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Abstract

The detection of thin and oriented features in an image leads to a large field

of applications specifically in medical imaging, material science or remote

sensing. Path openings and closings are efficient morphological operators

that use flexible oriented paths as structuring elements. They are employed

in a similar way to operators with rotated line segments as structuring ele-

ments, but are more effective as they can detect linear structures that are

not necessarily locally perfectly straight. While their theory has always

allowed paths in arbitrary dimensions, de facto implementations were only

proposed in 2D. Recently, a new implementation was proposed enabling the

computation of efficient d-dimensional path operators. However this im-

plementation is limited in the sense that it is not robust to noise. Indeed,

in practical applications, for path operators to be effective, structuring el-

ements must be sufficiently long so that they correspond to the length of

the desired features to be detected. Yet, path operators are increasingly

sensitive to noise as their length parameter L increases. The first part of

this work is dedicated to cope with this limitation. Thus, we will propose

an efficient d-dimensional algorithm, the robust path operators, which use a

larger family of flexible structuring elements. Given an arbitrary length pa-

rameter G, path propagation is allowed if disconnections between two pixels

belonging to a path is less or equal to G and so, render it independent of

L. This simple assumption leads to a constant memory bookeeping and

results in a low complexity. The developed operators have been compared

qualitatively and quantitatively to other efficient methods for the detection

of line-like features. As an application, robust path openings have been in-

tegrated into a complete chain of image processing for the modeling and the

characterization of glass fibers reinforced polymer. Our study has also led

us to focus our interest on recent morphological connected filters based on



geodesic measurements. These filters are a good alternative to path opera-

tors as they are efficient at detecting the so-called “tortuous” shapes in an

image which is precisely the main limitation of path operators. Combining

the local robustness of the robust path operators with the ability of geodesic

attribute-based filters to recover “tortuous” shapes have enabled us to pro-

pose another original algorithm, the selective and robust path operators.
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1

Introduction

With the emergence of new imaging systems we are now able to generate three di-

mensional (3D) images that enable us to see many phenomena occurring from the

macroscopic to the nanoscopic scale.

Firstly designed for medical imaging, X-ray computed tomography (CT) has become

widely spread as it performs a non-invasive mean for the practitioner to explore human

body and to perform an accurate diagnosis of the diseases.

This imaging system has more recently found interesting applications in industry, es-

pecially in the domain of automotive and aeronautic where there is a need to predict

the macroscopic behavior of the material by characterizing precisely its microscopic

properties (e.g. orientations, lengths and shapes).

The drawback of this revolution relies now mostly on the question of “how can we

automatically extract reliable information from the generated data ?”

In 2D, image processing and analysis have proven to be very efficient in many domains:

medical and biomedical imaging, remote sensing, non-destructive testing, material sci-

ence, biometric applications and so on.

Filtering in image processing is probably one of the more important task. Based or not

on a priori information on image content, it aims at considering the useful information

as “signal”, and all that is not “signal” as “noise”. Depending on the problem we are

faced with, “signal” and “noise” can be of different nature.

Among all the methods provided by the scientific community for the last 40 years, the

critical issue in image processing is to find what method best fits to our application.

At the cost of an increase in the computation time and the memory usage (mostly

1



1. INTRODUCTION

because of the rise of the amount of data to process) 2D implementations of standard

used image processing algorithms have been given 3D implementations. We can think

about the well-known edge detector or smoothing methods for example.

However, to increase the reliability of the analysis in more and more complex cases

of study, advanced methods should be used but often, these methods are involving a

bulky implementation in 3D (e.g. non-local means algorithm).

To cope with this limitation, some algorithms have been developed with parallel im-

plementations. These implementations improve considerably the computation time,

however, it needs a dedicated machine to process the image. Moreover some interesting

family of algorithms are not yet given a parallel version.

In this dissertation, we will propose several new algorithms for both 2D and 3D image

processing based upon efficient ones for the detection of thin, curvilinear and oriented

features. Especially, we will focus our interest in the case where thin features are noisy

and are difficult to detect as they are affecting by disconnections (see Figure 1.1 for an

illustration). After giving a review of the state of art of the detection of curvilinear fea-

tures in image processing, our study will be focused on recent advanced filters provided

by mathematical morphology called path operators (1). This algorithm is central in our

work, indeed, we are dedicated to find a convenient way to increase the robustness of

the so-called complete version to render the path openings and closings more efficient

on real 2D and 3D applications.

We will introduce the robust path operators as a novel and efficient way to render the

standard version of path operators robust to disconnections affecting the thin features

in both 2D and 3D images. After giving the principles, the theoretical framework and

an efficient d-dimensional algorithm to compute them, they will be used in the last part

of this dissertation as a preprocessing step for the enhancement of a 3D image of glass

fibers reinforced polymer.

Secondly, we will focus on the recently developed morphological connected filters based

on geodesic measurements. These filters have also been proven to be efficient to detect

thin and curvilinear features in an image. Even if they are for the moment not robust

to noise, they have a real ability to detect the so-called “tortuous” shapes in an image.

Fortunately it appears that the detection of “tortuous” shapes is a limitation of path

operators algorithm, thus we propose to combine the two filters in an algorithm called

the selective and robust path operators which aims at combining the local robustness

2



(a) (b)

(c) (d)

Figure 1.1: Example of applications: (a).Retinal vessel; (b).Roads in remote sensing;

(c).Coronary arteries detection in medical imaging; (d).Glass fibers reinforced polymers in

non-destructive testing

of path operators with the ability for geodesic-based filters to give a good response to

tortuosity.

All the proposed algorithms proposed in this study have been implemented in C++

using the object oriented programming principle. The developed classes can be inter-

3



1. INTRODUCTION

faced with any of standard image processing libraries providing basic read and write

functions and a raw data extraction function. Here we have used the ITK library as it

is convenient to read both 2D and 3D images of any type.

Particular cares have been given to propose efficient implementations runnable on a ba-

sic material configuration. Given timings in this document are achieved with a laptop

computer with a dual-core processor of 2.2 GHz with 4 GB RAM memory and with-

out any parallelization (e.g. when we will speak further in this dissertation about the

computation of the path openings considering several orientations, these are computed

sequentially).

4
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Line-like Feature Detection

Detecting thin line-like features is still a real challenge in image processing. A huge

number of methods from the past 40 years were dedicated to this task for both pre-

processing and segmentation purposes as they play a key role in a lot of different

applications (e.g., vessels detection in medical imaging is maybe one of the most fa-

mous ones). Here we are interested in the preprocessing methods aiming at increasing

the useful information coming from thin and elongated features while removing the

noise.

Even if their classification could be made in a lot of different manners, we have decided

to make a separation between “preserving” and “detecting” filters.

“Preserving” filters will keep the features of interest intact while trying to remove most

of the noise, whereas, the goal of the “detecting” filters is to expect a stronger response

at features of interest and a weaker one at noise through a measure function (see Figure

2.1 for an example of a “preserving” and a “detecting” filter).

In this chapter we will recall the most widely spread methods for the detection of line-

like features. More details are brought to the description of the methods provided by

mathematical morphology as this discipline is central in our dissertation.

2.1 “Detecting” Filters

Most of the filters in this section are based on an intensity and shape model of line-like

patterns. Indeed, it is assumed that the intensity of elongated features varies slowly

5



2. LINE-LIKE FEATURE DETECTION

(a) (b)

(c)

Figure 2.1: Example of a “detecting” and a “preserving” filter (a).Original DNA filament;

(b).“Detecting” filter (obtained with steerable filter); (c).“Preserving” filter (obtained with

robust path operator);

along the direction of the ridge but presents higher contrast variations in its orthogonal

direction.

2.1.1 Oriented Filters

Oriented filters are used in many of image processing applications: texture analysis,

edge and ridge detection, image enhancement, features’ orientations.

These operations are realized by performing a matched filtering considering a rotated

version of an arbitrary chosen basis kernel. The finality is to examine filter’s responses

at many orientations (by rotating the basis kernel in several orientations) and to get

the strongest one.

These filters are particularly suitable for the enhancement of vessels in medical imag-

ing and has led to many of applications for images coming from various modality of

acquisition (e.g. MRI (Magnetic Resonance Imagery), MRA (Magnetic Resonance An-

giogram)).

Poli et al. (2) proposed a real-time implementation of these filters, sensitive to both

ridges’ orientation and thickness by combining shifted versions of Gaussian kernels.

Obviously, the higher number of orientations are examined the more accurate will be

the result of the filtering process and the higher will be the computational cost.
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2.1 “Detecting” Filters

Based on the same idea, Kunz et al. (3) decided to use the result of the convolution of

the image with highly anisotropic filters gθi by rotating a basis kernel g in the orienta-

tion θi (the method needs a preliminary discretization step controlled by the number of

rotated kernels one wants to apply on the image). Basically, a second order derivative

of Gaussian is chosen as basis kernel to probe the contrast in and out the ridges. In

addition to the width w of the ridges one wants to detect, an integration parameter l

enables to reduce the noise by smoothing orthogonally along a discrete line for each of

the rotated filters (see Figure 2.2).

These filters have been proven to be very efficient to detect low SNR (Signal to Noise

Ratio) (4) and as the rotated kernel is separable, they are computationally very effi-

cient. However, their adaptation to 3D image processing may not be straightforward

particularly for the delicate issue coming from the discretization step.

Figure 2.2: Left: The basis kernel; Right: A rotated version of the basis kernel

Steerable filters (5), (6) are a subclass of oriented filters in which the response at an

arbitrary angle can be computed efficiently and analytically as a linear combination

of a set of basis filters to cut down the computation time of a direct implementation

approach (i.e. the implementation of each of the rotated version of the basis kernel as

we have seen just above).

A function h(x, y) is steerable if it can be written as a finite sum of weighted rotated

version of itself:

hθ =

M
∑

i=1

ωi(θ)h
θi (2.1)

Derivatives of Gaussian kernel of all orders have been proven to be steerable (see Figure

2.3 for an example of a fourth-order Gaussian derivative) and are widely used as ridges

detectors.
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2. LINE-LIKE FEATURE DETECTION

Jacob et al. (6) improves the previous work of Freeman et al. (5) by designing a family

of oriented filters optimized according to a generalization of the Canny like criteria

(7). Their filters provide the best compromise considering SNR, false detections and

localization.

Figure 2.3: Ridge detector (fourth order derivative)

2.1.2 Hessian Based Filters

Figure 2.4: Second order Gaussian derivative

Considering a 2D image as an elevation map of R2 → R derivatives methods are

assuming that features of interest represent the crest lines of this elevation map (in

the case of the detection of brighter features). Using kernels based on the widely used

derivatives of Gaussian, one can access to the differential property of the image in

several directions and then detect features presenting particular shapes (e.g. tubular

objects for example).
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The Hessian filter (8), (9), (10), (11), (12), (13), (14), is one of the widely spread filters

in the community of medical imaging. The benefit of using the Hessian filter is mostly

because of its property to be multi-scale. Indeed, performing the algorithm at different

scales enables one to retrieve both smaller and larger features (note that this is very

useful to cope with the randomness of anatomical structures).

Based on the linear scale-space theory (15), Hessian based filters are obtained by con-

volving the image with second order derivatives (see Figure 2.4) of Gaussian kernels of

different standard deviations thus enabling the characterization of the local geometry

of a pixel according to a given scale.

After building the Hessian matrix and extracting its eigenvalues (λi), a vesselness func-

tion can be used as a measure of likelihood for each of the pixel to be a part or not of a

vessel (e.g. Frangi or Sato vesselness function). Figure 2.5 is an example of the result

of the multi-scale Hessian filter based on the Frangi measure (14).

For a 3D image I(p) with p ∈ R
3, at a given scale σ, indicating the Hessian matrix

eigenvalues as λ1, λ2 and λ3 (|λ1| ≤ |λ2| ≤ |λ3|) Frangi expressed its vesselness function

as:

ν(p, σ) =

{

0 if λ2 > 0 or λ3 > 0

(1− e
−R2

A
2α2 )e

−R2
B

2β2 (1− e
−S2

2c2 ) otherwise
(2.2)

with RA = |λ2|
|λ3|

, RB = |λ1|√
|λ1λ3|

, S =
√

∑

j λ
2
j and α, β, γ parameters defined by the

user. This vesselness function is computed in a given range of σ, σrange, thus can give

for each of the voxel a probability to belong to a ridge of a certain width.

After being normalized (in order to reach an equivalent response over the scales), one

can select within σrange the maximum of the response of the filter.

νmax(p) = max
σrange

(ν(p, σ)) (2.3)

σrange can be chosen so that it will cover a range of ridges widths that are expected to

be found in the image.

The well known drawbacks of this method are its sensitivity to noise (due to the use of

the second order derivatives) and its inability to detect junctions (causes disconnections

in the features) as their characterization is very closed from that of blob like features.

Moreover, at larger scales, the blurring effect of the Gaussian kernels can lead to geo-

metric distortions which can be critical for some kind of applications (e.g. in vessels’

medial axis position (16)).
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2. LINE-LIKE FEATURE DETECTION

(a) (b)

Figure 2.5: (a).Input image: 2D retinal image (b).Result of the multi-scale Hessian filter

based on Frangi measure (14);

2.1.3 Curvelets

Curvelet transform is a recent multiscale directional method coming from the signal

processing theory (17), (18), (19), (20), (21), which aims at overcome some shortcoming

of wavelet transform by providing a sparse representation of curves.

Basically, for all the time-frequency methods used in signal processing it is possible to

decompose a signal f in a linear combination of weighted basis functions:

f =
∑

k

akbk (2.4)

with ak and bk the weighting coefficients and the basis functions respectively. This

signal representation can be used to perform different tasks:

• data compression,

• feature extraction,

• image restoration.

There are two different implementations to compute the 2D discrete curvelet transform:

the wrapping method and the unequispaced fast Fourier transform (21). The discrete

curvelet transform is obtained by dividing the Fourier space into concentric circles and

further dividing them into wedges. These radial wedges contain the structural and
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2.1 “Detecting” Filters

anisotropic information of the image.

Since the curvelet transform is well suitable to give a sparse representation of the edges

of an image, it can be used to enhance them by introducing a function which is in

charge of modifying the curvelet coefficients and whose parameters are tuned according

to image statistics (19). Figure 2.6 is an example of a non-linear enhancing of curvelet

coefficient used in (22).

(a) (b)

Figure 2.6: Curvilinear features enhancement with curvelet transform

2.1.4 Minimal Path

Vincent (23), (24), proposed an efficient algorithm to enhance curvilinear features in a

noisy environment. The principle of the local minimal path is described by the author

as follows:

Assign to each pixel p of an image I the minimal cost CI(p) for all the paths P of a

given length l originating from p and whose orientation and straightness are within a

given range.

Recently, Bismuth et al. (25), generalized the concept of the local minimum path of

Vincent (24) by adding a constraint on its smoothness. They are making the parallel

between the classical model based filters (e.g. matched filters) and the proposed polyg-

onal path which aims at selecting for each pixel a best-fitting curve of given smoothness

and length.
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This path, defined by two parameters (the arclength L and the smoothness l) is in fact,

for l = 1, a particular case of the local minimal path of Vincent. Moreover, as short-

est paths from random positions tend to form bundles around the curvilinear features

of interest, they also made use of a voting scheme ((26),(27), (28)) to reinforce path

overlapping. This family of algorithms have found its applications in medical imaging

especially in guide-wire detection where the SNR is very low or in the extraction of the

medial axis of coronary arteries in 3D (16).

2.2 “Preserving” Filters

2.2.1 Isotropic Filters

Isotropic filters are based on the assumption that image values vary slowly over their

spatial domain. Thus, it seems logical, as all the pixels in a given neighborhood should

be similar, to average them together. Making the hypothesis that the noise affecting the

pixels in a neighborhood is less correlated than the signal, the averaging process should

decrease the amount of noise while keeping intact the useful signal. As an output, the

well-known Gaussian filter is performing a weighted sum of the neighborhood pixels

values depending on the distance from the central pixel of the neighborhood.

Even if this idea is the foundation of filtering in image processing, it is very limited as

the hypothesis of slow spatial variations fails at image edges. This effect increases in

the case of the filtering of thin and noisy features where classical isotropic kernels will

not fit into these particular kind of shapes as it is hard to find “low gradient” regions

in this case.

2.2.2 Edge-preserving Filters

2.2.2.1 Bilateral Filter

As seen above, classical fixed-shape kernels blur the edges of the image and are so

particularly not well adapted to the enhancement of thin and noisy curvilinear features

in a image. Edge-preserving filters aim at smoothing homogeneous regions while trying

to keep intact the information provided by the edges (e.g. (29), (30) are using a statistic

homogeneity measure to combine similar pixels together within a given neighborhood).

Here we will give some details about one of the most well-known edge-preserving filter:
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2.2 “Preserving” Filters

the bilateral filter. Based on the early work of (31), the bilateral filter, defined in (32),

is an edge preserving filter which combines both photometric (or range) and domain

filtering.

The filtering power will depend on two parameters σr and σd in the particular case of

shift-invariant Gaussian kernel. The principle of this filter is very intuitive and so are

its parameters to set. Given a pixel p, its value will be replaced by the weighted values

of the pixels similar to p in intensity and in the spatial vicinity of p.

The weight given to a pixel belonging to the neighborhood of p will depend on the

geometric spread σd and the range spread σr. A larger σd will combine values from

more distant pixels’ locations and would blur more the image. A larger σr will enlarge

the set of combination by considering pixels with larger intensities’ differences from p.

The intensity Ip of pixel p will be replace by :

Ibfp =
1

W bf
p

∑

q∈S

Gσd
(‖p− q‖)Gσr(|Ip − Iq|)Iq (2.5)

with Gσd
, Gσr a Gaussian convolution kernel of variance σd and σr respectively and q

a pixel in the vicinity of p. W bf
p normalizes the sum of range and domain weights:

W bf
p =

∑

q∈S

Gσd
(‖p− q‖)Gσr(|Ip − Iq|) (2.6)

In the case of a large smooth region, the bilateral filter will act like a classical domain

filter (Gaussian filter of parameter σd); it averages the small intensities differences

between pixels caused by noise as they are weakly correlated compare to “signal” pixels.

In the case of a sharp edge between two regions (e.g. step between a dark and a bright

region), considering a pixel p on the bright side of the boundary, the similarity criterion

defined by σr will prevent combining the pixels which are located on the dark side of the

boundary but will suppress the noise on the bright side. Here we will use the efficient

implementation proposed by (33) based on a signal processing approach.

2.2.2.2 Nonlinear Anisotropic Filtering

Within the framework of the scale space theory, given an image I, a family of images

can be generated from a finer to a coarser scale according to the well-known diffusion

equation:

It = ∇.(D∇I) (2.7)
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With D the diffusion tensor enabling to control the blurring process to preserve or not

features of interest and I0 = I. If D is the identity matrix, such equation becomes

the classical “heat-equation” which is satisfied by the particular case of the Gaussian

kernel. However this filter does not preserve the contours and it smooths the image in

an anisotropic way regardless of the presence of the contours.

In order to increase the intra-region smoothing while preserving the edges in the image,

Perona and Malik introduced the non-linear anisotropic diffusion (34) in which D is

replaced by a decreasing function of the local gradient magnitude.

Based on this idea, many of authors contributed to anisotropic diffusion filters by

proposing more elaborated diffusion tensor matrix (35), (36), (37). For example Catté

et al. (38) proposed to consider the norm of the gradient of the smoothed image (image

blurred by a Gaussian kernel) instead of the norm of the gradient, Krissian et al. (39),

(40) suggest to reinforce the diffusion process of the image in the direction of the lowest

curvature.

In another interesting fashion, Orkisz et al. (41) decline the non-linear anisotropic

filtering using some kind of oriented structuring elements called “sticks” in which a

smoothing is performed (note that these “sticks” have their equivalent in mathematical

morphology with oriented segments).

The local orientation is estimated thanks to the intensity homogeneity along the “sticks”

and to the difference of intensity between each of them. Obviously, this step is preceded

by a discretization on the orientation of the “sticks”.

The same approach was also used by several authors in (42), (43), (44), (45), (46)

and (47). They were used first as an efficient mean to enhance the vizualisation of

MRA images by maximum-intensity-projection (MIP) where the thin vessels are not

well contrasted.

This family of filters enables the smoothing to be really efficient along the vessels,

nevertheless it shows some limitations for the enhancement of the strongly curvilinear

ones. Moreover, as these filters are not multi-scale they don’t have the capability to

adapt to both smaller and larger scales. Based on the same idea, Truc et al. (48)

proposed to cope with these limitations with a decomposition-filtering-recombination

method. The decomposition of the image into several “directional images” provided

by a directional filter bank is following by an enhancement step (using a Hessian based
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filter) and then by a recombination step enabling the reduction of the sensitivity to

noise and to a better detection of the junctions patterns.

2.2.3 Mathematical Morphology

2.2.3.1 Basic Concepts

Mathematical morphology (49), (50), (51), (52), (53), (54) relies on the set theory

that make it “self-encompassed” and coherent. This theory is well adapted to describe

the world around us since the visual information is not translucent and is a contrario

composed of opaque objects that hide one another.

The main issue concerning mathematical morphology is to extract information from a

non-linear transform applied to objects in image. This information can be, but are not

limited to:

• shape,

• orientation,

• size,

• connectivity ...

L. Najman and H. Talbot (55) well summarize this discipline: Mathematical morphology

was historically the first non-linear theory in the field of image processing. It rests

on three pillars that make its success: a solid theory, a wide scope, and an effective

implementation.

Here we will give the basic theoretical concepts of mathematical morphology. The

reader that is already familiar with these concepts can skip this section.

In order to define operators for mathematical morphology, we make use of the abstract

notion of complete lattice.

A lattice (E,≤) is defined as a set E equipped with an ordering relation ≤ reflexive

(x ≤ x), antisymmetric (x ≤ y and y ≤ x ⇒ x = y) and transitive (x ≤ y and

y ≤ z ⇒ x ≤ z). This relation enables the definition of a “greatest” element (x∨y) and
a “lowest” element (x ∧ y). A lattice is said to be complete if each of the subset P of

E admits a smallest majorant ∨P (supremum) and a largest minorant ∧P (infimum).

Basis operators are derived from the notion of complete lattice and from the fact that
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they respect its fondamental structure, i.e. preservation of the order (x ≤ y ⇒ φ(x) ≤
φ(y)) and commutativity with the supremum and the infimum. Specifically, the dilation

δ is defined as commuting with the supremum and the erosion ǫ as commuting with

the infimum.

We can give some classical examples of complete lattice:

• R, indeed an arbitrary interval admits a supremum, and an infimum. Moreover

the ordering relation ≤ is a total ordering relation (two arbitrary chosen elements

of R can always be ordered).

• The set P(E) of all the subsets of E which is ordered by the inclusion operator and

in which supremum and infimum coincide with the union and the intersection.

• Functions having their values in R or Z in which the supremum and the infimum

is defined as the pointwise maximum and minimum respectively.

In a complete lattice, supremum and infimum play symmetric roles. This duality is the

main issue of mathematical morphology as it encompasses all its theoretical aspects. If

we place ourselves in the lattice P(E), two operators φ and φ∗ are said to be dual if for

all X, φ(Xc) = [φ∗(X)]c where Xc is the complementary of X in E.

Fundamentals property of the basis operators φ : E → E are:

• increasingness x ≤ y ⇒ φ(x) ≤ φ(y),

• extensivity or anti-extensivity (x ≤ φ(x) and φ(x) ≤ x respectively),

• idempotence (φ(φ(x)) = φ(x)).

In image processing, we would like to model the lattice of the binary image defined

as mapping of: Z
2 → {0, 1}. It can be considered as a subset of a grey-level image E

obtained by a thresholding operation. To make it easier to define the different operators,

it is often convenient to place ourselves in the boolean lattice P(E), where E is Rn or

Z
n equipped with a translation and where the supremum coincide with union and the

infimum with the intersection. A basis operator is an operator preserving the laws of

the lattice, specifically, in practical applications, image processing often involves the

use of set B called structuring element whose shape is adapted to a given purpose (e.g.

basic morphological filtering uses square or disc shapes).
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Considering X a binary image, subset of E, the shifted set of X by p ∈ E is defined as

Xp = {x+ p|x ∈ X}. The dilation of X by a set B is then defined as:

δB(X) = X ⊕B =
⋃

b∈B

Xb = {x+ b|x ∈ X and b ∈ B} (2.8)

Dilation is the geometrical locus of points z in E such that Bz intersects X. Basically,

the dilation operation is thickening the set X with B. It respects the property of being

increasing, extensive and commutable by the union operator.

Erosion is dual by complementation to erosion and is defined as:

ǫB(X) = X ⊖B =
⋂

b∈B

X−b = {p ∈ E|Bp ⊆ X} (2.9)

It represents the geometrical locus p of E such that Bp is completely included in X.

Basically, the erosion operation is thinning the set X with B. It respects the property

of being increasing, anti-extensive and commutable by the intersection operator.

Performing a dilation on a set X with a structuring element B is equivalent to perform-

ing an erosion on Xc the complementary of X with the reverse structuring element.

Even if “filtering” in image processing is a generic term including all the possible treat-

ments, filtering in the sense of mathematical morphology is involving a specific class

of operators respecting precise properties. Indeed filtering operator must respect the

property of being increasing and idempotent meaning that it converges into one itera-

tion (φ(φ(X)) = φ(X)).

Morphological openings (resp. closings) are morphological filters and are defined by

composition of an erosion followed by a dilation (resp. dilation followed by an erosion).

In the opening case, the dilation (computed with the reflected structuring element)

is trying to reconstruct the features that were not totally suppressed by the erosion.

Thus, the opening and the closing are defined as:

γB(X) = X ◦B = (X ⊖B)⊕B (2.10)

and

φB(X) = X •B = (X ⊕B)⊖B (2.11)

Note that openings (resp. closings) that can be defined by composition of erosion

followed by dilation (resp. dilation followed by erosion) are termed as morphological
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openings (also called structural). If a transformation have the same properties of an

opening but can not be defined as well, it will be termed algebraic opening. Openings

(resp. closings) are increasing, idempotent and anti-extensive (i.e. γB(X) ⊆ X) (resp.

extensive i.e. X ⊆ φB(X)).

2.2.3.2 Structuring Elements Based Filters

In the particular case of the filtering of thin elements, basic anisotropic shapes (e.g.

disc, square ...) will remove too much of the features of interest. Thus, it is needed to

adapt the structuring element according to the content of the image.

The powerfulness of basis morphological operators i.e. erosion and dilation is that they

can be combined to build other more powerful operators. This is for example the case

of morphological openings and closings.

Another example is that of operators taking care of elements in the foreground and in

the background at the same time. Thus, we need two different structuring elements T1

and T2 applicable to foreground and background respectively. This transform applied

on a set X is noted as:

X ⋆ T = (X ⊖ T1) ∩ (Xc ⊖ T2) (2.12)

Theses transforms are termed as hit or miss transform (HMT), (52), (56), (57), (58),

(59), and are well performing the difficult task of shape recognition. Indeed, X ⋆ T

is the locus p of E where T1 and T2 fits to the foreground and the background re-

spectively. This transform is not increasing and so does not constitute a morphological

filter. However, it has shown in its grey-scale extension a real ability to be efficient in

practice e.g. for the extraction of coronary arteries in 3D medical imaging (57).

When performing an opening (resp. closing) by a given structuring elements, the

brighter (resp. darker) elements that do not fit into the arrangement of the structuring

elements will be removed.

Performing the union of the response of oriented segments within a large range of ori-

entations should be a good answer to the problem of the detection of thin features

especially when the orientations in the image are unknown.

Soille et al. (60) proposed an efficient algorithm to compute erosions and dilations along

Bresenham lines (61). Latter, Soille and Talbot improved this algorithm rendering it

invariant to translation (62) with quasi no additional complexity (applications can be
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found e.g. in (63) and (64) for the detection of roads in remote sensing images and in

(65) for the computation of the local structure orientation in 2D).

A “rank-based” (66) version of this algorithm was also proposed enabling the compu-

tation of openings with incomplete oriented line segment (i.e. with a given number of

points lying into the background of the image): given a structuring element B whose

cardinality card(B) equals n points, the rank-max opening of parameter r is equivalent

to the union of all the structuring elements Bi included into B and containing r pixels:

γB,r =
∨

i

{γBi
| Bi ⊆ B ∩ card(Bi) = r} (2.13)

Compared to the use of plain line segments, rank-max openings are less sensitive to

the presence of small gaps (indeed gaps up to (n− r) are allowed along the considered

oriented line segment). This reinforces their applicability to the detection of features

in noisy environment (see Figure 2.7). More recently, path openings and closings were

(a) (b) (c)

Figure 2.7: Comparisons between openings by line segments and rank-max openings,

parameters are set manually depending on the considered application (a).Input image;

(b).Result of the union of line segments (L = 20 and ∆θ = 15); (c).Result of the rank-max

openings using line segments (L = 20, ∆θ = 15 and r = 0.8), disconnected straight parts

of the vessels are detected

introduced in order to generate a family of oriented and flexible structuring elements.

As this topic is the main topic of our dissertation, more details will be brought in the

next chapter. Note that the work of Soille and Talbot (62) is important for our study as

it is the starting point of our reflexion on the addition of robustness to path operators.
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2.2.3.3 Mixed Approaches

The theoretical framework of spatially variant mathematical morphology (67), (68) al-

lows to generate morphological operators whose shape and orientation can be locally

adapted to the underlying directions of the image. In the work of Tankyevych et al.

(69), (70), (71), (72), the curvilinear morpho-hessian filter computes the orientation in-

formation from the Hessian matrix. This filter has been used to enhance and reconnect

vessels in 3D medical imaging. Close to the results obtained with the morpho-hessian

filter, (73), (74) proposed an anisotropic filter where oriented structuring elements vary

over the space according to a vector field. Note that this approach can be related to

the early work on anisotropic non-linear filtering made by Orkiz in (41).

2.2.3.4 Connected Filters

Wilkinson et al. proposed shape preserving connected filter (the filtering process is

realized by computing an attribute on each of the connected component of the image)

(75) based on the volume and on the moment of inertia of the connected components

in order to retain filamentous objects while removing the noise.

Recently Morard et al. (76), (77) generalized attribute thinnings (openings without the

increasingness property) to geodesic measures performed on the connected component.

From the geodesic diameter, they have derived several attributes e.g. length, elongation,

tortuosity of a connected component.

Here we have just briefly mentioned these methods as more detailed explanations about

connected filters will be provided in the chapter 5.

2.3 Discussion

In the case of the filtering thin and elongated features in a noisy environment, the

preprocessing step aiming at retrieving the relevant information while reducing the

noise is critical to perform in further steps the segmentation and the analysis.

As we have seen above, all of the methods rely on a model of what one wants to detect

in an image.

Based on the scale-space theory, the “detecting” methods have proven their efficiency,

however, many of these methods have limitations, either generating distortions of small

details or enhancing the noise (i.e. non-elongated features).

20



2.3 Discussion

Specifically, these methods are almost all relying on the use of a Gaussian kernels (or

its derivatives) in order to have access to different level of details of the image. This

can be critical for the efficiency and the semantically correctness of the result of the

segmentation (e.g. position of edges and ridges).

Mathematical morphology provides a large choice of “preserving” filters which aim

at conserving the radiometric and the geometric properties of the features of interest

while trying to remove the noise. Moreover, a real effort was brought by the authors

in the last decade at both algorithmic and implementation levels to reach satisfactory

computation times and memory use in order to process larger and larger 3D data. This

is what motivated our work on advanced morphological filters.
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3

Path Operators

3.1 Motivation

In many situations, image processing involved the use of structuring elements based

filters. These structuring elements act like a probe to compare their shape to the shape

of the objects present in the scene.

For these operators to be efficient, structuring elements should be adapted to what one

want to keep or not in the image after filtering. However, in practical applications,

a very few kind of shapes are used. Anisotropic structuring elements (e.g. square or

diamond shape) of different sizes are widely used for basic filtering, or granulometries

(52), (78), (79).

When dealing with oriented and line-like features, one would use a union of discrete

oriented line segments as structuring elements to filter out compact noise while not re-

moving elongated features. However, the use of discrete lines segments is very limited

to some particular applications as most features in real-world images are locally not

perfectly straights and would not fit into a straight structuring element even if a large

number of oriented segments are used. Moreover, line-like filters can be very time con-

suming (80) and, as we are interested in applications for 3D images, can be prohibitive

as the number of orientations depends quadratically on the segment length L (81).

To cope with this limitation, path openings and closings were first proposed by Buck-

ley and Talbot in (82) by adapting the efficient algorithm developed by Vincent (24).

However the “shortest paths” algorithm of Vincent is based on local sums of pixels

values and does not constitute a morphological filter.
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In comparison, we will see below that path openings respect the property of being an

algebraic opening and enable the generation of a family of structuring elements which

allows oriented, narrow and elongated features to be flexible locally.

Later, path operators were given a more detailed theoretical framework and a recursive

implementation in O(NL) (with N and L image dimension and path length respec-

tively) (1) by the same authors. An efficient implementation in O(N log(L)) was pro-

posed by Talbot and Appleton (83) in an ordered fashion. This ordered implementation

constitute the basis of the work that will follow on robust path openings and closings.

Recently, Cris L. Luengo (81) developed a dimensionality-independent version of Tal-

bot and Appleton’s implementation by simplifying the algorithm thus render it easier

to implement. More details will be brought to this implementation as it is central in

our study.

3.2 Principle

Given two parameters, L the length of the path in pixels and a local adjacency relation

setting the global orientation of the path, path openings (resp. closings) principle is

to remove features that are brighter (resp. darker) than their immediate surrounding

and don’t fit into an arrangement of pixels defined by the generated path. Performing

a path openings is equivalent to the union of the openings computed from the family

of all the possibilities of path arrangement.

With no a priori on the orientation on the content of the image, path openings are

basically computed sequentially considering several global orientations. Unioning the

results obtained from the different orientations performs a global anisotropic filtering.

3.3 Definition

Detailed theoretical foundations of path openings and closings can be found in (1).

Here we will give a summary of the theoretical aspects for the reader to be able to

understand the concepts behind these operators.
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3.3.1 Adjacency Graph And Dilation

Starting from a set of points E (i.e. pixel locations in image domain), we define a spatial

adjacency graph (e.g. Figure 3.1) between these points from a binary adjacency relation

x → y. Note that this binary relation is neither reflexive nor symmetric (symmetric

would mean x → y iff y → x, for every x, y ∈ E and reflexive would mean x → x for

every x ∈ E).

The set of all these relations specify the edges going from x to y. In this context, y is

called the successor and x the predecessor.

Figure 3.1: Illustration of a spatial connectivity graph defined by a binary adjacency

relation; b1,b2,b3 are the successors of a and a1,a2,a3 are the predecessors of b.

Using this adjacency graph, we define for each point x the set of its successors with

respect to → by :

δ({x}) = {y ∈ E : x→ y} (3.1)

We can generalize this expression to an arbitrary subset of E by:

δ(X) = {y ∈ E : x→ y for some x ∈ X} (3.2)

Analogously we can define the reverse operator:

δ̆(X) = {y ∈ E : y → x for some x ∈ X} (3.3)

δ(X) and δ̆(X) include all points that have a predecessor and a successor in X respec-

tively. Note that δ and δ̆ have the algebraic property of a dilation i.e. preservation of

the order and distribution over the supremum (δ∪iXi = ∪i(δXi)). One can notice that
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it is relevant to place ourselves in in the complete lattice P(E) and that we can express

the adjacency relation on this set as:

x→ y if y ∈ δ({x}) (3.4)

3.3.2 The Binary Path Operator

From the adjacency graph defined just above we can define a δ-path of length L which

is a L-tuple:

a = (a1, a2, ..., aL) if ak → ak+1 (3.5)

Which is equivalent to:

ak+1 ∈ δ({ak}) for k = 1, 2, ..., L− 1 (3.6)

If a is a δ-path of length L, we define the corresponding reverse path:

ǎ = (aL, aL−1, ..., a1) (3.7)

called δ̌-path of length L.

We can deduce that a = (a1, a2, ..., aL) if and only if ǎ = (aL, aL−1, ..., a1) and both

of them have the same length L. Considering the space of image domain E, we define

the set of δ-path of length L in E by ΠL and conversely Π̌L as the set of all δ̌-path

of length L in E. Then from a path a, we define σ(a) the set corresponding to path

elements: σ(a) = σ(a1, a2, ..., aL) = {a1, a2, ..., aL}. We denote the set of all δ-path in

a subset X of E by:

ΠL(X) = {a ∈ ΠL : σ(a) ⊆ X} (3.8)

and conversely the set of all δ̌-path of length L in X by Π̌L(X).

Path openings are defined as the union of all δ-path of length L contained in X:

αL(X) =
∨

{σ(a) : a ∈ ΠL(X)} (3.9)

αL(X) satisfies all the algebraic properties of an opening: increasingness, anti-extensivity,

idempotence.

In the case of a periodic adjacency graph (Figure 3.1 is an illustration of a 3-neighbors

vertical periodic adjacency graph), αL(X) is equivalent to the supremum of openings
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over the generated family of structuring elements.

Moreover the use of a translation invariant graph will lead to the generation of a family

of translation invariant structuring elements usually used for the practitioner in math-

ematical morphology (see Figure 3.2) .

Note that we have explained the theoretical aspects of path openings. Thus path clos-

ings are defined similarly by complementation, as usual in mathematical morphology.

In practice, in 2D, a commonly used graph is a periodic 3-neighbor adjacency relation

Figure 3.2: Example of three structuring elements of length 8 pixels generated by a

periodic 3-neighbors adjacency graph

(see Figure 3.3). Basically, four path openings with four different orientations (one

vertical, one horizontal and two diagonals) are computed sequentially. Unioning all

these results enables the anisotropic detection of features of interest which is particu-

larly useful when no a priori is given on the orientation present in the image. For a

Figure 3.3: A set X ∈ E representing the “active” elements set (left) and its open-

ings α6(X) (right). Adjacency graph is realized using a periodic 3-neighbor North-South

adjacency relation. Elements left unfilled are discarded by the opening.

given length L, the number of structuring elements generated grows exponentially with
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3. PATH OPERATORS

L (3L−1). Thus, performing a morphological path openings is equivalent to union the

result of the openings performed considering the 3L−1 structuring elements.

A direct approach which would consist in performing the union of openings computed

with each of the possible arrangements would be completely prohibitive (e.g. for L = 10,

the number of structuring elements is 19683).

However, we will see further in this dissertation that original algorithms have been

designed to enable the efficient computation of path openings.

3.4 Extension To The Grey-scale Case

The extension of path openings to the grey-scale case is developed using the principle of

threshold superposition (52), (84). The grey-scale path openings of a grey-scale image

I is defined as:

Πt
L(I) = ΠL(Xt(I)) (3.10)

where Xt(I) = {x ∈ E : I(X) ≥ t} is the level set of I at a value t.

Roughly speaking, the grey-scale path openings (resp. closings) give for each of the

pixels the highest (resp. lowest) value for which the binary path openings (resp. clos-

ings) are true. A grey-scale image can be then seen as a stack of binary sets, each of

them represents the set of pixels present at a given grey-level. Applying the binary

path openings on each of the binary set and then stacking them enables to reconstruct

the result grey-scale image (see Figure 3.4).

3.5 Implementation Issue

Latest works on path openings were dedicated to find a mean to render its implemen-

tation tractable for 2D and then 3D image processing applications.

The first implementation able to compute a 2D complete and incomplete path open-

ings for both binary and grey-scale images was given in (1). Based on a recursive

implementation the complexity involved was in O(LN) thus was penalized by longer

path lengths. In (83), Talbot and Appleton have proposed an efficient implementation

again for both complete and incomplete path openings in an ordered fashion thus have

succeeded to reduce the complexity to O(Nlog(L)) leading to faster implementation
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(a)

(b)

Figure 3.4: (a).Input grey-scale image; (b).Result of path openings with L = 60;

than classical algorithm performing the supremum over a family of oriented segments.

Here we will give the details (see Figure 3.5) of the dimensionality-independent version

of Talbot’s algorithm proposed by Cris L. Luengo Hendriks (81) because it gives a flex-

ible implementation framework that will be used latter in this study. Dimensionality-

independent path operators (81) are based on the principles behind complete ordered

path operators given by Talbot and Appleton in (83) but provide a more convenient

implementation suitable to process n-d images.

One could correctly implement a grey-scale path openings (resp. closings) by stacking

the results of all binary path operators from the lowest to the highest threshold (resp.

highest to lowest). At the end of the process, the value of the stacked operator at a

particular point corresponds to the highest threshold for which the binary operator

remains true at that point (meaning that at this grey level, this pixel fits into the

structuring element defined by the length and by the adjacency relation).

Here we provide some implementation details about this algorithm. For an opening

(resp. a closing) the algorithm starts by creating a linear array of pixels memory

addresses ordered by grey level value (low to high for opening and high to low for

closing). Starting from the lowest to the highest grey level value, each of the pixels

that is still active will be treated independently and will be considered as a “seed” to
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create list of offsets n+ to upstream neighbors and n− to downstream neighbors

create a list i of indices to every pixel in the image I (except border pixels)

sort i according to value of I(i)

create temporary images b, λ+ and λ−

initialize: b← true, λ+ ← L and λ− ← L

initialize: b(pb)← false (for all border pixels pb)

for every element p in i for which b(p) = true

propagate(p, λ−, n+, n−)

propagate(p, λ+, n−, n+)

for every element q in Qc

if λ+(q) + λ−(q)− 1 < L

I(q)← I(p)

b(q)← false, λ+(q)← 0, λ−(q)← 0

function propagate(p, λ, nf , nb)

λ(p)← 0

enqueue in Qq all neighbors pf = p+ nf for which b(pf ) = true

for every element q in Qq :

l← ∨

i λ(q + nb(i)) + 1

if l < λ(q):

λ(q)← l

enqueue in Qq all neighbors qf = q + nf for which b(qf ) = true

enqueue q in Qc

Figure 3.5: Cris Luengo’s dimensionality independent path openings algorithm

propagate downstream and upstream length change in the image. Each of the down-

stream and upstream length values (respectively λ− and λ+) is stored in an image

and is used to accumulate path length for each of the pixels for the upstream and the

downstream direction. Upstream and downstream direction are given by the adjacency

relation : for example in the case of a 2D North-South path, the upstream neighbors

are {North,North-East, North-West}. The downstream direction is defined by the op-

posite direction {South, South-East,South-West}.
Initially, for all pixels, λ+ and λ− are set to the target path length value L and all

the pixels are set to active, meaning that they are all part of a path of length L at

the lowest grey level. Starting from an active “seed” pixel, two propagation passes
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are made sequentially to update λ− and λ+ in the image by enqueuing upstream and

downstream active neighbors iteratively. A scheme that outlines the path propagation

principle can be found Figure 3.6.
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Figure 3.6: Illustration of PO path propagation principle

To enqueue temporarily pixels during the propagation passes, a FIFO queue Qq is

used. For example, in the upstream pass, starting from an active “seed” s, for each of

the upstream pixel p in the queue, the maximum length of its downstream neighbors q

is found and increased by one :

λ− = 1 +MAX(λ−(SW (q), S(q), SE(q))) (3.11)

If λ− is smaller than λ−(p), λ− is assigned to λ−(p) and its upstream active neighbors

are enqueued. As the target length was set to L, the propagation would stop after a

maximum of L iterations or when there would not be any active neighbors to enqueue

anymore. During a propagation pass, all the pixels whose downstream value changed

are enqueued in a FIFO queue Qc. After the upstream pass, the downstream pass is

done in the same way as for the upstream pass but considering the opposite neighbour-

hood relationship. When the two passes are over, the maximum length of a path which

is going through a pixel stored in Qc is computed as :

λ = λ+ + λ− − 1 (3.12)

If λ falls under the target value L, this means that this pixel is not part of a path of

length L. Its output value is set to the current selected “seed” pixel value. Moreover,

as it will no be a part of a path of length L further during the process, its status is set
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to inactive and its downstream and upstream length are set to 0.

Note that to render this algorithm suitable for processing n-d images, the implemen-

tation starts by creating a linear array of pixel memory adresses. From a given pixel,

accessing to the desired neighbors is simply performed by adding the corresponding

memory address offset. To simply constrain the path to the image domain, a dark

border around the image is added in the opening (resp. light border for closing).

This algorithm is slightly more time consuming than the Talbot and Appleton version,

however, it can be readily extended to higher dimensions, and also can be extended to

provide more robust operators, as we will see further in this dissertation.

Generally when performing a path openings on a 2D image, four different global ori-

entations are used on which the supremum is performed. Considering a 3D image, we

have to adapt the adjacency graph according to the 3D connectivity. We have chosen

to use subsets of the 26-neighbourhood connectivity to generate the path thus enabling

the computation on 13 orientations. In practice we only use 7 of the 13 possible global

orientations because it is sufficient to reach a good anisotropy level in the detection.

Figure 3.7 gives some examples adjacency relations used to compute path openings in

3D.

3.6 Limitations Of The Complete Version

Complete path openings and closings described above provide a very efficient tool to

detect elongated, narrow and non-necessarily locally straight features. Moreover an

efficient dimensionality-independent implementation based on the ordered version by

Talbot and Appleton increases the interest that one should give to these operators.

However, complete path operators are very sensitive to noise as it can induce some

disconnections along the path (see Figure 3.8). These disconnections prevent the path

from being propagated and would lead to an underestimation of the length of the

features, thus to their removal (in this context features of interest might be composed

of multiple shorter broken paths).
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(a) (b)

(c) (d)

Figure 3.7: Possible adjacency relations in 3D; (a), (b) and (c) are along image axis, (d)

is an illustration of a diagonal adjacency relation

Figure 3.8: Example of a binary feature (black pixels) corrupted by noise (white pixels)

generating disconnections that prevent the path from being propagated.

3.7 Incomplete Path Operators

In practical applications, the length of the path L should be increased when one wants

to increase the discriminatory power of the path operators relative to compact features

or noise. However the longer the path to be detected is, the more chance the path has

to contain disconnections, thus the more chance we have to suppress features of interest
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(see Figure 3.9 for an example on a retinal vessel image).

3.7.1 Definition

Following the principle of rank max operators (62), (66) incomplete path operators

(82) are designed to increase flexibility and noise robustness by allowing an arbitrary

number of K missing pixels along a δ-path of length L.

They are particularly suitable for practical applications as they utilize a larger family

of structuring elements better able to cope with noisy image features.

An incomplete path openings of parameter K and of length L considers a collection of

paths with at least L −K elements inside X. Considering Xc as the complementary

set of X in E we have:

ΠK
L (X) = {a ∈ ΠL : |σ(a) ∩Xc| ≤ K} (3.13)

Where |.| represents cardinality, i.e. number of points. From this definition follows

immediately the incomplete path opening which is the union of all path contained in

ΠK
L (X).

For 0 ≤ K ≤ L

αK
L (X) =

∨

{σ(a) ∩X : a ∈ ΠK
L (X)} (3.14)

3.7.2 Implementation And Limitations

In (83), based on the complete path openings implementation, the authors have also

provided an ordered implementation for the incomplete path operators.

However, there are some remaining limitations with this implementation. Firstly it

requires a significant amount of extra memory and complexity for path bookkeeping,

which increases with the dimensionality. So their implementation represents a signif-

icant challenge in 3D and up. To the best of our knowledge, such an implementation

has not been proposed yet.

Also, the parameter K is typically an increasing function of L. Indeed, as L increases,

so does the probability of encountering a noise pixel, so K must increase also to re-

tain effectiveness. However this impacts negatively the algorithm’s computational and

memory complexity. In the 2D case, it has been shown experimentally that the com-

plexity involved for the incomplete version is 10 ×K and the memory requirement is

2×K that of the complete version.
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(a) (b) (c)

Figure 3.9: 2D vessels detection (a).Anisotropic top hat operator applied on the green

channel of a retinal image; (b).Result of complete ordered path openings (L = 45);

(c).Result of incomplete ordered path openings (L = 45,K = 2); For a better visualiza-

tion a threshold applied to (a), (b) and (c) (the same threshold value was used);
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Robust Path Operators

4.1 Motivations and Specifications

Even if a lot of technical advances were realized in order to improve 3D imaging acqui-

sition systems (i.e. acquisition and reconstruction at micro-scale), the reconstructed

3D volumes are often noisy and their automatic analysis often reveals to be a great

challenge (e.g. glass fibers reinforced polymer are often at the limit of the resolution of

the imaging system).

Path openings and closings have shown their efficiency for the detection of thin, curvi-

linear and non-necessarily straight features. In the context of real data corrupted by

different sorts of noises (e.g. noise coming from acquisition and/or reconstruction), we

will propose a new framework able to handle in an original manner the disconnections

affecting the propagation of the path.

Nevertheless, some constraints are imposed to our work:

• the developed algorithm should be working for both 2D and 3D images,

• the complexity should be reduced,

• the memory requirement should be constant,

• the parameter handling the robustness of the path should not be dependent on

the length of the path.
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4.2 Proposed Solution

A logical solution to the filtering of thin features in 3D should be to provide a d-

dimensional implementation of incomplete path openings. However we have seen that

the complexity involved while running this algorithm on 3D images should be pro-

hibitive. Indeed what make the complexity of incomplete path openings described

earlier in this dissertation is the fact that the robustness aspect is handled during the

propagation of the path. Indeed, for each of the missing pixel, the algorithm needs

another temporary image to “remember” the fact that it went through a “noise” pixel.

Keeping in mind that the path should go through “noise” pixels (i.e. disconnections)

we propose another framework to handle its robustness.

We have designed a d-dimensional algorithm, the robust path openings (85), based on

the dimensionality-independent path openings implementation of (81). For each pair of

parameters (L,G), a larger family of flexible and incomplete structuring elements than

the incomplete path operator is generated.

Given an arbitrary length G, path propagation is allowed if the disconnection length

between two elements of an incomplete path is less or equal to G. This renders G

independent of L. This simple assumption leads to the generation of a more flexible

and more efficient family of structuring elements, due to constant memory bookkeeping

requirements and a lower-complexity implementation.

4.3 Theoretical Aspects

We will state in this section the theoretical aspects of the robust path openings.

4.3.1 Principle

Given an arbitrary length G, path propagation is allowed if the disconnection length

between two elements of the path is less or equal to G (1 ≤ G < L).

Pixels belonging to this disconnections will be termed noise pixels.

4.3.2 Searching for Noise Pixels

Noise pixels can be defined as being part of a path in Xc (i.e. in the background)

of maximal length G pixels in which first point and end point are in δ(X) and δ̆(X)
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respectively.

Now we can define a noise path condition NPCk meaning that a δ-path of Πk(X
c) with

1 ≤ k < G must have at least one of its first element’s predecessors and at least one of

its last element’s successors in X. For k = 1...G we have for a path a of length k in

Xc (Figure 4.1 gives an illustration for G = 2):

NPCk(a) =

{

δ̌({a1}) ∩X 6= ∅
δ({ak}) ∩X 6= ∅

(4.1)

a1 is the first point of the path and ak is the last point of the path in Xc.

So we define the set ΠG
noise(X) as :

ΠG
noise(X) = {a ∈

∨

k=1..G

Πk(X
c) : a satisfy NPCk} (4.2)

(a) (b)

Figure 4.1: Noise pixels search for G = 2 (a).The candidate C is flagged; (b).The candi-

date C is not flagged.

4.3.3 G-robust paths

Here we define the set of G-robust δ-path of length L For 1 ≤ G < L

ΠG
L (X)Robust = ΠL(X ∪XG

noise) (4.3)
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with

XG
noise = {x ∈ σ(anoise) : anoise ∈ ΠG

noise(X)} (4.4)

σ(anoise) is analogously defined as being the set of points belonging to a path of

ΠG
noise(X). So we define the robust path openings as:

αG
L (X)Robust =

∨

{σ(a) ∩X : a ∈ ΠG
L (X)Robust} (4.5)

Roughly speaking, robust path openings are equivalent to complete path openings con-

sidering an extended propagation set. Anti-extensivity and idempotence properties are

straightforward, however we should prove the increasingness property.

Basically, complete path openings are a morphological filter that respects the increas-

ingness property (1). To prove that of robust path openings, as it relies on complete

path openings principle, we should prove that the operator giving a ’robust propagation

set’ from an arbitrary given set is increasing too.

Proof:

Here we place ourselves in the set of all subsets of E, P(E).

Considering X and Y of E (on Figure 4.1, X could be (b) and Y could be (a)) with

X ⊆ Y , the robust set of X is X ∪XG
noise (Y ∪ Y G

noise is defined analogously). Basically

we can state that we have XG
noise ⊆ Y G

noise ∪ (Y \X).

Thus we obtain (X∪XG
noise) ⊆ (X∪Y G

noise∪(Y \X)) and then (X∪XG
noise) ⊆ (Y ∪Y G

noise)

One can notice that the operator giving a robust propagation set from an arbitrary

subset of E as the property of a dilation (specifically increasingness, extensivity and

commutativity with the supremum).

Now we can state that robust path openings (resp. closings) have all the algebraic prop-

erties of an opening (resp. a closing): increasingness, idempotence and anti-extensivity

(resp. extensivity). Allowing paths to admit noise pixels simply means that we admit

a larger family of structuring elements over which we perform a supremum (resp. an

infimum).

4.4 Implementation Issues

An overview of our proposed algorithm for robust path openings is outlined in the

pseudo-code Figure 4.2 and a scheme can be found Figure 4.3. A more complete form
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Figure 4.2: Overview of d -dimensional robust path openings.

• Initialisation :

– Initialise the three temporary images needed for the processing :

∗ Downstream and usptream images are initialised to target path length

value L

∗ All the pixels are set to active, all the others flags are reset

∗ Border pixels are prevented from being flagged as noise, their upstream

and downstream lengths are reset

– Sort pixels memory addresses list by value (low to high for opening)

– Compute memory address offset for each of the neighbor pixel (given by the

adjacency relation)

• Path propagation :

– For every pixel p that :

∗ is not flagged as noise pixel

∗ can be considered as a “seed”

– Determine the current threshold T = I(p)

– If T changes, then deactivate all active pixels whose value equal to T then :

∗ Determine noise pixels within the previous deactivated set : enqueue

noise pixels in QN (upstream and downstream lengths are not reset)

∗ Update noise pixels enqueued in QNcheck
: enqueue pixels that are still

noise pixels in QN , those which are not in QNpropagation

∗ Empty QN into QNcheck

∗ Make upstream and downstream passes for pixels in QNpropagation
, store

pixels whose length changed in Qc

∗ Update the status of pixels enqueued in Qc

– Make upstream and downstream passes for p, store pixels whose length

changed in Qc

– Update the status of pixels enqueued in Qc
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Figure 4.3: Illustration of RPO path propagation principle

of this algorithm can be found at the end of this chapter.

4.4.1 Principle

At each threshold change, given a length G, the set of active pixels is enlarged with

the pixels satisfying a specific condition : they belong to a path of maximum length

G formed by inactive pixels. These pixels are flagged as noise and their upstream

and downstream lengths are not reset. During the propagation of the path, noise

pixels act like active pixels and will prevent the propagation from being interrupted

by small disconnections. Obviously, in the greyscale case, at each threshold change we

have to update the set of noise pixels from previous thresholds considering the newly

deactivated pixels (this will ensure that robust path openings will respect the stacking

property).

After the updating procedure, a noise pixel which is no longer a part of a path of

maximum length G formed by deactived pixels is enqueued is QNpropagation
to update

length change in the image, otherwise its status and lengths are not changed.
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4.4.2 Description of Flags

As seen above, we need to add a “status” flag to handle noise pixels (N ). For efficiency

reasons, two other flags are added to prevent active pixels that are deactivated during

the propagation of the path to, enter at next threshold into the noise pixels research

procedure (N) (as G < L this pixel cannot be flagged as a noise pixel at the next

threshold) and, to prevent from being considered as a seed again (s). This is due to

the fact that this pixel will not be a part of a path of length L further in the program.

4.4.3 Determine Noise Pixels

The search procedure of noise pixels is performed at each threshold change when :

• we determine noise pixels from the newly deactivated pixels set,

• we update the set of previous noise pixels.

Given an arbitrary length G, from a candidate noise pixel, two propagation passes are

made from C (in upstream and downstream direction) seeking active pixels in the range

of a maximum of G iterations. We define itup and itdown as respectively the minimum

of upstream and downstream iterations necessary to find an active pixel from C. If

itup + itdown − 1 ≤ G, we flag C as noise pixel and enqueue it in QN , otherwise this

pixel cannot be a noise pixel and have to be used as a seed to propagate the change in

lengths (its corresponding λ+ and λ− are set to 0).

Obviously, as long as its status is set to noise, a pixel cannot be considered as a seed

(because it belongs to the propagation set). Figure 4.1 illustrates two possible cases

for G = 2. In a), we can find an active pixel (in black) making G iterations considering

the upstream and downstream directions. We have itup = 2 and itdown = 1, this pixel

is flagged as noise. In b), we have itup > 2 and itdown = 1, this pixel cannot be flagged

as a noise pixel.

4.4.4 Robust Propagation

Now that we have extended the set of propagation pixels, we enter into the path prop-

agation function following the same principle as in dimensionality independent path

openings (81). Noise pixels are enqueued in Qq in the same way as active pixels are

enqueued. Figure 4.14 outlines the robust propagation algorithm. Considering both
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active and noise pixels, at the end of the two propagation passes, each of the pixels

whose λ+ or λ− value changes is enqueued in Qc.

For each of the pixels in Qc the length of the longest path passing through it is com-

puted as we have seen previously in the explanation of dimensionality independent path

openings algorithm. For an active pixel q, if this value falls under L, its corresponding

upstream and downstream lengths are set to 0. Its status is set to inactive. Obviously,

this pixel will neither be considered as a “seed” nor as a noise pixel ( flags s(q)← true,

N(q)← true).

For a noise pixel q, if this value falls under L, its corresponding upstream and down-

stream lengths are set to 0 (to prevent this pixel to be considered as a seed in the

current threshold its flag s(q) is set to true). As in Luengo’s algorithm it is possible to

write directly in the input linear buffer, an additional output buffer is not needed.

4.4.5 Border Issue

As with dimensionality independent path openings algorithm, we add a dark border

(resp. bright border for closing) around the image to constrain the path to the image

domain. At the initialisation step, to prevent these pixels to enter into the noise pixels

research fonction we set their N flags to true. Their corresponding lengths λ+ and λ−

are set to 0.

4.4.6 Path Reconstruction

With no extra cost in execution time, we can modify in a simple way the robust path

operator to reconstruct disconnections that affect thin features. The idea is to enhance

noise pixels to the highest threshold value for which the binary robust path operator

remains true in order to fill the gaps between two active elements of the path (see

pseudo-code in Figure 4.2). In the case of a robust path opening (resp. closing), with

respect to the result of the opening, the result of this reconstruction operator forms a

closing (resp. opening). Indeed it is clearly extensive (resp. anti-extensive), it is also

increasing and idempotent.
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4.5 Experimental Study

In this section, we evaluate the benefits of using robust path openings for the detection

of thin human vessels in Magnetic Resonance Angiography (MRA) using the simulated

data set presented in (86). The vessel length and radius are respectively 90 and 2

pixels.

We use a classical evaluation method proposed in (87) and (88), which consists in

generating a noisy simulated image by the addition of white Gaussian noise on a known

ground truth image. Background is set at a grey level of 100, the vessel at grey level

of 160 which are typical values of MRA acquisition. Note that, as structuring elements

generated by the path openings are one pixel thick, they can also detect vessels of

smaller or larger widths.

We then added white Gaussian noise with standard deviation σ equal to 35 to test the

performance of our method (typical MRA noise levels are more around σ = 20). We

filtered this image with both Complete and Robust (G = 1) path openings of length

equal to 90 in the z-axis direction.

Figure 4.4 shows 3D renderings of ground truth, input and result images using the

maximum intensity projection method. We can note that disconnections due to noise

causes the complete path opening to fail to detect the vessel (orange color for the vessel

(c)) whereas the robust path opening provides a higher detection rate (red color for

the vessel (d)). As could be expected, the noise is greatly reduced by the complete

path opening (green background) but contrast in the feature is also greatly reduced.

The robust path opening preserves the feature much better but also some of the noise

compared with the complete path opening. This phenomenon results in a higher false

alarm rate (yellow color for the background (d)).

To cope with this limitation in a simple fashion, we can apply a shorter complete path

openings (L = 10 in the same orientation) on the result of the robust path openings

to eliminate the smaller residuals. Figure 4.4 (e) shows that we are able to detect

the feature of interest and to simultaneously reduce significantly the amount of false

positives (on this image, the feature is in red and background appears in green). Note

that the same colormap is used for images (b) to (e).
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(a) (b)

(c) (d)

(e)

Figure 4.4: 3D rendering of (a).Ground truth image; (b).Noisy input image(σ = 35);

(c).Result of path openings (L = 90); (d).Result of robust path openings (L = 90, G = 1);

(e).Path openings (L = 10) applied on (d);The same color mapping was applied for (b),

(c), (d) and (e); image is 1283x8-bit
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4.6 Comparisons with Complete and Incomplete Versions

Here we present results regarding to the regular path opening, the incomplete version

and the robust version.

Improving the detection of narrow and low-contrast features while reducing the false

positive detections is the goal of vessel extraction in a retinal image. This problem has

been widely considered in the past few years (89), (90).

Firstly the green channel of the color retinal image is extracted to obtain a grey-scale

image, as the green channel provides the best signal to noise ratio. Secondly a square

top-hat filter is applied on the image to extract the local minima of the image. The

top-hat filter extracts the vessels but generates a large amount of noise. We compare

the results of complete, incomplete and robust path openings on the top-hat image,

performing the union of the four orientations in each case.

Figure 4.5 shows the thresholded version of all the results on a region of interest (the

region of interest was chosen where the vessels are thin and low contrasted). Using

complete path openings, the totality of the noise is eliminated, however, we notice

that this operator is not able to recover the vessels presenting some disconnections.

Incomplete path openings give better results, the vessels are better recovered but some

vessels which are very affected by the disconnections are not (if the number of gaps in a

path of length L is greater than K, path propagation is stopped). We can note also the

generation of some artifacts due to the linkage of some random noise pixels together.

Robust path openings visibly provide the best results for the detection, as some vessels

which are not present in the incomplete path openings result were recovered. However,

as we are increasing the tolerance of the path opening operators, we generate a larger

amount of artifacts.

Figure 4.6 compares the running times of the different algorithms using the top-hat

retinal image as input. As expected, the complexity of the robust path openings is

lower compared to incomplete path openings in all cases. For example, for G = 2 and

K = 2, robust path openings is 7 times faster than incomplete path openings. Moreover,

robust path openings has constant memory requirements irrespective of the parameter

G.

We observe that, given a fixed L, the running time of robust path openings is linear with

G (about 0.4×G). We can also note that the parameter L does not affect computation
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time much for given a fixed G, indeed, we believe that it is regulated between noise

pixels research and path propagation.

(a) (b) (c)

(d) (e)

Figure 4.5: 2D vessels detection (a).input image : top-hat filter applied on the green

channel of a retinal image, the red rectangle represents the region of interest used for com-

parisons of the different algorithms’ results; (b). Thresholded version of the input image;

(b). Result of complete ordered path openings (L = 45 ); (c). Result of incomplete ordered

path openings ( L = 45, K = 2 ); (d). Result of robust path openings ( L = 45, G = 2 );

the same threshold was applied for (b),(c),(d) and (e) for comparable visualizations.

4.6.1 3D Data

Here we give an example for the use of robust paths for biomedical imaging on 3D data.

We propose to process a 3D cerebral angiogram image in order to detect the network of

vessels while removing the noise. To do this, we apply both complete and robust path

openings of length L = 15, performing the union of three orientations (orientations are

in the x, y and z axis with a 9-neighbours adjacency relation).
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COPO RPO IOPO RPO IOPO RPO IOPO

Tolerance K = 0 G = 1 K = 1 G = 2 K = 2 G = 3 K = 3

L=10 0.71 1.03 5.61 1.34 8.78 1.81 12

L=50 0.79 1.03 5.93 1.33 9.31 1.77 12.93

L=100 0.82 1.05 6.03 1.35 9.47 1.78 13.2

Figure 4.6: Execution times of Complete Ordered Path Openings (COPO), Incomplete

Ordered Path Openings (IOPO) and Robust Path Openings (RPO) with different tolerance

parameters (K and G). Timings are in seconds. Image is 565x585x8-bit.

Figure 4.7 shows that the robust operators have the ability to recover a larger part of

the vessels (e.g. the part of the vessel in the red circle) compared to the complete ones

while eliminating most of the noise. The running times of complete and robust (G = 1)

grey-scale path openings are respectively 10.5 and 18.6 seconds (45 and 124 seconds for

G = 2 and G = 3 respectively). The image dimensions were 256×256×256×8-bit. In

this case, our implementation achieves quite good performance since the background is

flat. For a non-flat background (in the worst case, for a white Gaussian background)

our implementation could result in higher running times. Figure 5.10 shows that the

robust path openings is able to both detect and then reconstruct the thin and corrupted

structures.

As noise pixels are handled like active pixels during the propagation of the path, we can

make use of the status change of noise pixels to give them the highest value for which

they belong to a path. This is very efficient in practice as it would be possible, for the

practitioner in medical imaging for example, in vascular network analysis applications,

to recover some information that is not present usually after a thinning operation.

4.6.2 Quantitative Evaluation

4.6.2.1 How to Evaluate an Image Processing Algorithm ?

Even if it is relevant to compare qualitatively the results of the different algorithms, a

quantitative comparison is needed to ensure their efficiency.

There are mainly three ways to make an evaluation of an image processing algorithm:

• using synthetic images wherein the rate of noise is controlled,
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(a) (b)

(c)

Figure 4.7: Surface rendering of (a).input noisy angiogram; (b).complete path openings;

(c).robust path openings ( G = 1); Binarisation is performed by choosing a threshold

manually.

• building a physical phantom with known characteristics, making a real acquisition

and then compare the computed characteristics,

• having a ground truth generated from a real acquisition which was analyzed and

segmented by an expert.

The third method will be used in this work. Obviously, the results will depend on the

application chosen to compare the different methods.
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(a) (b)

Figure 4.8: Surface rendering of (a).robust path openings with no reconstruction (G = 1);

(b).robust path openings with reconstruction ( G = 1 );

Here we propose to perform an evaluation on the well-known DRIVE database (91)

containing more than 40 of retinal images and their corresponding binary ground truth.

As an illustration, an image from the set of test images has been randomly chosen (see

Figure 4.9). Note that this image presents curvilinear vessels of various sizes and

compact dark features.

Note also that we are performing this evaluation in 2D mostly for practical reasons.

Indeed, most of the implementations that can be found are often in the 2D version.

However, most of them have their theoretical equivalent in 3D and so we believe that

these results can be reasonably extended to the 3D case.

4.6.2.2 Context of this Experimental Study

In order to get specific attributes of retinal blood vessels such as inherent geometrical

characteristics (length, width, elongation, tortuosity...) or network connectivity, several

methods were developed to automate their extraction (mostly because manual segmen-

tation reveals to be time consuming and subjective to the operator).

Vessel segmentation is critical for the practitioner in biomedical imaging in order to

diagnosis various diseases especially cardiovascular and ophtalmologic ones (see (92) for

a recent review). To reach an acceptable automated segmentation, preprocessing steps

aiming at enhancing vessels from the background are essential. This task is directly

linked to the detection of narrow and curvilinear features in a low contrast image.
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(a)

(b) (c)

Figure 4.9: Retinal image used in this evaluation: (a).Original color image; (b).After ex-

tracting a ROI (Region Of Interest) and the green channel of the color image; (c).Provided

ground truth image manually segmented by an expert

In this section we aim to evaluate the suitability of the robust path operators and other

well known state of art’s methods (presented in the first chapter of this dissertation)
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for the generation of filtered versions of the input retinal image that can be further

considered for the extraction of the vessels. The evaluation has been performed by con-

sidering the DRIVE database (91) and by assessing the accuracy with respect to the

available ground truth of simple binary segmentation maps obtained by thresholding

the output of the filters.

The performances were quantitatively assessed by computing Receiving Operator Curves

(ROCs) and by evaluating the accuracy of the segmentation map correspondent to the

Optimum ROC Point (opt) curve. An additional contribution of this work is the pro-

posal of an efficient preprocessing pipeline (see Figure 4.10) aiming at enhancing the

vessels starting from a RGB retinal image and generating an input image for all the

methods used for comparisons.
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Preprocessing pipeline:

Starting from the RGB image acquired by the opthalmologic camera, the preprocessing

RGB G SMOOTHING MBTH BIN MASK

Useg

PO

RPO

RPO(rec.)

Hessian

Steerable

Preproc.

vessels

methods

extraction

Figure 4.10: Preprocessing pipeline providing the input image for all the methods.

pipeline aims at preparing the image for the subsequent application of the filters. The

preprocessing operation enhances the vessels by removing the noise and suppressing

the heterogeneously contrasted background. Classically the green channel of the RGB

image is extracted as it provides the best contrast between the vessels and the back-

ground (92). A smoothing step is then performed by using a bilateral filter based on

Gaussian kernels with parameters σd = 2 and σr = 3. This filter is used in lieu of classi-

cal isotropic smoothing filters to cope with the blurring effect affecting the thin vessels.

Then, an isotropic modified black top hat (MBTH) is applied on the image. Basically

a regular black top-hat operator (BTH) is retrieving all the features smaller than B the

structuring element (SE) and darker than their surrounding (BTH(X) = φB(X)−X,

with φB(X) the closing of X using B as a SE). Since the result of the BTH enhances

the dark structures associated to vessels but also small contrast variations in the back-

ground, we applied a MBTH, which is defined as:

MBTH(X) = max(φB1
(γB2

(X)), X)−X, (4.6)

with γB(X) the opening of X using B as a SE. The result of this operator should be

close to zero except for large dark structures (e.g., vessels).

Here we have used SEs with disks shapes B1 and B2 of radius 4 and 1 respectively.

Selecting a small size for B1 ensures that all the vessels will be retrieved (as they are
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about 8 pixels of width). The size of B2 was selected in order to be larger than the max-

imum expected width of the vessels. A binary mask (available in the DRIVE database)

is then applied to the MBTH image in order to perform the vessels extraction methods

only on the area of the image showing the retina.

Even if the methods used for comparisons have been presented in the first chapter,

we will remind briefly their principles and the parameters settings for each of them.

Methods Used for Comparisons Multi-scale filter:

Considering a 2D image as an elevation map of Z2 → R, derivatives methods are

assuming that features of interest represent the crest lines of this elevation map (in

the case of the detection of brighter features). Using kernels based on the widely used

derivatives of Gaussian, one can access to the differential property of the image in

several directions and then detect features presenting particular shapes (e.g. tubular

objects for example). Hessian filters (8, 14), are one of the most widely used transfor-

mations in the community of medical imaging. The benefit of using the Hessian filter

is mostly relying on its property of being multi-scale. By accounting for different scales

it is possible to retrieve both smaller and larger features. Hessian based filters are ob-

tained by convolving the image with second order derivatives of Gaussian kernels with

different standard deviations σ thus enabling the characterization of the local geometry

of a pixel according to a given scale.

After building the Hessian matrix and extracting its two eigenvalues (λ1,2), a function

ν (called vesselness function) can be used as a measure of the likelihood of each pixel

to belong to a vessel. In this study we have used the Frangi measure (8), which for a

pixel p ∈ Z
2 is defined as:

νmax(p) = max
σrange

(ν(p, σ)), (4.7)

with σrange the range of ridges widths that are expected to be found in the image.

Here we have used the implementation available as a plug-in based on the ITK image

processing library (14). Also, a multi-scale approach was used considering σrange =

[1, 4].

Oriented filters: Oriented filtering is realized by performing a matched filtering con-

sidering a rotated version of an arbitrary chosen basis kernel (e.g., Gaussian kernel are
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the most used). The finality is to examine the response of the filter at many orienta-

tions (by rotating the basis kernel in several orientations) and to get the greatest one.

Steerable filters (5, 6) are a subclass of oriented filters in which the response at an

arbitrary angle can be computed efficiently and analytically as a linear combination of

a set of basis filters to reduce the computational time of a direct implementation (i.e.

the implementation of each of the rotated version of the basis kernel).

Derivatives of the Gaussian kernel of all orders have been proven to be steerable

and very efficient at detecting ridges in images. Here we have used the implementation

provided by (6) as a plug-in for ImageJ software (93) and we set the Gaussian kernel

width as σ = 2.

⋃
segments PO RPO RPO (recons.) Hessian Steerable Preproc

FPRopt0.0104± 0.00240.0115± 0.0031 0.0114± 0.0029 0.0175± 0.0040 0.0140± 0.00190.0111± 0.0013 0.0108± 0.0015

TPRopt 0.6003± 0.0521 0.6840± 0.0457 0.6867± 0.0383 0.7115± 0.03560.6759± 0.02960.6435± 0.0356 0.6678± 0.0506

Precopt 0.8478± 0.0226 0.8519± 0.0316 0.8528± 0.0340 0.7964± 0.0417 0.8223± 0.02000.8472± 0.01820.8554± 0.0200

Accopt 0.9556± 0.0043 0.9619± 0.00430.9621± 0.0046 0.9588± 0.0033 0.9590± 0.00370.9587± 0.0048 0.9611± 0.0053

Figure 4.11: Accuracy values computed on the ROC curves of the 20 images of the

DRIVE database and the manual segmentation of the first observer considered as ground

truth. For each image the segmentation map correspondent to the optimal ROC curve

point (opt) (94) was selected. Averages over all the images and standard deviation values

of the False Positive Rate (FPR), True Positive Rate (TPR), Precision (Prec) and Accuracy

(Acc) are reported.

Union of line segments: Performing the union of the response of oriented line seg-

ments within a large range of orientations (considered as SEs) should be a good answer

to the problem of the detection of thin features especially when the orientations of

the features in the image are unknown. Soille et al. proposed an efficient algorithm

invariant to translation to compute erosions and dilations along Bresenham lines (62).

A “rank-based” version of this algorithm was also proposed enabling the computation

of openings with incomplete oriented line segments (i.e. with a given number of points

lying into the background of the image). Given a line segment SE B (with length L and

orientation θ) whose cardinality card(B) equals n points, the rank-max opening with

parameter r is equivalent to the union of all the SEs Bi included into B and containing

r pixels:

γB,r =
∨

i

{γBi
| Bi ⊆ B ∩ card(Bi) = r}. (4.8)
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Compared to the use of plain line segments, rank-max openings are less sensitive to

the presence of small gaps (indeed gaps up to (n− r) are allowed along the considered

oriented line segment). This reinforces their applicability to the detection of features

in noisy environment. Here we have used the following parameters: L = 30, r = 80%

and step size for θ of 30o.

Complete path operators: In the experiments we considered four orientations i.e.

horizontal, vertical and two diagonals with L = 45.

Robust path operators: We have used G = 1 and L = 45 considering four orienta-

tions ( same as the complete version ) as it seems to be a good compromised between

discriminatory power and radiometric flexibility.

4.6.2.3 Evaluation

The experiments have been carried out on the DRIVE database (20 images) using the

1st observer manual segmentation results as ground truth for comparison. Following the

evaluation method described in (72), based on the ground truth image, ROC (Receiver

Operating Characteristic) (94) curves have been computed to assess the performance

of each of the method. We underline once again that the experiments were performed

for evaluating the robust path openings efficiency compare to other filtering techniques

with respect to the task of vessels detection and that we do not propose a complete

vessel extraction technique. From each ROC curve we can extract its optimal point

corresponding to the segmentation map that maximizes the TPR for a minimum of

FPR (i.e., the point on the curve closest to the left upper corner).

4.6.2.4 Results

The results have been reported in Table 4.11 and the obtained segmentation map for

each of the method considering test image 05 has been reported in Figure 4.12. Due

to the first preprocessing pipeline, the results obtained for all the methods (and also

for the preprocessing result image) are very good compare to state of art’s methods.

Moreover these results show RPO to be one of the best methods compared to

the others. Indeed it provides the best accuracy (0.9621) and is second for precision

(0.8528). These results can be confirmed visually looking at Figure 4.12. Combining

the flexibility of path operators with a radiometric robustness enables to retrieve the

smallest and not well contrasted vessels (see the up and right corner of the images)
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and eliminate compact noise. We can note also that detecting filters are very efficient

but they can give strong responses to non-relevant features. Mathematical morphology

methods are useful in the sense that they provide a higher connectivity in vessels’

network which is critical for further analysis.

4.7 Discussion

In this chapter, we have defined the robust path operators and we have proposed an

efficient algorithm for their computation. We have specified the theoretical foundations

of robust path operators.

Our algorithm uses a constant amount of memory and its complexity is proportional

to the jump length G ( 0.4×G as shown experimentally in 2D). We have shown the

effectiveness of our algorithm for detecting thin, oriented features in noisy images on

both simulated and real 2D and 3D data, and we have compared our results to complete

and incomplete path operators.

Timings comparisons with path based algorithms were also achieved and have proven

the robust path operators to be quite efficient in practice. Although there is no equiv-

alent implementation of incomplete path operators in 3D for robust path operators to

compare with, we believe that the 2D results would carry over to 3D as the complex-

ity scales with the number of voxels involved. We have also proposed an extension to

robust path openings which can be used to reconstruct the noisy gaps between feature

elements.

As the robust path operators increase flexibility significantly, in the case of a White

Gaussian background, they may generate a higher false alarm rate because isolated

noise pixels may be lumped together with aligned pixels. To cope with this limitation,

we have proposed to combine both robust and complete path openings sequentially. In

this case, we reach a high detection rate for a lower false positive detections rate.

A quantitative evaluation was also performed in 2D on the DRIVE retinal image

database and has shown that robust path openings was one of the best method for

the detection of thin, elongated and flexible features in the case of real data compare

to ’state of art’ methods.

While the implementation of our algorithm is inspired from the dimensionality-independent
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path operators, we provide a new framework to cope with disconnections corrupting

thin, oriented and flexible noisy features in d-dimensional images.

59



4. ROBUST PATH OPERATORS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.12: Test image 05 of the DRIVE database: (a) ground truth (1st observer); (b)

preprocessed image input of the vessels extraction methods, (c) rank-max openings, (d)

complete path openings, (e) robust path openings, (f) robust path openings with recon-

struction of the noisy gaps, (g) multi-scale Hessian filter based on the Frangi vesselness

measure function and (e) steerable filters. For each of the method, the segmentation cor-

respondent to the optimum ROC point is presented.
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d-Dimensional Robust Path Openings

create list of offsets n+ to upstream neighbors and n− to downstream neighbors

sort pixels’ list indices i according to value of I(i)

Initialize : b← true, N ← false, λ+
← L, λ−

← L

Initialize : N(bp)← true, λ+(bp)← 0, λ−(bp)← 0

For every element p in i which s(p) = false and N(p) = false

threshold← I(p)

If threshold change

//current threshold pixels deactivation

For every pixel q for which b(q)← true and I(q) ≤ threshold

b(q)← false

If λ+ + λ−

− 1 ≥ L Then I(q)← threshold

End For

//determine noise pixels set from previous deactivation pixels set

For every pixel q for which b(q)← false, N(q)← false and I(q) ≤ threshold

If q belongs to a path of maximum length G in the deactivated set

N(q)← true // upstream and downstream values are not changed

Enqueue q in QN

Else

λ+(q)← 0, λ−(q)← 0

End If

End For

//update previous threshold noise pixel

For every pixel q in QNcheck
for which N(p) = true

If q still belongs to a path of maximum length G in the deactivated set

// upstream and downstream values are not changed

Enqueue q in QN

Else

N(q)← false

λ+(q)← 0, λ−(q)← 0

Enqueue q in QNpropagation

noise pixel enhancement : I(q)← threshold

End If

End For

// update QNcheck
”Ping-Ponging” process

QNcheck
← QN

End If

// Propagate path considering QNpropagation
pixels as seeds

For every pixel q in QNpropagation

Rpropagate(q, λ+, n+, n−)

Rpropagate(q, λ−, n−, n+)

Qc pixels check process

End For

// Propagate from seed pixel p

Rpropagate(p, λ+, n+, n−)

Rpropagate(p, λ−, n−, n+)

Qc pixels check process

End For

Figure 4.13: d -dimensional robust path openings
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Rpropagate function

function Rpropagate(p, λ+, n+, n−)

// we can both enqueue noise and active pixels in Qq

enqueue in Qq all neighbors p+ = p+ n+ for which b(p+) = true or N(p+) = true

For every pixel q in Qq

// for each pixel in Qq we take the maximum of its downstream neighbors

l← ∨

i λ
+(q + n−(i)) + 1

If l < λ+(q)

λ+(q)← l

// we can both enqueue noise and active pixels in Qq iteratively

enqueue in Qq all neighbors p+ = p+ n+ for which b(p+) = true or N(p+) = true

enqueue q in Qc

End If

End For

End function

Qc elements checking process

For every pixels q in Qc

If λ+ +λ− − 1 < L

If b(q) = true

// as G < L q cannot be a noise pixel at a further level

// as λ+ + λ− − 1 < L, q cannot be a “seed” at a further level

I(q)← I(p)

λ+(q)← 0, λ−(q)← 0

b(q)← false, s(q)← true, N(q)← true

End If

If N(q) = true

λ+(q)← 0, λ−(q)← 0

N(q)← false, s(q)← true, N(q)← true

noise pixel enhancement : I(q)← I(p)

End If

End If

End For

Figure 4.14: robust path propagation
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Selective and Robust Path

Operators

5.1 Motivations

We have shown in the previous chapters that path operators provide a very efficient

way to filter thin, elongated and not necessarily perfectly straight features in a n-

dimensional image. We have also proposed a method to cope with the main limitation

of path operators i.e. path disconnections due to noise that would prevent it from be-

ing propagated. However, there still exists some limitations to path operators for both

complete and robust versions. This limitation was recently pointed out by Morard et

al. in (76) and (77).

What make path openings efficient is their ability to be locally adaptable to the geom-

etry of the features while keeping a selectivity in the orientation. Using the union of

the response of the complete path operators considering several orientations performs

an anisotropic detection of the features of interest.

However, for several types of shapes belonging to the so-called “tortuous shapes”, both

complete and robust path operators will not be able to follow several sudden changes

in global features’ orientations thus leading to the unintended removal of some features

(see Figure 5.2 for an illustration).

Figure 5.1 is an example of two tortuous features. Recently, Morard and al. in (76) and

(77) have extended attribute-based operators to geodesic attributes. These attributes

are based on the computation of the geodesic diameter (95) for each of the connected
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(a) (b)

Figure 5.1: Example of two different “tortuous” shapes, from path openings’ point of

view, these shapes present several changes in their global orientation and are hard to

“follow”

(a)

Figure 5.2: Example of the inability for robust path openings to detect “tortuous” shapes

component of the image.

In this framework, they have also proposed a new geodesic measure called the “geodesic

tortuosity” enabling the detection of “tortuous” features by computing the ratio be-

tween the geodesic diameter and the euclidian distance between two geodesic extremi-

ties. However, the main limitation of these operators is their non-robustness to contrast

variations due to noise (in fact the same limitation as complete path operators enunci-

ated earlier in this dissertation).

Considering these recent advances in the domain of connected filters and also those of

robust path operators, we propose to combine these two approaches in order to make
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use of their respective advantages i.e. the local robustness of path operators and the

ability for geodesic-based attribute filters to detect the “tortuous” shapes.

In this chapter, we will first recall the basic notions of attribute-based operators and

especially those related to geodesic attributes. Then, we will show how to combine path

operators and geodesic attribute-based operators to render the path operators robust

to the tortuosity. This new algorithm will be then extended to the greyscale case.

Finally, applications in 2D and 3D will be shown for biomedical imaging.

5.2 Attribute-Based Operators

5.2.1 Connected Components

Let I : E → B be a binary image, with E ⊆ Z
2 image domain and B = {true, false}.

Defining X of I as X = {x ∈ E|I(x) = true}, a connected component Xi is defined as

the set of elements of E that are true and connected according to a given adjacency

relation. Generally, in the 2D case, this adjacency relation is defined as either a 4-

neighbourhood or 8-neighborhood adjacency relation (in 3D we use a 26-neighbourhood

adjacency relation).

5.2.2 Attribute Operators And Thinnings

For a connected component Xi ∈ E of the foreground, an attribute operator is per-

forming a transform of the image driven by the computation of a binary predicate (Cλ).

The criterion checks how an attribute computed on Xi compares to a threshold value

(e.g. Cλ := Att(Xi) > λ).

A binary attribute operator Attλ is defined as follows:

Attλ(Xi) =

{

Xi if Xi satifies the criterion Cλ

∅ otherwise
(5.1)

Based on this definition, (96) introduced attribute thinnings ρAttλ :

ρAttλ =
∨

X

Attλ(Xi) (5.2)

Attribute thinning respects the property of being idempotent and anti-extensive. How-

ever, depending on the chosen criterion, the increasingness property is not always re-

spected, otherwise, it would become a so-called attribute opening (e.g. considering the
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area which is an increasing criterion leads to an attribute opening). Note that the dual

transform of thinning is called thickening and is not studied here, as the results on this

operator would be directly inherited from those of attribute thinning by complementa-

tion.

To overcome the problem of not being increasing, arbitrary rules can be applied to

these operators to extend them to the grey-scale case, (77), (97), (98), (96):

• Min rule: A connected component Xi is removed if Attλ(Xi) = ∅ or if it exists
a connected component Xj such that Xi ∈ Xj , which is removed.

• Max rule: A connected component Xi is removed if Attλ(Xi) = ∅ and all the

the CCs Xj such that Xj ∈ Xi are also removed.

• Direct rule: A connected component Xi is removed if and only if Attλ(Xi) = ∅.
This is the classical rule used for the grey level decomposition of an opening.

• Subtractive rule: A connected component Xi is removed if Attλ(Xi) = ∅. All

the other connected component such that Xj ∈ Xi are lowered by the value of

the contrast of Xi.

It has been shown that the subtractive rule is more convenient in many applications

as it provides a better contrast of features of interest. However, in the case of our

study, we have chosen to use the direct rule to extend the selective path operators to

the grey-scale case as the final goal is to combine both attribute thinnings and path

operators that are already use this rule (as usual for an opening).

Note also that the fundamental difference of path operators compare to attribute-based

operators is that path operators consider the image at pixel level, i.e. in the same

connected component, different pixels can belong to paths of different lengths.

5.2.3 Geodesic Attributes

5.2.3.1 Geodesic Distance and Diameter

In this section we will address the problem of answering the question : “How long is

an object?”.

Basically, a logical answer should be by computing the length between its extremities.

Unfortunately, this method, suitable for simple shape objects can not be generalized to
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(a) (b)

Figure 5.3: (a).Simple shape object; (b).Twisted shape object

(a)

b

(b)

Figure 5.4: Medial axis of a (a).Rectangle; (b).Circle

tortuous or twisted objects (see Figure 5.3). Another response would be by counting

the number of pixels belonging to the medial axis of an object. However, medial axis

computation is very sensitive to small shape variations and would lead to an erroneous

measure of the length depending on the shape of the object (e.g. the medial axis of a

circle is a single point, see Figure 5.4).

Defined by Lantuejoul and Maisonneuve (95), the geodesic distance of a connected

component (usually called object) provides a characterization of its length.

Basically, considering two points x and y into an object X, the geodesic distance is the

length of the shortest (also called geodesic) arc between x and y.
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b

b

x

y

(a)

b

b

x

y

(b)

b

b

(c)

Figure 5.5: (a).Two possible paths within the object; (b).Geodesic arc between x and y;

(c).Geodesic diameter

For an object, the geodesic diameter L(X) is defined as :

L(X) = sup
(x,y)∈X

dX(x, y) (5.3)

with dX(x, y) corresponding to the geodesic arc between x and y (see Figure 5.5).

Compare to the other methods described above, the geodesic diameter has some ad-

vantages:

• its definition is general and is applicable to objects of any shape,

• its definition is robust to small changes in the shape of the object,

• its computation can be used to access to other attributes characterizing the object.

5.2.3.2 Geodesic Elongation

The geodesic diameter gives some information about the length of an object, however it

is not sufficient to characterize its shape. The geodesic elongation was proposed in (95)

and enables the computation of an objective measure of the elongation of an object:

E(X) =
πL2(X)

4S(X)
(5.4)

The more elongated the object is, the higher is the geodesic elongation. Note that the

geodesic elongation of a disk is minimal and is equal to 1.

68



5.2 Attribute-Based Operators

5.2.3.3 Geodesic Tortuosity

From the geodesic diameter, (77) and (76) proposed to derive another measure called

geodesic tortuosity τ . It is defined as the ratio between the geodesic diameter and the

euclidian distance between the two geodesic extremities of the object that minimize this

distance. Let PE(X) be the set of all the pair of the geodesic diameter extremities:

PE(X) = {{x0, y0}, {x1, y1}, ...} (5.5)

From PE(X) we can define the minimal Euclidean distance :

LEucl(X) = min
{x,y}∈PE(X)

||x, y|| (5.6)

with ||.|| corresponding to the classical Euclidean distance in Z
2. The tortuosity τ(X)

is then defined as:

τ(X) =
L(X)

LEucl(X)
(5.7)

5.2.3.4 Practical Considerations

The direct implementation of the geodesic diameter is computationally intensive (see

(77) and (76)). Indeed it is equivalent to perform a region growing process considering

each of the border pixels in order to build a distance map. Taking the highest level

of this distance map would give the geodesic diameter. In order to keep efficiency in

the implementation we propose to use an approximation of the geodesic diameter: the

barycentric diameter proposed in (77).

5.2.4 The Barycentric Diameter

5.2.4.1 Definition

Recently, (77) proposes an approximation of the geodesic diameter called the barycen-

tric diameter based on an iterative scheme of geodesic distance propagation.

Given an arbitrary location x in a connected component X, let lx(X) be the maximal

geodesic arc from x in X. Considering Y as the set of the elements of X such that

dX(x, y) = lx(X), the maximal iterated geodesic distance is defined as:

l2x(X) = sup
y∈Y

ly(X) (5.8)
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(a) (b)

(c) (d)

Figure 5.6: Result of attribute filtering using the barycentric diameter (a).original image;

(b).L = 20; (c).L = 50; (d).L = 100

(a) (b)

(c) (d)

Figure 5.7: Result of attribute filtering using the elongation computed from the barycen-

tric diameter(a).original; (b).E = 5; (c).E = 10; (d).E = 20

The iterative process is converging, not necessarily to L(X), though, in practice, the

convergence is fast. Moreover, for practical applications, going beyond l2x(X) Combi-

nation?is not essential since the barycentric diameter at the second order is already

giving a good approximation and will drastically reduce the computation time.
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(a) (b)

(c) (d)

Figure 5.8: Result of attribute filtering using the tortuosity computed from the barycen-

tric diameter(a).original; (b).τ = 2.5; (c).τ = 5; (d).τ = 10

We have given the basic definition of the barycentric diameter starting from an arbi-

trary location x in X. Several strategies have been tested to find a relevant location to

start the iteration process. Considering the barycenter of X, Lbar(X) is the barycen-

tric diameter starting at the farthest location from the barycenter. It has been proven

experimentally that Lbar(X) would provide the best approximation of the geodesic di-

ameter.

This approximation will be used in the implementation of the selective and robust path

operators.

5.2.4.2 Geodesic Attributes Derived from the Barycentric Diameter

As described above, we can derive the same attributes from the barycentric diameter

than from the geodesic diameter:

E(X) =
πL2

bar(X)

4S(X)
(5.9)

τ(X) =
Lbar(X)

LEucl(X)
(5.10)

Figures 5.6, 5.7, 5.8 show that attribute filter is able to detect the tortuous objects.
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5.3 Selective and Robust Path Operators

5.3.1 Tortuosity and Path-Based Operators

Figure 5.9 illustrates a tortuous shape. In this case, neither complete nor robust path

operators are able to cope with several successive changes in shape orientation as it

clearly underestimates features’ lengths. However, geodesic tortuosity performs well on

this type of shapes. The tortuosity in this case equal to 3.5 (L(X) = 14 and Leucl = 4).

Based on this result, it seems natural to use the geodesic tortuosity to combine with
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Figure 5.9: Propagation of the geodesic diameter into a “tortuous” shape

path operators in order to create a novel operator thus combining the advantages of

the local robustness and features’ tortuosity detection.

5.3.2 Principle

Principle behind the selective and robust path operators comes from that of the morpho-

logical greyscale reconstruction (99). Following the threshold decomposition principle

enunciated previously in this dissertation, L.Vincent defined the greyscale reconstruc-

tion as follow:

Definition : Let J and I be two greyscale images defined on the same domain, taking

their values in the discrete set {0, 1, ..., N − 1} and such that J ≤ I. The greyscale

reconstruction ρI(J) of I from J is given by:

∀p ∈ ℜn, ρI(J)(p) = max
k∈[0,N−1]

p ∈ ρXk(I)Xk(J) (5.11)
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with ρXk(I)Xk(J) the binary reconstruction operator at threshold k obtained by iterat-

ing, until stability, an elementary geodesic dilation of the marker image into the mask

image:

ρXk(I)Xk(J) =
⋃

n≥1

δ
(n)
Xk(I)

Xk(J) (5.12)

Selective and robust path operators aim at combining robust path-based filtering with

a morphological reconstruction provided by a pre-computed tortuosity map for each of

the connected components (see Figure 5.10 for an illustration on a 1D signal).

By integrating a geodesic reconstruction in the robust path operators algorithm,

we can make use of both active and noise pixels connectivity to retrieve features that

respect a particular attribute. Note that here we will focus our study on the use of

a tortuosity map but it could be the geodesic diameter, the elongation or the original

image itself.

The key point of this algorithm is in the definition of the geodesic reconstruction

by using the notion of threshold superposition. This definition will help us to design an

efficient d-dimensional algorithm for greyscale images in order to integrate the recon-

struction algorithm by using the threshold decomposition performed inside the robust

path operators algorithm.

5.3.3 Definition of the Greyscale Selective and Robust Path Opera-

tors

Here we propose the theoretical foundations of the selective and robust path-based

operators. We recall that we can define the set of G-robust paths of length L in X as:

αG
L (X)Robust =

∨

{σ(a) ∩X : a ∈ ΠG
L (X)Robust} (5.13)

With a slight modification, we can take into account the connectivity through the noise

pixels set in E:

αG
L (X)RobustE =

∨

{σ(a) : a ∈ ΠG
L (X)Robust} (5.14)

Greyscale Robust and Selective Path Operators:

The greyscale and robust selective path operators is defined as being the result of

the morphological greyscale reconstruction considering the result of the robust path
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Tortuosity map

po / rpo

Reconstruction

po / rpo

Tortuosity map

Figure 5.10: Principle of the Selective and Robust Path Operators

operators as marker and the supremum of the result of the robust path operators and

the tortuosity map as mask (see Figure 5.10 for an illustration).

α
T
L(X) = ρ(αG

L
(X)RobustE

∨T )α
G
L (X)RobustE (5.15)

As the result of an opening by reconstruction, this operator obviously respects the
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canonical properties of an opening.

5.3.4 Non-Increasing Attribute Operators

Figure 5.11 illustrates the principle used in the conception of the grey-scale selective

path operators. The input image is represented as a stack of connected components,

the vertical and horizontal axis represents the grey level value and the connectivity

respectively. Each block on a line is a connected component at a given grey level value.

For both attribute and path-based operators, elements (connected components in the

case of attribute filter and pixels in the case of path operators) are highlighted (blue and

green for attribute and path-based operators respectively). Here we have decided to

remain consistent with the strategy used for an opening to extend the binary selective

path operators to the grey-scale case i.e. by using the direct rule. Using this strategy

for the attribute image, it is equivalent to say that if a pixel status is true at a given

grey level value t1, it will be true for all grey levels t2 respecting t2 ≤ t1. We will use

this assumption to build the grey-scale selective path operators.

5.3.5 Algorithm

In this section we describe the algorithm for the greyscale selective and robust path

operators. Algorithm 5.12 uses the threshold decomposition procedure performed in

the implementation of the robust path operators to operate a morphological geodesic

reconstruction of the result of the robust path operators into the image given as mask.

At a given threshold T , once the update procedure of the robust path operators is over

(i.e. the deactivation of the pixels that do not respect the criterion of being part of

a robust path of parameters (L,G)), a geodesic reconstruction is performed using a

FIFO queue propagation from the {active+ noise} set left at threshold T into the set

of mask pixels whose value ≥ T . This algorithm is similar to what can be found in the

state of art (see e.g. for a complete description of these algorithms (99)).

Note that the fundamental difference between this algorithm and a typical geodesic

reconstruction by dilation is that we can make use of the connectivity trough noise

pixels to recover the destroyed part of the features (see Figure 5.13 for an illustration).
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Input

Path OperatorsAttribute
is "true" is "true"

Direct rule Direct rule

Selective
Path Operators

Direct rule

Figure 5.11: Grey-scale selective path operators
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list of parameters :

I is the input greyscale image

Mask is a greyscale image (e.g. tortuosity map)

T is the current threshold in the threshold decomposition of RPO

base-idx is the current pixel index in the threshold decomposition of RPO

idx are sorted in ascending order (with respect to image values)

NG contains a list of neighborhood indexes for a given grid G (2D or 3D)

Qprop fifo propagation queue storing pixels indexes

flagP : boolean image (1 if already propagated, else 0)

function Reconstruction( )

for idx = base-idx, idx < image-size

if b(idx) == true

Qpropadd()← idx, flagP (idx)← true

while Qprop not empty

idx-p← Qpropfirst()

for q ∈ NG

if (Mask(idx-p+ q) ≥ T || b(idx-p+ q) || N(idx-p+ q)) and

flagP (idx-p+ q)

Qpropadd()← idx-p+ q, flagP (idx-p+ q)← true

if b(idx-p+ q) N(idx-p+ q) {I(idx-p+ q) = T}
Qproppop()

end for

reset flagP

Figure 5.12: Greyscale Selective and Robust Path Openings : Propagation Function

5.3.6 Results and Timings in 2D and 3D for Biomedical Imaging

In this section we present some examples of applications of the robust and selective

path operators for 2D and 3D biomedical imaging.

The first example (see Figure 5.14) illustrates its use on a 2D retinal image for ves-

sel detection. Based on this result it is clear that the path operators underestimate

tortuous features’ lengths (due to their intrinsic nature of being formed by a con-

strained connectivity) whereas geodesic tortuosity performs well on this type of shape

(note that elongated features are not detected). The geodesic tortuosity gives a very

strong response to the tortuous features of the image, however, elongated features are

completely discarded. Selective and robust path operators succeed well in detecting
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noise pixels

tortuous pixels

Figure 5.13: Selective and Robust Path Operators extend the connectivity trough noise

pixels

elongated, noisy and tortuous features. Note that on this image (size 500×160×8-bit)
the union on four orientations is performed in less than one second.

Another example of their efficiency is given for the extraction of vessels in a 3D an-

giogram image (see Figure 5.15). Timings for one orientation on a 256×256×256×8-bit
is 9.5s.

5.3.7 Discussion

In this chapter we have proposed an original contribution, the selective and robust

path operators aiming at combining attribute and robust path based operators to cope

with the limitations for path-based operators not being robust to “tortuous” features.

Moreover, we benefit of the connectivity through noise pixels of the background to

propagate the geodesic reconstruction which render this operators very powerful and

more flexible than a traditional geodesic reconstruction by dilation (e.g. it could be

useful to use it on the output of a Hessian based filter who generally fail in recovering

the junctions for the detection of tortuous brain vessels). Given timings and results

on both 2D and 3D images have proven their usefulness in practical applications of

biomedical imaging.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.14: Results and comparisons; (a).Input image; (b).Tortuosity (τ = 3);

(c).Barycentric diameter (L = 150); (d).Complete path operators (L = 100); (e).Selective

path operators (L = 100 and τ = 3); (f).Robust path operators (L = 150, G = 2);

(g).Selective and robust path operators (L = 150, G = 2 and τ = 3).
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(a)

Figure 5.15: Results and comparisons in 3D; From left to right and top to bottom:

Surface rendering of : original image, tortuosity attribute (τ = 2), RPO ((L,G) = (50, 1))

and SRPO.
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Applications

6.1 The DELPIX Project

X-Ray tomography has been widely used in medical imaging for decades as it was

clearly a revolution in this domain. So far this technique was not very spread in the

industry. This was mainly due to the large amount of additional time needed to perform

the reconstruction of the volume from the sequence of projections, the low resolution

and the cost.

In this industrial context, the goal of the DELPIX project (formed by two public

research laboratories and specialized companies in the field of image processing and

tomographic reconstruction) is to bring this new technology to industrial partners by

providing breakthroughs in most of the technological limitations.

Our research comes at the end of the project chain. Providing efficient algorithms for

3D image processing will enable industrial partners in material science to process 3D

samples in order to perform automated analysis.

6.2 Characterization of Three-dimensional Fibrous Mate-

rial

6.2.1 Framework of the Study

With recent breakthroughs in micro and nanotomography, practitioners in material

science can have an access to precise information about material microstructure. More

than non-destructive testing, these information can also lead to the design of material
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with improved properties.

Due to the huge amount of data generated by 3D computed tomography, reliable and

automatic analysis is essential for the practitioner in material science.

Here we will propose a method to extract the characteristics of three-dimensional fibrous

material on a real case. This task is still challenging as we can encounter a huge

complexity and randomness into fibers’ network microstructure.

6.2.2 The Material

Glass fibers reinforced polymers are widely used in aerospace and automotive industry.

The main challenge is to provide a very high rate of mechanical performance compare

to production cost.

However, the main difficulty when producing this material is to ensure that glass fibers

are correctly spread into the polymer matrix. Their good repartition at the microscopic

scale will induce a good transfer of mechanical stresses at the macroscopic scale. They

also have an important impact on the thermal property of the material. Fibers orien-

tations, lengths and distribution over space are then considered as critical.

X-Ray computed tomography is a non-destructive imaging process enabling the repre-

sentation of the glass fibers and the polymer matrix at a micrometer scale. A specimen

is placed on a rotary plate between the X-Ray source and the detector. An image is

then acquired by using the 2D projection of the specimen at a particular angle (angle

is increased step by step). At the end of the acquisition step, each projection is used

to generate a grey-scale 3D image which corresponds to the spatial X-ray attenuation

coefficient of the specimen.

In the case of our study, the material is widely used in industrial applications and is

made of polyamide reinforced with 30% of glass fibers. Initially the raw sample data is

1900× 1200× 2000× 8-bit, the acquisition was performed with a resolution of 3.5µm.

To reduce the computation time, a volume of interest of 500 × 500 × 300 voxels cor-

responding to the central part of the raw volume (red square on Figure 6.1(a)) was

extracted.

Figure 6.1(b) represents a slice of the extracted volume.

As one can notice, the contrast between the fibers and the polymer matrix is very low

and their orientations seem randomness. Moreover their characteristic size is near of

the limit of the resolution of the acquisition system (about 7 voxels for the diameter
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(a) (b)

Figure 6.1: Raw data under study: (a).Slice of the whole volume; (b).Slice of the extracted

volume;

and 110 voxels for the length which represents 24µm and 420µm respectively).

However we can note that fibers are straight features and their shapes and intensities

are locally altered by the noise mostly produced by the acquisition device and the re-

construction process. As the density of fibers in the volume is relatively high, they

are heavily entangled thus resulting in a lot of touching areas which makes harder the

extraction of their individual characteristic.

6.2.3 Existing Methods for Fibers’ Characteristics Extraction

Extracting fibers characteristics in 3D is a well-treated problem in the literature.

Axelsson, (100), (101), estimates paper sheets’ fibers orientations by using a local

measure of orientation with quadrature filters and structure tensors. This method

is applied directly on the grey-scale image and make the hypothesis of small signal

variations in the direction of the fiber. In the same idea (102), (103) propose to compute

the local orientation in each voxel by convolving the grey-scale image with anisotropic

Gaussian kernels thus enabling to have access to both fibers’ shapes and orientations

distributions.

In (65) Soille and Talbot are using the union of oriented segments to find local structure

orientations in a 2D image. The computation of the response for a sequence of rotated

filter gives an indication on the local orientation. Moreover, varying the length of the

structuring element involved enables to have an indication on the length of the features.

In 3D, this approach may result in a computationally unworkable algorithm due to the
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increase of the amount of data to treat and to the increase of orientations one would

have to consider to reach an acceptable result.

Mulat et al. (104), (105) proposed an algorithm for the detection of the 3D axis of

tubular features relying on the gradient and curvature estimation. This method has

been successfully applied to the extraction of the geometrical properties of carbon-fiber

reinforced carbon composites. However it supposes a strong coaxial gradient.

Glass fibers reinforced polymers have also been studied. Most of existing methods (106),

(107) rely on the analysis of the skeleton of the segmented fibers. These methods have

been proven to be efficient to give a good estimation of fibers’ characteristics, however

working directly on the skeleton reveals to be very delicate.

Going farther with this idea, (108) and (109) are using a graph based modeling of the

skeleton to extract fibers characteristics individually. This method has been proven to

be efficient for synthetic images.

6.2.4 Proposed Method

Due to the nature of the material used in this study: low contrasted image, low gra-

dient, fibers at the limit of the resolution of the imaging system, noisy environment;

methods based on the local estimations of fibers orientations are not well adapted espe-

cially at touching areas. We have decided to use a method based on the simplification

of a skeleton model of the segmented volume of fibers thus combining (108) and (106),

(107).

The preprocessing step is critical in this method as it aims at enhancing the contrast

between the fibers and the polymer matrix. Classical edge-preserving smoothing and

background removal steps will be followed by robust path-based operators. After seg-

mentation, a skeletonization transform is applied and is used to perform a simplification

of the fibers volume while preserving its topological properties. A modeling step based

on graph is then performed on the skeleton and provide a convenient way to filter out

noise issuing from the skeletonization process and then to simplify the representation.

A visualization program using the VTK (Visualization Toolkit) library (110) was also

implemented in order to display the 3D graph model obtained at different steps of the

process.
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6.2.5 Preprocessing Pipeline

As we have seen in FIgure 6.1, X-Ray computed tomography generates a large amount

of noise during the acquisition and the reconstruction process. To simplify the segmen-

tation step and to increase in fine the accuracy of the modeling performed on the glass

fibers, we provide a preprocessing pipeline based on morphological path-based filters.

Figure 6.2 gives an overview of the preprocessing pipeline. More details for each step

are given below.

Raw Image

Noise reduction

Top-Hat Filter

Path Based
Morphological

Filtering

Figure 6.2: Overview of the pre-processing diagram
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6.2.5.1 Noise Reduction

To smooth the image while preserving the edges, we make use of the bilateral filter with

parameters σd = 4.0, σr = 20 according to the geometric and radiometric aspects of

the content of the image. For the sample data, the bilateral filter took approximately

Figure 6.3: Result of the bilateral smoothing; Left: Raw image slice; Right: Result of

the smoothing performed by a bilateral filter;

5 minutes.

6.2.5.2 Top-Hat Filter : Extraction of the Local Maxima

An isotropic white top-hat WTH is applied on the image to detect the local maxima

which are smaller than the defined structuring element. This step copes with the non-

uniformity of the background.

Considering a spherical structuring element b and a set of pixels X, the WTH is

computed as :

WTHb(X) = X − γb(X) (6.1)

We have chosen a spherical structuring element of radius equal to 4. With this pa-

rameter we ensure that almost all the fibers are detected. However, as the polymer

matrix is obviously not perfectly uniform, the WTH image reveals to be noisy. Indeed,

as we haven’t integrated any strong constraints on the shape, each of the local maxima

suppressed by the opening will be retrieve in the WHT image (see Figure 6.4).

After this operation, we have enhanced the contrast between the matrix phase and the
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6.2 Characterization of Three-dimensional Fibrous Material

fiber phase, however fibers result to be locally low contrasted (disconnected). For our

image the top-hat filter took approximately 3 minutes.

6.2.5.3 Path-Based Morphological Filtering

Figure 6.4: Result of the WTH operator

To reduce the noise issuing from the WTH image, we have to integrate the no-

tion of shape when filtering the image. Fibers are linear-like features which are locally

disconnected by noise. The use of a morphological filter able to filter the noise while

keeping intact features of interest should be very efficient and would provide a good

input image for the segmentation step.

While 3D rank-max openings may provide a satisfactory result, they would fail in de-

tecting the locally non-straight parts of the fibers. Moreover their use would induce

the discretization of the 3D space depending on the number of filters involved which

reveals to be a delicate step.

As we have no a priori on fibers’ orientations, we have decided to use 3D robust path

operators to retrieve the fibers while removing a maximum of compact noise.

Practically, we compute the union of robust path operators considering 7 different ori-

entations (3 corresponding to the main axes of the images and 4 to the main diagonals)

with the parameter L = 80 and G = 1. These parameters are chosen to provide a
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(a)

(b)

Figure 6.5: Path-based operators applied on the WTH image; (a).Complete path opera-

tors (L = 80); (b).Robust path operators (L = 80 and G = 1); Note that the same color

mapping was used.

sufficient radiometric flexibility while not increasing the detection of correlated noise

too much (see Figure 6.5). We have also processed the top-hat image with complete
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6.2 Characterization of Three-dimensional Fibrous Material

path operators considering the same detection length and the same orientations.

For a 500×500×300 8 bits grey-scale image, the algorithm took approximately 29 and

14 minutes for the robust and complete path operators respectively. Note that in both

cases we are computing the union on 7 different orientations considering the same path

length.

6.2.6 Segmentation

The preprocessing pipeline has reinforced the contrast between the fibers and the poly-

mer matrix and has removed a large amount of noisy features. Here we use an hysteresis

thresholding (HT) to segment the image.

Hysteresis thresholding is an advanced thresholding algorithm using two thresholds

and an adjacency relation between pixels. We believe that this segmentation is well

adapted to our case of study as the output of the preprocessing contains fibers with

local disconnections.

Given τ1 and τ2, the output value of a pixel x is defined as :

HT (I(x)) =







1 if I(x) ≥ τ2
1 if I(x) ≥ τ1 and ∃n-path(x, y)|I(y) ≥ τ2 and ∀p ∈ n-path(x, y), I(p) ≥ τ1
0 otherwise

(6.2)

We have manually set the parameters to τ1 = 55 and τ2 = 70 to ensure that the lower

contrasted part of the fibers were retrieved, we use the 26-neighborhood adjacency

relation as usual in the 3D case.

6.2.7 Basic Concepts of Discrete Topology and Skeletonization

Before going on the description of our method, we will give here basic concepts of

discrete topology needed for the understanding of what follows. Even if we have used

in previous parts of this dissertation some of the concepts given below, we need here a

more formal definition. More details about discrete topology can be found in (111).

Considering A a point of a discrete space E = Z
d with d = 2, 3. We can define the

classical adjacency (or neighborhood) relations in 2D and 3D by N4(A), N8(A) and

N6(A), N18(A), N26(A) respectively (see Figure 6.6).

Further in this dissertation we will denote as α a number such that α = {4, 8, 6, 18, 26}.
We define N∗

α(A) = Nα(A) \ A and B is said to be α-adjacent to A if B ∈ N∗
α(A). A
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Figure 6.6: Adjacency relations in 2D and 3D

α-path is a sequence of points A0...Ak such that Ai is α-adjacent to Ai−1. Stating that

X ⊆ E, A and B of X are said to be α-connected in X if there exists an α-path in

X between these two points. Note that this relation is a symmetric but not reflexive

binary relation. A subset X of E is said to be α-connected if it is composed by one

α-connected component. The set of all α-connected components is defined as Cα(X)

and a subset Y ⊆ E is said to be α-adjacent to A ∈ E if there exists a point B ∈ Y

such that B is α-adjacent to A. The set of α-connected α-adjacent components to A

is noted CA
α (X).

The concept central to the skeletonization transform is the concept of simple points

(112), (113), (114). A point is simple if its removal does not change the number of

connected components of X and of its complementary. This property can basically

be determined by a local characterization of the point i.e the number of connexity

Tα(A,X) and Tα(A,X). Indeed, a point A is α-simple if Tα(A,X) = 1 and Tα(A,X) =

1. Roughly speaking it means that A is simple if it has only one component in the

“object” set and only one component in the “background”. Note that even if the

concept of simple point is global, it can be characterized locally (this will lead to efficient

implementation of digital homotopic transforms as we will see below). Note also that

different adjacency relation are used for the object and for its complementary (α and

α) mainly to avoid topological paradoxes of objects being connected and not connected

at the same time (111) (usually the 4-adjacency is associated with the 8-adjacency in

2D and the 6-adjacency is associated with the 26-adjacency in 3D).

Going back to our study, we were stopped at the segmentation step. To simplify the

representation of the fibers network while keeping its topological properties, we propose

to use a skeletonization transform. In this study we will use a sequential thinning

algorithm. The basic concept of this family of algorithm is to detect at each iteration

90



6.2 Characterization of Three-dimensional Fibrous Material

the simple points set and remove them from the object one after the other until no

simple points remain. The set of points obtained at the end of the transform is called

skeleton as it represents the raw shape of the object.

This basic strategy guarantee the transform to be homotopic however it may not provide

a good centering. Indeed the order of simple points removal is critical for sequential

thinning. Improved strategies for the removal of simple points have been developed in

order to remove them “layer by layer” from the contour to the center of the object.

Using a priority function based on a distance map (115), (116), (117) is widely used:

at each iteration, the simple point which has to be removed is that of lowest priority.

Here we have used the implementation provided by the Pink software (Pink software

homepage) using an approximate of the Euclidian distance for the priority function (see

Algorithm 1).

Algorithm 1 Sequential thinning with priority function

1: procedure SeqThinningPrior(X ⊆ E , P : X → R or Z)

2: repeat

3: Detect A ∈ X such that A is simple for X and that P (A) is minimal

4: X = X \A
5: until Stability

6: return X

7: end procedure

6.2.8 Skeleton Analysis

Skeletonization will reduce the amount of data while preserving the topology of the

objects. As the analysis of a raw skeleton from real data is not a fair problem, working

on a skeleton model is an easier way to extract fibers individually and to obtain their

characteristics.

The first step is to decompose the skeleton into three types of points according to their

number of non-zero neighbors giving by the adjacency relation (e.g. 26-neighbourhoood

in 3D) : end-points, curve-points and cluster-points have respectively one, two and more

than two non-zero neighbors.

Practically, the skeleton is considered as a binary image. An array is created and will

associate to each of the pixel a flag to its type. Once the classification is made, we
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(a) (b)

Figure 6.7: (a).Example of a 2D skeleton; (b).Result of point classification

are able to aggregate cluster and edge points according to their connectivity and to

create the so-called clusters, edges and end-point sets. One can see in Figure 6.7, the

classification of end-points, curve-points and cluster-points which are respectively of

blue, red and green colors.

After having classified skeleton points, one can notice that the skeleton is made of

’path’ and ’clusters’. A ’path’ is a connected string of curve-points lying between two

’clusters’ which are themselves composed by one point or by an aggregation of points.

Basically ’paths’ can be classified into three types (see Figure 6.8(a).):

• ’branch-branch’ path (B-B) connecting two clusters

• ’leaf-branch’ path (L-B) connecting a cluster to an end-point

• ’leaf-leaf’ path (L-L) connecting two free clusters (representing an isolated fiber)

6.2.9 Graph Modeling

Based on the work of (108), we have decided to model the fibers skeleton by a graph.

A graph G is a pair (V,E), with V and E the set of vertices and edges respectively.

Here we model the skeleton by an undirected simple graph. Undirected means that
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e2

e5
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(b)

Figure 6.8: (a).Skeleton after points classification and aggregation; (b).Its corresponding

graph representation

edges are not oriented (given two vertices v1 and v2 : (v1, v2) = (v2, v1)) and we refer

as simple, a graph which is undirected and has no loops and no more than one edge

between any two different vertices.

In order to be physically coherent with the geometry of the fibers, we associate some

properties to vertices and edges. Vertices are associated clusters or end-point positions

(for a cluster its position corresponds to its barycenter) b0 : V → R
3. Edges are

associated barycentre’s coordinates b0 : E → R
3, length l : E → R

+, and orientation

vector vorientation : E → R
3.

The orientation corresponds to the normalized vector between the vertices connected

to one edge. We define the degree of a vertex d(vi) = Card{vj ∈ E, j 6= i} as the

number of vertices linked to it by an edge. The graph is created using the Boost Graph

Library (118) which provides template classes for graph instantiation.

A 3D rendering of the graph model can be seen Figure 6.9. One can notice the very

complex structure of fibers network as well as distortions affecting the medial axis. We
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will dedicate the following part of this chapter to propose some methods to filter the

graph while trying to respect the topology of the fibers.

Figure 6.9: 3D rendering of the graph model

6.2.10 Graph Filtering

As skeletonization process generates a large amount of spurious branches (see Figure

6.9), filtering the graph is a necessary step to increase the effectiveness of the fiber

extraction algorithm.

6.2.10.1 Surface Irregularities Corrections

During the skeletonization step, fibers surfaces irregularities are generating several spu-

rious branches (see Figure 6.10). This phenomenon classically result in so-called T-

junctions. T-junctions are represented in the graph as a L-B path with a cluster vertex
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v1 v2

v4

v3
l13

l43

l32

Figure 6.10: Surface irregularity representation

of degree three. After T-junctions of length inferior to Lmin have been identified, they

are removed from the graph G following Algorithm 2.

Algorithm 2 Filter out graph edges resulting from surface irregularities

1: procedure FilteringSpuriousBranches(graph, Lmin)

2: for each ei,j ∈ E do

3: if (d(vi) = 1 and d(vj) = 3) and l(ei,j) < Lmin) then ⊲ If we have found a

T-junction.

4: E ← E \ {ei,j} ⊲ Edge contraction

5: V ← V \ {vi}⊲ Here we consider that vi corresponds to the single point.

6: Compute ek,l parameters from ej,k and ej,l

7: E ← E \ {ej,k} and E ← E \ {ej,l}
8: E ← E

⋃{el,k}
9: end if

10: end for

11: return graph

12: end procedure

6.2.10.2 “Ladder-shape” Pattern Correction

When fibers are crossing at a very acute angle, a so-called “ladder-shape” pattern could

be generated (see Figure 6.11). This is represented as a B-B path (the clusters at the

extremities are of degree three). Once these edges are identified as belonging to a

“ladder-shape” pattern, we just have to remove them from the graph.

The identification is made by analyzing the number of possible matching pair of edges

at the cluster vertex according to the angles formed through itself (see Algorithm 3).

According to the fact that the fibers are approximately straight, we arbitrary state that

this angle (we refer to this angle as “kink-angle”) couldn’t exceed 30 degree.
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v1
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v5

v6

v2

v10 v11

v3

v4

v8
v9

ladder-shape pattern

Figure 6.11: “Ladder-shape” pattern representation

6.2.10.3 Crossing Fibers

As fibers have a finite thickness, the skeletonization process produces a false represen-

tation of the touching area (see Figure 6.12). In the vicinity of the contact region, the

crossing of two fibers is likely to produce two vertices of degree three instead of one

cluster of degree four (see Figure 6.12 (b)). To cope with this limitation we propose

an edge contraction algorithm capable to correct this erroneous representation while

keeping the topology of the fibers. The idea is to simplify the pattern generated by the

crossing area. The crossing will be represented as an ideal single vertex in which all
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Algorithm 3 Filter out edges belonging to “ladder-shape” patterns

1: procedure FilterLadderShapeEdges(graph, kink angle, Lmin)

2: for each ei,j ∈ E do

3: if (d(vi) = 3 and d(vj) = 3) and l(ei,j) < Lmin) then

4: Computation of edges’ angle at vi for out(vi) \ ei,j
5: Computation of edges’ angle at vj for out(vj) \ ei,j
6: if Angles at vi < kink angle and vj < kink angle then

7: E ← E \ {ei,j}
8: Contract out(vi) and out(vj) edges

9: V ← V \ {vi} and V ← V \ {vj}
10: end if

11: end if

12: end for

13: return graph

14: end procedure

the edges of the crossing will be connected.

Firstly, we create a new vertex (v7 in Figure 6.12 (c)) which is the barycenter of the ex-

tremities of the edge to contract (here v3 and v4). Secondly, we remove the connections

to the extremities of the edge to contract, and then connect them to the vertex recently

created. Thirdly, the lengths and orientation are updated according to the position of

the new vertex v7. Algorithm 4 is an overview of the process of the simplification of

edges representing a false crossing area.

6.2.10.4 Clusters Simplification

The graph G was filtered in order to remove the spurious edges mostly generated from

noise and from erroneous crossing surface representation. At this step, the fibers are

still entangled.

To simplify fibers network we need to pair fibers segments at each of vertices formed by

clusters. Here we are using the fact that glass fibers injected in the polymer matrix are

made from rigid material. Fibers will be formed by line segments attached at clusters

and almost aligned.

As in the “ladder-shape” filter, we are using a “kink angle” of value 30 degree. This

angle is used as a tolerance in the deviation of the fiber axis at cluster point and so,
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Algorithm 4 Simplification of false crossing area representation

1: procedure SimplifyCrossing(graph, Lmin)

2: for each ei,j ∈ E do

3: if (d(vi) = 3 and d(vj) = 3) and l(ei,j) ≤ Lmin) then

4: V ← V
⋃{vk} ⊲ vk is the barycenter of (vi, vj)

5: E ← E \ {ei,j}
6: Connect all adjacents edges of vi and vj to vk

7: E ← E \ { adjacent edges of vi and vj}
8: V ← V \ {vi, vj}
9: Update the parameters of the adjacent edges of vk

10: end if

11: end for

12: return graph

13: end procedure

under this angle, two edges issuing from a cluster have the possibility to be paired

otherwise they are considered to belong to different fibers.

Practically, each of the vertices whose degree is strictly superior 1 is considered. A

boolean flag vertice simplification is initialized to true for each of the vertices during

graph generation. Cluster simplification algorithm will end when all vertices are sim-

plified i.e. when we can not paired two adjacents edges, or, when no more edges are

linked to the considered vertice (in this case the vertex is removed from the graph).

6.2.10.5 Post-processing Filtering

As a result of the previous filtering steps, all the fibers have been detached to each

other. In the last step, we will remove the smallest fibers resulting from the clusters

simplification algorithm. These edges are mostly due to noise and should not be taken

into account in the results.

Practically edges are removed if their length is under a user specified threshold.

6.2.11 Result of the Modeling

Figure 6.14 shows a 3D rendering of the graph model after postprocessing. One can

notice that fibers lengths are underestimated regarding the length we can measure on

the raw 3D image manually. Main errors generated from this method are coming from
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Algorithm 5 Clusters simplification

1: procedure ClusterSimplifications(graph, kinkangle)

2: for each vi ∈ E with d(vi > 1 and simplification = true do

3: Find e1 and e2 minimising the deviation through vi

4: if No edges found then

5: simplification = false

6: else

7: E ← E \ {e1,i} and E ← E \ {e2,i}
8: E ← E

⋃

e1,2

9: Update parameters for e1,2

10: if d(vi) = 0 then

11: V ← V \ vi
12: end if

13: end if

14: end for

15: return graph

16: end procedure

the fact that the sample volume used in the study was small compare to the size of the

fibers thus don’t enable their total representation. Moreover, due to the noisy nature of

the input skeleton, simplifications at clusters can lead to the fragmentation of the fibers.

Figure 6.13 shows the obtained distribution of both azimuth and elevation angles in

the fibers volume. We can observe that angle distributions seem to be in accordance

with what we can observe and seem relevant.

6.2.12 Discussion

Even if we have now access to the all the parameters for each of the fibers, we are aware

that this method has to be validated. Unfortunately no access is provided to ground

truth data as it seems very complicated to generate it manually.

Computationally speaking graph generation and filtering steps are negligible compare to

the preprocessing pipeline, segmentation and skeletonization (about 2 minutes against

almost 1 hour).

However we have two options that will be studied for future work. Firstly, the use of

synthetic data with known characteristics, the goal is then to attain the same measured
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values compare to generated ones. This evaluation is quite efficient but synthetic images

have difficulties to model all the distortions affecting a real 3D acquisition. Moreover,

industrial partners are often more interested in the computation of the parameters on

a real case than on a synthetic image. Secondly, we could use the correlation of the

results with results obtained with other methods. In our case, we could compare how

fits the distribution of orientations estimations to that of methods that are computing

local fibers orientations on the input grey-level image. This could give a sufficient level

of confidence to validate other fibers’ characteristics.
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Figure 6.12: (a).3D representation of two crossing fibres; (b). The corresponding graph

representation of a crossing after the skeletonization : the green edge corresponds to the

false representation of the touching area between the two fibres; (c).Result of the crossing

area representation simplification : edge v7 is created, v34 is deleted and all the edges

previously connected to v3 and v4 are then connected to v7.
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(a) (b)

Figure 6.13: Azimuth (theta) and elevation (phi) angle distribution

Figure 6.14: 3D rendering of the graph after postprocessing
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Conclusion and Future Directions

The main purpose of this thesis was to provide some advances in the filtering for 3D

image processing applications. Due to the amount of data generated by the acquisition

systems and the wish for practitioners in image processing to reach more and more

accurate results, there is a real need to provide tractable implementation of complex

algorithms.

We have oriented our study on morphological filters which have been proven to be very

efficient in medical imaging or material science.

With the benefits of recent advances in 3D morphological filtering in the domain of the

detection of thin, curvilinear and oriented features, our contribution in this domain is

multiple. We have provided a new framework to cope with disconnections corrupting

thin, oriented and flexible noisy features in d-dimensional images by proposing a novel

algorithm: the robust path openings and closings. After giving its principle, we have

given the theoretical framework of this new operator together with an efficient imple-

mentation able to compute d-dimensional images. This algorithm has been shown to

generate a larger family of structuring elements than state of art’s operators. Their

efficiency was shown on both synthetic and real 2D and 3D data. Moreover we have

experimentally proven quantitatively their efficiency on 2D retinal images compared to

multiscale derivative filters and classical morphological filters.

We have also proposed an extension to robust path openings which can be used to

reconstruct the noisy gaps between feature elements. In the case of a robust path

openings, the result of this reconstruction operator forms a morphological closing.

At the cost of an increase in computation time, considering recent advances in the field

103



7. CONCLUSION AND FUTURE DIRECTIONS

of connected filters, we have combined these filters with robust path operators to build

an operator capable to combine the advantages of both of these approaches. We have

proposed to use geodesic attribute-based filters to cope with the main limitation of

path operators of not being capable to detect “tortuous” features. The result operator

is the selective and robust path operators.

As an application in the field of non-destructive testing, we have integrated robust

path openings into an image processing pipeline for the characterization of glass fibers

reinforced polymer. They have shown to be well adapted to the enhancement of fiber

which is a critical issue for further steps as segmentation, modeling and analysis.

A lot of care in this work has been given in order to develop computationally efficient

implementation.

Even if we have provided efficient implementations of new morphological filters, there

is a need for practitioners in 3D image processing to run fast implementations of ad-

vanced methods. A good way to improve drastically the speed of the algorithms can

be found in their parallelization. Future work on these algorithms would be to find a

way to generalize the parallel programming of propagation based algorithms such as

path operators or geodesic diameter.

In this dissertation we have made a separation between ’detecting’ and ’preserving’ fil-

ters in order to classify them. However, it could be very interesting to combine different

approaches coming from the scale-space theory methods and morphological methods.

In (71), morphological oriented segments and a vesselness measure are combined in

order to provide a very efficient ’morpho-Hessian’ filter. The use of the robust path

operators in place of oriented segments could maybe be more convenient in vessels

detection applications.
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Appendix A

Résumé en Français

A.1 Introduction

Avec l’émergence des nouveaux systèmes d’imagerie, nous sommes maintenant ca-

pables de générer des images 3 dimensions (3D) qui nous permettent d’observer des

phénomènes se déroulant de l’échelle macroscopique à l’échelle nanoscopique.

Dans un premier temps conçu pour l’imagerie médicale, la tomographie par rayons X

est devenue fortement répandue comme moyen très efficace et peu invasif de diagnosti-

quer certaines pathologies (des tumeurs par exemple).

Ce système d’imagerie a récemment trouvé des applications industrielles dans le do-

maine de l’automobile ou encore de l’aéronautique où la prédiction des comportements

mécaniques de certains matériaux est devenu critique.

La question qui reste en suspens est maintenant de savoir quelles informations pouvons-

nous extraire de ces volumes de données 3D et avec quels outils.

En deux dimensions (2D), l’analyse et le traitement des images a déjà prouvé son effi-

cacité notamment dans les domaines de l’imagerie médicale ou encore de la télédétection.

L’opération de filtrage en traitement d’images est probablement une des opérations les

plus importantes. Cela consiste à supprimer le ’bruit’ pour ne garder qu’un maximum

d’information utile dans l’image. Bien évidemment, cela est complètement dépendant

de l’application considérée, les outils utilisés doivent donc être adaptés á chaque cas

d’étude.

Au prix d’une augmentation du temps de calcul et d’occupation mémoire, les implémentations

des opérateurs classiques en 2D ont leurs équivalents en 3D. On peut penser par exem-
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ple aux opérateurs dérivatifs de Canny et Deriche.

Cependant, pour accrôıtre la fiabilité des mesures effectuées dans des cas de plus en

plus complexes, des méthodes avancées doivent être utilisées qui souvent, aboutissent

à des implémentations inéfficaces en 3D.

Pour faire face à cette difficulté, des implémentations parallélisées ont été développées,

malheureusement cela ne concerne qu’une certaine classe d’algorithmes.

Dans les travaux de recherche qui vont suivre, nous allons proposer plusieurs nouveaux

algorithmes pour le traitement d’images à N dimensions basés sur des implémentations

efficaces pour la détection de structures fines, curvilinéaires et orientées. Nous allons

notamment mener notre étude dans le cas ’bruité’, c’est à dire dans le cas où les struc-

tures sont déconnectées et donc difficiles à détecter (voir Figure A.1 pour des exemples

d’applications).

Après un bref rappel de l’état de l’art du filtrage des structures curvilinéaires, fines et

orientées en traitement d’images, nous nous focaliserons sur des opérateurs de filtrage

non-linéaire issus de la morphologie mathématique appelés ouvertures par chemins.

Après avoir conclu sur leurs avantages mais aussi sur leurs limitations, nous allons

proposer deux nouveaux opérateurs non-linéaires basés sur les ouvertures par chemins

permettant d’accrôıtre leur efficacité notamment dans le cas où les structures sont

déconnectées par le bruit et dans le cas de structures dites tortueuses.

A.2 Etat de l’Art du Filtrage des Structures Curvilinéaires

La détection des structures fines et curvilinéaires est encore un challenge en traitement

d’images. Depuis 40 ans, un nombre impressionnant de méthodes ont été dédiées à

cette tâche dans de nombreux domaines d’applications.

Dans cette étude nous avons décidé de classer ces différentes méthodes en deux groupes

: d’une part les filtres cherchant à préserver les structures et d’autre part les filtres

cherchant à détecter les structures (voir Figure A.2 pour une illustration).

A.2.1 Filtres Détectant les Structures

Les filtres présentés ici sont fondés sur des modèles de formes et d’intensités faisant

l’hypothèse que les structures curvilinéaires présentent un fort contraste dans l’axe

orthogonal à leur orientation principale.
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(a) (b)

(c) (d)

Figure A.1: Exemples d’applications: (a).Vaisseaux de la rétine; (b).Route sur image

satellitaire; (c).Artères coronaires; (d).Matériau polymère

A.2.1.1 Filtres Orientés

Les filtres orientés peuvent être utilisés dans de nombreuses applications : analyse de

texture, détection de bords et de crêtes etc ... L’opération de filtrage orienté consiste

prnicipalement à faire varier l’orientation d’un noyau de convolution de base en con-

sidèrant une gamme d’orientations possibles et de mesurer par la suite la réponse du
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(a) (b)

(c)

Figure A.2: Exemples de filtres qui préservent et détectent les structures (a).Image

originale (b).Filtre qui détecte; (c).FIltre qui préserve;

contenu de l’image pour chaque orientation. La finalité est donc d’obtenir l’orientation

qui correspond à la réponse de magnitude la plus forte.

Dans la famille des filtres orientés, les ’steerable filters’ (5), (6) ont des propriétés

intéressantes (notamment pour la sélectivité et la complexité algorithmique). En effet

la réponse de ces filtres pour un angle donné peut être obtenu par une combinaison

linéaire d’un ensemble de filtres de bases.

Un deuxième exemple appartenant à cette famille de filtre est celui des filtres Hessien.

En considèrant l’image comme un relief topographique, ces méthodes font l’hypothèse

que les structures d’intérêts à détecter sont les lignes de crêtes de ce relief topographique

(dans le cas de la détection de structures plus claires que le fond de l’image). Le filtre

Hessien (9), (10), (11), (12), (13), (14), est l’un des filtres le plus usités notamment

en imagerie médicale. Fondé sur la théorie des espaces d’échelles linéaires (15), les

filtres Hessiens sont obtenus en convoluant l’image avec des noyaux de Gaussiennes

(dérivées d’ordre un et deux) à différentes échelles en faisant varier l’ écart-type du

noyau Gaussien suivant une plage de donnée prédéfinie (voir Figure A.3). Même si

l’utilisation de ces filtres reste très avantageuse, ils possèdent certaines limitations,

notamment une inaptitude à détecter les jonctions.
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(a) (b)

Figure A.3: (a).Image originale (b).Filtre Hessien multi-échelle utilisant la mesure de

Frangi (14);

A.2.1.2 Chemin de Coût Minimal

L.Vincent (23), (24), a proposé un algorithme de calcul efficace de chemin de coût

minimal dans des images 2D en utilisant un connectivité contrainte définissant une ori-

entation donnée. Cet algorithme est particulièrement efficace dans le cas des structures

fortement bruitées.

Plus récemment V. Bismuth et al. (25) ont généralisé les concepts proposés par Vincent

en ajoutant une contrainte de courbure paramètrable sur le chemin propagé.

A.2.2 Filtrage Morphologique

La morphologie mathématique (49), (50), (51), (52), (53), (54) repose sur la théorie

des ensembles ce qui fait d’elle un espace de travail ’auto-contenu’ et cohérent. Cette

théorie est très bien adaptée au traitement d’images car l’information visuelle du monde

nous entourant n’est pas translucide mais a contrario composée d’objets opaques se

chevauchant les uns avec les autres.

Le but de la morphologie mathématique est d’extraire de l’information à partir de

transformations non-linéaires appliquées aux objets de l’image.

On pourra notamment chercher des informations à propos de :

• la forme,

109
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• l’orientation,

• la taille,

• la connectivité ...

Dans le cas particulier du filtrage d’éléments fins, curvilinéaires et orientés, ils

convient d’adapter la forme de l’élément structurant pour ne pas supprimer toute

l’information utile (ce serait le cas par exemple en utilisant un élément structurant

en forme de disque).

La puissance des opérateurs de base définis par la morphologie mathématique (l’érosion

et la dilatation) est qu’ils peuvent être facilement combinés pour former d’autres

opérateurs. On parlera alors d’ouverture pour caractériser la composition d’une érosion

suivie d’une dilatation et de fermeture pour caractériser la composition d’une dilatation

suivie d’une érosion.

Lorsque l’on applique une ouverture (resp. fermeture) sur une image avec un élément

structurant donné, les objets les plus clairs (resp. les plus sombres) ne respectant pas

l’arrangement géométrique défini par l’élément structurant seront supprimés.

Dans notre cas d’étude, il vient naturellement l’idée d’utiliser des éléments de type

segments orientés. Soille et al. (60) proposa un algorithme efficace pour le calcul

d’ouvertures et de fermetures sur des lignes de Bresenham. Aprs avoir formulé une

version de ces filtres invariante par translation (66), une version robuste au bruit ’rank-

based’ a été proposée permettant le calcul d’ouvertures et de fermetures sur des seg-

ments orientés incomplets (i.e. avec un nombre fixé de pixels manquant r dans un

segment de longueur L pixels).

Plus récemment, les ouvertures par chemins furent proposées permettant d’augmenter

la flexibilité géométrique des ouvertures par segments. Ces algorithmes sont au coeur

de l’étude que nous avons mené au cours de cette thèse.

Le filtrage par attribut constitue une autre branche du filtrage morphologique. Au lieu

de comparer les objets de l’image avec des formes prédéinies, les objets sont extraits de

l’image et des mesures ( appelés attributs) sont calculés en considérant l’object comme

une seule composante connexe (75). Ces attributs peuvent par exemple caractériser

l’aire, le volume ou encore la forme ou la tortuosité. Nous reviendrons sur le filtrage

par attribut dans la partie dédiée aux ouvertures par chemins robustes et sélectives.
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A.2.2.1 Discussion

Dans le cas que nous considérons ici, i.e. le cas du filtrage des structures fines,

curviliniéaires et orientées dans un contexte bruité, l’étape de prétraitement dont le

but est d’augmenter le taux d’information utile par rapport au bruit est critique.

La morphologie mathématique est une théorie qui propose un large de choix de filtres

permettant de conserver les propriétés radiométriques et photométriques des structures

d’intérêts dans les images tout en réduisant l’impact du bruit.

De plus, un réel effort a été apporté par la communauté scientifique permettant d’obtenir

des implémentations efficaces du point de vue des temps de calculs et de l’occupation

mémoire. Cela a grandement motivé le travail qui va suivre sur les opérateurs d’ouvertures

et de fermetures par chemins.

A.3 Ouvertures par Chemins

A.3.1 Principe

Dans de nombreuses situations, le traitement d’images implique l’utilisation de filtres

morphologiques basés sur un élément structurant donné. Ces éléments structurants

sont en quelque sorte des sondes que l’on déplace en tout points de l’image pour com-

parer l’arrangement spatial des objets de l’image avec ceux-ci.

Pour que ces filtres soient efficaces, c’est au praticien en morphologie mathématique de

convenir de la forme la plus adaptée à l’application considérée. Dans le cas du filtrage

de structures fines, allongées et orientées, il parâıt logique de vouloir dans un premier

temps utiliser des segments orientés en tant qu’élément structurant.

Malheureusement, les segments orientés ne sont pas suffisant, dans le cas d’applications

pratiques, pour s’adapter à la flexibilité locale des structures. De plus, ils peuvent

s’avérer être gourmand en terme de temps de calculs en 3D (80).

Pour contrer cette limitation, les ouvertures et fermetures par chemins ont été intro-

duites récemment par Buckley et Talbot dans (82). Peu après, des bases théoriques

plus appronfondies furent données avec une implémentation récursive en O(NL) (avec

N le nombre de pixels de l’image et L la longueur du chemin en pixels) par les mêmes

auteurs. Une implémentation efficace en O(N log(L)) fût introduite par la suite par

Talbot et Appleton in (83). Cette implémentation ordonnée est à la base de nos travaux
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de recherche.

Plus récemment Cris L. Luengo Hendriks (81) a proposé une modification de l’implémentation

des ouvertures par chemins permettant sa généralisation au cas N dimensionnel. C’est

cette implémentation que nous allons étudier ici.

A.3.2 Aspects Théoriques

Les détails des aspects théoriques peuvent être trouvés dans (1). Ici, nous allons juste

rappeler les grands principes qui se trouvent derrière ces opérateurs.

A.3.2.1 Graphe d’Adjacence, Dilatation et Ouvertures par Chemins Bi-

naires

Figure A.4: Illustration d’un graphe d’adjacence défini par une relation binaire;

Partant d’un ensemble de points de E (E correspondant au support spatial de

l’image), on définit un graphe d’adjacence (e.g. Figure A.4) entre ces points à partir

d’une relation binaire x → y. Grâce au graphe d’adjacence défini ci-dessus, on peut

définir un δ-chemin de longueur L qui est un L-tuple:

a = (a1, a2, ..., aL) si ak → ak+1 (A.1)

On note ΠL(X) l’ensemble des δ-chemin de longueur L dans un sous-ensemble X

de E par:

ΠL(X) = {a ∈ ΠL : σ(a) ⊆ X} (A.2)

avec σ(a) = σ(a1, a2, ..., aL) l’ensemble des éléments du chemin. Les ouvertures par

chemins sont donc définies par:

αL(X) =
∨

{σ(a) : a ∈ ΠL(X)} (A.3)
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αL(X) respecte les propriétés canoniques algébriques d’une ouverture, i.e : crois-

sance, anti-extensivité et idempotence.

Ici nous venons de définir les ouvertures par chemins, mais bien entendu cette définition

s’applique aussi aux fermetures par chemins définies par complémentation (par dualité

des opérateurs d’ouvertures et de fermetures).

A.3.2.2 Extension aux Images à Niveaux de Gris

L’extension de l’opérateur binaire des ouvertures par chemins a été proposée en se

basant sur le principe de superposition de seuils (52), (84).

L’ouverture par chemins en niveaux de gris d’une image I est alors définie par :

Πt
L(I) = ΠL(Xt(I)) (A.4)

où Xt(I) = {x ∈ E : I(X) ≥ t} est le ’level set ’ de I à la valeur t.

Cela revient à dire qu’une ouverture (resp. fermeture) par chemins en niveaux de gris

donne pour chaque pixel de l’image la plus haute (resp. la plus basse) valeur pour

laquelle l’ouverture (resp. la fermeture) par chemins binaire est vrai. Si on représente

une image à niveaux de gris comme un empilement d’ensembles binaires d’éléments,

appliquer une ouverture par chemins en niveaux de gris revient à l’appliquer sur chacun

des ensembles binaires et à les empiler á nouveau (voir illustration Figure A.5).

A.3.3 Algorithme

Nous allons décrire le principe de l’algorithme d’ouvertures par chemins proposé par

Cris Luengo Hendriks (81) applicable sur des images à N dimensions.

Cet algorithme est fondé sur l’implémentation ordonnée proposée précédemment par

Talbot et Appleton (83).

Pour appliquer une ouverture (resp. fermeture) par chemins, l’algorithme commence

par créer un tableau linéaire d’adresses en mémoire, ordonné de manière croissante

(resp. décroissante) par rapport aux valeurs des pixels à qui elles se référent. En

commençant du niveau le plus bas au niveau le plus haut, chaque pixel qui est encore

actif sera traité de manière indépendante et servira de point de départ à un algorithme

de propagation de longueurs (en amont et en aval de ce pixel) afin de mettre à jour les

longueurs des pixels actifs de l’image.

Deux images temporaires sont créées (image longueur amont et aval : λ+ et λ−) et
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(a)

(b)

Figure A.5: (a).Image originale; (b).Ouverture par chemins L = 60;
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Figure A.6: Illustration du principe de propagation au coeur de l’algorithme d’ouvertures

par chemins.

permettent d’accumuler les longueurs obtenues pour chaque pixel (voir A.6 pour une

illustration du processus de propagation). La propagation du chemin est gérée par

une première pile FIFO (First In First Out) de manière récursive jusqu’à ce que l’on

atteigne un maximum de L pas de propagations élémentaires ou lorque plus aucun

pixels actifs voisins du pixel courant de la pile de propagation n’est trouvé.

Lorsque la valeur de la longueur de chemin ’amont’ ou ’aval’ d’un pixel est modifiée,

ce pixel est chargé dans une deuxième pile FIFO, puis la valeur totale du chemin
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parcourant ce pixel est calculée de la manière suivante :

λ = λ+ + λ− − 1 (A.5)

Si λ passe en dessous de la valeur L, alors ce pixel est désactivé, les valeurs des longueurs

’amont’ et ’aval’ sont remises à 0 et sa valeur en sortie sera égale à la valeur courante

du seuil (c’est à dire, à la valeur du pixel pris comme point de départ).

Notons que l’indépendance de cet algorithme à la dimension de l’image est gérée de

manière simple en créant un tableau linéaire correspondant aux adresses des pixels.

L’accès aux voisins d’un pixel se fait en ajoutant un décalage linéaire en mémoire.

D’un point de vue utilisateur, il est usuel d’exécuter les ouvertures par chemins en

considérant plusieurs orientations principales et de faire l’union des réponses sur chaque

orientation. En 3D par exemple, nous avons choisi d’utiliser des sous-ensembles de la

26 connexité pour générer les résutats. En pratique nous avons considéré 7 orientations

principales donnant un bon compromis entre isotropie du résultat final et temps de

calculs (voir Figure A.7).

A.3.4 Limitations

Les ouvertures par chemins sont très efficaces pour détecter des structures curvilignes

orientées et qui peuvent aussi être flexibles localement. Malgré cela, les ouvertures par

chemins présentent une grande sensibilité au bruit générant des déconnexions dans les

structures d’intérêts.

Dans (83), les ouvertures par chemins incomplets ont été introduites pour résoudre

cette limitation. En autorisant un nombre limité de K pixels n’appartenant pas à

l’ensemble de propagation dans un chemin de longueur L, la robustesse, autement dit,

la flexibilité radiométrique est largement améliorée (voir Figure A.8).

Cependant, certains problèmes se posent en ce qui concerne l’implémentation des ou-

vertures par chemins incomplets. En effet, l’occupation mémoire et la complexité al-

gorithmique est accrue de manière significative. Cela représente un challenge pour le

développement d’une version 3D.

Un deuxième point important est que le paramètre de robustesse K est typique-

ment un paramètre croissant avec L. En effet il est logique que plus on cherche des

chemins de longueurs importantes et plus la probabilité augmente de rencontrer cer-

taines déconnexions dans les chemins d’où une augmentation mécanique de K.
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(a) (b)

(c) (d)

Figure A.7: Exemples de graphes d’adjacences en 3D; (a), (b) et (c) sont orientés selon

les axes principaux, (d) selon une des diagonales de l’image

(a) (b) (c)

Figure A.8: Détection de vaisseaux en 2D (a).Transformation ’TOP HAT’ anisotropique

(image d’entrée); (b).Résultat de l’ouverture par chemins (L = 45); (c).Résultat de

l’ouverture par chemins incomplets(L = 45,K = 2);
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A.4 Ouvertures par Chemins Robustes

A.4.1 Motivations et Spécifications

Nous venons de voir que les ouvertures et fermetures par chemins étaient très effi-

caces pour discriminer les structures curvilinéaires, fines, localement flexible des autres

structures (e.g. bruit compact). Cependant, à la lumière des limitations évoquées

précédemment, notamment par rapport à la difficulté de prendre en compte les déconnexions

au sein de la propagation d’un chemin dans une implémentation efficace, nous proposons

de définir un nouveau cadre de travail.

Malgré tout, nous devons respecter certaines contraintes :

• l’algorithme devra être indépendant de la dimension

• la complexité algorithmique devra être réduite

• l’occupation mémoire devra être constante

• le paramètre permettant de gérer la robustesse ne devra pas être dépendant de

la longueur du chemin.

A.4.2 Proposition

Considérant les spécifications énoncées ci-dessus, nous proposons de construire un al-

gorithme indépendant de la dimension de l’image : les ouvertures par chemins ro-

bustes (85). Cet algorithme sera basé sur celui des ouvertures par chemins complets

indépendants de la dimension de l’image proposé par Cris Luengo Hendriks(81).

Pour chaque couple de paramètres (L,G), une famille plus grande de chemins incom-

plets et flexibles est générée.

Le principe est le suivant : à partir d’une longueur maximale de chemin G en pixels,

la propagation du chemin sera autorisée entre deux éléments d’un chemin incomplet si

la longueur de déconnexion entre ces deux éléments est inférieure ou égale à G. Cette

simple proposition pourra générer une implémentation dont l’occupation mémoire sera

constante et dont la complexité sera réduite.
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A.4.3 Aspects Théoriques

Nous allons donner les aspects théoriques relatifs aux ouvertures par chemins robustes.

A partir d’une longueur donnée G, en pixels, la propagation du chemin sera autorisée

si la longueur entre deux éléments d’un chemin ne dépasse pas G (1 ≤ G < L). Les

pixels appartenant à ces déconnexions seront appelés ’noise’ pixels.

Dès lors, nous pouvons définir la condition pour un pixel dans E d’être un ’noise’ pixel

: NPCk. For k = 1...G nous avons, pour un chemin a de longueur k dans Xc (Figure

A.9 donne un exemple pour G = 2):

NPCk(a) =

{

δ̌({a1}) ∩X 6= ∅
δ({ak}) ∩X 6= ∅

(A.6)

a1 est le premier élement du chemin et ak le dernier dans Xc.

D’où la définition de ΠG
noise(X) comme étant :

ΠG
noise(X) = {a ∈

∨

k=1..G

Πk(X
c) : a satisfy NPCk} (A.7)

(a) (b)

Figure A.9: Recherche des ’noise’ pixels pour G = 2 (a).Le candidat C est marqué; (b).Le

candidat C n’est pas marqué.

Maintenant nous pouvons définir les G-robust δ-chemin de longueur L For 1 ≤
G < L

ΠG
L (X)Robust = ΠL(X ∪XG

noise) (A.8)
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avec

XG
noise = {x ∈ σ(anoise) : anoise ∈ ΠG

noise(X)} (A.9)

σ(anoise) est défini de manière analogue comme étant l’ensemble des points appartenant

à un chemin de ΠG
noise(X). Ainsi on peut définir les ouvertures par chemins robustes

binaires comme étant:

αG
L (X)Robust =

∨

{σ(a) ∩X : a ∈ ΠG
L (X)Robust} (A.10)

Cela revient à dire que les ouvertures par chemins robustes sont équivalentes aux ouver-

tures par chemins complets en considèrant une extension de l’ensemble de propagation

(1). Cet opérateur respecte les propriétés canoniques d’une ouverture, c’est-à-dire,

la croissance, l’anti-extensivité et l’idempotence (la preuve est directe car l’opérateur

associant à un ensemble donné son ensemble étendu est une dilatation).

A.4.4 Algorithme

upstream downstream

seed

totalseed

+ - 1 =

n n

1

2

3

44

5

6 1

2

3 3
4

5

6

6

6

6 6

6
6

6

’noise’ pixels

Figure A.10: Principe de l’algorithme des ouvertures par chemins robustes

L’algorithme des ouvertures par chemins robustes est basé sur celui proposé par

Cris L. Luengo Hendriks. Nous décrirons donc uniquement les modifications apportées
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pour robustifier cet algorithme.

La première étape supplémentaire est l’algorithme de recherche de déconnexions dans

la limite de G pixels entre deux parties d’un chemin. Celui-ci est réalisé en cherchant

de manière récursive des pixels ’actifs’ en considèrant les pixels du fond (ou encore

pixels venant d’être désactivés après un changement de seuil) de l’image comme point

de départ (voir Figure A.10.) Si la longueur du chemin reliant les deux extrémités

est inférieure à G, alors, le pixel point de départ de la recherche est marqué comme

étant ’noise’ pixel, c’est-à-dire, comme appartenant à une déconnexion. Notons que les

longueurs de chemins propagées, amont et aval ne sont pas remises à 0 car ce pixel va

servir pour la suite lors de la propagation des chemins.

La deuxième modification majeure intervient dans la fonction de propagation qui

doit être redéfinie pour prendre en compte maintenant les pixels appartenant aux

déconnexions du chemin.

Pour respecter le principe de superposition de seuils, il convient aussi de mettre en place

un processus de mise à jour des ’noise’ pixels lorsque l’on passe d’un seuil à l’autre.

En effet, il faut marquer les nouveaux ’noise’ pixels mais aussi re-vérifier le status des

’noise’ pixels des seuils précédents. Si il arrivait qu’un pixel perdait son status de ’noise’

pixel, il faudrait relancer une procédure de propagation à partir de celui-ci.

A.4.5 Temps de Calculs et Résultats Expérimentaux

Nous allons présenter les principaux résultats des ouvertures par chemins robustes en

les comparant avec ceux des ouvertures par chemins complets et incomplets.

Améliorer la détection des structures fines et peu contrastées tout en réduisant le taux

de fausses détections est le principal but de l’extraction des vaisseaux sanguin de la

rétine. Ce problème a été largement abordé depuis plusieurs années (89), (90). Nous

allons donc comparer les résultats de la détection des vaisseaux de manière qualititative

ainsi que les temps de calculs.

Après avoir extrait le canal ’vert’ de l’image RGB de la rétine (donnant le meilleur

contraste), une transformation en chapeau haut de forme est appliquée dans le but

d’extraire les minima locaux de l’image. L’image résultante contient beaucoup de bruit,

spots et déconnexions des vaisseaux.

La figure A.11 montre le résultat du seuillage des différentes images filtrées ainsi que
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de l’image originale. En utilisant les ouvertures par chemins complets, on peut facile-

ment remarquer que la totalité du bruit est supprimé, cependant, on notera que cet

opérateur n’est pas capable de détecter des vaisseaux présentant des déconnexions. Les

ouvertures par chemins incomplets donnent des résultats meilleurs, sous réserve que les

déconnexions ne dépassent pas un certain seuil (en effet si le nombre de déconnexions

est supérieur à K, la propagation du chemin est stoppée). L’utilisation des ouvertures

par chemins robustes donne le meilleur résultat en terme de détection. Notons aussi la

présence de certains artefacts (absents dans le cas des ouvertures par chemins complets

et moins présents dans le cas incomplets) résultant de la corrélation de pixels appar-

tenant au bruit disposés de manière aléatoire et formant un arrangement valide.

La Figure A.12 compare les temps de calculs des différents algorithmes d’ouvertures

par chemins en utilisant la même image d’entrée. Comme attendu, la complexité algo-

rithmique des ouvertures par chemins robustes est largement réduite par rapport à celle

des ouvertures par chemins incomplets dans tout les cas. Par exemple, pour G = 2 et

K = 2, les ouvertures par chemins robustes sont 7 fois plus rapides que les ouvertures

par chemins incomplets. De plus, l’occupation mémoire des ouvertures par chemins

robustes est constante par rapport à G. Nous observons que les temps de calculs des

ouvertures par chemins robustes sont linéaires par rapport à G (environ 0.4×G).

A.5 Ouvertures par Chemins Robustes Sélectives

A.5.1 Tortuosité et Opérateurs par Chemins

Dans les sections précédentes, nous avons introduit les ouvertures par chemins ainsi

que leurs implémentations efficaces.

Dans cette section nous voulons mettre en évidence une limitation des ouvertures par

chemins (complets ou robustes) qui a été récemment soulevée par V. Morard et al.

dans (76) and (77). En effet, du fait de l’utilisation d’un graphe de connexité con-

traint par une orientation donnée, les ouvertures par chemins sous-estiment clairement

la longueur des structures dites tortueuses. La Figure A.13 en est un bon exemple.

Pour répondre à cette problématique nous allons proposer un algorithme qui permet

de combiner les ouvertures par chemins robustes et la reconstruction morphologique

des parties tortueuses des structures. Pour se faire nous allons tout d’abord rappeler
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(a) (b) (c)

(d) (e)

Figure A.11: Détection des vaisseaux de la rétine (2D) (a). Image d’entrée; (b). Im-

age d’entrée seuillée; (b). Résultat des ouvertures par chemins complets (L = 45 ); (c).

Résultat des ouvertures par chemins incomplets ( L = 45, K = 2 ); (d). Résultat des ou-

vertures par chemins robustes ( L = 45, G = 2 ); le même seuil a étéappliqué sur (b),(c),(d)

et (e).

COPO RPO IOPO RPO IOPO RPO IOPO

Tolerance K = 0 G = 1 K = 1 G = 2 K = 2 G = 3 K = 3

L=10 0.71 1.03 5.61 1.34 8.78 1.81 12

L=50 0.79 1.03 5.93 1.33 9.31 1.77 12.93

L=100 0.82 1.05 6.03 1.35 9.47 1.78 13.2

Figure A.12: Temps de calculs des différentes impléentations des ouvertures par chemins.

La taille de l’image est 565x585x8-bit.

comment caractériser la tortuosité des structures par l’usage de filtres s’appliquant sur

les composantes connexes.
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(a)

Figure A.13: Exemple de l’incapacité des ouvertures par chemins à détecter des structures

dites tortueuses (RPO (L = 150, G = 2)).

A.5.2 Filtrage par Attributs Géodésiques

A.5.2.1 Filtrage par Attributs

Soit Xi ∈ E une compososante connexe de l’image, un filtrage par attribut opère une

transformation non-linéaire de l’image conduite par le calcul d’un prédicat binaire Cλ.

Ce critère vérifie si un attribut calculé sur la composante connexe Xi est supérieur ou

non à un seuil donné.

Un opérateur par attribut binaire Attλ est défini comme suit:

Attλ(Xi) =

{

Xi if Xi satifies the criterion Cλ

∅ otherwise
(A.11)

Basé sur cette définition, (96) proposa l’amincissement par attribut ρAttλ :

ρAttλ =
∨

X

Attλ(Xi) (A.12)

Les amincissements par attributs sont idempotents et anti-extensifs. Cependant la

croissance de l’opérateur n’est pas assurée. Si oui, on parlera alors d’ouverture par

attribut.

A.5.2.2 Filtrage par Attributs

Définie par Lantuejoul et Maisonneuve (95), la distance géodésique d’une composante

connexe (ou objet) fournit une caractérisation de sa longueur.

Considèrant deux points x et y appartenant à un objet X, la distance géodésique est
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la longueur de l’arc le plus court.

Sur X le diamètre géodésique est égal à:

L(X) = sup
(x,y)∈X

dX(x, y) (A.13)

avec dX(x, y) correspondant à la distance géodésique entre x et y.

Les principaux atouts de l’utilisation du diamètre géodésique sont les suivants:

• sa définition est générale et peut s’appliquer aux objets de formes quelconques,

• sa définition est robuste aux petits changements dans la forme de l’objet,

• son calcul peut servir à dériver d’autres attributs.

A partir du diamètre géodésique, (77) et (76) proposa de dériver un autre attribut

géodésique, la tortuosité géodésique τ .

τ est défini comme étant le rapport entre le diamètre géodésique et la distance Eucli-

dienne entre les deux extrémités géodésiques qui la minimise.

Soit PE(X), l’ensemble des paires extrémités géodésiques, nous avons :

LEucl(X) = min
{x,y}∈PE(X)

||x, y|| (A.14)

avec ||.|| la distance Euclidienne dans Z2.

La tortuosité est définie par:

τ(X) =
L(X)

LEucl(X)
(A.15)

A.5.3 Ouvertures par Chemins Robustes Sélectives

A.5.3.1 Principe

Les ouvertures par chemins robustes sélectives sont basées sur le principe de la recon-

struction morphologique à niveaux de gris (99).

Le principe est d’utiliser une carte de tortuosité comme image masque pour reconstruire

les parties des structures filtrées par les ouvertures par chemins robustes A.14.

124



A.5 Ouvertures par Chemins Robustes Sélectives

Tortuosity map

po / rpo

Reconstruction

po / rpo

Tortuosity map

Figure A.14: Principe des ouvertures par chemins robustes sélectives

A.5.3.2 Aspects Théoriques

Rappelons que nous pouvons définir l’ensemble des G-robust chemins de longueur L

dans X ⊆ E comme:

αG
L (X)Robust =

∨

{σ(a) ∩X : a ∈ ΠG
L (X)Robust} (A.16)
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Avec une légère modification nous pouvons prendre en compte la connectivité à travers

les pixels ’noise’ dans E:

αG
L (X)RobustE =

∨

{σ(a) : a ∈ ΠG
L (X)Robust} (A.17)

Ouvertures par chemins robustes sélectives Les ouvertures par chemins robustes et

sélectives sont définies comme étant le résultat de la reconstruction morphologique du

résultat des ouvertures par chemins dans l’union du résultat des ouvertures par chemins

et de la carte de tortuosité.

α
T
L(X) = ρ(αG

L
(X)RobustE

∨T )α
G
L (X)RobustE (A.18)

A.5.3.3 Algorithme

L’algorithme des ouvertures par chemins robustes et sélectives utilise le principe de

superposition de seuils pour combiner en une implémentation les ouvertures par chemins

robustes et la reconstruction morphologique.

A un seuil donné T , à la fin de la procédure de mise à jour, une fois que la proc

A.5.3.4 Résultats

Dans cette section nous allons présenter des exemples d’applications des ouvertures par

chemins robustes et slectives pour l’imagerie biomdicale 2D et 3D.

Le premier exemple (voir Figure A.15) illustre leurs usages pour la dtection d’un brin

d’ADN en imagerie microscopique biomdicale. Il est clair que les ouvertures par chemins

(complets et incomplets) sous-estiment le longueur des parties tortueuses de l’image

(cela est du à au fait qu’ils sont construits sur un graphe constraint et orienté) alors

que la tortuosité géodésique détecte très bien ces parties.

la combinaison de ces deux oprateurs, les ouvertures par chemins robustes slectives

donne les meilleurs résultats pour la détection des structures allongées, bruitées mais

aussi tortueuses.

Notons que sur cette image (Figure A.15), de taille 500×160×8-bit, l’union sur quatre

orientations est exécutée en moins de une seconde. Un autre exemple d’applications

est donné en 3D pour l’extrations des vaisseaux dans une image d’angiographie (voir

Figure A.16). Les temps de calculs pour cette image de taille 256×256×256×8-bit est
de 9.5s pour une orientation.
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A.6 Conclusions et Perspectives

Nos travaux de recherche se sont portés principalement sur l’étude des ouvertures et

fermetures morphologiques par chemins pour des applications de traitement d’images

pour l’imagerie 3D.

Nous avons proposé deux contributions théoriques originales ainsi que des algorithmes

efficaces pour permettre leurs implémentations dans le but de répondre aux principales

limitations de ces opérateurs, notamment le manque de robustesse aux déconnexions

des structures fines générées par le bruit présent dans l’image et aux structures dites

tortueuses.

Nous avons proposé les ouvertures par chemins robustes, qui, grâce à la donnée d’une

longeur de déconnexion G, permettent d’élargir l’ensemble de propagation des chemins

et de robustifier l’algorithme. Les temps de calculs en 2D et 3D et le fait d’avoir une

implémentation à mémoire constante permettent sans problème une utilisation pratique

sur des grands volumes de données (on pourrait notamment paralléliser avec openMP de

manière très simple l’algorithme car le calcul sur chaque orientation est indépendant).

Pour répondre à la deuxième limitation principale des ouvertures par chemins (com-

plets et robustes), la difficulté de détecter les structures dites tortueuses, nous avons

proposé un algorithme basé sur la combination de l’algorithme des ouvertures par

chemins robustes et de reconstruction géodésique : les ouvertures par chemins ro-

bustes et sélectives. L’intérêt est alors d’utiliser la réponse d’un filtre par attribut

géodésique, la tortuosité géodésique, en tant que masque pour reconstruire les struc-

ture dites tortueuses.

En terme d’applications nous avons proposé une méthode complète de prétraitements

pour le rehaussement des vaisseaux sanguins de la rétine en 2D et nous avons prouvé

de manière qualitative (courbes ROC) la supériorité des opérateurs morphologiques par

chemins par rapport aux filtres communément utilisés.

Même si nous avons fourni des implémentations efficaces de nouveaux filtres mor-

phologiques, il y a un besoin d’accélérer constamment les temps de calculs de méthodes

qui deviennent de plus en plus complexes. Un bon moyen d’accélérer les algorithmes

peut se trouver dans des stratégies de parallelisation massive.

Dans ces travaux nous avons choisi de faire une séparation entre les méthodes servant

à détecter et à préserver les structures dans le but de les classer. Cependant des futurs
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travaux pourraient être consacrés à essayer de combiner les approches multi-échelles

(filtre de type Hessien basé sur les dérivées secondes de noyaux Gaussiens) avec les

ouvertures par chemins robustes. On peut noter dans la litérature une combinaison de

ce type avec des ouvertures par segments orientés dans (71).
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure A.15: Résultats et comparaisons en 2D; (a).Image d’entrée; (b).Tortuosité

géodésique (τ = 3); (c).Diamètre barycentrique (L = 150); (d).Ouvertures par chemins

complets (L = 100); (e).Ouvertures par chemins robustes(L = 150, G = 2); (f).Ouvertures

par chemins robustes sélectives(L = 150, G = 2 et τ = 3).
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(a)

Figure A.16: Résultats et comparaisons en 3D; De gauche à droite et de haut en bas:

Rendu surfacique de : l’image originale, tortuosité géodésique, RPO ((L,G) = (50, 1)) et

SRPO.

130



References

[1] H. Heijmans, M. Buckley, and H. Talbot. Path openings and closings. Journal

of Mathematical Imaging and Vision, 22(2):107–119, 2005. 2, 24, 28, 40, 112, 119

[2] R Poli and G Valli. An algorithm for real-time vessel enhancement and

detection. Comput Methods Programs Biomed, 52(1):1–22, 1997. 6

[3] Dietmar Kunz and Bernhard Schweiger. Line Detection in Strongly Noise-

Corrupted Images. In Hans-Peter Meinzer, Heinz Handels, Alexander

Horsch, and Thomas Tolxdorff, editors, Bildverarbeitung fr die Medizin, Informatik

Aktuell, pages 50–54. Springer, 2005. 7

[4] Vincent Bismuth, Laurence Vancamberg, and Sebastien Gorges. A compari-

son of line enhancement techniques: applications to guide-wire detection and

respiratory motion tracking. pages 72591M–72591M–9, 2009. 7

[5] William T. Freeman and Edward H. Adelson. The Design and Use of Steer-

able Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:891–

906, 1991. 7, 8, 56, 108

[6] M. Jacob and M. Unser. Design of Steerable Filters for Feature Detection

Using Canny-Like Criteria. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(8):1007–1019, August 2004. 7, 8, 56, 108

[7] F. John Canny. A Computational Approach to Edge Detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986. 8

[8] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale

vessel enhancement filtering. pages 130–137. Springer-Verlag, 1998. 9, 55

[9] A. F. Frangi, W. J. Niessen, R. M. Hoogeveen, T. V. Walsum, and M. A.

Viergever. Model-Based Quantitation of 3D Magnetic Resonance Angio-

graphic Images. IEEE Trans. Med. Imaging, 18(10):946–956, 1999. 9, 108

[10] A. F. Frangi, W. J. Niessen, P. J. Nederkoorn, J. Bakker, W. P. Mali,

and M. A. Viergever. Quantitative analysis of vascular morphology from 3D

131



REFERENCES

MR angiograms: In vitro and in vivo results. Magnetic Resonance in Medecine,

45(2):311–22, 2001. 9, 108

[11] Yoshinobu Sato, Shin Nakajima, Hideki Atsumi, Thomas Koller, Guido

Gerig, Shigeyuki Yoshida, and Ron Kikinis. 3D Multi-scale line filter for

segmentation and visualization of curvilinear structures in medical images.

In Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and

Robotics in Medicine and Medial Robotics and Computer-Assisted Surgery, CVRMed-

MRCAS ’97, pages 213–222, 1997. 9, 108

[12] C. Lorenz, I.-C. Carlsen, T.M. Buzug, C. Fassnacht, and J. Weese. A multi-

scale line filter with automatic scale selection based on the Hessian matrix

for medical image segmentation. In Bart Haar Romeny, Luc Florack, Jan

Koenderink, and Max Viergever, editors, Scale-Space Theory in Computer Vision,

1252 of Lecture Notes in Computer Science, pages 152–163. Springer Berlin Heidelberg,

1997. 9, 108

[13] Hidenori Shikata, Eric A. Hoffman, and Milan Sonka. Automated segmen-

tation of pulmonary vascular tree from 3D CT images. pages 107–116, 2004. 9,

108

[14] L. Antiga. Generalizing vesselness with respect to dimensionality and shape.

08 2007. 9, 10, 55, 108, 109

[15] Jan J. Koenderink. The structure of images. Biological Cybernetics, 50(5):363–

370–370, August 1984. 9, 108

[16] S. D. Olabarriaga, M. Breeuwer, and W. J. Niessen. Minimum Cost Path

Algorithm for Coronary Artery Central Axis Tracking. In in CT Images, MICCAI

2003, LNCS 2879, pages 687–694, 2003. 9, 12

[17] E. Candes and D. Donoho. Curvelets: A Surprisingly Effective Nonadaptive

Representation of Objects with Edges. Technical report, California Institute of

Technology, 1999. 10

[18] Jean-Luc Starck, Emmanuel J. Candes, and David L. Donoho. The Curvelet

Transform for Image Denoising. IEEE Transactions on Image Processing, 11(6):670–

684, 2002. 10

[19] Jean luc Starck, Fionn Murtagh, Emmanuel J. Cands, and David L. Donoho.

Gray and Color Image Contrast Enhancement by the Curvelet Transform.

IEEE Transactions On Image Processing, 12(6), 2003. 10, 11

[20] Lexing Ying, Laurent Demanet, and Emmanuel C. Fast discrete curvelet

transforms. SIAM Multiscale Modeling Simulation, (5):861–899, 2005. 10

132



REFERENCES

[21] E. Candes, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet trans-

forms. Multiscale Modeling Simulation, 5(3), 2006. 10

[22] Mohammad Saleh Miri and Ali Mahlooji Far. Retinal Image Analysis Using

Curvelet Transform and Multistructure Elements Morphology by Reconstruc-

tion. IEEE Trans. Biomed. Engineering, 58(5):1183–1192, 2011. 11

[23] Luc Vincent and Dominique Jeulin. Minimal Paths and Crack Propagation

Simulations. In Fifth European Congress for Stereology, 8/2 of Acta Stereologica, pages

487–494, 1989. 11, 109

[24] Luc Vincent. Minimal path algorithms for the robust detection of linear

features in gray images. In Proceedings of the fourth International Symposium on

Mathematical Morphology and its Applications to Image and Signal Processing, ISMM

’98, pages 331–338, Norwell, MA, USA, 1998. Kluwer Academic Publishers. 11, 23, 109

[25] Vincent Bismuth, Régis Vaillant, Hugues Talbot, and Laurent Najman.

Curvilinear Structure Enhancement with the Polygonal Path Image - Ap-

plication to Guide-Wire Segmentation in X-Ray Fluoroscopy. In Nicholas
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Geodesic Attribute Thinnings Based on the Barycentric Diameter. Journal

of Mathematical Imaging and Vision, pages 1–15, August 2012. 20, 63, 66, 69, 121, 124

[78] C. L. Luengo Hendriks, G. M. P. van Kempen, and L. J. van Vliet. Improving

the accuracy of isotropic granulometries. Pattern Recognition Letters, 28(7):865–

872, May 2007. 23

137



REFERENCES

[79] Cris L. Luengo Hendriks and Lucas J. Van Vliet. A rotation-invariant mor-

phology for shape analysis of anisotropic objects and structures. In In Proceed-

ings 4th International Workshop on Visual Form, IWVF4, LNCS 2059, pages 378–387.

Springer, 2001. 23

[80] Cris L. Luengo Hendriks and Lucas J. van Vliet. Using Line Segments as

Structuring Elements for Sampling-Invariant Measurements. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(11):1826–1831, 2005. 23, 111

[81] Cris L. Luengo Hendriks. Constrained and Dimensionality-Independent Path

Openings. IEEE Transactions on Image Processing, 19(6):1587–1595, 2010. 23, 24, 29,

38, 43, 112, 113, 117

[82] Michael Buckley and Hugues Talbot. Flexible linear openings and closings.

In John Goutsias, Luc Vincent, and Dan S. Bloomberg, editors, Mathematical

Morphology and its Applications to Image and Signal Processing, pages 109–118. Kluwer

Academic Publishers, Dordrecht, 2000. 23, 34, 111

[83] Hugues Talbot and Ben Appleton. Efficient complete and incomplete paths

openings and closings. Image and Vision Computing, 25(4):416–425, 2007. 24, 28, 29,

34, 111, 113, 115

[84] Petros Maragos and Robert D. Ziff. Threshold Superposition in Morpholog-

ical Image Analysis Systems. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(5):498–504, 1990. 28, 113

[85] François Cokelaer, Hugues Talbot, and Jocelyn Chanussot. Efficient Ro-

bust d-Dimensional Path Operators. Journal of Selected Topics in Signal Processing,

6(7):830–839, 2012. 38, 117

[86] Maysa M. G. Macedo, Choukri Mekkaoui, and Marcel Jackowski. Vessel

Centerline Tracking in CTA and MRA Images Using Hough Transform. In

Isabelle Bloch and Roberto M. Cesar, editors, CIARP, 6419 of Lecture Notes in

Computer Science, pages 295–302. Springer, 2010. 45

[87] Alexandra Pacureanu, Chantal Revol-Muller, Jean-Löıc Rose,
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