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Abstract

In the past few years, the mathematical theory of compressed sensing (CS) has emerged
as a new tool in the image processing field, leading to some progress in surpassing the
limits stated by the Nyquist sampling theory. In particular, the CS theory establishes
that a signal (image, video, etc.) can be reconstructed from a relatively small subset of
non-adaptive linear random measurements, assuming that it presents a sparse structure.
As this hypothesis actually holds for a large number of natural images, several imaging
applications have already benefited from this theory in various aspects.

The goal of the present PhD work is to investigate how the CS theory – and more
generally the ideas and methods developed in relation with sparse signal reconstruction
problematics – can be used to design efficient optical sensing devices with high spatial and
temporal resolution for biological imaging applications. We first investigate some practical
issues related to the post-processing stage required by CS acquisition schemes, and to the
selection of sampling parameters. We then examine how CS can benefit to video sampling
applications. Finally, with the application of CS methods for denoising tasks in mind, we
focus on the error estimation issue in image denoising problems for low-light microscopy
applications.
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Résumé

Ces dernières années, la théorie mathématique de l’échantillonnage compressé (compressed
sensing, CS) a émergé en tant que nouvel outil en traitement d’images, permettant notam-
ment de dépasser certaines limites établies par la théorie de l’échantillonnage de Nyquist.
En particulier, la théorie du CS établit qu’un signal (une image, une séquence vidéo, etc.)
peut être reconstruit à partir d’un faible nombre de mesures linéaires non-adaptatives
et aléatoires, pourvu qu’il présente une structure parcimonieuse. Dans la mesure où
cette hypothèse se vérifie pour une large classe d’images naturelles, plusieurs applica-
tions d’imagerie ont d’ores-et-déjà bénéficié à des titres divers des résultats issus de cette
théorie.

Le but du travail doctoral présent est d’étudier comment la théorie du CS – et plus
généralement les idées et méthodes en relation avec les problèmes de reconstruction
de signaux parcimonieux (sparse) – peuvent être utilisés pour concevoir des dispositifs
d’acquisition optiques à haute-résolution spatiale et temporelle pour des applications en
imagerie biologique. Nous étudions tout d’abord quelques questions pratiques liées à
l’étape de reconstruction nécessairement associée aux systèmes d’acquisition exploitant
le CS, ainsi qu’à la sélection des paramètres d’échantillonnage. Nous examinons ensuite
comment le CS peut être utilisé dans le cadre d’applications d’échantillonnage de signaux
vidéo. Enfin, avec dans l’idée l’utilisation dans des problèmes de débruitage de méthodes
inspirées du CS, nous abordons la question de l’estimation d’erreur dans les problèmes de
débruitage d’images acquises en conditions de faible luminosité, notamment dans le cadre
d’applications de microscopie.
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Notations

We recapitulate here some of the notations and conventions used along this manuscript.

Mathematical sets and entities

• N: set of natural integers, including 0.

• Z: ring of relative integers.

• R: field of real numbers.

• C: field of complex numbers.

• R˚: real numbers excluding 0. N˚, Z˚, C˚, defined accordingly.

• R`: positive real numbers including 0.

• Ed with d P N˚: set of the d-tuples of elements of a set E.

• Emˆn with m, n P N˚: set of matrices with m lines and n columns with entries in E.
Unless otherwise mentioned, elements of Em are assimilated to elements of Emˆ1

(column matrices).

• F pΩ Ñ Eq: sets of functions defined over a domain Ω and taking values in a set
E. Ω is typically a subset of R

d (continuous domain) or a subset of Z
d (discrete

domain).

• �a, b� with a, b P Z: interval of all relative integers n such that a ď n ď b.

Arithmetic and miscellaneous notations

• |Ω|: number of elements of the finite set Ω.

• ttu with t P R (“floor of t”): the largest relative integer smaller than or equal to t.

• rts with t P R (“ceil of t”): the smallest relative integer larger than or equal to t.

• pa mod Nq with a P Z, N P N˚: remainder of the Euclidian division of a by N , i.e.
unique r such that there exists q P Z with a “ q ¨ N ` r.

• Cp
n “ n!

p!pn´pq!
: binomial coefficient.

• z with z P C: complex conjugate of z.
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Notations

Linear algebra

• xk, fk: kth coefficient of a vector x P C
N (typically a rasterized image) or a function

f returning a vector.

• }x}p with p P N˚ Y t`8u: lp-norm of a vector x P C
N . Formally:

}x}p “
˜

ÿ

k

|xk|p
¸ 1

p

for any p P N˚ }x}8 “ max
k

|xk|

• }x}
0
: number of non-zero coefficients (also called l0-pseudo-norm) of a vector x P C

N .

• xx|yy “ ř

k xk ¨ yk: canonical inner product between two vectors x, y P C
N .

• x ˆ y P C
N with x, y P C

N : pointwise product (also called Hadamard product)
between two vectors x and y.

• 0, 1: constant vectors with all entries equal to 0 or 1 respectively.

• ek P C
N with k P �0, N ´ 1�: kth vector of the canonical basis of CN ; all its entries

are 0, except the kth one, equal to 1.

• Id P C
NˆN : identity matrix of CNˆN ; all its entries are 0, except the N ones on the

main diagonal, equal to 1.

• W ˚ with W P C
MˆN : adjoint of the matrix W . If W has real-valued entries, W ˚

is simply its transpose.

• ~W ~ “ supx
}W x}

2

}x}
2

: operator norm of W P C
MˆN .

• Tr pW q “ ř

k wk,k: trace of a square matrix W P C
NˆN whose entries are denoted

as wk,l (k, l P �0, N ´ 1�).

Differential calculus

If f P F
`

R
N Ñ R

˘

, the gradient of f at point x P R
N is denoted as ∇f pxq P R

N , and
its Hessian matrix at x as ∇

2f pxq P R
NˆN (assuming that f is regular enough for these

objects to exist). Formally:

∇f pxq “

»

—

—

—

—

—

—

—

–

Bf
Bx0

pxq
Bf
Bx1

pxq
...

Bf
BxN´1

pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

∇
2f pxq “

»

—

—

—

—

—

—

—

—

–

B2f

Bx2

0

pxq B2f
Bx0Bx1

pxq ¨ ¨ ¨ B2f
Bx0BxN´1

pxq
B2f

Bx1Bx0
pxq B2f

Bx2

1

pxq ¨ ¨ ¨ B2f
Bx1BxN´1

pxq
...

...
...

B2f
BxN´1Bx0

pxq B2f
BxN´1Bx1

pxq ¨ ¨ ¨ B2f

Bx2

N´1

pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The usual notation B
Bxk

is used to denote the kth partial derivative of a function depending
on a variable whose “natural symbol” is x P R

N .
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Notations

Random variables

• E tXu: expected value of a random variable X.

• Var tXu: variance of a random variable X.

• N pµ, Σq with µ P R
N and Σ P R

NˆN a symmetric positive matrix: probability
distribution of Gaussian vectors with mean µ and covariance matrix Σ.

• P pλq with λ P R
N
` : probability distribution of vectors composed of N independent

entries, with the kth entry following a Poisson law of parameter λk for all k.
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General introduction

Nowadays, microscopy techniques play an increasing role in the development and advances
in modern biological science, which requires increasing imaging capabilities in terms of
depth penetration, optical resolution, acquisition speed, sensitivity, etc. To tackle these
challenging issues, several microscopy imaging modalities have been developed in the last
ten to twenty years: two-photon excitation microscopy [Denk90] permits to observe sam-
ples at very high depths, structured illumination microscopy (SIM) [Gustafsson00] or
single-molecule imaging techniques (PALM/STORM) [Betzig06, Rust06] allow to obtain
spatial resolutions beyond the diffraction limit, selected plane illumination microscopy
(SPIM) [Huisken04] enables fast acquisition and “3D+Time” imaging of living samples.
In terms of signal processing, these imaging techniques produce very large sets of data,
due to their increased resolution and/or to the multi-dimensional nature of the acquired
images. Handling such large sets of data may raise difficulties, and imposes strong techni-
cal constraints on the design of the acquisition systems. Using smart sensing techniques
stemming from the compressed sensing (CS) theory, we believe that these constraints can
be relaxed by reducing the number of samples that need to be acquired to reconstruct
these large optical microscopy images.

In this thesis, we propose to study how the compressed sensing theory can benefit to
optical imaging, with in mind the design of efficient optical microscopy systems. More
precisely, following the approach initiated by Marcio Marim’s PhD work [Marim11a], we
focus on the study of Fourier-based compressed sensing: in such acquisition model, the
imaged scene is observed through an optical set-up whose role is to implement an optical
Fourier transform [Goodman96], and an array of photo-electric transducers properly po-
sitioned downstream to this optical set-up is in charge of the actual acquisition task. The
organisation of the manuscript reflects the different problematics tackled during this PhD
work.

In chapter I, we present the mathematical theory of compressed sensing. We introduce
the CS formalism and notions, and recall some of the main theoretical results obtained
in the CS framework. We finally illustrate the interest of this theory by presenting four
examples of imaging applications that benefited from CS results or whose design were
directly inspired by them.

Chapter II is dedicated to the reconstruction issues raised by CS acquisition schemes.
We present how the CS reconstruction problem may be formulated in practice, focusing in
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particular on convex optimization formulations. We then propose a review of the existing
algorithmic methods that solve these convex optimization problems, by presenting the
general characteristics and principles of these optimization algorithms, and comparing
their performances in practical situations.

In chapter III, we discuss the different parameters associated to the sensing operation
in Fourier-based CS, namely the position in the Fourier domain where samples should
be acquired (i.e. the sampling strategy), and the number of such samples (i.e. the sam-
pling rate). We first review the works addressing the determination of the best sampling
strategy, and show that, currently, answers to this problem remain mostly based on em-
pirical observations, in spite of recently released theoretical works on this issue. We also
investigate the incidence of the choice of a sampling rate on the efficiency of the CS ac-
quisition and reconstruction scheme, and the artifacts observed in reconstructed images
in the context of two representative sampling strategies, namely uniform and Gaussian
random sampling.

In chapter IV, we study how Fourier-based CS can be applied to video sensing and
reconstruction applications. We first consider the case of a video to be reconstructed from
partial Fourier measurements acquired on each of its frames, focusing in particular on
the sparsity models to use for efficient video reconstruction: we compare several existing
sparsity models, and introduce a new one based on 3D total variation, which improve the
quality of the reconstructed sequences. We then switch to a non-linear acquisition model
– beyond the “pure” CS framework – in which only the modulus of the Fourier transform
of the signal would be acquired: for this different reconstruction problem, we show that
we can exploit the same sparsity properties exhibited by video sequences than the ones
used in the linear acquisition scenario to implement a “phase-retrieval-like” reconstruction
procedure.

Finally, chapter V focuses on the design of an estimator of the mean squared error
in denoising problems, in a context of a mixed Poisson-Gaussian noise model, that is
relevant to model the noise present in low-light microscopy applications. Although this
work goes off the general point of this thesis, it was originally motivated as part of the
extension of CS denoising methods, as proposed by [Marim09, Marim11a]. We however
derive a practical formulation for our PG-URE estimator that make this tool usable “out
of the box” with almost any existing denoising algorithm. In particular, we present some
examples of denoising parameter optimizations involving standard denoising methods and
phantom test images, and show that our framework leads to results similar than the ones
obtained using an oracle-based approach.
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Chapter I

Introduction on CS theory

Compressed sensing (CS) is a theory that has emerged and developed over the last ten
years, based on the seminal works of Candès, Romberg and Tao [Candès06a] on the one
hand, and Donoho [Donoho06] on the other hand; the goal of this theory is to study a class
of inverse problems involving signals that have a sparse structure. To be more precise, the
problem tackled by CS consists in recovering a signal of interest x P C

N from a vector of
observations y “ Φx P C

M constituted by linear projections of this signal x, the number
M of scalar projections being significantly smaller than the size N of the signal (M ! N):
in this context, the linear operator Φ P C

MˆN is called the measurement operator. In
order to remove the indeterminacy due to the small size of the observation vector y, some
assumptions have to be made on the structure of the signal of interest x to recover: in the
case of CS, this consists in assuming that x has a sparse representation in some known
basis or dictionary Ψ, i.e. there exists a vector s P C

L such that x “ Ψs whose most of
the coefficients are zero. In this case, Ψ P C

NˆL is called the sparsity basis or sparsity
dictionary.

The goal of this introductory chapter is to give a brief overview of this theory. We
start by describing the general formalism used for signals and images throughout this
manuscript, and by stating some more specific definitions about the notion of sparsity as
it is at the heart of the CS theory. We will then review some of the important theoretical
results that were established in the theory of CS, including the related precursory works.
Finally, we will conclude by presenting some imaging applications that have benefited from
CS or that were developed subsequently to the emergence of this theory.

I.1 A few definitions 22
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I.2.2 Restricted isometry property . . . . . . . . . . . . . . . . . . . . . . . . 26

I.2.3 Partial unitary transforms . . . . . . . . . . . . . . . . . . . . . . . . . 27

I.2.4 Sparse representations and dictionaries . . . . . . . . . . . . . . . . . . 28

I.2.5 Block sparsity and total variation . . . . . . . . . . . . . . . . . . . . . 30

I.3 Application of compressed sensing for imaging devices 31

I.3.1 Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . . 31

I.3.2 Digital holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

I.3.3 Single-pixel camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I.3.4 Schlieren deflectometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I.1 A few definitions

I.1.1 Signals and images

In this manuscript, signals are modeled as elements of a function set F pΩ Ñ Eq, where Ω

and E characterize the different types of signals. In particular:

• 2D images are modeled as elements of F pΩ Ñ Rq with Ω Ă R
2 (continuous modeling)

or Ω Ă Z
2 (discrete modeling, more common in this manuscript);

• 3D images are modeled as elements of F pΩ Ñ Rq with Ω Ă R
3 or Ω Ă Z

3;

• video sequences of 2D images (also denoted as 2D+T signals) are modeled in the
same way, except that one of the dimensions of the domain Ω is particularized as
the time dimension;

• multi-channel images are modeled as elements of F pΩ Ñ R
cq where c P N˚ is the

number of channels.

We use bold blue font to denote signals and functions that return signals (example: “let
x P F pΩ Ñ Rq be an image”, or “let f be a denoising operator”), and bold red font for
linear operators between signal spaces.

When Ω is a finite set – in particular when Ω is a bounded subset of Z
d – the sets

F pΩ Ñ Eq and E|Ω| are isomorphic: an isomorphic mapping between these two sets is
then characterized by a bijection ϕ : �0, |Ω| ´ 1� Ñ Ω, i.e. an ordered list of all the
elements of Ω. As the actual chosen bijection ϕ does not matter in general for ideas and
demonstrations developed in this manuscript, we use either x P F pΩ Ñ Eq or equally
x P E|Ω| to characterize a signal of the corresponding type. Individual components of this
signal x are denoted:

• either as xk with k P �0, |Ω| ´ 1� when x is seen as an element of E|Ω|,

• or as x rus with u P Ω when x is seen as an element of F pΩ Ñ Eq.
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Obviously, xk and x rus refer to the same element when u “ ϕ pkq.

Finally, for signals x that are defined on a bounded domain Ω Ă Z
d, it is convenient

in some situations to consider extensions of x over the whole grid Z
d. In particular, for

Ω “ �0, n1 ´ 1� ˆ �0, n2 ´ 1� ˆ ¨ ¨ ¨ ˆ �0, nd ´ 1� Ă Z
d, the extension of x using periodic

boundary conditions is defined as follows:

x ru1, . . . , uds “ x ru1 mod n1, . . . , ud mod nds for all u “ pu1, . . . , udq P Z
d (I–1)

where the same notation is kept for both x and its extended version.

I.1.2 Sparsity and compressibility

Definition I–1 (Sparsity) A vector x P C
N is said to be S-sparse (with 0 ď S ď N)

if it has at most S non-zero coefficients. The minimal value S for which x is S-sparse
is denoted as }x}

0
, and is called the l0-norm1 of x. Finally, x is said to be sparse if

}x}
0

! N .

To be more concrete, }x}
0

denotes the number of non-zero coefficients of x, and x is
said to be sparse if most of its coefficients are zero. By extension, we will say that a vector
x P C

N is sparse in a dictionary Ψ P C
NˆL if there exists a sparse vector s P C

L such that
x “ Ψs: in this case, s is said to be a sparse representation of x in the sparsity dictionary
Ψ. An example of this situation is illustrated in Fig. I–1. In general, the matrix Ψ will
be assumed to be full-rank; then, Ψ P C

NˆL will be denoted as a sparsity basis if L “ N ,
and as a sparsity redundant dictionary if L ą N . The case L ă N (under-determined
dictionary) is less common, as such type of dictionary does not allow to represent all the
signals of CN .

It should be noted that, except in the trivial situations corresponding to S “ 0 or
S “ N , the subset of the S-sparse signals of C

N is not a vector subspace, but rather a
union of CS

N subspaces, each of them of dimension S. As a consequence, this space is not
closed for the addition: the sum of two S-sparse vectors might not be S-sparse.

Another important concept in relation with sparsity is the notion of compressibility, also
denoted as weak sparsity by some authors. Informally, a compressible vector x P C

N can
be thought as a vector that can be approximated by a well-chosen sparse vector x̃. More
precisely, we will say that x P C

N is compressible if there exists a sparse vector x̃ P C
N such

that the order of magnitude of the approximation error px ´ x̃q is significantly smaller than
the one of x, where these orders of magnitude are measured with an appropriate metric.
An example of a compressible 1D signal is presented in Fig I–2.

In order to formalize the concept of compressibility in a more rigorous way, [Candès06b]
proposes the following definition:

1Here, the denomination “norm” is abusive, in that the functional }¨}
0

does not verify all the properties
usually required for a norm in a vector space: in particular, }¨}

0
is not positive-homogeneous. However,

the term “l0-norm” is very common, and we will use it for convenience in the rest of the manuscript.
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Figure I–1: Example of a piecewise constant signal x (left chart), i.e. a signal whose
discrete derivative Dx (defined here as pDxq rus “ x rus ´ x ru ´ 1s, right chart) is sparse.
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Figure I–2: Example of a signal y whose discrete derivative Dy is compressible: as most of
the coefficients of Dy are close to zero, sparse approximations of this signal can be obtained
by actually setting these coefficients to zero, keeping only those having a significant order
of magnitude. An example of such sparse approximation is the signal Dx presented in
Fig. I–1.

Definition I–2 (Compressibility, weak sparsity) A vector x P C
N is said to be com-

pressible if, for some value r ą 1, its components obey the following decreasing power law,
i.e. there exists a constant Cr (depending only on r) such that:

ˇ

ˇxpkq
ˇ

ˇ ď Cr ¨ pk ` 1q´r for all k P �0, N ´ 1� (I–2)

where the sequence
`

xp0q, xp1q, . . . , xpN´1q
˘

represents the components of x sorted in de-
creasing order with respect to their magnitudes:

ˇ

ˇxp0q
ˇ

ˇ ě
ˇ

ˇxp1q
ˇ

ˇ ě ¨ ¨ ¨ ě
ˇ

ˇxpN´1q
ˇ

ˇ.

This formal definition I–2 does meet the intuitive one given above. Indeed, if x P C
N

is a vector for which (I–2) holds, for any S with 1 ď S ď N we can construct a S-sparse
vector x̃S P C

N by setting to zero all the components of x except the S largest ones.
Then, the l1-norm of the approximation error

›

›x ´ x̃S
›

›

1
can be bounded as follows:
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›

›x ´ x̃S
›

›

1
ď Cr

r ´ 1
¨ 1

Sr´1
(I–3)

which shows that x̃S is a good approximation for x, provided that Cr is not too large. This
latter requirement on Cr is somehow legitimized by the fact that, in a vector space of finite
dimension, the definition I–2 does hold for any vector x, as it is always possible to find
a finite constant Cr large enough to be compatible with (I–2): the formal definition I–2
actually captures the intuitive notion of compressibility only if Cr is not allowed to take
extremely large values. More generally, it can be shown that x̃S is the S-sparse vector that
minimizes the approximation error

›

›x ´ x̃S
›

›

p
for any of the lp-norm with 1 ď p ă `8: in

that, x̃S is referred as the best S-sparse approximation of x.

I.2 Compressed sensing theoretical results

I.2.1 Recovering sparse data from incomplete measurements

The idea that signals with an underlying sparse structure can be efficiently measured and
processed emerged about ten years ago. Among the works that initiated what would
become the theory of compressed sensing, we mention [Donoho01], which studied the
problem of recovering the underlying structure of a signal obtained as a superposition
of a few Dirac atoms together with a few sine wave atoms. The authors showed that
the decomposition of such a 1D signal in terms of a sum of Dirac and sinusoid atoms
is unique, assuming that the number Sd of Dirac atoms and the number Ss of sinusoid
atoms are far smaller than the size N of the signal (more specifically: Sd ` Ss ă

?
N
2

).
They extended their work to what they called mutually incoherent bases, and derived
some similar conditions about the uniqueness of the decomposition of a signal in terms
of sparse linear combination of atoms taken from a pair of such mutually incoherent
orthonormal bases. The authors described this property of mutual incoherence between
two bases as the fact that “no nonzero signal can have a sparse representation in both
bases simultaneously”, and showed that this property holds for many pairs of bases (Dirac
and sinusoids, wavelets and sinusoids, wavelets and ridgelets, etc.).

These results were then extended in parallel by [Donoho03] and [Gribonval03], who
studied the problem of seeking sparse solutions x P C

N to the system of linear equations
y “ Φx, where y P C

M is a vector of observations and Φ P C
MˆN a given dictionary.

Such type of solution x could be obtained as a minimizer of the following optimization
problem:

arg min
xPCN

}x}
0

subject to y “ Φx (P0)

In general, solving (P0) requires to seek the smallest subset of columns of Φ – among all
the 2N possible subsets – such that there exists a linear combination of these columns equal
to y: the complexity of this problem grows exponentially with N , making it intractable
even for small values of this parameter. Therefore, pursuing a convex relaxation approach
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already proposed in previous works on sparsity, the authors suggested to replace the l0-
norm by the l1-norm, turning (P0) into a convex optimization problem (P1), that can be
handled in a more practical manner:

arg min
xPCN

}x}
1

subject to y “ Φx (P1)

These works demonstrated an important result about the strategy for seeking sparse
solutions to linear equations, which can be presented as follows: given a vector y P C

M

and a dictionary Φ “
”

φ1 φ2 ¨ ¨ ¨ φN

ı

P C
MˆN where the vectors φk represent the

columns of Φ, if there exists a vector x P C
N such that y “ Φx, and if the following

holds:

}x}
0

ă 1

2

ˆ

1 ` 1

M pΦq

˙

where M pΦq “ max
k‰l

|xφk|φly|
}φk}

2
¨ }φl}2

(I–4)

then x is the unique solution to both (P0) and (P1). In other words, this result means that
if y is indeed the result of a linear combination of a sufficiently small number of columns
of Φ, then:

• first, solving (P0) does permit to identify this linear combination;

• second, the strategy consisting in solving (P1) instead of (P0) is relevant, as the
solutions of these two problems are equal.

I.2.2 Restricted isometry property

In the mid-2000, Candès, Romberg and Tao extend the ideas previously developed by
[Donoho03] and [Gribonval03] in a serie of papers [Candès05b, Candès06a, Candès06c,
Candès06b]. However, compared to previous works, Candès, Romberg and Tao estab-
lish some theoretical results about the reconstruction of sparse signals in a framework
relying on hypotheses that are more consistent with situations encountered in practical
image sensing applications. More specifically, the new framework relaxes the following
hypotheses:

1. the observation vector may be inaccurate to some extent (for instance, it can be
degraded by some noise sources),

2. the signals to be reconstructed do not need to be strictly sparse, but rather com-
pressible.

To obtain their results, these authors introduce in [Candès05b] the restricted isometry
constant associated to a linear operator.

Definition I–3 (Restricted isometry property) Given a linear operator Φ P C
MˆN and

an integer S P N˚, the S-restricted isometry constant associated to Φ is the smallest scalar
δS P R such that:

p1 ´ δSq }x}2

2
ď }Φx}2

2
ď p1 ` δSq }x}2

2
for all x P C

N with }x}
0

ď S (I–5)
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A constant δS close to 0 means that the operator Φ behaves approximately like an
isometry for S-sparse inputs, i.e. it almost preserves the norms of these vectors. More
generally, the smaller the constants δS associated to Φ, the larger the class of signals that
can be recovered by solving either (P0) or (P1).

This latter property is stated in more formal ways in several papers; for instance, we
recall here a result taken from [Candès08]: given a signal of interest x P C

N (not necessarily
sparse), a measurement operator Φ P C

MˆN , and an observation vector y “ Φx ` b

degraded by an unknown additive noise b such that }b}
2

ď �, an estimator x̂ of x is
defined as the solution of a convex optimization problem, as follows2:

x̂ “ arg min
xPCN

}x}
1

subject to }Φx ´ y}
2

ď � (I–6)

Then, if δ2S ă
?

2´1 for some S, the following inequality holds, that establishes an upper
bound on the error committed when estimating x by x̂:

}x̂ ´ x}
2

ď A ¨ � ` B?
S

›

›x ´ x̃S
›

›

1
(I–7)

where A and B are two positive constants depending only on δ2S , and x̃S is the best S-
sparse approximation of x, i.e. the vector obtained by setting to zero all the components
of x except the S largest ones (same definition than in Sec. I.1.2).

It can be noted that, in the inequality (I–7), the two terms involved in the upper bound
are related to the imperfect characteristics of the “real-world” signals, already mentioned
above:

1. the noise that affects the observation vector y (term A ¨ �),

2. the non-sparseness of the signal to recover (term B?
S

›

›x ´ x̃S
›

›

1
).

In particular, this second term involving
›

›x ´ x̃S
›

›

1
is likely to be very small if x is com-

pressible, as explained in Sec. I.1.2.

I.2.3 Partial unitary transforms

One class of measurement operators Φ that is encountered in several CS imaging appli-
cations (see I.3) is the class of partial unitary transforms (also denoted as randomly sub-
sampled unitary transforms). Such measurement operator Φ P C

MˆN is constructed by
selecting M rows from a unitary matrix U P C

NˆN . Formally, this means that Φ “ ΣU ,
where Σ P t0, 1uMˆN is a selection matrix, with exactly one non-zero entry per line and
at most one non-zero entry per column (the columns corresponding to the selected rows
of U). This property entails that ΦΦ˚ “ Id, and Φ˚Φ “ U˚ pΣ˚Σq U , where Σ˚Σ

2In this formulation, the scalar parameter � is supposed to be known. Prior knowledge on the probability
distribution of the noise component b is often required in practice to set this parameter (see Sec. II.1.1 for
more details).
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is a diagonal matrix. Common examples in imaging applications include partial Fourier
transforms and partial Hadamard transforms (see Sec. I.3). It is also worth mentioning
that the associated unitary transforms encountered in practical applications often come
with fast algorithms for computing their product against a vector x P C

N .

For such measurement operators Φ, [Candès07] shows the following result: given a
signal x P C

N such that }x}
0

ď S and partial unitary transform Φ P C
MˆN built by

selecting in a uniform random manner M rows from U P C
NˆN (unitary) such that the

following inequality holds:

M ě C ¨ µ pUq2 ¨ S ¨ N log pNq with µ pUq “ max
k,l

|uk,l| (I–8)

where C is a (small) numerical constant and µ pUq is defined as the largest magnitude
among the entries uk,l of the matrix U . Then, if y “ Φx, the program (P1) recovers the
original signal x from the measurement vector y with an overwhelming probability3.

Here, the coefficient µ pUq is somehow a measure of the ability of U to be a “good”
sensing basis for sparse signals: in the most favorable cases (when U is chosen such that
µ pUq “ N´1{2), the result by [Candès07] predicts that the minimal number of measure-
ments required to reconstruct a S-sparse signal of size N is about S log pNq, which is
relatively small4; on the contrary, in the worst cases (when µ pUq “ 1), the necessary
number of measurements rockets. It can be noted that, if U “ ΦΨ where Φ and Ψ are
two orthonormal matrices, and if φ0, φ1, . . . , φN´1 and ψ0, ψ1, . . . , ψN´1 denote respec-
tively the rows of Φ and the columns of Ψ, then:

µ pUq “ max
k,l

|xφk|ψly| (I–9)

which matches the definition of the mutual coherence measure between the bases Φ and
Ψ introduced in [Donoho01] (see I.2.1).

I.2.4 Sparse representations and dictionaries

In practical situations, dealing with images that are sparse in their canonical representation
basis is quite unusual. A more relevant hypothesis consists in assuming that vectorized
images x P C

N have sparse representations s P C
L in some appropriate dictionaries Ψ P

C
NˆL, i.e. x “ Ψs (see Sec. I.1.2). How the dictionary Ψ is actually chosen depends on

the application, and more specifically on the underlying image formation model and on the
properties of the studied images: several options have been proposed, such as wavelet basis
or undecimated wavelet frames for piecewise regular images [Starck04], curvelet frames
for piecewise regular images with regular discontinuities [Candès04], ad hoc dictionaries

3Please note that this formulation differs from the one given in [Candès07], as a different normalization
is used for U in this document.

4With less that S measurements, the original signal could never be recovered, even if an oracle could
predict the position of its non-zero coefficients.
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constructed using automatic learning approaches [Duarte-Carvajalino09, Gleichman11],
etc.

To extend the reconstruction through convex optimization framework to deal with
sparsity dictionaries, two different approaches may be considered, as proposed by [Elad07]:

• The first one consists in changing the optimization variable in the reconstruction
problem (I–6), replacing x with its representation s to make sparse. This approach,
denoted by [Elad07] as synthesis, leads to the following reconstruction problem:

ŝ “ arg min
sPCL

}s}
1

subject to }ΦΨs ´ y}
2

ď � (Psynthesis)

The estimate x̂ of the signal of interest is then recovered as x̂ “ Ψŝ.

• The second approach, known as analysis, keeps x as the optimization variable of the
reconstruction problem, but modifies the optimized objective function. The estimate
x̂ of the signal of interest is then obtained as:

x̂ “ arg min
xPCN

›

›Ψinvx
›

›

1
subject to }Φx ´ y}

2
ď � (Panalysis)

where the operator Ψinv P C
LˆN – denoted as the analysis operator5 – transforms

x into a representation vector s such that x “ Ψs and s is sparse for the signal to
recover.

Obviously, both the analysis and the synthesis approaches are equivalent in the case where
L “ N , i.e. when Ψ is indeed a basis. In this situation, the analysis operator Ψinv is equal
to the actual inverse of Ψ, i.e. Ψinv “ Ψ´1.

However, the situation is more complicated when using redundant dictionaries Ψ, i.e.
when L ą N . [Elad07] proposes a comparison of the analysis and synthesis reconstruction
for general inverse problems, and shows that in this case the behavior of these two recon-
struction methods may significantly diverge. However, the authors do not advocate for
one formulation compared to the other, although they point out that the analysis problem
is likely to be easier to solve than the synthesis problem when Ψ is a highly redundant
dictionary (i.e. L " N), since in this case x (i.e. the optimization variable of (Panalysis))
belongs to a vector space whose dimension is much smaller than the one of the vector space
to which s belongs (i.e. the optimization variable of (Psynthesis)). An illustration of the
differences between analysis and synthesis approaches in the context of image restoration
problems is proposed in [Chaari09].

An extension of the restricted isometry property framework to signals that are sparse in
a redundant dictionary Ψ was proposed in [Candès10]. More precisely, this work focuses
on the case where Ψ is a tight frame6, which covers several types of dictionaries used

5Unless otherwise specified, the notation Ψinv does not refer to the inverse of Ψ (Ψ may not even be
invertible).

6Ψ “
”

ψ0 ψ1 ¨ ¨ ¨ ψL´1

ı

P C
NˆL is a tight frame if there exists a real constant α ą 0 such that
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in practical applications: curvelet frames, redundant wavelets, or any concatenation of
orthonormal bases. In this situation, the authors show that a signal x P C

N having a
sparse or compressible representation in such dictionary Ψ can be recovered from a vector
of linear measurements y “ Φx ` b (same notations than in Sec. I.2.2) by solving the
analysis problem (Panalysis) with Ψinv “ Ψ˚: up to a modified version of the restricted
isometry property (see definition I–3), they demonstrate that the error }x̂ ´ x}

2
between

the solution x̂ of this problem and the true sought signal can be bound as in (I–7).

I.2.5 Block sparsity and total variation

For image reconstruction tasks, several works such as [Candès06a, Kim09, Marim11a]
propose to replace the l1-norm used in the objective function of (Panalysis) by the total
variation (TV) of the image x :

x̂ “ arg min
xPCN

}x}
TV

subject to }Φx ´ y}
2

ď � (PTV)

where }x}
TV

is defined as follows, for a 2D image x P F pΩ Ñ Cq defined on a domain
Ω Ă Z

2:
}x}

TV
“

ÿ

pu,vqPΩ

b

|pDhxq ru, vs|2 ` |pDvxq ru, vs|2 (I–10)

where Dh and Dv represent the horizontal and vertical discrete derivative operators:
the most common implementations assume that pDhxq ru, vs “ x ru ` 1, vs ´ x ru, vs and
similarly for Dv, but other finite difference schemes can be considered.

The effect of the TV driven reconstruction problem (PTV) is to enforce sparsity on the
gradient of the sought image x, which corresponds to assuming that x obeys a piecewise
constant model (also denoted as the cartoon model). As a consequence, the reconstructed
image x̂ exhibits in general sharp edges and well-contrasted objects.

More generally, the gradient sparsity enforced by TV minimization in (PTV) can be
seen as a special case of block sparsity (also named as group sparsity or structured sparsity
by certain authors). This notion was introduced by [Yuan06] and then developed by
several authors (see for instance [Stojnic09, Eldar09b, Bach12]) in order to refine the
sparsity models used in CS as well as in other signal processing problems. Indeed, if the
l1-norm used in the objective function of the inverse problems (Panalysis) and (Psynthesis)
does enforce sparsity, it does not account for the fact the set of non-zero coefficients of
sparse representations s corresponding to typical signals of interest x often exhibit some
particular structures.

To make up for these limitations, the above mentioned works introduce a notion of
mixed l1,2-norm over the space C

L of considered sparse representations: more precisely,
given a partition pω1, . . . , ωGq of the integer interval �0, L ´ 1� – i.e. a family of subsets

ΨΨ˚ “ αId, or equivalently if
řL´1

k“0
|xψk|sy|2 “ α }s}2

2
for all s P C

L. The tight frame is denoted as
normalized if α “ 1.
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ωg P �0, L ´ 1� such that
ŤG

g“1
ωg “ �0, L ´ 1� and ωg X ωg1 “ H for any pair pg, g1q with

g ‰ g1 – and a vector s P C
L, the mixed l1,2-norm of s is defined as:

}s}
1,2 “

G
ÿ

g“1

d

ÿ

kPωg

|sk|2 (I–11)

It can be shown that substituting the l1-norm with this mixed l1,2-norm in either (Panalysis)
or (Psynthesis) leads to block-sparse signals, i.e. signals whose non-zero coefficients of the
representation vector s are grouped over a small number of sets ωg that compose the
partition used in the definition (I–11): the number of non-zero coefficients within these
few “active blocks” can however be quite large. The design of the partition pω1, . . . , ωGq
depends on the expected relations between the coefficients sk of the sparse representation.

It is worth mentioning that several alternative definitions of mixed norms similar to
(I–11) exist: one could for instance relax the requirement ωgXωg1 “ H to allow overlapping
blocks, or substitute the “l2 part” in (I–11) by any lp-norm to shape the distribution of the
non-zero coefficients inside the blocks. See [Bach12] and references therein for more details
on these extensions, and for instance [Gramfort09] for an example of a practical application
– signal reconstruction from magneto- and electro-encephalography measurements – that
makes use of mixed norms.

I.3 Application of compressed sensing for imaging devices

I.3.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is probably one of the first imaging modalities that
have benefited from CS theoretical results. One reason for that is that, as noted by
[Lustig08], “MRI obeys two key requirements for successful application of CS” :

1. typical medical images have compressible representations in appropriate domains,
either wavelet or gradient (see for instance [Lustig07, Huang12]);

2. the transducers of MRI scanners (i.e. the antennas) measure a physical signal that
is by essence a Fourier transform of the actual image of interest.

While the first of these two properties is not particularly related to MRI (compressible
representations can be found for almost every class of natural images), the second one is
indeed very specific. More precisely, the signal y ptq collected by the coils at time point t

of a MRI acquisition has the following form:

y ptq “
¡

x p�rq exp
´

´2iπ
A

�k ptq
ˇ

ˇ

ˇ
�r

E¯

d3r (I–12)

where x p�rq is a 3D signal proportional to the spatially varying physical quantity that is
to be imaged (typically the proton density in the tissue of a patient). Then, the measured
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data y ptq appears as a sample of the 3D spatial Fourier transform of the signal of interest
corresponding to the spatial frequency �k ptq. The set of all spatial frequencies �k ptq visited
during the acquisition forms a sampling trajectory in the Fourier domain (i.e. the k-space
in MRI terminology) of the signal of interest, and this trajectory is necessarily continuous
(see [Wright97, Lustig08] for more details). The sampling trajectory is an adjustable
parameter of the acquisition device.

The trajectory in the k-space has to be designed to satisfy a trade-off between two
contradictory objectives: on the one hand, it has to be as short as possible, as the length
of the trajectory conditions the total scanning time; on the other hand, the number of
collected Fourier samples has to be large enough to allow the recovery of the signal of
interest with minimal artifacts and sufficient spatial resolution. Traditional strategies
for designing the sampling trajectories propose to follow straight lines distributed over
a Cartesian grid in the k-space: while the reconstruction process corresponding to this
strategy is particularly straightforward (it consists in a simple discrete inverse Fourier
transform), it results in particularly long sampling paths, and thereby long scanning times.
Increasing the step between two sampled lines in the k-space could reduce the acquisition
time, but this strategy introduces aliasing artifacts or reduces the spatial resolution of the
reconstructed image.

However, these sampling strategies do not take advantage of the underlying sparsity
properties of the sampled signal, and this is where compressed sensing comes into play:
it has been shown that exploiting these properties in an analysis reconstruction scheme
(Panalysis) allows to significantly reduce the number of collected Fourier samples without
degrading the quality of the reconstructed MRI image (see [Lustig07, Lustig08] and ref-
erences therein): a 5 to 10-fold acceleration is reported in [Lustig07] in the case of some
real in vivo applications, without significant loss of information.

I.3.2 Digital holography

Using CS techniques for digital holographic imaging applications was proposed by sev-
eral authors: see for instance [Brady09, Marim10, Marim11b, Rivenson11] and references
therein. These applications have in common to perform the sampling operation in the
Fresnel domain of the signal of interest. The Fresnel transform characterizes the free prop-
agation of an electromagnetic wave in an isotropic homogeneous non-dispersive medium,
such as the air (see [Goodman96]). As an example of this type of application, a more
detailed description of the set-up proposed in [Marim11b] is provided in what follows.

In this work, the authors introduce an off-axis compressed holographic optical set-up
using a Mach-Zehnder interferometer (see Fig. I–3). In this set-up, a coherent radiation
emitted by a laser is split into two beams, that follow different paths: the first one, the
object beam, is used to illuminate a transparent planar object of interest, which transmits
a diffracted light field E; the second beam ELO (the reference beam) bypasses the object
of interest, and is made to interfere with the transmitted light field E at the recording
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Figure I–3: Off-axis holography optical set-up proposed by [Marim11b] (the picture is
reproduced from this publication).

plane. The interference pattern is then collected by a CCD or CMOS array detector. The
measured image corresponding to the intensity I of the interfered light fields encodes the
following signal:

I “ |E ` ELO|2 “ |ELO|2 ` |E|2
looooooomooooooon

Zero-order

` E ¨ ELO
looomooon

Real image

` E ¨ ELO
looomooon

Twin image

(I–13)

In an off-axis scheme, the object beam E and the reference beam ELO reach the detector
plane with different incidence angles, which makes the three components of the measured
image I – namely the zero-order, the real image and the twin image – appear as separated
in terms of spectral content: an appropriate band-pass filter applied to I permits to extract
the real image component y “ E ¨ ELO. Finally, it can be shown that the transmission
map x of the imaged object – which is the actual signal of interest – and the measured real
image component y extracted from I are related through an optical Fresnel transform:

y rξ, ηs “
ĳ

x ru, vs exp

ˆ

iπ

λd

´

pu ´ ξq2 ` pv ´ ηq2
¯

˙

du dv (I–14)

where λ is the wavelength of the radiation emitted by the laser, pu, vq and pξ, ηq are the
spatial coordinates respectively in the object plane and in detector plane, and d is a length
parameter characteristic of the set-up (see [Gross07, Cuche99] for more details about the
off-axis holographic set-up).

When the imaged object presents some appropriate sparsity properties, [Marim11b]
proposes to reduce the number of collected samples over the CCD/CMOS array detector:
using a U.S. Air Force target as the object, the authors demonstrate that well-resolved
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Figure I–4: Single-pixel camera set-up proposed by [Takhar06, Duarte08] (the picture is
reproduced from the latter). The image of the object of interest is focused by the lens 1
on the digital micro-mirror device (DMD), which reflects it to the photodiode sensor.

transmission maps can be recovered using only 9% to 19% of all available pixels on the
sensor. Up to a technical adaptation of the detector design that would avoid to acquire the
remaining 81% to 91% pixel values, such compressed sensing scheme could theoretically
speed up the acquisition operation, leading to faster CCD/CMOS sensors.

I.3.3 Single-pixel camera

In [Takhar06, Duarte08], an innovative image acquisition set-up – denoted as the single-
pixel camera or one-pixel camera – is introduced as a proof of concept for a camera based
on a single photodiode and implementing CS imaging. The motivation for such type of
acquisition device is to design cameras that could operate in wavelength domains for which
building arrays of sensors is technically unfeasible or highly expensive.

The principle of the single-pixel acquisition set-up is conceptually quite simple (see
Fig. I–4): the observed object of interest is focused through a lens on a digital micro-mirror
device (DMD), which reflects its image to the photodiode sensor back through another lens.
The key ingredient here is the digital micro-mirror device: this instrument consists in an
array of tiny mirrors; the orientation of each of these mirrors can be individually switched
between two states. Thus, each facet of the DMD receives a small spatial fraction of the
object of interest image (i.e. a pixel), and either reflects it or not toward the photodiode.
Then, a full acquisition sequence consists into measuring the signal intensity collected by
the photodiode for several configurations of the facets. Formally, the vector of collected
samples y P R

M is related to the signal of interest x P R
N by the equation:
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y “ Φx with Φ “

»

—

—

—

—

—

–

φ0,0 φ0,1 ¨ ¨ ¨ φ0,N´1

φ1,0 φ1,1 ¨ ¨ ¨ φ1,N´1

...
...

...

φM´1,0 φM´1,1 ¨ ¨ ¨ φM´1,N´1

fi

ffi

ffi

ffi

ffi

ffi

fl

P t0, 1uMˆN (I–15)

where each coefficient φk,l characterizes the state of the lth facet during the acquisition
of the kth sample: φk,l “ 1 if it is oriented to reflect the image of the object toward the
photodiode, and φk,l “ 0 otherwise.

In this set-up, the acquisition time is directly related to the number M of samples
that are necessary to retrieve the signal of interest x, as samples have to be acquired
sequentially. In a naive approach, M would be set equal to the number N of pixels of the
acquired image, so that Φ could be chosen as an invertible matrix (typically Φ “ Id in
a one by one pixel scan strategy). However, up to some appropriate sparsity assumption
on the imaged object, the CS theory demonstrates that the number M of measurements
can be significantly reduced while still allowing accurate reconstruction of the image x.
Using a random acquisition matrix Φ and a reconstruction scheme enforcing sparsity of
the Haar wavelet coefficients of x, [Takhar06] shows reconstructed images corresponding
to ratios M

N
varying from 40% to 66%.

I.3.4 Schlieren deflectometry

Schlieren deflectometry is an imaging modality that aims at visualizing and measuring
the deflection undergone by a light beam when it crosses a section of a thin transparent
object. This type of measures can then be used to characterize some properties of the
studied object, such as the curvature of its surface, or the distribution of its refractive
index.

In [Sudhakar13], the authors propose to use results from the CS theory to improve
the performance of a Schlieren deflectometer device. The principle of the corresponding
optical set-up is described in Fig. I–5: on one side, the object is illuminated by a light
source that undergoes a spatial modulation, the modulation pattern being controlled by a
spatial light modulator (SLM); on the other side of the transparent object, the deflected
light crosses a telecentric system and is collected by a standard CMOS/CCD array sensor.
The goal of the telecentric system is to filter light emerging from the transparent object
so that only light beams parallel to the optical axis of the system can actually reach the
CMOS/CCD sensor: thus, each pixel p of the sensor collects the light that emerges at
one particular point Ap of the surface of the transparent object. Then, the light intensity
measured by the sensor pixel p appears as an inner product between the modulation image
formed by the SLM device and a map xp P R

N that characterizes the deflecting properties
of the surface of the object at point Ap: this map xp is the signal of interest to recover.
Similarly to the single-pixel camera, a full acquisition sequence consists in probing the light
intensity on the sensor for several modulation patterns. Then, the relation between the
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Figure I–5: Schlieren deflectometer set-up proposed by [Sudhakar13]. A thin transparent
object is illuminated by a structured pattern controlled by a SLM device. The light
received at a point Ap on the object surface is deflected toward the right. The telecentric
system (made of two lenses and a pinhole) filters out the light beams that are not parallel
to the optical axis. Finally, the digital sensor measures the output signal; thanks to the
pinhole, each pixel p of the sensor collects only the light that emerges from the object at
point Ap.

signal of interest xp P R
N and the vector of collected measures yp P R

M is the following:

yp “ Φxp with Φ P R
MˆN
` (I–16)

where the kth row of the matrix Φ characterizes the modulation pattern formed by the
SLM during the acquisition of the kth sample. The non-negativity of the entries of Φ

accounts for the physical constraints imposed by the SLM device.

As noted in [Sudhakar13], each pixel p of the CMOS/CCD sensor used in this set-up
behaves like a single-pixel camera for the deflecting map xp that characterizes the surface
of the object at point Ap, all the maps xp being acquired in parallel. Then, as in the
case of the single-pixel camera, the contribution of the CS theory to this deflectometer
set-up is to allow the reduction of the number M of modulations patterns that are neces-
sary to accurately estimate the deflecting maps xp, by taking advantage of their sparsity
properties. In [Sudhakar13], the authors present some deflecting maps acquired with a
matrix Φ whose rows are made of vectors of the Hadamard basis, and reconstructed by
enforcing a sparsity constraint on their Daubechies 9{7 wavelet coefficients. Additionally,
as proposed by [Puy12], the authors introduce a random modulation by ˘1 of the columns
of Φ, to increase the incoherence between the sensing and the sparsity bases. The authors
present some results obtained with compression ratios M

N
“ 2.5% and M

N
“ 10%: these

reconstructed deflecting maps capture the main features of an ideal map acquired with
M
N

“ 100%, although some significant differences can be noticed. These reconstruction
errors are justified in [Sudhakar13] by the fact that the measurements collected by the
Schlieren deflectometer set-up are quite noisy.
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Chapter II

Practical resolution of CS
reconstruction problems through
convex optimization

The compressed sensing theory basically states that large signals x P C
N can be recovered

from a relatively small number M of linear measurements y “ Φx P C
M , under some

appropriate hypothesis. In practice, this property is used to design sensing devices with
improved characteristics in terms of acquisition speed or sensor simplicity (see Sec. I.3).
However, the price to pay for these improved properties that benefit the sensing devices is
that the raw collected samples must undergo a heavy post-acquisition numerical processing
so that the actual signal of interest can be recovered. Being able to perform this post-
acquisition processing efficiently is therefore a crucial issue to make CS acquisition devices
usable in practical situations.

In this chapter, we present the general reconstruction approaches used to post-process
CS acquired data. As these reconstruction procedures are often formulated as convex op-
timality equations, we also review some of the algorithmic solutions that exist to solve the
underlying optimization programs. Finally, we present a comparison of these algorithmic
solutions, based on empirical evaluations of their performance in image reconstruction
problems involving real microscopy images arising from biological applications.
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II.1 CS reconstruction formulations

II.1.1 Convex optimization formulations: classical form, BPDN and
LASSO

In chapter I, we introduced the notion of CS reconstruction problem, namely the problem
of reconstructing a signal x P C

N that is sparse in some sense from a vector of linear mea-
surements y “ Φx P C

M . [Candès06b, Candès10] and related papers propose to formulate
the CS reconstruction as an optimality search problem, and provide some theoretical re-
construction guaranties and error bounds for this formulation using the RIP framework
(see Sec. I.2.2).

More precisely, the works presented in Sec. I.2 propose to address the CS reconstruc-
tion through one of the optimization problems (I–6), (Panalysis), (Psynthesis), or (PTV),
depending on the actual sparsity properties of the signal to reconstruct. The general form
of these optimization problems is the following1:

arg min
xPCN

f pxq subject to }Φx ´ y}
2

ď � (CCSR)

where the objective function f pxq is a convex sparsity-promoting function, with typically
f pxq “ }x}

1
in the case of a synthesis reconstruction (Psynthesis) or for signals that are

sparse in the canonical basis of C
N . In this formulation, the scalar parameter � ě 0

controls the trade-off between the fidelity to the measurements and the desired level of
sparsity. Its value is related to the noise level that affects the measurement vector y: more
specifically, [Candès06b] defines this parameter such that �2 is an upper bound of the noise
power that corrupts y. In the case where y is corrupted by a white additive Gaussian
noise of standard deviation σ, a common heuristic is to select � “ σ

a

M ` 2
?

2M (see
[Becker11]).

The (CCSR) problem belongs to the class of constrained convex problems, meaning
that the optimized variable x is forced into a subset of the whole subspace C

N , denoted
as the feasible domain, implicitly defined by the constraint }Φx ´ y}

2
ď � in the case

1As this problem does not seem to have a consensual denomination, we will refer to it as the Classical

CS Reconstruction problem, or (CCSR).
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of (CCSR). As it is generally assumed that implementing an algorithmic solver for con-
strained optimization problems is more difficult than for unconstrained ones, some authors
(see for instance [Lustig07, Marcia08, Provost09]) favor the following unconstrained for-
mulation – denoted as Basis Pursuit De-Noising in most of the publications – for practical
applications:

arg min
xPCN

1

2
}Φx ´ y}2

2
` λf pxq (BPDN)

where f pxq is the same sparsity-promoting function than for (CCSR), and where the scalar
parameter λ ě 0 plays the same role as � in (CCSR).

It is worth mentioning that both problems (CCSR) and (BPDN) are equivalent in the
following sense (a proof of this equivalence is given in [Weiss08], Theorem 2.7):

1. For a fixed parameter � ě 0, let x̂CCSR
� be a solution of (CCSR). Then, there exists

a value λ‹ ě 0 of the parameter λ for which x̂CCSR
� is also a solution of (BPDN).

2. Reciprocally, for a fixed parameter λ ě 0, if x̂BPDN
λ denotes a solution of (BPDN),

then there exists �‹ ě 0 for which x̂BPDN
λ is also a solution of (CCSR).

However, in general, these λ‹ and �‹ depend on the other entities involved in the (CCSR)
and (BPDN) problems, in particular the measurement matrix Φ and the observation vector
y. In other words, for a given value of � (resp. λ), there is no general method to determine
a value λ‹ (resp. �‹) that would make the solutions of both (CCSR) and (BPDN) be
identical for any set of acquired samples y.

For this reason, while [Candès06b] and following papers provide some theoretical guar-
anties on the reconstruction error between an estimator x̂CCSR

� obtained by solving (CCSR)
and the “true” signal to recover, as far as we know such kind of result does not exist for the
reconstruction formulation (BPDN). Therefore, we generally prefer to use the constrained
formulation (CCSR) whenever possible.

Finally, let us mention a third convex problem that is related to (CCSR) and (BPDN),
and known as Least Absolute Shrinkage and Selection Operator :

arg min
xPCN

}Φx ´ y}
2

subject to f pxq ď τ (LASSO)

The (LASSO) formulation introduces a scalar parameter τ whose role is similar to the one
of the parameters � and λ defined above, i.e. τ controls the trade-off between the sparsity
level of the solution and its fidelity to the measurements y; (LASSO) is also equivalent
to both (CCSR) and (BPDN) in the same sense than mentioned above. This formulation
can be preferred to (CCSR) and (BPDN) when some information about the sparsity level
of the sought signal is available prior to the reconstruction: for instance, if f pxq “ }x}

1

and if in the case of a particular problem an upper bound of the l1-norm of the signal to
reconstruct can be determined, then using the reconstruction formulation (LASSO) with τ

set to this upper bound can be considered. However, as for (BPDN), there is no theoretical
guaranties about the reconstruction error achieved using (LASSO).
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function OMP(y, Φ)
p Ð 0, Λ0 Ð H, x0 Ð 0, r0 Ð y

repeat

p Ð p ` 1

kp Ð arg maxkP�0,N´1� |hk| where h “ Φ˚rp Ź Identification step
Λp Ð Λp´1 Y tkpu
xp Ð arg minx }y ´ Φx}

2
subject to Supp pxq Ă Λp Ź Update step

rp Ð y ´ Φxp

until stop condition
return xp

end function

Figure II–1: OMP algorithm to recover a signal x P C
N from a vector y “ Φx P C

M . The
vector x to recover is supposed to be sparse in its canonical basis, i.e. }x}

0
! N .

II.1.2 Alternative approach: orthogonal matching pursuit

Although convex optimization is the original approach proposed for the CS reconstruction
problem, other algorithmic formulations have been proposed to tackle it, based on the
orthogonal matching pursuit (OMP) algorithm (see [Pati93, Tropp07]) or derived methods
(see for instance [Needell09, Dai09]).

A description of the OMP algorithm is provided in Fig. II–1. The principle of this
reconstruction procedure is to iteratively identify the support of the signal to reconstruct.
At each iteration p of its main loop, the algorithm maintains:

1. a set Λp Ă �0, N ´ 1�, which is an estimate of the support of the signal to recover;

2. an estimate xp of the signal to recover, constructed such that its support lies in Λp;

3. a residual rp “ y ´ Φxp.

The key point of the algorithm consists in selecting the new kp element to add to
the support estimate Λp so that the corresponding basis vector ekp

best correlates to
the current measurement residual; in other words, the new kp element is selected as
arg maxk xΦek|rp´1y: this selection is denoted as the identification step. The signal
estimate xp is then updated to minimize the energy of the corresponding residual rp,
while satisfying the support constraint Supp pxpq Ă Λp. The algorithm terminates when a
certain stopping condition holds, which consists generally in requesting }xp}

0
“ S where

S is a targeted sparsity level, or }rp}
2

ď �, where � is a parameter controlling the tolerable
residual energy.

One of the main interests of the OMP is that a full implementation of the method
can be achieved very simply: as noted by [Davenport10b], translating the pseudo-code
in Fig. II–1 into a Matlab® program requires approximately the same number of code
lines. Compared to the programs required to solve the optimization problems arising in
the convex relaxation approaches (see Sec. II.2), the OMP implementation is indeed much
more straightforward. Moreover, if Φ is a partial unitary transform (see Sec. I.2.3) with an
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associated fast computation algorithm, it appears that the execution of one OMP iteration
can be achieved very efficiently: for instance, in the case of a partial Fourier transform,
the OMP iteration has an algorithmic complexity of O pN log Nq. Finally, theoretical
reconstruction guaranties have been obtained for the OMP algorithm: see for instance
[Davenport10b] and references therein.

However, the overall algorithmic complexity to recover a S-sparse signal using the OMP
algorithm is S times the complexity of one iteration: in the case of imaging applications,
the additional S factor may be quite large, making the OMP algorithm rather inefficient.
Moreover, similarly to the synthesis formulation (Psynthesis) used in convex relaxation, the
OMP algorithm has to operate in the sparsity domain of the signal of interest if the latter is
not sparse in its canonical basis: this potentially entails a performance issue if the signal
to recover is sparse in a highly redundant dictionary. OMP reconstruction is also less
flexible than convex optimization, since integrating a sparsity constraint such as the 2D
total variation (I–10) – for which no synthesis formulation is available – is not feasible (as
far as we known, there is no thing such as a “total-variation driven OMP reconstruction
algorithm”). For these reasons, we mostly focus on CS reconstruction through convex
optimization in this manuscript.

II.2 Convex optimization algorithms

We focus now on the CS reconstruction formulations based on convex optimization (mostly
(CCSR)), and propose a short review of the algorithmic solutions that have been designed
to solve such convex optimization problems. We will assume in this section that the
studied signals are real-valued, as convex optimization solvers are generally presented in
this context2.

II.2.1 SOCP methods

Solving (CCSR) is indeed a challenging task, at least for two reasons:

• the sparsity-promoting objective function f pxq involves one or several non-smooth
terms (for instance }¨}

1
, }¨}

TV
(I–10), }¨}

1,2 (I–11));

• the space C
N (or R

N ) in which the sought signal is defined is very large in the case
of imaging applications (typically N ě 106).

The first issue can be tackled by recasting (CCSR) into an appropriate form. For instance,
for f pxq “ }x}

TV
where the 2D total variation semi-norm }¨}

TV
is defined as in (I–10),

(CCSR) can be recast into the following convex form, denoted as a second-order cone

2In the presented methods, complex-valued signals can often be handled as real-valued signals with
twice more components, i.e. by encoding separately the real and the imaginary parts of their components.
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program (see [Boyd04])3:

arg min
xPRN

nPRN

ÿ

k

nk subject to

#

pDhxq2

k ` pDvxq2

k ď n2
k and nk ě 0 for all k

}Φx ´ y}2

2
ď �2

(II–1)

Compared to (CCSR) with f pxq “ }x}
TV

, both the objective function and the feasible
domain of (II–1) are smooth. However, the price to pay for this regularization is that the
optimized variable is now the tuple px, nq, which belongs to a space whose dimension is
2N , i.e. twice bigger than for the original problem (CCSR): the second issue mentioned
above becomes therefore even more challenging!

This approach consisting in recasting (CCSR) into a second-order cone program has
been implemented in a CS-dedicated Matlab® toolbox called l1-magic [Candès05a], re-
leased at the same time as the early theoretical CS papers and by the same authors (see
Sec. I.2.2). The associated method proposed in [Candès05a] to solve the second-order cone
program (II–1) can be summarized as follows:

1. First, the constrained problem (II–1) is transformed into a sequence of unconstrained
problems using a log-barrier method, i.e. by injecting each inequality constraint as
a logarithmic penalty into the objective function:

arg min
XPR2N

hp pXq with X “ px, nq and hp pXq “
ÿ

k

nk ´ 1

αp

ÿ

l

log p´gl px, nqq

(II–2)
where each of the functions gl represents one of the inequality constraint that defines
the feasible domain of (II–1) (gl px, nq ď 0 if px, nq is a feasible point), and pαpq

pPN
is an increasing sequence of positive scalars. If X̂p denotes the solution of (II–2)
corresponding to the log-barrier parameter αp, it can be shown that limpÑ8 X̂p “ X̂

where X̂ is the solution to (II–1).

2. Then, for each value αp of the log-barrier parameter, (II–2) is solved using Newton’s
method: a sequence of estimates pXp,qq

qPN is constructed sequentially such that, for
all q, Xp,q`1 is the point that minimizes the second-order Taylor approximation of
the function hp at point Xp,q:

Xp,q`1 “ arg min
XPR2N

hp pXp,qq ` x∇hp pXp,qq|Xy ` 1

2

@

X
ˇ

ˇ∇
2hp pXp,qq ¨ X

D

(II–3)

It can be shown that limqÑ8 Xp,q “ X̂p.

3. Problem (II–3) has an algebraic solution: Xp,q`1 “ ´
`

∇
2hp pXp,qq

˘´1 ¨∇hp pXp,qq;
however, as the dimension of the problem gets very large in the case of imaging

3Other types of objective functions f pxq may lead to different formulations, but for common choices of
f pxq such as }x}

1
, }Ψ˚x}

1
, }x}

1,2, the resulting problem is also a second-order cone program, or even a
linear program in some special situations (for instance: f pxq “ }x}

1
, � “ 0 and x real-valued). Here, we

choose to describe the principle of the method in the case f pxq “ }x}
TV

instead of in the general case, for
the sake of simplicity.
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applications, direct evaluation of the inverse of the Hessian matrix ∇
2hp pXp,qq is not

feasible. Therefore, [Candès05a] proposes to use a conjugate-gradient method (see
[Hestenes52]) to evaluate iteratively the solution Xp,q`1 to the quadratic problem
(II–3).

The method proposed by [Candès05a] to solve (II–1) thus consists in an iterative procedure
involving three levels of nested loops: the performance obtained with this scheme is rather
poor, especially when used for 2D image reconstruction. Therefore, specialized algorithms
were subsequently developed starting in the late-2000s to handle the CS reconstruction
problem in a more efficient way.

II.2.2 NESTA

One of these specialized solutions is the NESTA algorithm, introduced in [Becker11]. This
algorithm is based on the general framework developed in [Nesterov07] for the minimiza-
tion of composite objective functions. It addresses the constrained problem (CCSR) with
either f pxq “ }x}

TV
or f pxq “ }Ψ˚x}

1
without specific requirements on the sparsity

matrix Ψ, and consists in an accelerated gradient descent with back-projection on the
feasible set.

More precisely, the NESTA algorithm proceeds in two steps:

1. First, the non-smooth objective function f pxq is approximated by a smooth function.
This step takes advantage of the fact that the targeted functions f pxq can be written
as4:

f pxq “ max
zPQ

xz|W xy (II–4)

where W P R
LˆN and Q is a convex subset of R

L. This type of function f pxq
belongs to a larger class of functions, introduced by [Nesterov04] and denoted as
max functions by [Weiss08]; as a max function, [Nesterov04] shows that f pxq can
be approximated by a function fµ pxq defined as follows:

fµ pxq “ max
zPQ

xz|W xy ´ µ

2
}z ´ z0}2

2
(II–5)

where µ ą 0 is a scalar parameter, and z0 P Q. In [Nesterov04], it is shown that
the error |f pxq ´ fµ pxq| can be bounded uniformly by a constant proportional to
µ: the smaller this parameter, the better the approximation; moreover, fµ pxq is
Lipschitz-differentiable with a Lipschitz constant Lµ “ 1

µ
~W ~2, and its gradient

has an explicit expression (see [Nesterov04] or [Weiss08] for more details).

2. The second step consists in solving (CCSR) where f pxq is replaced with fµ pxq. To
proceed, [Becker11] proposes to use an improved version of the well-known gradient
descent method with back-projection on the feasible set at each step of the de-
scent (see [Levitin66]): this improved version was introduced in [Nesterov07], which

4For instance, for f pxq “ }Ψ˚x}
1
, W “ Ψ˚ and D “

�

u such that }u}8 ď 1
(

(l8 unit ball).
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demonstrates that modifying the descent direction to account not only for the di-
rection of the local gradient but also for the gradient directions encountered in the
previous steps speeds up the convergence of the algorithm. A generic description
of this improved gradient descent method with back-projection is given in [Weiss08]
(Algorithm 4.3).

A potentially expensive step of the NESTA algorithm is the evaluation of the projection
operator Π on the feasible set – which has to be performed twice per descent step – defined
as follows:

Π pxq “ arg min
zPRN

}z ´ x}
2

subject to }Φz ´ y}
2

ď � (II–6)

However, [Becker11] shows that, in the case where the sensing operator Φ is such that
pΦ˚Φq2 “ Φ˚Φ (i.e. Φ˚Φ is a linear projector), the problem (II–6) has an algebraic
solution that can be evaluated efficiently5:

Π pxq “
ˆ

Id ´ λ

1 ` λ
Φ˚Φ

˙

px ` λΦ˚yq with λ “ max

ˆ

0,
1

�
}Φx ´ y}

2
´ 1

˙

(II–7)

In particular, the expression (II–7) does not involve any matrix inversion. Moreover,
the condition pΦ˚Φq2 “ Φ˚Φ does hold for the matrices Φ whose row vectors form
an orthogonal family, which includes in particular the partial unitary transforms (see
Sec. I.2.3).

II.2.3 RecPF

In [Yang10], the RecPF specialized algorithm was introduced to solve the (BPDN)-formu-
lated CS reconstructions problem, in the case where the two following additional hypothe-
ses hold:

1. f pxq must be either }x}
TV

, }Ψ˚x}
1

with Ψ a tight frame, or a linear combination
of both,

2. the sampling matrix Φ must be a partial Fourier transform6.

This second requirement makes the RecPF algorithm only applicable for imaging modal-
ities where the sensing operations occurs in the Fourier domain of the signal of interest
(for instance, MRI, see Sec. I.3.1). However, this extreme specialization allows the use of
several tricks and optimizations, which result in a very fast resolution method.

For the sake of simplicity, we focus here on the case where f pxq “ }x}
TV

. Then, the
principle of the RecPF algorithm is to solve the following problem:

5Please note that the notations used in (II–7) are slightly different than those used in [Becker11]. In
particular, the Lagrange multiplier λ in (II–7) corresponds to 1

Lµ
times the Lagrange multiplier λ defined

in [Becker11]. Our definition of λ allows an extra-simplification in the expression of the projection operator
Π.

6The authors mention that their RecPF algorithm can be adapted to also handle the case where Φ is a
partial cosine transform. Their Matlab® implementation of the RecPF algorithm however only supports
partial Fourier transforms.
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arg min
xPRN

dhPRN

dvPRN

1

2
}Φx ´ y}2

2
` λ

ÿ

k

b

pdhq2

k ` pdvq2

k ` β

2

´

}dh ´ Dhx}2

2
` }dv ´ Dvx}2

2

¯

(II–8)

where λ is the scalar parameter introduced in (BPDN), Dh and Dv are the derivation
operators introduced in (I–10), and β ą 0 is a new scalar parameter, whose ideal value
is as large as possible7: indeed, one can observe that (BPDN) with f pxq “ }x}

TV
and

(II–8) become equivalent when β Ñ `8. The method proposed by [Yang10] to solve the
unconstrained problem (II–8) consists then in performing alternated minimizations of the
objective function with respect to the pdh, dvq variables for a fixed x on the one hand,
and with respect to x for fixed pdh, dvq on the other hand:

• The minimization with respect to pdh, dvq is straightforward, as the objective func-
tion of (II–8) is separable in each of the pair of variables ppdhqk , pdvqkq: this step
has therefore a complexity of O pNq operations.

• The minimization with respect to x consists in finding the minimum of a quadratic
function, which is equivalent to inverting the following system:

`

Φ˚Φ ` βD˚
hDh ` βD˚

vDv

˘

x “ Φ˚y ` βD˚
hdh ` βD˚

vdv (II–9)

Solving this system requires to invert the NˆN matrix
`

Φ˚Φ ` βD˚
hDh ` βD˚

vDv

˘

,
which is potentially a very expensive operation; however, it appears that this matrix
is diagonal in the Fourier basis as:

– both Dh and Dv are convolution operators,
– Φ is required to be a partial Fourier transform (see in Sec. I.2.3 the decompo-

sition available for Φ˚Φ in this case).

The inversion of (II–9) becomes therefore trivial, and the complexity of this operation
is dominated by the cost of the Fourier transforms involved in the change of basis,
i.e. O pN log Nq.

II.2.4 SPGL1

The SPGL1 algorithm introduced in [Van Den Berg08] proposes an original approach to
solve the (CCSR) problem, in the case where f pxq “ }x}

1
. As no other particular hypoth-

esis is required on Φ, the SPGL1 algorithm can handle either signals that are sparse in
their canonical basis, or signals that can be recovered by following a synthesis approach
(Psynthesis); however, it cannot be adapted to cover the TV minimization case (PTV). The
key idea of the SPGL1 algorithm is to solve several instances of the (LASSO) problem for
different values of the parameter τ introduced by this formulation, until the corresponding
solution x̂LASSO

τ of (LASSO) is such that the equality
›

›Φx̂LASSO
τ ´ y

›

›

2
“ � holds: indeed,

7The principle of the RecPF algorithm is actually very similar to the one of the Alternating Direction
Method of Multipliers (ADMM) algorithm. See for instance [Combettes11] (Algorithm 6.4) and references
therein for more details about this type of methods.
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it can be easily demonstrated that, if f pxq is positive-homogeneous, then any solution x̂

of (CCSR) saturates the underlying constraint }Φx ´ y}
2

ď � (i.e. }Φx̂ ´ y}
2

“ �), except
in the trivial case where the zero vector 0 is solution.

More precisely, if χ pτq denotes the optimal value of the objective function in (LASSO)
(i.e. χ pτq “

›

›Φx̂LASSO
τ ´ y

›

›

2
), the approach proposed by [Van Den Berg08] consists in

finding a root τ‹ of the equation χ pτq “ �: the authors show that the underlying x̂LASSO
τ‹ is

then the solution of (CCSR). They first demonstrate several properties of the function χ, in
particular that it is differentiable and that its derivative has an explicit expression involving
the solution x̂LASSO

τ of (LASSO): thanks to these properties, the authors propose to use
the Newton’s root finding method (see for instance [Press07]) to estimate the actual value
τ‹ that solves χ pτq “ �. To proceed, several instances of the (LASSO) problem have to be
solved: the method proposed by the authors for this task consists in gradient descent with
back-projection on the feasible set at each step of the descent (see [Levitin66, Weiss08]).
A key issue that conditions the efficiency of this approach is the choice of the method used
to evaluate those projections on the feasible set, or in other words the method used to
evaluate the following operator Π:

Π pxq “ arg min
zPRN

}z ´ x}
2

subject to }z}
1

ď τ (II–10)

However, as noted by [Van Den Berg08], it turns out that (II–10) has an explicit solution,
which is evaluated by applying the soft-thresholding to the input x, with a threshold value
that can be computed in O pN log Nq basic operations.

II.3 Compared performance

We have compared the performance of the NESTA, RecPF and SPGL1 algorithms in
reconstructing various biological images from simulated Fourier CS measurements. This
work was presented in the conference papers [Le Montagner11a] and [Le Montagner11b].

II.3.1 Methodology

We tested the three reconstruction algorithms on a set of seven biological images with
various characteristics in terms of biological content, noise level, and size. For each image,
we generated a vector of Fourier measurements, by selecting 15% of their Fourier coeffi-
cients. This selection of Fourier coefficients was performed randomly, following a so-called
Gaussian sampling strategy (see Sec. III.1.2).

Two regularization energies were used for each tested image: minimization of the TV

semi-norm, and minimization of the l1-norm of the Daubechies-4 wavelet coefficients. For
the TV-based reconstructions, we tested the NESTA and RecPF algorithms, while for the
l1-based reconstructions, we tested NESTA and SPGL1. The stop conditions were set
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Figure II–2: Example of reconstruction results obtained for the Lymphocytes T test im-
age, in the conditions described in Sec. II.3.1. For a given regularization energy, the
reconstructed images present no visual differences whatever the algorithm actually used.

in the same manner for all the three algorithms, using a criteria based on the relative
variation between two consecutive iterates.

In each configuration, we evaluated:

• the final value of the objective function (}x}
TV

or }Ψ˚x}
1
),

• the number of iterations required for convergence,

• the execution time.

The notion of iteration is obviously algorithm dependent: it is one gradient descent step
for NESTA, one pair of minimizations with respect to pdh, dvq and with respect to x for
RecPF, and one gradient descent step occurring in one (LASSO) sub-problem in the case
of SPGL1. For each of these three algorithms, one iteration has a O pN log Nq complexity,
although their actual cost in terms of computation time may be different. The number of
iterations however gives an idea of the practical convergence speed of the algorithms, that
is independent of the computational power of the computer used for the simulations.

All the simulations were performed using Matlab®, with implementations of the al-
gorithms provided by their respective authors. A particular procedure was adopted to
handle RecPF, as this algorithm solves (BPDN) instead of (CCSR): for each simulation,
we adjusted the λ parameter so that the solution x̂BPDN

λ returned by RecPF is such that
›

›Φx̂BPDN
λ ´ y

›

›

2
“ � ˘ 2%, where � is the parameter involved in the data term constraint

in (CCSR); the reported reconstruction times do not take into account this parameter
adjustment procedure. This point illustrates however one of the drawback of RecPF – and
more generally of all (BPDN)-based CS reconstruction methods, which is that adjusting
the parameter λ involved in (BPDN) is not straightforward, contrary to the parameter �

involved in (CCSR) (see Sec. II.1.1).
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II.3.2 Simulation results and reconstruction time

An example of reconstruction results obtained for one of the test images is presented in
Fig. II–2, while more comprehensive quantitative results are presented in Fig. II–3.

A first remark that can be drawn about the results presented in Fig. II–3 is that the
tested algorithms reach similar levels for the respective objective functions being mini-
mized. As the underlying problems are convex, this is actually an expected result: there
is no such thing as local minima that could trap the algorithms here. A visual inspection
of the reconstructed images do confirm that, for a given regularization energy, they do not
present significant differences whatever the algorithm actually used.

On the contrary, it can be noticed that large differences exist between the algorithms in
terms of computation time. Although the exact ratios between these computation times
depend on the processed images, it can be observed that:

• first, RecPF is faster than NESTA by a factor 15 to 20 for the two smallest tested
images (about 400 ˆ 400 pixels), and this factor tends to increase for larger images;

• then, NESTA is faster than SPGL1 by a factor of at least 2, while this factor can be
significantly larger with some large images, for which SPGL1 seems to converge very
slowly (the number of iterations necessary to converge is also unexpectedly high).

This latest observation is concordant with some results presented in [Becker11], where the
authors notice that SPGL1 can be very fast in certain circumstances (even faster than
NESTA), but this execution time could vary significantly depending on the input signal,
even for signals with identical size; on the contrary, the execution time of the NESTA
algorithm is quite stable for a given input signal size.

The advantage of RecPF over NESTA can be explained by the deeper degree of spe-
cialization of the former, which is limited to partial Fourier transform sensing matrices
Φ. It is also worth mentioning that the Matlab® implementations of these two algorithms
use different mechanisms:

• RecPF makes use of the MEX function features provided by Matlab®, i.e. part of
the code is written in C language and compiled, which potentially speeds up its
execution,

• on the contrary, NESTA is written in pure Matlab® code.

Drawing final conclusions between the comparative execution time of these two algorithms
would require to use similar implementation languages.

II.4 Conclusion

In this chapter, we detailed the post-processing operations that have to be carried on to
recover a signal of interest for raw data acquired using a CS-based strategy. We reviewed
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Figure II–3: Quantitative results obtained with the presented algorithms for seven test
images reconstructed in the conditions described in Sec. II.3.1. In each case, the table
shows the final value reached on the objective function (“Obj. fun.”), the number of
iterations required for convergence (“#iter.”), and the execution time (“Time”).
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and assessed some of the algorithmic solutions that exist to perform these post-processing
operations: we illustrated on a set of experiments that these solutions present large dif-
ferences in terms of performance. In the perspective of our work on CS, the NESTA
algorithm shows an interesting trade-off between flexibility and execution speed. Besides,
the understanding of the internal machinery involved in this algorithm enables to modify
and adapt it to meet some specific requirements: the integration of 3D total variation (see
Chap. IV) is an example of such a modification that we have made on the algorithm.
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Chapter III

Effect of the sampling parameters
in the Fourier space

When undergoing reconstruction through a compressed sensing scheme, images are affected
by various artifacts that degrade them in different ways and lead to detail loss. The RIP
framework provides an upper bound of the global l2 reconstruction error (I–7), but this
result does not account for the nature of the artifacts introduced in the reconstructed
image x̂ due to the lack of samples. When the sampling is performed in the Fourier space
of the image of interest, two sampling parameters may influence these artifacts: first, the
number of Fourier samples that are acquired (or equivalently the sampling rate); second,
the sampling strategy, i.e. the position in the Fourier space where – for a given budget of
measurements – the samples are chosen to be acquired.

In this chapter, we discuss how these two parameters affect the CS reconstructed im-
ages. We first review the different existing sampling strategies, before focusing more
thoroughly on two of them (the uniform and the Gaussian sampling strategies). Using
simulations involving some test images, we analyze how variations of the number of ac-
quired samples affect the reconstruction in these two cases. We conclude by extending our
results to real microscopy images.
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III.1 Sampling strategies in the Fourier space

III.1.1 Introduction

CS theoretical results predict that sparse signals can be recovered from partial Fourier
data, assuming that a sufficient number of measurements is available with respect to the
sparsity level and the size of the signal to recover. Results presented in [Candès07] (see
Sec. I.2.3) propose a quantitative upper bound on this necessary number of measurements,
in the case where samples are acquired at uniform random positions in the Fourier space.

However, for CS image acquisition, a simple experiment shows that uniform Fourier
sampling is sub-optimal. In Fig. III–1, we present the reconstruction results obtained for
the well-known Shepp-Logan phantom image based on two different sampling strategies
of the Fourier space: starting from a noisy version x0 of Shepp-Logan degraded with
an additive Gaussian noise (left image in Fig. III–1), we generated two measurement
vectors yu “ Φux0 and yg “ Φgx0, with Φu and Φg two partial Fourier transforms
corresponding respectively to a uniform and a Gaussian sampling mask. From these
measurement vectors, two reconstructed images x̂u and x̂g were obtained by solving the
TV reconstruction scheme (PTV). Although the number of samples was identical in both
masks, the reconstructed images x̂u and x̂g are completely different: while the Gaussian
sampling leads to a reconstruction x̂g that is almost identical to the original Shepp-Logan,
x̂u exhibits significant artifacts, with all but the largest structures lost.

This experiment illustrates the fact that all Fourier samples seem not to carry the
same amount of information: in particular, having a higher sampling density in the low-
frequency area of the Fourier domain improves dramatically the quality of the reconstruc-
tion.

III.1.2 Existing Fourier sampling strategies

Several sampling strategies have been proposed to perform acquisitions in the Fourier
space, either based on empirical observations as in Sec. III.1.1, or recently as the result of
more theoretical works (see below). As Fourier sampling finds an application with mag-
netic resonance imaging (see Sec. I.3.1), it appears that the proposed sampling strategies
are generally designed to meet the requirements associated to this imaging modality, espe-
cially the need to have continuous sampling paths (see [Chauffert13a]). Among the works
that address this issue, we can mention the following papers:
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Figure III–1: Two reconstructions of the same noisy version of the Shepp-Logan phantom
image, using two different sampling strategies in the Fourier domain. The reconstructions
were performed using the TV minimization scheme (PTV). In both cases, the number of
Fourier samples used is the same (15% of the number of pixels of the input image), but
their location is different: the sampling masks show (in white) the positions in the Fourier
space that were sampled.

• In [Candès06a], the authors use a star-shaped sampling pattern when demonstrating
the practical recovery capabilities of CS schemes applied to images (see Fig. III–2,
example pdq).

• [Lustig07] suggests that the sampling density should be scaled “according to a power
of the distance from the origin”. In [Chauffert13b], this formulation is interpreted as
the fact that the probability π p�ωq to sample the Fourier coefficient corresponding to
the spatial frequency �ω is given by:

π p�ωq “ p0 ¨
ˆ

1 ´ }�ω}
2

ωmax

˙α

(III–1)

where α ą 0 is a parameter controlling the spread of the sampling probability distri-
bution (the larger α, the more the distribution is concentrated close to the center of
the Fourier space), ωmax is the maximum amplitude value for the spatial frequencies
�ω, and p0 ą 0 is tuned according to the targeted overall sampling rate. [Lustig07]
suggests to select α between 1 and 6 based on empirical observations. We will re-
fer to this family of sampling strategies as the polynomial sampling strategies (see
Fig. III–2, examples pbq and pfq).

• In a context of 3D MRI, [Kim09] proposes a non-uniform sampling pattern hav-
ing a small fully sampled area close to the k-space center, while the remaining
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high-frequency region is sampled in a uniform random manner (see Fig. III–2, ex-
ample peq).

• [Wang10] presents a comparative study of several sampling strategies, including the
star-shaped sampling pattern and various spiral-shaped sampling patterns. Based
on a theoretical study on the energy repartition in the Fourier domain of 2D images
that are sparse in the wavelet domain (which however is not shown to be directly
related to the efficiency of CS sampling and reconstruction schemes), the authors
also introduce a non-uniform random strategy with an exponential decay of the local
sampling density with respect to the distance from the origin. In this latter sampling
strategy, the probability π p�ωq of sampling the Fourier coefficient �ω is given by:

π p�ωq “ exp

ˆ

´
ˆ}�ω}

2

ρ

˙α˙

(III–2)

where α ą 0 controls the spread of the sampling distribution and ρ ą 0 is tuned
according to the targeted overall sampling rate. [Wang10] advocates for α “ 3.5

based on empirical observations. While we haven’t performed a thorough optimiza-
tion of this parameter, we observed that setting α “ 2 – which corresponds to a
more spread distribution than α “ 3.5 – also leads to interesting results. We will
refer to this family of strategies as the exponential sampling strategies, and as the
Gaussian sampling strategy in the particular case α “ 2 (see Fig. III–2, examples pcq
and pgq).

• In [Puy11], relying on some theoretical results from [Rauhut10], the authors suggest
that the search for an optimal sampling strategy should be driven by the minimiza-
tion of a modified version of mutual coherence coefficient (I–9) between the sampling
and the sparsity bases. More precisely, if πk denotes the probability of sampling the
kth Fourier coefficient, they propose to construct the optimal map of sampling prob-
abilities π‹ as:

π‹ “ arg min
π

ˆ

max
k,l

|xφk|ψly|?
πk

˙

subject to

$

&

%

0 ă πk ď 1 for all k

ř

k πk “ M
(III–3)

where φ0, φ1, . . . , φN´1 are the rows of the sampling matrix Φ (the Fourier atoms),
ψ0, ψ1, . . . , ψN´1 are the columns of the sparsity basis Ψ in which the signal to
recover is assumed to be sparse, and M is the targeted number of samples. The
authors propose a heuristic to solve the non-convex optimization problem (III–3),
and present some global reconstruction success rates on synthetic signals obtained
with different sampling strategies: as expected, the sampling strategy generated
according to (III–3) shows a significant improvement over the uniform sampling,
but remains slightly less efficient than the empirically derived strategies advocated
by [Lustig07]. Moreover, [Puy11] do not present neither examples of the sampling
masks obtained with their method, nor examples of reconstructed images.

• Finally, [Chauffert13b] proposes a two-step sampling strategy: first, a region close
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Uniform Polynomial (α “ 2)
Exponential (α “ 2)

(i.e. Gaussian)
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full-sampling of
low-frequencies

Polynomial (α “ 5) Exponential (α “ 3.5) Spiral-shaped

paq pbq pcq pdq

peq pfq pgq phq

Figure III–2: Example of sampling locations in the Fourier space with different sampling
strategies (the sampled locations are represented in white). In each of the eight presented
examples, the number of sampled positions is the same, and corresponds to a overall
sampling rate of 10%.

to the center of the k-space center is fully sampled (similar to what is proposed by
[Kim09]); second, the high-frequencies are sampled according to a certain probability
distribution π‹ (see Fig. III–3). This probability distribution π‹ is derived from
theoretical results presented in [Rauhut10] (similarly to the approach followed in
[Puy11], although the results from [Rauhut10] are not exploited in the same way
in both works) to be optimal to sample in the Fourier domain 2D images that are
sparse in the wavelet domain. With the application of their framework for the MRI
modality in mind, the same authors present in [Chauffert13a] a heuristic to design
a continuous sampling trajectory from a random distribution of sampling locations.

Contrary to their predecessors that mostly rely on empirical observations, the two lat-
est works [Puy11] and [Chauffert13b] base their searches for an optimal sampling strategy
on theoretical works, mostly [Rauhut10]. However, the result is not completely satis-
factory: indeed, as noticed by the authors themselves, their optimal sampling strategy
is outperformed by the polynomial sampling strategies from [Lustig07] – especially the
one obtained for α “ 5 – when experimented via simulations on real MRI images. One
hypothesis pushed forward by the authors of [Chauffert13b] to explain this suboptimal
performance is that their root hypothesis, i.e. the fact that MRI images are sparse in
a wavelet basis, is too simplistic to characterize for the properties of this type of data,
which disrupts the theoretical derivation of the sampling density map. They suggest in
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Fully sampled low-frequency
region

Probability distribution π‹

used to select the
high-frequency coefficients

Example of sampling pattern
as proposed by [Chauffert13b]

Figure III–3: The sampling strategy proposed by [Chauffert13b] can be decomposed into
two steps. First, a region close to the center of the k-space is fully sampled (cf. left im-
age, the white area). Second, additional high-frequency coefficients are sampled, selected
randomly according to the probability distribution π‹ (cf. middle image: red points cor-
respond to higher probabilities of selection). An example of the sampling mask obtained
with such strategy is presented on the right image. These images are reproduced from
[Chauffert13b].

particular that the level of sparsity shown by the wavelet coefficients of these images may
depend on the considered wavelet sub-band, with the majority of the non-zero coefficients
presumingly concentrated in the coarse-scale sub-bands, and that modifying their analysis
to account for this property would lead to better results.

Indeed, this review shows that finding a sampling strategy in the Fourier domain that
would be optimal for all natural images (or for sub-classes of natural images) is still an
open question. The only consensual characteristic among the existing sampling strategies
mentioned above is the need to allocate more samples to the low-frequency area of the
Fourier space.

III.2 Numerical evaluation of an optimal sampling rate

III.2.1 Random uniform sampling

III.2.1.1 Problematic

An issue related to the determination of an optimal sampling strategy is the evaluation of
the appropriate number of measurements to be performed to sample a given signal. The
theoretical result (I–8) from [Candès07] provides a sufficient condition on this number M

of measurements, depending on the size N of the signal, its sparsity level S, and quantities
characterizing the measurement process and the sparsity basis or dictionary (see Sec. I.2.3).
However, this is only a sufficient condition, and it may happen that a signal is accurately
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reconstructed even if (I–8) does not hold. In addition, this result neither describe nor
quantify the visual quality of an image sampled and reconstructed from a reduced number
of measurements.

We propose here to explore empirically how the number of measurements – or equiva-
lently the sampling rate τ , defined as τ “ M

N
– affects the performance of the CS recon-

struction, first in the case of the uniform sampling strategy. To proceed, we conducted
the following numerical simulations: from a given known original image x0, we generated
several sets of Fourier measurements, each of these sets corresponding to a given sampling
rate τ and acquired according to a uniform sampling strategy. Then, from each of these
sets of measurements, we computed the solution x̂ of the TV reconstruction scheme (PTV),
and measured a reconstruction error as follows:

RecErr “ }x̂ ´ x0}
2

}x0 ´ µ01}
2

(III–4)

where µ0 is equal to the mean value of x0. This reconstruction error measure is indeed
proportional to the root mean squared error measure.

When building a set of measurements, we always sample the central Fourier coefficient
(equal to µ0), which otherwise could not be recovered by the TV minimization scheme. Our
sampling patterns also obey a central symmetry invariance, to be coherent with the Her-
mitian symmetry property exhibited by the Fourier transform of real-valued images. With
these settings, thanks to the normalization factor }x0 ´ µ01}

2
, we ensure that RecErr pτq

tends to 1 when τ Ñ 0.

III.2.1.2 Simulations on isotropic shapes

Our first simple experiment consists in reconstructing an elementary image composed of
a single centered circular white object on a black background (this would represent for
example a single cell visualized in fluorescence microscopy). We studied the evolution of
the reconstruction error between the CS reconstructed image x̂ and the original image x0

as a function of the sampling rate τ . Since the reconstruction error for a given value of
the sampling rate depends on the actual location of the samples in the Fourier space, each
reconstruction was re-run ten to twenty times with different sampling patterns, and the
median error value is reported.

We present some detailed results obtained for a one-disk image with a radius ρ “
22 pixels on Fig. III–4 (the image size is 256 ˆ 256 pixels). The corresponding curve
RecErr “ f pτq shows three distinct domains:

• for small values of τ , the reconstruction error is constant and high: in this domain,
the number of Fourier samples is too low to achieve a correct CS reconstruction, and
the solution computed from (PTV) is roughly unstructured;
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Figure III–4: Evolution of the reconstruction error of the same one-disk image with radius
ρ “ 22 pixels for a sampling rate τ in the range

“

10´3, 10´1
‰

, and five reconstructed images
obtained for different values of τ . Each reconstructed image (left thumbnails) is presented
with its associated Fourier sampling mask (right thumbnails). The reconstructed image
obtained for τ “ 2.2 ˆ 10´3 is almost identical to the original image x0.

• for high values of τ , the reconstruction error is also almost constant at a level close to
zero: in this domain, the sampling rate is sufficient to perform an exact reconstruc-
tion of the original image from the subset of Fourier coefficients that are actually
sampled;

• between these two constant domains, there is a narrow area around a transition
sampling rate τ‹ where the reconstruction error decreases from the high plateau to
almost zero.

A set of similar experiments reproduced with different values of the disk radius ρ produce
similar results, except that the transition between the two domains where RecErr “ f pτq
is constant does not occur for the same transition sampling rate τ‹ (see Fig. III–5).

The value τ‹ of the sampling rate, as it somehow separates the domain where recon-
struction is possible from the domain where it is not, can be interpreted as an empirical
measure of the sampling threshold that is defined in a theoretical manner in (I–8). The
fact that this threshold is drastically modified depending on the input image – which can
be observed on the curves RecErr “ f pτq presented in Fig. III–5 – reflects on the variation
of the underlying sparsity coefficient S.
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Figure III–5: Evolution of the reconstruction error for four one-disk images with various
radius ρ, and the associated critical sampling rates τ‹ extracted from the curves.
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Figure III–6: Transition sampling rate τ‹ for eight values of ρ. A linear regression on
these data confirms that, for the single-disk images, τ‹ obeys a linear increasing law with
respect to ρ.
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There are several possible definitions of the actual value τ‹ from the curve RecErr “
f pτq in Fig. III–4: one could define τ‹ such that RecErr pτ‹q “ 1{2 (1{2 being the mean
value between the two constant levels of the curve), or decide that τ‹ is the point where
the first derivative of the function takes its maximal absolute value (as the function seems
to have an inflexion point in the transition domain); however, as long as the transition
domain is sufficiently narrow, all these definitions are likely to be equivalent. For the
sake of simplicity, we define here τ‹ such that RecErr pτ‹q “ 1{2 in our simulations (see
Fig. III–5); this definition does not depend on the spread of the transition domain.

III.2.1.3 Optimal sampling rate and sparsity

When performing a CS reconstruction using the optimization problem (PTV), we know
that the underlying a priori hypothesis on the input image is that it has a sparse gradient.
In the case of our simple binary images, the number of non-zero gradient coefficients
is approximately equal to the perimeter of the object. Then, together with (I–8), the
transitional sampling rate τ‹ should be an increasing linear function of the perimeter of
the object. Therefore, in the case of our one-disk images, τ‹ should increase linearly with
the disk radius ρ.

In order to check this hypothesis, we computed the transition sampling rate τ‹ for eight
values of the disk radius ρ. Results in Fig. III–6 confirm that τ‹ obeys a linear increasing
law with respect to ρ, hence corroborating empirically the theoretical relation (I–8).

III.2.1.4 Optimal sampling rate and shape factor

We also investigated the dependency of the transitional sampling rate τ‹ with respect
to the shape factor of the imaged object. Equation (I–8) suggests that τ‹ depends only
on the number S of non-zero gradient coefficients, that is related to the perimeter of
the object but not to its area or its shape factor. Therefore, two objects with the same
perimeter should have the same transitional sampling rate τ‹, even if the first is isotropic
(for example, a disk) while the second has a spatial dimension much larger than the others
(for example, an elongated ellipse).

To validate this hypothesis, we followed a similar approach than for the one-disk test
images, but we replaced the disks with ellipses of constant perimeter and various eccen-
tricities. By varying the ratio γ between the half minor axis and the half major axis from
1 (circle) to almost 0 (flat shape), we tested shapes with different spatial and frequency
characteristics; on the other hand, by setting a constant perimeter, we have maintained
a constant TV-based sparsity measure for all the test images. The reconstruction error
curves and the associated τ‹ are presented on Fig. III–7.

Although the four illustrated curves do not perfectly overlap, the associated transi-
tional sample rates are distributed in a narrow domain, approximately

“

10´2, 1.7 ˆ 10´2
‰

.
Moreover, this analysis neglects all the effects due to the fact that our test shapes are
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Figure III–7: Evolution of the reconstruction error for four ellipses of constant perimeter
P “ 250 pixels but various shape factor γ, and position of the associated critical sampling
rates τ‹. The corresponding test images x0 are presented on the right.

not drawn in a continuous domain but on a Cartesian grid instead; in particular, our
hypothesis that the number of non-zero gradient coefficients is approximately equal to the
perimeter of the object is no longer valid for small disks or very flat ellipses. This certainly
explains why the four critical sampling rates τ‹ are not strictly identical.

III.2.1.5 Putting things together

Results presented in sections III.2.1.3 and III.2.1.4 show that the critical sampling rate
τ‹ associated to a binary image composed of one elliptical object is proportional to the
perimeter of the object, but does not depend on its shape factor. This is in agreement with
the relation (I–8) stated by [Candès07], which expresses that the minimal number of mea-
surements needed to reconstructed an image through a CS recovery scheme is proportional,
for a given number of pixels N , to its sparsity coefficient S. When TV regularization is
used to reconstruct binary images, this coefficient S is equal to the length of the boundary
between the two binary domains.

Going further, we can study the following question: if the binary image is now composed
of several elliptical objects, can we still observe a linear dependency between the critical
sampling rate and the length of the boundary separating the objects from the background,
which is equal to the sum of the perimeters of all the objects? Then, is it possible to
predict a suitable sampling rate for CS reconstruction from an a priori knowledge of
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Figure III–8: Points pP, τ‹q computed on random binary images composed of ellipses
generated with and without enforcing a non-overlapping constraint on them. Examples of
such test images x0 are presented on the right.

some geometric characteristics of the imaged objects, from which the size of the boundary
between the two domains could be computed? An application example where it would
make sense to formulate such knowledge can be found in the biological imaging field:
if we image a sample containing a fixed number of cells with non-elastic membranes, a
reasonable prediction about the size of the interface between the cells and the medium
can be formulated, as this size would not change much over time.

To answer this question, we carried out the following experiment: we generated some
test images containing a random number of ellipses, each of them having random perime-
ter, eccentricity and orientation. Then, for each of these test images, we computed the
associated critical sampling rate τ‹ as well as the total perimeter of the objects P. Results
are reported in Fig. III–8.

To be more precise, we carried out two series of experiments:

• First, we prevent ellipses from overlapping and from touching the edges of the image;
this constraint ensures that the length of the boundary between the objects and the
image background is actually equal to the sum P of the perimeters of the ellipses.
The result of a linear regression computed on the points pP, τ‹q collected from these
experiments is presented on Fig. III–8: even if we can observe that some data pP, τ‹q
deviate from the predicting model, the general trend of this linear model is relevant.
The encountered deviations might be due to the uncertainty in the measure of τ‹.
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• Then, we remove the non-overlapping and non-edge-touching constraints; which cor-
responds to simulation conditions closer to real-life applications. The counterpart of
this relaxation is that we no longer ensure that the length of the boundary in the
image is equal to P: actually, P will be greater than the length of the boundary
between the two binary domains of the image. Therefore, as observed on Fig. III–8,
the linear predicting model computed with the non-overlapping shapes provides an
upper bound on the critical sampling rate for the unconstrained images.

Thus, from a practical point of view, given a prior knowledge on the geometric parameter
P, we can predict which sampling rate is suitable for CS reconstruction, although this
prediction will be pessimistic if the imaged objects overlap.

III.2.2 Random Gaussian sampling

The notion of optimal sampling rate is obviously related to the sampling strategy used to
define the position of the measurements in the Fourier space. In all previous simulations,
we used a random uniform sampling strategy for the sake of simplicity. However, studying
how variations of the sampling rate affects the reconstructed images in the case of non-
uniform sampling strategies is also worth of interest, and can be carried out similarly.

To proceed, we reproduced the one-disk test image experiments presented in Sec. III.2.1;
however, instead of allocating measurements in a random uniform manner, we chose to
allocate them according to the Gaussian sampling strategy, which is taken in a first ap-
proximation as a model for the other low-frequency biased sampling strategies presented
in Sec. III.1.2. The corresponding curves RecErr “ f pτq obtained for four different values
of the disk radius ρ are presented on Fig. III–9.

Compared to the results presented on fig. III–5, the profile of the curves RecErr “ f pτq
is dramatically modified with the Gaussian sampling strategy. Indeed, for the single-
disk images with ρ “ 3 and ρ “ 5, we can identify at least three domains where the
reconstruction error is quite stable, and two transitional domains in between. The two
extremal stable domains (which correspond approximately to τ ă 10´3 and τ ą 10´1)
are similar to the stable domains that we observe with random uniform sampling: they
correspond respectively to a complete failure of the CS recovery scheme, and to a perfect
reconstruction of the original image. On the contrary, the intermediate stable domain
observed with the Gaussian random sampling cannot be related to phenomena observed
with uniform random sampling; when working with sampling rates in this range, the
reconstructed images look very similar to the original one, but have blurred edges: for
these reconstructions, the CS recovery procedure works well but induces a low-pass filtering
effect on the reconstructed image. This low-pass filtering effect is linked to the Gaussian
sampling strategy which allows very few measurements in the high frequency areas of the
Fourier space.

Another particularity of the Gaussian sampling strategy is that small objects become
harder to retrieve than large ones (meaning that a higher sampling rate is required to
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Figure III–9: Evolution of the reconstruction error for four one-disk images with various
radius ρ, when sampled with a Gaussian sampling mask. We present also four zoomed
reconstructions of the ρ “ 5 one-disk test image (left thumbnails), with their associated
sampling masks (right thumbnails). The reconstructed image obtained for τ “ 2.3 ˆ 10´1

is almost identical to the original image.
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Figure III–10: Evolution of the reconstruction error for the four test images presented on
the top of the figure, sampled according to a random uniform sampling strategy. These
images are, from left to right, the Shepp-Logan test image paq, a blurred version of Shepp-
Logan pbq, and two real biological images, Shigella pcq and Lymphocytes T pdq.

reconstruct the small-disk images), which is the inverse trend of what is observed with
uniform random sampling. This is well understandable, as the Fourier transform of large
objects is concentrated closer to the center of the Fourier space. The fact that CS recovery
schemes together with Gaussian sampling strategy perform better on input signal that have
a larger sparsity coefficient S is however paradoxical.

III.2.3 Realistic images

So far, our simulations were carried out on simple test images with low complexity com-
pared to what is encountered in real ones. Real images have textures, may contain details
at various scales, and are often subject to degradation during the acquisition process, re-
sulting in blur and noise. Compared to what is observed on simplistic test images such as
those in Figs. III–4, III–7 and III–8, all these phenomena induce a dramatic increase of the
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number of non-zero coefficients that are necessary to represent the images. Actually, most
of the real images are not even sparse at all, but only compressible, making such notion
of sparsity level meaningless. To understand the influence of the sampling rate in such
situation, we carried out CS reconstruction simulations on four realistic images, following
the same protocol than above (see Sec. III.2.1), and using uniform Fourier sampling. The
four realistic test images are:

• the well-known Shepp-Logan phantom image, with strictly piecewise constant struc-
tures and sharp edges;

• the Shepp-Logan phantom image degraded with a small Gaussian blur (using a
standard deviation of 1 pixel length for the filter, while the image is 256 ˆ 256

pixels);

• a fluorescence microscopy image of Shigella bacteria;

• a microscopy image of Lymphocytes T cells, presenting a high level of noise.

Results of the simulations on these images are presented on Fig. III–10.

For both Shepp-Logan images, the error curves look very similar to the one obtained for
the disks and the ellipses in Figs. III–5 and III–7: they present two stable domains where
the CS reconstruction process respectively fails and succeeds, and a narrow transition
area between these domains where the relative reconstruction error falls from almost 1 to
almost 0 as τ increases. However:

• compared to what was observed with disks and ellipses, the transition between the
failure and the success domains occurs at a much higher sampling rate (approxi-
mately 10´1, instead of 10´2); moreover, the spread of this transition domain is
larger;

• even if the two Shepp-Logan images are very similar (the blurring effect applied on
the second image is moderate as it does not lead to any loss of details), both the
position and the spread of the transition domain are dramatically changed due to
the blur.

Therefore, defining a critical sampling rate for these images still makes sense, even if the
accuracy obtained on the corresponding measured values is poorer than for the simple
binary images. Together with the theoretical relation (I–8), this can be explained by the
fact that the Shepp-Logan images still have strict underlying sparse structures (in terms
of gradient), even if the corresponding sparsity level S becomes much larger as soon as a
blurring filter is applied.

On the contrary, in the case of the Shigella and Lymphocytes T images, the recon-
struction error never reaches a stable low level; the reconstruction error associated to the
Lymphocytes T image does not even reach 0 (even for τ “ 100%, i.e. fully sampled re-
constructions), because of its high level of noise. As these images are not strictly sparse,
increasing the amount of available information (i.e. the number of measurements) always
improves the fidelity of the reconstruction; therefore, defining a critical sampling rate
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based on reconstruction errors for these images is not as relevant as in the case of binary
sparse images.

III.3 Conclusion

In this chapter, we tackled the issues related with how sampling can and should be per-
formed in the Fourier space. We first presented the existing sampling strategies, empha-
sizing that none of them has been proved to outperform the others in practice, in spite
of theoretical studies carried on this question. We also investigated the influence of the
sampling rate on the reconstructed images in the case of two particular sampling strate-
gies (uniform and Gaussian sampling), showing that different reconstruction regimes exist
depending on the value of this parameter and on the content of the reconstructed data.
In the case of simple binary images sampled according to a uniform random strategy, we
identified an optimal sampling rate separating the two domains corresponding respectively
to perfect reconstruction and failure; we showed that the value of this optimal sampling
rate could be predicted based on geometric characteristics of the sampled image that
may be inferred prior to the acquisition. We also discussed the effects induced by a low-
frequency favoring sampling strategy (the Gaussian sampling strategy) and the existence
of an associated critical sampling rate in this case, and presented some results obtained
with realistic images.
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Chapter IV

Video sampling

Compared to 2D images, processing 2D+T video signals leads to particular problems
related to the large size of this type of data. However, the counter part of this large size is
that natural video signals are in general highly redundant, which allows them to undergo
important compression ratio without noticeable degradations. Formally, this property
can be exploited to represent the 2D+T video signals in a highly sparse or compressible
manner, making this type of signals good candidates for being acquired as advocated by
the compressed sensing theory.

In this chapter, we investigate how the CS framework can be adapted to video acquisi-
tion problems. We first consider a frame-by-frame linear acquisition model in the Fourier
domain of the signal, and discuss the relevance of several sparsity models that could be
used to drive the reconstruction of the whole video sequence. Then, we switch to a non-
linear acquisition model – beyond the “pure” CS framework – in which only the modulus
of the Fourier transform of the signal would be acquired: by exploiting sparsity properties
similar to the one used in the linear acquisition case, we demonstrate the feasibility of a
phase retrieval reconstruction procedure applied to video signals.
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IV.1 CS applied to video signals

The work on linear acquisition and CS reconstruction of video sequences developed in this
section was presented in the conference paper [Le Montagner12].

IV.1.1 Acquisition model and problem formulation

We focus on the following problem: a signal of interest X P C
NT composed of T successive

2D frames xt P C
N (0 ď t ď T ´ 1) is measured through a linear memoryless operator Φ,

resulting in a vector Y P R
M of observations1. Formally:
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(IV–1)

Using an appropriate CS reconstruction scheme (Panalysis) or (Psynthesis), the goal is then
to recover X from Y .

The memoryless notion means that Y is accumulated from T sub-vectors yt P C
mt

of observations, with each yt depending only on a given frame xt; this measurement
model corresponds to a 2D sensing device that would record and stack frame information
sequentially. In such acquisition mode, temporal redundancy between 2D frames enables to

1In this chapter, capital letters denote 2D+T (or 2D+T related) signals and entities, while lower-case
letters are reserved to objects with no temporal dimensions.
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decrease the sampling rate compared to what is necessary to reconstruct them individually.
Depending on the actual sensing device, the spare measurements could then be re-allocated
in order to improve the temporal resolution of the system.

In this work, we focus on the case where the blocks φt are partial Fourier transforms,
although the results presented in what follows might be extended to other types of sensing
operators. The motivation for studying this type of Fourier-based acquisition model is
that it can be used as a basis to design optical imaging devices working according to the
following principle:

1. the imaged scene is observed through an optical set-up whose role is to implement
an optical Fourier transform of the corresponding 2D image (see [Goodman96] for
details on how this can be achieved),

2. this optical Fourier transform is focused on a plane array of photo-electric transducers
(such as a CCD or CMOS array) in charge of the actual measurement operation.

From the CS theory, we learn that a small subset of the Fourier coefficients is sufficient
to recover the 2D imaged scene. The goal is to design the array of photo-electric sensors
involved in this acquisition scheme in such a way that:

• first, it allows to use only a configurable subset of sensors for a given acquisition,

• second, it takes advantage (for instance in terms of speed or energy efficiency) of
being operated in such partial acquisition mode instead of having all its sensors
“enabled” when acquiring an image.

The improved sensing capabilities of such type of sensing lead to a CS imaging system
that would theoretically be able to over-perform the usual CCD or CMOS cameras.

The algebraic consequence of the memoryless measurement hypothesis is that the op-
erator Φ is block-diagonal. In [Park11], the authors demonstrate that restricted isometry
inequalities (I–5) do hold for such type of operator Φ with small constants δS when the
blocks φt are random matrices with entries following a Gaussian distribution. However,
to obtain this result, additional constraints have to be applied on the class of signals for
which (I–5) is required to hold: besides the sparsity constraint, the authors require that
the energy }xt}2

2
of each frame is proportional to the number of measurements mt allo-

cated to the corresponding sensing operator φt. Based on some empirical observations,
we believe that such kind of result could also be established for other types of blocks φt,
such as partial unitary transforms (see Sec. I.2.3). From a practical viewpoint, assuming
that the frame energy remains almost constant over time and using the same number of
measurements for each frame leads to satisfactory results (see Sec. IV.1.4).

IV.1.2 Existing sparsity models adapted to video signals

The sparsity model put on the signal of interest X conditions the form of the recon-
struction scheme to use to recover X from Y , especially the sparsity basis Ψ in the case
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of reconstruction by synthesis (Psynthesis), or the objective function in the case of recon-
struction by analysis (Panalysis). For 2D natural images, several sparsity models exist
(wavelets, curvelets, total variation), but few results have been established so far for joint
reconstructions of time-correlated 2D images, i.e. 2D+T sequences.

In [Wakin06], the authors propose to assimilate the 2D+T signal X to a 3D signal, and
to reconstruct it by enforcing a sparsity constraint on its 3D wavelet coefficients; formally,
this approach leads to a synthesis reconstruction (Psynthesis) where a 3D wavelet basis is
used for the matrix Ψ. Although it is a natural generalization of the 2D case, this approach
does not take into account the fact that the objects appearing in a 2D+T sequence might
have very anisotropic spatio-temporal shape, while wavelets are best suited for isotropic
objects.

In [Park09], the authors introduce a multi-scale video reconstruction framework, which
relies on the idea of increasingly refining the spatial scale of the estimated signal: at
each step, the algorithm exploits information obtained from coarser estimates to reduce
the temporal redundancies and to estimate motion. However, although presenting some
promising results, this method requires to adapt the measurement protocol in order to get
some information about the coarse versions of the signal. Such modification is possible
with the single-pixel camera, which is the acquisition device targeted by the work [Park09].
However, it cannot be easily extended to other CS imaging modalities.

In [Marcia08], the authors propose to perform a joint reconstruction of sequences of K-
consecutive frames (where K ě 2 is a predefined parameter) in the following way: given a
basis ψ P C

NˆN in which each frame has sparse or nearly sparse representation – typically
a 2D wavelet basis – they define the following NK-square matrices:

BK “

»

—

—

—

—

—

—

—

–

ψ

ψ ψ
...

. . .

ψ ψ

ψ ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

CK “

»

—

—

—

—

—

—

—

–

ψ

ψ ψ
...

...
. . .

ψ ψ ¨ ¨ ¨ ψ

ψ ψ ¨ ¨ ¨ ψ ψ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(IV–2)

Then, they propose to use either BK or CK as the dictionary in a l1-synthesis recon-
struction scenario (Psynthesis). The underlying idea is to exploit the temporal redundancy
existing in the video sequence by reconstructing the difference between frames instead
of the frames themselves. More precisely, with the CK matrix, the l1-synthesis enforces
sparsity on the coefficients of the vectors ψ´1 ¨ pxt ´ xt´1q – i.e. the 2D wavelet coeffi-
cients of the difference pxt ´ xt´1q between each frame xt and its predecessor if ψ is a 2D
wavelet basis. The BK matrix behaves similarly: sparsity is enforced on the coefficients of
the vectors ψ´1 ¨ pxt ´ xt0

q where xt0
represents the first frame of the group of K frames

being reconstructed. These “frame difference-based” approaches lead to interesting results
(especially the CK-based one), but introduce some reconstruction artifacts that will be
discussed more thoroughly in Sec. IV.1.4.
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Finally, in [Trocan13] (also in the series of conference papers [Trocan10a, Trocan10b,
Trocan10c]), the authors propose a multistage video reconstruction framework that in-
cludes motion estimation and compensation heuristics to improve the quality of the re-
constructed video sequences. The problem tackled in those works is actually more general
than the one we consider here, in that the authors propose to reconstruct in a joint manner
several video signals acquired simultaneously from the same scene with different cameras
(this scenario being denoted as “multiview” acquisition), each camera measuring a vec-
tor of CS data for each frame (potential applications of this problem include in particular
video surveillance and stereoscopy). More precisely, the reconstruction principle presented
in [Trocan13] consists in the following steps:

1. for each vector of CS measurements acquired by each camera, reconstruct the cor-
responding 2D frame by solving a CS reconstruction problem;

2. then, refine iteratively the reconstructed frames as follows:

(a) construct for each frame of each camera a prediction based on the estimates
obtained for the adjacent frames at step 1 and motion prediction heuristics,

(b) adjust these predictions to fit the CS measurements.

The second step of this reconstruction procedure may be repeated several times to achieve
a targeted level of reconstruction fidelity.

The motivation for the first step of this procedure, which consists in independent 2D
CS reconstructions, is to provide the motion prediction algorithms involved in step 2 with
estimates (even imperfect) of the video signals to reconstruct, as those algorithms cannot
directly deal with raw CS data. However, as step 1 and step 2 are not directly related,
other reconstruction methods could be used to achieve this initialization: indeed, step 2
– the main contribution of the paper [Trocan13] – can be considered as a post-processing
method to improve CS reconstructions, rather than as a reconstruction method by itself.
For this reason, we did not include this method in the comparative work presented in the
next section.

IV.1.3 Reconstruction using 3D total variation

IV.1.3.1 Three-dimensional total variation

As suggested by [Marcia08], considering frame-to-frame differences could be an interesting
starting point to exploit temporal redundancies existing in 2D+T signals. However, one
should notice that the significant non-zero coefficients are not randomly distributed in a
typical consecutive frame difference. Indeed, if xt and xt`1 are two consecutive frames in
a video sequence, then the coefficients of the difference pxt`1 ´ xtq with large magnitudes
– i.e. the displacement and deformation fronts of the objects shown by the video – are
mostly located close to the edges shown in the frames xt and xt`1 (see Fig. IV–1).

To be more formal, the sparsity model that we propose to use for the reconstruction
of 2D+T video sequences is composed of the following hypotheses:
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Figure IV–1: Example of a microscopy video sequence showing amoeba cells (top row).
The middle row shows the amplitude of the spatial 2D gradient of each frame (white
pixels denoting large gradient amplitudes), while the bottom row shows the amplitude
of the difference between two consecutive frames (white pixels denoting large differences).
One can notice that the locations where large inter-frame difference is observed correspond
to locations where the amplitude of the spatial 2D gradient is also significant.
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1. The spatial 2D gradient of each frame xt is sparse (see Sec. I.2.5). We refer to this
property as intra-frame sparsity.

2. The difference pxt`1 ´ xtq between two consecutive frames is sparse. We refer to
this property as inter-frame sparsity.

3. The significant non-zero coefficients of the spatial 2D gradient of a given frame xt

– that correspond to the edges of the objects and structures shown in xt – and the
significant non-zero coefficients in pxt`1 ´ xtq – that correspond to the displacement
and deformation fronts – are mostly located at the same positions.

To account for these properties, we introduce the three-dimensional total variation func-
tional (TV-3D), defined as follows:

}X}
TV-3D

“
T ´2
ÿ

t“0

ÿ

pu,vqPΩ

b

|pDhxtq ru, vs|2 ` |pDvxtq ru, vs|2 ` |pxt`1 ´ xtq ru, vs|2

(TV-3D)
where Dh and Dv represent the horizontal and vertical discrete derivative operators op-
erating on rasterized 2D images (as in (I–10)), and Ω Ă Z

2 is the spatial domain on which
the frames xt are defined. Thanks to this functional, we define an estimator X̂ of the
signal of interest X from the measurement vector Y as a solution of the following analysis
reconstruction problem:

X̂ “ arg min
XPCNT

}X}
TV-3D

subject to }ΦX ´ Y }
2

ď � (IV–3)

where Φ is the measurement operator defined in (IV–1), and the parameter � ě 0 accounts
for the inaccuracy of the measurement vector Y induced by various phenomenons involved
in the measurement process, such as noise and quantization.

The reason why minimizing }X}
TV-3D

enforces the first two sparsity properties men-
tioned above (i.e. intra- and inter-frame sparsity) stems from the following inequalities,
that can be easily derived from the definition of the 3D total variation (TV-3D):

max

˜

ÿ

t

}xt}TV
,
ÿ

t

}xt`1 ´ xt}1

¸

ď }X}
TV-3D

ď
˜

ÿ

t

}xt}TV

¸

`
˜

ÿ

t

}xt`1 ´ xt}1

¸

(IV–4)
where }¨}

TV
is the 2D total variation as defined in (I–10). Indeed, minimizing }X}

TV-3D

leads to small values of both the cumulated 2D TV of all the frames of the sequence
ř

t }xt}TV
and the cumulated l1-norm of all the frame to frame differences

ř

t }xt`1 ´ xt}1
,

and reciprocally. Moreover, from the concavity property of the square root function, it
can be shown that:

˜

ÿ

t

}xt}TV

¸

`
˜

ÿ

t

}xt`1 ´ xt}1

¸

ď
?

2 ¨ }X}
TV-3D

(IV–5)

and that this inequality is tight if and only if, for all t P �0, T ´ 2� and all pu, vq P Ω, the
following holds:
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b

|pDhxtq ru, vs|2 ` |pDvxtq ru, vs|2 “ |pxt`1 ´ xtq ru, vs| (IV–6)

In other words, for given values of
ř

t }xt}TV
and

ř

t }xt`1 ´ xt}1
– which can be thought

as measures of respectively the intra-frame and inter-frame sparsity – the 3D total vari-
ation is minimal when, at each spatial point pu, vq and time point t, the amplitude of

the local spatial gradient
b

|pDhxtq ru, vs|2 ` |pDvxtq ru, vs|2 is equal to amplitude of the
local frame-to-frame difference |pxt`1 ´ xtq ru, vs|: this explains the relation between the
minimization of }X}

TV-3D
and the third sparsity property enforced on 2D+T video se-

quences mentioned above. This relation can also be explained by interpreting }X}
TV-3D

as a particular mixed l1,2-norm (see Sec. I.2.5) operating on a linear transform of X that
would stack its discrete derivatives in the horizontal, vertical and temporal directions.

IV.1.3.2 Mean background correction

There are some situations where the difference pxt`1 ´ xtq between two consecutive frames
is not sparse at all, even if xt`1 and xt are well-correlated. For microscopy applications,
this includes the case when the global illumination of the observed scene changes over
time. To make TV-3D regularization robust to this phenomenon, we reformulate the
reconstruction scheme (IV–3) as follows:

arg min
XPCNT

}X ´ A}
TV-3D

subject to }ΦX ´ Y }
2

ď � (IV–7)

where A is a sequence whose frames at (0 ď t ď T ´ 1) are defined by at “ µt1, with µt

representing the mean intensity value of the tth frame in the original signal of interest.

The sequence A, or equivalently the mean value µt of each frame, has to be estimated
prior to the resolution of (IV–7) from the vector of observations Y . As µt “ 1

N
x1|xty, if

each measurement operator φt contains a row proportional to 1, the values µt can directly
be read from the vector of observations Y ; this is for example the case when the φt

are partial Fourier transforms for which the sampling pattern is designed such that the
central Fourier coefficient (the one corresponding to the constant basis vector) is always
sampled. If φt does not contain a row proportional to 1, µt can still be estimated using the
framework developed in [Davenport10a]; according to the results presented in that paper,
µt, being a linear function of the signal of interest, can be estimated as µ̂t “ 1

N
xφt1|yty.

This property can be understood as a consequence of the restricted isometry property
(see Sec. I.2.2): assuming that φt has small RIP constants, this operator behaves like an
isometry, meaning in particular that it preserves inner products between vectors:

µ̂t “ 1

N
xφt1|yty “ 1

N
xφt1|φtxty « 1

N
x1|xty “ µt (IV–8)

Actually, the property (IV–8) requires additional conditions on φt to hold, that are pre-
cisely defined and thoroughly justified in [Davenport10a] (Theorem 4).
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Finally, as a practical remark, it can be noticed that the optimization scheme (IV–7)
is actually equivalent to the TV-3D driven scheme (IV–3) up to the variable change
X 1 “ X ´ A. Then, (IV–7) can be solved in practice with the usual dedicated CS
solvers, assuming that they can handle the 3D total variation (either natively or after
being adapted). In practice, we use the NESTA algorithm [Becker11] to solve (IV–3)
and (IV–7): the modification required to make this algorithm handle TV-3D are quite
straightforward as 2D TV is natively supported.

IV.1.4 Comparative numerical simulations

IV.1.4.1 Methodology

We compared the proposed TV-3D-based regularization methods with other existing re-
construction formulations, including:

• l1-synthesis using a 3D wavelet transform (see [Wakin06]), using either the Haar
wavelet (as suggested by the authors) or the Dauchechies-4 orthogonal wavelet
(DB4);

• l1-synthesis using the BK and CK dictionaries (see [Marcia08]), with a block size
of K “ 4 or K “ 20 frames, and a Dauchechies-4 wavelet transform as the 2D
dictionary ψ.

To assess the improvement offered by 3D reconstruction methods thanks to temporal
redundancies, we also provide the results obtained with frame-by-frame reconstruction,
using either TV or Dauchechies-4 wavelet regularization.

For this evaluation, we used three video test sequences:

• Amoeba, sized 256 ˆ 256 ˆ 80 (height ˆ width ˆ number of frames), which is a mi-
croscopy sequence of moving and deforming amoeba cells;

• Foreman, sized 288ˆ352ˆ80, which is a widely-used test sequence in the signal pro-
cessing community, representing a talking person over a non-stabilized background;

• Disks 1, sized 256 ˆ 256 ˆ 80, which is a synthetic sequence representing moving
disks with random gray levels, sizes (diameters between 5 and 25 pixels) and speeds
(the distance travelled by one disk is about 1 to 3 pixels between two consecutive
frames). The boundaries of these disks is also blurred by Gaussian kernels with
various radius, in order to simulate different conditions of focus. We designed this
synthetic sequence so that it breaks the underlying model corresponding to 3D total
variation regularization; more precisely, the gray level of the background oscillates
quickly between two values, simulating rapid variations of the global illumination.

For each of these test sequences, we generated a vector Y of observations by concatenat-
ing partial Fourier measurements of each frame. The selection of the Fourier coefficients
was performed according to a random uniform strategy, with different realizations of this
random strategy for each frame. The sampling patterns were also constrained to obey a
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Reconstruction method
PSNR (dB)

Amoeba Foreman Disks

Frame-by-frame, TV regularization 42.5 16.2 26.6

Frame-by-frame, wavelets (DB4) regularization 38.3 12.7 15.5

3D total variation 46.8 27.6 22.0

3D total variation with background correction 46.8 26.8 38.9

3D wavelets (Haar) [Wakin06] 45.2 20.8 18.6

3D wavelets (DB4) [Wakin06] 45.3 21.1 15.4

B4 + 2D wavelets (DB4) [Marcia08] 30.7 17.4 17.2

C4 + 2D wavelets (DB4) [Marcia08] 43.8 17.8 18.1

B20 + 2D wavelets (DB4) [Marcia08] 43.0 20.7 17.9

C20 + 2D wavelets (DB4) [Marcia08] 45.8 23.6 18.2

Figure IV–2: Reconstruction error (expressed as a PSNR) between the original sequences
Amoeba, Foreman and Disks 1 and the corresponding reconstructed sequences obtained us-
ing various regularization methods. The proposed regularization methods are highlighted
with bold font.

central symmetry invariance, to be coherent with the Hermitian symmetry property ex-
hibited by the Fourier transform of real-valued frames. We used an arbitrary set sampling
rate of 10% for both Amoeba and Disks 1, and 20% for Foreman to handle the higher level
of complexity exhibited by this sequence.

Then, we reconstructed each of the test sequences from the corresponding measurement
vector Y with all the considered reconstruction methods. We assessed the reconstruction
fidelity of the algorithms for each test sequence by measuring the peak signal-to-noise
ratio (PSNR) between the input and the reconstructions (see Fig. IV–2); visual qualitative
evaluation of the artifacts was also performed (see Figs. IV–3, IV–4, and IV–5).

IV.1.4.2 Data fidelity and reconstruction artifacts

In terms of PSNR, the proposed TV-3D-based methods obtain the best reconstruction
results, although the improvement over the other best performing methods (C20 [Marcia08]
or 3D wavelets [Wakin06] regularizations) is not dramatic in most cases (1 dB for Amoeba,
about 4 dB for Foreman). However, this measurement does not reflect the gain in terms
of visual perception brought by the two TV-3D-based methods.

Indeed, compared to the wavelet-based regularization methods, TV-3D tends to pro-
duce sequences with very sharp edges, without the oscillatory patterns typically present
close to the edges in 3D wavelet reconstructed sequences. TV-3D reconstructions also do
not have the following problems typically encountered with BK and CK-based estimators:

• BK dictionaries tend to produce estimators where all the K frames belonging to a
given group are similar (the gray level of a given pixel is almost piecewise constant
over time), resulting in a jerky effect when switching from one group to the next.

• CK reconstructed sequences display precognition and trailing artifacts, meaning that
the reconstructed frame corresponding to time t contains patterns belonging to the
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Original sequence 3D wavelets (DB4) B20 + 2D wavelets

Frame-by-frame TV 3D total variation C20 + 2D wavelets

Figure IV–3: Reconstruction results obtained for the test sequence Amoeba (frame t “ 50)
with various regularization methods.

Original sequence 3D wavelets (DB4) B20 + 2D wavelets

Frame-by-frame TV 3D total variation C20 + 2D wavelets

Figure IV–4: Reconstruction results obtained for the test sequence Foreman (frame t “ 23)
with various regularization methods.
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Figure IV–5: Reconstruction results obtained for the test sequence Disks 1 with the two
proposed methods. The result obtained using the TV-3D with background correction
regularization (bottom row) is visually identical to the original sequence (top row).

frames t`1, t´1, t`2, t´2, etc. This is particularly noticeable close to the moving
or deforming objects.

Finally, for most of the sequences, the simple 3D total variation estimator is very sim-
ilar to its TV-3D with background correction counterpart, both in terms of PSNR and
visual quality. The only exception is the Disks 1 sequence, which was designed on pur-
pose to challenge the TV-3D reconstruction: since the difference between two consecutive
frames is non-zero at almost every pixel, the corresponding hypothesis on which the TV-3D

estimator – as well as many other estimators, especially those using the BK and CK dic-
tionaries – relies on does not hold. Using the TV-3D regularization term with background
correction tackles this issue, leading to a result almost identical to the original in the case
of the Disks 1 sequence (see Fig. IV–5).

IV.1.4.3 Sampling rate gain over frame-by-frame reconstruction

To quantify the sampling rate gain provided by the TV-3D-based reconstruction methods
over simple frame-by-frame reconstructions, we reproduced the simulations performed on
our test sequences with several values of the sampling rate, following the same methodology
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Figure IV–6: Trade-off curves between sampling rate and reconstruction error for the
Amoeba sequence, depending on the reconstruction method. To achieve reconstruction
with a given error bound, the TV-3D regularization method needs three to four times less
measurements than its 2D frame-by-frame counterpart.

than described in Sec. IV.1.4.1. We then evaluated the evolution of the reconstruction error
(measured as a PSNR) as a function of the sampling rate: results obtained for the Amoeba
sequence are presented in Fig. IV–6.

We observed that the sampling rate corresponding to a given level of fidelity of the re-
constructed sequence with respect to the original data is generally 3 to 4 times smaller with
the TV-3D-based reconstruction than with the frame-by-frame TV reconstruction, that do
not exploit the temporal redundancies of the sequences; this ratio tends to decrease when
the PSNR increases. One should also mention that this result does not depend on whether
TV-3D reconstruction with background correction or TV-3D alone is considered, except in
the case of the Disks 1 sequence, for which TV-3D reconstruction alone completely fails.

IV.2 Non-linear acquisition and phase retrieval

The work developed in this section – about non-linear acquisition in the Fourier domain
and reconstruction of video sequences using a phase retrieval methodology – was published
in the conference papers [Le Montagner13b] and [Le Montagner13c].

IV.2.1 Non-linear versus linear optical Fourier measurements

In Sec. IV.1, we studied a problem of video recovery, aiming at reconstructing a 2D+T
sequence from samples of the 2D Fourier transform of each of its frames. The motivation
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for studying this problem is to conceive optical CS cameras based on an optical Fourier
transform and a specific photo-electric sensor array device (see Sec. IV.1.1).

However, although measuring the complex Fourier transform of a scene can be imple-
mented optically (see [Goodman96]), it remains challenging as photo-electric transducers
such as a CCD or CMOS array return output signals that correspond to a measure of
the energy of the incident photons, which is independent of the phase of the correspond-
ing electro-magnetic wave. Measuring this phase relies on more complex optical set-ups
(holography set-ups for instance, see [Marim11b] and Sec. I.3.2) which are not always
compatible with the experimental arrangement. On the contrary, measuring the sole mag-
nitude of the complex Fourier transform relaxes the constraints put on the optical part of
our optical CS camera scheme.

Formally, the acquisition model corresponding to sole magnitude measurement para-
digm is the following:

yt “ |φtxt| for all t (IV–9)

where xt P R
N is the tth frame of the acquired sequence, yt P R

mt
` is the vector of measures

acquired at time point t, φt is a partial Fourier transform, and |¨| stands for the pointwise
modulus. Contrary to the “phase-aware” acquisition model (IV–1), that states that the
measured data are related to the signal of interest through a linear relation and therefore
falls into the general framework of compressed sensing, the new acquisition model (IV–9)
is non-linear, calling for a completely different reconstruction strategy, denoted as phase
retrieval.

IV.2.2 Translation invariance issue and problem formulation

Rejecting the phase information of the Fourier transform during the measurement process
(IV–9) makes two images equal up to a translation with periodic boundary conditions
indistinguishable, due to the properties of the Fourier transform. Therefore, a necessary
condition to make the recovery of an image xt based on measures yt acquired as (IV–9)
possible is to inject some prior knowledge about the location of the structures and objects
shown in the image.

In a context of video acquisition and reconstruction, such prior knowledge can be
provided by the frames adjacent to the frame being reconstruct. In what follows, we
propose a reconstruction scheme that operates recursively on consecutive frames: starting
from an initial key-frame x0 assumed to be available, we reconstruct the following frame
x1 using its partial Fourier modulus data y1 and the key-frame x0; the reconstruction
process is then iterated to the next frame, to reconstruct x2 using y2 and x1, etc. The
global video reconstruction problem is then recast into a sequence of frame reconstruction
problems, defined as:

Find xt such that

#

yt “ |φtxt| (up to noise and measurement inaccuracy)

xt is compatible with xt´1

(IV–10)
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where the compatibility condition between xt and its predecessor xt´1 will be formalized
in Sec. IV.2.3.3.

It is worth noting that this step-by-step reconstruction procedure differs from the re-
construction scheme used in the context of linear measurements (see Sec. IV.1), in which
all the frames of the video sequence are reconstructed in a joint manner. It also requires
to have a key-frame x0 to initialize the recursive procedure: such key-frame has to be
acquired in a different manner than the other frames of the sequence, which impacts the
design of an imaging set-up that would implement such acquisition strategy. However,
the acquisition of such additional data is somehow unavoidable, as one has to break the
translation invariance mentioned above.

IV.2.3 Phase retrieval reconstruction

In this section, we introduce the phase retrieval reconstruction algorithm used to solve
(IV–10). For the sake of simplicity, we assume here that the frame index t is fixed, and we
drop the corresponding subscripts: x (previously xt) will denote the frame being recon-
struct, a (previously xt´1) its predecessor (assumed to be known when xt is reconstructed),
and similarly for y (previously yt) and φ (previously φt).

IV.2.3.1 General framework

The problem of recovering a signal from the modulus of its Fourier transform, known
as the phase retrieval problem, has been studied for a long time: this reconstruction
technique is used for instance for X-ray microscopy applications in crystallography (see
[Fienup82, Miao99]). To recover a signal x P R

N from a measurement vector y defined as
in (IV–9), [Fienup82] propose an iterative algorithm based on alternated projections over
two subsets of RN :

• The data set Dy,�, that contains all the candidates x that correspond to the measured
samples, up to a certain tolerance � that depends on the noise that affects these
measurements:

Dy,� “
�

x P R
N such that }y ´ |φx|}

2
ď �

(

(IV–11)

• The regularization set R that corresponds to all the signals that meet certain prior
conditions which are known to be true for the actual solution. For crystallography
applications, R typically consists in all the 2D images that are supported on a given
subset of pixels.

Then, an estimator x̂ of the solution is obtained as a limit of alternated projections over
the two sets Dy,� and R:

x̂ “
`

ΠR ˝ ΠDy,� ˝ ΠR ˝ ¨ ¨ ¨ ˝ ΠDy,�

˘

pxinitq (IV–12)
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where ˝ is the composition operator, xinit is an initial guess of the solution, and ΠDy,� and
ΠR stand respectively for the projection operators over Dy,� and R:

ΠDy,� pxq “ arg min
z

}z ´ x}
2

subject to z P Dy,� (IV–13)

and similarly for ΠR. It is shown in [Fienup82] that the sequence of estimators produced
by the iterations (IV–12) converges toward the intersection of Dy,� and R.

Other works have refined the algorithm (IV–12), mostly to improve the convergence rate
(see for instance [Bauschke03, Luke05, Marchesini07] and references therein). However,
to the best of our knowledge, most of the existing phase retrieval algorithms rely on the
construction of a sequence of estimators that converges toward the intersection of two sets,
one characterizing the valid signals with respect to the measurements, and the other one
the prior information available on the solution. We however mention three works that are
exceptions with respect to this general approach:

• In [Candès11], the authors propose to transform the non-linear modulus constraint
y “ |φx| into a linear one, by lifting up the unknown variable from R

N to a
higher dimension space. More precisely, if the rows of the matrix φ are denoted
as φ˚

0 , φ˚
1 , . . . , φ˚

N´1
, the set of non-linear equations tyk “ |xφk|xy|uk“0,...,N´1

that
expresses the compatibility of the signal x with the vector of measurements y is
recast into the following equivalent formulation:

y2
k “ Tr pφkφ˚

kxx˚q for all k (IV–14)

where Tr p¨q is the matrix trace operator2. The authors in [Candès11] propose to
change the unknown variable, switching from the column vector x P R

N to the
symmetric positive matrix X “ xx˚ P R

NˆN : this modification makes the equa-
tions (IV–14) linear, allowing convex formulations of the phase retrieval problem.
However, the price to pay for this transformation is that the unknown variable is
now defined in a N2 dimension space: for imaging applications where N might be
quite large (N “ 6.5ˆ104 in the numerical examples presented in Sec. IV.2.4, which
corresponds to N2 “ 4.3 ˆ 109), the approach proposed by [Candès11] is mostly
inapplicable due to performance and memory issues.

• In [Waldspurger13], the set of non-linear equations y “ |φx| is turned into a phase
completion problem, in which the authors propose to search for not only the signal of
interest x, but also a “phase vector” u P C

N (meaning that each component uk of u

has a unit modulus) such that y ˆ u “ φx. More precisely, the approach proposed
in [Waldspurger13] consists in solving the following problem3:

2This re-writing trick involving the trace operator actually dates back to [Balan09], where it is presented
in a quite intricate manner.

3The analysis proposed is [Waldspurger13] is stated for complex-valued signals x P C
N , while in Sec. IV.2

we chose to formulate the phase-retrieval problem for real-valued signals x P R
N for the sake of clarity.

However, most of the results presented here can be extended to complex-valued signals.
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arg min
x,uPCN

}φx ´ y ˆ u}2

2
subject to @k |uk| “ 1 (IV–15)

It can be noticed that the x-minimization sub-problem occurring in (IV–15) has an
algebraic solution, namely x “ φ: ¨ py ˆ uq where φ: denotes the Moore-Penrose
pseudo-inverse of φ. By substituting this solution into (IV–15), the authors recast
the problem to solve into the following one:

arg min
uPCN

xu|Huy subject to @k |uk| “ 1 (IV–16)

where H P C
NˆN is a positive Hermitian matrix depending on φ. Then, the method

proposed by the authors to solve (IV–16) makes use of a variable change similar to
the one used in [Candès11] (see the above point), replacing u P C

N with U “ uu˚ P
C

NˆN , to “convexify” the underlying problem. As such, this approach suffers from
the same limitations as the one proposed in [Candès11] when dealing with large-
dimension signals as encountered in imaging applications.

• In the paper [Shechtman13] – that was released simultaneously to our work
[Le Montagner13b] – the authors tackled a problem similar to ours, that is video
reconstruction based on measurements of the Fourier transform modulus of each
frame composing the sequence. In their approach, the difference map between two
consecutive frames is assumed to be sparse, and this is this difference map that
is actually reconstructed. More precisely, the support of this difference map is
iteratively discovered by a procedure that alternatively:

1. for a given support, finds the difference map that best matches the Fourier
modulus measurements,

2. updates the support to improve this matching.

This approach however supposes that the size of the support of the difference map
between two consecutive frames is known: we do not see how to infer this information
in the context of our problem.

In our case, the prior information is quite different from the one available in crystallog-
raphy applications (i.e. support constraints). We propose in the next section to therefore
adapt the alternated projection scheme (IV–12) to our video reconstruction problem by
formulating a suitable set of prior hypotheses and deriving the corresponding regulariza-
tion set R.

IV.2.3.2 Projection operator on the data set

Before moving to the prior hypothesis and the regularization set issue, let us state some
remarks about the data set Dy,� and its associated projection operator. One of the key
points that makes the alternated projection scheme (IV–12) efficient is that, although the
set Dy,� is not convex in general, its associated projection operator ΠDy,� can be evaluated
explicitly in a very efficient manner, as demonstrated in what follows.
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First, let us rewrite the expression (IV–13) with the Fourier transforms x1 “ Fx and
z1 “ Fz of the involved variables x and z (F P C

NˆN denoting the Fourier transform
operator):

ΠDy,� pxq “ F
˚ẑ1 with ẑ1 “ arg min

z1

›

›z1 ´ x1›
›

2

2
subject to

›

›y ´
ˇ

ˇΣz1ˇ
ˇ

›

›

2
ď � (IV–17)

where Σ P t0, 1umtˆN is the selection operator associated to the partial Fourier transform
φ (see Sec. I.2.3). Via a permutation of the rows of z1, this vector can be expressed as a
vertical concatenation of two column vectors zs P C

mt and zd P C
pN´mtq, with zs “ Σz1:

these two sub-vectors correspond to coefficients of z1 that are respectively selected and
discarded by Σ. Using similar notations for x1, it follows that:

ẑ1 “
«

ẑs

ẑd

ff

with
´

ẑs, ẑd
¯

“ arg min
zs,zd

}zs ´ xs}2

2
`

›

›

›
zd ´ xd

›

›

›

2

2

subject to }y ´ |zs|}
2

ď �

(IV–18)
From the expression of the optimization problem in (IV–18), it clearly results that ẑd “ xd,
as the minimization with respect to the variable zd is unconstrained. We then rewrite
the remaining complex-valued vectors in a polar form: zs “ r ¨ exp pi ¨ θq and4 xs “
ρ ¨ exp pi ¨ ϕq, leading to:

ẑs “ r̂ ¨ exp
´

i ¨ θ̂
¯

with
´

r̂, θ̂
¯

“ arg min
r,θ

ÿ

k

`

r2
k ` ρ2

k ´ 2 ¨ rk ¨ ρk ¨ cos pθk ´ ϕkq
˘

subject to }y ´ r}
2

ď � and rk ě 0 for all k

(IV–19)

From the positivity of the modulus values rk and ρk, it results that θ̂ “ ϕ, meaning that
ẑs and xs must have the same phase. The remaining optimization with respect to the
variable r is a quadratic constraint problem. Using the Karush-Kuhn-Tucker conditions
(see for instance [Boyd04]), it can be shown that:

r̂ “ 1

1 ` λ
pρ ` λyq with λ “ max

ˆ

0,
1

�
}ρ ´ y}

2
´ 1

˙

(IV–20)

All together, the expressions (IV–17) to (IV–20) lead to a closed-form expression for the
projection operator ΠDy,� . The algorithmic complexity of the evaluation of this expression
is O pN log Nq, this cost being dominated by the computation of Fourier transforms.

IV.2.3.3 Hybrid total variation

The sparsity hypothesis assumed on the video sequences to reconstruct is the same here
than in the case of the linear measurement context studied in Sec. IV.1: indeed, these

4The notation zs “ r ¨ exp pi ¨ θq expresses a pointwise relation, i.e. zs
k “ rk ¨ exp pi ¨ θkq for all

components k.
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hypotheses are supposed to describe intrinsic properties of the sampled sequences, which
implies that they do not depend on the measurement process. We therefore assume that
the three sparsity properties introduced in Sec. IV.1.3.1 still hold for the current phase
retrieval problem.

To enforce these properties in the current context, we introduce the following functional,
denoted as hybrid total variation:

}x}
hTV,w,a “

ÿ

pu,vqPΩ

w ru, vs ¨
b

pDhxq ru, vs2 ` pDvxq ru, vs2 ` px ´ aq ru, vs2 (hTV)

where x and a are two 2D images defined on the spatial discrete domain Ω P Z
2, Dh and

Dv are the discrete derivative operators defined as in (TV-3D), and w is a weight map
defined on the domain Ω such that 0 ă w ru, vs ă `8 for all the points pu, vq P Ω. In a
first approach, w can be though as a uniform map (w “ 1), although the computations
associated to the hybrid total variation will be conducted for generic weight maps w. The
role of this parameter and the way it is set will be specified in Sec. IV.2.4.3.

The functional (hTV) is related to the 3D total variation (TV-3D), in that if X repre-
sents a 2D+T video sequence composed of T frames xt (0 ď t ď T ´1), then the following
relation holds:

}X}
TV-3D

“
T ´2
ÿ

t“0

}xt}hTV,1,xt`1
(IV–21)

The hybrid total variation of a frame xt (with the parameter a set to xt`1) can therefore
be thought as the contribution of this frame to the 3D total variation of the whole 2D+T
sequence. As a consequence, the hybrid total variation inherits the properties of the
3D total variation in terms of sparsity enforcement: minimizing this functional do select
frames with the sparsity characteristics stated in Sec. IV.1.3.1.

Finally, we define the regularization set R involved in the alternated projection scheme
(IV–12) as a level set of the hybrid total variation (hTV):

Rw,a,τ “
!

x P R
N such that }x}

hTV,w,a ď τ
)

(IV–22)

The newly introduced parameter τ ą 0 becomes an input prior to the reconstruction
problem or can be set adaptively during the reconstruction process, as proposed below.

IV.2.3.4 Projection operator on the regularization set

Using Rw,a,τ as a regularization set for the reconstruction requires to be able to evaluate
efficiently the projection operator ΠRw,a,τ , which implies to solve several instances of the
following problem:

ΠRw,a,τ pxq “ arg min
zPRN

}z ´ x}
2

subject to }z}
hTV,w,a ď τ (IV–23)
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To solve this convex optimization problem, we use an algorithm derived from the total
variation projection method presented in [Fadili11]. The idea behind this method is to
recast the constrained problem (IV–23) into an equivalent unconstrained problem, and to
solve the latter using a gradient descent method with Nesterov acceleration. We detail
this approach in the following paragraphs:

1. we start by introducing some of the notations and lemmas needed to describe the
method,

2. then we derive unconstrained formulation equivalent to (IV–23),

3. we detail how the proximal operator associated to the weighted l8-norm defined in
the first step – which is used in the algorithm solving the unconstrained formulation
– is evaluated,

4. finally, we present the algorithm used to solve this unconstrained formulation.

Preliminary notations and lemmas First, let us introduce a few notations. In what
follows, Fd (d P N˚) denotes the vector space whose objects are obtained as the concate-
nation of d elements of R

N . For instance, for d “ 3 such concatenation is represented
as px, x1, x2q P F3 for any x, x1, x2 P R

N . Conversely, if f P Fd, then f ppq P R
N

(with p P �0, d ´ 1�) denotes the pth vector that composed the object f : for instance,
px, x1, x2qp1q “ x1. By extension, f pp,qq P F2 is defined as

`

f ppq, f pqq
˘

for any f P Fd. We
also provide the vector space Fd with an inner product and a l2-norm, defined canonically
as:

xf |gy “
d´1
ÿ

p“0

@

f ppq
ˇ

ˇgppq
D

for all f , g P Fd (IV–24)

and }f}
2

“
a

xf |fy for all f P Fd.

By focusing more specifically on the vector space F3, we introduce the notions of
weighted l1 and l8-norms on this space5. For any w P R

N with 0 ă wk ă `8 and f P F3,
we define:

}f}
1,w “

ÿ

k

wk ¨
b

`

f p0q
˘2

k
`

`

f p1q
˘2

k
`

`

f p2q
˘2

k

}f}8,w “ max
k

wk ¨
b

`

f p0q
˘2

k
`

`

f p1q
˘2

k
`

`

f p2q
˘2

k

(IV–25)

where we remind that
`

f ppq
˘

k
refers to the kth component of the pth vector that composed

the object f P F3. One can easily check that the norm properties do hold for both }¨}
1,w

and }¨}8,w: in particular, the requirement that the components of the weight map w are
non-zero ensures that these functionals are definite. Also, please note that, although F3 is
isomorphic to R

3N , }¨}
1,w and }¨}8,w are different from the usual l1 and l8-norms defined

on R
3N , even in the case of the uniform weight map (i.e. w “ 1). One can also notice

that the hybrid total variation (hTV) can be expressed as a weighted l1-norm:

5These definitions could easily be extended to other Fd spaces and lp-norms, but we do not need such
extensions for our proof.
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}x}
hTV,w,a “ }px ´ a, Dhx, Dvxq}

1,w (IV–26)

Finally, we introduce the linear operator ∇ : RN Ñ F2, defined as ∇x “ pDhx, Dvxq.
The adjoint of p´∇q is denoted as Div, and its expression is Divf “ ´D˚

hf p0q ´ D˚
vf p1q

for any f P F2.

Thanks to these definitions, we can state the following properties (a justification of
them is provided below):

Lemma IV–1 For all f , g P F3:

xf |gy ď }f}
1,w ¨ }g}8, 1

w
(IV–27)

where 1

w
P R

N denotes the vector whose components are equal to 1

wk
pointwise. Moreover,

for all f P F3, there exists g P F3 (with g ‰ 0) that makes this inequality tight. Conversely,
for all g P F3, there also exists a non-zero f P F3 such that (IV–27) is tight.

Lemma IV–2 (Dual norm of }¨}
1,w) For all g P F3 and λ ě 0:

λ }g}8, 1

w
“ sup

fPF3

xf |gy subject to }f}
1,w ď λ (IV–28)

Lemma IV–3 (Legendre-Fenchel conjugate of }¨}8, 1

w
) For all f P F3:

sup
gPF3

´

xf |gy ´ τ }g}8, 1

w

¯

“
#

0 if }f}
1,w ď τ

`8 otherwise
(IV–29)

The right-hand side of this equality is defined as the indicator function of the l1,w-ball of

radius τ , and is denoted as 1

!

}f}
1,w ď τ

)

.

Lemmas IV–2 and IV–3 are direct consequences of Lemma IV–1, whose proof is pre-
sented below. For more details about dual norms and Fenchel-Legendre conjugates, see
for instance [Boyd04] and [Fadili10].

Proof of Lemma IV–1. For any f , g P F3, we have, thanks to Cauchy-Schwartz inequali-
ties:

xf |gy “
ÿ

k

`

f p0q
˘

k
¨
`

gp0q
˘

k
`

`

f p1q
˘

k
¨
`

gp1q
˘

k
`

`

f p2q
˘

k
¨
`

gp2q
˘

k

ď
ÿ

k

wk ¨
b

`

f p0q
˘2

k
`

`

f p1q
˘2

k
`

`

f p2q
˘2

k
¨ 1

wk

¨
b

`

gp0q
˘2

k
`

`

gp1q
˘2

k
`

`

gp2q
˘2

k
looooooooooooooooooooomooooooooooooooooooooon

ď}g}
8, 1

w

This leads to the result xf |gy ď }f}
1,w ¨ }g}8, 1

w
. Then, for any non-zero f P F3, it can be

verified that this inequality is tight with g defined as follows:
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Conversely, for any non-zero g P F3, the tight case is achieved with f defined as follows:

»

—

–

`

f p0q
˘

k
`

f p1q
˘

k
`
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k
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1
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where k0 is such that k0 “ arg maxk
1

wk

b

`

gp0q
˘2

k
`

`

gp1q
˘2

k
`

`

gp2q
˘2

k
. One can also check

that the objects g defined in (IV–30) and f defined in (IV–31) are such that }g}8, 1

w
“ 1

and }f}
1,w “ 1 respectively.

Derivation of the unconstrained formulation Thanks to the expression (IV–26),
the value of the projection operator Rw,a,τ (IV–23) can be expressed as the optimum z‹

of the following optimization problem, that involves an indicator function:

inf
zPRN

1

2
}z ´ x}2

2
` 1

!

}pz ´ a, Dhz, Dvzq}
1,w ď τ

)

(IV–32)

Using Lemma IV–3, (IV–32) can be reformulated as follows:

inf
zPRN

sup
fPF3

1

2
}z ´ x}2

2
`

@

f p0q
ˇ

ˇz ´ a
D

`
@

f p1,2q
ˇ

ˇ∇z
D

´ τ }f}8, 1

w
(IV–33)

Then, thanks to the convexity (respectively concavity) of the optimized function in (IV–33)
with respect to z (respectively f), the order of the infimum and supremum operators can
be switched (see for instance [Weiss08], Theorem 2.4 about this property). This leads to
the following equivalent formulation, where the terms that do not depend on z have been
isolated:

sup
fPF3

ˆ

´τ }f}8, 1

w
´

@

f p0q
ˇ

ˇa
D

` inf
zPRN

ˆ

1

2
}z ´ x}2

2
`

@

f p0q ´ Divf p1,2q
ˇ

ˇz
D

˙˙

(IV–34)

In (IV–34), the z minimization sub-problem is, for a fixed f , a quadratic problem, whose
solution has a closed form: the minimum value is 1

2
}x}2

2
´ 1

2

›

›x ´ f p0q ` Divf p1,2q
›

›

2

2
,

reached for z “ x ´ f p0q ` Divf p1,2q. Finally, by substituting this minimal value in
(IV–34), we obtain that the optimum of the initial constrained problem can be calculated
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as follows:

ΠRw,a,τ pxq “ z‹ “ x ´ f‹
p0q ` Divf‹

p1,2q

where f‹ “ arg min
fPF3

τ }f}8, 1

w
`

@

f p0q
ˇ

ˇa
D

` 1

2

›

›x ´ f p0q ` Divf p1,2q
›

›

2

2

(IV–35)

As announced, contrary to the initial formulation (IV–23), the optimization problem in
(IV–35) is unconstrained; however, the price to pay for this simplification is that the
optimized variable belongs to the vector space F3, whose dimension is three times larger
than the dimension of the initial space R

N .

Proximal operator associated to the weighted l8-norm Before presenting the
method used to solve (IV–35), we need to prove a lemma about the weighted l8-norm
defined on F3. More precisely, we need to prove that the function f ÞÑ }f}8, 1

w
is simple.

As defined in [Nesterov07, Weiss08], this property means that, for any λ ě 0, the proximal
operator6 associated to the function f ÞÑ λ }f}8, 1

w
has a closed form and can be evaluated

efficiently; this proximal operator is defined as follows, for any f P F3:

Proxλ}¨}
8, 1

w

pfq “ arg min
gPF3

λ }g}8, 1

w
` 1

2
}g ´ f}2

2
(IV–36)

To prove this assertion, let us reformulate the expression (IV–36). Using Lemma IV–2,
this minimization problem can be recast as:

inf
gPF3

sup
hPF3

}h}
1,wďλ

xh|gy ` 1

2
}g ´ f}2

2
(IV–37)

Using arguments similar to the one stated above, we can switch the infimum and supremum
operators in (IV–37), leading to the following equivalent expression:

sup
hPF3

}h}
1,wďλ

inf
gPF3

xh|gy ` 1

2
}g ´ f}2

2
(IV–38)

In this expression, the solution to the g minimization sub-problem has a closed form: the
minimal value is 1

2
}f}2

2
´ 1

2
}h ´ f}2

2
, reached for g “ f ´ h. By substituting this solution

to (IV–38), we obtain the following expression7 for the proximal operator (IV–36):

6See for instance [Moreau65, Combettes11] and references therein for a formal introduction to proximal
operators and associated results.

7The expression (IV–40) of the proximal operator (IV–36) can also be obtained as a consequence of
the Moreau decomposition property. This result expresses that, if ϕ and ψ are two real-valued convex
functions defined on a Hilbert space H, if additionally ψ pyq “ supxPH

xx|yy ´ ϕ pxq for all y P H (meaning
that ψ is the Legendre-Fenchel conjugate of ϕ, and vice versa), then the following identity holds:

x “ Proxϕ pxq ` Proxψ pxq for all x P H (IV–39)

Accurate details (such as the exact hypotheses required on ϕ and ψ) on this decomposition property can
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Proxλ}¨}
8, 1

w

pfq “ g‹ “ f ´ h‹

where h‹ “ arg min
hPF3

}h ´ f}
2

subject to }h}
1,w ď λ

(IV–40)

The minimization problem appearing in (IV–40) consists in finding the projection of a
vector f on a l1,w-ball (which is a convex set): for the usual l1-norm, it is a well-known
result that this projection is obtained by applying a soft-thresholding transformation to
f (see for instance [Van Den Berg08]). For our weighted l1-norm, the result is similar,
although the soft-thresholding transformation needs to be adapted to account for the
weight vector w. In our case, the expression obtained for h‹ is the following8:

»

—

—

—

–

´

h‹
p0q

¯

k´

h‹
p1q

¯

k´

h‹
p2q

¯

k

fi

ffi

ffi

ffi

fl

“ max

¨

˝0, 1 ´ ν ¨ wk
b

`

f p0q
˘2

k
`

`

f p1q
˘2

k
`

`

f p2q
˘2

k

˛

‚

»

—

–

`

f p0q
˘

k
`

f p1q
˘

k
`

f p2q
˘

k

fi

ffi

fl
for all k

(IV–41)
where ν ě 0 is a constant independent of k, whose value is to be determined according to
the following rules:

• if }f}
1,w ď λ, then ν “ 0;

• otherwise, ν must be set such that }h‹}
1,w “ λ.

The remaining issue consists in determining the value of ν when }f}
1,w ą λ. To pro-

ceed, let us introduce rk “ 1

wk

b

`

f p0q
˘2

k
`

`

f p1q
˘2

k
`

`

f p2q
˘2

k
for all k, and ϕ a permutation

of �0, N ´ 1� that sorts the coefficients rk in ascending order:

rϕp0q ď rϕp1q ď ¨ ¨ ¨ ď rϕpN´1q (IV–42)

With these notations, we can express the weighted l1-norm of the vector h‹ defined in
(IV–41) as follows:

}h‹}
1,w “

N´1
ÿ

l“0

w2

ϕplq ¨ max
`

0, rϕplq ´ ν
˘

(IV–43)

Now, let us introduce the scalar sk for all k P �0, N ´ 1�, that we define to be equal to the
weighted l1-norm of h‹ if the parameter ν were set to be equal to rϕpkq in the expression
(IV–43). This definition leads to the following expression for sk:

be found for instance in [Combettes05], Lemma 2.10. Then, (IV–40) is a direct consequence of (IV–39)
and Lemma IV–3.

8For the sake of clarity, we skip the detailed proof of this result, and just give some clues about it.
The expression (IV–41) can be obtained by observing that, according to the equivalence property stated
in Sec. II.1.1 (and also in [Weiss08], Theorem 2.7), there exists a constant ν such that h‹, as defined in
(IV–40), is also solution of h‹ “ arg minhPF3

1

2
}h ´ f}2

2
` ν }h}

1,w; this latter problem is separable, and
has a closed-form solution which is exactly (IV–41). The additional conditions used to determine the value
of ν results from a classical property of the projection operator on a set defined as the inverse image of a
real interval by a continuous function.
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sk “
N´1
ÿ

l“k`1

w2

ϕplq ¨
`

rϕplq ´ rϕpkq
˘

for all k P �0, N ´ 1� (IV–44)

One can check from (IV–44) that the sequence pskqk“0,...,N´1
is decreasing. Finally, we

define the index k0 as:

k0 “ arg min
kP�0,N´1�

k subject to sk ď λ (IV–45)

One can notice that k0 is well-defined, as sN´1 “ 0 ď λ.

Let us recapitulate, in order to make things more concrete. Assuming k0 ě 1, we can
state the following:

´

}h‹}
1,w if ν “ rϕpk0q

¯

“ sk0
ď λ ă sk0´1 “

´

}h‹}
1,w if ν “ rϕpk0´1q

¯

(IV–46)

As we want to determine ν such that }h‹}
1,w “ λ, we can guess from (IV–46) that ν

must be set in the interval
“

rϕpk0´1q, rϕpk0q
‰

. This intuition is indeed correct, and a careful
verification shows that the property }h‹}

1,w “ λ do hold when the parameter ν is defined
as follows:

ν “

$

’

’

’

&

’

’

’

%

rϕp0q ¨
}f}

1,w ´ λ

}f}
1,w ´ s0

if k0 “ 0

rϕpk0´1q ¨ λ ´ sk0

sk0´1 ´ sk0

` rϕpk0q ¨ sk0´1 ´ λ

sk0´1 ´ sk0

if k0 ě 1

(IV–47)

One can notice that this proof is constructive, in that it can be used as a skeleton to
implement an algorithm to evaluate the proximal operator (IV–36). The algorithmic
complexity of such algorithm is O pN log Nq, the most expensive step being the sorting of
the sequence prkqk“0,...,N´1

that is necessary to evaluate the threshold parameter ν.

Solving the unconstrained formulation The method we propose to evaluate the pro-
jection operator ΠRw,a,τ consists then in solving the unconstrained minimization problem
(IV–35). In this latter formulation, the function to minimize can be decomposed as a sum
between:

• a smooth term (f ÞÑ
@

f p0q
ˇ

ˇa
D

` 1

2

›

›x ´ f p0q ` Divf p1,2q
›

›

2

2
), that is Lipschitz-differen-

tiable with a Lipschitz constant smaller than
´

1 ` ~Div~2
¯

, which is itself smaller

than 9 (see [Chambolle04, Fadili11] for details about determining an upper bound
to ~Div~2);

• a non-smooth term (f ÞÑ τ }f}8, 1

w
), that is simple in the sense defined in

[Nesterov07, Weiss08].

To minimize this function, we use the iterative accelerated gradient descent method pro-
posed in [Nesterov07, Weiss08] (Algorithm 4.2 in [Weiss08]). The “accelerated” adjective
refers to the fact that, if Jp denotes the value of the objective function after the iteration

93



Chapter IV – Video sampling

p and J‹ the minimum of this objective function, then the method ensures that pJp ´ J‹q
is smaller than a term proportional to 1

p2 ; in the case of a classical gradient descent, this

bound would be only proportional to 1

p
, which results in a slower convergence.

Finally, all these results lead to an iterative scheme to evaluate the projection operator
ΠRw,a,τ : each iteration is performed in O pN log Nq operations, and the Nesterov accel-
eration ensures a quadratic convergence rate. This approach is much slower than what is
needed to compute the other projection operator ΠDy,� involved in the alternated projec-
tion scheme (IV–12). However, we observed that a careful initialization of the gradient
descent provides significant speed up of the convergence (see the pseudo-code of the full
algorithm in Fig. IV–7).

IV.2.3.5 Overall reconstruction algorithm

The proposed reconstruction algorithm is based on alternated projections of the iterated
reconstructions over the data set Dy,� and the regularization set Rw,a,τ , involving two
scalar parameters � and τ . The parameter � controls the size of the data set Dy,�, and
is set proportional to the noise level that affects the measurements; we assume that this
information is available prior to the reconstruction (in a real acquisition device, the noise
level could be evaluated through a calibration step for instance). However, setting the
parameter τ is not straightforward, as it is likely to be highly dependent on the image
content. Therefore, we developed an adaptive heuristic to dynamically adjust this param-
eter during the iterative reconstruction process.

This dynamic adjustment process relies on the following observation: the alternated
projection scheme (IV–12) produces a sequence of estimators that converge to the inter-
section Rw,a,τ X Dy,�, but this intersection is empty when τ is below a certain threshold
τ‹ (if the image a is not constant, the set Rw,a,τ itself is empty when τ “ 0). Therefore,
the algorithm becomes non-convergent if τ ă τ‹.

Based on this remark, we propose a reconstruction algorithm where τ is initialized at
an arbitrary high value τ0, and then reduced until the algorithm becomes non-convergent,
as detailed in the pseudo-code in Fig. IV–7. The algorithm returns the result (denoted as
xcandidate in Fig. IV–7) obtained with the smallest value of τ that leads to convergence. One
should notice that, compared to its mathematical definition (IV–23), the regularization set
projector ΠRw,a,τ takes here two input arguments (respectively xin and fin), and returns
also two outputs (respectively xout and fout):

• xin and xout are respectively the vector being projected and the result of the pro-
jection (as defined in (IV–23)),

• fin is used as the initialization of the gradient descent solving the auxiliary problem
(IV–35),

• fout refers to the object returned by this gradient descent (denoted as f‹ in (IV–35)).
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function Frame reconstruction(xinit, τinit, ∆tolvar, α)
p Ð 0

τ Ð τinit

px0, f0q Ð pxinit, 0q
loop

p Ð p ` 1 Ź increment the loop counter
xp´1{2

Ð ΠDy,� pxp´1q Ź projection on the data set
pxp, fpq Ð ΠRw,a,τ

`

xp´1{2
, fp´1

˘

Ź projection on the regularization set
δp Ð }xp ´ xp´1}

2
{ }xp´1}

2
Ź relative variation of x

if δp ă ∆tolvar then

xcandidate Ð xp Ź save the current estimate of x

τ Ð α ¨ τ Ź reduce the bound τ (α is chosen such that 0 ă α ă 1)
else if detect non-convergence then

return xcandidate Ź return the previously saved estimate of x

end if

end loop

end function

Figure IV–7: Pseudo-code of the iterative reconstruction algorithm. The algorithm takes
four arguments as input: xinit and τinit, which are the initial values for the reconstructed
frame and the hybrid total variation bound, and ∆tolvar and α, that controls the general
behavior of the algorithm. When the relative variation between successive iterates falls
below ∆tolvar, the bound τ is reduced by a factor α (chosen such that 0 ă α ă 1, and
close to 1 in practice), until the algorithm becomes non-convergent. The second input
and output arguments of the operator ΠRw,a,τ are used to initialize the gradient descent
loop that solves the auxiliary problem (IV–35), and to save the solution of this auxiliary
problem.

Mathematically speaking, the value of the input argument fin is not important: as ΠRw,a,τ

is defined as a convex optimization problem, its value does not depend on the initialization
of the gradient descent used to evaluate it. However, by suggesting a “good” initialization
point, this gradient descent converges to the optimum in fewer iterations, which dramati-
cally reduces the computation time.

One of the challenging issues raised by the algorithm presented in Fig. IV–7 is to detect
that the sequence of estimators does not converge for a given value of τ , since we do not
have any result on the theoretical convergence rate of this sequence of estimators, To solve
this issue, we developed an empirical approach based on the properties of the sequence pδpq,
which measures the relative variations between two consecutive iterates. More precisely,
to detect whether the algorithm starts to diverge and therefore should be stopped at a
given iteration p‹, we perform the following test:

1. linear regression over the truncated sequence of values of plog δpq for p‹ ´ ∆p ` 1 ď
p ď p‹, where ∆p is a fixed parameter, returning a slope of evolution s;

2. stop (i.e. decide that the current value of τ is too small for the algorithm to converge)
if s is above a certain threshold smax.
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The proposed non-convergence test evaluates the mean variation of the sequence plog δpq
over a window of ∆p samples: if this sequence increases at a rate higher than smax,
then we assume that the algorithm is diverging. Typical parameter values for this test are
∆p “ 100 iterations and smax “ ´10´4 per iteration. Finally, to improve the computation
speed, we typically perform this test every 25 iterations only: as the linear regression is
performed over a sliding window, the value of the resulting slope is not likely to change
much from one iteration to the next, which justifies this approach.

IV.2.4 Numerical simulations

IV.2.4.1 Methodology

In order to validate the video reconstruction method based on partial Fourier modulus
measurements presented in Sec. IV.2.3, we run this reconstruction method on numerically
simulated measurements, generated from synthetic and real test sequences. We use two
test video sequences here:

• Disks 2, sized 256ˆ256ˆ80 (heightˆwidthˆnumber of frames), which is a synthetic
sequence representing disk shapes of random intensity levels and sizes (diameters
between 5 and 25 pixels), and moving with random directions and speeds. The
typical distance travelled by the disks between two frames is about 1 to 3 pixels.
This sequence differs from the test sequence Disks 1 used in Sec. IV.1.4 in that the
intensity of its background is constant over time, and the boundaries of the disks
are not blurred.

• Amoeba, sized 256ˆ256ˆ80, which is a microscopy sequence of moving and stretching
cells having similar sizes and speeds as in Disks 2. This sequence is the one already
used in simulations involving linear Fourier measurements in Sec. IV.1.4.

Simulations were conducted on the Disks 2 sequence using 15% of magnitude Fourier
measurements; on Amoeba, we increased the sampling rate to 25% of Fourier samples to
handle the more complex nature of the signal. In both cases, we assumed that the first
frame of the sequence is a key-frame, i.e. is known prior to the reconstruction: we used
an input to initialize the process, and then we progressively recovered all the following
frames as described in Sec. IV.2.2.

IV.2.4.2 Qualitative and quantitative results

We first present results obtained with a weight map w set in a uniform manner in the
hybrid total variation (hTV): the corresponding reconstructions obtained for the sequences
Disks 2 and Amoeba are presented on Fig. IV–8 and Fig. IV–9. Figure IV–10 also presents
the evolution of the frame-by-frame reconstruction error (measured as the root mean
squared error RMSE between the original and reconstructed frames) as a function of
frame index t (i.e. the time) in the case of these two sequences.
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Figure IV–8: Reconstruction results obtained for the test sequence Disks 2, using 15% of
Fourier modulus measurements, and one key-frame at t “ 0. We used a uniform weight
map (w “ 1) in this example.
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Figure IV–9: Reconstruction results obtained for the test sequence Amoeba, using 25% of
Fourier modulus measurements, and one key-frame at t “ 0. We used a uniform weight
map (w “ 1) in this example.
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Figure IV–10: Frame-wise root mean squared error of the reconstructed video sequences
Disks 2 and Amoeba as a function of the frame index t (i.e. the time).

These results show that the distortions introduced by the reconstruction method in-
crease with time, i.e. with the distance to the initial key-frame: while in both sequences
the reconstructed frames for t ă 10 are quite similar to the original ones, errors become
significant close to the end of the sequences, but exhibit different characteristics:

• For Amoeba, the RMSE increases progressively and quite regularly with time t, which
is characteristic of error accumulation. Visually, this results in an increasing blurring
effect.

• For Disks 2, the RMSE increases sharply at time t “ 22, and then continues to grow
over the next 10 frames, leading to a reconstruction that is completely inconsistent
with the original sequence for t ą 30. This behavior is due to the fact that the
algorithm outputs an erroneous reconstructed frame at t “ 22, whose errors are then
propagated. On the contrary, frames corresponding to t ă 22 were almost perfectly
recovered. The reason explaining why the reconstruction fails at this particular point
remains however unclear.

IV.2.4.3 Weight map in the hybrid total variation

Results presented in Sec. IV.2.4.2 were obtained with the weight map parameter w in the
hybrid total variation (hTV) set to a uniform value (w “ 1). However, this parameter
can be refined with some prior hypothesis made on the reconstructed frames, by including
some motion prediction heuristics for instance. More precisely, we tested an approach
consisting in setting this parameter such that w ru, vs is small at the spatial positions
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Original sequence w “ 1 (uniform) w as in (IV–48) with κ “ 1

w as in (IV–48) with κ “ 10 w as in (IV–48) with κ “ 100 w as in (IV–48) with κ “ 1000

Figure IV–11: Frame t “ 70 of the sequence Amoeba reconstructed with different
parametrizations of the spatially varying weight maps w.

pu, vq P Ω where we expect to observe edges in the reconstruction (see Sec. IV.2.3.3 for
details about the notations).

We carried several reconstruction experiments in which the design of the weight map
used to reconstruct the frame xt were based on the gradient of the previous frame xt´1

in the sequence. In particular, we considered weight maps defined as follows:

w ru, vs “ exp

ˆ

´κ

b

pDhxt´1q ru, vs2 ` pDvxt´1q ru, vs2

˙

(IV–48)

with κ ą 0 a parameter to tune. The underlying assumption guiding this choice is that
edges in the reconstructed frame are expected to be located close to the edges of the
previous frame, which corresponds to a very simplistic motion prediction heuristic.

However, results presented in Fig. IV–11 show that – in spite of the simplicity of the
motion prediction underlying hypothesis – a careful choice of the weight map can indeed
reduce the reconstruction artifacts. In particular, in the sequence obtained with κ “ 100,
we were able to remove the blurring effect and contain the error accumulation phenomenon
that otherwise dramatically degrades the frames close to the end of the test sequences (i.e.
far from the key-frame). However, automatic calibration of the parameter κ remains
challenging: for instance, all our attempts to reconstruct Disks 2 using a non-uniform
weight map resulted in a degradation of the reconstructed sequence, compared to what
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we obtained with w “ 1. Other forms of weight maps w were also tested, such as:

w ru, vs “ 1

η `
b

pDhxt´1q ru, vs2 ` pDvxt´1q ru, vs2

(IV–49)

with η ą 0 a regularization parameter, but led to unsatisfactory results and numerical
instability. Setting w in a robust manner is still an open question.

IV.3 Conclusion

In this chapter, we presented two sparsity-based video microscopy reconstruction meth-
ods, using random projections in the Fourier domain, exploiting either linear (amplitude
and phase) or non-linear (amplitude only) measures. In the former case, the reconstruc-
tion scheme exploits general CS reconstruction results with a 3D total variation based
reconstruction functional, where all the frames of the sequence are reconstructed in a joint
manner. In the latter case, the reconstruction relies on an alternated projection algorithm
inspired by previous phase retrieval techniques, and modified to account for the specific
sparsity properties encountered in video microscopy sequences. This phase retrieval algo-
rithm differs also from the TV-3D-based method in that the frames of the sequence are
reconstructed recursively, starting from an initial key-frame assumed to be known, and
recovering each frame using the result obtained for its predecessor in the sequence.

The results demonstrate that video reconstruction can be performed from partial
Fourier measurements, opening the way for designing “compressed sensing” devices relying
on optical Fourier transforms. However, numerical simulations show significant differences
in terms of performances depending on whether the acquired samples include a Fourier
phase information or not: in particular, the quality of the resulting sequences is much
higher if phase information is available. Moreover, the phase retrieval reconstruction al-
gorithm used in absence of such phase information is more sensitive to error accumulation
during the reconstruction process due to its frame recursion behavior compared to the
CS reconstruction, that recovers all the frames of the sequence in a joint manner. The
phase retrieval algorithm also involves a large number of parameters that may be difficult
to tune, and that may significantly impact the convergence rate of the overall method:
obtaining theoretical results about this impact is still an open question, and would be
definitively worth investigating.
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Chapter V

Using CS as a denoising method?

The CS reconstruction operation that recovers the signals of interest from the partial
measurements vectors can be formulated either as a convex optimization problem or as a
greedy heuristic such as orthogonal matching pursuit (see Chap. II). In both cases, this
reconstruction step enforces sparsity priors on the signal to reconstruct, which – as a
side effect – tend to filter out the noisy component present in the measurements, as the
latter violates the sparsity assumptions. In some preliminary work [Marim09], the authors
exploited this characteristic to design an image denoising method based on the fusion
of several CS reconstructed images, which appears to be efficient in denoising low-light
microscopy images, whose noise component can be modeled as a mixture of an additive
Gaussian and a Poisson model. The work presented in this chapter was carried out bearing
in mind the study of denoising methods applicable to such low-light microscopy images,
in particular the extension of the method proposed in [Marim09].

More precisely, the behavior and performance of denoising algorithms are governed by
one or several parameters, whose optimal settings depend on the content of the processed
image and the characteristics of the noise, and are generally designed to minimize the mean
squared error (MSE) between the denoised image returned by the algorithm and a virtual
ground truth. In this chapter, we introduce a new unbiased risk estimator (PG-URE) of
the MSE applicable to a mixed Poisson-Gaussian noise model that unifies the widely used
Gaussian and Poisson noise models in low-light microscopy applications. We propose a
stochastic methodology to evaluate this estimator when little is known about the inter-
nal machinery of the considered denoising algorithm, and we analyze both theoretically
and empirically the characteristics of the proposed PG-URE estimator. Finally, we eval-
uate the PG-URE-driven parametrization for three standard denoising algorithms, with
and without variance stabilizing transforms, and different characteristics of the Poisson-
Gaussian noise mixture. Beyond the application to CS denoising, we emphasize that this
new tool can be used to optimize the parameters involved in any denoising algorithm,
assuming that the mixed Poisson-Gaussian noise model holds for the processed images.

Finally, let us mention that most of the work presented in this chapter was proposed
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as a journal paper [Le Montagner13d], and is currently undergoing peer review.
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V.1 Introduction

V.1.1 Denoising background

Image denoising is one of the most studied problem in image processing. Many algorithms
have been developed to tackle this issue, with various characteristics in terms of denoising
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efficiency, applicability to different types of images and noise models, and running time.
Among this large collection of available methods, we can single out the following families
of algorithms:

Thresholding in a transformed domain. The general principle of this type of denois-
ing algorithm is to apply a linear transform to the image in order to obtain a sparse
representation of it, to threshold the obtained coefficients in a non-linear separable
manner, and finally to revert the initial linear transform. This generic method can
be instantiated with several types of sparsifying linear transforms, including orthog-
onal wavelets [Donoho94, Donoho95a] (which is the original method), translation-
invariant wavelets [Coifman95], ridgelets [Candès99], curvelets [Candès04, Zhang08],
etc. One of the key practical interest of this type of methods is that, assuming that
the considered linear transform comes with a fast computation algorithm such as
the fast discrete wavelet transform (which is generally the case), they can be applied
very efficiently even on large 2D or 3D signals.

Variational based methods. With this type of method, the denoised image is obtained
as a minimizer of a functional, which is designed to enforce certain properties on the
result. One of the most famous representative algorithm of this category is total
variation filtering [Rudin92], which enforces a piecewise constant structure on the
images, and whose formulation is the following:

x̂ “ arg min
x

1

2
}x ´ y}2

2
` λ }x}

TV
(V–1)

where y is the input image to denoise, x̂ the output denoised image, }¨}
TV

is the
2D total variation semi-norm (I–10), and λ ą 0 is a parameter adjusting the general
behavior of the method: the higher λ is, the more noise will be removed, while for
λ Ñ 0, the output image will be constrained to match the input. Total variation
filtering (V–1) is known to be very efficient in removing noise while preserving sharp
edges in cartoon-like images. More generally, variational-based methods are very
flexible and can easily be tuned to account for different types of image models (see for
instance [Aelterman12, Zhu12]). It can also be noticed that several other denoising
methods such as anisotropic diffusion [Perona90] can be seen as variational methods
(see [Kawohl04]).

Patch-based non-local methods. This new category of denoising methods has been
introduced by [Buades05], with the non-local means (NLM) denoising algorithm.
The idea of this type of method is to exploit the spatial redundancy that exists in
natural images and to compute the denoised value of a given pixel by taking into
account the values of all “similar” pixels in the noisy image, including possibly pixels
located at long distances (i.e. non-local). Formally, the denoised value for a given
pixel k is defined as follows:

x̂k “ 1

Z pkq
ÿ

l

w pk, lq yl (V–2)
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where y is the noisy image, and where the summation index l visits all the pixels. In
(V–2), the weight w pk, lq ě 0 measures the similarity between the neighborhoods of
pixels k and l, and Z pkq “ ř

l w pk, lq is a normalization factor. This neighborhood
similarity measure w pk, lq is actually a parameter of the method; in [Buades05], the
authors propose to define it as:

w pk, lq “ exp

˜

´}π pkq ´ π plq}2

2

h2

¸

(V–3)

where π pkq represents a restriction of the whole noisy image y to a small window
(a patch) around the pixel k, and h ą 0 is a parameter adjusting the “denoising
intensity” of the method, similarly to λ in (V–1). Several variants of NLM involving
patches with different shapes have been proposed (see for example [Deledalle11]),
although the most common implementation of NLM uses centered square patches.

Most of the state-of-the-art denoising algorithms [Elad06, Dabov07] consist in refinements
of and crossings between these classical ones: for instance, BM3D [Dabov07] consists in
looking for image patches that present similarities (as in [Buades05]), and then applying a
thresholding operation on group of similar patches (in the manner of [Donoho95a]). One
can refer to [Milanfar13] for a more comprehensive overview of filtering methods applied
to denoising problems.

All these algorithms have in common that their behaviors is controlled by one or sev-
eral parameters, whose optimal values are almost always dependent on the data being
processed. More precisely, if y is the noisy image being observed, f θ a denoising algo-
rithm depending on a set of parameters θ, and x̂ “ f θ pyq the denoised image returned by
the algorithm, it is often desirable to select θ such that it optimizes a similarity criteria
between x̂ and a ground truth noise-free image x. Several image similarity criteria exist,
with various characteristics in terms of correlation to the human perception system (see
for instance [Zhang12] for a detailed review of these criteria). In this chapter, we focus on
the mean squared error (MSE), defined as follows:

MSE “ 1

N
}f θ pyq ´ x}2

2
(V–4)

where N is the size (i.e. the number of pixels) of the considered 2D images. This criterion
is certainly not the best one with respect to the human perception system correlation
issue, but its mathematical tractability makes it a valuable tool in image processing (see
[Wang09]).

V.1.2 Denoising via aggregation of multiple CS reconstructions

Using ideas inspired by the CS theory for denoising tasks, as proposed by [Marim09], is
justified by the two following remarks. First, in terms of frequency analysis, the energy of
a noise-free natural image is mostly concentrated in the low-frequency area of its Fourier

104



V.1. Introduction
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Figure V–1: Denoising scheme using several CS reconstructions. From a noisy image y,
we generate several CS measurement vectors yr, by taking the Fourier transform (FT)
of y and rejecting a random subset of the Fourier coefficients. Then, each yr is used
to produce an estimator x̂r of the original signal through a CS reconstruction scheme
(PTV) involving TV minimization. Finally, all the x̂r are combined in a x̂ estimator, with
improved faithfulness properties.

domain, while a white noise has a uniform spectrum intensity: this implies that, in a noisy
natural image, it is the high-frequency part of the image that is the most significantly
affected by the noise, making the information coming from this part of the spectrum more
inaccurate than its low-frequency counterpart. Second, the theory of CS states that a
sparse or compressible signal can be recovered from a non-adaptive subset of linear noisy
measurements.

Based on these two ideas, a CS-based denoising algorithm should follow the following
workflow (see also Fig. V–1):

1. Generate several subsets of correlated measurements by considering the Fourier
transform of the noisy image, and rejecting most of its – inaccurate – high frequency
coefficients.

2. For each measurement subset yr (r “ 1, . . . , R), compute an estimator x̂r of the
original non-noisy image through CS reconstruction (for instance (PTV)).

3. Combine all the x̂r estimators in a proper way to produce an improved estimator x̂

of the original noise-free image x.

In this global denoising scheme, the yr can be considered as approximative and partially
correlated observations of the original image y, and the x̂r as partially correlated coarse
estimators of the noise-free image. These x̂r are aggregated thanks to a fusion operator g,
designed such that the denoised image x̂ “ g px̂1, . . . , x̂Rq presents improved faithfulness
properties.

The denoising workflow presented in Fig. V–1 involves several parameters: the number
R of intermediate CS reconstructions to fuse, the data fidelity bound � involved in the CS
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reconstruction problem (PTV), the method used to select the Fourier coefficients involved
in the composition of the partial measurement vectors yr, the method used to fuse the
x̂r, etc.

A strategy to optimize these parameters could be to minimize a mean squared error
criteria, as proposed above. However, except in special contexts such as simulations when
the ground truth x is known, the MSE (V–4) is impossible to evaluate directly and cannot
be used as an objective criteria for parameter optimization tasks. The unbiased risk
estimator tools, among which SURE [Stein81, Donoho95b] is a well-known representative,
aim at tackling this issue.

V.1.3 SURE and parameter estimation

Stein’s unbiased risk estimator (SURE) [Stein81] is a well-known result in the statistics
field, that has recently received a growing interest from the image processing community
(see for instance [Donoho95b, Benazza-Benyahia05, Van De Ville09]).

The SURE estimator is built upon the hypothesis that the image y to denoise results
from a ground truth x corrupted by a white additive Gaussian noise b:

y “ x ` b with b „ N
`

0, σ2Id
˘

(V–5)

where the standard deviation parameter σ is assumed to be known. From this noise model,
and given a denoising function1 f , a similarity criteria SURE is defined as:

SURE “ 1

N
}f pyq ´ y}2

2
´ σ2 ` 2σ2

N
Div f pyq (V–6)

where Div f pyq “ ř

k
Bfk

Byk
pyq stands for the divergence of the function f . In [Stein81], the

author showed that, up to some technical points2, MSE and SURE have equal expected
values over all the realizations of the random variable b: E tMSEu “ E tSUREu. This
means that, in practice, SURE is an estimator of the MSE similarity criteria, and can be
taken as a surrogate. The empirical equality SURE « MSE has been confirmed in various
particular situations: see for instance [Ramani08, Van De Ville09].

A significant difference between MSE and SURE is that the latter does not depend on
the ground truth x. As x is generally not available in real-life problems, this property
dramatically increases the interest of SURE over MSE in practical applications. For
instance, if θ1, . . . , θK are K admissible parameter values for a denoising algorithm f θ,

1From now on, we will drop the subscript θ from fθ for the sake of readability, when no ambiguity is
possible.

2For the following result to hold, f must be weakly differentiable, and its partial derivatives must fulfil

E

!

ř

k

ˇ

ˇ

ˇ

Bfk

Byk
pyq

ˇ

ˇ

ˇ

)

ă `8. These technical conditions will always be assumed to be true, as well as all other

requirements on the regularity of f that could be encountered in this work. Please note however that some
realistic denoising functions f may not be even weak-differentiable: for instance, wavelet hard-thresholding
[Donoho94] is not.
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it is possible to select a “best-performing” value θk‹ in the sense of the MSE criterion as
the one that minimizes SURE pθkq. Such selection is data-adaptive (it depends on y), and
objective (it does not rely on human expert evaluation), opening the way to automated
parameter estimation.

V.1.4 Chapter outline

The work presented in this chapter is built around the resolution of two issues that restrict
in practice the use of SURE for automatic parameter tuning. First, SURE relies on the
hypothesis of additive white Gaussian noise (V–5), which may not account for situations
encountered in bio-imaging applications: for example, in this case, noise intensity may not
be uniform in the whole image as assumed in (V–5), but rather depend on the presence of
biological objects, and more generally on the value on the underlying signal (see [Starck98,
Zhang08]). The extension of SURE to a more realistic mixed Poisson-Gaussian noise model
is thus proposed in Sec. V.2, extending the work in [Luisier11].

The second limitation comes from the divergence term that appears in the expression
of the SURE estimator (V–6). More precisely, the evaluation of the partial derivatives
Bfk

Byk
pyq is not a trivial task when the denoising algorithm f is not defined by a closed-

form expression: such situations include variational-based algorithms (e.g. total variation
minimization [Rudin92]) and diffusion methods (e.g. anisotropic diffusion [Perona90]). To
tackle this issue, a methodology based on the introduction of small stochastic perturbations
to y (similar to the one introduced by [Ramani08]) is proposed in Sec. V.3.

A numerical validation of the proposed framework is presented in Sec. V.4, along with
several practical examples of parameter estimation.

V.2 Mixed Poisson-Gaussian noise model

V.2.1 Generalized unbiased risk estimators

The original SURE estimator [Stein81] (V–6) was designed around the Gaussian noise
hypothesis (V–5). Other types of unbiased risk estimators have been derived since then
to handle different noise models. It is worth noting that unbiased risk estimators can be
refined to account for several phenomena that affect the image formation, beyond simple
noise: see for instance [Vonesch08, Pesquet09, Eldar09a, Giryes11, Xue12] and references
therein for applications of SURE-like estimators to deconvolution problems. An exhaustive
review of the existing unbiased risk estimators applied to image restoration problems is
however beyond the scope of the current work, and we focus here on pure denoising
problems involving noise models encountered in microscopy imaging applications.

107



Chapter V – Using CS as a denoising method?

V.2.2 Poisson noise and associated PURE estimator

A usual noise model in bioimaging is the Poisson model, which is quite common in low-light
fluorescence microscopy imaging, and more generally in imaging modalities that operate in
low-signal conditions (see for instance [Starck98, Zhang08]). In this model, each observed
pixel value yk is assumed to be the result of a Poisson random process of intensity xk,
independent of the other pixels yl. Formally:

y „ P pxq (V–7)

A qualitative property of Poisson images is that the noise is signal dependent: its variance
is higher on bright objects than in the dark background. This behavior is fundamentally
different from what is modeled with the additive white Gaussian noise hypothesis (V–5),
for which the noise intensity is uniform and independent of the value of the ground truth
signal.

A Poisson unbiased risk estimator (PURE) of the MSE similarity criteria has been
derived in [Luisier10] for the Poisson noise model (V–7):

PURE “ 1

N

´

}f pyq}2

2
` }y}2

2
´ 2

A

y
ˇ

ˇ

ˇ
f r´1s pyq

E

´ x1|yy
¯

(V–8)

where the image-valued function f r´1s pyq is defined as
´

f r´1s
¯

k
pyq “ fk py ´ ekq for all

pixels k. For smooth functions f , this expression can be simplified using the following
first-order Taylor approximation of f r´1s pyq:

f r´1s pyq « f pyq ´ Bf pyq (V–9)

where the image-valued function Bf pyq is defined as pBfqk pyq “ Bfk

Byk
pyq for all pixels k.

Thanks to this Taylor approximation, (V–8) becomes:

PURE “ 1

N

´

}f pyq ´ y}2

2
` 2 xy|Bf pyqy ´ x1|yy

¯

(V–10)

The terms
A

y
ˇ

ˇ

ˇ
f r´1s pyq

E

in (V–8) and xy|Bf pyqy in (V–10) play roles similar to the di-

vergence term in SURE (V–6), in that they probe how small modifications of the observed
image y impact the output of the denoising algorithm f . Their evaluation are subject to
technical difficulties similar to those mentioned in Sec. V.1.4 for SURE.

V.2.3 Mixed Poisson-Gaussian noise

The Gaussian and Poisson noise models (V–5) and (V–7) do not individually account
for the various phenomena involved with real image acquisition processes in fluorescence
microscopy. Therefore, in the following, we consider a mixed Poisson-Gaussian (MPG)
noise model, similar to the ones proposed in [Starck98, Zhang07b, Foi08, Delpretti08,
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Figure V–2: Example of Shepp-Logan images y corrupted with the mixed Poisson-
Gaussian noise model (V–11), for different values of the two parameters σ and ζ. For
σ “ 0 and ζ “ 0 (upper left), the image is identical to the the ground truth x (i.e. the
original Shepp-Logan image).
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Jezierska11, Jezierska13]3:

y “ ζz ` b with

$

’

&

’

%

z „ P

ˆ

x

ζ

˙

b „ N
`

0, σ2Id
˘

(V–11)

where z and b are two independent random variables, following respectively a Poisson and
a Gaussian distribution. This noise model introduces two numerical parameters:

• σ ě 0 is the standard deviation of b; the higher this parameter, the more the model
(V–11) behaves like a pure Gaussian noise model.

• ζ ě 0 is the gain of the acquisition process4; the higher this parameter, the more
Poisson-like is the behavior of the noise in (V–11).

It can be noted that the proposed MPG noise model (V–11) encompasses the classical
Gaussian and Poisson noise models: setting ζ “ 0 and σ ą 0 corresponds to the Gaussian
noise model (V–5), while ζ “ 1 and σ “ 0 leads to the Poisson noise model (V–7). Fig. V–2
shows examples of realisations of this noise model on the Shepp-Logan phantom image,
for different values of the parameters ζ and σ.

In what follows, we will always assume that the values of the noise parameters σ and
ζ are known. However, it is worth noting that estimating these parameters from a given
noisy observation y is not trivial. In particular, as noticed in [Jezierska11, Jezierska12b,
Jezierska13], the cumulant based approach advised in [Zhang07a] leads to unreliable
estimates of the gain parameter ζ. This is due to the fact that this approach makes use
of high-order empirical moments (order ě 3) evaluated on the noisy signal, which leads to
numerical instability. As an alternative, [Jezierska11, Jezierska13] propose an expectation-
maximization approach to address this parameter estimation issue, which provides more
stable and reliable estimates.

V.2.4 Unbiased risk estimator for the MPG model

Extending the pioneer work in [Luisier11], we derive the Poisson-Gaussian unbiased risk
estimator (PG-URE) of the MSE for the MPG model (V–11):

PG-URE “ 1

N

´

}f pyq}2

2
` }y}2

2
´ 2

A

y
ˇ

ˇ

ˇ
f r´ζs pyq

E

` 2σ2 Div f r´ζs pyq ´ ζ x1|yy
¯

´ σ2

(V–12)
where the function f r´ζs pyq is defined component-wise by:

3Please note that this type of model may also include a degradation matrix (see for instance
[Jezierska12a]), to account for instance for the blurring introduced by the point-spread function of the
acquisition system. However, as mentioned in Sec. V.2.1, we focus here on pure denoising problems, for
the sake of simplicity.

4By convention, when ζ “ 0, the MPG model must be understood as y “ x`b (i.e. pure Gaussian noise

(V–5)). This extension is motivated by the fact that the random variable ζz with z „ P

´

x
ζ

¯

converges in

law to x (deterministic value) when ζ Ñ 0.
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´

f r´ζs
¯

k
pyq “ fk py ´ ζekq (V–13)

The derivation of (V–12) and the proof that E tPG-UREu “ E tMSEu are given in ap-
pendix V.A, along with the technical conditions required on f for this result to hold.
As for the Poisson model, if f r´ζs pyq is replaced by its first-order Taylor expansion
f r´ζs pyq « f pyq´ζBf pyq, this leads to the following simplified expression of the PG-URE

estimator:

PG-URE “ 1

N

´

}f pyq ´ y}2

2
` 2

@

ζy ` σ21
ˇ

ˇBf pyq
D

´ 2σ2ζ
@

1
ˇ

ˇB2f pyq
D

´ ζ x1|yy
¯

´ σ2

(V–14)
where the image-valued functions Bf pyq and B2f pyq are defined as:

pBfqk pyq “ Bfk

Byk

pyq
`

B2f
˘

k
pyq “ B2fk

By2
k

pyq for all pixels k (V–15)

It should be noted that this simplified expression (V–14) of PG-URE may significantly
deviate from (V–12) in the case of large values of the gain parameter ζ, due to the Taylor
approximation f r´ζs pyq « f pyq ´ ζBf pyq. However, the numerical results presented in
Sec. V.4 show that this deviation has no consequence in the range of gain values encoun-
tered in practice.

It can be verified that the expressions (V–12)-(V–14) of the PG-URE estimator are
consistent with SURE (V–6) and PURE (V–8)-(V–10) for the special values of the param-
eters σ and ζ mentioned in Sec. V.2.3. They are also consistent with the unbiased risk
estimator derived in [Luisier11] for a simpler mixed Poisson-Gaussian noise model that
does not integrate a gain parameter ζ.

Again, evaluation of the terms involving f r´ζs, Bf or B2f in (V–12)-(V–14) raises some
technical difficulties: in the next section, we propose a non-deterministic method to handle
them.

V.3 Stochastic evaluation of the Poisson-Gaussian unbiased
risk estimator

V.3.1 Why is a deterministic evaluation of PG-URE impossible?

The expressions (V–12) and (V–14) define unbiased risk estimators of the MSE (V–4)
under a mixed Poisson-Gaussian noise model hypothesis (V–11). These expressions do
not involve non-accessible entities such as the ground truth x, making their numerical
evaluation conceivable in practical settings. However, the terms involving f r´ζs, Bf or
B2f may not be directly computable, as explained below.

For instance, let us assume that the denoising algorithm f is modeled as a black-box
process, meaning that we do not make any assumption on how f works internally, and
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therefore that the only available “action” with f is to submit an input y and to retrieve
an output f pyq. Then, due to its definition, a direct evaluation of f r´ζs pyq would require
to run f on N perturbed versions of the input y: py ´ ζekq for k “ 0 to N ´ 1. As
N represents the number of pixels in the input image, such direct evaluation would be
computationally irrealistic even with images of reasonable size. The same argument holds
for the terms Bf and B2f , that could be approximated through finite differences: for
instance, the first order difference 1

�

`

fk py ` �ekq´fk pyq
˘

for some small scalar parameter
� would provide a good approximation of the kth component of Bf pyq, but computing all
the components of this term through this scheme would require to evaluate f py ` �ekq
for k “ 0 to N ´ 1, which is again irrealistic.

The method developed in the following sections bypasses these problems, thanks to the
use of a stochastic scheme to evaluate the Taylor-expanded PG-URE estimator (V–14) in
the context of the black-box denoising process mentioned above. One key advantage of
this method is that the required number of evaluations of f – which is the most critical
factor in terms of computation time – is small and does not depend on N .

V.3.2 Evaluation of the first-order derivative term

We first focus on the term involving the first-order partial derivatives of f in (V–14),
namely

@

ζy ` σ21
ˇ

ˇBf pyq
D

. The idea of the proposed method, which is a direct extension
of the Monte-Carlo SURE approach proposed in [Ramani08], is to probe the behavior of
f when applied on slightly modified versions of y, which are obtained by adding some
well-chosen random perturbations to y.

Let us introduce a few notations: in what follows, � ą 0 is a scalar parameter whose
value is ideally as small as possible, δ is a random perturbation vector generated according
to a probability distribution to be specified, and xu|Bf pyqy is the quantity to evaluate.
For our particular problem, u “ ζy `σ21, but the method developed here to evaluate this
term does not depend on the actual definition of the image u. In [Ramani08], the method
is presented with u “ 1, which corresponds to xu|Bf pyqy “ Div f pyq.

First, assuming that f is continuously differentiable, we have:

f py ` �δq “ f pyq ` �
ÿ

l

δl
Bf

Byl

pyq ` �r p�q (V–16)

where r p�q is some remainder that tends to 0 when � Ñ 0. From this Taylor expansion,
it results that:

lim
�Ñ0

B

δ ˆ u

ˇ

ˇ

ˇ

ˇ

f py ` �δq ´ f pyq
�

F

“
ÿ

k,l

ukδkδl
Bfk

Byl

pyq (V–17)

where each summation index k and l visits every components of the involved vectors.
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Now, let us assume the following properties on the probability distribution of the
random perturbation δ:

• the components δk of δ are independent,

• each δk has an expected value of 0 and a variance equal to 1.

Then, by considering the expected value5 over the random variable δ on both sides of the
equality (V–17), we obtain:

Eδ

"

lim
�Ñ0

B

δ ˆ u

ˇ

ˇ

ˇ

ˇ

f py ` �δq ´ f pyq
�

F*

“
ÿ

k

uk
Bfk

Byk

pyq (V–18)

Finally, up to some technical hypotheses (see [Ramani08] for more details) which are also
important to derive the empirical formula (V–20), the expectation and the limit in (V–18)
can be switched, leading to the final expression:

lim
�Ñ0

Eδ

"B

δ ˆ u

ˇ

ˇ

ˇ

ˇ

f py ` �δq ´ f pyq
�

F*

“ xu|Bf pyqy (V–19)

Equation (V–19) shows that, by taking a parameter � sufficiently small, the inner
product xu|Bf pyqy can be approximated by the expected value of the random variable
1

�
xδ ˆ u|f py ` �δq ´ f pyqy. Moreover, as observed in [Ramani08], one realization of this

random variable is likely to be sufficient to reach a reliable estimate of the expected value
in the case of image processing applications (this point will be detailed in Sec. V.3.5).
Therefore, we obtain the following empirical estimation formula for xu|Bf pyqy:

xu|Bf pyqy “ 1

�

@

δ ˆ u
ˇ

ˇf py ` �δq ´ f pyq
D

(V–20)

V.3.3 Evaluation of the second-order derivative term

A similar method can be proposed to evaluate the term involving the second-order partial
derivatives of f in (V–14), namely

@

v
ˇ

ˇB2f pyq
D

with v “ 1. Again, the method does not
take advantage of the identity v “ 1, motivating the use of a generic notation v.

We use here notations similar to those introduced in Sec. V.3.2. Then, assuming that
f is continuously twice differentiable, a second-order Taylor expansion can be written as:

f py ` �δq “ f pyq ` �
ÿ

l

δl
Bf

Byl

pyq ` �2

2

ÿ

l,m

δlδm
B2f

BylBym
pyq ` �2r p�q (V–21)

and similarly for f py ´ �δq. By summing these two expansions, we obtain:

5In this section, we temporarily assume that y is deterministic. However, to be fully rigorous, what is
considered here is not the expectation, but rather the conditional expectation given y. To avoid confusion,
the latter is denoted with an additional subscript (Eδ), indicating the remaining source of randomness.
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lim
�Ñ0

B

δ ˆ v

ˇ

ˇ

ˇ

ˇ

f py ` �δq ´ 2f pyq ` f py ´ �δq
�2

F

“
ÿ

k,l,m

vkδkδlδm
B2fk

BylBym
pyq (V–22)

In addition to the hypotheses made in Sec. V.3.2 for δ, we impose here the additional
requirement that the third moment κ of the random variables δk is non-zero (which implies
in particular that the corresponding probability distribution is non-symmetric). Then, the
independence of the δk and their zero mean ensure that Eδ tδkδlδmu is always zero except
when k “ l “ m, while Eδ

�

δ3
k

(

“ κ ‰ 0. Therefore, taking the expected value in (V–22)
and switching it with the limit in the left-hand side leads to the following result:

lim
�Ñ0

Eδ

"B

δ ˆ v

ˇ

ˇ

ˇ

ˇ

f py ` �δq ´ 2f pyq ` f py ´ �δq
�2

F*

“ κ
@

v
ˇ

ˇB2f pyq
D

(V–23)

Finally, assuming that one realization of the random variable δ is sufficient to estimate the
expected value in (V–23) (see Sec. V.3.5), we obtain the following empirical estimation
formula for

@

v
ˇ

ˇB2f pyq
D

:

@

v
ˇ

ˇB2f pyq
D

“ 1

�2κ

@

δ ˆ v
ˇ

ˇf py ` �δq ´ 2f pyq ` f py ´ �δq
D

(V–24)

V.3.4 Empirical PG-URE estimator

Using the results obtained in Sec. V.3.2 and V.3.3, we are now able to re-write the PG-URE

estimator (V–14) without partial derivatives of f :

PG-URE “ 1

N
}f pyq ´ y}2

2
´ ζ

N
x1|yy ´ σ2 ` 2

N 9�

A

9δˆ
`

ζy ` σ21
˘

ˇ

ˇ

ˇ
f

´

y ` 9� 9δ
¯

´ f pyq
E

´ 2σ2ζ

N:�2κ

A

:δ
ˇ

ˇ

ˇ
f

´

y ` :�:δ
¯

´ 2f pyq ` f
´

y ´ :�:δ
¯E

(PG-URE)

This expression uses four parameters that are not related to the noise model, but that are
introduced for computational purposes:

• 9δ is the random perturbation vector used to evaluate the term involving the first-
order partial derivatives of f in (V–14). To fulfil the assumptions made in Sec. V.3.2,
its components 9δk must be independent and identically distributed (i.i.d.) random
variables with expected value 0 and variance 1. Several probability distributions
with these properties can be used to generate the 9δk, and we demonstrate that a
binary distribution taking values ´1 and 1 with probability 1{2 each is optimal in
the sense that it minimizes the variance of the PG-URE estimator with respect to
the random variable 9δ (see Sec. V.3.5).

• :δ is the random perturbation vector used to evaluate the second-order derivative
term. :δ is a random vector of i.i.d. components such that6

E

!

:δk

)

“ 0, E
!

:δ2
k

)

“ 1

6The constraint on the second moment of :δk is not compulsory with respect to the methodology devel-
oped in Sec. V.3.3, but is rather a normalization convention.
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and E

!

:δ3
k

)

“ κ ‰ 0. Again, an optimum with respect to the variance of PG-URE

(see Sec. V.3.5 for details) is reached if the :δ are generated according to a binary
distribution π, defined as:

π

ˆ

:δk “ ´
c

q

p

˙

“ p π

ˆ

:δk “
c

p

q

˙

“ q with

$

&

%

p “ 1

2
` κ

2

`

κ2 ` 4
˘´1{2

q “ 1 ´ p

(V–25)
where κ is the third moment of the distribution π. The optimal value of κ may not
be available in practical settings, and we set it to 1 in our experiments (we motivate
this choice in appendix V.B).

• 9� and :� are the amplitudes of the perturbations introduced to probe the partial
derivatives of f . The values of these scalar parameters result from a compromise
between 1) the fact that 9� and :� must be chosen as small as possible to limit the
approximation errors in the initial Taylor expansions (V–16) and (V–21), and 2) the
finite precision of floating point calculators, which causes significant rounding errors
when these parameters are too small. How these values should actually be set is
discussed in Sec. V.4.

Finally, the computational complexity of evaluating the PG-URE estimator through
the empirical formula (PG-URE) is 4 Cf `O pNq, where Cf is the computational complexity
of applying the denoising algorithm f .

V.3.5 Variance of the empirical PG-URE estimator with respect to the
random perturbations

In the expression (PG-URE) of the PG-URE estimator, the equality is mathematically
proved in terms of expected value over the probability distribution of the two random
vectors 9δ and :δ. In practice and similarly to what is proposed in [Ramani08], we evaluate
the right-hand side of this expression with a single realization of each of these random
variables, as we can assume that such evaluation is close to the expected value. Formally,
the underlying assumption is that the standard deviation Var 9δ,:δ

tPG-UREu1{2 of the esti-

mator (PG-URE) over the probability distribution of 9δ and :δ is small with respect to its
expected value.

Thanks to the independence of 9δ and :δ, the variance of PG-URE can be decomposed
as follows:

Var 9δ,:δ
tPG-UREu “ 1

N2
Var 9δ

#

ÿ

k,l

ak,l
9δk

9δl

+

looooooooooooomooooooooooooon

V 9δ

` 1

N2κ2
Var:δ

#

ÿ

k,l,m

bk,l,m
:δk

:δl
:δm

+

looooooooooooooooooomooooooooooooooooooon

V:δ

(V–26)

where the notations ak,l and bk,l,m stand for:

115



Chapter V – Using CS as a denoising method?

ak,l “ 2
`

ζyk ` σ2
˘ Bfk

Byl

pyq bk,l,m “ 2σ2ζ
B2fk

BylBym
pyq (V–27)

Let us focus on the term V 9δ
in (V–26), which corresponds to the contribution of the

perturbation 9δ to the overall variance of the estimator. In what follows, the pth moment of
the probability distribution associated to 9δ will be denoted as 9mp “ E

!

9δp
k

)

. By definition,
V 9δ

can be written as:

N2V 9δ
“

ÿ

k,l,m,n

ak,lam,nE 9δ

!

9δk
9δl

9δm
9δn

)

´
ÿ

k,l

ak,kal,l (V–28)

Thanks to the independence of the 9δk and the property 9m1 “ 0 introduced in Sec. V.3.2,
the expected value E 9δ

!

9δk
9δl

9δm
9δn

)

is 0 as soon as at least one of the indices k, l, m or n

is different from all the others. Then, the remaining terms and the property 9m2 “ 1 lead
to:

N2V 9δ
“ 9m4

ÿ

k

a2
k,k `

ÿ

k,l
k‰l

`

ak,kal,l ` a2
k,l ` ak,lal,k

˘

´
ÿ

k,l

ak,kal,l (V–29)

Up to additional simplifications and factorization, (V–29) leads to the following final
expression of the term V 9δ

:

V 9δ
“ 9m4 ´ 1

N2

ÿ

k

a2
k,k ` 1

2N2

ÿ

k‰l

pak,l ` al,kq2 (V–30)

This expression (V–30) calls for two remarks:

1. As V 9δ
should be made as small as possible to limit the variance of the PG-URE

estimator, the probability distribution used to generate the 9δk should be chosen so
that 9m4 is as small as possible. Yet, with the requirements 9m1 “ 0 and 9m2 “ 1,
it can be shown that 9m4 ě 1 (see for instance [Akhiezer65]); the optimal value
9m4 “ 1 is obtained with a symmetric binary distribution taking values ´1 and
1 with probability 1{2 each. This justifies our proposition to use this probability
distribution in Sec. V.3.4.

2. The second summation group (the one with two summation indices k and l) involves
NpN ´ 1q terms (all the pairs k, l “ 1 to N , except those with k “ l), but most
of the pak,l ` al,kq2 terms are likely to be 0. Indeed, ak,l is proportional to Bfk

Byl
pyq,

and the value of this partial derivative is likely to be insignificant when the indices k

and l refer to pixels that are distant from each others: in particular, this is certainly
true if f is a local denoising method. Furthermore, if we assume that the number
of input pixels yl that have a significant influence on the kth output pixel fk pyq
is constant, then the number of non-zero pak,l ` al,kq2 terms is proportional to N ,
making V 9δ

proportional to 1

N
. As N is quite large in the case of images, V 9δ

, which
represents the variance of the PG-URE estimator with respect to the perturbation 9δ,
is likely to be very small: this justifies the assumption made in Sec. V.3.2 that only
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Shepp-Logan Disks 3

Figure V–3: Test images used for the simulations (256 ˆ 256 pixels, intensity range nor-
malized to the interval r0, 1s).

one realization of this perturbation is sufficient to estimate the first-order partial
derivatives of f involved in the computation of PG-URE.

The term V:δ
corresponding to the contribution of the perturbation :δ in (V–26) can also

be expressed as a function of the coefficients bk,l,m and the moments :mp “ E

!

:δp
k

)

, similarly

to (V–30) (see appendix V.B). The obtained expression leads to conclusions similar to those
drawn for V 9δ

, namely that V:δ
is proportional to 1

N
for reasonable denoising functions f ,

and that V:δ
is minimal when :δ is generated according to the binary probability distribution

(V–25), for a particular value κ‹ of the parameter κ. Unfortunately, the optimal value κ‹

depends on the coefficients bk,l,m and consequently on the partial derivatives of f , whose
values are by definition not available. Still, we noticed that the arbitrary setting κ “ 1

leads to stable results (see Sec. V.4 and appendix V.B).

V.4 Numerical validation and application

V.4.1 Simulation goals and process

The expression (PG-URE) defines an unbiased risk estimator of the MSE under the mixed
Poisson-Gaussian noise hypothesis (V–11). Sections V.3.4 and V.3.5 describe how the
random perturbation 9δ and :δ involved in this PG-URE estimator are generated. However,
we have not discussed yet on the values that should be attributed to the scalar parameters
9� and :�. We propose to determine how these values should be set through numerical
simulations; we will also make the most of these simulations to verify the empirical equality
PG-URE “ MSE.

For the numerical simulations, we selected two phantom images (see Fig. V–3):

1. the well-known Shepp-Logan phantom, sized 256 ˆ 256 pixels;
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2. Disks 3, a synthetic test image also sized 256 ˆ 256 pixels, representing several disks
with random gray levels, sizes and boundary sharpness, over a non-uniform dark
background.

All these images were normalized so that they are valued between 0 and 1. From each
noise-free image x, we generated four noisy images y following the MPG model (V–11),
with the following noise parameters:

• σ “ 10´1.5, ζ “ 10´2 (this case is denoted as “low noise” in the following results);

• σ “ 10´1, ζ “ 10´2 (denoted as “mostly Gaussian”);

• σ “ 10´1.5, ζ “ 10´1 (denoted as “mostly Poisson”);

• σ “ 10´1, ζ “ 10´1 (denoted as “high noise”).

We selected six classical denoising algorithms, all dependent of a scalar parameter θ:

• Wavelet soft-thresholding [Donoho95a]:

fWSo
θ pyq “ W ´1 ¨ T θ pW ¨ yq (V–31)

where W is a 2D un-decimated wavelet transform (we used the Daubechies-4 or-
thogonal wavelet with 4 levels of decomposition), and T θ is the component-wise
soft-thresholding function, mapping each input wavelet coefficient w to sign pwq ¨
max p0, |w| ´ θq.

• TV minimization [Rudin92]:

fTV
θ pyq “ arg min

x
}x}

TV
subject to }x ´ y}

2
ď θ (V–32)

This constrained formulation is equivalent to the original unconstrained one (V–1)
(see Chap. II), and we chose to use the former for practical reasons.

• Non-local means [Buades05]: fNLM
θ pyq is defined component-wise as in (V–2). We

used the similarity measure originally proposed in [Buades05], i.e. (V–3), with cen-
tered square patches of size 5 ˆ 5 pixels.

• We derived three “stabilized” versions of these three denoising algorithms, for which
we first applied a variance stabilization transform on the input image, to make the
variance of the noisy pixel yk independent of the ground truth value xk, and therefore
uniform over the whole image (see [Starck98, Zhang08]). Formally:

fS-WSo
θ pyq “ S´1 ˝ fWSo

θ ˝ S pyq (V–33)

and similarly for fS-TV
θ and fS-NLM

θ . The variance stabilization transform S pyq is
defined as:

Skpyq “ 2

ζ
sign ptq

a

|t| with t “ ζyk ` 3

8
ζ2 ` σ2 (V–34)

In [Starck98], it is shown that, under the MPG hypothesis (V–11), Skpyq has a
variance approximately equal to 1 (except for very low values of xk, which correspond
to an extremely low-light regime).
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Finally, for each pair of tested noisy image and algorithm, and for several values of the
corresponding parameter θ, we computed the denoised estimate f θ pyq and the MSE (as
we are using phantom test images, the ground truth is available), and we evaluated the
estimator (PG-URE) with different values of the amplitude parameters 9� and :�. All sim-
ulations were performed with Matlab®, using double precision floating point arithmetic.
The influence of 9� and :� on the PG-URE estimator is studied in the next sections.

V.4.2 Influence of the amplitude parameters 9� and :�

To study how the parameters 9� and :� affect the estimator (PG-URE), we decompose the
latter into three terms, as PG-URE “ T0 ` T1 p 9�q ` T2 p:�q, where:

T0 “ 1

N
}f pyq ´ y}2

2
´ ζ

N
x1|yy ´ σ2

T1 p 9�q “ 2

N 9�

A

9δˆ
`

ζy ` σ21
˘

ˇ

ˇ

ˇ
f

´

y ` 9� 9δ
¯

´ f pyq
E

T2 p:�q “ ´ 2σ2ζ

N:�2κ

A

:δ
ˇ

ˇ

ˇ
f

´

y ` :�:δ
¯

´ 2f pyq ` f
´

y ´ :�:δ
¯E

(V–35)

In this decomposition, T0 includes the contributions to PG-URE that do not depend on
9� and :�, while T1 p 9�q and T2 p:�q represent respectively the contributions due to the first
and second order partial derivatives of f . Figs. V–4 and V–5 present two examples of the
evolution of T0, T1 p 9�q and T2 p:�q with respect to the denoising parameter θ, for different
values of 9� and :�.

V.4.2.1 Parameter 9�

Both graphs in Figs. V–4 and V–5 show that, although T1 p 9� “ 0.1q and T1 p 9� “ 1q have
singular behaviors (the latter curve does not fit in the displayed range of the graph in
Fig. V–5), T1 p 9�q seems to converge to an asymptotic curve for smaller values of 9�: indeed,
for 9� ď 10´3, we can assume that T1 p 9�q becomes almost independent of 9�, with a value
close to the ideal one that would be obtained for 9� Ñ 0.

To confirm this assumption, we measured the term T1 p 9�q for 9� varying between 10´7 and
1 with samples geometrically spaced by a factor 100.02 (i.e. 9� “ 10´7, 10´6.98, 10´6.96, . . . ),
and for all the combinations of denoising algorithms, test images and noise parameter
mentioned in Sec. V.4.1, with the denoising parameter θ set such that the MSE is minimal;
the corresponding minimal value of the MSE is denoted as MSE‹. We then measured the
variability among the T1 p 9�q values through the indicator ∆T1, defined as:

∆T1 “ 1

MSE‹ StdDev
9�Pr 9�min, 9�maxs

T1 p 9�q (V–36)

where StdDev 9�Pr 9�min, 9�maxs T1 p 9�q measures the empirical standard deviation of T1 p 9�q for
9� varying within a sub-range r 9�min, 9�maxs of the probed interval

“

10´7, 1
‰

. The values
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Figure V–4: Denoising of Disks 3 ` “low noise”, using the fS-TV
θ algorithm (TV mini-

mization together with variance stabilization transform). MSE and PG-URE values are
plotted as functions of the denoising parameter θ, together with the individual PG-URE

terms T0, T1 p 9�q and T2 p:�q for several values of the parameters 9� and :�. Only the PG-URE

curve corresponding to 9� “ 10´4 and :� “ 10´2 is plotted.
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(non-local means together with variance stabilization transform). Same representation
and legend as in Fig. V–4.
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θ 0.06% 0.07% 0.07% 0.06% 0.07% 0.09% 0.11% 0.11%

fTV

θ 0.11% 0.04% 0.03% 0.11% 0.97% 0.34% 0.64% 0.53%

fNLM

θ 0.01% 0.01% 0.01% 0.00% 0.02% 0.01% 0.00% 0.00%

fS-WSo
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fS-TV

θ 0.06% 0.10% 0.83% 0.46% 0.13% 0.09% 0.46% 0.47%

fS-NLM

θ 0.05% 0.01% 0.66% 0.17% 0.02% 0.02% 0.59% 0.46%

Shepp-Logan Disks 3

Figure V–6: ∆T1 obtained for 9� “ 10´6, 10´5.98, . . . , 10´3.02, 10´3 (151 samples), given as
percentages. The only value greater than 1% is highlighted in yellow.

obtained for ∆T1 with r 9�min, 9�maxs “
“

10´6, 10´3
‰

are presented in Fig. V–6. Theses results
show that the variability of T1 p 9�q induced by the choice of 9� is very small compared to
the MSE (the quantity to estimate): indeed, whatever the value chosen for 9� in the range
“

10´6, 10´3
‰

, the value obtained for T1 p 9�q (and therefore for PG-URE) is constant. We
therefore used in practice 9� “ 10´4 in what follows.

It is important to note that this value depends on the normalization used for the
intensity of the processed images: here, our images are valued between 0 and 1, but
different normalizations would lead to different values. For instance, in the case of intensity
normalized between 0 and 255, a correct setting is 9� “ 255 ˆ 10´4. The floating point
precision used for the computations may also have an influence, although this aspect is
less critical for T1 p 9�q than for the second order term, as discussed in the next paragraph.

V.4.2.2 Parameter :�

We proceeded similarly to determine a satisfactory value for :�: we measured the term
T2 p:�q for :� “ 10´4, 10´3.99, . . . , 10´0.02, 10´0.01, 1, and for all the combinations of denoising
algorithms, test images and noise parameters, with the denoising parameter θ set such
that the MSE is minimal. The values obtained for T2 p:�q as functions of :� in six of these
configurations are presented in Fig. V–7.

Contrary to what happens with the first order term, we did not observe a clear con-
vergence of T2 p:�q to an asymptotic value when :� Ñ 0: the curves T2 p:�q showed chaotic
behaviors, with large and unpredicable oscillations when :� ď 10´3. We interpret these
behaviors as the consequence of rounding errors introduced by floating point operations
involved when computing the term T2 p:�q. More precisely, the latter involves a second-
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Figure V–7: Term T2 p:�q as a function of :� for six of the tested combinations of test image,
noise level and denoising algorithm (with in each case the parameter θ set such that the
MSE is minimal). Each curve T2 p:�q was normalized by the actual MSE measured for the
corresponding tested combination.

order finite difference f
´

y ` :�:δ
¯

´ 2f pyq ` f
´

y ´ :�:δ
¯

whose order of magnitude might

be significantly smaller than the ones of the individual terms f
´

y ˘ :�:δ
¯

and f pyq: then,

due to cancellation events (see [Goldberg91]), the error made when performing this opera-
tion is likely to be significant. A solution to avoid this problem could have been to increase
the parameter :�, but in this case the assumption that T2 p:�q is close to its theoretical limit
obtained for :� Ñ 0 becomes erroneous: it appears that the trade-off between the need for
:� to be small enough for the mathematical analysis derived in Sec. V.3 to be valid, and
the need for :� to be large enough to avoid numerical rounding errors is much more tight
for :� than for 9�.

However, the curves on Fig. V–7 show that there seems to exist a narrow window
around :� “ 10´2 where both requirements hold, leading to functions T2 p:�q approximately
constant. To validate this hypothesis, we introduce an indicator ∆T2 as follows:

∆T2 “ 1

MSE‹ StdDev
:�Pr:�min,:�maxs

T2 p:�q (V–37)

where the empirical standard deviation is computed for :� varying in a sub-range of the
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Figure V–8: ∆T2 given as percentages obtained for 5ˆ10´3 ď :� ď 2ˆ10´2 with geometric
increments of 100.01 (61 samples). Yellow cells contain values greater than 1%, while orange
cells contain values greater than 10%.

probed interval. The values obtained for ∆T2 with r:�min, :�maxs “
“

5 ˆ 10´3, 2 ˆ 10´2
‰

are
presented in Fig. V–8. These values show that the variability of T2 p:�q (and therefore the
variability of PG-URE) induced by the choice of :� represents less than 1% of the MSE to
be estimated in more than half of the tested combinations. This variability seems to be
mainly determined by the denoising algorithm: indeed, the value of T2 p:�q is very stable
in the case of fNLM

θ , and on the contrary extremely dependent on :� in the case of fS-TV
θ .

However, as other choices of intervals r:�min, :�maxs lead to poorer results for ∆T2, we propose
:� “ 10´2 as a reasonable compromise value for this parameter. Results presented in the
next section show that this choice leads to an estimator PG-URE that can be successfully
used to adaptively set the value of the parameter θ for each denoising algorithm.

Similarly to the case of the first order term, the setting for :� depends on the normaliza-
tion used for the intensity of the processed images, and also on the floating point precision
used for the computations.

V.4.3 Optimization of the denoising parameters θ driven by PG-URE

Finally, to evaluate the performance of the PG-URE estimator when used to optimize
the parameter θ of the denoising algorithms, we performed the following simulations: for
each combination of tested image, set of noise parameters, and denoising algorithm f θ, we
ran the denoising algorithm for several values of θ, and computed the resulting MSE and
PG-URE values7; we then retained in each case the parameters θ‹

MSE
and θ‹

PG-URE
that

minimize respectively the MSE and the PG-URE. The corresponding image x̂PG-URE “
f θ‹

PG-URE
pyq represents the denoising result obtained by tuning the denoising parameter

7We selected 9� “ 10´4 and :� “ 10´2 to evaluate PG-URE, as advised in Sec. V.4.2.
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Figure V–9: ∆Estim (V–38) given as percentages. Yellow cells contain values greater
than than 5%, while orange cells contain values greater that 20%. PSNR values (in dB)
obtained for x̂MSE are reported, as a measure of the “best” denoising quality achievable
using an oracle-based parametrization.

such that the PG-URE estimator is minimal – hence without using the ground truth –
while x̂MSE “ f θ‹

MSE
pyq corresponds to the denoised image obtained by selecting the best

denoising parameter according to the MSE, following an oracle-based approach (hence not
applicable for real denoising problems). We finally compared the differences between the
two denoised images by measuring the following indicator:

∆Estim “ }x̂PG-URE ´ x̂MSE}2

2

}x ´ x̂MSE}2

2

(V–38)

Here, ∆Estim relates the l2 distance between the two denoised images to the l2 distance
between the ground truth x and the “best” denoised image, i.e. the one obtained by
following the oracle based approach. The values measured for ∆Estim are presented
in Fig. V–9, along with the peak signal-to-noise measure reached with x̂MSE – defined
as PSNR “ ´10 log10

´

1

N
}x ´ x̂MSE}2

2

¯

– which assesses the “best” denoising quality
achievable following the oracle-based parameter estimation approach. Four examples of
pairs of denoised images x̂MSE and x̂PG-URE are also presented in Fig. V–10.

Although the best performing denoising parameters θ‹
MSE

and θ‹
PG-URE

selected by the
MSE and the PG-URE are not always the same, Fig. V–9 shows that the distance between
the corresponding denoised images is, in most cases, very small compared to the distance
between the oracle-denoised image and the ground truth: the indicator ∆Estim is indeed
smaller than 5% in 39 of the 48 tested configurations, which corresponds to differences

125



Chapter V – Using CS as a denoising method?
x̂

M
S

E
x̂

P
G

-
U

R
E

Low noise Mostly Gaussian Mostly Poisson High noise

fWSo

θ fTV

θ fS-NLM

θ fS-TV

θ

33.2 dB 34.5 dB 28.6 dB 26.8 dB

33.2 dB 34.4 dB 28.1 dB 25.1 dB

Figure V–10: Comparison between the denoised images x̂MSE and x̂PG-URE obtained for
the original image Disks 3, with four different noise levels and denoising methods. PSNR

values are also reported in the bottom left corner of each image.

between the denoised images that are visually unnoticeable. The visual similarity between
the denoised images x̂MSE and x̂PG-URE obtained with these parameters is illustrated on
four examples in Fig. V–10: in each of the three left-most columns – which correspond
to situations with ∆Estim ď 20% (either white or yellow cells in Fig. V–9) – the images
x̂MSE and x̂PG-URE are indeed very similar. For all these cases, the PG-URE estimator
therefore performed very well as a surrogate for the MSE value, while still being actually
computable in real denoising problems, for which a ground truth is not available.

However, for the Disks 3 image in the “high-noise” configuration and with the fS-TV
θ

algorithm (orange cell in Fig. V–9 and right-most column in Fig. V–10), we can clearly
observe that the denoising task failed and did not return a reliable image. This is due
to an inappropriate selection of the parameter θ value, itself derived from an erroneous
estimation of the MSE with the empirical PG-URE estimate. Two scenarios can explain
this erroneous estimation: drawing of a “bad” sample of the parameter :� (Fig. V–8 shows
that this configuration is one of the least favorable with respect to the indicator ∆T2),
and/or a realization of one of the random variables 9δ or :δ that makes the PG-URE

estimator significantly deviate from its expected value. These scenarios correspond to the
inherent risk taken with any stochastic Monte-Carlo type of method. One way to reduce
this risk would be to draw several realizations of 9δ or :δ and average the corresponding
values of T1 p 9�q and T2 p:�q, at the cost however of a higher computation time. Post-
processing could also be proposed to detect failure of the denoising, or multiple runs could
be performed to gauge the range of values obtained for the parameter being optimized,
with detection of outliers.
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V.5. Conclusion

V.5 Conclusion

In this chapter, we presented a new unbiased risk estimator (PG-URE) for general image
denoising applications, in a context where the processed images are degraded following a
mixed Poisson-Gaussian noise model. This model unifies the widely used Gaussian and
Poisson noise models and is relevant to describe the degradations observed in bioimaging
applications, in particular low-light fluorescence microscopy. We showed that the PG-URE

estimator can be used as a surrogate for the usual mean squared error measure, although
its evaluation does not require any knowledge about the noise-free version (i.e. the ground
truth) of the image to denoise. We also proposed a practical formula (PG-URE) to eval-
uate this estimator when no specific knowledge on the partial derivatives of the denoising
function f is available, making this framework usable “out of the box” with almost any
available denoising algorithm.

We validated our approach through numerical simulations involving standard denoising
algorithms and phantom test images. Relying on theses simulations, we discussed how to
set the numerical parameters involved in PG-URE. We compared the results obtained
when tuning the parameters θ of these standard denoising algorithms by minimizing the
PG-URE estimator and the mean squared error, and showed that these two approaches
lead to similar denoised images in most of the tested scenarios. This demonstrates the
interest of the PG-URE estimator for practical applications, as MSE driven optimization
is not applicable for real denoising problems.

Finally, although not carried out yet, we believe that this type of tool can benefit to
the study and the improvement of the CS-based denoising method [Marim09] applied to
low-light fluorescence microscopy images.

V.A Derivation of the PG-URE estimator

This appendix describes how the first definition (V–12) of the PG-URE estimator is ob-
tained, and proves the equality E tPG-UREu “ E tMSEu. This result could be derived
quite directly from the work in [Luisier11], but we propose here a more intrinsic proof,
relying on the two basic properties of the Gaussian and Poisson distributions that are
mentioned below. Proofs of these lemmas can be found respectively in [Stein81] and
[Peng75, Tsui82].

Lemma V–1 (Stein’s lemma) Let y “ x ` b where x P R
N is deterministic and

b „ N
`

0, σ2Id
˘

. Let φ : R
N Ñ R

N be a weakly differentiable function such that

E

!ˇ

ˇ

ˇ

Bφk

Byk
pyq

ˇ

ˇ

ˇ

)

ă `8 for all k. Then:

E
�

xb|φ pyqy
(

“ σ2
E

�

Div φ pyq
(
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Lemma V–2 Let z P R
N such that z „ P pxq (i.e. the components zk are independent

random variables following Poisson distributions of parameters xk). Let ψ : RN Ñ R
N

such that E t|ψk pzq|u ă `8 for all k. Then:

E
�

xx|ψ pzqy
(

“ E

!A

z
ˇ

ˇ

ˇ
ψr´1s pzq

E)

Thanks to these results, we can state the following theorem:

Theorem V–3 Let y “ ζz ` b where b „ N
`

0, σ2Id
˘

and z „ P
´

x
ζ

¯

(b and z

independent). Let φ : RN Ñ R
N a weakly differentiable function such that E t|φk pyq|u ă

`8 and E

!ˇ

ˇ

ˇ

Bφk

Byk
py ´ ζekq

ˇ

ˇ

ˇ

)

ă `8 for all k. Then:

E
�

xx|φ pyqy
(

“ E

!A

y
ˇ

ˇ

ˇ
φr´ζs pyq

E

´ σ2 Div φr´ζs pyq
)

Proof. We introduce the family of functions ψb : R
N Ñ R

N , defined by ψb pzq “
φ pζz ` bq. Then:

E
�

xx|φ pyqy
(

“ E

"

ζEz

"B

x

ζ

ˇ

ˇ

ˇ

ˇ

ψb pzq
F**

“ E

!

ζEz

!A

z
ˇ

ˇ

ˇ
ψb

r´1s pzq
E))

(cf. Lemma V–2)

“ E

!A

y ´ b
ˇ

ˇ

ˇ
φr´ζs pζz ` bq

E)

“ E

!A

y
ˇ

ˇ

ˇ
φr´ζs pyq

E)

´ E

!

Eb

!A

b
ˇ

ˇ

ˇ
φr´ζs pyq

E))

“ E

!A

y
ˇ

ˇ

ˇ
φr´ζs pyq

E)

´ E

!

σ2
Eb

!

Div φr´ζs pyq
))

(cf. Lemma V–1)

“ E

!A

y
ˇ

ˇ

ˇ
φr´ζs pyq

E

´ σ2 Div φr´ζs pyq
)

Finally, from the definition of the MSE (V–4), it can be noticed that:

E tMSEu “ 1

N
E

�

}f pyq}2

2
´ 2 xx|f pyqy ` xx|yy

(

(V–39)

Theorem V–3 applied twice on this expression with φ “ f and φ “ Id (the identity
function) leads to the expected expression (V–12) of PG-URE. As previously mentioned,
we assume that the regularity and expectation conditions of Theorem V–3 hold for f .

V.B Optimal perturbation for the second-order derivative
term of the PG-URE estimator

In this appendix, we derive an algebraic expression for the contribution V:δ
of the pertur-

bation :δ to the variance (V–26) of the PG-URE estimator. This expression uses only the
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V.B. Optimal perturbation for the second-order derivative term

coefficients bk,l,m defined by (V–27), and the moments :mp “ E

!

:δp
k

)

of the probability dis-

tribution used to generate the components of :δ. We finally derive the optimal conditions
on these moments :mp for V:δ

to be minimal.

V.B.1 Expression of V:δ

First, we introduce a few notations:

• ck “ bk,k,k for all pixel index k,

• dk,l “ bk,k,l ` bk,l,k ` bl,k,k, for all k ‰ l,

• Dl “ ř

k,k‰l dk,l for all l,

• ek,l,m “ bk,l,m ` bk,m,l ` bl,k,m ` bm,k,l ` bl,m,k ` bm,l,k for all 3-tuple pk, l, mq with
k ‰ l, k ‰ m and l ‰ m.

We also recall that :m1 “ 0, :m2 “ 1, :m3 “ κ. Then, starting from the definition of V:δ
, we

have:

N2κ2V:δ
“ Var:δ

#

ÿ

k,l,m

bk,l,m
:δk

:δl
:δm

+

“
ÿ

i,j,k,l,m,n

bi,j,kbl,m,nE:δ

!

:δi
:δj

:δk
:δl

:δm
:δn

)

´
˜

ÿ

k,l,m

bk,l,mE:δ

!

:δk
:δl

:δm

)

¸2

As explained in Sec. V.3.3, E:δ

!

:δk
:δl

:δm

)

“ 0 except when k “ l “ m: this is due to the

independence of the components of :δ and to the property :m1 “ 0. This leads to the
immediate simplification of the expression above:

N2κ2V:δ
“

ÿ

i,j,k,l,m,n

bi,j,kbl,m,nE:δ

!

:δi
:δj

:δk
:δl

:δm
:δn

)

looooooooooooooooooooooomooooooooooooooooooooooon

S6

´κ2
ÿ

k,l

ckcl (V–40)

The same arguments can be used to simplify the sixfold sum S6, as E:δ

!

:δi
:δj

:δk
:δl

:δm
:δn

)

“ 0

as soon as one of the six indices is different from the others. Then, S6 can be divided
according to the four situations where E:δ

!

:δi
:δj

:δk
:δl

:δm
:δn

)

is non-zero:

S6 “ :m6T6 ` :m4T4,2 ` κ2T3,3 ` T2,2,2 (V–41)

• T6 includes the terms involved in S6 for which all the six summation indexes are
equal: obviously, we have T6 “ ř

k c2
k;

• T4,2 groups together all the terms such that, among the six summation indices, there
is one group of four equal indices on the one hand, and another group of two equal
indices on the other hand (for instance: i “ j “ l “ n ‰ k “ m);
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• in the same way, T3,3 includes all the terms such that the indices form two groups
of three.

• finally, T2,2,2 covers the situation where there are three pairs of equal indices.

A careful enumeration of the terms involved in these situations leads to the following
expressions8:

T4,2 “
ÿ

k‰l

d2
k,l ` 2

ÿ

k

ckDk T3,3 “
ÿ

k‰l

ckcl `
ÿ

k‰l

dk,ldl,k

T2,2,2 “
ÿ

k

D2
k ´

ÿ

k‰l

d2
k,l ` 1

6

ÿ

k‰l‰m

e2
k,l,m

(V–42)

By putting all things together, we finally obtain:

N2V:δ
“ :m6 ´ :m2

4 ´ κ2

κ2

ÿ

k

c2
k ` :m4 ´ κ2 ´ 1

κ2

ÿ

k‰l

d2
k,l ` 1

κ2

ÿ

k

p :m4ck ` Dkq2

`1

2

ÿ

k‰l

pdk,l ` dl,kq2 ` 1

6κ2

ÿ

k‰l‰m

e2
k,l,m

(V–43)

It can be verified that this expression (V–43) is indeed positive, as for any probability dis-
tribution with moments mp the following Hankel matrix Hp is positive (see [Akhiezer65]):

Hp “

»

—

—

—

—

—

—

—

—

—

–

1 m1 m2 ¨ ¨ ¨ mp

m1 m2 . .
. ...

m2 . .
. ...

... . .
. ...

mp ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ m2p

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(V–44)

In our case, this implies:

:m6 ´ :m2
4 ´ κ2 ě 0 and :m4 ´ κ2 ´ 1 ě 0 (V–45)

As in the case of V 9δ
, we can analyze the order of magnitude of the contribution V:δ

to the
variance of the PG-URE estimator. As explained in Sec. V.3.5, for reasonable denoising
operators f , the second order derivative B2fk

BylBym
pyq is likely to be zero, except when the

pixels corresponding to the indexes k, l and m share some spatial proximity. As the bk,l,m

are proportional to these second order derivatives, and due to their definition, we deduce
that the number of non-zero coefficients dk,l and ek,l,m is proportional to N ; the order of
magnitude of V:δ

is therefore proportional to 1

N
, as claimed in Sec. V.3.5.

8In what follows, the notation
ř

k‰l‰m is used to represent a sum of terms index by tuples pk, l, mq
with k ‰ l, l ‰ m, and m ‰ k (as if ‰ were a transitive relation).
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V.B.2 Optimal probability distribution

Selection of the probability distribution of :δ can be formulated as an optimization problem
consisting in minimizing the right-hand side of (V–43) seen as a function of :m6, :m4 and
κ, subject to the feasibility constraints (V–45).

As a first remark, it can be observed that for fixed values of the variables :m4 and κ,
the minimal value of V:δ

is reached with :m6 “ :m2
4 ` κ2. Then, by re-injecting this optimal

condition in (V–45), and by removing the constant terms, the problem can be restated as
minimizing the following function Φ:

Φ p :m4, κq “ α :m2
4 ` β :m4 ` γ

κ2
(V–46)

subject to the constraint :m4 ě κ2 ` 1, where the constants α, β and γ are defined as:

α “
ÿ

k

c2
k β “ 2

ÿ

k

ckDk `
ÿ

k‰l

d2
k,l γ “

ÿ

k

D2
k ´

ÿ

k‰l

d2
k,l ` 1

6

ÿ

k‰l‰m

e2
k,l,m (V–47)

From the definition of the coefficients α, β and γ, it can be checked that α :m2
4`β :m4`γ ě

0 when :m4 ě 1 (which is the case in the constraint domain). This implies that, for
a fixed value of :m4, the function Φ p :m4, κq decreases when κ2 increases: the minimal
value is therefore obtained on the boundary of the feasibility domain, i.e. :m4 “ κ2 ` 1.
Finally, a basic function analysis shows that Φ

`

κ2 ` 1, κ
˘

reaches a minimum value when
κ4 “ pα ` β ` γq {α.

To summarize, the contribution V:δ
to the variance of the PG-URE estimator is minimal

under the following conditions:

:m6 “ κ4 ` 3κ2 ` 1 :m4 “ κ2 ` 1 κ “ ˘κ‹

with κ‹ “
˜

ř

k pck ` Dkq2 ` 1

6

ř

k‰l‰m e2
k,l,m

ř

k c2
k

¸1{4 (V–48)

The probability distribution π (V–25) defined in Sec. V.3.4 for :δ do verify the conditions
on :m6 and :m4. However, in practice, the optimal value κ‹ of the third moment cannot be
evaluated, as we do not know the values of the partial derivatives involved in the definition
of the coefficients ck, Dk and ek,l,m.

In Sec. V.3.4, we propose to use κ “ 1: although this choice is certainly not optimal in
all cases, we can propose a sketch of proof from the expression of κ‹ (V–48). Indeed, the
coefficients ck are proportional to B2fk

By2

k

pyq, while the Dk and ek,l,m depend only on second-

order partial derivatives B2fk

BylBym
pyq for which at least k ‰ l or k ‰ m: then, under the

hypothesis that, for a reasonable denoising operator f , the kth output pixel depends mostly
on the kth input pixel, we can assume that the B2fk

By2

k

pyq have higher order of magnitude

than the B2fk

BylBym
pyq. We deduce that |ck| " |Dk| and |ck| " |ek,l,m|, and therefore that
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κ‹ « 1. However, several approximations and hypotheses are made here: a quantitative
analysis of the statistical distribution of the second-order partial derivative values would
certainly be desirable to achieve better approximations.

132



Conclusion and perspectives

In this PhD work, we tackled several issues related to the application of the compressed
sensing (CS) theory to the design of optical acquisition set-ups. We first reviewed the
algorithmic solutions that exist to solve the reconstruction problems inherent to CS ac-
quisition schemes. We analyzed the role and influence of the different sensing parameters
in Fourier-based CS acquisition, aiming at proposing heuristics to set these parameters in
practical imaging applications. We then focused more specifically on the application of
the CS theory to design video acquisition systems based on optical Fourier transforms: we
first analyzed the sparsity hypotheses that are relevant for video sequence reconstruction,
especially in the case of microscopy applications. In order to simplify the optical imple-
mentation of Fourier-based sensors, we also proposed a phase-retrieval method aiming at
reconstructing video sequences from partial Fourier modulus measurements, and exploiting
the sparsity characteristics of those signals. Finally, with the development of CS-inspired
denoising methods in mind, we studied the problem of designing an estimator for the mean
squared error measure that would be usable in practical denoising applications (where no
ground-truth is available), and that would be able to deal with a Poisson-Gaussian noise
model relevant to represent realistic noise phenomena, which are encountered in particular
in low-light microscopy imaging applications. This large range of research directions calls
for different remarks.

Most of the research work carried on along this PhD aimed at designing efficient CS-
based optical imaging devices, in particular for microscopy applications. The work on
the video sampling topic shows in particular that video with a high spatial and temporal
resolution can be reconstructed from a small number of non-adaptive Fourier samples: we
demonstrated that compression ratios up to 10 are reachable in the case of real microscopy
sequences. Moreover, we highlighted the large flexibility of CS reconstruction methods
with respect to the sparsity hypotheses that can be formulated on signals of interest, and
– to a certain extent – to the type of the measurements used for the reconstruction.

However, these results were obtained in numerical simulations only, and must now be
validated on real (even experimental) optical acquisition set-ups. As we are now able to
answer several questions related to the reconstruction and post-processing issues related to
CS acquisition schemes, we believe that most of the development efforts toward the design
of CS-based optical imaging devices should now be focused on the physical and optical
aspects of this project. These developments will have to answer at least two questions:

133



Conclusion and perspectives

• In what extent will the non-modeled imperfections of a real CS-based optical imag-
ing set-up impact the performance – in particular the compression ratios – of the
overall acquisition scheme, compared to what is obtained in numerical simulation
conditions?

• How can be designed a “smart” CMOS/CCD sensor array that would be able to
measure an incoming light radiation only on configurable sub-regions of its active
surface? Of course, such partial acquisition mode can be easily simulated with
today’s CMOS/CCD sensor technology: one can just acquire measurements on the
whole pixel array, and discard downstream the non-required measurements thanks
to an appropriate electronic controller. However, if the final goal is for instance to
increase the operating speed of CMOS/CCD sensors, such method would clearly be
inefficient.

The development of CS-based optical imaging devices has still to be pursued, and the pow-
erful mathematical theory of compressed sensing certainly offers opportunities to improve
imaging systems.
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Aujourd’hui, les techniques de microscopie jouent un rôle croissant dans le développement
et les progrès de la biologie moderne, et doivent faire face à des exigences croissantes en
termes de profondeur de pénétration, de résolution optique, de vitesse d’acquisition, de
sensibilité, etc. Pour répondre à ces nouveaux enjeux, plusieurs modalités d’imagerie de
microscopie ont été développées dans les vingt dernières années : ainsi, la microscopie
à deux photons [Denk90] permet par exemple d’observer des échantillons d’épaisseurs
élevées, l’illumination structurée [Gustafsson00] ainsi que les techniques d’imagerie fondées
sur l’identification de particules uniques (PALM/STORM) [Betzig06, Rust06] permet-
tent d’obtenir des résolutions spatiales au-delà de la limite de diffraction, la microscopie
à fluorescence avec illumination par feuille de lumière (SPIM) [Huisken04] autorise des
acquisitions rapides de séquences vidéos 3D d’échantillons biologiques vivants. En ter-
mes de traitement du signal, ces techniques d’imagerie produisent des ensembles de don-
nées de taille importante, en raison de leur résolution accrue et/ou de la nature multi-
dimensionnelle des images acquises. Le traitement de ces volumes de données soulève des
difficultés, imposant en particulier de fortes contraintes techniques au niveau de la concep-
tion des systèmes d’acquisition. En utilisant des techniques d’échantillonnage intelligent
issues de la théorie de l’échantillonnage compressé (compressed sensing, CS), nous pensons
que ces contraintes peuvent être assouplies grâce à une réduction du nombre de mesures
qui doivent être réalisées pour acquérir ces grandes images de microscopie optique.

Dans cette thèse, nous proposons d’étudier comment la théorie de l’échantillonnage
compressé peut être mise à profit dans le cadre de l’imagerie optique, dans le but in fine
de concevoir des systèmes de microscopie optique utilisant ces techniques. Plus précisé-
ment, dans la continuité du travail doctoral initié par Marcio Marim [Marim11a], nous
nous concentrons sur l’étude de l’échantillonnage compressé dans le plan de Fourier :
dans ce schéma d’acquisition, la scène imagée est observée à travers un montage optique
réalisant (de façon analogique) une transformée de Fourier optique (cf. [Goodman96]),
tandis que l’acquisition proprement dite est effectuée au moyen d’un capteur photoélec-
trique positionné de façon adéquate en aval du montage de transformée de Fourier optique.
L’organisation du manuscrit reflète les différentes problématiques abordées au cours de ce
travail de thèse.

Dans le chapitre I (section A dans ce résumé), nous présentons la théorie mathéma-
tique de l’échantillonnage compressé. Nous introduisons le formalisme et les notions de
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CS, et rappelons quelques-uns des principaux résultats théoriques obtenus dans le cadre
de cette théorie. Nous illustrons enfin l’intérêt du CS en présentant plusieurs exemples
d’applications d’imagerie qui ont bénéficié de cette théorie ou dont la conception a été
directement inspirée par celle-ci.

Le chapitre II (section B dans ce résumé) est consacré aux questions de reconstruction
soulevées par les schémas d’acquisition CS. Nous présentons comment ces problèmes de
reconstruction CS peuvent être formulés dans la pratique, en nous concentrant en par-
ticulier sur les formulations utilisant l’optimisation convexe. Nous passons ensuite en
revue les méthodes algorithmiques existantes qui permettent de résoudre ces problèmes
d’optimisation convexe, en présentant les caractéristiques générales et les principes de ces
algorithmes, ainsi qu’en comparant leurs performances dans des scénarios de reconstruc-
tion concrets.

Dans le chapitre III (section C dans ce résumé), nous discutons de l’influence des dif-
férents paramètres liés à l’opération d’échantillonnage dans le plan de Fourier, à savoir
la position où les échantillons doivent être acquis dans ce plan (c’est à dire la stratégie
d’échantillonnage), et le nombre de ces échantillons (c’est à dire le taux d’échantillonnage).
Dans un premier temps, nous passons en revue les travaux abordant la question de la
détermination d’une stratégie d’échantillonnage optimale, et montrons qu’actuellement
les réponses à ce problème restent pour la plupart basées sur des observations empiriques,
en dépit de travaux théoriques publiés récemment sur ce sujet. Nous étudions également
l’incidence du choix d’un taux d’échantillonnage sur la qualité des images acquises et recon-
struites par CS, et discutons des artefacts observés dans ces images reconstruites, en parti-
culier dans le cadre de deux stratégies d’échantillonnage représentatives : l’échantillonnage
aléatoire uniforme d’une part, et l’échantillonnage aléatoire gaussien d’autre part.

Dans le chapitre IV (section D dans ce résumé), nous étudions comment l’échantillon-
nage compressé utilisant des mesures dans le plan de Fourier peut être appliqué à des
applications d’acquisition et de reconstruction de séquences vidéos. Nous considérons
en premier lieu un scénario consistant à reconstruire une vidéo à partir de mesures de
Fourier partielles acquises à partir de chacune de ses trames, et étudions en particulier
les modèles de parcimonie à utiliser lors de l’étape de reconstruction : nous comparons
ainsi plusieurs modèles de parcimonie existants, et introduisons une nouvelle fonctionnelle
de régularisation (donc un nouveau modèle de parcimonie) utilisant la variation totale à
trois dimensions, dont nous montrons qu’elle améliore de façon significative la qualité des
séquences reconstruites. Dans un second temps, nous examinons un modèle d’acquisition
non-linéaire – au-delà du cadre stricto sensu de la théorie du CS – dans lequel seul le
module de la transformée de Fourier du signal serait acquis: bien qu’il s’agisse alors
d’un problème de reconstruction différent, nous montrons qu’il est possible d’exploiter
des modèles de parcimonie de séquences vidéos analogues à ceux utilisés dans le scénario
d’acquisition linéaire. Nous montrons alors comment adapter ces modèles de parcimonie
afin d’aboutir à une procédure de reconstruction inspirée du problème de reconstruction
de phase (phase retrieval).

136



A. Introduction à la théorie du CS

Enfin, le chapitre V (section E dans ce résumé) porte sur la conception d’un estima-
teur de l’erreur quadratique moyenne commise lors d’une opération de débruitage, dans
le contexte d’un modèle de bruit mixte poisson-gaussien, lequel s’avère pertinent pour
modéliser le bruit rencontré dans les applications de microscopie à faible intensité lu-
mineuse. Bien que ce sujet particulier s’écarte de la thématique générale de la thèse, il a
été motivé dans le cadre de l’étude et de l’extension de méthodes de débruitage utilisant la
théorie de l’échantillonnage compressé, telles que proposée par [Marim09, Marim11a]. À
partir de notre étude, nous obtenons un estimateur d’erreur quadratique moyenne appelé
PG-URE, ainsi qu’une formulation pratique pour évaluer cet estimateur qui ne sont pas
limités aux méthodes de débruitage CS, mais qui au contraire peuvent être utilisés avec
a priori n’importe quel algorithme de débruitage existant. En particulier, nous montrons
au travers de plusieurs exemples comment cet estimateur PG-URE peut être utilisé pour
fixer de façon optimale les paramètres de divers méthodes de débruitage, illustrant notam-
ment la similitude entre les résultats obtenus par cette approche et ceux résultant d’une
approche basée “oracle”, donc non-utilisable dans le cadre d’applications pratiques.

A Introduction à la théorie du CS

A.1 Définitions et formalisme mathématique

L’échantillonnage compressé (compressed sensing, CS) est une théorie mathématique qui a
été développée au cours de la dernière décennie à partir des travaux de Candès, Romberg
et Tao [Candès06a] et Donoho [Donoho06]. Cette théorie vise à étudier une classe de
problèmes inverses mettant en jeu des signaux présentant une structure parcimonieuse.
Plus précisément, le problème posé en CS consiste à reconstruire un signal d’intérêt x P C

N

à partir d’une observation y “ Φx P C
M de la projection de ce signal x au travers

d’un opérateur de mesure Φ P C
MˆN donné, dans le cadre particulier où le nombre M

d’observations est supposé beaucoup plus faible que la taille N du signal (M ! N). Afin
de lever l’indétermination consécutive à la faible taille de ce vecteur d’observations, on fait
l’hypothèse dans le cadre de la théorie du CS que le vecteur x présente l’une des propriétés
suivantes :

• soit x “ px0, x1, . . . , xN´1q P C
N est lui-même parcimonieux, c’est à dire que le

nombre S de ses coefficients xk non-nuls est faible (i.e. S ! N),

• soit x possède une représentation parcimonieuse dans une base ou un dictionnaire
prédéterminé Ψ P C

NˆL, c’est à dire qu’il existe un vecteur s P C
L parcimonieux

vérifiant x “ Ψs.

Sous certaines conditions (présentées de façon précises dans [Candès10]) sur l’opérateur
de mesure Φ et sur le dictionnaire de représentation parcimonieuse Ψ, on peut montrer
qu’il est alors possible de construire un estimateur x̂ du signal x à partir du vecteur
d’observations y, en résolvant le problème d’optimisation suivant :
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x̂ “ arg min
xPCN

}Ψ˚x}
1

tel que }Φx ´ y}
2

ď � (i)

où Ψ est remplacé par la matrice identité Id lorsque l’on fait l’hypothèse que le vecteur x

est lui-même parcimonieux. Dans le problème d’optimisation (i), le paramètre scalaire � ě
0 permet de tenir compte du fait que l’observation y du signal d’intérêt x n’est en général
pas parfaite (i.e. supposer qu’on a une égalité stricte y “ Φx est abusif), notamment
du fait de divers phénomènes de bruit inévitables dans les systèmes de mesure physiques.
En pratique, la détermination de ce paramètre nécessite de connaître les caractéristiques
(notamment la variance) du bruit affectant les mesures y.

Dans le problème de reconstruction (i), le rôle de la fonctionnelle minimisée }Ψ˚x}
1

est de promouvoir tel ou tel type de propriété de parcimonie sur le signal d’intérêt x.
Si par exemple Ψ représente une base d’ondelettes 2D, minimiser }Ψ˚x}

1
favorisera les

images x possédant une représentation parcimonieuse dans cette base d’ondelettes, i.e.
les images régulières par morceaux. Il est néanmoins possible d’utiliser d’autres types de
fonctionnelles dans le problème de reconstruction (i), qui correspondent à d’autres types
de modèles de parcimonie. Par exemple, [Kim09, Marim11a] préconisent l’utilisation de la
variation totale 2D }x}

TV
pour la reconstruction d’images possédant un gradient spatial

parcimonieux (ce que l’on appelle également le modèle d’images cartoon). Le problème de
reconstruction considéré devient alors :

x̂ “ arg min
xPCN

}x}
TV

tel que }Φx ´ y}
2

ď � (ii)

où }x}
TV

est défini par :

}x}
TV

“
ÿ

k

b

|pDhxqk|2 ` |pDvxqk|2 (iii)

où l’indice k parcourt l’ensemble des pixels de l’image, et où Dh et Dv désignent re-
spectivement les opérateurs de dérivation horizontaux et verticaux applicables à l’image
considérée x. Plus généralement, la variation totale peut être vue comme un cas partic-
ulier de norme mixte l1,2, dont l’utilisation est préconisée par plusieurs travaux tels que
[Yuan06, Bach12] pour reconstruire des signaux parcimonieux dont le support présente
des structures particulière (notion appelée parcimonie par blocs, ou encore parcimonie
structurée – block sparsity, group sparsity ou structured sparsity). L’étude de ce type de
norme n’est toutefois pas poussée plus avant dans le cadre du manuscrit présent.

Enfin, notons qu’on s’intéressera plus particulièrement par la suite à un certain type
d’opérateur de mesure Φ, appelés dans ce manuscrit transformées unitaires partielles (par-
tial unitary transforms). Ces opérateurs Φ P C

MˆN sont formés en sélectionnant M

lignes dans une transformée unitaire U P C
NˆN . Ceci s’écrit formellement Φ “ ΣU , où

Σ P t0, 1uMˆN est une matrice de sélection, comportant exactement un coefficient non-nul
par ligne, et au plus un coefficient non-nul par colonne. Cette propriété entraîne notam-
ment ΦΦ˚ “ Id, et Φ˚Φ “ U˚ pΣ˚Σq U , où Σ˚Σ est une matrice diagonale. Parmi les
exemples de ce type d’opérateur de mesure rencontrés dans les applications d’imagerie, on
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peut mentionner les transformées de Fourier partielles (cas où U est une transformée de
Fourier), les transformées de Fresnel partielles, les transformées de Hadamard partielles
(cf. section A.2).

A.2 Exemples d’applications d’imagerie utilisant le CS

L’imagerie par résonance magnétique (IRM) est probablement l’une des premières modal-
ités d’imagerie à avoir exploité les possibilités offertes par la théorie de l’échantillonnage
parcimonieux. La raison de ceci – comme le note [Lustig08] – est que l’IRM satisfait à
deux exigences clés nécessaires une utilisation fructueuse du CS :

• les images médicales typiques peuvent être représentées de façon parcimonieuse
ou quasi-parcimonieuse modulo une transformation appropriée, typiquement pas-
sage dans le domaine ondelettes ou gradient spatial (voir par exemple [Lustig07,
Huang12]) ;

• les antennes des scanners IRM mesurent un signal physique qui est par essence une
transformée de Fourier (partielle ou non, suivant le nombre de mesures réalisées au
cours de l’acquisition) du volume d’intérêt.

Par ailleurs, étant donné que la durée d’une acquisition IRM est directement liée au
nombre de points échantillonnés dans l’espace de Fourier au cours de celle-ci, il est naturel
de chercher à réduire le nombre de ces points de mesure. Les travaux pionniers [Lustig07,
Lustig08] montrent que le CS permet d’atteindre cet objectif, et qu’il est possible de réduire
les temps d’acquisition d’un facteur 5 à 10 sans sacrifier la qualité ou la résolution des
images reconstruites.

D’autres modalités d’imagerie ont par la suite été développées autour de la théorie
de l’échantillonnage compressé. Sans objectif d’exhaustivité, on peut citer les exemples
suivants :

Holographie numérique Plusieurs travaux tels que [Brady09, Marim10, Marim11b,
Rivenson11] proposent d’utiliser le CS dans le cadre de montages d’holographie
numérique. [Marim11b] montre en particulier qu’il est possible de reconstruire des
images holographiques à partir de taux d’échantillonnage (ratio M

N
du nombre de

mesure sur la taille du signal reconstruit) de l’ordre de 9% à 19%.

Caméra 1-pixel Dans [Takhar06, Duarte08], un montage d’acquisition d’images inno-
vant – appelé par ses auteurs caméra 1-pixel (single-pixel camera), car ne requérant
qu’une seule photodiode – est présenté en guise de preuve de concept d’utilisation
du CS pour une application d’imagerie. La motivation pour ce type de dispositif
d’acquisition est de concevoir des capteurs sensibles à des domaines de longueur
d’onde pour lesquels il est techniquement impossible (ou trop coûteux) de construire
une matrice de capteurs similaire à un dispositif CMOS/CCD. Dans ce dispositif,
la photodiode unique acquiert de façon consécutive un nombre donné de projections
linéaires de l’image d’intérêt. Les auteurs montrent dans [Takhar06] que le ratio M

N
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entre le nombre M de projections à réaliser et la taille N de l’image reconstruite
peut être abaissé à une valeur située entre 40% et 66% grâce au CS (au lieu de 100%

dans le cadre de stratégies d’acquisition plus classiques).

Déflectométrie Dans [Sudhakar13], les auteurs proposent d’utiliser la théorie du CS pour
concevoir un dispositif permettant de mesurer les déflexions subies par la lumière
traversant un objet transparent fin. Certaines des idées sous-jacentes mises-en-œuvre
dans ce dispositif sont similaires à celles utilisées dans le schéma de caméra 1-pixel.
Les auteurs montrent qu’il est possible d’obtenir des ratios M

N
de l’ordre de 2.5% à

10% dans le cadre de cette application.

B Reconstruction par optimisation convexe

La mise en œuvre pratique des formules de reconstruction telles que (i) et (ii) établies par
la théorie de l’échantillonnage compressé nécessite de résoudre un problème d’optimisation
convexe. Or, la résolution de ces problèmes est une question difficile d’un point de vue
mathématique pour au moins deux raisons :

• en générale, la fonctionnelle minimisée fait intervenir des termes non-différentiables
(typiquement }¨}

1
ou }¨}

TV
) ;

• la dimension de l’espace C
N d’appartenance des signaux d’intérêt est très grande

dans le cas des problèmes d’imagerie (N ě 106 typiquement).

Certaines approches classiquement employées pour résoudre ces problèmes consistent
à les reformuler sous la forme de problèmes linéaires ou coniques de second ordre, puis à
les résoudre en utilisant des méthodes d’optimisation itératives telles que des méthodes
de points intérieurs (cf. [Candès05a, Boyd04]). Toutefois, ces méthodes génériques sont
souvent relativement lentes, notamment parce qu’elles nécessitent d’inverser un système
linéaire de taille proportionnelle à N , ce qui constitue une opération très coûteuse en
raison de la dimension élevée du problème. Aussi, d’autres approches plus spécialisées
ont été développées à partir du milieu des années 2000 afin d’accélérer ces traitements,
notamment dans le but de pouvoir traiter efficacement les problèmes de reconstruction
rencontrés dans le cadre de l’échantillonnage compressé.

Nous avons passé en revue et comparé trois de ces algorithmes :

• NESTA [Becker11], un algorithme itératif de descente de gradient inspiré des travaux
de Nesterov [Nesterov07], capable de résoudre (i) et (ii) dans le cas où l’opérateur
de mesure Φ vérifie ΦΦ˚ “ Id (ce qui est le cas si Φ est une transformée unitaire
partielle) ;

• RecPF [Yang10], un algorithme similaire à la méthode des directions alternées (Al-
ternating Direction Method of Multipliers, ADMM) telle que présentée notamment
dans [Combettes11] (algorithme 6.4), qui nécessite que Φ soit une transformée de
Fourier partielle ;
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• SPGL1 [Van Den Berg08], un algorithme calculant la solution (i) via la résolution
d’une série de problèmes d’optimisation alternatifs supposés plus simples, qui ne
requiert pas de propriétés particulières sur Φ mais qui n’est pas applicable à la
résolution des problèmes CS dont la fonction objectif fait intervenir un terme de
variation totale }¨}

TV
.

Nous avons comparé les performances de ces trois algorithmes dans le cadre de la recon-
struction d’images 2D issues de données réelles (imagerie biologique) à partir de mesures
partielles dans l’espace de Fourier. Nous avons pu mettre en évidence de grandes dispar-
ités en terme de temps de calcul entre les trois méthodes, la plus performante (RecPF)
pouvant s’avérer plus rapide d’un facteur 40 que la plus lente (SPGL1) sur une image
donnée, pour des niveaux de fidélité de reconstruction similaires. Dans la perspective
de notre étude de l’échantillonnage compressé, l’algorithme NESTA, quoique légèrement
plus lent que RecPF, nous est apparu présenter un compromis intéressant entre le degré
de spécialisation et la rapidité d’exécution. Par ailleurs, la compréhension des rouages
mathématiques mis-en-jeu au sein de cet algorithme nous permet de le modifier afin de
l’adapter à des besoins spécifiques : l’intégration de la variation totale 3D (cf. section D)
est un exemple d’une telle modification que nous avons apporté à l’algorithme.

C Paramètres d’échantillonnage dans le plan de Fourier

Lors d’un processus d’acquisition/reconstruction tel que prôné par la théorie de l’échantil-
lonnage compressé, les images reconstruites sont entachées de divers artefacts qui les
dégradent de différentes manières et conduisent à des perte de détails. Les travaux
théoriques tels que [Candès10] permettent d’évaluer l’erreur quadratique }x̂ ´ x}

2
com-

mise entre l’image reconstruite x̂ et l’image idéale x, mais ce résultats ne donne au-
cune information quant à la nature des artefacts introduits dans l’image x̂ lors du pro-
cessus de reconstruction, du fait de la faible taille du vecteur de mesures y. Lorsque
l’opération d’échantillonnage est effectuée dans le plan de Fourier de l’image d’intérêt,
deux paramètres d’échantillonnage vont influencer ces artefacts :

• d’une part, le nombre d’échantillons acquis dans le plan de Fourier (ou de manière
équivalente le taux d’échantillonnage),

• d’autre part, la stratégie d’échantillonnage, c’est à dire les fréquences spatiales où
– pour un “budget” de mesures donné – on choisit d’aller échantillonner le plan de
Fourier.

La problématique liée au choix de ces deux paramètres est discutée dans cette section.

C.1 Stratégies d’échantillonnage dans le plan de Fourier

Plusieurs stratégies d’échantillonnage ont été proposées pour effectuer des acquisitions
dans l’espace de Fourier, soit sur la base d’observations empiriques, soit plus récemment
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Uniforme “En étoile” [Candès06a] Polynomial [Lustig07]

Uniforme ` complet dans les
basses-fréquences [Kim09]

Gaussien [Wang10] Optimisé selon [Chauffert13b]

paq pbq pcq

pdq peq pfq

Figure i – Exemples de motifs d’échantillonnage dans l’espace de Fourier générés selon
différentes stratégies (les positions échantillonnées sont représentées en blanc).

suite à une analyse plus théorique du problème du choix d’une stratégie optimale (cf.
figure i).

Dans [Candès07], les auteurs établissent – dans le cadre d’un échantillonnage aléa-
toire uniforme – un résultat théorique quant au nombre minimal de mesures à réaliser
dans le plan de Fourier pour reconstruire un signal donné. Néanmoins, on observe en
pratique que l’allocation uniforme des positions d’échantillonnage dans l’ensemble de
l’espace de Fourier (cf. figure i, exemple (a)) conduit à des résultats de reconstruction
sous-optimaux : tous les points du plan de Fourier ne portent en quelque sorte pas la
même “quantité d’information”. En particulier, les stratégies utilisées dans le cadre de
travaux plus appliqués montrent qu’adopter une densité d’échantillonnage plus élevée
dans le domaine des basses fréquences améliore considérablement la qualité des recon-
structions. Parmi ces travaux, on peut citer notamment [Candès06a], qui utilise un motif
d’échantillonnage “en étoile” (cf. figure i, exemple (b)) pour illustrer les possibilités du
processus d’acquisition/reconstruction CS, ou encore [Lustig07, Kim09], qui proposent des
stratégies aléatoires favorisant de façon plus ou moins appuyée l’échantillonnage des basses
fréquences (cf. figure i, exemples (c), (d) et (e)).

Plus récemment sont apparus des travaux visant à la détermination d’une stratégie
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d’échantillonnage optimale, principalement [Puy11, Chauffert13b]. En se basant sur une
hypothèse d’images à coefficients d’ondelettes parcimonieux, [Chauffert13b] propose une
stratégie d’échantillonnage non-uniforme (cf. figure i, exemple (f)) “optimale” au sens
d’un critère introduit par [Rauhut10]. Hélas, comme d’ailleurs le reconnaissent les auteurs
eux-même, ce type de stratégie d’échantillonnage semble en pratique être moins efficace
que d’autres proposés notamment par [Lustig07]. La raison avancée par les auteurs pour
expliquer ce résultat négatif est que l’hypothèse d’images à coefficients d’ondelettes parci-
monieux est trop simpliste pour caractériser les images naturelles, en particulier les images
IRM utilisées par [Chauffert13b].

D’une manière générale, on peut considérer que la question du choix d’une stratégie
d’échantillonnage optimale dans le plan de Fourier demeure une question ouverte, le seul
élément faisant consensus étant l’importance de privilégier l’échantillonnage dans le do-
maine des basses fréquences.

C.2 Évaluation numérique d’un taux d’échantillonnage optimal

Une question liée à la détermination d’une stratégie d’échantillonnage optimale est
l’évaluation du nombre approprié de mesures à effectuer pour échantillonner un signal
donné. Un résultat présenté par [Candès07] établit que si ce nombre de mesures M est
supérieur à une borne dépendant de la taille N du signal à reconstruire, de son degré
de parcimonie, et de quantités caractérisant l’opérateur de mesure et le dictionnaire de
représentation utilisés, alors le problème de reconstruction CS (i) est capable de recon-
struire le signal échantillonné. Cependant, ceci n’est qu’une condition suffisante, et il peut
arriver qu’un signal soit reconstruit avec succès même si le critère avancé par [Candès07]
n’est pas vérifié. En outre, ce résultat ne décrit pas la nature des distorsions introduites
dans l’image reconstruite lorsque le nombre d’échantillons pris en compte est insuffisant.

Sur la base de simulations numériques, nous avons étudié l’influence du taux d’échantil-
lonnage (ratio M

N
) sur la qualité de la reconstruction, montrant notamment qu’il existe

différents “régimes” de reconstruction en fonction de la valeur de ce paramètre. Dans le cas
d’images binaires simples échantillonnées selon une stratégie aléatoire uniforme, nous avons
identifié l’existence d’un taux d’échantillonnage optimal τ‹ séparant les deux domaines de
reconstruction, l’un correspondant à des taux d’échantillonnage conduisant à des recon-
structions parfaites (pour M

N
ą τ‹), l’autre correspondant à des taux d’échantillonnage

pour lesquels la reconstruction échoue complètement (pour M
N

ă τ‹), les images reconstru-
ites ne permettant pas même l’identification des objets et structures principales présentes
dans les images originales. Nous avons montré que la valeur de ce taux d’échantillonnage
optimal τ‹ peut être prédite à partir des caractéristiques géométriques de l’image échan-
tillonnée, qui peuvent dans certains cas être évaluées a priori avant l’acquisition. Dans le
cas d’une stratégie d’échantillonnage non-uniforme favorisant les basses fréquences (échan-
tillonnage gaussien en l’occurrence, cf. figure i, exemple (e)), nous avons montré que le
taux d’échantillonnage a une influence plus complexe à analyser, et notamment qu’il ex-
iste vraisemblablement un régime de reconstruction intermédiaire, correspondant à des
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valeurs du taux d’échantillonnage M
N

pour lesquelles la reconstruction CS induit un effet
de filtrage passe-bas sur les images reconstruites.

D Échantillonnage vidéo

Nous présentons dans cette section comment la théorie de l’échantillonnage peut être util-
isée dans le cadre d’applications d’acquisition/reconstruction de séquences vidéos. Deux
schémas d’acquisition sont considérés, le premier supposant que l’on est capable de mesurer
la composante de phase de la transformée de Fourier du signal observé, le second ne le
supposant pas.

D.1 Application du CS aux signaux vidéos

D’un point de vue formel, le premier schéma d’acquisition vidéo étudié se définit de la
façon suivante : étant donné une séquence vidéo X P C

NT composée de T trames 2D
consécutives xt P C

N (0 ď t ď T ´ 1), on suppose que l’on mesure X au moyen d’un
dispositif d’acquisition linéaire et sans mémoire Φ, lequel renvoie un vecteur d’observations
Y . Formellement :

»

—

—

—

—

—

–

y0

y1

...

yT ´1

fi

ffi

ffi

ffi

ffi

ffi

fl

looomooon

Y

“

»

—

—

—

—

—

–

φ0

φ1

. . .

φT ´1

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooooomoooooooooooooon

Φ

¨

»

—

—

—

—

—

–

x0

x1

...

xT ´1

fi

ffi

ffi

ffi

ffi

ffi

fl

looomooon

X

(iv)

Dans notre cas, les opérateurs φt sont des transformées de Fourier 2D partielles, même si
les résultats présentés peuvent être étendus à d’autres types de transformées. La question
qui se pose alors consiste à déterminer dans quelles conditions et par quels moyens la
reconstruction du signal X à deux dimensions d’espace et une dimension de temps (2D+T)
peut se faire à partir de la connaissance du vecteur d’observations Y et de la connaissance
de l’opérateur Φ.

La notion d’opérateur linéaire sans mémoire renvoie à la structure diagonale par bloc
de l’opérateur linéaire Φ. En particulier, le vecteur de mesures Y peut être partitionné en
T sous-vecteurs yt, chacun de ces sous-vecteurs yt ne dépendant que d’une seule trame xt

dans le signal original. En pratique, cette modélisation correspond par exemple à un dis-
positif d’acquisition d’images 2D qui serait utilisé pour acquérir en rafale une série d’images
d’une même scène en mouvement, les mesures successives étant simplement concaténées
les unes aux autres.

Du fait de cette structure particulière de l’opérateur Φ, il est possible de réaliser une re-
construction trame-par-trame du signal X : chaque trame xt est alors reconstruite à partir

144



D. Échantillonnage vidéo

du sous-vecteur de mesures yt correspondant – indépendamment des autres trames – via la
résolution d’un problème de reconstruction CS 2D classique tel que (i) ou (ii). Toutefois,
une telle méthode n’exploite pas les redondances existant entre les trames consécutives du
signal vidéo, lesquelles autorisent des méthodes de reconstructions plus efficaces.

D’un point de vue théorique, l’utilisation d’opérateurs tels que Φ dans le cadre d’un
schéma d’acquisition CS pose problème : en effet, en raison de sa structure diagonale par
bloc, Φ ne vérifie pas a priori les hypothèses retenues par [Candès06a] et [Donoho06] pour
les opérateurs d’acquisition CS. Néanmoins, sous-réserve d’hypothèses supplémentaires
sur la séquence mesurée X (a priori vérifiées en pratique), [Park11] démontre que les
garanties théoriques relatives de reconstruction CS peuvent être étendues à des schémas
d’acquisition tels que (iv).

D’un point de vue pratique, nous avons proposé une méthode novatrice de reconstruc-
tion du signal vidéo X à partir du vecteur d’observations Y , basée sur une estimation
jointe de l’ensemble des images composant la séquence vidéo. Concrètement, on construit
un estimateur X̂ de la séquence de la façon suivante :

X̂ “ arg min
XPCNT

}X}
TV-3D

tel que }ΦX ´ Y }
2

ď � (v)

où on utilise pour fonctionnelle à minimiser la variation totale du signal vidéo vu comme
un objet à trois dimensions, et définie par :

}X}
TV-3D

“
ÿ

t,k

b

|pDhxtqk|2 ` |pDvxtqk|2 ` |pxt`1 ´ xtqk|2 (vi)

où les indices t et k parcourt respectivement l’ensemble des points de temps et l’ensemble
des pixels des trames de la séquence, et où Dh et Dv désignent respectivement les opéra-
teurs de dérivation horizontaux et verticaux applicables aux trames de la séquence consid-
érée X. La minimisation de cette fonctionnelle }X}

TV-3D
(variation totale 3D) favorise la

reconstruction de séquences présentant les trois propriétés suivantes, dont nous supposons
qu’elles forment un modèle pertinent pour caractériser les séquences vidéos naturelles :

1. Le gradient spatial 2D de chaque trame xt est parcimonieux (intra-frame sparsity).

2. La différence pxt`1 ´ xtq entre deux trames consécutives est parcimonieuse (inter-
frame sparsity).

3. Les coefficients non-nuls du gradient spatial 2D d’une trame donnée xt – qui corre-
spondent aux bords des objets et des structures représentées dans l’image xt – et les
coefficients non-nuls dans la carte de différence pxt`1 ´ xtq – qui correspondent aux
fronts de déplacement et de déformation – sont essentiellement situés aux mêmes
positions.

Nous avons mis en évidence l’intérêt de cette méthode de reconstruction par rapport
à l’état de l’art (notamment [Wakin06] et [Marcia08]), dans le sens où la reconstruction
par minimisation de la variation totale 3D introduit moins d’artefacts de mouvement dans
les séquences reconstruites, et préserve davantage les contours des objets (cf. figure ii).
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Séquence originale

Reconstruction TV

trame-par-trame
Méthode [Wakin06]

(ondelettes 3D)

Méthode [Marcia08] dite “C20”
(différence entre trames

consécutives + ondelettes 2D)

Méthode proposée
(variation totale 3D)

Figure ii – Résultats de reconstruction obtenus pour la séquence de test Amoeba (trame
t “ 50) à partir d’une mesure de 10% des coefficients de Fourier de chaque trame, en
utilisant différentes méthodes de reconstruction.

Nous avons également quantifié le gain apporté par cette méthode par rapport à une
approche consistant à reconstruire chaque image de la séquence indépendamment, mettant
un évidence une amélioration du taux de compression d’un facteur 3 à 4, à qualité de
reconstruction équivalente.

D.2 Acquisitions non-linéaires et reconstruction de phase

Dans cette section, nous nous intéressons à un problème de reconstruction vidéo dans un
scénario où le système de mesure n’acquiert que le module de la transformée de Fourier –
à la différence du schéma d’acquisition (iv), où l’on supposait que les mesures yt portaient
à la fois sur le module et sur la phase du signal de transformée de Fourier.

La raison pour laquelle on s’intéresse à des procédure d’échantillonnage telles que celle-
ci est qu’il est possible d’implémenter des opérateurs de transformée de Fourier au moyen
de montages optiques. Cette propriété peut être mise à profit pour concevoir des systèmes
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d’acquisition réalisant une transformée de Fourier optique en amont des capteurs photo-
électriques, permettant ainsi de bénéficier des avantages de l’échantillonnage compressé.
Néanmoins, la mesure du signal à valeurs complexes issu du montage de transformée
de Fourier optique demeure ardu, dans la mesure où les transducteurs photo-électriques
tels que les capteurs CCD ou CMOS produisent des signaux correspondant à l’énergie
des photons incidents, laquelle est indépendante de la phase de l’onde électro-magnétique
correspondante. Mesurer la phase nécessite des montages optiques plus complexes, qui ne
sont pas toujours compatibles avec les impératifs expérimentaux du moment. Au contraire,
la mesure du seul module de la transformée de Fourier complexe relâche les contraintes
portant sur la partie optique du système d’acquisition.

Formellement, le modèle d’acquisition correspondant à des mesures de module seul
s’écrit de la façon suivante :

yt “ |φtxt| pour tout t (vii)

où xt P R
N est la tème trame du signal vidéo à reconstruire, yt P R

mt
` est le vecteur de

mesures acquis au point de temps t, φt est une transformée de Fourier partielle, et |¨|
représente l’opération de passage au module sur chacune des composantes du vecteur en
argument. La procédure que nous proposons pour reconstruire les trames xt à partir des
mesures yt consiste alors à résoudre séquentiellement (pour t variant de 1 à T ´ 1 si les
trames de la séquence à reconstruire sont indexées de 0 à T ´ 1) la suite de problèmes
suivante :

Trouver xt tel que

#

yt “ |φtxt| (au bruit et aux erreurs de mesure près)

xt est compatible avec xt´1

(viii)

où la relation de “compatibilité” entre les trames xt et xt´1 est à préciser. Il est à noter
que cette procédure de reconstruction trame-par-trame diffère du schéma reconstruction
utilisé dans le cadre de mesures linéaires (cf. section D.1), dans laquelle toutes les trames
de la séquence vidéo sont reconstruites de façon conjointe. Elle exige également de disposer
d’une “trame-clé” (key-frame) x0 pour initialiser la reconstruction récursive.

La reconstruction d’un signal à partir du module de sa transformée de Fourier est
un problème de traitement du signal classique, dénommé reconstruction de phase (phase
retrieval) : cette technique de reconstruction a été utilisée par exemple dans le cadre
de modalités d’imagerie par rayons X, pour des applications en cristallographie (voir
[Fienup82, Miao99]). Pour résoudre un problème1 tel que (viii), la méthode proposée
par [Fienup82] consiste tout d’abord à distinguer deux sous-ensembles de R

N :

• Le sous-ensemble Dy,� (data set), qui caractérise l’ensemble des images correspondant
au vecteur de mesures y : Dy,� “

�

x P R
N tel que }y ´ |φx|}

2
ď �

(

. Cet ensemble

1Pour simplifier les notations, nous cessons désormais de mentionner l’indice de temps t dans le reste
de la section, étant entendu que cet indice est fixé lors de la résolution du problème (viii). L’image à
reconstruire devient alors x (au lieu de xt), l’image précédente dans la séquence devient a (au lieu de
xt´1), le vecteur de mesures devient y (au lieu de yt), et ainsi de suite.
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dépend d’un paramètre �, lié au niveau de bruit affectant les mesures.

• Un sous-ensemble R (regularization set), qui caractérise l’ensemble des signaux
qui vérifient un ou plusieurs critères de régularité définis a priori. Dans le cadre
d’applications de cristallographie, R consiste typiquement en l’ensemble des images
2D dont le support est restreint à un sous-ensemble de pixels.

Un estimateur x̂ de l’image à reconstruire est alors calculé comme étant la limite d’une
suite de projections alternées sur les deux ensembles Dy,� et R :

x̂ “
`

ΠR ˝ ΠDy,� ˝ ΠR ˝ ¨ ¨ ¨ ˝ ΠDy,�

˘

pxinitq (ix)

où xinit est une estimation initiale de la solution, et ΠDy,� et ΠR désignent respectivement
les projecteurs sur Dy,� et R :

ΠDy,� pxq “ arg min
z

}z ´ x}
2

tel que z P Dy,� (x)

ΠR étant défini de façon analogue. [Fienup82] montre que la suite d’estimateurs définie
par (ix) converge vers l’intersection de Dy,� et R. Une propriété remarquable de l’ensemble
ΠDy,� est que, bien qu’il ne soit pas convexe, le problème de projection associé (x) possède
une solution pouvant être explicitée sous forme algébrique, et l’évaluation de cette solution
est rapide en termes de temps de calcul (O pN log Nq opérations).

Dans le cadre de notre problème de reconstruction vidéo, la définition de l’ensemble R

suppose de préciser la nature de la relation de compatibilité entre x et a telle qu’introduite
dans le problème (viii). Nous avons montré dans la section D.1 que les séquences vidéos
que l’on cherche à mesurer doivent avoir une variation totale 3D aussi faible que possible.
Partant de cette propriéte, nous définissons alors la fonctionnelle “variation totale hybride”
(hybrid total variation) de la façon suivante :

}x}
hTV,a “

ÿ

k

b

pDhxq2

k ` pDvxq2

k ` px ´ aq2

k (xi)

où l’indice k parcourt l’ensemble des pixels de l’image x, et où Dh et Dv désignent
respectivement les opérateurs de dérivation horizontaux et verticaux qui lui sont appli-
cables. Cette fonctionnelle }¨}

hTV
représente essentiellement la contribution individu-

elle de chaque trame xt à la variation totale 3D d’une séquence X, dans le sens où
}X}

TV-3D
“ ř

t }xt}hTV,xt`1
(avec les notations de la section D.1). Cette remarque jus-

tifie alors la définition de l’ensemble R comme étant une ligne de niveau de la variation
totale hybride :

Ra,τ “
!

x P R
N tel que }x}

hTV,a ď τ
)

(xii)

où le paramètre τ ą 0 nouvellement introduit est à préciser. Sans rentrer dans les détails,
nous montrons qu’il devient alors possible d’implémenter le schéma de reconstruction par
projections alternées (ix), notamment en proposant une méthode inspirée de [Fadili11]
pour évaluer l’opérateur de projection ΠRa,τ de façon rapide, ainsi qu’une heuristique
permettant de déterminer de façon automatique une valeur adaptée pour ce paramètre τ .
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Figure iii – Résultats de reconstruction obtenus pour la séquence de test Amoeba, à partir
d’une mesure de 25% des coefficients de Fourier de chaque trame (en module seulement),
et d’une “trame-clé” (key-frame) à t “ 0.

La figure iii présente un résultat de reconstruction obtenu avec une séquence de test. Le
résultat obtenu pour les premières images de la séquence (i.e. celles correspondantes aux
petites valeurs de t, typiquement t ă 10) présentent un bon niveau de fidélité à l’original,
cette fidélité se dégradant au cours du temps : on note en particulier un accroissement de
l’effet de flou au niveau des contours des objets, se qui se traduit par une augmentation de
l’erreur quadratique moyenne calculée sur chaque trame entre l’original et la reconstruc-
tion. Ces phénomènes résultent de l’accumulation d’erreurs de reconstruction sur chaque
trame, l’estimateur de la trame t étant défini à partir de l’estimateur de la trame t ´ 1.

Nous montrons dans le chapitre IV qu’il est possible de réduire significativement cette
dégradation au cours du temps, en modifiant la fonctionnelle }¨}

hTV
de façon à mettre

en œuvre des heuristiques de prédiction de mouvement. Les résultats préliminaires ainsi
obtenus présentent une qualité de reconstruction quasiment stable au cours du temps.
Cependant, l’étalonnage automatique et robuste des paramètres numériques associés à ces
méthodes de prédiction de mouvement demeure pour le moment une question ouverte dans
le cadre de l’application de reconstruction vidéo présentée ici.

E Vers une méthode de débruitage CS ?

E.1 Débruitage par agrégation de reconstructions CS multiples

L’utilisation d’idées inspirées par la théorie du CS pour des opérations de débruitage, ainsi
que le propose [Marim09], est justifiée par les deux remarques suivantes. Tout d’abord,
en termes d’analyse fréquentielle, l’énergie d’une image naturelle sans bruit est surtout
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Figure iv – Schéma de débruitage procédant par fusion de reconstructions CS multiples.
À partir d’une image bruitée y, on génère plusieurs vecteurs de mesures yr à partir de
transformées de Fourier partielles de y. Ensuite, chaque yr est utilisé pour générer un
estimateur x̂r du signal original en résolvant un problème de reconstruction CS tel que
(ii). Enfin, l’ensemble des x̂r sont fusionnés de façon à former un estimateur amélioré x̂.

concentrée dans la zone de basses fréquences de son domaine de Fourier, tandis qu’un
bruit blanc a une énergie spectrale uniforme : cela signifie que, dans une image naturelle
bruitée, ce sont les composantes de hautes fréquences de l’image qui sont les plus fortement
affectées par le bruit, ce qui rend les informations provenant de la zone correspondante
du spectre moins précises que celles provenant de la zone de basses fréquences. En second
lieu, la théorie du CS établit qu’un signal parcimonieux peut être reconstruit à partir d’un
sous-ensemble non-adaptatif de mesures linéaires bruitées.

Sur la base de ces deux idées, il est possible de proposer un algorithme de débruitage
utilisant le CS et fonctionnant selon la procédure suivante (voir aussi la figure iv) :

1. Générer plusieurs sous-ensembles corrélés de mesures à partir de transformées de
Fourier partielles de l’image bruitée, en rejetant l’essentiel des coefficients de Fourier
haute fréquence.

2. Pour chaque sous-ensemble de mesures yr (r “ 1, . . . , R), calculer un estimateur x̂r

de l’image bruitée en résolvant un problème de reconstruction CS (par exemple (ii)).

3. Fusionner l’ensemble de ces estimateurs de x̂r de façon appropriée afin d’obtenir un
estimateur x̂ plus fidèle de l’image originale non-bruitée x.

Le schéma de débruitage présenté dans la figure iv comporte un nombre important de
paramètres : le nombre R de reconstructions CS intermédiaires à fusionner, la borne �

intervenant dans le terme de fidélité aux données dans les problèmes de reconstruction
CS (ii), la stratégie d’échantillonnage utilisée pour sélectionner les coefficients de Fourier
intervenant dans la formation des vecteurs de mesures yr, la méthode de fusion utilisée
pour combiner les x̂r, etc. Une stratégie pour optimiser ces paramètres pourrait être
de minimiser un critère d’erreur quadratique moyenne entre x̂ et une vérité terrain x

correspondant une version non-bruitée de l’image y. Toutefois, sauf dans des contextes
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particuliers, cette erreur quadratique moyenne est impossible à évaluer directement dans la
mesure où x est généralement inconnu. Une façon de contourner ce problème est d’utiliser
des estimateurs de risque, dont SURE [Stein81, Donoho95b] est un des représentant les
plus connus.

E.2 Estimateur de risque applicable au bruit mixte poisson-gaussien

L’estimateur SURE [Stein81] est un résultat bien connu des statisticiens, qui a reçu ces
dernières années un intérêt croissant de la part de la communauté du traitement d’images
(voir par exemple [Donoho95b, Benazza-Benyahia05, Van De Ville09]). Étant donné un
algorithme de débruitage représenté par une fonction f et une image à débruiter y P R

N

résultant de la dégradation d’une image “vérité terrain” x P R
N par un bruit blanc additif

gaussien d’écart-type σ (c’est à dire y “ x ` b où b „ N
`

0, σ2Id
˘

), [Stein81] définit
l’estimateur SURE par :

SURE “ 1

N
}f pyq ´ y}2

2
´ σ2 ` 2σ2

N

ÿ

k

Bfk

Byk

pyq (xiii)

Alors, modulo quelques hypothèses techniques supplémentaires, on peut montrer que
l’estimateur SURE et l’erreur quadratique moyenne MSE “ 1

N
}f pyq ´ x}2

2
entre le résul-

tat du débruitage f pyq et la vérité terrain x ont des espérances égales sur l’ensemble des
réalisations de la variable aléatoire b : E tMSEu “ E tSUREu. En revanche, contrairement
à l’erreur quadratique moyenne, l’expression (xiii) de SURE ne dépend pas de la vérité
terrain x. Cet estimateur de risque peut donc être utilisé pour des tâches d’optimisation
de paramètres : par exemple, si le comportement de l’algorithme f est contrôlé par un jeu
de paramètres θ, il est possible de guider le choix de ce jeu de paramètres en minimisant
la valeur de SURE.

En pratique, l’utilisation de cet estimateur est limitée par deux de ses caractéristiques :

1. D’une part, la construction de l’estimateur SURE repose sur l’hypothèse de bruit
blanc additif gaussien mentionnée ci-dessus, laquelle n’est pas adaptée pour rendre
de compte de toutes les situations rencontrées dans le cadre d’applications de bio-
imagerie, notamment en conditions de faible luminosité.

2. D’autre part, l’expression (xiii) de l’estimateur SURE fait intervenir les dérivées
partielles de l’opérateur de débruitage f . Or, sauf exceptions, cet opérateur est
rarement défini sous la forme d’une expression algébrique (par exemple, dans le cadre
de l’algorithme classique [Rudin92] de débruitage par minimisation de la variation
totale, f est défini à partir d’un problème d’optimisation). Dans ces situations, le
calcul des dérivées partielles de f n’est pas un problème trivial, ce qui complique
l’évaluation de (xiii).

Dans le travail présenté dans le chapitre V, nous proposons une méthode permettant de
s’affranchir de ces deux limitations.
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Dans un premier temps, dans la continuité des travaux initiés par [Luisier11], nous
construisons un estimateur de risque appelé PG-URE adossé à un modèle de bruit mixte
poisson-gaussien. Plus précisément, nous considérons le modèle de bruit suivant, reliant
la vérité terrain x et l’image bruitée y :

y “ ζz ` b avec

$

’

&

’

%

z „ P

ˆ

x

ζ

˙

b „ N
`

0, σ2Id
˘

(xiv)

où z et b sont deux variables aléatoires indépendantes qui suivent respectivement une loi
de Poisson et une loi gaussienne, et où σ et ζ sont deux paramètres scalaires positifs.
Le modèle (xiv) présente la particularité d’englober, pour des valeurs particulières des
paramètres σ et ζ, les modèles de bruit “classiques” que sont le modèle de bruit blanc
additif gaussien (obtenu pour ζ “ 0 et σ ą 0) et le modèle de bruit de Poisson (obtenu
pour ζ “ 1 et σ “ 0). Dans le cadre de ce modèle (xiv), on définit alors une première
expression de l’estimateur de risque PG-URE comme suit :

PG-URE “ 1

N

´

}f pyq ´ y}2

2
` 2

@

ζy ` σ21
ˇ

ˇBf pyq
D

´ 2σ2ζ
@

1
ˇ

ˇB2f pyq
D

´ ζ x1|yy
¯

´ σ2

(xv)
où les fonctions à valeurs vectorielles Bf pyq et B2f pyq sont définies par :

pBfqk pyq “ Bfk

Byk

pyq
`

B2f
˘

k
pyq “ B2fk

By2
k

pyq pour tous les pixels k (xvi)

Comme pour l’estimateur SURE dans le cadre du modèle de bruit blanc additif gaussien,
on peut alors établir l’égalité E tMSEu “ E tPG-UREu sous l’hypothèse (xiv).

Dans un second temps, nous proposons une méthode inspirée de [Ramani08] pour éval-
uer de façon probabiliste les termes impliquant les dérivées partielles de f dans l’expression
(xv). L’idée qui préside à cette méthode est d’appliquer des perturbations aléatoires
d’amplitude faible à l’image bruitée y, et d’évaluer les dérivées partielles de f à partir
des différences entre f pyq et f appliqué aux versions perturbées de y. Plus précisément,
on montre que cette approche aboutit à la formule empirique suivante de l’estimateur
PG-URE :

PG-URE “ 1

N
}f pyq ´ y}2

2
´ ζ

N
x1|yy ´ σ2 ` 2

N 9�
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ˇ
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E
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A

:δ
ˇ

ˇ

ˇ
f

´

y ` :�:δ
¯

´ 2f pyq ` f
´

y ´ :�:δ
¯E

(xvii)

Cette expression (xvii) introduit les objets suivants :

• 9� et :� sont deux paramètres scalaires positifs non-nuls, idéalement aussi proches que
possible de 0. Ces paramètres représentent l’amplitude des perturbations appliquées
à l’image y.
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Conclusion

• 9δ et :δ sont des réalisations de deux vecteurs aléatoires, donc les composantes sont
indépendantes et identiquement distribuées selon les distributions respectives 9π et :π

définies par :

9π
´

9δk “ ´1
¯

“ 9π
´

9δk “ 1
¯

“ 1

2

:π

ˆ

:δk “ ´
c

q

p
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“ p :π
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p

q

˙
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$

&

%

p “ 1

2
` κ

2

`

κ2 ` 4
˘´1{2

q “ 1 ´ p

(xviii)
Ces paramètres représentent la forme des perturbations appliquées à l’image y.

• κ est un paramètre scalaire non-nul, intervenant également dans la définition de la
distribution :π (κ est égal au moment d’ordre 3 de :π).

En fixant de façon adéquate la valeur des paramètres scalaires κ, 9� et :�, on obtient ef-
fectivement une bonne approximation de l’erreur quadratique moyenne de débruitage à
partir de la formulation empirique (xvii) de l’estimateur PG-URE. Nous avons pu véri-
fier la concordance MSE « PG-URE avec plusieurs exemples d’algorithmes de débruitage
classiques, et nous avons montré que cette propriété pouvait être exploitée pour optimiser
les paramètres de ces algorithmes dans des scénarios de débruitage réalistes.

Conclusion

Dans ce travail de thèse, nous avons abordé plusieurs questions liées à l’application de la
théorie de l’échantillonnage compressé (compressed sensing, CS) à la conception de mon-
tages d’acquisition optiques. Nous avons d’abord examiné les solutions algorithmiques qui
existent pour résoudre les problèmes de reconstruction inhérents aux régimes d’acquisition
CS. Nous avons analysé le rôle et l’influence des différents paramètres d’échantillonnage
dans le plan de Fourier, visant à proposer des heuristiques pour définir ces paramètres dans
le cadre d’applications d’imagerie pratiques. Nous avons ensuite mis l’accent plus partic-
ulièrement sur l’application de la théorie du CS à la conception de systèmes d’acquisition
vidéo basés sur la transformée de Fourier optique : nous avons d’abord analysé les hy-
pothèses de parcimonie pertinentes dans le cadre de la reconstruction de séquences vidéos,
en particulier pour des applications de microscopie. Afin de simplifier la mise en œu-
vre de capteurs optiques exploitant l’échantillonnage dans le plan de Fourier, nous avons
également proposé une méthode dite de reconstruction de phase (phase retrieval) visant
à reconstruire des séquences vidéos à partir de mesures partielles de module de Fourier,
et exploitant les caractéristiques de parcimonie de ces signaux. Enfin, avec à l’esprit le
développement de méthodes de débruitage utilisant le CS, nous avons étudié le problème
de la conception d’un estimateur de l’erreur quadratique moyenne commise lors d’une
opération de débruitage. Cet estimateur est utilisable dans des applications de débruitage
concrètes (où aucune vérité-terrain n’est disponible), et peut traiter comme tel un modèle
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de bruit mixte poisson-gaussien adapté à la modélisation réaliste du bruit que l’on rencon-
tre notamment dans les applications de microscopie à faible intensité. Cette vaste palette
de directions de recherche appelle plusieurs remarques.

La plupart des travaux de recherche effectués au cours de cette thèse visent à la concep-
tion de dispositifs d’imagerie optiques performants utilisant la théorie du CS, en particulier
pour des applications de microscopie. Le travail sur le thème de l’échantillonnage vidéo
montre en particulier que les séquences d’images peuvent être reconstruites avec des ré-
solutions spatiale et temporelle élevées à partir d’un petit nombre d’échantillons mesurés
dans le plan Fourier de façon non-adaptative : nous avons démontré qu’il est possible
d’atteindre des facteurs de compression de l’ordre de 10 dans le cas de séquences de micro-
scopie réelles. De plus, nous avons mis en évidence la grande flexibilité des méthodes de
reconstruction CS par rapport aux hypothèses de parcimonie qui peuvent être formulées
sur les signaux d’intérêt, et – dans une certaine mesure – par rapport au type de mesures
utilisées lors de la reconstruction.

Cependant, ces résultats ont été obtenus dans le cadre de simulations numériques
uniquement, et doivent maintenant être validés sur des systèmes d’acquisition optiques
réels (et probablement expérimentaux dans un premier temps). Comme nous sommes
maintenant en mesure de répondre à de nombreuses questions en rapport avec les prob-
lématiques de reconstruction et de post-traitement liées aux schémas d’acquisition CS,
nous pensons que la plupart des efforts visant à la conception de ces dispositifs d’imagerie
optiques à base de CS devraient désormais être tournés vers les aspects physiques et op-
tiques de ce projet. Ces futurs développements devront en particulier répondre à deux
questions :

• Dans quelle mesure les imperfections non modélisées d’un véritable système d’ima-
gerie optique à base de CS sont susceptibles d’affecter les performances – en partic-
ulier les taux de compression – de l’ensemble de la chaîne d’acquisition/reconstruc-
tion, en comparaison de ce que nous avons obtenu par simulation numérique ?

• Comment concevoir un système de capteurs type CMOS/CCD “intelligent”, c’est à
dire qui serait capable de mesurer le rayonnement lumineux incident uniquement
sur des sous-régions pré-déterminées de sa surface active ? Bien sûr, ce mode
d’acquisition partielle peut être facilement simulé avec la technologie des capteurs
CMOS/CCD actuels : on peut ainsi acquérir des mesures sur l’ensemble de la matrice
de pixels, et rejeter en aval les mesures inutiles grâce à un contrôleur électronique
approprié. Toutefois, si l’objectif final est, par exemple, d’augmenter la vitesse de
fonctionnement des capteurs CMOS/CCD, un tel procédé est évidemment inefficace.

Le développement de dispositifs d’imagerie optiques à base de CS doit encore être pour-
suivi, la puissante théorie mathématique de l’échantillonnage compressé offrant très cer-
tainement de nombreuses pistes pour améliorer les systèmes d’imagerie.
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