

THALES

Resource Allocation for HARQ based Mobile Ad hoc Networks

Sébastien Marcille

February 21st, 2013

Supervisors: Prof. Philippe CIBLAT, Telecom ParisTech Dr. Christophe LE MARTRET, Thales Communications & Security

Introduction ●○○○	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Introdu	uction				

Mobile Ad Hoc Networks (MANETs): infrastructure-free

Introduction ●○○○	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Introd	uction				

Mobile Ad Hoc Networks (MANETs): infrastructure-free

- Highly flexible
- Fast and short-lived communications deployment

Introduction ●○○○	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Introd	uction				

Mobile Ad Hoc Networks (MANETs): infrastructure-free

- Highly flexible
- Fast and short-lived communications deployment

Solution: Clustered MANET

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Main a	assumptions				

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Main a	ssumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Feedback latency in MANETs

 \Rightarrow Channel statistics known at the cluster head

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Feedback latency in MANETs

 \Rightarrow Channel statistics known at the cluster head

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Main a	ssumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Feedback latency in MANETs

 \Rightarrow Channel statistics known at the cluster head

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Feedback latency in MANETs

 \Rightarrow Channel statistics known at the cluster head

Statistical CSI

 \Rightarrow **HARQ** to manage fast channel variations

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Feedback latency in MANETs

 \Rightarrow Channel statistics known at the cluster head

Statistical CSI

 \Rightarrow **HARQ** to manage fast channel variations

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Main a	assumptions				

 \Rightarrow Centralized coordination of the pairwise communications

Feedback latency in MANETs

 \Rightarrow Channel statistics known at the cluster head

Statistical CSI

 \Rightarrow **HARQ** to manage fast channel variations

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000	

Thesis contributions

Resource allocation

Allocate the power and bandwidth for Type-I HARQ based users:

- for various PHY layer: finite-length Gaussian codes / practical modulations and codes
- for various Quality of Service (QoS) constraints: rate, rate+PER, rate+delay

Cross-layer Hybrid ARQ optimization (single-user case)

- New closed-form expressions for ARQ metrics
- New MAC packet management: Early-Drop (ED)
- New cross-layer scheme in imperfect feedback context: Report Credit Strategy (RCS)

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	000000000000	000

Thesis contributions

Resource allocation

Allocate the power and bandwidth for Type-I HARQ based users:

- for various PHY layer: finite-length Gaussian codes / practical modulations and codes
- for various Quality of Service (QoS) constraints: rate, rate+PER, rate+delay

Cross-layer Hybrid ARQ optimization (single-user case)

- New closed-form expressions for ARQ metrics
- New MAC packet management: Early-Drop (ED)
- New cross-layer scheme in imperfect feedback context: Report Credit Strategy (RCS)

000	00000	0000000	000000000000000000000000000000000000000	000

- Resource allocation in HARQ-based mobile ad hoc networks
- Resource allocation for HARQ with finite-length Gaussian codes
- 4 Resource allocation for HARQ with practical MCS

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs 00000	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000

Outline

- Resource allocation in HARQ-based mobile ad hoc networks
- 8 Resource allocation for HARQ with finite-length Gaussian codes
- 4 Resource allocation for HARQ with practical MCS

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	000000000000	

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
00000000	00000	0000000	000000000000	

ARQ

Retransmission of the data until correct decoding (or credit used)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	000000000000	000

ARQ

Retransmission of the data until correct decoding (or credit used)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	000000000000	000

ARQ

Retransmission of the data until correct decoding (or credit used)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	•••••	00000	0000000	00000000000	000

Type-I Hybrid ARQ

ARQ + Forward Error Correction (FEC)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	•••••	00000	0000000	00000000000	000

Type-II Hybrid ARQ

Type-I HARQ + Combination at the receiver side

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	00000000	00000	000000	000000000000	000

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000				

Packet error rate (PER)

Probability of packet transmission failure

0000 0000 00000 00000 000000 000000000 000		HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
	0000	00000000	00000	0000000	000000000000	000

Packet error rate (PER)

Probability of packet transmission failure

Efficiency

Average number of correctly received bits per transmitted bit

Introduction HARQ W/ Imperiect feedback HARQ	-based MANETS HARQ w/ finit	e-length codes HARQ w/ practica	MCS Conclusion
0000 0000000 0000	0000000	00000000	000 000

Packet error rate (PER)

Probability of packet transmission failure

Efficiency

Average number of correctly received bits per transmitted bit

Delay

Average number of MAC packets needed to receive an information packet without error

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000				

Layer model

Assumptions

- IP packets are fragmented into N fragments of equal length
- Credit L per fragment (FBS) / Credit C for N fragments (IBS)
- HARQ feedback may be erroneous/delayed in the feedback channel

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	000000000000	

Feedback model

Delayed or erased feedback (Random arrival and Time-out $\tau_0)$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion

Feedback model

Noisy feedback channel (ACK/NACK errors can be detected)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	00000000	00000	0000000	00000000000	000

State of the art and contributions

Feedback \setminus Layer		MAC	IP
Ideal		[lin'84,wicker'95]	[le duc'12]
	Noisy	[wicker'95,malk'00,wu'09]	
Imperfect	Deterministic Delayed	[lin'84]	
	Random Delayed		
	Noisy + Delayed		

Existing works

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	00000000	00000	0000000	00000000000	000

State of the art and contributions

Feedback \setminus Layer		MAC	IP
Ideal		[lin'84,wicker'95]	[le duc'12]
	Noisy	[wicker'95,malk'00,wu'09]	
Imperfect	Deterministic Delayed	[lin'84]	
	Random Delayed		
	Noisy + Delayed		

Existing works

Contributions

- Closed-form expressions for HARQ performance metrics
- Analysis of imperfect feedback on the performance
- New cross-layer scheme to counteract imperfect feedback

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	00000000	00000	0000000	00000000000	000

State of the art and contributions

Feedback \setminus Layer		MAC	IP
Ideal		[lin'84,wicker'95]	[le duc'12]
	Noisy	[wicker'95,malk'00,wu'09]	
Imperfect	Deterministic Delayed	[lin'84]	
	Random Delayed		
	Noisy + Delayed		

Existing works

Contributions

- Closed-form expressions for HARQ performance metrics
- Analysis of imperfect feedback on the performance
- New cross-layer scheme to counteract imperfect feedback

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	000000000000	000

A new cross-layer HARQ strategy: definition

Idea

- Initial credit per fragment: $L_n^{(0)}$ for fragment #*n* (as FBS)
- When initial credit L_n⁽⁰⁾ not used by fragment #n, then remaining credit added to that of fragment #(n+1) (Report Credit Strategy –RCS–)

Mathematically:

$$L_n \leftarrow L_n^{(0)} + (L_{n-1} - k_{n-1}), \ \forall n > 1$$

where:

- L_n is the credit for fragment #n after RCS
- $k_n \leq L_n$ is the number of transmissions consumed by fragment #n

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000	000

A new cross-layer HARQ strategy: example

IBS
$$N = 2, C = 4$$

RCS
$$N = 2, L^{(0)} = [2, 2]$$

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000000000	00000	0000000	00000000000	

RCS performance (1/2)

Non-instantaneous feedback ($N = 6, L = 3, C = 18, L^{(0)} = [3, 3, 3, 3, 3, 3]$)

Remark

RCS is more robust to delayed feedback

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000000000				

RCS performance (2/2)

Instantaneous feedback (N = 4, L = 2, C = 8)

Remarks

• Ideal feedback: protecting head fragments gives better performance

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000000000				

RCS performance (2/2)

Instantaneous feedback (N = 4, L = 2, C = 8)

Remarks

- Ideal feedback: protecting head fragments gives better performance
- Nonideal feedback: uniform $L^{(0)}$ is more robust

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Summ	ary				

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Summ	nary				

• Definition of RCS, which generalizes the existent cross-layer scheme

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Summ	ary				

• Definition of RCS, which generalizes the existent cross-layer scheme

 Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Summ	ary				

• Definition of RCS, which generalizes the existent cross-layer scheme

- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Outlin	0				

Hybrid ARQ at IP level with imperfect feedback

- Resource allocation in HARQ-based mobile ad hoc networks
- Resource allocation for HARQ with finite-length Gaussian codes
- 4 Resource allocation for HARQ with practical MCS

Contoxt		

- Clustered wireless ad hoc network
- Statistical CSI centralized at the Cluster Head
- HARQ with finite L to manage fast channel variations

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Conte	ext				

- Clustered wireless ad hoc network
- Statistical CSI centralized at the Cluster Head
- HARQ with finite L to manage fast channel variations

Wireless channel: OFDMA

- PHY layer: cancel ISI due to multipath spread
- Multiple access: cancel multiuser interference inside a cluster

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Signa	l model				

• Received signal $Y_k(i, n)$ at subcarrier *n* of OFDM symbol *i* for link *k*:

$$Y_k(i,n) = H_k(i,n)X_k(i,n) + B_k(i,n)$$

with

- $-X_k(i,n)$ coded symbol
- $H_k(i, n)$ filter frequency response
- $B_k(i, n)$ additive white Gaussian Noise (~ $C\mathcal{N}(0, N_0)$)

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Signal	model				

• Received signal $Y_k(i, n)$ at subcarrier *n* of OFDM symbol *i* for link *k*:

$$Y_k(i,n) = H_k(i,n)X_k(i,n) + B_k(i,n)$$

with

- $-X_k(i,n)$ coded symbol
- $H_k(i, n)$ filter frequency response
- $B_k(i, n)$ additive white Gaussian Noise ($\sim C\mathcal{N}(0, N_0)$)
- Statistical channel model: let $h_k(i, m)$ be the *m*-th filter tap
 - $-h_k(i,m)$ independent process (but not i.d.) $\sim \mathcal{CN}(0,\varsigma^2_{k,m})$
 - $H_k(i,n)$ non-independent in *n* but i.d. $\sim C\mathcal{N}(0,\varsigma_k^2)$ with $\varsigma_k^2 = \sum_m \varsigma_{k,m}^2$
 - \Rightarrow Rayleigh fading channel
 - \Rightarrow Channel statistics (for $H_k(i, n)$) independent of subcarrier n
 - ⇒ Subcarriers are statistically equivalent

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Signa	l model				

• Received signal $Y_k(i, n)$ at subcarrier *n* of OFDM symbol *i* for link *k*:

$$Y_k(i,n) = H_k(i,n)X_k(i,n) + B_k(i,n)$$

with

- $-X_k(i,n)$ coded symbol
- $H_k(i, n)$ filter frequency response
- $B_k(i, n)$ additive white Gaussian Noise ($\sim C\mathcal{N}(0, N_0)$)
- Statistical channel model: let $h_k(i, m)$ be the *m*-th filter tap
 - $-h_k(i,m)$ independent process (but not i.d.) $\sim C\mathcal{N}(0, \varsigma_{k,m}^2)$
 - $H_k(i, n)$ non-independent in *n* but i.d. $\sim C\mathcal{N}(0, \varsigma_k^2)$ with $\varsigma_k^2 = \sum_m \varsigma_{k,m}^2$
 - ⇒ Rayleigh fading channel
 - \Rightarrow Channel statistics (for $H_k(i, n)$) independent of subcarrier n
 - ⇒ Subcarriers are statistically equivalent

Consequence

Bandwidth proportion and energy per subcarrier identical for link k

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000	000

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k: Bandwidth proportion assigned to link k
- *E_k*: Energy of link *k* in entire bandwidth
- Modulation (order 2^{*m*}) and coding scheme (rate *R*)

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	00000000000	

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k: Bandwidth proportion assigned to link k
- *E_k*: Energy of link *k* in entire bandwidth
- Modulation (order 2^{*m*}) and coding scheme (rate *R*)

 N_c

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	00000000000	

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k: Bandwidth proportion assigned to link k
- *E_k*: Energy of link *k* in entire bandwidth
- Modulation (order 2^{*m*}) and coding scheme (rate *R*)

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	00000000000	

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k: Bandwidth proportion assigned to link k
- E_k : Energy of link k in entire bandwidth
- Modulation (order 2^{*m*}) and coding scheme (rate *R*)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000	000

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k : Bandwidth proportion assigned to link $k \Rightarrow \gamma_k = n_k/N_c$
- E_k: Energy of link k in entire bandwidth
- Modulation (order 2^m) and coding scheme (rate R)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000	000

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k : Bandwidth proportion assigned to link $k \Rightarrow \gamma_k = n_k/N_c$
- E_k : Energy of link k in entire bandwidth $\Rightarrow Q_k = \gamma_k E_k$
- Modulation (order 2^m) and coding scheme (rate R)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000	000

- *Q_k*: Energy of link *k* in OFDM symbol
- γ_k : Bandwidth proportion assigned to link $k \Rightarrow \gamma_k = n_k/N_c$
- E_k : Energy of link k in entire bandwidth $\Rightarrow Q_k = \gamma_k E_k$
- Modulation (order 2^m) and coding scheme (rate R)

Objective function:

$$\min \sum_{k=1}^{K} Q_k \quad \Leftrightarrow \quad \min \sum_{k=1}^{K} \gamma_k E_k$$

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	0000000	000000000000	

Resource allocation: optimization problem

$$\begin{split} \min_{(\gamma, \boldsymbol{E})} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad & \mathbf{QoS}_k(\gamma_k, E_k) \geq \mathbf{QoS}_k^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_k \leq 1 \\ & \gamma_k > 0, \ E_k > 0, \ \forall k \end{split}$$

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	0000000	000000000000	

Resource allocation: optimization problem

$$\begin{split} \min_{(\gamma, \boldsymbol{E})} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad & \boldsymbol{\mathsf{QoS}}_k(\gamma_k, E_k) \geq \boldsymbol{\mathsf{QoS}}_k^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_k \leq 1 \\ & \gamma_k \geq 0, \ E_k \geq 0, \ \forall k \end{split}$$

QoS and PHY

- Different QoS requirements: rate, rate+PER, rate+delay
- Two PHY implementations: finite-length Gaussian codes, practical MCS

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
		00000			

Type-I HARQ QoS metrics

Packet Error Rate:

Probability of packet failure

 $p_0 = g_{m,R}(SNR)$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
		00000			

Type-I HARQ QoS metrics

Packet Error Rate:

Probability of packet failure

 $p_0 = g_{m,R}(SNR)$

Goodput:

Average number of received bits / symbol

 $\eta = mR(1-p_0)$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
		00000			

Type-I HARQ QoS metrics

Packet Error Rate:

Probability of packet failure

 $p_0 = g_{m,R}(SNR)$

Goodput:

Average number of received bits / symbol

 $\eta = mR(1-p_0)$

Delay:

Average number of ARQ transmissions to receive a data packet

$$d = \frac{1}{1 - p_0} - \frac{L p_0^L}{1 - p_0^L}$$

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Outlin	P				

- 2 Resource allocation in HARQ-based mobile ad hoc networks
- Resource allocation for HARQ with finite-length Gaussian codes
- 4 Resource allocation for HARQ with practical MCS

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Optim	ization proble	m			

$$\begin{split} \min_{(\gamma, \boldsymbol{\mathcal{E}})} \sum_{k=1}^{K} \gamma_k \boldsymbol{E}_k \quad \text{s.t.} \quad & \eta_k(\gamma_k, \boldsymbol{E}_k) \geq \eta_k^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_k \leq 1 \\ & \gamma_k \geq 0, \ \boldsymbol{\mathcal{E}}_k \geq 0, \ \forall k \end{split}$$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Optim	ization proble	m			

$$\begin{split} \min_{(\gamma, \boldsymbol{\mathcal{E}})} \sum_{k=1}^{K} \gamma_{k} E_{k} \quad \text{s.t.} \quad & \eta_{k}(\gamma_{k}, E_{k}) \geq \eta_{k}^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_{k} \leq 1 \\ & \gamma_{k} \geq 0, \ E_{k} \geq 0, \ \forall k \end{split}$$

Goodput expression

$$\eta_k(\gamma_k, E_k) = \gamma_k r_k (1 - P_e^{(n, r_k)}(\underbrace{G_k E_k}_{SNR_k}))$$

 $P_e^{(n,r)}$ is the error probability of a (n,r) Gaussian code

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
		000000		

Error probability of a (n, r) Gaussian code (1/2)

$$\boldsymbol{X} \in \mathbb{C}^{n} \longrightarrow \boldsymbol{H} = \operatorname{diag}(\boldsymbol{H}_{k}) \longrightarrow \boldsymbol{Y} = \boldsymbol{H}\boldsymbol{X} + \boldsymbol{B} \in \mathbb{C}^{n}$$
$$\boldsymbol{X}_{k} \sim \mathcal{CN}(0, \boldsymbol{E}_{k}) \qquad \boldsymbol{H}_{k} \sim \mathcal{CN}(0, \sigma_{h}^{2}) \qquad \boldsymbol{B}_{k} \sim \mathcal{CN}(0, N_{0})$$

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	000000000000	

Error probability of a (n, r) Gaussian code (1/2)

$$\boldsymbol{X} \in \mathbb{C}^n \longrightarrow \boldsymbol{H} = \operatorname{diag}(\boldsymbol{H}_k) \longrightarrow \boldsymbol{Y} = \boldsymbol{H}\boldsymbol{X} + \boldsymbol{B} \in \mathbb{C}^n$$

 $X_k \sim \mathcal{CN}(0, E_k)$ $H_k \sim \mathcal{CN}(0, \sigma_h^2)$ $B_k \sim \mathcal{CN}(0, N_0)$

 $P_e^{(n,r)}$ well approximated by the outage probability defined by

$$\Pr\left\{\underbrace{\frac{1}{n}\sum_{k=1}^{n}i(X_k;Y_k)}_{\text{mutual information rate }(Z_n)} \leq r\right\}$$

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	000000000000	

Error probability of a (n, r) Gaussian code (1/2)

$$\boldsymbol{X} \in \mathbb{C}^n \longrightarrow \boldsymbol{H} = \operatorname{diag}(\boldsymbol{H}_k) \longrightarrow \boldsymbol{Y} = \boldsymbol{H}\boldsymbol{X} + \boldsymbol{B} \in \mathbb{C}^n$$

 $X_k \sim \mathcal{CN}(0, E_k)$ $H_k \sim \mathcal{CN}(0, \sigma_h^2)$ $B_k \sim \mathcal{CN}(0, N_0)$

 $P_e^{(n,r)}$ well approximated by the outage probability defined by

$$\Pr\left\{\underbrace{\frac{1}{n}\sum_{k=1}^{n}i(X_{k};Y_{k})}_{\text{mutual information rate }(Z_{n})}\leq r\right\}$$

Problem

 Z_n is random for finite *n* and its cdf has still to be obtained in closed-form

Error probability of a (n, r) Gaussian code (2/2)

For n large enough, Central-Limit Theorem leads to consider that

$$Z_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

with

$$\mu_n = e^{1/\overline{\text{SNR}}} E_1(1/\overline{\text{SNR}})$$

$$\sigma_n^2 \approx \frac{1}{n} \left(\log^2(1 + \overline{\text{SNR}}) - \mu_n^2 + 2 - \frac{2}{\overline{\text{SNR}}} e^{1/\overline{\text{SNR}}} E_1(1/\overline{\text{SNR}}) \right)$$

Error probability of a (n, r) Gaussian code (2/2)

For n large enough, Central-Limit Theorem leads to consider that

$$Z_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

with

$$\mu_n = e^{1/\overline{\text{SNR}}} E_1(1/\overline{\text{SNR}})$$

$$\sigma_n^2 \approx \frac{1}{n} \left(\log^2(1 + \overline{\text{SNR}}) - \mu_n^2 + 2 - \frac{2}{\overline{\text{SNR}}} e^{1/\overline{\text{SNR}}} E_1(1/\overline{\text{SNR}}) \right)$$

Error probability approximation

$$P_e^{(n,r)}(\overline{\mathrm{SNR}}) \approx Q\left(\frac{\mu_n(\overline{\mathrm{SNR}}) - r}{\sigma_n(\overline{\mathrm{SNR}})}\right)$$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	000000000000	000

Optimal solution

A solution exists if, and only if,

$$\sum_{k=1}^{K} \frac{\eta_k^{(0)}}{r_k} < 1$$

Optimization problem:

$$\begin{split} \min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad & \gamma_k r_k (1 - \mathcal{P}_e^{(n, r_k)}(G_k E_k)) \ge \eta_k^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_k \le 1 \\ & \gamma_k \ge 0, \ E_k \ge 0, \ \forall k \end{split}$$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion

Optimal solution

A solution exists if, and only if,

$$\sum_{k=1}^{K} \frac{\eta_k^{(0)}}{r_k} < 1$$

Biconvex optimization problem:

$$\begin{split} \min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad \log \gamma_k r_k (1 - \mathcal{P}_e^{(n, r_k)}(G_k E_k)) \geq \log \eta_k^{(0)}, \ \forall k \\ \sum_{k=1}^{K} \gamma_k \leq 1 \\ \gamma_k \geq 0, \ E_k \geq 0, \ \forall k \end{split}$$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion

Optimal solution

A solution exists if, and only if,

$$\sum_{k=1}^{K} \frac{\eta_k^{(0)}}{r_k} < 1$$

Biconvex optimization problem:

$$\begin{split} \min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad \log \gamma_k r_k (1 - \mathcal{P}_e^{(n, r_k)}(G_k E_k)) \geq \log \eta_k^{(0)}, \ \forall k \\ \sum_{k=1}^{K} \gamma_k \leq 1 \\ \gamma_k \geq 0, \ E_k \geq 0, \ \forall k \end{split}$$

Optimal algorithm

Biconvex optimization problems can be solved optimally [floudas'93]
Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion

Allocation results

Remarks

- Still a gap for large *n* to ergodic capacity
- Goodput-based allocation saves up to 90% bandwidth

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion

Allocation results

Remarks

- Still a gap for large *n* to ergodic capacity
- Goodput-based allocation saves up to 90% bandwidth
- Choosing rk relevantly for being closer to ergodic capacity

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	0000000	000000000000	

How close are powerful FEC codes? (r = 1/2)

Remark

• Powerful FEC performance well predicted by using an SNR gap

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	0000000	00000000000	

How close are powerful FEC codes? (r = 1/2)

Remark

- Powerful FEC performance well predicted by using an SNR gap
- Not adapted to convolutional codes

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Summ	nary				

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Sumn	nary				

• Closed-form approximation of the error probability of finite-length Gaussian codes on Rayleigh channels

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Sumn	nary				

- Closed-form approximation of the error probability of finite-length Gaussian codes on Rayleigh channels
- Optimal algorithm for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes ○○○○○○●	HARQ w/ practical MCS	Conclusion
Summ	nary				

- Closed-form approximation of the error probability of finite-length Gaussian codes on Rayleigh channels
- Optimal algorithm for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI
- Framework for OFDMA resource allocation in HARQ-based MANETs when LDPC coding is used

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
Outlin	Ie III				

- 2 Resource allocation in HARQ-based mobile ad hoc networks
- 3 Resource allocation for HARQ with finite-length Gaussian codes
- Resource allocation for HARQ with practical MCS

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
000000000	00000	000000	00000000000	

PHY layer abstraction

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000
PHY I	ayer abstracti	on			

Goodput expression

$$\eta_k(\gamma_k, E_k) = \gamma_k m_k R_k (1 - P_k(G_k E_k))$$

where $P_k(SNR) = g_{m_k, R_k}(SNR)$ is the PHY level PER

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000					

PHY layer abstraction

Goodput expression

$$\eta_k(\gamma_k, E_k) = \gamma_k m_k R_k (1 - P_k(G_k E_k))$$

where $P_k(SNR) = g_{m_k, R_k}(SNR)$ is the PHY level PER

PER expression

Results are valid for any MCS admitting a parametric PER modelling

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion

PHY layer abstraction

Goodput expression

$$\eta_k(\gamma_k, E_k) = \gamma_k m_k R_k (1 - P_k(G_k E_k))$$

where $P_k(SNR) = g_{m_k, R_k}(SNR)$ is the PHY level PER

PER expression

Results are valid for any MCS admitting a parametric PER modelling

Example for simulations

- M-QAM (m = log₂(M) bits/symb) + Rate-R convolutional code
- Increase diversity to d_{\min} \Rightarrow Frequency Hopping (FH) + Bit Interleaved Coded Modulation (BICM)
- PER: $P_k(SNR) \propto SNR^{-d_{min}}$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	000000000000000000000000000000000000000	000

Optimization problem 1: rate constrained

$$\begin{split} \min_{(\gamma, \boldsymbol{E})} \sum_{k=1}^{K} \gamma_k \boldsymbol{E}_k \quad \text{s.t.} \quad & \eta_k(\gamma_k, \boldsymbol{E}_k) \geq \eta_k^{(0)}, \; \forall k \\ & \sum_{k=1}^{K} \gamma_k \leq 1 \\ & \gamma_k \geq 0, \; \boldsymbol{E}_k \geq 0, \; \forall k \end{split}$$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	000000000000000000000000000000000000000	000

Optimization problem 1: rate constrained

$$\begin{split} \min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \qquad \eta_k (\gamma_k, E_k) \geq \eta_k^{(0)}, \ \forall k \\ \sum_{k=1}^{K} \gamma_k \leq 1 \\ \gamma_k \geq 0, \ E_k \geq 0, \ \forall k \end{split}$$

Rewritten using $Q_k = \gamma_k E_k$:

$$\min_{(\gamma,\boldsymbol{a})} \sum_{k=1}^{K} Q_k \quad \text{s.t.} \quad \gamma_k m_k R_k (1 - P_k (G_k Q_k / \gamma_k)) \ge \eta_k^{(0)}, \ \forall k$$
$$\sum_{k=1}^{K} \gamma_k \le 1$$
$$\gamma_k \ge 0, \ Q_k \ge 0, \ \forall k$$

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000

Problem 1: Results

A solution exists if, and only if, $\sum_{k=1}^{K} \eta_k^{(0)} / (m_k R_k) < 1$

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
			00000000000	

Problem 1: Results

A solution exists if, and only if, $\sum_{k=1}^{K} \eta_k^{(0)} / (m_k R_k) < 1$

Power and bandwidth allocation

- We prove that the problem is convex in (γ, Q) (assuming the PER are convex functions of the SNR)
- Optimal solutions have been exhibited in closed-form (from KKT) given mcs_k = (m_k, R_k)

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
			00000000000	

Problem 1: Results

A solution exists if, and only if, $\sum_{k=1}^{K} \eta_k^{(0)} / (m_k R_k) < 1$

Power and bandwidth allocation

- We prove that the problem is convex in (γ, Q) (assuming the PER are convex functions of the SNR)
- Optimal solutions have been exhibited in closed-form (from KKT) given mcs_k = (m_k, R_k)

MCS selection

- $(\gamma^*, \boldsymbol{Q}^*) = \operatorname{arg\,min}_{(\gamma, \boldsymbol{Q})} Q_T(\mathbf{mcs})$
- $\mathbf{mcs} \in \mathcal{M}^{K} \times \mathcal{R}^{K} \Rightarrow \text{Combinatorial Problem}$
- Greedy heuristic:
 - Modify MCS user by user: mcs^(k)
 - Select $k^* = \arg\min_k Q_T(\mathbf{mcs}^{(k)})$
 - Update MCS if $Q_T(\mathbf{mcs}^{(k^*)}) < Q_T^*$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	000000000000000000000000000000000000000	000

Gap to optimal coding of length n = 512

$$K = 2, G_1 = 10 \text{ dB}, G_2 = 30 \text{ dB}, R_k = 1/2$$

Remarks

- QAM + CC near 4 dB from Gaussian codes
- Same bandwidth saving behavior

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	000000000000000000000000000000000000000	000

MCS selection based on the optimal power/bandwidth policy

Simulation:

- *K* = 4 links
- Free-space path loss
- Random distances in [50, 1000] m

MCS name	MCSc1	MCSc2	MCSc3	MCSc4	MCSc5	MCSc6
т	1	2	2	4	6	6
R	1/2	1/2	2/3	1/2	1/2	3/4
max bit/s/Hz	0.5	1	1.33	2	3	4.5

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	0000000000000	000

Optimization problem 2: rate + PER constrained

Problem 1: rate only

0000 000000000 00000 000000 000 000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
	000000000	00000	0000000	000000000000	

Optimization problem 2: rate + PER constrained

Problem 1: rate only

$$\begin{split} \min_{(\gamma, \boldsymbol{Q})} \sum_{k=1}^{K} Q_k \quad \text{s.t.} \quad & \eta_k(\gamma_k, Q_k) \geq \eta_k^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_k \leq 1 \\ & \gamma_k \geq 0, \ Q_k \geq 0, \ \forall k \end{split}$$

PER constraint added:

$$\begin{split} \min_{(\gamma, \boldsymbol{Q})} \sum_{k=1}^{K} Q_k \quad \text{s.t.} \quad & \eta_k(\gamma_k, Q_k) \ge \eta_k^{(0)}, \ \forall k \\ \\ & \boldsymbol{P}_k(\boldsymbol{Q}_k/\gamma_k) \le \boldsymbol{P}_k^{(0)}, \ \forall k \\ \\ & \boldsymbol{\sum_{k=1}^{K} \gamma_k \le 1} \\ & \gamma_k \ge 0, \ Q_k \ge 0, \ \forall k \end{split}$$

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
D					

Problem 2: Results

• P_k is a quasi-convex function of (γ_k, Q_k)

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs 00000	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion				
Duckl									

Problem 2: Results

• P_k is a quasi-convex function of (γ_k, Q_k)

KKT are optimal [lasserre'10]
⇒ We extracted the optimal algorithm, but it is O(2^{K-1})...

Introduction HARQ V	W/ Imperfect feedback	HARQ-based MANETs 00000	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion 000

Problem 2: Results

• P_k is a quasi-convex function of (γ_k, Q_k)

• KKT are optimal [lasserre'10]

 \Rightarrow We extracted the optimal algorithm, but it is $O(2^{K-1})...$

Two suboptimal approaches

- Suboptimal KKT resolution (SKA)
- Suboptimal alternate directional descent ⇒ Linear Program (SLA)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	000000000000	000

Problem 2: Numerical Results (1/2)

Simulation:

- *K* = 4 links
- Free-space path loss
- Random distances in [50, 1000] m
- Uncoded packets of 128 bits
- BPSK

Remark

SLA offers almost the same performance as KKT

HARQ-based MANETs

HARQ w/ finite-length codes

HARQ w/ practical MCS 0000000000000

Problem 2: Numerical Results (2/2)

Simulation:

- K = 4 links
- Free-space path loss
- Random distances in [50, 1000] m
- Uncoded packets of 128 bits
- BPSK

Remark

No PER control after allocation defined by Problem 1

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000000	000

Problem 2: Numerical Results (2/2)

Simulation:

- *K* = 4 links
- Free-space path loss
- Random distances in [50, 1000] m
- Uncoded packets of 128 bits
- BPSK

Remark

- No PER control after allocation defined by Problem 1
- Constraining the PER to 10⁻² adds an energy cost of about 2 dB

		001101001011
0000 00000000 00000 000000 0000000	0000	000

Optimization problem 3: rate + delay constrained

Problem 1: rate only

$$\min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \qquad \eta_k (\gamma_k, E_k) \ge \eta_k^{(0)}, \ \forall k$$
$$\sum_{k=1}^{K} \gamma_k \le 1$$
$$\gamma_k > 0, \ E_k \ge 0, \ \forall k$$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	00000000000000	000

Optimization problem 3: rate + delay constrained

Problem 1: rate only

$$\begin{split} \min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad & \eta_k(\gamma_k, E_k) \ge \eta_k^{(0)}, \ \forall k \\ & \sum_{k=1}^{K} \gamma_k \le 1 \\ & \gamma_k \ge 0, \ E_k \ge 0, \ \forall k \end{split}$$

Delay constraint added:

$$\begin{split} \min_{(\gamma, E)} \sum_{k=1}^{K} \gamma_k E_k \quad \text{s.t.} \quad & \eta_k(\gamma_k, E_k) \ge \eta_k^{(0)}, \ \forall k \\ \\ \frac{d_k(\gamma_k, E_k) \le d_k^{(0)}, \ \forall k}{\sum_{k=1}^{K} \gamma_k \le 1} \\ & \gamma_k \ge 0, \ E_k \ge 0, \ \forall k \end{split}$$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	000000	000000000000000000000000000000000000000	000

Problem 3: Results

A solution exists if, and only if, $\sum_{k=1}^{K} max \left(\eta_k^{(0)} / (m_k R_k), 1/d_k^{(0)} \right) < 1$

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000000	000

Problem 3: Results

A solution exists if, and only if, $\sum_{k=1}^{K} \max\left(\eta_k^{(0)}/(m_k R_k), 1/d_k^{(0)}\right) < 1$ Delay function:

$$d_k(\gamma_k, E_k) = \frac{1}{\gamma_k} \left(\frac{1}{1 - P_k(G_k E_k)} - \frac{L P_k(G_k E_k)^L}{1 - P_k(G_k E_k)^L} \right)$$

- d_k is quasi-convex in E_k
- d_k is convex in γ_k
- no information in joint directions

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	00000000000000	000

Problem 3: Results

A solution exists if, and only if, $\sum_{k=1}^{K} \max\left(\eta_k^{(0)}/(m_k R_k), 1/d_k^{(0)}\right) < 1$ Delay function:

$$d_k(\gamma_k, E_k) = \frac{1}{\gamma_k} \left(\frac{1}{1 - P_k(G_k E_k)} - \frac{LP_k(G_k E_k)^L}{1 - P_k(G_k E_k)^L} \right)$$

- d_k is quasi-convex in E_k
- d_k is convex in γ_k
- no information in joint directions

KKT-based algorithm (KBA)

The KKT have been efficiently solved, but no optimality theorem for the designed algorithm

Ping-Pong algorithm (PPA)

Suboptimal algorithm that optimizes alternately in both directions (quasi-convex objective)

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	000000000000	000

Problem 3: Numerical Results

Remarks

KBA is optimal when the delay constraint is strictly satisfied

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	
0000	000000000	00000	0000000	0000000000000	000

Problem 3: Numerical Results

Remarks

- KBA is optimal when the delay constraint is strictly satisfied
- PPA fills the bandwidth, KBA saves it

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
					000

Conclusions
Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
Concli	isions				

HARQ at IP level with imperfect feedback

• Definition of RCS, which generalizes the existing cross-layer scheme

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
-					

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
0000	000000000	00000	0000000	000000000000	000

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
				000

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

Resource allocation in HARQ-based MANETs

 General frameworks for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
				000

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

- General frameworks for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI
- Different QoS: rate, PER, delay

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
				000

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

- General frameworks for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI
- Different QoS: rate, PER, delay
- Finite-length Gaussian codes \Rightarrow powerful FEC (LDPC)

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
				000

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

- General frameworks for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI
- Different QoS: rate, PER, delay
- Finite-length Gaussian codes \Rightarrow powerful FEC (LDPC)
- Practical MCS ⇒ noncapacity-achieving (convolutional + QAM)

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
				000

HARQ at IP level with imperfect feedback

- Definition of RCS, which generalizes the existing cross-layer scheme
- Closed-form expressions of PER, delay, efficiency for RCS with imperfect feedback
- Choice of *L*⁽⁰⁾ in RCS offers a trade-off from cross-layer gain to robustness against imperfect feedback

- General frameworks for multiuser power/bandwidth allocation in Type-I HARQ-based MANETs with statistical CSI
- Different QoS: rate, PER, delay
- Finite-length Gaussian codes \Rightarrow powerful FEC (LDPC)
- Practical MCS ⇒ noncapacity-achieving (convolutional + QAM)
- Efficient heuristics for MCS selection

HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
000000000	00000	000000	00000000000	000

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion OOO

Short-term perspectives

• From Type-I to Type-II HARQ

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion ○●O

Short-term perspectives

- From Type-I to Type-II HARQ
- From MAC level to IP level

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion ○●O

Short-term perspectives

- From Type-I to Type-II HARQ
- From MAC level to IP level
- Practical OFDM with desynchronization

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion ○●O

Short-term perspectives

- From Type-I to Type-II HARQ
- From MAC level to IP level
- Practical OFDM with desynchronization

Mid-term perspectives

• Extend works for outdated CSI to multiuser schemes

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion ○●O

Short-term perspectives

- From Type-I to Type-II HARQ
- From MAC level to IP level
- Practical OFDM with desynchronization

Mid-term perspectives

- Extend works for outdated CSI to multiuser schemes
- Combine instantaneous/statistical CSI

	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion
0000	000000000	00000	0000000	00000000000	000

Short-term perspectives

- From Type-I to Type-II HARQ
- From MAC level to IP level
- Practical OFDM with desynchronization

Mid-term perspectives

- Extend works for outdated CSI to multiuser schemes
- Combine instantaneous/statistical CSI

Long-term perspectives

• Multi-criteria optimization for multiple design objectives

Introduction 0000	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion ○●O

Short-term perspectives

- From Type-I to Type-II HARQ
- From MAC level to IP level
- Practical OFDM with desynchronization

Mid-term perspectives

- Extend works for outdated CSI to multiuser schemes
- Combine instantaneous/statistical CSI

Long-term perspectives

- Multi-criteria optimization for multiple design objectives
- Distributed allocation to relax the need of CH

Introduction	HARQ w/ imperfect feedback	HARQ-based MANETs	HARQ w/ finite-length codes	HARQ w/ practical MCS	Conclusion ○O●

Publications

- J1. C.J. Le Martret, A. Le Duc, S. Marcille and P. Ciblat: "Analytical performance derivation of Hybrid ARQ schemes at IP layer", *IEEE Trans. Commun.*, vol. 60, no. 5, pp. 1305-1314, May 2012.
- J2. S. Marcille, P. Ciblat, and C.J. Le Martret: "Resource Allocation for Type-I HARQ based Wireless Ad Hoc Networks", *IEEE Wireless Commun. Lett.*, vol. 1, no. 6, pp. 597-600, December 2012.
- C1. S. Marcille, P. Ciblat, and C.J. Le Martret: "Early-Drop based Hybrid ARQ in a Cross-layer context", *IEEE PIMRC*, September 2011.
- C2. S. Marcille, P. Ciblat, and C.J. Le Martret: "Performance computation of cross-layer Hybrid ARQ schemes at IP layer in the presence of corrupted acknowledgments", *IEEE IWCLD*, December 2011.
- C3. S. Marcille, P. Ciblat, and C.J. Le Martret: "Stop-and-Wait Hybrid ARQ performance at IP level under imperfect feedback", *IEEE VTC Fall*, September 2012.
- C4. S. Marcille, P. Ciblat, and C.J. Le Martret: "Optimal resource allocation in HARQ-based OFDMA wireless networks", *IEEE MILCOM*, October 2012.
- C5. S. Marcille, P. Ciblat, and C.J. Le Martret: "A robust cross-layer HARQ scheme for imperfect feedback context", *Asilomar Conference*, November 2012.
- C6. S. Marcille, P. Ciblat, and C.J. Le Martret: "On OFDMA resource allocation for delay constrained HARQ systems", *Asilomar Conference*, November 2012.
- P1. S. Marcille, C.J. Le Martret, P. Ciblat: "Procédé de retransmission de paquets fragmentés", Patent no. 11/03948.