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Introduction générale: Présentation de la thèse

Contribution à l’analyse mathématique et à la résolution numérique d’un problème inverse de

scattering élasto-acoustique

Cette thèse a pour objectif de développer un outil de simulation pour la résolution de problèmes

inverses élasto-acoustiques. Elle est organisée en deux parties qui peuvent être lues indépendamment.

Chaque partie est composée de deux chapitres et chacun d’euxcomporte une introduction faisant

référence à une bibliographie que l’on espère complète ainsi qu’une nomenclature. Afin d’éviter les

redondances, nous avons choisi, en guise d’introduction, de décrire le contenu de cette thèse sans

entrer dans les détails que le lecteur trouvera dans chacun des chapitres.

La détermination de la forme d’un obstacle élastique immergé dans un milieu fluide à partir de

mesures du champ d’onde diffracté en présence d’ondes incidentes est un problème d’un vif intérêt

dans de nombreux domaines tels que le sonar, le radar, l’exploration géophysique, l’imagerie médi-

cale ou le contrôle non destructif. A cause de son caractère non-linéaire et mal posé, ce problème

inverse de l’obstacle (IOP) est très difficile à résoudre, particulièrement d’un point de vue numérique.

Le succès de la reconstruction dépend fortement de la quantité et qualité des mesures, notamment

des angles d’observations utilisés, et du niveau de bruit. De plus, pour résoudre IOP, la compréhen-

sion de la théorie du problème de diffraction direct associéet la maîtrise des méthodes de résolution

correspondantes sont fondamentales. Le travail accompli ici se rapporte à l’analyse mathématique et

numérique du problème direct de diffraction élasto-acoustique et d’un problème inverse de scattering.

Plus précisément, le but de ce travail de recherche est de proposer une méthodologie de résolution

d’IOP basée sur une méthode de type Newton régularisée, connue pour être robuste et efficace. Pour

atteindre les objectifs que nous nous sommes fixés, nous avons réalisé un travail important sur la ré-

solution du problème direct qui fait l’objet de la première partie de cette thèse. Quant au problème

1



Introduction générale: présentation de la thèse

inverse que nous avons considéré, il est décrit, étudié et mis en oeuvre dans la deuxième partie de la

thèse.

La première partie de la thèse est donc consacrée au problèmedirect. Pour commencer (ChapitreI),

nous revisitons la question de l’existence et unicité du système élasto-acoustique en relâchant les hy-

pothèses de régularité qui sont généralement faites sur l’interface fluide-structure. Notre approche

repose sur une réécriture du problème, a priori posé dans tout l’espace, en un problème mixte via

l’introduction de l’opérateur Dirichlet-to-Neumann (DtoN) de la sphère. On montre alors que cette

formulation est équivalente à une formulation du système dans des espaces de Sobolev à poids. On

peut ainsi appliquer la théorie de Fredholm et nous établissons que le système est bien posé lorsque

le solide est un domaine lipschitzien continu. Nous nous attaquons ensuite à la résolution numérique

du problème mixte (ChapitreII ) en remplaçant l’opérateur DtoN par une approximation locale. Nous

avons fait le choix de mettre en place une méthode de type DG pour résoudre le problème élasto-

acoustique. Ce choix est guidé par la volonté, à plus long terme, d’appliquer les travaux de cette

thèse à des configurations issues de la géophysique. Il nous est donc apparu pertinent de mettre oeu-

vre des éléments finis discontinus d’ordre élevé dont le niveau de flexibilité est parfaitement adapté

au cas de solides hétérogènes. La méthode que nous avons élaborée permet ainsi de mélanger dif-

férents ordres d’approximation et s’adapte ainsi parfaitement à des domaines de calcul composées de

régions caractérisées par des vitesses de propagation contrastées. Nous avons validé la méthode DG

par comparaison avec des solutions analytiques puis nous avons réalisé une analyse qui illustre d’ex-

cellentes performances. Nous montrons en particulier que la méthode DG est très robuste aux effets

de pollution numériques. Pour améliorer le niveau de précision des résultats numériques, nous avons

enrichi la méthode DG en introduisant des éléments finis courbes sur l’interface fluide-structure. Les

calculs numériques que nous présentons illustrent l’intérêt de cet enrichissement qui contribue, quand

on l’utilise avec des éléments d’ordre élevé, à limiter l’impact des modes de Jones qui peuvent dans

certains cas polluer le champ d’onde dans le fluide. Le solveur est validé tout d’abord en utilisant des

solutions analytiques qui s’écrivent comme des développements sur des bases de fonctions spéciales.

Les performances de la méthode numérique sont ensuite évaluées en comparant avec des résultats

numériques publiés par P. Monk et ses collaborateurs dans lejournal Computational and Applied

Mathematics, en 2008 et basés sur la méthode ultra-faible.

La deuxième partie de la thèse traite du problème inverse. Laméthode de Newton régularisée

que nous avons choisie fait intervenir une matrice jacobienne qui doit être évaluée à chaque itéra-

tion. Nous calculons (ChapterIII ), dans un premier temps formellement, la différentielle ausens de

Fréchet du champ d’onde élasto-acoustique par rapport au bord de l’obstacle. Nous obtenons que

2
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cette dérivée est caractérisée comme la solution du problème élasto-acoustique de départ modulo une

modification au niveau des conditions de transmission posées sur l’interface fluide-structure. Les

conditions de transmission modifiées sont dans ce cas hétérogènes et le terme hétérogène s’écrit en

fonction de traces d’ordre élevé du champ d’onde direct. On montre donc que l’évaluation de la

matrice jacobienne passe par la résolution du problème direct avec multi second membre. Avant de

poursuivre par la mise en oeuvre numérique du problème inverse, nous essayons de lever le caractère

formel de la caractérisation de la dérivée de Fréchet du champ élasto-acoustique. Pour cela, nous

avons été confrontés à l’absence de certains résultats de régularité quand l’interface est seulement

lipschitzienne. Nous avons cependant obtenu une caractérisation complète de la dérivée de Fréchet

quand l’interface est un polygone ou polyèdre curviligne. Dans le cas où la frontière est seulement

de classeC0,1, nous n’avons réussi à étendre des résultats établis par Ciarlet et ses collaborateurs et

publiés dans les Comptes rendus de l’Académie des Sciences qui donne un sens à la trace de champs

dans le domaine du Laplacien. Pour traiter complètement le problème d’interaction fluide-structure,

il est nécessaire d’établir des résultats de trace dans le domaine de l’opérateur∇ · σ dont la preuve

passe par la construction d’opérateurs de relèvement qui n’est pas triviale. Néanmoins, cette question

est en passe d’être résolue. Le cas général d’un domaine Lipschitz soulève encore des questions et est

encore loin d’être résolu. Toutefois, nous avons choisi de présenter un résultat de régularité qui nous

semble illustrer la difficulté du problème et donner de nombreuses perspectives théoriques à cette

thèse. Au dernier chapitre de ce manuscrit (ChapterIV), nous avons mis en oeuvre la méthode de

Newton régularisée et nous avons effectué une série de cas tests qui illustrent bien l’intérêt de notre

approche.
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General Introduction: Presentation of the thesis

Contribution to the mathematical analysis and to the numerical solution of an inverse

elasto-acoustic scattering problem

This thesis aims at developing a simulation tool for solvingelasto-acoustic inverse problems. It

is organized into two parts which can be read independently.Each part consists of two chapters, and

each of them has been written with an introduction referringin particular to a bibliography that we

hope to be as complete as possible. For each chapter, we also define carefully a nomenclature that

should help the reader. In order to avoid a possible redundancy by writing an introduction for the

whole document, we begin the document with a general introduction to describe the content of this

thesis without going into the details, the reader could find precisions in each chapter.

The determination of the shape of an obstacle immersed in a fluid medium from some measure-

ments of the scattered field in the presence of incident wavesis an important problem in many tech-

nologies such as sonar, radar, geophysical exploration, medical imaging and nondestructive testing.

Because of its nonlinear and ill-posed character, this inverse obstacle problem (IOP) is very difficult to

solve, especially from a numerical viewpoint. The success of the reconstruction depends strongly on

the quantity and quality of the measurements, especially onthe aperture (range of observation angles)

and the level of noise in the data. Moreover, in order to solveIOP, the understanding of the theory

for the associated direct scattering problem and the mastery of the corresponding solution methods

are fundamental. The work accomplished here pertains to themathematical and numerical analysis

of the direct elasto-acoustic scattering problem and of an inverse obstacle scattering problem. More

specifically, the purpose of this research work is to proposea solution methodology for the IOP based

on a regularized Newton-type method, known to be robust and efficient. To reach our goals, we have
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carried out an important work on the solution of the direct problem which is the subject of the first part

of this thesis. Next, the inverse problem that we consider here is described, studied and implemented

in the second part of the thesis.

The first part of the thesis is thus devoted to the direct problem. First (ChapterI), we revisit the

question of the existence and uniqueness of the elasto-acoustic system when relaxing the regular-

ity assumptions that are usually made on the fluid-structureinterface. Our approach is based on a

rewriting of the problem, a priori set in the whole space, into a mixed boundary value problem via

the introduction of the Dirichlet-to-Neumann (DtN) operator of the sphere. We then show that this

formulation is equivalent to a formulation of the system in weighted Sobolev spaces. We can there-

fore apply the Fredholm theory and we establish that the system is well-posed when the solid is a

continuous Lipschitz domain. We then tackle the numerical solution of the mixed problem (Chap-

ter II ) by replacing the DtN operator by a local approximation. Regarding the numerical solution

of the direct problem, we have chosen to implement a DG-type method to solve the elasto-acoustic

system. This choice is guided by the wish, in the long term, toapply the works of this thesis to

configurations from geophysics. It has therefore seemed to be relevant to implement higher-order dis-

continuous finite elements because of their high degree of flexibility which is perfectly suited to the

case of heterogeneous solids. The method that we have developed is particularly interesting because

it allows to mix different orders of approximation, and fits thus perfectly to computational domains

composed of regions characterized by highly contrasted propagation velocities. We have validated

the DG method by comparison with analytical solutions and then, we have performed an analysis that

illustrates excellent performances. We show in particularthat the DG method is very robust to the

effects of numerical pollution. In order to improve the accuracy of the numerical results, we have

enriched the DG method by introducing curved finite elementson the fluid-structure interface. The

numerical simulations presented here illustrate the importance of this enrichment which contributes,

when employed with higher-order elements, to limit the impact of the Jones modes that may, in some

cases, pollute the wave field in the fluid. The solver is first validated by using analytical solutions

that can be written as developments on bases of special functions. Regarding the performance of the

method, it is assessed by comparison with numerical resultspublished by P. Monk and his collabo-

rators in the journal Computational and Applied Mathematics, in 2008, and based on the ultra-weak

method.

The second part of the thesis deals with the inverse problem.The Newton regularized method that

we have chosen involves a Jacobian matrix which must be evaluated at each iteration. We compute

(ChapterIII ) the Fréchet derivative of the elasto-acoustic scattered field with respect to the shape

6
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of the obstacle. In order to make the computation of the derivative readable, we have performed it

formally and thus the related regularity issues have been first left out. We obtain that this derivative

is characterized as the solution to the initial direct elasto-acoustic problem except a change in the

transmission conditions set on the fluid-structure interface. The modified transmission conditions are

now heterogeneous and the source term involves higher ordertraces of the direct scattered field. We

therefore show that the evaluation of the Jacobian matrix requires the solution of the direct problem

with multiple right-hand sides. Then, before proceeding with the numerical implementation of the

inverse problem, we have tried to remove the formal character of the characterization of the Fréchet

derivative of the elasto-acoustic scattered field. To this end, we have been coped with the absence of

some regularity results when the fluid-solid interface is only Lipschitz. However, we have obtained

a complete characterization of the Fréchet derivative whenthe interface is a curvilinear polygon or

polyhedron. In the case where the boundary is only of classC0,1, we have not managed to extend re-

sults established by Ciarlet and his collaborators, published in the Comptes rendus de l’Académie des

Sciences in 2005, which allow to give a sense to the trace for the fields in the domain of the Lapace

operator. In order to fully address the fluid-structure interaction problem, it is necessary to establish

trace results in the domain of the operator∇ · σ and we tried to tackle this issue before observing

that its proof requires non obvious constructions of lifting operators. Nevertheless, this issue is on the

way to be solved. The general case of a Lipschitz domain stillraises further issues and is still far to

be solved. Nevertheless, we have chosen to present a regularity result which seems to illustrate the

difficulty of the problem and give numerous theoretical perspectives to this thesis. In the last chapter

of this manuscript (ChapterIV), we have implemented the Newton regularized method and we have

performed a set of experiments that illustrate the interestof our approach.

Note that the formal characterization established in Chapter III is the subject of an article that

has been accepted for publication in Journal of Inverse and Ill-Posed Problems (JIIP). The analysis

contained in ChapterI has also been submitted, as well as a reduced version of the work reported in

ChapterII .
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Chapter I

On the existence and the uniqueness of a

fluid-structure scattering problem

In this chapter, the existence and uniqueness of the solution of a fluid-structure interaction problem

is investigated. The proposed analysis distinguishes itself from previous studies by employing the DtN

operator properties, and the Fredholm theory. The proposedapproach allows to extend the range

of validity of the standard existence and uniqueness results to the case where the elastic scatterer is

assumed to be only Lipschitz continuous, which is of more practical interest.

I.1 Introduction

The mathematical analysis and the numerical computation ofscattered fields by penetrable objects

are very important to many real-world applications such as radar and sonar detection, geophysical

exploration, structural design, medical imaging, and atmospheric studies. The goal of the proposed

study is to investigate the well-posed nature of a class of elasto-acoustic scattering problems that

describes the propagation of a scattered field from an elastic bounded object immersed in an infinite

domain, representing a fluid medium. This class of problems consists in the coupling of Helmholtz

equation with Navier equation.

Helmholtz problems, per se, have been analyzed extensivelyfrom both mathematical and numeri-

cal viewpoints, and results pertaining to existence and uniqueness can be found in [28, 97, 118, 139],

among others. Likewise, elastic scattering problems have been also investigated mathematically and

numerically, and results pertaining to their well-posedness can be found in [92, 93, 119, 129]. How-

ever, there have been relatively very few mathematical works on problems involving the coupling of

Helmholtz and Navier equations. Indeed, to the best of our knowledge, the well-posed nature of the

coupling system has been studied first in [104] and then a few years later in [85]. In reference [104],

the authors reformulated the considered boundary value problem as an integro-differential system
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Chapter I. On the existence and the uniqueness of a fluid-structure scattering problem

whose unknowns are defined on the fluid-structure interfaceΓ. Such a transformation was accom-

plished using an integral representation of both the fluid pressure and structural displacement fields.

In doing this, the authors established existence and uniqueness results assuming the boundaryΓ of

the scatterer to beC2, which is a very restrictive condition when considering practical situations. In

reference [85], the authors adopted a different approach that relies on the integral representation of the

fluid pressure only. Yet, the approach requires also aC2 regularity on the boundaryΓ to establish sim-

ilar existence and uniqueness results. Note that this formulation has been numerically implemented in

[46] for solving the corresponding inverse elasto-acoustic scattering problem. We must point out that

the formulation employed in [46] is slightly different than the adopted in [85]. The authors in [46]

consider an artificial exterior boundary surrounding the elastic scatterer, on which an exact boundary

condition is imposed via the the integral formulation of thefluid pressure.

We propose here to extend the results obtained in [104] and [46] to the case where the wet surface

Γ is assumed to be only Lipschitz continuous, which is of more practical interest. The proposed proof

employs a weighted Sobolev space framework [64, 76], the Dirichlet-to-Neumann (DtN) operator

[66, 73, 135], the Gårding inequality [17, 126, 130], and the Fredholm alternative [17, 126, 130].

More specifically, the proposed proof can be viewed as a four-step approach:

• In step 1, we specify the mathematical framework for the considered boundary value problem

(BVP). We construct a weighted Sobolev-like space that naturally incorporates the asymptotic

decay of the fluid pressure variablep as well as its outgoing propagation nature.

• Step 2 consists in reformulating the BVP in a bounded domain.Unlike the approach used in

[85], we prescribe the exact DtN boundary condition at the exterior spherical-shaped boundary.

Note that adopting the weighted Sobolev space framework andthe DtN operator allows to

rigorously establish the equivalence between both boundary value problems. To the best of our

knowledge, the equivalence between the BVP and the formulation in the bounded domain is

established rigorously for the first time.

• Step 3 focuses on the boundary value problem formulated in a finite domain. We derive a

variational formulation for this problem, and then, using the sign property of the DtN operator,

we prove that the Gårding’s inequality holds.

• Step 4 consists in applying the Fredholm alternative which allows to prove, under minimal

condition on the regularity of the fluid-structure interface Γ, (a) the existence of the solution

of the BVP, (b) the uniqueness of the fluid pressure, and (c) the uniqueness of the structural

displacement field modulo Jones frequencies [37, 92]. These frequencies may exist only for a

particular class of elastic objects, such as spheres [37, 49, 79].

12
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The remainder of the chapter is organized as follows. In Section I.2, we first state the considered

mathematical model in the infinite domain. Then, we introduce the weighted Sobolev space formu-

lation and the formulation in a bounded domain. Finally, we prove the equivalence between the two

formulations. SectionI.3 is devoted to the mathematical analysis of the boundary value problem for-

mulated in a bounded domain. More specifically, we state the variational formulation corresponding

to this problem. We then establish the equivalence between the strong and the weak formulations, and

then examine the properties of the considered variational problem. In SectionI.4, we investigate the

existence and the uniqueness of the solution of the variational problem. Using the Fredholm alterna-

tive, we prove the existence of the solution. We then prove that the pressure field is unique, whereas

the displacement field is unique only modulo Jones frequencies. Furthermore, and for completeness

purpose only, we recall in AppendixA.1 some properties of the Hankel spherical functions and the

spherical harmonics needed to derive and to study the DtN operator. In AppendixA.2, we perform

an analytical study of the uniqueness of the solution of an exterior Helmholtz problem for which the

boundary of the scatterer is a sphere. AppendixA.3 is devoted to the construction of the DtN operator.

I.2 The Boundary Value Problem Formulations

I.2.1 Formulation in the infinite domain

Let Ωs be a bounded domain ofR3 representing an elastic obstacle, andΩf = R3 \ Ω
s

be the

homogeneous inviscid (fluid) medium surrounding the elastic domain.Γ is the boundary ofΩs and is

assumed to be Lipschitz continuous.

We consider the scattering of a time-harmonic acoustic wavepinc by the elastic obstacleΩs embedded

in Ωf as depicted on FigureI.2.1. The problem is to determine the scattered wavep in the fluid and

the transmitted elastic waveu in the scatterer. Note that the time dependencee−iωt is harmonic, that

is suppressed throughout, according to the linearity of theconsidered problem. The corresponding

system of equations BVP (1) reads as the coupling of the Helmholtz and Navier equations. This

problem can be formulated as follows:

13
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Figure I.2.1 – Problem statement in the infinite domain.

BVP (1)






∆p + kp = 0 in Ωf (I.2.1)

∇ · σ(u) + ω2ρsu = 0 in Ωs (I.2.2)

ω2ρfu · ν =
∂p

∂ν
+
∂g

∂ν
on Γ (I.2.3)

τ(u) = −pν − gν on Γ (I.2.4)

lim
r→+∞

r

(
∂p

∂r
− ikp

)
= 0 (I.2.5)

The pair(p, u) represents the elasto-acoustic scattered field.p is the fluid pressure inΩf whereasu

is the displacement field inΩs. g = pinc = eiω/cfx · d is the incident plane wave.ω is the circular

frequency. cf is a positive real number representing the sound velocity inthe fluid. ρf andρs are

positive real numbers denoting respectively the densitiesof the fluidΩf and of the scattererΩs. ω and

cf are associated with the wavenumberk =
ω

cf
. σ is the stress tensor related to the strain tensorε by

Hooke’s law:

σlm = Clmjnεjn (I.2.6)

whereClmjn is a fourth order elastic stiffness tensor, bounded from above, symmetric, that isClmjn =

Cmljn = Cjnlm, and such that the coefficientsClmjn satisfy:

Clmjnǫlmǫjn ≥ ασ
∑

lm

ǫ2lm, (I.2.7)

for some positive constantασ, for all symmetrical second order tensorǫ.

14



I.2 The Boundary Value Problem Formulations

Note that, in the case of an isotropic medium, it is invariantunder rotations and reflections [93], and

reads as:

Clmjn = λδlmδjn + µ(δljδmn + δlnδmj),

whereλ, µ are the Lamé coefficients. The strain tensorε is related to the displacement fieldu by

[93, 120]:

ε(u) =
1

2

(
∇u+ (∇u)t

)
.

Last,τ denotes the traction vector on the surface of the scattererΩs, that is:

τ(u) = σ(u)ν.

The following observations about the linear boundary valueproblem BVP (1) are noteworthy [85,

104]:

• The viscoelastodynamic displacement fieldu and the dynamic component of the fluid pressure

p satisfy respectively the Navier equation (see Eq. (I.2.2)) and the Helmholtz equation (see

Eq. (I.2.1) ) under the hypothesis of small amplitude oscillations both in the solid and in the

fluid.

• The transmission conditions given by Eqs. (I.2.3)-(I.2.4) are kinematic and dynamic coupling

conditions. They represent respectively the equality of normal displacements of the solid and

the fluid and the equilibrium of forces.

I.2.2 The Weighted Sobolev Space framework

Specifying the mathematical framework is a pre-requisite for investigating the well-posed nature

of BVP (1). Clearly, the standard Sobolev spaceW = (H1(Ωs))3 is the primary candidate for the

displacement variableu, whereasH1(Ωf ) is not appropriate for the fluid pressurep. The latter can be

easily established by considering the asymptotic behaviorof the field ([28, 118] and Eq.(A.2.17) in

AppendixA.2 ):

p ∼ eikr

r
:= f(r); for r = ‖x‖2 large enough.
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Indeed, forD = {x ∈ R3|‖x‖2 > 1}, one can show that‖p‖L2(D) is infinite since we have:

‖f‖L2(D) =
∫

D
ffdx

=
∫

D

eikr

r

e−ikr

r
dx

=
∫

D

1

r2
dx

=
∫ 2π

0

∫ π

0

∫ +∞

1

1

r2
r2 sin θdrdθdφ

= 2π
∫ π

0
sin θdθ

∫ +∞

1
1dr

= 4π
∫ +∞

1
1dr

= +∞.

Hence,p is in H1
loc(Ω

f ), which is just a Fréchet space [3]. However, denotingρ(r) := 1 + r2, we

observe that [118]:
p

ρ1/2
∈ L2(Ωf ) and

∇p
ρ1/2

∈ (L2(Ωf ))3.

Note that, if the origin is not located inΩf , then we have
p

̺
∈ L2(Ωf ) and

∇p
̺

∈ (L2(Ωf))3, with

̺(r) := r.

Hence, using the weight function
1

ρ1/2
or

1

̺
restores theH1 property to the pressure field. However,

this does not encompass the outgoing nature of the pressure field p, as required by the Sommerfeld

condition (see Eq. (I.2.5) of BVP (1)). Not incorporating explicitly such condition will affect the

uniqueness of the solutionp of BVP (1), since the presence of the eigenfunctions is no longer ex-

cluded.

To avoid possible loss of the uniqueness, we construct a moreappropriate weighted Sobolev space

as follows. First, we considerC∞
0 the space of all functions that are infinitely differentiable with

compact support. We then set:

C∞
0 (Ωf ) = {p|Ωf : p ∈ C∞

0 (R3)}. (I.2.8)

We setρ(r) := 1 + r2. Forp, q ∈ C∞
0 (Ωf ), we consider the following inner product:

(p, q)1,ρ :=
∫

Ωf


∇p · ∇q + pq

ρ(r)
+

(
∂p

∂r
− ikp

)(
∂q

∂r
− ikq

)
 dx. (I.2.9)
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Consequently, the norm corresponding to this inner productis denoted by‖ · ‖1,ρ, that is,‖p‖1,ρ =

(p, p)
1/2
1,ρ .

Then, the weighted Sobolev spaceVρ = H1
ρ(Ωf) of trial functions is defined by completion, as the

closure of the spaceC∞
0 (Ωf ) with respect to the norm‖ · ‖1,ρ, i.e.,Vρ := H1

ρ(Ωf ) = C∞
0 (Ωf )

‖·‖1,ρ
.

Furthermore, since the trial functions are weighted, we need to define a different space for the test

functions to derive the variational formulation corresponding to the exterior Helmholtz equation (see

Eq. (I.2.1) of BVP (1)). In order to offset the weight of the trial functions, we naturally choose test

functions with an inverse weight1/ρ. Thus, the weighted Sobolev space of test functionsH1
1/ρ(Ω

f )

can be defined properly as the closure ofC∞
0 (Ωf ) with respect to the norm‖ · ‖1,1/ρ := (p, p)

1/2
1,1/ρ,

i.e.,V1/ρ := H1
1/ρ(Ω

f ) = C∞
0 (Ωf )

‖·‖1,1/ρ .

On the other hand, since the structural displacement field isdefined inside the bounded obstacle, we

consider the classical Hilbert spaceW = (H1(Ωs))
3. We define the inner product foru, v ∈ W by:

(u, v)W :=
∫

Ωs
u · v dx+

∫

Ωs
∇u : ∇v dx. (I.2.10)

The corresponding norm inW is then given by:

‖u‖W =
(

‖u‖2
0 +

∫

Ωs
∇u : ∇u

)1/2

. (I.2.11)

Finally, we define the trial space asHρ = Vρ × W . Consequently, our goal is to study the existence

and uniqueness of(p, u) ∈ Hρ = Vρ ×W such that the field(p, u) satisfies BVP (1).

Remark I.2.2.1 Observe that this setting guarantees that all the integralsof the weak formulation

that can be derived from BVP (1) in infinite domain are well defined. Indeed, for(p, u) ∈ Vρ × W

and(q, v) ∈ V1/ρ ×W , we have:

∣∣∣∣
∫

Ωf
pqdx

∣∣∣∣ =

∣∣∣∣∣

∫

Ωf

(
1

ρ1/2
p

)
(ρ1/2q)dx

∣∣∣∣∣ .

Using Cauchy-Schwarz inequality and the definition of the weighted norm associated to Eq. (I.2.9),

we obtain:

∣∣∣∣
∫

Ωf
pqdx

∣∣∣∣ ≤ ‖ 1

ρ1/2
p‖0‖ρ1/2q‖0

≤ ‖p‖Vρ‖q‖V1/ρ
.

17
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Similarly, we also have:

∣∣∣∣
∫

Ωf
∇p∇qdx

∣∣∣∣ =

∣∣∣∣∣

∫

Ωf

(
1

ρ1/2
∇p

)
(ρ1/2∇q)dx

∣∣∣∣∣

≤ ‖ 1

ρ1/2
∇p‖0‖ρ1/2∇q‖0

≤ ‖∇p‖Vρ‖∇q‖V1/ρ
.

Remark I.2.2.2 For the boundary terms, since the obstacle is enclosed in a sphere of finite radius

r = R, we observe that, for every pointx on Γ, we have
1

ρ(r)
≤ 1 andρ(r) ≤ 1 +R2 .

For all (p, u) ∈ Vρ ×W and(q, v) ∈ V1/ρ ×W , we have:

∣∣∣∣
∫

Γ
u · νqds

∣∣∣∣ =

∣∣∣∣∣

∫

Γ

(
1

ρ1/2
u · ν

)
(ρ1/2q)ds

∣∣∣∣∣

≤
∣∣∣∣
∫

Γ
(u · ν)(ρ1/2q)ds

∣∣∣∣

≤ ‖u‖(L2(Γ))3‖ρ1/2q‖L2(Γ)

≤ ‖u‖(H1(Ωs))3‖ρ1/2q‖H1(Ωf )

≤ ‖u‖W‖q‖V1/ρ

and

∣∣∣∣
∫

Γ
pν · vds

∣∣∣∣ =

∣∣∣∣∣

∫

Γ

(
1

ρ1/2
p

)
(ρ1/2ν · v)ds

∣∣∣∣∣

≤
∣∣∣∣∣
√

1 +R2

∫

Γ

(
1

ρ1/2
p

)
(ν · v)ds

∣∣∣∣∣

≤
√

1 +R2‖ 1

ρ1/2
p‖L2(Γ)‖v‖(L2(Γ))3

≤
√

1 +R2‖p‖Vρ‖v‖W .

Remark I.2.2.3 It is easy to verify that, for every bounded domainK ⊂ Ωf , the weighted Sobolev

spaceH1
ρ(K) coincides with the classical Hilbert spaceH1(K) and their norms are equivalent.

Indeed, sinceC∞
0 (K) is dense inH1

ρ(K), it is sufficient to prove the equivalence of the norms for

smooth functions.
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• First, we have:

‖p‖2
1,ρ =

∫

K


∇p · ∇p + pp

ρ(r)
+

(
∂p

∂r
− ikp

)(
∂p

∂r
− ikp

)
 dx

=
∫

K


 |∇p|2 + |p|2

ρ(r)
+

∣∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣∣

2

 dx

≤
∫

K


|∇p|2 + |p|2 + 2

∣∣∣∣∣
∂p

∂r

∣∣∣∣∣

2

+ 2k2 |p|2

 dx

(
using that

1

ρ(r)
≤ 1

)

= ‖p‖2
H1(K) + 2

∫

K



∣∣∣∣∣
x

‖x‖2
· ∇p

∣∣∣∣∣

2

+ k2 |p|2

 dx

≤ ‖p‖2
H1(K) + 2

∫

K

(
|∇p|2 + k2 |p|2

)
dx

≤ max(3, 1 + 2k2)‖p‖2
H1(K). (I.2.12)

• Second, sinceK is bounded, it can be enclosed in a sphere of radius0 < R < +∞. Therefore,

for all x ∈ K, we have:1 + ‖x‖2
2 = ρ(r) ≤ 1 +R2.

It follows that:

|∇p|2 + |p|2 ≤ 1 +R2

ρ(r)

(
|∇p|2 + |p|2

)

Since both sides are positive, integrating overK, we get:

‖p‖2
H1(K) =

∫

K

(
|∇p|2 + |p|2

)

≤
∫

K

1 +R2

ρ(r)

(
|∇p|2 + |p|2

)

≤ (1 +R2)
∫

K

(
|∇p|2 + |p|2

ρ(r)

)

≤ (1 +R2)
∫

K


 |∇p|2 + |p|2

ρ(r)
+

∣∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣∣

2



≤ (1 +R2)‖p‖2
1,ρ. (I.2.13)

To conclude, there exists two constantsC1, C2 depending onk andK, such that:

C1‖p‖H1(K) ≤ ‖p‖1,ρ ≤ C2‖p‖H1(K). (I.2.14)
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Figure I.2.2 – Problem statement in a bounded domain.

I.2.3 Formulation in a bounded domain

In the following, we reformulate BVP (1) in the bounded domain depicted in FigureI.2.2. LetBR

be the ball of radiusR > 0 and center0. We assumeR to be large enough so thatBR contains the

obstacle, i.e.,Ωs ⊂ BR.

The artificial exterior boundarySR is then given by:

SR = {x ∈ Ωf/ ‖x‖2 = R}. (I.2.15)

We then denote byΩf
R the domain in the fluid medium bounded bySR andΓ, and byBe

R its exterior

region, that is to say,

Ωf
R = {x ∈ Ωf/ ‖x‖2 < R}, (I.2.16)

and

Be
R = R

3 \ Ωf
R ∪ Ωs. (I.2.17)

The Sommerfeld outgoing radiation condition in BVP (1) given by Eq. (I.2.5) can be re-written as

follows [28, 118]:

lim
R→+∞

∫

SR

∣∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣∣

2

ds = 0. (I.2.18)

Furthermore, the pressure onSR satisfies the following Robin-type condition [see AppendixA.3]

∂p

∂r
+ TR(p) = 0.
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where the Dirichlet-to-Neumann operator (DtN)TR is given by:

TR(p(R, θ, φ)) =
+∞∑

n=0

µn(k,R)
n∑

m=−n

pmnYmn(θ, φ), (I.2.19)

for θ ∈ [0, π], φ ∈ [0, 2π[, and

• Ymn represents the orthonormalized spherical harmonics of ordern, n ∈ N,−n ≤ m ≤ n;

• pmn =
∫

S1

pY mn(θ, φ)ds, andS1 denotes the unit sphere;

• µn(k, r) = −kh
′
n(kr)

hn(kr)
, andhn designates the spherical Hankel function of the first kind (see

[2] and AppendixA.1).

Note that the Dirichlet-to-Neumann operatorTR is a nonlocal mapping fromH1/2(SR) intoH−1/2(SR),

that maps exactly the trace of the radiating solution onto the trace of its radial derivative on the sphere.

Given that, we consider the following elasto-acoustic scattering problem defined in a bounded do-

main:

BVP (2)





∆pR + kpR = 0 in Ωf (I.2.20)

∇ · σ(uR) + ω2ρsuR = 0 in Ωs (I.2.21)

ω2ρfuR · ν =
∂pR
∂ν

+
∂g

∂ν
onΓ (I.2.22)

τ(uR) = −pRν − gν onΓ (I.2.23)
∂pR
∂r

+ TR(pR) = 0 onSR . (I.2.24)

Clearly, the pressure fieldpR is in the classical Hilbert spaceV = H1(Ωf
R). Hence, we define‖.‖V

as being the classicalH1-norm, that is, forp ∈ H1(Ωf
R), ‖p‖V =

(
‖p‖2

0,R + ‖∇p‖2
0,R

)1/2
where

‖ · ‖2
0,R =

(∫

Ωf
R

| · |2 dµ
)1/2

.

On the other hand, the displacement componentuR in the scatterer is inW = (H1(Ωs))
3. We then

define the functional spaceH for both fields as the following product space:

H = V ×W = H1(Ωf
R) ×

(
H1(Ωs)

)3
. (I.2.25)

The Hilbert spaceH is equipped with the standard graph norm,

‖(p, u)‖H =
(
‖p‖2

V + ‖u‖2
W

)1/2
; ∀ (p, u) ∈ H.

In addition,〈·, ·〉−1/2,1/2,Γ denotes the dual product betweenH1/2(Γ) andH−1/2(Γ) or between(H1/2(Γ))3
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Chapter I. On the existence and the uniqueness of a fluid-structure scattering problem

and(H−1/2(Γ))3 on Γ.

BVP (2) involves the DtN operator of a sphere. We could have considered any convex regular

surface. Indeed, the proof of existence and uniqueness usesproperties of the DtN operator that are

satisfied when the surface is convex. We have chosen to consider a sphere because we are then able

to exhibit such properties by hands, employing special functions. This could be seen as a limitation,

but it is nothing like as shown in the following section, the bounded problem is equivalent to the

unbounded one formulated in the framework of weighted Sobolev spaces.

I.2.4 Equivalence of the infinite and bounded formulations

Thanks to the construction of the DtN operator in AppendixA.3, we have introduced an exact

boundary condition at finite distance, standing for the outgoing Sommerfeld condition, on an artificial

spherical boundarySR. Hence, we have reduced the boundary value problem initially set in the infinite

domain to a boundary value problem defined in a finite computational domainBR (= Ωf
R × Ωs). The

next result states the equivalence between both boundary value problems.

Theorem I.2.4.1 BVP (1) and BVP (2) are equivalent in the following sense:

i If (p, u) ∈ Hρ is a solution of BVP (1), then the restriction, denoted(pR, uR), of (p, u) to Ωf
R × Ωs

is a solution of BVP (2).

ii If (pR, uR) ∈ H is a solution of BVP (2), then there is a field(p̃, ũ) given by:

p̃ =





pR in Ω
f

R

peR in Be
R,

wherepeR denotes the Helmholtz solution in the exterior domainBe
R (see AppendixA.3for details),

and ũ = uR, such that(p̃, ũ) is solution of BVP (1).

Proof The proof of this theorem relies mainly on the properties of the DtN operatorTR (see Ap-

pendixA.3)

i Let (p, u) ∈ Hρ be a solution of BVP (1) and(pR, uR) be the restriction of(p, u) to Ωf
R × Ωs.

Clearly,(pR, uR) satisfies the Helmholtz equation inΩf
R and the Navier equation, along with the

transmission conditions onΓ.

In addition, sincep belongs toVρ, p is also solution to the exterior Helmholtz problem inBe
R

andp admits an expansion inBe
R. This allows us to replace the outgoing Sommerfeld condi-

tion by the exact boundary condition at finite distance onSR, such thatp|SR
= pR|SR

satisfies
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I.2 The Boundary Value Problem Formulations

∂pR
∂ν

= −TR(pR) onSR. Hence,(pR, uR) is the solution of BVP (2).

Furthermore, sinceΩf
R is a bounded domain, the weighted Sobolev spaceH1

ρ(Ωf
R) coincide

with the classical Hilbert spaceH1(Ωf
R) (see RemarkI.2.2.3). Therefore, the restricted solution

(pR, uR) belongs toH = H1(Ωf
R) × (H1(Ωs))3.

ii Conversely, let(pR, uR) ∈ H be the solution to the boundary value problem BVP (2). We de-

fine peR as being the solution of the exterior Helmholtz problem inBe
R with Dirichlet boundary

conditionpR = peR onSR. We know thatpeR exists and admits a unique series expansion in spher-

ical harmonics inBe
R (see AppendixA.2). Moreover,peR naturally belongs toH1

ρ(Be
R), and by

construction of the DtN operator, its expansion satisfies the same exact ABC aspR onSR, that is,

∂peR
∂r

+ TR(peR) = 0 onSR.

Given that and the fact thatpR coincides withpeR onSR, we definep̃ as follows:

p̃ =






pR in Ω
f

R

peR in Be
R,

andũ = uR. Sincep̃ and its normal derivative are continuous acrossSR, it follows that(p̃, ũ) is

the unique solution to the boundary value problem BVP (1). Moreover, we can observe that(p̃, ũ)

belongs toHρ. Indeed,ũ = uR clearly belongs toW . Next, we prove that̃p ∈ Vρ. To this end,

we first split the norm into two parts as follows:

‖p̃‖H1
ρ(Ωf ) = ‖p̃‖H1

ρ(Ωf
R

) + ‖p̃‖H1
ρ (Be

R
)

= ‖pR‖H1
ρ (Ωf

R) + ‖peR‖H1
ρ(Be

R).

Moreover, sinceΩf
R is a bounded domain, the weighted norm inH1

ρ(Ωf
R) is equivalent to the

standard norm inH1(Ωf
R). Actually, as shown in RemarkI.2.2.3, there is a positive constantC2,

that depends onR, such that:

‖p̃‖H1
ρ(Ωf ) ≤ C2

(
‖pR‖H1(Ωf

R
) + ‖peR‖H1

ρ (Be
R

)

)
.

SincepR andpeR belong respectively toH1(Ωf
R) andH1

ρ(Be
R), both terms in the previous inequal-

ity are bounded. Consequently, we have:

‖p̃‖H1
ρ(Ωf ) < +∞,
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Chapter I. On the existence and the uniqueness of a fluid-structure scattering problem

which leads tõp ∈ Vρ, and concludes the proof.

�

I.3 The Variational Formulation

We consider the boundary value problem BVP (2) set in the finite computational domainBR (=

Ωf
R × Ωs) and its associated variational formulation. Note that the sesquilinear form corresponding

to BVP (2) is not strongly elliptic. This prevents us from applying Lax-Milgram lemma. However,

using properties of the sign of the DtN operator, we prove that it is continuous and satisfies Gårding’s

inequality, which in turn allows to apply the Fredholm theory. Note that, for simplicity purpose, we

omit in the following the subscriptR on the field(p, u) and in the norms.

I.3.1 The Formulation

Consider the following variational problem associated with BVP (2):

(VF)





Find (p, u) ∈ H, such that

a((p, u), (q, v)) = l(q, v); for all (q, v) ∈ H,
(I.3.1)

where





a((p, u), (q, v)) =
1

ω2ρf
af(p, q) + as(u, v) (I.3.2)

+ b((p, u), (q, v)) + b∗((p, u), (q, v)) +
1

ω2ρf
cR(p, q),

l(v, q) =
1

ω2ρf
l1(q) + l2(v) , (I.3.3)
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I.3 The Variational Formulation

and






af(p, q) =
∫

Ωf
R

∇p · ∇q dx− ω2

c2
f

∫

Ωf
R

pq dx,

as(u, v) =
∫

Ωs
σ(u) : ∇v dx− ω2ρs

∫

Ωs
u · v dx,

b((p, u), (q, v)) = 〈u · ν, q〉−1/2,1/2,Γ,

b∗((p, u), (q, v)) = b((q, v), (p, u)) (adjoint ofb), (I.3.4)

l1(q) = 〈∂g
∂ν
, q〉−1/2,1/2,Γ,

l2(v) = −〈pν, v〉−1/2,1/2,Γ,

cR(p, q) = 〈TR(p), q〉−1/2,1/2,SR
.

The following theorem states the equivalence between BVP (2) and the variational problem VF given

by Eq. (I.3.1).

Theorem I.3.1.1 (p, u) ∈ H is a solution of BVP (2) if and only if(p, u) is a solution of VF given by

Eq. (I.3.1).

Proof

i First, we show that if(p, u) is solution of the BVP (2), then(p, u) ∈ H is a solution of the

variational problem (VF) (I.3.1).

Let (q, v) be a pair of test functions in the spaceD(Ω̄f
R) × (D(Ω̄s))3. Integrating Eqs. (I.2.20)

and(I.2.21) of BVP (2) onΩf
R andΩs respectively, we obtain:

∫

Ωf
R

∆pq dx+
ω2

c2
f

∫

Ωf
R

pq dx = 0,

∫

Ωs
∇ · σ(u)v dx+ ω2ρs

∫

Ωs
u · v dx = 0.

Then, applying Green’s formula, we deduce that:

∫

Ωf
R

∇p · ∇q dx− ω2

c2
f

∫

Ωf
R

pq dx+ 〈∇p · ν, q〉−1/2,1/2,Γ − 〈∇p · ν, q〉−1/2,1/2,SR
= 0,

(I.3.5)
∫

Ωs
σ(u) : ∇v dx− ω2ρs

∫

Ωs
u · v dx− 〈σ(u) · ν, v〉−1/2,1/2,Γ = 0.

Hence, it follows from substituting both transmission conditions Eqs. (I.2.22) and (I.2.23) of

25



Chapter I. On the existence and the uniqueness of a fluid-structure scattering problem

BVP (2) into Eq. (I.3.5), that:

∫

Ωf
R

∇p · ∇q dx− ω2

c2
f

∫

Ωf
R

pq dx+ 〈ω2ρfu · ν, q〉−1/2,1/2,Γ − 〈∇p · ν, q〉−1/2,1/2,SR

= 〈∂g
∂ν
, q〉−1/2,1/2,Γ, (I.3.6)

∫

Ωs
σ(u) : ∇v dx− ω2ρs

∫

Ωs
u · v dx+ 〈pν, v〉−1/2,1/2,Γ

= −〈gν, v〉−1/2,1/2,Γ. (I.3.7)

Note that in spherical coordinates, we have:∇p · ν =
∂p

∂r
onSR.

Furthermore, substituting Eq. (I.2.24) of BVP (2) into Eq. (I.3.6) leads to the following variational

formulation, for all(q, v) ∈ D(Ω̄f
R) × (D(Ω̄s))3,

∫

Ωf
R

∇p · ∇q dx− ω2

c2
f

∫

Ωf
R

pq dx+ ω2ρf 〈u · ν, q〉−1/2,1/2,Γ + 〈TR(p), q〉−1/2,1/2,SR

= 〈∂g
∂ν
, q〉−1/2,1/2,Γ, (I.3.8)

∫

Ωs
σ(u) : ∇v dx− ω2ρs

∫

Ωs
u · v dx+ 〈pν, v〉−1/2,1/2,Γ

= −〈gν, v〉−1/2,1/2,Γ. (I.3.9)

SinceD(Ω̄f
R) × (D(Ω̄s))3 is dense intoH1(Ωf

R) × (H1(Ωs))
3, the problem can thus be rewritten

as follows:

(VF)






Find (p, u) ∈ H, such that

af(p, q) + ω2ρfb((p, u), (q, v)) + cR(p, q) = l1(q); ∀ q ∈ V, (I.3.10)

as(u, v) + b∗((p, u), (q, v)) = l2(v); ∀ v ∈ W. (I.3.11)

Hence, VF given by Eq. (I.3.1) is an immediate consequence of adding Eq.(I.3.10) to Eq.(I.3.11).

ii Conversely, we prove that if(p, u) ∈ H is the solution of the variational problem VF given by

Eq. (I.3.1), then(p, u) is the solution of BVP (2). Indeed, let(ϕ, φ) ∈ D(Ωf
R) × (D(Ωs))3. If

(ϕ, φ) = (ϕ, 0), then we have:

af (p, ϕ) = 0. (I.3.12)

Similarly, let (ϕ, φ) = (0, φ). Sinceφ vanishes in the neighborhood ofΓ, we obtain:

as(u, φ) = 0. (I.3.13)
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Hence, we have:

∫

Ωf
R

∇p · ∇ϕdx− ω2

c2
f

∫

Ωf
R

pϕdx = 0, for anyϕ ∈ D(Ωf
R),

∫

Ωs
σ(u) : ∇φ dx− ω2ρs

∫

Ωs
u · φ dx = 0, for anyφ ∈ (D(Ωs))3.

Therefore, we deduce that, in the distribution sense at least, p andu satisfy:

∆p+
ω2

c2
f

p = 0, in D
′(Ωf

R),

∇ · σ(u) + ω2ρsu = 0, in (D′(Ωs))3.

Moreover, sincep ∈ H1(Ωf
R), ∆p ∈ H1(Ωf

R). Similarly, sinceu ∈ (H1(Ωs))3, then∇ · σ(u) ∈
(H1(Ωs))3. It follows that the pair(p, u) ∈ H and satisfies the Helmholtz and Navier equations

in L2. Consequently, we have:

∆p+
ω2

c2
f

p = 0 a.e. inΩf
R,

∇ · σ(u) + ω2ρsu = 0 a.e. inΩs.

Next, we analyze the behavior ofp andu at the boundaries. Let(ϕ, φ) ∈ D(Ω
f

R) × (D(Ω
s
))3.

We setφ = 0. Then,

af(p, ϕ) + ω2ρfb((p, u), (ϕ, φ)) + cR(p, ϕ) = l1(ϕ). (I.3.14)

In addition, forϕ = 0, we obtain:

as(u, φ) + b∗((p, u), (ϕ, φ)) = l2(φ). (I.3.15)

Consequently, we have:

∫

Ωf
R

∇p · ∇ϕdx− ω2

c2
f

∫

Ωf
R

pϕ dx+ ω2ρf 〈u · ν, ϕ〉−1/2,1/2,Γ + 〈TR(p), ϕ〉−1/2,1/2,SR

= 〈∂g
∂ν
, ϕ〉−1/2,1/2,Γ (I.3.16)

∫

Ωs
σ(u) : ∇φ dx− ω2ρs

∫

Ωs
u · φ dx+ 〈pν, φ〉−1/2,1/2,Γ

= −〈pν, φ〉−1/2,1/2,Γ. (I.3.17)
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Applying again the Green’s theorem to Eqs. (I.3.16)-(I.3.17), we obtain:

∫

Ωf
R

(∆p+
ω2

c2
f

p)ϕdx+ 〈∂p
∂ν
, ϕ〉−1/2,1/2,Γ − ω2ρf 〈u · ν, ϕ〉−1/2,1/2,Γ − 〈∂p

∂ν
, ϕ〉−1/2,1/2,SR

−〈TR(p), ϕ〉−1/2,1/2,SR
= −〈∂g

∂ν
, ϕ〉−1/2,1/2,Γ, for all ϕ ∈ D(Ω

f

R), (I.3.18)
∫

Ωs
(∇ · σ(u) + ω2ρsu) · φ dx− 〈σ(u) · ν, φ〉−1/2,1/2,Γ − 〈pν, φ〉−1/2,1/2,Γ

= 〈pν, φ〉−1/2,1/2,Γ, for all φ ∈ (D(Ω
s
))3.(I.3.19)

Sincep (resp.u) satisfies the Helmholtz (resp. Navier) equation, then it follows from Eqs. (I.3.18)-

(I.3.19) that:

〈∂p
∂ν
, ϕ〉−1/2,1/2,Γ − 〈ω2ρfu · ν, ϕ〉−1/2,1/2,Γ − 〈∂p

∂r
, ϕ〉−1/2,1/2,SR

− 〈TR(p), ϕ〉−1/2,1/2,SR

= −〈∂g
∂ν
, ϕ〉−1/2,1/2,Γ, for all ϕ ∈ D(Ω

f

R),

−〈σ(u) · ν, φ〉−1/2,1/2,Γ − 〈pν, φ〉−1/2,1/2,Γ = 〈pν, φ〉−1/2,1/2,Γ, for all φ ∈ (D(Ω
s
))3.

Finally, takingϕ that vanishes onSR, we obtain the transmission conditions on the Lipschitz

fluid-structure interfaceΓ:

ω2ρfu · ν =
∂p

∂ν
+
∂g

∂ν
in H−1/2(Γ) (I.3.20)

σ(u) · ν = −pν − gν in (H−1/2(Γ))3. (I.3.21)

Next, forφ vanishing in a neighborhood ofΓ, we obtain the boundary condition onSR:

∂p

∂r
+ TR(p) = 0 in H−1/2(SR). (I.3.22)

Sincep is in H1(Ωf
R), it follows from the classical trace theorems [18, 30, 35, 70] that p ∈

H1/2(Γ). By multiplying p by the normal vector which isL∞, we obtainpn ∈ L2(Γ). Similarly,

sinceu ∈ (H1(Ωs))3, u|Γ exists in(H1/2(Γ))3, and its normal traceu ·n onΓ is defined inL2(Γ).

Using the fact thatg is sufficiently regular, and since the fields are linked via the transmission

conditions, we thus get that∇p · n andσ(u) · n have a sense inL2(Γ) and(L2(Γ))3 respectively.

Furthermore, in the neighborhood of the smooth spherical artificial boundarySR, the solutionp is

C∞. Therefore, the normal derivative ofp onSR is at least inL2(SR), and thus,TR(p) ∈ L2(SR).

Finally, it follows that Eqs (I.3.20), (I.3.21) and (I.3.22) remain valid inL2(Γ),(L2(Γ))3, L2(SR)
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respectively, that is:

ρfω
2u · ν =

∂p

∂ν
+
∂g

∂ν
on Γ,

σ(u) · ν = −pν − pν onΓ,

∂p

∂r
+ TR(p) = 0 onSR.

In summary, we have proven that(p, u) ∈ H is the solution of the direct elasto-acoustic problem

BVP (2).

�

Remark I.3.1.1 It is worth noting that the solution is in fact more regular than stated. Indeed, since

p ∈ H1(Ωf
R), and∇p · ν ∈ L2(Γ) ∪ L2(SR), then, according to Jerison-Kenig [90], we havep ∈

H3/2(Ωf
R). Similarly, from the results extended to the elastic case [36], u ∈ (H1(Ωs))3 together with

σ(u) · ν ∈ (L2(Γ))3 imply thatu ∈ (H3/2(Ωs))3.

I.3.2 Mathematical Properties

The goal here is to employ the Fredholm alternative to establish existence and uniqueness results.

Our approach relies on the following result [60, 87]:

Assume that the formulation satisfies a Gårding’s inequality of the form:

Re[a((p, u), (p, u))] + CU‖(p, u)‖2
U ≥ α‖(p, u)‖2

H; ∀ (p, u) ∈ H,

where the Hilbert spaceH is compactly embedded in the Hilbert spaceU . Then, the Fredholm

alternative can be applied since the operatorK : H → H ′ (the dual space ofH) defined byK(p, u) =

‖(p, u)‖U is a compact perturbation of the operator corresponding to the sesquilinear forma(·, ·). It

follows that the uniqueness of the solution(p, u) of the variational problem ensures its existence.

Consequently, all w<e need to show in what follows is that thesesquilinear forma(·, ·) given by

Eq. (I.3.2) is continuous and satisfies the Gårding’s inequality. The latter is established using the

sign properties of the real part and imaginary part of the Dirichlet-to-Neumann formcR(·, ·) given by

Eq. (I.3.4).

I.3.2.1 Properties of the Dirichlet-to-Neumann operator

First, we establish two fundamental sign properties on the DtN operator.
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Lemma 1 Letk be a positive number andr ≥ R. Then,

Re (µn(k, r)) > 0, ∀n ∈ N. (I.3.23)

Proof From the definition of the spherical Hankel functions of the first kind (see Eq. (A.1.5) in

AppendixA.1), the coefficientsµn(k, r) can be written as:

µn(k, r) = −kj
′
n(kr) + iy′

n(kr)

jn(kr) + iyn(kr)
. (I.3.24)

Taking the real part of Eq. (I.3.24), we obtain:

Re (µn(k, r)) = −kj
′
n(kr)jn(kr) + y′

n(kr)yn(kr)

j2
n(kr) + y2

n(kr)

= −k
1

2
(m2

n)′(kr)

m2
n(kr)

. (I.3.25)

where

m2
n(kr) = j2

n(kr) + y2
n(kr). (I.3.26)

On the other hand, we know (see PropositionA.1.1.1) that, (m2
n)′(kr) < 0. Hence, it follows from

Eq. (I.3.25) that:

Re (µn(k, r)) > 0, (I.3.27)

which concludes the proof of Lemma1.

�

Lemma 2 Letk be a positive number andr ≥ R. Then,

Im (µn(k, r)) < 0, ∀n ∈ N. (I.3.28)

Proof The proof relies on the properties of the Wronskian (see Appendix A.1).

Taking the imaginary part of Eq. (I.3.24) leads to:

Im (µn(k, r)) = −kjn(kr)y′
n(kr) − j′

n(kr)yn(kr)

j2
n(kr) + y2

n(kr)
. (I.3.29)
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From the definition ofm2
n (see Eq.I.3.26)) and PropositionA.1.1.2, we deduce that:

Im (µn(k, r)) = −kW (jn(kr), yn(kr))

m2
n(kr)

< 0, (I.3.30)

whereW (·, ·) is the Wronskian defined in PropositionA.1.1.2.

�

Then, we prove the following sign properties on the Dirichlet-to-Neumann formcR(·, ·) given by

Eq. (I.3.4).

Proposition I.3.2.1 Let cR(·, ·) be the sesquilinear form given by Eq. (I.3.4). Then,

Re [cR(p, p)] > 0, ∀ p ∈ H1/2(SR) \ {0} (I.3.31)

Im [cR(p, p)] < 0. (I.3.32)

Proof From the definition of the DtN operator (see Eq. (I.2.19)) and the orthogonality properties of

the spherical harmonicsYmn (see, for e.g., [2] or AppendixA.1.2), the sesquilinear formcR(·, ·) (see

Eq.I.3.4) can be re-written as follows:

cR(p, q) := 〈TR(p), q〉−1/2,1/2,SR
=

+∞∑

n=0

µn(k,R)
n∑

m=−n

pmnqmn, ∀ p, q ∈ L2(SR). (I.3.33)

Hence,

cR(p, p) =
+∞∑

n=0

µn(k,R)
n∑

m=−n

|pmn|2, ∀ p ∈ L2(SR). (I.3.34)

The result is then an immediate consequence of the definitionof cR(·, ·) given by Eq. (I.3.34) and

Lemmas1 and2.

�

I.3.2.2 Continuity

We prove in this section the following continuity result on the sesquilinear forma(·, ·) given by

Eq. (I.3.2).

Lemma 3 The sesquilinear forma(·, ·) given by Eq. (I.3.2) is continuous onH × H, that is, there

exists a positive constantCa such that,

|a((p, u), (q, v))| ≤ Ca‖(p, u)‖H‖(q, v)‖H; ∀ (p, u) ∈ H and∀ (q, v) ∈ H. (I.3.35)
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Furthermore, the forml(·) given by Eq. (I.3.3) is a linear form continuous onH.

Proof Let (p, u), (q, v) ∈ H. We can bound each form ina(·, ·) defined in Eq. (I.3.2) separately as

follows. First, we have:

|af(p, q)| =

∣∣∣∣∣

∫

Ωf
R

∇p · ∇q dx− ω2

c2
f

∫

Ωf
R

pq dx

∣∣∣∣∣

≤
∣∣∣∣∣

∫

Ωf
R

∇p · ∇q dx
∣∣∣∣∣+

ω2

c2
f

∣∣∣∣∣

∫

Ωf
R

pq dx

∣∣∣∣∣

≤ ‖∇p‖0‖∇q‖0 +
ω2

c2
f

‖p‖0‖q‖0

≤ max

(
1,
ω2

c2
f

)
(‖∇p‖0 + ‖p‖0)(‖∇q‖0 + ‖q‖0)

≤ 2 max

(
1,
ω2

c2
f

)
(‖∇p‖2

0 + ‖p‖2
0)

1/2(‖∇q‖2
0 + ‖q‖2

0)
1/2

≤ 2 max

(
1,
ω2

c2
f

)
‖p‖V ‖q‖V . (I.3.36)

We set

C1 = 2 max

(
1,
ω2

c2
f

)
. (I.3.37)

Then, we deduce that:

|af (p, q)| ≤ C1‖p‖V ‖q‖V ; ∀ p, q ∈ V, (I.3.38)

which proves the continuity ofaf (·, ·) onV × V .

Similarly, we have:

|as(u, v)| =
∣∣∣∣
∫

Ωs
σ(u) : ∇v dx− ω2ρs

∫

Ωs
u · v dx

∣∣∣∣

≤
∣∣∣∣
∫

Ωs
σ(u) : ∇v dx

∣∣∣∣+ ω2ρs

∣∣∣∣
∫

Ωs
u · v dx

∣∣∣∣

≤
∣∣∣∣
∫

Ωs
σ(u) : ∇v dx

∣∣∣∣+ ω2ρs‖u‖0‖v‖0. (I.3.39)

On the other hand, the stress tensorσ is related to the strain tensorε by Hooke’s law as follows:

σlm = Clmjnεjn, (I.3.40)
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Assuming thatClmjn ∈ L∞(Ωs), we denoteCσ = suplmjn |Clmjn|. It follows from Eq. (I.3.40) that:

∣∣∣∣
∫

Ωs
σ(u) : ∇v dx

∣∣∣∣ =
∣∣∣∣
∫

Ωs
σ(u) : ε(v) dx

∣∣∣∣ (I.3.41)

=

∣∣∣∣∣∣

∫

Ωs

∑

lm




∑

jn

Clmjnεjn(u)



 εlm(v)dx

∣∣∣∣∣∣

≤ Cσ

∣∣∣∣∣∣

∫

Ωs

∑

lm



∑

jn

εjn(u)


 εlm(v)dx

∣∣∣∣∣∣

≤ 9Cσ‖ε(u)‖0‖ε(v)‖0. (I.3.42)

Substituting Eq. (I.3.42) into Eq. (I.3.39), and using the fact that‖ε(u)‖0 ≤ ‖∇u‖0, leads to:

|as(u, v)| ≤ 9Cσ‖∇u‖0‖∇v‖0 + ω2ρs‖u‖0‖v‖0

≤ 2 max
(
9Cσ, ω

2ρs
)

‖u‖W‖v‖W .

We set

C2 = 2 max
(
9Cσ, ω

2ρs
)
. (I.3.43)

Therefore,

|as(u, v)| ≤ C2‖u‖W‖v‖W ; ∀u, v ∈ W, (I.3.44)

which proves the continuity ofas(·, ·) onW ×W .

Furthermore, using the continuity of the trace mappings [30, 35, 70] from H1(Ωf
R) into L2(Γ), and

from (H1(Ωs))3 into (L2(Γ))3 respectively, we obtain that:

|b((p, u), (q, v))| =
∣∣∣∣
∫

Γ
u · νq dσ

∣∣∣∣

≤ ‖u · ν‖L2(Γ)‖q‖L2(Γ)

≤ ‖u‖(L2(Γ))3‖q‖L2(Γ)

≤ C‖u‖W‖q‖V

≤ C
(
‖p‖2

V + ‖u‖2
W

)1/2 (‖q‖2
V + ‖v‖2

W

)1/2
,

(I.3.45)
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for some positive constantC. Hence,

|b((p, u), (q, v))| ≤ Cb‖(p, u)‖H‖(q, v)‖H; ∀ (p, u), (q, v) ∈ H, (I.3.46)

which proves the continuity ofb(·, ·) onH ×H.

Finally, using the continuity of the DtN operator fromH1/2(SR) into H−1/2(SR), together with the

classical trace theorems [70, 101], we obtain that:

|cR(p, q)| = |〈TR(p), q〉−1/2,1/2,SR
|

≤ ‖TR(p)‖H−1/2(SR)‖q‖H1/2(SR)

≤ C‖p‖H1/2(SR)‖q‖H1/2(SR).

≤ CR‖p‖V ‖q‖V , (I.3.47)

for some positive constantCR that depends onR.

To conclude, it follows from Eq. (I.3.38), Eq. (I.3.44), Eq. (I.3.46) and Eq. (I.3.47) that:

|a((p, u), (q, v))| ≤ 1

ω2ρf
C1‖p‖V ‖q‖V + C2‖u‖W‖v‖W

+2Cb‖(p, u)‖H‖(q, v)‖H +
1

ω2ρf
CR‖p‖V ‖q‖V

≤ max

(
1

ω2ρf
(C1 + CR), C2

)
(‖p‖V + ‖u‖W )(‖q‖V + ‖v‖W )

+2Cb‖(p, u)‖H‖(q, v)‖H

≤ 2 max

(
1

ω2ρf
(C1 + CR), C2

)
(‖p‖2

V + ‖u‖2
W )1/2(‖q‖2

V + ‖v‖2
W )1/2

+2Cb‖(p, u)‖H‖(q, v)‖H
(I.3.48)

We set

Ca = 2

(
max

(
1

ω2ρf
(C1 + CR), C2

)
+ Cb

)
. (I.3.49)

Therefore,

|a((p, u), (q, v))| ≤ Ca‖(p, u)‖H‖(q, v)‖H; ∀ (p, u), (q, v) ∈ H, (I.3.50)
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which proves the continuity of the sesquilinear forma(·, ·).
Note that the continuity of the linear forml(·) is an immediate consequence of employing Cauchy-

Schwarz inequality.

�

I.3.2.3 Gårding’s inequality

The goal here is to prove thata(·, ·) satisfies Gårding’s inequality onH. First, letU be the

following Hilbert space:

U = L2(Ωf
R) × (L2(Ωs))3,

equipped with the standard graph norm. Then, we have:H ⊂ U ⊂ H ′, with dense embeddings and,

from Rellich-Kondrachov theorem [3], the compact embeddingH ⊂⊂ U . Our goal is to establish the

following proposition:

Proposition I.3.2.2 The sesquilinear forma(·, ·) given by Eq. (I.3.2) satisfies Gårding’s inequality

onH, that is, there are two constantsCU ≥ 0 andα > 0 such that:

Re[a((p, u), (p, u))] + CU‖(p, u)‖2
U ≥ α‖(p, u)‖2

H; ∀ (p, u) ∈ H. (I.3.51)

Proof Take (p, u) ∈ H. We proceed for each form ina(·, ·) defined by Eq. (I.3.2) separately as

follows.

Forp ∈ V , it follows from Eq. (I.3.4) that:

af (p, p) =
∫

Ωf
R

∇p · ∇p dx− ω2

c2
f

∫

Ωf
R

pp dx

= ‖∇p‖2
0 − ω2

c2
f

‖p‖2
0.

We thus obtain:

af(p, p) +
ω2

c2
f

‖p‖2
0 = ‖∇p‖2

0; ∀ p ∈ V. (I.3.52)

Moreover, since all the terms in Eq. (I.3.52) are real, we conclude that the sesquilinear formaf (·, ·) is

V -coercive.

We set

C1 =
1

ω2ρf

(
1 +

ω2

c2
f

)
and α1 =

1

ω2ρf
. (I.3.53)
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Then,

1

ω2ρf
Re [af(p, p)] + C1‖p‖2

0 = α1‖p‖2
V ; ∀ p ∈ V. (I.3.54)

Similarly, takeu ∈ W . Using Hooke’s law and the property of the stiffness tensor given by Eq. (I.2.6)

and Eq. (I.2.7), it follows from Eq. (I.3.4) that:

as(u, u) =
∫

Ωs
σ(u) : ∇u dx− ω2ρs

∫

Ωs
|u|2 dx

=
∫

Ωs
σ(u) : ε(u) dx− ω2ρs

∫

Ωs
|u|2 dx

=
∫

Ωs

∑

lm

∑

jn

Clmjnεjn(u)εlm(u) dx− ω2ρs

∫

Ωs
|u|2 dx

≥ ασ

∫

Ωs

∑

lm

εlm(u)εlm(u) dx− ω2ρs

∫

Ωs
|u|2 dx

≥ ασ

∫

Ωs
ε(u) : ε(u) dx− ω2ρs

∫

Ωs
|u|2 dx.

We thus deduce:

as(u, u) ≥ ασ‖ε(u)‖2
0 − ω2ρs‖u‖2

0, (I.3.55)

which proves thatas(u, u) is a real number.

In addition, sinceΩs has a Lipschitz boundary, the second Korn’s inequality ([44, 119]) holds and

ensures the existence of a constantCk > 0 such that:

‖ε(u)‖2
0 + ‖u‖2

0 ≥ Ck‖u‖2
W ; ∀u ∈ W. (I.3.56)

Combining Eq. (I.3.56) with Eq. (I.3.55), we obtain:

Re [as(u, u)] ≥ ασCk‖u‖2
W − ασ‖u‖2

0 − ω2ρs‖u‖2
0

≥ ασCk‖u‖2
W − (ασ + ω2ρs)‖u‖2

0.

We set

C2 = (ασ + ω2ρs) and α2 = ασCk. (I.3.57)

Therefore, we have:

Re [as(u, u)] + C2‖u‖2
0 ≥ α2‖u‖2

W ; ∀u ∈ W, (I.3.58)
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which proves theW -coercivity ofas(·, ·).

Furthermore, sinceu ∈ (H1(Ωs))3, thenu · ν ∈ L2(Γ). In addition,Hǫ(Γ) is compactly embedded in

L2(Γ), for anyǫ such that0 < ǫ < 1. Moreover, the trace theorem given in [30] is valid for Lipschitz

domain. Hence, the trace mapping is linear continuous fromH1/2+ǫ(Ω) intoHǫ(Γ), for all 0 < ǫ < 1.

Takeǫ = 1/4. Then,

|b(p, u), (p, u)| =

∣∣∣∣
∫

Γ
u · νp

∣∣∣∣

≤ ‖u · ν‖L2(Γ)‖p‖L2(Γ)

≤ C‖u‖(L2(Γ))3‖p‖L2(Γ)

≤ C‖u‖(H1/4(Γ))3‖p‖H1/4(Γ)

≤ C‖u‖(H3/4(Ωs))3‖p‖H3/4(Ωf
R)

≤ C‖(p, u)‖2
(H3/4(Ωs))3×H3/4(Ωf

R)
. (I.3.59)

Furthermore, for anyδ > 0, there is a constantCδ such that:

‖(p, u)‖2
(H3/4(Ωs))3×H3/4(Ωf

R)
≤ δ‖(∇p,∇u)‖2

U + Cδ‖(p, u)‖2
U , ∀ (p, u) ∈ H. (I.3.60)

Hence, we deduce:

|Re [b((p, u), (p, u)) + b∗((p, u), (p, u))]|

= |2Re [b((p, u), (p, u))]|

≤ C
(
δ‖(∇p,∇u)‖2

U + Cδ‖(p, u)‖2
U

)

≤ C
(
δ‖(p, u)‖2

H + Cδ‖(p, u)‖2
U

)
.

Consequently, we have:

Re [b((p, u), (p, u)) + b∗((p, u), (p, u))] ≥ −Cδ‖(p, u)‖2
H − CCδ‖(p, u)‖2

U . (I.3.61)

Therefore, for anyδ > 0, there is a constantCb > 0 such that:

Re [b((p, u), (p, u)) + b∗((p, u), (p, u))] + Cb‖(p, u)‖2
U ≥ −Cδ‖(p, u)‖2

H; ∀ (p, u) ∈ H.(I.3.62)
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Last, it follows from PropositionI.3.2.1that:

Re [cR(p, p)] = Re[〈TR(p), p〉−1/2,1/2,SR
] ≥ 0, ∀ p ∈ V. (I.3.63)

Note that we have chosenǫ = 1/4. However, one could have used1/2 + ǫ for any0 < ǫ < 1/2.

To conclude, it follows from Eq. (I.3.54), Eq. (I.3.58), Eq. (I.3.62) and Eq. (I.3.63) that, for anyδ > 0,

Re [a((p, u), (p, u))] + C1‖p‖2
0 + C2‖u‖2

0 + Cb‖(p, u)‖2
U

=
1

ω2ρf
Re [af(p, p)] +Re [as(u, u)] +Re [b((p, u), (p, u)) + b∗((p, u), (p, u))]

+
1

ω2ρf
Re [cR(p, p)] + C1‖p‖2

0 + C2‖u‖2
0 + Cb‖(p, u)‖2

U

≥ α1‖p‖2
V + α2‖u‖2

W − Cδ‖(p, u)‖2
H

≥ min(α1, α2)(‖p‖2
V + ‖u‖2

W ) − Cδ‖(p, u)‖2
H

≥ min(α1, α2)‖(p, u)‖2
H − Cδ‖(p, u)‖2

H.

We set

δ =
min(α1, α2)

2C
, α =

min(α1, α2)

2
and CU = max(C1, C2, Cb). (I.3.64)

Then, we deduce that:

Re [a((p, u), (p, u))] + CU‖(p, u)‖2
U ≥ α‖(p, u)‖2

H; ∀ (p, u) ∈ H. (I.3.65)

Eq. (I.3.65) together with the dense and compact embeddingH ⊂⊂ U concludes the proof of Propo-

sition I.3.2.2.

�

I.4 Uniqueness & Existence

For a completeness purpose, we first recall the Fredholm alternative Theorem in the considered

mathematical framework. This result can be found, for example, in p.240 of reference [87].
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Proposition I.4.0.3 Consider the following variational problem in the Hilbert spaceH:

{
Find s ∈ H, such that (I.4.1)

a(s, t) = l(t); for all t ∈ H.

Assume that the continuous sesquilinear forma(·, ·) satisfies the following Gårding’s inequality:

Re (a(t, t)) + C‖t‖2
U ≥ α‖t‖2

H ; ∀ t ∈ H, (I.4.2)

for some a positive constantα and a compact embeddingH ⊂⊂ U .

In addition, consider the homogeneous variational problemfor a sesquilinear forma(·, ·) and its

adjoint respectively:

{
Find s0 ∈ H, such that (I.4.3)

a(s0, t) = 0; for all t ∈ H.

{
Find t0 ∈ H, such that (I.4.4)

a∗(t0, s) = a(s, t0) = 0; for all s ∈ H.

Then, we have the following alternative:

i Either (I.4.1) admits exactly one solutions ∈ H for any givenl ∈ H∗.

ii Or the homogeneous problems (I.4.3) and (I.4.4) have finite-dimensional nullspaces of dimension

m > 0. In addition, the non homogeneous problem (I.4.1) and its adjoint:

{
Find t ∈ H, such that (I.4.5)

a∗(t, s) = a(s, t) = l∗(s); for all s ∈ H.

admit solutions if and only if the following orthogonality conditions are satisfied:

l(t0(j)) = 0, respectively, l∗(s0(j)) = 0; for j = 1, · · · , m, (I.4.6)

where{u0(j)}mj=1 spans the eigenspace of (I.4.3), whereas{u0(j)}mj=1 spans the eigenspace of

(I.4.4).

I.4.1 Announcement of the main results

We are now in a position to apply PropositionI.4.0.3in order to prove the following theorem in

the next sections.
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Theorem I.4.1.1 For anypinc ∈ H1(Γ), the boundary value problem BVP (2) admits a solution in the

spaceH = H1(Ωf ∩BR) × (H1(Ωs))3. This solution is unique modulo Jones resonance frequencies

in the elastic scatterer that can exist for certain geometries.

Moreover, we have the following estimate:

‖(p, u)‖H ≤ ‖l‖H′. (I.4.7)

An immediate consequence of TheoremI.4.1.1in conjunction with TheoremI.2.4.1is the following

result on the well-posed nature of the boundary value problem BVP (1) in the infinite domain:

Corollary I.4.1.1 For anypinc ∈ H1(Γ), the boundary value problem BVP (1) in the infinite domain

admits a solution in the spaceHρ = H1
ρ(Ω

f ) × (H1(Ωs))3. Moreover, the pressure fieldp is always

unique, whereas the displacement fieldu is unique up to Jones resonance frequencies that may occur

in the elastic scatterer for certain geometries.

I.4.2 Proof of the uniqueness

We first investigate the uniqueness of the solution of BVP (2)since the existence is a consequence

of applying the Fredholm alternative. The uniqueness of thepressure field is established using an

analytic continuation argument. However, the uniqueness of the displacement field is not guaranteed.

Indeed, there are possible values of the oscillation parameterω, called Jones frequencies, for which the

homogeneous transmission problem has nontrivial solutions, called Jones modes. Therefore,u will

be defined up to these vibrating frequencies [104]. Such frequencies can exist for simple geometries

(e.g. spheres). Note that Hargé [79] has established that Jones modes do not exist for arbitrarily

shaped bodies.

I.4.2.1 Uniqueness of the pressure field

We prove this result by contradiction. Assume the existenceof two solutions of the reduced fluid-

structure variational problem, denoted by(p1, u1) and(p2, u2).

We set:

p = p1 − p2 and u = u1 − u2. (I.4.8)

Then, the pair(p, u) is solution of BVP (2) withg = 0 and thus satisfies the homogeneous equation:

a((p, u), (p, u)) = 0,
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that is,

1

ω2ρf
af (p, p) + as(u, u) + b((p, u), (p, u)) + b∗((p, u), (p, u)) +

1

ω2ρf
cR(p, p) = 0. (I.4.9)

Since
1

ω2ρf
af(p, p) + as(u, u) is a real number, then,

Im [b((p, u), (p, u)) + b∗((p, u), (p, u))] = 0.

Hence, we deduce that:

Im [a((p, u), (p, u))] = Im [cR(p, p)] = 0. (I.4.10)

On the other hand, we know thatIm (µn(k, r)) < 0, ∀n ∈ N (See Lemma2). Therefore, we must

havepn = 0, ∀n ∈ N. Consequently, we obtain:

p = 0 onSR.

Moreover, we also have:

TR(p) = −∂p

∂r
= −∂p

∂ν
= 0 onSR.

Hence, we can continuously extend the pressure fieldp by zero in the exterior domainBe
R. Using

the regularity theorems on the Helmholtz operator [74], the extended functioñp is such that̃p ≡ 0

and belongs toH2
loc(B

e
R) ∩H1

0,loc(B
e
R). Moreover, from the ellipticity of the Helmholtz operator,the

functionp̃ is analytic. It follows that we can apply the analytic continuation principle, and obtain:

p = p̃ = 0 in Ωf
R, (I.4.11)

which proves the uniqueness of the pressure velocity.

I.4.2.2 Uniqueness of the displacement field

Let (p, u) be the field given by Eq. (I.4.8) (see SectionI.4.2.1). Then, if follows from the unique-

ness of the pressure field that:

∂p

∂ν
= 0 on Γ. (I.4.12)
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Substituting Eq. (I.4.12) into the transmission conditions on the interfaceΓ, we obtain:

u · ν = 0 and τ(u) = 0 onΓ. (I.4.13)

The displacement fieldu is therefore both traction-free and tangent to the boundary. However, these

two homogeneous boundary equations, together with the homogeneous elastodynamic equation, do

not necessarily imply thatu vanishes inΩs. Indeed, as stated by Luke and Martin in [104], for certain

geometries and for certain frequencies, some nontrivial solutions to the homogeneous transmission

problem exist. More precisely, there is an infinite set of free vibrations of the solid,ωm, with cor-

responding displacement modes of vibration,um, that satisfiesτ(um) = 0 on the boundaryΓ. If

moreover some of these frequenciesum are such thatum · n = 0 on Γ, such nontrivial solutionsum
are called Jones modes and the associated frequenciesωm Jones frequencies.

These singularities have been introduced by D. S. Jones [92] in a related context (a thin layer of ideal

fluid between an elastic body and a surrounding elastic exterior). Note that Dallas called them in

[37] (see p. 7) "complex amplitudes of nonradiating modes". More specifically, according to Lamb

and Chree (see § 8.14 in [49]), Jones frequencies exist for simple geometries such as spheres since

it can be observed that an elastic sphere could sustain "torsional oscillations", in which the radial

component of the displacement is identically zero. Their existence has also been proved in the case

of prolate spheroids [125]. Actually, Jones frequencies may occur for any axisymmetric body, be-

cause they can sustain torsional oscillations in which onlythe azimuthal component of displacement

is nonzero. Nevertheless, Hargé [79] has proved that we do not expect Jones frequencies to exist for

an "arbitrarily-shaped" body.

Note that, as emphasized in [86, 108], these free vibrations are inherent to the physical model that

we consider. Indeed, they arise from the absence of constraints on the tangential components of the

displacement fieldu on the fluid-solid interface. This is due to the fact that the fluid is inviscid, and

thus can slip freely over the surface of the solid, so that thetangential components are not controlled.

Therefore, such free oscillations of the solid do not coupleto the fluid, and cannot be precluded by

the radiation condition.

I.4.3 Proof of the existence

Because of the possible existence of the Jones frequencies in the elastic medium, we have to dis-

tinguish two cases when applying the Fredholm alternative (see PropositionI.4.0.3) to establish the

existence of a solution.
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First, assume thatω is not a Jones frequency for the elastic scatterer. Then, we have shown in

the previous paragraph that the homogeneous problem has only the trivial solution. Hence, we have

uniqueness of a solution(p, u) ∈ H of the boundary value problem BVP (2). In addition, the vari-

ational formulation satisfies the Gårding’s inequality. Consequently, the existence of the field(p, u)

immediately results from applying Fredholm alternative.

Second, suppose thatω is a Jones frequency. Therefore, there is a nonzero displacement field

u ∈ V , called Jones mode, such that(0, u) is a solution of the homogeneous variational problem

given by Eq. (I.4.3).

Hence, we do not have uniqueness of the displacement field. Therefore, according to the Fredholm

alternative (see PropositionI.4.0.3), a solution(p, u) exists if the right-hand sidel(·) of Eq. (I.3.1)

vanishes for every solution to the homogeneous adjoint problem.

Let (q∗, v∗) ∈ H be a solution to the homogeneous adjoint equation, that is,(q∗, v∗) satisfies:

a∗((q∗, v∗), (s, t)) = 0; ∀ (s, t) ∈ H.

Note thata(·, ·) is not self-adjoint. Indeed, ifa(·, ·) was self-adjoint,a((p, u), (p, u)) would be real,

which is not the case because of the termcR(p, p) whose imaginary part is strictly negative forp 6= 0

(see SectionI.3.2.1). By definition of the adjoint operator, we have:

a∗((q∗, v∗), (s, t)) = a((s, t), (q∗, v∗)); ∀ (s, t) ∈ H. (I.4.14)

Taking the conjugate, we clearly get:

a((s, t), (q∗, v∗)) = 0; ∀ (s, t) ∈ H. (I.4.15)

Next, we proceed as in SectionI.3.1 to derive the boundary conditions satisfied by(q∗, v∗).

Let (s, t) ∈ D(Ωf
R) × (D(Ωs))3 be such thatt = 0. Sinces vanishes onΓ andSR, applying Green’s

formula, we get:

∫

Ωf
R

s(∆q∗ +
ω2

c2
f

q∗) dx = 0; ∀ s ∈ D(Ωf
R),

which yields:

∆q∗ +
ω2

c2
f

q∗ = 0 in Ωf .

Similarly, let(s, t) = (0, t) ∈ D(Ωf
R) × (D(Ωs))3 and apply Green’s theorem. Sincet vanishes onΓ,
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we obtain:

∫

Ωs
t · (∇ · σ(v∗) + ω2ρsv∗) dx = 0; ∀ t ∈ (D(Ωs))3,

that is,

∇ · σ(v∗) + ω2ρsv
∗ = 0 in Ωs.

Next, we take(s, t) ∈ D(Ω
f

R) × (D(Ω
s
))3 such thatt = 0 ands vanishes in a neighborhood ofSR.

We apply the Green’s formula. We then obtain:

1

ω2ρf

∫

Ωf
R

s(∆q∗ +
ω2

c2
f

q∗) dx+
1

ω2ρf
〈s, ∂q

∗

∂ν
〉−1/2,1/2,Γ − 〈sν, v∗〉−1/2,1/2,Γ = 0.

Sinceq∗ satisfies the Helmholtz equation, we obtain:

ω2ρfv
∗ · ν =

∂q∗

∂ν
on Γ.

For (s, t) = (0, t) ∈ D(Ω
f

R) × (D(Ω
s
))3, the Green’s formula allows to obtain:

∫

Ωs
t · (∇ · σ(v∗) + ω2ρsv∗) dx− 〈t, σ(v∗) · ν〉−1/2,1/2,Γ − 〈t · ν, q∗〉−1/2,1/2,Γ = 0

Consequently, sincev∗ satisfies the homogeneous Navier equation, we obtain:

σ(v∗) · ν = −q∗n on Γ.

Finally, we take(s, t) = (s, 0) ∈ D(Ω
f

R) × (D(Ω
s
))3 such thats vanishes in a neighborhood ofΓ.

Then, applying again the Green’s theorem allows to deduce that:

∫

Ωf
R

s(∆q∗ +
ω2

c2
f

q∗) dx− 〈s, ∂q
∗

∂ν
〉−1/2,1/2,SR

− 〈TR(s), q∗〉−1/2,1/2,SR
= 0. (I.4.16)

Sinceq∗ satisfies the Helmholtz equation, we necessarily have:

∂q∗

∂r
+ T ∗

R(q∗) = 0 onSR,

whereT ∗
R stands for the adjoint operator of the DtN operatorTR defined as in Eq. (A.3.14), that is,

T ∗
R(q) =

+∞∑

n=0

µn(k,R)qn.
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Note that this boundary condition involvingT ∗
R is an incoming radiation condition, that is,

lim
r→+∞

r

(
∂q∗

∂r
+ ikq∗

)
= 0.

Note that the coefficientsµn(k,R) depend in fact on the spherical Hankel functions of the second

kind h(2)
n = h

(1)

n .

Let (p̃, ũ) be such that̃u = v∗ andp̃ is a continuous extension ofq∗ satisfying the exterior Helmholtz

equation with incoming radiation condition. Then, the pair(p̃, ũ) is thus solution to the following

homogeneous transmission problem:






∆p̃ + (−k)2 p̃ = 0 in Ωf

∇ · σ(ũ) + ω2ρsũ = 0 in Ωs

ω2ρf ũ · ν =
∂p̃

∂ν
on Γ

τ(ũ) = −p̃n on Γ

∂p̃

∂r
+ T ∗

R(p̃) = 0 onSR .

As established above, this adjoint boundary value problem has a nontrivial solution only ifω is a

Jones frequency. Sinceω is assumed to be a Jones frequency, we getp̃ ≡ 0 andũ is a Jones mode

with τ(ũ)|Γ ≡ 0 , ũ · n|Γ ≡ 0.

We then deduce thatq∗ ≡ 0 andτ(v∗)|Γ ≡ 0 , v∗ · n|Γ ≡ 0, and therefore:

l(q∗, v∗) = 0.

Hence, the right-hand sidel(·) of Eq. (I.3.1) vanishes for every solution to the homogeneous adjoint

problem. Consequently, there is a solution(p, u) to the reduced direct problem BVP (2). Moreover,

the existing pressure fieldp is unique.

Remark I.4.3.1 From a numerical view point, the Dirichlet-to-Neumann (DtN) method was em-

ployed for the first time in the case of exterior Helmholtz problems by Givoli and Keller in [67, 94].

This was possible using the Fourier series representation of the DtN operator which can be derived

in the case of only geometrically simple-shaped exterior boundaries (i.e. circle, ellipse, sphere, ellip-

soid). However, this series must be truncated for implementation purposes, but its ability to preclude

singular behavior in the finite element solution of the target exterior Helmholtz problem is not af-

fected, as demonstrated in [73, 77]. Nevertheless, since the DtN operator is a non-local mapping
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[67, 94], its application gives rise to a full symmetric sub-matrixassociated with the degrees of free-

dom lying on the artificial boundary. Forming this matrix is reminiscent of integral formulations,

and storing it can be prohibitive for three-dimensional high-frequency acoustic scattering problems.

However, the DtN approach remains computationally viable when the discrete equations are to be

solved by an iterative algorithm that involves essentiallymatrix-vector products [105]. The latter

approach appears nevertheless to be limited to circular- and spherical-shaped boundaries. Given

that, various alternative approaches have been suggested to balance between accuracy, stability, and

computational efficiency requirements. Examples of such methods include employing approximate

boundary conditions, also called absorbing boundary conditions (ABC) (see, for example, [40, 134]

as well as the review paper [136] and references therein), the perfectly matched layers formulation

(PML), see, e.g., [78], and the so-called infinite elements, see, e.g., [22, 23].
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Appendix A

Appendices to the Chapter I

A.1 Special functions

The goal of this section is to recall the needed spherical function properties for establishing the

sign properties of the Dirichlet-to-Neumann operator. This section is included for completeness only.

A.1.1 The spherical Hankel functions

A.1.1.1 Preliminaries

Let Jn andYn be the Bessel functions of the first and second kind [2], andHn denote the corre-

sponding Hankel function of the first kind defined by:

Hn(z) := H(1)
n (z) = Jn(z) + iYn(z). (A.1.1)

Then, the spherical Bessel functions of the first and second kind are respectively given by [2]:

jn(z) :=

√
1

2

π

z
Jn+1/2(z), (A.1.2)

and

yn(z) :=

√
1

2

π

z
Yn+1/2(z). (A.1.3)

These special functions satisfy the spherical Bessel differential equation given by:

z2 d
2 p

d z2
+ 2z

d p

d z
+ (z2 − n(n + 1))p = 0. (A.1.4)

49



Appendices to the Chapter I

From the classical results of analysis ([132]), it can be shown that the set of solutions of Eq. (A.1.4)

is a subspace of dimension 2. Hence, the spherical Hankel functions of the first kind (resp. of the

second kind) given by [2]:

hn(z) := h(1)
n (z) = jn(z) + iyn(z) (resp. h(2)

n (z) = h
(1)

n (z) = jn(z) − iyn(z)). (A.1.5)

also satisfy Eq. (A.1.4).

A.1.1.2 Properties

The two spherical Hankel functions have the following series expansions: [2, 28]:





h(1)
n (kr) = hn(kr) = i−n−1 e

ikr

kr

∑n
j=0

(n + j)!

j!(n− j)!
(−2ikr)−j,

h(2)
n (kr) = hn(kr) = in+1 e

−ikr

kr

∑n
j=0

(n + j)!

j!(n− j)!
(2ikr)−j.

Moreover, for large radius value, the spherical Hankel functions possess the following asymptotic

behavior [2, 28]:





h(1)
n (kr) ∼ (−i)n

eikr

r
(A.1.6)

h(2)
n (kr) ∼ in

e−ikr

r
; as r → +∞ , (A.1.7)

LetMn be the modulus ofHn, i.e.,

M2
n(z) := J2

n(z) + Y 2
n (z) (A.1.8)

For anyn ∈ N, the functionz 7→ M2
n(z) is strictly decreasing [135, 138].

Letmn be the modulus ofhn, i.e.,

m2
n(z) := j2

n(z) + y2
n(z). (A.1.9)

Then we have:

Proposition A.1.1.1 For anyn ∈ N, z 7→ m2
n(z) is strictly decreasing, that is,

(m2
n)′(z) < 0. (A.1.10)
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Proof Indeed, it follows from Eq. (A.1.1)-Eq. (A.1.3) and Eq. (A.1.8)-Eq. (A.1.9) that:

m2
n(z) =

1

2

π

z
M2

n+1/2(z). (A.1.11)

We thus get, for allz > 0,

(m2
n)′(z) =

1

2

π

z
(M2

n+1/2)′(z) +
(

−1

2

π

z2

)
M2

n+1/2(z).

Hence, since(M2
n+1/2)′(z) < 0, then(m2

n)′(z) < 0 for all z ∈ R+,∗, and thereforez 7→ m2
n(z) is

strictly decreasing.

�

Similarly to the approach in [135], let p, q be two solutions of Eq (A.1.4) and define the Wronskian

[99] as follows:

W (p, q) = pq′ − p′q. (A.1.12)

Then, in the distribution sense, i.e.D′(R+∗), we have:

dW (p, q)

d z
= pq′′ − p′′q

= −2

z
pq′ − 1

z2
(z2 − n(n + 1))pq +

2

z
p′q +

1

z2
(z2 − n(n + 1))pq

= −2W (p, q)

z
. (A.1.13)

Therefore, we obtain:

z
dW (p, q)

dz
+ 2W (p, q) = 0. (A.1.14)

Consequently,W (p, q) =
C

z2
for some constantC.

In the particular case wherep = jn andq = yn, we have [2]:

W (jn(z), yn(z)) =
1

z2
. (A.1.15)

We deduce the following property of the Wronskian:
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Proposition A.1.1.2 For all z ∈ R+,∗,

jn(z)y′
n(z) − j′

n(z)yn(z) > 0. (A.1.16)

A.1.2 The spherical harmonics

We recall some definitions and properties of the spherical harmonics. More results can be found

in [28, 99], among others.

Let Pn(t) denote the Legendre polynomials, given by the recurrence relations [2] (see Chapter 8,

p334): 




P0(t) = 1,

P1(t) = t,

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t) − nPn−1(t),

that is,Pn(t) =
(

1

2nn!

)
dn(t2 − 1)n

dtn
.

The Legendre polynomial functions satisfy the Legendre equation:

(1 − t2)g
′′

(t) − 2tg
′

(t) + n(n+ 1)g(t) = 0; n ∈ N.

We also define the associated Legendre functionsPm
n as follows [2]:

Pm
n (t) := (−1)m(1 − t2)m/2d

mPn(t)

dtm
; n ∈ N, 0 ≤ m ≤ n.

The associated Legendre functions satisfy the associated Legendre differential equation given by [2]:

(1 − t2)g
′′

(t) − 2tg
′

(t) +

(
n(n + 1) − m2

1 − t2

)
g(t) = 0; n ∈ N, 0 ≤ m ≤ n. (A.1.17)

Next, we introduce the spherical coordinates(r, θ, φ), for r ∈ [0,+∞[, θ ∈ [0, π] andφ ∈ [0, 2π[,

related to the cartesian coordinates by:

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ.

We then define the spherical harmonic functionsymn as follows [28]:

ymn(θ, φ) := P |m|
n (cos θ)eimφ; n ∈ N,−n ≤ m ≤ n. (A.1.18)
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Note that the spherical harmonics are eigenfunctions of theLaplace operator forr being constant [28].

We recall some properties of these special functions ([28] p. 25)).

Property A.1.2.1

i For eachn ≥ 0, there exist exactly2n+ 1 linearly independent spherical harmonicsymn of order

n; −n ≤ m ≤ n.

ii The spherical harmonics are orthogonal with respect to the inner product onL2(S1), that is:

∫

S1

ymnym′n′ds = 0, if n 6= n′ or m 6= m′, (A.1.19)

and ∫

S1

|ymn|2ds =
4π

(2n+ 1)

(n + |m|)!
(n− |m|)! := α2

mn. (A.1.20)

iii The functionsYmn(θ, φ) :=
ymn
αmn

; −n ≤ m ≤ n, are called the orthonormalized harmonics and

satisfy: ∫

S1

YmnY m′n′ds = δmm′δnn′ , (A.1.21)

whereδmm′ are the Kronecker Delta functions.

iv The set of functions{Ymn} forms an orthonormal basis ofL2(S1). The orthonormal system is

complete inL2(S1). Hence, every functionf ∈ L2(S1) can be expanded into a series of spherical

polynomials as follows:

f(1, θ, φ) =
∞∑

n=0

n∑

m=−n

fmnYmn(θ, φ), (A.1.22)

wherefmn are the Fourier coefficients given by:

fmn =
∫

S1

f(1, θ, φ)Y mn(θ, φ)ds. (A.1.23)

Remark A.1.2.1 LetSR represent the surface of the ball of radiusr = R. Then, an elementdsR of

SR is equal toR2ds, whereds is an element of the surfaceS1 of the unit ball .

Consequently, we deduce that the set of functionsYmn/R forms a basis ofL2(SR), and a complete

orthonormal system inL2(SR). It follows that any functionf ∈ L2(SR) admits the following series

expansion into spherical harmonics

f(R, θ, φ) =
∞∑

n=0

n∑

m=−n

fmnYmn(θ, φ),
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with

fmn =
∫

S1

f(R, θ, φ)Y mn(θ, φ)ds.

A.2 The solution to the Helmholtz problem in the domain exte-

rior to a sphere

This section is devoted to the analytical study of the solution of Helmholtz equation outside a

sphere. We derive the Fourier series expansion of the solution in terms of the spherical harmonic

functions and establish its uniqueness.

A.2.1 Construction of the solution into spherical harmonics

LetBR be the ball of radiusr = R, SR its spherical surface, andBe
R the exterior domain toBR.

We consider the Helmholtz problem in the exterior ofBR with Dirichlet boundary conditiong ∈
L2(SR), formulated as follows:






∆p+ k2p = 0 in Be
R (A.2.1)

p = g onSR (A.2.2)

lim
r→+∞

r

(
∂p

∂r
− ikp

)
= 0, (A.2.3)

wherer = ‖x‖2.

The goal is to prove analytically the existence of the solution of the boundary value problem given by

Eqs. (A.2.1)-(A.2.3).

Let (r, θ, φ) be the system of spherical coordinates, wherer ∈ [0,+∞[, θ ∈ [0, π] andφ ∈ [0, 2π[,

related to the cartesian coordinatesx = (x1, x2, x3) ∈ R3 by:

r = ‖x‖2 =
√
x2

1 + x2
2 + x2

3, θ = arctan(
√
x2

1 + x2
2/x3), φ = arctan(x2/x1). (A.2.4)

We recall that the Laplacian in spherical coordinates is given by [89]:

∆p(r, θ, φ) =
1

r2

[
∂

∂r

(
r2∂p

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+

1

sin2 θ

∂2p

∂φ2

]
. (A.2.5)
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We setp(r, θ, φ) = f(r)g(θ)h(φ). Then, Eq. (A.2.1) can be expressed in spherical coordinates as

follows:

1

rf(r)

∂

∂r

(
r2∂f(r)

∂r

)
+

1

r2

[
1

sin θg(θ)

∂

∂θ

(
sin θ

∂g(θ)

∂θ

)
+

1

sin2 θh(φ)

∂2h(φ)

∂φ2

]
+ k2 = 0. (A.2.6)

We deduce that:

d

dr

(
r2df(r)

dr

)
+ (k2r2 − a)f(r) = 0, (A.2.7)

sin θ
d

dθ

(
sin θ

dg(θ)

dθ

)
+ (a sin2 θ − b)g(θ) = 0, (A.2.8)

d2h(φ)

dφ2
+ bh(φ) = 0, (A.2.9)

for some constantsa andb.

Observe that the functionf is defined in the exterior domainBe
R, and must satisfy the outgoing Som-

merfeld condition, whereasg andh are defined onSR.

Since the sphereSR is a closed surface, we seek for a functionh that is periodic inφ, i.e.,h(0) =

h(2π). Therefore, Eq. (A.2.9) admits the functions{sin(mφ)}, {cos(mφ)} as a set of solutions for

b = m2,m ∈ N.

It follows that:

h(φ) = Amn sin(mφ) +Bmn cos(mφ) (A.2.10)

is solution to (A.2.9).

Next, we sett = cos θ, and substitute in Eq. (A.2.8). We then obtain:

(1 − t2)
d2g(t)

dt2
− 2t

dg(t)

dt
+

(
a− m2

1 − t2

)
g(t) = 0. (A.2.11)

Fora = n(n+1), for n ∈ N, Eq. (A.2.11) is in fact the associated Legendre equation (see Eq. (A.1.2)

in AppendixA.1), whose solutions are the associated Legendre functions defined in AppendixA.1,

SectionA.1.2, by:

gmn(t) = Pm
n (cos θ), 0 ≤ m ≤ n. (A.2.12)
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It follows that forn ∈ N, 0 ≤ m ≤ n, the angular part of the solution is given by:

g(θ)h(φ) = Pm
n (cos θ)(Amn sin(mφ) +Bmn cos(mφ)). (A.2.13)

Using Moivre identity, we can re-write Eq. (A.2.13) as follows:

gmn(θ)h(φ) = cmnP
|m|
n (cos θ)eimφ, n ∈ N,−n ≤ m ≤ n, (A.2.14)

wherecmn are complex coefficients.

Using the spherical harmonicsymn (see Eq. (A.1.18) in AppendixA.1) given by:

ymn(θ, φ) := P |m|
n (cos θ)eimφ, n ∈ N,−n ≤ m ≤ n,

the angular part of the solution is then expressed in terms ofthese spherical functions as follows:

gmn(θ)h(φ) = cmnymn(θ, φ), −n ≤ m ≤ n.

Next, we takea = n(n + 1) in Equation (A.2.7), and setz = kr. Therefore, Eq. (A.2.7) becomes

the Bessel’s differential equation given by Eq. (A.1.4). This equation admits the spherical Hankel

functions of the first and second kindh(1)
n andh(2)

n as linearly independent solutions, forn ∈ N.

Using the asymptotic behavior given by Eq. (A.1.6), it follows that onlyh(1)
n satisfies the outgoing

radiating condition.

Therefore, a solutionp of the Helmholtz equation in spherical coordinates can be expressed as follows:

p(r, θ, φ) =
∞∑

n=0

hn(kr)
n∑

m=−n

cmnymn(θ, φ), (A.2.15)

or, using the orthonormalized harmonics (cf. PropertyA.1.2.1), as follows:

p(r, θ, φ) =
∞∑

n=0

hn(kr)
n∑

m=−n

CmnYmn(θ, φ). (A.2.16)

for complex coefficientsCmn = αmncmn, whereαmn are given by Eq. (A.1.20) andcmn are given by

Eq. (A.2.14).

Note that the series expansion (A.2.15) converges absolutely and uniformly in every closed and

bounded domain contained in the exterior domain ofr > R (see [28], p. 34).
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Moreover, using the asymptotic behavior ofh(1)
n in far-field region, we can see that the solutionp

depends asymptotically onr as follows [28, 118]:

p ∼ eikr

r
asr → +∞. (A.2.17)

To determine the expression of the Fourier coefficientsCmn in Eq. (A.2.16), we use the boundary

condition given by Eq. (A.2.2). From RemarkA.1.2.1, the Dirichlet datag ∈ L2(SR) can be expanded

into a series of spherical polynomials as follows:

g(R, θ, φ) =
∞∑

n=0

n∑

m=−n

gmnYmn(θ, φ), (A.2.18)

where

gmn =
∫

S1

g(R, θ, φ)Y mn(θ, φ)ds. (A.2.19)

Furthermore, onSR, p satisfies:

p(R, θ, φ) =
∞∑

n=0

hn(kR)
n∑

m=−n

CmnYmn(θ, φ). (A.2.20)

Multiplying Eq. (A.2.18) and Eq. (A.2.20) by Y mn, and integrating overS1, we obtain by orthogo-

nality of the spherical harmonics that:

Cmn =
gmn

hn(kR)
.

It follows that a radiating solutionp to the Helmholtz problem in the domain exterior to the sphereSR

with Dirichlet boundary condition admits the following series expansion into spherical harmonics:

p(r, θ, φ) =
∞∑

n=0

hn(kr)

hn(kR)

n∑

m=−n

gmnYmn(θ, φ).

Remark A.2.1.1 Observe that if Eq. (A.2.2) is replaced by a Neumann boundary condition
∂p

∂ν
= g,

we obtain:

∂p

∂r |r=R
=

∞∑

n=0

kh
′

n(kR)
n∑

m=−n

CmnYmn(θ, φ)

=
∞∑

n=0

n∑

m=−n

gmnYmn(θ, φ).

57



Appendices to the Chapter I

Consequently, we have:

Cmn =
gmn

khn(kR)
,

and therefore, a Neumann radiating solution is given by:

p(r, θ, φ) =
∞∑

n=0

hn(kr)

khn(kR)

n∑

m=−n

gmnYmn(θ, φ).

A.2.2 Uniqueness of the solution

The goal is to prove that the radiating solution into spherical harmonics constructed in Sec-

tion A.2.1is the only solution of the exterior Helmholtz problem with Dirichlet or Neumann boundary

conditions.

To this end, assume that there exist two solutionsp1, p2 ∈ C2(Be
R) to the exterior problem.

Let p = p1 − p2 denote the difference between these two solutions. Then,p clearly satisfies the

Helmholtz equation, the radiation condition at infinity anda homogeneous Dirichlet or Neumann

boundary condition onSR.

LetSa be the surface of a ball of radiusr = a (> R) and centered at the origin, enclosing the spherical

surfaceSR. We denote byBe,a
R the annular domain contained betweenSR andSa.

Applying Green’s formula inBe,a
R , we first have:

∫

Sa

p
∂p

∂ν
ds =

∫

SR

p
∂p

∂ν
ds+

∫

Be,a
R

|∇p|2dx+
∫

Be,a
R

p∆pdx.

Sincep satisfies the Helmholtz equation inBe,a
R , we obtain:

∫

Sa

p
∂p

∂ν
ds =

∫

SR

p
∂p

∂ν
ds+

∫

Be,a
R

|∇p|2dx− k2
∫

Be,a
R

|p|2 dx.

Taking the imaginary part of the equation, we get:

Im

(∫

Sa

p
∂p

∂ν
ds

)
= Im

(∫

SR

p
∂p

∂ν
ds

)
. (A.2.21)
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Moreover, sincep satisfies the radiation condition, we obtain:

lim
a→+∞

∫

Sa

∣∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣∣

2

ds = lim
a→+∞

∫

Sa






∣∣∣∣∣
∂p

∂r

∣∣∣∣∣

2

+ k2 |p|2 + 2kIm

(
p
∂p

∂ν

)

 ds (A.2.22)

= 0.

Substituting Eq. (A.2.21) into Eq. (A.2.22), we deduce that:

lim
a→+∞

∫

Sa





∣∣∣∣∣
∂p

∂r

∣∣∣∣∣

2

+ k2 |p|2


 ds = −2kIm

(∫

SR

p
∂p

∂ν
ds

)
.

Sincep satisfies a homogeneous Dirichlet (or Neumann) boundary condition onSR, we conclude that:

Im

(∫

SR

p
∂p

∂ν
ds

)
= 0, (A.2.23)

which yields:

lim
a→+∞

∫

Sa





∣∣∣∣∣
∂p

∂r

∣∣∣∣∣

2

+ k2 |p|2


 ds = 0. (A.2.24)

Therefore, we have:

lim
a→+∞

∫

Sa

|p|2 ds = 0.

Using Rellich’s lemma [28], we conclude thatp = 0 in Be,a
R , that is, outside a sufficiently large

sphere. Furthermore, due to the ellipticity of the Helmholtz operator, the solutionp is analytic in

Be,a
R . Consequently,p = 0 in the whole exterior domainBe

R, which concludes the proof of the

uniqueness.

Remark A.2.2.1 Instead of Eq. (A.2.23), assume that the radiating solution to the exterior Helmholtz

equation satisfies a boundary condition for which we have thefollowing weaker property:

Im

(∫

SR

p
∂p

∂ν
ds

)
≥ 0.

Then, following the previous reasoning, this property is sufficient to lead to:

lim
a→+∞

∫

Sa

|p|2 ds = 0.
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and the application of Rellich’s lemma still holds.

For example, the exact boundary condition derived from the Dirichlet-to-Neumann operatorTR,

which is defined in the next appendix, satisfies this property. Indeed, this exact boundary condi-

tion is given by:
∂p

∂ν
+ TR(p) = 0. As a property of the Dirichlet-to-Neumann operator stated in

PropositionI.3.2.1, it is shown that:

Im
(
〈TR(p), p〉−1/2,1/2,SR

)
< 0, for all p 6= 0.

Therefore, denoting byT ∗
R the adjoint operator ofTR, we get the relaxed property:

Im

(∫

SR

p
∂p

∂ν
ds

)
= −Im

(
〈p, T ∗

R(p)〉−1/2,1/2,SR

)

= −Im
(
〈TR(p), p〉−1/2,1/2,SR

)

≥ 0.

A.3 The Dirichlet-to-Neumann operator

This section is devoted to the construction of the DtN operator on a sphere of radiusr = R

[89, 94, 135].

LetBR be the ball of radiusR > 0 and center0. We assumeR to be large enough so thatBR contains

the obstacle, i.e.,Ωs ⊂ BR.

We introduce an artificial spherical boundarySR in the fluid medium, defined as the surface of the

ballBR:

SR = {x ∈ Ωf/ ‖x‖2 = R}. (A.3.1)

We then denote byΩf
R the domain in the fluid medium bounded bySR andΓ, and byBe

R its exterior,

i.e.,

Ωf
R = {x ∈ Ωf/ ‖x‖2 < R}, (A.3.2)

and

Be
R = R

3 \ Ωf
R ∪ Ωs. (A.3.3)

The Sommerfeld outgoing-radiation condition (see Eq. (I.2.24) of BVP (1)) can be rewritten as fol-
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lows

lim
R→+∞

∫

SR

∣∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣∣

2

ds = 0. (A.3.4)

Let pe be the solution of the Helmholtz equation (see BVP (1)) inBe
R andpe = p on SR given by

Eq. (A.3.1). Note that the following construction of the DtN operator holds for allp ∈ L2(SR).

Furthermore, sincepe is given, we can evaluate its normal derivative
∂pe

∂ν
onSR.

Hence, we can construct a mapping that maps the Dirichlet trace onSR onto the Neumann trace on

the same boundary as follows:

TR : pe|SR
−→ − ∂

∂ν
pe|SR

. (A.3.5)

The operatorTR is called the Dirichlet-to-Neumann (DtN) operator. It is a pseudo-differential opera-

tor of order 1 that characterizes the exact behavior of the solution in the neighborhood ofSR.

This operator is linear and is defined fromH1/2(SR) into H−1/2(SR) (see, e.g., [7]). Its expression

can be determined explicitly ([94]).

Hence, we have:

∂pe

∂r
+ TR(pe) = 0 onSR. (A.3.6)

Next, we set explicitly the expression of the DtN operator using the separation of variables procedure

employed to derive the analytical expression of the solution of Helmholtz equation.

As shown in AppendixA.2, the outgoing radiating solutionpe in Be
R admits the following series

expansion into spherical harmonics:

pe(r, θ, φ) =
+∞∑

n=0

hn(kr)
n∑

m=−n

CmnYmn(θ, φ). (A.3.7)

Therefore, from RemarkA.1.2.1in AppendixA.1, we can expandp = pe ∈ L2(SR) on the basis of

the spherical harmonics onSR as follows:

pe(R, θ, φ) =
+∞∑

n=0

n∑

m=−n

pmnYmn(θ, φ), (A.3.8)

where

pmn =
∫

S1

p(R, θ, φ)Y mn(θ, φ)ds.
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We can thus identify the expression of the complex coefficientsCmn in Eq. (A.3.7) as:

Cmn =
pmn

hn(kR)
. (A.3.9)

Consequently, we deduce that:

pe(r, θ, φ) =
+∞∑

n=0

hn(kr)

hn(kR)

n∑

m=−n

pmnYmn(θ, φ) in Be
R. (A.3.10)

We derive the expression of the DtN operator by differentiating in the radial direction and taking

r = R in Eq. (A.3.10) as follows:

TR (p(R, θ, φ)) = TR (pe(R, θ, φ))

= −∂pe

∂r
(R, θ, φ)

= −
+∞∑

n=0

k
h′
n(kR)

hn(kR)

n∑

m=−n

pmnYmn(θ, φ). (A.3.11)

We set

µn(k, r) = −kh
′
n(kr)

hn(kr)
(A.3.12)

and

pn(θ, φ) =
n∑

m=−n

pmnYmn(θ, φ), (A.3.13)

Then, we can re-write the series expansion of the DtN operator into spherical harmonics as follows:

TR (p(R, θ, φ)) =
+∞∑

n=0

µn(k,R)pn(θ, φ). (A.3.14)

To conclude, the Dirichlet-to-Neumann operator defines an exact non-reflecting boundary condition

on the artificial spherical boundarySR. Thanks to its exact behavior, the near-field of the initial

exterior Helmholtz problem inBe
R can be exactly determined from the one of the reduced problem.

In addition, we notice that, since the evaluation of the coefficientspmn is accomplished by integrating

over the whole surfaceSR, the DtN operator is a nonlocal operator.
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Chapter II

Efficient DG-like formulation equipped with

curved boundary edges for solving

elasto-acoustic scattering problems

In this chapter, a discontinuous Galerkin based approach isproposed for computing the scattered

field from an elastic bounded object immersed in an infinite homogeneous fluid medium. The proposed

method possesses two distinctive features. First, it employs higher-order polynomial-shape functions

needed to address the high-frequency propagation regime. Second, it is equipped with curved bound-

ary edges to provide an accurate representation of the fluid-structure interface. The most salient

benefits resulting from the latter feature, as demonstratedby the numerical investigation, are (a) an

improvement by -at least- two orders of magnitude on the relative error, and (b) the disappearance

of spurious resonance frequencies in the surrounding fluid medium. In addition, the reported nu-

merical results reveal that using cubic polynomials with less than three elements per wavelength,

the proposed DG method computes the scattered field with a relative error below 1% for an elastic

scatterer of about 30 wavelengths. This observation highlights the potential of the proposed solution

methodology for efficiently solving mid- to high-frequencyelasto-acoustic scattering problems.

II.1 Introduction

The development of robust, accurate, and efficient solutionmethodologies for wave propagation

problems is important to many applications. These include radar and sonar detection, geophysical ex-

ploration, structural design, medical imaging and atmospheric studies. Although significant progress

has been made over the years, the design of reliable and cost-effective numerical methods for mid-

and high-frequency wave problems remains a serious challenge due to the presence of the so-called

pollution effect [12]. Such a difficulty is clearly visible when solving Helmholtz problem, one of the
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simplest mathematical models for time-harmonic scattering phenomena by a rigid object. Indeed, as it

has been observed and well-documented (see [89, 134], among others), maintaining a prescribed level

of accuracy as the frequency increases, requires, when using classical finite element methods (FEM),

a drastic refinement of the mesh and/or the use of higher-order elements leading to prohibitive com-

putational cost since the requiredhp-refinement incurs the solution of a linear system of equations

that can rapidly exceed the available computational capabilities.

A number of new methods have been proposed in recent years to alleviate the pollution effect and im-

prove the unsatisfactory preasymptotic convergence of thestandard polynomial finite elements. Many

of these approaches employ plane waves as shape functions, since these functions are (a) solution to

the homogeneous, free space, Helmholtz equation, and (b) naturally expected to better approximate

highly oscillating fields. Examples of such emerging techniques include the partition of unity method

[11], the ultra-weak variational method (UWVF) [24], the discontinuous Galerkin method (DGM)

[50, 53, 54], the stable discontinuous Galerkin method (SDGM) [6], the least-squares method (LSM)

[111], the Trefftz-type wave-based method [38, 62], the plane wave discontinuous Galerkin methods

(PWDG) [65, 81, 82], and the local discontinuous Galerkin method for large wave number [55–57].

The first three aforementioned promising methods (see [137] for comparison performance) have been

extended to elasto-acoustic problems, in which the scatterer is no longer rigid but elastic, and there-

fore, the motion of the structure is modeled by the Navier equation for the structural displacements,

whereas the acoustic waves in the fluid are modeled by the Helmholtz equation for the fluid pressure

[45, 52, 88]. However, all these methods appear to suffer from two majordrawbacks. The first one

is that they are not applicable to anisotropic (at least inhomogeneous) scatterers as they rely on the

knowledge of the exact solution, which limits significantlytheir application range . The second one

is that the use of a higher number of plane waves (which can notbe avoided in the mid- and high-

frequency regimes) dramatically affects the condition number which in turns has a severe impact on

the stability of the method, as observed and reported in [6, 69].

Other attempts have been made to solve efficiently elasto-acoustic scattering [26, 58, 61, 106, 107,

121, 131]. In spite of the tremendous strides, the design of efficientsolution methodologies for this

class of problems remains a recognized scientific need of pressing importance.

Given that, this chapter aims to propose a discontinuous Galerkin-type formulation for efficiently

solving elasto-acoustic problems and to assess its performance. Our purpose is to develop an op-

timized solver for this direct problem, in the view to next solve the corresponding inverse elasto-

acoustic obstacle problem (IOP) by a regularized Newton-type method. Indeed, the computational

efficiency of the IOP solver will depend essentially on the efficiency of the solution of a large number
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of forward problems that arise at each Newton iteration.

DG methods are of course not new numerical techniques [100, 127]. They have been in recent

years among the primary candidates for solving problems involving convection/diffusion terms as

well as reaction terms (see, for example, [112, 140] and the references cited therein). These methods

received, more recently, a great deal of attention for wave problems, as attested by the various formu-

lations that have been proposed for solving Helmholtz problems [5, 55, 56, 65, 68, 81, 82, 84, 103,

111, 128, 141]. This category of methods is very attractive because of several considerations, chief

among them:

• They offer cost-effective procedures for linking separateelements/domains in each of which

finite elements, or plane waves, or any expansion series are used for approximation. Indeed, the

essence of DG methods lies in the elimination of the Lagrangemultipliers, that are used in the

domain decomposition framework to accomplish such linking[50–54], so that the total number

of variables remains as the sum of those in the individual elements/domains.

• They can easily accommodate heterogeneous media and anisotropic obstacles when using poly-

nomial shape functions, which is very important to many applications.

• They are very flexible for complicated geometries, allowingto consider any scatterer shape.

• They are more versatile since they can easily employ a non uniform mesh, which is very con-

venient for elasto-acoustic problems in which there are three types of waves (the pressure field

in the fluid and the P- and S-waves in the solid) propagating atdifferent speeds. This feature

facilitates adaptive mesh implementation.

• The additional cost inp-type representation is proportional to1/p for the interior points and

the number of element interfaces. This feature is very important since employing higher-order

elements is crucial for a reliable approximation of high frequency scattered fields.

In addition, the proposed DG formulation is equipped, at theelement level, with a penalty-type term

to preserve the stability of the method. For this reason, we will refer to this method by IPDG (In-

terior Penalty Discontinuous Galerkin). We must point out that IPDG has been originally designed

for solving time-domain wave equation using linear elements [72], and its dispersion properties have

been studied in [4]. However, to the best of our knowledge, this formulation has not been employed

for solving other wave problems. We propose to tailor IPDG tobe applied for solving elasto-acoustic

scattering problems. However, the proposed solution methodology possesses two distinctive features.

First, it employs high-order polynomial-shape functions that are obviously needed for an accurate

approximation of highly oscillating waves. Second, it is equipped with curved boundary edges. Un-

like polygonal-shaped approximations, such an accurate representation of the fluid-structure interface

provides a very natural setting for better modeling the incoming and outgoing waves, as well as the
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surface waves at the wet surface. The importance of an accurate representation of the fluid-structure

interface is clearly illustrated by the numerical results obtained in the case of a two-dimensional

elasto-acoustic scattering problem with a circular-shaped elastic scatterer. Indeed, these results indi-

cate (a) an improvement on the accuracy level by -at least- two orders of magnitude, and (b) the dis-

appearance of the spurious internal resonances in the fluid that usually occur when the fluid-structure

interface is approximated by a “broken” line.

In this chapter, we intend to propose and validate a numerical solution methodology for the di-

rect elasto-acoustic scattering problem. The remainder ofthe chapter is organized as follows. In

SectionII.2, we specify the notations adopted throughout this chapter and state the considered math-

ematical model. SectionII.3 is devoted to the description of the proposed IPDG. In Section II.4, we

develop two validation test cases for the IPDG method. This first one corresponds to a waveguide-

type problem, it assumes that the solutions of the problem can be expressed in terms of simple planes

waves. Similarly, the second test case is a radiating-type problem where the solutions are expressed

as a Hankel function of the first kind and the gradient or curl of a Bessel function for a fixed mode.

These tests allow to observe that we recover and approximatecorrectly the pressure field and both

kind of elastic waves, i.e. the P-waves and the S-waves. Moreover, they allow to show some stability

properties of the Discontinuous Galerkin method by performing a modal analysis. In SectionII.5,

we investigate the numerical performance of IPDG in the caseof a two-dimensional homogeneous

and isotropic disk-shaped elastic scatterer surrounded byan homogeneous fluid medium. Analytical

solutions for the elasto-acoustic scattering problem can only be characterized for simple geometries,

such as circles in 2D. Nevertheless, this kind of test is of practical interest and is reasonable for testing

the accuracy of the method. We have a look to the resonance phenomenon that can exist in the elastic

scatterer with this simple geometry. More specifically, we compute Jones frequencies and compare

the results to those obtained with UWVF [88]. We first observe the results obtained with the classical

IPDG method without curved boundary edges. They suggest that a particular care is needed for the

resonance frequencies. Since a finer mesh on the transmission interface is not sufficient to improve

sufficiently the accuracy level, we then equip the method with curved boundary edges and show its

salient features. Next, we also examine the sensitivity of the method to the mesh refinement as well

as to the frequency regime. More specifically, we assess the effect of using curved boundary edges

on the convergence of the method and observe its behavior in the mid and high-frequency regimes.

Closing remarks are given in SectionII.6. In AppendixB.1, we recall the series expansion of the

analytical solution for the disk-shaped elastic scattererproblem considered in SectionII.5. The Ap-

pendixB.2 addresses a brief analysis on the sensitivity of the Jones frequencies to perturbations of
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the scatterer. The last AppendixB.3 provides a sensitivity analysis to the penalization parameter.

II.2 Nomenclature and Problem Statement

II.2.1 Nomenclature

Throughout this chapter, we adopt the following notations and assumptions:

• Ωs is a bounded domain ofR2 representing an elastic obstacle.

• Ωf is the bounded fluid medium surrounding the elastic domain.

• Γ is the wet surface of the scattererΩs.

• Σ is the exterior boundary ofΩf .

• | · | is the Euclidean norm inR2.

• x is a point ofR2, understood as a column vector andr = |x| is the distance from an origin

point tox.

• d is a unit vector representing the propagation direction of the incident plane wave.

• ν is the outward normal toΓ andΣ,
∂

∂ν
is the normal derivative operator.

• ∇ is the gradient operator inR2.

• (−ez) × ∇ defines the curl operator inR2, whereez represents the third vector of the canonical

basis inR3.

• [·]t denotes the transpose matrix.

• M∗ denotes the adjoint matrix ofM , which is defined as the complex conjugate transpose of

M .

• L2(E) is the standard Lebesgue space andH l(E) denotes the Sobolev spaces (see, for instance,

[3] for definitions and properties).

• K
f
h andKs

h are mesh partitions of the domainsΩf andΩs respectively, composed of triangles

K. Kh = K
f
h ∪ K

s
h represents the total partition of the computational domain.

• For each elementK ∈ Kh, hK represents the diameter ofK, h = min
K

hK , anddK represents

the diameter of the inscribed circle inK. We assume that there exists a constantC ≥ 1 such

that (see [27]):

hK
dK

≤ C, ∀h, ∀K ∈ Kh.

This condition prevents the presence of skinny triangles.
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• Pp(K) designates the space of polynomial functions defined onK of degree at mostp ≥ 1.

• The finite element approximation spaces for the pressure andthe structural displacement solu-

tions in the fluid and solid media are respectively given by:

V f
h := {q ∈ L2(Ωf ) : q|K ∈ Pp(K), ∀ K ∈ K

f
h}

V s
h := {v ∈ (L2(Ωs))2 : v|K ∈ (Pp(K))2, ∀ K ∈ K

s
h}.

Hence, we consider functions that are piecewise polynomials in each element and whose de-

grees are less than or equal top. However, unlike standard finite elements, such functions are

not continuous over the computational domainΩs ∪ Ωf . They are onlyL2.

• H l(Kf
h) = {q ∈ L2(Ωf ) : q|K ∈ H l(K)}, l ∈ N.

HenceV f
h ⊆ H l(Kf

h). Similarly,H l(Ks
h) is the space for the vectorial displacement field in the

solid.

• Ef andEs denote the set of all edges inKf
h andKs

h. E
f
h,R is the set of edges on the exterior

boundaryΣ, andEf,sh,tr corresponds to the set of edges on the fluid-structure interfaceΓ. Efh,int
andEsh,int represent the sets of internal edges inK

f
h andKs

h. They are such thatEfh,int ∩ (Efh,R ∪
E
f,s
h,tr) = ∅ andEsh,int ∩ E

f,s
h,tr = ∅. It is worth mentioning that the boundary edges on the

fluid-solid interfaceΓ and the exterior fluid surfaceEfh,R are curved and not straight boundary

edges (see Fig.II.2.1(b)).

(a) Straight boundary edge for interior triangles(b) Curved boundary edge for triangles at the fluid-
structure interface.

Figure II.2.1 – Illustration for two adjacent triangles.

• Note that an edgee in E
f
h,int, E

s
h,intor Ef,sh,tr is shared by two elements denoted arbitrarily byK+

andK−, i.e.,e = ∂K+ ∩ ∂K− (see FigureII.2.1).
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• The unit normal vectors toK+ andK−, oriented to the exterior direction, are denotedν+ and

ν− (see FigureII.2.1).

• For e ∈ E
f
h,int ∪ Esh,int, we setde =

1

2
min{dK+, dK−}.

• The traces of a functionq ∈ H1(Kf
h) on K+ andK− represented byq+ and q− exist and

belong toT (Efh) =
∏

K∈K
f
h

L2(∂K). Thus, a function inT (Efh) admits two values onEfh,int∪E
f,s
h,tr

and one value onEfh,R. Similar notations can be defined for the trace of a vectorialfunction

v ∈ (H1(Ks
h))

2 ⊆ (T (Esh))
2 with T (Esh) =

∏

K∈Ks
h

L2(∂K).

• The jump and average ofφ ∈ T (Efh) ∪ T (Esh) through an edge are defined by:

[φ] := φ+ − φ− and {φ} :=
φ+ + φ−

2
on∂K+ ∩ ∂K−. (II.2.1)

Note that for an edge on the exterior boundary, it is reduced to:

[φ] := φ and {φ} := φ on∂K+ ∩ Σ.

II.2.2 Problem Statement

Let Ωs be a bounded domain ofRn representing an elastic obstacle, andΩf = Rn \ Ω
s

be the

homogeneous inviscid (fluid) medium surrounding the elastic domain.Γ is the boundary ofΩs and is

assumed to be Lipschitz continuous.

We consider the scattering of a time-harmonic acoustic waveby the elastic obstacleΩs embedded in

Ωf as depicted on FigureII.2.2. The corresponding system of equations BVP (1) reads as the coupling

Figure II.2.2 – Problem statement in the infinite domain.
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of the Helmholtz and Navier equations. This problem can be formulated as follows:

BVP (1)





∆p+ k2p = 0 in Ωf (II.2.2)

∇ · σ(u) + ω2ρsu = 0 in Ωs (II.2.3)

ω2ρfu · ν =
∂p

∂ν
+
∂g

∂ν
on Γ (II.2.4)

τ(u) = −pν − gν on Γ (II.2.5)

lim
r→+∞

r(n−1)/2

(
∂p

∂r
− ikp

)
= 0. (II.2.6)

The pair(p, u) represents the elasto-acoustic scattered field.p is the fluid pressure inΩf whereas

u is the displacement field inΩs. g = pinc = eiω/cfx · d is the incident plane wave.ω is the

circular frequency.cf is a positive real number representing the sound velocity inthe fluid.ρf andρs

are positive real numbers denoting respectively the densities of the fluidΩf and of the scattererΩs.

Hence,k represents the wavenumber in the fluid, given byk = ω/cf . Note thatk is the reference

frequency for the considered problem.

σ is the stress tensor related to the strain tensorε by Hooke’s law:

σlm = Clmjnεjn,

whereClmjn is a fourth order elastic stiffness tensor which is, for an isotropic medium, invariant under

rotations and reflections [93]. Therefore,Clmjn is given by:

Clmjn = λδlmδjn + µ(δljδmn + δlnδmj),

whereλ, µ are the Lamé coefficients. The strain tensorε is related to the displacement fieldu by

[93, 120]:

ε(u) =
1

2

(
∇u+ (∇u)t

)
.

Last,τ denotes the traction vector on the surface of the scattererΩs, that is:

τ(u) = σ(u)ν.

The boundary conditions on the wet surfaceΓ describe the coupling between acoustic and elastic

waves. The first one is a kinematic transmission condition, whereas the second one is a dynamic
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transmission condition.

The well-posed nature of BVP (1) has been investigated in [46, 85, 87, 104] in the case of isotropic

elastic scatterers and in ChapterI. More specifically, it has been established that the solution (u, p)

of BVP (1) exists and is unique only in the absence of Jones frequencies. These interior resonance

frequencies are usually present in scatterers with axial symmetry such as cylinders and spheres. These

frequencies do not exist in the case of arbitrarily-shaped bodies, as demonstrated in [79]. For addi-

tional mathematical results, we refer the reader to [43, 79, 92, 93, 104], among other references.

Figure II.2.3 – Prototypical computational domain.

In view of using of a finite element method, we introduce an artificial boundaryΣ in the infinite fluid

medium to bound the computational domain as depicted on Figure II.2.3. Given that, as described in

ChapterI, we consider the following elasto-acoustic scattering problem defined in a bounded domain:

BVP (2)






∆p+ k2p = 0 in Ωf (II.2.7)

∇ · σ(u) + ω2ρsu = 0 in Ωs (II.2.8)

ω2ρfu · ν =
∂p

∂ν
+
∂g

∂ν
on Γ (II.2.9)

τ(u) = −pν − gν on Γ (II.2.10)
∂p

∂ν
+ TR(p) = 0 on Σ (II.2.11)
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whereTR denotes the Dirichlet-to-Neumann operator (DtN) operator.

In the following, we use the simplest approximation of the DtN operator, corresponding to a Robin-

type condition, given by:
∂p

∂ν
− ikp = 0 on Σ. (II.2.12)

It is worth noting that the low-order absorbing boundary condition given by Eq. (II.2.12) gives rise

to spurious reflections, deteriorating the approximation.To improve the accuracy of the solution, it

is more interesting to consider at least a first-order absorbing boundary condition involving the mean

curvature ofΣ. Nevertheless, in the numerical tests that we will considerin this Chapter, this low-

order condition will be sufficient. Indeed, the ABC will be taken into account in the expression of the

exact solution in order to draw up a suitable analysis.

Recall, that in the case of a circular-shaped artificial boundary, we have proven in ChapterI the exis-

tence of a solution to the reduced problem BVP (2), and the result holds when replacing Eq. (II.2.11)

by Eq. (II.2.12).

II.3 The Interior Penalty Discontinuous Galerkin Method (I PDG)

II.3.1 The approximation space

In this section, we construct a basis of the spacesV f
h andV s

h . To this end, we first introduce the degrees

of freedom (d.o.f) of the mesh for such Galerkin Discontinuous finite elements. LetNf
h (resp.N s

h) be

the number of elements in the fluid (resp. solid) medium, andN be the total number of elements of

the mesh, i.e.N = Nf
h +N s

h . For each elementK of the mesh,nK represents the number of degrees

of freedom corresponding to the polynomial finite elementsPp. For simplicity, we assumenK = m,

that is, we use the same element order in each triangle. In 2D,the dimensions of theP1(K),P2(K)

andP3(K) element spaces are respectively given bym equal to 3, 6 and 10. Then, the total number

of degrees of freedom in the fluid part used to approximateph in V f
h is equal toNf := m × Nf

h .

We denote byP f
i the corresponding points, for all1 ≤ i ≤ Nf . Similarly,N s := m × N s

h is the

number of unknowns to approximate each component of the displacement fielduh = (uxh, uyh) in

V s
h . The corresponding points are denoted byP s

i , for all 1 ≤ i ≤ N s. Therefore, the total number

of unknowns is equal tom(Nf
h + 2N s

h), where the factor 2 results from the two components of the

displacement field.
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Next, consider an elementKl in Kh, with 1 ≤ l ≤ Nf
h , and let(φKl

i )i=1,··· ,m be the Lagrange basis

functions of degreep in Pp(Kl). We denote byG(i,Kl) the function allowing to determine the global

numbering of theith degree of freedom of the elementKl on the mesh.

Then, we define{φi, 1 ≤ i ≤ Nf} a basis of the approximation spaceV f
h which is of dimensionNf

as follows: 



φi(P
f
j ) = δij, ∀ i, j = 1, · · · , Nf ,

φi|Kl
∈ Pp(Kl), ∀ Kl ∈ K

f
h, ∀ i = 1, · · · , Nf .

The global basis functionsφi can be expressed in terms of the Lagrange basis functions onKl as:





φi|Kl
= φKl

j , with j such thati = G(j,Kl), if P f
i ∈ Kl,

φi|Kl
= 0, if P f

i /∈ Kl.

It follows that any functionqh in V f
h can be expanded under the following form:

qh(x) =
Nf∑

j=1

qjφj(x) =

Nf
h∑

l=1

m∑

i=1

qi
KlφKl

i (x),

where the components ofqh in this basis coincide with its degrees of freedom on the mesh, that is

qj = qh(P
f
j ), ∀ j = 1, · · · , Nf .

Regarding the displacement field, we define a basis{ψi, 1 ≤ i ≤ 2Ns} of V s
h of dimension2N s in

the same way. Let(ex, ey) be the canonical basis inR2. We set, for anyKl in Ks
h,

ψi
Kl =





φKl
i ex, ∀ i = 1, · · · , m
φKl
i−mey, ∀ i = m+ 1, · · · , 2m.

Then, any function ofvh ∈ V s
h can be written as follows:

vh(x) = (vxh(x), (vy)h(x)) = (

Ns
h∑

l=1

m∑

i=1

vKl
x,iφ

Kl
i (x),

Ns
h∑

l=1

m∑

i=1

vKl
y,iφ

Kl
i (x))

=

Ns
h∑

l=1

m∑

i=1

vKl
x,iφ

Kl
i (x)ex +

Ns
h∑

l=1

m∑

i=1

vKl
y,iφ

Kl
i (x)ey

=

Ns
h∑

l=1

m∑

i=1

(
vKl
x,iψ

Kl
i (x) + vKl

y,iψ
Kl
i+m(x)

)
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=
2Ns∑

j=1

vjψj(x),

where

vj =





vxh(P

s
j ), ∀ j = 1, · · · , N s

vyh(P
s
j ), ∀ j = N s + 1, · · · , 2N s.

II.3.2 The Variational Formulation

In this section, we derive the variational formulation for BVP (2) corresponding to the IPDG

method.

Let (qh, vh) ∈ V f
h × V s

h . Multiplying by the pair of test functions and integrating Eqs. (II.2.7) and

(II.2.8) of BVP (2) onΩf
R andΩs respectively, we first have:

∑

K∈Kf
h

(∫

K
∆pqh dx+

ω2

c2
f

∫

K
pqh dx

)
= 0,

∑

K∈Ks
h

(∫

K
∇ · σ(u)vh dx+ ω2ρs

∫

K
uvh dx

)
= 0.

Applying Green’s theorem, we obtain:

∑

K∈Kf
h

(∫

K
∇p · ∇qh dx− ω2

c2
f

∫

K
pqh dx

)

−
∑

e∈E
f
h,int

(∫

e
(∇p+ · ν+qh

+ + ∇p− · ν−qh
−
)
ds+

∑

e∈E
f,s
h,tr

∫

e
∇p · ν+qh ds

−
∑

e∈E
f
h,R

∫

e
∇p · ν+qh ds = 0, (II.3.1)

∑

K∈Ks
h

(∫

K
σ(u) : ∇vh dx− ω2ρs

∫

K
uvh dx

)

−
∑

e∈Es
h,int

(∫

e
(σ(u)+ · ν+vh

+ + σ(u)− · ν−vh
−
)
ds

−
∑

e∈E
f,s
h,tr

∫

e
σ(u) · ν+vh ds = 0. (II.3.2)

Substituting both transmission conditions Eqs. (II.2.9)-(II.2.10) into Eqs. (II.3.1)-(II.3.2), it follows
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that:

∑

K∈Kf
h

(∫

K
∇p · ∇qh dx− ω2

c2
f

∫

K
pqh dx

)

−
∑

e∈E
f
h,int

(∫

e
(∇p+ · ν+qh

+ + ∇p− · ν−qh
−
)
ds+

∑

e∈E
f,s
h,tr

∫

e
ω2ρfu · ν+qh ds

−
∑

e∈E
f
h,R

∫

e
∇p · ν+qh ds =

∑

e∈E
f,s
h,tr

∫

e
∇g · ν+qh ds, (II.3.3)

∑

K∈Ks
h

(∫

K
σ(u) : ∇vh dx− ω2ρs

∫

K
uvh dx

)

−
∑

e∈Es
h,int

(∫

e
(σ(u)+ · ν+vh

+ + σ(u)− · ν−vh
−
)
ds+

∑

e∈E
f,s
h,tr

∫

e
pν+vh ds =

−
∑

e∈E
f,s
h,tr

∫

e
gν+vh ds. (II.3.4)

Substituting the absorbing boundary condition Eq. (II.2.12) onΣ into Eq. (II.3.3), and multiplying

the Eq. (II.3.3) by 1/ρf , we obtain the following discretized problem: for all(qh, vh) ∈ V f
h × V s

h ,

∑

K∈Kf
h

(∫

K

1

ρf
∇p · ∇qh dx− 1

ρf

ω2

c2
f

∫

K
pqh dx

)

−
∑

e∈E
f
h,int

∫

e
(

1

ρf+
∇p+ · ν+qh

+ +
1

ρf−
∇p− · ν−qh

−) ds+
∑

e∈E
f,s
h,tr

∫

e
ω2u · ν+qh ds

−
∑

e∈E
f
h,R

i
∫

e

ω

ρfcf
pqh ds =

∑

e∈E
f,s
h,tr

∫

e

1

ρf
∇g · ν+qh ds, (II.3.5)

∑

K∈Ks
h

(∫

K
σ(u) : ∇vh dx− ω2ρs

∫

K
uvh dx

)

−
∑

e∈Es
h,int

∫

e
(σ(u)+ · ν+vh

+ + σ(u)− · ν−vh
−) ds+

∑

e∈E
f,s
h,tr

∫

e
pν+vh ds

= −
∑

e∈E
f,s
h,tr

∫

e
gν+vh ds. (II.3.6)

Moreover, we observe that:

1

ρf+
∇p+ · ν+qh

+ +
1

ρf−
∇p− · ν−qh

− =

(
1

ρf+
∇p+ · ν+ +

1

ρf−
∇p− · ν−

)(
qh

+ + qh
−

2

)
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+
1

2
(

1

ρf+
∇p+ +

1

ρf−
∇p−)(qh

+ν+ + qh
−ν−)

=

(
1

ρf+
∇p+ · ν+ +

1

ρf−
∇p− · ν−

)(
qh

+ + qh
−

2

)

+
1

2
(

1

ρf+
∇p+ +

1

ρf−
∇p−)ν+(qh

+ − qh
−)

= [
1

ρf
∇p · ν]{qh} + { 1

ρf
∇p}ν+[qh].

and

σ(u)+ν+ · vh+ + σ(u)−ν− · vh− = (σ(u)+ν+ + σ(u)−ν−)

(
vh

+ + vh
−

2

)

+
1

2
(σ(u)+ν+ − σ(u)−ν−)(vh

+ − vh
−)

= (σ(u)+ν+ + σ(u)−ν−)

(
vh

+ + vh
−

2

)

+
1

2
(σ(u)+ + σ(u)−)ν+ · (vh

+ − vh
−)

= [σ(u)ν]{vh} + {σ(u)}ν+ · [vh].

Substituting the latter expressions into Eqs. (II.3.5)-(II.3.6) leads to the following variational formu-

lation:




af(p, qh) + b((p, u), (qh, vh)) + cR(p, qh) = f1(qh),

as(u, vh) + b∗((p, u), (qh, vh)) = f2(vh),
∀ (qh, vh) ∈ V f

h × V s
h (II.3.7)

where

af(p, qh) =
∑

K∈Kf
h

(∫

K

1

ω2

1

ρf
∇p · ∇qh dx− 1

ρf

ω2

c2
f

∫

K
pqh dx

)
(II.3.8)

−
∑

e∈E
f
h,int

1

ω2

∫

e
([

1

ρf
∇p · ν]{qh} + { 1

ρf
∇p}ν+[qh]) ds

b((p, u), (qh, vh)) =
∑

e∈E
f,s
h,tr

∫

e
u · ν+qh ds (II.3.9)

cR((p, u), (qh, vh)) = −
∑

e∈E
f
h,R

i

ω2

∫

e

ω

ρfcf
pqh ds (II.3.10)
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f1(qh) =
∑

e∈E
f,s
h,tr

1

ω2

∫

e

1

ρf
∇g · ν+qh ds, (II.3.11)

as(u, vh) =
∑

K∈Ks
h

(∫

K
σ(u) : ∇vh dx− ω2ρs

∫

K
uvh dx

)
(II.3.12)

−
∑

e∈Es
h,int

∫

e
([σ(u)ν]{vh} + {σ(u)}ν+ · [vh]) ds

f2(vh) = −
∑

e∈E
f,s
h,tr

∫

e
gν+vh ds. (II.3.13)

(II.3.14)

Next, we proceed to some arrangements to obtain the IPDG formulation that will be an approximation

of Eq. (II.3.7). First, the solution(p, u) of the transmission problem BVP (2) has to satisfy the

following weak continuity constraints:

[
1

ρf
∇p · ν] = 0 and [σ(u)ν] = 0. (II.3.15)

Therefore, we remain consistent writing:

1

ρf+
∇p+ · ν+qh

+ +
1

ρf−
∇p− · ν−qh

− = { 1

ρf
∇p}ν+[qh] (II.3.16)

and

σ(u)+ν+ · vh+ + σ(u)−ν− · vh− = {σ(u)}ν+ · [vh]. (II.3.17)

Observe that the terms are not hermitian. We then enforce theweak continuity of the solution through

each interior element of the mesh, by seeking a solution suchthat:

[p] = 0 and [u] = 0. (II.3.18)

Consequently, we remain consistent when re-writing Eq. (II.3.16)-(II.3.17) as :

1

ρf+
∇p+ · ν+qh

+ +
1

ρf−
∇p− · ν−qh

− = { 1

ρf
∇p}ν+[qh] + { 1

ρf
∇qh}ν+[p]. (II.3.19)

and

σ(u)+ν+ · vh+ + σ(u)−ν− · vh− = {σ(u)}ν+[vh] + {σ(vh)}ν+[u]. (II.3.20)
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In addition, to guarantee the stability, we must ensure the coercivity of the formulation. To this end,

we add the following interior penalty terms in the fluid and solid parts respectively:

γfc
f
max

de
[p][qh] and

γsc
s
max

de
[u][vh], (II.3.21)

where

• γf andγs are two real penalty parameters that depend on the polynomial order [4];

• cfmax = max(
1

ρf+
,

1

ρf−
)

• csmax = max(CK+, CK−), whereCK+ = max
ijkl

|Cijkl|.

Note that, instead ofde, one could have usedhe = min(hK+, hK−). Moreover, observe that this

formulation allows to consider heterogeneous media. However, in the following we will only con-

sider homogeneous media. Therefore, both coefficientscfmax and csmax are fixed equal to
1

ρf
, and

maxijkl |Cijkl| respectively.

Given that, combining Eqs. (II.3.19)- (II.3.21), we deduce an approximation of the bilinear forms

af(·, ·) andas(·, ·) (see Eq. (II.3.7)). The proposed IPDG approach consists in formulating BVP (2)

as the following variational problem:

(VF)





Find (ph, uh) ∈ V f
h × V s

h such that

afh(ph, qh) + bh((ph, uh), (qh, vh)) + ch(ph, qh) = f1(qh),

ash(uh, vh) + b∗
h((ph, uh), (qh, vh)) = f2(vh),

∀ (qh, vh) ∈ V f
h × V s

h

(II.3.22)

whereafh andash are two sesquilinear and hermitian forms given by:

afh(ph, qh) =
∑

K∈Kf
h

1

ω2

(∫

K

1

ρf
∇ph · ∇qh dx− 1

ρf

ω2

c2
f

∫

K
phqh dx

)
(II.3.23)

−
∑

e∈E
f
h,int

1

ω2

∫

e

(
{ 1

ρf
∇ph}ν[qh] + { 1

ρf
∇qh}ν[ph]

)
ds

+
∑

e∈E
f
h,int

γf
ω2de

∫

e
cfmax[ph][qh] ds,

ash(uh, vh) =
∑

K∈Ks
h

(∫

K
σ(uh) : ∇vh dx− ω2ρs

∫

K
uh · vh dx

)
(II.3.24)
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−
∑

e∈Es
h,int

∫

e
({σ(uh)}ν · [vh] + {σ(vh)}ν · [uh]) ds

+
∑

e∈Es
h,int

γs
de

∫

e
csmax[uh] · [vh] ds;

ch andbh are two sesquilinear forms given by:

ch(ph, qh) = −
∑

e∈E
f
h,R

i

ω2

∫

e

ω

ρfcf
phqh ds, (II.3.25)

bh((ph, uh), (qh, vh)) =
∑

e∈E
f,s
h,tr

∫

e
uh · νqh ds; (II.3.26)

f1 andf2 are complex-valued linear forms given by:

f1(qh) =
∑

e∈E
f,s
h,tr

1

ω2

∫

e

1

ρf
∇g · νqh ds, (II.3.27)

f2(vh) = −
∑

e∈E
f,s
h,tr

∫

e
gν · vh ds. (II.3.28)

In summary, VF (II.3.22) results from a local variational formulation of the continuous equations (see

BVP (2)) at each elementK of the domain partition. The four first integrals inafh and the three first

terms inash result classically from the application of the Green formula while taking into account the

jump across the interior element edges. Observe that the sesquilinear formsafh andash are hermitian.

This property has been enforced by adding a continuity constraint on the jumps, via the second to last

terms in each form. Moreover, the stability of each local variational form is enforced by incorporating

interior penalty terms giving rise to the two penalty parametersγf andγs in the fluid and solid parts

respectively. Note that in the case of the second-order waveequation, it has been suggested in [4] that

the values of these two penalty parameters should be greaterthan
1

4
p(p + 1), wherep is the order of

the considered finite elements. For an even order approximation, the optimal choice for the penalty

parameter is exactly equal to
1

4
(p+ 1)(p+ 2).

Remark II.3.2.1 We can verify that the added fluxes are consistent and conservative, and thus, the

resulting bilinear forms are coercive, and consistent. Indeed, as regards the consistency, for all

(qh, vh) ∈ V f
h × V s

h and for any(p, u) ∈ V f
h × V s

h satisfying the boundary conditions, we have:





afh(p, qh) = af(p, qh)

ash(u, vh) = as(u, vh).
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II.3.3 The Algebraic Formulation

Thanks to the expression of the functions in the finite element basis described in SectionII.3.1,

the variational problem VF (II.3.22) can be expressed at the algebraic level as follows:



Af + C B

B∗ As







P

U



 =



F1

F2



 . (II.3.29)

whereAf is a symmetric matrix given by:

Af =
1

ω2

(
Kf

−k2Mf − Jf + γfS
f
)
, (II.3.30)

and

• Kf is the block diagonal stiffness matrix associated to the pressure field.

• Mf is the block diagonal mass matrix associated to the pressurefield.

• Jf is the matrix that contains the jump terms. The entries of this matrix are defined over the

interior edges.

• Sf is the mass-like matrix defined over the interior edges in thefluid resulting from the penalty

term.

C is the complex-valued damping matrix. It is a mass-like matrix, whose entries are all zeros except

for the elements located at the exterior boundaryΣ. The matrixAf + C is symmetric, but non-

hermitian, and thus non-positive-definite.

The symmetric matrixAs is given by:

As = Ks − ω2ρsM
s − Js + γsS

s, (II.3.31)

and

• Ks is the block diagonal elastic stiffness matrix related to the displacement field.

• M s is the block diagonal mass matrix related to the displacement field.

• Js is the matrix that contains the jump terms. The entries of this matrix are defined over the

interior edges.

• Ss is the mass-like matrix defined over the interior edges in thesolid resulting from the penalty

term.

Note that the matrixAs is positive-definite up to the Jones frequencies, thanks to the interior penalty

term that compensates the weak ellipticity of the equation operator.B is a mass-like boundary matrix

whose entries are defined on the interface edges only, whereasF1 andF2 are the source vectors. The
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vectorP (resp. U) is the fluid pressure (resp. structural displacement) representation in the finite

element basis.

More specifically, the unknown vectorsP andU are given by:





P = (pi)
t
1≤i≤Nf

h

= ((ph)(P
f
i ))1≤i≤Nf

U = (Ux, Uy)
t = (ui)

t
1≤i≤2Ns = ((ux)h(P

s
i )1≤i≤Ns, (uy)h(P

s
i )1≤i≤Ns)

t

and

Af =



∑

K∈Kf
h

1

ω2

(∫

K

1

ρf
∇φi · ∇φj dx− 1

ρf

ω2

c2
f

∫

K
φiφj dx

)


1≤i,j≤Nf

(II.3.32)

+


−

∑

e∈E
f
h,int

1

ω2

∫

e
({ 1

ρf
∇φi}ν[φj] + { 1

ρf
∇φj}ν[φi]) ds




1≤i,j≤Nf

−



∑

e∈E
f
h,R

i

ω2

∫

e

ω

ρfcf
φiφj ds




1≤i,j≤Nf

+




∑

e∈E
f
h,int

1

ω2

∫

e

γfc
f
max

de
[φi][φj] ds




1≤i,j≤Nf

As =




∑

K∈Ks
h

(∫

K
σ(ψi) : ∇ψj dx− ω2ρs

∫

K
ψiψj dx

)



1≤i,j≤2Ns

(II.3.33)


−

∑

e∈Es
h,int

∫

e
({σ(ψi)}ν · [ψj ] + {σ(ψj)}ν · [ψi]) ds




1≤i,j≤2Ns


+

∑

e∈Es
h,int

∫

e

γsc
s
max

de
[ψi][ψj ] ds




1≤i,j≤2Ns

B =



∑

e∈E
f,s
h,tr

∫

e
ψi · νφj ds




1≤i≤2Ns,1≤j≤Nf

(II.3.34)

F1 =



∑

e∈E
f,s
h,tr

1

ω2

∫

e

1

ρf
∇g · νφj ds




1≤j≤Nf

(II.3.35)
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F2 =


−

∑

e∈E
f,s
h,tr

∫

e
gν · ψj ds




1≤j≤2Ns

. (II.3.36)

(II.3.37)

II.3.4 The Computational Complexity

LetNf
h (resp.N s

h) be the number of elements in the fluid (resp. solid) medium, andnK represents

the number of degrees of freedom on an elementK. For simplicity, we assumenK = m, that is,

we use the same element order in each triangle. Therefore, the total number of unknowns is equal to

m(Nf
h + 2N s

h), where the factor 2 results from the two components of the displacement field. Next,

consider an elementKl in K
f
h, with 1 ≤ l ≤ Nf

h and letφKl
i be a basis function inV f

h associated to

some degree of freedomi, 1 ≤ i ≤ m, on the elementKl. LetφKs
j be an arbitrary basis function ofV f

h

in a triangleKs, with 1 ≤ j ≤ m, 1 ≤ s ≤ Nf
h . Then,afh(φ

Kl
i , φ

Ks
j ) is nonzero only ifφKl

i andφKs
j

are basis functions belonging to the same element, i.e.l = s, or if Ks is a neighbour element ofKl.

Since each triangleKl has at most 3 neighbours, it is sufficient to store four blocksof sizem×m, one

block for the internal interactions within the elementKl and 3 for its interactions with its neighbours.

Following the same reasoning for the remaining terms of the variational formulation VF (II.3.22), this

leads roughly to about4 × m × m × (Nf
h + 2N s

h) nonzero entries in the global matrix. Moreover,

we can also make use of the general symmetry of the terms constituting the matrices to minimize the

storage. It is then almost halved, that is about2×m×m×(Nf
h +2N s

h) nonzero terms. For illustration

purpose, let us consider an elastic circle of radiusa embedded in a fluid medium delimited by a circle

of radiusb. LetN be the number of elements per wavelengthλ. Then, we obtain the computational

configuration referenced in TableII.3.1. The linear system given by Eq. (II.3.29) is thus composed

e ♯ points ♯ elements Total ♯ d.o.f ♯ nonzero terms
(m) Γ Σ N s

h in Ωs Nf
h in Ωf

h =
λ

N

2πa

h

2πb

h

2πa2

h2

2π(b2 − a2)

h2
m

(
2π(a2 + b2)

h2

)
2m2

(
2π(a2 + b2)

h2

)

Table II.3.1 – Computational complexity of IPDG.

of sparse matrices whose symmetry property allows for an optimized storage. This system is solved

with an LU factorization procedure developed for sparse systems and incorporated in the open-source

program suite, MUMPS [1]. An illustrative example of a sparse structure of the DG matrix stored

within MUMPS is depicted in FigureII.3.1. This illustration has been obtained for the case of a mesh

composed of 18 triangles in the solid and 48 in the fluid part. The number of unknowns is thus equal
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to 252 using a linear polynomial approximation, and the matrix contains 1998 nonzero elements.

1 51 101 151 201 251

1

51

101

151

201

251

Fluid−Fluid

Solid−Solid

Fluid−Solid

Solid−Fluid

Figure II.3.1 – Illustrative example of the structure of the IPDG matrix given by Eq. (II.3.29): upper triangular
storage for a252 × 252 matrix. Total number of nonzero entries: 1998.

Note that in the low and mid-frequency regimes, the sparse implementation allows the procedure to

run the numerical experiments on a personal computer. However, due to the size of the resulting

system in the high-frequency regime, parallel computing platforms have been used to perform the

numerical simulations. More specifically, we used the Cluster of the University of Pau consisting of

an INTEL type CPU (64bit) with 8 nodes composed of2 × 6 cores, and 48 Go RAM.

II.3.5 Brief remark on the curved boundary edges

In this work, we will also make use of curved boundary edges onthe fluid-solid interface, as well

as on the exterior boundary. This implies some important changes regarding the numerical implemen-

tation. Indeed, the transformation from an arbitrary element to the reference element is not the same

as for straight finite elements.
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Let K be an element of the mesh whose coordinates of the verticesSi are denoted(xi, yi)i=1,·,3.

We denote byK̂ the reference element triangle defined by the verticesS1(0, 0) S2(1, 0), S3(0, 1).

Then, there exists an affine transformationF which transformsK̂ in K. For straight elements, the

transformation can be written as follows:

F (x̂, ŷ) =


x1

y1


+


 x2 − x1 x3 − x1

y2 − y1 y3 − y1




x̂
ŷ


 .

In the case of curved boundary edges, the transformation is expressed as:

F (x̂, ŷ) =
m∑

i=1

φi(x̂, ŷ)Pi,

wherePi represents the coordinates of the degrees of freedom onK.

A similar remark can be done for the edge transformation.

As a computational implication, the Jacobian of the transformation is no longer constant. It follows

that, by change of variable in the reference element, the determinant must be computed under the

integral. In addition, the normal vector to the edge also varies.

II.4 Numerical validation

Our objective here is to validate our numerical implementation of the IPDG method. To this end,

we propose to define toy problems for which analytical solutions are available.

We assume the elastic obstacle to be homogeneous, which means the Lamé coefficients are indepen-

dent ofx. Observing that∇ · u = tr(∇u) = tr(ε(u)), the tensorσ(u) can be expressed as follows:

σ(u) = λ(∇ · u)I3 + 2µε(u). (II.4.1)

Because∇ · tr(ε(u)I3) = ∇(∇·) and2∇ · (ε(u)) = ∇ · (∇u) + ∇ · (∇ut) = ∆u + ∇(∇ · u), we

then have:

∇ · σ(u) = (λ+ µ)∇(∇ · u) + µ∆u. (II.4.2)

Therefore, we obtain that the Navier equation (see Eq. (II.2.2)) can be rewritten as follows:

(λ+ µ)∇(∇ · u) + µ∆u+ ω2ρsu = 0, (II.4.3)
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or, equivalently, since∆u = ∇(∇ · u) − ∇ × (∇ × u),

(λ+ 2µ)∇(∇ · u) − µ ∇ × (∇ × u) + ω2ρsu = 0. (II.4.4)

From the latter expression of the Navier equation given by Eq. (II.4.4), we can dissociate two types

of solutions: those which are curl free, and the others whichare divergence free, as follows.

• On the hand, assuming∇ × u = 0, Eq. (II.4.4) becomes:

(λ+ 2µ)∆u+ ω2ρsu = 0. (II.4.5)

We recognize a vectorial Helmholtz equation, with wavenumber kp =
ω

cp
, where the velocity

cp is equal tocp =

√
λ+ 2µ

ρs
.

The solutions of this equation correspond to the pressure waves, called P-waves (or primary

waves).

• On the other hand, assuming∇ · u = 0, Eq. (II.4.4) becomes:

µ∆u+ ω2ρsu = 0. (II.4.6)

We also find a vectorial Helmholtz equation, with wavenumberks =
ω

cs
, where the velocity is

given bycs =

√
µ

ρs
.

The solutions of the latter equation are called S-waves for shear waves (or secondary waves).

Then, it results from Eq. (II.4.4) that the displacement fieldu can be split into its curl-free component

and its divergence-free component. More specifically,u can be expressed in terms of a P-wave scalar

potentialφ and S-wave vector potentialψ as follows:

u = ∇φ+ ∇ × ψ. (II.4.7)

Given that, we have transformed the initial equations into awaveguide-type problem and a radiating-

type problem. The fluid-solid interaction problem into consideration is then the following boundary
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value problem:

BVP (3)





∆p + k2p = 0 in Ωf
R

∇ · σ(u) + ω2ρsu = 0 in Ωs

ω2ρfu · ν =
∂p

∂ν
+ g1 on Γ (II.4.8)

σ(u)ν = −pν + g2 on Γ

∂p

∂ν
= gR on Σ .

where the expressions of the right-hand sidesg1, g2 andgR will be specified for each numerical test.

For these simulations, the domain of computation is an elastic circleΩs of radiusa = 1 m surrounded

by an acoustic domainΩf
R, whose external boundary is a circle of radiusaR = 3 m.

The circular frequency isω = 10. We will employ polynomial elements of order 1 to 3. There-

fore, due to the typical oscillatory character of the solution of scattering problems, we use about7.5

elements per wavelength forka = 6.7. The corresponding mesh composed of 5374 elements is de-

picted in FigureII.4.1. The material properties of the considered elastic configuration are reported in

TableII.4.1. Note that they correspond to Lamé coefficientsλ = 8 andµ = 4.

(a) Computational domain (b) Mesh

Figure II.4.1 – Configuration for the waveguide-type problem and radiating-type problem.
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Medium
Properties Density Propagation velocity

ρ (kg/m3) cP (m/s) cS (m/s)

Fluid 2 1.5 –
Solid 1 4 2

Table II.4.1 – Material properties of the considered fluid-structure medium.

II.4.1 First validation test: a waveguide-type problem

For this first validation test, we assume that the pressure field and both potentialsφ, ψ exist as

plane waves, that is:






p = e
i ω

cf
x·d1

, (II.4.9)

φ = e
i ω

cp
x·d2, (II.4.10)

ψ = ei ω
cs
x·d2, (II.4.11)

with d1 = (cos θ, sin θ), d2 = (cosα, sinα).

We will consider the cases where the displacement is curl free and then where it is divergence free.

In particular, these experiments will allow us to verify that we recover correctly both kinds of elastic

waves, i.e., P-waves and S-waves.

II.4.1.1 Curl-free displacement

In this first set of experiments, the curl-free displacementu can be expressed as follows:

u = ∇φ, (II.4.12)

The potentialφ and the pressure fieldp are plane waves given by Eqs. (II.4.9) and (II.4.10). We can

therefore compute explicitly the exact values ofp andu for each degree of freedom.

The right-hand sides of BVP (3) are given by:

gR = ∇ei ω
cf
x·d1 · ν (II.4.13)

g1 = ω2ρf∇ei ω
cp
x·d2 · ν − ∂e

i ω
cf
x·d1

∂ν
(II.4.14)

g2 = σ(∇ei ω
cp
x·d2)ν + e

i ω
cf
x·d1

ν. (II.4.15)

They correspond to the particular case wherep, φ andψ given by Eqs. (II.4.9), (II.4.10) and (II.4.11)

are solution to the problem. We take the following penalty parameters:γf = γs = 3, γf = γs = 15
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andγf = γs = 60 for linear, quadratic and cubic elements respectively. We consider the physical

material properties defined in the beginning of the Section in TableII.4.1. Moreover, the angles of the

plane waves are given by:θ = α = 0◦.

First, we compare the results obtained with different approximation orders going from 1 to 3. The

error results are reported in TablesII.4.2 to II.4.4. In FigureII.4.2(a)-(b), we show the real parts of

the pressure fieldp and the displacement componentux for both approximate and exact solutions

obtained using cubic elements. Since the componentuy is zero in this case, we do not represent it.

Fig. II.4.2(c) illustrates the absolute error between both solutions.The following observations are

noteworthy:

• IPDG delivers a very poor accuracy level when using linear elements as indicated in TableII.4.2.

We observe that there is three orders of magnitude improvement on the relative error when

going from linear to quadratic elements. Employing higher-order (cubic) elements, there is a

one order of magnitude improvement on the relative error associated to the displacement field,

and a two orders of magnitude improvement on the relative error corresponding to the pressure

field. Note that the error associated to the pressure field is poorer than the errors corresponding

to the displacement field. This is due to the fact that the wavelength in the fluid is smaller than

the wavelengths in the solid. Indeed, we havek < ks < kp. To improve the accuracy when

employing the lowest-order elements, it is necessary to refine the mesh in the fluid part. For

example, halving the triangle edges two times successivelyeverywhere, we obtain a relative

error of6.7% for the pressure field using linear polynomial elements.

• In Fig. II.4.2 (a)-(b), we recognize the band structure of the plane waves.Moreover, we observe

the difference of wavelengths between the two media. The dominant blue color for the error

representation in Fig.II.4.2(c) illustrates the good approximation of the exact solution by the

proposed method when employing higher-order elements.

Fields p ux uy

L∞-norm exact solution 1.000 2.500 0.000
L∞-norm approximate solution 9.717 2.688 0.184
Absolute error 14.555 0.190 0.191
L2-relative error (%) 301.866 4.318 Infinity

Table II.4.2 – Waveguide-type problem - Curl-free displacement - Error results using linear polynomial elements
(θ = α = 0◦).

Second, we want to study the stability with respect to the direction of the pressure plane wave.

The angleθ of the directiond1 = (cos(θ), sin(θ)) varies between 0 and 360◦ with an increment of
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.4.2 – Waveguide-type problem - Curl-free displacement - Figures(a) and (b): Real parts of the pressure
field p and displacement componentux using cubic polynomial elements for the approximate and exact solutions
(θ = α = 0◦). Figure (c): Absolute error between both solutions.
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Fields p ux uy

L∞-norm exact solution 1.000 2.500 0.000
L∞-norm approximate solution 1.019 2.500 4.391E-004
Absolute error 4.288E-002 2.095E-004 1.932E-004
L2-relative error (%) 0.856 4.735E-003 Infinity

Table II.4.3 – Waveguide-type problem - Curl-free displacement - Error results using quadratic polynomial ele-
ments (θ = α = 0◦).

Fields p ux uy

L∞-norm exact solution 1.000 2.500 0.000
L∞-norm approximate solution 1.000 2.500 6.501E-006
Absolute error 3.777E-004 5.744E-006 2.070E-006
L2-relative error (%) 7.533E-003 1.298E-004 Infinity

Table II.4.4 – Waveguide-type problem - Curl-free displacement - Error results using cubic polynomial elements
(θ = α = 0◦).

5◦. Given the results obtained previously, we perform the experiments using cubic elements. We take

d2 = d1. We plot both the relative and the absolute errors in FigureII.4.3(a)-(d). We also plot in

Fig. II.4.3(e) the condition number of the DG system matrix, as well as the upper bound of the error

in the solution, provided by the solver MUMPS. The results indicate the following:

• In Fig. II.4.3 (a)-(c), we observe the well-behavior of the method, we recover the periodicity.

The error curves associated to the displacement field is smoother than the error curve corre-

sponding to the pressure field, which is due to the differenceof wavelengths between both

media. Note that, in Fig.II.4.3 (b), the presence of peaks in the relative error curves associated

to the structural displacement field(ux, uy) are due to the fact that the displacement components

ux anduy are zero forθ = π andθ = 2 × π respectively.

• In Fig. II.4.3) (d), we observe the periodic structure of the condition number.

II.4.1.2 Divergence-free displacement

Similarly to the previous part, the divergence-free componentu admits the following representa-

tion:

u = ∇ × ψ, (II.4.16)

The potentialψ and the pressure fieldp are plane waves given by Eqs. (II.4.11) and (II.4.9).

As previously, we consider the boundary value problem BVP (3), but the corresponding right-hand
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(c) Pressure relative error
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(d) Displacement relative error
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Figure II.4.3 – Waveguide-type problem - Curl-free displacement - Figures(a)-(d): Sensitivity of the relative and
absolute errors to the angleθ using cubic polynomial elements. Figure (e): Condition number of the system matrix
and the upper bound of the error in the MUMPS solution (Semi-log y scale).
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sides are now given by:

gR = ∇ei ω
cf
x·d1 · ν (II.4.17)

g1 = ω2ρf∇ × e
i ω

cp
x·d2 · ν − ∂e

i ω
cf
x·d1

∂ν
(II.4.18)

g2 = σ(∇ × e
i ω

cp
x·d2)ν + e

i ω
cf
x·d1

ν. (II.4.19)

Once again, we compute explicitly the exact solutionsp andu and compare them to the approx-

imate solution performed with IPDG for linear to cubic polynomial elements. The error results are

summarized in TablesII.4.5 to II.4.7. Fig. II.4.4 illustrates the numerical results obtained with cubic

polynomial elements. The real parts of the approximate solutions and exact values ofp anduy are

represented in Fig.II.4.4(a)-(b), as well as the absolute error between both solutions in Fig.II.4.4(c).

Note that, in this case, the componentux is zero and is not represented. The results reveal the follow-

ing:

• As before, the use of higher-order elements improve the accuracy, especially for the fluid pres-

surep.

• Fig. II.4.4 shows the correct recovery of the band structure of the planewaves for both types of

media. The errors are poorer than for the P-wave case represented in Fig.II.4.2, this is again

due to the fact thatk ≤ ks ≤ kp.

Fields p ux uy

L∞-norm Exact solution 1.000 0.000 5.000
L∞-norm Approximate solution 54.459 2.084 5.849
Absolute error 95.221 1.684 1.076
L2-relative error (%) 1974.802 Infinity 12.424

Table II.4.5 – Waveguide-type problem - Divergence-free displacement - Error results using linear polynomial
elements.

Fields p ux uy

L∞-norm Exact solution 1.000 0.000 5.000
L∞-norm Approximate solution 1.221 1.165E-002 5.009
Absolute error 0.475 7.258E-003 6.597E-003
L2-relative error (%) 9.471 Infinity 7.455E-002

Table II.4.6 – Waveguide-type problem - Divergence-free displacement - Error results using quadratic polynomial
elements.
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Fields p ux uy

L∞-norm Exact solution 1.000 0.000 5.000
L∞-norm Approximate solution 1.002 2.185E-004 5.001
Absolute error 2.092E-003 5.590E-005 2.011E-004
L2-relative error (%) 4.172E-002 Infinity 2.272E-003

Table II.4.7 – Waveguide-type problem - Divergence-free displacement - Error results using cubic polynomial
elements.

(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.4.4 – Waveguide-type problem - Divergence-free displacement: Figures (a) and (b): Real parts of the
pressure fieldp and displacement componentux using cubic polynomial elements for the approximate and exact
solutions (θ = α = 0◦). Figure (c): Absolute error between both solutions.
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To complete this test case, we again study the stability withrespect to the directiond1 of the pres-

sure plane wave. The angleθ of the directiond1 = (cos(θ), sin(θ)) varies between 0 and 360◦ with

an increment of 5◦ andd2 is chosen equal tod1. We use cubic polynomial elements. In Fig.II.4.5, we

represent both absolute and relative errors, and also report the condition number of the system matrix,

as well as the upper bound of the error in the solution, provided by the solver MUMPS. As before,

we recognize the periodic structure for all the curves. We can observe that the error in pressure is less

smooth than the error associated to the structural displacement field. Note that, in Fig.II.4.5 (b), the

presence of peaks in the relative error is due to the fact thatthe displacement componentsux anduy

are zero forθ = 2 × π andθ = π respectively.

To conclude, both validation cases allow us to ensure that werecover correctly P-waves and S-

waves. In particular, the use of high-order finite elements provides accurate results. Moreover, we

have observed a stability with respect to the direction of the plane waves.

II.4.2 Second validation test: a radiating-type problem

In this second set of experiments, we propose a test similar to the previous one. We do no longer

consider plane waves but the solutionsp andu are respectively a Hankel function of the first kind and

the gradient or curl of a Bessel function for a fixed moden.

More precisely, the pressure and the potentials into consideration can be expressed as follows:






p = H(1)
n (kr) cos(nθ), (II.4.20)

φ = Jn(kpr) cos(nθ), (II.4.21)

ψ = Jn(ksr) sin(nθ), (II.4.22)

This test is useful to test the stability of the method.

II.4.2.1 Curl-free displacement

In this first part, the curl-free displacementu is expressed by:

u = ∇φ, (II.4.23)
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(d) Displacement relative error
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Figure II.4.5 – Waveguide-type problem - Divergence-free displacement - Figures (a)-(d): Sensitivity of the relative
and absolute errors to the angleθ using cubic polynomial elements. Figure (e): Condition number of the system
matrix and the upper bound of the error in the MUMPS solution (Semi-log y scale).
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The potentialφ and the pressure fieldp are special functions given by Eqs. (II.4.21) and (II.4.20). In

order to specify the expression ofu, we write the gradient in polar coordinates as follows:

∇φ =
∂φ

∂r
~er +

1

r

∂φ

∂θ
~eθ. (II.4.24)

Let us denote

ur =
∂φ

∂r
= −kpJ

′

n(kpr) cos(nθ) (II.4.25)

uθ =
1

r

∂φ

∂θ
= −n

r
Jn(kpr) sin(nθ). (II.4.26)

Then, we obtain:

u = ur~er + uθ~eθ. (II.4.27)

Since the polar basis vectors are given by~er = (cos θ, sin θ)t and~eθ = (− sin θ, cos θ)t, it follows

that the displacement field can be expressed as:

ux = ur cos θ − uθ sin θ,

uy = ur sin θ + uθ cos θ,

Then, the boundary value problem is still formulated as BVP (3) but with different expressions of the

right-hand sides, that is,

gR =
∂

∂r

[
H(1)
n (kr) cos(nθ)

]
, r = 3 (II.4.28)

g1 = ω2ρf
∂

∂r
[Jn(kpr) cos(nθ)] − ∂

∂r

[
H(1)
n (kr) cos(nθ)

]
, r = 1 (II.4.29)

g2 = σ(∇ [Jn(kpr) cos(nθ)])ν +
[
H(1)
n (kr) cos(nθ)

]
ν, r = 1. (II.4.30)

We keep the settings defined in the beginning of the section.

First, we consider the moden = 2. We summarize the error results obtained when using linear to

cubic polynomial elements in TablesII.4.8 to II.4.10. In Fig. II.4.7 (a)-(b), we depict the real parts of

the pressure solutionp and the displacement componentux for both approximate and exact solutions

when using cubic elements. Fig.II.4.7 (c) illustrates the absolute error between both solutions.In Fig-

ureII.4.6, we represent the imaginary part of the pressure fieldp and the real part of the displacement

componentuy for both approximate and exact solutions when using cubic elements, as well as the

absolute error. Since the displacement field is real, we do not represent the zero imaginary part. The
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conclusions are similar to those drawn up for the previous test case. More specifically, we observe

the following:

• As previously, IPDG delivers a very poor accuracy level whenusing linear elements. Indeed,

we observe that there is a three orders of magnitude improvement on the relative error when

going from linear to quadratic elements. However, observe that the use of higher-order elements

does not improve the accuracy except for the fluid pressurep.

• In Fig. II.4.7 (a)-(b) and Fig.II.4.6 (a)-(b), we recognize the radiating structure of the solutions.

In addition, the difference of wavelengths between both media is again clearly observable.

• The dominant blue color in Fig.II.4.7 (c) and Fig.II.4.6 (c) illustrates the good approximation

of the exact solution when using cubic polynomial elements.Note that it seems that the error is

concentrated on the transmission interface.

Fields p ux uy

L∞-norm exact solution 0.316 0.636 0.636
L∞-norm approximate solution 3.770 0.711 0.707
Absolute error 7.130 9.491E-002 9.369E-002
L2-relative error (%) 949.789 11.471 11.323

Table II.4.8 – Radiating-type problem - Curl-free displacement - Error results using linear polynomial elements
(n = 2).

Fields p ux uy

L∞-norm exact solution 0.316 0.636 0.636
L∞-norm approximate solution 0.318 0.636 0.636
Absolute error 4.238E-003 6.002E-005 6.191E-005
L2-relative error (%) 0.543 7.216E-003 7.443E-003

Table II.4.9 – Radiating-type problem - Curl-free displacement - Error results using quadratic polynomial elements
(n = 2).

Fields p ux uy

L∞-norm exact solution 0.316 0.636 0.636
L∞-norm approximate solution 0.316 0.636 0.636
Absolute error 1.731E-004 4.699E-005 4.670E-005
L2-relative error (%) 2.219E-002 5.649E-003 5.615E-003

Table II.4.10 – Radiating-type problem - Curl-free displacement - Error results using cubic polynomial elements
(n = 2).
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.4.6 – Waveguide-type problem - Curl-free displacement - Figures (a) and (b): Imaginary part of the
pressure fieldp and real part of the displacement componentuy using cubic polynomial elements for the approximate
and exact solutions (n = 2). Figure (c): Absolute error between both solutions.

98



II.4 Numerical validation

(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.4.7 – Waveguide-type problem - Curl-free displacement - Figures (a) and (b): Real parts of the pressure
field p and displacement componentux using cubic polynomial elements for the approximate and exact solutions
(n = 2). Figure (c): Absolute error between both solutions.
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Second, we study the stability with respect to the moden of the special functions. We consider a

mode varying fromn = 0 to n = 10. Given the previous observations, we employ cubic polynomial

elements. In FigureII.4.8, we depict both absolute and relative errors. We also represent the condition

number of the DG matrix, as well as the upper bound of the errorin the solution, provided by the

solver MUMPS. It seems that there is a relative stability with respect to the mode. Whereas the

pressure approximation remains relatively stable, the relative errors corresponding to the structural

displacement seem to increase with the mode number. This is due to the fact that the displacement

field tends to vanish as the mode number increases, which is observable on the absolute error curves.

Last, though we remark that the condition number of the system decreases withn, this is not the case

for the error in the Mumps solution.

Remark II.4.2.1 Later, we will use curved boundary edges on both boundariesΓ andΣ in order to

better take into account the geometry of the domain and better modeling the incoming and outgoing

waves as well the surface wave at the wet surface. We will see that this can significantly improve the

results. However, we can already observe the effect of usingcurved boundary edges on the accuracy

of IPDG for the radiating-type problem into consideration.The preliminary results are reported in

TableII.4.11 and FigureII.4.2.1 using cubic polynomial finite elements. TableII.4.11 suggests that

there is a gain on both pressure and displacement fields when using curved boundary edges compared

to TableII.4.10. Moreover, the error curves depicted in Fig.II.4.2.1 are smoother than the ones in

Fig. II.4.8.

Fields p ux uy

L∞-norm exact solution 0.316 0.636 0.636
L∞-norm approximate solution 0.316 0.636 0.636
Absolute error 7.735E-005 7.064E-006 7.107E-006
L2-relative error (%) 9.914E-003 8.480E-004 8.532E-004

Table II.4.11 – Radiating-type problem - Curl-free displacement - Error results using cubic polynomial elements
equipped with curved boundary edges (n = 2).

II.4.2.2 Divergence-free displacement

In this second part, the divergence-free displacementu is expressed as follows:

u = ∇ × ψ, (II.4.31)
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(c) Condition number

Figure II.4.8 – Waveguide-type problem - Curl-free displacement - Figures (a)-(b): Sensitivity of the relative and
absolute errors to the mode numbern using cubic polynomial elements. Figure (c): Condition number of the system
matrix and the upper bound of the error in the MUMPS solution (Semi-log y scale).
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(c) Condition number

Figure II.4.9 – Waveguide-type problem - Curl-free displacement - Figures (a)-(b): Sensitivity of the relative and
absolute errors to the mode numbern using cubic polynomial elements equipped with curved boundary edges. Figure
(c): Condition number of the system matrix and the upper bound of the error in the MUMPS solution (Semi-log y
scale).

102



II.4 Numerical validation

The pressure fieldp is given by Eq. (II.4.20) and the potentialψ by the Eq. (II.4.22). As above, we

expand the form of the solutionu. First, we have:

∇ × ψ =
1

r

∂ψ

∂θ
~er − ∂ψ

∂r
~eθ. (II.4.32)

Therefore, we obtain:

ux = ur cos θ − uθ sin θ,

uy = ur sin θ + uθ cos θ,

where

ur =
1

r

∂ψ

∂θ
=
n

r
Jn(ksr) cos(nθ),

uθ = −∂ψ

∂r
= −ksJ

′

n(ksr) sin(nθ).

Then, similarly to the previous part, we consider BVP (3) with the following expression for the right-

hand sides:

gR =
∂

∂r

[
H(1)
n (kr) cos(nθ)

]
, r = 3 (II.4.33)

g1 = ω2ρf∇ × [Jn(ksr) sin(nθ)] · ν − ∂

∂r

[
H(1)
n (kr) cos(nθ)

]
, r = 1 (II.4.34)

g2 = σ(∇ × [Jn(ksr) sin(nθ)])ν +
[
H(1)
n (kr) cos(nθ)

]
ν, r = 1. (II.4.35)

The parameters are the ones defined in the beginning of the section.

In this case, the mode number is again fixed ton = 2. The error results using linear to cubic polyno-

mials are reported in TablesII.4.12 to II.4.14. In Fig. II.4.10(a)-(b), we represent the real parts of the

pressure fieldp and the displacement componentux for both approximate and exact solutions when

using cubic elements. Fig.II.4.10 (c) depicts the absolute error between both solutions. Fig.II.4.11

gives the representation of the imaginary part of the pressure fieldp and the real part of the displace-

ment componentuy for both approximate and exact solutions when employing cubic elements, as

well as the absolute error. Since the displacement field is real, we only show its real part. The results

are similar to those obtained in the case of curl-free displacement. They indicate the following:

• As observed in the curl-free displacement case, there is a three orders of magnitude improve-

ment on the relative error when going from linear to quadratic elements. Furthermore, going

from quadratic to cubic elements - once again - does not make adifference, except for the
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pressure field (see TablesII.4.12-II.4.14).

• Again, we recover the radiating structure of the solutions (see Fig.II.4.10and Fig.II.4.11), and

can observe the difference of wavelengths between both media.

• The concentration of the error on the fluid-solid interface is again observable on Fig.II.4.10(c)

and Fig.II.4.11 (c).

Fields p ux uy

L∞-norm exact solution 0.316 1.788 1.79
L∞-norm approximate solution 20.808 2.359 2.344
Absolute error 35.381 0.476 0.471
L2-relative error (%) 4712.858 32.390 32.06

Table II.4.12 – Radiating-type problem - Divergence-free displacement - Error results using linear polynomial
elements (n = 2).

Fields p ux uy

L∞-norm exact solution 0.316 1.793 1.797
L∞-norm approximate solution 0.328 1.794 1.798
Absolute error 5.885E-002 1.02E-003 1.034E-003
L2-relative error (%) 7.544 6.788E-002 6.884E-002

Table II.4.13 – Radiating-type problem - Divergence-free displacement - Error results using quadratic polynomial
elements (n = 2).

Fields p ux uy

L∞-norm exact solution 0.316 1.799 1.799
L∞-norm approximate solution 0.318 1.799 1.799
Absolute error 3.915E-003 6.148E-004 6.182E-004
L2-relative error (%) 0.502 4.093E-002 4.115E-002

Table II.4.14 – Radiating-type problem - Divergence-free displacement - Error results using cubic polynomial
elements (n = 2).

To end this study, we analyze the stability with respect to the moden of the special functions. The

mode varies fromn = 0 ton = 10 using cubic elements. The error curves are depicted in Fig.II.4.12,

together with the condition number of the DG system matrix, as well as the upper bound of the error

in the solution, provided by the solver MUMPS. In Fig.II.4.12 (a)-(b), we observe that the errors on

the pressure field remain relatively stable. It is also the case for the displacement approximations.

Note that the presence of peaks in the relative errors associated to the displacement components in

Fig. II.4.12(b) for the first moden = 0 is due to the fact the displacement is zero for this mode value,
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.4.10 – Waveguide-type problem - Divergence-free displacement - Figures (a)and (b): Real parts of the
pressure fieldp and displacement componentux using cubic polynomial elements for the approximate and exact
solutions (n = 2). Figure (c): Absolute error between both solutions.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.4.11 – Waveguide-type problem - Divergence-free displacement - Figures (a)and (b): Imaginary part
of the pressure fieldp and real part of the displacement componentuy using cubic polynomial elements for the
approximate and exact solution (n = 2). Figure (c): Absolute error between both solutions.
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as indicated by Fig.II.4.12(a). As previously, the condition number decreases with themode number

n but not the error in the Mumps solution (see Fig.II.4.12 (c)).
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(c) Condition number

Figure II.4.12 – Waveguide-type problem - Divergence-free displacement - Figures (a)-(b): Sensitivity of the
relative and absolute errors to the mode numbern using cubic polynomial elements. Figure (c): Condition number
of the system matrix and the upper bound of the error in the MUMPS solution (Semi-log y scale).

To conclude, it follows from the tests performed on the radiating-type problem that we again

recover correctly P-waves and S-waves. The use of high-order (cubic) polynomial elements ensures

an accurate approximation. Furthermore, the results seem to show a stability with respect to the mode

number of the special functions.

Remark II.4.2.2 Similarly to RemarkII.4.2.1, we address the effect of using curved boundary edges

on the approximation for the radiating-type problem in the case of divergence-zero displacement.
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The corresponding results are reported in TableII.4.11 and Fig. II.4.13 using cubic elements. The

comparison of these results with TableII.4.10 and Fig. II.4.12 suggests that the curved boundary

edges improves the accuracy level delivered by IPDG. We willsee a more detailed analysis of the

IPDG method equipped with curved boundary edges in the next section.

Fields p ux uy

L∞-norm exact solution 0.316 1.799 1.799
L∞-norm approximate solution 0.316 1.799 1.799
Absolute error 6.654E-004 7.633E-005 7.613E-005
L2-relative error (%) 8.529E-002 5.074E-003 5.061E-003

Table II.4.15 – Radiating-type problem - Divergence-free displacement - Error results using cubic polynomial
elements equipped with curved boundary edges (n = 2).

II.5 Numerical performance

In this Section, we investigate the numerical performance of the proposed IPDG method equipped

with curved boundary edges and compare it to the Ultra-Weak Variational Formulation (UWVF) [88].

The principle of the latter method is recalled in the state ofthe art in the preamble of [69]. As its name

indicates, the UWVF method developed by Cessenat-Despré in[24] is constructed in a variational

framework. The term “ultra-weak” comes from the fact that the variational problem is obtained after

two integrations by parts. The wave field is approximated in aplane-wave basis, which results in in a

discontinuous function. The continuity across the interfaces is restored in the weak sense by solving a

system whose unknowns are defined on the mesh edges. This reduces the overall computational cost,

but auxiliary local problems must be solved before. The discretization of the obtained system leads to

a linear system associated with a Hermitian and definite-positive matrix, which nevertheless suffers

from ill-conditioning.

To this end, we consider the three-dimensional time-harmonic scattering of acoustic waves by an

infinite long aluminum cylinder immersed in water. Note thatthis configuration has been used in

[88] to assess the performance of UWVF for fluid-solid interaction on relatively coarse meshes. In

addition, since the axis of the cylinder isz, the problem reduces to a two-dimensional problem in

the (x, y)-plane. The considered computational domain is depicted inFigureII.5.1. The solid is a

circleΩs with radiusa = 0.01 m surrounded by the fluidΩf delimited by the exterior circular-shaped

boundaryΣ of radiusb = 0.02 m. The material properties of the considered elastic configuration are

reported in TableII.5.1. These are similar to the ones used in [59, 88]. In the following, we consider

108



II.5 Numerical performance

0 1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Mode

A
bs

ol
ut

e 
er

ro
r

Semi−log y scale

 

 

P
Ux
Uy

(a) Absolute error

0 1 2 3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

10
1

10
2

Mode

R
el

at
iv

e 
er

ro
r 

(%
)

Semi−log y scale

 

 

P
Ux
Uy

(b) Relative error

0 1 2 3 4 5 6 7 8 9 10
10

5

10
6

10
7

10
8

10
9

Mode

C
on

di
tio

n 
nu

m
be

r

Semi−log y scale

 

 

Condition number

1012 × Upper bound error
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Figure II.4.13 – Waveguide-type problem - Divergence-free displacement - Figures (a)-(b): Sensitivity of the
relative and absolute errors to the mode numbern using cubic polynomial elements equipped with curved boundary
edges. Figure (c): Condition number of the system matrix andthe upper bound of the error in the MUMPS solution
(Semi-log y scale).
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Figure II.5.1 – The computational domain: disk-shaped elastic scattererΩs surrounded by an exterior circular-
shaped boundaryΣ.

an incident plane wave of the formpinc = eikx·d with d = (1, 0). Note that, since the scatterer is

isotropic, the fourth-order stiffness tensor reduces toClmjn = λδlmδjn + µ(δljδmn + δlnδmj) where

λ = ρS(c2
P − 2c2

S) andµ = ρSc
2
S are positive numbers representing the constant Lamé coefficients

defined in terms of the densityρS, as well as the pressure and shear velocitiescP andcS in the solid

[93].

Medium
Properties Density Propagation velocity

ρ (kg/m3) cP (m/s) cS (m/s)

Water 1000 1500 –
Aluminum 2700 6198 3122

Table II.5.1 – Material properties of the considered fluid-structure medium.

We use an analytical solution for the elasto-acoustic scattering problem existing for simple scat-

terers, that are circles to derive the method adopted. The construction of the analytical solution in

polar coordinates is given in AppendixB.1 by using the separation of variables. Observe that the

analytical solution is designed to satisfy the low-order Sommerfeld-type condition and thus the same

problem as the approximate solution. By this way, the error between both exact and computed solu-

tions will not be influenced by the radiation condition. As itis well-known, the exact solution of the

considered elasto-acoustic problem can be expressed as a Fourier series (see, for example, [88] and

AppendixB.1). For completeness purposes, we recall here such an expression. In the fluid domain,

the scattered pressure field is expressed as follows [16]:

p(r, θ) =
+∞∑

n=0

[
AnH

(1)
n (kr) +BnH

(2)
n (kr)

]
cos(nθ); a < r < b, θ ∈ [0, 2π) (II.5.1)
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whereH(1)
n andH(2)

n denote the Hankel functions of the first and second kind [2], andAn, Bn are

complex numbers. The first term of the series corresponds to the outgoing field. The second term

represents the incoming wave due to the presence of the exterior boundaryΣ. In the solid obstacle,

the scattered displacement fieldu is expressed using two displacement potentialsφ andψ [120]:

u = ∇φ+ (−ez) × ∇ψ. (II.5.2)

where these two potentials are given by:

φ(r, θ) =
+∞∑

n=0

CnJn(kpr) cos(nθ), (II.5.3)

ψ(r, θ) =
+∞∑

n=0

DnJn(ksr) sin(nθ); 0 ≤ r < a, θ ∈ [0, 2π). (II.5.4)

Here,Jn andYn denote the Bessel functions of the first and second kind respectively [2], andkp =
ω

cp
,

ks =
ω

cs
represent the wavenumbers of the pressure and shear waves inthe solid. Moreover, the

complex coefficientsAn, Bn, Cn andDn satisfy the following system [88]:

EnXn = en (II.5.5)

whereXn = (An, Bn, Cn, Dn)
t andEn is a4 × 4 matrix whose complex-valued entriesElj

n are given

by:

E1j
n = kH

′(j)
n (ka), j = 1, 2

E13
n = −ω2ρfkpJ

′
n(kpa),

E14
n = −ω2ρf

n

a
Jn(ksa),

E2j
n = H(j)

n (ka), j = 1, 2

E23
n =

2µ

a2

[
(n2 + n− 1

2
k2
sa

2)Jn(kpa) − kpaJn−1(kpa)
]
,

E24
n =

2µ

a2
[n(−(n + 1)Jn(ksa) + ksaJn−1(ksa))] ,

E31
n = E32

n = E43
n = E44

n = 0,

E33
n = −2µ

a2
n [−(n+ 1)Jn(kpa) + kpaJn−1(kpa)] ,

E34
n = −2µ

a2

[
(n2 + n − 1

2
k2
sa

2)Jn(ksa) − ksaJn−1(ksa)
]
,
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E4j
n = kH

′(j)
n (kb) − ikH (j)

n (kb), j = 1, 2.

The right-hand sideen ∈ C4 corresponding to Eq. (B.1.14) is given by:

e1
n = −εninkJ

′

n(ka), (II.5.6)

e2
n = −εninJn(ka), (II.5.7)

e3
n = e4

n = 0, (II.5.8)

whereε0 = 1 andεn = 2 for n ≥ 1.

We also denote byEr
n = (Ejl

n )j=1,2,3;l=1,3,4 the reduced matrix in which the effect of the exterior

boundary is ignored, whereasEs
n = (Ejl

n )j=2,3;l=3,4 is the matrix representing the solid Fourier modes.

Recall that the Jones frequencies correspond to frequency values for which the uniqueness of the so-

lution in the elastic medium fails. Such resonance frequencies correspond to the excitation of surface

waves on the fluid-solid interface whose integer number of wavelengths fits over the circumference

of the interface [88]. Consequently, the determination of these resonance frequencies can be accom-

plished by monitoring the dependence of these local three matricesEn, Er
n andEs

n with respect to

the normalized frequencyka and by determining the values ofn that make the corresponding deter-

minants vanish. Note that, omitting the low-order Sommerfeld-type condition term, the determinant

associated toEr
n corresponds to the real unbounded physical problem satisfying the radiation condi-

tion. Moreover, observe that, sinceEs
n represents the vanishing traction on the surface of the elastic

scatterer, the determinant associated toEs
n naturally coincides with the Jones frequencies.

In all numerical experiments presented here, the exact solution has been evaluated by computing

only the first2kb+ 1 Fourier modes for both the fluid pressurep and the structural displacementu, or

less Fourier modes if the relative change due to an additional mode in both acoustic and elastic wave

fields is below10−5. It is worth mentioning that, though this is not necessary, we scale the systems

associated to both approximate and exact solutions in orderto avoid some instabilities, especially in

the high-frequency regime. Indeed, in our numerical experiments, there is a difference of scale of

1013 between both acoustic and elastic wave fields, and therefore, the system matrices can suffer from

ill-conditioning. Note that, for high frequency values, the analytical solution turns out to be unstable,

more particularly the analytical pressure field, and a special care to the mode number precision is

required.

We must point out that we have performed this numerical investigation by taking values for the penalty
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termsγf andγs ranging from0 to 106. The obtained results (see AppendixB.3) suggest that one can

use any values forγf andγs without affecting the accuracy of IPDG, provided that thesevalues re-

main larger than
1

4
p(p+ 1), wherep is the order of the considered element.

We have performed several numerical experiments and compared the obtained results to those

obtained with UWVF [88]. We present here a sample of illustrative results pertaining to (a) the

determination of Jones frequencies, (b) the sensitivity tothe mesh refinement, and (c) the sensitivity

to the frequency regime.

II.5.1 Numerical determination of the Jones frequencies

The objective here is to compute the Jones frequencies of thegiven problem configuration. To

this end, we consider Mesh 1 depicted in Fig.II.5.2(a) and whose characteristics are reported in Ta-

ble II.5.2. Sinceka varies from 4 to 21, the mesh resolution decreases from 20 elements to about

3.9 elements per wavelength. In the first experiment, we consider the case where the boundaries are

♯ points ♯ elements
Γ Σ Ωs Ωf

Mesh 1 80 160 1602 4840
Mesh 2 320 160 1956 4244
Mesh 3 44 27 461 184

Table II.5.2 – Disk-shaped elastic scatterer problem - Mesh characteristics.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure II.5.2 – Disk-shaped elastic scatterer problem.
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polygonal-shaped, that is, no curved boundary edges are used, and we employ cubic polynomial func-

tions. The results are reported in FiguresII.5.3 to II.5.6. The following observations are noteworthy:

• Except at discrete values ofka, theL2-relative error remains below 1.5% even when the mesh

resolution is as low as 3.9 elements per wavelength, as indicated in Fig.II.5.3 (a).

• Fig. II.5.3 (a) also indicates that the relative error curves associated to the structural displace-

ment field(ux, uy) exhibit peaks that correspond to the resonance frequencies, as confirmed in

FigureII.5.4 depicting the condition number of the global system given byEq. (II.3.29).

• The curve corresponding to theL2-relative error in the fluid pressure also exhibits peaks (see

Fig.II.5.3) which is striking since there is no resonance frequency in the fluid. The presence of

these spurious frequencies in the fluid medium is due to a poorapproximation of the interface

fluid/structureΓ, as it will be demonstrated in the next paragraph (see Fig.II.5.18).

• Observe that the highest peak in Fig.II.5.3 is located at the dimensionless frequencyka = 9.26,

corresponding to the frequencyfR = 221 kHz. Fig.II.5.5 reveals that, at this frequency value,

the three matricesEn, Er
n andEs

n for the third Fourier mode (n = 2) become singular, as

observed in Fig. 7, page 178 in [88]. Note that the minimum values of the three determinants

are located at the same frequencies, which shows that the resonances for the modal problem

are the physically relevant Jones frequencies corresponding to the third type of determinants

in Figs.II.5.5-II.5.6. This clearly demonstrates that the frequency valuefR coincides with the

Jones frequency associated to the third Fourier mode.

Note that AppendixB.2 addresses a brief analysis on the sensitivity of the Jones frequencies to

perturbations of the scatterer.

II.5.2 Towards the IPDG method equipped with curved boundary edges

In this section, we propose a progressive approach towards the IPDG method equipped with

curved boundary edges on the transmission interface and exterior boundary as follows. First, we

present the results obtained in the neighborhood of the resonance frequencyfR highlighted previ-

ously, using straight boundary edges and the globally refined Mesh 1 depicted in Fig.II.5.2(a). Next,

we observe the improvements achieved by means of a refinementof the mesh interface, using Mesh 2

depicted in Fig.II.5.2(b), while still employing no curved edges at the boundaries. Second, we come

to the IPDG method equipped with curved boundary edges, thatwill be adopted, using the coarser

Mesh 3 depicted in Fig.II.5.2(c).
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Figure II.5.3 – Sensitivity of theL2-relative error and of the absolute error to the wavenumberka when using
Mesh 1 and cubic polynomial elements without curved boundary edges.
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Figure II.5.4 – Sensitivity of the condition number of the system matrix andthe upper bound of the error in
the MUMPS solution to the wavenumberka when using Mesh 1 and cubic polynomial elements without curved
boundary edges.

II.5.2.1 IPDG method without curved boundary edges

In the following, we analyze the performance of the method inthe neighborhood of the resonance

frequencyfR highlighted previously. Similarly to [88], we consider the three frequenciesf1 = 219

kHz, fR = 221 kHz, andf2 = 223 kHz, corresponding toka = 9.1735, 9.2572, and9.341 respec-

tively. We have computed the scattered field(p, ux, uy) using two meshes: Mesh 1 and Mesh 2 (see

Fig. II.5.2(a) and Fig.II.5.2(b)). Note that these two meshes are similar except at the fluid-structure

interface in which Mesh 2 is four times finer than Mesh 1, as indicated in TableII.5.2. Moreover, the

numerical experiments have been performed using (a) linearpolynomials, (b) quadratic polynomials

and (c) cubic polynomials. We must point out that no curved edges at the boundaries were employed

in these experiments. The obtainedL2-relative errors and absolute errors on the scattered field are

reported in TablesII.5.3-II.5.5, TableII.5.6-II.5.5, and Fig.II.5.7. Some illustrations of the numerical

results obtained using cubic polynomial elements are depicted in Figs.II.5.8 to II.5.13. The following

observations are noteworthy:

• IPDG delivers a very poor accuracy level when using Mesh 1 (see TablesII.5.3-II.5.5) at the

Jones frequencyfR. Observe that the use of higher-order elements does not improve the ac-

curacy except for the fluid pressurep. The situation is slightly different for the two other fre-

quencies. Indeed, we observe that there is one order of magnitude improvement on the relative

error when going from linear to quadratic elements. However, the error stagnates when using

higher-order (cubic) elements (see TableII.5.5).
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Figure II.5.5 – Sensitivity of the determinant of the modal matrices to the wavenumberka. Cases wheren = 0, 1, 2
(Semi-log y scale).
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Figure II.5.6 – Sensitivity of the determinant of the modal matrices to the wavenumberka. Cases wheren = 3, 4, 5
(Semi-log y scale).
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• The results reported in TablesII.5.6-II.5.8 indicate that a finer mesh on the fluid-structure inter-

face (recall that Mesh 2 is four times finer than Mesh 1 on the interface, as shown in TableII.5.2)

improves the accuracy level delivered by IPDG for all three frequencies. These results clearly

illustrate the importance of well representingΓ for the accuracy. Yet, the error on the structural

displacement at the Jones frequencyfR is about two orders of magnitude higher than the error

on the field corresponding to the non-resonant frequencies.Furthermore, going from quadratic

to cubic elements - once again - does not make a difference. Inaddition, the spurious frequen-

cies are still present in the fluid medium, as depicted in Fig.II.5.7.

• Figs.II.5.8- II.5.10, where the pressure modulus and the displacement amplitudefield
√
u · ū

are represented, suggest that the error is due to a poor modeling of the wave transmission

through the wet surface. Figs.II.5.11- II.5.13 supports this idea since we can observe a kind of

thinning down of the error when considering a finer mesh on thefluid-structure interface.

f (kHz) p ux uy

219

L∞-norm exact solution 1.739 1.98E-013 2.556E-013
L∞-norm approximate solution 1.776 2.004E-013 2.427E-013
Absolute error 2.356E-003 1.201E-016 1.901E-016
L2-relative error (%) 11.323 6.464 9.572

221

L∞-norm exact solution 1.73 4.612E-013 6.346E-013
L∞-norm approximate solution 1.757 1.757E-013 2.659E-013
Absolute error 2.459E-003 3.139E-015 3.247E-015
L2-relative error (%) 11.77 102.723 67.206

223

L∞-norm exact solution 1.706 2.462E-013 2.01E-013
L∞-norm approximate solution 1.738 2.615E-013 1.815E-013
Absolute error 2.483E-003 2.252E-016 2.875E-016
L2-relative error (%) 11.931 11.023 17.319

Table II.5.3 – Error results for linear polynomial elements using Mesh 1 and no curved boundary edges.

Remark II.5.2.1 Before using a refinement of the fluid-structure interface only, we have refined the

mesh globally by halving the triangle edges once, which multiplies the number of elements by 4. We

have obtained relative errors that are divided by a factor 2.7 in the case of the resonance frequency:

0.28%, 19.881%, 12.594% for p, ux anduy respectively, when using cubic elements, and similar re-

sults when employing cubic elements. Therefore, the globalrefinement of Mesh 1 only slighty im-

proves the results compared to the benefits obtained using Mesh 2. Moreover, the computational cost

is clearly spoiled, and the limitations constituted by the use of polygonal-shaped approximations re-

main. Note that with Mesh 1, the number of non-zero entries ofthe system was 1,667,068, whereas

on Mesh 2, that admits about the same number of elements as Mesh 1, it becomes 1,756,628, which
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f (kHz) p ux uy

219

L∞-norm exact solution 1.742 1.98E-013 2.556E-013
L∞-norm approximate solution 1.743 1.991E-013 2.546E-013
Absolute error 9.625E-005 1.186E-017 1.763E-017
L2-relative error (%) 0.450 0.635 0.881

221

L∞-norm exact solution 1.736 4.614E-013 6.346E-013
L∞-norm approximate solution 1.732 2.671E-013 4.417E-013
Absolute error 1.612E-004 1.625E-015 1.630E-015
L2-relative error (%) 0.751 52.869 33.534

223

L∞-norm exact solution 1.715 2.462E-013 2.01E-013
L∞-norm approximate solution 1.715 2.482E-013 1.994E-013
Absolute error 9.512E-005 1.703E-017 2.211E-017
L2-relative error (%) 0.444 0.829 1.320

Table II.5.4 – Error results for quadratic polynomial elements using Mesh1 and no curved boundary edges.

f (kHz) p ux uy

219

L∞-norm exact solution 1.744 1.98E-013 2.556E-013
L∞-norm approximate solution 1.744 1.991E-013 2.545E-013
Absolute error 9.880E-005 1.156E-017 1.719E-017
L2-relative error (%) 0.462 0.619 0.859

221

L∞-norm exact solution 1.738 4.622E-013 6.351E-013
L∞-norm approximate solution 1.734 2.700E-013 4.446E-013
Absolute error 1.589E-004 1.599E-015 1.605E-015
L2-relative error (%) 0.74 52.045 33.008

223

L∞-norm exact solution 1.717 2.462E-013 2.01E-013
L∞-norm approximate solution 1.718 2.481E-013 1.993E-013
Absolute error 9.789E-005 1.682E-017 2.167E-017
L2-relative error (%) 0.457 0.819 1.294

Table II.5.5 – Error results for cubic polynomial elements using Mesh 1 andno curved boundary edges.
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f (kHz) p ux uy

219

L∞-norm exact solution 1.727 1.98E-013 2.556E-013
L∞-norm approximate solution 1.839 2.035E-013 2.397E-013
Absolute error 2.994E-003 1.672E-016 2.456E-016
L2-relative error (%) 14.555 9.012 12.371

221

L∞-norm exact solution 1.723 4.631E-013 6.353E-013
L∞-norm approximate solution 1.824 1.891E-013 2.506E-013
Absolute error 3.098E-003 3.292E-015 3.42E-015
L2-relative error (%) 15.010 107.808 70.781

223

L∞-norm exact solution 1.703 2.462E-013 2.01E-013
L∞-norm approximate solution 1.809 2.577E-013 1.864E-013
Absolute error 3.144E-003 2.691E-016 3.495E-016
L2-relative error (%) 15.289 13.186 21.071

Table II.5.6 – Error results for linear polynomial elements using Mesh 2 and no curved boundary edges.

f (kHz) p ux uy

219

L∞-norm exact solution 1.740 1.980E-013 2.556E-013
L∞-norm approximate solution 1.740 1.980E-013 2.555E-013
Absolute error 3.207E-005 1.242E-018 1.836E-018
L2-relative error (%) 0.150 6.65E-002 9.173E-002

221

L∞-norm exact solution 1.735 4.631E-013 6.353E-013
L∞-norm approximate solution 1.735 4.338E-013 6.058E-013
Absolute error 4.330E-005 2.410E-016 2.418E-016
L2-relative error (%) 0.202 7.835 4.968

223

L∞-norm exact solution 1.716 2.462E-013 2.012E-013
L∞-norm approximate solution 1.716 2.463E-013 2.010E-013
Absolute error 3.356E-005 1.546E-018 2.080E-018
L2-relative error (%) 0.157 7.517E-002 0.124

Table II.5.7 – Error results for quadratic polynomial elements using Mesh2 and no curved boundary edges.
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Figure II.5.7 – Sensitivity of theL2-relative error and of the absolute error to the wavenumberka when using
Mesh 2 and cubic polynomial elements without curved boundary edges.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.8 – Frequencyf1 = 219 kHz using cubic polynomial elements, Mesh 1, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.

123



Chapter II. Efficient DG-like formulation equipped with cur ved boundary edges for solving
elasto-acoustic scattering problems

(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.9 – FrequencyfR = 221 kHz using cubic polynomial elements, Mesh 1, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.10 – Frequencyf2 = 223 kHz using cubic polynomial elements, Mesh 1, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.11 – Frequencyf1 = 219 kHz using cubic polynomial elements, Mesh 2, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.

126



II.5 Numerical performance

(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.12 – FrequencyfR = 221 kHz using cubic polynomial elements, Mesh 2, and curved boundary
edges. Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between
both solutions.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.13 – Frequencyf2 = 223 kHz using cubic polynomial elements, Mesh 2, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.
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f (kHz) p ux uy

219

L∞-norm exact solution 1.745 1.980E-013 2.556E-013
L∞-norm approximate solution 1.745 1.981E-013 2.555E-013
Absolute error 7.467E-006 7.453E-019 1.147E-018
L2-relative error (%) 3.492E-002 3.99E-002 5.73E-002

221

L∞-norm exact solution 1.738 4.631E-013 6.353E-013
L∞-norm approximate solution 1.737 4.417E-013 6.14E-013
Absolute error 1.779E-005 1.743E-016 1.747E-016
L2-relative error (%) 8.284E-002 5.667 3.591

223

L∞-norm exact solution 1.716 2.462E-013 2.012E-013
L∞-norm approximate solution 1.716 2.463E-013 2.011E-013
Absolute error 7.421E-006 9.709E-019 1.395E-018
L2-relative error (%) 3.467E-002 4.722E-002 8.325E-002

Table II.5.8 – Error results for cubic polynomial elements using Mesh 2 andno curved boundary edges.

only represents an increase of 5%.

These results can explain the absence of gain when employingcubic polynomial elements. Indeed, as

far as the error is dominated by the volumic error, it is interesting to use higher-order approximations.

Nevertheless, as soon as the boundary error represents the main value of the error, to increase the

order of approximation does not improve the computations anymore.

Remark II.5.2.2 Regarding the issue of the choice of the penalty parameters,we have performed

a numerical investigation in AppendixB.3. Note that taking the following value for the penalty

termsγf = 80 andγs = 0 provides a slight improvement of the results when using cubic elements:

0.724%, 50.793%, 32.215% for p, ux anduy respectively. Therefore, it seems that, in some situations

at least, it can be sufficient to penalize the exterior problem. In fact, in the case of the non-resonance

frequencies, the penalty terms ensure the stability, whichguarantees the uniqueness that exists on the

continuous level in both media. However, in the case of the resonant frequencies, we do not have

uniqueness of the displacement field on the theoretical level, which can explain that the penalization

is not necessarily relevant inside the obstacle.

II.5.2.2 IPDG method equipped with curved boundary edges

Given the latter observations, we assess in the following the effect of using curved boundary edges

on the accuracy of IPDG. In addition, we compare the obtainedresults to those obtained with UWVF

[88]. To this end, we consider Mesh 3, which is coarser than Mesh 1and Mesh 2 (see Fig.II.5.2

and TableII.5.2). However, Mesh 3 is comparable to Mesh 2 used in [88]. The latter has about 715

triangles. The results are reported in TablesII.5.9 to II.5.11and FiguresII.5.14to II.5.20. We provide
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some illustrations of the numerical results using cubic polynomial elements in Figs.II.5.14-II.5.16.

These results indicate the following:

• The use of curved boundary edges, which is a more precise representation of the boundaries,

improves significantly the accuracy of IPDG for all the threefrequencies in spite of using a

coarse mesh (Mesh 3), as indicated in TablesII.5.9 to II.5.11and Figs.II.5.14to II.5.16. Indeed,

employing cubic polynomials maintains the relative error on the scattered field below 1% for all

the three frequencies (see TableII.5.11). Recall that this is not the case when using polygonal-

shaped approximations even with a very fine mesh at the boundary as clearly demonstrated

previously in TableII.5.5 and TableII.5.8. Moreover, FiguresII.5.14 to II.5.16 illustrate this

significant improvement in comparison with the results previously depicted in FiguresII.5.11

to II.5.13.

• FigureII.5.17 reveals that the error at the resonance frequencyfR has the same structure as the

corresponding resonance moden = 2, which proves again thatfR = 221 kHz is indeed the

Jones frequency for the third mode (n = 2).

• The relative error on the scattered field depicted in FigureII.5.18 is obtained with a mesh

resolution of about 6.2 elements per wavelength (forka = 4) to as low as about 1.2 elements

per wavelength (forka = 21). The following observations are worth mentioning:

◦ The error curve corresponding to the fluid pressure is smoothand the peaks corresponding to

the spurious frequencies observed earlier (see Fig.II.5.3) are no longer present. Clearly, this

is a direct attribute to the use of curved boundary edges. In addition, this smoothing effect

does not remove the peaks from the error curves corresponding to the structural displacement.

These physical peaks are clearly apparent which allows an easy determination of the Jones

frequencies.

◦ Unlike the results presented previously (see Fig.II.5.3), the use of curved boundary edges

with cubic polynomials preserves the accuracy level below 5% for all frequency modes in

the frequency band4 ≤ ka ≤ 15, even with a mesh resolution as low as 1.7 elements per

wavelength.

◦ In contrast, the results depicted in Fig.6 p.177 in [88] show that the nonphysical peaks in the

fluid pressure error curve delivered with UWVF remain alwayspresent. In addition, we ob-

serve that the accuracy level deteriorates at and around theresonance frequencies. We must

point out that the relative errors computed with UWVF are obtained over the wet surfaceΓ

only, whereas the results depicted in Fig.II.5.18 are obtained over the entire computational

domain. The comparison of these results suggests the superiority of IPDG over UWVF.

Moreover, in order to maintain the condition number value below 108, the UWVF is limited
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to the use of a maximum of 15 plane waves, as stated by the authors in [88]. This may con-

stitute a severe limitation, especially when considering high-frequency regime. On the other

hand, the use of cubic polynomial elements is sufficient for IPDG equipped with curved

boundary edges to deliver an error smaller than 5% for all themodes in the frequency band

4 ≤ ka ≤ 15. In addition, the result depicted in FigureII.5.19 tends to indicate that the con-

dition number of IPDG does not suffer dramatically when increasing the order of elements.

Indeed, going from linear to cubic polynomials slowly increases the condition number. Last,

the UWVF results were obtained using 64 quadrature points toevaluate the integrals over

the curved boundary edges, and employing an iterative solver, whereas IPDG uses 8 times

less points and a direct solver since the resulting system isrelatively small. This last obser-

vation also suggests, to some extent, the superiority of IPDG over UWVF in terms of the

computational complexity.

f (kHz) p ux uy

219

L∞-norm exact solution 1.679 1.931E-013 2.49E-013
L∞-norm approximate solution 1.988 1.862E-013 2.303E-013
Absolute error 1.209E-002 6.195E-016 8.475E-016
L2-relative error (%) 72.436 34.537 44.867

221

L∞-norm exact solution 1.671 4.621E-013 6.297E-013
L∞-norm approximate solution 1.98 1.837E-013 2.247E-013
Absolute error 1.231E-002 3.158E-015 3.852E-015
L2-relative error (%) 73.769 108.271 83.545

223

L∞-norm exact solution 1.648 2.461E-013 1.983E-013
L∞-norm approximate solution 1.971 1.804E-013 2.192E-013
Absolute error 1.251E-002 9.447E-016 7.65E-016
L2-relative error (%) 75.533 48.171 49.02

Table II.5.9 – Error results for linear polynomial elements using Mesh 3 and curved boundary edges.

In view of the overall results and observations, we retain the latter higher-order IPDG method

equipped with curved boundary edges. In order to complete the analysis of the method, we exam-

ine the sensitivity of the method to the mesh refinement, as well as to the frequency regime, in the

forthcoming parts.

Remark II.5.2.3 In a first time, we have implemented curved finite elements only on the transmission

interfaceΓ and still used straight boundary edges on the exterior boundary Σ. The results obtained

are reported in TablesII.5.12 to II.5.14. They indicate the following:
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f (kHz) p ux uy

219

L∞-norm exact solution 1.743 1.979E-013 2.553E-013
L∞-norm approximate solution 1.76 1.959E-013 2.510E-013
Absolute error 1.100E-003 2.292E-017 3.744E-017
L2-relative error (%) 5.203 1.227 1.872

221

L∞-norm exact solution 1.736 4.621E-013 6.346E-013
L∞-norm approximate solution 1.749 2.787E-013 4.453E-013
Absolute error 1.173E-003 1.578E-015 1.597E-015
L2-relative error (%) 5.526 51.340 32.836

223

L∞-norm exact solution 1.714 2.461E-013 2.000E-013
L∞-norm approximate solution 1.732 2.459E-013 1.985E-013
Absolute error 1.152E-003 2.593E-017 4.107E-017
L2-relative error (%) 5.446 1.262 2.454

Table II.5.10 – Error results for quadratic polynomial elements using Mesh3 and curved boundary edges.

f (kHz) p ux uy

219

L∞-norm exact solution 1.738 1.977E-013 2.554E-013
L∞-norm approximate solution 1.736 1.977E-013 2.553E-013
Absolute error 9.794E-005 1.476E-018 1.83E-018
L2-relative error (%) 0.457 7.899E-002 9.141E-002

221

L∞-norm exact solution 1.730 4.621E-013 6.353E-013
L∞-norm approximate solution 1.728 4.593E-013 6.322E-013
Absolute error 1.017E-004 2.578E-017 2.558E-017
L2-relative error (%) 0.473 0.838 0.526

223

L∞-norm exact solution 1.708 2.461E-013 2.012E-013
L∞-norm approximate solution 1.705 2.463E-013 2.012E-013
Absolute error 1.043E-004 1.628E-018 1.936E-018
L2-relative error (%) 0.487 7.916E-002 0.116

Table II.5.11 – Error results for cubic polynomial elements using Mesh 3 andcurved boundary edges.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.14 – Frequencyf1 = 219kHz using cubic polynomial elements, Mesh 3, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.15 – FrequencyfR = 221kHz using Mesh 3, cubic polynomial elements, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.
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(a) Approximate solution (b) Exact solution

(c) Error between both solutions

Figure II.5.16 – Frequencyf2 = 223kHz using Mesh 3, cubic polynomial elements, and curved boundary edges.
Figures (a)-(b): Pressure modulus and displacement amplitude fields. Figure (c): Absolute error between both
solutions.
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(a) Displacement error (b) Fourier moden = 2

Figure II.5.17 – Comparison between the error in displacement and the third Fourier mode for the resonance
frequencyf=221kHz on Mesh 3 with cubic polynomial elements and curved boundary edges.

• Globally, we can consider that the results are better than those obtained using polygonal-

shaped approximations even with a very fine mesh at the boundary (see TablesII.5.6-II.5.8),

since Mesh 3 is clearly coarser than Mesh 2.

• When using cubic elements, we observe that employing curvededges on the fluid-solid interface

only is sufficient to improve significantly the relative errors on the displacement field for the

three frequencies. Indeed, the relative error on the scattered field remains below 1%, even for

the resonance frequency.

• The use of curved boundary edges on the exterior boundary allows to halve the error associated

to the pressure field, as clearly demonstrated previously inTableII.5.11.

II.5.3 Sensitivity to the mesh refinement

The goal here is to investigate the dependence of the accuracy on the mesh refinement for a fixed

frequency and to assess the effect of using curved boundary edges on the convergence of the method.

The mesh refinement is performed as follows. The initial meshis composed of 10 elements on the

fluid-structure interfaceΓ, 20 elements on the exterior boundaryΣ, and triangles with a maximum

area of2.10−5 m2 in the domainΩs ∪ Ωf . Hence, this mesh provides about 1 element per wavelength

whenka = 10. The results presented here are obtained when employing cubic polynomials and for

four frequencies. The first three are in the resonance region: f1 = 219 kHz, fR = 221 kHz (the res-

onance frequency) andf2 = 223 kHz. The fourth onef3 = 250 kHz is considered to be far from the

resonance region. These results illustrate the sensitivity to the mesh refinement of (a) theL2-relative

error on the scattered field (see Fig.II.5.21 and Fig.II.5.23), and absolute error (see Fig.II.5.22
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Figure II.5.18 – Sensitivity of theL2-relative error and of the absolute error to the wavenumberka using Mesh 3,
cubic polynomial elements and curved boundary edges.
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Figure II.5.19 – Sensitivity of the condition number to the wavenumberka using Mesh 3, and curved boundary
edges.

f (kHz) p ux uy

219

L∞-norm exact solution 1.679 1.931E-013 2.49E-013
L∞-norm approximate solution 1.988 1.862E-013 2.303E-013
Absolute error 1.209E-002 6.195E-016 8.475E-016
L2-relative error (%) 72.436 34.537 44.867

221

L∞-norm exact solution 1.671 4.621E-013 6.297E-013
L∞-norm approximate solution 1.980 1.837E-013 2.247E-013
Absolute error 1.231E-002 3.158E-015 3.852E-015
L2-relative error (%) 73.769 108.271 83.545

223

L∞-norm exact solution 1.648 2.461E-013 1.983E-013
L∞-norm approximate solution 1.971 1.804E-013 2.192E-013
Absolute error 1.251E-002 9.447E-016 7.65E-016
L2-relative error (%) 75.533 48.171 49.02

Table II.5.12 – Error results for linear polynomial elements and curved elements on the transmission interface
only.
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Figure II.5.20 – Sensitivity of theL2-relative error and of the absolute error to the wavenumberka using Mesh 1,
cubic polynomial elements, and curved boundary edges.
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f (kHz) p ux uy

219

L∞-norm exact solution 1.743 1.979E-013 2.553E-013
L∞-norm approximate solution 1.761 1.953E-013 2.513E-013
Absolute error 1.170E-003 2.377E-017 3.773E-017
L2-relative error (%) 5.551 1.273 1.887

221

L∞-norm exact solution 1.736 4.621E-013 6.346E-013
L∞-norm approximate solution 1.751 2.788E-013 4.451E-013
Absolute error 1.23E-003 1.575E-015 1.598E-015
L2-relative error (%) 5.811 51.238 32.863

223

L∞-norm exact solution 1.714 2.461E-013 2.000E-013
L∞-norm approximate solution 1.734 2.453E-013 1.981E-013
Absolute error 1.200E-003 2.687E-017 4.336E-017
L2-relative error (%) 5.692 1.308 2.591

Table II.5.13 – Error results for quadratic polynomial elements and curvedelements on the transmission interface
only.

f (kHz) p ux uy

219

L∞-norm exact solution 1.738 1.977E-013 2.554E-013
L∞-norm approximate solution 1.739 1.974E-013 2.557E-013
Absolute error 2.068E-004 5.684E-018 5.955E-018
L2-relative error (%) 0.97 0.304 0.298

221

L∞-norm exact solution 1.730 4.621E-013 6.353E-013
L∞-norm approximate solution 1.731 4.599E-013 6.323E-013
Absolute error 2.061E-004 2.017E-017 2.373E-017
L2-relative error (%) 0.962 0.655 0.488

223

L∞-norm exact solution 1.708 2.461E-013 2.012E-013
L∞-norm approximate solution 1.709 2.459E-013 2.013E-013
Absolute error 2.059E-004 6.187E-018 6.06E-018
L2-relative error (%) 0.965 0.301 0.362

Table II.5.14 – Error results for cubic polynomial elements and curved elements on the transmission interface only.
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and Fig.II.5.24), and (b) the condition number of the global system matrix given by Eq. (II.3.29)

(see Fig.II.5.27 and Fig.II.5.28). Furthermore, since the sparsity of the global system matrix is a

performance indicator that complements the total number ofd.o.f., particularly when employing di-

rect methods, as explained in [137], the results depicted in Fig.II.5.25 and Fig.II.5.26 are presented

to shed light on this computational efficiency aspect of IPDG. Note that all the reported results are

obtained with and without using curved boundary edges. These results clearly demonstrate that em-

ploying curved boundary edges improves significantly the performance of the proposed method for

all considered frequencies. More specifically, we observe the following:

• In the absence of curved boundary edges, FigureII.5.21 suggests that the convergence order of

the method is 2, except at the Jones frequency where it deteriorates to 3/2. On the other hand,

there is a gain of two orders when using curved boundary edges, as indicated in Fig.II.5.23).

In addition, this convergence order is preserved at the Jones frequency (see Fig.II.5.23(b)).

• A similar observation can be made about the sensitivity of theL2-relative errors on the scattered

field to the total number of nonzero entries of the global system matrix. Indeed, in the absence

of curved boundary edges, Fig.II.5.25suggests that this dependence isO(N−1) for all frequen-

cies, except at the Jones frequency in which it deterioratesto O(N−3/4) (see Fig.II.5.25(b)).

On the other hand, there is a one-order gain in the convergence rate when using curved bound-

ary edges, as depicted in Fig.II.5.26. This gain is also preserved at the Jones frequency (see

Fig. II.5.26(b)).

• The situation is also similar for the condition number. Fig.II.5.27 suggests that the condition

number increases asO(h−2) for all frequencies, except at the resonance frequency, where we

notice a dramatic deterioration toO(h−7/2) (see Fig.II.5.27(b)). However, the use of curved

boundary edges prevents the deterioration of the conditionnumber for all frequencies, as de-

picted in Fig.II.5.28.

Before concluding this paragraph, we must point out that we were not able to compare the perfor-

mance of the proposed method with UWVF since there are no similar results reported in [88], except

to some extent the result reported in Fig.3 p.176. Indeed, the result depicted in this figure describes

the convergence of UWVF with respect toN for the frequencyf3. However, this dependence is per-

formed when increasing the number of plane waves and not refining the mesh. Recall that the results

presented in this paragraph were obtained for a fixed order ofelements: cubic polynomial functions.

Remark II.5.3.1 Further to RemarkII.5.2.1, let us observe the results that are obtained with the

use of curved boundary edges at the transmission interface only in FiguresII.5.29 to II.5.32. In

the absence of curved boundary edges on the exterior boundary, the gain is not as significant as in
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(d) f3 = 250 kHz

Figure II.5.21 – Sensitivity of the relative error to the mesh resolution using cubic polynomial finite elements and
no curved boundary edges.
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Figure II.5.22 – Sensitivity of the absolute error to the mesh resolution using cubic polynomial finite elements and
no curved boundary edges.
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(d) f3 = 250 kHz

Figure II.5.23 – Sensitivity of the relative error to the mesh resolution using cubic polynomial finite elements and
curved boundary edges.
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Figure II.5.24 – Sensitivity of the absolute error to the mesh resolution using cubic polynomial finite elements and
curved boundary edges.
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Figure II.5.25 – Convergence of the relative error as a function of the numberN of nonzero entries in the IPDG
system matrix using cubic polynomial finite elements and no curved boundary edges.
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Figure II.5.26 – Convergence of the relative error as a function of the numberN of nonzero entries in the IPDG
system matrix using cubic polynomial finite elements and curved boundary edges.
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Figure II.5.27 – Sensitivity of the condition number to the mesh resolution using cubic polynomial finite elements
and no curved boundary edges.
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Figure II.5.28 – Sensitivity of the condition number to the mesh resolution using cubic polynomial finite elements
and curved boundary edges.
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Figs.II.5.23, the convergence order of the method when using curved boundary edges at the wet sur-

face is still 2. Nevertheless, we observe that, unlike polygonal-shaped approximations in Figs.II.5.21,

this convergence order is preserved at the Jones frequency.A similar observation can be made about

the sensitivity of theL2-relative errors on the scattered field to the total number ofnonzero entries

(see Fig.II.5.31), and for the condition number, that does not deteriorate atthe Jones frequency (see

Fig. II.5.32).
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Figure II.5.29 – Sensitivity of the relative error to the mesh resolution using cubic polynomial finite elements and
curved boundary edges on the fluid-solid interface only.
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Figure II.5.30 – Sensitivity of the absolute error to the mesh resolution using cubic polynomial finite elements and
curved boundary edges on the fluid-solid interface only.
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Figure II.5.31 – Convergence of the relative error as a function of the numberN of nonzero entries in the IPDG
system matrix using cubic polynomial finite elements and curved boundary edges on the fluid-solid interface only.

152



II.5 Numerical performance

10
0

10
1

10
2

10
0

10
2

10
4

10
6

10
8

a/h

C
on

di
tio

n 
nu

m
be

r

 

 

Condition number

O(h−2)

(a) f1 = 219 kHz

10
0

10
1

10
2

10
0

10
2

10
4

10
6

10
8

10
10

a/h

C
on

di
tio

n 
nu

m
be

r

 

 

Condition number

O(h−2)

(b) fR = 221 kHz

10
0

10
1

10
2

10
0

10
2

10
4

10
6

10
8

a/h

C
on

di
tio

n 
nu

m
be

r

 

 

Condition number

O(h−2)

(c) f2 = 223 kHz

10
0

10
1

10
2

10
0

10
2

10
4

10
6

10
8

a/h

C
on

di
tio

n 
nu

m
be

r

 

 

Condition number

O(h−2)

(d) f3 = 250 kHz

Figure II.5.32 – Sensitivity of the condition number to the mesh resolution using cubic polynomial finite elements
and curved boundary edges on the fluid-solid interface only.
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II.5.4 Sensitivity to the frequency

The goal of this section is twofold: (i) to determine practical guidelines for achieving a prescribed

accuracy level, and (ii) to examine and to assess the pollution effect. To this end, we have investigated

the numerical behavior of theL2-relative error over the computational domain on the elasto-acoustic

scattered field as the frequency increases. Two sets of experiments have been performed. In the first

set, the mesh is fixed, that is, the resolution degrades as thefrequency increases. In the second set,

the resolution is maintained fixed, that is, the mesh is refined as the frequency increases. All these

experiments are performed with IPDG equipped with curved boundary edges and employing cubic

polynomial functions. For illustration purposes, we present a sample of results obtained in the mid-

to high-frequency regimes (10 ≤ ka ≤ 300) using four different meshes.

The results depicted in FiguresII.5.33 and II.5.34 are obtained using Mesh 1 (see FigureII.5.2

and TableII.5.2) in the frequency band10 ≤ ka ≤ 50 corresponding to238 kHz ≤ f ≤ 1193 kHz.

Hence, the resolution degrades from 8 elements per wavelength to about 1.6 elements per wavelength.

The resulting linear system given by Eq. (II.3.29) possesses 80,440 unknowns and 1,667,068 nonzero

entries. As stated earlier, we solve this system using an LU factorization. The following observations

are noteworthy:

• As anticipated, Fig.II.5.33(a) indicates that the relative error deteriorates as the frequency in-

creases, that is, the resolution degrades. However, Fig.II.5.33(a) also reveals that IPDG delivers

an accuracy level of about 1% (resp. 5 %) on the fluid pressure with a resolution of about 2.6

elements per wavelength (resp. 2 elements per wavelength),which corresponds to a frequency

ka ≃ 32 or f ≃ 752 kHz (resp.ka ≃ 41, f ≃ 978 kHz).

• The error curve corresponding to the fluid pressure (see the solid curve in Fig.II.5.33(a)) is

smooth, as already observed in FigureII.5.18, and no peaks corresponding to spurious reso-

nance frequencies are present. Again, as stated earlier, this is a direct effect of using curved

boundary edges.

• The error on the fluid pressure is higher than the ones on the structural displacement, except at

some resonance frequencies. This is expected since the resolution in the fluid is coarser than

the one in the elastic medium.

• The Jones frequencies are clearly located in the structuraldisplacement error curves by the

presence of the peaks (see Fig.II.5.33). Observe that the location of these peaks coincides with

the ones in the condition number curve (see Fig.II.5.34). We must point out that these peaks

are clearly discernible because these results have been computed with a frequency step size of

1 kHz.
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• The condition number remains below108 in the considered frequency band10 ≤ ka ≤ 50, that

is, 238 kHz ≤ f ≤ 1193 kHz.

• Observe that the location of the peaks in Fig.II.5.33 coincides with the minimum values of the

three determinants in Figs.II.5.37-II.5.38, which correspond to the physically relevant Jones

frequencies. This suggests that the method does not suffer from numerical resonance in the

mid-frequency regime.
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Figure II.5.33 – Sensitivity of theL2-relative error and absolute error to the frequencyka in the interval[10, 50]
when using cubic polynomial finite elements, curved boundary edges, and Mesh 1.

Next, we refine Mesh 1 (see FigureII.5.2 and TableII.5.2) by halving the triangle edges. Hence,
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Figure II.5.34 – Sensitivity of the condition number to the frequencyka in the interval[10, 50] when using cubic
polynomial finite elements, curved boundary edges, and Mesh1.

the resulting mesh contains exactly four times more triangles than Mesh 1, and the resulting linear

system given by Eq. (II.3.29) possesses 321,760 unknowns and 6,698,992 nonzero entries. We in-

vestigate the effect of this mesh refinement for higher frequencies, up toka = 100, corresponding to

f = 2387 kHz. The results are depicted in Figs.II.5.35and II.5.36. They indicate the following:

• The relative error remains below 1% (resp. 5 %) up toka ≃ 58 (resp.ka = 74) corresponding

to a resolution of about 2.8 elements per wavelength (resp. 2.2 elements per wavelength).

• The condition number seems to not suffer from the mesh refinement and remains, as previously,

below108 (see Fig.II.5.36).

• Note that the peaks corresponding to the Jones frequencies are again clearly observable in

Fig. II.5.35. These results were computed with a frequency step size of 1 kHz.

The next results (see Fig.II.5.39 to Fig. II.5.42) were obtained with a mesh generated from Mesh

1 by halving the triangle edges two times successively. Hence, the resulting mesh contains exactly

16 times more triangles than Mesh 1, and therefore, the linear system given by Eq. (II.3.29) pos-

sesses 1,287,040 unknowns and 26,857,408 nonzero entries.The results depicted in Figs.II.5.39 and

Fig. II.5.40 are obtained in a frequency band expanded toka = 200 (f = 4774 kHz) and computed

with a frequency step size of 1 kHz. Figs.II.5.41 and II.5.42 provides a zoom of the behavior in the

frequency band120 ≤ ka ≤ 140. Similarly to the previous two results, we observe that the relative

error onp remains below 1% (resp. 5 %) with only 3.1 elements per wavelength (resp. 2.4 elements

per wavelength) forka ≤ 105 (resp.ka ≤ 134). In addition, the condition number remains stable and

always below108 (see Fig.II.5.40) Note that the peaks corresponding to the Jones frequenciesare

again clearly visible in Fig.II.5.39. This is a consequence of computing these results with a frequency
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Figure II.5.35 – Sensitivity of the relative error and absolute error to the frequencyka in the interval[10, 100]
when using cubic polynomial finite elements, curved boundary edges, and Mesh 1 halved once.
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Figure II.5.36 – Sensitivity of the condition number to the frequencyka in the interval[10, 100] when using cubic
polynomial finite elements, curved boundary edges, and Mesh1 halved once.

step size f=1 kHz.

The last results of this set of experiments are reported in TableII.5.15. These results were obtained us-

ing a mesh generated from Mesh 1 by halving the triangle edgesthree times successively. Hence, the

resulting mesh contains exactly 64 times more triangles than Mesh 1, and incurs a linear system with

5,148,160 unknowns and 107,552,512 nonzero entries. We assess the effect of this mesh refinement

in the frequency band100 ≤ ka ≤ 300 ( 2387 kHz≤ f ≤ 7162 kHz). The results are computed with

a frequency step sizeka = 25. Note that the resolution deteriorates from 6.5 elements per wavelength

to about 2.2 elements per wavelength. These results show that IPDG delivers an accuracy level below

1% (resp. 5%) with a mesh resolution as low as 3.7 elements perwavelength (resp. 2.9 elements

per wavelength) up toka ≤ 175 (resp. ka ≤ 225). Next, we examine the pollution effect. We set

a mesh resolutionkh = 1.94 corresponding to about 3.2 elements per wavelength and evaluate the

L2-relative error over the computational domain in the frequency band25 ≤ ka ≤ 200 (596 kHz

≤ f ≤ 4774 kHz). The results reported in TableII.5.16 illustrate the behavior of the error as the

frequency value doubles while maintaining fixed the resolution. These results reveal that the relative

error onp increases linearly from about 0.3% to about 1.4%, whereas the change in the error on the

structural displacement is barely noticeable. These results tend to indicate that IPDG exhibits a very

little pollution effect in this relatively large frequencyband. This observation illustrates the potential

of IPDG for solving efficiently high-frequency elasto-acoustic problems.
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Figure II.5.37 – Sensitivity of the determinant of the modal matrices to the wavenumberka. Cases wheren =
0, 1, 2 (Semi-log y scale).
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Figure II.5.38 – Sensitivity of the determinant of the modal matrices to the wavenumberka. Cases wheren =
3, 4, 5 (Semi-log y scale).
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Figure II.5.39 – Sensitivity of the relative error and the absolute error to the frequencyka in the interval[10, 200]
when using cubic polynomial finite elements, curved boundary edges, and Mesh 1 halved twice.
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Figure II.5.40 – Sensitivity of the condition number to the frequencyka in the interval[10, 200] when using cubic
polynomial finite elements, curved boundary edges, and Mesh1 halved twice.

ka p ux uy

100 0.016 0.002 0.002
125 0.061 0.006 0.007
150 0.201 0.058 0.060
175 0.556 0.039 0.039
200 1.355 0.116 0.115
225 2.971 0.306 0.310
250 6.125 7.408 7.533
275 11.423 4.467 4.422
300 19.878 13.530 13.727

Table II.5.15 – L2-relative error (%) in the high-frequency regime when using cubic polynomial finite elements,
curved boundary edges, and Mesh 1 halved thrice.

L2-relative error
ka p ux uy

25 0.279 0.007 0.008
50 0.420 0.009 0.009
100 0.707 0.009 0.009
200 1.355 0.116 0.115

Table II.5.16 – L2-relative error (%) obtained forkh = 1.94 constant with cubic polynomial functions and curved
boundary edges.
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Figure II.5.41 – Zoom on the sensitivity of the relative error and absolute error in the frequency band120 ≤ ka ≤
140 when using cubic polynomial finite elements, curved boundary edges, and Mesh 1 halved twice.
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Figure II.5.42 – Zoom on the sensitivity of the condition number in the frequency band120 ≤ ka ≤ 140 when
using cubic polynomial finite elements, curved boundary edges, and Mesh 1 halved twice.

II.6 Conclusion

A discontinuous Galerkin method, in which a penalty term is incorporated at the element level

for stability purpose, is suggested for solving elasto-acoustic scattering problems. The proposed

method, termed IPDG, employs higher-order elements to be employed in the high-frequency regime

and curved boundary edges to provide a natural setting for better modeling the incoming and outgoing

waves, as well as the surface waves at the wet surface.

On the one hand, the implementation of the method has been validated by means of two test cases:

a waveguide-type problem and a radiating-type problem. These numerical experiments show a good

approximation of both types ofP -waves andS-waves and illustrate some stability properties of the

method with respect to the direction of the plane waves, and to the mode number in the case of the

waveguide-type problem and of the radiating-type problem respectively.

On the other hand, the numerical investigation performed inthe case of an infinite long aluminum

cylinder immersed in water reveals that there is a twofold benefit in using curved element boundaries

rather than standard polygonal-shaped approximations. First, there is a gain of -at least- two orders of

magnitude on the relative error and this improvement is evenhigher at the Jones frequencies. Second,

this formulation prevents spurious resonance frequenciesto occur in the fluid medium, which appears

to not be possible to achieve if a polygonal-shaped approximation of the interface is used even with a

fine mesh and high-order elements. Moreover, the results reported in this chapter illustrate the poten-
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tial of IPDG for solving this class of scattering problems inhigh-frequency regimes. Indeed, IPDG

delivers an accuracy level below 3% forka ≤ 225 (f ≤ 5371 kHz) using cubic polynomial elements,

and about three elements per wavelength only. Note that suchresolution incurs solving a linear sys-

tem of about 5 million unknowns with about 107 million nonzero entries that is accomplished using

a direct method. An interesting prospect remains to study the sensitivity of the method to the mesh

refinement, as well as to the frequency regime theoretically.
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Appendices to the Chapter II

B.1 Analytical solution for the disk-shaped elastic scatterer prob-

lem

It is well-known that the exact solution of the considered elasto-acoustic problem can be expressed

as a Fourier series (see, for example, [88]) for a disk-shaped configuration. For completeness pur-

poses, we recall here such an expression. In the fluid domain,the scattered pressure field is expressed

as follows [16]:

p(r, θ) =
+∞∑

n=0

[
AnH

(1)
n (kr) +BnH

(2)
n (kr)

]
cos(nθ); a ≤ r ≤ b, θ ∈ [0, 2π) (B.1.1)

whereH(1)
n andH(2)

n denote the Hankel functions of the first and second kinds [2], andAn, Bn are

complex numbers. The first term of the series corresponds to the outgoing field. The second term

represents the incoming wave due to the presence of the exterior boundaryΣ. The incident plane

wave admits the following Jacobi-Anger expansion [16]:

g = pinc(r, θ) = eikr cos θ =
+∞∑

n=0

εni
nJn(kr) cos(nθ), (B.1.2)

where

ε0 = 1 and εn = 2; ∀ n > 0.

In the solid obstacle, the scattered displacement fieldu is expressed using two displacement potentials

φ andψ [120]:

u = ∇φ+ (−ez) × ∇ψ. (B.1.3)

169



Appendices to the Chapter II

where these two potentials are given by:

φ(r, θ) =
+∞∑

n=0

CnJn(kpr) cos(nθ), (B.1.4)

ψ(r, θ) =
+∞∑

n=0

DnJn(ksr) sin(nθ); 0 ≤ r < a, θ ∈ [0, 2π). (B.1.5)

Here,Jn andYn denote the Bessel functions of the first and second kind respectively [2], andkp =
ω

cp
,

ks =
ω

cs
represent the wavenumbers of the pressure and shear waves inthe solid.

Let us explicit the Fourier series representation of both components ofu. In polar coordinates, we

have:

∇φ =
∂φ

∂r
~er +

1

r

∂φ

∂θ
~eθ (B.1.6)

(−ez) × ∇ψ =
1

r

∂ψ

∂θ
~er − ∂ψ

∂r
~eθ. (B.1.7)

We set

ur =
∂φ

∂r
+

1

r

∂ψ

∂θ
(B.1.8)

uθ =
1

r

∂φ

∂θ
− ∂ψ

∂r
. (B.1.9)

Then, we obtain:

u = ur~er + uθ~eθ. (B.1.10)

Since the polar basis vectors are given by~er = (cos θ, sin θ)t and~eθ = (− sin θ, cos θ)t, it follows

that the displacement field can be written in the canonical basis as:






ux = ur cos θ − uθ sin θ,

uy = ur sin θ + uθ cos θ,
(B.1.11)

where

ur =
+∞∑

n=0

[
CnkpJ

′
n(kpr) +

n

r
DnJn(ksr)

]
cos(nθ) (B.1.12)

uθ =
+∞∑

n=0

−
[
Cn

n

r
Jn(kpr) +DnksJ

′
n(ksr)

]
sin(nθ). (B.1.13)
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Note that the relationships between the Fourier series displacement potentials and corresponding dis-

placements and tractions are reported in [120].

Moreover, the complex coefficientsAn,Bn, Cn andDn satisfy the following system [88]:

EnXn = en (B.1.14)

whereXn = (An, Bn, Cn, Dn)
t andEn is a4 × 4 matrix whose complex-valued entriesElj

n are given

by:

E1j
n = kH

′(j)
n (ka), j = 1, 2

E13
n = −ω2ρfkpJ

′
n(kpa),

E14
n = −ω2ρf

n

a
Jn(ksa),

E2j
n = H(j)

n (ka), j = 1, 2

E23
n =

2µ

a2

[
(n2 + n− 1

2
k2
sa

2)Jn(kpa) − kpaJn−1(kpa)
]
,

E24
n =

2µ

a2
[n(−(n + 1)Jn(ksa) + ksaJn−1(ksa))] ,

E31
n = E32

n = E43
n = E44

n = 0,

E33
n = −2µ

a2
n [−(n+ 1)Jn(kpa) + kpaJn−1(kpa)] ,

E34
n = −2µ

a2

[
(n2 + n − 1

2
k2
sa

2)Jn(ksa) − ksaJn−1(ksa)
]
,

E4j
n = kH

′(j)
n (kb) − ikH (j)

n (kb), j = 1, 2.

The right-hand sideen ∈ C4 of the linear system related to Eq. (B.1.14) is given by:

e1
n = −εninkJ

′

n(ka), (B.1.15)

e2
n = −εninJn(ka), (B.1.16)

e3
n = e4

n = 0, (B.1.17)

whereε0 = 1 andεn = 2 for n ≥ 1.

The system entries can be determined from the boundary conditions of BVP (2) as follows. Let us

consider the first transmission condition given by Eq. (II.2.9) of BVP (2):

ω2ρfu · ν =
∂p

∂ν
+
∂g

∂ν
on Γ (B.1.18)
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Taking the radial component of each moden gives:

ω2ρf

(
CnkpJ

′

n(kpa) +Dn
n

a
Jn(ksa)

)
= AnkH

′(1)
n (ka) +BnkH

′(2)
n (ka) + εni

nkJ
′

n(ka).

We therefore infer the first equation of the system (B.1.14).

Next, we consider the second transmission condition given by Eq. (II.2.10) of BVP (2):

τ(u) = −pν − gν onΓ.

Then, the normal and tangential components of the stress tensor are:

τ(u) · ν = −p− pinc onΓ (B.1.19)

τ(u) · t = 0 onΓ, (B.1.20)

wheret denotes the tangential vector.

In polar coordinates, we have:τ(u) · ν = σrr andτ(u) · t = σrθ. We thus have:

σrr = −p − pinc on Γ (B.1.21)

σrθ = 0 on Γ. (B.1.22)

Now, we expressσrr andσrθ as functions ofφ andψ. For that purpose, we set:

σrr = σφrr + σψrr (B.1.23)

σrθ = σφrθ + σψrθ (B.1.24)

and using [120], we obtain:

σφrr = λ∆φ+ 2µ
∂2φ

∂r2
(B.1.25)

σψrr = 2µ

[
∂

∂r

(
1

r

∂ψ

∂θ

)]
(B.1.26)

σφrθ = 2µ

[
1

r

∂2φ

∂θ∂r
− 1

r2

∂φ

∂θ

]
(B.1.27)

σψrθ = µ

[
1

r2

∂2ψ

∂θ2
− r

∂

∂r

(
1

r

∂ψ

∂r

)]
. (B.1.28)
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Observe thatφ satisfies the following scalar Helmholtz equation with wavenumberkp =
ω

cp
:

∆φ = −k2
pφ.

This yields:

∆φ =
+∞∑

n=0

Cn

(
− 1

r2
(k2
pr

2)Jn(kpr)
)

cos(nθ).

By some calculations, we obtain:

∂2φ

∂r2
=

+∞∑

n=0

Cnk
2
pJ

′′

n(kpr) cos(nθ)

=
+∞∑

n=0

Cn
1

r2

(
−kprJn−1(kpr) + (n2 + n − k2

pr
2)Jn(kpr)

)
cos(nθ),

∂φ

∂θ
=

+∞∑

n=0

−CnnJn(kpr) sin(nθ),

∂2φ

∂θ∂r
=

+∞∑

n=0

−CnnkpJ
′

n(kpr) sin(nθ)

=
+∞∑

n=0

−Cn
n

r
(kprJn−1(kpr) − nJn(kpr)) sin(nθ),

and

∂ψ

∂θ
=

+∞∑

n=0

DnnJn(ksr) cos(nθ),

∂2ψ

∂θ2
=

+∞∑

n=0

−Dnn
2Jn(ksr) sin(nθ),

∂ψ

∂r
=

+∞∑

n=0

DnksJ
′

n(ksr) sin(nθ)

=
+∞∑

n=0

Dn
1

r
(ksrJn−1(ksr) − nJn(ksr)) sin(nθ),

∂2ψ

∂r2
=

+∞∑

n=0

Dnk
2
sJ

′′

n(ksr) sin(nθ)

=
+∞∑

n=0

Dn
1

r2

(
−ksrJn−1(ksr) + (n2 + n− k2

sr
2)Jn(ksr)

)
sin(nθ),
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∂2ψ

∂r∂θ
=

+∞∑

n=0

DnnksJ
′

n(ksr) cos(nθ)

=
+∞∑

n=0

Dn
n

r
(ksrJn−1(ksr) − nJn(ksr)) cos(nθ).

In addition, sincek2
p(λ+ 2µ) = k2

sµ, we obtain:λ =
k2
s

k2
p

µ− 2µ. It follows that:

σφrr = λ∆φ+ 2µ
∂2φ

∂r2

=
+∞∑

n=0

Cn{
(
k2
s

k2
p

µ− 2µ

)[
− 1

r2
(k2
pr

2)Jn(kpr)
]

+2µ
1

r2

(
−kprJn−1(kpr) + (n2 + n− k2

pr
2)Jn(kpr)

]
} cos(nθ)

=
+∞∑

n=0

Cn
2µ

r2

[
(n2 + n− 1

2
k2
sr

2)Jn(kpr) − kprJn−1(kpr)
]

cos(nθ).

σψrr =
2µ

r2

[
r
∂2ψ

∂r∂θ
− ∂ψ

∂θ

]

=
+∞∑

n=0

Dn
2µ

r2
[n (ksrJn−1(ksr) − nJn(ksr)) − nJn(ksr)] cos(nθ)

=
+∞∑

n=0

Dn
2µ

r2
[nksrJn−1(ksr) − n(n + 1)Jn(ksr)] cos(nθ).

Combiningσφrr, σ
ψ
rr, along with Eq. (B.1.21) and Eq. (B.1.23) at r = a leads to the second equation

of the system (B.1.14).

On the other hand, regardingσrθ, we have:

σφrθ = 2µ

[
1

r

∂2φ

∂θ∂r
− 1

r2

∂φ

∂θ

]

=
+∞∑

n=0

Cn
−2µ

r2
[nkprJn−1(kpr) − n(n+ 1)Jn(kpr)] sin(nθ).

Moreover, for theψ-term, we obtain:

σψrθ = µ

[
1

r2

∂2ψ

∂θ2
− r

∂

∂r

(
1

r

∂ψ

∂r

)]

= µ

[
1

r2

∂2ψ

∂θ2
+

1

r

∂ψ

∂r
− ∂2ψ

∂r2

]
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=
+∞∑

n=0

Dnµ
1

r2
{−n2Jn(ksr) + (ksrJn−1(ksr) − nJn(ksr))

−
(
ksrJn−1(ksr) + (n2 + n− k2

sr
2)Jn(ksr)

)
} sin(nθ)

=
+∞∑

n=0

−Dn
2µ

r2

[[
n2 + n− 1

2
k2
sr

2
]
Jn(ksr) − ksrJn−1(ksr)

]
sin(nθ).

Combiningσφrθ, σ
ψ
rθ with Eq. (B.1.22) and Eq. (B.1.24) at r = a, we deduce the third equation of the

system (B.1.14).

Finally, the absorbing boundary condition given by Eq. (II.2.10) of BVP (2):

∂p

∂r
− ikp = 0 onΣ

easily yields the last equation of the system (B.1.14) as follows:

An(kH
′(1)
n (kb) − ikH (1)

n (kb)) +Bn(kH
′(2)
n (kb) − ikH (2)

n (kb)) = 0.
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B.2 Issue on the Jones modes

In this Appendix, we are interested in the following issue: Assume thatka is not a resonance

frequency for an initial configuration of the obstacle. Whenapplying a deformation to the scatterer,

canka become a Jones frequency for the perturbed boundary value problem?

This amounts to study the dependence between the frequencyka and a perturbation of the obstacle.

To this end, we assume that the scatterer is a circle to which we apply a deformation in the radial

direction, so that the perturbed obstacle remains a circle.For a fixed normalized frequencyka, the

radius delimiting the fluid domain is fixed tob = 20 mm whereas the radius of the elastic obstaclea

varies.

Consider the matrixEn of the linear system (B.1.14) giving the coefficients of the exact Fourier series

solution (cf AppendixB.1). We denote byEr
n = (Ejl

n )j=1,2,3;l=1,3,4 the reduced matrix in which the

effect of the exterior boundary is ignored, whereasEs
n = (Ejl

n )j=2,3;l=3,4 is the matrix representing

the solid Fourier modes. Recall that the Jones frequencies correspond to frequency values for which

the uniqueness of the solution in the elastic medium fails. In order to identify the resonance mode,

we monitor the dependence of these local three matricesEn, Er
n andEs

n with respect to the obstacle

radiusa, and determine the values that make the corresponding determinants vanish. We consider the

three frequencies in a resonance region:f1 = 219 kHz, fR = 221 kHz (the resonance frequency) and

f2 = 223 kHz, corresponding toka = 9.1735, 9.2572, and9.341 respectively. The results obtained

for mode numbern = 0, · · · , 5 are depicted in FiguresB.2.1to B.2.6.

In light of the results, the answer seems positive. Indeed, the following observations are noteworthy:

• In FigureB.2.3 (c), we recognize the vanishing determinant for the frequency fR = 221 as-

sociated to the moden = 2 at the radiusa = 10 mm , which corresponds to the resonance

mode highlighted in our study in SectionII.5. This value of the frequency does not remain a

resonance frequency associated to the third Fourier mode for perturbed configurations of the

obstacle in the neighborhood ofa = 10 mm, but it is again a Jones frequency ata = 18 mm.

Moreover, the others curves in FiguresB.2.3-B.2.4 reveals thatfR can be a Jones frequency

associated to another modes at some other exceptional values of a (e.g. ata = 0.012 for the

first mode).

• As regards the case of the other frequenciesf1 andf2 depicted in FiguresB.2.1, B.2.2, B.2.5

and B.2.6, a similar observation can be made. Indeed, both frequencies are non-resonance

frequencies ata = 10mm, but they are Jones frequencies associated to the third modefor

values ofa very close to 10 mm. In addition, the results also indicate that they can be Jones

frequencies associated to another mode in another perturbed configuration.
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Figure B.2.1– Frequencyf1 = 219 kHz (ka = 9.1735) - Sensitivity of the determinant of the modal matrices to
the radiusa. Cases wheren = 0, 1, 2 (Semi-log y scale).
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Figure B.2.2– Frequencyf1 = 219 kHz (ka = 9.1735) - Sensitivity of the determinant of the modal matrices to
the radiusa. Cases wheren = 3, 4, 5 (Semi-log y scale).
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Figure B.2.3– FrequencyfR = 221 kHz (ka = 9.2572) - Sensitivity of the determinant of the modal matrices to
the radiusa. Cases wheren = 0, 1, 2 (Semi-log y scale).
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Figure B.2.4– FrequencyfR = 221 kHz (ka = 9.2572) - Sensitivity of the determinant of the modal matrices to
the radiusa. Cases wheren = 3, 4, 5 (Semi-log y scale).
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Figure B.2.5– Frequencyf2 = 223 kHz (ka = 9.341) - Sensitivity of the determinant of the modal matrices to
the radiusa. Cases wheren = 0, 1, 2 (Semi-log y scale).
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Figure B.2.6– Frequencyf2 = 223 kHz (ka = 9.341) - Sensitivity of the determinant of the modal matrices to
the radiusa. Cases wheren = 3, 4, 5 (Semi-log y scale).
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B.3 Sensitivity to the penalty parameter

In this appendix, we examine the sensitivity of the relativeerror to the penalty parameters. First,

let us mention that this penalization is important for different reasons, chief among them:

• First, let us observe the case of the Laplace equation. In that situation, we are only semi positive-

definite. Then, when writing the formulation with discontinuous basis functions, the jump terms

appear and can decomposed into two parts as follows:

∑

K

∫

K
∆pq =

∑

K

∫

K
∇p∇q −

∑

e

∫

e
[∇p · νq]

=
∑

K

∫

K
∇p∇q −

∑

e

∫

e
[∇p · ν]{q} −

∑

e

∫

e
{∇p}ν[q].

Till then, we remain semi positive-definite. Nevertheless,when we remove the part[∇p ·ν]{q},

though we remain consistent, we lose this property. We thus end up with negative or zero

eigenvalues. When we impose the symmetry by adding the negative term−∑
e

∫
e{∇q}ν[p], we

increase this loss. The interest of the penalization is to raise the spectrum of the eigenvalues

as much as possible, so that there are the least possible negative eigenvalues. For Helmholtz

problems, it is even worse because of−k2.

• Moreover, the case that we study is a favorable case. The penalty parameter is used to eliminate

spurious modes (cf [4]). Since in our case, the resonance Jones modes exist in the solid and

must exist, one can takeγs = 0 when considering a resonance frequency. However, in the fluid,

we have to keepγf different from 0.

• Finally, the penalty parameter allows to stabilize the condition number. Without this penaliza-

tion, some problems may occur. In our small case, this is not necessarily a matter since we can

use a direct solver. Nevertheless, for larger simulations,we should go to an iterative solver.

Now, we observe the results obtained for different values ofthe penalty parametersγf andγs in three

cases: (a)γf = γs, given in TablesB.3.1 to B.3.8, (b) γf vanishes andγs varies, summarized in

TablesB.3.10to B.3.18, and (c)γf is fixed equal to10 andγs varies, reported in TablesB.3.19to

B.3.27. In each case, we have employed (i) quadratic polynomial elements on Mesh 1, depicted in

Fig. II.5.2(a), (ii) cubic polynomial elements on Mesh 1, as well as (iii) cubic elements on Mesh 3

depicted in Fig.II.5.2(c), for the three frequenciesf1, fR, f2.

183



Appendices to the Chapter II

γf & γs p ux uy

0 1.459 0.144 0.129
1 7.645 0.771 0.709
2 9.816E-002 2.448E-002 2.501E-002
3 8.321E-002 2.289E-002 2.536E-002
4 8.042E-002 2.265E-002 2.615E-002
5 8.017E-002 2.274E-002 2.687E-002
6 8.069E-002 2.291E-002 2.747E-002
7 8.143E-002 2.31E-002 2.795E-002
8 8.222E-002 2.329E-002 2.836E-002
9 8.297E-002 2.344E-002 2.869E-002
10 8.368E-002 2.359E-002 2.898E-002
15 8.64E-002 2.414E-002 2.993E-002
30 9.017E-002 2.484E-002 3.103E-002
40 9.130E-002 2.505E-002 3.134E-002
50 9.202E-002 2.518E-002 3.152E-002
60 9.252E-002 2.527E-002 3.165E-002
70 9.289E-002 2.533E-002 3.175E-002
80 9.317E-002 2.538E-002 3.182E-002
90 9.339E-002 2.542E-002 3.187E-002
100 9.357E-002 2.545E-002 3.192E-002
1000 9.508E-002 2.571E-002 3.228E-002
10000 9.523E-002 2.574E-002 3.232E-002
100000 9.525E-002 2.574E-002 3.232E-002
1000000 9.525E-002 2.574E-002 3.232E-002

Table B.3.1– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f1 (ka = 9.1735).
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γf & γs p ux uy

0 1.521 0.449 0.285
1 7.71436 1.342 0.798
2 0.101 0.715 0.455
3 8.659E-002 0.845 0.537
4 8.409E-002 0.918 0.584
5 8.408E-002 0.966 0.614
6 8.476E-002 1.001 0.636
7 8.564E-002 1.027 0.653
8 8.653E-002 1.048 0.666
9 8.737E-002 1.064 0.676
10 8.815E-002 1.078 0.685
15 9.109E-002 1.121 0.712
30 9.510E-002 1.169 0.743
40 6.630E-002 1.182 0.751
50 9.706E-002 1.19 0.756
60 9.759E-002 1.195 0.76
70 9.798E-002 1.199 0.762
80 9.827E-002 1.202 0.764
90 9.850E-002 1.204 0.765
100 9.869E-002 1.206 0.766
1000 0.100 1.221 0.776
10000 0.100 1.222 0.777
100000 0.100 1.222 0.777
1000000 0.100 1.221 0.776

Table B.3.2– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
fR (ka = 9.2572).

185



Appendices to the Chapter II

γf & γs p ux uy

0 1.668 0.144 0.169
1 7.499 0.840 0.998
2 0.103 2.345E-002 3.019E-002
3 8.727E-002 2.201E-002 3.101E-002
4 8.416E-002 2.182E-002 3.219E-002
5 8.379E-002 2.193E-002 3.318E-002
6 8.426E-002 2.210E-002 3.398E-002
7 8.498E-002 2.228E-002 3.462E-002
8 8.577E-002 2.246E-002 3.515E-002
9 8.653E-002 2.261E-002 3.559E-002
10 8.724E-002 2.275E-002 3.596E-002
15 9.002E-002 2.326E-002 3.718E-002
30 9.39E-002 2.390E-002 3.857E-002
40 9.507E-002 2.409E-002 3.895E-002
50 9.581E-002 2.421E-002 3.918E-002
60 9.633E-002 2.429E-002 3.934E-002
70 9.671E-002 2.435E-002 3.946E-002
80 9.7E-002 2.439E-002 3.955E-002
90 9.723E-002 2.442E-002 3.961E-002
100 9.741E-002 2.445E-002 3.967E-002
1000 9.898E-002 2.469E-002 4.012E-002
10000 9.914E-002 2.471E-002 4.017E-002
100000 9.916E-002 2.472E-002 4.017E-002
1000000 9.916E-002 2.471E-002 4.018E-002

Table B.3.3– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f2 (ka = 9.341) .
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γf & γs p ux uy

0 0.193 6.395E-002 5.722E-002
1 0.121 8.623E-002 8.203E-002
2 0.31 6.147E-002 5.809E-002
3 4.283E-003 2.273E-003 1.802E-003
4 3.948E-003 2.214E-003 1.773E-003
5 3.851E-003 2.194E-003 1.778E-003
6 3.807E-003 2.185E-003 1.785E-003
7 3.783E-003 2.180E-003 1.793E-003
8 3.77E-003 2.178E-003 1.8E-003
9 3.762E-003 2.178E-003 1.806E-003
10 3.758E-003 2.178E-003 1.811E-003
20 3.763E-003 2.187E-003 1.842E-003
30 3.776E-003 2.193E-003 1.855E-003
40 3.786E-003 2.197E-003 1.862E-003
50 3.792E-003 2.2E-003 1.867E-003
60 3.797E-003 2.201E-003 1.87E-003
70 3.801E-003 2.203E-003 1.872E-003
80 3.804E-003 2.204E-003 1.874E-003
90 3.806E-003 2.205E-003 1.875E-003
100 3.808E-003 2.205E-003 1.876E-003
1000 3.826E-003 2.211E-003 1.885E-003
10000 3.828E-003 2.212E-003 1.887E-003
100000 3.828E-003 2.212E-003 1.887E-003
1000000 3.828E-003 2.212E-003 1.887E-003

Table B.3.4– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequencyf1

(ka = 9.1735).
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γf & γs p ux uy

0 0.553 4.153E-002 2.537E-002
1 0.129 5.876E-002 3.751E-002
2 0.245 5.125E-002 3.267E-002
3 4.424E-003 3.713E-003 2.409E-003
4 4.08E-003 4.528E-003 2.931E-003
5 3.982E-003 4.964E-003 3.211E-003
6 3.937E-003 5.248E-003 3.392E-003
7 3.913E-003 5.45E-003 3.520E-003
8 3.9E-003 5.601E-003 3.617E-003
9 3.892E-003 5.719E-003 3.692E-003
10 3.888E-003 5.815E-003 3.753E-003
20 3.895E-003 6.250E-003 4.03E-003
30 3.909E-003 6.399E-003 4.124E-003
40 3.919E-003 6.475E-003 4.172E-003
50 3.926E-003 6.520E-003 4.201E-003
60 3.931E-003 6.551E-003 4.221E-003
70 3.935E-003 6.573E-003 4.235E-003
80 3.939E-003 6.589E-003 4.245E-003
90 3.941E-003 6.602E-003 4.253E-003
100 3.943E-003 6.612E-003 4.26E-003
1000 3.961E-003 6.696E-003 4.313E-003
10000 3.963E-003 6.698E-003 4.315E-003
100000 3.964E-003 6.726E-003 4.332E-003
1000000 3.964E-003 6.789E-003 4.370E-003

Table B.3.5– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequencyfR

(ka = 9.2572).
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γf & γs p ux uy

0 0.459 6.168E-002 7.235E-002
1 0.138 9.121E-002 0.114
2 0.212 5.616E-002 6.983E-002
3 4.559E-003 2.163E-003 2.206E-003
4 4.201E-003 2.108E-003 2.169E-003
5 4.098E-003 2.089E-003 2.176E-003
6 4.051E-003 2.08E-003 2.186E-003
7 4.027E-003 2.0758E-003 2.196E-003
8 4.013E-003 2.074E-003 2.205E-003
9 4.005E-003 2.073E-003 2.212E-003
10 4.001E-003 2.074E-003 2.219E-003
20 4.008E-003 2.082E-003 2.259E-003
30 4.022E-003 2.088E-003 2.276E-003
40 4.032E-003 2.092E-003 2.285E-003
50 4.04E-003 2.094E-003 2.291E-003
60 4.045E-003 2.096E-003 2.295E-003
70 4.049E-003 2.097E-003 2.298E-003
80 4.052E-003 2.098E-003 2.3E-003
90 4.055E-003 2.1E-003 2.301E-003
100 4.057E-003 2.1E-003 2.303E-003
1000 4.076E-003 2.105E-003 2.315E-003
10000 4.078E-003 2.106E-003 2.316E-003
100000 4.078E-003 2.106E-003 2.316E-003
1000000 4.078E-003 2.106E-003 2.316E-003

Table B.3.6– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequencyf2

(ka = 9.341).
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γf & γs p ux uy

0 7.271 1.423 1.512
1 6.208 0.627 0.555
2 7.202 0.484 0.452
3 0.435 6.078E-002 6.509E-002
4 0.418 6.366E-002 7.072E-002
5 0.421 6.602E-002 7.441E-002
6 0.424 6.780E-002 7.701E-002
7 0.427 6.920E-002 7.896E-002
8 0.430 7.032E-002 8.047E-002
9 0.433 7.124E-002 8.17E-002
10 0.435 7.201E-002 8.270E-002
20 0.446 7.589E-002 8.763E-002
30 0.452 7.738E-002 8.946E-002
40 0.454 7.817E-002 9.042E-002
50 0.456 7.865E-002 9.101E-002
60 0.457 7.899E-002 9.141E-002
70 0.458 7.923E-002 9.17E-002
80 0.459 7.941E-002 9.192E-002
90 0.46 7.955E-002 9.209E-002
100 0.460 7.967E-002 9.223E-002
1000 0.464 8.063E-002 9.337E-002
10000 0.464 8.073E-002 9.349E-002
100000 0.465 8.074E-002 9.350E-002
1000000 0.465 8.074E-002 9.350E-002

Table B.3.7– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequencyf1

(ka = 9.1735).
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γf & γs p ux uy

0 5.902 0.876 0.573
1 6.225 0.755 0.567
2 6.917 0.549 0.249
3 0.449 0.586 0.374
4 0.431 0.657 0.416
5 0.434 0.694 0.438
6 0.438 0.718 0.453
7 0.441 0.736 0.463
8 0.444 0.749 0.471
9 0.447 0.76 0.478
10 0.449 0.768 0.483
20 0.461 0.808 0.507
30 0.467 0.808 0.516
40 0.47 0.830 0.521
50 0.472 0.835 0.524
60 0.473 0.838 0.526
70 0.474 0.840 0.527
80 0.475 0.842 0.528
90 0.475 0.843 0.529
100 0.476 0.844 0.529
1000 0.480 0.853 0.535
10000 0.480 0.854 0.535
100000 0.481 0.854 0.535
1000000 0.481 0.854 0.535

Table B.3.8– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequencyfR

(ka = 9.2572).

191



Appendices to the Chapter II

γf & γs p ux uy

0 5.041 1.020 1.415
1 6.442 0.617 0.68
2 6.591 0.443 0.560
3 0.461 6.022E-002 7.991E-002
4 0.443 6.392E-002 8.842E-002
5 0.446 6.654E-002 9.355E-002
6 0.45 6.842E-002 9.703E-002
7 0.453 6.984E-002 9.959E-002
8 0.456 7.096E-002 0.102
9 0.459 7.186E-002 0.103
10 0.461 7.261E-002 0.104
20 0.475 7.63E-002 0.111
30 0.480 7.768E-002 0.113
40 0.483 7.841E-002 0.114
50 0.485 7.886E-002 0.115
60 0.487 7.916E-002 0.116
70 0.488 7.938E-002 0.116
80 0.489 7.955E-002 0.116
90 0.489 7.968E-002 0.116
100 0.49 7.979E-002 0.117
1000 0.494 8.066E-002 0.118
10000 0.494 8.075E-002 0.118
100000 0.494 8.076E-002 0.118
1000000 0.494 8.076E-002 0.118

Table B.3.9– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequencyf2

(ka = 9.341).
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γs p ux uy Condition number

0 1.459 0.144 0.129 40,805
1 1.463 0.64 0.585 52,986
2 1.465 3.650E-002 3.469E-002 49,091
3 1.466 3.540E-002 3.519E-002 55,899
4 1.466 3.514E-002 3.586E-002 62,842
5 1.466 3.511E-002 3.644E-002 69,783
10 1.466 3.542E-002 3.814E-002 95,003
50 1.466 3.619E-002 4.024E-002 369,344
100 1.467 3.633E-002 4.056E-002 712,282
1000 1.467 3.647E-002 4.087E-002 6,885,207

Table B.3.10– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f1 (ka = 9.1735).

γs p ux uy Condition number

0 1.521 0.449 0.285 1,812,797
1 1.518 1.310 0.838 2,091,925
2 1.521 0.691 0.441 3,137,660
3 1.521 0.825 0.526 4,338,652
4 1.521 0.900 0.574 5,557,654
5 1.521 0.95 0.605 6,729,608
10 1.521 1.064 0.678 12,864,800
50 1.521 1.178 0.751 60,848,613
100 1.521 1.195 0.761 120,826,088
1000 1.521 1.21 0.771 1,200,414,954

Table B.3.11– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
fR (ka = 9.2572).
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γs p ux uy Condition number

0 1.668 0.144 0.169 67,516
1 1.669 0.668 0.805 80,149
2 1.663 3.636E-002 4.525E-002 113,470
3 1.662 3.539E-002 4.597E-002 151,916
4 1.662 3.518E-002 4.677E-002 191,533
5 0.162 3.518E-002 4.742E-002 231,202
10 1.661 3.552E-002 4.926E-002 429,561
50 1.661 3.629E-002 5.144E-002 2,016,444
100 1.661 3.643E-002 5.177E-002 4,000,050
1000 1.661 3.656E-002 5.209E-002 39,704,974

Table B.3.12– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f2 (ka = 9.341).

γs p ux uy Condition number

0 0.193 6.395E-002 5.722E-002 445,507
1 0.195 9.067E-002 8.624E-002 453,489
2 0.193 6.1E-002 5.758E-002 483,618
3 0.195 2.342E-003 1.878E-003 455,550
4 0.195 2.283E-003 1.849E-003 464,890
5 0.195 2.263E-003 1.853E-003 474,343
10 0.195 2.246E-003 1.884E-003 521,630
50 0.195 2.266E-003 1.937E-003 899,720
100 0.195 2.272E-003 1.947E-003 1,372,300
1000 0.195 2.278E-003 1.956E-003 9,878,652

Table B.3.13– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequencyf1

(ka = 9.1735).
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γs p ux uy Condition number

0 0.553 4.153E-002 2.537E-002 5,765,515
1 0.56 6.220E-002 3.971E-002 5,899,058
2 0.547 4.94E-002 3.144E-002 7,045,859
3 0.557 3.545E-003 2.164E-003 8,403,097
4 0.557 4.296E-003 2.66E-003 9,795,700
5 0.557 4.71E-003 2.930E-003 11,203,404
10 0.557 5.533E-003 3.465E-003 18,544,252
50 0.557 6.228E-003 3.914E-003 77,263,397
100 0.557 6.32E-003 3.973E-003 150,325,266
1000 0.557 6.403-003 4.027E-003 1,476,746,193

Table B.3.14– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequencyfR

(ka = 9.2572).

γs p ux uy Condition number

0 0.46 6.168E-002 7.235E-002 1,044,132
1 0.464 9.496E-002 0.119 1,048,510
2 0.456 5.85E-002 7.278E-002 1,141,767
3 0.462 2.319E-003 2.509E-003 298,285
4 0.463 2.266E-003 2.471E-003 345,565
5 0.463 2.248E-003 2.473E-003 393,420
10 0.463 2.232E-003 2.505E-003 632,658
50 0.463 2.250E-003 2.564E-003 2,550,151
100 0.463 2.255E-003 2.574E-003 4,947,016
1000 0.463 2.261E-003 2.584E-003 48,090,588

Table B.3.15– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequencyf2

(ka = 9.341).
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γs p ux uy Condition number

0 7.271 1.423 1.512 18,744
1 7.784 0.742 0.714 18,655
2 7.647 1.001 0.962 21,859
3 8.076 0.673 0.657 24,156
4 8.124 0.674 0.659 27,687
5 8.152 0.675 0.66 31,316
10 8.21 0.677 0.662 49,830
50 8.260 0.679 0.664 198,010
100 8.267 0.679 0.664 383,304
1000 8.273 0.679 0.664 3,718,738

Table B.3.16– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequencyf1

(ka = 9.1735).

γs p ux uy Condition number

0 5.902 0.876 0.573 687,947
1 6.305 0.98 0.586 679,513
2 6.119 0.851 0.501 808,510
3 6.530 0.934 0.568 916,839
4 6.569 0.981 0.599 1,061,190
5 6.592 1.007 0.616 1,208,776
10 6.641 1.061 0.652 1,951,396
50 6.684 1.11 0.684 7,946,735
100 6.69 1.117 0.689 15,433,598
1000 6.695 1.123 0.693 15,0199,166

Table B.3.17– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequencyfR

(ka = 9.2572).
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γs p ux uy Condition number

0 5.041 1.020 1.415 24,604
1 5.335 0.545 0.699 24,652
2 5.253 0.715 0.941 28,754
3 5.484 0.461 0.608 33,057
4 5.509 0.463 0.61 38,107
5 5.524 0.464 0.611 43,249
10 5.555 0.466 0.615 69,098
50 5.583 0.469 0.618 276,180
100 5.587 0.469 0.618 535,062
1000 5.591 0.469 0.618 5,194,998

Table B.3.18– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 0 using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequencyf2

(ka = 9.341).

γs p ux uy Condition number

0 6.728E-002 0.14 0.125 47,165
1 7.456E-002 0.640 0.585 49,224
2 7.935E-002 2.496E-002 2.533E-002 55,267
3 8.09E-002 2.337E-002 2.566E-002 62,090
4 8.178E-002 2.302E-002 2.638E-002 69,073
5 8.236E-002 2.301E-002 2.703E-002 76,074
10 8.368E-002 2.359E-002 2.898E-002 111,080
50 8.497E-002 2.486E-002 3.14E-002 393,590
100 8.515E-002 2.509E-002 3.177E-002 747,630
1000 8.532E-002 2.531E-002 3.213E-002 7,094,191

Table B.3.19– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f1 (ka = 9.1735).

The following observations are noteworthy:

• Outside the resonance frequencyfR, we improve the results by penalizing both the pressure and

displacement fields. On Mesh 1, since the error is around 1% (resp. 0.1%) when employing

quadratic (resp. cubic) approximations, the choice ofγf = γs = 0 can be sufficient (see

TablesB.3.1and B.3.3and TablesB.3.4and B.3.6). Nevertheless, on the coarser Mesh 3, the

error is about 5% for the pressure field when usingγf = 0 (see TablesB.3.7 and B.3.9). In

the presence of penalty terms, there is about one order of magnitude improvement. It seems

that the results using cubic polynomial elements with penalization on the coarser Mesh 3 (see

TablesB.3.7 and B.3.9) are as accurate as those obtained using cubic polynomial elements

without penalization on Mesh 1 (see TablesB.3.4andB.3.6). Let us consider another example

197



Appendices to the Chapter II

γs p ux uy Condition number

0 6.983E-002 0.462 0.292 1,839,643
1 7.942E-002 1.304 0.829 2,120,642
2 8.244E-002 0.705 0.448 3,171,656
3 8.445E-002 0.839 0.534 4,378,867
4 8.561E-002 0.914 0.581 5,604,164
5 8.638E-002 0.964 0.613 6,782,234
10 8.815E-002 1.078 0.685 12,949,177
50 8.992E-002 1.192 0.758 61,183,482
100 9.017E-002 1.209 0.768 121,474,079
1000 9.040E-002 1.224 0.778 1,206,699,127

Table B.3.20– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
fR (ka = 9.2572).

γs p ux uy Condition number

0 7.018E-002 0.139 0.163 48,623
1 7.782E-002 0.684 0.826 84,503
2 8.266E-002 2.402E-002 3.201E-002 117,987
3 8.43E-002 2.254E-002 3.239E-002 156,939
4 8.523E-002 2.223E-002 3.317E-002 196,784
5 8.584E-002 2.222E-002 3.387E-002 236,681
10 8.724E-002 2.275E-002 3.596E-002 436,180
50 8.861E-002 2.391E-002 3.851E-002 2,032,184
100 8.88E-002 2.412E-002 3.890E-002 4,027,192
1000 8.898E-002 2.432E-002 3.927E-002 39,937,348

Table B.3.21– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using quadratic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f2 (ka = 9.341).
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γs p ux uy Condition number

0 3.692E-003 6.452E-002 5.771E-002 87,290
1 3.729E-003 8.677E-002 8.254E-002 88,131
2 3.734E-003 6.223E-002 5.879E-002 94,304
3 3.741E-003 2.273E-003 1.801E-003 102,107
4 3.747E-003 2.214E-003 1.773E-003 110,885
5 3.751E-003 2.194E-003 1.777E-003 118,816
10 3.758E-003 2.178E-003 1.811E-003 161,473
50 3.764E-003 2.2E-003 1.867E-003 501,608
100 3.765E-003 2.205E-003 1.876E-003 925,953
1000 3.766E-003 2.211E-003 1.886E-003 8,557,984

Table B.3.22– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f1 (ka = 9.1735).

γs p ux uy

0 3.803E-003 4.220E-002 2.575E-002 5,785,296
1 3.854E-003 5.916E-002 3.778E-002 5,918,825
2 3.848E-003 5.169E-002 3.295E-002 7,065,615
3 3.866E-003 3.689E-003 2.390E-003 8,363,171
4 3.875E-003 4.511E-003 2.918E-003 9,815,347
5 3.879E-003 4.952E-003 3.201E-003 112,22,999
10 3.888E-003 5.815E-003 3.753E-003 18,563,504
50 3.897E-003 6.535E-003 4.212E-003 77,280,349
100 3.898E-003 6.629E-003 4.272E-003 150,339,536
1000 3.899E-003 6.715E-003 4.327E-003 1,476,711,637

Table B.3.23– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
fR (ka = 9.2572).
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γs p ux uy Condition number

0 3.93E-003 6.23E-002 7.308E-002 218,662
1 3.971E-003 9.165E-002 0.115 226,762
2 3.977E-003 5.663E-002 7.042E-002 258,315
3 3.982E-003 2.163E-003 2.205E-003 302,655
4 3.989E-003 2.108E-003 2.169E-003 349,933
5 3.993E-003 2.089E-003 2.176E-003 397,539
10 4.001E-003 2.074E-003 2.219E-003 637,205
50 4.008E-003 2.094E-003 2.291E-003 2,554,609
100 4.009E-003 2.1E-003 2.303E-003 4,951,364
1000 4.01E-003 2.105E-003 2.315E-003 48,092,949

Table B.3.24– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using cubic polynomial elements, curved boundary edges, and Mesh 1 for the frequency
f2 (ka = 9.341).

γs p ux uy Condition number

0 0.428 0.582 0.6 25,080
1 0.431 0.331 0.295 25,559
2 0.432 0.320 0.337 29,443
3 0.432 7.007E-002 7.617E-002 34,253
4 0.433 6.99E-002 7.792E-002 39,441
5 0.434 7.029E-002 7.926E-002 -002 44,717
10 0.435 7.201E-002 8.270E-002 71,193
50 0.436 7.454E-002 8.657E-002 284,674
100 0.436 7.496E-002 8.716E-002 551,159
1000 0.436 7.536E-002 8.771E-002 5,347,900

Table B.3.25– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequency
f1 (ka = 9.1735).
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γs p ux uy Condition number

0 0.442 0.507 0.334 838,322
1 0.446 0.657 0.403 848,754
2 0.445 0.462 0.290 992,025
3 0.446 0.617 0.386 1,159,156
4 0.447 0.674 0.422 1,344,199
5 0.448 0.704 0.442 1,532,768
10 0.449 0.768 0.483 2,479,570
50 0.450 0.827 0.520 1,0115,314
100 0.450 0.835 0.526 19,649,383
1000 0.450 0.843 0.530 191,263,135

Table B.3.26– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequency
fR (ka = 9.2572).

γs p ux uy Condition number

0 0.455 0.563 0.767 28,042
1 0.459 0.301 0.358 28,648
2 0.458 0.314 2.501E-002 33,082
3 0.459 7.021E-002 9.801E-002 38,775
4 0.46 7.036E-002 9.950E-002 44,718
5 0.460 7.084E-002 0.101 50,751
10 0.461 7.261E-002 0.104 81,018
50 0.462 7.503E-002 0.109 323,210
100 0.462 7.542E-002 0.109 625,950
1000 0.463 7.58E-002 0.11 6,075,273

Table B.3.27– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parameterγs for γf = 10 using cubic polynomial elements, curved boundary edges, and Mesh 3 for the frequency
f2 (ka = 9.341).
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with the non-resonant frequencyf1. In TableB.3.28, we compare the results obtained on Mesh

1 when employingγs = γf = 10 to those obtained when refining Mesh 1, and using no

penalization, i.e.γs = γf = 0. TableB.3.28indicates that the error results are better using

Mesh 1 refinement level γf & γs p ux uy

0 10 7.734E-003 3.95E-002 3.681E-002
1 0 3.758E-003 2.178E-003 1.811E-003

Table B.3.28– Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative error (%) to the penalization
parametersγf andγs using cubic polynomial elements, curved boundary edges, and a different refinement level of
Mesh 1 for the frequencyf1.

Mesh 1 than its refinement thanks to the use of the penalization. Therefore, to some extent,

the penalization appears to be useful in order to avoid a meshrefinement and to get a more

reasonable approximation of the scattered fields.

• When considering the Jones frequency, we always improve theaccuracy when penalizing the

pressure field since we restore the stability in the fluid domain, but we do not gain on the dis-

placement field because the interior problem is anyway ill-posed, as indicated in TablesB.3.2,

B.3.5andB.3.8.

• TablesB.3.10to B.3.27support the idea that the presence of the penalty term improves the

accuracy for the fluid pressure for all the three frequencies. They also illustrates an accuracy

improvement of the error associated to the displacement field in the presence of the elastic

penalty term, except at the Jones frequency. The obtained results suggest that one can use any

values forγf andγs without affecting the accuracy of IPDG, provided that thesevalues remain

larger than
1

4
p(p+ 1).

• Using cubic approximations on the fine Mesh 1, the condition number deteriorates in the ab-

sence of the penalty term in the fluid part, i.e.γf = 0, in comparison with the results obtained

whenγf = 10 for both frequenciesf1 andf2, as indicated in TablesB.3.13andB.3.15and Ta-

blesB.3.22andB.3.24. However, this remark seems not to be observable neither forquadratic

elements on Mesh 1 (see TablesB.3.10andB.3.12and TablesB.3.19andB.3.21), nor for the

results obtained on the coarser Mesh 3 (see TablesB.3.16andB.3.18and TablesB.3.25and

B.3.27). In the case of the resonance frequencyfR, the penalization of the pressure field does

not change the condition number, it is as spoiled in the absence as in the presence of the penalty

term (see TablesB.3.14 andB.3.23). Note that a too large penalty parameter can lead to a

significant deterioration of the condition number in all cases.
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The Inverse Obstacle Problem
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Chapter III

Characterization of the Fréchet derivative of the

elasto-acoustic field with respect to Lipschitz

domains

In this chapter we establish the continuous Fréchet differentiability of the elasto-acoustic field

with respect to Lipschitz continuous deformation of the shape of an elastic scatterer. We then charac-

terize the derivative as a solution of a direct elasto-acoustic-type problem. The proof only assumes the

boundary to be Lipschitz continuous and therefore can include sharp corners. We then characterize

the derivative of the elasto-acoustic scattered field as a solution of a direct elasto-acoustic-type prob-

lem. The proof of this characterization is rigorously givenfor smooth scatterers of classC2, as well as

for curvilinear polygonal or polyhedral domains of classC1,1. We point out the issues that occur when

considering classes of more general Lipschitz domains. Such a characterization has the potential to

advance the state-of-the-art of the solution of inverse elasto-acoustic scattering problems.

III.1 Introduction

The determination of the shape of an obstacle from its effects on known acoustic or electromag-

netic waves is an important problem in many technologies such as sonar, radar, geophysical explo-

ration, medical imaging and non destructive testing. This inverse scattering problem is difficult to

solve, especially from a numerical point of view because it is ill-posed and nonlinear. Its investiga-

tion requires as a prerequisite the fundamental understanding of the theory for the associated direct

scattering problem, and the mastery of the corresponding numerical solution methods. The solution

of this problem by regularized Newton-like methods incurs,at each iteration, the solution of a lin-

ear system whose entries are the Fréchet derivatives of the elasto-acoustic field with respect to the
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parameters representing the surface of the scatterer. Ensuring the stability, fast convergence and com-

putational efficiency of these iterative methods calls for computing these Fréchet derivatives with a

greater robustness and a higher level of accuracy than possible with finite differences. To this effect,

it is noted that the Fréchet derivative of the acoustic scattered field with respect to the shape of a rigid

obstacle can be characterized as the solution of a direct acoustic scattering problem which differs

from the direct acoustic scattering problem only in the boundary conditions [39, 41]. Our goal is to

employ the techniques used in [39, 41] to extend the sensitivity analysis to the case of penetrable

elastic scatterers immersed in a fluid.

The analysis of the dependence of the scattered field with respect to the shape of a given obstacle

has received in the past twenty years a great deal of attention by both the mathematicians and the

engineers community. Various approaches have been suggested to analyze the case of acoustic prob-

lems for rigid (non penetrable) scatterers with different regularity requirements on the shape of the

scatterers as well as on the considered perturbations [80, 83, 96, 122, 124]. The case of “pure” elastic

problems has been studied by Charalambopoulos [25], whereas the class of electromagnetic problems

has been addressed by several authors including Potthast [123], Haddar and Kress [75], and Costabel

and Le Louër [33, 34, 98].

In this chapter, we propose to extend the result of [39, 41] to the case of elastic scatterers [93] by

analyzing the dependence of the solution of a direct elasto-acoustic scattering problem on the domain

of the obstacle. Such a characterization has been done in [41] for the solution of the associated in-

verse problem, but the whole approach is based on the variational formulation of the boundary value

problems involved. In this paper, we first establish the continuous Fréchet differentiability of the

elasto-acoustic field with respect to the shape of elastic scatterers. Our proof is based on the implicit

function theorem and the standard trace theorems. It assumes the boundary of the considered elastic

scatterer to be only continuous Lipschitzian, and therefore can include sharp corners. The relevant

perturbations are continuous. Moreover, compared to paper[39], a novelty for the acoustic part lies in

the fact that we formulate the problem into a weighted Sobolev space for the pressure field, which is

a natural framework for the exterior Helmholtz problem, since it incorporates explicitly the radiation

condition. Secondly, we then prove that the Fréchet derivative of the elasto-acoustic scattered field

can be characterized as a solution of the same direct elasto-acoustic scattering problem but with dif-

ferent transmission conditions on the surface of the considered scatterer. Such a result is obtained by

using of the chain rule of derivation, also valid in the infinite-dimensional spaces. The main drawback

in the case of Lipschitz domains is the lack of proof for surjectivity of the trace operators in particular

for the elastic field. That is why we have organized our work byconsidering first regular domains, and

thenC1,1 polyhedra for which we were able to fully characterize the derivative. We then consider the
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case of aC0,1 polyhedron for which we were able to give a sense to each term related to the pressure

field. Nevertheless, even in that case which is more regular than for general Lipschitz domains, we

were faced to a lack of surjectivity. In the case of a Lipschitz domain, we have obtained a character-

ization of a trace of high order but obviously, as in the case of a C0,1 polyhedral domain, we did not

obtain the full characterization. However, our formal characterization being justified for quite general

domains, at least from a numerical point of view where the domain is a mesh, we propose to use it for

general Lipschitz domains and postpone a rigorous construction that we hope possible.

The computational implication of this theoretical characterization is that, at each Newton iteration,

one need to solve asinglesystem of equations withNp right-hand-sides;Np being the number of

parameters representing the surface of the considered scatterer.

This result has the potential to advance the state-of-the-art of the solution of inverse elasto-acoustic

scattering problems. Furthermore, the methodology adopted for characterizing the Fréchet derivatives

with respect to the shape of an elastic scatterer can also be applied to analyze the Fréchet differentia-

bility with respect to its material properties. This is relevant to many inverse problems where not only

the shape of an obstacle is of interest but also, and often more importantly, its structure.

The remainder of this paper is organized as follows. In Section III.2, we first specify the nomen-

clature and assumptions used in this work, then formulate the focus elasto-acoustic scattering problem

[93]. In SectionIII.3, we establish in a first part the continuous Fréchet differentiability of the elasto-

acoustic scattered field with respect to the domain of the obstacle. In the second part of SectionIII.3,

we state as a theorem the characterization of the derivativeof the scattered field with respect to the

domain as the solution of a direct elasto-acoustic-type problem. We finally draw our conclusion in

SectionIII.4.

III.2 Problem Statement

III.2.1 Nomenclature and Assumptions

Throughout this paper, we adopt the following notations andassumptions:

• Ωs is a bounded domain ofRn representing an elastic obstacle.

• Ωf = Rn \ Ω
s

is the homogeneous inviscid (fluid) medium surrounding the elastic domain.

• Γ is the boundary ofΩs and is assumed to be Lipschitz continuous. Nevertheless, some draw-

backs may occur in the general Lipschitz domains. In some cases, we will thus restrict our
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study to polygonal or polyhedral domains. We will then adoptthe notations of Grisvard [70]

and Ciarlet etal [8–10].

• | · | is the Euclidean norm inRn.

• x is a point ofRn, understood as a column vector andr = |x| is the distance from an origin

point tox.

• d is a unit vector representing the propagation direction of the incident plane wave.

• ν is the outward normal toΓ and
∂

∂ν
is the normal derivative operator.

• S1 = {x ∈ Rn||x| = 1} is the unit sphere inRn.

• ∇ is the gradient operator inRn. The gradient of a scalar function is a column vector field. We

adopt the notations from Simon-Murat [115] for the Jacobian matrix. The gradient of a column

vector field is a matrix, where the partial derivatives are aligned in rows. For a row vector field,

we also define the gradient as a matrix, where the partial derivatives are put in columns.

• ∇· is the divergence operator inRn.

• ∆ is the Laplace operator inRn.

• D(E) is the space of infinitely differentiable functions with compact support inE.

• D
′(E) is the standard space of distributions.

• C0,1(E) is the set of all Lipschitz continuous functions onE ⊂ Rn, equipped with the norm

‖φ‖C0,1(E) = ‖φ‖C0(E) + |φ|Lip(E), where|φ|Lip = sup
x1 6=x2

|φ(x1) − φ(x2)|/|x1 − x2|.

• C1,1(E) is the set of all continuous functionsφ onE ⊂ Rn, with Lipschitz continuous deriva-

tivesφ′ , equipped with the norm‖φ‖C1,1(E) = ‖φ‖C1(E) + |φ′|Lip(E).

• C1(E) is the space of functions with continuous derivatives onE ⊂ Rn.

• Cm(E) is the space of functions with continuous derivatives up to orderm onE ⊂ Rn, with

the maximum norm of all derivatives.

• L2(E) is the standard Lebesgue space andH1(E) is Sobolev space [3].

• L2
loc(E) is the space of functions that are inL2(D) for any open bounded setD in E.

• For some tensorσ, we defineD(∇ ·σ,Ωs) = {w;w ∈ (L2(Ωs))n and∇ · σ(w) ∈ (L2(Ωs))n}.

• D(∆,Ωf) = {t; t ∈ L2
loc(Ω

f ) and∆t ∈ L2
loc(Ω

f )}.
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• H(∇·, E) = {w;w ∈ (L2(E))n and∇ · w ∈ L2(E)}, equipped with the norm:

‖w‖H∇·(E) =
(
‖w‖2

L2(E) + ‖∇ · w‖2
L2(E)

)1/2
.

• Hloc(∇·, E) = {w;w ∈ (L2
loc(E))n and∇ · w ∈ L2

loc(E)}

• Let ρ(r) := 1 + r2. We introduce the weighted Sobolev space:

H(E) = {t; t

ρ1/2
∈ L2(E),

∇t
ρ1/2

∈ (L2(E))n and
∂t

∂r
− ikt ∈ L2(E)}.

• The test space associated to the trial spaceH(E) is defined as:

HT (E) = {t; ρ1/2t ∈ L2(E), ρ1/2∇t ∈ (L2(E))n and
∂t

∂r
− ikt ∈ L2(E)}.

We refer to [118, 130] for the definition of these Banach spaces and their associated dual spaces.

Moreover, classical trace theorems, as well as Green’s formula, exist in these spaces [130].

• Hs(Γ) are the trace Sobolev spaces.

• I : Rn → R
n is the identity mapping or the unitary matrix.

• θ : Rn → Rn denotes an admissible perturbation in(C1(Rn))
n. It is assumed to have a compact

support and to be small enough so thatI + θ is bijective inRn, for example‖θ‖(C1(Rn))n <
1

2
.

• Ω•
θ = (I + θ)Ω• is an admissible perturbed configuration of the reference domainΩ•; • = s, f .

Note thatΩ•
0 = Ω•.

• Γθ is the boundary ofΩs
θ andνθ is the outward normal toΓθ. Note thatΓ0 = Γ.

• [θ′] is the Jacobian matrix ofθ. Hence[θ′] =

(
∂θl
∂xj

)

1≤l,j≤n

.

• [θ′]t is the transpose Jacobian matrix ofθ.

• TrΓ is the trace operator onΓ.

• D1, andD2 are two bounded domains with smooth boundaries, such that

D1 ⊂ Ωs ⊂ Ω
s ⊂ D2. (III.2.1)

• For normed spaces, the symbol→֒ denotes continuous injection.

209



Chapter III. Characterization of the Fréchet derivative of the elasto-acoustic field with respect
to Lipschitz domains

• Furthermore, in this paper we manipulate a couple of functions(uθ, pθ) that is defined on open

sets that vary withθ. Hence, these functions cannot be differentiated with respect toθ in the

classical sense. For this reason, we follow [115, 133] and adopt the following concept of a local

derivative. We say thatθ 7→ wθ is locally differentiable if for every open setD strictly included

in Ωs and strictly included inΩs
θ the restriction ofwθ to D is differentiable. Similarly, in the

unbounded domain, we say thatθ 7→ tθ is locally differentiable if for every open setD strictly

included inΩf and strictly included inΩf
θ the restriction oftθ toD is differentiable. We denote

by (w′, t′) = ((∂wθ/∂θ)(0)h, (∂tθ/∂θ)(0)h) the local derivative of(wθ, tθ) at θ = 0 and in the

directionh, whereh is a vector field satisfyingh ∈ (C2(Rn))n.

More generally,F′(f)h is the derivative ofF at f in the directionh, and forF = F(f, g),

F
′
f(a, b)h is the derivative with respect to the argumentf at (a, b) in the directionh.

III.2.2 Mathematical Formulation of the Problem

Figure III.2.1 – Problem statement in an admissible perturbed configurationof the reference domain.

The scattering of a time-harmonic acoustic wave by an elastic obstacleΩs
θ embedded in a homo-

geneous mediumΩf
θ , depicted in FigureIII.2.1, can be formulated as the following boundary value
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problem [93]:

BVP






∇ · σ(uθ) + ω2ρsuθ = 0 in Ωs
θ (III.2.2)

∆pθ + k2pθ = 0 in Ωf
θ (III.2.3)

τ(uθ) = −pθνθ − gνθ onΓθ (III.2.4)

ω2ρfuθ · νθ =
∂pθ
∂νθ

+
∂g

∂νθ
onΓθ (III.2.5)

lim
r→+∞

r(n−1)/2

(
∂pθ
∂r

− ikpθ

)
= 0. (III.2.6)

where the pair(uθ, pθ) represents the elasto-acoustic scattered field, that ispθ is the fluid pressure in

Ωf
θ whereasuθ is the displacement field inΩs

θ.

g = pinc = e
i
ω

cf
x·d

corresponds to the given incident plane wave.

ω is the circular frequency andcf is the speed of sound in the fluidΩf
θ . ω andcf are associated with

the wavenumberk by k =
ω

cf
. ρf andρs are positive real numbers denoting respectively the density

of the fluidΩf
θ and that of the scattererΩs

θ.

σ is the stress tensor related to the strain tensorε by Hooke’s law:

σlm = Clmjnεjn (III.2.7)

whereClmjn is a fourth order elastic stiffness tensor, such thatClmjn = Cmljn = Cjnlm andClmjnǫlmǫjn ≥
α
∑

lm

ǫ2lm for all symmetrical second order tensorǫ. Note that, in the case of an isotropic medium, it is

invariant under rotations and reflections [93], and reads as:

Clmjn = λδlmδjn + µ(δljδmn + δlnδmj)

whereλ, µ are the Lamé coefficients.

Recall that the strain tensorε is related to the displacement fielduθ by:

ε(uθ) =
1

2

(
∇uθ + (∇uθ)t

)
.

Last,τ denotes the traction vector on the surface of the scattererΩs
θ, that is,

τ(uθ) = σ(uθ)νθ.
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In this paper, we also consider the derivative of the acoustic far-field pattern. We remind the reader

that the scattering amplitudepθ,∞ of the acoustic scattered fieldpθ that is the solution of the BVP is

defined on the unit sphereS1 and is obtained from the asymptotic behavior ofpθ [28]: as follows:

pθ =
eikr

r(n−1)/2

(
pθ,∞

(
x

r

)
+O

(
1

r

))
; r = ‖x‖2 → +∞. (III.2.8)

Observe that the direct problem BVP consists in the standardexterior Helmholtz problem Eqs. (III.2.3)

and (III.2.6), coupled with the elastodynamic equation Eq. (III.2.2) governing the equilibrium of an

elastic scatterer via the transmission conditions Eqs. (III.2.4) and (III.2.5). The first one is a dynamic

interface condition whereas the second one is a kinematic interface condition.

This boundary value problem has been investigated mathematically and results pertaining to the exis-

tence, uniqueness and regularity can be found in [79, 92, 93, 104], among others, and ChapterI.

III.3 Main results

In this section, we present two main results of this study. The proof of these two results is based

on the ideas and the techniques used in [39, 41] for the exterior Helmholtz problems.

III.3.1 Continuous differentiability of the scattered field

In this section, we establish the continuous Fréchet differentiability of the elasto-acoustic scattered

field with respect to the domain of the given obstacle.

The main idea is to reformulate the BVP such that the scattered field is a zero of a nonlinear operator

in Banach spaces which do not change with the shape deformation θ and then apply the Implicit

Function Theorem (cf, e.g., [13]).

III.3.1.1 Transported solution and variational setting

We define the transported solution(vθ, qθ) in Ωs × Ωf by:

(vθ, qθ) = (uθ ◦ (I + θ), pθ ◦ (I + θ)) (III.3.1)

where(uθ, pθ) is a solution to the problem BVP.

We notice that sinceθ has a compact support, we havepθ(x) = qθ(x) for all x such thatθ(x) = 0.

Therefore,qθ satisfies the Sommerfeld outgoing radiation condition Eq. (III.2.6) in BVP.
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Then, the first step consists in the construction of an appropriate variational setting. Our analysis will

involve the use of the three following Banach spaces.

• Let the Banach spaceX be given by

X = {θ ∈
(
C

1(Rn)
)n

such thatsupp θ ⊂ D2 \D1}

and equipped with the standard norm in(C1(Rn))n.

We assume thatω is not a Jones frequency for the set of admissible perturbationsX. In other

words, we suppose thatω is not a resonance frequency for an initial configuration, and we

assume thatω remains a non resonance frequency in the neighborhood of theadmissible defor-

mations. Actually, the Jones frequencies are very rare and form a discrete spectrum. Therefore,

if the geometry under consideration may admit Jones modes, then the analysis is valid except

for at most a discrete set of frequencies. Note that, in that case, we can set onto a slightly per-

turbed frequency, which would not be a Jones frequency, and then use a continuity argument

with respect to frequency.

• We define the Banach spaceY that is invariant with respect to shape perturbationsθ. This space

is defined as a product spaceY = Y1 × Y2 where

Y1 = {v such that‖v‖Y1
< +∞},

Y2 = {q such that‖q‖Y2
< +∞}

and

‖v‖Y1
= ‖v‖(H1(Ωs))n ,

‖q‖Y2
= ‖q‖H(Ωf ).

We notice that this space naturally takes into account the decay condition for the pressure field,

given by the Sommerfeld outgoing radiation condition Eq. (III.2.6) in BVP.

• Moreover, the Banach spaceZ is defined as follows:

Z = Z1 × Z2
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where

Z1 = {(z1, ϕ1), z1 ∈
(
(H1(Ωs))n

)′

, ϕ1 ∈
(
H−1/2(Γ)

)n},
and

Z2 = {((z2, ϕ2), z2 ∈ (HT (Ωf))
′

, ϕ2 ∈ H−1/2(Γ)}.

Note that both spacesZ1 andZ2 are equipped with the graph norm.

III.3.1.2 Announcement of the first theorem and preliminary lemmas

We next state our first result.

Theorem III.3.1.1 The mappingθ 7→ (vθ, qθ), where(vθ, qθ) is the transported solution (III.3.1) of

the BVP, is continuously Fréchet differentiable atθ = 0 from the Banach spaceX to the Banach

spaceY .

The key idea of the proof of this first theorem is to reformulate the boundary problem as an

operator equation defined on a Banach space that is invariantwith respect to shape perturbationsθ,

and then apply the Implicit Function Theorem. In order to establish this proof, we thus need to derive

some preliminary lemmas.

The first one allows us to rewrite the BVP as an operator equation of the formF(θ, v, q) = 0.

Lemma 4 The BVP is equivalent toF(θ, wθ) = 0 wherewθ = (vθ, qθ). Moreover,F : X × Y −→ Z

is continuous on a neighborhood of(0, w0) fromX × Y toZ, and its Fréchet derivativesF′
θ andF′

w

exist and are continuous on a neighborhood of(0, w0) in X × Y .

The proof of this lemma follows the methodology employed in [39] for the exterior Helmholtz

problem. It especially makes use of the auxiliary results provided in Appendix A in [39]. This

Appendix contains some auxiliary propositions on Fréchet differentiability of operators defined by

composition, known as Nemytski operators [95]. It also includes some properties of the transforma-

tion of domains with Lipschitz boundary, and the associatedchange of variable in boundary integral

by a Lipschitz continuous mapping.

Proof We assume‖θ‖(C1(Rn))n is sufficiently small so that(I + θ)−1 exists andΩs
θ has a Lipschitz

boundary (see Lemma A.3 in [39]).
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Using the variational formulation, we aim at reformulatingthe coupled problem BVP as an operator

equation of the form:

F(θ, vθ, qθ) = 0.

For simplicity, we omit the complex conjugate notation on the test functions. The weak form of the

BVP is:

∫

Ωs
θ

(
∇ · σ(uθ) + ω2ρsuθ

)
ψ dµ = 0 ∀ψ ∈ (D(Ω

s

θ))
n

∫

Ωf
θ

(
∆pθ + k2pθ

)
Ψ dµ = 0 ∀Ψ ∈ D(Rn \ Ωs

θ).

Or, equivalently, by applying Green’s formula, for all(ψ, Ψ) ∈ (D(Ω
s

θ))
n × D(Rn \ Ωs

θ) ,

∫

Ωs
θ

σ(uθ) : ∇ψ dµ−
∫

Ωs
θ

ω2ρsuθψ dµ− 〈σ(uθ) · νθ, ψ〉−1/2,1/2 = 0,

∫

Ωf
θ

∇pθ · ∇Ψ dµ−
∫

Ωf
θ

k2pθΨ dµ− 〈∂pθ
∂νθ

, Ψ〉−1/2,1/2 = 0.

Then, by plugging the interface conditions into each variational equation, we get the weak formula-

tion, for all (ψ, Ψ) ∈ (D(Ω
s

θ))
n × D(Rn \ Ωs

θ),

∫

Ωs
θ

σ(uθ) : ∇ψ dµ−
∫

Ωs
θ

ω2ρsuθψ dµ+ 〈pθνθ + gνθ, ψ〉−1/2,1/2 = 0

∫

Ωf
θ

∇pθ · ∇Ψ dµ−
∫

Ωf
θ

k2pθΨ dµ+ 〈 ∂g
∂νθ

− ω2ρfuθ · νθ, Ψ〉−1/2,1/2 = 0

with

lim
r→+∞

r(n−1)/2

(
∂pθ
∂r

− ikpθ

)
= 0.

Moreover, using Hooke’s law given by Eq. (III.2.7), we obtain:

∫

Ωs
θ

∑

lmjn

Clmjnεjn(uθ)
∂ψl
∂xm

dµ−
∫

Ωs
θ

ω2ρsuθψ dµ+ 〈pθνθ + gνθ, ψ〉−1/2,1/2 = 0 (III.3.2)

∫

Ωf
θ

∇pθ · ∇Ψ dµ−
∫

Ωf
θ

k2pθΨ dµ+ 〈 ∂g
∂νθ

− ω2ρfuθ · νθ, Ψ〉−1/2,1/2 = 0 (III.3.3)
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with

lim
r→+∞

r(n−1)/2

(
∂pθ
∂r

− ikpθ

)
= 0.

Let Pθ = (I + θ)′, andei be theith vector of the canonical basis. Using the chain rule (see [133]

p. 661), we have for a scalar functionf :

∂f

∂xi
◦ (I + θ) = etiP

−t
θ ∇[f ◦ (I + θ)]. (III.3.4)

We thus obtain for the transported solution given in Eq. (III.3.1):

∇pθ = P−t
θ ∇qθ (III.3.5)

and

εjn(uθ) =
1

2

(
etnP

−t
θ ∇vθ,j + etjP

−t
θ ∇vθ,n

)
(III.3.6)

Consequently, we transport the solution toΩs × Ωf , and transform the integrals in Eqs. (III.3.2)-

(III.3.3) using the results of change of variable given by Lemmas A.5 and A.6 in [39]. We then have,

for all (φ, ϕ) ∈ (D(Ω
s
))n × D(Rn \ Ωs):

∫

Ωs
(
∑

lmjn

Clmjn
1

2

(
etnP

−t
θ ∇vθ,j + etjP

−t
θ ∇vθ,n

)
etmP

−t
θ ∇φl − ω2ρsvθφ)| detPθ| dµ

+
∫

Γ
(qθν + g(x+ θ(x))ν)φJΓθ

dσ = 0.
∫

Ωf
(P−t

θ ∇qθ · P−t
θ ∇ϕ− k2qθϕ)| detPθ| dµ

+
∫

Γ

(
∂g(x+ θ(x))

∂ν
− ω2ρfuθ · ν

)
ϕJΓθ

dσ = 0,

The latter equations can be re-written as follows, for all(φ, ϕ) ∈ (D(Ω
s
))n × D(Rn \ Ωs):

∫

Ωs
(
∑

lmjn

Clmjn
1

2

(
P−1
θ eme

t
nP

−t
θ ∇vθ,j + P−1

θ eme
t
jP

−t
θ ∇vθ,n

)
· ∇φl − ω2ρsvθφ)| detPθ| dµ

+
∫

Γ
(qθν + g(x+ θ(x))ν)φJΓθ

dσ = 0.(III.3.7)
∫

Ωf
(P−1

θ P−t
θ ∇qθ · ∇ϕ − k2qθϕ)| detPθ| dµ

+
∫

Γ

(
∂g(x+ θ(x))

∂ν
− ω2ρfuθ · ν

)
ϕJΓθ

dσ = 0,(III.3.8)
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On the one hand, we look at the first equation. For test functions φ ∈ (D(Ωs))n, we get that

F
(1)
1 (θ, vθ, qθ) = 0, whereF(1)

1 (θ, v, q) ∈ (D′(Ωs))n denotes the functional

F
(1)
1 (θ, v, q) : φ 7→

∫

Ωs
(
∑

lmjn

Clmjn
1

2

(
P−1
θ eme

t
nP

−t
θ ∇vj + P−1

θ eme
t
jP

−t
θ ∇vn

)
· ∇φl

−ω2ρsvφ)| detPθ| dµ.

Becauseθ ∈ (C1(Rn))n, ∇θ ∈ (L∞(Rn))n×n, andF(1)
1 (θ, v, q) is a bounded linear functional on

(H1
0 (Ωs))n. Therefore we obtain

F
(1)
1 : X × (H1(Ωs))n × Y2 −→

(
(H1(Ωs))n

)′

.

Moreover, regarding the differentiability, we recall that, referring to Lemma A.1 in [39], ∇θ 7→
| detPθ|, ∇θ 7→ P−1

θ eme
t
nP

−t
θ | detPθ|, and∇θ 7→ P−1

θ eme
t
jP

−t
θ | detPθ| are continuously Fréchet

differentiable in a neighborhood of zero from(L∞(Rn))n toL∞(Rn), (L∞(Rn))n×n, and(L∞(Rn))n×n

respectively.

In addition,F(1)
1 (θ, v, q) is given as the sum of trilinear forms ofv, P−1

θ eme
t
nP

−t
θ | detPθ| andφ, of

trilinear form ofv, P−1
θ eme

t
jP

−t
θ | detPθ| andφ, and of a trilinear form ofv, | detPθ| andφ, which are

bounded on(H1(Ωs))n × (L∞(Ωs))n×n × (H1
0 (Ωs))n, (H1(Ωs))n × (L∞(Ωs))n×n × (H1

0 (Ωs))n, and

(H1(Ωs))n × L∞(Rn) × (H1
0 (Ωs))n respectively.

The resulting integrand is thus the composition of continuously differentiable mappings, and we

conclude thatF(1)
1 is continuously Fréchet differentiable in a neighborhood of (0, v0, q0) in X ×

(H1(Ωs))n × Y2.

In order to take into account the boundary integral, we use the density of(D(Ω
s
))n in (H1(Ωs))n, and

then the equation (III.3.7) holds for allφ ∈ (H1(Ωs))n.

In addition, there exists an extension operatorξ from Γ, which is linear and continuous from(H1/2(Γ))n

to (H1(Ωs))n, and such thatsupp ξΨ ⊂ Ω
s
, for all Ψ ∈ (H1/2(Γ))n, cf. [117].

TakeΨ ∈ (H1/2(Γ))n. From Eq. (III.3.7) with φ = ξΨ , it follows that(vθ, qθ) satisfiesF(2)
1 (θ, vθ, qθ) =

0, whereF(2)
1 (θ, v, q) : (H1/2(Γ))n → C denotes the functional:

F
(2)
1 (θ, v, q) : Ψ 7→ ∫

Ωs(
∑

lmjn

Clmjn
1

2

(
P−1
θ eme

t
nP

−t
θ ∇vj + P−1

θ eme
t
jP

−t
θ ∇vn

)
· ∇(ξΨ)l

−ω2ρsvξΨ)| detPθ| dµ+
∫

Γ (qν + gν) ΨJΓθ
dσ.

Noting thatF(2)
1 is a bounded linear functional on(H1/2(Γ))n, for all (v, q) ∈ Y , we findF(2)

1 (θ, v, q) ∈
(H−1/2(Γ))n.
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Since the extension operatorξ is linear continuous from(H1/2(Γ))n to (H1(Ωs))n, the continuous

Fréchet differentiability of the volume integral overΩs follows from the same argument as forF
(1)
1

above.

As regards Fréchet differentiability of the boundary integral, we also observe that it can be written

under the form

∫

Γ
N(θ, v, q)Ψ dσ.

According to [39] (see Lemmas A.1, A.5 and A.7), the mappingsθ 7→ ν = νθ ◦ (I + θ) andθ 7→ JΓθ

are continuously Fréchet differentiable in a neighborhoodof zero from(C1(Rn))n to (L∞(Γ))n and

L∞(Γ) respectively.

Moreover, the trace operatorθ 7→ TrΓθ is linear and bounded from(C1(Rn))n to (W 1
∞(Γ))n, there-

fore from Lemma A.2 in [39], the mappingθ 7→ (x 7→ g(x + θ(x)) = eik(x+θ(x))·d) is continuously

Fréchet differentiable from(C1(Rn))n toW 1
∞(Γ).

By embedding theorem, cf. [70, 117], we haveW 1
∞(Γ) →֒ H1/2(Γ), thus the mappingθ 7→ (x 7→

g(x+ θ(x)) is continuously Fréchet differentiable from(C1(Rn))n toH1/2(Γ)(→֒ L2(Γ)).

Thanks to the regularity ofg, the integrandN(θ, v, q) is therefore the composition of differentiable

applications. Combining the above arguments, it ensures thatN(θ, v, q) is continuously Fréchet dif-

ferentiable forθ in a neighborhood of0 and all(v, q) in Y , from (C1(Rn))n × (L2(Γ))n × Y2 into

(L2(Γ))n.

Finally, according to the trace theorems ([19, 20, 30, 32, 35, 70, 101, 117]), the trace operator is linear

continuous from(H1(Ωs))n to (H1/2(Γ))n. Consequently, it follows thatF(2)
1 is continuously Fréchet

differentiable in a neighborhood of(0, v0, q0) fromX × Y into (H−1/2(Γ))n.

To sum up, the first variational equation (III.3.7) is equivalent to the operator equationF1(θ, vθ, qθ) =

0, whereF1 = (F
(1)
1 ,F

(2)
1 ) : X × Y → Z1 is continuously Fréchet differentiable in a neighborhood

of (0, v0, q0) fromX × Y toZ1.

On the other hand, we deal with the second equation (III.3.8) by analogy.

For test functionsϕ ∈ D(Ωf ), we get thatF(1)
2 (θ, vθ, qθ) = 0, whereF(1)

2 (θ, v, q) ∈ D′(Ωf) denotes

the functional

F
(1)
2 (θ, v, q) : ϕ 7→

∫

Ωf
(P−1

θ P−t
θ ∇q · ∇ϕ− k2qϕ)| detPθ| dµ.
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Sinceθ ∈ (C1(Rn))n, ∇θ ∈ (L∞(Rn))n×n.

We can observe thatF(1)
2 (θ, v, q) is a bounded linear functional onHT (Ωf), therefore,F(1)

2 (θ, v, q) ∈
(HT (Ωf ))

′

. Consequently, we have proven that:

F
(1)
2 : X × Y1 × HT (Ωf) −→ (HT (Ωf ))

′

.

Furthermore, regarding the differentiability, it has beenshown in [39] that ∇θ 7→ | detPθ| and

∇θ 7→ P−1
θ P−t

θ | detPθ| are continuously Fréchet differentiable in a neighborhoodof zero from

(L∞(Rn))n toL∞(Rn) and(L∞(Rn))n×n respectively (see Lemma A.1 in [39]).

Then, we observe thatF(1)
2 (θ, v, q) is given as the sum of a trilinear form ofq, P−1

θ P−t
θ | detPθ| andϕ,

and a trilinear form ofq, | detPθ| andϕ, which are bounded onH(Ωf ) × (L∞(Rn))n×n × HT (Ωf ),

andH(Ωf ) × L∞(Rn) × HT (Ωf ) respectively.

The integrand is thus the composition of continuously differentiable applications, and we deduce that

F
(1)
2 is continuously Fréchet differentiable in a neighborhood of (0, v0, q0) in X × Y1 × HT (Ωf ).

Similarly, in order to take into consideration the surface integral, we observe thatD(Rn \Ωs) is dense

in H1(Ωf ), and thus inHT (Ωf ). Consequently, the equation holds for allϕ ∈ HT (Ωf ).

Let D be a bounded domain such thatΩ
s ⊂ D. Then, there exists an extension operatorζ from

Γ, which is linear and continuous fromH1/2(Γ) to HT (Ωf), and such thatsupp ξψ ⊂ D, for all

ψ ∈ H1/2(Γ), cf. [117].

Let ψ ∈ H1/2(Γ). Takingϕ = ζψ in (III.3.8), we obtain that(vθ, qθ) satisfiesF(2)
2 (θ, vθ, qθ) = 0,

whereF(2)
2 (θ, v, q) : H1/2(Γ) → C is defined by

F
(2)
2 (θ, v, q) : ψ 7→ ∫

Ωf (P−1
θ P−t

θ ∇q · ∇(ζψ) − k2qζψ)| detPθ| dµ

+
∫

Γ

(
∂g

∂ν
− ω2ρfu · ν

)
ψJΓθ

dσ.

We observe thatF(2)
2 is a bounded linear functional onH1/2(Γ). Thus, for(v, q) ∈ Y , we have

F
(2)
2 (θ, v, q) ∈ H−1/2(Γ).

Then, because the extension operatorζ is linear continuous fromH1/2(Γ) toHT (Ωf), the continuous

Fréchet differentiability of the volume integral overΩf follows from the same argument as forF
(1)
2

above.

Regarding to the differentiability of the surface integral, we first notice that it is of the form

∫

Γ
K(θ, v, q)ψ dσ.
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Then, it has been proven in [39] (see Lemmas A.1, A.5 and A.7) that the mappingsθ 7→ ν = νθ◦(I+θ)

andθ 7→ JΓθ
are continuously Fréchet differentiable in a neighborhoodof zero from(C1(Rn))n to

(L∞(Γ))n andL∞(Γ) respectively.

Moreover, the trace operatorθ 7→ TrΓθ is linear and bounded from(C1(Rn))n to (W 1
∞(Γ))n, there-

fore from Lemma A.2 in [39], the mappingθ 7→ (x 7→ g(x + θ(x)) = eik(x+θ(x))·d) is continuously

Fréchet differentiable from(C1(Rn))n toW 1
∞(Γ).

By embedding theorem, cf. [70, 117], we haveW 1
∞(Γ) →֒ H1/2(Γ), thus the mappingθ 7→ (x 7→

g(x+ θ(x)) is continuously Fréchet differentiable from(C1(Rn))n toH1/2(Γ)(→֒ L2(Γ)).

Thanks to the regularity ofg, the integrandK(θ, v, q) is thus the composition of differentiable appli-

cations. It follows thatK(θ, v, q) is continuously Fréchet differentiable forθ in a neighborhood of0

and all(v, q) in Y , from (C1(Rn))n × Y1 × L2(Γ) intoL2(Γ).

Moreover, by trace theorem ([19, 30, 32, 35, 70, 101, 117]), the trace operator is linear continuous

from H(Ωf ) toH1/2(Γ). Therefore, we conclude thatF(2)
2 is continuously Fréchet differentiable in a

neighborhood of(0, v0, q0) fromX × Y intoH−1/2(Γ).

In summary, the second equation (III.3.8) is equivalent to the operator equationF2(θ, vθ, qθ) = 0,

whereF2 = (F
(1)
2 ,F

(2)
2 ) : X × Y → Z2 is continuously Fréchet differentiable in a neighborhood of

(0, v0, q0) fromX × Y toZ2.

CombiningF1 andF2, we construct the desiredF asF = (F1,F2) : X × Y → Z, and the proof

is completed.

�

In the next step, we require some existence and regularity results about the solution of the elasto-

acoustic problem. The following lemma is a consequence of ChapterI. Regarding the uniqueness,

there is no difficulty for the pressure field, as a consequenceof the Rellich lemma. But it does not

imply thatu is unique. In fact,u is defined up to Jones modes [92, 104] which can exist for simple

geometries such as spheres. Nevertheless, Hargé [79] has obtained results which seem to show that

Jones modes do not exist for arbitrarily shaped bodies. In the following, we thus assume thatω is not

a Jones frequency for all the set of admissible perturbations.

Lemma 5 Let Ωs ⊂ Rn be an elastic domain with Lipschitz boundary embedded in a homogeneous

fluid Ωf . Letz1 ∈ ((H1(Ωs))n)
′

, z2 ∈ (HT (Ωf ))
′

, ϕ1 ∈
(
H−1/2(Γ)

)n
andϕ2 ∈ H−1/2(Γ).

Then, there exists a unique(w, t) ∈ (H1(Ωs))
n × H(Ωf ) , up to Jone’s frequencies in the elastic
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scatterer, solution to the boundary value problem:





∇ · σ(w) + ω2ρsw = z1 in Ωs

∆t+ k2t = z2 in Ωf

σ(w)ν + tν = ϕ1 on Γ

ω2ρfw · ν − ∂t

∂ν
= ϕ2 on Γ

lim
r→+∞

r(n−1)/2

(
∂t

∂r
− ikt

)
= 0.

(III.3.9)

Moreover,‖t‖
C2(Rn\D) < +∞ for any domainD such thatΩ

s ∪ supp z2 ⊂ D.

Remark III.3.1.1

• The regularity of the data impacts on the regularity of the solution. In most of the cases, in

particular when dealing with scattered fields,z1 = 0 and{ϕj}j=1,2 is defined from the incident

field pinc which is regular as a plane wave. It is then interesting to observe that if{ϕj}j=1,2 ∈
L2(Γ), then bothw and t are in Sobolev spaces of order3/2. Indeed, sincet ∈ H1

loc(Ω
f ),

t|Γ ∈ H1/2(Γ) and thustν ∈ (L2(Γ))n. We then deduce thatσ(u)ν ∈ (L2(Γ))n and following

Dahlberg-Kenig-Verchota [36], we have thatw ∈ (H3/2(Ωs))n. The same approach applies to

t. Indeed, ifw ∈ (H1(Ωs))n, w · ν|Γ ∈ L2(Γ) sincew|Γ ∈ (H1/2(Γ))n andν ∈ (L∞(Γ))n. The

transmission condition implies that
∂t

∂ν |Γ
∈ L2(Γ) and following Jerison-Kenig [90], we obtain

that t ∈ H
3/2
loc (Ωf ).

• The previous observation remains valid when the boundaryΓ is regular (for instanceC2). We

then get thatt ∈ H2
loc(Ω

f) andw ∈ (H2(Ωs))n. The gain of regularity comes from the fact that

whenΓ is C2, ν is C1 and the normal vector is thus a multiplier ofH1/2.

III.3.1.3 Proof of Theorem III.3.1.1

We are now in a position to prove the main theorem. We want to apply the Implicit Function

Theorem after checking that the needed conditions are fulfilled.

Let F be the function constructed at Lemma4. We proved thatF : X × Y → Z is continuous on

a neighborhood of(0, v0, q0) and its Fréchet derivativesF′
θ andF′

v,q exist and are continuous on a

neighborhood of(0, v0, q0).

Moreover,F is affine in(v, q) and thus, by differentiation and identification in the distribution sense,
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we obtain

F
′
v,q(0, v, q) : (w, t) 7→ (−∇ · σ(w) − ω2ρsw, TrΓ(σ(w) · ν + tν + gν),

−∆t− k2t, T rΓ(
∂t

∂ν
− ω2ρfw · ν +

∂g

∂ν
)).

whereF′
v,q denotes the derivative ofF with respect to(v, q). We notice thatF′

v,q is a bounded bilinear

operator fromY toZ and it does not depend on(v, q).

In addition, from Lemma5, for all (z1, ϕ1, z2, ϕ2) in Z, there exists a unique(w, t) ∈ (H1(Ωs))
n ×

H(Ωf ) such thatF′
v,q(0, v, q)(w, t) = (z1, ϕ1, z2, ϕ2).

Consequently, we haveZ ⊂ F′
v,q(0, v, q)Y .

We thus have injectivity and surjectivity of the operatorF
′
v,q(0, v, q) and its inverse.

It follows thatF′
v,q(0, v, q) defines an isomorphism of the Banach spacesY andZ.

In conclusion, we have three Banach spacesX, Y andZ, in whichF = F(θ, v, q) satisfies the follow-

ing conditions:

• F(0, v0, q0) = 0;

• By preliminary Lemma4, F is continuous on a neighborhood of(0, v0, q0) in X × Y toZ, and

the Fréchet derivativesF′
θ andF′

v,q exist and are continuous on a neighborhood of(0, v0, q0);

• F′
v,q(0, v0, q0) admits a bounded inverse onY .

Consequently, we can apply the Implicit Function Theorem: for everyθ in a neighborhood of zero

in X, there exists a unique(vθ, qθ) in a neighborhood ofv0 in Y such thatF(θ, vθ, qθ) = 0 and the

Fréchet derivative of the mappingθ 7→ (vθ, qθ) exists and is continuous on a neighborhood of zero in

X.

III.3.1.4 Corollaries to the Theorem III.3.1.1

Finally, we can derive as corollaries the continuous Fréchet differentiability of the scattered field

(uθ, pθ) solution to the BVP with respect to continuous deformationsof the domain of the scatterer.

Corollary III.3.1.1 For any domainD such thatD ⊂ Ωs, the mappingθ 7→ uθ, whereuθ is the solu-

tion of problem BVP, is continuously Fréchet differentiable in a neighborhood of zero from(C1(Rn))
n

to (L2(D))n.
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Proof For a domainD, considerD1, D2 such that Eq.III.2.1 is satisfied and

D ⊂ D1.

Then, there exists a distributionφ ∈ D(D2 \D1), such thatφ = 1 onΩ
s
.

It follows thatsupp φθ ⊂ D2 \ D1, and the mappingθ 7→ φθ is linear and bounded from(C1(Rn))
n

toX.

Furthermore, sinceθ = φθ in Ω
s
, we haveΩs

φθ = Ωs
θ.

We can apply the previous theorem withφθ ∈ X. The mappingθ 7→ (pθ ◦ (I + θ), uθ ◦ (I + θ)) is

continuously Fréchet differentiable in a neighborhood ofθ = 0 from (C1(Rn))
n to Y .

From Lemma 2.1 in [133], we deduce that the mappingθ 7→ uθ is locally continuously Fréchet

differentiable in a neighborhood of zero from(C1(Rn))
n to (L2(D))n.

�

Corollary III.3.1.2 For any domainD such thatΩ
s ⊂ D, the mappingθ 7→ pθ, wherepθ is the solu-

tion of problem BVP, is continuously Fréchet differentiable in a neighborhood of zero from(C1(Rn))
n

toL2
loc(R

n \D).

Proof For a given domainD, chooseD1, D2 satisfying Eq. (III.2.1) and

D2 ⊂ D.

Then, there exists a distributionφ ∈ D(D2 \D1), such thatφ = 1 onΩ
s
.

It follows thatsupp φθ ⊂ D2 \ D1, and the mappingθ 7→ φθ is linear and bounded from(C1(Rn))
n

toX.

Furthermore, sinceθ = φθ in Ω
s
, we haveΩs

φθ = Ωs
θ.

We can apply the previous theorem withφθ ∈ X. The mappingθ 7→ (pθ ◦ (I + θ), uθ ◦ (I + θ)) is

continuously Fréchet differentiable in a neighborhood ofθ = 0 from (C1(Rn))
n to Y .

From Lemma 2.1 in [133], we deduce that the mappingθ 7→ pθ is locally continuously Fréchet

differentiable in a neighborhood of zero from(C1(Rn))
n toL2

loc(R
n \D).

�

Remark III.3.1.2 We have proven the continuous Fréchet differentiability ofthe scattered field with

respect to continuous deformations of the shape of the scatterer. According to the analysis carried

out in [39], Section 4, we can deduce the continuous Fréchet differentiability of the corresponding

acoustic far-field pattern. Indeed, both Corollaries 3.4 and Lemma 4.1 remains valid for the pressure

223



Chapter III. Characterization of the Fréchet derivative of the elasto-acoustic field with respect
to Lipschitz domains

field. Therefore, Theorem 4.2, which states that the mappingθ 7→ pθ,∞ at θ = 0 is continuously

Fréchet differentiable from(C1(Rn))n to Cm(S1), still holds in our case, along with the stability

estimate of Theorem 4.3.

III.3.2 Characterization of the derivative of the elasto-acoustic scattered field

The continuous differentiability of the scattered field being established, it is of interest to charac-

terize the derivative in question. This characterization is the purpose of the result stated in the next

theorem. A rigorous proof involves technical tools for constructing traces in Lipschitz domains. To

make the readability of the proof easier, we have decided to postpone the regularity issues and to

address them later in SectionIII.3.3.

III.3.2.1 Announcement of the second theorem

Our aim is to prove that the local derivative of the elasto-acoustic scattered field with respect to

the boundary of the scatterer is the solution of a boundary value problem that can be viewed as a

particular direct elasto-acoustic scattering problem. Itis shown to only differ from the initial BVP by

the transmission conditions at the interface of the elasticscatterer as follows.

Theorem III.3.2.1 Let (u′, p′) be the local derivative atθ = 0 and in a directionh ∈ (C2(Rn))n of

the solution(uθ, pθ) of the problem BVP. Then,(u′, p′) is the solution of the boundary value problem:





∇ · σ(u′) + ω2ρsu
′ = 0 in Ωs

∆p′ + k2p′ = 0 in Ωf

τ(u′) = −p′ν + F (u, p, h) on Γ

ω2ρfu
′ · ν =

∂p′

∂ν
+G(u, p, h) on Γ

lim
r→+∞

r(n−1)/2

(
∂p′

∂r
− ikp′

)
= 0

(III.3.10)

where the functionsF andG are given by:

F (u, p, h) = −ht∇σ(u)ν − ∇pT · hν + σ(u)[h′]tν + pT [h′]tν, (III.3.11)

G(u, p, h) = −(ω2ρf∇u− ∇(∇pT ))h · ν + (ω2ρfu− ∇pT ) · [h′]tν, (III.3.12)
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and pT = p + pinc. Here, the notationht∇σ(u)ν stands forht∇σ(u)ν = [ht∇σl(u)n]l=1,··· ,n,

whereσl is the rowl of the matrixσ(u).

III.3.2.2 Corollary to the Theorem III.3.2.1

From the fact that the mappingθ → pθ,∞ is continuously Fréchet differentiable atθ = 0 in the

directionh ∈ (C2(Rn))n from (C1(Rn))n to (Cm(S1))n (see RemarkIII.3.1.2), we finally deduce the

following characterization of the derivative of the far-field pattern(∂pθ,∞/∂θ)(0)h (cf. [28]).

Corollary III.3.2.1 Let p′
∞ be the far-field pattern of the solutionp′ of BVP, and let(∂pθ,∞/∂θ)(0)h

be the derivative atθ = 0 and in a directionh ∈ (C2(Rn))n of the far-field patternpθ,∞ of the solution

pθ of BVP. We have
∂pθ,∞
∂θ

(0)h = p′
∞. (III.3.13)

III.3.2.3 Formal proof of Theorem III.3.2.1

In the following, we omit to precise the suitable functionalframework for the characterization

because it requires distinguishing different cases related to the regularity ofΩs. We prove this theo-

rem in five steps, each formulated as a lemma. The use of the chain rule leads to the desired result.

More specifically, the first two equations and the Sommerfeldcondition are relatively easy to derive,

whereas the transmission conditions require a more elaborated and careful work.

We first prove that the local derivativeu′ atθ = 0 in a directionh of the solutionuθ to the BVP is

a solution of the elastodynamic equation.

Lemma 6 The local derivativeu′ of the elastic scattered field atθ = 0 and in a directionh ∈
(C2(Rn))n satisfies the following elastodynamic equation

∇ · σ(u′) + ω2ρsu
′ = 0 in Ωs (III.3.14)

Proof By analogy to Lemma 1 in [41], we define

B = ∇ · σ + ω2ρsI, (III.3.15)

and

φθ = Buθ. (III.3.16)
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Then, the elastic scattered fielduθ satisfies the elastodynamic equation Eq.III.2.2 in BVP, i.e.

φθ = 0 in Ωs
θ, (III.3.17)

and we thus have by transportation on the reference domain

φθ ◦ (I + θ) = 0 in Ωs. (III.3.18)

In addition,B is also a linear and continuous operator from(H1(Ωs))n into (D′(Ωs))n,B is differen-

tiable at least in the distribution sense, that is,v 7→ 〈Bv, ϕ〉 is differentiable for eachϕ ∈ D(Ωs), and

∂B

∂v
= B. (III.3.19)

From TheoremIII.3.1.1 and CorollariesIII.3.1.1 andIII.3.1.2, θ 7→ uθ ◦ (I + θ) andθ 7→ uθ are

differentiable, therefore, it follows thatθ 7→ φθ ◦ (I + θ) andθ 7→ φθ are respectively continuously

Fréchet differentiable, and locally continuously Fréchetdifferentiable - at least in the distribution

sense - atθ = 0 and in a directionh ∈ (C2(Rn))n .

Then, forθ ∈ (C1(Rn))n an admissible perturbation in a neighborhood of zero, we obtain

∂φθ
∂θ

(0)h =
∂

∂θ
(φθ ◦ (I + θ))(0)h− ∇φ(0)h in Ωs. (III.3.20)

SinceBu = 0 in Ωs, we verify∇φ(0) = ∇(Bu) = 0 in Ωs.

Combining this along with (III.3.18) in (III.3.20), we get

∂φθ
∂θ

(0)h =
∂B

∂u

∂uθ
∂θ

(0)h = 0 in Ωs. (III.3.21)

By definition ofB and (III.3.19), we conclude

Bu′ = ∇ · σu′ + ω2ρsu
′ = 0 in Ωs, (III.3.22)

which gives (III.3.14).

�

The next lemma states that the local derivativep′ at θ = 0 in a directionh of the solutionpθ

satisfies the following Helmholtz equation.
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Lemma 7 The local derivativep′ of the acoustic scattered field atθ = 0 and in a directionh ∈
(C2(Rn))n satisfies the following Helmholtz equation

∆p′ + k2p′ = 0 in Ωf . (III.3.23)

Proof The proof is analogous to the one of Lemma6 and can be found in [39].

�

Then, we derive the first transmission condition satisfied by(u′, p′) in the next lemma.

Lemma 8 Let (u′, p′) be the local derivative of the scattered field, atθ = 0 and in a directionh ∈
(C2(Rn))n. Then, it satisfies formally the following boundary equation

τ(u′) = −p′ν + F (u, p, h) on Γ. (III.3.24)

whereF is given by:

F (u, p, h) = −ht∇σ(u)ν − ∇pT · hν + σ(u)[h′]tν + pT [h′]tν. (III.3.25)

Proof Let θ be an admissible perturbation∈ (C1(Rn))n.

The scattered field(uθ, pθ) satisfies:

σ(uθ)νθ = −pθνθ − gνθ on Γθ, (III.3.26)

that is

(σ(uθ) + pθ + g)νθ = 0 on Γθ.

We defineφθ by:

φθ = σ(uθ) + pθ + g. (III.3.27)

We therefore have

φθνθ = 0 onΓθ. (III.3.28)

By transportation, we thus get

φθ ◦ (I + θ)νθ ◦ (I + θ) = 0 on Γ a.e. (III.3.29)

Furthermore (see [115], Lemma 4.8), we have:

νθ ◦ (I + θ) =
1

‖J(θ)ν‖2

J(θ)ν onΓ a.e., (III.3.30)
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where

J(θ) = [(I + θ)′]−t in R
n. (III.3.31)

Using (III.3.30) and Eq.III.3.31 in Eq. III.3.29, we get

φθ ◦ (I + θ)J(θ)ν = 0 onΓ a.e. (III.3.32)

In order to differentiate with respect toθ, we then extend the last equation to an open setD containing

Γθ. Let the extension of the normal vectorν into (L∞(Rn))n still be denoted byν. Moreover, the

transported solution(uθ ◦ (I + θ), pθ ◦ (I + θ)) is extended into the wholeD and its extension is still

denoted by(uθ ◦ (I + θ), pθ ◦ (I + θ)).

We can introduce the following auxiliary functionϕθ defined onD by

ϕθ = φθ ◦ (I + θ)J(θ)ν in D a.e. (III.3.33)

Note thatϕθ satisfies

ϕθ = 0 on Γ a.e. (III.3.34)

Then, we prove thatθ 7→ ϕθ is differentiable- at least in the distribution sense - atθ = 0 in a direction

h ∈ (C2(Rn))n.

On the one hand, from TheoremIII.3.1.1, we have shown that the mappingsθ 7→ pθ ◦ (I + θ) and

θ 7→ uθ ◦ (I + θ) are differentiable atθ = 0 in a directionh ∈ (C2(Rn))n. Since,θ 7→ g ◦ (I + θ) is

differentiable, and since the stress tensor operatorσ is linear and continuous, it follows thatθ 7→ φθ

is differentiable - at least in the distribution sense - atθ = 0 in a directionh ∈ (C2(Rn))n.

Moreover, the mappingθ 7→ J(θ) is differentiable atθ = 0 in a directionh ∈ (C2(Rn))n, from

(C1(Rn))n into (C1(Rn))n and we have (see Eq.(44) in [39]),

∂J(θ)

∂θ
(0)h = −[h′]t. (III.3.35)

Consequently, the mappingθ 7→ ϕθ is differentiable - at least in the distribution sense - atθ = 0 in a

directionh ∈ (C2(Rn))n. We then compute the local derivative with respect toθ for each term ofϕθ

as follows.

On the one hand, we have

∂

∂θ
(pθ ◦ (I + θ)J(θ)ν) (0)h =

∂

∂θ
(pθ ◦ (I + θ)) (0)hJ(0)ν

+pθ ◦ (I + θ)|θ=0

∂J(θ)

∂θ
(0)hν. (III.3.36)
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Applying the classical rule of derivation, forθ in a neighborhood of zero, we have

∂

∂θ
(pθ ◦ (I + θ))(0)h =

∂pθ
∂θ

(0)h+ ∇pθ(0) · h. (III.3.37)

Observe thatJ(0) = I. Combining (III.3.37) and (III.3.35) with (III.3.36), it follows that

∂

∂θ
(pθ ◦ (I + θ)J(θ)ν) (0)h =

(
∂pθ
∂θ

(0)h+ ∇pθ(0) · h
)
ν − p[h′]tν,

that is
∂

∂θ
(pθ ◦ (I + θ)J(θ)ν) (0)h = (p′ + ∇p · h) ν − p[h′]tν. (III.3.38)

Similarly, we obtain forg the following local derivative

∂

∂θ
(g ◦ (I + θ)J(θ)ν) (0)h = ∇g · hν − g[h′]tν. (III.3.39)

On the other hand, we compute the local derivative
∂

∂θ
(σ(uθ) ◦ (I + θ)J(θ)ν) (0)h.

In order to apply the derivation formula established by Simon-Murat [115] for a scalar function, we

use a reasoning component by component on the tensor. Letσl(uθ) be thelth line of the matrixσ(uθ).

We thus have

∂

∂θ
(σ(uθ) ◦ (I + θ)J(θ)ν) (0)h =

[
∂

∂θ
(σl(uθ) ◦ (I + θ)J(θ)ν) (0)h

]

1≤l≤n

. (III.3.40)

For1 ≤ l ≤ n, this leads to

∂

∂θ
(σl(uθ) ◦ (I + θ)J(θ)ν) (0)h

=
∂

∂θ
(σl(uθ) ◦ (I + θ)) (0)hJ(0)ν + σl(uθ) ◦ (I + θ)|θ=0

∂J(θ)

∂θ
(0)hν.

Moreover, using the same rule as in (III.3.37) for each componentσlm(u) of the lineσl(u), we have:

∂

∂θ
(σl(uθ) ◦ (I + θ)) (0)h

=

[
∂

∂θ
(σlm(uθ) ◦ (I + θ)) (0)h

]

1≤m≤n

=

[
∂σlm(uθ)

∂θ
(0)h+ h · ∇σlm(uθ)(0)

]

1≤m≤n
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=

[
σlm

(
∂uθ
∂θ

(0)h

)
+ ht∇σlm(u)

]

1≤m≤n

.

Sinceσl(u) is a row vector field, let us denote by∇σl(u) the Jacobian matrix defined as follows

∇σl(u) = [∇σl(u)jm]1≤j,m≤n =

[
∂σlm(u)

∂xj

]

1≤j,m≤n

. We thus get

∂

∂θ
(σl(uθ) ◦ (I + θ)J(θ)ν) (0)h

=

(
σl

(
∂uθ
∂θ

(0)h

)
+ ht∇σl(u)

)
ν − σl(u)[h′]tν.

Consequently, we obtain for1 ≤ l ≤ n

∂

∂θ
(σl(uθ) ◦ (I + θ)J(θ)ν) (0)h =

(
σl(u

′) + ht∇σl(u)
)
ν − σl(u)[h′]tν.

Using the notationht∇σ(u) := [ht∇σl(u)]1≤l≤n, we deduce that

∂

∂θ
(σ(uθ) ◦ (I + θ)J(θ)ν) (0)h =

(
σ(u′) + ht∇σ(u)

)
ν − σ(u)[h′]tν. (III.3.41)

Note thatht∇σ(u)ν =

[
n∑

m=1

ht∇σlm(u)νm

]

1≤l≤n

.

From Equations (III.3.34), (III.3.38), (III.3.39) and (III.3.41), it follows that

∂ϕθ
∂θ

(0)h = σ(u′)ν + ht∇σ(u)ν − σ(u)[h′]tν

+p′ν + ∇p · hν − p[h′]tν + ∇g · hν − g[h′]tν in D. (III.3.42)

Assuming that Eq. (III.3.42) has a sense onΓ, it follows from both equations (III.3.33) and (III.3.32)

that
∂ϕθ
∂θ

(0)h = 0 onΓ and thus:

σ(u′)ν + ht∇σ(u)ν − σ(u)[h′]tν

+p′ν + ∇p · hν − p[h′]tν + ∇g · hν − g[h′]tν = 0 on Γ.

Rewriting the latter equation, we obtain:

τ(u′) = −p′ν − ht∇σ(u)ν + σ(u)[h′]tν − ∇pT · hν + pT [h′]tν, (III.3.43)

which completes the proof of Lemma8.
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�

Remark III.3.2.1 The previous proof is not really complete since we should have given a sense to

the derivative ofϕθ. As formerly mentioned, we did not address this issue because it requires non

obvious definitions of traces onΓ.

Next, we specify the second transmission condition satisfied by (u′, p′) in the following lemma.

Lemma 9 Let (u′, p′) be the local derivative of the scattered field, atθ = 0 and in a directionh ∈
(C2(Rn))n. Then, it satisfies formally the following boundary equation

ω2ρfu
′ · ν =

∂p′

∂ν
+G(u, p, h) on Γ, (III.3.44)

whereG is given by:

G(u, p, h) = −(ω2ρf∇u− ∇(∇pT ))h · ν + (ω2ρfu− ∇pT ) · [h′]tν. (III.3.45)

Proof Let θ be an admissible perturbation∈ (C1(Rn))n.

We use the boundary condition satisfied by(pθ, uθ)

ω2ρfuθ · νθ = ∇pθ · νθ + ∇g · νθ on Γθ. (III.3.46)

Setting

ψθ = ω2ρfuθ − ∇pθ − ∇g,

from (III.3.46) we have

ψθ · νθ = 0 onΓθ a.e. (III.3.47)

We thus get

ψθ ◦ (I + θ) · νθ ◦ (I + θ) = 0 on Γ a.e. (III.3.48)

From (III.3.48) and (III.3.30), we thus deduce

ψθ ◦ (I + θ) · J(θ)ν = 0 on Γ a.e. (III.3.49)

Before differentiating with respect toθ, we extend the last equation (III.3.49) to an open setD con-

tainingΓθ. Again,ν denotes an extension of the normal vectorν into (L∞(Rn))n. We also extend

the transported solution(pθ ◦ (I + θ), uθ ◦ (I + θ)) in the wholeD and still denote its extension by
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(pθ ◦ (I + θ), uθ ◦ (I + θ)).

We can thus introduce an auxiliary functionΨθ defined onD by

Ψθ = ψθ ◦ (I + θ) · J(θ)ν in D. (III.3.50)

It thus satisfies

Ψθ = 0 on Γ a.e. (III.3.51)

Then, we prove thatθ 7→ Ψθ is differentiable- at least in the distribution sense - atθ = 0 in a direction

h ∈ (C2(Rn))n.

On the one hand, from TheoremIII.3.1.1, we have shown that the mappingsθ 7→ pθ ◦ (I + θ) and

θ 7→ uθ ◦ (I + θ) atθ = 0. Since,θ 7→ g ◦ (I + θ) is differentiable, and from the fact that the gradient

operator∇ is linear and continuous, it follows thatθ 7→ ψθ ◦ (I + θ) is differentiable - at least in the

distribution sense - atθ = 0 in a directionh ∈ (C2(Rn))n.

Let ψlθ denote thelth component of the column vectorψθ. Applying the classical rule of derivation

for a scalar function from Simon-Murat [115], we then have, forθ in a neighborhood of zero,

∂

∂θ
(ψθ ◦ (I + θ))(0)h (III.3.52)

=

[
∂

∂θ
(ψlθ ◦ (I + θ))(0)h

]

1≤l≤n

(III.3.53)

=

[
∂ψlθ
∂θ

(0)h+ ∇ψlθ(0)h

]

1≤l≤n

(III.3.54)

=
∂ψθ
∂θ

(0)h+ ∇ψθ(0)h. (III.3.55)

We have seen that the mappingθ 7→ J(θ) is differentiable atθ = 0 in a directionh ∈ (C2(Rn))n,

from (C1(Rn))n into (C1(Rn))n with

∂J(θ)

∂θ
(0)h = −[h′]t. (III.3.56)

Therefore, with the use of the chain rule, we can differentiateΨθ with respect toθ, and obtain

∂Ψθ
∂θ

(0)h =
∂

∂θ
(ψθ ◦ (I + θ))(0)h · J(θ)|θ=0

ν

+ψθ ◦ (I + θ)|θ=0
· ∂J(θ)

∂θ
(0)hν in D. (III.3.57)
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Combining equations (III.3.52), (III.3.56) with (III.3.57), it follows that

∂Ψθ
∂θ

(0)h =

(
∂ψθ
∂θ

(0)h+ ∇ψθ(0)h

)
· J(0)ν − ψθ(0) · [h′]tν in D. (III.3.58)

We notice thatJ(0) = I and sinceψθ(0) = ω2ρfu− ∇p− ∇g, we have

∇ψθ(0) = ω2ρf∇u− ∇(∇p) − ∇(∇g). (III.3.59)

where the gradient of the vector fieldu is defined as∇u = [∇ulj]1≤j,l≤n =

[
∂ul
∂xj

]

1≤j,l≤n

.

Furthermore, we also get

∂ψθ
∂θ

(0)h = ω2ρf
∂uθ
∂θ

(0)h− ∇
(
∂pθ
∂θ

(0)h

)
− ∇

(
∂g

∂θ
(0)h

)
.

Hence,
∂ψθ
∂θ

(0)h = ω2ρfu
′ − ∇p′. (III.3.60)

From Eq.III.3.58 to Eq.III.3.60, we deduce that

∂Ψθ
∂θ

(0)h = (ω2ρfu
′ − ∇p′) · ν + ω2ρf∇uh · ν

−∇(∇p)h · ν − ∇(∇g)h · ν
−(ω2ρfu− ∇p− ∇g) · [h′]tν in D. (III.3.61)

Assuming that (III.3.61) has a sense onΓ, it follows from equation (III.3.51) that:

(ω2ρfu
′ − ∇p′) · ν + ω2ρf∇uh · ν

−∇(∇p)h · ν − ∇(∇g)h · ν
−(ω2ρfu− ∇p− ∇g) · [h′]tν = 0 in Γ,

which gives (III.3.44).

�

Remark III.3.2.2 The previous proof is not really complete since we should have given a sense to

the derivative ofΨθ. As formerly mentioned, we did not address this issue because it requires non

obvious definitions of traces onΓ.
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The last lemma finally shows that the local derivativep′ of the scattered fieldpθ with respect to an

obstacle’s domain satisfies the outgoing Sommerfeld condition.

Lemma 10 The local derivativep′ of the acoustic scattered fieldpθ, at θ = 0 and in a direction

h ∈ (C2(Rn))n, satisfies the following outgoing radiation equation

lim
r→+∞

r(n−1)/2

(
∂p′

∂r
− i

ω

ρf
p′

)
= 0. (III.3.62)

Proof The proof is given in [39].

�

Lemmas8 and9 are necessary for the characterization of the Fréchet derivative(u′, p′). Never-

theless, their proof is based on the fact that we can give a sense to
∂ϕθ
∂θ

(0)h and
∂Ψθ
∂θ

(0)h. We have

decided to omit this point in the proof of the Lemmas because it requires to establish regularity re-

sults which are not obvious when the boundaryΓ is only Lipschitz. In the next section of this chapter,

we gather results which form a complete proof of the characterization in some cases. We have also

depicted some of the results that were able to prove in the general case of a Lipschitz continuous

domain. Unfortunately, we were not able to get a proof in thatcase. In particular, the proof failed

because of the lack of surjectivity of the trace operators.

III.3.3 Mathematical framework for the characterization o f the Fréchet deriva-

tive

The characterization of the derivative of the elasto-acoustic field exhibits non homogeneous trans-

mission conditions involving traces that are either non standard (like the normal derivative of the

pressure gradient) or for fields with a poor regularity. It isthus not obvious to give a sense to these

traces, in particular when the solidΩs is only Lipschitz. We organize this section by increasing the

difficulty level which is related to the regularity ofΩs.

III.3.3.1 Ωs is of classC2

We want to give a sense to the following quantities onΓ:

∂ϕθ
∂θ

(0)h = σ(u′)ν + ht∇σ(u)ν − σ(u)[h′]tν

+p′ν + ∇p · hν − p[h′]tν + ∇g · hν − g[h′]tν (III.3.63)
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and

∂Ψθ
∂θ

(0)h = (ω2ρfu
′ − ∇p′) · ν + ω2ρf∇uh · ν

−∇(∇p)h · ν − ∇(∇g)h · ν
−(ω2ρfu− ∇p− ∇g) · [h′]tν. (III.3.64)

(i) Let us begin with the terms involved in Lemma8.

According to RemarkIII.3.1.1, u ∈ (H2(Ωs))n, andp ∈ H2
loc(Ω

f ). We thus haveu′ ∈ (H1(Ωs))n and

p′ ∈ H1
loc(Ω

f ). Regarding (III.3.63), we can thus define easily most of the traces from the classical

trace theorems [30, 35, 70, 71, 101, 102, 117]:

• u ∈ ((H2(Ωs))n implies thatσ(u) ∈ ((H1(Ωs))n×n. Since the directionh ∈ (C2(Rn))n,

h′ ∈ (C1(Rn))n×n which is a multiplier of(H1/2(Γ))n. Then,σ(u)|Γ ∈ (H1/2(Γ))n×n implies

thatσ(u)[h′]t|Γ ∈ (H1/2(Γ))n×n and so doesσ(u)[h′]t|Γν ∈ (H1/2(Γ))n sinceν ∈ (C1(Γ))n.

• p ∈ H2
loc(Ω

f ) implies thatp[h′]tν is defined in(H1/2(Γ))n sincep|Γ ∈ H3/2(Γ), [h′]t ∈
(C1(Rn))n×n andν ∈ (C1(Rn))n.

• p ∈ H2
loc(Ω

f ) implies that∇p · n|Γ ∈ (H1/2(Γ))n. Sinceh ∈ (C2(Rn))n, we also have(∇p ·
h)ν|Γ ∈ (H1/2(Γ))n sinceν ∈ (C1(Γ))n.

• The terms depending on the datumg do not pose a problem sinceg is regular, for instance,

g ∈ H1(Γ). We thus have∇g · hν|Γ ∈ (L2(Γ))n andg[h′]tν ∈ (L2(Γ))n too.

• u′ ∈ (H1(Ωs))n implies thatσ(u′) ∈ (H(∇·,Ωs))n×n. The traceσ(u′)|Γν is thus defined in

(H−1/2(Γ))n.

• p′ ∈ H1
loc(Ω

f ) implies thatp′
|Γ ∈ H1/2(Γ), andp′ν ∈ (H1/2(Γ))n sinceν ∈ (C1(Γ))n.

• As a consequence, the only term that requires a particular attention seems to beht∇σ(u)ν.

Nevertheless, in the case of a regular domain, we know thatu ∈ (H2(Ωs))n, which implies that

σ(u) ∈ (H1(Ωs))n×n. Now let us denote by∂ one of the partial derivatives
∂

∂xj
, 1 ≤ j ≤ n.

We then have:

∇ · σl(∂u) + ω2ρs∂ul = 0, ∀ 1 ≤ l ≤ n. (III.3.65)
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Using that∂σl(u) = σl(∂u), we can thus deduce that∂σl(u) ∈ (H(∇·,Ωs))n, which implies

that∂σl(u)ν is well-defined inH−1/2(Γ). By this way, since the directionh ∈ (C2(Rn))n, we

can defineht∇σl(u)ν in H−1/2(Γ) also for all1 ≤ l ≤ n.

Collecting each of the previous regularity results, we get that expression (III.3.63) is well-defined in

(H−1/2(Γ))n when the solidΩs is of classC2.

(ii) We continue our analysis by focusing on Lemma9.

• We havep ∈ H2
loc(Ω

f) and thus∇p ∈ (H1
loc(Ω

f))n. We then have∇p|Γ ∈ (H1/2(Γ))n. The

direction vectorh ∈ (C2(Rn))n. Hence, the entries of[h′] are inC1(Rn). Knowing thatC1(Rn)

is a multiplier ofH1/2(Γ), we then deduce that:

[h′]∇p|Γ ∈ (H1/2(Γ))n

and sinceν ∈ (C1(Γ))n, it is a multiplier of(H1/2(Γ))n and we finally obtain:

[h′]∇p · ν|Γ ∈ H1/2(Γ).

• We have thatu|Γ ∈ (H3/2(Γ))n sinceu ∈ (H2(Ωs))n. We then have[h′]u ∈ (H1/2(Γ))n and so

does[h′]u · ν|Γ which belongs toH1/2(Γ).

• Sinceu ∈ (H2(Ωs))n, ∇u ∈ (H1(Ωs))n×n and∇uh ∈ (H1/2(Γ))n sinceh ∈ (C2(Rn))n. We

then deduce that∇uh · ν|Γ ∈ H1/2(Γ) at least since∇uh|Γ ∈ (H1/2(Γ))n andν ∈ (C1(Rn))n

• Sinceu′ ∈ (H1(Ωs))n, we haveu′
|Γ ∈ (H1/2(Γ))n, andν ∈ (C1)n is a multiplier of(H1/2(Γ))n.

We thus haveu′ · ν ∈ H1/2(Γ).

• Sincep′ ∈ H1
loc(Ω

f) with ∆p′ ∈ L2
loc(Ω

f), we know that
∂p′

∂ν
∈ H−1/2(Γ).

• As a consequence, the only term that requires a particular care seems to be∇(∇p)h · ν. Nev-

ertheless, in the case of a regular domain, we know thatp ∈ H2
loc(Ω

s), which implies that

∇p ∈ (H1(Ωs))n. Moreover, we have:

∆(∇p) + k2∇p = 0. (III.3.66)
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Using that∆(∇p) = ∇ · ∇(∇p), we can thus deduce that∇(∇p) ∈ (Hloc(∇·,Ωf))n×n, which

implies that∇(∇p)ν is well-defined in(H−1/2(Γ))n. By this way, since the directionh ∈
(C2(Rn))n, we can define∇(∇p)h · ν in H−1/2(Γ).

Using embedding theorems, we conclude that Eq. (III.3.64) is valid inH−1/2(Γ) onΓ.

Remark III.3.3.1 In the previous proof, we have assumed thath belongs toC2. In fact,C1 is sufficient

becauseh only needs to be a multiplier ofH1/2.

III.3.3.2 Γ is either a curvilinear polygon or a polyhedron of classC1,1

For these cases, we refer to the books [70, 71] written by Grisvard. We are then able to define

the traces locally in the sense that they are defined on each edge (face) and a generalized Green-like

formula is available.

We suppose that the boundaryΓ of Ωs is a curvilinear polygon (polyhedron) of classC1,1. Let Γj ,

1 ≤ j ≤ N , be the set ofC1,1 curves (faces) definingΓ = ∪N
j=1Γj. Let νj be a vector of classC0,1

defined in a neighborhood ofΩ
s

as the unit normal vector outwardly directed toΩ
s
. Then,νj = ν a.e

onΓj , but in general,νj 6= ν insideΩs.

Recall that we want to give a sense to the following quantities onΓ:

∂ϕθ
∂θ

(0)h = σ(u′)ν + ht∇σ(u)ν − σ(u)[h′]tν

+p′ν + ∇p · hν − p[h′]tν + ∇g · hν − g[h′]tν (III.3.67)

and

∂Ψθ
∂θ

(0)h = (ω2ρfu
′ − ∇p′) · ν + ω2ρf∇uh · ν

−∇(∇p)h · ν − ∇(∇g)h · ν
−(ω2ρfu− ∇p− ∇g) · [h′]tν. (III.3.68)

We will apply a result from [70, 71] which concerns a second order elliptic operator denoted byAwith

coefficients smooth enough. LetD(A,Ω) be the maximal domain ofA. WhenΩ = Ωs,D(∇ · σ,Ωs)

is given by:

D(∇ · σ,Ωs) = {v ∈ (L2(Ωs))n, ∇ · σ(v) ∈ (L2(Ωs))n}, (III.3.69)
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and whenΩ = Ωf ,

D(∆,Ωf ) = {q ∈ L2
loc(Ω

f ), ∆q ∈ L2
loc(Ω

f)}. (III.3.70)

Following Grisvard [70, 71], we have (see Theorems 1.5.3.4 and 1.5.3.6, pp. 54 and 57):

Theorem III.3.3.1 The mappingp 7→


p|Γj
,
∂p

∂νj |Γj



, which is defined forp ∈ H2
loc(Ω

f ), has a

unique continuous extension as an operator fromD(∆,Ωf ) intoH−1/2−ε(Γj) ×H−3/2−ε(Γj) for any

ε > 0, for all 1 ≤ j ≤ N .

Theorem III.3.3.2 The mappingu 7→
(
u|Γj

, σ(u)νj |Γj

)
, which is defined foru ∈ (H2(Ωs))3, has a

unique continuous extension as an operator fromD(∇·σ,Ωs) into (H−1/2−ε(Γj))
n×(H−3/2−ε(Γj))

n

for anyε > 0, for all 1 ≤ j ≤ N .

Always following [70, 71], it is possible to characterize the traces in the dual spaceof H̃1/2(Γj)

andH̃3/2(Γj), whereH̃s(Γj) denotes the space of functions inHs(Γj) such that their continuation by

zero toΓ belongs toHs(Γ). By analogy with the classical notations, the dual ofHs(Γj) is denoted

by H̃−s(Γj). We then have:

Theorem III.3.3.3 The mappingp 7→

p|Γj

,
∂p

∂νj |Γj


 is defined and continuous fromD(∆,Ωf) into

H̃−1/2(Γj) × H̃−3/2(Γj), for all 1 ≤ j ≤ N .

Moreover, letBR be the ball with radiusR > 0 large enough to haveΩ
s ⊂ BR. Letϕ ∈ H2(BR)

such thatϕ = 0 on∂(BR \ Ωs) and∂νϕ = 0 on∂BR. Then, for anyp ∈ D(∆,Ωf),

∫

BR\Ωs
p∆ϕ −

∫

BR\Ωs
∆pϕ =

N∑

j=1

〈p, ∂νj
ϕ〉∼,−1/2,1/2,Γj

. (III.3.71)

Letψ ∈ H2(BR) such that∂νψ = 0 on∂(BR \ Ωs) andψ = 0 on∂BR. Then, for anyp ∈ D(∆,Ωf ),

∫

BR\Ωs
p∆ψ −

∫

BR\Ωs
∆pψ = −

N∑

j=1

〈∂νj
p, ψ〉∼,−3/2,3/2,Γj

. (III.3.72)

Theorem III.3.3.4 The mappingu 7→
(
u|Γj

, σ(u)νj |Γj

)
is continuously defined fromD(∇ · σ,Ωs)

into (H̃−1/2(Γj))
n × (H̃−3/2(Γj))

n, for all 1 ≤ j ≤ N .

Moreover, letϕ ∈ H2(Ωs) such thatϕ = 0 onΓ. Then, for anyu ∈ D(∇ · σ,Ωs),

∫

Ωs
u∇ · σ(ϕ) −

∫

Ωs
∇ · σ(u)ϕ =

N∑

j=1

〈u, σ(ϕ)νj〉∼,−1/2,1/2,Γj
. (III.3.73)
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Letψ ∈ H2(Ωs) such that∂νψ = 0 on Γ. Then, for anyu ∈ D(∇ · σ,Ωs),

∫

Ωs
u∇ · σ(ϕ) −

∫

Ωs
∇ · σ(u)ϕ = −

N∑

j=1

〈σ(u)νj, ψ〉∼,−3/2,3/2,Γj
. (III.3.74)

Regarding the solution(u, p) to the direct problem, two terms are easy to define using the classical

trace theorems [30, 35, 70, 71, 101, 102, 117]. They are as follows:

• p ∈ H
3/2
loc (Ωf ) implies thatp|Γ ∈ H1/2(Γ). Moreover, becauseh ∈ (C2(Rn))n, each entry of its

Jacobian matrix[h′] is continuous. Sinceν ∈ (L∞(Γ))n, the vector[h′]tν thus defines a vector

of L∞, which is a multiplier ofL2(Γ). We then get:p[h′]tν|Γ ∈ (L2(Γ))n.

• u ∈ (H3/2(Ωs))n implies thatu|Γ ∈ (H1/2(Γ))n. In addition, we have seen that[h′]tν is well-

defined onΓ in (L∞(Γ))n. We thus deduce thatu · [h′]tν ∈ L2(Γ).

Next, TheoremsIII.3.3.3 andIII.3.3.4 will help us to define the traces of the elasto-acoustic Fréchet

derivative. Indeed, we have:

• p ∈ H
3/2
loc (Ωf) implies thatp′ ∈ H

1/2
loc (Ωf). Sincep′ satisfies the Helmholtz equation (III.3.23),

we thus havep′ ∈ D(∆,Ωf). Therefore, we can apply TheoremIII.3.3.3 to give a sense top′
|Γj

in H̃−1/2(Γj). Regarding the transmission condition, we need to definep′νj |Γj
. But we know

thatνj is locally regular. We thus also havep′νj |Γj
∈ (H̃−1/2(Γj))

n, 1 ≤ j ≤ N .

• u ∈ (H3/2(Ωs))n implies thatu′ ∈ (H1/2(Ωs))n. Observing thatu′ is solution to the Navier

equation (III.3.14), we thus haveu′ ∈ D(∇ · σ,Ωs). We can then apply TheoremIII.3.3.4,

which allows us to defineσ(u′)νj |Γj
in (H̃−3/2(Γj))

n.

Moreover we also have:

• ∂p′

∂νj |Γj

∈ H̃−3/2(Γj) , 1 ≤ j ≤ N , following TheoremIII.3.3.3,

and

• u′
|Γj

∈ (H̃−1/2(Γj))
n, 1 ≤ j ≤ N , following TheoremIII.3.3.4. Observing thatνj is regular

onΓj , we then have also thatu′ · νj ∈ H̃−1/2(Γj), 1 ≤ j ≤ N .

Now, we can apply again TheoremsIII.3.3.3 andIII.3.3.4 to give a sense to each of the following

terms:∇p · hν|Γ, ∇p · [h′]tν|Γ, ∇uh · ν|Γ, andσ(u)[h′]tν|Γ, using similar arguments as forp′ andu′.
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Indeed, let us denote by∂ one of the partial derivatives
∂

∂xj
, 1 ≤ j ≤ n, p′ can be replaced by

∂p

∂xj
,

1 ≤ j ≤ n, andu′ by
∂u

∂xj
, 1 ≤ j ≤ n as follows.

• Sincep satisfies the Helmholtz equation (III.2.3) and using the fact that the partial derivatives

of p commutes with the Laplace operator, we have:

∆(∂p) + k2∂p = 0. (III.3.75)

Observing that∂p is inH1/2
loc (Ωf ) becausep ∈ H

3/2
loc (Ωf ), we thus obtain that∂p ∈ D(∆,Ωf ).

TheoremIII.3.3.3 then implies that∂p|Γj
is well-defined inH̃−1/2(Γj), and therefore∇p|Γj

is well-defined in(H̃−1/2(Γj))
n. Using that the directionh ∈ (C2(Rn))n, ∇p · h|Γj

remains

in H̃−1/2(Γj). Then, sinceν is locally regular,∇p · hν|Γj
is also in(H̃−1/2(Γj))

n, for all

1 ≤ j ≤ N .

• We have seen that∇p|Γj
∈ (H̃−1/2(Γj))

n. Observing that each entry of[h′] is in C1(Rn), and

using thatν is locally regular, we thus obtain that∇p · [h′]tν|Γj
is well-defined inH̃−1/2(Γj)

too, for all1 ≤ j ≤ N .

• Sinceu satisfies the Navier equation (III.2.2) and using the fact that the partial derivatives ofu

commutes with the elastodynamic operator, we then have:

∇ · σ(∂u) + ω2ρs∂u = 0. (III.3.76)

Because∂u ∈ H1/2(Ωs), we get that∂u ∈ D(∇·σ,Ωs). It then follows from TheoremIII.3.3.4

that∂u|Γj
is well-defined in(H̃−1/2(Γj))

n, and therefore∇u|Γj
is well-defined in(H̃−1/2(Γj))

n×n.

Using thath ∈ (C2(Rn))n andν is locally regular, we obtain that∇uh·ν|Γj
is also inH̃−1/2(Γj),

for all 1 ≤ j ≤ N .

• We have noticed that∂u|Γj
∈ (H̃−1/2(Γj))

n. It follows that the trace of the strain tensorε(u)

is in (H̃−1/2(Γj))
n×n. Assuming that the coefficientsCjlmn of the fourth order elastic stiffness

tensor are sufficiently regular, the trace of the stress tensor σ(u)|Γj
remains in(H̃−1/2(Γj))

n×n.

Then, since each entry of[h′] is inC1(Rn), andν is locally regular, we deduce thatσ(u)[h′]tν|Γj

is well-defined in(H̃−1/2(Γj))
n too, for all1 ≤ j ≤ N .

Now, to complete the characterization, we need to define the following terms involving high-order

derivatives:(∇(∇p)h) · ν|Γ, ht∇σ(u)ν|Γ. We can use the same arguments as for
∂p′

∂ν |Γ
andσ(u′)ν|Γ.
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• Let us begin with the trace∇(∇p)h · ν|Γ. We have seen that∂p ∈ D(∆,Ωf ). Therefore, we

can apply TheoremIII.3.3.3 and give a sense to∇(∂p) · ν|Γ on eachΓj in H̃−3/2(Γj). It then

follows that∇(∇p)νj |Γj
can be defined in(H̃−3/2(Γj))

n. Now, sinceh|Γj
∈ (C2(Γ))n, we then

have :

ht∇(∇p)νj |Γj
∈ H̃−3/2(Γj), 1 ≤ j ≤ N.

becauseC2 is a multiplier ofH̃3/2(Γj).

• As regards the last termht∇σ(u)ν|Γ, we proceed similarly. We have observed that∂u ∈
D(∇ · σ,Ωs). Therefore, following TheoremIII.3.3.4, σ(∂u)ν|Γ has a sense on eachΓj in

(H̃−3/2(Γj))
n, which amounts to∂σl(u)νj |Γj

∈ H̃−3/2(Γj), for all 1 ≤ l ≤ n. It then follows

that ∇σl(u)νj |Γj
can be defined in(H̃−3/2(Γj))

n. Consequently, sinceh|Γj
∈ (C2(Γ))n, we

conclude that:

(ht∇σl(u)νj |Γj
)1≤l≤n ∈ H̃−3/2(Γj), 1 ≤ j ≤ N.

Remark III.3.3.2 We can notice the importance of the local regularity of the normal vector to be

able to give a sense to the quantities of interest on the boundary Γ, such as, for instance,p′ν, and

u′ · ν.

III.3.3.3 Γ is either a linear polygon or a polyhedron of classC0,1

Here, we deal directly with the three dimensional case. We consider the case a polyhedron of

classC0,1 using the results from Ciarlet etal [8–10].

This case is less regular than the previous one in the sense that the boundaryΓ is locally represented

by aC0,1 function. Nevertheless, the normalνj is regular on each face, but the boundary can admit

corners, which was not the case in the previous section.

Using the same notations as in SectionIII.3.3.2, and following [8–10], we have, for all1 ≤ j ≤ N :

Theorem III.3.3.5

(i) The mappingp 7→ p|Γj
is linear and continuous fromD(∆,Ωf ) to H̃−1/2(Γj).

(ii) The following Green formula holds:

∫

Ωf
p∆q−

∫

Ωf
q∆p =

∑

j

〈p|Γj
,
∂q

∂ν |Γj

〉∼,−1/2,1/2,Γj
, ∀ (p, q) ∈ D(∆,Ωf)×HD(Ωf ). (III.3.77)

(iii) The mappingp 7→ ∂p

∂ν |Γj

is linear and continuous fromD(∆,Ωf) to H̃−3/2(Γj).
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(iv) The following Green formula holds:

∫

Ωf
p∆q−

∫

Ωf
q∆p = −〈∂p

∂ν |Γj

, q|Γj
〉∼,−3/2,3/2,Γj

, ∀ (p, q) ∈ D(∆,Ωf) ×HN
j (Ωf ). (III.3.78)

In the above theorem,̃Hs(Γj) is defined as the space of elementsϕ of Hs(Γj) such that the continua-

tion ofϕ by 0 toΓ belongs toHs(Γ). The dual space of̃Hs(Γj) is then denoted̃H−s(Γj). Moreover,

always following [9], the spacesHD(Ωf ) andHN
j (Ωf) are given by:

HD(Ωf) = H2
loc(Ω

f ) ∩H1
0 (Ωf )

HN
j (Ωf) = {q ∈ H2

loc(Ω
f ),

∂q

∂ν |Γ
= 0, q|Γl

= 0, ∀ l 6= j}

The spaceH̃s(Γj) has been introduced by Grisvard in [70, 71] and also in [14]. TheoremIII.3.3.5

provides a generalized Green formula that is of great interest to write the variational formulation of

the problem defining(u′, p′). In particular, it shows that for the numerical simulations, we define each

trace locally on each faceΓj , which is consistent with the regularity results that we obtain.

Now, recall that we want to give a sense to the following quantities onΓ:

∂ϕθ
∂θ

(0)h = σ(u′)ν + ht∇σ(u)ν − σ(u)[h′]tν

+p′ν + ∇p · hν − p[h′]tν + ∇g · hν − g[h′]tν (III.3.79)

and

∂Ψθ
∂θ

(0)h = (ω2ρfu
′ − ∇p′) · ν + ω2ρf∇uh · ν

−∇(∇p)h · ν − ∇(∇g)h · ν
−(ω2ρfu− ∇p− ∇g) · [h′]tν. (III.3.80)

The termsp[h′]tν|Γ andu · [h′]tν, associated with the solution(u, p) to the direct problem, can be

defined in(L2(Γ))n andL2(Γ) respectively, in the same way as in the previous section using the clas-

sical trace theorems.

Moreover, as TheoremIII.3.3.1 in the previous section, TheoremIII.3.3.5 allows to give a sense to

the termsp′ν|Γj
, ∇p · hν|Γj

, ∇p · [h′]tν|Γj
in (H̃−1/2(Γj))

n andH̃−1/2(Γj), as well as to
∂p′

∂ν |Γj

and

∇(∇p)h · ν|Γj
in H̃−3/2(Γj).
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However, regarding the displacement field, we have to extendthe results of [9] given in the case

of the Laplace operator. Unfortunately, the proof of Theorem III.3.3.5 requires surjectivity results

that are not obvious. For instance, we need to prove that for any ϕ ∈ (H̃1/2(Γj))
n, there exists

u ∈ {v ∈ (H2(Ωs))n ∩ (H1
0(Ωs))n, σ(u)ν|Γl

= 0, for l 6= j}, such thatσ(u)ν|Γj
= ϕ. At first sight,

we were not able to construct such a lifting operator and thus, the question remained open. However,

a joint work has been recently initiated with Serge Nicaise,and we think that we are able to define

such results in the case of the elastodynamic operator. Oncedone, this should allow to complete the

rigorous justification in the framework of a Lipschitz polyhedron.

III.3.3.4 The general case:Ωs is a continuous Lipschitz domain

Obviously, this case generates more difficulties than the previous ones. We still aim at giving a

sense to the following quantities onΓ:

∂ϕθ
∂θ

(0)h = σ(u′)ν + ht∇σ(u)ν − σ(u)[h′]tν

+p′ν + ∇p · hν − p[h′]tν + ∇g · hν − g[h′]tν (III.3.81)

and

∂Ψθ
∂θ

(0)h = (ω2ρfu
′ − ∇p′) · ν + ω2ρf∇uh · ν

−∇(∇p)h · ν − ∇(∇g)h · ν
−(ω2ρfu− ∇p− ∇g) · [h′]tν. (III.3.82)

What remains true is that the termsp[h′]tν|Γ andu · [h′]tν can be defined inL2(Γ) and(L2(Γ))n re-

spectively, using the classical trace theorems as done in Section III.3.3.2.

We tried to get more results but, unfortunately even in the case of the pressure fluid, we were not able

to extend the results of [9, 70] to give a sense top′ in particular. Indeed, such a result should be neces-

sary to give a sense to the termp′ which belongs toD(∆,Ωf ). More precisely, if one wants to follow

the lines of [8, 9], some surjectivity results are required to define the tracetheorems inD(∆,Ωf ).

The difficulty remains the construction of the suitable lifting operators because of the compatibility

condition defining the range of the trace mappings and which depends on the geometry of the domain.
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Nevertheless, we obtained a characterization of the traces∇p|Γ, and∇(∇p)ν|Γ. This allows to give a

sense to the following terms associated to the pressure field: ∇p · hν, ∇p · [h′t]ν, and∇(∇p)h · ν on

the Lipschitz boundaryΓ. We proceed as follows.

According to [21], we define the range of the trace mappingsR from H2-functions on a Lipschitz

domainΩ as follows:

R = {γ0v, γ1v, v ∈ H2(Ω)}. (III.3.83)

This is a Hilbert space dense inH1(Γ) ×L2(Γ). It has been characterized in [21] and it is proved that

in R, the pair(γ0v, γ1v) satisfies a compatibility condition, given in three dimensions by:

R = {(g0, g1) ∈ H1(Γ) × L2(Γ) such that∇Γ(g0) + g1ν ∈ (H1/2(Γ))n}. (III.3.84)

We can view it as a product spaceR = R0 × R1.

It is worth noting that, when considering smooth domains of classC2 (or C1,1), the range of the trace

mappings is exactly characterized, and is equal toR = H3/2(Γ) × H1/2(Γ). As regards polyhedra of

C1,1 or C0,1, without going into the details, the traces are described locally face by face. Because of

the boundary singularities, there exists matching conditions at edges and corners [14, 15, 70]. Then,

the range of the trace mappings are defined, on each faceΓj, in the spacẽH1/2(Γj)×H̃3/2(Γj), whose

definition can be found in [8–10, 70] and SectionIII.3.3.3.

We do not argue about the infinite domainΩf . Indeed, we deal with the solution to the Helmholtz

equation which is thus regular in the neighborhood of any surface surroundingΩ
s
. We can thus

restrict the proof to the case of a bounded domain that we denoteΩ and whose boundary has the same

regularity thanΓ, and is still denoted byΓ.

Proposition III.3.3.1 Let us consider the problem in pressure, formulated as follows:





−∆p = ap ∈ H1(Ω)
∂p

∂ν
= c u · ν − ∂g

∂ν
∈ L2(Γ)

(III.3.85)

with a =
ω2

c2
f

andc = ω2ρf .

Then,(∇p|Γ,
∂

∂ν
∇p|Γ) is well defined as an element of

(
R

′

1

)n ×
(
R

′

0

)n
.

Moreover, the trace of any element ofH2(Ω)/K(Ω) is in (H1(Γ))n × (L2(Γ))n, whereK(Ω) is given
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by the following closed subspace ofH2(Ω):

K(Ω) = {ψ ∈ H2(Ω);

[∫

Ω
∇p · ∇∂ψ

∂x
−
∫

Ω

∂p

∂x
∆ψ

]
= 0}. (III.3.86)

Proof A natural idea is to do this by means of a process of duality, that is to say in the dual spaces

to the trace spaces. The difficulty encountered here comes from the fact that the boundaryΓ of Ωs is

only assumed lipschitzian. The classical Sobolev spacesHs(Γ) onΓ are only defined intrinsically for

−1 ≤ s ≤ 1.

For a functionq ∈ H2(Ω), the classical traces can no longer be well defined as elements ofH3/2(Γ)×
H1/2(Γ), as in the regular case. Moreover, the surjectivity of the trace operators, that we will denote

by γ0, γ1, fromH2(Ω) ontoH3/2(Γ) ×H1/2(Γ) is no longer true.

Actually, these traces are inR, defined by Eq.(III.3.83), which is a subspace ofH1(Γ) × L2(Γ), and

have to satisfy a compatibility condition that depends on the geometry ofΩ, given by Eq.(III.3.84).

The trace spaces of functions ofH2(Ω) for a lipschitzian domainΩ have been characterized by G.

Geymonat and F. Krasucki [63] in two dimensions and by A. Buffa and G. Geymonat in three dimen-

sions [21]. These characterizations extend those accomplished by P.Grisvard [71] in the case of a

polygon ofR2 or a polyhedron inR3.

Using the results of Jerison-Kenig [90, 91], and M. Costabel [31], since
∂p

∂ν
∈ L2(Γ), we easily check

thatγ0p ∈ H1(Γ) and thatp ∈ H3/2(Ω).

Let x be one of the coordinate variables ofRn. Setq =
∂p

∂x
. We want to give a sense to

∂q

∂ν
onΓ.

We first remark that, in the distribution sense, we have:

− ∆q = aq. (III.3.87)

Note that ifΩ was regular, and becauseq ∈ L2(Ω), this would give a sense to
∂q

∂ν
in H−3/2(Γ).

Moreover, we recall thatp is solution to the following variational equation:

∫

Ω
∇p · ∇v =

∫

Ω
apv +

∫

Γ

∂p

∂ν
v =

∫

Ω
apv +

∫

Γ
l(u)v, (III.3.88)

for all v ∈ H1(Ω), with l(u) = c un · ν − ∂g

∂ν
onΓ.

Forψ ∈ H2(Ω), we takev =
∂ψ

∂x
in (III.3.88) and using Eq. (III.3.87), we obtain:
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−
∫

Ω
∆qψ = a

∫

Ω

∂p

∂x
ψ (III.3.89)

= −a
∫

Ω
p
∂ψ

∂x
+ a

∫

Γ
(pψ)νx (III.3.90)

= −
∫

Ω
∇p · ∇∂ψ

∂x
+
∫

Γ

∂p

∂ν

∂ψ

∂x
+ a

∫

Γ
(pψ)νx. (III.3.91)

This last expression defines a continuous linear form onH2(Ω). Therefore, the linear form defined as

L(ψ) = −
∫

Ω
∆qψ +

∫

Ω
∇p · ∇∂ψ

∂x
=
∫

Γ

∂p

∂ν

∂ψ

∂x
+ a

∫

Γ
(pψ)νx (III.3.92)

is also linear continuous onH2(Ω).

At this stage, it should be first noted that, ifψ ∈ H2
0 (Ω) (defined as the closure ofD(Ω) in H2(Ω)),

thenL(ψ) = 0.

Thus,L only depends on the traces ofψ. Hence,L is a continuous linear form onR which, according

to [21], is contained inH1(Γ) × L2(Γ).

Consequently, there exists a pair ofR
′

, dual ofR, denoted(L0, L1), such that:

L(ψ) = L0(γ0ψ) + L1(γ1ψ). (III.3.93)

To come down to a standard situation, we set:

L(ψ) =
[
−
∫

Ω
∆qψ +

∫

Ω
q∆ψ

]
+

[∫

Ω
∇p · ∇∂ψ

∂x
−
∫

Ω
q∆ψ

]
. (III.3.94)

We denoted byK(Ω) the following closed subspace ofH2(Ω):

K(Ω) = {ψ ∈ H2(Ω);
∫

Ω
∇p · ∇∂ψ

∂x
−
∫

Ω
q∆ψ = 0}. (III.3.95)

Then, for allψ ∈ KΩ), we have:

−
∫

Ω
∆qψ +

∫

Ω
q∆ψ = L0(γ0ψ) + L1(γ1ψ) (III.3.96)

=
∫

Γ

∂p

∂ν

∂ψ

∂x
+ a

∫

Γ
(pψ)νx. (III.3.97)

The terma
∫

Γ
(pψ)νx only depends onγ0ψ. For the second one, we proceed as follows.

We consider, for almost everyx ∈ Γ, a basis(τ1, τ2, ν) obtained by atlas. We note(e1, e2, e3) the
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canonical basis. For instance, assuming that the chosen variablex is the first one, we have:

∂ψ

∂x
= (∇ψ)e1. (III.3.98)

Then, if(a1, a2, a3) are the coordinates ofe1 is the basis(τ1, τ2, ν), we have:

∂ψ

∂x
= a1

∂ψ

∂τ1
+ a2

∂ψ

∂τ2
+ a3

∂ψ

∂ν
, (III.3.99)

wherea1, a2, a3 areL∞(Γ)-functions.

Hence, we can rewriteL as follows:

L(ψ) =
∫

Γ
a3
∂p

∂ν

∂ψ

∂ν
+
∫

Γ

∂p

∂ν

[
a1
∂ψ

∂τ1
+ a2

∂ψ

∂τ2

]
+ a

∫

Γ
(pψ)νx. (III.3.100)

It is then clear that:




L0(γ0ψ) =
∫

Γ

∂p

∂ν

[
a1
∂ψ

∂τ1

+ a2
∂ψ

∂τ2

]
+ a

∫

Γ
(pψ)νx

L1(γ1ψ) =
∫

Γ
a3
∂p

∂ν

∂ψ

∂ν
.

(III.3.101)

Since
∂p

∂ν
∈ L2(Γ), ai ∈ L∞(Γ) for i = 1, 2, 3, it immediately follows that:

|L0(γ0ψ)| ≤ C
(∫

Γ
|∇Tψ|2 + |ψ|2

)1/2

. (III.3.102)

Still according to [21] (see Proposition 4), we get:

|L0(γ0ψ)| ≤ C‖γ0ψ‖H1(Γ). (III.3.103)

In addition, we obtain, forψ ∈ K(Ω), that:

−
∫

Ω
∆qψ +

∫

Ω
q∆ψ =

∫

Γ
a3
∂p

∂ν

∂ψ

∂ν
(III.3.104)

+
∫

Γ

∂p

∂ν

[
a1
∂ψ

∂τ1
+ a2

∂ψ

∂τ2

]
+ a

∫

Γ
(pψ)νx. (III.3.105)
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This formally gives:






q = a3
∂p

∂ν
∂q

∂ν
=

∂

∂τ1

(
a1
∂p

∂ν

)
+

∂

∂τ2

(
a2
∂p

∂ν

)
− apνx on Γ.

(III.3.106)

The latter has a sense inH−1(Γ), andq = a3
∂p

∂ν
∈ L2(Γ).

We deduce that(L1(γ1ψ), L0(γ0ψ)) is defined as an element of(R
′

1)
n × (R

′

0)
n, but restricted to the

subspaceK(Ω), it is written as

L0(γ0ψ) = −〈∂q
∂ν
, γ0ψ〉H−1(Γ)×H1(Γ) (III.3.107)

L1(γ1ψ) = 〈q, γ1ψ〉L2(Γ)×L2(Γ). (III.3.108)

Note that becauseΓ has no boundary, we have(H1(Γ))
′

= H−1(Γ).

Using the same argument for each variable, we finally get the result.

�

Remark III.3.3.3 Let us considerψ under the following form:

ψ(x, y, z) = αx+ βy + γz + δ

with α 6= 0.

It is then clear thatψ ∈ K(Ω) because∆ψ = 0 and∇∂ψ

∂x
= 0. This condition is actually necessary

because of the non-uniqueness of the Neumann problem.

Indeed, the Neumann problem formulated as,−∆p = ap with
∂p

∂ν
= l, gives:

∫

Ω
apα = −

∫

Γ

∂p

∂ν
α = −

∫

Γ

∂p

∂ν

∂ψ

∂x
. (III.3.109)

Moreover, we have

L(ψ) = a
∫

Ω

∂p

∂x
ψ (III.3.110)

= a
∫

Γ
(pψ)νx − a

∫

Ω
pα (III.3.111)

=
∫

Γ

∂p

∂ν

∂ψ

∂x
+ a

∫

Γ
(pψ)νx. (III.3.112)
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We recover the compatibility condition given by Eq. (III.3.109). Therefore,K(Ω) can be identified

(for the three derivatives) as the quotient ofH2(Ω) by the polynomials of degree 1 (without the

unnecessary constraints for our construction).

Remark III.3.3.4

• Actually, even ifp
′

has a sense in some spaceHs(Γ), with s < 0, the productp
′

ν is not

meaningful anymore since the normalν is only L∞. Therefore, the regularity ofp
′

should

be at leastL2(Γ) to be able to define such a product globally. This means thatp′ should be

H
1/2+ǫ
loc (Ωf ) and thus would requirep to beH3/2+ǫ

loc (Ωf ) for someǫ > 0, which is not the case

due to the boundary singularities. Otherwise, we might needto restrict ourselves to Lipschitz

domain such thatν is piecewise smooth.

• Since it appears to be difficult to define such traces in some strong sense on Lipschitz domains,

an idea might consist of approaching the Lipschitz boundaryΓ with a polyhedronΓh. Then,

we would have to prove that the solution(uh, ph) in Ωs
h × Ωs

h and its traces tend to the solution

(u, p) and the corresponding traces at least in a very weak sense. Thus, this could ensure that

the problem on Lipschitz domains would be well-posed in a very weak sense.

Remark III.3.3.5 The general Lipschitz case provides a very challenging theoretical issue but we

do not think it defines the real limitations to this work. Indeed, the boundary value problem satisfied

by the Fréchet derivative is artificial. It has no real physical meaning, but only a practical one.

Moreover, from a numerical viewpoint, these are the cases ofpolyhedral domains of classC1,1 or C0,1

that interest us, since they would correspond to our computational domain. Consequently, it can be

viewed as sufficient to have the rigorous justification for these kinds of domains for our computations.

III.4 Conclusion

In this paper, we have established the continuous dependence of the scattering amplitude on the

shape of the scattering, by proving that both the scattered field and the far-field pattern are differen-

tiable with respect to the domain of the obstacle. Moreover,we have fully characterized the derivative

of the elasto-acoustic scattered field with respect to particular Lipschitz domains likeC1,1 polyhedra.

ForC0,1 polyhedra, we conjecture that the justification can be completed, this is an ongoing work.

For general Lipschitz domain, we were not able to complete the proof because of a lack of surjec-

tivity of the trace of the elastic displacement. However, wehave formally obtained that the Fréchet

derivative is a solution of the same direct elasto-acousticscattering problem that only differs by the

transmission conditions at the interface of the elastic scatterer. This characterization will thus be of
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practical interest and has an important potential for reducing the complexity of the solution of inverse

scattering problems by Newton-type methods.
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Chapter IV

A regularized Newton-type method for the

solution of an Inverse Obstacle Problem in

fluid-structure interaction

In this chapter, we present some promising results obtainedwith the proposed solution methodol-

ogy for solving efficiently inverse two-dimensional elasto-acoustic problems. We observe the behavior

of the method using different types of parametrization of the scatterer (polygonal shape, star-like do-

main, and quadratic B-spline representation).

IV.1 Introduction

The determination of the shape of an obstacle from its effects on known acoustic or electromag-

netic waves is an important problem in many technologies such as sonar, geophysical exploration and

medical imaging or non-destructive testing. Because of itsill-posed and nonlinear character, this in-

verse obstacle problem (IOP) is difficult to solve, especially from a numerical viewpoint. Any attempt

to its investigation requires the fundamental understanding of the theory for the associated direct scat-

tering problem, and the mastery of the corresponding numerical solution methods.

In this work, we are interested in retrieving the shape of an elastic scatterer from the knowledge of

some scattered far-field patterns, and assuming certain characteristics of the surface of the obstacle.

We propose a solution methodology based on a regularized Newton-type method, known to be robust

and efficient to solve this class of IOPs. Note that this approach can be viewed as an extension to

the method proposed in [42] for the case of impenetrable scatterers. A number of methods have been

proposed in recent years to solve elastic inverse problems numerically. In particular, Elchneret al

proposed an optimization method in [46] with an objective functional-based approach depending on
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a positive regularization parameter, together with a Gauss-Newton method. It is worth noting that our

formulation coincides with their third objective functional. They also extend the method of Kirsch

and Kress, based on an integral equation approach, to this IOP [47], and compare the results with

their optimization method in [48]. At the same time, Monk and Selgas applied the Linear Sampling

Method (LSM), introduced by Colton and Kirsch, to the inverse problem with far-field pattern data in

[109] and near-field sampling-type methods in [110]. One advantage of the LSM over Newton method

is that it avoids an iterative process, since the inverse problem can be formulated as an ill-posed first

kind linear integral equation. Moreover, LSM allows to consider limited-aperture data and different

boundary conditions without an a priori knowledge of the type of boundary conditions, so that it is

independent of the geometry and physical properties of the scatterer. However, the main drawback

of the LSM is that it requires to have the far-field pattern data corresponding to incident waves from

many directions. In contrast, Newton method should delivera good reconstruction using only a few

incident directions and limited-aperture data. Therefore, even if Newton method requires an efficient

direct solver, and a priori information, the method is conceptually simple, it is known to be more

stable with respect to nonsmooth boundaries and more robustto the noise. Last, our methodology is

interesting to reconstruct simultaneously both the shape and the material properties of the scatterer.

The solution of this IOP by a regularized Newton method incurs, at each iteration, the solution of a

linear system whose entries are the Fréchet derivatives of the elasto-acoustic field with respect to the

shape parameters. Moreover, ensuring the stability, fast convergence, and computational efficiency

calls for computing these derivatives with a greater robustness and a higher level of accuracy than pos-

sible with finite differences. To this effect, following theapproach used in [39] for the case of exterior

Helmholtz problems, we have characterized in ChapterIII the Fréchet derivative of the elasto-acoustic

scattered field with respect to the shape of an elastic obstacle as the solution of a direct elasto-acoustic

scattering problem which differs from the considered direct scattering problem only in the transmis-

sion conditions on the surface of the scatterer. Consequently, at each regularized Newton iteration, we

can thus evaluate both the scattered field and the directional derivatives by solving a single system of

equations with different right-hand sides. Observe that, in [46], the approach to characterize the direc-

tional derivative of the scattered field is based on the differentiation of the variational formulation of

the boundary value problem, and the gradient for their optimization problem can be computed as the

solution of the variational equation of the same transmission problem but with modified right-hand

sides.

Clearly, the performance of the IOP solver depends mainly onthe computational efficiency of the

solution of the forward problems that arise at each Newton iteration. To this end, we propose to solve

the direct scattering-type problems using a finite-elementmethod based on discontinuous Galerkin
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approximations, equipped with curved boundary edges, described in ChapterII . We present numeri-

cal results that illustrate the potential of the proposed solution methodology for retrieving the shape

of scatterers with some singularities.

The remainder of the chapter is organized as follows. In Section IV.2, we recall the associated

direct elasto-acoustic scattering problem. In SectionIV.3, we outline the proposed solution method-

ology. We formulate the IOP of interest. We recall the important analytical characterization of the

Fréchet derivatives of the far-field pattern with respect tothe shape parameters established in Chap-

ter III , and highlight its significance to the evaluation of the Jacobian matrices associated with the

regularized Newton method. We also recall the discretization method proposed in ChapterII , and

summarize the computational complexity of the proposed IOPsolution methodology. In sectionIV.4,

we illustrate the salient features of our proposed computational methodology for retrieving the shape

of scatterers defined using three types of parametrization:a polygonal approximation, a star-like do-

main, and a quadratic B-spline representation. In SectionIV.5, we conclude this chapter and give

some perspectives.

IV.2 The corresponding direct elasto-acoustic scatteringprob-

lem

The corresponding direct elasto-acoustic scattering problem consists in the scattering of time-

harmonic acoustic waves by an elastic obstacleΩs embedded in a homogeneous mediumΩf , as

depicted on FigureIV.2.1. It can be formulated as follows:

Figure IV.2.1 – Problem statement in the infinite domain.
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BVP (1)





∆p+ k2p = 0 in Ωf (IV.2.1)

∇ · σ(u) + ω2ρsu = 0 in Ωs (IV.2.2)

ω2ρfu · ν =
∂p

∂ν
+
∂g

∂ν
on Γ (IV.2.3)

τ(u) = −pν − gν on Γ (IV.2.4)

lim
r→+∞

r(n−1)/2

(
∂p

∂r
− ikp

)
= 0. (IV.2.5)

In practice, this is not the near fieldp which is measured, but the far-field patternp∞ of the solutionp

of the BVP (1) characterizing the asymptotic behavior of theacoustic scattered field [28]:

p(x) =
eikr

r(n−1)/2

(
p∞

(
x

r

)
+O

(
x

r

))
, r = ‖x‖2 → +∞. (IV.2.6)

Hence,p∞ is defined on the unit sphereS1 , and admits the following representation in two dimen-

sions:

p∞(x̂) =
eiπ/4

√
8πk

∫

Γ

(
eikx̂·y ∂p

∂ν
(y) − ∂eikx̂·y

∂ν
p(y)

)
dΓ. (IV.2.7)

This boundary value problem BVP (1) has been investigated mathematically and results pertaining

to the existence, uniqueness and regularity can be found in [104] and the references therein, among

others for sufficiently smooth domains, as well as in ChapterI when assuming the wet surfaceΓ to

be only Lipschitz continuous, which is of more practical interest . More specifically, in ChapterI, we

prove, under minimal condition on the fluid-structure interfaceΓ, (a) the existence of the solution of

the BVP, (b) the uniqueness of the fluid pressure, and (c) the uniqueness of the structural displace-

ment field modulo the so-called Jones frequencies [37, 92]. These frequencies may exist only for

a particular class of elastic objects, such as spheres [37, 49, 79]. Therefore, it is worth noting that,

although the fluid-structure problem may admits non-uniquestructural displacement solutions with

the internal Jones resonance frequencies that can exist forcertain geometries, the scattered fieldp and

its far-field-pattern are always unique and depend continuously on the shape of the obstacle.

IV.3 Computational methodology

We propose a solution methodology based on a regularized Newton-type method for solving the

IOP. The proposed method is an extension of the regularized Newton algorithm developed for solv-

ing the case where only Helmholtz equation is involved, thatis the acoustic case by impenetrable

scatterers [42].
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IV.3.1 Formulation of the IOP

The direct elasto-acoustic scattering problem defines an operatorF : Γ → p∞ which maps the

boundaryΓ of the scattererΩs onto the far-field patternp∞. Hence, given one or several measured

far-field patterns̃p∞(x̂), corresponding to one or several given directionsd and wavenumbersk, one

can formulate IOPs as follows:

Find a shapeΓ such that F (Γ)(x̂) = p̃∞(x̂); x̂ ∈ S1. (IV.3.1)

where the tilde notation designates a measured quantity.

Observe that the problem is nonlinear, because the solutionof the direct problem depends nonlinearly

on the boundary. Moreover, it is improperly ill-posed, since the far-field pattern is extremely smooth-

ing due to the analyticity of the far-field pattern [28].

We recall next some theoretical results that were already mentioned in [42] and dealing with the

case of the three dimensional exterior Helmholtz problem.

• Whenp∞ is measured on the entireS1 (full-aperture) and for an infinite number of incident

waves characterized by distinct directions and the same wavenumber, the IOP (IV.3.1) admits a

unique solution [28, 97].

• When some information about the size of the unknown scatterer is also provided, the IOP

(IV.3.1) admits a unique solution even when the full-aperture far-field pattern datap∞(x̂) are

available only for a finite number of incident waves [28, 29]. In particular, when the scatterer

can be embedded in a sphere of radiusR andkR < π, it suffices to know the far-field pattern

on the entireS1 for a single incident wave to be able to determine uniquely the unknown shape

[28].

• Because the far-field patternp∞ is an analytic function, it can be determined on the entire unit

sphereS1 from its knowledge on a subset ofS1. Hence, both theoretical results recalled above

also hold whenp∞ is measured only on a subset ofS1 (limited-aperture).

In the case of the three dimensional exterior Helmholtz problem, numerical experiments (for example,

see [39–42] in [42]) performed in the resonance region – that is, for a wavelength that is approximately

equal to the diameter of the obstacle – tend to indicate that in practice, and at least for simple shapes,

a unique and reasonably good solution of the IOP (IV.3.1) can often be computed:

• using only one incident wave and full-aperture far-field data,

255



Chapter IV. A regularized Newton-type method for the solution of an Inverse Obstacle
Problem in fluid-structure interaction

• or using anywhere from 13 to 24 incident waves and limited-aperture far-field data as long

as the aperture is larger thanπ. For smaller apertures, the reconstruction ofΓ becomes more

difficult and nearly impossible for apertures smaller thanπ/4.

Regarding the case of elastic scatterers, the question of the existence and the uniqueness of the solu-

tion to the inverse problem also arises, as well as the convergence of the Newton method (see, for e.g.,

[46, 110, 116] and the references therein). However, from a numerical viewpoint, one may expect to

have similar results to the case of impenetrable scatterers, but with additional sensitivities due to the

material properties of the scatterer.

IV.3.2 Parametrization

We assume that the fluid-structure interfaceΓ is Lipschitzian and can be represented byN shape

parameters as follows:

Γ = Γ(s) wheres = [s1, · · · , sN ]t ∈ R
N .

Then, observe thatL2(S1) is the natural space for the far-field patternp∞ which is usually measured

at a finite number of observation pointsxj denoted byNx̂. Consequently, we project the IOP (IV.3.1)

onto a finite-dimensional subspace ofL2(S1) and transform it into the following problem:

Find s ∈ R
N such that F (Γ(s))(x̂j) = p̃∞(x̂j); x̂j ∈ S1, j = 1, · · · , Nx̂. (IV.3.2)

which can be solved by a suitable Newton-like method.

It is worth noting that the finite-dimensional IOP (IV.3.2) can also be formulated as an unconstrained

optimization problem, and that its solutions can also be defined by:

s = arg min
t∈RN

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥







F (Γ(t))(x̂1) − p̃∞(x̂1)

·
·
·

F (Γ(t))(x̂Nx̂
) − p̃∞(x̂Nx̂

)







∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

(IV.3.3)

wherearg is used to denote thats is the minimizer of the considered vector function overR
N .

IV.3.3 Linearization and regularization

The solution of the nonlinear IOP (IV.3.2) by the Newton method incurs at each iterationn the

solution of a linearized problem of the form:
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N∑

l=1

[(F ′
Γ(Γ(n))hl)(x̂j)]δs

(n)
l = p̃∞(x̂j) − F (Γ(n))(x̂j), j = 1, · · · , Nx̂, (IV.3.4)

wherehl =
∂Γ(n)(s)

∂sl
Γ(n) = Γ(s(n)) sn+1 = sn + δsn,

andF ′
Γ(Γ(n))hl is the Fréchet derivative of the FFP with respect to the shapeof the obstacle in the

direction of the parametersl.

Moreover, since in practice the number of observation pointsNx̂ is greater that the number of shape

parametersN , the solution of the nonlinear IOP by the Newton method incurs at each iteration the

solution of a linearized system of equations that is typically overdetermined. Therefore, the obtained

system will be solved in a least-square sense as follows:

N∑

l=1

Nx̂∑

m=1

[(F ′
Γ(Γ(n))hj)(x̂m)][(F ′

Γ(Γ(n))hl)(x̂m)]δs
(n)
l (IV.3.5)

=
Nx̂∑

m=1

[(F ′
Γ(Γ(n))hj)(x̂m)](p̃∞(x̂m) − F (Γ(n))(x̂m)), j = 1, · · · , N.

where the overline designates the complex conjugate.

BecauseF is a compact operator, each linear problem of the form given in (IV.3.4)– and a fortiori that

given in (IV.3.5) – is ill-posed. Consequently, the discrete versions of problems (IV.3.4) and (IV.3.5)

can be expected to be severely ill-conditioned. For this reason, the inversion must be done with a

special treatment that must restore the stability to the equation. A stabilization technique such as

Tikhonov’s regularization is almost always used during thesolution of (IV.3.5) to restore the stability.

The standard Tikhonov’s regularization technique consists in introducing a penalty term in (IV.3.2)

and therefore replacing (IV.3.5) by the following problem:

N∑

l=1

Nx̂∑

m=1

[(F ′
Γ(Γ(n))hj)(x̂m)][(F ′

Γ(Γ(n))hl)(x̂m)]δs
(n)
l + αδs

(n)
j (IV.3.6)

=
Nx̂∑

m=1

[(F ′
Γ(Γ(n))hj)(x̂m)](p̃∞(x̂m) − F (Γ(n))(x̂m)), j = 1, · · · , N,

whereα > 0 is the regularization parameter. Numerical simulations reveal that the convergence of

the Newton method is strongly dependent on the choice ofα. Its determination could be done by
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theoretical considerations such as Morozov’s discrepancyprinciple [113, 114]. However, the mathe-

matical foundation of this principle is limited to linear problems and incurs the solution of an auxiliary

nonlinear problem. For these reasons,α is chosen simply by trial and error.

IV.3.4 Evaluation of the Jacobians

The solution of this IOP by a regularized Newton methods incurs, at each iteration, the solution

of a linear system whose entries are the Fréchet derivativesof the elasto-acoustic field with respect

to the shape parameters representing the surface of the scatterer. Furthermore, ensuring the stability,

fast convergence, and computational efficiency of the regularized Newton method applied to the so-

lution of this class of IOPs calls for computing these derivatives Fréchet derivatives arising during the

Newton iterations with a greater robustness and a higher level of accuracy than possible with finite

differences.

Using finite differencing for this purpose raises two issuespertaining to robustness and computational

efficiency. Indeed, the estimation by finite differences of aFréchet derivativeF ′(Γ)hj j may or may

not strongly depend on the size of the perturbation of the parametersj, depending on the variation

of the operatorF with respect to that parameter. Furthermore, the evaluation by second-order central

differencing of theN directional derivatives requires the solution at each regularized Newton iteration

(IV.3.6) of 2N + 1 distinct direct elasto-acoustic scattering problems. Forthese reasons, we consider

here another approach for computing the Fréchet derivatives of the far-field pattern with respect to the

shape parameters.

To this effect, following the ideas and the approach used in [39] for the case of exterior Helmholtz

problems, we proved in ChapterIII that the Fréchet derivative of the elasto-acoustic scattered field

with respect to the shape of an elastic obstacle can be characterized as a solution of the same direct

elasto-acoustic scattering problem which differs from theconsidered forward problem only in the

transmission conditions on the surface of the scatterer.

We recall that the Fréchet derivative of the elasto-acoustic scattered field with respect to the shape of

an obstacle in the direction of a parametersj, which we denote here by(p′
j , u

′
j), is the solution of the

following direct elasto-acoustic scattering problem :
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BVP (2)





∆p′
j + k2p′

j = 0 in Ωf (IV.3.7)

∇ · σ(u′
j) + ω2ρsu

′
j = 0 in Ωs (IV.3.8)

ω2ρfu
′
j · ν =

∂p′
j

∂ν
+G(u, p, hj) onΓ (IV.3.9)

τ(u′
j) = −p′

jν + F (u, p, hj) onΓ (IV.3.10)

lim
r→+∞

r(n−1)/2

(
∂p′

j

∂r
− ikp′

j

)
= 0. (IV.3.11)

where the functionsF andG are given by:

F (u, p, hj) = −hj t∇σ(u)ν − ∇pT · hjν + σ(u)[hj
′]tν + pT [hj

′]tν, (IV.3.12)

G(u, p, hj) = −(ω2ρf∇u− ∇(∇pT ))hj · ν + (ω2ρfu− ∇pT ) · [hj
′]tν, (IV.3.13)

and pT = p+ pinc.

Here, the notationhtj∇σ(u)ν stands forhtj∇σ(u)n = [htj∇σl(u)ν]l=1,··· ,n, whereσl is the rowl of the

matrixσ(u).

The computational implication of this theoretical characterization is as follows. If the sought-after

shape is represented byN parameters, then, at each regularized Newton iteration, theN directional

derivatives needed for constructing the Jacobians can be computed by solvingN direct elasto-acoustic

scattering problems that differ only by their boundary conditions. Or, in algebraic terms, after FEM

discretization, we can evaluate the scattered field and theN directional derivatives by solving a single

system of equations withN + 1 right-hand sides. In contrast, evaluating the sameN directional

derivatives by a central differencing scheme, together with the scattered field, would require first

choosing an arbitrary small parameter, then solving2N + 1 distinct forward problems.

IV.3.5 A multi-stage solution procedure

Even with the use of the regularization technique, the IOP remains difficult to solve, especially

when the number of shape parameters is large. In order to accelerate the convergence of the specified

method, we propose a multi-stage procedure for determiningthe sought-after shape as in [39].

Step 1 Initialize s := s(0) and constructΓ(0) = Γ(s(0)).
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Step 2 Given a frequencyω and for a chosenα, solve the IOP (IV.3.2) by the regularized Newton

method (IV.3.6) until convergence or stagnation of the residualF (Γ(s(n))) − p̃∞.

• If convergence to a specified tolerance is achieved, stop.

• If not, go to Step 3.

Step 3 Switch to a lower regularization parameterα and/or a higher frequencyω, initialize the

shape parameters with their final values in the previous steps(0) = s(n), and repeat Step 2.

Note that it assumes that FFP data are also available for a higher wavenumber. Moreover, this pro-

cedure allows to recognize the influence of the wavenumber onthe acoustic scattering observability

of the small geometric features.

IV.3.6 Efficient solution of the direct elasto-acoustic scattering problems

For implementation purposes, we reformulate the BVP (1) in abounded domainΩf
R in view of

its discretization by the finite-element method and performing numerical simulations. The latter is

accomplished by replacing the outgoing Sommerfeld condition in BVP (1) (IV.2.5) by some simple

absorbing boundary condition. Consequently, as explainedin ChapterII , the finite-element discretiza-

tion of the direct elasto-acoustic scattering problem leads to the following algebraic problem:


Af + C B

B∗ As




P

U


 =


F1

F2


 . (IV.3.14)

whereAf is a symmetric matrix given by:

Af =
1

ω2

(
Kf

−k2Mf − Jf + γfS
f
)
, (IV.3.15)

and

– Kf is the block diagonal stiffness matrix associated to the pressure field.

– Mf is the block diagonal mass matrix associated to the pressurefield.

– Jf is the matrix that contains the jump terms. The entries of this matrix are defined over the

interior edges.

– Sf is the mass-like matrix defined over the interior edges in thefluid resulting from the penalty

term.
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C is the complex-valued damping matrix. It is a mass-like matrix, whose entries are all zeros except

for the elements located at the exterior boundaryΓR. The matrixAf + C is symmetric, but non-

hermitian, and thus non-positive-definite.

The symmetric matrixAs is given by:

As = Ks − ω2ρsM
s − Js + γsS

s, (IV.3.16)

and

– Ks is the block diagonal elastic stiffness matrix related to the displacement field.

– M s is the block diagonal mass matrix related to the displacement field.

– Js is the matrix that contains the jump terms. The entries of this matrix are defined over the

interior edges.

– Ss is the mass-like matrix defined over the interior edges in thesolid resulting from the penalty

term.

Note that the matrixAs is positive-definite up to the Jones frequencies, thanks to the interior penalty

term that compensates the weak ellipticity of the equation operator.B is a mass-like boundary matrix

whose entries are defined on the interface edges only, whereasF1 andF2 are the source vectors. The

vectorP (resp. U) is the fluid pressure (resp. structural displacement) representation in the finite

element basis.

Moreover, as mentioned in SectionIV.3.4, the Fréchet derivative of the elasto-acoustic scattered

field with respect to the shape parametersj can be evaluated by solving the same system of equations

(IV.3.14) but with different right-hand sidesF1,j, F2,j. Then, the corresponding far-field pattern – that

is, the Fréchet derivative of the far-field pattern with respect to the shape parametersj – is obtained

by post-processing the solution using (IV.2.6) on Γ(n).

In summary, adopting the nomenclature in [39], if the IOP (IV.3.1) employs a single incident

wave, the iterative methodology for retrieving the shape ofan elastic obstacle requires solving at each

iterationn:

• one sparse system of equations associated with the discretization of the elasto-acoustic scatter-

ing problem but forN + 1 different right-hand sides (Problem P1),

• and one smaller-scale but full system of equations of size equal toN and of the form given in

(IV.3.6) (Problem P2).
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When the IOP (IV.3.1) is formulated usingNd incident waves characterized by the same wavenumber

butNd different incident directions, the same iterative procedure requires solving at each iterationn:

• one sparse system of equations associated with the discretization of the elasto-acoustic scatter-

ing problem but forNd(N + 1) different right-hand sides (Problem P1),

• and one smaller-scale but full system of equations of size equal toNdN and of the form given

in (IV.3.6) (Problem P2).

Clearly, the performance of the IOP solver outlined in this chapter depends essentially on the com-

putational efficiency of the solution of the forward problems (Problem P1) that arise at each Newton

iteration. To this effect, we propose to solve the direct scattering-type problems using a finite-element

method based on high-order discontinuous Galerkin approximations equipped with curved boundary

edges introduced in ChapterII .

Note that, the additional cost incurs by the computation of the Jacobian matrix is small compared

with the solution of the initial forward problem. Indeed, the assembly and the LU factorization of the

matrix is done only once for the evaluation of the scattered field (P, U), using MUMPS for instance.

Then, the evaluation of theN Fréchet derivatives only require the construction of a multiple right-

hand side, and the solution of a linear system already assembled and factorized.

Remark IV.3.6.1 It is also possible to solve the IOP (IV.3.1) using the adjoint-state method based on

the minimization of a cost functional under constraints, and combine it, for example, with a Quasi-

Newton algorithm. This technique is a Lagrangian-type formulation. The advantage is that such

approach is independent of the number of parameters, and thederivatives are expressed for all per-

turbations. This procedure requires the solution of one forward problem and one adjoint problem.

However, the factorization of the system matrix carried outfor the solution of the initial direct prob-

lem is in general not reusable for the solution of the adjointsystem. Indeed, the system matrix is not

only the transpose but also the conjugate of the matrix corresponding to the initial direct problem,

owing to the presence of the complex-valued term associatedwith the absorbing boundary condition.

It is expected that the cost associated with the factorization of such a system matrix is larger than the

cost corresponding to the solution with a multiple right-hand side performed in our situation.

IV.4 Applications

Numerical results are presented to illustrate the feasibility of the proposed solution methodol-

ogy for retrieving the shape of an elastic scatterer from themeasurement of several far-field patterns
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p̃∞(x̂), corresponding to one directiond and one wavenumberk.

Our objective is to retrieve the shape of the obstacle without finding its location. For this reason, as

mentioned in [42], we exploit only the intensity of the measured far-field pattern –that is, the square

of its amplitude, given by:

U(Γ)(x̂) = [F (Γ)(x̂)][F (Γ)(x̂)], (IV.4.1)

which is invariant under any translation. This is a sound strategy not only for parametrization pur-

poses, but also because the measurements ofU are usually more accurate than the measurements of

the phase ofF . Note that, since we do not locate the object, we lose the uniqueness.

Consequently, the regularized Newton iteration (IV.3.6) becomes:

N∑

l=1

Nx̂∑

m=1

[(U ′
Γ(Γ(n))hj)(x̂m)][(U ′

Γ(Γ(n))hl)(x̂m)]δs
(n)
l + αδs

(n)
j

=
Nx̂∑

m=1

[(U ′
Γ(Γ(n))hj)(x̂m)](p̃∞(x̂m)p̃∞(x̂m) − U(Γ(n))(x̂m)), j = 1, · · · , N,

and we deduce the Fréchet derivative ofU from the Fréchet derivative ofF as follows:

U ′
Γ(Γ(n))hj)(x̂m) = 2Re

(
[F (Γ(n))(x̂m)][F ′

Γ(Γ(n))hj)(x̂m)]
)
, (IV.4.2)

In all numerical experiments, we choose to work with a singledirection of incidenced = (1, 0), and

full-aperture far-field pattern data, that is 360 FFP data. Note that we use the same numerical method

for generating the synthetic data and for solving the forward problems arising during the regularized

Newton iterations. Therefore, in order to avoid the inversecrime, the synthetic far-field pattern data

are generated by solving the direct elasto-acoustic scattering problem BVP (1) for the target obstacle

on a fine mesh defined with aboutNλ,data elements per wavelength, whereas the forward problems

arising at each Newton iteration are solved on meshes usingNλ elements per wavelength. At each

iteration, the exterior boundary is updated and defined by a circle whose radiusb is equal toR times

the maximum of the shape parameters. This should avoid the adverse effect of domain truncation.

The numerical experiments are performed using the same material properties as in SectionII.5 of

ChapterIII , corresponding to an aluminum object immersed in water, andreported in TableIV.4.1.

We monitor the convergence of our IOP solver via the decay of the relative residual on the FFP

intensity given by:
‖U(Γ(n)) − p̃∗

∞p̃∞‖2

‖p̃∗
∞p̃∞‖2

. (IV.4.3)
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Medium
Properties Density Propagation velocity

ρ (kg/m3) cP (m/s) cS (m/s)

Water 1000 1500 –
Aluminum 2700 6198 3122

Table IV.4.1 – Material properties of the considered fluid-structure medium.

Remark IV.4.0.2 The FFP computation via the integral formula (IV.2.7) on the surfaceΓ of the

obstacle has been validated by means of the analytical series given for the unbounded problem in the

case of Disk-shaped elastic scatterer problem (see Appendix C.1).

Since the evaluation of the Fréchet derivative calls for thecomputation of second-order derivatives of

u andp, we consider higher-order elements of degree 5 for the solution of the inverse problem. Let us

consider an obstacle of radiusa =0.01m, and compute 360 FFP data. We fix:ω = 1376017, which

corresponds to the dimensionless frequencyka = 9.17, and use 5 elements per wavelength.

• First, we use the simplest condition that reads as:

∂p

∂n
− ikp = 0 on ΓR. (IV.4.4)

We report in TableIV.4.2 the error results on both fieldsp (over the entire computational fluid

domainΩf
R) and p∞ (over the unit sphere). These errors are evaluated with respect to the

analytical series expressed in the infinite domain, that is without taking into account the low-

order ABC in the series expansion, for different values of the radiusb of the exterior circular-

shaped boundaryΣ.

b b/a p p∞

0.03 3 2.50 2.208
0.04 4 1.496 1.426
0.05 5 1.05 1.051
0.1 10 0.421 0.464

Table IV.4.2 – Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative errors (%) on p andp∞ to
different values of the the radiusb of the exterior circular-shaped boundaryΣ with the low-order CLA.

The following observations are noteworthy:

• As we move away the exterior boundary, the approximate FFP, computed in the bounded

configuration, tends to the analytical FFP expressed in the infinite domain.

• The error on the FFPp∞ remains of the same order as the error on the solutionp itself,

which validates the FFP computation via the integral formula (IV.2.7).
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• Second, a first-order condition, that is widely employed, isgiven by:

∂p

∂n
− ikp+

κ

2
p = 0 on ΓR. (IV.4.5)

whereκ denotes the curvature of the external surfaceΓR.

TableIV.4.2shows the error results on both fieldsp (over the entire computational fluid domain

Ωf
R) andp∞ (over the unit sphere). The errors are evaluated with respect to the analytical series

expressed in the infinite domain, that is without taking intoaccount the first-order ABC in the

series expansion, for different values of the radiusb of the exterior circular-shaped boundaryΣ.

b b/a p p∞

0.03 3 2.095 1.575
0.04 4 1.116 0.868
0.05 5 0.695 0.550
0.1 10 0.166 0.136

Table IV.4.3 – Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative errors (%) on p andp∞ to
different values of the the radiusb of the exterior circular-shaped boundaryΣ with the first-order CLA.

These results indicate the following:

• When using the first-order ABC (IV.4.5) instead of (IV.4.4), the errors are halved. Thus using

the curvature allows to improve the approximation.

• We observe that the more distant the exterior boundary is, the more the approximations are

accurate.

• We notice that the relativeL2-error on the FFP remains of the same order as the error on the

solutionp itself, which once again validates the evaluation of the FFPwith (IV.2.7).

Remark IV.4.0.3 The Fréchet derivative computation associated with BVP (2)has been validated

via the analytical series given for the unbounded problem inthe case of Disk-shaped elastic scatterer

problem. The construction of the exact series for(p′, u′) is given in AppendixC.2.

We report in TableIV.4.4 the error results on both fields(p, u) and (p′, u′) with respect to the ana-

lytical series expressed in the infinite domain, that is without taking into account the first-order ABC

in the series expansion, for different values of the radiusb of the exterior circular-shaped boundaryΣ.

We observe the following:

• Once again, the more the exterior boundary is far from the obstacle, the more the approxima-

tions are accurate.
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b b/a p ux uy p′ u′
x u′

y

0.03 3 2.095 0.698 0.646 2.366 0.634 0.580
0.04 4 1.116 0.387 0.357 1.284 0.309 0.216
0.05 5 0.695 0.257 0.237 0.813 0.185 0.170
0.1 10 0.166 6.185E-002 5.658E-002 0.199 4.642E-002 4.066E-002

Table IV.4.4 – Disk-shaped elastic scatterer problem - Sensitivity of theL2-relative errors (%) on(p, u) and(p′, u′)
to different values of the the radiusb of the exterior circular-shaped boundaryΣ with the first-order CLA.

• The relativeL2-error on the Fréchet derivative remains of the same order asthe error on the

solutionp itself, which tends to validate the evaluation of the Fréchet derivative with BVP (2).

In the following numerical examples, we recover shapes defined with 10 parameters employing

polygonal-shaped approximations, 9 parameters using the trigonometric parametrization in Fourier

series, and 24 parameters using B-splines.

When the simulations are noise-free, we monitor the convergence of our IOP solver via the decay

of the relative residual on the FFP intensity with a tolerance fixed to 1%, which corresponds to a

tolerance of about 2%-5% on the FFP phase. We also assess the effect of the noise level on the re-

construction by using various noise levels. Note that we compute the synthetic data of the far-field

pattern phasẽp∞, then we add the noise to these measurementsp̃∞, and from them, we derive the

intensity of FFP data|p̃∞|, which is used in the Newton algorithm. Given that, we monitor the decay

of the relative residuals on the phase and the magnitude of the far-field pattern.

The choice of the regularization parameter is empirical anddone by trial and error. In each exper-

iment, we specify the dimensionless frequencyka, where2a represents the diameter of the target

scatterer,a = max
i
si being the maximum of the shape parameters.

IV.4.1 Polygonal-shaped obstacles

IV.4.1.1 Parametrization

We want to recover a polygonal-shaped object of boundaryΓ. To that effect, we parametrized the

shapeΓ by means ofN verticesXj = rj



cos θj

sin θj



, j = 1, · · ·N , uniformly distributed in the polar

coordinate angle.

For each faceSj of the polygon, we use a linear interpolation as follows:

Sj(t) = (1 − t)Xj + tXj+1, t ∈ [0, 1], j = 1, · · · , N (IV.4.6)
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with XN+1 = X1.

This can be rewritten under the matricial form:

Sj(t) =
[
t 1

]


−1 1

1 0







 Xj

Xj+1



 .

Therefore, we have:

Γ = {Sj(t), t ∈ [0, 1], j = 1, · · · , N}. (IV.4.7)

The shape is entirely defined by theN radii rj , j = 1, · · ·N , so that it can be written as follows:

Γ =





N∑

j=1

rjφj(s)



cos θj

sin θj



 , s ∈ [0, N ]



 (IV.4.8)

where,t = s− j + 1,

φ1(s) =





1 − t if 0 ≤ s ≤ 1,

t if N − 1 ≤ s ≤ N,

0 otherwise.

(IV.4.9)

and forj 6= 1,

φj(s) =






1 − t if j − 1 ≤ s ≤ j,

t if j − 2 ≤ s ≤ j − 1,

0 otherwise.

(IV.4.10)

Then, the corresponding deformation directions with respect to theN shape parametersrj are given

by hj(s) = φj(s)



cos θj

sin θj



.

IV.4.1.2 Square

We want to retrieve a square defined by using 8 parameters. We initialize the object with a larger

shape, as reported in TableIV.4.5.

The number of elements per wavelength used to simulate the data on the sought-after shape is equal

toNλ,data = 7, whereas it is equal toNλ = 5 for the meshes in the Newton iterations. Note that, in

that experiment, we consider the exterior boundary for generating the far-field data atRdata = 5 and

267



Chapter IV. A regularized Newton-type method for the solution of an Inverse Obstacle
Problem in fluid-structure interaction

Parameter Target
Initial
Guess

s1 0.010607 0.0175
s2 0.01 0.0175
s3 0.010607 0.0175
s4 0.01 0.0175
s5 0.010607 0.0175
s6 0.01 0.0175
s7 0.010607 0.0175
s8 0.01 0.0175

Table IV.4.5 – Shape parameters for the square-shaped target and the initial guess.

takeR = 4 to define the exterior boundary during the Newton iterations. This is an argument to avoid

the adverse effect of domain truncation.

Free noise results

The given frequency isω = 150000, which corresponds toka = 1.06. The regularization parameter

α is chosen equal to 1 in Step 2. At the fourth iteration, we go toStep 3, and the regularization

parameter is decreased to 0.01 in order to accelerate the convergence.

The results are reported in FiguresIV.4.1 andIV.4.2. The iterative shapes are depicted in FigureIV.4.1

and we plot in FigureIV.4.2 the convergence of the corresponding relative discrete residual on the

far-field intensity. The Newton algorithm achieves the specified tolerance of 1% on the FFP intensity

within 6 iterations. In FigureIV.4.2, we can observe the switch to the smaller regularization parameter

highlighted by the jump in the error. Note that we can not expect the error to be reduced more. Indeed,

the level of the order of10−1% that is achieved corresponds to the error due to the difference between

the exterior boundary radiiRdata andR that are used for generating the data and along the Newton

iterations.

Results with 5% of noise

In that experiment, the simulated FFP datap̃∞ are tainted with 5 % of noise, and we monitor the

convergence of our IOP solver via the decay of the relative residuals on the phase and the intensity of

the far-field pattern.

The given frequency isω = 150000, which corresponds toka = 1.06. The regularization parameter

α is chosen equal to 1 in Step 2. At the iteration 6, we go to Step 3, where we switch to a higher

frequencyω = 200000, corresponding toka = 1.41, and the regularization parameter is decreased to
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6

Figure IV.4.1 – Iterative shapes for the square with noise-free data.

269



Chapter IV. A regularized Newton-type method for the solution of an Inverse Obstacle
Problem in fluid-structure interaction

0 2 4 6 8 10 12
10

−1

10
0

10
1

10
2

10
3

Iteration number

R
el

at
iv

e 
re

si
du

al
 (

%
)

Figure IV.4.2 – Convergence history for the square with noise-free data.

0.01 in order to accelerate the convergence. We then initialize the shape parameters with their values

at stagnation in the previous step, and solve again the IOP bythe same regularized Newton method.

The results are reported in FiguresIV.4.3 andIV.4.4. They are similar to those obtained with noise-

free data. In FigureIV.4.4, we compare the results to the previous ones obtained with noise-free data.

In the case of tainted data, we also observe the convergence of the relative residuals on the FFP phase

and FFP intensity. The Newton algorithm achieves a level of error of 6% on the FFP phase within

8 iterations, which is comparable to that of noise. The corresponding relative residual on the FFP

intensity is of 1 %.

IV.4.1.3 A 4-point compass rose-like scatterer

We want to retrieve a 4-point compass rose-like obstacle obtained using 8 parameters. The initial

guess is a larger square. The shape parameters are reported in TableIV.4.6.

The number of elements per wavelength and the definition of the exterior boundary are defined as in

the previous experiment for the square scatterer.

Free noise results

Given the frequencyω = 150000, which corresponds toka = 1.5, the regularization parameterα is
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Figure IV.4.3 – Final shape for the square with data containing 5% of noise.
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Figure IV.4.4 – Convergence history for the square.
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Parameter Target
Initial
Guess

s1 0.006 0.012374
s2 0.015 0.0175
s3 0.006 0.012374
s4 0.015 0.0175
s5 0.006 0.012374
s6 0.015 0.0175
s7 0.006 0.012374
s8 0.015 0.0175

Table IV.4.6 – Shape parameters for the 4-point compass rose-shaped target and the initial guess.

chosen equal to 1.α is reduced to 0.1 at the5th iteration to accelerate the convergence in Step 3.

The convergence to the specified tolerance of 1% on the FFP intensity is achieved within 7 iterations,

as depicted in FiguresIV.4.5 andIV.4.6. Similar comments to the previous example can be done. The

method succeeds in recovering all corners of the shape.

Results with 2% of noise

In that case, we choose a level of 2% of noise to contaminate the data of the FFP phasẽp∞.

We consider againω = 150000, corresponding toka = 1.5, andα = 1. At iteration 4 and iteration

6, the regularization parameterα is decreased to 0.1 and 0.01 respectively, in order to accelerate the

convergence.

The results are reported in FiguresIV.4.7 andIV.4.8. In FigureIV.4.8, we compare the results to the

previous ones obtained with noise-free data. The Newton algorithm converges within 11 iterations to

a level of 3% of error on the FFP phase, which is a level comparable to that of noise. This is a slightly

higher value than the noise level, but the corners of the target obstacle are recovered, as illustrated in

FigureIV.4.7. The corresponding relative residual on the FFP intensity is also of the order of 3%.

IV.4.2 Star-like domains

IV.4.2.1 Parametrization

Now, we aim to retrieve the shape of curved scatterers. We choose to describe a class of star-like

domains. Using polar coordinates, the shape (that we assumeto be centered at the origin) can be
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6 (h) Iter 7

Figure IV.4.5 – Iterative shapes for the 4-point compass rose-like scatterer.
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Figure IV.4.6 – Convergence history for the 4-point compass rose-like scatterer with noise-free data.

Figure IV.4.7 – Final shape for the 4-point compass rose-like scatterer with data containing 2% of noise.
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Figure IV.4.8 – Convergence history for the 4-point compass rose-like scatterer.

parametrized as follows:

Γ = {r(θ)

cos θ

sin θ


 , θ ∈ [0, 2π)}, (IV.4.11)

wherer represent the polar radius. We approximater by its truncated Fourier series as follows:

rM(θ) = a0 +
M∑

k=1

bk cos(kθ) + ck sin(kθ). (IV.4.12)

In this case, the shape is entirely defined by theN = 2M + 1 coefficients:a0, bj j = 1, · · ·M , and

cj, j = 1, · · ·M , so that we have:

Γ =






N∑

j=1

sjφj(θ)


cos θ

sin θ


 , θ ∈ [0, 2π)




 , (IV.4.13)

wheres1 = a0, s2k = bk, s2k+1 = ck for k = 1, · · · ,M and

φ1(θ) = 1 (IV.4.14)

φ2k(θ) = cos(kθ), (IV.4.15)

φ2k+1(θ) = sin(kθ), for k = 1, · · · ,M. (IV.4.16)
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Then, the associated deformation directions with respect to theN shape parameters are given by

hj(θ) = φj(θ)


cos θ

sin θ


, j = 1, · · · , N .

IV.4.2.2 Circle

The Fourier series given by Eq. (IV.4.12) is truncated forM = 0, and we define a circular-shaped

obstacle using the following shape parameter:s1 = 0.01. The object is initialized with the larger

circle of radius 0.015, so thats1 = 0.015.

The number of elements per wavelength employed for generating the data with the target shape is

equal toNλ,data = 5, whereas it is equal toNλ = 3 for the Newton iterations. Note that we consider

the same definition of the exterior boundary for the far-fielddata generation and during the Newton

iterations, i.e.Rdata = R = 4.

The given frequency is equal toω = 350000, which corresponds toka = 2.33. α is chosen equal to

0.1.

The convergence results are depicted in FiguresIV.4.9 andIV.4.10. The Newton algorithm converges

in 4 iterations to the specified tolerance of 1% on the intensity of the far-field pattern. Note that since

we have taken the same values forRdata andR, the error can be reduced to a lower order. It requires

2 additional iterations within Step 2 to reduce the error to5.10−4.

When starting with a smaller radius ofs1 = 0.005 the algorithm requires 3 iterations. Nevertheless,

note that the interest of this example do not rely on the fact to retrieve a circle since the problem

only consists in determining one parameter. This example allows to observe the effect of the initial

guess and wavenumber on the convergence algorithm. Indeed,assume that we start from the same

frequencyω = 350000 (corresponding toka = 2.33) and a radiuss1 = 0.02. Then, the Newton

algorithm fails to converge to the sought-after shape. The radius only reduces to 0.0196 in the first

iteration and then stagnates. Once could think that we are located at a radius for whichω is a Jones

frequency. However, according to the numerical study as in ChapterII , it seems that this is not the

case for the first six modes. Then, it is necessary to switch toanother higher frequency to “reset” the

convergence.
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3

Figure IV.4.9 – Iterative shapes for the circle.
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Figure IV.4.10 – Convergence history for the circle.

IV.4.2.3 Potato-like scatterer

The Fourier series given by Eq. (IV.4.12) is truncated forM = 1, and we define a potato-shaped

obstacle by means of 3 shape parameters summarized in TableIV.4.7. The object is initialized with

the circle of radius 0.0125.

Parameter Target
Initial
Guess

s1 0.01 0.0125
s2 0.007 0
s3 0.0025 0

Table IV.4.7 – Shape parameters for the potato-shaped target and the initial guess.

We consider the same number of elements per wavelength and the same value for the radius of the

exterior boundary as in the previous experiment.

Free noise results

The given frequency isω = 1100000, which corresponds toka = 7.33, and the regularization param-

eterα is chosen equal to 50.
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The convergence results obtained within the single Step 2 are depicted in FiguresIV.4.11andIV.4.12.

We observe that the proposed method requires 7 iterations toachieve the prescribed tolerance of 1%

on the FFP intensity.

Results with 5% of noise

In that case, we add 5% of noise to the FFP datap̃∞.

We keep the frequencyω = 1100000, corresponding toka = 7.33, and the regularization parameter

α = 50.

The results are reported in FiguresIV.4.13andIV.4.14. The shape reconstruction is similar to the one

achieved with noise-free data. In FigureIV.4.14, we compare the convergence results to the previous

ones obtained with noise-free data. The Newton algorithm converges within 6 iterations to a level of

error of 6% on the FFP phase, which is a level comparable to that of noise. The corresponding error

on the FFP intensity is of 3%.

IV.4.2.4 Peanut-like scatterer

The truncation of the series given by Eq. (IV.4.12) is done forM = 2, and we represent a peanut-

shaped obstacle using 5 shape parameters indicated in TableIV.4.8 and we initialize the shape with

the circle of radius 0.0125.

Parameter Target
Initial
Guess

s1 0.01 0.0125
s2 0.002 0
s3 0.0005 0
s4 0.004 0
s5 0.001 0

Table IV.4.8 – Shape parameters for the peanut-shaped target and the initial guess.

We consider the same number of elements per wavelength and the same value for the radius of the

exterior boundary as in the previous sets of experiments.

Free noise results

The circular frequency is given byω = 700000, which corresponds toka = 4.67. The regularization

parameterα is equal to 100.
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6 (h) Iter 7

Figure IV.4.11 – Iterative shapes for the potato-like scatterer.
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Figure IV.4.12 – Convergence history for the potato-like scatterer with noise-free data.

Figure IV.4.13 – Final shape for the potato with data containing 5 % of noise.
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Figure IV.4.14 – Convergence history for the potato.

The iterative shapes are depicted in FiguresIV.4.15 andIV.4.16 and we plot in FigureIV.4.17 the

convergence of the corresponding relative discrete residual on the intensity of the far-field pattern

during Step 2. The Newton algorithm converges in 12 iterations to the specified tolerance of 1%

within a single step. It is worth noting that, once the tolerance of 1% is achieved, the algorithm

requires some additional steps for reducing the relative residual associated with the FFP intensity to

10−2.

Results with 5% of noise

In that case, the synthetic data of the FFP phasep̃∞ are tainted with 5% of noise.

Given the frequencyω = 700000, corresponding toka = 4.67, and for a regularization parameter

α = 100, the results are reported in FiguresIV.4.18andIV.4.19.

In FigureIV.4.19, we compare the convergence results to those obtained with noise-free data. In the

case of tainted data, the Newton algorithm requires 15 iterations to reduce the relative residual on

the FFP phase to a value of 6% comparable to the noise level. The corresponding error on the FFP

intensity is of 5%.

IV.4.2.5 Ghost-like scatterer

The truncation of the series given by Eq. (IV.4.12) is done forM = 3, and we represent a ghost-

shaped obstacle using 7 shape parameters, and the initial guess is the circle of radius 0.02, as reported

in TableIV.4.9.
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6 (h) Iter 7 (i) Iter 8

Figure IV.4.15 – Iterative shapes for the peanut-like scatterer.
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(a) Iter 9 (b) Iter 10 (c) Iter 11

(d) Iter 12

Figure IV.4.16 – Iterative shapes for the peanut-like scatterer.

Parameter Target
Initial
Guess

s1 0.015 0.02
s2 0.005 0
s3 0.0015 0
s4 0.007 0
s5 0.0004 0
s6 0.005 0
s7 0.003 0

Table IV.4.9 – Shape parameters for the ghost-shaped target and the initial guess.
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Figure IV.4.17 – Convergence history for the peanut-like scatterer with noise-free data.

Figure IV.4.18 – Final shape for the peanut with data containing 5 % of noise.
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Figure IV.4.19 – Convergence history for the peanut.

We consider the same number of elements per wavelength and the same value for the radius of the

exterior boundary as in the three previous experiments.

Free noise results

The given frequency isω = 700000, which corresponds toka = 7, and the regularization parameter

α is equal to 100.

The convergence results obtained within the single Step 2 are depicted in FiguresIV.4.20 to IV.4.22

andIV.4.23. The convergence to the sought-after shape is quite slow in that case, and requires 18

iterations for the given tolerance of 1%.

Results with 5% of noise

Here, the measurements of the far-field patternp̃∞ are tainted with 5 % of noise, and we monitor the

errors on the phase and the intensity of the far-field pattern.

We keepω = 700000, corresponding toka = 7, andα = 100.

The results are reported in FiguresIV.4.24andIV.4.25. The final shape superimposed with the target

depicted in FigureIV.4.24 illustrates a good reconstruction, all major features of the target obstacle

are recovered. In comparison with the results obtained withnoise-free data, we achieve convergence

within 18 iterations, in which the relative residual on the FFP phase is reduced to a value of 7%,

comparable to the noise level (see FigureIV.4.25). The corresponding relative residual on the FFP

intensity is of 3%.
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6 (h) Iter 7

Figure IV.4.20 – Iterative shapes for the ghost scatterer.
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(a) Iter 8 (b) Iter 9 (c) Iter 10

(d) Iter 11 (e) Iter 12 (f) Iter 13

(g) Iter 14 (h) Iter 15

Figure IV.4.21 – Iterative shapes for the ghost scatterer.
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(a) Iter 16 (b) Iter 17 (c) Iter 18

Figure IV.4.22 – Iterative shapes for the ghost scatterer.
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Figure IV.4.23 – Convergence history for the ghost scatterer with noise-free data.
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Figure IV.4.24 – Final shape for the ghost with data containing 5 % of noise.
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Figure IV.4.25 – Convergence history for the ghost.
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IV.4.2.6 Mini-Submarine-like scatterer

Before being able to recover a real submarine, a first step canbe to recover a smoother shape re-

sembling a mini-submarine as in FigureIV.4.26. To that purpose, we truncate the trigonometric series

for M = 4, and we represent a simplified fish-shaped scatterer using the 7 shape parameters summa-

rized in TableIV.4.10. We initialize the shape with an oval initial guess, as indicated in TableIV.4.10.

Figure IV.4.26 – Fictitious mini-submarine

Parameter Target
Initial
Guess

s1 0.015 0.0175
s2 0.005 0.006
s3 0.0005 0
s4 0.006 0.001
s5 0.0001 0
s6 0.002 0
s7 0.001 0
s8 0.002 0
s9 0.003 0

Table IV.4.10 – Shape parameters for the mini-submarine-shaped target andthe initial guess.

In that case, we increase the mesh resolution. The number of elements per wavelength used to simu-

late the data on the sought-after shape is equal toNλ,data = 8, whereas it is equal toNλ = 6 for the

meshes during the Newton iterations. Note that, in that experiment, we consider the exterior boundary

for the far-field pattern generation atRdata = 5 and still takeR = 4 to define the exterior boundary

291



Chapter IV. A regularized Newton-type method for the solution of an Inverse Obstacle
Problem in fluid-structure interaction

during the Newton iterations. This is an argument to avoid the adverse effect of domain truncation.

Free noise results

We considerω = 350000, which corresponds toka = 3.5. The regularization parameterα is chosen

equal to 100.

The iterative shapes and convergence results obtained within the single Step 2 are depicted in Fig-

uresIV.4.27 to IV.4.29. In the absence of noise, the Newton algorithm converges within 12 iterations

to the prescribed tolerance of 1%. Unlike the previous experiments, the error can not be reduced

more. Indeed, the level achieved of the order of10−1% corresponds to the error due to the difference

between the exterior boundary radiiRdata andR that are used for generating the synthetic data and

along the Newton iterations.

Sensitivity to the noise level

The previous results were performed with noise-free data. In the following numerical example, we

assess the performance of the algorithm when adding white noise to the synthetic datãp∞. As pre-

viously, we monitor the convergence of the IOP solver via thedecay of the discrete relative residuals

on the phase and the intensity of the far-field pattern.

We keepω = 350000, corresponding toka = 3.5, andα = 100, and we vary the level of white noise

between 0 and 20%.

The convergence results are depicted in FigureIV.4.30and the corresponding relative errors obtained

during Step 2 are summarized in TablesIV.4.11 and IV.4.12. For most cases where the FFP data

are tainted by noise, the IOP solver converges in a few iterations within a single step. The initial

relative residual on the FFP phase is reduced to a level comparable to that of the noise, as indicated in

TableIV.4.11. Consequently, these results highlight the effect of noiseon the recovery. Nevertheless,

Figure IV.4.31 also illustrates that all major features of the target are recovered in all cases with a

good overall accuracy, even when using 20% of noise. This is supported by TableIV.4.12. It is worth

noting that once the relative residual is reduced to a level comparable to that of the noise, it stagnates

during a few iterations but then diverges. This is particularly visible on the last experiment with 20%

of noise, as shown in FigureIV.4.32with 5 additional iterations in Step 2.

Remark IV.4.2.1 Sensitivity to the regularization parameter - Note that we have considered a higher

or smaller regularization parameter, such asα = 1000 or α = 10, but then the algorithm fails to con-

verge when keeping the same parameters (initial guess, survey frequency, ...).
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6

Figure IV.4.27 – Iterative shapes for the mini-submarine-like scatterer.
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(a) Iter 7 (b) Iter 8 (c) Iter 9

(d) Iter 10 (e) Iter 11 (f) Iter 12

Figure IV.4.28 – Iterative shapes for the mini-submarine-like scatterer.

Noise level 0 1 5 10 20

p̃∞ 1.2 2 5.2 10.5 18.5
p̃∗

∞p̃∞ 0.3 0.8 3.4 5.9 11.8
Iter. 15 13 14 9 6

Table IV.4.11 – L2-relative error on the reconstructed FFP: Sensitivity to the noise level.
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Figure IV.4.29 – Convergence history for the mini-submarine-like scatterer with noise-free data.

Noise level 0 1 5 10 20

L1 0.5 1.4 1.6 2.8 7.6
L2 0.5 1.1 1.6 2.9 6
L∞ 0.5 0.8 1.7 3.0 4.3
Iter. 15 13 14 9 6

Table IV.4.12 – Relative error on the shape parameters: Sensitivity to the noise level.
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Figure IV.4.30 – Convergence history : Sensitivity to the noise level.
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(a) 0 %noise (b) 1 %noise (c) 5 %noise

(d) 10 %noise (e) 20 %noise

Figure IV.4.31 – Effect of the noise level on the shape reconstruction: Computed (blue) vs Target (red).

Figure IV.4.32 – Shape reconstruction: Computed (blue) vs Target (red) at iteration 11 of Step 2 using 20%
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IV.4.3 B-spline representation

IV.4.3.1 Parametrization

We want to retrieve the shape of curved scatterers using uniform quadratic B-splines. To that

effect, we define a set ofN control points:Xj = rj


cos θj

sin θj


, j = 1, · · ·N , uniformly distributed in

the polar coordinate angle.

Then, thejth B-spline of degree 2 denoted bySj is the parametric curve defined as follows:

Sj(t) =
1

2

[
(t2 − 2t+ 1)Xj−1 + (−2t2 + 2t+ 1)Xj + t2Xj+1

]
, t ∈ [0, 1], j = 1, · · · , N(IV.4.17)

with XN+1 = X1 andX0 = XN .

Put under matricial form, we have:

Sj(t) =
1

2

[
t2 t 1

]




1 −2 1

−2 2 0

1 1 0







Xj−1

Xj

Xj+1


 .

Therefore, we get:

Γ = {Sj(t), t ∈ [0, 1], j = 1, · · · , N}. (IV.4.18)

The shape is entirely defined by theN radii rj , j = 1, · · ·N , so that it can be written as follows:

Γ =






N∑

j=1

rjφj(s)


cos θj

sin θj


 , s ∈ [0, N ]




 (IV.4.19)

where,t = s− j + 1,

φ1(s) =
1

2






t2 − 2t+ 1 if 1 ≤ s ≤ 2,

−2t2 + 2t+ 1 if 0 ≤ s ≤ 1,

t2 if N − 1 ≤ s ≤ N,

0 otherwise.

(IV.4.20)
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φN(s) =
1

2






t2 − 2t+ 1 if 0 ≤ s ≤ 1,

−2t2 + 2t+ 1 if N − 1 ≤ s ≤ N,

t2 if N − 2 ≤ s ≤ N − 1,

0 otherwise.

(IV.4.21)

and forj = 2, · · · , N − 1,

φj(s) =
1

2






t2 − 2t+ 1 if j ≤ s ≤ j + 1,

−2t2 + 2t+ 1 if j − 1 ≤ s ≤ j,

t2 if j − 2 ≤ s ≤ j − 1,

0 otherwise.

(IV.4.22)

Consequently, the deformation directions with respect to theN shape parametersrj are given by

hj(s) = φj(s)



cos θj

sin θj



.

IV.4.3.2 Oval

We want to retrieve an oval-shaped obstacle parametrized with 4 shape parameters. We initialize

the object with the larger shape given in TableIV.4.13.

Parameter Target
Initial
Guess

s1 0.01 0.0175
s2 0.015 0.0175
s3 0.01 0.0175
s4 0.015 0.0175

Table IV.4.13 – Shape parameters for the oval-shaped target and the initialguess.

The number of elements per wavelength used to simulate the data on the sought-after shape is equal

toNλ,data = 5, whereas it is equal toNλ = 3 for the meshes in the Newton iterations. Here, we take

Rdata = R = 4.
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Free noise results

The frequency is given byω = 300000, which corresponds toka = 3. The regularization parameter

α is equal to 1.

The Newton algorithm converges in only 3 iterations. The corresponding shapes and the convergence

of the relative residual during Step 2 are depicted in Figures IV.4.33 and IV.4.34. It is worth noting

that, once the tolerance of 1% is achieved, the algorithm requires five additional iterations for reducing

the relative residual on the FFP intensity to10−2.

(a) Initial guess (b) Iter 1

(c) Iter 2 (d) Iter 3

Figure IV.4.33 – Iterative shapes for the oval scatterer.

Results with 5% of noise

In that case, the simulated FFP datap̃∞ are tainted with 5 % of noise, and we monitor the errors on
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Figure IV.4.34 – Convergence history for the oval scatterer with noise-free data.

the phase and the intensity of the far-field pattern.

The frequency is given byω = 300000, corresponding toka = 3 and we chooseα = 50. At the4th

iteration, we switch toα = 5.

The results are reported in FiguresIV.4.35 andIV.4.36. In FigureIV.4.36, we compare the results

to the previous ones obtained with noise-free data. In the case of tainted data, we also observe the

convergence of the relative residuals. We achieve convergence within 5 iterations, in which the two

relative residuals associated with the FFP phase and the FFPintensity are reduced to the noise level.

IV.4.3.3 A rounded square

We want to retrieve a rounded square target obtained using the 8 shape parameters reported in

TableIV.4.14. We initialize the object with the larger shape given byrj = 0.0175, for j = 1, · · · , 8.

Note that, in that experiment, we still takeNλ,data = 5 andNλ = 3, but we consider the exterior

boundary for generating the far-field pattern data atRdata = 5 and still takeR = 4 to define the

exterior boundary during the Newton iterations.

Free noise results

The frequency is given byω = 150000, which corresponds toka = 1.5, and the regularization

parameterα is equal to 1 in Step 2. At iteration 9, the regularization parameter is switched to 0.01
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Figure IV.4.35 – Final shape for the oval-shaped scatterer with data containing 5 % of noise.
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Figure IV.4.36 – Convergence history for the oval-shaped scatterer.
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Parameter Target
Initial
Guess

s1 0.01 0.0175
s2 0.015 0.0175
s3 0.01 0.0175
s4 0.015 0.0175
s5 0.01 0.0175
s6 0.015 0.0175
s7 0.01 0.0175
s8 0.015 0.0175

Table IV.4.14 – Shape parameters for the rounded square-shaped target and the initial guess.

and 0.001 in two successive steps, whereas the wavenumber does not change.

The corresponding shapes and the relative residual convergence during the successive Step 2 and Step

3 are depicted in FiguresIV.4.37to IV.4.39. The Newton algorithm converges in 11 iterations. We can

observe in FigureIV.4.39the acceleration in the convergence due to the decrease of the regularization

parameter.

Results with 5% of noise

Once again, we contaminate the synthetic data of the FFP phase with a noise level of 5%.

The frequency is given byω = 150000, corresponding toka = 1.5, and we choose againα = 1. At

the6th iteration, we switch toω = 200000, which corresponds toka = 2, andα = 5.

The results are reported in FiguresIV.4.40 andIV.4.41. Even when the data are tainted with white

noise, the algorithm converges. It requires 10 iterations to reduce the two relative residuals associated

with the FFP phase and the FFP intensity to a value of 4% slightly smaller than the noise level.

IV.4.3.4 Submarine-like scatterer

A parameter identification problem We want to recover a simplified submarine parametrized us-

ing 24 B-splines. The values of these 24 parameters corresponding to the target are specified in

TableIV.4.15. For simplification purpose, we assume that we know the structure of the object, and

we want to retrieve its real size. Therefore, we consider an initial guess which is the half of the object

to be retrieved.

The mesh resolution is the same:Nλ,data = 5 andNλ = 3. We again considerRdata = 5 andR = 4

to avoid the adverse effect of domain truncation.
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(a) Initial guess (b) Iter 1

(c) Iter 2 (d) Iter 3

(e) Iter 4 (f) Iter 5

Figure IV.4.37 – Iterative shapes for the rounded square.
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(a) Iter 6 (b) Iter 7

(c) Iter 8 (d) Iter 9

(e) Iter 10 (f) Iter 11

Figure IV.4.38 – Iterative shapes for the rounded square.
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Figure IV.4.39 – Convergence history for the rounded square with noise-free data.

Figure IV.4.40 – Final shape for the rounded square with data containing 5 % ofnoise.
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Parameter Target
Initial
Guess

s1 0.018 0.009
s2 0.017 0.0085
s3 0.015 0.0075
s4 0.012 0.006
s5 0.01 0.005
s6 0.014 0.007
s7 0.015 0.0075
s8 0.014 0.007
s9 0.01 0.005
s10 0.013 0.0065
s11 0.018 0.009
s12 0.027 0.0135
s13 0.03 0.015
s14 0.024 0.012
s15 0.014 0.007
s16 0.01 0.005
s17 0.008 0.004
s18 0.0075 0.00325
s19 0.007 0.0035
s20 0.0075 0.00375
s21 0.008 0.004
s22 0.01 0.005
s23 0.013 0.0065
s24 0.016 0.008

Table IV.4.15 – Shape parameters for the submarine-shaped target and the initial guess.
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Figure IV.4.41 – Convergence history for the rounded square scatterer.

The frequency is given byω = 100000, which corresponds toka = 2, and the regularization pa-

rameter is chosen equal toα = 0.5. When the error stagnates in Step 2, we switch toω = 200000,

corresponding toka = 4 andα = 0.05 at iteration 5. We then initialize the shape parameters with

their values at stagnation in the previous step, and solve again the IOP by the same regularized New-

ton method. Next, at iteration 11, we switch toω = 300000, that iska = 6, andα = 0.005. Last, to

improve the convergence results, we reduceα to 0.00005 at iteration 15.

The corresponding shapes and the relative residual convergence obtained during the successive Step 2

and Step 3 are depicted in FiguresIV.4.42 to IV.4.44. The Newton algorithm requires 14 iterations to

pass below the tolerance of 1% on the FFP intensity. The switches to a small regularization parameter

and higher frequency allow to recover the global features.

Results with 2% of noise

Here, we choose a noise level of 2% to contaminate the data of the FFP phasẽp∞.

We consider the frequencyω = 100000, which corresponds toka = 2, to start in Step 2, with a reg-

ularization parameterα = 0.75. When the error stagnates, we switch toω = 200000, that iska = 4

andα = 0.1 at iteration 6. Next, at iteration 11, we switch toω = 300000, corresponding toka = 6,

and keepα = 0.1.

The results are depicted in FigureIV.4.45 and FigureIV.4.46. FigureIV.4.45 illustrates a good re-

construction where all major features of the target are recovered. In FigureIV.4.46, we observe the

convergence within 14 iterations when the data are tainted with noise. The initial relative residual
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(a) Initial guess (b) Iter 1 (c) Iter 2

(d) Iter 3 (e) Iter 4 (f) Iter 5

(g) Iter 6 (h) Iter 7 (i) Iter 8

Figure IV.4.42 – Iterative shapes for submarine-like scatterer.
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(a) Iter 9 (b) Iter 10 (c) Iter 11

(d) Iter 12 (e) Iter 13 (f) Iter 14

Figure IV.4.43 – Iterative shapes for submarine-like scatterer.
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Figure IV.4.44 – Convergence history for the submarine-like scatterer with noise-free data.

on the FFP phase is reduced to a value of 4%, which is slightly higher than the noise level. The

corresponding error on the FFP intensity is of 0.5%.

IV.5 Conclusions

On the given numerical examples, we have demonstrated the feasibility of the method. The nu-

merical experiments that have been presented here are only preliminary results, but are promising

results since they tend to illustrate the potential of the proposed solution methodology.

In particular, we have observed a sensitivity to various factors:

– the initial guess,

– the number of FFP data,

– the regularization parameterα,

– the wavenumber (or wavelength),

– the parametrization choice,

– the noise level,

– the number of quadrature points to evaluate the FFP,

– the direction of the incident wave,

– the distance of the exterior boundary,
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Figure IV.4.45 – Final shape for the submarine-like scatterer with data containing 2% of noise.
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Figure IV.4.46 – Convergence history for the submarine-like scatterer.
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– the order of the finite elements,

– the order of the curved boundary edges,

– · · ·
We now pursue the numerical investigation. To go further andin order to provide inverse problem

solvers based on a regularized Newton method the robustnessneeded for realistic applications, some

sensitivity analysis to the previous points should be addressed. For instance, the automatic initial-

ization of the regularization parameter remains outstanding issues, as well as the choice of the initial

guess. More specifically, the setting of the frequency seemsto depend on the size of the scatterer to

be found, on the complexity of the form and on the parametrization. The choice of the regularization

parameter appears to be dependent on the survey wavenumber,on the complexity of the shape, and

the noise level. It seems that the more we start with a high frequency, the more the regularization pa-

rameter has to be large. Moreover, the more there is noise, the more the problem must be regularized.

Regarding the initial guess, its definition depends on the a priori informations, if available, that we

can have on the obstacle.

A parallelization of the post-processing on the solution related to the evaluation of the far-field pattern

should be done in order to accelerate and optimize the inverse solver.

Moreover, it would be relevant to study the behavior of the algorithm when considering a blind test

problem, or a test problem with an imperfect parametrization, while adding different noise levels to

the data and employing, for instance, B-splines.

We have used the same parametrization for the sought-after obstacle and the iterative shapes, and the

number of shape parameters is a priori known. A procedure where the number of shape parameters is

incremented all along the iterative process when the error stagnates could be considered. Moreover,

we may mix polygonal and curved representations to retrievethe characteristics of a submarine for

which we would have a priori information on the parameters tobe identified.

In addition, we have used the intensity of the FFP, but we could observe the behavior of the method

when considering FFP data to retrieve both the location and the shape of the scatterer.

Furthermore, it could be interesting to consider another type of regularization. An attempt to use the

Levenberg-Marquardt algorithm, which also consists in a Tikhonov’s regularization where the regu-

larization termαI is replace withα diag(U∗U), has been quickly tried. A first observation is that the

choice of the parameters for the simulation seems to be slightly different and no improvement has

been achieved for the time being.
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Another prospect consists in considering the Limited-Aperture Problem, employing multiple incident

waves. Last, it would be interesting to retrieve both the shape and the material properties of the elastic

scatterer.
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Appendix C

Appendices to the Chapter IV

C.1 Analytical far-field pattern for the disk-shaped elastic scat-

terer problem

In order to derive the analytical expression of the 2D far-field patternp∞, we proceed as in [28].

Recall that, in the infinite fluid domain, the outgoing scattered pressure field is expressed as follows:

[16]:

p(r, θ) =
∑

n

AnH
(1)
n (kr) cos(nθ). (C.1.1)

where the complex-valued coefficientsAn thus satisfy:

AnH
(1)
n (kr) =

∫

S1

p(rx̂)cos(nθ)dx̂. (C.1.2)

Moreover, for large radius [28] (p.66, Eq. (3.59)), we have the following asymptotic behavior of the

Hankel function:

H(1)
n (kr) ∼

√
2

kπr
ei(kr−nπ/2−π/4). (C.1.3)

Nevertheless, in order to obtain the FFP of the pressure field, we cannot take the limit asr → +∞
because the asymptotic behavior (C.1.3) does not hold uniformly inn. However, according to Theo-

rem 2.5 in Colton-Kress [28], the far-field pattern is an analytic function. This implies thatp∞ admits

the following expansion:

p∞(x̂) =
∑

n

Ãn cos(nθ). (C.1.4)
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whereÃn are complex-valued coefficients given by:

Ãn =
∫

S1

p∞(x̂)cos(nθ)dx̂. (C.1.5)

From Eq. (IV.2.6), we have the following asymptotic behavior :

p∞(x̂) = lim
r→+∞

√
re−ikrp(rx̂). (C.1.6)

Therefore, substituting the latter equation (C.1.6) into Eq. (C.1.5) and using Eq. (C.1.2), we obtain:

Ãn =
∫

S1

lim
r→+∞

√
re−ikrp(rx̂)cos(nθ)dx̂

= lim
r→+∞

√
re−ikr

∫

S1

p(rx̂)cos(nθ)dx̂

= lim
r→+∞

√
re−ikrAnH

(1)
n (kr).

Then, we deduce that:

Ãn =

√
2

kπ

eiπ/4

in+1
An

Finally, we conclude that the far-field pattern can be expressed as follows:

p∞(x̂) =
∑

n

√
2

kπ

eiπ/4

in+1
An cos(nθ). (C.1.7)

where the coefficientsAn are given by the series of the pressure field Eq. (C.1.1).

C.2 Analytical Fréchet derivative for the disk-shaped elastic scat-

terer problem

In this Appendix, we derive the analytical series of the Fréchet derivative in the disk-shaped

configuration. In that case, the parametrization of circle with radiusr = a is given by:

Γ = {x ∈ R
2; x = a



cos θ

sin θ



 ; θ ∈ [0, 2π)}. (C.2.1)

We denote by(~er, ~eθ) the polar basis vectors given by~er = (cos θ, sin θ)t and~eθ = (− sin θ, cos θ)t.

Then, we want to derive the expression of the Fréchet derivative (p′, u′) of the scattered field with
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respect tor in the directionh = ~er.

Let

Γt = {x ∈ R
2; ‖x‖ = a+ t}. (C.2.2)

Then,

Γ0 = {x ∈ R
2; ‖x‖ = a}. (C.2.3)

Let (pt, ut) (resp.(p0, u0) = (p, u)) be the scattered field corresponding toΩf
t × Ωs

t (resp.Ωf
0 × Ωs

0 =

Ωf × Ωs), where

Ωf
t = {x ∈ R

2; a+ t < ‖x‖} (C.2.4)

Ωs
t = {x ∈ R

2; 0 ≤ ‖x‖ < a+ t}. (C.2.5)

Therefore, in the infinite fluid domain, the outgoing scattered pressure field is expressed as follows

[16]:

pt(r, θ) =
+∞∑

n=0

An(t)H(1)
n (kr) cos(nθ); ∀ r ≤ a+ t, θ ∈ [0, 2π). (C.2.6)

and

p(r, θ) =
+∞∑

n=0

AnH
(1)
n (kr) cos(nθ); ∀ r ≤ a, θ ∈ [0, 2π). (C.2.7)

In the solid obstacle, the scattered displacement fieldut (resp.u) is expressed using two displacement

potentialsφ andψ [120]:

ut = ∇φt + (−ez) × ∇ψt (resp. u = ∇φ+ (−ez) × ∇ψ, (C.2.8)

where these two potentials are given by:

φt(r, θ) =
+∞∑

n=0

Cn(t)Jn(kpr) cos(nθ),

ψt(r, θ) =
+∞∑

n=0

Dn(t)Jn(ksr) sin(nθ); ∀ 0 ≤ r < a+ t, θ ∈ [0, 2π). (C.2.9)

(resp.

φ(r, θ) =
+∞∑

n=0

CnJn(kpr) cos(nθ),

ψ(r, θ) =
+∞∑

n=0

DnJn(ksr) sin(nθ); ∀ 0 ≤ r < a, θ ∈ [0, 2π)). (C.2.10)
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Moreover, the complex coefficientsAn(t), Cn(t) andDn(t) satisfy a system of the following form

(see [88] and ChapterII ):

Sn(t)Xn(t) = bn(t) (C.2.11)

whereXn(t) = (An(t), Cn(t), Dn(t))t andSn(t) is a3 × 3 matrix with complex-valued entries.

We set:

(qt, vt) = (pt, ut) ◦ (I + t, I) = (pt(r + t, θ), ut(r + t, θ)). (C.2.12)

let θ ∈ [0, 2π) be fixed. Therefore,

qt(r, θ) =
+∞∑

n=0

An(t)H(1)
n (k(r + t)) cos(nθ); ∀ r ≤ a, (C.2.13)

and

vt = ∇φt(r + t, θ) + (−ez) × ∇ψt(r + t, θ), (C.2.14)

where:

φt(r + t, θ) =
+∞∑

n=0

Cn(t)Jn(kp(r + t)) cos(nθ), (C.2.15)

ψt(r + t, θ) =
+∞∑

n=0

Dn(t)Jn(ks(r + t)) sin(nθ); ∀ 0 ≤ r < a. (C.2.16)

Observe that:

∇p · h =

[
∂p

∂r
er +

∂p

∂r

∂p

∂θ
eθ

]
· h (C.2.17)

=
∂p

∂r
er · er +

∂p

∂r

∂p

∂θ
eθ · er (C.2.18)

=
∂p

∂r
. (C.2.19)

Then, we obtain:

p′ =
∂pt
∂t |t=0

=
∂qt
∂t |t=0

− ∇p · h

=
∂qt
∂t |t=0

− ∂p

∂r
(C.2.20)
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and similarly for the displacement field,

u′ =
∂ut
∂t |t=0

=
∂vt
∂t |t=0

− ∂u

∂r

= ∇φ′ + (−ez) × ∇ψ′

= ∇
(
∂φt(r + t, θ)

∂t |t=0

)
+ (−ez) × ∇

(
∂ψt
∂t |t=0

)

−∇
(
∂φ

∂r

)
+ (−ez) × ∇

(
∂ψ

∂r

)
. (C.2.21)

Moreover, differentiating with respect to the perturbation radiust, we have:

∂qt
∂t |t=0

=
+∞∑

n=0

dAn(t)

d t |t=0
H(1)
n (kr) cos(nθ)

+
+∞∑

n=0

AnkH
(1)

′

n(kr) cos(nθ)

=
+∞∑

n=0

dAn(t)

d t |t=0
H(1)
n (kr) cos(nθ)

+
∂p

∂r
; ∀ a < r. (C.2.22)

and similarly for the displacement field,

∂vt
∂t |t=0

= ∇
(
∂φt(r + t, θ)

∂t |t=0

)
+ (−ez) × ∇

(
∂ψt
∂t |t=0

)
. (C.2.23)

where:

∂φt(r + t, θ)

∂t |t=0
=

+∞∑

n=0

dCn(t)

d t |t=0
Jn(kpr) cos(nθ)

+
+∞∑

n=0

CnkpJn
′

(kpr) cos(nθ)

=
+∞∑

n=0

dCn(t)

d t |t=0
Jn(kpr) cos(nθ)

+
∂φ

∂r
; ∀ 0 ≤ r < a (C.2.24)

∂ψt(r + t, θ)

∂t |t=0
=

+∞∑

n=0

dDn(t)

d t |t=0
Jn(ksr) sin(nθ)
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+
+∞∑

n=0

DnksJn
′

(ksr) cos(nθ)

=
+∞∑

n=0

dDn(t)

d t |t=0
Jn(ksr) sin(nθ)

+
∂ψ

∂r
.; ∀ 0 ≤ r < a. (C.2.25)

Substituting Eqs.(C.2.22)-(C.2.25) into Eqs.(C.2.20)-(C.2.21), we deduce that:

p′ =
+∞∑

n=0

dAn(t)

d t |t=0
H(1)
n (kr) cos(nθ) (C.2.26)

and

u′ = ∇φ′ + (−ez) × ∇ψ′, (C.2.27)

where

φ′ =
+∞∑

n=0

dCn(t)

d t |t=0
Jn(kpr) cos(nθ), (C.2.28)

ψ′ =
+∞∑

n=0

dDn(t)

d t |t=0
Jn(ksr) sin(nθ). (C.2.29)

Therefore, in order to compute(p′, u′), we need to evaluate the complex coefficients
dAn(t)

d t |t=0
,

dCn(t)

d t |t=0
and

dDn(t)

d t |t=0
. SinceXn(t) = (An(t), Cn(t), Dn(t))

t satisfy Eq. (C.2.11), we have:

Xn(t) = [Sn(t)]−1bn(t). (C.2.30)

Then, differentiating with respect tot, it follows that:

dXn(t)

d t
=

d [Sn(t)]
−1

d t
bn(t) + [Sn(t)]−1d bn(t)

d t
(C.2.31)

= −[Sn(t)]−1d Sn(t)

d t
[Sn(t)]−1bn(t) + [Sn(t)]

−1d bn(t)

d t
, (C.2.32)

which concludes this Appendix.
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In this research work, we have proposed a solution methodology for retrieving the shape of an

elastic bounded object immersed in an homogeneous fluid medium from some measurements of the

far-field pattern, and assuming certain characteristics of thesurface of the obstacle. Our approach for

solving this inverse obstacle problem is based on a regularized Newton-type method.

Since the solution of this IOP mainly depends on the solutionof the associated direct problem, the

work accomplished here pertains to the mathematical and numerical analysis of both the direct elasto-

acoustic scattering problem and of the inverse obstacle scattering problem.

First, we have examined the direct problem. On a theoreticalviewpoint, we have revisited the

question of the existence and uniqueness of the solution of the direct elasto-acoustic scattering prob-

lem (ChapterI). The proposed analysis distinguishes itself from previous studies by employing the

DtN operator properties, and the Fredholm theory. We have then observed that the mathematical

framework we propose is equivalent to set the problem in weighted Sobolev spaces. This approach

allows the range of validity of the standard well-posed results to the case where the elastic scat-

terer is assumed to be only Lipschitz continuous, which is ofmore practical interest. Then, we

have developed a numerical solution methodology for the direct problem, based on discontinuous

Galerkin approximations (ChapterII ). The proposed method possesses two distinctive features.First,

it employs higher-order polynomial finite elements needed to address the high-frequency propaga-

tion regime. Second, it is equipped with curved boundary edges to provide a better modeling of

the fluid-structure interaction. The designed solver reveals interesting performances. The numerical

investigation demonstrates accurate approximations and arobustness to the resonance phenomenon.

It also exhibits very little pollution effects, which highlights the potential of the proposed solution

methodology for efficiently solving mid- to high-frequencyelasto-acoustic scattering problems.
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Second, we have focused our attention on the inverse problem. We have established the continuous

Fréchet differentiability of the elasto-acoustic field with respect to Lipschitz continuous deformation

of the shape of an elastic scatterer (ChapterIII ). In order to evaluate the Jacobian matrix that arises

at each Newton iteration with more robustness and accuracy that possible with a finite difference

scheme, we have established a characterization of the Fréchet of the elasto-acoustic scattered field.

It is characterized as the solution to a particular direct elasto-acoustic scattering problem that differs

only in the transmission conditions. Consequently, the direct solver we have developed has been used

to solve the inverse two-dimensional elasto-acoustic obstacle problem into consideration by a regu-

larized Newton-like method (ChapterIV). We have illustrated the feasibility of our approach using

different types of parametrization of the scatterer, even when the data are tainted with noise.

As regards the main prospects to the works presented here, a theoretical analysis of the DG method

applied to the fluid-structure interaction problem proposed in ChapterII would be interesting. More-

over, we keep in mind, in the long term, to apply this solver toconfigurations from geophysics by

considering heterogeneous solids. We could then benefit from another interesting flexibility property

of the DG method by combining different orders of polynomials. In addition, some theoretical issues

related to the characterization of the Fréchet derivative in the framework of Lipschitz domains have

been raised in ChapterIII and remain open. Indeed, when the boundary is assumed to be only Lip-

schitz continuous, we have been faced with the absence of some regularity results to give a sense to

the transmission conditions satisfied by the Fréchet derivative on the boundaryΓ.

As regards the inverse problem, its ill-posed nature implies numerical difficulties, with a strong sen-

sitivity and instabilities for its solution. We have presented preliminary results in ChapterIV. Its

investigation is still pursued. In particular, the optimization of the code should be considered to speed

up the computations. Some perspectives will consist, in theshorter or longer term, in considering

more complex configurations, the determination of both the shape and the material properties of the

elastic scatterer, and the limited aperture problem.
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Contribution à l’analyse mathématique et à la résolution numérique d’un problème inverse de scattering

élasto-acoustique

Résumé :La détermination de la forme d’un obstacle élastique immergé dans un milieu fluide à partir de mesures du

champ d’onde diffracté est un problème d’un vif intérêt dansde nombreux domaines tels que le sonar, l’exploration

géophysique et l’imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l’ob-

stacle (IOP) est très difficile à résoudre, particulièrement d’un point de vue numérique. De plus, son étude requiert la

compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution

correspondantes. Le travail accompli ici se rapporte à l’analyse mathématique et numérique du DP élasto-acoustique etde

l’IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes

associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d’ordre supérieur et des

éléments courbes à l’interface afin de mieux représenter l’interaction fluide-structure, et nous l’appliquons à la reconstruc-

tion d’objets par la mise en oeuvre d’une méthode de Newton régularisée.

Mots-clés : interaction fluide-solide, problème de diffraction, Fréquence de Jones, inégalité de Gårding, alternative de

Fredholm, espace de Sobolev à poids, méthode de Galerkin discontinue, méthode élément fini, raffinementhp, effet de

pollution, arêtes de frontière courbes, factorisation LU,différentiabilité au sens de Fréchet, dérivée de domaine, fron-

tière Lipschitzienne, théorème des fonctions implicites,méthode de Newton, régularisation de Tikhonov, domaine étoilé,

B-splines quadratiques.

Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering

problem

Abstract : The determination of the shape of an elastic obstacle immersed in water from some measurements of the scat-

tered field is an important problem in many technologies suchas sonar, geophysical exploration, and medical imaging.

This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its non-

linear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct

scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished

here pertains to the mathematical and numerical analysis ofthe elasto-acoustic DP and of the IOP. More specifically, we

have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a

DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure

interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.

Keywords : fluid-solid interaction, scattering problem, Jones frequency, Gårding’s inequality, Fredholm alternative,

weighted Sobolev space, Discontinuous Galerkin method, finite element method,hp-refinement, pollution effect, curved

boundary edges, LU factorization, Fréchet differentiability, domain derivative, Lipschitz boundary, implicit function the-

orem, Newton method, Tikhonov regularization, star domain, quadratic B-splines.


