

Modeling the spreading of large-scale wildland fires

Mohamed DRISSI

Team: Fire dynamics

Simulation of forest fire Cargèse 13-17th

Summary

- Background
- Presentation of the propagation model
- Some study cases
- Validation of the propagation model on prescribed burn and on a real fire
- Sensitivity study
- Conclusions and prospects

Background

Environmental and societal problem

Wildfires: an environmental problem

Environmental needs:

Evaluation of emissions - Estimation of masses and surfaces burned

Satellite measurements (ex: MODIS 1km×1km)→ uncertainties of ±50%

- → Development of propagation models
- → Experiments (real fires, prescribed burns)

Environmental and societal problem

Forest fires: a societal problem with the multiplication of peri-urban interfaces

Needs:

- Improve prevention through better fire risk assessment
- Good decision support in crisis phase by efficient sizing and positioning of fighting tools.
 - → Development of propagation models
 - → Experiments (real fires, prescribed burns)

Two observations

First one: the distribution of the number of fires vs. burned area follows a power law called Pareto law:

« a fire of large amplitude is relatively rare, while conversely, a small-scale fire is likely to occur ».

Canada 1959-1997: 3% of fires account for 90% of burnt areas Corsica 2003-2009: 1% ------84%------

→ Need to focus on the major forest fires (large scale)

Wildfire: a multiphysics and multiscale phenomenon

microscopic

Multiscale

Cellule végétale d'aiguille de pin

Multiphysics

•Thermal degradation and combustion of the vegetal (Dehydration, pyrolysis, char oxidation, etc.)

Wildfires

mesoscopic

Branche de pin

- Conduction/Convection/rad iation /turbulence
- Topography
- •Wind
- Ambient air

macroscopic

Pin d'Alep

gigascopique

Image satellitaire

Two observations

Second observation: Fractal behavior of large fires.

At this scale, the fire shows a fractal behavior

due to local heterogeneities (Wind, topography, vegetation)

Stochastic modeling of the erratic behavior of large fires

Burned surface: D_f≈1.8

Presentation of the propagation model

Network construction

Homogeneous and uniform vegetation

Monodisperse network based structure: square or hexagonal.

Sparse vegetation + random distribution

Polydisperse amorphous network with a predefined filling ratio.

Network construction

Methods for generating non-overlapping sites

✓ Underlying structure: square or hexagonal

- → limited to monodisperse networks or polydisperse networks weakly doped
- → unrepresentative of the real vegetation

√ The « fly » generation

Monodisperse doped amorphous network to 56%.

→ difficult to achieve high filling rate (max. 0.56 in monodisperse case)

Network construction

✓ Minimisation of functional

Unstructured trianguler Delaunay mesh.

→ difficulty to control the randomness and the polydispersity

✓ Genetic algorithm Selection criterion based on the distance to six nearest neighbors

- good control of randomness and polydispersity
- → High CPU

Macroscopic model of combustion

- The fine particles (typically <0.6 cm) spread flames fire.
- Thick elements are involved in the combustion (usually flameless) behind the front.

Flame radiation model

Flame radiation model= Solid flame model + Monte Carlo method

Solid flame model:

- flame = solid body of simple geometry
- Radiation emitted by the surface

Stochastic Monte Carlo method

- Emitting N quanta from each surface element of the flame(m²),
- Each quantum has a power q
- The emission direction is randomly generated but according to a probability law that respects macroscopic radiation emission law by a surface
- Power received by the target : n×q

$$\delta_{eff} = min(H, \delta)$$
 with $\delta = 4/\sigma_k \alpha_k$

Radiation model

Determination of geometrical and thermo-physical properties of a flame of vegetation

Power released by the flaming combustion of pyrolysisproducts

$$\dot{Q} = \frac{m_{pyr} \, \Delta h_c}{t_c}$$

Fraction lost by convection in the plume

Radiated fraction $\chi_r \dot{Q}$

Emissive power of the flame:

$$P_{fl}^{\prime\prime} = \frac{\chi_r \dot{Q}}{S_{fl}}$$

Geometric properties of the flame

•Flameheight without wind
$$H_{fl0} = 0.0148\dot{Q}^{2/5} - 1.02D$$
 (Heskestad)

•Flameheightwithwind
$$H_{fl} = H_{fl0} (1 + 4Fr_{H_{fl0}}^2)^{-0.5}$$
 (Putnam)

• Tilt angle due to wind
$$\tan \alpha = 1.22 \, Fr_{H_{fl}}$$
 (Albini)

•Flamelength
$$L_{fl} \propto Fr_D^{-0.11}$$
 (Thomas et al., Nmira)

$$\rightarrow L_{fl} \sim H_{fl0}$$

Flame radiation (Y. Billaud, 2011)

Model validation SFM + MCM on a large ethanol flame (12m high, 7m diameter)

Radiative flux received by a sensor as a function of the distance from the flame

Radiation model

Screen effect

In the presence of a site k in fire between the fire site i and a virgin site j → j receives only a part of the radiation emitted by i

MCM: A quantum emitted by the site i and which arrives in the area of the solid flame of the site k is lost and does not contribute to preheat the site j

Radiation model

Attenuation of the radiation by the layer of atmospheric air between a site in fire and a receptor site (coll. Y. Billaud et A. Collin)

SNB model (isothermalhomogeneousmedium, decorrelation of emission absorption spectra gaz)

The averageTransmittance as a function of gaz transmittances $(CO_2, O_2, CO, N_2, H_2O)$ of the air, and this for different RH.

Approximate law

$$\bar{\tau}_{approx} = a + bl^c$$

RH%	a	b	c
10	1,096	-0,120	0,241
25	1,213	-0,253	0,170
50	1,407	-0,467	0,118
100	1,792	-0,881	0,076

Convection and radiative losses (inspired from the model of Koo et al. (2005)

Convective power received by the site exposed to fire

•Exponentialdecaywith distance (characteristic distance $\sim 3L_{fl}$)

$$P'''_{conv} = \frac{h}{\delta_{eff}} (T_{fl} - T) \exp(-0.3 y/L_{fl})$$

h: meancoeff.of convection (flat plate)

 T_{fl} : flametemperature

 δ_{eff} : effective penetration depthof radiation

Radiative power of embers

- Exponential decay with distance
- •(characteristic distance $\sim \delta$)

$$P'''_{rad,fuel} = a_{fb}\sigma T_b^4 \exp(-\frac{y}{\delta})$$

 a_{fb} : absorptivity of the stratum

 T_b : temperature of embers

 δ : effective penetrationdepth

Radiative losses of a site exposed to fire

$$P'''_{rad,losses} = \frac{\varepsilon_{fb}\sigma(T^4 - T_{\infty}^4)}{\delta_{eff}}$$

 ε_{fb} : emissivity of the bed fuel

T: site temperature

Thermal degradation of a receptor site

Balance equation: a receptor site exposed to N sites in fire

$$\sum_{i=1}^{N} \left[P^{\prime\prime\prime}_{rad,fl}(i) + P^{\prime\prime\prime}_{rad,fuel}(i) + P^{\prime\prime\prime}_{conv}(i)\right] - P^{\prime\prime\prime}_{rad,losses} = \begin{cases} \rho_{WFF} c_{p_{WFF}} \alpha \frac{dT}{dt} & \text{if } T < T_{vap} \\ -\rho_{DFF} L_{vap} \alpha \frac{dFMC}{dt} & \text{if } T = T_{vap} \\ \rho_{DFF} c_{p_{DFF}} \alpha \frac{dT}{dt} & \text{if } T_{vap} < T < T_{pyr} \\ -\rho_{DFF} L_{pyr} \alpha \frac{dFPC}{dt} & \text{if } T = T_{pyr} \end{cases}$$

550

500

400

350

300

FMC/FMC

Time (S)

Phase 1: preheating of the wet fuel

Phase 2: dehydration of the fuel

Phase 3: preheating of the dry fuel

Phase 4: pyrolysis

Ignition criterion:

$$T=T_{pyr}$$
 and ${\dot m}^{\prime\prime}_{pyr}>{\dot m}^{\prime\prime cr}_{pyr}$ (in thiswork: ${\dot m}^{\prime\prime cr}_{pyr}$ = 0)

Some case studies

Study case

Spread on a flat terrain without wind

Study case

Regular network+ without wind

→ Quadratic behavior (Mendes-Lopes et al., 2003; Tihay et al., 2012)

Regular network + a flat terrain

Model validation

Validation of the propagation model

Validation on a prescribed burn (Cheney et al., 1986)

• A plot 200mX200m

Homogeneous and continuous herbaceous vegetation

- Moisture content: 6%
- The ambient temperature: 34°C
 - A constant wind: 4.8m/s
 - RH of the air: 20%

Validation of the propagation model

(Cheney et al., 1986)

Thickness of the front fire: 10m (model) vs. 11m (exp.)

Validation du modèle de propagation

(Cheney et al., 1986)

Validation of the propagation model

Validation on the Favone Fire (Corse, 2009)

- Area burned: 29 ha
- Spread time: 1h15min
- point and time of passage of fire (Santoni et al., 2011)

- •Digital terrain model 25m×25m
- Dominant specy: Erica arboreaMoisture content: 69%The Fill rate: 50%
 - Calculation of the local wind from the mean wind (7m/s) (Flowstar)
 RH of the air: 42%

(Santoni et al., 2011)

Validation of the propagation model

Validation on the Favone Fire

Relative

error

17%

19%

- Not taking into account the means of fighting.
- Poor estimation of some parameters

sensitivity study

17,2%

Is to study the effect of changes in some factors (input) on some responses (output) → identify and prioritize the important parameters of the model

- Regular network, a plot 100m ×100m
- Homogeneous fuel: Kermès Oak
- Strata of 2 m diameter and 2.5 m height

Full factoriel design 6 factors 2 levels

Factor	Baseline	Low level (-1)	High Level (+1)	
Dry load of the fuel (kg/m²)	3.0	2.5	3.5	
Residence time of flame (s)	30	27	33	
Initial moisture content	0.2	0.16	0.24	
Ignition temperature(K)	550	540	560	
Fraction radiated	0.5	0.45	0.55	
Wind speed (m/s)	5	4	6	

Response

Matrix

Simulation	$M^{"}_{DFF}$	$egin{array}{c} t_c \ X_2 \end{array}$	X_r X_3	FMC_0	$T_{ign} = X_5$	$\ \overrightarrow{wind}\ $ X_6	$ROS(m.s^{-1})$
1	-1	1	-1	1	-1	-1	0.697
2	1	1	1	-1	-1	1	2.222
3	1	1	1	-1	1	-1	1.276
4	-1	1	1	1	1	-1	0.714
5	-1	-1	1	1	-1	-1	1.017
	•					-	
	•					-	•

$$ros = \beta_0 + \sum_{\substack{i=1\\ main\ effects\ of\ order\ 1}}^{6} \beta_i X_i + \sum_{\substack{i=1\\ j>i\\ of\ order\ 2}}^{6} \beta_{ij} X_i X_j + \underbrace{0(3)}_{\substack{interactions\\ of\ order\ 3}} + \cdots + \underbrace{0(6)}_{\substack{interactions\\ of\ order\ 6}}$$

Rate of spread obtained by the simulation using the reference values for all factors.

Pareto chart

Diagram of the main effects

Conclusions

- √The developed hybrid model can now:
 - ✓ take into account the convection and radiative losses
 in the preheating of a site exposed to fire
 - ✓ a better reflection of the reality of the landscape (ranomness, polydispersity)
- √The model was validated on a prescribed burn and on a real fire
- √The sensitivity analysis has allowed to:
 - ✓identify and prioritize the most influential model parameters
 - ✓ Establish simple correlations between the ROS and the most influential parameters

Prospects

- Study atypical configurations (thalweg, slope break, Canyon effect)
- Establish a risk mapping for a given region
- ✓ Improvement of the solid flame model (emitting volume, coll. LEMTA)
- ≤Study of the role of spotting on the spread.

Thank you for your attention