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Abstract

The development of highly coherent X-ray sources offers new possibilities to image
biological structures at different scales exploiting the refraction of X-rays. The coherence
properties of the third-generation synchrotron radiation sources enables efficient imple-
mentations of phase contrast techniques. One of the first measurements of the intensity
variations due to phase contrast has been reported in 1995 at the European Synchrotron
Radiation Facility (ESRF). Phase imaging coupled to tomography acquisition allows three-
dimensional imaging with an increased sensitivity compared to absorption CT. This tech-
nique is particularly attractive to image samples with low absorption constituents. Phase
contrast has many applications, ranging from material science, palaeontology, bone re-
search to medicine and biology. Several methods to achieve X-ray phase contrast have
been proposed during the last years. In propagation based phase contrast, the measure-
ments are made at different sample-to-detector distances.

While the intensity data can be acquired and recorded, the phase information of the
signal has to be 'retrieved" from the modulus data only. Phase retrieval is thus an ill-
posed nonlinear problem and regularization techniques including a priori knowledge are
necessary to obtain stable solutions. Several phase recovery methods have been developed
in recent years. These approaches generally formulate the phase retrieval problem as a
linear one. Nonlinear treatments have not been much investigated. The main purpose of
this work was to propose and evaluate new algorithms, in particularly taking into account
the nonlinearity of the direct problem.

In the first part of this work, we present a Landweber type nonlinear iterative scheme
to solve the propagation based phase retrieval problem. This approach uses the analytic
expression of the Fréchet derivative of the phase-intensity relationship and of its adjoint,
which are presented in detail. We also study the effect of projection operators on the
convergence properties of the method. In the second part of this thesis, we investigate the
resolution of the linear inverse problem with an iterative thresholding algorithm in wavelet
coordinates. In the following, the two former algorithms are combined and compared with
another nonlinear approach based on sparsity regularization and a fixed point algorithm.
The performance of theses algorithms are evaluated on simulated data for different noise
levels. Finally the algorithms were adapted to process real data sets obtained in phase CT
at the ESRF at Grenoble.

Keywords: Phase contrast, phase retrieval, Fresnel diffraction, coherent imaging, in-
verse problems, nonlinear problems, Fréchet derivative, X-ray imaging, X-ray microscopy,
in-line phase tomography, nonlinear optimization.



Résumé francais

Le développement de sources cohérentes de rayons X offre de nouvelles possibilités
pour visualiser les structures biologiques a différentes échelles en exploitant la réfraction
des rayons X. La cohérence des sources synchrotron de troisieme génération permettent
des implémentations efficaces des techniques de contraste de phase. Une des premieres
mesures des variations d’intensité dues au contraste de phase a été réalisée en 1995 a
I'Installation Européenne de Rayonnement Synchrotron (ESRF). L’imagerie de phase cou-
plée a l'acquisition tomographique permet une imagerie tridimensionnelle avec une sensi-
bilité accrue par rapport & la tomographie standard basée sur absorption. Cette technique
est particulierement adaptée pour les échantillons faiblement absorbante ou bien présen-
tent des faibles différences d’absorption. Le contraste de phase a ainsi une large gamme
d’applications, allant de la science des matériaux, a la paléontologie, en passant par la
médecine et par la biologie. Plusieurs techniques de contraste de phase aux rayons X
ont été proposées au cours des dernieres années. Dans la méthode de contraste de phase
basée sur le phénomeéne de propagation l'intensité est mesurée pour différentes distances
de propagation obtenues en déplacant le détecteur.

Bien que l'intensité diffractée puisse étre acquise et enregistrée, les informations de
phase du signal doivent étre "récupérées" a partir seulement du module des données
mesurées. L’estimation de la phase est donc un probléme inverse non linéaire mal posé et
une connaissance a priori est nécessaire pour obtenir des solutions stables. Si la plupart
de méthodes d’estimation de phase reposent sur une linéarisation du probléme inverse, les
traitements non linéaires ont été trés peu étudiés. Le but de ce travail était de proposer
et d’évaluer des nouveaux algorithmes, prenant en particulier en compte la non linéarité
du probleme direct.

Dans la premiere partie de ce travail, nous présentons un schéma de type Landweber
non linéaire itératif pour résoudre le probleme de la récupération de phase. Cette approche
utilise I’expression analytique de la dérivée de Fréchet de la relation phase-intensité et de
son adjoint. Nous étudions aussi l'effet des opérateurs de projection sur les propriétés
de convergence de la méthode. Dans la deuxiéme partie de cette theése, nous étudions la
résolution du probléme inverse linéaire avec un algorithme en coordonnées ondelettes basé
sur un seuillage itératif. Par la suite, les deux algorithmes sont combinés et comparés
avec une autre approche non linéaire basée sur une régularisation parcimonieuse et un
algorithme de point fixe. Les performances des algorithmes sont évaluées sur des données
simulées pour différents niveaux de bruit. Enfin, les algorithmes ont été adaptés pour
traiter des données réelles acquises en tomographie de phase a 'ESRF a Grenoble.

Mots-clés: Contraste de phase, récupération de la phase du rayon X, diffraction de
Fresnel, I'imagerie cohérente, probleme inverse, probleme non linéaire, dérivée de Fréchet,
imagerie par rayons X, microscopie & rayons X, tomographie de phase en ligne, optimisation

non linéaire.
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Introduction générale

a micro-tomographie par rayons X (uCT) est devenue aujourd’hui une technique in-
L contournable en imagerie biomédicale. Elle permet de révéler les structures internes
en trois dimensions de petits animaux entiers ou de matériaux, et en plus d’accéder a
des informations quantitatives. La tomographie standard est basée sur ’atténuation des
rayons X. La micro-tomographie par rayons X (uCT) est utilisée dans une grande var-
iété d’applications biologiques [Davis and Wong (1996), Salomé et al. (1999), Nuzzo et al.
(2002),Bayat et al. (2005),Chappard et al. (2006),Ito et al. (2006), Kazakia et al. (2008)]
et en science des matériaux [Baruchel et al. (2000), Bonse (1999)].

Dans le domaine des rayons X durs (énergies supérieures a 6keV), un probléme bien
connu du contraste d’atténuation des rayons X est le manque de sensibilité et de spéci-
ficité. Par rapport aux techniques d’imagerie d’atténuation conventionnelles, le principal
intérét de I'imagerie de phase par rayons X est la possibilité d’étudier des objets avec soit
une absorption négligeable ou des multi-matériaux qui ont une absorption similaire. Par
ailleurs, le déphasage pour des éléments a faible Z, améliore la sensibilité avec trois ordres
de grandeur [Momose et al. (1995)b], ce qui rend cette modalité d’imagerie attrayante
pour I'imagerie biomédicale des tissus mous.

La mise au point des synchrotrons de troisieme génération a ouvert la possibilité de
développer de nouvelles techniques d’imagerie par rayons X basées sur I'imagerie de con-
traste de phase par propagation. Dans ce cas, la notion clé pour accéder a I'information
de phase est une forte cohérence du faisceau de rayons X.

Une des premieres mesures des variations d’intensité dues au contraste de phase par
propagation a été réalisée en 1995 a I'Installation Européenne de Rayonnement Syn-
chrotron (ESRF) [Cloctens et al. (1999)] (Figure 1). Une variété de méthodes de contraste
de phase a été développée dans le passé et peut étre classifiée ainsi: les techniques a base
de cristal analyseur [Boettinger and Kuriyama (1979),Davis et al. (1995),Chapman et al.
(1997),Stampanoni et al. (2006),Modregger et al. (2007)], les méthodes interférométriques
[Bonse and Hart (1965), Momose et al. (1996)], linterférométrie avec des grilles [David
et al. (2002), Momose et al. (2003), Zanette (2011)] et les techniques basées sur la propa-
gation [Snigireva et al. (1995), Cloetens et al. (1996)].

Si la cohérence spatiale du faisceau de rayons X est suffisante, la facon la plus simple
expérimentalement d’obtenir une image de contraste de phase consiste a laisser le faisceau
se propager dans l'espace libre apres Uinteraction avec 1'objet [Snigireva et al. (1995),
Cloetens et al. (1996)] (Figure 2). La relation entre le décalage de phase induit par
un échantillon et 'intensité enregistrée a une distance échantillon-détecteur D repose sur
la théorie de la diffraction de Fresnel. L’information de phase n’est pas explicitement
accessible dans la mesure de l'intensité et elle doit étre extraite. Le décalage de la phase
est proportionnel a une projection de la distribution de la partie réelle de l'indice de

réfraction complexe 9, dans I'objet. En couplant la micro-tomographie et le contraste
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Figure 1: Des images de contraste de phase par rayons X pour un échantillon de matiere a
deux couches: une couche de polystyrene de 30 um couverte d’'une deuxieme couche de 15
pum de paryléne pour (a) D = 0.3 cm, (b) D =19 cm et (¢) D = 83 cm. L’acquisition des
données ont été réalisées a 'ESRF pour E = 18keV. Détails de I'image pour le distances
échantillon-détecteur (d) D = 15 cm et (e) D = 310 cm. Reproduit & partir de [Cloetens
et al. (1999)].

de phase, on peut reconstruire une carte 3D de 'indice §,, étroitement relié a la densité
électronique [Cloetens et al. (1997)b,Momose et al. (1998), Weitkamp et al. (2008)]. Ce

processus peut étre obtenu par deux étapes:

1. Dans un premier temps, le décalage de phase induit par objet est estimé pour chaque

angle de projection, processus appelé estimation de phase (phase retrieval).

2. Dans un second temps, un algorithme standard de reconstruction tomographique est
appliqué en utilisant les images de phase estimées, produisant de cette fagcon une

reconstruction en 3D de J,.

Diverses méthodes ont été proposées dans la littérature pour résoudre le probléme
d’estimation de la phase [Nugent (2010)]. Les méthodes bien connues sont: 1’équation
de transport de lintensité (TIE) [Nugent et al. (1996), Barty et al. (1998), Gureyev
et al. (1999), Beleggia et al. (2004), Turner et al. (2004), Paganin (2006)] qui est basée
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Figure 2: Montage expérimental pour la technique de contraste de phase par propagation
pour un faisceau de rayons X parallele. Le champ incident est supposé avoir un degré de
cohérence élevé et passe a travers un échantillon de diametre z. Les images de contraste
de phase sont enregistrées sur le détecteur a la taille du pixel ps pour différentes distances
D dans le domaine de Fresnel. r définit la taille de la plus petite microstructure interne
de I’échantillon.

sur 'utilisation de mesures de l'intensité obtenues & des distances de propagation courtes
(généralement deux distances D). Ces méthodes peuvent étre affinées par d’autres tech-
niques comme les algorithmes Gerchberg-Saxton-Fienup (GSF) [Fienup (1982), Gureyev
(2003)]. Les autres méthodes s’appuient sur la fonction de transfert de contraste (CTF)
[Guigay (1977),Cloetens et al. (1996),Zabler et al. (2005)], qui donnent de bons résultats
pour une absorption faible et une phase variant lentement ou sur ’approche mixte entre
les deux méthodes: TIE et CTF [Guigay et al. (2007)]. Toutes ces méthodes reposent sur
la linéarisation de la relation entre la phase et 'intensité mesurée, valable sous certaines
hypotheses restrictives, entrainant ainsi quelques approximations du probleme direct de la
formation de I'image de contraste de phase.

Plusieurs méthodes ont été proposées pour améliorer ces algorithmes linéaires. Langer
et al. [Langer et al. (2010)] ont proposé d’introduire dans I’approche mixte ’a priori que la
phase et 'absorption sont proportionnelles. Une approche de récupération de phase basée
sur la méthode TIE utilisant une seule distance de propagation, pour un objet homogéne
avec un rapport entre la partie imaginaire et la partie réelle de l'indice de réfraction a
été proposée par Paganin [Paganin el al. (2002)] et a été étendue a deux matériaux
homogenes [Beltran et al. (2010)]. Ce type d’a priori est valable pour les objets multi-
matériaux composés de plusieurs matériaux homogenes [Wu et al. (2005), Beltran et al.
(2010)]. Une nouvel a priori sur la phase a été proposé dans [Langer et al. (2012)a]. Cet
a priori est obtenu a partir de la reconstruction tomographique de I'image d’absorption a
partir de 'intensité mesurée a la distance de propagation de D = 0 m. Cet a priori est
introduit dans la gamme des basses fréquences seulement. Tout en évitant les hypotheses

concernant 1’objet, le bruit de basse fréquence peut étre réduit et la résolution spatiale
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peut étre améliorée.

Malgré les limitations actuelles, ces méthodes ont trouvé de nombreuses applications
en science des matériaux [Baruchel et al. (2006), Mayo et al. (2012)], en paléontologie
[Tafforeau et al. (2006)] ou en imagerie biomédicale [Cancedda et al. (2007), Langer et al.
(2012)b,Marinescu et al. (2013)]. Cette technique posséde également un potentiel pour les
applications cliniques tels que la mammographie [Castelli et al. (2011)] et des recherches
sont en cours pour I’étendre & des de laboratoire [Mayo et al. (2003)].

Le probleme d’estimation de phase est un probleme inverse mal posé dans le sens
de Hadamard, c’est a dire qu’une solution peut ne pas exister, étre non unique et ne pas
dépendre continuement des données. Des méthodes de régularisation sont donc nécessaires.
Ce probleme a regu une attention considérable au cours des derniéres années dans de
nombreux domaines, par exemple, l'optique, la cristallographie par rayons X, I’astronomie
ou le traitement de signal audio . Les méthodes reposant sur une linéarisation du probleme
direct peuvent étre affinées par d’autres méthodes prenant en compte la non linéarité
du probléme. Récemment, de nouveaux algorithmes ont été proposés et appliqués en
radiographie sur données simulées [Gureyev (2003), Moosmann et al. (2010), Moosmann
et al. (2011)] et en tomographie sur des données expérimentales [Hofmann et al. (2011),
Moosmann et al. (2013)]. Toutefois, la prise en compte de la non linéarité n’a pas été

beaucoup étudiée dans la littérature.

Objectifs

L’objectif principal de ce travail est de proposer et d’évaluer de nouveaux algorithmes,
en tenant compte de la non linéarité du probléme direct. Une autre motivation importante
de ce travail est également de réduire le nombre de mesures en utilisant seulement deux
distances de propagation, y compris celle permettant de mesurer ’absorption.

1l s’agit donc de développer un nouveau modele mathématique en utilisant comme point
de départ les solutions obtenues par une approche linéarisée. Une attention importante
a été consacrée a la solution mixte car il a été montré que c’est la solution linéaire la
plus robuste. Nous avons proposé des méthodes basées sur la dérivée de Fréchet de la
relation phase-intensité. Différents type d’a priori ont été considérés. Les performances
des méthodes proposées en présence du bruit sont également discutées. Les méthodes
non linéaires proposées sont itératives impliquant un important temps de calcul, donc une
attention particuliere a été consacrée a 'efficacité du calcul en raison du tres grand nombre
de données expérimentales utilisées. Nos algorithmes ont été évalués en utilisant a la fois

des données simulées et des images réelles acquises a 'ESRF de Grenoble.

Résumé

Les grandes lignes de ce manuscrit sont les suivantes:
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La partie I est un bref résumé des modalités d’imagerie par rayons X et des problémes
physiques relatifs a cette thése. Apres avoir introduit différentes notions de base, telles
que la notion de cohérence d’un faisceau de rayons X, le chapitre 2 présente les différentes
techniques de contraste de phase. Le réle important du détecteur est également discuté.
Le chapitre 3 décrit le probleme direct de la formation de I'image et présente les princi-
pales méthodes linéaires d’estimation de phase dans le domaine de Fresnel, ainsi que les
algorithmes non linéaires proposés récemment. Le chapitre 4 qui présente les notions du
probleme inverse mal posé, le principe de la régularisation de type Tikhonov, ainsi que la
méthode de Landweber adaptée aux problemes non linéaires conclut cette partie.

Dans la partie II de ce manuscrit, nous proposons de nouveaux algorithmes non linéaires
itératifs d’estimation de phase a partir de la diffraction de Fresnel, reposant sur I'utilisation
de la dérivée de Fréchet. Le chapitre 5 présente un algorithme non linéaire itératif de type
Landweber évalué sur des images de phase 2D simulées. Cet algorithme est amélioré en
exploitant une expression analytique de la dérivé de Fréchet et de son adjoint. Enfin, dans
le chapitre 6, le schéma proposé précédemment est affiné en introduisant des opérateurs
de projection et un nouveau type de régularisation. Il est évalué sur deux types d’images
de phase.

Dans la partie III, des algorithmes exploitant des représentations multirésolution de la
phase sont proposés sur I’hypothese que la phase a une représentation parcimonieuse. Cette
partie commence avec le chapitre 7, qui donne un apercu de la théorie des ondelettes et
des méthodes d’optimisation basées sur le seuillage doux. Dans le chapitre 8, une méthode
d’inversion du probléme linéarisé pour une seule distance de propagation, reposant sur une
hypothese de parcimonie de la phase dans I’espace ondelettes, est proposé. Cet algorithme
est ensuite combiné avec la méthode non linéaire itérative présentée dans la partie II
avec des opérateurs de projection. La derniere section de cette partie est consacrée a une
comparaison approfondie des différents algorithmes itératifs non linéaires et des stratégies
de régularisation qui peuvent étre appliquées au probleme d’estimation de phase a partir
d’une seule distance de propagation.

La partie IV est consacrée a 'application de la méthode non linéaire développée a la
reconstruction micro-tomographique de phase. Dans le chapitre 9, apres avoir rappelé le
principe de la tomographique, 'application de la méthode non linéaire proposée dans le
chapitre 5 est évaluée tout d’abord sur des données simulées a différents niveaux de bruit,
puis sur des données expérimentales acquises a 'ESRF.

Finalement, le chapitre 10 résume briévement les travaux présentés et donne quelques

perspectives.
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Chapter 1

Introduction

n biomedical imaging, X-ray computed tomography (CT) has nowadays an invaluable
I role. The goal of X-ray CT is to reveal the three-dimensional internal structure of
entire small animals or materials and to access quantitative information. Traditional CT
is based on the attenuation of X-rays. X-ray microtomography (uCT) has a large variety
of applications such as bone imaging [Davis and Wong (1996),Salomé et al. (1999), Nuzzo
et al. (2002),Bayat et al. (2005),Chappard et al. (2006),Ito et al. (2006),Kazakia et al.
(2008)] and material science [Baruchel et al. (2000), Bonse (1999)].

In the hard X-ray region (energies above 6keV), a well-known problem of X-ray attenua-
tion contrast is the lack of sensitivity and specificity. Compared with the attenuation-based
imaging techniques, the main interest in X-ray phase imaging is the possibility to study
objects with either negligible absorption or multi-material objects which have similar ab-
sorption. Moreover, in the hard X-rays region, the phase-shift for low-Z elements improves
the sensitivity with three order of magnitude [Momose et al. (1995)b], which makes this
imaging modality attractive for biomedical imaging of soft tissues.

The availability of the third-generation of synchrotron has opened the possibility to
develop new X-ray imaging techniques based on phase contrast imaging. The key of
phase contrast information is a highly coherent X-ray beam like that one obtained from
synchrotron sources. Furthermore, for highly energetic X-rays, the phase-contrast remains
strong even if the absorption is weak, which allows lowering the dose.

The X-ray phase contrast imaging technique relies on the measurement of the Fresnel
diffraction intensity pattern associated to the phase shift induced by the object in the X-ray

beam. The first observations which attested the unexpected large variation of intensity was



CHAPTER 1. INTRODUCTION

reported by Cloetens et al. at European Synchrotron Radiation Facility (ESRF) [Cloetens
et al. (1999)] (Figure 1.1). A variety of phase contrast methods have been developed in
the past and they can be roughly divide into crystal analyser based techniques [Boettinger
and Kuriyama (1979), Davis et al. (1995), Chapman et al. (1997), Stampanoni et al.
(2006),Modregger et al. (2007)], interferometric methods [Bonse and Hart (1965),Momose
et al. (1996)], grating interferometry [David et al. (2002), Momose et al. (2003), Zanette
(2011)] and propagation based technique [Snigireva et al. (1995), Cloetens et al. (1996)].

Figure 1.1: X-ray phase contrast images for a two-layered sphere sample. A 30 pum layer
of polystyrene covered by a 15 um layer parylene for (a) D = 0.3 c¢cm, (b) D = 19 cm
and (c) D = 83 cm. Data acquisition have been performed at ESRF for E=18keV. Image
details for (d) D =15 cm and (e) D = 310 cm. Reproduced from [Cloetens et al. (1999)].

If the spatial coherence of the X-ray beam is sufficient, the easiest way to get a phase
contrast image is to let the beam propagate in free-space after interaction with the ob-
ject [Snigireva et al. (1995), Cloetens et al. (1996)] (Figure 1.2). Phase contrast from
Fresnel diffraction pattern is now a problem of paramount importance in various areas of
applied physics. In several cases, such as biomaterials, bone and small animal imaging,
both dense and soft tissues are present in the image object, hence strong absorption and
phase contrast will be contained in the recorded images. Coupling X-ray microtomogra-

phy and phase contrast allows improving the sensitivity of the method [Cloetens et al.
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(1997)b, Momose et al. (1998), Weitkamp et al. (2008)].
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Figure 1.2: Experimental setup for propagation based technique or “in-line phase tomog-
raphy” technique for a parallel X-ray beam. The incident field is assume to have a degree
of partial coherence and passes through a probed sample of diameter z . Phase contrast
images will be registered on the detector with the pixel size ps for different distances D in
the Fresnel field. r defines the size of the smallest internal microstructures of the sample.

The relationship between the phase shift induced by a sample and the intensity recorded
at a sample-to-detector distance D relies on Fresnel diffraction theory. The phase infor-
mation from a diffracted wave field is not explicitly recorded in the measured intensity
and must be extracted from the diffraction pattern. The phase shift is proportional to a
projection of the complex refractive index distribution in the object, and therefore phase
retrieval can be coupled to tomography.

The goal of hard X-ray phase tomography is to reconstruct the real part of the complex

refractive index [Cloetens et al. (1999)]. This process can be obtained in two steps:

1. the phase shift induced by the object is first retrieved for each projection angle,

process known as phase retrieval

2. a standard tomographic reconstruction algorithm is applied using the phase projec-
tions, yielding in this way a 3D reconstruction of the refractive decrement index

Op.

A variety of methods for the phase retrieval problem have been proposed in the liter-
ature and reviewed by Nugent [Nugent (2010)]. Well-known methods are the Transport
of Intensity Equation (TIE) [Nugent et al. (1996), Barty et al. (1998), Gureyev et al.
(1999), Beleggia et al. (2004), Turner et al. (2004), Paganin (2006)] which is based on
the use of a series of image measurements obtained at different short propagation dis-
tances (usually two distances D). These methods can be refined by other techniques like
Gerchberg-Saxton-Fienup algorithms (GSF) [Fienup (1982), Gureyev (2003)]. The others
methods rely on the Contrast Transfer Function (CTF) [Guigay (1977), Cloetens et al.
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(1996), Zabler et al. (2005)], which gives good results for weak absorption and slowly
varying phase or on the mized approach between the two former methods [Guigay et al.
(2007)].  All these approaches rely on a linearized relation between the phase and the
intensity valid under some restrictive assumptions, thus involving some approximations of
the direct problem of phase contrast image formation. Several methods have been studied
extensively. Langer et al. [Langer et al. (2010)] have proposed to introduce in the mixed
approach the prior that the phase and the absorption are proportional on the retrieved
phase. A single-distance phase retrieval approach using TIE method for a homogeneous
object for a given ratio of the imaginary to the real part of the refractive index has been
developed by Paganin [Paganin et al. (2002)] and extended to two homogeneous materials
in [Beltran et al. (2010)]. This type of prior is valid for multi-material objects comprised of
several homogeneous materials [Wu et al. (2005), Beltran et al. (2010)]. A new inversion
method where a prior phase estimate at each projection angle is obtained from an ap-
proximate absorption index map evaluated with the intensity measured for a propagation
distance D=0 m is described in [Langer et al. (2012)a]. This prior is introduced in the
low-frequency range only.

Despite current limitations, these methods have found various applications in material
science [Baruchel et al. (2006),Mayo et al. (2012)], palaeontology [Tafforeau et al. (2006)]
or biomedical imaging [Cancedda et al. (2007), Langer et al. (2012)b, Marinescu et al.
(2013)]. This technique has been also extended to laboratory sources [Mayo et al. (2003)]
and clinical experience for mammography [Castelli et al. (2011)].

Furthermore, this phase retrieval problem is an inverse ill-posed problem in the sense
of Hadamard, e.g. a solution may not exist, be non-unique and not depend continuously
on the data and hence regularization methods are required for a precise phase recovery.
Such a problem has received considerable attention over the last years in many fields e.g.,
optics, X-ray crystallography, astronomy or speech processing.

The limitations of linear methods due to the linearization of the direct problem can be
refined by other methods which take into account the nonlinearity of the phase problem.
While avoiding object assumptions, the low frequency noise can be reduced and the spatial
resolution can be improved. Recently, new algorithms that take into account this aspect
for the radiographic case have been proposed [Gureyev (2003), Moosmann et al. (2010),
Moosmann et al. (2011)] for simulated data and applied for the tomographic case [Hofmann
et al. (2011), Moosmann et al. (2013)] for experimental data. Yet, the effects of the

nonlinearity have not been much investigated in the literature.

Objectives

The main purpose of this work was to propose and evaluate new algorithms, in par-
ticularly taking into account the nonlinearity of the direct problem. These methods are

based on the Fréchet derivative of the phase-intensity relationship. The introduction of
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prior information to regularize the problem was particularly investigated.

The objective was to develop a new mathematical model using as input the former
linear phase solutions in order to improve the resolution and decrease low frequency noise
without any object assumptions. An important attention was dedicated to the mixed
solution since it has been demonstrated to be the most robust linear solution. One the
other hand an important motivation was also to reduce the number of measurements by
using only two distances, including the absorption one. The performance of the proposed
methods in presence of noise is also discussed.

Moreover, the nonlinear proposed methods are iterative involving important compu-
tational time, therefore special attention was devoted to computing efficiency due to the
large experimental data set. Our algorithms were evaluated using both simulated data
and real images obtained at the ESRF in Grenoble.

Outline

The outline of this manuscript is the following:

Part I is a short summary of the X-ray imaging modalities and of the physics problems
relevant to this thesis. An overview of the key property (coherence) of the third generation
synchrotron sources together with the most common phase-contrast imaging techniques is
given in Chapter 2. The important role of the detector in X-ray imaging is also discussed.
Chapter 3 outlines the direct problem of image formation and the main linear methods of
phase retrieval in Fresnel field, but also the nonlinear algorithms proposed for the in-line
phase contrast technique. Chapter 4 concluded this part, where details of well-posed and
ill-posed inverse problems, Tikhonov regularization scheme together with the Landweber
iteration method extended to nonlinear problems are given.

In the second Part of this manuscript, nonlinear iterative phase retrieval algorithms
from Fresnel diffraction patterns using the Fréchet derivative for microradiography are
detailed. We give the foundation of the nonlinear ill-posed problem and we propose a
Landweber type iterative algorithm and the mathematical expression of the Fréchet deriva-
tive matrix and analytical in Chapter 5. Finally, in Chapter 6 the previously proposed
scheme is refined by introducing projection operators and a new regularization scheme for
two types of varying phases is described.

In Part III, under the assumption that the phase has a sparse representation, a new
linear iterative algorithm is proposed for the radiographic case. This part starts with the
Chapter 7, where an overview of wavelet theory and an iterative optimization method
are given. In Chapter 8 an iterative thresholding algorithm in wavelet coordinates for
a single propagation distance is presented first. This algorithm is then combined with
the previously proposed iterative nonlinear method with a Tikhonov regularization and
projection operators in Section 8.2. The last section of this part is devoted to an extensive

comparison of the various nonlinear iterative algorithms and regularization strategies that
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can be applied to the phase retrieval problem using one single propagation distance.
Phase microtomographic reconstruction is performed in Part IV using the nonlinear
algorithm with Tikhonov regularization. First, the principles of tomography are reviewed
in Chapter 9, followed by the phase tomography for simulated data at different levels of
noise. Finally, the nonlinear algorithm is applied for experimental data. The last Chapter
10 of this manuscript is devoted to briefly summarize the presented work and to give some

perspectives.
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Chapter 2

Imaging with hard X-rays
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In this chapter we briefly present the physical properties of the 3"¢ generation synchrotron

radiation (SR) sources followed by an overview of the spatial and temporal coherence

property. The important role of the detector in phase imaging techniques is discussed

in Section 2.1.3. Section 2.2 reports the X-rays interaction with matter and the phase

contrast formation phenomenon. The description of the most common phase-contrast

imaging techniques using SR is given in Section 2.3.
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CHAPTER 2. IMAGING WITH HARD X-RAYS

2.1 The 3" generation synchrotron sources

2.1.1 What is a synchrotron?

Worldwide there are more than 70 synchrotron radiation sources (http://www.lightsources.
org) exploring several scientific areas. The advent of the third generation synchrotron X-
ray sources has revolutionized all aspects of X-ray sciences [Millson (2002), Bilderback
et al. (2005), Namkung (2010)]. Synchrotron applications can be performed in various

fields, such as:

o Applied materials science (imaging materials at nano-scales, defining intelligent poly-

mers, light metals and alloys)

o Engineering (imaging different samples at different scale in real time at high resolu-

tion)
o Chemistry (catalysts operation in large chemical processes)
o Structural biology (crystallography and cell biology)
o Life sciences (animal and plant imaging)
o Environment(toxicology and atmospheric research)

o Medicine (high resolution imaging for micro and nano biology samples, the under-

standing of the disease mechanisms).

I

Figure 2.1: Hand with Rings: print of Wilhelm Rontgen’s first medical X-ray, of his wife’s
hand (https://www.nlm.nih.gov/dreamanatomy/da_g_Z-1.html).

The X-rays were discovered in 1895 by W.C. Rontgen. It has soon be observed that
they were able to pass through the human body (Figure 2.1). Since their discovery, X-rays
have helped to solve many problems over the last century. In 1912, M. von Laue and P.

Knipping obtained the first diffraction pattern of a crystal using X-rays. The emission of
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2.1. THE 38P GENERATION SYNCHROTRON SOURCES

synchrotron light was first observed in 1947 at General Electric in the USA and has been
reported as undesirable, but after 1960s synchrotron radiation began to be recognized as

an exceptional tool for condensed matter research.

Future European XFEL
24

ESRF 2012 /=
Third generation
synchretron light source

ESRF original targat

T T T

Second generation
" synchrotron light source

5 First genaration
synchrotron light source

X-ray source average briliance (log)
&

Figure 2.2: Evolution of the brilliance of the X-ray sources (http://www.esrf.eu/).

Throughout history synchrotron sources have undergone several stages of development
(Figure 2.2). The establishment of SURF (Synchrotron Ultraviolet Radiation Facility) at
NBS (National Bureau of Standards) began the first generation of synchrotron-radiation
facilities, followed by the second-generation facilities in 1971 in U.K. at the Synchrotron
Radiation Source (SRS) at the Daresbury Laboratory. This invaluable tool led to the
construction in the late 1980s and early 1990s of the European Synchrotron Radiation
Facilities (ESRF) in Grenoble, France and shortly thereafter of other two third-generation
synchrotrons the Advanced Photon Source in the United States and SPring-8 in Japan.

Beamline Storage ring

Figure 2.3: Principal structures of the European Synchrotron Radiation Facilities (ESRF)
(http://http://wuw.esrf.eu/)

A typical synchrotron facility can be defined as a source of brilliant light produced
by using powerful electro-magnets and radio frequency waves to accelerate electrons to
extremely high energy. The interaction between the synchrotron beam and the matter

is observed at the end stations at the corresponding beamline. Figure 2.3 presents the
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CHAPTER 2. IMAGING WITH HARD X-RAYS

internal structures of the third-generation synchrotron. The principal structures of a syn-
chrotron are: 1. Electron gun, 2. Linac, 3. Booster ring, 4. Storage ring, 5. Beam-line
and 6. End station.

The storage ring is a closed-loop vacuum pipe where electrons are circulated nearly
to the speed of light. Along this pipe, wiggler or undulators are inserted in the straight
sections (Figure 2.4). Consequently, the synchrotron light is produced when the electrons
in the storage ring are accelerated transversally by either bending magnets or insertion
devices. They are kept circulating in closed orbited by a sophisticated system of magnetic
electron optics. The insertion devices have been added to the synchrotron with the aim

to improve the brilliance of the radiation.

BENDING

FOCUSING
MAGNETS

STORAGE RING

Figure 2.4: The ESRF storage ring includes in alternating order 32 curved and 32 straight
sections. The path of the electrons is forced into a racetrack-shaped orbit by two large
bending magnets, inserted in each curved section. The electrons are kept close to their ideal
orbital path by several focusing magnets placed in each straight section. The undulators
are placed in straight sections, there where the intense X-ray beams are produced (http:
//wuw.esrf.eu/).

A wiggler is a multi-pole magnet made up of a periodic series of magnets which has
the role of laterally accelerating the charged particle beam. The electrons will wiggle and
create a curved trajectory with a smaller local radius of curvature with respect to the
bending magnet. The emitted radiation is the incoherent sum of the radiation emitted by
each individual pole, therefore the total intensity is higher due to the contribution of many
magnet dipoles. Furthermore, the wavelength ()\) is inversely proportional to frequency
which is directly proportional to energy, hence, the wiggler creates a wavelength of light
with a larger energy.

Undulators consists of a periodic structure of dipole magnets which makes them very
similar to wigglers. In this case the wiggling angle of the electrons traversing the periodic
magnet structure is close to the photon natural emission angle. Between the photons
emitted at different points along the orbit, the radiation displays interference patterns
which lead to narrow energy bands. Moreover, for an undulator with N poles the emitted
radiation is mainly composed by a fundamental wavelength, hence the intensity is directly
proportional to the square of the number of poles N2. Some other useful information

concerning synchrotron radiation and the insertion devices can be found in [Onuki and
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Elleaume (2002), Clarke (2004), Hofmann (2004)].

The quality of the synchrotron sources can be quantitatively measured by a parameter,
the brilliance, which is directly proportional to the brightness of the source and indirectly
proportional to the source size (5;,5y), where S, and S, are the dimensions of the trans-
verse area of the source. This quantity can be write as brilliance = lm’g:% and the

brightness can be expressed as following [Raoux (1993)]:
2, AN -3 137 2 Ac
B(photons/sec/mrad /T =107") = 1327« 10 E), [GeV]I[A]HQ(T) (2.1)

where F), defines the particle energy, I the current in the storage ring and H> a dimen-
sionless function of the reduced variable %, where A represent the critical wavelength and
the maximum of the Hs function. Brightness can be understood also as being the quan-
tity that takes into account the number of photons and their concentration. Increasing
the brightness of the X-ray sources is equivalent to increase the flux, meaning that more
signal is available for the experiments. New projects for new powerful high brilliant X-ray
sources are developed and a short history of the brilliance evolution is reported in (Figure
2.2).

2.1.2 What is coherence?

An important aspect of the 3"¢ X-ray generation sources is the high degree of partial
coherence property of the X-ray beam. Optical coherence exists if the phase differences

between all pairs of points of the signal have definite values and are constant in time.

Why is coherence so important? A wave can be characterized by its capacity to produce
interference and diffraction phenomena. “Coherence” is the wave property that makes

possible the observation of the interference and diffraction phenomena.

For simplicity, let us considering the fact that the diffraction phenomenon is produced
by a circular slits of diameter d. If the wave source is a point source that emits a single
wavelength A with a single frequency f = ¢/\. This phenomenon is a series of circular
fringes at the detector (Figure 2.5). Therefore, we conclude that a single-wavelength

(monochromatic) point source is a coherent source.

Two types of coherence are distinguished: 1) longitudinal (temporal) coherence which
is related to the monochromaticity of the source and 2) transverse (spatial) coherence
related to the physical size of the source. The concepts of spatial and temporal coherence
are illustrated in Figure 2.5 and are important in discussing the phase characteristics of
imaging system. In general, the stability and the predictability of X-ray phase are related

to coherence property of the beam.
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Spatially  Diffraction

and pattern
Temporally
Spatially coherent
Incoherent cohexet
Source
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Figure 2.5: Light wave coherence. An incoherent light source emits spherical wave-fronts.
A small pinhole aperture focused and passes through the spherical wave-fronts improving
the spatial coherence of the source. Light emitted by the source pass then through a filter
to yield monochromatic light, achieving in this way temporal and spatial coherence. This
phenomenon is a series of circular fringes at the detector.

Transverse (spatial) coherence - the “diffraction limit”

The spatial coherence is related to the source size and gives information on how uniform
the phase of the wave-front is. Spatial coherence is the cross-correlation between two points
in a light wave for all times (Figure 2.6(b) A®(A; : Az)). A wave is perfectly spatially
coherent if has only 1 value of amplitude over an infinite length.

Let us assume that we have two point sources P; and P, placed at a distance s one from
each other (Figure 2.7(a)). The fringes patterns produced by each point source are received
superimposed on the detector. If the distance source-pinhole is denoted D, then the
centres of the two fringes patterns are at a distance of s/D from each other [Margaritondo
et al. (2003)]. It is known from the elementary theory of diffraction that the angular
distance between two adjacent fringes is ~ A/d radians. If A > s (%), the superimposed
sets of fringes are visible but blurred. This condition ensures spatial coherence or lateral
coherence [Margaritondo et al. (2003)]. Since, the “illumination angle” v of the two slits

is d/D = ~s, the spatial coherence equation becomes:
A > s7s. (2.2)

This equation means that the spatial coherence can be enhanced if the source size s is

reduced.

Another important parameter for spatial coherence is the source angular collimation

20 Valentina DAVIDOIU
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Figure 2.6: Time dependence and wavefronts of (a) random light and (b) coherent light
like monochromatic spherical wave. Temporal coherence measures the correlation between
the phases of the light wave at different points along the direction of propagation (A®(As :
Ay)). Spatial coherence is the cross-correlation between two points in the light wave for
all times (A®(A; : Az))

Source of two
wavelengths:

Nand AN

(a) (b)

Figure 2.7: Simplified analysis of (a) spatial coherence and (b) temporal coherence.

Af,. The spatial coherence can be increased by increasing the brightness, meaning that
the source geometry parameters s and A6 have to be decreased. If A = sAf; then
the diffraction limit is reached and the source is fully coherent. In practice, no source
exceeds the diffraction limit and they correspond to full spatial coherence and maximum

brightness.

Longitudinal (temporal) coherence

Temporal coherence is a measure of the correlation between the phases of a light wave
at different points along the direction of propagation (Figure 2.6(b) A®(As : A4)). This
coherence condition tells us how monochromatic a source is, i.e., it gives information about
its bandwidth AX. Suppose a point source emitting only two wavelengths, A and A\ + A\,
which at some point in space constructively interfere (Figure 2.7(b)). If AN/A < 1 the

fringes are difficult to observe, but they are still visible. This equation gives the condition

Valentina DAVIDOIU 21



CHAPTER 2. IMAGING WITH HARD X-RAYS

of longitudinal coherence or temporal coherence. The same reasoning can be applied to two
waves with wavelength A and A + A\, which will destructively interfere after some optical
path length I. ~ A\2/(2A\), where [, is called the coherence length. This parameter I, can
be understood by looking at the two wave patterns at a specific point: if the two waves
are in phase at this point in space they will be out of phase beyond this point. Moreover,
the minimum on the wave with wavelength A will coincide with the maximum of the wave
with wavelength A + A\ after a distance I.. We can conclude that a synchrotron source
is monochromatic when the source is bright, therefore the temporal coherence is more

directly connected to the brightness than the spatial coherence.

2.1.3 Detector and phase contrast

A limiting factor in exploring the full potential of the X-ray synchrotron facilities is the
detector resolution rs. The detector is the key feature to observe X-ray phase contrast.
The detection of the studied sample is correlated to the pixel size, the noise level and
the efficiency of the digital system used to image this object. The gain of the detector is
quantified by the detective quantum efficiency (DQE) parameter defined as [Rose (1946)]:

SNRou?
SNR;,>
where SNRy,: = /No(1 — au) is the output signal-to-noise ratio and SNR;,, = /Ny is

the input signal-to-noise ratio of the system. a denotes the detector thickness, Ny the

DQE = (2.3)

gamma ray photons and p the linear attenuation coefficient. In practice DQFE # 1 due
to the imperfection of the optical apparatus. Two types of detectors are commonly used:
photographic film and charge coupled devices (CCDs). CCDs are characterized by large
dynamic range, high spatial resolution and fast data acquisition. CCDs are most commonly
used instead of the photographic films because they are able to capture a large number
of two-dimensional frames with a fixed field of view, even if the photographic films offer
nearly infinite field of view and better resolution (=~ 1um), but due to the nonlinearity of

the detector with the incident wave their applicability is limited.

Principles of the detector system

Currently most experiments are performed with high quality X-ray CCD systems
[Bravin (2003), Phillips et al.  (2002)] in order to obtain phase contrast images. The
conversion from the incident X-ray to the visible spectrum of radiation is realized with a
phosphor screen. When the conversion is achieved, visible light photons with a defined
wavelength are emitted thanks to the scintillator element. The spatial resolution in the
detected image is fixed by an additional converting optics system. The detection system
components are: scintillator, magnifying lens system, mirror and CCD camera (Figure
2.8).
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The general operation principle of the detection system is described below. The pho-
tons from the scintillator output are designed with the first set of lens (Lens I in Figure
2.8) into an image at infinity, which will then be deflected by the plane mirror, positioned
between the two sets of lens, with an angle of 90 degrees into the vertical direction. The
mirror image will be then the input of the second set of lens (Lens II in Figure 2.8) as
an image to infinity. The chip of a CCD sensor will register the image obtained using the
output of Lens II, and this image will represent the intensity image used in retrieving the
phase map of the X-ray wave. The formalism of the image formation of Fresnel diffraction
is described in Section 2.2, but first a brief description of scintillator is given since this

component is critical in synchrotron imaging.

Monochromatic
wave

Sample Scin

Figure 2.8: Principle of an indirect high-resolution detector system, widely used in hard
X-ray imaging.

Spatial resolution

A scintillator is a material that has the property to emit luminous light [Dyer (2001)].
Spatial resolution is strongly influenced by the scintillating material used. In soft X-ray
energies range (<6 keV) commercially scintillators such as Y3Al;5015 : Ce (YAG:Ce) and
Lu3Al;012 : Eu (LAG:Eu) are used as sensor materials. Other phenomena like photo-
electric absorption, Rayleigh scattering and Compton scattering which strongly influence
the spatial resolution of the scintillator were studied in detail for several types of the
scintillators in [Martin and Koch (2006)].

Thin-film scintillators are widely used in synchrotron beam-lines, because they offer
many advantages compared to powder phosphors and conventional free standing single
crystals. For X-ray energies below 63 keV GGG:Eu is preferred to be used, but recently
new LSO:Tb single crystal films [Douissard et al. (2010), Cecilia et al. (2011)] have been
reported. Moreover LSO:Tb single crystal films obtained better absorption and higher
conversion efficiency than the usual YAG:Ce, LAG:Eu, LAG:Tb and GGG:Eu thin films.

According to Abbe’s theorem, the maximum resolution rs that can be achieved with
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a detector located not in the direct X-ray path (Figure 2.8) and is directly proportional
to the numerical aperture (NA) of the front objective and indirectly proportional with the
wavelength of the scintillator (Age;). This relationship represents the diffraction limit and
is given by the Rayleigh criterion [Born and Wolf (1997)]:

rs = 0.66As. /N A. (2.4)

The spatial resolution of the detector depends on NA [Born and Wolf (1997)]. The effective
pixel size of the camera should be adjusted according to the actual field of view and the
desired resolution (Shannon’s sampling theorem [Shannon and Weaver (1964)]).

A CCD camera specially designed for synchrotron radiation was developed at ESRF
(FReLoN [Labiche et al. (2007)]) in order to provide a higher dynamic-range with mod-
erate read-out speed of several frames per second. Different versions of the camera were
developed. In this work we mostly uses the 2048 x 2048 FReLoN camera with physical
pixel size 14um with appropriate optics. The effective pixel size of the detector covers the
range between 0.8 and 30pum [Weitkamp et al. (2010)].

2.2 X-rays - matter interaction

Before describing phase contrast techniques, the formalism of the image formation in
the case of Fresnel diffraction must be understood. An overview of fundamental aspects of
the theory of X-ray interaction with matter can be found in [Paganin (2006), Als-Nielsen
and McMorrow (2010)].

2.2.1 3D complex refractive index

A radiographic X-ray image represents the image recorded by the detector of the X-ray
beam intensity after the propagation through the investigated object. During propagation
through matter, X-rays undergoes some changes such as absorption and/or scattering
phenomena. The most common technique used to achieve contrast in radiography is
based on absorption.

Let us consider an object illuminated with an almost parallel and monochromatic X-
ray beam of wavelength A. Its interaction with the X-rays can be described by the 3D

complex refractive index of the medium, usually written as [Born and Wolf (1997)]:

Tl(il?,y,Z) = 1_5T($7y72)+iﬁ($7yaz) (25)
with A
ula,y.2) = By, 2), (2.6)

where 0, is the refractive index decrement, 5 the absorption index and u the attenuation
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coefficient for the spatial coordinates (z,y, z). The z denotes the propagation direction of
the X-rays (Figure 2.9). These two quantities depend on the radiation frequency and on
the material of the investigated object. Assuming a thin object the diffraction within the

object is neglected.

[]

R

\

_— _—

Figure 2.9: Fresnel diffraction geometry, showing aperture (or diffracting object) plane.
The (z,y) are the coordinates in image plane, z is the beam propagation direction. Each
point from the aperture 3 contribute to each point in the diffracted plane.

The real decrement 6, is due to Thomson scattering and the imaginary part 3 is the
result of the photoelectric effect and of the inelastic Compton scattering. Moreover, the

wave plane is defined by:

exp [in(z,y, 2)kz] = exp [—kzB(z,y, z)] exp [ikz (1 — 0,(z,y, 2))], (2.7)

where k = 27/X is the wave number in vacuum. If ¥’ denotes the wave number in the
material, a direct relationship exists between k and &’ and is given by n = K /k. According
to Eq. 2.7 the absorption index § is coupled to the absorption coefficients and the phase

shift is associated to the refractive index decrement 6.

2.2.2 Absorption versus Phase

The refractive index decrement ¢, and the absorption index [ can be formulated in
terms of atomic cross sections in the energy range (8-100 keV) typically used in radiographic
or tomographic imaging.

If we assume that 0% and ¢f are respectively the attenuation and phase shift cross

sections for an element a, then ¢, and 5 can be written as [Momose et al. (2009)b]:

or(x,y,2) = %ZNGU;@ (2.8)
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and \
= = Naod. 2.
Bla,y,z) = > Naa (2.9)

where A\ is the wavelength and N, the atomic density of an element a. If A from Eq. 2.8

is replaced by hc/E then the refractive index decrement can be express as:
hc v
or(z,y,2) = %—E%:Naaa, (2.10)

where h is the Planck constant and c is the speed of light. The phase contrast images

permit the direct access to the electron density distribution:

2 E?

e\t oy = 15 50\ Y, . 2.11
pel:y,2) = 5 50r(®:,2) (2.11)

The total or linear attenuation coefficient u is the quatity measured when an attenua-

tion contrast image is acquired and is based on the attenuation cross section ng (see last
term in Eq.2.9), composed of three types of photon interactions:
Ugb _ O_ghotoelectric + O_é];iayleigh + O_gompton' (212)

ab

The three processes that contribute to the formation of attenuation cross section o

are precisely formulated and described in [Als-Nielsen and McMorrow (2010)]. Depending
on the photon energy and material structure, each term of Eq.2.12 has more or less a
dominant contribution, e.g. for light materials and energies between 30 and 50 keV the
dominant process is the photoelectric one. Moreover, the absorption part of the atten-
uation cross section agb is due to the photoelectric effect. The photoelectric effect cross
section gPhotoelectric ig strongly dependent on the photon energy E and the atomic number
Z, of the material a [Wang (2007)]:

5
photoelectric o Za
a E35°

(2.13)

This equation holds far from “absorption edges” or discontinuities related with the binding

energy of the electron e.

The coherent sum of scatterings obtained from all the electrons in an atom is given
by Rayleigh scattering effect or elastic scattering. This effect dependent on the photon
energy E and the atomic number Z, of the material a [Wang (2007)]:

Rayleigh Za 2
o, <\%) - (2.14)

In other words, Rayleigh effect has a small contribution to the attenuation coefficients.

On the other hand the incoherent sum of scatterings from all electrons in an atom is given
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by Compton scattering effect or inelastic scattering. This cross section is:

Compton CMe Za

—_ 2.1
@ E + mec? (2.15)

where m.c? = 511 keV is the electron rest energy. The inelastic scattering effect is ap-
proximately proportional to the atomic number Z, of the material a.

The phase shift cross section is directly proportional with the atomic number Z, and
is expressed as:

A
of x ==, 2.16
S o)

As previously mentioned the photoelectric effect is dominant for the cross section of the
attenuation process, so we can make a rough approximation agb = agh‘)wdecmc X Z;;’ / E35,
By comparing this approximation with Eq. 2.16 for low photon energies, it can be observed
that the attenuation cross section diminishes with energy much faster in comparison with
the phase shift cross section. Imaging low-Z dose-sensitive object using phase contrast
technique is more advantageous than traditional methods based on absorption, because

by increasing the energy the phase contrast is much less reduced than absorption.

<10 o1
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1 4 6 8 1 4§ 8
Energy[eV] < 10" Energy[eV] <10

(a) (b)

Figure 2.10: (a) Refractive index 0, and (b) absorption index J evolution as a function of
energy [eV] for carbon (red line) and aluminium (green line using tabulated values XOP
software [Sanchez del Rio and Dejus (2004)]).

In practice attenuation and phase shift cross section values, together with 6, and £
values are obtained using tabulated values like XOP software [Sanchez del Rio and Dejus
(2004)]. For a better understanding, in Figure 2.10(a) and Figure 2.10(b) respectively, the
theoretical values of §,, and § for two materials with low atomic number are displayed as a
function of energy E[eV] (10 to 100 keV). These values for carbon C (Z=6) and aluminium
Al (Z=13) were obtained with the software XOP 2.3 BETA (ESRF) using the XCOM
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library.
In agreement with Figure 2.11 it can be observed that the values of §, surpass those
of 8 with two or three orders of magnitude. Figure 2.11 shows the ratio for the two

materials. It can be observed that at £ = 100 keV the ratio for carbon is higher with one

order magnitude than for aluminium.
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Figure 2.11: Ratio between the refractive index and absorptive part for two low-Z materials
(a) C (Z=6) and (b) Al (Z=13).

2.2.3 Attenuation and phase shift

The physical process in which a X-ray wave passes through a specific material and
suffers a loss of its initial amplitude is called attenuation. The wavefield E(z,y, z) down-
stream from the object, with a complex refractive index n(z,y, z), can be computed with

the following equation:

E(x,y,z) = Ey(z,y,0) {exp (—2; /Ozﬁ(x,y,z)dz)] [exp (QT /Oz[l — or(z,y, z)dz])] ,
(2.17)

where Ey(z,y,0) is the incident wavefield at z = 0 m. This equation holds if the propa-
gation distance z is inferior to the object thickness [, known as projection approrimation.
This approximation assumes that the changes of the X-ray wave are negligible within the
object.

The wave intensity I(z,y, z) recorded on the detector can be written according to the

transmission radiation function T'r(z,y, z) yielding:

C|B(y.2)P I(zy.2)

—47
T By, 07 I(x,y,0) P [A / 5(%%2)6&} : (2.18)

Tr(z,y,z)
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The term on the right side of above equation can be written as the Beer-Lambert law:
—4m
Tr(x, Y, Z) = exp |:A /,3($,y, Z)dZ:| = exp {—/M(%Z/, Z)dz] ) (219)

where p(x,y, z) is the linear attenuation coefficient, hence the attenuation is:
a(z,y,z) =1-Tr(z,y, 2). (2.20)

The wavefield E(z,y,z) (Eq. 2.17) can be rewritten as a multiplicative function be-

tween the incident wavefield and the object transmission function T (x,y, z), yielding:

T(a,y.2) = M — Tr(e,y, =) expl—ilp(z, y, 2)). (2.21)

For a homogeneous object the transmission function is defined as:

Tr(z,y,l,) = exp(—pul,). (2.22)

and the phase shift of the X-ray beam as:

l
Ap(x,y,l,) = k:/ ’ Or(z,y, 2)dz = koyl,, (2.23)
0

meaning that the phase shift Ay increases with the object thickness [,,.

2.3 X-ray phase contrast imaging

When the X-ray wave passes through a thin sample, the amplitude decreases and the

phase is shifted. As seen in the previous section, these changes can be modelled by:

B(x) = 2; /,B(x,y, z)dz (2.24)

and
o(x) = —27” / 5, y, =)dz (2.25)

where B(x) is the absorption, ¢(x) the phase shift introduced by the sample for (x,y)
the spatial coordinates in the perpendicular plane to the propagation direction z (Figure
2.9). Based on these equations, phase contrast can be coupled to tomography using the
same setup and algorithms like in conventional CT. As has been showed in the previous
section the phase contrast technique allows to increase significantly the sensitivity of X-ray
radiography and X-ray tomography.

At present, several experimental techniques to obtain phase contrast are used. These
techniques are divided into: 1) interferometry with an X-ray crystal interferometer [Mo-
mose and Fukuda (1995)a, Momose (1995), Takeda et al. (1995)], 2) diffractometry with a
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perfect analyzer crystal [Davis et al. (1995),Ingal and Beliaevskaya (1995),Chapman et al.
(1997)], 3), grating interferometry [Momose et al. (2003), Weitkamp et al. (2005)] and 4)
propagation based technique with a Fresnel pattern [Snigireva et al. (1995),Cloetens et al.
(1996)]. All these methods have advantages and drawbacks depending on the beam-line
setup and also by the studied sample. In the following we give a brief overview of these

different phase contrast techniques.

2.3.1 Crystal interferometry imaging

In 1965 Bonse and Hart [Bonse and Hart (1965)] implemented for the first time a X-
ray interferometer system. This system is based on a conventional crystal interferometer,
which is composed of three parallel crystal lamellas spaced one from each other at the same

distance. These three parallel lamellas are cut from a single perfect silicon monocrystal
[Momose (1995), Lewis (2004),Zhou and Brahme (2008)].

The basic principle of this technique is to split and recombine the X-ray wave. A
possible system configuration is known in the literature as the triple Laue-case (LLL)
X-ray interferometer [Bonse and Hart (1965)], and is illustrated in Figure 2.12, where S

denotes the beam splitter, M the mirrors and A the analyser.

M

Sample

Figure 2.12: Principle of monolithic LLL interferometer system.

Phase contrast is obtained due to interference between the reference beam (not passing
through) and the beam transmitted through the object. Via Laue diffraction, the incoming
white synchrotron X-ray beam is split in two by amplitude division using the first crystal
lamella (the beam splitter .S), which will be then diffracted by the mirrors M (the second
crystal lamella) and recombined by the analyser A (the last lamella). The sample is placed
in one of the arms and the phase shift information is retrieved using the phase stepping
technique. The detector is located downstream after the analyser and will record the

interference pattern caused by the investigated object. The interference intensity of the
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beam I;y7 is given by:

IINT = Iref + Iobj + 2\/ IrerobjﬂCOS(de)ﬁ (226)

where I,..5 is the intensity of the reference beam, I,; is the intensity of the sample, ¥ is
the absolute value of the degree of coherence and df is the phase shift.

The phase information in this case suffers of phase-wrapping effect (the obtained phase
map cos 6(z,y) is modulo 27). With the aim to record phase maps, a X-ray interferometry
system must fulfill the following requirements [Momose et al. (2003)]: (a) the coherence
of the X-ray, (b) the coherence division of a X-ray incoming beam and (c) the mechanical
optical stability.

The spatial coherence length necessary for this method is [, = )\(%)_1 > 1079, where
A is the wavelength of the X-ray beam and % < 10~* is the angular acceptance of the
device. On the other hand, the temporal coherence length has to be I, = )\(A—EE)_1 > 1076
with % < 107 the X-ray energy bandpass of the device, resulting a total coherence
volume of ¥ = 1071¥m? [Krol (2011)]. Moreover, the density resolution obtained with
this technique is 4 mg/cm? [Momose ef al. (1996)]. These conditions can be met by high
brilliance X-ray sources, but also by the free electron lasers [Grubel et al. (2007)] equipped
with an interferometer made of a large single crystal and a crystal monochromator.

The most difficult part in crystal interferometry is related to the mechanical stability
of the optical system, meaning sub-angstrom stability. The simplest case from the stability
point of view is to use a single ingot of silicon, however, the field of view will be limited
by the size of the crystal ingot diameter (7cm x 7cm). To improve this disadvantage
interferometer system with two independent crystal blocks was developed, achieving in
this way a field of view greater than 10cm x 10cm and with the possibility of placing the
sample at some distance from the crystal lamella [Becker and Bonse (1974)]. However,
the requirements are very restrictive because the mechanical stability and rigidity has to
be achieved (sub-nano-radian stability). Another way to obtain phase contrast is based
on three Bragg diffraction processes (BBB X-ray interferometer [Koyama et al. (2003)]).
Spatial resolution is affected by the blurring effect due to the analyser beam A, and
for overcoming these drawback in the BBB configuration the beam passing through the
sample does not go through the analyzer A but is reflected and then is reached by the
detector [Momose et al. (2003)]. The BBB technique shows some advantages for the

spatial resolution, but has not attracted much attention in experimental applications.

2.3.2 Analyser based imaging

Analyser based imaging (ABI) or diffraction-enhanced imaging (DEI) [Ingal and Be-
liaevskaya (1995), Davis et al. (1995), Chapman et al. (1997), Bravin (2003)] showed an

interesting potential for applications such as mammography [Bravin et al. (2007)] and
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orthopedics [Mollenhauer et al. (2002)].

A schematic view of this system is shown in Figure 2.13.

X-rays

Sample

Figure 2.13: Principle of analyser based imaging.

This technique relies on the use of a perfect analyzer crystal placed between the sample
and the image detector. This crystal analyzer plays the role of an angular filter and detects
the X-rays that have passed through the sample and satisfy the Bragg law. The image that
will be registered by the detector will be formed only by this narrow range of X-rays, in
this fashion a sensitive X-ray phase contrast imaging technique is obtained. The angular
filter function is given by the rocking curve (RC) of the analyzer crystal and is related
to the the full width at half maximum (FWHM) of the rocking curve (RC). The typical
acceptance window is from few to tens of micro-radians. This method in comparison with
crystal interferometry Section 2.3.1 presents the advantage of stability and simplification
of the imaging setup. Details on ABI setup can be found in [Fiedler et al. (2004)]. Briefly,
the diffraction from a silicon crystal system create a monochromatic X-ray beam highly
collimated, and this beam passes through the sample. The refracted and scattered X-rays
are then analyzed by a second crystal identical with the first one, which represents the
angular filter described above. The phase contrast is due here to the refraction of the
incident beam produced by the sample placed in the monochromatic X-ray beam. The

incident intensity for the diffraction plane is given by [Pavlov et al. (2004)]:

\ (00
Lapr = IoToA |00, — 2 (221, 2.2
aBr = Io {0 o <8y>] (2.27)

where I is the incident beam, T the sample transmission, A is the analyzer crystal for
the RC corresponding value and 6,, the angular position of the analyser crystal.

The phase information acquired with ABI is not sensitive to the angular deviations
because it is given only in one direction (e.g. the diffraction direction). A qualitative
differential phase map is recorded for one position on the rocking curve (RC) of the analyzer
crystal. The refraction angle information and the scattering signal can be retrieved using
several approaches [Pagot et al. (2003)]. Finally, ABI was coupled to tomography using
different phase images for different positions of analyzer based [Dilmanian et al. (2000)].

The disadvantage of ABI/DEI is the limit of the field of view and the spatial resolution,
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which is dependent on the properties of the crystal.

2.3.3 Grating interferometry imaging

Grating interferometry (GI) known also as Talbot interferometry is a X-ray phase
contrast imaging technique developed since 2002 [David et al. (2002)]. This technique
exploits the Fresnel diffraction from periodic structures and is based on the Talbot effect
[Talbot (1836)] caused by a grating illuminated with spatial coherent X-rays. The Talbot
effect with hard X-rays was reported for the first time in 1997 [Cloctens et al. (1997)a],
used in the context to measure the coherence of a synchrotron X-ray beam. It is possible
to perform X-ray Talbot interferometry with a conventional X-ray source and thus, to

expand it to clinical use [Donath et al. (2010)].

X-rays

Sample

Figure 2.14: Principle of grating interferometry system.

Several different setups exist for this technique. Figure 2.14 illustrates principle of the
widely-used X-ray grating interferometer [Momose et al. (2003)]. Usually grating inter-
ferometry uses one phase and one absorption grating with the same period downstream
of the sample. The phase grating is the first grating situated at a Talbot distance dpgipor
from the second one, the absorption grating. The key of this technique is the phase grating
which acts as a beam splitter. The absorption grating or the analyzer grating is placed
at an optimal distance from the phase grating, where the fringes pattern show maximum
contrast. The need of the analyzer grating is due to small period of the interference pat-
tern, usually few micrometers (see Section 4.1 in [Zanette (2011)]). The period of the
absorption grating matches the period of the interference pattern (i.e. g1 = 2g2).

Briefly, the incident X-ray beam will be shifted by the phase grating giving rise to
periodic fringes at an optimal distance along the optical axis from the absorption grating.
The optimal distance between the two gratings called Lohmann distance is given by [Suleski
(1997)]:

1 g

dopt = (m — ) (2.28)

where m is the diffraction order and is equal to m = 1,2,3.... The differential phase
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maps and the scattering signals can be recovered using two methods: phase stepping scan
technique (laterally scanning) or Moiré imaging. A final image registered using phase
stepping technique is obtained by acquiring multiple scans for the phase grating or for the
absorption grating. On the other hand, using Moiré method [Momose et al. (2009)a] a
single-shot radiography and high-speed tomography (0.5 s for tomography scan) can be
performed.

The beam distribution for each pixel recorded by the detector can be expressed as
[Diemoz et al. (2011)]:

. 27 A0
Iqr = 1yTTq [1 + Fyiy sin <7/J + —ya — ¢> dTalbot] ) (229)
92 92 Oy

where T is the average transmission factor of the grating, Fi,;, the visibility of the fringe
pattern and v the sinusoidal fringe profile shift measured when the object is not present
in the X-ray beam and y¢ is the relative position of the two gratings in the perpendicular

direction y. The fringe visibility F;, is given by [Bech (2009)]:
8 2
Fpi, ~ = exp[—27*(SDproj) /92, (2.30)

where SD,,,; is the standard deviation of the projected source size, meaning that GI has
a low requirement for temporal beam coherence but the requirements for spatial coherence
are more demanding.

An important advantage of this method is the high value of the density sensitivity,
e.g. 0.5 mg/mm? for an aqueous specimen [Zanette (2011)], but thermal and mechanical
stability are still remaining important issues for GI. Grating interferometry has been ex-
tended also to commercial X-ray tubes [Pfeiffer et al. (2006), Engelhardt et al. (2007)].
There where long acquisitions are required like in computer tomography or multiple im-
ages processing for phase retrieval information GI requires high stability. The two gratings
introduced in the X-ray beam path limit the spatial resolution, which cannot be better
than two periods of the analyzer grating go [Weitkamp et al. (2005)]. Finally, GI suffers
from the phase wrapping effect.

2.3.4 Propagation based imaging

The so-called “in-line phase” contrast or propagation based technique (PBI) is a phase
sensitive imaging method which does not require any additional optical element in the
beam path. The setup of PBI is essentially the same as for absorption radiography. The
spatial resolution achieved using PBI can be very high of the order of the micron or
less [Cloetens et al. (2006)], since no additional optical element is used in the beam path.

It has been shown that if the spatial coherence of the X-ray beam is sufficient, phase
contrast can be achieved, by letting the beam propagate in free space after the interaction
with an object [Snigireva et al. (1995),Cloetens et al. (1996)]. This technique is based on
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the detection of the Fresnel diffraction pattern when the object is irradiated. PBI has also
been applied to laboratory X-ray sources, since the radiation can be polychromatic [Wilkins
et al. (1996)].

If the detector is located directly behind the object at distance Di, a conventional
attenuation image is recorded, while moving the detector further away from the object
at different distances Dy, D3 various phase contrast images are formed. This principle is

shown in Figure 2.15.

Detector

Fresnel field 0 to 99 cm

Figure 2.15: Principle of propagation based imaging system.

The interference fringes localized at the edges of the different sample structures are
due to the phase changes, a regime known as “edge-detection”. Phase contrast achieved
in the Fresnel field is proportional to the second derivative of the phase of the wavefront
[Cloetens (1999)]. The phase contrast images obtained using PBI technique can be used
directly as input to a tomographic reconstruction algorithm. A first application of this
kind was made on the artery specimen [Spanne et al. (1999)] and clinical experience for
mammography [Castelli et al. (2011)].

Furthermore, by using more sophisticated phase retrieval approaches the contrast can
be significantly improved. A variety of phase retrieval methods valid under different as-
sumptions have been proposed in the literature. The majority of these algorithms use
multiple projections recorded at different distances from the investigated object to recover
the phase. This regime is known as “holographic regime“ [Cloetens (1999)]. The direct
problem of image formation and the details of these linear approaches are reported in the
next Chapter 3.

The phase retrieval methods using PBI have been coupled also to tomography. In-line
phase tomography has found applications in material science [Baruchel et al. (2006),Mayo
et al. (2012)], palaecontology [Tafforeau et al. (2006)], biomedical imaging [Cancedda
et al. (2007), Langer et al. (2012)b, Marinescu et al. (2013)] and 4D in-vivo investigation
[Moosmann et al. (2013)]. This technique also has been implemented using laboratory
sources [Mayo et al. (2003)].
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Chapter 3

Quantitative phase retrieval in PBI
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This chapter presents the direct problem of phase-contrast image formation in in-
line phase contrast imaging and the conventional linear methods of phase retrieval in
the Fresnel field, and also the nonlinear algorithms previously proposed for in-line phase

contrast.

3.1 Direct problem of image formation

While phase contrast pattern can be directly observed in PBI, the quantitative ex-

ploitation of the image requires solving the phase retrieval problem.
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As described in Section 2.2.1, let us assume an object illuminated with an almost
parallel and monochromatic X-ray beam of wavelength A. The interaction object-X-rays
can be described by the 3D complex refractive index of the medium (Eq. 2.5). If, the
diffraction within the object is neglected, the interaction of X-rays with the object can
be described by a transmittance function 7' of the coordinates x = (x,y) in a plane

perpendicular to the propagation direction z (Figure 2.9):
T'(x) = exp[—B(x) + ip(x)] = a(x) exp[ip(x)]. (3.1)

As seen in Section 2.3 the absorption, a(x) and phase shift ¢(x) induced by the object

can be considered as projections of the absorption:

B(x) = 27” / Bz, y, 2)dz, (3.2)

and refraction index respectively:

o(x) = —2% /(L(m,y,z)dz. (3.3)

Considering a plane wave, the Fresnel or the Fraunhofer diffraction region is determined
by the radius of the first Fresnel zone rp = v DX, where D is the sample-to-detector
distance (Figure 1.2). If the sample size s is much smaller than rp, then the diffraction
pattern is described by the Fraunhofer approximation. In this case the recorded intensity

is related to the square modulus of the Fourier transform of the transmitted wave:

2

Io(x) = [F(7) () (3.4)

where F' denotes the Fourier operator.
In the opposite case, when rr =~ s, the recorded intensity at distance D is given by the

squared modulus of the exit wave in the Fresnel field:
Ip(x) = |T(x) * Pp(x)[* (3.5)
where * denotes the 2D convolution of the transmittance with the Fresnel propagator,
Po(x) = s exp (i xl?) (3:6)
D(x) = 7 exp {ix5lx[" ), .

D being the propagation distance along z (Figure 2.9). The corresponding Fourier trans-

form of the Fresnel propagator is:

Pp(f) = exp (i DAI£[*) (3.7)

The direct problem can also be written in terms of Fourier transform. The Fourier
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transform F' of the intensity measurement can be written as [Guigay (1977)]:

FA{I}(f)=I(f) = /T <x — AQDf) T <x + M;f) exp(—2irx - f)dx, (3.8)
where f is the variable in the Fourier domain. If D — 0 then the partial coherence effect
disappears and the attenuation image is obtained. Moreover, if the propagation distance
increases then the phase contribution to the intensity image will grow. The resolution
of the phase contrast projection without magnification is anyway limited by the pixel
size of the detector. The maximum spatial frequency that can be measured is inversely

proportional to the double of the detector pixel size [Nugent (2010)].

3.2 Inwverse phase retrieval problem - Linear models

A variety of X-ray methods for phase retrieval were proposed in the literature and
reviewed by Nugent [Nugent (2010)]. The Transport of intensity equation (TIE) [Teague
(1982), Teague (1983), Nugent et al. (1996), Barty et al. (1998), Gureyev et al. (1999),
Beleggia et al. (2004), Turner et al. (2004), Paganin (2006)] valid in the limit of small
distances, the Contrast Transfer Function (CTF) [Guigay (1977),Cloetens et al. (1996),
Cloetens et al. (1999), Zabler et al. (2005)] valid for several distances and the mixed
approach [Guigay et al. (2007)] based on CTF, which becomes CTF under the assumption
of weak absorption and TIE for short distances respectively (Figure 3.1).
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Figure 3.1: Principle of in-line phase tomography or propagation based imaging system.

All these phase retrieval approaches are based on a linearization of intensity Eq. 3.5.
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3.2.1 Transport of intensity equation - TIE

In 1995 Gureyev et al. [Gureyev et al. (1995)] studied the possibility to retrieve the
phase information using the spatial intensity derivative along the optical axis 0I(x)/0z.

The transmittance function in Eq. 3.8 can be linearized with respect to the propagation
distance D by Taylor expansion. If the first order term is expressed as T'(x + )‘TDf) A
T(x) + % -VT(x), Eq. 3.8 can be rewritten as:

In(x) = Io(x) = 52V - [lo(3)Vi(x)]. (3.9)

Eq. 3.9 is valid only for short propagation distances D. Including this assumption, the
difference [Ip(x) — Ip(x)]/D can be approximated in the propagation direction z by :

_21 8[0(X)

V- o) V()] = 5

(3.10)

This expression is known as transport of intensity (TIE) and was developed for the first
time by Teague in 1982 [Teague (1982)]. A number of algorithms have been developed
in the near field based on TIE with the aim to improve the retrieved phase map. These
approaches are based on Fourier transform including some a priori information [Paganin
et al. (2002)] or on the linear partial differential equation [Gureyev and Nugent (1996),
Allen and Oxley (2001)].

3.2.2 TIE Fourier solution

The phase map can be recovered using the following equation [Paganin and Nugent

(1998)] : o 1 o
o0 = -3V [ (50| (3.11)

where V™2 is the inverse Laplacian operator. The Laplacian and the inverse Laplacian

operators can be implemented in the Fourier domain [Paganin (2006)].

This method needs to recover the phase image from two intensity measurements, one
for the Ip(x) and a second one for Ip(x). These two planes have to be separated by a
small distance to form an estimate of the longitudinal intensity derivative [Paganin and
Nugent (1998)].

3.2.3 TIE weak absorption

This method is known as Bronnikov’s algorithm [Bronnikov (2002)] based on TIE
equation under the assumption that the absorption has insignificant variations and can be

approximated with a constant. The intensity equation in this case is:

DX

ID(X) = I()(X) 1-— %

Vip(x)| - (3.12)
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When phase CT is concerned, the filtering process involved in this retrieval method
can be included in the inverse Radon Transform. The absorption a priori can be relaxed if
a regularization parameter « is introduced in the filter function [Groso et al. (2006)]. This

method is known in the literature as “modified Bronnikov” yielding the phase equation:

o(x) = %V;Q [1 - ‘;’03((;)] (3.13)

where the inverse Laplacian V2 is defined as [Paganin (2006)]:

1 1

VAR Iy ot S — )
¢ dm?= (fR+ [+ )

(3.14)
The small values of the Laplacian at low frequencies and the singularity at f, = f, =0
are handled if (f2+ fy2)_1 is replaced with zero at the Fourier domain origin f = (0,0) and
introducing «. This method requires images in two planes: a plane for a small distance

from the object, to get Ip(x) and the contact plane for the Ip(x) image.

3.2.4 TIE homogeneous object

A single-distance phase retrieval method for a homogeneous object having a constant
ratio d,/5 was developed by Paganin [Paganin et al. (2002)]. This a prior is called
“homogeneous object approximation”. This phase recovery method has been originally
derived based on the assumption that the object consists of a single homogeneous material

with a constant fraction §/d,. The phase reconstruction formula for the phase can be

1 ([ FUpG/D(x)
elx) =351 (F 1{ﬁ/5r+|f|2(AD/47f)}> (319

where f is the Fourier variable. Due to its simplicity Eq. 3.15, is used also with inhomoge-

written as:

neous objects [Weitkamp et al. (2011)] in order to obtain a non-quantitative phase map,
which facilitates the segmentation and visualization of internal structures of the studied
object.

The homogeneous object approximation has been extended to two or more homo-
geneous materials [Beltran et al. (2010)]. This method under the assumption that the
thickness of the embedding material varies slowly requires knowledge of the total projected

thickness of the object at each projection angle.

3.2.5 Contrast transfer function - CTF

This method linearizes the forward model by Taylor expansion. The transmittance
function (Eq. 3.1) can be rewritten then as [Cloetens et al. (1999), Zabler et al. (2005)]:

T(x) = 1— B(x) + ip(x). (3.16)
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Under the assumption that the phase is slowly varying and the absorption is weak [Guigay
(1977)]:
lp(x) — p(x + DM)| < 1, B(x) <1 (3.17)

the intensity equation (Eq. 3.5) can be expressed as [Cloctens et al. (2002)]:
I(f) = 6(f) — 2cos(Dm |f[*) B(f) + 2sin(DrA |f]*)3(F). (3.18)

where 0(f) is the unit impulse function, B(f) is the Fourier transform of the absorption
and @(f) is the Fourier transform of the phase. The sinus term of the above equation is
the so-called contrast factor or phase contrast transfer function.

This term introduces zero crossings, therefore multiple propagation distances have to
be used to cover the Fourier domain. If f — 0 then the sum of the contrast factor goes to
zero. By choosing multiple distances, typically three or four distances, zeros are avoided.

Absorption B(f) and phase @(f) can be simultaneous retrieved using CTF. Assuming
different distances D and that for each distance a intensity map Ip is acquired, then the
phase solution if the Fourier domain origin f # (0,0) can be recovered by solving a least

square problem as:

1

P(f) = a+2A

BY Ip(f)sin(DrA[f*) — C Y Ip(f) cos(DaX )], (3.19)
D D
where A = yB — C? and « is a Tikhonov regularization parameter chosen in order to

minimize the standard deviation outside the sample. The three quantities A, B,y are
defined as:

B =>"cos*(Dr)|f[?), (3.20)
D
C =Y sin(DrA|f|*) cos(DmA|f|*), (3.21)
D
and
x =Y _sin®(DrA[f%). (3.22)
D

Recently, a single-distance phase-retrieval model based on CTF and tomographic re-
construction have been coupled into a single step reconstruction algorithm based on Total

Variation minimization [Kostenko et al. (2013)].

3.2.6 Mixed approach

As seen above, the TIE or CTF methods rely on different assumptions. TIE is valid for
short propagation distances where the contrast is weak and use images in two planes. On
the other hand, CTF is not restricted to short distances but is valid for weak absorption

and use multiple distances to retrieve the phase. In order to extend the validity of the
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approximations made in CTF or TIE, a mixed approach was proposed [Guigay et al.
(2007)].

If D — 0 TIE and CTF does not yield the same expression. In order to overcome this
aspect the phase term from the transmittance function (Eq. 3.8) is Taylor expand. If only

the first term of this expansion is retained the Fourier transform of the intensity can be

expressed as:

In(®) = [ exp(-iznx-£)a <X _ DZAf> . (X . D;f)

X [1 +ip (x - DQ)\f) — i (X + D;fﬂ dx. (3.23)

In particular, assuming that the absorption is slowly varying:
|B(x + D) — B(x — DM)| <« 1 (3.24)

the above equation can be written as:

Ip(f) = If)zo(f) + 2sin(7AD|f]?) x /exp(—i27rx £)p(x)a? (x)dx

+2i cos(mAD|f|?)A\Df - /exp(—z’27rx-f)gp(x)a(x)Va(x)dx. (3.25)

The integrals of the above equation are Fourier transform, yielding:

Tp(f) = I57°(F) + 2sin(mADE?) F {Ioe} (£)
+% cos(TAD|E2)F {V - (¢V 1)} (£). (3.26)

This equation recovers the TIE solution if D — 0 (Eq. 3.10), but also the CTF solution
if Iy — 0 (Eq. 3.18). This equation is usually used as the mixed approach [Guigay
et al. (2007)]. To include several distances, a least squares minimization procedure is used
and the phase map is recovered iteratively. By introducing the phase-absorption product

¥(x) = Ip(x)p(x), the phase retrieval problem can be solved as:

_ Sp Ap(®)In() - I57°(F) - AR ()]

[(n+1)
— S lABDE+a (821

with
Ap(f) = 2sin(rADI|f|?) (3.28)

and
AP (g) = % cos(rADIE2)F {V - [V In(Ip)] } (f) (3.29)

where « is a regularizing parameter and (™ (f) is the phase-absorption product at iteration

n with () (f) = 0. Several methods of regularization have been proposed [Langer ef al.
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(2008),Langer et al. (2009),Langer et al. (2010)] to solve this linear inverse problem, such
as classical quadratic Tikhonov regularization and wavelet shrinkage.

A comparison for mixed absorption and phase objects between CTF, TIE and mixed
approach has been done in [Langer et al. (2008)]. The mixed method seems to be more
accurate and robust to noise than the two other methods. On the other hand, TIE is most
accurate without noise.

Recently, the mixed algorithm has been extended to multi-material objects including
some a priori knowledge. This regularization schemes are accomplished first by a to-
mographic reconstruction of the attenuation. Then the proportionality of the attenuation
index [ and of the refractive index ¢, is introduced in the regularization functional [Langer
et al. (2012)a,Langer et al. (2013)].

3.2.7 Conclusions

The phase retrieval problem is an ill-posed inverse problem. To summarize the linear
phase retrieval methods a classification of the a priori assumptions about the object is

presented in Table 3.1.

Table 3.1: Classification of linear methods as a function of assumptions

Validity Terms in Propagation
the object function distances
TIE Homogeneous object %:constant ratio 1
TIE | Short propagation distances B(x)«1 2 close
CTF Weak absorption lo(x) — p(x+ ADf)| < 1 2
and slowly varying phase and B(x) <1
Mixed Slowly varying object |B(x 4+ ADf) — B(x — A\Df)| < 1 2

A more detailed comparison between different non-iterative phase retrieval methods
can be found in [Burvall et al. (2011)].

3.3 Inverse phase retrieval problem-Nonlinear algorithms

Despite current limitations, the linear methods have found various applications in
practice. The limitations of these approaches due to the linearization of the direct problem
can be refined by other methods which take into account the nonlinearity of the phase
problem. Phase retrieval from Fresnel diffraction pattern is sensitive to noise in the low
frequency range, due to the weak transfer of the low frequency information by the Fresnel
transform. Low frequency noise makes the image analysis very difficult (Figure 3.2). While
avoiding object assumptions, the low frequency noise can be reduced. On the other hand,
another important aspect is the spatial resolution, which can be refined if the nonlinear
contribution is take into account.

Furthermore, this phase retrieval problem is an inverse ill-posed problem in the sense
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Phantom : pixel size 0.7 jum
%f

-2524,

Cray Value

0 Distance (pixls) 2045

200 pm

Figure 3.2: Low frequency artefacts present in the tomographic slice reconstructed with
mixed approach for a constructed object. Projection data were acquired at the ID19
beamline at the ESRF using E=20.5 keV for 1500 angles of view over a 180° rotation of
the sample, at four sample-to-detector distances (D=[2; 10; 20; 45| mm).

of Hadamard, i.e a solution may not exist, be non-unique and not depend continuously
on the data, therefore regularization methods are required for a precise phase recovery.
The nonlinear contributions in the image contrast formation are non-negligible since large
propagation distances and high spatial resolution are used. Consequently, the nonlinearity
of the phase-intensity relationship is a crucial aspect.

By introducing the nonlinearity of the optical system the sensitivity and the accuracy
of the phase retrieval solution can be considerably increased. Recently, new algorithms
that take into account this aspect have been proposed. Yet, the effects of the nonlinearity
have not been much investigated in the literature.

One of the first nonlinear phase retrieval method was proposed by Gureyev [Gureyev
(2003)], in order to improve the phase solution. This method use the phase map obtained
with TIE as an initial approximation and then is refined by Gerchberg-Saxton-Fienup
(GSF) method [Fienup (1982)]. By using the linear TIE solution as a starting point the
amount of computations is reduced and stagnation traps are avoided. The TIE equation
(Eq. 3.10) is modified and becomes:

2RO _ 9 o) V()] + O (3.30)
where N is the Fresnel number, Iy(x) > C' > 0 and C'is a positive constant. The symbolic
form O(N,') preserved the nonlinear terms discarded in TIE equation (Eq. 3.10). In the
Fresnel field (Np > 1) all the nonlinear terms behave like O(N') and are smaller than
the first (linear) term. The proposed method has been applied for simulated data only.
Recently, a new nonlinear algorithm for in-line propagation technique based on TIE
has been proposed [Moosmann et al. (2010)]. The phase map is obtained from a sin-

gle propagation distance and has been applied for the radiographic case on simulated
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data (pure phase, non-periodic objects). The nonlinearity is introduced with the entire
paraxial wave equation. The TIE equation (Eq. 3.10) in the limit of constant absorption

(Ip=o(x)=const) yields:

2m dgp(x)

N 0, — YV lanx)+ DVen(x)). (3.31)

where gp(x) = IIE((;:)) — 1 is the intensity contrast. If D is sufficiently small gp(x) varies

in an approximately linear way in z, then gp(x) takes the following form:

DX

gp(x) = —gvgsw:o(x) (3.32)

which correspond to Bronnikov’s algorithm [Bronnikov (2002)] (Section 3.2.3). Since this

equation break down at large propagation distances D, a more general form is needed:

lmaz

gp(x) =D a(x)D" (3.33)
=1
The ¢p(x) can be also expanded in power of z yielding:
Mmax

ep(x) = > om(x)D™ (3.34)
m=0

A nonlinear partial differential equation (PDE) for ¢ p—o(x) subject to the single-distance
source term gp(x) is obtained for lye, > 2. If Lnge = 2 and mye, = 1 the explicit

expansion of gp(x) is given by [Moosmann et al. (2011)]:

212
gp(x) ~ —DAV20p_0(x) + 23

{[VV%ep=0(x)] - Vep=o(x) + [V2ep-0(x)]* + §V* [Vep-o(x)’} . (3.35)

This equation is called next-to-leading order (NLO). In order to find ¢p—o(x) the above
equation is solved in a perturbative way, for the leading order l,,,4,, = 1 obtaining a solution
called PNLO. Then the PNLO solution is used in estimating the next-to-leading order
and finally the Laplacian is invert on —%[gp(x)—PNLO]. The inversion of the Laplacian

is performed using the discrete Fast Fourier Transform:

1 1

Pl st (3.36)

where « is a real constant. This nonlinear scheme gives good results at very large relative

phase shifts over the entire projection.

Another nonlinear, noniterative approach modifying CTF equation called projected
CTF, has been proposed in [Moosmann et al. (2011)]. By introducing an intensity contrast
filtered in Fourier space the artificial peaks introduced by CTF in the spectrum of ¢ p—g(x)
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are removed. This filter is defined as:
) =0 (’sin(D/\ﬂfz)‘ —7) gp(f) (3.37)

where O is the Heaviside step function, 7 is the threshold for this binary filter (0 < 7 < 1)
and DArf? > %. The proposed algorithms have been tested on Lena image in [Moosmann
et al. (2011)]. It has be reported that TIE+PNOL improves TIE with 40% in terms of
mean retrieval error per pixel there where the phase varies sufficiently slowly. For the case
where TIE4+PNOL is compared with projected CTF with mean retrieval error per pixel is
reduced with 42%. However, these methods sufferers of artificially hollows there where the
are strong phase variations. The projected CTF has been also discussed in [Hofmann et al.
(2011)] and has been tested on a Xenopus embryo giving better results than linearized TIE
(Eq 3.32) or CTF in term of spatial resolution. This method has been also applied for 4D
in-vivo microtomography [Moosmann et al. (2013)].

Recently, the mixed approach using an iterative procedure based on a nonlinear conju-
gate gradient method was proposed for tomographic reconstruction [Langer et al. (2012)b].
This method has been applied on a human bone.

In the next Part II of this manuscript, new iterative algorithms based on the Fréchet
derivative of the intensity operator for propagation based technique are proposed. The
objective of these new regularization schemes is to improve the linear solutions presented

in this chapter, especially the mixed solution (Section 3.2.6).

Valentina DAVIDOIU 47



CHAPTER 3. QUANTITATIVE PHASE RETRIEVAL IN PBI

48 Valentina DAVIDOIU



Chapter 4

Inverse problem
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his chapter of the manuscript is organized in four sections as follows. A brief pre-
T sentation of well-posed and ill-posed inverse problems is given in Section 4.1. An
overview of the regularization schemes for linear inverse problems is given in Section 4.2.
The Tikhonov regularization scheme together with the Landweber iteration method ex-
tended to nonlinear problems are detailed in Section 4.4.1. This chapter is concluded in
Section 4.4.3 where we introduce the Fréchet derivative that will be used in the following.
Inverse problems have an important role in many fields of research. “Solution of an
inverse problem entails determining unknown causes based on observation of their effects.

This is in contrast to the corresponding direct problem, whose solution involves finding
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effects based on a complete description of their causes.” This statement is attributed to
O.M. Alifanov [Alifanov et al. (1995)], and is probably the best definition of an inverse

problem.

A forward problem

A inverse problem

Figure 4.1: An inverse problem scheme.

The general equation defining a discrete linear inverse problem can be written as:
y = Kx, (4.1)

where y € R” are the known measurements, x € R the unknown desired parameters
transformed by a linear operator K € R™*™ called also observation matrix. The searched
solution x of the linear equation (Eq. 4.1) is not easy to find because the inverse operator

K~! of the forward operator K is not necessarily bounded and does not always exit.

4.1 Well-posedness versus ill-posedness

The notion of well-posed or ill-posed problem is a notion due to Hadamard. Considering
Eq. 4.1 with K : A — B, then this problem will be well-posed if the three following

conditions hold:
1. there exists a solution for all y € B
2. the solution is unique
3. the solution depends continuously on the data measurements y.
The problem becomes ill-posed if one or more of these conditions fail.
If the problem is well-posed, then the solution of the Eq. 4.1 can be computed directly:
x=Kly (4.2)

meaning that K—! exists and is continuous and K is non-singular. If the contrary is true,

this linear problem is ill-posed and a classical approach to solve the problem is the least
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squares (LS) approach [Bjorck (1996)]:
X1 = argmin |[Kx — y|%. (4.3)
X

In other words, this means to find an optimal solution that is closest to the true solution
in the least squares sense. In this way, the generalized solution X always exists and it is
unique because it is given by the minimum norm element from all the minimizers. The

searched solution X of the Eq. 4.3 may take the following form:
% =Ky, (4.4)

where the operator K is known as the pseudo-inverse or Penrose-Moore generalized inverse
of the operator K. The pseudo-inverse defined in this way is a linear operator. The pseudo-
inverse K can be written as:

. KT(KK?)=t if n<m

K = (4.5)
(KTK)'KT if n>m.

We assume that K € R™*™ has full rank, and if K is an invertible square matrix n = m
then:
K=K'(KK")"!' = (K'K)"'K" = K/, (4.6)

meaning that in this case the pseudo-inverse of the operator K is reduced to the inverse
of this operator. It was shown that, in practice the pseudo-inverse performs poorly [Vogel
(2002)], since it must be computed by inverting arbitrary small singular values leading in

this way to instability problems.

4.1.1 Conditioning

In practical applications, the exact data are never available just noisy data due to the

measurement process, hence the Eq. 4.4 becomes:
%’ = Ky’, (4.7)

where 0 is the perturbation of the data (i.e. noise), which occurs both in measurements and
in the searched solution. The perturbation ¢ on X is linearly related to the perturbation
data y°:

=] < = "] (48)

where ||.|| denotes the Euclidean length or the Lo norm.
A measure of the ill-posedness of Eq. 4.1 is given by the condition number of matrix
K defined as:
w(K) = K] [K]. (4.9)
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The condition number £(K) can be written as a function of singular values of K as:

Omax(K)

KJ(K) B Umin(K)

(4.10)
where opax(K) and opin(K) are the maximal and minimal singular values of K respec-
tively. This definition is used for any consistent norm that satisfies the condition:

k(K) > 1. (4.11)

If the condition number x(K) = 1 then the algorithm has find with an arbitrary precision
an approximation of the searched solution. Depending on the value that x(K) takes, we
can classify whether the problem is well-posed or ill-posed. If k(K) is larger but close to
1 then the problem is well-posed, in the opposite case (x(K) bigger that 1) the problem is
ill-posed and K is singular. In this case, a small deviation in data yields large variations

of the inverse solution. This phenomenon is known as over-fitting.

4.2 Principles of regularization

In order to overcome the instabilities related to the ill-posed nature of the inverse
problem, regularization methods can be used. The principle of the regularization is to split
the ill-posed problem into a set of well-posed problems by finding a family of operators

R, satisfying the following conditions:

lim R = K (4.12)
and
IRall < K| (4.13)

where a > 0 is a regularization parameter. This parameter gives a trade-off between
fidelity to the measurements and noise sensitivity. When a — 0 (Eq. 4.12) a sequence
of operators which converge to the pseudo-inverse matrix K is searched, in this way an
optimal solution X in the absence of noise can be found. On the other hand, the noise
sensitivity can be reduced if the sequence operators found at the antecedent step have a

smaller norm that the norm of the pseudo-inverse (Eq. 4.13).

A very common regularization method used in this thesis is to construct a regularization
functional with a well-defined minimizer. It is also possible to stop iterative methods to
avoid the noise amplification. The stopping index then plays the role of regularization

parameter. In the following, we detail the Tikhonov regularization.
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Tikhonov-Philips regularization

The most popular regularizer function is the Tikhonov-Philips type regularizer. The
Tikhonov-Philips regularization is the most basic method. This consists in approximating
the solution of the inverse problem through a minimization problem by adding a quadratic

regularization term to the Eq. 4.3:
argmin {x(x)} = argmin {|ly ~ Kx| +a |1£(x = x0) [} (4.14)
X

where X and Y are Hilbert spaces. The regularization parameter is @ > 0 and xg € X is
an initial guess. £ is the Tikhonov-Philips matrix and common choices are the identity or
a matrix approximating the first or the second order of the derivative operator [Tikhonov
and Arsenin (1977)]. By adding the second term more regular solutions are favoured. If

L is the identity and xg = 0, an equivalent form of the above equation can be written as:
x(x) = (y - Kx)T(y — Kx) + ax’x. (4.15)

The location of the minimum of the Eq. 4.15 is given by:

0
;(;(x) — 9Ky + 2KTKx + 2ax. (4.16)
X
If a’ég(x) = 0 then an explicit solution, denoted by X, is obtained:
Xo = (KTK + aI) 'Ky (4.17)

where I is the identity. If & = 0 then the first part of the above equation becomes
(KT"K)~'K” which is equivalent to Eq. 4.6. The searched solution is in this case x, = X
and the problem can be very sensitive to noise. If & — oo the obtained solution x, — 0

and the problem will be insensitive to noise but very unsatisfactory.

Choosing the optimal value for the regularization parameter is crucial. In the literature,
several schemes have been studied for the selection of the regularization parameter, as
the minimization of the generalized cross-validation function or L-curve [Hansen (1987),
Desbat and Girard (1995)]. If the noise level is known, the Morozov’s discrepancy principle
[Morozov (1984)] gives good results. The regularization parameter must be chosen such
that:

K~y | <76 (4.18)

where 7 is of the order of 1.
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4.3 Minimization algorithms

In order to obtain the solution of the inverse problem, the regularization functional
must be minimized. We detail in the following some algorithms used for this minimization

task. We first review the basic gradient descent method.

4.3.1 Gradient descent method

The simplest method is the one of the gradient or gradient descent. Gradient descent
is also known as steepest descent. As its name indicates, a local minimum of a function
can be found using the gradient descent at the current point by taking steps proportional
to the negative of the gradient. The solution of Eq. 4.1 can be obtained in an iterative way
using the steepest descent algorithm. Let us first define the general quadratic objective
function to minimize as:

d(x) = éXTKX —yTx. (4.19)

where K is a square matrix. The gradient of ®(x) is :
Vo(x) =Kx -y, (4.20)

in other words the minimum is obtained as the solution of Eq. 4.1. Using the above

equation we define the residual r as:
r=-Vo(x)=y - Kx. (4.21)

The residual r is also known as the search direction d. The solution of Eq. 4.19 is obtained

iteratively with the following equation:
Xk41 = Xk + QiTg (4.22)

where oy determines the speed of convergence of the method. If the step ay is lower than
the optimal a the method converges slowly. In the opposite case, if aj is too high than the
optimal a the method can easily diverge from the true solution. Since ®(x) is a quadratic

function of x the optimal o can be obtained explicitly:
1
O(xp41) = E(Xk + akrk)TK(xk + apry) — yT(Xk + aprk). (4.23)
This equation can be rewritten in a simpler form as:

1
D(xp41) = D(xx) + iairgKrk — a [kl (4.24)
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The optimal « is chosen so that

1
AP = B(xpy1) — D(xp) = §agr;§Krk — oy, ||ex? (4.25)

is as small as possible. This equation depends quadratically on a single variable «;, there-

fore the minimum is obtained at:

el
= 4.2
U = e Krg) (4.26)

The actual change in ®(x) can be found easily as:

4
np_ L Iml

5 7@%, Kry) (4.27)

According to Eq. 4.25 it follows that the objective function Eq. 4.19 decreases for the

choice:

2
Il

—_— 4.2
rg, KI‘k> ( 8)

where p is a constant that takes values between 0 < p < 2. The maximum decrease is

obtained when p = 1.

4.3.2 Conjugate gradient method

The basic idea of the conjugate gradient algorithm is to modify the search direction
d = r to be orthogonal to the previous search direction. The current search direction dy

is built out of the previous search direction dj_j.

The residual equation (Eq 4.29) for the kth step is:
rp = —Vo(x) =y — Kxi. (4.29)

The solution is obtained iteratively in this case as:

Xpt1 = Xk + apdg (4.30)
with T T T
o odpyy  dp(rpo1 +Kxgpo1)  dpreg 431
T ATKa, a’Kd ~ d’Kd (431)
k k k k k k
and
dk =TI — Pkdkfl. (432)

Different versions of the algorithm exist, depending on the manner in which Pj from Eq.
4.32 is calculated. In this way the conjugate gradient method was extended to nonlinear

optimization. For example, the method of Fletcher-Reeves (FR), known as nonlinear
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conjugate gradient method, where Py is:

T
Py = —pkk (4.33)
I 1Tk-1

In other words, Py is the ratio of the of the current gradient and the square norm of the

previous gradient.

Other methods to calculate P are:

o Polak-Ribiére (PR) method:

B rg(rk —Tp_1)

. 4.34
A ( )

o Hestenes-Stiefel (HS) method:

ry (r —rj-1)
d%—l(rk —Tj—1)

Py =— (4.35)

4.3.3 Landweber iteration

The regularization functional must be minimized to obtain the solution of the inverse
problem. It is possible to perform this minimization task with a gradient descent. For
example, for least squares, the minimization is performed on the data term and an iterative

way to get the solution of Eq. 4.1 is the Landweber algorithm [Hanke (1991)]:
xpt1 = X; + 7K (y — Kxy) k=0,1,2,3,.. (4.36)

where K* is the adjoint operator of K, xg an initial guess and -y a positive number. In order
to ensure the convergence of the algorithm « must satisfy the following relation [Hanke
(1991)]:

0<y< (4.37)

2
KK
The speed of the convergence rate of the Landweber iteration is discussed in [Hanke (1991)].
The Landweber iteration method presents an easy form of implementation and is very
robust. For linear problems, alternate direction minimization algorithms (ADMM) have
been extensively studied recently [Esser (2009)]. These algorithms are very efficient for
the minimization of various regularization functional. They will not be used in this thesis,

since we focus on nonlinear inverse problems.
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4.4 Regularization method for nonlinear inverse problems

4.4.1 Nonlinear Tikhonov regularization

In Hilbert space framework, a nonlinear ill-posed inverse problem can be defined as:
y = M(x), (4.38)

where M : D(M) C X — Y is a nonlinear operator between Hilbert spaces X and Y with
a domain D. An extensive treatment of this type of problem can be found in [Engl et al.
(1989), Neubauer (1989), Scherzer et al. (1993)].
Since in practice there are only noisy data we are interested to solve a nonlinear problem
defined as:
y) = Mx’, (4.39)

where 0 is the noise level of the model. The noise level § is given by:
Iy’ -v| <o (4.40)

The problem that we are searching to solve here is an ill-posed one therefore regularization
is required. A well known and effective technique is the Tikhonov regularization presented
in Section 4.2. Tikhonov regularization for linear problems has been expanded also for

nonlinear problems.

The solution X is obtained with:

2
ﬁzarg}r{nin{Hyé —M(x)Hy—FaH(x—xo)H%(} (4.41)

where a > 0 is the regularization parameter and xg € X is an initial guess. The stability
and convergence of the method have been studied in the references above. The following
two theorems summarize the main results. They can be applied for continuous and weakly

sequentially closed operators.

Theorem 1. Let a > 0 and let (yi) and (i) be sequences where yi, — y° and x, is a
minimizer of Eq. 4.41 with y° replaced by yy. Then, there exists a convergent subsequence

of (xx) and the limit of every convergent subsequence is a minimizer of Eq. 4.41.

Theorem 2. Lety € Y with Hy5 — )A/H and let «(0) be such that a(d) — 0 and % —0
Ok

as 6 — 0. Then every sequence Xo) , where 0, — 0, ax = a(dy) and xfx’jC is a solution to
Eq. 4.41, has a convergent subsequence. The limit of every convergent subsequence is a

Xo-minimum norm solution.

The convergence rate of the method can be estimated when conditions describing the
smoothness of the solution (’source condition’) and the regularity of the Fréchet derivative
are assumed [Engl et al. (1989),Neubauer (1989),Scherzer et al. (1993)].
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4.4.2 Nonlinear Landweber iteration

As in the linear case, the regularization functional may be minimized by a Landweber
iteration. We assume that M is Fréchet differentiable. The solution of Eq. 4.1 is obtained

using the following nonlinear Landweber iteration [Hanke et al. (1995)]:

X0 g = x§ + M (x0)*[y° — M(x)] + a(xx — xo), k=0,1,2,3, ... (4.42)

where xg is an initial guess and M’* the adjoint of the Fréchet derivative. If M is a linear

operator, then the nonlinear Landweber iteration (Eq. 4.42) coincides with the linear
Landweber algorithm. The reconstruction algorithms developed in this thesis are based
on these formulations. More details concerning the Landweber type iterative method used

in this thesis are given in Section 5.1.

4.4.3 Fréchet derivative

In this section of this manuscript a brief overview of the Fréchet derivative is given. The
Fréchet derivative is named after Maurice Fréchet and it is commonly used to generalize
the derivative of a real-valued function and to define the functional derivative widely used
in the calculus of variations. We consider a functional f from an Hilbert space A into
an Hilbert space B. The operator f is Gateaux differentiable at z, if there is a bounded
linear operator 7, such that:

f(z +th) — f(x)

lim ” =Tz(h) (4.43)

for every h € A. If the convergence is uniform for A small enough the operator is Fréchet

differentiable. Another equivalent definition is:

i £ &+ Y) — @) ~ Ta(y)

=0. 4.44
b Tl (4.44)

for V y € A. Our nonlinear algorithms for phase retrieval in in-line phase tomography
are developed using the Fréchet derivative of the intensity measurements, which will be
detailed in the next Section 5.2.
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Résumé général

es méthodes étudiées précédemment dans la littérature sont basées sur la linéarisation

de la relation entre le déphasage induit par ’objet et 'intensité diffractée de Fresnel.

Les méthodes linéaires les plus communes sont: 1’équation de transport de l'intensité

(TIE) (Section 3.2.1), la fonction de transfert de contraste (CTF) (Section 3.2.5), ou

l’approche mixte (Section 3.2.6). Dans cette partie du manuscrit, nous introduisons de

nouveaux algorithmes non linéaires itératifs d’estimation de la phase a partir du module
de la transformée de Fresnel en utilisant la dérivée de Fréchet.

Premierement, dans le chapitre 5 nous donnons les bases du probléme inverse non
linéaire mal posé que constitue ’estimation de phase et nous proposons un algorithme non
linéaire itératif de type Landweber. Les algorithmes étudiés dans ce manuscrit sont basés
sur ce type de schéma itératif. La dérivée de Fréchet est calculée avec une méthode de
différences finies avec un incrément de phase adapté au niveau de bruit. Les différentes
distances de propagation sont utilisées de maniere cyclique.

Les résultats numériques obtenus avec cette nouvelle méthode non linéaire itérative sont
ensuite présentés dans la section 5.1.1. L’évaluation a été effectuée en utilisant un fantéme
numérique, employé pour simuler des données de tomographie de phase avec et sans bruit.
Cette méthode s’appuie sur l'intensité des projections obtenues pour différentes distances
de propagation. Pour les données simulées, I’erreur quadratique moyenne normalisée a été
mesurée mais nous avons observé une mauvaise convergence de ’algorithme non linéaire ou
le phénomeéne de stagnation des itérations loin de la vraie solution de phase lorsqu’aucun
schéma préalable de régularisation n’a été pas inclus. Notre approche améliore ’approche
linéaire mixte [Guigay et al. (2007)] et donne de bons résultats sur des données bruitées
simulées. Ainsi, si la précision de la reconstruction est ’objectif principal, surtout dans
une analyse quantitative, cette méthode pourrait étre tres intéressante.

Afin de surmonter les limitations liées au temps de calcul et la mémoire pour 'application
a des images de taille réaliste, nous avons proposé d’exploiter une expression analytique
de la dérivée de Fréchet et de son adjoint.

Plusieurs algorithmes non linéaire itératifs ont été proposés et analysés dans la lit-
térature, basés sur des fonctionnelles de régularisation définies dans le cadre d’espaces de
Hilbert [Scherzer et al. (2008)]. Si l’analyse de la convergence de ces méthodes a été effec-
tuée, elles n’ont jamais auparavant été testées dans le contexte de I’estimation de phase.
Dans la section 5.2.1, nous analysons les propriétés de régularité de 'opérateur d’intensité
Ip et de sa dérivée de Fréchet, quand il est défini entre des espaces Hilbert appropriés.
Ces propriétés sont des conditions nécessaires pour la convergence des approches de régu-
larisation utilisées dans ce travail dans le cadre des espaces de Hilbert. Ces conditions
nécessaires n’avaient pas été étudiées avant. Enfin dans la section 5.2.2, en exprimant
I'opérateur a inverser comme une composition d’opérateurs élémentaires, nous obtenons

une expression analytique de la dérivée de Fréchet de I'intensité et de son adjoint.
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Dans la section 5.2.4, nous évaluons plusieurs approches non linéaires itératives d’estimation

de phase en partant d’une solution initiale donnée par l’algorithme mixte (Chapitre 3).
Nos approches itératives non linéaires utilisent la dérivée de Fréchet de l'intensité enreg-
istrée a des différentes distances de propagation. Nous avons comparé la convergence des
trois algorithmes, deux basées sur le gradient de différences finies et un sur ’expression
analytique du gradient. Plus précisément, le calcul de la direction de descente et des
itérations dans notre étude peut étre réalisé en utilisant trois méthodes : 1) a l'aide des
différences finies avec une longueur de pas ajustable, 2) en rajoutant un procédé de filtrage
implicite aux différences finies ou 3) avec un calcul analytique de I'adjoint de I'intensité
diffractée. Les meilleurs résultats sont obtenus lorsque le probleme inverse est régularisé
avec une norme de type Lo du gradient de la phase et lorsque les différentes distances
de propagation objet-détecteur sont traitées par une méthode de type Kaczmarz ou une

itération de descente est effectuée pour chaque distance de propagation.

L’évaluation de la méthode a été réalisée en utilisant une carte de phase simple, a la
fois avec et sans bruit. Pour les données simulées, I’erreur quadratique moyenne normalisée
a été mesurée. Afin d’obtenir la meilleure convergence de J(¢) (Eq. 5.4) le parametre de
régularisation « est choisi par une méthode de type essai et erreur. Ce type de méthode
a été utilisée dans plusieurs ouvrages dans le cadre des problémes non linéaires mal posés
[Daubechies et al. (2008)]. Notre approche améliore les méthodes linéaires sur des données
bruitées simulées pour différentes niveaux de bruit au-dessus de 20dB et les non linéarités
de la diffraction de Fresnel sont bien prises en compte. La vitesse de convergence de notre
algorithme et les limitations de mémoire présentées dans la Section 5.2.2, sont surmontées

grace au calcul analytique de la dérivée de Fréchet et de son adjoint.

Il a été montré dans cette premiere partie, que I’approche non linéaire itérative améliore
les résultats obtenus en utilisant la solution linéaire mixte comme initialisation, mais des
stagnations éloignées de la vraie solution de phase sont observées (Section 5.1.1 et Section
5.2.3). Pour surmonter ce probléeme dans la deuxiéme partie du manuscrit, la méthode
itérative de type Landweber basée sur la dérivée de Fréchet de I'opérateur non linéaire
Ip, proposée précédemment (Section 5.2.3) est affinée en introduisant des opérateurs de
projection. Dans la section 6, nous utilisons des opérateurs de projection afin de respecter
certaines contraintes sur la phase récupérée et pour améliorer I’ancien algorithme linéaire

d’estimation de phase.

Les algorithmes classiques basés sur des projections d’intensité congus pour résoudre
le probleme d’estimation de phase ont été examinés dans le contexte mathématique des
opérateurs de projection a valeurs multiples et de 'optimisation convexe [Bauschke et al.
(2002)]. La connexion a été établie entre les méthodes d’estimation de la phase tels que
les approches de la réduction d’erreur de type Fienup [Fienup (1982)] et les algorithmes
d’optimisation convexe standard. Les approches communes pour résoudre le probleme de

la récupération de phase classique consistent a appliquer alternativement les contraintes
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dans le domaine objet et dans le domaine de Fourier. Dans ce travail, nous avons considéré
une contrainte de module de I'image dans le domaine de I’objet, permettant ainsi de mieux
comprendre les opérateurs de projection convexe ou non convexe présentés dans la section
5.2.3

La nouvelle méthode itérative non linéaire combine la dérivée de Fréchet de 'intensité
enregistrée a différentes distances de propagation et la méthode de projection sur des
ensembles convexes ou non convexes comme dans les algorithmes de type Fienup. Cette
méthode a été testée en utilisant deux types d’initialisations. Une donnée par la méme
carte de phase simulée avec un bruit blanc gaussien additif (PPNSR = 24 dB), comme
dans la section 5.2.3, et une autre loin de la vrai solution de phase.

L’erreur quadratique moyenne normalisée sur la phase diminue dans le cas de 'initialisation
mixte de 0.1471 a 0. 0268 et dans le cas de l'initialisation éloignée de la vraie phase
de 0.8121 & 0.0234 respectivement. Un schéma de régularisation lisse a été choisi (v =
0,01). L’utilisation des projecteurs permet d’améliorer la propriété de convergence de la
méthode itérative non linéaire présentée dans la section 5.2.3).

Pour conclure, notre nouvelle approche améliore la méthode linéaire mixte (Section
3.26) fondée sur une linéarisation de la relation entre le déphasage induit par I'objet et
I'intensité diffractée mais aussi notre premiére approche non linéaire (Section 5.2.3) pour
des données simulées bruitées.

Cette partie du manuscrit se termine avec la section 6.3, ou la résolution du probleme
inverse non linéaire est étudiée avec une régularisation de type Tikhonov (Section 5.1) et
avec des opérateurs de projection (Section 6.2) proposés précédemment. Comme il est
précisé dans la section 5.1 le probléeme inverse mal posé de la phase est stabilisé par un
terme de régularisation de type Tikhonov avec le carré de la norme de type Lo du gradient
de la phase. Dans cette section, ’algorithme itératif de type Landweber est modifié en
remplacant ce terme V¢ avec la norme de type Lo de la phase ¢. L’algorithme est évalué
en utilisant des projections d’intensité pour un fantéome plus complexe en présence du
bruit. Le fantéme utilisé dans ce travail est le 3D Shepp-Logan pour deux types de phase:
variant fortement ou faiblement. La qualité de la reconstruction pour la projection d’un
fantome 3D Shepp-Logan a été évaluée quantitativement avec et sans bruit. Dans ces
tests, trois distances de propagation sont utilisées d’une maniere aléatoire pour obtenir
une bonne reconstruction de phase.

Nous montrons que cette nouvelle approche non linéaire conduit a une réduction im-
portante des erreurs quadratique moyenne sur les reconstructions de phase. La méthode
non linéaire proposée est comparée avec les approches linéaires (Chapitre 3). L’approche
basée sur I’équation de l'intensité du transport (TIE) donne la meilleure solution pour des
cartes de phase variant lentement sans bruit. Pourtant, pour la phase fortement variable

et les données bruitées la méthode non linéaire proposée améliore les méthodes linéaires.
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Chapter 9

Nonlinear phase retrieval using Fréchet

derivative
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This chapter of the manuscript is organized in four sections as follows. The details of
the Landweber type iterative method on which our proposed nonlinear algorithms
are based is first given in Section 5.1 and then followed by the presentation of the Fréchet

derivative of the intensity in Section 5.2. The numerical results obtained with the proposed
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nonlinear iterative method are shown in Section 5.1.1. Section 5.2.2 details the analytic

calculation of the Fréchet derivative and of its adjoint.

5.1 A Landweber type iterative method

In view of Eq. 3.5, the intensity can be regarded as a function of ¢, Ip(¢). The
operator Ip(yp) can be considered as a nonlinear operator which is Fréchet differentiable
in its domain. In the following, we will consider that the phase has a Lipschitz bounded
support  and that the domain D[Ip(p)] of the operator Ip(yp) belongs to the functional
Sobolev space H2%(Q) [Scherzer et al. (2008)]:

H22(9) = {p € H*2(©), 92 =0) (5.1)

where % is the normal derivative of the phase. This functional space H?? corresponds

to functions whose second order derivatives belong to Ly. Other functional spaces can be
chosen. The detailed study of the convergence conditions will not be detailed here. We

thus consider the problem of minimizing the functional:

J(#) = lIp(®) = Is]1%, ) (5.2)

where |[.|[1,(q) denotes the Lo(f2) norm, I; approximates the exact data Ip with the
accuracy (:
1D = L5l 1o0) < ¢ (5.3)

In order to regularize the problem, we introduce a Tikhonov’s functional of the following

form: )
(8]
Jalp) = §HID(<P) — Ié”%g(Q) + EHV@H%Q(Q) (5.4)

where « is a regularizing parameter. The stabilizing norm is thus a Sobolev type regular-
izing term based on the gradient of the phase to be retrieved. The optimality condition
is:

J(p) -h =0, Vh € H>?(Q) (5.5)

It can be written with the Fréchet derivative of the intensity I (¢), where (,) denotes the

scalar product

2<ID(cp) _ 15,1}3(¢).h> oy T 20V, Vi, =0 (5.6)

La(Q)

or with the adjoint I'(¢)" of the Fréchet derivative

2(Ip(e) In(g) = Tl h), o +20(V, V), = 0. (5.7)
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The optimality condition is then:
In(¢)*[In(p) — Is] — aV - (Vi) = 0. (5.8)

The step length parameter 75 is chosen in order to minimize the Tikhonov’s functional

along the descent direction:
7, = argminJg(pr — 70k ), (5.9)
T

where 6, = Ib(gok)*[lp(gok) — Is5] — ap Ay is the descent direction. An approximate
value is obtained with a dichotomy strategy. This optimality condition defines the descent
direction of our steepest descent iterative method, the next phase iterate @1 is obtained

from the iterate ¢y, with:
Pr+1 =k — TEV Ik (o). (5.10)

Starting from the current phase estimate ¢y, at the iteration k, a linear search procedure
is introduced with a variable step 7, yielding the following modification of the standard
Landweber method:

eri1 = o — Tl p () Up(er) — Is] — alpi}. (5.11)

The regularizing parameter is chosen by trial-and-error in order to obtain the best
decrease of J(p). These equations correspond to a Landweber method with a regularizing
smoothing term and an adaptive step length. This type of method has been used in several
works on nonlinear ill-posed problems [Hanke et al. (1995), Daubechies et al. (2008)].

The described algorithm involves a single distance. In order to include the intensity
maps obtained for the different distances, we consider a cyclic iteration over several dis-
tances, one iteration being performed for each distance. This method may be seen as a
Kaczmarz type method. The use of several distances should improve the reconstruction

since it allows a better coverage of the frequency domain and it improves the statistics.

5.1.1 Numerical results

The results of this section have been published in the following article:
B. Sixou, V. Davidoiu, M. Langer, and F. Peyrin,
“Non-linear phase retrieval from Fresnel diffraction patterns using the Fréchet derivative”
IEEE International Symposium on Biomedical Imaging - ISBI2011, Chicago, USA, pp.
1370-1373, 2011.
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In this section, we apply the proposed nonlinear iterative approach using intensity
measurements recorded at a few number of propagation distances. The evaluation of the
method was performed using a simple phase map, both with and without noise.

In order to save computing time, the algorithm is initialized with the mixed approach
presented in Section 3.2.6. The mixed approximation of the forward problem (Eq. 3.26)
is an initial guess, close enough to the ideal result to ensure convergence of our algorithm.
Several regularization schemes have been tested to solve this linear inverse problem, like

classical quadratic Tikhonov regularization and wavelet shrinkage.

5.1.2 Simulation of the diffracted intensity

Following [Langer et al. (2008)], the imaging system was simulated in a deterministic
fashion. Two phantoms were defined, one for the absorption coefficient and one for the
refractive index decrement. Theoretical values for the absorption coefficient and the re-
fractive index, 0, and f, for different materials at 24 keV (A = 0.5166 angstroms) were
used for the phantom. Propagation in free-space was simulated using Eq. 3.5. The phase
contrast images were all corrupted with additive Gaussian white noise with various peak-
to-peak signal to noise ratios (PPSNR), between 24 dB and 0 dB. The peak-to-peak signal

to noise ratio is defined by:

PPSNR;z2Mog<fmm”>, (5.12)

Nmax

where fi,q0 is the maximum signal amplitude and 7,4, is the maximum noise amplitude.

2

N

Phase(¢)

o0

Figure 5.1: Original phase map to be retrieved.

The convolution product was calculated by Fourier transforms and the intensity has
been obtained as the squared modulus in the spatial domain of this convolution. Using
the free-space propagation equation, images were calculated for the eight propagation
distances 0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.0 m, 1.2 m, 1.4 m and 1.6 m. The corresponding

pixel size was 1.5 um.
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Figure 5.2: Original absorption.

The original phase map to be retrieved is displayed in Figure 5.1, together with the
absorption map in Figure 5.2. The corresponding Fresnel diffraction patterns for the
propagation distance D=1.4 m without noise and with noise (PPSNR=24dB) are displayed
in Figure 5.3(a) and Figure 5.3(b) respectively. These distances are suitable for testing

and comparing the phase retrieval methods.
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Figure 5.3: Fresnel diffraction pattern at propagation distance D=1.4 m (a) without noise
and (b) with PPSNR=24dB.
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5.1.3 Results and discussions

The diffracted intensity was simulated as described in Section 5.1.2. The images ob-
tained were downsampled to N = 75 x 75 pixels. The phase contrast images were cor-
rupted with additive Gaussian white noise with peak-to-peak signal to noise ratios (PPSNR
Eq 5.12) of 20dB, 0dB and without noise.

As a first approach, in order to calculate the gradient of the potentially noisy intensity
function, we have applied the implicit filtering method described by Kelley et al. [Kelley
(1999)]. In its simplest form, implicit filtering is the steepest descent algorithm with finite
difference gradients, where the difference increment varies as the iteration progresses. Be-
cause the gradient is only an approximation, the computed descent direction may fail to
be a descent direction, and the line search may fail. In this case the difference increment
is reduced. The derivatives in the gradient I}, are approximated by centered difference
formulas. This finite difference method requires many evaluations of the Tikhonov’s func-
tional. The Fréchet derivative G, calculated with the finite difference method at the point
¢y is a thus matrix of RV,

In the iteration, we have chosen to not introduce any a priori information on the phase
values. The iteration was stopped when the data term |[[Ip(pr) — Is|| was equal to the

noise level.

Phase(¢)

CO = N W 5

80 o0

Figure 5.4: Reconstructed phase for our Landweber type method and noise free simula-
tions.

The phase maps obtained with our method are displayed in Figure 5.4 and Figure 5.5,
without noise and with noise at 20dB. The Kaczmarz type finite difference Landweber type
method has been tested on noise-free and noisy data. If ©* is the phase to be recovered,
the normalized least square error of Lo(€2) norm ||¢r — ¢*||/]|¢*|| is used to measure the
quality of the phase recovery. The results obtained with noise-free and noisy data are
displayed in Figure 5.6 as a function of the number of iterations. Our iterative phase
retrieval algorithm retrieves the phase better than the linear mixed approach. The errors

on the phase have been significantly reduced for the noise free simulations.
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Figure 5.5: Reconstructed phase for our Landweber type method and 20dB PPSNR.
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Figure 5.6: Evolution of the mean square error for the phase for (i) the noise free and (ii)
the noisy data with PPSNR=20dB.

5.1.4 Conclusions

In this section we have presented a new nonlinear iterative method of phase retrieval
for in-line phase tomography based on the Fréchet derivative of intensity. This method
uses the intensity projections obtained for different propagation distances in a Kazcmark
type cyclic iteration. The Fréchet derivative is evaluated with a finite difference method

with a phase increment adapted to the noise level.
The evaluation was performed using a numerical phantom, used to simulate phase
contrast tomography data with and without noise. For the simulated data, the normalized

mean square error was measured. Our approach outperforms the mixed approach and it
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performs well on simulated noisy data. Thus, if the accuracy of the reconstruction is the
primary goal, especially in a quantitative analysis, this method could be very interesting.

In order to overcome the long computation time and memory limitation of the proposed
method, the Fréchet derivative and its adjoint must to be calculate in an analytical way.
The details concerning the explicit computation of the Fréchet derivative are given in the

next section of this chapter.

5.2 Fréchet derivative of the intensity

In this section we present the Fréchet derivative of the intensity properties.

5.2.1 Regularity properties of the Fresnel intensity operator and its

Fréchet derivative

In this section, we investigate some new regularity properties of the forward intensity
operator Ip and of its Fréchet derivative when it is defined between suitable Hilbert
spaces. These functional properties are necessary conditions for the convergence of the
regularization approaches used in the following in a Hilbert space framework. These
necessary conditions have not been investigated before. We use here some general results
detailed in [Dicken (1999)].

We assume that the function ¢(x) is defined on €2, which is a compact subset of R?,
and that the forward operator is a nonlinear mapping Ip : La(Q2) — L2(R?). We first
show that the Fresnel intensity operator Ip(p) can be decomposed in simple operators
between suitable function spaces. We consider first the bilinear multiplication operator
M : Loo(R?) X Loo(R?) = Loo(R?) defined by M (u,v)(x) = u(x)v(x), e.g., as the product
between the functions u(x) and v(x). It is clear that this operator is continuous, and thus
Fréchet differentiable. The next operator entering in the decomposition of the intensity

operator is the complex exponential operator, F : Ly(£2) — Loo(£2) defined by:
E(u(x)) = exp(—iu(x)). (5.13)

It is Fréchet differentiable and its Fréchet derivative E’ is Lipschitz continuous. The
proof of this result can be found in [Dicken (1999)]. Let us denote Fp the linear operator
corresponding to the convolution by the Fresnel kernel Pp defined in Eq. 3.6. The operator
Fp can be considered as a linear mapping between Lo () and Ly (R?). With the above-
defined operators, the nonlinear intensity operator Ip : La(f2) — Lo(R?) admits the

decomposition:

Ip(w) = Mo (Fpo1, Fpo)(p) (5.14)

with ¥(.) = a(x)E(.). The Fresnel intensity operator Ip(y) is thus continuous. Its Fréchet

differentiability can be calculated from the chain rule. The Fréchet derivative at the point
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@ is given for € € Ly(Q2) by:

e In(p)(e) = M(A, Fpo(p)) + cc (5.15)

with A = Fp(aE'(¢)(€)) and where c.c is the complex conjugate term.

It can been shown that the derivative E’ of the exponential is locally Lipschitz contin-
uous [Dicken (1999)]. The same result thus holds for the forward intensity operator and
its Fréchet derivative. To summarize, the forward Fresnel intensity operator is a continu-
ous operator with a Lipschitz continuous Fréchet derivative, which is the main regularity

assumptions of the regularization methods used in the following in a Hilbert space setting.

5.2.2 Explicit Fréchet derivative computation

In the case of the intensity-phase relationship, the Fréchet derivative of the operator

Ip(p) at the point ¢y, is the linear operator defined by the relationship:
ID(QOk-i-E) ZID(QOk) +Gk(€)—|—0(82). (5.16)

Using the results of the former section and the formula 5.15 we obtain that the linear

operator Ip,(pk)(e) = Gi(e) can be given explicitly as:

Gi(e) = {~liac exp(—ip)] * Pp}{[(aexp(ip)] * Pp}
+{[aexp(—ip)] * Pp}{|iac exp(ip)] x Pp} (5.17)

where * denotes the convolution operator. An equivalent form of this equation is:

Gi(2) = 2Real ({~[ia exp(—igy)] * Pp}Hlaexp(iv)]  Pp}). (5.18)

This formula was obtained from 5.15 with A = —[iac exp(—ig)] * Pp and Fp o ¢(p) =
laexp(ipy)] * Pp. The adjoint operator G} can be obtained using standard definition of
the scalar product in Lo spaces. It is defined by:

Gi(e) = {elaexp(~ip))" Pp}" {liaexp(ip)] P}
+{liaexp(~ip)]" Po}* {[acexplip)] P} (519

or

Gi(e) = 2Real | ({elaexp(—igr)* Po]}* Pp) {iaexp(ivy)}] - (5.20)

In order to retrieve the phase from the intensity measurements and to obtain a rather
smooth solution, we consider the problem of minimizing a Tikhonov’s functional presented
in Section 5.1 using the Fréchet derivative of the intensity (Eq. 5.17) and its adjoint
(Eq. 5.19). This is detailed in the following section.
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5.2.3 Analytic expression of the Fréchet derivative

In this section several nonlinear iterative approach for phase retrieval including a prior
knowledge about the phase map are studied. In order to solve the inverse problem, we
have searched for a smooth solution because failure of convergence or stagnation of the
iterates away from the solution were observed when no prior information was included.
Numerous iterative algorithms have been proposed and analysed in the literature, based
on regularization functional defined in a Hilbert space context [Scherzer et al. (2008)].
In this section, a convergence analysis of the proposed methods is not performed. We
show that it gives good results for typical phase maps found in in-line phase tomography
applications, with various levels of noise.

The calculation of the descent direction and of the iterates can be performed using
finite differences with an adaptive step length, the implicit filtering method or with an

analytic calculation of the adjoint of the diffracted intensity.

5.2.4 Numerical calculation by implicit filtering

The results of this section have been published in the following article:
V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin,
“Non-linear iterative phase retrieval based on Fréchet derivative”
Optics Express, vol. 19, No. 23, pp.22809-22819, 2011.

In the following, we have compared the numerical results for the simple test case introduced

above with the following algorithms:

1. A;: Kaczmarz type finite difference Landweber method with a regularization term

or without any regularization (o = 0).

2. As: Sequential type finite difference Landweber method with a regularization term

or without regularization term performed with N=100 iterations for each distance.

3. Asz: Kaczmarz type analytic Landweber method with the former stopping conditions

with a regularization term or without any regularization (a = 0).

The phase retrieval is performed using noise-free and noisy intensity data. The gradient
has been computed using implicit filtering method described by Kelley et al in [Gilmore
and Kelley (1985), Stoneking et al. (1992),Kelley (1999)]. The derivatives in the gradient
I, () are thus approximated by centered differences formulas. It is noteworthy that this
finite difference method requires 2N evaluations of the Tikhonov functional, where N is

the phase vector dimension and it leads to a squared matrix of size N2. In this work, the
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Phase( @)
[oNe} = N w ~

|

Figure 5.7: Phase obtained with the mixed approximation.

phase increment is set to 0.05 rad which is the estimated noise level on the phase. This
phase increment must be small enough so that the linearization is valid and higher than

the noise level.

5.2.5 Initialization and stopping conditions

Our phase retrieval algorithms are not globally convergent algorithms. The method
will be quantitatively evaluated by measuring the normalized mean square error (NMSE)
using the Ly(2) norm. If ¢* is the phase to be recovered and ¢ the current estimate, the
NMSE is calculated as:

lex = "I/ ll¢"| (5.21)

The mixed approximation of the linear problem has been used as the starting point of
our simulations. It is displayed in Figure 5.7. The initial NMSE is 0.147. This a priori
guess of the solution ensures the convergence of the algorithms.

To avoid problems at the image boundary, the phase support is assumed to be included
in the 70 x 70 inner pixels and the border pixels have been fixed to zero. Since several
intensity maps obtained at different distances are available, the inverse problem may be
split into a finite number of sub-problems. In order to take into account more than one
intensity map, we propose two variants of a cyclic iteration over the distances. When one
steepest descent iteration is performed for each image recording distance, this method will
be called a Kaczmarz type method in the following discussion. When a hundred or more
iterations are performed for each distance, this methodology will be called a sequential

one.

In the following, the iterate 11 is accepted if the following two conditions are satisfied:

Ja(pr+1) < Jalpr) (5.22)
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and
11 (pr+1) = Lsll o) < (k) = L5l o) (5.23)

The iterations are terminated when
() — Is]| < 6 (5.24)

with the residual value § equal to the noise level. A divergence of the iterates away from

the solution is obtained if these stopping conditions are not imposed.

5.2.6 Results and discussions

Algorithms differ by the number of descent iterations performed for each propagation
distances, by the calculation of the adjoint of the Fréchet derivative which is based on
finite difference or on an analytic expression and by the regularization term. The difference
between the algorithms A; and As is the way of the cyclic iteration in the intensity maps
is performed. The last algorithm As represents the Kaczmarz type analytic Landweber
method with the stopping conditions (5.22), (5.23) and (5.24) both without regularization
term or with the regularization method.

Figure 5.8 displays the difference maps between the solution and the true phase to be
retrieved. Figure 5.8(a) is the initial error map obtained from the mixed approach showing
that errors are mostly concentrated at the edges. Figures 5.8(b), 5.8(c) and 5.8(d)
illustrate the differences maps respectively obtained with the algorithm A; (PPSNR=24
dB), Ay (noisy-free) and A3 (PPSNR=24 dB). The regularization parameter was set to
o = 0.01. In order to have more quantitative information about the convergence rates
and to compare the algorithms, we have studied NMSE for the phase shift as a function
of the number of iterations. Figure 5.9 shows the evolution of the NMSE as a function
of the number of iterations for the different algorithms on the noise-free and noisy data
(PPSNR=24 dB) for o = 0.01.

The errors on the phase have been significantly reduced with all algorithms. The use
of several distances improves the reconstruction because it allows a better coverage of the
frequency domain and it improves the statistics. Yet, a very slow convergence is obtained
with the algorithm As. Kaczmarz type methods are thus to be preferred.

It is well known that the Landweber iteration has a regularizing effect, the number of
iterations being the regularization parameter. The regularization term is not crucial in
that case and improves only slightly the convergence rate. Yet, a divergence of the iterates
away from the solution has been observed for other phase maps, if this term is not included
in the functional. The regularization parameter has been selected from trial-and-error. As
displayed in Figure 5.9(a) and 5.9(b) for noise-free and noisy data, the use of a weak
(a = 0.01) smoothing regularization yields good phase retrieval convergence results.

In Figure 5.9 it can observed that the algorithm A3 has good convergence properties.
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Figure 5.8: (a) Error map for the phase retrieved with the mixed approach [Guigay
et al. (2007)], (b) error map for the phase retrieved with the algorithm A; (PPSNR=24
dB, a = 0.01, 6 = 0.01), (c¢) error map for the phase obtained with the algorithm A,
(. = 0.01, 6 = 0.01) and (d) error map for the phase obtained with the algorithm As
(PPSNR=24 dB, a = 0.01, § = 0.01).

The algorithm Aj is also much faster since the large scale matrix used in the finite difference
methods is replaced by the analytic expression of the adjoint of the Fréchet derivative. It
should be noted that at the end of the iterations, the condition of Eq. 5.24 is fulfilled and

that we have to stop the iterations considering the noise level.

The phase maps obtained with the algorithm As for the noise-free data and noisy data
(PPSNR=24 dB) with a smooth regularization a = 0.01 are displayed in Figure 5.10(a)
and Figure 5.10(b) respectively. The final NMSE are 0.095 for noisy-data (PPSNR=24
dB) and 0.09 for noise-free data.

The phase retrieval error may still be decreased. The drawbacks of the regulariza-

tion functional ||Vl —are well-known. An isotropic smoothing effect is obtained and
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Figure 5.9: Normalized mean square error for the phase versus iteration number with the
edge fixed to zero: (a) for the noise-free data (a« = 0.01, § = 0.01) and (b) for the noisy
data (o =0.01, § = 0.01, PPSNR= 24dB).

the boundaries are not well preserved. This is obvious in Figure 5.8(c). The noise is
suppressed but the high values of the gradient are too greatly penalized on the edge. In
future works, the gradient Vi may be replaced by a nonlinear functional of ¢ as in semi-
quadratic regularization or by the bounded variation semi-norm [Scherzer et al. (2008)]

or by anisotropic terms.

5.2.7 Conclusions

In this section, several nonlinear iterative approaches for phase retrieval have been
proposed. The methods investigated previously were based on the linearization of the
relation between the phase shift induced by the object and the diffracted intensity. They
have used the Transport Intensity Equation (TIE) (Section 3.2.1), the Contrast Transfer
Function (CTF) (Section 3.2.5), or mixed approaches (Section 3.2.6). Our nonlinear itera-
tive approaches use the Fréchet derivative of the intensity recorded at different propagation
distances. We have compared the convergence rates for three algorithms, two based on

the finite difference gradient and one, on the analytic expression of the gradient. The best
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Figure 5.10: Reconstructed phase with As algorithm for (a) noisy-data (PPSNR=24 dB,
a = 0.01) and (b) for noise-free simulations (o = 0.01).

results are obtained when the inverse problem is regularized with the smoothing Lo norm
of the phase gradient. The best convergence rates are found when the various distances
are treated with a Kaczmarz type method where one descent iteration is performed for
each distance. The evaluation of the method was performed using a simple phase map,
both with and without noise. For the simulated data, the normalized mean square error
was measured. Tikhonov regularization based on linear filtering used in this section has
some well-known drawbacks since it does not only smooth noise but also blurs important
features such as edges. To avoid these shortcomings, nonlinear partial differential diffu-
sion equations may be useful. Therefore, other regularization methods will be tested in
the next sections. Our approach outperforms the linear methods on simulated noisy data
for PPSNR above 20dB and the nonlinearities of the Fresnel diffraction are well taken
into account. The analytic calculation of the adjoint of the Fréchet derivative speeds up
the calculations and overcomes memory limitations due to the Fréchet derivative matrix
(Section 5.2.2).
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6.1 Introduction

n this chapter, we refine the scheme proposed in Section 5.2.3 by introducing projection
I operators in the algorithm. The new method was tested on noisy simulated data. It
was shown that the new iterative schemes proposed improve the results obtained in a linear
framework, yet stagnation away from the true phase is observed (Sections 5.1.1, 5.2.3).
The proposed method here outperforms the approaches based on the linearization of the
relation between the phase shift induced by the object and the diffracted intensity and the

former nonlinear algorithm with no projectors (Section 5.2.3).
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The aim of this chapter is to introduce Fienup like projection operators in the former
nonlinear phase retrieval approach (Section 5.2.3). Classical algorithms based on projec-
tions and designed for solving phase retrieval problems have been discussed in the math-
ematical context of multi-valued projection operators and convex optimization [Bauschke
et al. (2002)]. The connection has been established between the widely used phase re-
trieval methods like Error Reduction Fienup approaches [Fienup (1982)] and the standard
convex optimization algorithms. The error reduction algorithm is identified with a non-
convex alternating projection algorithm [Bauschke et al. (2002)] and it is shown that the
Fienup’s basic input-output, and hybrid input-output algorithms corresponds to Dykstra
and Douglas-Rachford algorithm. This work provides a theoretical framework to better
understand and improve the new phase recovery scheme presented in Section 5.2.3 by
means of projection operators designed to satisfy convex or non-convex constraints.

The iterative Landweber type method based on the Fréchet derivative of the nonlinear
operator Ip has been described in Section 5.1. Furthermore, it was possible to decrease the
computation time and to obtain a better convergence by using the analytical expression
of the Fréchet derivative and of its adjoint operator.

In order to obtain the best decrease of J(p) (Eq. 5.4) the regularizing parameter « is
chosen by trial-and-error. This type of method has been used in several works on nonlinear
ill-posed problems [Daubechies et al. (2008)]. In this chapter, we use projectors in order to
enforce some constraints on the retrieved phase and to improve the former phase recovery
algorithm. Common approaches for solving the classical phase retrieval problem is to
enforce alternatively object domain and the Fourier constraints. In this work, we have

considered an image modulus constraint in the object domain.

6.2 Projector Operator

The results of this section have been published in the following article:
V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin,
“Non-linear iterative phase retrieval based on the Fréchet derivative and projection
operators.”
IEEE International Symposium on Biomedical Imaging - ISBI2012, Barcelona, Spain, pp.
106-109, 2012.

For each distance D and diffracted intensity Ip, we consider the set Mp = {u €
Lo, |u| = +/Ip}. This set is closed but not-convex and this lack of convexity is related to
the difficulty of the phase retrieval problem. Let ¢, 1 be the phase obtained at the end

2
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of the Landweber step. For a given transmission 7} at the iteration k, obtained with the

former iterative method, defined by:

Ti(x) = a(x) explipy 1 (x)] (6.1)

we consider the projection of T} * Pp on the set Mp. The set Mp defines a non-convex
constraint, the associated projector is multi-valued and a particular selection must be

picked. We have thus defined the projection Py, by:

\/ID.% if Ty« Pp #0
Tk*PD ika*PDZO.

PMD(Tk*PD) = { (62)

The new transmission T,g is calculated with successive Fourier and inverse Fourier

transforms:

T, = F7'{F [Pm, (Ti + Pp)] /F (Pp)} (6.3)

and projected phase is defined by :
Pp(ppy1(x)) = argmin {ITx(x) — a(x) exp [ip(x)] | } (6.4)

where Pp is an additional projector. We have also considered a support constraint and a
projection Ps on the support & of the phase Ps = ¢.1s.

At each iteration the projectors Pps,, and Ps are applied successively as in the Error
Reduction algorithm (ER) [Fienup (1982)]. The iterate ¢y 1 is obtained from ¢y 1 /o using
the modified standard Landweber method (Eq. 5.11) :

k1 = PsPp(@pi1/2)- (6.5)

This additional projection step leads to an alternative phase retrieval scheme. The dis-

tances are stepped through randomly.

6.2.1 Results and discussions

This algorithm was tested on simulated noisy data obtained as described in Sec-
tion 5.1.2. The original phase map to be retrieved is displayed in Figure 5.1, together with
the corresponding Fresnel diffraction pattern for D=1.4 m with 24dB in Figure 5.3(b).

A Gaussian white noise well adapted to our synchrotron imaging system with a peak-
to-peak signal to noise ratio (PPSNR) of 24dB was added to the image (Eq. 5.12). In
our simulations the distances were considered in a random way. The phase support S is
assumed to be restricted to the 70 x 70 inner pixels.

Two different starting points have been used to test our algorithm. Figure 6.1(a)

displays the difference maps between the phase obtained with the algorithm and the true
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Figure 6.1: Error map for the phase retrieved with the new algorithm initialized with (a)
the mixed approach and (b) an arbitrary solution.

phase to be retrieved with the initial phase obtained from the mixed method proposed in
[Langer et al. (2008)]. Figure 6.1(b) displays the difference map between the true phase

and the phase obtained with the new algorithm for an initialization far from the solution.

The method works well with a weak smoothing regularization (a« = 0.5) when the
initialization is performed far from the solution. For a starting point obtained with the
mixed approach, the regularization does not improve the phase recovery and one may

choose o« = 0.

The evolution of the mean square error obtained for noisy-data with 24dB (PPSNR) is
displayed in Figure 6.2(a) and Figure 6.2(b) as a function of the number of iterations. The
normalized mean square error on the phase decreases from 0.1471 to 0.0268 and 0.8121
to 0.0234 respectively. It should be noted that for a smooth regularization (o = 0.01)
with additive white Gaussian noise (PPNSR=24 dB) without projectors the final errors
are 0.359 and 0.095 (Section 5.2.3). The use of the projectors improves the convergence

properties of the nonlinear iterative method presented in Section 5.2.3.
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Figure 6.2: Normalized mean square error for the phase versus iteration number for noisy-
data (PPSNR 24dB): (a) initialized with the mixed solution (a = 0), (b) initialized with
the arbitrary solution (a = 0.5).

6.2.2 Conclusions

To conclude, the proposed nonlinear iterative method uses the Fréchet derivative of
the intensity recorded at different propagation distances (D=0.2; 0.4; 0.6; 0.8; 1.0; 1.2;
1.4; 1.6) and projection method on convex or non-convex sets as in the Fienup algorithms.
It outperforms the linear mixed method (Section 3.26) and our former nonlinear approach

(Section 5.2.3) for simulated noisy data.

6.3 Nonlinear Tikhonov regularization with projection op-

erators

In this section, we investigate the resolution of the inverse problem with nonlinear
Tikhonov regularization (Section 5.1) and projection operators (Section 6.2). The algo-
rithm is evaluated using projections for a 3D Shepp-Logan phantom in the presence of
noise, for a weakly or a strongly varying phase. We show that this new nonlinear ap-

proach leads to a significant reduction of the phase errors. In this section, the inverse
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problem is regularized with the Lo norm of the phase because the choice of this term leads

to best numerical results for the Shepp-Logan phantom.

6.3.1 The iterative reconstruction method

As detailed in Section 5.1 the inverse ill-posed problem of the phase is stabilized by
a Tikhonov type regularization term with the square of the gradient phase term. In the
following the Landweber iterative algorithm is modified by replacing this term HVgoH%Z

with the phase term ||<,0H%2 In this way, the optimality condition becomes:
In(@)*[In(e) — Is] + a- o =0. (6.6)

The phase estimate (g1 at the iteration k + 1 is obtained starting from the previous

iteration k, so from the previous retrieved phase ; with:

er1 = o — TelIp(er) [In(or) — Is] + apr} (6.7)

The standard Landweber method is thus modified by introducing a linear search pro-
cedure with a variable step size 7. An approximate value for 7, is obtained with a
dichotomy strategy. The algorithm is a simplified version of the iterative Gauss-Newton
method considered in [Bakushinsky (1992), Bakushinsky and Smirnova (2005)].

The regularizing parameter « is chosen by trial-and-error in order to obtain the best
decrease of the regularization functional. This regularization methodology is more general
than the one investigated in Section 5.2.3 and it gives goods results for noisy and non
smooth phase maps. Other regularization terms have been tested in Section 5.2.3, but the
best results are obtained with the approach detailed above.

The computation of the iterates is based on the calculation of the adjoint of the Fréchet
derivative of the intensity (Section 5.2). At each step of the optimization process Fienup

like projections of the current iterate are also calculated (Section 6.2).

6.3.2 Simulations on a Shepp-Logan phantom

Two phantoms were defined, one for the absorption index and one for the refractive
index decrement. Figure 6.3(a) displays the 3D Shepp-Logan [Kak and Slaney (1989)],
consisting of a series of ellipsoids on which the projections are based. Theoretical values
for the absorption coefficient § and for the refractive index ¢, of different materials at 24
keV were used in different regions (Table 6.1) and the corresponding pixel size was 1um.
Numerical projections were calculated in a parallel beam geometry with 2048 x 2048 pixels
and the two resulting data sets were combined to form a complex representation of the
wave exiting the object using Eq. 3.1. In order to test our algorithm, two types of objects
were considered for short propagation distances and weak absorption, one with a slowly

varying phase and another with a strongly varying phase.
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Table 6.1: Values of the absorption coefficient and refractive index at 24keV for the mate-
rials used in the 3D phantom for strong phase (where (weak phase)=(strong phase)/10)

#(cmfl) %( x100cm 1)

Aluminium 5.130 11.4
Ethanol 0.305 4.00
Oil 0.262 4.36
PMMA 0.425 5.63
Water 0.482 4.87
Polymer 0.306 5.00

The intensity images are obtained as the squared modulus of the convolution product
calculated by Fourier transforms using Eq. 3.5. They were calculated for three propaga-
tion distances 0.035 m, 0.072 m and 0.222 m. The propagation distances are taken into
account randomly during the phase retrieval algorithm. Simulations were also performed
for additive uniformly distributed white noise with zero mean and with a peak-to-peak
signal to noise ratios (PPSNR) of 24dB, where the peak-to-peak signal to noise ratio is
defined by Eq. 5.12.

10.95

0.9

0.85

(a) (b)

Figure 6.3: (a) Ideal phase to be retrieved and (b) absorption image with PPSNR=24dB
for strongly varying phase.

The original phase map for strong absorption to be retrieved digitized to 512 x 512
pixels together with the absorption map are displayed in Figure 6.3(a) and Figure 6.3(b).
Figure 6.4(a) and Figure 6.4(b) shows the intensity maps for different distances corrupted
with PPSNR=24dB, respectively. The corresponding Fresnel diffraction pattern for the
weakly varying phase at D = 0.222 m are displayed, without noise in Figure 6.5 and with
a PPSNR of 24dB. The diagonal profiles of these intensity maps for weakly varying phase
are displayed in Figure 6.6.
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(a) (b)

Figure 6.4: Intensity images at (a) D = 0.035 m and (b) D = 0.222 m for strongly varying
phase.
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Figure 6.5: Intensity images for weakly varying phase at D = 0.222 m (a) without noise
and (b) with PPSNR=24dB.

6.3.3 Initialization and Stopping Rules

The phase retrieval algorithm proposed is not globally convergent. In our simulations,
the mixed approximation of the linear problem has been used as starting point. The errors
maps obtained with the mixed approach for the two phases are displayed in Figure 6.7(a)
and Figure 6.7(b).

An important role in the algorithms is played by the regularization parameter. In order
to avoid obtaining solutions diverging far away from the real solution, this parameter is
chosen by trial-and-error. The parameter in the mixed approach may be set at a very
small value (i.e 10719, and in the nonlinear algorithm its values vary from 1073 to 1077,

depending on the noise level and on the type of object.
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Figure 6.6: Diagonal profile of the (a) intensity image for weakly varying phase at D =
0.222 m without noise (Figure 6.5(a)) and (b) with 24dB ( Figure 6.5(b)).
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Figure 6.7: Error maps obtained with the mixed approach without noise used as a starting
point (a) for weakly varying phase and (b) for strongly varying phase.

In this work, the iterations are terminated when
1D (Pr+1) — Ip(Pr)ll o) < WD (wr)ll L) (6.8)
where w is a parameter that was set at 0.01 by trial-and-error, and
s = Il o) < 6. (6.9)

Since ideal reconstruction is available direct comparisons can be made. The method
will be quantitatively evaluated by measuring the normalized mean square error (NMSE)
using the Lo(2) norm:

e — okl Lo (6.10)

NMSE = 100 x
el za (o)
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where @y, is the phase recovered at iteration k£ and ¢ the ideal phase to be recovered.

6.3.4 Results and discussions

In order to analyse the performance of the proposed method, we compared the numer-
ical results obtained with the nonlinear method with the phases retrieved with the CTF,
TIE and mixed approach (Section 3.2). The four methods were tested in two different

contexts (for weakly and strongly varying phase) for noise-free and noisy data.

Table 6.2: NMSE(%) values for different algorithms and objects

TIE | CTF | Mixed | Nonlinear
Strong phase without noise | 25.54 | 42.52 | 26.81 7.57
Weak phase without noise 1.5 | 2437 | 3.16 2.35

Strong phase PPSNR=24dB | 262.13 | 56.54 | 27.78 11.58
Weak phase PPSNR=24dB 459 54.67 | 12.36 8.69

150 _150
\3100 %100\
g 20 @ 50
= c o
o £ 5
x500 0 .
(b) CTF
~150 _150
%100 %100‘
£ 0 £ 0
o o
-50 '58}“ ‘
. 500 0 y x500 0 ¥
(¢) Mixed (d) Nonlinear

Figure 6.8: Error maps and corresponding NMSE values for strongly varying phase without
noise obtained for different algorithms (a) 25.54%, (b) 42.52%, (c) 26.81% and (d) 7.57%.

The NMSE (Eq. 6.10) for all the methods are presented in Table 6.2. For the strongly
varying phase without noise, the nonlinear approach gives the most accurate results. For
the weakly varying phase for noise-free data, the TIE method gives the best solution.
On the other hand, for noisy simulated data with PPSNR=24dB, TIE yields the worst
reconstructions. As shown in Table 6.2, the errors on the phase have been significantly

reduced with our algorithm using as starting point the mixed phase map solution.
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Phase(s)
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Figure 6.9: (a) Original phase map to be retrieved for strongly varying phase and recon-
structed phase for the same object with (b) the mixed approximation, (c)and (d) with the
nonlinear algorithm.

Figure 6.8 shows the errors maps obtained with strongly varying phase without noise
for the four methods. The evolution of the NMSE as a function of the iterations number is
displayed in Figure 6.11 for the various cases investigated. In these plots, one iteration cor-
responds to a random cycle through the intensity images obtained for the three distances.
These curves show that the proposed algorithm has good convergence properties. The
phase retrieval errors obtained with the algorithm for the noise-free data and noisy data

(PPSNR=24dB) with the nonlinear Tikhonov regularization are displayed in Figure 6.10.

The original phase map to be retrieved for strongly varying phase is displayed in Figure
6.9(a). Figure 6.9(b) and Figure 6.9(d) shows the phase maps for noisy data (PPSNR=24
dB) obtained with the mixed approximation and with the nonlinear algorithm using this
mixed solution map as starting point respectively. The phase map retrieved for noise-free

data with the nonlinear algorithm is displayed in Figure 6.9(c).
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Figure 6.10: Error map for the phase retrieved with the nonlinear algorithm for: (a)
strongly varying phase without noise, (b) weakly varying phase without noise, (c) strongly
varying phase with PPSNR=24dB and (d) weakly varying phase with PPSNR=24dB.

6.3.5 Conclusions

In this section, we have presented a new nonlinear phase retrieval approach based on
the Fréchet derivative of the intensity, a nonlinear Tikhonov regularization and Fienup
like projection operators. The algorithm uses a Landweber type iteration to minimize
the regularization functional. Three propagation distances are used in a random way to
achieve a good reconstruction. The reconstruction quality for a projection of a 3D Shepp-
Logan phantom has been quantitatively evaluated for strongly and weakly varying phases,
both with and without noise. The nonlinear method proposed is compared with linear
approaches. The TIE method gives the best solution for slowly varying phase and noise-
free data. Yet, for the strongly varying phase and the noisy data the nonlinear method

outperforms the linear methods.
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Figure 6.11: Normalized mean square error for the phase versus iteration number
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Résumé général

‘introduction de cette partie comporte un bref rappel sur les ondelettes continues.

Durant les derniéres décennies, la théorie des ondelettes a attiré une attention con-
sidérable parce qu’elle proposait une extension intéressante de la théorie de Fourier. Le
principal inconvénient de ’analyse de Fourier est le fait que 'information temporelle est
perdue quand la transformation dans le domaine des fréquences est effectuée. Une pro-
priété importante des ondelettes est qu’elle permet d’obtenir une représentation du signal
a la fois en temps et en fréquences. La transformation en ondelettes repose sur I'utilisation
d’une ondelette " mere " qui va étre translatée et dilatée afin de couvrir le domaine temps-
fréquence.

La transformée en ondelettes continues a été développée dans le but de pallier aux in-
convénients de la transformée de Fourier & court terme. Ses propriétés les plus importantes
sont présentées dans la section 7.2. Ensuite, la transformée en ondelettes discrétes 1D et
son extension en 2D par produit tensoriel d’ondelettes 1D, ainsi que les ondelettes utilisées
dans cette these sont décrites dans la section 7.3. Une méthode itérative d’optimisation
en coordonnées ondelettes basée sur le seuillage doux itératif est introduite.

Comme cela a été détaillé dans la partie 11, le probleme de l’estimation de phase est
mal posé. Dans cette partie, sous 'hypothese que la phase a une représentation parci-
monieuse dans une base d’ondelettes orthogonales, nous proposons un nouvel algorithme
pour résoudre le probléme d’estimation de la phase reposant sur un algorithme de seuillage
itératif. Cette méthode n’a pas été étudiée auparavant dans le cadre de 'estimation de
phase dans les méthodes de propagation.

La régularisation de type Tikhonov pour le probléme de I'estimation de phase a été
étudiée en détail dans [Langer et al. (2008), Langer et al. (2009), Langer et al. (2010)].
Cette approche donne des bonnes reconstructions pour de niveaux de bruit faibles, mais
elle est insuffisante dans le cas des signaux tres bruités. Il est bien connu que la représen-
tation parcimonieuse de signaux sur des bases adaptées, associée a la norme l;, permet
la reconstruction du signal & partir de données trés bruitées ou incomplétes [Daubechies
et al. (2004),Combettes and Wajs (2005),Candes et al. (2006),Donoho (2006), Daubechies
et al. (2008), Chaux et al. (2007), Wright et al. (2009), Dupe et al. (2009)]. Nous nous
sommes donc intéressés a la résolution du probleme inverse en coordonnées ondelettes.

Pour cela, nous nous sommes tout d’abord placés sous ’hypotheése que le probléeme
direct peut étre linéarisé et qu’une seule distance de propagation est disponible. Nous
avons proposé une approche itérative de type Landweber associée a un seuillage doux
des coefficients ondelettes dans une base d’ondelettes orthogonales. Cette méthode est
détaillée dans la section 8.1. L’algorithme a été testé sur des données simulées avec un
bruit blanc gaussien. Nous montrons que cette approche améliore les résultats par rapport
aux approches linéaires classiques.

En conclusion, cette méthode exploitant une régularisation par la norme 11 des co-
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efficients ondelettes améliore les approches linéaires utilisées jusqu’a maintenant dans
I’estimation de phase principalement basées sur la régularisation de Tikhonov. Le prob-
léeme direct linéarisé a été inversé par un algorithme itératif de type Landweber en utilisant

une base d’ondelettes orthogonales. Cependant les résultats restent tres bruités.

Dans la premiere partie du manuscrit, nous avons vu que la solution non linéaire
reposant sur la dérivée de Fréchet décrite dans la section 6.3, améliore les solutions obtenues
avec les approches linéaires mais n’est pas optimale pour des données bruitées. Afin
d’obtenir une meilleure reconstruction et d’améliorer la résolution spatiale de la carte de
phase reconstruite avec la méthode non linéaire, dans la section 8.2 nous avons étudié
une approche combinant 1’algorithme non linéaire et la méthode linéaire multirésolution

détaillée dans la section 8.1.

Les méthodes linéaires sont utilisées pour obtenir une solution initiale de la phase,
supposée n’étre pas trop éloignée de la vraie solution. Les hautes et basses fréquences de
la phase estimée sont améliorées et la méthode est moins sensible au bruit. Trois distances
de propagation ont été utilisées de maniere aléatoire pour obtenir une bonne reconstruc-
tion. Cet algorithme non linéaire d’estimation de la phase a été testé sur les images de
projection du fantéme 3D Shepp-Logan en présence de bruit. Les résultats montrent que
I’approche combinée donne de meilleurs résultats que approche mixte (Section 3.2.6), et
que Papproche basée sur la fonction de transfert de contraste (CTF) (Section 3.2.5). Elle

améliore aussi les méthodes non linéaires présentées précédemment.

L’utilisation de contraintes de parcimonie est devenue récemment une tendance tres
importante dans les études des problemes inverses. Plusieurs algorithmes exploitant des
contraintes de parcimonie pour le probléeme de l'estimation de phase ont été étudiés
dans [Candes et al. (2011),Ohlsson et al. (2012), Candes and Li (2012), Waldspurger
et al. (2012), Mukherjee and Seelamantula (2012), Newton (2012), Gaass et al. (2012)].
Ces approches sont limitées a des données de petite taille impliquant un temps de calcul
important et donc ne peuvent pas étre utilisées pour ’estimation de la phase couplée a la
tomographie, car la quantité de données a traiter est trop importante. D’autre part, une
stratégie visant a résoudre les problemes non linéaires mal posés avec des contraintes de
parcimonie a été étudiée par Ramlau et Teschke [Ramlau and Teschke (2006)] mais n’a
jamais été appliquée au probleme d’estimation de la phase. Cette approche qui sera noté
RTS (Ramlau et Teschke Schéma) dans ce manuscrit, est résumée dans la section 8.3.2.
Nous montrons que les conditions de convergence sont satisfaites. Nous détaillons aussi
un algorithme de point fixe basé sur une fonction de substitution utilisée pour minimiser
la fonctionnelle de régularisation [Ramlau and Teschke (2006)]. Cette approche constitue
un traitement alternatif a 'approche combinée "ondelette non linéaire" (WNL) présentée

dans la section précédente.

Le but de la section 8.3 est de faire une comparaison approfondie entre les différents

algorithmes itératifs non linéaires et les stratégies de régularisation associées qui peuvent
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étre appliquées au probleme d’estimation de la phase en n’utilisant qu’une seule distance.
Le probléme inverse a partir d’'une seule distance de propagation est plus séverement mal
posé que lorsque plusieurs distances sont utilisées [Beleggia et al. (2004), Zabler et al.
(2005), Guigay et al. (2007)]. La convergence des différentes méthodes est étudiée sur des
données simulées. Pour cela, nous avons utilisé une image de projection du fantéme 3D
Shepp-Logan avec et sans bruit blanc gaussien pour une seule distance de propagation. Les
cartes de phase extraites avec les algorithmes non linéaires et linéaires ont été comparées
en termes d’erreur quadratiques moyennes normalisées. Les principales hypotheses de
régularité pour la convergence des algorithmes ont été mis en évidence pour l'opérateur
de Fresnel dans la deuxiéme partie du manuscrit (Section 5.2.1). Ce travail démontre la
robustesse et Uefficacité de la méthode non linéaire combiné (WNL) pour l'estimation de
la phase pour une seule distance de propagation. Cet algorithme couple un traitement
non linéaire du probleme de l'estimation de la phase basé sur la dérivée de Fréchet de
I'intensité avec un schéma de type Landweber, et une solution itérative du probleme linéaire
en coordonnées ondelettes avec une régularisation de type I3. Nos résultats indiquent
que I'approche WNL est plus robuste au bruit que ’approche RTS. Des améliorations
significatives par rapport aux méthodes linéaires pour les cartes de phases reconstruites

sont obtenues en utilisant 1’algorithme non linéaire WNL.
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Wavelet Transforms

Contents
7.1 Introduction towavelets ... .................... 89
7.2 Continuous wavelet transform . . . . ... ... .......... 90
7.2.1 Analysis and Synthesis . . . . . .. ... o oL 90
7.3 Multiresolution analysis . . . ... ... ... ..., 92
7.3.1 Discrete wavelet transform . . . . . .. ... .00 92
7.3.2 1-D Discrete wavelet transform . . . . . ... ..o 0L 94
7.3.3 2D Discrete wavelet transform . . . .. ... ..o 0L 96
7.4 Iterative optimization method . . . . . ... . ... ... ... .. 99

n the introduction of this chapter a brief introduction about continuous wavelet is given.
1-D and 2-D discrete wavelet transform are described in Section 7.3.2 and Section
7.3.3 respectively. An iterative optimization method in wavelet coordinates is presented

in Section 7.4.

7.1 Introduction to wavelets

During the last decades, the wavelet theory has attracted an important attention be-
cause an interesting extension of the Fourier theory has been possible. The main drawback
of the Fourier analysis is that the time information is lost when the transformation to the
frequency domain occurs. In addition, an important property of wavelets is their ca-

pability to describe details both in time and in frequency. In other words, if you want
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more accurately low-frequency or high-frequency information, wavelet analysis provides
this possibility by using long intervals or short time intervals respectively. In the following
a brief presentation of the continuous and discrete wavelet transform is given in Section

7.2 and Section 7.3 respectively.

7.2 Continuous wavelet transform

In this section, the continuous wavelet transform together with its most important
features are presented. The continuous wavelet transform (CWT) was developed with the
aim to overcome the resolution problem given by the short time Fourier transform (STFT).

The main differences between the two methods are:

o The Fourier transforms of the windowed signals are not considered (i.e. the negative

frequencies are not calculated).

e The window width for each spectral component is modified during the transform

calculation.

7.2.1 Analysis and Synthesis

A signal s(z) may be decomposed into a set of basis functions called wavelets. The
most general form of the wavelet transform is:

r—j

1 o
Wwﬂ@_\ﬁw(i> ERTjER Ty

where W(x) is a mother wavelet. The translation parameter is defined by j and the scale
parameter by 1. % is the scale factor introduced to normalize the energy across different
scales. The translation term corresponding to the time domain is related to the windows
location through the signal s(x). The size of the windows automatically varies thanks to
the term called scale term, related to the frequency domain. In other words, the scaling
operation acts either as dilatation or compression of the wavelet. The coverage of the
wavelet spectrum is determined by the scaling function. We will not give here all the
details of the wavelet theory. A full introduction to wavelets can be found in [Daubechies
(1992), Mallat (1999), Strang and Nguyen (1996), Vetterli and Kovacevic (1995)].

The mother wavelet has a crucial role in wavelet analysis. Two important properties
are that it has to be (almost) compactly supported (finite length) and be oscillating. More
precisely, it has to satisfy the admissibility condition.

Definition : A function V¥ is a wavelet if the admissibility condition is met:

U(w
%:/‘m<m (7.2)
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where the Fourier transform of the wavelet ¥ is denoted with W. In practice, the ad-

missibility condition is reduced to ¥(0) = 0 since ¥(w) will always have sufficient decay:

/ U(z)de = B(0) = 0. (7.3)

In this way an oscillating character is imposed to the wavelets, hence their name (e.g.
little wave). Since the wavelet ¥ € Ly(R) and its Fourier transform ¥ € Ly(R), then:

/]@(w)fdw < 0. (7.4)

Another important property of the continuous wavelet is the regularity. This property can

be defined using vanishing moments:
/ 2 (z)dr =my =0 (7.5)
R

where k = 0,1,....,p — 1. The order of a wavelet transform is given by the number of

vanishing moments, in this case p. The regularity of the CW'T denotes the rate of decay.

As we saw above a wavelet can be defined as a waveform of short duration that has an
average value equal to zero. The continuous wavelet transform of the signal s(z) is defined

as follows:
CWT,(i,j) = / VY, (@)s(x)de = <\p(i,j)(x),s(x)>, (7.6)

where ¥* is the complex conjugate of the W. The results of the CWT are the wavelet

coefficients as function of scale ¢ and position j.

The final step is the reconstruction of the signal s(z) € La(R) which can be written as

a superposition of dilated and shifted wavelets. The reconstruction formula is given by:

s(z) = C%lp/j/i\ll(i,j)(x)CWTs(i,j)djgj. (7.7)

This equation is called also the resolution of the identity [Vetterli and Kovacevic (1995)].

7.3 Multiresolution analysis

7.3.1 Discrete wavelet transform

The discrete wavelet transform (DWT) is a wavelet transform where the scale and the
translational takes a discrete set of values. DW'T provides sufficient information for the
analysis and the synthesis of a discrete signal, therefore the computation time and the

resources required to compute the coefficients can be significantly reduced.
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Frames in Hilbert Spaces

The discrete wavelet is obtained by rewriting the Eq 7.1 as [Daubechies (1992)]:

U, (@) = \/1;7\1' <x _};Thl> (7.8)

where ¢ and j are integers, h > 0 is a fixed dilatation step and 7 the translation factor.
If i = ¢ and j = nc™ and ¢ = 2 then the wavelets are called dyadic DWT. A vec-

tor f in a Hilbert space H can be decomposed using discrete wavelets by wavelet series
decomposition, but the reconstruction step is possible only if these wavelets constitute a
frame [Daubechies (1992)]. A frame and a basis are not the same but they have common
properties. A sequence {¢y}, o is a frame in a Hilbert space H if there exist two constants
A > 0and B > 0, such that for any f € H [Mallat (1999)]:

AlIFIP < ST on) < BIFIP, (7.9)

nel’

where I' is an index set (finite or infinite). The redundancy of the discrete wavelet basis
functions is measured by the frame bounds A and B. If A = B the frame is called tight
frame and if A = B = 1 then the frame is an orthonormal basis. When A # B, the
reconstruction is achieved using dual frame. By imposing that the wavelet basis functions
have to be orthogonal, it is possible to remove the redundancy of the discrete wavelet

transform. This is ensured if the mother wavelet is chosen as:
<‘I’(z‘,j)a ‘I’(i/,j/)> =060y i,i' € Ly(Z"); 4§ € La(Z7) (7.10)

where 0 is the Dirac function.
Let us consider a finite family of functions ¥ = {\Ill, U2 w3 \IIL} C Lo(R™). We say
that U is a wavelet family if {\Ifij €L, jELI=1,2,..., L} is an orthonormal basis

for Ly(R™). Here, we consider the following convention for a function s € La(R™):
si§(x) = |detD|"/*s(D7'x —j) i € Z,j€ ", (7.11)

where D is the dilatation matrix (where all the proper values are higher than 1: o1 >
o9 > ... >0y, > 1 and |detD| = d = 0102...0%).
Multiresolution analysis (MRA) consists of a sequence of nested subspaces 0.... C V C

Vi C Va.... CV; C Vigq... C La(R™), which verify the following properties :
1. Vig1 C Vi, Usez Vi is dense for Ly(R™) and (;cz Vi = {0};
2. Vs € Ly(R") and Vi € Z, s(x) € Vi41 < s(Dx) € Vj;

3. 3P € Vy C Lo(R™) so that for Vj € Z™, ®(x — j) is an orthogonal basis for V.
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The real function ® is continuous and is called scale function, and is defined as:
/ B(x)dx = 1. (7.12)

In accord with (2) and (3), for a fixed ¢ the basis functions {®; j,j € Z"} is an orthonormal
basis for V;.
Let us consider a subspace {W;},.; for La(R™) defined as:

Viei =Vilpwi, (7.13)

where @ is the direct sum. In accord with (1) and (2), a sampling density d = |detD] is
required to pass from the scale ¢ to the scale i — 1. In other words, (d — 1) elementary
functions {‘I’i RHAS Z,jeZ"1l=1,2,...d— 1} are necessary to form an orthonormal basis
for W;. Moreover, the original 81gnal can be written in terms of dilated version of the

function ®. The projection operator into the space V; is defined as:

Synthesis

Projy,(s) = Y (s,®5) @y (7.14)

jezn

Analyse

Then, a function s € Ly(R™) can be obtained as:

Projy;_, (s) = Projv,(s) + 3 Z (s, 0l5) Wl (7.15)

jezr i=1

Projyy, (s)

The role of the projection operator Projy,. (s) of the subspace W; is to give the details
which are lost when the approximation occurs between the two consecutive scales.
The discrete coefficients of a signal s at the scale i are given by the approximation

coefficient:

Assli] = (5, i) (7.16)

and by the detail coefficients:
Dls[j] = <s,\11§7j> 1=1,2,....d—1. (7.17)

The next section describes the implementation of the discrete wavelet transform (DWT).

7.3.2 1-D Discrete wavelet transform

In 1-D discrete wavelet transform the signal will go through a series of FIR (finite
impulse response) high-pass and low-pass filters. The associated filters h(n), g(n) are

known as scaling and wavelet filter and correspond to the analysis step. For an orthogonal
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analysis, we can consider that h(n) = h(n) and g(n) = §(n), where h(n) and §(n) are the
high-pass and low-pass filters in the synthesis part.
The general form of an one-dimensional (1-D) discrete wavelet transform is shown in

Figure 7.1.

- HEE

aQ
(_
ro
—
ra
g

Figure 7.1: 1D Discrete wavelet transform scheme.

The DWT of a signal s[n] at the scale i is described by approximation coefficients

(from the low-pass):

Aisn] = (s, ®;p) = Zh — 2n)A;_1s[k] (7.18)
keZ

and details coefficients (from the high-pass filter)

D;s[n] = (s,V;,) = ngz 2n|A;—1s[k]. (7.19)
keZ

The approximation coefficients of a signal s[n| at scale ¢ — 1 can be reconstructed by

summing the approximation and details coefficients obtained at the scale i:

A;_1slk ZAS hlk — 2n] +ZD3 glk — 2n]. (7.20)
nez nez

In Figure 7.2 the coverage of the frequency domain is shown. In this case the fre-
quency allocation is valid for four decomposition levels, meaning that the approximation
coefficients have been split in two three times.

The general scheme of the decomposition process called wavelet decomposition tree is
shown in Figure 7.3. Moreover, the right part of the scheme from Figure 7.3 is called de-
composition or analysis and the left part is known as reconstruction or synthesis process,
respectively. The decomposition part is performed by using discrete wavelet transform
DWT and the reconstruction process is achieved with the inverse discrete wavelet trans-

form (IDWT). The choice of the right filter is a crucial in wavelet analysis, because the
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P‘f"’elx Level 3 A Level 2 A Level 1 \

0 Jus S S S

Frequency

Figure 7.2: Illustration of the frequency domain for four levels of decomposition of the
1-D. At each iteration the resolution is split in 2 as details. Same process of separation is
repeated sequentially only for the approximation coefficients.

filter will determine shape of the wavelet we use to perform the analysis. Details concern-
ing the design of the low- and high-pass decomposition and reconstruction filters can be
found in [Strang and Nguyen (1996), Vetterli and Kovacevic (1995)].

l .

.. {(jo§ ot
) | 1

e = sl

Analysis .
Synth
Decomposition Wave%ej: ynrhesis
WT Coefficients Reconstruction
b IDWT

Figure 7.3: Analysis-synthesis process involves two steps: splitting up a signal to obtain
the wavelet coefficients, and reassembling the signal from these coefficients.

7.3.3 2D Discrete wavelet transform

Multiple levels can be obtained by applying recursively the 1-D scheme (Figure 7.1).
By using separable wavelet filters the 1-D scheme can be easily extended to a two dimen-
sional (2-D) wavelets scheme. This extension preserves the 1-D properties: symmetry,
regularity and finite support. The 2-D wavelet transform will be then computed by ap-
plying a 1-D wavelet transform to all the rows and then repeating the operation on the
columns. Figure 7.4 shows the mathematical idea on which the wavelet decomposition
relies together with the visualization of the wavelet coefficients at the first iterate in the
analysis process. The high frequency sub-bands contain the vertical, horizontal and diag-
onal details. These details cannot be represented in the low frequency band, because in

this sub-band only an unrefined version of the original signal is obtained. Regardless the

Valentina DAVIDOIU 107



CHAPTER 7. WAVELET TRANSFORMS

Figure 7.4: (a) First level of 2D separable wavelet decomposition with the low resolution
L; and the three details V1, Hy, Dy and (b) visualization of the wavelet coefficients.

number of decomposition levels this interpretation of wavelet coefficients remains valid.

Considering a multiresolution analysis for four levels of decomposition (d = |detD| =
4), the wavelet basis is associated to a pair of function (®, V) with (h, g) associated filters.
In this case of decomposition we obtain a sub-image for the approximation coefficients and

three sub-images along the vertical, horizontal and diagonal directions.

In the following, we note with a = (a1, a2)! a binary vector as an indicator of the

monodimensional base, obtained using:

\Il(’i,jm) if Ay, = 1
Pi ke = (7.21)
®(ijm) Otherwise.

The translated scaling function in this case will be:

2
m=1
with
2
[=) an2™ (7.23)
m=1

The 2-D scaling function will be then: ¢(x) = ¥9(x) = ¢(x)¢(y) and {\I/l(x);l =1, 2,3},
and corresponds to the 2-D wavelets oriented according to the vertical, horizontal and

diagonal directions.
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Wavelet families used in this thesis
Haar wavelet

A classical wavelet example is the Haar wavelet. This concept is due Alfred Harr in
1909 and is also the first concept of wavelets. Considering a signal s(x) € L?[0,1], Haar

used the following piecewise constant function:

1 if 0<z<}
U(z)=4q -1 if I<az<1 (7.24)
0 otherwise.

The Fourier transform of the Haar wavelet is:

i 1 L \2 o (TN (TN i
U(w) = (1 —e ) = isin <2> sinc (2> e , (7.25)

2imw

sin(x)

where sinc(z) = . The Haar wavelet has a limited support in space and can be found

implemented in Matlab as 'db1’.

Daubechies Wavelet

The Daubechies wavelets are also called compactly supported orthonormal wavelets
[Daubechies (1992)]. These wavelets are obtained iteratively and are determined by num-
ber of vanishing moments my (Eq. 7.5). These wavelets have no explicit expression except
the Haar wavelet. However, ® € Vj C V_; and {®_;;,j € Z"} is an unconditional basis

for V_1, then a series of coefficients S[j],j € Z™ exist such that:

o(x) = > Bli]®MDx—j)=Vd > h[jloDx —j) (7.26)

jezn jezn
where h[j] = (®,®_; ;). The Fourier transform of this equation is:

d(w) = mo [(D—l)tw] ) [(D—l)tw] (7.27)
where:

mo(w) = ja S hlj) expl—i(i,w)) (7.28)

jezr
Imposing a number of restrictions for mg, then these wavelets can be computed in a

iterative way using the following formula:
o(w) = [[ mol(D*)'w] (7.29)
i=1

where mg(0) = 1.
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In Matlab all these families are implemented as 'dbN’, where N is the number of

vanishing moments of . The support length of ¥ and & is given by 2N — 1.

Others wavelets families have been developed for different problems like: symlets,
coiflets, biorthogonal wavelets, reverse biorthogonal wavelets, discrete approximation of
Meyer wavelet, Gaussian wavelets, complex Gaussian wavelets, Shannon wavelets, fre-
quency B-Spline wavelets or complex Morlet wavelets. All these families of wavelets have

been implemented in Matlab.

7.4 Iterative optimization method

In this thesis, under the assumption that the phase solution has a sparse representation
with respect to an orthonormal wavelets basis, we have proposed a new algorithm to solve
the phase problem using wavelets with an iterative thresholding step. This approach is
detailed in the next chapter and is based on an iterative optimization method presented

in the following.

As we have seen in Section 4.2 several regularization methods, like Tikhonov regular-
ization, are used to solve linear and nonlinear problems. In the literature, a method that

has attracted a considerable amount of attention is [y regularization.

Eq. 4.1 leads to the following [; regularized least-squares equation:
. 2
argmin { [ly — Kx|3 + o [[x[|; } (7.30)
X
where ||x||; is the sum of the absolute values of the components of x:
x|l = |z1| + |z2] 4 ... + |2y . (7.31)

The difference between Iy and I; can be easily understood by comparing the two unit-ball
represented in Figure 7.5. The [; norm of a vector composed of many small coefficients
is higher that the norm of a vector composed of few large coefficients. An important

advantage of the 1 norm compared with the ls norm is that /; is less sensitive to outliers.

One of the most popular methods to solve the convex optimization problem (Eq.
7.30) is the iterative shrinkage-thresholding algorithm (ISTA) [Daubechies et al. (2004),
Figueiredo and Nowak (2003), Hale et al. (2007)]. ISTA involves for each iteration a
matrix-vector multiplication involving in this way K and K followed by a soft-threshold

step.
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Figure 7.5: [; unit-ball in blue line and ls unit-ball in red line for the 2D case.

The general iterative optimization model

In the following we describe ISTA method for solving iteratively the convex problem:
argmin{“y — Kx|3 + aw(x)} where 1 <p <2 (7.32)

where

1(Bx)il5 - (7.33)
1

P(x) =

| I
p =

Eq. 7.33 defines the potential functions

the number of vector values returned by B.

—~

x), where B is a vector linear operator and j is

If p = 2, the solution of Eq. 7.32 is linear and is obtained as the solution to the
following system:
(KTK + aB"B)x = Ky. (7.34)

If p < 2, the solution of Eq. 7.32 is nonlinear. The solution in this case can be obtained

as the general step of ISTA :
X1 = Tat (x5 — 2tKT (Kx — y)) (7.35)
where ¢ is an appropriate step-size and 75 : RN — RN is the soft-threshold operator:

X; — ysgn(x; if X;
m[x])i:{ eenlx) A pal > (7.36)

0 otherwise.

This algorithm can be related to a more general class of algorithms, the proximal
forward-backward iterative approaches [Passty (1979), Facchinei and Pang (2003), Com-
bettes and Wajs (2005)]. The advantage of this method is its simplicity, therefore it has

seen many variants focusing on the convergence conditions of the sequence x to a solution
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of the Eq. 7.32.
By rewriting the Eq. 7.35 the general step of ISTA will be:

X1 = Tat(G(xx)) (7.37)

where G is the gradient descent step on the misfit term and the threshold is the proximal
operator associated to the {1 norm. ISTA is known also as a slow reconstruction method
in practice. Acceleration scheme of the algorithm have been proposed where the current
iteration is built on the entire history. This type of approaches are called Fast ISTA
(FISTA) [Beck and Teboulle (2009)] and NESTA [Nesterov (2005)].
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83.6 Conclusions . . . . . . . . ..o 126

s detailed in the previous Part II, the phase retrieval problem is ill-posed and the
A phase information can be recovered through the solution of a nonlinear relation-
ship between the intensity measurements and the researched phase map (Eq. 3.5). The
phase solution is assumed to have a sparse representation with respect to an orthonormal
wavelets basis. In Section 8.1 we propose to solve the phase problem using wavelets with
an iterative thresholding step for a single propagation distance. The proposed nonlinear
approach which relies on the Fréchet derivative described in Section 6.3 and the solution of
the linear problem in wavelet coordinates with an iterative thresholding are combined in
order to improve the spatial resolution of the retrieved phase map in Section 8.2. A conver-
gence comparison of several nonlinear approaches for the phase retrieval problem involving
regularizations with sparsity constraints is presented in Section 8.3. The algorithms were

tested on simulated data corrupted by white Gaussian noise.

8.1 Single-distance phase retrieval combined with iterative

thresholding in wavelet coordinates

The results of this section have been published in the following article:
V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin,
“Restitution de phase par seuillage itératif en ondelettes”
23th GRETSI, Bordeaux, France, 2011.

In this section, we investigate the resolution of the linear inverse problem in wavelet
coordinates. In the following, this scheme will be combined with the nonlinear approach
detailed above. The algorithm is evaluated using simulated noisy data. We show that this
approach outperforms the classical linear approaches.

Tikhonov regularization for the phase retrieval problem has been studied in detail
in [Langer et al. (2008), Langer et al. (2009), Langer et al. (2010)]. The linear approach
gives good reconstructions for small levels of noise but it is insufficient in the case of
signals very noisy. In order to obtain a better reconstruction we study in this section an
alternative method of regularization. It is well known that the sparse representation of
signals on adapted bases and associated with [1 regularization allows signal reconstruction
starting from very noisy or incomplete data [Daubechies et al. (2004), Combettes and
Wajs (2005), Candes et al. (2006), Donoho (2006), Daubechies et al. (2008), Chaux et al.
(2007), Wright et al. (2009), Dupe et al. (2009)]. Our work represents the first use of this

type of approach to the problem of phase retrieval. We then focus on the inverse problem
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WAVELET COORDINATES

resolution in wavelet coordinates and then we apply an iterative Landweber approach

associated with a soft thresholding of the wavelet coefficients.

8.1.1 Resolution of the linear inverse problem using an iterative Landwe-

ber approach

The phase retrieval problem can be expressed as an inverse linear problem:
Z=DBp+e, (8.1)

where 7 = Ip — I£=0 is the noisy data, € an additive Gaussian noise, ¢ the phase to be
retrieved and B a linear operator. The solution associated with Tikhonov regularization

is the initialization for the method used here.

In this section, we consider a resolution approach for the inverse problem based on
the orthogonal wavelet representation. We suppose that the phase ¢ admits a sparse

representation in an orthogonal wavelet base ¥ = {1\, A € Z}, which is written:
=W, (8.2)

where v € [y is a wavelet coefficients vector, and W* is the synthesis operator. The
corresponding family is indexed by the elements A of an infinite set Z, which includes the

level of the resolution, the position and the type of wavelet.

The phase retrieval problem can be formulated as an unconstrained optimization prob-
lem with an [ regularization term for the wavelet coefficients and with a regularization

parameter k. The wavelet coefficients are optimized as follows:

. { IZ — BW*v|3
mm<§ ——————

5 + £lvl[1,v e 12} (83)

where [, is the norm of the vector v defined as :

1/p
vl = (Z) - (8.4

In terms of convex analysis, the first term is convex, semi-continuous and differentiable
with B-Lipschitz continuous gradient for a coefficient 5 > 0. The regularizing term is
semi-continuous and not differentiable. This optimization problem has been studied and
efficient algorithms have been proposed [Daubechies et al. (2004), Combettes and Wajs
(2005), Candes et al. (2006),Donoho (2006),Chaux et al. (2007),Daubechies et al. (2008),
Wright et al. (2009),Dupe et al. (2009)].

We selected the following iterative method: vy € lg, and 0 < 7 < 2/ and for each
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n € N, we construct the following sequence:
Vi1 = Sur {vn — TWB* [BW*(vy,)] — I} (8.5)

where

Su(u) = sign(u) max (|u| — a,0) (8.6)

is the soft thresholding operator. The solution is obtained from the final iterate v, with
Poo = W*Vo. Iterations described by Eq. 8.5 are implemented using a multiresolution ap-
proach. The operator B is approximated in the wavelet basis by calculating the elements
(¢, Bipy,) for different orthogonal wavelets. The adjoint operator is obtained with the
adjoint matrix of the above matrix. The Landweber thresholded iterations are nested by
taking as initialization the lowest resolution level. The solution obtained when the algo-
rithm stagnates is extended to the next higher resolution level completing the initialization
with zeros, obtaining an appropriate initialization. This procedure is repeated until the
highest resolution level is reached. This gives a progressive refinement of the solution in

wavelet coordinates.

8.1.2 Results and discussions

Following Section 5.1.2, the imaging system was simulated in a deterministic fashion.
The original phase map to be retrieved is displayed in Figure 8.1. This proposed algo-
rithm was tested on noisy-data PPSNR=15dB (Eq. 5.12). Propagation in free-space was
simulated using Eq. 3.5 using only one distance at D=0.6 m. The corresponding Fresnel

diffraction pattern for 0.6 m with 15dB is shown in Figure 8.2.

Phase(¢)
o~
h

=

L
8 w@ﬁ’?/

T

20 e e e
40 6o 20
< Y

Figure 8.1: Ideal phase to recover.

In this section, the Dauchechies’ wavelet orthonormal system db; implemented in Mat-

lab was used. The convex part of the functional to be minimized is differentiable. Its

gradient has a Lipschitz constant ||[BW*||2. To evaluate this norm, we follow the approach
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Intensity
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Figure 8.2: Fresnel diffraction pattern at propagation distance D=0.6m with PP-
SNR=15dB.

proposed in [Chaari et al. (2009)]: given vg and A = BW?*, we construct a sequence

(vp) such that v,, = A*Av,_1, and at each iteration p, = H‘”/:T—L!II is calculated. After

I

convergence lim, o pn = poo = ||BW*

In the first approach, the descent step and regularization parameter, x, are kept con-
stant for a given resolution level. Good results are obtained with x = 0.1||BTZ||s [Wright
et al. (2009)]. The phase maps obtained with Tikhonov regularization and with the above
algorithm are displayed in Figure 8.3 and Figure 8.4 respectively.

Phase(¢)
(—]

R
A gty ax 9
X

Figure 8.3: Reconstructed phase with Tikhonov regularization.

Y

Tikhonov regularization gives good results for signal/noise ratios higher than 24dB.
For higher noise levels, the phase reconstruction is very far from true phase as can
be seen in Figure 8.3. To assess the quality of the reconstruction, the relative errors
oo — @*lI1,/ll¥" ||, were calculated. The relative error increases from 1.1 for the initial
solution corresponding to Tikhonov regularization for a signal/noise ratio of 15dB to a

value of 0.48 at the end of the iterative Landweber algorithm.
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Phase(d)
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Figure 8.4: Reconstructed phase with the iterative Landweber algorithm [ regularization

The approach adopted here is promising since it allows a significant improvement of

the reconstruction phase map with respect to existing algorithms as shown the Figure 8.4.

8.1.3 Conclusions

In conclusion, this work significantly improves the approaches used until now in the
X-ray phase imaging reconstruction, based on Tikhonov regularization. The direct prob-
lem can be linearized and reversed by a classical iterative Landweber algorithm using
an orthogonal wavelet basis. The results remain very noisy. Taking into account different
propagation distances and the nonlinearity of the inverse problem decrease the reconstruc-
tion errors. The use of other representations should also help to achieve better results,

and taking into account the constraints of positivity.

8.2 Combined iterative algorithm

The results of this section have been published in the following article:
V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin,
“Nonlinear phase retrieval and projection operator combined with iterative wavelet
thresholding”
IEEE Signal Processing Letters, vol.19, No. 9, pp. 579 - 582 ,2012.

A nonlinear phase retrieval method based on the Fréchet derivative of the intensity has
been investigated in Section 5.2.3. This solution outperforms the linear approaches but

is not optimal and poor reconstructions are obtained for noisy data and low frequencies.
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In this section, we investigate the resolution of this inverse problem with an iterative
thresholding algorithm in wavelet coordinates combined with an iterative nonlinear method
with a Tikhonov regularization and projection operators. The phase retrieval algorithm
was tested for a 3D Shepp-Logan phantom in the presence of noise. The results show
that the combined approach outperforms the mixed, the CTF and the nonlinear methods

presented above.

8.2.1 Nonlinear phase retrieval with Tikhonov regularization

The previously proposed nonlinear approach presented in Section 5.2.3 is based on
the Lo norm of the phase gradient as regularization term. Better convergence results are
obtained with the Lo norm of the phase to stabilize the solution as has been detailed in
Section 6.3. This regularization term will be used in this section.

The intensity Ip can be considered as a continuous and a nonlinear function of the
phase ¢ which is Fréchet differentiable in its domain [Scherzer et al. (2008)]. We have
assumed that the domain D[Ip ()] of the operator Ip(¢) belongs to the functional Sobolev
space HZ?(Q) = {¢ € H?2(Q), % = 0}, where % is the normal derivative of the

phase [Scherzer et al. (2008)]. The regularization functional J, to minimize is given by:

1 o
Ja(p) = §HID(<P) - I&H%Q(Q) + EHSOH%Q(Q) (8.7)

where « is a regularization parameter, I5 the noisy intensity for a noise level § and where
|-l o (@) denotes the Ly(£2) norm.

Let ¢ be the phase at the iteration k. The phase estimate @1 at the iteration k+1
is obtained from the phase ¢y at the previous iteration k in two steps. First, a gradient

descent is performed leading to the phase ¢, 1:
2

Pyl =Pk — 7{Ip (k) Up(pr) — Is] + apr} (8.8)

which will be used as input for the projection operator in the second step (Section 8.2.2).
In this way, the standard Landweber method [Scherzer et al. (2008)] is modified by
introducing a linear search procedure with a variable step 7, obtained with a dichotomy
strategy. The regularizing parameter « is chosen by trial-and-error in order to obtain the
best decrease of the regularization functional. The computation of the iterates is based
on the calculation of the adjoint of the Fréchet derivative of the intensity detailed in
Section 5.2.3.

8.2.2 Projection operators

We give here a brief presentation of this part since it has already been presented in

Section 6.2. The former phase recovery can be improved by using non-convex projection
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operators. In this section, we have considered an image modulus constraint in the object
domain, so for each diffracted intensity Ip, we consider a set Mp = {u € La(Q),|u|] =
VIp}. This set defines a non-convex constraint. The transmission T}, at the iteration k,
obtained with the former iterative method, is given by Eq. 6.1, and we have projected the
convolution product 7} * Pp on the set M p. The simplest choice for the projection Py,
is defined using Eq. 6.2. For each projection Puy,, (T} * Pp), we calculated with successive

Fourier and inverse Fourier transforms the new transmission T,é as :
T, = F"'{F[Pum, (T * Pp)] /JF (Pp)}. (8.9)

For each pixel, a new phase estimate is obtained from the current phase ¢, 1 by mini-
2

mizing the modulus |T}.(x) — a(x) exp [ip(x)] | . A projection operator Pp is thus defined

by the equation:

Pp (913 ()] = argmin {ITj (x) — ax) exp [ig(o)] [} (8.10)

A support constraint and a projection Ps on the support S of the phase was also considered
Ps(¢) = ¢.1s.
i1 = PsPp(pyy1)- (8.11)

8.2.3 Resolution of the linear inverse problem in wavelet coordinates

The nonlinear approach does not converge for high noise levels and for an initialization
point far from the solution, even with the additional projection step. It is very sensitive
to low frequency noise. We have thus also considered a resolution approach for the linear
inverse problem based on the orthogonal wavelet representation and a classical thresholded
Landweber algorithm presented in Section 8.1. The difference between the approach used
in Section 8.1 and the method proposed here is that we are going to consider only the lowest
wavelet coefficients for three propagation distances and not a multiresolution approach for
a single distance. As we saw in Section 8.1.1 the phase ¢ admits a sparse representation
in an orthogonal wavelet base ¥ = {1y, A\ € Z} and can be written as in Eq. 8.1. Using
the Eq. 8.5 a sparse solution is obtained iteratively with the soft threshold operator S,
(Eq. 8.6).

Since we intend to use the wavelets to improve the low frequency phase retrieval, the
iterations described by Eq. 8.8 are implemented only at the lowest level of resolution and
the operator WBW?™ is approximated with the lowest level of resolution of the wavelet

basis.
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Simulation methodology

The nonlinear approach based on the Fréchet derivative of the intensity with the
Tikhonov regularization and the projection operators (Section 8.2.1, 8.2.2) and the lin-
ear wavelet algorithm (Section 8.2.3) are used alternatively. The solution obtained when
the error stagnates with one method is used as initialization for the second one. By al-
ternating the two phase retrieval approaches, we obtain a progressive refinement of the
solution.

The phase retrieval algorithm proposed is not globally convergent. In our simulations,
the mixed approximation and the CTF of the linear problem were used as starting point.
In order to avoid obtaining solutions diverging far away from the real solution, the regu-
larization parameters are chosen by trial-and-error. The best values obtained for « and s

(from Eq.8.3) are 1073, The iterations are terminated when the following conditions are

fulfilled:

I p(er) — Ip(pr-1) 1) < WD (Pk—1)lLy(0) (8.12)
115 — IDl|Ly0) <6

where w is a parameter that was set at 0.01 by trial-and-error, I is the measured intensity
for distance D and § is the noise level. For the wavelet representation, the Dauchechies’
dbl orthonormal wavelet implemented in Matlab was used with only 64 low resolution
coefficients. The convex part of the functional to be minimized is differentiable with
Lipschitz gradient with g = [[WBW?*||2. Following [Chaari et al. (2009)], given xq et
C = WBW?*, we construct a sequence (x,) such that x,, = C*Cx,,—1. After convergence,
lim el — | pwBwe2.

n—oo Ixn—1ll =
Since ideal reconstruction is available, direct comparisons can be made. The method

will be quantitatively evaluated by measuring the normalized mean square error (NMSE)

given by Eq. 6.10.

8.2.4 Results and discussions

The performance of the proposed combined approach was analysed by comparison with
the solutions obtained for noisy data with the CTF [Cloetens et al. (1996)] and the mixed
approach [Langer et al. (2008)] used as starting points.

The evolution of the NMSE as a function of the iteration number is displayed in
Figure 8.5 for the two starting points. In these plots, a single iteration corresponds to a
random cycle through the intensity images obtained for the three distances. The successive
decreases of the reconstruction error obtained with the two methods are clearly visible.
These curves show that the proposed algorithm has good convergence properties. The
error maps for noisy data are displayed in Figure 8.6.

A comparison of the diagonal profiles obtained with the three approaches is displayed
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Figure 8.5: Normalized mean square error for the phase versus iteration number with the
proposed algorithm initialized with (a) the mixed solution and (b) with the CTF solution.

Table 8.1: NMSE(%) values for different algorithms

CTF WNL (initialized with CTF) mixed WNL (initialized with mixed)
56.54 14.05 63.84 12.16

50-
g 'g 0-
g  Ea \ il
ol A\ £ il
B -
| W Xiixels] 400
Xpixels| 0 Y |pixels| [pixels] 0 Vi
(a) (b)

Figure 8.6: Error map for the phase retrieved with the proposed algorithm initialized with
(a) the mixed solution and (b) with the CTF solution.

in Figure 8.7. According to the results presented in Table 8.1, error decreases of 80.95%
and 75.15% were obtained with the combined nonlinear and wavelet (WNL) method for
the mixed and the CTF starting points. The phases used as starting points for our
reconstruction are displayed in Figure 8.8(a), 8.8(b), together with the phase retrieved
with the proposed algorithm Figure 8.8(c), 8.8(d).
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Figure 8.7: Diagonal profiles for a Shepp-Logan phantom obtained with (a)the mixed
method and the WNL approach initialized with the mixed solution, (b) the CTF method
and the WNL approach with the CTF initialization.
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Figure 8.8: Phase maps obtained with the (a) mixed and (b) CTF algorithms and with
the proposed algorithm for the starting point given by (c¢) mixed and (d) CTF algorithms

respectively.
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8.2.5 Conclusions

In this section, we have presented a new phase retrieval approach based on a nonlinear
phase retrieval method with the Fréchet derivative of the intensity and projection operators
combined with a thresholded Landweber algorithm in wavelet coordinates. The method
is valid without any restrictive assumption. The linear schemes must be used to obtain a
starting phase map near the true solution. Both the high and low frequency ranges of the
phase retrieved are improved and the method is less sensitive to noise. Three propagation
distances were used in a random way to achieve a good reconstruction. The reconstruction
quality for a projection of a 3D Shepp-Logan phantom has been quantitatively evaluated
with noise. The combined method outperforms the linear methods and the nonlinear one

without projections and without the wavelet treatment.

8.3 Single-distance phase retrieval approaches involving spar-

sity constraints

The results of this section have been published in the following article:
V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin,
“Nonlinear approaches for the single-distance phase retrieval problem involving
reqularizations with sparsity constraints”
Applied Optics,vol. 52, No. 17, pp. 3977 - 3986, 2013

Recently, various compressed sensing algorithms for the phase retrieval problem have
been studied in [Candes et al. (2011),0Ohlsson et al. (2012),Candes and Li (2012), Wald-
spurger et al. (2012), Mukherjee and Seelamantula (2012), Newton (2012), Gaass et al.
(2012)], but they are restricted to small scale problems. They cannot be used for phase
retrieval coupled to tomography with huge amounts of data. On the other hand, gen-
eral iterative schemes for nonlinear ill-posed problems with sparsity constraints have been
studied by Ramlau and Teschke [Ramlau and Teschke (2006)] but never applied to the
phase retrieval problem in in-line phase radiography.

The aim of this section is to make an extensive comparison of the various nonlinear
iterative algorithms and regularization strategies that can be applied to the phase retrieval
problem using one single focal distance. This single-distance inverse problem is more
severely ill-posed than the classical linear problems set with several radiographs [Beleggia
et al. (2004),Zabler et al. (2005), Guigay et al. (2007)]. The functional properties of the
forward intensity operator are investigated to show that the main assumptions necessary

for the convergence of the algorithms are valid. The convergence of the various methods
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is investigated on simulated data. Their efficiency, the decrease of low frequency errors
and the improvement of the spatial resolution are compared using the 3D Shepp-Logan
phantom in the presence of noise for a single propagation distance. In this section, we
also summarize the method developed by Teschke et al. [Ramlau and Teschke (2006)] for
nonlinear problems with sparsity constraints, followed by the numerical results obtained

with our simulations. Some concluding remarks end this section.

8.3.1 Review of the WNL algorithm

The nonlinear iterative approach presented in Section 8.2 is based on the explicit
calculation of the Fréchet derivative of the intensity Ip'(¢), and of its adjoint Ib((pk)*
given in Section 5.2.3. The classical Landweber method is modified with a variable step 7
chosen using a dichotomy strategy. It was demonstrated in Section 5.2.1 that the existence
of a Lipschitz continuous Fréchet derivative of the forward operator is a necessary condition
for the convergence of this method [Scherzer et al. (2008)]. This nonlinear solution is not
optimal despite the fact that it outperforms the linear solutions. Since only noisy data are
available, poor reconstructions are obtained as detailed in Section 5.2.3. In order to reduce
the low frequency noise, the former nonlinear algorithm has been combined with a wavelet
treatment of the linear problem in Section 8.2. The wavelet method is used when the
nonlinear solution stagnates and improves the recovery of the smooth part of the object.
The combination of the two methods improves the efficiency of the phase recovery when
the initialization is performed far from the true solution. This type of approach is preferred
to the compressive sensing methods developed recently that cannot been applied to large
scale problems [Candes et al. (2011),0hlsson et al. (2012)].

8.3.2 Nonlinear sparsity regularization method with a fixed point algo-

rithm

The use of sparsity constraints has become recently a very important trend in inverse
problems studies. A strategy to solve nonlinear problems with a sparsity regularization has
been proposed and investigated by Ramlau and Teschke [Ramlau and Teschke (2006)] but
never applied to phase retrieval problems. It will be denoted RTS (Ramlau and Teschke
Scheme) in the following. This approach is summarized in the next subsection and we show
that the convergence conditions are satisfied. We detail also a fixed point iterative method
based on a surrogate functional used to minimize the regularization functional [Ramlau
and Teschke (2006)]. This scheme provides an alternative treatment to the combined

wavelet-nonlinear (WNL) approach presented in the former section.
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Nonlinear sparsity regularization

In this section, we assume again that we have one orthogonal wavelet frame {¢y, A € A}
for Ly(€2) such that the phase can be expressed with the wavelet coefficients ¢ € Iy by

© = W?*(c). The intensity is a nonlinear function of the wavelet coefficient ¢ € Iy
I=1Ip(p) =Ip(W*(c)) = Ip(c). (8.13)

Following the arguments in [Ramlau and Teschke (2006)], a sparsity term ||c||;, has been
chosen to regularize the nonlinear inverse problem. The functional to minimize is the sum

of misfit and regularization term defined by:
Ja(c) = |Ip(c) — Is]| + allc|i,, (8.14)

where « is a regularization parameter, Is is the measured intensity for distance D and
0 is the noise level. This regularization method is convergent for strongly continuous
operators with a strongly continuous Fréchet derivative [Teschke and Ramlau (2007)].
It has been shown in Section 5.2.1 that the Fresnel intensity operator and its Fréchet
derivative are continuous. As demonstrated in [Ramlau (2002)], to obtain a strongly
continuous operators, it is necessary to assume some smoothness of the solution of the
equation Ip(¢) = I. The forward intensity operator may be restricted to a Sobolev space of
order p > 0, H;(£2) and thus considered as a strongly continuous operators. It has also been
demonstrated in Section 5.2.1 that the Fresnel intensity operator is Fréchet differentiable
with Lipschitz continuous first derivative. This result is also true for the operator ¢ —
Ip(W*(c)) and this operator can also be considered as strongly continuous. Thus, the
proposed regularization method should converge to a critical point of the regularization

functional for a smooth phase map with a sparse representation.

A fixed point iterative algorithm

In order to minimize the regularization functional J,, we have used a fixed point
iteration algorithm based on a surrogate functional [Ramlau and Teschke (2006)]. The
idea is to replace the variational functional by a sequence of functionals easier to treat
and such that the sequence of minimizers converges to a critical point of the variational

functional. For ¢ € I3, and a € I, Ramlau and Teschke have defined a surrogate functional:

Ji(e,a) = Ja(c) + Rlle —allf, — [IpW*(e)] = In[W*(a)]ll7 (8.15)

where ¢ is the wavelet coefficients vector, a € Iy an auxiliary sequence and R € R™T.
The iteration minimization process is defined as follows [Ramlau and Teschke (2006)]: for

co € Iz and for some constant R > 0, a sequence of iterates (cg)r>0 € l2 is derived with
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the iteration:
Cx+1 = argminJ(c,cx) k=0,1,2,.... (8.16)
(&

The norm convergence of this iterative scheme towards a critical point of the regularization
functional has been shown in [Ramlau and Teschke (2006)]. It is easy to show from the
decomposition of the forward operator of section 5.2.1 that the Fresnel diffraction operator
is a twice continuously differentiable operator. The surrogate functional is thus strictly
convex (See proposition 12, [Teschke and Ramlau (2007)]). The unique minimizer of the
surrogate functional is characterized by a necessary condition which can be written as a
fixed point equation. The necessary condition for a minimum of the surrogate functional

Ji 4(c,a) is given in terms of sub-differential of ||.[|;, by:
0 € Ip[ls — Ip(a)] + R(c — a) + ad|cl|y, - (8.17)

The A-component wise fixed point necessary conditions for a minimizer of the surrogate

functional can be recast as:

e = S {[WIb[W*(c)]* <I5 - IDJEEW*(a)]> + aL} (8.18)

where S% is the soft thresholding operator. This fixed point equation can be written in
compact form as ¢ = ¥, r(c,a). Let L be the Lipschitz constant of the Fréchet derivative
of the intensity operator Ip and A the upper frame bound, then if R > AsL+/J,(a)), the
former fixed point iteration is a contraction and the inner sequence of iterates associated
to the fixed point iteration converges. Given the current iterate cg, the next estimate of
the wavelet coefficient is obtained iteratively with c;; = W r(Ck,i—1,ck). The fixed point
iterations are stopped for the index [ such that the difference between two iterates is below
the error bound 7v:

ek — eri—tll, <72 (8.19)

and then c,41 = cj ;. Similarly, the outer iterations are stopped when:
lekr1 — cklli, < 1 (8.20)

In the proposed iterative scheme, the starting point cg is obtained with the wavelet coeffi-
cient of various linear methods (Chapter 3) and an optimal R is chosen by trial-and-error.
A large value of R is first chosen to ensure the convergence of the fixed point iteration.
Then, the convergence speed of the method is increased by reducing R with a dichotomy

strategy. The proposed iterative scheme is summarized as in the Algorithm 1.
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Algorithm 1 RTS iterative algorithm

Require: For given noise level §, a starting point cg is picked
Require: Two tolerances 7 and 7 are picked.
Require: An admissible C' is chosen.
¢, = Iteration(Ip, I5,C, o, 71, T2)
k=0
I(a) = Ip(a) — Is(a)
I(a)=1I(a)/C
while |lc11 — ¢, > 71 do
=0
Cr,0 = Ck
while ey — ¢k 41ll, > 72 do
Il=1+1
cri = VYa,o(Cri-1,Ck)
end while

Ci+1 = Cg,l
k=k+1
end while

[c5] = lex]

8.3.3 Initialization and Stopping Rules

We have tested the proposed algorithms for different starting points obtained with var-
ious linear methods and for different noise levels. The 3D Shepp-Logan phantom described
in Section 6.3.2 for a single distance D = 0.035 m has been used in our comparison. In
order to refine the linear phase maps the NL (nonlinear algorithm), the WNL (wavelet
nonlinear algorithm) and the RTS (Ramlau and Teschke Scheme) algorithms were then
applied. These algorithms use a single phase contrast image obtained at distance D = 35
cm. The convergence speed of the nonlinear algorithms is influenced by the regularization

parameters. In all the studied methods, the regularization parameters are chosen carefully.

—10'—103—10°*—10%

=n
—

3% 20 0 60 80 100
Iterations

Figure 8.9: Evolution of the NMSE[%] as a function of iterations for different values of
the regularization parameters R used in RTS algorithm.

Large and small values of the parameters leading to poor reconstruction results are first
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chosen. The optimal values of the parameters are then gradually refined by trial-and-error
with a decreasing interval. For WNL, the two regularization parameters v and ¢ are set
to 1.5 % 1074, For the RTS algorithm, the value of R has been chosen to 10*. As dis-
played in Figure 8.9, this value ensures the best convergence properties of the algorithm.
In our tests, 71 (Eq. 8.20) and 75 (Eq. 8.19) are fixed to 1075 and 107'® respectively.
In the WNL algorithm, the iterations are stopped the conditions from Eq. 8.12 (with w
set at 0.001 by trial-and-error) are fulfilled. The stagnation of the WNL algorithm was
avoided by switching between the two methods presented in section 8.2.1 and 8.1.1 when

the following condition is fulfilled:

lor — or-1ll1o2) < wllerllLy@)- (8.21)

8.3.4 Wavelet implementation, error measurements

In this section, we have used the orthonormal Daubechies’ db4 wavelet (Matlab imple-
mentation). For the nonlinear proposed method WNL, only 100 low resolution wavelet
coefficients have been used (the red square in Figure 8.10(b)). The convex part of the func-
tional to be minimized is differentiable with a gradient of Lipschitz constant [|[WOW*||2.

Following [Chaari et al. (2009)], given an initial wavelet vector x¢g and C = WOW?*, we
lim el —
n=3o0 [ Xn—1|

[WOW?*||2. Since the ideal phase is available, quantitative measurements of the errors are

construct a sequence (x,) such that x, = C*Cx,_1. After convergence,

made using normalized mean square error (NMSE) (Eq. 6.10).

Wavelet decomposition at level 7 Low resolution wavelet coefficients

p—
2
V]
%
o=
2
e
>

100 200 300 400 500 5 10
X[pixels] X[pixels]

(a) (b)

Figure 8.10: (a) Wavelet decomposition of the phase map and (b) low approximation
wavelet coefficients used in WNL.
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8.3.5 Results and discussions

In this work, we have made an extensive comparison of the nonlinear algorithms: NL,
WNL and RTS for various initialization phase maps obtained with the linear methods at
different noise levels. The simulations have been performed on a computer Dell with a 1.73
GHz Intel Core(TM) i7CPU and 8Gbytes random access memory. The algorithms have
been implemented Matlab (R2010b) running under Windows 7. A complete optimization
step in the case of the RTS algorithm is composed by 5 inner iterations and 11 outer
iterations. These iteration numbers are controlled by 71 and 7. At the end of these 55
iterations a single NMSE value is obtained. This process will be repeated 100 times and
thus 5500 iterations needed for convergence and retrieval of the final phase map. The
reconstruction total time for RTS is 5205 seconds and for WNL 1025 seconds.

Table 8.2: NMSE(%) for different algorithms and noise levels. The error bar is estimated
to 0.5%

PPSNR[AB] | Initialization [NMSE] | NL [NMSE] | WNL [NMSE] | RTS [NMSE]
TIE 25.5% 9.6% 8.9% 18.5%
without noise | CTF 42.5% 24.6% 6.5% 35.6%
Mixed 26.8% 11.4% 7.5% 20%
TIE 35.5% 18.6% 11.1% 27.7%
48dB CTF 33.7% 11.8% 8.9% 26.5%
Mixed 26% 13.7% 8.7% 20.6%
TIE 262.1% 207.4% 98% 91.1%
24dB CTF 56.5% 26.8% 14% 40.6%
Mixed 63.8% 41.9% 12.1% 33.3%
TIE 791.6% 791.6% 81.7% 99.6%
12dB CTF 123.4% 101.4% 36.4% 51.9%
Mixed 57.3% 57.3% 28.5% 42.6%

To summarize all the results, the Normalized Mean Square Errors (NMSE Eq. 6.10) for
the all the approaches used in this work are presented in Table 8.2. The error bar for the
NMSE can be estimated to 0.5% for variations of the regularization parameters of 10%
around their optimal values. The WNL algorithm increases drastically the accuracy of
the phase retrieval for a single intensity image compared with the linear methods [Zabler
et al. (2005), Paganin (2006), Guigay et al. (2007)]. Our results show that, in most
cases, despite the fact that the two former methods include sparsity constraints, the WNL
method gives better numerical results that the RTS approach. In very few simulations,
the final reconstruction errors are similar.

To illustrate this result, the evolution of the NMSE obtained at convergence as a func-
tion of the initial PPSNR[dB] is displayed in Figure 8.11 for the various cases investigated.
In Figure 8.11(a), it can be observed that the mixed approach yields more accurate re-

constructions for higher noise levels compared with the CTF and TIE approaches. In
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Figure 8.11: Evolution of the NMSE as a function of the PPSNR for: (a) linear algorithms
and nonlinear (NL, WNL and RTS) algorithms initialized with (b) CTF, (c¢) TIE and (d)

mixed solutions.

Figure 8.11(b), the three nonlinear solutions have been obtained with the CTF initializa-
tion, in Figure 8.11(c) with the TIE initialization and in Figure 8.11(d) with the mixed
initialization respectively. The lower errors are always obtained with the WNL scheme.
An example of evolution of the NMSE as a function of the number of iterations is
displayed in Figure 8.12, for the WNL method and the RTS method initialized with the
solution obtained with the linear CTF algorithm, without noise. The successive errors de-
creases associated with the two steps of the WNL scheme are clearly visible. A progressive
refinement of the solution is obtained. The final NMSE is lower for the WNL algorithm.
A comparison of the diagonal profiles of the ideal phase to be retrieved, of the ini-
tialization phase and of the retrieved nonlinear solutions is displayed in Figure 8.14(a),
8.14(b), 8.14(c) and 8.14(d) for different initializations and various initial noise levels. The

WNL approach yields the most accurate phase map with the better edge reconstruction,
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Figure 8.12: Normalized mean square error for the phase versus iteration number for
(a)WNL and (b) RTS approach initialized with CTF solution without noise.
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Figure 8.13: Error maps retrieved with (a) WNL and (b) RTS initialized with the CTF
solution with PPSNR=12dB (Figure 8.15(b)).

but this method remains sensitive to noise.

The phase retrieval error maps obtained with the nonlinear algorithms initialized with
the CTF solution for noisy data (PPSNR=12dB) are displayed for WNL in Figure 8.13(a)
and in Figure 8.13(b) for the RTS approach. The reconstructed WNL phase maps seem
less sensitive to noise that the ones recovered with the RTS approach, but remain under-
estimated.

The phase maps obtained for this case are displayed in Figure 8.15(c) for the WNL
method and in Figure 8.15(d) for the RTS approach. The original phase map to be re-
trieved is displayed in Figure 8.15(a) together with the linear solution yielded by CTF
(PPSNR=12dB) in Figure 8.15(b), used as initialization for these simulations. To con-
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Figure 8.14: Diagonal profiles for the Shepp-Logan phantom obtained with the nonlinear
methods for different initializations: (a) TIE (PPSNR=48dB), (b) CTF (PPSNR=12dB),
(c) mixed (PPSNR=48dB) and (d) mixed (PPSNR=12dB).

clude, the best numerical results are obtained with the WNL approach. This fact may be
related to the two-step strategy of this approach where the high and low frequency ranges

are optimized separately.

8.3.6 Conclusions

The aim of the proposed simulations in this section was to evaluate quantitatively
several linear and nonlinear approaches based on Tikhonov or sparse regularizations for
in-line phase retrieval using only one contrast-image. The comparison was performed
using a numerical phantom, without and with white Gaussian noise. The phase maps
retrieved with the nonlinear and linear algorithms were compared in terms of NMSE
measurements. The main regularity assumptions for the convergence of the algorithms

have been demonstrated for the forward Fresnel intensity operator. In order to seek for
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Figure 8.15: (a) True phase to be recovered, (b) phase map obtained for PPSNR=12dB
with CTF method and corresponding phase maps obtained using (b) as starting point
with (c) WNL and (d) RTS methods.

an efficient and robust phase retrieval approach with a single diffraction pattern, this
paper demonstrates the potential of the Wavelet Nonlinear method (WNL). This algorithm
alternates a nonlinear treatment of the phase retrieval problem based on the Fréchet
derivative of the intensity and a Landweber type scheme, and an iterative solution of
the linear problem in wavelets coordinates with a [; norm regularization. Owur results
indicate that the WNL approach performs better and is more robust to noise that the
Ramlau and Teschke scheme (RTS), one which is a general method for nonlinear problems
with a sparsity regularization. Significant improvements over the linear methods for the

reconstructed phase maps have been obtained using the proposed algorithm.

134 Valentina DAVIDOIU



IV Nonlinear phase retrieval for

microtomography

135






Résumé général

ans cette partie du manuscrit, nous étudions la résolution du probleme d’estimation

de phase par une méthode non linéaire dans le cadre de la tomographie de phase en

ligne. La premiere section de cette partie est consacrée a une breéve présentation du principe

de la tomographie et de la méthode de reconstruction tomographique conventionnelle par
rétroprojection filtrée (FBP) (Section 9.1.2).

Dans la section 9.1.4, nous avons décrit le principe de la tomographie de phase par prop-
agation qui consiste a faire plusieurs scans de ’objet enregistrés pour différentes distances
D échantillon-détecteur (Section 2.3.4). Lorsque on applique directement la méthode FBP
a ces images, on obtient sous certaines conditions, un effet de rehaussement de contraste
sur I'image d’atténuation. Toutefois, pour réellement obtenir une image 3D de la partie
réelle de 'indice de réfraction, il est nécessaire d’appliquer une étape d’estimation de la
phase avant la reconstruction FBP.

Un tel systeme d’acquisition a été développé a I'Installation Européenne de Rayon-
nement Synchrotron (ESRF) sur la ligne ID19, située & 145m de la source et délivrant des
faisceaux de rayons X 4 la fois cohérents et paralléles. A PESRF, le logiciel standard util-
isé pour la reconstruction tomographique a partir des projections ou des sinogrammes est
PyHST, ou 'acronyme “ HST” signifie " tomographie a haute vitesse". Ce programme est
basé sur 'approche de rétroprojection filtrée et est implémenté en Python. Toutes les infor-
mations concernant PyHST peuvent étre trouvées ici http://www.esrf.eu/computing/
scientific/HST/HST_REF/hst.html. Les reconstructions tomographiques obtenues dans
ce manuscrit ont été réalisées avec PyHST.

Le traitement mis en oeuvre pour reconstruire une image en tomographie de phase

comporte donc deux étapes:

1. pour chaque angle de projection €, une méthode d’estimation de phase est appliquée
aux radiographies acquises aux différentes distances. En utilisant soit, un des algo-
rithmes linéaires (Chapitre 3) soit une approche non linéaire ayant comme initiali-

sation une solution linéaire, on obtient alors une carte de phase.

2. Dalgorithme par rétroprojection filtrée (FBP), disponible & 'ESRF (PyHst) (Section
9.1.2), est alors appliqué & ’ensemble des cartes de phase ¢y construites a la premiére

étape. On obtient ainsi la reconstruction tomographique 3D de I'indice de réfraction
O

La plupart des algorithmes linéaires utilisés pour la premiere étape de la tomogra-
phie de phase nécessitent la connaissance de ’absorption. Les projections 2D du coeffi-
cient d’atténuation u(z,y,z) (Eq. 2.6) correspondent aux données acquises a la distance
échantillon-détecteur D = Om. Plus de détails sur le coefficient d’atténuation ont été

présentés dans la section 2.2.2.
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L’algorithme non linéaire proposé pour l'estimation de phase est une approche itéra-
tive qui implique des temps de calcul importants. La dimension typique d’une radio-
graphie 2D de contraste de phase est 2048 x 2048 pixels. Par exemple, si 2000 an-
gles de projection sont utilisés pour quatre distances de propagation, le nombre total
de projections utilisées pour obtenir une image tomographique 3D est donc de 8000
(typiquement plus de 64Gb de données). En prenant en compte que l'algorithme pro-
posé utilise normalement un minimum de 5 itérations pour chaque ensemble de radio-
graphies 2D, les temps de calculs peuvent étre rédhibitoires. Une attention particuliere
a donc été accordée a l'implémentation de la méthode pour réduire les temps de cal-
culs. La solution retenue a été d’utiliser la parallélisation compte tenu que les cal-
culs d’estimation de phase correspondants a chaque angle sont indépendants. La méth-
ode a été implémentée en Octave et parallélisée en utilisant le systeme OAR a 'ESRF
(http://oar.imag.fr/sources/2.4/Docs/documentation/0AR-DOCUMENTATION-USER).

Dans la section 9.2 la méthodologie pour appliquer ’algorithme non linéaire, basée sur
la méthode de Landweber et ’expression analytique de la dérivée de Fréchet et de son
adjoint (Section 5.2.3), a la reconstruction tomographique est détaillée. L’approche non
linéaire (N L) minimise la fonctionnelle de régularisation (Eq. 9.18) pour chaque angle
0. La méthode de Landweber classique est modifiée avec un pas variable 75 ) choisi en

utilisant une stratégie de dichotomie.

Dans un premier temps, 'algorithme de reconstruction de phase a été testé sur un
fantome 3D Shepp-Logan, avec et sans bruit. Il a été appliqué a partir de trois distances
et couplé a la reconstruction par FBP afin de pouvoir évaluer les erreurs de reconstruction
directement sur I'indice 3D de réfraction. L’analyse quantitative a été réalisée en termes de
NMSE. Les approches d’estimation de phase comparées sont 1’algorithme linéaire mixte et
la méthode non linéaire itérative basée sur la dérivée de Fréchet. La méthode non linéaire

donne les plus faibles écarts a la théorie sur 'indice 3D de réfraction.

Dans la section 9.3, le méme algorithme a été appliqué a des données expérimentales
acquises a 'ESRF, pour différentes initialisations mixtes. Le dispositif expérimental utilisé
est équivalent & celui décrit dans la section 2.3.4. Ces acquisitions ont eu lieu sur la ligne
ID19 de 'ESRF. Les intensités de diffraction de Fresnel pour 1500 angles de projection
ont été enregistrées a 'aide d’'une caméra CCD FRELON avec 2048 x 2048 pixels pour
I'énergie de 22.5keV & quatre distances D = [2, 10, 20,45]mm. Le champ de vue de I'image
est de 1.4 mm pour une taille de pixel de 0.68 um. Le fantéome imagé est un objet
composé de fils de divers matériaux de différents diametres: 125 pm Aluminium (Al), 200
pm polyéthylene téréphtalate (PETE), 20pm d’alumine (AlO3) et 28um polypropyléne
(PP). L’algorithme mixte de récupération de phase a été appliqué sans aucun a priori
sur la phase [Guigay et al. (2007)] (initialisation (A)) et avec un a priori 6,/ = 367

correspondant & l’aluminium (initialisation (B)) [Langer et al. (2010)]

Nous avons appliqué la méme méthode d’évaluation que précédemment. Les résultats
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montrent que l'erreur globale sur les indices de réfraction 3D des différents matériaux
est plus faible avec la méthode non linéaire qu’avec I'approche mixte sans [Guigay et al.

(2007)] ou avec a priori [Langer et al. (2010)].

Valentina DAVIDOIU 139



140 Valentina DAVIDOIU



Chapter 9

In-line phase tomography using nonlinear

phase retrieval
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In this part of the manuscript we study the resolution of the phase tomography prob-
lem where phase retrieval with an iterative nonlinear method is coupled to tomographic

reconstruction. The first section of this part is devoted to a brief presentation of the
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principles of tomography and of the filtered back projection. In Section 9.2 the method-
ology of the nonlinear algorithm, based on the Fréchet derivative and its adjoint, adapted
for tomographic reconstruction is shown. This phase retrieval algorithm is tested for a
3D Shepp-Logan phantom in the presence of noise. In Section 9.3 the same algorithm is

applied to experimental data acquired at ESRF, for different mixed initializations.

9.1 Principles of tomography

The principle of tomographic imaging relies on two steps: data acquisition and image
reconstruction. Historically, medical tomography has its origins in the work presented by
Godfrey Newbold Hounsfield in 1973, when radiographic projections for various multiple
angles were recorded by rotating the object of interest over 360°. A main contribution
to the mathematical basis of the tomographic reconstruction was made by Allan McLeod
Cormack in 1963. Hounsfield and McLeod Cormack received the Nobel Prize in 1979 for
this discovery.

The development of computed tomography made it possible to visualize internal struc-
tures of an object non-destructively. In the literature the terms such as computed tomog-
raphy, computerized tomography, computed axial tomography, computer assisted tomog-
raphy or simply tomography nowadays are employed to specify the method. The main
idea is to acquire projections of an object, which correspond to different angles. The X-
ray angular radiographs recorded during the rotation of the sample can be regarded as 2D
projections of the object. Starting from these 2D angular projections a three-dimensional
(3D) distribution of the investigated object is obtained using a suitable reconstruction
algorithm. The foundations of the reconstruction algorithm is the mathematical approach
attributed to Johann Radon in 1917. The principles of tomography has been described in
detail in books like [Kak and Slaney (1989), Hsieh (2003)].

Let us consider a function f(z,z) for a parallel X-ray beam. The coordinate system is
fixed with respect to the sample and will be denoted with (z, z), and the coordinate system
(a/, 2') is fixed with respect to the source and detector (Figure 9.1). The 3D reconstruction
of the investigated object will be denoted with f(z,y, z), where y is the rotation axis. A
projection can be seen as a rotation of the coordinate system (2/, z’) with an angle § where

the rotation of the (2/,2) coordinate system is :

x’ cosf sinf| |z xcosf + zsind
_ - . (9.1)
2! —sinf cosf| |z —xsinf + zcosf
The equation of the straight line for a fixed angle 6 and position along 2’ defines the

parallel projection as [Peyrin and Engelke (2012)]:

Py(2') = /D p(z' cos® — 2’ sin 0, 2" sin 0 + 2’ cos 0)d2’ (9.2)
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Figure 9.1: System geometry for a parallel projection. The object is composed by two
different materials and is defined on the support represented in black. The coordinate
system used in tomography (z,z) and it is fixed with respect to the sample. The image
plane coordinate system (z’,2") is fixed with respect to the source and detector and is
rotated around the object with 6°.

where D is the X-ray beam path and p is the linear attenuation coefficient expressed
as [Peyrin and Engelke (2012)]:

In (IIO> = /Du(:c,z)dz/. (9.3)

Iy denotes the incident intensity and I the transmitted intensity. If # vary between 0 and

7 the corresponding set of projections constitutes the Radon transform (Figure 9.2).

9.1.1 The Fourier slice theorem

The Fourier slice theorem or projection-slice theorem is the basis for the Fourier-based
inversion techniques. In Figure 9.3 the principle of the Fourier slice theorem is represented.
From a mathematical point of view, this principle can be formulated thanks to the two-
dimensional (2D) Fourier transform. The Fourier transform of the investigated object

f(x,z) is given by:

F(u,v) = /O:o /O:O f(z, z) exp[—i2m (ux + vz)|dzdz. (9.4)
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Figure 9.2: The principle for parallel projection tomography. The set of P(z',6,,) consti-
tutes the Radon transform of the function f(x,z) and are also known as sinograms.

Fourier "l'fransform

’ F[P(x, e)p ‘v

Figure 9.3: Fourier slice theorem illustration.
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The Fourier transform of a projection for an angle 6 is then:
F{Py)} (£) = By(f) = / Py(x) exp(—i2nfr)da. (9.5)

Let us consider the simplest case where the frequency variable v is set to zero, hence the

above equation yields:

F(u,0) = /Oo [/OO f(:v,z)dz] exp(—i2ruz)dr. (9.6)

—00 —00
~—_—————

The first term of the previous equation is known as parallel projection at an angle 6 along

lines of constant z, which is denoted with Py—y(x) and has the following form:
Pyo(z) = / iz, 2)dz. (9.7)

The relationship between the projection and the 2D transform of the object function

is given by substituting Eq. 9.7 in Eq. 9.6:
F(u,0) = F {Py_o} (u) = / Poco() exp(—i2muz)da. (9.8)

Generally speaking, the Fourier transform Py(f) of the projection Py(z) is equal to the
values along a line through the origin of the 2D Fourier transform of the object perpen-
dicular to the projection direction. This is the Fourier slice theorem [Kak and Slaney
(1989)]. In other words, the projection-slice theorem at a spatial frequency of u = f cos

and v = fsin can be express as:
F{Py} (f) = Py(f) = f(u,v) = f(fcosb,fsind). (9.9)

9.1.2 The Filtered Back-Projection (FBP) algorithm

The Fourier reconstruction step involves the recovery of f(z, z) starting from f(u,v).
By computing all the projections and the corresponding Fourier transforms for all angles
6(01,65.....0,), the value of f(u,v) can be determined on radials lines [Kak and Slaney
(1989)]. If an infinite number of projections can be taken all the points in the frequency
domain will be known, then the object function can be recovered directly through the

inverse Fourier transform in polar coordinates (f,6):
flx,2) = / {/ Py(f) |f] exp[i2nf (x cos O + zsin §)]df | db. (9.10)
0 —o00

The changes of the variables from rectangular coordinates into polar coordinates are done
with a Jacobian. By multiplying the Fourier transform of the projection with the frequency

response of the filter given by |f| the high frequencies are increased [Kak and Slaney (1989)].
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Eq. 9.10 gives the algorithm known in literature as the filtered back projection (FBP). We

can reconstructed a single slice f(z,z) using the above equation in an another form:
1 ™
flx,2) = 5/ Qg(x cosb + zsin 0)do (9.11)
0

with
Qg(z") = (Py x h) (') (9.12)

where * is the convolution operator and h is the reconstruction filter. The back-projection
step is given by the Eq. 9.11 of the “filtered projection” Qy(z') (Eq. 9.12). The Fourier

transform of the reconstruction filter has to fulfil the following condition:
Fih(A)=1]4] for A€ [—a,d] (9.13)

where [—a, a] is the bandwidth interval of the projection and F} is the 1D Fourier transform
operator. The final reconstructed image represent the sum of the back-projections of all

the filtered projections for all the projection angles.

FBP gained its reputation over the years because the reconstruction time is significantly
decreased compared with others methods. For this reason and for its simplicity FBP is

the most used method in clinical scanners.

9.1.3 3D parallel beam FBP at ESRF

The tomography principles outlined above can be applied straightforward if a parallel
X-ray beam is available. Since the ESRF (ID19) system is placed at a distance of 145m

from the X-ray source, we can consider that the X-ray beam geometry is parallel.

In this thesis a parallel X-ray beam geometry set-up with a 2D detector is used as
illustrated in Figure 9.4. In this case, the transition from 2D to 3D is trivial, since the
X-ray beam path is straight through the object and perpendicular to the 2D detector. 2D
individual reconstructions or 2D slices are given by each row of the detector and a final
3D stack is created using FBP.

At the European Synchrotron Radiation Facilities (ESRF) the standard program used
for tomographic reconstruction from projection data or sinograms is PyHST, where the
acronym “HST” means "High Speed Tomography". This program is based on the filtered
back projection approach and is implemented in Python. All the information concerning
PyHST can be found here http://www.esrf.eu/computing/scientific/HST/HST_REF/
hst.html. The tomographic reconstructions performed in this manuscript are obtained
with PyHST.
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Figure 9.4: Principels of tomographic reconstruction with a parallel geometry X-ray beam.

9.1.4 Phase contrast tomography

In this section, we define the phase contrast tomographic reconstruction when the 2D
phase contrast projections are used to generate a 3D tomographic reconstruction. These
2D phase contrast projections are acquired using the propagation based technique (Section
2.3.4).

The projection assumes flat illumination and is defined as the logarithm of the intensity
measurement Ip(x) (Eq. 3.12):

Am [ A
—In[Ip(x)] = Tﬂ/_ooﬁ(:v,y, Z)dZ_D(W—'—(?_yQ) /_OO or(z,y, 2)dz. (9.14)

The absorption and the phase shift induced by the object can be considered as projections
of the absorption index (Eq. 2.24) and of the refraction index decrement (Eq. 2.25)
respectively. This equation is only valid for weak absorption. The final tomographic
reconstruction image is performed taking into the account these two terms using the filtered
back projection method (Section 9.1.2), which is a linear operation. The 3D distribution
is given by:
2 2 2

f(z,y,2) = plx,y,2) + D(% + 38_342 + %)5,«(.%, Y, 2). (9.15)
The first term is the attenuation coefficient u(z,y, z) (Eq. 2.6) and is obtained from the
absorption data acquired at sample-to-detector distance D = 0 m. More details about the
attenuation coefficient have been presented in Section 2.2.2. The contribution of the second
term is significant if there are strong variations in the refractive index decrement, such
as boundaries between different phases, regime known as “edge enhancement” [Cloetens
(1999)].
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9.1.5 Phase tomography

As we have seen throughout this thesis, starting from a set of 2D phase contrast images
it is possible to retrieve the phase of the X-ray beam. If a phase retrieval algorithm
(Chapter 3) is applied over this set of 2D phase contrast projections the phase retrieval
step is then performed and a phase map is obtained for each angle 6. By coupling the
phase retrieval step and the tomographic reconstruction a 3D image is obtained. This two

step process is called phase tomography and is illustrated in Figure 9.5

3D refractive index

[
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I
I
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I
|
|
I
I
I
v
A
I
L
|
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I
I
I
I
I
|
\

decrement
Phase
tomography
2D phase contrast projections 2D phase projections
Acquisition Phase retrieval

Figure 9.5: Principles of phase tomography. For each sample-to-detector distance (D;
(blue dashed line), Dy (red dashed line), D3 (green dashed line) and D4 (purple dashed
line)) 2D phase contrast images are acquired. For each projection distance, the sample is
rotated over minimum 180° and different 2D projection angles are considered (three angles
are displayed 6y=0°, 6,,= 15° and 6,,= 150°). For each angle 6, the phase map is retrieved
using the 4 phase contrast images. Starting from these phase maps, the FBP is applied
and the 3D refractive index decrement reconstruction is obtained.

9.2 Phase microtomography on simulated data

In this section we have applied the iterative nonlinear algorithm to phase tomography
on simulated objects composed by soft and hard materials. The phase retrieval algorithm,
based on the Landweber method with an analytic calculation of the Fréchet derivative
adjoint (see Section 5.2.3), uses three phase contrast images. A quantitative analysis is

performed for simulated and experimental data using the nonlinear method and the linear
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mixed algorithm.

As detailed in Chapter 3, the most common algorithms for the phase retrieval problem
for short propagation distances rely on the linearization of the Fresnel diffraction rela-
tionship valid under restrictive assumptions. In this section, we first summarize this new
nonlinear scheme, and then details the results obtained for a tomographic reconstruction
on simulated and experimental data.

The interaction of X-rays with matter can be described by the transmittance function

To at each projection angle 0:
To(X) = exp[—By(X) + iwg(X)] = ag(X) expligg(X)], (9.16)

where ag(X') is the amplitude modulation and ¢y(X') is the phase shift induced by the
object for the projection angle 6. The intensity distribution Zp ¢(X) at the angle 6 is

calculated by the following expression:
Ipo(X) = [Tg(X) x Pp(X)|%, (9.17)

where * denotes the 2D convolution of the transmittance function 7y with the correspond-
ing Fresnel propagator at distance D (Eq. 3.6).

In phase tomography the data sets run into thousands by thousands of pixels and
thousands of projection angles. For this reason the phase retrieval approaches are based
on the linearization of the Eq. 9.17 valid under the assumption that the absorption is
slowly varying. The convolution from Eq. 9.17 yields the direct problem, which can be

written in terms of Fourier transform (Section 3.2.6).

9.2.1 Methodology

The results of this section have been published in the following article:
V. Davidoiu, B. Sixou, M. Langer, and F. Peyrin,
“In-line phase tomography using nonlinear phase retrieval” Annals of the University of
Bucharest (Mathematical Series), vol. 4 (LXII), pp. 115-122, 2013.

The purpose of this section is to extend the nonlinear algorithm based on Fréchet
derivative without projection operators, presented in Section 6.3, from the radiographic
case to the tomographic case.

The tomographic process consists of two steps:

1. for each projection angle # the nonlinear approach is applied. The phase map is

retrieved using as stating point the linear solution given by the mixed algorithm. The
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three propagation distances are taken into account randomly during the nonlinear

algorithm.

2. the filtered back projection algorithm (FBP), implemented at ESRF (PyHst) (Sec-
tion 9.1.2), is applied from the whole set of phase maps ¢y, yielding the 3D tomo-

graphic reconstruction of the refractive index decrement 9.

For each projection angle 6, the aim of the nonlinear approach (NL) is to minimize

the regularization functional:

1 «
Ja(o) = 5l1Zp0(0) — TP oll7,0) + 5”@9”%2(9)7 (9.18)

where 1'39 is the noisy intensity for the noise level ¢ at distance D for the projection
angle #. The minimizer of the regularization functional is calculated iteratively with a

Landweber type scheme:

0o.h+1 = Pok — T0.6{Lp.o(00.k) [ZD.0(00k) — I gl + o} (9.19)

The iterative formula is based on the explicit calculation of the Fréchet derivative of the
intensity I}Dﬁ(tpg,k), and of its adjoint I’Dﬁ((pg,k)* (Section 5.2.2). The classical Landweber

method is modified with a variable step 7y, chosen using a dichotomy strategy.

9.2.2 Implementation at ESRF

The nonlinear phase retrieval proposed algorithm is an iterative approach which in-
volves important computational time. The dimension of a 2D phase contrast projection
is 20482048 pixels. Four propagation distances are used (including the absorption) and
at each of these distances 1500 phase contrast angle projections are acquired. The to-
tal number of projection used to obtain a 3D tomographic reconstruction is 6000. Tak-
ing into account that the proposed algorithm use normally minimum 5 iterations/(set
phase projections) and the large volume of data a special attention was devoted to com-
puting efficiency. The proposed method was implemented in Octave. The phase re-
constructions were performed using the OAR (batch scheduler) system at the ESRF
(http://oar.imag.fr/sources/2.4/Docs/documentation/0AR-DOCUMENTATION-USER).

9.2.3 Simulations on a Shepp-Logan phantom

The imaging system was simulated in a deterministic fashion using theoretical values
of the refractive index decrement for different materials in the different regions of the
Shepp-Logan phantom as in Section 6.3.2. The 3D Shepp-Logan is a classical phantom
in tomography and consists of a series of ellipsoids on which the projections are based.
Two phantoms were defined, one for the absorption coefficients and one for the refractive

index decrement displayed in Figure 9.6. For each of the three propagation distances
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(a) (b)

Figure 9.6: Central slice of the 3D Shepp-Logan phantom used in the simulations. (a)
Absorption index 5 (D = 0 m) and (b) refractive index decrement .

(D = [0.035,0.072,0.222] m) 1200 angular views were used, sampled on a 2048 x 2048
grid and down-sampled to 512 x 512 pixels. The reconstructed tomographic central slices
for each distance are displayed in Figure 9.7. These reconstructions are also known as
phase contrast tomographic central slices and were obtained using as input in FBP the 2D
phase contrast projections (see the Acquisition step in Figure 9.5). These central slices are
obtained if the phase retrieval step is not performed. The 3D phase tomographic central
slices reconstructed after retrieving the phase for each 2D phase contrast projection set
are displayed in Figure 9.8 and Figure 9.9. Simulations were performed with an additive
Gaussian noise with zero mean (PPSNR=12 dB) and without noise. The refractive index
decrement reconstructions d,(x) can be compared directly with the theoretical refractive

index decrement ¢, (x) to be recovered using the NMSE (normalized mean square error):

. 1/2
NMSE = 100 x (Z |5TZ(T; g i""g(x) ’2> . (9.20)

9.2.4 Results and discussions

Figure 9.8 and Figure 9.9 show the reconstructed tomographic central slices of the
refractive index decrement theoretical phantom using all the distances in the phase retrieval
process. For noiseless data, Figure 9.8(a) and Figure 9.8(b) displays the reconstructed
central slice of the refractive index decrement using the mixed algorithm and the nonlinear
method respectively. For noisy simulated data (PPSNR=12 dB) the central slice of the
3D phantom obtained with the linear method is shown in Figure 9.9(a) and the one with
the proposed algorithm in Figure 9.9(b).
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B0 pixels

Figure 9.7: Phase contrast tomographic central slices of the reconstructed refractive index
decrement using noiseless data for the Fresnel diffraction pattern at propagation distances
(a) D =0 m (absorption), (b) D = 0.035 m, (¢) D =0.042 m and (d) D = 0.222 m.

Table 9.1: The NMSE(%) values for the central slice of the reconstructed refractive index

decrement.
PPSNR|dB] Mixed [NMSE(%)] | Nonlinear [NMSE(%)]
Without noise 30.04% 22.4%
12 dB 38.1% 27.1%

The NMSE for the two compared phase retrieval methods is presented in Table 9.1,

which demonstrates that the proposed nonlinear algorithm gives better results that the

linear mixed algorithm. The global improvement of the proposed method compared with
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(a) (b)

Figure 9.8: Central slice of the reconstructed refractive index decrement for the simulated
data without noise obtained with (a) the mixed algorithm and (b) the nonlinear method.

(a) (b)

Figure 9.9: Central slice of the reconstructed refractive index decrement for the simulated
data with PPSNR=12 dB with (c) the mixed algorithm and (d) the nonlinear method.

the linear approach, is 25.43% for the noise-free data and 28.87% for a PPSNR of 12 dB
respectively.

Figure 9.10(a) displays a comparison of the diagonal profiles obtained without noise for
the central slice of the ideal refractive index decrement to be retrieved, and of the refractive
index decrement maps obtained with the mixed or with the nonlinear methods. The same
profiles are displayed for a PPSNR=12 dB in Figure 9.10(b). In these reconstructions is

obvious that the phase algorithms are influenced by noise which show typical artefacts
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Figure 9.10: Diagonal profiles for the central slice of the reconstructed refractive index
decrement for the Shepp-Logan phantom obtained with the nonlinear method for mixed
initialization: (a) without noise and (b) with PPSNR=12dB.

at low-frequency. The nonlinear approach yields the most accurate phase map, but rest

sensitive to noise.

9.2.5 Conclusions

The reconstruction quality for two phase retrieval methods in in-line phase tomogra-
phy has been quantitatively evaluated. The phase retrieval algorithms were coupled to
tomographic reconstruction scheme to compare the refractive index reconstruction errors.
The first approach is the linear mixed algorithm and the second one is an iterative method
based on the Fréchet derivative of the intensity. The reconstructions were compared using
a simulated phantom, with and without noise, in terms of NMSE. The nonlinear method

gives the best refractive index decrement reconstructions.

9.3 Phase microtomography on experimental data

9.3.1 Data acquisition

The experimental setup used is equivalent to the one for the standard propagation
based technique described in [Langer et al. (2010)], at the beam line ID19 at the European
Synchrotron Radiation Facility (ESRF). The Fresnel diffraction intensity patterns for 1500
projection angles were recorded using a FRELON CCD camera with 2048 x 2048 pixels
for the energy 22.5keV at four short distances D = [2;10;20;45]mm. The field of view

was 1.4mm for the given pixel size 0.68um. The multi-material object used is composed of
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125pm Aluminium (Al), 200pum Polyethylene Terephthalate (PET E) mono-filaments and
20pum of Alumina (AlO3) wires and 28um Polypropylene (PP) fibres.. Phase retrieval
with the mixed approach was applied without any prior on ¢,/ [Guigay et al. (2007)]
(initialization (A)) and with 0, /5 = 367 [Langer et al. (2010)] corresponding to aluminium
(initialization (B)).

The reconstructed projections for the angle of view # = 120° retrieved with the mixed
algorithms in these two cases are displayed in Figure 9.11(a) and in Figure 9.11(b), respec-
tively. The nonlinear phase map obtained for the initialization map given in Figure 9.11(a)
is shown in Figure 9.11(c). Figure 9.11(d) displays the phase retrieved with NL with the
starting point given by the linear solution displayed in Figure 9.11(b). Starting from these

images the FBP is applied and the 3D refractive index decrement ¢, is reconstructed.
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Figure 9.11: Projection images corresponding to the angle of view 120° obtained after the
phase retrieval step with the mixed algorithm (a) without a priori information [Guigay
et al. (2007)] and (b) with 6,./8 = 367 (Al) [Langer et al. (2010)]. The projections obtained
using NL initialized with these mixed solutions are displayed in (c) and (d) respectively.
Gray-scale windows in (a), (c) is [—30 30] and in (b), (d)

The tomographic central slices of the refractive index decrement, in the case of the
mixed algorithm with a standard Tikhonov regularization without any a priori knowledge
on the ratio 0, /4, is displayed in Figure 9.12(a). The corresponding central slice obtained
with the nonlinear approach initialized with this linear phase solution is shown in Figure
9.12(c). In order to have a quantitative estimate of the reconstruction errors, the theo-
retical values for 270,/ and the values estimated with the linear algorithm or with the
nonlinear approach are summarized in Table 9.2. The tomographic central slice obtained

with the mixed approach is displayed in Figure 9.12(a), the corresponding reconstruction
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(c) (d)

Figure 9.12: Tomographic central slice reconstructed with the mixed algorithm (a) without
a priori information [Guigay et al. (2007)] and (b) with a priori information 4, /5 = 367
(corresponding to aluminium) [Langer et al. (2010)]. Corresponding central slice obtained
with the nonlinear algorithm initialized with the linear solution (c¢) without a priori (ini-
tialization displayed in (a)) and (d) with a priori information §,/8 = 367 (initialization
displayed in (b)).

using this linear initialization is shown in Figure 9.12(c). In this case the reconstructed
refractive index decrement obtained with NL algorithm is better estimated in all the com-
ponents of the sample (Table 9.2). In Table 9.3 the relative standard deviations (RSD[%])

and the normalized errors (NE[%]) for the four component materials have been measured
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for all reconstructions approaches. The RSD and the NE values were measured using:

SD

by measure:

and

( @ )theoretical - ( % ) measured

NE = 100 x

20, . ) (9.22)
( B )theoretlcal

where SD represent the standard deviation, (@)theoretical the theoretical value to be
obtained and ( %)meawred the measurements (given in Table 9.2). The theoretical values
(@)theoretical were obtained using the tabulated values in the XOP software [Sanchez del
Rio and Dejus (2004)]. The standard deviation SD was measured using ImageJ and is

defined as:

1
o= ,|= Z(fm — p)? (9.23)
N i=1
where
1
= — . 9.24

Table 9.2: Theoretical and measured values with different algorithms

Al AlLO3 PETE PP
(%)m " 367 570 2203 2930
( 2n8; _ 1220 1793 701.7 408.5
theoretical

2wl
A

27,

) & SD with (A) mixed, no prior | 553.43+221.92 | 934.92+199.45 | 101.11£74.99 | 154.61:£65.58
) & SD with NL, initialization (A) | 1184.77£470.37 | 2000.233+431.02 | 219.28%+158.92 | 333.72%139
(%jr + SD with (B) mixed =367 | 1204.22+61.10 | 1313+116.33 | 149.79456.78 | 190.79445.75

measured
27,

N ) e + SD with NL, initialization (B) | 1351.2 £69.66 | 1473.99+131.84 | 169.83+ 63.18 | 215.814+50.85

L
—

>

Table 9.3: Values for relative standard deviation (RSD) and normalized error (NE) ob-
tained with different algorithms

Al AlyO3 PETE PP TOTAL
%NE | %RSD | %ZNE | %RSD | %ZNE | %RSD | %NE | %RSD || %NE | %RSD
(A) mixed, no prior | -54.63 | 40.1 | -47.85 | 21.33 | -85.59 | 74.16 | -62.14 | 42.41 | 62.55 | 44.5
NL, initialization (A) | -2.88 39.7 11.55 | 21.54 | -68.74 | 72.47 | -18.30 | 41.65 || 25.36 | 43.8
(B) mixed %=367 -1.29 5.07 |-26.75| 885 |-78.65 | 3790 |-53.29 | 23.97 || 39.99 | 18.95
NL, initialization (B) | 10.75 5.15 | -17.79 | 894 | -75.79 | 37.2 | -47.17 | 23.56 || 37.87 | 18.7

The proposed approach reduces the global error in the reconstructed materials com-
pared to the two linear initialization solutions. For most materials, the lowest error values
are obtained by the nonlinear algorithm. Moreover, the total values of the normalized
errors (Table 9.3) have been improved by the nonlinear algorithm. Nevertheless, most
materials are underestimated (minus sign of NE in Table 9.3) which can also be related to

imperfection of the detector not taken into account in this study.
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If the a priori ratio is not included in the initialization algorithm the proposed approach
reduces the total NE% by 64 %. In the case, where the exact value of the a priori ratio is
not known, which is the case for biomedical samples, this result shows that the nonlinear
algorithm is an interesting extension of the mixed approach. If the a priori information
corresponding to Al is introduced in the phase shift, the mixed algorithm [Langer et al.
(2010)] yields the central slice displayed in Figure 9.12(b). Comparing this reconstruction
(Figure 9.12(b)) with that one where the a priori was not introduced (Figure 9.12(a)) in the
mixed method, it can be observed that low-frequency noise artefacts are alleviated. Yet,
the nonlinear solution retrieved using as starting point the linear solution with 4, /5 = 367
provides more accurate reconstructions (Figure 9.12(d)). In this case the NE[%] value
corresponding to Al is overestimated with the proposed nonlinear method, but the NE[%)]
for AlyO3 is reduced with 33.5% (Table 9.3).

The error maps between the compared methods are shown in Figure 9.13 to further
illustrate the interest of the nonlinear method, initialized with the mixed algorithm with

an a priori value of 9, /f.

(b)

Figure 9.13: Error map of the tomographic central slice obtained (a) between the mixed
solution without a priori [Figure 9.12(a)] and the corresponding nonlinear tomographic
map [Figure 9.12(c)] and (b) between the mixed map including the a priori ratio of 6, /8 =
367 [Figure 9.12(b)] and the nonlinear reconstruction obtained using this initialization
[Figure 9.12(d)] .

9.3.2 Conclusions

We have proposed a nonlinear phase retrieval method for phase tomography in Fresnel
space. The method has been evaluated quantitatively from experimental data acquired

at three different propagation distances on a synchrotron X-ray micro-CT setup. The
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proposed method decreases globally the reconstruction errors compared to the mixed al-
gorithm applied with various prior [Guigay et al. (2007), Langer et al. (2010)]. Then,
the results suggest that the refractive index decrement for a non homogeneous object can
be retrieved more exactly if the nonlinearity of the phase problem is taken into account.

Though the linear solution is necessary for the initialization of the algorithm.
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Conclusions et perspectives

a mise au point des synchrotrons de troisieme génération a ouvert la possibilité de
développer de nouvelles techniques d’imagerie par rayons X basées sur 'imagerie de
contraste de phase. Le couplage de ces techniques avec la micro-tomographie par rayons X
(uCT) améliore la sensibilité de plusieurs ordres de grandeur. La relation entre le décalage
de phase induit par un échantillon et I'intensité enregistrée a une distance échantillon-
détecteur donnée repose sur la théorie de la diffraction de Fresnel. L’information de phase
a partir d'un champ d’onde diffracté n’est pas explicitement enregistrée dans l'intensité
mesurée et doit étre extraite a partir des diagrammes de diffraction de Fresnel. Ce pro-
cessus est connu sous le nom d’estimation de phase et il peut étre couplé également a la
tomographie.

Dans la littérature, plusieurs méthodes d’estimation de phase ont été proposées. Ces
approches reposent sur la linéarisation de la relation phase-intensité et sont valables sous
certaines hypotheses restrictives, entrainant ainsi quelques approximations du probleme
direct de la formation de 'image de contraste de phase (Chapitre 3). Les méthodes linéaires
les plus courantes sont: 1’équation de transport de l'intensité (TIE) (Section 3.2.1), la
fonction de transfert de contraste (CTF) (Section 3.2.5), ou 'approche mixte (Section
3.2.6). Malgré certaines limitations, en raison de la linéarisation du probléme direct, ces
méthodes ont trouvé de nombreuses applications dans la pratique.

Ces approches linéaires peuvent étre affinées par d’autres méthodes qui tiennent compte
de la non linéarité du probleme de phase. Toutefois, les effets de la non linéarité n’ont
pas été beaucoup étudiés dans la littérature, jusqu’a récemment, lorsque de nouvelles
approches non linéaires ont été proposés pour le cas radiographique [Moosmann et al.
(2010), Moosmann et al. (2011)] et le cas tomographique [Hofmann et al. (2011), Langer
et al. (2012)b,Moosmann et al. (2013)].

L’objectif principal de ce travail était de proposer et d’évaluer de nouveaux algorithmes,
en tenant compte de la non linéarité du probleme direct. Nos travaux se sont basés sur
la dérivée de Fréchet de la relation entre la phase et l'intensité a des distances différentes
de propagation. L’objectif était de développer un nouveau modele mathématique utilisant
comme initialisation les solutions de phase linéaire afin d’améliorer la résolution et réduire
le bruit & basse fréquence. Plusieurs types de régularisation ont été étudiés.

Nous avons proposé plusieurs schémas itératifs pour résoudre le probléeme de I'estimation
de phase non linéaire. Toutes ces approches utilisent un type d’itération Landweber pour
minimiser la fonctionnelle de régularisation et la dérivée de Fréchet de 'opérateur inten-
sité. Afin de surmonter des difficultés de temps de calcul et une trop grande exigence
de taille mémoire pour les calculs avec des différences finies, la dérivée de Fréchet et son
adjoint ont été calculées de maniére analytique (Section 5.2). En nous basant sur des don-

nées simulées, nous avons comparé dans la 5.2.4, la convergence de plusieurs algorithmes
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basés sur le gradient calculé avec différence finie ou sur l'expression analytique du gra-
dient. Dans ce cas, le probléme inverse est régularisé avec la norme Lo du gradient de
la phase. Les meilleurs résultats ont été obtenus en utilisant I’expression analytique du
gradient, lorsque les distances sont prises en compte de facon cyclique. Cette méthode
a été affinée en utilisant des opérateurs de projection sur des ensembles convexes ou non

convexes comme dans les algorithmes proposés par Fienup (Section 6).

Dans la section 6.3, 'algorithme non linéaire a été testé sur un fantéome plus complexe.
Le terme de régularisation avec le carré du gradient de la phase (Chapitre 5) est remplacé
par le terme de régularisation de Tikhonov classique avec la norme Lo de la phase. Ce
type de régularisation utilisant aussi les opérateurs de projections a été évalué sur le
fantome Shepp-Logan pour trois initialisation par les solution linéaires: TIE, CTF et
I’approche mixte. Trois distances de propagation ont été utilisées d’une maniére aléatoire.
La qualité de la reconstruction pour la projection du fantome 3D Shepp-Logan a été
évaluée quantitativement pour des phases variables présentant des variations fortes ou
faibles. L’évaluation de la méthode a été réalisée en utilisant des données simulées, avec
et sans bruit. Les cartes de phase récupérées avec les algorithmes non linéaires et linéaires
ont été comparées en termes d’erreur quadratique moyenne normalisée. Pour la phase
fortement variable et des données bruitées la méthode non linéaire surpasse les méthodes
linéaires.

Afin d’améliorer la reconstruction de basse fréquence de la phase, une régularisation
parcimonieuse a été proposée dans la section 8.1. Tout d’abord, une solution itérative du
probléme linéaire en coordonnées ondelettes est obtenue en utilisant la norme de régular-
isation l;. Cette approche a été évaluée pour des données bruitées, en utilisant une seule
distance de propagation. Ensuite, la méthode d’estimation de phase non linéaire avec la
dérivée de Fréchet de l'intensité et des opérateurs de projection (Partie IT) a été combinée
avec l'algorithme de seuillage de type Landweber en coordonnées ondelettes (Section 8.1).
La méthode combinée (WNL) donne de meilleurs résultats que les méthodes linéaires,
I’approche non linéaire sans projections et sans le traitement en coordonnées ondelettes
(Section 8.2).

Une comparaison entre l'algorithme WNL et une méthode itérative de type point fixe
basée sur une fonction de substitution utilisée pour minimiser la fonctionnelle de régu-
larisation, appelé ici RTS (Ramlau et Teschke Schéma) a été effectuée dans la section
8.3.2. Le but de cette comparaison était d’évaluer quantitativement plusieurs approches
linéaires et non linéaires basées sur Tikhonov ou des régularisations de type parcimonieux
pour l'estimation de phase en ligne en utilisant une seule image de contraste de phase.
Nos résultats indiquent que 'approche WNL est meilleure et plus robuste au bruit que le
Ramlau et Teschke Schéma (RTS), qui est une méthode générale pour des problémes non

linéaires avec une régularisation parcimonieuse.

Dans la derniére partie de ce manuscrit, les reconstructions tomographiques pour des
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données simulées et expérimentales ont été effectuées en utilisant le schéma itératif non
linéaire proposé pour le cas radiographique dans la section 6.3 avec et sans bruit. Avec
I’algorithme itératif non linéaire, les erreurs de reconstruction tomographique de la coupe
centrale finale sont diminuées.

Les perspectives concernant ce travail sont les suivantes. Un aspect important est le
choix automatique du parametre de régularisation. Il est bien connu que le parameétre
de régularisation joue un role crucial dans la convergence des méthodes itératives, par
conséquent, il doit étre choisi avec soin. Dans toutes les études de ce travail, les valeurs
petites et grandes des parametres conduisant & de mauvais résultats de la reconstruction
sont d’abord choisies. Ensuite, la valeur optimale du parametre de régularisation est
progressivement affinée par essais, avec un intervalle décroissant. Plusieurs systémes ont
été étudiés récemment pour le choix du parametre de régularisation pour les problemes
non linéaires, fondés sur des approches de type bayesienne. Il pourrait étre intéressant
de tester ces méthodes sur des données simulées ou réelles. Lors de la reconstruction
tomographique, la valeur du parametre de régularisation a été fixée. Elle est identique pour
toutes les projections. Il est possible qu’en faisant varier ce parametre de régularisation
en fonction de ’angle de projection, une reconstruction plus précise sera atteinte.

Des améliorations significatives par rapport aux méthodes linéaires pour les reconstruc-
tions de phase dans le cas radiographique pour les données simulées ont été obtenues. Nous
pouvons observer que ces améliorations, en termes d’erreur quadratique moyenne normal-
isée, sont réduites lorsque la reconstruction tomographique est effectuée. Une perspective
importante pour ce travail est la mise en oeuvre de notre algorithme WNL pour le cas
tomographique avec des applications a I'imagerie d’échantillons biomédicaux a 'ESRF. Il
sera aussi possible de développer d’autres algorithmes qui incluent I’a priori que le rapport
phase/absorption (d,/3) est constant par morceaux dans le cas radiographique ou le cas
tomographique. Enfin, une perspective intéressante est ’étude de la reconstruction con-
jointe de la phase et de ’absorption qui souléve un probleme encore plus mal posé mais

qui aurait une implication pratique importante.
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Chapter 10

Conclusions and perspectives

The availability of third-generation synchrotron has opened the possibility to develop
new X-ray imaging techniques based on phase contrast imaging. Coupling these techniques
with X-ray microtomography (uCT) the sensitivity is improved by several orders of mag-
nitude. The relationship between the phase shift induced by a sample and the intensity
recorded at a sample-to-detector distance D relies on Fresnel diffraction theory. The phase
information from a diffracted wave field is not explicitly recorded in the measured inten-
sity and must be extracted from the Fresnel diffraction patterns. This process is known
as phase retrieval and it may be coupled also to tomography.

In the literature, various phase retrieval methods have been proposed. These ap-
proaches rely on the linearization of the relation phase-intensity and are valid under some
restrictive assumptions, thus involving some approximations of the direct problem of phase
contrast image formation (Chapter 3). The most common linear methods are: Transport
Intensity Equation (TIE) (Section 3.2.1), the Contrast Transfer Function (CTF) (Section
3.2.5), or mixed approach (Section 3.2.6). Despite some limitations, due to the lineariza-
tion of the direct problem, these methods have found various applications in practice.

These linear approaches can be refined by other methods which take into account the
nonlinearity of the phase problem. However, the effects of the nonlinearity have not been
much investigated in the literature until recently, when new nonlinear schemes have been
proposed for the radiographic case [Moosmann et al. (2010), Moosmann et al. (2011)]
and the tomographic case [Hofmann et al. (2011), Langer et al. (2012)b, Moosmann et al.
(2013)].

The main purpose of this work was to propose and evaluate new algorithms, taking
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into account the nonlinearity of the direct problem. These methods are based on the
Fréchet derivative of the phase-intensity relationship at different propagation distances.
The objective was to develop a new mathematical model using as input the linear phase
solutions in order to improve the resolution and decrease low frequency noise. Several

types of regularization have been investigated.

For simulated data, we have proposed several iterative schemes to solve the nonlinear
phase retrieval problem. All these approaches use a Landweber type algorithm to mini-
mize the regularization functional and are based on the Fréchet derivative of the intensity
operator. In order to overcome the long computation time and large memory requirement
of calculations with finite differences, the Fréchet derivative and its adjoint were calculated
in an analytical way (Section 5.2). We have compared in Section 5.2.4, the convergence
rates for several algorithms based on the finite differences gradient or on the analytic ex-
pression of the gradient. In the later case, the inverse ill-posed problem is regularized
with the smoothing Ly norm of the phase gradient. The best results have been obtained
using the analytic expression of the gradient, when the distances are taken into account
in a cyclical way. This method has been refined by using projection method on convex or

non-convex sets as in the Fienup algorithms (Section 6).

In Section 6.3, the nonlinear algorithm is has been tested on a more realistic phantom.
The regularization term with the square of the gradient phase term (Chapter 5) was
replaced by the classical Tikhonov regularization term with the Lo norm of the phase. This
type of regularization using Fienup like projections operators has been evaluated on the
3D Shepp-Logan phantom for three linear starting points chosen as the solutions provided
by the linear methods, TIE, CTF and mixed approach. Three propagation distances were
used in a random way. The reconstruction quality for a projection of a 3D Shepp-Logan
phantom has been quantitatively evaluated for strongly and weakly varying phases. The
evaluation of the method was performed using simulated data, both with and without
noise. The phase maps retrieved with the nonlinear and linear algorithms were compared
in terms of NMSE (normalized mean square error). For the strongly varying phase and

the noisy data the nonlinear method outperforms the linear methods.

In order to improve the low frequency reconstruction of the phase, a sparse regular-
ization has been proposed in Section 8.1. An iterative solution of the linear problem
in orthogonal wavelets coordinates is obtained using the l; norm regularization. This
approach has been evaluated for noisy data, using a single propagation distance. More-
over, the nonlinear phase retrieval method with the Fréchet derivative of the intensity and
projection operators (Part II) was combined with the iterative thresholded Landweber
algorithm in wavelet coordinates (Section 8.1). The combined method (WNL) outper-
forms the linear methods, the nonlinear one without projections and without the wavelet

treatment (Section 8.2).

A comparison between the WNL and a fixed point iterative method based on a surro-
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gate functional used to minimize the regularization functional, called here RTS (Ramlau
and Teschke Scheme) has been performed in Section 8.3.2. The aim of this comparison
was to evaluate quantitatively several linear and nonlinear approaches based on Tikhonov
or sparse regularizations for in-line phase retrieval using only one contrast-image. Our
results indicate that the WNL approach performs better and is more robust to noise that
the Ramlau and Teschke Scheme (RTS), which is a general method for nonlinear problems
with a sparsity regularization.

In the last part of this manuscript, the tomographic reconstruction for simulated and
experimental data has been performed using the nonlinear iterative scheme proposed for
the radiographic case in Section 6.3 with and without additional noise. The results show
that the global reconstruction error in the tomographic phase image is decreased with the
nonlinear iterative algorithm.

There are several perspectives to this work. An important one is the automatic choice
of the regularization parameter. It is well known that the regularization parameter plays
a crucial role in the convergence of the iterative methods, therefore it has to be chosen
carefully. In all the studies of this work, large and small values of the parameters leading
to poor reconstruction results are first chosen. Then, the optimal value of the regulariza-
tion parameter is gradually refined by trial-and-error with a decreasing interval. Several
schemes have been investigated recently for the choice of the regularization parameter for
nonlinear problems, based on a Bayesian approach. It could be interesting to test these
methods on simulated or real data. During the tomographic reconstruction, the value of
the regularization parameter was fixed and had the same value for all the projections.
Maybe, by choosing a specific value of the regularization parameter for set of intensity
measurements for each projection angle 6 and by varying this initial value during the
iterations as a function of noise a more accurate reconstruction will be achieved.

Another important perspective of this work is also the implementation of our WNL
algorithm for the tomographic case.

Significant improvements over the linear methods for the reconstructed phase maps
in the radiographic case for simulated data have been obtained. We can observe that
these improvements, in terms of normalized mean square error (NMSE), are reduced when
the tomographic reconstruction is performed. By introducing priors like TV-norm in the
object domain, which are not appropriate to apply in the projection domain, we could try
to improve the tomographic reconstruction.

This work demonstrating the potential of nonlinear refinements in phase retrieval
schemes open many perspectives and should be further evaluated in various applications

in biomedical imaging at ESRF.
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