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INTRODUCTION

One of the current major puzzles of theoretical physics is the explanation of a non-
luminous and yet unknown form of matter present throughout the Universe, called
Dark Matter (DM). Although the evidence for its existence, originating from various
gravitational effects, are so far only implicit observations, they are strong enough to
consider with great certainty that more than about 80% of the total matter in the
Universe is dark. Moreover, this evidence suggests that DM consists of non-baryonic,
massive long-lived particles which interact only through gravity and weak interactions.
None of the particles described by the Standard Model (SM) of particle physics do
meet the required specifications to account for dark matter. Many models that extend
the standard theory have been proposed, in an effort to incorporate particles with the
desired characteristics.

Among the numerous possibilities, supersymmetry seems to be quite appealing.
Supersymmetry is a symmetry between bosons and fermions, introduced to solve the-
oretical problems of the Standard Model. In most cases, supersymmetric extensions
of the Standard Model also conserve a discrete symmetry, the R-parity, in order to
conform with particle physics phenomenology, especially the non-observation of the
proton decay. A new possibility appeared in this class of models: one of the new par-
ticles is stable and neutral and, in principle, it is possible to be a viable DM candidate
with the observed abundance.

Many experiments are running around the world, aiming either at the direct de-
tection of DM particles or at the detection of indirect signals coming from them. The
latter originate from dark matter annihilation in regions of the Universe that it is ex-
pected to be more condensed. The results of these experiments constitute a test of the
various theoretical models proposed to explain the DM problem.

Another puzzling fact is the agreement of the values, at the level of order of magni-
tude, of the DM abundance and the abundance of baryonic matter. If this is not just
a coincidence, these two forms of matter should have something in common. In order
to explain this coincidence, the possibility that the DM particles carry a conserved
quantum number related to baryon number has recently attracted a lot of attention.
Then, it is in principle possible that the DM current abundance is the asymmetry
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between DM particles and antiparticles, as it is in the case of baryons. The difference
for the two densities comes simply from the difference in their masses.

In the first part of the current dissertation we deal in general with particle Dark
Matter. In Chapter 1 we review the DM physics. We give the evidence for the DM
existence and explain why particle DM is more favorable among other possibilities. We
also describe the common mechanism that determines the DM relic abundance and,
finally, we examine the DM detection methods and present the current experimental
status. In order to explain the DM, foremost, one needs a theory that describes
successfully the known fundamental particles. In Chapter 2 we describe the theory
that has been established during the last decades as the Standard Model of particle
physics. In the same chapter, we also discuss the theoretical problems from which this
model suffers and motivate the supersymmetric extensions of the SM.

In the second part we examine the DM in the context of a specific supersymmetric
model, the Next-to-Minimal Supersymmetric Standard Model (NMSSM). There are
good theoretical and phenomenological reasons to move from the minimal supersym-
metric model to the NMSSM. These are described in Chapter 3. We also describe the
Lagrangian of the model and the possible DM candidates this model provides, explor-
ing the general DM characteristics and detection. In the subsequent Chapter 4, we
attempt to explain in the NMSSM a possible indirect DM signal, a monochromatic
photon excess, that may originate from DM annihilation.

The last, third, part of the thesis is devoted to asymmetric DM. In Chapter 5
we introduce the asymmetric DM and explore the conditions under which the DM
current density is determined indeed by its asymmetry. We derive quite severe upper
bounds on the DM particle-particle or antiparticle-antiparticle self-annihilation, which
constrain the asymmetric DMmodels. Subsequently, we propose in Chapter 6 a specific
asymmetric DM model, obtained by an extension of the NMSSM, which respects the
self-annihilation bounds. We investigate, in the same chapter, the properties of the
proposed DM and discuss possible bounds coming from collider physics, cosmology
and DM detection experiments.

Note: The original work of this thesis is included in the last three chapters (Ch. 4,
5 and 6), which are based on the publications [1–3].



INTRODUCTION

La Matière Noire (MN) est une forme inconnue de matière non-lumineuse et répandue
dans toute Univers. L’explication de la MN figure parmi les défis principales de la
physique théorique. Bien que les évidences de son existence sont jusqu’à maintenant
que des observations implicites, d’origine d’une variété des effets gravitationnelles, ils
sont assez robustes pour considérer avec grande certitude que la MN constitue plus
que le 80% de la matière totale de l’Univers. En plus, les évidences suggèrent que la
MN est constituée par particules massifs, non-baryoniques, à vie longue, lesquels inter-
agissent seulement à travers la gravité et des interactions faibles. Aucun des particules
décrites par le Modèle Standard (MS) de la physique des particules ne correspond pas
aux spécificités de la MN. Plusieurs modèles ont été proposé en s’étendant la théorie
standard et ayant comme but d’inclure les particules présentant les caractéristiques
désirés.

Parmi les plusieurs possibilités, la théorie de supersymétrie semble être la plus at-
tirante. La supersymétrie est une symétrie entre les bosons et les fermions, introduite
pour résoudre les problèmes théoriques du MS. Dans la majorité de cas, les exten-
sions supersymétriques du MS conservent une symétrie discrète, la R-parité, afin de
se conformer avec la phénoménologie de la physique des particules, spécialement en
ce qui concerne l’absence d’observation de la désintégration du proton. Une nouvelle
possibilité a été apparue dans cette classe des modèles: un de nouveaux particules est
stable et neutre et, en principe, il est possible d’être un candidat pour expliquer la
MN, viable avec l’abondance observée.

Plusieurs expériences sont effectuées au monde, ayant comme but soit la détection
directe des particules de MN, soit la détection de signaux indirects d’origine des partic-
ules de MN. Les résultats de ces expériences constituent un test des différents modèles
théoriques qui proposent et qui expliquent le problème de la MN.

Un autre problème est l’accord au niveau de l’ordre de magnitude entre les valeurs
d’abondance de MN et de l’abondance de matière baryonique. S’il s’agit pas d’une
cöıncidence, ces deux formes de matières devraient avoir quelque chose en commun.
En conséquence, afin d’expliquer cette cöıncidence, la possibilité que les particules de
MN portent un nombre quantique qui est conservé en relation avec le nombre bary-



xii CONTENTS

onique a récemment attiré beaucoup d’attention. Il est donc possible que l’abondance
actuelle de MN est expliquée par l’asymétrie entre les particules de MN et les antipar-
ticules, comme c’est le cas pour les baryons. La différence entre les deux densités vient
simplement par la différence entre les masses.

Dans la première partie de cette thèse nous traitons de manière générale les par-
ticules de la MN. Dans Chapitre 1 nous effectuons une révision de la physique de MN.
Nous fournissons les preuves pour l’existence de la MN et nous expliquons pourquoi
les particules de MN sont plus favorable parmi les autres possibilités. Nous décrivons
aussi le mécanisme commun qui détermine l’abondance de la MN et, filialement nous
examinons les méthodes de détection de MN et présentons l’état de l’art actuel des
expériences. Afin d’expliquer la MN, il faut utiliser la théorie qui décrit en succès les
particules fondamentales déjà connus. Dans le Chapitre 2 nous décrivons la théorie
qui a été établie dans les derniers décennies selon le MS de la physique des particules.
Dans le même chapitre, nous discutons aussi les problèmes théoriques du MS et ceux
qui motivent les extensions supersymétriques du MS.

Dans la deuxième partie, nous examinons la MN, dans le contexte d’un modèle spé-
cifique de supersymétre, le Next-to-Minimal Supersymmetric Standard Model (NMSSM).
Il y a des bonnes raisons théoriques ainsi que phénoménologiques pour passer du modèle
supersymétrique minimal au NMSSM. Ces raisons sont décrites dans le Chapitre 3.
Nous décrivons aussi le Lagrangien du modèle ainsi que les particules candidat possi-
ble de la MN que ce modèle nous offre, en explorant les caractéristiques générales de la
MN. Au prochain Chapitre 4, nous tentons à expliquer dans NMSSM un signal de MN
indirect, un excès de photons monochromatique, qui peuvent provenir de l’annihilation
de la MN.

La dernière partie de cette thèse est dévouée aux asymétries de la MN. Dans le
Chapitre 5 nous introduisons la MN asymétrique et nous explorons les conditions
sous lesquels la densité actuelle de la MN est en effet déterminée par son asymétrie.
Nous trouvons des limites supérieures assez sévères sur l’auto-annihilation de particule-
particule ou de antiparticule-antiparticule. En plus, nous proposons dans Chapitre 6 un
modèle d’asymétrie spécifique de MN, obtenu par l’extension de NMSSM, qui respect
l’auto annihilation des limites. Nous investiguons, dans le même chapitre, les propriétés
de la MN telles que proposées et nous discutons les limites possibles de l’origine de
physique des collisionneurs, de la cosmologie et des expériences de détection de la MN.

Note: Le travail original de cette thèse est inclue dans les derniers trois chapitres
(Ch. 4, 5 et 6), lesquels sont basés sur des publications [1–3].



Part I

Particle Dark Matter





CHAPTER 1

DARK MATTER

The latest results from the Linear Hadron Collider (LHC) and the Planck satellite of-
fered an amazing verification of the Standard Models of both Particle Physics (hence-
forth, denoted just as SM) and Cosmology. The discovery of the Higgs boson completed
the detection of all particles predicted by the SM and put an end to any potential
doubts about it. On the other hand, the Cosmic Microwave Background radiation
observed by Planck is consistent in high precision with the standard cosmology. But
at the same time, Planck confirmed once more the fact that the total matter of the
Universe is dominated by one yet unknown form of matter, the so-called Dark Matter
(DM). The nature of DM constitutes one of the major puzzles of the theoretical physics
today.

The story of DM is not new. In 1970s, it was realized that the measured rotational
velocity of isolated stars or gas clouds in the outer parts of galaxies was not as one
should expect from the gravitational attraction of the known matter. This fact brought
back to light an old idea about a non-luminous form of matter and forced to take it
seriously. It was back in 1933 that Zwicky [4,5] observed that the mass of the luminous
matter (stars, gas etc.) in the Coma system, a cluster of about one thousand galaxies,
was not adequate to explain the motion of cluster member galaxies. The idea, however,
of a non-luminous form of matter preexisted [6] and it was actually used one year earlier
by Oort [7] to explain his observations, which nevertheless proved erroneous. However,
today, the existence of this non-luminous, dark matter is considered unquestionable
due to various kinds of evidence, many of them independent of the others. It is almost
certain nowadays that DM does not only cluster with stellar matter forming the galactic
halos, but it also exists as a background throughout the entire Universe.

The evidence for the DM will be the subject of the next but one section (Sec.
1.2). Meanwhile, we have to give a brief review of the standard cosmological model.
In Sec. 1.3 we discuss the possible DM candidates and the reason that a particle DM
is most favorable. Subsequently, in Sec. 1.4 we review the standard mechanism that
determines the density of the DM particles, a quantity that has been calculated quite
accurately by astrophysical observations. We finish this chapter by describing, in the
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last two sections 1.5 and 1.6, the detection methods of particle DM and the current
experimental status.

1.1 The Standard Big Bang Cosmological Model

In this section we are going to review the standard cosmological model based on the Big
Bang theory and on general relativity. However, it is not going to be an introduction to
the general theory of relativity, but rather a very brief review of notions and formulas
that we need for the description of DM.

A basic characteristic of the standard cosmological model is the evidence that the
universe is expanding. The expansion was discovered at the late 1920’s [8] by observing
the spectra of distant galaxies. A local observer that detects light from a distant object
sees a redshift z in the frequency, which corresponds to the motion of the object away
from the observer due to the Doppler effect. All of the observed galaxy spectra up
to the present time (except of few coming from very nearby galaxies) are red-shifted,
a fact stressing the universality of the expansion. The redshift z can be written in

power series in terms of the luminosity distance dL ≡
( L
4πF
)1/2

(where L is the object’s
luminosity and F the measured flux) as

z = H0dL +
1

2
(q0 − 1) (H0dL)

2 , (1.1)

where H0 is the present expansion rate of the Universe, known as the Hubble constant
and q0 is a parameter that represents the deviation from the linear Hubble law and
measures the deceleration of the Universe. Usually, the Hubble parameter is taken to
be

H0 = 100h km s−1 Mpc−1, (1.2)

with the numerical uncertainties moved to the dimensionless parameter h, which takes
the value h = 0.673± 0.012 [9].

The expansion of the Universe may originate naturally from an isotropic and homo-
geneous cosmological model based on general relativity. Although Einstein imposed
these two assumptions without any observational evidence, today they are general
thought as undeniable. The best evidence for isotropy comes from the observation of
the Cosmic Microwave Background (CMB) radiation, which exhibits a temperature
uniformity. Testing the homogeneity of the Universe is not so straightforward, but
sky surveys have confirmed it with large accuracy [10]. The validity of these assump-
tions form the modern cosmological principle, which reflects the fact that all spatial
positions in the Universe are essentially equivalent.

Isotropy and homogeneity are playing an essential role, since they allow the de-
scription of the space-time of the Universe in terms of only two parameters denoted
by R(t) and k, accounting, respectively, for its overall expansion (or contraction) and
its spatial curvature. The most general expression for a space-time metric, known as
Friedmann-Robertson-Walker or FRWmetric, can be written as (see, for example, [11])

ds2 = dt2 −R(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.3)
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where as usual r, θ, φ and t are the spherical and time coordinates, respectively. The
curvature constant k takes only the discrete values +1, 0, −1, corresponding to closed,
(spatially) flat and open geometries. R(t) is the cosmological scale factor and deter-
mines proper distances in terms of the comoving coordinates. Usually, it is convenient
to define a dimensionless scale factor a(t) ≡ R(t)

R0
, where R0 is the present-day value of

R. The Hubble parameter can be defined through the scale factor as

H(t) ≡ Ṙ(t)

R(t)
=
ȧ(t)

a(t)
. (1.4)

We can use the metric (1.3) in order to show that the cosmological redshift is a
direct consequence of the Hubble expansion. The redshift is defined as

z =
f1 − f2
f2

, (1.5)

with f1 the frequency of the emitted light and f2 the frequency of the observed light.
For scales smaller than cosmological, so that the expansion velocity v12 (corresponding
to the velocity with which the distant object moves away from the observer) is not
relativistic, the redshift is approximated as z ≃ v12

c
. Using the metric (1.3) for a light

signal (ds2 = 0), we eventually arrive at the simple relation 1 + z = R2

R1
between the

redshift z and the scale factor R.
The evolution of the Universe can be described by two rather simple equations,

known as Friedmann–Lemâıtre equations. Assuming the matter content of the Universe
as a perfect fluid, the energy–momentum tensor is written as

Tµν = −pgµν + (p+ ρ)uµuν , (1.6)

where gµν is the metric tensor related to the metric (1.3), p the isotropic pressure, ρ
the energy density and u = (1, 0, 0, 0) the velocity vector for the isotropic fluid in
comoving coordinates. The Einstein’s equations lead to the following expressions:

H2 =
8π

3
GNρ−

k

R2
+

Λ

3
(1.7)

and
R̈

R
= −4π

3
GN(ρ+ 3p) +

Λ

3
, (1.8)

where GN is the gravitational constant and Λ the cosmological constant, which can be
interpreted to correspond to the energy of the vacuum. (The first of these equations
is often called the Friedmann equation.) The energy–momentum conservation leads to
a third equation:

ρ̇ = −3H(p+ ρ). (1.9)

Examining (1.7), we see that in the absence of a cosmological constant (Λ = 0), the
expansion or contraction of the Universe is determined solely by the value of k. For
k = +1 it will recollapse, while it is going to expand indefinitely if k = 0 or k = −1.
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This way, one can define the following expression that gives the critical density, such
that k = 0 (when Λ = 0)

ρC ≡ 3H2

8πGN

. (1.10)

Finally, the cosmological density parameter Ωtot is defined as the energy density relative
to its critical value

Ωtot ≡
ρ

ρC
. (1.11)

The Friedmann equation can be rewritten in terms of the density parameter as k
R2 =

H2 (Ωtot − 1). It is often useful to distinguish the origin of the contribution to the total
density. In this sense,

Ωtot = Ωmat + Ωrad + ΩΛ, (1.12)

where Ωmat is the contribution from pressureless matter, Ωrad comes from relativistic
particles (radiation) and ΩΛ is due to the cosmological constant. The matter density is
further divided to the contribution from baryonic matter (Ωb) and from (non-baryonic)
DM (ΩDM).

It is important to note that much of the history of the Universe can be described
by assuming that either matter or radiation dominates the total energy density. By
defining the parameter w = p

ρ
, Eq. (1.9) is written in terms of w as ρ̇ = −3(1 +w)ρ Ṙ

R
.

After integration, it gives
ρ ∝ R−3(1+w). (1.13)

In the radiation dominated era of the Universe w = 1/3, while during matter domina-
tion w = 0, so that ρ ∝ R−4 (radiation dominated) and ρ ∝ R−3 (matter dominated),
respectively.

1.2 Evidence of DM

1.2.1 Galactic rotation velocities

As it was mentioned before, the first strong evidence for the existence of DM were
the galactic rotation velocities [12]. The mass distribution of a spiral galaxy can be
approximated as spherical or ellipsoidal. Applying the Newton’s law, which is sufficient
for such large distances, we can see that at a distance r from the galactic center the
rotation velocity obeys the equation v2

r
= GNM(r)

r2
, where M(r) is the mass distribution

in the galaxy. Taking r much larger than the radius of the luminous mass, so that
M(r) corresponds to the total galactic mass, Newton’s law implies that v ∝ 1/

√
r.

However, galaxy observations based on the Doppler effect show that the velocity rises
with r towards a constant value vconst ≃ 100 − 200 km s−1. The first galaxy in which
this behavior observed was Messier 33, a spiral galaxy about 3 million light years (ly)
away. Its rotation curve can be seen in Fig. 1.1 (left). Along with the observed curve,
the expected rotation velocity due to the luminous mass has also been plotted. The
same phenomenon has already been observed for a plethora of galaxies, including our
galaxy [13] (see Fig. 1.1 – right).
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Figure 1.1: Left: The rotation curve for the M33 dwarf galaxy, superimposed on its
optical image, as observed by starlight and 21 cm hydrogen spectrum lines, and the
expected rotation curve due to the luminous amount of mass. From [14,15]. Right: The
rotation velocities for the Milky Way, the NGC 4258 and M31 galaxies as a function
of the distance from the galactic center. From [13].

Returning to the Newton’s law, we can easily check that the aforementioned dis-
agreement would have been resolved, if the mass distribution was growing linearly with
r, M(r) ∝ r. Actually, a self-gravitating ball of an ideal gas at a uniform temperature
kT = 1

2
mXvconst, with mX the mass of the particles that constitute the gas and vconst

the asymptotic value of the rotation velocity, would have exactly this mass profile [16].
Therefore, a simple solution to the missing mass problem is the assumption that the
disk galaxies are immersed in extended DM halos. Current analyses of rotation curves
imply that Ωmat ≃ 0.1 (see [17] for a review), while observations of the luminous matter
constrain its density to only Ωlum <∼ 0.01. Hence, about 90% of the total mass of the
galaxies is dark.

1.2.2 Gravitational lensing

Since DM interacts gravitationally, its mass warps the space-time causing the distortion
of a passing beam of light. Hence, although dark, the presence of DM should be visible
through the “bending” of the light coming from behind sources. This fact is used in the
so-called gravitational lensing: large clusters of galaxies can be used as astrophysical
lenses that bend and magnify the light coming from galaxies far behind them. The
distorted picture can give an estimate for the mass distribution of the lens. Since
lensing does not rely on the dynamics of the observed systems, it is a completely
independent method of predicting the DM density.

In contrast to optical lenses, a gravitational lens has no single focal point, but
instead a focal line. The maximum bending occurs closest to the center of the lens,
and the minimum furthest from it. In the ideal case that the light source (a distant
galaxy), the lens (the cluster of galaxies) and the telescope lie in a straight line, the
source galaxy would appear as a ring around the lensing object. In fact, partially
because of a misalignment of the three objects, but also due to the complex mass
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Figure 1.2: Left: Abell 1689 acting as gravitational lens that bends and magnifies the
light of the galaxies located far behind it. Some of the faintest objects in the picture
are probably over 13 billion light-years away (redshift value 6). This color image is a
composite of visible-light and near-infrared exposures taken by the Hubble telescope in
June 2002. According to NASA, it reveals 10 times more arcs than would be seen by
a ground-based telescope. Courtesy of the Space Telescope Science Institute (STScI).
Right: A masked region of Abell 1689. Cluster members were selected using color
information and then masked over, so that these regions do not affect the surface
density estimate of background sources. The background galaxies are also shown as
open circles. Superimposed are the concentric bins used to calculate the radial profile,
centered on the peak in the light distribution. From [18].

distribution of the lensing cluster, the source resembles partial arcs scattered around
the lens. Fig. 1.2 is an example of the arcs formed as the light of distant galaxies passed
through the cluster Abell 1689, one of the most massive known galaxy clusters, acting
as a 2-million-light-year-wide lens in space.

In many cases, the distortion of the light of background sources is too weak to
form arcs and can be detected only by analyzing a large number of sources and using
statistical methods. This kind of lensing is known as weak lensing. The lensing shows
up statistically as a preferred stretching of the distant objects perpendicular to the
direction towards the center of the lens. By measuring the shapes and orientations of
large numbers of distant galaxies, their orientations can be averaged to measure the
shear of the lensing field in any region. For a population of unlensed galaxies, the shear
pattern should be, on average, randomly distributed. In the presence of lensing, the
shear field is polarized and, since it is related non-locally to the surface mass density,
it can be used to estimate the mass distribution.

Perhaps the most compelling evidence for DM came applying these weak lensing
techniques on the colliding system of Bullet cluster [19,20]. The Bullet cluster consists
of two primary galaxy concentrations, a less massive subcluster that is currently moving
away from a more massive main cluster. The X-ray image reveals the relative motion



1.2.3 CMB radiation 9

Figure 1.3: The left panel is a color image from the Magellan images of the merging
Bullet cluster, with the white bar indicating 200 kpc at the distance of the cluster. The
right panel is an X-ray Chandra image of the same cluster. The contours represent
the weak lensing mass reconstruction. The separation between the location of the
luminous interacting X-ray halo and the location of gravitating matter can be clearly
seen. From [20].

of the two systems. Comparing with the line-of-sight velocity differences of the two
components, it can be deduced that the two cores passed through each other about
100 million years ago and that the merger is occurring in the plane of the sky.

The cluster observation reveals that its mass is partially made of baryons observable
in optical and infrared data, but it is dominated by baryons observable in X-rays.
During the merger, the galaxies, which correspond to the small amount of optical
baryons, remain collisionless, while the X-ray halo is affected by ram pressure. The
mass distribution of the system was reconstructed by means of weak lensing. In the
absence of DM, one should expect that the reconstructed mass distribution would
exhibit a primary peak coincident with the dominant X-ray gas, which is spatially
offset from the galaxy distribution (right panel of Fig. 1.3). However, as it can be seen
in the left panel of Fig. 1.3, the mass maps created from weak lensing have the primary
mass peaks in good spatial agreement with the galaxies.

The analysis performed in [20] is in agreement with the other astrophysical ob-
servations: only 12% of the total mass of the cluster is due to baryons (from which
1% is visible in optical spectrum and the rest is the X-ray halo) and 88% is the DM.
Combining all the astrophysical bounds, one can make a rough estimation for the DM
density, which lies on the range

0.1 <∼ Ωastr
DM h2 <∼ 0.3. (1.14)

1.2.3 CMB radiation

The most precise prediction of the DM density is coming, however, from analyses of
the Cosmic Microwave Background (CMB) spectrum. The most recent observation
of CMB by the Planck satellite (which improved previous results [21, 22] by WMAP)
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constrained the DM density in the interval [9]

ΩDMh
2 = 0.1199± 0.0027. (1.15)

This result plays a key role for testing possible DM candidates and we are going to use
it many times throughout this work. In the following, we will describe how DM affects
the CMB spectrum. Once again, the detailed analysis leading to the above calculation
is complicated and goes well beyond the scope of this thesis. We will rather try to
give a qualitative picture of the relation among DM and the shape of the observed
spectrum.

The CMB that we observe today consists of photons that have started a free travel
through space since their last scattering with matter, early in the history of the Uni-
verse (see, for example, [23,24]). Even earlier, while the Universe was made up from a
very hot interacting plasma of photons, electrons and baryons, the large temperature
of photons was preventing the electrons to combine with protons to form hydrogen
atoms. As the Universe was expanding, the photon temperature was decreasing, and
at some point the formation of atoms was possible. This corresponds to the recombi-
nation epoch of the Universe. After then, the photons no longer interacted with the
neutral plasma and their free propagation started, with a temperature that is redshift-
ing following the expansion of the Universe. The value of this temperature today is
∼ 2.73K [25].

Although the CMB radiation is highly isotropic1, small anisotropies appear if one
concentrates on smaller scales, which correspond to smaller angles in the sky, later led
to structure formation in the Universe. In order to study these anisotropies (see for
example [26,27]), the temperature, which is a function of the polar coordinates defining
the direction on the sky, is expanded in spherical harmonics:

T (θ, φ) =
∑

l,|m|≤l

almYlm(θ, φ). (1.16)

The coefficients alm describe temperature variations on angular scales l ∼ π/∆θ.
The l = 0 term is the isotropic temperature, while l = 1 is the dipole anisotropy
corresponding to the motion of the solar system. The variance of the temperature
〈∆T 2〉 ≡ 〈(T − 〈T 〉)2〉 is written, using the orthogonality of the spherical harmonics,
as

〈∆T 2〉 = 1

4π

∑

l>1

(2l + 1)Cl, (1.17)

where we Cl ≡ 〈|alm|2〉m is the average of the coefficients alm over m. The quantity

D2
l ≡

l(l + 1)

2π
Cl (1.18)

gives the contribution to the temperature fluctuations per interval of ln l. The CMB
power spectrum – the plot of Dl versus l – as observed by the Planck satellite is shown
in Fig. 1.4.

1About 1 part in 100, 000, after subtracting the uninteresting dipole anisotropy, which is due to
the Doppler effect caused by the solar system’s motion.
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Figure 1.4: The Planck power spectra. The dashed line indicates the best-fit Planck
spectrum. From [28].

We are ready to reach the main point of this section, to wit, how these anisotropies
were generated and, eventually, why the existence of DM is necessary to explain the
observed spectrum. To do so, we have to go back once again to the study of the
early Universe. Before recombination, the CMB photons and the baryons acted as
a nearly perfect fluid. Gravitational potential wells, caused by random fluctuations,
had been stretched to cosmic scales during inflation. The photon-baryon fluid was
under the influence of this potential. While gravity was compressing the fluid, its
radiation pressure was resisting, resulting in acoustic oscillations. The sound waves
were changing the photon temperature; it was rising during compression and it was
falling during rarefaction. The oscillations stopped at recombination as the photons
were released from the fluid, and what we observe today is actually a frozen picture
of this procedure. The peaks are caused by modes that have reached extrema of
compression and rarefaction at the time of last scattering. The first peak corresponds
to modes that have had enough time to oscillate through exactly one half of a period
before last scattering, the second peak is caused by modes oscillated through a full
period (half the wavelength of the first mode), and so on.

Much information can be deduced from the CMB power spectrum. For example,
without entering into the details, the position of the first peak is related to the spatially
geometry of the Universe, whereas the relative height of the second peak, compared to
the first one, is related to the baryonic density [29]. Here, we will focus on the effect
of DM on the power spectrum.

We start without assuming a priori the existence of DM. When radiation dominated
over matter, the density fluctuation stabilizes as the radiation pressure prevents further
compression, causing the decay of the gravitational potential. Since the potential well
lowers after the compression, the amplitude of the rarefaction will be larger. We note
that modes with smaller wavelength (higher multipoles) started oscillating first, so that
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it is expected that each even peak would be higher than the successive odd peak. In the
presence of a collisionless cold (non-relativistic) fluid, the density fluctuation remains
after the compression and the gravitational potential does not decay. Therefore, in the
presence of (cold) DM, the third peak is expected to be comparable or higher than the
second one2. Indeed, this is the case of the observed CMB power spectrum (Fig. 1.4).

In practice, the effect of the various phenomena determining the shape of the power
spectrum is more complicated than the above simplified qualitative analysis. One has
to apply statistical methods in order to fit a cosmological model to the observed CMB
spectrum. The best fit to the power spectrum as observed by Planck [9] is a flat
ΛCDM model3, with baryonic density Ωbh

2 = 0.02205± 0.00028, dark matter density
ΩDMh

2 = 0.1199±0.0027 and energy density of the cosmological constant (dark energy
density) ΩΛ = 0.685+0.018

−0.016.

1.2.4 Other evidence

The clues for the existence of DM are not limited to the three aforesaid phenomena. For
example, sky surveys of Baryon Acoustic Oscillations (BAO) – periodic fluctuations
of the baryonic density caused by acoustic oscillations in the early Universe – are
consistent with the results extracted by the CMB spectrum. The velocity dispersion of
galaxies in galactic clusters indicate a large mass-to-light ratio, giving another evidence
for DM. Furthermore, numerical simulations require a significant amount of cold DM
in order to reproduce the large scale structure of the Universe.

1.3 Particle DM

Before we proceed to possible DM candidates, we have to refer to an attempt for
an alternative explanation of the above phenomena, without the introduction of DM.
Mainly in order to explain the anomalous galactic rotation curves, Milgrom proposed
in 1983 [31] a modified version of Newton’s law in galactic scales. This theory is known
as Modified Newtonian Dynamics (MoND) and it has gained a lot of attention since
then (see, for example, [32] for a review). However, MoND seem insufficient to account
for the necessity of DM at scales larger than the galactic ones [17,33,34]. Furthermore,
weak lensing of the Bullet cluster disfavors these theories [19], since in the case of
MoND the X-ray gas would be the dominant component of the total mass and the
separation indicated in Fig. 1.3 (right panel) would not have been observed.

One of the first possibilities examined for DM candidates were astrophysical objects
that may count for DM. These were collectively called MAssive Compact Halo Objects
(MACHOs) and such examples are brown or white dwarfs, neutron stars and stellar
black hole remnants. These objects contribute to the density of baryonic DM. However,
Big Bang nucleosynthesis and the CMB have set a limit on this density, which is
also confirmed by the observation of MACHOs in the Milky Way halo through their

2The higher multipoles are affected by a damping effect [30].
3The standard cosmological model with a cosmological constant Λ and Cold Dark Matter.
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gravitational lensing effect. This limit is far below the required value in order to fit
the DM observations. As a consequence, non-baryonic DM is a necessary ingredient of
the Universe.

Since the astrophysical objects are not adequate to count for the main component
of DM, the attention has focused on possible particles that can play the role of this
non-luminous matter. The only known particle that fits the criteria for DM is the
neutrino. Although neutrinos are massless in the SM of particle physics, oscillations
among their various flavors suggest a small but non-zero mass. However, a universe
dominated by particles with such small mass would form large structures first, with
the small structures forming later by fragmentation of the larger objects. This time
scale, in which the galaxies form last and quite recently, seems incompatible with our
current view of galactic evolution.

Nevertheless, extensions of the SM, essential to solve some of its theoretical draw-
backs, provide particles that can, in principle, successfully solve the DM problem. In
the next section, we will see that favorable candidates are Weakly Interacting Massive
Particles (WIMPs). Supersymmetric theories that respect a discrete symmetry, the R-
parity, provide a very promising WIMP, the neutralino. We will not extend here, since
we are going to discuss neutralinos in more detail in the following chapters. However,
WIMPs are also predicted by other, non-supersymmetric theories, such as models with
TeV scale extra dimensions.

For completeness, we will finish this section by just mentioning the axions, although
we will not deal with them in the rest of this thesis. Axions are neutral scalar hypotheti-
cal particles associated with the spontaneous breaking of the global U(1) Peccei-Quinn
symmetry [35, 36], introduced to dynamically solve the strong CP problem. Their
very small coupling to ordinary matter gives a large lifetime to axions, larger than
the age of the Universe. Axions were never in thermal equilibrium and were always
non-relativistic. These characteristics allow them to be possible DM candidates.

1.4 The Standard Thermal Mechanism

1.4.1 Relic Abundance, thermal cross section and WIMPs

We shall discuss subsequently the mechanism that is widely considered responsible for
the current DM density, in case of particle DM, as well as the requirements in order
to fit this density to the observed value. We will also see why WIMPs are favorable
DM candidates. This subsection will remain descriptive; a more detailed analysis will
follow.

We assume a particle X with mass mX that is neutral and stable. X would be
the DM particle for this analysis. Early in the history of the Universe, when its
temperature was much larger than the particle’s mass (T ≫ mX), Xs were abundant
with a density comparable with the photon’s density. Due to pair annihilations with
their antiparticles, they were rapidly converting to lighter particles and vice versa.
The annihilations were in equilibrium, without affecting the density of the X particles.
Shortly after T drops below the mass mX , the number density of X started to drop
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very fast, since lighter particles do not have enough energy anymore to produce X
particles and pair annihilation continued to destroy them. The equilibrium particle
density is given by

neq
X =

g

(2π3)

∫
f(~p) d3~p, (1.19)

where g is the number of internal (spin) degrees of freedom of the particle and f(~p) is
the Bose-Einstein or the Fermi-Dirac distribution function in terms of the momentum
~p. We will see4 that Eq. (1.19) gives (after integration) neq

X ∝ T 3, for T ≫ mX ,
whereas for T ≪ mX the particle density is Boltzmann (exponentially) suppressed
with neq

X ∝ e−mX/T .

As the Universe is expanding and the X particle density decreases, the pair anni-
hilations of X particles become more rare, until they eventually stop when their rate
Γ drops below the expansion rate, Γ <∼ H. The rate of a pair annihilation Γ is propor-
tional to the density of the annihilating particles, more precisely Γ = n〈σv〉, where 〈σv〉
is the thermal average of the annihilation cross section σ times the particles relative
velocity v (we will return to this in more detail in the following subsection). At the
point where the Xs cease to annihilate, they fall out of equilibrium with the thermal
plasma and what remains is their relic cosmological abundance, almost constant since
then. It is customary to say that the DM density froze-out and call the temperature
where this occurred the freeze-out temperature, henceforth Tfo.

We can use the freeze-out condition Γ ≃ H to approximate the DM relic density in
terms of the thermal averaged annihilation cross section (we reproduce the calculation
performed originally in [37]). For this purpose, we will need the expressions for the
energy and entropy density, which are defined in the App.A and which we rewrite here

ρ(T ) =
π2

30
geff(T )T

4 (1.20)

and

s(T ) =
2π2

45
heff(T )T

3. (1.21)

We recall (see App.A, for more details) that geff and heff are effective relativistic degrees
of freedom. Assuming that there is no significant entropy production since the freeze-
out, the entropy per comoving volume remains constant, so that the ratio nX/s remains
also constant (since the freeze-out). Hence, the present-day DM particle density is given
by nX0

= s0
(
nX

s

)
fo
, with s0 ≃ 4 · 103 cm−3 the current entropy density. Therefore, we

have to compute the ratio nX/s during freeze-out.

The early Universe is radiation dominated, hence Eq. (1.2) reads, after replacing

the energy density by Eq. (1.20), as H = 2π
3

√
π
5
GN g

1/2
eff T 2. The freeze-out condition

4Number densities will be discussed again much later in this thesis, in Sec.5.1, in the presence of
chemical potentials.
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gives, then,
(
nX

s

)
fo

= 45
3π

√
π
5
GN

g
1/2
eff

heff
(Tfo〈σv〉)−1, which evaluates5 to

(nX

s

)
fo

≃ 7 · 10−9 GeV

mX

10−27 cm3 s−1

〈σv〉 . (1.22)

We remind that ΩX ≡ ρX
ρc

= m
ρc

(
nX

s

)
fo
s0, where the critical density today is ρc =

10−5h2 GeV cm−3, so that, finally, the relic density is

ΩXh
2 ≃ 3 · 10−27 cm3 s−1

〈σv〉 , (1.23)

independently of the DM mass mX .
In order to reproduce the observed relic density (1.15), the annihilation cross section

during the freeze-out has to be

〈σv〉th ≃ 3 · 10−26 cm3 s−1. (1.24)

This quantity is known as thermal cross section. The scale of this value is remarkably
close to the cross section of weakly interacting particles, which can be estimated to be
〈σweakv〉 ∼ α2

m2
W

∼ 10−25 cm3 s−1, with α a generic weak coupling. This fact established

the WIMPs as the most favorable DM candidates.

1.4.2 The Boltzmann equation6

Although a weakly interacting particle has, in principle, the correct order of magnitude
of the annihilation cross section for the correct order of relic density, in practice, the
final result may vary over many orders of magnitude. This is the reason that a more
detailed analysis is required in order to be able to calculate the precise value of the
DM relic density.

The density of a species is governed by the Boltzmann equation, which can be
written in compact operator form as

L[f ] = C[f ], (1.25)

with L and C the Liouville and collision operators, respectively. f = f(~p, ~x) is the
phase-space density, which is, in general, a function of the momentum and space-time
coordinates and it is defined as

f =
(2π)3

g

dN

d3p d3x
, (1.26)

with N the number of particles. It is normalized in such a way that f = 1 corresponds
to the maximum phase-space density allowed by the Pauli principle for a fermion. In

5In this evaluation, we have used the expected relation between the freeze-out temperature and
the mass mX of the particle, Tfo ∼ mX

20
. However, we notice that the exact value of the denominator

depends on the annihilation cross section.
6In this part, we follow part of the analysis performed in [38].
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the special case of the spatially homogeneous and isotropic FRW cosmology, the phase-
space density has the same symmetries and depends only on the particle energy E and
the time t, i.e. f = f(E, t).

The Liouville operator gives the net rate of change in time of f and the collision
operator describes the number of particles per phase-space volume that are lost or
gained per unit time due to collisions with other particles. The particle number density
n =

∫
dN
d3x

is given through (1.26) by the integral (1.19) of f(E, t) over all momenta and
sum over all spin degrees of freedom. We will perform the same integral and sum in
the Boltzmann equation (1.25), in order to write it in a more convenient form involving
the particle densities.

First, the Liouville term for f = f(E, T ) is written as

L[f ] =
∂f

∂t
−H

|p|2
E

∂f

∂E
. (1.27)

Integrating it and summing over all the spin degrees of freedom, it becomes

g1

∫
L[f1]

d3p1
(2π3)

=
∂

∂t

∫
f1
g1d

3p1
(2π)3

−Hg1

∫ |p1|2
E1

4π|p1|2
dp1
(2π3)

= ṅ− Hg1
(2π)3

4π

∫
|p1|3

∂f1
∂E1

dE1

= ṅ+ 3Hn,

(1.28)

where we have used Eq. (1.27) and (1.19), pdp = EdE and in the last step we have
performed a partial integration.

Now we turn to the collision term, which in integrated form and summed over spins
is written, in the case of annihilation of two particles 1 and 2 to two others, 3 and 4,
as

g1

∫
C[f1]

d3p1
(2π)3

=

−
∑

spins

[
f1f2(1± f3)(1± f4) |M12→34|2 − f3f4(1± f1)(1± f2) |M34→12|2

]

· (2π)4 δ4(p1 + p2 − p3 − p4)
d3p1

(2π)32E1

d3p2
(2π)32E2

d3p3
(2π)32E3

d3p4
(2π)32E4

, (1.29)

where the “+” sign applies for bosons and “−” for fermions. We assume that the
annihilation products 3 and 4 go quickly into equilibrium with the thermal plasma, such
that the density functions f3 and f4 in Eq. (1.29) can be replaced by the equilibrium
densities f eq

3 and f eq
4 , respectively. Furthermore, the δ-function in the integral enforces

E1 + E2 = E3 + E4 and, since f eq
3 f

eq
4 ∝ exp

(
−E3+E4

T

)
, the product f eq

3 f
eq
4 is replaced

by the corresponding product of the annihilating particle densities f eq
1 f

eq
2 (principle of

detailed balance). In order to simplify the expression (1.29), we will apply the unitarity
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condition which yields

∑

spins

∫
|M34→12|2 (2π)4 δ4(p1 + p2 − p3 − p4)

d3p3
(2π)32E3

d3p4
(2π)32E4

=

∑

spins

∫
|M12→34|2 (2π)4 δ4(p1 + p2 − p3 − p4)

d3p3
(2π)32E3

d3p4
(2π)32E4

(1.30)

and also the definition of the unpolarized cross section to write

∑

spins

∫
|M12→34|2 (2π)4 δ4(p1 + p2 − p3 − p4)

d3p3
(2π)32E3

d3p4
(2π)32E4

=

4Fg1g2 σ12→34, (1.31)

where F ≡ [(p1 · p2)2 −m2
1m

2
2]

1/2
and the spin factors g1, g2 come from the average

over initial spins. This way, the collision term (1.29) is written in a more compact form

g1

∫
C[f1]

d3p1
(2π)3

= −
∫
σvMøl (dn1dn2 − dneq

1 dneq
2 ) , (1.32)

where σ =
∑

(all f) σ12→f is the total annihilation cross section summed over all the

possible final states and vMøl ≡ F
E1E2

. The so called Møller velocity, vMøl, is defined in
such a way that the product vMøln1n2 is invariant under Lorentz transformations and,
in terms of particle velocities ~v1 and ~v2, it is given by the expression

vMøl =
[∣∣~v21 − ~v22

∣∣2 − |~v1 × ~v2|2
]1/2

. (1.33)

Due to symmetry considerations, the distributions in kinetic equilibrium are pro-
portional to those in chemical equilibrium, with a proportionality factor independent of
the momentum. Therefore, the collision term (1.32), both before and after decoupling,
can be written in the form

g1

∫
C[f1]

d3p1
(2π)3

= −〈σvMøl〉(n1n2 − neq
1 n

eq
2 ), (1.34)

where the thermal averaged total annihilation cross section times the Møller velocity
has been defined by the expression

〈σvMøl〉 =
∫
σvMøldn

eq
1 dneq

2∫
dneq

1 dneq
2

. (1.35)

We will come back to the thermal averaged cross section in the next subsection.
We are, now, able to write the full integrated Boltzmann equation, using the ex-

pressions (1.28), (1.34) that we have derived for the Liouville and the collision term,
respectively. In the simplified but interesting case of identical particles 1 and 2, the
Boltzmann equation is, finally, written as

ṅ+ 3Hn = −〈σvMøl〉(n2 − n2
eq). (1.36)
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However, instead of using n, it is more convenient to take the expansion of the universe
into account and calculate the number density per comoving volume Y , which can be
defined as the ratio of the number and entropy densities: Y ≡ n/s. The total entropy
density S = R3s (R is the scale factor) remains constant, hence we can obtain a
differential equation for Y by dividing (1.36) by S. Before we write the final form
of the Boltzmann equation that it is used for the relic density calculations, we have
to change the variable that parametrizes the comoving density. In practice, the time
variable t is not convenient and the temperature of the Universe (actually the photon
temperature, since the photons were the last particles that went out of equilibrium) is
used instead. However, it proves even more useful to use as time variable the quantity
defined by x ≡ m/T with m the DM mass, so that Eq. (1.36) transforms into

dY

dx
=

1

3H

ds

dx
〈σvMøl〉

(
Y 2 − Y 2

eq

)
. (1.37)

Last, using the Hubble parameter (1.2) for a radiation dominated Universe and the
expressions (1.20), (1.21) for the energy and entropy density, the Boltzmann equation
is written in its final form

dY

dx
= −

√
45GN

π

g
1/2
∗ m

x2
〈σvMøl〉

(
Y 2 − Y 2

eq

)
, (1.38)

where the effective degrees of freedom g
1/2
∗ have been defined by

g1/2∗ ≡ heff

g
1/2
eff

(
1 +

1

3

T

heff

dheff
dT

)
. (1.39)

The equilibrium density per comoving volume Yeq ≡ neq/s can be expressed as

Yeq(x) =
45g

4π4

x2K2(x)

heff(m/x)
, (1.40)

with K2 the modified Bessel function of second kind.

1.4.3 Thermal average of the annihilation cross section

We are going to derive a simple formula that one can use to calculate the thermal
average of the cross section times velocity, based again on the analysis of [38]. We will
use the assumption that equilibrium functions follow the Maxwell-Boltzmann distri-
bution, instead of the actual Bose-Einstein or Fermi-Dirac. This is a well established
assumption if the freeze out occurs after T ≃ m/3 or for x >∼ 3, which is actually the
case for WIMPs. Under this assumption, the expression (1.35) gives, in the cosmic
comoving frame,

〈σvMøl〉 =
∫
vMøle

−E1/T e−E2/Td3p1d
3p2∫

e−E1/T e−E2/Td3p1d3p2
. (1.41)
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The volume element can be written as d3p1d
3p2 = 4πp1dE14πp2dE2

1
2
cos θ, with θ the

angle between ~p1 and ~p2. After changing the integration variables to E+, E−, s given
by

E+ = E1 + E2, E− = E1 − E2, s = 2m2 + 2E1E2 − 2p1p2 cos θ, (1.42)

(with s = −(p1 − p2)
2 one of the Mandelstam variables,) the volume element becomes

d3p1d
3p2 = 2π2E1E2dE+dE−ds and the initial integration region

{E1 > m, E2 > m, | cos θ| ≤ 1〉

transforms into

|E−| ≤
(
1− 4m2

s

)1/2

(E2
+ − s)1/2, E+ ≥ √

s, s ≥ 4m2. (1.43)

After some algebraic calculations, it can be found that the quantity 〈σvMøl〉E1E2

depends only on s, specifically vMølE1E2 = 1
2

√
s(s− 4m2). Hence, the numera-

tor of the expression (1.41), which after changing the integration variables reads
2π2

∫
dE+

∫
dE−

∫
dsσvMølE1E2e

−E+/T , can be written, eventually, as

∫
vMøle

−E1/T e−E2/T = 2π2

∫ ∞

4m2

dsσ(s− 4m2)

∫
dE+e

−E+/T (E2
+ − s)1/2. (1.44)

The integral over E+ can be written with the help of the modified Bessel function of
the first kind K1 as

√
s T K1(

√
s/T ). The denominator of (1.41) can be treated in a

similar way, so that the thermal average is, finally, given by the expression

〈σvMøl〉 =
1

8m4TK2
2(x)

∫ ∞

4m2

ds σ(s)(s− 4m2)
√
sK1(

√
s/T ). (1.45)

Eqs. (1.38)–(1.40) along with this last Eq. (1.45) are all we need in order to calculate
the relic density of a WIMP, if its total annihilation cross section in terms of the
Mandelstam variable s is known.

In many cases, in order to avoid the numerical integration in Eq. (1.45), an approx-
imation for 〈σvMøl〉 can be used. The thermal average is expanded in powers of x−1

(or, equivalently, in powers of the squared WIMP velocity):

〈σvMøl〉 = a+ bx−1 + . . . . (1.46)

(The coefficient a corresponds to the s-wave contribution to the cross section, the
coefficient b to the p-wave contribution, and so on.) This partial wave expansion gives
a quite good approximation, provided there are no s-channel resonances and thresholds
for the final states [39].

In [40], it was shown that, after expanding the integrands of Eq. (1.41) in powers
of x−1, all the integrations can be performed analytically. As we saw, the expression
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vMølE1E2 depends on momenta only through s. Therefore, one can form the Lorentz
invariant quantity

w(s) ≡ σ(s)vMølE1E2 =
1

2
σ(s)

√
s(s− 4m2). (1.47)

The integration involves the Taylor expansion of this quantity w around s/4m2 = 1
and the general formula for the partial wave expansion of the thermal average is [40]

〈σvMøl〉 =
1

m2

[
w − 3

2
(2w − w′)x−1 +

3

8
(16w − 8w′ + 5w′′)x−2

− 5

16
(30w − 15w′ + 3w′′ − 7x′′′)x−3 +O(x−4)

]

s/4m2=1

, (1.48)

where primes denote derivatives with respect to s/4m2 and all quantities have to be
evaluated at s = 4m2.

1.5 Direct Detection of DM

Since the beginning of 1980s, it has been realized that besides the numerous facts show-
ing evidence for the existence of these new dark particles, it is also possible to detect
them directly. Already in 1985, two pioneering articles [41, 42] appeared, describing
the detection methods for WIMPs. Since WIMPs are expected to cluster gravitation-
ally together with ordinary stars in the Milky Way halo, they would pass also through
Earth and, in principle, they can be detected through scattering with the nuclei in a
detector’s material. In practice, one has to measure the recoil energy deposited by this
scattering.

However, although one can deduce from rotation curves that DM dominates the
dark halo in the outer parts of our galaxy, it is not so obvious from direct measurements
whether there is any substantial amount of DM inside the solar radius R0 ≃ 8 kpc.
Using indirect methods (involving the determination of the gravitational potential,
through the measuring of the kinematics of stars, both near the mid-plane of the
galactic disk and at heights several times the disk thickness), it is almost certain
that the DM is also present in the solar system, with a local density ρ0 = (0.3 ±
0.1)GeV cm−3 [43].

This value for the local density implies that for a WIMP mass of order ∼ 100GeV,
the local number density is n0 ∼ 10−3 cm−3. It is also expected that the WIMPs
velocity is similar to the velocity with which the Sun orbits around the galactic center
(v0 ≃ 220 km s−1), since they are both moving under the same gravitational potential.
These two quantities allow to estimate the order of magnitude of the incident flux
of WIMPs on the Earth: J0 = n0v0 ∼ 105 cm−2 s−1. This value is manifestly large,
but the very weak interactions of the DM particles with ordinary matter makes their
detection a difficult, although in principle feasible, task. In order to compensate for
the very low WIMP-nucleus scattering cross section, very large detectors are required.
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1.5.1 Elastic scattering event rate

In the following, we will confine ourselves to the elastic scattering with nuclei. Although
inelastic scattering of WIMPs off nuclei in a detector or off orbital electrons producing
an excited state is possible, the event rate of these processes is quite suppressed. In
contrast, during an elastic scattering the nucleus recoils as a whole.

The direct detection experiments measure the number of events per day and per
kilogram of the detector material, as a function of the amount of energy Q deposited
in the detector. This event rate would be given by R = nWIMP nnuclei σv in a simplified
model with WIMPs moving with a constant velocity v. The number density of WIMPs
is nWIMP = ρ0/mX and the number density of nuclei is just the ratio of the detector’s
mass over the nuclear mass mN .

For accurate calculations, one should take into account that the WIMPs move in the
halo not with a uniform velocity, but rather following a velocity distribution f(v). The
Earth’s motion in the solar system should be included into this distribution function.
The scattering cross section σ also depends on the velocity. Actually, the cross section
can be parametrized by a nuclear form factor F (Q) as

dσ =
σ

4m2
rv

2
F 2(Q)d|~q|2, (1.49)

where |~q|2 = 2m2
rv

2(1 − cos θ) is the momentum transferred during the scattering,
mr =

mXmN

mX+mN
is the reduced mass of the WIMP – nucleus system and θ is the scattering

angle in the center of momentum frame. Therefore, one can write a general expression
for the differential event rate per unit detector mass as

dR =
ρ0
mX

1

mN

σF 2(Q)d|~q|2
4m2

rv
2

vf(v)dv. (1.50)

The energy deposited in the detector (transferred to the nucleus through one elastic
scattering) is

Q =
|~q|2
2mN

=
m2

rv
2

mN

(1− cos θ) . (1.51)

Therefore, the differential event rate over deposited energy can be written, using the
equations (1.50) and (1.51), as

dR

dQ
=

σρ0√
πv0mXm2

r

F 2(Q)T (Q), (1.52)

where, following [37], we have defined the dimensionless quantity T (Q) as

T (Q) ≡
√
π

2
v0

∫ ∞

vmin

f(v)

v
dv, (1.53)

with the minimum velocity given by vmin =
√

QmN

2m2
r
, obtained by Eq. (1.51). Finally,

the event rate R can be calculated by integrating (1.52) over the energy

R =

∫ ∞

ET

dR

dQ
dQ. (1.54)
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The integration is performed for energies larger than the threshold energy ET of the
detector, below which it is insensitive to WIMP-nucleus recoils.

Using Eqs. (1.54) and (1.52), one can derive the scattering cross section from the
event rate. The experimental collaborations prefer to give their results already in terms
of the scattering cross section as a function of the WIMP mass. To be more precise,
the WIMP-nucleus total cross section consists of two parts: the spin-dependent (SD)
cross section and the spin-independent (SI) one. The former comes from axial current
couplings, whereas the latter comes from scalar-scalar and vector-vector couplings.
The SD cross section is much suppressed compared to the SI one in the case of heavy
nuclei targets and it vanishes if the nucleus contains an even number of nucleons, since
in this case the total nuclear spin is zero.

We see that two uncertainties enter the above calculation: the exact value of the
local density ρ0 and the exact form of the velocity distribution f(v). To these, one
has to include one more. The cross section σ that appears in the previous expressions
concerns the WIMP-nucleon cross section. The couplings of a WIMP with the various
quarks that constitute the nucleon are not the same and the WIMP-nucleon cross
section depends strongly on the exact quark content of the nucleon. To be more
precise, the largest uncertainty lies on the strange content of the nucleon, but we shall
return to this point when we will calculate the cross section in a specific particle theory,
the Next-to-Minimal Supersymmetric Standard Model, in Sec. 3.5.1.

1.5.2 Experimental status

The situation of the experimental results from direct DM searches is a bit confus-
ing. The null observations in most of the experiments led them to set upper limits
on the WIMP-nucleon cross section. These bounds are quite stringent for the spin-
independent cross section7, especially in the regime of WIMP masses of the order of
100GeV. However, some collaborations have already reported possible DM signals,
mainly in the low mass regime. The preferred regions of these experiments do not
coincide, while some of them have been already excluded by other experiments. The
present picture, for WIMP masses ranging from 5 to 1000GeV, is summarized in Fig.
1.5, 1.6.

Fig. 1.5 mainly presents upper bounds coming from XENON100 [44]. XENON100
[46] is an experiment located at the Gran Sasso underground laboratory in Italy. It
contains in total 165 kg of liquid Xenon, with 65 kg acting as target mass and the
rest shielding the detector from background radiation. For these upper limits, 225
live days of data were used. The minimum value for the predicted upper bounds on
the cross section is 2 · 10−45 cm2 for WIMP mass ∼ 55GeV (at 90% confidence level),
almost one order of magnitude lower than the previously released limits [47] by the
same collaboration, using 100 live days of data.

The stringent upper bounds up-to-date (at least for WIMP mass larger than about
7GeV) come from the first results of the LUX experiment (see Fig. 1.6), after the first

7For the spin-dependent scattering, the exclusion limits are quite relaxed. Hence, we will focus on
the SI cross sections.
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Figure 1.5: The XENON100 exclusion limit (thick blue line), along with the expected
sensitivity in green (1σ) and yellow (2σ) band. Other upper bounds are also shown as
well as detection claims. From [44].

85.3 live-days of its operation [45]. LUX [53] is a detector containing liquid Xenon, as
XENON100, but in larger quantity, with total mass 370 kg. Its operation started on
April 2013 with a goal to clearly detect or exclude WIMPs with a spin independent
cross section ∼ 2 · 10−46 cm2.

In Fig. 1.5, except of the XENON100 bounds and other experimental limits on larger
WIMP-nucleon cross section, some detection claims also appear. These come from
DAMA [48,49], CoGeNT [50] and CRESST-II [51] experiments. The first positive result
came from DAMA [52], back in 2000. Since then, the experiment has accumulated 1.17
ton-yr of data over 13 years of operation. DAMA consists of 250 kg of radio pure NaI
scintillator and looks for the annual modulation of the WIMP flux in order to reduce
the influence of the background.

The annual modulation of the DM flux (see [54] for a recent review) is due to the
Earth’s orbital motion relative to the rotation of the galactic disk. The galactic disk
rotation through an essentially non-rotating DM halo, creates an effective DM wind in
the solar frame. During the earth’s heliocentric orbit, this wind reaches a maximum
when the Earth is moving fastest in the direction of the disk rotation (this happens
in the beginning of June) and a minimum when it is moving fastest in the opposite
direction (beginning of December).

DAMA claims an 8.9σ annual modulation with a minimum flux on May 26±7 days,
consistent with the expectation. Since the detector’s target consists of two different
nuclei and the experiment cannot distinguish between sodium and iodine recoils, there
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Figure 1.6: The LUX 90% confidence exclusion limit (blue line) with the 1σ range
(shaded area). The XENON100 upper bound is represented by the red line. The inset
shows also preferred regions by CoGeNT (shaded light red), CDMS II silicon detector
(shaded green), CRESST II (shaded yellow) and DAMA (shaded gray). From [45].

is no model independent way to determine the exact region in the cross section versus
WIMP mass plane to which the observed modulation corresponds. However, one can
assume two cases: one that the WIMP scattering off the sodium nucleus dominates the
recoil energy and the other with the iodine recoils dominating. The former corresponds
[55] to a light WIMP (∼ 10GeV) and quite large scattering cross section and the latter
to a heavier WIMP (∼ 50 to 100GeV) with smaller cross section (see Fig. 1.5).

The positive result of DAMA was followed many years later by the ones of CoGeNT
and CRESST-II, and more recently by the silicon detector of CDMS [56] (Fig. 1.7).
The discrepancy of the results raised a lot of debates among the experiments (for
example, [64–67]) and by some the positive results are regarded as controversial. On
the other hand, it also raised an effort to find a physical explanation behind this
inconsistency (see, for example, [68–71]).

1.6 Indirect Methods for DM Detection

The same annihilation processes that determined the DM relic abundance in the early
Universe also occur today in galactic regions where the DM concentration is higher.
This fact rises the possibility of detecting potential WIMP pair annihilations indirectly
through their imprints on the cosmic rays. Therefore, the indirect DM searches aim
at the detection of an excess over the known astrophysical background of charged
particles, photons or neutrinos.

Charged particles – electrons, protons and their antiparticles – may originate from
direct products (pair of SM particles) of WIMP annihilations, after their decay and
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Figure 1.7: The blue contours represent preferred regions for a possible signal at 68%
and 90% C.L. using the silicon detector of CMDS [56]. The blue dotted line represents
the upper limit obtained by the same analysis and the blue solid line is the combined
limit with the silicon CDMS data set reported in [57]. Other limits also appear:
from the CMDS standard germanium detector (light and dark red dashed line, for
standard [58] and low threshold analysis [59], respectively), EDELWEISS [60] (dashed
orange), XENON10 [61] (dash-dotted green) and XENON100 [44] (long-dash-dotted
green). The filled regions identify possible signal regions associated with data from
CoGeNT [62] (dashed yellow, 90% C.L.), DAMA [49,55] (dotted tan, 99.7% C.L.) and
CRESST-II [51, 63] (dash-dotted pink, 95.45% C.L.) experiments. Taken from [56].

through the process of showering and hadronization. Although the exact shape of the
resulting spectrum would depend on the specific process, it is expected to show a steep
cutoff at the WIMP mass. Once produced in the DM halo, the charged particles have
to travel to the point of detection through the turbulent galactic field, which will cause
diffusion. Apart from that, a lot of processes disturb the propagation of the charged
particles, such as bremsstrahlung, inverse Compton scattering with CMB photons and
many others. Therefore, the uncertainties that enter the propagation of the charged
flux until it reaches the telescope are important (contrary to the case of photons and
neutrinos that propagate almost unperturbed through the galaxy).

As in the case of direct detection, the experimental status of charged particle de-
tection concerning the DM is confusing. After some hints from HEAT [72] and AMS-
01 [73] (the former a far-infrared telescope in Antarctica, the latter a spectrometer,
prototype for AMS-02 mounted on the International Space Station [74]), the PAMELA
satellite observed [75, 76] a steep increase in the energy spectrum of positron fraction
e+/(e+ + e−)8. Later FERMI satellite [77] and AMS-02 [78] confirmed the results up

8The searches for charged particles focus on the antiparticles in order to have a reduced background,
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Figure 1.8: A compilation of data of charged cosmic rays, together with plausible but
uncertain astrophysical backgrounds, taken from [79]. Left: Positron flux. Center:

Antiproton flux. Right: Sum of electrons and positrons.

to energies of ∼ 200GeV. However, the excess of positrons is not followed by an excess
of antiprotons, whose flux seems to coincide with the predicted background [75]. In
Fig. 1.8, three plots summarizing the situation are shown [79].

The observed excess is very difficult to explain in terms of DM [79]. To begin with,
the annihilation cross section required to reproduce the excess is quite large, many
orders of magnitude larger than the thermal cross section. Moreover, an “ordinary”
WIMP with large annihilation cross section giving rise to charged leptons is expected
to give, additionally, a large number of antiprotons, a fact in contradiction with the
observations. Although a lot of work has been done to fit a DM particle to the observed
pattern, it is quite possible that the excesses come from a yet unknown astrophysical
source. We are not going to discuss further this matter, but we end with a comment.
If this excess is due to a source other than DM, then a possible DM positron excess
would be lost under this formidable background.

A last hint for DM came from the detection of highly energetic photons. However,
we will interrupt this discussion, since this signal and a possible explanation is the
subject of Ch.4. There, we will also see the upper bounds on the annihilation cross
section being set due to the absence of excesses in diffuse γ radiation.

since they are much less abundant than the corresponding particles.



CHAPTER 2

PARTICLE PHYSICS

Since the DM comprises of particles, it should be explained by a general particle physics
theory. We start in the following section by describing the Standard Model (SM) of
particle physics. Although the SM describes so far the fundamental particles and their
interactions quite accurately, it cannot provide a DM candidate. Besides, the SM
suffers from some theoretical problems, which we discuss in Sec. 2.2. We will see that
these problems can be solved if one introduces a new symmetry, the supersymmetry,
which we describe in Sec. 2.3. We finish this chapter by briefly describing in Sec. 2.4 a
supersymmetric extension of the SM with the minimal additional particle content, the
Minimal Supersymmetric Standard Model (MSSM).

2.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics1 consists of two well developed theories,
the quantum chromodynamics (QCD) and the electroweak (EW) theory. The former
describes the strong interactions among the quarks, whereas the latter describes the
electroweak interactions (the weak and electromagnetic interactions in a unified con-
text) between fermions. The EW theory took its final form in the late 1960s by the
introduction by S. Weinberg [85] and A. Salam [86] of the Higgs mechanism that gives
masses to the SM particles, which followed the unification of electromagnetic and weak
interactions [87,88]. At the same time, the EW model preserves the gauge invariance,
making the theory renormalizable, as shown later by ’t Hooft [89]. On the other hand,
QCD obtained its final form some years later, after the confirmation of the existence
of quarks. Of course, the history of the SM is much longer and it can be traced back to
1920s with the formulation of a theoretical basis for a Quantum Field Theory (QFT).
Since then, the SM had many successes. The SM particle content was completed with
the discovery of the heaviest of the quarks, the top quark [90,91], in 1995 and, recently,
with the discovery of the Higgs boson [92,93].

1There are many good textbooks on the SM and Quantum Field Theory, e.g. [80–84].
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The key concept within the SM, as in every QFT, is that of symmetries. Each
interaction respects a gauge symmetry, based on a Lie algebra. The strong interaction is
described by an SU(3)c symmetry, where the subscript c stands for color, the conserved
charge of strong interactions. The EW interactions, on the other hand, are based on
a SU(2)L × U(1)Y Lie algebra. Here, as we will subsequently see, L refers to the
left-handed fermions and Y is the hypercharge, the conserved charge under the U(1).
SU(2)L conserves a quantity known as weak isospin I. Therefore, the SM contains the
internal symmetries of the unitary product group

SU(2)L × U(1)Y × SU(3)c. (2.1)

2.1.1 The particle content of the SM

We mention for completeness that particles are divided into two main classes according
to the statistics they follow. The bosons are particles with integer spin and follow the
Bose-Einstein distribution, whereas fermions have half-integer spin and follow the
Dirac-Einstein statistics, obeying the Pauli exclusion principle. In the SM, all the
fermions have spin 1/2, whereas the bosons have spin 1 with only exception the Higgs
boson, which is a scalar (spin zero). We begin the description of the SM particles with
the fermions.

Each fermion is classified in irreducible representations of each individual Lie alge-
bra, according to the conserved quantum numbers, i.e. the color C, the weak isospin
I and the hypercharge Y . A first classification of fermions can be done into leptons

and quarks, which transform differently under the SU(3)c. Leptons are singlets under
this transformation, while quarks act as triplets (the fundamental representation of
this group). The EW interactions violate maximally the parity symmetry and SU(2)L
acts only on states with negative chirality (left-handed). A Dirac spinor Ψ can be
decomposed into left and right chirality components using, respectively, the projection
operators PL = 1

2
(1− γ5) and PR = 1

2
(1 + γ5):

ΨL = PLΨ and ΨR = PRΨ. (2.2)

Left-handed fermions have I = 1/2, with a third component of the isospin I3 = ±1/2.
Fermions with positive I3 are called up-type fermions and those with negative are
called down-type. These behave the same way under SU(2)L and form doublets with
one fermion of each type. On the other hand, right-handed fermions have I = 0 and
form singlets that do not undergo weak interactions. The hypercharge is written in
terms of the electric charge Q and the third component of the isospin I3 through the
Gell-Mann–Nishijima relation:

Q = I3 + Y/2. (2.3)

Therefore, left- and right-handed components transform differently under the U(1)Y ,
since they have different hypercharge.

The fermionic sector of the SM comprises three generations of fermions, transform-
ing as spinors under Lorentz transformations. Each generation has the same structure.
For leptons, it is an SU(2)L doublet with components consisting of one left-handed
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charged lepton and one neutrino (neutrinos are only left-handed in the SM), along
with a gauge singlet right-handed charged lepton. The quark doublet consists of an
up- (u) and a down-type (d) (left-handed) quark and the pattern is completed by the
two corresponding SU(2)L singlet right-handed quarks. We write these representations
as

Quarks: Q ≡
(
uiL

diL

)
, uiR, d

i
R Leptons: L ≡

(
νiL

eiL

)
, eiR, (2.4)

with i = 1, 2, 3 the generation index.
Having briefly described the fermionic sector, we turn to the bosonic sector of

the SM. It consists of the gauge bosons that mediate the interactions and the Higgs

boson that gives masses to the particles through a spontaneous symmetry breaking,
the electroweak symmetry breaking (EWSB) [94–98], which we shall describe in Sec.
2.1.3. Before the EWSB, these bosons are

• three W a
µ (a = 1, 2, 3) weak bosons, associated with the generators of SU(2)L,

• one neutral Bµ boson, associated with the generator of U(1)Y ,

• eight gluons Ga
µ (a = 1, . . . , 8), associated with the generators of SU(3)c, and

• the complex scalar Higgs doublet Φ =

(
φ+

φ0

)
.

After the EWSB, the EW boson states mix and give the two W± bosons, the neutral
Z boson and the massless photon γ. From the symmetry breaking, one scalar degree of
freedom remains which is the famous (neutral) Higgs boson [97–99]. We will return to
the mixed physical states, after describing the Higgs mechanism for symmetry breaking.
A complete list of the SM particles (the physical states after EWSB) is shown in Table
2.1.

2.1.2 The SM Lagrangian

The gauge bosons are responsible for the mediation of the interactions and are asso-
ciated with the generators of the corresponding symmetry. The EW gauge bosons Bµ

and W a
µ are associated, respectively, with the generator Y of the U(1)Y and the three

generators T a
2 of the SU(2)L. The latter are defined as half of the Pauli matrices τa

(T a
2 = 1

2
τa) and they obey the algebra

[
T a
2 , T

b
2

]
= iǫabcT c

2 , (2.5)

where ǫabc is the fully antisymmetric Levi-Civita tensor. The eight gluons are associated
with an equal number of generators T a

3 (Gell-Mann matrices) of SU(3)c and obey the
Lie algebra

[
T a
3 , T

b
3

]
= ifabcT c

3 , with Tr
[
T a
3 T

b
3

]
=

1

2
δab, (2.6)



30 Particle Physics

Name symbol mass charge (|e|) spin

L
e
p
t
o
n
s

electron e 0.511MeV −1 1/2

electron neutrino νe 0 (<2 eV) 0 1/2

muon µ 105.7MeV −1 1/2

muon neutrino νµ 0 (<2 eV) 0 1/2

tau τ 1.777GeV −1 1/2

tau neutrino ντ 0 (<2 eV) 0 1/2

Q
u
a
r
k
s

up u 2.7+0.7
−0.5 MeV 2/3 1/2

down d 4.8+0.7
−0.3 MeV −1/3 1/2

strange s (95± 5)MeV −1/3 1/2

charm c (1.275± 0.025)GeV 2/3 1/2

bottom b (4.18± 0.03)GeV −1/3 1/2

top t (173.5± 0.6± 0.8)GeV 2/3 1/2

B
o
s
o
n
s

photon γ 0 (<10−18 eV) 0 (<10−35) 1

W boson W± (80.385± 0.015)GeV ±1 1

Z boson Z (91.1876± 0.0021)GeV 0 1

gluon g 0 (.O(1)MeV) 0 1

Higgs H
(125.3± 0.4± 0.5)GeV

0 0
(126.0± 0.4± 0.4)GeV

Table 2.1: The particle content of the SM. All values are those given in [100], except of
the Higgs mass that is taken from [92, 93] (up and down row, respectively), assuming
that the observed excess corresponds to the SM Higgs. The u, d and s quark masses
are estimates of so-called “current-quark masses” in a mass-independent subtraction
scheme as MS at a scale ∼ 2GeV. The c and b quark masses are the running masses
in the MS scheme. The values in the parenthesis are the current experimental limits.

with fabc the structure constants of the group.
Using the structure constants of the corresponding groups, we define the field

strengths for the gauge bosons as

Bµν ≡ ∂µBν − ∂νBµ, (2.7a)

Wµν ≡ ∂µW
a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν (2.7b)

and

Ga
µν ≡ ∂µG

a
ν − ∂νG

a
µ + g3f

abcGb
µG

c
ν . (2.7c)



2.1.2 The SM Lagrangian 31

We use the notation g1, g2 and g3 for the coupling constants of U(1)Y , SU(2)L and
SU(3)c, respectively. As in any Yang-Mills theory, the non-abelian gauge groups lead
to self-interactions, which is not the case for the abelian U(1)Y group.

Before we finally write the full Lagrangian, we have to introduce the covariant
derivative for fermions, which in a general form can be written as

DµΨ =

(
∂µ − ig1

1

2
Y Bµ − ig2T

a
2W

a
µ − ig3T

a
3G

a
µ

)
Ψ. (2.8)

This form has to be understood as that, depending on Ψ, only the relevant terms
apply, hence for SU(2)L singlet leptons only the two first terms inside the parenthesis
are relevant, for doublet leptons the three first terms and for the corresponding quark
singlets and doublets the last term also participates. We also have to notice that in
order to retain the gauge symmetry, mass terms are forbidden in the Lagrangian. For
example, the mass term mψ̄ψ = m

(
ψ̄LψR + ψ̄RψL

)
(with ψ̄ ≡ ψ†γ0) is not invariant

under SU(2)L. This paradox is solved by the introduction of the Higgs scalar field
(see next subsection). The SM Lagrangian can be now written2, split for simplicity in
three parts, each describing the gauge bosons, the fermions and the scalar sector,

LSM = Lgauge + Lfermion + Lscalar, (2.9)

with

Lgauge = −1

4
Ga

µνG
µν
a − 1

4
W a

µνW
µν
a − 1

4
BµνB

µν , (2.10a)

Lfermion = iL̄Dµγ
µL+ iēRDµγµeR

+ iQ̄Dµγ
µQ+ iūRDµγ

µuR + id̄RDµγ
µdR

−
(
heL̄ΦeR + hdQ̄ΦdR + huQ̄Φ̃uR + h.c.

)
(2.10b)

and

Lscalar = (DµΦ)
† (DµΦ)− V (Φ†Φ), (2.10c)

where

V (Φ†Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
(2.11)

is the scalar Higgs potential. Φ̃ is the conjugate of Φ, related to the charge conjugate
by Φ̃ = iτ2Φ

⋆, with τi the Pauli matrices. The covariant derivative acting on the Higgs
scalar field gives

DµΦ =

[
∂µ − ig1

1

2
Y Bµ − ig2T

a
2W

a
µ

]
Φ. (2.12)

Before we proceed to the description of the Higgs mechanism, a last comment con-
cerning the SM Lagrangian is in order. If we restore the generation indices, we see that

2For simplicity, from now on we are going to omit the generations indices.
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the Yukawa couplings h are 3× 3, in general complex, matrices. As any complex ma-
trix, they can be diagonalized with the help of two unitary matrices VL and VR, which
are related by VR = U †VL with U again a unitary matrix. The diagonalization in the
quark sector to the mass eigenstates induces a mixing among the flavors (generations),
described by the Cabibbo–Kobayashi–Maskawa (CKM) matrix [101, 102]. The CKM
matrix is defined by

VCKM ≡ V u
L

†V d
L

†
, (2.13)

where V u
L , V

d
L are the unitary matrices that diagonalize the Yukawa couplings Hu, Hd,

respectively. This product of the two matrices appears in the charged current when it
is expressed in terms of the observable mass eigenstates.

2.1.3 Mass generation through the Higgs mechanism

We will start by examining the scalar potential (2.11). The vacuum expectation value
(vev) of the Higgs field 〈Φ〉 ≡ 〈0|Φ|0〉 is given by the minimum of the potential. For
µ2 > 0, the potential is always non-negative and Φ has a zero vev. The hypothesis of
the Higgs mechanism is that µ2 < 0. In this case, the field Φ will acquire a vev

〈Φ〉 = 1

2

(
0

v

)
with v =

√
−µ

2

λ
. (2.14)

Since the charged component of Φ still has a zero vev, the U(1)Q symmetry of quantum
electrodynamics (QED) remains unbroken.

We expand the field Φ around the minima v in terms of real fields, and at leading
order we have

Φ(x) =

(
θ2(x) + iθ1(x)

1√
2
(v +H(x))− iθ3(x)

)
=

1√
2
eiθa(x)τ

a

(
0

v +H(x)

)
. (2.15)

We can eliminate the unphysical degrees of freedom θa, using the fact that the theory
remains gauge invariant. Therefore, we perform the following SU(2)L gauge transfor-
mation on Φ (unitary gauge)

Φ(x) → e−iθa(x)τaΦ(x), (2.16)

so that

Φ(x) =
1√
2

(
0

v +H(x)

)
. (2.17)

We are going to use the following definitions for the gauge fields

W±
µ ≡ 1

2

(
W 1

µ ∓ iW 2
µ

)
, (2.18a)

Zµ ≡ 1√
g21 + g22

(
g2W

3
µ − g1Bµ

)
, (2.18b)

Aµ ≡ 1√
g21 + g22

(
g1W

3
µ + g2Bµ

)
, (2.18c)
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Then, the kinetic term for Φ (see Eq. (2.10c)) can be written in the unitary gauge as

(DµΦ)
† (DµΦ) =

1

2
(∂µH)2 +M2

WW
+
µ W

−µ
+

1

2
M2

ZZµZ
µ, (2.19)

with

MW ≡ 1

2
g2v and MZ ≡ 1

2

√
g21 + g22 v. (2.20)

We see that the definitions (2.18) correspond to the physical states of the gauge bosons
that have acquired masses due to the non-zero Higgs vev, given by (2.20). The photon
has remained massless, which reflects the fact that after the spontaneous breakdown of
SU(2)L × U(1)Y the U(1)Q remained unbroken. Among the initial degrees of freedom
of the complex scalar field Φ, three were absorbed by W± and Z and one remained as
the neutral Higgs particle with squared mass

m2
H = 2λv2. (2.21)

We note that λ should be positive so that the scalar potential (2.11) is bounded from
below.

Fermions also acquire masses due to the Higgs mechanism. The Yukawa terms in
the fermionic part (2.10b) of the SM Lagrangian are written, after expanding around
the vev in the unitary gauge,

LY = − 1√
2
heēL(v +H)eR − 1√

2
hdd̄L(v +H)dR − 1√

2
huūL(v +H)uR + h.c. . (2.22)

Therefore, we can identify the masses of the fermions as

mei =
hiev√
2
, mdi =

hidv√
2
, mui =

hiuv√
2
, (2.23)

where we have written explicitly the generation indices.

2.2 Limits of the SM and the emergence of super-

symmetry

2.2.1 General discussion of the SM problems

The SM has been proven extremely successful and has been tested in high precision
in many different experiments. It has predicted many new particles before their final
discovery and also explained how the particles gain their masses. Its last triumph was
of course the discovery of a boson that seems to be very similar to the Higgs boson of
the SM. However, it is generally accepted that the SM cannot be the ultimate theory. It
is not only observed phenomena that the SM does not explain; SM also faces important
theoretical issues.

The most prominent among the inconsistencies of the SM with observations is the
oscillations among neutrinos of different generations. In order for the oscillations to
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φ φ

k

Figure 2.1: The scalar one-loop diagram giving rise to quadratic divergences.

occur, neutrinos should have non-zero masses. However, minimal modifications of the
SM are able to fit with the data of neutrino physics. Another issue that a more com-
plete theory has to face is the matter asymmetry, the observed dominance of matter
over antimatter in the Universe. In addition, in order to comply with the standard
cosmological model, it has to provide the appropriate particle(s) that drove the infla-
tion. Last, but not least, we saw that in order to explain the DM that dominates the
Universe, a massive, stable weakly interacting particle must exist. Such a particle is
not present in the SM.

On the other hand, the SM also suffers from a theoretical perspective. For example,
the SM counts 19 free parameters; one expects that a fundamental theory would have
a much smaller number of free parameters. Simple modifications of the SM have been
proposed relating some of these parameters. Grand unified theories (GUTs) unify
the gauge couplings at a high scale ∼ 1016 GeV. However, this unification is only
approximate unless the GUT is embedded in a supersymmetric framework. Another
serious problem of the SM is that of naturalness. This will be the topic of the following
subsection.

2.2.2 The naturalness problem of the SM

The presence of fundamental scalar fields, like the Higgs, gives rise to quadratic diver-
gences. The diagram of Fig. 2.1 contributes to the squared mass of the scalar

δm2 = λ

∫ Λ d4k

(2π)4
k−2. (2.24)

This contribution is approximated by δm2 ∼ λΛ2/(16π2), quadratic in a cut-off Λ,
which should be finite. For the case of the Higgs scalar field, one has to include its
couplings to the gauge fields and the top quark3. Therefore,

δm2
H =

3Λ2

8π2v2

[(
4m2

t − 2M2
W −M2

Z −m2
H

)
+O(ln

Λ

µ
)

]
, (2.25)

where we have used Eq. (2.21) and m2
H ≡ m2

0 + δm2
H .

3Since the contribution to the squared mass correction are quadratic in the Yukawa couplings (or
quark masses), the lighter quarks can be neglected.
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Taking Λ as a fundamental scale Λ ∼MP l ∼ 1019 GeV we have

m2
0 = m2

H − 3Λ2

8π2v2
(
4m2

t − 2M2
W −M2

Z −m2
H

)
(2.26)

and we can see thatm2
0 has to be adjusted to a precision of about 30 orders of magnitude

in order to achieve an EW scale Higgs mass. This is considered as an intolerable fine-
tuning, which is against the general belief that the observable properties of a theory
have to be stable under small variations of the fundamental (bare) parameters. It is
exactly the above behavior that is considered as unnatural. Although the SM could
be self-consistent without imposing a large scale, grand unification of the parameters
introduce a hierarchy problem between the different scales.

A more strict definition of naturalness comes from ’t Hooft [103], which we rewrite
here:

At an energy scale µ, a physical parameter or set of physical parameters

αi(µ) is allowed to be very small only if the replacement αi(µ) = 0 would

increase the symmetry of the system.

Clearly, this is not the case here. Although mH is small compared to the fundamental
scale Λ, it is not protected by any symmetry and a fine-tuning is necessary.

2.2.3 A way out

The naturalness in the ’t Hooft sense is inspired by quantum electrodynamics, which is
the archetype for a natural theory. For example, the corrections to the electron mass
me are themselves proportional to me, with a dimensionless proportionality factor that
behaves like ∼ ln Λ. In general, fermion masses are protected by the chiral symme-
try; small values (compared to the fundamental scale) of these masses enhances the
symmetry.

If a new symmetry exists in nature, relating fermion fields to scalar fields, then each
scalar mass would be related somehow to the corresponding fermion mass. Therefore,
the scalar mass itself can be naturally small compared to Λ, since this would mean
that the fermion mass is small, which enhances the chiral symmetry. Such a symmetry,
relating bosons to fermions and vice versa, is known as supersymmetry [104, 105].
Actually, as we will see later, if this new symmetry remains unbroken, the masses of
the conjugate bosons and fermions would have to be equal.

In order to make the above statement more concrete, we consider a toy model with
two additional complex scalar fields f̃L and f̃R. We will discuss only the quadratic
divergences that come from corrections to the Higgs mass due to a fermion. The
generalization for the contributions from the gauge bosons or the self-interaction is
straightforward. The interactions in this toy model of the new scalar fields with the
Higgs are described by the Lagrangian

Lf̃ f̃φ = λf̃ |φ|2
(
|f̃L|2 + |f̃R|2

)
. (2.27)
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It can be easily checked that the quadratic divergence coming from a fermion at one
loop is exactly canceled, as long as the new quartic coupling λf̃ obeys the relation

λf̃ = −λ2f (λf is the Yukawa coupling for the fermion f).

2.3 A brief summary of Supersymmetry

Supersymmetry (SUSY) is a symmetry relating fermions and bosons. The supersym-
metry transformation should turn a boson state into a fermion state and vice versa. If
Q is the operator that generates such transformations, then

Q |boson〉 = |fermion〉 Q |fermion〉 = |boson〉 . (2.28)

Due to commutation and anticommutation rules of bosons and fermions, Q has to
be an anticommuting spinor operator, carrying spin angular momentum 1/2. Since
spinors are complex objects, the hermitian conjugate Q† is also a symmetry operator4.

There is a no-go theorem, the Coleman-Mandula theorem [106], that restricts the
conserved charges which transform as tensors under the Lorentz group to the generators
of translations Pµ and the generators of Lorentz transformations Mµν . Although this
theorem can be evaded in the case of supersymmetry due to the anticommutation
properties of Q, Q† [107], it restricts the underlying algebra of supersymmetry [108].
Therefore, the basic supersymmetric algebra can be written as5

{Q,Q†} = P µ, (2.29a)

{Q,Q} = {Q†, Q†} = 0, (2.29b)

[P µ, Q] = [P µ, Q] = 0. (2.29c)

In the following, we summarize the basic conclusions derived from this algebra.

• The single-particle states of a supersymmetric theory fall into irreducible repre-
sentations of the SUSY algebra, called supermultiplets. A supermultiplet contains
both fermion and boson states, called superpartners.

• Superpartners must have equal masses : Consider |Ω〉 and |Ω′〉 as the superpart-
ners, |Ω′〉 should be proportional to some combination of the Q and Q† operators
acting on |Ω〉, up to a space-time translation or rotation. Since −P 2 commutes
with Q, Q† and all space-time translation and rotation operators, |Ω〉, |Ω′〉 will
have equal eigenvalues of −P 2 and thus equal masses.

• Superpartners must be in the same representation of gauge groups, since Q, Q†

commute with the generators of gauge transformations. This means that they
have equal charges, weak isospin and color degrees of freedom.

4We will confine ourselves to the phenomenologically more interesting case of N = 1 supersymme-
try, with N referring to the number of distinct copies of Q, Q†.

5We present a simplified version, omitting spinor indices in Q and Q†.
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• Each supermultiplet contains an equal number of fermion and boson degrees of

freedom (nF and nB, respectively): Consider the operator (−1)2s, with s the spin
angular momentum, and the states |i〉 that have the same eigenvalue pµ of P µ.
Then, using the SUSY algebra (2.29) and the completeness relation

∑
i |i〉 〈i| =

1, we have
∑

i 〈i| (−1)2sP µ |i〉 = 0. On the other hand,
∑

i 〈i| (−1)2sP µ |i〉 =
pµTr [(−1)2s] ∝ nB − nF . Therefore, nF = nB.

As addendum to the last point, we see that two kind of supermultiplets are possible
(neglecting gravity):

• A chiral (or matter or scalar) supermultiplet, which consists of a single Weyl
fermion (with two spin helicity states, nF = 2) and two real scalars (each with
nB = 1), which can be replaced by a single complex scalar field.

• A gauge (or vector) supermultiplet, which consists of a massless spin 1 boson
(two helicity states, nB = 2) and a massless spin 1/2 fermion (nF = 2).

Other combinations either are reduced to combinations of the above supermultiplets
or lead to non-renormalizable interactions.

It is possible to study supersymmetry in a geometric approach, using a space-time
manifold extended by four fermionic (Grassmann) coordinates. This manifold is called
superspace. The fields, in turn, expressed in terms of the extended set of coordinates
are called superfields. We are not going to discuss the technical details of this topic
(the interested reader may refer to the rich bibliography, for example [109–111]).

However, it is important to mention a very useful function of the superfields, the
superpotential. A generic form of a (renormalizable) superpotential in terms of the

superfields Φ̂ is the following

W =
1

2
M ijΦ̂iΦ̂j +

1

6
yijkΦ̂iΦ̂jΦ̂k. (2.30)

The Lagrangian density can always be written according to the superpotential. The
superpotential has also to fulfill some requirements. In order for the Lagrangian to
be supersymmetric invariant, W has to be holomorphic in the complex scalar fields
(it does not involve hermitian conjugates Φ̂† of the superfields). Conventionally, W
involves only left chiral superfields. Instead of the SU(2)L singlet right chiral fermion
fields, one can use their left chiral charge conjugates.

As we mentioned before, the members of a supermultiplet have equal masses. This
contradicts our experience, since the partners of the light SM particles would have been
detected long time ago. Hence, the supersymmetry should be broken at a large energy
scale. The common approach is that SUSY is broken in a hidden sector, very weakly
coupled to the visible sector. Then, one has to explain how the SUSY breaking medi-
ated to the visible sector. The two most popular scenarios are the gravity mediation
scenario [112–114] and the Gauge-Mediated SUSY Breaking (GSMB) [113, 115–117],
where the mediation occurs through gauge interactions.

There are two approaches with which one can address the SUSY breaking. In the
first approach, one refers to a GUT unification and determines the supersymmetric
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breaking parameters at low energies through the renormalization group equations.
This approach results in a small number of free parameters. In the second approach,
the starting point is the low energy scale. In this case, the SUSY breaking has to be
parametrized by the addition of breaking terms to the low energy Lagrangian. This
results in a larger set of free parameters. These terms should not reintroduce quadratic
divergences to the scalar masses, since the cancellation of these divergences was the
main motivation for SUSY. Then, one talks about soft breaking terms.

2.4 The Minimal Supersymmetric Standard Model

One can construct a supersymmetric version of the standard model with a minimal
content of particles. This model is known as the Minimal Supersymmetric Standard
Model (MSSM). In a SUSY extension of the SM, each of the SM particles is either in a
chiral or in a gauge supermultiplet, and should have a superpartner with spin differing
by 1/2.

The spin-0 partners of quarks and leptons are called squarks and sleptons, respec-
tively (or collectively sfermions), and they have to reside in chiral supermultiplets.
The left- and right-handed components of fermions are distinct 2-component Weyl
fermions with different gauge transformations in the SM, so that each must have its
own complex scalar superpartner. The gauge bosons of the SM reside in gauge super-
multiplets, along with their spin-1/2 superpartners, which are called gauginos. Every
gaugino field, like its gauge boson partner, transforms as the adjoint representation of
the corresponding gauge group. They have left- and right-handed components which
are charge conjugates of each other: (λ̃L)

c = λ̃R.
The Higgs boson, since it is a spin-0 particle, should reside in a chiral supermul-

tiplet. However, we saw (in the fermionic part of the SM Lagrangian, Eq. (2.10b))
that the Y = 1/2 Higgs in the SM can give mass to both up- and down-type quarks,
only if the conjugate Higgs field with Y = −1/2 is involved. Since in the superpo-
tential there are no conjugate fields, two Higgs doublets have to be introduced. Each
Higgs supermultiplet would have hypercharge Y = +1/2 or Y = −1/2. The Higgs
with the negative hypercharge gives mass to the down-type fermions and it is called
down-type Higgs (Hd, or H1 in the SLHA convention [118]) and the other one gives
mass to up-type fermions and it is called up-type Higgs (Hu, or H2).

The MSSM respects a discrete Z2 symmetry, the R-parity. If one writes the most
general terms in the supersymmetric Lagrangian (still gauge-invariant and holomor-
phic), some of them would lead to non-observed processes. The most obvious constraint
comes from the non-observed proton decay, which arises from a term that violates both
lepton and baryon numbers (L and B, respectively) by one unit. In order to avoid these
terms, R-parity, a multiplicative conserved quantum number, is introduced, defined as

PR = (−1)3(B−L)+2s, (2.31)

with s the spin of the particle.
The R even particles are the SM particles, whereas the R odd are the new particles

introduced by the MSSM and are called supersymmetric particles. Due to R-parity,
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if it is exactly conserved, there can be no mixing among odd and even particles and,
additionally, each interaction vertex in the theory can only involve an even number of
supersymmetric particles. The phenomenological consequences are quite important.
First, the lightest among the odd-parity particles is stable. This particle is known
as the lightest supersymmetric particle (LSP). Second, in collider experiments, super-
symmetric particles can only be produced in pairs. The first of these consequences
was a breakthrough for the incorporation of DM into a general theory. If the LSP is
electrically neutral, it interacts only weakly and it consists an attractive candidate for
DM.

We are not going to enter further into the details of the MSSM6. Although MSSM
offers a possible DM candidate, there is a strong theoretical reason to move from the
minimal model. This reason is the so-called µ-problem of the MSSM, with which we
begin the discussion of the next chapter, where we shall describe more thoroughly the
Next-to-Minimal Supersymmetric Standard Model.

6We refer to [110] for an excellent and detailed description of MSSM.
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CHAPTER 3

THE NEXT-TO-MINIMAL

SUPERSYMMETRIC STANDARD

MODEL

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) is an extension of

the MSSM by a chiral, SU(2)L singlet superfield Ŝ (see [119, 120] for reviews). The
introduction of this field solves the µ-problem1 from which the MSSM suffers, but
also leads to a different phenomenology from that of the minimal model. The scalar
component of the additional field mixes with the scalar Higgs doublets, leading to three
CP-even mass eigenstates and two CP-odd eigenstates (as in the MSSM a doublet-like
pair of charged Higgs also exists). On the other hand, the fermionic component of the
singlet (singlino) mixes with gauginos and higgsinos, forming five neutral states, the
neutralinos.

Concerning the CP-even sector, a new possibility opens. The lightest Higgs mass
eigenstate may have evaded the detection due to a sizeable singlet component. Besides,
the SM-like Higgs is naturally heavier than in the MSSM [123–126]. Therefore, a SM-
like Higgs mass ∼ 125GeV is much easier to explain [127–141]. The singlet component
of the CP-odd Higgs also allows for a potentially very light pseudoscalar with sup-
pressed couplings to SM particles, with various consequences, especially on low energy
observables (for example, [142–145]). The singlino component of the neutralino may
also play an important role for both collider phenomenology and DM. This is the case
when the neutralino is the LSP and the lightest neutralino has a significant singlino
component.

We start the discussion about the NMSSM by describing the µ-problem and how
this is solved in the context of the NMSSM. In Sec. 3.2 we introduce the NMSSM
Lagrangian and we write the mass matrices of the Higgs sector particles and the su-

1However, historically, the introduction of a singlet field preceded the µ-problem, e.g. [104, 105,
121,122].
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persymmetric particles, at tree level. We continue by examining, in Sec. 3.3, the DM
candidates in the NMSSM and particularly the neutralino. The processes which deter-
mine the neutralino relic density are described in Sec. 3.4. The detection possibilities
of a potential NMSSM neutralino as DM are discussed in (Sec. 3.5). We close this
chapter (Sec. 3.6) by examining possible ways to include non-zero neutrino masses and
the additional DM candidates that are introduced.

3.1 Motivation – The µ-problem of the MSSM

As we saw, the minimal extension of the SM, the MSSM, contains two Higgs SU(2)L
doublets Hu and Hd. The Lagrangian of the MSSM should contain a supersymmetric
mass term, µHuHd, for these two doublets. There are several reasons, which we will
subsequently review, that require the existence of such a term. On the other hand,
the fact that |µ| cannot be very large, actually it should be of the order of the EW
scale, brings back the problem of naturalness. A parameter of the model should be
much smaller than the “natural” scale (the GUT or the Planck scale) before the EW
symmetry breaking. This leads to the so-called µ-problem of the MSSM [146].

The reasons that such a term should exist in the Lagrangian of the MSSM are
mainly phenomenological. The doublets Hu and Hd are components of chiral super-
fields that also contain fermionic SU(2)L doublets. Their electrically charged com-
ponents mix with the superpartners of the W± bosons, forming two charged Dirac
fermions, the charginos. The unsuccessful searches for charginos in LEP have excluded
charginos with masses almost up to its kinetic limit (∼ 104GeV) [147]. Since the µ term
determines the mass of the charginos, µ cannot be zero and actually |µ| >∼ 100GeV,
independently of the other free parameters of the model. Moreover, µ = 0 would result
in a Peccei-Quinn symmetry of the Higgs sector and an undesirable massless axion.
Finally, there is one more reason for µ 6= 0 related to the mass generation by the Higgs
mechanism. The term µHuHd will be accompanied by a soft SUSY breaking term
BµHuHd. This term is necessary so that both neutral components of Hu and Hd are
non-vanishing at the minimum of the potential.

The Higgs mechanism also requires that µ is not too large. In order to generate
the EW symmetry breaking, the Higgs potential has to be unstable at its origin Hu =
Hd = 0. Soft SUSY breaking terms for Hu and Hd of the order of the SUSY breaking
scale generate such an instability. However, the µ induced squared masses for Hu,
Hd are always positive and would destroy the instability in case they dominate the
negative soft mass terms.

The NMSSM is able to solve the µ-problem by dynamically generating the mass
µ. This is achieved by the introduction of an SU(2)L singlet scalar field S. When S
acquires a vev, a mass term for the Hu and Hd emerges with an effective mass µeff of
the correct order, as long as the vev is of the order of the SUSY breaking scale. This
can be obtained in a more “natural” way through the soft SUSY breaking terms.
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3.2 The NMSSM Lagrangian

All the necessary information for the Lagrangian of the NMSSM can be extracted from
the superpotential and the soft SUSY breaking Lagrangian, containing the soft gaug-
ino and scalar masses, and the trilinear couplings. We begin with the superpotential,
writing all the interactions of the NMSSM superfields, which include the MSSM super-
fields and the additional gauge singlet chiral superfield2 Ŝ. Hence, the superpotential
reads

W = λŜĤu · Ĥd +
1

3
κŜ3

+ huQ̂ · ĤuÛ
c
R + hdĤd · Q̂D̂c

R + heĤd · L̂Êc
R.

(3.1)

The couplings to quarks and leptons have to be understood as 3× 3 matrices and the
quark and lepton fields as vectors in the flavor space. The SU(2)L doublet superfields
are given (as in the MSSM) by

Q̂ =

(
ÛL

D̂L

)
, L̂ =

(
ν̂

ÊL

)
, Ĥu =

(
Ĥ+

u

Ĥ0
u

)
, Ĥd =

(
Ĥ0

d

Ĥ−
d

)
(3.2)

and the product of two doublets is given by, for example, Q̂ · Ĥu = ÛLĤ
0
u − Ĥ+

u D̂L.
An important fact to note is that the superpotential given by (3.1) does not in-

clude all possible renormalizable couplings (which respect R-parity). The most general
superpotential would also include the terms

W ⊃ µĤu · Ĥd +
1

2
µ′Ŝ2 + ξF ŝ, (3.3)

with the first two terms corresponding to supersymmetric masses and the third one,
with ξF of dimension mass2, to a tadpole term. However, the above dimensionful
parameters µ, µ′ and ξF should be of the order of the SUSY breaking scale, a fact
that contradicts the motivation behind the NMSSM. Here, we omit these terms and
we will work with the scale invariant superpotential (3.1). The Lagrangian of a scale
invariant superpotential possesses an accidental Z3 symmetry, which corresponds to a
multiplication of all the components of all chiral fields by a phase ei2π/3.

The corresponding soft SUSY breaking masses and couplings are

−Lsoft = m2
Hu

|Hu|2 +m2
Hd
|Hd|2 +m2

S|S|2

+m2
Q|Q|2 +m2

D|DR|2 +m2
U |UR|2 +m2

L|L|2 +m2
E|ER|2

+

(
huAuQ ·HuU

c
R − hdAdQ ·HdD

c
R − heAeL ·HdE

c
R

+λAλHu ·HdS +
1

3
κAκS

3 + h.c.

)

+
1

2
M1λ1λ1 +

1

2
M2λ

i
2λ

i
2 +

1

2
M3λ

a
3λ

a
3,

(3.4)

2Here, the hatted capital letters denote chiral superfields, whereas the corresponding unhatted
ones indicate their complex scalar components.



46 The Next-to-Minimal Supersymmetric Standard Model

where we have also included the soft breaking masses for the gauginos. λ1 is the U(1)Y
gaugino (bino), λi2 with i = 1, 2, 3 is the SU(2)L gaugino (winos) and, finally, the λa3
with a = 1, . . . , 8 denotes the SU(3)c gaugino (gluinos).

The scalar potential, expressed by the so-called D and F terms, can be written
explicitly using the general formula

V =
1

2

(
DaDa +D′2

)
+ F ⋆

i Fi, (3.5)

where

Da = g2Φ
∗
iT

a
ijΦj (3.6a)

D′ =
1

2
g1YiΦ

∗
iΦi (3.6b)

Fi =
∂W

∂Φi

. (3.6c)

We remind that T a are the SU(2)L generators and Yi the hypercharge of the scalar
field Φi. The Yukawa interactions and fermion mass terms are given by the general
Lagrangian

LY ukawa = −1

2

[(
∂2W

∂Φi∂Φj

ψiψj + h.c.

)]
, (3.7)

using the superpotential (3.1). The two-component spinor ψi is the superpartner of
the scalar Φi.

3.2.1 Higgs sector

Using the general form of the scalar potential, the following Higgs potential is derived

VHiggs =
∣∣λ
(
H+

u H
−
d −H0

uH
0
d

)
+ κS2

∣∣2

+
(
m2

Hu
+ |λS|2

) (∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2
)

+
(
m2

Hd
+ |λS|2

) (∣∣H0
d

∣∣2 +
∣∣H−

d

∣∣2
)

+
1

8

(
g21 + g22

) (∣∣H0
u

∣∣2 +
∣∣H+

u

∣∣2 −
∣∣H0

d

∣∣2 −
∣∣H−

d

∣∣2
)2

+
1

2
g22
∣∣H+

u H
0
d
⋆
+H0

uH
−
d

⋆∣∣2

+m2
S|S|2 +

[
λAλ

(
H+

u H
−
d −H0

uH
0
d

)
S +

1

3
κAκS

3 + h.c.

]
.

(3.8)

The neutral physical Higgs states are defined through the relations

H0
u = vu +

1√
2
(HuR + iHuI) , H0

d = vd +
1√
2
(HdR + iHdI) ,

S = s+
1√
2
(SR + iSI) , (3.9)
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where vu, vd and s are, respectively, the real vevs of Hu, Hd and S, which have to be
obtained from the minima of the scalar potential (3.8), after expanding the fields using

Eq. (3.9). We notice that when S acquires a vev, a term µeffĤu · Ĥd appears in the
superpotential, with

µeff = λs, (3.10)

solving the µ-problem.
Therefore, the Higgs sector of the NMSSM is characterized by the seven parameters

λ, κ, m2
Hu
, m2

Hd
, m2

S, Aλ and Aκ. One can express the three soft masses by the three
vevs using the minimization equations of the Higgs potential (3.8), which are given by

vu

[
m2

Hu
+ µ2

eff + λ2v2d +
1

2
g2
(
v2u − v2d

)]
− vdµeff(Aλ + κs) = 0

vd

[
m2

Hd
+ µ2

eff + λ2v2u +
1

2
g2
(
v2d − v2u

)]
− vuµeff(Aλ + κs) = 0

s
[
m2

S + κAκs+ 2κ2σ2 + λ2
(
v2u + v2d

)
− 2λκvuvd

]
− λAλvuvd = 0,

(3.11)

where we have defined

g2 ≡ 1

2

(
g21 + g22

)
. (3.12)

One can also define the β angle by

tan β =
vu
vd
. (3.13)

The Z boson mass is given by MZ = gv with v2 = v2u + v2d ≃ (174GeV)2. Hence, with
MZ given, the set of parameters that describes the Higgs sector of the NMSSM can be
chosen to be the following

λ, κ, Aλ, Aκ, tan b and µeff. (3.14)

CP-even Higgs masses

One can obtain the Higgs mass matrices at tree level by expanding the Higgs potential
(3.8) around the vevs, using Eq. (3.9). We begin by writing3 the squared mass matrix
M2

S of the scalar Higgses in the basis (HdR, HuR, SR):

M2
S =




g2v2d + µ tan βBeff (2λ2 − g2) vuvd − µBeff 2λµvd − λ (Aλ + 2κs) vu

g2v2u +
µ

tanβ
Beff 2λµvu − λ (Aλ + 2κs) vd

λAλ
vuvd
s

+ κAκs+ (2κs)2


 ,

(3.15)

where we have defined Beff ≡ Aλ + κs (it plays the role of the B parameter of the
MSSM).

3For economy of space, we omit in this expression the subscript from µeff.
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Although an analytical diagonalization of the above 3 × 3 mass matrix is lengthy,
there is a crucial conclusion that comes from the approximate diagonalization of the
upper 2 × 2 submatrix. If it is rotated by an angle β, one of its diagonal elements
is M2

Z(cos
2 2β + λ2

g2
sin2 2β) which is an upper bound for its lightest eigenvalue. The

first term is the same one as in the MSSM. The conclusion is that in the NMSSM
the lightest CP-even Higgs can be heavier than the corresponding of the MSSM, as
long as λ is large and tan β relatively small. Therefore, it is much easier to explain
the observed mass of the SM-like Higgs. However, λ is bounded from above in order
to avoid the appearance of the Landau pole below the GUT scale. Depending on the
other free parameters, λ should obey λ <∼ 0.7.

CP-odd Higgs masses

For the pseudoscalar case, the squared mass matrix in the basis (HdI , HuI , SI) is

M2
P =




µeff (Aλ + κs) tan β µeff (Aλ + κs) λvu (Aλ − 2κs)
µeff

tanβ
(Aλ + κs) λvd (Aλ − 2κs)

λ (Aλ + 4κs) vuvd
s

− 3κAκs


 . (3.16)

One eigenstate of this matrix corresponds to an unphysical massless Goldstone
boson G. In order to drop the Goldstone boson, we write the matrix in the basis
(A,G, SI) by rotating the upper 2 × 2 submatrix by an angle β. After dropping the
massless mode, the 2× 2 squared mass matrix turns out to be

M2
P =

(
2µeff

sin 2β
(Aλ + κs) λ (Aλ − 2κs) v

λ (Aλ + 4κs) vuvd
s

− 3Aκs

)
. (3.17)

Charged Higgs mass

The charged Higgs squared mass matrix is given, in the basis (H+
u , H

−
d

⋆
), by

M2
± =

[
µeff (Aλ + κs) + vuvd

(
1

2
g22 − λ

)](
cot β 1

1 tan β

)
, (3.18)

which contains one Goldstone boson and one physical mass eigenstate H± with eigen-
value

m2
± =

2µeff

sin 2β
(Aλ + κs) + v2

(
1

2
g22 − λ

)
. (3.19)

3.2.2 Sfermion sector

The mass matrix for the up-type squarks is given in the basis (ũR, ũL) by

Mu =

(
m2

u + h2uv
2
u − 1

3
(v2u − v2d) g

2
1 hu (Auvu − µeffvd)

hu (Auvu − µeffvd) m2
Q + h2uv

2
u +

1
12
(v2u − v2d) (g

2
1 − 3g22)

)
, (3.20)
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whereas for down-type squarks the mass matrix reads in the basis (d̃R, d̃L)

Md =

(
m2

d + h2dv
2
d − 1

6
(v2u − v2d) g

2
1 hd (Advd − µeffvu)

hd (Advd − µeffvu) m2
Q + h2dv

2
d +

1
12
(v2u − v2d) (g

2
1 − 3g22)

)
. (3.21)

The off-diagonal terms are proportional to the Yukawa coupling hu for the up-type
squarks and hd for the down-type ones. Therefore, the two lightest generations remain
approximately unmixed. For the third generation, the mass matrices are diagonalized
by a rotation by an angle θT and θB, respectively, for the stop and sbottom. The mass
eigenstates are, then, given by

t̃1 = cos θT t̃L + sin θT t̃R, t̃2 = cos θT t̃L − sin θT t̃R, (3.22)

b̃1 = cos θB b̃L + sin θB b̃R, b̃2 = cos θB b̃L − sin θB b̃R. (3.23)

In the slepton sector, for a similar reason, only the left- and right-handed staus are
mixed and their mass matrix

Mτ =

(
m2

E3
+ h2τv

2
d − 1

2
(v2u − v2d) g

2
1 hτ (Aτvd − µeffvu)

hτ (Aτvd − µeffvu) m2
L3

+ h2τv
2
d − 1

4
(v2u − v2d) (g

2
1 − g22)

)
(3.24)

is diagonalized after a rotation by an angle θτ . Their mass eigenstates are given by

τ̃1 = cos θτ τ̃L + sin θτ τ̃R, τ̃2 = cos θτ τ̃L − sin θτ τ̃R. (3.25)

Finally, the sneutrino masses are

mν̃ = m2
L − 1

4

(
v2u − v2d

) (
g21 + g22

)
. (3.26)

3.2.3 Gaugino and higgsino sector

The gauginos λ1 and λ
3
2 mix with the neutral higgsinos ψ0

d, ψ
0
u and ψS to form neutral

particles, the neutralinos. The 5 × 5 mass matrix of the neutralinos is written in the
basis

(−iλ1,−iλ32, ψ0
d, ψ

0
u, ψS) ≡ (B̃, W̃ , H̃0

d , H̃
0
u, S̃) (3.27)

as

M0 =




M1 0 − 1√
2
g1vd

1√
2
g1vu 0

M2
1√
2
g2vd − 1√

2
g2vu 0

0 −µeff −λvu
0 −λvd

2κs




. (3.28)

The mass matrix (3.28) is diagonalized by an orthogonal matrix Nij. The mass eigen-
states of the neutralinos are usually denoted by χ0

i , with i = 1, . . . , 5, with increasing
masses (i = 1 corresponds to the lightest neutralino). These are given by

χ0
i = Ni1B̃ +Ni2W̃ +Ni3H̃

0
d +Ni4H̃

0
u +Ni5S̃. (3.29)
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We use the convention of a real matrix Nij, so that the physical masses mχ0
i
are real,

but not necessarily positive.

In the charged sector, the SU(2)L charged gauginos λ− = 1√
2
(λ12 + iλ22), λ

+ =
1√
2
(λ12 − iλ22) mix with the charged higgsinos ψ−

d and ψ+
u , forming the charginos ψ±:

ψ± =

(
−iλ±
ψ±
u

)
. (3.30)

The chargino mass matrix in the basis (ψ−, ψ+) is

M± =

(
M2 g2vu

g2vd µeff

)
. (3.31)

Since it is not symmetric, the diagonalization requires different rotations of ψ− and
ψ+. We denote these rotations by U and V , respectively, so that the mass eigenstates
are obtained by

χ− = Uψ−, χ+ = V ψ+. (3.32)

3.3 DM Candidates in the NMSSM

Let us first review the characteristics that a DM candidate particle should have. First,
it should be massive in order to account for the missing mass in the galaxies. Second,
it must be electrically and color neutral. Otherwise, it would have condensed with
baryonic matter, forming anomalous heavy isotopes. Such isotopes are absent in na-
ture. Finally, it should be stable and interact only weakly, in order to fit the observed
relic density.

In the NMSSM there are two possible candidates. Both can be stable particles if
they are the LSPs of the supersymmetric spectrum. The first one is the sneutrino (see
[148,149] for early discussions on MSSM sneutrino LSP). However, although sneutrinos
are WIMPs, their large coupling to the Z bosons result in a too large annihilation cross
section. Hence, if they were the DM particles, their relic density would have been very
small compared to the observed value. Exceptions are very massive sneutrinos, heavier
than about 5TeV [150]. Furthermore, the same coupling result in a large scattering
cross section off the nuclei of the detectors. Therefore, sneutrinos are also excluded by
direct detection experiments.

The other possibility is the lightest neutralino. Neutralinos fulfill successfully, at
least in principle, all the requirements for a DM candidate. However, the resulting
relic density, although weakly interacting, may vary over many orders of magnitude as
a function of the free parameters of the theory. In the next sections we will investigate
further the properties of the lightest neutralino as the DM particle. We begin by
studying its annihilation that determines the DM relic density.
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3.4 Neutralino relic density

We remind that the neutralinos are mixed states composed of bino, wino, higgsinos
and the singlino. The exact content of the lightest neutralino determines its pair
annihilation channels and, therefore, its relic density (for detailed analyses, we refer
to [151–154]). Subsequently, we will briefly describe the neutralino pair annihilation
in various scenarios. We classify these scenarios with respect to the lightest neutralino
content.

Before we proceed, we should mention another mechanism that affects the neu-
tralino LSP relic density. If there is a supersymmetric particle with mass close to the
LSP (but always larger), it would be abundant during the freeze-out and LSP coan-
nihilations with this particle would contribute to the total annihilation cross section.
This particle, which is the Next-to-Lightest Supersymmetric Particle (NLSP), is most
commonly a stau or a stop. In the above sense, coannihilations refer not only to the
LSP–NLSP coannihilations, but also to the NLSP–NLSP annihilations, since the latter
reduce the number density of the NLSPs [155].

• Bino-like LSP
In principle, if the lightest neutralino is mostly bino-like, the total annihilation
cross section is expected to be small. Therefore, a bino-like neutralino LSP would
have been overabundant. The reason for this is that there is only one available
annihilation channel via t-channel sfermion exchange, since all couplings to gauge
bosons require a higgsino component. The cross section is even more reduced
when the sfermion mass is large.

However, there are still two ways to achieve the correct relic density. The first one
is using the coannihilation effect: if there is a sfermion with a mass slightly larger
(some GeV) than the LSP mass, their coannihilations can be proved to reduce
efficiently the relic density to the desired value. The second one concerns a bino-
like LSP, with a very small but non-negligible higgsino component. In this case,
if in addition the lightest CP-odd Higgs A1 is light enough, the annihilation to a
pair A1A1 (through an s-channel CP-even Higgs Hi exchange) can be enhanced
via Hi resonances. In this scenario a fine-tuning of the masses is necessary.

• Higgsino-like LSP
A mostly higgsino LSP is as well problematic. The strong couplings of the higgsi-
nos to the gauge bosons lead to very large annihilation cross section. Therefore,
a possible higgsino LSP would have a very small relic density.

• Mixed bino–higgsino LSP
In this case, as it was probably expected, one can easily fit the relic density to
the observed value. This kind of LSP annihilates to W+W−, ZZ, W±H∓, ZHi,
HiAj, bb̄ and τ+τ− through s-channel Z or Higgs boson exchange or t-channel
neutralino or chargino exchange. The last two channels are the dominant ones
when the Higgs coupling to down-type fermions is enhanced, which occurs more
commonly in the regime of relatively large tan β. The annihilation channel to a
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pair of top quarks also contributes to the total cross section, if it is kinematically
allowed. However, in order to achieve the correct relic density, the higgsino
component cannot be very large.

• Singlino-like LSP
Since a mostly singlino LSP has small couplings to SM particles, the resulting relic
density is expected to be large. However, there are some annihilation channels
that can be enhanced in order to reduce the relic density. These include the
s-channel (scalar or pseudoscalar) Higgs exchange and the t-channel neutralino
exchange.

For the former, any Higgs with sufficient large singlet component gives an im-
portant contribution to the cross section, increasing with the parameter κ (since
the singlino-singlino-singlet coupling is proportional to κ). Concerning the latter
annihilation, in order to enhance it, one needs large values of the parameter λ.
In this case, the neutralino-neutralino-singlet coupling, which is proportional to
λ, is large and the annihilation proceeds giving a pair of scalar HsHs or a pair
of pseudoscalar AsAs singlet like Higgs.

As in the case of bino-like LSP, one can also use the effect of s-channel resonances
or coannihilations. In the latter case, an efficient NLSP can be the neutralino
χ0
2 or the lightest stau τ̃1. In the case that the neutralino NLSP is higgsino-

like, the LSP-NLSP coannihilation through a (doublet-like) Higgs exchange can
be proved very efficient. A stau NLSP reduces the relic density through NLSP-
NLSP annihilations, which is the only possibility in the case that both parameters
κ and λ are small. We refer to [156,157] for further discussion on this possibility.

Assuming universality conditions the wino mass M2 has to be larger than the bino
massM1 (M2 ∼ 2M1). This is the reason that we have not considered a wino-like LSP.

3.5 Detection of neutralino DM

3.5.1 Direct detection

Since neutralinos are Majorana fermions, the effective Lagrangian describing their
elastic scattering with a quark in a nucleon can be written, in the Dirac fermion
notation, as [158]

Leff = aSIi χ̄
0
1χ

0
1q̄iqi + aSDi χ̄0

1γ5γµχ
0
1q̄iγ5γ

µqi, (3.33)

with i = u, d corresponding to up- and down-type quarks, respectively. The La-
grangian has to be understood as summing over the quark generations.

In this expression, we have omitted terms containing the operator ψ̄γ5ψ or a com-
bination of ψ̄γ5γµψ and ψ̄γµψ (with ψ = χ, q). This is a well qualified assumption:
Due to the small velocity of WIMPs, the momentum transfer ~q is very small compared
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to the reduced mass of the WIMP-nucleus system. In the extreme limit of zero mo-
mentum transfer, the above operators vanish4. Hence, we are left with the Lagrangian
(3.33) consisting of two terms, the first one corresponding to spin-independent (SI)
interactions and the second to spin-dependent (SD) ones. In the following, we will
focus again only to SI scattering, since the detector sensitivity to SD scattering is low,
as it has been already mentioned in Sec. 1.5.1.

The SI cross section for the neutralino-nucleus scattering can be written as [158]
(see, also, [159])

σSI
tot =

4m2
r

π
[Zfp + (A− Z)fn]

2 . (3.34)

mr is the neutralino-nucleus reduced mass mr =
mχmN

mχ+mN
, and Z, A are the atomic and

the nucleon number, respectively. It is more common, however, to use an expression
for the cross section normalized to the nucleon. In this case, on has for the neutralino-
proton scattering

σSI
p =

4

π

(
mpmχ0

1

mp +mχ0
1

)2

f 2
p ≃

4m2
χ0
1

π
f 2
p , (3.35)

with a similar expression for the neutron.
The form factor fp is related to the couplings a to quarks through the expression

(omitting the “SI” superscripts)

fp
mp

=
∑

q=u,d,s

f p
Tq

aq
mq

+
2

27
fTG

∑

q=c,b,t

aq
mq

. (3.36)

A similar expression may be obtained for the neutron form factor fn, by the replacement
p→ n in the previous expression (henceforth, we focus to neutralino-proton scattering).
The parameters fTq are defined by the quark mass matrix elements

〈p|mq q̄q |p〉 = mpfTq, (3.37)

which corresponds to the contribution of the quark q to the proton mass and the
parameter fTG is related to them by

fTG = 1−
∑

q=u,d,s

fTq. (3.38)

The above parameters can be obtained by the following quantities

σπN =
1

2
(mu +md)(Bu +Bd) and σ0 =

1

2
(mu +md)(Bu +Bd − 2Bs, ) (3.39)

with Bq = 〈N | q̄q |N〉, which are obtained by chiral perturbation theory [160] or by
lattice simulations. Unfortunately, the uncertainties on the values of these quantities
are large (see [161], for more recent values and error bars).

4While there are possible circumstances in which the operators of (3.33) are also suppressed and,
therefore, comparable to the operators omitted, they are not phenomenologically interesting.
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Figure 3.1: Feynman diagrams contributing to the elastic neutralino-quark scalar scat-
tering amplitude at tree level.

The SI neutralino-nucleon interactions arise from t-channel Higgs exchange and
s-channel squark exchange at tree level (see Fig. 3.1), with one-loop contributions from
neutralino-gluon interactions. In practice, the s-channel Higgs exchange contribution
to the scattering amplitude dominates, especially due to the large masses of squarks.
In this case, the effective couplings a are given by

aSId =
3∑

i=1

1

m2
Hi

C1
i Cχ0

1
χ0
1
Hi
, aSIu =

3∑

i=1

1

m2
Hi

C2
i Cχ0

1
χ0
1
Hi
. (3.40)

C1
i and C2

i are the Higgs Hi couplings to down- and up-type quarks, respectively, given
by

C1
i =

g2md

2MW cos β
Si1, C2

i =
g2mu

2MW sin β
Si2, (3.41)

with S the mixing matrix of the CP-even Higgs mass eigenstates and md, mu the
corresponding quark mass. We see from Eqs. (3.36) and (3.41) that the final cross
section (3.35) is independent of each quark mass. We write for completeness the
neutralino-neutralino-Higgs coupling Cχ0

1
χ0
1
Hi

:

Cχ0
1
χ0
1
Hi

=
√
2λ (Si1N14N15 + Si2N13N15 + Si3N13N14)−

√
2κSi3N

2
15

+ g1 (Si1N11N13 − Si2N11N14)− g2 (Si1N12N13 − Si2N12N14) , (3.42)

with N the neutralino mixing matrix given in (3.29).
The resulting cross section is proportional to m−4

Hi
. In the NMSSM, it is possible

for the lightest scalar Higgs eigenstate to be quite light, evading detection due to its
singlet nature. This scenario can give rise to large values of SI scattering cross section,
provided that the doublet components of the lightest Higgs are not negligible. These
scenarios have been examined in the context of explaining the CoGeNT signal [162,163].
For general discussions about NMSSM neutralino direct detection, see [164–167].

3.5.2 Indirect detection

The indirect signals of the NMSSM neutralino come from its pair annihilation via
the processes described in Sec. 3.4 for the various scenarios of the neutralino content.
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However, since the DM particles move today very slowly, the average of cross section
times velocity is expected to differ from this in the early Universe. For example,
annihilations through an s-channel CP-even Higgs exchange are generally p-wave, and
their contribution to indirect signals is expected to be suppressed.

Neutralino DM in the NMSSM has been used to explain the PAMELA excess
on positrons (see Sec. 1.6 and Fig. 1.8), with an anti-proton flux consistent with the
astrophysical background [168–170]: If the CP-odd Higgs A1 is very light, a neutralino
(with, e.g., a mass of ∼ 160GeV) can annihilate to pairs of A1 and H1 through A2

exchange. Due to the very low mass of A1, it can only decay into a pair of leptons,
while H1 dominantly decays into a pair of A1.

Another characteristic process in the NMSSM is the neutralino annihilation through
an s-channel CP-odd Higgs exchange, giving rise at one loop level to monochromatic
photons. In the NMSSM, the exchanged pseudoscalar can be dominantly singlet-like,
so that, even though the annihilation at one loop level may proceed with large cross
section, the tree-level annihilation is suppressed leading to neutralino relic density that
can still fit the observed value. More details will be given in the following chapter.

3.6 Neutrino masses and more DM candidates

Although the NMSSM is a quite complete particle physics theory and, at least, so far,
no phenomenological inconsistency appeared, in its vanilla form it does not provide
masses for neutrinos. However, the observed neutrino oscillations imply that neutrinos
have non-zero, although very small, masses. It is not difficult to incorporate neutrino
masses in the NMSSM, nonetheless the possible mechanisms are numerous and many
of them equally well motivated; hence, more experimental results are required in order
to choose one of them. In the following, we review basic neutrino physics and the ex-
perimental status. Subsequently, we will see some of the mechanisms that can provide
the predicted masses and the new DM possibilities that arise from them.

Since the end of 1990s, neutrino oscillations [171] – transitions between the different
flavors of neutrinos or antineutrinos – have been verified through many experiments.
First, LSND indicated νµ ↔ νe and ν̄µ ↔ ν̄e oscillations from their accelerator neutrino
experiment [172], confirming the preexisting evidence of oscillations from solar neutrino
experiments [173–176]. Super-Kamiokande followed, reporting a strong evidence for
neutrino oscillations in their atmospheric neutrino data [177]. Nowadays, the existence
of oscillations of the solar electron neutrinos, νe, atmospheric muon neutrinos and
antineutrinos, νµ and ν̄µ, accelerator νµ and reactor ν̄e has been firmly established (for
some recent results, see [178–182]).

Neutrino oscillations suggest that the neutrino weak (flavor) eigenstates (which are
produced in the reactor experiments, the Sun and so on) do not coincide with the
mass eigenstates. This fact implies that neutrinos should have non-zero masses. The
transition probability from one state i to one other j depends on the mass squared
difference ∆m2

ij ≡ m2
i −m2

j of the two states and it is zero for degenerate states.

The neutrino mass eigenstates νi (with i = 1, 2, 3) are related to the flavor eigen-
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states νl (with l = e, µ, τ) through the neutrino mixing matrix U :

|νl〉 =
3∑

i=1

U⋆
li |νi〉 , (3.43)

in an analogous way to the quark mixing via the CKMmatrix (see Sec. 2.1.2, Eq.(2.13)).
This relation implies that individual lepton charges Le, Lµ and Lτ are not conserved.
The unitary mixing matrix U is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix and, in general, can be parametrized by three Euler angles θ12, θ23 and θ13 and
6 phases. In the case neutrinos are Dirac particles, only one phase is physical, which
can induce CP violation in the lepton sector, in a similar way to CP-violation in the
quark sector. In the case of Majorana neutrinos, two more phases are physical. The
mixing matrix for the Majorana case is usually written in terms of the Dirac mixing
matrix as UMaj = UDir ·P , with P = diag(1, eiδ1/2, eiδ2/2), with δ1 and δ2 the Majorana
phases. (For the standard parametrization of the PMNS matrix, see [100].)

The unitarity of the PMNS matrix implies that
∑

l′=e,µ,τ P (νl ↔ νl′) = 1, with
P (νl ↔ νl′) the transition probability and l′ = e, µ, τ . Since the transition probability
is directly related to the mass squared differences ∆m2

ij, only two out of the three
of ∆m2

ij are independent, usually taken to be ∆m2
21 and ∆m2

31. It follows from the
neutrino oscillation data that the absolute value of one of them is much smaller than
the absolute value of the other:

∣∣∆m2
21

∣∣ ≃ 7.6 · 10−5 eV2,∣∣∆m2
31

∣∣ ≃ 2.4 · 10−3 eV2.
(3.44)

We see that the two first mass eigenstates have similar masses, whereas the third one
might have either much larger mass, a case which is referred as normal hierarchy, or
much smaller, corresponding to inverted hierarchy. One can identify ∆m2

21 and θ12 as
the mass squared difference and mixing angle, respectively, responsible for the solar νe
oscillations (with the corresponding notation ∆m2

21 ≡ ∆m2
⊙ and θ12 ≡ θ⊙) and ∆m2

31

and θ23 as those associated with the atmospheric oscillations (∆m2
31 ≡ ∆m2

atm and
θ23 ≡ θatm). The solar and atmospheric angles are relatively large, whereas the third
angle θ13 is small but not zero.

Many mechanisms can provide masses to neutrinos (see, e.g., [183,184] for reviews).
The simplest way is the introduction of a right chiral state whose Yukawa coupling with
the neutrino doublet and the Higgs generates a Dirac mass term through the Higgs
mechanism. However, the Yukawa coupling constant should be extremely small to
explain the smallness of the neutrino masses, of the order of 10−12. Such a small value
is often regarded as unnatural.

The very small values for the Yukawa couplings may be avoided if neutrinos have
Majorana masses. Although a Majorana mass term cannot be introduced in a gauge
invariant way, it is possible to be induced by higher order non-renormalizable operators.
For example, the operator [185]

λL ·HuL ·Hu (3.45)
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would give rise to a Majorana mass for neutrinos of the order ∼ λ〈Φ〉2.
In case the strength λ of the operator (3.45) is suppressed by a large scale M , the

induced Majorana mass λ0

M
〈Φ〉2 (with λ0 a dimensionless parameter) can be sufficiently

small, for large enough scale M . This is the case of the seesaw mechanisms, which
generate the operator (3.45) through the exchange of heavy states. The heavy states
can be singlet fermions [186, 187] (Type-I seesaw), triplet scalars [188, 189] (Type-II
seesaw) or triplet fermions [190] (Type-III seesaw). The seesaw mechanisms have an
attractive feature: the decays of the heavy states (heavy sterile neutrinos) in the early
Universe could, in principle, generate a lepton asymmetry which subsequently led to
the baryon asymmetry observed in the Universe. This scenario is called leptogenesis

(see [191] for a review).
Instead of suppressing the strength λ by a large scale, it is possible to introduce

new physics, accessible at the TeV scale, that suppresses the strength by small lepton
number violating parameters. These are “naturally” small in the ’t Hooft sense, since
their small values enhance the lepton symmetry. An example of this mechanism is the
inverse seesaw mechanism [192]. In this model, two additional singlet leptons with
opposite lepton numbers are introduced for each generation. One of them is usually
identified as the charge conjugate of the right-handed neutrino. The small (Majorana)
mass term of the other one violates the lepton number conservation and is responsible
for the smallness of the neutrino masses.

Many other mechanisms are possible. For example, one may have a linear seesaw
mechanism [193] where the lepton number violation comes from a mass term induced
by the Yukawa coupling of the right-handed neutrino and the extra singlet lepton, or
radiative models [194,195] where the neutrino masses are induced by radiative correc-
tions. One more possibility in a supersymmetric framework is that neutrino masses
are induced by higher order operators responsible for the SUSY breaking [196]. Neu-
trino masses are also present in supersymmetric models with lepton number violation
through terms that do not respect the R-parity. However, these models do not provide
a stable particle that can account for the DM (for a long-lived DM candidate in an
R-parity violating version of the NMSSM, see [197]).

So far, there is no well motivated reason to prefer a specific model in favor of others.
The observation of a neutrinoless double beta decay could provide evidence for Majo-
rana neutrinos, since in case of neutrinos with only Dirac masses the double beta decay
always gives neutrinos among the final states. Unfortunately, current experiments are
not yet able to conclude about the nature of neutrinos.

Although the exact mechanism of neutrino mass generation is unknown, most of
them incorporate additional singlet fields. Let us consider the inverse seesaw scenario.
The additional terms in the NMSSM superpotential, required to give masses to neu-
trinos through this mechanism, would be

WISS ⊃ hνL̂ · Ĥuν̂
c
R + λνŜN̂ ν̂

c
R +

1

2
κN ŜN̂

2, (3.46)

where two new chiral superfields (vectors in family space) have been introduced: the
right-handed neutrino superfield ν̂cR (with lepton number−1) and one additional singlet



58 The Next-to-Minimal Supersymmetric Standard Model

superfield N̂ (with lepton number +1). The smallness of the neutrino masses is due to
the small value of the coupling κN of the last term, which violates explicitly the lepton
number. The bosonic components of these fields mix with left-handed sneutrinos,
forming sneutrino states with smaller couplings to gauge bosons. If the lightest of these
states is the LSP, it is possible to be a viable DM candidate. The initial abundance
of the lightest sneutrino may be reduced to the observed value through annihilation
processes induced by a (in principle, small) doublet component. In the same way,
the direct detection cross section is suppressed by the singlet component. Various
mechanisms lead to different DM phenomenology. For a comparative study, see [198].
The sneutrino DM of NMSSM-like models has been studied in [199–204], whereas some
important analyses of sneutrino DM in MSSM extensions include [205–209].

In Ch.6 we will motivate another neutrino mass generation mechanism by the
requirement of a DM whose density was determined by its asymmetry. However, until
then, we leave aside the sneutrino DM and we focus on the NMSSM neutralino DM.



CHAPTER 4

A POSSIBLE INDIRECT INDICATION

FOR DARK MATTER

Recent analyses of the publicly available data from Fermi-LAT [210–213] have discov-
ered hints for a gamma (γ) line, at energy Eγ ∼ 130GeV, in the form of an excess of
about 3 − 4 standard deviations, assuming that the background flux can be approx-
imated by a single power law. An interpretation of this excess as DM pair annihila-
tion into a pair of photons would require a partial annihilation cross section of about
10−27 cm3 s−1 [211, 212]. However, more general parametrizations of the background
flux [214,215] reduce the significance of the excess, making it compatible with a diffuse
background possibly of instrumental or astrophysical origin.

Following the publication [211], different types of models trying to explain this
excess have been proposed: models with an extra U(1)′ gauge symmetry where the
DM couples only to the extra Z ′ gauge boson, and the Z ′ to photons via a Chern-
Simons term [216]; models with an extra singlet and extra charged fields allowing for an
enhanced branching ratio of the SM-like Higgs boson into two photons [217]; extensions
of the MSSM by right-handed neutrinos and extra Higgs doublets (with a right-handed
sneutrino as DM) [218]; decaying DM in the MSSM extended by additional fields and
couplings [219]; extensions of the SM or the MSSM by singlets with Peccei-Quinn
symmetry where DM can annihilate into a photon pair via an axion in the s-channel
[220]; a string/M-theory motivated version of the MSSM (with an unconventional
spectrum involving very heavy scalar superpartners) where wino-like DM can annihilate
into a photon plus a Z boson [221]. (In the MSSM with bino- or higgsino-like DM, the
annihilation cross section into one or two photons would be too small [222–226].)

Before we discuss the particular monochromatic photon excess, we provide in the
following section a general discussion of the photon radiation from DM annihilation
and its detection. We continue in Sec. 4.2 by reviewing the propagation of photon
flux from a distant point of emission in the DM halo to the point of observation.
In Sec. 4.3 we present the characteristics of the 130GeV photon line as they were
established by [210, 211] and subsequent analyses. At the same time, the absence of
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an excess in the diffuse photon radiation data leads to upper bounds that constrain
the DM candidates. We present these bounds in Sec. 4.4. Sec. 4.5 is the main part
of our work, based on [2]. There, we investigate the properties of the NMSSM which
allow to describe a phenomenologically viable neutralino DM giving rise to the desired
monochromatic line. Details of the Higgs and neutralino sectors are also presented for
a typical benchmark point. We finish the chapter in Sec. 4.6, which is devoted to a
short summary and conclusions.

4.1 Photon Radiation and Detection

The products of neutralino pair annihilations in the more condensed regions of the dark
halo may produce secondary photons that can be detected as diffuse photon radiation.
In some cases, if at least one photon is directly produced during the annihilation pro-
cess, a distinctive line would appear at a specific energy [165, 222–242]. The possible
detection of such rays, and additionally the fact that photons travel across the Uni-
verse to the location of detection without significantly interacting with the interstellar
medium, has motivated the construction and operation of many ground-based or space-
based telescopes and photon detectors. Actually, the detection of a monochromatic
line is an almost clear evidence for DM, since it is quite unlikely for such a line to
originate from an astrophysical source, at least for energies of the order of O(100)GeV
or larger. While the characteristics of the diffuse radiation are essentially model inde-
pendent, a possible detection of a monochromatic line might lead to the determination
of the parameters of specific models. However, as we will see in the following section,
a potentially observed signal depends strongly, not only on the free parameters of the
particle physics model, but also, on the halo profile, the DM mass distribution across
the galaxy.

There are several mechanisms related to DM annihilation that can give rise to
photons. Each of them results in a specific photon spectrum. The main source of
secondary photons is the neutral pion decay. Pions are produced after fragmentation
and hadronization of the gauge bosons and quarks that are produced directly from
the WIMP annihilation. This procedure will give a continuum of γ-rays, peaked at
energies somewhat smaller than the DM mass. A similar spectrum appears also due
to the bremsstrahlung of the charged particles that are produced directly from DM
annihilation.

Two other phenomena may also contribute to the diffuse photon radiation. They
are both related to charged leptons, which might be directly produced from the WIMP
annihilation. The inverse Compton scattering of the charged leptons off the cosmic
microwave background photons or off the starlight results in photons scattered to higher
energy than the initial ones. This mechanism can lead to a continuum spectrum with
energies that range from a fraction of the DM mass up to this mass itself. Moreover,
if the charged leptons pass through a galactic region with high magnetic field, there
would be a synchrotron emission of photons. The resulting spectrum depends strongly
on the magnitude of the magnetic field. However, in most cases, these two mechanisms
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are subdominant compared to the spectrum originating from pion decay.

In order that a distinctive line appears, at least one photon has to be produced
directly during the DM annihilation. Since WIMPs are neutral particles, this may
occur only through loop diagrams or, alternatively, through the emission of a photon
from bremsstrahlung of an internal particle of the annihilation process. The latter,
even though it is in principle a procedure with very small cross section surmounted
by the continuum spectrum, can be enhanced under certain conditions. Concerning
the former, the branching ratios of the loop processes are in general expected to be
small since the cross sections are suppressed by the fourth power of the electromagnetic
coupling constant. Nevertheless, it is possible in specific cases for the loop diagram
cross section to be enhanced, as we will examine in detail in Sec. 4.5 for the NMSSM
neutralino.

Since the possibility of photon detection related to DM was realized, many tele-
scopes have been used for this purpose. Space-based telescopes on board of satellites
are widely used for the indirect DM detection. The fact that they are located out-
side the atmosphere gives them the obvious advantage, among others, of the lack of
distortion and diffusion of the radiation that occurs in the atmosphere. The most im-
portant telescopes among them are EGRET [243], which was able to detect photons
in an energy range of 30MeV to 30GeV, and its successor, the Large Area Telescope
(LAT) [244] on board of the Fermi satellite, with an extended range that reaches to
about 300GeV. The upper cutoff in the energy range comes from the limited photon
collection area of the space-borne detectors. However, the energy range can be ex-
tended to higher energies using ground-based telescopes. Specifically, the Cherenkov
telescopes essentially use the earth’s atmosphere as detection medium, implying a pho-
ton collection area of hundreds of square meters. For example, H.E.S.S. can observe
photons with energies up to tens of TeV (∼ 50TeV) and is completing Fermi-LAT
to higher energies [245]. Other important current Cherenkov telescopes are VERITAS
and MAGIC.

The targets of the telescopes aiming at DM searches are galactic regions where DM
is more concentrated and/or regions where the photon background is low. The most
DM rich area in our galaxy is the galactic center (GC) of the Milky Way [246], where
there is also a strong evidence for a super-massive black hole. However, areas around
the GC, such as the Galactic Ridge or the Galactic Center Halo, have additionally a
reduced background and, as a consequence, they exhibit a better signal-to-noise ratio
(SNR). Promising targets are also some satellite galaxies of the Milky Way that are
believed to be DM dominated. These are dwarf spheroidal (dSph) galaxies, such as
Carina, Draco, Segue 1, just to name a few. Even though the signal is much weaker
than the signal from the aforementioned targets, the SNR is even more improved.

4.2 Photon Flux

In this section we are going to discuss the photon flux that arrives at a space- or
ground-based telescope from DM annihilations in the galactic halo. Even though we
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Figure 4.1: The Sun location in the Milky Way and a graphical representation of the
photon flux.

will focus on the Milky Way GC, the same analysis applies essentially also to signals
coming from other targets. We will, additionally, examine the way the DM distribution
in the galactic halo affects the photon signals and we will calculate the flux for various
halo profiles.

We assume that the line-of-sight (l.o.s.) of a telescope forms an angle ξ with the
direction of the GC. The differential photon flux that arrives at the telescope from an
annihilation occurring in the galactic halo at a distance r from the GC can be written
as

dΦγ

dEγ

(ξ) =
Nχ〈σv〉
4πm2

χ

1

∆Ω

∫

∆Ω

dΩ

∫

l.o.s.

ds ρ2(r(s, ξ)), (4.1)

where mχ is the DM mass and the factor Nχ = 1 for Majorana DM or Nχ = 1/2 in
case of Dirac DM. The last integral is calculated along the l.o.s. and ρDM(r) is the DM
density at the location r. The distance r depends on the heliocentric distance s and
the angle ξ. Specifically (see also Fig. 4.1),

r(s, ξ) =
√

(R0 − s cos ξ)2 + (s sin ξ)2, (4.2)

with R0 ≃ 8.5 kpc the distance between the Sun and the GC. The exact dependence
of the DM density on r is determined by the DM halo profile. Various numerical
simulations favor different profiles. The flux is also averaged over the solid angle ∆Ω
of the detector.

The expression (4.1) can be separated into two distinct parts: one related to the
particle physics model and one dependent only on astrophysics. The particle physics
contribution to the flux is encoded in the fraction Nχ〈σv〉

4πm2
χ
. As usual, 〈σv〉 is the average

cross section of the DM annihilation times the relative velocity v of the DM particles.
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Figure 4.2: The DM density dependence on the distance from the GC for three halo
profiles. The red curve corresponds to the cored isothermal profile, the green to NFW
and the blue to the Einasto profile.

In the case of a monochromatic line this is the cross section of the loop induced anni-
hilation to photons. For the continuum spectrum, it is the total cross section for the
γ-rays production from all DM annihilations. The thermal average has to be calcu-
lated in the limit v → 0, since the relative velocity of the DM particles at the present
temperature of the Universe is low.

It is frequent in the literature to define the integral along the l.o.s. as [225]

J(ξ) ≡
∫

l.o.s.

dsρ2DM(r). (4.3)

Using Eq. (4.2), we can write this integral as

J(ξ) =

∫ s+

s−

ds ρ2DM

(√
s2 +R2

0 − 2sR0 cos ξ

)
, (4.4)

where the limits of integration are s± = R0 cos ξ±
√
r2t −R2

0 sin ξ and rt is the galactic
tidal radius. Therefore, the astrophysical part of Eq. (4.1) can be written as

〈J〉∆Ω ≡ 1

∆Ω

∫

∆Ω

J(ξ)dΩ =
2π

∆Ω

∫ θmax

0

dθ sin θJ(ξ). (4.5)

θmax is the angle over which the average flux is calculated around the GC. The expres-
sion (4.5) is often denoted as J factor. Since the J factor is independent of the specific
particle physics model, it is a quantity which can be used to characterize the various
targets. In general, larger J factor means a better target.

In order to calculate the J factor, one has to choose a specific DM halo profile.
Unfortunately, the current numerical simulations do not allow to discriminate the
various halo profiles proposed in the literature, although, as we will see below, it seems
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Figure 4.3: The dimensionless quantity 1
R0ρ20

J(ξ) as a function of the angle ξ between

the l.o.s. and the GC. The color code is the same as in Fig. 4.2.

that some of them exhibit a preference for specific profiles. Here, we will consider
a number of different profiles before we examine the angular dependence of J(ξ) on
them.

A general radial halo profile can be parametrized as (Hernquist profile)

ρ(r) ∝ 1
(

r
rs

)γ [
1 +

(
r
rs

)α](β−γ)/α
. (4.6)

The core radius rs and, additionally, the free parameters α, β, γ define each specific
profile. Specifically, the parameter α controls the sharpness of the transition from
the inner slope. Profiles with small values of γ, which parametrize the profile’s inner
slope, are cored profiles, while cusped profiles are characterized by large values of γ.
All the profiles have to be normalized to the local (at the position of the Sun) DM
density ρDM(R0), which, as we have already seen, is usually assumed to take the value
ρ0 ≡ ρDM(R0) = 0.3GeV cm−3 − 0.4GeV cm−3.

There are many specific parametrizations of the general radial profile [247]. Here,
we will show the most common examples. First, we consider for reference the cored
isothermal profile. This is defined by rs = 3.5 kpc and (α, β, γ) = (2, 2, 0). The
general Navarro-Frenk-White (henceforth NFW) profile [248] is defined by rs = 20 kpc
and α = 1, β = 3. The parameter γ remains free (it takes the value γ = 1 for the
common NFW profile). The findings of Via Lactea II simulation [249] seem to confirm
the general tendencies appearing in the NFW profile. However, the Aquarius Project
simulation [250] seem to favor a profile that does not belong to the general profile class
(4.6), but it is based on the general Einasto profile. The DM Einasto profile is defined
by

ρDM(r) ∝ exp

(
− 2

αE

r

rs

)
, (4.7)

with αE = 0.17 and rs = 20 kpc.
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In Fig. 4.2 we show the dependence of the three aforementioned profiles on the
distance r from the galactic center. Fig. 4.3 shows the angular dependence of the
integral J , specifically the dependence of the dimensionless quantity 1

R0ρ20
J(ξ) with

R0 = 8.5 kpc and ρ0 = 0.4GeV cm−3. As it was expected, the photon flux is much
more enhanced in the GC, with the NFW profile being more steep than the others.

4.3 The 130 GeV Fermi line

A monochromatic signal is often characterized as a “smoking gun” signature for DM,
since there is no other known astrophysical source that might give rise to a photon
line. Up to now, there is no clear and confirmed evidence for such a signal. How-
ever, in an independent analysis of the Fermi-LAT data [210, 211], an evidence for a
monochromatic line at ∼ 130GeV is revealed with a significance of ∼ 4.6σ (reduced
to 3.2σ taking into account the look-elsewhere effect). The signal is based on about
50 photons; although more data are needed in order to confirm its existence, it is in-
teresting to check if this signal could be explained by WIMP DM annihilation. In this
section we will briefly review the analysis and the main results of [211], as well as the
present situation after the publication of this work.

The novelty of the analysis under discussion compared to the official Fermi-LAT
collaboration analysis, is a new data-driven algorithm for the target selection, essential
for such faint signals. 43 months of data (4th of August 2008 to 8th of March 2012)
have been analyzed, with photon energies between 1 and 300GeV. The first cut applied
to them was a zenith-angle cut θ < 100◦, in order to avoid contamination with the
earth albedo. We recall that an optimal target region is one that maximizes the SNR,
depending on both the morphology of the DM signal and the morphology of the the
background flux, with the former given by the Eq. (4.1) for a specific DM profile. The
latter was approximated for energies above 20GeV by the spatial distribution of γ-
rays measured between 1 and 20GeV. In this way, the authors of [211] determined the
optimal targets for each DM profile. In case of a cored isothermal profile, the target
region (henceforth Reg1) was the largest and reached up to latitudes of ∼ 84◦. The
smallest region (Reg5) corresponded to a compressed profile with inner slope α = 1.3,
and contained the central 2◦ × 2◦ area of the GC only.

After the target regions have been determined, they proceed to a shape analysis of
the energy spectra. This is done, for a given γ-ray line energy Eγ, in a small energy
window that contains Eγ. The boundaries were parametrized as E0 = Eγ/ǫ and
E1 = min(Eγ

√
ǫ, 300GeV). The parameter ǫ varied between ǫ ≃ 1.6 at low energies

(few times wider than the LAT energy resolution) and ǫ ≃ 3 at higher energies, in
order to compensate for the lower number of events. Within the adopted windows, the
spectra were fitted with a simple 3-parameter (S, β, γ) model

dΦ

dE
= Sδ(E − Eγ) + β

(
E

Eγ

)−γ

. (4.8)

In this context, background fluxes are approximated by a single power law with a free
spectral index γ and normalization β, whereas the monochromatic DM signal has a
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Figure 4.4: The significance versus the line energy Eγ for 5 different target regions,
from [211]. The horizontal gray lines correspond from bottom to top to 1σ, 2σ and
3σ after the look-elsewhere effect correction. The inset is a zoom on the energy range
of interest. Reg1 corresponds to the cored isothermal profile, Reg2 to NFW, Reg3 to
Einasto and Reg4 and Reg5 to a general NFW profile with α = 1.15 and α = 1.3,
respectively (see also text).

free normalization parameter S ≥ 0. After fixing the experimental conditions and the
profile, the annihilation cross section was related to S by a straightforward rescaling.

The best fit model parameters (Sbf , βbf , γbf ) were obtained by maximizing the
likelihood function L(S, β, γ) ≡ ∏

i P (si|νi), where P (s|ν) = νse−ν/s! is the Poisson
probability distribution function. si, νi denote the number of measured and expected
events, respectively, in an energy bin i, whereas νi is a function of the model param-
eters (we are not going to reproduce the calculation here, see [211] for details). The
significance of a line signal for a given value of Eγ is derived from the test statistic
function

TS ≡ −2 ln
Lnull

Lbest

, (4.9)

where Lbest = L(Sbf , βbf , γbf ) and Lnull is the likelihood function of a fit without signal.

The final results of [211] are shown in Fig. 4.4. This plot presents the values of the
TS significance versus the energy Eγ for five reference target regions. In this figure,
we can distinguish a clear peak around Eγ ≃ 130GeV, with a significance somewhat
larger than 3σ (the look-elsewhere effect has already been taken into account) for the
target regions Reg3 and Reg4. These regions correspond, respectively, to Einasto and
a NFW profile with α = 1.15.

In general, a monochromatic line in supersymmetric models may come either from
a DM annihilation to a pair of photons γγ either from an annihilation to Zγ or hγ,
with h a Higgs boson. The annihilation is through a loop with charged particles. For
the annihilation χχ → γX with χ the DM particle and X = γ, Z, h, the rest frame
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energy of the photon is

Eγ = mχ

(
1− m2

X

4m2
χ

)
. (4.10)

Since the WIMPs are non-relativistic in the DM halo, the photons are approximately
monochromatic in the lab frame. For the case of the photon pair, the energy of the
photons is equal to the DM mass mχ.

If the excess on the Fermi data is interpreted as an annihilation to a pair of pho-
tons, it corresponds to DM mass mχ ≃ 130GeV and an annihilation cross section
〈σv〉χχ→γγ = O(10−27) cm3 s−1, with the exact value depending on the specific DM
halo profile. Specifically, for the two profiles with the largest significance (Reg3 and
Reg4, see above), Weniger [211] obtained 〈σv〉Ein

χχ→γγ = (1.27±0.32+0.18
−0.28)×10−27 cm3 s−1

(Einasto) and 〈σv〉NFW
χχ→γγ = (2.27 ± 0.57+0.32

−0.51) × 10−27 cm3 s−1 (NFW). For the cored
isothermal profile, there was some tension among the cross sections obtained from
different target regions.

After the publication of [211], many other analyses followed [210–213], using inde-
pendent methods and trying to confirm or reject the announced results. Some of them
attempted simultaneously to address one more issue that arose. In the majority of the
particle physics models, the primary photon line is always accompanied by one more
line at an energy close to the first one. The loop of charged particles, which couple
to the photon, also couple to the Z boson. Hence, in case that the 130GeV line cor-
responds to an annihilation to a pair of photons, another excess at ∼ 114GeV should
appear. In [251], it was claimed that the two lines provide a marginally better fit than
one line, with a DM particle with mass mχ = 127.3± 2.7GeV annihilating to γγ and
Zγ. However, Hektor et al [252] concluded that the Fermi-LAT energy resolution and
the low statistics do not allow to distinguish one from two lines with any meaningful
statistical significance. In any case, a second monochromatic line at lower energy and
with a somewhat smaller cross section, if not welcome, is at least not disallowed by
the data.

The Fermi-LAT collaboration preferred in the beginning to interpret the same data
only in terms of upper bounds on the partial annihilation cross section [253]. How-
ever, in a subsequent paper [254], new selection tools were employed and the most
significant fit occurred at Eγ = 133GeV, but with a reduced local significance of 3.3σ,
corresponding to a 1.6σ global significance. The large decrease in the global value is
due to the line feature which is narrower than the instrument resolution and due to
its absence in areas around the GC with angles larger than 50◦. Interestingly, the
same line appeared also in data from photons coming from the Earth limb with about
equal local significance, leading to the suspicion that the line feature may be due to
an unknown systematic effect. However, the uncertainties related to this significance
are in some cases very large, as pointed out in [255]. Specifically, systematic 2σ dif-
ferences in the Earth limb spectra among γ-rays with small and large incidence angles
were observed, leading to the conclusion that the spectral features are likely statistical
fluctuations.

Still, future additional data could confirm the present hints for a possible excess;
hence it is of interest to study whether it could be explained within concrete models
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for DM which are compatible with bounds on its relic density from WMAP [22] and
Planck [9] and bounds on its direct detection cross section (in the relevant mass range)
from XENON100 [44, 47] and LUX [45]. Furthermore, we have to mention that a
concrete model with an enhanced DM annihilation cross section to photons is very
likely to also give large annihilation cross sections to SM particles that would produce
diffuse γ-rays. Hence, before we proceed to a possible explanation of DM, it is of great
importance to review in the next section the current experimental upper limits on the
diffuse radiation.

4.4 Upper bounds from diffuse γ-rays

Since no excess on diffuse γ-rays has been observed, upper limits on the annihilation
cross section can be derived. As it has been already mentioned, dSph satellites of the
Milky Way lead to a large signal-to-noise ratio and are potentially good targets for
DM searches. Furthermore, the final limits from these targets are quite insensitive to
the assumed DM distribution profile.

The Fermi-LAT collaboration has performed a combined analysis on 10 dwarf satel-
lites [256]. In this analysis, they combine all the dSph observations into a single joint
likelihood function, taking into account the uncertainties in estimates of the J factors.
Including these uncertainties in the fit results in stronger upper limits compared to a
common method that uses nominal J factors. However, the combination of the dSph
satellites yields a much milder increase (by about a factor of 1.3). The J factors are
calculated using the l.o.s. velocities of the stars in dSph and the Jeans equation via a
Bayesian method, commonly used in the literature (see [257] and references therein).
They assume an inner DM density profile scaling as 1/r, in order to be consistent with
DM-only (initially cold particles) numerical simulations. The DM mass distribution
is modeled by the NFW profile. The final results are shown in Fig. 4.5. Even if the
limits are recalculated using J factors that allow for shallower profiles than NFW, the
final constraint would agree with the previous limit within about 10%, confirming the
insensitivity on the DM distribution profile.

If DM annihilation processes are purely s-wave, the cross section in the early Uni-
verse, which determined the DM relic abundance, would have essentially the same
value today. However, the thermal cross section (∼ 3 · 10−26 cm3 s−1), required to con-
form with the observed relic density, exceeds the upper limits in the low mass range.
Hence, Fermi-LAT has excluded DM lighter than about 30GeV with purely s-wave
annihilation to bb̄, W+W− and τ+τ−, almost independently of the assumed profile.
For specific DM distribution profiles, the exclusion can be extended to larger DM mass
using other targets, such as clusters of galaxies [258, 259] or the Milky Way galactic
center [260].

As we have seen, the 130GeV line feature is best fitted if one assumes the NFW or
the Einasto profile. In this case, stringent limits have been derived with the galactic
center as the target [261], using the analysis performed in [260]. The results for DM
mass 130GeV and NFW profile with γ = 1.15 are shown in Table 4.1. These values have
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Figure 4.5: Upper limits on the DM annihilation cross section for the individual chan-
nels bb̄, τ+τ−, µ+µ− and W+W− using the joint likelihood of the 10 dSphs. The
dashed gray line represents the thermal cross section (3 · 10−26 cm3 s−1) for a purely
s-wave annihilation. Taken from [256].

been calculated in [261] using the Fermi data from the Inner Galaxy, after subtracting
known point sources and emission tracing the Galactic Disk. The Einasto profile would
yield similar (about 10% less stringent) results.

Annihilation Upper limits on cross section ( cm3 s−1)

Channel Galactic Center [261] dSph [256]

bb̄ 8 · 10−27 2 · 10−25

τ+τ− 7 · 10−27 1.2 · 10−24

µ+µ− 7.0 · 10−26 9.4 · 10−24

W+W− 1.0 · 10−26 3 · 10−25

Table 4.1: The upper limits on the annihilation cross section for four individual chan-
nels using the Galactic Center target [261] with NFW profile and the combined analysis
of the dSph satellites [256]. The DM mass has been fixed to 130GeV.
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4.5 A 130 GeV photon line in the NMSSM

In this section, we will show that the NMSSM is able to provide a viable DM candidate,
which annihilates to photons, giving rise to the desired line features. At the same
time, constraints from collider and B-physics are respected and a Standard Model-
like Higgs with mass ∼ 125GeV emerges, as observed by ATLAS [93] and CMS [92]
collaborations. We will also check the consistency of our candidate with the other direct
and indirect DM searches. The following analysis is based on the work we performed
in [2], which preceded the most updated direct detection results from 225 live-days
of XENON100 [44] and LUX [45]. As a consequence, the previous bounds from the
100-live days of the XENON100 experiment [47] will be used instead, but an update
will be provided in the last section, supplemented with a discussion on the possibility
of a small nucleon scattering cross section.

4.5.1 General aspects

The DM particle in this context is the lightest neutralino χ0
1 of the NMSSM. Its de-

composition in the mass basis (3.27) is written as

χ0
1 = N11B̃ +N12W̃

3 +N13H̃
0
d +N14H̃

0
u +N15S̃. (4.11)

We remind that B̃, W̃ 3, H̃0
d , H̃

0
u and S̃ are, respectively, the bino, wino, down-type

higgsino, up-type higgsino and singlino components. Its relic density should fit the
observed value (Ωh2 ≃ 0.11) through annihilations occurred in the early Universe.
However, as we have seen in the previous section, since we would like to explain the
photon line features that arise in the NFW or Einasto DM profile, its relic density
should have been reduced to the observed value through mainly p-wave annihilations.

The neutralino χ0
1 would give rise to photons through loop diagrams, a well-studied

feature in the MSSM. A complete list of these processes in the case of MSSM can be
found, for example, in [222]. Although the cross section of these processes is loop sup-
pressed, a relatively large value is possible if a resonance occurs. When the annihilation
proceeds through an s-channel exchange and the exchanged particle mass approaches
the pole (twice the mass of the neutralino), the process amplitude increases rapidly.
As can be seen in [222], the only case with a particle exchange in s-channel, with ad-
ditionally a mass determined by free parameters (i.e. , we exclude diagrams with an
s-channel Z boson exchange), is the CP-odd Higgs exchange [165, 240, 241]. However,
the resonance would also occur at tree level, giving SM particles with much larger cross
sections. In this way, the relic density is difficult to be kept fixed at the desired value
and, additionally, the SM products would give rise to diffuse γ-ray radiation exceeding
the current bounds.

Turning now to the NMSSM, there are two CP-odd Higgs states instead of the
one unique state in the MSSM. The additional state will give two more classes of
loop diagrams, which are shown in Fig. 4.6. The cross sections of these diagrams can
be found in the App.B. It is possible, one of the two states A1, A2 to be almost
completely singlet-like, avoiding in this manner SM annihilation products at tree level.
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Figure 4.6: The NMSSM specific loop diagrams of neutralino pair annihilation that
give rise to a pair of photons through an s-channel CP-odd Higgs exchange. The one on
the left contains sfermions or fermions in the loop, while the one on the right proceeds
with charginos χ+/− in the loop.

Henceforth, we will denote this state as AS. The dominant diagram of neutralino pair
annihilation in case the mass of AS (mAS

) is about twice the neutralino mass is the
one shown on the right of Fig. 4.6. The singlet nature of AS suppresses the couplings
to fermions (and sfermions) and, subsequently, the cross section of the other diagram
(on the left panel of Fig. 4.6).

We recall here some features of the foregoing analysis of the NMSSM Higgs sector.
First we remind that, after using the minimization equations of the Higgs potential,
the Higgs sector can be described (at tree level) by the six parameters

λ , κ , Aλ , Aκ , µeff , tan β ≡ vu
vd

. (4.12)

The neutral CP-even Higgs sector contains 3 states Hi, which are mixtures of the
CP-even components of the superfields Ĥu, Ĥd and Ŝ. Their masses are described by
a 3 × 3 mass matrix M2

H ij given by (3.15), where the dominant contribution to the
singlet-like component M2

H 33 reads [119,120]

M2
H 33 ∼ κs (Aκ + 4κs) . (4.13)

The neutral CP-odd Higgs sector contains 2 physical states Ai, whose masses are de-
scribed by a 2×2 mass matrixM2

A ij (3.17), whereM2
A 11 corresponds to the MSSM-like

CP-odd Higgs mass squared. The dominant contributions to the singlet-like component
M2

A 22 and the singlet-doublet mixing term M2
A 12 are given by

M2
A 22 ∼ −3κsAκ , M2

A 12 ∼ λ(Aλ − 2κs)
√
v2u + v2d , (4.14)

respectively [119,120].

4.5.2 Implementation for the Fermi Line

Now we turn to the masses and couplings of the particles and the corresponding
regions in the NMSSM parameter space, which have all the desired phenomenolog-
ical properties. First we consider the dominantly singlet-like CP-odd Higgs state
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AS. For a sufficiently large χ0
1 pair annihilation cross section into two photons (and

Eγ =Mχ0
1
∼ 130GeV), we need

MAS
∼ 2Mχ0

1
∼ 260GeV , (4.15)

which can be achieved by appropriate values of −3κsAκ. As it has been already
pointed out, the SU(2)L doublet admixture of AS must be small. From the second of
Eqs. (4.14) the mixing of AS with the MSSM-like doublet is small for

Aλ ≈ 2κs . (4.16)

Next we consider the DM particle χ0
1. It would have a large singlino component for

small 2κs. However, from Eq. (4.13) and the first of Eqs. (4.14) one can derive

(2κs)2 ∼ M2
H 33 +

1

3
M2

AS
; (4.17)

from MAS
∼ 260GeV and M2

H 33 > 0 it follows that 2κs cannot be small. Hence,
assuming M1 <∼ M2/2 (assuming universal gaugino masses at the GUT scale), it fol-
lows that χ0

1 has dominant bino and higgsino components. A priori large higgsino
components seem desirable, given the required coupling of χ0

1 to AS in Fig. 4.6: This

coupling is induced by the first term λŜĤu · Ĥd in the superpotential (3.1), which

leads to a Yukawa coupling λASH̃
0
uH̃

0
d . Likewise, the coupling of AS to the charginos

χ± originates from the higgsino components H̃+
u , H̃

−
d of χ± and the Yukawa coupling

λASH̃
+
u H̃

−
d .

However, too large higgsino components of χ0
1 imply again a too small relic density;

diagrams with charginos and neutralinos in the t-channel (and W+W− or ZZ in the
final state), CP-even Higgs bosons in the s-channel etc. would lead to a too large pair
annihilation cross section of χ0

1. Hence we end up with a dominantly bino-like χ0
1, but

with non-zero (non-negligible) higgsino components. Its mass of 130 GeV has to follow
from appropriate values of M1 and µeff, with M1 < µeff.

Finally, we require a SM-like CP-even Higgs boson HSM with a mass MHSM
near

125GeV. It has been known since a long time that the SM-like CP-even Higgs bo-
son can be heavier in the NMSSM compared to the MSSM due to the NMSSM-
specific coupling λSHuHd [119, 120, 123–126], provided λ is large and tan β is rela-
tively small. Subsequently we choose corresponding values of λ and tan β such that
MHSM

∼ 125GeV [127–137]. We find that the above properties in the neutralino
and CP-odd Higgs sector imply that HSM is the lightest CP-even Higgs state; the
singlet-like CP-even Higgs state has a mass >∼ 200GeV. The scenario with a lightest
singlet-like Higgs state and a next-to-lightest SM-like Higgs state (allowing for an en-
hanced branching ratio into γγ [129,131,133,134]) seems difficult to realize. Herewith
we have sketched the interesting regions in the parameter space in (4.12).

4.5.3 Constraints from direct DM searches

An open question remains whether the DM particle can comply with the constraints
from XENON100 on its spin-independent detection cross section: χ0

1-nucleon scattering
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is induced dominantly by HSM -exchange in the t-channel [262], and the HSM -χ0
1-χ

0
1

vertex is proportional to the product of the bino- and higgsino-components of χ0
1 (from

g1× bino × Higgs × higgsino terms in the Lagrangian, where g1 is the U(1)B gauge
coupling). This issue will be studied below.

We have scanned the parameter space of the general NMSSM with help of the
NMSSMTools package [263, 264], supplemented with suitably modified formulas for
the cross sections for χ0

1χ
0
1 → γγ (and for χ0

1χ
0
1 → Zγ) from [222, 224] (see App.B).

MicrOmegas [151, 159, 265] is used for the calculation of the DM relic density and
direct detection cross sections. For the latter we have to specify the strange quark
content of the nucleons, i.e. the relevant sigma terms. We use the most recent values
from [161] with, to be conservative, a value for σπN near the lower end of the 1σ error
bars: σπN = 40MeV, σ0 = 39MeV.

For the soft SUSY breaking terms we made the following choices:

• Squark masses of 1.5TeV, except for the left-handed squarks of the 3rd genera-
tion (1TeV) and the right-handed top squark (300GeV). The latter values are
motivated by universal soft scalar masses at the GUT scale [135], and alleviate
LHC constraints from direct SUSY searches due to the more complicated squark
and gluino decay cascades involving the light stops.

• Trilinear soft susy breaking terms At = Ab = −1.1TeV.

• Slepton masses in the 140 − 500GeV range such that the SUSY contributions
to the anomalous muon magnetic moment are sufficiently large (inspite of low
values of tan β), while slepton exchange in the t-channel of the pair annihilation
cross section of χ0

1 does not imply a too small relic density.

• Whereas we vary M1 in the 140− 160GeV range (see below), M2 and the gluino
mass M3 are kept fixed at M2 = 300GeV, M3 = 800GeV for simplicity.

• Finally we use 173.1GeV for the top quark pole mass.

Subsequently we impose the following phenomenological constraints:

• Mχ0
1
= 129− 131GeV and 〈σv〉(χ0

1χ
0
1 → γγ) >∼ 10−27 cm3 s−1 in order to obtain

a photon line in agreement with the excess found in [211,212].

• Upper bounds on annihilation cross sections intoW+W−, ZZ, bb̄ and τ τ̄ channels
from the Fermi-LAT collaboration [253,256] (see also [260,261]), as well as bounds
from PAMELA on the antiproton flux [266]. For the determination of these cross
sections/fluxes we use micrOMEGAs2.4 [267].

• A relic density complying with the WMAP / Planck bound Ωh2 = 0.1120±0.011
[21] (with 2σ error bars).

• A SM-like Higgs boson withMHSM
= 124−127 GeV, as it was confirmed recently

by the ATLAS and CMS collaborations [92, 93].
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Figure 4.7: σ(p)SI as function of M1 for a sample of points satisfying all other phe-
nomenological constraints as indicated in the text. The horizontal line indicates the
previous bound from XENON100 [47] for a 130GeV DM particle, which holds for all
points shown.

• Constraints from B-physics as implemented in NMSSMTools (which have actually
no impact for the low values of tan β considered here).

• A sufficiently large SUSY contribution ∆aµ to the muon anomalous magnetic
moment as implemented in NMSSMTools.

• Constraints from the absence of Landau singularities of the running Yukawa
couplings below the GUT scale, and the absence of unphysical global minima of
the Higgs potential.

We have found corresponding points in the NMSSM parameter space, both below
and slightly above the previous XENON100 bound [47] on the spin-independent DM
– proton cross section of σ(p)SI <∼ 1.2 × 10−8 pb for Mχ0

1
∼ 130GeV [47]. In Fig.

4.7 we show σ(p)SI as function of M1 for a sample of such points, where we varied
the parameters in (4.12) in the range λ = 0.6 − 0.615, κ = 0.326 − 0.329, Aλ =
240− 400GeV, Aκ = −130− (−60)GeV, µeff = 230− 445GeV, tan β = 1.68− 1.82.

4.5.4 Final Remarks

In Table 4.2 we show the details (parameters, masses and relevant observables) for a
sample point with M1 = 150GeV. The couplings of H1 ≡ HSM to quarks, leptons,
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Parameters

λ 0.61

κ 0.328

Aλ 267

Aκ -114.1

tan β 1.8

µeff 269

M1 150

left-h. slepton masses 150

right-h. slepton masses 160

Ae = Aµ = Aτ 500

Sparticle masses

mg̃ 971

〈mq̃〉 1530

mt̃1 204

mt̃2 1034

mb̃1
1005

mµ̃L
154

Mχ0
1

129.6

Mχ0
2

217

Mχ0
3

287

Mχ0
4

309

Mχ0
5

376

Mχ±

1
210

Mχ±

2
370

Higgs masses

MH1
(=MHSM

) 124.3

MH2
256

MH3
519

MA1
(=MAS

) 258.9

Rbb
AS

3× 10−3

MA2
515

MH± 511

Components of χ0
1

N2
11 0.826

N2
12 0.026

N2
13 0.077

N2
14 0.065

N2
15 0.009

Observables

Ωh2 0.11

σ(p)SI [10−8 pb] 1.21

〈σv〉(χ0
1χ

0
1 → γγ) [10−27cm3 s−1] 1.1

〈σv〉(χ0
1χ

0
1 → Zγ) [10−27cm3 s−1] 0.8

〈σv〉(χ0
1χ

0
1 → WW ) [10−27cm3 s−1] 3.46

〈σv〉(χ0
1χ

0
1 → ZZ) [10−27cm3 s−1] 0.26

〈σv〉(χ0
1χ

0
1 → bb̄) [10−27cm3 s−1] 0.60

〈σv〉(χ0
1χ

0
1 → τ τ̄) [10−27cm3 s−1] 0.09

∆aµ [10−10] 6.5± 3.0

Table 4.2: Properties of a sample point with M1 = 150GeV. Dimensionful parameters
are given in GeV. Rbb

AS
denotes the coupling of AS to b-quarks normalized to the one

of a SM-like Higgs boson. The components of χ0
1 are defined in Eq. (4.11). The value

of ∆aµ includes theoretical error bars.

electroweak gauge bosons, gluons and photons are SM-like within ∼ 5%. Rbb
AS

denotes
the coupling of AS to b-quarks normalized to the one of a SM-like Higgs boson; its
small value underlines its singlet-like nature.
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We begin with a comment concerning the relic density. As we have already dis-
cussed, the relic density should be determined by p-wave annihilations, in order to
comply with the diffuse γ-ray bounds. We remind (see, e.g., [268]) that annihilations
through a CP-odd Higgs exchange is both s- and p-wave. The contribution of the neu-
tralino annihilation to photons to the total relic density is small (smaller than about
10%), since the cross section is about one order of magnitude smaller that the thermal
cross section, while the singlet-like nature of the lightest pseudoscalar suppresses the
tree level annihilation through s-channel exchange. However, the s-channel CP-even
Higgs exchange is exclusively p-wave. As a consequence, in the majority of the points
in Fig. 4.7, the correct relic density is obtained through a resonance of theH2. However,
this resonance does not have to be narrow and it can be easily present.

The following remarks are also in order: The larger M1, the smaller one has to
choose µeff in order to maintain Mχ0

1
∼ 130GeV. It follows that, for larger M1, the

higgsino component of χ0
1 increases leading to a larger χ0

1χ
0
1 annihilation cross section.

Hence, for too large M1, the relic density falls below the WMAP bound.

On the other hand, for smaller M1 one has to choose larger values for µeff implying
a smaller higgsino component of χ0

1, which explains the decrease of σ(p)SI in Fig. 4.7.
However, simultaneously, the coupling of AS to χ0

1 decreases as well. As a consequence,
the mass MAS

of AS has to be closer and closer to the pole 2Mχ0
1
in order to obtain

σ(χ0
1χ

0
1 → γγ) > 10−27cm3 s−1. In order to clarify the required tuning, we show

σ(χ0
1χ

0
1 → γγ) in Fig. 4.8 as function of MAS

for the point listed in Table 4.2. (Note
that the finite width Γ(AS) ∼ 1.6 keV, dominated by AS → γγ, is not visible in Fig.
4.8. Due to the small couplings of AS to quarks and leptons, the contributions of AS

in the s-channel to the annihilation cross sections into bb̄ and τ τ̄ final states are well
below the Fermi-LAT bounds. The annihilation cross sections into W+W− and ZZ
originate from the second CP-even Higgs boson in the s-channel. The antiproton flux
has a maximum of ∼ 2.47 × 10−4(GeVm2 s sr)−1 for an energy of ∼ 2 GeV, which is
well below the PAMELA bound.)

We see that σ(χ0
1χ

0
1 → γγ) is larger than 10−27 cm3 s−1 only within a ∼ 0.7GeV

wide window of MAS
. This required tuning becomes worse for lower values of M1, and

it is the price to pay (in this region of the parameter space) for the stronger latest
constraint on σ(p)SI from LUX. (On the other hand, modifications of the present best
estimates for the Higgs-nucleon coupling and/or the local DM density could alleviate
the present constraints from direct detection.)

Finally we should add that diagrams similar to Fig. 4.6, but with one photon re-
placed by a Z boson, contribute to σ(χ0

1χ
0
1 → Zγ) leading to an additional photon

line with, for Mχ0
1
∼ 130GeV, Eγ ∼ 114GeV. For the present scenario we find

σ(χ0
1χ

0
1 → Zγ) ∼ 75% × σ(χ0

1χ
0
1 → γγ). Such an additional line would be compat-

ible with the structure observed in [213]. In any case, additional lines—also from
σ(χ0

1χ
0
1 → Hγ) or interpreting the 130GeV line as due to χ0

1χ
0
1 → Zγ—can be inter-

esting checks of such scenarios in the future [251].



4.5.5 Update for the latest direct detection constraints 77

258 258,5 259 259,5 260 260,5

M
A

S

 [GeV]

1e-28

1e-27

1e-26

1e-25

1e-24

σ(χ
1

0
χ

1

0
->γγ)  [cm

3
s

-1
]

Figure 4.8: σ(χ0
1χ

0
1 → γγ) as function of MAS

for the point listed in Table 4.2.

4.5.5 Update for the latest direct detection constraints

The negative DM search results from the LUX detector resulted in much stringent
upper bounds on the WIMP–nucleon scalar scattering cross section [44], almost one
order of magnitude lower than the constraint [47] used in the above analysis. For a
WIMP mass of ∼ 130GeV, the new upper limit is σSI <∼ 2 ·10−9 pb [45]. Applying this
limit to the points of Fig. 4.7, we can check that only few points survive, near the lower
end of the bino massM1 (∼ 140GeV). As we have already explained, such small values
ofM1 lead to a mostly bino LSP with a reduced coupling to the singlet pseudoscalar As.
Hence, although these few points respect the direct detection constraints, a strong fine-
tuning is necessary in order that the annihilation cross section to photons is sufficiently
large. In this section, we are going to check whether the NMSSM is able to provide
a neutralino LSP with a much smaller scattering cross section with nucleons and also
with the desired annihilation cross section to photons applying a “reasonable” fine-
tuning (respecting, at the same time, all the phenomenological constraints set in the
previous sections).

In order to reduce the spin-independent scattering cross section σSI
p , we will use a

MSSM approximation. We will see that this approximation is working in this context,
since the lightest neutralino has a very small singlino component, as it was explained
previously, and additionally we can approximate two of the three CP-even Higgs mass
eigenstates as MSSM-like. In the configuration of the parameter space that we are
going to establish, the second eigenstate is mostly singlet-like (this is also true for the
point of Table 4.2).

As it has been pointed out in [269] (see also [270, 271]) for the MSSM case, small
values of σSI

p can be obtained when µ and M1 + µ sin 2β have opposite signs.1 Below

1This fact has been already used in [272] in order to explain the Fermi line in the NMSSM, using
negative values for µeff. However, in this paper, non-perturbativity at the GUT scale was not an issue,



78 A possible indirect indication for Dark Matter

we explain why this happens.
We recall that the spin-independent cross section depends on the effective couplings

aSId and aSIu to down- and up-type quarks, respectively, given by Eqs. (3.40), which we
rewrite here:

aSId =
3∑

i=1

1

m2
Hi

Cd
i Cχ0

1
χ0
1
Hi
, aSIu =

3∑

i=1

1

m2
Hi

Cu
i Cχ0

1
χ0
1
Hi
. (4.18)

We will express these couplings in the MSSM limit; i.e. we have to calculate the cou-
plings Cd,u

i and Cχ0
1
χ0
1
Hi
, given, respectively, by Eqs. (3.41) and (3.42), in the limit

N15 → 0 and for two dominantly doublet-like Higgs scalars. We denote these scalars
by h and H (with h the lightest one), assuming to correspond to H1 and H2, respec-
tively. Then, these two mass eigenstates can be obtained by a rotation by an angle α.
Therefore, the MSSM limit implies S11 → − sinα, S22 → sinα and S12 = S21 → cosα.
Moreover, one can prove a relation between the angles α and β [110,274]:

cos2(β − α) =
m2

h

m2
A

m2
Z −m2

h

m2
H −m2

h

, (4.19)

with A the doublet-like pseudoscalar. Since the doublet pseudoscalar is expected to be
much heavier than the SM-like Higgs h and, also, the difference between the masses of
h and H is much larger than the mass difference of the Z boson and h, we are allowed
to assume cos2(β − α) ≪ 1. Hence,

sinα ≃ cos β, cosα ≃ − sin β. (4.20)

Then, Eqs. (3.41) become2

Cd
h = − g2 sinα

2MW cos β
≃ − g2

2MW

, Cu
h =

g2 cosα

2MW sin β
≃ − g2

2MW

, (4.21a)

Cd
H = − g2 cosα

2MW cos β
≃ − g2

2MW

tan β, Cu
H =

g2 sinα

2MW sin β
≃ g2

2MW

cot β. (4.21b)

We see that all of them but one are negative. However, we are going to neglect the
positive coupling Cu

H for a couple of reasons: since tan β > 1, the coupling to down-
type quarks is expected larger (in absolute value) and moreover the up quark form
factors are much smaller than the ones of the down-type quarks (notably, the strange
quark). We turn now to Eqs. (3.42), which give

Cχ0
1
χ0
1
h = −(g1N11 − g2N12)(N13 cos β −N14 sin β) (4.22a)

Cχ0
1
χ0
1
H = −(g1N11 − g2N12)(N13 sin β +N14 cos β) (4.22b)

since this paper refers to what has been denoted in the literature as λ-SUSY scenarios [127,273]. Here,
we will not allow for the appearance of Landau pole below the GUT scale.

2We write, instead, the reduced couplings to the quark masses, since the final result would be
independent of them.
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We will use, subsequently, an approximate diagonalization of the (MSSM) neu-
tralino mass matrix, obtained in [275] for the limits |M2 ± µ| ≫ MZ and |M ′ ± µ| ≫
MZ , with M

′ = 5
3
tan2 θwM2 (θw is the weak mixing angle). The two expressions that

we need read
N13 ≃ − g1√

2

v

M ′2 − µ2
(M1 cos β + µ sin β), (4.23a)

N14 ≃
g1√
2

v

M ′2 − µ2
(M1 sin β + µ cos β). (4.23b)

Plugging them into Eqs. (4.22), we obtain

Cχ0
1
χ0
1
h ∝M1 + µ sin 2β, Cχ0

1
χ0
1
H ∝ −µ cos 2β = µ| cos 2β|, (4.24)

sharing the same positive proportionality factor. Substituting Eqs. (4.24) and (4.21)
into (4.18), we can see that the effective couplings aSI are proportional to the expression
A(M1 + µ sin 2β) +Bµ, with A and B some negative coefficients (due to the negative
signs in (4.21)) of comparable order of magnitude. IfM1+µ sin 2β and µ have opposite
signs, a cancellation would occur and the resulting scattering cross section would be
suppressed.

After this interlude, we continue with the parameter space of NMSSM, searching
for the required properties for a viable DM with small direct detection cross section
and large annihilation cross section to two photons. We will assume positive values for
µeff, and negative for the expression M1+µeff sin 2β, i.e. M1 < 0 and |M1| < µeff sin 2β
(sin 2β > 0 for tan β > 1). We note that similar results can be obtained using µeff < 0
and M1 > 0, flipping also the signs of Aλ and Aκ to avoid negative squared sfermion
masses. In the following, we are going to describe how one can obtain valid points of
the parameter space obeying the requirements mentioned in Sec. 4.5.3, using a negative
bino mass.

Compared to the case of a positive bino mass, the flip of its sign will lead to an
LSP with a much larger bino component. In order to increase its higgsino components,
the value of µeff has to be closer to |M1|, but still with µeff somewhat larger, in order
to avoid a very small relic density. Even then, the LSP mass is still close to M1 for
relatively small values of tan β, hence |M1| >∼ 130GeV. Such small values for M1 in
the previous configuration led to a very strong “fine-tuning”. However, now we are
going to further increase the higgsino components in order to relax it. The correct relic
density will be obtained by the larger higgsino component of the LSP and not by a
resonance with a CP-even Higgs or co-annihilations with sleptons. The larger higgsino
component will also lead to a larger σSI compared to a mostly bino LSP, however the
cancellation that occurs with the negative bino mass will keep, as we will see, its value
well below the LUX bound.

We give a sample point in Table 4.3 to make the description more concrete. We
fix for simplicity both the left- and right-handed sleptons mass to 250GeV and all the
soft squark masses to 1.5TeV. We have to note that using negative M1, the theory
becomes easily non-perturbative. In order to avoid a Landau pole below the GUT
scale, we have to use even lower values for the parameters λ and κ. This fact, along
with the small value of µeff, reduces the mass of the lightest Higgs. In order to obtain a
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SM-like Higgs with mass ∼ 125GeV, a large value of the trilinear soft SUSY breaking
term At has to be used. The rest of the parameters will be fixed in order to satisfy the
phenomenological constraints.

Parameters

λ 0.539 M1 −136

κ 0.492 M2 −300

Aλ 270 M3 −800

Aκ −130.6 At −2500

tan β 3.35 Ab −1000

µeff 150.5 Ae, Aµ, Aτ 500

Sparticle masses

Mχ0
1

−129.2 mg̃ −951

Mχ0
2

157.6 Mχ±

1
−155.7

Mχ0
3

−170.1 Mχ±

2
328.5

Mχ0
4

309.2

Mχ0
5

−328.5

Higgs masses

mH1
(= mHSM

) 124.3

mH2
220.4

mH3
479.9

mA1
(= mAS

) 257.9

mA2
468.8

mH± 466.9

Components of χ0
1

N2
11 0.777

N2
12 0.001

N2
13 0.168

N2
14 0.043

N2
15 0.011

Observables

(×10−27 cm3 s−1)

Ωh2 0.12 〈σv〉WW 6.52 〈σv〉γγ 1.1

σSI
p [pb] 4.57 · 10−10 〈σv〉ZZ 3.72 〈σv〉Zγ 0.8

σSD
p [pb] 6.2 · 10−4 〈σv〉bb̄ 0.02

σSD
n [pb] 4.8 · 10−4 〈σv〉τ τ̄ 0.11

Table 4.3: A sample point that satisfies all the phenomenological constraints, along
with the latest LUX [45] upper limis. Dimensionful parameters are given in GeV,
unless otherwise stated. All the soft slepton masses has been taken equal to 250GeV
and the squark masses to 1.5TeV. The components of χ0

1 are defined in Eq. (4.11).

Some remarks are in order. First, the scalar scattering cross section is indeed low,
about 1 order of magnitude below the LUX bound, even with relatively large higgsino
components. The smaller bino component improves the fine-tuning; the desired anni-
hilation cross section to photons is achieved with mAS

slightly further from the pole
compared to the sample point of Table 4.2. The relic density is fitted to the observed
value by the correct amount of the LSP higgsino component, thus the main annihila-
tion channels are those with gauge bosons as final states. As a consequence, the cross
section of the present-day neutralino annihilation to W+W− and ZZ is also large,
but below the experimental limits, as it can be checked comparing the values of the
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Tables 4.1 and 4.3. This comes from the fact that the neutralino annihilation to gauge
bosons that determined the relic density was partly p-wave, through an s-channel CP-
even Higgs exchange. The lightest pseudoscalar is again almost totally singlet-like,
with reduced coupling to b quarks for the sample point Rbb

A1
≃ −4 · 10−3. A last thing

we have to notice is the larger value of the spin-dependent scattering cross section to
nucleons, however still well below the current limits [276,277].

4.6 Discussion

We have shown that the simplest version of the NMSSM (with a scale invariant super-
potential) could explain a 130GeV photon line from DM annihilation with σ(χ0

1χ
0
1 →

γγ) > 10−27 cm3 s−1 and, simultaneously, a 125GeV SM-like Higgs boson. No addi-
tional fields or couplings need to be introduced. All constraints from WMAP on the
relic density, from XENON100 and LUX on the direct detection cross section, from
colliders and from precision observables can be satisfied.

However, the mass MAS
of the singlet-like CP-odd Higgs scalar AS has to satisfy

accidentally MAS
≈ 2Mχ0

1
∼ 260GeV to a precision <∼ 1GeV. We have shown that

this fine-tuning can be relaxed using negative gaugino masses, following [269, 272],
reducing at the same time the direct detection cross section.

Unfortunately a direct verification of this scenario at colliders through searches for
a 130GeV photon line seems hopeless: Due to the singlet-like nature of AS, production
cross sections for this state (as well as decay widths of sparticles or other Higgs bosons
into this state) are too small. Only the mass of 130GeV of the LSP χ0

1 should fit the
data, once searches for supersymmetry turn out to be successful. Of course, first of all
the present hints for a 130GeV photon line [210–213] need to be confirmed.
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Part III

Asymmetric Dark Matter





CHAPTER 5

ASYMMETRIC DM AND UPPER

BOUNDS ON ITS SELF-ANNIHILATION

So far, we have assumed that the present day density of DM is a relic of WIMP
self-annihilation processes which occurred in the early Universe, through the thermal
mechanism described in Sec. 1.4. Although this mechanism predicts that a WIMP
would have “miraculously” a relic density with roughly the correct order of magni-
tude, its value is very sensitive to the WIMP self-annihilation cross section and the
WIMP mass, and varies over many orders of magnitude as function of the unknown
parameters in the models beyond the SM (BSM) attempting to explain the present
DM relic density. Moreover, this mechanism is not able to address another important
fact. In the cosmological Standard Model, the present day baryon density ΩB and the
DM relic density ΩDM are of similar order of magnitude, ΩDM/ΩB ≈ 5.4 (see Sec.
1.2.3). According to the thermal mechanism, the origin of ΩDM would be completely
disconnected from ΩB, which is conventionally attributed to a baryon asymmetry ηB
originating from CP violating processes in the early Universe. Their similar sizes result,
then, from a numerical coincidence.

Asymmetric DM (ADM) (see [278–282] for some early discussions, and [283, 284]
for reviews) is an attempt to explain the proximity of ΩDM and ΩB. The particles X
forming the DM are assumed to be distinct from their antiparticles X̄, and to carry a
certain quantum number. The corresponding charge density of the Universe is assumed
to be related to baryon number through equilibrium processes in the early hot Universe,
such that the asymmetries ηB and ηX become related. If the X − X̄ annihilation rate
σXX̄ is sufficiently large, the resulting X relic density will be determined exclusively by
the asymmetry ηX . Then one obtains ΩDM ≃ mXηX

mpηB
ΩB (where mp is the proton mass,

and mX the mass of the DM X particles), which gives the correct order if ηX ≈ ηB.

In this chapter we aim at the calculation of the current DM density in the case that
this is not determined by the thermal mechanism, but it is due to an asymmetry. In the
next section we discuss the role of the chemical potential for the number densities of
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particles and antiparticles and we will see that a particle may carry an asymmetry only
when it is characterized by a conserved quantum number. Subsequently, we discuss the
importance of the DM particle or antiparticle self-annihilation (XX or X̄X̄) for the
determination of the final density. This analysis is based on [1]. A general discussion on
this subject is presented on Sec. 5.2. In Sec. 5.3, we establish the Boltzmann equation
for the X − X̄ asymmetry for non-vanishing self-annihilation cross section σXX , and
clarify the assumptions allowing for its model-independent integration. Our main
results are upper bounds on this cross section, depending on the tolerated dilution of
the initial X − X̄ asymmetry. In Sec. 5.4, we study the consequences of this result for
sneutrino and higgsino ADM scenarios and, subsequently, we consider the model with
a term X2LH/Λ in the superpotential introduced in [285], where the expression for
σXX is different from the previous scenarios. A summary and conclusions are given in
Sec. 5.5.

5.1 Chemical potential and number densities

We begin by reminding the thermal equilibrium distributions of a particle species i

fi =

[
exp

(
Ei − µi

T

)
± 1

]−1

. (5.1)

The “plus” sign corresponds to fermions (Fermi-Dirac statistics) and the “minus” to
bosons (Bose-Einstein statistics). The chemical potential is denoted by µ. We shall
see its significance in the following.

We consider a process 12 ↔ 34 in equilibrium. As always, the evolution of the
phase-space densities of the species involved in the process is governed by the Boltz-
mann equation (1.25). If we neglect, for the moment, the expansion of the Universe,
the equilibrium of this process requires that the densities should remain constant.
Therefore, the collision term (1.29) should vanish. By examining (1.29), we see that
this requires f1f2(1± f3)(1± f4)− f3f4(1± f1)(1± f2) = 0 or

f1
1± f1

f2
1± f2

=
f3

1± f3

f4
1± f4

. (5.2)

This condition is satisfied for both Bose-Einstein and Fermi-Dirac distributions (5.1),
if the following relation among the chemical potentials holds

µ1 + µ2 = µ3 + µ4. (5.3)

The above conclusion can be generalized in an obvious way for reactions involving more
than two particles.

The existence of the chemical potential is always related to the conservation of a
quantum number. For example, consider the bremsstrahlung reaction e−p ↔ e−pγ.
The condition (5.3) (in a generalized form) implies that the chemical potential of the
photons vanishes, µγ = 0. In general, the chemical potential of any species whose
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production is not constrained by the conservation of a quantum number must vanish
in thermal equilibrium.

Another important fact is the relation between the chemical potentials of particle
and antiparticles. The particle-antiparticle annihilation in equilibrium implies opposite
chemical potentials for the two species. For example, this fact becomes obvious in an
equilibrium lepton–antilepton annihilation to two photons. Therefore, in general

µX = −µX̄ . (5.4)

The particle density for a species i can be obtained from the distribution functions
(5.1) through integration over momenta as neq

i = gi
(2π)3

∫
d3pfi(~p) – with gi the internal

degrees of freedom –, which can be transformed using E/T → y to (omitting the
indices i)

neq =
gT 3

2π2

∫ ∞

x

dy
y
√
y2 − x2

ey e−µ/T ± 1
. (5.5)

(As usual, x ≡ m/T .) This integral can be performed analytically only under some
assumptions. First, we note that, in principle, the quantity µ/T has to be extremely
small1 (µ/T ∼ 10−9). Additionally, in the current context, we are mainly interested in
non-relativistic particles. In this case e(E−µ)/T ≫ 1, and both Fermi-Dirac and Bose-
Einstein statistics (5.1) are degenerate to Maxwell-Boltzmann statistics, a justified
approximation for x >∼ 3. In this case, the integration can be performed by means
of the modified Bessel function of the second kind, K2. Assuming a particle X with
chemical potential µ and its antiparticle X̄ (which has, as we mentioned, opposite
chemical potential −µ), their number densities, using Maxwell-Boltzmann statistics,
are

neq
X =

T

2π2
gm2K2(m/T )e

µ/T , neq

X̄
=

T

2π2
gm2K2(m/T )e

−µ/T . (5.6)

Concerning now the asymmetry – or, in other words, the (conserved) charge den-
sity – defined by aeq ≡ neq

X −neq

X̄
, it will be given, still for Maxwell-Boltzmann statistics,

just by the difference of Eqs. (5.6),

aeq =
T

π2
gm2K2(m/T ) sinh

(µ
T

)
≃ T

π2
gm2K2(m/T )

(µ
T

)
. (5.7)

In the general case of Fermi-Dirac or Bose-Einstein statistics, this quantity would be
given, using Eq. (5.5), by2

aeq =
gT 3

6

(µ
T

)
k(x), (5.8)

where k(x) is the integral

k(x) =
6

π2

∫ ∞

x

dy
y
√
y2 − x2ey

(ey ± 1)2
. (5.9)

1Since, as we shall see below, the particle asymmetry is proportional to this quantity.
2It is useful to keep explicitly the term µ/T instead of µ, since this quantity is conserved during

an adiabatic procedure [286].
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Again, the “plus” sign holds for fermions and the “minus” for bosons. This integral
has been defined in such a way that, in the ultrarelativistic limit x ≪ 1, it takes the
value 1 for fermions and 2 for bosons, while in the opposite limit x≫ 1 it vanishes in
both cases3.

5.2 Asymmetric DM self-annihilation

In supersymmetric scenarios, the discrete ZN symmetry responsible for the stability
of the particles X is equal to or related to R-parity. For instance, sneutrinos (left-
handed or right-handed, mixtures thereof or mixtures with singlets) have been proposed
as ADM [287–292]. Singlet extensions of the MSSM have been considered in [285,
293]. Recently, higgsinos have been suggested in [294], since they possess a conserved
quantum number before the electroweak phase transition. In all these cases, the dark
matter asymmetry can be related to the baryon and/or lepton asymmetry through
sphaleron, gauge and Yukawa induced processes (see [295] and references therein). As
long as the baryon/lepton asymmetry is generated at temperatures above the freeze
out of the processes which transfer it to the ADM, this mechanism is independent from
the precise CP and baryon/lepton number violating origin of the baryon asymmetry.

However, typically the discrete ZN symmetry responsible for the stability of the
particles X does not forbid X −X self-annihilation processes, through the same cou-
plings which transfer the baryon or lepton asymmetry to the X particles. Once X−X
self-annihilation processes are allowed, these processes can wash out the asymmetry
ηX .

A rough condition for the absence of a wash-out is to require that, at temperatures
of the order of the DM mass, the rate of these processes is below the Hubble expansion
rate. Subsequently we study this phenomenon quantitatively in the form of the coupled
set of Boltzmann equations for the symmetric and antisymmetric dark matter number
densities. We find that the upper bounds on the self-annihilation cross section σXX are
extremely strong if one wishes to obtain a final X number density which is dominated
by its asymmetry ηX such that ΩDM is related to ΩB as described in the introduction
of the current chapter.

Interestingly it turns out that, under typical assumptions as a large X − X̄ anni-
hilation rate, a fairly model independent upper bound on σXX (depending in a simple
way on MX and the s-wave or p-wave nature of the X −X annihilation process) can
be derived from the only condition that the X asymmetry is not reduced by a large
amount. The determination of this upper bound is the main result of the current
chapter. Subsequently, we apply it to sneutrino and higgsino ADM scenarios, and to
the singlet extension of the MSSM proposed in [285] (in an approach similar to, but
slightly different from [296]).

Our approach is based on the Boltzmann equations for the X and X̄ number
densities in the presence of an X−X̄ asymmetry. Boltzmann equations in the presence

3The non-relativistic limit is also described by (5.7), where it is obvious that for m ≫ T the
asymmetry vanishes due to the behavior of the Bessel function K2.
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of asymmetries have been considered previously e.g. in [296–299] where, however, the
X−X annihilation rate σXX was assumed to vanish. We find that even a small X−X
annihilation rate σXX can have a strong (negative) impact on the resulting X − X̄
asymmetry.

5.3 Boltzmann equations for asymmetric DM

We consider a DM particle X and its antiparticle X̄, with a common mass m and
equilibrium number densities differing by a chemical potential µ. Assuming Maxwell-
Boltzmann statistics, the equilibrium number densities are given by Eqs. (5.6). We
assume that the X − X̄ asymmetry has been generated during periods before the one
considered here, through processes (such as sphaleron processes) which have frozen
out. Since we assume that the X − X̄ asymmetry is related to the baryon asymmetry,
µ/T should be very small: µ/T <∼ 10−9.

As usual, it is convenient to introduce number densities per comoving volume,
Y = n/s, with s the entropy density (see Eq. (1.21)). Following the same procedure as
in Sec. 1.4, the Boltzmann equations for YX and YX̄ as functions of x ≡ m/T become

dYX
dx

= −
√

π

45G

g
1/2
∗ m

x2
[
〈σXXv〉

(
Y 2
X − Y eq 2

X

)
+ 〈σXX̄v〉

(
YXYX̄ − Y eq

X Y eq

X̄

)]
, (5.10a)

dYX̄
dx

= −
√

π

45G

g
1/2
∗ m

x2
[
〈σXXv〉

(
Y 2
X̄ − Y eq 2

X̄

)
+ 〈σXX̄v〉

(
YXYX̄ − Y eq

X Y eq

X̄

)]
(5.10b)

where the effective number of degrees of freedom g∗ is given by Eq. (1.39) and we have
assumed that the self-annihilation cross sections satisfy σX̄X̄ = σXX . We remind that
the thermal average of the cross section times velocity 〈σv〉 is given by Eq. (1.45),
which we rewrite here

〈σvMøl〉 =
1

8m4TK2
2(x)

∫ ∞

4m2

ds σ(s)(s− 4m2)
√
sK1(

√
s/T ), (5.11)

with K1, K2 the modified Bessel functions of the first and the second kind, respectively.
In most cases 〈σv〉 can be expanded in powers of the relative velocity of the incoming
particles. Then, the thermal average is approximated by an expansion in powers of
1/x:

〈σv〉 ≃ a+ bx−1 +O
(
x−2
)
, (5.12)

with a and b given by Eq. (1.48).

5.3.1 Qualitative analysis

Before we proceed to the numerical solution of the coupled set of Eqs. (5.10a,5.10b),
we will try to understand the features of these equations intuitively. To this end, it
is useful to consider the difference and the sum of YX and YX̄ defined by A and Z,
respectively:

A = YX − YX̄ , Z = YX + YX̄ . (5.13)
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Their equilibrium expressions can be obtained from Eqs. (5.6) and (1.21) and are given
by

Zeq =
45g

2π4

x2K2(x)

heff(m/x)
cosh

(µ
T

)
, Aeq =

45g

2π4

x2K2(x)

heff(m/x)
sinh

(µ
T

)
. (5.14)

Neglecting terms of O(µ/T )2, these expressions read

Zeq =
45g

2π4

x2K2(x)

heff(m/x)
, Aeq =

µ

T
Zeq . (5.15)

Then the Boltzmann equation for A becomes

dA

dx
= −

√
π

45G

g
1/2
∗ m

x2
〈σXXv〉 (ZA− ZeqAeq) . (5.16)

Concerning the Boltzmann equation for the sum of densities Z, we assume that the self-
annihilation cross section is much smaller than the particle–antiparticle annihilation,
σXX ≪ σXX̄ . Then, we can write

dZ

dx
= −

√
π

45G

g
1/2
∗ m

x2
〈σXX̄v〉

1

2

(
Z2 − A2 − Zeq 2 + Aeq 2

)
. (5.17)

Previously these Boltzmann equations were investigated in [296–299] under the as-
sumption that A remains constant, i.e. that the right hand side of (5.16) vanishes.

If σXX̄ is large enough, the freeze-out temperature is low, and Z ∼ Zeq to a very
good approximation over a long period, and finally Zt→∞ ∼ A up to corrections studied
in [296,299]. This is the desired result leading to a DM relic density determined by A
which, in turn, is supposed to be related to the baryon asymmetry. During the period
where Z ∼ Zeq, (5.16) simplifies to

dA

dx
= −

√
π

45G

g
1/2
∗ m

x2
〈σXXv〉Zeq (A− Aeq) , (5.18)

which can be integrated with the usual initial condition Ain ∼ Aeq for T ∼ m or x ∼ 1,
and a given expression for m〈σXXv〉. Note that it is Ain which is assumed to be related
to the baryon asymmetry.

Eq. (5.18) may be written in the more intuitional form

dA

dx
= −

√
π

45G

g
1/2
∗ m

x2
〈σXXv〉

(µ
T

)−1 (
AAeq − Aeq2

)
. (5.19)

Although Eq. (5.19) does not have the same form as the Boltzmann equation (1.38),
which describes the density evolution of species without asymmetry, it exhibits a similar
behavior. When the asymmetry A differs from its equilibrium value Aeq, the overall
minus sign attracts its value to Aeq. The large factor (µ/T )−1 compensates for the small
values of A and Aeq, and one expects that A freezes out at a freeze-out temperature
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Figure 5.1: The evolution of the equilibrium asymmetry with the variable x = m/T ,
in the approximation of constant entropy degrees of freedom. The black line is the
equilibrium asymmetry using Maxwell-Boltzmann statistics. Fermi-Dirac (green line)
and Bose-Einstein (orange line) asymmetries per comoving volume are also presented,
evaluated using the expression (5.8) divided by the entropy density. The chemical
potential has been chosen in each case so that the initial asymmetry is fixed to 10−11

(in all cases µ/T ∼ 10−9). The horizontal lines indicate R = 0.5 (dashed red) and
R = 0.1 (dotted blue).

Tf = m/xAf determined by the self-annihilation cross section 〈σXXv〉 in a similar way
as the number density of species without asymmetry does.

The final asymmetry A∞ ≡ At→∞ can be approximated by the equilibrium value
of the asymmetry during its freeze-out, A∞ ∼ Aeq(xAf ). However, since Eq. (5.18) is
linear in A, the ratio R ≡ A∞/Ain is independent from Ain and hence independent
from µ/T . The ADM paradigm requires that R is not too small; otherwise A∞ is
sensitive to 〈σXXv〉 as in usual DM scenarios, and ΩDM ≈ ΩB remains a numerical
coincidence.

As we can see in Fig. 5.1, the equilibrium asymmetry falls rapidly. In order that
a sizeable amount of the initial asymmetry survives, the freeze-out of the asymmetry
has to occur rapidly after the particles X, X̄ become non-relativistic. If we require
that at least 10% of the initial asymmetry is maintained, the asymmetry freeze-out
point has to be xAf <∼ 4.7, whereas if this percentage is increased to at least half of the
initial asymmetry, xAf <∼ 2.3. In order to achieve a so early freeze-out, a very small
value of the self-annihilation cross section is required. We will investigate this further
by solving numerically the Boltzmann equations.

5.3.2 Numerical solution

Boltzmann equations belong to the general family of Riccati ordinary differential equa-
tions, quadratic in the unknown function. It is well known that Riccati equations
exhibit a stiff behavior and special solving algorithms have to be used. One can use
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an implicit solver, by means that the solution at each step will depend not only on x
and the value of the unknown function of the previous step, but also on the solution of
the current step itself. Therefore, at each step an algebraic equation has to be solved.
However, since Riccati equations are, additionally, not linear, the convergence is not
guaranteed. In the case of one single Boltzmann equation implicit methods might work
(for example the implicit Adams-Moulton method used in DarkSUSY [300]). However,
for a coupled set of Boltzmann equations, another method has to be applied.

The Rosenbrock method (see, for example, [301]) addresses the problem of con-
vergence by the approximate linearization of the non-linear systems using derivatives.
Actually, we found that the most appropriate algorithm for the solution of (5.10a,5.10b)
is a 4-stage Rosenbrock method with an adaptive step-size. The step-size is fixed at
each step according to the difference of the order 4 and order 3 solutions4. In practice,
in order to control the tolerance, it is better to consider one of Eqs.(5.10) and their
difference.

The dominant dependence on the parameters of the model originates from the
combination m〈σXXv〉 in (5.10), an additional weak dependence on m arises from the
effective number of degrees of freedom in heff(m/x) in (5.15) and in g∗. For these we use
the parametrization given in [302]. Now, R can be computed for any given expression
for m〈σXXv〉. We presume that σXX <∼ 10−5σXX̄ , so that we have Z ≃ Zeq for the
relevant range of x, and the result for R is independent from σXX̄ as it is obvious from
(5.18). Assuming Eq. (5.12), we will consider the two cases

(a) purely s-wave annihilation: 〈σXXv〉 ≃ a and

(b) purely p-wave annihilation: 〈σXXv〉 ≃ b/x,

although in practice one may find a combination of both. The results for R as function
of log (ma) and log (mb) are shown in Fig. 5.2.

We see that within the cases (a) or (b) the dependence on m beyond the one in
m〈σXXv〉 is negligibly small, and we can deduce upper bounds onm〈σXXv〉 as function
of the tolerated reduction R of the asymmetry:

R > 0.5: ma <∼ 5× 10−17 GeV−1 (case (a)), mb <∼ 1× 10−16 GeV−1 (case (b)) ,

R > 0.1: ma <∼ 1× 10−15 GeV−1 (case (a)), mb <∼ 5× 10−15 GeV−1 (case (b)) .

(5.20)

Clearly, if we require only a moderate reduction of the asymmetry A, the freeze-out
temperature TA

f = m/xAf must not be far below m, or xAf must not be too large. (Here
we define xAf as the temperature where the expansion rate of the Universe becomes
larger than the rate of self-annihilation, i.e. H(xAf ) = (neq

X − neq

X̄
)〈σXXv〉(xAf ) which is

solved numerically.) In Fig. 5.3 we show xAf as function of log (ma) and log (mb) and,
indeed, xAf is well below 5 if the first of the conditions (5.20) is satisfied.

4A solution yp is defined as order p if the Taylor series for the exact solution y(x0 + h) and for yp
coincide up to (and including) the term hp.
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Figure 5.2: The ratio R ≡ A∞/Ain of the final asymmetry over the initial asymmetry
as a function of log (ma) or log (ma), with ma or mb in GeV. The solid lines represents
the values of R if 〈σXXv〉 = a, and the dashed lines the values of R if 〈σXXv〉 = b/x.
The color corresponds to the mass of the DM particle, red for m = 10GeV, green for
m = 100GeV and blue for m = 1TeV.

The requirement for a not too large value of xAf and the fact that 〈σXXv〉(xAf ) ∼ ex
A
f

explains why we obtain 〈σXXv〉 ≪ 〈σXX̄v〉; the desired value of xf in case of X − X̄
annihilation is rather of O(20).

5.4 Implications for specific models

In this section we study the implications of the upper bounds on σXX that we have
obtained in the previous section for various models for supersymmetric ADM.

5.4.1 Sneutrino ADM

Left-handed sneutrinos or mixtures of left- and right-handed sneutrinos (or singlets)
have been proposed as ADM in [287–292]. Clearly, left-handed sneutrinos ν̃L can
self-annihilate through processes of the form ν̃L + ν̃L → νL + νL by the exchange
of electroweak gauginos in the t-channel. Electroweak gauginos are the binos with
mass M1, and winos with mass M2. The corresponding expression for 〈σν̃Lν̃Lv〉 can be
obtained from [303], and reads in the limit M1, M2 ≫ m

〈σν̃Lν̃Lv〉 ≃
g42
16π

(
1− 3

2x

)(
tan2 θw
M1

+
1

M2

)2

(5.21)

where g2 is the SU(2)L gauge coupling and θw the weak mixing angle. If one assumes
universal gaugino masses at the GUT scale, M1 and M2 are related by M1 ≃ M2/2
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Figure 5.3: The freeze-out point xAf = m
TA
f

as a function of log (ma) (solid line) and

log (mb) (dotted line).

and, with tan2 θw ≈ 0.3, (5.21) simplifies to

〈σν̃Lν̃Lv〉 ≃
g42
8π

(
1− 3

2x

)
1

M2
2

. (5.22)

From Fig. 5.2, the first term leads to stronger constraints, and applying the conservative
bound R > 0.1 (case (a)) from (5.20) leads to

M2 >∼ 3× 107 GeV×
( m

100 GeV

)1/2
(5.23)

which excludes gaugino masses of the order of the electroweak scale. (Even for such
large gaugino masses the sneutrino-antisneutrino annihilation rate would remain large
due to processes with slepton exchange in the t-channel.)

If the ADM X consists in a mixture of left-handed sneutrinos ν̃L and right-handed
sneutrinos or other electroweak singlets, the result depends on the ν̃L component of X
or the mixing angle sin δ where X = ν̃L sin δ + . . . :

〈σXXv〉 ≃
g42 sin

4 δ

8π

(
1− 3

2x

)
1

M2
2

. (5.24)

Now the same argument leads to

sin2 δ <∼ 3.3× 10−6 × M2√
m · 100 GeV

. (5.25)

Hence, for M2 ≈ m ≈ 100 GeV, sin δ has to be very small independently from con-
straints from direct DM detection experiments – or, for mixing angles sin δ ≈ 1, one is
lead back to (5.23).
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5.4.2 Higgsino ADM

Higgsinos h̃u, h̃d with masses m ∼ 200 − 1000 GeV as ADM were proposed recently
in [294]. Before the electroweak phase transition (where the Higgs vevs develop),
higgsinos can be considered as mass eigenstates. Through sphaleron, gauge and Yukawa
interactions at high temperature, a higgsino asymmetry Ah̃u

∼ Ah̃d
proportional to

the baryon asymmetry is generated [294, 295]. If the higgsinos are the LSPs (lightest
supersymmetric particles) and other sparticles are sufficiently heavy, this asymmetry
could survive until today [294] provided the h̃uh̃u (and h̃dh̃d) self-annihilation rates are
sufficiently small.

However, higgsinos have the same couplings to electroweak gauginos as sneutrinos,
and can again self-annihilate into Hu, Hd (to be considered as eigenstates before the
electroweak phase transition) through t-channel exchange of binos and winos. This
time the scattering process is a p-wave process (case (b) in (5.20)) and we obtain
from [268] (again for M1, M2 ≫ m)

〈σh̃uh̃u
v〉 = 〈σh̃dh̃d

v〉 ≃ 3g42
x8π

(
tan2 θw
M1

+
1

M2

)2

. (5.26)

Applying again the conservative bound R > 0.1 (case (b)) from (5.20) leads to the
same constraint on M2 as in (5.23), which is close to the estimated bound on gaugino
masses given in [294] from the same argument.

5.4.3 The ∆W ∼ XXHL/Λ model

Left-handed sneutrinos and higgsinos as ADM tend to violate bounds on direct DM
detection cross sections (unless mass splittings are introduced leading to inelastic scat-
tering [292, 294]). Moreover, as we have seen in the previous section, constraints from
sufficiently small self-annihilation cross sections are very strong. These constraints
would be alleviated, if the asymmetry is transferred to lighter essentially inert parti-
cles. A simple model of that kind has been proposed in [285], where a gauge singlet
scalar superfield X and a superpotential

∆W =
1

Λ
XXHuLi (5.27)

are introduced. (Here Hu denotes a Higgs superfield, and Li any left-handed lepton
superfield.) This non-renormalizable interaction can originate from integrating out
heavy vector-like sterile neutrinos or electroweak doublets [285] with mass ∼ Λ, typi-
cally >∼ 1TeV. Another singlet chiral superfield X̄ should be introduced to allow for
a supersymmetric Dirac mass term MX for the fermionic components ψXψX̄ , e.g. via
a NMSSM-like singlet S with 〈S〉 6= 0 and a coupling λ′SXX̄ in the superpotential.

ψX̄ , ψX would carry lepton number ±1, respectively. The superpotential (5.27)
breaks the usual R parity, but preserves a Z4 symmetry which allows for the decay
of the usual LSP into ψXψX [285]. At high temperature where the processes induced
by (5.27) are in equilibrium together with sphaleron, gauge and Yukawa interactions,
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these imply an asymmetry AX of ∼ 35% of the baryon asymmetry [285,296], the precise
value depending on whether top quarks and squarks are still in equilibrium when the
interactions from (5.27) decouple. Assuming a sufficiently rapid ψX − ψ̄X annihilation
rate and MX ∼ 11 − 13 GeV, the relic density is then automatically of the correct
order.

After electroweak symmetry breaking, the superpotential (5.27) gives rise to an
interaction of the form

vu
Λ
ψXψX ν̃i . (5.28)

(Subsequently we omit the neutrino/sneutrino index i.) The sneutrino ν̃ does not have
to be the LSP; the LSP can be the lightest neutralino χ̃. Then an on-shell sneutrino ν̃
would decay via the usual vertex gν̃χ̃ν – where g is of the order of electroweak gauge
couplings, if χ̃ is dominantly bino-like – into χ̃ plus a neutrino ν. At energies below
the sneutrino mass mν̃ , integrating out the sneutrino leads to an effective four Fermi
interaction

gvu
m2

ν̃Λ
ψXψX χ̃ν . (5.29)

At energies above Mχ̃, (5.29) allows for the scattering process ψXψX → χ̃ν. How-
ever, assuming Mχ̃ > 2MX , the lightest neutralino χ̃ is not stable. Since χ̃ is a Ma-
jorana fermion, (5.29) leads to its decay into ψXψXν and ψ̄Xψ̄X ν̄ with corresponding
branching ratios of 50%. The latter case leads to the scattering process

ψXψX → ψ̄Xψ̄X ν̄ν̄ . (5.30)

As in the case of sneutrinos and higgsinos, this ADM self-annihilation process can
have potentially disastrous consequences for the remaining asymmetry. In [285], the
rate for this process has been estimated by integrating out both the sneutrino ν̃ and
the lightest neutralino χ̃ with the result that, for mν̃ ∼Mχ̃ ∼ 100GeV and Λ >∼ 1TeV,
it would go out of equilibrium (drop below the Hubble expansion rate) for decoupling
temperatures TD somewhat above MX , in which case the asymmetry would hardly be
washed out.

A more detailed analysis of the ADM self-annihilation processes has been performed
in [296]. There it was pointed out that, for mν̃ ∼Mχ̃ ∼ 100 GeV and Λ >∼ 1 TeV, the
dominant ADM self-annihilation process is real χ̃ production through the interaction
(5.29), and the corresponding cross section was given.

Subsequently, in [296], TD was estimated by equating the ADM self-annihilation
rate with the Hubble expansion rate. They tolerated a considerable wash-out of
the asymmetry and/or a Boltzmann suppression for TD < MX , and studied the
necessary relations between the final values for A∞ and Z∞ defined in (5.13) (or
r∞ = (Z∞−A∞)/(Z∞+A∞)), the DM mass MX and the lightest neutralino mass Mχ̃

required for a desired DM relic density. Clearly, in most of the parameter space (after
a considerable wash-out of the asymmetry and/or Boltzmann suppression), the desired
DM relic density is no longer simply related to the baryon asymmetry in contrast to
ADM paradigm.

Here we ask the question under which conditions this does not happen, i.e. under
which conditions the initial asymmetry AX determines essentially the DM relic density.
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As before we assume that the ψX − ψ̄X annihilation rate is sufficiently large, such that
we can assume Z ∼ Zeq in (5.16) leading to (5.18).

If the threshold for the process (5.30) would be s > 4M2
X , we could apply our

previous formulas. However, for the (dominant) annihilation process via real χ̃ (plus
neutrino) production, the threshold is s > M2

χ̃ > 4M2
X . As a consequence the thermal

average of the cross section times velocity in (5.18) depends in a more complicated way
on MX , Mχ̃ and notably on the temperature or x = MX/T such that the expansion
(5.12) is no longer applicable. First, we use the cross section σXX(s) for the process
ψXψX → χ̃ν̄ from [296]:

σXX(s) =
κ2M4

χ̃

256π

1

s

(
s

M2
χ̃

− 1

)2

(5.31)

where κ = gvu
Λm2

ν̃
. Then, using (5.11) withM2

χ̃ as lower threshold of the integral (without

expanding in MX/Mχ̃ as in [296]), we obtain

〈σXXv〉 =
κ2

16π

(
Mχ̃

MX

)2 (M2
χ̃ − 4M2

X)K2(
Mχ̃

MX
x) +

6Mχ̃MX

x
K3(

Mχ̃

MX
x)

x2K2
2(x)

. (5.32)

ForMX ≪Mχ̃, 〈σXXv〉 is proportional toM7/2
χ̃ e−Mχ̃/T like the collision term evaluated

in [296]. The Boltzmann suppression ∼ e−Mχ̃/T is an obvious consequence of the
threshold s > M2

χ̃ required for real χ̃ production. Subsequently we integrate the
Boltzmann equation (5.18) numerically employing (5.32) for 〈σXXv〉, which allows us
to study R ≡ A∞/Ain as before. Now, however, R depends in a more complicated
way on the parameters κ, Mχ̃ and MX of the model. On the other hand, the initial
asymmetry is quite well known in this class of models, Ain ∼ 0.35B (where B is the
baryon asymmetry), and finally we must obtain

ΩDM

ΩB

=
A∞MX

Bmp

∼ 5.4 (5.33)

which determines MX in terms of A∞ or R:

MX ∼ (12.5GeV)/R . (5.34)

Hence, once the correct ADM relic density is imposed, the free parameters of the
model are κ = gvu

Λm2
ν̃
, Mχ̃ and MX or R. In order to clarify the correlations between

these parameters, we show R in the range R = 1 . . . 0.1 (MX = 12.5 . . . 125GeV) as
function of Mχ̃ for various values of κ ≤ 10−5 GeV−2 in Fig. 5.4. (Note that all curves
continue horizontally along R = 1 beyond their upper end.)

The shape of these curves can be understood as follows: Near the upper end, R ∼ 1,
MX ∼ 12.5 GeV and practically no wash-out takes place by construction, since 〈σXXv〉
is too small. For fixed κ, 〈σXXv〉 increases for decreasingMχ̃ due to 〈σXXv〉 ∼ e−Mχ̃/T ,
and below some critical value of Mχ̃, 〈σXXv〉 is large enough such that R starts to
decrease.
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Figure 5.4: R as function of Mχ̃ for different values of κ: red κ = 10−9 GeV−2, green:
κ = 10−8 GeV−2, orange: κ = 10−7 GeV−2, magenta: κ = 10−6 GeV−2, blue: κ =
10−5 GeV−2. The mass MX of the dark matter, related to R as in (5.34), is indicated
on the right vertical axis.

If a sizeable wash-out takes place (R <∼ 0.5), it stops when the annihilation rate
falls below the Hubble expansion rate, i.e. for a given value of 〈σXXv〉. For fixed κ, this
implies a certain fixed value for e−Mχ̃/TD or Mχ̃/TD. Using xD = MX/TD and (5.34)
one easily derives R ∼ 1/(xDMχ̃), which explains the decrease of R for increasing Mχ̃

in this range.
Fig. 5.4 allows to identify the regions in parameter space in which R is not too small

(R >∼ 0.5), i.e. where ΩDM follows naturally from ΩB as in the ADM paradigm. If the
coefficient κ is relatively large, κ ∼ 10−5 GeV−2 or mν̃ ∼ 100GeV and Λ ∼ 1TeV, one
needs Mχ̃ >∼ 300GeV. If χ̃ is lighter, Mχ̃ ∼ 100GeV, one needs a very small value of
κ <∼ 10−9 GeV−2, hence correspondingly large values of mν̃ and/or Λ.

5.5 Discussion

If the dark matter asymmetry is related to the baryon (or lepton) asymmetry, some
couplings must necessarily relate these sectors. The same couplings can lead to dark
matter self-annihilation processes, which can wash out the corresponding asymmetry
A. A rough condition for the absence of a wash-out is to require that, at tempera-
tures of the order of the DM mass, the rate of these processes is below the Hubble
expansion rate. In Sec. 5.3 we have studied the corresponding set of Boltzmann equa-
tions quantitatively (assuming a two-body final state). Requiring a modest wash-out
(A∞/Ain >∼ 0.1), the upper bounds on m〈σXXv〉 are very strong, and can be deduced
from Fig. 5.2 if 〈σXXv〉 ∼ a or 〈σXXv〉 ∼ b/x.

If the ADM consists in sparticles with couplings to electroweak gauginos (left-
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handed sneutrinos or higgsinos), it follows that the electroweak gauginos must be
extremely heavy such that supersymmetry does not solve the hierarchy problem. If
the ADM consists in particles like right-handed sneutrinos which mix weakly with
left-handed sneutrinos, the mixing angle must be very small, see Eq. (5.25).

In different models for ADM, the dominant ADM self-annihilation process may
be kinematically possible only for s above a threshold larger than (2MX)

2, in which
case it becomes Boltzmann suppressed and Eq. (5.12) is no longer valid. An example
is the popular ∆W ∼ XXHL/Λ model of [285]. Also in this case, the numerical
integration of the Boltzmann equation for the asymmetry allowed us to specify the
range of parameters where the wash-out of the asymmetry remains modest.

In the past, the constraints following from the absence of a wash-out of the asym-
metry have sometimes been neglected or underestimated (notably in the case of sneu-
trinos); we hope that the present work helps to clarify the relevance of ADM self-
annihilation processes and the resulting conditions on corresponding models.

Of course, in the case of sizeable ADM couplings to Higgs or Z bosons, the direct
detection rate must be studied and must not exceed present bounds [47]. (See [304] for
a discussion of the potential conflict between a sufficiently large X − X̄ annihilation
rate and a too large direct detection rate.) A too large direct detection rate can be
avoided through mass splittings leading to inelastic scattering [292,294]. Alternatively,
one may consider that the X particles – after their density has frozen out to a value
related to the baryon density – decay later into other essentially inert particles with
very small couplings, which have not been in thermal equilibrium. In the present
treatment, we left aside the problem of direct detection rates.



100 Asymmetric DM and upper bounds on its self-annihilation



CHAPTER 6

A SPECIFIC MODEL FOR

ASYMMETRIC DM

We have seen so far that although a symmetry implying stable WIMPs may arise
due to independent phenomenological reasons, in principle there is no such symmetry
forbidding the self-annihilation of weakly interacting massive particles or antiparticles.
In the context of asymmetric DM, we derived in the previous chapter quite severe
upper bounds on the cross section of these self-annihilation processes. In some cases,
the symmetry forbidding self-annihilation is imposed ad hoc (see, for example, [299]).
In this chapter, we try to build a model that provides an asymmetric DM, without any
assumptions imposed “by hand”.

Since the existence of an asymmetry is closely connected with the conservation of
a quantum number, the sneutrino could, in principle, be a suitable ADM candidate. A
general discussion will follow in Sec. 6.1. We will see that in order to obtain ADM with
the desired characteristics, Dirac masses for the neutrinos have to be imposed. The
additional degrees of freedom of the Dirac neutrinos may affect the relativistic degrees
of freedom during Big Bang Nucleosynthesis (BBN). We discuss this issue in Sec. 6.2.
Eventually, we proceed to the main part of our work based on [3]. Details of the model
will be presented in Sec. 6.3, where we also discuss possible constraints from particle
physics and cosmology. An analysis of the ADM in this model will follow in Sec. 6.4.
Finally, in Sec. 6.5 we summarize our results.

6.1 Sneutrinos as asymmetric DM

At first sight, sneutrinos are promising candidates for asymmetric DM [287–292]1.
They carry a conserved quantum number, lepton number, such that they can share
the asymmetry of charged leptons through processes which were in equilibrium in the

1Higgsinos could also be ADM, but only if a number of strong constraints is satisfied, see [294]
and Sec.5.4.2.
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early hot Universe. Then, their asymmetry can have become related to the baryon
asymmetry through sphaleron processes [295, 305]. However, although the large anni-
hilation cross section between sneutrinos and anti-sneutrinos is a good feature allowing
for ADM, their self-annihilation cross sections are also typically large, destroying the
asymmetry (see Sec. 5.4.1).

However, non-zero neutrino masses suggest the existence of right-handed neutrinos
(and sneutrinos). In the past years, a variety of models aiming at the explanation of
neutrino masses have been proposed, some of them described very briefly in Sec. 3.6.
We can classify them into two main categories, those which employ Majorana mass
terms for right-handed neutrinos and those employing Dirac mass terms only. The
former allow for various versions of seesaw mechanisms, amongst others the inverse
seesaw which allows for electroweak scale right-handed neutrinos. The common char-
acteristic of these models is the violation of lepton number by a Majorana mass term.
Dirac neutrino masses are less well studied, though not less motivated. We recall that
the simplest way to obtain Dirac masses for neutrinos is the introduction of Yukawa
couplings to Higgs bosons, but with unnatural small Yukawa coupling constants. A
more elegant way is the introduction of an additional Higgs field which couples only
to right-handed neutrinos. Then, the smallness of neutrino masses is no longer due
to small values of coupling constants, but can be due to a small vacuum expectation
value (vev) of the new Higgs field.

The presence of right-handed sneutrinos opens new possibilities for sneutrino DM:
right-handed sneutrinos with a small left-handed component may have at the same time
a large pair annihilation cross section, but a negligible self-annihilation cross section.
However, in scenarios such as seesaw models which do not conserve lepton number, an
asymmetry of sneutrinos is difficult to maintain due to oscillations between sneutrinos
and anti-sneutrinos [306–308] (see also [309]). In the Dirac case with small Yukawa
couplings, asymmetric DM faces the following difficulties: First, the annihilation cross
section, proportional to the small couplings, is not adequate to eliminate the symmetric
part of the DM, resulting in a large relic density unrelated to the asymmetry. Second,
such small Yukawa couplings keep the right-handed neutrinos and sneutrinos out of
equilibrium in the early Universe and, as a result, the asymmetry of the sneutrinos was
never related to the baryonic asymmetry. However, if the small neutrino masses origi-
nate from the small vev of an additional Higgs field (but with large Yukawa couplings),
these difficulties are solved.

Such scenarios, often denoted as neutrinophilic Higgs doublet models, appeared first
in [310,311] (for an earlier approach, but with Majorana neutrinos, see [312]). In these
models, a Z2 symmetry is spontaneously broken generating a small vev of the new
Higgs scalar. This mechanism results also in a very light scalar with mass of the order
of eV. Such light scalars have been ruled out [313, 314] by astrophysical arguments.
However, the Z2 symmetry can be replaced by a global U(1) symmetry in order to
forbid Majorana masses, but which is broken explicitly so that a very light scalar
is avoided [315]. The U(1) symmetry makes very small explicit breaking terms (see
below) more natural. The LHC phenomenology of this model is studied in [316], while
in [317] a supersymmetric variant based on the MSSM and its phenomenology are
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examined. The additional Higgs doublets still allow the SUSY version to be embedded
into a grand unified symmetry as verified in [318]. Furthermore, the additional Higgs
doublets do not spoil proton stability since they couple only to leptons. In [319],
the Higgs potential is studied for both SUSY and non-SUSY models. Scenarios for
leptogenesis with neutrinophilic Higgs are discussed in [320–322]. Finally, the sneutrino
of the SUSY model of [317] has been used as DM candidate in [218,323]. In particular,
the possibility of ADM is also considered in [323], but with a trilinear soft coupling
of the order of several TeV and a (related) very large annihilation cross section into
monochromatic photons.

Subsequently, we will consider the NMSSM extended by a pair of neutrinophilic
Higgs doublets and three generations of right-handed neutrino superfields. Although
the NMSSM singlet superfield Ŝ plays no particular role in our model (the vev of
its bosonic component could be replaced by a constant dimensionful parameter), it is
chosen for the reasons explained in Ch.3. Namely, the solution of the µ-problem of the
MSSM through the introduction of the singlet S and the naturally heavier, compared
to the MSSM, SM-like Higgs due to the additional coupling λ, making the observed
125GeV mass easier to explain.

We are going to explore whether and under which circumstances this model can
accommodate right-handed sneutrinos as ADM. We find that this is indeed possible
under certain conditions. First, we note that the ordinary Higgs sector of the NMSSM
is not affected by the introduction of the neutrophilic Higgses (henceforth ν-Higgses).
The scalar ν-Higgses, however, have to be relatively heavy of the order of O(1) TeV
such that the additional degrees of freedom of the Dirac neutrinos do not lead to 4He
overabundance through their contribution to the expansion rate of the Universe during
big bang nucleosynthesis (BBN). On the other hand, light ν-higgsinos are required for
a large sneutrino–anti-sneutrino pair annihilation cross section which is necessary for
the sneutrino relic density to be determined by its asymmetry.

6.2 Big Bang Nucleosynthesis and neutrinos

In the Dirac notation, a spin-1/2 fermion that is different from its antiparticle is de-
scribed by a complex spinor and has four degrees of freedom (two for the spin states
of the particle and two for the antiparticle). Majorana particles have only the half
number of degrees of freedom, since particles and antiparticles coincide. In case neu-
trinos are Dirac particles, their additional degrees of freedom may affect the Big Bang
Nucleosynthesis (BBN) by increasing the energy density of the Universe during this
epoch and, therefore, accelerate its expansion.

We recall that the expansion rate of the Universe at a given moment (temperature)
of its history is determined by its energy density ρ; in a radiation dominated era H =(
8π
3
GNρ

)1/2
, where GN is the gravitational constant. If a particle species A went out of

the equilibrium from the thermal bath while still relativistic, it continues to contribute
to the energy density with its own temperature TA that is redshifting (TAR

3 = const.,
with R the scale factor). On the other hand, even though the temperature of the
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thermal bath Tγ is also decreasing due to the expansion, the decrease rate falls off each
time the temperature falls below the mass of one of the particle species that constitute
the thermal bath. Thereafter, the annihilation of these particles is heating the bath,
transferring finally all of their entropy to it.

The abundance of 4He emerging from BBN depends on the Hubble expansion rate of
the Universe when processes like e− p↔ n νe and e

+ n↔ p ν̄e were in equilibrium, since
practically all the remaining neutrons after these processes went out of equilibrium
have been incorporated to the helium nuclei. The larger the Hubble rate was, the
faster (at higher temperature) neutrons went out of equilibrium, resulting in their
larger abundance (the equilibrium density of neutrons falls as neq

n ∼ exp(−∆m
T
)neq

p

with ∆m ≡ mn −mp the mass difference between neutron and proton).
In the epoch just before nucleosynthesis photons, electrons and left-handed neutri-

nos were in equilibrium2 at a common temperature Tγ,n (henceforth, the subscript n on
temperatures will denote the epoch just before nucleosynthesis). Right-handed neutri-
nos remained in equilibrium as long as processes νR ν̄R ↔ l l̄ (with l a charged lepton)
were fast enough. However, even after right-handed neutrinos went out of equilibrium
at a temperature TR,d (where the subscript d stands for decoupling), they continue to
contribute to the total energy density of the Universe with their own temperature TR
that is redshifting.

The energy density at this time is the sum of the energy density of species in equi-
librium plus the energy density of the relativistic particles that have already decoupled:

ρn = ρeq + ρR

=
π2

30

[
gγ +

7

8
(ge +NLgν)

]
T 4
γ,n +

π2

30
NRgνT

4
R,n,

(6.1)

with NL,NR the number of left- and right-handed neutrino generations, respectively.
Writing the above energy density in the form

ρn =
π2

30

[
gγ +

7

8
(ge +Neff gν)

]
T 4
γ,n, (6.2)

Neff is defined asNeff = NL+NR

(
TR,n

Tγ,n

)4
. TakingNL = NR = 3 we writeNeff = 3+∆Nν

with

∆Nν ≡ 3

(
TR,n

Tγ,n

)4

. (6.3)

We are going to relate, eventually, the ratio of the temperatures during nucleosyn-
thesis that appears in the expression above to the temperature when the right-handed
neutrinos decoupled (see also [324]). We begin by considering a general case with par-
ticle species A that decoupled from the thermal bath while relativistic (TA,d > mA)

2The neutrinos decouple from the thermal plasma at a temperature Td & 1MeV, when H becomes
larger than the rate of the processes νν̄ → e+e−. Nevertheless, even after their decoupling but before
the decoupling of the electrons, their temperature is the same as the one of photons since both are
decreasing with the same rate.
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and since then they have their own temperature TA. We will consider two instants of
the history of the Universe: the first is when the photons had a temperature Tγ,i with
Tγ,i < TA,d and the second much after the decoupling (it can be the present time) with
temperature Tγ,f ≪ TA,d (notice that both are after the decoupling of A). The tem-
peratures of the particles A at these moments are TA,i and TA,f , respectively. During
this period, the entropy is conserved separately for the particles A and for the thermal
bath. Therefore, with sA, st denoting the entropy density of the particles A and the
total entropy density of the thermal bath, respectively, we have

sA(TA,i)R
3(Tγ,i) = sA(TA,f )R

3(Tγ,f ) and (6.4)

st(Tγ,i)R
3(Tγ,i) = st(Tγ,f )R

3(Tγ,f ), (6.5)

with R the scale factor. Using the expression3 si(T ) =
2π2

45
giT

3
i for the entropy density,

the above equations combined are leading to the formula

(
TA,i

Tγ,i

)3

=
g(Tγ,i)

∑
d,rel gd

(
Td,f

Tγ,f

)3
+ gγ

(
TA,f

Tγ,f

)3

, (6.6)

where the sum is running over all particles decoupled after Tγ,i while being relativistic.
We apply the above formula for the case of left-handed neutrinos. As initial tem-

perature we take Tγ,i = me, i.e. just before the thermal bath is starting to be heated
by the annihilation of the electrons. Until then, TL = Tγ, so that (6.6) will give

(
TL,f
Tγ,f

)3

=
4

11
. (6.7)

In this case, there were no relativistic species decoupled in between. Applying Eq. (6.6)
to the right-handed neutrinos, we have to use Eq. (6.7), since left-handed neutrinos,
which decoupled at a later time while relativistic, continue to contribute to the total
entropy. As initial temperature we choose again the temperature at which one species
started to heat the bath for the first time after the decoupling of right-handed neutrinos,
so that TA,i = Tγ,i and (

TR,f

Tγ,f

)3

=
43

11g(TR,d)
. (6.8)

g(TR,d) is the number of the degrees of freedom that the thermal bath possesses just
after the decoupling of the right-handed neutrinos. Last, we will apply for a third
time the Eq. (6.6) concerning again the decoupling of right-handed neutrinos but tak-
ing as initial moment the nucleosynthesis (actually just before the nucleosynthesis as
discussed above). Then

TR,n

Tγ,n
=

(
11

4

)1/3
TR,f

Tγ,f
, (6.9)

3Henceforth, we assume for simplicity that gi include the factor 7

8
in the case that i is a fermion.
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which combined with (6.8) gives the desired relation among the ratio TR,n/Tγ,n and
the temperature TR,d.

Finally, using (6.3),(6.8) and (6.9) we derive the final result

g(TR,d) =
43

4

(
3

∆Nν

)3/4

. (6.10)

This expression allows to calculate the number of relativistic degrees of freedom g(TR,d)
during the decoupling of the right-handed neutrinos for a specific contribution ∆Nν

to the effective degrees of freedom Neff during BBN. From g(TR,d) one can extract the
temperature when the decoupling occurred.

6.3 The model

In the following, we present the model we propose in order to provide a viable candidate
for ADM. We extend the NMSSM by three right-handed neutrino superfields ν̂cR and

a pair of new Higgs doublets Ĥν
u and Ĥν

d . These fields are charged under a new global
U(1) symmetry with charges −1, +1 and −1, respectively, while the usual NMSSM
superfields remain uncharged. The superpotential is written as

W = WNMSSM + yνL̂ · Ĥν
u ν̂

c
R + λνŜĤ

ν
u · Ĥν

d , (6.11)

where the Yukawa coupling yν and the superfields L̂ and ν̂cR should be understood
as matrix and vectors, respectively, in flavor space. The corresponding soft SUSY
breaking masses and couplings are

− Lsoft = −LNMSSM
soft +m2

Hν
u
|Hν

u |2 +m2
Hν

d
|Hν

d |2 +m2
νR
|νR|2

+ yνAνL ·Hν
uν

c
R + λνAλνSH

ν
u ·Hν

d . (6.12)

WNMSSM and LNMSSM
soft are the superpotential and the soft terms of the Z3-invariant

NMSSM, given in Sec. 3.2 by Eqs. (3.1) and (3.4), respectively.
The new U(1) symmetry needs to be broken by the vev of the ν-Higgs in order

to give masses to the neutrinos. To this end we include to the Lagrangian (6.12) the
following additional soft terms

Aλ1
SHu ·Hν

d + Aλ2
SHν

u ·Hd.

It is important to note that these two terms do not correspond to terms in the super-
potential. Since they break the U(1) explicitly, it is natural in the ’t Hooft sense for
the trilinear couplings Aλi

to assume small values. Such small values can be obtained
through higher dimensional operators involving SUSY and U(1) symmetry breaking

spurion fields [317]. For instance, introducing a superfield X̂ with charge −1/2 under
U(1) and with 〈X〉 = θ2F +

√
F (see, e.g., [196] for similar mechanisms), a trilin-

ear soft term can originate from the operator 1
M2

Pl

∣∣∣X̂2ŜĤν
u · Ĥd

∣∣∣
F
∼ F 3/2

M2
Pl
SHν

u ·Hd. If
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F = m2
I withmI ≃

√
vMP l an intermediate scale where supersymmetry is broken, then

F 3/2

M2
Pl

∼ 10−7 GeV, while the corresponding term in the superpotential is suppressed by

several orders of magnitude.

The resulting vevs for the Hν
u , H

ν
d fields have the form [312]

vνu ≃ Aλ2
s

m2
Hν

u

vd and vνd ≃ Aλ1
s

m2
Hν

d

vu, (6.13)

respectively. Taking Aλ1
s ≃ Aλ2

s ∼ 10−5 GeV2 and assuming soft masses mHν
d
∼

mHν
d
∼ O(1) TeV (see below), then vνu ≃ vνd ∼ eV. Hence, the first extra term in

the superpotential (6.11) will generate Dirac neutrino masses of the correct order for
yν ∼ O(1) [310, 315].

The sneutrino mass squared symmetric matrix, neglecting flavor indices, reads in
the basis (ν̃L, ν̃R)

M2
ν̃ =

(
y2νv

ν
u
2 + 1

2
g2(v2d − v2u) +m2

νL
yνv

ν
u(λνs+ Aν)

y2νv
ν
u
2 +m2

νR

)
. (6.14)

Taking into account the small value of vνu, this matrix can be approximated by the
diagonal form

M2
ν̃ ≃ diag

[
1

2
g2(v2d − v2u) +m2

νL
, m2

νR

]
. (6.15)

We note that the mixing between the various sneutrino flavors in the right-handed
sector is small, since it is proportional to the vev of the ν-Higgs provided thatmνiR

≫ vνu
and flavour diagonal.

The ν-Higgses form two nearly degenerate SU(2) doublets. (Since U(1) is not
spontaneously broken, there are no Goldstone bosons.) These additional fields mix
very weakly with the standard Higgs fields due to their small vevs; in the following we
will consider the new Higgs fields completely unmixed.

The mass matrices in the neutral sector are in the basis (Hν
u , H

ν
d ) [325]

M2
Hν =

(
λ2νs

2 − 1
2
g2(v2d − v2u) +m2

Hν
u

±λν(λvuvd − κs2 + Aλνs)

λ2νs
2 + 1

2
g2(v2d − v2u) +m2

Hν
d

)
(6.16)

with plus (minus) signs in the off-diagonal elements for the scalar (pseudoscalar), and

M2
Hν+ =

(
λ2νs

2 + 1
2
g2(v2d − v2u) cos 2θW +m2

Hν
u

λν(λvuvd − κs2 + Aλνs)

λ2νs
2 − 1

2
g2(v2d − v2u) cos 2θW +m2

Hν
d

)

(6.17)
in the charged ν-Higgs sector. The neutral and charged ν-higgsinos, forming Dirac
fermions with masses µ′ = λνs, are also practically unmixed with the neutralinos and
the charginos of the NMSSM.
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6.3.1 Constraints from lepton flavour violation and BBN

A first constraint on the model originates from the muon decay to an electron and a
photon. The charged Higgs Hν+ mediates the decay of the muon at one loop with a
branching ratio [326]

BR (µ→ eγ) =
αEM

24π

(
v

vνmHν+

)4
∣∣∣∣∣
∑

j

m2
jU

∗
ejUµj

∣∣∣∣∣

2

, (6.18)

where U is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix defined by |νl〉 =∑3
j=1 U

⋆
lj |νj〉, with l = e, µ, τ and j = 1, 2, 3 corresponding to the three mass eigen-

states (see Sec. 3.6). The unitarity of the PMNS matrix allows to replace the sum in
Eq. (6.18) by

∑
j m

2
jU

∗
ejUµj = −∆m2

21U
∗
e1Uµ1 + ∆m2

32U
∗
e3Uµ3, where the mass squared

differences are defined by ∆m2
ij ≡ m2

i −m2
j and mi are the neutrino mass eigenvalues.

Using the upper 90% C.L. limit

BR (µ→ eγ) < 5.7 · 10−13 (6.19)

from the MEG experiment [327], we obtain a lower bound on the charged ν-Higgs
mass,

mHν+ &

(
1 eV

vν

)
300GeV, (6.20)

where we have used the standard values for ∆m2
21, ∆m

2
32 given in [100] and the elements

of the PMNS matrix.
A second constraint comes from the Helium abundance that is determined by the

relativistic degrees of freedom during BBN, as explained in the previous section. Re-
cently, Planck constrained this quantity to Neff = 3.30 ± 0.27 at 68% C.L. [9]. In the
following we determine the lowest temperature TR,d at which the right-handed neutri-
nos can decouple without Neff exceeding the above limit, and subsequently we derive
the necessary condition on the νR ν̄R ↔ l l̄ rate for this to occur.

As we saw, applying entropy conservation separately for the decoupled species
and the thermal bath, one obtains the relation (6.10) between the maximally allowed
value of ∆Nmax

ν and the temperature at which the right-handed neutrinos went out of
equilibrium. For ∆Nmax

ν
<∼ 0.57 at 1σ, g(TR,d) ≥ 37.35. This means that decoupling

should have occurred before the quark-hadron phase transition when g = 51.25 (just
after the transition the number of degrees of freedom was g = 17.25, see TableA.1 in
App.A). Assuming that the QCD confinement temperature is roughly Tc ≃ 200MeV
[328], we are led to the inequality TR,d >∼ 200MeV.

Taking into account the approximate decoupling condition n(Td)〈σv〉(Td) = H(Td),
one finds that the ratio of the decoupling temperatures of right- and left-handed neu-
trinos is (

TR,d

TL,d

)3

=

√
g(TL,d)

g(TR,d)

σL
σR
, (6.21)

with σL and σR the cross sections of the processes that were keeping left- and right-
handed neutrinos, respectively, in equilibrium. In the current model, the process
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νR ν̄R ↔ l l̄, which keeps right-handed neutrinos in equilibrium, is mediated by the

charged ν-Higgses. Using σL

σR
=
(

2
√
2mHν+

yliν vu|Uli|

)4
[315], where Uli are again the elements

of the PMNS mixing matrix, leads to the following bound on the charged Higgs mass
and the couplings yliν

mHν+

yliν
& 3TeV. (6.22)

As we will explain later, the couplings yliν cannot be very small, and as a consequence
mHν+ has to be relatively large.

6.4 Right-handed sneutrinos as ADM

In the following we study more closely the role of right-handed neutrinos as ADM. We
will use the notation N ≡ ν̃cR1 with the index 1 denoting the lightest among the three
right-handed neutrinos. Its mass mN is essentially its soft SUSY breaking mass, and
we safely assume that it is a pure state since its left-handed component is negligibly
small.

6.4.1 Asymmetry from sphaleron processes and the ADM

mass

Since the sneutrinos carry a conserved charge (lepton number), it is possible that their
relic density is not determined by the thermal mechanism but by their asymmetry. The
asymmetry was related to the baryon asymmetry through equilibrium processes in the
early Universe. These allow to estimate the relation between the two asymmetries and,
ultimately, to determine the mass range of the (right-handed sneutrino) DM that will
provide the correct abundance.

If the N, N∗ annihilation is strong enough such that the less frequent species has
been completely eliminated, the remaining abundance is the product of the charge
density ηN ≡ |nN − nN∗ | times its mass mN (n denotes the number density). The
relation between the DM relic density ΩN and the baryonic relic density Ωb is

ΩN =
ηN
B

mN

mp

Ωb, (6.23)

where mp is the proton mass, which gives the desired result if ηN is of same order of
magnitude as the baryon charge density B.

The charge density of a particle X in kinetic equilibrium as a function of the
temperature can be written as (see Sec. 5.1)

ηX(T ) =
T 3

6
gXk(x)

µX

T
, (6.24)

where we have assumed that µX/T ≪ 1, and µX is the chemical potential of the species
X. gX is the number of internal degrees of freedom of the particleX, we defined x ≡ mX

T
,
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and

k(x) =
6

π2

∫ ∞

x

dy y
√
y2 − x2

ey

(ey ± 1)2
. (6.25)

In the above integral, the plus (minus) sign holds for fermions (bosons). In the ultra-
relativistic limit x ≪ 1, k takes the values 1 for fermions and 2 for bosons, while in
the opposite limit x≫ 1 it vanishes in both cases.

A sneutrino asymmetry can originate from primordial asymmetries in the baryonic
or leptonic sectors. Although we will be agnostic about the exact mechanism that
created these primordial asymmetries, the fact that certain processes were in equi-
librium in the early Universe can be used to relate ηN to the baryon asymmetry B.
We note that common mechanisms for thermal leptogenesis would not work in the
present framework since the violation of lepton number is far too small (see the next
section). However, other known mechanisms are possible, such as the Affleck-Dine
mechanism [329].

In the absence of lepton number violating processes other than electroweak spha-
lerons,

∑3
i=1 (B/3− Li) is conserved. The relatively large Yukawa coupling constants

of the neutrinos assure not only the equilibrium of the right-handed neutrinos with
the thermal bath in the early Universe, but also rapid flavor changing processes. As a
result, lepton flavor equilibrium had been established and B−L =

∑3
i=1 (B/3− Li) is

conserved. However, the sphaleron processes were still violating B + L. We are going
to consider two cases [305]. In the first case we will assume that sphaleron processes
were rapid only above the electroweak phase transition (EWPT), e.g. if the EWPT
was strongly first order. In the second case, we will allow the sphaleron processes to
violate B + L also below the transition, until they went out of equilibrium because of
the expansion of the Universe.

In the first case we proceed along the lines of [295], where one can find a complete
list of the equilibrium reactions in the MSSM and the relations between the chemical
potentials. The reactions specific to the present model lead to the following equilibrium
relations which have to be added to this list:

µLi + µH = µνi , µH = µHν
u
= µHν

d
,

µL̃i + µH = µν̃i , µL̃i + µH̃ = µνi , µLi + µH̃ = µν̃i , (6.26)

where we have used the notation of [295], i.e. µLi is the chemical potential of the left-
handed leptons, i is the flavor index, µν is the chemical potential of the right-handed
neutrinos and tilde stands for the supersymmetric particles. The sneutrinos share the
chemical potential with the neutrinos through the equilibrium of processes such as
those of Fig. 6.1.

Eliminating the chemical potentials using the sphaleron equilibrium relation

3∑

i=1

(3µQi
+ µLi

) = 0 (6.27)

and the fact that the total hypercharge Y of the Universe vanishes, we can calculate
the baryon charge B and the DM leptonic charge ηN densities as functions of the
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h̃νu
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h̃ν +u
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l

Figure 6.1: Annihilation diagrams of right-handed sneutrinos N , N∗ into neutrinos
and charged leptons.

conserved difference B − L. We assume all the masses of supersymmetric particles
except these of sleptons much larger than the EWPT critical temperature Tc, and we
also consider SM particles as massless. First, assuming light right-handed sneutrinos
and masses ∼ 2Tc for the other sleptons, we find, using Eqs. (6.24), (6.25), that the
charge densities B and ηN are related by

B ≃ 0.14 (B − L) and ηN ≃ 0.10 (B − L), (light sleptons) (6.28a)

while for large slepton masses

B ≃ 0.18 (B − L) and ηN ≃ 0.12 (B − L). (heavy sleptons) (6.28b)

The DM mass, using (6.23) and ΩN/Ωb ≃ 5.44 [9], has to be mN ∼ 7.1 − 7.6GeV (the
smaller value corresponding to light sleptons).

In case the process induced by electroweak sphalerons were rapid also below the
EWPT, the relations between the chemical potential are altered. First, due to the
vacuum condensate of the neutral Higgs bosons, their chemical potentials have to
vanish. However, the total hypercharge has no longer to be zero since SU(2)L has been
broken, resulting in a non-zero chemical potential for the W bosons. Generalizing the
SM equilibrium processes of [305] we find, considering all the supersymmetric particles
(except for the right-handed sneutrinos) as heavy, again using Eqs. (6.24) and (6.25),

B ≃ 0.18 (B − L) and ηN ≃ 0.10 (B − L). (heavy SUSY paricles) (6.29a)

The resulting DM mass in this case has to be mN ≃ 9.2GeV. However, allowing the
left-handed sneutrinos to be light (with mass around the temperature at which the
sphaleron processes went out of equilibrium), the value for the ratio B/ηN becomes
maximal:

B ≃ 0.31 (B − L) and ηN ≃ 0.07 (B − L). (light LH sneutrinos) (6.29b)

In this case the DM mass has to be larger, mN ≃ 23GeV.
Summarizing, depending on the sparticle spectrum and the nature of the EWPT,

the DM mass can be roughly in the range

mN ∼ 7GeV − 23GeV. (6.30)
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The lowest value corresponds to light sleptons and a first order EWPT that terminated
the sphaleron processes, while for the highest value the sphaleron processes have to
continue to be in equilibrium for a short time after the EWPT and the left-handed
sneutrinos have to be relatively light.

6.4.2 Constraints from oscillations, self and pair annihilation

In order that the current DM density is determined by its asymmetry, a number of
conditions have to be fulfilled. First, the annihilation of DM particles with antiparticles
has to be strong enough so that one of them is completely depleted. However, in
many cases, it is possible for a particle to oscillate into its antiparticle and vice versa.
These oscillations, if rapid enough, might lead to a continuous repopulation of the
depleted particles. As a result, however strong the pair annihilation cross section is, the
antiparticles (or the particles) are never exhausted and, finally, the thermal mechanism
is responsible for the relic density. Furthermore, if self-annihilation4 of DM particles
occurs before the DM particles become non-relativistic, their asymmetry decreases
rapidly due to this annihilation. If the self-annihilation does not freeze-out sufficiently
fast, the thermal mechanism takes over again since there is no asymmetry left after
the particle–antiparticle annihilation freeze-out. We will show that the sneutrino DM
considered here can fulfill all these criteria for a successful asymmetric DM candidate.

Quantum mechanical oscillations would occur between N and N∗ if these are not
coincide with the mass eigenstates. Then the rate of N – N∗ conversion is approxi-
mately given by the mass difference δm of the two eigenstates. The conversion starts to
be significant only at times larger than δm−1 or, expressed in terms of the temperature
T of the Universe, for T <∼ T (δm) given by [307]

T (δm) ∼
(
g
1/2
∗
heff

√
45

4π3
MP l δm

)1/2

, (6.31)

whereMP l is the Planck mass and g∗ and heff are effective degrees of freedom (see App.
A for exact definitions).

A mass split appears if there exists a lepton number violating Majorana mass term

mM ; if mM ≪ mD (mD is the Dirac mass), the mass split can be written as δm ≃ m2
M

mD
.

The operator 1
M4

Pl
|X4SN2|F , with X the superfield spurion whose vev brakes the U(1)

symmetry, induces a tiny Majorana mass squared of the order m2
M ≃ 10−32 GeV2,

which corresponds to a mass difference δm ∼ 10−33 GeV for mD ∼ 10GeV. With such
a small value for the Majorana mass, the oscillations start very late in the history of
the Universe (see (6.31)), much later than the DM freeze-out (at T ∼ 1GeV), and do
not affect the final DM density.

We recall that if the self-annihilation cross section does not obey the bounds (5.20)
derived in the previous chapter, the asymmetry falls rapidly. In order that at least 90%
of the asymmetry survives, the decoupling of self-annihilation should happen before

4the particle–particle or the antiparticle–antiparticle annihilation.
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x ≡ mN/T ∼ 5 (we recall that the decoupling for WIMPs occurs at x ∼ 20 – 30).
However, in our case the possible annihilation of right-handed sneutrinos into two
neutrinos through t- or u-channel exchange of neutral ν-higgsinos is impossible due to
the Dirac nature of the ν-higgsinos. Furthermore, the left-handed components in N
and N∗ are sufficiently small, since they are induced only by the off-diagonal element
of the mass matrix (6.14) and hence many orders of magnitude below the bound (5.20).
Consequently, the self-annihilation cross sections of N or N∗ are sufficiently small.

Having shown that the asymmetry does not get destroyed by oscillations or self
annihilations, the condition that remains to be satisfied is a sufficiently strong N, N∗

pair annihilation. This is required so that only the DM asymmetry survives as relic
density. The dominant annihilation channels of right-handed sneutrinos are the anni-
hilation into neutrinos and charged leptons (Fig. 6.1). The former proceeds through a
t-channel neutral ν-higgsino exchange, the latter by charged ν-higgsino exchange. The
thermal average of the cross section of these processes times velocity can be written as
(to leading order in x−1)

〈σv〉 ≃ f
y4ν
8π

m2
N

(m2
N + µ′2)2

x−1, (6.32)

where the factor f = 18 counts the number of final states (9 neutrinos and 9 charged
leptons) and we have assumed a common value yν for the coupling constants yliν . The
s-wave contribution is helicity suppressed and can be neglected (see also [330]).

In the usual symmetric DM case, the thermally averaged cross section during freeze
out has to be of the order of the thermal cross section, roughly given by (see section
Sec. 1.4.1)

〈σv〉th ≃ 3 · 10−27

ΩDMh2
cm3s−1 ≃ 3 · 10−26 cm3 s−1. (6.33)

In the asymmetric DM scenarios, the pair annihilation cross section must be equal
to or larger than the thermal cross section; even if the cross section is much larger
than its thermal value, the final density remains constant since annihilations become
impossible due to the lack of N or N∗. Examining eq. (6.32) at fixed mN , the cross
section decreases with increasing mass µ′ of the ν-higgsino.

Fig. 6.2 shows the maximal value of the ν-higgsino mass as function of the coupling
constant yν for a sufficiently large annihilation cross section. The corresponding mini-
mal allowed mass of the lightest scalar charged ν-Higgs (from the condition that Neff is
within the 1σ region determined by Planck) is shown along the upper axis. For a light
right-handed sneutrino mass (7GeV) the coupling constant has to be relatively large,
yν >∼ 0.6, which requires mHν

1

>∼ 1.8TeV. Smaller values of yν (and lower bounds on
the scalar ν-Higgs mass) are allowed for heavier DM. For mN = 23GeV, the smallest
allowed value for the ν-Higgs mass is ∼ 1TeV.

We see that the right-handed sneutrino can have a relic density determined by its
asymmetry if the ν-higgsino is relatively light, while the scalar ν-Higgs should be heavy.
The ν-higgsino mass is given, in terms of the coupling λν in the NMSSM Lagrangian
and the singlet vev s, by µ′ = λν s and hence it is small for small λν , whereas a heavy
charged ν-Higgs requires a large soft SUSY breaking mass.
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Figure 6.2: The largest allowed ν-higgsino mass as function of the coupling yν such that
right-handed sneutrinos with mass 7GeV (blue –lower– line), 15GeV (dashed line) or
23GeV (red –upper– line) have a large enough pair annihilation cross section such that
their relic density is determined by their asymmetry. The corresponding lower limit on
the lightest ν-Higgs mass, derived from Eq. (6.22), is indicated along the upper axis.
The shaded area is excluded by chargino searches at LEP (e.g. [147]).

6.4.3 ADM Detection: prospects and constraints

Upper bounds on the (bosonic) ADM-nucleon scattering cross section originate from
both the direct detection and observations of old neutron stars. Concerning the latter,
if the cross section is too large, the accumulation of asymmetric bosonic DM inside the
neutron stars can form a black hole which would potentially destroy the star. This is a
specific feature of asymmetric DM, since in the common symmetric case the annihila-
tion of DM with anti-DM prevents the accumulation. For bosonic asymmetric DM in
the mass range 5GeV <∼ mDM <∼ 16GeV, nucleon–DM cross sections σ >∼ 10−50 cm3 s−1

are excluded [331, 332]. However, the value of the cross section depends on the pa-
rameter space, particularly on the value of Aν (see [218]), while for DM heavier than
∼ 16GeV there is no limit due to Hawking evaporation [331], letting a completely
unconstrained mass range (16GeV <∼ mDM <∼ 23GeV) for the ADM of this scenario.

Concerning direct detection, since right-handed sneutrinos couple only to neu-
trinophilic Higgses, there are no tree-level contributions to the scattering cross section
of N off nuclei. However, as it was pointed out in [218], the contribution of Z exchange
induced at one loop (with left-handed sneutrinos and ν-Higgses running on the loop)
may be significant. The value obtained in [218] (∼ 10−45 cm3s−1), assuming a rela-
tively large value for the trilinear soft coupling Aν , is at the lower bound of the current
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experimental direct detection sensitivity for a DM mass around 100GeV. However, for
the mass range considered here (O(10)GeV), the upper limits on the scalar scattering
cross section are much higher.

Concerning indirect detection, pure asymmetric DM does not give rise to detectable
signals due to the absence of either DM particles or antiparticles. (The self-annihilation
cross section is required to be too small to generate measurable signals.) However,
the operators which break the U(1) symmetry might also induce a very small mass
difference δm among the sneutrino and anti-sneutrino eigenstates. Even though the
induced sneutrino – anti-sneutrino oscillations are slow enough so that they did not
affect the relic density, they may have led to the repopulation of the exhausted species
in case δm−1 is smaller than the current age of the Universe. This would be the case,
e.g., for the value δm ∼ 10−33 GeV obtained in the scenario sketched below (6.31).

In case the exhausted species has been regenerated, the same N, N∗ annihilation
processes (Fig. 6.1) that occurred in the early Universe may happen today in galactic
regions of large DM density, giving rise to leptonic charged cosmic rays and γ-rays.
However, assuming that the excess of positrons observed amongst others by AMS-02
[78] originates from astrophysical sources, it constitutes an insurmountable background
making the distinction of a potential DM signal from charged leptonic rays difficult.
Concerning the diffuse photon radiation, we recall that the s-wave annihilation of
N, N∗ is helicity suppressed. The low present-day velocity of DM particles leads to a
low σv, evading the bounds set by the Fermi collaboration [333]. Finally, as pointed
out in [323], N, N∗ annihilation through a box loop with sleptons and charged ν-Higgs
can give rise to a monochromatic photon line with a large cross section proportional to(

yνAν

M
H+
ν

)4

. The Fermi bound for a DM mass of ∼ 10GeV is quite severe, 〈σv〉γγ <∼ 5 ·
10−29 cm3s−1 [253]. However, taking Aν of the order of the EW scale (∼ 100GeV), this
bound is easily satisfied since 〈σv〉γγ <∼ 10−29 cm3s−1.

We close this section with a last constraint coming from the CMB. An increased
amount of free electrons at redshifts z ∼ 1000 would had affected the process of
recombination, leaving an imprint on the CMB anisotropies. An electron excess may
come from the injection of secondary particles produced by DM annihilation, or directly
from the annihilation. Strong constraints have been derived for the DM annihilation
cross section in [334,335]. For example, in the most stringent case where the dominant
annihilation channel leads to electron production, thermal DM with mass smaller than
∼ 10GeV is excluded (assuming purely s-wave annihilation).

Since these constraints are more severe in the low mass range, they are particular
interesting for the case of asymmetric DM, where, additionally, the pair annihilation
cross section is expected to be larger than the thermal one. However, the current model
is not affected, even in the case that late oscillations reopened the way to annihilations,
again due to the absence of s-wave DM annihilation. At the period of interest, the
temperature of the Universe was <∼ 1 eV; hence, the (p-wave) annihilation cross section
during that period is expected to be ∼ 10−9 times smaller than the cross section that
determined the DM density.
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6.5 Discussion

In this chapter we have presented an extension of the NMSSM introducing an ad-
ditional pair of Higgs doublets with small vevs, explaining the smallness of neutrino
masses and, at the same time, the present day coincidence of DM and baryon den-
sities. The additional Higgses and the right-handed neutrinos are charged under a
new U(1) symmetry which is explicitly broken by soft SUSY breaking terms. This
symmetry forces the new Higgses to couple in the superpotential only to right-handed
neutrinos (so-called neutrinophilic Higgses). The neutrinos have Dirac masses which
are generated dynamically by the neutrinophilic Higgs vev and hence naturally small.

We have shown that the right-handed sneutrinos can carry an asymmetry related to
the baryon asymmetry due to their conserved lepton number and equilibrium processes
in the early Universe. They can maintain their asymmetry at least until the freeze-out
of sneutrino–anti-sneutrino annihilations. Therefore, their relic density is determined
by their asymmetry and of the correct value if their mass is O(10)GeV, provided
that the coupling constant λ′ is small compared to λ. However, the bound on the
relativistic degrees of freedom during BBN set by the Planck collaboration requires
large soft breaking mass for the neutrinophilic Higgs. At present this scenario satisfies
constraints from DM detection experiments. Actually, the scattering cross section
is too small in order to explain possible excesses observed in the CDMS, DAMA,
CoGeNT and CRESST-II experiments [48, 50, 51, 57] in this mass range, which have
been interpreted as possible evidence of DM. Still, direct detection is possible in the
future once the sensitivity in the lower mass range is improved. On the other hand,
neutrinoless double beta decay is impossible in this model and a future observation of
this process would rule out the current scenario.



CONCLUSION

Copious evidence, coming from galactic rotation curves, gravitational lensing obser-
vations and many other observations, suggest that DM is present in our Universe in
a large amount. Its abundance has been specified quite accurately through the ob-
servation of the cosmic microwave background radiation by the satellites WMAP and
Planck. However, the exact nature of DM is not yet evident.

In this thesis, we dealt with the particle DM emerging from supersymmetric models
and, specifically, the NMSSM. We explained successfully, in this context, a possible
monochromatic photon excess on the data of the Fermi-LAT, which comprises an
indirect DM signal. This was achieved assuming the lightest neutralino as DM, anni-
hilating to photons through a chargino loop, via an s-channel singlet-like pseudoscalar
exchange. However, in order to obtain the large annihilation cross section that the
data suggest, a considerable amount of “fine-tuning” on the mass of the pseudoscalar
is required.

We showed that NMSSM is able to explain, at the same time, the SM-like Higgs bo-
son discovered at LHC and be consistent with constraints imposed by collider physics.
We also investigated under which conditions the neutralino DM, which gives rise to
the desired photon line, has the correct relic abundance and satisfies the established
bounds from direct and indirect DM detection. Despite the naive expectation that
thermal neutralino DM with large annihilation cross section to photons is excluded by
the non-observation of diffuse photon radiation, we demonstrated that it is possible in
the NMSSM to elude these limits. This is achieved mainly due to the negligible doublet
component of the pseudoscalar and the p-wave pair annihilations of the neutralino.

A notable part of the thesis deals with DM with a density which was not deter-
mined by the standard thermal mechanism, but it is coming from the asymmetry
between DM and anti-DM. However, an initial DM asymmetry may be destroyed by
self-annihilations, which, nevertheless, were often neglected in the past when their cross
section was small compared to DM particle-antiparticle annihilation cross section. We
solved numerically the coupled set of Boltzmann equations that govern the evolution
of the two species (DM particles and antiparticles) in a model independent way and
we concluded that the final DM density is very sensitive to the self-annihilation cross
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section, independently on the DM particle–antiparticle pair annihilation cross section.
In order that a sizeable amount of asymmetry survives, self-annihilation cross section
has to be (in most cases unnaturally) extremely small. Our main result is an upper
bound on this self-annihilation cross section.

Motivated by the severe bounds on the self-annihilation cross section, we proposed a
model of asymmetric DM, which respects these limits. This model is an extension of the
NMSSM through the introduction of a pair of neutrinophilic doublet Higgs superfields
and three generations of right-handed neutrino superfields. The small neutrino Dirac
masses are due to a small vev of the additional up Higgs scalar. The DM in this model,
a right-handed sneutrino, is proved to be consistent with experimental bounds. In order
for the asymmetry to be responsible for the DM present-day density, relatively large
Yukawa coupling constants are required. However, a large value for these couplings
means late decoupling of the right-handed neutrinos, increasing the relativistic degrees
of freedom during BBN. To compensate this effect and be consistent with the Planck
results, large values of soft SUSY breaking masses for the additional Higgses have to
be present.
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APPENDIX A

RELATIVISTIC DEGREES OF

FREEDOM

A.1 Energy Density

The total energy density ρ of the Universe is dominated by the energy densities of the
relativistic particle species:

ρ =
∑

i

ρi ≃
∑

i
(relativistic)

ρi. (A.1)

The energy density of a particle species i with energy Ei which follow a phase space
distribution fi would be, after summing over the spin degrees of freedom gi,

ρi =
gi

(2π)3

∫
Eifi(Ei)d

3pi. (A.2)

The phase space density could be Fermi-Dirac for the case of fermion species or Bose-
Einstein for bosons, given by

fi(Ei) =
1

e(Ei−µi)/Ti ± 1
, (A.3)

with the former corresponding to the “plus” sign and the latter to the “minus”. µi

is the chemical potential of the species i. The chemical potential is always several
orders of magnitude smaller than the temperature, hence it can be safely neglected
for relativistic particles. Moreover, relativistic particles can be treated as massless
(E ≃ p), so that the integral in Eq. (A.2) can be easily performed analytically for both
fermions and bosons, giving

ρi =

{
7
8
π2

30
gi T

4
i , fermions

π2

30
gi T

4
i , bosons

. (A.4)
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The total energy density would be just given by the sum of ρi, Eq. (A.4), over all
relativistic fermion and boson species. However, it is convenient to express it in terms
of the common temperature T of the species in equilibrium in the thermal plasma
(this temperature is usually considered as the photon temperature, since photons were
the last particles that went out of equilibrium). The species temperature Ti would
be the same in case of equilibrium, but in principle different if they have gone out of
equilibrium. Therefore, the energy density of the Universe is written as

ρ =
∑

bosons

π2

30
gi T

4
i +

∑

fermions

7

8

π2

30
gi T

4
i =

π2

30
geff(T )T

4, (A.5)

where, in the last step, we have defined the effective relativistic degrees of freedom for

the energy density as

geff(T ) ≡
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑

fermions

gi

(
Ti
T

)4

. (A.6)

A.2 Pressure

The pressure p appears in the diagonal spatial elements of the energy-momentum tensor
(1.6). The calculation of this tensor yields that the pressure is the density of p2/(3E),
so that the pressure pi of the particle species i can be written as

pi =
gi

(2π)3

∫
p2i
3Ei

fi(Ei)d
3pi. (A.7)

Taking the sum of all relativistic particle species, the pressure of the Universe simplifies
to

p =
ρ

3
. (A.8)

A.3 Entropy density

Assuming adiabatic expansion for a particle species with entropy S, we have TdS =
dE + pdV = 0. Replacing the entropy and energy by their densities times the volume
and identifying the coefficients of dV , we obtain the following expression

si =
1

Ti
(ρ+ pi). (A.9)

Using Eqs. (A.4) and (A.7), the entropy density is written as

si =
gi

(2π)3

∫
3E2

i + p2i
3EiTi

f(Ei)d
p
i . (A.10)
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Calculating the integral in the relativistic limit, we have si =
1
Ti

4ρ
3
. Summing over the

particle species and expressing the final result in terms of the temperature T of the
thermal plasma, as we did for the energy density, we find

s =
2π2

45
heff(T )T

3, (A.11)

where the effective relativistic degrees of freedom for the entropy density have been
defined as

heff =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑

fermions

gi

(
Ti
T

)3

. (A.12)

A.4 Calculation of the effective degrees of freedom

It is possible to calculate approximately the effective degrees of freedom by counting
the relativistic particles that are in equilibrium for a given temperature T . For tem-
peratures below the top quark mass, T <∼ mt, only SM particles are expected to be in
equilibrium. All the SM particles, except the neutrinos, went out of equilibrium while
non-relativistic. Therefore, they would stop to contribute to the total energy density
once the temperature T falls below their mass. In the massless approximation, the
effective degrees of freedom for the energy and the entropy density would be equal,

geff(T ) = heff(T ) =
∑

bosons

gi +
∑

fermions

gi ≡ N (T ). (A.13)

The values of the relativistic degrees of freedom obtained in this way for various tem-
perature ranges appear in TableA.1.

For the calculation of the DM relic density, a more accurate value for the degrees
of freedom is required and one has to drop the ultra-relativistic assumption m→ 0 of
massless particles. In this case, the expression for the energy and entropy densities for
a particle species i read, respectively,

ρi =
giT

4

2π2
x4i

∫ ∞

1

dy
y2
√
y2 − 1

exiy ± 1
, (A.14)

σi =
giT

3

6π2
x4i

∫ ∞

1

dy
(4y2 − 1)

√
y2 − 1

exiy ± 1
, (A.15)

where we have defined xi ≡ mi/Ti and we have performed the transformation y = E/m
in the integral. Comparing the above expressions with the corresponding expressions
(A.5) and (A.11), we can define, respectively,

gi(xi) =
15gi
π4

x4i

∫ ∞

1

dy
y2
√
y2 − 1

exiy ± 1
and (A.16)

hi(xi) =
45gi
12π2

x4i

∫ ∞

1

dy
(4y2 − 1)

√
y2 − 1

exiy ± 1
, (A.17)
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Temperature
Relativistic particles Relativistic

in equilibrium degrees of freedom

<∼ me γ, ν{e,µ,τ} 7.25

∈ (me,mµ) e± 10.75

∈ (mµ,mπ) µ± 14.25

∈ (mπ, Tc) π0, π± 17.25

∈ (Tc,ms) u, ū, d, d̄, gluons 51.25

∈ (ms,mc) s, s̄ 61.75

∈ (mc,mτ ) c, c̄ 72.25

∈ (mτ ,mb) τ , τ̄ 75.25

∈ (mb,mW ) b, b̄ 86.25

∈ (mW ,mH) W±, Z 95.25

∈ (mH ,mt) H 96.25

>∼ mt t, t̄ 106.75

Table A.1: The number of relativistic degrees of freedom for the SM particles. Tc
corresponds to the temperature at which the quark-hadron phase transition occurred.
The relativistic particles in equilibrium for each temperature range include the particles
of all previous rows in the table, with the exception of the pions that appear only for
T > Tc.

so that the effective number of degrees of freedom can be calculated using these two
expressions, as

geff =
∑

i

gi

(
Ti
T

)4

, heff =
∑

i

hi

(
Ti
T

)3

. (A.18)

We begin by the calculation of the entropy effective degrees of freedom heff. We
separate the sum (A.18) into two parts, one coming from the contribution of species
in equilibrium with common temperature T and the other from the decoupled species.
In this way,

heff(T ) = hc(T ) +
∑

dec

hi(T )

(
Ti
T

)3

. (A.19)

After the decoupling of a species i at a temperature Tdi
1, the total entropy as well as

1Although the decoupling is not a momentary process, we make the simplification that it occurs
at a specific temperature.
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the entropy of the decoupled species are separately conserved:

heff(T )T
3R3(T ) = heff(Tdi)Td

3
iR

3(Tdi), (A.20)

hi(T )

(
Ti
T

)3

T 3R3(T ) = hi(Tdi)Td
3
iR

3(Tdi), (A.21)

with R the scale factor. Combining the above equations, we have

hi(T )

(
Ti
T

)3

= heff(T )
hi(Tdi)

heff(Tdi)
. (A.22)

Inserting this result into Eq. (A.19), we arrive at the expression

heff(T ) = hc(T ) + heff(T )
∑

dec

hi(Tdi)

heff(Tdi)
. (A.23)

We follow [38] and introduce the ratios rc(T ) ≡ hc(T )
heff(T )

and ri ≡ hi(Tdi)
hc(Tdi)

. Then,

Eq. (A.23) becomes

rc(T ) = 1−
∑

dec

rirc(Tdi). (A.24)

Let us suppose now that at a temperature T1 just one species has already gone out
of equilibrium, at T2 two species and so on, so that at temperature Tn, n species
would have decoupled. Then, for a temperature at which n+1 species have decoupled,
Eq. (A.24) gives

rc(Tn+1) = rc(Tn)− rnrc(Tdn), (A.25)

which in the limit Tn+1 → Tdn becomes

rc(Tdn) =
rc(Tn)

1 + rn
. (A.26)

Substituting (A.26) back into (A.25), we obtain the recurrence formula

rc(Tn+1) =
rc(Tn)

1 + rn
. (A.27)

Using this recurrence formula, we can finally write

rc(Tn+1) = rc(T0)
n∏

i=1

1

1 + rn
, (A.28)

where T0 corresponds to a temperature at which all species were in equilibrium. At
this temperature heff(T0) = hc(T0) and, therefore, rc(T0) = 1. Switching back from the
ratios r to the quantities h on Eq. (A.28), we arrive at the final result

heff(T ) = hc(T )
∏

dec

(
1 +

hi(Tdi)

hc(Tdi)

)
, (A.29)
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which allows to compute the entropy effective degrees of freedom, knowing only the
temperature when the various species decoupled. Using this expression, Eq. (A.22) and
the first of Eqs. (A.18), it is now straightforward to write the corresponding expression
for geff.

In the current analysis, we have assumed that the ensemble of the various species
can be regarded as an ideal gas and, additionally, that there is no entropy production
during the whole evolution of the Universe. However, this is not always the case. For
example, during the QCD quark-hadron phase transition, the interparticle distances
become small, the hadrons begin to overlap and the interactions among them become
important. The ideal gas assumption is not anymore valid and one has to choose a
model for the transition in order to compute the effective degrees of freedom, something
that goes beyond our scope.



APPENDIX B

CROSS SECTION FOR THE

NEUTRALINO ANNIHILATION TO

PHOTONS

B.1 χ0
1χ

0
1 → γγ

The cross section times velocity for the lightest neutralino pair annihilation to two
photons through loop diagrams is given by

σv =
α2m2

χ0
1

16π3
|Ã|2, (B.1)

where α is the electromagnetic coupling constant and mχ0
1
the mass of the lightest

neutralino. Ã is the total amplitude, the sum of the partial amplitudes Ã of all possible
annihilations. Here, we assume that the annihilation of Fig.B.1 is dominant and we
neglect contributions from other diagrams.

The amplitude of the diagram B.1, by suitably modifying the expressions of [222],
turns out to be

Ãi = −
2∑

k=1

mχ+

k

mχ0
1

gAiχ0
1
χ0
1
gAiχ

+

k χ+

k

4m2
χ0
1

−m2
Ai

+ imAi
ΓAi

I
(
mχ+

k

mχ0
1

)
. (B.2)

mχ+

k
is the mass of the k chargino, mAi

and ΓAi
is the mass and the decay width,

respectively, of the i mass eigenstate of the pseudoscalar. The function I(x) is given
by

I(x) =
{

−2 arctan2 1√
x2−1

, for x ≥ 1
1
2
ln2 1+

√
1−x2

1−
√
1−x2

, for x ≤ 1.
(B.3)
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Figure B.1: Neutralino pair annihilation to two through an s-channel CP-odd Higgs
exchange and chargino loop.

The coupling gAiχ0
1
χ0
1
of the pseudoscalar to the lightest neutralinos is given by

gAiχ0
1
χ0
1
=

√
2λ [Pi1(N14N15 cos β +N13N15 sin β) + Pi2N13N14]−

√
2κPi2N

2
15

+ g1Pi1(N11N13 cos β −N11N14 sin β)

− g2Pi1(N12N13 cos β −N12N14 sin β), (B.4)

where P is the 2× 2 matrix that diagonalizes the CP-odd Higgs mass squared matrix
given by the Eq. (3.17) and N the real 5 × 5 neutralino mixing matrix defined in
Eq. (3.29). We see that for a CP-odd Higgs with negligible doublet component, the
above expression reduces to

gAsχ0
1
χ0
1
≃

√
2λN13N14 −

√
2κN2

15. (B.5)

As it was expected, the gaugino components of the neutralino do not couple to a singlet
pseudoscalar. Finally, the coupling of the pseudoscalar to the charginos is given by

gAiχ
+

k χ+

l
=

λ√
2
Pi2Uk2Vl2 −

g2√
2
Pi1 (Uk1Vl2 cos β + Uk2Vl1 sin β) , (B.6)

with U and V the matrices that rotate, respectively, the negative and positive charged
charginos of the weak basis into the mass eigenstates χ± (see (3.32)).

B.2 χ0
1χ

0
1 → Zγ

For this process, the cross section times velocity is given by

σv =
α

32π4

(m2
χ0
1

− 1
4
M2

Z)
3

m4
χ0
1

|Ã|2, (B.7)
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Figure B.2: The diagrams of neutralino pair annihilation through s-channel CP-odd
Higgs exchange, contributing to the Zγ.

in a notation similar to Eq. (B.1) (MZ is the mass of the Z boson). The amplitude for
the diagrams B.2 is given by [224]

Ã =
1

mχ0
1
− 1

4
M2

Z

2∑

k,l=1
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1
mχ+

j
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k χ+
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k

,
MZ
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. (B.8)

The couplings of the Z boson to the left and right components of the charginos are

gL
Zχ+

l χ+

k
=

g2
cos θw

(
−Vk1Vl1 −

1

2
Vk2Vl2 + δkl sin

2 θw

)
, (B.9a)

gR
Zχ+

l χ+

k
=

g2
cos θw

(
−Uk1Ul1 −

1

2
Uk2Ul2 + δkl sin

2 θw

)
. (B.9b)

Finally, the integral I ′ has to calculated numerically by the expression

I ′(a, b, c, d) =

∫ 1

0

dx

x
ln

∣∣∣∣
4a2x2 + (−4a2 + b2 − c2)x+ c2

4d2x2 + (−4d2 + b2 − c2)x+ c2

∣∣∣∣ . (B.10)
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