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compagnie.
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Résumé

Ce travail propose différents modèles de mathématiques issus à des phénomènes
naturels. L’outil indispensable à cette étude sont les inclusions différentielles,
les équations (ou les systèmes d’équations) différentielles ou aux dérivées par-
tielles et la théorie des bifurcations. La nature des ces équations dépend du
problème traité : il peut s’agir d’équations de transport, de réaction-diffusion,
d’équations non-locales, etc. Nous souhaitons apporter ici quelques informations
et explications sur les différents modèles que nous souhaitons étudier,

Dans la première partie, il s’agit d’étudier l’existence des solutions, critère
de compacité pour l’ensemble de solutions ainsi que la continuité de l’opérateur
solution pour certaines classes d’inclusions différentielles impulsives de type neu-
tre, un exemple d’application est traité à la fin de cet première partie, c’est une
extension des résultats obtenus dans l’étude théorique.

La seconde partie s’attache à l’analyse d’un autre modèle mathématique
d’écrivant l’évolution de la maladie du cancer, il s’agit d’un système d’équations
différentielles avec impulsions, les équations différentielles représentent l’évolution
des cellules normales, cancéreuses sensibles et cancéreuses résistantes. Les im-
pulsions représentent la chimiothérapie. On considère le cas de l’absence des
cellules de la tumeur et on utilise un traitement préventif pour éradiquer la
maladie, on étudie tout d’abord les conditions de stabilité des solutions triviales
qui représentent l’éradication de la maladie, puis on traite le cas des bifurcations
de solutions non triviales qui représentent le retour de maladie.

On s’intéresse dans la dernière partie à la modélisation de la maladie d’Alzheimer.
On construit un modèle qui décrit d’une part la formation de plaque amyloide
in vivo, et d’autre part les interactions entre les oligomères Aβ et la protéine
prion qui induiraient la perte de mémoire. On mène l’analyse mathématique de
ce modèle dans un cas particulier puis dans un cas plus général où le taux de
polymérisation est une loi de puissance.



Abstract

This thesis deals with a different mathematical models deriving from natural
phenomena. The essential tools in this study are differential inclusions, differ-
ential or partial differential equations (or systems of equations) and bifurcation
theory. The nature of these equations depends on the problem being addressed:
it may be transport equations, reaction-diffusion, non-local equations, etc.. We
want to provide a several details and explanations of the various models that
we want to study.

In the first part we present some existence results of solutions and study
the topological structure of solution sets for the impulsive functional differen-
tial inclusions with multiple delay. Our existence result relies on a nonlinear
alternative for compact u.s.c. maps. Then, we present some existence results
and investigate the compactness of solution sets, some regularity of operator
solutions and absolute retract (AR). The continuous dependence of solutions on
parameters in the convex case is also examined. Applications to a problem from
control theory are provided.

The second part is dedicated to the analysis of a new model describing
the evolution of populations constituted by normal cells, sensitive and resistant
tumor cells, under periodic chemotherapeutic treatment. We study the stability
of the trivial periodic solutions and bifurcation of nontrivial periodic solutions
by the mean of Lyapunov- Schmidt reduction. The conditions of stability and
bifurcation are expressed in terms of the parameters of the system. Our results
are applied to models given by Panetta.

In the last part, we are interested in modelling Alzheimer’s disease. We
introduce a model that describes the formation of amyloids plaques in the brain
and the interactions between Aβ-oligomers and Prion proteins which might be
responsible of the memory impairment. We carry out the mathematical analysis
of the model. Namely, for a constant polymerization rate, we provide existence
and uniqueness together with stability of the equilibrium. Finally we study
the existence in a more general and biological relevant case, that is when the
polymerization depends on the size of the amyloid.
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Introduction and
motivations

0.1 Introduction

Differential equations with impulses were considered for the first time in the
1960’s by Milman and Myshkis [136, 137]. After a period of active research,
primarily in Eastern Europe during 1960-1970, early studies culminated with
the monograph by Halanay and Wexler [96].

The dynamics of many evolving processes are subject to abrupt changes, such
as shocks, harvesting, and natural disasters. These phenomena involve short-
term perturbations from continuous and smooth dynamics, whose duration is
negligible in comparison with the duration of an entire evolution. In models
involving such perturbations, it is natural to assume that these perturbations
act instantaneously or in the form of ”impulses”. As a consequence, impulsive
differential equations have been developed in modeling impulsive problems in
physics, population dynamics, ecology, biotechnology, industrial robotics, phar-
macokinetics, optimal control, and so forth. Again, associated with this de-
velopment, a theory of impulsive differential equations has been given exten-
sive attention. Works recognized as landmark contributions include the books
[19, 20, 28, 124, 153] and the papers [2, 45, 46, 80, 81, 75, 129, 149, 163]. There
are also many different studies in biology and medicine for which impulsive dif-
ferential equations provide good models; see, for instance, [3, 117, 118] and the
references therein.

In recent years, many examples of differential equations with impulses with
fixed moments have flourished in several contexts. In the periodic treatment of
some diseases, impulses correspond to administration of a drug treatment or a
missing product. In environmental sciences, impulses model seasonal changes of
the water level of artificial reservoirs. The theory and applications addressing
such problems have greatly involved functional differential equations as well as
impulsive functional differential equations. Recently, extensions to functional
differential equations with impulsive effects with fixed moments have been stud-
ied by Benchohra et al. [27, 29, 30] and Ouahab [141], with the use of the
nonlinear alternative and Schauder’s theorem, as well as by Yujun and Erxin
[172] and Yujun [171] by using coincidence degree theory. For other results con-
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cerning functional differential equations, we refer the reader to the monographs
of Azbelez et al. [14], Erbe, Qingai and Zhang [70], Hale and Lunel [97], and
Henderson [102].

There is a large variety of motivations that led mathematicians, studying
dynamical systems having velocities uniquely determined by the state of the
system, but loosely upon it, to replace differential equations

y′ = f(y)

by differential inclusions
y′ ∈ F (y).

A system of differential inequalities

y′i ≤ f i(y1, . . . , yn), i = 1, . . . , n,

can also be considered as a differential inclusion. If an implicit differential
equation

f(y, y′) = 0

is given, then we can put F (y) = {v : f(y, v) = 0} to reduce it to a differ-
ential inclusion. Differential inclusions are used to study ordinary differential
equations with an inaccurately known right-hand side.

As an example, consider the differential equation with discontinuous right-
hand side,

y′ = 1− 2sgny,

y(0) = 0,

where

sgny =

 +1, if y > 0,
0, if y = 0,
−1, if y < 0.

The classical solution of above problem is defined by

y(t) =

{
3t+ c1, if y < 0,

−t+ c2, if y > 0,

where c1 and c2 are constants. As t increases, the classical solution tends to the
line y = 0, but it cannot be continued along this line, since the map y(t) = 0
so obtained does not satisfy the equation in the usual sense (namely, y′(t) = 0,
while the right-hand side has the value 1 − 2sgn0 = 1). Hence, there are no
classical solutions of initial value problems starting with y(0) = 0. Therefore, a
generalization of the concept of solutions is required.

To formulate the notion of a solution to an initial value problem with a
discontinuous right-hand side, we restated the problem as a differential inclusion,

y′(t) ∈ F (y(t)), a.e. t ∈ [0,∞), y(0) = y0,
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where F : IRn → P(IRn) is a vector set-valued map into the set of all subsets
of IRn that can be defined in several ways. The simplest convex definition of F
is obtained by the so-called Filippov regularization [74],

F (y) =
⋂
ε>0

conv(f({y ∈ IRn : ‖y‖ ≤ ε}\M)),

where F (y) is the convex hull of f , conv is the convex hull, M is a null set (i.e.,
µ(M) = 0, where µ denotes the Lebesgue measure in IRn) and ε is the radius
of the ball centered at y.

One of the most important examples of differential inclusions comes from
control theory. Consider a control system

y′(t) = f(y, u), u ∈ U,

where u is a control parameter. It appears that the control system and the
differential inclusions

y′ ∈ f(y, U) =
⋃
u∈U

f(y, u)

have the same trajectories. If the set of controls depends on y, that is, U = U(y),
then we obtain the differential inclusion

y′ ∈ F (y, U(y)).

The equivalence between a control system and the corresponding differential
inclusion is the central idea used to prove existence theorems in optimal control
theory.

Since the dynamics of economics, sociology, and biology in macrosystems
is multivalued, differential inclusions serve as natural models in macrosystems
with hysteresis.

A differential inclusion is a generalization of the notion of an ordinary dif-
ferential equation. Therefore, all problems considered for differential equations,
that is, existence of solutions, continuity of solutions, dependence on initial con-
ditions and parameters, are present in the theory of differential inclusions. Since
a differential inclusion usually has many solutions starting at a given point, new
issues appear, such as investigation of topological properties of the set of solu-
tions, selection of solutions with given properties, evaluation of the reachability
sets, etc.

As a consequence, differential inclusions have been the subject of an in-
tensive study of many researchers in the recent decades; see, for example, the
monographs [10, 11, 43, 91, 106, 112, 156, 159] and the papers of Bressan and
Colombo [37, 38], Colombo et al. [52, 53], Fryszkowsy and Górniewicz [82],
Kyritsi et al. [119], etc.

As for more specialized problems, during the last ten years, impulsive or-
dinary differential inclusions and functional differential inclusions with differ-
ent conditions have attracted the attention of many mathematicians. And
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nowadays, the foundations of the general theory of such kinds of problems
are already set up and many of them have been investigated in detail; see
[24, 26, 31, 48, 71, 84, 85, 86, 104] and the references therein.

Some of our work is devoted to the existence and stability of solutions for
different classes of initial values problems for impulsive differential equation and
inclusions with fixed and variable moments.

We now give an overview of the thesis topical arrangement. The first part
of this thesis contains three chapters,

In first chapter, we introduce notations, definitions, lemmas, and fixed point
theorems that are used in the next sections.

In chapter 2, we present some existence results of solutions and study the
topological structure of solution sets for the following first-order impulsive neu-
tral functional differential inclusions with initial condition:

d
dt [y(t)− g(t, yt)] ∈ F (t, yt) +

n∗∑
i=1

y(t− Ti), a.e. t ∈ J\{t1, . . . , tm},

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0],

where J := [0, b] and 0 = t0 < t1 < . . . < tm < tm+1 = b (m ∈ N∗), F
is a set-valued map and g is single map. The functions Ik characterize the
jump of the solutions at impulse points tk (k = 1, . . . ,m). Our existence result
relies on a nonlinear alternative for compact u.s.c. maps. Then, we give some
existence results and investigate the compactness of solution set, some regularity
of operator solutions and absolute retract(AR).The continuous dependence of
solutions on parameter in the convex case is also examined.

Applications to a problem from control theory are provided in chapter 3.
The second part of this thesis contains three chapters.

In chapter 4, we give some classical theorems on steady state bifurcations. in-
cluding the Lyapunov-Schmidt procedure and bifurcation theorems from eigen-
values of odd multiplicity.

The version of the Lyapunov-Schmidt procedure presented here differs slightly
from the one given in [132]. The latter is done by decomposing the space into
the direct sum of the generalized eigenspace and its complement. While the
Lyapunov-Schmidt procedure given here is based on the decomposition of the
space into the direct sum of the eigenspace and its complement. This Lyapunov-
Schmidt procedure is more natural, and much more convenient to study steady
state bifurcations. In fact, it is this difference, together with other ingredients,
including in particular the spectral theorem (see Chapter 3 [132]), that made
many problems more accessible.

In chapter 5, we consider a nonlinear mathematical model describing the
evolution of population constituted by normal cells, sensitive and resistant tu-
mor cells, under periodic chemotherapeutic treatment. We study the stability
of the trivial periodic solutions and bifurcation of nontrivial periodic solutions
by the mean of Lyapunov-Schmidt reduction. The conditions of stability and
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bifurcation are expressed in terms of the parameters of the system. Our results
are applied to models given by Panetta.

In chapter 6, we give an appendix that contains a details computation of
chapter 5.
The final part, Part III contains also three Chapters.

In chapter 7, we introduce some results for Lp, distributions and Sobolev
spaces

In chapter 8, We introduce a mathematical model of the in vivo progression
of Alzheimer’s disease with focus on the role of prions in memory impairment.
Our model consists of differential equations that describe the dynamic formation
of β-amyloid plaques based on the concentrations of Aβ oligomers, PRPC pro-
teins, and the Aβ-×-PRPC complex, which are hypothesized to be responsible
for synaptic toxicity. We prove the well-posedness of the model and provided
stability results for its unique equilibrium, when the polymerization rate of β-
amyloid is constant and also when it is described by a power law.

The final chapter, chapter 9, we give Characteristic polynomials of the lin-
earized ODE system and lyapunov function for local and global stability respec-
tively.

economic threshold (ET ). The complete expression of an orbitally
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Chapter 1

Preliminaries

Before giving the main results in the next two chapters, let us recall some
notations, definitions, and auxiliary results that will be used throughout this
part.

1.1 Spaces used

Let J := [a, b] be an interval of IR and let (E, | · |) be a real Banach space. We
denote C(J,E) the Banach space of all continuous functions from J into E with
the norm

‖y‖∞ = sup{|y(t)| : t ∈ J},

and let L1(J,E) be the Banach space of measurable functions that are Bochner
integrable and normed by

‖y‖L1 =

∫ b

a

|y(t)|dt.

A function y : J −→ E is Bochner integrable if and only if |y| is Lebesgue
integrable. For properties of the Bochner integral, see for instance, Yosida
[170].
We also let ACi([a, b], E) denote the space of i-times differentiable functions
y : (a, b)→ E, whose ith derivative, y(i), is absolutely continuous.

1.2 Some Properties of Set-Valued Maps

Let (X, d) be a metric space and Y be a subset of X. We denote:

• P(X) = {Y ⊂ X : Y 6= ∅} and

• Pp(X) = {Y ∈ P(X) : Y has the property “p”}, where p could be: cl =
closed, b = bounded, cp = compact, cv = convex, etc.
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Thus:

• Pcl(X) = {Y ∈ P(X) : Y closed},

• Pb(X) = {Y ∈ P(X) : Y bounded},

• Pcp(X) = {Y ∈ P(X) : Y compact},

• Pcv(X) = {Y ∈ P(X) : Y convex}, where X is normed space,

• Pcv,cp(X) = Pcv(X) ∩ Pcp(X) where X is normed space, etc.

Definition 1.1. A multivalued function (or a multivalued operator, multivalued
map, or multimap) from X into Y is a correspondence that associates to each
element x ∈ X a subset F (x) of Y. We denote this correspondence by the symbol:
F : X → P(Y ). We define:

• the effective domain DomF = {x ∈ X : F (x) 6= ∅}.

• the graph: GraF = {(x, y) ∈ X × Y : y ∈ F (x)}.

• the range F (X) =
⋃
x∈X

F (x).

• the image of the set A ∈ P(X): F (A) =
⋃
x∈A

F (x).

• the inverse image of the set B ∈ P(Y ): F−(B) = {x ∈ X : F (x)∩B 6= ∅}.

• the strict inverse image of the set B ∈ P(Y ):

F+(B) = {x ∈ DomF : F (x) ⊂ B}.

• the inverse multivalued operator, denoted by F−1 : Y → P(X), is defined
by

F−1(y) = {x ∈ X : y ∈ F (x)}.

The set F−1(y) is called the fiber of F at the point y.

• Let F,G : X → P(Y ) be multifunctions. Then

(F ∪G)(x) = F (x) ∪G(x), and (F ∩G)(x) = F (x) ∩G(x).

Also, if F : X → P(Y ) and G : Y → P(Z), then the composition (G ◦ F )(·) is
defined by (G ◦ F )(x) = ∪y∈F (x)G(y). Finally, if F,G : X → P(Y ), then the
product (F ×G)(·) is defined by (F ×G)(x) = F (x)×G(x).

Let us give some properties of a multivalued function.

Proposition 1.2. ([107]) The following properties hold.
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• If F , G : X → P(Y ) and A ⊆ Y , then

(F ∪G)−(A) = F−(A) ∪G−(A), (F ∪G)+(A) = F+(A) ∪G+(A),

and

(F ∩G)−(A) ⊆ F−(A) ∩G−(A), F+(A) ∩G+(A) ⊆ (F ∩G)+(A).

• If F : X → P(Y ), G : Y → P(Z), and A ⊆ Z, then

(G ◦ F )−(A) = F−(G−(A)), and (G ◦ F )+(A) = F+(G(A)).

• If F : X → P(Y ) and Ai, A ⊆ Y, i ∈ I, then

X\F−(A) = F+(Y \A), X\F+(A) = F−(Y \A),

F−(
⋃
i∈I

Ai) =
⋃
i∈I

F−(Ai), F
−(
⋂
i∈I

Ai) ⊆
⋂
i∈I

F−(Ai),

and ⋃
i∈I

F+(Ai) ⊆ F (
⋃
i∈I

Ai),
⋂
i∈I

F+(Ai) ⊆ F (
⋂
i∈I

Ai).

• If F : X → P(Y ) and G : Y → P (Z), A ⊆ Y, and B ⊆ Z, then

(F ×G)+(A×B) = F+(A) ∩G+(B),

(F ×G)−(A×B) = F−(A) ∩G−(B).

This is also true for arbitrary products.

Definition 1.3. A multimap F : X → P(Y ) is convex (closed) valued if F (x)
is convex (closed) for all x ∈ X. We say that F is bounded on bounded sets if
F (B) = ∪x∈BF (x) is bounded in Y for all B ∈ Pb(X)

(i.e., sup
x∈B
{sup{|y| : y ∈ F (x)}} <∞).

The set ΓF ⊂ X × Y, defined by

ΓF = {(x, y) : x ∈ X, y ∈ F (x)}

is called the graph of F . We say that F is has a closed graph, if ΓF is closed in
X × Y.

Next, we define the Haudorff metric on a metric space, it is used to quantify
the distance between subsets of the given metric space.



1.2 Some Properties of Set-Valued Maps 20

1.2.1 Hausdorff Metric Topology

Let (X, d) be a metric space. In the following, for given x ∈ X and A ∈ P(X),
the distance from x to A is defined by

d(x,A) = inf{d(x, a) : a ∈ A}.

Similarly, for y ∈ X and B ∈ P(X)

d(B, y) = inf{d(b, y) : b ∈ B}.

As usual, d(x, ∅) = d(∅, y) = +∞.

Definition 1.4. Let A,B ∈ P(X), we define

• H∗(A,B) = sup{d(a,B) : a ∈ A},

• H∗(B,A) = sup{d(A, b) : b ∈ B}.

Then, H(A,B) = max(H∗(A,B), H∗(B,A)) is the Hausdorff distance between
A and B.

Remark 1.5. Given ε > 0, let

Aε = {x ∈ X : d(x,A) < ε}

and
Bε = {x ∈ X : d(B, x) < ε}.

Then from the above definitions we have

H∗(A,B) = inf{ε > 0 : A ⊂ Bε}, H∗(B,A) = inf{ε > 0 : B ⊂ Aε}

and
H(B,A) = inf{ε > 0 : B ⊂ Aε, A ⊂ Bε}.

From the definition we can easily prove the following properties:

• H(A,A) = 0, for all A ∈ P(X),

• H(A,B) = H(B,A), for all A,B ∈ P(X),

• H(A,B) ≤ H(A,C) +H(C,B), for all A,B,C ∈ P(X).

Hence H(·, ·) is an extended pseudo-metric on P (X) (i.e., is a pseudo-metric
that can also take the value +∞). Moreover, we can prove that (see [115])

H(A,B) = 0, if and only if A = B.

So Pcl(X) given with the Hausdorff distance (H-distance), H(·, ·), becomes a
metric space.
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Lemma 1.6. ([107]) If {An, A} ∈ Pcl(X) and An → A, then

A =
⋂
n≥1

⋃
m≥n

Am =
⋂
ε≥0

⋃
n≥1

⋂
m≥n

(Am)ε.

Now let us check the completeness of the metric space (Pcl(X), H).

Theorem 1.7. ([107]) If (X, d) is a complete metric space, then so is the space
(Pcl(X), H).

Lemma 1.8. ([107]) If (X, d) is a complete metric space, then Pcp(X) is a
closed subset of (P(X), H); hence (P(X), H) is a complete metric space.

The next lemma is obvious.

Lemma 1.9. ([107]) Pcl,b(X) is a closed subset of (Pcl(X), H). If (X, d) is
complete metric space, then so is Pcl,b(X) = Pcl(X) ∩ Pb(X).

Let us that the metric space is a normed space.

Lemma 1.10. ([107]) If X is a normed space, then Pcl,cv(X) = Pcl(X) ∩
Pcv(X) is a closed subset of (Pcl(X), H).

Combining the previous three Lemmas, leads to the following result:

Proposition 1.11. ([107]) If X is a normed space, then Pcp,cv(X) ⊂ Pcl,b,cv(X)
⊂ Pcl,cv(X) and Pcp(X) ⊂ Pcl,b(X) are closed subspaces of (Pcl(X), H).

Remark 1.12. If X is a Banach space, then all the above subsets are complete
subspaces of the metric space (Pcl, H).

Next, let us derive two formulas for the Hausdorff distance. The first formula,
known as “Härmondar’s formula,” concerns sets in Pcl,b,cv(X) and introduces
the supremum of the support functions of these sets.

Definition 1.13. Let (X, ‖ · ‖) be a normed space, X∗ its topological dual,
and A ∈ P(X). The support function σ(·, A) of A is a function from X∗ into
IR = IR ∪ {+∞} defined by

σ(x∗, A) = sup{〈x∗, a〉 : a ∈ A},

where the duality bracket 〈·, ·〉 : X∗ ×X → R is defined by 〈φ, x〉 = φ(x).

Lemma 1.14. ([106]) If X is normed space and A,B ∈ Pcl,b,cv(X), then

H(A,B) = sup{|〈x∗, A〉 − 〈x∗, B〉 : ‖x‖ ≤ 1}.

The second formula for the Hausdorff distance, concerns nonempty subsets
of an arbitrary metric space and involves the distance functions from the sets.

Lemma 1.15. ([106]) If (X, d) is a metric space and A,B ∈ P (X), then

H(A,B) = sup{|d(x,A)− d(x,B)| : x ∈ X}.
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1.2.2 Vietoris Topology

Throughout this section, (X, τ) is a Hausdorff topological space (that is, τ
denotes the Haudorff topology on X). Given A ∈ P(X), we define

A− = {B ∈ P(X) : A ∩B 6= ∅} (those sets in X that hit A)

and
A+ = {B ∈ P(X) : B ⊆ A} (those sets in X that “miss” Ac).

Definition 1.16. The “upper Vietoris topology” (denoted by τ̂UV ) is generated
by the base

LUV = {U+ : U ∈ τ}.

• The “lower Vietoris topology” (denoted by τ̂LV ) is generated by the subbase

LLV = {U− : U ∈ τ}.

• The “Vietoris topology” (denoted by τ̂V ) is generated by the subbase LUV ∪
LLV .

Remark 1.17. It follows from the above definition, that a basic element for the
Vietoris topology τ̂V is given by

B(U, V1, . . . , Vn) = {A ∈ P(X) : A ⊆ U,A ∩ Vk 6= ∅, k = 1, . . . , n},

where U, V1, . . . , Vn ∈ τ.

The Vietoris topology is “natural” in the following sense.

Lemma 1.18. ([107]) If I : X → P(X) is the injection map defined by I(x) =
{x}, then I(·) is continuous when P(X) is equipped with the τ̂V -topology.

Example 1.19. The Vietoris topology τ̂V is not the finest topology on P(X)
for which I(·) is continuous.

To see this, let X be an infinite set equipped with the cofinite topology τc
defined by

τc = {U : U\X, is a finite set} ∪ {∅, X}.

Then the closed subsets of X are ∅, X, and finite subsets of X. Let F denote
the family of nonempty, finite subsets of X. Then I−1(F) is an open set in
(P (X), τ̂V ) and contains some infinite sets. So F 6∈ τ̂V and thus I(·) remains
continuous if on P (X), we consider a stronger topology obtained by F to the
original subset LUV ∪ LLV .

As in the above example, let F denote the family of nonempty and finite
subsets of X.

Proposition 1.20. ([107]) The family F is dense in (P(X), τ̂V ).

An immediate interesting consequence of the above proposition is the fol-
lowing lemma.
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Lemma 1.21. ([106]) If (X, τ) is a separable Haudorff space, then the space
(P(X), τ̂V ) is a separable topological space.

The next lemmas tells us that under some additional, reasonable conditions
on X, the topological space (Pcl(X), τ̂V ) has separation properties (that is,
Hausdorff properties).

Lemma 1.22. ([107]) If (X, τ) is a regular topological, then (Pcl(X), τ̂V ) is a
Hausdorff topological space.

Lemma 1.23. ([107]) If (X, τ) is a Hausdorff topological space, then (X, τ) is
compact if and only if (Pcl(X), τ̂V ) is compact.

In general, there is no simple relationship between the Hausdorff pseudo-
metric (respectively, metric) topology τ̂H and the Vietoris topology τ̂V , defined
on P(X) (respectively, on Pcl(X)). However, if we restrict ourselves to Pcp(X),
then we have the following result.

Lemma 1.24. ([106]) If (X, d) is a metric space, then on Pcp(X), the Haudorff
metric topology τ̂H and the Vietoris topology τ̂V coincide.

Next, let us give the continuity concepts for multifunctions.

1.2.3 Continuity Concepts and Their Relations

The three Vietoris topologies introduced in Section 1.2.2 lead to corresponding
continuity concepts for multifunctions.

Definition 1.25. Let F : X → P(Y ) be a multifunction (set-valued map).

• If F : X → (P(Y ), τUV ) is continuous, then F (·) is said to be upper
semicontinuous (u.s.c.)

• If F : X → (P(Y ), τLV ) is continuous, then F (·) is said to be lower
semicontinuous (l.s.c.)

• If F : X → (P(Y ), τV ) is continuous, then F (·) is said to be continuous
(or Vietoris continuous).

We present a local version of the above definition.

Definition 1.26. Let F : X → P(Y ) be a multifunction (set-valued map).

• F is said to be u.s.c at x0 ∈ X if and only if for each open subset U of Y
with F (x0) ⊆ U , there exists an open V of x0 such that for all x ∈ V , we
have F (x) ⊆ U.

• F is said to be l.s.c at x0 ∈ X if the set {x ∈ X : F (x) ∩ U 6= ∅} is open,
for any open set U in Y .
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Then, using the definition of the three Vietoris topologies, we immediately
deduce the following results. Let us recall that a set M with a preorder � is
directed, if every finite subset has an upper bound. A generalized sequence is a
map

µ ∈M 7→ xµ ∈ X,

where (X, τ) is an topological space. An element x ∈ X is the limit of (xµ)µ∈M
if, for every neighborhood V of x, there exists µ0 ∈ M such that xµ belong to
V, for all µ � µ0.

Proposition 1.27. ([107]) For a multifunction F : X → P(Y ), the following
are equivalent:

a) F u.s.c.,

b) F+(V ) is open in X for every V ⊆ Y open,

c) For every closed C ⊆ Y , F−(C) is closed in X,

d) F−(D) ⊆ F−(D),

e) For any x ∈ X, if {xα}α∈J is a generalized sequence, xα → x, and V is
an open subset of Y such that F (x) ⊆ V,
then there exists α0 ∈ J such that, for all α ∈ J with α ≥ α0, we have
F (xα) ⊆ V .

The corresponding result for lower semicontinuity reads as follows.

Proposition 1.28. ([107]) For a multifunction F : X → P(Y ), the following
are equivalent:

a) F l.s.c,

b) For every V ⊆ Y open, F−(V ) is open in X,

c) For every closed C ⊆ Y , F+(C) is closed in X,

d) F+(D) ⊆ F+(D),

e) F (A) ⊆ F (A), for every set A ⊆ X,

g) For any x ∈ X, if {xα}α∈J is a generalized sequence, xα → x,
then for every y ∈ F (x) there exists a generalized sequence {yα}α∈J ⊂ Y,
yα ∈ F (xα), yα → y.

Remark 1.29. In the case where X and Y are topological spaces with countable
bases, we may take usual sequences instead of generalized ones in conditions e)
and g) of Propositions 8 and 1.28, respectively.

Example 1.30. The following set-valued mappings are u.s.c:
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1) F : IR→ P(IR) defined by

F (x) =


1, x > 0,

{−1, 1} x = 0,

{−1} x < 0.

2) F : IR→ P(IR) defined by

F (x) =


x+ 1, x > 0,

[−1, 1] x = 0,

x− 1 x < 0.

3) F : IR → P(IR) defined by F (x) = [f(x), g(x)], where f, g : IR → IR are
l.s.c and u.s.c. functions, respectively.

Example 1.31. The following set-valued mappings are lower semicontinuous:

1) F : IR→ P(IR) defined by

F (x) =


[a, b], x 6= 0,

{α}, α ∈ [a, b].

2) F : IR→ P(IR) defined by

F (x) =


[0, |x|+ 1], x 6= 0,

{1}, x = 0.

3) F : IR → P(IR) defined by F (x) = [f(x), g(x)], where f, g : IR → IR are
u.s.c and l.s.c. functions, respectively.

4) Let X = Y = [0, 1]. Define

F (x) =

{
[0, 1], x 6= 1

2 ,

[0, 1
2 ], x = 1

2 .

In general, the concepts of upper semicontinuity and lower semicontinuity
are distinct. The following standard example illustrates this.
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Example 1.32. Let X = Y = IR. Define

F1(x) =

{ {1}, x 6= 0,

[0, 1], x = 0,
and F2(x) =

{ {0}, x = 0,

[0, 1], x 6= 0.

We can easily show that F1 is u.s.c. but not l.s.c., while F2 is l.s.c. but not
u.s.c.

Another useful continuity notion related to the previous ones, can be defined
using the graph of a multifunction.

Definition 1.33. A multifunction is said to be closed if its graph GraF is a
closed subset of the space X × Y.

Here are some equivalent formulations.

Theorem 1.34. [112] The following conditions are equivalent:

a) The multifunction F is closed,

b) For every (x, y) ∈ X × Y such that y 6∈ F (x), there exist neighborhoods
V (x) of x and W (y) of y such that F (V (x)) ∩W (y) = ∅,

c) For generalized sequences {xα}α∈J ⊂ X and {yα}α∈J ⊂ Y , if xα → x,
and yα ∈ F (xα) with yα → y, then y ∈ F (x).

Example 1.35. Let f : Y → X be a continuous onto map between topological
spaces. Then the inverse multifunction F : X → P(Y ) given by F (x) = f−1(x)
is closed.

Next, let us give a relationship between u.s.c. and closed multifunctions.

Theorem 1.36. [107] Let X be a topological space, Y a regular topological
space, and F : X → Pcl(Y ) an u.s.c. multifunction. Then F is closed.

In the next result, we determine sufficient conditions for a closed multifunc-
tion to be u.s.c. But before we need to give the following definition.

Definition 1.37. A multifunction F : X → P(Y ) is said to be:

a) compact, if its range F (X) is relatively compact in Y , i.e., F (X) is com-
pact in Y;

b) locally compact, if every point x ∈ X has a neighborhood V (x) such that
the restriction of F to V (x) is compact.

c) quasicompact, if its restriction to every compact subset

It is clear that a) =⇒ b) =⇒ c).

Theorem 1.38. [112] Let F : X → Pcp(Y ) be a closed locally compact multi-
function. Then F is u.s.c.
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Example 1.39. The condition of local compactness is essential. The multi-
function F : [−1, 1]→ Pcp(IR) defined by

F (x) =

{ { 1
x}, x 6= 0,

{0}, x = 0,

is closed but loses its upper semicontinuity at x = 0.

Lemma 1.40. ([106]) If F : X → P(Y ) has a closed graph and is locally
compact (i.e., for every x ∈ X, there exists a U ∈ N (x) such that F (U) ∈
Pcp(Y )), then F (·) is u.s.c.

Definition 1.41. A multifunction F : X → P(Y ) is said be quasicompact if its
restriction to any compact subset A ⊂ X is compact.

Lemma 1.42. [112] If G : X → Pcp(Y ) is quasicompact and has a closed graph,
then G is u.s.c.

Let us give concept of selection,

1.2.4 Selection Functions and Selection Theorems

The basic connection between “multivalued analysis” and “single-valued analy-
sis” is given by the concept of selection.

Definition 1.43. Let X,Y be nonempty sets and F : X → P(Y ). The single-
valued operator f : X → Y is called a selection of F if and only if f(x) ∈ F (x),
for each x ∈ X. The set of all selection functions for F is denoted by SF .

A famous result is the so-called “Michael selection theorem,” auxiliary results
proven with the use of the following lemmas.

Lemma 1.44. [107] Let (X, d) be a metric space, Y be a Banach space, F1 :
X → P(Y ) be l.s.c., and F2 : X → P(Y ) have an open graph such that F1(x) ∩
F2(x) 6= ∅, for each x ∈ X. Then the multivalued operator F1 ∩ F2 is l.s.c.

Lemma 1.45. [107] Let (X, d) be a metric space, Y be a Banach space, and
F : X → Pcv(Y ) be l.s.c. on X. Then, for each ε > 0 there exists a continuous
function fε : X → Y such that, for all x ∈ X, we have fε(x) ∈ V (F (x), ε).

Theorem 1.46. [107] (Michael’s selection theorem) Let (X, d) be a metric
space, Y be a Banach space, and F : X → Pcl,cv(Y ) be l.s.c. on X. Then there
exists f : X → Y that is a continuous selection of F.

For u.s.c. multifunctions, we have the following approximate selection theo-
rem given by Aubin and Cellina [10].

Theorem 1.47. ([148]) Let (X, d) be a metric space, Y be a Banach space and
F : X → Pcv(Y ) be u.s.c. on X. Then for every ε > 0 there exists fε : X → Y
that is locally Lipschitzian and satisfies:
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i) fε(X) ∈ ConvF (X),

ii) Grafε ⊂ V (GraF, ε),

where ConvF is the convex hull of F.

Let us consider now the selection theorem of Browder [42].

Theorem 1.48. [107] Let X and Y be Hausdorff topological vector spaces and
K ∈ Pcp(X). Let F : K → Pcv(Y ) be a multivalued operator such that F−1(y)
is open, for each y ∈ Y. Then there exists a continuous selection f of F .

Lut us give a new Hausdorff continuity concept.

1.2.5 Hausdorff Continuity

When Y is a metric space, by using the Hausdorff pseudometric, we can de-
fine three new continuity concepts that, in general, are distinct from the ones
considered in the previous sections. Throughout this section, X is a Hausdorff
topological space and Y is a metric space.

Definition 1.49. A multifunction F : X → P(Y ) is said to be:

a) H-u.s.c at x0 ∈ X, if H∗(F (x), F (x0)) is continuous at x0; i.e.,

∀ε > 0,∃Uε ∈ N (x0) : ∀x ∈ Uε =⇒ H∗(F (x), F (x0)) < ε,

where N (x) is a neighborhood filter of of x.

b) H-l.s.c at x0 ∈ X, if H∗(F (x0), F (x)) is continuous at x0; i.e.,

∀ε > 0,∃Uε ∈ N (x0) : ∀x ∈ Uε =⇒ H∗(F (x0), F (x)) < ε.

c) H-continuous at x0, if it is both H-u.s.c and H-l.s.c at x0.

We start by comparing these continuity concepts with the Vietoris ones
studied earlier.

Proposition 1.50. [107] If F : X → P(Y ) is u.s.c., then F (·) is H-u.s.c.

Example 1.51. A single valued mapping f : IR → IR is H-u.s.c. (H-l.s.c.) if
the set valued mapping F defined by F (t) = [0, f(t)] is upper (lower) semicon-
tinuous.

Example 1.52. The converse of Proposition 1.50 is not true in general. We
consider the counterexample F : [0, 1]→ P(IR) defined by

F (x) =

{
[0, 1], x ∈ [0, 1),

[0, 1), x = 1.

It easy to check that F (·) is H−u.s.c but not u.s.c at x = 1. Indeed note that
F+((−1, 1)) = {1} is not an open set.
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The second example involves a closed-valued multifunction.

Example 1.53. In the following counterexample, let F : IR → Pcl(IR2) be
defined by

F (x) =

{ {[0, z] : z ≥ 0}, x = 0,

{[x, z] : 0 ≤ z ≤ 1
z}, x 6= 0.

Then F (·) is H-u.s.c but not u.s.c, since for C = {[ 1
n , n] : n ≥ 1} ⊂ IR2 is closed,

but F−(C) is not closed in IR.

Proposition 1.54. ([106]) If F : X → Pcl(Y ) is H-u.s.c., then F (·) is closed.

For relations between H-u.s.c. multifunctions and single l.s.c, we state the
following results.

Proposition 1.55. ([106]) If F : X → Pcl(Y ) is H-u.s.c., then for every v ∈ Y,
x→ φv(x) = d(v, F (x)) is l.s.c.

Proposition 1.56. ([106]) If F : X → Pcl(Y ) is H-u.s.c., then F (·) is l.s.c.

Theorem 1.57. ([106]) Let F : X → Pcp(Y ). The following conditions are
equivalent:

a) F u.s.c. (resp. F l.s.c.),

b) H-u.s.c (resp. H-l.s.c.),

Definition 1.58. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz continuous if and only if there exists γ > 0 such that

H(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz continuous with γ < 1.

Remark 1.59. It clear that, if N is Lipschitz continuous, then N is H−continuous.

The following results are easily deduced from the limit properties.

Lemma 1.60. (see e.g. [11], Theorem 1.4.13) If G : X −→ Pcp(X) is u.s.c.,
then for any x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).

Lemma 1.61. (see e.g. [11, Lemma 1.1.9]) Let (Kn)n∈IN ⊂ K ⊂ X be a
sequence of subsets where K is compact in the separable Banach space X. Then

co (lim sup
n→∞

Kn) =
⋂
N>0

co (
⋃
n≥N

Kn),

where coA refers to the closure of the convex hull of A.
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Lemma 1.62. ([125]) Let X be a Banach space. Let F : [a, b]×X −→ Pcp,c(X)
be an L1-Carathéodory multivalued map with SF,y 6= ∅ and let Γ be a linear
continuous mapping from L1([a, b], X) into C([a, b], X). Then the operator

Γ ◦ SF : C([a, b], X) −→ Pcp,c(C([a, b], X)),
y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C([a, b], X)× C([a, b], X).

Lemma 1.63. (Mazur’s Lemma [139, Theorem 21.4]) Let E be a normed space
and {xk}k∈N ⊂ E be a sequence weakly converging to a limit x ∈ E. Then there

exists a sequence of convex combinations ym =

m∑
k=1

αmkxk with αmk > 0 for

k = 1, 2, . . . ,m and

m∑
k=1

αmk = 1, that converges strongly to x.

G is said to be completely continuous if it is u.s.c. and, for every bounded
subset A ⊆ X, G(A) is relatively compact, i.e. there exists a relatively compact
set K = K(A) ⊂ X such that G(A) =

⋃
{G(x), x ∈ A} ⊂ K. G is compact if

G(X) is relatively compact. It is called locally compact if, for each x ∈ X, there
exists an open neighborhood U of x such that G(U) is relatively compact. G is
quasicompact if, for each subset A ⊂ X, G(A) is relatively compact.

Next, let us give several concepts of measurability for a multifunction.

1.2.6 Measurable Multifunctions

Throughout this section, (Ω,Σ) is a measurable space and (X, d) a separable
metric space. We define several concepts of measurability for a multifunction
F : Ω→ P(X).

Definition 1.64. A multifunction F : Ω→ P(X), is said to be:

a) Strongly measurable, if for every closed C ⊆ X, we have

F−(C) = {ω ∈ Ω : F (ω) ∩ C 6= ∅} ∈ Σ;

b) Measurable, if for every open U ⊆ X, we have

F−(U) = {ω ∈ Ω : F (ω) ∩ U 6= ∅} ∈ Σ;

c) F (·) is said to b “K-measurable”, if for every compact K ⊆ X, we have

F−(K) = {ω ∈ Ω : F (ω) ∩K 6= ∅} ∈ Σ;

d) Graph measurable, if

GraF = {(ω, x) ∈ Ω×X : x ∈ F (ω)} ∈ Σ×B(X),



1.2 Some Properties of Set-Valued Maps 31

where B(X) is the σ-algebra generated by the family of all open sets from X.

Proposition 1.65. [107] If F : Ω→ P(X) is strongly measurable, then F (·) is
measurable.

We next state a few popular notions of measurability of multifunctions.

Proposition 1.66. [107] F : Ω → P(X) is measurable if and only if, for
every x ∈ X, ω → d(x, F (ω)) = inf{d(x, x′) : x′ ∈ F (ω)} is a measurable
IR+ = IR ∪ {∞}−valued function.

Proposition 1.67. [107] If F : Ω → P(X) is measurable, F (·) is graph mea-
surable.

Recalling that for U ⊆ X open, we have A∩U 6= ∅ if and only if A∩U 6= ∅,
we immediately have the following proposition.

Proposition 1.68. [107] F : Ω → P(X) is measurable if and only if F (·) is
measurable.

As it was the case in our topological study of multifunctions, the situation
simplifies considerably with compact valued multifunctions.

Proposition 1.69. [107] If F : Ω → Pcp(X), then F is strongly measurable if
and only if it is measurable.

Definition 1.70. A multi-valued map F : J → Pcl(Y ) is said measurable
provided for every open that U ⊂ Y, the set F+1(U) is Lebesgue measurable.

Lemma 1.71. ([47, 91]) The mapping F is measurable if and only if for each
x ∈ Y , the function ζ : J → [0,+∞) defined by

ζ(t) = dist(x, F (t)) = inf{|x− y| : y ∈ F (t)}, t ∈ J,

is Lebesgue measurable.

The following two lemmas are needed in Chapter 2. The first one is the
celebrated Kuratowski-Ryll-Nardzewski selection theorem.

Lemma 1.72. ([91, Theorem 19.7]) Let Y be a separable metric space and F :
[a, b]→ Pcl(Y ) a measurable multi-valued. Then F has a measurable selection.

Definition 1.73. A multi-valued map G : Ω → PP(X) has a Castaing repre-
sentation if there exists a family measurable single-valued maps gn : Ω → X
such that

G(ω) = {gn(ω) | n ∈ N}.

The following result is due to Castaing (see [47]).

Theorem 1.74. [107] Let X be a separable metric space. Then the multivalued
map G : Ω→ P(X) is measurable if and only if G has a Castaing representation.



1.2 Some Properties of Set-Valued Maps 32

Lemma 1.75. ([173, Lemma 3.2]) Let F : [0, b]→ P(Y ) be a measurable multi-
valued map and u : [a, b]→ Y a measurable function. Then for any measurable
v : [a, b] → (0,+∞), there exists a measurable selection fv of F such that for
a.e. t ∈ [a, b],

|u(t)− fv(t)| ≤ d(u(t), F (t)) + v(t).

Corollary 1.76. [64] Let F : [0, b] → Pcp(Y ) be a measurable multi-valued
map and u : [0, b] → E a measurable function. Then there exists a measurable
selection f of F such that for a.e. t ∈ [0, b],

|u(t)− f(t)| ≤ d(u(t), F (t)).

By the Mazur Lemma and the above corollary we can easily prove the fol-
lowing corollary.

Corollary 1.77. [64] Let G : [0, b] → Pwcp,cv(E) be a measurable multifunc-
tion and g : [0, b] → E a measurable function. Then there exists a measurable
selection u of G such that

|u(t)− g(t)| ≤ d(g(t), G(t)).

Corollary 1.78. [64] Let E be a reflexive Banach space, G : [0, b]→ Pcl,cv(E)
be a measurable multifunction, g : [0, b] → E be a measurable function, and let
there exist k ∈ L1([0, b], E) such that

G(t) ⊆ k(t)B(0, 1), t ∈ [0, b],

where B(0, 1) denotes the closed ball in E. Then there exists a measurable
selection u of G such that

|u(t)− g(t)| ≤ d(g(t), G(t)).

Definition 1.79. Let (E, | · |) be a Banach space. A multivalued map F :
[a, b]× E → P(E) is said to be Carathéodory if

(i) t 7−→ F (t, y) is measurable for all y ∈ E,

(ii) y 7−→ F (t, y) is u.s.c for almost each t ∈ [a, b].
If, in addition,

(iii) for each q > 0, there exists ϕq ∈ L1([a, b], IR+) such that

‖F (t, y)‖P = sup{|v| : v ∈ F (t, y)} ≤ ϕq(t), for all |y| ≤ q
and a.e. t ∈ [a, b],

then F is said to be L1-Carathéodory.

Next, we give some properties of decomposable selection.
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1.2.7 Decomposable Selection

Consider a measure space (T,F , µ), where F is a σ−algebra of subsets of T
and µ is a nonatomic probability measurable on F . If E is a Banach space, let
L1(J,E) be the Banach space of all functions u : T → E which are Bochner
µ−integrable.

In what follows, we let χS denote the characteristic function

χS(s) =

{
1, if s ∈ S,
0, if s /∈ S.

Definition 1.80. A set K ⊂ L1(J,E) is decomposable if, for all, u, v ∈ K,
uχA + vχT−A ∈ K, whenever A ∈ F . The collection of all nonempty decompos-
able subsets of L1(T,E) is denoted by D(L1(T,E)). For any set H ⊂ L1(T,E),
the decomposable hull of H is

dec[H] = ∩{K ∈ D(L1(T,E)) : H ⊂ K}.

Definition 1.81. Let Y be a separable metric space and let N : Y → P(L1([a, b], E))
be a multivalued operator. We say N has property (BC) if

1) N is l.s.c.,

2) N has nonempty closed and decomposable values.

Let F : [a, b] × E → P(E) be a multivalued map with nonempty compact
values. Assign to F the multivalued operator

F : C([a, b], E)→ P(L1([a, b], E))

by letting

F(y) = {w ∈ L1([a, b], E) : w(t) ∈ F (t, y(t)) a.e. t ∈ [a, b]}.

The operator F is called the Niemytzki operator associated with F.

Definition 1.82. Let F : [a, b] × E → Pcp(E) be a multivalued function. We
say F is of l.s.c type if its associated Niemytzki operator F is l.s.c and has
nonempty closed and decomposable values.

We need the following lemma in nonconvex case.

Lemma 1.83. [64] ([79]) Let F : J × E → Pcp(E) be a multivalued map and
E be a separable Banach space. Assume that

(i) F : J ×E −→ P(E) is a nonempty compact valued multivalued map such
that
a) (t, y) 7→ F (t, y) is L ⊗ B measurable;
b) y 7→ F (t, u) is lower semi-continuous for a.e. t ∈ J ;
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(ii) for each r > 0, there exists a function hr ∈ L1(J, IR+) such that

‖F (t, u)‖P ≤ hr(t), for a.e. t ∈ J
and for u ∈ X with ‖u‖ ≤ r.

Then F is of l.s.c. type.

Next we state a selection theorem due to Bressan and Colombo.

Theorem 1.84. ([36]) Let Y be separable metric space and let N : Y →
P(L1(J,E)) be a multi-valued operator that has property (BC). Then N has
a continuous selection, i.e., there exists a continuous function (single-valued)
g : Y → L1(J,E) such that g(u) ∈ N(u) for every u ∈ Y.

Given a separable Banach space (E, | · |), for a multi-valued map F : J×E →
P(E), denote

‖F (t, x)‖P := sup{|v| : v ∈ F (t, x)}.

Definition 1.85. F is said

(a) integrable if it has a summable selection f ∈ L1(J,E),

(b) integrably bounded, if there exists q ∈ L1(J, IR+) such that

‖F (t, z)‖P ≤ q(t), for a.e. t ∈ J and every z ∈ E.

Definition 1.86. A multi-valued map F is called a Carathéodory function if

(a) the function t 7→ F (t, x) is measurable for each x ∈ E;

(b) for a.e. t ∈ J, the map x 7→ F (t, x) is u.s.c.

Furthermore, F is L1−Carathéodory if it is locally integrably bounded, i.e., for
each positive r, there exists hr ∈ L1(J, IR+) such that

‖F (t, x)‖P ≤ hr(t), for a.e. t ∈ J and all |x| ≤ r.

Lemma 1.87. [125]. Given a Banach space E, let F : [a, b]×E −→ Pcp,cv(E) be
a L1-Carathédory multi-valued map such that for each y ∈ C([a, b], E), SF,y 6= ∅
and let Γ be a linear continuous mapping from L1([a, b], E) into C([a, b], E).
Then the operator

Γ ◦ SF : C([a, b], E) −→ Pcp,cv(C([a, b], E)),
y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

has a closed graph in C([a, b], E)× C([a, b], E).

For each x ∈ C(J,E), the set

SF,x =
{
f ∈ L1(J,E) : f(t) ∈ F (t, x(t)) for a.e. t ∈ [0, b]

}
is known as the set of selection functions.
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Closed graphs

We denote the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈ G(x)}.

Definition 1.88. G is closed if Gr(G) is a closed subset of X×Y, i.e. for every
sequences (xn)n∈IN ⊂ X and (yn)n∈IN ⊂ Y , if xn → x∗, yn → y∗ as n → ∞
with yn ∈ F (xn), then y∗ ∈ G(x∗).

We recall the following two results; the first one is classical.

Lemma 1.89. ([59], Proposition 1.2) If G : X → Pcl(Y ) is u.s.c., then Gr(G)
is a closed subset of X×Y. Conversely, if G is locally compact and has nonempty
compact values and a closed graph, then it is u.s.c.

Lemma 1.90. If G : X → Pcp(Y ) is quasicompact and has a closed graph, then
G is u.s.c.

Remark 1.91.

(a) For each x ∈ C(J,E), the set SF,x is closed whenever F has closed values.
It is convex if and only if F (t, x(t)) is convex for a.e. t ∈ J.

(b) From [164], Theorem 5.10 (see also [125] when E is finite-dimensional),
we know that SF,x is nonempty if and only if the mapping t 7→ inf{|v| :
v ∈ F (t, x(t))} belongs to L1(J). It is bounded if and only if the mapping
t 7→ ‖F (t, x(t))‖P = sup{|v| : v ∈ F (t, x(t))} belongs to L1(J); this partic-
ularly holds true when F is L1−Carathéodory. For the sake of completeness, we
refer also to Theorem 1.3.5 in [112] which states that SF,x contains a measurable
selection whenever x is measurable and F is a Carathéodory function.

For additional details on multivalued maps, the books of Aubin and Cellina
[10], Aubin and Frankowska [11], Brown et al. [43], Deimling [59], Górniewicz
[91, 92], Hu and Papageorgiou [106], Petruşel [148], Smirnov [156], and Tol-
stonogov [159] are excellent sources.

1.3 Fixed Point Theorems

First, we state a result known as the Nonlinear Alternative. By U and ∂U we
denote the closure of U and the boundary of U , respectively.

Lemma 1.92. (Nonlinear Alternative [89]) Let X be a Banach space with C a
closed and convex subset of X. Assume U is a relatively open subset of C, with
0 ∈ U , and G : U −→ C is a compact map. Then either,

(i) G has a fixed point in U , or

(ii) there is a point u ∈ ∂U and λ ∈ (0, 1), with u = λG(u).

There is also a multivalued version of the Nonlinear Alternative.
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Lemma 1.93. ([89]) Let X be a Banach space with C ⊂ X convex. Assume U
is a relatively open subset of C, with 0 ∈ U , and let G : X → Pcp,c(X) be an
u.s.c. and compact map. Then either,

(a) G has a fixed point in U , or

(b) there is a point u ∈ ∂U and λ ∈ (0, 1), with u ∈ λG(u).

Lemma 1.94. ([55, 91]) Let (X, d) be a complete metric space. If N : X →
Pcl(X) is a contraction, then FixN 6= ∅. Moreover, if N has compact values,
then the set Fix(N) is compact.

Definition 1.95. A multivalued map F : X → P(E) is called an admissible
contraction with constant {kα}α∈Λ if, for each α ∈ Λ, there exists kα ∈ (0, 1)
such that

i) dα(F (x), F (y)) ≤ kαdα(x, y) for all x, y ∈ X.

ii) For every x ∈ X and every ε ∈ (0,∞)Λ, there exists y ∈ F (x) such that

dα(x, y) ≤ dα(x, F (x)) + εα for every α ∈ Λ.

The following nonlinear alternative is due to Frigon.

Lemma 1.96. (Nonlinear Alternative, [78]) Let E be a Fréchet space and U an
open neighborhood of the origin in E, and let N : U → P(E) be an admissible
multivalued contraction. Assume that N is bounded. Then one of the following
statements holds:

(C1) N has at least one fixed point;

(C2) there exists λ ∈ [0, 1) and x ∈ ∂U such that x ∈ λN(x).

1.4 Conclusion

In this chapter, we have introduce some notations, definitions, lemmas, and fixed
point theorems that are used throughout the Chapter 2. These include some
topological and analytical properties of set-valued mappings, followed by some
fixed point results and measure of noncompactness results in those contexts.
The second chapter is devoted to existence results of solutions for the first order
impulsive functional differential inclusions problem.



Chapter 2

Existence and solution sets
of impulsive functional
differential inclusions with
multiple delay

In this chapter, we present some existence results of solutions and study the
topological structure of solution sets for the following first-order impulsive neu-
tral functional differential inclusions with initial condition:

d
dt [y(t)− g(t, yt)] ∈ F (t, yt) +

n∗∑
i=1

y(t− Ti), a.e. t ∈ J\{t1, . . . , tm},

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0],

where J := [0, b] and 0 = t0 < t1 < . . . < tm < tm+1 = b (m ∈ N∗), F is a set-
valued map and g is single map. The functions Ik characterize the jump of the
solutions at impulse points tk (k = 1, . . . ,m). Our existence result relies on a
nonlinear alternative for compact u.s.c. maps. Then, we present some existence
results and investigate the compactness of solution set, some regularity of op-
erator solutions and absolute retract(in short AR).The continuous dependence
of solutions on parameter in the convex case is also examined. Applications to
a problem from control theory are provided.

2.1 Introduction

The dynamics of many processes in physics, population dynamics, biology,
medicine may be subject to abrupt changes such as shocks, perturbations (see for
instance [3, 117] and the references therein). These perturbations may be seen
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as impulses. For instance, in the periodic treatment of some diseases, impulses
may correspond to the administration of a drug treatment or a missing product.
In environmental sciences, impulses can correspond to seasonal changes of the
water level of artificial reservoirs. Their models may be described by impulsive
differential equations. The mathematical study of boundary value problems for
differential equations with impulses were first considered in 1960 by Milman and
Myshkis [136] and then followed by a period of active research that culminated
in 1968 with the monograph by Halanay and Wexler [96].

Moreover, it is well known that time delay is an important factor of math-
ematical models in ecology. Usually, time delays in those models are given in
two ways: discrete delay and distributed time delay (continuous delay)[147].

For the impulsive model with distributed time delay, papers [94, 157, 133,
111] have investigated some ecological models with distributed time delay and
impulsive control strategy. Impulsive functional differential equations with mul-
tiple delay arise in the study of pulse vaccination strategies.

Important contributions to the study of the mathematical aspects of such
equations have been undertaken in [19, 124, 144, 153] among others. Functional
differential equations and inclusions with impulsive effects with fixed moments
have been recently addressed by Djebali et al [62], Yujun [171] and Yujun and
Erxin [172]. Some existence results on impulsive functional differential equations
with finite or infinite delay may be found in [142, 143] as well. During the
last couple of years, impulsive ordinary differential inclusions and functional
differential inclusions with different conditions have been intensely studied (see
the book by Aubin [8], as well as the paper [103] and the references therein).

In this chapter, we consider first order impulsive functional differential in-
clusions with multiple delays of the form:

d
dt [y(t)− g(t, yt)] ∈ F (t, yt) +

n∗∑
i=1

y(t− Ti), a.e t ∈ J\{t1, . . . , tm}

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m
y(t) = φ(t), t ∈ [−r, 0],

(2.1)

where n∗ ∈ {1, 2, . . .}, r = max
1≤i≤n∗

Ti, J := [0, b], F : J × D → Rn is given

function, D = (C[−r, 0],Rn), 0 = t0 < t1 < . . . < tm < tm+1 = b and Ik ∈
C(Rn,Rn), k = 1, 2, . . . ,m, are given functions satisfying some assumptions that
will be specified later.

For any function y defined on [−r, b] and any t ∈ J\{t1, . . . , tm} we denote
by yt the element of D defined by yt(θ) = y(t+ θ), θ ∈ [−r, 0].

For single case, some existence results of solutions for Problem (2.1) have
been obtained in [142, 143]. Our goal in this chapter is to extend some of these
results to the case of differential inclusions; moreover the right-hand side multi-
valued nonlinearity may be either convex or nonconvex.
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In the second part of this chapter, we prove some existence results based on
the nonlinear alternative of Leary Schauder type (in the convex case), on the
Bressan-Colombo selection theorem and on the Covitz and Nadler fixed point
theorem for contraction multi-valued maps in a generalized metric space (in
the nonconvex case). The compactness of the solution set and some geometric
properties are also provided. This is the content of Section 3. We will also
discuss the question of dependance on parameters in Section 4.

2.2 Existence results

Let J0 = [0, t1], Jk = (tk, tk+1], k = 1, . . . ,m and let yk be the restriction of
a function y to Jk. In order to define solutions for Problem (2.1), consider the
space of piece-wise continuous functions

PC = {y : [0, b]→ IRn, yk ∈ C(Jk, IR
n), k = 0, . . . ,m, such that

y(t−k ) and y(t+k ) exist and satisfy y(tk) = y(t−k ) for k = 1, . . . ,m}.

Endowed with the norm

‖y‖PC = max{‖yk‖∞, k = 0, . . . ,m}, ‖yk‖∞ = sup
t∈[tk,tk+1]

|y(t)|

it is a Banach space. Moreover if

Ω = {y : [−r, b]→ IRn : y ∈ PC([0, b], IRn) ∩D}

then Ω is a Banach space with the norm

‖y‖Ω = sup{|y(t)| : t ∈ [−r, b]}.

Definition 2.1. A function y ∈ Ω ∩ ∪k=m
k=1 AC(Jk,R), is said to be a solution

of (2.1) if y satisfies the equation
d

dt
(y(t) − g(t, yt)) = v(t) +

n∗∑
i=1

y(t − Ti) a.e.

on J , t 6= tk, k = 1, . . . ,m and the conditions y(t+k ) − y(t−k ) = Ik(y(t−k )),
k = 1, . . . ,m, v ∈ SF,y and y(t) = φ(t) on [−r, 0].

Lemma 2.2. Let f : D → Rn be a continuous function and assume that the
function t→ g(t, yt) belongs to PC. Then y is the unique solution of the initial
value problem


d
dt (y(t)− g(t, yt)) = f(yt) +

n∗∑
i=1

y(t− Ti) a.e t ∈ J\{t1, . . . , tm}

y(t+k )− y(tk) = Ik(y(t−k )), k = 1, . . . ,m
y(t) = φ(t), t ∈ [−r, 0],

(2.2)
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where r = max
1≤i≤n∗

Ti if and only if y is a solution of impulsive integral functional

differential equation

y(t) =



φ(t), t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ)−
∑

0<tk<t

∆k(g(t−k , yt−k
))

+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds+

∫ t

0

f(ys)ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), t ∈ [0, b],

(2.3)

where ∆k(g(t−k , yt−k
)) = g(t+k , yt+k

)− g(tk, ytk).

Proof. Denote R0 =

n∗∑
i=1

∫ t1

0

y(s − Ti)ds and Rk =

n∗∑
i=1

∫ tk+1

tk

y(s − Ti)ds,

k = {1, . . . ,m}. Let y be a possible solution of the problem (2.2). Then y|[−r,t1]

is a solution to
d

dt
(y(t)− g(t, yt)) = f(yt) +

n∗∑
i=1

y(t− Ti) for t ∈ [0, b]. Assume

that tk < t ≤ tk+1, k = 1, . . . ,m. By integration of above inequality yields

y(t−1 )− y(0)− (g(t−1 , yt−1
)− g(0, φ)) =

∫ t1

0

f(ys)ds+R0,

y(t−1 )− y(0)− (g(t−1 , yt−1
)− g(0, φ)) =

∫ t1

0

f(ys)ds+R0,

y(t−2 )− y(t+1 )− (g(t−2 , yt−2
)− g(t+1 , yt+1

)) =

∫ t2

t1

f(ys)ds+R1,

y(t−2 )− y(t−1 )− (g(t−2 , yt−2
)− g(t+1 , yt+1

)) = I1(y(t−1 )) +

∫ t2

t1

f(ys)ds+R1,

...

...

...

y(t−k )− y(t+k−1)− (g(t−k , yt−k
)− g(t+k−1, yt+k−1

)) =

∫ tk

tk−1

f(ys)ds+Rk−1,

y(t−k )− y(t−k−1)− (g(t−k , yt−k
)− g(t+k−1, yt+k−1

)) = Ik(y(t−k )) +

∫ tk

tk−1

f(ys)ds+Rk−1,

y(t)− y(t−k )− (g(t, yt)− g(t+k , yt+k
)) = Ik(y(t−k )) +

∫ t

tk

f(ys)ds+Rk.

Then
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y(t1)− y(0)− (g(t1, yt1)− g(0, φ)) =

∫ t1

0

f(ys)ds+R0,

y(t2)− y(t−1 )− (g(t2, yt2)− g(t+1 , yt+1
)) = I1(y(t−1 )) +

∫ t2

t1

f(ys)ds+R1,

...

y(t−k )− y(tk−1)− (g(tk, ytk)− g(t+k−1, yt+k−1
)) = Ik(y(t−k )) +

∫ tk

tk−1

f(ys)ds+Rk−1,

y(t)− y(t−k )− (g(t, yt)− g(t+k , yt+k
)) = Ik(y(t−k )) +

∫ t

tk

f(ys)ds+

n∗∑
i=1

∫ t−Ti

tk−Ti
y(s)ds,

Adding these together, we get

y(t) = y(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

(g(tk, ytk)− g(t+k , yt+k
)) +

∑
0<tk<t

Ik(y(t−k ))

+

∫ t

0

f(ys)ds+

n∗∑
i=1

∫ t−Ti

−Ti
y(s)ds,

y(t) = φ(0) + g(t, yt)− g(0, φ)−
∑

0<tk<t

∆k(g(t−k , yt−k
)) +

∑
0<tk<t

Ik(y(t−k ))

+

∫ t

0

f(ys)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds.

Remark 2.3. If g continuous function then the solution of the problem (2.2)
is of the form

y(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k )) +

∫ t

0

f(ys)ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, t ∈ [0, b].

2.2.1 Convex case

Let us introduce the following hypotheses:

(H1) The function F : J ×D → Pcp,cv(IRn) is Carathéodory map;

(H2) There exists a function p ∈ L1(J,R+) and a continuous nondecreasing
function ψ : [0,∞)→ [0,∞) such that

‖F (t, x)‖P ≤ p(t)ψ(‖x‖D) for a.e. t ∈ J and each x ∈ D

with ∫ ∞
c

ds

s+ ψ(s)
=∞,
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where

c =
1

1− d1
[‖φ‖D + d2 + ‖g(0, φ)‖D +

n∗∑
i=1

Ti‖φ‖D],

(H3) For every bounded set B ∈ Ω, the set {t : t 7→ g(t, yt), y ∈ B} is
equicontinuous in Ω, g is continuous and there exist constants d1 ∈ [0, 1)
and d2 > 0 such that

‖g(t, x)‖D ≤ d1‖x‖D + d2 for all x ∈ D.

Theorem 2.4. Assume that the hypotheses (H1) − (H3) hold. Then the IVP
(2.1) has at least one solution.

Proof. Transform the problem (2.1) into a fixed point problem. Consider the
operator N : Ω→ P(Ω) defined by:

N(y) =


h ∈ Ω : h(t) =



φ(t), if t ∈ [−r, 0];
φ(0) + g(t, yt)− g(0, φ)+∑
0<tk<t

Ik(y(t−k )) +

∫ t

0

f(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, if t ∈ J,


where f ∈ SF,y. Clearly, the fixed points of the operator N are solution of the
problem (2.1). We shall show that N satisfies the assumptions of the nonlinear
alternative of Leray-Schauder type [89]. The proof is given in several steps.

Step 1: N(y) is convex for each y ∈ Ω.
Indeed, if h1, h2 belong to N(y) then there exist f1, f2 ∈ SF,y such that, for
each t ∈ J , we have

hi(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k )) +

∫ t

0

fi(s)ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
y(s)ds, i = 1, 2.

Let 0 ≤ d ≤ 1. Then for each t ∈ J , we have

(dh1 + (1− d)h2)(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ))

+

∫ t

0

[df1(s) + (1− d)f2(s)]ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds.

Since SF,y is convex (because F has convex value) then

dh1 + (1− d)h2 ∈ N(y).
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Step 2: N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant l such that for
each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q} one has ‖N(y)‖P(Ω) ≤ l. Let y ∈ Bq and
h ∈ N(y). Then there exist f ∈ SF,y such that, for each t ∈ J , we have

h(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k )) +

∫ t

0

f(s)ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds.

By (H1)-(H2) we have, for each t ∈ J ,

|h(t)| ≤ |φ(0)|+ ‖g(t, yt)‖D + ‖g(0, φ)‖D +
∑

0<tk<t

|Ik(y(t−k ))|

+

∫ t

0

|f(s)|ds+

n∗∑
i=1

∫ t−Ti

0

|y(s)|ds+

n∗∑
i=1

∫ 0

−Ti
|φ(s)|ds.

≤ ‖φ‖D + d1q + d2 + ‖g(0, φ)‖D +

m∑
k=1

sup
u∈B(0,q)

|Ik(u)|

+

∫ t

0

p(s)ψ(‖ys‖D)ds+ bqn∗ + r||φ||n∗.

≤ ‖φ‖+ d1q + d2 + ‖g(0, φ)‖D +m sup
u∈B(0,q)

|Ik(u)|

+ b‖p‖L1ψ(q) + bqn∗ + r‖φ‖n∗ := l.

Step 3: N maps bounded sets into equicontinuous sets of Ω.

Using (H3) it suffices to show that the operator N∗ : Ω→ P(Ω) defined by

N∗(y) =


h ∈ Ω : h(t) =



φ(t), if t ∈ [−r, 0];

φ(0) +

∫ t

0

f(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds

+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds+

∑
0<tk<t

Ik(y(t−k )), if t ∈ J,


where f ∈ SF,y.

As in [32] (Th 3.2) we can prove that N∗(Bq) is equicontinuous.

Step 4: N has closed graph.
Let yn → y∗, hn ∈ N(yn) and hn → h∗. We shall prove that h∗ ∈ N(y∗).

hn ∈ N(yn) means that there exists fn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = φ(0) + g(t, ynt ) + g(0, φ) +
∑

0<tk<t

Ik(yn(t−k ))

+

∫ t

0

fn(s)ds+

n∗∑
i=1

∫ t−Ti

0

yn(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds.
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We have to prove that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = φ(0) + g(t, y∗t )− g(0, φ) +
∑

0<tk<t

Ik(y∗(t−k ))

+

∫ t

0

f∗(s)ds+

n∗∑
i=1

∫ t−Ti

0

y∗(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds.

Clearly since Ik, k = 1, . . . ,m, are continuous, we obtain that∣∣∣∣∣
∣∣∣∣∣
(
hn(t)− φ(0)− g(t, ynt )− g(0, φ)−

∑
0<tk<t

Ik(yn(t−k ))−
n∗∑
i=1

∫ t−Ti

0

yn(s)ds

−
n∗∑
i=1

∫ 0

−Ti
φ(s)ds

)
−

(
h∗(t)− φ(0)− g(t, y∗t )− g(0, φ)−

∑
0<tk<t

Ik(y∗(t−k ))

−
n∗∑
i=1

∫ t−Ti

0

y∗(s)ds−
n∗∑
i=1

∫ 0

−Ti
φ(s)ds

)∣∣∣∣∣
∣∣∣∣∣
Ω

tends to 0 as n→∞.
Consider the operator

Γ : L1 → Ω,

f 7→ Γ(f)(t) =

∫ t

0

f(s)ds.

We can see that the operator Γ is linear and continuous. Indeed, one has

‖Γ‖Ω ≤ ‖p‖L1ψ(q).

From Lemma 1.87, It follows that Γ ◦ SF is a closed graph operator. Since

hn(t)− φ(0)− g(t, ynt )− g(0, y0)−
∑

0<tk<t

Ik(yn(t−k ))

−
n∗∑
i=1

∫ t−Ti

0

yn(s)ds−
n∗∑
i=1

∫ 0

−Ti
φ(s)ds ∈ Γ(SF,yn),

it follows from Lemma 1.87 that for some f∗ ∈ SF,y∗ , that

h∗(t) =



φ(t), t ∈ [−r, 0]

φ(0) + g(t, y∗t )− g(0, φ) +
∑

0<tk<t

Ik(y∗(t−k ))

+

∫ t

0

f∗(s)ds+

n∗∑
i=1

∫ t−Ti

0

y∗(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, t ∈ J.

Step 5: A priori bounds on solutions.
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Let y be a possible solution of the problem (2.1). Let y be a possible solution
of the equation y ∈ λN(y), for some λ ∈ (0, 1). Then there exists f ∈ SF,y such
that

y(t) =



φ(t), if t ∈ [−r, 0];

φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ))

+

∫ t

0

f(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, if t ∈ J.

Thus

y(t) = λ

[
φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds+

∫ t

0

f(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds

]
,

for all t ∈ [0, t1]. Hence

|y(t)| ≤ |φ(0)|+ ‖g(t, yt)‖D + ‖g(0, φ)‖D

+

n∗∑
i=1

∫ 0

−Ti
|φ(s)|ds+

∫ t

0

|f(s)|ds+

n∗∑
i=1

∫ t−Ti

0

|y(s)|ds

≤ ‖φ‖D + d1‖yt‖D + d2 + ‖g(0, φ)‖D

+

n∗∑
i=1

Ti‖φ‖∞ + n∗

∫ t

0

|y(s)|ds+

∫ t

0

p(s)ψ(‖ys‖D)ds.

(2.4)

We consider the function

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, t ∈ [0, t1]. (2.5)

Therefore

µ(t) ≤ 1

1− d1

[
L∗ +

∫ t

0

p∗(s)(µ(s) + ψ(µ(s)))ds

]
, (2.6)

where

L∗ = ‖φ‖D + d2 + ‖g(0, φ)‖D +

n∗∑
i=1

Ti‖φ‖D

and
p∗(t) = n∗ + p(t), t ∈ [0, t1].

Denoting by β(t) the right hand side of the last inequality we have

µ(t) ≤ β(t), t ∈ [0, t1],

and

β(0) =
1

1− d1
[‖φ‖D + d2 + ‖g(0, φ)‖D +

n∗∑
i=1

Ti‖φ‖D],
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and

β′(t) =
1

1− d1
p∗(t)[ψ(µ(t)) + µ(t)]

≤ 1

1− d1
p∗(t)[ψ(β(t)) + β(t)].

This implies that for each t ∈ [0, t1]∫ β(t)

β(0)

ds

ψ(s) + s
≤ 1

1− d1

∫ t1

0

p∗(s)ds <
1

1− d1

∫ ∞
c

ds

ψ(s) + s
.

Thus from (H2) there exists a constant K1 such that β(t) ≤ K1, t ∈ [−r, t1],
and hence

sup{|y(t)| : t ∈ [−r, t1]} ≤ K1.

• Let t ∈ (t1, t2], then

y(t) = λ

[
y(t+1 ) + g(t, yt)− g(t1, yt1) +

∫ t

t1

f(s)ds+

n∗∑
i=1

∫ t−Ti

t1−Ti
y(s)ds

]
and

y(t+1 ) = y(t1) + I1(y(t1)).

Thus
|y(t+1 )| ≤ |y(t1)|+ |I1(y(t1))|

≤ K1 + sup{|I1(u)| : |u| ≤ K1}.
By analogies of above proof we can show that there exists K2 > 0 such that

sup{|y(t)| : t ∈ [t1, t2]} ≤ K2.

• We continue this process and also take into account that

y(t) = λ

[
y(t+m) + g(t, yt)− g(tm, ytm) +

∫ t

tm

f(s)ds+

n∗∑
i=1

∫ t−Ti

tm−Ti
y(s)ds

]
,

t ∈ (tm, b], and
y(t+m) = y(tm) + I1(y(tm)).

We obtain that there exists a constant Km such that

sup{|y(t)| : t ∈ [tm, b]} ≤ Km.

Consequently, for each possible solution y to z = λP (z) for some λ ∈ (0, 1)we
have

‖y‖Ω ≤ max{Ki : i = 1, . . . ,m} := K.

Set
U = {y ∈ Ω : ‖y‖Ω < K + 1}.

and consider the operator N : U → Pcv,cp(Ω). From the choice of U , there
is no y ∈ ∂U such that y ∈ γN(y) for some γ ∈ (0, 1). As a consequence of the
Leray-Schauder nonlinear alternative [89], we deduce that N has a fixed point
y in U which is a solution of Problem (2.1).
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2.2.2 The nonconvex case

In this section we present a result for a problem (2.1) in the spirit of the linear
alternative of Laray-Schauder type [89] for single-valued maps, combined with
a selection theorem due to Bressan and Colombo [36] for lower semi-continuous
multivalued maps with decomposable values.
Let A be a subset of J×D. A is L⊗B measurable if A belongs to the σ-algebra
generated by all sets of the form J × D where J is Lebesgue measurable in J
and D is Borel measurable in D. A subset A of L1(J,E) is decomposable if for
all w, v ∈ A and J ⊂ J measurable, wXJ + vXJ−J ∈ A, where X stands for the
characteristic function.
Let F : IRn → P(IRn) be a multivalued operator with nonempty closed values.
G is lower semi-continuous (l.s.c) if the set {x ∈ X : F (x) ∩B 6= ∅} is open for
any open set B ∈ IRn.

Definition 2.5. Let Y be a separable metric space and let N : Y → P (L1(J, IRn))
be a multivalued operator. We say that N has property (BC) if

1. N is lower semi-continuous (l.s.c.);

2. N has nonempty closed and decomposable values.

Let F : J × D → P(IRn) be a multivalued map with nonempty compact
values. Assign to F the multivalued operator

F : Ω→ P(L1(J, IRn))

by letting

F(y) = {g ∈ L1(J, IRn) : v(t) ∈ F (t, yt) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated to F .

Definition 2.6. Let F : J × IRn → P(IRn) be a multivalued function with
nonempty compact values. We say F is of lower semi continuous type (l.s.c.
type)if its associated Niemytzky operator F is lower semi-continuous and has
nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo [36].

Theorem 2.7. Let Y be a separable metric space and let N : Y → P(L1(J, IRn))
be a multivalued operator which has property (BC). Then N has a continu-
ous selection. i.e. there exists a continuous function (single-valued) g̃ : Y →
L1(J, IRn) such that g̃(y) ∈ N(y) for every y ∈ Y .

Let us introduce the following hypotheses which are used in the sequel:

(A1) F : J ×D → P(IRn) is nonempty compact valued multivalued map such
that
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a) (t, x) 7→ F (t, x) is L ⊗ B mesurable;

b) x 7→ F (t, x) is lower semi-continuous for a.e. t ∈ J .

(A2) For each q > 0, there exists a function hq ∈ L1(J,R+) such that

‖F (t, x)‖P ≤ hq(t) for a.e. t ∈ J and for x ∈ D with ‖x‖D ≤ q.

The following lemma is crucial in the proof of our main theorem.

Lemma 2.8. [79] Let F : J×D → P(IRn) be a multivalued map with noneempty,
compact values. Assume that (A1)− (A2) hold. Then f is of l.s.c. type.

Theorem 2.9. Suppose that (H2) − (H3) and (A1) − (A2) hold. Then the
problem (2.1) has at least one solution.

Proof. (A1) and (A2) imply by Lemma 2.8 that F is of lower semi-continuous
type. Then from Theorem 2.7 there exists a continuous function f : Ω →
L1(J, IRn) such that f(y) ∈ F(y) for all y ∈ Ω. Consider the following problem

d
dt [y(t)− g(t, yt)] = f(yt) +

∑n∗
i=1 y(t− Ti), a.e t ∈ J\{t1, . . . , tm}

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0]

(2.7)

Remark 2.10. If y ∈ Ω is a solution of the problem (2.7), then y is solution
to the problem (2.1).

Consider the operator N1 : Ω→ Ω defined by

N1(y) =



φ(t), if t ∈ [−r, 0];

φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ))

+

∫ t

0

f(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, if t ∈ J.

As in Theorem 2.4, we can prove that the single-valued operator G is compact
and there exists M∗ > 0 such that for all possible solutions y, we have ‖y‖Ω <
M∗. Now, we only check that N1 is continuous. Let {yn : n ∈ IN} converges to
some limit y∗ in Ω. Then

‖N1(yn)−N1(y)‖Ω ≤ ‖g(., yn. )− g(., y.)‖D +

∫ b

0

|f(yns )− f(ys)|ds

+

m∑
k=1

|Ik(yn(t−k ))− Ik(y(t−k ))|.

Since the functions f and Ik, k = 1, . . . ,m are continuous, we have

‖N1(yn)−N1(y)‖Ω ≤ ‖g(., yn. )− g(., y.)‖D +

∫ b

0

|f(yns )− f(ys)|ds

+
m∑
k=1

|Ik(yn(t−k ))− Ik(y(t−k ))|
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which, by continuity of f and Ik (k = 1, . . . ,m), tends to 0, as n→∞. Let

U = {y ∈ Ω : ‖y‖Ω < M∗}.

From the choice of U, there is no y ∈ ∂U such that y = λN1y for in λ ∈ (0, 1).
As a consequence of the nonlinear alternative of the Leray-Schauder type [89],
we deduce that N1 has a fixed point y ∈ U which is a solution of Problem (2.7),
hence a solution to the problem (2.1).

In this part, we present a second existence result to Problem (2.1) with a
nonconvex valued right-hand side. First, consider the Hausdorff pseudo-metric
distance

Hd : P(E)× P(E) −→ IR+ ∪ {∞}

defined by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
where d(A, b) = inf

a∈A
d(a, b) and d(a,B) = inf

b∈B
d(a, b). Then (Pb,cl(E), Hd) is

a metric space and (Pcl(X), Hd) is a generalized metric space (see [115]). In
particular, Hd satisfies the triangle inequality.

Definition 2.11. A multi-valued operator N : E → Pcl(E) is called

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ E,

(b) a contraction if it is γ-Lipschitz with γ < 1.

Notice that if N is γ−Lipschitz, then for every γ′ > γ,

N(x) ⊂ N(y) + γ′d(x, y)B(0, 1), ∀x, y ∈ E.

Our proofs are based on the following classical fixed point theorem for contrac-
tion multi-valued operators proved by Covitz and Nadler in 1970 [55] (see also
Deimling, [59] Theorem 11.1).

Lemma 2.12. Let (X, d) be a complete metric space. If G : X → Pcl(X) is a
contraction, then FixN 6= ∅.

Let us introduce the following hypotheses:

(A1) F : J ×D −→ Pcp(IRn); t 7−→ F (t, x) is measurable for each x ∈ D.

(A2) There exists constants ck, such that

|Ik(x)− Ik(y)| ≤ ck|x− y|, for each k = 1, . . . ,m, and for all x, y ∈ IRn.
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(A3) There exists a function l ∈ L1(J,R+) such that

Hd(F (t, x), F (t, y)) ≤ l(t)|x− y|, for a.e. t ∈ J and all x, y ∈ D,

with
Hd(0, F (t, 0)) ≤ l(t), for a.e. t ∈ J,

(A4) There exist c∗ > 0 such that

‖g(t, u)− g(t, u∗)‖D ≤ c∗‖u− u∗‖D for all u, u∗ ∈ D, t ∈ J.

Theorem 2.13. Let Assumptions (A1)− (A4) be satisfied. If c∗ +

k=m∑
k=1

ck < 1,

then Problem (2.1) has at least one solution.

Proof. In order to transform the problem (2.1) into a fixed point problem, let
the multi-valued operator N : Ω → P(Ω) be as defined in Theorem 2.4. We
shall show that N satisfies the assumptions of Lemma 2.12.

(a) N(y) ∈ Pcl(Ω) for each y ∈ Ω. Indeed, let {hn : n ∈ IN} ⊂ N(y) be a
sequence converge to h. Then there exists a sequence fn ∈ SF,y such that

hn(t) =



φ(t), if t ∈ [−r, 0];

φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ))

+

∫ t

0

fn(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, if t ∈ J.

Since F (·, ·) has compact values, let w(·) ∈ F (·, 0) be a measurable function
such that

|f(t)− w(t)| = d(g(t), F (t, 0)).

From (A1) and (A2), we infer that for a.e. t ∈ [0, b]

|fn(t)| ≤ |fn(t)− w(t)|+ |w(t)|
≤ l(t)‖y‖Ω + l(t) := M̂(t), ∀n ∈ IN.

Then the Lebesgue dominated convergence theorem implies that, as n→∞,

‖fn − f‖L1 → 0 and thus hn(t)→ h(t)

with

h(t) =



φ(t), if t ∈ [−r, 0];

φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ))

+

∫ t

0

f(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, if t ∈ J,

proving that h ∈ N(y).
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(b) There exists γ < 1, such that

Hd(N(y), N(y)) ≤ γ‖y − y‖Ω, for all y, y ∈ Ω.

Let y, y ∈ Ω and h ∈ N(y). Then there exists v(t) ∈ F (t, yt), so that

h(t) = φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds+

∫ t

0

v(s) ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )).

From (A3), it follows that

Hd(F (t, yt), F (t, yt)) ≤ l(t)‖yt − yt‖D.

Hence, there is w ∈ F (t, yt) such that

|v(t)− w| ≤ l(t)‖yt − yt‖D, t ∈ J.

Consider U : J → P(IRn), given by

U(t) = {w ∈ IRn : |v(t)− w| ≤ l(t)‖yt − yt‖D}.

Since the multivalued operator V (t) = U(t) ∩ F (t, yt) is measurable (see [11,
47, 91]), by Lemma 1.72, there exists a function v(t), which is a measurable
selection for V. Thus v(t) ∈ F (t, yt) and

|v(t)− v(t)| ≤ l(t)‖yt − yt‖D, for a.e. t ∈ J.

Let us define for a.e. t ∈ J

h(t) = φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

v(s) ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )).
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Then we have

|h(t)− h(t)| ≤
∫ t

0

|v(s)− v(s)| ds+

n∗∑
k=1

∫ t−Ti

0

|y(s)− y(s)|ds

+
∑

0<tk<t

|Ik(y(t−k ))− Ik(y(t−k ))|+ ‖g(t, yt)− g(t, yt)‖D

≤
∫ t

0

l(s)‖ys − ys‖Dds+ n∗

∫ t

0

|y(s)− y(s)|ds

+
∑

0<tk<t

ck|y(tk)− y(tk)|+ c∗‖yt − yt‖D

≤
∫ t

0

l(s)eτL(s)ds‖y − y‖∗ +

∫ t

0

n∗e
τL(s)ds‖y − y‖∗

+
∑

0<tk<t

cke
τL(t)‖y − y‖∗ + eτL(t)c∗‖y − y‖∗

≤
∫ t

0

1

τ
(eτL(s))′ds‖y − y‖∗ +

(
c∗ +

m∑
k=1

ck

)
eτL(t)‖y − y‖∗

≤ eτL(t)

(
c∗ +

1

τ
+

m∑
k=1

ck

)
‖y − y‖∗.

Thus

e−τL(t)|h(t)− h(t)| ≤

(
c∗ +

1

τ
+

m∑
k=1

ck

)
‖y − y‖∗,

where L(t) =

∫ t

0

l∗(s)ds and

l∗(t) =

{
0, t ∈ [−r, 0],
l(t) + n∗, t ∈ [0, b],

and τ is sufficiently large and ‖ · ‖∗ is the Bielecki-type norm on Ω defined by

‖y‖∗ = sup{e−τL(t)|y(t)| : −r ≤ t ≤ b}.

By an analogous relation, obtained by interchanging the roles of y and y, it
follows that

Hd(N(y), N(y)) ≤

(
c∗ +

1

τ
+

m∑
k=1

ck

)
‖y − y‖∗ for all y, y ∈ Ω.

So, N is a contraction. and thus, by Lemma 2.12, N has a fixed point y, which
is a solution to (2.1).
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2.3 Topological structure of solutions set

In this section we prove that the solutions set of Problem (2.1) is compact and
the operator solution is u.s.c.

Theorem 2.14. Under assumptions of Theorem 2.4, the solution set for prob-
lem (2.1) is compact, and the operator solution S(.) : D → P(Ω) defined by

S(φ) = {y ∈ Ω| y solution of (2.1)}

is u.s.c.

Proof. Compactness of the solution set. Let φ ∈ D, then

S(φ) = {y ∈ Ω : y is a solution of problem (2.1)}.

From Step 5 of Theorem 2.4, there exists M̃ such that for every y ∈ S(φ),

‖y‖Ω ≤ M̃. Since N is completely continuous, N(S(φ)) is relatively compact in
Ω. Let y ∈ S(φ); then y ∈ N(y) hence S(φ) ⊂ N(S(φ)) where N is defined in
the proof of Theorem 2.4. It remains to prove that SF (a) is a closed subset in
Ω. Let {yn : n ∈ N} ⊂ S(φ) be such that (yn)n∈N converges to y. For every
n ∈ IN, there exists vn such that vn(t) ∈ F (t, ynt ), a.e. t ∈ J and

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, ynt )− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

vn(s)ds+

n∗∑
i=1

∫ t−Ti

0

yn(s)ds+
∑

0<tk<t

Ik(yn(t−k )), if t ∈ J.

As in Theorem 2.4 Step 3, we can prove that there exists v such that v(t) ∈
F (t, yt) and

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

v(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J.

Therefore y ∈ S(φ) which yields that S(φ) is closed, hence compact subset in
Ω.

We will show that S(.) is u.s.c. by proving that the graph

Γ(ϕ) := {(y, ϕ) ∈ Ω×D| y ∈ S(ϕ)}

of S(ϕ) is closed. Let(yn, ϕn) ∈ Γ(ϕ), i.e., yn ∈ S(ϕn), and let (yn, ϕn)→ (y, ϕ)
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as n→∞. Since yn ∈ S(ϕn), there exists vn ∈ L1(J,Rn) such that

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, ynt )− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

vn(s)ds+

n∗∑
i=1

∫ t−Ti

0

yn(s)ds+
∑

0<tk<t

Ik(yn(t−k )), if t ∈ J.

Using the fact that (yn, ϕn) converge to (y, ϕ), there exists M > 0 such that

‖ϕn‖D ≤M for all n ∈ N.

As in Theorem 2.1, we can prove that there exist M > 0 such that

‖yn‖Ω ≤M for all n ∈ N.

By (H2), we have,
|vn(t)| ≤ p(t)ψ(M), t ∈ J

Thus, vn(t) ∈ p(t)ψ(M)B̄(0, 1) := χ(t) a.e. t ∈ J . It is clear that χ : J →
Pcp,cv(Rn) is a multivalued map that is integrable bounded. Since {vn(.) : n ≥
1} ∈ χ(.), we may pass to a subsequence if necessary to obtain that vn converges
to v in L1(J,Rn).

It remains to prove that v ∈ F (t, yt), for a.e. t ∈ J. Lemma ?? yields the

existence of αni ≥ 0, i = n, . . . , k(n) such that

k(n)∑
i=1

αni = 1 and the sequence of

convex combinations gn(·) =

k(n)∑
i=1

αni vi(·) converges strongly to v in L1. Since F

takes convex values, using Lemma 1.61, we obtain that

v(t) ∈
⋂
n≥1

{gn(t)}, a.e. t ∈ J

⊂
⋂
n≥1

co{vk(t), k ≥ n}

⊂
⋂
n≥1

co{
⋃
k≥n

F (t, ykt )}

= co(lim sup
k→∞

F (t, ykt )).

(2.8)

Since F is u.s.c. with compact values, then by Lemma 1.60, we have

lim sup
n→∞

F (t, ynt ) = F (t, yt), for a.e. t ∈ J.

This with (2.8) imply that v(t) ∈ co F (t, yt). Since F (., .) has closed, convex
values, we deduce that v(t) ∈ F (t, yt), for a.e. t ∈ J.
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Let

z(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

v(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J.

Since the functions Ik, k = 1, . . . ,m are continuous, we obtain the estimates

‖yn − z‖Ω ≤ ‖g(t, ynt )− g(t, yt)‖D +

∫ b

0

|v̄n(s)− v(s)|ds

+

m∑
k=1

|Ik(yn(tk))− Ik(y(tk))|+
n∗∑
i=1

∫ t−Ti

0

|yn(s)− y(s)|ds.

The right-hand side of the above expression tends to 0 as n→ +∞. Hence,

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

v(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J.

Thus, y ∈ S(ϕ), Now show that S(ϕ) maps bounded sets into relatively compact
sets of Ω. Let B be a compact set in Rn and let {yn} ⊂ S(B). Then there exist
{ϕn} ⊂ B such that yn ∈ S(ϕn). Since {ϕn} is a compact sequence, there exists
a subsequence of {ϕn} converging to ϕ, so from (H2), there exists M∗ > 0 such
that

‖yn‖Ω ≤M∗, n ∈ N.

We can show that {yn : n ∈ N} is equicontinous in Ω. As a consequence of the
Arzelá-Ascoli Theorem, we conclude that there exists a subsequence of {yn}
converging to y in Ω. By a similar argument to the one above, we can prove
that

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

v(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J,

where v ∈ SF,y. Thus y ∈ S(ϕ). This implies that S(ϕ) is u.s.c.

In this part, we show that the solution set of Problem (2.1) is AR.
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Definition 2.15. A space X is called an absolute retract (in short X ∈ AR)
provided that for every space Y, every closed subset B ⊆ Y and any continuous
map f : B → X, there exists a continuous extension f̃ : Y → X of f over Y,
i.e. f̃(x) = f(x) for every x ∈ B. In other words, for every space Y and for
any embedding f : X −→ Y, the set f(X) is a retract of Y.

Proposition 2.16. [151] Let C be a closed, convex subset of a Banach space
E and let N : C → Pcp,cv(C) be a contraction multivalued map. Then Fix(N)
is a nonempty, compact AR-space.

Our contribution is the following:

Theorem 2.17. Let F : J ×D → Pcp,cv(IRn) be multivalued. Assume that all
conditions of Theorem 2.13 are satisfied. Then the solution set S[−r,b](φ) ∈ AR.

Proof. Let the multi-valued operator N : Ω → P(Ω) be as defined in Theorem
2.4. Using the fact that F (., .) has a convex and compact values and by (A1)−
(A2), then for every y ∈ Ω we have N(y) ∈ Pcv,cp(Ω). By some Bielecki-type
norm on Ω we can prove that N is contraction. Hence, from proposition 2.16,
the solution set S[−r,b](φ) = Fix(N) is a nonempty, compact AR-space.

2.4 The parameter-dependant case

In this section, we consider the following parameter impulsive problem:
d

dt
[y(t)− g(t, yt)] ∈ F (t, yt, λ) +

n∗∑
i=1

y(t− Ti) a.e t ∈ J\{t1, . . . , tm}

y(t+k )− y(t−k ) = Ik(y(t−k ), λ), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0],

(2.9)

where n∗ ∈ {1, 2, . . .}, r = max
1≤i≤n∗

Ti, F : J × D × Λ → Pcp(IRn) is a multi-

valued map with compact values, Ik(., .) : IRn × Λ → IRn, k = 1, 2, . . . ,m, are
continuous functions, (Λ, dΛ) is a complete metric space.

In the case with no impulses, some existence results and properties of solu-
tions for semilinear and evolutions differential inclusions with parameters were
studied by Hu et al [109], Papageorgiou and Yannakakis [146] and Tolstonogov
[160, 161]; see also [12] for a parameter-dependant first-order Cauchy problem.
Very recently the parameter problems of impulsive differential inclusions was
studies by Djebali et al [62], Graef and Ouahab [93].

2.4.1 The convex case

We will assume the following assumptions.

(B̃1) The multi-valued map F (., x, λ) : [0, b]→ Pcp,cv(IRn) is measurable for all
x ∈ IRn and λ ∈ Λ.
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(B̃2) The multi-valued map F (t, ., .) : D × Λ → Pcp,cv(IRn) is u.s.c. for a.e.
t ∈ [0, b].

(B̃3) There existsα ∈ [0, 1) and p, q ∈ L1(J, IR+) such that

‖F (t, x, λ)‖P ≤ p(t)ψ(‖x‖D), for a.e. t ∈ J and for all x ∈ E, λ ∈ Λ.

Theorem 2.18. Assume that F satisfies (B̃1) − (B̃3). Then for every fixed
λ ∈ Λ, there exists y(., λ) ∈ Ω solution of Problem (2.9).

Proof. For fixed λ ∈ Λ, let Fλ(t, yt) = F (t, yt, λ), (t, yt) ∈ [0, b] × IRn and let
Iλk (y) = Ik(y, λ), k = 1, . . . ,m. It is clear that Fλ(., u) is a measurable multi-
valued map for all u ∈ IRn, Fλ(t, .) is u.s.c and

‖Fλ(t, x)‖P ≤ p(t)ψ(‖x‖D) for a.e. t ∈ J and each x ∈ D,

where p ∈ L1(J, IR+) are as defined in (B̃3). To transform Problem (2.9) into a
fixed point problem, consider the operator N : Ω→ P(Ω) defined by:

N(y) =


h ∈ Ω : h(t) =



φ(t), if t ∈ [−r, 0];

φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ), λ) +

∫ t

0

v(s)ds

+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+

n∗∑
i=1

∫ 0

−Ti
φ(s)ds, if t ∈ J,


where v ∈ SF,y. Clearly, the fixed points of the operator N are solution of the
problem (2.9).
Define the mapping

S : Λ→ Pcp(IRn),

by
S(λ) = {y ∈ Ω : y is a solution of Problem (2.9)}.

From Theorem 2.4, S(λ) 6= ∅ so that S is well defined. Next, we prove the upper
semi-continuity of solutions in respect of the parameter λ.

Proposition 2.19. If hypotheses (B̃1)− (B̃3) hold, then S is u.s.c.

Proof.

Step 1. S(.) ∈ Pcp(IRn). Let λ ∈ Λ and yn ∈ S(λ), n ∈ IN. Then there exists
vn ∈ SFλ,yn such that

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, (yn)t)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

vn(s)ds+

n∗∑
i=1

∫ t−Ti

0

yn(s)ds+
∑

0<tk<t

Ik(yn(t−k ), λ), if t ∈ J.
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From (B̃3) and the continuity of Ik, k = 1, . . . ,m, we can prove that there
exists M > 0 such that ‖yn‖Ω ≤ M, n ∈ IN. As in the proof of Theorem 2.4,
Steps 2 to 3, we can easily prove that the set {yn : n ≥ 1} is compact in Ω; hence
there exists a subsequence of {yn} which converges to y in Ω. Since {vn}(t) is
integrably bounded, then arguing as in the proof of Theorem 2.14, there exists
a subsequence which converges weakly to v and then we obtain at the limit:

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

v(s)ds+

n∗∑
i=1

∫ t−Ti

0

y(s)ds+
∑

0<tk<t

Ik(y(t−k ), λ), if t ∈ J.

Hence S(.) ∈ Pcp(IRn).

Step 2. S(.) is quasicompact. Let K be a compact set in Λ. To show that S(K)
is compact, let yn ∈ S(λn), λn ∈ K. Then there exists vn ∈ SF (.,.,λn,yn), n ∈ IN,
such that

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, (yn)t)− g(0, φ) +

n∗∑
i=1

∫ 0

−Ti
φ(s)ds

+

∫ t

0

vn(s)ds+

n∗∑
i=1

∫ t−Ti

0

yn(s)ds+
∑

0<tk<t

Ik(y(t−k ), λn), if t ∈ J.

As mentioned in Step 1, {yn : n ≥ 1}, is compact in Ω then there exists a
subsequence of {yn} which converges to y in Ω. Since K is compact, there exists
a subsequence {λn : n ≥ 1} in K such that λn converges to λ ∈ Λ. As we
did above, we can easily prove that there exists v(·) ∈ F (·, y.), λ) such that y
satisfies (2.10).

Step 3. S(.) is closed. For this, let λn ∈ Λ be such that λn converge to λ and let
yn ∈ S(λn), n ∈ IN be a sequence which converges to some limit y in Ω. Then

yn satisfies (2.10) and as we did above, we can use (B̃3) to show that the set
{yn : n ≥ 1} is equicontinuous in Ω. Hence, by the Arzelá-Ascoli Theorem, we
conclude that there exists a subsequence of {yn} converging to some limit y in
Ω and there exists a subsequence of {vn} which converges to v(.) ∈ F (., y.), λ)
such that y satisfies (2.10). Therefore S(.) has a closed graph, hence u.s.c. by
Lemma 1.89.

2.5 Conclusion

In this Chapter we have extended some existence results of solutions for Problem
(2.1) obtained in [142, 143] to the case of differential inclusions; moreover the
right-hand side multi-valued nonlinearity may be either convex or nonconvex.
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this complement is based on the nonlinear alternative of Leary Schauder type
(in the convex case), on the Bressan-Colombo selection theorem and on the
Covitz and Nadler fixed point theorem for contraction multi-valued maps in a
generalized metric space (in the nonconvex case). Compactness of the solution
set and some geometric properties are also provided. We have also discusses the
question of dependance on parameters. The next chapter is devoted to give an
application of the obtained results, to a problem from control theory.



Chapter 3

Application to Control
Theory

Many problems in applied mathematics, such as those in control theory, math-
ematical biologic, economics, and mechanics, lead to the study of differential
inclusions. In a differential inclusion the tangent at each state is prescribed by
a multifunction instead of the usual single-value function in differential equa-
tions. For single-valued functions the controllability may be described by non-
linear differential equations of the form y′(t) = f(t, y(t), u(t)), t ∈ IR+,

y(0) = a,
u ∈ U,

(3.1)

with constrained control u. Here f : IR×IR×IR→ IR is a single-valued function
measurable in t and continuous in y, u. The time-varying set of constraints
function U : [0, 1] → Pcp(IR) is a measurable multi-valued function. By u ∈ U,
we mean u(t) ∈ U(t), for a.e. t ∈ J. Problem (3.1) is solved if there is a control
function u for which the problem admits a solution. If we define the multi-
function

F (t, x) = {f(t, x, u), u ∈ U}, (3.2)

then Filippov [73] and Ważewski [167] have shown that under some assumptions
the control problem (3.1) coincides with the set of Carathéodory solution of the
following problem  y′(t) ∈ F (t, y(t)), t ∈ IR+,

y(0) = a,
u ∈ U,

(3.3)

with right-hand side given by (3.2).
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The controllability of ordinary differential equations and inclusions were in-
vestigated by many authors (see [13, 22, 76, 32, 115] for instance and the refer-
ences therein).

And impulsive differential equations and inclusions dealing with control the-
ory were investigated by [4, 25, 95]. Indeed, the first motivation of the study
of the concept of differential inclusions comes from the development of some
studies in control theory. For more information about the relation between the
differential inclusions and control theory, see for instance [11, 77, 116, 156, 159]
and the references therein.

Hereafter, we apply the existence results and structure topology and geom-
etry obtained in Sections 3 and 4 to study the impulsive neutral problem, that
is Problem (2.1):


d

dt
[y(t)− g(t, yt)] ∈ F (t, yt) +

n∗∑
i=1

y(t− Ti), t ∈ J\{t1, . . . , tm}

y(t+k )− y(t−k ) = Ik(y(tk)), k = 1, . . . ,m
y(t) = φ(t) t ∈ [−r, 0]

(3.4)

with F given by (3.2), Ik : IR→ IR, x→ Ik(x) = bkx, bk ∈ IR, k = 1, . . . ,m,
J =: [0, 1] and g : J ×D → IR is a continuous function 0 < t1 < t2 . . . < tm <
1, Ti ∈ IR+, i = 1, . . . , n∗, r = max

1≤i≤n∗
Ti.

We need the following auxiliary result in order to prove our main controlla-
bility theorem.

Theorem 3.1. [11] Let (Ω,A, µ) be a complete σ−finite measurable space, X a
complete separable metric space and F : Ω→ P(X) a measurable set value map
with closed images. Consider a Carathéodory set-valued map G from Ω×X to
a complete separable metric space Y. Then, the map

Ω 3 ω → G(ω, F (ω)) ∈ P(Y )

is measurable.

Next, we state our main existence result

Theorem 3.2. Assume that U and f satisfy the following hypotheses:

(H1) U : J → Pcv, cp(IR+) is a measurable multi-function and has compact
image.

(H2) The function f is linear in the third argument, i.e. there exist Carathéodory
functions fi : J ×D → IR (i = 1, 2) such that for a.e. t ∈ J,

f(t, x, u) = f1(t, x)u+ f2(t, x), ∀ (x, u) ∈ D × U.
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(H3) There exist k ∈ L1(J, (0,+∞)) and a continuous nondecreasing function
ψ such that

|f(t, x, u)| ≤ k(t)ψ(‖x‖D), for a.e. t ∈ J, ∀x ∈ D and ∀u ∈ U

with ∫ b

0

k(s)ds <

∫ ∞
0

ds

s+ ψ(s)
.

(H4) For every M > 0, there exists ε > 0 and a function R : [0, ε]→ IR+ with
lim
h→0

R(h) = 0, such that for every y ∈ Ω satisfying ‖y‖Ω ≤M, we have

|g(t, yt)− g(s, ys)| ≤ R(|t− s|) with |t− s| < ε.

and there exists c∗ > 0 such that

|g(t, u)| ≤ c(‖u‖D + 1), for every u ∈ D.

Then the control boundary value problem (3.1) has at least one solution.

Proof. • Claim 1. Since U(.) is measurable, we can find un : [0, 1]→ IR, n ≥ 1
Lebesgue measurable functions such that

U(t) = {un(t) : n ≥ 1}for all t ∈ [0, 1].

From (H2) and (H3) we have

F (t, yt) = {f1(t, yt)un(t) + f2(t, yt) : n ≥ 1}for all t ∈ [0, b].

This implies that the map t → F (t, .) is a measurable multifunction. By
(H3) and (H4), we have that F (., .) ∈ Pcv(IR). Using the compactness of
U and the continuity of f , we can easily show that F (., .) ∈ Pcp(IR); then
F (., .) ∈ Pcp, cv(IR).

• Claim 2. The selection set of F is not empty. Since U is measurable
multifunction and has compact image then F (t, x) = F (t, x). Let x ∈ IR then
from (H1)− (H3) the map (t, u)→ f(t, x, u) is L1−Carathéodory. Hence from
Theorem 3.1 F (., x) is measurable.

• Claim 3. Using the fact that U has a compact image and f is an
L1−Carathéodory function, hence we can easily show that F (t, .) is u.s.c. (see
[63] Thm 6.3(claim 3)).

• Claim 4. Let B be bounded set in Ω, then there exists M∗ > 0 such that

‖u‖D ≤M∗, for every u ∈ B.

Then
|g(t, u)| ≤ c(M∗ + 1), for every u ∈ B.
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The first part of the condition (H4), implies that

{t→ g(t, yt) : ‖y‖Ω ≤ c(M∗ + 1)}

is equicontinouous. Therefore all conditions of Theorems 2.4, 2.14 are fulfilled
and then Problem (3.4) has at least one solution and solution set is compact.

The following auxiliary lemma is concerned with measurability for two-
variable multi-function:

Lemma 3.3. [107] Let (Ω, A) be a measurable space, X,Y two separable metric
spaces and let F : Ω×X → Pcl(Y ) be a multi-function such that

(i) for every x ∈ X, ω → F (ω, x) is measurable,

(ii) for a.e. ω ∈ Ω, x→ F (ω, x) is continuous or Hd−continuous.

Then the mapping (ω, x)→ F (ω, x) is measurable.

Our contribution is the following

Theorem 3.4. Assume that U and f satisfy the following hypotheses:

(H5) U : J → Pcp(IR) is a measurable multi-function.

(H6) There exists k ∈ L1(J, (0,+∞)) such that

|f(t, x, u)−f(t, y, u)| ≤ k(t)‖x−y‖D, for a.e. t ∈ J, ∀x ∈ D and ∀u ∈ U.

(H7) There exists p ∈ L1(J, (0,+∞)) such that

|f(t, x, u)| ≤ p(t), for a.e. t ∈ J, ∀x ∈ IR and ∀u ∈ U.

(H8) there exists c∗ ∈ (0, 1) such that

|g(t, x)− g(t, z)| ≤ c∗‖x− z‖D for all x, z ∈ D.

If c∗ +

m∑
i=1

|bk| < 1. Then the solution set of Problem (3.1) is not empty.

Proof. Clearly, F (., x) is measurable multi-function for any fixed x and F (., .) ∈
Pcp(IR). To prove that F (t, .) is a k-Lipschitz, let x, y ∈ D and h ∈ F (t, x).
Then there exists u ∈ U such that h(t) = f(t, x, u). From (H7), we get succes-
sively the estimates

d(h, F (t, y)) = inf
z∈F (t,y)

|h− z|

= inf
v∈U
|f(t, x, u)− f(t, y, v)|

≤ |f(t, x, u)− f(t, y, u)|
≤ k(t)‖x− y‖D.
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By an analogous relation obtained by interchanging the roles of x and y, we find
that for each l ∈ F (t, y), it holds that

d(F (t, x), l) ≤ k(t)‖x− y‖D

and hence

Hd(F (t, x), F (t, y)) ≤ k(t)‖x− y‖D, for each x, y ∈ IR.

So, F (t, .) is a k-Lipschitz. Therefore F (t, .) is Hd−continuous and from Lemma
3.3, the two-variable multi-function (t, x) 7→ F (t, x) is L⊗B measurable. Then
Aumann’s selection theorem (see Wagner [164] Theorem 5.10), implies the ex-
istence of a measurable selection, hence SF,y has nonempty.

Then F (t, .) is in fact u.s.c. (see [59], Proposition 1.1). Finally, notice
that F (t, 0) is integrably bounded by (H7). Consequently, all the conditions of
Theorem 2.13 are met and the solution set of Problem 3.4 is not empty.

Remark 3.5. If F (., .) ∈ Pcv(IR), then under the condition of Theorem 3.4 the
solution set of Problem 3.4 is AR-space (see Theorem 2.17).

Conclusion

In this Chapter we have extended some existence results of solutions for Problem
(2.1) obtained in [142, 143] to the case of differential inclusions; moreover the
right-hand side multi-valued nonlinearity may be either convex or nonconvex.
this complement is based on the nonlinear alternative of Leary Schauder type
(in the convex case), on the Bressan-Colombo selection theorem and on the
Covitz and Nadler fixed point theorem for contraction multi-valued maps in a
generalized metric space (in the nonconvex case). Compactness of the solution
set and some geometric properties are also provided. We have also discusses
the question of dependance on parameters. An applications to a problem from
control theory are provided.

Next part is dedicated to the analysis of a new model describing the evolution
of populations constituted by normal cells, sensitive and resistant tumor cells,
under periodic chemotherapeutic treatment.
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Chapter 4

Local Theory

In this chapter, we recall some classical theorems on steady state bifurcations, in-
cluding the Lyapunov-Schmidt procedure and bifurcation theorems from eigen-
values of odd multiplicity.

The version of the Lyapunov-Schmidt procedure presented here differs slightly
from the one given in [132]. The latter is done by decomposing the space into
the direct sum of the generalized eigenspace and its complement. While the
Lyapunov-Schmidt procedure given here is based on the decomposition of the
space into the direct sum of the eigenspace and its complement. This Lyapunov-
Schmidt procedure is more natural, and much more convenient to study steady
state bifurcations. In fact, it is this difference, together with other ingredients,
including in particular the spectral theorem (see Chapter 3 [132]), that made
many problems more accessible.

4.1 The Implicit Function Theorem

One of the most important analytic tools for the solution of a nonlinear problem

F (x, y) = 0, (4.1)

where F is a mapping F : U×V → Z with open sets U ⊂ X, V ⊂ Y , and where
X,Y, Z are (real) Banach spaces, is the following Implicit Function Theorem:

Theorem 4.1. ([114]) Let (4.1) have a solution (x0, y0) ∈ U ×V such that the
Fréchet derivative of F with respect to x at (x0, y0) is bijective:

F (x0, y0) = 0,
DxF (x0, y0) : X → Z is bounded (continuous)
with a bounded inverse (Banach’s Theorem).

(4.2)

Assume also that F and DxF are continuous:

F ∈ C(U × V,Z),
DxF ∈ C(U × V,L(X,Z)),

(4.3)
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where L(X,Z) denotes the Banach space of bounded linear operators from X
into Z endowed with the operator norm.
Then there exists a neighborhood U1 × V1 in U × V of (x0, y0) and a mapping
f : V1 → U1 ⊂ X such that

f(y0) = x0,
F (f(y), y) = 0 for all y ∈ V1.

(4.4)

Furthermore, f is continuous on V1:

f ∈ C(V1, X). (4.5)

Finally, every solution of (4.1) in U1 × V1 is of the form (f(y), y).

For a proof we refer to [65]. For the prerequisites to this book we recommend
also [49], [6], which present sections on analysis in Banach spaces.

Let us consider Y as a space of parameters and X as a space of configurations
(a phase space, for example). Then the Implicit Function Theorem allows the
following interpretation: the configuration described by problem 4.1 persists for
perturbed parameters if it exists for some particular parameter, and it depends
smoothly and in a unique way on the parameters. In other words, this theorem
describes what one expects: a small change of parameters entails a unique small
change of configuration (without any ”surprise”). Thus ”dramatic” changes in
configurations for specific parameters can happen only if the assumptions of
Theorem 4.1 are violated, in particular, if

DxF (x0, y0) : X → Z is not bijective. (4.6)

Bifurcation Theory can be briefly described by the investigation of problem
(4.1) in a neighborhood of (x0, y0) where (4.6) holds. For later use we need the
following addition to Theorem 4.1:

If the mapping F in (4.1) is k-times continuously
differentiable on U × V , i.e., F ∈ Ck(U × V,Z),
then the mapping f in (4.4) is also k-times continuously
differentiable on V1; i.e., f ∈ Ck(V1, X), k ≥ 1.
If the mapping F is analytic, then the mapping f is also analytic.

(4.7)

For a proof we refer again to [65].

4.2 The Method of Lyapunov Schmidt

The method of Lyapunov and Schmidt describes the reduction of problem (4.1)
(which is high- or infinite-dimensional) to a problem having only as many dimen-
sions as the defect (4.6). To be more precise, we need the following definition:

Definition 4.2. A continuous mapping F : U → Z, where U ⊂ X is open and
where X,Z are Banach spaces, is a nonlinear Fredholm operator if it is Fréchet
differentiable on U and if DF (x) fulfills the following:
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(i) dimN(DF (x)) <∞ (N = null space or kernel),

(ii) codimR(DF (x)) <∞ (R = range),

(ii) R(DF (x)) is closed in Z.

The integer dimN(DF (x)) − codimR(DF (x)) is called the Fredholm index of
DF (x).

Remark 4.3. As remarked in [113], p.230, assumption (iii) is redundant. If
DF depends continuously on x and possibly on a parameter y, in the sense of
(4.3), and if U or U × V is connected in X or also in X × Y , respectively, then
it can be shown that the Fredholm index of DF (x) is independent of x; cf.[113],
IV. 5.

We consider now F : U × V → Z, U ⊂ X, V ⊂ Y , where

F (x0, y0) = 0 for some (x0, y0) ∈ U × V,
F ∈ C(U × V,Z),
DxF ∈ C(U × V,L(X,Z)) (see (4.3)).

(4.8)

We assume that for y = y0 the mapping F is a nonlinear Fredholm operator
with respect to x; i.e., F (., y0) : U → Z satisfies Definition 4.2. In particular,
observe that the spaces N and Z0 defined below are finite dimensional.

Thus there exist closed complements in the Banach spaces X and Z such
that

X = N(DxF (x0, y0)) +X0,
Z = R(DxF (x0, y0)) + Z0

(4.9)

(see [69], p.553). These decompositions, in turn, define projections

P : X → N along X0 (N = N(DxF (x0, y0)),
Q : Z → Z0 along R (R = R(DxF (x0, y0)),

(4.10)

in a natural way. By the Closed Graph Theorem (see [170]) these projections
are continuous.

Then the following Reduction Method of Lyapunov.Schmidt holds:

Theorem 4.4. ([114]) There is a neighborhood U2 × V2 of (x0, y0) in U × V ⊂
X × Y such that the problem

F (x, y) = 0 for (x, y) ∈ U2 × V2 (4.11)

is equivalent to a finite-dimensional problem

Φ(v, y) = 0 for (v, y) ∈ Ũ2 × V2 ⊂ N × Y,where
Φ : Ũ2 × V2 → Z0 is continuous

and Φ(v0, y0) = 0, (v0, y0) ∈ Ũ2 × V2.

(4.12)

The function Φ, called a bifurcation function, is given by

Φ(v, y) ≡ QF (v + Ψ(v, y), y) = 0,

where Ψ : Ũ2 × V2 →W2 ⊂ X0.
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(If the parameter space Y is finite-dimensional, then (4.12) is indeed a purely
finite-dimensional problem.)

Corollary 4.5. ([114]) In the notation of Theorem 4.4, if F ∈ C1(U × V,Z),
we also obtain Ψ ∈ C1(Ũ2 × V2, X0), Φ ∈ C1(Ũ2 × V2, Z0), and

Ψ(v0, y0) = w0,
DvΨ(v0, y0) = 0 ∈ L(N,X0),
DvΦ(v0, y0) = 0 ∈ L(N,Z0).

(4.13)

4.3 An Implicit Function Theorem for One Di-
mensional Kernels: Turning Points

In this section we consider mappings F : U × V → Z with open sets U ⊂ X,
V ⊂ Y , where X and Z are Banach spaces, but where this time Y = R.

Following a long tradition, we change the notation and denote parameters
in R by λ. We assume

F (x0, λ0) = 0 for some (x0, λ0) ∈ U × V,
dimN(DxF (x0, λ0)) = 1.

(4.14)

Obviously, the Implicit Function Theorem, Theorem 4.1, is not directly ap-
plicable. We assume now the hypotheses of the Lyapunov-Schmidt reduction
(Theorem 4.4) for F with the additional assumption that

the Fredholm index of DxF (x0, λ0) is zero;
i.e., by (4.14), codimR(DxF (x0, λ0)) = 1.

(4.15)

Since Y = R, we can identify the Fréchet derivative DλF (x, λ) with an element
of Z, namely, by

DλF (x, λ)1 = DλF (x, λ) ∈ Z, 1 ∈ R. (4.16)

Theorem 4.6. ([114]) Assume that F : U × V → Z is continuously differen-
tiable on U × V ⊂ X × R, i.e.,

F ∈ C1(U × V,Z), (4.17)

and (4.14), (4.15), (4.16), and that

DλF (x0, λ0) /∈ R(DxF (x0, λ0)). (4.18)

Then there is a continuously differentiable curve through (x0, λ0); that is, there
exists

{(x(s), λ(s))|s ∈ (−δ, δ), (x(0), λ(0)) = (x0, λ0)} (4.19)

such that
F (x(s), λ(s)) = 0 for s ∈ (−δ, δ), (4.20)

and all solutions of F (x, λ) = 0 in a neighborhood of (x0, λ0) belong to the curve
(4.19).
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Corollary 4.7. ([114]) The tangent vector of the solution curve (4.19) at
(x0, λ0) is given by

(ṽ0, 0) ∈ X × R; (4.21)

i.e., (4.19) is tangent at (x0, λ0) to the one-dimensional kernel of DxF (x0, λ0).

Let us assume more differentiability on F , namely, F ∈ C2(U ×V,Z). Then
differentiation of (4.20) with respect to s gives, in view of (??),

d
dsF (x(s), λ(s))|s=0 = DxF (x0, λ0)ẋ(0) +DλF (x0, λ0)λ̇(0)

= DxF (x0, λ0)ṽ0 = 0,
d2

ds2F (x(s), λ(s))|s=0 = D2
xxF (x0, λ0)[ṽ0, ṽ0] +DxF (x0, λ0)ẍ(0)

+ DλF (x0, λ0)λ̈(0) = 0

(4.22)

(observe that λ̇(0) = 0).
Application of the projection Q (see (4.10)) yields

QD2
xxF (x0, λ0)[ṽ0, ṽ0] +QDλF (x0, λ0)λ̈(0) = 0. (4.23)

Since QDλF (x0, λ0) 6= 0 by virtue of (4.18), the additional assumption

D2
xxF (x0, λ0)[ṽ0, ṽ0] /∈ R(DxF (x0, λ0)) (4.24)

guarantees (according to (4.23), which is an equation in the one-dimensional
space Z0)

λ̈(0) > 0 or λ̈(0) < 0. (4.25)

In the literature, the curve (4.19) through (x0, λ0) ∈ X × R is commonly
called a saddle-node bifurcation, a nomenclature that makes sense only if the
vector fields F (., λ) : X → Z generate a flow, which, in turn, requires X ⊂ Z.
Since that is not always true in our general setting, we prefer the terminology
turning point or fold.

In order to replace the nonzero quantities in (4.23) by real numbers, we
introduce the following explicit representation of the projection Q in (4.10).
Recall that the complement Z0 of R(DxF (x0, λ0)) is one-dimensional:

Z0 = span[ṽ∗0 ], ṽ∗0 ∈ Z, ||ṽ∗0 || = 1. (4.26)

By the Hahn Banach Theorem (see [170]), there exists a vector

ṽ′0 ∈ Z ′ (the dual space) such that 〈ṽ∗0 , ṽ′0〉 = 1
and〈z̃, ṽ′0〉 = 0 for allz ∈ R(DxF (x0, λ0)).

(4.27)

Here 〈., .〉 denotes the duality between Z and Z ′. Then the projection Q in
(4.10) is given by

Qz = 〈z̃, ṽ′0〉ṽ∗0 for all z ∈ Z, (4.28)

and (4.23), (4.24) imply

λ̈(0) = −〈D
2
xxF (x0, λ0)[ṽ0, ṽ0], ṽ′0〉
〈DλF (x0, λ0), ṽ′0〉

, (4.29)
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and the sign of λ̈(0) determines the appropriate diagram. If λ̈(0) = 0, however,
the shape of the curve (4.19) is determined by higher derivatives of λ̈(0) at
s = 0.

Remark 4.8. There is also an Implicit Function Theorem for higher-dimensional
kernels if the parameter space Y is higher-dimensional, too. To be more precise,
if dimN(DxF (x0, λ0)) = n for some (x0, λ0) ∈ U × V ⊂ X ×Rn and if a com-
plement of R(DxF (x0, λ0)) is spanned by DλiF (x0, λ0), i = 1, . . . , n, then the
analogous proof yields an n-dimensional manifold of the form {(x(s), λ(s))|s ∈
Ũ3 ⊂ Rn} ⊂ X ×Rn through (x(0), λ(0)) = (x0, λ0) such that F (x(s), λ(s)) = 0
for all s ∈ Ũ3 (which is a neighborhood of 0 ∈ Rn). Moreover, the manifold is
tangent to N(DxF (x0, λ0))× {0} in X × Rn.

4.4 Bifurcation with a One-Dimensional Kernel

We assume the existence of a solution curve of F (x, λ) = 0 through (x0, λ0) and
prove the intersection of a second solution curve at (x0, λ0), a situation that is
rightly called bifurcation. A necessary condition for this is again (4.6), which
excludes the application of the Implicit Function Theorem near (x0, λ0).

As in Section 4.3, we assume again that the parameter space Y is one-
dimensional, i.e., Y = R, and we normalize the first curve of solutions to
the so-called trivial solution line {(0, λ)|λ ∈ R}. This is done as follows: if
F (x(s), λ(s)) = 0, then we set F̃ (x, s) = F (x(s) + x, λ(s)), and obviously,
F̃ (0, s) = 0 for all parameters s. Returning to our original notation, this leads
to the following assumptions:

F (0, λ) = 0 for allλ ∈ R,
dimN(DxF (0, λ0)) = codimR(DxF (0, λ0)) = 1,
i.e., F (E, λ0) is a Fredholm operator of index zero.

(4.30)

The assumed regularity of F is as follows:

F ∈ C2(U × V,Z),
where 0 ∈ U ⊂ X,λ0 ∈ V ⊂ R,
are open neighborhoods,

(4.31)

where we identify again the derivative D2
xλF (x, λ) with an element in L(X,Z);

cf.(4.16). By assumption (4.30) we have D2
xλ = D2

λx (see [65], [6]).
The Crandall.Rabinowitz Theorem then reads as follows:

Theorem 4.9. ([114]) Assume (4.30), (4.31), and that

N(DxF (0, λ0)) = span[ṽ0], ṽ0 ∈ X, ||ṽ0|| = 1,
D2
xλF (0, λ0)ṽ0 /∈ R(DxF (0, λ0)).

(4.32)

Then there is a nontrivial continuously differentiable curve through (0, λ0),

{(x(s), λ(s))|s ∈ (−δ, δ), (x(0), λ(0)) = (0, λ0)}, (4.33)
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such that
F (x(s), λ(s)) = 0 fors ∈ (−δ, δ), (4.34)

and all solutions of F (x, λ) in a neighborhood of (0, λ0) are on the trivial solu-
tion line or on the nontrivial curve (4.33). The intersection (0, λ0) is called a
bifurcation point.

Corollary 4.10. ([114]) The tangent vector of the nontrivial solution curve
(4.33) at the bifurcation point (0, λ0) is given by

(ṽ0, λ̇(0)) ∈ X × R. (4.35)

Under the general assumptions of this section, it is not clear whether the
component λ̇(0) of the tangent vector (4.35) vanishes. Therefore, for now, we
cannot decide on sub-, super-, or transcritical bifurcation. These notions will
be specified in the next section.

Remark 4.11. The generalization of Theorem 4.9 to higher-dimensional ker-
nels is given by Theorem I.19.2 [114], provided that the parameter space is
higher-dimensional, too. To be more precise, we need as many parameters as
the codimension of the range amounts to.



Chapter 5

Periodically pulsed
chemotherapy with
resistant tumor cells

In this chapter we consider a nonlinear mathematical model describing the evo-
lution of population constituted by normal cells, sensitive and resistant tumor
cells, under periodic chemotherapeutic treatment. We study the stability of the
trivial periodic solutions and bifurcation of nontrivial periodic solutions by the
mean of Lyapunov-Schmidt reduction. The conditions of stability and bifurca-
tion are expressed in terms of the parameters of the system. Our results are
applied to models given by Panetta [145].

5.1 Introduction

In this work a model for cancer chemotherapy is studied by considering normal-
tumor cells interactions. Chemotherapy of tumor models have recently attracted
the attention of several authors ([87], [121], [122], [127], [145] and [168]). Our
work is inspired from papers [122] and [145], where the authors consider inter-
actions between normal and tumor cells. The interactions taken into account
include competition for nutrients, growth factors or the effects of immune system
([23], [44], [54]-[87], [120], [128] and [134]). We note in the above cited papers
that these interactions activate tumor evolution in certain cases while it stops it
in other cases, depending on the kind and the stage of the tumor. The model we
study here is derived from Panetta [145] where the author considers that normal
and cancerous cells are in interaction, and the treatment considered there acts
instantaneously on all kinds of cells. Note that this treatment is described by
impulse effects. The mathematical model obtained is a system of an impulsive
differential equations. Numerical analysis of the Panetta model [145] is consid-
ered in [168] by Wei et al. In this paper, the authors have studied the role of the
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initial tumor biomass on the evolution of the tumor. In our paper we consider
a more general model described by impulsive differential equations. For more
details about impulsive differential equations and applications see [15]-[18], [99],
[121], [138] and [166]. More specifically, we consider the following system

ẋ1(t) = F1(x1(t), x2(t), x3(t)), (5.1)

ẋ2(t) = F2(x1(t), x2(t), x3(t)), (5.2)

ẋ3(t) = F3(x1(t), x2(t), x3(t)), (5.3)

x1(t+i ) = Θ1(x1(ti), x2(ti), x3(ti)), (5.4)

x2(t+i ) = Θ2(x1(ti), x2(ti), x3(ti)), (5.5)

x3(t+i ) = Θ3(x1(ti), x2(ti), x3(ti)), (5.6)

where ti+1 − ti = cste = τ > 0 ∀i ∈ N, xj ∈ R and Θj is positive smooth
function, for j = 1, 3.
Variables and functions are the following:
τ : period between two successive drug treatment,
xj : normal (resp. sensitive tumor and resistant tumor) cell biomass, for j = 1
(resp. 2, 3),
Θj(x1(ti), x2(ti), x3(ti)) : fraction of normal (resp. sensitive tumor, resistant
tumor) cells, surviving the ith drug treatment, for j = 1 (resp. 2, 3),
Fj(x1, x2, x3) : biomass growth of normal (resp. sensitive tumor, resistant tu-
mor) cells for j = 1 (resp. 2, 3),
In our study, we first consider the unperturbed problem ẋ1 = F1(x1, 0, 0), with
periodic impulses x1(nτ+) = Θ1(x1(nτ), 0, 0). We assume that the one dimen-
sional equation (5.1) with impulse equations (5.4)-(5.6) has a periodic stable
solution (see [122],[145]). It is called a trivial solution, and could correspond to
a preventive treatment. However, from clinical point of view such a treatment
is not a warranty that no tumor can develop.
We consider the onset of a tumor in a patient who is under preventive treat-
ment and the displacement of the equilibrium from a situation without cancer
cells to one with a significant fraction of them, this corresponds to a bifurcation
from a stable equilibrium. We study the dependence of the equilibrium on the
time period τ between two drug injections. We show different effects on both
normal and tumor cells, that is if τ exceeds a certain value the tumor cells
can be reconstituted. In section 5.2, we transform (5.1)-(5.6) into a fixed point
problem. In section 5.3, sufficient conditions for stability of the trivial solution
are found. Bifurcation is analyzed in section 5.4. In section 5.5, we give a new
heterogeneous model containing the two Panetta’s models, we apply the results
obtained in previous sections to the general model. Concluding remarks are
given in section 5.6.

5.2 Hypotheses and definitions

A solution ξ = (x1, x2, x3) of the problem (5.1)-(5.6) is a function defined in
R+, with nonnegative components, continuously differentiable in R+ − {ti}i≥0,
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with t0 = 0, and satisfying all of the relations (5.1) through (5.6).
ξ is called a trivial solution of problem (5.1)-(5.6) if its second and third com-
ponents are zeros, otherwise it is a nontrivial solution. Also, ξ is called trivial
(resp. nontrivial) τ -periodic solution if it is a trivial (resp. nontrivial) solution
with ξ(nτ) = ξ((n+ 1)τ), for all n ≥ 0.
In our study, we consider that Θ = (Θ1,Θ2,Θ3) is positive and that the
positive octant is invariant with respect to the flow associated to (5.1)-(5.3).
F = (F1, F2, F3) and Θ are assumed smooth enough. Finally, we suppose that
F2(x1, 0, x3) ≡ Θ2(x1, 0, x3) ≡ 0, F3(x1, 0, 0) ≡ Θ3(x1, 0, 0) ≡ 0 and Θi(X) 6= 0
(X ∈ R3

+) for xi 6= 0, i = 1, 2, 3. Our main objective is to study the stability of
the trivial periodic solution, the loss of stability for some values of the parame-
ters, and the onset of nontrivial periodic solutions as a consequence of this lost.
Let Φ be the flow associated to (5.1)-(5.6), we have

ξ(t) = Φ(t,X0), 0 < t ≤ τ, (5.7)

where ξ(0) = X0. We assume that the flow Φ applies up to time τ . So,
ξ(τ) = Φ(τ,X0). Then, within a very small time interval starting at time τ ,
we assume that the treatment is administered and kills instantaneously a frac-
tion of the population. The term ξ(τ+) denote the state of the population
after the treatment, ξ(τ+) is determined in terms of ξ(τ) according to equations
(5.4)-(5.6). We have ξ(τ+) = Θ(ξ(τ)) = Θ(Φ(τ,X0)).
Let Ψ be the operator defined by

Ψ(τ,X0) = Θ(Φ(τ,X0)), (5.8)

and denote by DXΨ the derivative of Ψ with respect to X. Then ξ = Φ(., X0)
is a τ -periodic solution of (5.1)-(5.6) if and only if

Ψ(τ,X0) = X0, (5.9)

i.e. X0 is a fixed point of Ψ(τ, .), and it is exponentially stable if and only if
the spectral radius ρ(DXΨ(τ, .)) is strictly less than 1 ([110]). A fixed point
X0 of Ψ(τ, .) is the initial state of (5.1)-(5.6) which gives a τ -periodic solution
ξ verifying ξ(0) = X0. Consequently, for each fixed point X0 of Ψ(τ, .) there is
an associated τ -periodic solution ξ and vice versa.

Remark 5.1. We say that a fixed point is trivial if it is associated to a trivial
periodic solution. The fixed point of Ψ(τ, .) can be determined using a fixed point
method and assuming additional condition on F and Θ ([110]), assumed smooth
enough.
If x2 = x3 = 0 the problem (5.1), (5.4), has a stable τ0-periodic solution denoted
xs.
The function ζ = (xs, 0, 0) is a τ0-periodic solution of (5.1)− (5.6) in the three
dimensional space.
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5.3 Stability of ζ

Denote x0 = xs(0), then (x0, 0, 0) is the initial condition for ζ and ζ(0) =
(x0, 0, 0). From stability of xs we obtain∣∣∣∣∂Θ1

∂x1
(Φ(τ0, (x0, 0, 0)))

∂Φ1

∂x1
(τ0, (x0, 0, 0))

∣∣∣∣ < 1. (5.10)

We have DXΨ(τ0, X) = DXΘ(Φ(τ0, X))
∂Φ

∂X
(τ0, X), then for X0 = (x0, 0, 0) we

obtain

DXΨ(τ0, X0) = DXΘ(Φ(τ0, X0)) ∂Φ
∂X (τ0, X0)

=

 ∂Θ1

∂x1

∂Θ1

∂x2

∂Θ1

∂x3

0 ∂Θ2

∂x2
0

0 ∂Θ3

∂x2

∂Θ3

∂x3


 ∂Φ1

∂x1

∂Φ1

∂x2

∂Φ1

∂x3

0 ∂Φ2

∂x2
0

0 ∂Φ3

∂x2

∂Φ3

∂x3

 .

The solution ζ is exponentially stable if and only if the spectral radius is less
than one, that is∣∣∣∣∂Θj

∂xj
(Φ(τ0, X0))

∂Φj
∂xj

(τ0, X0)

∣∣∣∣ < 1, for j = 1, 2, 3.

Consider the variational equation associated to the system (5.1)-(5.3)

d

dt
(DXΦ(t,X0)) = DXF (Φ(t,X0))(DXΦ(t,X0)), (5.11)

with the initial condition is DXΦ(0, X0) = IdR3 . We obtain

∂Φ1(t,X0)

∂x1
= e

∫ t
0

∂F1(ζ(r))
∂x1

dr,

∂Φ2(t,X0)

∂x2
= e

∫ t
0

∂F2(ζ(r))
∂x2

dr

and
∂Φ3(t,X0)

∂x3
= e

∫ t
0

∂F3(ζ(r))
∂x3

dr

for 0 ≤ t < τ0 (see Appendix A, subsection 6.1).
We have the following result

Theorem 5.2. If conditions

∣∣∣∣∂Θj

∂xj
(ζ(τ0))

∣∣∣∣ e∫ τ00

∂Fj
∂xj

(ζ(r))dr
< 1 for j = 1, 2, 3 are

satisfied, then the trivial solution ζ = (xs, 0, 0) is exponentially stable.

Next, we analyze the bifurcation of non trivial periodic solutions of system
(5.1)− (5.6) near ζ.
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5.4 Critical cases

Let τ̄ and X̄ such that τ = τ0 + τ̄ and X = X0 + X̄. The equation (5.9) is
equivalent to

M(τ̄ , X̄) = 0, (5.12)

whereM(τ̄ , X̄) =
(
M1(τ̄ , X̄),M2(τ̄ , X̄),M3(τ̄ , X̄)

)
= X0+X̄−Ψ(τ0+τ̄ , X0+X̄).

If (τ̄ , X̄) is a zero of M , then (X0 + X̄) is a fixed point of Ψ(τ0 + τ̄ , .). Since ζ is
a trivial τ0-periodic solution (5.1)-(5.6), then it is associated to the trivial fixed
point X0 of Ψ(τ0, .). From the stability of the solution xs in the one dimensional
space, we have

1−
∣∣∣∣∂Θ1

∂x1
(ζ(τ0))

∣∣∣∣ ∣∣∣∣∂Φ1

∂x1
(τ0, (x0, 0, 0))

∣∣∣∣ 6= 0. (5.13)

From (5.13) and the implicit function theorem, we have a branch of trivial τ0−
periodic solutions of (5.1)-(5.6). Let

DXM(τ̄ , X̄) =

 á b́ ć

d́ é f́

ǵ h́ í

 , (5.14)

with á = á0, b́ = b́0, ć = ć0, d́ = d́0, é = é0, f́ = f́0, ǵ = ǵ0, h́ = h́0 and
í = í0, for (τ̄ , X̄) = (0, 0, 0, 0). We have d́0 = 0, f́0 = 0, ǵ0 = 0 and á0 > 0 (see
Appendix A, subsection 6.1).
A necessary condition for the bifurcation of non trivial zeros of the function M
is that the determinant of the Jacobian matrix DXM(0, 0) be equal to zero.
That is é0 .́i0 = 0.
There are three critical cases: (C1) é0 = 0 and í0 6= 0, (C2) é0 6= 0 and í0 = 0,
and (C3) é0 = 0 and í0 = 0.
Now, we analyze the possible bifurcation in all cases.
(C1): For é0 = 0 and í0 6= 0, we have M(0, 0) = 0. Let DXM(0, 0) = E, then
dim ker(E) = co dim R(E) = 1. Denote by P and Q the projectors onto ker(E)
and R(E) respectively, such that P +Q = IdR3 ,

PR3 = span{Y0} = ker(E), with Y0 =

(
ć0h́0

á0í0
− b́0
á0
, 1,− h́0

í0

)
and QR3 =

span{(1, 0, 0), (0, 0, 1)} = R(E).
Then (I − P )R3 = span{(1, 0, 0), (0, 0, 1)} and (I −Q)R3 = span{(0, 1, 0)}.
Equation (5.12) is equivalent to M1(τ̄ , αY0 + Z) = 0,

M2(τ̄ , αY0 + Z) = 0,
M3(τ̄ , αY0 + Z) = 0,

(5.15)

where Z = (z1, 0, z3), (τ̄ , X̄) = (τ̄ , αY0 + Z) and (α, z1, z3) ∈ R3.
From the first and last equations of (5.15), we have

det

(
∂M1(0,0)
∂z1

∂M1(0,0)
∂z3

∂M3(0,0)
∂z1

∂M3(0,0)
∂z3

)
= det

(
á0 ć0
0 í0

)
= á0 .́i0 6= 0.
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From the implicit function theorem, there exist δ > 0 sufficiently small and
a unique continuous function Z∗, such that Z∗(τ̄ , α) = (z∗1(τ̄ , α), 0, z∗3(τ̄ , α)),
Z∗(0, 0) = (0, 0, 0),

M1

(
τ̄ ,

((
ć0h́0

á0í0
− b́0
á0

)
α+ z∗1(τ̄ , α), α,− h́0

í0
α+ z∗3(τ̄ , α)

))
= 0 (5.16)

and

M3

(
τ̄ ,

((
ć0h́0

á0í0
− b́0
á0

)
α+ z∗1(τ̄ , α), α,− h́0

í0
α+ z∗3(τ̄ , α)

))
= 0, (5.17)

for every (τ̄ , α) such that |α| < δ and |τ̄ | < δ.

Moreover, we have
∂Z∗

∂α
(0, 0) = (0, 0, 0) (see Appendix A, subsection 6.3).

Then M(τ̄ , X̄) = 0 if and only if

f(τ̄ , α) = M2

(
τ̄ ,

((
ć0h́0

á0í0
− b́0
á0

)
α+ z∗1(τ̄ , α), α,− h́0

í0
α+ z∗3(τ̄ , α)

))
= 0.

(5.18)
Equation (5.18) is called determining equation and the number of its solutions
is equal to the number of periodic solutions of (5.1)-(5.6) (see [49]).

From the Taylor development of f we obtain f(τ̄ , α) =
α

2
(2Bτ̄+Cα)+o

(
(|α|+ |τ̄ |)2

)
,

(see Appendix A, subsections 6.3 and 6.4). Let f(τ̄ , α) =
α

2
f̃(τ̄ , α), where

f̃(τ̄ , α) = 2Bτ̄ + Cα+ 1
αo
(
(|α|+ |τ̄ |)2

)
.

So, for B 6= 0 (resp. C 6= 0) we can use the implicit function theorem which
gives us τ̄ = σ(α) (resp. α = γ(τ̄)). Hence ∀α (resp. τ̄) near 0, ∃σ(α) (resp.
γ(τ̄)) such that f̃(σ(α), α) = 0 (resp. f̃(τ̄ , γ(τ̄)) = 0) and σ(0) = 0 (resp.

γ(0) = 0). Then if BC 6= 0 we have
τ̄

α
' − C

2B
.

In conclusion we have the following theorem.

Theorem 5.3. Let

∣∣∣∣∂Θj

∂xj
(ζ(τ0))

∣∣∣∣ e∫ τ00

∂Fj
∂xj

(ζ(r))dr
< 1 for j = 1, 3 and∣∣∣∣∂Θ2

∂x2
(ζ(τ0))

∣∣∣∣ e∫ τ00
∂F2
∂x2

(ζ(r))dr = 1, we have the following results:

a) If BC 6= 0 we have a bifurcation, moreover
τ̄

α
' − C

2B
. Consequently,

we have a bifurcation of a nontrivial periodic solutions of (5.1)-(5.6) if
BC < 0 and a subcritical cases if BC > 0.

b) If BC = 0 we have an undetermined case.

(C2): For é0 6= 0 and í0 = 0, we have M(0, 0) = 0. Let DXM(0, 0) = E, then,

dim ker(E) = co dim R(E) = 1. For this case we take Y0 =

(
−ć0
á0

, 0, 1

)
, then
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QR3 = span

{
(1, 0, 0),

(
0, 1,

h́0

é0

)}
= R(E), (I−P )R3 = span{(1, 0, 0), (0, 1, 0)}

and (I −Q)R3 = span{(0, 0, 1)}.
Let Z = (z1, z2, 0), (τ̄ , X̄) = (τ̄ , αY0 + Z) and (α, z1, z2) ∈ R3.
From the first and second equations of (5.15), we have

det

(
∂M1(0,0)
∂z1

∂M1(0,0)
∂z2

∂M2(0,0)
∂z1

∂M2(0,0)
∂z2

)
= det

(
á0 b́0
0 é0

)
= á0.é0 6= 0.

By the implicit function theorem, there exist δ > 0 sufficiently small and
a unique continuous function Z∗, such that Z∗(τ̄ , α) = (z∗1(τ̄ , α), z∗2(τ̄ , α), 0),
Z∗(0, 0) = (0, 0, 0),

M1

(
τ̄ ,

(
− ć0
á0
α+ z∗1(τ̄ , α), z∗2(τ̄ , α), α

))
= 0 (5.19)

and

M2

(
τ̄ ,

(
− ć0
á0
α+ z∗1(τ̄ , α), z∗2(τ̄ , α), α

))
= 0, (5.20)

for every (τ̄ , α) such that |α| < δ and |τ̄ | < δ.

Moreover
∂Z∗

∂α
(0, 0) = (0, 0, 0) (see Appendix A, subsection 6.3).

Then M(τ̄ , X̄) = 0 if and only if

f(τ̄ , α) = M3

(
τ̄ ,

(
− ć0
á0
α+ z∗1(τ̄ , α), z∗2(τ̄ , α), α

))
= 0.

We obtain f̃(τ̄ , α) = 2Bτ̄+Cα+ 1
αo
(
(|α|+ |τ̄ |)2

)
. We have the following results.

Theorem 5.4. If

∣∣∣∣∂Θj

∂xj
(ζ(τ0))

∣∣∣∣ e∫ τ00

∂Fj
∂xj

(ζ(r))dr
< 1 for j = 1, 2 and∣∣∣∣∂Θ3

∂x3
(ζ(τ0))

∣∣∣∣ e∫ τ00
∂F3
∂x3

(ζ(r))dr = 1 are satisfied, then we have the results of Theo-

rem 5.3.

Remark 5.5. In the case (C3) we obtain B = C = 0. So in this case, we need
to calculate a higher derivatives of f .

5.5 Applications to cancer model with resistant
tumor cells

In Panetta [145], two cancer models with resistant tumor cells are discussed, the
first one with acquired resistance and the second one with reduced resistance.
In this section we study the more general model including both the acquired
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resistance an reduced resistance defined by

ẋ1(t) = r1x1

(
1− x1

K1
− λ1(x2 + x3)

)
, (5.21)

ẋ2(t) = r2x2

(
1− x2 + x3

K2
− λ2(x1 + x3)

)
−mx2, (5.22)

ẋ3(t) = r3x3

(
1− x2 + x3

K3
− λ3(x1 + x2)

)
+mx2, (5.23)

x1(t+i ) = T1x1(ti), (5.24)

x2(t+i ) = (T2 −R)x2(ti), (5.25)

x3(t+i ) = T3x3(ti) +Rx2(ti), (5.26)

where ti+1 − ti = τ > 0, ∀i ∈ N, and for j = 1, 3, Tj , R are positive constants.
The variables and the parameters are
m: acquired resistance parameter, usually it is very small (see [135]),
r1, r2, r3: growth rates of the normal, sensitive tumor and resistant tumor cells,
respectively,
K1, K2, K3 : carrying capacities of the normal, sensitive tumor and resistant
tumor cells, respectively,
λ1, λ2, λ3: competitive parameters of the normal, sensitive tumor and resistant
tumor cells, respectively,
τ : Period of drug dose administration,
T1, T2, T3: survival fractions of normal, sensitive tumor and resistant tumor
cells, respectively,
R: fraction of cells mutating due to the drug dose which is less than T2.
In Figure 5.5 we give a schematic representation of the cancer model.

Remark 5.6.
The problem (5.21), (5.24), obtained by taking x2 = 0 and x3 = 0, has a τ0-
periodic solution
x1(t, (x0, 0, 0)) = xs(t), 0 < t ≤ τ0, where

xs(t) =
K1(T1 − e−r1τ0)

(T1 − e−r1τ0) + (1− T1)e−r1t
, (5.27)

with x0 =
K1(T1 − e−r1τ0)

1− e−r1τ0
.

The solution xs is defined and stable in the one dimensional space if and only
if T1 > e−r1τ0 , that is

τ0 >
1

r1
ln

(
1

T1

)
. (5.28)

To determine the stability of the trivial solution ζ = (xs, 0, 0) in the three
dimensional space, we must calculate é0 and í0. We have é0 = 1 − (T2 −

R)T
−r2λ2K1

r1
1 e(r2−r2λ2K1−m)τ0 and í0 = 1− T3T

−r3λ3K1
r1

1 e(r3−r3λ3K1)τ0 .



5.5 Applications to cancer model with resistant tumor cells 81

                

                

Figure 5.1: Schematic diagram of the cancer model with resistant tumor cells
for t 6= ti.

In view of the fact that λ2K1 < 1 and λ3K1 < 1 (see [145]), we have

T
r2λ2K1
r1

1 > T2 −R (5.29)

and

T
r3λ3K1
r1

1 > T3. (5.30)

If é0 > 0 and í0 > 0, then ζ is stable as an equilibrium for the full system
(5.21)-(5.26). In this case, we have

ln( 1
T1

)

r1
< τ0 <

ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

and
ln( 1

T1
)

r1
< τ0 <

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

.

So

ln( 1
T1

)

r1
< τ0 < min

 ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

,

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

 . (5.31)

Using theorem 5.2, we deduce the following result.

Corollary 5.7. If (5.29)-(5.31) are satisfied, then the trivial solution ζ =
(xs, 0, 0) is exponentially stable.
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If conditions (5.29), (5.30) are satisfied and

T
K1(r2λ2−r2λ3+mλ3)

r1(1−λ3K1)

1 T
r2(1−λ2K1)−m
r3(1−λ3K1)

3 < T2 −R, (5.32)

we have

min

 ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

,

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

 =

ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

.

That is, the trivial solution is stable for

ln( 1
T1

)

r1
< τ0 <

ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

. (5.33)

If conditions (5.29), (5.30) are satisfied and

T
K1(r2λ2−r2λ3+mλ3)

r1(1−λ3K1)

1 T
r2(1−λ2K1)−m
r3(1−λ3K1)

3 > T2 −R, (5.34)

we have

min

 ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

,

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

 =

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

.

That is, we have stability of the trivial solution for

ln( 1
T1

)

r1
< τ0 <

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

. (5.35)

Remark 5.8. Equality

τ0 =

ln

(
T
r2λ2K1
r1

1 (T2 −R)−1

)
r2(1− λ2K1)−m

, (5.36)

corresponds to é0 = 0 and equality

τ0 =

ln

(
T
r3λ3K1
r1

1 T−1
3

)
r3(1− λ3K1)

, (5.37)

corresponds to í0 = 0.
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If (5.28)-(5.30), (5.32) and (5.36) are satisfied, we deduce that é0 = 0 and í0 6= 0,
and the conditions of Theorem 5.3 are satisfied. Further, for λ2 = 0, we have
B = −(T2 −R) (r2 −m) e(r2−m)τ0 < 0 and

C =
r2(T2 −R)e(r2−m)τ0

k2

{
e(r2−m)τ0 − 1

r2 −m
+ 2m

∫ τ0

0

I1(u)du+
−2h́0

∫ τ0
0
I2(u)du

í0(1− e−r1τ0)
−r3λ3K1

r1

}
.

where

I1(u) =

∫ u

0

er3u((T1 − e−r1τ0)er1u + (1− T1))
−r3λ3K1

r1

e−(r2−r3−m)s((T1 − e−r1τ0)er1s + (1− T1))
(r2λ2−r3λ3)K1

r1

ds

and

I2(u) = er3u((T1 − e−r1τ0)er1u + (1− T1))
−r3λ3K1

r1

From conditions cited above í0 > 0 and h́0 < 0 (see Appendix A, subsection
6.5), then C > 0. Therefore BC < 0. From Theorem 5.3, we have

Corollary 5.9. If conditions (5.28)-(5.30), (5.32) and (5.36) hold, then there
exist ε0 > 0, such that for all |λ2| < ε0, the problem (5.21)-(5.26) has a non-
trivial periodic solutions. More specifically, there exists β > 0, such that for all
0 < α < β, we have a nontrivial (τ0 + σ(α))-periodic solution

Φ

(
.,

(
x0 +

(
ć0h́0

á0í0
− b́0
á0

)
α+ z∗1(σ(α), α), α,− h́0

í0
α+ z∗3(σ(α), α)

))
.

If (5.28)-(5.30), (5.34) and (5.37) are satisfied, we deduce that é0 6= 0 and í0 = 0,
and the condition of Theorem 5.3 are satisfied.
Further, for λ3 = 0, we have B = −r3T3e

r3τ0 < 0 and C = 2r3τ0K
−1
3 T3e

r3τ0 >
0. Therefore BC < 0.
From Theorem 5.3, we have

Corollary 5.10. If conditions (5.28)-(5.30) (5.34) and (5.37) hold, then there
exist ε0 > 0, such that for all |λ3| < ε0, the problem (5.21)-(5.26) has a non-
trivial periodic solutions. More specifically, there exists β > 0, such that for all
0 < α < β, we have a nontrivial (τ0 + σ(α))-periodic solution

Φ

(
.,

(
x0 +

(
−ć0
á0

)
α+ z∗1(σ(α), α), z∗2(σ(α), α), α

))
.

5.6 Conclusion

In this work, we have studied a nonlinear mathematical model describing evolu-
tion of cell population constituted by three kinds of cells (normal cells, sensitive
tumor cells and resistant tumor cells) under periodic pulsed chemotherapeu-
tic treatment. We have found sufficient conditions for exponential stability of
trivial periodic solutions corresponding to eradication of the tumor. We have
studied conditions of bifurcation of non trivial periodic solutions which corre-
sponds to the onset of the tumor, that is the disease is eradicated but it is
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still viable, and it reappears for small perturbation on the treatment period τ .
The results obtained are applied to particular cases corresponding to models of
Panetta [145]. Bifurcation of nontrivial periodic solutions are studied in (C1,
C2 and C3) corresponding to weak drug destruction rates of sensitive tumor
cells, resistant tumor cells and the both tumor cells, respectively, that is the
drug action on the tumor cells is not very efficient. Note that the case (C3)
needs a more specific study of the higher derivatives of terms describing the evo-
lution of the population and chemotherapy functions, it should be interesting to
consider a dependence with respect to the drug dose treatment in order to study
the perturbation in both parameters (dose treatment and period of administra-
tion), also a study in case of many drugs should be interesting these works is
in preparation. In our model we consider an impulsive differential equations,
it should be interesting and more realistic to consider a functional dependence
like constant delays in the differential equations.



Chapter 6

Appendix of chapter 5

6.1 derivatives of Φ = (Φ1,Φ2,Φ3)

From (5.11), for all t ∈ [0, τ ], we have

d
dt


∂Φ1(t,X0)

∂x1

∂Φ1(t,X0)
∂x2

∂Φ1(t,X0)
∂x3

∂Φ2(t,X0)
∂x1

∂Φ2(t,X0)
∂x2

∂Φ2(t,X0)
∂x3

∂Φ3(t,X0)
∂x1

∂Φ3(t,X0)
∂x2

∂Φ3(t,X0)
∂x3

 =


∂F1(ζ(t))
∂x1

∂F1(ζ(t))
∂x2

∂F1(ζ(t))
∂x3

0 ∂F2(ζ(t))
∂x2

0

0 ∂F3(ζ(t))
∂x2

∂F3(ζ(t))
∂x3


×


∂Φ1(t,X0)

∂x1

∂Φ1(t,X0)
∂x2

∂Φ1(t,X0)
∂x3

∂Φ2(t,X0)
∂x1

∂Φ2(t,X0)
∂x2

∂Φ2(t,X0)
∂x3

∂Φ3(t,X0)
∂x1

∂Φ3(t,X0)
∂x2

∂Φ3(t,X0)
∂x3

 ,

with the initial condition DX(Φ(0, X0)) = IR3 . Then we obtain

∂Φ2(t,X0)
∂x1

= 0, (6.1)

∂Φ2(t,X0)
∂x2

= exp
(∫ t

0
∂F2(ζ(r))
∂x2

dr
)
, (6.2)

∂Φ2(t,X0)
∂x3

= 0, (6.3)

∂Φ3(t,X0)
∂x1

= 0, (6.4)

∂Φ3(t,X0)
∂x2

=
∫ t

0
exp

(∫ t
u
∂F3(ζ(r))
∂x3

dr
)
∂F3(ζ(u))

∂x2
exp

(∫ u
0
∂F2(ζ(r))
∂x2

dr
)
du, (6.5)

∂Φ3(t,X0)
∂x3

= exp
(∫ t

0
∂F3(ζ(r))
∂x3

dr
)
, (6.6)

∂Φ1(t,X0)
∂x1

= exp
(∫ t

0
∂F1(ζ(r))
∂x1

dr
)
,

∂Φ1(t,X0)
∂x2

=
∫ t

0
exp

(∫ t
s
∂F1(ζ(r))
∂x1

dr
){

∂F1(ζ(s))
∂x2

exp
(∫ s

0
∂F2(ζ(r))
∂x2

dr
)

+ ∂F1(ζ(s))
∂x3

∫ s
0

exp
(∫ s

u
∂F3(ζ(r))
∂x3

dr
)
∂F3(ζ(u))

∂x2
exp

(∫ u
0
∂F2(ζ(r))
∂x2

dr
)
du
}
ds
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and

∂Φ1(t,X0)
∂x3

=
∫ t

0
exp

(∫ t
u
∂F1(ζ(r))
∂x1

dr
)
∂F1(ζ(u))

∂x3
exp

(∫ u
0
∂F3(ζ(r))
∂x3

dr
)
du (6.7)

for all 0 ≤ t ≤ τ.
From (5.14), we have

 á b́ ć

d́ é f́

ǵ h́ í

 =



1−
3∑
i=1

∂Θ1

∂xi
∂Φi
∂x1

−
3∑
i=1

∂Θ1

∂xi
∂Φi
∂x2

−
3∑
i=1

∂Θ1

∂xi
∂Φi
∂x3

−
3∑
i=1

∂Θ2

∂xi
∂Φi
∂x1

1−
3∑
i=1

∂Θ2

∂xi
∂Φi
∂x2

−
3∑
i=1

∂Θ2

∂xi
∂Φi
∂x3

−
3∑
i=1

∂Θ3

∂xi
∂Φi
∂x1

−
3∑
i=1

∂Θ3

∂xi
∂Φi
∂x2

1−
3∑
i=1

∂Θ3

∂xi
∂Φi
∂x3


(
τ0 + τ̄ , X0 + X̄

)
.

For
(
τ̄ , X̄

)
= (0, 0), we have

 á0 b́0 ć0
d́0 é0 f́0

ǵ0 h́0 í0

 =


1− ∂Θ1

∂x1

∂Φ1

∂x1
−

3∑
i=1

∂Θ1

∂xi
∂Φi
∂x2

−∂Θ1

∂x1

∂Φ1

∂x3
− ∂Θ1

∂x3

∂Φ3

∂x3

0 1− ∂Θ2

∂x2

∂Φ2

∂x2
0

0 −
3∑
i=1

∂Θ3

∂xi
∂Φi
∂x2

1− ∂Θ3

∂x3

∂Φ3

∂x3

 (τ0, X0) .

6.2 The first partial derivatives of Z∗ = (z∗1, z
∗
2, z
∗
3)

(C1) é0 = 0 and í0 6= 0.

Let η(τ̄) = τ0 + τ̄ , η1(τ̄ , α) = x0 +

(
ć0h́0 − b́0í0

á0í0

)
α + z∗1(τ̄ , α), η2(τ̄ , α) = α

and η3(τ̄ , α) = −αh́0

í0
+ z∗3(τ̄ , α).

From (5.16) and (5.17) we have
∂M1

∂τ̄ (0, 0) = 0,

∂M3

∂τ̄ (0, 0) = 0,

then 
∂
∂τ̄ (η1 −Θ1 ◦ Φ(η, η1, η2, η3))(0, 0) = 0,

∂
∂τ̄ (η3 −Θ3 ◦ Φ(η, η1, η2, η3))(0, 0) = 0.
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Therefore

∂z∗1 (0,0)
∂τ̄ −

3∑
i=1

∂Θ1(Φ(τ0,X0))
∂xi

(
∂Φi(τ0,X0)

∂τ̄ + ∂Φi(τ0,X0)
∂x1

∂z∗1 (0,0)
∂τ̄ + ∂Φi(τ0,X0)

∂x3

∂z∗3 (0,0)
∂τ̄

)
= 0,

∂z∗3 (0,0)
∂τ̄ −

3∑
i=1

∂Θ3(Φ(τ0,X0))
∂xi

(
∂Φi(τ0,X0)

∂τ̄ + ∂Φi(τ0,X0)
∂x1

∂z∗1 (0,0)
∂τ̄ + ∂Φi(τ0,X0)

∂x3

∂z∗3 (0,0)
∂τ̄

)
= 0.

Since
∂Φ2(τ0,X0)

∂x1
= ∂Φ2(τ0,X0)

∂x3
= ∂Φ3(τ0,X0)

∂x1
= 0,

∂Φ2(τ0,X0)
∂τ̄ = ∂Φ3(τ0,X0)

∂τ̄ = 0

and
∂Θ3(Φ(τ0,X0))

∂x1
= 0,

we obtain 
á0

∂z∗1 (0,0)
∂τ̄ + ć0

∂z∗3 (0,0)
∂τ̄ = ∂Θ1(Φ(τ0,X0))

∂x1

∂Φ1(τ0,X0)
∂τ̄ ,

í0
∂z∗3 (0,0)
∂τ̄ = 0,

that is 
∂z∗1 (0,0)
∂τ̄ = 1

á0

∂Θ1(Φ(τ0,X0))
∂x1

∂Φ1(τ0,X0)
∂τ̄ ,

∂z∗3 (0,0)
∂τ̄ = 0.

(6.8)

In the same way as above, we obtain
∂
∂α (η1 −Θ1 ◦ Φ(η, η1, η2, η3))(0, 0) = 0,

∂
∂α (η3 −Θ3 ◦ Φ(η, η1, η2, η3))(0, 0) = 0.

Therefore

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1 (0,0)
∂α

)
−

3∑
i=1

∂Θ1(Φ(τ0,X0))
∂xi

{
∂Φi(τ0,X0)

∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1 (0,0)
∂α

)

+∂Φi(τ0,X0)
∂x2

+ ∂Φi(τ0,X0)
∂x3

(
−h́0

í0
+

∂z∗3 (0,0)
∂α

)}
= 0,

(
−h́0

í0
+

∂z∗3 (0,0)
∂α

)
−

3∑
i=1

∂Θ3(Φ(τ0,X0))
∂xi

{
∂Φi(τ0,X0)

∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1 (0,0)
∂α

)

+∂Φi(τ0,X0)
∂x2

+ ∂Φi(τ0,X0)
∂x3

(
−h́0

í0
+

∂z∗3 (0,0)
∂α

)}
= 0.

Since
∂Φ2(τ0,X0)

∂x1
= ∂Φ2(τ0,X0)

∂x3
= ∂Φ3(τ0,X0)

∂x1
= 0



6.3 The first partial derivatives of f 88

and
∂Θ3(Φ(τ0,X0))

∂x1
= 0,

we obtain 
á0

∂z∗1 (0,0)
∂α + ć0

∂z∗3 (0,0)
∂α = 0,

í0
∂z∗3 (0,0)
∂α = 0,

that is 
∂z∗1 (0,0)
∂α = 0,

∂z∗3 (0,0)
∂α = 0.

(6.9)

(C2) é0 6= 0 and í0 = 0.

Let η(τ̄) = τ0 + τ̄ , η1(τ̄ , α) = x0 −
ć0
á0
α + z∗1(τ̄ , α), η2(τ̄ , α) = z∗2(τ̄ , α) and

η3(τ̄ , α) = α.
From (5.19) and (5.20) we have

∂M1

∂τ̄ (0, 0) = 0,

∂M2

∂τ̄ (0, 0) = 0,

In the same way as above, we obtain
∂z∗1 (0,0)
∂τ̄ = 1

á0

∂Θ1(Φ(τ0,X0))
∂x1

∂Φ1(τ0,X0)
∂τ̄ ,

∂z∗2 (0,0)
∂τ̄ = 0.

(6.10)

and 
∂z∗1 (0,0)
∂α = 0,

∂z∗2 (0,0)
∂α = 0.

(6.11)

6.3 The first partial derivatives of f

(C1) é0 = 0 and í0 6= 0.
We have

∂f
∂τ̄ = ∂

∂τ̄ (η2 −Θ2 ◦ Φ(η, η1, η2, η3))

= −
3∑
i=1

∂Θ2

∂xi

(
∂Φi(η,η1,η2,η3)

∂τ̄ + ∂Φi(η,η1,η2,η3)
∂x1

∂z∗1
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x3

∂z∗3
∂τ̄

)
.

Since
∂Φ2(τ0,X0)

∂x1
= ∂Φ2(τ0,X0)

∂x3
= ∂Φ2(τ0,X0)

∂τ̄ = 0

and
∂Θ2(Φ(τ0,X0))

∂x1
= ∂Θ2(Φ(τ0,X0))

∂x3
= 0,
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we obtain
∂f(0,0)
∂τ̄ = 0.

Moreover,

∂f
∂α = ∂

∂α (η2 −Θ2 ◦ Φ(η, η1, η2, η3))

= 1−
3∑
i=1

∂Θ2

∂xi

{
∂Φi(η,η1,η2,η3)

∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x2

+ ∂Φi(η,η1,η2,η3)
∂x3

(
−h́0

í0
+

∂z∗3
∂α

)}
.

Since
∂Θ2(Φ(τ0,X0))

∂x1
= ∂Θ2(Φ(τ0,X0))

∂x3
= 0,

∂Φ2(τ0,X0)
∂x1

= ∂Φ2(τ0,X0)
∂x3

= 0

and
1− ∂Θ2(Φ(τ0,X0))

∂x2

∂Φ2(τ0,X0)
∂x2

= é0 = 0,

we obtain
∂f(0,0)
∂α = 0.

Therefore Df(0, 0) = (0, 0).
(C2) é0 6= 0 and í0 = 0.
We have

∂f
∂τ̄ = ∂

∂τ̄ (η3 −Θ3 ◦ Φ(η, η1, η2, η3))

= −
3∑
i=1

∂Θ3

∂xi

(
∂Φi(η,η1,η2,η3)

∂τ̄ + ∂Φi(η,η1,η2,η3)
∂x1

∂z∗1
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x2

∂z∗2
∂τ̄

)
.

Since
∂Θ3(Φ(τ0,X0))

∂x1
= ∂Φ2(τ0,X0)

∂x1
= ∂Φ3(τ0,X0)

∂x1
= 0

and
∂Φ2(τ0,X0)

∂τ̄ = ∂Φ3(τ0,X0)
∂τ̄ = 0.

From (6.10), we have
∂z∗2 (0,0)
∂τ̄ = 0,

then
∂f(0,0)
∂τ̄ = 0.

Moreover
∂f
∂α = ∂

∂α (η3 −Θ3 ◦ Φ(η, η1, η2, η3))

= 1−
3∑
i=1

∂Θ3

∂xi

{
∂Φi(η,η1,η2,η3)

∂x1

(
−ć0
á0

+
∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x2

(
∂z∗2
∂α

)

+ ∂Φi(η,η1,η2,η3)
∂x3

}
.
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We have
∂Φ2(τ0,X0)

∂x1
= ∂Φ2(τ0,X0)

∂x3
= ∂Φ3(τ0,X0)

∂x1
= 0,

∂Θ3(Φ(τ0,X0))
∂x1

= 0

and
1− ∂Θ3(Φ(τ0,X0))

∂x3

∂Φ3(τ0,X0)
∂x3

= í0 = 0.

From (6.11), we have
∂z∗2
∂α (0, 0) = 0,

then
∂f(0,0)
∂α = 0.

Therefore Df(0, 0) = (0, 0).

6.4 Second partial derivatives of f

Let A = ∂2f(0,0)
∂τ̄2 , B = ∂2f(0,0)

∂τ̄∂α and C = ∂2f(0,0)
∂α2 .

(C1) é0 = 0 and í0 6= 0.

Calculation of A. We have ∂2f
∂τ̄2 = ∂2

∂τ̄2 (η2 −Θ2 ◦ Φ(η, η1, η2, η3)), then

∂2f
∂τ̄2 =

−
3∑
j=1

3∑
i=1

∂2Θ2

∂xi∂xj

(
∂Φi(η,η1,η2,η3)

∂τ̄ + ∂Φi(η,η1,η2,η3)
∂x1

∂z∗1
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x3

∂z∗3
∂τ̄

)

×
(
∂Φj(η,η1,η2,η3)

∂τ̄ +
∂Φj(η,η1,η2,η3)

∂x1

∂z∗1
∂τ̄ +

∂Φj(η,η1,η2,η3)
∂x3

∂z∗3
∂τ̄

)

−
3∑
i=1

∂Θ2

∂xi

{
∂2Φi(η,η1,η2,η3)

∂τ̄2 + 2∂
2Φi(η,η1,η2,η3)

∂τ̄∂x1

∂z∗1
∂τ̄ + 2∂

2Φi(η,η1,η2,η3)
∂τ̄∂x3

∂z∗3
∂τ̄

+∂2Φi(η,η1,η2,η3)
∂x2

1

(
∂z∗1
∂τ̄

)2

+ 2∂
2Φi(η,η1,η2,η3)

∂x1∂x3

∂z∗1
∂τ̄

∂z∗3
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x1

∂2z∗1
∂τ̄2

+∂2Φi(η,η1,η2,η3)
∂x2

3

(
∂z∗3
∂τ̄

)2

+ ∂Φi(η,η1,η2,η3)
∂x3

∂2z∗3
∂τ̄2

}
.

We have
∂2Θ2(Φ(τ0,X0))

∂x2
1

= ∂Θ2(Φ(τ0,X0))
∂x1

= ∂Θ2(Φ(τ0,X0))
∂x3

= 0,

∂Φ2(τ0,X0)
∂x1

= ∂Φ3(τ0,X0)
∂x1

= ∂Φ2(τ0,X0)
∂x3

= 0

and
∂2Φ2(τ0,X0)

∂τ̄2 = ∂Φ2(τ0,X0)
∂τ̄ = ∂Φ3(τ0,X0)

∂τ̄ = 0.
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From (6.1) and (6.8), we have ∂2Φ2(τ0,X0)
∂x2

1
= ∂2Φ2(τ0,X0)

∂τ̄∂x1
= 0 and

∂z∗3 (0,0)
∂τ̄ = 0,

then A = 0.
Calculation of C. We have ∂2f

∂α2 = ∂2

∂α2 (η2 −Θ2 ◦ Φ(η, η1, η2, η3)), then

∂2f
∂α2 = −

3∑
j=1

3∑
i=1

∂2Θ2

∂xi∂xj

×
{
∂Φi(η,η1,η2,η3)

∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x2
+ ∂Φi(η,η1,η2,η3)

∂x3

(
−h́0

í0
+

∂z∗3
∂α

)}
×
{
∂Φj(η,η1,η2,η3)

∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+

∂Φj(η,η1,η2,η3)
∂x2

+
∂Φj(η,η1,η2,η3)

∂x3

(
−h́0

í0
+

∂z∗3
∂α

)}

−
3∑
i=1

∂Θ2

∂xi

{
∂2Φi(η,η1,η2,η3)

∂x2
1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)2

+ 2∂
2Φi(η,η1,η2,η3)

∂x2∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)

+2∂
2Φi(η,η1,η2,η3)

∂x3∂x1

(
−h́0

í0
+

∂z∗3
∂α

)(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x1

(
∂2z∗1
∂α2

)
+ ∂2Φi(η,η1,η2,η3)

∂x2
2

+ 2∂
2Φi(η,η1,η2,η3)

∂x3∂x2

(
−h́0

í0
+

∂z∗3
∂α

)
∂z∗2
∂α + ∂2Φi(η,η1,η2,η3)

∂x2
3

(
−h́0

í0
+

∂z∗3
∂α

)2
}
.

From (6.1) and (6.3), we have ∂2Φ2(τ0,X0)
∂x1∂x3

= ∂2Φ2(τ0,X0)
∂x2

3
= 0.

For determining C, we must calculate the expressions (E1) : ∂2Φ2

∂x2∂x1
, (E2) : ∂

2Φ2

∂x2
2

and (E3) : ∂2Φ2

∂x3∂x2
at (τ0, X0).

The second partial derivatives of Φ2 can be obtained from the following differ-
ential equations

(E1) : d
dt

(
∂2Φ2(t,X0)
∂x2∂x1

)
= ∂F2(ζ(t))

∂x1

∂2Φ1(t,X0)
∂x2∂x1

+ ∂F2(ζ(t))
∂x2

∂2Φ2(t,X0)
∂x2∂x1

+ ∂F2(ζ(t))
∂x3

∂2Φ3(t,X0)
∂x2∂x1

+
(
∂2F2(ζ(t))

∂x2
1

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2∂x1

∂Φ2(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x3∂x1

∂Φ3(t,X0)
∂x2

)
∂Φ1(t,X0)

∂x1

+
(
∂2F2(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2

2

∂Φ2(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x2

)
∂Φ2(t,X0)

∂x1

+
(
∂2F2(ζ(t))
∂x1∂x3

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2∂x3

∂Φ2(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2

3

∂Φ3(t,X0)
∂x2

)
∂Φ3(t,X0)

∂x1

then

d
dt

(
∂2Φ2(t,X0)
∂x2∂x1

)
= ∂F2(ζ(t))

∂x2

∂2Φ2(t,X0)
∂x2∂x1

+ ∂2F2(ζ(t))
∂x2∂x1

∂Φ2(τ0,X0)
∂x2

∂Φ1(τ0,X0)
∂x1

with the initial condition ∂2Φ2(0,X0)
∂x2∂x1

= 0. We obtain

∂2Φ2(t,X0)
∂x2∂x1

=
∫ t

0
exp

(∫ t
0
∂F2(ζ(s))
∂x2

ds
)(

∂2F2(ζ(r))
∂x2∂x1

)
exp

(∫ r
0
∂F1(ζ(s))
∂x1

ds
)
dr.
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(E2) : d
dt

(
∂2Φ2(t,X0)

∂x2
2

)
= ∂F2(ζ(t))

∂x1

∂2Φ1(t,X0)
∂x2

2
+ ∂F2(ζ(t))

∂x2

∂2Φ2(t,X0)
∂x2

2
+ ∂F2(ζ(t))

∂x3

∂2Φ3(t,X0)
∂x2

2

+
(
∂2F2(ζ(t))

∂x2
1

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2∂x1

∂Φ2(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x3∂x1

∂Φ3(t,X0)
∂x2

)
∂Φ1(t,X0)

∂x2

+
(
∂2F2(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2

2

∂Φ2(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x2

)
∂Φ2(t,X0)

∂x2

+
(
∂2F2(ζ(t))
∂x1∂x3

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2∂x3

∂Φ2(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2

3

∂Φ3(t,X0)
∂x2

)
∂Φ3(t,X0)

∂x2

then

d
dt

(
∂2Φ2(t,X0)

∂x2
2

)
= ∂F2(ζ(t))

∂x2

∂2Φ2(t,X0)
∂x2

2

+
(

2∂
2F2(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x2

+ ∂2F2(ζ(t))
∂x2

2

∂Φ2(t,X0)
∂x2

+ 2∂
2F2(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x2

)
∂Φ2(t,X0)

∂x2

with the initial condition ∂2Φ2(0,X0)
∂x2

2
= 0. We obtain

∂2Φ2(t,X0)
∂x2

2
=

∫ t
0

exp
(∫ t

0
∂F2(ζ(s))
∂x2

ds
){

2∂
2F2(ζ(r))
∂x2∂x1

∂Φ1(r,X0)
∂x2

+ ∂2F2(ζ(r))
∂x2

2

∂Φ2(r,X0)
∂x2

+ 2∂
2F2(ζ(r))
∂x3∂x2

∂Φ3(r,X0)
∂x2

}
dr.

(E3) : d
dt

(
∂2Φ2(t,X0)
∂x3∂x2

)
= ∂F2(ζ(t))

∂x1

∂2Φ1(t,X0)
∂x3∂x2

+ ∂F2(ζ(t))
∂x2

∂2Φ2(t,X0)
∂x3∂x2

+ ∂F2(ζ(t))
∂x3

∂2Φ3(t,X0)
∂x3∂x2

+
(
∂2F2(ζ(t))

∂x2
1

∂Φ1(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x2∂x1

∂Φ2(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x3∂x1

∂Φ3(t,X0)
∂x3

)
∂Φ1(t,X0)

∂x2

+
(
∂2F2(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x2

2

∂Φ2(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x3

)
∂Φ2(t,X0)

∂x2

+
(
∂2F2(ζ(t))
∂x1∂x3

∂Φ1(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x2∂x3

∂Φ2(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x2

3

∂Φ3(t,X0)
∂x3

)
∂Φ3(t,X0)

∂x2

then

d
dt

(
∂2Φ2(t,X0)
∂x3∂x2

)
= ∂F2(ζ(t))

∂x2

∂2Φ2(t,X0)
∂x3∂x2

+
(
∂2F2(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x3

+ ∂2F2(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x3

)
∂Φ2(t,X0)

∂x2

with the initial condition ∂2Φ2(0,X0)
∂x3∂x2

= 0. We obtain(
∂2Φ2(t,X0)
∂x3∂x2

)
=
∫ t

0
exp

(∫ t
0
∂F2(ζ(s))
∂x2

ds
)(

∂2F2(ζ(r))
∂x1∂x2

∂Φ1(r,X0)
∂x3

+ ∂2F2(ζ(r))
∂x3∂x2

∂Φ3(r,X0)
∂x3

)
dr.
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From (6.9), we have
∂z∗1 (0,0)
∂α =

∂z∗3 (0,0)
∂α = 0. Therefore

C = −2
{
∂2Θ2(Φ(τ0,X0))

∂x2∂x1

∂Φ2(τ0,X0)
∂x2

+ ∂2Θ2(Φ(τ0,X0))
∂x3∂x1

(
∂Φ3(τ0,X0)

∂x2
+ ∂Φ3(τ0,X0)

∂x3

(
−h́0

í0

))}

×

{
∂Φ1(τ0, X0)

∂x1

(
ć0h́0 − b́0í0

á0í0

)
+
∂Φ1(τ0, X0)

∂x2
+
∂Φ1(τ0, X0)

∂x3

(
−h́0

í0

)}

−2∂
2Θ2(Φ(τ0,X0))

∂x3∂x2

{
∂Φ3(τ0,X0)

∂x2
+ ∂Φ3(τ0,X0)

∂x3

(
−h́0

í0

)}(
∂Φ2(τ0,X0)

∂x2

)
−∂Θ2(Φ(τ0,X0))

∂x2

{
2∂

2Φ2(τ0,X0)
∂x2∂x1

(
ć0h́0−b́0 í0

á0 í0

)
+ ∂2Φ2(τ0,X0)

∂x2
2

+ 2∂
2Φ2(τ0,X0)
∂x3∂x2

(
−h́0

í0

)}
−∂

2Θ2(Φ(τ0,X0))
∂x2

2

(
∂Φ2(τ0,X0)

∂x2

)2

− ∂2Θ2(Φ(τ0,X0))
∂x2

3

(
∂Φ3(τ0,X0)

∂x2
+ ∂Φ3(τ0,X0)

∂x3

(
−h́0

í0

))2

.

Calculation of B. We have ∂2f
∂τ̄∂α = ∂

∂τ̄

(
∂
∂α (η2 −Θ2 ◦ Φ(η, η1, η2, η3))

)
, then

∂2f
∂τ̄∂α =

−
3∑
j=1

3∑
i=1

∂2Θ2

∂xi∂xj

(
∂Φi(η,η1,η2,η3)

∂τ̄ + ∂Φi(η,η1,η2,η3)
∂x1

∂z∗1
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x3

∂z∗3
∂τ̄

)

×
{
∂Φj(η,η1,η2,η3)

∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+

∂Φj(η,η1,η2,η3)
∂x2

+
∂Φj(η,η1,η2,η3)

∂x3

(
−h́0

í0
+

∂z∗3
∂α

)}

−
3∑
i=1

∂Θ2

∂xi

{
∂2Φi(η,η1,η2,η3)

∂τ̄∂x1

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+ ∂2Φi(η,η1,η2,η3)

∂x2
1

∂z∗1
∂τ̄

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)

+ ∂2Φi(η,η1,η2,η3)
∂x3∂x1

∂z∗3
∂τ̄

(
ć0h́0−b́0 í0

á0 í0
+

∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x1

∂2z∗1
∂τ̄∂α + ∂2Φi(η,η1,η2,η3)

∂τ̄∂x2

+∂2Φi(η,η1,η2,η3)
∂x1∂x2

∂z∗1
∂τ̄ + ∂2Φi(η,η1,η2,η3)

∂x3∂x2

∂z∗3
∂τ̄ + ∂2Φi(η,η1,η2,η3)

∂τ̄∂x3

(
−h́0

í0
+

∂z∗3
∂α

)
+ ∂2Φi(η,η1,η2,η3)

∂x1∂x3

∂z∗1
∂τ̄

(
−h́0

í0
+

∂z∗3
∂α

)
+ ∂2Φi(η,η1,η2,η3)

∂x2
3

∂z∗3
∂τ̄

(
−h́0

í0
+

∂z∗3
∂α

)}
.

From (6.8), we have
∂z∗1 (0,0)
∂τ̄ = 1

á0
∂Θ1

∂x1

∂Φ1(τ0,X0)
∂τ̄ and

∂z∗3 (0,0)
∂τ̄ = 0.

From equations (6.1), (6.3) and (6.2), we obtain ∂2Φ2(t,X0)
∂τ̄∂x1

= 0, ∂
2Φ2(t,X0)
∂τ̄∂x3

= 0

and ∂2Φ2(t,X0)
∂τ̄∂x2

= ∂F2(ζ(t))
∂x2

exp
(∫ t

0
∂F2(ζ(r))
∂x2

dr
)
, then

B = −∂
2Θ2(Φ(τ0,X0))

∂x1∂x2

∂Φ2(τ0,X0)
∂x2

(
∂Φ1(τ0,X0)

∂τ̄ + ∂Φ1(τ0,X0)
∂x1

1
á0

∂Θ1

∂x1

∂Φ1(τ0,X0)
∂τ̄

)
− ∂Θ2(Φ(τ0,X0))

∂x2

(
∂2Φ2(τ0,X0)

∂τ̄∂x2
+ ∂2Φ2(τ0,X0)

∂x1∂x2

1
á0

∂Θ1

∂x1

∂Φ1(τ0,X0)
∂τ̄

)
.
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(C2) é0 6= 0 and í0 = 0.

Calculation of A. We have ∂2f
∂τ̄2 = ∂2

∂τ̄2 (η3 −Θ3 ◦ Φ(η, η1, η2, η3)), then

∂2f
∂τ̄2 =

−
3∑
j=1

3∑
i=1

∂2Θ3

∂xi∂xj

(
∂Φi(η,η1,η2,η3)

∂τ̄ + ∂Φi(η,η1,η2,η3)
∂x1

∂z∗1
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x2

∂z∗2
∂τ̄

)

×
(
∂Φj(η,η1,η2,η3)

∂τ̄ +
∂Φj(η,η1,η2,η3)

∂x1

∂z∗1
∂τ̄ +

∂Φj(η,η1,η2,η3)
∂x2

∂z∗2
∂τ̄

)

−
3∑
i=1

∂Θ3

∂xi

{
∂2Φi(η,η1,η2,η3)

∂τ̄2 + 2∂
2Φi(η,η1,η2,η3)

∂τ̄∂x1

∂z∗1
∂τ̄ + 2∂

2Φi(η,η1,η2,η3)
∂τ̄∂x2

∂z∗2
∂τ̄

+∂2Φi(η,η1,η2,η3)
∂x2

1

(
∂z∗1
∂τ̄

)2

+ 2∂
2Φi(η,η1,η2,η3)

∂x1∂x2

∂z∗1
∂τ̄

∂z∗2
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x1

∂2z∗1
∂τ̄2

+ ∂2Φi(η,η1,η2,η3)
∂x2

2

(
∂z∗2
∂τ̄

)2

+ ∂Φi(η,η1,η2,η3)
∂x2

∂2z∗2
∂τ̄2

}
.

We have
∂Θ3(Φ(τ0,X0))

∂x1
= ∂2Θ3(Φ(τ0,X0))

∂x2
1

= 0.

From (6.1), (6.4) and (6.10), we obtain

∂Φi(τ0,X0)
∂x1

= ∂2Φi(τ0,X0)
∂x2

1
= 0,

∂Φi(τ0,X0)
∂τ̄ = ∂2Φi(τ0,X0)

∂τ̄2 = 0,

∂2Φi(τ0,X0)
∂τ∂x1

= 0,

for i = 2, 3 and
∂z∗2 (0,0)
∂τ̄ = 0.

From second partial derivative of equation (5.20), we obtain

∂2z∗2 (0,0)
∂τ̄2

(
1− ∂Θ2(Φ(τ0,X0))

∂x2

∂Φ2(τ0,X0)
∂x2

)
=

∂2z∗2 (0,0)
∂τ̄2 é0 = 0,

then
∂2z∗2 (0,0)
∂τ̄2 = 0.

Thus A = 0.
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Calculation of C. We have ∂2f
∂α2 = ∂2

∂α2 (η3 −Θ3 ◦ Φ(η, η1, η2, η3)), then

∂2f
∂α2 =

−
3∑
j=1

3∑
i=1

∂2Θ3

∂xi∂xj

(
∂Φi(η,η1,η2,η3)

∂x1

(
−ć0
á0

+
∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x2

∂z∗2
∂α + ∂Φi(η,η1,η2,η3)

∂x3

)

×
(
∂Φj(η,η1,η2,η3)

∂x1

(
−ć0
á0

+
∂z∗1
∂α

)
+

∂Φj(η,η1,η2,η3)
∂x2

∂z∗2
∂α +

∂Φj(η,η1,η2,η3)
∂x3

)

−
3∑
i=1

∂Θ3

∂xi

{
∂2Φi(η,η1,η2,η3)

∂x2
1

(
−ć0
á0

+
∂z∗1
∂α

)2

+ 2∂
2Φi(η,η1,η2,η3)

∂x2∂x1

∂z∗2
∂α

(
−ć0
á0

+
∂z∗1
∂α

)

+2∂
2Φi(η,η1,η2,η3)

∂x3∂x1

(
−ć0
á0

+
∂z∗1
∂α

)
+ ∂Φi(η,η1,η2,η3)

∂x1

(
∂2z∗1
∂α2

)
+ ∂2Φi(η,η1,η2,η3)

∂x2
2

(
∂z∗2
∂α

)2

+ 2∂
2Φi(η,η1,η2,η3)

∂x3∂x2

∂z∗2
∂α + ∂Φi(η,η1,η2,η3)

∂x2

(
∂2z∗2
∂α2

)
+ ∂2Φi(η,η1,η2,η3)

∂x2
3

}
.

To determine C we must calculate the expressions (E4):
∂2z∗2 (0,0)
∂α2 , (E5): ∂2Φ3(τ0,X0)

∂x3∂x1

and (E6): ∂2Φ3(τ0,X0)
∂x2

3
.

(E4): From the second partial derivative of equation (5.20), we have(
1− ∂Θ2(τ0,X0))

∂x2

∂Φ2(τ0,X0)
∂x2

)
∂2z∗2 (0,0)
∂α2 = é0

∂2z∗2 (0,0)
∂α2 = 0,

then
∂2z∗2 (0,0)
∂α2 = 0.

(E5): The term ∂2Φ3(t,X0)
∂x3∂x1

can be obtained from the following linear differential
equation

d
dt

(
∂2Φ3(t,X0)
∂x3∂x1

)
= ∂F3(ζ(t))

∂x1

∂2Φ1(t,X0)
∂x3∂x1

+ ∂F3(ζ(t))
∂x2

∂2Φ2(t,X0)
∂x3∂x1

+ ∂F3(ζ(t))
∂x3

∂2Φ3(t,X0)
∂x3∂x1

+
(
∂2F3(ζ(t))

∂x2
1

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2∂x1

∂Φ2(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x3∂x1

∂Φ3(t,X0)
∂x3

)
∂Φ1(t,X0)

∂x1

+
(
∂2F3(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2

2

∂Φ2(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x3

)
∂Φ2(t,X0)

∂x1

+
(
∂2F3(ζ(t))
∂x1∂x3

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2∂x3

∂Φ2(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2

3

∂Φ3(t,X0)
∂x3

)
∂Φ3(t,X0)

∂x1

then

d
dt

(
∂2Φ3(t,X0)
∂x3∂x1

)
= ∂F3(ζ(t))

∂x3

∂2Φ3(t,X0)
∂x3∂x1

+ ∂2F3(ζ(t))
∂x3∂x1

∂Φ3(t,X0)
∂x3

∂Φ1(t,X0)
∂x1

with the initial condition ∂2Φ3(0,X0)
∂x3∂x1

= 0. We obtain(
∂2Φ3(t,X0)
∂x3∂x1

)
=
∫ t

0
exp

(∫ t
0
∂F3(ζ(s))
∂x3

ds
)(

∂2F3(ζ(r))
∂x3∂x1

)
exp

(∫ r
0
∂F1(ζ(s))
∂x1

ds
)
dr.
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(E6): In the same way as above, we have

d
dt

(
∂2Φ3(t,X0)

∂x2
3

)
= ∂F3(ζ(t))

∂x1

∂2Φ1(t,X0)
∂x2

3
+ ∂F3(ζ(t))

∂x2

∂2Φ2(t,X0)
∂x2

3
+ ∂F3(ζ(t))

∂x3

∂2Φ3(t,X0)
∂x2

3

+
(
∂2F3(ζ(t))

∂x2
1

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2∂x1

∂Φ2(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x3∂x1

∂Φ3(t,X0)
∂x3

)
∂Φ1(t,X0)

∂x3

+
(
∂2F3(ζ(t))
∂x1∂x2

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2

2

∂Φ2(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x3∂x2

∂Φ3(t,X0)
∂x3

)
∂Φ2(t,X0)

∂x3

+
(
∂2F3(ζ(t))
∂x1∂x3

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2∂x3

∂Φ2(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2

3

∂Φ3(t,X0)
∂x3

)
∂Φ3(t,X0)

∂x3
,

then

d
dt

(
∂2Φ3(t,X0)

∂x2
3

)
= ∂F3(ζ(t))

∂x3

∂2Φ3(t,X0)
∂x2

3
+
(

2∂
2F3(ζ(t))
∂x3∂x1

∂Φ1(t,X0)
∂x3

+ ∂2F3(ζ(t))
∂x2

3

∂Φ3(t,X0)
∂x3

)
∂Φ3(t,X0)

∂x3

with the initial condition ∂2Φ3(0,X0)
∂x2

3
= 0. We obtain(

∂2Φ3(t,X0)
∂x2

3

)
= exp

(∫ t
0
∂F3(ζ(s))
∂x3

ds
) ∫ t

0

(
2∂

2F3(ζ(r))
∂x3∂x1

∂Φ1(r,X0)
∂x3

+ ∂2F3(ζ(r))
∂x2

3

∂Φ3(r,X0)
∂x3

)
dr.

Therefore

C = −2∂
2Θ3(Φ(τ0,X0))

∂x1∂x3

(
∂Φ1(τ0,X0)

∂x1

(
−ć0
á0

)
+ ∂Φ1(τ0,X0)

∂x3

)(
∂Φ3(τ0,X0)

∂x3

)
−2∂Θ3(Φ(τ0,X0))

∂x3

∂2Φ3(τ0,X0)
∂x3∂x1

(
−ć0
á0

)
− ∂Θ3(Φ(τ0,X0))

∂x3

∂2Φ3(τ0,X0)
∂x2

3
− ∂2Θ3(Φ(τ0,X0))

∂x2
3

(
∂Φ3(τ0,X0)

∂x3

)2

.

Calculation of B. We have ∂2f
∂τ̄∂α = ∂

∂τ̄

(
∂
∂α (η3 −Θ3 ◦ Φ(η, η1, η2, η3)

)
, then

∂2f
∂τ̄∂α =

−
3∑
j=1

3∑
i=1

∂2Θ3

∂xi∂xj

(
∂Φi(η,η1,η2,η3)

∂τ̄ + ∂Φi(η,η1,η2,η3)
∂x1

∂z∗1
∂τ̄ + ∂Φi(η,η1,η2,η3)

∂x2

∂z∗2
∂τ̄

)

×
(
∂Φj(η,η1,η2,η3)

∂x1

(
−ć0
á0

+
∂z∗1
∂α

)
+

∂Φj(η,η1,η2,η3)
∂x2

∂z∗2
∂α +

∂Φj(η,η1,η2,η3)
∂x3

)

−
3∑
i=1

∂Θ3

∂xi

{(
∂2Φi(η,η1,η2,η3)

∂τ̄∂x1
+ ∂2Φi(η,η1,η2,η3)

∂x2
1

∂z∗1
∂τ̄ + ∂2Φi(η,η1,η2,η3)

∂x2∂x1

∂z∗2
∂τ̄

)(
−ć0
á0

+
∂z∗1
∂α

)

+∂Φi(η,η1,η2,η3)
∂x1

∂2z∗1
∂τ̄∂α +

(
∂2Φi(η,η1,η2,η3)

∂τ̄∂x2
+ ∂2Φi(η,η1,η2,η3)

∂x1∂x2

∂z∗1
∂τ̄ + ∂2Φi(η,η1,η2,η3)

∂x2
2

∂z∗2
∂τ̄

)
∂z∗2
∂α

+ ∂Φi(η,η1,η2,η3)
∂x2

∂2z∗2
∂τ̄∂α + ∂2Φi(η,η1,η2,η3)

∂τ̄∂x3
+ ∂2Φi(η,η1,η2,η3)

∂x1∂x3

∂z∗1
∂τ̄ + ∂2Φi(η,η1,η2,η3)

∂x2∂x3

∂z∗2
∂τ̄

}
.

From the second partial derivative of equation (5.20), we have(
1− ∂Θ2(Φ(τ0,X0))

∂x2

∂Φ2(τ0,X0)
∂x2

)
∂2z∗2 (0,0)
∂τ̄∂α = é0

∂2z∗2 (0,0)
∂τ̄∂α = 0,
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then
∂2z∗2 (0,0)
∂τ̄∂α = 0.

From equations (6.10), (6.1), (6.3), (6.4) and (6.6), we have

∂z∗1 (0,0)
∂τ̄ = 1

á0

∂Θ1(Φ(τ0,X0))
∂x1

∂Φ1(τ0,X0)
∂τ̄ ,

∂z∗2 (0,0)
∂τ̄ = 0.

∂2Φ2(t,X0)
∂τ̄∂x1

= 0,

∂2Φ2(t,X0)
∂τ̄∂x3

= 0,

∂2Φ3(t,X0)
∂τ̄∂x1

= 0

and
∂2Φ3(t,X0)
∂τ̄∂x3

= ∂F3(ζ(t))
∂x3

exp
(∫ t

0
∂F3(ζ(r))
∂x3

dr
)
.

Therefore

B = −∂Θ3(Φ(τ0,X0))
∂x3

{
∂2Φ3(τ0,X0)

∂τ̄∂x3
+ ∂2Φ3(τ0,X0)

∂x1∂x3

∂z∗1 (0,0)
∂τ̄

}
.

6.5 The cancer model cases

In the following, we calculate all parameters and partial differential equation
terms in different cases.
Let

I1(u) = e(r2−r3−m)u((T1 − e−r1τ0)er1u + (1− T1))
K1(r3λ3−r2λ2)

r1 ,

I2(u) = er3u((T1 − e−r1τ0)er1u + (1− T1))1− r3λ3K1
r1 ,

I3(u) = e(r2−m)u((T1 − e−r1τ0)er1u + (1− T1))1− r2λ2K1
r1 ,

Then, we have

∂Θi
∂xj

=


Ti if i = j and i 6= 2,
T2 −R if i = j = 2,
0 if i 6= j and (i, j) 6= (3, 2),
R if (i, j) = (3, 2),

∂Φ1(τ0,X0)
∂x1

= T−2
1 e−r1τ0 ,

∂Φ2(τ0,X0)
∂x2

= T
−r2λ2K1

r1
1 e(r2−r2λ2K1−m)τ0 ,

∂Φ3(τ0,X0)
∂x3

= T
−r3λ3K1

r1
1 e(r3−r3λ3K1)τ0 ,

∂Φ3(τ0,X0)
∂x2

= me(1+λ3K1)r3τ0 (1−e−r1τ0 )
r2λ2K1
r1

T

r3λ3K1
r1

1 (1−e−r1τ0 )
r3λ3K1
r1

∫ τ0
0
I1(u)du,
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∂Φ1(τ0,X0)
∂x3

= − r1λ1K1(T1−e−r1τ0 )e−r1τ0

T 2
1 (1−e−r1τ0 )

2− r3λ3K1
r1

∫ τ0
0
I2(u)du,

∂Φ1(τ0,X0)
∂x2

= − r1λ1K1(T1−e−r1τ0 )e−r1τ0

T 2
1 (1−e−r1τ0 )

2− r2λ2K1
r1

(
∫ τ0

0
I3(u)du+m

∫ τ0
0
I2(u){

∫ u
0
I1(p)dp}du),

á0 = T−1
1 (T1 − e−r1τ0),

b́0 = r1λ1K1(T1−e−r1τ0 )e−r1τ0

T1(1−e−r1τ0 )
2− r2λ2K1

r1

(
∫ τ0

0
I3(u)du+m

∫ τ0
0
I2(u){

∫ u
0
I1(p)dp}du),

ć0 = r1λ1K1(T1−e−r1τ0 )e−r1τ0

T1(1−e−r1τ0 )
2− r3λ3K1

r1

∫ τ0
0
I2(u)du,

d́0 = 0,

é0 = 1− (T2 −R)T
−r2λ2K1

r1
1 e(r2−r2λ2K1−m)τ0 ,

f́0 = 0,

ǵ0 = 0,

h́0 = −RT
−r2λ2K1

r1
1 e(r2−r2λ2K1−m)τ0 − mT3e

(1−λ3K1)r3τ0 (1−e−r1τ0 )
r2λ2K1
r1

T

r3λ3K1
r1

1 (1−e−r1τ0 )
r3λ3K1
r1

∫ τ0
0
I1(u)du

and

í0 = 1− T3T
−r3λ3K1

r1
1 e(r3−r3λ3K1)τ0 .

(C1) é0 = 0 and í0 6= 0. We have

∂2Φ2(τ0,X0)
∂x2∂x1

= r2λ2e
(r2−r2λ2K1−m)τ0

r1T

r1+r2λ2K1
r1

1

(e−r1τ0 − 1),

∂2Φ2(τ0,X0)
∂x3∂x2

= − r1r2λ1λ2k1(T1−e−r1τ0 )er2(1−λ2k1)τ0

er2mτ0 (1−e−r1τ0 )
r3λ3K1
r1 T

r2λ2K1
r1

1

∫ τ0
0

∫ u
0
I2(s)ds

e−r1u((T1−e−r1τ0 )er1u+(1−T1))2
du

− r2(1+λ2k2)T

−r2λ2K1
r1

1 er2(1−λ2k1)τ0

k2er2mτ0 (1−e−r1τ0 )
−r3λ3K1

r1

∫ τ0
0

I2(u)
((T1−e−r1τ0 )er1u+(1−T1))

du,

∂2Φ2(τ0,X0)
∂x2

2
= 2r1r2λ1λ2k1e

r2(1−λ2k1)τ0 (T1−e−r1τ0 )

emτ0T

r2λ2K1
r1

1

∫ τ0
0

∫ u
0
I3(s)ds

e−r1u((T1−e−r1τ0 )er1u+(1−T1))2
du

+ 2r1r2mλ1λ2k1e
r2(1−λ2k1)τ0 (T1−e−r1τ0 )

emτ0T

r2λ2K1
r1

1 (1−e−r1τ0 )
−r2λ2K1

r1

∫ τ0
0

∫ u
0
I2(s)e−2r3s(

∫ s
0
I1(r)e2r3rdr)ds

e−r1u((T1−e−r1τ0 )er1u+(1−T1))2
du

− r2e
(r2(1−λ2k1)−m)τ0T

−r2λ2K1
r1

1

k2(1−e−r1τ0 )
−r2λ2K1

r1

∫ τ0
0

I3(u)
((T1−e−r1τ0 )er1u+(1−T1))

du

− 2r2me
(r2−m)τ0 (T1e

r1τ0 )
−r2λ2K1

r1

k2(1−e−r1τ0 )
−r2λ2K1

r1

∫ τ0
0

I2(u)(
∫ u
0
I1(s)ds)

((T1−e−r1τ0 )er1u+(1−T1))
du.
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We obtain

C = −(T2 −R)

{
2
(
ć0h́0−b́0 í0

á0 í0

)
r2λ2e

(r2−r2λ2K1−m)τ0

r1T

r1+r2λ2K1
r1

1

(e−r1τ0 − T1)

+ 2r1r2λ1λ2k1(T1−e−r1τ0 )

e(m−r2(1−λ2k1))τ0T

r2λ2K1
r1

1

∫ τ0
0

∫ u
0

(
I3(s)+m(1−e−r1τ0 )

r2λ2K1
r1 e−2r3s(

∫ s
0
I1(r)e2r3rdr)

)
ds

e−r1u((T1−e−r1τ0 )er1u+(1−T1))2
du

− r2e
r2(1−λ2k1)τ0T

−r2λ2K1
r1

1

k2emτ0 (1−e−r1τ0 )
−r2λ2K1

r1

∫ τ0
0

I3(u)+2mI2(u)
∫ u
0
I1(s)ds

((T1−e−r1τ0 )er1u+(1−T1))
du

+2
(
−h́0

í0

)
r1r2λ1λ2k1T

−r2λ2K1
r1

1 (T1−e−r1τ0 )

e(m−r2(1−λ2k1))τ0 (1−e−r1τ0 )
r3λ3K1
r1

∫ τ0
0

er1u
∫ u
0
I2(s)ds

((T1−e−r1τ0 )er1u+(1−T1))2
du

−2
(
−h́0

í0

)
r2(1+λ2k2)T

−r2λ2K1
r1

1

k2e(m−r2(1−λ2k1))τ0 (1−e−r1τ0 )
−r3λ3K1

r1

∫ τ0
0

I2(u)
((T1−e−r1τ0 )er1u+(1−T1))

du

}
.

∂Φ1(τ0,X0)
∂τ̄ = ẋs(τ0) = r1K1(1−T1)(T1−e−r1τ0 )e−r1τ0

T 2
1 (1−e−r1τ0 )2

,

∂z∗1 (0,0)
∂τ̄ = r1K1(1−T1)e−r1τ0

(1−e−r1τ0 )2
,

∂2Φ2(τ0,X0)
∂τ̄∂x2

=
(
r2 −m− r2λ2K1(T1−e−r1τ0 )

T1(1−e−r1τ0 )

)
T
−r2λ2K1

r1
1 e(r2−r2λ2K1−m)τ0 .

We obtain

B = −(T2 −R)
(
r2 −m− r2λ2K1(T1−e−r1τ0 )

T1(1−e−r1τ0 )

)
T
−r2λ2K1

r1
1 e(r2−r2λ2K1−m)τ0

+ (T2 −R) r2λ2e
(r2−r2λ2K1−m)τ0

T

r1+r2λ2K1
r1

1

K1(1−T1)(T1−e−r1τ0 )e−r1τ0

(1−e−r1τ0 )2
.

(C2) é0 6= 0 and í0 = 0. We have

∂2Φ3(τ0,X0)
∂x3∂x1

= − r3λ3e
(r3−r3λ3K1)τ0

T

r3λ3K1
r1

1 (1−e−r1τ0 )
r3λ3K1
r1

−2

∫ τ0
0

er1u

I2(u)((T1−e−r1τ0 )er1u+(1−T1))
du,

∂2Φ3(τ0,X0)
∂x2

3
= −2r3K

−1
3 τ0e

(r3−r3λ3K1)τ0T
−r3λ3K1

r1
1

+ r1r3λ1λ3K1(T1−e−r1τ0 )

e−(r3−r3λ3K1)τ0T

r3λ3K1
r1

1

∫ τ0
0

er1u
∫ u
0
I2(p)dp

I2(u)((T1−e−r1τ0 )er1u+(1−T1))
du.
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We obtain

C = 2r3λ3T3e
(r3−r3λ3K1)τ0

T

r3λ3K1
r1

1 (1−e−r1τ0 )
r3λ3K1
r1

−2

(
−ć0
á0

) ∫ τ0
0

er1u

I2(u)((T1−e−r1τ0 )er1u+(1−T1))
du

+ 2r3K
−1
3 τ0T3e

(r3−r3λ3K1)τ0T
−r3λ3K1

r1
1

− r1r3λ1λ3K1T3(T1−e−r1τ0 )

e−(r3−r3λ3K1)τ0T

r3λ3K1
r1

1

∫ τ0
0

(
er1u

∫ u
0
I2(p)dp

I2(u)((T1−e−r1τ0 )er1u+(1−T1))

)
du.

∂z∗1 (0,0)
∂τ̄ = r1K1(1−T1)e−r1τ0

(1−e−r1τ0 )2
,

∂2Φ3(τ0,X0)
∂τ̄∂x3

= r3

(
1− λ3K1(T1−e−r1τ0 )er1τ0

T1(er1τ0−1)

)
T
−r3λ3K1

r1
1 e(r3−r3λ3K1)τ0 .

We obtain

B = −r3

(
1− λ3K1(T1−e−r1τ0 )er1τ0

T1(er1τ0−1)

)
T3T

−r3λ3K1
r1

1 e(r3−r3λ3K1)τ0

+ r1r3λ3K1(1−T1)T3e
(r3−r1−r3λ3K1)τ0

T

r3λ3K1
r1

1 (1−e−r1τ0 )
r3λ3K1
r1

∫ τ0
0

er1u

I2(u)((T1−e−r1τ0 )er1u+(1−T1))
du.
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Chapter 7

Lp, Distributions and
Sobolev Spaces

Dealing with differential equations one cannot avoid to study functions in Lp-
spaces (mainly L2-spaces) all of whose derivatives of some order are in Lp. (The
derivatives are sometimes taken in the weak sense.) This leads to the Sobolev
spaces.

7.1 Lp Spaces

In this section we concentrate ourselves on the basic structural facts about the
Lp spaces. Here, part of the theory, in particular the study of their linear
functionals, is best formulated in the more general context of Banach spaces.

7.1.1 Definitions and basic properties

Definition 7.1. Let 0 < p < 1 and let (X,M, µ) denote a measure space. If
f : X → R is a measurable function, then we define

‖f‖Lp(X) =

(∫
X

|f |pdx
) 1
p

and
‖f‖L∞(X) = ess sup

x∈X
|f(x)|.

Note that ‖f‖L∞(X) may take the value ∞.

Definition 7.2. The space Lp(X) is the set

Lp(X) = {f : X → R \ ‖f‖Lp <∞}.

The space Lp(X) satisfies the following vector space properties:
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(1) For each α ∈ R, if f ∈ Lp(X) then αf ∈ Lp(X);

(2) If f , g ∈ Lp(X), then

|f + g|p ≤ 2p−1(|f |p + |g|p);

so that |f + g| ∈ Lp(X).

(3) The triangle inequality is valid if p ≥ 1.

The most interesting cases are p = 1, 2,∞, while all of the Lp arise often in
nonlinear estimates.

Definition 7.3. The space lp, called ”small Lp”, will be useful when we intro-
duce Sobolev spaces on the torus and the Fourier series. For 1 ≤ p < ∞, we
set

lp =

{
{xn}∞n=1 \

∞∑
n=1

|xn|p <∞

}
.

7.1.2 Basic inequalities

Theorem 7.4. (Hölder′s inequality, [41]). Suppose that 0 ≤ p ≤ ∞ and
1 < q <∞ with 1

p + 1
q = 1. If f ∈ Lp and g ∈ Lq, then fg ∈ L1. Moreover,

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Note that p = q = 2, gives the Cauchy-Schwarz inequality since ‖fg‖L1 =
|(f, g)L2 |.
Definition 7.5. q = p

p−1 or 1
q = 1− 1

p is called the conjugate exponent of p.

Theorem 7.6. (Minkowski’s inequality, [41]). If 1 ≤ p ≤ ∞ and f, g ∈ Lp then

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

Corollary 7.7. ([41]) For 1 ≤ p ≤ ∞, Lp(X) is a normed linear space.

7.1.3 The space (Lp(X), ‖.‖Lp) is complete

Recall that a normed linear space is a Banach space if every Cauchy sequence
has a limit in that space; furthermore, recall that a sequence xn → x in X if
limn→∞ ‖xn − x‖X = 0.

The proof of completeness uses the following two lemmas that are restate-
ments of the Monotone Convergence Theorem and the Dominated Convergence
Theorem (DCT), respectively.

Lemma 7.8. ([41]) If fn → L1(X), 0 ≤ f1(x) ≤ f2(x) ≤ . . ., and ‖fn‖L1 ≤
C < 1, then limn→∞ fn(x) = f(x) with f ∈ L1(X) and ‖fn − f‖L1 → 0 as
n→ 0.

Lemma 7.9. (DCT, [41]). If fn ∈ L1(X), limn→∞ fn(x) = f(x) a.e., and
if ∃g ∈ L1(X) such that |fn(x)| ≤ |g(x)| a.e. for all n, then f ∈ L1(X) and
‖fn − f‖L1 → 0.
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7.1.4 Convergence criteria for Lp functions

If {fn} is a sequence in Lp(X) that converges to f in Lp(X), then there exists
a subsequence {fnk} such that fnk(x)→ f(x) for almost every x ∈ X (denoted
by a.e.), but it is in general not true that the entire sequence itself will converge
pointwise a.e. to the limit f , without some further conditions holding.

Example 7.10. Set X = R, and for n ∈ N, set fn = 1[n,n+1]. Then fn(x)→ 0
as n → ∞, but ‖fn‖Lp = 1 for p ∈ [1,∞); thus, fn → 0 pointwise, but not in
Lp.

Theorem 7.11. ([41]) For 1 ≤ p < ∞, suppose that {fn} ⊂ Lp(X) and that
fn(x)→ f(x) a.e. If limn→∞ ‖fn‖Lp = ‖f‖Lp , then fn → f in Lp(X).

7.1.5 The space L∞(X)

Definition 7.12. With ‖f‖L∞(X) = inf{M ≥ 0 \ |f(x)| ≤Ma.e.}, we set

L∞(X) = {f : X → R \ ‖f‖L∞ <∞}.

Theorem 7.13. ([41]) (L∞(X), ‖.‖L∞) is a Banach space.

Lemma 7.14. (Lp comparisons, [41]). If 1 ≤ p < q < r ≤ ∞, then

(a) Lp
⋂
Lr ⊂ Lq,

(b) Lq ⊂ Lp + Lr.

Theorem 7.15. ([41]) If µ(X) ≤ ∞ and q > p, then Lq ⊂ Lp.

Lemma 7.16. ([41]) If p ∈ [1, 1), then the set of simple functions f =
∑n
i=1 ai1Ei ,

where each Ei is an element of the σ-algebra A and µ(Ei) < ∞, is dense in
Lp(X,A, µ).

7.2 Distributions

A distribution is a linear functional on a space of test functions. Distributions
include all locally integrable functions and have derivatives of all orders (great
for linear problems) but cannot be multiplied in any natural way (not so great
for nonlinear problems). One can use many different spaces of test functions. We
consider here distributions on space D(Ω) of smooth compactly supported test
functions where Ω ⊂ Rn is an open set (which we call simply ”distributions”).

7.2.1 Test functions

If Ω ⊂ Rn is an open set (possibly equal to Rn), then the space D(Ω) consists
of all smooth functions φ whose support supp φ is a compact subset of Ω (i.e.
D(Ω) = C∞c (Ω) as a set).
The topology on D(Ω) corresponds to the following notion of convergence of
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test functions: φn → φ in D(Ω) if there exists a compact set K ⊂ Ω. such
that supp φn ⊂ K for every n ∈ N and ∂αφn → ∂αφ uniformly on for every
multi-index α ∈ Nn.
The space D(Ω) is a topological vector space, but its topology is not metriz-
able. Nevertheless, somewhat remarkably, sequential continuity of a functional
is equivalent to continuity.

7.2.2 Distributions in D′(Ω)

A distribution T ∈ D′(Ω) is a continuous linear functional

T : D(Ω)→ C, φ 7→ 〈T, φ〉

Here, continuity means that

〈T, φn〉 → 〈T, φ〉 if φn → φ in D(Ω).

Example 7.17. If φ ∈ L1
loc(Ω), then Tf defined by

〈Tf , φ〉 =

∫
Ω

fφdx

is a distribution, called a regular distribution. The function f is determined by
the distribution Tf up to pointwise a.e. equivalence. We typically identify Tf
with the function f and write Tf = f .

We shall define the derivative of a distribution in such a way that it agrees
with the usual notion of derivative on those distributions which arise from con-
tinuously differentiable functions. That is, we want to define ∂α : D′Ω)→ D′(Ω)
so that

∂α(Tf ) = TDαf , |α| ≤ m, f ∈ Cm(Ω).

But a computation with integration-by-parts gives

TDαf (ϕ) = (−1)|α|Tf (Dαϕ), ϕ ∈ C∞c (Ω),

and this identity suggests the following.

Definition 7.18. The αth partial derivative of the distribution T is the distri-
bution ∂αT defined by

∂αT (ϕ) = (−1)|α|T (Dαϕ), ϕ ∈ C∞c (Ω),

Since Dα ∈ L(C∞c (Ω), C∞c (Ω)), it follows that ∂αT is linear. Every distribu-
tion has derivatives of all orders and so also then does every function, e.g., in
L1
loc(Ω), when it is identified as a distribution. Furthermore, by the very defi-

nition of the derivative ∂α it is clear that ∂α and Dα are compatible with the
identification of C∞c (Ω) in D′(G).

Theorem 7.19. ([41])
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(a) If S is a distribution on R, then there exists another distribution T such
that ∂T = S.

(b) If T1 and T2 are distributions on R with ∂T1 = ∂T2, then T1−T2 is constant.

Theorem 7.20. ([41]) If f : R → R is absolutely continuous, then g = Df
defines g(x) for almost every x ∈ R, g ∈ L1

loc(R), and ∂f = g in D∗(R).
Conversely, if T is a distribution on R with ∂T ∈ L1

loc(R), T (= Tf ) = f for
some absolutely continuous f , and ∂T = Df .

7.3 Sobolev spaces

In this section, we give a brief overview on basic results of the theory of Sobolev
spaces and their associated trace and dual spaces.

Definition 7.21. For integers k ≥ 0 and 1 ≤ p ≤ ∞,

W k,p(Ω) = {u ∈ L1
loc(Ω) \Dαu exists and is in Lp(Ω) for |α| ≤ k},

Definition 7.22. For u ∈W k,p(Ω) define

‖u‖Wk,p(Ω) =

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

for 1 ≤ p <∞,

and
‖u‖Wk,∞ =

∑
|α|≤k

‖Dαu‖L∞ .

The function ‖.‖Wk,p(Ω) is clearly a norm since it is a finite sum of Lp norms.

Definition 7.23. A sequence uj → u in W k,p(Ω) if

lim
j→∞

‖uj − u‖Wk,p = 0.

Theorem 7.24. ([1]) W k,p(Ω) is a Banach space.

Definition 7.25. For integers k ≥ 0 and p = 2, we define

Hk(Ω) = W k,2(Ω).

Hk(Ω) is a Hilbert space with inner-product (u; v)Hk(Ω) =
∑
|α|≤k(Dαu,Dαv)L2(Ω).

7.3.1 Morrey’s inequality

Theorem 7.26. (Morrey’s inequality, [1]). For n < p ≤ ∞, let B(x, r) ⊂ Rn
and let y ∈ B(x, r). Then

|u(x)− u(y)| ≤ Cr1−np ‖Du‖Lp(B(x,2r)) ∀u ∈ C1(R).

Theorem 7.27. (Sobolev embedding theorem for k = 1, [1]). There exists a
constant C = C(p, n) such that

‖u‖
C

0,1−n
p (Rn)

≤ C‖u‖W 1,p(Rn).
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7.3.2 The Gagliardo-Nirenberg-Sobolev inequality

Theorem 7.28. (Gagliardo-Nirenberg inequality, [1]). For 1 ≤ p < n, set
p∗ = np

n−p . Then

‖u‖Lp∗ (Rn) ≤ Cp,n‖Du‖Lp(Rn).

Theorem 7.29. ([1]) Suppose that u ∈ H1(R2). Then for all 1 ≤ q <∞,

‖u‖Lq(R2) ≤ C
√
q‖u‖H1(R2).

7.3.3 Sobolev extensions and traces

Let Ω ⊂ Rn denote an open, bounded domain with C1 boundary.

Theorem 7.30. ([1]) Suppose that Ω̃ ⊂ Rn is a bounded and open domain such
that Ω ⊂⊂ Ω̃. Then for 1 ≤ p ≤ ∞, there exists a bounded linear operator

E : W 1,p(Ω)→W 1,p(Rn)

such that for all u ∈W 1,p(Ω),

(1) Eu = u a.e. in Ω,

(2) spt(u) ⊂ Ω̃,

(3) ‖Eu‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω) for a constant C = C(p,Ω, Ω̃).

Theorem 7.31. ([1]) For 1 ≤ p <∞, there exists a bounded linear operator

T : W 1,p(Ω)→ Lp(Ω)

(1) Tu = u|∂Ω for all u ∈W 1,p(Ω)
⋃
C0(Ω̄),

(2) ‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω) for a constant C = C(p,Ω).

7.3.4 The subspace W 1,p
0 (Ω)

Definition 7.32. We let W 1,p
0 (Ω) denote the closure of C∞0 (Ω) in W 1,p(Ω).

Theorem 7.33. ([1]) Suppose that Ω ⊂ Rn is bounded with C1 boundary, and
that u ∈W 1,p(Ω). Then

W 1,p
0 (Ω) iff Tu = 0 on ∂Ω.

We can now state the Sobolev embedding theorems for bounded domains

Theorem 7.34. (Gagliardo-Nirenberg inequality for W 1,p(Ω), [1]). Suppose
that Ω ⊂ Rn is open and bounded with C1 boundary, 1 ≤ p < n, and u ∈
W 1,p(Ω). Then

‖u‖
L

np
n−p (Ω)

≤ C‖u‖W 1,p(Ω) for a constant C = C(p, n,Ω).
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Theorem 7.35. (Gagliardo-Nirenberg inequality for W 1,p
0 (Ω), [1]). Suppose

that Ω ⊂ Rn is open and bounded with C1 boundary, 1 ≤ p < n, and u ∈
W 1,p

0 (Ω). Then for all 1 ≤ q ≤ np
n−p ,

‖u‖Lq(Ω) ≤ C‖Du‖Lp(Ω) for a constant C = C(p, n,Ω).

For additional details on Lp, distributions and Sobolev spaces, the books of
Adams and Fournier [1], Brezis [41], Demengel [60] and Evans [72] are excellent
sources.



Chapter 8

Alzheimer’s disease:
analysis of a mathematical
model including the role of
the prion protein

We introduce a model accounting for the in vivo dynamics of Alzheimer’s disease
including the role of the prion protein onto the memory impairment. We use a
size-structured equation to describe the formation of β-amyloid plaques coupled
with three differential equations on the concentration of Aβ oligomers, PrPC

proteins and Aβ −×− PrPC complex since this latter has been considered, in
some recent findings, to be responsible for the synaptic toxicity. We prove well-
posedness of the problem and stability results of the unique equilibrium, when
the polymerization rate of β-amyloid is constant and then when it is described
as power law.

8.1 Introduction

What is the link between Alzheimer disease and the prion proteins? Alzheimer’s
disease (AD) is to our knowledge one of the most widespread age-related de-
mentia with an estimation of about 35.6 million people worldwide being affected
in 2009, as reported by the World Alzheimer Report 2010 [169]. By the 2050’s,
this same report has predicted three or four times more people living with AD.
This syndrome affects memory, thinking, behavior, ability to perform activi-
ties and eventually leads to death. Apart from social side-effects for patients,
another notable consequence of AD is its cost valued at $422 billions in 2009
[169]. Considering this situation, the stake being so much important to under-
stand and cure Alzheimer disease that research has been very prolific. Amongst
these results, recent findings in AD imply cellular prion protein (PrPC) into
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the memory impairment [88, 126]. This phenomenon caught our attention since
memory loss is one of the most painful syndrome related to this disease. Thus,
contributing to the understanding of the dynamics behind this process seemed to
us quite challenging and at the same time would help to enlighten the biologists
to find ways to cure the patients, at least for this aspect of the disease.

The pathogenesis of AD is related to a gradual build-up of β-amyloid (Aβ)
plaques in the brain [98].β-amyloid plaques are formed from the Aβ peptides
obtained from the amyloid protein precursor (APP) protein cleaved at a bad
position. There exist different forms of β-amyloids , from soluble monomers
to insoluble fibrillar aggregates [130, 131, 162, 165]. It has been revealed that
the toxicity depends on the size of the structure and recent evidences suggest
that oligomers (small aggregates) play a key role in memory impairment rather
than β-amyloid plaques (larger aggregates) formed in the brain [154]. More
specifically, Aβ oligomers cause spatial memory impairment via synaptic toxicity
onto neurons. This phenomenon seems to be induced by a membrane receptor
and there are some evidences that this rogue is the PrPC protein [140]. We
remind that this protein, when misfolded in a pathological form called PrPSc

is responsible for Creutzfeldt-Jacob disease . It is believed indeed that there is
a high affinity between PrPC and Aβ oligomers, moreover the prion proteins
has also been identified as an APP regulator which confirms that both are
highly related [140, 50]. Thanks to this discovery, it could be expected f a new
therapeutic target to recover memory in AD, or at least stopping the memory
depletion, without however being able to stop death.

What is our objective? Our objective here is to introduce and study a brand
new in vivo evolution model of AD mediated by PrPC proteins. To the best of
our knowledge, no model such as the one proposed here has ever been set-up.
There exist some models specifically designed for Alzheimer’s disease and their
treatment, such the one studied in [56, 57]. Nevertheless, the prion protein has
never been taken into account. The model studied here could be a starting point
to design new treatments.

This paper is organized as follows. We present the model in section 8.2,
and provide a well-posedness result in the particular case where β-amyloids are
formed at a constant rate. Then, the third section is dedicated to a theoretical
study of our model in a more general context with power law rate of polymer-
ization, i.e. the polymerization or build-up rate depends on the size. Finally, in
the fourth section we propose a numerical scheme for the system and test it in
particular cases.

8.2 The model

8.2.1 A model for β-amyloid formation with prion

The model deals with four different species. First, the concentration of Aβ
oligomers consisting of aggregates of few Aβ peptides, then the concentration
of the PrPC protein, third we have the concentration of the complex formed
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Figure 8.1: Schematic diagram of the evolution processes of β-amyloid plaques,
Aβ-oligomers (bounded and unbounded), and PrPC in the model.

from one Aβ oligomer binding onto one PrPC protein. These quantities are
soluble and their concentration will be described in terms of ordinary differential
equations. Finally we have the insoluble β-amyloid plaques described by a
density according to their size. Note that the size x is an abstract variable
that could be the volume of the aggregate. However we consider here that
aggregates lengthen like fibrils (one dimension). A 2D or 3D model would be
more biologically accurate but the model would be technically and numerically
more complex. This present model is a first step to upcoming 2D and 3D
versions of the problem. The size x belongs thus here to the interval (x0; +∞),
where x0 stands for a critical size below which the plaques become unstable and
break into oligomers. To summarize we denote, for x ∈ (x0; +∞) and t ≥ 0,

• f(t, x) ≥ 0 : the density of Aβ plaques of size x at time t,

• u(t) ≥ 0: the concentration of soluble Aβ oligomers (unbounded oligomers)
at time t,

• p(t) ≥ 0: the concentration of soluble cellular prion proteins PrPC at time t,

• b(t) ≥ 0: the concentration of Aβ −×−PrPC complex (bounded oligomers)
at time t.

Note that β-amyloid plaques are formed from the clustering of Aβ oligomers.
The rate of agglomeration depends on the concentration of soluble oligomers
and the structure of the amyloid which is linked to its size. Actually, it consists
in a mass action between plaques and oligomers at a non-negative rate given by
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ρ(x) where x is the size of the plaque. This is the reason why the deliberate
misused word ”size” considered here (and described above) accounts for the
mass of Aβ oligomers that form the polymer. We assume indeed, that the mass
of one oligomer is given by a sufficiently small parameter ε > 0. Thus the
number of oligomers in a plaque of mass x > 0 is x/ε which justifies that we
assume the size of the plaques to be continuous. Moreover, amyloids have a
critical size

x0 = εn > 0,

where n ∈ N∗ is the number of oligomers in the critical plaque. The amyloids
are prone to be damaged at a non-negative rate µ, possibly depending on the
size x of the plaques. All the parameters for Aβ oligomers, PrPC and complex,
as production, binding and degradation rate are non-negative and described in
table 8.1. Then, writing evolution equations for these four quantities, we get

Parameter/Variable Definition Unit

t Time days

x Length of βamyloid fibrils –

x0 Critical mass of βamyloid plaques –

n Number of oligomers in a plaque of size x0 –

ε Mass of one oligomer –

λu Source of Aβ oligomers days−1

γu Degradation rate of Aβ oligomers days−1

λp Source of PrPC days−1

γp Degradation rate of PrPC days−1

τ Binding rate of β oligomers onto PrPC days−1

σ Unbinding rate of Aβ −×− PrPC days−1

δ Degradation rate of Aβ −×− PrPC days−1

ρ(x) Conversion rate of oligomers into a fibril (SAF/sq)−1 ∗·days−1

µ(x) Degradation rate of a fibril days−1

∗ SAF/sq means Scrapie-Associated Fibrils per square unit and is explained in detail by
Rubenstein et al. [152]

(we consider plaques as being fibrils here).

Table 8.1: Parameters description of the model
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for any t > 0

∂

∂t
f(x, t) + u(t)

∂

∂x

[
ρ(x)f(x, t)

]
= −µ(x)f(x, t), over (x0,+∞) (8.1)

u̇ = λu − γuu− τup+ σb− nN(u)− 1

ε
u

∫ +∞

x0

ρ(x)f(x, t)dx, (8.2)

ṗ = λp − γpp− τup+ σb, (8.3)

ḃ = τup− (σ + δ)b. (8.4)

The term N accounts for the formation rate of a new β-amyloid plaque with size
x0 from the Aβ oligomers. In order to balance this term, we add the boundary
condition

u(t)ρ(x0)f(x0, t) = N(u(t)), for any t ≥ 0. (8.5)

The integral in the right-hand side of equation (8.2) is the total polymerization
with parameters 1/ε since dx/ε counts the number of oligomers into a unit of
length dx. Finally, the problem is completed with non-negative initial data

f(x, t = 0) = f in(x) ≥ 0, ∀x ≥ x0, (8.6)

and,

u(t = 0) = uin ≥ 0, p(t = 0) = pin ≥ 0 and b(t = 0) = bin ≥ 0. (8.7)

where f in, uin, pin and bin are given data. In Figure 8.2.1 we give a schematic
representation of these processes.

8.2.2 An associated ODE system

In this section we are interested in a constant polymerization and degradation
rate, i.e independent of the structure of the plaque involved in the process, so
we assume that

ρ(x) := ρ and µ(x) := µ,

are positive constants. Moreover, without loss of generality we let ε = 1 even if
it means to rescale the equations. Then we assume a pre-equilibrium hypoth-
esis for the formation of β-amyloid plaques, as formulated in [150] for filament
formation, thus we let

N(u) = αun.

The formation rate is given by α > 0 and the number of oligomers necessary
to form a new plaque is an integer, n ≥ 1. Doing these assumptions we are
able to closed the system (8.1-8.4) with respect to (8.5) into a system of four
differential equations. Indeed, integrating (8.1) over (x0,+∞) we get formally
an equation over the quantity of amyloids at time t ≥ 0

A(t) =

∫ +∞

x0

f(x, t)dx.
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This method has already been employed on prion model in first approximation
in [90]. Now the problem reads

Ȧ = αun − µA,
u̇ = λu − γuu− τup+ σb− αnun − ρuA,
ṗ = λp − γpp− τup+ σb,

ḃ = τup− (σ + δ)b.

(8.8)

The mass of βamyloid plaques is given by M(t) =
∫ +∞
x0

xf(x, t)dx which satisfies

an equation (formal integration of (8.1)) that can be solved independently since

Ṁ = nαun + ρuA− µM. (8.9)

Notice that initial conditions for A and M are given by Ain =
∫ +∞
x0

f in(x)dx

and M in =
∫ +∞
x0

xf in(x)dx, while the ones on u, p and b are unchanged. The

next section is devoted to the analysis of the system (8.8).

8.2.3 Well-posedness and stability of the ODE system

We first state, in the following proposition, existence and uniqueness of a global
solution to the system (8.8) which derived from classic argument on differential
equations.

Proposition 8.1 (Well-posedness). Assume that λu, λp, γu, γp, τ , σ, δ, ρ and
µ positive, moreover, let n ≥ 1 be an integer. For any (Ain, uin, pin, bin) ∈ IR4

+

there exists a unique non-negative bounded solution (A, u, p, b) to the system
(8.8) defined for all time t > 0, i.e the solution A, u, p and b belong to C1

b (IR+)
and remains in the stable subset

S =

{
(A, u, p, b) ∈ R4

+, nA+u+p+ 2b ≤ nA0 +uin+pin+ 2 bin+
λ

m

}
(8.10)

with λ = λu + λp and m = min{µ, γu, γp, δ}. Furthermore, let M(t = 0) =
M in ≥ 0, then there exist a unique non-negative solution M to (8.9), defined
for all time t > 0.

Proof. Let F : R4 7→ R4, given by

F (A, u, p, b) =


F1 := αun − µA
F2 := λu − γuu− τup+ σb− αnun − ρuA
F3 := λp − γpp− τup+ σb

F4 := τup− (σ + δ)b

 .

F is obviously C1 and locally Lipschitz on R4. Moreover, if (A, u, p, b) ∈ R4
+,

F1 ≥ 0 when A = 0, F2 ≥ 0 when u = 0, F3 ≥ 0 when p = 0 and F4 ≥ 0 when
b = 0, thus the solution remains in IR4

+. Finally, remarking that

d

dt
(nA+ u+ p+ 2b) ≤ λ−m (nA+ u+ p+ 2b) ,
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with λ = λu + λp and m = min {µ, γu, γp, δ} > 0, Gronwall’s lemma ensures
that

nA(t) + u(t) + p(t) + 2b(t) ≤ nAin + uin + pin + 2bin +
λ

m
.

This provides the global existence of a unique non-negative bounded solution
(A, u, p, b). We get straightforward the result on the mass M .

We are interested in the steady state to get the asymptotic of the problem
(8.8). It is to compute A∞, u∞, p∞, b∞ solving the problem

µA∞ − αu∞n = 0 (8.11)

λu − γuu∞ − τu∞p∞ + σb∞ − αnun∞ − ρu∞A∞ = 0 (8.12)

λp − γpp∞ − τu∞p∞ + σb∞ = 0 (8.13)

τu∞p∞ − (δ + σ)b∞ = 0 (8.14)

From the structure of the second equation, we cannot give an explicit steady
state to this problem. To get u∞ we have to solve an algebraic equation which
involves a polynomial of degree n. However we can prove that it exists, and u∞
is given implicitly. The next proposition states it and establish a local stability.

Theorem 8.2 (Linear stability). Under hypothesis of proposition 8.1. There
exists a unique positive steady state A∞, u∞, p∞ and b∞ to (8.8) with

A∞ =
α

µ
un∞, p∞ =

λp
τ∗u∞ + γp

, b∞ =
1

σ

λp(τ − τ∗)
τ∗u∞ + γp

u∞,

where τ∗ = τ(1− σ/(δ + σ) and u∞ is the unique positive root of Q, defined by

Q(x) = γpλu + ax− P (x), ∀x ≥ 0

with a = τ∗(λu − λp)− γuγp and

P (x) = τ∗γux
2 + αγpnx

n + (ατ∗n+ ργp
α

µ
)xn+1 + ρτ∗

α

µ
xn+2

Moreover, this equilibrium is locally linearly asymptotically stable.

Proof. First, equation (8.11) gives A∞ with respect to u∞. Then combining
(8.14) and (8.14) we get p∞ and b∞ function of u∞. Now replacing p∞ and
b∞ in (8.12) we get u∞ as the root of Q. We get straightforward that Q has a
unique positive root. Indeed it is the intersection between a line and a monotone
polynomial on the half plan. Now, let us linearize the system in A∞, u∞, p∞
and b∞. Let X = (A, u, p, b)T the linearized system reads

d

dt
X = DX,

such that

D =


−µ αnu∞

n−1 0 0
−ρu∞ γu − τp∞ − αn2u∞

n−1 − ρA∞ −τu∞ σ
0 −τp∞ −(γp + τu∞) σ
0 τp∞ τu∞ −(σ + δ)

 .
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The characteristic polynomial is of the form

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4,

with the ai > 0, i = 1 . . . 4 given in appendix. Moreover it satisfies

a1a2a3 > a2
3 + a2

1a4.

Then, according to the Routh-Hurwitz Criteria (see [5], Th. 4.4, page 150), all
the roots of the characteristic polynomial P are negative or have negative real
part, thus the equilibrium is locally asymptotically stable.

To go further, we give a conditional global stability result when no nucleation
is considered, i.e. α = 0.

Proposition 8.3 (Global stability). Assume that α = 0. Under the condition(
1 + 2

δ + γu
σ

)
>

δ

2γp
>
γp
σ
,

the unique equilibrium given by

A∞ = 0, p∞ =
λp

τ∗u∞ + γp
, b∞ =

1

σ

λp(τ − τ∗)
τ∗u∞ + γp

u∞,

and u∞ be the unique positive root of Q(x) = γpλu + ax − τ∗λux2, with a =
τ∗(λu − λp)− γuγp, is globally asymptotically stable in the stable subset defined
in (8.10).

Proof. The proof is given by a Lyapunov function Φ stated in appendix. It is
positive when the condition above is fulfilled and its derivative along the solution
to the system (8.8) is negative definite. Thus, from the LaSalle’s invariance
principle we get that the equilibrium of (8.8) is globally asymptotically stable.

8.3 The case of a power law polymerization rate

In the previous section, we investigated the case when the degradation rate and
the polymerization rate of an amyloid are constants. The equations can be
reduced to an ODE system that can be analyzed using classical tools on ODE.
This kind of coefficients are not always physically relevant. Because of that we
study here the case when ρ(x) ∼ xθ and in the following we restrict our analysis
to θ ∈ (0, 1). We will see that we are able to obtain a result of existence and
uniqueness of solution for this more general case.

The last subsection will be devoted to a brief analysis of the long time
behavior of this solution. Indeed, this asymptotic will be obtained almost for
free, thanks in particular to the stability analysis performed in subsection 8.2.3,
as well as a stability estimate given by proposition 8.10 hereafter.
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8.3.1 Hypothesis and main result

We are interested in non-negative solutions to the system (8.1-8.4) with the
boundary condition (8.5), completed by initial data (8.6) and (8.7). Moreover,
we require the solution searched to preserve the total mass of βamyloid : this is
biologically relevant. Hence the solution f will be sought in the natural space
L1(x0,+∞;xdx), since xdx measures the mass at any time. Let us present now
exactly the mathematical assumptions we make, in order both to ensure that
system (8.1-8.4) is biologically relevant and to allow its theoretical study.

(H1)

∣∣∣∣∣∣∣
f in ∈ L1(x0,+∞;xdx)

and,

f in ≥ 0, a.e. x > x0.

(H2)

∣∣∣∣∣∣∣
ρ ≥ 0 , and ρ ∈ W 2,∞([x0,∞))

and,

µ ≥ 0 , and µ ∈ W 1,∞([x0,∞)).

(H3)

∣∣∣∣∣ N ≥ 0 , N ∈ W 1,∞
loc (R+)

and N(0) = 0.

(H4) | λu, γu, λp, γp, τ, σ, δ > 0.

Some comments on the hypothesis:

• Note that (H2) implies there exists a constant C > 0 such that ρ(x) ≤ Cx,
with for example, C = 2‖ρ′‖L∞+ρ(x0)/x0. Indeed for any x ≥ x0, it holds

ρ(x) ≤ ‖ρ′‖L∞(x+ x0) + ρ(x0) ≤
(

2‖ρ′‖L∞ +
ρ(x0)

x0

)
x.

We remark that this kind of regularity of the rate ρ contains the power
laws ρ(x) ∼ xθ with θ ∈ (0; 1). It will also be crucial to perform estimates
in the next subsection.

• Moreover hypothesis (H3) implies there exists a constant KM > 0 such
that

N(w) ≤ KMw, for any w ∈ [0,M ].

This will also be used in the computations of the next subsection.
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• Finally, non negativity of the parameters of table 8.1, that is hypothesis
(H4), is a natural assumption, regarding their biological meaning.

Before stating our existence result, we now introduce the definition of what will
be called a solution to system (8.1-8.4).

Definition 8.4. Consider a function f in satisfying (H1) and uin, pin, bin be
three non-negative real data. Assume ρ, µ, N and all the parameters of table 8.1
verify assumptions (H2) to (H4), and let T > 0. Then a quadruplet (f, u, p, b)
of non-negative functions is said to be a solution on the interval (0, T ) to the
system (8.1-8.4) with the boundary condition (8.5) and the initial data (8.6) and
(8.7), if it satisfies, for any ϕ ∈ D′ ([0, T ]× [x0,+∞)) and t ∈ (0, T )∫ +∞

x0

f(x, t)ϕ(x, t)dx =

∫ +∞

x0

f in(x)ϕ(x, 0)dx+

∫ t

0

N(u(s))ϕ(x0, s)ds

+

∫ t

0

∫ +∞

x0

f(x, s)

[
∂

∂t
ϕ(x, s) + u(s)ρ(x)

∂

∂x
ϕ(x, s)− µ(x)ϕ(x, s)

]
dxds,

and,

u(t) = uin +

∫ t

0

[
λu − γuu− τup+ σb− x0N(u)− u

∫ +∞

x0

ρ(x)f(x, s)dx

]
ds

p(t) = pin +

∫ t

0

[λp − γpp− τup+ σb] ds,

b(t) = bin +

∫ t

0

[τup− (σ + δ)b] ds,

with the regularity:

f ∈ L∞
(
0, T ;L1 (x0,+∞;xdx)

)
and u, p, b belong to C0(0, T ).

We are now able to state the well-posedness result.

Theorem 8.5 (Well-posedness). Let f in be a non-negative function satisfying
(H1), uin, pin and bin be non-negative real numbers, and assume hypothesis (H2)
to (H4). Let T > 0, then there exists a unique non-negative solution (f, u, p, b)
to (8.1-8.4) with (8.5) and initial conditions given by (8.6) and (8.7), in the
sense of definition 8.4, such that

f ∈ C0
(
[0, T ], L1(x0,+∞;xrdx)

)
, ∀r ∈ [0, 1].

and,
u, p, b ∈ C1

b (0, T ).

The proof of the theorem 8.5 is decomposed into two part. First, we study
under hypothesis (H1) to (H3) and in subsection 8.3.2, when u ∈ C0

b (R+) is a
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given non-negative data, the initial boundary value problem

∂

∂t
f(x, t) + u(t)

∂

∂x

[
ρ(x)f(x, t)

]
= −µ(x)f(x, t) on (x0,+∞)× R+, (8.15)

u(t)ρ(x0)f(x0, t) = N(u(t)), ∀t ≥ 0, (8.16)

f(x, 0) = f in(x) , ∀x ≥ x0. (8.17)

Namely, we prove in the next subsection the following proposition:

Proposition 8.6. Consider u ∈ C0
b (R+) a given function, f in satisfying (H1)

and assume hypothesis (H2) to (H3). For any T > 0, there exists a unique
non-negative solution f to (8.15-8.17) in the sense of distributions, such that

f ∈ C0
(
[0, T ], L1(x0,+∞;xrdx)

)
, ∀r ∈ [0, 1].

The proof is in the spirit of [51] for the Lifshitz-Slyozov equation. It consists
in a mild formulation (definition with the characteristic) which is proved to
be the unique solution in the sense of the distributions with the additional
requirement to be continuous in time into L1(xdx) space.

The second step of the proof of theorem 8.5 is performed in subsection 8.3.3.
Precisely, once we have the existence of a unique density f when u is a given
data we are able to construct the operator

S : C0([0, T ])3 7→ C0([0, T ])3

(u, p, b) 7→ (Su, Sp, Sb) = S(u, p, b),
(8.18)

defines by

Su = uin +
∫ t

0

[
λu − γuu− τup+ σb− x0N(u)− u

∫ +∞
x0

ρ(x)f(x, s)dx
]
ds,

Sp = pin +
∫ t

0
[λp − γpp− τup+ σb] ds,

Sb = bin +
∫ t

0
[τup− (σ + δ)b] ds,

where f is the unique solution associated to u given by proposition 8.6. Thus,
theorem 8.5 is finally proved in subsection 8.3.3 thanks to the Banach fixed
point theorem applied to the operator S.

8.3.2 Existence of a solution to the autonomous problem

This section is devoted to the proof of proposition 8.6. Thus, in the following,
we let u ∈ C0

b (R+) a given function and we use the notations

a(x, t) = u(t)ρ(x) and c(x, t) = −u(t)ρ′(x), ∀(x, t) ∈ [x0,+∞)× R+.
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From (H2) and remarking that ρ(x) ≤ Cx, we get that for any t > 0

a(t, x) ≤ Ax, for x > x0, (8.19)

|a(t, x)− a(t, y)| ≤ A|x− y|, for x, y > x0, (8.20)

|c(t, x)| ≤ B, (8.21)

where A = max (C‖u‖L∞ , ‖u‖L∞‖ρ′‖L∞) and B = ‖u‖L∞‖ρ′‖L∞(x0,+∞). In or-
der to establish the mild formulation of the problem, we define the characteristic
which reaches x ≥ x0 at time t ≥ 0, that is the solution to

d

ds
X(s;x, t) = a(t,X(s;x, t)),

X(t;x, t) = x.

(8.22)

From property (8.20), their exist a unique characteristic which reach (x, t). It
is important to note that it makes sense as long as X(s;x, t) ≥ x0. Thus, we
define the starting time of the characteristic as follows

s0(x, t) := inf {s ∈ [0, t] : X(s;x, t) ≥ x0} .

The characteristic will be defined for any time s ≥ s0 and takes its origin from
the initial or the boundary condition respectively if s0 = 0 or s0 > 0. We recall
the classical properties for the characteristics,

X(s;X(σ;x, t), σ) = X(s;x, t)

J(s;x, t) :=
∂

∂x
X(s;x, t) = exp

(∫ t

s

c(σ,X(σ;x, t))dσ

)
∂

∂t
X(s;x, t) = −a(t, x)J(s;x, t).

Also, remarking that s0(X(t;x0, 0), t) = 0, then by monotonicity and continuity
of X for any t > 0, we get

x ∈ (x0, X(t;x0, 0)) ⇐⇒ s0(x, t) ∈ (0, t).

and for any x ∈ (x0, X(t;x0, 0)) we have X(s0(x, t);x, t) = x0, it follows that

I(x, t) := − ∂

∂x
s0(x, t) = J(s0(x, t);x, t)/a(s0(x, t), x0), ∀x ∈ (x0, X(t;x0, 0)).

Regarding the derivative of f(s,X(s;x, t)) in s, and integrating over (s0, t) we
obtain the mild formulation

of the problem. The mild solution is defined a.e. (x, t) ∈ (x0,+∞)× R+ by

f(x, t) =


f in(X(0;x, t))J(0;x, t) exp

(
−
∫ t

0
µ(X(σ;x, t))dσ

)
, x ≥ X(t;x0, 0)

N(u(s0(x, t)))I(x, t) exp
(
−
∫ t
s0(x,t)

µ(X(σ;x, t))dσ
)
, x ∈ (x0, X(t;x0, 0)).

(8.23)
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It infers from the formulation (8.23) that a.e (x, t) ∈ [x0,+∞)× R+, f is non-
negative since J and I are non-negative, and f in satisfies (H1). We recall some
useful properties that are derived in [51, Lemma 1].

Lemma 8.7. Let u ∈ C0
b (R+) be a given data and assume that (H2) holds

true. Then for any x ≥ x0 and t > 0, as long as the characteristic curves
s 7→ X(s;x, t) defined in (8.22) exists i.e. s ≥ s0(x, t), we have

for s1 ≤ s2, X(s1;x, t) ≤ X(s2;x, t) ≤ X(s1;x, t)eA(s2−s1)

if xn → +∞, then for all t ≥ s ≥ 0, X(s;x, t)→ +∞
for s ≥ t, X(s;x, t) ≤ xeA(s−t)

Proof. We refer to [51, Lemma 1], were the result follows from the fact that for
any x ≥ x0, t > 0 and s0(x, t) ≤ s1 ≤ s2, we have

x0 ≤ X(s2;x, t) = X(s1;x, t) +

∫ s2

s1

a(s,X(s;x, t))ds

≤ X(s1;x, t) +A

∫ s2

s1

X(s;x, t)ds

where A is given by (8.19).

In the sequel we will repeatedly refer to the changes of variables,

y = X(0;x, t) over x ∈ (X(t, x0, 0),+∞), with Jacobian J(0;x, t),

and

s = s0(x, t) over x ∈ (x0, X(t;x0, 0)), with Jacobian − I(x, t).

The first one is a C1 - diffeomorphism from (X(t, x0, 0),+∞) into (x0,+∞),
and the second from (x0, X(t;x0, 0)) into (0, t). Integrating f defined by (8.23)
over (0, R) with R > X(t;x0, 0), using the change of variable above and with
the help of lemma 8.7, taking the limit R→ +∞ we get∫ +∞

x0

x|f(t, x)|dx ≤
∫ +∞

x0

X(t; y, 0)|f in(y)|dy +

∫ t

0

X(t; s, x0)|N(u(s))|ds

≤ eAt
(∫ +∞

x0

y|f in(y)|dy +

∫ t

0

x0|N(u(s))|ds
)

(8.24)
when splitting the integral into two parts and using both the previous changes
of variables. We conclude that for any T > 0, f ∈ L∞

(
0, T ;L1(x0,+∞;xdx)

)
and therefore in L∞

(
0, T ;L1(x0,+∞;xrdx)

)
, for any r ∈ [0, 1]. In the lemma

right after we claim that f defined by (8.23) is a weak solution.
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Lemma 8.8. Let f be the mild solution defined by (8.23), then for any t > 0∫ +∞

x0

f(x, t)ϕ(x, t)dx =

∫ +∞

x0

f in(x)ϕ(x, 0)dx+

∫ t

0

N(u(s))ϕ(x0, s)ds

+

∫ t

0

∫ +∞

x0

f(x, s)

[
∂

∂t
ϕ(x, s)u(s)ρ(x)

∂

∂x
ϕ(x, s)− µ(x)ϕ(x, s)

]
dxds

for all ϕ ∈ D′([0, T ]× [x0,+∞)).

Proof. Since f belongs to f ∈ L∞
(
0, T ;L1(x0,+∞;xdx)

)
, it is possible to mul-

tiply the mild solution f against a test function ϕ ∈ D′([0, T ]× [x0,+∞)) and
integrate over (x0,+∞), then∫ +∞

x0

f(x, t)ϕ(x, t)dx =

∫ +∞

x0

f in(y)ϕ(X(t; y, 0))e−
∫ t
0
µ(X(σ;y,0))dσdy

−
∫ t

0

N(u(s))ϕ(X(t;x0, s), t)e
−
∫ t
s
µ(X(σ;x0,s))dσds (8.25)

by the same change of variable made above for (8.24). Furthermore, we have∫ t

0

∫ X(s;x0,0)

x0

f(x, s) [∂tϕ(x, s) + a(s, x)∂xϕ(x, s)− µ(x)ϕ(x, s)] dxds

=

∫ t

0

∫ +∞

x0

f in(x)
d

ds

(
ϕ(X(s;x, 0), s)e−

∫ s
0
µ(X(σ;x,0))dσ

)
dxds

=

∫ +∞

x0

f in(x)ϕ(X(t;x, 0), t)e−
∫ t
0
µ(X(σ;y,0))dσdx−

∫ +∞

x0

f in(x)ϕ(x, 0)dx

(8.26)

still using the change of variable mentioned above and∫ t

0

∫ ∞
X(s;x0,0)

f(x, s) [∂tϕ(x, s) + a(s, x)∂xϕ(x, s)− µ(x)ϕ(x, s)] dxds

= −
∫ t

0

∫ s

0

N(u(z))
d

ds

(
ϕ(X(s;x0, z), s)e

−
∫ s
z
µ(X(σ;x0,z))dσ

)
dzds

= −
∫ t

0

N(u(s))ϕ(X(t;x0, s), t)e
−
∫ t
s
µ(X(σ;x0,s))dσdzds−

∫ t

0

N(u(s))ϕ(x0, s)ds

(8.27)

Finally, combining (8.25), (8.26) and (8.27) we obtain that f is a weak solution.

The aim of the following is to state that the moments of f less than 1 are
continuous in time.
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Lemma 8.9. Consider hypothesis (H1) to (H3). Let f be the mild solution
given by (8.23). Then for any T > 0,

f ∈ C0
(
[0, T ], L1(x0,+∞;xrdx)

)
, ∀r ∈ [0, 1].

Proof. Let T > 0 and r ∈ [0, 1], since f ∈ L∞loc
(
R+, L

1(x0,+∞;xrdx)
)
, we have

for any t > 0 and δt > 0 such that t+ δt ≤ T∫ +∞

x0

xr |f(x, t+ δt)− f(x, t)| dx = I1 + I2 + I3,

where

I1 =

∫ X(t;x0,0)

x0

xr |f(x, t+ δt)− f(x, t)| dx,

I2 =

∫ X(t+δt;x0,0)

X(t;x0,0)

xr |f(x, t+ δt)− f(x, t)| dx,

I3 =

∫ +∞

X(t+δt;x0,0)

xr |f(x, t+ δt)− f(x, t)| dx.

The aim is to prove that each term goes to zero when δt goes to zero. We
first bound I3, that can be written from the initial condition since x ≥ X(t +
δt;x0, 0) ≥ X(t;x0, 0), as follows

I3 =

∫ +∞

X(t+δt;x0,0)

xr
∣∣∣f in(X(0;x, t+ δt))J(0;x, t+ δt)e−

∫ t+δt
0

µ(X(σ;x,t+δt))dσ

−f in(X(0;x, t))|J(0;x, t)e−
∫ t
0
µ(X(σ;x,t))dσ

∣∣∣ dx.
Let f inε be C∞0 with compact support supp(f inε ) ⊂ (0, Rε) converging in L1([x0,+∞), xdx)
to f in. We write I3 as follows

I3 = I1
3 + I2

3 + I3
3 , (8.28)

where

I1
3 =

∫ +∞
X(t+δt;x0,0)

xr
∣∣f in(X(0;x, t+ δt))− f inε (X(0;x, t+ δt))

∣∣
× J(0;x, t+ δt)e−

∫ t+δt
0

µ(X(σ;x,t+δt))dσdx,

I2
3 =

∫ +∞
X(t+δt;x0,0)

xr
∣∣f inε (X(0;x, t+ δt))J(0;x, t+ δt)e−

∫ t+δt
0

µ(X(σ;x,t+δt))dσ

− f inε (X(0;x, t))J(0;x, t)e−
∫ t
0
µ(X(σ;x,t))dσ

∣∣dx,
I3
3 =

∫ +∞
X(t+δt;x0,0)

xr|f inε (X(0;x, t))− f in(X(0;x, t))|
× J(0;x, t)e−

∫ t
0
µ(X(σ;x,t))dσdx.

I1
3 + I3

3 ≤ 2eAT
∫ +∞

x0

yr|f in(y)− f inε (y)|dy = C1
3 (T, ε), (8.29)
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with the help of lemma 8.7. Let us bound now I2
3 by

I2
3 ≤

∫ +∞
X(t+δt;x0,0)

xr|f inε (X(0;x, t+ δt))− f inε (X(0;x, t))|J(0;x, t+ δt)dx

+
∫ +∞
X(t+δt;x0,0)

xrf inε (X(0;x, t))|J(0;x, t+ δt)− J(0;x, t)|dx

+
∫ +∞
X(t+δt;x0,0)

xrf inε (X(0;x, t))J(0;x, t)

× |e−
∫ t+δt
0

µ(X(σ;x,t+δt))dσ − e−
∫ t
0
µ(X(σ;x,t))dσ|dx

and we denote each integrals by J1
3 to J3

3 , respectively. Remarking that J(0, x, t) ≤
eBT since (8.21) and

J1
3 ≤ eBT ‖f inε ‖L∞

∫ Cε

X(t+δt;x0,0)

xr|X(0;x, t+ δt)−X(0;x, t)|dx

≤ δteBT ‖f inε ‖L∞
∫ Cε

X(t+δt;x0,0)

xr sup
s∈[t,t+δt]

∣∣∣∣ ∂∂tX(0;x, s)

∣∣∣∣ dx
≤ δtAe2BT ‖f inε ‖L∞

∫ Cε

x0

xr+1dx, (8.30)

where Cε depends on T , A and Rε i.e. the compact support of f inε . Then

J2
3 ≤ eBT ‖f inε ‖L∞

∫ Rε

X(t+δt;x0,0)

xr|eG(t,δt,x) − 1|dx

with

|G(t, δt, x)| =
∣∣∣ ∫ t+δt

0

c(σ,X(σ;x, t+ δt))dσ −
∫ t

0

c(σ,X(σ;x, t))dσ
∣∣∣

≤
∫ t+δt

0

∣∣∣ρ′(X(σ;x, t+ δt))− ρ′(X(σ;x, t))
∣∣∣u(σ)dσ +

∫ t+δt

t

∣∣∣c(σ,X(σ;x, t))
∣∣∣dσ.

Thus, with (8.19) and (8.21),

|G(t, δt, x)| ≤ K‖u‖L∞
∫ T

0

∣∣∣X(σ;x, t+ δt)−X(σ;x, t)
∣∣∣dσ + δtB

≤ δtK‖u‖L∞
∫ T

0

sup
s∈[t,t+δt]

∣∣∣∣ ∂∂tX(σ;x, s)

∣∣∣∣ dσ + δtB

≤ δt
(
K‖u‖L∞ATeBTx+B

)
whereK is the lipchitz constant of ρ′. Since x ≤ Rε, let CG(T, ε) = K‖u‖L∞ATeBTRε+
B, and remarking that if |x| ≤ y, then

|ex − 1| ≤ |ey − 1|+
∣∣e−y − 1

∣∣ ,
thus we get

J2
3 ≤ eBT ‖f inε ‖L∞

(∣∣eδtCG(T,ε) − 1
∣∣+
∣∣e−δtCG(T,ε) − 1

∣∣) ∫ Rε

x0

xrdx (8.31)
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For J3
3 , since µ is non-negative,

J3
3 ≤ eBT ‖f inε ‖L∞

∫ Rε

X(t+δt;x0,0)

xr
∣∣∣e−(

∫ t+δt
0

µ(X(σ;x,t+δt))dσ−
∫ t
0
µ(X(σ;x,t))dσ) − 1

∣∣∣ dx
Exactly as above,∣∣∣ ∫ t+δt

0

µ(X(σ;x, t+ δt))dσ −
∫ t

0

µ(X(σ;x, t))dσ
∣∣∣ ≤ δtMATeBTx+ δt‖µ‖L∞

withM the lipschitz constant of µ, and then denoting by CM (T, ε) = MATeBTRε+
‖µ‖L∞ , we get

J3
3 ≤ eBT ‖f inε ‖L∞

(∣∣eδtCM (T,ε) − 1
∣∣+
∣∣e−δtCM (T,ε) − 1

∣∣) ∫ Rε

x0

xrdx (8.32)

From estimations (8.29), (8.30), (8.31) and (8.32) we can conclude that for any
ε > 0,

I3(δt) ≤ C1
3 (T, ε) + C2

3 (T, δt, ε), (8.33)

with limε→0 C
1
3 (T, ε) = 0 and limδt→0 C

2
3 (T, δt, ε) = 0.

Concerning I1, f can be written from the boundary condition. Let uε be
C∞0 such that

uε −→ u, uniformly on [0, T ].

Then we write I1 as follows

I1 ≤
∫ X(t+δt;x0,0)

x0

xr|N(u(s0(x, t+ δt))−N(uε(s0(x, t+ δt))|I(x, t+ δt)dx

+

∫ X(t;x0,0)

x0

xr
∣∣∣N(uε(s0(x, t+ δt))I(x, t+ δt)e

−
∫ t
s0(x,t+δt)

µ(X(σ;x,t+δt))dσ

−N(uε(s0(x, t))I(x, t)e
−
∫ t
s0(x,t)

µ(X(σ;x,t))dσ
∣∣∣ dx

+

∫ X(t;x0,0)

x0

xr|N(u(s0(x, t))−N(uε(s0(x, t))|I(x, t)dx

With the help of (H3) we get similarly to I3 that there exist two constant
C1

1 (T, ε) and C2
1 (T, δt, ε)

I1(δt) ≤ C1
1 (T, ε) + C2

1 (T, δt, ε), (8.34)

with limε→0 C
1
1 (T, ε) = 0 and limδt→0 C

2
1 (T, δt, ε) = 0. Finally, we deal with I2.

It is a mixed of the two forms of f ,

I2 =

∫ X(t+δt;x0,0)

X(t;x0,0)

xr
∣∣∣N(u(s0(x, t+ δt)))I(x, t+ δt)e

−
∫ t+δt
s0(x,t+δt)

µ(X(σ;x,t+δt))dσ

−f in(X(0;x, t))J(0;x, t)e
−
∫ t
s0(x,t)

µ(X(σ;x,t))dσ
∣∣∣ dx
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Using the lipschitz constant of N denoted by KN , from the definition of I and
with the help of lemma 8.7, we get

I2 ≤ xr0e(rA+B)TKN |X(t+ δt;x0, 0)−X(t;x0, 0)| l

+ xr0e
rAT

∫ X(t+δt;x0,0)

X(t;x0,0)

∣∣f in(X(0;x, t))J(0;x, t)
∣∣ dx

Still using the regularization f inε of f in, there exist two constant C1
2 (T, ε) and

C2
2 (T, δt, ε) such that for any ε > 0,

I2(δt) ≤ C1
2 (T, ε) + C2

2 (T, δt, ε), (8.35)

with limε→0 C
1
2 (T, ε) = 0 and limδt→0 C

2
2 (T, δt, ε) = 0. To conclude, gathering

from (8.33), (8.34) and (8.35), we get for any ε > 0 and δt > 0,∫ +∞

x0

xr|f(x, t+ δt)− f(x, t)|dx ≤ C1(T, ε) + C2(T, δt, ε),

where C1(T, ε) and C2(T, δt, ε) are two constants such that limε→0 C
1(T, ε) = 0

and limδt→0 C
2(T, δt, ε) = 0. Noticing that the proof remains the same when δt

is negative, taking the lim sup in δt we get

0 ≤ lim sup
δt→0

∫ +∞

x0

xr|f(x, t+ δt)− f(x, t)|dx ≤ C1(T, ε), for any ε > 0,

The proof is ended when taking the limit ε goes to zero that leads to f ∈
C0([0, T ], L1([x0,+∞), xrdr) for all r ∈ [0, 1].

We finish this section with a useful estimate for the uniqueness investigation.

Proposition 8.10. Let T > 0 and u1, u2 ∈ C0
b (0, T ) be two given functions.

Let f1 and f2 be two mild solutions to (8.15)-(8.17), associated respectively to
u1 and u2 with initial data f in1 , f in2 , that is given by formula (8.23). Then, for
any t ∈ (0, T )∫ +∞

x0

x |f1(x, t)− f2(x, t)| dx ≤
∫ +∞

x0

x
∣∣f in1 (x)− f in2 (x)

∣∣ dx
−
∫ t

0

∫ +∞

x0

µ(x)x
∣∣f in1 (x, s)− f in2 (x, s)

∣∣ dxds
+A1

∫ t

0

∫ +∞

x0

x |f1(x, s)− f2(x, s)| dxds

+

∫ t

0

(
K1,2 + C‖f2(·, s)‖L1(xdx)

)
|u1(s)− u2(s)| ds,

where A1 is given by (8.19) for u1 and K1,2 is the lipschitz constant of N on
[0, R] with R = max(‖u1‖L∞(0,T ), ‖u2‖L∞(0,T )). Finally C > 0 denotes the
constant such that ρ(x) < Cx.
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Proof. This estimation is obtained from classical argument of approximation.
Indeed, let h = f1 − f2 thus∫ +∞

x0

h(x, t)ϕ(x, t)dx =

∫ +∞

x0

hin(x)ϕ(x, 0)dx

+

∫ t

0

(N(u1(s))−N(u2(s)))ϕ(x0, s)ds

+

∫ t

0

∫ +∞

x0

h(x, s)

[
∂

∂t
ϕ(x, s) + a1(s, x)

∂

∂x
ϕ(x, s)− µ(x)ϕ(x, s)

]
dxds

+

∫ t

0

∫ +∞

x0

(a1(s, x)− a2(s, x)) f2(x, s)
∂

∂x
ϕ(x, s)dxds.

Let hε be a regularization of h and Sδ a regularization of the Sign function.
Let us take ϕ(x, s) = Sδ(hε(s, x))g(x) with g ∈ C∞c ([x0,+∞)). Then passing to
the limit δ → 0 and then ε→ 0, we get∫ +∞

x0

|h(x, t)|g(x)dx =

∫ +∞

x0

|hin(x)|g(x)dx

+

∫ t

0

|N(u1(s))−N(u2(s)))Sign(h0(x0))g(x0)ds

+

∫ t

0

∫ +∞

x0

|h(x, s)|
[
a1(s, x)

∂

∂x
g(x)− µ(x)g(x)

]
dxds

+

∫ t

0

∫ +∞

x0

(a1(s, x)− a2(s, x)) f2(x, s)Sign(h(s, x))
∂

∂x
g(x)dxds.

Finally, we approach the identity function with a regularized function ηR ∈
C∞c ([x0,+∞)) such that ηR(x) = x over (0, R), then passing to the limit R →
+∞ ends the proof.

We get straightforward from proposition 8.8 that f defined by (8.23) is a
weak solution and the only one from 8.10. Indeed, getting u1 = u2 and f0

1 = f0
2

in proposition 8.10 leads to the uniqueness. Finally, proposition 8.9 provide
the continuity in time of the moments with order less or equal to one. This
concludes the proof of proposition 8.6

8.3.3 Proof of the well-posedness

In this section we prove the theorem 8.5, we first study the operator S in (8.18).

Lemma 8.11. Consider hypothesis (H2) to (H4). Let uin, pin and bin be non-
negative real numbers accounting for initial data, and f in satisfying (H1). Let
M > 0 large enough such that uin, pin, bin < M/2 and define

XM =
{

(u, p, b) ∈ C0([0, T ])3 : 0 ≤ u, p, b ≤M
}
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where C0([0, T ])3 is equipped with the uniform norm. Then, there exists T > 0
(small enough) such that

S : XM 7→ XM , is a contraction.

Proof. Let M sufficiently large such that max(uin, pin, bin) < M/2, and T > 0
small enough such that

(γu + τM + σ + x0C1(M) + C2(M,T ))MT ≤M/2, (8.36)

(γp + τM)MT ≤M/2, (8.37)

(σ + δ)MT ≤M/2, (8.38)

and,

(λu + σM)T ≤M/2, (8.39)

(λp + σM)T ≤M/2, (8.40)

τM2T ≤M/2, (8.41)

where C1(M) is the lipschitz constant of N on (0,M) and

C2(M,T ) = CeMCT
(
‖f in‖L1(xdx) + C1(M)MT

)
(8.42)

where C is the constant such that on ρ(x) ≤ Cx, see (8.24). This assumptions
ensure that for any (u, p, b) ∈ XM , then S(u, p, b) ∈ XM , i.e the solution remains
bounded by M and non-negative. It remains to prove that S is a contraction.
Let (u1, p1, b1) and (u2, p2, b2) belong to XM . Then

‖Su1
− Su2

‖∞ ≤ γuT‖u1 − u2‖∞ + τT‖u1p1 − u2p2‖∞ + σT‖b1 − b2‖∞

+ x0TC1(M)‖u1 − u2‖∞

+ T sup
t∈[0,T ]

∣∣∣∣u1

∫ +∞

x0

ρ(x)f1(x, s)dx− u2

∫ +∞

x0

ρ(x)f2(x, s)dx

∣∣∣∣ (8.43)

Remarking that,

‖u1p1 − u2p2‖∞ ≤M‖u1 − u2‖∞ +M‖p1 − p2‖∞ (8.44)

and

sup
t∈[0,T ]

∣∣∣∣u1

∫ +∞

x0

ρ(x)f1(x, s)dx− u2

∫ +∞

x0

ρ(x)f2(x, s)dx

∣∣∣∣
≤ C2(M,T )‖u1 − u2‖∞ + CM sup

t∈[0,T ]

∣∣∣∣∫ +∞

x0

x|f1(x, t)− f2(x, t)|dx
∣∣∣∣ (8.45)
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and from proposition 8.10,

sup
t∈[0,T ]

∣∣∣∣∫ +∞

x0

x|f1(x, t)− f2(x, t)|dx
∣∣∣∣ ≤ T (C1(M) + CC2(M,T )) ‖u1 − u2‖∞

(8.46)
We get similar bounds for |Sp1 − Sp2 |∞ and |Sb1 − Sb2 |∞. It infers that there
exists a constant C(M,T ) depending only on M and T such that

‖(Su1 , Sp1 , Sb1)− (Su2 , Sp2 , Sb2)‖∞

≤ C(M,T )T‖(u1, p1, b1)− (u2, p2, b2)‖∞ (8.47)

with C(M,T )T → 0, when T goes to 0. Hence, if T is small enough such that
C(M,T )T < 1 , then S is a contraction.

Now, with the help of proposition 8.11, we have a local non-negative so-
lution on an interval of time [0, T ] which is unique when it is ensured that
the solution (u, p, b) remain bounded by the constant M . The solution sat-
isfy f ∈ C0(0, T ;L1(xdx)) and u, p, b ∈ C0(0, T ). Futhermore from (H3), N
is continuous and from (H2), ρ(x) ≤ Cx where C is a positive constant, thus
ρf ∈ C0(0, T ;L1(dx)). We conclude that u, p and b defined in definition 8.4
have continuous derivatives.

Now we remark that the solutions satisfies on [0, T ]

d

dt
(u+ p+ 2b) = λu + λp − γuu− γpp− δ2b− nN(u)− 1

ε
u

∫ +∞

x0

ρ(x)f(x, t)dx

≤ λ−m(u+ p+ 2b)

with m = min(γu, γp, δ) and λ = λu+λp. Using Gronwall’s lemma, the solutions
remain bounded, at any time by, namely

u+ p+ 2b ≤ uin + pin + 2bin +
λ

m
. (8.48)

From this global bound on u, p and b, we can construct the solution on any
interval of time [0, T ], [T, 2T ], etc. This ends the proof of the theorem.

We just obtained a global in time existence of solution. Therefore we question
in the next subsection the long time behavior of this solution, as well as a possible
estimate of the rate of convergence towards some equilibrium. It is the subject
of the next subsection.

8.3.4 Asymptotic profile and equilibrium.

Since we aim at investigating the long time behavior of the solution (f, u, p, b)
to (8.1-8.7), we start by considering the steady formulation of (8.1). Namely,
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assume that ρ and µ satisfy (H2). Let u∞ > 0, then we are interested in f∞,
verifying for all x in (x0,+∞),

d

dx
f∞(x) = −µ(x) + u∞ρ

′(x)

u∞ρ(x)
f∞(x),

u∞ρ(x0)f∞(x0) = N(u∞).

(8.49)

If infx∈[x0,+∞) ρ(x) > 0 it follows from (H2) that the flow is globally lipschitz.
Thus, there exists a unique solution f∞ ∈ C0([x0,∞)), to (8.49). Actually, this
solution is given explicitly by,

f∞(x) =
N(u∞)

u∞ρ(x)
exp

(
−
∫ x

x0

µ(y)

u∞ρ(y)
dy

)
. (8.50)

It appears that f∞ ∈ L1(xdx), so we can define rigorously

F (u∞) :=

∫ ∞
x0

ρ(x)f∞(x)dx,

where the dependency with respect to u∞ is contained in the function f∞.
Note that if ρ is assumed to be constant as in the first part of the chapter,
we have F (u∞) = ρA∞, where A∞ is the quantity of amyloids, defined in
subsection 8.2.2. Hence, as in the stability analysis of the ODE model, we
are now interested in solving the following system. We search (u∞, p∞, b∞),
satisfying

λu − γuu∞ − τu∞p∞ + σb∞ − x0N(u∞)− u∞F (u∞) = 0, (8.51)

λp − γpp∞ − τu∞p∞ + σb∞ = 0, (8.52)

bτu∞p∞ − (σ + δ)b∞ = 0, (8.53)

If there exist a solution to the above system, we get the equilibrium of problem
(8.1-8.4), as done in subsection 8.2.2, on the ODE model. Indeed, we can prove
the following proposition.

Proposition 8.12. Let (f, u, p, b) be the solution to the problem (8.1-8.7). As-
sume that (u∞, p∞, b∞) is a triplet of non negative numbers, solution to (8.51-
8.53), where f∞ ∈ L1([x0,+∞)) is given by (8.50). Moreover, we suppose that
there exists λ > 0 such that

|u(t)− u∞|eλt →t→+∞ 0. (8.54)

Then, f tends, when t goes to +∞, to the function f∞ in the following sense:∫ +∞

x0

x |f(x, t)− f∞(x)| dx→t→+∞ 0, (8.55)

and the convergence rate is exponential.

Proof. It is a straightforward consequence of proposition 8.10, applied to f1 =
f and f2 = f∞. The exponential rate of convergence comes from equation
(8.54).



Chapter 9

Appendix of chapter 8

9.1 Characteristic polynomials of the linearized
ODE system

Here we give the coefficient ai, i = 1, . . . , 4 for the characteristic polynomial of
the linearized system in proposition 8.2. They are:

a1 =

(
µ+ γu + τ

λp
τ∗ū+ γp

+ αn2ūn−1 + ρ
α

µ
ūn + γp + τ ū+ σ + δ

)
,

a2 =

(
µ+ γu + αn2ūn−1 + ρ

α

µ
ūn
)

(γp + τ ū+ σ + δ) + γpσ + (γp + τ ū)δ

+ µ

(
γu + τ

λp
τ∗ū+ γp

+ αn2ūn−1 + ρ
α

µ
ūn
)

+ ραnūn + τ(γp + δ)
λp

τ∗ū+ γp
,

a3 =

(
µ+ γu + αn2ūn−1 + ρ

α

µ
ūn
)

(γpσ + (γp + τ ū)δ) + (γpδ + (γp + δ)µ)τ
λp

τ∗ū+ γp

+

{
µ

(
γu + αn2ūn−1 + ρ

α

µ
ūn
)

+ ραnūn
}

(γp + τ ū+ σ + δ),

a4 = µγpδτ
λp

τ∗ū+ γp
+

{
µ

(
γu + αn2ūn−1 + ρ

α

µ
ūn
)

+ ραnūn
}

(γpσ + (γp + τ ū)δ).
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9.2 Lyapunov function

In order to derived the global stability in proposition 8.3 we consider Lyapunov
to the system (8.8) be the function

Φ =
1

2

(
2γp
δ

)
s1θ

2
1 +

1

2

(
1 + 2

δ + γu + ρ(A∞ + θ1)

σ

)
θ2

2 +
1

2

(
2γp
δ

)
θ2

3 +
1

2

(
σ

γp

)
θ2

4

+

(
ρp∞

γu + ρA∞ + µ

)
θ1θ2 + θ1θ3 + θ2θ3

+

(
ρp∞

γu + ρA∞ + µ
+ 1 +

ρ

τ

)
θ1θ4 + 2θ2θ4 +

(
2γp
δ

)
θ3θ4,

where θ1 = A−A∞, θ2 = u−u∞, θ3 = p−p∞, θ4 = b−b∞, with s1 = max(T1, T2)
such that

T1 =
ρ2δu2

∞(1 + 2 1+δ
σ )

8µγp
+

(γp + µ)2( δ
2γp

)2

4γpµ

+
[(δ + µ)( ρp∞

γu+ρA∞+µ + 1) + (σ + δ + µ) ρτ + 2ρu∞]2

8µσ

and,

T2 =

(
δ

2γp

)2 (
ρp∞

γu+ρA∞+µ

)2 (
2σ+δ
2γp

)
(

1 + 2 δ+γuσ − δ
2γp

)(
δ

2γp
σ
γp
− 1
) +

(
δ

2γp

)2 (
ρp∞

γu+ρA∞+µ

) [
2 + 4 ρτ

δ+γu
σ

]
(

1 + 2 δ+γuσ − δ
2γp

)(
δ

2γp
σ
γp
− 1
)

+

(
δ

2γp

)3 [
ρ
τ

(
2 + ρ

τ

)
+ σ

γp
+ 2 δ+γuγp

]
(

1 + 2 δ+γuσ − δ
2γp

)(
δ

2γp
σ
γp
− 1
) +

(
δ

2γp

)2 (
1 + ρ

τ

) [
1 + 2 δ+γuσ

]
ρ
τ(

1 + 2 δ+γuσ − δ
2γp

)(
δ

2γp
σ
γp
− 1
)

+

(
δ

2γp

)(
ρp∞

γu + ρA∞ + µ

)2
(

1

1 + 2 δ+γuσ

)
+

(
1 + 2 δ+γuσ

)(
δ

2γp

)2

(
1 + 2 δ+γuσ − δ

2γp

) .
(9.1)

This Lyapunov function Φ is positive when
(

1 + 2 δ+γuσ

)
> δ

2γp
>

γp
σ . Its

derivative along the solutions to the system (8.8) is

Φ̇ =−

(
µs1 + ρu

ρ δ
2γp

p∞

γu + ρA∞ + µ

)
θ2

1 − ρu∞
(

1 + 2
γu + ρ(A∞ + θ1) + δ

σ

)(
δ

2γp

)
θ1θ2

−
(

2(γu + ρ(A∞ + θ1) + τp)(γu + ρ(A∞ + θ1) + δ)

σ
+ γu + ρ(A∞ + θ1)

)(
δ

2γp

)
θ2

2

−
(

(δ + µ)

(
ρp∞

γu + ρA∞ + µ
+ 1

)
+ (σ + δ + µ)

ρ

τ
+ 2ρu∞

)(
δ

2γp

)
θ1θ4

−
(
δτu

2γp
+ γp

)
θ2

3 − δ
(
σ

γp

δ

2γp

)
θ2

4 − (γp + µ)

(
δ

2γp

)
θ1θ3
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Φ̇ is non-positive. Furthermore, Φ̇ = 0 if and only if θ1 = θ2 = θ3 = θ4 = 0.



Conclusion and perspectives



9.2 Lyapunov function 135

In this work, we have considered several problems in-
volving inclusion and differential equations with and with-
out impulses. We have succeeded in formulating our
problems in such a way that results from nonlinear anal-
ysis can be applied to prove existence of solutions and
to analyze the problems under consideration. We have
made several contributions to the theory. Some results
have been published [100] and others are submitted for
publications [101, 123]. Yet, there are many subjects
which need further investigation. We can name a few:

• mathematical model describing the dynamic of chronic
myeloid leukemia,

• stability and bifurcation theory for general impulsive
differential equations,

• extension and simulation of mathematical model in-
cluding the role of prion in Alzheimer’s disease,

• impulsive differential inclusion with state dependent
instants of impulse,

• boundary value problems subject to impulsive effects,

• impulsive delay differential equations.
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contraction multivoque à valeurs convexes, Atti Accad. Naz. Linei Cl. Sci.
Fis. Mat. Natur. Rend. Lincei 9 Mat. Appl. 1987, 283-286.

[152] Rubenstein R., Merz P., Kascsak R., Scalici C., Papini M., Carp
R., and Kimberlin R., Scrapie-infected spleens: analysis of infectivity,
scrapie-associated fibrils, and protease-resistant proteins, J. Infect. Dis.,
164:29-35, 1991.

[153] Samoilenko A. M. and Perestyuk N. A., Impulsive Differential
Equations, World Scientific, Singapore, 1995.

[154] Selkoe D. J., Soluble oligomers of the amyloid beta-protein impair synap-
tic plasticity and behavior. Behavioural brain research, 192(1):106-13,
Sept. 2008.

[155] Shimokawa T., Pakdaman K., Satos S., Time-scale matching in the
response, of a leaky integale-and-fire neuron model to periodic stimulation
with additive noise, Physical Review E 59 1999, 3427-3443.

[156] Smirnov G. V., Introduction to the Theory of Differential Inclusions,
Graduate Studies in Mathematics 41, American Mathematical Society,
Providence, 2002.

[157] Song X. and Guo H., Extinction and permanence of a kind of pest-
predator models impulsive effect and infinite delay, J Korean Math Soc.
44 2007, 327-342.

[158] Tang S. and Cheke R. A., State-dependent impulsive models of inte-
grated pest management(IPM) stratgies and their dynamic consequences,
J. Math. Biol. 50 2005, 257-292.

[159] Tolstonogov A. A., Differential Inclusions in Banach Spaces, Kluwer
Academic Publishers, Dordrecht, 2000.

[160] Tolstonogov A. A., Approximation of attainable sets of an evolution
inclusion of subdifferential type, Sibirsk. Mat. Zh., 44, 2003, 883-904.

[161] Tolstonogov A. A., Properties of attainable sets of evolution inclusions
and control systems of subdifferential type, Sibirsk. Mat. Zh., 45, 2004,
920-945.



BIBLIOGRAPHY 148

[162] Urbanc B., Cruz L., Buldyrev S. V., Havlin S., Irizarry M. C.,
Stanley H. E., and Hyman B. T., Dynamics of plaque formation in
Alzheimer’s disease, Biophysical journal, 76(3):1330-4, Mar. 1999.

[163] Vatsala A. S., and Sun Y., Periodic boundary value problems of im-
pulsive differential equations, Appl. Anal. 44 1992, 145-158.

[164] Wagner D., Survey of measurable selection theorems, SIAM J. Control
Optim. 15 1977, 859-903.

[165] Walsh D. M., Amyloid-beta Protein Fibrillogenesis. Detection
of a protofibrillar intermediate, Journal of Biological Chemistry,
272(35):22364-22372, Aug. 1997.

[166] Wang L., Chen L. and Nieto J. J., The dynamics of an epidemic model
for pest control with impulsive effect, Nonlinear Analysis: Real World
Applications 11, 2010, 1374-1386.
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