otherwise

the TVAR process in (3.36) reduces to a stationary AR process. Then, the Kay’s method

consists in verifying whether the TVAR parameters in (3.37) are equal to zero.

3.9.2 KPSS test

The KPSS test is applied for testing the null hypothesis that a signal is trend stationary

against the alternative that it is a nonstationary unit-root process. For the KPSS test, a

given time series x(t) is expressed as the sum of deterministic trend cd(t), random walk

rw(t), and a stationary error ǫs(t):

x(t) = cd(t) + rw(t) + ǫs(t),

where the test itself is the Lagrange multiplier test of the hypothesis that the random

walk has zero variance.

3.9.3 Experimental study

We have tested 1000 realizations of a stationary AR(1) process, a white Gaussian noise

WGN(0,1), and the nonstationary signals illustrated in Fig. 3.10. The results are shown

in Table 3.3, where "New", "KPSS" and "Kay" correspond to the stationarity test pro-

posed in this work, the KPSS test, and the Kay’s nonstationarity detector, respectively.
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The experimental study has been carried out with a significance level of 5%. For the

proposed approach, we have considered four different windows nh = {3, 5, 7, 9}. The

results are given as percentage of observed "nonstationarity" outcomes. We also give the

average value of INS computed by means of (3.34). In Table 3.4, we show the average

values of the Zempléni statistic B2 and the GEV shape parameter (ǫ), computed for all

realizations and different windows. Note that, in accordance to what was shown in Sec-

tion 3.7.2, the value of ǫ fluctuates around 0.5, and the averages of the Zempléni statistic

are much larger than the critical values shown in Table 3.2, which indicates the adherence

of the GEV model.

It can be seen in Table 3.3 that the method proposed in this work ("New") allows

for a better detection of different slowly-varying nonstationarities, as we have achieved

an overall higher classification accuracy of nonstationary signals following the onset-of-

trend model (which is a variation of the smooth-change model). In particular, notice that

the proposed technique is able to detect first and second-order nonstationarities. This is

not the case for the traditional approaches. For example, the nonstationarity detector of

[20] ("Kay") performed poorly in detecting a nonstationary variance for different config-

urations of the onset-of-trend model, and simply could not reject the stationarity of the

nonstationary gamma processes. The classical KPSS test also could not detect properly

signals with nonstationary exclusively in the variance, and those signals with nonsta-

tionarities that start at the beginning of the observation interval. Therefore, we can see

that the global performance of the proposed stationarity test outperforms those of the

traditional tests used in the literature for detecting slowly-varying nonstationarities.

Finally, a trade-off concerning the size of the window nh could be observed, specially

for the short time series (T = 300). Notice that, in general, the shorter the window, the

better the detection of nonstationary signals and vice versa. The overall performance

in detecting stationary signals also becomes poorer for shorter windows. As mentioned

before, we have to consider that there is no a priori value for nh, but allowing it to vary

is an extra degree of freedom of the proposed method.

3.10 Conclusions

In this Chapter we have proposed a new stationarity test which has been designed to

detect the presence of a trend or an evolution of the local energy of the signal. The

assessment of this kind of nonstationarity is an important issue in many areas of envi-

ronmental science. Although, some contributions that have been made to the surrogate

approach could improve the detection of trend-based nonstationarities, the overall per-
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Table 3.3: Results of applying the proposed stationarity test ("New"), the KPSS test
("KPSS"), and the nonstationarity detector of [20] ("Kay"). The outcomes are given as per-
centage "nonstationary" outcomes observed over 1000 realizations of the process shown
in Fig. 3.10. The average value of INS over all realizations is also shown.

Nonstationary signals

Length T = 300 T = 1050

Type Beginning Middle Beginning Middle Beginning Middle Beginning Middle

Range Short Long Short Long

M
ea

n
G

au
ss

ia
n

KPSS 7.50% 100% 5.50% 100% 7.50% 100% 5.50% 100%

Kay 98.0% 99.0% 87.0% 100% 98.0% 99.0% 87.0% 100%

New

nh = 3 99.0%, 1.00 90.0%, 1.14 95.0%, 1.10 85.0%, 1.34 100%, 1.10 100%, 1.25 100%, 1.22 92.0%, 1.45

nh = 5 100%, 1.12 85.0%, 1.35 100%, 1.28 87.0%, 1.51 100%, 1.45 98.0%, 1.50 100%, 1.45 95.0%, 1.77

nh = 7 65.0%, 1.00 85.0%, 1.01 94.0%, 1.00 84.0%, 1.14 95.0%, 0.99 98.0%, 1.09 100%, 1.10 97.0%, 1.28

nh = 9 61.0%, 0.99 67.0%, 1.12 90.0%, 1.05 88.0%, 1.31 97.0%, 1.06 98.5%, 1.27 99.0%, 1.22 99.0%, 1.58

V
ar

ia
n

ce
G

au
ss

ia
n

KPSS 5.50% 7.00% 7.00% 8.50% 6.00% 5.00% 6.00% 4.50%

Kay 12.0% 21.5% 12.5% 20.5% 15.5% 27.0% 12.5% 30.0%

New

nh = 3 90.0%, 1.06 67.5%, 1.12 80.0%, 1.07 55.0%, 1.14 100%, 1.08 80.0%, 1.24 100%, 1.17 80.0%, 1.19

nh = 5 65.0%, 1.02 45.0%, 1.07 65.0%, 1.04 25.0%, 1.13 80.0%, 1.07 34.5%, 1.14 81.0%, 1.09 45.0%, 1.16

nh = 7 25.0%, 1.00 15.0%, 1.01 25.0%, 1.04 15.0%, 1.05 40.5%, 1.05 10.0%, 1.00 52.0%, 1.10 20.0%, 1.13

nh = 9 41.0%, 0.99 26.0%, 1.00 42.0%, 1.01 25.5%, 1.03 52.0%, 1.05 11.0%, 1.06 55.0%, 1.00 15.0%, 1.00

M
ea

n
an

d
v

ar
.

G
au

ss
ia

n

KPSS 6.50% 100% 6.50% 100% 7.00% 100% 5.50% 100%

Kay 73.5% 73.0% 55.5% 58.5% 100% 100% 100% 100%

New

nh = 3 70.0%, 1.14 65.0%, 1.24 75.0%, 1.20 69.5%, 1.22 95.0%, 1.15 54.0%, 1.16 100%, 1.33 82.5%, 1.55

nh = 5 69.5%, 1.09 63.0%, 1.08 72.0%, 1.12 65.0%, 1.15 96.5%, 1.13 94.0%, 1.23 98.5%, 1.28 100%, 1.45

nh = 7 62.5%, 1.07 45.5%, 1.08 63.0%, 1.12 41.0%, 1.16 85.0%, 1.09 80.5%, 1.09 85.0%, 1.16 75.3%, 1.22

nh = 9 33.0%, 1.01 34.5%, 1.03 47.0%, 1.05 53.5%, 1.04 45.0%, 1.03 78.5%, 1.02 76.5%, 1.09 77.5%, 1.10

M
ea

n
an

d
v

ar
.

G
am

m
a

KPSS 11.5% 100% 59.0% 100% 29.5% 100% 98.0% 100%

Kay 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.00%

New

nh = 3 79.0%, 1.05 54.0%, 1.09 82.0%, 1.03 23.0%, 1.02 100%, 1.11 20.0%, 1.02 100%, 1.14 5.00%, 1.04

nh = 5 79.0%, 1.14 21.0%, 1.03 92.5%, 1.05 21.5%, 1.16 100%, 1.00 10.0%, 1.05 100%, 1.15 5.00%, 1.01

nh = 7 55.5%, 1.06 17.0%, 1.04 63.0%, 1.09 15.5%, 1.00 75.0%, 1.20 15.0%, 0.99 95.0%, 1.13 5.00%, 1.03

nh = 9 47.0%, 1.18 12.5%, 1.01 54.0%, 1.08 10.0%, 1.00 65.0%, 1.05 20.0%, 1.09 100%, 1.16 3.00%, 0.99

Stationary signals

Length T = 300 T = 1050

Type AR(1) WGN(0,1) AR(1) WGN(0,1)

S
ta

ti
o

n
ar

y
W

G
N

an
d

A
R

(1
)

KPSS 3.00% 4.50% 6.00% 7.00%

Kay 5.80% 1.00% 8.00% 1.00%

New

nh = 3 10.0%, 1.05 8.00%, 1.09 9.00%, 0.98 10.0%, 1.00

nh = 5 9.00%, 1.09 8.00%, 1.07 7.00%, 0.99 6.00%, 0.98

nh = 7 7.00%, 0.98 5.00%, 0.97 7.00%, 1.01 5.00%, 0.99

nh = 9 5.00%, 1.00 3.00%, 0.97 4.00%, 0.99 4.00%, 1.01

formance was not satisfactory. Thus, the stationarity test that has been developed in this

Chapter appears as an useful alternative to that application. This new technique has

shown to be more sensitive to first and second-order nonstationarities. Many techniques

devoted to test for trend-based nonstationarities are parametric [20, 11], hence they are

not convenient to be applied to real world time series, as the performance of a parame-
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Table 3.4: Mean values of the GEV shape parameter ǫ and the Zémpleni statistic B2 over
1000 realizations of the processes shown in Fig. 3.10.

Length T = 300 T = 1050

Type Beginning Middle Beginning Middle Beginning Middle Beginning Middle

Range Short Long Short Long

Average values ǫ B
2

ǫ B
2

ǫ B
2

ǫ B
2

ǫ B
2

ǫ B
2

ǫ B
2

ǫ B
2

Mean (N ) 0.40 97.3 0.54 96.9 0.41 97.1 0.51 97.1 0.53 97.2 0.80 96.7 0.55 97.3 0.60 96.1

Var. (N ) 0.56 97.4 0.51 97.5 0.49 97.4 0.47 98.0 0.57 97.3 0.52 97.6 0.50 98.1 0.49 96.8

Mean and var. (N ) 0.59 96.5 0.44 95.2 0.53 97.7 0.55 97.1 0.48 97.2 0.51 97.6 0.51 95.9 0.58 98.8

Mean and var. (Γ) 0.53 89.3 0.49 92.5 0.48 93.7 0.51 91.1 0.47 93.4 0.53 96.8 0.53 88.9 0.55 91.3

tric method ultimately depends on the accuracy of the chosen model. The method that

has been designed in this Chapter, on the other hand, is nonparametric and has shown

to be more versatile than other approaches, while keeping a reasonable detection rate.

For the proposed approach, we have skipped the time consuming part of computing

full TF representations, by directly estimating the time marginal and testing for trend

contamination in its structure. The idea is that a stationary signal should not exhibit a

structured pattern in the time marginal, like a trend. The trend itself has been estimated

by means of the EMD, and the importance of the trend has been estimated by using the

so-called trend importance estimator (θ̂TI). It has been shown that, due to the properties

of the IMFs, θ̂TI can be expressed solely as fraction of the energies of the IMFs. More-

over, the expression for θ̂TI should be maximized in case of trend. In order to obtain

stationary references of the signal to perform the hypothesis test, we have proposed to

use block bootstrapping, which allows for the conservation of the correlation structure

(if any) within a block. The distribution of θ̂TI under the null hypothesis of stationarity

has been approximated by a GEV model, for which adherence has been verified by per-

forming a goodness-of-fit test and an analysis in asymptotic regime. Also, an index of

nonstationarity (INS) has been proposed.

We have applied the new stationarity test to a variety of nonstationary signals and

also to stationary ones. Although some parametric methods have presented a higher

classification accuracy for first-order nonstationarity, the new technique has presented an

overall better performance regarding all types of nonstationarities tested, being globally

more sensitive to for first and second-order evolutions. Such generality is exactly what

is searched for a test suited to real world applications. One could regard the method

that has been designed in this Chapter as a complement to the surrogate-based method

of Chapter 2, as the latter performs better in detecting second-order nonstationarities,

and the former in detecting first-order nonstationarities. Also, both techniques test for
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stationarity relative to the whole observation interval T. Thus, the information about

the time of change is unattainable if the nonstationarity appears only for a portion of

the series, for instance. For estimating the points of change of the nonstationary signals,

we propose in the next Chapter a nonparametric and data-driven framework, which

not only allows for the estimation of multiple change points, but also offers a visual

representation of the change dynamics of the signal.
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In this chapter we present a framework for change point detection in nonstation-

ary signals that is based on a recent technique known as the robust singular spectrum

transform (RSST). The rationale behind the RSST is to use principal component analysis

(PCA) to quantify the anomaly between past and future patterns of the signal around a

given time instant, by considering only two fixed input variables that act like windows of

analysis. In this work, we rather propose to let these windows vary, as we consider that

particular change patterns are more likely to be captured by using many different win-

dows of analysis. We consider that the uncertainty associated with the change patterns

captured by different windows should increase around the change point. The estimation

77
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of the change point is carried out by measuring the conditional entropy (conditioned on

the past values) of the observed change scores in time. The proposed method is fully

data-driven, hence better suited to be applied for real world signals.

4.1 Introduction

The change point (CP) detection is considered to be a basic step in the frame of non-

stationary signal analysis. Although the stationarity property can be violated in many

ways, one is often interested in changes that occur either in the mean or in the variance

(second-order nonstationarity) [85]. These kinds of changes are of particular interest in

the analysis of natural phenomena (e.g. climate change [86]), as many real world time

series can undergo first and second-order changes over time that reflect the impact of

human activity on nature [5].

Methods for detecting CP in real world signals should ideally satisfy some essen-

tial points. More specifically, the technique should allow for the detection of first and

second-order changes, should be nonparametric and data adaptive. Moreover, we expect

the method to be robust against measurement noise [87]. Unfortunately, as pointed in

[88], many of the available CP discovery methods either detect only one type of change

(e.g. CUSUM for changes in the mean [25]), assume a parametric underlying model

(e.g. autoregressive model [89]), or need ad-hoc tuning for each time series (e.g. wavelet

analysis [90]).

Several years ago, an algorithm for CP detection suited for real world applications

was proposed in [91]. The method is called singular spectrum transform (SST) and

consists in using principal component analysis (PCA) to measure the anomaly between

past and future patterns of the signal around a given time instant. If we take the whole

observation scale, the result will be a new time series representing the CP score at

every instant. Different from other conventional techniques, the SST does not assume a

generative model and can detect different kinds of changes while being data adaptative.

Although these features make the SST better suited for real world applications, its actual

use remains limited, as the traditional SST is not robust against noise and depends on

five different parameters. In order to solve these problems, different modifications to

the original SST algorithm have been proposed. In [87], the conventional SST has been

extended to the multivariate SST, which main advantage is to improve the robustness

against noise. However, the selection of various parameters is still needed [92]. In

order to alleviate this problem, the robust singular spectrum transform (RSST) has been

proposed by [88]. This approach is more robust against noise and depends only on two
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parameters. In this Chapter we propose an alternative method for CP detection which

is based on the RSST. We show that, due to the properties of the RSST, we can derive a

framework that is fully data-driven, almost parameter-free, and sensitive to both changes

in the mean and the variance.

4.1.1 Detailing the contributions of this chapter

The improvements brought by the RSST allow us to have a richer understanding about

the change dynamics of the signal. The contributions of this Chapter to the framework

of CP detection can be listed as follows:

• The RSST depends on two parameters, for which slight changes affect significantly

the outcomes of the algorithm. In Section 4.3.1, we propose to represent the output

of the RSST in the space spanned by its two parameters, as different change pat-

terns can be captured if we let the two parameters vary. Further, in Section 4.3.2,

we propose a stopping criterion for sweeping over that two parameters, which is a

crucial point for reducing the computational time of the algorithm.

• In Section 4.3.3, we present a way for selecting significant change patterns in the

signal. The proposed strategy works well for filtering the most significant CP

scores (the ones representing actual changes) from noise

• For estimating the CP, we analyze the intervals in the space spanned by the two

parameters of the RSST that might encode major changes. More specifically, in

Section 4.4, we propose to use the measure of the uncertainty related to the CP

scores in time for estimating the CP. We propose to compute the conditional en-

tropy at each time instant, and to calculate the CP by searching for the instants

where the local maxima of the conditional entropy vector occur.
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4.2 SST and RSST, background elements

The main idea of the SST is to compute, for a given time t, an anomaly metric between

the past and the future representative patterns of the time series {x(t), t = 1, ..., T}. The

RSST encodes those past and future patterns in the subsequences b and f of length w,

respectively:

b(t) = [x(t − w), ..., x(t − 1)]T and f(t) = [x(t), ..., x(t + w − 1)]T (4.1)

The RSST uses (4.1) for constructing two trajectory matrices corresponding to the past

and future of the signal, respectively:

B(t) =




x(t − n − w + 1) x(t − n − w + 2) · · · x(t − w)
...

...
. . .

...

x(t − n) x(t − n + 1) · · · x(t − 1)


 , (4.2)

F(t) =




x(t) x(t + 1) · · · x(t + n − 1)
...

...
. . .

...

x(t + w − 1) x(t + w) · · · x(t + n + w − 2)


 , (4.3)

where n controls how deep we look into the past and future of the analyzed time

series. The matrices B(t) and F(t) represent, respectively, the dynamics of the points

before and after the instant t, and can be considered to contain various change patterns

within the range of w points [91]. Having constructed the trajectory (or Hankel) matrices,

we apply singular value decomposition (SVD) to (4.2) and (4.3) to obtain the left singular

vectors and the corresponding squared singular values, which are sorted in a descending

order of magnitude. The notations used for the SVD outputs of B(t) and F(t) are,

respectively, the following:

lb and l f : number of singular values used in the decomposition,

{λ
[B(t)]
l , l = 1, ..., lb} and {λ

[F(t)]
l , l = 1, ..., l f } : squared singular values,

{u
[B(t)]
l , l = 1, ..., lb} and {u

[F(t)]
l , l = 1, ..., l f } : left singular vectors.

(4.4)

Larger singular values are related to dominant patterns, while smaller ones are related

to noise [91]. We use the left singular vectors to define the representative patterns. The

procedure to extract pattern by applying SVD to a Hankel matrix is known as singular
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spectrum analysis (SSA). The number of singular values corresponds to the number of

representative patterns to be used in the analysis, which is an important point of the

method. The traditional SST considers l f = 1 and fixes the parameter lb to a value

chosen by the user. The RSST, however, computes both lb and l f automatically according

to the procedure described in [88]. This automatic computation of lb and l f not only

reduces the noise in the final results, but also the number of input parameters of the

SST.

The key-point of the methodology is that, if the dynamics of the signal do not change,

then the l f representative patterns of the future of the signal should be similar to the lb

representative patterns of the past, in a sense that the lth singular vector u
[F(t)]
l should

lie close to hyperplane U[B(t)] spanned by the vectors {u
[B(t)]
l , l = 1, ..., lb}. To quantify

how far a given representative pattern is from the hyperplane, the RSST computes for

each {u
[F(t)]
l , l = 1, ..., l f } the normalized projection onto U[B(t)] as:

αl(t) =
U[B(t)]u

[F(t)]
l∥∥∥U[B(t)]u
[F(t)]
l

∥∥∥
, l ≤ l f . (4.5)

By using (4.5), the RSST computes the change score at point t as the following

weighted sum:

z(t) =

l f

∑
l=1

λl × (1 − αl(t)
Tu

[F(t)]
l )

l f

∑
l=1

λl

, (4.6)

where the weights λl are the eigen value of the matrix F(t). The output of the algorithm

is given by z(t), which varies from zero to one and represents the final CP score [93].
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4.3 Modifying the RSST algorithm

4.3.1 Representing the CP scores in a different space

Since the development of the traditional SST [91], the different SST-based algorithms

[88, 87] have shared a common point in their methodology: the fact that the output of

the algorithm needs to be a time series of CP scores. Hence, the SST-based methods

simply provide the nonlinear transformation T : x(t) → z(t). In this work, we propose

to represent the output of SST-based methods in a different space. We have noted that the

improvements brought by the RSST allow for the development of the modified transform

T : x(t) → z(t, w, n), where the change scores are represented in an augmented space

spanned by the variables t (time), w (length of the subsequence of the signal) and n (how

deep we look into the past and future of the signal). Notice that w is the number of rows

and n is the number of columns of the trajectory matrices given in (4.2) and (4.3).

Since the RSST requires the specification of only two parameters (w and n), it is

possible to compute z(t) for a large collection of w and n values at every instant t. The

proposed procedure is illustrated in Fig. 4.1. Notice that, for a given signal {x(t), t =

1, ..., T}, the CP scores are computed via RSST at each value of w and n for t = 1, ..., N,

where N ≤ T (usually N = T − 1). Doing so, we can represent different change patterns

in the space spanned by t, w and n.
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Figure 4.1: Representation of the output of RSST in an augmented space. Different
change patterns are captured by varying w and n.
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4.3.2 Defining a stopping criterion for the computation of the CP scores

Ideally, one should use as different values of w and n as possible for capturing the largest

possible range of z(t, w, n) scores for estimating the CP. The only (and obvious) limitation

is that w ≤ T and n ≤ T, where T is the length of the signal. However, regardless of

the gain in computational time brought by the RSST, performing this kind of exhaustive

search becomes time consuming for larger signals or wider windows of analysis. Thus,

to reduce the time required for computing the collection of z(t, w, n) scores, we have

developed a stopping criterion for sweeping over t, w and n. More specifically, we have

observed that, in general, the total number of scores captured by the windows w × n

decreases after a given w and n. In this regard, we propose the following algorithm:

1. For the ith iteration, define hi = [1, ..., w0 + i; 1, ..., n0 + i] as the range of possible w

and n values to be used for the analysis, where the default is w0 = n0 = 0.

2. Compute z(t, w, n) for t = 1, ..., N, by using every value of w = 1, ..., w0 + i and

n = 1, ..., n0 + i given hi, that has not been yet considered for the previous ranges

hi−1, ..., h1.

3. Compute the proportion pi of CP scores for all t, w and n over the area spanned

by (w0 + i)× (n0 + i), i.e.:

pi =
1

(w0 + i)× (n0 + i)

N

∑
t=1

w0+i

∑
w=1

n0+i

∑
n=1

z(t, w, n).

4. Expand the range hi to hi+1 = [1, ..., w0 + i + 1; 1, ..., n0 + i + 1] and evaluate steps

2 and 3 again. If pi+1 < pi, set ζ = i and go to the next step.

5. Set the final collection of scores that shall be used for estimating the CP as:

Z = {z(t, w, n), t = 1, ..., N, w = 1, ..., w0 + ζ, n = 1, ..., n0 + ζ} (4.7)

and stop the algorithm.

The procedure starts at the first iteration (i = 1), and goes until i = ζ, when the algorithm

stops because pζ was achieved. We propose this algorithm because we have observed

that, in practically all studied cases, pi increases monotonically with the size of the

window only until a given i = ζ. For i > ζ, pi starts to decrease monotonically and the

influence of the new scores added on the CP estimation starts to be not relevant1. Hence,

1In practice, however, the algorithm performs a short investigation for some values i > ζ. We can be
a little more certain that pζ is not a local maximum by allowing the procedure to continue for a few more
iterations.
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ζ is the point that gives the maximum proportion of CP scores over the area spanned by

w and n, and we define the ζth iteration as a stop point for the computation of the chart

shown in Fig. 4.1. Note that Z is an array of dimension N × (w0 + ζ)× (n0 + ζ). Finally,

one could set other values for w0 and n0, as long as 0 ≥ w0 ≥ N and 0 ≥ n0 ≥ N are

verified.

It should be remarked that the efficiency of the procedure above has been only ver-

ified empirically, and a proper theoretical basis can be developed in the future. One

could suggest to increase w and n not evenly at each iteration, but rather verifying if pζ

could be reached through other ways, e.g. by using distinct values of w and n. However,

the proposed procedure aims at being as simple as possible to fasten the computation of

the CP, while keeping the choice of w and n as general as possible. The algorithm above

has shown to be suitable for this end.

In Fig. 4.2 we illustrate the application of the proposed algorithm for different types

of signals. In Fig. 4.2(a),(b),(c) and (d), we test nonstationary signals with a length

T = 150 that have a varying mean and variance following the onset-of-trend and abrupt-

change models (see (2.19) and (2.20)) with a CP at t = T/2. The signals with a varying

mean have ξ1 = 0 and ξ2 = 3. The signals with a varying variance have ξ1 = 1 and

ξ2 = 3. In Fig. 4.2(e) and (f), we test two real world time series, more specifically, rainfall

time series (see Chapter 5 for data description). For each case, we show the original time

series, pi as function of the iteration i and the point ζ that leads to the maximum, and

the different ranges hi from [1, ..., 10; 1, ..., 10] to [1, ..., 40; 1, ..., 40]. Notice that for larger

windows the proportion of the CP scores over the area spanned by w and n does not tend

to increase. It can be seen that pi grows monotonically until i = ζ for all time series.

Having defined an automatic procedure for computing the collection of CP scores, it

can be noted that the proposed algorithm is better suited for real world applications,

where the common strategy for choosing the SST parameters (visualization and domain

knowledge [94]) are not always possible. In Section 4.3.3, we present the criterion to

estimate the CP.
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Figure 4.2: Illustrating the automatic procedure for stopping the algorithm for different
types of signal. The original time series is plotted in the upper left. The proportion
pi and the point ζ that leads to the maximum are shown in the upper right. In the
bottom, we illustrated the CP scores in gray levels over different areas given by hi =
[1, ..., w0 + i; 1, ..., n0 + i]. These plots are displayed for the following cases: (a) signal
with a mean following the abrupt-change model. (b) signal with a variance following the
abrupt-change model. (c) signal with a mean following the onset-of-trend model. (d) signal
with a variance following the onset-of-trend model. (e) and (f) real world signals.

4.3.3 Selecting significant patterns

Having defined Z as the collection of scores to be used for CP detection, we can build a

matrix Zt containing the scores for different w and n at each t ∈ [1, N]:

Zt =




z
(t)
1,1 z

(t)
1,2 · · · z

(t)
1,n0+ζ

z
(t)
2,1 z

(t)
2,2 · · · z

(t)
2,n0+ζ

...
...

. . .
...

z
(t)
w0+ζ,1 z

(t)
w0+ζ,2 · · · z

(t)
w0+ζ,n0+ζ




, for t = 1, ..., N, (4.8)

where z
(t)
1,1 = z(t, 1, 1), z

(t)
1,2 = z(t, 1, 2) and so on until z

(t)
w0+ζ,n0+ζ = z(t, w0 + ζ, n0 +

ζ), according to the values of z(t, w, n) given in (4.7). Small CP scores happen if the

representative patterns of the future are sufficiently similar to some frequent patterns

of the past. Hence, if there is no significant change in the dynamics of the signal in
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comparison to the past, it is fair to say that the probability of a given z
(t)
i,j ∈ Zt taking a

large value (i.e. being close to one) is low. Let us represent this "large value" by Tz, which

is called the score threshold for significant events. The criterion to select Tz depends on

the significance of the change patterns captured by (4.7) that one is interested in. A

simple way to select Tz is to set it according to a given percentage of the maximum score

value observed in (4.7), i.e. Tz = (1 − a)maxZ , where a = 0.1 or a = 0.05, for instance.

This strategy works well for filtering significant change patterns. We have considered

that significant changes are represented by large values of the CP score, which stand for

actual changes in the signal. Recall that large values of the CP score occur whenever

the singular vectors representing the change patterns of the future of the signal, do

not lie close to the hyperplane spanned by the singular vectors representing the change

patterns of the past of the signal (see (4.5) and (4.6)). For example, in Fig. 4.3 we use

different values of Tz for selecting change patterns in the Z collection computed for

the nonstationary signal shown in Fig. 4.2(a), which presents an abrupt change in the

mean at t = 75. Notice that the intervals before and after the change are separated well,

specially for Tz = 0.6 maxZ .
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Figure 4.3: Using Tz for selecting significant change patterns. (a) Nonstationary signal
presenting an abrupt-change in the mean at t = 75. (b) Collection Z of scores to be
used for CP estimation with no threshold. (c) Tz = 0.3 maxZ . (d) Tz = 0.6 maxZ . (e)
Tz = 0.9 maxZ . (f) Tz = 0.95 maxZ .
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Figure 4.4: Using Tz for selecting significant change patterns. (a) Annual volume of
the Nile River discharge at Aswan, Egypt from 1871 to 1960, which presents an abrupt
change at 1898. (b) Collection Z of scores to be used for CP estimation with no threshold.
(c) Tz = 0.3 maxZ . (d) Tz = 0.6 maxZ . (e) Tz = 0.9 maxZ . (f) Tz = 0.95 maxZ .

In Fig. 4.4, we have tested a well-known case in hydrology of a time series that has

been proven to present an abrupt-change at a specific point. This series correspond to

the annual volume discharge from the Nile River at Aswan, Egypt, from 1871 to 1960.

The Nile data has been studied by many authors, and an abrupt-change in the year 1898

has been detected by using different approaches (e.g. by means of a likelihood ratio

test [95], by using nonparametric methods [13, 14, 15], or in a semiparametric setting

[96, 97]). As pointed in [16], this abrupt-change might be associated to a sudden change

in the rainfall regime that occurred near to the year 1900, which is also observed in

the rainfall reports of most tropical weather stations [10]. By using the method for CP

detection that will be proposed in the following Section, we could detect a CP at year

1896. In Fig. 4.4, notice that by using different values of Tz we can select the most

significant change patterns, and obtain a group of CP scores around the year where the

change occurs.
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4.4 A new CP detection framework

To estimate the CP, we first threshold Zt for t = 1, ..., N according to the chosen score

threshold Tz, i.e.:

Z̃t = [z̃
(t)
i,j ](w0+ζ)×(n0+ζ) =

{
z̃
(t)
i,j = 0 if z

(t)
i,j ≤ Tz

z̃
(t)
i,j = z

(t)
i,j if z

(t)
i,j > Tz

, for t = 1, ..., N, (4.9)

where Z̃t is the thresholded matrix, and z
(t)
i,j and z̃

(t)
i,j are elements of Zt and Z̃t, respec-

tively. In order to estimate the CP, we have assumed the following:

• the uncertainty related to the observed CP scores in Z̃t should increase from (t − 1)

to t, if t is a CP.

We evaluate the uncertainty by computing the entropy of Z̃t conditioned on the past

values Ỹt = Z̃t−1, i.e., by computing the conditional entropy H[Z̃t|Ỹt]. To do so, we first

create two vectors z̃t and ỹt containing, respectively, all possible elements of the matrices

Z̃t and Ỹt for a given time instant t. Then, by computing the empirical distribution of Z̃t

and Ỹt, we define the individual probabilities p(z̃l) and p(ỹl) of a particular score value

z̃l ∈ z̃t and ỹl ∈ ỹt, respectively. The conditional entropy is thus computed by:

H(Z̃t|Ỹt) = −
Ly

∑
l=1

p(ỹl)
Lz

∑
l=1

p(z̃l |ỹl) log2 p(z̃l |ỹl), for t = 1, ..., N, (4.10)

where Lz and Ly are, respectively, the numbers of possible score values in zt and yt.

We choose the CPs as the points where the local maxima of H(Z̃t|Ỹt) occur. The CP

estimation depends on the chosen significance of the change patterns. Note that the

most general way would be to compute (4.10) by using Tz = (1 − a)maxZ for many

different values of a ∈ [0, 1].
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Figure 4.5: Signals with a changing mean following three different patterns embedded
in background noise. Conditional entropy for each signal, computed by considering
different values of (1 − a) for Tz = (1 − a)maxZ .

4.5 Testing the new approach

To illustrate the modified RSST, we present in Fig. 4.5 three signals with a time-varying

mean that undergoes three consecutive patterns in the same series: i) two abrupt-

changes with amplitude values (xa) set to xa = 3 and xa = 6, ii) a piece-wise linear

trend with slope m = 0.03 and largest amplitude value set to xa = 4, and iii) an oscilla-

tion with four cycles per 36 samples with peak-to-peak value (xpp) set to xpp = 4. We

show the effect of adding uniform white noise with the following signal-to-noise ratio

(SNR) values: 0 dB (Fig. 4.5(a)), −0.71 dB (Fig. 4.5(b)) and −1.06 dB (Fig. 4.5(c)). These

values of SNR correspond to a background noise with peak-to-peak values of 0%, 60%

and 90% in comparison to the original signal. In Fig. 4.5(d), (e) and (f) we show H(Z̃t|Ỹt)

computed by means of (4.10) for different values of (1− a) in Tz = (1− a)maxZ . Notice

that the peaks of H(Z̃t|Ỹt) in time follow the changes in the signal, and the peaks cor-

responding to those patterns varying abruptly can be seen for a wider range of (1 − a),

reflecting the significance of those change patterns. We have also tested signals with

a varying variance and both a varying mean and variance following the abrupt-change

model with initial and final parameter values ranging from ξ1 = 0 to ξ2 = 4. We have

considered three different CPs for the nonstationary signals: CP = 150, 225, 300. The

nonstationary signals and their conditional entropy for different levels of significance

(1 − a) are shown in Fig. 4.6 and Fig. 4.7, for the cases of nonstationary variance and

nonstationary mean and variance, respectively.

The CP estimation has been carried out by computing the local maxima of H(Z̃t|Ỹt)

by means of the MATLAB function findpeaks. The routine takes as input the maxima

of H(Z̃t|Ỹt) over all (1 − a) and returns the time instants where the peaks occur. We
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Figure 4.6: Signals exhibiting an abrupt-change in the variance at three different points.
Conditional entropy for each signal, computed by considering different values of (1− a)
for Tz = (1 − a)maxZ .

have assumed that consecutive peaks should be separated by a short interval, at least

as short as ∆t = 0.1N, otherwise they are considered to represent the same change

pattern. Notice in Fig. 4.5 that the large values of H(Z̃t|Ỹt) are indeed spread over a

small neighborhood.
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Figure 4.7: Signals exhibiting an abrupt-change in the mean and in the variance at three
different points. Conditional entropy for each signal, computed by considering different
values of (1 − a) for Tz = (1 − a)maxZ .

In Table 4.1, we show the true and the estimated CPs for the signals shown in Fig. 4.5

and Fig. 4.6, respectively. It can be seen in Table 4.1 that the proposed approach can

reasonably detect the CPs for all values of SNRs. Also, one can verify that the method

cannot detect properly the beginning of the linear trend at CP = 145. In general, the

framework is not suited for detecting the CP of slowly-varying nonstationarities such as

a linear trend. Furthermore, in many real world applications, we do not have the ground

truth available. Thus, we do not know how many CPs are to be detected in a given time

series. By sorting (4.10) in a descending order from max H(Z̃t|Ỹt) to min H(Z̃t|Ỹt), and
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Table 4.1: Results of applying the proposed algorithm to the signals shown in Fig. 4.5
and Fig. 4.6.

Changing mean

True CP 50 115 145 246 300

SNR (dB) Estimated CP

0 62 118 not detected 243 309

−0.71 62 111 not detected 244 310

−1.06 63 114 not detected 242 312

Changing variance

True CP 150 225 300

Estimated CP 155 229 299

Changing mean and variance

True CP 150 225 300

Estimated CP 162 235 305

ordering the time points accordingly, one could use tMAX = argmax
t

[H(Z̃t|Ỹt)] as the

time instant that is most likely the CP. In Table 4.1, the most likely CPs are highlighted.

4.5.1 Comparison with other approaches

We have compared the proposed approach with the algorithm for CP detection pre-

sented in [10], which is based on the Lombard’s smooth-change model and makes use

of the test statistics proposed in [18]. The algorithm of [10] is also nonparametric and

can detect changes both in the mean and in the variance. These characteristics make

the Lombard’s technique suitable for being applied to real world data and to be com-

pared with the approach proposed in this work. The Lombard’s method will be briefly

explained below.

4.5.1.1 Lombard’s technique

Consider a time series X = (x1, ..., xn) containing independent samples. Let us assume

that Fi(x) = p(xi ≤ x), i ∈ [1, n] are continuous. Now, let us define the normalize

rank of xi as Ri = Fn(xi), where Fn(x) = 1
n+1 ∑

n
l=1 I(xi ≤ x) stands for the re-scaled

empirical distribution function and I(·) is the indicator of a set. Now, for a square-

integrable score function φ : [0, 1] → ℜ and for each i ∈ [1, n], we define the rank score

Zi = {φ(Ri − φ)}/σφ, where φ and σ2
φ are the sample mean and the sample variance of

the collection {φ(Ri), i = 1, ..., n}. The Lombard’s approach is based on the measure:

Lκ1,κ2 =
κ2

∑
j=κ1+1

j

∑
l=1

Zl , (4.11)

from which different test statistics can be derived for detecting different nonstationary

patterns, like the abrupt-change model and the onset-of-trend model defined in (2.19) and
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Table 4.2: Results of applying the Lombard’s technique to the signals shown in Fig. 4.5
to Fig. 4.7.

Changing mean

True CP 50 115 145 246 300

SNR (dB) Estimated CP

0 not detected not detected not detected 246 not detected

−0.71 not detected not detected not detected 245 not detected

−1.06 not detected not detected not detected 249 not detected

Changing variance

True CP 150 225 300

Estimated CP 149 225 298

Changing mean and variance

True CP 150 225 300

Estimated CP 210 149 299

(2.20), respectively. In order to use the test statistics derived from (4.11) for detecting CPs

in time series, we can rely either on estimated or on asymptotic critical values obtained

from their limiting distributions [10].

4.5.1.2 Experimental study using the Lombard’s technique

In Table 4.2 we show the results obtained by applying the Lombard’s technique to the

signals shown in Fig. 4.5 to Fig. 4.7. It can be seen that Lombard’s test does not allow

for the detection of multiple CPs in one time series, contrary to the developed method.

Instead, only the most likely CP is detected for the signals with a changing mean. Also,

the algorithm could not detect properly the CPs of the signals with both varying mean

and variance. In fact, such performance is expected, as the algorithm does not perform

well when a change in the mean occurs if one is testing for a change in the variance.

This problem is worse when the mean is large, becoming more apparent as the sample

size grows [10]. Other disadvantage of the Lombard’s approach is that the observations

contained in time series should be independent. This assumption is often not true for

real world data. Moreover, for detecting the CP in the mean or in the variance, we should

first set the algorithm according to the nonstationarity we are aiming at detecting. This is

a crucial point, since in many cases we do not know a priori which kind of nonstationary

are present in the signal. It can be a problem when the visual inspection of the time

series is unfeasible. Despite these limitations, it should be noted that the Lombard’s

technique is much faster than the approach proposed here, and should be considered

if one is testing larger time series, or if one is particularly interested in the patterns

included in Lombard’s model (e.g. abrupt-change, onset-of-trend) [10].
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4.6 Conclusions

In the frame of nonstationary signal analysis, many techniques are devoted to detect

the time instants (if any), where a change in a given parameter occurs. Change point

assessment is a very important topic in many areas such as climatology, where the first

CP might be an indicator of the beginning of a climate change [10]. Also, since the

stationarity tests presented in this work are made to reject stationarity of the whole ob-

servation interval, one would need a separate algorithm to detect CPs. Many algorithms

for CP discovery are parametric or require an ad-hoc adjustment for every signal. These

characteristics, however, are not in consonance with those that are expected from a CP

detector suitable for being applied to real world signals, which was our motivation here.

In this Chapter, we have proposed a modified framework based on an existing tech-

nique called RSST, which presents the necessary profile to be applied to real world

signals. However, the original RSST suffers from its own generality: the CP detection

depends on the choice of two parameters (two "windows" of analysis) that need to be

chosen by visualization or domain knowledge, which are often impracticable. The first

contribution that we have made in this Chapter avoided the problematic part of having

to set a specific pair of windows for the analysis. The procedure consisted in repre-

senting the output of the RSST in the space spanned by its two parameters. This has

shown to be a good strategy, as different change patterns can be captured if we sweep

over the two parameters. Then, we have proposed a stopping criterion for the sweep,

which is a crucial point for reducing the computational time of the algorithm. Having

a representation of the change dynamics of the signals for different windows and time

instants, we then presented a way for selecting significant change patterns. Finally, the

CP estimation has been carried out by evaluating the uncertainty related to the change

patterns, more precisely, by computing the conditional entropy at each time instant. The

CP itself has been obtained by searching for the instants where the local maxima of the

conditional entropy vector occur.

Having presented the framework, we compared the proposed approach with another

one available in the literature, which is also used for testing real world signals. The pro-

posed approach is more versatile, and allows us to visualize the intervals where major

changes in the signal occur as a function of the window of analysis and time. However,

the technique presented in this Chapter is considerably time consuming if one is testing

larger time series. On the other hand, there are many applications like in biomedicine

and in hydrology, where short time series need to be analyzed by nonparametric tech-

niques in a richer feature space. This is the case of the dataset that will be studied in
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the next Chapter, for which we not only applied the technique proposed in this Chapter,

but also the other stationarity tests presented earlier in this manuscript.
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Experimental study on real world data
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Chapter 5 presents the results of applying the various methods developed in this

Thesis to environmental data.

5.1 Introduction

5.1.1 The Canadian Regional Climate Model (CRCM)

The environmental data tested in this Chapter are rainfall time series corresponding

to annual maximum daily precipitation obtained from the Canadian Regional Climate

Model (CRCM). The CRCM data have been generated and supplied by Ouranos [43].

97
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The CRCM is a realistic limited-area nested model that considers many complex multi-

scale interactions and feedbacks. The multitude of variables that this climate model takes

into account ranges from physical parameters such as radiation scheme, cloud forma-

tions, and atmospheric boundary layer mixing [98], to social considerations like possible

future scenarios involving population growth, economic development, and technologi-

cal change [99]. The CRCM allows for the study of climate change and variability, and

also allows for the understanding of the large number of processing governing the cli-

mate system. The data generated by this model have been used for climate predictions

on time scales ranging from seasons to decades.

5.1.2 The rainfall data

The region covered by the CRCM consists of 200 × 192 grid points over the North-

American domain with a 45 km horizontal grid-size mesh. The rainfall data tested in

this Chapter correspond to a smaller area of that region: 1631 locations spread over the

province of Quebec (QC), Canada. This area is illustrated in Fig. 5.1 together with each

grid point considered in the simulations.

Locations in Canada
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 50 °
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 60 °
 N 

Figure 5.1: Map showing the grid points in Canada considered for the simulations.

The data are the annual maximum values obtained from the simulated daily precip-

itations ranging from December 1960 to November 2100. For the simulations, we had

at our disposal two datasets, known as aet [100] and aev [101] simulations. These were

obtained from two distinct realizations of the same model configuration, meaning that

only the initial conditions are slightly different. These simulations were performed by

using the version 4.2.3 of the CRCM model, and were driven by the data CGCM3 [102].

Also, the simulations considered SRES A2 scenario for years 2001-2100. In Fig. 5.2, we

show for several grid points chosen randomly in the province of Quebec, the respective

annual maximum daily rainfall signals for aet and aev simulation.
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Figure 5.2: Example of six grid points randomly chosen and their corresponding annual
maximum daily rainfall time series for both simulations (aet and aev).

Table 5.1: Statistical characteristics of the rainfall data

Location 1 2 3 4 5 6

Simulation aet aev aet aev aet aev aet aev aet aev aet aev

maximum 59.16 63.22 56.89 60.75 83.74 100.36 68.46 84.60 75.11 75.96 93.70 66.97

mean 22.06 23.08 28.26 28.35 53.15 54.94 37.11 37.58 37.03 36.87 26.81 25.91

std 8.31 9.65 7.17 9.82 12.01 14.24 9.41 11.85 10.14 10.92 10.91 8.67

skewness 1.61 1.43 0.92 1.39 0.70 0.71 0.72 1.41 1.04 0.92 2.71 1.45

kurtosis 6.47 5.31 4.27 4.73 2.97 3.58 3.37 5.07 4.57 3.71 14.39 6.63

5.1.2.1 Exploratory analysis

In this Section, we perform a short exploratory analysis of the rainfall dataset. To this

end, we have selected the time series illustrated in Fig. 5.2, and we have computed their

maxima, the sample mean, standard deviation, skewness, and kurtosis. The results are

shown in Table 5.1 for both the aet and aev simulations. Note that the data are positively

skewed and also have positive kurtoses, which indicate heavy tails on the right side of

the distribution. In this regard, we present in Fig. 5.3 the histograms of each signal,

where we can see that the data have high peaks, and thus a heavy-tailed distribution.

Such behavior was expected, since the data are the annual maximum daily precipitation

(extreme values), which are not normally distributed. The significant presence of outliers

and the heavy tailedness can be verified in the bloxplots of the data shown in Fig. 5.4. As

it could be seen, such dataset is difficult to analyze by using classical approaches, which

usually either rely on the stationarity or in the Gaussianity of the underlying process,

or are not robust against the presence of outliers. However, the techniques developed in

this Thesis are suited to analyze such dataset.
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Figure 5.3: Histograms of the rainfall time series illustrated in Fig. 5.2. (a) (aet simulation.
(b) aev simulation.
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Figure 5.4: Boxplots of the rainfall time series illustrated in Fig. 5.2. (a) (aet simulation.
(b) aev simulation.

5.2 Applying the stationarity tests

In this Section, we show the results of applying the stationarity tests developed in this

Thesis, and also other nonstationarity tests available in the literature. For all the statio-

narity tests, a confidence level of 95% was used. In Section 5.2.1, we present the results

for the surrogate-based approach and its modified version. In Section 5.2.2, we illustrate
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the performance of the new stationarity test proposed in Chapter 3 for detecting trend-

based nonstationarities. The results of applying other methods available in the literature

are shown in Section 5.2.3.

5.2.1 Results for the surrogate-based technique

For applying the stationarity test described in Chapter 2 we have to specify the parame-

ter nh0 (see (2.4)). For the datasets we considered the following values:

nh0 = [0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28].

These values lead to Hermite windows with the following length:

nh = [7, 11, 13, 15, 19, 21, 25, 27, 29, 33, 35, 37].

5.2.1.1 Testing with distances of probability nature

We have tested the annual maximum daily rainfall data by applying all distances shown

in Table 2.1. However, as expected, the distances of probability nature did not lead to

a satisfactory performance. Although the stationarity was rejected for some grid points

by applying the original method, after weighting the probability-based distances the test

could not reject the null hypothesis for almost all grid points and nh0 values. Moreover,

if we consider the outcomes for all the different grid points and values of nh0, and check

if there exist "nonstationary" grid points intersecting all of them, we get a null result for

both original and modified method. These results are in accordance with the problems

described in Section 2.6 and Section A.2 involving the use of probability-based distances.

That was not the case, on the other hand, for the distances of frequency nature. Thus for

the remaining of this Section, we shall analyze the performances of the frequency-based

distances only.

5.2.1.2 Testing with distances of frequency nature

By applying the method using the frequency-based distances, we have observed that the

number of "nonstationary" grid points obtained for each simulation (aet and aev) tends

to be closer to each other, for all considered values of nh0 and all distances. This situation

is shown in Table 5.2, where it can be seen that the number of nonstationary results

increases substantially by decreasing the value of nh0, or by weighting the distances.

However, the number of nonstationarities does not increase or decrease considerably by

changing from the aet to the aev simulation.
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Table 5.2: Number of grid points classified as "nonstationary" for each distance, simula-
tion and value of nh0.

Distance Itakura-Saito Log-spectral Diffusion
Symmetrized
Itakura-Saito

Simulation aet aev aet aev aet aev aet aev

nh0 = 0.06
Original 970 924 342 310 1092 1071 175 168

Weighted 1519 1482 1024 976 1615 1608 422 364

nh0 = 0.08
Original 892 828 427 401 999 970 255 232

Weighted 1352 1300 970 914 1573 1545 484 437

nh0 = 0.10
Original 869 812 465 432 954 924 288 276

Weighted 1297 1241 925 869 1540 1519 497 427

nh0 = 0.12
Original 831 779 477 458 907 862 320 300

Weighted 1233 1170 869 802 1499 1479 461 391

nh0 = 0.14
Original 796 744 551 522 846 799 371 383

Weighted 1106 1045 758 695 1442 1396 428 340

nh0 = 0.16
Original 784 717 551 548 798 763 387 384

Weighted 1044 983 719 646 1400 1342 396 299

nh0 = 0.18
Original 707 617 521 520 751 687 379 391

Weighted 919 860 613 530 1293 1238 336 229

nh0 = 0.20
Original 695 633 516 533 732 674 381 381

Weighted 891 796 607 488 1262 1231 311 212

nh0 = 0.22
Original 682 601 522 513 689 631 389 385

Weighted 823 743 540 442 1204 1165 278 184

nh0 = 0.24
Original 647 582 489 501 653 600 377 386

Weighted 757 644 450 368 1126 1117 218 142

nh0 = 0.26
Original 628 578 490 508 639 574 384 378

Weighted 706 573 418 335 1072 1050 192 133

nh0 = 0.28
Original 632 539 501 495 630 553 383 337

Weighted 694 550 394 313 1061 1019 170 116

In Fig. 5.5, we show, for aet simulation, the grid points corresponding to the maximum

annual daily rainfall time series where the stationarity was rejected for every distances

and values of nh (i.e. the intersections). The number of grid points correspond to 36

for the original method, and to 95 for the modified one. The results for aev simulation

are shown in Fig. 5.6, where the number of intersections of the original and modified

method is 20 and 65, respectively. Notice that most of the intersections are obtained only

for the modified method. In general, after applying the weighting procedure the number

of nonstationary cases returned by the method increases (note that it was the opposite

for the case of the probability-based distances). The final intersection of nonstationary

locations for the aet and aev simulations is shown in Fig. 5.7. For this experimental

study, we have also verified if the conditions for the gamma parameters shown in (2.27)

for improving the stationarity test are reached (in the average). In Table 5.3, it can be

seen that, in the majority of the nonstationary cases, the two inequalities are verified, i.e.

k′ < k and Θ′
1/θ′ > Θ1/θ (except for the Log-spectral distance).

Relying only on the possible "nonstationarity" / "stationarity" outcome of the method

may not be judicious, as we are applying the method to the annual maximum daily rain-

fall data corresponding to only two simulations of the CRCM. Thus, making use of

some extra information for evaluating the nonstationary locations, such as the robust-

ness measure AMD (see (2.28)) is recommended.
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Figure 5.5: Grid points for aet simulation that were classified as "nonstationary" for every
distance and value of nh.
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Figure 5.6: Grid points for aev simulation that were classified as "nonstationary" for
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Figure 5.7: Final intersection of nonstationary locations of aet and aev simulations. All
distances and values of nh were considered.
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Figure 5.8: Grid points corresponding to the largest 50, 20, and 10 AMD values for the
Itakura-Saito distance, by using (a) the original method, (b) the weighted one.

To this end, we have selected from both aet and aev simulations, the largest 50, 20,

and 10 AMD values returned by the method for each distance. Then we have checked

from which grid point the time series leading to the largest AMD values came from. The

results are illustrated in Fig. 5.8, Fig. 5.9, Fig. 5.10, and Fig. 5.11 for the Itakura-Saito,

Log-Spectral, Diffusion and Symmetrized Itakura-Saito distances, respectively.

To this end, we have plotted in the map the nonstationary cases given by using each

distance and value of nh0, whereas the larger the value of AMD evaluated from the data

of a given grid point is, the bigger the marker used to represent that grid point on the

map. For aet and aev simulations, the results issued from the AMD values are shown in

the following figures according to the chosen distance: i) Itakura-Saito Fig. 5.12 (aet) and

Fig. 5.13 (aev), ii) Log-spectral Fig. 5.14 (aet) and Fig. 5.15 (aev), iii) Diffusion Fig. 5.16

(aet) and Fig. 5.17 (aev), iv) Symmetrized Itakura-Saito Fig. 5.18 (aet) and Fig. 5.19 (aev).

Notice that, in general, there are many nonstationary grid points spread over the North

and the South of the map, but not in the central area. More specifically, for most of

the cases, there exists a concentration of nonstationary grid points with large values of

AMD clustered in the Southeast (over the Nova Scotia province), Southwest (over the

North of Ottawa) and Northwest (in the South of the Ungava Peninsula).
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Figure 5.9: Grid points corresponding to the largest 50, 20, and 10 AMD values for the
Log-spectral distance, by using (a) the original method, (b) the weighted one.
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Figure 5.10: Grid points corresponding to the largest 50, 20, and 10 AMD values for the
Diffusion distance, by using (a) the original method, (b) the weighted one.
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Figure 5.11: Grid points corresponding to the largest 50, 20, and 10 AMD values for the
Symmetrized Itakura-Saito distance, by using (a) the original method, (b) the weighted
one.
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Table 5.3: Verifying the condition of (2.27) after applying the weighting procedure. The
results are given as arithmetic averages (〈k〉 , 〈Θ1/θ〉) and (〈k′〉 , 〈Θ′

1/θ′〉) of the esti-
mates of (k, Θ1/θ) and (k′, Θ′

1/θ′), over all nonstationary and stationary grid points
for both aet and aev simulation, for each distance (Itakuro-Saito [IS], Log-spectral [LS],
Diffusion [DF], Symmetrized Itakuro-Saito [SIS]) and value of nh0.

Nonstationary grid points

Distance IS LS DF SIS
nh0 Real. 〈k〉 〈k′〉 〈Θ1/θ〉 〈Θ′

1/θ′〉 〈k〉 〈k′〉 〈Θ1/θ〉 〈Θ′
1/θ′〉 〈k〉 〈k′〉 〈Θ1/θ〉 〈Θ′

1/θ′〉 〈k〉 〈k′〉 〈Θ1/θ〉 〈Θ′
1/θ′〉

0.06
aet 5.15 1.76 17.5 51.8 11.2 2.65 15.4 9.39 6.80 2.62 21.8 59.6 1.31 0.74 2.53 7.40

aev 5.15 1.80 15.8 45.7 10.9 2.74 15.0 9.34 6.83 2.69 20.1 54.8 1.30 0.75 2.36 6.54

0.08
aet 1.31 1.52 13.4 37.2 8.24 2.54 1.28 9.71 5.99 2.70 19.0 41.2 1.29 0.77 3.44 8.36

aev 3.29 1.53 12.0 33.7 8.20 2.59 12.7 9.56 6.00 2.75 17.5 38.4 1.28 0.78 3.26 7.31

0.10
aet 2.91 1.45 12.4 33.1 6.75 2.43 11.3 9.59 5.10 2.64 17.0 36.8 1.29 0.81 3.69 8.31

aev 2.88 1.47 10.1 30.7 6.73 2.48 11.4 9.50 5.05 2.65 15.2 34.2 1.28 0.88 3.69 7.91

0.12
aet 2.61 1.40 11.5 29.6 5.60 2.32 10.3 9.42 4.44 2.57 15.1 32.8 1.26 0.81 4.08 8.60

aev 2.58 1.43 10.2 26.1 5.62 2.38 10.1 9.30 4.43 2.60 13.5 29.9 1.26 0.81 3.93 7.06

0.14
aet 2.34 1.38 11.1 25.8 4.54 2.31 9.65 9.60 3.77 2.57 13.2 28.5 1.28 0.83 4.92 7.41

aev 2.37 1.43 10.1 22.8 4.58 2.36 9.64 9.13 3.77 2.58 11.2 26.1 1.28 0.86 5.17 6.91

0.16
aet 2.29 1.38 10.9 24.3 4.31 2.35 9.52 9.67 3.56 2.55 12.2 26.1 1.27 0.87 5.07 7.52

aev 2.31 1.43 9.81 20.5 4.32 2.39 9.58 9.77 3.58 2.56 11.5 24.2 1.28 0.87 5.41 6.78

0.18
aet 2.19 1.38 10.6 20.9 3.85 2.31 9.29 9.35 3.22 2.51 1.13 22.9 1.22 0.85 5.13 6.41

aev 2.23 1.41 9.64 17.6 3.94 2.35 9.41 9.01 3.24 2.50 10.6 21.5 1.24 0.85 6.26 6.40

0.20
aet 2.16 1.39 10.4 19.7 3.73 2.35 9.13 9.12 3.17 2.54 11.1 22.5 1.24 0.87 5.55 6.47

aev 2.22 1.43 9.74 16.7 3.82 2.40 9.45 9.07 3.19 2.53 10.3 20.4 1.21 0.87 6.59 6.00

0.22
aet 2.09 1.37 10.2 18.3 3.61 2.34 9.10 9.12 3.05 2.53 10.6 20.8 1.22 0.87 5.49 6.19

aev 2.14 1.40 9.41 15.6 3.65 2.33 9.27 9.71 3.09 2.52 9.90 19.3 1.22 0.87 6.69 6.07

0.24
aet 2.01 1.35 9.99 16.4 3.32 2.31 9.07 8.96 2.88 2.50 10.2 19.2 1.17 0.87 5.98 6.08

aev 2.02 1.38 9.09 14.0 3.30 2.33 9.09 8.57 2.89 2.48 9.25 17.2 1.17 0.86 8.16 5.74

0.26
aet 1.94 1.35 9.51 15.4 3.11 2.27 8.57 8.50 2.79 2.47 9.81 17.9 1.13 0.85 6.12 5.84

aev 1.95 1.35 9.13 13.7 3.21 2.35 9.02 8.65 2.78 2.45 9.08 16.6 1.16 0.86 8.75 5.83

0.28
aet 1.91 1.34 9.31 14.0 3.07 2.31 8.69 8.61 2.76 2.46 9.90 17.2 1.13 0.85 6.20 5.86

aev 1.93 1.35 8.92 12.2 3.11 2.34 8.97 8.24 2.76 2.51 9.06 16.5 1.18 0.86 9.41 5.68
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Table 5.4: Number of grid points classified as "nonstationary" for aet and aev simulations
and different values of window size nh.

Simulation / nh 3 5 7 9 11

aet 92 95 109 110 125

aev 99 125 130 178 118

5.2.2 Results for the new stationarity test

We show in this Section the results of applying the stationarity test developed in Chap-

ter 3 for testing trend-based and slowly-varying nonstationarity. This framework has a

free parameter, which is the size of the Hermite window nh chosen for estimating the

time marginal. For the datasets, we considered the following values nh = [3, 5, 7, 9, 11].

By applying the proposed method for detecting trend-based nonstationarities, we have

observed that the total number of nonstationary outcomes was smaller than the one

obtained for the surrogate-based approach. In Table 5.4, we show the number of non-

stationary cases obtained per value of nh for the aet and aev simulations.

In Fig. 5.20, we show the locations in which signals were classified as "nonstationary"

by the method. The results are shown according to the chosen window. Also, we have

computed the value of the index of nonstationarity INS, proposed in (3.34). So, in

Fig. 5.20, the bigger the marker used to represent the grid point is, the greater is the

respective value of INS.

It should be noticed, that we did not find any intersection between the nonstation-

ary locations given by the surrogate-based method, and the new technique proposed

in Chapter 3. It could be explained by the fact that the two stationarity tests are de-

signed for detecting different types of nonstationarities, and the nonstationary behavior

detected by one at a given grid point, will be not necessarily detected by the other.

5.2.3 Results for other stationarity tests

We have applied the KPSS test and the Kay’s nonstationarity procedure to the annual

maximum daily rainfall data. These stationarity tests were compared with the new ap-

proach for testing slowly-varying nonstationarities described in Chapter 3. By applying

the nonstationarity procedure of S. Kay, we could not find any nonstationary location.

Although this method works for short sample sizes, and performed well in accusing

the synthetic nonstationary signals shown in Fig. 3.10, it is still a parametric approach,

whose performance depends on the chosen model. Possibly, the model assumed for the

nonstationary signals (a time-varying autoregressive model) was not a good choice with

the datasets under study.
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Figure 5.20: For aet and aev simulation, nonstationary locations given by the new sta-
tionarity test proposed in Chapter 3. The marker showing each grid point is scaled
according to the respective INS value computed for the location.
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Figure 5.21: Results of applying the KPSS test to the maximum annual daily rainfall
time series corresponding to aet and aev simulations.
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Figure 5.22: Intersection between the nonstationary grid points found by the KPSS test
and the new stationarity test, by considering a window of length nh = 9.

By using the KPSS test, on the other hand, we have found 201 and 50 nonstation-

ary grid points for aet and aev simulations, respectively. These locations are shown in

Fig. 5.21. We have verified if there was any intersection between the locations found by

the KPSS test and those accused by the new stationarity test of Chapter 3. If we consider

for the latter all values of nh, none intersection can be found. However, by choosing a

specific window length nh, several nonstationary grid points can be found (17 and 11

for aet and aev simulations, respectively). Fig. 5.22 illustrates the intersections between

the grid points shown in Fig. 5.20 for nh = 9, and the ones classified as "nonstationary"

by the KPSS test.
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Figure 5.23: Histograms of the CPs and most likely CPs returned by the method. The
nonstationary locations tested are those of aet simulation found by the surrogate-based
technique.

5.3 Applying the change point detection algorithm

In this Section, we show the results of applying the CP detection framework proposed

in Chapter 4. We have tested all grid points where the stationarity was rejected by the

tests of Chapter 2 and Chapter 3. In Fig. 5.23 we present the histograms of the estimated

CPs and most likely CPs for the nonstationary grid points found by the surrogate-based

technique when testing the aet simulation. The corresponding results for aev simulation

are illustrated in Fig. 5.24. The results for the new stationarity test are shown in Fig. 5.25

and Fig. 5.26 for aet and aev simulations, respectively.

It can be seen that the distributions of possible CPs and most likely CPs are too

wide, and it is difficult to draw some conclusions from them. However, if we compute

the mean values of the most likely CP for the cases described above, we can see that

they are around t = 60 (or the year 2020) for each case. The estimated mean and mode

from the histograms of the most likely CP are shown in Table 5.5.

We could narrow the scope of the search even further, and analyze, for instance, the

CPs of the grid points that correspond only to the largest values of AMD (see Fig. 5.8,
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Figure 5.24: Histograms of the CPs and most likely CPs returned by the method. The
nonstationary locations tested are those of aev simulation found by the surrogate-based
technique.
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Figure 5.25: Histograms of the CPs and most likely CPs returned by the method. The
nonstationary locations tested are those of aev simulation found by the new stationarity
test.

Table 5.5: Mean and mode of the estimated CPs (most likely CP) of the nonstationary
locations found by the two stationarity tests developed in this Thesis.

Stationarity Surrogate-based New test for
test used technique trend-based nonstationarity

Simulation aet aev aet aev
Mean 67 60 61 63

Mode 41 65 47 55
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Figure 5.26: Histograms of the CPs and most likely CPs returned by the method. The
nonstationary locations tested are those of aev simulation found by the new stationarity
test.
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Figure 5.27: For the largest AMD cases: (a) histograms of the most likely CPs, (b) his-
tograms of the CPs.

Fig. 5.9, Fig. 5.10 and Fig. 5.11). Fig. 5.27 illustrates the histogram of the estimated CPs

and most likely CPs for the largest AMD cases. Notice in Fig. 5.27(a) that we have indeed

a concentration around 60 for the most likely CP. In fact, the estimated mean and mode

for Fig. 5.27(a) and (b), were, respectively, 63 and 73, and 64 and 74. Thus, the estimated

mean value of the CP is in accordance with the ones of Table 5.5.

For observing the behavior of the change scores for different values of w, n and t, we

have selected 8 locations belonging to the largest AMD ones for all the distances, and we

have computed the CP scores for the selected range of the parameters. The coordinates

of the chosen grid points are given in Table 5.6.

In Fig. 5.28 and Fig. 5.29, we illustrate the collection of CP scores over w, n and t,

Table 5.6: Coordinates of 8 grid points that lead to the largest AMD values for all dis-
tances.

Location 1 2 3 4 5 6 7 8

Latitude 60.8304 44.1138 48.1606 45.9826 48.5020 59.6040 57.8619 58.3774

Longitude -77.8633 -57.3258 -59.2250 -64.4139 -73.3617 -73.5587 -74.4232 -75.5866



122 Chapter 5. Experimental study on real world data

0 50 100
0

50

100

t

L
o
ca

tio
n
 1

Original signal

0
50

100 0

10

20

30

0

10

20

w

T
z
 = 0.50max(Z)

t

n
0

50
100 0

10

20

30

0

10

20

w

T
z
 = 0.95max(Z)

t

n

Estimated CP: 51

t=58

0 50 100
0

50

100

t

L
o
ca

tio
n
 2

Original signal

0
50

100 0

5

10

15

0

5

10

w

T
z
 = 0.50max(Z)

t

n
0

50
100 0

5

10

15

0

5

10

w

T
z
 = 0.95max(Z)

t

n

t=112

Estimated CP: 110

0 50 100
0

50

100

t

L
o
ca

tio
n
 3

Original signal

0
50

100 0

20

40

0

20w

T
z
 = 0.50max(Z)

t

n
0

50
100 0

20

40

0

20w

T
z
 = 0.95max(Z)

t

n

t=69

Estimated CP: 66

0 50 100
0

50

100

t

L
o
ca

tio
n
 4

Original signal

0
50

100 0

10

20

0

10

20

w

T
z
 = 0.50max(Z)

t

n
0

50
100 0

10

20

0

10

20

w

T
z
 = 0.95max(Z)

t

n

t=50

Estimated CP: 52

Figure 5.28: Change scores over w, n and t for the first 4 locations of Table 5.6 for
different levels of significance.

after applying the procedure for selecting significant patterns, for the 8 locations shown

in Table 5.6. The most likely CPs obtained for these locations are shown in the plots for

each case. Notice that after choosing the significance of the change pattern, there is a

concentration of CP scores around the respective time point relative to the CP.

5.3.1 Conclusions

In this Chapter, we have applied the techniques developed in this Thesis for testing

the annual maximum daily precipitation obtained from two simulations of the Canadian

Regional Climate Model (CRCM 4.2.3). The rainfall time series tested specifically in

this Chapter correspond to 1631 grid points spread over the province of Quebec (QC),

Canada, and have a time span of 139 years (from December 1960 to November 2100).

An interesting result is that the total number of nonstationary grid points found for
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Figure 5.29: Change scores over w, n and t for the last 4 locations of Table 5.6 for different
levels of significance.
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each simulation (aet and aev) tends to be close to each other for the stationarity tests

considered. Moreover, the weighting procedure that is proposed for the surrogate-based

method, has reasonably fulfilled the required conditions for improving the stationarity

test.

About the performance of the stationarity test based on surrogates, we have observed

that, in general, there exist many nonstationary grid points spread over the North and

the South of Quebec, but not in the central area. More precisely, for the majority of the

cases, there is a concentration of nonstationary grid points having large AMD values

(i.e. which are unlikely to change if we apply the test again), clustered in the following

regions of Quebec: Southeast (over the Nova Scotia province), Southwest (over the North

of Ottawa) and Northwest (in the South of the Ungava Peninsula). These findings call

for a more careful analysis of the climatic time series over that areas.

The result of applying the new stationarity test for slowly-varying nonstationarities is

a little different from what we have obtained for the surrogate-based techniques. There

are many nonstationary grid points over the central area of Quebec. Such difference

could be possibly explained by the fact that the two stationarity tests are designed for

detecting different types of nonstationarities, and the nonstationary behavior detected

by one at a given grid point, will be not necessarily detected by the other. However,

even for the new stationarity test, a number of nonstationary locations over the regions

mentioned above was detected. Other stationarity tests for detecting slowly-varying

nonstationarities did not accuse as much nonstationary locations as the method devel-

oped in Chapter 3 (the Kay’s test could not detect any grid point, and the KPSS test had

only a few grid points intersecting the ones accused by the proposed approach).

The CP analysis over the nonstationary locations has indicated that there exists a

high variability in the CP detected for each grid point. However, the expected value of

the CP has shown to be around t = 60, i.e. the year 2020, for both stationarity tests and

simulations. Finally, for the cases with the largest AMD values, the CP scores could be

easily isolated by selecting a large significance level for the change pattern.



Chapter6

Conclusions and perspectives

In the analysis of real world signals, we are often faced with a situation where we do not

know whether a change occurred nor do we have any idea where the possible change

point could be. However, a large amount of work assumes stationarity for applying stan-

dard algorithms, and the stationary case is well-defined from a theoretical perspective.

On the other hand, all real world processes are a priori nonstationary, and in the majority

of the cases this assumption turns out to be true. Hence, this has led to the develop-

ment of techniques designed specifically for nonstationary situations. In this Thesis, we

have focused on methods suitable for being applied to environmental processes, more

specifically, hydro-meteorological ones. The techniques that have been developed in this

Thesis, present some characteristics that are expected from a method to be applied to

real world data (i.e. be nonparametric, data-driven, sensitive to first and second-order

changes). Furthermore, in real world applications, we not only want to test for stationa-

rity, but also to detect the time points (if any) where the changes take place in the data.

Thus, in this Thesis, we have approached the stationarity test and the change point pro-

blem separately, by proposing a number of contributions and new approaches to these

topics.

As the first part of the thesis, in Chapter 2, we have studied an existing stationarity

test developed in TF domain that is nonparametric and data-driven. This method makes

use of surrogates resampling for characterizing the statistics of the null-hypothesis of

stationarity. In Chapter 2, we have proposed various contributions to the original ap-

proach, which allowed for:

• The identification of a proper class of distances to be used by the method.

• An improved detection of nonstationarities (when using the proper class of dis-

tances), specially first-order nonstationarities.

125
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• The development of a measure to evaluate the changing results that may appear

by applying the stationarity test sequentially.

Regardless of the improvements brought by the modifications proposed in Chap-

ter 2, computing a TF representation for each surrogate resample still requires a large

amount of computational work. Also, it could be pointed out that the surrogate-based

technique does not present high classification accuracies when testing short time series

with first-order or slowly-varying nonstationarities, simply because the surrogate-based

framework has not been designed to this end. However, detecting such forms of non-

stationarity is of major importance in many real world applications. Therefore, in Chap-

ter 3 we have proposed a novel stationarity test, which is nonparametric, data-driven,

and more sensitive sensitive to first-order evolutions than other nonparametric methods.

Also, the proposed technique works for short signals.

The new stationarity test has been designed for testing a specific nonstationary be-

havior: the presence of a trend and/or an evolution in the local energy of the signal. To

do so, we have proposed to test for trends in the time marginal, which is estimated di-

rectly by numerical convolution with a proper window of analysis (in this case, the Her-

mite functions). The trend itself is estimated by means of the EMD, and the importance

of the trend seen in the time marginal is measured by making use of the so-called trend

importance estimator (θ̂TI). In order to perform the hypothesis test, we have proposed

to use block bootstrapping to obtain the distribution of θ̂TI under the null hypothesis.

Such distribution has been approximated by a pdf belonging to the GEV family. The

adherence of this pdf has been verified by means of an analysis in asymptotic regime

and a goodness-of-fit test. An index of nonstationarity (INS) has also been proposed.

The method that has been developed in Chapter 3 still leaves room for many possible

improvements. As the proposed methodology encompasses a number of aspects, we

have categorized some possible points that could be addressed in the future as follows:

• Index of nonstationarity (INS): one could identify the theoretical conditions for

which the convexity of f (e) (see (3.31) and (3.30)) is guaranteed. In general, fur-

ther work needs to be done in deriving a robust index of nonstationarity for the

stationarity test based on EMD. A possibility would be to improve the charac-

terization of the terms that are used as arguments to parametrize the objective

function.

• The distribution of θ̂TI under the null hypothesis: the adherence of the GEV model

has been verified empirically, so the determination of the theoretical distribution

of θ̂TI still remains an open question. A possibility would be to work with the
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expanded expression for θ̂TI in (3.23), while taking into consideration some pro-

perties of the IMFs reported in [103].

• Speed up the computational time: although the computational time was reduced

by skipping the part of computing a TF representation for each surrogate, the

algorithm still takes a while to run. The most time-consuming part is by far the

estimation of the trend by means of EMD, so one could think of a way to speed

up the EMD algorithm. Other alternative would be to perform the test with an

approximated asymptotic distribution of θ̂TI under the null hypothesis, since we

have observed that parameters of the GEV distribution often tend to specific values

(0.5, 0.02, and 1 for ǫ, σ and µ, respectively), as the number of bootstrap resamples

increases.

After presenting the contributions to the nonparametric tests for stationarity, we

have proposed in Chapter 4 an alternative framework for CP detection, which is based

on the RSST. This technique is nonparametric and allows for the detection of multi-

ple CPs. However, the full application of the RSST to real world data has been held

captive by some limitations. For example, the RSST requires the specification of two

parameters, whose values are chosen by means of visualization or domain knowledge.

Unfortunately, these are often impracticable when testing environmental data. Thus, in

Chapter 4 we have proposed a modified framework based on the RSST which is bet-

ter suited to be a applied to real world signals. More precisely, we have proposed the

following modifications:

• To represent the output of the RSST in the space spanned by its two parameters, as

different change patterns can be captured if we sweep over w and n. Then, we have

proposed a stopping criterion for the sweep, which is a crucial point for reducing

the computational time of the algorithm.

• Better results are obtained by selecting significant change patterns in the signal.

Hence, we have proposed a simple strategy to filter the most significant CP scores

(the ones representing actual changes).

• For estimating the CP, we have proposed to measure the uncertainty related to the

CP scores at each temporal "slice" in the space spanned by the two parameters of

the RSST. To do so, we have proposed to compute the conditional entropy at each

time instant, and to compute the CP by searching for the instants where the local

maxima of the conditional entropy vector occur.
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The modified approach for CP detection is more versatile than other ones in the

literature, since it allows for: i) the detection of multiple CPs, ii) the visualization of

the intervals where major changes in the signal occur as function of the windows of

analysis and time, and iii) the detection of first and second-order changes. However,

the proposed methodology calls for a deeper analysis or further improvements in many

points, for example:

• The technique presented in Chapter 4 is considerably time consuming if one is

testing larger time series. Solutions to fasten the methodology need to be searched.

A possibility would be to find another stopping criterion for the sweep.

• The efficiency of the procedure to sweep over the two parameters (w and n) has

been only verified empirically. Thus, a proper theoretical basis could be developed

in the future. For instance, one could demonstrate why pi decays after attaining

the maximum at ζ. Also, one could suggest to increase w and n not evenly, but

instead verifying if max pi could be reached faster through other ways.

Finally, in Chapter 5, we have applied the various methods presented in this The-

sis to an environmental dataset, more specifically, the time series corresponding to an-

nual maximum daily precipitation simulated from the Canadian Regional Climate Model

(CRCM 4.2.3). The time series have a time span of 139 years (December 1960 to Novem-

ber 2100), and correspond to 1631 grid points spread over the province of Quebec (QC),

Canada. In the experimental study, we have observed that the two stationarity tests

presented in the Thesis could detect nonstationary grid points in different areas (possi-

bly because the two tests are designed for detecting different forms of nonstationarity).

However, in general, there exist a concentration of nonstationary locations in the South-

east, Southwest and Northwest of Quebec, which calls for a deeper investigation of the

climatic time series over that areas. About the detection of CPs, despite of the high vari-

ability observed in the outcomes, the expected value of the CP has shown to be around

the year 2020 for all cases.



AppendixA

Explaining the weighting technique

A.1 Why weighting distances improves the performance of the

stationarity test?

Let us consider again the nonstationary Gaussian processes plotted in Fig. 2.5 together

with their TF representation. Theses plots are reproduced again Fig. A.1.
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Figure A.1: Different nonstationary signals and their particular TF representation. (a)
Varying mean. (b) Varying variance. (c) Varying mean and variance.

Although the time-varying spectra shown in Fig. A.1 refer to different nonstationary

signals, one could identify a particular pattern: a significant portion of the spectral

content is concentrated over a given time interval. For a given TF spectrum {S(tn, f ), n =

1, ..., N}, let us define a vector containing these time instants as τ = ti, ..., t f , where

[ti, t f ] ∈ [1, N]. We consider τ as the vector presenting the time instants where majority

of the spectral content of the signal. Then, we assume to have an accumulation or a

129
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concentration of the spectral content of S(t, f ) in τ, if the local spectra are significantly

greater than the marginal spectrum, in a way that the distance between them are greater

for τ = ti, ..., t f than for the rest of the observation interval. More precisely, if we define

the total excess of the local spectra over the global marginal spectrum by ∑ f [S(tn, f )−
〈S(t, f )〉n], where 〈S(t, f )〉n is obtained by marginalization over all time instants, we say

that S(tn, f ) is concentrated around τ if:

∑
f

[S(tn, f )− 〈S(t, f )〉n]tn∈τ ≥ ∑
f

[S(tn, f )− 〈S(t, f )〉n]tn /∈τ (A.1)

while the values taken by the distance vector should also increase in τ:

D [S(tn, f ), 〈S(t, f )〉n]tn∈τ ≥ D [S(tn, f ), 〈S(t, f )〉n]tn /∈τ . (A.2)

It is easy to see that this temporal structure is reflected on the time marginal y(tn), as

(A.1) can be written as:

y(tn)
∣∣∣
tn∈τ

≥ y(tn)
∣∣∣
tn /∈τ

, (A.3)

since y(tn) = ∑ f S(tn, f ), and to the fact that ∑ f 〈S(t, f )〉n is a constant invariant in time.

Note that (A.1) and (A.2) simply say that the largest values of the distance vector occur

where the TF spectrum is most concentrated. Notice that this idealized scheme is fairly

well followed by the nonstationary signals shown Fig. 2.5. A simple example of this

scheme is also illustrated in Fig. A.2, where a given time-varying spectrum exhibiting

the aforementioned temporal structure is shown. The "slices" in time representing the

local spectra over τ, and the relation with the distance in time are also illustrated.

The key point of using the same vector ỹn to weight the distances {c
(si)
n , n = 1..., N}

of the surrogate set, is that one is in fact adding a dependence structure to the collection

of i = 1, ..., I distances, which is dictated by the time marginal. Furthermore, and also

important, there should exist a positive covariance between consecutive weighted dis-

tances {c̃
(si)
n , i = 1..., I}, whereas, the more nonstationary the signal (or the stronger

the observed temporal structure in ỹn), the greater the covariance should be. In other

words, for any i, l ∈ [1, I], greater of values of c̃
(si)
n will mainly correspond with the

greater values of c̃
(sl)
n (as both random vectors are being weighted by the same vector

ỹn), which characterizes a positive covariance. The latter can be also easily demon-

strated by using the expression for the covariance. Let {c̃
(si)
n = c

(si)
n ỹn, n = 1, ..., N} and

{c̃
(sl)
n = c

(sl)
n ỹn, n = 1, ..., N} be two random variables, where c

(si)
n and c

(sl)
n are i.i.d. and

the weighting vector ỹn is independent of c
(si)
n and c

(sl)
n . Hence, the covariance can be
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expressed as follows:

Cov{c̃
(si)
n , c̃

(sl)
n } = E{c̃

(si)
n c̃

(sl)
n } − E{c̃

(si)
n }E{c̃

(sl)
n },

Cov{c̃
(si)
n , c̃

(sl)
n } = E{c

(si)
n ỹnc

(sl)
n ỹn} − E{c

(si)
n ỹn}E{c

(si)
n ỹn},

Cov{c̃
(si)
n , c̃

(sl)
n } = E{ỹ2

n}E{c
(si)
n c

(sl)
n } − E

2{ỹn}E{c
(si)
n }E{c

(si)
n },

where, since c
(si)
n and c

(sl)
n are i.i.d., we have

Cov{c̃
(si)
n , c̃

(sl)
n } = [E{ỹ2

n} − E
2{ỹn}]E{c

(si)
n }E{c

(si)
n } = Var{ỹn}E

2{c
(si)
n },

which should be positive.
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Figure A.2: Example of a TF representation exhibiting a concentration of the spectrum
and the temporal structure observed in the time marginal and in the distance in time.

Based on the considerations above, one can show that the conditions presented in

(2.27) for the gamma parameters are attended by weighting the distances with ỹn. First,

recall that the gamma parameters k and θ are estimated from {Θ0(i) = Var{c̃
(si)
n }, i =

1, ..., I} by maximum likelihood. It can be shown that, for the gamma distribution, the

log-likelihood function is given by:

ℓ(k, θ) = (k − 1)
I

∑
i=1

ln Θ0(i)−
1

θ

I

∑
i=1

Θ0(i)− Ik ln(θ)− I ln Γ(k) (A.4)

By taking the derivative with respect to θ and setting it to zero, we can easily find the

maximum likelihood estimator of the θ parameter:

θ̂ =
1

kI

I

∑
i=1

Θ0(i) =
1

kI

I

∑
i=1

Var{c̃
(si)
n }. (A.5)
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By using some basic variance rules, we can see that:

Var

{
I

∑
i=1

c
(si)
n

}
=

I

∑
i=1

Var{c
(si)
n }+ 2

I

∑
i<l

Cov{c
(si)
n , c

(sl)
n }. (A.6)

Hence we could rewrite (A.5) as follows:

θ̂ =
1

kI

I

∑
i=1

Var{c
(si)
n } =

1

kI
Var

{
I

∑
i=1

c
(si)
n

}
− 2

kI

I

∑
i<l

Cov{c
(si)
n , c

(sl)
n }. (A.7)

It is simple to express the condition of (2.26) for Θ1/θ and Θ′
1/θ′ in terms of variances.

To do so, note that Θ1 = Var{cx
n} and Θ′

1 = Var{c̃x
n}, where cx

n and c̃x
n are, respectively,

the original and the modified distance vectors of the signal itself. Thus, (2.26) can be

written as:

Var{c̃x
n}

1

k′ I
Var

{
I

∑
i=1

c̃
(si)
n

}
− 2

k′ I

I

∑
i<l

Cov{c̃
(si)
n , c̃

(sl)
n }

>
Var{cx

n}
1

kI
Var

{
I

∑
i=1

c
(si)
n

}
− 2

kI

I

∑
i<l

Cov{c
(si)
n , c

(sl)
n }

(A.8)

Since the surrogates are i.i.d.,the original distance vectors {c
(si)
n , i = 1..., I} computed for

consecutive surrogates, should not present a significance dependence structure, in a way

that the terms {Cov{c
(si)
n , c

(sl)
n }, i < j} in (A.8) should be close to zero, independently

of the stationarity/nonstationarity of the signal. This is not the case for the weighted

distances, as the terms Cov{c̃
(si)
n , c̃

(sl)
n } should take large positive values for the case of

nonstationarity (as seen in (A.2) and (A.3)). By replacing the covariance terms, one could

rewrite (A.8) as follows:

Var

{
I

∑
i=1

c
(si)
n

}

Var

{
I

∑
i=1

c̃
(si)
n

}
−

I

∑
i<l

Cov{c̃
(si)
n , c̃

(sl)
n }

>
k

k′
Var{cx

n}
Var{c̃x

n}
. (A.9)

Although the right-hand side of (A.9) has to be greater than one, and also should in-

crease for for the case of nonstationarity (where k′ > k), the left-hand side should take

much larger values if the time-varying spectrum undergoes a structured evolution in time.

In this case, not only the variance computed in the numerator will grow, but also the co-

variance terms Cov{c̃
(si)
n , c̃

(sl)
n } will keep the value of the denominator low, guarantying

that the inequality holds. According to this, the condition Θ′
1/θ′ > Θ1/θ shown (2.26)

should hold if the TF representation exhibits a structured evolution in time.

In order to verify the condition for the shape parameter (k′ < k), we first substitute
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(A.5) in (A.10) to obtain:

ℓ(k) = (k − 1)
I

∑
i=1

ln [Θ0(i)]− Ik − Ik ln

[
1

kI

I

∑
i=1

Θ0(i)

]
− I ln Γ(k). (A.10)

Now, by taking the derivative with respect to k and equaling to zero, we obtain:
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Figure A.3: Plot of f (k) = ln(k)− ψ(k) for k > 0.

ln(k)− ψ(k) = ln

[
1

I

I

∑
i=1

Θ0(i)

]
− 1

I

I

∑
i=1

ln [Θ0(i)] , (A.11)

where ψ(k) = Γ′(k)/Γ(k) is the digamma function. Different from (A.5), in (A.11) there

is no analytical solution for k. However, if we define f (k) = ln(k) − ψ(k), it could be

verified that f (k) decreases monotonically for k > 0 (see Fig. A.3). Therefore, for any

positive k1, k2 ∈ ℜ where k1 < k2, the inequality f (k1) < f (k2) should hold. Note that

(A.11) can be rewritten as:

ln(k)− ψ(k) = f (k) = ln




1

I

I

∑
i=1

Θ0(i)

I

∏
i=1

Θ0(i)

1

I




. (A.12)

The right-hand side of (A.12) stands for the logarithm of the arithmetic mean of Θ0(i)

divided by its geometric mean. Since {Θ0(i), i = 1, ..., I} is formed by I variances of the

distances computed for the surrogates, we can express (A.12) as:

ln




1

I

I

∑
i=1

Θ0(i)

I

∏
i=1

Θ0(i)

1

I



= ln




1

I

I

∑
i=1

Var{c(si)}

I

∏
i=1

Var{c(si)}
1

I




. (A.13)
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Moreover, if we use (A.6), it can be seen that (A.13) can be given as:

ln
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Var{c
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n }

I

∏
i=1

Var{c
(si)
n }

1

I



= ln




1

I
Var

{
I

∑
i=1

c
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Cov{c
(si)
n , c

(sl)
n }

I

∏
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Var{c
(si)
n }

1

I




. (A.14)

According to (2.26), we need to have k′ < k for the case of nonstationarity. As f (k) =

ln(k)− ψ(k) is monotonically decreasing for k > 0 (see Fig. A.3), the condition for k can

be expressed as:

ln




1

I
Var

{
I

∑
i=1

c̃
(si)
n

}
− 2

I

I

∑
i<l

Cov{c̃
(si)
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(sl)
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I
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(sl)
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I

∏
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Var{c(si)}
1

I




(A.15)

Expanding the product of variances in the denominator of (A.15) is a tedious task,

as there will be many cross terms. On the other hand, we can express the product of

variances between two consecutive distances c
(si)
n and c

(sl)
n as follows:

Var{c
(si)
n }Var{c

(sl)
n } =

[
Var{c

(si)
n }+ Var{c

(sl)
n }

]2
−

[
Var2{c

(si)
n }+ Var2{c

(sl)
n }

]

2
,

(A.16)

where, by using (A.6), we could see that:

Var{c
(si)
n }Var{c

(sl)
n } =

[
Var{c

(si)
n + c

(sl)
n } − 2Cov{c

(si)
n , c

(sl)
n }

]2
−

[
Var2{c

(si)
n }+ Var2{c

(sl)
n }

]

2
.

(A.17)

The product of variances in the denominator of (A.15), can thus be expressed as:

I
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1
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Var2{c
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n }+ Var2{c
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2





1

I
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(A.18)
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By replacing (A.18) in (A.15) we obtain the following:
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1

I
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f (k)

,

(A.19)

where we should have f (k′) ≥ f (k) in order to guarantee the condition in (2.26) (i.e.

k′ < k). The terms Cov{c̃
(si)
n , c̃

(sI−i+1)
n } in (A.19) take large positive values in case of

nonstationarity, due to the dependence imposed by weighting with ỹn. On the other

hand, Cov{c
(si)
n , c

(sI−i+1)
n } should be much closer to zero, in a sense that one could verify

Cov{c̃
(si)
n , c̃

(sI−i+1)
n } ≫ Cov{c

(si)
n , c

(sI−i+1)
n } for i = 1, ..., I/2. Note that the greater the

covariances, the smaller the denominator of (A.19). As the terms in the denominator of

(A.19) are multiplied out I/2 times, the influence of the covariance terms will be boosted

significantly. Hence, the left-hand side of (A.19) will take much larger values whenever

the values of the covariances are large (i.e. in case of nonstationarity), and one will have

f (k′) > f (k). Hence, the condition k′ < k is verified.

A.2 Problems with weighting probability-based distances

As it has been shown in Table 2.3, by weighting the probability-based distances ac-

cording to the procedure described in Section 2.6, we end up affecting the detection

of nonstationarity. It happens due to the normalization of the spectra that is required

for this class of distances. By normalizing the spectra G( f ) and H( f ) to the unity, we

reduce drastically the range of possible values taken by the corresponding distances,

which turns out to be a critical point for the method.

For all practical purposes it can be assumed that the distances of probability nature

considered in this work will take values in the range [0, 1]. As illustration, we show in

Fig. A.4 the histograms of the values taken by the probability-based distances (DKL(·, ·),
DKM(·, ·) and DGM(·, ·)), before weighting, for all the cases tested with the surrogate
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approach in this manuscript.
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Figure A.4: Histograms of the values taken by the probability-based distances for all
cases tested with the surrogate approach.

Notice that only a few outliers are greater than one, and as a matter of fact, the

percentage of cases where D(·, ·) ≥ 1 is less than 0.05% for all cases. Hence, we can

assume that 0 ≤ DKL(·, ·) ≤ 1, 0 ≤ DKM(·, ·) ≤ 1, and 0 ≤ DGM(·, ·) ≤ 1. Thus, if

we choose any of these distances for computing the vector {cn, n = 1, ..., N}, we should

have 0 ≤ cn ≤ 1 for every n = 1, ..., N. From this, if we define E{cn} = ν, we could

easily demonstrate the following:

0 ≤ cn ≤ 1 ⇒ 0 ≤ c2
n ≤ cn,

0 ≤ E{c2
n} ≤ E{cn} ⇒ E{c2

n} − E2{cn} ≤ E{cn} − E2{cn},

Var{cn} ≤ E{cn}(1 − E{cn}) ⇒ Var{cn} ≤ ν(1 − ν).

(A.20)

Also, since 0 ≤ ν ≤ 1, it is simple to verify the following:

argmax
ν

[ν(1 − ν)] = 0.5 and max ν(1 − ν) = 0.25, (A.21)

Hence, we have 0 ≤ Var{cn} ≤ 0.25 whenever 0 ≤ cn ≤ 1. The problem with weighting

such distances, is that the weighting vector itself is given in 0 ≤ ỹn ≤ 1. Thus, for the

weighted distance {c̃n = ỹncn, n = 1..., N}, we necessarily verify the following:

0 ≤ c̃n ≤ cn ≤ 1 ⇒ 0 ≤ E{c̃n} ≤ E{cn} ≤ 1 for n = 1, ..., N, (A.22)

and then one could use (A.20) for showing that Var{c̃n} ≤ E{c̃n}(1−E{c̃n}). The latter

can be expressed as Var{c̃n} ≤ ν′(1 − ν′) by letting E{c̃n} = ν′. Note that max ν′(1 −
ν′) ≤ 0.25, as ν′ ≤ ν. Consequently, the variance of the weighted distance is confined in

0 ≤ Var{c̃n} ≤ max ν′(1 − ν′) ≤ 0.25. Thus, the vector of variances computed for the

surrogate dataset {Θ′
0(i) = Var{c̃

(si)
n }, i = 1, ..., I} (where I is the number of surrogates),
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will also be affected, and then we will have the following situation:

0 ≤ Θ′
0(i) ≤ max E{c̃

(si)
n }(1 − E{c̃

(si)
n }) ≤ 0.25 for i = 1, ..., I.

In practice, the estimated variance of the weighted distances will take values of the

order of 10−5 (in the average). The latter can be seen in Fig. A.5, where we illustrated the

estimates of Var{c̃
(si)
n } for the nonstationary signals illustrated in Fig. 2.2 with T = 300.

Due to the very small range for which Var{c̃n} and Var{c̃
(si)
n } are given, the round off

errors and approximations in the estimation of the gamma parameters will be a critical

problem, as well as the variance of the MLE estimators of θ and k (for which the latter

needs to be computed numerically).
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Signals following the abrupt-change model
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Figure A.5: Histograms of the values taken by the estimated variances forming the
vector Θ′

0, for the probability-based distances and for the nonstationary signals shown
in Fig. 2.2 with T = 300.
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