Supersymmetric Dark Matter candidates in light of constraints from collider and astroparticle observables

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique, France

UNIVERSITÉ DE GRENOBLE

PhD defense, LAPTh, Annecy-le-Vieux, July 3, 2013

Jury : Farvah Nazila MAHMOUDI Ulrich ELLWANGER

Rohini GODBOLE Anupam MAZUMDAR Céline BŒHM Geneviève BÉLANGER, PhD advisor

Outline

Motivations

Neutralino DM in the (N)MSSM

- C. Bœhm, JDS, A. Mazumdar and E. Pukartas, Phys. Rev. D87 (2013) 023529, arXiv :1205.2815
- G. Bélanger, C. Bœhm, M. Cirelli, JDS and A. Pukhov, JCAP 1211 (2012) 028, arXiv :1208.5009
- D. A. Vasquez, G. Bélanger, C. Bœhm, JDS, P. Richardson and C. Wymant, Phys. Rev. D86 (2012) 035023, arXiv :1203.3446

3 U(1) extensions of the MSSM

- G. Bélanger, JDS and A. Pukhov, JCAP 1112 (2011) 014, arXiv :1110.2414
- G. Bélanger, JDS et al., in preparation

Conclusions

Motivations

Motivations

- 2 Neutralino DM in the (N)MSSM
 - C. Bœhm, JDS, A. Mazumdar and E. Pukartas, Phys. Rev. D87 (2013) 023529, arXiv :1205.2815
 - G. Bélanger, C. Bœhm, M. Cirelli, JDS and A. Pukhov, JCAP 1211 (2012) 028, arXiv :1208.5009
 - D. A. Vasquez, G. Bélanger, C. Bœhm, JDS, P. Richardson and C. Wymant, Phys. Rev. D86 (2012) 035023, arXiv :1203.3446

3 U(1) extensions of the MSSM

- G. Bélanger, JDS and A. Pukhov, JCAP 1112 (2011) 014, arXiv :1110.2414 🕽
- G. Bélanger, JDS et al., in preparation

Conclusions

- ***** Particle Physics (SM)
 - * All particles discovered since 1 year 1 day

SM interactions, at tree-level

- ***** Particle Physics (SM)
 - * All particles discovered since 1 year 1 day
 - With the expected properties, ...

Reduced Higgs couplings, G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion and S. Kraml, arXiv :1306.2941

***** Particle Physics (SM)

Les Houches Workshop 2013, courtesy of F. Boudjema

PhD defense

- ***** Particle Physics (SM)
- * Cosmology (ΛCDM)
 - * Simple cosmological model which fits even the most accurate measurements (Planck satellite)

- * Particle Physics (SM)
- ★ Cosmology (ΛCDM)
 - * Needs Dark Energy and Dark Matter (DM, other evidence : rotation curves of galaxies, bullet cluster, ...)

Jonathan Da Silva (LAPTh)

- * Particle Physics (SM)
- * Cosmology (ΛCDM)
 - Simple models of inflation are still valid

Constraints on inflationary models from Planck satellite

- * Particle Physics (SM)
 - * Hierarchy problem between EW (\sim 100 GeV) and Planck (\sim 10¹⁹ GeV) scales Quadratic divergences to the Higgs boson mass squared

- ***** Particle Physics (SM)
 - * Hierarchy problem between EW (\sim 100 GeV) and Planck (\sim 10¹⁹ GeV) scales Quadratic divergences to the Higgs boson mass squared
 - Grand Unification (GUT)

Evolution of SM gauge couplings, Stephen P. Martin, arXiv :hep-ph/9709356

Jonathan Da Silva (LAPTh)

- ***** Particle Physics (SM)
 - * Hierarchy problem between EW (\sim 100 GeV) and Planck (\sim 10¹⁹ GeV) scales Quadratic divergences to the Higgs boson mass squared
 - Grand Unification
 - * Neutrino sector (Dirac, Majorana??), ...

- * Particle Physics (SM)
- * Cosmology (ΛCDM)
 - * DM made of particles \neq SM particles :
 - ★ baryons : BBN, CMB, ...
 - **X** charged leptons : we would have seen DM (overproduction of γ , ...)
 - **X** neutrinos : too light \Rightarrow low relic density + HDM

⇒ Example of DM candidate which gives the right abundance : Weakly Interacting Massive Particle (WIMP)

- * Particle Physics (SM)
- * Cosmology (ΛCDM)
 - * DM made of particles \neq SM particles :
 - ★ baryons : BBN, CMB, ...
 - **X** charged leptons : we would have seen DM (overproduction of γ , ...)
 - **X** neutrinos : too light \Rightarrow low relic density + HDM
- ⇒ Example of DM candidate which gives the right abundance : Weakly Interacting Massive Particle (WIMP)

 Candidates can be found beyond the Standard Model Here : Supersymmetry (SUSY)

***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem

New particles : cancellation of the quadratic term in
$$\begin{split} \Delta m_{h^0}^2 \Big|_{SM} &= \frac{y_f^2}{16\pi^2} \left(-2\Lambda^2 + 6m_f^2\ln\frac{\Lambda}{m_f} + ...\right) \text{ with that of } \\ \Delta m_{h^0}^2 \Big|_{SUSY} &= \frac{\lambda_s}{16\pi^2} \left(\Lambda^2 - 2m_s^2\ln\frac{\Lambda}{m_s} + ...\right) \end{split}$$

***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem

New particles : cancellation of the quadratic term in
$$\begin{split} \Delta m_{h^0}^2 \Big|_{SM} &= \frac{y_f^2}{16\pi^2} \left(-2\Lambda^2 + 6m_f^2\ln\frac{\Lambda}{m_f} + ...\right) \text{ with that of } \\ \Delta m_{h^0}^2 \Big|_{SUSY} &= \frac{\lambda_s}{16\pi^2} \left(\Lambda^2 - 2m_s^2\ln\frac{\Lambda}{m_s} + ...\right) \end{split}$$

Not yet observed \Rightarrow SUSY breaking Minimal Supersymmetric Standard Model (MSSM) :

- ***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem
- ***** Unification at GUT scale

Gauge coupling unification, Stephen P. Martin, arXiv :hep-ph/9709356

- ***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem
- * Unification at GUT scale
- * LSP/DM (R-Parity)

The lightest supersymmetric particle (LSP) is stable, at the GeV-TeV scale, and can be weakly charged under the SM gauge group

⇒ DM candidates in supersymmetric models

- ***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem
- ***** Unification at GUT scale
- * LSP/DM (supersymmetry breaking, R-Parity)
- ***** Examples :

- ***** Fermions \Leftrightarrow bosons \Rightarrow solution to the Hierarchy problem
- ***** Unification at GUT scale
- * LSP/DM (supersymmetry breaking, R-Parity)
- ***** Examples :

- ***** Constraints on SUSY/DM
 - * DM relic abundance
 - Direct detection of DM

E. Aprile et al., XENON100 Collaboration, Phys. Rev. Lett. 109 :181301, arXiv :1207.5988

- * Constraints on SUSY/DM
 - * DM relic abundance
 - * Direct detection of DM
 - * Indirect detection of DM (search for anomalous features in cosmic rays like $\gamma, \nu, e^+, \bar{p}$)
 - * "Background drawback" : ID depends on the current knowledge of astrophysical sources
 - ✓ Remove carefully known (modelled) background
 - Clear features not mimicked by astrophysical sources
 - A huge number of data validates the modelling of astrophysical background sources in the GeV-TeV range : absence of anomalies in the p̄ spectrum less exploited ⇒ Set constraints

* Constraints on SUSY/DM

- * DM relic abundance
- ***** Direct detection of DM
- Indirect detection of DM
- Collider constraints
 - ***** LEP \Rightarrow charged sparticles
 - ***** LHC \Rightarrow coloured sparticles
 - * Low energy observables $\mathscr{B}(\bar{B}^{0} \to X_{s}\gamma), \mathscr{B}(B^{0}_{s} \to \mu^{+}\mu^{-}), \mathscr{B}(B^{\pm} \to \tau^{\pm}\nu_{\tau}),$ $\Delta M_{d,s}, \delta a_{\mu}, \Delta \rho, \dots$

Neutralino DM in the (N)MSSM

1 Motivations

Neutralino DM in the (N)MSSM

- C. Bœhm, JDS, A. Mazumdar and E. Pukartas, Phys. Rev. D87 (2013) 023529, arXiv :1205.2815
- G. Bélanger, C. Bœhm, M. Cirelli, JDS and A. Pukhov, JCAP 1211 (2012) 028, arXiv :1208.5009
- D. A. Vasquez, G. Bélanger, C. Bœhm, JDS, P. Richardson and C. Wymant, Phys. Rev. D86 (2012) 035023, arXiv :1203.3446

3 U(1) extensions of the MSSM

- G. Bélanger, JDS and A. Pukhov, JCAP 1112 (2011) 014, arXiv :1110.2414
- G. Bélanger, JDS et al., in preparation

Conclusions

Supersymmetric inflaton

* NUHM2 (Non-Universal Higgs Masses type 2)

- Supersymmetric model with gravity-mediated supersymmetry breaking based on the MSSM
- Most popular : mSUGRA/CMSSM, universal scalar masses is assumed, free parameters :

 m_0 , $m_{1/2}$, A_0 , $\tan \beta$ and $sign(\mu)$

X Drawbacks : $m_{h^0} \sim 125$ GeV not easy

Supersymmetric inflaton

* NUHM2 (Non-Universal Higgs Masses type 2)

- * Supersymmetric model with gravity-mediated supersymmetry breaking based on the MSSM
- Most popular : mSUGRA/CMSSM, universal scalar masses is assumed, free parameters :

 m_0 , $m_{1/2}$, A_0 , $\tan \beta$ and $sign(\mu)$

- **X** Drawbacks : $m_{h^0} \sim 125$ GeV not easy
- * We considered a non-universal scalar masses model, with $m_0^2 \neq m_{H_u}^2 \neq m_{H_d}^2$ (H. Baer et al [hep-ph/0504001], J. R. Ellis et al [hep-ph/0210205])
 - \checkmark Easier to reach $m_{h^0}=125$ GeV, increase DM annihilation rates with higgsino LSP
- * NUHM2 free parameter :

$$m_0$$
, $m_{1/2}$, A_0 , $\tan \beta$, μ and m_{A^0}

Supersymmetric inflaton

- * NUHM2
- * L̃L̃ẽ and ũd̃d
 - Inflaton, scalar field whose flat direction potential (with a non-negligible slope) leads to the end of the inflation phase
 - Charged under the visible sector of the particle physics model considered, i.e. NUHM2

 $\phi_{\rm LHC}$

 $\phi_{\text{inflation}}$

Method and constraints

Constraints imposed on a scan made using Markov Chain Monte Carlo method :

* On \widetilde{LLe} and \widetilde{udd} , explain the observed temperature anisotropy in the CMB with :

* The amplitude of density perturbations $\delta_{\rm H} = \frac{8}{\sqrt{5}\pi} \frac{m_{\phi} M_{\rm P}}{d_{a}^2} \frac{1}{\Delta^2} \sin^2[\mathcal{N}_{\rm COBE} \sqrt{\Delta^2}]$,

$$\mathbf{\Delta}^2 \equiv 900 lpha^2 \mathcal{N}_{\mathsf{COBE}}^{-2} \Big(rac{\mathsf{M}_{\mathrm{P}}}{\phi_0} \Big)^4$$
 , $\mathcal{N}_{\mathsf{COBE}} \sim 50$

* The scalar spectral index n_s of the corresponding power spectrum $n_s = 1 - 4\sqrt{\Delta^2} \cot[\mathcal{N}_{COBE}\sqrt{\Delta^2}],$

Constraint	Value/Range
m _h ₀ (GeV)	[115.5, 127]
$Ω_{\chi_1^0}$ h ²	[0.1088, 0.1158]
$\mathscr{B}(ar{B}^{0} o \tilde{X}_{s}^{1}\gamma) imes 10^{4}$	3.55
$\delta a_{\mu} imes \mathbf{10^{10}}$	28.7
$\mathscr{B}(B^0_s o \mu^+\mu^-) imes \mathbf{10^9}$	4.5
$\mathbf{\Delta} ho$	0.002
$R_{B^{\pm} \to \tau^{\pm} \nu_{\tau}}(\frac{NUHM2}{SM})$	2.219
$Z o \chi_1^{0} \chi_1^{0}$ (MeV)	1.7
$\sigma_{\mathbf{e}^+\mathbf{e}^- \rightarrow \chi_1^0 \chi_2^0}$	1
$ imes \mathscr{B}(\chi^{m{0}}_{2,3} o {Z}\chi^{m{0}}_1)$ (pb)	

* On NUHM2 model in general :

Method and constraints

Constraints imposed on a scan made using Markov Chain Monte Carlo method :

Constraint	Value/Range
m _h ₀ (GeV)	[115.5, 127]
$Ω_{\chi_1^0}$ h ²	[0.1088, 0.1158]
$\mathscr{B}(ar{B}^{0} o \tilde{X}_{s}^{1}\gamma) imes 10^{4}$	3.55
$\delta {f a}_{\mu} imes{f 10^{10}}$	28.7
$\mathscr{B}(B^0_s o \mu^+\mu^-) imes 10^9$	4.5
$\mathbf{\Delta} ho$	0.002
$R_{B^{\pm} ightarrow au^{\pm} u_{ au}}(\frac{NUHM2}{SM})$	2.219
$Z o \chi_1^{m{0}} \chi_1^{m{0}}$ (MeV)	1.7
$\sigma_{\mathbf{e}^+\mathbf{e}^- ightarrow \chi_1^0 \chi_{2.3}^0}$	1
$ imes \mathscr{B}(\chi^{m{0}}_{2,3} o {m{Z}}\chi^{m{0}}_1)$ (pb)	

* On NUHM2 model in general :

* Compute total likelihood of a point M in NUHM2 parameter space : if $\mathcal{L}_{\rm tot}^{M} > \frac{\mathcal{L}_{\rm tot}^{m}}{p}$, with $p \in [1, 1 - \ln \mathcal{L}_{\rm tot}^{m}] \Rightarrow \text{keep } M$

Results

- * Hard to find bino-like LSP + correct LSP relic density (mass mainly close to $m_{\Delta 0}/2$)
- st Get mainly higgsino-like LSP, degeneracy between $\chi^0_{1.2}$ and χ^\pm_1

Results

- * Hard to find bino-like LSP + correct LSP relic density (mass mainly close to $m_{\Delta 0}/2$)
- st Get mainly higgsino-like LSP, degeneracy between χ^0_1 , and χ^\pm_1
- * NUHM2 scenarios within LHCb and XENON1T experiments sensitivity

Results

- * Hard to find bino-like LSP + correct LSP relic density (mass mainly close to $m_{\Delta 0}/2$)
- st Get mainly higgsino-like LSP, degeneracy between $\chi^{0}_{1,2}$ and χ^{\pm}_{1}
- * NUHM2 scenarios within LHCb and XENON1T experiments sensitivity
- * Informations on inflaton mass if we discover lightest stop/stau at LHC

DM ID limits on the LSP-NLSP mass degeneracy

Possibility to set stringent constraints on DM properties by looking at DM annihilation into W^{\pm} , when LSP and NLSP are mass degenerate (difficult at the LHC), using FERMI-LAT <u>AND</u> PAMELA data

- * From γ -rays : FERMI-LAT analysis of the diffuse γ -ray emission from dwarf spheroidal galaxies (Ackermann et al, Phys. Rev. Lett. 107 (2011) 241302)
- * From $\bar{\mathbf{p}}$: derived bounds from PAMELA antiprotons data using several approaches

DM ID limits on the LSP-NLSP mass degeneracy

Possibility to set stringent constraints on DM properties by looking at DM annihilation into W^{\pm} , when LSP and NLSP are mass degenerate (difficult at the LHC), using FERMI-LAT <u>AND</u> PAMELA data

- * From γ -rays : FERMI-LAT analysis of the diffuse γ -ray emission from dwarf spheroidal galaxies (Ackermann et al, Phys. Rev. Lett. 107 (2011) 241302)
- * From $\bar{\mathbf{p}}$: derived bounds from PAMELA antiprotons data using several approaches
- \Rightarrow A "simplified" version of the pMSSM (phenomenological MSSM)

Aim : dominant neutralino DM annihilation channels into gauge bosons

DM ID limits on the LSP-NLSP mass degeneracy

 \Rightarrow A "simplified" version of the pMSSM

Aim : dominant neutralino DM annihilation channels into gauge bosons

- * All sfermion masses + CP-odd Higgs boson are set to 2 TeV (except for the third generation of squarks, to get $m_{h^0} \sim 125$ GeV), light chargino/neutralino $(m_{\chi_1^0} < 500$ GeV) such that the mass splitting $\Delta m = m_{\chi_2^\pm} m_{\chi_1^0}$ is small
- * MCMC scan
- * How powerful are the \bar{p}/γ -ray limits on excluding parts of pMSSM parameter space and Δm values ?

Jonathan Da Silva (LAPTh)
* Higgsino and mainly wino DM probed

- * Higgsino and mainly wino DM probed \Rightarrow assume regeneration mechanism
- * ID constrains scenarios with $\Delta m \lesssim 20$ GeV, DM relic density being regenerated at 100%
- * If $m_{1,0}^{} < 500$ GeV and $\Delta m < 0.25$ GeV wino DM ruled out

- * Higgsino and mainly wino DM probed \Rightarrow assume regeneration mechanism
- * ID constrains scenarios with $\Delta m \lesssim 20$ GeV, DM relic density being regenerated at 100%
- * No explanation of the "130 GeV line" in this simplified pMSSM
- * ID constraints really competitive with direct detection experiments

OK Fermi-LAT Pamela both

NMSSM and SUSY searches @ LHC

* Adding a singlet of SM gauge symmetry to solve the μ problem of the MSSM

$$\begin{split} & \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \mathcal{W}_{\text{MSSM}} = \tilde{u}_{\text{R}}^{*} y_{u} \widetilde{\textbf{Q}} \textbf{H}_{u} - \tilde{\textbf{d}}_{\text{R}}^{*} y_{d} \widetilde{\textbf{Q}} \textbf{H}_{d} - \tilde{\textbf{e}}_{\text{R}}^{*} y_{e} \widetilde{\textbf{L}} \textbf{H}_{d} + \mu \textbf{H}_{u} \textbf{H}_{d} \\ & \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \mathcal{W}_{\text{NMSSM}} = \mathcal{W}_{\text{MSSM}} |_{\mu=0} + \lambda \textbf{S} \textbf{H}_{u} \textbf{H}_{d} + \frac{1}{3} \kappa \textbf{S}^{3} \end{split}$$

- * 2 CP-odd Higgs boson (a₁, a₂), 3 CP-even Higgs boson (h₁, h₂, h₃)
 $$\begin{split} m_{h_1}^2|_{tree} \lesssim M_Z^2 \cos^2 2\beta + \frac{\lambda^2}{2} \nu^2 \\ \Rightarrow \text{ less fine tuned } m_{h_1} \sim 125 \text{ GeV} \end{split}$$
- * 5 neutralinos χ_i^0 in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}_d^0, \widetilde{H}_u^0, \widetilde{S})$

NMSSM and SUSY searches @ LHC

* Adding a singlet of SM gauge symmetry to solve the μ problem of the MSSM

$$\begin{split} & \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \mathcal{W}_{\mathsf{MSSM}} = \tilde{\mathsf{u}}_{\mathsf{R}}^{*} \mathsf{y}_{\mathsf{u}} \widetilde{\mathsf{Q}} \mathsf{H}_{\mathsf{u}} - \tilde{\mathsf{d}}_{\mathsf{R}}^{*} \mathsf{y}_{\mathsf{d}} \widetilde{\mathsf{Q}} \mathsf{H}_{\mathsf{d}} - \tilde{\mathsf{e}}_{\mathsf{R}}^{*} \mathsf{y}_{\mathsf{e}} \widetilde{\mathsf{L}} \mathsf{H}_{\mathsf{d}} + \mu \mathsf{H}_{\mathsf{u}} \mathsf{H}_{\mathsf{d}} \\ & \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm} \mathcal{W}_{\mathsf{NMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{S} \mathsf{H}_{\mathsf{u}} \mathsf{H}_{\mathsf{d}} + \frac{1}{3} \kappa \mathsf{S}^{3} \end{split}$$

- * 2 CP-odd Higgs boson (a₁, a₂), 3 CP-even Higgs boson (h₁, h₂, h₃)
 $$\begin{split} m_{h_1}^2|_{tree} \lesssim M_Z^2 \cos^2 2\beta + \frac{\lambda^2}{2}\nu^2 \\ \Rightarrow \text{ less fine tuned } m_{h_1} \sim 125 \text{ GeV} \end{split}$$
- * 5 neutralinos χ_i^0 in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}_d^0, \widetilde{H}_u^0, \widetilde{S})$
- * Using results of a previous work (D. Albornoz Vasquez et al., arXiv :1107.1614, arXiv :1201.6150) with constraints on DM, *B* and Higgs physics to define the relevant NMSSM parameter space
- Motivated by hints of a signal in direct detection experiments (DAMA/Libra, arXiv :1002.1028; CoGeNT, arXiv :1201.6150)
 ⇒ light DM (B̃ or S̃) scenarios (mostly light a₁ and/or h₁)

NMSSM and SUSY searches @ LHC

- ★ Searches for exotic particles are now reaching a high level of exclusion that allow to reject a wide class of models but limits obtained assuming simplified models of New Physics ⇒ what about the NMSSM ?
- * Example of the exclusion limit coming from the ATLAS 1.04 fb⁻¹ search for squarks and gluinos via jets and missing E_T
- * In general exclude squarks lighter than 0.6 1 TeV and gluinos below 0.5 TeV in the constrained MSSM via $\tilde{q} \rightarrow q\chi_1^0$ and $\tilde{g} \rightarrow q\bar{q}\chi_1^0$ decays
 - * Applying SUSY searches@LHC with ATLAS's 1.04 fb⁻¹ 0-lepton jets + missing E_T search using Herwig++ 2.5.1 and RIVET 1.5.2 \Rightarrow Are ATLAS limits so constraining?

* Reduced acceptance into jets + missing E_T search channels and more jets for \tilde{S} LSP * $\tilde{q} \rightarrow q + (\chi_2^0 \rightarrow \chi_1^0 + (f\bar{f} \text{ or } a_1 \text{ or } h_1))$

PhD defense

- * Reduced acceptance into jets + missing E_T search channels and more jets for \tilde{S} LSP
- * $\tilde{q} \rightarrow q + (\chi_2^0 \rightarrow \chi_1^0 + (f\bar{f} \text{ or } a_1 \text{ or } h_1))$
- * Usual exclusion (B-like LSP) :

- * Reduced acceptance into jets + missing E_T search channels and more jets for \tilde{S} LSP
- * $\tilde{q} \rightarrow q + (\chi_2^0 \rightarrow \chi_1^0 + (f\bar{f} \text{ or } a_1 \text{ or } h_1))$
- * 300 GeV squarks allowed when (S-like LSP) :

U(1) extensions of the MSSM

Motivations

- 2 Neutralino DM in the (N)MSSM
 - C. Bœhm, JDS, A. Mazumdar and E. Pukartas, Phys. Rev. D87 (2013) 023529, arXiv :1205.2815
 - G. Bélanger, C. Bœhm, M. Cirelli, JDS and A. Pukhov, JCAP 1211 (2012) 028, arXiv :1208.5009
 - D. A. Vasquez, G. Bélanger, C. Bœhm, JDS, P. Richardson and C. Wymant, Phys. Rev. D86 (2012) 035023, arXiv :1203.3446

3 U(1) extensions of the MSSM

- G. Bélanger, JDS and A. Pukhov, JCAP 1112 (2011) 014, arXiv :1110.2414
- G. Bélanger, JDS et al., in preparation

Conclusions

Sneutrinos

- * Neutrino oscillations indicative of massive neutrinos \Rightarrow possibility to add right-handed (RH) neutrino fields
 - \Rightarrow Extensions of the MSSM with RH (s)neutrino can provide DM candidate
- ★ Here RH neutrino mass generated by introducing Dirac mass terms ⇒ supersymmetric partner can be at the TeV scale
- * This candidate couples to new vector, scalar field by adding a new abelian gauge symmetry \Rightarrow the UMSSM

The model

- * Symmetry group : SU(3)_c × SU(2)_L × U(1)_Y × U'(1) Coupling constants : g₃, g₂, g_Y and $g'_1 = \sqrt{\frac{5}{3}}g_Y$
- * U'(1) stems from string-inspired E₆ : E₆ \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{χ} \times U(1)_{ψ} \Rightarrow U'(1) charge :

$$\mathcal{Q}' = \cos \theta_{\mathsf{E}_{6}} \mathcal{Q}'_{\chi} + \sin \theta_{\mathsf{E}_{6}} \mathcal{Q}'_{\psi}, \qquad \theta_{\mathsf{E}_{6}} \in [-\pi/2, \pi/2]$$

* Superpotential :

$$\mathcal{W}_{\mathsf{UMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{SH}_{\mathsf{u}}\mathsf{H}_{\mathsf{d}} + \tilde{\nu}_{\mathsf{R}}^{*}\mathsf{y}_{\nu}\widetilde{\mathsf{L}}\mathsf{H}_{\mathsf{u}} + \mathcal{O}(\mathsf{TeVs})$$

- * As the NMSSM, this model solves the μ problem : $\mu = \lambda \frac{v_s}{\sqrt{2}}$
- * New D-terms for m_{h1}

The model

- * Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing between the Z of the SM and the Z', α_Z is the mixing angle $\Rightarrow \tan \beta$ constrained
- * Gauginos sector : 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}^0_d, \widetilde{H}^0_u, \widetilde{S}, \widetilde{B'})$
- * To sum up :

WIMP annihilation

Parameter space regions with $\Omega_{\text{WIMP}}h^2\approx 0.1 \Rightarrow$ need to increase the annihilation cross

section : interesting WIMP mass from 50 GeV to TeV-scale :

- * WIMP mass near $m_{h_1}/2$
- * WIMP mass near $M_{Z_2}/2$ (also $m_{h_i}/2$)
- * WIMP mass near m_{hi}/2 or above W pair threshold
- * Coannihilation processes (mainly higgsino-like)

Scattering on nucleons

For some U'(1) models we can have a good suppression of the gauge boson or/and Higgs boson contribution

here $U(1)_{\psi} \Rightarrow \theta_{E_6} = \pi/2$

Jonathan Da Silva (LAPTh)

Scattering on nucleons

For other models, huge constraints on the parameter space appear here $U(1)_{\eta} \Rightarrow \tan \theta_{E_6} = -\sqrt{5/3}$ OK, $\Delta m_{d,s}$, XENON100, both

LAPTh, July 3, 2013

Scattering on nucleons

Abelian gauge boson contribution to direct detection cross section :

$$\begin{split} \sigma_{\tilde{\nu}_{\mathsf{R}}\mathsf{N}}^{\mathsf{Z}_{1},\mathsf{Z}_{2}} &= \frac{\mu_{\tilde{\nu}_{\mathsf{R}}}^{2}}{\pi} (\mathsf{g}_{1}^{\prime}\mathcal{Q}_{\nu}^{\prime})^{2} [(\mathsf{y}(1-4\mathsf{s}_{\mathsf{W}}^{2})+\mathsf{y}^{\prime})\mathsf{Z} + (-\mathsf{y}+2\mathsf{y}^{\prime})(\mathsf{A}-\mathsf{Z})]^{2} \\ \text{with } \mathsf{y} &= \frac{\mathsf{g}_{\mathsf{Y}}\sin\alpha_{\mathsf{Z}}\cos\alpha_{\mathsf{Z}}}{4\sin\theta_{\mathsf{W}}} \left(\frac{1}{\mathsf{M}_{\mathsf{Z}_{2}}^{2}} - \frac{1}{\mathsf{M}_{\mathsf{Z}_{1}}^{2}}\right), \, \mathsf{y}^{\prime} = -\frac{\mathsf{g}_{1}^{\prime}}{2}\mathsf{Q}_{\mathsf{V}}^{\prime\mathsf{d}} \left(\frac{\sin^{2}\alpha_{\mathsf{Z}}}{\mathsf{M}_{\mathsf{Z}_{1}}^{2}} + \frac{\cos^{2}\alpha_{\mathsf{Z}}}{\mathsf{M}_{\mathsf{Z}_{2}}^{2}}\right) \end{split}$$

Jonathan Da Silva (LAPTh)

- * Updates :
 - New limits on M_{Z2}

Jonathan Da Silva (LAPTh)

- ***** Updates :
 - New limits on M_{Z2}
 - DM observables (Planck satellite, update on XENON100 results)
 - * Higgs boson mass measurements

- * Updates :
 - New limits on M_{Z2}
 - * DM observables (Planck satellite, update on XENON100 results)
 - * Higgs boson mass measurements
- * New inputs :
 - ★ Higgs boson signal strengths + more low energy observables ⇒ Modification of the NMSSMTools code : UMSSMTools
 - * Also neutralino as DM candidate
 - Relax relic abundance constraint
 - * Third generation of sfermions allowed to be light

- * Decrease of the upper bound on $|\alpha_z|$
- * $\Delta \rho$: main new constraint for low energy observables

- * Decrease of the upper bound on $|\alpha_z|$
- * $\Delta \rho$: main new constraint for low energy observables
- * Constraints from 2σ signal strength ellipses derived in G. Bélanger et al, arXiv :1306.2941

D Motivations

2 Neutralino DM in the (N)MSSN

- C. Bœhm, JDS, A. Mazumdar and E. Pukartas, Phys. Rev. D87 (2013) 023529, arXiv :1205.2815
- G. Bélanger, C. Bœhm, M. Cirelli, JDS and A. Pukhov, JCAP 1211 (2012) 028, arXiv :1208.5009
- D. A. Vasquez, G. Bélanger, C. Bœhm, JDS, P. Richardson and C. Wymant, Phys. Rev. D86 (2012) 035023, arXiv :1203.3446

3 U(1) extensions of the MSSM

- G. Bélanger, JDS and A. Pukhov, JCAP 1112 (2011) 014, arXiv :1110.2414 🕽
- G. Bélanger, JDS et al., in preparation

Conclusions

★ Discovery (Higgs boson), bounds (exotic particles, DM)
 ⇒ extensions of the SM and especially SUSY are now better probed

- ★ Discovery (Higgs boson), bounds (exotic particles, DM)
 ⇒ extensions of the SM and especially SUSY are now better probed
- * If sparticle discovery \Rightarrow informations on inflaton candidates
- * Indirect detection of DM can be a competitive tool
- * Caveat on the use of limits on simplified models

- ★ Discovery (Higgs boson), bounds (exotic particles, DM)
 ⇒ extensions of the SM and especially SUSY are now better probed
- * If sparticle discovery \Rightarrow informations on inflaton candidates
- * Indirect detection of DM can be a competitive tool
- * Caveat on the use of limits on simplified models
- * UMSSM has another viable DM candidate, the RH sneutrino
- * More general work in this model is in progress
- * Implement the UMSSM model in the public version of the micrOMEGAs code

- ★ Discovery (Higgs boson), bounds (exotic particles, DM)
 ⇒ extensions of the SM and especially SUSY are now better probed
- * If sparticle discovery \Rightarrow informations on inflaton candidates
- * Indirect detection of DM can be a competitive tool
- * Caveat on the use of limits on simplified models
- * UMSSM has another viable DM candidate, the RH sneutrino
- * More general work in this model is in progress
- * Implement the UMSSM model in the public version of the micrOMEGAs code

Thanks!

MCMC procedure

MCMC procedure

Models : $\widetilde{L}\widetilde{L}\widetilde{e}$ and $\widetilde{u}\widetilde{d}\widetilde{d}$

Inflaton, scalar field whose flat direction potential (with a non-negligible slope) leads to the end of the inflation phase

Charged under the visible sector of the particle physics model considered, i.e. NUHM2

V $(\tilde{u} \ \tilde{d} \ \tilde{d} / \tilde{L} \tilde{L} \tilde{e})$

$$\begin{split} \phi &= \frac{\tilde{\mathbf{u}} + \tilde{\mathbf{d}} + \tilde{\mathbf{d}}}{\sqrt{3}}, \quad \phi = \frac{\tilde{\mathbf{L}} + \tilde{\mathbf{L}} + \tilde{\mathbf{e}}}{\sqrt{3}} \\ \mathbf{V}(\phi) &= \frac{1}{2} \mathbf{m}_{\phi}^2 \, \phi^2 - \mathbf{A} \frac{\lambda \phi^6}{6 \, \mathbf{M}_{\mathrm{P}}^3} + \lambda^2 \frac{\phi^{10}}{\mathbf{M}_{\mathrm{P}}^6} \\ \phi_{\mathrm{inflation}}^4 &\simeq \frac{\mathbf{m}_{\phi} \mathbf{M}_{\mathrm{P}}^3}{\lambda \sqrt{10}}, \mathbf{V}''(\phi_{\mathrm{inflation}}) = \mathbf{0} \\ \widetilde{\mathbf{u}} \widetilde{\mathbf{d}} \widetilde{\mathbf{d}} \ \mathbf{RGEs} \end{split}$$

Point of enhanced

$$\begin{split} \hat{\mu} \frac{d m_{\phi}^2}{d \hat{\mu}} &= -\frac{1}{6\pi^2} (4 \mathsf{M}_3^2 \mathsf{g}_3^2 + \frac{2}{5} \mathsf{M}_1^2 \mathsf{g}_1^2), \\ \hat{\mu} \frac{d \mathsf{A}}{d \hat{\mu}} &= -\frac{1}{4\pi^2} (\frac{16}{3} \mathsf{M}_3 \mathsf{g}_3^2 + \frac{8}{5} \mathsf{M}_1 \mathsf{g}_1^2) \end{split}$$

LLe RGEs

$$\begin{split} \hat{\mu} \frac{dm_{\phi}^2}{d\hat{\mu}} &= -\frac{1}{6\pi^2} (\frac{3}{2} \mathsf{M}_2^2 \mathsf{g}_2^2 + \frac{9}{10} \mathsf{M}_1^2 \mathsf{g}_1^2), \\ \hat{\mu} \frac{d\mathsf{A}}{d\hat{\mu}} &= -\frac{1}{4\pi^2} (\frac{3}{2} \mathsf{M}_2 \mathsf{g}_2^2 + \frac{9}{5} \mathsf{M}_1 \mathsf{g}_1^2) \end{split}$$

ID constraints from \bar{p} W^{\pm} production leads also to abundant \bar{p} production (after hadronization)

 $\Rightarrow \bar{\mathbf{p}}$ flux produced by DM annihilation determined by :

```
\sigma_{\rm DM \ DM} \rightarrow {\rm W^+W^-}
```

 m_{DM}

DM halo profile (here Einasto profile)

 $\bar{\mathbf{p}}$ propagation parameters in the galactic halo :

Model	δ	\mathcal{K}_0 [kpc ² /Myr]	$V_{ m conv}$ [km/s]	L [kpc]
MIN	0.85	0.0016	13.5	1
MED	0.70	0.0112	12	4
MAX	0.46	0.0765	5	15

 \Rightarrow We compare the sum of the astrophysical background flux and predicted $\bar{\bf p}$ flux originating from DM with the $\rm PAMELA$ data, 2 methods :

"Aggressive" procedure : fixed background (standard flux from T. Bringmann and P. Salati, Phys. Rev. D 75 (2007) 083006)

<u>"Conservative" procedure</u> : marginalized background, namely standard description of the background spectrum multiplied by $A(T/T_0)^p$ with :

 $T = \bar{p}$ kinetic energy

 $T_0 = 30 \ \text{GeV}: pivot \ \text{energy}$

normalisation of the background spectrum : 0.6 < A < 1.4

spectral index : -0.1

ID constraints from $\bar{\rm p}$

"Conservative" procedure approximately independent of $m_{\rm DM}:\bar{\bf p}$ flux from heavy DM negligible at low energy, where $\rm PAMELA$ set very small error bars

We consider diffuse γ -ray constraints from dwarf spheroidal galaxies and $\bar{\mathbf{p}}$ constraints using 'MED' propagation parameters + marginalized background

Generic bounds on DM annihilation into W^\pm

Higgs boson contribution to the direct detection cross section for $\tilde{\nu}_R$:

$$\mathbf{g}_{\tilde{\nu}_{\mathsf{R}}\tilde{\nu}_{\mathsf{R}}^{*}\mathsf{h}_{\mathsf{i}}} = -\mathbf{g}_{1}^{\prime\,2}\mathcal{Q}_{\nu}^{\prime}\left[\mathsf{v}_{\mathsf{d}}\mathsf{Q}_{\mathsf{H}_{\mathsf{d}}}^{\prime}\mathsf{Z}_{\mathsf{h}\mathsf{i}1} + \mathsf{v}_{\mathsf{u}}\mathsf{Q}_{\mathsf{H}_{\mathsf{u}}}^{\prime}\mathsf{Z}_{\mathsf{h}\mathsf{i}2} + \mathsf{v}_{\mathsf{s}}\mathsf{Q}_{\mathsf{S}}^{\prime}\mathsf{Z}_{\mathsf{h}\mathsf{i}3}\right]$$

 \Rightarrow increase of the cross section for $\theta_{\mathsf{E}_6} < 0$ because of \mathcal{Q}'_ν

Jonathan Da Silva (LAPTh)

PhD defense