
Robusta : An approach to building
dynamic applications

Walter RUDAMETKIN

Pr. Noel DE PALMA President UJF, Grenoble
Pr. Luciano BARESI Reviewer Politecnico di Milano
Dr. Benoit BAUDRY Reviewer INRIA, Rennes
Dr. François EXERTIER Examiner Bull, S.A.S
Pr. Eric GRESSIER-SOUDAN Examiner CNAM-CEDRIC
Dr. Jacky ESTUBLIER Supervisor CNRS, Grenoble

Dissertation defense
21 February 2013

2

Outline

Context & Challenges

State of the Art

Robusta

Implementation & Validation

Conclusion & Perspectives

3

Devices, Mobility & Services

Business

Home

Automation

Entertainment

4

Large apps
Application Servers

Plugin based applications

Context-aware apps
Mobility and change

Device-oriented

5

These applications need

Patches & Updates

New features

6

These applications need

Minimal Downtime

Reactivity

7

Complexity, structure, decoupling

Raccoon [1997] Revisited

8

Complexity, structure, decoupling

Raccoon [1997] Revisited

9

Restrictions vs. decoupling

10

Restrictions vs. decoupling

11

Restrictions vs. decoupling

12

Restrictions vs. decoupling

13

We address

Centralized

Multi-threaded

Component-based

Object Oriented implementations

Dynamic Applications

14

To build dynamic applications

Design dynamic applications

Write dynamic components

Understand component coupling

Manage the impact of dynamism

15

Objective

Write robust centralized
dynamic applications

16

Outline

Context & Challenges

State of the Art

Proposition

Implementation & Validation

Conclusion & Perspectives

17

A few
 definitions

18

Service Oriented Architecture

M. Papazoglou [2003]

Services are self-describing, platform-
agnostic computational elements that
support rapid, low-cost composition
of distributed applications.

19

SOA Component Interaction

PublishLookup

Binding

RemovalNotification Service
description

Service
Registry

Service
 Consumer Provider

20

Benefits of SOA

Reduced coupling

Dynamic resilience

Substitutability

Implementation transparency

21

Software architecture

Abstractly, software architecture
involves the description of
elements from which systems are
built, interactions among those
elements, patterns that guide their
composition, and constraints on
these patterns.

M. Shaw and D. Garlan [1996]

22

Dynamic software architecture

represent systems that do not
simply consist of a fixed, static
structure, but can react to certain
requirements or events by run-
time reconfiguration of its
components and connections.

Baresi et al. [2004]

23

Advantages of Architecture

Programming-in-the-large
 [DeRemer and Kron 1975]

High-level design & integration
concerns

 [Favre 1997]

24

Issues with
 dynamism

25

Safe-stopping components

Handling stateful artifacts

Dynamism in

software architectures

26

How to safely stop
components and remove them

from a running system?

27

Requirements to safe-stopping

Passivate components

Find safe-state

Remove old components

Instantiate new components

Avoid or recover from corruption

Ensure consistency.

Minimize disruption.

28

Transactional approaches

Fractal

iPOJO

OpenCom

Quiescence
J. Kramer and J. Magee [1990]

Tranquility
Yves Vandewoude et al. [2007]

Version Consistency
Ma et al. [2011]

Component models

29

Limits to current approaches

Mostly proactive solutions
Lack of reactive approaches

Too optimistic for many uses
Lack of recovery

Unclear programming restrictions
What leads to coupling?

Lack of centralized solutions
Distributed solutions impose higher
decoupling

30

How to handle state?

31

No State Transfer.

Delegated State Transfer.

Automated State Transfer.

32

State transfer limitations

Hard to automate

Hybrid approaches show promise

Still no generic solution

Use simple ad-hoc state transfer.

33

Dynamism in software
architectures?

34

 Explicit vs. Constrained

Proactive vs. Reactive

Current approaches

35

Support unexpected change
devices, remote services, failure...

Reactive & Constrained

36

What's missing in
existing solutions?

37

What's missing?

Selectively enable dynamism

Manage the impact of dynamism

Development guidelines

Ensure consistency at runtime
despite unexpected change

38

What does the runtime need
to support unexpected

dynamism?

39

Runtime requirements
for unexpected dynamism

Correctness & Consistency

Proactive & Reactive

Recovery

40

Additional runtime requirements

Change impact

Minimal disruption

Timeliness

41

Outline

Context & Challenges

State of the Art

Robusta

Implementation & Validation

Conclusion & Perspectives

42

The software cycle

Development

Packaging

Deployment
Execution

Design

43

The software cycle

Development

Packaging

Deployment
Execution

Design

44

Dynamism is ...

Cross-cutting
Design, deploy, develop, package, execute

Invasive
Cannot be fully transparent

Difficult to understand
Lack of tools and guidelines

Easy to get wrong
Subtle mistakes cause disasters

45

Robusta is

An architectural approach to
managing dynamism

Manages dynamism at multiple levels
Service, component, module and class, object

Particularly focused on design,
packaging and execution

46

Robusta principles

Dynamism is not needed
everywhere

Manage dynamism early

Architecture centric
Services component architecture→

Components module architecture→

Modules packaging architecture→

47

Component
 behavior

48

Robusta component behavior

@Stable

@Detachable

@Volatile

49

Robusta component behavior

Determine decoupling and
resilience required by
dependencies

Resilience to volatility

Coupled dependency

50

Example

51

Example

52

Example

53

Robusta component behavior

Protect @stable components

Decouple @detachable components

Isolate @volatile components

54

Component
 decoupling

55

Decoupling requirements

Multiple consumers & providers

Multiple versions of the same
class

Complex objects

Service specialization

56

Decoupling example

57

Decoupling example

58

Decoupling example

59

Decoupling example

60

The service contract

The Service Interface and the
types that it directl y depends
on.

61

However, there's still
indirect (hidden) coupling!

62

Decoupling example

63

Decoupling example

64

Decoupling example

65

The extended service contract

The Service Interface and the
types that it directl y and
indirectl y depends on.

66

Component
 packaging

67

Packaging

Defines class modules→

Modules are units of deployment

It's guided by
Service Contract

Contract Extensions

Component Implementations

68

Packaging example

69

Packaging results

Components evolve independently

Isolate Service Contract

Specialize Service Contract

Avoid service incompatibilities

Multiple consumer provider→

70

Packaging example

71

Architecture
 analysis

72

Architecture analysis requirements

Selective dynamism

Zone-ification

Property composition

73

Volatile example

74

Volatile example

75

Volatile example

76

Stable example

77

Plugin example

78

Outline

Context & Challenges

State of the Art

Proposition

Implementation & Validation

Conclusion & Perspectives

79

Requirements

Build class dependency graph
Analyze all Classes

Identify Class Module relations↔

Calculate Service Contract
Simple graph algorithms

Open-world solution

80

Solution comparison

Runtime

Bytecode

Interactive
diagnostics

Design-time

Source code

Automated
Analysis

versus

versus

versus

Hardest case possible

81

Technical solution

Java agent for Instrumentation
Get and Instrument ALL Classes

Code injection (ASM)
@Robusta & @ClassDependency

Includes filtering options

Interactive Commands with Shelbie
An OSGi Shell

82

Technical solution

83

Interactive command-line

Classloaders (i.e., Modules)

Classes

Duplicates

Service Contract calculation
Transitive dependency graph

Extensions too

Graphs represent current state
unambiguously.

84

Experimentation

OW2 JonAS Java EE Application
Server

+ 300 modules

+ 120 composants

+ 400k Lines of Code

85

Console based output

86

Dependency trees

87

Duplicated classes

88

Statistics

89

Overhead

Memory
1 X annotation per class-dependency

4 X attributes per annotation

Execution
Graph calculation times: 20ms – 160ms

Agent manipulation times: ~9ms
Between 0ms – 220ms

No execution overhead when not used.

90

Lessons

Loading all classes
Java is lazy, Garbage Collection is lazy

Duplicate classes do happen

Root hierarchy
Object class causes hidden coupling

Complexity
Services can be quite complex

Requires tooling

91

Simple application

92

Simple application

93

Outline

Context & Challenges

State of the Art

Proposition

Implementation & Validation

Conclusion & Perspectives

94

Robusta as an
 approach to dynamism

95

Developing Dynamic
Applications

96

Final
 remarks

97

Problem

Design

Write

Understand

Manage

Write robust centralized
dynamic applications

98

Contributions

Architecture-centric approach to
dynamism

Improved understanding
Coupling & Dynamism

Safe dynamism through decoupling

Proof-of-Concept (open-world)
https://github.com/rudametw/Robusta

https://github.com/rudametw/Robusta

99

Perspectives

Felix WebConsole

M@RT & Monitoring

IDE

Javascript

Integrate into

100

Impact

New methodology for dynamism?

Generalizable solution or niche?
Components Objects↔

Future adoption?

101

Thanks.
Questions?

102

Main Publications

2012 Kiev Gama, Walter Rudametkin e Didier Donsez, "Resilience in dynamic component-based applications",
III Congresso Brasileiro de Software: Teoria e Prática. SBES'2012.

2008 Kiev Gama, Walter Rudametkin and Didier Donsez. Using Fail-stop Proxies for Enhancing Services
Isolation in the OSGi Service Platform. In Proceedings of the Workshop of the 9th International Middleware
Conference 2008, 2008-12-01, Leuven, Belgium.

2012 Joao Americo, Walter Rudametkin and Didier Donsez. Managing the Dynamism of Real-Time Java
Applications on the OSGi Platform. In Proceedings of the 27th ACM Symposium on Applied Computing
(SAC' 2012), 2012-03-26, Riva del Garda, Italy.

2011 Anthony Gelibert, Walter Rudametkin, Didier Donsez and Sebastien Jean, Clustering OSGi Applications
using Distributed Shared Memory. In Proceedings of the 11th annual International Conference on New
Technologies of Distributed Systems (NOTERE 2011), Paris, France, 9–12 May.

2010 Walter Rudametkin, Lionel Touseau, Didier Donsez and François Exertier. A framework for managing
dynamic service-oriented component architectures. In Proceedings of the IEEE 2010 Asia-Pacific Services
Computing Conference, 2010-12-06, Hangzhou, China.

2010 Walter Rudametkin, Kiev Gama, Lionel Touseau and Didier Donsez. Towards a Dynamic and Extensible
Middleware for Enhancing Exhibits. In Proceedings of the 7th IEEE Consumer Communications &
Networking Conference (CCNC'10), 2010-01-10, Las Vegas, Nevada.

 2011 Lionel Touseau, Kiev Gama, Didier Donsez, Walter Rudametkin, Adaptive and Dynamic Service
Compositions in the OSGi Service Platform, chapter in book “Service Life Cycle Tools and Technologies:
Methods, Trends and Advances”, Ed J. Lee, S. Ma, and Alan Liu, Publ. IGI Global, 2011.

Workshops

Book Chapters

International Conferences

103

POT À LA MEXICAINE
Bâtiment C, Salle 005

	Slide 1
	Plan
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

