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Devices, Mobility & Services 

Business

Home

Automation

Entertainment
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Large apps
Application Servers

Plugin based applications

Context-aware apps
Mobility and change

Device-oriented
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These applications need

Patches & Updates

New features
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These applications need

Minimal Downtime

Reactivity
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Complexity, structure, decoupling

Raccoon [1997] Revisited
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Complexity, structure, decoupling

Raccoon [1997] Revisited
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Restrictions vs. decoupling
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Restrictions vs. decoupling
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Restrictions vs. decoupling
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Restrictions vs. decoupling
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We address

Centralized

Multi-threaded

Component-based

Object Oriented implementations

Dynamic Applications
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To build dynamic applications

Design dynamic applications

Write dynamic components

Understand component coupling

Manage the impact of dynamism
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Objective

Write robust centralized 
dynamic applications 
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A few            
         definitions
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Service Oriented Architecture

M. Papazoglou [2003]

Services are self-describing, platform-
agnostic computational elements that 
support rapid, low-cost composition 
of distributed applications.
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SOA Component Interaction

PublishLookup

Binding

RemovalNotification Service 
description

Service 
Registry

Service 
    Consumer       Provider
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Benefits of SOA 

Reduced coupling

Dynamic resilience

Substitutability

Implementation transparency
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Software architecture

Abstractly, software architecture 
involves the description of 
elements from which systems are 
built, interactions among those 
elements, patterns that guide their 
composition, and constraints on 
these patterns.

M. Shaw and D. Garlan [1996]
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Dynamic software architecture

represent systems that do not 
simply consist of a fixed, static 
structure, but can react to certain 
requirements or events by run-
time reconfiguration of its 
components and connections.

Baresi et al. [2004]
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Advantages of Architecture

Programming-in-the-large
                                [DeRemer and Kron 1975]

High-level design & integration 
concerns

                                                     [Favre 1997] 
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Issues with          
                  dynamism
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Safe-stopping components

Handling stateful artifacts

Dynamism in

software architectures
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How to safely stop 
components and remove them 

from a running system?
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Requirements to safe-stopping

Passivate components

Find safe-state

Remove old components

Instantiate new components

Avoid or recover from corruption

Ensure consistency.

Minimize disruption.
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Transactional approaches

Fractal

iPOJO

OpenCom

Quiescence
J. Kramer and J. Magee [1990]

Tranquility
Yves Vandewoude et al. [2007]

Version Consistency
Ma et al. [2011]

Component models
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Limits to current approaches

Mostly proactive solutions
Lack of reactive approaches

Too optimistic for many uses
Lack of recovery

Unclear programming restrictions
What leads to coupling?

Lack of centralized solutions
Distributed solutions impose higher 
decoupling 



30

How to handle state?
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No State Transfer.

Delegated State Transfer.

Automated State Transfer.
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State transfer limitations

Hard to automate

Hybrid approaches show promise

Still no generic solution

Use simple ad-hoc state transfer.
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Dynamism in software 
architectures?



34

        Explicit vs. Constrained

Proactive vs. Reactive 

Current approaches
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Support unexpected change
devices, remote services, failure...             

Reactive & Constrained
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What's missing in 
existing solutions?
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What's missing?

Selectively enable dynamism

Manage the impact of dynamism

Development guidelines

Ensure consistency at runtime 
despite unexpected change
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What does the runtime need 
to support unexpected 

dynamism?
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Runtime requirements
for unexpected dynamism

Correctness & Consistency

Proactive & Reactive

Recovery
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Additional runtime requirements

Change impact

Minimal disruption

Timeliness
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The software cycle

Development

Packaging

Deployment
Execution

Design
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The software cycle

Development

Packaging

Deployment
Execution

Design
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Dynamism is ...

Cross-cutting
Design, deploy, develop, package, execute

Invasive
Cannot be fully transparent

Difficult to understand
Lack of tools and guidelines

Easy to get wrong
Subtle mistakes cause disasters
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Robusta is

An architectural approach to 
managing dynamism

Manages dynamism at multiple levels
Service, component, module and class, object

Particularly focused on design, 
packaging and execution
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Robusta principles

Dynamism is not needed 
everywhere

Manage dynamism early

Architecture centric
Services  component architecture→

Components  module architecture→

Modules  packaging architecture→
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Component            
            behavior



48

Robusta component behavior

@Stable

@Detachable

@Volatile
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Robusta component behavior

Determine decoupling and 
resilience required by 
dependencies

Resilience to volatility

Coupled dependency
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Example
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Example
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Example
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Robusta component behavior

Protect  @stable components

Decouple @detachable components

Isolate   @volatile components
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Component               
               decoupling
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Decoupling requirements

Multiple consumers & providers

Multiple versions of the same 
class

Complex objects

Service specialization
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Decoupling example
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Decoupling example
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Decoupling example
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Decoupling example



60

The service contract

The Service Interface and the 
types that it directl y depends 
on. 
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However, there's still 
indirect (hidden) coupling!
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Decoupling example
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Decoupling example
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Decoupling example
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The extended service contract

The Service Interface and the 
types that it directl y and 
indirectl y depends on. 
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Component         
       packaging
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Packaging

Defines class modules→

Modules are units of deployment

It's guided by
Service Contract

Contract Extensions

Component Implementations
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Packaging example
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Packaging results

Components evolve independently

Isolate Service Contract

Specialize Service Contract

Avoid service incompatibilities

Multiple consumer provider→
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Packaging example
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Architecture              
              analysis
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Architecture analysis requirements

Selective dynamism

Zone-ification

Property composition
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Volatile example
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Volatile example
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Volatile example
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Stable example
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Plugin example
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Requirements

Build class dependency graph
Analyze all Classes

Identify Class  Module relations↔

Calculate Service Contract
Simple graph algorithms

Open-world solution
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Solution comparison

Runtime

Bytecode

Interactive 
diagnostics 

Design-time

Source code

Automated 
Analysis

versus

versus

versus

Hardest case possible
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Technical solution

Java agent for Instrumentation
Get and Instrument ALL Classes

Code injection (ASM)
@Robusta   &  @ClassDependency

Includes filtering options

Interactive Commands with Shelbie
An OSGi Shell
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Technical solution
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Interactive command-line

Classloaders (i.e., Modules)

Classes

Duplicates

Service Contract calculation
Transitive dependency graph

Extensions too

Graphs represent current state 
unambiguously.
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Experimentation

OW2 JonAS Java EE Application 
Server

+ 300 modules

+ 120 composants

+ 400k Lines of Code
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Console based output
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Dependency trees
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Duplicated classes
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Statistics
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Overhead

Memory 
1 X annotation per class-dependency

4 X attributes per annotation

Execution
Graph calculation times: 20ms – 160ms

Agent manipulation times:  ~9ms
Between 0ms – 220ms

No execution overhead when not used.



90

Lessons

Loading all classes
Java is lazy, Garbage Collection is lazy

Duplicate classes do happen

Root hierarchy
Object class causes hidden coupling

Complexity
Services can be quite complex

Requires tooling
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Simple application
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Simple application
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Robusta as an               
                     approach to dynamism   
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Developing Dynamic 
Applications
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Final         
       remarks
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Problem

Design

Write

Understand

Manage

Write robust centralized 
dynamic applications 
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Contributions

Architecture-centric approach to 
dynamism

Improved understanding
Coupling & Dynamism

Safe dynamism through decoupling

Proof-of-Concept (open-world)
https://github.com/rudametw/Robusta

https://github.com/rudametw/Robusta
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Perspectives

Felix WebConsole

M@RT & Monitoring

IDE

Javascript

Integrate into
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Impact

New methodology for dynamism?

Generalizable solution or niche?
Components  Objects↔

Future adoption?
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Thanks.
Questions?
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