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3D urban reconstruction 
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Applications 
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• Applications for 3D urban reconstruction 

Urban planning Online services 

Movie Computer game 

Drone planning 

Radio planning 



Problem statement 
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? 

Airborne Acquisition 

Lidar data 

Urban scene modeling 

Meshes from Multi-View Stereo 



Airborne data 
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Meshes from Multi-View Stereo Lidar data 

 Point cloud 

 Accurate 

 Not dense 

 Incomplete 

 

 

 

 Mesh with triangular facets 

 Complete surface 

 Dense 

 Potential defects 
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5 criteria: 

 Geometric accuracy 
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5 criteria: 

 Geometric accuracy 

 Semantic-aware 
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5 criteria: 

 Geometric accuracy 

 Semantic-aware 

 Low complexity: 
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5 criteria: 

 Geometric accuracy 

 Semantic-aware 

 Low complexity 

 Scalability 

small large 

Size of the scene 
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5 criteria: 

 Geometric accuracy 

 Semantic-aware 

 Low complexity 

 Scalability 

 Automatic 

 

 

 



Surveys 

 

[Musialski et al. 
Eurographics 12] 

Structure-Aware Shape Processing 

[Mitra et al. 
Eurographics 13] 

A survey of Urban Reconstruction Modeling the Appearance  

and Behavior of Urban Spaces 

[Vanegas et al.  
Eurographics 09] 

3 major surveys: 
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Surveys 

 

[Vanegas et al., Eurographics 09] 

 
“Modeling the Appearance and Behavior of Urban Spaces” 

 

        

 

 

procedural modeling 
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Surveys 

 
 

         “A survey of Urban Reconstruction” 

 

 

 

[Musialski et al., Eurographics 12] 

broad overview of the literature on urban reconstruction  
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Surveys 

 
 

        “Structure-Aware Shape Processing” 

                            

 

[Mitra et al., Eurographics 13] 

structures to enhance, regularize and manipulate existing meshes 
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Overview of existing methods 

 

 Primitive-based  

building reconstruction 

[Toshev et al.,  

CVPR 09] 

[ Zebedin et al.,  

ECCV 08] 
[Chauve et al.,  

CVPR 10] 
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Overview of existing methods 

 

 

Zhou and Neumann, 

 CVPR12] 

Structure-aware  

building modeling 

[Pauly et al.,  

Siggraph 08] 

[Mehra et al.,  

Siggraph Asia 09] 

Primitive-based  

building reconstruction 

[Toshev et al.,  

CVPR 09] 

[ Zebedin et al.,  

ECCV 08] 
[Chauve et al.,  

CVPR 10] 
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Overview of existing methods 

 

 

[Lafarge and Mallet,  

IJCV11] 
[Poullis and You,  

CVPR09] 

Automatic large scale 

 urban reconstruction 

[Zhou and Neumann, 

 CVPR09] 

[Zhou and Neumann, 

 CVPR12] 

Structure-aware  

building modeling 

[Pauly et al.,  

Siggraph 08] 

[Mehra et al.,  

Siggraph Asia 09] 

Primitive-based  

building reconstruction 

[Toshev et al.,  

CVPR 09] 

[ Zebedin et al.,  

ECCV 08] 
[Chauve et al.,  

CVPR 10] 

still many unsolved problems 

 
20 



General pipelines for MVS and LiDAR data 

 

 

 

 

 

 

Input data 

 

Semantic Labeling 

 
Object reconstruction 

LiDAR 

MVS 

Contribution 
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Semantic labeling 

 
What is important ? 

                   In many cases, majority of urban scenes can be explained by 

3 classes of objects 

 

 

 

 

 

Buildings Ground Trees 
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Semantic labeling for Lidar 

 

Input data 

 

Semantic Labeling 

 
Object reconstruction 

LiDAR 
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Semantic labeling for Lidar 

 
Classes for Lidar data 

 

 

 

 

 

 

 

 

 

                   need for geometric features that discriminate the classes  

 

 

 

 

 

 

Buildings Ground Trees Clutters 
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Discriminative geometric features for Lidar 

 
Local dispersion βs 

 

Local linearity βl Elevation βe 

0 0.5 1 

Combine the features to discriminate the classes 

Local non-planarity βp 

26 



Confidence functions for Lidar 

 

Ground 

Buildings 

Trees 
High non-planarity βp High elevation βe 

High local dispersion βs 

Low non-planarity βp Low elevation βe 

Low local dispersion βs 

Low non-planarity βp High elevation βe 

Low local dispersion βs 

Clutters 
High local dispersion βs 

High non-planarity βp 

Low local linearity βl 

Local linearity βl 

Local linearity βl 

Local linearity βl 

Elevation βe 
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Confidence functions for Lidar 

 

Ground 

Buildings 

Trees 

Clutters 
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                  Optimisation with graph-cut and alpha-beta swap 

     [Boykov et al, PAMI 2001] 
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Potts model: 

 

 

Energy minimization  

over a Markov Random Field 
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Semantic labeling for Lidar data 

 

Close-up 

Visual reference from Google map 

    Building 
    Vegetation 
    Ground 
    Clutter 
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Semantic labeling for MVS 
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Input data 

 
Semantic Labeling 

 

Object reconstruction 

MVS 



Semantic labeling for MVS 

 
Difference with semantic labeling for Lidar data  

• Regroup facets into "f-clusters" 

 Tractable 

 Enforce local coherency 
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Semantic labeling for MVS 

 
Difference with semantic labeling for Lidar data 

• Compute f-clusters 

• Building class splits in two sub-classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buildings Ground Trees Clutters 

Facades Roofs 
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Difference with semantic labeling for Lidar data 

• Compute f-clusters 

• Building class splits in two sub-classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semantic labeling for MVS 

 

Facades 

Roofs 

vepixDroof 1)(

vpixDfacade 1)(

Low non-planarity βp High elevation βe 

Low verticality βv 

Low non-planarity βp 

High verticality βv 

1 

0 
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Verticality βv 



Semantic labeling for MVS 

 
Difference with semantic labeling for Lidar data  

• Compute f-clusters 

• Building class splits in two sub-classes 

• Correction rules 
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Semantic labeling 

 

Classification 

Close-up 

MVS data 

    Roof 
    Facade 

    Vegetation 
    Ground 
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Outline 
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Object Reconstruction for Lidar 
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Input data 

 

Semantic Labeling 

 
Object reconstruction 

LiDAR 

Focus on tree detection and reconstruction from Lidar 



Parametric-based object detection 

 

 Objective: 

• Localize and reconstruct simple objects 

 

 

 

 

Buildings are too  

complex structures 

Trees can be approximated 

by simple shapes 
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Parametric-based object detection 

 

 Objective: 

• Localize and reconstruct simple objects 

• Detection in large scenes 

 

 

 

 

Thousands of simple objects (e.g. trees) are in the scene 

Use Marked Point Processes (MPP) 
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Marked Point Processes 

 

 
Preliminary: 

 

•  A point process describes random configurations of points (of 

unknown size) in a continuous bounded set K. 

 

 

• A marked point process is a point process where each point is 

associated with a parametric objects. 
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Point process Marked Point Process 

of 2D segments 



Marked Point Processes 

 

 Previous work: 

 
 

 

[Lacoste et al.,PAMI05] [Perrin et al., EMMCVPR05] 





Cylinder 

[Ge et al., CVPR09] 
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Marked Point Processes 

 

 Requirements: 

1) Simple parametric objects 

 

 

 

 
Cone, Ellipsoid, Semi-ellipsoid 

Object characterized by a limited number of parameters 

5 parameters 5 parameters 7 parameters 
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Marked Point Processes 

 

 Requirements: 

1) Simple parametric objects 

 

2) Energy measuring the quality of a configuration of objects 

 

Standard form of energy: 
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Marked Point Processes 

 

 Requirements: 

1) Simple parametric objects 

 

2) Energy 

 

3) Minimization method 

   Unknown number of objects 

   Minimize non-convex energy 

 

 

 

 

Use Reversible-Jump Monte Carlo Markov Chain (RJ-MCMC) 

[Green 1995] 
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Optimization method 

 

 RJ-MCMC: 

 

• Sequential algorithm with a two-step update mechanism 

 
a)   Proposition step 

   New configuration is proposed from a proposal density (kernel) 

  New configuration must be close to the current one 

 

 
b)   Acceptance step depending on 

  Random variable 

  Energy variation 

  Stochastic relaxation 
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Optimization method 

 

 RJ-MCMC: 

 

• Sequential algorithm with a two-step update mechanism 

 
a)   Proposition step 

   New configuration is proposed from a proposal density (kernel) 

  New configuration must be close to the current one (local 

perturbation) 

 

 
b)   Acceptance step depending on 

  Random variable 

  Energy variation 

  Stochastic relaxation 

 
 

 
 

 

Focus on improving performance of  RJ-MCMC  

Slow in practice 
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Marked Point Processes 

 

 Requirements: 

1) Simple parametric objects 

 

2) Energy 

 

3) Minimization method 

    unknown number of objects 

    minimize non-convex energy 

 

 

 

 

Novel optimization method based on RJ-MCMC 

  Exploit two properties for a faster optimization 

  Exploit GPU capability 
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the blue object and the red object can be updated by 

MCMC at the same time. 

 

 
 

 

 

 

(1) Parallelization 
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The Markovian property in the energy: Pr(xi | x) = Pr(xi | xN(i)) 
 



(1) Parallelization 

 

 
  

•  4-cell subdivision scheme generates 4 mic-sets {     ,    ,    ,    }. 
(cell width=diameter of the neighborhood relation+maximal length of a move) 

 

 
 

 

 

 
 

 

 

 
•  Mic-Set: a set of Mutually Independant Cells 
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How many Birds ? 
 

 

(2) Non-uniform point densities 
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Low probability 

 

 

(2) Non-uniform point densities 
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How many Birds ? 
 

 



 

High probability 

 

(2) Non-uniform point densities 
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How many Birds ? 
 

 



(2) Non-uniform point densities 

 

 

Compatible with the parallelization scheme (1) 

We proposed 
   quadtree data partitioning for 2D space. 

   octree data partitioning for 3D space. 
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Novel optimization method 
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Proposition step 

Acceptance step 



10800 objects detected, 269 sec (image size: 8Mpixels) 
 

      2D Ellipsoidal objects 
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      2D Ellipsoidal objects 
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269s 1078s 



      [Lempitsky and Zisserman, NIPS2010] 
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Input image Ground Truth Our result 



      GPU occupancy 
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• Three parametric objects 
  7 parameters 

 

 

 

 

 

       3D Objects 
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• Three parametric objects 

 

• New energy formulation   

 

 

 

 
 

                is a distance measuring the coherence of the point pc  

with respect to the object surface  

penalizes the overlapping between objects 

favors area with similar type of objects 

       3D Objects 
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Evolution of the configuration 
 

 

       3D Objects 
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30k trees in 96min (3.7km2 / 12.8M points) 

       3D Objects 
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5 .4k trees in 53min (1km2 / 2.3M points) 

       3D Objects 
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Visual reference from Google map 

       3D Objects 

 

 

 

 
Details on cropped area 
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Outline 

① Introduction 

② Semantic labeling 

③ Object Reconstruction: parametric-based object detection 

④ Object Reconstruction: mesh-based object reconstruction 
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Mesh-based object reconstruction 

 

 

Facades Roofs 

Focus on the building reconstruction from MVS 
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Input data 

 
Semantic Labeling 

 

Object reconstruction 

MVS 



Contributions on building reconstruction  

from MVS 

 

 We propose 

• Multiple Level of Details (LOD) 
 Definition of the City Geography Markup Language 

 
 

 
 

    Visually more appealing 

    More adapted to certain urban applications 

 

 

 

 

 

 

 

 
original LOD1 LOD3 

68 

[Kolbe et al., 2005] 
LOD1 – Building as “blocks model, without any roof structures or textures” 

LOD2 – Building with “differentiated roof structures” 
LOD3 – Building as “architectural  model with detailed wall and roof structures” 



Contributions on building reconstruction  

from MVS 

 

 We propose 

• Multiple Level of Details (LOD) 

• Efficient plane regularization 
  Predominant in urban environment 

  Support the LOD scheme 

     Efficient on large scale 

 

 
 

 

 

[Zhou and Neumann, 

 CVPR12] 

GLOBFIT 

[Li et al., 

 Siggraph11] 

Global regularities 

           Existing solutions un-adapted: 

accurate but too slow for our application 
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Contributions on building reconstruction  

from MVS 

 

 We propose 

• Multiple Level of Details (LOD) 

• Efficient plane regularization 

• Efficient Binary Space Partitioning (BSP) 
    Exact geometry for BSP is costly (slow) 

 

 

 
 

 

 
           

           use a new discrete formulation 

 

 

 

 
 

[Chauve et al.,  

CVPR 10] 

[Furukawa et al.,  

CVPR 09] 
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Contributions on building reconstruction  

from MVS 

 

 We propose 

• Multiple Level of Details (LOD) 

• Efficient plane regularization 

• Efficient Binary Space Partitioning (BSP) 

 
    Advantages: 

                         

                            reconstruct with exact geometry only  

                            a subset of cells 

 
           the plane regularization limits the number  

           of different planes (lower BSP complexity) 
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Building reconstruction from MVS data 

Labeling Surface extraction 

Discrete space 

partitioning 

Plane regularization 

Plane hypothesis from roof and facade f-clusters 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships controlled with two parameters  and d 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships controlled with two parameters  and d 

 Parallelism 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships controlled with two parameters  and d 

 Parallelism 

 Orthogonality 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships controlled with two parameters  and d 

 Parallelism 

 Orthogonality 

 Z-symmetry 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships controlled with two parameters  and d  

 Parallelism 

 Orthogonality 

 Z-symmetry 

 Coplanarity 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships 

• Groups of parallel planes 
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Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships 

• Groups of parallel planes 

• 2-step strategy: 

1) Orientation correction: propagate orthogonality and  

 z-symmetry relationships from large groups to smaller 

                 

                   the barycenter of each group is fixed 
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After orientation correction Before orientation correction 



Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships 

• Groups of parallel planes 

• 2-step strategy: 

1) Orientation correction: propagate orthogonality and z-symmetry 

relationships from large groups to smaller 

 

2)    Position correction: merge co-planar groups 
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After position correction Before position correction 



Building reconstruction from MVS data 

Plane regularization: 

• 4 pairwise relationships 

• Groups of parallel planes 

• 2-step strategy: 

1) Orientation correction: propagate orthogonality and z-symmetry 

relationships from large groups to smaller 

 

2)   Position correction: merge co-planar groups 

 

 
           Converge very fast (no data refitting) 

           Thousand of planes in few seconds 
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Building reconstruction from MVS data 

Labeling Surface extraction 

Plane regularization Discrete space 

partitioning 

Plane hypothesis from roof and facade f-clusters 
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Discrete space partitioning: 

• Volumetric occupancy grid 

 

 

 

Building reconstruction from MVS data 
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Discrete space partitioning: 

• Volumetric occupancy grid 

• Binary Space Partitioning (BSP) 

 

 

 

Building reconstruction from MVS data 

+ - 

+ + + 

+ - 

+ - - + 

- - - 

Red volume = a path in the BSP 

 

selection of the right path 

 

? 
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Building reconstruction from MVS data 

Surface = {      +    +     +     } 

Surface extraction: 

• The targeted surface is at the boundary between inside and outside 

volumes 

 

 

A min-cut formulation is used to label the volumes. 

Optimized with min-max flow [Boykov and Kolmogorov, PAMI04] 

85 



Building reconstruction from MVS data 

Surface extraction: 

• The targeted surface is at the boundary between inside and outside 

volumes 

 

• Min-cut formulation: 

 

 

       is the discrete volume of cell ck 

         is function of the ratio of inside anchors of cell ck 

            is the discrete area of the resulting  

            surface  
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Building reconstruction from MVS data 

Surface extraction: 

• The targeted surface is at the boundary between inside and outside 

volumes 

 

• Min-cut formulation: 

 

 

The boundary of the inside volume represents the targeted surface 
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interior anchor 

input surface 

detected plane 

exterior anchor 



Building reconstruction from MVS data 

Surface extraction: 

• The targeted surface is at the boundary between inside and outside 

volumes 

 

• Min-cut formulation: 

 

 

The boundary of the inside volume represents the targeted surface 

A control on the sets of planes composing the BSP gives 

 different LODs 

LOD1 LOD2 LOD3 
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Various buildings: (LOD) 

 

 

Various buildings: 170k facets, ~3min 
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Experiments 

 
Geometric accuracy (Hausdorff distance) and structure awareness 

>5m 

0m 
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[Cohen-Steiner et al., 

Siggraph04] 

[Garland and Heckbert, 

Siggraph97] 



Experiments 

 
Robustness assessment 
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Experiments 

 

Point set structuring 

Our method 

MVS-based  

mesh generation 

 

LOD1 LOD2 

MVS point cloud 

data 

Robustness assessment 
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[Lafarge and Alliez,  

Eurographics13] 



Choice of the input: mesh or point cloud 

 

Airborne Lidar 

data 

Primitive-based building 

reconstruction 

Our method 

LOD1 LOD2 

Smooth DEM 
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[Lafarge and Mallet, 

IJCV11] 



Experiments 

 

Paris, 7th district: 11M facets, ~2hours 

Large scale experiments (scalability) 

from Google map 
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Contribution summary 

 

Applicative contributions 

 

 Two pipelines for Lidar and MVS data 

• Semantical and structural enhancement of purely-geometric 
meshes 

• Geometrically accurate reconstruction and visually convincing 

• Scalable and adapted to wide range of applications 
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Contribution summary 

 

Methodological contributions 

 

 Sampler for Marked Point Processes (MPP) using a parallel scheme 

• Exploit GPU architecture 

• Outperforms current samplers for MPP 

 

 Efficient Binary Space Partitioning (BSP) 

• Rely on a discrete energy formulation for fast approximation 
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Limitations 

Urban labeling 

• Classes of objects limited 

 

Sampler for Marked Point Processes 

• Efficient only when performed on large scenes for small objects 

 

Building reconstruction 

• Piecewise-planar buildings 

• Primitive dependant 

• Discrete formulation misses details (empty cells) 
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      large grid width 

no plane regularization 

large grid width 

with plane regularization 

      short grid width 

no plane regularization 



Future Work 

Extensions: 

 

Urban labeling 

• Add more classes of interest for a better labeling (bridge, water,…) 

 

Building reconstruction 

• Generalize the BSP for other primitives (spheres, cylinder,…) 

• Complete LOD3 representation with facade modeling 

• Use data regularization 

• Grammar rules for façade  
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Future Work 

Future directions: 

 

Multiple source of data 

• Use multiple source of data together (terrestrial and aerial Lidar, 
MVS, images,…) 

 

Functional analysis 

• Combine structure-aware techniques with semantic understanding 
of urban scenes 
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