Thesis Defense Christopher Baker

Under the direction of Ivan Favero and Giuseppe Leo

Outline

- I. Introduction
- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

Outline

I. Introduction

- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

Optomechanics

Hamiltonian optomechanics

 $\hat{x} = x_{\rm ZPF} \left(\hat{b} + \hat{b}^{\dagger} \right)$

$$\hat{H} = \hbar \omega_0 \hat{a}^{\dagger} \hat{a} + \hbar \Omega_M \hat{b}^{\dagger} \hat{b} - \hbar \underbrace{g_{om} x_{ZPF}}_{g0} \hat{a}^{\dagger} \hat{a} \left(\hat{b}^{\dagger} + \hat{b} \right) \qquad x_{ZPF} = \sqrt{\frac{\hbar}{2m_{eff} \Omega_M}}$$

$$\hat{H} = \hbar \omega_0 \hat{a}^{\dagger} \hat{a} + \hbar \Omega_M \hat{b}^{\dagger} \hat{b} - \hbar g_0 \hat{a}^{\dagger} \hat{a} \left(\hat{b}^{\dagger} + \hat{b} \right)$$

High sensitivity displacement readout

Ultra-high sensitivity optical readout of the mechanical displacement

Optical cooling and amplification of mechanical motion

Towards quantum effects of light and mechanics

Optomechanical setups

Our systems

Gallium Arsenide (GaAs) disk optomechanical resonators

Silicon nitride (SiN) optomechanical resonators

Outline

- I. Introduction
- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

Optical WGM resonator

Resonance condition

$$2\pi nR \approx m\lambda_0$$

$$Q_{\rm opt} = \frac{\omega_0}{\kappa}$$

•High optical Q (> 10^5) \rightarrow Large field enhancement

- •High refractive index, Small mode volume (sub- μ m³)
- •Evanescent coupling via bus waveguide

Evanescent coupling

Optical coupling scheme

Two different coupling schemes:

- Fiber taper
- + adjustable coupling strength
- + high power
- fragile
- mechanical stability
- bulky
- Integrated waveguide
- + compact
- + stable
- non adjustable

Lu Ding, et al. Applied Optics, 49(13):2441-2445, 2010. C. Baker et al. Applied Physics Letters, 99:151117, 2011.

Outline

- I. Introduction
- 2. Whispering gallery mode resonators

3. Nanofabrication

- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

GaAs nano-fabrication steps

I) Clean wafer

2) E-beam resist and exposure

3) Development

4) Non selective ICP etch *or* wet etch

5) Selective HF underetch

6) Cleaning – finished sample

GaAs non selective wet etch

+ Smooth etch

- Poor verticality and gap distance control not adapted for small on-chip resonators

Optimized ICP etch

- Ar and SiCl₄ plasma chemistry
- Small sidewall roughness

10/10/13

GaAs nanofabrication potential problems

- I. Resist delamination
- 2. Proximity effect
- 3. Problematic oxidation
- 4. Collapsing waveguide
- 5. Pedestal dimension control

GaAs nano-fabrication results

	DISK	PEDESTAL	WAVEGUIDE
I st Gen	3.5 µm radius	>100 nm radius	300 nm width
	200 nm thickness	1.8 µm height	300 nm gap
2 nd Gen	l μm radius	80 nm radius	200 nm width
	320 nm thickness	Ι μm height	400 nm gap

SiN resonators fabrication steps

On-chip silicon nitride resonators

Outline

- I. Introduction
- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
 - a. Optical forces
 - b. Geometric and photoelastic optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

GaAs on-chip photonics

Observation of critical coupling, Q_{opt} = few 10⁴

Since 2011 enhancements: ×100 optical transmission ×10 optical Q (Q_{opt} now limited by optical absorption)

C. Baker et al.. Applied Physics Letters, 99:151117, 2011.

Silicon nitride on-chip WGM resonators

Several high Q high contrast optical resonances

Highest optical Q~400 000

 $(dn/dT)_{SiN} \sim 2 \times 10^{-5} \text{ K}^{-1}$

Thermo-optic distortion

Optical instability and self-pulsing in SiN

For constant laser power and wavelength light injection chaotic or periodic optical output.

Behavior depends upon:

- laser power
- laser detuning

Optical instability and self-pulsing in SiN

Interaction between fast thermo-optic and slow thermo-mechanical nonlinearity

C. Baker et al. Optics Express, 20(27):29076–29089, 2012.

Blue: experimental data Red: numerical model

Outline

- I. Introduction
- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

GaAs disk mechanics

In-plane mechanical modes

+ Small mass: picogram range+ High frequency: > IGHz range

In plane/out-of-plane coupling \rightarrow losses via pedestal

Mechanical clamping losses in GaAs disks

Outline

- I. Introduction
- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

Radiation pressure in a GaAs disk resonator

Momentum transfer per round trip in a circular cavity:

 $2\hbar k \lim_{n \to \infty} n \sin(\pi / n) = 2\pi \hbar k$

$$F = \frac{dP}{dt} = \frac{2\pi\hbar k}{2\pi R n_{eff} / c} = \frac{\hbar\omega_0}{R} \approx 1.5 \times 10^{-13} N$$

 $P = mg = 5.2 \times 10^{-14} N$

Radiation pressure force due to a single photon larger than the disk's weight !

Geometric optomechanical coupling in GaAs disks

 $2\pi n R \simeq m \lambda_0$

Mechanical deformation \rightarrow Change in cavity size \rightarrow shift in optical resonance frequency

Selection rule: largest optomechanical coupling for modes with highest rotational symmetry

Calculations of g₀^{geo} in GaAs disks

For a 1 µm radius GaAs disk:

Semi-analytical derivation of g_0^{geo}

 Ω_{M} =5.7 GHz, g₀^{geo}=0.18 MHz

Photoelastic optomechanical coupling in GaAs disks

 $\simeq \mathcal{M}$

$\Delta(\varepsilon_1^{-1})$		p_{11}	p_{12}	p_{12}	0	0	0	$\left(S_{1} \right)$		
$\Delta({\epsilon_2}^{-1})$		p_{12}	p_{11}	p_{12}	0	0	0			
$\Delta(\epsilon_3^{-1})$		p_{12}	p_{12}	p_{11}	0	0	0	S_3		
$\Delta({m arepsilon_4}^{-1})$		0	0	0	p_{44}	0	0			
$\Delta(\epsilon_5^{-1})$		0	0	0	0	p_{44}	0	S ₅		
$\Delta(\epsilon_6^{-1})$		0	0	0	0	0	p ₄₄	$\int S_6$		
photoelastic tensor										

Mechanical deformation \rightarrow deformed crystal lattice \rightarrow anisotropic *and* inhomogeneous dielectric permittivity

The p_{ij} are negative in GaAs \rightarrow geometric and photoelastic optomechanical coupling add constructively O

Strong photoelastic coupling in GaAs disks, $g_0{}^{pe} \sim I\,MHz$ for the first RBM, comparable to $g_0{}^{geo}$

Ist and 2nd RBM strain profile

C. Baker et al. In preparation

Outline

- I. Introduction
- 2. Whispering gallery mode resonators
- 3. Nanofabrication
- 4. Experimental guided optics
- 5. Mechanics of nanoresonators
- 6. Optomechanical coupling
- 7. Experimental optomechanics
- 8. Conclusions/perspectives

Ultra-sensitive optical measurement of GaAs disk motion

Fiber-coupled freestanding GaAs disk resonator

Frequency of mechanical modes up to <u>GHz</u>

- > In air, mechanical Q factor 50 to 10^3 (Q×f_M~10¹¹ in air)
- > Sensitivity 10^{-17} m/ \sqrt{Hz} (approaching the quantum limit)
- > Optomechanical coupling $g_0 \sim 100 \text{ kHz}$

L. Ding, C. Baker et al. Physical Review Letters, 105(26):263903, 2010.

Radius = 1 μ m, Q×f_M~10¹¹, g_o≈ 1 MHz

L. Ding, C. Baker et al. Applied Physics Letters, 98:113108, 2011.

Cryostat setup

Measurements in cryostat

Experimental perspectives: towards quantum effects

Measurement of mechanical mode thermalized at 12K:

$$n_{\rm th} = \frac{k_B T}{\hbar \Omega_M} \sim 180 \text{ phonons}$$

At 4K, thermal occupation n_{th}~60 phonons
With current parameters, expect to cool by a factor ~100
Optomechanical cooling to quantum ground state feasible

Thanks

DON

I. Favero, G. Leo, S. Ducci, D. Parrain, D.-T. Nguyen, W. Hease, B. Guha, E. Gil-Santos, A. Andronico, A. Delga, M. Savanier, A. Orieux, S. Mariani, C. Ozanam, G. Boucher, A. Eckstein, F. Boitier, C. Autebert

LPN

P. Senellart, A. Lemaître, E. Galopin

LMU

E. Weig, S. Stapfner

MPQ

C. Sirtori, A. Servouze, C. Manquest, P. Filloux, S. Suffit, J. Mercier, J. Moreau, M. Apfel, P. Lepert

