
HAL Id: tel-00949652
https://theses.hal.science/tel-00949652

Submitted on 20 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial solitons and optical vortices in nematic liquid
crystals

Raouf Barboza

To cite this version:
Raouf Barboza. Spatial solitons and optical vortices in nematic liquid crystals. Other [cond-
mat.other]. Université Nice Sophia Antipolis; Università degli studi Roma Tre, 2013. English. �NNT :
2013NICE4053�. �tel-00949652�

https://theses.hal.science/tel-00949652
https://hal.archives-ouvertes.fr


Spatial Solitons and Optical

Vortices in Nematic Liquid

Crystals

Raouf BARBOZA

Department of Engineering

University of Rome

A thesis submitted for the degree of

Doctor of Philosophy

2013



International Doctoral School EDEMOM

European Doctorate in Electronic Materials, Optoelectronics and

Microsystems.

Doctor of Philosophy Course in Electronic Engineering - XXV CICLO

Spatial Solitons and Optical

Vortices in Nematic Liquid

Crystals

BARBOZA Raouf

Departement Of Engineering

Universtity of Rome ROMA Tre

in cotutele with:

Universtity of Nice-Sofia Antipolis.

Discipline: PHYSICS

Tutors:

Prof. Gaetano ASSANTO

Prof. Stefania RESIDORI

Coordinator:

Prof. Giuseppe SCHIRRIPA SPAGNOLO



UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR Sciences

Ecole Doctorale Sciences Fondamentales et Appliquées

THESE

pour obtenir le titre de

Docteur en Sciences
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Abstract

Liquid crystals have been all along a fertile background for scientific re-

search, from mathematics to materials science to optics; their use is not

limited to displays but extends to nonlinear optics, switching, routing. Due

to their extreme sensitivity to electric fields at frequencies ranging from con-

tinuous wave to optics, they are also nonlinear media supporting the gener-

ation and propagation of self confined beams, called spatial optical solitons,

at very low powers. Spatial optical solitons have the property to propagate

without diffraction, as diffraction is compensated by nonlinear self-focusing

of the medium in which light is injected, resulting in self-induced waveg-

uides. These waveguides in nematic liquid crystals can in turn confine and

route other optical signals and can be reconfigured, optically or electri-

cally, as soliton trajectories can be controlled by other fields, paving the

way to optical and all-optical manipulation. Nematic liquid crystals have

also been recently employed with success in the so called singular optics, in

which the key parameter is the topologic singularity carried by the phase of

an electromagnetic wave. In this thesis I will report on my work on spatial

optical solitons and optical singularities in nematic liquid crystals. In the

first chapter I will outline the basic properties of nematic liquid crystals,

with an introduction to solitons in nonlinear optics. In the second I will

discuss the generation of optical spatial solitons and their steering in ne-

matic liquid crystals. In the third chapter I will present the basic concepts

of singular optics , followed by a discussion on vortices and their generation

using optical induction of defects.
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Chapter 1

Introduction

1.1 Basic Properties of Liquid Crystals

Liquid crystals (LCs) are formed by organic molecules strongly elongated in one di-

rection. Therefore, they are characterized by an anisotropy in their physical prop-

erties: electrical, optical and structural. In certain ranges of temperature, LC form

mesophases, that is, phases that are intermediate between liquids and solids. Figure

1.1 illustrates the nematic phase and its differences with respect to an isotropic (normal

liquid) phase and a crystalline (perfectly ordered) structure. In the nematic phase all

the molecules are in average aligned along a preferential direction, so called the nematic

director n̂, therefore they have orientational order but still lack positional order.

(a) Isotropic (b) Nematic (c) Crystal

Figure 1.1: The isotropic phase (a) is characterized by the absence of both orientational
and positional order. In the nematic state (b) a long range orientation order is observed,
but the molecules still lack positional order. If cooled, the nematic state can go through
other states and finally become a solid crystalline (c) structure.
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Liquid crystals can exhibit other phases like:

• smectic: it is distinguishable from nematics by the existence of a long range

positional order along the nematic director, hence the molecules are distributed in

layers called smectic planes without a positional order. The angle of the normal to

the layers and the director defines a subclass of smectics: SmA when the director

is perpendicular to the layer, SmC when the director is tilted, SmC∗ when the

director is tilted but also twists continuously around the normal.

• columnar : the molecules are ordered in two dimension. This situation is found

typically for molecules (or aggregates) exhibiting disc shape, often called discotics.

• cholesteric: consist of quasi-nematic parallel layers, with a constant twist around

the normal to the layers.

(a) (b)

Figure 1.2: (a) Sketch of the typical behavior of the refractive indexes of nematic liquid
crystal; above Tc the critical temperature for the nematic to isotropic transition, the
anisotropy vanishes . (b) Chemical structure of 5CB liquid crystal

In this work, we will be using only nematic liquid crystals. The constituent molecules

of the nematic phase are very long with respect to their averaged diameter (figure 1.2(b)),

with a negligible bend. Due to the fast rotation around their axis (this time scale is com-

paratively small than the other time scales), they are considered in average a cylindrical

structure with no head and tail difference, at least for non polar molecules, which is our

case. Hence, the averaged molecular directors (in a volume small but large compared

to the molecule length), i.e., the molecular director n̂, is physically indistinguishable

from −n̂. Due to the thermal agitation, the molecules will fluctuate around their av-
erage direction. Thus, the physical properties (at least the basic ones), by using the

simplest theories, will depend on the statistical average of the molecule director and

the deviation from it. Considering a polar reference system with the polar axis z co-

inciding with the nematic director, the molecular directions are statistically described
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by a distribution function s(ξ, φ), with

∫

V

s(ξ, φ)dv, V a sphere with diameter about

the correlation length located in position ~r. In the limit of conventional nematics, with

cylindrically symmetric molecules, s does not depend on ξ. Then, it suffices to use one

statistical non null average to describe the ordering effect; the scalar order parameter

S defined as:

S(~r) =

∫

V

s(φ)P2(cosφ)dV, (1.1)

being P2 the second order Legendre polynomial (the weighing function is used in order

to select the first non zero weighted moment). From the definition −1
2
≤ S ≤ 1.

But it is more common to have in the equilibrium liquid crystal state the scalar order

parameter such that 0 ≤ S ≤ 1. S = 0 correspond to the loss of the long range

orientational order (isotropic), S = 1 all molecules aligned along ~n, the unusual case

S = −1
2
all the molecules randomly orientated in the plane orthogonal to the nematic

director. As the temperature of the liquid crystal changes, the scalar order parameter

S will change from 0: the isotropic state corresponding to high temperature, to S = 1

crystalline state: low temperature. This change in the phase of the liquid crystal is

reflected in the change of its physical properties, like, for example, the refractive index,

for which the material will exhibit an optical anisotropy that vanishes above a critical

temperature Tc: the nematic to isotropic transition temperature (see figure 1.2(a)).

The physical macroscopic parameters of a nematic liquid crystal will be that of a

uniaxial material, a uniaxial tensor, i.e. same value along all directions perpendicular

to n̂ and a different value along n̂. Thus, every characteristics will be written as

χ = χ⊥+(χ‖−χ⊥)n̂n̂ 1, with χa = χ‖−χ⊥ the parameter anisotropy. They are booth

temperature dependent with a vanishing anisotropy when the nematic temperature is

above Tc i.e, in isotropic phase.

1.2 Continuum Theory

Liquid crystals are very sensitive to external stimuli: electrical and optical. When

a field is applied to the LC, the molecules feel the torque exerted by the external

field, the director distribution is modified until a new equilibrium condition is reached.

To describe their behavior, we need to construct a parameter that encompasses the

order parameter S and the molecular director n̂. Note that we must maintain in our

description the fact that n̂ and −n̂ are equivalent. So a second rank traceless tensor,

1~u~v represent the dyadic product between the two vectors.
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called Q- tensor, defined as Q = S(n̂n̂ − 1
3 ) is used [1, 2, 3]. The energy of of the

liquid crystal can be written then, in terms of components of Q (Landau-deGennes

expansion), and can be demonstrated to be dependent only on S [3]. When the liquid

crystal is subjected to an external force, the director field is deformed, deformation

which is taken into account by considering the spatial derivatives of the Q-tensor in

the computation of the energy: thus variation of S and n̂ are taken care of. When

the deformation rate is smooth enough (with respect to the nematic coherence length),

and there is no defect with singular core, and temperature effects are neglected, a more

simple formulation based only on the nematic director is used. The balance of the

energy of the liquid crystal consists, then, in taking into account the terms of second

order in the product of the first order spatial derivative of the component of the nematic

director, the term linear in n̂ or its spatial derivative a zero due to the equivalence of

n̂ and −n̂. This assumptions lead to the well known Oseen-Zöcher-Frank formula for
the free energy (or distortion energy) density, written as:

FK =
1

2
K1(∇ · n̂)2 +

1

2
K2(n̂ · ∇ × n̂)2 +

1

2
K3(n̂×∇× n̂)2, (1.2)

with K1, K2 and K3 the constants of the three elementary elastic deformations of the

LC respectively splay (figure 1.3(a)), twist (figure 1.3(c)) and bend (figure 1.3(b)).

(a) Splay (b) Bend (c) Twist

Figure 1.3: The three elementary elastic distortions of a nematic liquid crystal:
(a) splay, (b) bend, (c) twist.

In the presence of external excitations, the free energy density has to be supple-

mented with the interaction energies in order to find the configuration of the deformed

liquid crystal director field. For an optical field we need to consider the averaged
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interaction energy 1 density given by:

FE = −
1

2
< ~E · ~D >t, (1.3)

with ~E the electric field, ~D the displacement. For a monochromatic, or a quasi-

monochromatic field, the averaged value of the contribution of the energy gives:

FE = −
1

4
Re

[

~E∗ · ~D
]

.

Note that we have neglected the magnetic field contribution. Indeed at optical frequen-

cies LC are in general non magnetic media. Low frequency fields (or quasi static fields)

can also interact with the liquid crystal due to the medium polarizability . Their effect

is taken into account by adding to the free energy:

FE = −1
2
~E · ~D, (1.4)

where ~E and ~D represent, respectively, the electric field and the electric displacement.

The final configuration is found by minimizing over the volume of the LC medium the

total free energy:

F =

∫

V

d3~r

[

FK + FE + FE +
λ

2
(|n̂|2 − 1)

]

(1.5)

with λ the Lagrange multiplier accounting for the fact that n̂ · n̂ = 1. The minimization

done variationally on n̂ gives the Euler-Lagrange equation for the statics of the nematic

liquid crystal and it is written in a more compact form as

n̂× δF

δn̂
= 0 (1.6)

where
δF

δn̂
is the variational, or Fréchet derivative of F with respect to n̂.

The equation of the statics for the nematic medium has to be supplemented with

the constitutive relations of the external fields. For the quasi static electric field we can

write ~E = −∇V , with ~D = ǫΩ · ~E, the quasi-static potential V at frequency Ω. The

quasi-static potential V can be described by the anisotropic Laplace equation

∇ · ǫΩ · ∇V = 0. (1.7)

1The time scale of the mechanical response of the nematic liquid crystal due to the optical field is
far greater than that of the electronic response of the single molecules, the later will be neglected.
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Here we assume the absence of free charges in the media, that is the LC is a perfect

dielectric, and ǫΩ is the dielectric tensor at Ω.

The evolution of the optical field ~E, oscillating at frequency ω, with ~D = ǫω · ~E, of
the optical field is governed by the Maxwell equations:

∇×∇× ~E = k20 ǫ̃
ω · ~E, (1.8)

with ǫω = ǫ0ǫ̃
ω the dielectric tensor.

1.3 Optical reorientation

To get a more physical insight in the statics of the LC medium, its is convenient to write

the equation 1.6 in terms of momentum balance. The same equation can be written in

term of torque balance, gives:

~ΓK + ~ΓE + ~ΓE = 0, (1.9)

~Γi = −n̂×
δFi

δn̂
, i = K,E,E.

The elastic torque, in the approximation of all elastic constant being equal (or one

elastic constant approximation), has a simple expression given by:

~ΓK = n̂×K∇2n̂.

The electric torque and the optical torque are given respectively by

~ΓE = ǫΩa

(

n̂ · ~E
)

n̂× ~E,

and

~ΓE =
1

2
ǫωaRe

[(

n̂ · ~E∗
)

n̂× ~E
]

.

When an external linearly polarized optical field is applied to NLC 1 with positive

dielectric anisotropy, that is, ǫωa = ǫω‖ − ǫω⊥ ≥ 0, due to the induced dipoles, in this case

parallel the long axis, the molecule will rotate toward the field in order to minimize the

interaction energy, with an increasing effect for high field. The opposite happens when

the anisotropy is negative ǫωa ≤ 0, as the induced dipoles are perpendicular to the axis,

and the molecule will rotate away from the field in order to align the dipoles parallel

1The same discussion holds for static and low frequency fields.
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(a) (b) (c)

Figure 1.4: (a) Electro-optical properties of an NLC. Effect of linearly polarized optical
field on the nematic: the scketch are shown for low (b) and high (c) field intensity.

to the field. The equilibrium condition is reached when the induced torque is balanced

by elastic the torque steaming from the interaction between the molecules. When the

initial nematic director is perpendicular to the electric field for a NLC with a positive

anisotropy (parallel in the case of negative anisotropy), the reorientation takes place

when the field strength is above a threshold, called the Freedericks threshold [3]. For

now, we will put ourselves in conditions that avoid the Fredericksz effect, effect that

we will exploit later in chapter 3.

1.4 Optical reorientational nonlinearity.

Let us consider a plane wave with a propagating wave vector k in a homogeneous NLC,

with the nematic director an the electric field in the same plane y − z. Due to the

anisotropy, the propagating field will experience a refractive index depending on its

angle with respect to the nematic director. When n̂ lies along k, the refractive index

seen is that of a wave polarized in the plane perpendicular to n̂, that is, the ordinary

refractive index:

no = n⊥ =
√

ǫ̃⊥

For a non null angle, the refractive index, termed as extraordinary refractive index is,

given by:

ne(ψ) =
n⊥n‖

√

n2⊥ sin
2 ψ + n2‖ cos

2 ψ
,
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(a) (b)

Figure 1.5: (a) Extraordinary refractive index versus the angle ψ between n̂ and k.
The parameters are chosen for the E7 LC mixture. (b) Walkoff versus ψ.

with n‖ =
√

ǫ̃‖ = ne, the refractive index of waves oscillating along n̂ 1 Moreover,

Poynting vector S propagates at a not negligible walk-off angle δ with respect to k,

being tan δ =
ǫyz
ǫzz

that is:

δ = arctan
ǫa sinψ cosψ

ǫ⊥ + ǫa cos2 ψ
.

As we have discussed earlier, the angle of the nematic director changes when sub-

jected to an external field. So, a finite size beam, due to the mechanical torque exerted,

will alter the refractive index as the molecules rotates toward the field, ψ increases with

the consequent nonlinear change of the effective refractive index. Note that for a NLC

with negative optical anisotropy, ψ decreases, but the effect is an increase of ne(ψ) as

no ≥ ne. This type of optical nonlinearity called reorientational nonlinearity is typical

in liquid crystals and have been extensively studied in the literature [4, 5]. A self fo-

cusing nonlinearity is obtained for a bell shaped beam (Gaussian). The induced index

change also have a bell shape profile, with the medium behaving like a lens. Moreover

when the diffraction of the propagating beam is compensated by this self-focusing ef-

fect, a spatial optical soliton is formed. Due to the elastic interactions between adjacent

molecules, the extension of the nonlinear response is greater than the beam size giving

rise to a nonlocal type response. This effect has important consequences on the beam

dynamic, matter we will discuss in the next chapter.

1the notation ne(ψ), and ne can be some time confusing, we will consider ne = ne(π/2), unless
specified otherwise.
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1.5 Conclusions

Because of the high polarizability and anisotropy (for example ∆n = 0.2, ǫ̃a = 14.5

for E7 mixture) LCs are very sensitive to electrical and optical fields 1. Low voltages

can be used to change the refractive index (via electric fields) and high phase shift

are achieved using thin layer of material (tenth of microns). This makes LCs the most

used material for electrooptic devices, from displays to optical couplers and polarization

cntrollers for telecommunications [6, 7]. Moreover the effective optical nonlinearity is

orders of magnitude (≈ 3) greater than that of the most most performant nonlinear

crystals. The nonlinear reorientational phenomena can be observed at low powers [5, 8];

hence, LCs are an ideal workbench for investigating all-optical non linear effects. We

will consider one of them which is the generation of spatial optical solitons, focusing

on their possible applications.

1the optical torque an the electric one depend linearly on the anisotropies

9



Chapter 2

Nematicons: application to beam

steering

Owing to their unique properties intermediate between those of liquids and of solids,

liquid crystals (LC) are relevant materials in optical signal processing, [7] well beyond

their most common use in displays. One of their remarkable features is their sensitivity

to applied perturbations, such as electric fields. The latter provides large electro-optic

and all-optical responses and significant tunability through molecular reorientation, as

exploited e.g. in LC light valves,[9] light modulators,[10] adjustable lenses,[11] etc.

Due to LC high polarizability and anisotropy, nonlinear reorientational phenomena

can be observed at low powers;[12] hence, LC are an ideal workbench for investigating

all-optical effects, e.g. switching in waveguides.[13, 14] Reorientational self-focusing

in nematic LC (NLC), i.e. LC with a high degree of orientational but no positional

order [12] supports spatial solitons or nematicons, at mW powers.[15] Nematicons are

light-induced waveguides with nonlocal features providing stability, robustness and long

range interactions, even with partially incoherent light; [16] they can confine and route

weaker copolarized signals of any wavelengths and transmission protocols; in short,

they can form a reconfigurable fabric of interconnections in circuits defined by light

and with paths controlled by light and/or by voltage(s)[17, 18].

In this chapter we analyze a scheme for the effective angular deflection of self-guided

beams, using NLC and voltage-driven dielectric interfaces, finally a practical realization

of the beam steering device will be given.
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Figure 2.1: Sketch of the proposed structure. (a)Front view; the superposed gray-scale
map represents the intensity of the low-frequency electric field ELF (darkest colour
corresponds to stronger field). (b) Top view. (c) Bottom: distribution of the NLC
molecular director in the mid-layer; top: behaviour of ψ versus y in x = L/2. The inset
shows the reference system for the director n̂.

2.1 Theoretical analysis

We resort to a double set of comb-patterned electrodes to achieve in-plane nematicon

propagation and steering, bias-tuning the effective anisotropy and avoiding the detri-

mental effects of out-of-plane walk-off [19]. Electro-optic beam deflectors with large

angles were previously demonstrated in ferroelectrics [20] and in LC [21]; however, the

use of nematicons with waist of a few µm permits the deflection of guided-wave sig-

nals irrespective of their spectral placement and temporal format while maximizing the

number of resolvable output spots.

The geometry is sketched in figure 2.1: an NLC layer is confined between two glass

slides parallel to plane yz, separated by L along x (figure. 2.1(a)) and treated at the

glass/NLC interfaces to ensure the uniform orientation of the optic axis n̂ (i.e. the

molecular director [12]) at an angle ψ0 with ẑ (see inset in figure. 2.1(c)). Before the

rubbing (the treatment to ensure the uniform reorientation), three sets of interdigitated

transparent electrodes (e.g. Indium Tin Oxide) with fingers along y and period Λ are

deposited on the inner side of the glasses. For simplicity of the design the finger width

ΛE is set to Λ/2, with 50:50 mark-to-space ratio, see figure 2.1(b). The electrodes are

connected in pair and in symmetric fashion with respect to the cell mid-layer: left-top

with left-bottom, right-top with right-bottom, and center-top with center-bottom. The
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central electrode (the one with finger on the y axis) is grounded; the left and the right

one are connected to two low frequency sinusoidal voltage generator respectively V2

and V1. The application of the biases can electro-optically twist the NLC molecular

dipoles and therefore reorientate the optic axis in yz and throughout the thickness L in

the region underneath (figure 2.1). Hereafter we consider an unbound cell along z, in

an actual device, this region would be limited by the two dashed lines in figure 2.1(b),

with a good uniformity allong z in the dellimited region of with W and an input beam

removed from y = 0.

2.1.1 Electrically tunable interface in nematic cell.

For Λ≪ L, the dominant component of the applied electric field ELF is along ŷ, thus

n̂ tends to rotate in the plane yz to align the induced dipoles with the field polarization

[22, 23]. To first approximation, at each NLC/glass interface ELF (x = 0) = ELF (x =

L) = 0 under the electrodes and ELF (x = 0) = ELF (x = L) = 2V1,2/Λ in between

them, decaying exponentially (with a characteristic length la) along x towards the cell

mid-plane; the ELF distribution for V2 > V1 is represented in figure. 2.1(a). Owing to

the NLC electro-optic response to |ELF |2, the optic axis n̂ will be twisted everywhere,
with angle its with respect to the z axis depending on ψ0 and |ELF |2. Moreover, the
nonlocal character of the elastic response, in the limit Λ ≪ L, will smooth out the

spatial inhomogeneities of ELF , making the bias-driven reorientation voltage-tuned in

the two regions across y = 0 and uniform through the cell thickness [23, 24]. Therefore,

applied biases V1 6= V2 give rise to a graded interface along y (see figure 2.1(c)), of

width d depending on L and with an electrically controlled change in director angle

∆ψ (V1, V2) = ψ1 − ψ2 , with ψ2 (ψ1) the orientation in x = L/2 for a single set of

electrodes biased at V2 (V1).

To validate our predictions, we numerically solved the NLC reorientational equation

which is obtained by assuming that the nematic director, for all the operating points,

lies in the yz plane. Using the equation 1.6 with the one constant approximation i.e.

K1 = K2 = K3, and ∂ψ/∂z = 01, the reorientational equation reads [23, 24]

∂2ψLF

∂x2
+
∂2ψLF

∂y2
+ γLF sin (2ψLF ) |ELF |2 = 0, (2.1)

with ψLF the electro-optic reorientation, γLF = ∆ǫLF / (2K) with ∆ǫLF the low-

1This approximation is justified for unbounded cells.
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frequency dielectric anisotropy and K the elastic constant. Eq. (2.1) can be nor-

malized by setting x′ = x/L, y′ = y/L and V ′ = σV , with σ = L/Λ. We chose the

parameters of the commercial NLC mixture E7, with γLF = 5.4V −2; we also employed

σ = 3.3 and la/L = 0.05, the latter derived from experimental data[23]. To trade

off voltage-sensitivity (the Coulombian torque is maximum for ψ0 = 45◦) and the ψ-

variation across the interface, we set ψ0 = 10◦ (see reorientation curves in figure. 2.2).

As expected, ψ is flat (with respect to x) near the mid-plane x = L/2 (figure 2.3(a))

Figure 2.2: Reorientation angle in the cell mid-plane x = L/2 versus applied bias, here
V1 = V2 and each label indicates the corresponding background angle ψ0

and undergoes a negative (positive) variation ∆ψ along y for V1 > V2 (V1 < V2) (fig-

ure 2.3(b)), with a quasi-linear trend over a transition length d ≈ L, independent on

V1 or V2 (figures 2.4(a)-(c)).

(a) (b)

Figure 2.3: (a) Colormap of ψ(x, y, z =W/2), for V1 = 3V and V2 = 1. (b) Maximum
change in the reorientation angle ∆ψ versus V1 and V2.
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(a) (b) (c)

Figure 2.4: Distribution of the director’s angle with the z axis ψLF in the middle plane
for various bias voltage V1: (a) 1V, (b) 3V and (c) 5V. The numeric labels on each line
indicate the corresponding V2.

2.1.2 Spatial soliton at tunable optical interfaces.

Having established the link between voltages and ψ distribution, i.e. refractive index

for extraordinarily polarized light, we turn to nonlinear propagation of beams launched

in y < 0 (where the index gradient is negligible) with wave vector k at an angle α

with ẑ in the plane x = L/2 and extraordinary field polarized along ŷ (the latter also

prevents threshold effects in the reorientational response [24, 25]). Such excitation can

reorientate the optic axis in the plane yz, i.e. ensuring in-plane director rotations and

corresponding in-plane changes of walk-off. We stress that the spatial soliton trajectory

after the interface does not depend on the profile of the transition region but simply

on ∆ψ, the specific distribution of ψLF only affecting the lateral displacement of the

beam.

Nonlinear reorientation in yz and self-confined beam (i.e. nematicon) dynamics can be

modelled in 2D by [23]:

2ik0n0

(

∂A

∂z
+ tan δ

∂A

∂y

)

+Dy
∂2A

∂y2
+ k20∆n

2
eA = 0 (2.2)

∂2ψNL

∂z2
+
∂2ψNL

∂y2
−

(π

L

)2
ψNL + γ sin [2(ψLF + ψNL − δ)] |A|2 = 0 (2.3)

with A the magnetic field along x, γ = [ǫ0/(4K)]
(

n2‖ − n2⊥
)

[Z0 /(n0 cos δ) ]
2 (Z0 is

the vacuum impedance), ψNL the (nonlinear) perturbation on ψ due to light (i.e.,

ψ = ψLF+ψ), Dy the diffraction coefficient, δ the walk-off, k0 the vacuum wavenumber,

n0 the extraordinary index and ∆n
2
e = n2e (ψ)−n20 the refractive index change, including

electro-optic (ψLF ) and all-optical contributions (ψNL). The nematicon trajectory can
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be calculated using the Ehrenfest’s theorem [26]:

d2 〈y〉
dz2

=
ne
n20

∂ne
∂y

+
d tan δ

dz
, (2.4)

where 〈y〉 =
∫

y|A|2dy/
∫

|A|2dy is the soliton position. Equation (2.4) is general, as it
provides the effective transverse force acting on the soliton when the local wave vector

is aligned to z [26].

Figure 2.5: Nematicon evolution for P=3mW; dashed and dotted white lines indicate
the interface borders and the beam trajectory when ψLF = 10◦, β indicates the deflec-
tion endured by the soliton with respect to the z axis.

(a) (b) (c)

Figure 2.6: Beam width w normalized with respect to the input waist w0=5µm for
various input powers and angles ψ1 and ψ2 corresponding to the plots in figure 2.5 (see
labels: dashed lines = linear propagation)
.

Hereafter, we take a linear profile for ψLF across d, from y = 0 to y = L = 100µm,

note that for clarity we shift the axis origin in order to have the z axis coincident with

the beginning of the interface. Figure 2.5 shows the evolution of a Gaussian beam

launched in y = −50µm with k//ẑ. For ψ2 > ψ1 the refractive gradient is negative,

thus the soliton wave vector bends towards y < 0; to achieve TIR, the change in k
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(a) (b)

Figure 2.7: (a) Dynamic of the nematicon with the optical interface in TIR mode
(ψ1 = 10◦, ψ2 = 20◦) for P = 0.5mW (no symbols) and P = 3mW (squares markers).
(b) Transmission of the nematicon across the interface for P = 0.5mW (no symbols)
and P = 3mW , dashed (solid) lines correspond to ψ1 = 90◦ (10◦).

has to ensure a Poynting vector S leaving the interface with a negative y component.

Noteworthy, reflection and incidence angles are generally different due to anisotropy

[27]. For ψ2 < ψ1, conversely, the beam can always overcome the index barrier and be

refracted.

Figures 2.7 graphs the calculated soliton trajectories vs input power: the power

dependence is due to all-optical changes in walk-off [23]. For excitation with k//ẑ, the

angle β of the Poynting vector with ẑ away from the interface, the overall steering (from

refraction to TIR) amounts to ≈ 40◦ (figure 2.8), with excellent agreement between

the results from a beam propagator (BPM) and the predictions of the geometric optics

approximation (GOA) for β up to 20◦. Even larger deflections are obtained by launching

solitons with phase fronts slanted with respect to ẑ, i.e. α 6= 0.

For a fixed α, large steering has to rely on TIR. Defining αTIR the maximum

incidence angle resulting in TIR, αTIR is plotted in figure 2.9 for given ψ1/2, with a

maximum αmax
TIR

∼= 25.1◦; TIR does not take place above these curves.

The output angle β vs ψ1 and ψ2 is graphed in figure 2.10: the largest deflections

are obtained for α < αmax
TIR (for a fixed ψ2 the solitons evolve from TIR to refraction

as ψ1 varies, see figure 2.10(a)-(b)) rather than for α > αmax
TIR (where only refraction

occurs, see figure 2.10(c)), with a maximum steering of 60◦ for α = αmax
TIR and ψ2 = 90◦.
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(a) TIR. (b) Refraction.

Figure 2.8: Soliton deflection β versus ψ2 for ψ1 = 10◦ (a) and versus ψ1 for ψ2 = 10◦

(b).

Figure 2.9: αTIR region versus ψ1, the labels indicate the value of ψ2.

By varying ψ2 as well, an overall steering angle of 70
◦ is achieved for αmax

TIR (figure 2.11),

taking advantage of the dependence of the refraction angle from walk-off (see the three

upper lines in figure 2.10(b)). Such voltage-controlled angular deviations, to be achieved

with biases of a few Volt, are among the largest observed at a single dielectric interface

and well above the record value of 40◦ reported for nematicons [28]. Noteworthy, greater

steering could be engineered by adopting multiple interfaces.

2.2 Experimental results

As supplement to our theoretical investigations, a beam steering device was imple-

mented following the design in figure 2.1. The glass plate were rubbed at ψ0 = 10◦

with respect to the z axis and glued together with Mylar spacers in between them,

17



(a) (b) (c)

Figure 2.10: Deflection angle β versus ψ1 for incidence angle α (a) 0◦, (b) 25◦ and (c)
10◦; the labels in each line indicate the corresponding ψ2.

Figure 2.11: Maximum angular deflection of wave vector k and Poynting vector S

versus α.

fixing the cell thickness (L) at 100µ. The periodicity of the comb is set to Λ = 60µm.

The NLC cell is filled by capillarity with the standard mixture E7. To form the soliton

(nematicon) a linearly y-polarized beam was launched into the cell to achieve maximum

coupling to an extraordinary wave within the NLC. We set an input power P=5mW

and an input waist w0≈4µm; these input parameters ensured the formation of stable
nematicons in the whole range of biases. The beam propagation was monitored with a

microscope objective lens and a high resolution CCD camera acquiring the outscattered

light from the top of the cell.

For V1 = V2 = 0V , the nematicon propagates at the walk-off of the corresponding

plane wave (δ0 = δ(ψ = 10◦) ≈ 2.5◦), as shown in figure 2.12, left column. When

V2=0V and V2 6=0V, the condition ne,2 ≤ ne,1 is satisfied: the solitary wave crosses

the interface at β = δ0 and is pulled into the denser medium (figure 2.12, first column,

V1=0.9, 1.9, 2.2V). The graphs in figure 2.12, second column, first and second panels,

display the trajectories and the corresponding local slopes, respectively: after an ef-
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Figure 2.12: Experimental figure of nematicon in a cell working in refraction mode.
Bias is applied to the first half of the cell (left panel, top to bottom). In right panel we
plot the trajectory of the nematicon (top figure) and their respective slope (bottom).

fective acceleration within the graded region, the beam propagates in region 1 with a

nearly constant angle the latter depending on V1. The maximum beam deflection is

+20◦, reached for V1=3V (upper limit due to soliton instability) and estimated ψ1 > 55

. As the walk-off variations are limited to a few degrees, it follows that the effective

acceleration is mainly due to the refractive index change.

When V1=0 and V2 ≥ 0 , it is ne,1 ≤ ne,2 : the beam travels through the interface

figure 2.13(a) until, for V2=0.9V and δ2 ≈ 3.5◦ corresponding to ψ2 ≈ 15◦, reaches the

critical incidence angle. For higher voltages figure 2.13, left column V1=1.9 and 2.2V,

the nematicon undergoes TIR. We stress that the angle of incidence depends on the

applied voltage (besides the extraordinary index), and a continuous beam deflection

is granted by the changing walk-off in region 1 (figure 2.13 right column, first panel).
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Figure 2.13: Picture of the nematicon in the cell working in TIR mode. The first half of
the device is grounded and bias (0V,0.9V,1.9V and 2.2V, fist panel from top to bottom)
is applied to the second half of the cell. In the left panel, the trajectories of light beam
are shown (top) for different values of the bias with their respective slope (bottom)

Moreover, due to anisotropy, reflected and incident beams effectively propagate in uni-

axials with diversely oriented optic axes,28 resulting in a remarkably large angular

asymmetry of about βr − βi ≈ 5◦ in reflection. In this case, the maximum reflection

angle is βr ≈ 10◦ (figure 2.13 right column, second panel).

As visible in figure 2.14, the overall angle spanned by the Poynting vector of the

nematicon in refraction and reflection is about ∆β ≈ 30◦ in the range −3V ≤ ∆V ≤
2.2V , with ∆V = V2 − V1. The refracted/reflected wavepacket remains extraordinarily
polarized and self-confined (see figures 2.13 and 2.12). Finally, by varying the incidence

angle a between k and z, we could further exploit the asymmetric reflection in order

to enhance the total steering. Figure 2.15 displays the experimental results for an

incidence angle α ≈ 16◦ : the obtained overall angular deflection ∆β ≈ 55◦ is the
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Figure 2.14: Experimentally measured steering of the Poynting vector versus ∆V .

largest ever observed for nematicons in a tunable geometry.

(a) (b)

Figure 2.15: Refraction for V2=0V; V1 = 3.5V (a) and TIR for V2 = 4V; V2 = 0V (b)
with α = 16◦ . The total angle spanned is |βTIR|+ |βREF | ≈ 55◦.

2.3 Conclusion

In conclusion, we have presented booth theoretically and experimentally spatial soli-

tons interacting with an electrically dened interface in nematic liquid crystals with

a biasing arrangement ensuring in-plane deection. Periodic interdigitated and in-pair

balanced electrodes allowed nematicon waveguide steering via both refraction and total
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internal reection, maintaining the beam in the cell midplane. Exploiting both the re-

fractive index variations and the anisotropy, we obtained a maximum deection of 55circ

(70◦ for the theoretical prediction) while preserving self- connement and polarization.

These results conrm the versatility of NLC in all-optical signal routing approaches

and represent a remarkable achievement in controlling with modest voltageswaveguide

bending/steering over large angles.
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Chapter 3

Umbilic defects: Induction and

control

In the previous chapter we have considered geometries in which the director is allowed

to vary in the plane, and there was not so ever, ambiguities in determining the director

orientation once one has given the type of excitation, electrical, optical or both and

its characteristics, mainly the initial angle of the nematic director with respect to the

electric field or the k-vector. In this chapter, we will investigate the case in which

these ambiguities or degeneracies arise: that will be at the origin of the formation of

defects in the orientation of the liquid crystal layer. These defects, when controlled,

are useful because they induce topological defects in light beams, as demonstrated in

the pioneering work by Brasselet et al.[29]. Only the interaction with a low frequency

field will be considered here.

Our main scenarios will be hometropic geometries: the interfaces are treated to

promote a vertical boundary conditions and the nematic director is anchored orthogo-

nally to the bounding surfaces. The liquid crystal considered has a negative dielectric

anisotropy. When the cell is subjected to an increasing uniform electric field normal

to the bounding plates, hence, parallel to the initial alignment of the director, the

homeotropic equilibrium configuration will be destabilized after a critical value of the

bias over the cell called the Frederiks transition voltage VTH [3]. This transition occurs

when the electric torque overcomes the elastic one. Strictly speaking both torques are

ideally zero in the hometropic condition. But due to the non null fluctuations of the

director, after a small tilt from the electric field, a non null torque will appear and

the only way to minimize the energy is that the director (in the midplane) tilts away

from the electric field. In this configuration the director can tilt in all directions or-

23



thogonal to the electric field (Figure 3.1(a)) in order to equate the elastic torque to

the electric torque: the dielectric anisotropy ǫa = ǫ‖ − ǫ⊥ is negative. This 2π degen-

eracy of the possible directions in which the director can reorient lead to a degenerate

pitchfork bifurcation of the complex scalar order parameter A (Figure 3.1(b)) defined

as A = nx + iny, which represent the projection of the nematic director on the x − y

plane. The order parameter A = |A|eiθ can have phase singularities or disinclination

points, where we are impossibilitate to determine the direction of the projection of the

nematic director. In other terms, at these points the nematic director remains orthog-

onal to the bounding plates and the order parameter A goes to zeros with the director

(its projection) circling around the singularity. These types of disinclinations are called

umbilics and represent vortices of the complex scalar field A. They are characterized

by their winding number q =
1

2π

∫

C

dθ, with C any closed curve around the umbilic

sufficiently far from the other vortices. The umbilics have only integral winding num-

ber or Frank index. Indeed, a semi integer, for example 1/2 means that the director

projection rotates about π for a full rotation around the umbilic which is incompatible

with the starting condition as the nematic is a continuous medium. Note that in a

2D geometry, the director and its projection are equivalent, with a π rotation leaving

them both invariant [30, 31, 32]. The umbilics can have only ±1 as Frank index [3, 33],
due to the fact that their energy increases quadratically with the winding number q.

Moreover, it is demonstrated in the literature that defects with |q| ≥ 2 are unstable

[34].

(a) (b)

Figure 3.1: (a) Sketch of a biased homeotropic liquid crystal showing the 2π degenerate
Frederiks transition. (b) Degenerate pitchfork bifurcation of the complex scalar order
parameter.

If we assume that nz has always the same sign, which is taken to be positive, the
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order parameter A gives an unique representation of the nematic director in space.

The negative sign is also valid, since ~n and −~n are equivalent. But the unicity of the

representation of ~n through its transverse components nx,y or A is valid only if there

is no twist of the director around the z axis (see for instance [35, page 399]). In our

cases, we exclude the possibility of having twist disinclinations.

3.1 Quantitative analysis

In order to study quantitatively this phenomenon we will use the simplest equations of

the liquid crystal dynamics, neglecting backflow effects and electroconvective effects1.

In this case, the dynamics of the liquid crystal is ruled by [3, 4]:

δR

δ ˙̂n
+
δF

δn̂
+ λn̂ = 0, (3.1)

where F represent the free energy density introduced in equation 1.5 and R the

energy dissipation function density

R = γ
1

2

∣

∣ ˙̂n
∣

∣

2
, (3.2)

with γ the orientational or rotational viscosity. As explained before, the Lagrange

multiplier serves only to impose the fact that the director is a unit vector. To get rid

of it, we can multiply by n̂

γn̂× ∂tn̂ = −n̂×
∂F

∂n̂
, with n̂ · n̂ = 1. (3.3)

By introducing the molecular field ~h = −δF
δn̂

, we have:

~h =K3∇2n̂+ (K1 −K3)∇∇ · n̂+ 2(K3 −K2) (n̂ · ∇ × n̂)∇× n̂
+ (K3 −K2)∇(n̂ · ∇ × n̂)× n̂+ ǫΩa (n̂ · ~E) ~E.

(3.4)

The dynamical equation reads as:

γ
∂n̂

∂t
= ~h− (n̂ · ~h)n̂, (3.5)

1Experimentally will place ourselves in parameter regions in which these assumptions hold valid.
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with V satisfying

∇ · ǫ · ∇V = ǫ⊥∇2V + ǫa∇ · (n̂n̂ · ∇V ) = 0. (3.6)

3.1.1 Linear stability analysis

In the equilibrium condition we need to solve the equation 3.5 with the left hand side

set to zero. It appears clearly that the homogeneous state is an equilibrium state: both

the nematic director and the electric field (with an arbitrary amplitude) are parallel

to the z axis and the electric and the elastic torque are null. But not all of them are

stable to small perturbations, due to the Frederiks transition phenomenon.

3.1.1.1 Perturbation

Small perturbations around the homeotropic configuration, for an uniform perturbation

voltage can be written as:

γ∂t~n1 =K3∇2
t~n1 +K3∂

2
z~n1 + (K1 −K3)∇t∇t · ~n1 + (K3 −K2)∇t(~z · ∇t × ~n1)× ~z

− ǫΩaE2
0~n1 + ǫΩaE0( ~E1 − (~z · ~E1)~z)

,

(3.7)

where E0 is the amplitude of the low electric field and ~E1 its perturbation which, will be

set to zero for now. Note that we, actually, split the gradient operator in its transverse

and longitudinal contributions ∇ = ∇t + ~z∂z.

the optical contribution to null

For the stability, we seek for solutions of the form:

~n1(~r, z) = ~Nm(~q)e
i~q·~r+σm(~q)t sin

(

mπ
z

L

)

and after few passages, we get :

γσ ~N =−K3

(

q2 + (mπ/L)2
)

~N − (K1 −K3)(~q · ~N)~q
− (K2 −K3)(~z × ~q · ~N)~z × ~q − ǫΩa (V0/L)2 ~N .

(3.8)

We denote by τo = γ
L2

K3π2
, which represents the characteristic relaxation time of

the system, and VFT = π

√

K3

|ǫΩa |
the Frederiks transition voltage for the homeotropic
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geometry. This eigenvalue equation has two eigenvalues (growth rates)

τoσm,‖(~q) = −
K1

K3

(

qL

π

)2

−m2 +

(

V0
VFT

)2

, (3.9)

τoσm,⊥(~q) = −
K2

K3

(

qL

π

)2

−m2 +

(

V0
VFT

)2

(3.10)

Figure 3.2: Stability curves for the perturbed dynamical equation around the
homeotropic condition.

with their respective eigenvectors ~N‖ = N‖~q/q and ~N⊥ = N⊥~z × ~q/q. The first

modes that become unstable are the low order (m = 1) longitudinal ones. They have

equal threshold coinciding with the Frederiks transition voltage. These eigenvalues

are degenerate when K2 = K1, that is when, twist and splay modes manifest with

equal strength. For K2 > K1 we will have a splay dominant deformation, and a twist

dominant deformation otherwise.

3.1.1.2 Effect of dielectric coupling on instability curves.

So far, we have considered that in the anisotropic Laplace equation (equation 3.6) the

director remains at rest. Weak tilts or director variations couples the dynamics of

the LC molecules with the voltage distribution across the liquid crystal layer. The

transverse contributions of this coupling lead to the perturbation of the equation 3.6.

We assume that the voltage changes instantaneously in response to director changes.

The perturbed equation for the voltage read as:

ǫΩ⊥
ǫΩ‖
∇2

tV1 + ∂2zV1 +
ǫΩa
ǫΩ‖

V0
d
∇t · n̂1 = 0 (3.11)

The perturbation voltage can be split into two contributions: δVS
z

L
with δVS the
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change in the surface voltage due to the perturbation, the bulk contribution null at

the boundaries z = 0, L. After a projection of both the equations on the longitudinal

mode, we can note that there is no change in σ⊥, but σ‖ changes in:

τoσm,‖(~q) = −
K1

K3

(

qL

π

)2

−m2+

(

V0
VTH

)2

+
ǫa
ǫ‖

(

V0
VTH

)2 (qL/π)2

(qL/π)2ǫ⊥/ǫ‖ +m2
. (3.12)

In conclusion, there is no qualitative change in the dispersion curves. Indeed as the

anisotropy is negative, the curvature of both contributions have the same sign around

zero.

3.1.2 Nonlinear analysis: Ginzburg-Landau equation.

For low bias, and in the vicinity of the Frederiks transition voltage, typically VTH ≤
V0 ≤ 2VTH, we can assume that only the lowest longitudinal mode is excited. The

validity of this approximation is supported by the fact that the two modes are subjected

to the Frederiks transition which is a second order phase transition and the high order

longitudinal modes are damped and follow adiabatically the first order mode: the

information on the dynamics depend on the lowest modes [36]. We can derive the

nonlinear dynamics by considering that the nematic director is weakly tilted from the

homeotropic condition. First, we cast the director components in the following form

nx = ǫNx(~r) sin
πz

L
, ny = ǫNy(~r) sin

πz

L
, nz = 1 − ǫ2

1

2

[

N2
x(~r) +N2

y (~r)
]

sin2
πz

L
, where

ǫ represent the small parameter, ~r the transverse coordinate.

The director components are substituted in equation 3.5 and terms up to third

order in ǫ are kept and projected on the first longitudinal mode. Then, by setting ǫ = 1

we obtain the following equation:

γ∂tA = µA− α|A|2A+
K1 +K2

2
∇2A+

K1 −K2

2
∂2ηηĀ, (3.13)

with A = Nx+iNy the complex scalar order parameter; µ = −ǫΩaE2−K3
π2

L2
, the control

parameter; α = −3
4
ǫΩaE

2 − π2

4L2
(3K3 − 2K1) and ∂η = ∂x + i∂y. A similar equation for

the dynamics of liquid crystals was derived by Frisch et al. [36], with other contributions

due to the presence of a rotating magnetic field. The equation (3.14) can be scaled as fol-

lows: A → A
√

α/µ, ~r → Lc~r, t → τt, with Lc =
L

π

(

K1 +K2

2K3

)
1

2

/

[

(

V

VTH

)2

− 1

]
1

2

,
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τ = τo/

[

(

V

VTH

)2

− 1

]

. We finally obtain the well known Ginzburg-Landau equation:

∂tA = A− |A|2A+∇2A+ δ∂2ηηĀ (3.14)

with an anisotropy related term depending on δ = (K1 −K2) / (K1 +K2). The pa-

rameters Lc and τ represent, respectively, the length scale and the time scale of the

dynamics and both depend on the applied voltage V , the cell thickness and the physical

properties of the LC medium, as the elastic constants and the rotational viscosity. It is

interesting to note that the obtained equation is invariant by arbitrary rotation around

the origin an also by translation. The 2π degenerated pitchfork bifurcation we have

described above can be recovered by setting A to a constant.

The scaled GLE have static solutions of the form A = a(r)ei(qξ+θ0), where q is an inte-

ger and represents the winding number, or topological charge, of the local defect and

θ0 is an arbitrary constant, with boundary condition a(0) = 0 and a(∞) = 1. The case

q = ±1 corresponds to the umbilic defects and their texture is shown in figure 3.3. The
case δ = 0 was extensively studied in the scientific literature [37, 38], and it has been

demonstrated that, in this case, there is no close solution for vortex type solutions of

the GLE. Nevertheless, it can be shown from their asymptotic properties that the core

size of the scaled vortices goes like |q|, hence, the umbilics (|q| = ±1) have their core
size about Lc. This prediction matches the experimental results [39].

Now, let us make some consideration about the formation of umbilics. In princi-

ple, we can write the nematic director distribution in the sample with respect to the

transverse deformation modes, ie:

~n(~r) =
1

(2π)2

∫∫
[

~q

q
n‖(~q) + ~z × ~q

q
n⊥(~q)

]

ei~q·~rdq, (3.15)

where n‖ and n⊥ account for the longitudinal and the transverse deformations with

respect to the wave vector ~q. We can write the order parameter as:

A(~r) =
1

(2π)2

∫∫

[

n‖(q, φ) + in⊥(q, φ)
]

ei(qr cos(ξ−φ)+φ)qdφdq, (3.16)

where the following substitutions are made: ~q = q(cosφ~x+ sinφ~y) and ~r = r(cos ξ~x+

sin ξ~y).

In the case of an isotropic spectrum n‖,⊥(q, φ) = n‖,⊥(q), case which will be likely

29



the most favoured thermodynamically (note that the space is isotropic), we have:

A(~r) = eiξ
∫

1

2π

[

n‖(q) + in⊥(q)
]

J1(qr)qdq, (3.17)

where J1 is the first order Bessel function of first kind (note that the Jacobi-Anger ex-

pansion is used to reduce the integral). It appears clearly that we will have spontaneous

formation of defect over the threshold value of the driving voltage. The defects will be

essentially a mixture of splay type (n‖) and twist type (n⊥) deformation. The forma-

tion of defects +1 is favored with respect to that of defects -1. Indeed, the anisotropy of

the elastic constants lift the degeneracy with respect to the energy, with the -1 umbilic

being more energetic respect to the +1 umbilic [40]. This will have important conse-

quences in the generation and management of these defects. Moreover, the translational

symmetry of the system will make the umbilic +1 to be generated in arbitrary space

positions. In conclusion, by applying a voltage to the LC cell, +1 umbilics will form

spontaneously and -1 umbilics will be generated by frustration of the order parameter.

(a) q=+1,θ0 = 0 (b) q=+1,θ0 = π/4 (c) q=+1,θ0 = π/2 (d) q=-1,θ0 = 0

Figure 3.3: The defects with texture in (a), (b), (c) are topologically equivalent with
winding number +1, the parameter θ0 lift the degeneracy of the type of deformation:
(a) splay dominant, (c) twist dominant, (b) intermediate case. Texture of defect with
winding number -1 (d).

3.2 Numerical and experimental results.

The experiment on the generation of umbilics is carried out by using a 10µm thick

hometropic cell filled with the liquid crystal MLC6608 which posses a negative dielectric

anisotropy. The parameters are enlisted in table 3.1.

The cell is biased with a sinusoidal voltage whose frequency is set to 100Hz. To

observe the texture of the nematic layer we use the crossed polarizers configuration

under a uniform incoherent light illumination. The polarizers can be either linear or

circular.
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Elastic constants

K1(pN) 16.7
K2(pN) 7.0
K3(pN) 18.1

Viscosity γ Pa·s 0.186

Dielectric constant

ǫ⊥ 7.8

ǫ‖ 3.6

ǫa -4.2

Refractive index no ne dn = ne − no
λ=532nm 1.4731 1.5531 0.080

λ=633nm 1.4775 1.5595 0.082

Table 3.1: MLC6608 parameters

Figure 3.4: Experimental setup for the generation of umbilic defects. L: imaging lens or
objective. CCD camera for image acquisition.POL(0◦) and POL(90◦) are respectively
polarizer and analyzer.

Linear crossed polarizers

The biased LC cell, due to the non homogeneous arrangement of the director, changes

spatially the polarization of the incident linearly polarized incoherent light. When

inserted in between crossed polarizers, the transmitted intensity through the analyzer is

given by: I0 sin
2 Γ

2
sin2 [2(θ − α)], with θ the azimuthal angle of the director in the x−y

plane and α the angle of the polarizer axis with respect to the x axis which is arranged

to be zero. Γ represent the effective phase shift between the ordinary and extraordinary

component of the light and is expressed as: Γ = 2π
L

λ
(n̄e−no), no is the ordinary index,

and n̄e =

∫ L

o
ne(ψ)dz is the effective extraordinary index. Clearly, in the presence of

defects we will see dark brushes emerging from the core of the defect and interlaced with

those emerging from the surrounding defects. Indeed, the collected intensity is null at

the position of the nematic core (if we neglect the scattering) and where the nematic

director (actually its projection) is either parallel or perpendicular to the polarizer or

the analyzer. The number of brushes observed is always four, confirming that the

created defects always have ±1 index. This experimental observation in qualitatively
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agreement with the simulation of the GLE with the physical parameters (see figure 3.5).

Circular crossed polarizers

Instead of using crossed linear polarizer, couples of polarizers and quarter wave plates

can be used in order to have the crossed circular polarizers configurations. The collected

intensity is simply I0 sin
2 Γ

2
. The defects appear as dark spots over a non homogeneously

illuminated background.

(a) (b)

Figure 3.5: (a)Experimental snapshot recorded under white-light illumination for a
uniform bias cell in between crossed linear polarizers (left panel). Numerical simulations
of equation(3.14)(right panel). (b) The defects under crossed circular polarizers.

3.2.1 Defect gas

As we apply a high voltage to the homeotropic cell, we observe first the formation of

defect loops.

Figure 3.6: Temporal snapshots with steps of 400µs of the early dynamics in the biased
nematic cell, from t = 0 (left) when a bias voltage of 15V is applied. Some of defect
loops evolve in a random network of umbilics of alternate sign, others collapse.

After a fast dynamics the loops relax into umbilics of winding number +1 and -1.

The defects with the same topological charge tend to repel, those with opposite charge

attract each other and annihilate. The system is dissipative and have somehow to relax

to the configuration with the lowest energy, which is a defect free configuration.
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Figure 3.7: Temporal snapshots of the annihilation dynamics of the vortex gas.

The rich dynamics of this defect collection, or gas of vortices, is ruled by

∂ri
∂t

= −∂W
∂ri

− ∂WBC

∂ri
, (3.18)

where W the well known Kirchhoff-Onsager function [38, 41, 42, 43]:

W (r0, r1, . . . ) = −
∑

i 6=j

ninj ln |rj − ri| , (3.19)

and WBC accounts for pinning and boundary terms [44, 45]. This approximation

is valid when the GLE can be reduced to its phase dynamics, ie., the amplitude is one

everywhere except for the vortex location where it is undefined. Physically speaking,

the core radius is neglected with respect to other length scales, and all the molecules

are supposed to been lying on the x− yplane. This is exactly what happens when the
hometropic LC cell is subjected to high electric field.

Scaling Law

The scaling law of the vortex gas is measured by counting the number of umbilics during

the annihilation dynamic. The dynamics is recorded by illuminating the nematic cell

with a circular polarized white light and analyzed under a crossed circular analyzer.

The recorded images were processed in order to retrieve the number of umbilics during

the dynamics. The number of particles is then fitted against:

N(t) = βt−α +N∞,

α being the critical exponent. N∞ accounts for the remaining defects due to bound-

ary effects and pinning from impurities and the over-counting of the particles; β ac-

counts for the initial number of defect in the cell. For all the ranges of the applied

voltage, the critical exponent is close to its theoretically value 1 and does not change

significantly with the bias [46].

We now consider the dynamics of two close isolated defects of opposite winding

number, see figure 3.10. The distance between the two defect is computed by tracking
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Figure 3.8: Evolution of the number of defects counted in the observed area for dif-
ferent applied voltages: 60V, 70V, 80V, 90V,100V. The experimental data (black) are
superposed with the fitted curves (dashed red line)

(a) (b) (c)

Figure 3.9: Plot of the fit parameters with respect to the bias voltage: (a) critical
exponent α, (c)N∞ and β (b).

their position during the collision. We can appreciate the close matching of the ex-

perimental curve (continuous line) with the square root law (dashed line). In fact, if

we consider the Kirchhoff-Onsager function, and restrict ourselves to two defect with

charge ±1, we can easily find that the distance between the defects follows the law

r(t) = r(0)/
√

1− t/tCOL, with tCOL the time of collision.

(a) (b)

Figure 3.10: (a) Snapshots of the collision dynamics of two umbilic defects with opposite
winding number.(b) Interdistance vs t.

The vortices are created in a random manner, as the initial condition is essen-

tially governed by thermal fluctuations and impurities at the LC rubbed-glass inter-

face. Moreover, the defects interact one with another via long range interactions: the

interaction potential depends logarithmically on the distance. The texture, then, is

unstable and relaxes toward a defect free configuration, with resident defects due to
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boundaries and impurities. In order to become exploitable for photonic applications,

the textured liquid crystal will be required to be reproductible in the number of defects

that it contains, in their positions and their charge. To begin with, we can see that

one of the control parameters that we have is the voltage applied to the cell. Until

now, we do not have the control over the voltage distribution on the top of the liquid

crystal layer. In the next section we will see how a non uniform voltage on the top of

the liquid crystal layer can dramatically change the behavior of the system when it is

forced to generate defects.

3.3 Non uniform driving

3.3.1 Correction to the Ginzburg-Landau equation.

We now analyze the reorientation phenomena in presence of non uniform distribution of

voltage on the top of the LC-layer. For sake of simplicity we neglect the dependency of

the voltage distribution on the nematic director, by taking it in the nonlinear anisotropic

Laplace equation a its equilibrium value, that is n̂ is set to ~z.We now have:

ǫ⊥
ǫ‖
∇2

TV + ∂2zV = 0, with V (x, y, 0) = 0, and V (x, y, L) = Vs(x, y), (3.20)

with Vs(x, y) the surface distribution of the voltage on the nematic liquid crystal

layer. The voltage, then, can be written in the following form:

V (x, y, z) =

∫

sinh(Qz)

sinh(QL)
Ṽs(~q)e

ı~q·~rd~q2 (3.21)

with Q =
√

ǫ⊥
ǫ‖
q. In the limit of small surface gradient, i.e. when the characteristic

length of the surface voltage is greater than the cell thickness, the predominant spatial

frequency component are in the way that qL << 1 (see A.1 for more rigorous derivation)

we can approximate sinh(QL) ≈ QL. Then the voltage distribution is, simply,

V (x, y, z) =
z

L
Vs(x, y) =

z

L
Vs(~r).

In the derivation of the GLE, the electric field was assumed to be uniform and

parallel to the z axis. For the non homogeneous bias scheme, we have a contribution

of the transverse electric field − z
L
∇tVs, that even if small, breaks the symmetry of

the space, the translational and the rotational ones; the latest can be kept with radial
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symmetric excitation. The transverse electric field bias the system and cannot be

neglected. Following the same procedure used in the derivation of the GLE we have

(see B.2 for the details):

γ∂tA = Ao+µA+µ∗Ā+β|A|2+β∗A2−α|A|2A+K1 +K2

2
∇2A+

K1 −K2

2
∂2ηηĀ (3.22)

with:

A0 = ǫΩa
2

π
E∂ηVs,

µ = −ǫΩaE2 −K3
π2

L2
+ ǫΩa

1

2
(
1

3
− 1

2π2
) |∂ηVs|2 ,

µ∗ = ǫΩa
1

2
(
1

3
− 1

2π2
) (∂ηVs)

2 ,

α = −3
4
ǫΩaE

2 − π2

4L2
(3K3 − 2K1),

β = −ǫΩa
2

π
E∂ηVs,

β∗ = −ǫΩa
4

3π
E∂η̄Vs.

These corrections have dramatic consequences on the system. Let us focus on A0

and µ which are the main parameters influencing the system. A0 constitutes the bias

term and µ the supercriticality. At the early stages of the reorientation dynamics, when

the voltage is switched on (or the non uniform component is added to the uniform

bias), the electric field and the nematics are no more parallel to each other. If the

field is intense enough, it will govern the dynamics in contrary to what happens in the

hometropic LC with uniform field configuration. In order to balance the total torque,

the molecules will rotate increasing the acute angle between them and the field. It

is clear that a defect created by a radially symmetric bias potential, will have the

same radial structure. Hence, an umbilic like defect with winding number +1 will be

created. With this assumption, A0 = ǫΩa
2

π
E(r)∂rVs(r) exp(iξ), which is a forcing term

with winding number +1. We will, from now on, refer to radially symmetric excitation.

An analysis of the parameter µ show that to promote only the desired defect, the

applied voltage has to be maximum at the defect location and decrease far from it.

The opposite, the bias have a dip in the center, other defects will be excited far from

the origin: this scheme is unsuitable for the controlled defect generation.
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3.3.2 Pinning force

In this section we derive an approximate expression of the pining force of a radially

symmetric potential on a stationary vortex. Let us consider a steady vortex in ~ro

(position of the vortex in the x − y plane, we use ~r as transverse coordinate and z

as longitudinal one), and a sudden rise V1(r) in the bias voltage. A the early stages

(time scale less than the LC response time) there wouldn’t be any deformation in the

vortex structure. The force on the defect will be the variation of the interaction energy

: WINT = −1
2
ǫa

∫∫∫

(n̂ · ∇V )2d2~rdz, with respect to the position of the defect. For
the sake of simplicity, we assume that the director distribution does not influence the

voltage distribution. Furthermore, we assume that the texture of the umbilic have the

following expression in the ~ro-translated reference frame with respect to the origin:

n̂ =







sin(ψ) cos(Ξ + θ0)

sin(ψ) sin(Ξ + θ0)

cos(ψ)






, with ψ = ψ(R) and θ0 = θ0(R) denoting the swirl of the

defect in the nematic texture, which can be, in first order of approximation, set to

constant, ~R = ~r − ~ro = R cos Ξ~x + R sin Ξ~y. Note that director field can be rewritten

in a more convenient form: n̂ =
1

|~R|
(~R cos θ0 + ~R⊥ sin θ0) sinψ + ~z cosψ. For a bias

voltage with radial dependence applied in ~r, ∇V = Vr(r)
~r

|~r| + ~zVz(r), with Vr and Vz

being respectively the partial derivative of the potential with respect to the radial, R,

and the longitudinal, z, coordinates, in the potential reference frame. The expression

of the energy is then:

WINT = −1
2
ǫa

∫∫∫

d~rdz

[

Vr
~r · ~R cos θ0 + ~R · ~r⊥ sin θ0

rR
sinψ + Vz cosψ

]2

.

A further expansion provides this convenient expression for the interaction potential

noticing that terms linear in sin ξ do not contribute, we have:

WINT = −1
2
ǫa

∫∫∫

d~rdz

[

V 2
z cos

2 ψ +
1

2
V 2
r sin

2 ψ + VrVz[sin 2ψ]
~r ·R
rR

cos θ0

V 2
r sin

2 ψ

r2R2

(

(~r · ~R)2 − (~r⊥ · ~R)2
) cos 2θ0

2

] (3.23)
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It is worthwhile to split it in 3 contributions:

WINT =− 1

2
ǫa

∫∫∫

d~rdz

[

V 2
z cos

2 ψ +
1

2
V 2
r sin

2 ψ

]

− 1

2
ǫa

∫∫∫

d~rdz

[

VrVz[sin 2ψ]
~r · ~R
rR

]

cos θ0

− 1

4
ǫa

∫∫∫

d~rdz

[

V 2
r sin

2 ψ

r2R2

(

(~r · ~R)2 − (~r⊥ · ~R)2
)

]

cos 2θ0

(3.24)

The first term corresponds to a pure radial repulsive potential, the superposition

integral is maximum when the defect and the pinning potential overlap. The two

remaining terms are potentials dependent essentially on the transverse electric field

and on the swirl of the defect and can be attractive or repulsive depending on θ0 and

the values the multiplying integrals.

Clearly the interaction potential cannot be computed in close form, but, with some

assumptions we can derive an analytical approximation.

3.3.2.1 Small core approximation

Here we will assume that the core of the defect is small with respect to other length

scale.

Moreover V (~r, z) =
z

L
Vs(r) and we can also assume that the the molecules are well

oriented toward the x−y plane, at least far from the defects core: only term depending

on sin2 ψ are considered and ψ(R, z) is set to constant ψ∞(z), the far field profile.

Plugging everything in the equation 3.23, and neglecting the finite core size effect

we have:

WINT =
1

2
α|ǫa|L cos 2θ0

∫

d~r

[

(~r · ~R)2 − (~r⊥ · ~R)2
2r2R2

(

dVs
dr

)2
]

(3.25)

with α =
1

L

∫ L

0

[ z

L
sinψ∞(z)

]2
dz taking into account the overlap integral in the z

direction.

It can be shown that this integral can be written as

WINT =
α

2
|ǫa|L cos 2θ0

∫

drro

(

dVs
dr

)2

G(r/ro) (3.26)
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with

G(r) = π







0 , r ≤ 1

r − 1

r
, r ≥ 1 .

In the case of a voltage profile of the type Vs(r) = V0 + v exp− r2

w2
we a close form

for the interaction energy, which is:

WINT =
π

4
|ǫa|αLv2e−

r
2
o

2w2 cos 2θ0

3.4 The liquid crystal light valve as platform for defect

induction and control.

In the previous section we have shown theoretically that it is possible to induce in

a controlled manner a single defect in the texture of the liquid crystal by using an

appropriately shaped profile for the voltage applied across the nematic liquid crystal

layer. Conventional cells, cells with uniformely coated glass plates, are therefore unfit

to this task. We need, then, to engineer a new type of cell in which the profile of the

voltage on the top of the LC layer can be tuned at will. One of the possible solutions

is to use shaped electrodes [47], resistive electrodes as control layers [48, 49], or non

uniform dielectric layers between the liquid crystals and the uniform control contact

[50]. These techniques are well known for optical devices like tunable focus lenses,

liquid crystal wavefront correctors for adaptive optics. Beside these methods, we might

consider a liquid crystal light valve (LCLV) with hometropic conditions. The LCLV

was first introduced by Margerum et al. [51] for image intensification and retention.

The LCLV is composed of a photoconductive layer (figure 3.11), in our case made of

a slab of bulk monocrystalline Bi12Si020 (bismuth silicon oxide, BSO) with the outside

surface coated with ITO, and a thin glass plate with ITO deposited on the inside

surface. The two electrodes allow the application of a bias voltage across the cell. The

inside surfaces of both the glass plate and the BSO are treated with lecithin in order

to favor the homeotropic anchoring of the LC moelcules. The BSO slab and the glass

plate are glued together, with thin spacers in between them which will define the LC

layer thickness. The LCLV is finalized by filling it with the appropriate liquid crystal.

In this configuration, the BSO layer acts like a photo-controllable voltage divider

that when illuminate can tune the effective voltage across the LC layer. By applying

the appropriate illumination spatial profile we can modulate quite well this effective

voltage, due to the high spatial sensitivity and the good modulation transfer function
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of the LCLV [52]. The choice of the BSO as a photoconductive layer is justified by its

availability in large samples and the good optical quality. Moreover, among the available

photoconductors, the BSO exhibits the lowest dark current, which is important for the

overall sensitivity of the device, and has a high saturation intensity [52, 53] which is

important for the device linearity. For moderate frequency of the bias voltage, we

are in quasi-static regime (we neglect phase shift effects) [54, 55] and the transferred

voltage across the LC layer upon an illumination intensity I(x, y) can be approximated

by [52, 56]:

Vs(x, y) =

∣

∣

∣

∣

ZBSO

ZBSO + ZLC

∣

∣

∣

∣

VBIAS = γVBIAS + αI(x, y) , (3.27)

where α and γ are parameters depending on the operating point (frequency and bias

voltage), the LC layer and the photoconductive layer parameters [52, 54]. The linearity

of the transferred voltage versus the incident illumination [52], on one hand, the high

spatial sensitivity on the other hand, allows us to use the simplest model for the LCLV

behavior. Moreover the BSO has a high photoconductivity gain with a good optical

transparency in the visible. This enable us to use fairly low optical densities, typically

about 3mW/cm2, and to design devices operating in transmissive mode, with the op-

tional use of the writing beam for simultaneous readout. Although the BSO sensitivity

to visible light beam, the absorption depends on the wavelength used; 532nm and below

will be used for the writing process, and wavelength around 633nm and above will be

use to probe the texture, as the sensitivity is reduced at this wavelength [57]. White

light beam can be used too for the reading process, but must to be filtered before, in

order to reduce biasing effects.

(a) (b)

Figure 3.11: Descriptive view of an homeotropic LCLV. The spatial light modulator
(SLM) controls the transverse profile of the conditioned illumination beam. 1D equiv-
alent circuit of an LCLV. Photo of an unclosed LCLV

The LCLV has proven itself to be more versatile with respect to other methodolo-
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gies, as it allows us to reconfigure the topology of the induced electrodes by changing

the electrode shape and position (profile of the illumination) and the effective voltage

(intensity). Such versatility is supported by the use of LC spatial modulator (SLM),

which enables real time and arbitrary control of the equivalent designed electrodes.

The LCLV technology is a very mature one and had found many interesting applica-

tions since it introduction from display optics [51, 52], adaptive beam shaping [58, 59],

fundamental physics [60], wave-mixing and singular wave-mixing [61, 62], all optical

computing [63] and high precision metrology[64].

3.5 Experimental realization of localized defects

Figure 3.12: Experimental setup. HWP: half waveplate; M: mirror; PH: pinhole; Obj:
objective; L: lens; F: red filter, POL: polarizzer;BS: beam splitter; SLM: spatial light
modulator; CCD: CMOS camera; POL(0◦), POL(90◦), respectively, the input polarizer
and the analyzer.

To implement the induction of defects, we use an LCLV (see figure 3.11(b)) filled

the MLC-6608, with thickness 15µm. The spatial light modulator (SLM) in the setup

(figure 3.12) is used to impress the desired pattern on the light intensity via computer

generated holograms. The red filter after the LCLV suppresses the residual intensity

of the writing beam, λ = 532nm, with power density about 10mW/cm2. The whole

sample is illuminated with a white beam filtered with a red glass filter.
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3.5.1 Single defect induction and control.

To induce a single defect in the texture of the liquid crystal, the SLM is programmed to

send a small bright spot of the writing beam onto the sensitive side of the LCLV . The

bias is turned on from 0V to higher voltage until the defect is formed. The umbilics are

generated with different diameter of the incident spot (figure 3.13). We observe that

the threshold, that is, the bias above which the transmitted intensity across the cell is

not zero, varies with the size of the illumination spot.

(a) (b)

Figure 3.13: (a) Induced umbilic with various spot sizes of the illuminating beam . (b)
Threshold versus spot size, Do = 6.85µm.

During the turn on, the slew rate of the voltage was limited in order to have the

response time of the LCLV small with respect to the rise time, which avoids the for-

mation of undesired umbilics. However, the undesired excited defects relaxed quickly

and the only remaining defect spontaneously migrates to the center itself with respect

to the writing spot. This is a clear evidence of the effect of the pinning potential on

the defect. It is worthwhile to notice that different shapes of the illumination pattern

generate a +1 defect located near the center of the spot.

3.5.1.1 Spatially resolved polarimetry

Until now the sign of the defects is identified by rotating the polarizer: the +1 defects

rotate in the same direction of the polarizer and the -1 rotate oppositely. An another

interesting technique to see the texture of the LC cell is based on the spatially resolved

Stokes polarimetry [65, 66]. The spatially resolved Stokes polarimetry is an interesting

technique to observe singularities in light fields and to retrieve the information carried

in the phase of a beam. By sending a circularly polarized light beam on the cell, and by
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(a) (b)

Figure 3.14: (a) Early dynamics of the generation of the umbilics; multiple defects are
generated at the beginning. (b) Generation of an umbilic with different shape of the
illumination. The shape of the induced electrode can be seen in the background.

using the Jones matrix method, it is easy to find that the output beam will be a super-

position of the unconverted part, and a converted part which carries information on the

azimuthal distribution of the director in the thin sample of LC that we are investigating.

Being ~eσ =
1√
2
(~x+ iσ~y) the polarization of the white light with which the cell is illumi-

nated, where σ = +1/−1 stands for left/right handed circular polarization, the output
beam polarization isM·~eσ = cos

Γ

2
~eσ+i sin

Γ

2
e2iσθ~e−σ. By probing the output field with

a linear polarizer forming an angle α with ~x (the x axis direction), the collected intensity

on the CCD will be I(α) =
I0
2

(

cos
Γ

2
− σ sin Γ

2
sin [2(θ − α)]

)

, where I0 is the input

beam intensity. We clearly see that:
[

I(π2 )− I(0)
]

/
[

I(π2 ) + I(0)
]

= σ sin Γ sin(2θ), and

[I(π4 )− I(−π
4 )]/[I(

π
4 )+ I(−π

4 )] = σ sin Γ cos(2θ). The azimuthal variation can, then be

recovered. The same applies to the polar component. Unlike in the previous cases, the

azimuthal component cannot be calculated for crossed linear polarizers nor be uniquely

determined in general. As θ + π and θ are equivalent, we cannot determine θ with an

additive constant π/2 if we use σ = −1, right polarization, instead of left polarization,
σ = 1. To probe the texture of the induced defect we perform the technique described

above on the LCLV illuminated with a spot of diameter ≈ 130µm with the writing

beam intensity about 300µW/cm2. A quarter wave plate is inserted on the path of the

white light beam, between the LCLV and the polarizer POL(0◦) (see figure 3.12), and

adjusted in order to have a circularly polarized incoherent light. Images were taken,

varying the output polarizer angle from 0◦ to 135◦ with steps of 45◦. The polarimetric

images are shown in figure 3.15. We can observe that the azimuthal angle varies about
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2π for counterclockwise turn around the defect core, which is resolved only within few

µm due to experimental limitations: relative offset of the acquired images and the in-

trinsic scattering of the defect core. Indeed, the figure shows twice the azimuthal angle

which varies about 4π. We can also notice that for increasing values of the bias the

defect size increases For values of the applied voltage greater than 14V we can observe a

substantial change in the polarimetric images due to the fact that the radial phase shift

in the probe beam overcomes π. Indeed the induced umbilic like structure increases in

size with the voltage, the molecules also bend toward the x− y, that is, the polar angle
increases, with its peak value far from the center. Then the phase shift grows radially

with the distance (until the first peak) with respect to the core, thus inducing radial

phase modulation in the polarimetric images.

Figure 3.15: Spatially resolved polarimetry of the induced defect for different values of
the applied voltage: (from left to right) 12V, 14V, 16V and 18V.

3.5.1.2 Experiment on the pinning of the defect.

To emphasize the presence of the pinning potential induced by the radially symmetric

illumination, first, a gas of defect is generated in the LCLV by applying a bias of 30V.

During the relaxation dynamics, a +1 moving umbilic is targeted by the writing beam

of diameter about 205.4µm, with intensity 3mW/cm2. Due to the bell shaped profile of

the voltage induced by the writing beam across the cell, a pinning potential is created.

We observe first a distortion of the defect (first three panels of figure 3.16). Then, the

pinning force recalls the defect towards the center of the beam in order to minimize the

overall energy.

This mechanism provides a natural stabilization of the generated umbilic, and is impor-

tant for the generation of robust and more complex structures of umblics. For certain

ranges of parameters, the pinning force will equate the long range 1/r force generated

by the neighboring umbilics. All the defects can be consequently locked individually at

the desired position by choosing the appropriate illumination pattern.
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Figure 3.16: Snapshots of the defect dynamics under a pinning potential applied at
t=0. The umbilic is attracted by the induced potential and stabilizes itself near the
center of the writing beam.

3.5.1.3 Correction to the logarithmic law

With the technique described in the previous section, we were finally able to study

the interaction of defects in a deterministic way and to recover features hidden by the

defects statics. As illustrated in figure 3.17, three vortices are induced when creat-

ing willingly the two lateral ones with index +1. The bias voltage across the LCLV

is kept slightly below VFT and the writing beam consists of two circular spots of di-

ameter about 200µm with intensity 4mW/cm2. A third defect with index -1 appears

in between them, due to the required reconnection of the distorted field lines of the

nematic distribution. When one of the disc constraints is released (figure 3.17(a)), the

negative and the positive vortices are free to interact (figure 3.17(c)(e)) and annihilate

(figure 3.17(f)). Their separation distance r=r(t) versus time is plotted in figure 3.17(g)

and compared with their separation in the absence of external potential. In order to

emphasize the deviation from the power law behavior, the data for both constrained

and unconstrained dynamics were normalized to the collision time for the unperturbed

vortex pair. The deviation from the r0
√

1− t/tCOL law is significant, as the presence

of the third defect slows down the interaction considerably by introducing screening

effects. We have also studied vortex-pair interactions, in the presence of a static defect.

The measurements demonstrate the importance of the propagation of the vortex phase,

as the latter introduces a weakly nonlinear mobility in the dynamics of the surrounding

defects, with the mobility defined as −r(t)v(t), v the relative velocity, and equal to

r20/2tCOL for the square root law, constant and related to the effective viscosity and

the elastic constants of the liquid crystal. The theoretical prediction for a logarithmic

dependence of the mobility [37] on the vortex speed results in good agreement with
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the data (see figure 3.18), thus reconciling the theory with the experimental observa-

tions. The presence of a third vortex substantially lowers the vortex-pair interaction

speed. Besides their fundamental relevance, the findings also pinpoint the accuracy of

the optical addressing and pave the way for further developments on the management

of umbilics in liquid crystals.

Figure 3.17: Controlled collision of two umbilics. Three umbilics are created, two with
index +1 and the central one with index -1 by frustration. The release of the left defect
triggers the collision dynamics (a-f). An important deviation from the square root law
is observed (g).

Figure 3.18: (a) Defect separation versus their relative speed in logarithmic scale.
Blue circle the experimental data, the error is within their respective radius. Dashed
red line: best fit with constant mobility −rv = m0 with m0 = 0.3744µm2/s. The
solid black line, the best fit for the nonlinear mobility model: −rv = m1/ log(v/v0),
m1 = 7.23543µm2/s, v0 = 119089µm/s. (b) Relative error for the two models.

3.5.2 Defect arrays

After having implemented the building blocks for the the management of a single de-

fect in the LCLV, we can proceed to the next level, where the management of large
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collections of defects can be achieved. To generate an array of defects, the SLM is

programmed to send the appropriate matrix of spots on the sensitive side of the LCLV.

The spots are well separated so that the induced voltage across the cell has well defined

peaks. Moreover the background of the illumination spot is reduced in order to prevent

the umbilic like structure to be generated to spread across the cell. The bias voltage is

calibrated so that the overall voltage on the cell due the dark state of the SLM (when

the spots are turned off) and the probe beam, is well below the Fredericks transition

voltage. This prevent unwanted defect to form. In figure 3.19 we show for different

applied bias the texture of the liquid crystal when the LCLV is illuminated with an

hexagonal pattern of bright spots with intensity about 300µW/cm2.

Figure 3.19: Texture of an hexagonal array under linear crossed polarizers. The circled
areas represent in scale the writing beam spots. The figures correspond to (from left
to right) to 15V, 20V, 25V applied voltage.

For low voltage, distinct umbilics can be observed. When the bias voltage increases,

the background voltage increases as well. This make the generated umbilics to spread

and finally touch.

The liquid crystal medium is a continuous director filed, in other to accommodate the far

field induced by two umbilics with index +1 (located at the vertices of the hexagons ),

a third defect is created in between them by frustration, this helps to reduce the energy

of the induced structure. Further increase in the voltage will make the -1 umbilics to

connect and create +1 umbilic in the center of hexagon. To support the explanation

we perform a spatially resolved polarimetry on an honeycomb lattice of umbilics 3.20.

It appears clearly from the polarimetric images that, the +1 defect are well isolated on

the smooth background for low voltages (12V). The phase increase about −2π when

circling around the point at which they connect. For the defects created at the center of

the hexagons, a counterclockwise turn around them shows a change of +2π, revealing

the presence of a +1 umbilic.
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Figure 3.20: Spatially resolved polarimetry images of the hexagonal array of defects for
increasing values of the applied voltage. The polarimetric images are shown (from left
to right) for 12V, 14V, 16V and 18V.

3.6 Conclusions

In this chapter we show that singularities can generated willingly in crystal cell with

hometropic anchoring, filled with negative anisotropic material. But these singularities,

due their dissipative nature tend to be collectively unstable. The generated defects come

in random number and random positions, with those of the same sign repelling each

other and those of opposite sign attracting each other and annihilate. It is evident

that such architecture is unreliable for applications; at least for those requiring the

repeatability of the texture with respect to their number, position and eventually to

their charge. We demonstrated theoretically that it is possible to achieve this goal by

using spatially non uniform bias. The later concept is successfully implemented for the

first time using liquid crystal light valves, enabling defects for photonic applications.

48



Chapter 4

Optical Vortices

It is well known that light can exert mechanical effects on matter. This is not limited

on the effect of the radiation linear momentum, which can set particle to translation.

Rotation of particle can happen if the radiation is circularly polarized. In this case the

electromagnetic wave couples it spin angular momentum with that of the medium it

interact with, and this effect is physically observable by the spinning of the particles

around themselves or the object around itself, with the sense and rate of rotation

depending on the helicity of the light beam. The first experimental observation of the

fact that light can possess an intrinsic angular momentum is to due to R. A. Beth [67].

A polarized beam is sent onto a birefringent plate free to rotate. The thickness of the

plate is that of a half wave plate at the operating wavelength and transforms a left

circular polarized light beam in a right circular polarized beam. The plate experiences

torque that changes its sign with the input polarization. By measuring the amount of

torque, the value of the angular momentum of the photon can be calculated knowing

the intensity the incoming light. The result was +~ for left hand polarized input an

−~ for right hand one. For intermediate values it was shown that torque diminishes

and vanishes for linearly polarized beams.

Besides these effects, it was also observed that, linearly polarized beams like Laguerre-

Gauss beams, can also set particles in rotation and that they rotate around the axis

of the beam and not the around their own axis as for circular polarized beam [68, 69].

This is related to the so called orbital angular momentum of the beam and is entangled

to the beam structure: the phase.

Beams carrying orbital angular momentum are characterized by phase dislocations in

their wave front. The latest manifest themselves by the nulling of the intensity at

the position of the dislocation with the energy flowing around the singularities, fact
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after which they are called optical vortices. Optical vortices are interesting not only

for the mechanical effects they can have on matter, where they are mainly used for

implementing optical tweezers [70, 71, 72, 73], they are also used in the field of high

precision micro-machining [74, 75, 76], astronomical imaging (properly, the devices to

generate them) as coronagraph [77, 78, 79]. Their latest employment can be find in the

field of quantum communication where, the orbital degree of freedom of optical vortices

is used to generate high dimensional q-bits [80, 81, 82, 83].

In this chapter we will introduce first the angular momentum of light beams, re-

stricting ourselves to main results and to the case of paraxial propagation. The methods

used in the generation of optical vortices will be discussed with a particular emphasis

on the use of liquid crystal devices containing dislocations as they can convert the spin

angular momentum of light beams into the orbital angular momentum, thus generating

optical vortices.

4.1 Angular Momentum of light beams

From classical electromagnetism a propagating electromagnetic field carries a liner mo-

mentum depending on the Poynting vector and is defined as:

P = ǫ0

∫

E×Bd3r,

which, after quantization, leads to a well defined momentum for p = ~k for a photon

[84, 85]. With the same procedure, when balancing the angular momentum of particles

in light field with respect to a pole ro, the angular momentum of the electromagnetic

field can be introduced as:

J(ro) = ǫ0

∫

(r− ro)× (E×B)d3r.

If we use the tranversality condition for the magnetic field B, the angular momentum

can be rewritten with respect to the potential vector A, and it is demonstrated that it

is the sum of two contribution i.e.

J(ro) = Jo(ro) + Js,

with

Js = ǫ0

∫

E×Ad3r,
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and

Jo(ro) = ǫ0
∑

i=x,y,z

∫

Ei[(r− ro)×∇]Aid
3r.

Js is independent of the position of the pole ro, which will be later set to the

origin. It is then the intrinsic part of the angular momentum and is termed as spin

angular momentum (SAM) and depends on the vectorial nature of the propagating

beam. Indeed, a scalar field, with linear polarization has a zero spin angular momentum

as E and A are always parallel. Moreover, by quantizing the spin part, the angular

momentum of photon is given by [84]: σ~k/|k|, where σ represent its helicity ; with

σ = +1/− 1 for left circular/right circular polarized photon.

The second contribution of the angular momentum Jo depends explicitly on the chosen

reference/pole, and can be decomposed in the following manner:

Jo(ro) = Jo(0) + ro ×P.

It represents the extrinsic part of the angular momentum of light: the orbital angular

momentum, and will be shown to be dependent essentially on the phase structure of

the beam i.e. its vorticity.

For a monochromatic beam pulsating at ω, we can express OAM and the SAM with

respect to the electric field complex amplitude E:

Js =
ǫ0
4iω

∫

E∗ × Ed3r+ c.c.

Jo(ro) =
ǫ0
4iω

∑

i=x,y,z

∫

E∗i [(r− ro)×∇]Eid
3r+ c.c

Even at this stage, the expressions of the angular momentum are difficult to handle,

they are not explicit quantities that can be related to simple characteristics of the

electromagnetic beam. As we deal with propagating beam with small divergence, we

will limit ourselves to paraxial propagating beams, along z for simplicity. For paraxial

beams the longitudinal component can be neglected; the electric field is nearly trans-

verse. The main contribution of the angular momentum of optical field lies then along

z and depends only on the transverse component of the field. Using this assumption,

and writing the transverse component with respect to the circular polarization basis in

the transverse plane, we finally have with respect to the pole ro on the beam axis:

Jsz =
ǫ0
2ω

∫

(

|EL|2 − |ER|2
)

d3r,
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Joz =
ǫ0
2iω

∫

(E∗L∂ξEL + E∗R∂ξER) d
3r.

Note that the linear momentum lies along z, then, the orbital angular momentum is

independent on the position of the pole if the later is taken on the beam axis.

Its is worthy to write the latest expressions considering them explicitly with respect

to the number of photon carried by the radiation. The number of photon is given by

N =
1

ω~

ǫ0
2

∫

E∗ · Ed3r.

Dividing the angular momentums by the number of photon we have:

Joz/N = ~

∫

−i (E∗L∂ξEL + E∗R∂ξER) d
3r/

∫

(

|EL|2 + |ER|2
)

d3r,

Jsz/N = ~

∫

(

|EL|2 − |ER|2
)

d3r/

∫

(

|EL|2 + |ER|2
)

d3r.

Here, we have the expression of the average angular momentum carried by a single

photon. The spin part depends only on the helicity of the beam, a left polarized beam

ER = 0, will caries +~ SAM per photon, and −~ if right circularly polarized, EL = 0.

The orbital part have the same expression if written with respect to the horizontal (x)

and the vertical (y) polarization, hence, independent on the state of polarization of the

beam. We can see an explicit dependence on the derivative respect to the azimuthal

coordinate: the orbital angular momentum depends on the azimuthal structure of the

beam. Indeed, by taking a beam with the simplest azimuthal dependance, a beam with

helical phase, i.e. a(r)eimξ, regardless to its polarization and radial profile, the orbital

angular momentum per photon is m~.

4.2 Optical vortices and their generation.

Optical vortices are characterized by the presence of single or multiple phase dislocation

where the field amplitude goes to zero and quantities like polarization and phase are

undefined. At this singular point the phase front of the electromagnetic field has

an helical structure with number of helix and rotation direction depending on the

topological charge defined as

m =
1

2π

∮

C
∇χdl,

C any closed curve encircling only the considered singularity, χ the phase of the con-

sidered complex amplitude. In the framework of paraxial beam propagating along z, the
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simplest optical vortex that we can then imagine has the form of: A(r, z)ei(kz+mξ+χ(r,z))eσ

and carries m~ OAM per photon and σ~ SAM per photon, σ the helicity.

From what we had discussed until now, the vorticity of the optical field depends only

on the phase structure of its amplitude. However, the OAM and the SAM conserve

separately if the propagating medium is the vacuum, thus, these two parameters can be

coupled efficiently or uncoupled by choosing the appropriate medium. In this section

will discuss methods used to generate optical vortices from non singular beams by act-

ing only on the wavefront (then only on the OAM). The second part will be dedicated

to the generation of singular beams based on the SAM and the OAM coupling.

4.2.1 Astigmatic mode converters

Optical vortices can be generated by using cylindrical lenses [86]. The main concept of

this mode converter has its background on the completeness of the Hermite-Gauss (HG)

basis and Laguerre-Gauss (LG) basis with the linear relationship between the projection

coefficients from the LG and a π/4-rotated HG basis to the HG basis. Beijersbergen

et al demonstrated that [87] a π/4-rotated HGm,n and LGm,n can be written as a

linear superposition of the same set of vectors {HGm+n−l,l}l=0,...,n+m. The expansion

coefficients are in phase for the HG mode and are the same for LG mode except for

the (i)l multiplying every coefficient. By using an astigmatic lens and the effect it has

on the Gouy phase of each mode, it is possible to change coherently the relative phase

between each coefficients. This relative phase shift depends on the distance between

the two lenses. When this distance is set to f/
√
2, f the focal length of the cylindrical

lenses, the phase shift is π/2 and every HGm,n is converted to a LGm,n vice versa [88].

This method can be highly efficient, but due to the hard condition on the type of input

beam, which has to be an Hermite-Gauss beam, there is a severe limitation on using

it.

4.2.2 Phase Plate

A plane wavefront can be transformed into a phase front with a screw dislocation by

using elementary concepts of classical optics. This is achieved with thin glass plates that

have a spatially varying optical thickness in term of λ equal to the desired wavefront

over 2π. For instance the screw phase dislocation can be introduce in a propagating

light beam by using glass plates with thickness depending linearly on the azimuthal

coordinate [89] i.e t(r, ξ) = tξ/2π, with t the height of the created spiral surface, thus,
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the name of spiral phase plate. The introduced phase shift is given by:

δφ(r, ξ) = dn
t

λ
ξ,

with dn the difference of the refractive index between the plate and the outer medium

(glass, air), λ the operating wavelength. To see how the angular momentum is trans-

ferred to input beam, we can consider the effect of the spiral phase plate (SSP) on a

beam impinging on it at a position r from its center. The normal to the surface at this

point is given by ~n = s sin ξ~x− s cos ξ~y + r~z, s = t/2π. Therefore, an incoming photon

pictured as a ray normal to the bottom surface with linear momentum ~k1~z, will exit

at an angle β with respect to z, β given by nair sin(α+ β) = nglass sinα; the Snell law

is used and α represent the angle of the surface normal with respect to z, tanα = s/r.

Note that the plane of refraction is oriented radially, so that the output momentum will

have a z component and an azimuthal component with a null radial component and

is given by ~k2(~ξ sinβ + ~z cosβ), we remind that the angular momentum is given by

r×p. The z component of the orbital angular momentum with respect to the center of

the plate is Lz = r~k2 sinβ. For small bending angle α i.e. far from the center of the

SSP, we can approximate tanα ≈ α, sinα ≈ α and sin(α + β) ≈ α + β. Within these

approximations, the angular momentum transferred to the photon is simply: dn
t

λ
. To

Figure 4.1: Sketch of a spiral phase plate with an incident LG00 beam, generating an
optical vortex with topological charge 4.

generate an optical vortex with topological charge m the height of the SSP has to be set

to mλ/dn. The latter condition can have drawback on the purity of the generated op-

tical vortex in term of the azimuthal number [90] due to practical mismatch. However

this offers some interesting insight for the generation of non integer optical vortices.
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4.2.3 Diffraction gratings with embedded singularities

Beside the use of SSP, one of the most widespread method for the generation of optical

vortices is based on holographic methods. The desired wavefront that we want to

reproduce, Ese
i(kzz+mξ), is made to interfere with a reference beam (ideally a plane

wave) Ere
i(kzz+kxx). The obtained interference pattern

I = |Er|2 + |Es|2 +Re(ErE
∗
s ) cos(kxx+mξ) + Im(EsE

∗
r ) sin(kxx+mξ),

, can, then, be recorded on a photographic plate. After being developed, the recorded

hologram is used to generate the desired beam by sending in a plane wave and by

filtering the first order diffracted mode. The availability of high quality spatial light

modulators (SLM) make this alternative more versatile. The hologram can be generated

by computer and sent to the SLM which will modulate the amplitude/phase of the input

in order to diffract/transmit light accordingly. A generic transmittance function can

be written as

T (x, y) =
∑

n

Tne
in(2π x

Λ
−mξ),

where Λ represents the periodicity of the grating, m the topological charge. Light is

diffracted according to Bragg law (conservation of transverse momentum) and the m-th

diffracted beam caries topological charge nm with an diffraction efficiency |Tn|2. The
generation of optical vortices with computer generated hologram can suffer efficiency

problems, however high efficiency hologram can be generated with the use phase-only

SLM with the appropriate transmittance function.

By using a blazed phase-only grating with 2π modulation depth, T = exp[iMod(2π x
Λ +mξ, 2π)],

a high efficiency close to the theoretical 100% can be obtained.

4.2.4 Panchanratnam-Berry phase optical elements.

Another method, in our opinion the most intriguing one, used to generate optical vor-

tices is based on the so-called Panchnaratnam-Berry phase optical elements (PBOEs).

The PBOEs are based on the use of the spatial manipulation of the polarization of

electromagnetic wave in order to modify the wavefront, thus, couple the spin angular

momentum and the orbital one. It is well known that when the polarization of a beam

evolves adiabatically on a close path on the Poincaré sphere (equivalently the Stokes

sphere), the polarization after every turn accumulates phase shift equal to half the

corresponding solid angle sustained by the close path.

This can be achieve by using a medium that exhibits anisotropy, so that the SAM
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Figure 4.2: Diffraction of a LG00 mode by a forked hologram with singularity +1. The
diffraction order depends on the grating profile, which can be optimized to enhance
the desired diffraction order. In general the diffracted orders do not correspond to
Laguerre-Gauss beams.

can be coupled efficiently with the OAM. Two different solutions came with few years

of delay, one based on subwavelength grating [91], the other based on nematic liquid

crystal [92]. Both are based on plate with constant thickness with non uniform planar

variation of the optical axis for the LC based device : q-plate, and the axis of the

wavelength microgroove forming the subwavelength grating. They can be considered

as wave plate with constant local retardation and continuously space varying fast axis,

thus the phase shift (between an ordinary and extraordinary) beam will be constant,

but the polarization at the output will vary according to the relative orientation of the

input polarization and the fast axis.

4.2.4.1 SAM and OAM coupling.

To get some insight on how these devices work, we can use the simplest approach

based on the Jones calculus. We denote τ̂ = cos θx̂ + sin θŷ the fast axis, and θ̂ =

− sin θx̂+cos θŷ, θ denotes the angle between the fast axis and the x. The input beam

is taken to be propagating along the z, and diffraction is neglected. The Jones matrix

can be written as: M = t‖τ̂ τ̂ + t⊥θ̂θ̂, t‖ and t⊥ the complex transmission function for a

beam polarized along the fast axis and the slow axis. The Jones vector can be rewritten

as

M =
t‖ + t⊥

2
+
t‖ − t⊥

2
[τ̂ τ̂ − θ̂θ̂],
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Figure 4.3: Evolution of a circular polarization on the Poincaré sphere. The movement
on meridians corresponds to the effect of a wave plate with fast axis oriented along θ1,2,
with increasing phase shift. The movement on the parallels corresponds to the effect of
a polarization rotator.The phase shift between the two polarization state corresponds
to the phase difference when one of them is rotated to match the other. The total phase
shift is half the solid angle Σ.

showing that its explicit dependence on the transmission anisotropy and the fast axis

orientation in the plane (last term). Since we are considering the spin angular momen-

tum as a key parameter to work with, it is worthwhile writing the Jones matrix in the

circular polarization basis

M =
t‖ + t⊥

2
+
t‖ − t⊥

2

[

ei2θe+e
∗
+ + e−i2θe−e

∗
−
]

,

with eσ =
1√
2
[~x+ iσ~y],σ = +1/ − 1 representing the left/right handed polarization

LHP/RHP, we write shortly e+1 = e+ and e−1 = e−. It appears clearly that for circu-

larly polarized input beam eσ, the beam that emerges from the PBOE device consists

of two components: an unconverted component and a component with the opposite

polarization with a phase shift e2iσθ which is entangled to the spatial arrangement of

the optical axis, and independent on the optical path seen by the beam: a geometrical

phase. Indeed by applying the Jones matrix to eσ, we get:

M · eσ =
t‖ + t⊥

2
eσ +

t‖ − t⊥
2

e2iσθe−σ,

To introduce a singularity or a topological charge in the emerging beam we need to

embed a topological defect in director field of the optical axis. The topological charge of
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the emerging optical vortex is m = 2σq with q =
1

2π

∮

C

dθ = m, the topological charge

of the defect in the director field formed by the optical axis, C any closed curve around

the topological defect. The simplest pattern are the form θ(r, ξ) = qξ + θo(r) and have

been successfully implemented with the wavelength grating and with liquid crystal cell

with azimuthal anchoring like for q-plates. One of the interest in using liquid crystals

is the low optical absorption and the relative and the relative easiness to process them.

So, for the q-plate, t‖ = ei2πLne/λ, t⊥ = ei2πLno/λ, and the SAM-OAM coupling reads

as:

M · eσ = cos
Γ

2
eσ + ie2iσqξ sin

Γ

2
e2iσθ0e−σ,

with Γ = 2π(ne − no)
L

λ
the phase shift of the equivalent wave plate. Note that the

obtained expression explains the appearance of the helical phase but does not explain

correctly the nulling of the intensity of the converted (optical vortex) beam on its

axis. This due to the fact that the Jones matrix method does not consider diffraction,

nevertheless the full Maxwell equation in the paraxial approximation gives the correct

propagators that are identically null of the z axis [93]. The PBOE, for a circularly

polarized input, couples its spin angular momentum to its orbital one with a coupling

efficiency sin2
Γ

2
depending on a phase shift equal that of the equivalent uniform wave

plate. This phase shift depends on the optical parameter of the LC used and the

thickness of the cell and is at its optimum when the equivalent wave-plate is a half-

wave plate i.e. Γ =
π

2
+ lπ, l integer, the order of the wave plate. Clearly, due to

process uncertainty, the device has to be tuned after fabrication in order to work at

the optimum of the efficiency. With the help of the properties of LCs, q-plate can be

tuned thermally [94] as the change in the order parameter reflects in a change of the

optical anisotropy [3]. Electrical tuning can be used as well, by applying electrodes to

the bounding glass plate [95]. For the thermal tuning, the order parameter changes,

the nematic director none. For the electrical tuning the bias applied to the cell , will

vary the azimuthal reorientation angle ψ of the LC molecules across the cell. The phase

shift will be given by Γ = 2π(n̄e − no)
L

λ
, n̄e =

1

L

∫ L

0
ne(ψ(z))dz being the effective

index. Due the high optical anisotropy, the SAM-OAM couplers can be very thin while

maintaining a deep modulation of the output efficiency, that is the efficient can be tune

at will from 0 to values close to 1, making them SAM-OAM modulators.
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Figure 4.4: Schematics of the SAM and OAM coupling in a PBOE with topological
charge +1. We assume that the phase-shift is π and unitary transmittance along fast
and slow axes.

4.2.4.2 SAM and OAM conservation.

The PBOE has the essential effect to couple the SAM and OAM degree of freedom.

In the ideal case Γ = π/2 a σ~ photon entering the device will be converted into to

a photon carrying −σ~ of SAM and with an increment of 2qσ~ in the OAM, thus,

with total AM σ(2q − 1)~. The net change in the total angular momentum is that

transferred to the plate: ∆Lz = 2σ(1 − q)~. It is clear that the AM of the photon is

not always conserved, and the conservation of the OAM relies to the particular case

of q = 1. For q = 1 device we have the pure SAM to OAM conversion, in the other

cases we have SAM to OAM coupling. For non unitary efficiency it can be shown that

∆Lz = 2σ~(1− q) sin2 Γ
2
, here again the total AM of the photon is not conserved, and

the conservation happens when the topological charge of the PBOE is 1.

4.2.4.3 Umbilical defects

To generate the optical vortex with the PBOE, it was essentially required that the di-

rector profile varies azimuthally in the plane transverse to the propagating beam. Hence

the planar azimuthal rubbing of the nematic cell is adopted to create a q-plate [96]. It

appears clearly that a surface defect will form in the bounding plate correspondingly

to the location of the center of the azimuthal rubbing. These surface defects, boojums,

connect in the bulk to form the so-called schlieren defect that looks under crossed po-
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larizers like an umbilic. So, the main requirement is to replicate this texture view from

a transverse plane. As we saw in the previous chapter, umbilic defects exhibit the same

azimuthal distribution of the director projection in the x−y plane. The first successful
demonstration of using them as SAM to OAM converter (q=1) was done by Brasselet

et al [97], with a demonstration of the switching by modulating the bias voltage under

and above the the Fredericks transition voltage. As we saw in the previous chapter,

the generated umbilics have charge +1/-1. But in normal cell, +1 defect are likely to

be stable for energetic reason or can stabilized by surface impurities or can have slow

drift if isolated enough. Then by using a +1 umbilic, in a cell having π phase shift

between (local) ordinary and extraordinary, from an incoming right/left handed circu-

larly polarized input, we will have a left/right circularly polarized optical vortex, with

topological charge +2/-2. The use hometropic anchoring makes the cell fabrication

intrinsically easier to achieve with respect to the azimuthal rubbing which can be done

mechanically and is limited to charge +1 devices. A more involved holographic meth-

ods based on the use of UV curing polymer as rubbing layer, allow the design of more

complex pattern of anchoring, as for example those exhibiting high order topological

charge as negative ones as well, enabling the generation of high order optical vortices

[98] not just +2 or -2 like for the direct use of umbilics. High order vortices can be

created by cascading several SAM-to-OAM converter with topological charge +1 and

wave plates.

4.3 Conclusions

In this chapter we have described the various methodologies to generate optical vor-

tices, the first ones, SSPs, CGHs and mode converters act directly on the phase of

the input beam thus couples the OAM degree of freedom to that of the matter. The

second, based on the Pancharatnam-Berry effect, by rotating the polarization in order

to introduce a geometric phase that can induce OAM. The last method, also the most

recent, is under constant development. Moreover, with the use of LC all the methods

described can be implemented by using SLMs (spatial light modulators) to shape the

phase of the beam, or planar azimuthally aligned cell filled with LC. Both offer the

creation of discrete devices and one device can be used to generate one optical vortex,

at least for q-plate. Moreover the relative misalignment of beam and singularity em-

bedded in the phase mask, the hologram or the spatially varying axis field can affect

in a limitative way the quality of the obtained optical vortex [99].

In the next chapter we will show the practical implementation of OAM to SAM con-
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verter based on umbilic like defects using LCLV as the latest provides, in some con-

figurations, a self-centering and stabilized the defect with respect to the beam to be

converted.
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Chapter 5

Singular Optics in Liquid Crystal

Light Valves

In this chapter we will demonstrate the practical implementation of the generation of

optical vortices in liquid crystal light valves, using the defect created in the texture

of the liquid crystal within the valve. To begin with, we introduce the self induced

SAM to OAM conversion in liquid crystal light valve, which is the building block of

reconfigurable SAM to OAM converters. The possibility of generating array of vortices

and the achievement of SAM to OAM conversion will be investigated successively.

5.1 Optical vortex generation via self induced SAM to

OAM conversion

5.1.1 Single Beam

We consider the LCLV described in the chapter 3. The bias is set to a value such that

the voltage across the liquid crystal layer is slightly below the Freedericks transition

voltage, this in order to have a defect free cell, and to be able to induce appreciable

reorientation at relatively low optical powers. When a low power circularly polarized

Gaussian probe beam is shone onto the LCLV, the BSO becomes more conductive in

the center of the shone area and less far from it. The voltage across the LC layer

acquires a bell shaped profile, with value over the Fredericks transition voltage when

the bias is increased further and decreasing far from the axis of the beam. Due to

this radial profile impressed by the beam, an umbilic like profile is induced and pinned

on the axis of the incoming beam due to the radial transverse electric field generated
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(a) (b)

Figure 5.1: Illustration of the self induction mechanism in the LCLV. A Gaussian beam
sent on the BSO, will exit with a doughnut profile, an optical vortex with topological
charge m such that |m| = 2. The phase helicity will depend on the helicity of the
input beam which can be either +1 (left handed polarized beam) or -1 (right handed
polarized beam).

by the non uniform voltage. This umbilic like defect is characterized by a varying

azimuthal angle varying from 0 to 2π on the whole distorted region, i.e. of the form

θ(r, ξ) = ξ + θ0(r), θ0 taking into account eventual swirl, with varying polar angle

which is null in the center and depending on the profile of the induced voltage, with

value decreasing far from the illuminated region where the texture will be undistorted,

i.e. homeotropic. Due to anisotropy of the nematic liquid crystal, it will behave like

a PBOE with topological charge +1 able to couple the SAM and the OAM of the

incoming incident beam. Therefore, a circular polarized non singular beam (without

angular momentum ) entering the defect free LCLV, in the ideal case, will exit with

its polarization reversed and a phase dislocation with topological charge depending on

the input polarization, thus a contra-polarized optical vortex with topological charge

|m| = 2 sign depending on the polarization (see figure 5.1).

This self induced spin to orbital angular momentum conversion is different from

that obtained by El Ketara et al [100]. Here the creation of the defect is mediated by

the low frequency field via the photoconductive (BSO) layer. So low power input beam

can be used while maintaining high efficiency, and the singular reordering due to the

Gaussian beam [101] is negligible with respect to that of the electric field due to the

power level used in this work.

To prove the vortex induction, a laser beam of wavelength λ = 632.8nm and power

P = 0.55mW is focused on a diameter of 395µm onto the photoconductive side of the
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LCLV. The input beam polarization is taken to be circular, either right handed polar-

ized (RHP) or left handed polarized (LHP). To observe the created optical vortex, a

quarter wave plate is inserted after the LCLV (see figure 5.2), the two circular polariza-

tion component are projected onto two linear orthogonal polarizations and a polarizer

helps to select the component corresponding to the optical vortex. When the LCLV is

unbiased, the collected intensity on the CCD/photodiode is zero. To observe the phase

dislocation, beam splitters and mirrors are arranged in order to have a Mach-Zender in-

terferometer with the LCLV on the principal arm. The half wave plate on the reference

arm helps to adjust the polarization of the reference beam of the interferometer with

respect to that of the linearly polarized optical vortex. In this way, we can control the

contrast of the interference fringes. Two types of interferometers are arranged: in the

first type, figure 5.2(a), the reference arm is weakly tilted such that the typical plane

wave interferogram is obtained when the bias of the LCLV is turned off (with polarizers

and quarter wave plates removed). In the second type, figure 5.2(b), an objective and

a lens are inserted on the reference arm such that the interferogram with the LCLV

removed consists of concentric rings. Typical snapshots of the observed intensity of

(a) (b)

Figure 5.2: Setup for the self induction of an optical vortex.POL: polarizer; QWP:
quarter wave plate; HWP: half wave plate; Obj: microscope objective; M mirror; BS:
beam splitter; CCD: CMOS camera; L: lens. LCLV liquid crystal light valve. In (a)
the the two beams at the output of the Mach-Zehnder interferometer are weakly tilt
on respect the other. In (b) the objective and the lens on the reference arm serve
to control the relative curvature between the two wave front, with the Mach-Zehnder
interferometer well aligned.

output beams and their interferograms in the two cases of polarization are shown in

figure 5.3, (first row LHP input, second row RHP input) for the bias VBIAS = 24V at

a frequency of 100Hz. The intensity profiles, figure 5.3 first column, show that the two

beams have zero intensity on their axis, with a doughnut shaped profile typical of that
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Figure 5.3: Optical vortex generation in LCLV via self induced SAM to OAM conver-
sion. Labels correspond to the input polarizations and the SAM to OAM conversion.
We show (from left to right) the output intensity profile, the forked interferogram and
the spiral fringes. Booth the interferograms confirm the generation of an optical vortex
of topological charge +2 for the LHP input and -2 for the RHP one.

of optical vortices. The output beam polarization for a LHP (RHP) input beam has

been verified to be RHP (LHP). To check the presence of the singularity we use the in-

terferometer in figure 5.2(a). We observe fork like interference patterns with dislocated

lines. The number of dislocated lines is two for both polarizations, showing that the

topological charge is in modulus 2 (number of dislocation lines). They are reversed one

with respect to the other, confirming that they have opposite sign. To check the sign in

an absolute way, we use the configuration in figure 5.2(a). The observed interferograms

consist of two intertwined spirals. The spirals for the LHP input rotates clockwise

(from the center of the vortex outward), and counterclockwise for the RHP input, with

the observer pointing in the direction of the k-vector. The results are consistent with

the spiral interferogram for a +2 charged optical vortex in the case of the LHP input

and a -2 charged optical vortex for the RHP input.

Correspondingly, the spin to orbital angular momentum conversion is consistent

with the presence of an umbilic like defect with winding number q = 1, presence con-

firmed by the spatially resolved polarimetry in figure 5.4. Note that due to the nature

of the matter vortex, m = ±2 are the only possible values for the transferred topological
charge.

To measure the transferred optical power into the vortex mode, we record the power

P2 of the LG02 like output mode when varying the bias voltage VBIAS applied to the

LCLV and for various input powers P. The sweep on the values of the bias is done by

modulating the bias voltage with a linear ramp voltage from 0 to 1V with rise time large

enough with respect to the LCLV response time in order to prevent dynamic effects.
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Figure 5.4: From left to right: spatially resolved polarimetry of an induced umbilic, 2D
reconstructed nematic orientation, induced defect observed under crossed polarizers.

The measurements are carried out by placing a λ/4 wave plate on the path of the

output beam, projecting the circularly converted RHP (LHP) for LHP (RHP) input,

and the residual polarization components into two orthogonal linear polarizations, and

measuring with a photodiode the intensity of the one carrying the topological charge.

The results are reported in figure 5.5(a) first panel, where the value of the input power

is marked along each curve. The threshold voltage VTH at which the vortex form

slightly depends on the input power and is shown in figure 5.5(b) with the experimental

points in (black dots). The continuous curve is the best fit corresponding to the linear

dependence of the BSO conductivity on the intensity, other parameters are considered

constant [52]. For low optical power, even if the absorption of the BSO is lower at

633nm, the input beam makes it more conductive, with an increasing effective voltage

across the LC with respect to the beam intensity. Due to the fact that the distorted

area is comparable in size with the input Gaussian beam, efficiency has to be computed

considering the overlap of the induced PBOE, which takes into account the position

dependent efficiency and the beam shape. The conversion efficiency is, then:

η2 = sin2
(

Γ̄

2

)

=

∫ ∞

0
I(r) sin2

[

Γ(r)

2

]

dr,

with I(r) the normalized density of the input beam, Γ the local phase shift given by

Γ(r) = 2π (n̄e(r)− no)
L

λ
, with

n̄e(r) =
1

L

∫ L

0
ne(ψ(r, z))dz.

The dependence of the profile of the induced defect on the input power will make Γ̄

power dependent. Nevertheless the transferred output power agrees qualitatively with
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that of a planar cell in between crossed polarizers. The peak of the response curves

corresponds to an overall phase retardation Γ̄ = π between the ordinary and extraor-

dinary components in the LC layer. The efficiency curves are reported in figure 5.5(a),

second panel, with respect to the overdrive voltage VBIAS − VTH. The conversion effi-

ciencies are quite high, and the first peaks are between 68% (4mW) and 92% (5mW).

The nonlinear dependence of the peaks are attributable to the non linear modulation

of the effective phase shift with respect to the power. For a further increase in the effi-

ciency, the bias voltage can be increased adiabatically after the creation of the defect,

the molecules in the LCLV bend toward the x− y plane without the creation of other
undesired ones that can ruin the quality of the generated optical vortex. This driving

mechanism is robust, indeed, after the defect has been created, the 2π degenerated

symmetry for the reorientation is broken. The configuration of the projected director

field will evolve toward new one maintaining it topological charge as the molecules will

move smoothly from their current positions to minimize the acute angle between them

and the electric field.

(a) (b)

Figure 5.5: (a) Power transfer curve and OAM conversion efficiency.(b) Threshold ver-
sus the input power. Black dots correspond to the experimental values, the continuous
curve is the best fit using only the linear dependance of the BSO conductance on the
input intensity

Finally, in figure 5.6(a) and 5.6(b), we show the recorded intensity profiles and

the interferograms for the LHP and RHP polarized Gaussian input beam respectively.

Labels correspond to the applied bias. The obtained optical vortices exhibit a good

quality. Note the that profiles were not spatially filtered.
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(a)

(b)

Figure 5.6: Beam profiles and interferograms for the LHP (a) and the RHP (b) input
beam. Labels correspond to the applied bias to the LCLV.

5.1.2 Self-induced SAM to OAM conversion for multiple incoherent

sources.

To demonstrate the potential of the LCLV scheme in generating optical vortices from

non singular beams by using the self SAM to OAM conversion, we can consider using

it for the simultaneous generation of multiple incoherent optical vortices using multiple

sources, irrespective of the sign of their topological charge (i.e input polarization). As

a proof of concept, the setup in figure 5.2(a) is modified in order to launch two adjacent

input Gaussian beams on the conductive side of the LCLV biased at 24V (see figure

5.7). The laser beams are adjusted at the same power level, P=0.55mW and their

diameters is about 315µm on the BSO. The distance between the beams is about the

same value as the spot diameters in order to test high density capabilities.

We verify that two stable and independent vortices are obtained, see for instance
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Figure 5.7: Experimental setup for the self SAM to OAM conversion of independent
sources. HWP: half wave plate; QWP: quarter wave plate. BS: beam splitter; M:
mirror; W-F: wheal filter. CCD: CMOS camera. L: lens. LCLV liquid crystal light
valve

figure 5.8, first image. The interferograms correspond to (from left to right) RHP-RHP,

LHP-LHP, RHP-LHP input polarization configurations. With the help of the LCLV

and the self-induced spin to orbital angular momentum conversion, we can generate

array of mutually incoherent optical vortices with topological charge |m| = 2 and with

arbitrary sign depending on the modulation pattern of the beam helicity.

Figure 5.8: Intensity profiles of the output beams showing the doughnuts. Interfero-
grams for RHP-RHP, LHP-LHP, RHP-LHP polarized inputs.
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Figure 5.9: Experimental setup for the generation of array of optical vortices.SLM:
Spatial Light Modulator; LCLV: Liquid Crystal Light Valve; L: Lens; Obj: Objective;
PH: pinhole; POL: Polarizer; HWP: half wave plate; QWP: quarter waveplate; ID iris
diaphragm.

5.2 Dense array of optical vortices in LCLV

Further integration can be made based on the previous experiments. Instead of using

multiple sources, a spatial light modulator (SLM) is used to modulate a writing beam at

λ = 532nm with a planar wavefront at the SLM plane, see figure 5.9 for the experimental

setup. The power density is about 3mW/cm2, and modulated with a honeycomb

pattern with the bright spots at the vertices of the hexagons. The polarizer and the

quarter waveplate between the SLM and the LCLV serve to create an array of circular

polarized beamlets on the sensitive side of the LCLV. Those, at output, are used to select

the part of the beam carrying the optical vortices. Operating at shorter wavelengths

permit to use the BSO in the most sensitive region [52], this in order to use fairly low

optical power for the vortex generation. Note that the circular polarization converters

at the input and output can be removed. In our case, this leads to vectorial optical

vortices with zero net topological charge [102, 103].

The generated array of optical vortices and the corresponding in defects induced in

the medium are shown in figure 5.10 for a bias voltage of 17V.

Moreover by illuminating the generated array with 633nm circular polarized probe

beam, it wave front is impressed with the singularities in the LCLV. In figure 5.11, we

report the plane wave interferogram, for low voltages, the dislocation are well localized,

increasing the voltage causes the umbilics to connect and generate other singularities

with ±1 sign, this reflect in the apperance of other dislocations in the wave front.
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Figure 5.10: Left figure: hexagonal array of optical vortices. The power density of the
writing beam at the LCLV level is about 3mW/cm2. The texture of the nematic liquid
crystal under crossed polarizers showing the location of the defects.

Figure 5.11: Hexagonal array of optical vortices for increasing bias.

5.3 Orbital angular momentum modulation via frustrated

state

Until now, to create optical vortices, we rely on the defect mediate SAM to OAM con-

version. The generated defect has a winding number +1 permitting the generation of

optical vortices of charge +2 and -2 respectively for LHP and RHP polarized input.

Although this method provides the ability to generate a class of vortices of topological

charge integer multiples of 2 (we remind that the cascading method be can used), we

have to switch the helicity from +1 to -1 in order to change the sign of the vortex from

+ to -.

To complete the generation scheme, i.e. the changing of the sign of the vortex with-

out switching the polarization of the input beam, we need to change the sign of the

topological charge of the equivalent induced PBOE, i.e., the topological charge of the
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Figure 5.12: Illustration of the four way of implementing SAM-OAM modulation.

Input state PBOE q=1 PBOE q=-1

|+ ~, 0 > | − ~,+2~ > ∆Lz = 0 | − ~,−2~ > ∆Lz = +4~

| − ~, 0 > |+ ~,−2~ > ∆Lz = 0 |+ ~,+2~ > ∆Lz = −4~

Table 5.1: SAM to OAM coupling table for the 4-way modulator. |σ~,m~ > correspond
to the input or output AM state for the incoming photons in the form of |SAM,OAM >.
∆Lz the AM per photon exchanged with the PBOE.

embedded defect. This can only be accomplished by using a -1 umbilic. As we learn

from the previous chapters (3), -1 umbilics are not generated spontaneously nor by a

direct writing at least for radially symmetric writing beam. However, a -1 umbilic can

be generated by frustration. To do so, we can dynamically create two +1 defects and

force them to connect. Due to the incompatibility of the far field of the director field

from the two defects, a -1 defect is created by frustration. In this way, a full modulation

scheme is implemented by using alternatively a + defect written directly and a -1 defect

written by frustration. We summarized the modulation scheme in figure5.12 with total

angular momentum balance in table 5.1.

The implementation is done by using a 532nm writing beam with intensity 250µW/cm2.

The beam is modulated with the SLM in order to create alternatively a +1 defect and

two +1 defects that are forced to touch one with each other. We increase the illumina-

tion spot size until the two defects touch, producing an umbilic of winding number -1.

The probe beam power is set to 1.5µW is aligned to the barycenter of the two spots

and coincides also with center of the writing beam when a single illuminated beam is

used (see figure 5.13).

The OAM modulation interferograms are shown in figure 5.14. The picture shown

corresponds to what it is seen with the k-vector of the beam pointing toward the

observer. In this configuration the positively charged vortices will have their helix

(spiral fringes from the center outward) rotating counterclockwise, and clockwise for
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Figure 5.13: Experimental setup for the four way SAM-OAM coupling. The white light
source is used to check the presence of other defects in the texture. BS: beam splitter,
CCD: CMOS camera, F: red glass filter, HWP: half waveplate, QWP: quarter wave
plate, L: lens, M: mirror, NDF: neutral density filter, Obj: microscope objective, P:
polarizer, PH: pinhole.

negatively charged helix. For an RHP/LHP input a +2/-2 vortex is created when we

use one writing spot,q=+1, and -2/+2 vortex is created when two adjacent writing

spots are used, q=-1.

For completeness, we provide also the intensity profile for the vortex at various bias

voltages and with different types of modulation schemes. When a +1 defect is used, the

optical vortex exhibits the usual doughnut profile with the appearance of concentric

rings, with their number varying. This is due to the radial dependency of the efficiency

and the radial phase modulation of the optical vortex due to the swirl (the phase factor

e±i2θ0(r)). Moreover, it has been proven that the optical vortices obtained from an LG00

mode are not LGn,±2 modes, in the ideal case they are the so-called Kummer beams

[93, 104], with the azimuthal phase factor ±2. When a q=-1 defect is used, evident

distortions of the vortex profile are noticed, with the appearance or rings as in the case

previous case. Nevertheless, this distortion due to the swirl, which in this case is not

a pure radial one, i.e, θ0 = θ0(r, ξ), can be controlled by applying auxiliary field in the

x− y plane.
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Figure 5.14: Four way SAM-OAM coupling. In the left column the generated defect(s),
in central and right columns the interferogram for a circularly polarized input beam.
The labels indicates the handedness of the polarization.

5.4 Conclusions

In this final chapter we have shown the essential features of the use of LCLV to gen-

erate optical vortices in homeotropic nematic liquid crystal cells filled with negative

anisotropic material. This experimental platform offers the capability of generating

optical vortices dynamically via the self induced SAM to OAM conversion mechanism.

We demonstrate the ability to generate vortex arrays with arbitrary topological charge,

supplemented with that of vector vortices. Finally a four way SAM to OAM modula-

tion is demonstrated using external controlled beam, achieving the design of compact

(a) LHP (b) RHP

Figure 5.15: Beam profiles for LHP polarized input(a) and RHP polarized input(b).
The presence of rings show the modulation of the radial number of the optical vortex.
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SAM to OAM couplers. This devices could be used in quantum communications.
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Conclusion

While soft matter is, in general, a versatile playground for optics, nematic liquid crystals

are an even richer workbench as they also encompass anisotropy, nonlinearity, electro-

optic response, nonlocality. Owing to their response to low frequency voltages as well

as optical frequency electric fields, nematic liquid crystals were used in this work to

investigate some advance features of optical spatial solitons, nematicons, as well as of

singular beams or vortices. In the area of optical spatial solitons, I have demonstrated

that particular arrangements of electrodes in planar liquid crystalline cells can lead to

in-plane steering of solitons with large angular deflections. An overall angular deflection

of 55 degrees was achieved for the first time by means of refraction and total internal

reflection of soliton waveguides. The latter results are relevant in the domain of inte-

grated optics, as solitons can be effectively used as deformable waveguides for signals.

In the area of singular optics, using planar geometries with a photoconductive layer,

i.e. liquid crystal light valves, I have demonstrated that a homeotropic alignment of

nematic liquid crystals, combined with the application of a bias voltage and an external

illumination, can induce the controlled formation of matter defects or vortices. The

latter, in turn, behave as q-plates and are capable of changing both the polarization and

the topological charge of input beams. Finally, I have realized two-dimensional arrays

of matter vortices in various geometric arrangements, with the first realization to date

of compact and tunable matrices of packed optical vortices for signal processing.
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Appendix A

Voltage distribution in Liquid

crystal cell

A.1 Homeotropic configuration

For the hometropic cell the anistropic Laplace equation, (equation 3.6) can be rewritten

in the following form:
ǫ⊥
ǫ‖
∇2

TV +
∂2V

∂2z
+ F = 0 , (A.1)

where F = ∇ · δ · ∇V with

δ =
ǫa
ǫ⊥

(n̂n̂− ~z~z) = ǫa
ǫ⊥

(n̂n̂− ~z~z) = ǫa
ǫ⊥

[~z(n̂− ~z) + (n̂− ~z)~z + (n̂− ~z)(n̂− ~z)]

We can proceed by Fourier transforming the equation A.1 with respect to the trans-

verse dimension:

−ǫ⊥
ǫ‖
q2Ṽ (~q, z) +

∂2Ṽ

∂2z
+ F̃ (~q, z) = 0 . (A.2)

The solution of this equation is formally:

Ṽ (~q, z) = Ṽ (~q, 0)
sinh (Q(L− z))

sinh (QL)
+ Ṽ (~q, L)

sinh (Qz)

sinh (QL)
+

∫ L

0
G1D(~q, z, z

′)F̃ (z′, ~q)dz′ ,

(A.3)
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with Q = q
√

ǫ⊥
ǫ‖
, and

G1D(~q, z, z
′) =















sinh (Q(L− z))
Q sinh (QL)

sinh (Qz′) , 0 ≤ z′ ≤ z

sinh (Qz)

Q sinh (QL)
sinh (Q(L− z′)) , z ≤ z′ ≤ L

the Green function of the 1D problem.

By anti-transforming the equation A.3 one gets the profile of the voltage across the

cell. The expression of V is given by:

V (~r, z) =

∫

G0(~r−~r′, z)V (~r′, 0)d~r′+
∫

GL(~r−~r′, z)V (~r′, L)d~r′+
∫

G(~r−~r′, z, z′)F (~r′, z′)d~r′ ,
(A.4)

with

G0(~r − ~r′, z) =
1

(2π)2

∫

sinh (Q(L− z))
sinh (QL)

ei~q·(~r−~r
′)d~q ,

GL(~r − ~r′, z) =
1

(2π)2

∫

sinh (Qz)

sinh (QL)
ei~q·(~r−~r

′)d~q ,

G(~r − ~r′, z, z′) = 1

(2π)2

∫

G1D(~q, z, z
′)ei~q·(~r−~r

′)d~q .

G0 and GL represent the Green function of the surface terms at z = 0 and z = L

respectively and G the Green function of the bulk terms.

Clearly the bulk term depends on V itself and on the tilt n̂−~z, the full solution can be
computed only numerically, or by using perturbative methods in witch high order terms

can be computed using recursively terms of low order. Unfortunately the expression

of the above Green functions cannot be written in close form. Let us consider the

surface terms, we take only the second term (z = L), the fisrt one correspond to the

contribution of the ground electrode z = 0 which is set to a constant voltage distribution

and therefore can be set to zero. We assume that the surface voltage varies with a spatial

length scale Λ, we can write V (~r, z) = V (~r/Λ, z/L), changing ~r = Λ~R z = Lζ

V (~R, ζ) =

∫∫

sinh (ζQL/Λ)

sinh (QL/Λ)
ei~q·(

~R−~R′)V (~R′, 1)d~qd~R′

(we’ve made the change ~q → ~q/Λ). If the applied surface voltage varies slowly respect

to the cell thickness we have L/Λ << 1, we can expand

sinh (ζQL/Λ)

sinh (QL/Λ)
≈ ζ +

1

6
ζ(ζ2 − 1)Q2(L/Λ)2 +O((L/Λ)4)
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after some algebra,

V (~r, z) =
z

L
V (~r, L) +

1

6
(
z3

L3
− z

L
)
ǫ⊥
ǫ‖
L2∇2

TV (~r, L) .

The second order correction being small, we will keep only the first order term.

79



Appendix B

Derivation of the Ginzburg

Landau equation

B.1 Ginzburg Landau equation

In this section we will provide the full derivation of the Ginzburg Landau equation for

the molecule dynamics in the homeotropic condition. Let us consider the equation 3.5

which can be rewritten in the following form

γ
∂n̂

∂t
=K3

[

∇2n̂− (n̂ · ∇2n̂)n̂
]

+ (K1 −K3) [∇∇ · n̂− (n̂ · ∇∇ · n̂)n̂]

+ 2(K3 −K2) (n̂ · ∇ × n̂) [∇× n̂− (n̂ · ∇ × n̂)n̂] + (K3 −K2)∇(n̂ · ∇ × n̂)× n̂
+ ǫΩa (n̂ · ~E)[ ~E − (n̂ · ~E)n̂ . ]

(B.1)

To derive the third order approximate equation, we need to expand it in terms of

Taylor series of the smallness parameter which in this case will be ǫ =

√

(

V

VTH

)2

− 1.

It is worthwhile to notice that the smallness parameter controls also the transverse

spatial scale, so that the effect of the transverse gradient operator has to be taken into

account: it acts like a first order term in ǫ. With these assumptions, by projecting the

equation B.1 x and the y we have:
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for the first term in the lhs. of B.1:

K3











∇2nx + ((∂znx)
2 + (∂zny)

2)nx

∇2ny + ((∂znx)
2 + (∂zny)

2)ny .

(B.2)

Projected on the first mode, i.e. nx = X(x, y) sin
πz

L
and ny = Y (x, y) sin

πz

L
and every

terms projected on sin
πz

L
, gives:

K3























∇2
tX −

π2

L2
X +

1

4

π2

L2
(X2 + Y 2)X

∇2
tY −

π2

L2
Y +

1

4

π2

L2
(X2 + Y 2)Y .

(B.3)

For the second term in lhs. of B.1, we have:

(K1 −K3)



















∂2xnx + ∂2xyny −
1

2
∂2xz(n

2
x + n2y)− [∂2zxnx + ∂2zyny −

1

2
∂2z (n

2
x + n2y)]nx

∂2yxnx + ∂2yny −
1

2
∂2yz(n

2
x + n2y)− [∂2zxnx + ∂2zyny −

1

2
∂2z (n

2
x + n2y)]ny ,

(B.4)

which projected on the first mode gives:

(K1 −K3)











∂2xxX + ∂2xyY −
π2

L2

1

2
(X2 + Y 2)X

∂2yxX + ∂2yyY −
π2

L2

1

2
(X2 + Y 2)Y .

(B.5)

For the third and fourth terms we have, defining φ = n̂ · ∇× n̂ ≈ −nx∂zny + ny∂znx +
∂xny − ∂ynx, the following:

(K3 −K2)











−2φ∂zny − ny∂zφ+ ∂yφ

2φ∂znx + nx∂zφ− ∂xφ .
(B.6)

The projection on the first mode gives:

(K3 −K2)











∂yxY − ∂2yyX

∂xyX − ∂2xxY .

(B.7)
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The fifth term in the lhs. of the equation B.1 if we consider a constant uniform

electric field and neglect the feedback of the reorientation on the voltage distribution,

gives:

−ǫΩaE2











(1− (n2x + n2y))nx

(1− (n2x + n2y))ny ,

(B.8)

with E = Vs/L, V s the voltage across the liquid crystal layer.

It projection on the first mode gives:

−ǫΩaE2



















(1− 3

4
(X2 + Y 2))X

(1− 3

4
(X2 + Y 2))Y .

(B.9)

Summing according to the complex representation A = X+ iY and defining ∂x+ i∂y =

∂η we have the following

γ∂tA = µA− α|A|2A+
K1 +K2

2
∇2A+

K1 −K2

2
∂2ηηĀ (B.10)

with µ = −ǫΩaE2 −K3
π2

L2
, α = −3

4
ǫΩaE

2 − π2

4L2
(3K3 − 2K1)

B.2 Corrective terms to the Ginzburg Landau equation

So far we have considered a constant bias voltage on the cell. In this case due to

the non uniformity of the applied bias, the effect of the transverse electric field has

to be considered. Moreover the transverse electric filed is small with respect to the

longitudinal one, i.e., for Vs varying over a length scale Λ, V (~r, z) =
z

L
Vs(~r/Λ), Ez =

1

L
Vs(~r/Λ), ~ET =

z

LΛ
∇~RVs(

~R)|~R=~r/Λ, the ratio is in the order z/Λ which by definition

is very small. Still, we should consider terms up to third order in the mix product

of the transverse component of the electric field and the director. By projecting the
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electric contribution of the equation on the x and y axis we get:

ǫΩa



















((Exnx + Eyny) + Ez −
1

2
Ez(n

2
x + n2y))Ex − (2Ez(nxEx + nyEy) + (1− n2x − n2y)E2

z )nx

((Exnx + Eyny) + Ez −
1

2
Ez(n

2
x + n2y))Ey − (2Ez(nxEx + nyEy) + (1− n2x − n2y)E2

z )ny .

(B.11)

We can now consider the first longitudinal modes. With P = X∂xVs + Y ∂yV , we

have:

ǫΩa























[

(13 − 1
2π2 )P +

2

π
E − 1

2

4

3π
E(X2 + Y 2)

]

∂xVs −
[

2EP
4

3π
+ E2 − 3

4
E2(X2 + Y 2)

]

X

[

(13 − 1
2π2 )P +

2

π
E − 1

2

4
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(B.12)

and summing according to B.1,

2

π
E∂ηVs+

1

2
(
1

3
− 1
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)|∂ηVs|2A+

1

2
(
1

3
− 1

2π2
)(∂ηVs)

2Ā− 4

3π
E∂η̄VsA

2− 2
π
E∂ηVs|A|2−E2(1−3

4
|A|2)A .

(B.13)

Then the modified Ginzburg-Landau equation read as:

γ∂tA = Ao+µA+µ∗Ā+β|A|2+β∗A2−α|A|2A+K1 +K2

2
∇2A+

K1 −K2

2
∂2ηηĀ (B.14)

with A0 = ǫΩa
2

π
E∂ηVs µ = −ǫΩaE2 − K3

π2

L2
+ ǫΩa

1

2
(13 − 1

2π2 )|∂ηVs|2, µ∗ = ǫΩa
1

2
(13 −

1
2π2 )(∂ηVs)

2 α = −3
4
ǫΩaE

2 − π2

4L2
(3K3 − 2K1) β = −ǫΩa 2

πE∂ηVs β∗ = −ǫΩa 4
3πE∂η̄Vs
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[53] P. Gèunter and J. Huignard, Photorefractive Materials and Their Applications

2: Materials, ser. Springer series in optical sciences. Springer London, Limited,

2007. 40

[54] G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F.

Naumov, “Liquid-crystal lenses with a controlled focal length. i. theory,”

Quantum Electronics, vol. 29, no. 3, p. 256, 1999. [Online]. Available:

http://stacks.iop.org/1063-7818/29/i=3/a=A16 40

[55] ——, “Liquid-crystal lenses with a controlled focal length. ii. numerical

optimisation and experiments,” Quantum Electronics, vol. 29, no. 3, p. 261,

1999. [Online]. Available: http://stacks.iop.org/1063-7818/29/i=3/a=A17 40

[56] M. Herrington, K. Daly, O. Buchnev, G. D’Alessandro, and M. Kaczmarek,

“Ac-field–enhanced beam coupling in photorefractive, hybrid liquid crystals,”

EPL (Europhysics Letters), vol. 95, no. 1, p. 14003, 2011. [Online]. Available:

http://stacks.iop.org/0295-5075/95/i=1/a=14003 40

[57] F. Kajzar and V. Agranovich, Multiphoton and Light Driven Multielectron Pro-

cesses in Organics: New Phenomena, Materials, and Applications, ser. NATO

Science Series. Kluwer Academic Publishers, 2000. 40

[58] N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux,

“Programmable focal spot shaping of amplified femtosecond laser pulses,”

Opt. Lett., vol. 30, no. 12, pp. 1479–1481, Jun 2005. [Online]. Available:

http://ol.osa.org/abstract.cfm?URI=ol-30-12-1479 41

[59] J. Heebner, M. Borden, P. Miller, S. Hunter, K. Christensen et al.,

“Programmable beam spatial shaping system for the national ignition facility,” in

91



REFERENCES

Proc. SPIE 7916, High Power Lasers for Fusion Research, vol. 79160H, 2011, pp.

79 160H–79 160H–6. [Online]. Available: http://dx.doi.org/10.1117/12.875794 41

[60] S. Residori, “Patterns, fronts and structures in a liquid-crystal-light-valve

with optical feedback,” Physics Reports, vol. 416, no. 5â“6, pp. 201–272,
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