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1.1 Context

1.1.1 Artificial Intelligence and Cognitive Science

Nature is filled with examples of animals displaying complex behaviors, ranging
from bacteria to mammals. Cognitive science is the interdisciplinary field aiming at
studying the control system of animals (for instance, nervous systems) and their pro-
cesses, with a particular emphasis on the human brain. Cognitive science includes
fields such as psychology, neuroscience, and in particular artificial intelligence.

The term Artificial Intelligence (AI) is originally referred as “the science and
engineering of intelligent agents” (McCarthy et al., 1955). While Artificial Intelli-
gence is still being the long term goal, the problem was broken down into simpler
sub-problems: building systems with the ability to navigate autonomously, to learn,
to make decisions, etc. Early AI works were based on the belief that human intel-
ligence could be reduced to symbolic manipulation. Despite the enthusiasm of its
pioneers1, the progress of artificial intelligence research slowed down in the 1970s;
and many researchers believed that these sub-problems were beyond reach.

The symbolic approach to AI is based on mathematics and logic. In contrast,
some approaches focus on mimicking the control systems and processes found in ani-
mals. Specifically, the “animat” approach considers the development of autonomous
artificial agents simulated or real, by drawing inspiration from the behavior of real
animals (Wilson, 1991).

Cognition in the animal kingdom (Shettleworth, 2009) can be studied at various
levels of abstraction: from the precise study of the nervous systems, to the study

1For instance, in 1965, H. A. Simon stated: “machines will be capable, within twenty years, of

doing any work a man can do.”
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of the behavior of the animals. The control systems found in the animal kingdom
include very diverse nervous system structures (Shettleworth, 2009). Several cog-
nitive science sub-fields, such as Computational Neuroscience, aim at finding the
underlying neural models explaining the behaviors of the animals.

Early theories in cognitive science have related the behavior of cognitive agents
and internal models (Craik, 1943; Johnson-Laird, 1983). Those models are described
as mental maps that incorporate symbolic representations. For instance, Tolman
(1948) describes cognitive maps, that take part in animal navigation and path
planning. These maps, called internal representations (Tolman, 1948; Chomsky,
1965; Marr, 1982), are the basis of models and cognitive functions. These internal
structures are the central notion of traditional theories in cognitive science (see
e.g. Johnson-Laird (1980) for a review). In the case of Tolman’s maps, or Craik’s
models, the representations were symbolic, and their activity was expected to be
easily interpreted.

However, in the late 1980s, Harnad (1990) introduced the symbol grounding
problem, which questioned the presence of symbolic representations and their links
with the world. In the 1990s, cognitive science saw a new emphasis on the em-
bodied and situated intelligence, including works by Brooks (1991b); Varela et al.
(1991), rejecting the symbolic-only views. It was argued that “the world is its own
best model” (Brooks, 1991b), and emphasized intelligence without representation.
This led to the development of agents which could solve tasks and have seemingly
complex behaviors with reactive controllers. A good illustration of this concept lies
in the work of Braitenberg (1986): wheeled robots, with a very simple reflex control
architecture, seem “intelligent” or to have emotions, such as fear. The complexity
does not lie in their internal structure, but rather in their environment and their
interactions with it.

This anti-representationalist view has created debates in the cognitive science
and artificial intelligence communities. However, Clark and Toribio (1994) argue
that there might not be a representational/non-representational dichotomy, but
rather different degrees and types of possible representations, from no representa-
tions at all to sophisticated models. In embodied views of cognition, cognition can
rely on prediction and internal states, however the representations2 are based on
sensorimotor codes rather than symbols (Wolpert et al., 1995; Keijzer, 2002; Pfeifer
and Bongard, 2006).

In embodied (and situated) views of cognition, the interaction between the
agents and the external world is emphasized. The artificial agents, for instance
robots, are connected to their environment through their bodies, motors and sen-
sors. The behavior of the agents depends on all of these parameters — not only
on the controller of the robot (Pfeifer and Bongard, 2006). From a human point
of view, it may be challenging to understand the dynamics between the sensors,
motors and environment of the agent (Brooks, 1991b,a). Brooks hypothesizes that

2The term representation can then be misleading and has been criticized (Keijzer, 2002). The

exact scope of the notion of representation in this thesis will be defined in Chapter 3.
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modeling what a robot perceives and which information it can exploit efficiently is
very challenging. Therefore, the human design of a robotic controller in a complex
environment is very challenging, even though some simple sensorimotor interaction
loops may exist.

Unfortunately, there is no consensus on the systematic design principles within
this view of cognition. Consequently researchers rely on adaptive approaches in
order to build artificial agents: optimization techniques or learning algorithms may
find solutions that humans can hardly find. In particular, inspiration may be drawn
from the natural adaptation and emergence of the nervous systems through natural
evolution. Evolutionary Robotics (ER) draws such inspiration to automatically
design and optimize embodied agents. It has received a lot of attention in the
situated and embodied views of cognition (Brooks, 1991b; Pfeifer and Bongard,
2006), and will be the basis of this thesis.

1.1.2 Evolutionary Robotics

Evolutionary Robotics (ER) is an embodied and situated Artificial Intelligence ap-
proach which appeared in the early 1990s with the publication of two promising
works by Floreano (1994) and Harvey and Husbands (1992). The aim was to au-
tomatically design controllers of autonomous agents using artificial evolution. The
principle of ER relies on the optimization of the control architecture of real or sim-
ulated agents with an evolutionary algorithm (Meyer et al., 1998; Floreano and
Nolfi, 2000). Therefore the researchers do not program directly the robot: ER is a
bottom-up design method.

Evolutionary algorithms (EAs) (Goldberg, 1987) are stochastic optimization
algorithms loosely inspired by the Darwinian theory of evolution (see e.g. Eiben and
Smith (2003)). They rely on the evaluation of a population of candidate solutions
(see section 2.1 for more details). In order to evaluate the solutions, a fitness

function is defined by the researchers, from which a ranking of the solutions is
possible. The fitness function is one of the most important aspect of evolutionary
algorithms as it drives the evolutionary process towards the desired solutions.

When optimizing artificial agents, the researchers often have more than one
conflicting criteria. For instance an agent should be as efficient as possible in solving
a task, but consume as little energy as possible. In multi-objective evolutionary
algorithms (MOEAs) (Fonseca and Fleming, 1993; Srinivas and Deb, 1994; Deb
et al., 2000), the fitness function consists of several “objectives” all of which influence
the selection process. The optimization process may then result in a collection of
solutions which are compromises between the different objectives.

In natural evolution, any cause that constrains the reproduction in a population
exerts a selective pressure (or selection pressure). Selective pressures may include
climate change, predation, diseases, or even noise in the animal sensors, etc. The
individuals of the population that cope best with these pressures are more likely to
survive and reproduce, and are therefore naturally selected. The Malaria parasite
provides an example of selective pressure. The parasites has led to natural selection
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for erythrocytes carrying the sickle cell hemoglobin gene mutation because it grants
some resistance to Malaria. As a result, Malaria exerts a selective pressure towards
the sickle cell hemoglobin gene mutation even though it causes sickle cell anaemia 3.

By analogy with natural evolutionary processes, selective pressures can be added
to artificial evolution experiments. A selective pressure may be applied by adding
an objective which drives the evolutionary process alongside other objectives.

Besides fitness functions, a crucial aspect of Evolutionary Robotics lies in the
nature of the evolved controllers. Different types of controllers can be optimized
through evolution: artificial neural networks (Floreano and Mondada, 1996), ge-
netic programming (Koza, 1992), fuzzy logic (Hoffmann and Pfister, 1996), or
parametrized models. Neural networks are one of the most common architecture for
controllers in ER (Nelson et al., 2009), and will be focused on in this thesis. These
controllers have been tested on real or simulated robots, on various tasks: obsta-
cle avoidance (Floreano and Mondada, 1996), walking gaits (Hornby et al., 2000),
foraging (Mouret and Doncieux, 2012a) and swarm robotics (Großet al., 2006).

To summarize, this work deals with the evolution of artificial neural networks
controlling robots (simulated in this case). The focus is on the study of selective
pressures driving the evolution, rather than the encoding of the neural network.

1.2 Problem

Biologists have tried to characterize the level of cognition in the animal kingdom
(Shettleworth, 2009). For instance, behaviors purely based on reflexes are called
reactive behaviors; behaviors involving complex computations and integration of
information over time are cognitive behaviors (Shettleworth, 2009). Navigation
provides a very practical framework to study cognition, due to the large number of
studies on animals such as insects and rodents. In natural organisms, navigation
can be achieved through reactive behaviors (taxis, depending only on local clues),
or through cognitive path planning and other strategies (Trullier et al., 1997). In
particular, a cognitive ability such as path planning is hypothesized to rely on an
internal representation of the world, a cognitive map (Tolman, 1948).

While early navigation works in ER showed promising results (Harvey and Hus-
bands, 1992; Floreano, 1994), most of the controllers display reactive behaviors
(Nolfi, 2002; Ziemke et al., 2004; Nelson et al., 2009). In most ER experiments, rep-
resentations do not spontaneously appear, most likely because they are not needed
to solve the tasks. A task in which a representation is required for the agent to
solve it is referred as representation-hungry (Clark and Toribio, 1994). Some ER
experiments include representation-hungry tasks to study the emergence of simple
internal representations, such as memory units (Ziemke and Thieme, 2002; Capi
and Doya, 2005). They show a successful resolution of the task, but also that the
emergence of such a representation is not straightforward.

This thesis relies on the intuition that more complex tasks may become

3http://sickle.bwh.harvard.edu/malaria_sickle.html, Kenneth R. Bridges, 2002
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representation-hungry, and reaching higher levels of cognition will require some
form of internal representation.

Consequently, the aim is to answer the following question:

Under which conditions do internal representations emerge in artificial
agents ?

This problem can be addressed in several ways. One approach is to work on the
network structure (Elman, 1990) or encoding (Stanley and Miikkulainen, 2002a),
in order to encourage the emergence of representations. Another way is to study
the selection process which drives the evolutionary search — and thus look for
the selective pressures that facilitate the emergence of such representations. Both
approaches are complementary, and many works have studied the influence of the
structure or encoding (Gruau, 1995; Stanley and Miikkulainen, 2002a; Stanley et al.,
2009). However, evolutionary pressures will be focused on in this work. The reason
behind this choice is twofold: 1) selective pressures are independent from any par-
ticular encoding or network structure; 2) it was argued that selective pressures were
more critical when solving difficult and deceptive problems (Mouret and Doncieux,
2012a).

This work deals mostly with a specific selective pressure, which is induced by
the perception of the environment. Autonomous agents rely on their perceptions of
the world to decide on their actions. In biological, as well as artificial control, the
variability of the world induces perception issues in a real world environment:

• animals as well as robots usually have very noisy raw inputs;

• perceptions can be blocked (i.e. an obstacle can block the agent’s vision) or
hampered (i.e. day/night cycle for vision).

These two perception issues are referred to as perception noise and perception

occlusions. These issues can be seen as selective pressures: in order to perform well
in its environment an agent has to cope with these perception issues. Perception
noise and occlusions are denominated as environmental pressures due to their nat-
ural presence in any real-world environment. In order to have a consistent behavior
in this variable environment, some have argued that having an internal repre-
sentation robust to these variabilities could be a major factor (Gigliotta et al., 2011).

Hypothesis The main hypothesis in this work is that the environmental
pressures play a critical role in the emergence of internal representations for
artificial agents. Additionally, other selective pressures, such as diversity or novelty
(Mouret and Doncieux, 2012a; Lehman, 2008), are hypothesized to have a strong
influence on the evolutionary runs.

To address this hypothesis, several tools and protocols are defined:

• a protocol to test neural networks for internal representations;
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• a new method for designing efficient selective pressures.

The definitions of these protocols and tools are contributions on their own which
can be used in other evolutionary robotic studies.

1.3 Outline

Chapter 2 details the necessary background about evolutionary algorithms and
robotics. It emphasizes the use of multi-objective evolutionary algorithms, behav-
ioral diversity, and specific neural network encodings.

Chapter 3 gives a definition of the internal representations which will be con-
sidered. It also introduces a protocol to test whether a neural network includes one
of these representations or not.

Chapter 4 is separated into two parts: the first one uses the previous protocol
to design a memory helper objective in an evolutionary robotics experiment. The
second part defines a new method for designing objectives: the “Behavioral Consis-
tency Method”. This method will be used to add selective pressures to evolutionary
experiments.

Finally chapter 5 investigates the main hypothesis. Using the tools and defini-
tions introduced in the previous chapters, a new experiment is defined: the Circular
Maze Evolutionary Robotics Protocol. This experiment is used to study the condi-
tions of the emergence of internal representations in the robotic controllers.

These chapters are followed by a discussion in Chapter 6, in which the work is
reviewed and ideas for further works are detailed; and a brief conclusion in Chap-
ter 7.
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2.1 Evolutionary Algorithms

2.1.1 History

The Origin of Species lays the foundations of the Theory of Evolution (Darwin,
1859). Almost a century later, the synthetic theory of evolution (Mayr, 1942) inte-
grates Darwin’s theories with Mendelian inheritance (Mendel, 1865) and population
genetics (Haldane, 1932). This theory sets the mechanisms of differentiation of in-
dividuals among a population, as well as the transmission of characteristics of the
parents to their offspring. Many of these characteristics are transmitted through the
genome of the individuals, which is subject to random mutation, and recombination
through crossover — in case of sexual reproduction.

Evolutionary Algorithms are an abstraction of this principle which can be seen
as an optimization process. The use of the theory of evolution as an inspiration for
computer programs has several independent origins. At the end of the 1950s, some
of the first evolutionary mechanism are simulated by computer programs (Fraser,
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1957). The use of Darwinian principles for problem solving was later introduced
under three different concepts:

• Evolutionary programming (Fogel, 1962, 1991)

• Evolution strategies (Rechenberg, 1965, 1973; Schwefel, 1981)

• Genetic algorithms (Holland, 1975; Mitchell, 1998)

Evolutionary Algorithms (Bäck, 1996; Fogel, 2000; De Jong, 2006) regroup these
three classes, as well as other later introduced methods such as genetic programming
(Cramer, 1985; Koza, 1992), or estimation of distribution algorithms (Larranaga and
Lozano, 2002). They became popular through their use as optimization tools (De
Jong, 1975), and by the works of Goldberg (Goldberg, 1989). All of them present
many common attributes: they make use of a population of solutions; solutions are
modified through a random process; a selection process determines which solutions
are kept or discarded.

2.1.2 Principle

An Evolutionary Algorithm (EA) is a population-based metaheuristic optimization
algorithm. It relies on the few following key concepts:

Definition 1 (Genotype) The genotype of an individual is the information trans-

mitted to offspring, on which mutation and crossover operators apply.

Definition 2 (Phenotype) The phenotype of an individual is the observable char-

acteristics of an individual.

The expansion of the genotype to the phenotype is called the development phase.
The mapping between the genotype and phenotype is called the encoding.

Definition 3 (Fitness) The fitness function or cost function is an evaluation of

the performance of the individuals.

An EA can be summarized in a few steps (See figure 2.1 for illustration). First
a population is initialized with random genotypes. This population is the current
population of the first generation. Then, for each generation:

1. Compute the fitness of each individual in the population and sort the popu-
lation on this basis. The fitness depends on the phenotype of the individuals.

2. Apply a selection process to select the parents of the next generation.
The offsprings are generated from the parents, through copy, mutation and
crossovers.

3. The new population is drawn from the offspring population and, eventually,
parent population.
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Figure 2.1: General principle of an Evolutionary Algorithm in 4 steps: 1) A popula-
tion is initialized at random. 2) The current population, modified generation after
generation. 3) Each individual of the current population is evaluated and ranked.
4) A selection process is performed based on the fitness of the individuals; the new
population is generated by mutation and crossover of the selected individuals.

As a consequence of random mutations and crossovers, the offsprings of solutions
can have better as well as worse fitness. However, the worst solutions found are
likely to disappear while the better ones are likely to be selected as new parents.
This usually results in a global increase of the fitness. This process continues until a
stopping criterion is reached — for instance the fitness reaches a threshold or after
a given number of generations. The result of the evolutionary process is usually the
most fit individual of the last generation.

Genotype The genotype of an individual can be represented as a binary string
(0, 1N ), a real-valued vector (G = [0, 1]N , RN ), a graph, etc. Each sub-part of the
genome is a gene. Variability operators applied in this genotypic space are inspired
by biology: mutations (Bäck and Schwefel, 1993; Eiben and Schippers, 1998) and
crossovers (Eiben et al., 1998; Jansen and Wegener, 1999).

Mutations A mutation modifies the genotype of a solution. For a binary string
genotype, a common mutation operator is a bit inversion (figure 2.2, left). Each bit
has a probability to be inverted, so that the offspring has one or more inverted bits.
For real-valued genotypes, common mutation operator include gaussian variation:
the operator adds a Gaussian distributed random value to the chosen gene. A graph-
ical representation can have several mutation operators such as addition/removal
of nodes or connections.
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(b) Crossover

Figure 2.2: (a) Mutation operator of a binary string genotype: the offspring has a
random bit inverted. (b) One point crossover operator of a binary string genotype:
a random pivot point is chosen, and two children are generated.

Crossover Another way to add variability in the offspring is to use crossovers.
A crossover can be applied to generate offspring from two or more parents. The
resulting offspring receives a combination their parents’ genome. For binary string
genotypes, the most straightforward crossover is the one-point crossover displayed
in figure 2.2, (b). However the definition of the crossover mainly depends on the
chosen encoding: the definition of a general crossover operator in a graph space is
not straightforward (Eiben and Schippers, 1998; Stanley and Miikkulainen, 2002b).

Some evolutionary work only include one of these two variability operators, and
there has been some debates on which one is the most important (Fogel, 2006).
Some works only use crossovers, for instance in genetic programming Banzhaf et al.
(2000), while others rely solely on mutations (Bäck et al., 1991; Mouret and Don-
cieux, 2012b). There is no clear consensus on whether one of these operator is
crucial, as this question strongly depends on the genotype representation, size of
the search space, as well as population size. However one is necessary at least,
because otherwise no variability would occur in the population.

Phenotype The development phase expands the genotype into the phenotype.
For instance a graph can be expanded into a neural network. Other common phe-
notypes include models or functions which are parametrized by the real values of
the genotype.

The phenotype is evaluated in order to get the fitness of the individual. This
evaluation range from simple application of a mathematical function, to a full sim-
ulation in a 3-dimensional environment of the phenotype of the individual.

Selection The selection of solutions among the population is one of the key points
of evolutionary algorithms. While variation operators provide exploration of the
search space, the selection process allows for convergence towards the best solutions.
In that way, there exists a well-known trade-off between exploration and exploita-
tion. An algorithm not exploiting enough will not converge, while an algorithm not
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exploring enough will have premature convergence into some local optima.
Several selection methods have been proposed:

• tournament selection (Brindle, 1981; Miller and Goldberg, 1995) in which a
predefined number of tournaments are organized between randomly chosen
groups of n ≥ 2 solutions, and the most performing solution is chosen. The
larger n, the higher the selective pressure. If n = 2, two poor solutions might
be chosen for a tournament, one of them getting selected by the algorithm; if
n is large, this is less likely to happen;

• fitness proportionate selection (or roulette-wheel selection) (Baker, 1987):
Each solution has a chance to be selected proportional to its performance;

• ranking selection: the population is sorted according to fitness. The chance
of selecting a solution is proportional to its rank.

Elitism and population replacement Keeping some unchanged parents in the
new population is called elitism. This enables faster convergence as very good
solutions are then less likely to disappear or to suffer from negative mutations.

In evolution strategies (ES), two parameters define how much elitism is applied,
and how many replacement there will be. In a (µ, λ)-ES, the best µ solutions among
the λ offspring are used to generate the next generation (no elitism). In a (µ+λ)-ES,
the µ best solutions are kept into the population, as well as some of the λ offspring.

Choice of Evolutionary Algorithms There are many evolutionary algorithms,
some of which are fine tuned to solve certain types of problems. There is no con-
sensus on a “best” evolutionary algorithm, different problems may require different
algorithms. However, in black-box continuous optimization, one of the most popular
methods is Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen
and Ostermeier, 2001; Hansen and Koumoutsakos, 2003). It relies on modifying the
variation process in order to adapt to the specificities of the problem.

2.1.3 Multi-Objective

Several optimization problems cannot be reduced to a single objective optimization.
In many cases, concurrent objectives are optimized (for instance, energy cost and
speed of a walking robot), and many trade-off solutions exist.

Pareto optima (Pareto, 1897) are trade-off solutions in which any objective
cannot be improved without worsening at least one others.

Pareto defines a domination relationship between two solutions x1 and x2: a
solution x1 dominates x2 if the two following conditions are fulfilled:

1. x1 is not worse than x2 over all objectives;

2. x1 is strictly better than x2 over at least one objective.
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f1

f2

pareto front

dominated solutions

Figure 2.3: The two objectives f1 and f2 are being maximized. Non dominated
solution (full dots) are situated on the Pareto front (dashed line). Other solutions
are dominated, and thus not on the Pareto front.

For n objective functions fi, x1 dominates x2 can be formalized as follows:
{

∀i ∈ [1, k], fi(x1) ≥ fi(x2)

∃i ∈ [1, k], fi(x1) > fi(x2)

The Pareto front is the set of all non-dominated solutions (figure 2.3).
Two classes of approaches have been proposed to optimize multi-objective prob-

lems:

1. Find a single trade-off solution by reducing the multi-objective problem into
a single one

2. Find multiple trade-off solutions

2.1.3.1 Reducing the multi-objective problem into a single one

Aggregate methods These methods consist in grouping objectives into a single
one, for instance through linear combinations or minimization of the distance to
an ideal solution. Then the problem is reduced to a single objective optimization
problem and can be solved with single-objective methods.

The weighted sum method is the most straightforward way to aggregate ob-
jectives. Each objective i is given a weight wi ≥ 0 which denotes the relative
importance of the objectives to others.

maximize
k

∑

i=1

wifi(x)

with
∑k

i=1 wi = 1.
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The results of this method strongly depend on the choice of the weights wi. By
choosing different combinations of weights multiple times, the Pareto front can be
approximated, provided it is convex. Concave parts of a Pareto front cannot be
attained by such method. The choice of the weights is not straightforward, and
methods with dynamic weights have been proposed (Jin et al., 2001).

Another method consists in trying to minimize the distance between the solu-
tions and an ideal goal point (Charnes and Cooper, 1961). The goal point f∗ is
a usually a point of the search space which has a maximal possible value for each
objective. The optimization problem is then reduced to finding x such that:

min
k

∑

i=1

|fi(x) − f∗
i |

Variation around this method include the min-max method (Coello et al., 1995)
in which the maximum difference between an objective and its associated goal is
minimized:

min maxi

(

fi(x) − f∗
i

f∗
i

)

with i, ∈ [1, k]

ε-constraints The ε-constraints method is different from other aggregate
methods because only one of the objectives will be maximized while others are
treated as constraints (Ranjithan et al., 1992; Quagliarella and Vicini, 1997).

On the n − 1 objectives treated as constraints, ε lower bounds are defined.
The algorithm then searches for the solution maximizing the remaining objective
in the objective subspace thus defined. Assuming f1 is optimized while each other
objective fi has a lower bound εi, the optimization process can be formulated in
the following way:

max
x ∈ X

f1(x)

under constraints fi ≥ εi i ∈ [2, k]

The chosen objective is the one to be optimized first, but the method can be
run multiple times with different objectives to optimize.

Drawbacks There are many drawbacks in using aggregate optimization meth-
ods. First the choice of parameters (such as weights) requires a priori knowledge on
the problem, and a set of parameters is not guaranteed to work on different prob-
lems. Then, numerous tests have to be performed in order to determine the relative
importance of objectives (Laumanns et al., 2006). Furthermore, these methods find
only one trade-off solution per run, whereas the user might want a set of Pareto
optimal solutions.



14 Chapter 2. Background

f1

f2

pareto front

f1

f2

pareto front

f1

f2

pareto front

Figure 2.4: Example of a Pareto front approximation using a fictive two-objective
approach. From left to right, 1) bad convergence 2) bad dispersion on the front 3)
good convergence and dispersion.

2.1.3.2 Pareto dominance based methods

This section describes Evolutionary Multi-Objective algorithms that approximate
the Pareto front instead of just finding one trade off solution.

Dispersion and Convergence These two terms are useful for the approxi-
mation of a Pareto front in a multi-objective problem. Convergence measures how
far the solutions are from the true Pareto front. Dispersion indicates how well-
distributed are the solutions on the approximation of the Pareto front (see figure
for illustration).

Early approaches A few early methods were developed on the basis of Pareto
dominance:

• In Multiple Objective Genetic Algorithm (MOGA) (Fonseca and Fleming,
1993), each solution is ranked depending on the number of solutions that
dominates it. A sharing objective is added to improve the dispersion of the
Pareto Front.

• In Non Dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb,
1994), the population is separated into groups depending on their Pareto
domination degree: non-dominated solutions will be on group 1, then solutions
only dominated by group 1 will be on group 2, etc. Selection is then defined
as in a traditional genetic algorithm, with a stochastic selection and heuristics
such as tournament selection.

• In Niched Pareto Genetic Algorithm (NPGA) (Horn et al., 1994), a tourna-
ment selection is applied. Two solutions and a small sub-population are chosen
at random in the current population. If only one of the two solution domi-
nates the sub-population, then it is selected for next generation. Otherwise,
a sharing function is applied in order to chose the individuals.
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Those early methods share a common problem of slow convergence. This is partially
due to the lack of elitism in the selection process. The dispersion of the resulting
population is also not guaranteed.

Modern approaches Those methods focus on a fast convergence to the
Pareto front, while maintaining a good dispersion. The following list describes
the main algorithms (even though many more exist) and each of the following will
be described briefly.

• Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999;
Zitzler et al., 2001);

• Pareto Archived Evolution Strategy (PAES) (Knowles and Corne, 2000)

• Pareto Envelope based Selection Algorithm (PESA) (Corne et al., 2000)

• Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2000,
2002);

• ε-Multi-objective Evolutionary Algorithm (ε-MOEA) (Laumanns et al., 2002;
Deb et al., 2005);

• Algorithm based on hypervolume measure (Knowles, 2002; Fleischer, 2003).

Strength Pareto Evolutionary Algorithm (SPEA) In SPEA (Zitzler and
Thiele, 1999) the set of all non-dominated solutions are stored in an archive. The
fitness of each solution depends the archive, and the solutions of the archive itself
also have a fitness value. The fitness of an archive solution depends on the number of
solutions it dominates in the population. The fitness of a solution in the population
is the sum of the fitness of solutions in the archive that dominate it. The lower the
fitness of an individual, the more it is selected. This has two major consequences:

• Non-dominated solutions have lower fitness than dominated ones, thus they
are kept in the optimization process.

• Solution that dominate or are dominated by few individuals are more likely
to be selected, which means they are in potentially interesting areas of the
objective space. This maintains dispersion in the objective space.

As solutions are gradually added to the archive, clustering methods are employed
to limit the archive size. If the archive size exceeds the limit of N solutions, only N

clusters are kept in the objective space. Only the centroid of each of these cluster
is taken into account for computing the dominance relationships (the centroid of
a cluster is the point with minimal distance to all solutions in the cluster). This
guarantees the high dispersion of solutions in the objective space without having
problems due to a too large archive.
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However the clustering algorithm used in SPEA has a high complexity and is
to be taken into account in the global complexity of the algorithm. Furthermore,
the limit size N of the archive can have a huge influence over the results, it should
neither be too large nor too small. One of the features of SPEA-II (Zitzler et al.,
2001) is that the clustering algorithm has a lower complexity.

Pareto Archived Evolution Strategy (PAES) PAES (Knowles and
Corne, 2000) is inspired from evolution strategy (1+1) (Rechenberg, 1973). Con-
sequently it is based on a single solution instead of a population. The solution is
then compared to an archive of non dominated solutions. If the new solution is not
dominated by a member of the archive, it is added to the archive and all dominated
members of the archive are deleted. If the archive exceeds a maximal size N , new
solutions are accepted on the basis of a density measure in the objective space. This
ensures a good dispersion of solutions.

Pareto Envelope based Selection Algorithm (PESA) The PESA (Corne
et al., 2000) population consists of a small internal population and a larger external
archive. A crowding measure is applied as the MOEA runs, to maintain selection
diversity. This measure is used to copy solutions to the archive in a way similar to
PAES previously described.

In PESA-II (Corne et al., 2001) selection is region-based and the subject of
selection is now a k-dimensional volume (k being the number of objectives), not
just an individual. In other words, it first selects a volume, and then it selects an
individual within that volume. The motivation behind this approach is to reduce
the computational cost associated with Pareto ranking.

ε-Multi-objective Evolutionary Algorithm, (ε-MOEA) ε-MOEA (Lau-
manns et al., 2002; Deb et al., 2005) relies on the ε-dominance (Laumanns et al.,
2002; Grosan and Oltean, 2004; Deb et al., 2005), a modified version of Pareto
dominance.

A solution x1 ε-dominates x2 under the following conditions:

{

∀i ∈ [1, n], fi(x1) + εi ≥ fi(x2)

∃i ∈ [1, n], fi(x1) + εi > fi(x2)

where ε is a real-valued vector, so that εi is defined for each objective.
A solution then dominates all solutions that are not better enough than it on

at least one objective. In other words, a solution can now dominate solutions that
have a less than εi advantage on objective i (see 2.5).

The ε-dominance relationship itself ensures good theoretical properties. The
ε-approximated Pareto front has a good convergence and dispersion of solutions
with regards to the classic Pareto front defined by the Pareto dominance. The ε-
approximated Pareto front also has a bounded size (a classic Pareto front can have
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Figure 2.5: (left) Classic Pareto dominance in a 2 objective space. (right) ε-
dominance

an infinite number of trade-off solutions), depending on the εi used. Note that the
ε-approximated Pareto front is not unique.

ε-MOEA (Laumanns et al., 2002; Deb et al., 2005) is an algorithm which uses
this new relationship as well as the Pareto dominance. As in PESA, the algorithm
relies on a population and an archive of non dominated solutions found. Each step,
one solution from the archive and one from the population are selected and used to
generate offsprings. Classic dominance relationship is used to add new individuals
into the population, while ε-dominance is used for the archive. This ensures that
only representative solutions are kept along the front in the archive, while a good
dispersion is maintained in the objective space.

Consequently, the ε-MOEA algorithm is efficient with good convergence and
dispersion, while having a lower computational cost than SPEA or NSGA-II. How-
ever, the choice of εi has a strong influence on the final approximation of the Pareto
front. Furthermore, the use of constant εi for each objective can result in under-
sampling in some areas of the objective space, because the density of a Pareto front
can vary.

2.1.3.3 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II algorithm was introduced in 2000 (Deb et al., 2000, 2002). It is a fast
multi-objective optimization algorithm, that ranks individuals based on their con-
vergence towards the Pareto front and dispersion in the objective space. To do so,
NSGA-II divides the population into several fronts based on the pareto dominance
relationship. NSGA-II also takes into account the dispersion of the solutions by
selects individuals based on the density of their neighborhood. This algorithm will
be the basis of all evolutionary experiment in this thesis, and thus will be fully
described.

The algorithm starts by initializing a population of N solutions, then for each
generation i the following operations are performed:

1. Mix the parent population Pi and the children population Ci of the previous



18 Chapter 2. Background

f1

f2

f1

f2 d1

d2

D = d1 + d2

front 1

front 2

front 3

front computation crowding distance

Figure 2.6: Successive front ranking and crowding distance computation in a fictive
two-objective NSGA-II optimization.

generation, to obtain a population Ri = Pi ∪Ci. of size 2×N . The population
is distributed into successive fronts Fj , j = 0 being the Pareto front.

2. The new parent population Pi+1 is first empty and will be filled with the
successive fronts. Each successive front is added if the size of the population
and the added front does not exceed N . Let j be the last fully added front.

3. Use the crowding distance computation (see below) to include the M − |Pi+1|

remaining individuals from the front Fj+1

4. From the new parent population Pi+1, generate the new child population Ci+1

by tournament, mutation, and cross-over.

The computation of successive fronts is made by finding the Pareto front of the
solutions (front 0), and removing them to successively compute the next fronts (2.6,
left). Each solution also has a crowding distance which indicates if it is in a dense
of sparse region. The crowding distance of the i − th solution on a sorted front Fj

is the Manhattan distance between the solution i − 1 and the solution i + 1 (2.6,
right for a two-dimensional example of the distance). Solutions at one end of the
front always are given a maximal crowding distance.

Each solution is then associated with a pair (i, d), where i is the rank of the
front it is in, and d its crowding distance. In order to generate the child population
Ci+1 from the parent population Pi+1, a Crowded Tournament Selection Operator
is used. Two solutions x1 and x2 (with respective pairs (i1, d1) and (i2, d2)), are
compared on the basis of their front rank and crowding distance. x1 wins over x2

if:
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i1 < i2

or
(i1 = i2) and (d1 > d2)

The original implementation of NSGA-II has a complexity in O(MN2), M being
the number of objectives, and N the size of the population. Using binary trees for
the ranking of fronts (Jensen, 2003) can reduce the complexity of the algorithm to
O(NlogM−1N), but the implementation is not straightforward for M > 2.

2.1.3.4 Algorithms based on the Hypervolume Indicator

The hypervolume (Zitzler and Thiele, 1999; Knowles, 2002) is an indicator which
measures the volume of the dominated portion of the objective space. The Hypervol-
ume is computed relatively to an arbitrary point (easily accessible and dominated).
The hypervolume covered between this reference point and non-dominated solutions
is the hypervolume indicator (See figure 2.7).

The Hypervolume indicator possesses the feature of strict Pareto compliance.
If an approximation of a Pareto front dominates another, then the hypervolume
indicator will be larger (Bader and Zitzler, 2011). It was first used as a performance
measure to compare different MOEA (Zitzler and Thiele, 1999), but was then used
in many optimization algorithms:

• ESP (Huband et al., 2003)

• IBEA (Zitzler and Künzli, 2004)

• SMS-EMOA (Beume et al., 2007)

• SIBEA (Brockhoff and Zitzler, 2007)

• HypE (Bader and Zitzler, 2011)

• MO-CMA-ES (Igel et al., 2007) which is the Multi-Objective version of pre-
viously described CMA-ES.

The computational cost of hypervolume is one of its major limiting factor: com-
puting the hypervolume on k solutions with n objectives has an approximate com-
plexity of O(kn+1) (Knowles and Corne, 2003). This makes this method infeasible
with large populations and several objectives. Different methods have been pro-
posed to reduce this computation cost (Fonseca et al., 2006; Beume and Rudolph,
2006; Yang and Ding, 2007).

Other approaches include the reduction of the number of objectives (Brockhoff
and Zitzler, 2007), or an approximation of the hypervolume using Monte Carlo
methods (Everson and Fieldsend, 2002; Bader and Zitzler, 2011).
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Figure 2.7: Hypervolume computation for 2 objectives. The grey surface represents
the hypervolume for the two solutions x1 and x2 relatively to xref . Adding a non
dominated solution (here x3) always increase the hypervolume.

2.1.3.5 Discussion

In the following work, the algorithm used is NSGA-II. There are several reasons for
this choice:

• Performances It has a low computational cost compared to many other
algorithms (including most of hypervolume based ones). This point is of
crucial importance because of the rather large populations and number of
evaluations required for the evolution of robotic controllers. The algorithm
also shows a good convergence and dispersion, as well as a fast convergence.

• Flexibility It has no archive, and therefore supports the use of dynamic
objectives, whose value do not only depend on the evaluated individual. This
includes objectives such as diversity which will be detailed in the later sections
2.2.3.1.

• Parametrization It is simple to implement and requires no a priori knowl-
edge on parameters, in contrast with algorithms such as ε-MOEA.

• Usage NSGA-II is one of the most used MOEAs (Coello and Lamont, 2004;
Coello, 2006).

Furthermore, the influence of different algorithms is beyond the scope of this thesis,
and we postulate that our results have little dependence on the choice of the EA.
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Limitations One of the major problem of NSGA-II (as well as other Pareto-
based MOEAs) is that having more than 3 or 4 antagonistic objectives damages
their efficiency (Khare et al., 2003; Ishibuchi et al., 2008). The number of pareto
optimal solutions grows exponentially with the number of objectives. The size of the
population needed to approximate the Pareto front is then growing exponentially
as well. Furthermore, when the size of the population is too small, any potential
solution might be non dominated. This results in having a much worse selection
process, as all solutions are then considered as equivalent. The selection process is
then only based on the crowding distance. However, evolutionary algorithms are, in
general, very practical and effective optimization tools for multi-objective problems
with 2 or 3 objectives.

Objectives as multiple selective pressures Multi-objective evolutionary
algorithm can be useful to simulate the effects of multiple selective pressures. In
biology, selective pressures are factors fostering selection, such as limitation of re-
sources, threats (predators, diseases, weather).

We assume here that a selective pressure is a force that drives the evolutionary
process in a particular direction. In single objecitve EAs, the selective pressure
relies on the fitness function. By using a MOEA, several of such pressures can be
added to an evolutionary experiment. Each selective pressure can be added as an
additional objective in a straightforward way (no extra parameter are needed).

2.2 Evolutionary Robotics

2.2.1 Introduction

Evolutionary Robotics (ER) is the application of Evolutionary Algorithms to auto-
matically design robotic controllers, morphology or both. It was developed in the
1990s (Harvey and Husbands, 1992; Meyer et al., 1998; Floreano and Nolfi, 2000)
in order to automatically build controllers for autonomous robots in uncertain envi-
ronments. Evolutionary algorithms can be seen as a black-box optimization method
which suits well the difficult optimization of controllers in complex or dynamic en-
vironments.

In ER, the controllers can exploit any specificities of the environment in which
they are evaluated, or their control architecture. They can thus find simple and
original solutions to robotic problems, without any human intervention (Cliff et al.,
1993; Meyer et al., 1998). The following work will not include the design of the
morphology of robots. Furthermore, the design of controllers will be limited to
artificial neural networks (see section 2.3).

Because of the closed loop between the robot controller and its environment
(See figure 2.8), complex dynamics can emerge, even for simple controllers. This
was demonstrated in a study by Braitenberg (1986) in which seemingly complex
behaviors (associated with fear, love, etc.) emerged from agents with only two
sensor neurons and two motor neurons.
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Figure 2.8: Closed sensorimotor loop of a robot in its environment. Even very simple
controllers can produce complex and dynamic behaviors in complex environments.

2.2.2 Behavior

Evolutionary robotics experiments rely on the evaluation of performance (fitness)
of controllers which are conducted on real robots or in simulations. During this
evaluation, the controller is iterated over N time-steps, taking as input the sensors
of the robot. The output of the controller represents the motor commands that
the robot will perform on the environment, and the resulting behavior of the robot
will emerge, as shown in figure 2.9. This figure shows the three classic description
levels of the individual (genotype, phenotype and fitness spaces) as well as a new
description level: the behavioral space.

The mapping between a robot controller and its behavior is therefore very
complex. For instance two very different neural networks might produce simi-
lar behaviors, while two very similar networks could produce opposite behaviors
(see figure 2.10). For a given problem, understanding the mapping between geno-
type/phenotype space and behavioral space is an important challenge (Mouret and
Doncieux, 2012b; Ollion and Doncieux, 2011). Some recent ER studies use such de-
scriptions to improve the evolutionary process (Lehman, 2008; Trujillo et al., 2008;
Gomez, 2009; Doncieux and Mouret, 2010a).

2.2.3 Fitness Functions

Evolutionary algorithms aim at finding controllers that solve best the given task in
a given environment (Davidor, 1991; Nolfi et al., 1994). Therefore, by modifying
the fitness function, the task or the environment, the researcher can strongly affect
the evolutionary process. Optimally, a fitness function in ER should reveal how
well the behavior of the controller solves the given task. In practice, many different
fitness function types are used in ER experiments, which can be categorized by the
quantity of a priori information on the controller that the designer integrates to
the evolutionary process (a review of such fitness function was performed in Nelson
et al. (2009)). The following list describes a few examples of fitness functions with
different a priori knowledge incorporated (categories are taken from Nelson et al.
(2009)):

• Jakobi (1998) defines a priori some characteristics of the desired behavior
in a gait evolution for an octopod robot. This corresponds to a Behavioral
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Figure 2.9: Full evaluation of the genotype of an individual in ER. [1 =⇒ 2]
The genotype is developed into the phenotype, which is here an artificial neural
network. [2 =⇒ 3] The neural network is embodied in the robot (in real robots or
simulation) and controls it in a given environment. [3 =⇒ 4] The behavior of the
robot is evaluated depending on the tasks and outputs the final fitness score.
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Figure 2.10: Mapping between phenotype and behavior. (left) Two different con-
troller architectures produce the same output behavior. In this figure, this is be-
cause a sub-part of the neural network is not connected to the output neurons, but
the effect could happen with fully connected networks. (right) Two similar neural
architecture (only differing on one weight) produce very different behaviors, due to
the interaction with the environment.
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Fitness, with high a priori knowledge on how to solve the problem.

• Bongard (2011a) uses an environmental incremental fitness: The learning of a
behavior in complex environments separated into several sub-parts. First the
robot has to solve a task in a simplified environment, then in more and more
complex ones. This is a process called shaping used in a robotic grasping task.
This corresponds to an incremental fitness, with moderate a priori knowledge
incorporated.

• Mouret and Doncieux (2012b) uses an Aggregate Function which only rewards
partial completion of the task, here only when a robot puts a ball in a basket.
That type of fitness gives very little information on how to solve the task.

• Lehman (2008); Lehman and Stanley (2010) have developed a method named
Novelty Search in which there is no explicit fitness function. Only novel be-
haviors are rewarded in the considered task, and as more and more original
behaviors are found, one might also be a very efficient one. This method can
incorporate some a priori knowledge into the behavioral description, but it
usually ensures very open-ended evolution.

For more exhaustive reviews on ER tasks, see (Mataric and Cliff, 1996; Harvey
et al., 1997; Meyer et al., 1998; Meeden and Kumar, 1998; Floreano and Nolfi, 2000;
Pratihar, 2003; Walker et al., 2003; Pfeifer et al., 2003; Jin, 2005; Teo and Abbass,
2005; Nelson and Grant, 2007; Doncieux et al., 2011). The work by Nelson et al.
(2009) emphasizes that the lower the level of a priori knowledge incorporated in
ER experiments, the more freedom is left to evolution. In order to find original
solutions, or to solve deceptive problems, this might be a crucial factor (Lehman
and Stanley, 2010).

The fitness function is associated with a fitness landscape. This landscape rep-
resents the mapping between genotypes and fitness scores. Evolutionary algorithms
are adapted to find (rather) good solutions even if this landscape is not convex, but
struggle if the landscape is too discontinuous, complex and rugged (See figure 5.1).
In ER, this problem is even more present because the successive mapping between
genotype, phenotype, behavior and fitness can all be very complex and non-linear.
This results in the following problems:

• The bootstrap problem and fitness plateaus: During the first gener-
ations of the algorithm, the randomly generated controllers usually perform
really badly, and can obtain systematically the same minimal fitness score
(this happens when the fitness function gives little information on how to
solve the task). Then no selection at all is performed on the basis of the
fitness score: this is referred as the bootstrap problem (Mouret and Doncieux,
2009b).

• Local optima and deception: The evolutionary process drives the solutions
towards higher fitness values. Solutions might then end up in attractive local
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Figure 2.11: Fitness landscape for a fictive optimization problem. Finding the
optimal point (point 4 in the graph) is very challenging. Common obstacles to
finding such points with evolutionary algorithms are: local optima (point 1); rugged
landscapes (rapidly varying landscape, point 2); fitness plateaus (point 3).

optima, and be several mutations away from better solutions. This means that
in order to move away from the local optima, solutions with a lower fitness
should first be selected, before reaching better ones. This happens a lot when
a fitness function is said to be deceptive: Poor local optima are easy to find
from an evolutionary point of view, while the global optimum (or better local
optima) are much harder to find.

In order to solve these problems, several methods have been developed, such as
the use of Helper Objectives.

2.2.3.1 Helper Objectives

Several researchers have advocated the introduction of additional objectives
(Knowles et al., 2001; Jensen, 2004; Mouret and Doncieux, 2008a; Mouret, 2011) to
enhance the performance of EAs. Instead of optimizing the main fitness objective,
the selection process also selects solutions based on other Helper objectives. This
process is similar to multi-objective optimization, except that at the end of the
optimization, only the solutions maximizing the main objective are kept.

Generalization The ProGab approach (Pinville et al., 2011) enhances general-
ization of robotic controllers by adding an objective which rewards the general-
ization ability of the controllers. In order to compute this generalization ability,
the controller is tested over many different contexts. Because the computation
of the generalization ability for each controller of each generation would be too
time-consuming, the generalization ability is only assessed on a single controller per
generation. A surrogate model of the generalization ability is used to assess the
generalization ability of all the other controllers. In that way, a controller with a
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behavior close from one which generalizes well will have a good score over the helper
objective.

Exaptation Exaptation (Gould and Vrba, 1982) refers to a shift in the function
of a trait during natural evolution. Mouret and Doncieux (2009a) take inspiration
from this process and define a helper objective that rewards the presence of a sub-
network realizing a given sub-function. This concept is applied to a neuroevolution
problem in which a neural network has to realize an Xor and Xor problem. The
main objective is to compute the Xor and Xor function, while the helper objective
rewards sub-networks that realize an Xor function.

Behavioral Diversity Evolutionary algorithms often rely on diversity mecha-
nisms to explore the search space, avoid premature convergence and bootstrap
problems. This diversity is often based on genotype (Goldberg and Richardson,
1987; Bäck and Hoffmeister, 1991; Stanley and Miikkulainen, 2002b). Because of
the genotype-behavior mapping, it has been advocated to explore the behavioral
space rather than the genotype or phenotype space (Lehman, 2008; Mouret and
Doncieux, 2012a; Ollion and Doncieux, 2011).

Behavioral diversity rewards solutions that have an original behavior among
the population. In Evolutionary Robotics, it has been shown that using a behav-
ioral diversity significantly improved optimization results over a standard diversity
method (Doncieux and Mouret, 2010a; Mouret and Doncieux, 2012a). The be-
havioral diversity relies on a distance function db that compares the behavior of
different solutions. A typical way of assessing the diversity of a solution x among
the population P of N solutions is:

div(x) =
1

N

∑

y∈P

db(x, y) (2.1)

Several behavioral descriptions and behavioral distances have been proposed for
ER, and are described in paragraph 2.2.3.2. These distances are a key factor for
comparing behaviors, and may incorporate a priori knowledge on the given problem.
Despite all these works, there is no common agreement at the time of writing on the
best way to compare behaviors. A recent contribution uses several of these distance
measure and randomly switches from one to another (Doncieux and Mouret, 2013).
More in-depth studies of behavioral diversity and distance measures were conducted
by Mouret and Doncieux (2012a) and Doncieux and Mouret (2010b). Behavioral
diversity is not only used as helper objectives, but also in combination with niching
and speciation techniques (Trujillo et al., 2008; Gomez, 2009).

Novelty A more radical approach to solving deceptiveness and bootstrap was
developed by Lehman (2008). This approach named Novelty Search only rewards
solutions based on their behavioral novelty. This removes any deceptive gradient
from a fitness function. The Novelty search relies on a behavioral distance db(x, y)

between the behaviors of x and y, and on an archive of solutions.
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Novelty first computes the “sparseness” s of an individual x by finding the
smallest distance between x and its k nearest neighbors in the population and the
archive:

s(x) =
1

k

k
∑

j=0

db(x, σj) (2.2)

The sparseness is then used as a ranking method to select individuals (individ-
uals with higher sparseness are more likely to be selected). Last, if this sparseness
is over a threshold, the individual is added to the archive.

Novelty has been successfully used in many recent ER and artificial evolution
experiments (Lehman, 2008; Lehman and Stanley, 2010).

2.2.3.2 Behavioral Descriptions

The following paragraphs describe some of the recent behavioral descriptions used
in ER for diversity and other purposes.

Ad Hoc descriptions Depending on the studied problem, it is possible to
define a vector describing the behavior by choosing important parameters. In his
navigation task, Lehman (2008) has used the position of the robot at the end of the
evaluation as his behavior description. The distance between two behaviors is then
simply the euclidean distance between final positions. In a similar way, Doncieux
and Mouret (2010b) have used the position of balls at the end of the evaluation in
a ball collecting task.

Binary sensorimotor information The sensors and/or motors neurons of
the robot are recorded during the simulation and binarized. This results in a large
binary vector which characterizes the robot behavior. The behavioral distance can
then be the Hamming distance (Doncieux and Mouret, 2010b), NCD (Normal-
ized Compression Distance, an approximation of the Kolmogorov complexity) and
Entropy-based distance (Gomez, 2009).

Discretized trajectory The behavior of the robot is characterized by its
discretized trajectory (Trujillo et al., 2008; Ollion and Doncieux, 2011). The com-
putation of the distance between two trajectories use the Normalized Levenstein
Distance (Yujian and Bo, 2007) (NLD), also known as Edit distance. A closely
related measure used by Ollion and Doncieux (2011) is used in this thesis and will
be further described.

The position of the robot is sampled over time during the simulation, and dis-
cretized over a grid of Nd × Nd square cells. This results in a vector of discretized
positions (See figure 2.12). The distance between two discretized trajectories is in-
spired by the Normalized Levenstein Distance. The principle is to compute an edit
distance between two vectors A and B (of potentially different sizes) of positions.
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Figure 2.12: Discretized Trajectory behavioral description. Left: a simulated arena
in which a robot moves (the dashed line is the robot trajectory). The arena is
discretized into a 2 dimensional grid (the robot starts at position (0, 3) in this
case). Every T time-steps/seconds (represented with red dots), the robot position
is recorded and appended to the behavioral vector. Right: the behavioral vector
representing the discretized trajectory of the robot

This corresponds to computing how many operations (insertions, deletions, replace-
ments) one would have to make to transform A to B. Each of these operations has
a cost, defined as follows:

• The cost of insertions and deletions of a position is 1.

• The cost of replacement r of one position (x1, y1) to another (x2, y2) depends
on the Manhattan distance between the positions:

r =
|x1 − x2| + |y1 − y2|

2 × Nd

This cost is always below the cost of one insertion plus one deletion.

The lowest cost to transform a vector to another is computed using dynamic
programming (similar to the Smith–Waterman algorithm (Smith and Waterman,
1981)). The Edit distance corresponds to this lowest total cost. It is a robust
and simple way to compute a distance between trajectories, and has the following
advantages:

• Trajectories of different length can be compared.

• The method performs an alignment of vectors, so trajectory similarities are
taken into account, even if they are shifted in time. This can easily happen
in evolutionary robotics, as one robot can have a shifted behavior vector by
just waiting before moving.



2.3. Artificial Neural Networks 29

�

��
��

��

���

��

��

�

	

Figure 2.13: Description of a generic neuron. The inputs xi are affected bu weights
wi then aggregated (here by summation). A second function (here a sigmoid func-
tion) is applied before generating the output value of the neuron.

2.2.4 Conclusions

Evolving a robotic controller raises usually very difficult optimization challenges,
partly because of the very complex mapping between genotype and behavior and
the non-linearity of fitness landscape. The study of the behavioral space and the
use of behavioral distances be one of the focus of thesis, whether it be through the
use of behavioral diversity or other techniques.

2.3 Artificial Neural Networks

2.3.1 Neuron models

Artificial Neuron An artificial neuron is a model of the functioning of biolog-
ical neurons. Different models have been proposed, each corresponding to different
abstraction level and describing more or less accurately the behavior of real neu-
rons. The following terms are inherited from biology and will be used to describe
artificial neurons:

• the activity of the neuron is usually represented by the firing rate of the
neuron.

• the synapses are connections between neurons. A synapse connects a presy-
naptic neuron to a postsynaptic neuron.

The artificial neuron can be seen as a non linear algebraic function of real val-
ued inputs. A neuron is defined by three main building blocks: a set of connection
weights, an activation function, and a threshold (Haykin, 1998; Floreano and Mat-
tiussi, 2008) (see figure 2.13). The following paragraphs describe some of the most
common neuron models from the most simple to the most bio-inspired ones.

Mc Culloch’s and Pitts McCulloch and Pitts (1943) have proposed the first
highly abstract description of a neuron. Each neuron is a Threshold Logic Unit
which applies a transfer function f to inputs.
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y = f(
n

∑

j=1

wjxj) (2.3)

with y the output of the neuron, f the transfer function, x1, . . . , xn the neuron
inputs and wj the associated weights.

Originally, the Heaviside step function was used in order to produce binary
outputs:

f(x) =

{

1 if x ≥ h

0 if x < h
(2.4)

where h the threshold of the neuron. Another commonly used function is the
sigmoid function:

f(x) =
1

1 + e−λ(y(i)+bias)
(2.5)

with bias being the neuron bias and λ the rate coefficient

Neural Fields Models (NFM) In neural fields (Amari, 1977), equations are
defined over a continuous field of neurons, rather than defining neurons individually.
They describe the spatio-temporal evolution of coarse grained variables such as
firing rate activity in populations of neurons. The models are often parametrized
by lateral weight connections, as well as time constants. One of the common use of
neural fields is in spatial visual attention. One experiment in chapter 4 is based on
neural fields and will be described later with further details.

Radial Basis Function (RBF) Radial Basis Function (RBF) networks (Buh-
mann, 2003), is another model of neural networks in which the response intensity
is inversely proportional to the distance between inputs and precise points (called
centers) in input space. These networks have many uses, including classification,
function approximation and handwritten text recognition (Lee, 1991). Their goal
is to approximate a desired behavior by a set of functions, each one characterized
by their center Ci and radius of receptive fields ri.

Leaky Integrator A Leaky Integrator neuron is a neuron with a first order
dynamic: dx(t)

dt
= f(x(t), t), with f being a non linear function, usually a sigmoid

function. Such systems are useful to model groups of neurons that have linked
activity and are more likely to fire at the same time (Dayan and Abbott, 2005).
They were also used in systems requiring internal dynamics of neurons such as Echo
State Network (Jaeger et al., 2007).

LPDS model (Locally Projected Dynamic System) This model is an exten-
sion of a Leaky Integrator neuron, in which the of the stability of networks is easier
prove mathematically (Girard et al., 2008). It was used in a model of basal ganglia
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(Girard et al., 2008), which will serve as a basis for an experiment in this thesis
(See chapter 4. Using numerical solver through the Euler method, the equations
can be reduced to:

pt =
∑

j∈C

wjyt
j (2.6)

at+dt = max(0, min(1, at +
pt − at + T

τ
.dt)) (2.7)

yt+dt =

{

at+dt for excitatory neurons
−at+dt for inhibitory neurons

(2.8)

where:

• yt+dt is the output of the neuron

• T and τ

• pt is the sum of inputs at time t

The main difference between LPDS and Leaky Integrators comes from the bound-
aries of the internal state of the neuron. Thanks to the operators min and max,
the time needed to converge back to the stable state is lowered (if there were no
boundaries, the internal state of the neuron can become very negative, and a large
amount of time is required to converge back to steady state).

Spiking neurons models These models describe the spike trains generated by
a neuron. The output of the model are spike timings of action potentials. A large
number of spikes within a given time window would give an indicator of higher
activation. Spiking neurons encode other information than just firing rate, such as
the firing timing of single spikes or the temporal coincidence of spikes coming from
multiple sources (Singer and Gray, 1995).

In contrast with previous models, spiking neurons can model synchronization
between neurons. One of the most well known model is the Hodgkin and Huxley
(1952) model, which describes the temporal dynamics of a neuron in different com-
partments. It aims at reproducing accurately the different modes of activation of
the biological neuron.

2.3.2 Neural Networks

A Neural Network (NN) is a description of the different neurons and the connec-
tions between them. There are many different topologies which all fit to different
problems.
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Figure 2.14: Feedforward network with one hidden layer.

Feedforward These networks have several layers of neurons (an input layer, an
output layer, and eventually hidden layers; see figure 2.14). The information is fed
forward from a layer to the next one. The most well known example of feedforward
network is the perceptron or multi-layer perceptron (Rosenblatt, 1958; Rumelhart
et al., 1986). The network itself does not induce any dynamics as the neural acti-
vations only propagate from the inputs to the outputs.

These networks are used for classification (Lippmann, 1989), signal processing
(Cochocki and Unbehauen, 1993), optical character recognition (LeCun et al., 1989),
prediction and forecast (Gardner and Dorling, 1998).

Recurrent Neural Networks In contrast with feedforward networks, these net-
works can have recurrent connections. This can strongly change the dynamics of the
network, and lead to networks with self sustained activity, or even chaotic behaviors.

Recurrent networks were used alongside with multi-layer perceptron by Jordan
(Jordan, 1986) and Elman (Elman, 1990). Elman networks (See figure 2.15) have
a hidden layer and a context layer. The hidden layer is duplicated into the context
layer each time-step. The context unit is then fed back to the hidden layer.

Continuous time recurrent neural networks (Beer, 1995; Yamauchi and Beer,
1996) are systems of differential equations that model a recurrent neural network.
They can also be seen as recurrent networks of leaky integrator neurons. They
can theoretically reproduce any dynamical system, and it was shown that small
CTRNN can generate complex dynamics (Beer, 1995, 2006; Bongard, 2011b).

Echo State Networks Echo state networks (Jaeger, 2002) are characterized by
a hidden “reservoir”, sparsely connected, with allowed recurrent connections (see
figure 2.16). The reservoir is initialized at random, with a low connectivity. For
standard sigmoid neurons, the dynamics of the reservoir can be written in the
following way:

x(t + 1) = f(Wx(t) + W inu(t + 1)) (2.9)

where x is the internal states of the reservoir neurons, W the connection matrix of
the reservoir, W in the connection weights between inputs and the reservoir, and u

the input vector. By studying the connection matrix W , one can infer dynamical
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Figure 2.15: Elman Network with two hidden nodes and two context nodes. The
bold connections represent weights fixed to 1 while the others can be modified.
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Figure 2.16: Echo State Network principle. The reservoir is sparsely connected,
initialized at random, and usually not modified during training. The output is
sometimes fed back to the reservoir.

properties of the networks. For instance, the “Echo State property” states that the
reservoir will asymptotically wash out information from inputs. This property can
be ensured if the spectral radius of W is below 1 (Jaeger, 2002).

These networks have been used in diverse machine learning tasks such as char-
acter and speech recognition (LeCun et al., 1989), as well as robotic applications
(Antonelo et al., 2007) and memory tasks (Hartland et al., 2009)

Liquid state machines are another reservoir computing method that were devel-
oped simultaneously, attempting to build generic models of cortical microcircuits
(Maass et al., 2002).

2.3.3 Evolution and Artificial neural networks

A widespread approach in artificial evolution of neural network is to define a fixed
topology, and evolve the various parameters such as connection weights and neuron
biases. This method was successfully used numerous times:

• with feedforward networks (Floreano, 1994; Bongard and Pfeifer, 2002; Bre-
deche et al., 2012)

• with recurrent neural networks (Beer, 1995; Ulbricht, 1996; Ziemke, 1996;
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Gallagher, 1999; Ziemke, 1999; Ziemke and Thieme, 2002; Mayer et al., 2008;
Maniadakis et al., 2010)

• with Elman networks (Miglino et al., 1994)

However, the use of fixed topologies is subject to a few problems:

• It can be difficult to choose the number of hidden nodes required, and usually
some exploratory experiments are made to define such parameters

• The topology cannot be changed through the evolution, therefore making it
more difficult to study the emergence of specific structures.

2.3.4 Evolution of Artificial Neural Network Topology

The evolution of neural network topology removes the choice of a fixed topology
and parameters such as the number of hidden neurons; however it is a challenging
problem.

2.3.4.1 Direct encodings

Through mutation and/or crossover operators, the evolutionary process is able to
modify directly the topology of the ANN.

Common operators include:

• Mutations that add or remove connections between neurons

• Mutations that add or remove neurons

In that case, the genotype encodes a representation of the topology of the neural
network. For instance, the genotypes may contain a directed graph, as well as some
parameters. The directed graph is then directly used as a topology for the neural
networks, and the parameters become weights and biases. Mutations are applied
to both the parameters and the topology.

Crossover operators are much less common in neuroevolution techniques, be-
cause crossover implies the separation of the network into sub-parts. Deciding
which sub-part of the network can be adapted to another network is a challenging
problem. Among the proposed solutions, Mouret (2008) define a method in which
the common sub-parts of the parents networks are selected to be switched; Stanley
and Miikkulainen (2002b); Whiteson et al. (2005); Stanley and Miikkulainen (2003)
propose an encoding named NEAT (Neuro-Evolution of Augmented Topologies) in
which crossover between networks are possible (see part 2.3.4.1).

DNN Dynamic Neural Network is a direct encoding used in Pinville et al. (2011);
Mouret and Doncieux (2006, 2008a). The network has fixed input and output
neurons, and the internal topology can be initialized in the two following ways:
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• No hidden neurons and only feedforward connections between inputs and out-
puts (full connectivity)

• Random topology: a (small) random number of hidden neurons are defined,
and randomly connected to inputs and outputs. All hidden neurons should
at least be connected to an input or output neuron.

There are five mutation operators defined:

1. modify a connection weight

2. modify a parameter of a node, such as neuron bias

3. add a new connection between two neurons

4. remove an existing connection

5. add a new neuron: an existing connection between neuron n1 and neuron n2

is removed, and replaced by a new neuron n with two connections: between
n1 and n, and between n and n2.

No crossover operator is defined.

NEAT Neuro-Evolution of Augmented Topologies (NEAT) is one of the most
used algorithm in neuroevolution (Stanley and Miikkulainen, 2002b, 2003;
Moriguchi and Honiden, 2011). The evolutionary process starts with a minimal
topology (most often, no hidden neuron, and fully connected network between
inputs and outputs). The networks are then complexified through evolution by
addition of nodes and connections.

The mutation operators have the same properties as in DNN. Additionally
NEAT introduces “innovation numbers” for crossovers and niching techniques.
Whenever a new connection appears (through structural mutation), a global in-
novation number is incremented and assigned to that connection. The innovation
numbers thus represent a chronology of the appearance of every connection in the
system. These numbers are copied from parent network to offspring. In that way,
a correspondence between structural changes is possible, which is used to define a
crossover operator.

The innovation numbers are also used to define niches to protect uncommon
topologies.

2.3.4.2 Indirect Encodings

In indirect (or generative) encodings, the genotype undergoes a series of transfor-
mations to produce the final phenotype (neural network). In particular, in devel-
opmental encodings these transformations are often inspired from the development
of biological organisms.



36 Chapter 2. Background

The main purpose of these encodings is to evolve quickly larger and more com-
plex structures than using direct encodings (Hornby and Lipson, 2001). They ben-
efit from properties found from biological organisms to engineering (Hartwell et al.,
1999; Variano et al., 2004; Hornby, 2005): regularity, modularity, hierarchy, repet-
itivity and symmetry. These properties can be defined as follows: (taken from
(Tonelli, 2012))

Definition 4 (Regularity) An encoding is regular if the resulting artificial net-

work can be generated from a compact representation (the resulting structure has

then a low Kolmogorov complexity)

Definition 5 (Modularity) An encoding is modular if the functions computed by

the resulting network are localized in the structure of the network.

Definition 6 (Hierarchy) An encoding is hierarchical if its development process

is applied multiple times to generate the network (i.e., a recursive development

process).

Definition 7 (Repetitivity) An encoding is repetitive if the resulting network has

sub-parts repeated several times with little to no variation.

Definition 8 (Symmetry) An encoding is symmetrical if the resulting network

has axial or central symmetry.

The following paragraphs describe a few indirect encodings; a more exhaustive
review of generative encodings can be found in (Tonelli, 2012).

Developmental Encodings The development process of all multicellular or-
ganisms based is hierarchical: the organism develops recursively from a limited
number of cells. This natural process inspired cellular encodings (Gruau, 1994)
and encodings based on L-systems (Hornby and Lipson, 2001; Hornby and Pollack,
2002; Prusinkiewicz and Lindenmayer, 1990). Hierarchical encodings also include
scale-free networks which have properties (such as connectivity) independent of the
scale or size of the network. Encodings such as DSE (Suchorzewski, 2011) or Hyper-
NEAT claim this property (Woolley and Stanley, 2011). Cellular encodings produce
networks that have properties such as symmetry, regularity and repetitivity.

Analog Genetic Encoding (AGE) This encoding (Mattiussi and Flore-
ano, 2007; Mattiussi, 2005) is inspired from biological mechanisms used for the
transcription and regulation of genes. Its goal is to generate graphs from a string
of characters (inspired by DNA strands) evolved by the algorithm. This encoding
was used to generate neural networks, as well as electric circuits (Mattiussi, 2005).
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Modular Encodings MENNAG (Mouret and Doncieux, 2008b) is an ex-
ample of encoding which promotes the reuse of functional modules. Obtaining
functional modularity is still an open problem (Altenberg, 2004; Mouret, 2008;
Hansen, 2003). Most recent works related to modularity are dependent on selective
pressures rather than encoding (Kashtan and Alon, 2005; Mouret and Doncieux,
2008a; Clune et al., 2012).

HyperNEAT HyperNEAT was developed by Stanley (2007); Stanley et al.
(2009) and is one of the most studied indirect encoding of the previous years (Stan-
ley, 2007; Stanley et al., 2009; Risi and Stanley, 2010; Risi, 2011; Clune et al., 2009;
Drchal et al., 2009; Risi, 2011; Suchorzewski, 2011). HyperNEAT is based on the
evolution of Compositional Pattern Producing Networks (CPPN) (Stanley, 2006,
2007).

CPPNs are variations of ANNs which differ in the set of activation functions.
Instead of only sigmoid or linear functions, CPPNs also include gaussian, sine or
any type of function. This enables a CPPN to produce patterns with symme-

try, repetitions, etc. In HyperNEAT, CPPNs are evolved using CPPN-NEAT, a
variation of NEAT for evolving CPPNs.

Once the CPPN is evolved, the resulting network is derived from the CPPN in
the following way:

• A set of neurons is defined in a substrate (usually 2 dimensional). Each neuron
has coordinates in this space.

• For each possible connection between two neurons, the coordinates of the two
neurons are fed into the CPPN. The resulting output gives the weight of the
connection between the two neurons.

• Additional parameters can also be defined by using a CPPN.

Using this technique, generated networks can have a large number of neurons and
connections, and the connection patterns are based on the geometric motifs gener-
ated by the CPPN.

EvoNeuro The EvoNeuro Encoding (Mouret et al., 2010) is the basis of some
experiments in this thesis, and is described in the following section. It is regular

and repetitive.

2.3.4.3 EvoNeuro Encoding

EvoNeuro is an encoding inspired by computational neuroscience models.
The rationale behind this new encoding is that many computational neuro-

science models (Girard et al., 2008; Gurney et al., 2001a; O’Reilly and Frank, 2006)
use groups of similar neurons as building blocks instead of single neurons. The
models from which EvoNeuro is inspired are mainly basal ganglia models (Girard
et al., 2008; Gurney et al., 2001a) and working memory ones (O’Reilly and Frank,
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Figure 2.17: Basal ganglia model taken from Mouret et al. (2010). The basic
building block of this model is a one dimensional map with a constant number of
neurons. All neurons of a map have similar properties (such as bias), and a similar
connectivity pattern.
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1-All constant
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1-1 Constant

(a)
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(b)

Figure 2.18: Possible connection schemes of EvoNeuro (from Mouret et al. (2010))

2006). Figure 2.17, shows a basal ganglia model from (Mouret et al., 2010). The
network has a very regular structure, where channels have the exact same prop-
erties. This basal ganglia model realize a winner-takes-all function, in which the
most active channel is selected while all others are suppressed.

All maps have neurons with similar parameters (such as time constant, biases,
etc.), and the connections between maps follow regular patterns. In EvoNeuro, 3
patterns of connectivity between maps are implemented (see figure 2.18). These
regularities are present in many brain structures (Alexander et al., 1990).

• 1-1 connectivity: Each neuron of the presynaptic map is connected to a neuron
of the postsynaptic map with the same index.

• 1-all gaussian connectivity: Each presynaptic neuron is connected to all post-
synaptic neurons. The weights are Gaussian distributed: the neuron i of the
presynaptic map is connected to the neuron j of the postsynaptic map with
a weight proportional to gauss( i−j

N
, σ) — where gauss(x, σ) is a Gaussian

function, and σ an evolved parameter. In that way, the maximal weight is
between neurons of same index, while the minimum weight is for neurons with
the largest index difference.

• 1-all constant connectivity: Each presynaptic neuron is connected to all post-
synaptic neurons with identical weights.

Principle A graph is evolved which is then used to generate the full neural net-
work. The genotype is then a directed graph in which each vertice and each edge
has parameters modified through evolution (2 parameters for each node and 3 pa-
rameters for each connexion). The neural network can either be initialized with no
hidden neurons or with a random topology, as in DNN (see 2.3.4.1).

The directed graph is evolved similarly to DNN: mutations can change param-
eters of each neuron or connection, as well as the topology (see 2.3.4.1).

In contrast to a direct encoding, the graph is not used as a neural network, but
as a blueprint for building a more complex neural structure (see figure 2.19).

During the development phase (from genotype to phenotype, see figure 2.20), the
first step is the transformation of each node to either a map of M similar neurons,
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Figure 2.19: General overview of EvoNeuro functioning. From left to right, (1)
the genotype is a labeled graph in which the parameters can be modified through
evolution (2) Each label is developed into a building block inspired by neuroscience,
which gives a general description of the network; (3) For a given map size, each
building block is developed into neurons, which outputs the final neural network

or a single neuron — depending on the first internal parameter of the node. The
second parameter defines the bias of the neuron(s).

The next step is the development of connections. Depending on the nature of
the presynaptic node (whether it is a map or a single neuron), each connection is
developed differently as shown in figure 2.20. The connection weights can either be
constant or Gaussian distributed (in the case of 1-All connection). In a Gaussian
distribution, the weights are distributed based on the difference (in absolute value)
between the index of the presynaptic neuron and the index of the postsynaptic
neuron.

For input and output nodes, the user decides whether they will be developed
into maps or single neurons. This ease the evolutionary process, and ensures that
the network always has similar number of input and output neurons.

Because of these maps, the network is much more constrained in its topology and
connection weights than a direct encoding. This forces the network to be regular

and repetitive.
Finally, evolving a graph of maps of neurons increases significantly the scala-

bility of the algorithm. The developed network can have hundreds or thousands of
neurons, while the direct evolution of a neural network of this size would be unfea-
sible. Furthermore, the first work using EvoNeuro (Mouret et al., 2010) has shown
that the evolution of a winner-takes-all function (6 neurons per map) showed very
good scaling properties (similar efficiency when changing the number of neurons
from 6 to 15).

The EvoNeuro encoding was developed to answer the following three needs:

• propose a neural network encoding with maps of neurons as a building blocks

• use evolution to automatically synthesize computational neuroscience models

• generate artificial agent controllers that can take advantage of larger and more
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Figure 2.20: Development mechanism of EvoNeuro encoding. Each node is trans-
formed into either a single neuron or a map of similar neurons. In a similar way
Each connection is transformed into connection mappings. If the presynaptic and
postsynaptic nodes are different in size, the connectivity is always 1-All. If the two
nodes are maps, another parameter determines which connectivity is chosen (1-All
or 1-1)

complex neural networks

EvoNeuro was initially applied in order to reproduce the behavior of basal
ganglia models (implied in action selection behaviors) through artificial evolution
(Mouret et al., 2010). Since then, it has been used to develop models of working
memory (Pinville and Doncieux, 2010; Tonelli, 2012)

EvoNeuro2 While EvoNeuro provides a functional encoding for developing
large and regular neural networks, further features were added for the needs of this
thesis. The structure of Head Direction cells model in computational neuroscience
have features unavailable in EvoNeuro.

In a model by McNaughton et al. (2006), the authors describe a one-dimensional
attractor map model for head direction encoding based on neural integration of head
angular velocity signals. In this model, the one-dimensional map has no beginning
nor end: it is conceptually arranged into a circle, and has no boundaries (See figure
2.21).

While the goal is not to reproduce exactly such models, EvoNeuro2 takes ad-
vantage from some primitives from this literature. These primitives are necessary
in some of the experiments presented in this thesis. EvoNeuro2 is an extension of
EvoNeuro, with the addition of the two following features:

• Circular wrapping connections: Instead of standard linear neural maps, the
maps are considered circular, and the gaussian weights have a torus wrapping
(See figure 2.21).

• Connection shift: An additional parameter for each connection is introduced,
adding a possible weight shift between the presynaptic and postsynaptic neu-
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Figure 2.21: One-dimensional circular maps with 1-1 Connection

rons. The offset parameter p ∈ [0, 1] is converted to an integer shift to the
right (See figure 2.22).

2.3.5 Conclusions

This section covered the use of different neural models, neural network structures,
and encodings for the evolution of artificial neural networks.

Neuron Models Because evolutionary algorithms often require large
amounts of evaluations, computationally intensive models of neurons are rejected.
This includes Spiking neuron models. For robotic applications, easy to compute
models, such as generic sigmoid neurons and LPDS (Girard et al., 2008) are used
in this thesis (chapter 4). Dynamic Neural Fields are also useful to solve visual
attention task, and will be used in chapter 4. They are fast to compute provided
the number of neurons used to approximate the continuous field is not too high.

Neural Structures In order to study the emergence of specific structures in
neural networks, the most straightforward way is to let the evolutionary process
decide of the structure. For control experiments, fixed structures such as Elman
networks will be used, as these structures have a built-in layer which can be related
to an internal representation (Elman, 1990).

Encodings As the experiments in this thesis rely more on the selective pres-
sures than on the chosen encoding, the most easy to implement and fast encodings
were employed. In this thesis, the following neuroevolution encodings will be used:

• DNN, in chapter 4, following the work of Ollion et al. (2012).

• EvoNeuro, in chapter 4. Following the experiment of Mouret et al. (2010).
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Figure 2.22: Shift of the weight depending on an additional parameter p. Here the
map size N is 15, and p = 0.07, which corresponds to a shift of ⌊0.07 × 15⌋ = 1

neuron to the right. As the map is considered circular, the last neuron of the
presynaptic map (neuron 15) is projected to the first neuron (neuron 1) of the
postsynaptic map.

• EvoNeuro2, in chapter 5. The proposed experiment of Chapter 5 deals with
navigation and Head Direction, thus the use of EvoNeuro2 with circular maps
greatly improves the evolutionary process.

NEAT was not used in this Thesis, partly because the original implementation of
NEAT is dependent on a specific mono-objective algorithmic implementation, which
is not NSGA-II. Note that the results should in principle not vary much by using
NEAT instead of DNN because of the two following points:

• DNN is a simplified version of NEAT, and most of the principles (such as the
mutation operators) are the same.

• Control experiments using both NEAT and DNN were conducted by Mouret
and Doncieux (2012a). They showed that, when behavioral diversity was
used, DNN was more efficient than NEAT on a ER benchmark.
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Internal Representations

Goals

• Find out properties of internal representations in Evolutionary
Robotics and Cognitive Science.

• Design a protocol to determine if a representation carrying such a
property is present in a network.

Method

• Review of internal representations in Cognitive Science models and
Evolutionary Robotics literature.

• Formalization of the properties in the context of neuroevolution and
Evolutionary Robotics into a protocol.

Results

• Two major internal representations are defined: representations with
Noise Resistance and representation with Memory.

• The protocol successfully determines whether representations are
present in neural networks.
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3.1 Internal Representations and Cognitive Behaviors

3.1.1 Internal Representations

Traditional theories in cognitive science consider internal models as the basis of
cognitive agents’ actions (Craik, 1943; Tolman, 1948; Johnson-Laird, 1983). Those
models are described as mental maps that incorporate symbolic representations.
In the seminal work by Craik (1943), states that the mind constructs “small-scale
models” of reality that it uses to reason, and to anticipate events. Tolman (1948)
describes cognitive maps, that take part in animal navigation and path planning.
These maps are the basis of models and cognitive functions and are called internal

representations (Tolman, 1948; Marr, 1982). In the case of Tolman’s maps, the
representations are then symbolic, and their content was expected to be easily
interpreted. A review of such mental models was conducted by Johnson-Laird
(1980).

In the late 1980s, Harnad (1990) introduces the symbol grounding problem,
which questions the presence of symbolic representations. In the 1990s, cognitive
science has seen a new emphasis on the embodied and situated intelligence, including
works by Brooks (1991b); Varela et al. (1991), and rejecting the symbolic only
views. They argue that “the world is its own best model” (Brooks, 1991b), and
emphasize intelligence without representation, with reactive behaviors. This has led
to an anti-representationalist view and created debates in the cognitive science and
artificial intelligence communities. However, Clark and Toribio (1994) argues that
there might not be a representational/non-representational dichotomy, but rather
different degrees and types of possible representations, from no representations at
all to sophisticated models. In embodied views of cognition, cognition can rely on
prediction and internal representations, however the representations are based on
sensorimotor codes rather than symbols (Wolpert et al., 1995; Keijzer, 2002; Pfeifer
and Bongard, 2006).

The term representation can be misleading and has been criticized. Keijzer
(2002) argues that “Internal Control Parameters”, which can be interpreted as
specific biological internal states, are not representations and advocates for the use
of both representational and non-representational internal states in embodied views
of cognition. However, this debate is beyond the scope of this thesis. The definition
of representations in this work will rather be focused on their function.
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3.1.2 Examples of Reactive and Cognitive Behaviors

What role do these internal representations have ? They have been associated with
Cognitive behaviors (see, e.g. (Craik, 1943; Tolman, 1948; Johnson-Laird, 1980;
Marr, 1982)). Shettleworth (2009) has studied cognition in the animal kingdom,
which include very diverse nervous system structures and behaviors. For instance,
behaviors purely based on reflexes are called reactive behaviors; behaviors involv-
ing complex computations and integration of information over time are cognitive

behaviors.
The following paragraphs illustrate some reactive and cognitive behaviors in

animal species. In particular, navigation provides a good context for the study
of reactive and cognitive behaviors, because the trajectory of studied animals can
easily be recorded in nature, or by cognitive scientists in setups such as mazes.

Reactive behavior and taxis Reactive behavior are behaviors only depending
on current sensor information, and not integrating other information. For instance,
chemo-taxis is the process of moving towards a gradient of concentration of a given
chemical substance. An example of such kind of behavior would be the chemo-
taxis of bacteria (for instance in Escherichia Coli (Berg et al., 1972)). In taxis, the
navigation is then local and does not rely on past sensor information.

Another example of simple navigation behavior can be found in some insects,
such as the African dung beetle Scarabaeus zambesianus (Dacke et al., 2003). Be-
havioral experiments show that in some conditions, the dung beetle has to move
along a straight path. In order to do so, it heads towards the direction of polarized
light (sunlight, or moonlight (Dacke et al., 2003)). Changing the polarization of the
light (using a polarized screen) makes the beetle instantly change its direction. In
that case, the beetle’s heading solely depend on its light polarization sensors, and
thus it has a reactive behavior. However, other navigation strategies of the beetle
might include non-reactive behaviors.

Non-reactive behaviors Insects such as bees and ants exhibit homing behaviors:
from any place they wandered, they have to find a way back to their nest. It has
been shown that one of their strategies relies on dead reckoning (Cheng et al., 1987;
Wehner and Srinivasan, 2003). This means that while navigating away from their
nest, they remember information about direction and distance towards their nest,
and mostly use those information to get back to their nest. By catching an ant just
before it starts its homeward journey and artificially releasing it several hundred
meters away, the ant does not head towards the nest (Wehner and Srinivasan, 2003).
Instead it heads in a direction similar to that which it would have headed from the
point of capture (See Figure 3.1). Upon reaching its goal — where the nest should
have been — the ant starts circling. This behavior is non-reactive: the ant integrates

its path and remembers information necessary to come back to its nest. Little to
no local cues are used to decide of the direction.
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Figure 3.1: Illustration of dead reckoning and path integration for desert ants
Cataglyphis albicans. Left: an ant is captured away from its nest, and has in-
tegrated its path from the nest. Right: the ant is relocated, and starts heading
towards where it would have headed from the point of capture.

Advanced cognitive navigation Animals have many different sophisticated
navigation strategies, some of which lead to reactive behaviors, while some are
more complex (a review of cognitive navigation in different animal kingdoms can
be found in Shettleworth (2009)). For instance, many researchers have focused
on the navigation strategies of rodents (Redish, 1994), and uncovered brain re-
gions that can be considered as internal maps used for navigation. The navigation
strategies involved in rodents can include some local navigation, or sole path in-
tegration for homing (dead reckoning), but can be much more complex (Redish,
1994; Trullier et al., 1997). For instance rats have been shown to rely on landmark
learning/recognition, and path planning.

Many Computational Neuroscience models of these functions have been pro-
posed and rely on internal maps (Tolman, 1948; O’Keefe and Nadel, 1978; Touret-
zky et al., 1993). Some evolutionary robotics experiments have also included (much
simpler) representations in the control architecture. Figure 3.2 details a summary
of the current position of this development of ER from reactive, feed-forward net-
works to systems with internal representations. While there was some attempts to
define minimally cognitive behaviors (Beer, 1996), there is no clear way to deter-
mine whether representations are present within a network. The two next sections
briefly review the use of internal representations in 1) Computational Neuroscience;
2) Evolutionary Robotics.
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Figure 3.2: Overview of internal representations, in Evolutionary Robotics (left)
and Computational Neuroscience (right). 1) Evolutionary Robotics methods suc-
cessfully solve tasks involving reactive behaviors, without the need for any internal
representation. 3) Neuroscience studies cognitive systems and models them using
internal representations. 2) Recurrent topologies evolved in many ER experiments;
do they have internal representations ?

3.1.3 Internal Representations in Computational Neuroscience

3.1.3.1 Examples of tasks requiring internal representations

The following Computational Neuroscience review focuses on the use of internal
representations in the different models. While the encoding and the use of these
representations can be very different from a model to another, common properties
will be highlighted. The following list of cognitive functions is not exhaustive, nor
mutually exclusive, as it is probable that some of these functions might be linked
(see for example Deco et al. (2005)).

Working Memory Working memory is a short-term memory, which is referred
as a “temporary storage and manipulation of the information necessary for complex
cognitive tasks” (Baddeley, 1992). Working memory then is believed to be the basis
of multiple cognitive processes. Several neural models of memory and working
memory imply a buffering of the information in an internal neuron or group of
neurons. The most simple information is a bit of information, which can be stored
in a single internal neuron. This corresponds to a very small and simple internal
representation.

Attention Focus Attention focus is the process of focusing visual attention to a
single cue, when multiple cues are available in noisy and distracted environments
(Rougier and Vitay, 2006). Several models of visual attention rely on neural fields
Amari (1977). The model by Rougier and Vitay (2006) consists of a visual 2D input
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map, and a 2D internal map. A visual cue (a Gaussian activity “blob”-shaped),
noise, distractors, and is subject to occlusions. The internal map must be able to
focus to one single visual cue and have a well defined internal activity and shape.
The connectivity of neurons in the internal map involve lateral inhibition and local
excitation in a “Mexican hat” connectivity pattern (Müller et al., 2005). This
connectivity enables a spontaneous stabilization and memorization of information,
provided the right parametrization (Rougier and Vitay, 2006; Quinton, 2010b).

Action Selection Action selection is the process of choosing a single action when
given multiple channels of inputs with different strength. The basal ganglia is a
brain structure believed to be involved in action selection and modeled by Red-
grave et al. (1999); Gurney et al. (2001b); Girard et al. (2008). These models
involve a dynamical system, which converges to a map with a channel singled out
— the selected channel. Internal representations (maps of neurons), which contain
information about the selection, are involved in this computation.

3.1.3.2 Internal models for navigation

Cognitive Navigation is the process of recognizing places, following landmarks, in-
tegrating path, and path planning. Since the cognitive maps described by Tolman
(1948), many different computational neuroscience models for navigation have been
described. Those models are intensely based on internal representations, which
include:

• Place Cells (O’Keefe and Nadel, 1978)

• Head Direction Cells (Taube et al., 1990)

• Grid Cells (Hafting et al., 2005)

For instance, a model of the functioning of path integration in mammals, includes
Place and Head Direction cells (McNaughton et al., 1996). More recently Mc-
Naughton et al. (2006) describe models of this ability implying Grid Cells.

Place cells are neurons firing at an increasing rate when the animal is in a specific
place (the “place field” of the cell) (O’Keefe and Nadel, 1978; Muller et al., 1996).
They are believed to be the basis of the representation of space in some animals
(Touretzky et al., 1993). The place cells can encode more information than just
a position: for instance, a place cell can be sensitive to a particular direction (see
Redish (1994) for a review). A place cell should be active when the animal revisits
the place field associated with it. Those place cells are also involved in navigation
such as path planning (See Trullier et al. (1997) for a review).

Head Direction cells (HD cells) are a population of neurons, each having dif-
ferent firing rates when the animal’s head point towards a specific direction (Taube
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Figure 3.3: Firing rate of a model of Head Direction cell. (Left) Preferred firing
direction of the cell. (Right) Idealized firing scheme of the cell in function of the
Head Direction.

et al., 1990). The population is believed to encode the direction the head in mam-
mals such as rats, each cell having its preferred direction (See Figure 3.3). The
Head Direction cells system can be interpreted as a 1-dimensional circular map of
neurons which represents the Head Direction of the animal (Taube et al., 1990).
The encoding and decoding of the head direction (a continuous information) is re-
alized through population coding (Deneve et al., 1999, 2001). Each neuron have a
Gaussian firing rate centered around its preferred direction; the firing rate of the
whole population is used to decode the actual head direction. Population coding
was shown to encode information reliably in noisy conditions (Deneve et al., 1999,
2001).

Head Direction Cells (or HD cells) are sensitive to vestibular input (inertial
compass), as well as visual inputs (Wiener and Taube, 2005). In this model, even if
the visual inputs are completely lost (when the animal is in the dark for instance),
the Head Direction system maintains its activity and is able to encode the direction
of the head.

Grid cells are neurons typically found in dorsomedial enthorinal cortex, which
fire in regular and geometrical way (Hafting et al., 2005). They appear to encode
abstract spatial structure and are believed to encode a cognitive representation of
euclidean space (Hafting et al., 2005).

3.2 Internal Representations in Evolutionary Robotics

In the light of the cognitive functions described in the previous sections, the follow-
ing general definition of representation will be used in this work:

Definition 9 (internal representation) An internal representation is a

piece of information located in internal neurons which 1) is dependent on inputs;

2) cannot be deduced only from the values of the inputs at a particular time.

Through this definition, several points can be made:
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• Reactive agents do not make use of internal representations — their potential
internal nodes can be deduced from a direct combinations of inputs.

• An internal circuitry not connected to inputs is not considered as a represen-
tation.

While the models from computational neuroscience have complex internal struc-
tures, many ER experiments rely on much simpler control architectures. This sec-
tion reviews different tasks — in the light of the present definition of internal repre-
sentation — in the past ER experiments. This review is restricted to the evolution
of artificial neural networks in ER.

Definition 10 (representation-hungry) A representation-hungry (Clark and

Toribio, 1994) ER problem corresponds to a task in which an internal represen-

tation in the controller is necessary for solving the problem.

In order to study the nature and emergence of representations, representation-

hungry tasks must be chosen; however the definition of such tasks is not always
straightforward.

3.2.1 Representation-less ER tasks

Obstacle avoidance and Navigation Many ER tasks involve the optimization
of a controller for a robot to navigate in a given environment, while avoiding obsta-
cles. In (Lund and Miglino, 1996), a Khepera robot is used, controlled by a simple
neural network with no hidden layers. This behavior is fully reactive, and can be
very efficient for obstacle avoidance or wall avoidance (Zufferey et al., 2002). Other
works imply photo-taxis behavior and obstacle avoidance (Miglino et al., 1998; Seok
et al., 2000; Watson, 2002; Parker and Georgescu, 2006). In these tasks the robot
has to move towards a light point, avoiding obstacles or walls along the way.

Interestingly, some navigation tasks can sometimes be solved by the evolutionary
process using complex internal dynamics, without the help of sensors (Lehman et al.,
2012). The internal structures involved in these dynamics are then not considered
as representations in the light of the present definition. The author then encourage
the “reactivity” of systems to select solutions that do not only rely on internal
dynamics without taking into account the sensory information.

3.2.2 Representation-Hungry Tasks

3.2.2.1 Minimally Cognitive Behavior

Beer (1996) defines the idea of Minimally Cognitive Behavior, in which the con-
trollers are evolved in tasks complex enough to be representation-hungry. There-
fore, the task should raise interesting cognitive questions while remaining simple
enough for analysis.
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In order to evolve controllers with Minimally Cognitive Behaviors, Beer (1996,
2003) proposed a framework in which a visually guided agent has to perform the
following tasks:

• Orientation: the agent has to orient towards a visual stimulus, and adjust their
position to catch falling objects. Gallagher (1999); Slocum et al. (2000) have
proposed an extension of Minimally Cognitive Behaviors in which the agent
is evolved to catch falling objects, having only briefly seen their positions.

• Discrimination: the agent has to visually discriminate between different ob-
jects

• Pointing: the agent has to point its 1 degree-of-freedom manipulator towards
the center of an object

In some of these experiments however, Beer concludes that it is difficult to under-
stand whether an internal representation is encoded in it, or if the success of the
agents is just based on coupled dynamics with the environment, merely instantiated
by the CTRNNs (Beer, 2003).

3.2.2.2 Predictive Models

In the experiments by Nolfi and Tani (1999); Tani and Nolfi (1999), mobile robots
navigate in an environment with several rooms. The robot has the possibility to
anticipate and predict the next sensory input. It uses an internal model with a
Recurrent Neural Network, with context units and a gating system. A later work
by Gigliotta et al. (2011) also uses the same kind of network with specific context
units which predict the input. In that case, the network has to predict the input,
so that when the input disappears the robot can still perform the task. An ad hoc
architecture made it possible to realize this prediction, even when the inputs are
periodically removed (input occlusions), and in the presence of noise.

3.2.2.3 Evolution of representations in a discrete environment

Edlund et al. (2011); Marstaller et al. (2012) are explicitly interested in the evolution
of representations in agents, in a discrete environment. The experiments use a
recurrent artificial network as well as a network of hidden Markov gate. In the
artificial neural network experiment (Marstaller et al., 2012), the network internal
structure consists of six hidden units and four recurrent units. This architecture
was chosen for the short-term memory potential. While the networks are shown to
have representations, they do not improve much during the evolutionary process,
and the behavioral analysis of the internal nodes is therefore made on the hidden
Markov gate architecture. Furthermore, the same methodology wouldn’t apply to
a continuous evolutionary experiment.
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Figure 3.4: Illustration of a T-maze for the road-sign problem. The robot is located
at the bottom of the T-maze, and receives a stimulus (orange light to the left or
to the right). This stimulus quickly disappears. The robot has to turn left or right
depending on this stimulus.

3.2.3 Tasks with unclear Representation needs

In several other ER tasks, the need for internal representation is much more difficult
to assess. These tasks have control architectures that could allow for internal rep-
resentations, but in which it is unclear whether these representations are actually
needed.

3.2.3.1 Delayed Response Task

In a delayed-response task, there is a delay between the presentation of a stimulus
and the expected response of the robot. The robots have to acquire a form of
memory to solve the tasks. The controllers of the robots usually have a fixed
topology with specific neurons corresponding to memory states, or use CTRNNs.

Road-Sign Problem The Road-Sign Problem is one of the first task used in
ER to test the synthesis of a memory (Ulbricht, 1996; Jakobi, 1997; Rylatt and
Czarnecki, 2000; Linaker and Jacobsson, 2001; Bergfeldt and Linaker, 2002; Blynel
and Floreano, 2003; Kim, 2004; Ziemke and Thieme, 2002; Ziemke et al., 2004). The
Road-Sign Problem is a delayed response task, in which the robot has to choose a
direction depending on a stimulus received some time before. The simplest Road-
Sign Problem implementation is the T-maze problem (See Figure 4.1), in which
a robot has to turn left or right depending on a light stimulus. The road-sign
setup was used to test generalization ability (Ulbricht, 1996); transferability from
simulation to reality (Jakobi, 1997; Koos et al., 2012); synthesis of memory (Ziemke
and Thieme, 2002; Kim, 2004) and meta-cognition (Maniadakis and Tani, 2009).

This task is usually considered to require a short-term memory, as the agent
must remember which stimulus (left or right) it received in order to turn left or right.
However, evolutionary experiments (Ziemke et al., 2004; Pinville, 2013) showed that
the T-maze navigation task does not always require internal memory to be solved.
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The agents instead can use behaviors such as wall-following: when they receive
the stimulus, they directly go towards the left or right wall of the corridor, and
then follow the wall. In that case, an external memory (See for instance (Hutchins,
1995)) is used: the agent’s own position with respect to the wall; instead of an
internal memory or representation.

Other Memory Tasks Other evolutionary experiments include the work of Capi
and Doya (2005), in which a robot has to alternatively navigate to a food place, a
water place and its home. This task relies on a specific architecture in which some
neurons are explicitly binary memory units. For a more complete review of working
memory in a context of ER, the reader is referred to the work of Pinville (2013).

As shown by Nolfi (2002); Ziemke et al. (2004), relatively complex tasks (such
as memory tasks) can often be solved by reactive agents which exploit the sensori-
motor loop from the interaction with the environment. In that case, those relatively
complex tasks do not require any internal representation, and the evolutionary pro-
cess may then lead towards solutions that are reactive and solve the task (Pinville,
2013).

Homing The robot has to find its way back home, and the localization of its
home can’t be directly deduced from a light source as in photo-taxis (it might not
be indicated at all). Vickerstaff and Di Paolo (2005a,b) use a genetic algorithm to
evolve neural models of path integration, with particular emphasis on reproducing
the homing behavior of Cataglyphis fortis ants. They do not impose any particular
system for the internal representation of the agent’s home vector. The agents are
then able to perform basic path integration. However, the dynamics of the behavior
is strongly influenced by the dynamics of the leaky integrator neurons; it is therefore
difficult to study the presence of representations.

Locomotion and Legged motion Many evolutionary robotics experiment im-
ply the use of recurrent neural networks and therefore internal dynamics. The
optimization of walking gaits take advantage of such networks, whether the gait is
evolved on a hexapod (Filliat et al., 1999), quadripod (Hornby et al., 2000) or biped
robot (Reil and Husbands, 2002). Commonly used neural structures are Central
Pattern Generators (Billard and Ijspeert, 2000). These structures were not ana-
lyzed in the light of internal representations, but some of them might satisfy the
definition of internal representation given here. However, in several cases, the in-
ternal neurons are solely used to produce oscillatory dynamics necessary for the
walking behavior. They are then totally independent from the inputs and cannot
be considered as internal representations.

Foraging Tasks In these tasks, the robots must find objects in an environment,
gather them and eventually drop them in another place. Tasks such as “peg-
collecting” (Nakamura et al., 2000), or “object pushing” (Ishiguro et al., 1999;
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Hornby et al., 2000) have been treated, as well as ball collecting Mouret and Don-
cieux (2012a); Pinville et al. (2011). In the latter, the robot has to navigate, find
balls, catch balls, navigate to a basket, and release the ball. This task is considered
as one of the most complex in Evolutionary Robotics (Nelson et al., 2009), because
of the sequence of behaviors to perform. Ollion and Doncieux (2011) extended this
task by adding a switch which opens a new room with new balls to collect. At
first glance, this task seems to be difficult to solve using a purely reactive system
and therefore representation-hungry. However controllers without any internal neu-
ron, with weights fine-tuned by evolution can obtain very good performances (See
Subsection 3.4.3).

3.2.4 Conclusion

This short review of the study of internal representation in ER shows the three
following points:

• A large number of tasks — even complex ones — are not representation-

hungry, and therefore do not provide a good context for the study of the
emergence of internal representations.

• The emergence of working memory has been studied by several researchers —
working memory is a type of internal representation.

• Most of the studies rely on ad hoc and fixed structures: the emergence of
representations in a network structure designed by evolution is therefore not
studied.

The following section aims at characterizing more precise representations through
the definition of tests. Most of the protocols mentioned in this section do not fit
the study of these representations — which may be more complex that a one bit
memory involved in most delayed-response tasks. A new protocol for studying the
emergence of these representations will be defined in Chapter 5. The choice of this
protocol is discussed in section 5.2.

3.3 Testing Characteristics of Internal Representations

3.3.1 Measuring Representations in the literature

Due to the broad definitions of internal representations and their various forms in
neural networks, little quantification of internal representations in neural network
have been made. Some researchers count the number of internal neurons to measure
representation and intelligence (McNally et al., 2012). However, this technique
does not take into account the connectivity of these neurons, their activity, their
dynamics, or the information they represent.
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Quantification based on Information Theory A more sophisticated quantifi-
cation of internal representations was defined by Marstaller et al. (2012). The au-
thors give a formal definition of representations based on information theory. They
define the representation R as “the shared entropy between environment states, but
given the sensor states, that is conditioned by the sensors.” This means that R is
a measure of the correlation between environment states and internal states, after
the removal of direct correlation between sensor states and internal states. This
can be formalized in the following way:

R = I(E : M) − I(E : M : S) (3.1)

where I(X : Y ) is the shared entropy of X and Y , E is the environment states,
M the internal states, and S the sensor states. The term I(E : M) represents the
information of the environment stored in the internal states. The term I(E : M : S)

represents the part of information of the environment stored in the internal states
that is directly seen by the sensors (further details about the computation of R is
found in Marstaller et al. (2012)). In that way, a quantitative value of informa-
tion (R, measured in bits) represented in the network is defined. This information
measure was used in several works such as Edlund et al. (2011); Marstaller et al.
(2012). While this definition is very generic because of its mathematical grounding,
the application to evolutionary robotics is not straightforward, and brings several
problems in the cases studied in this thesis:

• It is assumed that all states, internal, or external (possible states of the envi-
ronment) are discrete. For a continuous task, this would be unfeasible unless
a very coarse discretization of states is performed.

• This definition is not compatible with structures such as maps which can
represent information in a different way from how single neurons do.

• This definition requires to a priori define which discrete states of the world
E can be represented by the internal structure.

3.3.2 Properties of Internal Representations

Instead of quantifying directly the level of representation, the following approach
focuses on the functional properties of the Internal Representations. Based on the
reviews of Internal Representations in Cognitive Neuroscience (Section 3.1.3), the
following properties can be stressed out:

• Noise resistance: The behavior of a noise resistant model/controller is not
too affected by noise. This property is useful in biological models, because
the input of the networks are often noisy.

• Occlusion resistance: The behavior of an occlusion resistant
model/controller is not too affected by occlusions in its inputs. Occlu-
sions correspond to the temporary loss of information in an input.
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• Input dependence: The behavior of the model/controller is affected by the
inputs: it is not merely a closed internal dynamic independent of inputs.

• Distractor resistance: The behavior of an distractor resistant model is not too
affected by distractors in its inputs. A Distractor corresponds to a temporary
competing information in an input. Distractors resistance is only found in
models with competing inputs (Action selection and Attention Focus). This
property is then too specific to be found in ER studies, and will not be used
to study the reviewed models.

Table 3.1 reveals which of the three selected properties can be associated with
the reviewed models and controllers.

For Computational Neuroscience models, it is notable that many of the repre-
sentations are noise resistant and depend on inputs. Several of these models also
include a resistance to occlusions. This could be explained by the fact that bio-
logical models are built in noisy environments, in which the inputs are not always
reliable (hence the occlusions).

For Evolutionary Robotics Tasks, much less emphasis is made on the resistance
to noise. The resistance to occlusions can be linked with Memory Tasks: In order to
maintain an input information (such as a the stimulus in the Road-Sign Problem)
even when this information is lost, one way is to memorize this information.

Summary of reviews Three important properties are focused on: the
capacity to be noise resistant, to resist to occlusions, and to have a depen-
dence to the inputs.

3.3.3 Quantitative tests

The Internal Representations defined in this thesis rely on the functional properties
of internal nodes of a neural network (a node corresponds to a single neuron or to
a map of neurons). After defining several quantitative properties of internal nodes,
the aim is to find a qualitative protocol to test whether or not representations
are present in an artificial neural network. The main idea is to isolate a node
(neuron or group of neuron), and study its activity given different inputs, and
determine which category of representation it belongs to, if any (N representation
or M representations, explained later in this section). Figure 3.5 displays the overall
procedure.

For each node, the three properties previously highlighted can be defined in
relation with the variation of activity of the node when the network is subjected to
different inputs. They are defined as follows:

Definition 11 (Noise Robustness) The noise robustness of a node is the vari-

ation of its activity when the inputs are subject to noise.



3.3. Testing Characteristics of Internal Representations 59

Model N.R. O.R. I.D.
Computational Neuroscience Model

Working Memory (Baddeley, 1992) x x
Attention Focus (Rougier and Vitay, 2006) x x x
Action Selection (Redgrave et al., 1999) x x
Place Cells (O’Keefe and Nadel, 1978) x x x
Head Direction Cells (Taube et al., 1990) x x x
Grid Cells (Hafting et al., 2005) x x

Evolutionary Robotics Task
Obstacle avoidance (Zufferey et al., 2002) x
Object Pushing (Hornby et al., 2000) x
Ball Collecting (Mouret and Doncieux, 2012a) x
Biped Walking Gaits (Reil and Husbands, 2002) x
Homing (Vickerstaff and Di Paolo, 2005a) x
Minimally Cognitive Behavior (Beer, 2003) x
Delayed-response Task (Ziemke and Thieme, 2002) x x
Memory Task (Capi and Doya, 2005) x x
predictive models (Gigliotta et al., 2011) x x x

Table 3.1: Properties of the representations included in CNS models previously
reviewed, and Properties required in Evolutionary Tasks previously reviewed. N.R.
stands for Noise Resistance, O.R. Occlusion Resistance, and I.D. for Input Depen-
dence.
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Figure 3.5: Overview of the representation test protocol. (Left) a neural network
with different internal nodes (here neurons or maps of neurons, in dark grey) is
simulated over different inputs. (Right) The internal nodes are tested for N repre-
sentations and M representations. See text for details.
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Definition 12 (Occlusion Resistance) The occlusion resistance of a node is the

variation of its activity when a subset of the inputs are muted.

Definition 13 (Input Dependence) The input dependence of a node is the vari-

ation of its activity when subject to different sets of inputs.

The Input Dependence property differentiates internal structures that are af-
fected by inputs, and internal structures that are constant or only rely on internal
dynamics. Input dependence is different from reactivity to inputs, which is an
immediate response to inputs.

Each of these definitions goes along with a different quantitative test. Let X =

{x} be the set of all internal nodes x (neurons or maps of neurons). The following
paragraphs define quantitative descriptors which are applied to each node x. The
principle is to quantify the impact of different inputs on the activity of x, over
different, predefined inputs.

Noise resistance Let Sn be a set of Nn scenarios within the same environment
but with different noise levels on inputs. The first (index 0) scenario has no noise.
N(x) is the noise impact on x over the different scenarios:

N(x) =

∑

iÓ=0∈Sn
da(xi, xj)

DNn

where da(xi, xj) represents the difference of neural activity of node xi and node
xj , and the DNn

is a normalization factor.

Occlusion resistance Let So be a set of No scenarios within the same envi-
ronment but different occlusions on inputs. In the following work, occlusions are
usually introduced by muting the input after several time-steps. The first (index
0) element has no occlusion. O(x) is the occlusion impact on x over the different
scenarios:

O(x) =

∑

iÓ=0∈So
da(xi, xj)

DNo

where da(xi, xj) represents the difference of neural activity of node xi and node
xj , and the DNo

is a normalization factor.

Dependence to inputs and situations Let Sd be a set of Nd different sce-
narios within different environments (and thus with different inputs). D(x) is the
dependence of x over the different scenarios:

D(x) =

∑

iÓ=j∈Sd
da(xi, xj)

DNd

where da(xi, xj) represents the difference of neural activity of node xi and node
xj , and the DNd

is a normalization factor.
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In all definitions, the difference of activity is computed depending on the neu-
ral structure, and the node. For a single neuron, this usually corresponds to the
following summation over time:

da(xi, xj) =

∫

t
|at(xi) − at(xj)|

where at(x) is the activity of neuron x at time t. For maps of neurons, some neurons
may not always carry information. This is the case in population coding in which
the important information decoded from the map corresponds to the position of the
peak of activity in the map (Salinas and Abbott, 1994; Deneve et al., 1999). In the
experiments involving that case, the activity difference will be described explicitly.

The resulting value of these three quantitative descriptors depend on the defini-
tions of the sets of scenarios Sn, So, and Sd. Unfortunately there is no generic way
to define these sets without constraining the reach of this method. However, given
a reference input s0 and s1 (without noise nor occlusions), one can artificially build
the following scenarios:

• For noisy scenarios: Sn is a set including s0 with Gaussian noise artificially
added to the inputs.

• For occlusions scenarios: So is a set including s0 with an input muted after a
few time-steps.

• For input dependence, Sd includes two scenarios s0 and s1 assuming that s0

and s1 should result in different behaviors.

For experiment using these tests, the sets of scenarios Sn, So and Sd will be explicitly
defined.

Summary of computation For each internal node x, three quantitative
descriptors are defined: input dependence D(x), occlusion resistance O(x)

and noise resistance N(x). They are computed by comparing the internal
node activity when the network is subject to different predefined inputs.

3.3.4 Qualitative tests

Finally, qualitative representation tests are defined in the following way:

Definition 14 (N Representation) A N Representation (for Noise robustness)

is an internal node x with the following conditions on its quantitative descriptors:
{

D(x) > 0

N(x) < TN

Definition 15 (M Representation) A M Representation (for Memory) is an

internal node x with the following conditions on its quantitative descriptors:
{

D(x) > 0

O(x) < TO
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Definition 16 (N+M Representation) A N+M Representation (for Noise ro-

bustness and Memory) is an internal node x with the following conditions on its

quantitative descriptors:










D(x) > 0

N(x) < TN

O(x) < TO

where TN and TO are threshold values which can depend on the noise level, the
number of scenarios and the nature of the nodes (neurons or maps of neurons). In
the following experiments, these thresholds are fixed to 0.02 unless stated otherwise.
The reasons behind the choice of N and M representations are:

• N Representations: noise resistant representations should not differ too much
when noise is added to the input.

• M Representations: memory representations should maintain information
from the input even when this input disappears. Therefore it should not
differ when occlusions are added to the input.

• Each representation must be dependent on the input. This means that for
two very different input scenarios, different values should be represented in the
internal node. This prevents internal nodes which are constant or only rely
on internal dynamics without taking into account the input. It is important
to note that this property is very different from being reactive.

Neurons that merely receive copies of the input sensors will be input dependent,
but will not satisfy the N or M other properties, and will therefore not be considered
as internal representations.

Throughout this thesis, a Neural Network will be said to have a N representation
(resp. M and N+M) if at least one of its internal nodes is an N representation
(resp. M and N+M).

3.4 Analysis over Existing Networks

In the previous section two qualitative representation tests (N and M) were defined.
In order to validate this methodology before using it on ER problems, existing
networks are tested fpr representations.

• Handcrafted networks used in Evolutionary Robotics, such as feedforward
Networks, Fully Recurrent networks, and Elman Networks.

• A visual attention experiment taken from Computational Neuroscience liter-
ature. The described function is thought to be cognitive, and is based on an
internal 2-dimensional map, tested against the newly defined representation
criteria.
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Figure 3.6: Three simplified networks with one input and two internal nodes. From
left to right: 1) a feedforward network; 2) an Elman network with only one hidden
and context node; 3) a fully connected recurrent network with two internal nodes.

Finally, the method will be tested on an ER experiment, the Hard Ball Collecting
task, which is a complex foraging and navigation task. The neural architecture
is not fixed, and eventual internal neurons are tested against the newly defined
representation criteria. It is not known whether yet representations are present in
the resulting networks.

3.4.1 Representations in classic networks

Setup The N and M representation tests are first validated on classic neural
networks used in Evolutionary Robotics. Figure 3.6 displays the three considered
minimal networks, with one input and two hidden neurons:

• A feedforward network. Such networks do not have any internal dynamics,
and therefore no memory is expected in their internal nodes.

• An Elman network, which has a recurrent loop between its hidden and context
nodes. It can display very simple dynamics and hysteresis.

• A fully connected recurrent network, which can have more complex dynamics
than the Elman network. The weights of recurrent connections are all positive.

The networks are simulated for 50 time-steps over different scenarios, and the
activity of their internal neurons are recorded to compute the 3 descriptors (input
dependence, noise impact and occlusion impact). A scenario here consists of the
input activity of the “in” neuron over the 50 time-steps. Scenarios sets are defined
as follows (see Figure 3.7):

• For input dependence, Sd includes the first (oscillating) and second scenarios
(constant) (see Figure 3.7). It is assumed here that such scenarios should
produce different internal activity.

• For noisy scenarios: Sn includes the first (oscillating) scenario and the three
last scenarios which correspond to the same scenario with uniform noise (ε ∈
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Figure 3.7: 6 Different 50 time-steps inputs (scenarios) used to determine whether
Internal Representations are present in the 3 networks. From left to right: 1)
basic oscillating input; 2) constant low input; 3) oscillating input, muted after 30

steps; 4,5,6) oscillatory input with added noise (taken from a uniform distribution).
The network is reinitialized every 50 steps, which means that any eventual internal
information is then reset.

[−0.1, 0.1] is added to the input, different random numbers are chosen for each
noisy scenario).

• For occlusions scenarios: So includes the first (oscillating) scenario and the
third scenario (oscillating, but muted after 30 time-steps).

The comparison of an internal neuron in the different scenarios is a simple
summation of the difference of neural activity over the last 10 time-steps:

da(xi, xj) =
t=50
∑

t=40

|at(xi) − at(xj)|

Results The representations tests results are displayed in table 3.2. The table
also displays the quantitative test values for node 1: D(1), N(1), and O(1).

• As expected intuitively, the feedforward network does not pass any represen-
tation test. While the condition to be input dependent is satisfied, the activity
of the internal neurons are sensible to noise and completely drop because of
the occlusion. The test is valid here, as it reflects the representation intuition
on this network.

• The Elman network behaves as a hysteresis memory: When the input is over a
certain threshold, the two internal nodes have a large activity. They are then
sufficiently activated to maintain their activity even if the input disappears,
and will never drop back to lower activity. This behavior is not affected
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Params D(1) N(1) O(1) N M

Feedforward 0.65 0.058 0.86 no no
Elman 0.94 0.001 0.0 yes yes

Fully Recurrent 0.0 0.0 0.0 no no

Table 3.2: Values of quantitative tests for the internal node 1, and representations
(present in at least one of the two internal node 0 or 1) for the different networks.

Figure 3.8: Typical scenarios (inputs) snapshots. From left to right: 1) Basic input
2) displaced input 3) faded input 4) noisy input. Reproduced from Quinton (2010b)
with permission.

by noise. The newly defined test then displays a N+M Representation as
expected from the behavior.

• The fully connected recurrent network was designed with large recurrent
weights. Therefore it corresponds to a dynamical system which, for any in-
put, quickly converges to a fully saturated state (all internal activity is always
maximal). These internal nodes do not carry any information about the input.
As the internal neurons are not input dependent, the nodes are not considered
as internal representations by the test.

By choosing different parameters for the Elman or the Fully connected recur-
rent network, other properties could have emerged or disappeared. The three given
examples display different behaviors and are correctly categorized by the represen-
tation tests.

3.4.2 Visual Attention

Rougier and Vitay (2006) use Continuous Neural Field Theory (CNFT) (Amari,
1977) to model the emergence of attention within a neural population. The experi-
ment was later extended by Quinton (2010b), in an attempt to find the right param-
eters using evolutionary techniques. The model is composed of two 2-dimensional
maps: 1) an input map, which represents a visual input (for instance, several visual
cues with noise, See Figure 3.8 for examples); 2) an internal map — the attention
focus map — in which only a focus “bubble” should appear. The internal map then
“represents” the point of attention.

The best resulting parameters from the experiment by Quinton (2010b) are used
to parametrize the Continuous Near Field (CNF). Those parameters determine the
lateral connections between the neurons in the internal map. Table 3.3 shows the
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Name Properties
Quinton Parameters taken from the evolutionary experiments performed

by Quinton (2010b).
Param I Handmade parameters: No lateral inhibition, and very strong

self activation.
Param II Handmade parameters: Strong lateral inhibition, weak self

activation.

Table 3.3: Parameters of the lateral connections in the CNF.

Params N M

Quinton yes yes
Param I no yes
Param II yes no

Table 3.4: Representations for the different parameters of the CNF.

different sets of parameters tested for N Representations, M Representations, and
both.

For each parameter set, the network is tested with different scenarios; a scenario
corresponding to a set of inputs over time. The sets of scenarios for input depen-
dence Sd, noise dependence Sn and occlusion dependence So are then defined in the
following way (See Figure 3.8 for illustration of these scenarios): .

• Sd is a set of standard inputs at different locations. These inputs are main-
tained for 50 time-steps in the neural field. s0 is the leftmost input on Figure
3.8.

• Sn is composed of s0 and 9 other inputs corresponding to s0 with a Gaussian
noise added.

• sO
0 is a copy of s0 for the 25 first time-steps, and a copy of s0 with lower

intensity for the 25 next steps. For the sake of simplicity, So is composed here
of s0 and sO

0 with a muted input (the intensity of the input is set to 0%).

The single internal map is tested for representations. Let xi
t=T be the activity

of the internal map for scenarios i at time T . The difference of activity is computed
at the last time-step (t = 50) by normalized euclidean distance:

da(xi, xj) = ||xi
t=50 − xj

t=50|| (3.2)

From the computation of quantitative descriptors, the qualitative representation
tests are computed. Thresholds for the computation were TN = 0.02 and TO = 0.02.
The results are shown in Table 3.4

Analysis of the results The three sets of parameters resulted in the following
internal behaviors:
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• With the Quinton parameters, the internal map focuses on the input, dis-
cards the noise, and remains activated when the input is lost. The newly
defined representation test shows that this internal map is indeed a N+M

Representation (See Table 3.4).

• With no lateral inhibition (Param I), the activity of the internal map instantly
focuses on any input and remains focused. However, any positive activation
induced by noise is also focused on, which results in a fully saturated internal
map in noisy conditions. In these conditions, the representation found by the
newly defined test is a M Representation.

• The strong lateral inhibition parameters and weak activation (Param II) made
it impossible for the internal map to have any activity when the input is lost.
However, any noise is nullified by the lateral inhibition. The representation
result show, for this case, a N Representation.

For all three cases, the representation test found representations which intuitively
correspond to the expected behavior of the internal map.

3.4.3 ER task: Hard Ball-Collecting Task

Experimental Setup The Hard ball-collecting Task is an extension of the ball-
collecting Task described by Mouret and Doncieux (2012a). It was used by Ollion
and Doncieux (2011) as an experiment to measure the behavioral exploration of the
evolutionary process during evolution. It is a complex task requiring many different
elementary behaviors to be performed in a sequence. The fitness is simply the
normalized number of balls collected by a robot. The robot is evaluated with three
different starting positions (see figure 3.9), and its fitness is the average fitness in
each of these three simulations. The robot has to navigate toward balls, grab them,
navigate towards the basket, and finally release the ball, in order to score and have
a fitness point. Alongside the main fitness objective, an helper objective was added
which rewards novel behaviors. This novelty multiobjectivization was described
by Mouret (2011). The control architecture is a neural network with a topology
generated by the evolutionary algorithm using DNN (see 2.3.4.1). Networks are
initially feed-forward with no hidden neurons, and neurons can be added through
mutations during the evolutionary process. The input neurons of the controller are
defined as follows:

• i0, i1, i2 : 3 distance finding sensors, normalized in [0, 1];

• i3, i4 : 2 ball sensors (1 if a ball is in the view field of the sensor, 0 otherwise);

• i5, i6 : 2 basket sensors (1 if the basket is in the view field of the sensor, 0
otherwise);

• i7, i8 : 2 switch detectors (1 if the switch is in the view field of the sensor, 0
otherwise);
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Starting Positions

Ball

Basket

Switch

Door

Figure 3.9: Experimental setup for the Hard ball-collecting Task. The robot is
simulated three times with different starting positions, and has to collect balls and
release them into the basket. The switch has to be pressed once per simulation in
order to open the door to access to the left-most room.

• i9, i10 : 2 bumpers (1 if it touches a wall, 0 otherwise);

• i11 : 1 ball carrying sensor (1 if the robot currently carries a ball, 0 otherwise).

The outputs of the neural network control the robot actions as follows:

• o0, o1 : 2 wheel motor commands: controls the speed of left and right robot
wheels;

• o2 : 1 “action” motor: if greater than 0.5, pick up a ball if possible, else throw
the carried ball if any; if no ball is carried and greater than 0.5, press the
switch if possible.

Resulting Networks The evolution of controllers for the Hard ball-collecting
task is very challenging, and the 30 runs did not converge to maximal fitness at
all (average fitness 0.5 — half of the balls were collected in average). Another
batch of runs was evolved, using novelty only (no fitness score based on the num-
ber of ball collected). After 4000 generations of evolution, the resulting networks
(corresponding to different number of balls collected) had the following properties:

• For Objective + Novelty, about one third of the networks (9 out of 30) had
no hidden neurons at all (see figure 3.10).

• Other networks had between 1 and 5 internal neurons, with an average of 2.4

(see figure 3.11), which were tested for representations (see paragraph 3.4.3).

• When using Novelty only, the best controller with regards to the number of
balls collected is considered after 4000 generations. The resulting controllers
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Figure 3.10: Resulting neural net for the Hard ball-collecting Task, with no hidden
neurons. Double circled nodes represent input and output neurons. Weights and
neuron biases are not represented. The fitness of this controller is 0.5

i00
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i04i05 i06 i07i08i09i10 i11

Figure 3.11: Resulting neural net for the Hard ball-collecting Task, with three
hidden neurons (single circled nodes). The neuron h02 is a M Representation. The
fitness of this controller is 0.7.

in all 30 runs had at least one hidden neuron, and up to 11, with an average
of 4.7.

Representations in Ball Collecting Task Like in the previous experiment, in
order to test for N Representations and M Representations in a controller, sets of
scenarios for input dependence Sd, noise dependence Sn and occlusion dependence
So have to be defined (see 3.3.3). A scenario corresponds to a disembodied set of
inputs over time which is applied to the controller of the robot. A simulation of the
robot in the arena with the given controller is performed. The inputs of the robot
are recorded; each 50 time-steps gives a scenario. s0 represents the recorded inputs
for the 50 first time-steps, s1 the 50 next, and so on.

We then define these sets in the following way:

• The set of all scenarios s0, s1, etc. is Sd. A total of 6 scenarios were used.

• sN
0 is the scenario s0 with 20% Gaussian noise added to the inputs. Sn is a

set composed of: 1) s0; 2) 9 of these randomly modified scenarios sN
0 .



70 Chapter 3. Internal Representations

Fitness function # of runs # of networks with N M N+M

Internal Neurons
Standard 30 21 0 1 0
Novelty Only 30 30 0 0 0

Table 3.5: Number of Neural Networks with at least one internal neuron, or rep-
resentation.

• sO
0 is the scenario s0 with inputs muted after 25 time-steps (all inputs are

then equal to 0). So is a set composed of: 1) s0 2) sO
0 .

The quantitative descriptors are computed for each internal neuron, and the
difference of activity is computed between time-step t = 40 and time-step t = 50.
Thresholds for the qualitative computation were TN = 0.02 and TO = 0.02. The
results are shown in Table 3.5.

These sets of scenarios are used to determine whether internal neurons are N

Representations, M Representations or N+M Representations. Results can be
seen in 3.5

Analysis of the results Through the evolution of the Hard ball-collecting task,
internal representations do not seem to emerge. In 9 runs out of 30, the resulting
neural networks do not have a single hidden neuron. Figure 3.10 shows an example
of a rather successful feed-forward neural network for this task (the robot is able to
collect half of the balls). The representations tests show only 1 resulting controller
including an internal M Representation. This controller is displayed on figure 3.11.
In-depth handmade analysis show that the neuron h02 has a positive feedback and a
bias that generates a memory dynamic: when the input i6 (basket sensor) is active
long enough, the neuron enters an hysteresis state and its activity is maximal even
when the input i6 disappears.

The other internal neurons, are not considered as representations by the newly
defined protocol. A further study shows that most of the neurons show the following
behavior:

• Many neurons are simply copies or summation of inputs. The sensory infor-
mation is fed to them. Therefore those neurons cannot have any memory, and
are usually affected by noise.

• Many neurons quickly converge towards a constant value (usually minimal or
maximal value possible for the neuron). These neurons still provide a few
time-steps of dynamics that is used by the evolution process to generate more
complex behaviors, but these neurons are not input dependent.

• Some interconnected internal neurons oscillate and are merely affected by any
input.

The networks evolved in the Hard ball-collecting task seem to rely on reactive
behaviors, and in some cases have some internal dynamics uncorrelated with inputs.
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Intuitively, these networks do not have any internal representation. This intuition
is reflected by the newly defined representation test protocol, which indicates only
one representation out of 30 runs. Interestingly the Novelty only setup generated
controllers that had more internal neurons in average, but those neurons only gener-
ate dynamics which enables more complex dynamics. Most of the internal neurons
also quickly converge to a constant value.

3.4.4 Conclusion

Three internal representation tests were defined, which test whether an internal
representation with a given propriety is present in the neural network:

• N Representations (robust to noise)

• M Representations (with memory)

• N+M Representations (with both properties)

These tests were validated on three experiments: 1) Simple classic neural networks,
2) a Computational Neuroscience experiment in which the internal map can be
considered as an internal representation 3) a Hard ball-collecting task, in which the
controllers rely on reactive behavior and simple dynamics, without representations.
In all three cases, the test protocol correctly indicated whether representation were
present.





Chapter 4

Behavioral Consistency Method

This chapter is composed of two parts:

Goals

1. Promoting the emergence of M representation with a memory helper

objective. a

2. Definition of the Behavioral Consistency Method — a generalization
of the previous helper objective. b

Method

1. Application of the M representation test, as a memory helper objective

in a T-maze ER experiment

2. • Behavioral Consistency — a new method for building fitness
objectives based on the consistency of behavior over different
scenarios.

• The new method is applied to two different setups involving the
evolution of cognitive abilities — action selection and attention
focus.

Results

1. Successful emergence of memory units in networks, favored by the
new helper objective. Resulting networks generalize better.

2. The evolution of action selection and attention focus is successful
using Behavioral Consistency, while using little knowledge about the
desired behavior of the system.

aWork realized with T. Pinville (Ollion et al., 2012).
bWork realized with S. Doncieux (Ollion and Doncieux, 2012).
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4.1 Introduction

In the previous chapter, internal representation tests in neural networks were de-
fined: M (for memory) and N representations (for noise resistance). In order to
obtain such representations, these tests can directly be used in the selection pro-
cess: individuals that pass the tests can be given a higher chance of survival by the
selection process. These selection process can be added to a MOEA as a new helper

objective. The new helper objective explicitly promotes internal representations in
a ER task. The first part of this chapter covers the use of such an objective in a
T-maze problem. This work was realized with Tony Pinville (Ollion et al., 2012).
Furthermore

The method is useful for the synthesis of specific internal representation, however
it can have limitations (the uses and limitations of this approach will be discussed
in part 4.2.4.1). Furthermore, this approach has a lower interest for the study of
the conditions for the emergence of representations, as these representations are
explicitly promoted.

In a second part, the method used to build the helper objective is generalized to
the behavioral consistency method (BC method). This method, based on behaviors,
adds less bias and can be applied to many more problems. The method is applied
to two problems from computer neuroscience. This work is adapted from (Ollion
and Doncieux, 2012).

4.2 Working Memory Experiment

In this section a selective pressure inspired by the M representation test is applied
to an ER experiment: A T-maze navigation task involving working memory (Ollion
et al., 2012; Pinville et al., 2011).
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4.2.1 T-Maze navigation task

The task is an extension of the “road-sign problem” (Ziemke and Thieme, 2002;
Rylatt and Czarnecki, 2000): an agent starts off at the bottom of a T-shaped maze,
encounters an instruction stimulus (e.g. a light) while moving along a corridor
and, when it reaches the junction, it has to turn left or right, depending on which
stimulus has been encountered (Figure 4.1).
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Figure 4.1: (a) Simulated mobile robot used for the T-maze task. The robot has
four additional sensors, one for each letter. (b) Map employed for this task.

In the initial setup, controllers that simply follow the right or left wall after the
signal can solve the task while not having any memory (Ziemke and Thieme, 2002).
To make this task more cognitive, in our experiment the instruction stimulus is a
combination of four stimuli (A, B, X, Y) following the same rule as in the AX-CPT
working memory test (Braver et al., 1995; Pinville and Doncieux, 2010). This task
consists of a context stimulus (A or B), followed by a second stimulus (X or Y)
after some delay. The agent must turn to the left when the stimulus A is followed
by the stimulus X, and to the right otherwise (for AY, BX, BY).

Here, the agent is a simulated two-wheeled robot receiving sensory inputs from
6 infrared distance sensors and four letter sensors, one sensor for each letter A, B,
X, Y, which receives 1 if the letter is presented, 0 otherwise. The robot controls
its speed through two output units corresponding to its left and right motors. The
agent is evaluated on each letter sequence (A followed by X, AY, BX, BY). The
fitness increases by 1 if it turns to the correct side for the sequences AY, BX, BY
and by 3 for the sequence AX, for a maximal value of 6. This fitness will be referred
as “Goal oriented fitness”.

Both motors are disabled during the presentation of the letters. The whole
task lasts 350 time-steps and takes place as follows with t the number of elapsed
time-steps:

• 0 < t < 50: presentation of the first letter (A/B);

• 50 ≤ t < 100: delay, all the sensors are set to 0;

• 100 ≤ t < 150: presentation of the second letter (X/Y);

• 150 ≤ t ≤ 350: the robot can move and must reach the correct side of the
T-maze.
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In order to avoid over-fitting to a specific initial configuration of the robot, 12

different contexts have been defined for each possible letter sequence. A context is
described by an initial starting position (4 different positions) and an initial starting
angle (3 different angles).

4.2.1.1 Neural network encoding

The agent is controlled by a neural network whose structure and parameters are
evolved with DNN encoding (See section 2.3.4.1 for further details). A LPDS-based
(locally Projected Dynamic System) neuron model (Girard et al., 2008) is used
to simulate the neurons with an output in [−1, 1] (Neuron models are detailed in
section 2.3.1). Both DNN and LPDS were already been used conjointly in (Pinville
et al., 2011).

4.2.2 Methods

The multi-objective approach has an interesting feature: adding a selection pres-
sure can be done simply by adding as a separate objective with no need to tune
any new parameter for the relative importance of each objective to be optimized.
This means that all objectives are considered equally important and multi-objective
evolutionary algorithms aim at finding the best trade-off solutions relative to them
(Deb, 2001). The two selection pressures studied here are then defined as sep-
arate objectives to be optimized with a multi-objective evolutionary algorithm.
Such objectives do not describe the goal to be reached, but aim at enhancing the
evolutionary search, they are then helper objectives. This approach is called mul-
tiobjectivization (Knowles et al., 2001; Mouret, 2011). Further information about
multiobjectivization and helper objectives is located in section 2.2.3.1.

In the following, two helper objectives have been considered:

• a behavioral diversity, as defined by Mouret and Doncieux (2012b);

• a memory helper objective, inspired by the M representation test, as intro-
duced in the following section.

4.2.2.1 Behavioral diversity

The behavioral diversity (See section 2.2.3.1 for more information about diversity)
associated with individual x in a population of N individuals is computed in the
following way:

div(x) =
1

N − 1

∑

y Ó=x

db(x, y)

The behavioral distance db(x, y) is the euclidean distance between the positions of
the two robots x and y at last time-step t = 350.
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Figure 4.2: Details of the evaluation of the memory helper objective. 1) An indi-
vidual (here a neural network with internal neurons n1, n2, ...) is simulated in the
4 scenarios AX, BX, AY and BY. During this simulation, the behavior of each in-
ternal neuron is stored. 2) The internal behaviors are compared and checked for
coherence (for instance, AX should have a different behavior than BX), resulting
in a partial fitness value fi. Then, the partial fitness values are aggregated into the
final evaluation f .

4.2.2.2 Memory Helper Objective

In an experiment using the same T-maze protocol, Pinville (2013) show that hardly
any internal memory emerge in the evolved controllers. By using helper objectives,
the emergence of memory can significantly increase. The Memory Helper Objective
is an objective designed to explicitly promote controllers in which at least a neuron
shows signs of a memory. It is inspired by the M representation test: An individual
has N internal neurons — N may vary from individuals to individuals and during
evolution. The helper objective relies on testing each of these internal neurons to
see if they meet the memory requirements. These tests rely on the comparison of
the behavior of internal neurons when the network is subjected to different scenarios
(inputs). The global method for computing the Memory Helper Objective score is
displayed on Figure 4.2. The exact computation of the memory score relies on the
following steps:

In each context, the individual is simulated over the 4 different possible inputs
(referred later as “scenarios”) AX, BX, AY, and BY.

For each scenario s, let bi
s(t) be the output of the i-th internal neuron in scenario

s at time-step t, after the presentation of letters (t > 150). The goal of the scenario
based objective is to reward individuals that obey the following rules:

∀s ∈ S, bi
AX(t) Ó= bi

s(t)

∀s, s′ ∈ S, bi
s(t) = bi

s′(t)

With S = {BX, AY, BY }. In other words, the behavior of an internal representa-
tion should be the same if the inputs are AY, BX, BY, and different if the input is
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AX. The behavior is computed after the presentation of letters, which means that
the input letters are no longer active. The existence of a difference between the
scenarios should reflect the emergence of a memory.

For each internal neuron i two partial fitness terms f i
1 and f i

2 are computed,
they measure how well the internal neuron respects the two previous rules:

f i
1 =

1

|S|

∑

s∈S

1

200

350
∑

t=150

|bi
AX(t) − bi

s(t)|

2

f i
2 = 1 −

[ 1

|S|2 − |S|

∑

s,s′∈S,s Ó=s′

1

200

350
∑

t=150

|bi
s(t) − bi

s′(t)|

2

]

Then, the fitness of each internal neuron is computed as follows:

f i = f i
1 + f i

2

As the goal of this experiment is to select individuals that have at least one in-
ternal neuron that represents the information, the final fitness is computed as the
maximum of all internal fitnesses f i:

f = max
0≤i<N

f i

The fitnesses f compare the four letter sequences evaluated in the same context.
The overall scenario-based fitness corresponds to the average of the 12 fitnesses thus
defined (one for each context). Therefore there are 12 × 4 = 48 total simulations
for each individual of each generation. As the computation of the goal-oriented
fitness already requires the simulation of these scenarios, no additional evaluation
is required.

4.2.2.3 Setups summary

In this section, the different objectives are referred as follows:

• G: Goal-oriented objective;

• D: Diversity objective;

• S: Scenario-based memory helper objective;

To test the influence of each objective, experiments are launched with various
combinations of objectives as shown in Table 4.1. The multi-objective evolutionary
algorithm is NSGA-II (Deb, 2001) and each of these setups is run 30 times.

4.2.3 Results

Figure 4.3 depicts box-plots for the goal-oriented fitness results on each different
setups. The red line represents the median value, the box extends from the lower
to upper quartile values of the data. The whiskers extend to the most extreme data
points not considered outliers, these ones are plotted individually.

Table 4.2 displays the corresponding p-values using Mann-Whitney statistical
test. Figure 4.4 shows the median fitness values for the 4 setups.
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Table 4.1: Summary of different setups used
Setup Description

1 G Goal-oriented
2 G + D Goal-oriented + Diversity
3 G + S Goal-oriented + Scenario-based
4 G + D + S Goal-oriented + Diversity + Scenario-based

4.2.3.1 Diversity Effect

Figure 4.3 shows that a fitness rewarding the completion of the task (G) only has
poor results. This is confirmed by Figure 4.4 in which one can see that a fitness
plateau is quickly reached. The fitness plateau is at f = 0.5, which corresponds to
controllers that always go to the same side of the maze. Adding a diversity objective
(D) significantly increases performance and delays fitness plateaus. This result
is compatible with our hypothesis that the evolution of a memory is a deceptive
problem and shows that selective pressures have indeed a significant impact on the
success rate.

4.2.3.2 Scenario-Based Objective Effect

The use of the Scenario-based Objective also increases the performance significantly,
to the same extent as the diversity objective. There is no statistical difference
between G + D and G + S setups.

Using both objectives further increases performance, and as no fitness plateau
was reached during the 2000 generations (Figure 4.4). One can then expect the
fitness to be even better with more generations.

Table 4.2: P-values between each setup on goal-oriented fitness value

G + D + S G + S G + D G

G + D + S x 0.04013 0.0639 <1e-05

G + S 0.04013 x 0.18504 0.00409

G + D 0.0639 0.18504 x <1e-05

G <1e-05 0.00409 <1e-05 x

The two next sections present a more in depth study of results: the resulting
networks are tested for a reliable memory and generalization ability.

4.2.3.3 Memory computation

After the optimization phase, the internal nodes are tested for internal representa-
tions with memory. This computation is very similar to the M representation test
defined in the previous chapter. The difference is that the neurons are tested for
a reliable memory: the memory should not be too specific to the delays presented
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Figure 4.3: Box-plots for the goal-oriented fitness results on each different setups

during evolution. A network is considered to exhibit this reliable memory if at least
one internal neuron respects the two following points:

• After presentation of the letters, the neuron has a different output for AX
scenarios and for AY, BX, BY scenarios.

• The memory is not affected by the duration of the presentation of the letters.
While during evolution the duration of the presentation was 50 time-steps for
each letter, the activity of the network is tested —after evolutionary process—
with a duration of 400 time-steps. This is aimed to detect networks that rely
on complex dynamics to have different activities after exactly 50 time-steps,
but would not work with a different duration.

In Figure 4.5, the black histogram displays the percentage of runs (out of the 30

runs per setup) in which the best individual achieves a reliable memory. While
the diversity objective slightly increases memory, the Scenario-based objective sig-
nificantly affects memory. Interestingly using both helper objectives results in less
memory than using the Scenario-objective alone: this is likely due to a compromise
between the diversity objective D and the memory helper objective S.

4.2.3.4 Generalization ability

Another important aspect studied here is the generalization ability, which is the
ability to perform well in contexts unseen during evolution. During evolution, the
robot is tested in 12 different contexts for each letter sequence, and maximal fitness
is achieved only if the individual manages to solve the problem in all the contexts.
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Figure 4.4: Evolution of fitness objective (median value of all 30 runs).

After evolution, the best controllers are tested in 180 previously unseen contexts.
The 180 new contexts include different map sizes, starting positions, and starting
orientations of the robot. A controller is considered to generalize well if it can
still perform the task in at least 60 of these new contexts. Figure 4.5 shows the
proportion of runs with individuals which generalize. Figure 4.6 details the number
of contexts in which these individuals generalize. There is a very significant increase
of generalization when using the helper objective, and even more when using both
objectives. Table 4.3 displays the corresponding p-values.

Table 4.3: P-values between each setup on the generalization ability

G + D + S G + S G + D G

G + D + S x 0.03241 0.00364 1e-05

G + S 0.03241 x 0.08408 9e-05

G + D 0.00364 0.08408 x 0.0094

G 1e-05 9e-05 0.0094 x

4.2.3.5 Analysis of the resulting networks

Two resulting networks, shown in figures 4.7 and 4.9, are analyzed in this section.
They both achieve maximal fitness, but only the second one exhibits reliable mem-
ory and generalization ability. Blue neurons have a different neural activity for
AX sequence during the memory test. Figure 4.8 and 4.10 show the corresponding
internal behavior of the neurons during the test for networks in figure 4.7 and 4.9.
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Figure 4.5: Proportion of runs matching different criteria: (1) achieving maximal
fitness (2) having memory (3) having both (4) having both and generalizing to 60

of the 180 extra contexts.

The first presentation of letters lasts from 0 to 400, the delay from 400 to 800, the
second letter from 800 to 1200. In order to distinguish AX and BX sequences, the
network must remember A or B stimulus during the delay period.

Figure 4.8 shows that the network depicted on figure 4.7 is not able to retain
A or B stimulus when the delay interval is extended. At time-step t = 800, the
internal behavior of the neurons are similar for the 4 sequences. At the end of the
presentation of letters, the neural network cannot therefore distinguish AX and BX
sequences. In figure 4.10, there are two different neurons, neurons 0 and 3, able to
memorize stimulus B even if the delay interval is extended. In this case, at the end
of the presentation of letters, the internal behavior of the neurons for AX sequence
is different from that of the other sequences.

4.2.4 Conclusion

These experiments confirm that the emergence of memory is a challenging problem.
With the present encoding, structures with memory require several mutations to
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Figure 4.6: Generalization ability of the 15 best runs for the 4 different setups. The
value corresponds to the proportion of contexts in which the agent solves the task.
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Figure 4.7: Resulting neural network with maximal fitness, but no memory nor
generalization

appear; they are much more likely to appear under specially-designed selective
pressures. The helper objectives considered, both diversity and the newly defined
memory helper objective, significantly increase the convergence rate on this task.
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Figure 4.8: Internal behavior of the neurons corresponding to neural network dis-
played in Figure 4.7, for the 4 different sequences during the memory test.

The memory helper objective —and, to a lesser extent, the diversity objective—
promote memory in the resulting networks. Moreover, the helper objectives are
shown to have a large impact on generalization ability even though they aren’t
specifically designed to do so. This leads to the hypothesis that there is a link
between the presence of memory in agents and the generalization ability on this
task.

The memory helper objective is scenario-based and does not assume a specific
neural structure for internal memory. This has two main interests:

• The method could potentially be used in any neuroevolution experiment in-
volving elementary memory.

• The objective can select individuals with many different internal representa-
tions. It applies therefore a weaker bias on the network than directly con-
straining the structure.

Another methodological aspect highlighted in this chapter is the use of a multi-
objective evolutionary algorithm. Additional objectives are simply added, selecting
individuals that might have a low fitness regarding to the main objective, but have
an original behavior or efficient internal representation. We believe that those
individuals can be good stepping stones to efficient cognitive solutions.
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Figure 4.9: Resulting neural network with maximal fitness, memory and general-
ization

4.2.4.1 Scope and usefulness

This helper objective based on the memory capacity of internal nodes was successful,
as it made it possible to achieve greater rates of robust memory in controllers.
However the two following points can be discussed:

• First, even if a controller is selected because it has an internal neuron with
memory, it doesn’t mean that the memory is useful at all: for instance the
neuron having memory could be connected to an irrelevant output, or even not
connected to any output at all. Therefore probing into the neural network for
finding memory might not be the best solution to promote effective memory.

• The objective cannot be used to study the origins of the emergence of memory
in artificial brains, as it explicitly promotes internal structures with memory.

These points lead to the design of a new objective, which drives the evolutionary
search without constraining explicitly the internal structure.

4.3 Behavioral Consistency Method

Drawing inspiration from the previous helper objective, a methodology to build se-
lective pressures is defined. The goal is to create a rather general framework, which
relies on the comparison of controllers in different scenarios. Instead of probing
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Figure 4.10: Behavior of internal neurons corresponding to neural network displayed
in Figure 4.9, for the 4 different sequences during the memory test.
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Successful, with Memory and Generalization

Figure 4.11: Trajectory of the robot in the T-maze of the two previous individuals
in a single context.

inside of the networks of the controllers, the selective pressure is based on the be-
havior of the system. Globally, the selective pressures assess whether the behavior
of the controllers is consistent in the different scenarios. It will therefore be referred
as the Behavioral Consistency Method, or BC method.
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4.3.1 Related Work

As of today, no straightforward methodology may help in designing a fitness function
in a context of neuro-evolution. Section 2.2.3 relates the different approaches used
in ER. In particular, Nelson et al. (2009) have made a review of the different
fitness functions used in ER classified according to the degree of a priori knowledge
incorporated in the fitness. Nelson states that the “behavioral” fitness functions,
which imply explicitly defining a target behavior or a sub-part of this behavior
requires a lot of a priori knowledge.

The Behavioral Consistency Method builds a fitness objective which still in-
cludes knowledge about the considered behavior, but does not specify this behavior
at all. Instead, it specifies constraints that the behavior should fulfill. This leads
to a more open-ended search, because potentially several very different behaviors
may result from evolutionary runs.

4.3.2 Behavioral Consistency Method

4.3.2.1 Overview

The Behavioral Consistency Method aims at defining a selective pressure (the Be-

havioral Consistency Objective, or BCO) which ranks individuals based on how
consistent their behavior is, without explicitly describing a target behavior.

A simple example would be a noise robustness BCO:
Individuals are simulated on scenarios with various levels of noise. Individuals

that have close behaviors in those scenarios should be rewarded, while individuals

whose behaviors are strongly affected (i.e. have very different behaviors) by noise

should be punished. In that way, the BCO promotes individuals with a behavior

resistant to noise.

The main idea of the method is that the BCO is calculated by simulating the
individuals over different scenarios and comparing their features. The BCO rewards
either their similarity or difference. The design of this objective actually consists
in 1) defining the different scenarios and 2) choosing whether the corresponding
behavior should be similar or different one with another. By rewarding the similarity
between behaviors or, in contrast, their difference, the scenario based objective
encourages the emergence of a coherent behavior.

This is very different from defining the features of a target behavior: by using
comparisons over scenarios, the features of the behavior do not need to be specified.
Instead, the comparisons between scenarios generate constraints —such as noise
resistance or others — on the behavior.

4.3.2.2 Behavioral Space

The BC method relies on comparisons on the behavioral space. This is different
from the memory helper objective defined in the previous experiment: instead of
probing into the neural network to determine which part of the network should
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Figure 4.12: Details of the evaluation of agents by the BCO. 1) An agent is simulated
in several predefined scenarios. During this simulation, a characteristic behavior is
stored. 2) The behaviors are compared and checked for coherence, resulting in a
partial fitness term fi. Then, the partial fitness terms are aggregated into the final
evaluation f .

have consistent properties, the BCO relies on comparisons on the behavioral space.
This is a major aspect, as in ER, the mapping between genotype and the behavior
is complex and depends on the environment the agent is in (See section 2.2.2 for
more details about the choice of behavioral space).

4.3.2.3 Definition

The consistency objective relies on simulating one individual on a set S of different
scenarios, as shown on figure 4.12. The consistency of the individual is then evalu-
ated by comparing the behaviors (outputs). We denote oi(t) the simulated output
(behavior) of scenario i after t time-steps. Depending on the problem considered,
the experimenter defines different scenarios and different consistency constraints
between scenarios. Three possible constraints will be used in the following experi-
ments:

• output of scenario i is exactly the same as output of scenario j: oi(t) = oj(t)

• output of scenario i is different from output of scenario j: oi(t) Ó= oj(t)

• output of scenario i has similar properties as scenario j: oi(t) ∼ oj(t). The
definition of similarity is specific to each experiment, but typically means
equivalent to within a translation.

The constraints are computed in the following way:

• oi(t) Ó= oj(t): ft = d(oi(t), oj(t))

• oi(t) = oj(t): ft = 1 − d(oi(t), oj(t))

• oi(t) ∼ oj(t): ft = 1 − ds(oi(t), oj(t))
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The normalized distance d denotes the difference between outputs behaviors. ds

is a similarity distance that usually describes how close the shapes of outputs are.
d and ds are specific to the experimental setup.

The final assessment of the quality of an individual is then computed by ag-
gregating the fitness terms. For the sake of simplicity, the simplest aggregation is
used:

f(x) =
1

T

T
∑

t

ft (4.1)

In short, building the consistency fitness objective involves three steps:

• Defining a collection of different scenarios

• Defining constraints between outputs of scenarios

• Defining how to compare outputs with distances d and ds

For instance a consistency objective could be designed to build a navigation
behavior that is robust to noise. In that case, one individual is simulated in two
different scenarios:

• scenario 0: no noise added

• scenario 1: gaussian noise added

The constraint is then o0(t) = o1(t). The fitness of an individual is then: ft = 1 −

d(o0(t), o1(t)) with d corresponding to a normalized distance between trajectories of
the individual in the two scenarios. An individual that has very different trajectories
in the two scenarios would then have a low fitness, while close trajectories would
lead to a high fitness.

Summary The Behavioral Consistency Objective is a selection objective
that drives the population towards individuals that follow best a set of
predefined constraints. Defining those constraints adds a priori knowledge
to the evolutionary process and biases the search. However it requires much
less knowledge than the exact specification of a target behavior. Thus, the
method is useful in cases where the target behavior is not known or should
not be specified a priori.

The next two sections present the application of the BC method to two evolu-
tionary experiments. Both of these original experiments involve the optimization
(via artificial evolution) of a non-trivial system by specifying its exact target be-
havior. The BC method is applied to create an evolutionary objective which does
not require the exact specification of a target behavior, in contrast with the original
fitness functions.
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Figure 4.13: Typical inputs (scenarios) from left to right: A: empty B: full C:
competition D: distractors E: noise F: simple

4.4 Attention Focus

4.4.1 Experimental Setup

The first experiment considered here is inspired by the work of Quinton (2010a).
The goal is to use Continuous Neural Field Theory (Amari, 1977) to model atten-
tion selection. The model is taken from (Rougier and Vitay, 2006) in which the
neural field is known to output a robust neural activity able to track perceptual in-
formation in noisy scenarios, even in the presence of distractors. In Quinton’s work,
the parameters of the neural field are optimized using an evolutionary algorithm,
published in (Quinton, 2010a).

The neural field is represented by a two dimensional map, and the potential at
position vector x and time t is u(x, t), with x in [−0.5, 0.5]2. The field is stimulated
by perceptual input s(x, t), and lateral connections. The dynamics of the neural
field follows the equation (from (Quinton, 2010a)):

τ
∂u(x, t)

∂t
= −u(x, t) +

∫

x′
u(x, t)w(x, x

′)dx + s(x, t) + h

h is the resting potential, set to 0 at first. The lateral connection weights follow
the equation:

w(x, x
′) = Ae−

|x−x
′|2

a2 − Be−
|x−x

′|2

b2 (4.2)

The lateral connection parameters A, B, a and b are optimized through evolu-
tion, as well as τ the inertial parameter of the dynamics. As in Quinton’s work, the
parameters are constrained in order to obtain a “Mexican-hat”-like lateral connec-
tivity: A > B and b > a. In order to simulate the dynamics, the map is discretized
onto a grid of 50 × 50 units. The dynamics of the neural fields are simulated on
different scenarios, in which the inputs of the neural field s(x, t) differ, as depicted
in figure 4.13.

The first and second scenarios A and B correspond to constant inputs. C, D,
E are 3 scenarios which correspond to Quinton’s scenarios. In scenario C, a static
input bubble is in competition with a second one of variable intensity. In scenarios
D and E, a rotating input bubble must be tracked, in presence of distractors (D)
or noise (E). Finally, scenario F has a single static input bubble and no distractors.
The details of those scenarios can be found in (Quinton, 2010a).
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4.4.1.1 Control experiment

The fitness used in the original experiment is used as a control fitness. It is based on
the three scenarios C, D and E, and is described in (Quinton, 2010a). The principle
is as follows: The neural field has to focus on the input bubble, and follow it if
it moves. If the bubble intensity changes, some distractors are added, or noise is
present, the focus should remain the same. The fitness depends on the position
and shape of the output bubble at each time-step. This means that a very precise
output behavior is expected.

4.4.1.2 Behavioral Consistency Objective

Using the BCO, the population is not evolved towards a given, a priori behavior.
Instead, the objective rewards solutions with a consistent behavior when subject
to noise, distractors, and more generally with a non degenerate activity (i.e. the
activity of the map should converge, not saturate, have a consistent shape, etc.).

In order to compute the objective, several scenarios are defined. The first two
correspond to scenarios with a totally activated/deactivated neural field (See A and
B in Figure 4.13). All other scenarios correspond to one of the inputs C, D, E, or
F. In these cases the initial position of the input bubble, the number of distractors
or the noise level can vary. Table 4.4 details all the different scenarios considered.
Four sets of scenarios are defined in the following way: Sconst includes constant
scenarios (the first two scenarios A and B in Figure 4.13), Snconst includes non
constant scenarios (All other scenarios). Additionally Snconv includes not convergent
scenarios (those derived from D and E have their input moving, therefore they
should not converge towards a fixed output). On the other hand, Sconv represents
convergent scenarios (those derived from C and F). From those sets, the following
constraints are defined:

• The output behavior of scenarios from Snconst should be different from con-
stant behavior of Sconst scenarios: ∀i ∈ Snconst, j ∈ Sconst, oi(t) Ó= oj(t)

• The output of Sconv should stabilize: ∀i ∈ Sconv, ∃εt ∀t, t′ > εt oi(t) = oi(t
′)

• The output of Snconv should be different over time:
∀i ∈ Snconv, ∀t > εt, ∃t′ > t, oi(t) Ó= oi(t

′)

Furthermore, two constraints are added on the shape of the output activity (what-
ever the shape of the output activity, it should remain the same over time, and for
different scenarios):

• The output of Snconst should exhibit consistency in time:
∀i ∈ Snconst, ∃εt ∀t, t′ > εt oi(t) ∼ oi(t

′)

• The outputs of different scenarios of Snconst should be similar:
∀i, j ∈ Snconst, oi(t) ∼ oj(t)
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Table 4.4: Details of possible scenarios
type description scenario sets

C 4 different starting position Snconst, Sconv

D 5 number of distractors, 2 rotation directions Snconst, Snconv

E 5 noise levels, 2 rotation directions Snconst, Snconv

F 4 starting position Snconst, Sconv
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Figure 4.14: (Left) Two resulting behaviors obtained with the scenario-based fit-
ness. Left is the lateral weight profile and right the corresponding output activity.
(Right) Influence of the number of scenarios on the scenario-based fitness with 30
scenarios. ∗ represents parameters obtained with the fitness of the original experi-
ment.

Finally, the distance between behaviors is computed in the following way:

d(oi(t), oj(t)) =

∫

x

||oi(x, t) − oj(x, t)|| (4.3)

The similarity distance computes the same distance, after aligning the outputs:

ds(oi(t), oj(t)) = min
d

∫

x,x′
||oi(x, t) − oj(x − d, t)|| (4.4)

d corresponds to the shift between the center of activities between the two outputs.
Details of this computation can be found in (Rougier and Vitay, 2006).

The experiment is run several times with different numbers of scenarios, in order
to measure the bias added by the choice of scenarios. The scenarios are chosen
randomly for each run, in order to reduce any bias in the result statistics.

Each individual is evaluated during 20 time-steps on each scenario. In order to
avoid initial chaotic dynamics, the first 5 time-steps of the resulting behavior are
discarded. Each experiment —with various numbers of scenarios— is run 10 times,
with a population size of 20 and the number of generations is 30 (same values as in
Quinton’s experiment).

The population size is 200 and the algorithm stops after 1000 generations.
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Figure 4.15: Typical scenarios from left to right (Input of the action selection
model): A: empty or low noise B: easy selection C: competition

NSGA-II algorithm is used (Deb, 2001), and the source code is available online
at http://pages.isir.upmc.fr/evorob_db

4.4.2 Results

The consistency objective with maximum number of scenarios provides results with
the expected qualitative behavior, in all 10 runs. This means that the output signal
(a bubble of activity) is quickly able to follow the input with a signal consistent in
time and shape, and is not damaged by noise or distractors. The evolved systems
exhibit then the expected function. Furthermore, different behaviors have been
discovered, as shown in Figure 4.14, left. For instance, two very differently sized
“blob” of activity were found, both respecting the constraints. This highlights an
interesting property of the proposed method: it looks for behaviors respecting the
given constraints, no matter how they manage to do it.

The number of scenarios used greatly influences the effectiveness of the consis-
tency objective. In order to study this influence, the individuals obtained with k

scenarios are tested on the fitness based on 30 scenarios. Additionally, an individual
obtained with Quinton’s fitness was tested on the 30-scenario-based fitness. The
graph (Figure 4.14 right) shows that:

• not surprisingly, individuals obtained with Quinton’s fitness perform well on
the scenario objective. It should be underlined here that the reverse is gener-
ally not true as Quinton’s fitness looks for a particular shape that is not the
unique solution respecting the constraints as mentioned above;

• the number of scenarios needs to be high enough for the objective to be
effective (around 16), but there is little difference in performance if the number
of scenarios is over 16 (p > 0.1). The difference between 4, 8, 12 and 16

scenarios is significant (p < 0.01 for each).
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4.5 Action Selection

This section describes the second experiment, based on a neuroevolution experiment
on basal ganglia (Mouret et al., 2010). The goal of this experiment is to synthesize
a neural network able to perform action selection, a cognitive function supposed to
be performed by the basal ganglia. The search space is much larger than in the
previous experiment, as the structure and parameters of the neural network are
evolved. Action selection in the brain is the problem of choosing an action, given
external and internal sensory information. The focus is on the process of selection
of a single action among conflicting ones, also known as a winner-takes-all (WTA)
circuit. This section first describes the original experiment and fitness, and then
the definition of scenarios to build the new fitness function.

4.5.1 Experimental setup

4.5.1.1 Encoding

In order to build an action selection model that generalizes to different number
of action channels, Mouret et al. (2010) used a map-based encoding in which pa-
rameters and structure of a neural network are evolved. The neural network is
initially a feed-forward network, and the structure is modified through evolution
by the addition of new neurons or maps of N neurons, and connections between
them. Furthermore, connections between maps of neurons have additional evolved
parameters that determine the nature of a connection: a 1-1 connection scheme
connects each neuron of the input map to a single one in the output map, while a
1-all connection scheme connects one neuron to all neurons in the output map.

This experiment uses this map based encoding, with a modification: the con-
nections between maps have an additional evolved parameter: an offset o. For
instance, a 1-1 connection between two maps of size N with offset o connects neu-
rons as follows: neuron i of the input map is connected to neuron i + o modulo N

of the output map.

4.5.1.2 Control experiment

The authors of the original experiment expect to build a model that reproduces
the functioning of basal ganglia in the brain. The fitness function assumes full
knowledge of the output and is described in (Liénard et al., 2010). At rest the
output of the basal ganglia is active, and represents inhibition to the target. The
selected action will then be the channel where inhibition is removed. The neural
networks have one input map and one output map of N neurons, N corresponding
to the number of channels. Over a collection of K = 500 random inputs (inputs
range from 0 to 1), the most activated input neuron has to be selected, which means
that the corresponding output should be close to zero while others should be close
to one. It rewards individuals that desinhibit the selected channel and inhibit all
others.
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As this setup is more challenging than the previous one due to the complex
search space, a behavioral diversity helper objective is added, in a multi-objective
scheme. The diversity objective is based on the distance between the behaviors of
the different models. The behavioral distance is a Euclidean distance of the output
map activity at the last time-step of the simulation (see section 2.2.3.1 for further
information about behavioral diversity).

4.5.1.3 Behavioral Consistency Objective

The goal of the BCO is to promote networks that perform action selection in any
possible way, not only in a biologically plausible way.

Three types of scenarios are displayed in Figure 4.15. Scenario type A corre-
sponds to a very weak noise input. Scenario B corresponds to a very simple action
selection: one channel is set to 1.0 while the others are set to 0 plus a uniform weak
noise. C represents randomly generated scenarios with random inputs.

Like in the previous experiment, 2 sets of scenarios are defined: Sselect (standard
scenarios in which a selection should occur) for scenario A, Snselect (degenerate
scenarios with no selection at all) for all others. S is the set of all scenarios. The
following constraints are added on the different scenarios:

• All the outputs should stabilize: ∀i ∈ S, ∃εt ∀t, t′ > εt oi(t) = oi(t
′)

• The output behavior of scenarios from Sselect should be different from the
degenerate behavior of Snselect scenarios: ∀i ∈ Sselect, j ∈ Snselect, oi(t) Ó= oj(t)

• The outputs of two different scenarios of Sselect should have similar behaviors:
∀i, j ∈ Sselect, oi(t) ∼ oj(t)

• The outputs of two different scenarios in Sselect which select the same channel
should be exactly the same: ∀i, j ∈ Sselect, maxi = maxj ⇒ oi(t) = oj(t)

• The outputs of two different scenarios in Sselect which select different channels
should be different: ∀i, j ∈ Sselect, maxi Ó= maxj ⇒ oi(t) Ó= oj(t)

Finally the distances to compute difference and similarity are defined as follows:

d(oi(t), oj(t)) =
∑

k ||oi(k, t) − oj(k, t)||

ds(oi(t), oj(t)) =
∑

k ||oi(k, t) − oj(k − δ, t)||

where δ is the shift between centers of activity of the two outputs, computed in a
similar fashion as in the first experiment.

The population size is 200 and the algorithm stops after 1000 generations.
NSGA-II algorithm is used Deb (2001), and the source code is available online
at http://pages.isir.upmc.fr/evorob_db
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Figure 4.16: (Left) Two behaviors generated with the consistency objective. The
graphs show a random input (in), and the output of the evolved model (out).
Consistency objective fitness: 0.94 (top) and 0.96 (bottom). (Right) corresponding
neural networks. Parameters and offsets are not displayed.

4.5.2 Results

Concerning action selection, the consistency objective was able to evolve successfully
two main categories of solutions. Both of them realize action selection by outputting
a coherent response for any input, and making a single output stand out from
others. The first one (Figure 4.16, top), realizes the most intuitive action selection,
and its neural network has two internal maps of neurons and excitatory recurrent
connections. The second category (Figure 4.16, bottom) of behaviors are similar
to (Mouret et al., 2010) results, except for a shift in the output channel index.
The shift means that the index of the selected channel might be different from the
index of the input channel with maximal activity. This is not a problem, as an
action selection is still realized correctly. The corresponding neural network has
two internal maps, but more connections, both excitatory and inhibitory.

The number of scenarios have exactly the same influence as in the previous
experiment: with a low number of scenarios, the performance is not reliable, while
with at least 15 scenarios, the performance stabilizes. The difference between 15 and
30 scenarios is not statistically significant (p-value > 0.1 Mann-Withney U test).
The solutions obtained with the original fitness perform very well when evaluated
with consistency objective.
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4.6 Conclusion

In this chapter, a newly defined helper objective (based previously defined M rep-
resentation test) was applied to improve the rate of emergence of memory in an
evolutionary robotics context. Several obtained controllers have internal represen-
tations with a memory of the input stimulus. Those representations can be located
on one or several neurons, and might not be simple binary memory units, as shown
in the resulting networks of the experiment.

While only a few memory neurons would emerge when using only the main fit-
ness objective, the use of helper objectives in a multi-objective way greatly improves
the performance. Not only do the internal representations appear more often, but
also the main fitness improves, as well as the generalization ability over previously
unseen environments. This shows a correlation between the presence of internal
representations and generalization ability. Finally, the two objectives — a diversity
objective, and the new helper objective — both increase significantly the perfor-
mance, and can be used simultaneously to further increase the success rate. This
means that the objectives do not overlap much and both help the evolutionary
process, and advocates for the use of multi-objective evolution.

The second part of the chapter is focused on the definition of a new frame-
work for designing fitness functions. The Behavioral Consistency Method enables
the researchers to build fitness objectives that reward individuals based on their
fulfillment of previously designed constraints. Using this method, one can add evo-
lutionary pressures towards satisfying constraints such as being resistant to noise,
to distractors, etc. This new fitness objective does not require the exact knowl-
edge of the target behavior. Instead, the a priori knowledge is incorporated in the
definition of scenarios, and the comparison between the behaviors in these scenarios.

The consistency method is used to explicitly drive the evolutionary search to-
ward the emergence of cognitive properties such as Action Selection and Attention
Focus. The method showed results comparable to the original evolutionary experi-
ments.

Furthermore, the consistency method does not drive the evolutionary search to
an explicit behavior. This means that the exact knowledge of a behavior presenting
the desired property is not required. In addition, this does not restrain the evolu-
tionary search to one particular solution, leading to the emergence of a diversity of
different solutions. It is important to note that even if the knowledge of a behavior
is not required, the experimenter includes knowledge while building the different
scenarios and comparison between scenarios. While the design of these scenar-
ios is straightforward in simple cases, one can expect more challenges for difficult
properties to emerge.

The Behavioral Consistency Method can be used to efficiently build a helper
objective, used alongside other objectives. For instance, a Goal-objective may be
defined, which requires the simulation of one or several scenarios. Additional sim-
ulations of scenarios may then be needed for the computation of the behavioral
consistency objective. This methodology can be used to add specific selective pres-
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sures to an evolutionary experiment.
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Goals

• Study the impact of selective pressures on the emergence of internal
representations.

Method

• Definition of Circular Maze Evolutionary Robotics Protocol
(CMERP), a new ER experiment.

Results

• The Environmental Pressures and novelty significantly influence the
presence and type of internal representations.

• The presence of internal representations is correlated with the ability
to generalize to new contexts.

• Specific structures present similarities with some Computational Neu-
roscience networks.
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5.1 Selective Pressures for the emergence of Internal

Representations

The reasons for the emergence of internal representations in natural and artificial
systems are not well known. Several ER studies have studied the origins of internal
representations, and whether specific selective pressures or encodings were necessary
for representations to emerge.

5.1.1 Task and World Complexity

The most straightforward approach in ER to obtain controllers with representa-
tions is the design of a representation-hungry task. The fitness function reflects the
completion of the task, and no further selective pressure is added. Internal rep-
resentations should then naturally emerge when the population converges towards
high fitness values.

Marstaller et al. (2012, 2013) evolve complex representations for adaptive be-
havior. The task involved implies discrete states which the robot must remember
to be able to solve the task. The structure of the controller is not constrained
and mutations can generate new internal nodes. The authors “show that when
the world (and task) is complex enough, agents react to this challenge by evolving
representations of that world.”

Cooperation and the evolution of intelligence In the article by McNally
et al. (2012), the authors build a model of social interactions using a game theory
protocol. The agents decide their next action depending on a neural network,
in which the structure (number of internal nodes) can evolve. They define the
“intelligence” level of their agents as the number of internal nodes present in their
network. They show that the selection for intelligence is correlated with cooperation
between agents: when the population is using mostly cooperative strategies, the
evolutionary process is more likely to select individuals with high intelligence. This
could show that social interactions promote the presence of internal representations
in a population of artificial agents.

However, an analysis from the literature (Nolfi, 2002; Van Dartel et al., 2005;
Pinville, 2013) as well as the preliminary experiments on the Ball Collecting (See
Chapter 3) task show that the definition of a “representation hungry” task in Evo-
lutionary Robotics is not straightforward. Moreover, even if a task might require
internal representations to be optimally solved, there is no evidence showing that
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the evolutionary process drives the solutions towards such optimal solutions. In-
stead, in tasks such as a continuous T-maze (Pinville, 2013) the evolutionary process
falls into local optima, which have no internal representations. Figure 5.1 illustrates
this problem, by displaying a fictive fitness landscape:

• The initial population is driven to the easily reachable local optimum by the
goal objective fitness (solid arrow). Solutions with internal representations
are probably more difficult to reach than solutions without representations.
This is illustrated by the presence of a gap between the local optimum and
the global optimum.

• The use of diversity objective and other selective pressures (dashed arrows)
could drive the population out the local optimum to reach new regions of the
fitness landscape.
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Figure 5.1: Representation of a fictive fitness landscape. The different level of
red color saturation represent the goal objective: how well the solution performs.
(1) the initial random population (2) A local optimum with regards to the goal
objective, with no internal representation (3) The global optimum, with internal
representations (IR).

5.1.2 Helper Objectives and Specific Pressures

The first class of helper objectives rely on a better exploration of the search space.
Behavioral diversity (Mouret and Doncieux, 2012a) and Novelty (Lehman, 2008)
have been applied in a multi-objective way, as helper objectives. These selective
pressures drive the population towards unexplored parts of the search space, and
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can thus prevent the evolutionary process from premature convergence. More in-
formation about diversity and Novelty can be found in Section 2.2.3.1.

Pinville (2013) noticed how fine-tuned and fragile the local optima solutions
were: by modifying a few parameters in the experimental context, the evolved con-
trollers weren’t able to perform the tasks anymore. The author then hypothesized
that promoting the generalization ability (Pinville et al., 2011) of the controllers
might have an effect on their internal structure — in that case the emergence of in-
ternal memory. The conclusion is that promoting diversity as well as generalization
ability both increased the proportion of runs in which an internal, robust memory
emerged.

Environmental Pressures Several researchers have hypothesized that variabil-
ity and noise in sensorimotor control have had a strong impact on how natural
systems behave (Körding et al., 2006; Gigliotta et al., 2010). Motor control and
sensor information processing can then be improved by having internal models
which cope with noise and other variabilities. These variabilities will be referred as
Environmental Pressures as they are naturally present in real environments.

These environmental pressures have been applied to several evolutionary
robotics experiments:

• Gigliotta et al. (2010, 2011) evolve a robot controller subjected to sensory
deprivation. They show how predictive internal models found by evolution
can solve the tasks. The architecture of the model already incorporates a

priori knowledge on how the model works, and the structure of the neural
network is carefully designed and fixed.

• Wang et al. (2013) add environmental pressures on a prey-predator evolution-
ary robotics experiment. They show how the introduced variabilities (noise
and sensor deprivation) influence the behavior of their controllers. However
their controllers are not based on neural networks and cannot be used to study
the emergence of internal representations.

Conclusion Environmental pressures, other helper objectives, as well as the com-
plexity of tasks have been shown to have an impact on the evolutionary processes.
This chapter aims at studying the influence of these selective pressures on the
emergence of internal representations, with the architecture of the neural network
modified through evolution.

5.2 Circular Maze Evolutionary Robotics Protocol

A new protocol In section 3.2, several representation-hungry experiments were
briefly described: Minimally Cognitive Behaviors, Beer (1996, 2003), Predictive
Models Nolfi and Tani (1999); Tani and Nolfi (1999), Evolution of representations
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Figure 5.2: Simulated environments for the CMERP. The robot starts in the center
of the arena, and sees one of the 6 distant visual landmark (not represented), at
6 different angles. The robot has to navigate towards one of the 6 goal points.
Two environments are considered (Left) environment with walls “arena” (right)
simplified environment with no walls “void”.

in a discrete environment Edlund et al. (2011); Marstaller et al. (2012). Such exper-
iments could have been used to study the emergence of representations. However,
the a new protocol was chosen, and the two following emphasis motivated this
choice:

• The evolution of mobile robot controllers in continuous spaces.

• The use of protocols loosely related to Computational Neuroscience protocols.

The Circular Maze Evolutionary Robotics Protocol (CMERP) is an ER task
introduced in this section. The task was designed to potentially require complex
representations, but still be a task as simple as possible.

The principle of the task is as follows: a simulated robot is located at the
center of an open environment. It receives a distant visual cue, and has to navigate
towards that cue. Two environments are considered (see figure 5.2), a simple one
with no walls (named “void” environment), and another one in which the robot has
to navigate between walls (named “arena” environment).

The robot is controlled by a neural network as shown in figure 5.3. The inputs
of the neural network are of three different kinds:

• Visual input. A map of neurons receives input from a visual landmark (see
figure 5.4). The activity of the map is Gaussian, centered in the direction of
the visual cue. The activity of the map is relative to the robot: for instance,
when the robot rotates left, the center of the Gaussian activity shifts to the
left of the map. The map is circular, therefore the activity is wrapped at its
boundaries.

• Laser input. 3 range-finding lasers. The neurons are not activated if no walls
are in front of the laser direction; if there are, the activation depends on the
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Evolved topology

i0 visual i1, i2, i3 lasers i4 feedback

o0 rotation o1 speed

Figure 5.3: Network used for the CMERP. The inputs are: 1) A map of neurons
2) 3 single neurons for distance sensors 3) A proprioceptive feedback input. The
outputs correspond to the rotation and speed of the robot.

wall distance (the closer, the higher the activation). In the Void environment,
all laser inputs are set to 0.

• Feedback input. The robot can sense its own rotations: it receives the output
rotation as input.

The output neurons are tied to the robot movements in the following way:

• Rotation output. The activation of the neuron controls the rotation speed
of the robot. The activation a ∈ [0, 1] is mapped into a rotation factor r ∈

[−0.5, 0.5] (radian).

• Speed output. The activation of the neuron controls the speed of the robot.
The activation a ∈ [0, 1] is mapped into a movement in the robot direction of
m ∈ [−4, 4] (pixels).

During the simulation, the robot is first rotated depending on the Rotation output,
then moved depending on the Speed output.

This protocol is inspired by the two following experiments:

• The Barnes Maze, a protocol used in biology to determine what kind of cue
(local or distant) the animals use for navigation. This protocol was used for
determining whether some animals had spatial memory (LaDage et al., 2012).

• Head Direction models tested on robots: the protocol is related to Head
Direction cells (See part 3.1.3.2), because of the nature of the inputs (a visual
cue depending on the direction the robot is facing). In the work of Kyriacou
(2011), the author studies a biologically inspired model of head direction
cells, and uses an evolutionary algorithm to evolve some of the parameters
associated with this model. The head direction cells is represented as a map of
neurons, from which the head direction can be decoded. Head direction cells
are influenced in different ways by idiothetic (self-centered) and allothetic (not
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Figure 5.4: Visual inputs. (Left) α is the angle difference between the robot orien-
tation and the landmark angle.

self-centered) cues. When some of these inputs are missing (visual occlusions)
or when subjected to noise, the direction decoded from the head direction cells
should still exhibit a consistent behavior. Therefore the map containing the
head direction cells can be considered as a N+M Representation.

5.2.1 Goal-oriented and Novelty Objective

5.2.1.1 Goal-oriented Objective

The goal-oriented objective of the evolutionary process (denoted G) corresponds
to how well the robot reaches the 6 points, for the 6 different landmark positions.
Let s0, . . . , s5 be six different scenarios. Each scenario corresponds to a simulation
of 200 time-steps with the robot starting from the initial position, and a different
visual landmark:

• s0: landmark at angle = 0, corresponding to the rightmost goal in figure 5.2.

• s1: landmark at angle = π/3

• . . .

• s5: landmark at angle = 5π/3

The fitness G ∈ [0, 1] corresponds to the number of goals reached in the 6 scenarios.
When the robot navigates out of the radius, the simulation is ended. The position
of the robot is then discretized (see figure 5.5), and the robot position (x, y) corre-
sponds to one of the 9x9 discrete cells. If the robot is in the goal cell corresponding
to its visual landmark, the fitness G is increased by 1/6; otherwise, the fitness is
not increased.
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Figure 5.5: Grid discretization of the simulated environment. The robot position
(x, y) corresponds to one of the 9x9 discrete cells. The goal cells are represented in
red.

The definition of the Goal-oriented objective is discrete. This leads to the two
following difficulties:

• The evolutionary process faces the bootstrap problem: it is very likely that all
initial controllers do not reach any final goal point (in the Arena environment).
Therefore the goal fitness of the whole population may very well be 0, and no
selection would occur.

• The goal-fitness can only take 7 different values in {0, 1
6 , ..., 1}. This results

in very little evolutionary gradient. Instead, many fitness plateaus are present
in the evolutionary experiment.

However, this choice is motivated by several reasons:

• Adding artificial gradients in the fitness to “help” the evolutionary process
may bias the resulting solutions toward specific behaviors.

• Recent ER results show that adding bias in the fitness function can lead to
worse results (Nelson et al., 2009; Pinville, 2013), because of the local optima
it might generate.

Last, the lack of selection induced by the bootstrap problem and fitness plateaus are
compensated by helper objectives as described in the following paragraphs.

5.2.1.2 Novelty Objective

The novelty objective (denoted N) is a helper objective added to reward individuals
based on their novelty. Such objectives can help the evolution overcome premature
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Figure 5.6: Median fitness out of 20 runs for the Void and Arena environments,
with Goal objective G and eventually Novelty objective N.

convergence problems, as well as driving the evolutionary process towards unex-
plored search spaces (Doncieux and Mouret, 2010a). In this experiment, a Novelty
objective was added (See paragraph 2.2.3.1), which rewards individuals that have
novel behaviors. The Novelty objective can be used solely (as in the original exper-
iments on Novelty), or alongside with other objectives (Mouret, 2011).

The behavior description for computing the distance between behaviors is the
“Discretized trajectory” (See section 2.2.3.2), and the distance is the Edit Distance.
The trajectory is sampled over time and discretized into a sequence of cells (see
figure 5.5 for the discretization). In other words, individuals that have trajectories
different to trajectories previously found by the evolutionary process will have a
high novelty score.

5.2.1.3 Preliminary Experiments

Using the Goal objective G and the Novelty objective N, preliminary evolutionary
experiments are conducted. The median convergence for the Void and Arena envi-
ronments is displayed on Figure 5.6. This figure shows that the convergence rate
strongly depends on the environment (Arena or Void). The evolutionary process
quickly converges in the case of the Void environment, with very simple behaviors
(see figure 5.7). In this figure a very simple controller solves the task: the robot
simply rotates when it is not facing the landmark, and moves forward otherwise.
Both the G and G+N setups converge in less than 200 generations.

By adding walls in the Arena environment, the task is more challenging. The
evolutionary process do not converge at all when using only the goal objective G,
and most of the runs result in robots reaching only a single target out of 6 (G =
0.1666). By adding the novelty objective N, the process converges in average in
∼ 1200 generations. Figure 5.8 displays a typical trajectory found with G+N with
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Figure 5.7: Trajectory of a controller with maximal goal objective (G = 1) obtained
in setup G+N (Goal objective + Novelty objective), on the Void environment. Each
color represents a different scenario with a different goal and landmark position.

maximal fitness. The behavior is much more difficult to understand and involves
many rotations. The controller generating this behavior is displayed on figure 5.9:
it has no internal node, and is purely reactive.

Preliminary conclusion By using of Goal objective and novelty G+N, con-
trollers with maximal fitness with regards to goal-objective G can be successfully
evolved. The presence of successful solutions with no internal nodes confirms that
the task is not “representation-hungry”.

5.2.2 Behavioral Consistency Objective and Environmental Pres-
sures

This section defines “Environmental Pressures” that can be added to the evolu-
tionary process. To do so, the Behavioral Consistency Method (BC method) (See
previous Chapter) is applied. In that way, a new objective (denoted E) is added to
the evolutionary process, which rewards individuals that have a consistent behavior
under the following pressures:

• sensor noise (denoted E (n) for Environmental pressure with Noise)

• visual occlusions (denoted E (o) for Environmental pressure with Occlusions)

• both (denoted E (no) for Environmental pressure with Noise and Occlusions)

Solving the task (having a perfect G score) with a good resistance to noise and
occlusions (good E (no) score) should be “representation-hungry”.
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Figure 5.8: Trajectory of a controller with maximal goal objective (G = 1) obtained
in setup G+N (Goal objective + Novelty objective), on the Arena environment.
Each color represents a different scenario with a different goal and landmark posi-
tion.
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Figure 5.9: Neural network obtained with fitness G+N (Goal objective + Novelty
objective), on the Arena environment. Red arrows represent inhibitory connections
(i.e. with negative weights); bold arrows represent Gaussian weights connections.
Biases and offsets are not represented. The trajectory resulting from this controller
is displayed on figure 5.8.
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The BC method implies three steps (See section 4.3.2 for full description):

1. Defining a collection of different scenarios

2. Defining constraints between outputs of scenarios

3. Defining how to compare outputs with a behavioral distance

Definition of scenarios For all environmental pressures, the scenarios s0 to s5

(scenarios with different goal positions) are used and altered with either noise or
occlusions:

• Let s6, s7, s8 be 3 copies of s0 with a uniform noise ν ∈ [−0.1, 0.1] added to
the visual input.

• Let s9 (respectively s10 and s11) be a copy of s1 with a muted visual input
after 150 time-steps (respectively 100 and 50 time-steps).

• Let s12 (respectively s13 and s14) be a copy of s4, with a uniform noise ν ∈

[−0.1, 0.1] added to the visual input, and muted visual input after 150 time-
steps (respectively 100 and 50 time-steps).

Definition of constraints The robot controller should behave coherently even in
presence of noise or occlusions. The constraints can then be written in the following
way:

• Noise (E (n)): s6, s7, s8 = s0

• Occlusions (E (o)): s9, s10, s11 = s1

• Noise and Occlusions (E (n+o))

1. s6, s7, s8 = s0

2. s9, s10, s11 = s1

3. s12, s13, s14 = s4

In other words, if the controller is adapted to the environmental pressures, altered
scenarios should have a behavior similar to the corresponding unaltered scenario
s0, s1 or s4.

Comparison of behaviors Each behavior is described by the controller’s “Dis-
cretized trajectory” (See section 2.2.3.2) over the 9x9 cells grid (see figure 5.5 for
the discretization). The comparison of two trajectories is realized using an Edit
distance.

Summary Environmental Pressures (Resistance to Noise E (n), Occlu-
sions E (o) and both E (n+o)) are added as an additional objective
through the use of the Behavioral Consistency method.
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Figure 5.10: (left) Angle evolution for two scenarios (ds1 top red and ds2 bottom
blue) (right) Illustration of the visual inputs for different angles, 0, π/2, −π/2

5.2.3 Representation Tests

The emergence of representations is studied using the N and M representation
tests defined in Chapter 3. Each internal node (map or single neurons) is tested for
representations. As in the BC method, the representation tests require to define
input scenarios, and a way to compute the difference of activity of a node in different
scenarios.

In the CMERP, the focus is on the representation of the visual input, thus N and
M representations are tested with regards to resistance to noise and occlusions in
the visual input only (disregarding occlusions and noise in the lasers and feedback
inputs). Furthermore, the tests are realized in a disembodied setup: instead of
simulating the whole robot controller in its environment, the network is given some
artificial inputs and only the internal nodes activity are taken into account; the
outputs are not taken into account. This choice is motivated by three factors:

• In this disembodied setup, all controllers receive the same neural inputs, so
their internal activity can be more easily compared and analyzed.

• The representations found will not depend on interaction with a specific en-
vironment.

A disembodied scenario (noted ds) here consists of the visual input activity over
75 time-steps. Scenarios are defined in the following way:

• ds1 and ds2 have different visual inputs as shown in figure 5.10). All other
inputs are set to 0. The set Sd for computing input dependence consists of
these two scenarios.

• For noisy scenarios: the set of scenarios Sn includes ds1 as well as 10 copies
of ds1 with uniform noise added (ε ∈ [−0.1, 0.1] is added to each neuron in
the input map).

• For occlusions scenarios: So includes ds1 as well as an altered copy of ds1 with
the input muted from time-step 50 to time-step 75.
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0 1c

Figure 5.11: Computation of the center of mass of a neural map. The result is a
simple center of mass of the neurons, each weighted by their activity. The com-
putation also involves the fact that the map is circular to find the true center of
mass.

Difference of activity Depending on the nature of the internal nodes, different
distances are used to compare the activity of the internal node. If the node x is a
single neuron, the activity difference in scenario i and j is the summation of the
difference of neural activity over the last 25 time-steps:

da(xi, xj) =
t=75
∑

t=50

|at(xi) − at(xj)|

If the node is a map of neurons, the information can be decoded in several ways
(Salinas and Abbott, 1994; Deneve et al., 1999), however for the sake of simplicity,
the “center of mass” decoding was chosen. Each neuron is weighted by its activity,
and the center of mass is computed (This calculation includes the fact that the
map is circular; see figure 5.11). This means that the map of neurons encodes a
continuous variable c ∈ [0, N − 1] (N is the number of neurons in a map). The
difference of activity of a map x in scenario i and j is then the summation of the
difference of their center of mass over the last 25 time-steps:

da(xi, xj) =
1

N

t=75
∑

t=50

|ct(xi) − ct(xj)|

The difference is computed modulo N as the maps are circular.

Summary After the evolutionary process, the representation tests are per-
formed on each internal nodes of the resulting controller. Tests determine
whether each node is a N, M, N+M Representation, or no representation
at all.

Generalization Ability The ability of a controller to generalize to contexts un-
seen during evolution is a very important factor. As the individuals are only eval-
uated on very few scenarios, they are likely to perform poorly on unseen scenarios.
The ability to generalize is then an interesting measure of the quality of the result-
ing solutions, and has been explicitly sought (Pinville et al., 2011). To assess the
generalization score of a solution, it is tested on a large number of scenarios, after

the evolutionary process. The scenarios have the following properties:
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Setup Name Goal Objective Novelty Objective Environmental Pressure
G •

N •

G+N • •

G+N+E (n) • • Noise
G+N+E (o) • • Occlusions
G+E (n+o) • Noise and Occlusions
G+N+E (n+o) • • Noise and Occlusions

Table 5.1: Summary of setups: Combinations of different selective pressures applied
to the CMERP.

• There are 6 different landmark positions as in figure 5.2.

• 10 instances of uniform noise are added (ε ∈ [−0.1, 0.1] is added to each
neuron in the input map); plus one instance with no noise at all.

• 3 different level of occlusions are added to the visual input (muted visual input
after 50, 100 and 150 time-steps); plus one instance with no occlusions at all.

• The starting position of the robot is slightly modified (the robot is rotated).

The difference with scenarios seen during evaluation is that the controllers are
tested in all possible landmark position, noise instances, occlusions levels, plus their
starting position is slightly modified. These 6×11×4 = 264 scenarios are simulated
after the evolutionary process. If the robot reaches the goal, the generalization
score g is incremented by 1/264. A controller then has a generalization score g ∈

[0, 1] which indicates whether it is capable of realizing the task in scenarios slightly
different from those encountered during the evolutionary process.

5.2.4 Setups and Selective Pressures

All these selective pressures are tested on evolutionary runs on both the Void and
Arena environments.

All setups were run 20 times, with a population of 200 individuals over 4000

generations. The experiments were coded using the SferesV2 evolution framework
(Mouret and Doncieux, 2010), using the NSGA-II algorithm, and the EvoNeuro2
encoding (See Section 2.3.4.3). Note that the EvoNeuro2 encoding allows for two
types of internal nodes: maps of N = 20 neurons or single neurons. When a new
node is added, a parameter p ∈ [0, 1] is associated with the node, at random. If
this parameter is below 0.5, the node is a single neuron, otherwise it is a map of
neurons: there is no natural bias towards a type of internal node. Parameters p are
subjected to mutations — along with the other parameters — through the evolu-
tionary process. Mutations rates and other parameters are displayed in Appendix
A.1.
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Figure 5.12: Number of internal nodes for the different fitness setups.

5.3 Results: Emergence of Internal Representations

under Environmental Pressures

5.3.1 Impact of Selection Pressures

This section details the influence of the different selective pressures, as well as the
two different environments, on the emergence of internal structures and internal
representations. Globally, most results focus on the Arena environment, as it pro-
vides more interesting insights than the Void environment. Comparison between
Arena and Void internal nodes and representations are detailed in Section 5.3.1.

Number of internal nodes Figure 5.12 displays the average number of internal
nodes obtained for all the different selective pressures and environments. The nov-
elty search (N) clearly produces the largest number of internal nodes, a very similar
number for both Void and Arena environment. This can be explained by the fact
that novelty search rewards trajectories which are very different from previously
found trajectories. Internal neurons can help generate internal dynamics, delays or
activity modifications which enables for novel trajectories.

Overall, the environmental pressure E tends to slightly increase the average
number of internal neurons (the difference is statistically significant for the void
environment, but not for the arena one).

Interestingly, absolutely no internal nodes were found in the Void environment
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Figure 5.13: Type of internal nodes for the different fitness setups, on the Arena
Environment.

with G, and G+N selective pressures. This can be explained by the fact that for the
Void environment with little constraints, the evolutionary process converges very
quickly (In less than a hundred generations — see figure 5.6). As the evolutionary
process is then stopped upon convergence, there is very little evolutionary time for
evolving internal structures. This confirms that there is no need for internal nodes
to converge when using G, and G+N selective pressures.

In other setups, runs require at least 1000 generations to converge, and often
require all the 4000 generations. In those runs, some internal nodes appear: in
the Void environment with G+N+E (n+o) for instance, there is in average of
1 internal node. This does not mean, however, that internal nodes are required
for solving the task with these selective pressures. Instead, internal nodes can
emerge just because of random drift (and eventually with diversity) during a long
evolutionary process (See later tests for more explanations).

Type of internal node Figure 5.13 details the node nature, in average, at gen-
eration 4000 for each setup and for the Arena environment.

Globally, the number of single neurons is higher when no environmental pressure
E is used, and lower otherwise. The environmental pressures then drive towards
internal maps (this conclusion will be explained in later results).
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Figure 5.14: Proportion of runs with Internal Representations within the Arena
Environment, with different fitness functions

Representations in the different fitness setups The number of internal nodes
does not relate all information about the emergence of internal representations.
Figure 5.14 displays the proportion of runs, for each selective pressures, that have
at least one Internal Representation — on the Arena environment. A run with a
N+M representation is also included in N and M categories.

The presence of internal representations of any types is strongly dependent on
the selective pressures. No representation at all emerge in the G only setup, and
only 10−20% of runs result in controllers with representations with the N and G+N

setups. Furthermore, N+M representations only emerge in the setups including
the environmental pressure E.

Unsurprisingly, more N representations emerge when subjected to environmen-
tal pressure E (n), while more M representations emerge when subjected to E (o).
In other words, the pressure towards having consistent behaviors when subjected to
noise leads to more internal representations with noise resistance, while the pressure
towards having consistent behaviors under visual occlusions leads to more internal
representations with memory.

When both environmental pressures are present, the proportion of runs with
controllers having representations is significantly higher. Table 5.2, 5.3, 5.4, detail
the statistical significance of the differences between all setups.
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Table 5.2: P-values associated with the presence of M internal representations , as
displayed on figure 5.14. P-values are calculated using the Mann-Whitney U test.
Bold numbers represent statistical significance (p < 0.05).

G N GN GNE

(n)

GNE

(o)

GNE

(no)

GE

(no)

G 0.0403 0.0403 0.0097 0.0010 1.2e-6 0.0004

N 0.4480 0.3208 0.0813 0.0010 0.0504
GN 0.2541 0.0450 0.0001 0.0228

GNE (n) 0.1275 0.0004 0.0649
GNE (o) 0.0165 0.3683
GNE (no) 0.0382

GE (no)

Table 5.3: P-values associated with the presence of N internal representations , as
displayed on figure 5.14. P-values are calculated using the Mann-Whitney U test.
Bold numbers represent statistical significance (p < 0.05).

G N GN GNE

(n)

GNE

(o)

GNE

(no)

GE

(no)

G 0.0813 0.0200 0.0001 0.0099 1.0e-6 0.0200

N 0.2498 0.0052 0.1584 0.0013 0.2498
GN 0.0117 0.3148 0.0023 0.4923
GNE (n) 0.0509 0.2715 0.0117

GNE (o) 0.0147 0.3148
GNE (no) 0.0023

GE (no)

Influence of Novelty The novelty objective N significantly increases the pres-
ence of N and M representations, when added to goal objective only G, as well
as goal objective + environmental pressures G+E (n+o). There are more runs
resulting in N+M representations (8 for G+N+E, and 4 for G+E). The most
successful setup, in terms of representations, is then the G+N+E (n+o) setup.

Main result Environmental Pressures (E (n), E (o) and E (n+o)) sig-
nificantly increase the proportion of runs with N, M and N+M represen-
tations. Using a Novelty objective N further increases this proportion.

Influence of the Environment Figure 5.15 showcases the differences between
the Arena environment and the Void environment, for the best setup G+N+E

(n+o). The proportions are statistically higher for the Arena environment with
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Table 5.4: P-values associated with the presence of N+M internal representations
, as displayed on figure 5.14. P-values are calculated using the Mann-Whitney U
test. Bold numbers represent statistical significance (p < 0.05).

G N GN GNE

(n)

GNE

(o)

GNE

(no)

GE

(no)

G x x x 0.0403 0.0010 0.0200

N x x 0.0403 0.0010 0.0200

GN x 0.0403 0.0010 0.0200

GNE (n) 0.0403 0.0010 0.0200

GNE (o) 0.0515 0.3563
GNE (no) 0.1027
GE (no)

Table 5.5: Number of runs with internal representations M, N and N+M, as well
as P-value of the difference between the Void and Arena Setup displayed on Figure
5.15.

# Void # Arena P-value
M 9 15 0.01359

N 6 13 0.0098

M+N 5 8 0.1443

regards to M or N representations. For N+M Representations, the difference is not
significant; this is probably due to the small number of runs with representations
(the number of runs resulting in N+M representations is 8 for Arena, and 5 for
the Void environment). Table 5.5 shows statistical significance.

The presence of walls, which makes the task much more difficult, seem to have
a positive impact on the emergence of internal representations.

Representations and Generalization In order to assess the importance of
these representations, the generalization ability of controllers — with and without
representations — is computed. The resulting controllers of the runs of each setup
are placed under one of the four categories:

• N+M: have at least one N+M representation

• M: have no N+M representation, and at least one M representation

• N: have none of the above, and at least one N representation

• None: have none of the above (no representation at all).

In figure 5.16, each run is plotted in the line corresponding to its category, with its
generalization ability in the x-axis. The runs resulting in architectures presenting
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Figure 5.15: Proportion of runs with Internal Representations with the fitness setup
G+N+E (n+o)

Table 5.6: Point-biserial Pearson Correlation between generalization score and the
presence of representations, as displayed on figure 5.16.

M+N Representation 0.93
N or M Representation 0.52

at least a N+M representation have a 0.56 average generalization score, while the
runs resulting in no representation at all have a 0.07 generalization score. The runs
having at least a N or M representation have a 0.29 average generalization score.
This shows a strong correlation between the presence of representations and the
generalization ability. Table 5.6 details the Pearson’s Correlation score between the
generalization score and the presence of these representations.

These runs however, have very different selective pressures and thus were not
evolved in the same conditions. As the generalization ability is evaluated by testing
the controllers with noise and occlusions, runs with environmental pressures E

(n+o) have a natural advantage in generalization.

In order to reduce this bias, only runs with environmental pressures E (n+o)

were selected in figure 5.17. This figure shows the exact same tendencies, and the
correlations are still very strong (See Table 5.7).
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Figure 5.16: Scatter-plot of 140 runs (20 runs for each fitness setup) in the Arena
environment. Each run is placed under one of the four categories: 1) has at least
one N+M representation 2) has at least one M representation 3) has at least one
N representation 4) has none of the above.
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Figure 5.17: Scatter-plot of 40 runs (20 runs for GNE (n+o) — red hollow dots,
and 20 for GE (n+o) —blue full dots) in the Arena environment. Each run is
placed under one of the four categories: 1) has at least one N+M representation
2) has at least one M representation 3) has at least one N representation 4) has
none of the above.
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Table 5.7: Point-biserial Pearson Correlation between generalization score and the
presence of representations for the 40 runs with all environmental pressures, as
displayed on Figure 5.17.

M+N Representation 0.91
N or M Representation 0.62

Conclusion The presence of Internal representations in controllers is
strongly correlated to the ability to generalize to contexts unseen during
evolution.

5.3.2 Resulting Architectures

Typical Behavior Figure 5.18 and 5.19 display typical behaviors of a controller
generated by a G+N+E (n+o) run. This controller manages to reach all 6 goals
when not influenced by noise nor occlusions, and therefore has a maximal goal
objective G = 1. The robot also shows good behavior when in noisy conditions: its
discretized trajectory is still very close to the one obtained without noise. In figure
?? the controller reacts poorly when its visual input is muted: its trajectory is
strongly affected by occlusions. The controller corresponding to trajectory in figure
5.19 has perfect score, even with noise and occlusions — its controller is displayed
in Appendix A.3.
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Figure 5.18: Typical behavior of a resulting controller with G+N+E (n+o) selec-
tive pressures. 1) First 6 trajectories with no noise nor occlusions. 2) (dark green)
Trajectories in noisy conditions. 3) (pink) Trajectories when subjected to occlusions
after 50 time-steps. 4) (purple) Trajectories when subjected noise and occlusions
after 50 time-steps.
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Figure 5.19: Typical behavior of a resulting controller with G+N+E (n+o) selec-
tive pressures. 1) First 6 trajectories with no noise nor occlusions. 2) (dark green)
Trajectories in noisy conditions. 3) (pink) Trajectories when subjected to occlusions
after 50, 100 and 150 time-steps. 4) (purple) Trajectories when subjected noise and
occlusions after 50 time-steps.
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Figure 5.20: Parts of neural networks connected to the visual input, obtained at
generation 4000 in G+N+E (n+o) runs. Numbers on the edges represent the
connection weights, and red arrows are inhibitory connections. Ellipses are single
neurons, and hexagons are maps of 20 neurons. Bold arrows represent Gaussian
connections (the associated number corresponds then to σ of the Gaussian). Biases
and offsets are not represented. 1) present a N Representation, 2) a M Represen-
tation, and all others at least one N+M Representation.
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While most runs converge to maximal goal objective G, the consistency objective
E does not always converge to its maximal value. This is especially true for the E

(o) and E (n+o) as occlusions strongly affect the behavior, and few controllers are
unaffected by the loss of vision. Still, the selective pressures E (o) and E (n+o)

have a strong influence on the whole population as it increases the emergence of
internal representations.

Internal structures The neural networks presenting internal representations
have various architectures. Figure 5.20 displays several neural structures (partial
neural networks, not including lasers, nor the acceleration output). Those struc-
tures are resulting from the G+N+E (n+o) setup. It is noticeable that none
of these structures are feed-forward networks: they all have at least one recurrent
connection.

Many networks include many more connections with the lasers and eventually
other internal neurons. The analysis of the behavior of these networks show no easily
recognizable internal activity, such as the activity of a sub-part of a Head Direction
model. In particular, no internal map could effectively reproduce the input when
the input completely disappears. Instead the internal maps were able to encode
some information, which enabled the robots to have consistent behavior, but not
easily understandable by the experimenter. Two profiles of such map activity can
be found in Appendix A.4.

In the evolutionary experiment by Gigliotta et al. (2011), the authors describe
the emergence of predictive models when the robot is subjected to occlusions. This
means that an internal map of neurons is able to reproduce the missing input. The
neural architecture able to realize this predictive model was however ad hoc and not
modified through evolution. In the present experiment such an internal structure
did not appear spontaneously, even though it would be very effective to cope with
occlusions and noise. However, it is not known whether such a model can be easily
built with EvoNeuro2 building blocks.

Connectivity Pattern Although the internal behaviors are difficult to under-
stand from a human point of view, a few networks showed specific connectivity
patterns between internal maps. Figure 5.21 displays a sub-part of an evolved neu-
ral network, in which both maps are considered as N+M Representations. The
two maps are connected with Gaussian connections, each with a different σ, one
inhibitory and one excitatory. These two maps compute a difference of Gaussian
(DoG). As explained in figure 5.22, this DoG have similarities with a “Mexican-
hat” connectivity (figure 5.22, right) in a single circular map (figure 5.22, left) —
if the time-steps necessary to transmit the activity from one map to the other is
neglected. The “Mexican-hat” connectivity is well known in computational neuro-
science because of its two components:

• A strong local excitation: A strong activity in the map results in a self-
excitation. Thus information is self-maintained in the map.
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• A weak global inhibition: A strong activity in the map inhibits other activities.
Thus competing activity or noise are lowered in the map.

Such a connectivity may lead to memory and noise resistance in the internal maps:
the local excitation can maintain information and thus provide memory, while the
inhibition can result in lowering the noise effects. Among the controllers found with
G+N+E (n+o), two other networks had similar connectivity as the one displayed
in figure 5.21. Other motifs did not always reduce to “Mexican-hat” connectivity
patterns. However, all networks including a M representation included at least one
positive recurrent pathway.
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Figure 5.21: Motif found in a network with representation N+M (See network 6

of figure 5.20). Both connections are Gaussian, with different sigma.
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Figure 5.22: (Left) Example of a circular map with “Mexican-hat” lateral connec-
tivity, similar to the ones found in Head Direction models (McNaughton et al.,
2006). (Right) Lateral Connectivity of the map, corresponding approximately to
the connections displayed in figure 5.21. The difference of Gaussian creates a lateral
inhibition and a local excitation in the maps, which realize a “Mexican-hat” shaped
connectivity.

5.3.3 Lineage and selection for Internal Representation

The genealogy of a successful solution provides information on how and when the
representations emerged during the evolutionary process. The principle is the fol-
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Figure 5.23: Genealogy of a successful solution obtained at generation 4000 with
G+N+E (n+o). Each of the parents of the successful solution is represented as a
dot in the middle graph. (Top graph) Objective scores for the parents. The black
dotted line represent the best main objective of the current generation. (Middle
graph) Number of internal nodes for each of the successive parents. Each dot is
colored in function of which objective it was most selected for (see text for further
explanations). (Bottom) A few selected neural networks associated with the some
of the parents. Only the internal nodes are represented.
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lowing: 1) a successful run is selected among the runs with G+N+E (n+o) 2) The
parent of the successful solution (obtained at generation 4000) is the controller from
which the solution evolved, through one or more mutations. The successive parents
are sought and displayed as dots on figure 5.23 (Middle graph), where the Y-axis
represents the number of internal nodes of the controllers. Each of the parent score
in the three objectives G, N and E is represented on the top graph. The dashed
line represents the best individual in terms of goal objective G of each generation.

Discontinuous evolution The first noticeable aspect is the very discontinuous
nature of the evolutionary process: the parent of a solution might be a controller
found 500 generations earlier. This means that the controller has survived, unmod-
ified, among the successive populations, during 500 generations . This is mainly
due to the two following reasons:

• The mutations happen in the graph space of neural networks, and thus many
mutations either strongly damage the behavior, or do not affect it at all.

• Due to elitism and the discrete aspect of the fitness landscape, there are many
solutions with similar behaviors in the population. Their novelty objective N

then falls to 0, but the other objectives maintain them in the populations.

On the other hand, some solutions have very close successive parents, only separated
by one generation. This is usually linked with bursts of novelty objective N. This
means that the population is rapidly moving towards a new area in the search space.

Relative influence of objectives The color of the dots in middle graph rep-
resents an approximation of which objective the parent was most selected for. To
do so, each parent is ranked in the population of its current generation based on
each objective. For instance, a parent at generation 2380 is ranked in its population
(the lower the rank, the better; rank 1 is the best individual of the population with
regards to the corresponding objective):

• G: 41/200

• N: 21/200

• E: 188/200

Therefore this parent was most selected for its novelty objective, and is displayed
as blue in the middle graph. The early parents of the successful solutions (left part
of the graphs) were mostly selected for N and E. Early generations show a very
high score in the E, implying that the solutions have very consistent behavior under
noise and/or occlusions. However, this is because the solutions have very simple
behaviors (some are standing still), and are thus not completing the task at all (G
= 0). As the solutions are selected for G, around generation 1300, the consistency
score quickly drops. Later stages imply all three objectives, and then mostly the
goal objective G for the last 1200 generations.
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An analysis on 10 runs with G+N+E (n+o) show that the best solutions have
an average of 101 ± 52 ancestors. These ancestors were selected because they were
better on one or several objective than the others. On average, the ancestors were
selected mostly because of:

• G: 53%

• N: 37%

• E: 10%

This shows that throughout the generations, all three objectives have strong
impact on the evolutionary descent. The Goal and Novelty objective seem to have
a stronger impact than the Environmental objective on the selection.

Network evolution The lower part of figure 5.23 displays the structural changes
in the successive parents of the population. The bottom graph displays only the
internal nodes rather than the whole neural network. There were very few struc-
tural changes throughout the genealogy of the successful solutions. Many of the
mutations were only weight changes of little amplitude. Very early, an internal
map appeared in the lineage. After 1300 generations, a recurrent connection was
included (the map is then a M representation in that case). This representation re-
mains almost unchanged over the following generations. Interestingly, the controller
at 1300 having the representation was selected mostly because of goal objective G,
and not the environmental selective pressure E objective. However, the E objective
had an impact on earlier parents.

This graph represents the genealogy of a single run, and as the evolution is
stochastic process with many random artifacts, the exact transitions are different
for other runs. For instance, some runs display no evolutionary activity (flat graphs)
for over 2000 generations due to the challenging nature of the search space. However,
this gives a general tendency of the impact of the different objectives, which can be
seen in any successful run. Appendix A.2 show an additional lineage graph.

5.4 Conclusion

Through the CMERP, the influence of several parameters on the emergence of
internal representations has been shown:

• The presence of helper objectives N and E significantly increases the emer-
gence of M and N representations.

• E (n) favored most N representations, E (o) M representations and E (n+o)

all kinds of representations.

• There were globally more representations in the Arena environment than in
the Void environment.
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Furthermore, the presence of representations, both N+M or any of N or M

is strongly correlated to the ability to generalize well in other contexts. The con-
trollers found had recurrent connections, allowing them to resist noise, and have
a form of memory (through positive recurrent feedback). A few controllers found
have common points with “Mexican-hat” connectivity found in computational neu-
roscience models of Head Direction and neural fields. Last, the analysis of the
genealogy of the representations on a single run with all three pressures G, N, and
E show that all pressures contribute to the selection at different generations, and
only a few structural changes occur during the lineage of controllers.

Predictive models Resisting to noise and occlusions can be achieved through
a predictive model (Gigliotta et al., 2011): when the visual input is distorted by
noise or muted by occlusions, the model generates a replacement of the input by
predicting what the robot would see. Using selective pressures such as occlusions
(blind phases), Gigliotta et al. (2011) are able to evolve two kind of solutions:

• Individuals which are able to solve the task even during blind phases, but
with a modified behavior.

• Individuals which are able to solve the task during blind and normal phase
with a similar behavior.

In the last category, the individuals are able to build an internal predictive model
which predicts the next visual inputs when they are missing. Such predictive mod-
els could be very useful to solve the task presented in this chapter: they would
resist to occlusions and eventually to noise. However, such a model did not emerge
spontaneously during the experiments reported here:

• There are behavior changes (at least a slight change in trajectory) between
the scenarios with and without occlusions.

• No internal map activity is similar to a prediction of the input.

Still, the networks with N+M representations were able to store enough informa-
tion to have little variation when subjected to noise and occlusions.



Chapter 6

Discussion and Perspectives

6.1 Contributions

The aim of this thesis is to study the emergence of internal representations in
evolutionary robotics. Three points are considered in this work:

• the definition of internal representations in an evolutionary robotics context,
and the definition of a protocol to test for these representations;

• the proposal of a new method for adding constraints (seen as selective pres-

sures) on the evolutionary process;

• the study of the emergence of internal representations in a simulated environ-
ment, under the influence of different selective pressures.

6.1.1 Definition of Internal Representations

Chapter 3 shows the wide use of the term “internal representation” in the cog-
nitive science literature. This thesis focuses on how representations are used in
Evolutionary Robotics, as well as briefly introducing their use in Computational
Neuroscience models. The chapter defines a quantitative way to determine whether
a given neural network has an internal representation or not.

Confronted to the different ways to qualify representations, the present work
focuses on representations with specific functional properties:

• N Representations (resistance to noise): even if the input of the neural net-
work is subjected to noise, the representation does not vary too much.

• M Representations (ability to memorize): even if the input of the neural
network is muted, the representation “remembers” previous values.

These representations are associated with a test protocol, which can be con-
ducted on any neural network. The protocol relies on the activity of the internal
nodes when the network is subjected to different conditions (noisy conditions, loss
of input, etc.). The protocol is tested on classic neural networks, and is able to
discriminate networks with or without representations. A test on an evolution-
ary experiment —“Ball Collecting Task”, shows that none of these representations
spontaneously appear.

The M Representation test was used as the basis of a new helper objective

in a T-maze memory experiment (Chapter 2). The main result is that solutions
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with memory were successfully generated by the evolutionary process. The mem-
ory helper objective, alongside a diversity objective has generated solutions with
a robust memory. Interestingly, these helper objectives promoted solutions which
generalize well to previously unseen contexts, even though they were not rewarded
for their generalization ability.

6.1.2 Behavioral Consistency Method

Chapter 4 covers the definition of a method for creating a Behavioral Consistency
Objective (BCO). The objective can be used as a single fitness function, or as an
additional selective pressure alongside other objectives. The principle of the BC
method is to add soft constraints on the behavior of the evolved system. Instead of
directly rewarding a particular “target” behavior, the objective rewards individuals
with a consistent behavior over predefined scenarios.

This method is applied to two experiments related to computational neuro-
science. The original experiments aim at optimizing computational neuroscience
models (a visual attention model, and an action section model) so that their be-
havior fits as well as possible a target behavior. In contrast, the BCO does not
require the exact knowledge of a target behavior. Instead, functional constraints on
the expected behavior are defined. Using the BCO in both experiments, successful
solutions are evolved, and the solutions show a greater diversity of behaviors.

The Behavioral Consistency Method does not completely remove a priori knowl-
edge on the target behaviors of systems. Instead, it shifts the required knowledge
from an exact description of a target behavior or parts of it, to a description of

scenarios and how the behavior should compare in these scenarios.
Additionally, the BCO can have several important advantages over a standard

evaluation on the same scenarios —these advantages are detailed in the next section
6.2.2. These advantages are confirmed in the experiment in Chapter 5: the use of
this objective strongly improved convergence results.

6.1.3 Emergence of Internal Representations under multiple selec-
tive pressures

Chapter 5 proposes a new ER protocol for studying the emergence of internal rep-
resentations. The neural network of a robot controller is evolved (both the topology
and the parameters of the network) to solve a navigation task in a circular arena.
Two environmental selective pressures — noise and occlusions — are added to the
selection process. The task itself with the goal objective only is not representa-

tion hungry, but representations become necessary when adding the environmental
selective pressures.

The main result is that the number of internal representations significantly
increases in presence of environmental selective pressures, even though the networks
were not rewarded nor trained for having internal representations. The novelty
helper objective further increases the number of runs in which the emergence occurs.
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As expected, the noisy pressure promotes more internal N representations, while the
occlusion pressure promotes the M representations. Using all selective pressures, 9

out of 20 runs could achieve N+M representations. In addition, the presence of a
representation is strongly correlated with a higher generalization ability.

The analysis of the resulting architectures show the following points:

• As expected, the networks with representations have at least a recurrent con-
nection, they are not feed-forward, reactive networks.

• The behavior of the internal maps is not easily understandable by a human
being, and none correspond to a predictive model of the input.

• A few networks had a connectivity closely related to a difference of Gaussian
functions, which can be found in Computational Neuroscience networks (often
referred as a “Mexican-hat” connectivity).

The study of the lineage of the best individuals reveals interesting informa-
tion. The evolutionary process is very discontinuous, and a good solution only has
a limited number of ancestors, sometimes separated by thousands of generations.
Furthermore, it revealed the relative importance of the different objectives through-
out the evolutionary process, as well as their influence at different generations. All
three objectives (Goal objective, Novelty, and Environmental pressures) had a sig-
nificant influence on the selection process. The Goal and Novelty Objective were
the objectives influencing the selection most. However, the Environmental objec-
tive had a very significant impact on the evolutionary process as a whole, even
though it wasn’t the main influence. This technique could be useful to monitor
other multi-objective evolutionary experiments.

Last, the evolutionary process generated successful controllers in a difficult ER
task, which involve navigation through a (simple) continuous maze. The visual
input is a continuous stimulus, —which is subjected to noise and occlusion. De-
pending on this stimulus, the robot must navigate towards different parts of the
maze. The task is therefore more challenging than most navigation tasks reviewed
by Nelson et al. (2009).

6.2 Discussion and Perspectives

This thesis opens several questions on the methods used:

• the classification of representations;

• the implications of the use of the Behavioral Consistency Method.

Additionally it brings several perspectives on closely related topics:

• emergence of Predictive Models;

• new Selective Pressures;

• neural Network Encodings.
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6.2.1 Classification of representations and tests

The present definition of representations only account for very specific representa-
tions (N and M), not any kind of representations. However, these representations
seem frequent in computational neuroscience models, and the presence of noise, or
the necessity to have some memory are common in evolutionary robotics experi-
ments (See Chapter 2 and 3 for more details). This opens the question of a further
classification of representations, with additional functional properties of represen-
tations. A few leads might include:

• Representations which resist to distractors (or competing stimuli), which can
be found in Neural Fields or Action Selection.

• A more continuous characterization of Memory representations: A Memory
Representation may be able to store one bit of information (such as the one
studied in the T-maze experiment), ore more. Using information theory, a
better characterization of M representations might be possible.

Furthermore, the present definition of N and M representations require pa-
rameters (thresholds), and definition of scenarios. In order to have a more general
definition, as well as making the protocol easier to use, the following approach could
be considered:

• the use of information theory for a more general comparison of internal ac-
tivity. For instance, the quantification of representation by Marstaller et al.
(2012) uses mutual information to determine the level of representation in-
cluded in an internal node. The use of such methods could remove the need
for parameters such as thresholds.

Last, the representation tests where used on a new evolutionary protocol, the
CMERP. Further work includes the use of the tests on the evolutionary robotics
experiments from the literature. The robotic experiment defined by Gigliotta et al.
(2011), or the minimally cognitive behaviors defined by (Beer, 1996) could then
provide a framework for the study of the emergence of internal models in natural
and artificial agents.

6.2.2 Behavioral Consistency Method versus standard evaluation

Chapter 4 and 5 show a successful use of BC method for applying selective pres-
sures as helper objectives. However, in the case of environmental pressures, such
as noise and occlusions, the selective pressure could have been applied in a more
straightforward way (denoted standard evaluation):

• By evaluating the performance in terms of goal objective under scenarios with
the noisy and vision deprived scenarios;

• by aggregating all the different scores into a global fitness score. The most
intuitive way to aggregate the scores by averaging the fitness scores.
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The standard evaluation is the most simple and biologically plausible way to apply
the selective pressure. Unlike the BC method, it does not add any a priori knowl-
edge on which part of the behavior should resist to noise/occlusions. Using such a
fitness function would improve the strength of the results of chapter 5: the presence
of noise and occlusion directly in the evaluation of a navigation task should lead to
the emergence of internal representations in the controller architecture.

However, the use of such a standard evaluation yields much worse results: little
convergence and less representations. The comparison between the two methods
was not fully explored in this thesis, however preliminary comparison results can
be found in Appendix A.5. This could be explained by the following points, each
of them might have a large influence on the evolutionary process:

• Stochastic effects in evaluation By directly evaluating scenarios with
noise, the noisy simulations can lead to wrongly positive evaluations. For
instance, a single scenario can be successful in one instance of noise, but by
running the simulation again, the solution might be almost always unsuc-
cessful. Such a solution, very sensitive to noise, will however be selected by
the standard evolutionary process. The BC method is less influenced by this
problem, because only solutions with little noise effect on the behavior are
chosen.

• Evolutionary gradients The BC objective and a standard evaluation reward
different individuals in the population. The latter only rewards successful
solutions (those which reach the goal), while the BCO can reward individuals
which are very weak regarding the goal objective (they may not reach any
goal), but have consistent behavior in the different scenarios. These solutions
could be important stepping stones towards solutions which reach goals and
have consistent behaviors. The evolutionary “path” towards the best solutions
in the fitness landscape is different and might lead to the exploration of more
diverse solutions with the BCO than with the standard evaluation scheme.

• Computational cost The standard evaluation of noisy scenarios, vision de-
prived scenarios, etc. can lead to an exponential number of evaluations (eval-
uate in many different instances of noises, for each possible goal point, for full
vision or altered vision, etc...). In the preliminary tests with full evaluation,
the number of scenarios evaluated to cover all different cases was 264 (see
Appendix A.5). The BC method only requires few additional scenarios (a
total of 15 scenarios evaluated), and still had better results.

At first glance the standard method seems more biologically plausible method
to apply evolutionary pressures than the BCO. However, the intuition is that arti-
ficial evolution is not able to generate these constraints using standard evaluation,
because it would require too complex and numerous evaluations. Furthermore, even
with many evaluations, the aggregation of the evaluations might not drive efficiently
the evolutionary search (for instance, averaging the partial fitness scores is very dif-
ferent from natural selection processes). The BCO can be seen as an efficient way
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to aggregate evaluations, and induce constraints on the agent behavior that can be
similar to constraints seen natural systems.

6.2.3 Emergence of Internal Models

This thesis details the emergence of specific representations, which may be consid-
ered as a simplified model of the robot’s perceptions. It does not include several
possible actions — and thus the need of action selection — or a spatial representa-
tion of the world, etc.

This thesis is therefore a small step towards the emergence of more complex
capacities and internal models. However, the challenge lies in the scaling of the
capacities: how can more complex capacities — and thus potentially models —
emerge ? How can several capacities emerge in a single robot ?

Many types of complex internal models have been studied in Cognitive Science
(Johnson-Laird, 1980), and some of the most studied are the models for spatial
navigation. They include spatial representations, as well as internal functionali-
ties, such as self localizing, path planning, path integration, etc. (Trullier et al.,
1997). Section 3.1.3 details some models involved in cognitive abilities, and more
specifically, section 3.1.3.2 details spatial navigation models.

Several works have already tackled the emergence of more detailed internal
models in evolutionary robotics:

• Nolfi (2005) developed a categorization experiment in which the agents dis-
covers the categories itself.

• In Gigliotta and Nolfi (2008), a robot navigates in a maze, and creates its own
representation of space.

• Gigliotta et al. (2010, 2011) work on a robot which follows a visual input, and
learns to predict this input.

However, all these approaches are based on ad hoc networks, with built-in neurons
for specific representations, and models. In the first two papers, the fitness also
explicitly rewards the presence of representations. A long term goal following this
work, is the automatic design of an autonomous agent with some cognitive capacities
close to an animal. It can be hypothesized that internal models are necessary for an
artificial agent to develop such capacities. However, in embodied views of cognition,
such an hypothesis is not made, and therefore the models may emerge only if they
are needed to solve the tasks. A possible lead would be to study the emergence of
internal models, —without specifying the internal structure of the neural network—
such that the evolutionary process discovers the model itself.

Furthermore, in order to increase the complexity of emerging internal models,
the following possibilities are proposed:

• An approach based on exaptation. Exaptation (Gould and Vrba, 1982) refers
to a shift in the function of a trait during natural evolution. Mouret and Don-
cieux (2009a) take inspiration from this process and define a helper objective
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that rewards the presence of a sub-network realizing a given sub-function.
This concept could be applied to reward controllers in which a sub-part of the
controller realize a cognitive function, such as action selection, or any other.
The behavioral consistency method, with scenarios similar to those described
in Chapter 4 could then be used to reward controllers with a form of action
selection.

The work following this thesis could lead to results in two different domains:

• engineering: taking advantage of the emerging internal models for better
robotic control: one can expect the controllers with internal models to gener-
alize better, to have better properties in uncertain conditions, etc.

• biology: study the emergence of internal models and gain insight on biolog-
ical phenomena, through artificial experiments (similarly to the experiments
by Gigliotta et al. (2011)). Biologists have studied the evolution of cognition
(Shettleworth, 2009; Platek, 2009). While these works provide insights on
the origins of cognitive aspects, they often rely on the study of observable
parameters, such as the size of the skull of animals. The origins of cognitive
functions is therefore very difficult to study, and remain open questions today.
Synthetic approaches such as evolutionary robotics may help these biological
studies.

6.2.4 New Selective Pressures

Other selective pressures can be considered in order to promote the emergence
of internal models in neural networks. Inspiration may be drawn from natural
selective pressures which led to the neural networks currently observed on biological
organisms.

Variability of the environment Körding et al. (2006) emphasized that the
variations in environment and noise could be one of the reasons for the need of
internal models for more robust motor control. The selective pressures proposed
in Chapter 5 are already inspired from these real world conditions: the presence of
noise, and the unreliability of information which can lead to occlusions in sensors.

This can be generalized in the following way: the variability of the world can
be considered as different selective pressures. In natural environments, individuals
are evaluated in very different conditions (different environments, different weather,
different interactions with others, etc.). In particular a selective pressure can be
derived from the ability to be efficient in many different contexts. In other words,
the ability to generalize to other contexts (slightly different from the ones used for
the main evaluation of the task) can be seen as a selective pressure.

Pinville et al. (2011) developed a method named ProGAb for promoting the
generalization ability of ER experiments. This method can be applied as an ad-
ditional objective, and computes an approximation of the generalization ability of
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individuals. In a T-maze experiment similar to the one presented in the first part
of chapter 4, Pinville (2013) uses this objective as a selective pressure, and notices
an increasing number of emerging of memory in the neural networks. Furthermore,
the results of chapter 5 show a strong correlation between generalization ability and
the emergence of internal representations.

This leads to the belief that a selective pressure promoting the generalization
ability would have a significant effect on the emergence of internal representations.

Multiple selective pressures and NSGA-II This thesis advocates the addi-
tion of several selective pressures as objectives in ER experiments. However, as
studied in Section 2.1.3.5, the performance in terms of selection of NSGA-II quickly
drops when the number of objective is larger than 3 or 4. The use of many selective
pressures might then require specific MOEAs which can deal with a large number
of objectives (Ishibuchi et al., 2008).

Another worthy point is the fact that all objectives are considered as having the
same importance. One could, for instance, give more weight to a specific objective:
the goal objective could be of greater importance than a diversity objective and
therefore have a more important role in the selection process. To do so, Clune
et al. (2013) use an additional parameter for each objective: a probability pi. pi

represents the probability that the objective i is taken into account in the selection
process. If ∀i, pi = 1, this corresponds to the traditional NSGA-II selection process.
A lower probability means that an objective will have a lower impact in the selection
process.

6.2.5 Neural Network Encodings

This thesis focuses on the selective pressures which drives the evolutionary search
towards controllers with internal representations. This is a first step towards the
evolution of cognitive abilities. However, the encoding of the controller is also
of critical importance; and a direct encoding of the neural network parameters is
expected to quickly reach its limit.

This can be illustrated by looking at the biological evolution of brains: brains can
contain billions of neurons, and each of these neurons is not encoded by independent
genes. Instead, the brain undergoes a development phase, in which the same genes
are reused and determine, along with the environment, the biological parameters
of many neurons. This shows that the encoding, which maps the genome into a
fully developed neural network has a strong impact on the evolution of large and
complex neural networks.

To address the challenge of the evolution of more complex agents, a substan-
tial part of the ER community has focused on indirect encodings. EvoNeuro and
EvoNeuro2 used in this thesis are already examples of indirect encodings from which
larger neural networks can emerge. Section 2.3.4.2 details a few other indirect en-
codings such as HyperNEAT (Stanley, 2007; Stanley et al., 2009).
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The intuition is that both selective pressures and indirect encodings will be major
factors for the evolution of complex and cognitive artificial agents. This could be
illustrated by a fitness landscape of an ER thought experiment. On one hand,
the encoding modifies the geometry of this fitness landscape, and contracts it: the
number of mutations required to move from a point to another is likely to become
much lower with an appropriate encoding (but could also be larger). On the other
hand, the selective pressures select promising mutations — not necessarily good in
terms of performance, but which are good stepping stones for later solutions —
and prevent to fall into local optima. In order to obtain controllers with complex
and multiple cognitive abilities, it is likely that both selective pressures and indirect

encodings have to be studied simultaneously. In (Mouret and Doncieux, 2009a), the
authors show that using a specific encoding and specific selective pressures increase
their results, but using both at the same time is significantly better than using only
one of them.





Chapter 7

Conclusion

This thesis aims at studying the emergence of internal representations in Evolu-
tionary Robotics, in the light of selective pressures. Through an ER experiment in
Chapter 5, an hypothesis is tested: do environmental pressures such as the presence
of noise and occlusions drive the evolutionary search towards internal representa-
tions ? To address this question, several tools and methods are defined.

In Chapter 2, a necessary background is introduced. The chapter details the
state-of-the-art in Evolutionary Algorithms, in particular Multi-Objective Evolu-
tionary Algorithms, and their use in Evolutionary Robotics. It also covers several
recent advances in Evolutionary Robotics, such as the exploration of the behav-
ioral space. Last, neural networks and their optimization through evolution —with
direct or indirect encodings— is mentioned.

Chapter 3 reviews the uses of the term “internal representation” in Cognitive
Science and Evolutionary Robotics, and then defines the scope of these represen-
tations in this thesis. The focus is made on M and N representations, which
correspond to internal nodes which have functional properties (M — presence of
memory and N — resistance to noise). A protocol to test whether a network has
such a representation is defined.

Chapter 4 covers the definition of a new method for creating a Behavioral Con-
sistency Objective (BCO). Its efficiency is asserted on two test problems taken from
Computational Neuroscience. The objective can be used as a single fitness func-
tion, or as an additional selective pressure alongside other objectives. These helper

objectives could be applied to many ER experiments, in order to enhance some
properties of the evolved controllers, such as their robustness to noise.

Finally, Chapter 5 is the core of the thesis: using the test protocol defined in
Chapter 3, and adding environmental selective pressures with BCOs, the hypothe-
sis is confirmed: environmental pressures such as the presence noise and occlusions

strongly increase the emergence of internal representations. Additionally, the Nov-
elty objective, which promotes novel behaviors, further increases the emergence of
these representations. The representations are useful for motor control: the pres-
ence of a representation is strongly correlated with the ability to generalize well to
unseen contexts. The resulting networks show no sign of understandable internal
models, but several networks have connectivity patterns which strongly resemble
to a “Mexican-hat” connectivity, which is commonly seen in Computational Neu-
roscience models. Last, the evolutionary process generated successful controllers in
a challenging Evolutionary Robotics task.
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Appendix

A.1 DNN and EvoNeuro2 Parameters

• MOEA: NSGA-II (pop. size : 200)

• DNN (direct encoding) or EvoNeuro2 (indirect encoding):

– prob. of changing weight/bias: 0.1

– prob. of adding/deleting a conn.: 0.15/0.25

– prob. of changing a conn.: 0.1

– prob. of adding/deleting a neuron: 0.025/0.025

– activation function for neurons:
yi = ϕ

(

∑

j wijxj

)

where ϕ(x) = 1
1+exp(b−kx)
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A.2 Additional Lineage
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Figure A.1: Genealogy of a solution obtained at generation 4000 with G+N+E

(n+o). Each of the parents of the successful solution is represented as a dot in
the middle graph. (Top graph) Objective scores for the parents. The black dotted
line represent the best main objective of the current generation. (Bottom graph)
Number of internal nodes for each of the successive parents. Each dot is colored in
function of which objective it was most selected for.
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A.3 Neural Networks
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Figure A.2: Neural network obtained with fitness G+N+E (n+o). Red arrows
represent inhibitory connections (i.e. with negative weights); bold arrows repre-
sent Gaussian weights connections. Biases and offsets are not represented. The
trajectory resulting from this controller is displayed on Figure 5.19.
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A.4 Chronograms
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Figure A.3: Evolution of an internal map activity of controller displayed in A.2.
The activity of the map is taken right after an occlusion (which means the visual
input is set to 0.
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A.5 Comparison between BCO and Standard Evalua-

tion
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Figure A.4: Comparison between the use of BCO (evaluation over 15 contexts) and
Full Evaluation (standard evaluation over 264 contexts: the contexts are the same
as the ones used for the generalization test, see 5.2.3). . In all runs —standard and
BCO—, the number of generation is 4000, the population size is 200. Therefore,
the total number of context evaluations for a run is 1.2×107 for the BCO, 2.1×108

for Full evalutation. Only 10 runs with full evaluation were performed, because the
runs were very time-consuming.
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