Urban scene modeling from airborne data

Yannick VERDIE

Thesis Advisors : Florent Lafarge and Josiane Zerubia

INRIA Sophia Antipolis, Titane/Ayin Teams

October 15, 2013

• Geometry

- Geometry
- Radiometry

- Geometry
- Radiometry
- Semantics

Applications

• Applications for 3D urban reconstruction

Radio planning

Movie

Computer game

Online services

Urban planning

Drone planning

Problem statement

Meshes from Multi-View Stereo

Airborne data

Lidar data

- Point cloud
- Accurate
- Not dense
- Incomplete

Meshes from Multi-View Stereo

- Mesh with triangular facets
- Complete surface
- Dense
- Potential defects

5 criteria:

Geometric accuracy

5 criteria:

- Geometric accuracy
- Semantic-aware

5 criteria:

- Geometric accuracy
- Semantic-aware
- Low complexity

5 criteria:

- Geometric accuracy
- Semantic-aware
- Low complexity
- Scalability

Size of the scene

small

5 criteria:

- Geometric accuracy
- Semantic-aware
- Low complexity
- Scalability
- Automatic

3 major surveys:

Modeling the Appearance and Behavior of Urban Spaces

[Vanegas et al. Eurographics 09]

A survey of Urban Reconstruction

Structure-Aware Shape Processing

[Musialski et al. Eurographics 12]

"Modeling the Appearance and Behavior of Urban Spaces"

[Vanegas et al., Eurographics 09]

procedural modeling

Surveys

"A survey of Urban Reconstruction"

[Musialski et al., Eurographics 12]

broad overview of the literature on urban reconstruction

Surveys

"Structure-Aware Shape Processing"

[Mitra et al., Eurographics 13]

structures to enhance, regularize and manipulate existing meshes

Overview of existing methods

[Zebedin et al., ECCV 08]

[Toshev et al., CVPR 09]

[Chauve et al., CVPR 10] Primitive-based building reconstruction

Overview of existing methods

[Zebedin et al., ECCV 08]

[Toshev et al., CVPR 09]

[Chauve et al., CVPR 10]

Primitive-based building reconstruction

[Pauly et al., Siggraph 08]

[Mehra et al., Siggraph Asia 09]

Zhou and Neumann, CVPR12]

Structure-aware building modeling

Overview of existing methods

[Zebedin et al., ECCV 08]

[Pauly et al., Siggraph 08]

[Poullis and You, CVPR09]

[Toshev et al., CVPR 09]

[Chauve et al., **CVPR 10**]

[Zhou and Neumann, CVPR12]

Primitive-based building reconstruction

> Structure-aware building modeling

[Mehra et al.,

Siggraph Asia 09]

[Zhou and Neumann, CVPR09]

[Lafarge and Mallet, IJCV11]

Automatic large scale urban reconstruction

still many unsolved problems

Contribution

General pipelines for MVS and LiDAR data

Outline

- 1 Introduction
- ② Semantic labeling
- ③ Object Reconstruction: parametric-based object detection
- ④ Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

1 Introduction

② Semantic labeling

- ③ Object Reconstruction: parametric-based object detection
- (4) Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

Semantic labeling

What is important ?

Ínría

In many cases, majority of urban scenes can be explained by 3 classes of objects

Semantic labeling for Lidar

Semantic labeling for Lidar

Classes for Lidar data

need for geometric features that discriminate the classes

Discriminative geometric features for Lidar

Confidence functions for Lidar

Confidence functions for Lidar

Trees

Ground

Buildings

Clutters

$$\arg \min_{x} \sum D(x_{i})$$

$$D(x_{i}) = \begin{cases} D_{tree}(x_{i}) \text{ if } x_{i} = tree \\ D_{ground}(x_{i}) \text{ if } x_{i} = ground \\ D_{building}(x_{i}) \text{ if } x_{i} = building \\ D_{clutter}(x_{i}) \text{ if } x_{i} = clutter \end{cases}$$

→ Need for spatial consistency

Energy minimization over a Markov Random Field

$$U(x) = \sum D(x_i) + \lambda \sum_{\{i,j\} \in E} V_{ij}(x_i, x_j)$$

 $D(x_i) = \begin{cases} D_{tree}(x_i) \text{ if } x_i = tree \\ D_{ground}(x_i) \text{ if } x_i = ground \\ D_{building}(x_i) \text{ if } x_i = building \\ D_{clutter}(x_i) \text{ if } x_i = clutter \end{cases}$

Potts model:

$$V_{ij}(x_i, x_j) = \delta(x_i \neq x_j)$$

Spherical neighborhood such as $\{i, j\} \in E \iff ||i - j||_2 < r$

Optimisation with graph-cut and alpha-beta swap [Boykov et al, PAMI 2001]

Semantic labeling for Lidar data

Visual reference from Google map

Close-up

Ínría

- Regroup facets into "f-clusters"
 - Tractable
 - Enforce local coherency

- Compute f-clusters
- Building class splits in two sub-classes

- Compute f-clusters
- Building class splits in two sub-classes

- Compute f-clusters
- Building class splits in two sub-classes
- Correction rules

Semantic labeling

Ínría

- 1 Introduction
- 2 Semantic labeling

③ Object Reconstruction: parametric-based object detection

- (4) Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

Object Reconstruction for Lidar

Focus on tree detection and reconstruction from Lidar

Parametric-based object detection

Objective:

• Localize and reconstruct simple objects

Buildings are too complex structures

Trees can be approximated by simple shapes

Parametric-based object detection

Objective:

- Localize and reconstruct simple objects
- Detection in large scenes

Thousands of simple objects (e.g. trees) are in the scene

Use Marked Point Processes (MPP)

Preliminary:

- A point process describes random configurations of points (of unknown size) in a continuous bounded set K.
- A marked point process is a point process where each point is associated with a parametric objects.

Point process

Marked Point Process of 2D segments

Previous work:

[Lacoste et al.,PAMI05]

Line-segment

Ínría

[Perrin et al., EMMCVPR05]

Ellipse

[Ge et al., CVPR09] Cylinder

Requirements:

1) Simple parametric objects

Object characterized by a limited number of parameters

Requirements: 1) Simple parametric objects

2) Energy measuring the quality of a configuration of objects

Standard form of energy:

$$\forall \mathbf{x} \in \mathcal{S}, U(x) = \sum_{p_i \in \mathbf{x}} D(p_i) + \sum_{p_i \sim p_j} V(p_i, p_j)$$

with \sim the symmetric neighborhood relationship such as:

$$p_i \sim p_j = \{(p_i, p_j) \in \mathbf{x}^2 : i > j, ||p_i - p_j||_2 < \epsilon\}$$

Requirements:

- 1) Simple parametric objects
- 2) Energy
- 3) Minimization method
 - Unknown number of objects
 - Minimize non-convex energy

Optimization method

RJ-MCMC:

- Sequential algorithm with a two-step update mechanism
 - a) Proposition step
 - New configuration is proposed from a proposal density (kernel)
 - New configuration must be close to the current one
 - b) Acceptance step depending on
 - Random variable
 - Energy variation
 - Stochastic relaxation

Optimization method

RJ-MCMC:

- <u>Sequential</u> algorithm with a two-step update mechanism
 - a) Proposition step
 - New configuration is proposed from a proposal density (kernel)
 - New configuration must be close to the current one (local perturbation)

Slow in practice

- b) Acceptance step depending on
 - Random variable
 - Energy variation
 - Stochastic relaxation

Focus on improving performance of RJ-MCMC

Requirements:

- 1) Simple parametric objects
- 2) Energy

3) Minimization method

- unknown number of objects
- minimize non-convex energy

Novel optimization method based on RJ-MCMC

- Exploit two properties for a faster optimization
- Exploit GPU capability

(1) Parallelization

The Markovian property in the energy: $Pr(x_i | x) = Pr(x_i | x_{N(i)})$

the blue object and the red object can be updated by MCMC at the same time.

(1) Parallelization

• Mic-Set: a set of Mutually Independant Cells

How many Birds ?

Ínría

How many Birds ?

Low probability

Ínría

How many Birds ?

High probability

Ínría

We proposed

- quadtree data partitioning for 2D space.
- octree data partitioning for 3D space.

 \rightarrow

Compatible with the parallelization scheme (1)

Novel optimization method

2D Ellipsoidal objects

10800 objects detected, 269 sec (image size: 8Mpixels)

Ínría

Time to converge

[Lempitsky and Zisserman, NIPS2010]

	our	Lempitsky	Lempitsky	Ground
	method	(L1-reg.)	(Tikhonov-reg.)	Truth
cell17	209	202.9	194.1	213
cell 18	184	184.6	175.9	185
cell 19	187	192.2	180.1	188
cell 20	169	174.1	170.4	169
cell21	147	148.6	144.4	149
cell 22	184	182.6	176.5	184
cell 23	159	158.3	157.6	161
RMSE	1.93	4.71	9.21	-

GPU occupancy

Average time of detection per object (ms)

- Three parametric objects
 - 7 parameters

- Three parametric objects
- New energy formulation

$$D(x_i) = \frac{1}{|\mathcal{C}x_i|} \prod_{p_c \in \mathcal{C}x_i} \gamma(\underline{d(p_c, \partial x_i)})$$

$$V(x_i, x_j) = \beta_1 V_{overlap}(x_i, x_j) + \beta_2 V_{competition}(x_i, x_j)$$

 $d(p_c, \partial x_i)$ is a distance measuring the coherence of the point p_c with respect to the object surface ∂x_i

type

penalizes the overlapping between objects

favors area with similar type of objects

canopy height trunk height

Evolution of the configuration

30k trees in 96min (3.7km2 / 12.8M points)

5.4k trees in 53min (1km2 / 2.3M points)

Inría

Details on cropped area

Visual reference from Google map

- 1 Introduction
- 2 Semantic labeling
- ③ Object Reconstruction: parametric-based object detection

④ Object Reconstruction: mesh-based object reconstruction

(5) Conclusion and future work

Mesh-based object reconstruction

Focus on the building reconstruction from MVS

Facades

Roofs

Contributions on building reconstruction from MVS

We propose

- Multiple Level of Details (LOD)
 - Definition of the City Geography Markup Language

LOD1 – Building as "blocks model, without any roof structures or textures" LOD2 – Building with "differentiated roof structures" LOD3 – Building as "architectural model with detailed wall and roof structures"

- Visually more appealing
- More adapted to certain urban applications

[Kolbe et al., 2005]

Contributions on building reconstruction from MVS

We propose

- Multiple Level of Details (LOD)
- Efficient plane regularization
 - Predominant in urban environment
 - Support the LOD scheme
 - Efficient on large scale

Existing solutions un-adapted: accurate but too slow for our application

Global regularities

[Zhou and Neumann, CVPR12]

GLOBFIT

[Li et al., Siggraph11]

Contributions on building reconstruction from MVS

We propose

- Multiple Level of Details (LOD)
- Efficient plane regularization
- Efficient Binary Space Partitioning (BSP)
 - Exact geometry for BSP is costly (slow)

[Chauve et al., CVPR 10]

use a new discrete formulation

Contributions on building reconstruction from MVS

We propose

- Multiple Level of Details (LOD) •
- Efficient plane regularization •
- Efficient Binary Space Partitioning (BSP) •
 - Advantages:
 - reconstruct with exact geometry only a subset of cells

the plane regularization limits the number of different planes (lower BSP complexity)

Surface extraction

Plane hypothesis from roof and facade f-clusters

Plane regularization:

• 4 pairwise relationships controlled with two parameters $\boldsymbol{\varepsilon}$ and \boldsymbol{d}

Plane regularization:

- 4 pairwise relationships controlled with two parameters $\boldsymbol{\varepsilon}$ and \boldsymbol{d}
 - Parallelism

 P_1 and P_2 are ε -parallel if $|\mathbf{n}_1 \cdot \mathbf{n}_2| \ge 1 - \varepsilon$

Plane regularization:

- 4 pairwise relationships controlled with two parameters $\boldsymbol{\varepsilon}$ and \boldsymbol{d}
 - Parallelism
 - Orthogonality

 P_1 and P_2 are ε -parallel if $|\mathbf{n}_1 \cdot \mathbf{n}_2| \ge 1 - \varepsilon$

Plane regularization:

- 4 pairwise relationships controlled with two parameters $\boldsymbol{\varepsilon}$ and \boldsymbol{d}
 - Parallelism
 - Orthogonality
 - Z-symmetry

 P_1 and P_2 are ε -Z-symmetric if $||\mathbf{n}_1 \cdot \mathbf{n}_z| - |\mathbf{n}_2 \cdot \mathbf{n}_z|| \le \varepsilon$,

Plane regularization:

- 4 pairwise relationships controlled with two parameters $\boldsymbol{\varepsilon}$ and \boldsymbol{d}
 - Parallelism
 - Orthogonality
 - Z-symmetry
 - Coplanarity

 P_1 and P_2 are d- ε -coplanar if they are ε -parallel and $|d_{\perp}(c_1, P_2) + d_{\perp}(c_2, P_1)| < 2d,$

Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes

Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes
- 2-step strategy:
 - 1) Orientation correction: propagate orthogonality and z-symmetry relationships from large groups to smaller

the barycenter of each group is fixed

Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes
- 2-step strategy:
 - 1) Orientation correction: propagate orthogonality and z-symmetry relationships from large groups to smaller
 - 2) Position correction: merge co-planar groups

Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes
- 2-step strategy:
 - 1) Orientation correction: propagate orthogonality and z-symmetry relationships from large groups to smaller
 - 2) Position correction: merge co-planar groups

Converge very fast (no data refitting) Thousand of planes in few seconds

Plane hypothesis from roof and facade f-clusters

Discrete space partitioning:

• Volumetric occupancy grid

Discrete space partitioning:

- Volumetric occupancy grid
- Binary Space Partitioning (BSP)

Red volume = a path in the BSP

? selection of the right path

Surface extraction:

The targeted surface is at the boundary between inside and outside volumes

Surface = { / + + + > }

A min-cut formulation is used to label the volumes. Optimized with min-max flow [Boykov and Kolmogorov, PAMI04]

Surface extraction:

- The targeted surface is at the boundary between inside and outside volumes
- Min-cut formulation:

$$C(\mathcal{S}) = \sum_{c_k \in \mathcal{C}_{out}} V_{c_k} g(c_k) + \sum_{c_k \in \mathcal{C}_{in}} V_{c_k} (1 - g(c_k)) + \beta \sum_{e_i \in \mathcal{S}} A_{e_i}$$

 V_{c_k} is the discrete volume of cell ck

 $g(c_k)$ is function of the ratio of inside anchors of cell ck

$$\sum_{e_i \in \mathcal{S}} A_{e_i}$$
 is the discrete area of the resulting surface

Surface extraction:

- The targeted surface is at the boundary between inside and outside volumes
- Min-cut formulation:

The boundary of the inside volume represents the targeted surface

Surface extraction:

- The targeted surface is at the boundary between inside and outside volumes
- Min-cut formulation:

The boundary of the inside volume represents the targeted surface

A control on the sets of planes composing the BSP gives different LODs

Various buildings: (LOD)

Various buildings: 170k facets, ~3min

Experiments

Geometric accuracy (Hausdorff distance) and structure awareness

Robustness assessment

Ínría

Robustness assessment

Choice of the input: mesh or point cloud

Experiments

Large scale experiments (scalability)

Paris, 7th district: 11M facets, ~2hours

Outline

- 1 Introduction
- ② Semantic labeling
- ③ Object Reconstruction: parametric-based object detection
- ④ Object Reconstruction: mesh-based object reconstruction

5 Conclusion and future work

Contribution summary

Applicative contributions

- Two pipelines for Lidar and MVS data
 - Semantical and structural enhancement of purely-geometric meshes
 - Geometrically accurate reconstruction and visually convincing
 - Scalable and adapted to wide range of applications

Innia

Contribution summary

Methodological contributions

- Sampler for Marked Point Processes (MPP) using a parallel scheme
 - Exploit GPU architecture
 - Outperforms current samplers for MPP
- Efficient Binary Space Partitioning (BSP)
 - Rely on a discrete energy formulation for fast approximation

Limitations

Urban labeling

• Classes of objects limited

Sampler for Marked Point Processes

• Efficient only when performed on large scenes for small objects

Building reconstruction

- Piecewise-planar buildings
- Primitive dependant
- Discrete formulation misses details (empty cells)

no plane regularization

H short grid width no plane regularization

with plane regularization

Future Work

Extensions:

Urban labeling

• Add more classes of interest for a better labeling (bridge, water,...)

Building reconstruction

- Generalize the BSP for other primitives (spheres, cylinder,...)
- Complete LOD3 representation with facade modeling
 - Use data regularization
 - Grammar rules for façade

Future Work

Future directions:

Multiple source of data

Use multiple source of data together (terrestrial and aerial Lidar, MVS, images,...)

Functional analysis

Combine structure-aware techniques with semantic understanding of urban scenes

THANK YOU

Acknowledgment:

Acute3D, InterAtlas, IGN, Tour du valat ,Victor Lempitsky, Roger W. Ehrich, Qian-Yi Zhou

