Méthodes d'analyse et de débruitage multicanaux à partir d'ondelettes pour améliorer la détection de potentiels évoqués sans moyennage

application aux interfaces cerveau-ordinateur

Carolina Saavedra

carolina.saavedra@loria.fr

Alain Rakotomamonjy Théodore Papadopoulo François Cabestaing Anne Boyer Bernard Girau Laurent Bougrain Professeur, Université de Rouen Chargé de recherche, Inria Sophia Antipolis Professeur, Université Lille 1 Professeur, Université de Lorraine Professeur, Université de Lorraine Maître de Conférences, Université de Lorraine

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 1 / 46

Overview: A speller for communication purposes

Overview: A speller for communication purposes

Overview: A speller for communication purposes

"Look at the blue letters and count the flashes!"

•

Target Response

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 3 / 46

Non-target Response

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 4 / 46

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 5 / 46

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 5 / 46

Problem

• Detection of Event-Related Potentials

in Noisy signal in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory
- Using multichannel information

∃ > < ∃ >

Problem

- Detection of Event-Related Potentials
 - in Noisy signal
 - in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory
- Using multichannel information

∃ → < ∃</p>

Problem

- Detection of Event-Related Potentials
 - in Noisy signal
 - in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory
- Using multichannel information

-

Problem

- Detection of Event-Related Potentials
 - in Noisy signal
 - in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory
- Using multichannel information

-

Problem

- Detection of Event-Related Potentials
 - in Noisy signal
 - in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory
- Using multichannel information

Problem

- Detection of Event-Related Potentials
 - in Noisy signal
 - in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory

• Using multichannel information

Problem

- Detection of Event-Related Potentials
 - in Noisy signal
 - in Single trial

Approaches

- 1. Denoising method
- 2. Analysis method
- Based on Wavelet theory
- Using multichannel information

Outline

1 ERP-based Brain-Computer Interfaces

2 Wavelet Theory

3 Proposal

5 Conclusion

-

1 ERP-based Brain-Computer Interfaces

2 Wavelet Theory

3 Proposal

4 Experimental results

5 Conclusion

イロト イポト イヨト イヨト

Definition [Wolpaw et al., 2000]

"A brain–computer interface is a communication system that does not depend on the brain's normal output pathways of peripheral nerves and muscles."

Electroencephalography (EEG)

3

イロト イポト イヨト イヨト

Oddball Paradigm: Searching for Lassie 🏷

Oddball Paradigm: Searching for Lassie 🏷

Oddball Paradigm: Searching for Lassie 🏷

Oddball Paradigm: Searching for Lassie 🌺

P300

- Positive amplitude
- Around 300 ms after the stimulus

Noise and Artifacts

 Background neurological activity including other brain activities

イロト イポト イヨト イヨト

Noise and Artifacts

 Background neurological activity including other brain activities

- Hardware
- Body

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Environmental

Carolina Saavedra (Loria, France)

Problem

EEG background signal magnitude is usually one-order larger than ERP components.

• = • • =

A ►

Problem

EEG background signal magnitude is usually one-order larger than ERP components.

Solution

Averaging several responses to the same stimulus increases the P300 responses and reduces the EEG background

- 1 sequence = each stimulus is flashed
- 1 averaging = 2 to 15 sequences

Carolina Saavedra (Loria, France)

Advantages

- Increase the signal-to-noise ratio
- The ERP shape and latency is more visible
- The ERP detection performance increases with the number of sequences

Drawbacks

• The communication transfer bit-rates of the system decreases

• = • < =</p>

Drawbacks

- The communication transfer bit-rates of the system decreases
- The latency jitter in trials can smooth out the ERP

Drawbacks

- The communication transfer bit-rates of the system decreases
- The latency jitter in trials can smooth out the ERP
- Fake ERPs can appear due to "phase artifacts"

P300 Variability

Intra-subject variability

Inter-subject variability

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

P300 Classification

Key points for classification

- a high variability
- a high-dimensional space

Linear classifiers

- LDA
- StepWise LDA
- LSVM
- Bayes' classifier

P300 Classification

Key points for classification

- a high variability
- a high-dimensional space

Linear classifiers

- LDA
- StepWise LDA
- LSVM
- Bayes' classifier

BCI Based on P300 Examples

Mugler et al., 2008

	(G	0	28	Sle	thland	
[Suche:	Web		Deps ogle-Suc N ^{Seiten}	TE JAut sul Deuts	Peducts gut Glück!	en sus Deul	Epjelterte Duche Epistelungen Ebischisols schlied
Perbun	6	mohmor	isangebat 621	e - Rer 007 Goog	soogle - S	ogle.com i	1 English

Carolina Saavedra (Loria, France)

A ►

BCI Based on P300 Examples

Mugler et al., 2008

Kübler et al., 2008

@Adi Hoesle,2008

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

(日)

ERP-based Brain-Computer Interfaces

- 2 Wavelet Theory
- 3 Proposal
- Experimental results
- 5 Conclusion

< 🗇 🕨

Wavelet Transform

Represents a signal x(t) using scaled and shifted versions of a mother wavelet $\psi(t)$

$$W^{x}_{\psi}(a, b) = \langle x(t), \psi_{a,b}(t) \rangle$$
 $\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)$

0

Wavelet Transform

Represents a signal x(t) using scaled and shifted versions of a mother wavelet $\psi(t)$

$$W^{x}_{\psi}(a, b) = \langle x(t), \psi_{a,b}(t) \rangle$$
 $\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right)$

Mother wavelets must

Have a finite bandwidth both in time and in frequency

Admissibility condition $C_{\psi} = \int_{0}^{\infty} \frac{|\mathcal{F}_{\psi}(\omega)|^{2}}{\omega} d\omega < \infty$

0

Continuous Wavelet Transform

- *a* and *b* change continuously
- Reconstruction theoretically possible under admissibility condition
- Often performed using a sumation
- Reconstruction depends on the resolution

Carolina Saavedra (Loria, France)

Discrete Wavelet Transform

$$W_{\psi}^{x}(m,n) = \int_{-\infty}^{\infty} x(t)\psi_{m,n}(t)dt$$
$$\psi_{m,n}(t) = \frac{1}{\sqrt{2^{m}}}\psi\left(\frac{t-2^{m}n}{2^{m}}\right)$$

- ----

Properties

- Sufficient information for reconstruction
- Sampled version of CWT
- Easier to implement (Mallat)

A 1

Classic Wavelet Thresholding

Based on the Discrete Wavelet Transform (DWT)

z(t) = x(t) + n(t)

The objective is to reduce the noise n(t) and to recover x(t)

A (1) > A (2) > A (2)

Classic Wavelet Thresholding

Based on the Discrete Wavelet Transform (DWT)

z(t) = x(t) + n(t)

The objective is to reduce the noise n(t) and to recover x(t)

Wavelet Semblance [Cooper and Cowan, 2008]

A (1) > A (2) > A (2)

Wavelet Semblance [Cooper and Cowan, 2008]

Wavelet Semblance [Cooper and Cowan, 2008]

Adding amplitude information

$$D = \cos^n(\theta) |W_{\psi}^{x} W_{\psi}^{y*}|$$

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

Wavelet Semblance Extension

ERP-based Brain-Computer Interfaces

2 Wavelet Theory

3 Proposal

4 Experimental results

5 Conclusion

イロト イポト イヨト イヨト

Why do we want to work with single trials?

- Improve the transfer bit-rates
- Avoid latency jitter
- Avoid phase artifacts
- Apply BCI in other domains

Disadvantage: Low signal to noise ratio (SNR) Problem: Low recognition rate (classification

The use of single trials force the development of pre-processing techniques to deal with the low SNR

Our Strategy

- (1) Improve the denoising technique
- (2) Improve the features selection

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 27 / 46

∃ → < ∃</p>

Why do we want to work with single trials?

- Improve the transfer bit-rates
- Avoid latency jitter
- Avoid phase artifacts
- Apply BCI in other domains

Disadvantage: Low signal to noise ratio (SNR) Problem: Low recognition rate (classification)

The use of single trials force the development of pre-processing techniques to deal with the low SNR

Our Strategy

- (1) Improve the denoising technique
- (2) Improve the features selection

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 27 / 46

∃ → < ∃</p>

Why do we want to work with single trials?

- Improve the transfer bit-rates
- Avoid latency jitter
- Avoid phase artifacts
- Apply BCI in other domains

Disadvantage: Low signal to noise ratio (SNR) Problem: Low recognition rate (classification)

The use of single trials force the development of pre-processing techniques to deal with the low SNR

Our Strategy

- (1) Improve the denoising technique
- (2) Improve the features selection

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 27 / 46

∃ → < ∃</p>

Why do we want to work with single trials?

- Improve the transfer bit-rates
- Avoid latency jitter
- Avoid phase artifacts
- Apply BCI in other domains

Disadvantage: Low signal to noise ratio (SNR) Problem: Low recognition rate (classification)

The use of single trials force the development of pre-processing techniques to deal with the low SNR

Our Strategy

- (1) Improve the denoising technique
- (2) Improve the features selection

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 27 / 46

イロト イポト イヨト イヨト

(1) Wavelet Thresholding for EEG

- Current wavelet thresholding techniques denoise one channel at the time
- The target information in EEGs is redundant through the channels

Our Approach

To denoise by analyzing the channels information jointly in the wavelet domain

Analysis Tool

The MRL measure considers the phase angle relationships between channels

(1) Wavelet Thresholding for EEG

- Current wavelet thresholding techniques denoise one channel at the time
- The target information in EEGs is redundant through the channels

Our Approach

To denoise by analyzing the channels information jointly in the wavelet domain

Analysis Tool

The MRL measure considers the phase angle relationships between channels

(1) Wavelet Thresholding for EEG

- Current wavelet thresholding techniques denoise one channel at the time
- The target information in EEGs is redundant through the channels

Our Approach

To denoise by analyzing the channels information jointly in the wavelet domain

Analysis Tool

The MRL measure considers the phase angle relationships between channels

Multichannel EEG Thresholding by Similarity (METS)

Compute the Discrete Wavelet Transform (DWT) coefficients for each channel

Ompute the Mean Resultant Length (MRL) to obtain common coefficients

- Set to zero all coefficients below a given threshold
- Reconstruct the signal for each channel using the inverse DWT based on the denoised MRL coefficients

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 29 / 46

()

< A >

Multichannel EEG Thresholding by Similarity (METS)

Compute the Discrete Wavelet Transform (DWT) coefficients for each channel

- 2 Compute the Mean Resultant Length (MRL) to obtain common coefficients
- Set to zero all coefficients below a given threshold
- Reconstruct the signal for each channel using the inverse DWT based on the denoised MRL coefficients

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 29 / 46

A 10

(2) Time-window Selection

- The fixed size window include non-informative features
- These features have a strong impact in classification

Our Approach

Select a thinner temporal window adapted to each subject

Analysis Tool

Semblance measure including the amplitude (D measure)

(2) Time-window Selection

- The fixed size window include non-informative features
- These features have a strong impact in classification

Our Approach

Select a thinner temporal window adapted to each subject

Analysis Tool

Semblance measure including the amplitude (D measure)

(2) Time-window Selection

- The fixed size window include non-informative features
- These features have a strong impact in classification

Our Approach

Select a thinner temporal window adapted to each subject

Analysis Tool

Semblance measure including the amplitude (D measure)

Semblance-based ERP Window Selection (SEWS)

- Compute the averages for the target and non-target responses.
- 2 Compute the Continuous Wavelet Transform (CWT) of the averages
- Sompute D through the semblance
- Compute the standard deviation of *D* over the scales (and standarize)
- Sompute the lower and upper boundary using a threshold

Two versions

- SEWS-1: compute a different window for each channel
- SEWS-2: compute the same window for all channels

Semblance-based ERP Window Selection (SEWS)

- Compute the averages for the target and non-target responses.
- 2 Compute the Continuous Wavelet Transform (CWT) of the averages
- Sompute D through the semblance
- Compute the standard deviation of *D* over the scales (and standarize)
- Sompute the lower and upper boundary using a threshold

Two versions

- SEWS-1: compute a different window for each channel
- SEWS-2: compute the same window for all channels

SEWS: Subjects Examples

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 32 / 46

ERP-based Brain-Computer Interfaces

2 Wavelet Theory

3 Proposal

4 Experimental results

Feedback

Feature

extraction

Command

recognition

イロト イポト イヨト イヨト

Signal

denoising

Brain imaging

Execution

Artificial Data [Yeung et al., 2004]

A.

Artificial Data [Yeung et al., 2004]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data base UAM: P300 Speller [Farwell and Donchin, 1988]

- Speller matrix: 36 characters
- Rows and columns flashed randomly
- Two P300s are identified to recognize a letter

- 22 first-time healthy subjects
- 10 EEG channels recorded
- 5520 single trials for training (1 second)
- 5895 single trials for testing (1 second)

http://akimpech.izt.uam.mx/p300db

Pre-processing filtering

27 articles on P300 detection (BCI conference 2011)

Low Cuton requences								
	8	10	20	30	40	60		
0.1	52.71	53.23	53.60	52.15	50.51	48.23		
0.15	52.43	53.07	53.56	52.16	50.56	48.16		
0.4	52.76	53.38	53.72	51.66	50.04	47.44		
0.5	53.01	53.74	53.17	51.42	50.00	47.51		
1	53.13	53.83	52.50	50.62	48.95	46.22		
			•			=		
	0.1 0.15 0.4 0.5 1	8 0.1 52.71 0.15 52.43 0.4 52.76 0.5 53.01 1 53.13	8 10 0.1 52.71 53.23 0.15 52.43 53.07 0.4 52.76 53.38 0.5 53.01 53.74 1 53.13 53.83	8 10 20 0.1 52.71 53.23 53.60 0.15 52.43 53.07 53.56 0.4 52.76 53.38 53.72 0.5 53.01 53.74 53.17 1 53.13 53.83 52.50	8 10 20 30 0.1 52.71 53.23 53.60 52.15 0.15 52.43 53.07 53.56 52.16 0.4 52.76 53.38 53.72 51.66 0.5 53.01 53.74 53.17 51.42 1 53.13 53.83 52.50 50.62	8 10 20 30 40 0.1 52.71 53.23 53.60 52.15 50.51 0.15 52.43 53.07 53.56 52.16 50.56 0.4 52.76 53.38 53.72 51.66 50.04 0.5 53.01 53.74 53.17 51.42 50.00 1 53.13 53.83 52.50 50.62 48.95		

Low Cutoff Frequencies

Carolina Saavedra (Loria, France)

э.

Results: Letter Accuracy

- Probability to detect the correct row or column is 1/6
- Probability to detect a letter 1/36
- Using only single trials

Pre-processing	μ	σ	min	max	t-test p-value (1%)
[0.1-20] Hz Filter	53.60	14.14	28.25	79.52	
SURE	54.80	13.90	33.02	78.57	-
Minimax	55.00	13.93	32.70	79.05	0.0028
Universal	55.07	13.92	33.02	79.05	0.0055
METS	55.20	13.19	33.65	79.05	0.0017
METS & SEWS-1	56.00	13.64	35.56	80	0.0004
METS & SEWS-2	55.91	14.13	34.44	78.97	0.0005

Summary

The average, minimum and maximum results are improved

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 37 / 46

Results: Letter Accuracy

- Probability to detect the correct row or column is 1/6
- Probability to detect a letter 1/36
- Using only single trials

Pre-processing	μ	σ	min	max	t-test p-value (1%)
[0.1-20] Hz Filter	53.60	14.14	28.25	79.52	
SURE	54.80	13.90	33.02	78.57	-
Minimax	55.00	13.93	32.70	79.05	0.0028
Universal	55.07	13.92	33.02	79.05	0.0055
METS	55.20	13.19	33.65	79.05	0.0017
METS & SEWS-1	56.00	13.64	35.56	80	0.0004
METS & SEWS-2	55.91	14.13	34.44	78.97	0.0005

Summary

The average, minimum and maximum results are improved

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 37 / 46
xDAWN Spatial Filter [Rivet et al., 2009]

Their EEG model is:

- A: Time course of a single P300 response
- **D**: Positions of target stimuli that should evoke a P300

 $\mathbf{X} = \mathbf{D}\mathbf{A} + \mathbf{N}$

• N: Noise

Enhance the P300 response

Maximize the signal to signal plus noise ratio using the spatial filter $\hat{\mathbf{U}}$

$$\hat{\mathbf{U}} = \arg \max_{\{\mathbf{U}\}} \frac{Tr(\mathbf{U}^T \hat{\mathbf{A}}^T \mathbf{D}^T \mathbf{D} \hat{\mathbf{A}} \mathbf{U})}{Tr(\mathbf{U}^T \mathbf{X}^T \mathbf{X} \mathbf{U})}$$

Carolina Saavedra (Loria, France)

xDAWN Spatial Filter [Rivet et al., 2009]

Their EEG model is:

- A: Time course of a single P300 response
- **D**: Positions of target stimuli that should evoke a P300
- $\mathbf{X} = \mathbf{D}\mathbf{A} + \mathbf{N}$
- N: Noise

Enhance the P300 response

Maximize the signal to signal plus noise ratio using the spatial filter \hat{U}

$$\hat{\mathbf{U}} = \arg \max_{\{\mathbf{U}\}} \frac{Tr(\mathbf{U}^T \hat{\mathbf{A}}^T \mathbf{D}^T \mathbf{D} \hat{\mathbf{A}} \mathbf{U})}{Tr(\mathbf{U}^T \mathbf{X}^T \mathbf{X} \mathbf{U})}$$

Carolina Saavedra (Loria, France)

Results: Comparison with xDAWN using Single Trials

Pre-processing	μ	σ	min	max
Filter [1-20] Hz	52.50	13.49	30.48	76.41
xDAWN	51.03	15.80	24.44	80.00
METS & SEWS-1	56.00	13.64	35.56	80
METS & SEWS-2	55.91	14.13	34.44	78.97

()

Results: Comparison with xDAWN using Single Trials

- Better performances in 16 out of 22 subjects
- Similar results when the subjects have a high accuracy rate
- For subjects with low performances our methods are consistenly better
- Our algorithms always improve the baseline

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

Results: Comparison with xDAWN using Sequences

- Easier to enhance the ERP if the SNR is increased
- Average naturally removes uncorrelated components
- Useless features have less impact if the classification is easier

Data Base EPFL

- 8 subjects (4 able-bodied subjects and 4 disabled subjects)
- 32 channels recorded at 2048 Hz using a Biosemi Active Two system.
- Right ear reference and a right mastoid ground.
- Inter-stimulus interval of 400 ms

http://mmspg.epfl.ch/BCI_datasets

Results: Image Accuracy in Single Trials

We used the database blindly

- Same mother wavelet
- Same scales analyzed with CWT
- Same DWT level of decomposition
- Same thresholds for METS and SEWS
- s1 to s4 are disabled subjects
- s5 to s8 are able-bodied subjects

Subject	Baseline	METS	METS & SEWS-1	METS & SEWS-2	
s1	44.53	40.88	42.34	45.26	-
s2	41.41	49.22	49.22	50.00	
s3	58.33	62.88	64.39	64.39	
s4	49.21	48.41	52.38	50.00	
s5	44.62	46.15	46.92	43.08	
s6	48.18	54.01	60.58	55.47	
s7	72.93	65.41	70.68	72.93	
s8	45.31	53.12	55.47	62.50	

D ERP-based Brain-Computer Interfaces

2 Wavelet Theory

3 Proposal

5 Conclusion

・ロト ・ 四ト ・ ヨト ・ ヨト

Main contributions

Improved the time-frequency analysis measuring channel's similarity
 METS: a novel denoising technique for EEG

- Evoked potential localization in time through time-frequency analysis
 SEWS-1: independently for each channel
 SEWS-2: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

O > <
 O >

- Improved the time-frequency analysis measuring channel's similarity
 - METS: a novel denoising technique for EEG
- Evoked potential localization in time through time-frequency analysis
 - SEWS-1: independently for each channel
 - SEWS-2: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

Main contributions

- Improved the time-frequency analysis measuring channel's similarity
 - METS: a novel denoising technique for EEG
- Evoked potential localization in time through time-frequency analysis
 - SEWS-1: independently for each channel
 - **SEWS-2**: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

Carolina Saavedra (Loria, France)

- Improved the time-frequency analysis measuring channel's similarity
 - METS: a novel denoising technique for EEG
- Evoked potential localization in time through time-frequency analysis
 - SEWS-1: independently for each channel
 - **SEWS-2**: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

- Improved the time-frequency analysis measuring channel's similarity
 - METS: a novel denoising technique for EEG
- Evoked potential localization in time through time-frequency analysis
 - SEWS-1: independently for each channel
 - **SEWS-2**: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

- Improved the time-frequency analysis measuring channel's similarity
 - METS: a novel denoising technique for EEG
- Evoked potential localization in time through time-frequency analysis
 - SEWS-1: independently for each channel
 - **SEWS-2**: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

- Improved the time-frequency analysis measuring channel's similarity
 - METS: a novel denoising technique for EEG
- Evoked potential localization in time through time-frequency analysis
 - SEWS-1: independently for each channel
 - **SEWS-2**: jointly for all channels
- Studied the impact of some of the most known techniques used for ERP
 - SWLDA vs LSVM
 - Wavelet mother selection
 - Band-pass filter selection
- Comparison with techniques based on wavelet and spatial filters
- Validated using synthetic data
- Validated using two different real databases
- Our techniques can be applied to other domains with similar conditions

Research Directions

Short term

- Select subject-dependent threshold automatically (METS & SEWS)
- Analyze quantitatively deeper METS
- Study the use of others measures for the time-window selection (SEWS)
- Study the automatic selection of band-pass filters using the SEWS approach

Long term

- Combine the methods presented with spatial filters
- Apply the methods to others brain signals and/or applications

くぼう くほう くほう

Research Directions

Short term

- Select subject-dependent threshold automatically (METS & SEWS)
- Analyze quantitatively deeper METS
- Study the use of others measures for the time-window selection (SEWS)
- Study the automatic selection of band-pass filters using the SEWS approach

Long term

- Combine the methods presented with spatial filters
- Apply the methods to others brain signals and/or applications

伺き くまき くまき

Méthodes d'analyse et de débruitage multicanaux à partir d'ondelettes pour améliorer la détection de potentiels évoqués sans moyennage

application aux interfaces cerveau-ordinateur

Carolina Saavedra

carolina.saavedra@loria.fr

Alain Rakotomamonjy Théodore Papadopoulo François Cabestaing Anne Boyer Bernard Girau Laurent Bougrain Professeur, Université de Rouen Chargé de recherche, Inria Sophia Antipolis Professeur, Université Lille 1 Professeur, Université de Lorraine Professeur, Université de Lorraine Maître de Conférences, Université de Lorraine

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013 46 / 46

References I

Cooper, G. (2009).

Wavelet-based semblance filtering.

Computers & Geosciences, 35(10):1988–1991.

Cooper, G. and Cowan, D. (2008).

Wavelet based semblance analysis.

Computers & Geosciences, 34(2):95–102.

Farwell, L. and Donchin, E. (1988).

Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials.

Electroencephalogr Clin Neurophysiol, 70(6):510–523.

Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009).

xdawn algorithm to enhance evoked potentials: Application to brain computer interface. *IEEE Trans. Biomed. Engineering*, 56(8):2035–2043.

 Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., and Vaughan, T. M. (2000).
 Brain–computer interface technology: A review of the first international meeting. *IEEE Transactions on Rehabilitation Engineering*, 8:164–173.

Yeung, N., Bohacz, R., Holroyd, C. B., and Cohen, D. (2004).

Detection of synchronized oscillations in the electroencephalogram: An evaluation of methods.

Psychophysiology, 41:822–832.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Soft vs Hard Thresholding

Carolina Saavedra (Loria, France)

Analyse et débruitage multicanaux

14 Novembre 2013

49/46