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Résumé

Les avancées récentes en apprentissage profond et en traitement d’image présen-
tent l’opportunité d’unifier ces deux champs de recherche complémentaires pour une
meilleure résolution du problème de classification d’images dans des catégories sé-
mantiques. L’apprentissage profond apporte au traitement d’image le pouvoir de
représentation nécessaire à l’amélioration des performances des méthodes de clas-
sification d’images. Cette thèse propose de nouvelles méthodes d’apprentissage de

représentations visuelles profondes pour la résolution de cette tache.

L’apprentissage profond a été abordé sous deux angles. D’abord nous nous sommes
intéressés à l’apprentissage non supervisé de représentations latentes ayant certaines
propriétés à partir de données en entrée. Il s’agit ici d’intégrer une connaissance à pri-
ori, à travers un terme de régularisation, dans l’apprentissage d’une machine de Boltz-
mann restreinte. Nous proposons plusieurs formes de régularisation qui induisent
différentes propriétés telles que la parcimonie, la sélectivité et l’organisation en struc-
ture topographique. Le second aspect consiste au passage graduel de l’apprentissage
non supervisé à l’apprentissage supervisé de réseaux profonds. Ce but est réalisé par
l’introduction sous forme de supervision, d’une information relative à la catégorie
sémantique. Deux nouvelles méthodes sont proposées. Le premier est basé sur une
régularisation top-down de réseaux de croyance profonds à base de machines des
Boltzmann restreintes. Le second optimise un cout intégrant un critère de reconstruc-
tion et un critère de supervision pour l’entrainement d’autoencodeurs profonds.

Les méthodes proposées ont été appliquées au problème de classification d’images.
Nous avons adopté le modèle sac-de-mots comme modèle de base parce qu’il offre
d’importantes possibilités grâce à l’utilisation de descripteurs locaux robustes et de
pooling par pyramides spatiales qui prennent en compte l’information spatiale de
l’image. L’apprentissage profonds avec agrégation spatiale est utilisé pour apprendre
un dictionnaire hiérarchique pour l’encodage de représentations visuelles de niveau
intermédiaire. Cette méthode donne des résultats très compétitifs en classification
de scènes et d’images. Les dictionnaires visuels appris contiennent diverses informa-
tions non-redondantes ayant une structure spatiale cohérente. L’inférence est aussi
très rapide. Nous avons par la suite optimisé l’étape de pooling sur la base du codage
produit par le dictionnaire hiérarchique précédemment appris en introduisant intro-
duit une nouvelle paramétrisation dérivable de l’opération de pooling qui permet un
apprentissage par descente de gradient utilisant l’algorithme de rétro-propagation.

Ceci est la première tentative d’unification de l’apprentissage profond et du modèle
de sac de mots. Bien que cette fusion puisse sembler évidente, l’union de plusieurs
aspects de l’apprentissage profond de représentations visuelles demeure une tache
complexe à bien des égards et requiert encore un effort de recherche important.
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Abstract

Recent advancements in the areas of deep learning and visual information processing
have presented an opportunity to unite both fields. These complementary fields com-
bine to tackle the problem of classifying images into their semantic categories. Deep
learning brings learning and representational capabilities to a visual processing model
that is adapted for image classification. This thesis addresses problems that lead to
the proposal of learning deep visual representations for image classification.

The problem of deep learning is tackled on two fronts. The first aspect is the problem
of unsupervised learning of latent representations from input data. The main focus
is the integration of prior knowledge into the learning of restricted Boltzmann ma-
chines (RBM) through regularization. Regularizers are proposed to induce sparsity,
selectivity and topographic organization in the coding to improve discrimination and
invariance. The second direction introduces the notion of gradually transiting from
unsupervised layer-wise learning to supervised deep learning. This is done through
the integration of bottom-up information with top-down signals. Two novel imple-
mentations supporting this notion are explored. The first method uses top-down reg-
ularization to train a deep network of RBMs. The second method combines predictive
and reconstructive loss functions to optimize a stack of encoder-decoder networks.

The proposed deep learning techniques are applied to tackle the image classification
problem. The bag-of-words model is adopted due to its strengths in image model-
ing through the use of local image descriptors and spatial pooling schemes. Deep
learning with spatial aggregation is used to learn a hierarchical visual dictionary for
encoding the image descriptors into mid-level representations. This method achieves
leading image classification performances for object and scene images. The learned
dictionaries are diverse and non-redundant. The speed of inference is also high. From
this, a further optimization is performed for the subsequent pooling step. This is
done by introducing a differentiable pooling parameterization and applying the error
backpropagation algorithm.

This thesis represents one of the first attempts to synthesize deep learning and the bag-
of-words model. This union results in many challenging research problems, leaving
much room for further study in this area.

Keywords: Learning deep architectures, deep belief network, restricted Boltz-
mann machine, sparse coding, selectivity regularization, topographic maps, su-
pervised deep learning, visual dictionary learning, hierarchical visual codes, fea-
ture coding, pooling, bag-of-words model, image classification.
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1 Introduction

A
chieving artificial intelligence in computers has been a subject of countless

theses, spanning years of research. We have made significant progress in

computational “intelligence” via information search techniques, that enable

machines to beat chess grandmasters at their game or more recently defeat jeopardy

legends. However, searching relies heavily on raw computational power is hardly the

solution for many perceptual tasks that are seemingly trivial to us, human beings.

This is especially so for computational approaches trying to achieve visual perception

and natural language understanding.

This thesis represents the marriage of two fields in artificial intelligence – machine

learning and computer vision. While machine learning focuses on making sense of

the deluge of available data, computer vision aims to tackle the image understand-

ing challenge, where learning from visual data has been a promising direction. The

aspiration is that we can eventually discover a mapping between images and their se-

mantic concepts, either automatically or with as little human intervention as possible.

The main objective for this thesis is to investigate how the learning of deep architec-

tures can help improve the performance of computational visual tasks, such as image

annotation. The effort is focused on two aspects, namely:

1. Automatic learning of representations for visual information processing, and

2. Construction of hierarchical models to facilitate image annotation.

1.1 The image annotation problem

The last decade has seen the popularization of digital photography. This rise is fueled

by the accessibility of image capture using cheap and ubiquitous portable devices,

such as digital cameras and mobile phones, as well as the growing ease to share and

1
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view images through the proliferation of social networks and mobile Internet access.

Photo sharing is an integral part of the Facebook experience. In 2012, it averaged more

than 300 million photo uploads daily, which equates to about 9 billion or 7 petabytes

of images per month.1,2 As of October 2012, it has a total of 220 billion images hosted

on its servers. Other photo sharing websites such as Flickr (8 billion) and Instagram

(5 billion) also have significantly sized and every expanding image databases.3,4 With

this exploding number of digital images on the Internet, the importance of image

annotation becomes ever more significant.

Image annotation is one of the most challenging problems in computer vision and

multimedia research. The objective is to map a digital image into one or several

labels. This implies understanding complex semantic meaning based on an image’s

visual content. For example, given the image in Figure 1.1, possible annotations could

be objects, such as the “Eiffel tower”, “person”, “tree” and “lamp post”, while potential

scene labels may be “park” and “outdoor”. Image annotation can be applied to image

retrieval, whereby images can be indexed using classes based on their visual content

to be used for searching and retrieval at a later time.

Eiffel tower


person


tree


lamp post


park


Some 
mapping



f : x → y

Set of image pixels: x
 Image labels: y


outdoor


Object

Scene

Pixel values 

lack semantic 
information


Figure 1.1: The image annotation problem. The challenge of image annotation is to
find a mapping that bridges the semantic gap between raw image pixels and semantic
concepts, such as objects and scene categories.

The main challenge in image annotation, however, is that raw image pixels do not pro-

vide enough unambiguous information to directly generate semantic-level concepts.

The challenges are unlike those of text annotation, whereby the dictionary relating

words directly to semantics is clearly defined and the syntax is well established to

combine alphabets into words and words into sentences. In image annotation, there is

no clear-cut definition of ‘words’ or ‘sentences’ to associate with the semantics of the
1Source: Facebook Developer Blog, July 18, 2012.
2Source: GigaOM, October 17, 2012.
3Source: Flickr Blog, December 12, 2012.
4Source: Instagram Blog, September 6, 2012.

http://developers.facebook.com/blog/post/2012/07/17/capturing-growth--photo-apps-and-open-graph
http://gigaom.com/2012/10/17/facebook-has-220-billion-of-your-photos-to-put-on-ice
http://blog.flickr.net/en/2012/12/12/new-navigation-and-explore
http://blog.instagram.com/post/30996220545/instagram-and-facebook-looking-ahead-this-is-an


1.2 History, trends and opportunities 3

image. This absence of a link between pixels and semantics is known as the ‘semantic

gap,’ as illustrated in Figure 1.1. While the solution to bridge this semantic gap re-

mains elusive, promising research developments in the fields of machine learning and

computer vision have been proposed that stride towards this goal.

1.2 History, trends and opportunities

One key focus of this thesis is to learn the mapping between images and their seman-

tics, through a fusion of machine learning and computer vision techniques. Specifi-

cally, I explore the combination of recently popularized sparse unsupervised learning

and deep learning approaches from machine learning, with the vision-based bag-of-

words model for image classification.

Connectionist models: their rise and fall. The current methods for deep learning

are an accumulation of much research over the years. Connectionist models popu-

larized in the 1980s, revolutionized the notion of learning distributed representations

from data. In particular, fully-connected multilayer perceptron networks, having been

shown to be universal approximators, can represent any function with its parameters

[Hornik, 1991]. However, the main problems are the huge number of parameters to

be learned and the difficult non-convex optimization problem often gets trapped in

non-ideal local minima. While the representational power of the model can be the-

oretically increased with more layers, supervised learning is tedious and difficult to

manage for such deep networks [Bengio, 2009].

Moreover, neural networks are often thought to be black boxes that are difficult to

understand and train. As such, there was a loss of interest in the neural networks in

the 1990s, as more researchers started to favor other statistical learning methods, such

as the support vector machine (SVM) [Vapnik, 1995]. SVMs treat the learning problem

as a convex optimization and are easy to train. For SVMs to work well, users need to

provide complex features or design suitable kernels. However, they also have limited

representational power due to its local learning and flat architecture [Bengio, 2009].

Image classification models. In the last decade, various computer vision models

were developed by exploiting the then-trendy SVMs for image classification. One

particular model, the bag-of-words model, has emerged to achieve good image clas-

sification performances on many object and scene image datasets. The model maps

from the pixel-level to the semantic-level through a series of data transformation steps,

namely: 1) feature extraction, 2) feature coding, 3) pooling and 4) classification.
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In a typical setup, gradient-based local image descriptors, such as scale-invariant

feature transform (SIFT) [Lowe, 1999] and histogram of orientated gradients (HOG)

[Dalal and Triggs, 2005], are used to describe an image. They are discriminative yet

robust to various image transformations. A common adaptation for image categoriza-

tion is the use of spatial pyramids [Lazebnik et al., 2006] to integrate spatial informa-

tion. In the final step, image classification is generally performed using SVMs.

In the classical formulation, feature coding is generally a fixed (non-learned) and flat

(single-layer) operation. The flat structure limits the representational power of model,

while the lack of learning makes it difficult to adapt to different data.

Deep learning: a new era in connectionism. While SVMs proliferated within the

machine learning and computer vision community, connectionist models were being

rejuvenated. The problem of training deep neural networks was recently given a new

lease of life, with a focus on unsupervised feature learning. This emphasis on unsuper-

vised learning is crucial because there is usually a lot more unlabeled data compared

to labeled ones. The solution to learning multiple layers of representation considers

learning each layer of representation as an unsupervised generative module from its

input data distribution and stacking them one layer at a time from the bottom-up, in

a greedy layer-wise manner [Hinton et al., 2006; Bengio et al., 2006; Hinton, 2007a].

This makes it scale well to deep networks. It also appears sensible to learn simple

representations first and higher-level abstractions on top of existing lower level ones.

In place of randomly initialized parameters, this unsupervised representation forms

the initialization – a catalyst to learn meaningful representations – for the subsequent

supervised learning phase.

Deep learning research has led to some success in traditional image classification

problems, such as handwritten digit recognition [Hinton et al., 2006]. The increase in

interest in this research area has spawned a new conference known as the International

Conference on Learning Representations (ICLR) in 2013. Deep learning techniques have

also won challenges beyond its conventional applicational areas, such as in molecular

activity prediction and job salary prediction.5,6

In the commercial scene, many technology giants, such as Google, Baidu and Ap-

ple, have started actively pursuing research in this area. In 2012, Google acquired

DNNResearch, a University of Toronto startup, together with their researchers bring-

ing along their years of experience in the field.7 Baidu has ambitiously started an

5https://www.kaggle.com/c/MerckActivity.
6https://www.kaggle.com/c/job-salary-prediction/data
7Source: University of Toronto News, March 12, 2013.

https://www.kaggle.com/c/MerckActivity
https://www.kaggle.com/c/job-salary-prediction/data
http://news.utoronto.ca/google-acquires-u-t-neural-networks-company
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Institute for Deep Learning, similarly attracting top researchers worldwide.8,9. Deep

learning has been implemented to perform speech recognition in Apple’s Siri virtual

personal assistant, Google Street View and the Android Operating System [Mohamed

et al., 2012].10,11

Convergence of deep learning and image classification. While the bag-of-words

model uses data transformations to map from images to semantics, deep connectionist

models learn a mapping from input data to output classes by attempting to untangle

the manifold of the highly nonlinear input space. The similarities between the ob-

jectives of the two models present opportunities for the fusion of ideas from both

methods, by applying connectionist models for image classification.

In the 1980s and 1990s, a classical method known as the convolutional neural network

[LeCun et al., 1989, 1998] was developed. It focused on tackling the vision problem

through a fully-supervised multilayer network with convolution operators in each

layer mapping their inputs to produce a new representation via a bank of filters. Such

a highly adapted hierarchical local connectivity has the potential to encode structure

suitable for modeling images, such that even with random parameters in the early

layer, performance remained impressive [Ranzato et al., 2006]. It produced exceptional

performances for specific image datasets [LeCun et al., 1989, 1998].

Recently, the convolutional deep network [Krizhevsky et al., 2012] has emerged as

a competitive method for classifying large-scale image datasets with huge amounts

of training data [Deng et al., 2009], convincingly winning the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC2012), held in conjunction with the PASCAL Visual

Object Classes Workshop (VOC) at the European Conference on Computer Vision (ECCV) in

2012.12 Due to the representations depth and learning plasticity of these networks,

the variety of information it can learn to represent is extensive. However, it requires a

lot of labeled training data to avoid model overfitting and substantial computational

resources to perform well.

Using unsupervised approaches, the Google Brain project trained a deep neural net-

work on 16, 000 CPU cores to automatically learn higher-level visual concepts by

watching videos from YouTube. The model was able to successfully learn concepts

such as “cats” and “human” [Le et al., 2012]. It also exhibited some success on the

large scale ImageNet dataset [Deng et al., 2009].

8Source: Sohu IT report, January 21, 2013.
9Source: Wired Enterprise, April 12, 2013.

10Source: The New York Times, November 23, 2012.
11Source: Google Research Blog, August 7, 2012.
12http://www.image-net.org/challenges/LSVRC/2012

http://it.sohu.com/20130121/n364188664.shtml
http://www.wired.com/wiredenterprise/2013/04/baidu-research-lab
http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
http://googleresearch.blogspot.sg/2012/08/speech-recognition-and-deep-learning.html
http://www.image-net.org/challenges/LSVRC/2012
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1.3 Contributions

The central contribution of this thesis is the construction and learning of hierarchi-

cal architectures for image classification. The contributions can be organized in three

parts, namely: 1) learning deep representations, 2) its incorporation to the bag-of-

words model and 3) image classification evaluation. I first focus on the extending

various aspects of unsupervised feature learning and deep learning. The modified

learning algorithms are integrated into the bag-of-words model by learning hierar-

chical visual dictionaries for feature coding. Additionally, an attempt was made to

optimize the pooling step of the bag-of-words model to improve image classification

performances. The main contributions of this thesis are listed as follows.

Learning deep representations. The learning of deep representations can be di-

vided into two aspects: unsupervised feature learning and supervised deep learning.

I propose a new method to regularize method unsupervised learning that enables

better control of the learning process and encourage representations to assume certain

desirable coding properties, such as sparsity and selectivity (see Chapter 3). For deep

learning, I introduce an original method to integrate supervised top-down informa-

tion into the learning of representations of the deep network (see Chapter 4). This

helps fine-tune the model trained through unsupervised learning.

Image classification. The proposed deep architecture is integrated with the bag-

of-words model to classify images from local image descriptors. Both unsupervised

feature learning and supervised deep learning, previously explored, are exploited to

learn hierarchical visual dictionaries that can be used for the feature coding step (see

Chapter 5). In addition, a novel parameterization of the pooling step is suggested

together with a method to optimize the pooling parameters (see Chapter 6).

Empirical evaluation. Extensive empirical evaluation was performed on various ar-

chitecture setups and parameterization. The final proposed model leads to competi-

tive image classification results, outperforming other feature coding methods on both

the Caltech-101 [Fei-Fei et al., 2004] and the 15-Scenes [Lazebnik et al., 2006] datasets

(see Chapter 5). Competitive results are also achieved on the Caltech-256 [Griffin

et al., 2007] dataset. The image representation is compact and non-redundant, as ver-

ified both qualitatively and quantitatively. Inference speed is also fast as compared to

some existing families of feature coding methods.
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1.4 Thesis outline

This work is a multi-disciplinary intersection between machine learning and computer

vision. I have structured this thesis in a manner that will hopefully be interesting

to a broad range of readers from both the machine learning and computer vision

communities.

1.4.1 Recurring themes

The main contribution of this dissertation is the design of deep learning algorithms

and architecture to perform image classification, as discussed in this introduction.

The following themes fuse the presentation of the design of the methodology and

performance analysis in the coming chapters.

• Modeling and learning. Both modeling and learning are vital for designing a

hierarchical architecture for an image classification task. Modeling entails the

capturing of image structure by building virtual linkages to a model. Mean-

while, learning is employed to adapt the parameters of the virtual linkages to

extract knowledge or statistics of the image within the structure of the model.

• Bottom-up and top-down information. Information for learning visual information

and their semantics may come from bottom-up sources, such as image pixels, or

from the top-down such as semantic labels. It is critical to consider how this

merger of bottom-up and top-down signals can be exploited via a combination

of generative and discriminative learning.

• Biological inspirations. Since the formation of neural networks, the linkage to

neuroscience is apparent. In this thesis, several theoretical and design aspects of

the learning algorithms have been inspired by biological phenomenon. However,

it is crucial to note that the objective is to improve the learning algorithms rather

than build accurate models of neurons and neural systems.

• Performance evaluation and analysis. The most tangible demonstration that a

method works is to perform experimental evaluation. Empirical studies also

provide insight to the effects of parameterization of the model. Depending on

the method and task, the performance may be studied based on metrics such as

classification accuracy or computational resources, like speed and memory foot-

print. In some cases, a data visualization may be the most intuitive and effective

way to understand the inner workings of a system.
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1.4.2 Thesis roadmap

Chapter 5!
Feature Coding 

Chapter 6!
Pooling 

Chapter 3!
Regularization 

Algorithm 

Chapter 4!
Supervised 

Deep Learning 

Chapter 2!
Review and 

Notation 

Figure 1.2: Thesis roadmap.

Figure 1.2 is a map of some paths that one may

choose to explore the coming chapters. For

deep learning researchers, Chapters 3 through

to 4 will be a suitable route to take. Mean-

while, Chapters 5 to 6 lead to a more applica-

tional path that is meant for vision practition-

ers focusing on the bag-of-words model. Fi-

nally, those interested in applying the learning

deep representations for image classification

should find themselves traversing from Chap-

ters 3 and 4 to Chapter 5.

1.4.3 Chapter descriptions

• Deep Learning and Visual Representations: An Overview. Chapter 2 presents

the motivations and overview of the existing approaches for learning distributed

representations and extensions using deep learning strategies. The chapter also

introduces the bag-of-words model, which is a hierarchical model that trans-

forms visual representations for image classification.

• Regularizing Latent Representations. Chapter 3 proposes a regularization

method for unsupervised learning to form representations that assume desirable

properties for various vision tasks. The biologically-inspired coding properties

such as sparsity, selectivity and topographic organization are explored in detail.

• Deep Supervised Optimization. Chapter 4 introduces a deep learning strategy

that gradually transits from unsupervised to supervised learning. To achieve

this, the regularization method of Chapter 3 is extended to integrate bottom-up

information with top-down signals. The overall deep learning strategy is also

investigated with a deep encoder-decoder network.

• Learning Hierarchical Visual Codes. Chapter 5 applies the unsupervised

learning method of Chapter 3 to the bag-of-words model for the purposes of

dictionary learning and feature coding. The subsequent development into a

hierarchical feature coding architecture is also explored by using a supervised

learning method in Chapter 4.

• Discriminative Pooling. Chapter 6 continues the work of Chapter 5, this time

focusing on optimizing the pooling step of the bag-of-words model.
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• Conclusions. Chapter 7 concludes this thesis and suggests future directions

for exploration. This thesis has led to the publication of one journal article

and four international peer-reviewed conference papers. A complete list of the

publications is also included in this chapter.





2 Deep Learning and Visual Representations

— An Overview

Chapter abstract — This thesis marries deep learning with modeling visual
representations for image classification. In this chapter, I will provide an
overview of the motivations and methods for each research area. First, I
present a historical perspective of connectionist models that learn distributed
representations from data. The focus will be on recent unsupervised learning
methods that discover structure in the input data and learn latent represen-
tations. These unsupervised methods serve as building blocks for learning
deep architectures. The motivations and strategies for deep learning will also
be discussed. I will then present the application of some of these hierarchical
architectures to model images for image classification, such as convolutional
networks. Subsequently, the popular vision-based bag-of-words model, which
uses a multi-step approach to perform data transformation of visual repre-
sentations from image pixels to semantic categories for image classification, is
described. It will be interesting to see how these models focusing on various
aspects of learning and vision can complement each other and ultimately lead
to hybrid models for image classification.

2.1 Introduction

M
achine learning and computer vision research have been advancing hand-

in-hand for the last decade. Machine learning focuses on understanding

the theory of learning and developing algorithms that can extrapolate

from data, while computer vision attempts to solve challenging and practical prob-

lems relating to visual perception. Recent developments, specifically in the aspects of

deep learning and modeling visual representations, present an opportunity to unite

the strengths of both approaches to tackle the image annotation problem (Section 1.1).

Deep learning focuses on learning multiple layers of distributed representations that

untangle the manifold from input data to corresponding data classes. Meanwhile, one

of the approaches for image classification is to model images with visual representa-

tions that map from image pixels to visual semantics. The similarity in objectives and

general approach to the classification problem motivates the hybridization of tech-

niques from both approaches.

11
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2.2 Learning distributed representations

A straightforward scheme to represent entities is to use one computational unit to rep-

resent each entity. This is known as a local representation. A simplistic way to present

a local coding is using a one-hot coded vector of J bits, with each bit representing

an input pattern. This is sometimes also known as the grandmother cell [Konorski,

1967], where the representation essentially memorizes input templates. This scheme

does not scale well when the number of input patterns increases.

Rather than using a single computational element, connectionist models represent

each conceptual entity as a distributed pattern of activity, known as distributed rep-

resentation [Hinton et al., 1986]. A distributed representation, is exponentially more

compact. Moreover, such a coding scheme is able to handle the curse of dimension-

ality and have the nice property of graceful degradation. For the rest of this section,

I will introduce various supervised and unsupervised connectionist models to learn

distributed representations.

2.2.1 Feedforward neural networks

A feedforward neural network is one of the most basic types of artificial neural net-

works, designed to learn distributed representations of input data. The network con-

sists of a series of information processing operations, whereby information moves

strictly in the forward direction, from the input units, through latent units, if any, and

finally to output units.

Perceptron network. The simplest feedforward neural network is the perceptron

network [Rosenblatt, 1958], which builds upon a mathematical model of a neuron of

McCulloch and Pitts [1943]. As illustrated in Figure 2.1, output value ŷ of the input

vector x is generated with a set of weight parameters w and a feedforward activation

function fe. Here, w0 is a special parameter known as the offset or bias, whereby it

connects a unit x0 that is permanently set to 1. For an input with I dimensions, the

outputs may be linearly activated through a weighted sum of inputs

ŷ = fe(x, w) =
I

∑
i=0

wixi, (2.1)

or binarized by a hard limiter:

ŷ = fe(x, w) =





1 if ∑
I
i=0 wixi > 0

0 otherwise.
(2.2)
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A continuous approximation of this step function bounds the output through a non-

linear squashing function using either the logistic (or sigmoid) function:

ŷ = fe(x, w) =
1

1 + exp(−∑
I
i=0 wixi)

, (2.3)

or the hyperbolic tangent function:

ŷ = fe(x, w) = tanh

(
I

∑
i=0

wixi

)
. (2.4)

x
!

Input 
layer!

Output 
unit!

x1!

x2!

x3!

x4!

x0!

w1!

w2!

w3!

w4!

w0!

w
!

1

fe

ŷ

Figure 2.1: The perceptron network. The network is based on the model of a neuron
by McCulloch and Pitts [1943], uses a set of weights w and a feedforward activation
function fe to map a layer of input units x to the output unit ŷ.

The delta learning rule is used to train a perceptron with continuous differentiable

activation functions. The weights must first be initialized to 0 or a small random

value around 0. Given a set of training data Dtrain of input-output pairings {(xk, yk)},

the weights can be updated for each example k:

wi := wi + ε(yk − ŷk)xik, (2.5)

where ε is a learning rate. The process can be iterated until the total error of the entire

dataset falls below a certain threshold. If the data is linearly separable, the percep-

tron learning algorithm converges to the solution after a finite number of iterations

[Novikoff, 1962]. If the sigmoid function is used, then this gradient descent update

(Equation 2.5) is governed by the cross-entropy loss function

Lnet = −
|Dtrain|

∑
k=1

log P(yk|ŷk)

= −
|Dtrain|

∑
k=1

yk log ŷk + (1− yk) log(1− ŷk). (2.6)

A multiclass perceptron is a natural extension to handle multiclass datasets {(xk, yk)}.

The output is a one-hot coded vector yk of C units with each representing a class, such
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that yck = 1 if c is the class of the training example k, and is otherwise 0. The predicted

class for k is given by arg maxc ŷck. The weight parameters are structured as a matrix

W ∈ R
(I+1)×C rather than a vector. Additionally, the softmax activation function

ŷc = fe,c(x, W) =
exp(∑I

i=0 wicxi)

∑
C
ĉ=1 exp(∑I

i=0 wiĉxi)
(2.7)

is the generalization of the sigmoid function for multiple classes. The function nor-

malizes the output layer such that the units are between 0 and 1 and they sum to 1.

As a result, the softmax output ŷc can be considered as an estimator of P(ŷ = c|x).

The same cross-entropy loss function is ideal for updating the weight parameters:

Lnet = −
|Dtrain|

∑
k=1

C

∑
c=1

log P(yck|ŷck). (2.8)

resulting in the following weight update rule:

wic := wic + ε
∂Lnet

∂wic

:= wic + ε(yck − ŷck)xik, (2.9)

which has the same form as the perceptron learning rule for a single output unit.

Multilayer perceptron network. The perceptron network can be stacked into a

multilayer network known as the multilayer perceptron (MLP), whereby units in suc-

cessive layers are fully connected to each other. Figure 2.2 shows a three-layer MLP,

which has an intermediate latent layer connecting the input and output layers.
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Figure 2.2: Multilayer perceptron. A three-layer multilayer perceptron uses two suc-
cessive steps of weighed data transformation to map from inputs to the outputs.

If the activation functions of units in the network are differentiable, then the network

is trained via gradient descent using the error backpropagation algorithm [LeCun,

1985; Rumelhart et al., 1986]. Consider a three-layer network (Figure 2.2) with the

input layer x ∈ R
I and latent layer z ∈ R

J linked by weights W1, and the latent layer

linked to the output layer ŷ ∈ R
C via weights W2. Given a loss function Lnet, such as
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the cross-entropy loss or the squared loss, the weights of the network can be updated

by computing the gradients as follows:

w2,jc := w2,jc + ε
∂Lnet

∂w2,jc
,

w1,ij := w1,ij + ε
∂Lnet

∂zj

∂zj

∂w1,ij
. (2.10)

The chain rule is exploited to compute the gradient of the first set of weights W1,

while W2 is updated in the same manner as the single-layer perceptron.

Unlike the perceptron network, the multilayer perceptron is able to learn a model

of data that is not linearly separable. A three-layer MLP is considered to be a uni-

versal approximator of continuous functions. This was proven by Cybenko [1989]

for sigmoid activation function and by Hornik [1991] for the multilayer feedforward

network in general, regardless of the choice of activation function.

When the size of the MLP grows beyond three representational layers, the optimiza-

tion problem becomes harder. Bengio and LeCun [2007] suggested that this is due to

the training getting trapped in a local minima or plateaus that produce worse results

as compared to shallower networks. As illustrated in Figure 2.3, when more layers

are added into the network, the error signal become diluted at the lower layers. The

issue of a large fan-in from the intermediate units, results in an averaging effect of the

error-based gradients that is magnified through multiple layers. Section 2.3 discusses

methods to circumvent these limitations of architectural depth.
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Figure 2.3: Diluted error signal of a deep network. With the error backpropagation
algorithm, the lower layers receive error signals that are diluted through repeated
signal averaging by multiple layers of units with high fan-in.

2.2.2 Auto-associative networks

This section focuses on three types of auto-associative neural networks, namely 1)

the auto-encoder network, 2) the decoder network, and 3) the encoder-decoder net-

work. These three networks focus on learning distributed representations that can

reconstruct input examples.
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Auto-encoder network. An auto-encoder network [Bourlard and Kamp, 1988] is

a variant of a three-layer MLP, which models a set of inputs through unsupervised

learning. The auto-encoder learns a latent represent that performs reconstruction of

the input vectors (see Figure 2.4). This means that the input and output layers assume

the same conceptual meaning. Given an input x, a set of weights W maps the inputs to

the latent layer z. From this latent layer, the inputs x̂ are reconstructed with another set

of weights V. To train the auto-encoder, the target vectors are the inputs themselves.

Bourlard and Kamp [1988] showed that for an auto-encoder with linearly activated

units and using the squared loss error function, then the optimal solution for W and

V can be obtained by the singular value decomposition (SVD) corresponding to the

principle component analysis (PCA), without requiring to perform gradient descent.
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Figure 2.4: Autoencoder network. The network maps back to the inputs through a
latent layer and uses input reconstruction errors to update its parameters.

Originally, auto-encoders have a latent layer smaller than the dimensionality of the

input layer to perform data compression. Meanwhile, Bengio and LeCun [2007] sug-

gested using a latent layer larger than the input layer to learn representations for

feature coding. However, an auto-encoder with the number of latent units greater

than the number of input dimensions (i.e. J > I) can potentially learn trivial solu-

tions such as the identity function. As such, the auto-encoder can be constrained or

regularized during learning to prevent such scenarios [Collobert and Bengio, 2004].

Another effective way to prevent learning the identity function is to use the denosing

auto-encoder [Vincent et al., 2008], which adds noise to the encoding x but tries to

reconstruct the clean input through the latent representation.

Decoder network. Just like auto-encoder networks, decoder networks perform learn-

ing from unlabeled data through unsupervised learning based on input reconstruc-

tion. However, the learning algorithm is approached from a reverse direction. There

are two representational layers in the decoder network, linked by a set of weights.

Suppose the inputs x can be represented as a linear combination of basis functions
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each given by wi ∈ R
J through a decoding function:

x̂i = fd(z, W) =
J

∑
j=1

wijzj, (2.11)

where x̂i is a reconstructed input and zj can be seen as coding coefficients for the basis

function wij.
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Figure 2.5: Decoder network. The network uses the reconstruction error to learn
both the parameters and latent code.

The loss function of the network can be defined as the reconstruction error (see Fig-

ure 2.5) using the mean square error:

Lnet = ‖xk − fd(zk, W)‖2
2. (2.12)

The optimal coding coefficients for reconstructing the inputs can be obtained through

gradient descent

zjk := zjk + η
∂Lnet

∂zj

:= zjk + η(xik − x̂ik)wij, (2.13)

where η defines the size of each gradient descent step for updating the coding. Mean-

while, since the weights are not known, an optimization is also required to learn them.

This can again be done by gradient descent, based on the partial derivative ∂Lnet
∂wij

.

wij := wij + ε
∂Lnet

∂wij

:= wij + ε(xik − x̂ik)z
∗
jk, (2.14)

where z∗jk is an optimized coding from Equation 2.13. The result of these two updates

is an algorithm, that performs optimization on both the coding and the weights. In

computer vision, this set of weights is also known as a dictionary or codebook. Algo-

rithm 2.1 shows one example of this algorithm that alternates between code optimiza-

tion and dictionary learning. Recently, Rakotomamonjy [2013] showed that it might
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not be necessary to perform alternating optimization between the two sets of param-

eters or even a full optimization for each set. Rather, the dictionary can be learned

through direct optimization of the non-convex function using a block-coordinate prox-

imal gradient descent method.

Algorithm 2.1: Decoder network optimization

1 Initialize W
2 repeat
3 Get training input xk

4 Fix W
5 repeat // Code optimization

6 Computer ‖xk − fd(zk, W)‖2

7 Update zk with 1-step gradient descent // Equation 2.13

8 until stopping criteria is met
9 Fix optimal codes z∗k

10 repeat // Dictionary learning

11 Computer ‖xk − fd(z∗k , W)‖2

12 Update W with 1-step gradient descent // Equation 2.14

13 until stopping criteria is met

14 until convergence

Sparse regularization. Similar to auto-encoders, decoder networks can also be reg-

ularized to generate more meaningful representations. A popular regularizer is spar-

sity, first introduced by Olshausen and Field [1996]. The resulting optimization cou-

ples the information preservation term (Equation 2.13)

Lnet = ‖xk − fd(zk, W)‖2
2 + λh(zk), (2.15)

where λ is a regularization constant. Olshausen and Field [1996] suggested the use of

various types of regularization terms such as −∑
J
j=1 exp(

zj

ψ ), ∑
J
j=1 log(1 + (

zj

ψ )
2) and

∑
J
j=1|

zj

ψ | where ψ is a scaling constant. The ∑
J
j=1 log(1+ (

zj

ψ )
2) regularizer corresponds

to a Student’s t-distributed prior on zj. This optimization looks for a minimum-

entropy code [Barlow, 1989], based on a conjuncture that natural images have a nat-

urally sparse structure. Interestingly, the resulting dictionary learned correspond to

the receptive field encodings of simple cells in the V1 region of our visual cortex

[Olshausen and Field, 1996]. Sparse dictionary learning using decoder networks has

also gained popularity for encoding image features for image classification (see Sec-

tion 2.4.3).

A direct measure of sparsity is the ℓ0-norm of the vector zk, which counts number

of nonzero elements. The sparsest representation is given by the minimum ℓ0-norm.

However, the optimization is highly non-convex and often intractable. Instead, sur-

rogate functions, such as the ℓ1-norm, are used to approximate the ℓ0-norm. The
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ℓ1-norm regularized optimization of the decoder network for generating sparse codes

can be written as follows:

z∗k = ‖xk − fd(zk, W)‖2
2 + λ‖zk‖1. (2.16)

This setup has been effective in producing sparse codes for modeling images [Mairal,

2010; Boureau et al., 2010a; Kavukcuoglu et al., 2010]. The main algorithms used to

solve the optimization problem include the coordinate gradient descent based on the

least absolute shrinkage and selection operator (LASSO) formulation by Fu [1998], the

least angle regression (LARS) method of Efron et al. [2004], the fast proximal gradient

method known as fast iterative shrinkage-thresholding algorithm (FISTA) by Beck

and Teboulle [2009] and the fast approximate structured sparse coding by Szlam et al.

[2012].

Encoder-decoder networks. Although the decoder network is able to learn mean-

ingful representations, especially with sparse regularization, the inference process is

slow because the sparse coding optimization needs to be solved separately for every

input example k, as evident in Equation 2.16. An alternative to improve inference

speed is to introduce a variant of the decoder network, known as the encoder-decoder

network [Ranzato et al., 2006]. The encoder-decoder network [Ranzato et al., 2006] is

an extension of the decoder network [Olshausen, 2001] that concurrently learns the

transformation of the input vector to the representation through an encoder.

The input layer x and latent layer z are linked via forward weights W ∈ R
I+1×J+1

and backward connections V ∈ R
I+1×J+1, where vi0 and w0j are input and output

biases respectively, connected to x0 and y0, which are always set to one. It is also

possible design choice for the same encoder-decoder network to have shared weights

such that wij = vij. For the purposes of generality, separate weights will be used for

this discussion.

The latent layer is activated from the input layer using an encoding function

z = fe(W, x) = WTx, (2.17)

for a linear encoder. Similarly, the input layer is activated from the latent layer by a

linear decoder with the decoding function

x̂ = fd(V, z) = Vz. (2.18)

The system (Figure 2.6) is governed by a loss function Lnet that is low when the pair

of input and latent vectors (x, z) exhibit compatibility or likelihood with respect to the
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set of parameters {W, V}. The loss function can be defined as a linear combination of

costs from the encoder Lenc and decoder Ldec:

Lnet = λeLenc(x, W) + λdLdec(z, V)

= λe‖z− fe(x, W)‖2
2 + λd‖x− fd(z, V)‖2

2, (2.19)

where λe and λd are parameters proportional to the respective learning rates. The

first term, known as the code prediction cost, attempts to make the code z similar

to the output of the encoder. The second term is the reconstruction cost, which tries

to minimize the reconstruction error of x. Thus, the optimization concurrently learns

both the encoder and the decoder by minimizing the loss function. Additionally, to

learn sparse codes, Ranzato et al. [2006] applied a transform of the code z prior to the

decoding operation.

Decoder 
cost!

fd

Input x!
fe

C!

Decoder!

Encoder!

C!

Code z!

Encoder 
cost!

Figure 2.6: The encoder-decoder network. The result of encoding an input x is com-
pared against the code z to produce the updates for the encoder. The difference
between input x and the reconstructions by the decoder is used to update the decod-
ing parameters.

If the set of parameters {W, V} are fixed, it is possible to optimize for the codes z.

Similarly, if the coding z is known, then it is easy to minimize with respect to W and

V. To optimize the network, one can employ coordinate gradient descent algorithm,

whereby an inner loop in the iterative process alternates between optimizing for z

with fixed {W, V}, and updating {W, V} based on the optimized z∗. Because the

encoding weights V are learned, inference is a simple and fast feedforward operation,

rather than a complex sparse re-optimization in the case of the decoder networks.

2.2.3 Boltzmann distribution density models

Besides auto-encoders, decoder networks and encoder-decoder networks (Section 2.2.2),

another commonly used neural network for unsupervised feature learning is the re-

stricted Boltzmann machine (RBM) [Smolensky, 1986]. An RBM is a variant of the

Boltzmann machine [Hinton and Sejnowski, 1986]. These two probability density

models fall into the family of recurrent neural networks with dynamics governed by
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Lyapunov (or energy) functions. Specifically, the probability density is given by the

Boltzmann (or Gibbs) distribution.

Boltzmann machines. The Boltzmann machine [Hinton and Sejnowski, 1986] con-

tains I stochastic binary units xi that are fully connected to each other, as illustrated

in Figure 2.7(a). It has the same fully-connected structure as the Hopfield [1982] net-

work, but the activation and learning rules are different. The probability of activating

a unit xi in the Boltzmann machine is given by the sigmoid function:

P(xi = 1; W) =
1

1 + exp(−∑
I
j=0 wijxj)

. (2.20)

The network models the probability distribution of input vectors x based on the Boltz-

mann (or Gibbs) distribution given by

P(x) =
exp(−E(x))

∑x exp(−E(x))
, (2.21)

where the energy function E(x) is described by

E(x) = −∑
i<j

xiwijxj (2.22)

Given a set of training inputs Dtrain = {xk : k ∈ [1, |Dtrain|]}, the learning objective

is to find the set of weight parameters that the input vectors xk have a high average

probability under the Boltzmann distribution. For computational speed and accuracy,

it is useful to express the optimization in terms of the data log-likelihood:

− log P(x) = − log
exp(−E(x))

∑x exp(−E(x))

= − log exp(−E(x)) + log ∑
x

exp(−E(x)) (2.23)

By taking the partial derivative with respect to wij, we get

−

〈
∂ log P(x)

∂wij

〉

data

= −

〈
∂ log exp(−E(x))

∂wij

〉

data

+

〈
∂ log ∑x exp(−E(x))

∂wij

〉

model

=

〈
∂E(x)
∂wij

〉

data

−

〈
∂E(x)
∂wij

〉

model

=
〈

xixj

〉
data
−
〈

xixj

〉
model

, (2.24)

where 〈·〉data is the expectation of the input data distribution, while 〈·〉model is the

expectation of the stationary distribution of the model. The weights of the network
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can be updated using gradient descent

wij := wij + ε
(〈

xixj

〉
data
−
〈

xixj

〉
model

)
. (2.25)

In general, the first term
〈

xixj

〉
data

can be computed easily by sampling from the data

distribution. However, there is no efficient way to computer the later term
〈

xixj

〉
model

.

To produce an estimate of the average over the sampled distribution P(x), a Markov

Chain Monte Carlo approach can be used to run the network to the equilibrium dis-

tribution. However, this is very slow because it requires prolonged Gibbs sampling

to explore the distribution P(x) and arrive at the equilibrium. Furthermore, it is chal-

lenging to determine if the equilibrium distribution has indeed been reached.

Restricted Boltzman machines. The training of a Boltzmann machine requires ob-

taining samples from distributions in the network, but this is also the hardest to obtain

due to its fully connected structure (Figure 2.7(a)). To ease the sampling problem yet

still be able to model interesting distributions, a variant known as the restricted Boltz-

mann machine (RBM) [Smolensky, 1986] is used. The RBM is a bipartite Markov ran-

dom field with a layer of visible input units and a layer of latent units (Figure 2.7(b)).

It is fully connected between layers, but have no intra-layer connections. Figure 2.7

compares the structures of the Boltzmann machine and the RBM.

I units!

(a) Network of fully-connected units.

J units!I units!

(b) Bipartite structure of the restricted Boltzmann machine.

Figure 2.7: Structural differences between the bipartite restricted Boltzmann ma-
chines and fully-connected networks, such Boltzmann machines and Hopfield net-
works. An RBM consists of two subsets (or layers) of units that are not connected
within each layer, but are fully connected with units in the other layer.

The result is a latent layer that models interactions between input dimensions. This

form of modeling leads to a variety of applications, such as dimensionality reduction

[Hinton and Salakhutdinov, 2006], classification [Larochelle and Bengio, 2008], col-

laborative filtering [Salakhutdinov et al., 2007], hashing [Salakhutdinov and Hinton,

2009] and, most importantly for our context, unsupervised feature learning [Hinton

et al., 2006; Lee et al., 2008]. It also forms the building block for a deep architecture

known as the deep belief network [Hinton et al., 2006] (see Section 2.3.2).

Consider a binary RBM with a visible input layer x and a latent layer z, as shown

in Figure 2.8. The input layer contains I dimensions corresponding to the size of the
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input vector. The latent layer has J latent variables. Additionally, there are offset (or

bias) units, x0 and z0, that are permanently set to one. The layers are associated by an

undirected weight matrix W, such that every input unit i is connected to every latent

variable j via wij.
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Figure 2.8: Structure of the restricted Boltzmann machine (RBM). The RBM connects
an input layer x to a latent layer z via undirected weights W and biases x0 and z0.

The bipartite structure with no intra-layer connections means that the units in the

latent layer z are independent, given the input layer x. The units in the input layer

x are also conditionally independent, given z. This simplifies the Gibbs sampling

process. Given an input vector, the activation probabilities of the latent units can be

sampled:

P(zj = 1 | x; W) =
1

1 + exp(−∑
I
i=0 wijxi)

. (2.26)

While the input units can be sampled from the latent vector with a symmetric decoder:

P(xi = 1 | z; W) =
1

1 + exp(−∑
J
j=0 wijzj)

. (2.27)

For a binary RBM, the joint configuration (x, z) of activation states in the network has

an energy given by:

E(x, z) = −
I

∑
i=0

J

∑
j=0

xiwijzj. (2.28)

Unlike the Boltzmann machine, the RBM models the joint probability distribution of

states corresponding to the energy function E(x, z) as follows:

P(x, z) =
exp (−E(x, z))

∑x,z exp (−E(x, z))
, (2.29)

where the denominator ∑x,z exp (−E(x, z)) is a normalization constant known as the

partition function. Based on the maximum likelihood principle, the objective of the

network is to maximize the marginal probability of the input data x by summing over

all possible vectors in the latent layer z:

P(x) =
∑z exp (−E(x, z))

∑x,z exp (−E(x, z))
. (2.30)



24 Deep Learning and Visual Representations: An Overview

Given a set of training set Dtrain of input vectors {xk : k ∈ [1, |Dtrain|]}, the objective

is to find the set of weight parameters that can minimize the average negative log-

likelihood of the input data:

W∗ = arg min
W

−〈log P(x)〉data

= arg min
W

−

〈
log ∑

z
exp (−E(x, z))

〉

data

+

〈
log ∑

x,z
exp (−E(x, z))

〉

model

(2.31)

The partial derivative of the objective function with respect to wij is

−

〈
∂ log P(x)

∂wij

〉

data

= −

〈
∂ log ∑z exp (−E(x, z))

∂wij

〉

data

+

〈
∂ log ∑x,z exp (−E(x, z))

∂wij

〉

model

=

〈
∂E(x, z)

∂wij

〉

data

−

〈
∂E(x, z)

∂wij

〉

model

=
〈

xizj

〉
data
−
〈

xizj

〉
model

, (2.32)

where 〈·〉dist denotes the expectation under the distribution dist. The first term in-

creases the probability of data driven activations that are clamped by the environment,

while the second term reduces the probability of model driven states are sampled from

the equilibrium distribution of a free running network.

Contrastive divergence learning. Minimizing the average negative log-likelihood

of the data distribution is the same as minimizing the Kullback-Leibler divergence

[Kullback and Leibler, 1951] between the data distribution P0(x) (at time t = 0) and

the equilibrium distribution P∞(x) (at time t = ∞):

DKL(P0‖P∞) = ∑
(x,y)

P0(x, y) log
P0(x, y)
P∞(x, y)

≥ 0. (2.33)

Hinton [2002] proposed the contrastive divergence learning algorithm, that approxi-

mates the equilibrium distribution with a small finite number of sampling steps. The

Markov chain is relaxed to run for N of sampling steps to generate a reconstruction of

data vectors.1 This sampling approximation is illustrated in Figure 2.9. Perpiñán and

Hinton [2005] showed that even by using a single Gibbs sampling step (N = 1), the

algorithm generates only a small bias [Bengio and Delalleau, 2009]. The optimization

seeks to minimize the difference between the two divergences:

CDN = DKL(P0‖P∞)− DKL(PN‖P∞) ≥ 0. (2.34)

1Hinton [2002] used N = 1 in his original paper.
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Figure 2.9: Gibbs sampling relaxation of contrastive divergence learning. The max-
imum likelihood of the data distribution can be obtained by performing alternating
(forward-backward) Gibbs sampling between the input layer x and latent layer z,
from the data distribution samples (at t = 0) until t = ∞. Contrastive divergence
approximates the equilibrium distribution using reconstructed samples from a small
finite number of sampling steps. One sampling step (N = 1) is used in this example.

The partial derivative with respect to the parameters is

∂CDn

∂wij
=

∂DKL(P0‖P∞)

∂wij
−

∂DKL(PN‖P∞)

∂wij

≈ −

〈
∂ log ∑z exp(−E(x, z))

∂wij

〉

data

+

〈
∂ log ∑z exp(−E(x, z))

∂wij

〉

recon

≈

〈
∂E(x, z)

∂wij

〉

data

−

〈
∂E(x, z)

∂wij

〉

recon

≈
〈

xizj

〉
data
−
〈

xizj

〉
recon

, (2.35)

where 〈·〉recon is the expection of the reconstructed states after N sampling steps. This

results in the following approximate gradient descent:

wij := wij + ε
(〈

xizj

〉
data
−
〈

xizj

〉
recon

)
, (2.36)

where the energy of samples from the data distribution is decreased, while raising

the energy of reconstructed states that the network prefers to real data. Algorithm 2.2
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Algorithm 2.2: RBM training with contrastive divergence

1 Initialize W
2 repeat
3 Get X0 from randomized training batch
4 Sample P0(Z0|X0) // Equation 2.26

5 for n = 1 to N do // Alternating Gibbs sampling

6 Sample Pn(Xn|Zn−1) // Equation 2.27

7 Sample Pn(Zn|Xn) // Equation 2.26

8 end
9 Update wij := wij + ∆wij // Equation 2.36

10 until convergence

presents the iterative procedure for training an RBM with a N Gibbs sampling step

followed by parameter updating.

CD1 is the fastest since it requires the minimum number of sampling step. It generally

works well for most purposes. Although larger samples of N produce estimates that

are closer to the true likelihood gradient, they need more time to compute and may re-

sult in high estimator variances. To avoid unnecessary sampling noise [Hinton, 2010]

and reduce the variance of the estimator [Swersky et al., 2010], Rao-Blackwellization

[Blackwell, 1947] is often employed, where wij is updated using activation probabili-

ties P(xi|z) and P(zj|x), instead of their binary states. A variant of the contrastive di-

vergence learning algorithm, known as persistent contrastive divergence [Neal, 1992;

Tieleman, 2008], which is a stochastic approximation procedure [Robbins and Monro,

1951; Younes, 1989, 1999] that runs the Markov chain from a persistent state rather

than running a new Gibbs sampling chain for every training example. An alterna-

tive to Gibbs sampling for generating the density model is to use a tempered Markov

Chain Monte Carlo [Desjardins et al., 2010].

Variants of restricted Boltzmann machines. There are several variants of the RBMs,

focusing on different aspects of the model. Rather than using stochastic binary units,

an obvious extension is to use continuous units [Chen and Murray, 2003], softmax ac-

tivated units assuming multiple discrete values, Gaussian units with stochastic Gaus-

sian noise [Hinton and Salakhutdinov, 2006; Lee et al., 2009], binomial units, Poisson

units, Student’s t-distributed units [Welling et al., 2003] and rectified linear units. In

general, any type of unit within the exponential family may be used [Welling et al.,

2005]. However, such RBMs are typically more difficult to train in practice than bi-

nary RBMs. Please refer to Hinton [2010] for more details regarding the practical

implementation of RBMs.

Some go beyond modeling single distributions of the latent variables using more so-

phisticated RBMs, such as the mean-covariance RBMs [Ranzato and Hinton, 2010;
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Dahl et al., 2010], spike-slab RBMs [Courville et al., 2011], and the gated RBMs [Memi-

sevic and Hinton, 2007], which can be extended to the factored three-way [Taylor and

Hinton, 2009] and higher-order models [Memisevic and Hinton, 2010]. These models

generally work on a more complicated energy function [Sejnowski, 1987]. In addition,

the generative learning of the RBM could be coupled with discriminative learning

[Larochelle and Bengio, 2008]. Other variants of the RBM that focus on image mod-

eling, such as the convolutional RBM [Lee et al., 2009; Norouzi et al., 2009], will be

discussed in detail in Section 2.3.3.

Selectivity regularization. Just as it is common to regularize the coding of decoder

networks with sparsity, practitioners of RBMs tend to choose selectivity as the main

regularizer to complement maximum likelihood approximation and learn interesting

representations. Selectivity is the measure of the activity of a latent variable across

a set of instances. Typically, the objective of the regularizer is to generate a coding

that have low-average activation across the examples during training [Lee et al., 2008;

Nair and Hinton, 2009; Hinton, 2010]. Section 3.2 provides a detailed review of these

existing regularization methods.

2.3 Learning deep representations

A hierarchical architecture consists of multiple layers combined from series of basic

operations. The architecture takes raw input data at the lowest level and processes

them via a sequence of basic computational units until the data is transformed to a

suitable representation in the higher layers to perform task, such as classification. Mul-

tiple layers of distributed coding allow the network to encode highly varying functions

efficiently [Bengio, 2009]. An architecture with four or more representational layers

is considered to be a deep architecture [Hinton et al., 2006; Bengio et al., 2006]. The

learning of deep architectures has emerged, as an effective framework for modeling

complex relationships among high-dimensional data and discovering higher-level ab-

stractions. It learns a hierarchy of meaningful representations that carry some intrinsic

value for classification tasks. As a result, deep learning methods have been suitably

and successfully employed for a variety of problems, in domains like computer vision,

audio processing and language understanding.

The current methods for learning deep architectures are a cumulation of much re-

search over the years. Neural networks, popularized in the 1980s, revolutionized the

notion of learning distributed representations from data. In particular, fully-connected

multi-layered perceptrons, having been shown to be universal approximators, can rep-

resent any function with its parameters [Hornik, 1991]. However, researchers often

have to deal with the problems of a huge number of parameters and the difficult
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non-convex optimization problem, which can become tedious and difficult to manage

for deep networks [Bengio, 2009]. Recent algorithmic developments in unsupervised

feature learning together with the ever increasing computational power of machines,

enabled such deep networks to be trained.

This section discusses the main motivations and strategies for learning deep architec-

tures and introduces three families of deep architectures and an adaption scheme to

model image data using the convolution operator.

2.3.1 Motivations and strategies

A typical deep architecture takes raw input data at the lowest level and processes

them via a sequence of basic computational modules, such as connectionist models

(Section 2.2), until the data is transformed to a suitable representation in the higher

layers.

Motivations. The main motivation for learning deep architectures is to discover

abstraction from the lowest-level features to the highest-level concepts, either auto-

matically or with as little human intervention as possible. The objective is to learn a

hierarchy of representations, such that the representations at higher-levels are com-

posed of lower-level ones. The deep hierarchical structure of the architecture is anal-

ogous to the multiple levels of abstraction that humans naturally describe the visual

world [Bengio, 2009]. This multiple level structure also corresponds to the organiza-

tion of neuronal encoding by the visual system in our brains [Karklin and Lewicki,

2008; Lee et al., 2008]. Besides these, the computational resources for training and

inference should scale well with data cardinality and dimensionality, and the model

should remain robust on noisy data.

From a representational point of view, a deep, yet compact, architecture is able to

model complex functions more efficiently than a shallower architectures. Particularly,

if a function is compactly represented by L layers, it may require an exponential num-

ber of units to represent the same function using only L− 1 layers [Bengio, 2009]. As

a result, if an insufficiently deep architecture is used to model a complex function, the

architecture might be very large to compensate for the loss in representational flexi-

bility as compared to a deeper one. Just like their shallower cousins, deep networks

have been shown to be universal function approximators [Sutskever and Hinton, 2008;

Le Roux and Bengio, 2010].
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General strategy. A deep architecture has an extensive parameter space, whereby

searching for an ideal solution is challenging due to the non-convex supervised opti-

mization problem and multiple local minima that depends on parameter initialization

[Erhan et al., 2009]. This problem intensifies when the number of layers in the archi-

tecture increases. An effective strategy to train deep architectures remained illusive

until the seminal work by Hinton et al. [2006], which was quickly followed by similar

findings by Ranzato et al. [2006] and Bengio et al. [2006]. The methods follow a simi-

lar general approach, which first considers each layer as an unsupervised module and

stacking them in a greedy-layer wise manner. Subsequently, a supervised fine-tuning

step can be performed to optimize the architecture for the required task.

Greedy unsupervised learning. A key component for learning deep networks is to

perform unsupervised learning in a greedy layer-wise manner [Hinton et al., 2006;

Ranzato et al., 2006; Bengio et al., 2006]. Shallow unsupervised modules, such as

those described in Sections 2.2.2 and 2.2.3, are exploited by repeatedly training and

stacking them individually, one layer at a time from the bottom-up. When a new layer

is stacked above the existing network, the parameters bridging the existing represen-

tation with a new layer is trained locally within the model using the previous layer

as its inputs. Stacking layers encourages higher-level abstractions of the input data

within the internal representations of the deep architecture. Given a training dataset

Dtrain, the procedure of this greedy learning algorithm to train a deep network with L

unsupervised layers is described in Algorithm 2.3.

Algorithm 2.3: Unsupervised greedy layer-wise learning

1 Initialize input data Z1 ← Dtrain

2 for l = 1 to L− 1 do
3 Initialize Wl

4 repeat
5 Update Wl by learning from Zl // Upsupervised learning

6 until convergence
7 Fix Wl and generate samples for Zl+1

8 end

This greedy layer-wise unsupervised strategy is usually treated as a pre-training step

before supervised (usually discriminative) learning. In the context of vision, before

the model can perform recognition, it should first be able to generate input images

[Hinton, 2007b]. Unsupervised pre-training helps the overall optimization by initial-

izing the parameters around a good local minimum Larochelle et al. [2009], easing the

difficult deep supervised optimization problem. This has a regularization effect for

subsequent supervised training by improving generalization [Erhan et al., 2009, 2010].
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Supervised fine-tuning. While unsupervised learning is effective in modeling the

distribution of the input data, the representations learned may not be perfectly aligned

with a given classification problem. One can imagine that the pre-training phase

initializes a set of data in the same manner, regardless of how the classes are defined

within the dataset. As such, supervised learning is crucial to fine-tune the parameters

of the model and to encourage a binding to the classification task.

While unsupervised pre-training is performed in a greedy layer-wise manner, super-

vised learning globally optimizes the entire network. A popular method to introduce

the labeled information to a deep network is through discriminative learning using

the error backpropagation algorithm [Hinton and Salakhutdinov, 2006]. This is, es-

sentially, the same algorithm as that for training multilayer perceptrons, as described

in Section 2.2.1. Additionally, generative fine-tuning can serve as an alternative to dis-

criminative learning by using a up-down back-fitting algorithm [Hinton et al., 2006].

2.3.2 Fully-connected deep architectures

There are three main families of deep architectures that originate from the various

shallow unsupervised learning modules with fully-connected structure. They are

namely: 1) deep belief networks [Hinton et al., 2006], 2) deep decoder-based net-

works [Ranzato et al., 2006] and 3) deep auto-encoder networks [Bengio et al., 2006].

The networks follow a similar general strategy of training by using greedy unsuper-

vised learning followed by supervised fine-tuning. The main difference between the

architectures is the choice of the basic building block. Deep learning is not restricted

to connectionist models [Bengio, 2009; Deng and Yu, 2011].

Deep belief networks. Deep belief networks (DBN) [Hinton et al., 2006] are prob-

abilistic graphical models made up of a hierarchy of stochastic latent variables using

restricted Boltzmann machines (RBM) [Smolensky, 1986] as the basic building block.

DBNs have also been shown to be universal approximators [Le Roux and Bengio, 2008]

and are able to eliminate the notion of explaining away during inference [Wellman and

Henrion, 1993; Hinton et al., 2006]. A variant of the DBN is the deep Boltzmann ma-

chine [Salakhutdinov and Hinton, 2009, 2012], which disregards the restricted bipartite

connectivity of the RBM structure (see Figure 2.7).

DBNs have been applied to various problems such as handwritten digit recognition

[Hinton et al., 2006], video and motion sequence recognition [Sutskever and Hin-

ton, 2007; Taylor and Hinton, 2009], dimension reduction [Hinton and Salakhutdinov,

2006], and data indexing [Salakhutdinov and Hinton, 2009]. Figure 2.10 shows a DBN

for handwritten digit recognition during the two phases of training.
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Figure 2.10: Deep belief network for handwritten digit recognition. (a) Unsuper-
vised learning is performed one layer at a time from the bottom up. (b) Supervised
fine-tuning first unties forward and backward weights of the bottom two RBMs. A
bottom-up pass learns to reconstruct input data, while a top-down pass learns to
associate the model to the topmost layer.

For unsupervised pre-training (Figure 2.10(a)), the parameters for every consecutive

pair of representational layers are learned as an RBM. An RBM stack is trained greed-

ily from the bottom-up, with the latent activations of each layer used as the inputs for

the next RBM. As a result, each layer captures higher-order correlations of the bottom-

layer. Each RBM approximates the likelihood of its input distribution through an en-

ergy function (see Section 2.2.3). Hinton et al. [2006] showed that when higher-level

layers are sufficiently large, the variational bound on the likelihood always improves

with depth. Two methods have been proposed for supervised fine-tuning.

The first method uses a up-down back-fitting algorithm [Hinton et al., 2006], a variant

of the “wake-sleep” algorithm [Hinton et al., 1995]. The algorithm is initialized by

untying the recognition Wl and generative Vl weights. Figure 2.10(b) illustrates an

example of the training procedure of this algorithm. First, a stochastic bottom-up

pass is performed to obtain z2 and z3. The top-down generative weights {V1, V2}

are adjusted to be good at reconstructing the layer below by maximizing the input

likelihood. Next, a few iterations of alternating sampling are done at the top-level

RBM between z4 and the concatenated vector [z3, y]. Using contrastive divergence the

RBM is updated by fitting to its posterior distribution. Finally, a stochastic top-down

pass adjusts bottom-up recognition weights {W1, W2} to reconstruct the activations of

the layer above.

The second method is more straightforward and uses the error backpropagation algo-

rithm to fine-tune the parameters. It has been shown to perform well when initialized

by first learning a model of input data using unsupervised pre-training [Hinton and

Salakhutdinov, 2006].
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Deep decoder-based networks. Just like a DBN can be formed by stacking several

RBMs in a hierarchy, decoder networks (Section 2.2.2) can be treated as unsupervised

building blocks and stacked to become a deep network [Ranzato et al., 2006], as il-

lustrated in Figure 2.11. As inspired by the DBN, a greedy unsupervised learning

algorithm is used to learn the parameters one layer at a time. Each decoder network

can be trained layer-by-layer from the bottom-up to form the deep network. New cod-

ing layers are optimized by learning to reconstruct the codings of the previous layer.

This network, however, has its limitations during inference. Code optimization needs

to be performed one layer at a time, resulting in slow inference.
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Figure 2.11: A deep decoder network. The network is composed of a hierarchy of
decoder networks, each optimized by trying to optimize the reconstructions of the
previous layer. During inference, the coding needs to be optimized for every layer.

A deep encoder-decoder network is a multilayer extension of the encoder-decoder net-

work. Using the encoder-decoder network (Section 2.2.2) as the basic building block,

the networks are stacked from the bottom-up to form the deep network (Figure 2.12).

Learning a new layer requires performing the alternating optimization between the

codes and the parameters, where a decoder and encoder are concurrently learned. As

a result, the output of the network is generated simply by using the chain of encoders

in a feedforward manner. This results in faster inference as compared to the deep

network built from only decoder networks.
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Figure 2.12: Deep encoder-decoder network. The network comprises of encoder-
decoder building blocks stacked in a layer-wise hierarchy. Each new layer is learned
in an unsupervised manner from the outputs of the previous layer. During inference,
the chain of encoders directly produce the coding for the network.
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Deep auto-encoder networks. Another similar deep architecture is the deep auto-

encoder network (Figure 2.13) [Larochelle et al., 2009]. Instead of RBMs or decoder-

based networks, the deep auto-encoder network is formed by a series of auto-encoder

networks (Section 2.2.2), stacked above each other in a feature hierarchy. Each auto-

encoder tries to minimize the reconstruction errors of the previous layer [Bengio et al.,

2006; Vincent et al., 2008]. Special consideration needs to be put in place to avoid

learning trivial solutions, such as the identity function. Also, the auto-encoder is not

as good as the DBN in handling random noise in the input data [Larochelle et al.,

2007].
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Figure 2.13: Deep auto-encoder network. The network learns a sequence of encoders
that attempt to reconstruct the previous layer via a second set of weights.

2.3.3 Local connectivity and convolutional networks

In general, the fully-connected deep architectures presented above perform extremely

well on modeling input data. However, due to the fully-connected structure between

layers, it is difficult to scale up to handle high dimensional inputs, such as images.

The images that these deep networks typically model only have a few hundred di-

mensions. For example, each image in the MNIST handwritten digit dataset [LeCun

et al., 1998] is 28× 28 pixels in size, resulting in a 784 dimensional input. An image

with a size of 300× 200 pixels, already has 60, 000 dimensions. Furthermore, modern

digital camera sensors are capable of producing images with tens of millions of pixels.

A dominant approach for modeling large images is through the use of local connectiv-

ity as inspired by the receptive field scheme proposed by Hubel and Wiesel [1962]. The

ideas were incorporated into an early hierarchical multilayer neural network known

as the Neocognitron by Fukushima [1980]. The main concept is that parameters of the

model are shared across various local patches of an image, resulting in invariance to

spatial translation. In the 1980s and 1990s, LeCun et al. [1989, 1998] developed the
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convolutional neural network that can be trained using error backpropagation. It fo-

cused on tackling the vision problem through a fully-supervised multilayer network

with convolution operators in each layer mapping their inputs to produce a new rep-

resentation via a bank of filters. The model produced exceptional performances for

vision problems, such as handwritten digit recognition [LeCun et al., 1989, 1998].

The convolutional operator naturally shares the parameters of the model by coding

the image locally across various spatial locations in the image. This helps to scale the

model for large images, while taking into account spatial correlations in the image.

In addition, a sub-sampling operator is sometimes used to perform pooling in the

filtered representation and reduces the spatially dimensionality of the representation.

Figure 2.14 shows an example of such a convolutional network with convolution and

sub-sampling performed successively. We shall see later that this approach of model-

ing images is not much different from other computer vision models (Section 2.4.1).
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Figure 2.14: Convolutional network. The network typically consists multiple layers
of convolutional and pooling operators to transform an input image to a high di-
mensional vector, which can be projected via fully connected weights to an output
vector.

Such a highly adapted hierarchical local connectivity has the potential to encode struc-

ture suitable for modeling images, such that even with random weights in the early

layer, performance remains impressive [Ranzato et al., 2006]. Although a fully trained

convolutional network would still produce better performances, the challenge of per-

forming gradient descent on the deep network is slightly reduced due to the local

connectivity of the network, resulting in a smaller fan-in. This allows the error signal

to propagate through more layers [Bengio, 2009]. However, being fully-supervised,

the challenge will be to avoid getting stuck in a poor local minimal.

Most recently, convolutional deep neural networks [Krizhevsky et al., 2012] have re-

cently emerged as the best performing model in the ImageNet Large Scale Visual Recog-

nition Challenge 2012 (ILSVRC2012) using a large-scale dataset with 1, 000, 000 labeled

training images. The network consists of seven learned layers (five convolutional and

two fully-connected) that map image pixels to the semantic-level. The model is trained
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in an entirely supervised manner using the stochastic gradient descent method with

the backpropagation algorithm. Being fully-supervised, this network requires a lot of

labeled training data to perform well and avoid over fitting. Despite the good perfor-

mances on the large-scale dataset, it has not yet been shown to be able to learn mean-

ingful representations for classifying moderate-sized datasets, with relatively fewer

labeled training examples.

With the emergence of the recent foundational deep learning methods, the computer

vision community now has a new set of tools to apply. Due to the representational

depth and learning plasticity of these networks, the variety of information it can learn

to represent is extensive. Norouzi et al. [2009] and Lee et al. [2009] exploited the

learning capabilities of stacks of restricted Boltzmann machines by adding convolu-

tional operators to learn to classify large images from the pixel-level. However, image

classification results fell short of the state-of-the-art performances by the vision-based

bag-of-words model (Section 2.4). Tiled convolutional approaches [Ranzato et al.,

2010; Le et al., 2010] had also been suggested to tackle the problem of high spatial di-

mensionality, but did not result in a significant breakthrough in image classification.

2.4 Modeling images using visual words

To bridge the semantic gap, an image classification model transforms images from

the pixel level to intermediate representations before classification takes place. These

representations exist in a variety of levels, from low-level image pixels and feature

descriptors, to mid-level visual coding and high-level semantic concepts. A low-level

representation describes the perceptual appearance of an image. As it is transformed

to a mid-level representation, invariance to visual transformations may be incorpo-

rated. The objective of the mid-level representation is to integrate the low-level repre-

sentation, improve class-based discrimination and construct a single vectorial repre-

sentation for classification into high-level concepts or classes. One of the main goals

of this thesis is to improve the mid-level representations by using a visual word model

that maps between the low-level and high-level representations.

2.4.1 Pipeline of the bag-of-words model

A multi-step model known as the bag-of-words (BoW) model, which was inspired

from textual information retrieval [Salton and McGill, 1983], was adopted for content-

based image retrieval (CBIR) through the quantization of color [Ma and Manjunath,

1997] and Garbor feature vectors [Fournier et al., 2001]. Subsequently formalized for

the SIFT descriptor by Sivic and Zisserman [2003], the objective of the model is to

represent an image as a bag of visual words or features.
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To classify an image from its pixels into its semantic category, the model performs

a series of four consecutive steps, namely: 1) feature extraction, 2) feature coding,

3) pooling, and 4) classification. The pipeline of the four steps of the BoW model

is illustrated in Figure 2.15. This pipeline results in the state-of-art performances on

many image classification problems, especially for object [Fei-Fei et al., 2004; Griffin

et al., 2007] and scene [Lazebnik et al., 2006] images.
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Figure 2.15: Pipeline of the bag-of-words model. Four data transformation steps are
used to map an image from the pixel level to its semantic class.

In a typical setup, gradient-based local image descriptors, such as scale-invariant fea-

ture transform (SIFT) [Lowe, 1999], are used to describe an image. They are discrimi-

native yet robust to various image transformations. A crucial aspect of the BoW model

is the transformation from the set of local descriptors to a constant-sized image vector

used for classification. Converting the set of local descriptors into the final vecto-

rial image representation is performed by a succession of two steps: feature coding

and pooling. The feature coding step embeds the local descriptor representation into

a higher-dimensional feature space of greater complexity and potentially improves

class-wise separability. The pooling step combines local representations into a single

vector used for classification using support vector machines (SVM) [Vapnik, 1995]. A

popular method for pooling is the spatial pyramid [Lazebnik et al., 2006] with max-

pooling [Boureau et al., 2010a].

The combination of SIFT, spatial pyramids [Lazebnik et al., 2006] with max-pooling

[Boureau et al., 2010a] and SVMs [Vapnik, 1995] is a proven strategy for achieving

good image classification performances, especially when linear classifiers are used

Boureau et al. [2010a]. The main shortcoming of the BoW model is that feature coding

is generally a fixed (non-learned) and flat (single-layer) operation. The flat structure

limits the representational power of the model, while the lack of learning makes it

difficult to adapt to different data and vision tasks. Learning a good visual dictionary

to perform feature coding will be one of the main subject of this thesis.

Relation with convolutional networks. The SIFT descriptor can be perceived as

a two-stage operation of local gradient coding and spatial pooling (Section 2.4.2).

As a result, the BoW model, when seen in its entirety in Figure 2.16, corresponds

closely to the convolutional model described in Section 2.3.3, although there are some

structural differences betweeen the architectures. Essentially, the BoW model executes

a sequence of two coding-pooling operations to form the image signature – a single

vector describing the entire image – used for classification.
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Figure 2.16: Relating the bag-of-words model to convolutional networks. The four-
step pipeline of the bag-of-words model (below) that uses SIFT descriptors resembles
a convolutional network (above) with two successive convolution and sub-sampling
steps, followed by a fully connected structure.

2.4.2 Local feature extraction

Extracting low-level image descriptors is the first important step for many computer

vision models. In general, there are two approaches to characterize an image using

descriptors: globally and locally. The difference between the two is the region over

which they represent. A single global descriptor is employed to model the statistics of

the entire image, while a set of multiple local descriptors is extracted from the image,

with each descriptor representing only a small portion or patch of the image.

Various global descriptors have been proposed to represent pixels of an image without

the need for any form of image segmentation. Examples include the color histogram

[Swain and Ballard, 1990, 1991], the collection of views [Franz et al., 1998; Wolf et al.,

2002] and the GIST descriptor [Oliva and Torralba, 2001; Torralba, 2008], have been

used for various vision applications, such as scene recognition and indexing. However,

they are not invariant to image and object transformations and are ineffective for

recognizing images with clutter [Tuytelaars and Mikolajczyk, 2008].

Local descriptors, on the other hand, only describe a small part of the image and

are collectively able to overcome the limitations of global descriptors. However, the

challenge of local descriptors arise from the need to integrate the image information

extracted from various locations in the image to perform image classification. This is

where the pooling step in the BoW model is put to use.
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Local sampling strategies. Relating to the region a descriptor represents, is the lo-

cation whereby they are sampled from. For local descriptors, there are generally three

sampling choices: random sampling, keypoint sampling or dense sampling [Nowak

et al., 2006], as illustrated in Figure 2.17. Random sampling randomly selects loca-

tions and scales from which descriptors are computed. Keypoint sampling focuses on

extracting descriptors from salient locations, such as edges, corners and blobs, to pro-

mote invariance to image transformations, illumination changes and noise for object

matching [Schmid et al., 2000]. Dense sampling, on the other hand, is able to cover

the entire image by extracting descriptors uniformly across the image using a uniform

grid, which may be overlapping and have multiple scales, without bias toward any

specific portion of the image.

(a) Input image. (b) Random sampling. (c) Keypoint sampling. (d) Dense sampling.

Figure 2.17: Local descriptor sampling. Local descriptors can be sampled from an
image either randomly, using keypoints or densely across the image.

Due to its position at the start of the image classification pipeline, the resulting per-

formance is highly biased towards the choice of sampling method used. Empirically,

keypoint sampling suffers from a loss in discriminative power for classification, as

compared to dense sampling [Jurie and Triggs, 2005] and even against random sam-

pling [Nowak et al., 2006]. Dense sampling has been successfully employed on nu-

merous occasions for various image classification problems [Chatfield et al., 2011; Law

et al., 2012].

Descriptor representations. At the lowest level, the model describes the image

using a set of robust of gradient-based local descriptors, such as the scale-invariant

feature transform (SIFT) [Lowe, 1999], the speeded-up robust features (SURF) [Bay

et al., 2008] and the histogram of orientated gradients (HOG) [Dalal and Triggs, 2005].

These descriptors are invariant to various image transformations, such as geometric
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and photometric transformations, which are essential when addressing image classi-

fication problems. In this thesis, the SIFT descriptor is used in conjunction with the

BoW model, which motivates the following expanded discussion.

Scale-invariant feature transform (SIFT). The SIFT descriptor [Lowe, 1999] is one

of the most popular descriptors used for a variety of vision problems, from image

classification to 3D modeling and video tracking. When originally proposed, the SIFT

descriptor was used in conjunction with keypoint sampling based on the difference-

of-Gaussian (DoG) detector. The descriptor has since been employed separately to

characterize a local image patch. It is known to exhibit invariance towards common

image deformations such as scale, rotation and affine transformations, and changes in

illumination [Mikolajczyk and Schmid, 2005].

Figure 2.18 illustrates the process of computing the SIFT descriptor for a given image

sample point and scale. Local gradient magnitude and orientation are first computed

for all spatial positions in a grayscale image patch. They are then weighted by a

Gaussian window centered in the middle of the descriptor window. The patch is then

partitioned into a 4× 4 grid. Local image gradient information is coded into 8 possible

orientation bins and pooled into a histogram within each spatial grid. The 8 coded

orientations in the 4× 4 = 16 spatial grids combine to form the 128 dimensional SIFT

descriptor.

Patch!

Image!

Pooled local gradients:!Locally computed 
gradients!         partitions in!

8 orientation bins!
4×4

Figure 2.18: Scale-invariant feature transform (SIFT) descriptor. SIFT descriptors are
extracted from image patches sampled from the image. Local gradients are computed
and weighted using a Gaussian window (indicated by the shaded circle). From a 4× 4
spatial partition, histograms with 8 orientation bins are computed from the extracted
gradients within each partition, resulting in the 128 dimensional SIFT vector.

There are many variants to the SIFT descriptor. Conventionally, the SIFT descriptor is

computed from grayscale patches. The most obvious way to extend the descriptor is to

incorporate color information by computing image gradients over the color channels

of different color spaces, such as the red-green-blue (RGB) space, hue-saturation-value

(HSV) space and color-opponent space. The descriptor for each channel is then con-

catenated to form the final local descriptor [Van de Weijer and Schmid, 2006; Burgh-

outs and Geusebroek, 2009; Van de Sande et al., 2010].
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Another family of variants builds upon the idea of computing gradients but modifies

the spatial partitioning over which the histograms are computed. Some examples are

as follows. The PCA-SIFT does not partition the image patch, but perform dimension

reduction on the extracted gradients by using principle component analysis (PCA) [Ke

and Sukthankar, 2004]. This may possibly result in a smaller descriptor. Meanwhile,

the rotation invariant feature transform (RIFT) descriptor computes the histograms

over concentric rings, to enhance in-plane rotational invariance [Lazebnik et al., 2004].

Finally, the gradient location-orientation histogram (GLOH) descriptor uses a log-

polar grid to compute the descriptor and subsequently employs PCA to compress

the dimensionality of the descriptor [Mikolajczyk and Schmid, 2005]. This attempt

to post-process the local descriptor after it has been computed by mapping it into

another feature space leads to the coming discussion on feature coding (Section 2.4.3).

2.4.3 Learning visual dictionaries for feature coding

In the BoW model (Figure 2.15), the feature coding step transforms the local image

descriptors into a representation of visual codes. Due to visual word ambiguity [van

Gemert et al., 2010], this coding step has garnered much attention by those trying to

capture meaningful visual representations. Using a visual dictionary with J visual

words, the BoW model describes an image as a histogram of visual word occurrences.

More generally, the visual dictionary contains visual words that help project local

descriptors to another feature space for the subsequent steps in the BoW pipeline.

However, there is neither a clearly defined dictionary to relate visual representations

to semantics, nor a well established syntax to combine such visual representations.

As a result, many researchers focus their efforts on applying statistical learning tech-

niques to find a good visual dictionary from local descriptors extracted from a training

dataset (Figure 2.19). This is one of the primary objectives of this thesis.

Feature coding!

Feature 
extraction!

Image 
patch!

Visual dictionary 
learning!
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Visual !
code!
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Figure 2.19: Learning a visual dictionary for feature coding. From a set of local
descriptors extracted across images in the training dataset, a visual dictionary is
learned to perform feature coding of individual local descriptors into visual codes.
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Given an unordered set X = {xk : k ∈ [1, K]} of local descriptors xk ∈ R
I , which have

been extracted from the image dataset, the objective of the feature coding step is to

project X into a set Z = {zk : k ∈ [1, K]} of J dimensional visual code (Figure 2.20). The

reference points for this mapping are collectively stored as visual dictionary W with a

collection of J visual words wj. Formally, the projection from an image descriptor xk

to visual code zjk can be defined using an encoding function:

zjk = fe(xk, wj). (2.37)
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Figure 2.20: Visual feature coding. In this step, each of the K local image descriptors
of I dimensions is projected to a visual code of J dimensions.

Hard and soft assignment coding. Sivic and Zisserman [2003] introduced an early

attempt to learn a visual dictionary W from the SIFT descriptors in the training dataset

by using the k-means clustering algorithm [Lloyd, 1982].2 The main intuition for using

k-means to generate the visual dictionary is to summarize the training examples in

the input feature space by means using the cluster centers as reference points. Each

cluster center corresponds to one visual word wj ∈ R
I . If J cluster centers are used

to generate the dictionary, each descriptor xk can be encoded by assigning it to the

nearest visual word:

zjk = fe(xk, W) =





1 if j = arg min
̂∈{1,...,J}

‖xk −w ̂‖
2
2

0 otherwise.
(2.38)

This method coding scheme is also known as hard assignment coding, because it

performs a hard quantization based on the closest prototype, while disregarding the

density and distribution of the visual words in the feature space. More generally, any

distance metric may be used to decide on the visual word assignment. However, the

distances need to be computed for as many times as there are visual words.

2k-means is similar to the Linde–Buzo–Gray vector quantization algorithm [Linde et al., 1980].
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An alternative to hard assignment coding is the soft assignment coding scheme [van

Gemert et al., 2010]. Soft assignment aims to reduce the quantization errors and

ambiguity resulting from the hard quantization [Philbin et al., 2008]. Instead of a

hard binary quantization, the representation can take the form of distances between

the descriptors and visual words. A straightforward implementation is to employ the

softmax function that converts the distances into soft assignment weights as follows:

zjk = fe(xk, W) =
exp(−β‖xk −wj‖

2
2)

∑
J
̂=1 exp(−β‖xk −w ̂‖2

2)
, (2.39)

where β controls the softness of the selection. When β → ∞, the assignment is equiv-

alent to the hard assignment scheme. On the other end of the spectrum, when β = 0,

the coding is the concatenation of the normalized Euclidean distance between the

descriptor and each visual word. This coding may result in dense codes that lack

discrimination. An alternative is to use a hybrid assignment, known as semi-soft cod-

ing [Liu et al., 2011], that performs soft assignment coding only for a small subset of

visual words that are nearest to the descriptor.

One weakness of the model is the reliance on the simplistic k-means clustering algo-

rithm. The algorithm is not guaranteed to converge to a global optimum and may

require a very long runtime to converge [Vattani, 2011]. Moreover, the dictionaries

learned may not be ultimately effective. Even using randomly selected local descrip-

tors as the representative visual words produces respectable results in comparison

[Nowak et al., 2006; Viitaniemi and Laaksonen, 2008]. Other clustering strategies can

be adopted to learn the visual dictionary. For example, early attempts include the

use of Kohonen self-organizing maps [Kohonen, 1982] to generate the visual words

[Fournier et al., 2001]. Subsequently, a variety of other techniques were also attempted,

such as mean shift clustering [Jurie and Triggs, 2005], hierarchical clustering [Nister

and Stewenius, 2006], co-clustering [Liu and Shah, 2007] and agglomerative clustering

[Leibe et al., 2008].

In addition, rather than encoding the distance between a local descriptor and a visual

word as a single scalar value, soft assignment coding can be extended by encoding

the distance in vectorial form. One way to do this is to use Fisher vectors to capture

addition higher-order statistics of the distances between the local descriptors and the

visual words [Perronnin and Dance, 2007]. Other aggregate approaches include the

vector of locally aggregated descriptors (VLAD) method [Jégou et al., 2010] and the

super-vector method [Zhou et al., 2010]. However, these cause a huge inflation in

the representation size, where an image representation dimensionality in the order of

millions is not unexpected.
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Sparse feature coding using connectionist models. There is growing interest in

applying machine learning techniques to improve the visual dictionary. Based on the

general formulation of the encoding function (Equation 2.37), a visual word wj can

be treated as parameters directing a projection of descriptor xk to the visual code zjk.

This projection can be performed using connectionist models (Section 2.2), such as

decoder networks and restricted Boltzmann machines (RBM). These methods have

well established feature coding and parameter learning techniques as introduced in

Sections 2.2.2 and 2.2.3.

Sparse decoder networks. Consider a local descriptor xk ∈ R
I and a projection

matrix W ∈ R
I×J containing the J visual words wj. The sparse coding optimization of

the decoder network (Equation 2.16) attempts to find the vector of linear projections

z∗k ∈ R
J that explicitly minimizes the reconstruction error of the descriptor, along with

a regularization term that promotes sparse solutions:

z∗k = argmin
zk

‖xk −Wzk‖
2
2 + λ‖zk‖1 , (2.40)

where λ is a regularization constant and the ℓ1 norm is often used as a surrogate of the

ℓ0 norm, leading to a convex problem. This setup has been effectively implemented

to produce sparse codes for modeling images and has achieved positive results. [Yang

et al., 2009; Mairal, 2010; Boureau et al., 2010a; Kavukcuoglu et al., 2010]. In particular,

under the BoW model, Yang et al. [2009] used an efficient sparse coding algorithm by

Lee et al. [2007], while Boureau et al. [2010a] used the SPAM toolbox3. Extensions

to this method exploit locality constraints in the feature space to encourage spatially

local coding [Yu et al., 2009; Wang et al., 2010; Oliveira et al., 2012].

The decoder method makes it possible to learn the mapping of input descriptors

to sparse representations. However, the optimization of Equation 2.40 needs to be

solved for every descriptor. This makes inference very slow, especially when there are

many descriptors or when the visual dictionary is large (see Section 2.2.2 for further

discussion). There are various approximations that help alleviate the computational

costs. For example, Yang et al. [2010a] limited the optimization to within a component

of a mixture model. Meanwhile, Boureau et al. [2011] used a small dictionary for

sparse coding and another for pooling or incorporating locality constraints proposed

by Wang et al. [2010], but the resulting visual representation is large.

A more direct approach to avoid performing the heavy minimization step of Equa-

tion 2.40 during inference is to introduce an encoder that is concurrently learned

[Kavukcuoglu et al., 2010], resulting in an encoder-decoder network (also discussed

3http://www.di.ens.fr/willow/SPAMS

http://www.di.ens.fr/willow/SPAMS
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in Section 2.2.2). For feature coding, the encoder simply takes the local descriptor and

performs a feedforward activation based on its learned parameters.

Restricted Boltzmann machines. A restricted Boltzmann machine (RBM) [Smolen-

sky, 1986] is a special type of encoder-decoder network [Ranzato et al., 2007], which

gives faster inference than the decoder network due to the learned encoder. The model

was introduced previously in Section 2.2.3. Applied to computer vision, Lee et al.

[2009] modeled image pixel patches with a hierarchy of RBMs, which were regular-

ized to obtain low average responses Lee et al. [2008]. Convolution and sub-sampling

operators (Section 2.3.3) were used to perform spatial aggregation of representations

and handle the size of the images. These methods generally learn representations

directly from image pixels rather than local descriptors.

To encode SIFT descriptors, Sohn et al. [2011a] used Gaussian RBMs to learn repre-

sentations from SIFT, but the overall architecture is heavy because Gaussian RBMs are

relatively more difficult to train. There are also some drawbacks of the a low aver-

age responses regularization [Lee et al., 2009; Nair and Hinton, 2009], which will be

discussed in detail in Section 3.2.3.

Supervised dictionaries. Another class of methods exploit labeled data to increase

class separation through discriminative supervised loss functions, such as mutual in-

formation loss [Lazebnik and Raginsky, 2009]. The supervised learning methods may

be classified with respect to the scale in which image labels are incorporated. Some

methods directly use a discriminative criterion for each local descriptor [Mairal et al.,

2008; Jiang et al., 2011]. However, an image label usually does not propagate to every

local portion of the image, so these methods do not pose the exact image classification

problem and are more likely to suffer from noise. Other methods associate labels to

a pooled global image statistic [Yang et al., 2008, 2010b; Boureau et al., 2010a]. How-

ever, since the visual dictionary is meant to encode local descriptors, the information

has to be “un-pooled” for dictionary optimization, making the methods complex and

slow. For example, in Yang et al. [2010b], backpropagation has to be implemented

stochastically, resulting in long training times.

2.4.4 Pooling

In the pooling step, the aim is to construct a single vectorial representation v ∈ R
J

from the set of local visual codes Z ∈ R
J×K across the whole image. This image

signature has the same dimensionality across all the images of possibly different sizes

and serves as a consistent representation that can be used for image classification. The
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general pooling function, defined as

vj = fp(zj), (2.41)

transforms each visual coding dimension across the local coding instances into a single

scalar value (Figure 2.21). The concatenation of these scalar values v = [v1, v2, . . . , vJ ]
T

forms the image signature for the final classification step.
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Figure 2.21: Visual feature coding and pooling. After the coding step, each visual
coding dimension is described as a scalar value. The resulting vector is the signature
of the image used for image classification.

In the classical pooling formulation of the BoW model, average (or sum) pooling is

used to construct a histogram of occurrences of each visual coding dimension in the

image. This operation can be formulated as

vj = fp(zj) =
1
K

K

∑
k=1

zjk. (2.42)

Average pooling has been extended for the BoW model to a max pooling operation

[Yang et al., 2009]. Instead of diluting the coding by taking the average, max pooling

selects the maximum value of each dimension:

vj = fp(zj) = max
k∈{1,...,K}

zjk, (2.43)

which corresponds to an existential quantifier.

Boureau et al. [2010a] showed that max pooling outperforms average pooling, es-

pecially when linear classifiers are used. Boureau et al. [2010b] further suggested

that the best form of pooling may be an operation between average and max pool-

ing. From this, Feng et al. [2011] proposed the geometric ℓp-norm pooling, which

attempts to learn the pooling parameters discriminatively. Zeiler and Fergus [2012,



46 Deep Learning and Visual Representations: An Overview

2013] integrated the learning of a pooling operator that is specific to deep hierarchical

networks for learning feature representations. While the above pooling methods out-

put a scalar value, other work study the pooling beyond a scalar pooling method to

capture higher-order statistics using vector-based pooling Avila et al. [2011, 2013].

Spatial pyramidal pooling. If the image is large or has many local descriptors, then

pooling over the entire image may lead to significant loss in information due to the

high fan-in of each pooled code. Instead of pooling directly over the entire image, the

information loss can be reduced if the number of descriptors is reduced. For example,

if pooling is performed on one descriptor, there will be no loss due to the pooling

operation, regardless of the type of pooling employed - average or max. Inspired

by Grauman and Darrell [2005], Lazebnik et al. [2006] proposed the spatial pyramid

scheme to attenuate the loss of spatial information when pooling over the whole im-

age. The pooling scheme independently first pools information from different image

regions defined by a multi-scale spatial grid, as shown in Figure 2.22, and then con-

catenates the pooled codes to form the final image vector. In this thesis, I conduct a

preliminary study on the discriminative optimization of spatial pyramidal pooling for

the BoW model (see Chapter 6).

Scale 0!
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Figure 2.22: Spatial pyramid pooling scheme. A multi-scale grid is used to define
spatial partitions to pool the visual codes. Due to the non-overlapping structure of
the grids, a grid at a larger scale is an integration – average or max, depending on
pooling function used – of its corresponding grids in the smaller scale.

2.4.5 Maximum margin classification

The final step of the BoW model is classification. The objective is to assign a semantic

class label to the vectorial representation provided by the pooling step. Numerous

techniques have been invented to solve this classification problem through supervised
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machine learning. In this thesis, support vector machines (SVM) [Vapnik, 1995] are

employed directly as the learning tool for this purpose, but they will not be discussed

in detail beyond this section since it is not a focus of this thesis.

The SVM has two main aspects in its design. First, the SVM aims to achieve good sep-

aration between classes by finding a set of hyperplanes that maximizes the functional

margin, where the distance to the nearest training example is the greatest [Vapnik

and Lerner, 1963]. Samples that fall on the margin are known as support vectors. To

handle noisy data, a soft-margin method is introduced to allow some examples to vi-

olate the margin constraint and be mislabeled [Cortes and Vapnik, 1995]. The second

aspect creates nonlinear classifiers by applying the kernel trick [Aizerman et al., 1964]

to maximum-margin classifiers [Boser et al., 1992]. This allows the maximum-margin

hyperplanes to be fitted in a feature space that has been transformed by a nonlinear

kernel function, such as the polynomial function, the Gaussian radial basis function

and the hyperbolic tangent function.

In many BoW models that focus on the learning the visual dictionary for image classi-

fication, an SVM with a linear kernel is often used [Yang et al., 2009; Perronnin et al.,

2010; Zhou et al., 2010]. This is to objectively test the quality of the visual dictionar-

ies learned. Meanwhile, to exploit the full potential of SVMs and boost classification

performances, nonlinear SVMs could be employed [Lazebnik et al., 2006; van Gemert

et al., 2010; Avila et al., 2013]. Additionally, stochastic gradient descent have been pro-

posed for SVMs to cope with size of very large databases [Bordes et al., 2009; Bordes,

2010].

2.5 Summary and discussion

From this overview, it is clear that machine learning and computer vision are devel-

oped in close association. Vision problems serve as a good testbed for new machine

learning techniques, while machine learning tools are borrowed to enhance the per-

formances of visual models. The formalism of deep learning methods and the BoW

model is now established, allowing for their potential integration.

Learning deep visual representations. One of the main contributions of this the-

sis is the proposal of a hybrid hierarchical architecture based on RBM-trained visual

dictionaries to encode local SIFT descriptors, while exploiting the spatial pyramidal

pooling scheme to provide the vectorial representation for image classification. The

hybrid architecture merges the complementary strengths of the bag-of-words model

and deep architectures. The visual modeling power of local descriptors and pooling
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are fused with the adaptability and representational power of deep distributed rep-

resentations. In the process, various theoretical and applicational aspects of visual

coding and pooling are explored.

For shallow unsupervised learning, a new regularization that incorporates desirable

coding properties is introduced in Chapter 3. Specifically, the notion of a joint sparse

and selective regularization is proposed to enhance the quality of the learned dictio-

nary. Additionally, with deep architectures, it is necessary to implement supervised

learning strategies to boost classification performances, which will be investigated in

Chapter 4.

The proposed hierarchical architecture achieves the best image classification results

among the family of feature coding methods, on both the Caltech-101 [Fei-Fei et al.,

2004] and 15-Scene datasets [Lazebnik et al., 2006] (Chapter 5). Experiments demon-

strate the importance of supervised fine-tuning for hierarchical visual dictionaries.

Inference is also simple and fast as compared to decoder-network-based methods.

Qualitatively and quantitatively, the visual representations discovered are concise and

capture the underlying structure of image gradients of the SIFT descriptor. Some

minor gains have also been observed when attempting to optimize the pooling step

(Chapter 6).
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Chapter abstract — This chapter proposes methods to regularize unsuper-
vised learning based on the knowledge of certain desired structure of the
latent representations. The restricted Boltzmann machines will be employed
as the basic generative model to establish the proposed regularization algo-
rithm in Section 3.3.1. I will also present several regularization techniques
to encourage desirable properties to be incorporated into the latent represen-
tation. These include sparsity and selectivity in coding (Section 3.3.2) and
transformation invariance (Section 3.3.3). Preliminary studies on the effects of
these regularizers are done to understand the effects of the parameterization
and presented in Section 3.4.

These methods are based on the unsupervised learning of shallow networks.
They form the basis for performing both unsupervised and supervised learn-
ing of deep architectures, which will be presented in the next chapter. The
methods are also applied to perform visual dictionary learning of local image
descriptors, described in Chapter 5.

The material in this chapter has appeared in the following publications:

• Goh, H., Thome, N., and Cord, M. (2010). Biasing restricted Boltzmann
machines to manipulate latent selectivity and sparsity. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning. [Goh et al.,
2010a]

• Goh, H., Kuśmierz, Ł., Lim, J.-H., Thome, N., and Cord, M. (2011).
Learning invariant color features with sparse topographic restricted
Boltzmann machines. In International Conference on Image Processing
(ICIP). [Goh et al., 2011]

3.1 Introduction

L
earning from unlabeled information can help discover interesting properties

and the underlying structure of the data. When applied appropriately and

effectively, unsupervised learning can complement supervised learning for a

data classification task, especially in the absence of sufficient labeled data. One way to

improve unsupervised learning for a particular task is to inject additional information,

specified by either a priori knowledge or inductive biases [Mitchell, 1980], through the

49
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introduction of regularization. Regularization typically imposes a prior distribution

or enforces constraints on a model’s parameters during training. A suitable regular-

ization helps a model to prevent overfitting and to tackle ill-posed problems. As a

result, having an effective regularization method is almost as important as the statis-

tical learning algorithm itself and they are often employed in unison.

3.2 From neural coding to connectionist models

Our nervous system encodes sensory stimulus by using distributed patterns of elec-

trical neuronal activity. An important property of this coding is that only a subset

of neurons are strongly activated in any instance. This notion has been emulated

by various connectionist models focusing on unsupervised learning, such as decoder

networks [Olshausen and Field, 1996] (see Section 2.2.2) and restricted Boltzmann ma-

chines [Lee et al., 2008; Nair and Hinton, 2009] (see Section 2.2.3). In both biological

and computational models, there are two important properties of the coding: sparsity

and selectivity [Földiák, 2009, 2013].

For human vision and neural network models, neurons representing sensory informa-

tion, such as visual inputs, have evolved to be sparsely coded to have the following

properties:

• increased memory storage capacity [Rolls and Treves, 1990],

• minimized energy and metabolic cost [Barlow, 1989; Levy and Baxter, 1996],

• reduced network connectivity [Boos and Vogel, 1997],

• improved information efficiency [Barlow, 1989; Graham and Willshaw, 1997],

• decreased coding redundancies [Barlow, 1961, 1972], and

• enhanced pattern separability and discrimination [Mitchison and Durbin, 1989;

Rolls and Treves, 1990].

Similarly, in computer vision, sparsity in the visual representations also appears to

contribute to good performances in image classification [Lee et al., 2009; Yang et al.,

2010b].

In this section, I will clearly define sparsity and selectivity (Section 3.2.1) in terms of

both neural coding and in our context of learning latent representation. I will also de-

scribe a generic method to regularize the learning of restricted Boltzmann machines

(Section 3.2.2) and examine the merits and shortfalls of existing selectivity-based reg-

ularization methods for RBMs (Section 3.2.3). These discussions form the motivations

and set the context for the proposed extension of the regularization algorithm in Sec-

tion 3.3.1.



3.2 From neural coding to connectionist models 51

3.2.1 What is sparsity and selectivity?

Neural activity can be grouped in either the population or the lifetime domain [Will-

more and Tolhurst, 2001; Földiák and Young, 2002]. Sparsity is a property defined in

the population domain, while selectivity is characterized in the lifetime domain. The

latent representations of a connectionist model can also be described in the same man-

ner. Given a batch of input instances, the latent activations can be defined as a matrix

Z ∈ R
J×K. Each row zj represents the response of a latent variable j with respect to

the sequence of K input features, while each column zk denotes the latent represen-

tation for a given input instance k. The population domain refers to a column zk and

the lifetime domain refers to a row zj. Thus, every element zjk in this matrix belongs

to one population domain and one lifetime domain, referenced by its corresponding

column k and row j indices respectively. These concepts are illustrated in Figure 3.1.

Definitions Sparsity is a property of a single column in the activation matrix.

Given an instance k, the sparsity of the latent representation summa-

rizes the amount of collective activity of the latent vector zk.

Selectivity is a metric of a row in the activation matrix. The selectivity

of a latent variable j is an indication of its activity levels in response

to the set of input instances zj.

1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 0 0 0 1 1 0.3

2 1 0 0 0 1 0 0 0 1 0 0.3

3 0 0 0 0 0 0 0 0 1 0 0.1

4 0 1 0 0 1 1 0 0 1 0 0.4

5 0 0 0 0 0 0 1 0 1 0 0.2

6 1 0 1 0 0 0 0 0 0 0 0.2

7 0 0 0 1 0 1 0 1 1 0 0.4

8 1 0 0 0 1 0 0 0 0 0 0.2

9 1 0 0 1 1 0 1 1 1 1 0.7

10 0 1 0 0 0 0 0 1 0 0 0.2
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Figure 3.1: Definitions and terminology of sparsity and selectivity. The sparsity and
selectivity of an activation matrix Z can be simplistically measured by taking the
average activation over the columns and rows respectively. Sparsity is a property of a
collection of latent variables in response to an instance, while selectivity is a property
of a latent variable across the set of instances. (Terminology adapted from Földiák
and Young [2002] and Földiák [2009])
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Franco et al. [2007] found that the distributions neuronal recordings of neural activity

in both the population and lifetime domains fit positively-skewed long-tail distribu-

tions, such as the exponential and gamma distributions. In any given instance, most

neurons have low activity and only a few have high responses. Likewise, each neuron

fires strongly but rarely in response to a set of input stimulus.

A simple metric for describing the sparsity and selectivity is the mean activation across

their corresponding domain. As illustrated in Figure 3.1, just as the level of collective

activity of zk can range from local, to sparse and dense, the activity zj of a latent

variable across instances can also range from having high specificity (or grandmother-

cell-like) [Konorski, 1967], to being narrow and broad.
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(a) Sparsely represented but not narrowly selective.
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(c) Both sparsely represented and narrowly selective.

Figure 3.2: Importance of balancing sparsity and selectivity. Examples of latent
activations zjk show that balancing sparsity and selectivity in the representation gives
good differentiation between the instances and diversity among the latent variables.
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Using the average activation metric, the average sparsity 1
k ∑k〈zk〉 is mathematically

equivalent to the average selectivity 1
j ∑j〈zj〉, which is basically the average activation

over the whole matrix. However, beyond having the same average values [Földiák,

2009], sparsity and selectivity are not necessarily correlated [Willmore and Tolhurst,

2001]. This is nowhere more apparent than the toy examples in Figure 3.2. Fig-

ure 3.2(a) shows that latent variables need not be narrowly selective even when the

latent representation zk is sparse for every single instance k. In this case, many latent

variables either don’t respond to any instance or responds to too many instances. Like-

wise, as illustrated in Figure 3.2(b), a set of narrowly selective latent variables does not

guarantee the existence of sparse population representations. Here, the sparsity for

the instances are either too local or too dense. In both cases, the coding strategies do

little to improve differentiation between instances, with many latent variables being

too similar and redundant in their encoding.

A good coding strategy needs to strike a good balance between sparsity and selec-

tivity. Figure 3.2(c) shows one such example whereby one can observe that different

instances have dissimilar latent representations, while each latent variable responds

differently to the instances. There is diversity among the latent variables and differ-

entiation between instances. Ideally, the activity of individual latent variables should

be mostly silent, while being responsive to a few particular instances and these pat-

tern of responses across the instances should be distinctive from one latent variable

to another. Another way to perceive this is that every instance should be represented

by only a few latent variables and the representation between instances should not

be similar. When this occurs, the variance is low for sparsity across instances and

selectivity in the representation. A high variance might indicate an disparity in the

representation between instances or latent variables.

3.2.2 Generic restricted Boltzmann machine regularization

A restricted Boltzmann machine (RBM) [Smolensky, 1986] is a bipartite graphical

model that approximates the maximum-likelihood of the data distribution using the

contrastive divergence algorithm (see Section 2.2.3 for an introduction). It does not

explicitly consider the nature of the classification task. Solely using input maximum-

likelihood as the only criteria to learn the latent representations might not be the most

suitable for the task. How do we embrace a priori knowledge of the desired structure

of the latent representations during RBM training? This forms the motivation behind

regularizing the learning of the RBM.



54 Regularizing Latent Representations

The negative-log likelihood loss function of the RBM can be combined with a regular-

ization term h(z) weighted by a constant λ:

LRBM+reg = −
|Dtrain|

∑
k=1

log P(xk) + λh(z), (3.1)

where Dtrain refers to the training dataset made up of input-output pairings {(xk, yk)}.

With regularization, we are able to introduce additional information to control the

learning of the latent representation by the RBM. A straightforward way to choose a

suitable regularizer h(z) is to define it as a loss function Lreg that is differentiable with

respect to the parameters wij, thus allowing it to directly penalize the learning signal

using its gradient ∂Lreg

∂wij
:

wij := wij + ∆wij − η
∂Lreg

∂wij
(3.2)

where η is the rate of gradient descent for the regularizer. This modifies the imple-

mentation of Algorithm 2.2 to become Algorithm 3.1.

Algorithm 3.1: RBM training with a generic gradient-based regularization

1 Initialize W
2 repeat
3 Get X0 from randomized training batch
4 Sample P0(Z0|X0) // Equation 2.26

5 for n = 1 to N do // Alternating Gibbs sampling

6 Sample Pn(Xn|Zn−1) // Equation 2.27

7 Sample Pn(Zn|Xn) // Equation 2.26

8 end

9 Update wij := wij + ∆wij − η
∂Lreg

∂wij
// Equation 3.2

10 until convergence

3.2.3 Low average activation regularization

There are two existing ways to achieve selectivity1 in RBMs. Lee et al. [2008] proposed

to couple the likelihood term with a regularization term (Equation 3.1) that penalizes

the latent variables as follows:

h(z) =
J

∑
j=1

∥∥ p̃−
〈
zj

〉∥∥2
2 . (3.3)

Here, the selectivity of a latent variable is its average activation over the batch of K

training instances. The objective parameter p̃ controls the intended average latent

1In the literature, the terms “sparsity” and “selectivity” are sometimes erroneously used interchange-
ably, sometimes leading to confusion [Földiák, 2009]. We use the term “selectivity” to describe a latent
variable’s activity across instances, while Lee et al. [2008] defined “sparsity” in the lifetime domain.
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activation. Typically, p̃ is set to be a small constant value to promote low average

activation and improve selectivity. An additional penalty term is incorporated into

the original update rule (Equation 2.36) based-on the gradient of the regularization

term:

∆wij = ε
(〈

xizj

〉
data
−
〈

xizj

〉
recon

)
+ 2λ

(
p̃−

〈
zj

〉
data

) 〈
xizj

(
zj − 1

)〉
data

, (3.4)

In practice, Lee et al. [2008] does not apply any update to W and relies on set of latent

biases w0j alone to control the activation of the latent variables. However, Hinton

[2010] remarked that this may result in highly negative biases to induce the required

degree of selectivity, which is compensated by highly positive weights to ensure the

latent variables remain useful.

Another drawback of this method is that as zjk nears zero or one, the derivative of the

sigmoid function approaches zero, thus diminishing any opposing learning signal.

This may not be desirable, especially if zjk is high but should be low. Another further

simplification is performed in practice to alleviate this problem, such that the update

rule is modified to be:

∆w0j = ε
(〈

zj

〉
data
−
〈
zj

〉
recon

)
+ 2λ

(
p̃−

〈
zj

〉
data

)
, (3.5)

as reported by Ekanadham [2007], while the weight updates remain as those defined

by contrastive divergence Equation 2.36. Appendix A.2 details the process of this sim-

plification. This simplification bares similarity to the cross-entropy penalty between

the observed average activation and desired average activation used by Nair and Hin-

ton [2009]:

h(z) =
J

∑
j=1
− p̃ log qj,t − (1− p̃) log

(
1− qj,t

)
. (3.6)

where qj,t is a more complex “exponentially decaying average of the mean probability”

used to characterize the selectivity of a latent unit, defined as [see Hinton, 2010]:

qj,t = (1− τ)
〈
zj

〉
t
+ τqj,t−1, (3.7)

where t denotes the current mini-batch used for training and τ controls the rate of

decay. W is updated with the gradient of Equation 3.6, which is claimed by Nair and

Hinton [2009] and Hinton [2010] to be simply qj,t− p̃ for logistic units. This simplified

penalty term is only possible if some assumptions are made when calculating the

derivative (see Appendix A.3 for additional discussions).

Implementing these regularization methods is simple - perhaps even to the extent of

being over-simplified. So, they are susceptible to the following drawbacks.
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• Low average activation may not be selective. For a latent variable to be selective, it

should respond strongly to only a few instances and non-responsive to others.

However, these methods merely attempt to get the average activation to be low.

Even when the selectivity objective p is satisfied, the latent variable may not be

selective. An example of this occurs when zjk = p̃, ∀k ∈ K.

• Penalty does not explicitly promote selectivity. The penalty, based on a single av-

erage statistic, modifies the latent activations equally across the instances. This

is counter-intuitive to the concept of selectivity, where a variety of high and

low activations may be preferred. When
〈
zj

〉
< p̃, a more selective activation se-

quence can be obtained by discriminately increasing the higher activations, while

keeping the rest low (see Figure 3.3(a)). Similarly, when
〈
zj

〉
> p̃, the smallest

activations could have the priority to be lowered first (see Figure 3.3(b)).

• Sparsity is not guaranteed. The methods regularize for only selectivity in the

lifetime domain and do not consider sparsity in the population domain. This

leaves them potentially open to the drawbacks of a non-balanced coding scheme

as explained in Section 3.2.1 and illustrated in Figure 3.2(b), such as having

indistinguishable latent variables or overly broad or local coding.

Section 3.3 proposes a method to overcome the limitations above.
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After low-average penalty!

Penalty that promotes selectivity!

〈

zj
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〉
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〉

(a) When
〈
zj

〉
< p̃.

Original signal!

〈
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Penalty that promotes selectivity!
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(b) When
〈
zj

〉
> p̃.

Figure 3.3: Explicitly promoting selectivity. For both cases, where (a)
〈
zj

〉
< p̃ (left)

or (b)
〈
zj

〉
> p̃ (right), an average-based penalty gets 〈zj〉 to match p by shifting all

activations equally but does not explicitly promote selectivity. However, the same
〈zj〉 can be obtained by increasing the higher activations and decreasing the lower
activations, leading to a more selective activation pattern. Although the final 〈zj〉 is
the same, their activation distributions are very different.
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3.2.4 Sparsifying logistic

A selective activation sequence can be generated by the sparsifying logistic function

[Ranzato et al., 2006]. The function implicitly regularizes the parameters when train-

ing a decoder network (Section 2.2.2). Although the regularization is different, from

the methods described for RBMs above, it is useful to study it because it generates

spike-like activations that deals with the limitations of the low-average-based regu-

larization. The function transforms the activation of each latent variable based on an

exponentially decaying weighted sum of historic activation values:

ẑjk =
η exp(zjk)

ζ j(k)
with ζ j(k) = η exp(βzjk) + (1− η)ζ j(k− 1), (3.8)

where η ∈ [0, 1] controls the level of selectivity by determining the number of instances

to sum over, while β controls the softness of this softmax function. For large values of

β and small values of η, brief punctuated activations in time is generated.

However, due to the exponential temporal weighting, the activation is not indepen-

dent of the activation sequence. The same set of activations presented in a different

sequence may produce different transformed outputs for the same activation level. As

a result, the ordinality of the activation levels in the set is not preserved.

3.3 Representation regularization and regularizer design

In this section, a new regularization function is proposed, which is formulated such

that there will be more control over the regularization process (Section 3.3.1). Fur-

thermore, the function is generic enough to allow for different types of regularizers

to influence the learning of the latent representations, which will be described from

Sections 3.3.2 and 3.3.3.

3.3.1 Point- and instant-wise regularization

Consider an activation matrix Z ∈ R
J×K, with each row zj representing the response

of a latent variable with respect to the set of K input features, while each column zk

denoting the latent representation for a given input instance k. To gain a more pre-

cise control when manipulating the learning of the latent representations is to bias

the activations for each latent variable j (point-wise) given each training example k

(instance-wise). Biasing each point-instance configuration zjk gives control over indi-

vidual elements in the activation matrix R. This can be achieved by specifying a target

activation matrix P ∈ R
J×K, where pjk ∈ [0, 1] for a binary RBM.
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A regularizer h(z) from Equation 3.1 can be defined using the cross-entropy loss,

summed over J latent variables and the dataset, which equates to

h(z) = −
|Dtrain|

∑
k=1

J

∑
j=1

log P(pjk|zjk)

= −
|Dtrain|

∑
k=1

J

∑
j=1

pjk log zjk + (1− pjk) log(1− zjk), (3.9)

for binary latent variables. Minimizing the cross-entropy between the P and Z penal-

izes activations that are different from the target activations. Merging the gradient

of the cross-entropy loss with the original RBM contrastive divergence learning rule

(Equation 2.36), the regularized parameter updates can be written as follows:

∆wij = ε
(〈

xisj

〉
data
−
〈

xizj

〉
recon

)
, (3.10)

where

sjk = (1− φ) zjk + φpjk, (3.11)

is the modified activation matrix used to update the parameters. It is defined as

an element-wise weighted sum between a latent activation zjk and its corresponding

target activation pjk. Please refer to Appendix A.1 for the derivation of the new RBM

learning rule with regularization.

Meanwhile, alternating Gibbs sampling is still performed between the two layers to

estimate the equilibrium distribution of the model. As illustrated in Figure 3.4, since Z

and S are the same size, the regularization retains the form of the original contrastive

divergence update rule (Equation 2.36). This regularization is extremely versatile, as it

is able to penalize the RBM learning based on any target representation. In this sense,

the job of regularizing the representation is shifted to the design of suitable targets P.

Here, φ is a hyperparameter. The influences of pjk and zjk are regulated by φ. If φ is

constrained to be between 0 and 1, then sjk ∈ [0, 1] can be seen as the revised activation

probability of zjk. When φ = 0 or if the target activation is matched (i.e. zjk = pjk),

then the parameter updates simplify to those of the original contrastive divergence

learning algorithm.

From the new update rule (Equation 3.10), a new optimization algorithm (Algo-

rithm 3.2) can be developed. The regularization manifests in four steps. First, al-

ternating Gibbs sampling is performed like in a conventional RBM (Lines 5 to 8). The

target P is then obtained (Line 9) and combined with Z0 to form S (Line 10), which in

turn is used to update the RBM’s parameters (Line 11). This process is iterated until a

stopping criterion is met.
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By using targets P to update the RBM’s parameters W, the algorithm is perfectly suited

for alternating optimizations between P and W, if required. This is similar to the train-

ing algorithm for decoder networks (Section 2.2.2), where an alternating algorithm is

useful when there are dependencies between the representation and parameters and

both needs to be optimized.
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Figure 3.4: Point- and instant-wise regularization. The latent activation matrix zdata

is merged with the target matrix P via a weighted sum modulated by a hyperparam-
eter φ to produce a modified activation matrix S, which will be used for parameter
updates. Meanwhile, alternating Gibbs sampling is still performed from Zdata to
estimate the equilibrium distribution.

Algorithm 3.2: RBM training with point- and instance-wise regularization

1 Initialize W
2 repeat
3 Get X0 from randomized training batch
4 Sample P0(Z0|X0) // Equation 2.26

5 for n = 1 to N do // Alternating Gibbs sampling

6 Sample Pn(Xn|Zn−1) // Equation 2.27

7 Sample Pn(Zn|Xn) // Equation 2.26

8 end
9 Get P // See Sections 3.3.2 and3.3.3

10 Compute S = (1− φ)Z0 + φP // Equation 3.11

11 Update wij := wij + ε(〈xisj〉data − 〈xizj〉recon) // Equation 3.10

12 until convergence

3.3.2 Generating jointly sparse and selective representations

The motivation of balancing sparsity and selectivity in the latent activity matrix has

been explained in Section 3.2.1. Enforcing sparsity promotes instance-wise competi-

tion and lateral inhibition between the latent variables. Imposing selectivity avoids

over-dominance of the instances by any individual latent variables, while avoiding
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having silent ones. Meanwhile, it is worthwhile to extend the existing selectivity reg-

ularization methods (Section 3.2.3) to overcome their drawbacks. In this section, I

propose a method to construct a target activation matrix P ∈ R
J×K as inputs to the

point- and instance-wise regularizer described in Section 3.3.1.

As previously mentioned in Section 3.2.1, neural activity in both the population and

lifetime domains fit positively-skewed long-tail distributions, such as the exponential

and gamma distributions. In our context, the target matrix P can be designed by

fitting the latent activations to such distributions in both the columns and the rows to

achieve sparsity and selectivity. As a result, in each domain, there will be some latent

activations that will be highly activated, while most will be silent.

Selectivity in the rows. For a latent variable to achieve selectivity, the K-dimensional

data for each row of activation probabilities zj is transformed via a two step procedure

(Figure 3.5).

Step 1 transforms the original activation sequence (Figure 3.5(a)) into a normalized

uniform distribution (Figure 3.5(b)). The fractional rank for each element relative to

its row is calculated. The smallest element is mapped to 1, the largest the value of

K and the mean of the ordinal ranking is assigned in the event of a tied. The values

are scaled to the interval of [0, 1], where the smallest and largest values are assigned
1

2K and 2K−1
2K respectively. The data transformation for the vector zj can be written as

follows:

ẑj = norm_rank(zj) =
1
K
(rank(zj)− 0.5), (3.12)

where rank(·) ∼ U(1, K) is computed for each element in the vector and normalized

across the entire vector, resulting in ẑj ∼ U(0, 1).

Step 2 maps the resulting activations of step 1 to a positively-skewed long-tail distri-

bution (Figure 3.5(c)). The following power law distribution is chosen for this mapping

to keep the result in the original interval:

pj = ẑγ
j =

(
norm_rank(zj)

)γ , (3.13)

where γ is used to create the power law expression and control the desired selectivity

level, and ẑj = norm_rank(zj) is the vectorial result of step 1. A more intuitive param-

eter to express the level of selectivity is to use the target mean activation of a latent

variable

µ =
∫ 1

0

(
ẑj ∼ U(0, 1)

)γ
dẑj =

1
γ + 1

. (3.14)
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(a) Original activation signal.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

  0    5    10   15   20   25   35   40!

(b) Step 1: rank and scale the activations.
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(c) Step 2: transform the ranked signal to fit a long-tailed distribution.

Figure 3.5: Transforming a sequence of latent activations to their targets. A succes-
sion of two transformation steps is performed to obtain the target activation pj from
zj. For illustrative purposes, the sequence of latent activations on the left is sorted in
an ascending order of their activation level (middle) and its histogram is displayed
on the right. (a) The original activation sequence may take the form of any empirical
distribution. (b) Step 1 ranks the signals and scales them between 0 and 1, resulting
in a uniform distribution within that interval. (c) Step 2 maps the ranked signals to
fit a predefined long-tailed distribution to obtain pj.
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Figure 3.6: Activation mapping curves and their activation sequences. (Left) Curves
for power law distributions that map an input activation to an output activation. The
different curves are obtained by varying the target mean activation µ in the power
law expression. (Right) An example of how the form of an activation sequence varies
with µ.
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This updates the data transformation equation to:

pj =
(
norm_rank(zj)

) 1
µ−1 , (3.15)

where µ ∈ ]0, 1[. If µ < 0.5, the uniform distribution is mapped to one that is posi-

tively skewed and the code is more narrowly selective. As µ is reduced, the activation

strength and frequency are decreased. Figure 3.6 shows the activation mapping curves

and activation behavior with varying values of µ. From a coding perspective, µ dic-

tates the amount of feature sharing and differentiation between instances.

This two-step operation leads to a direct solution for selectivity without the need

for any heavy optimization step. Those familiar with image processing, will find it

similar to performing histogram equalization followed by a gamma correction, with a

expansive gamma for increased selectivity.

Instead of merely getting the RBM to have low average activations (Section 3.2.3),

the activations are selectively and individual biased such that each row collectively

forms a positively skewed distribution, with only a few highly activated responses.

Unlike the sparsifying logistic (Section 3.2.4), the proposed data transformation is

independent of the temporal order of instances within the training batch and preserve

the ordinal ranking of the activation levels in each row.

Sparsity in the columns. The columns of matrix Z can be sparsified in the same

way the rows were made selective. A set of J activations in each column could be

transformed with a similar formulation as Equation 3.15:

pk = (norm_rank(zk))
1
µ−1 . (3.16)

Now, µs is the intended mean activation of the set of J latent variables in response to

a given instance k. From a coding perspective, µ controls the amount of similarity and

differentiation between the latent variables in the population.

Combining selectivity and sparsity. According to Willmore and Tolhurst [2001],

sparsity and selectivity are not highly correlated. This means that achieving selectivity

does not guarantee that the representations are sparse, and vice versa (see Figure 3.2

and explanation in Section 3.2.1). Hence, there is a need to combine both properties

into the target matrix P.

I found that neither transforming zjk based on its relative rank in the matrix Z, nor

taking the Hadamard product of the objective matrices Psparse ◦ Pselective, were effective

in producing a desirable target matrix. Instead, repeatedly performing column-wise
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sparsification (Equation 3.16) followed by inducing row-wise selectivity Equation 3.15,

for a number of repetitions R, yields a target matrix P that is both sparse and selective.

In practice, due to the iterative nature of RBM training, one alternating pass was per-

formed for each iteration (R = 1). The algorithm for regularizing the RBM integrated

with the sparse and selective data transformation is described in Algorithm 3.3.

Unlike the other previous methods [Lee et al., 2008; Nair and Hinton, 2009], both

selectivity and sparsity can now be induced by when training RBMs. By inducing both

selectivity and sparsity, the regularizer attempts to more explicitly associate specific

latent variables to specific instances till done in a purely unsupervised manner.

Algorithm 3.3: RBM with jointly sparse and selective regularization

1 Initialize W
2 repeat
3 Get X0 from randomized training batch
4 Sample P0(Z0|X0) // Equation 2.26

5 for n = 1 to N do // Alternating Gibbs sampling

6 Sample Pn(Xn|Zn−1) // Equation 2.27

7 Sample Pn(Zn|Xn) // Equation 2.26

8 end
9 for r = 1 to R do // Sparse and selective data transformation

10 for k = 1 to K do // Sparsify instances

11 Compute p̂k = (norm_rank(zk))
1
µ−1

// Equation 3.16

12 end
13 for j = 1 to J do // Selectivity transform on latent variables

14 Compute pj =
(
norm_rank(p̂j)

) 1
µ−1

// Equation 3.15

15 end
16 end
17 Compute S = (1− φ)Z0 + φP // Equation 3.11

18 Update wij := wij + ε(〈xisj〉data − 〈xizj〉recon) // Equation 3.10

19 until convergence

3.3.3 Inducing topographic organization

In the previous section, I proposed a method to use the point- and instance-wise reg-

ularization (Section 3.2) to achieve jointly sparse and selective latent representations

(Section 3.3.2) for the purpose of improving representational discrimination between

instances and latent variables. This section demonstrates the generality of the regular-

ization method by extracting the intrinsic similarity between the latent variables from

the input data. This is done by organizing the latent variables into a 2D lattice, known

as a topographic map. The objective of topographic organization is to learn repre-

sentations that exhibit low-level invariance to various image transformations, such as

translation, rotation and scaling, and other distortions, such as illumination variations.



64 Regularizing Latent Representations

A two-layered network to model the sparsity and topological organization of simple

and complex cells was introduced by Hyvärinen and Hoyer [2001]. In their model, the

connections from the inputs to the first layer are learned weights, while the connec-

tions between the first and second layers are fixed such that energies of units in layer

one are locally pooled. The output of layer two is maximized for sparseness and then

used as a signal to learn the weights between the input layer and layer one.

A similar two-layered scheme is adopted as shown in Figure 3.7. Latent variables zk

are first activated by an input image patch xk. The activations are organized into a

2D feature map and a new set of spatially pooled activations p̂k is computed. Subse-

quently, selectivity and sparsity, as described in Section 3.3.2, are introduced to obtain

targets P from P̂, which is used to regularize updating of parameters for the RBM

using the point- and instance-wise regularization (Section 3.2).
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Figure 3.7: Framework for inducing topographical organization. From a batch of K
image patch inputs Xdata, the latent variables are activated Zdata via learned weights.
The latent activations are organized into a 2D topographic feature map P̂ and locally
pooled via fixed weights. Subsequently, selectivity and sparsity are induced to obtain
P. Finally, P is used to regularize the learning of the RBM parameters using a point-
and instance-wise regularizer.

As shown in Figure 3.7, the latent activations are organized into a N × N feature

map P̂. A topographic organization is structured by introducing spatial dependencies

between neighboring latent variables. Each p̂jk pools activations from its local neigh-

borhood. This has the same effect as convolving a K-dimensional local filter over the

stack of K topographical maps. One way to implement this is to enforce the topogra-

phy through a fixed set of pooling weights ω (j, ̂ ) between two latent variables j and

̂. The topographic activations p̂jk are computed as

p̂jk =
J

∑
̂=1

z ̂ kω (j, ̂ ) (3.17)

where ω (j, ̂ ) is a neighborhood function based on the topographic distance between

two latent variables j and ̂. A Gaussian kernel with wrap around was used for this
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work. Figure 3.8 shows an example of a resulting topographical map as compared to

an independently coded one without spatial dependencies.

(a) Independent coding (b) Topographic coding

Figure 3.8: Comparing independent and topographic coding. Each grid shows the
activation of a latent variable in the feature map, where a darker color denotes a
higher activation. (a) Independent coded activations of the original model have no
spatial structure. (b) After topographic organization is introduced, the latent activa-
tions are mutually supportive and spatially clustered.

3.4 Representation regularization experiments

This section describes experiments performed and provides both qualitative and quan-

titative analysis on regularizing latent representations. The objectives of the experi-

ments are to demonstrate the transfer of representational properties from the target

matrix to the model, provide an understanding of the effects of model parameteriza-

tion and reinforce the importance of the various regularizers.

3.4.1 Visualization: modeling natural image patches

Through the latent layer, RBMs are able to model the interactions between input di-

mensions. As a result, they are suitable for extracting the underlying structure in

images. The result of the learning can be visualized to have an understanding of the

structure of the parameters learned.

Experimental dataset and setup. An RBM, regularized with sparse and selective

targets, is trained to model the statistics of natural image patches from the Kyoto

natural images dataset [Doi et al., 2003]2. The dataset contains a set of 62 calibrated

natural images corresponding cone photoreceptor responses separated into three com-

ponents: long-cone, medium-cone and short-cone. As recommended by the authors

of the dataset, only the long components were used to generate grayscale samples.

2http://www.cnbc.cmu.edu/cplab/data_kyoto.html

http://www.cnbc.cmu.edu/cplab/data_kyoto.html
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To form the training set, 100, 000 patches of size 14× 14 pixels were randomly sam-

pled from the 62 images in the dataset. The RBM disregards spatial layout of the

input dimensions, even when the inputs are spatially consistent image patches. In-

stead, it tries to learn to discover this structure automatically through learning. The

image patches (14× 14 pixels) were reshaped to a single vector of size 196. The RBM

with 196 input dimensions and 400 latent variables was initialized and trained. Each

cycle through the entire dataset is denoted as an epoch. A total of 100 epochs were

performed to learn the weight parameters of the network.

Visualization of weight parameters. The vector of parameters wj ∈ R
196 used to

project the input to the latent variable zj can be visualized as a filter in the original

image space. Reversing the process in which the input vector is reshaped from the

image patch, the filter can be formed by reshaping the 196-dimensional weight vector

wj into a 14× 14 structure. This can be perceived as filter over the entire input image

space, as illustrated in Figure 3.9. When this is done for all J latent variables, then the

collection of filters is known as a filter bank.
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Figure 3.9: Visualization of weight parameters as a filter. The weight parameters wj

corresponding to a latent variable zj can be projected back and reshaped to the input
image space and visualized as a filter.

A filter bank of all 400 filters was visualized. Figure 3.10 shows the evolution of the fil-

ters during training. Figure 3.10(a) shows the initial random parameters for the RBM.

At the end of the training, a bank of Gabor-like filters, as shown in Figure 3.10(d), were

learned from the natural image patches. The filters exhibit Garbor-like tuning with a

diverse combination of appearances in terms of orientation, spatial position and spa-

tial frequency. This result is visually consistent with other related methods [Ranzato

et al., 2006; Lee et al., 2008; Doi and Lewicki, 2005; Teh et al., 2004; Olshausen and

Field, 1996].
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(a) Initial filters (before training).

(b) At epoch 1.

(c) At epoch 10.

(d) At epoch 100.

Figure 3.10: Filter bank of a sparse and selective RBM. Each square represents a visu-
alized filter of the weight vector corresponding to a latent variable. The appearance
of the filters evolve during the process of learning from natural image patches, from
(a) initialization through to the (d) final epoch.

3.4.2 Experiment: modeling handwritten digit images

Experimental dataset. The MNIST handwritten digit dataset [LeCun et al., 1998]

was used to conduct studies on the effects of parameterization on an image classi-

fication task with sparse and selective regularizers. The dataset contains images of

handwritten digits of 28× 28 pixels each (Figure 3.11). It is split into 60, 000 training

and 10, 000 test images. Each image belongs to one of ten classes, corresponding to a

digit: {“0′′, “1′′, “2′′, “3′′, “4′′, “5′′, “6′′, “7′′, “8′′, “9′′}.

Figure 3.11: MNIST handwritten digit dataset. The dataset consists of handwritten
digit images, each belonging to one of ten classes.
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General setup and objectives. In the experiments, RBMs with 784 input dimen-

sions and 1, 000 latent variables were used to model the images. When trained using

an RBM, which had been jointly regularized with sparsity and selectivity using a

suitable parameterization, the learned filters appear to encode localized handwritten

strokes, as shown in Figure 3.12.

Figure 3.12: Examples of filters learned by an RBM regularized with sparse and
selective targets, when trained on handwritten digit images.

The desired mean latent activation µ was the main parameter varied and its effects

were analyzed. With a varying µ, two studies with the following objectives were con-

ducted.

1. Regularizer induction. Verify that selectivity and/or sparsity in the target matrix

have been transferred to the representations encoded by the learned parameters.

2. Representational discrimination. Understand the relationship between the level of

selectivity and sparsity induced and the amount of class-based discrimination in

a supervised task.

In both studies, RBM training was performed on the training set, while the test set

was used for empirical analysis.

Regularizer induction. This study seeks to verify that the representational proper-

ties of selectivity and sparsity from the target matrix P are being transferred to the

RBM parameters during learning. This study also aims to show the importance of

having a jointly sparse and selective regularizer over a regularizer that has only one

of those properties.

Evaluation metric. RBMs with different values of µ between 0 and 1 in regular

intervals of 0.1 were trained. The boundary values of 0 and 1 were replaced by 0.001

and 0.999, since µ cannot be set as 0 or 1. The amount of induced sparsity and

selectivity were measured for the different parameterization settings. The amount of

selectivity and sparsity for a set of activations were measured using the activity ratio

[Treves and Rolls, 1991], which accounts for the length of the tail of the distribution
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of activations. Given an activation row zj ∈ R
K, its selectivity can be described by the

activity ratio

aj =

(
1
K ∑

K
k=1 zjk

)2

1
K ∑

N
k=1 z2

jk

, (3.18)

where aj ∈ [0, 1]. Similarly, an activation column zk ∈ R
J can be measured as

ak =

(
1
J ∑

J
j=1 zjk

)2

1
J ∑

J
j=1 z2

jk

. (3.19)

An activity ratio nearer to 0 indicates either a representation with a more local sparsity

or a higher specificity. The mean and variance of aj across the 1, 000 latent variables

and mean and variance of ak over the 10, 000, were recorded as 〈aj〉 and 〈ak〉 respec-

tively.

Evaluation results and discussion. Using input data from the MNIST test set, the

activity ratios for both the rows and the columns of activation matrix Z ∈ R1,000×10,000

were measured as the target µ was varied. As shown in Figure 3.13(a), as µ decreases,

both activity ratios mimic the decrease. This monotonic relationship implies that the

properties of selectivity and sparsity have been transferred from the target activations

to the parameters.

Selective but not sparse. Regularizing the RBM with only selectivity results in activity

ratios with a large spread in the population domain (Figure 3.13(b)). With a large ac-

tivity ratio spread for sparsity, there will be more instances that are locally or densely

coded rather than sparsely represented. Explicitly increasing the selectivity improves

differentiation between the instances, but not necessarily make the latent variables

more distinguishable from each other.

Sparse but not selective. Conversely, regularizing only for sparsity results in a high

activity ratio variance in the lifetime domain (Figure 3.13(c)). This means that the

latent variables may have high specificity or broad tuning. Given a set of input in-

stances, there may be some latent variables that responds too often or are too silent.

Controlling the sparsity does not automatically result in the control of the tuning of

the selectivity.

Jointly sparse and selective. A jointly sparse and selective regularizer reduces the num-

ber of overly active or silent units, and superfluously or inadequately represented

instances. This is evident in Figure 3.13(a), whereby the variance of activity ratios

are low for both sparsity and selectivity. Please refer to Section 3.2.1 for a theoretical

discussion of this phenomenon.
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(b) Regularized with only selectivity.
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(c) Regularized with only sparsity.

Figure 3.13: Analysis of activity ratios with respect to the target mean µ. (a) Both
sparsity and selectivity decrease in relation to µ, showing a transfer in representation
from the target to the actual latent activations. As a reference, the activity ratios
for the unregularized RBM are plotted. (b) By regularizing only for selectivity, the
spread of activation ratios in the population domain is high. (c) Regularizing only for
sparsity results in high variations in the lifetime domain. (a) In contrast, the jointly
regularized representations have low variances in activity ratios.

Representational discrimination. Does the level of sparsity and selectivity induced

in the representation improve discrimination for a supervised task? This is the main

question that will be empirically evaluated in this study. This can again be done by

varying µ. The study was conducted in the range of 0.001≤µ≤0.12.

Evaluation metrics. Two metrics were used to understand the relationship between

the amount of selectivity and sparsity induced and the amount of class-based dis-

crimination in a supervised task. Let y ∈ R
C be the vector of one-hot coded outputs

corresponding to the ground truth class label (here, C = 10).

The first metric is the information entropy. For each latent variable, the amount of

activation per class c is totaled across the K samples (K = 10, 000) and normalized
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across the C classes to get its class-wise response probabilities

P(zj,c) =
1
ζ

K

∑
k=1

zjkyc (3.20)

where ζ is a normalization constant such that the responses sum to 1. The Shannon

entropy Hj of each latent variable is then computed as and averaged across the J latent

variables (J = 1, 000) to get

〈Hj〉 = −
1
J

J

∑
j=1

Hj = −
1
J

J

∑
j=1

C

∑
c=1

P(zj,c) log P(zj,c). (3.21)

This metric indicates the level of class-based uncertainty for the latent variables. If

〈Hj〉 is low, the latent variables encode fewer classes each, while a high 〈Hj〉 points to

each latent variable being shared across more classes.

The second metric is classification error, which is the defacto evaluation metric for

the MNIST dataset. The class-wise specificity and the image classification results

were analyzed for the learned representations with different parameterization of µ.

A perceptron with softmax activation units (see Section 2.2.1) was added on top of

the latent layer. The perceptron was trained from the activations of the latent layer,

without updating the weights through backpropogating, so as to isolate and study

the effects of the regularization alone. For evaluation, the classification error rate was

computed.

Evaluation results and discussion. From Figure 3.14(a), a monotonic relationship

of 〈Hj〉 with respect to µ was observed. When µ is lowered, the number of instances

a latent variable responds to will also decrease, which tends to lower the number of

classes the latent variable is selective towards. In the extreme case, when µ is so low

such that a latent variable becomes so highly specific that memorizes a single instance

[Gross, 2002], which means it also encodes only that one class and 〈Hj〉 is the lowest.

Figure 3.14(b) shows that the relationship between the classification error and µ is no

longer monotonic. For this dataset, the regularized RBM achieves better result than

the standard RBM in the approximate range of 0.01 ≤ µ ≤ 0.1. The model has poor

generalization when µ nears 0 as units encode individual instances too specifically, but

has poor discrimination power when µ is too high. Interestingly, the best classification

performance of this simple semi-supervised method without fine-tuning is compara-

ble to other reported results using methods with similar complexity, yet completely

supervised approaches [LeCun et al., 1998]. It is, therefore, important to select a suit-

able regularization method and parameters when performing image classification.
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Figure 3.14: Discriminative performance of the regularized RBM. (a) 〈Hj〉 varies
monotonically with µ. (b) Classification error is minimum when µ is low, but not at
its lowest. There is a range of µ whereby regularization helps improve the model.

3.4.3 Experiment: modeling color image patches

The objective of this experiment is to model color image patches using an RBM with

sparse, selective and topographic regularization. The resulting feature map can be

analyzed based on their ability to encode visual appearances within the topographic

structure. The model can subsequently be analyzed based on its representations’

invariances to various image transformations, such as translation, rotation, scaling, as

well as illumination color changes. Thus, a suitable color dataset needs to be selected.

Training dataset and setup. The McGill Calibrated Colour Image Database [Olmos

and Kingdom, 2004] was selected for its variety in natural objects (Figure 3.15). A

set of 100, 000 image patches of size 10× 10 were randomly sampled from the images

in the dataset. Each patch had three color channels: red, green and blue. The RBM

used to model the patches consists of 300 input dimensions (10× 10 pixels in 3 color

channels) and 400 latent variables. The latent variables were structured in a two-

dimensional 20× 20 feature map.

Figure 3.15: McGill calibrated color image database. The dataset consists of 9 cate-
gories, namely: “flowers”, “animals”, “foliage”, “textures”, “fruits”, “landscapes”, “win-
ter”, “man made” and “shadows”.
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The resulting topographic feature map is shown in Figure 3.16(a). Although the learn-

ing of grayscale topographic maps have been previously demonstrated by other sim-

ilar models [Hyvärinen et al., 2001; Welling et al., 2003; Kavukcuoglu et al., 2009], to

my knowledge, this is the first topographic feature map that models color visual in-

formation. As a comparison, another RBM with 400 latent variables was also trained

without topographic regularization. The resulting feature map of this second RBM is

shown in Figure 3.16(b).

Analysis of topographic feature map. The topographic feature map (Figure 3.16(a))

consists of Gabor-like filters with smoothly varying appearances, as opposed to the

feature map without topographic regularization (Figure 3.16(b)). Gabor functions

were fitted to the filters of the feature map to separately analyze their visual com-

ponents of orientation, spatial position and spatial frequency, as presented in Fig-

ure 3.17. One observes a smooth transition of appearance between neighboring filters

in the feature map for orientation, spatial position and spatial frequency. There is

also an emergence of various neurological orientation coding phenomenon, such as

orientation pinwheel structures, iso-orientation lines and in the orientation map (Fig-

ure 3.17(a)).

The filter map also exhibits spatial clustering by color in terms of the mean saturation

of the filter. This is shown in Figure 3.17(b). Some filters exhibit the phenomenon

of color-opponency, while others encode a single color. The predominant opponent

pairs are red-green, yellow-blue and black-white. Comparing Figure 3.17(b) and Fig-

ure 3.17(a), each color-opponent pair has filters with a variety orientation coding.

Joint analysis with Figure 3.17(d) indicate that while color-opponent filters tend to be

of lower frequency, there are also some single-colored filters – mostly green, cyan and

violet – with high frequency textured appearances.

In Figure 3.18, the correlation between neighboring filters is analyzed in terms of

different components of their appearance. Strong correlations between neighboring

latent variables are observed. For example, Figure 3.18(a) shows the scatter plot of

the orientation of a each filter in the x-axis, against the orientations of each of its four

neighbors in the y-axis. Many points in the plot fall near to the diagonal axis, which

represents a perfect correlation between appearance of a pair of neighbors.3 A similar

correlation is observed for the components of frequency (Figure 3.18(c)) and spatial

position (Figure 3.18(b)).4

3Note that orientation angle from 0 to π wraps around on both axis, thus the points at the top-left
and bottom right of the figure indicate a positive correlation.

4Note that the spatial position correlation has many boundary cases due to the Gabor fitting method
selecting centroid positions way beyond the boundary of the filter size.
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(a) Topographic feature map (b) Independent feature map

Figure 3.16: Feature maps learned with topographic and independent regularizers.
(a) The topographic map has an inherent spatial structure. (b) The independent one
appears to be randomly organized.
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Figure 3.17: Analysis of appearance components in the topographic feature map.
Appearance of filters vary smoothly across the feature map when broken down
to their component properties of (a) orientation, (b) color, (c) spatial position and
(d) spatial frequency.
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Figure 3.18: Neighboring correlations in the topographic map. The topographic
feature map shows strong correlation in appearance between spatial neighbors with
respect to each visual component. (a) orientation, (b) spatial position and (c) spatial
frequency.

Evaluating representational invariance. The trained model was evaluated based

on its invariance to various image transformations (translation, rotation, scaling) and

changes to illumination color.

Constructing evaluation datasets. For image transformations, new patches were

sampled from the McGill database. Image patches of varying degrees of transfor-

mation, relative to a non-transformed patch, were sampled from the datasets. An

evaluation batch for rotation consists of 13 patches sampled about a fixed point with

rotation ranging from −30 to 30 degrees at 5 degree intervals. The samples for trans-

lation were drawn via horizontal translations from −3 to 3 pixels. For scaling, a

progressive scaling factor of 1.1× was used to up-sample and down-sample an image

patch for 4 scale intervals in either direction.

To evaluate invariance to illumination color, another dataset – the Amsterdam library

of object images (ALOI) dataset [Geusebroek et al., 2005] – was used. Specifically, the

subset of images used were produced by photographing objects under different illu-

mination color temperature in a controlled environment (see Figure 3.19). To obtain

samples with varying illumination color, a set of patches was sampled from the same

image coordinate of different images photographed under different illumination tem-

perature (from 2175K to 2975K). For this, 5 warmer and 5 cooler temperature images,

relative to the neutral temperature at 2550K, were used.

For each evaluation task, 500 evaluation batches were extracted, each consisting of

a set of patches sampled via transformations for the given task. The details of the

evaluation batches are summarized in Table 3.4.
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Figure 3.19: Examples of images photographed under different illumination color
from the Amsterdam library of object images (ALOI) dataset. Images were pho-
tographed under a controlled environment with different illumination temperature
ranging from 2175K to 2975K.

Table 3.4: Evaluation batches for invariance analysis.

Rotation angle Horizontal Scaling Illumination
(degree) translation (pixel) factor temperature (K)
−30





−25 2175K
−20 1.1−4 2250K Negative
−15 −3 1.1−3 2325K transformation
−10 −2 1.1−2 2400K
−5 −1 1.1−1 2475K
0 0 1 2550K – No transformation
5 1 1.1 2625K





10 2 1.12 2675K
15 3 1.13 2750K Positive
20 1.14 2850K transformation
25 2975K
30

13 samples 7 samples 9 samples 11 samples

︸ ︷︷ ︸ ︸ ︷︷ ︸
McGill database ALOI dataset

Evaluation results and discussion. For every input patch, the latent representation

was recorded. To quantitively measure invariance of each transformation t in an eval-

uation batch k, the mean squared difference MSDk(t) between the transformed z(t)

and untransformed z(0) representations. The MSDk(t) for the transformation was

then averaged across the K evaluation batches (K = 500):

Average MSD(t) =
1
K

K

∑
k=1

MSDk(t) =
1

JK

K

∑
k=1

J

∑
j=1

(zjk(0)− zjk(t))
2. (3.22)

The results are plotted in Figure 3.20.
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For every type of transformation, when the transformation is low, topographic rep-

resentations are more invariant than independent ones. This means that the latent

representation of a slightly transformed input is a closer match to the untransformed

one. As the amount of transformation increases, the representation gradually shifts

and the difference between the representations increases. There is little difference

between the two models under large transformations, with both producing represen-

tations with more differences as the amount of transformation increases.
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Figure 3.20: Empirical analysis of representational invariance. Comparing the invari-
ance between representations of the topographic and independent models for (a) ro-
tation, (b) varying illumination color, (c) translation and (d) scaling, the topographic
model yields more invariant representation when the transformation is small. When
the transformation is large, there is little difference between the models.

3.5 Potential extensions and applications

Due to the generality of the RBM regularization method proposed in Section 3.2, vari-

ous coding schemes for RBM learning could be introduced. Besides sparsity, selectiv-

ity and topographic organization, which have been explored in the previous sections,

this section suggests other potential coding schemes and their applications that can be

explored.

Explicit coding. Explicitness is semantic property of the coding [Földiák, 2009, 2013].

It describes the relationship between a code, and objects or concepts in the real world.

A code is explicit if an individual or a small set of latent variables directly describes
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meaningful attributes or categories of the input. In the context of regularization, each

coding can be tweaked using supervised labels such that it responds to fewer classes.

This can also mean that the class-wise uncertainty based on an information entropy

measure can be minimized, which makes this aspect of coding closely related to the

second part of the experiments described in Section 3.4.2.

Temporally invariant coding. Another form of invariant coding is temporal invari-

ance. In the real world, given a sequence of images from a video of the same object,

the resulting coding should be very similar. This stability in coding across time can

be translated to a smoothing regularizer. The coding is related to the trace learning

rule, [Földiák, 1991], where different views of the same object can be linked across

instances, resulting in invariant object and face recognition [Wallis and Rolls, 97; Rolls

and Milward, 2000; Rolls and Stringer, 2001]. The slow feature analysis (SFA) is an-

other of such transformations that help extract temporally-invariant representations

[Wiskott and Sejnowski, 2002; Theriault et al., 2013a].

3.6 Summary and discussion

This chapter introduced a new regularization method base on the cross-entropy loss

to penalize the activations of each latent variable with respect to each instance. This

enables the RBM to learn interesting and desirable representations, while maximizing

the likelihood of the data distribution. The desirable representations take the form of

a target matrix, which can be designed to encode representational properties, such as

sparsity, selectivity and topographic organization, as further proposed in this chapter.

Experiments show that these properties are transferred to the RBM’s parameters and

are being induced automatically when a new input is being encoded. Upon visual-

ization, the representations learned capture the spatial structure of the image. It is

empirically shown that it is important to jointly encode both selectivity and sparsity

within the model. This helps improve the discriminative performances, if the pa-

rameterization is well selected. Topographic organization can also help to encourage

appearance-based invariance.

Being able to manipulate the learning of the representations is an important quality

when learning to encode local descriptors in the context of the bag-of-words model.

However, it will also be crucial to scale the architectures to handle larger images,

rather than merely small images and patches. Chapter 5 describes this integration

with the bag-of-words model.
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Chapter abstract — The starting point for training deep networks is to per-
form unsupervised learning in a greedy layer-wise manner. Once the struc-
ture of the network is formed, the model can be further optimized through su-
pervised learning. Instead of directly transiting to a discriminative error back-
propagation algorithm, this chapter proposes the notion of a gradual transi-
tion by first integrating bottom-up and top-down information. The learning is
performed through a global optimization of all the layers. Two manifestations
of this idea are suggested to incorporate top-down information into two dif-
ferent types of deep architectures. The first method is based on the restricted
Boltzmann machine, while the second is based on the encoder-decoder net-
work.

The learning algorithm for the deep network based on the restricted Boltz-
mann machine can be seen as a methodological extension from the previous
chapter. This deep learning method, together with the unsupervised regular-
ization method previously proposed, is applied to learn and optimize hierar-
chical visual dictionaries, described in Chapter 5.

Some of the material in this chapter has been published at the following
conference:

• Goh, H., Thome, N., Cord, M., and Lim, J.-H. (2013). Top-down regular-
ization of deep belief networks. Advances in Neural Information Processing
Systems (NIPS). [Goh et al., 2013]

4.1 Introduction

D
eep architectures have strong representational power due to their hierarchi-

cal structures. They are capable of encoding highly varying functions and

capturing complex relationships and higher-level abstractions among high-

dimensional data. However, the depth of the architecture also makes it challenging to

train the entire network through supervised learning due to the sheer number of pa-

rameters and the non-convex optimization problem. The supervised optimization of

an entire deep network may lead to worse results as compared to shallower networks.

79
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Recent developments in unsupervised feature learning and deep learning algorithms

have made it possible to learn deep feature hierarchies.

Deep learning, in its current form, typically involves two separate training phases.

The first phase greedily stacks unsupervised modules from the bottom-up and this

is followed by a supervised phase that fine-tunes the entire deep network. The un-

supervised phase can be seen as a pre-training or initialization step for supervised

fine-tuning to take place. The unsupervised learning phase focuses on modeling the

input data. For a given set of data, the result of this initialization is constant, subject

to parameterization, regardless of the ultimate classification task. This lack of varia-

tion means that the supervised phase will need to adapt the parameters of the entire

network to suit the classification problem. On the other hand, supervised learning is

typically performed using the error backpropagation algorithm, and the parameters

of the model are updated based on discriminative signals from the topmost layer.

This chapter proposes a notion to insert an intermediate phase between the two ex-

isting phases to have a smoother transition between fully-unsupervised learning and

strongly-supervised learning. This is to enable richer cooperation between the bottom-

up data and top-down labels.

4.2 Deep supervised fine-tuning: a quick recap

Supervised learning is crucial to optimize the parameters of a deep architecture to

be aligned with the classification task (see Section 2.3 for a review). The most pop-

ular method of supervised learning is the error backpropagation, which is a fully-

supervised method to tune the weights of the network. A well formulated alternative

is the up-down algorithm [Hinton et al., 2006], which generatively learns a joint model

of the data and its label.

4.2.1 Deep error backpropagation

A common method to introduce supervision to a deep neural network is the error

backpropagation algorithm, which is used for training multilayer perceptron (MLP)

networks (Section 2.2.1). The algorithm optimizes its parameters based on a discrim-

inative model P(y|x). After a deep network has been pre-trained through unsuper-

vised learning, the error backpropagation algorithm updates the parameters of the

model through gradient descent based on an output error-correcting penalty, which is
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typically the cross-entropy loss function for a softmax activated classification layer:

Lnet = −
|Dtrain|

∑
k=1

C

∑
c=1

log P(yck|ŷck), (4.1)

where |Dtrain| = {(xk ∈ R
I , ŷk ∈ R

C)} is the training dataset and ŷk is the output

hypothesis given an input. Gradient descent can be performed by backward chaining

the partial derivative by projecting the errors in reverse through chain of activations.

The problem arises when the error signals become diffused and unusable at the lower

layers. Please see Section 2.2.1 for an explanation of this phenomenon. Section 4.4

proposes to address these issues in the framework of a deep encoder-decoder network.

4.2.2 Up-down back-fitting algorithm

Another existing method to fine-tune the parameters of the deep network is the up-

down learning algorithm, which is a variant of the “wake-sleep” algorithm [Hinton

et al., 1995]. Using a process known as back-fitting, this generative fine-tuning scheme,

which models P(x, y), serves as an alternative to discriminative learning. This method

has been used specifically in the deep belief network (DBN) [Hinton et al., 2006]

The pre-training phase of the DBN greedily stacks restricted Boltzmann machines

(RBM) to model the input data distribution P(x) through generative unsupervised

learning. After being initialized, the undirected weights of the RBMs are untied such

that the weights used for recognition and generation are treated as separate entities,

except for the final set of weights. The up-down algorithm starts with a bottom-up

pass that tunes the generative parameters. The undirected weights of the topmost

RBM are then fitted to the posterior distribution of the last layer. Finally, the top-

down pass adjusts the recognition connections from the top layer to the bottom layer,

such that they are able to perform good recognition.

Supervised restricted Boltzmann machine. Let us zoom in on the top-level RBM

to analyze how the labels are incorporated in the DBN. The DBN learns pairs of layers

as RBMs, with the top-most layer being a large representational vector. A layer of one-

hot coded units is added to the second last layer, such that the inputs of the topmost

RBM is a concatenation of the latent representation zL−1 and the output vector y, as

shown in Figure 4.1. This method of incorporating labels is also used in the generative

portion of a hybrid RBM that combines generative and discriminative optimizations

[Larochelle and Bengio, 2008].

The latent layer zL of the final RBM WL−1, models the interactions between units of its

input layer, which is made up of the previous layer of latent variables zl−1 and outputs



82 Deep Supervised Optimization

z1! z2! z3!
z4!

y
!

z4!

Latent layer!

I 
v

ar
ia

b
le

s!

J 
la

te
n

t 
v

ar
ia

b
le

s!

z3!
W3!

C
 c

la
ss

es
!

y
!

Input layer!

Topmost RBM!DBN!

W3!

W2!W1!

Figure 4.1: Incorporating class labels into a deep belief network (DBN). A DBN is
made up of a stack of restricted Boltzmann machines (RBM). Class labels are included
as additional inputs to the topmost RBM.

y. The greedy learning of a stack of RBMs {W1, . . . , WL−2}, improves the variational

bound on likelihood of P(x) [Neal and Hinton, 1998; Hinton et al., 2006], which is

eventually well modeled by zl−1. By learning a joint representation of zL−1 and y, this

final RBM essentially models the joint distribution P(x, y).

During training, when both x and y are known, the probability of activating a unit in

the topmost layer is given by

P(zL,j = 1 | zL−1, y; WL−1) =
1

1 + exp(−∑
I
i=0 wL−1,ijzL−1,i −∑

C
c=1 wL−1,cjyc)

. (4.2)

However, during inference, y is not given and the units are set to a “noisy” neutral

state. The activation probability of y can be computed through backward sampling

via softmax units:

P(yc = 1 | zL; WL−1) =
exp(∑J

j=0 wL−1,cjzL,j)

∑
C
q=1 exp(∑J

j=0 wL−1,qjzL,j)
. (4.3)

Multiple iterations of forward-backward activations could then be performed to gener-

ate more accurate samples of y. The inference process basically attempts to “denoise”

and stabilizes the joint representation, given a “noisy” output vector y. Performance

may suffer if the number of classes is huge, which results in a low signal-to-“noise”

ratio, which may be particularly difficult to “denoise”.

The proposal of this chapter is to extend this idea of a joint bottom-up and top-down

learning to get a gradual transition between the learning phases. Two implementa-

tions of this principle are presented: one is based on the RBM and the other is based

on the encoder-decoder network. Section 4.3 suggests a RBM-regularization-based

method to incorporate class labels during the fine-tuning phase. Meanwhile, Sec-

tion 4.4 realizes the hybridization using reconstructive and predictive loss functions.
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4.3 Top-down regularized deep belief network

Starting from the initialization of the DBN as a stack of greedily learned RBMs, this

section proposes a new method to incorporate top-down supervision into the opti-

mization. The method is an extension of the regularization method previously pro-

posed in Section 3.3.1 that extends the contrastive divergence learning algorithm.

4.3.1 Top-down regularization: the basic building block

Previously in Section 3.3.1, I introduced the method for point- and instance-wise regu-

larization of RBMs using target latent activations based on inductive biases that might

suit the task, such as sparsity, selectivity and topographic organization. Now, the

same principle of regularizing the latent activations can be used to combine signals

from the bottom-up and top-down. This forms the building block for optimizing a

DBN with top-down regularization.

The basic building block is a three-layer structure consisting of three consecutive lay-

ers: the previous zl−1 ∈ R
I , current zl ∈ R

J and next zl+1 ∈ R
H layers. The layers are

connected by two sets of weight parameters Wl−1 and Wl to the previous and next

layers respectively. For the current layer zl , the bottom-up representations zl,l−1 are

sampled from the previous layer zl−1 through weighted connections Wl−1.

P(zl,l−1,j = 1 | zl−1; Wl−1) =
1

1 + exp(−∑
I
i=0 wl−1,ijzl−1,i)

, (4.4)

where the two terms in the subscripts of a sampled representation zdest,src refer to the

destination (dest) and source (src) layers respectively. Meanwhile, sampling from the

next layer zl+1 via weights Wl drives the top-down representations zl,l+1:

P(zl,l+1,j = 1 | zl+1; Wl) =
1

1 + exp(−∑
H
h=0 wl,jhzl+1,h)

. (4.5)

The objective is to learn the RBM parameters Wl−1 that map from the previous layer

zl−1 to the current latent layer zl,l−1, by maximizing the likelihood of the previous

layer P(zl−1) while considering the top-down samples zl,l+1 from the next layer zl+1

as target representations. Following the method proposed in Section 3.3.1, this can be

realized as a cross-entropy-regularized maximum likelihood optimization:

Ll,RBM+top−down = −
|Dtrain|

∑
k=1

log P(zl−1,k)− λ
|Dtrain|

∑
k=1

J

∑
j=1

log P(zl,l+1,jk|zl,l−1,jk). (4.6)
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This results in the following gradient descent update:

∆wl−1,ij = ε
(〈

zl−1,l−2,isl,j
〉

data
−
〈
zl−1,l,izl,l−1,j

〉
recon

)
, (4.7)

where

sl,jk = (1− φl)zl,l−1,jk
︸ ︷︷ ︸

Bottom-up

+ φlzl,l+1,jk
︸ ︷︷ ︸
Top-down

, (4.8)

is the merged representation from the bottom-up and top-down signals, weighted by

hyperparameter φl . The bias towards one source of signal can be adjusted by selecting

an appropriate φl . Additionally, the alternating Gibbs sampling, necessary for the

contrastive divergence updates, is performed from the unbiased bottom-up samples

using Equation 4.4 and a symmetric decoder:

P(zl−1,l,j = 1 | zl,l−1; Wl−1) =
1

1 + exp(−∑
J
j=0 wl−1,ijzl,l−1,j)

. (4.9)

Figure 4.2 describes the framework for the top-down driven regularization of the RBM

– the basic building block for a top-down regularized DBN.
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Figure 4.2: Top-down restricted Boltzmann machine (RBM) regularization using
a training batch. Bottom-up Zl,l−1 and top-down Zl,l+1 latent representations are
sampled from the previous Zl−1 and next Y layers respectively. They are linearly
weighted using the modulatory weight φl to get the merged representations Sl of the
current latent layer, used for parameter updates. Reconstructions sampled indepen-
dently from the bottom-up signals form the Gibbs sampling Markov chain.

4.3.2 Constructing a top-down regularized deep belief network

Forward-backward learning strategy. A deep network is constructed by stacking

the basic building blocks (Figure 4.3(a)) in a layer-wise hierarchy. The network, as

illustrated in Figure 4.3(b), comprises of a total of L− 1 RBMs. The network can be
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trained with a forward and backward strategy (Figure 4.3(c)), similar to the DBN.

It integrates top-down regularization with contrastive divergence learning, which is

given by alternating Gibbs sampling between the layers (Figure 4.3(d)).

Forward pass and backward pass. Let’s consider a DBN with L layers. In the for-

ward pass, given the input features, each layer zl is sampled from the bottom-up,

based on the representation of the previous layer zl−1 (Equation 4.4). Upon reaching

the topmost layer, the backward pass begins. The top layer activations zL are combined

with the output labels y to produce sL given by

sL,ck = (1− φL)zL,L−1,ck
︸ ︷︷ ︸

Bottom-up

+ φLyck
︸ ︷︷ ︸

Class label

, (4.10)

The merged activations sl (Equation 4.8), which besides being used for parameter

updates, have a second role of activating the lower layer zl−1 from the top-down:

P(zl−1,l,j = 1 | sl ; Wl) =
1

1 + exp(−∑
H
h=0 wl−1,jhsl,h)

. (4.11)

This is repeated until the second layer is reached (l = 2) and s2 is computed.

Top-down sampling drives the class-based invariance and clustering of the bottom-up

representations. However, if sampling is done directly from the output vector y alone

to the bottom-layers, there will only be one activation pattern per class for each layer.

This may be too invariant, especially for the bottom layers. By merging the top-down

representations with the bottom-up ones, the representations also encode instance-

based variations that cannot be produced through direct sampling from y. Only in

the last layer, φL is usually set as 1 (see next page), so that the final RBM WL−1 learns

to map to the class labels y. Backward activation of zL−1,L is a class-based invariant

representation obtained from y and used to regularize WL−2. All other backward

activations from this point on are based on the merged representation from instance-

and class-based representations (Figure 4.4).

Alternating Gibbs sampling In addition, using the data-sampled activations com-

puted in the forward pass, alternating Gibbs sampling can be performed concurrently

using Equation 4.9 and Equation 4.4 to generate the backward and forward recon-

structions respectively. This is necessary for the contrastive divergence learning and

is similar to the up-pass of the DBN up-down learning algorithm.

Parameter updates. After the forward and backward passes and Gibbs sampling,

all L− 1 RBMs in the network can be updated at the same time using Equation 4.7.

Algorithm 4.1 describes this training strategy when using mini-batches to optimize

the entire deep network.
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Figure 4.3: Constructing a top-down regularized deep belief network (DBN). All the
restricted Boltzmann machines (RBM) that make up the network are concurrently
optimized. (a) A building block spans three layers and consists of an RBM trained
with contrastive divergence regularized by top-down signals. (b) The building blocks
are connected layer-wise. Both bottom-up and top-down activations are used for
training the network. (c) Activations for the top-down regularization are obtained
by sampling and merging the forward pass and the backward pass. (d) From the
activations of the forward pass, the reconstructions can be obtained by performing
alternating Gibbs sampling with the previous layer.
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Figure 4.4: Merging class-based invariance and instance-based variations. In the sec-
ond last layer, class-based representations are obtained by sampling from the output
layer. Instance-based variations are created by merging the representations, which
are then used for subsequent backward pass activations.

Algorithm 4.1: Top-down regularized deep belief network

1 for l = 1 to L− 1 do // Greedy RBM learning (Section 3.3)

2 Initialize Wl

3 end
4 Get Z1,0,0 ← X0 from randomized training batch
5 repeat
6 for l = 2 to L do // Forward pass

7 Sample bottom-up activations: P0(Zl,l−1,0|Zl−1,l−2,0) // Equation 4.4

8 end
9 Merge top-layer representations: SL // Equation 4.10

10 for l = L− 1 to 2 do // Backward pass

11 Sample top-down activations: P(Zl,l+1|Sl+1) // Equation 4.11

12 Compute merged representations: Sl // Equation 4.8

13 end
14 for l = 1 to L− 1 do
15 for n = 1 to N do // Gibbs sampling

16 Sample Pn(Zl,l+1,n|Zl+1,l,n−1) // Equation 4.4

17 Sample Pn(Zl+1,l,n|Zl,l−1,n) // Equation 4.5

18 end
19 Update wl,ij := wl,ij + ∆wl,ij // Equation 4.7

20 end
21 until convergence

Setting the modulation parameter. To learn a gradual mapping between the in-

puts and outputs, their influences on the intermediate layers should be gradually

modulated. Layers nearer to the input should have a higher bias towards the input,

while layers closer to the output should be biased more by the output. One way

to achieve this is to set φl based on the distance of the latent layer zl to the output
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layer. The modulatory weight φl , which stipulates how much influence the top-down

information has on the learning of weight Wl−1, may be assigned as follows:

φl =

∣∣l − 1
∣∣ζ

∣∣l − 1
∣∣ζ +

∣∣L− l
∣∣ζ

, (4.12)

where ζ > 0 is a single hyperparameter that controls the behavior of φl across the

layers and replaces the need to tune them individually. If ζ = 1, then φl is linearly

assigned across the layers. When ζ increases, then the bias towards the nearer source

grows logarithmically. Table 4.2 shows the values of φl for the five-layer deep network,

similar to the one shown in Figure 4.3(b), for various settings of ζ. Since φL always

assumes the value of 1, then, from Equation 4.10, sL = y and WL−1 is trained as an

associative memory to the outputs y against its equilibrium distribution:

∆wL−1,ic = ε
(
〈zL−1,iyl,c〉data − 〈zL−1,izL,L−1,c〉recon

)
. (4.13)

Table 4.2: Modulatory weights φl in relation to hyperparameter ζ (for L = 5).

ζ φ2 φ3 φ4 φ5

0.1 0.47 0.50 0.53 1.00

0.5 0.37 0.50 0.63 1.00

1.0 0.25 0.50 0.75 1.00

2.0 0.10 0.50 0.90 1.00

3.0 0.04 0.50 0.96 1.00

4.0 0.01 0.50 0.99 1.00

4.3.3 Three-phase deep learning strategy

While a greedy layer-wise stacking of RBMs generatively models P(x), the eventual

goal of the network is to give a prediction of P(y|x). The discriminative optimiza-

tion of P(y|x) is given by the error backpropagation algorithm. As a result, it is still

important to perform learning in a generative and discriminative manner. The pro-

posed top-down regularization algorithm (Section 4.3.2) is perfectly suited to obtain a

smoother transition between the two training phases. This suggests the adoption of a

three-phase strategy for training a deep network, whereby the parameters learned in

one phase initializes the next, as follows:

• Phase 1 - unsupervised. Greedy layer-wise stacking.

• Phase 2 - supervised regularized. Forward-backward deep learning.

• Phase 3 - supervised discriminative. Classification error backpropagation.
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Phase 1: unsupervised. In Phase 1, the network is constructed by greedily learning

new RBMs on top of the existing network. To enhance the representations learned

through this unsupervised process, various regularization methods can be applied,

such as the jointly sparse and selective regularization that was introduced in Chap-

ter 3.3.2. The stacking process is repeated for L− 2 RBMs, until layer L− 1 is added

to the network. Please see Section 2.3.1 for a detailed discussion.

Phase 2: supervised regularized. Phase 2 begins by connecting the L− 1 to a final

layer, with the number of units corresponding to the number of class labels. For a clas-

sification problem, the final layer can be activated by the softmax activation function.

The RBM projecting to this layer is first learned by using the one-hot coded output

vector y ∈ R
C as its target activations in its regularization and by setting modulatory

weights φL to 1, which results in the parameter update given by Equation 4.13. This

final RBM, together with the parameters of other RBMs in the network learned from

Phase 1, form the initialization for performing deep learning with top-down regu-

larization using the forward-backward algorithm, as explained in the earlier section.

This phase fine-tunes the network and binds the layers together by aligning all the

parameters of the network with the output labels.

Phase 3: supervised discriminative. Finally, Phase 3 takes the existing parameters

of the network and applies the error backpropagation algorithm to explicitly improve

class discrimination in the representations. Similar to the previous phase, backprop-

agation can be separated into a forward pass followed by a backward pass. In the

forward pass, each layer is activated from the bottom-up to obtain class predictions

of the input. The classification error is then computed based on the ground truth.

Finally, the backward pass performs gradient descent on the parameters of the deep

network by backpropagating the errors through the layers. Although the same limita-

tions of a diffused gradient in the lower layers still exist, they have been alleviated by

the learning performed in the first two phases that presets the model to regions with

good local minima.

From Phase 1 to Phase 2, the form of the parameter update rule based on gradient

descent does not change. Only that top-down signals are also taken into account.

Essentially, the two phases are performing a variant of the contrastive divergence

algorithm. Meanwhile, from Phase 2 to Phase 3, the top-level output vector remains

unchanged.
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4.4 Predictive and reconstructive encoder-decoders

As earlier mentioned, this chapter proposes the notion of performing a hybrid bottom-

up and top-down learning to bridge the gap between fully-unsupervised learning and

strongly-supervised learning. Two implementations are suggested for this fine-tuning

phase, based on 1) the restricted Boltzmann machine and 2) the encoder-decoder

networks as the basic building blocks. In the previous section, I have introduced a

method to globally align a deep belief network to model the labels. In this section, I

will explore the notion of a globally-optimized deep learning algorithm using a deep

network based on the encoder-decoder network. Please refer to Sections 2.2.2 and

2.3.2 for a detailed introduction of the encoder-decoder network and its extension to

a deep network.

4.4.1 Bottom-up and top-down loss functions

As previously introduced (Section 2.3.2), the deep encoder-decoder network is made

up of a stack of encoder-decoder networks, each with the latent coding optimized to

reconstruct the representations of the previous layer, while also learning the parame-

ters to project to this latent layer. When the last layer is reached, the error backprop-

agation algorithm is typically performed to optimize the entire network. This section

explores possible alternatives for incorporating supervised labels into the encoder-

decoder network.

Given a stack of encoder-decoder networks that is bound together by the common

coding of each layer, as shown in Figure 4.5, the loss function for the entire network

given a training example, can be expressed as a combination of layer-wise loss func-

tions as follows:

Lnet =
L

∑
l=1

Ll (4.14)

where Ll is the loss function for the representation of layer l.

fd,3fd,2fd,1

fe,4fe,3fe,2
Input x!

Decoder!

Encoder!

Decoder!

Encoder!

Decoder!

Encoder!

z1 z2 z3 z4

Output y!

Figure 4.5: A stack of encoder-decoder networks bound by the layers. For a net-
work with L layers, a stack of L − 1 encoder-decoder networks is required. Each
intermediate latent layer is shared by two successive encoder-decoder networks.
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When learning a mapping between input layer x and output layer y, every latent layer

l should have the following five properties:

1. Sparse and selective. Layer l should be sparse and selective (Section 3.2.1).

2. Predictive. The output layer y can be predicted from layer l.

3. Reconstructive. The input layer x can be reconstructed from layer l.

4. Encoding. Layer l can be encoded, given the first layer z1.

5. Decoding. Layer l can be decoded from the last layer zL.

From this, the SPREAD optimization1 is proposed. Each layer in the network has a

loss function that considers all five requirements:

Ll = λs,lh(zl)
︸ ︷︷ ︸

sparse & selective

+ λp,l‖y− ẑL,l‖
2

︸ ︷︷ ︸
predictive

+ λr,l‖x− ẑ1,l‖
2

︸ ︷︷ ︸
reconstructive

+ λe,l‖zl − ẑl,1‖
2

︸ ︷︷ ︸
encoding

+ λd,l‖zl − ẑl,L‖
2

︸ ︷︷ ︸
decoding

(4.15)

where h(·) is a sparse and selective regularizer (see Section 3.3). Here, ẑm,n represents

the coding of a destination layer m that is propagated from the coding zn of a source

layer n defined as:

ẑm,n =





zn if n = m

fe,m(. . . fe,n+1(zn, Wn) . . .), Wm−1) if m > n (forward)

fd,m(. . . fd,n−1(zn, Vn) . . .), Vm+1) if m < n (backward)

(4.16)

where fe,m(·, Wm−1) and fd,m(·, Vm+1) represent the forward encoding and backward

decoding activation functions respectively to obtain the representation of layer m

through weights Wm−1 and Vm+1. The penalties for the prediction, reconstruction,

encoding and decoding operations can be visualized with the factor graph of Fig-

ure 4.6. Alternatively, the cross entropy loss can be used for the predictive errors,

depending on the activation function of the final layer.

For a fully connected network, the activation functions f (·) are usually a squashing

function such as the sigmoid or tanh functions, although it is also common not to in-

troduce any nonlinearity in the activations, as in Ranzato et al. [2006]. The hyperbolic

tangent tanh(·) function is used for this discussion:

ẑl,l−1 = fe,l(zl−1, Wl−1) = tanh(WT
l−1zl−1), (4.17)

ẑl,l+1 = fd,l(zl+1, Vl+1) = tanh(Vl+1zl+1). (4.18)

1SPREAD is the abbreviation for Sparse/selective, Predictive, Reconstructive, Encoding, And
Decoding, as defined by the layer-wise loss function.
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Figure 4.6: Factor graph for the SPREAD optimization. The factor graph shows four
distinct sets of costs (C), for prediction, reconstruction, encoding and decoding errors.
Each layer is connected to each of the four costs either directly or via a forward or
backward chain of activations. For simplicity, the costs for sparsity and selectivity
have been excluded from this illustration.

Other differentiable operators may also be included in the chain of feedforward en-

coders and feedback decoders, depending on the requirements of the task. For vision

related tasks, the operators may include convolution (see Section 2.3.3). Another com-

mon variation is to share the weights between the feedforward and feedback activa-

tions, such that the connections between layers become symmetric Wl = Vl+1.

4.4.2 Globally optimized deep learning

The SPREAD optimization can be split into two steps that alternates between learning

the codes {zl : 1 ≤ l ≤ L} and training the parameters {Wl : 1 ≤ l < L} and

{Vl : 1 < l ≤ L}. A divide and conquer strategy can be adopted by using two steps

to optimize loss function in parts. The first step is a code optimization step. It finds

optimal codes z∗l by concentrating on enabling each layer to be able to predict the

outputs y and reconstruct the inputs x. The second step performs dictionary learning,

which attempts to obtain these optimal codings from the input and output layers. In

both steps, error backpropagation is employed.
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Step 1: code optimization. The focus of this step is to find optimal codes z∗l that are

able to perform prediction of the output layer and reconstruction of the input layer.

Hence, the weights of λe,l and λd,l are set to zero. This is similar to the decoding step

in decoder networks. Essentially, each layer can be optimized independently with a

loss function consisting only of the terms for sparsity and selectivity, prediction and

reconstruction (Figure 4.7(a)):

L
(1)
l = λs,lh(zl)

︸ ︷︷ ︸
sparse & selective

+ λp,l‖y− ẑL,l‖
2

︸ ︷︷ ︸
predictive

+ λr,l‖x− ẑ1,l‖
2

︸ ︷︷ ︸
reconstructive

(4.19)

For fixed parameters Wl and Vl , the optimal codes z∗l that optimize every zl can be

found using gradient descent:

∂L
(1)
net

∂zl
∝ λs,lh

′(zl)− λp,l(y− ẑL,l)
∂ẑL,l

∂zl
− λr,l(x− ẑ1,l)

∂ẑ1,l

∂zl
(4.20)

Additionally, since the final task is to produce a hypothesized label of arg maxc ŷ

given an input x, then λp,1 and λs,1 may be set to zero. This will result in the optimal

z1 to be x, unless a model-based distortion of the input is deemed to be beneficial.

Similarly, setting λr,L to zero is optional, depending on whether an instance-dependent

relaxation on the output variables is desirable.

Step 2: deep dictionary learning. The objective of step 2 is to learn the parameters

that map to the desired representations that have been found in the first step. This

also removes the need for code optimization after learning, when performing the

tasks. The regularization parameters of λs,l , λp,l and λr,l are now set to zero, resulting

in the following loss (Figure 4.7(b)):

L
(2)
net =

L

∑
l=1

λe,l‖zl − ẑl,1‖
2

︸ ︷︷ ︸
encoding

+ λd,l‖zl − ẑl,L‖
2

︸ ︷︷ ︸
decoding

(4.21)

Fixing every zl as the optimal z∗l found in the previous step, a one-step gradient

descent on the parameters Wl and Vl can be performed for the entire network. For

the set of parameters between layers l and l + 1, the gradients can be derived as

follows:

∂L
(2)
net

∂Wl
∝

L

∑
m=l+1

(zm − ẑm,1)
∂ẑm,1

∂Wl
, (4.22)

∂L
(2)
net

∂Vl+1
∝

l

∑
m=1

(zm − ẑm,L)
∂ẑm,L

∂Vl+1
. (4.23)
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Figure 4.7: Decomposed factor graphs for alternating optimization. (a) Step 1 focuses
on optimizing the codes zl based on prediction, and reconstruction costs. (b) Step 2

transfers the optimal codes to the parameters Wl and Vl , which will be used for the
encoding or decoding task.

Algorithm 4.3: SPREAD optimization

1 Initialize {Wl : 1 ≤ l < L} and {Vl : 1 < l ≤ L}
2 repeat
3 Get random training example (x, y)
4 Fix {Wl : 1 ≤ l < L} and {Vl : 1 < l ≤ L} /* Code optimization */

5 repeat

6 Computer L(1)
net // Equation 4.19

7 Update {zl : 1 ≤ l ≤ L} // Equation 4.20

8 until convergence
9 Fix optimal codes {z∗l : 1 ≤ l ≤ L} /* Dictionary learning */

10 Computer L(2)
net // Equation 4.21

11 Update {Wl : 1 ≤ l < L} // Equation 4.22

12 Update {Vl : 1 < l ≤ L} // Equation 4.23

13 until convergence
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Overall deep learning strategy. Algorithm 4.3 describes the entire process of this

two-step optimization that alternates between code optimization and dictionary learn-

ing. Similar to the method presented in the previous section, this optimization can

be embedded within a three-phase deep learning strategy. The first phase performs

greedy unsupervised learning by stacking encoder-decoder networks from the bottom

up. The second phase performs SPREAD optimization. Finally, error backpropagation

can be used to enhance discriminative classification performances.

4.5 Evaluation: Handwritten digit recognition

Experimental dataset. The MNIST dataset of handwritten digits [LeCun et al.,

1998] was used for performance evaluation. As previously described in Section 3.4.2,

the dataset contains images of handwritten digits of 28× 28 pixels each (Figure 3.11).

The task is to classify an image into one of ten digits. The dataset is split into 60, 000

training images and 10, 000 test images. Many different methods have used this

dataset as a benchmark. The basic version of this dataset, with neither preprocess-

ing nor enhancements, was used for the evaluation. The error rate on the test set

(percentage of wrong classifications) is the default metric for performance evaluation.

General experimental setup. The network was setup to be isomorphic to the DBN

evaluated by Hinton et al. [2006]. It consists of five layers, inclusive of the input and

output layers, as shown in Figure 4.8. Consecutive layers are linked by fully-connected

weights. The first layer takes inputs from a 28× 28 image through a 784-dimensional

vector. The next two layers have 500 latent variables each and the third latent layer

forms a 2000-dimensional representation. This large vector is associated with a one-

hot coded output vector corresponding to 10 class labels, each representing a digit.

z2!

500!
latent 

variables!

pixel 
image!

28×28
500!

latent 
variables! 2000!

latent 
variables!

10!
class 
labels!

x! y!
z3!

z4!

W1! W2! W3! W4!

Figure 4.8: Deep network for handwritten digit recognition. This five-layer (784-500-
500-2000-10) structure follows that of Hinton et al. [2006].
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Training and testing procedure. The evaluation was performed using the two pro-

posed architectures:

1. Top-down regularized deep belief network (Section 4.3), and

2. Predictive and reconstructive encoder-decoders (Section 4.4).

The three-phase learning strategy was adopted for training the networks. The follow-

ing procedure was employed for training and testing the network. In addition, results

using only phase 2 were also reported.

Phase 1. In the first phase, the networks were trained layer-by-layer using a subset

of 44, 000 training images, split into 440 mini-batches, with each having 10 examples

of each class making up 100 images per mini-batch. The weight parameters for each

shallow network (RBMs or encoder-decoder network) were updated after each batch.

Phase 2. The same set of data (44, 000 images) was used for the second training

phase. For model selection, a validation set of 10, 000 images from the remainder of

the training set was used. Deep learning (forward-backward algorithm for the DBN

and SPREAD learning algorithm for deep encoder-decoders) was performed for 300

sweeps through the training data. Using the best performing model for each setup, the

parameters were further updated by training it on all 60, 000 images of the training set,

split into 600 mini-batches of 100 images per batch. Up to this juncture, the evaluation

protocol of the DBN of Hinton et al. [2006] was followed precisely.

Phase 3. From the resulting model, the whole network was fine-tuned using the

error backpropagating algorithm in the third phase. All parameters were subsequently

refined based on the gradient of a discriminative loss function. The training set was

split into a 50, 000-image training set and a 10, 000-image validation set for parameter

selection. Again, the full training set of 60, 000 images was used to perform the final

tuning for the model.

4.5.1 Results: top-down regularized deep belief network

To objectively analyze the effects of the top-down regularization, three architectural

setups were evaluated:

1. Stacked RBMs with forward-backward learning,

2. Stacked sparse and selective RBMs with forward-backward learning, and

3. Forward-backward deep learning from randomly initialized weights.
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Stacked RBMs with forward-backward learning. In the first phase, a stack of three

RBMs were greedily trained: {W1 ∈ R
784×500, W2 ∈ R

500×500, Ŵ3 ∈ R
510×2000}, in

the manner described by Hinton et al. [2006], which gave a score of 2.49%. Ŵ3 was

then split into two parameter sets: W3 ∈ R
500×2000 and W4 ∈ R

2000×10, where W4

corresponds to the parameters for the output vector. For the second phase, instead

of performing up-down learning, the forward-backward learning was performed, as

described in Section 4.3 (Algorithm 4.1). After fine-tuning the parameters using the

forward-backward algorithm, the error rate reduced to 1.14%. As a direct comparison,

the DBN had a reported error rate of 1.25% after the up-down algorithm [Hinton et al.,

2006]. Finally, a third phase discriminatively optimized the parameters of the entire

network, bringing the error rate down to 0.98%.

Stacked sparse and selective RBMs with forward-backward learning. The RBMs

were regularized using the point- and instance-wise regularization method as pro-

posed in Section 3.3.1. A jointly sparse and selective regularizer was used as the

target (see Section 3.3.2). After greedy training and learning the final RBM, the error

rate of 2.14% was achieved. This method outperforms the conventional RBM stack,

enhancing the importance of performing regularization during RBM learning. After

the second phase of forward-backward learning, the error rate was brought down to

1.06%. Eventually, error backpropagation reduced the error rate to 0.91%. This is

the best performing model among those evaluated. Figure 4.9 shows the 91 wrongly

classified test examples.

Figure 4.9: Wrongly classified test examples by the top-down regularized deep belief
network. There were 91 classification errors, many with challenging appearances.

Forward-backward deep learning from randomly initialized weights. As an ex-

ercise, the parameter initialization by phase 1 was not performed. Instead, a stack of

RBMs with random weights was used. After training the model using the forward-

backward learning, the classification score was 1.61%, which is fairly decent, consid-

ering that the network was optimized globally from scratch.

The results of the three evaluation setups are summarized in Table 4.4. As a compari-

son, the results of Hinton et al. [2006] are also reported.
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Table 4.4: Results on MNIST after various training phases.

Learning algorithm Classification error rate
Phase 1 (stacking) Phase 2 (fine-tuning) Phase 1 Phase 2 Phase 3∗

Deep belief network reported by Hinton et al. [2006]

RBMs Up-down 2.49% 1.25% –

Top-down regularized deep belief network (Section 4.3)

RBMs Forward-backward 2.49% 1.14% 0.98%
Sparse & selective RBMs Forward-backward 2.14% 1.06% 0.91%
Random weights Forward-backward – 1.61% –

Predictive and reconstructive encoder-decoders (Section 4.4)

Encoder-decoders SPREAD 2.67% 1.25% 1.03%
Random weights SPREAD – 1.58% –

∗Phase 3 runs the error backpropagation algorithm whenever employed.

4.5.2 Results: predictive and reconstructive encoder-decoders

For this part of the evaluation, a deep network of predictive and reconstructive encoder-

decoders described in Section 4.4 was used. Two experimental setups were evaluated:

1. Stacked encoder-decoders with SPREAD optimization, and

2. SPREAD optimization from randomly initialized weights.

Their classification scores on the MNIST test set are also presented in Table 4.4.

Stacked encoder-decoders with SPREAD optimization. A stack of sparse and se-

lective encoder-decoder networks was first learned. Each new layer learns the coding

and their projection for reconstructing the previous layer. The first three encoder-

decoder networks {W1, W2, W3} were learned with unsupervised learning. A final

layer of parameters W4 was learned as a perceptron to map the 2000-dimensional vec-

tor to the class labels y. This layer can be seen as learning the encoder that projects

to the optimal coding, given by y in this case. This network produced an error rate

of 2.67% after training with cross-validation. Subsequently, the SPREAD optimization

described in Section 4.4 (Algorithm 4.3) performs an iterative alternating optimization

between the coding and the weights (or dictionary), resulting in a score of 1.25%, sim-

ilar to the DBN [Hinton et al., 2006]. Finally, error backpropagation is used to enhance

discriminative classification performances, shrinking the classification rate to 1.03%.

SPREAD optimization from randomly initialized weights. Since the SPREAD opti-

mization performs network-wide learning, it can operate as a standalone learning al-

gorithm. The stack of encoder-decoders was merely initialized with random weights
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and not learned. With this global optimization model, the error rate obtained was

1.58%, which is commendable score.

Figure 4.10 shows the deep network producing an imagery of each of the 10 classes

by performing the decoding task ẑ1,L from individual output units in the top layer zL

to the input layer z1. The imagery is coherent with the expected appearance of the

digits. Figure 4.11 shows the state of the deep network in response to a training ex-

ample after optimizing the code in all layers in the first step. The reconstructions and

predictions from the optimized code for each layer is shown. As we examine deeper

into the network, class prediction becomes more accurate and confident. Meanwhile,

the representation becomes more and more invariant and the reconstruction ability

suffers. It is interesting to see the gradual transition of the reconstruction from being

instance-bound in the lower layers to model-based in the upper layers.

Figure 4.10: Imagery created from output unit decoding. Decoding from each of the
10 output units to the first layer produces a class-specific imagery with the appear-
ance of a digit.
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Figure 4.11: Reconstructions ẑ1,l and predictions ẑL,1 from optimized codes z∗l . The
first row shows the optimized coding z∗l . The second and third row show the input
reconstructions and output predictions respectively, when activated from the opti-
mized code in the corresponding layer.

4.5.3 Summary of results

The top-down regularized DBN produced the best scores of 0.91% in the evaluation.

The best results for the encoder-decoder-based deep network was 1.03%. These were

significantly better than the 1.25% error rate of the DBN [Hinton et al., 2006]. Each

of the three learning phases helped to improve the overall performance of the net-

works. Particularly, the algorithms employed in phase two – the forward-backward

learning and the SPREAD optimization – were effective as a standalone algorithm,

demonstrating its potential by learning from randomly initialized weights.
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Overall, the results achieved are very competitive for methods with the same com-

plexity that rely on neither convolution nor image distortions and normalization. A

variant of the deep belief net [Salakhutdinov and Hinton, 2007], which focused on

learning nonlinear transformations of the feature space for nearest neighbor classifi-

cation, had an error rate or 1.0%. The deep convex net [Deng and Yu, 2011], which

utilized more complex convex-optimized modules as building blocks but did not per-

form fine-tuning on a global network level, got a score of 0.83%. At the time of

writing, the best performing model on the dataset gave an error rate of 0.23% and

used a heavy architecture of a committee of 35 deep convolutional neural nets with

elastic distortions and image normalization [Cireşan et al., 2012].

4.6 Summary and discussion

This chapter proposed the notion of deep learning by gradually transitioning from

being fully-unsupervised to strongly-supervised. This is achieved through the intro-

duction of an intermediate phase between the unsupervised and supervised learning

phases. This notion is implemented as two methods to perform global supervised

optimization of a deep network. The first method focuses on incorporating top-down

information to each RBM of a DBN through regularization. The method is easily

integrated into the intermediate learning phase based on a simple building block di-

rectly adapted from the regularization algorithm introduced in Chapter 3. The second

method optimizes encoder-decoder networks by learning the projections to optimal

codings that perform input reconstruction and output prediction. The methods can

be performed as part of a three-phase learning strategy after greedy layer-wise unsu-

pervised learning and before discriminative fine-tuning using error backpropagation.

Empirical evaluations show that the methods lead to competitive results for handwrit-

ten digit recognition.

The same three-phase learning strategy was used to perform visual dictionary learn-

ing in Chapter 5, whereby the first phase employed the sparse and selective regular-

ization proposed in Chapter 3 and the dictionary was fine-tuned using top-down reg-

ularization using the forward-backward learning algorithm introduced in Section 4.3.2

and being re-optimized through error backpropagation.
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Chapter abstract — The four steps of the bag-of-words model are namely, 1)
the extraction of local descriptors, 2) local feature coding via a learned visual
dictionary, 3) pooling and 4) classification. This chapter proposes to tackle
the problem of feature coding by learning a hierarchical visual dictionary that
maps the local descriptors into richer mid-level representations. This work
builds upon the proposed learning algorithms for regularized unsupervised
learning and deep supervised learning techniques, introduced in Chapters
3 and 4 respectively. The resulting visual codes from this step will be the
starting point for optimizing the subsequent pooling step (Chapter 6).

The work in this chapter has led to the publication of a journal article and a
conference paper, as follows:

• Goh, H., Thome, N., Cord, M., and Lim, J.-H. (2013). Learning deep
hierarchical visual feature coding. IEEE Transactions on Neural Networks
and Learning Systems. [Goh et al., 2014]

• Goh, H., Thome, N., Cord, M., and Lim, J.-H. (2012). Unsupervised
and supervised visual codes with restricted Boltzmann machines. In
European Conference on Computer Vision (ECCV). [Goh et al., 2012]

5.1 Introduction

V
isual recognition is one of the basic and trivial aspects of human perception,

but remains a major challenge in artificial intelligence. The problem arises

when trying to understand complex semantic concepts, such as objects and

scenes, from raw digitalized image pixels. Visual information processing has been

typically treated as a hierarchical bottom-up pipeline in which visual representations

are processed sequentially with increasing complexity, from [Marr, 1976]. To tackle

the computer vision problem, the bag-of-words (BoW) model (Figure 5.1), performs

a sequence of data processing steps – feature extraction, feature coding, pooling and

classification – to take the visual representation from the low-level pixels to the high-

level semantic representations for classification to take place. The model has been

comprehensively reviewed in Section 2.4.
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Figure 5.1: The feature coding step within the bag-of-words pipeline

In the BoW model, visual processing begins with the extraction of local image descrip-

tors (see Section 2.4.2), such as the scale invariant feature transform (SIFT) [Lowe,

1999], the histogram of oriented gradients (HOG) [Dalal and Triggs, 2005] and the

speeded-up robust features (SURF) [Bay et al., 2008]. SIFT descriptors form a robust

and powerful representation of the local image appearance and is the starting point

for further abstraction of the visual representation. In this thesis, the SIFT descriptors

are sampled from an image using a dense and overlapping uniform grid.

At the top-end of the visual processing pipeline, classification is performed (Sec-

tion 2.4.5). The BoW model employs a classification model, such as support vector

machines (SVM), to predict the class label from an image signature – a single high-

dimensional vector describing the appearance of the entire image. This vector is gen-

erated through a pooling step that uses spatial pyramids [Lazebnik et al., 2006] to

aggregate descriptors across spatial partitions into histograms (Section 2.4.4). It was

shown that using max-pooling to generate the signature tend to work well, especially

when linear classifiers are used [Boureau et al., 2010a].

The use of SIFT descriptors, spatial pyramidal max-pooling and SVM classifiers have

been crucial in producing state-of-the-art image classification results for BoW models.

Although the local descriptors are more abstract than image pixels, a representational

gap still exists between the image descriptors and higher-level representations used

for classification. To fill this gap, a feature coding step maps each descriptor to an

intermediate mid-level representation of visual codes (Section 2.4.3). Exploiting ma-

chine learning techniques to learn a visual dictionary for feature coding is currently

the subject of much research. This chapter specifically focuses on using deep learning

to learn hierarchical visual dictionaries.

5.2 Single-layer feature coding

Restricted Boltzmann machines (RBM) [Smolensky, 1986] have been effective in mod-

eling input data using a layer of latent representations (see a review in Section 2.2.3).

In the rest of this section, I will describe my method to learn a visual dictionary and

perform feature coding using a regularized RBM (Section 3.3.1).
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5.2.1 Unsupervised visual dictionary learning

In the context of feature coding, the RBM is a two-layer network that represents a local

image descriptor x in its input layer and maps it to a visual code represented by its

latent layer z (see Figure 5.2). The input layer contains I dimensions corresponding

to the size of a local descriptor vector (i.e. 128 dimensions for SIFT). The latent layer

consists of J latent variables, each being the response to a visual word in the dictionary.

Offset units, x0 and z0 are also added and permanently set to one. The descriptor and

the visual code are connected by an undirected weight matrix W, such that every

input unit i is connected to every codeword j via a weighted connection wij. W also

serves as the visual dictionary containing J visual words wj ∈ R
I .

Descriptor!

I input dimensions!
(e.g. SIFT: 128)!

J latent variables!

z
!

x
!

W
!

Visual code! Visual code!

Descriptor!

Image!

W!

Local feature extraction!

Local feature coding!

x!

z!

Patch!

Figure 5.2: Encoding a local descriptor with a restricted Boltzmann machine. The
input layer takes in a local descriptor and the latent layer forms the visual code
representation for that descriptor.

As shown in Figure 5.2, the feature coding operation considers each local descriptor

to be spatially independent. The weights are shared across the image at every spatial

position defined by a tiling operation. Given a local descriptor x and the dictionary

W the visual code zj can be computed by a feedforward activation:

zj = fe(x, W) =
1

1 + exp(−WTx)
. (5.1)

This function applies a point-wise nonlinearity through the logistic function to the

result of a linear transformation. When using a binary RBM, normalization may be

required to be performed to parse the local descriptor as an input. For SIFT descrip-

tors, the vectors are first ℓ1-normalized so that each sums to a maximum of one. This

results in a quasi-binary input representation to suit the binary RBM.

An important advantage of using an RBM for feature coding over the more commonly

used decoder networks, such as those of Yang et al. [2009], Wang et al. [2010] and

Boureau et al. [2010a, 2011], is inference speed. Unlike decoder networks, RBMs do

not need to perform any optimization during feature coding. Given a local descriptor,

the simple feedforward mapping results in a fast generation of the visual code.
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The RBM uses a learning algorithm known as contrastive divergence to learn suitable

mapping parameters W. The optimization attempts to maximize the likelihood of the

input data distribution by performing gradient descent while iterating over a training

set of local descriptors (Section 2.2.3). Through the latent layer, the RBM models the

statistics of the interactions between various dimensions of the local descriptor. The

process is entirely unsupervised and does not require the use of any information of

the image class.

However, using input maximum likelihood as the only criteria to discover the mid-

level representations may not be suitable for the image classification task. To learn

sensible visual codes for image classification, regularization may be incorporated to

guide the learning of the structure of the data (Section 3.3.1). To model local descrip-

tors, the sparse and selective distribution-based prior is used to bias the RBM learning.

This was comprehensively elaborated in Section 3.3.2.

For image classification, selectivity and sparsity in the feature coding may help im-

prove visual information efficiency, memory storage capacity and, most importantly,

pattern discrimination [Barlow, 1989; Rolls and Treves, 1990]. As defined in Sec-

tion 3.2.1, sparsity is a summary of the element in the visual code vector of one local

descriptor, while selectivity is a statistic of one latent variable across a set of local de-

scriptor instances. It is important for a representation to be jointly sparse and selective.

A simplified graphical explanation of this is shown in Figure 5.3, whereby feature dis-

crimination suffers when the coding is not jointly sparse and selective. With suitable

regularization performed during learning, interesting spatially coherent representa-

tions can be learned from local gradient-based descriptors (see Section 5.5.2).
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Figure 5.3: Importance of a jointly sparse and selective visual coding. Descriptors
encoded using broad and distributed coding have highly overlapping representations
and lack discriminative power. Having only sparsity in the coding alone may lead to
visual codewords that do not specialize. A coding with only selectivity may cause
redundant codewords that memorize only a small subset of features. Selectivity and
sparsity should jointly exist to form meaningful and discriminative visual codes.
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Encoding macro features. Each local descriptor independently represents the pixel

information from its spatial window, without considering its neighbors. To enhance

the richness in the representation and model descriptor correlations in the image

space, it may be advantageous to incorporate spatial information into the feature cod-

ing structure, instead of treating the descriptors as being spatially independent. In

this context, a more complex image descriptor, known as the macro feature [Boureau

et al., 2010a], can be extracted from the image. A macro feature concatenates local

descriptors over a spatial neighborhood and a RBM can learn a visual dictionary that

models the interactions, not only within a descriptor but also between neighboring

ones. Figure 5.4 shows how feature coding can be performed using macro features as

inputs.

Macro feature!

Macro feature coding!

Descriptor!

Descriptor! Descriptor!

Image!

Visual code!

Descriptor!

W!

Local feature extraction!

Patch neighborhood!

Figure 5.4: Macro feature extraction. The visual code of a macro feature captures
both inter- and intra-descriptor correlations within a spatial neighborhood.

5.2.2 Supervised fine-tuning of single-layer visual dictionaries

Unsupervised learning models the structure of local descriptors through an optimiza-

tion criterion, such as maximum likelihood estimators (Section 2.2.3) or minimizing

input reconstruction costs (Section 2.2.2). However, as it is an appearance-based model

learned solely from the bottom-up and any change in task or labeling for the same

dataset is invisible to the unsupervised model. Without knowledge of the task, it is

impossible to know if the learned visual representations is optimal for image classi-

fication, even when the most powerful unsupervised learning models are used. In

this context, supervised dictionary learning is crucial for image classification and can

complement unsupervised visual dictionary learning.

After training, the RBM visual dictionary can be used directly as a two-layer feedfor-

ward neural network. Due to this inherent structure, the parameters of the dictionary

can be fine-tuned using top-down supervised learning. A classifier W2, which per-

forms a linear projection followed by a softmax activation function can be added to

learn the visual codes with the class labels. When combined with the RBM dictionary,
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the architecture takes the form of a “shallow” multilayer perceptron network (Sec-

tion 2.2.1). From this, the RBM visual dictionary W1 can be fine-tuned concurrently

with the classification parameters W2 using the error backpropagation algorithm.

This way of connecting the class labels to the local visual codes deviates from clas-

sifying the entire image and only attempts to improve discrimination between local

features independently. The expectation is that performance for the image classifica-

tion will also be given a boost with more discriminative local representations. This is

verified by empirical analysis in Section 5.5.3. Figure 5.5 shows how the supervised

signals are incorporated into the fine-tuning of visual dictionaries for encoding local

descriptors and macro features.
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(a) From single local descriptors.
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Macro feature!
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Supervised signals!

(b) From macro feature.

Figure 5.5: Supervised fine-tuning of single-layer visual dictionaries. A classification
layer is added on top of the representation of visual codes to enable the backpropa-
gation of error signals to the locally applied visual dictionary.

5.3 Hierarchical feature coding

In this section, I propose a hierarchical feature coding scheme that extends the single-

layer feature coding method presented in the previous section. The visual dictionary

is learned using the proposed deep learning techniques by combining sparse and

selective RBMs proposed in 3.3 with the top-down deep regularization presented in

4.3. To the best of my knowledge, this is the first attempt on learning deep visual

representations from local descriptors rather than pixels. From the perspective of the

BoW model, it is the first feature coding scheme that uses a deep visual dictionary. The

proposed deep feature coding method outperforms existing shallow local descriptor

feature coding methods and deep pixel-based architectures (see Section 5.5.1).
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5.3.1 Motivations of hierarchical feature coding

The general motivations of learning deep architectures have been covered in Sec-

tion 2.3.1. Specific to computer vision, existing deep architectures for image modeling

learn visual representations from pixels [Lee et al., 2009; Kavukcuoglu et al., 2009; Yu

et al., 2011; Krizhevsky et al., 2012]. While these attempts at learning from pixels have

resulted in the discovery of interesting features, such as Garbor-like filters [Lee et al.,

2008], in general, image classification performances remain below those of the BoW

model. The proposed deep feature coding scheme learns a hierarchical visual dictio-

nary from local descriptors as a starting point with a greater representational power

than raw pixels. This hybridization integrates the visual modeling capabilities of local

descriptors and spatial pyramidal pooling of the BoW model with the adaptability

and representational power of deep learning.

The BoW model transforms image representations from pixels to low-level descrip-

tors, mid-level visual codes, and eventually to a high-level image signature, which is

used for classification. The depth of a feature coding scheme allows for a gradual

mapping of representations to achieve both feature enhancement and abstraction dur-

ing the coding process. The scheme continues the general tactic of the BoW model of

progressively increasing dimensionality while reducing cardinality in every successive

step (Figure 5.6).

5.3.2 Stacking and spatially aggregating visual dictionaries

In deep belief networks [Hinton et al., 2006], layers of RBMs are stacked and trained

in a greedy manner. Each pair of adjacent layers is fully-connected to each other.

However, this conventional method of stacking fully-connected layers does not ex-

ploit spatial information and may not scale well to larger images. When representing

visual information with a hierarchy, an intuitive plan is to first represent parts of ob-

jects in the lower levels and combine these parts into whole objects and scenes in the

higher levels. Convolutional neural networks [LeCun et al., 1989, 1998; Lee et al., 2009]

and biologically inspired models [Riesenhuber and Poggio, 1999; Bileschi et al., 2007;

Mutch and Lowe, 2008; Theriault et al., 2013b] model this expanded spatial dimen-

sionality through the use of spatial sub-sampling operations. With every new layer

the complexity of the features increases and the areas of representation over the origi-

nal image are enlarged. When learning hierarchical visual dictionaries, it is sensible to

perform spatial aggregation, whereby higher-level concepts are formed by abstracting

over the lower-level ones.



108 Learning Hierarchical Visual Codes

Image (pixels)!

Classification!

Semantic!
categories!

Airplane!
Bicycle!

Car!
Cat!

Chair!
Dog!

House!
Person!

High-level!
signature!

Pooling!Coding!

Low-level!
local descriptors!

Mid-level 
visual codes!

Feature!
Extraction!

Spatial y-coordinate!

Feature!
dimensionality!

Spatial!
x-coordinate!

•  Low-dimensional feature!
• Numerous spatial positions!

• High-dimensional feature!
•  Single vector for entire image!

• Gradually enhance feature richness!
• Gradually perform spatial abstraction!

Coding!

(a) Bag-of-words model with hierarchical feature coding.

Dimensionality!Cardinality!

Image pixels! Local descriptors 
(SIFT/HOG)!

Mid-level!
visual codes!

Image!
signature!

Separating 
hyperplanes!

(b) Relation between representational dimensionality and cardinality through the framework.

Figure 5.6: Representation transformation by the bag-of-words (BoW) model. The
image representation is transformed from image pixels to low-level descriptors, then
to mid-level visual codes, and eventually to a high-level image signature, which is
used for classification. (a) During hierarchical feature coding, the feature dimension-
ality increases progressively, enhancing the richness of the representation. Mean-
while, the features are gradually abstracted through the layers and the number of
features (i.e. cardinality) over the image space is reduced. (b) With every operation,
dimensionality increases, while cardinality decreases.

Figure 5.7 shows the connections between a stack of two RBMs, whereby the higher-

level RBM spatially aggregates visual codes of the lower-level one. The lower-level

RBM W1 is first trained as a single unsupervised feature coding layer to produce

visual codes z2 (see Section 5.2). In a similar manner to how macro features are

concatenated, the visual codes z2 within the same neighborhood are combined into

a more complex feature. For the purpose of consistency, this aggregated visual code

shall be known as a macro code. A second RBM W2 is stacked above the first RBM. This

higher-level RBM is trained to encode the macro code into a high-level visual code z3.

Due to the spatial concatenation, the interactions between the low-level visual codes

in the same neighborhood will be modeled by the higher-level RBM.

Extending from their single-layer counterparts shown in Figure 5.2 and Figure 5.4,

the two-layer visual dictionaries for encoding local descriptors and macro features

are shown in Figure 5.8(a) and Figure 5.8(b) respectively. When using a hierarchy to

encode a macro feature, spatial aggregation is performed twice – once in each new

RBM layer.
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Figure 5.7: Spatial aggregation by the higher-level visual dictionary. The higher-level
visual dictionary W2 models the interactions between local visual codes encoded at
different locations by the lower-level visual dictionary W1.
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Figure 5.8: Two-layer hierarchical feature coding. The hierarchy is formed by stack-
ing a second RBM W2 on top of existing single-layer visual dictionaries W1 for en-
coding (a) local descriptors and (b) macro features. The higher-level RBM spatially
aggregates visual codes from the lower level RBM.

5.3.3 Top-down regularization of hierarchical visual dictionaries

So far, the training algorithms have focused on unsupervised learning. Yet, just like

in the case of the single-layer visual dictionary, it is important for supervised learning

to be introduced for the hierarchical visual dictionary. However, due to the depth of

the architecture, more care has to be taken to integrate supervision into the learning.

Using top-down discrimination to model the data is an effective way to approach a

classification task. In a deep architecture, the discriminative signal diffuses as it travels
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down the network (see Section 2.2.1). Similarly, the importance of supervised learn-

ing increases as we stack layers, since the quality of the unsupervised representations

diminishes at the upper layers (Table 5.2). A combination of both bottom-up and

top-down learning needs to be performed to train an effective model. In this archi-

tecture, after greedily stacking the RBMs using sparsity and selectivity (Section 3.3),

class labels are introduced through two supervised fine-tuning phases: top-down reg-

ularization and discriminative error backpropagation.

Top-down regularization. The learning strategy follows the forward-backward learn-

ing algorithm proposed in Section 4.3.2. This iterative algorithm can be dissected into

the following sub-steps.

• Initialization. A new “classifier” RBM, with weights W3, connects the high-level

visual codes z3 (see Figure 5.7) to a softmax activated output layer y ∈ R
C, with

each unit corresponding to the class label c. This RBM is trained by directly

associating the z3 to outputs y and can be updated via gradient descent using

Equation 4.7 with Equation 4.10 to update the parameters of this classifier.

• Forward-backward learning. A initial forward pass generates the visual codes

zl,l−1 from the bottom-up using Equation 4.4. A backward pass then samples tar-

get visual codes zl,l+1 downwards from the higher-level layer with Equation 4.11.

Equation 4.7 can then be used to fine-tune the two dictionaries and the local clas-

sifier.

Discriminative error backpropagation. After top-down regularization, discrimina-

tive fine-tuning is performed. Various discriminative loss functions could be used to

update the RBMs’ parameters, with the most standard being the classification softmax

cross-entropy loss leading gradient descent updates using the error backpropagation

algorithm. This is nicely adapted for multi-layered neural networks. This fine-tuning

is also performed in the single-layer visual dictionary described in Section 5.2.2.

Figure 5.9 shows the supervised signals being incorporated into the fine-tuning of the

visual dictionary hierarchy for local descriptors and macro features. The supervised

optimization for the deep visual hierarchy faces the same drawback as her single-

layered cousin. The optimization is still performed over local regions of the image

using a globally defined image label. However, since spatial aggregation is performed

for this hierarchical model, the regions represented are larger than the single-layer

model, especially when macro features are used.
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Figure 5.9: Supervised fine-tuning of hierarchical visual dictionaries.

5.3.4 Three-phase training of the bag-of-words model

The training process that has been described, so far, has been for learning the hierar-

chical visual dictionary. Together with the training of the support vector machine for

classification in the final step, the entire procedure of six training steps for the bag-of-

words model can be summarized into three phases, mimicking the strategy proposed

in Section 4.3.3. The result of one step is used to initialize the parameters for the next.

Figure 5.10 shows then entire training procedure for the BoW model, as well as the

inference process. During the inference process, a single feedforward pass through

the BoW pipeline outputs the class label prediction of an image from the pixel-level.

1. Phase 1 - greedy unsupervised learning. RBM visual dictionaries are learned layer-

by-layer from the bottom up. Learning is regularized with selectivity and spar-

sity in each layer (see Section 3.3). Spatial aggregation models the structure of

the visual codes within spatial neighborhoods (see Section 5.3.2).

2. Phase 2 - top-down regularized deep learning. A top-level classifier is learned,

while the visual dictionaries are fine-tuned using a forward-backward learning

strategy, as described in the previous section.

3. Phase 3 - supervised discriminative learning. Discriminative learning is exploited

to enhance the discriminative power of the local visual dictionaries through error

backpropagation. Subsequently, the images in the training set can be encoded

through the spatial hierarchy to generate the high-level visual codes. Spatial
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pooling is then performed using spatial pyramids [Lazebnik et al., 2006] with

max-pooling [Boureau et al., 2010a]. The result is a single vector – an image

signature – that describes the entire image. The collection of image signatures

together with their corresponding class labels are used to discriminatively train

the SVM for the final classification step.
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Figure 5.10: Training the bag-of-words model in six steps. The steps are grouped into
three phases: 1) greedy supervised learning, 2) top-down regularized deeps learning
and 3) supervised discriminative learning. Inference consists of a single feedforward
pass through the bag-of-words pipeline.

5.4 Image classification experimental setups

Various object and scene classification tasks were used to evaluate the single-layer

and hierarchical visual dictionaries and feature coding schemes presented. The per-

formance of an image classification model can be empirically quantified by applying

the model on a given experimental dataset. In this section, I will introduce the main

evaluation metric employed and three image classification datasets used in this thesis.
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5.4.1 Image classification datasets

The three datasets used to evaluate image classification performances are namely:

1) the 15-Scenes dataset [Lazebnik et al., 2006], 2) the Caltech-101 dataset [Fei-Fei

et al., 2004] and 3) the Caltech-256 dataset [Griffin et al., 2007].

Fifteen Scene Categories. The fifteen scene categories (15-Scenes) dataset [Lazeb-

nik et al., 2006] consists of 4, 485 images from 15 different scene categories. The dataset

is an expansion of the thirteen category dataset released by Fei-Fei and Perona [2005],

which was extended from the dataset by Oliva and Torralba [2001]. Each image is

assigned a category and there are between 210 to 410 images per category. Figure 5.11

shows an example image from each of the category. The objective of the dataset is to

predict the category of an image. The dataset is publicly available1 and is widely used

within the computer vision community for evaluating image classification models.

Caltech-101. The Caltech-101 dataset [Fei-Fei et al., 2004] is one of the most popular

datasets for evaluating image classification models. It contains 9, 144 images belong-

ing to 101 object categories and one background class. There are between 31 to 800

images in each category, with most categories containing about 50 object instances.

Each image is roughly 300× 200 pixels in size. The authors of this dataset also in-

cluded carefully segmented object masks. However, this is not used for the purposes

of this thesis. The dataset is available online2. Some examples of this dataset are

shown in Figure 5.12. In general, the objects tend to be nicely centered within the

image and most images have little or no clutter and object pose is also stereotypical

[Ponce et al., 2006].

Caltech-256 The Caltech-256 dataset [Griffin et al., 2007] extends the original Caltech-

101 dataset to 256 object classes and 30, 608 images – a 3.35 times increase. Same as

before, an extra background category is included to represent non-semantic clutter.

The number of images per class also increased from a mean of 90 to a mean of 119

(see Table 5.1). In addition, 29 of the largest classes of the Caltech-101 dataset were

retained in this dataset. Compared to the Caltech-101 dataset, the Caltech-256 dataset

has more variations and the spatial alignment of the objects are more inconsistent.

However, they still tend to be generally centered, as shown in Figure 5.13, which the

authors attribute to photographer bias. This dataset is also available online3.

1http://www-cvr.ai.uiuc.edu/ponce_grp/data
2http://www.vision.caltech.edu/Image_Datasets/Caltech101
3http://www.vision.caltech.edu/Image_Datasets/Caltech256

http://www-cvr.ai.uiuc.edu/ponce_grp/data
http://www.vision.caltech.edu/Image_Datasets/Caltech101
http://www.vision.caltech.edu/Image_Datasets/Caltech256
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bedroom! suburb! industrial! kitchen! living room!

open country! street! tall building! office! store!

coast! forest! highway! inside city! mountain!

Figure 5.11: Example images from each scene category in the 15-Scenes Dataset.

airplanes! chair! elephant! faces! helicopter!

motorbikes! nautilus! pyramid! soccer ball! water lily!

Figure 5.12: Example images of objects from the Caltech-101 dataset.

camel! cormorant! duck! Eiffel tower! fireworks!

golf ball! lighthouse! tricycle! tomato! zebra!

Figure 5.13: Example images of objects from the Caltech-256 dataset.
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5.4.2 Evaluation setup and metric

In a typical setup, for methods using unsupervised learning, a random set of input

image descriptors is used to train the model. If supervised learning is employed, then

a random number of images per class is randomly drawn from the dataset. Since

neither of the three datasets have a predefined training or test set, there will be a need

to perform several experimental trials with different train-test splits. Table 5.1 details

the train-test splits for the three image classification datasets evaluated in this thesis.

Table 5.1: Train-test splits used for the three experimental datasets.

Dataset
Images Training examples per class

per class Setting 1 Setting 2

15-Scenes 280 100 (33.4%)
Caltech-101 90 15 (16.7%) 30 (33.5%)
Caltech-256 119 30 (25.1%) 60 (50.2%)

The images that are not used for supervised training are then placed into a test set for

the purposes of a quantitative evaluation. From the test set, the image classification

accuracies Ac are computed for each class c. The results are then averaged over the

set of C classes to obtain the mean class-wise accuracy 〈A〉. The evaluation is per-

formed over T experimental trials t, with different randomly-selected set of images

used for training and testing. The result is averaged over the T trials to obtain the

final evaluation metric for image classification performance:

µA =
1
T

T

∑
t=1
〈A〉t =

1
CT

T

∑
t=1

C

∑
c=1

Ac,t. (5.2)

The standard deviation across the trials is also reported:

σA =

√√√√ 1
T

T

∑
t=1

(〈A〉t − µA)2. (5.3)

The presentation of the result is typically formatted as “µA ± σA”. For this thesis, a

total of 10 trails were performed for the evaluation (T = 10).

5.4.3 Experimental setup

Visual dictionary setup and input descriptors. The main objective of the experi-

ment was to evaluate and analyze the performance of different architectural setups.

Single-layer and hierarchical visual dictionaries were used to encode two types of in-

puts – local image descriptors and macro features. The following four setups were

evaluated.
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• Single-layer dictionary from local descriptors (Figure 5.2 with Figure 5.5(a)).

• Single-layer dictionary from macro features (Figure 5.4 with Figure 5.5(a)).

• Hierarchical dictionary from local descriptors (Figure 5.8(a) with Figure 5.9(a)).

• Hierarchical dictionary from macro features (Figure 5.8(b) with Figure 5.9(a)).

Before feature extraction, images were resized while retaining their original aspect

ratios, such that the longer spatial dimension was at most 300 pixels. SIFT descriptors

[Lowe, 1999] were extracted from densely sampled patches of 16× 16 at 8 pixel inter-

vals. Macro features were concatenated from 2× 2 neighborhoods of SIFTs extracted

at 4 pixel intervals. This setup follows that of existing BoW approaches [Boureau et al.,

2010a]. The SIFT descriptors were ℓ1-normalized by constraining each descriptor vec-

tor to sum to a maximum of one.

Visual dictionary learning. A set of 200, 000 randomly selected descriptors were

used as the training set for unsupervised dictionary learning. For supervised fine-

tuning using the forward-backward learning and error backpropagation, a number

of training images per class – 15 or 30 for Caltech-101; 30 or 60 for Caltech-256; 100

for 15-Scenes – were randomly drawn for each experimental trial (Section 5.4.2). The

same train-test split was also used for the subsequent training the SVM classifier.

Pooling and classification. From the visual codes produced by each feature cod-

ing scheme, a three-level spatial pyramid [Lazebnik et al., 2006] with max-pooling

[Boureau et al., 2010a] generated the final image signature based on the typical pool-

ing grids of 4× 4, 2× 2 and 1× 1. This vector of 21J elements, where J is the number

of visual coding dimensions, was used to train a linear SVM to perform multi-class

classification.

Evaluation metric. The evaluation metric is described in Section 5.4.2. The images

that were not used for supervised training were then used as the test set. The mean

µA and standard deviation σA of the class-wise image classification accuracies over

10 trials were computed. For the Caltech-101 and Caltech-256 datasets, following the

standard evaluation protocol, the evaluation metric was computed for using all class

(including the background class) for both training and evaluation.
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5.5 Image classification evaluation and discussions

5.5.1 Evaluation: image classification results

The image classification results on the Caltech-101 and 15-Scenes datasets using the

different setups of the visual dictionary – with different depths and input descrip-

tors – are presented at the bottom of Table 5.2. Also presented are the intermediate

results after the unsupervised learning phase, whereby the SVM classifier is trained

on the visual codes that are not fine-tuned with supervision. Essentially, the training

process of the BoW model jumps from the results of phase 1 to step 6 directly (Fig-

ure 5.10). The best image categorization results obtained on the Caltech-101 dataset

were 72.1± 1.3% and 79.7± 0.9%, using 15 and 30 training images respectively. For

the 15-Scenes dataset, a classification accuracy of 86.4± 0.6% was obtained.

The best performing model was consistently the hierarchical visual dictionary trained

and fine-tuned with supervision on macro feature inputs. To the best of my knowl-

edge, these are the best ever results for methods focusing squarely on feature coding

in the BoW model. Moreover, performance was consistently good across both datasets.

Macro features were observed to consistently outperform SIFT descriptors, by about

3% on the Caltech-101 dataset and 1.5% for the 15-Scenes dataset. This difference in

performance validates the results reported by Boureau et al. [2010a].

The hierarchical visual dictionary also achieved competitive image classification per-

formances on the Caltech-256 dataset, reported in Table 5.4. The model obtained

average accuracies of 41.5± 0.7 and 47.2± 0.9 using 30 and 60 training examples re-

spectively. As a reference, the results for other methods producing competitive results

are shown at the bottom of Table 5.4. The Caltech-256 dataset was also used to analyze

the properties of transfer learning in deep feature hierarchies (see Section 5.5.3).

Comparison with feature coding methods. Table 5.2 compares the results of the

proposed feature coding schemes against other feature coding strategies that encode

single feature types and follow the same BoW pipeline. The proposed method is favor-

ably positioned among both the unsupervised and supervised methods. Compared

against all other coding-based schemes, the leading results are obtained by the pro-

posed hierarchical feature coding scheme, learned from macro features and fine-tuned

with supervised learning. At this juncture, RBM-based methods for visual dictionary

learning seem to gain a slight edge over other feature coding methods. RBM-based

methods also have faster inference speeds as compared to decoder networks [Wang

et al., 2010; Boureau et al., 2010a; Yang et al., 2009] and have a significantly more

compact representation than some feature coding methods [Boureau et al., 2011].
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Table 5.2: Performance comparison with other feature coding methods using the bag-of-words model.

Method Authors
Dictionary Caltech-101 15-Scenes

Size 15 tr. img. 30 tr. img. 100 tr. img.

Non-learned feature coding

Hard assignment Lazebnik et al. [2006] 200 56.4 64.6± 0.8 81.1± 0.3
Kernel codebooks Van Gemert et al. [2010] 200 - 64.1± 1.5 76.7± 0.4
Soft assignment Liu et al. [2011] 1000 - 74.2± 0.8 82.7± 0.4

Feature coding with decoder network

ScSPM Yang et al. [2009] 1024 67.0± 0.5 73.2± 0.5 80.3± 0.9
LLC Wang et al. [2010] 2048 65.4 73.4 -
Sparse coding & max-pooling Boureau et al. [2010a] 1024 - 75.7± 1.1 84.3± 0.5
Multi-way local pooling Boureau et al. [2011] 1024× 65 - 77.3± 0.6 83.1± 0.7

Feature coding with restricted Boltzmann machine

Sparse RBM Sohn et al. [2011b] 4096 68.6 74.9 -
CRBM Sohn et al. [2011b] 4096 71.3 77.8 -

Feature coding with supervised dictionary learning

Discriminative sparse coding Boureau et al. [2010a] 2048 - - 85.6± 0.2
LC-KSVD Jiang et al. [2011] 1024 67.7 73.6 -

Proposed single-layer feature coding (Section 5.2)

Unsupervised (SIFT) Goh et al. [2012] 1024 66.8± 1.6 75.1± 1.2 84.1± 0.8
Fine-tuned (SIFT) Goh et al. [2012] 1024 67.5± 1.2 75.7± 1.1 84.3± 0.6
Unsupervised (macro feature) Goh et al. [2012] 1024 70.2± 1.9 78.0± 1.4 85.7± 0.7
Fine-tuned (macro feature) Goh et al. [2012] 1024 71.1± 1.3 78.9± 1.1 86.0± 0.5

Proposed hierarchical feature coding (Section 5.3)

Unsupervised (SIFT) Goh et al. [2014] 2048 62.5± 1.4 69.9± 1.2 79.6± 0.5
Fine-tuned (SIFT) Goh et al. [2014] 2048 69.3± 1.1 77.2± 0.8 85.2± 0.5
Unsupervised (macro feature) Goh et al. [2014] 2048 65.3± 1.5 72.8± 1.1 82.5± 0.6
Fine-tuned (macro feature) Goh et al. [2014] 2048 72.1± 1.3 79.7± 0.9 86.4± 0.6
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Comparison with other methods. Table 5.3 presents a comparison with other meth-

ods that focus on other (non-feature-coding) aspects of image categorization. The

proposed hierarchical feature coding scheme outperforms all recent pixel-based con-

volutional methods. The main difference is in the hybridization of deep learning and

the BoW model, whereby the descriptive power of SIFT, the image modeling by the

spatial pyramidal pooling and robustness of SVM classification, are all exploited. This

is also particularly useful when there are few labeled training examples to learn from,

so hand-crafted descriptors form good surrogates for low-level representations.

Also shown in Table 5.3, are other methods that focus on visual information processing

operations after the feature coding step. Amongst these methods, two recent methods

by Duchenne et al. [2011] and Feng et al. [2011] reported impressive performances

on the Caltech-101 dataset, which are currently the best accuracies on the dataset.

Duchenne et al. [2011] used graph matching to encode the spatial information of rep-

resentations learned by decoding networks [Boureau et al., 2010a]. Feng et al. [2011]

built upon LLC sparse codes [Wang et al., 2010] to perform pooling in a discrimina-

tive manner, using an ℓp norm aggregation strategy to pool codes in between average

and max, and combined with a spatial weighting term optimized for classification.

These methods [Duchenne et al., 2011; Feng et al., 2011], rely on existing feature cod-

ing schemes and address the image classification problem in a completely different

direction. As a result, the methods can be easily incorporated in the BoW model and

possibly boost performances when combined with the proposed hierarchical feature

coding schemes.

Table 5.3: Comparison with non-feature-coding methods on the Caltech-101 dataset.

Method Authors
Caltech-101

15 tr. img. 30 tr. img.

Proposed hierarchical feature coding (Section 5.3)

Fine-tuned (SIFT) Goh et al. [2014] 69.3± 1.1 77.2± 0.8
Fine-tuned (macro feature) Goh et al. [2014] 72.1± 1.3 79.7± 0.9

Convolutional networks

Convolutional deep belief net Lee et al. [2009] 57.7± 1.5 65.4± 0.5
Convolutional network Kavukcuoglu et al. [2009] - 66.3± 1.5
Deconvolutional network Zeiler et al. [2010] 58.6± 0.7 66.9± 1.1
Hierarchical sparse coding Yu et al. [2011] - 74.0± 1.5

Post-feature-coding methods

NBNN Boiman et al. [2008] 65.0± 1.1 70.4
SVM-KNN Zhang et al. [2006] 59.1± 0.6 66.2± 0.5
NBNN kernel Tuytelaars et al. [2011] 69.2± 0.9 75.2± 1.2
Graph-matching kernel Duchenne et al. [2011] 75.3± 0.7 80.3± 1.2
GLP Feng et al. [2011] 70.3 82.6
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Inference speed. Due to the learned encoder of the RBM, feature coding is fast dur-

ing inference. The two tier hierarchy is simply a feedforward network that performs

feedforward computation twice to obtain its coding. When implemented, descriptors

can be computed concurrently in batches. The unsupervised visual dictionary has the

same inference time as the supervised fine-tuned version. The advantage of inference

speed is especially significant when compared against decoder networks [Yang et al.,

2009; Wang et al., 2010; Boureau et al., 2010a], which have to re-run the sparse coding

optimization during inference. Experimentally, an inference speedup of 80 times over

the ScSPM method [Yang et al., 2009] is recorded for the feature coding step.

5.5.2 Analysis: single-layer feature coding

Visualization of visual words. As described in Section 3.4.1, each visual word wj

can be visualized in the input feature space (Figure 3.9). In this case, the visualization

is done in the space of the SIFT descriptor. After training a single-layer visual dictio-

nary on SIFT descriptors extracted from the Caltech-101 dataset, each visual word is

extracted as a filter over the 128-dimensional SIFT feature space. Each SIFT descriptor

encodes quantized orientated gradients, in 8 bins, within a 4× 4 grid (see Figure 2.18).

The filter is partitioned into the same spatial grid and the dominant orientation is se-

lected for each grid. The strength of the dominant orientation is also captured based

on the reconstructed response of the filter. For visualization, each orientation is as-

signed a distinctive hue, while the strength of the local response of the partition is

indicated by the intensity value. This novel visualization method can be adapted for

other gradient-based local descriptors, such as the HOG descriptor [Dalal and Triggs,

2005].

The result of the visualization is shown in Figure 5.14(a), where each square repre-

sents a visual word. It is interesting to observe that the RBM automatically discovers

coherent structure in from the image gradients as compared to a normal RBM (Fig-

ure 5.14(b)). This is due to the sparse and selective regularization employed. For many

visual words, opposing gradients are paired and have consistent directions. For ex-

ample, red-cyan pairings tend to occur left and right of each other. A further analysis

of the visualization is described in Figure 5.15.

The diversity between the visual words lead to differentiation and discrimination be-

tween features in the visual coding layer. For a single-layer visual dictionary, the visual

words learned from SIFT extracted from the Caltech-101, Caltech-256 and 15-Scenes

datasets are visually similar. This leads to the potential that the dictionaries learned

are generic enough to be transferred between datasets in the framework of self-taught

learning [Raina et al., 2007] (see Section 5.5.3).



5.5 Image classification evaluation and discussions 121

dominant!
orientation!

strength!

(a) Sparse and selective RBM. (b) Standard RBM.

Figure 5.14: Visualization of visual words learned from SIFT descriptors. Each
square represents a visual word projected back into the feature space. Each visual
word is further partitioned into 4×4 neighborhoods. A partition expresses the dom-
inant orientation as one of eight colors, while the response strength of the partition is
indicated by its color intensity (see legend). By observation, the visual words trained
with (a) sparsity and selectivity regularization capture more spatially coherent struc-
ture than (b) a non-regularized RBM visual dictionary.

(a) (b) (c) (d)

Figure 5.15: Types of gradients encoded by the visual words learned. Examples
of visual words learned by the sparse and selective RBM on SIFT descriptors are
shown above, and their corresponding image patches with hypothetical structure
that might strongly activate the visual word are presented below. Refer to the legend
of Figure 5.14. The visual words are observed to conform to image structure; most
visual words encode (a) smooth gradients, (b) lines and edges, (c) textured gratings
or (d) other complex features, such as corners, bends and center-surround features.
The diversity between the visual words lead to differentiation and discrimination
between features in the coding layer.
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Visual dictionary size. Due to the sparse and selective regularization, the visual

words learned encode generic image structure and tend to be very diverse and dis-

tinctive. This results in concise visual dictionaries with few redundant visual words.

As a result, the method remains very competitive even as the size of the visual dic-

tionary is reduced (see Figure 5.16). The final image signature is 32.5 times smaller

than that of the best performing decoder network [Boureau et al., 2011]. The num-

ber of visual words used is also half as compared to the RBM-based method of Sohn

et al. [2011b]. In both cases, the single-layer dictionary was able to outperform other

methods in terms of classification performance.

16 32 64 128 256 512 1,024 2,048 4,096
30

35

40

45

50

55

60

65

70

75

80

Codebook Size

M
e

a
n

 C
la

s
s
−

W
is

e
 A

c
c
u

ra
c
y

 

 

Number of codewords!

A
cc

u
ra

cy
!

Figure 5.16: Image classification results with varying visual dictionary size. Image
classification results of an unsupervised visual dictionary on Caltech-101 with 30
training examples, show that although performance degrades when the number of
visual words is reduced, the results remain competitive.

Effects of sparse and selective regularization. The regularization of visual dic-

tionaries with both sparse and selective distributions is important. When regularized

with only a sparse or selective distribution, the image classification results drop signif-

icantly. On the Caltech-101 dataset using 15 training examples, using an unregularized

RBM, the accuracy obtained was 51.7%. With a sparsity-only or selectivity-only regu-

larization, the results were 45.5% and 36.8% respectively – a significant drop from the

unregularized version. However, when sparsity and selectivity are jointly regularized,

the classification accuracy obtained was 66.8%.

The average selectivity of the collection of visual codewords is equivalent to the spar-

sity of visual codes averaged across input examples. The results are analyzed using

this average selectivity (or average sparsity) metric with the 15-Scenes dataset using

the single-layer unsupervised visual dictionary trained on macro features. In Fig-

ure 5.17, the effects of varying levels of induced selectivity and sparsity on image

classification can be observed. The classification performance suffers on both ends

of the spectrum when the representation is too sparse and selective, or too densely-

distributed and broady-tuned. This phenomenon is consistent with the results re-

ported in Section 3.4.2.
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Figure 5.17: Effects of sparsity and selectivity on classification performance. Results
on the 15-Scenes dataset with an unsupervised visual dictionary jointly regularized
with sparsity and selectivity show that the performance degrades as the coding gets
too sparse and narrow, or too dense and broad.

5.5.3 Analysis: hierarchical feature coding

Impact of supervision on hierarchical visual dictionaries. For each feature type –

SIFT or macro feature – the hierarchical visual dictionary with supervised fine-tuning

produced the best performing image classification results. However, it is not imme-

diately apparent that either depth or supervision alone will bring significant gains to

the classification performance. The empirical performance of both architectural depth

and supervision will be discussed with possible explanations of the results obtained.

The analysis begins with the single-layer unsupervised model, which is already close to

the state-of-the-art results, especially when encoding macro features. When the sec-

ond visual dictionary is stacked, a consistent drop in the performance is observed.

This may be due to the model deviating from the classification objective as layers are

added – a problem that may exist even with superior generative learning on the max-

imum likelihood criterion. It may not be sensible to increase the depth of the model,

if the resulting parameters are unable to adapt to suit the image classification task.

As shown in Table 5.2, the classification results improve when supervised fine-tuning

is performed on both the single-layer and hierarchical visual dictionaries. While there

is only a slight improvement when supervision is added to the single-layer coding

scheme, the gains are particularly large when the visual dictionary is hierarchical,

so much so that it overcomes the deficit of performance due to the depth. A con-

ceivable reason for this is that a hierarchical architecture has the intrinsic capacity to

encode more complex representations within its structure. This complexity increases

class-wise modeling and separability when supervised fine-tuning is performed. This

shows the importance of supervised fine-tuning, especially for a coding scheme that

is several layers deep. Ultimately, it was the combination of supervised fine-tuning,

coding depth and macro features that delivered the best image classification scores.
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From Table 5.2, it is obvious that the gains due to supervision are statistically sig-

nificant for the hierarchical model, however its benefits on the single-layer model re-

mained uncertain. Analyses of individual trials with 30 training examples on Caltech-

101 (Figure 5.18) reveal that the results of every trial improves through fine-tuning.

The average improvement per trial for the single-layer and hierarchical models are

0.9± 0.6% and 6.8± 0.6% respectively. The gain is always positive for both models,

but supervision is especially important to the hierarchical model. The models outper-

form the discriminative dictionary [Boureau et al., 2010a], which uses a more complex

optimization with global labels. They also outperform the LC-KSVD model [Jiang

et al., 2011], due to superior representations catalyzed by unsupervised learning.
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(a) Individual trial results for the single-layer model.
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(b) Individual trial results for the hierarchical model.

Figure 5.18: Impact of supervised fine-tuning on feature coding. Results for 10
individual trials on Caltech-101 with 30 examples show that supervised fine-tuning
consistently improves the classification results for every trial. The performance boost
is more substantial for (b) the hierarchical model as compared to (a) the single-layer
model.

Transfer learning between datasets. Due to the similarity between Caltech-101

and Caltech-256, I attempted to transfer the unsupervised visual dictionaries learned

using Caltech-101 to classify Caltech-256 images, in the spirit of self-taught learning

[Raina et al., 2007]. Meanwhile, the Caltech-256 dataset is used for supervised fine-

tuning when required. The results of this evaluation is presented in Table 5.4.

With a shallow architecture, the unsupervised visual dictionary from Caltech-101 es-

sentially performed the same as the one trained from Caltech-256. However, after

stacking a second layer trained using the Caltech-101 dataset, the errors resulting from

the transfer of the visual dictionary become apparent. If the first layer is trained with

the Caltech-101 dataset and the second layer is trained on the Caltech-256 dataset,

the results are again no different from when both layers have been trained using the

Caltech-256 dataset. One theory is that the first layer models generic spatially-local

dependencies. As visual codes are spatially aggregated while stacking a new layer,

the representation becomes more class specific, so transferring Caltech-101 informa-

tion deeper into the architecture will not be as useful as learning directly from the

more complex Caltech-256 dataset itself.



5.5
Im

age
classifi

cation
evalu

ation
an

d
discu

ssion
s

1
2

5

Table 5.4: Performance on Caltech-256 for single-layer and hierarchical feature coding with transfer learning setups.

Method Authors
Training set(s) 30 training images 60 training images

Layer 1 Layer 2 Unsup. Fine-tuned Unsup. Fine-tuned

Proposed feature coding schemes without transfer learning

Single-layer Caltech-256 - 41.0± 1.0 41.1± 0.8 46.1± 0.9 46.0± 0.8
Hierarchical Caltech-256 Caltech-256 38.9± 0.8 41.5± 0.7 44.7± 0.8 47.2± 0.9

Proposed feature coding schemes with transfer learning

Single-layer Caltech-101 - 40.8± 1.1 41.0± 1.0 45.8± 0.9 45.9± 1.0
Hierarchical Caltech-101 Caltech-101 36.5± 1.0 38.3± 0.9 41.4± 1.0 44.2± 1.0
Hierarchical Caltech-101 Caltech-256 39.6± 0.9 41.7± 0.9 44.0± 1.1 47.0± 1.0

Other competitive methods

ScSPM Yang et al. [2009] Caltech-256 34.0 40.1
Graph-match kernel Duchenne et al. [2011] Caltech-256 38.1± 0.6 -
LLC Wang et al. [2010] Caltech-256 41.2 47.7
CRBM Sohn et al. [2011b] Caltech-256 42.1 47.9
GLP Feng et al. [2011] Caltech-256 43.2 -
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5.6 Summary and discussion

Two aspects of regularizing RBM-based deep networks were proposed in Chapter 3

and Chapter 4 for unsupervised greedy learning and supervised deep learning re-

spectively. Building upon the experiences gained from modeling image patches and

tackling simpler image classification problems, such as handwritten digit recognition,

the deep learning strategies were employed for classifying larger images of object

classes and scenes categories.

The bag-of-words (BoW) model was adopted for its visual modeling capabilities, par-

ticularly by using robust local image descriptors and spatial pyramidal pooling that

take into account the spatial layout in an image. The support vector machine was also

used for the final image classification. The proposed deep learning was integrated

with the BoW model by exploiting their adaptability and representation power to learn

hierarchical visual dictionaries for performing the feature coding of local descriptors.

The spatial aggregation of lower-level features was also performed to capture spatial

correlations and enhance the representations.

The resulting visual dictionaries produced leading performances on both the Caltech-

101 and 15-Scenes datasets, as compared with other feature-coding-based methods.

Inference speeds were also faster than the more commonly used decoder network ap-

proaches. Both the unsupervised regularization using selectivity and sparsity, as well

as the use of supervised fine-tuning were shown to be crucial in enhancing the classi-

fication performances. The visual dictionaries learned were qualitatively and quanti-

tatively determined to contain diverse and non-redundant visual words with spatially

coherent image structure. The low-level visual dictionary also exhibited generality in

encoding and was applied in a transfer learning framework to produce competitive

results on the Caltech-256 dataset.

As an extension from this hierarchical architecture, the pooling step was also opti-

mized and will be presented in the next chapter.
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Chapter abstract — In the bag-of-words model, local visual codes have to be
transformed through a pooling step to form the image signature for classifi-
cation. This chapter introduces a novel generalization and parameterization
of the pooling operation. The pooling parameters can be optimized via dis-
criminative gradient descent to learn how much to pool and where to pool
from. As a result, when combined with the learned hierarchical visual dictio-
naries (Chapter 5), the chain of operations from feature coding to pooling and
classification are all optimized, one module at a time.

6.1 Introduction

R
epresentations produced by the feature coding step of the bag-of-words

(BoW) model encode an image at various spatial positions into visual codes

(see Chapter 5). However, multi-dimensional data classification systems, such

as neural networks (Section 2.2.1) and support vector machines [Vapnik, 1995] (Sec-

tion 2.4.5), require a single fixed-sized image vector to construct the discriminative

classification model that associates the image to its label. This necessitates an interme-

diate step between feature coding and classification, whereby the local visual codes

are transformed into a single image vector or signature that describes the entire image.

This is known as the pooling step (Figure 6.1).

Chapter 6!

Discriminative pooling!

Feature 
coding!

Feature 
extraction!

Local 
descriptors!

Image!
Visual !
codes!

Image 
signature!

Class 
label!

Pooling! Classification!

Figure 6.1: The pooling step within the bag-of-words pipeline.
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Current methods typically approach this pooling step using fixed spatial partitions,

whereby predefined spatial pyramids [Lazebnik et al., 2006] are typically used to de-

fine spatial partitions. The pooling scheme that summarizes the coding of the parti-

tions into a scalar value is also set as either the max or average pooling. This chapter

proposes a method to optimize this step using a discriminative criteria. While visual

dictionaries were locally fine-tuned previously (Chapter 5), the objective of the pool-

ing optimization is to bring the representations to the image-level so that the learning

can be done image-wide.

6.2 Discriminative pooling optimization

To optimize the pooling step, the existing pooling method is studied and generalized.

From this, a parameterization can be performed to allow for the tuning of the opera-

tion. This tuning can then be automatically optimized by introducing a discriminative

criteria and performing gradient descent using the error backpropagation algorithm.

6.2.1 Generalized pooling scheme

The pooling scheme constructs the image signature by executing a sequence of two

steps, namely, 1) spatial partitioning and 2) pooling (see Figure 6.2). The coded image

Z ∈ R
J×N is coded by J visual words at N local positions. It is dissected into S spatial
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Figure 6.2: Computing the image signature by partitioning and pooling. In the
partitioning step, a set of spatial masks is used to select the areas of representation
for each visual coding dimension. The pooling step summarizes the visual codes
within a partition into a scalar value. These scalar values are concatenated to form
the image signature.
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partitions. A spatial mask rs ∈ R
N is applied for each partition, where the positions

n inside the partition are selected with ones and those outside are masked out with

zeros. For spatial pyramids [Lazebnik et al., 2006], partitions are determined by fixing

multi-scale grids over the image. The pooling operation is performed by summarizing

each dimension j of the visual code across the spatial partition s. The result of pooling

is a histogram of visual code occurrence vs over the spatial partition defined by rs.

Finally, the histograms are concatenated to form the final image signature, with a

total of JS elements.

Traditionally, either an average or max pooling is used to compress the codes within

a partition. The pooling step can be generalized by defining the pooling operation as

an aggregation of visual codes zjn in the image:

vs,j =
N

∑
n=1

zjnθs,jn, (6.1)

where θs,jn is the pooling weight of zjn for the spatial partition s. From this formula-

tion, performing pooling is equivalent to computing the weighted sum of visual codes

drawn across a spatial partition.

For the average pooling within a partition, the pooling weights are equal:

θs,jn =
rs,n

∑
N
n̂=1 rs,n̂

. (6.2)

If max pooling is performed, the visual code with the highest value within the parti-

tion is selected:

θs,jn =





1 if rs,nzjn = max
{

rs,n̂zjn̂

}N

n̂=1

0 otherwise.
(6.3)

6.2.2 Parameterized pooling

Various elements within the two steps of the pooling operation can be parameterized

and eventually learned. The pooling weights can be defined by the softmax function,

also known as the Boltzmann distribution:

θs,jn =
rs,n exp

(
βs,jzjn

)

∑
N
n̂=1 rs,n̂ exp

(
βs,jzjn̂

) , (6.4)

where rs,n ∈ [0, 1] is the degeneracy parameter that constrains the spatial partition s,

while βs,j is the inverse temperature parameter, controlling the softness of the pooling

weights for the set of visual codes {zjn : n ∈ [1, N]} for partition s. If βs,j = 0, all code

selections are equally weighted, which produces the average pooling (Equation 6.2).
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(c) At βs,j = 5, pooling weights are differently assigned. The pooled value is between the average and max.
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(d) At βs,j = 500, the maximum coding in the partition is assign a weight of 1. The result is max pooling.

Figure 6.3: Pooling weights and pooled value for different parameters. The pooling
step assigns pooling weights to the coding at various spatial positions based on a pa-
rameter βs,j. (b) If βs,j is 0, average pooling is performed. (d) When βs,j is sufficiently
large, max pooling is approximated.
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The max pooling (Equation 6.3) is given by βs,j → ∞, which greedily selects the most

intense coding. Figure 6.3 shows examples of pooling using different values of βs,j.

The spatial mask rs,n can be split into two channels: a binary selector bs,n ∈ {0, 1} and

a soft spatial mask αs,n ∈]0, 1], with

rs,n = αs,nbs,n. (6.5)

The binary mask makes a hard selection of the partition by assigning ones to positions

within the partition, while zeros are set at all other feature positions. The soft mask

forms an alpha channel over the hard mask and can be seen as a saliency map for the

spatial partition denoted by the binary mask. Each local code is weighted by αs,n may

be weighted differently for different spatial partitions. This weighting within a spatial

partition differs from the weighting between partitions done by Sharma et al. [2012].

Partition weighting is not necessary in this case because the SVM classifier will learn

the weights for each partition in the subsequent step of the BoW model.

Combining the pooling weights and modified spatial masks with Equation 6.1, the

resulting complete parameterized pooling function can be defined as

vs,j =
∑

N
n=1 zjnαs,nbs,n exp

(
βs,jzjn

)

∑
N
n=1 αs,nbs,n exp

(
βs,jzjn

) . (6.6)

6.2.3 Discriminative pooling optimization

From the pooling parameterization, we can see that the parameters represent two

different aspects of pooling. While βs,j determines what to pool, αs,n directs where to

pool from. The binary mask bs,n acts as a fixed region selector and is not optimized.

The next objective is to optimize these parameters to learn the pooling within each

partition. The softmax pooling function (Equation 6.6) is differentiable, which enables

the learning of parameters by gradient descent.

A set of classification parameters W3 is added to link the pooled image signature to

the class labels. The image can be locally encoded, pooled and has its class label

predicted. This prediction can be compared with the ground truth class label through

a discriminative loss function Ldisc, which provides the learning signal. The updates

for the pooling parameters can be computed by chaining the gradients
∂Ldisc

∂vs,j

∂vs,j
∂βs,j

and
∂Ldisc

∂vs,j

∂vs,j
∂αs,n

respectively, which backpropagates the learning signal. Figure 6.4 shows

the backpropagated discriminative learning signals extended from the result of the

hierarchical feature coding scheme described in Section 5.3.
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Figure 6.4: Optimizing the pooling parameters with backpropagation. Pooling is
performed over different subsets of visual codes defined by the spatial partitions.
Image classification errors are used to provide update the pooling parameters. Here,
the feature coding is provided by a hierarchical feature coding scheme (Section 5.3).

Optimizing the code selection parameter. The inverse temperature parameter βs,j

controls the softness of the coding selection. It is, therefore, coherent that the partial

derivative of vs,j with respect to βs,j is derived to be:

∂vs,j

∂βs,j
=

(
N

∑
n=1

z2
jnθs,jn

)
−

(
N

∑
n=1

zjnθs,jn

)2

. (6.7)

Please refer to Appendix A.4 for the derivation of this gradient.

Optimizing the code masking parameter. The binary masks are fixed and not op-

timized. Meanwhile, the soft mask may be modified to learn a soft spatial selection

within the window defined by the binary mask. The gradient of vs,j with respect to the

soft mask αs,n for the local code zjn is determined by its pooling weight, its deviation
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from the pooled value and its current soft mask value:

∂vs,j

∂αs,n
=

1
αs,n

(
zjn − vs,j

)
θs,jn. (6.8)

The derivation of the gradient is detailed in Appendix A.5.

Optimizing the global masking model. For each image instance t, the soft mask

αs,n is assigned to each visual code at each local position n. However, images t have

different sizes, so the number of visual codes Ns,t for a spatial partition is different for

each image instance. So far, the optimization is only performed to the local coding,

so a spatial normalization needs to be done across the images. Resizing the images in

the dataset to the same size will distort the aspect ratio of the images and may affect

the resulting local gradient coding of the images. So, the spatial resizing is performed

on the parameter instead. This will form a dataset-wide soft mask α̃s,n, which can

be applied for images of all sizes. When performing pooling for an image, the soft

mask value αs,n at each spatial position is computed through a bilinear interpolation

αs,n = fbilinear(α̃s,n) from the global soft masks. When updating the global soft mask,

the gradient with respect to α̃s,n factors in the specific positional weights previously

used in the interpolation.

6.2.4 Relationship between code selectivity and pooling

The coding and pooling steps both operated in the same lifetime domain (across in-

stances) and hence have a close relationship, which can be analyzed. Let us assume

the coding within a single spatial partition zjn : bs,n = 1 to take on the power-law

distribution as described in Section 3.3.2. The average magnitude of the coding co-

efficients can be controlled by tuning the µ parameter (Equation 3.14). When µ is

lowered, selectivity increases. Meanwhile, the βs,j parameter that controls the selec-

tion of these codes using Equation 6.6 can also be varied. As βs,j increases, the pooling

function tends towards selecting the max coding value. As a result, the pooled value

for different softness of code selection can be computed for each coding average µ.

This relationship can be plotted in Figure 6.5.

Importance of code selectivity. When the code is highly selective, the variation of

the pooled values for different βs,j is the greatest. When the code is broadly tuned,

performing average or max pooling shows minimal difference and it makes no sense

to attempt to optimize the pooling parameters. This shows the importance of having

a selective coding, if the pooling parameter is to be optimized.
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Figure 6.5: Relationship of code selectivity and pooling. High selectivity shows
the most capacity for learning the pooling parameter. Max-pooling shows the least
sensitivity towards the selectivity of coding.

Importance of max-pooling. If the pooling value is fixed to perform average pool-

ing, the resulting pooled value is sensitive to the level of selectivity in the code. How-

ever, if max-pooling is used, there is little difference between the level of selectivity

in the coding. As a result, max-pooling might be suitable for reducing the sensitiv-

ity towards the level of selectivity of the coding if no optimization of the pooling

parameters is to be attempted.

6.3 Discriminative pooling experiments

Experiments were performed to empirically study the effects of optimizing the pooling

step for image classification and analyze the optimized parameters.

6.3.1 Evaluation: image classification

Experimental datasets and setup. The experimental datasets used for this set of

experiments are the 15-Scenes [Lazebnik et al., 2006] and the Caltech-10 [Fei-Fei et al.,

2004] datasets as described in Section 5.4.1, with the same evaluation metric of average

class-wise accuracy used (see Section 5.4.2). Two visual dictionary setups were used

for the experiments. The first is the best performing hierarchical visual dictionary

proposed in Chapter 5 (2048 dimensions), while the second is the sparse coding spatial

pyramid matching model of Yang et al. [2009] (1024 dimensions).

After performing the feature coding step, the pooling parameters α̃s,n and βs,j were

separately optimized. Spatial pyramid with three scales: {[1× 1], [2× 2], [4× 4]} was

used to partition the images. The dataset-wide masking parameter α̃s,n was sized at

4 × 4 global parameters for each spatial partition. The initialization for α̃s,n was 1,
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while the initialization of βs,j was set at the point of maximum gradient, which is at

βs,j = 0 at average pooling.

Because this optimization relies on the class labels, a training set of images per class

was randomly sampled from the datasets (30 for the Caltech-101 dataset and 100 for

the 15-Scenes dataset). Where supervised learning was used to fine-tune the visual

dictionary, the training set used to discriminatively optimize the pooling was the same.

This training set was also used to learn the classification model in the subsequent

step. The training data was grouped into mini-batches, with each mini-batch having

one randomized example from each class. The parameters were updated after every

mini-batch.

A linear classifier with a softmax activated final layer was used to associate the image

signature to the output vector y ∈ R
C. This classifier was concurrently trained, while

optimizing the pooling parameters. The number of weight parameters for the classifier

is SJ×C, which is 4, 386, 816 parameters when modeling the 102 classes of the Caltech-

101 dataset using a three-scale spatial pyramid (21 spatial masks) to partition the

images and the 2048-dimensional visual code produced by the hierarchical feature

coding scheme (Section 5.3).

Evaluation results. The results of optimization are reported in Table 6.1. When op-

timizing the parameters βs,j that define the softness of the pooling function, there was

generally a very slight, but perhaps negligible, improvement in image classification

accuracy over the max-pooling method. Interestingly, yet unfortunately, the image

classification results suffered significantly when attempting to optimize the soft spa-

tial partitioning masks α̃s,n.

Table 6.1: Image classification results with optimized spatial pooling.

Experimental setup
Hierarchical feature coding ScSPM

(Section 5.3) [Yang et al., 2009]

15-Scenes (100 training images)

Non-optimized max-pooling 86.4± 0.6 80.3± 0.9
After optimizing βs,j 86.3± 0.6 80.6± 0.8
After optimizing α̃s,n 78.9± 0.9 74.5± 1.0

Caltech-101 (30 training images)

Non-optimized max-pooling 79.7± 0.9 73.2± 0.5
After optimizing βs,j 79.8± 0.9 73.6± 0.6
After optimizing α̃s,n 75.4± 1.1 69.8± 0.8

One suggestion on the lack of improvement in the image classification results is the

possibility of learning an over-fitted model at the classification layer. The classifier is
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huge, with parameters numbering in the millions. However, there are only 3060 and

1500 training examples for the Caltech-101 and 15-Scenes datasets, respectively. This

is aggravated with the error backpropagation algorithm, since little error will then by

propagated backward to tune the pooling parameters. The learning rate had to be set

very high – in the order of thousands – to modify the parameters. In addition, the

resulting values of α̃s,n were found to be extremely low, which may also lead to bad

generalization.

6.3.2 Analysis: how much to pool?

The 15-Scenes dataset was used to study the softness of the pooling function, defined

by the βs,j parameter. After training, the values of the learned parameters were ana-

lyzed. Figure 6.6 shows the mean value of βs,j, averaged across all the J visual codes

for each spatial partition. An interesting correlation to the spatial scale emerged after

the optimization. The learned parameters suggest that for a larger scale (1 × 1), a

pooling that is close to max-pooling may be suitable. On the other hand, when the

spatial partitions are small, the model suggests a pooling that is closer to the average

pooling. This supports the observation by Boureau et al. [2010a] that max-pooling

has a larger variance in the estimate than average pooling and hence average pooling

works better for smaller image regions.
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Figure 6.6: Analysis of pooling softness parameter. The softness parameter is learned
to be related to the scale at which the pooling is performed in. The larger the scale,
the model suggests a pooling closer to the max.

6.3.3 Analysis: where to pool from?

The Caltech-101 dataset was used to analyze the learned spatial soft mask parame-

ters. The resulting visualization for the soft mask values are shown in Figure 6.7.
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As observed, there is a strong bias towards the center of the image for this dataset.

This is aligned with the claims made by Ponce et al. [2006]. What is learned is general

statistic of the average positions of discriminative features in the dataset, images of ob-

jects from different instances and classes may have their own ideal parameters. This

suggests that optimizing the parameter may not boost classification scores (Table 6.1).

It is also observed that the soft mask values were extremely low and this may be

the cause of undesirable results, which could potentially be improved by introducing

normalization constraints.

                                               

     

     

     

     

     

     

     

     

     

     

     

     

     

     

                                               

(a) Scale: 1× 1.

                                               

           

           

           

           

           

           

                                               

                                               

           

           

           

           

           

           

                                               

(b) Scale: 2× 2.

                                               

                       

                       

                                               

                                               

                       

                       

                                               

                                               

                       

                       

                                               

                                               

                       

                       

                                               

(c) Scale: 4× 4.

                                               

                       

                       

                                               

                                               

                       

                       

                                               

                                               

                       

                       

                                               

                                               

                       

                       

                                               

(d) Combined.

Figure 6.7: Visualization of learned spatial soft masks. For the Caltech-101 dataset,
the global soft masks α̃s, each in the form of a 4× 4 grid is visualized for the partitions
of a spatial pyramid of the three scales: (a) [1× 1], (b) [2× 2] and (c) [4× 4]. (d) The
resulting summation across the scales shows a bias towards the center of the image.

6.4 Potential methodological extensions

The generality of the differentiable pooling function can be exploited and extended in

several directions. The following three possible extensions are proposed:

1. Learning from an exhaustive set of partitions,

2. Global discriminative fine-tuning of visual dictionaries, and

3. Optimized vectorial pooling scheme.

Learning from an exhaustive set of partitions. Instead of defining a small subset

of spatial partitions to pool over, such as the spatial pyramidal scheme (Figure 6.8(b)),

one can use a more generic method to generate the spatial masks, such as using an

exhaustive set of partitions [Jia et al., 2012] (Figure 6.8(a)). An exhaustive partitioning

scheme generates all possible rectangular partitions of various sizes within a given

grid. Optimization algorithms can then be used to distinguish the important parti-

tions. In this way, the model is less biased towards the method of partitioning. It

is, however, crucial to manage the possibility of over-fitting the data because of the

significant increase in number of parameters.
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Figure 6.8: Spatial partitioning schemes. (a) A exhaustive (or overcomplete) set of
100 partition configurations with 16 different partition types (rows) in various spatial
positions (columns) within a 4× 4 grid. (b) The commonly used three-level spatial
pyramidal partitioning produces a subset of the exhaustive set of partitions.

Global discriminative fine-tuning of visual dictionaries. As opposed to local fine-

tuning previously performed in Section 5.3.3, the visual dictionaries learned can be

fine-tuned based on the exact optimization problem of classifying the image globally.

The gradient with respect to to the coding parameters W can be derived by backprop-

agating the class prediction errors through the classifier and the pooled codes to the

visual dictionary
∂Ldisc

∂vs,j

∂vs,j
∂zjn

∂zjn

∂wij
. However, it should be noted that since the error gradi-

ent is backpropagated through many layers, the same challenges of learning a deep

architecture using this algorithm will apply (see Section 2.2.1 for a discussion).

Optimizing vectorial pooling. Instead of producing a single scalar value per code,

one extension is to partition the space of the coding value into a number Q of partitions
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and selectively pool coding values that fall within each partition [Avila et al., 2013].

The partition mask cj,q can be defined as follows:

cj,q =





1 if zmin
q < zjn ≤ zmax

q

0 otherwise,
(6.9)

where zmin
q and zmax

q are hyperparameters dictating the lower and upper boundaries

of the bin. The resulting parameterized pooling function can then be modified to

incorporate this coding space partitioning:

vs,j,q =
∑

N
n=1 zjnαs,nbs,ncj,q exp

(
βs,jzjn

)

∑
N
n=1 αs,nbs,ncj,q exp

(
βs,jzjn

) . (6.10)

The overall representation will increase by a factor of Q. However, our preliminary

studies have not yielded significant improvement over max pooling even with the

increased dimensionality of the representation. It will be interesting to perform a

further study on the possibility of optimizing this type of pooling to enhance image

classification performances.

6.5 Summary and discussion

This chapter proposed a method to parameterize and optimize the pooling step within

the bag-of-words model. Optimization is performed via gradient descent using back-

propagated errors. Pooling is performed in two steps: spatial partitioning and pool-

ing, resulting in two types of pooling parameters being learned. The first denotes

the softness of the selection of the coding within a partition and a pooling amount be-

tween the commonly used average- and max-pooling strategies can be discovered. The

second parameter limits the amount of pooling for different spatial positions within a

spatial partition. However, the results on image classification do not do justice to the

neatness of the parameterized pooling function. It is suspected that this is due to the

lack of training examples in the dataset, relative to the number of parameters in the

classifier, leading to over-fitting and poor generalization. There is good potential for

further explorations in this direction.





7 Conclusions

T
oday, the advancements in the learning of deep architectures and the model-

ing of visual representations have brought about the fusion of the two research

topics in artificial intelligence. On one hand, the bag-of-words model provides

a reliable pipeline to perform image classification through a series of data transforma-

tion modules. On the other hand, deep learning techniques provide a means to adapt

a complex model with strong representational power. This potential and opportunity

for hybridization was one of the main motivations leading to the start of this thesis.

7.1 Learning deep visual representations: a synthesis of ideas

The problem of deep learning was studied and approached at both the micro and

macro levels. At the micro level, the learning problem revolves around the auto-

matic discovery of interesting latent representations through unsupervised learning

and regularization. The material in Chapter 3 proposed a new generic regulariza-

tion algorithm to complement the maximum-likelihood-based learning of restricted

Boltzann machines. The generality of the regularization method when learning latent

representations enables the incorporation of various representational properties, such

as sparsity, selectivity and topographic organization.

At the macro level, the deep architectures were optimized as a whole, by integrat-

ing unsupervised feature learning with supervised learning, as discussed in Chap-

ter 4. The notion of a smooth transition from a fully-unsupervised learning phase

to a strongly-supervised optimization was introduced. Two methods to support this

notion were designed to integrate bottom-up and top-down information. The first

method incorporates supervision into the deep belief network by regularizing the lay-

ers with top-down sampled signals. The second method uses a collection of loss func-

tions to encourage output prediction, input reconstruction to train a stack of encoder-

decoder networks. The two supervised learning concepts were further embedded into
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a gradually-transisting three-phase learning strategy that first performs layer-wise un-

supervised learning, followed by top-down regularization and finally discriminative

fine-tuning.

Using the new deep learning algorithms developed, the problem of image classifica-

tion was tackled in the framework of the bag-of-words model. Chapter 5 described

a hierarchical visual dictionary learned from local descriptors extracted from the im-

ages. The dictionary enables the encoding of the descriptors into more descriptive

spatially-aggregated representations. The three-phase learning strategy was adopted,

with regularization applied to the layer-wise unsupervised learning to obtain sparse

and selective representations, and to the network as a whole to fine-tune the model

using supervision. The results obtained were competitive against other dictionary

learning methods, with the visual dictionary being concise and non-redundant. Infer-

ence can also be performed very quickly. Chapter 6 introduced a further attempt to

extend the model by discriminatively optimizing the pooling step of the bag-of-words

model so that the entire chain of operations from feature coding, to pooling and finally

to classification are all optimized.

7.2 Future work

Let us return to the roadmap of this thesis (Figure 1.2) presented in Chapter 1. The

following extensions to this body of work are proposed (Figure 7.1):

• Extensions on discriminative pooling,

• Fully-optimized bag-of-words model, and

• Globally-optimized convolutional deep networks.

Globally-optimized convolutional deep networks. With the recent successes of

deep convolutional networks, another potential research direction is to apply the pro-

posed deep learning methods to model images using these networks. Both bottom-up

and top-down information can be exploited to enhance the learning process in terms

of the quality of representations and speed of training. From my experiments, it

seems that image classification performances are sensitive to the spatial sub-sampling

parameter, where smaller sub-sampling step size typically produces the higher classi-

fication scores. This makes convolutional approaches to be very attractive, because it

is the densest spatial sampling possible. It will also be interesting to see how pooling

optimizations can be incorporated into the convolutional network.
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Figure 7.1: Roadmap to future work.

Fully-optimized bag-of-words model. This thesis introduced the notion of optimiz-

ing multiple successive steps of the bag-of-words model, from feature coding, to pool-

ing and classification. This can also be seen as a form of learning a deep architecture

that is specific for image classification. From the current model, a potential future

direction may be to parameterize and optimize the feature extraction step. Already,

there are similarities drawn between some deep convolutional networks and local fea-

ture extraction (see Section 2.4.1). An even more ambitious approach is to go beyond

learning each module independently, but also optimizing the interactions between the

modules to enhance the quality of representations (as suggested in Section 6.4).

Extensions on discriminative pooling. The discriminative pooling approach de-

scribed in Chapter 6 is still very much in its infancy. There are various extensions

that can be made to enhance the algorithms for this step, such as those described in

Section 6.4. One bottleneck of the optimization problem is the potential over-fitting of

the model’s parameters. Overcoming this issue is one of the most pressing work to be

done. A possible direction will be to use latent support vector machine optimizations

to generate instance-based tuning of the parameters.

As Mme. Marie Curie once wrote, “On ne fait jamais attention ‘a ce qui a été fait; on ne

voit que ce qui reste à faire (One never notices what has been done; one can only see what

remains to be done)”. Until the problems of machine learning and computer vision are

comprehensively solved, there will continue to be countless future theses romancing

these two dynamic fields of research. May this marriage be an everlasting one.
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A Derivation of Gradients

Summary — In this thesis, the predominant method for learning and opti-
mization representations is the gradient descent method. In this appendix, I
detail the derivations of the partial derivatives for some of the optimizations
discussed in the earlier chapters.

A.1 Point- and instance-wise regularization

The update rules for unsupervised RBM learning (Equation 3.10) consist of the com-

bination of maximum likelihood approximation and point-wise and instant-wise reg-

ularization. We begin with Equations 3.1 and 3.9 in Chapter 3, where following opti-

mization problem was posed:

arg min
W

−
|Dtrain|

∑
k=1

log P(xk) + λh(z), (A.1)

where λ is a regularization constant

h(z) =
|Dtrain|

∑
k=1

J

∑
j=1

L(zjk, pjk), (A.2)

and L(zjk, pjk) is simply the cross-entropy loss between the data-sampled activation

zjk and the target activation pjk:

L(zjk, pjk) = − log P(pjk|zjk)

= −pjk log zjk − (1− pjk) log(zjk − 1). (A.3)

Given a training example k, let the total input for zjk be ujk = ∑
I
i=0 wijxik (i.e. zjk =

σ(ujk)). To compute the update to wij due to the cross-entropy loss, we take the partial
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derivative of L(zjk, pjk) with respect to wij and apply a negative constant −η ∝ λ to

indicate the intention to reverse the error of zjk:

∆wij(k) = −η
∂L(zjk, pjk)

∂wij

= −η
∂L(zjk, pjk)

∂zjk

∂zjk

∂ujk

∂ujk

∂wij

= −η

(
1− pjk

1− zjk
−

pjk

zjk

)(
zjk

)(
1− zjk

)
xik

= −η
(1− pjk)(zjk)(1− zjk)

1− zjk
−

pjk(zjk)(1− zjk)

zjk
xik

= − η xik(zjk − pjk) (A.4)

Together with the original update rule of the RBM (Equation 2.36), the batch-wise

parameter update with point-wise and instance-wise regularization (Equation 3.10)

may be obtained:

∆wij = ε
(〈

xizj

〉
data
−
〈

xizj

〉
recon

)
− η

〈
xi,data

(
zj,data − pj

)〉

= ε
(〈

xizj

〉
data
−

η

ε

〈
xi,data

(
zj,data − pj

)〉
−
〈

xizj

〉
recon

)

= ε
(〈

xi,data

(
zj,data −

η

ε

(
zj,data − pj

))〉
−
〈

xizj

〉
recon

)

= ε
(〈

xi,data

((
1−

η

ε

)
zj,data +

η

ε
pj

)〉
−
〈

xizj

〉
recon

)

= ε
(〈

xi,datasj

〉
−
〈

xizj

〉
recon

)
(A.5)

where sjk = (1− φ) zjk,data + φpjk and φ = η
ε as a hyperparameter.

A.2 Squared loss penalty on activation averages

Lee et al. [2008] used a regularization term based on the squared loss as follows:

h(z) =
J

∑
j=1

∥∥ p̃−
〈
zj

〉∥∥2 . (A.6)

The gradient of the regularization term is computed as:

∆wij ∝
(

p̃−
〈
zj

〉) 〈
xizj

(
zj − 1

)〉
. (A.7)

According to Lee et al. [2008], only the update to the offset terms w0j are required

since they alone can control the level of latent activation.

∆w0j ∝
(

p̃−
〈
zj

〉) 〈
zj

(
zj − 1

)〉
. (A.8)
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However, this may result in highly negative biases to induce the required degree of

selectivity and highly positive weights to ensure the hidden units remain useful [Hin-

ton, 2010]. Another drawback of this method is that as zjk nears 0 or 1, the derivative

of the sigmoid function approaches 0, thus degrading the learning signal. To prevent

this problem, a further simplification is performed when implemented, by dropping

the latter term as reported by Ekanadham [2007]:

∆w0j ∝ p̃−
〈
zj

〉
. (A.9)

A.3 Cross-entropy penalty on decaying activation averages

Nair and Hinton [2009] suggested using the cross-entropy measure between the ob-

served and desired distributions to penalize non-selective latent variables. This dis-

cussion begins from (3.6) and (3.7). For the current training mini-batch t, this is given

by

h(z) =
J

∑
j=1

L
(
qj,t, p̃

)

=
J

∑
j=1
− p̃ log qj,t − (1− p̃) log

(
1− qj,t

)
(A.10)

where the exponentially decaying average of the mean probability is defined as [see

Hinton, 2010]:

qj,t = (1− τ)
〈
zj

〉
t
+ τqj,t−1. (A.11)

The rate of decay is controlled by parameter τ. Nair and Hinton [2009] and Hinton

[2010] claim that for logistic units, the resulting gradient is simply qj,t − p̃.

From the cross-entropy loss L
(
qj,t, p̃

)
between the mean activation qj,t and the target

mean p̃, the weight update for the batch can be computed:

∆wij,t = −η
∂L
(
qj,t, p̃

)

∂wij

= −η

(
1− p̃

1− qj,t
−

p̃

qj,t

)
∂qj,t

∂wij

= −η
qj,t − p̃

qj,t
(
1− qj,t

)
(

1− τ

K

K

∑
k=1

∂zjk

∂wij

)

= −η
qj,t − p̃

qj,t
(
1− qj,t

)
(

1− τ

K

K

∑
k=1

zjk(1− zjk)xik

)
(A.12)

Due to the averaging effect of qj,t across the mini-batch, this cannot be further simpli-

fied to −η
(
qj,t − p̃

)
xi, as claimed, even if logistic units are used.
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A.4 Inverse temperature pooling parameters

The inverse temperature pooling parameter βs,j is updated using the partial derivative

of the pooled value vs,j with respect to βs,j. Combining Equations 6.5 and 6.6, we get

vs,j =
∑

N
n=1 zjnrs,n exp

(
βs,jzjn

)

∑
N
n=1 rs,n exp

(
βs,jzjn

) . (A.13)

Applying the quotient rule
(

x
y

)′
= x′y−y′x

y2 ,

∂vs,j

∂βs,j
=

(
∑

N
n=1 z2

jnrs,n exp
(

βs,jzjn

))(
∑

N
n=1 rs,n exp

(
βs,jzjn

))
−
(

∑
N
n=1 zjnrs,n exp

(
βs,jzjn

))2

(
∑

N
n=1 rs,n exp

(
βs,jzjn

))2

=
∑

N
n=1 z2

jnrs,n exp
(

βs,jzjn

)

∑
N
n=1 rs,n exp

(
βs,jzjn

) −
(

∑
N
n=1 zjnrs,n exp

(
βs,jzjn

)

∑
N
n=1 rs,n exp

(
βs,jzjn

)
)2

=

(
N

∑
n=1

z2
jnθs,jn

)
−

(
N

∑
n=1

zjnθs,jn

)2

. (A.14)

A.5 Degeneracy pooling parameters

To update the soft mask parameter αs,n for the local coding zjn, the partial derivative

of the pooled value vs,j with respect to αs,n is computed. Taking Equation 6.6, and

applying the quotient rule
(

x
y

)′
= x′y−y′x

y2 , we get

∂vs,j

∂αs,n
= bs,n exp

(
βs,jzjn

)



zjn ∑
N
n̂=1 αs,n̂bs,n̂ exp

(
βs,jzjn̂

)
−∑

N
n̂=1 zjn̂αs,n̂bs,n̂ exp

(
βs,jzjn̂

)
(

∑
N
n̂=1 αs,n̂bs,n̂ exp

(
βs,jzjn̂

))2




=
bs,n exp

(
βs,jzjn

)(
zjn − vs,j

)

∑
N
n̂=1 αs,n̂bs,n̂ exp

(
βs,jzjn̂

)

=
(
zjn − vs,j

) bs,n exp
(

βs,jzjn

)

∑
N
n̂=1 αs,n̂bs,n̂ exp

(
βs,jzjn̂

) · αs,n

αs,n

=
1

αs,n

(
zjn − vs,j

)
θs,jn. (A.15)
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« Dans la vie, rien n’est à craindre, tout est à comprendre. »

“Nothing in life is to be feared, it is only to be understood.”

~ Marie Curie

« Il faut faire de la vie un rêve et faire d’un rêve une réalité. »

“Life should be made into a dream and a dream into a reality.”

~ Pierre Curie

Pierre et Marie Curie, à Paris le 1898.
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