
Resource Allocation for HARQ based
Mobile Ad hoc Networks
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Resource allocation
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for various PHY layer: finite-length Gaussian codes / practical
modulations and codes

for various Quality of Service (QoS) constraints: rate, rate+PER,
rate+delay
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Layer model

ReassemblyFragmentation

FRAG #N
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K
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K
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A
C
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Layer 3

NET

Layer 2

MAC

Layer 1

PHY

IP Datagram IP Datagram

Source Destination

Tx Rx

Conventional HARQ

Cross−layer HARQ

Assumptions

IP packets are fragmented into N fragments of equal length

Credit L per fragment (FBS) / Credit C for N fragments (IBS)

HARQ feedback may be erroneous/delayed in the feedback channel
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Closed-form expressions for HARQ performance metrics

Analysis of imperfect feedback on the performance

New cross-layer scheme to counteract imperfect feedback
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A new cross-layer HARQ strategy: definition

Idea

Initial credit per fragment: L(0)
n for fragment #n (as FBS)

When initial credit L(0)
n not used by fragment #n, then remaining credit

added to that of fragment #(n+1) (Report Credit Strategy –RCS–)

Mathematically:
Ln← L(0)

n +(Ln−1− kn−1), ∀n > 1

where:

Ln is the credit for fragment #n after RCS

kn ≤ Ln is the number of transmissions consumed by fragment #n
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A new cross-layer HARQ strategy: example

IBS
N = 2, C = 4

Frag #2

Frag #1 Frag #1

ACK

NACK

Frag #1

Frag #1

Frag #1Frag #1

Frag #1

Frag #1

ACK

ACK

C = 4

C = 3

C = 2

C = 1

C = 0

IP is KO

RCS
N = 2, L(0) = [2,2]

Frag #1 Frag #1

NACK

Frag #1 Frag #1

Frag #2 Frag #2

Frag #2 Frag #2

ACK

ACK

ACK

L
(0)
1

= 2

L2 = L
(0)
2

+0= 2

IP is OK
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RCS performance (1/2)

Non-instantaneous feedback (N = 6, L = 3, C = 18, L(0) = [3,3,3,3,3,3])
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Remark

RCS is more robust to delayed feedback
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RCS performance (2/2)

Instantaneous feedback (N = 4, L = 2, C = 8)
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Summary

Works done for HARQ with imperfect feedback:

Definition of RCS, which generalizes the existent cross-layer scheme

Closed-form expressions of PER, delay, efficiency for RCS with
imperfect feedback

Choice of L(0) in RCS offers a trade-off from cross-layer gain to
robustness against imperfect feedback
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Context

Clustered wireless ad hoc network

Statistical CSI centralized at the Cluster Head

HARQ with finite L to manage fast channel variations

Cluster HeadG1
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and Rx3
G3

G2

Rx2

Tx2
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Wireless channel: OFDMA

PHY layer: cancel ISI due to multipath spread

Multiple access: cancel multiuser interference inside a cluster
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Signal model

Received signal Yk(i,n) at subcarrier n of OFDM symbol i for link k :

Yk(i,n) = Hk(i,n)Xk(i,n)+Bk(i,n)

with
− Xk (i,n) coded symbol
− Hk (i,n) filter frequency response
− Bk (i,n) additive white Gaussian Noise (∼ CN (0,N0))

Statistical channel model: let hk(i,m) be the m-th filter tap
− hk (i,m) independent process (but not i.d.) ∼ CN (0,ς2

k ,m)

− Hk (i,n) non-independent in n but i.d. ∼ CN (0,ς2
k ) with ς2

k = ∑m ς2
k ,m

⇒ Rayleigh fading channel
⇒ Channel statistics (for Hk (i,n)) independent of subcarrier n
⇒ Subcarriers are statistically equivalent

Consequence

Bandwidth proportion and energy per subcarrier identical for link k
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Resource allocation: design parameters

Qk : Energy of link k in OFDM symbol

γk : Bandwidth proportion assigned to link k

⇒ γk = nk/Nc

Ek : Energy of link k in entire bandwidth

⇒ Qk = γk Ek

Modulation (order 2m) and coding scheme (rate R)

Objective function:

min
K

∑
k=1

Qk ⇔ min
K

∑
k=1

γk Ek
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Modulation (order 2m) and coding scheme (rate R)

Ek

Nc

nk

Objective function:

min
K

∑
k=1

Qk ⇔ min
K

∑
k=1

γk Ek
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Resource allocation: optimization problem

min
(γ,E)

K

∑
k=1

γk Ek s.t. QoSk(γk ,Ek )≥ QoS(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Ek ≥ 0, ∀k

QoS and PHY

Different QoS requirements: rate, rate+PER, rate+delay

Two PHY implementations: finite-length Gaussian codes, practical MCS
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Type-I HARQ QoS metrics

Packet Error Rate:
Probability of packet failure

p0 = gm,R(SNR)

Goodput:
Average number of received bits / symbol

η = m R (1−p0)

Delay:
Average number of ARQ transmissions to receive a data packet

d =
1

1−p0
− LpL

0

1−pL
0
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Outline

1 Hybrid ARQ at IP level with imperfect feedback

2 Resource allocation in HARQ-based mobile ad hoc networks

3 Resource allocation for HARQ with finite-length Gaussian codes
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Optimization problem

min
(γ,E)

K

∑
k=1

γk Ek s.t. ηk(γk ,Ek)≥ η
(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Ek ≥ 0, ∀k

Goodput expression

ηk(γk ,Ek) = γk rk(1−P(n,rk )
e (Gk Ek︸ ︷︷ ︸

SNRk

))

P(n,r)
e is the error probability of a (n, r) Gaussian code
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Error probability of a (n, r) Gaussian code (1/2)

H = diag(Hk)X ∈ Cn +

B ∈ Cn

Y = HX +B ∈ Cn

Xk ∼ CN (0,Ek) Hk ∼ CN (0,σ2
h) Bk ∼ CN (0,N0)

P(n,r)
e well approximated by the outage probability defined by

Pr


1
n

n

∑
k=1

i(Xk ;Yk)︸ ︷︷ ︸
mutual information rate (Zn)

≤ r


Problem

Zn is random for finite n and its cdf has still to be obtained in closed-form
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Error probability of a (n, r) Gaussian code (2/2)

For n large enough, Central-Limit Theorem leads to consider that

Zn ∼N (µn,σ
2
n)

with

µn = e1/SNRE1(1/SNR)

σ
2
n ≈

1
n

(
log2(1+SNR)−µ2

n +2− 2

SNR
e1/SNRE1(1/SNR)

)

Error probability approximation

P(n,r)
e (SNR)≈ Q

(
µn(SNR)− r

σn(SNR)

)
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Optimal solution

A solution exists if, and only if,

K

∑
k=1

η
(0)
k

rk
< 1

Optimization problem:

min
(γ,E)

K

∑
k=1

γk Ek s.t. γk rk(1−P(n,rk )
e (Gk Ek))≥ η

(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Ek ≥ 0, ∀k

Optimal algorithm

Biconvex optimization problems can be solved optimally [floudas’93]
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Allocation results

K = 2, G1 = 10 dB, G2 = 30 dB
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Remarks

Still a gap for large n to ergodic capacity

Goodput-based allocation saves up to 90% bandwidth

Choosing rk relevantly for being closer to ergodic capacity
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How close are powerful FEC codes? (r = 1/2)
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Powerful FEC performance well predicted by using an SNR gap

Not adapted to convolutional codes
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Summary

Works done for HARQ-based resource allocation with Gaussian codes:

Closed-form approximation of the error probability of finite-length
Gaussian codes on Rayleigh channels

Optimal algorithm for multiuser power/bandwidth allocation in Type-I
HARQ-based MANETs with statistical CSI

Framework for OFDMA resource allocation in HARQ-based MANETs
when LDPC coding is used
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Outline

1 Hybrid ARQ at IP level with imperfect feedback

2 Resource allocation in HARQ-based mobile ad hoc networks

3 Resource allocation for HARQ with finite-length Gaussian codes

4 Resource allocation for HARQ with practical MCS
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PHY layer abstraction

Goodput expression

ηk(γk ,Ek) = γk mk Rk(1−Pk(Gk Ek))

where Pk(SNR) = gmk ,Rk (SNR) is the PHY level PER

PER expression

Results are valid for any MCS admitting a parametric PER modelling

Example for simulations

M-QAM (m = log2(M) bits/symb) + Rate-R convolutional code

Increase diversity to dmin

⇒ Frequency Hopping (FH) + Bit Interleaved Coded Modulation (BICM)

PER: Pk(SNR) ∝ SNR−dmin
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Optimization problem 1: rate constrained

min
(γ,E)

K

∑
k=1

γk Ek s.t. ηk(γk ,Ek)≥ η
(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Ek ≥ 0, ∀k

Rewritten using Qk = γk Ek :

min
(γ,Q)

K

∑
k=1

Qk s.t. γk mk Rk(1−Pk(Gk Qk/γk))≥ η
(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Qk ≥ 0, ∀k
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Problem 1: Results

A solution exists if, and only if, ∑
K
k=1 η

(0)
k /(mk Rk)< 1

Power and bandwidth allocation

We prove that the problem is convex in (γ,Q)
(assuming the PER are convex functions of the SNR)

Optimal solutions have been exhibited in closed-form (from KKT) given
mcsk = (mk ,Rk)

MCS selection

(γ∗,Q∗) = argmin(γ,Q) QT (mcs)

mcs ∈M K ×R K ⇒ Combinatorial Problem

Greedy heuristic:
Modify MCS user by user: mcs(k)

Select k∗ = argmink QT (mcs(k))
Update MCS if QT (mcs(k

∗))< Q ∗T
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Gap to optimal coding of length n = 512

K = 2, G1 = 10 dB, G2 = 30 dB, Rk = 1/2
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QAM + CC near 4 dB from Gaussian codes

Same bandwidth saving behavior
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MCS selection based on the optimal power/bandwidth policy
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Exhaustive MCS selection

Greedy MCS selection

Fixed same MCS for all linksMCSc1

MCSc2

MCSc3

MCSc4

MCSc5 MCSc6

Simulation:

K = 4 links

Free-space path loss

Random distances in
[50,1000] m

MCS name MCSc1 MCSc2 MCSc3 MCSc4 MCSc5 MCSc6
m 1 2 2 4 6 6
R 1/2 1/2 2/3 1/2 1/2 3/4

max bit/s/Hz 0.5 1 1.33 2 3 4.5
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Optimization problem 2: rate + PER constrained

Problem 1: rate only

min
(γ,Q)

K

∑
k=1

Qk s.t. ηk(γk ,Qk)≥ η
(0)
k , ∀k
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∑
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Problem 2: Results

Pk is a quasi-convex function of (γk ,Qk)
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Two suboptimal approaches

Suboptimal KKT resolution (SKA)

Suboptimal alternate directional descent⇒ Linear Program (SLA)
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Problem 2: Numerical Results (1/2)
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Problem 2: Numerical Results (2/2)
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Constraining the PER to 10−2 adds an energy cost of about 2 dB
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Problem 2: Numerical Results (2/2)
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Optimization problem 3: rate + delay constrained

Problem 1: rate only

min
(γ,E)

K

∑
k=1

γk Ek s.t. ηk(γk ,Ek)≥ η
(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Ek ≥ 0, ∀k

Delay constraint added:

min
(γ,E)

K

∑
k=1

γk Ek s.t. ηk(γk ,Ek )≥ η
(0)
k , ∀k

dk(γk ,Ek)≤ d(0)
k , ∀k

K

∑
k=1

γk ≤ 1

γk ≥ 0, Ek ≥ 0, ∀k
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Problem 3: Results

A solution exists if, and only if, ∑
K
k=1 max

(
η
(0)
k /(mk Rk),1/d(0)

k

)
< 1

Delay function:

dk (γk ,Ek) =
1
γk

(
1

1−Pk(Gk Ek)
− LPk(Gk Ek)

L

1−Pk(Gk Ek)L

)

dk is quasi-convex in Ek

dk is convex in γk

no information in joint directions

KKT-based algorithm (KBA)

The KKT have been efficiently solved, but no optimality theorem for the
designed algorithm

Ping-Pong algorithm (PPA)

Suboptimal algorithm that optimizes alternately in both directions
(quasi-convex objective)



42/46

Introduction HARQ w/ imperfect feedback HARQ-based MANETs HARQ w/ finite-length codes HARQ w/ practical MCS Conclusion

Problem 3: Results

A solution exists if, and only if, ∑
K
k=1 max

(
η
(0)
k /(mk Rk),1/d(0)

k

)
< 1

Delay function:

dk (γk ,Ek) =
1
γk

(
1

1−Pk (Gk Ek)
− LPk(Gk Ek)

L

1−Pk(Gk Ek)L

)

dk is quasi-convex in Ek

dk is convex in γk

no information in joint directions

KKT-based algorithm (KBA)

The KKT have been efficiently solved, but no optimality theorem for the
designed algorithm

Ping-Pong algorithm (PPA)

Suboptimal algorithm that optimizes alternately in both directions
(quasi-convex objective)



42/46

Introduction HARQ w/ imperfect feedback HARQ-based MANETs HARQ w/ finite-length codes HARQ w/ practical MCS Conclusion

Problem 3: Results

A solution exists if, and only if, ∑
K
k=1 max

(
η
(0)
k /(mk Rk),1/d(0)

k

)
< 1

Delay function:

dk (γk ,Ek) =
1
γk

(
1

1−Pk (Gk Ek)
− LPk(Gk Ek)

L

1−Pk(Gk Ek)L

)

dk is quasi-convex in Ek

dk is convex in γk

no information in joint directions

KKT-based algorithm (KBA)

The KKT have been efficiently solved, but no optimality theorem for the
designed algorithm

Ping-Pong algorithm (PPA)

Suboptimal algorithm that optimizes alternately in both directions
(quasi-convex objective)



43/46

Introduction HARQ w/ imperfect feedback HARQ-based MANETs HARQ w/ finite-length codes HARQ w/ practical MCS Conclusion

Problem 3: Numerical Results
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Remarks

KBA is optimal when the delay constraint is strictly satisfied

PPA fills the bandwidth, KBA saves it
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Conclusions

HARQ at IP level with imperfect feedback

Definition of RCS, which generalizes the existing cross-layer scheme

Closed-form expressions of PER, delay, efficiency for RCS with
imperfect feedback

Choice of L(0) in RCS offers a trade-off from cross-layer gain to
robustness against imperfect feedback

Resource allocation in HARQ-based MANETs

General frameworks for multiuser power/bandwidth allocation in Type-I
HARQ-based MANETs with statistical CSI

Different QoS: rate, PER, delay

Finite-length Gaussian codes⇒ powerful FEC (LDPC)

Practical MCS⇒ noncapacity-achieving (convolutional + QAM)

Efficient heuristics for MCS selection
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Multi-criteria optimization for multiple design objectives

Distributed allocation to relax the need of CH
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