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3D urban reconstruction

« Geomeitry
« Radiometry
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3D urban reconstruction

« Geomeitry
« Radiometry
« Semantics
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Applications

Applications for 3D urban reconstruction
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Radio planning
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Online services Urban planning Drone planning




Problem statement

Airborne Acquisition Urban scene modeling

acute

capturingreality

Meshes from Multi-View Stereo




Airborne data

= Point cloud
= Accurate

= Not dense
=  |ncomplete

acute

capturingreality

Meshes from Multi-View Stereo

Mesh with triangular facets
Complete surface
Dense

Potential defects

N\ Camera 3

Camera 1 /
Camera 2




Requirements

5 criteria:
=  Geometric accuracy
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Requirements

5 criteria:

=  Geometric accuracy
=  Semanftic-aware

=  Low complexity




Requirements

5 criteria:

=  Geometric accuracy
=  Semantic-aware

=  Low complexity

= Scalability

Size of the scene

small large




Requirements

5 criteria:

Geometric accuracy
Semantic-aware

Low complexity
Scalability
Automatic




Surveys

3 major surveys:

Modeling the Appearance A survey of Urban Reconstruction  Structure-Aware Shape Processing
and Behavior of Urban Spaces

parts

parameters

parts

parameters

[Vanegas et al. [Musialski et al. [Mitra et al.
Eurographics 09] Eurographics 12] Eurographics 13]




Surveys

“Modeling the Appearance and Behavior of Urban Spaces”
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[Vanegas et al., Eurographics 09]

=p procedural modeling
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Surveys

“A survey of Urban Reconstruction”

A. Point Clouds & Cameras B. Buildings & Semantics C.Facades & Images D. Blocks & Cities

(" Fundamentals of Stereo ) (lmage-Based Modeling\ ([ Facade Imagery ) ( Ground Reconstruction )
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Structure from Motion ) rLiDAI}-Based Modelingw
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Multi-view Stereo R

Inverse Procedural
Qi AN r—. Modeling
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[Musialski et al., Eurographics 12]
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= Oroad overview of the literature on urban reconstruction
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Surveys

“Structure-Aware Shape Processing”
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[Mitra et al., Eurographics 13]

=P siructures to enhance, regularize and manipulate existing meshes
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Overview of existing methods

Primitive-based
building reconstruction

[ Zebedin et al., [Toshev et al., [Chauve et al.,
ECCV 08] CVPR 09] CVPR 10]




Overview of existing methods

Primitive-based
building reconstruction

=

[ Zebedin et al., [Toshev et al., [Chauve et al.,
ECCV 08] CVPR 09] CVPR 10]

Structure-aware
building modeling

[Pauly et al., [Mehra et al., Zhou and Neumann,
Siggraph 08] Siggraph Asia 09] CVPRI12]




Overview of existing methods

Primitive-based
building reconstruction

[Toshev et al., [Chauve et al.,
CVPR 09] CVPR 10]

Structure-aware
building modeling

[Pauly et al., [Mehra et al., [Zhou and Neumann,
Siggraph 08] Siggraph Asia 09] CVPRI12]

Automatic large scale
urban reconstruction

[Poullis and You, [Zhou and Neumann, [Lafarge and Mallet,
CVPR09] CVPRO09] [JCV11]

= still many unsolved problems




Contribution

General pipelines for MVS and LIDAR data

Input data Semantic Labeling Object reconstruction
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Object Reconstruction: mesh-based object reconstruction

Conclusion and future work
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Semantic labeling

What is important ¢

= |n many cases, majority of urban scenes can be explained by
3 classes of objects

Ground Buildings Trees
.&’zub,-



Semantic labeling for Lidar

Input data
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Semantic Labeling

Object reconstruction




Semantic labeling for Lidar

Classes for Lidar data

Ground Trees Buildings Clutters

=p Nced for geometric features that discriminate the classes




Discriminative geometric features for Lidar

Local non-planarity B, Elevation B, Local dispersion B, Local linearity f,

= Combine the features to discriminafte the classes




Confidence functions for Lidar

High non-planarity B, High elevation B,
frees High local dispersion . Lo : Y B
Low non-planarity B, Low elevation B,
Ground . . .
Low local dispersion B, Lo y Pl
Low non-planarity B, High elevation B,
Low local dispersion B, M
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Confidence functions for Lidar

Tresos g arg min »_D(xi)

Dtree(Xi) If Xi =tree
Dground Xi) If Xi = ground
Duouitdind Xi) If Xi = building

| Doauteer(Xi) If Xi = clutter

Ground

D(Xi) =+

= Neced for spatial consistency



Energy minimization
over a Markov Random Field

U(x) = |D(xi) + lzy{i’j}EEVij(Xi, Xj)

-

Dtree(Xi) If Xi =tree Potts model:
Dgrounc(Xi) If Xi= ground Vij(Xi, Xj) = §(Xi - Xj)
Duouilgind Xi) If Xi = building
| Doautter(Xi) If Xi = clutter

D(Xi) =<

Spherical neighborhood such as

i jeEofi-j<r

= Optimisation with graph-cut and alpha-beta swap
[Boykov et al, PAMI 2001]




Semantic labeling for Lidar data

@ Buildin

@ Vegetation
© Ground

O Clutter
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Visual reference from Google map

Close-up




Semantic labeling for MV$S

Input data Semantic Labellng Object reconstruction

MVS




Semantic labeling for MV$S

Difference with semantic labeling for Lidar data
* Regroup facets into "f-clusters"
= Tractable
= Enforce local coherency




Semantic labeling for MVS

Difference with semantic labeling for Lidar data
« Compute f-clusters
« Building class splits in two sub-classes

Ground

Facades




Semantic labeling for MVS

Difference with semantic labeling for Lidar data
« Compute f-clusters
« Building class splits in two sub-classes

Low non-planarity 3, High elevation B,

Low verticality B,

Verticality B,

Low non-planarity B,

Facades

High verficality B,




Semantic labeling for MVS$

Difference with semantic labeling for Lidar data
« Compute f-clusters
« Building class splits in two sub-classes
« Correctionrules




Semantic labeling

@ Roof

O Facade

@ Vegetation
4 O Ground

VS data

Close-up
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Object Reconstruction for Lidar

LiDAR

Input data

Semantic Labeling

Object reconstruction

= FOCUS ON free detection and reconstruction from Lidar




Parametric-based object detection

Objective:
« Localize and reconstruct simple objects

Buildings are too Trees can be approximated
complex structures by simple shapes




Parametric-based object detection

Objective:
« Localize and reconstruct simple objects
« Detection in large scenes

Thousands of simple objects (e.g. frees) are in the scene

=P Use Marked Point Processes (MPP)




Marked Point Processes

Preliminary:

« A point process describes random configurations of points (of
unknown size) in a confinuous bounded set K.

« A marked point process is a point process where each point is
associated with a parametric objects.
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Point process Marked Point Process

of 2D segments
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Marked Point Processes

Previous work:
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[Lacoste et al.,PAMIOS] [Perrin et al., EMMCVPROS]
Ellipse Cylinder

Line-segment




Marked Point Processes

Requirements:
1) Simple parametric objects

== Object characterized by a limited number of parameters

Line-segment Ellipse Cone, Ellipsoid, Semi-ellipsoid

W82y yuny  ydiay Adoued

S parameters 5 parameters / parameters




Marked Point Processes

Requirements:
1) Simple parametric objects

2) Energy measuring the quality of a configuration of objects

Standard form of energy:

Vx € S, U(x) = ZD(P/‘) + Z V(pi pj)

piEX pPi~Ppj

with ~ the symmetric neighborhood relationship such as:

pi ~ pj = {(pi, pj) € x2:i>j,||pi— pill2 < €}




Marked Point Processes

Requirements:
1) Simple parametric objects

2) Energy
3) Minimization method

=  Unknown number of objects
=  Minimize non-convex energy

= Jse Reversible-Jump Monte Carlo Markov Chain (RJI-MCMC)
[Green 1995]




Optimization method

RJI-MCMC:

« Sequential algorithm with a two-step update mechanism

a) Proposition step
= New configuration is proposed from a proposal density (kernel)
= New configuration must be close to the current one

b) Acceptance step depending on
= Random variable
= Energy variation
= Stochastic relaxation




Optimization method

RJI-MCMC:

« Sequential algorithm with a two-step update mechanism

T

a) Proposition step
= New configuration is proposed from a proposal density (kernel)
= New configuration must be close to the current one (local
perturbation)

/Y

b) Acceptance step depending on
= Random variable
= Energy variation
= Stochastic relaxation

Slow in practice

== [Focus on improving performance of RJ-MCMC

I&“’“f—



Marked Point Processes

Requirements:
1) Simple parametric objects

2) Energy

3) Minimization method
= unknown number of objects
=  minimize non-convex energy

Novel optimization method based on RJ-MCMC
=  Exploit two properties for a faster optimization
=  Exploit GPU capability




(1) Parallelization

The Markovian property in the energy: Pr(x; | x) = Pr(x; | xnm)

@y
RO A

= the blue object and the red object can be updated by
MCMC at the same time.




(1) Parallelization

 4-cell subdivision scheme generates 4 mic-sets {{lj C] Il B}
(cell width=diameter of the neighborhood relation+maximal length of a move)

Mic-Set: a set of Mutually Independant Cells

I&W—



(2) Non-uniform point densities

How many Birds ¢




(2) Non-uniform point densities

How many Birds ¢ Low probability




(2) Non-uniform point densities

How many Birds ¢ High probability




(2) Non-uniform point densities

We proposed
= quadtree data partitioning for 2D space.
= Ocftree data partitioning for 3D space.

low density high density

==p Compatible with the parallelization scheme (1)




Novel optimization method

1-Initialize Xy = xg and Ty at t = 0;
2-Compute a space-partitioning tree K;
3-At iteration t, with X; = x,

» Choose a mic-set Spic € K and a kernel type t € T according

to probability ) pc:
cESmic

» For each cell ¢ € S,jc,
» Perturb x in the cell ¢ to a configuration y according to

Qet(x — )

» Calculate the Green ratio

_ Qeily = x) U(x) — Uly)
"= Qct(x —y) =0 ( Tt )

» Choose X;+1 = y with probability min(1, R), and X;41 = x
otherwise

Proposition step

Acceptance step







Ellipse

. 2D Ellipsoidal objects
§§§§§\ P )

Time to converge
Energy -

-2 [|=<our sampler -

3 | without PT LY
|—<our sampler with
-4 | PT
1——RJMCMC
-5 ’%*
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.7 |-=-DDMCMC

-8 |- Parallel
9 ] tempering
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269s  1078s




Ellipse

Gy [Lempitsky and Zisserman, NIP$2010]

Input image Ground Truth Our result

our Lempitsky Lempitsky Ground

method | (Ll-reg.) | (Tikhonov-reg.) Truth
cell17 209 202.9 194.1 213
cell18 184 184.6 175.9 185
cell19 187 192.2 180.1 188
cell20 169 174.1 170.4 169
cell21 147 148.6 144.4 149
cell22 184 182.6 176.5 184
cell23 159 158.3 157.6 161
RMSE 1.93 4.71 9.21 -




Ellipse

GPU occupancy

X1 & x4

Average time of detection per object (ms)
40

A |
w0 =
R pd
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5

0 10 20 30 40
Image size (#pixels x10°)




type

* Three parametric objects < ‘
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type

* Three parametric objects <

 New energy formulation

D) =t 1] +{ilpade)

>
canopy diameter

Pa Eﬁ;r-z:
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d(p.,0z;) is a distance measuring the coherence of the point p.
with respect to the object surface dz;

penalizes the overlapping between objects

favors area with similar type of objects




é 3D Objects

Evolution of the configuration

4




30k frees in 96min (3.7km2 / 12.8M points)




5 .4k trees in 53min (1km2 / 2.3M points)




Visual reference from Google map
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Object Reconstruction: parametric-based object detection
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Conclusion and future work




Mesh-based object reconstruction

Input data Semantic Labeling Object reconstruction




Contributions on building reconstruction
from MVS

We propose
» Multiple Level of Details (LOD)
= Definition of the City Geography Markup Language
LOD1 - Building as “blocks model, without any roof sfructures or textures”

LOD2 - Building with “differentiated roof structures” [Kolbe et al., 2005]
LOD3 - Building as “architectural model with detailed wall and roof structures”

= Visually more appealing
=  More adapted to certain urban applications

original




Contributions on building reconstruction
from MVS

Global regularities
We propose

* Multiple Level of Details (LOD)

 Efficient plane regularization
=  Predominant in urban environment
=  Support the LOD scheme

=  Efficient on large scale [Zhou and Neumann,
CVPR12]

GLOBFIT

== [Cxisting solutions un-adapted:
accurate but too slow for our application

[Lietal.,
Siggraph11]




Contributions on building reconstruction
from MVS

We propose
« Multiple Level of Details (LOD)
« Efficient plane regularization

- Efficient Binary Space Partitioning (BSP)
= Exact geometry for BSP is costly (slow)

Reconstruction by labelin
s hypotheses to pixels (M|
ok

[Furukawa et al., [Chauve et al.,
CVPR 09] CVPR 10]

== Usc O Nnew discrete formulation




Contributions on building reconstruction
from MVS

We propose

« Multiple Level of Details (LOD)

« Efficient plane regularization

- Efficient Binary Space Partitioning (BSP)

= Advantages:

==y rcconstruct with exact geometry only
a subset of cells

== fhe plane regularization limits the number
of different planes (lower BSP complexity)




Building reconstruction from MVS data

Labeling | Surface extraction |

Plane hypothesis from roof and facade f-clusters

N
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Plane regularization Discrete space

partitioning




Building reconstruction from MVS data

Plane regularization:
4 pairwise relationships controlled with two parameters e and d




Building reconstruction from MVS data

Plane regularization:

« 4 pairwise relationships controlled with two parameters ¢ and d
= Parallelism

Py and P» are e-parallel if [n; -ng| > 1—¢




Building reconstruction from MVS data

Plane regularization:

« 4 pairwise relationships controlled with two parameters ¢ and d
=  Parallelism
= Orthogonality

Py and P» are e-parallel if [n; -ng| > 1—¢




Building reconstruction from MVS data

Plane regularization:

« 4 pairwise relationships controlled with two parameters ¢ and d
=  Parallelism
=  QOrthogonality
= Z-symmeiry

Py and P, are e-Z-symmetric if ||n; - n,| — [ny - n,|| < ¢,




Building reconstruction from MVS data

Plane regularization:
« 4 pairwise relationships controlled with two parameters ¢ and d
=  Parallelism
=  QOrthogonality
= /-symmetry
= Coplanarity

P, and P> are d-e-coplanar if they are e-parallel and
|dJ_(Cl,PQ) + dJ_(CQ,P]_” < 2d,




Building reconstruction from MVS data

Plane regularization:
« 4 pairwise relationships
« Groups of parallel planes




Building reconstruction from MVS data

Plane regularization:
4 pairwise relationships
Groups of parallel planes

2-step strategy:
Orientation correction: propagate orthogonality and
z-symmetry relationships from large groups to smaller

1)

=P the barycenter of each group is fixed

i

Before orientation correction

After orientation correction




Building reconstruction from MVS data

Plane regularization:
« 4 pairwise relationships
« Groups of parallel planes

« 2-step strategy:
1) Orientation correction: propagate orthogonality and z-symmetry
relationships from large groups to smaller

2) Position correction: merge co-planar groups

Before position correction After position correction




Building reconstruction from MVS data

Plane regularization:
« 4 pairwise relationships
« Groups of parallel planes

« 2-step strategy:
1) Orientation correction: propagate orthogonality and z-symmetry
relationships from large groups to smaller

2) Position correction: merge co-planar groups

== Converge very fast (no data refitting)
Thousand of planes in few seconds




Building reconstruction from MVS data
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Surface extraction I

Plane hypothesis from roof and facade f-clusters

Discrete space
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Building reconstruction from MVS data

Discrete space partitioning:
Volumetric occupancy grid




Building reconstruction from MVS data

Discrete space partitioning:
« Volumetric occupancy grid
« Binary Space Partitioning (BSP)

== Red volume =a pathin the BSP

?
selection of the right path




Building reconstruction from MVS data

Surface extraction:

« The targeted surface is at the boundary between inside and outside
volumes

® 0 0 04—

|
Surface ={~ +\ +/ +<\}

== A Min-cut formulation is used to label the volumes.

Optimized with min-max flow [Boykov and Kolmogorov, PAMIO4]
&2 —



Building reconstruction from MVS data

Surface extraction:

« The targeted surface is at the boundary between inside and outside
volumes

 Min-cut formulation:

C(S) = ) [Valgler) + Y Ve (1 —lg(cr)) + B> Ae,

ck ECout ck€Cin e; €S

Ve, is the discrete volume of cell ck

g(cx) is function of the ratio of inside anchors of cell ck

ZAB@Z is the discrete area of the resulting
e.cs surface




Building reconstruction from MVS data

Surface extraction:

« The targeted surface is at the boundary between inside and outside
volumes

 Min-cut formulation:

* input surface
== detected plane

interior anchor
® cxterior anchor




Building reconstruction from MVS data

Surface extraction:

« The targeted surface is at the boundary between inside and outside
volumes

« Min-cut formulation:

®e © © o 0 0 o o e © ¢ o 0 © 0 o e © ¢ ¢ ¢ 0 o o
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LOD1 LOD2 LOD3

The boundary of the inside volume represents the targeted surface

== A confrol on the sefs of planes composing the BSP gives
different LODs




Various buildings: (LOD)

input mesh LOD 1 LOD 2 LOD 3

Various buildings: 170k facets, ~3min
R —



Experiments

Geometric accuracy (Hausdorff distance) and structure awareness

>5m

LOD 2

without plane
regularizati

=)
3

T8

7 RMS = 0.82

[Cohen-Steiner et al., [Garland and Heckbert, LOD 2 VSA QEM
Siggraph04] Siggraph97]




Experiments

Robustness assessment

oisson




Experiments

Robustness assessment

MVS point cloud
data g v

£

Point set structuring

[Lafarge and Alliez,
Eurographics13]

MVS-based
mesh generation

Our method

L

LOD1 LOD2




Choice of the input: mesh or point cloud

Airborne Lidar
kg © dafa

" o

Primitive-based building
reconstruction

[Lafarge and Mallet,

' Smooth DEM HEVT]

LOD1 LOD2




Experiments

Large scale experiments (scalability)

Paris, 7th district: 11M facets, ~2hours
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Contribution summary

Applicative contributions

= Two pipelines for Lidar and MVS data

« Semantical and structural enhancement of purely-geometric
meshes

« Geometrically accurate reconstruction and visually convincing
+ Scalable and adapted to wide range of applications




Contribution summary

Methodological contributions

= Sampler for Marked Point Processes (MPP) using a parallel scheme
« Exploit GPU architecture
» Qutperforms current samplers for MPP

= Efficient Binary Space Partitioning (BSP)
 Rely on a discrete energy formulation for fast approximation




Limitations

Urban labeling
» Classes of objects limited

Sampler for Marked Point Processes
» Efficient only when performed on large scenes for small objects

Building reconstruction
» Piecewise-planar buildings
* Primitive dependant
» Discrete formulation misses details (empty cells)

7 ] poogeccgoc e

/ / t
[+

—i |arge grid width H short grid width — |large grid width
no plane regularization no plane regularization  with plane regularization




Future Work

Extensions:

Urban labeling
« Add more classes of interest for a better labeling (bridge, water,...)

Building reconstruction
» Generalize the BSP for other primitives (spheres, cylinder,...)
« Complete LOD3 representation with facade modeling
« Use data regularization
« Grammar rules for facade




Future Work

Future directions:

Multiple source of data

» Use multiple source of data together (terrestrial and aerial Lidar,
MVS, images,...)

Functional analysis

« Combine structure-aware techniques with semantic understanding
of urban scenes




THANK YOU

Acknowledgment:

Acute3D, InterAtlas, IGN, Tour du valat ,Victor Lempitsky, Roger W. Ehrich, Qian-Yi Zhou




