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Introduction générale: Présentation de la these

Contribution a I'analyse mathématique et a la résolution numérique d’un probléme inverse de
scattering élasto-acoustique

Cette thése a pour objectif de développer un outil de sinaulatour la résolution de problémes
inverses élasto-acoustiques. Elle est organisée en detiesggui peuvent étre lues indépendamment.
Chaque partie est composée de deux chapitres et chacun abeyporte une introduction faisant
référence a une bibliographie que I'on espere compléte qirsne nomenclature. Afin d’éviter les
redondances, nous avons choisi, en guise d’'introductierdétrire le contenu de cette thése sans
entrer dans les détails que le lecteur trouvera dans chasuchapitres.

La détermination de la forme d’'un obstacle élastique im@el@ns un milieu fluide a partir de
mesures du champ d’onde diffracté en présence d’'ondesmeisl est un probleme d’un vif intérét
dans de nombreux domaines tels que le sonar, le radar, detjgin géophysique, I'imagerie médi-
cale ou le contréle non destructif. A cause de son caractamdinéaire et mal posé, ce probleme
inverse de I'obstacle (IOP) est tres difficile a résoudrej@aierement d’un point de vue numérique.
Le succeés de la reconstruction dépend fortement de la g@attgualité des mesures, notamment
des angles d’observations utilisés, et du niveau de brgtplDs, pour résoudre IOP, la compréhen-
sion de la théorie du probléme de diffraction direct assetla maitrise des méthodes de résolution
correspondantes sont fondamentales. Le travail accomgiirapporte a I'analyse mathématique et
numerique du probleme direct de diffraction élasto-adqustet d’un probléme inverse de scattering.
Plus précisément, le but de ce travail de recherche est g@gEo une méthodologie de résolution
d’'lOP basée sur une méthode de type Newton régulariseéeyeqrour étre robuste et efficace. Pour
atteindre les objectifs que nous nous sommes fixés, nous agalisé un travail important sur la ré-
solution du probléme direct qui fait I'objet de la premiei@ e de cette these. Quant au probléme
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inverse que nous avons consideéré, il est décrit, étudiéseemoeuvre dans la deuxieme partie de la
these.

La premiére partie de la thése est donc consacrée au protiggoe Pour commencer (Chapitie
nous revisitons la question de I'existence et unicité dvésye élasto-acoustique en relachant les hy-
potheses de régularité qui sont généralement faites swerface fluide-structure. Notre approche
repose sur une réécriture du probleme, a priori posé dang'éspace, en un probleme mixte via
l'introduction de I'opérateur Dirichlet-to-Neumann (INp de la sphére. On montre alors que cette
formulation est équivalente a une formulation du systénmes diees espaces de Sobolev a poids. On
peut ainsi appliquer la théorie de Fredholm et nous étabrisgue le systéme est bien posé lorsque
le solide est un domaine lipschitzien continu. Nous nowjatins ensuite a la résolution numeérique
du probleme mixte (Chapitié) en remplacant I'opérateur DtoN par une approximationleadsous
avons fait le choix de mettre en place une méthode de type QMG ngsoudre le probleme élasto-
acoustique. Ce choix est guidé par la volonté, a plus lomgded’appliquer les travaux de cette
these a des configurations issues de la géophysique. Il sbdsm@c apparu pertinent de mettre oeu-
vre des éléments finis discontinus d’ordre élevé dont leanivde flexibilité est parfaitement adapté
au cas de solides hétérogénes. La méthode que nous avoogeélgermet ainsi de mélanger dif-
férents ordres d’'approximation et s’adapte ainsi parfagtiet & des domaines de calcul composées de
régions caractérisées par des vitesses de propagaticasté@es. Nous avons validé la méthode DG
par comparaison avec des solutions analytiques puis nons agalisé une analyse qui illustre d’ex-
cellentes performances. Nous montrons en particulier gjnesthode DG est trés robuste aux effets
de pollution numériques. Pour améliorer le niveau de pi@tides résultats numériques, nous avons
enrichi la méthode DG en introduisant des éléments finisbasusur I'interface fluide-structure. Les
calculs numériques que nous présentons illustrent |&e cet enrichissement qui contribue, quand
on l'utilise avec des éléments d’ordre élevé, a limiter paet des modes de Jones qui peuvent dans
certains cas polluer le champ d’onde dans le fluide. Le sokstvalidé tout d’abord en utilisant des
solutions analytiques qui s’écrivent comme des dévelogmessur des bases de fonctions spéciales.
Les performances de la méthode numérique sont ensuiteé@gafn comparant avec des résultats
numeriques publiés par P. Monk et ses collaborateurs dajesileal Computational and Applied
Mathematics, en 2008 et basés sur la méthode ultra-faible.

La deuxieme partie de la these traite du probleme inverseméthode de Newton régularisée
gue nous avons choisie fait intervenir une matrice jacotgenui doit étre évaluée a chaque itéra-
tion. Nous calculons (Chaptdt), dans un premier temps formellement, la différentiellesans de
Fréchet du champ d’onde élasto-acoustique par rapport @udml’'obstacle. Nous obtenons que
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cette dérivée est caractérisée comme la solution du prebddssto-acoustique de départ modulo une
modification au niveau des conditions de transmission osae I'interface fluide-structure. Les
conditions de transmission modifiées sont dans ce cas hétés et le terme hétérogene s’écrit en
fonction de traces d’ordre élevé du champ d’onde direct. @ntne donc que I'évaluation de la
matrice jacobienne passe par la résolution du problémetdixec multi second membre. Avant de
poursuivre par la mise en oeuvre numeérique du problemesayeous essayons de lever le caractére
formel de la caractérisation de la dérivée de Fréchet du phEasto-acoustique. Pour cela, nous
avons été confrontés a I'absence de certains résultatgydearéé quand linterface est seulement
lipschitzienne. Nous avons cependant obtenu une carsatién compléte de la dérivée de Fréchet
guand l'interface est un polygone ou polyédre curvilignenBle cas ou la frontiére est seulement
de classe&’!, nous n'avons réussi a étendre des résultats établis paetGases collaborateurs et
publiés dans les Comptes rendus de '’Académie des Sciencdemne un sens a la trace de champs
dans le domaine du Laplacien. Pour traiter compléetemenlel¢gme d’interaction fluide-structure,

il est nécessaire d'établir des résultats de trace dansnhaide de I'opérateu¥ - o dont la preuve
passe par la construction d’opérateurs de relévement gsii pas triviale. Néanmoins, cette question
est en passe d’étre résolue. Le cas général d’'un domainehiipsouléve encore des questions et est
encore loin d'étre résolu. Toutefois, nous avons choisirdsgnter un résultat de régularité qui nous
semble illustrer la difficulté du probléeme et donner de naubes perspectives théoriques a cette
these. Au dernier chapitre de ce manuscrit (Cha¢r nous avons mis en oeuvre la méthode de
Newton régularisée et nous avons effectué une série destaqjté illustrent bien I'intérét de notre
approche.
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Contribution to the mathematical analysis and to the numercal solution of an inverse
elasto-acoustic scattering problem

This thesis aims at developing a simulation tool for solveasto-acoustic inverse problems. It
is organized into two parts which can be read independetigh part consists of two chapters, and
each of them has been written with an introduction refernmparticular to a bibliography that we
hope to be as complete as possible. For each chapter, weedise darefully a nomenclature that
should help the reader. In order to avoid a possible redwyday writing an introduction for the
whole document, we begin the document with a general intoolu to describe the content of this
thesis without going into the details, the reader could firetigzions in each chapter.

The determination of the shape of an obstacle immersed indarfladium from some measure-
ments of the scattered field in the presence of incident wigvas important problem in many tech-
nologies such as sonar, radar, geophysical exploratiodicalemaging and nondestructive testing.
Because of its nonlinear and ill-posed character, thigges/ebstacle problem (IOP) is very difficult to
solve, especially from a numerical viewpoint. The succésbereconstruction depends strongly on
the quantity and quality of the measurements, especialth@aperture (range of observation angles)
and the level of noise in the data. Moreover, in order to séB, the understanding of the theory
for the associated direct scattering problem and the masfehe corresponding solution methods
are fundamental. The work accomplished here pertains tomtithematical and numerical analysis
of the direct elasto-acoustic scattering problem and ohaarse obstacle scattering problem. More
specifically, the purpose of this research work is to propose@ution methodology for the IOP based
on a regularized Newton-type method, known to be robust Hmiest. To reach our goals, we have
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carried out an important work on the solution of the direcigdem which is the subject of the first part
of this thesis. Next, the inverse problem that we considez lseedescribed, studied and implemented
in the second part of the thesis.

The first part of the thesis is thus devoted to the direct gmblFirst (Chaptel), we revisit the
question of the existence and uniqueness of the elastsaca@ystem when relaxing the regular-
ity assumptions that are usually made on the fluid-strudntezface. Our approach is based on a
rewriting of the problem, a priori set in the whole spacegiatmixed boundary value problem via
the introduction of the Dirichlet-to-Neumann (DtN) openabf the sphere. We then show that this
formulation is equivalent to a formulation of the system ieighted Sobolev spaces. We can there-
fore apply the Fredholm theory and we establish that theesys$ well-posed when the solid is a
continuous Lipschitz domain. We then tackle the numerioaitgn of the mixed problem (Chap-
ter Il) by replacing the DtN operator by a local approximation. &dgqg the numerical solution
of the direct problem, we have chosen to implement a DG-typthad to solve the elasto-acoustic
system. This choice is guided by the wish, in the long termapply the works of this thesis to
configurations from geophysics. It has therefore seemed telbvant to implement higher-order dis-
continuous finite elements because of their high degreexabilgy which is perfectly suited to the
case of heterogeneous solids. The method that we have geddparticularly interesting because
it allows to mix different orders of approximation, and fikeis perfectly to computational domains
composed of regions characterized by highly contrastepgggation velocities. We have validated
the DG method by comparison with analytical solutions amahthve have performed an analysis that
illustrates excellent performances. We show in partictat the DG method is very robust to the
effects of numerical pollution. In order to improve the a@my of the numerical results, we have
enriched the DG method by introducing curved finite elementshe fluid-structure interface. The
numerical simulations presented here illustrate the ingp@e of this enrichment which contributes,
when employed with higher-order elements, to limit the iotd the Jones modes that may, in some
cases, pollute the wave field in the fluid. The solver is firdiceded by using analytical solutions
that can be written as developments on bases of specialdusciRegarding the performance of the
method, it is assessed by comparison with numerical repultished by P. Monk and his collabo-
rators in the journal Computational and Applied Mathensatic 2008, and based on the ultra-weak
method.

The second part of the thesis deals with the inverse problémNewton regularized method that
we have chosen involves a Jacobian matrix which must be &emlat each iteration. We compute
(Chapterlll) the Fréchet derivative of the elasto-acoustic scatterdd ¥iith respect to the shape
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of the obstacle. In order to make the computation of the dévie readable, we have performed it
formally and thus the related regularity issues have besnléft out. We obtain that this derivative
is characterized as the solution to the initial direct elastoustic problem except a change in the
transmission conditions set on the fluid-structure intexfal he modified transmission conditions are
now heterogeneous and the source term involves higher tetress of the direct scattered field. We
therefore show that the evaluation of the Jacobian matguires the solution of the direct problem
with multiple right-hand sides. Then, before proceedinthvihe numerical implementation of the
inverse problem, we have tried to remove the formal charadtthe characterization of the Fréchet
derivative of the elasto-acoustic scattered field. To thi eve have been coped with the absence of
some regularity results when the fluid-solid interface i/ dnpschitz. However, we have obtained
a complete characterization of the Fréchet derivative wherinterface is a curvilinear polygon or
polyhedron. In the case where the boundary is only of d4dswe have not managed to extend re-
sults established by Ciarlet and his collaborators, phbtsn the Comptes rendus de I’Académie des
Sciences in 2005, which allow to give a sense to the tracehiofields in the domain of the Lapace
operator. In order to fully address the fluid-structurenatgion problem, it is necessary to establish
trace results in the domain of the operalor o and we tried to tackle this issue before observing
that its proof requires non obvious constructions of lftoperators. Nevertheless, this issue is on the
way to be solved. The general case of a Lipschitz domainratdes further issues and is still far to
be solved. Nevertheless, we have chosen to present a liggusult which seems to illustrate the
difficulty of the problem and give numerous theoretical perdives to this thesis. In the last chapter
of this manuscript (Chaptd¥ ), we have implemented the Newton regularized method andawve h
performed a set of experiments that illustrate the intesestir approach.

Note that the formal characterization established in Gidfit is the subject of an article that
has been accepted for publication in Journal of Inverse BuiRbsed Problems (JIIP). The analysis
contained in Chaptdrhas also been submitted, as well as a reduced version of theremorted in
Chapterl.
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The Direct Scattering Problem






Chapter |

On the existence and the uniqueness of a
fluid-structure scattering problem

In this chapter, the existence and uniqueness of the salatia fluid-structure interaction problem
is investigated. The proposed analysis distinguishel fteen previous studies by employing the DtN
operator properties, and the Fredholm theory. The propasgoroach allows to extend the range
of validity of the standard existence and uniqueness resolthe case where the elastic scatterer is
assumed to be only Lipschitz continuous, which is of moretjpa interest.

.1 Introduction

The mathematical analysis and the numerical computatisoaifered fields by penetrable objects
are very important to many real-world applications suchaaar and sonar detection, geophysical
exploration, structural design, medical imaging, and apheric studies. The goal of the proposed
study is to investigate the well-posed nature of a class adtelacoustic scattering problems that
describes the propagation of a scattered field from an elastinded object immersed in an infinite
domain, representing a fluid medium. This class of probleomsists in the coupling of Helmholtz
equation with Navier equation.

Helmholtz problems, per se, have been analyzed extengreahyboth mathematical and numeri-
cal viewpoints, and results pertaining to existence anduemness can be found iag, 97, 118 139,
among others. Likewise, elastic scattering problems haea lalso investigated mathematically and
numerically, and results pertaining to their well-posexnean be found irep, 93, 119 129. How-
ever, there have been relatively very few mathematical sorkproblems involving the coupling of
Helmholtz and Navier equations. Indeed, to the best of oonkedge, the well-posed nature of the
coupling system has been studied firstif4] and then a few years later i8%]. In reference 104,
the authors reformulated the considered boundary valuelgmoas an integro-differential system

11
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whose unknowns are defined on the fluid-structure interfac8uch a transformation was accom-
plished using an integral representation of both the fluespure and structural displacement fields.
In doing this, the authors established existence and un&ggeresults assuming the boundBargf

the scatterer to b&2, which is a very restrictive condition when consideringgpical situations. In
reference 5], the authors adopted a different approach that relies@mtiegral representation of the
fluid pressure only. Yet, the approach requires al€®@gularity on the boundarly to establish sim-
ilar existence and uniqueness results. Note that this flation has been numerically implemented in
[46] for solving the corresponding inverse elasto-acousttteang problem. We must point out that
the formulation employed indf is slightly different than the adopted i8%]. The authors in46]
consider an artificial exterior boundary surrounding tlestt scatterer, on which an exact boundary
condition is imposed via the the integral formulation of thued pressure.

We propose here to extend the results obtained(d][and [4€] to the case where the wet surface

' is assumed to be only Lipschitz continuous, which is of meoeefical interest. The proposed proof
employs a weighted Sobolev space framewdi% [76], the Dirichlet-to-Neumann (DtN) operator
[66, 73, 135, the Garding inequality]7, 126, 130, and the Fredholm alternativé ], 126, 134.
More specifically, the proposed proof can be viewed as astep-approach:

¢ In step 1, we specify the mathematical framework for the m#red boundary value problem
(BVP). We construct a weighted Sobolev-like space thatraljuincorporates the asymptotic
decay of the fluid pressure variablas well as its outgoing propagation nature.

e Step 2 consists in reformulating the BVP in a bounded domidimike the approach used in
[85], we prescribe the exact DtN boundary condition at the extepherical-shaped boundary.
Note that adopting the weighted Sobolev space frameworktla@dtN operator allows to
rigorously establish the equivalence between both boyngdue problems. To the best of our
knowledge, the equivalence between the BVP and the forimoualat the bounded domain is
established rigorously for the first time.

e Step 3 focuses on the boundary value problem formulated init@ flomain. We derive a
variational formulation for this problem, and then, usihg sign property of the DtN operator,
we prove that the Garding’s inequality holds.

e Step 4 consists in applying the Fredholm alternative whitdwa to prove, under minimal
condition on the regularity of the fluid-structure intedc, (a) the existence of the solution
of the BVP, (b) the uniqueness of the fluid pressure, and gutliqueness of the structural
displacement field modulo Jones frequenci&s P2]. These frequencies may exist only for a
particular class of elastic objects, such as sphe&rgsip, 79.

12
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The remainder of the chapter is organized as follows. Ini@e¢t2, we first state the considered
mathematical model in the infinite domain. Then, we intradtie weighted Sobolev space formu-
lation and the formulation in a bounded domain. Finally, weve the equivalence between the two
formulations. Sectioh3 is devoted to the mathematical analysis of the boundaryevalablem for-
mulated in a bounded domain. More specifically, we state #national formulation corresponding
to this problem. We then establish the equivalence betweesttong and the weak formulations, and
then examine the properties of the considered variatiomddlem. In Section.4, we investigate the
existence and the uniqueness of the solution of the vamnaltiroblem. Using the Fredholm alterna-
tive, we prove the existence of the solution. We then proaéttie pressure field is unique, whereas
the displacement field is unique only modulo Jones freq@sndturthermore, and for completeness
purpose only, we recall in Appendi.1 some properties of the Hankel spherical functions and the
spherical harmonics needed to derive and to study the DtKagpe In AppendixA.2, we perform

an analytical study of the uniqueness of the solution of darex Helmholtz problem for which the

boundary of the scatterer is a sphere. Apperdiis devoted to the construction of the DtN operator.

|.2 The Boundary Value Problem Formulations

.2.1 Formulation in the infinite domain

Let Q° be a bounded domain @& representing an elastic obstacle, &d= R? \ Q" be the
homogeneous inviscid (fluid) medium surrounding the edattimain.I" is the boundary of2® and is
assumed to be Lipschitz continuous.

We consider the scattering of a time-harmonic acoustic wéyéy the elastic obstacle® embedded

in ©/ as depicted on Figure2.1. The problem is to determine the scattered wawe the fluid and
the transmitted elastic wavein the scatterer. Note that the time dependenc¢ is harmonic, that
is suppressed throughout, according to the linearity ofcthresidered problem. The corresponding
system of equations BVP (1) reads as the coupling of the Halmland Navier equations. This

problem can be formulated as follows:

13
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Of

Figure 1.2.1 — Problem statement in the infinite domain.

Ap+kp=0 in Qf (1.2.1)
V-o(u) +wpsu=0 in Q° (1.2.2)
dp Og
2 _ =
T(u) = —pv — gv onT (1.2.4)
: dp .
TEIJPOOT <5 — 1k:p> =0 (1.2.5)

The pair(p, u) represents the elasto-acoustic scattered field.the fluid pressure if2/ whereasu
is the displacement field ift*. g = pi"™c = ew/crt - d s the incident plane wavev is the circular
frequency. c; is a positive real number representing the sound velocithénfluid. p; andp, are
positive real numbers denoting respectively the dengifieise fluid)/ and of the scatteré®®. w and
cy are associated with the wavenumbes = o is the stress tensor related to the strain teadny

Cy
Hooke's law:

Olm — Clmjngjn (|26)
whereCy,,,;,, is a fourth order elastic stiffness tensor, bounded fronvabsymmetric, that i€;,,,,, =

Chuijn = Cjum, and such that the coefficients,,;,, satisfy:

Clmjnelmejn > Uy Z 612m7 (|27)

Ilm

for some positive constant,, for all symmetrical second order tensgor
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1.2 The Boundary Value Problem Formulations

Note that, in the case of an isotropic medium, it is invariamder rotations and reflectiongd], and

reads as:
C(lmjn = Aélméjn + ,u((sljémn + 5ln5mj)7

where )\, 1 are the Lamé coefficients. The strain tensas related to the displacement fieldby
[93, 120:

(Vu + (Vu)t) :

e(u) = %

Last, denotes the traction vector on the surface of the scatt®rahat is:

The following observations about the linear boundary vadteblem BVP (1) are noteworthys},
104:
e The viscoelastodynamic displacement fieldnd the dynamic component of the fluid pressure
p satisfy respectively the Navier equation (see H@.Z)) and the Helmholtz equation (see
Eq. (.2.1) ) under the hypothesis of small amplitude oscillationshiatthe solid and in the
fluid.
e The transmission conditions given by Eqis2(3)-(1.2.4) are kinematic and dynamic coupling
conditions. They represent respectively the equality ofab displacements of the solid and

the fluid and the equilibrium of forces.

[.2.2 The Weighted Sobolev Space framework

Specifying the mathematical framework is a pre-requisitarivestigating the well-posed nature
of BVP (1). Clearly, the standard Sobolev spate= (H'(Q2*))? is the primary candidate for the
displacement variable, whereas7!(2/) is not appropriate for the fluid pressyreThe latter can be
easily established by considering the asymptotic behafitne field (28, 118 and Eq.A.2.17) in

AppendixA.2):
eikr

P~ = f(r); forr =|z|, large enough
”
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Indeed, forD = {z € R?|||z|, > 1}, one can show thafp||;2(p) is infinite since we have:

1flezwy = [ fFda

. ikr —ikr
e e
= / dx
D

T r

1
= —dx
/DT2
27 T “+o00 ]_ 9
= / // —r* sin Odrdfdg
o Jo J1 r
s “+o0o
= 27?/ sin@d@/ 1dr
0 1

+oo
= 47?/ 1dr
1

= +o0.

Hence,p is in H} (927), which is just a Fréchet spacg][ However, denoting(r) := 1 + 72, we
observe that]19: o

P P
W € LQ(Qf) and W € (LQ(Qf))g

Note that, if the origin is not located i/, then we haveg— e L*(QF) and% € (L*(Q))3, with

o(r) :=r.

Hence, using the weight functi(}/qul/—2 orl restores theéd! property to the pressure field. However,
this does not encompass the outgoing nature of the presside,fias required by the Sommerfeld
condition (see Eq.1(2.5) of BVP (1)). Not incorporating explicitly such conditionilwaffect the
uniqueness of the solutignof BVP (1), since the presence of the eigenfunctions is ngdo®ex-
cluded.

To avoid possible loss of the uniqueness, we construct a aygueopriate weighted Sobolev space
as follows. First, we considers® the space of all functions that are infinitely differentebvith
compact support. We then set:

Coo(¥) = {pas : p € CFP(RY)}. (1.2.8)

We setp(r) := 1 + 2. Forp, q € C3°(Q)), we consider the following inner product:

o Vp-Vg+pg  (Op . dqg .
(0 @)1, = /Qf <—p(7“) + (87“ 1k:p> ((% 1kq>> dz. (1.2.9)
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1.2 The Boundary Value Problem Formulations

Consequently, the norm corresponding to this inner progudenoted by - || ,, that is, ||p|,, =

1/2
(p7p>1,/p .

Then, the weighted Sobolev spakig = H}(Q/) of trial functions is defined by completion, as the
closure of the spacg¢° (/) with respect to the norrp - ||, ,, i.e.,V, :== H}(Qf) = cen)! e,
Furthermore, since the trial functions are weighted, walrteadefine a different space for the test
functions to derive the variational formulation corresgimg to the exterior Helmholtz equation (see
Eqg. (.2.1) of BVP (1)). In order to offset the weight of the trial funatis, we naturally choose test
functions with an inverse weight/p. Thus, the weighted Sobolev space of test functiHr}l}%(Qf)
can be defined properly as the closure’gf (/) with respect to the norr - |11/, :== (p,p)}’/f/p,
e, Vi, = HL,(Qf) = Cn) e,

On the other hand, since the structural displacement fieddfised inside the bounded obstacle, we
consider the classical Hilbert spalde = (H*(2))°. We define the inner product far v € W by:

(u,v)w = / u-vdr + . Vu:Vods. (1.2.10)
Qs

S

The corresponding norm i is then given by:

1/2
Julbw = (Julf+ [ Fusvu) (.2.11)

Finally, we define the trial space &5, = V,, x W. Consequently, our goal is to study the existence
and uniqueness ¢p, u) € H, =V, x W such that the fieldp, v) satisfies BVP (1).

Remark 1.2.2.1 Observe that this setting guarantees that all the integodilthe weak formulation
that can be derived from BVP (1) in infinite domain are wellmedi. Indeed, fo(p,u) € V, x W
and(q,v) € V1, x W, we have:

1
’/prﬁdﬂf‘ = ‘/Qf (mZ?) (p/*q)dx

Using Cauchy-Schwarz inequality and the definition of theghted norm associated to Ed.4.9),
we obtain:

1 1/2

< [[=z=2rlollr”allo
pl/2

‘/Qf pqdx

A\

< liellv, llaliva,, -
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Similarly, we also have:

‘ / . VpVqdz
Qf

1 /2%
/Qf <WVP> (p"Vq)dx

< | 1/2V19|! 10>V qll
< HVPHVPHVQHVW-

Remark 1.2.2.2 For the boundary terms, since the obstacle is enclosed irharspof finite radius
. 1
r = R, we observe that, for every pointonT’, we have— < 1andp(r) <1+ R?.

p(r)
Forall (p,u) € V, x Wand(q,v) € V1, x W, we have:

1 1
. Ua - _ /2

/Fu vgds| = /F<p1/2u 1/) (p/=q)ds
< ‘/ u-v) 1/2 )ds
< ||U||(L2(F))3||P *qll 2
< Nl 0 allm@r
< Nlullwllallv,,

and
pv-vds| = Lp (p"*v - T)ds
- r\ /2

< |\/1+7RQ/ <1L/2p> (v-v)ds

V1+ R’ 1/2PHL2 yollzzwys
< V14 Rplly,[lv]lw-.

IN

Remark 1.2.2.3 It is easy to verify that, for every bounded domainc /, the weighted Sobolev
spaceH ) (K) coincides with the classical Hilbert spadé'(K) and their norms are equivalent.
Indeed, since’s°(K) is dense inf ) (K), it is sufficient to prove the equivalence of the norms for
smooth functions.
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1.2 The Boundary Value Problem Formulations

e First, we have:
Vp-Vp+ pp dp . dp .
2 _ _ _
Hp”l,p = /K o) + (07‘ ikp a ikp | | dx

2
)da:

B IVpl +lpf* | |op .
B /K p(r) - or ihp

ap|? . 1

< / Vol + 1>+ 2| L] w2k pl? | de  (using that— < 1

K or p(r)
T 2
2 2 2

- 1 +2/ L Vp| +k dz

< Nl +2 [ (199 + 82 |pl?) de

< max(3, 1+ 2k%)||pl 7 - (1.2.12)

e Second, sinc& is bounded, it can be enclosed in a sphere of radius R < +oc. Therefore,
forall x € K, we havel + ||z||3 = p(r) < 1+ R
It follows that:

1+ R?
p(r)

Since both sides are positive, integrating ovrwe get:

IVp|* + [p|* <

(IVp* + Ipl*)

2 2 2
= Vpl* +
Pl = [ (IVpP + o)

J = (vok + 1)

< (HRQ)/K(ME(:) \pl2>

. 2 2 2
< em (M+|@_m‘)

K p(r) or
< (1+R)|pl3,. (1.2.13)

To conclude, there exists two constafiis C; depending ot and K, such that:

Cillpllmxy < Pl < Collpllax)- (1.2.14)
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Figure 1.2.2 — Problem statement in a bounded domain.

.2.3 Formulation in a bounded domain

In the following, we reformulate BVP (1) in the bounded domdeépicted in Figuré2.2. Let By
be the ball of radiug? > 0 and centef). We assumek to be large enough so th&t; contains the
obstacle, i.e)* C Bp.

The artificial exterior boundar§, is then given by:

Sp={x €/ |z|. = R} (1.2.15)

We then denote by)é the domain in the fluid medium bounded By andI’, and byB¢, its exterior
region, that is to say,

Qf = {z € Qf/ ||lz||s < R}, (1.2.16)

and
By =R\ QL UQs. (1.2.17)

The Sommerfeld outgoing radiation condition in BVP (1) givey Eq. (.2.5) can be re-written as
follows [28, 119:

2

9 _ ikp| ds = 0. (1.2.18)

li
1m o

R—+c0 J3g

Furthermore, the pressure 6p satisfies the following Robin-type condition [see Appendig]
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1.2 The Boundary Value Problem Formulations

where the Dirichlet-to-Neumann operator (DtN) is given by:

Tr(p(R, 0, ) meR S PrnYn(6.6). (1.2.19)

m=—n

for 0 € [0, 7], ¢ € [0, 2x], and
e Y., represents the orthonormalized spherical harmonics @frarch € N, —n < m < n;
® Dpn = / pY mn (0, ¢)ds, andS; denotes the unit sphere;

o u,(k,r) = _khInEkri andh,, designates the spherical Hankel function of the first kireg (s
[2] and AppendixA.1).
Note that the Dirichlet-to-Neumann operafdris a nonlocal mapping fromi */2(S) into H~/2(Sy),
that maps exactly the trace of the radiating solution ongéditice of its radial derivative on the sphere.

Given that, we consider the following elasto-acoustictecatg problem defined in a bounded do-

main:
Apr + kpr =0 in Qf (1.2.20)
V- o(ug) + w’psur = 0 inQ° (1.2.21)
BVP (2) w?prug v = % + % onTl (1.2.22)
T(ur) = —prV — gV onT’ (1.2.23)
agi +Tr(pr) =0 onSg . (1.2.24)

Clearly, the pressure fielgy; is in the classical Hilbert spadé = H'(Q%). Hence, we defind. |
as being the classicdl!-norm, that is, forp € H'(Q4,), = (||p||37R + ||Vp||37R)1/2 where

1/2
1= ([, 1+ Pan)

R

On the other hand, the displacement componmgnin the scatterer is il = (H'(€2))’. We then

define the functional spadé for both fields as the following product space:
3
H=VxW=H\(Q}) x (H'(Q))". (1.2.25)
The Hilbert spacéd is equipped with the standard graph norm,

1/2
@ w)lle = (IplE + lulliy) ™5 ¥ (p,u) € H.

In addition, (-, -) _1 /2,12 denotes the dual product betwe#k' (") and H ~/(T") or betweer{ H'/*(T"))?
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and(H~-*(T))? onT.

BVP (2) involves the DtN operator of a sphere. We could havesictered any convex regular
surface. Indeed, the proof of existence and uniquenesspuspsrties of the DtN operator that are
satisfied when the surface is convex. We have chosen to @resgphere because we are then able
to exhibit such properties by hands, employing specialtions. This could be seen as a limitation,
but it is nothing like as shown in the following section, theunded problem is equivalent to the
unbounded one formulated in the framework of weighted Smbspaces.

[.2.4 Equivalence of the infinite and bounded formulations

Thanks to the construction of the DtN operator in Appendli®, we have introduced an exact
boundary condition at finite distance, standing for the ountg Sommerfeld condition, on an artificial
spherical boundaryz. Hence, we have reduced the boundary value problem igigatlin the infinite
domain to a boundary value problem defined in a finite comjmutat domainBy (= Q{% x Q°). The
next result states the equivalence between both boundary peoblems.

Theorem 1.2.4.1 BVP (1) and BVP (2) are equivalent in the following sense:

i If (p,u) € H,is asolution of BVP (1), then the restriction, denoted, uz), of (p, u) to 0, x Q°
is a solution of BVP (2).

i If (pr,ur) € H is a solution of BVP (2), then there is a figld @) given by:

. PR in ﬁé
p= .
PR in By,
wherep¢, denotes the Helmholtz solution in the exterior dom@ajn(see AppendiR.3for details),
andu = ug, such that(p, @) is solution of BVP (1).

Proof The proof of this theorem relies mainly on the propertieshef DtN operatofi’z (see Ap-
pendixA.3)

i Let (p,u) € H, be a solution of BVP (1) an@pg, uz) be the restriction ofp, u) to Qf x Q°.
Clearly, (pr, uz) satisfies the Helmholtz equation i, and the Navier equation, along with the
transmission conditions dn
In addition, sincep belongs toV,, p is also solution to the exterior Helmholtz problem i,
andp admits an expansion 5. This allows us to replace the outgoing Sommerfeld condi-
tion by the exact boundary condition at finite distanceSen such thats,, = prs, satisfies

22



1.2 The Boundary Value Problem Formulations

9pr
v
Furthermore, sincé)/, is a bounded domain, the weighted Sobolev spHc;(aQ],;) coincide

with the classical Hilbert space' (2}, (see Remark.2.2.3. Therefore, the restricted solution
(pr,ur) belongs toH = H'(Q}) x (H'(Q%))3.

= —Tg(pr) on Sg. Hence(pr, ug) is the solution of BVP (2).

i Conversely, let(pr,ur) € H be the solution to the boundary value problem BVP (2). We de-
fine p%, as being the solution of the exterior Helmholtz problenBif with Dirichlet boundary
conditionpr = p% onSi. We know thaps, exists and admits a unique series expansion in spher-
ical harmonics inBj; (see AppendiA.2). Moreover,ps, naturally belongs tdi,(Bg), and by
construction of the DtN operator, its expansion satisfiesstime exact ABC as; on Sy, that is,

Ipg
or

+TR(]9%) =0 on SR.
Given that and the fact thaf; coincides withp, on Sg, we defingp as follows:

B PR in ﬁ{%
b= .
PR In B,

anda = ug. Sincep and its normal derivative are continuous acrSgsit follows that(p, u) is

the unique solution to the boundary value problem BVP (1)réddwer, we can observe that )

belongs tof,. Indeed,i = up clearly belongs tdV. Next, we prove thap € V,. To this end,
we first split the norm into two parts as follows:

Bl zyery = 1Pl gy + 1Plm 5

||pR||H5(Q£) + ||p§%||H,}(B§)'

Moreover, since/, is a bounded domain, the weighted norerj(Q’,;) IS equivalent to the
standard norm it (Q},). Actually, as shown in Remaik2.2.3 there is a positive constafb,
that depends oR, such that:

1Bllmyen < Co(Ipallmar, + ISl mss) -

Sinceppr andp$, belong respectively tﬂl(Q{%) andel(B;;), both terms in the previous inequal-
ity are bounded. Consequently, we have:

18] 35y < +00,
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which leads tg € V,, and concludes the proof.

.3 The Variational Formulation

We consider the boundary value problem BVP (2) set in theefiodtmputational domaiBy (=
Q{z x €2*) and its associated variational formulation. Note that #gexsilinear form corresponding
to BVP (2) is not strongly elliptic. This prevents us from §ppg Lax-Milgram lemma. However,
using properties of the sign of the DtN operator, we proveithis.continuous and satisfies Garding’s
inequality, which in turn allows to apply the Fredholm thgadNote that, for simplicity purpose, we

omit in the following the subscripk on the field(p, «) and in the norms.

.3.1 The Formulation

Consider the following variational problem associatedMV@yvP (2):

Find (p,u) € H, such that
(VF) (1.3.1)
{ a((p,u), (¢,v)) = l(g,v); forall (¢,v) € H,
where
(). (00) = e (.0) 4 () 1:3.2)
+b((p, u), (¢,v)) +b*((p, u), (¢;v)) + "y (p,q),
l(v,q) = w;pfll((n +1(v) , (1.3.3)
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and

o (p,q) = /Qf Vp- Vgd - ‘C”—;/Qf pqdz,

a®(u,v) = /. o(u) : Vodr — w?p, /Q u-vdr,

b((pu), (q,0)) = (u-v,q)-121/2r,

b*((p,w), (¢;v)) = 0b((g,v), (p,u)) (adjointofd), (1.3.4)
1(a) = (20, 0) apapar

l2(v) —{pv,v) 172,172,

c(p.q) = (Tr(p), @)-1/2.1/2:5n-

The following theorem states the equivalence between BYRBA{@ the variational problem VF given

by Eq. (.3.2).

Theorem 1.3.1.1 (p,u) € H is a solution of BVP (2) if and only {fp, v) is a solution of VF given by

Eqg. (.3.2).

Proof

i First, we show that if(p, u) is solution of the BVP (2), thefip,u) € H is a solution of the
variational problem (VF)I(3.2).
Let (¢,v) be a pair of test functions in the spa®gQf,) x (D(Q#)). Integrating Egs.|(2.20)
and(.2.21) of BVP (2) onQﬂ and()® respectively, we obtain:

W2
/f Ap@dx+—2/fpﬁdx:0,
of, ct Jaf,

V.o(u)vdr +w2p5/ u-vdr = 0.
QS QS

Then, applying Green’s formula, we deduce that:

w2
/f Vp-Vgdz — — /f pqdz + <Vp "V, Q>—1/2,1/2,F - <Vp * U, Q>71/2,1/2,SR =0,
o, cy Jof,

(1.3.5)
/S o(u) : Vodr — w?p, /QS u-vdr — (o(u) - v,v) 12,1720 = 0.

Hence, it follows from substituting both transmission citiods Egs. ((2.22) and (.2.23 of
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BVP (2) into Eq. (.3.5), that:

w2
/Qf Vp-Vgdx — =2 /Qf pgde + (Wppu - v, q)—1/21/20 — (VD v, @) —1/2,1/2,5%
R f R

0
= <6_i’q>_1/2’1/2’F’ (1.3.6)

/s o(u) : Vodr — w?p, /Qs w-dr + (pv,v)_1 2100
= —(9v,v)_1/21/20- (1.3.7)

Note that in spherical coordinates, we havgi - v = % on Skg.
Furthermore, substituting Ed.Z.24) of BVP (2) into Eq. (.3.6) leads to the following variational
formulation, for all(¢, v) € D(Q%) x (D())?,

"
/Qf Vp-Vgdr — 2 /Qf pgdx + wpp(u- v, q)—1/21/20 + (Tr(P), @) -1/2,1/2,5,
R f R

0
= <(‘9_i’q>_1/2’1/2’F’ (1.3.8)

/ o(u): Vodzr — WQPS/Q u-vdxr + (pv,v)_1)2,1/2,r
= —<9V,U>71/2,1/2,P- (1.3.9)
SinceD () x (D(Q9))? is dense intadd (Q4) x (H'(€2*))?, the problem can thus be rewritten
as follows:

Find (p,u) € H, such that

(VF) { a’ (p,q) +w?pib((p,u), (¢,v)) + c(p,q) = lL(q); Vg€V, (1.3.10)
a’(u,v) + b*((p,u), (q,v)) = la(v); VoeW. (1.3.11)

Hence, VF given by Eql@3.1) is an immediate consequence of adding E8.10) to Eq.(.3.11).

i Conversely, we prove that ifp, u) € H is the solution of the variational problem VF given by
Eq. (.3.1), then(p,u) is the solution of BVP (2). Indeed, l¢i, ¢) € D(QL) x (D(Q#))3. If
(v, 9) = (¢,0), then we have:

a’(p,p) = 0. (1.3.12)
Similarly, let (¢, ¢) = (0, ¢). Sinceg vanishes in the neighborhood bf we obtain:

a’*(u,¢) = 0. (1.3.13)
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|.3 The Variational Formulation

Hence, we have:
w? f
o Vp-Vodr — g /Qépwdx = 0, foranyy € D(Qy),
/ o(u) : Vodr — w2ps/ u-pdx = 0, foranye € (D(Q%))>.
Qs Qs

Therefore, we deduce that, in the distribution sense at,leasdu satisfy:
w2 . / f
Ap + C_2p = 07 inD (QR)u
f
V.o(u)+wipu = 0, in(D'(Q%))>.

Moreover, since € H'(Q%), Ap € H'(Q)). Similarly, sinceu € (H'(Q%))?, thenV - o(u) €

(H'(92%))>. It follows that the paifp,u) € H and satisfies the Helmholtz and Navier equations

in L2. Consequently, we have:
w2 .
Ap+—p = 0 ae. inQf,
r
V-o(u)+w’pu = 0 a.e.inQ’.

Next, we analyze the behavior pfaindu at the boundaries. Lép, ¢) € D (%) x (D(Q°))>.
We setp = 0. Then,

al (p, ) + w?psb((p, u), (0, 0)) + (p,0) = L(y). (1.3.14)

In addition, fory = 0, we obtain:

a*(u, ) +0°((p,w), (¢, 9)) = 12(9)- (1.3.15)

Consequently, we have:

w? . _
/Qf Vp- Vode — = /Qf ppde +wps(u-v,0) 121700 + (Tr(p), ¢)-1/21/2,55
R f R

)
= <8—ia¢>—1/2,1/2,r (1.3.16)
/s o(u) : Védz —wp, /Qs w- ¢dr+ (pv, ¢) 1/21/2r

= —(pv,9)-1/21/2,0- (1.3.17)
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Chapter I. On the existence and the uniqueness of a fluid-stieture scattering problem

Applying again the Green’s theorem to Eqs3(16)-(1.3.17), we obtain:

w? Op op
Ap+ L pypde + (2 oy — oy, p) (P gy
/sz( D+ C}p)SO x+<8y’¢> 1/2,1/2,0 — W Pp(U -V, 0) 12120 <8y’90> 1/2,1/2,5R

0 _
—(Tr(p), @)—1/2,1/2,SR = _<a_ia @)—1/2,1/2,& forall p € 3(92)7 (1.3.18)

/g;s(v o (u) + WQPSU) ‘$d$ —(o(u) - v, ¢>—1/2,1/2,F — (pv, ¢>—1/2,1/2,F
= (pv,¢) 121520, forallge (D())*.(1.3.19)

Sincep (resp.u) satisfies the Helmholtz (resp. Navier) equation, thenlivves from Eqgs. ((3.18)-
(1.3.19 that:

Op Op
<57 90>71/2,1/2,r - <W2/)fu v, 90>71/2,1/2,r - <57 4)0)71/2,1/2,53 - <TR<p)7 90>71/2,1/2,SR
dg

= _<$7 ©)_1/21/2r, forallye @(ﬁé),

—(o(u) v, 0) 21 /0r = (¥, 0) 1 /2121 = (PV; d) 121720, forallg € (D(Q))%.

Finally, taking ¢ that vanishes ory'z, we obtain the transmission conditions on the Lipschitz

fluid-structure interfacé"

dp 0dg . ___

2 . _ 0P 99 1/2

Wippurv = o + 9 in H=/*(T") (1.3.20)
ou)-v = —pv—gv in(HYVXD))>. (1.3.21)

Next, for ¢ vanishing in a neighborhood of, we obtain the boundary condition 6i:

5, T Tr(p) = 0 in H7'%(Sk). (1.3.22)

Sincep is in Hl(Qé), it follows from the classical trace theoremss] 30, 35, 70] thatp €
H'2(T"). By multiplying p by the normal vector which i&>, we obtainpn € L%(T"). Similarly,
sinceu € (H'(2%))?, ur exists in(H/2(T"))?, and its normal trace - n onT is defined inL?(T").
Using the fact thay is sufficiently regular, and since the fields are linked via ttansmission
conditions, we thus get thatp - n ando(u) - n have a sense if?(T") and(L*(T))? respectively.
Furthermore, in the neighborhood of the smooth spheritidicéal boundaryS, the solutiorp is
€. Therefore, the normal derivative pfon Sy, is at least inL?(Sg), and thusTz(p) € L*(Sg).
Finally, it follows that Eqs|(3.20), (1.3.21) and (.3.22) remain valid inL?(T"),(L*(T"))?, L*(Sg)
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|.3 The Variational Formulation

respectively, that is:

0 0
pfw2u-y = 6_]:_'_6_5 Oﬂr7
ou)-v = —pv—pr onl,
Jp
—+T =0 onSy.
or + Tr(p) R

In summary, we have proven th@at «) € H is the solution of the direct elasto-acoustic problem
BVP (2).

Remark 1.3.1.1 It is worth noting that the solution is in fact more regulaathstated. Indeed, since
p € H'(Q), andVp - v € L*(') U L%(SR), then, according to Jerison-Keni@(], we havep
H3/2(Q4,). Similarly, from the results extended to the elastic cas® [u € (H'(Q*))? together with
o(u) - v € (LA(T))? imply thatu € (H3/2(92%))3.

[.3.2 Mathematical Properties

The goal here is to employ the Fredholm alternative to eistakkistence and uniqueness results.
Our approach relies on the following resuo] 87):
Assume that the formulation satisfies a Garding’s inequafithe form:

Rela((p,u), (p,w)] + Cull(p, w; > all(pw)ll ¥ (p,u) € H,

where the Hilbert spacé/ is compactly embedded in the Hilbert spaée Then, the Fredholm
alternative can be applied since the operdfor H — H' (the dual space off ) defined byK (p, u) =
|(p,u)||v is @ compact perturbation of the operator correspondingecsésquilinear form(-, -). It
follows that the uniqueness of the solutign«) of the variational problem ensures its existence.
Consequently, all w<e need to show in what follows is thatsbequilinear formu(-, -) given by
Eg. (.3.2) is continuous and satisfies the Garding’s inequality. Tttet is established using the
sign properties of the real part and imaginary part of thécbiet-to-Neumann forma?(-, -) given by
Eq. (.3.9).

1.3.2.1 Properties of the Dirichlet-to-Neumann operator

First, we establish two fundamental sign properties on tthe @perator.
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Lemma 1 Letk be a positive number and> R. Then,
Re (pin(k,7)) >0, VneN. (1.3.23)

Proof From the definition of the spherical Hankel functions of thstfkind (see Eq.A.1.5) in
AppendixA.1), the coefficients., (k, r) can be written as:

__dnlkr) +iyp(kr)
(k1) = _kjn(lm“) i (k) (1.3.24)

Taking the real part of Eql.G.24), we obtain:

_pIn k) gakr) + 4 (Rr)ya (kr)
Jn(kr) +ya(kr)

Re (n(k,7)) =
1

) "
= —/{;W. (1.3.25)
where
m2 (kr) = j2(kr) + y2(kr). (1.3.26)

On the other hand, we know (see Proposithf.1.1) that, (m?2)'(kr) < 0. Hence, it follows from
Eqg. (.3.25 that:

Re (pun(k,7)) > 0, (1.3.27)

which concludes the proof of Lemnia

|
Lemma 2 Letk be a positive number and> R. Then,
Im (pn(k,7r)) <0, VneN (1.3.28)
Proof The proof relies on the properties of the Wronskian (see AgpeA.1).
Taking the imaginary part of EqL.8.24) leads to:
I ) — —n T ET) = Gk (k) (1.3.29)

Ja(kr) +ya(kr)
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|.3 The Variational Formulation

From the definition ofn? (see Eql.3.26)) and Propositior\.1.1.2 we deduce that:

W (Gn(kr), yn(kr))

0, (1.3.30)

wherelV (-, -) is the Wronskian defined in Propositiénl.1.2
|

Then, we prove the following sign properties on the DiritliteNeumann formc?(-, ) given by
Eq. (.3.9).

Proposition 1.3.2.1 Let (-, -) be the sesquilinear form given by E43(4). Then,

Re [cf(p,p)] >0, Vpe HY?(Sg)\ {0} (1.3.31)
Im [c®(p,p)] < 0. (1.3.32)

Proof From the definition of the DtN operator (see E2(19) and the orthogonality properties of
the spherical harmonids,,,, (see, for e.g.,4] or AppendixA.1.2), the sesquilinear form®(-, ) (see
Eq.l.3.4) can be re-written as follows:

CR(p7 Q) = <TR(Z9) q —1/2,1/2,55 = Zﬂn k R Z Pmndmn, VD,q € LQ(SR)- (1.3.33)
Hence,
Zun (k,R) Z Pmnl®, Vp € L*(SR). (1.3.34)

The result is then an immediate consequence of the definifieff(-, -) given by Eq. (.3.34) and
Lemmasl and2.

1.3.2.2 Continuity

We prove in this section the following continuity result dretsesquilinear form(-, -) given by
Eq. (.3.2).

Lemma 3 The sesquilinear form(-, -) given by Eq. I(3.2) is continuous orf{ x H, that is, there
exists a positive constant, such that,

la((p,u), (¢, 0))] < Call(p,w)llall(q,v)l[m; V(p,u) € HandV(q,v) € H. (1.3.35)
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Furthermore, the forni(-) given by Eq.|(3.3) is a linear form continuous of/.

Proof Let (p,u),(q,v) € H. We can bound each form i-, -) defined in Eq. I(3.2) separately as
follows. First, we have:

2
f _ Vadr — 2 7
la’(p,q)] = ‘/Q{{Vp Vgdx z /Qgpqd:c
w2 .
< ‘/ Vp - Vgdr| + — q dx
of, cy of,
w2
< [IVplolVallo + 5 lIplollallo
f
2
< max <1g> UVpllo +lIplo)([Vallo + llallo)
w2
< 2max (1, —) (1991 + 1918) (I gl + lal)
f
w2
< 2max< ,C—2> lpllvlgllv- (1.3.36)
f
We set
w2
C) = 2max <1, —2> . (1.3.37)
s
Then, we deduce that:
o’ (p,q)] < Gillplivldllv: VpgeV, (1-3.38)
which proves the continuity of/(-,-) onV x V.
Similarly, we have:
la®(u,v)| = / o(u): V@dx—prs/ u-vdx
S Qs
< / o(u): Vodx +w2,08/ u-@dx‘
S Qs
< /Sa(u) - VT dz| + w?ps|ullo]|v]lo. (1.3.39)

On the other hand, the stress tensas related to the strain tenseby Hooke's law as follows:

Olm = Clmjngjna (|-3-40)
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|.3 The Variational Formulation

Assuming that’;,,,;, € L>*(2*), we denote’; = supy,,,;,, |Cim;nl- It follows from Eq. (.3.40) that:

/s o(u) : V@dx' =

fpotw e (1.3.41)
/5.)3 2. (Zn Clmjngjn(u)) Eim (D)dx

Im

< G

/s > (2”: gjn(u)) eim(V)dx

Ilm

< 9Cs|le(w)lolle()lo- (1.3.42)

Substituting Eq.1(3.42) into Eq. (.3.39), and using the fact thdlt (u)]||o < ||Vul|o, leads to:

ja*(u, )] < 9C,[[Vullol Vollo + w?psllullol|vllo
< 2max (9C,, w?p.) [[ullwlv]w-
We set
C5 = 2max (QC’J,wQ,OS) . (1.3.43)
Therefore,
@*(w,0)| < Collullwlvllws Vu,ve W, (1.3.44)

which proves the continuity of*(-,-) on W x W.

Furthermore, using the continuity of the trace mappir&js B5, 70] from Hl(Qﬂ) into L*(T"), and
from (H'(Q®))3 into (L*(T"))? respectively, we obtain that:

/u-yqda‘
r

lw- vl 2y llgll 22y

b((p, w), (g, 0)] =

IN

IN

lwll 22y lall 2

IN

Cllullwllgllv

1/2 1/2
C (IIpl + lulld) ™ (gl + lolE)

IN

(1.3.45)
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for some positive constait. Hence,

b((p; u), (¢ 0))| < Coll(p,w)llull(a, v)lm; YV (p,u),(q,v) € H, (1.3.46)

which proves the continuity df(-,-) on H x H.

Finally, using the continuity of the DtN operator frofi'/2(Sg) into H~1/2(Sg), together with the
classical trace theorems(], 101], we obtain that:

|CR(297(])‘ = |<TR(p>7Q>71/2,1/2,SR|

IA

| Tr(p) ”H*l/Q(SR) HQHH1/2(5R)

IN

C”pHH1/2(SR) HQHH1/2(SR)-
Crllpllvllallv, (1.3.47)

IN

for some positive constanty that depends of.

To conclude, it follows from Eq.I(3.39), Eq. (.3.44), Eq. (.3.46) and Eq. [.3.47) that:

1
w2py

la((p, u), (¢,v))] < Cilipliviigly + Callullwllvlw

+2G[[(p wllall(g, )| + —5—Crllplivllglly

w2py
max (wjpfwl n cR>,02) (lplly + lullw) gl + lollw)
+2GC| (i, W)l ll(g; v) |l

2 max <w2ipf(01 +Cr), C2> (el + llelf) gl + [ollf) 2

+2C|(p, w) |l (g, 0) |

IN

IN

(1.3.48)
We set
Ca =2 (max < 21p (Cl + CR), CQ) + Cb> . (|349)
WPy
Therefore,
la((p,w), (q,0))] < Coll(p, Wlull(g, v)a; ¥V (pu),(g,v) € H, (1.3.50)
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|.3 The Variational Formulation

which proves the continuity of the sesquilinear foifn, -).
Note that the continuity of the linear fori-) is an immediate consequence of employing Cauchy-
Schwarz inequality.

1.3.2.3 Garding’s inequality

The goal here is to prove thaf-,-) satisfies Garding’s inequality off. First, letU be the
following Hilbert space:
U = L*(Qp) x (L*(2))?,

equipped with the standard graph norm. Then, we have: U c H’, with dense embeddings and,
from Rellich-Kondrachov theoren3], the compact embedding cc U. Our goal is to establish the
following proposition:

Proposition 1.3.2.2 The sesquilinear form(-, -) given by Eq. I(3.2) satisfies Garding’s inequality
on H, that is, there are two constant; > 0 anda > 0 such that:

Rela((p,u), (p,w)] + Cull(p, Wl > all(p, w7V (p,u) € H. (1.3.51)

Proof Take(p,u) € H. We proceed for each form ia(-, -) defined by Eq.(3.2) separately as
follows.
Forp € V, it follows from Eq. (.3.4) that:

2 .
f — .Vnd _w_/ D d
a’ (p, p) /%Vp Vi dx 2 Qgpp T

2
w

= [IVpll§ — = lIpll3-
Cf

We thus obtain:

2
w

' (p.p) + =z lplls = VPl vpeV. (.3.52)
i

Moreover, since all the terms in Ed.3.52) are real, we conclude that the sesquilinear fafy, ) is
V-coercive.
We set

C) = (1 + “—2> and oy = ——. (1.3.53)
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Then,

1

w?py

Reld (0.p) + Cillpl} = allpl}y: WpeV. (1.3.54)

Similarly, takeu € W. Using Hooke’s law and the property of the stiffness tensaergby Eq. (.2.6)
and Eq. ((2.7), it follows from Eq. (.3.4) that:

a’(u,u) = / o(u): Vﬂdx—prs/ |u|? dz
Qs Qs
= / a(u):e(ﬂ)daj—wzps/ lu|? dz
Qs Qs
= [ 33 Comgnein(wem(@) dz — wp, [ Juf da
@ m in Qe
> oz(,/ Zslm(u)slm(ﬂ) dx—prS/ lu|? dz
Qs m Qs
> oz(,/ e(u) : e(W) dor — w?p, / |u|* d.
s Qs
We thus deduce:

a(wu) > aglle()} — w?olull, (1.3.55)

which proves that*(u, u) is a real number.
In addition, since?® has a Lipschitz boundary, the second Korn’s inequality,(L.19) holds and
ensures the existence of a constapt> 0 such that:

le(@)lIg + lulle = Crllulliy; YueW. (1.3.56)
Combining Eq. [3.56) with Eq. (.3.55), we obtain:

Re [a*(u,u)] > anCrllully — aqllulls — w?psllullg

> oo Crllulliy — (00 +w?ps)[lulls.

We set
Cy = (a, +w?ps) and ay = a,Cy. (1.3.57)

Therefore, we have:

Re [a®(u,u)] + Collull > asllullfy; YueW, (1.3.58)
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which proves théV -coercivity ofa®(-, -).

Furthermore, since € (H'(Q*))3, thenu-v € L*(T'). In addition,H¢(T") is compactly embedded in
L?(I"), for anye such that) < € < 1. Moreover, the trace theorem given &0] is valid for Lipschitz
domain. Hence, the trace mapping is linear continuous flM*+<(Q2) into H<(T"), forall 0 < e < 1.
Takee = 1/4. Then,

b(p, u), (p,u)| =

/u-yp
r

lw- vl 2y Pl 22y

IN

IN

Cllull 2y Il 22y

IN

Cllull (H/4(T))3 1Fal H/4(T)

IN

C(”u”(H?’/4(QS))3 ”pHH3/4(Q£)

IN

S [CO] ryam——a (1.3.59)
Furthermore, for any > 0, there is a constarii; such that:
1Py W) 1P s e vty < ONVD, V)% + Csll(p, w)l|Z, ¥ (pou) € Ho (1.3.60)
( (£2°)) (Qg)

Hence, we deduce:

[Re [b((p,w), (p, ) +b"((p, w), (p, )]
= [2Re [b((p, u), (p, u))]

< C(8)1(Vp, Va)liZ + Csll(p, w)lI7)

< C (8ll(p Wl + Csll (v, wE)

Consequently, we have:

Re [b((p,u), (p,w)) + b*((p, w), (p, u)] = =Cl(p, w)||F; — CCsll(p, w)]I7 (1.3.61)

Therefore, for any > 0, there is a constardt, > 0 such that:

Re [b((p, u), (p,w)) + b ((p w), (p,w)] + Coll (p, W)l = =Coll(p, w)llz: ¥ (p.w) € H.(1.3.62)
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Last, it follows from Propositioh.3.2.1that:

Re [¢®(p,p)] = Re[(Tr(p),p)1/21/2.5:] 20, VpeV. (1.3.63)
Note that we have chosen= 1/4. However, one could have uség + ¢ for any0 < e < 1/2.
To conclude, it follows from Eq.l(3.54), Eqg. (.3.58), Eq. (.3.62 and Eq. [.3.63) that, for anyy > 0,

Re [a((p, ), (p,w))] + Clipll§ + Cellullg + Call(p, w17

= o e [0 ()] 4 R [ 0)] R (), () + 07 (). ()]
b Re )]+ Colpl + Calall + Cul )

> aulplly + eallullyy — Call(p, u)ll%
> min(a, ao) ([l + [lulliy) — Coll(p, w) %
> min(ay, az) [ (p, w)l[z = Coll(p, w) |1 7-

We set
min(oy, as) min(oy, as)
= —"F"T7"" a=————"" and Cy =max(Cy,Cs, Cy). (1.3.64)
2C 2
Then, we deduce that:
Re [a((p,u), (p,u)] + Cull(p, w)ll; > all(p,u)lZ;  V(p,u) € H. (1.3.65)

Eq. (.3.65) together with the dense and compact embeddingC U concludes the proof of Propo-
sitionl.3.2.2

.4 Uniqueness & Existence

For a completeness purpose, we first recall the Fredholrmatiee Theorem in the considered
mathematical framework. This result can be found, for eXaimp p.240 of referenced[/].
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Proposition 1.4.0.3 Consider the following variational problem in the HilbepaceH:

Find s € H, such that (1.4.1)
{ a(s,t) = 1(t); forallt € H.

Assume that the continuous sesquilinear fafm-) satisfies the following Garding’s inequality:
Re (a(t,t)) + C|t||F > allt||3; VteH, (1.4.2)

for some a positive constantand a compact embeddirg cc U.
In addition, consider the homogeneous variational probfema sesquilinear formu(-,-) and its
adjoint respectively:

{ Find s € H, such that (1.4.3)
a(sg,t) =0; forallt € H.

Findt, € H, such that (1.4.4)
{ a*(ty,s) = a(s,ty) =0;  forall s € H.

Then, we have the following alternative:
i Either (1.4.1) admits exactly one solutione H for any given € H*.

ii Or the homogeneous problems4(3) and (.4.4) have finite-dimensional nullspaces of dimension
m > 0. In addition, the non homogeneous probldm.() and its adjoint:

{ Findt € H, such that (1.4.5)
a*(t,s) = a(s,t) =1"(s); forall s € H.

admit solutions if and only if the following orthogonalitgraditions are satisfied:
I(to¢j)) = 0, respectively I*(so;)) = 0; forj=1,---,m, (1.4.6)
where {ug;) }72, spans the eigenspace df4(3), whereas{u; }7., spans the eigenspace of

(1.4.4).

.4.1 Announcement of the main results

We are now in a position to apply PropositibA.0.3in order to prove the following theorem in
the next sections.
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Theorem 1.4.1.1 For anyp™™© € H!(T'), the boundary value problem BVP (2) admits a solution in the
spaceH = H'(Q/ N Bg) x (H'(£2*))3. This solution is uniqgue modulo Jones resonance frequencie
in the elastic scatterer that can exist for certain geonestri

Moreover, we have the following estimate:

1P, w)ll < |1l - (1.4.7)

An immediate consequence of Theorém1.1in conjunction with Theorenh2.4.1is the following
result on the well-posed nature of the boundary value pmlB&P (1) in the infinite domain:

Corollary 1.4.1.1 For anyp™ € H(T'), the boundary value problem BVP (1) in the infinite domain
admits a solution in the spadé, = H(Q/) x (H'(Q*))?. Moreover, the pressure fiejdis always
unique, whereas the displacement fiel$ unique up to Jones resonance frequencies that may occur
in the elastic scatterer for certain geometries.

[.4.2 Proof of the uniqueness

We first investigate the uniqueness of the solution of BVFs{2¢e the existence is a consequence
of applying the Fredholm alternative. The uniqueness ofpilessure field is established using an
analytic continuation argument. However, the uniquenéfseadisplacement field is not guaranteed.
Indeed, there are possible values of the oscillation paemaecalled Jones frequencies, for which the
homogeneous transmission problem has nontrivial solsiticalled Jones modes. Therefouewill
be defined up to these vibrating frequencie®4. Such frequencies can exist for simple geometries
(e.g. spheres). Note that Hargéd[ has established that Jones modes do not exist for arbytrari
shaped bodies.

1.4.2.1 Uniqueness of the pressure field

We prove this result by contradiction. Assume the existafite@o solutions of the reduced fluid-
structure variational problem, denoted py, u;) and(ps, us).
We set:
p=p—py and u=u; — us. (1.4.8)

Then, the paifp, u) is solution of BVP (2) withy = 0 and thus satisfies the homogeneous equation:

a((p,u), (p,u)) =0,
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that is,
0 (p.p) + a (e, u) + B((p ), (p.w) + 0 (py ), () + ——cR(pp) = 0. (1.4.9)
Qa a (u,u u u u u C = U. A
w2pf p?p b) p7 7p7 p7 7p7 w2pf p?p
Since a’(p,p) + a*(u,u) is a real number, then,
w2pg

Im [b((p, w), (p,w) + b*((p, w), (p,u))] = 0.

Hence, we deduce that:

I'm [a((p, u), (p,u))] = Im ["(p,p)] = 0. (1.4.10)

On the other hand, we know thatn (u,(k,r)) < 0, Vn € N (See Lemma&). Therefore, we must
havep,, = 0, Vn € N. Consequently, we obtain:

p=0 onSg.
Moreover, we also have:
0 0
Tr(p) = —8—1: = —a—f =0 onSk.

Hence, we can continuously extend the pressure fiddg zero in the exterior domaiBy,. Using
the regularity theorems on the Helmholtz operattf] [ the extended functiop is such thaip = 0
and belongs td}, (B%) N H;,,.(Bf). Moreover, from the ellipticity of the Helmholtz operattiig
functionyp is analytic. It follows that we can apply the analytic contition principle, and obtain:

which proves the uniqueness of the pressure velocity.

1.4.2.2 Uniqueness of the displacement field

Let (p, u) be the field given by Eql.4.8) (see Sectiom4.2.1). Then, if follows from the unique-
ness of the pressure field that:

9p _

9 0 onTl. (1.4.12)
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Substituting EqQ.I(4.12) into the transmission conditions on the interfageve obtain:
u-v=0 and 7(u)=0 onT. (1.4.13)

The displacement field is therefore both traction-free and tangent to the bounddoyvever, these
two homogeneous boundary equations, together with the genemus elastodynamic equation, do
not necessarily imply that vanishes if2*. Indeed, as stated by Luke and Martin idf], for certain
geometries and for certain frequencies, some nontrivialttisms to the homogeneous transmission
problem exist. More precisely, there is an infinite set oéfubrations of the solidy,,,, with cor-
responding displacement modes of vibratiop,, that satisfies(u,,) = 0 on the boundary. If
moreover some of these frequencigsare such that,,, - n = 0 on T, such nontrivial solutions,,,

are called Jones modes and the associated frequengiésnes frequencies.

These singularities have been introduced by D. S. J&i# &1 a related context (a thin layer of ideal
fluid between an elastic body and a surrounding elastic iexjerNote that Dallas called them in
[37] (see p. 7) "complex amplitudes of nonradiating modes". &/kpecifically, according to Lamb
and Chree (see § 8.14 irdq]), Jones frequencies exist for simple geometries such laerep since

it can be observed that an elastic sphere could sustaindit@aisoscillations”, in which the radial
component of the displacement is identically zero. Theistexce has also been proved in the case
of prolate spheroidsipPg. Actually, Jones frequencies may occur for any axisymiodtody, be-
cause they can sustain torsional oscillations in which tdmyazimuthal component of displacement
is nonzero. Nevertheless, Hargé&] has proved that we do not expect Jones frequencies to exist f
an "arbitrarily-shaped" body.

Note that, as emphasized g, 10g, these free vibrations are inherent to the physical madu t
we consider. Indeed, they arise from the absence of contramn the tangential components of the
displacement field. on the fluid-solid interface. This is due to the fact that tlwdfis inviscid, and
thus can slip freely over the surface of the solid, so thatahgential components are not controlled.
Therefore, such free oscillations of the solid do not couplthe fluid, and cannot be precluded by
the radiation condition.

.4.3 Proof of the existence

Because of the possible existence of the Jones frequendies elastic medium, we have to dis-
tinguish two cases when applying the Fredholm alternatee Propositiom4.0.3 to establish the
existence of a solution.
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First, assume that is not a Jones frequency for the elastic scatterer. Then,ave shown in
the previous paragraph that the homogeneous problem hashentrivial solution. Hence, we have
uniqueness of a solutiofp, v) € H of the boundary value problem BVP (2). In addition, the vari-
ational formulation satisfies the Garding’s inequality.nSequently, the existence of the figld «)
immediately results from applying Fredholm alternative.

Second, suppose thatis a Jones frequency. Therefore, there is a nonzero disptauefield
u € V, called Jones mode, such th@at ) is a solution of the homogeneous variational problem
given by Eq. (4.3).
Hence, we do not have uniqueness of the displacement fieleelidre, according to the Fredholm
alternative (see Propositidr.0.3), a solution(p, u) exists if the right-hand sidg-) of Eq. (.3.1)
vanishes for every solution to the homogeneous adjointienob
Let (¢*,v*) € H be a solution to the homogeneous adjoint equation, théf'isy*) satisfies:

a*((¢*,v"), (s,t)) = 0; V (s,t) € H.

Note thata(-, ) is not self-adjoint. Indeed, (-, -) was self-adjointa((p, u), (p, w)) would be real,
which is not the case because of the tefffp, p) whose imaginary part is strictly negative foe# 0
(see Section.3.2.1). By definition of the adjoint operator, we have:

a*((g",v"), (s,t)) = al((s,t), (g%, v*)); V (s,t) € H. (1.4.14)
Taking the conjugate, we clearly get:
a((s,t),(q¢",v")) =0; Y (s,t) € H. (1.4.15)

Next, we proceed as in Sectid3.1to derive the boundary conditions satisfied(py, v*).
Let (s, t) € D(Q%) x (D(Q¢))? be such that = 0. Sinces vanishes oA’ and Sy, applying Green’s
formula, we get:

2

/Q SIAT + L) de =0; Vse DQL),

f 2
R Cf

which yields:

w2

Aq*+—2q*:O inQ/.
r

Similarly, let(s, t) = (0,t) € D(Q%) x (D(Q°))? and apply Green’s theorem. Sinceanishes of,
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we obtain:
/ £ (V- o(0%) +wipev?) de = 0; Yt e (D)),
that is,
Vo) +w’pv* =0 in Q°.

Next, we take(s, t) € D(ﬁj;) x (D(Q))? such that = 0 ands vanishes in a neighborhood 6.
We apply the Green’s formula. We then obtain:

1 _ wz_ 1 8 * .
w2pf /Qf S(Aq* _'_ C_Qq*) d.]; + 2 <S7 a—qy>—1/271/2,1" - <SV7 v >—1/2,1/2,F — 0
R f

Sinceq* satisfies the Helmholtz equation, we obtain:

oq*

onT.
Oov

w’ppv* v =
For (s,t) = (0,t) € D(ﬁj;) x (D(Q°))?, the Green’s formula allows to obtain:
[t (Vo) + w2p %) do = (£, 0(0) - v) 1 jaar = (1,0 12020 =0
Consequently, since* satisfies the homogeneous Navier equation, we obtain:
o(v*)-v=—¢"n onl.

Finally, we take(s, t) = (s,0) € D(Q}) x (D(2"))? such thats vanishes in a neighborhood bf
Then, applying again the Green’s theorem allows to deduwate th

Wi oq* .
/f S(AG* + —q%) dx — (s, i>—1/2,1/2,SR —(Tr(),q")-1/21/2,5, = 0. (1.4.16)
of, s v

Sinceq* satisfies the Helmholtz equation, we necessarily have:

a *
8—6‘; +Tr(g") =0 on Sk,

whereT7; stands for the adjoint operator of the DtN operatgrdefined as in Eq.A.3.14), that is,

4o0
Ti(q) = Y pin(k, R)gn.
n=0
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Note that this boundary condition involvirg; is an incoming radiation condition, that is,

Note that the coefficients,, (k, R) depend in fact on the spherical Hankel functions of the sgécon
kind b2 = A\,

Let (p, w) be such that. = v* andp is a continuous extension ¢f satisfying the exterior Helmholtz
equation with incoming radiation condition. Then, the paira) is thus solution to the following
homogeneous transmission problem:

AP+ (—k)’p=0 in Qf
V- o(it) + w’psti = 0 in QF

2 - p

V= onl’

Wipsli- v = o~
(1) = —pn onll
9p
—+Tr(p) =0 onSg .
Ir + T(p) R

As established above, this adjoint boundary value problaméinontrivial solution only il is a
Jones frequency. Sinceis assumed to be a Jones frequency, wepget 0 andz is a Jones mode
with 7(@) . =0, @ - nr = 0.

We then deduce that = 0 and7(v*)r = 0, v* - nyr = 0, and therefore:

l(g*,v") = 0.

Hence, the right-hand sidé ) of Eq. (.3.1) vanishes for every solution to the homogeneous adjoint
problem. Consequently, there is a solut{gnu) to the reduced direct problem BVP (2). Moreover,
the existing pressure fiejdis unique.

Remark 1.4.3.1 From a numerical view point, the Dirichlet-to-Neumann (Dtiethod was em-
ployed for the first time in the case of exterior HelmholtzZgbeons by Givoli and Keller ing7, 94].

This was possible using the Fourier series representatidhe DtN operator which can be derived
in the case of only geometrically simple-shaped exteriamoiaries (i.e. circle, ellipse, sphere, ellip-
soid). However, this series must be truncated for impleatemt purposes, but its ability to preclude
singular behavior in the finite element solution of the targeterior Helmholtz problem is not af-
fected, as demonstrated ii3, 77]. Nevertheless, since the DtN operator is a non-local magpi
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[67, 94], its application gives rise to a full symmetric sub-mataissociated with the degrees of free-
dom lying on the artificial boundary. Forming this matrix isminiscent of integral formulations,
and storing it can be prohibitive for three-dimensional iifyequency acoustic scattering problems.
However, the DtN approach remains computationally viablemwthe discrete equations are to be
solved by an iterative algorithm that involves essentiatigtrix-vector productsJ05. The latter
approach appears nevertheless to be limited to circulad apherical-shaped boundaries. Given
that, various alternative approaches have been suggestedlance between accuracy, stability, and
computational efficiency requirements. Examples of sudhads include employing approximate
boundary conditions, also called absorbing boundary ctads (ABC) (see, for examplel(, 134

as well as the review papeflBg and references therein), the perfectly matched layermfdation
(PML), see, e.g.,19], and the so-called infinite elements, see, eZ2, 3.
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A.1 Special functions

The goal of this section is to recall the needed sphericaitian properties for establishing the
sign properties of the Dirichlet-to-Neumann operator.sid&ction is included for completeness only.

A.1.1 The spherical Hankel functions

A.1.1.1 Preliminaries

Let J, andY,, be the Bessel functions of the first and second kitjdgnd H,, denote the corre-
sponding Hankel function of the first kind defined by:

H,(z) == HV(2) = J,(2) +iY,(2). (A.1.1)

Then, the spherical Bessel functions of the first and secomtldee respectively given by

jn<z> = \/gt]n-i-lﬂ(z)u (A12)

1x

Yn(2) = §;Yn+1/2(2)- (A.1.3)

and

These special functions satisfy the spherical Besselrdifteal equation given by:

d? d
zzd—;; + 22d—z + (22 =nn+1))p=0. (A.1.4)
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From the classical results of analysi$3}]), it can be shown that the set of solutions of E4.1(.4)
is a subspace of dimension 2. Hence, the spherical Hanketiéuns of the first kind (resp. of the
second kind) given byZ]:

ha(2) = hD(2) = ju(2) +iya(z)  (resp. hP(z) =B (2) = ju(2) — iya(2)).  (A.15)

also satisfy Eq.A.1.4).

A.1.1.2 Properties

The two spherical Hankel functions have the following seagpansions:Z, 29:

o .

(1) — — i—n— 16 n (7’L+j) . —j

h(kr) = hy(kr) =i . PO j'(n_])'( 2ikr)™7,
—ikr |

@ (k) =T R G ) LAV

R (kr) = h,(kr) =i = P 0 (= J)'(Qlkr) J

Moreover, for large radius value, the spherical Hankel fimms possess the following asymptotic
behavior p, 28]:

AY(kr)  ~ (=) (A.1.6)
r
efikr
AP (kr)  ~ i ;asr— +o0o, (A.1.7)
T
Let M,, be the modulus of7,,, i.e.,
M2(2) :== J2(2) + Y2(2) (A.1.8)
For anyn € N, the functionz — M?(2) is strictly decreasingl[35, 134.
Let m,, be the modulus of,,, i.e.,
2 a2 2
my,(2) = Jn(2) + y,(2). (A.1.9)
Then we have:
Proposition A.1.1.1 For anyn € N, z — m?(z) is strictly decreasing, that is,
(m?)'(z) < 0. (A.1.10)
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Proof Indeed, it follows from Eq.A.1.1)-Eq. (A.1.3) and Eq. A.1.8)-Eq. (A.1.9) that:

1%
m2(z) = §;M§H 12(2). (A.1.11)
We thus get, for alt > 0,
24/ Lo, / Iz 2
(Y () = 5T (@) + (=55 ) M alo)

Hence, sincé M., ,)'(2) < 0, then(m})'(z) < 0 for all z € R™*, and therefore: > m?(z) is
strictly decreasing.

Similarly to the approach inij33, let p, ¢ be two solutions of EgA.1.4) and define the Wronskian
[99] as follows:

W(p,q) =pq —1'q. (A.1.12)

Then, in the distribution sense, i®!(R**), we have:

dW(p,q
d( ) — pql/ _p//q
VA
2 / 1 2 2 / 1 2

= —rq - ;(z —n(n+1))pg + pat ;(z —n(n+1))pq

_ W9 (A.1.13)
VA

Therefore, we obtain:
dW

z% oW (p, q) = 0. (A.1.14)

C
ConsequentifV (p, q) = —; for some constart’.
z
In the particular case whege= j,, andq = v,,, we have ]

W (n(2), yn(2)) = —. (A1.15)

z

We deduce the following property of the Wronskian:
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Proposition A.1.1.2 For all z € Rt*,

Jn(2)Y(2) = Jn(2)yn(2) > 0. (A.1.16)

A.1.2 The spherical harmonics

We recall some definitions and properties of the sphericathbaics. More results can be found
in [28, 99], among others.

Let P,(¢) denote the Legendre polynomials, given by the recurreniegioes ] (see Chapter 8,
p334):

Fo(t) =1,

Py (t) =1,

(n+1)P,11(t) = 2n+ 1)tP,(t) —nP,_1(1),

: 1\ d(t*—-1)"
h P,(t) =
that is, P, (t) (2%!) i | |
The Legendre polynomial functions satisfy the Legendreagqo:

(1—t3)g"(t) = 2tg (t) + n(n+1)g(t) =0; neN.

We also define the associated Legendre functigfiss follows P):

PR (E) = (—1)m(1 = ey,

neNO<m<n.

The associated Legendre functions satisfy the associagedre differential equation given ]|

(1—1t3g" (t) — 2tg (t) + <n(n +1) — IT;> g(t)=0; neN0<m<n. (A.1.17)

Next, we introduce the spherical coordinates), ¢), for r € [0, +oo[, 8 € [0,7] and¢ € [0, 27|,
related to the cartesian coordinates by:

r=rsinf cos¢p, y=rsinfsing, z=r1r cosd.
We then define the spherical harmonic functigps as follows P8]:

Yn (0, @) = P (cos 0)e™?; n €N, —n <m < n. (A.1.18)
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Note that the spherical harmonics are eigenfunctions diéipéace operator far being constant/8].

We recall some properties of these special functiobg] §. 25)).

Property A.1.2.1

i Foreachn > 0, there exist exactlgn + 1 linearly independent spherical harmonigs,, of order

n, —n<m < n.

i The spherical harmonics are orthogonal with respect te ifner product or’.?(S,), that is:

/ YrnUpyeds =0, ifn£n" orm #£m/, (A.1.19)
S1
e br_(n+|m)
: ) 7 (n+|m])! )
/51 [Yn s (2n+1) (n — |m|)! Y ( )
ymn

i The functionsY,,,,(0, ¢) :=
satisfy:

: —n < m < n, are called the orthonormalized harmonics and

Omn
/. Ymn?m’n’ds = 5mm’ 5nn’a (A121)
S1

whered,,,,,, are the Kronecker Delta functions.

iv The set of function$Y,,,,} forms an orthonormal basis df?(S;). The orthonormal system is
complete in%(S;). Hence, every functiofi € L?(S;) can be expanded into a series of spherical
polynomials as follows:

f(1,0,9) = Z Z SonYmn (0, 0), (A.1.22)

n=0m=—n

wheref,,,, are the Fourier coefficients given by:

Fom = /S F(1,0,0)Y (60, 8)ds. (A.1.23)
1

Remark A.1.2.1 Let Sy represent the surface of the ball of radius= R. Then, an elementsy of

Sk is equal toR?ds, whereds is an element of the surfacs of the unit ball .

Consequently, we deduce that the set of functigns R forms a basis of.?>(Sr), and a complete

orthonormal system if.?(S). It follows that any functiorf € L?(Sg) admits the following series

expansion into spherical harmonics

R9¢ Zmenmn )

n=0m=-n
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with .
Fom = /S (R,0,007 a0, 0)ds,

A.2 The solution to the Helmholtz problem in the domain exte-
rior to a sphere

This section is devoted to the analytical study of the sotutf Helmholtz equation outside a
sphere. We derive the Fourier series expansion of the ealuti terms of the spherical harmonic
functions and establish its uniqueness.

A.2.1 Construction of the solution into spherical harmonis

Let Br be the ball of radius = R, Sy its spherical surface, and, the exterior domain td&x.
We consider the Helmholtz problem in the exterior®$ with Dirichlet boundary conditiory €
L?(Sg), formulated as follows:

Ap + k*p = in B, (A.2.1)

p=g on Sy (A.2.2)
: dp .

Tll)gloor (5 — 1kp> =0, (A.2.3)

wherer = ||z||2.

The goal is to prove analytically the existence of the solubf the boundary value problem given by
Egs. A.2.1)-(A.2.3).

Let (r, 0, ¢) be the system of spherical coordinates, where [0, +ocl, § € [0, 7] and¢ € [0, 27,
related to the cartesian coordinates (xy, 15, z3) € R? by:

r=||z|s = \/2? + 23 + 23, 0 = arctan(\/2? + 23 /x3), ¢ = arctan(zs/x1). (A.2.4)
3

We recall that the Laplacian in spherical coordinates isgiy B9

1170 28p 1 0 . Op 1 82]7
—_ | 2,25 — s — 1. A2
Ap(r, 0, ¢) 2 l@r (T 8r> + sin 6 00 (sm 089) + sin? 0 O¢? (A.2.5)
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We setp(r,0,0) = f(r)g(0)h(¢). Then, Eg. A.2.1) can be expressed in spherical coordinates as

follows:

1 9 <T28f(r)> +il 1 % <Sin989(9)> L L PR e a2

rf(r)or or r2 | sinfg(0) 06 sin? Oh(¢) D2
We deduce that:
d ( Hdf(r) _
- <r2 o ) + (k*r* —a)f(r) = 0, (A.2.7)
sin Hd%) <sin Hdil(: ) + (asin?6 — b)g(d) = 0, (A.2.8)
d*h(¢) _
102 +bh(¢) = 0, (A.2.9)

for some constants andb.
Observe that the functiofiis defined in the exterior domaifif,, and must satisfy the outgoing Som-

merfeld condition, whereagand/ are defined oib'y.

Since the sphergy, is a closed surface, we seek for a functiothat is periodic inp, i.e., h(0) =
h(2m). Therefore, Eg.4.2.9) admits the functiongsin(me)}, {cos(m¢)} as a set of solutions for
b=m? m € N.

It follows that:
h(¢) = A sin(meo) + By, cos(mo) (A.2.10)

is solution to A.2.9).

Next, we set = cos f, and substitute in EQA(2.8). We then obtain:

(1—t2)d$(2t) —ztdf;tt) + <a— 112)9(15) = 0 (A.2.11)

Fora =n(n+1),forn € N, Eq. (A.2.11) is in fact the associated Legendre equation (see/(.%)
in AppendixA.1), whose solutions are the associated Legendre functidiieeddn AppendixA.1,
SectionA.1.2, by:

gmn(t) = P (cosf), 0<m <n. (A.2.12)
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It follows that forn € N, 0 < m < n, the angular part of the solution is given by:
g(0)h(p) = P (cos 0)( Ay sin(me) + By, cos(mo)). (A.2.13)
Using Moivre identity, we can re-write EgA(2.13) as follows:
G (O)M(D) = Crn P (cos0)e™?, n e N, —n <m <n, (A.2.14)

wherec,,,, are complex coefficients.
Using the spherical harmonigs,,, (see Eq.A.1.18) in AppendixA.1) given by:

Yo (0, @) := P™l(cos 0)e™?, n €N, —n <m <n,
the angular part of the solution is then expressed in ternisese spherical functions as follows:

gmn(e)h(gb) = Cmnymn(ea ¢)7 —n S m S n.

Next, we taken = n(n + 1) in Equation A.2.7), and set: = kr. Therefore, Eq.A.2.7) becomes
the Bessel's differential equation given by E4.1.4). This equation admits the spherical Hankel
functions of the first and second kind") andh(? as linearly independent solutions, forc N.

Using the asymptotic behavior given by E@.1.6), it follows that onlyh(!) satisfies the outgoing
radiating condition.

Therefore, a solutiop of the Helmholtz equation in spherical coordinates can peessed as follows:

p(r,0,¢0) = Zh (kr) Z ConnYmn (0, ), (A.2.15)

m=—n

or, using the orthonormalized harmonics (cf. Propéty.2.1), as follows:

p(r,0,¢) = Zh (kr) Z Corun Yo (0, ). (A.2.16)

m=—n

for complex coefficients’,,.,, = @, cmn, Wherea,,,,, are given by Eq.A.1.20) andc,,,, are given by
Eqg. A.2.14).

Note that the series expansioA.2.15 converges absolutely and uniformly in every closed and
bounded domain contained in the exterior domain of R (see 8], p. 34).
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Moreover, using the asymptotic behavior/df) in far-field region, we can see that the solutjon

depends asymptotically onas follows P8, 119:

eikr

D~ asr — +oo. (A.2.17)
To determine the expression of the Fourier coefficignts in Eq. (A.2.16), we use the boundary
condition given by Eq.4.2.2). From Remarl.1.2.1, the Dirichlet datay € L?(Sr) can be expanded

into a series of spherical polynomials as follows:

GROD)=3S grnYoulb,0), (A.2.18)

n=0m=—n

where
G = / 9(R. 0, )Y yun(6, )ds. (A.2.19)
S1
Furthermore, oy, p satisfies:
n=0 m=-—n

Multiplying Eq. (A.2.18) and Eq. A.2.20) by Y., and integrating oves;, we obtain by orthogo-

nality of the spherical harmonics that:

G
Cran = ha(kR)’

It follows that a radiating solutiop to the Helmholtz problem in the domain exterior to the spltgre

with Dirichlet boundary condition admits the following s&s expansion into spherical harmonics:

p(r.0,9) = fjo ::é,fg) > G Yunl0.9)

m=—n

Remark A.2.1.1 Observe that if Eq.A.2.2) is replaced by a Neumann boundary condit%fﬂ =g,
we obtain:

op — ikh;(m) znj CrnnYmn (0, 0)

or [r=R n=0 m=—n

- i i gmnYmn(07¢)'

n=0m=-—n
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Consequently, we have:
_ 9mn_

kh, (kR)
and therefore, a Neumann radiating solution is given by:

Cmn -

> h

m=—n

A.2.2 Uniqueness of the solution

The goal is to prove that the radiating solution into splaritarmonics constructed in Sec-
tion A.2.1is the only solution of the exterior Helmholtz problem witiribhlet or Neumann boundary

conditions.

To this end, assume that there exist two solutigng, € C*(B%) to the exterior problem.

Let p = p; — po denote the difference between these two solutions. Theatearly satisfies the
Helmholtz equation, the radiation condition at infinity amdomogeneous Dirichlet or Neumann
boundary condition o'z

Let S, be the surface of a ball of radius= a (> R) and centered at the origin, enclosing the spherical

surfaceSy. We denote byB5“ the annular domain contained betwe®nandS,,.

Applying Green'’s formula im33;", we first have:

dp

p ds = | p@d5+/, |Vp|2dx+/) pApdz.
ov Sp OV B4® BG*

Sincep satisfies the Helmholtz equation Bf;“, we obtain:

p © Op
/ p—pds = p—pds + / |Vp|*dz — kQ/ p|? da.
S, Ov Sp. OV B&® B%®

R

Taking the imaginary part of the equation, we get:

Im 8 Lis) = Im a]_?ds (A.2.21)
Pay Pay
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Moreover, since satisfies the radiation condition, we obtain:

@—ikp

lim
a—+o0 Jg, ar a——+00 ar

2 Pt P
ds = lim {‘—p‘ + K2 [p|* + 2kIm (pa—f) } ds (A.2.22)
Sa

= 0.

Substituting Eq.A.2.21) into Eq. A.2.22), we deduce that:

. 6]72 21 12 o Jp
aggloo Sa{‘a‘ + k% |p|” p ds = —2kIm SRpads .

Sincep satisfies a homogeneous Dirichlet (or Neumann) boundargiton onSg, we conclude that:

Im ( p@ds) =0, (A.2.23)
Sr ov
which yields:
ol
lim {‘—p‘ + K2 |p|2} ds = 0. (A.2.24)
a—+00 Sa 87’

Therefore, we have:

lim | Ip|>ds = 0.
Sa

a—+00

Using Rellich’s lemmaZ8], we conclude thap = 0 in B3“, that is, outside a sufficiently large
sphere. Furthermore, due to the ellipticity of the Helmhalperator, the solutiop is analytic in
By". Consequentlyp = 0 in the whole exterior domaii$, which concludes the proof of the
uniqueness.

Remark A.2.2.1 Instead of Eq.A.2.23, assume that the radiating solution to the exterior Helfttho
equation satisfies a boundary condition for which we havddhewing weaker property:

Im < p@ds) > 0.
Sp~ 0

1%
Then, following the previous reasoning, this property ifiskent to lead to:
. ' 2
lim Ip|” ds = 0.
Sa

a——+00
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and the application of Rellich’s lemma still holds.
For example, the exact boundary condition derived from thecBlet-to-Neumann operatof',
which is defined in the next appendix, satisfies this propdrgeed, this exact boundary condi-

. 0 - :
tion is given by: op + Tr(p) = 0. As a property of the Dirichlet-to-Neumann operator stated i
Propositionl.3.2.], it is shown that:

Im (<TR(p)ap>—1/2,1/2,sR) <0, forallp#0.

Therefore, denoting by}, the adjoint operator of ;, we get the relaxed property:

. 8p .
Im ( s pgds) = —Im ((p, TR(p)>—1/2,1/2,SR)

= —Im ((TR(p)vp>*1/2vl/2’SR)
> 0.

A.3 The Dirichlet-to-Neumann operator

This section is devoted to the construction of the DtN omerah a sphere of radius = R
[89, 94, 135.

Let By be the ball of radiug? > 0 and centef. We assume® to be large enough so th&l; contains
the obstacle, i.ef)* C Bp.
We introduce an artificial spherical boundafy in the fluid medium, defined as the surface of the
ball By:

Sg={x € Q) x|, = R}. (A.3.1)

We then denote byzf,; the domain in the fluid medium bounded By andI’, and byB5f, its exterior,
i.e.,
Qp = {z € Qf/ ||, < R}, (A3.2)

and
By =R\ QL UQs. (A.3.3)

The Sommerfeld outgoing-radiation condition (see EQ.24) of BVP (1)) can be rewritten as fol-
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lows

Jp
— —ikp ds = 0. (A.3.4)

or

lim
R—+c0 JSp

Let p° be the solution of the Helmholtz equation (see BVP (1)Bth andp® = p on Sy given by
Eg. (A.3.1). Note that the following construction of the DtN operatoids for allp € L?(SR).
Furthermore, sincg® is given, we can evaluate its normal derlvatvge on Sg.

Hence, we can construct a mapping that maps the Dirichlet tbaSr onto the Neumann trace on
the same boundary as follows:

(& a (&
Tr: P, — — 5,7 15x- (A.3.5)
The operatof’; is called the Dirichlet-to-Neumann (DtN) operator. It issepdo-differential opera-
tor of order 1 that characterizes the exact behavior of theisa in the neighborhood of .
This operator is linear and is defined fraft/2(Sg) into H=/2(SR) (see, e.g., 7). Its expression
can be determined explicitlygq]).

Hence, we have:

op°
or

+Tr(p°) =0 onSg. (A.3.6)

Next, we set explicitly the expression of the DtN operatongshe separation of variables procedure
employed to derive the analytical expression of the satupioHelmholtz equation.
As shown in AppendiXA.2, the outgoing radiating solutiopf in BY, admits the following series

expansion into spherical harmonics:
“(r,0,¢) = Zh (kr) Z ConYmn (0, 0). (A.3.7)

m=—n

Therefore, from RemarR.1.2.1in AppendixA.1, we can expang = p¢ € L?(Sg) on the basis of
the spherical harmonics &y, as follows:

“(R,0,¢) = Z Z PrnYomn (6, 0), (A.3.8)

n=0m=—n

where

Drn = /S D(R.0.6)V (6. 9)ds.
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We can thus identify the expression of the complex coeffisié€h,,, in Eq. (A.3.7) as:

Pmn
= A.3.9
Crmn hn(kR) ( )
Consequently, we deduce that:
X h(kr) & ,
c = E r E Y, B%. A.3.1
p (Ta 97 ¢) s hn(k’R) m:_npmn mn<97 (b) In R ( 3 O)

We derive the expression of the DtN operator by differemtgain the radial direction and taking
r = Rin EQ. (A.3.10) as follows:

TR (p(Rv 97 gb)) = TR (pe(Ra 07 ¢))

_ o
- _a (Rvev(b)
+00 h/ k?R) n
—Z (k) Z PrnYon (6, 0). (A.3.11)
We set
hy, (kr)
and
= 2 o6, 0), (A.3.13)

Then, we can re-write the series expansion of the DtN operatimspherical harmonics as follows:

+00
Tr(p(R.0,9)) = Zoun(k, R)pn(0,9). (A.3.14)
To conclude, the Dirichlet-to-Neumann operator definesxattenon-reflecting boundary condition
on the artificial spherical boundaryz. Thanks to its exact behavior, the near-field of the initial
exterior Helmholtz problem i$, can be exactly determined from the one of the reduced praoblem
In addition, we notice that, since the evaluation of the taehtsp,,,, is accomplished by integrating
over the whole surfacgy, the DtN operator is a nonlocal operator.
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Chapter Il

Efficient DG-like formulation equipped with
curved boundary edges for solving
elasto-acoustic scattering problems

In this chapter, a discontinuous Galerkin based approagirigosed for computing the scattered
field from an elastic bounded object immersed in an infinitabgeneous fluid medium. The proposed
method possesses two distinctive features. First, it eggflmher-order polynomial-shape functions
needed to address the high-frequency propagation regieworffl, it is equipped with curved bound-
ary edges to provide an accurate representation of the #trideture interface. The most salient
benefits resulting from the latter feature, as demonstratethe numerical investigation, are (a) an
improvement by -at least- two orders of magnitude on thetixadaerror, and (b) the disappearance
of spurious resonance frequencies in the surrounding fllediom. In addition, the reported nu-
merical results reveal that using cubic polynomials witeslghan three elements per wavelength,
the proposed DG method computes the scattered field witrativelerror below 1% for an elastic
scatterer of about 30 wavelengths. This observation hydtéi the potential of the proposed solution
methodology for efficiently solving mid- to high-frequentasto-acoustic scattering problems.

1.1 Introduction

The development of robust, accurate, and efficient solutiethodologies for wave propagation
problems is important to many applications. These inclader and sonar detection, geophysical ex-
ploration, structural design, medical imaging and atmesigtstudies. Although significant progress
has been made over the years, the design of reliable aneffestive numerical methods for mid-
and high-frequency wave problems remains a serious clgaldoe to the presence of the so-called
pollution effect [LZ2]. Such a difficulty is clearly visible when solving Helmholproblem, one of the
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simplest mathematical models for time-harmonic scatygsilenomena by a rigid object. Indeed, as it
has been observed and well-documented 38€L34], among others), maintaining a prescribed level
of accuracy as the frequency increases, requires, wheg disissical finite element methods (FEM),
a drastic refinement of the mesh and/or the use of higher-etdments leading to prohibitive com-
putational cost since the requirég-refinement incurs the solution of a linear system of equatio
that can rapidly exceed the available computational céifabi

A number of new methods have been proposed in recent yedisu@ee the pollution effect and im-
prove the unsatisfactory preasymptotic convergence dfttiveard polynomial finite elements. Many
of these approaches employ plane waves as shape funciirestisese functions are (a) solution to
the homogeneous, free space, Helmholtz equation, and {imaiig expected to better approximate
highly oscillating fields. Examples of such emerging teghes include the partition of unity method
[11], the ultra-weak variational method (UWVF24], the discontinuous Galerkin method (DGM)
[50, 53, 54], the stable discontinuous Galerkin method (SDGH)) fhe least-squares method (LSM)
[111], the Trefftz-type wave-based methd#B[ 62], the plane wave discontinuous Galerkin methods
(PWDG) [65, 81, 82], and the local discontinuous Galerkin method for large evaumber $5-57].
The first three aforementioned promising methods ($8¢ for comparison performance) have been
extended to elasto-acoustic problems, in which the seatiteno longer rigid but elastic, and there-
fore, the motion of the structure is modeled by the Navieragiqu for the structural displacements,
whereas the acoustic waves in the fluid are modeled by the rtdtmequation for the fluid pressure
[45, 52, 88]. However, all these methods appear to suffer from two mdjawbacks. The first one
is that they are not applicable to anisotropic (at least imbgeneous) scatterers as they rely on the
knowledge of the exact solution, which limits significantieir application range . The second one
is that the use of a higher number of plane waves (which camb@&aivoided in the mid- and high-
frequency regimes) dramatically affects the condition hanwhich in turns has a severe impact on
the stability of the method, as observed and reported,ifq].

Other attempts have been made to solve efficiently elasiostic scattering46, 58, 61, 106, 107,
121, 131]. In spite of the tremendous strides, the design of efficeahiition methodologies for this
class of problems remains a recognized scientific need ssprg importance.

Given that, this chapter aims to propose a discontinuousri@attype formulation for efficiently
solving elasto-acoustic problems and to assess its peafozen Our purpose is to develop an op-
timized solver for this direct problem, in the view to nextv@the corresponding inverse elasto-
acoustic obstacle problem (IOP) by a regularized Newt@e-tyjethod. Indeed, the computational
efficiency of the IOP solver will depend essentially on tHecefncy of the solution of a large number
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of forward problems that arise at each Newton iteration.

DG methods are of course not new numerical techniqié§ [L27. They have been in recent
years among the primary candidates for solving problemshimwg convection/diffusion terms as
well as reaction terms (see, for examplel?, 140 and the references cited therein). These methods
received, more recently, a great deal of attention for wawblpms, as attested by the various formu-
lations that have been proposed for solving Helmholtz il b, 55, 56, 65, 68, 81, 82, 84, 103
111, 128 141]. This category of methods is very attractive because oérsg\considerations, chief
among them:

e They offer cost-effective procedures for linking sepamlEments/domains in each of which
finite elements, or plane waves, or any expansion seriesacefar approximation. Indeed, the
essence of DG methods lies in the elimination of the Lagrangkipliers, that are used in the
domain decomposition framework to accomplish such linkb@-54], so that the total number
of variables remains as the sum of those in the individuahelgs/domains.

e They can easily accommodate heterogeneous media andrapisatbstacles when using poly-
nomial shape functions, which is very important to many eapions.

e They are very flexible for complicated geometries, allowimgonsider any scatterer shape.

e They are more versatile since they can easily employ a ndoramimesh, which is very con-
venient for elasto-acoustic problems in which there aregltypes of waves (the pressure field
in the fluid and the P- and S-waves in the solid) propagatirdjfegrent speeds. This feature
facilitates adaptive mesh implementation.

e The additional cost ip-type representation is proportional tgp for the interior points and
the number of element interfaces. This feature is very ingmbisince employing higher-order
elements is crucial for a reliable approximation of higtgfrency scattered fields.

In addition, the proposed DG formulation is equipped, ateleenent level, with a penalty-type term
to preserve the stability of the method. For this reason, vilerefer to this method by IPDG (In-
terior Penalty Discontinuous Galerkin). We must point dw#ttiPDG has been originally designed
for solving time-domain wave equation using linear elera¢nf], and its dispersion properties have
been studied in4]. However, to the best of our knowledge, this formulatios hat been employed
for solving other wave problems. We propose to tailor IPD®eaapplied for solving elasto-acoustic
scattering problems. However, the proposed solution naetlogy possesses two distinctive features.
First, it employs high-order polynomial-shape functiohattare obviously needed for an accurate
approximation of highly oscillating waves. Second, it isiggped with curved boundary edges. Un-
like polygonal-shaped approximations, such an accurgtesentation of the fluid-structure interface
provides a very natural setting for better modeling the mitw and outgoing waves, as well as the
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surface waves at the wet surface. The importance of an deawpresentation of the fluid-structure
interface is clearly illustrated by the numerical resulkgained in the case of a two-dimensional
elasto-acoustic scattering problem with a circular-shagastic scatterer. Indeed, these results indi-
cate (a) an improvement on the accuracy level by -at leastonders of magnitude, and (b) the dis-
appearance of the spurious internal resonances in the flaidisually occur when the fluid-structure
interface is approximated by a “broken” line.

In this chapter, we intend to propose and validate a numesatation methodology for the di-
rect elasto-acoustic scattering problem. The remaindéheichapter is organized as follows. In
Sectionll.2, we specify the notations adopted throughout this chapigistate the considered math-
ematical model. Sectioh.3 is devoted to the description of the proposed IPDG. In Sedtid, we
develop two validation test cases for the IPDG method. Thss dine corresponds to a waveguide-
type problem, it assumes that the solutions of the problenbeaexpressed in terms of simple planes
waves. Similarly, the second test case is a radiating-typel@m where the solutions are expressed
as a Hankel function of the first kind and the gradient or ctid 8essel function for a fixed mode.
These tests allow to observe that we recover and approxioeatectly the pressure field and both
kind of elastic waves, i.e. the P-waves and the S-waves. dwerethey allow to show some stability
properties of the Discontinuous Galerkin method by perfogra modal analysis. In Sectidh5,
we investigate the numerical performance of IPDG in the cdsetwo-dimensional homogeneous
and isotropic disk-shaped elastic scatterer surroundethihhomogeneous fluid medium. Analytical
solutions for the elasto-acoustic scattering problem cdy loe characterized for simple geometries,
such as circles in 2D. Nevertheless, this kind of test is atfical interest and is reasonable for testing
the accuracy of the method. We have a look to the resonanec®ptemon that can exist in the elastic
scatterer with this simple geometry. More specifically, wenpute Jones frequencies and compare
the results to those obtained with UWVE&]. We first observe the results obtained with the classical
IPDG method without curved boundary edges. They suggesatparticular care is needed for the
resonance frequencies. Since a finer mesh on the transmisggoface is not sufficient to improve
sufficiently the accuracy level, we then equip the methodh witrved boundary edges and show its
salient features. Next, we also examine the sensitivithefrhethod to the mesh refinement as well
as to the frequency regime. More specifically, we assessfiibet ef using curved boundary edges
on the convergence of the method and observe its behavibeimtd and high-frequency regimes.
Closing remarks are given in Sectidins. In AppendixB.1, we recall the series expansion of the
analytical solution for the disk-shaped elastic scattpreblem considered in SectiohS. The Ap-
pendixB.2 addresses a brief analysis on the sensitivity of the Joregiéncies to perturbations of
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the scatterer. The last Append®x3 provides a sensitivity analysis to the penalization patame

1.2 Nomenclature and Problem Statement

[1.2.1 Nomenclature

Throughout this chapter, we adopt the following notatiomd assumptions:

e (* is a bounded domain @2 representing an elastic obstacle.

e O/ is the bounded fluid medium surrounding the elastic domain.

e ['is the wet surface of the scattefet.

e Y is the exterior boundary ad/.

e | -|is the Euclidean norm if?.

e 1 is a point ofR?, understood as a column vector and- |x| is the distance from an origin
point toz.

e (s a unit vector representing the propagation directiomefihcident plane wave.

e v is the outward normal tb and?;, £ Is the normal derivative operator.

e V is the gradient operator iR>.

e (—e.) x V defines the curl operator iR?, wheree, represents the third vector of the canonical
basis inR3.

e [|' denotes the transpose matrix.

e M* denotes the adjoint matrix d¥/, which is defined as the complex conjugate transpose of

M.

e [?(E)isthe standard Lebesgue space ai@F) denotes the Sobolev spaces (see, for instance,

[3] for definitions and properties).
° JC;: andX; are mesh partitions of the domaifi¢ and)® respectively, composed of triangles
K. X, = fK{l U X3 represents the total partition of the computational domain

e For each elemenk’ € X, hi represents the diameter &f, h = m}}n hr, anddg represents
the diameter of the inscribed circle ii. We assume that there exists a constant 1 such
that (see?7)):

hx <C, Vh,VK €X,,.
dk

This condition prevents the presence of skinny triangles.
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e P,(K) designates the space of polynomial functions defined af degree at most > 1.
e The finite element approximation spaces for the pressurerenstructural displacement solu-
tions in the fluid and solid media are respectively given by:

V] = {ge LX) : qx €Py(K),V K € K]}
Ve = {ve (LA(Q))? vk € (Py(K))*V K € K}

Hence, we consider functions that are piecewise polynanmatach element and whose de-
grees are less than or equaltoHowever, unlike standard finite elements, such functioas a
not continuous over the computational dom@inu /. They are onlyL>.

o HY(X])={qe L?(V): qx € H(K)},l € N.

HenceV,/ C H'(X]). Similarly, H(X3) is the space for the vectorial displacement field in the
solid.

e &/ and&* denote the set of all edges i/ andX;. Si,R is the set of edges on the exterior
boundary?:, andéiﬁ’jT corresponds to the set of edges on the fluid-structure adel. S{Lm
and&; ,,, represent the sets of internal edge&GnandX;. They are such thatt] ;.. N (€] U
fs) = @ and&;,, NEL, = @. Itis worth mentioning that the boundary edges on the
fluid-solid interfacel” and the exterior fluid surfac&fhﬁ are curved and not straight boundary
edges (see Fidl.2.1(b)).

(a) Straight boundary edge for interior trianglgg Curved boundary edge for triangles at the fluid-
structure interface.

Figure 11.2.1 — Illlustration for two adjacent triangles.

¢ Note that an edgein 8£7mt, h.intOF Sﬁ’jr is shared by two elements denoted arbitrarilyy
andK—,i.e.,e = 0Kt NOK~ (see Figurdl.2.1).
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The unit normal vectors t& ™ and K —, oriented to the exterior direction, are denotedand
v~ (see Figurel.2.1).

1
Fore € €f,,, U &} ., We setd, = 5 min{dgc+, di-}.

The traces of a functiop € H'(X]) on K+ and K~ represented by* and ¢~ exist and
belong tol'(€}) = [] L*(9K). Thus, afunctioni’(€]) admits two values of ,,, UES?,
Keﬂ(-,i
and one value oﬁi,R. Similar notations can be defined for the trace of a vectduiattion
v e (HY5K;)" C (T(&)* with T(&;) = [] L*(9K).
KexXs,
The jump and average @fe T'(&/) U T(€;) through an edge are defined by:

onoK+t NoK™. (11.2.1)

o
6):=6"—o~ and {s}:= 1

Note that for an edge on the exterior boundary, it is reduced t

0] :=¢ and {¢}:=¢ ondK*NX.

[1.2.2 Problem Statement

Let Q° be a bounded domain &" representing an elastic obstacle, &= R" \ " be the
homogeneous inviscid (fluid) medium surrounding the edadimain.I” is the boundary of2® and is
assumed to be Lipschitz continuous.

We consider the scattering of a time-harmonic acoustic vegvhe elastic obstacle® embedded in
(/ as depicted on Figui&2.2. The corresponding system of equations BVP (1) reads a®th#ing

inc

Xp

Of

Figure I1.2.2 — Problem statement in the infinite domain.
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of the Helmholtz and Navier equations. This problem can beated as follows:

Ap+k*p=0 in Qf (11.2.2)
V- o(u) + w?psu =0 in Q° (1.2.3)
dp 0Og
2 . e <
T(u) = —pv — gv onl’ (11.2.5)
Ip
. (n=1)/2 [ 2/ _
TEI-POOT <8r 1k:p> 0. (11.2.6)

The pair(p, u) represents the elasto-acoustic scattered figles the fluid pressure if2/ whereas
v is the displacement field iR°. g = p™c = ew/crt - d i the incident plane wavew is the
circular frequencyc; is a positive real number representing the sound velocitlyerfluid. o, andp,
are positive real numbers denoting respectively the dessif the fluidQ/ and of the scatterep®.
Hence,k represents the wavenumber in the fluid, givenkby: w/c;. Note thatk is the reference
frequency for the considered problem.

o is the stress tensor related to the strain teasnyr Hooke’s law:

Olm = Clmjngjnu

whereCy,, ., is a fourth order elastic stiffness tensor which is, for atrispic medium, invariant under
rotations and reflection®§]. Therefore (Cy,,,;,, is given by:

C(lmjn = Aélméjn + ,u((sljémn + 5ln5mj)7

where )\, 1 are the Lamé coefficients. The strain tensas related to the displacement fieldby
[93, 120:

e(u) = % (Vu+ (Va)').

Last, 7 denotes the traction vector on the surface of the scattErghat is:

The boundary conditions on the wet surfdcelescribe the coupling between acoustic and elastic
waves. The first one is a kinematic transmission conditiomer&as the second one is a dynamic
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transmission condition.

The well-posed nature of BVP (1) has been investigated @5, 87, 104 in the case of isotropic
elastic scatterers and in ChapteMore specifically, it has been established that the saiytiop)

of BVP (1) exists and is unique only in the absence of Jonepi&ecies. These interior resonance
frequencies are usually present in scatterers with axmhsgtry such as cylinders and spheres. These
frequencies do not exist in the case of arbitrarily-shapmtids, as demonstrated ing. For addi-
tional mathematical results, we refer the readed®) 79, 92, 93, 104], among other references.

Figure 11.2.3 — Prototypical computational domain.

In view of using of a finite element method, we introduce affieil boundaryX: in the infinite fluid
medium to bound the computational domain as depicted onr&lga.3. Given that, as described in
Chapter, we consider the following elasto-acoustic scatterindpfem defined in a bounded domain:

Ap+KEp=0 in Qf (11.2.7)

V-o(u) +wpsu=0 in Q° (1.2.8)

BVP (2) w2pfu ‘v = % + % onl’ (11.2.9)
T(u) = —pv — gv onT (11.2.10)

% + Tr(p) =0 ony (11.2.11)
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whereTy denotes the Dirichlet-to-Neumann operator (DtN) operator

In the following, we use the simplest approximation of thé&l@iperator, corresponding to a Robin-
type condition, given by:
Ip

P ikp=0 onx. (11.2.12)
ov

It is worth noting that the low-order absorbing boundaryditon given by Eq. [[.2.12) gives rise
to spurious reflections, deteriorating the approximatidm.improve the accuracy of the solution, it
is more interesting to consider at least a first-order alisgioundary condition involving the mean
curvature ofy.. Nevertheless, in the numerical tests that we will considehis Chapter, this low-
order condition will be sufficient. Indeed, the ABC will bk into account in the expression of the
exact solution in order to draw up a suitable analysis.

Recall, that in the case of a circular-shaped artificial llauy, we have proven in Chaptethe exis-
tence of a solution to the reduced problem BVP (2), and thdtrbslds when replacing Eqll(2.11)

by Eq. (1.2.12).

11.3 The Interior Penalty Discontinuous Galerkin Method (I PDG)

[1.3.1 The approximation space

In this section, we construct a basis of the spageandV*. To this end, we firstintroduce the degrees
of freedom (d.o.f) of the mesh for such Galerkin Discontiasifinite elements. Ldv,{ (resp.Nj) be
the number of elements in the fluid (resp. solid) medium, &nlde the total number of elements of
the mesh, i.eN = N/ 4+ N; . For each elemerit of the meshp’ represents the number of degrees
of freedom corresponding to the polynomial finite eleméhtsFor simplicity, we assume” = m,
that is, we use the same element order in each triangle. InH&Ddimensions of th&, (K'), Py(K)
andP;(K) element spaces are respectively givembgqual to 3, 6 and 10. Then, the total number
of degrees of freedom in the fluid part used to approximaten Vhf is equal toN/ := m x N,{.
We denote bfo the corresponding points, for all < i < N/. Similarly, N* := m x N; is the
number of unknowns to approximate each component of theagisment fieldu, = (uqp, vy, ) in

V2. The corresponding points are denotedyy for all 1 < i < N°. Therefore, the total number
of unknowns is equal tex(N/ + 2N;), where the factor 2 results from the two components of the
displacement field.
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Next, consider an elemei; in X;,, with1 < [ < N,{, and Iet(gzﬁf(l)i:l,...,m be the Lagrange basis
functions of degree in P,(K;). We denote by=(7, K;) the function allowing to determine the global
numbering of the'" degree of freedom of the elemelst on the mesh.

Then, we defind¢;, 1 <i < N/} a basis of the approximation spaE,é which is of dimensionV/

as follows:
¢z‘(P]f):5ij, Vi, j=1,---,N7,
Pilx, € P,(K)), VKJGK%, Vi=1---,N/.

The global basis functionsg; can be expressed in terms of the Lagrange basis functiohs aas:

Gk, = ¢sz’ with j such that = G(j, K;), if pPl e K,
Gij, =0, If P/ ¢ K.

It follows that any functiony, in V;/ can be expanded under the following form:

NS N
= a05(z) = 3> a9} (x)
j=1

1=11=1

where the components @f in this basis coincide with its degrees of freedom on the mewtt is

4 :qh(pjf), Vj=1,---,N/.

Regarding the displacement field, we define a bégisl < i < 2N;} of V};? of dimension2N* in

the same way. Lete,, ¢,) be the canonical basis k*. We set, for anys; in X,

oK — dfle,, Vi=1,-.m
' X ey, Vi=m+1--- 2m.

—m

Then, any function ofy, € V;* can be written as follows:

@) = () (o)) = (33 (), 30 3 e o)

1=11i=1 =1 1i=1

iv qbKl em+2§:v qbKl
=1

I=11i=1

i( W (@) + ok (@)

=1

2
3
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2N*

= Z ijj(x>7

J=1

where
[P Wi=1 N
P vn(P)), Vi=NE41 2N

J

[1.3.2 The Variational Formulation

In this section, we derive the variational formulation fovB (2) corresponding to the IPDG
method.

Let (qn,vn) € Vhf x V2. Multiplying by the pair of test functions and integrating< (1.2.7) and
(11.2.8) of BVP (2) onQ],; and(2° respectively, we first have:

(/ APth$+ /th ):0,
KeK]

(/ V.o(u)v,de +w ,08/. uvhdx):O.

KEKS

Applying Green’s theorem, we obtain:

2

(/ Vp- thda:——/ pqhdx>
KeK]

_ Z (/(Vp vttt +Vp v, )d5+ Z /Vp v, ds
eee}iznt ‘ eEEiir ‘
.S /vp~u+q—hds:o, (1.3.1)
eEE};R N
> </ (u) : Vo dr —w ps/ uvhdx)
Keky K
S -,
eeehznt ©
- > /U(u) v ds = 0. (1.3.2)
eeels 7€

h,tr

Substituting both transmission conditions Eqs2(9)-(11.2.10) into Egs. (1.3.1)-(11.3.2), it follows
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that:

</ Vp Vg dz — — /pqhdx>
KeK]

- > (/(VpJr vt T+ Vp - uq_h) ds+ > /prfu Vg, ds

ece!

h,int eEEi’iT ‘
— Z /Vp v, ds = Z /Vg v, ds, (11.3.3)
ect] n c ectl
Z </ o(u) : Vo, dr — w ps/ uv_hdx>
Kers VK K
-y (/(cr(u)Jr viopt +o(u)” -I/_U_h_> ds+ Y /py+md32
eeeilnt c eeeﬁir €
— Z /gl/+ﬁds. (1.3.4)
S

h,tr

Substituting the absorbing boundary condition Eig2(12) on: into Eq. (1.3.3), and multiplying

the Eq. (1.3.3) by 1/p, we obtain the following discretized problem: for &}, v,) € Vil x v,

2

1
</ —Vp - Vg, dr — p_w_ thdl’>
KeK]

fCr
1
— Z /(—+Vp .y+q—h++—_Vp_.y_qh ds + Z /wu g, ds
eee}{,int ‘ pf pf eEE{L‘; ‘
- > /—thdS— > —Vg~u+q_hds, (11.3.5)
eEEf pfcf Ef s e pf
h,tr
Z </ o(u) : Vo, dx — wgps/ uv_hdx)
Keks MK K
-y / ViRt b o(u)T v )ds+ Y /pV+U_h ds
eEE}SL int eegﬁ‘zr ¢
=— > /gl/+ﬁd5. (11.3.6)
eegiir ¢
Moreover, we observe that:
T - 1 + .+ 1 -\ (W@
—Vp —l——Vp g = ==V T+ —=Vp v
Pyt Pf Pf P 2
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1
(—Vp"+ —Vp ) @v +q )
pst P

+
1 1 T+ T
— <—+Vp+ . V+ + —7fo . V) (M)
Py Py 2
+

(- + VW —a)
P
_ 1 o
= [p—pr'V]{Qh} +{p—pr}u [Tn)-

and

o)t Tt o) T = (o(u) T+ o(u) o) (@)

+%(U(u)+1/+ —o(u) v ) (ont =)

= (ot vt ot ()
t5(o) + o) (-

= [o(wvH{mn} + {o()}v - [o].

Substituting the latter expressions into Eqs3(5)-(I1.3.6) leads to the following variational formu-

lation:
al (p, qn) +b((p, ), (qn, vn)) +c™(p, an) = fr(an),
Y (gn,vn) € VI x Ve (1.3.7)
a*(u, vp) + 0" ((p, ), (gns vn)) = fa(vn),
where
a(p,an) = D < =y Vp VG, dx — iw— pqhdx> (1.3.8)
Kek! KW prc f
1 _ b
- — [((—Vp-v — v ds
P [ @) + b
o((pu), (qnvn)) = Y /u-zﬁq—hds (11.3.9)
ceef, "
M((p, ), (gn,vn)) = — %R u}2/%1@%@ (11.3.10)
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B N P,
filan) = d%%rWQA[VV@ g ds, (1.3.11)
a*(u,vp) = Y (/ a(u):Vﬁdaz—wzps/ uv_hd:c) (1.3.12)
Keky VK K
= Y [Uotupwl{mn +{otw}v" - [m) ds
eeez,int N
folun) = - X:/ﬁfﬁM& (1.3.13)
ectf "
(11.3.14)

Next, we proceed to some arrangements to obtain the IPDGufation that will be an approximation
of Eq. (1.3.7). First, the solutionp, u) of the transmission problem BVP (2) has to satisfy the
following weak continuity constraints:

Lvp =0 and [o(u)] = 0. (11.3.15)
Pr

Therefore, we remain consistent writing:

1 1 1
—+Vp+ VTGt +—Vp v = {=Vph@] (1.3.16)
Pf Pf Pf
and
ow) vttt +o(u) v T = {o(uw) vt o) (1.3.17)

Observe that the terms are not hermitian. We then enforoseh& continuity of the solution through
each interior element of the mesh, by seeking a solution thath

[p]=0 and [u]=0. (11.3.18)

Consequently, we remain consistent when re-writing BEQ.(6)-(11.3.17) as :

pf%ijL vt + %Vp_ VT = {%Vp}lﬁ[q_h] + {%Vq_h}lﬁ[p]. (11.3.19)
and
ow) vt -t +ow) v ot = {o(u)lvton] + {o(@n) [yl (11.3.20)
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In addition, to guarantee the stability, we must ensure tegaivity of the formulation. To this end,
we add the following interior penalty terms in the fluid antidparts respectively:

Cf Sciw,m __
%[p][q—h] and . e [y o7, (1.3.21)

where
e 7, and-, are two real penalty parameters that depend on the polyhondier [4];
e ¢/ =max(—,—)

max pf+’ pr
o (¢’ = maX(C'K+, CK—), WhereCK+ = m%lX |CZJkl|
ij

Note that, instead of,, one could have usell. = min(hg+, hx-). Moreover, observe that this
formulation allows to consider heterogeneous media. Hewemr the following we will only con-

. . - . 1
sider homogeneous media. Therefore, both coefficiehts andc? . are fixed equal to—, and
Pf
max;; |Cijrr| respectively.

Given that, combining Eqsli(3.19)- (11.3.21), we deduce an approximation of the bilinear forms
a’(-,-) anda®(-,-) (see Eq.l(.3.7)). The proposed IPDG approach consists in formulating B)P (
as the following variational problem:

Find (p,, un) € Vi x V;# such that

(VF) aﬁ(ph,%) + bn((pry wn), (qn, vn)) + crn(Pry an) = filan), ¥ (gn,vp) € Vhf x Vi

ay,(un, vp) + by, ((ph, un), (qn, va)) = falvn),

(1.3.22)
wherea£ anda;j are two sesquilinear and hermitian forms given by:
1 1 1 w?
apna) = Y, — (/ —vph-vq—hd:c———Q/ phq_hd:l:) (1.3.23)
Kek] w K ps P Cr /K
1 1 . 1
- 2 _2/ <{—Vph}V[qh]+{—V<1h}'/[29h]) ds
eESf. w € pf pf
h,int
+ Y [ dplia ds
7 w de e
eEEh int
ay (up,vp) = Z </ o(uy) : Vo dx — w?p, / uh-v_hdx> (11.3.24)
K K

KeKj
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- ¥ [ o)}y [ + o @)y - [u) ds

s
eegh int

+ 3 2 Chunelun] - [l ds

e€&s e

h,int

¢, andb,, are two sesquilinear forms given by:

Ch\Ph,qn) = — / ——prqh ds, (11.3.25)
n(Phs qn) e% 2 Jo pye P
b ((prs un), (qnovn)) = Y /uh-uq—hds; (11.3.26)
ecels €

h,tr

f1 and f, are complex-valued linear forms given by:

1 r1
fla) = Y. — | —Vg-vgds, (1.3.27)
eGE{L’i W e pf
falvn) = = Y [ gv-wnds. (11.3.28)
ecehs €

In summary, VF [1.3.22) results from a local variational formulation of the contus equations (see
BVP (2)) at each element of the domain partition. The four first integralsdlﬁ and the three first
terms ina; result classically from the application of the Green foranwhile taking into account the
jump across the interior element edges. Observe that tlyeitiasar form3a£ andaj are hermitian.
This property has been enforced by adding a continuity caiméton the jumps, via the second to last
terms in each form. Moreover, the stability of each localatawnal form is enforced by incorporating
interior penalty terms giving rise to the two penalty parterey; and~; in the fluid and solid parts
respectively. Note that in the case of the second-order equation, it has been suggesteddhthat
the values of these two penalty parameters should be grtbaiﬂ%p(p + 1), wherep is the order of
the considered finite elements. For an even order approximahe optimal choice for the penalty
parameter is exactly equal éqp +1)(p + 2).

Remark 11.3.2.1 We can verify that the added fluxes are consistent and caasezyand thus, the
resulting bilinear forms are coercive, and consistent. ded, as regards the consistency, for all
(qn,vp) € Vi x Vs and for any(p, u) € V;/ x V¢ satisfying the boundary conditions, we have:

a’é(pv Qh) = af(pa Qh)
h

ay (u,vp) = a®(u,vy).
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[1.3.3 The Algebraic Formulation

Thanks to the expression of the functions in the finite eldrbasis described in Sectidh3.1,
the variational problem VR 3.22) can be expressed at the algebraic level as follows:

(Af +C B) (P> = (Fl) . (1.3.29)
B* A% \U F

whereA/ is a symmetric matrix given by:

A = % (K7 —k*M7F — 37 44,87, (11.3.30)
and
e K/ is the block diagonal stiffness matrix associated to thesre field.
e M/ is the block diagonal mass matrix associated to the prefisiole
e J7 is the matrix that contains the jump terms. The entries of thiatrix are defined over the
interior edges.
e S/ isthe mass-like matrix defined over the interior edges irflthé resulting from the penalty
term.
C is the complex-valued damping matrix. It is a mass-like iRatwvhose entries are all zeros except
for the elements located at the exterior bounddry The matrixAf + C is symmetric, but non-
hermitian, and thus non-positive-definite.
The symmetric matrix4? is given by:

AP = K° — W?p,M* — J* 4 ~,8°, (11.3.31)

and
e K7 isthe block diagonal elastic stiffness matrix related ®displacement field.
e M* is the block diagonal mass matrix related to the displacefiedd.
e J*¢ is the matrix that contains the jump terms. The entries o thatrix are defined over the
interior edges.
e S?isthe mass-like matrix defined over the interior edges irstiiel resulting from the penalty
term.
Note that the matrix4? is positive-definite up to the Jones frequencies, thanksdartterior penalty
term that compensates the weak ellipticity of the equatfmerator.B is a mass-like boundary matrix
whose entries are defined on the interface edges only, wh&remnd F;, are the source vectors. The
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vector P (resp. U) is the fluid pressure (resp. structural displacement)esgtation in the finite

element basis.

More specifically, the unknown vectofsandU are given by:

{P = () ey = (PR)(P)rsiens
U =(U.U ) (u2>1<z<2NS = ((um)h<Pis>1gz'§Nsv (uy)n (PS)1<Z<Ns)t
and

AW o ( - </ — V-V, dr — /gbngjdx)) (1.3.32)
Ker

1<i,j<NS

f
eeeh int

- /{ Vodule] + 1 WM o)) d )

S i/pcqglquds)

eeg{b 1<i,j<Nf
L9
o P efdemwds)
CEhint 1<i,j<N¥
A5 — Z (/Ko—(wi):Vz/;jda:_w%s/Kwiwjd:c)) (11.3.33)
Ker, 1<i,j<2Ns

s
eegh int

-2 /{U i) v - (il +{o(y) v [Q/Jz])dS)

’)/Scmax
+Y [y )
1<i,j<2N*

SGEZ int
- /z/;iwcbde) (1.3.34)
ecel 1<i<2Ns,1<j<Nf
1 1
F = Z 2 —Vyg - vo;ds (1:9:35)
. epy
€ h,tr 1<]<Nf
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BR=|-3 /gy-wjds . (11.3.36)

eceds c
h,tr 1§j§2NS

(11.3.37)

[1.3.4 The Computational Complexity

Let N,{ (resp.N;) be the number of elements in the fluid (resp. solid) mediumd ;& represents
the number of degrees of freedom on an elenféntFor simplicity, we assume’ = m, that is,
we use the same element order in each triangle. Theref@éotdl number of unknowns is equal to
m(Nj + 2N}), where the factor 2 results from the two components of thelaiement field. Next,
consider an elemerdt; in K/, with 1 < I < N} and let¢/*' be a basis function if;/ associated to
some degree of freedoiml < i < m, onthe elemenk;. Let gb]KS be an arbitrary basis function Uﬁf
in a trianglek,, with 1 < j < m, 1 < s < N/. Then,a}, (¢}, $*) is nonzero only ifp;"" and ¢’
are basis functions belonging to the same element] kes, or if K, is a neighbour element df;.
Since each triangl&; has at most 3 neighbours, it is sufficient to store four blaflszem x m, one
block for the internal interactions within the eleméfitand 3 for its interactions with its neighbours.
Following the same reasoning for the remaining terms of #r@tional formulation VFI(.3.22), this
leads roughly to about x m x m x (N/ + 2N;) nonzero entries in the global matrix. Moreover,
we can also make use of the general symmetry of the termsitudimgf the matrices to minimize the
storage. Itis then almost halved, that is atibuim x m x (Nj +2N¢) nonzero terms. For illustration
purpose, let us consider an elastic circle of radiesnbedded in a fluid medium delimited by a circle
of radiusb. Let N be the number of elements per wavelengthlrhen, we obtain the computational
configuration referenced in Table3.1. The linear system given by Edl.3.29) is thus composed

e £ points f elements Totalf d.o.f f nonzero terms
(m) I | 2 | Ming | NinQ/
A | 2ma | 27h 2ma’ 27 (b? — a?) 27 (a® + b°) 271 (a® + b?)
h=— — | | 2m? [ ———=
N|hn | n E E " E " E

Table 11.3.1 — Computational complexity of IPDG.

of sparse matrices whose symmetry property allows for amagetd storage. This system is solved
with an LU factorization procedure developed for sparséesys and incorporated in the open-source
program suite, MUMPSI]. An illustrative example of a sparse structure of the DG rniragtored
within MUMPS is depicted in Figur#.3.1. This illustration has been obtained for the case of a mesh
composed of 18 triangles in the solid and 48 in the fluid pane mumber of unknowns is thus equal
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to 252 using a linear polynomial approximation, and the matntains 1998 nonzero elements.

1 ' P o '
. = o
‘c'u ] - B .
51' : . .:
|
.
1014 Ny
Fluid—Fluid : Fluid—Solid
\ "“::..
51 | « F ]
l - "l".
i \ [
201 | -
Solid-Fluid | Solid-Solid
|
251k - - » .
1 51 101 151 201

251

Figure 11.3.1 — lllustrative example of the structure of the IPDG matrixagivby Eq. (1.3.29): upper triangular
storage for 52 x 252 matrix. Total number of nonzero entries: 1998.

Note that in the low and mid-frequency regimes, the sparggeimentation allows the procedure to
run the numerical experiments on a personal computer. Hemwvelue to the size of the resulting

system in the high-frequency regime, parallel computiragfpfms have been used to perform the

numerical simulations. More specifically, we used the @usf the University of Pau consisting of
an INTEL type CPU (64bit) with 8 nodes composedof 6 cores, and 48 Go RAM.

[1.3.5 Brief remark on the curved boundary edges

In this work, we will also make use of curved boundary edgetherfluid-solid interface, as well
as on the exterior boundary. This implies some importanigba regarding the numerical implemen-

tation. Indeed, the transformation from an arbitrary elente the reference element is not the same

as for straight finite elements.
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Let K be an element of the mesh whose coordinates of the verficese denotedz;, y;)i—1.. 3.
We denote byk the reference element triangle defined by the vertiggs, 0) S,(1,0), S5(0,1).
Then, there exists an affine transformatiBrwhich transformsx in K. For straight elements, the
transformation can be written as follows:

T Tog— X1 X3 — T T
Fa,9) = 1 n 2 1 T3 1 ‘.
U1 Y2 — Y1 Ys— U1 Yy

In the case of curved boundary edges, the transformatiotpiessed as:

whereP; represents the coordinates of the degrees of freedom.on
A similar remark can be done for the edge transformation.

As a computational implication, the Jacobian of the trams&dion is no longer constant. It follows
that, by change of variable in the reference element, theradtant must be computed under the
integral. In addition, the normal vector to the edge alsaegar

1.4 Numerical validation

Our objective here is to validate our numerical implemeatadf the IPDG method. To this end,
we propose to define toy problems for which analytical sohgiare available.

We assume the elastic obstacle to be homogeneous, whichsreabhamé coefficients are indepen-
dent ofz. Observing thaWV - u = tr(Vu) = tr(s(u)), the tensor (u) can be expressed as follows:
o(u) = ANV -u)ls+ 2ue(u). (1.4.1)

BecauseV - tr(c(u)l3) = V(V-) and2V - (¢(u)) = V- (Vu) + V - (Vu') = Au+ V(V - u), we
then have:
V.o(u) = A+ p)V(V-u)+ pAu. (11.4.2)

Therefore, we obtain that the Navier equation (see EG.2)) can be rewritten as follows:

A+ 1)V(V - u) + pAu + w?pau = 0, (1.4.3)
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or, equivalently, sincdu = V(V - u) =V x (V x u),
A+2u)V(V-u) —puV x (Vx u)+wpu=0. (1.4.4)

From the latter expression of the Navier equation given by(Ed.4), we can dissociate two types

of solutions: those which are curl free, and the others whrehdivergence free, as follows.

e On the hand, assumig x u = 0, Eq. (1.4.4) becomes:
(A +2p) Au + w?psu = 0. (1.4.5)

We recognize a vectorial Helmholtz equation, with wavenenth) = ﬁ, where the velocity
Cp
. A+ 2
¢, Is equal toc, = e

Ps
The solutions of this equation correspond to the pressuvesyaalled P-waves (or primary
waves).

e On the other hand, assumiRg- v = 0, EQ. (1.4.4) becomes:
pAu + W pu = 0. (11.4.6)

We also find a vectorial Helmholtz equation, with wavenumbet 3, where the velocity is
Cs

given byc, = "

Ps
The solutions of the latter equation are called S-wavestfeaswaves (or secondary waves).

Then, it results from Eqli(4.4) that the displacement fiekdcan be split into its curl-free component
and its divergence-free component. More specificallyan be expressed in terms of a P-wave scalar

potentialp and S-wave vector potential as follows:

u=Ve+V X (11.4.7)

Given that, we have transformed the initial equations ini@aeguide-type problem and a radiating-

type problem. The fluid-solid interaction problem into ciolesation is then the following boundary
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value problem:

BVP (3)

Ap+Ep=0
V- o(u) +w’psu=0

0
o= g
o(u)y = —pv + go
dp

in QF,
in ©°

onI’ (1.4.8)

onl’

onY .

where the expressions of the right-hand sigleg, andgr will be specified for each numerical test.

For these simulations, the domain of computation is anielestle 2* of radiusa = 1 m surrounded

by an acoustic domaift},, whose external boundary is a circle of radiys= 3 m.

The circular frequency isy =

10. We will employ polynomial elements of order 1 to 3. There-

fore, due to the typical oscillatory character of the salntof scattering problems, we use ab@Lit

elements per wavelength fér = 6.7. The corresponding mesh composed of 5374 elements is de-

picted in Figurdl.4.1. The material properties of the considered elastic corditum are reported in

Tablell.4.1. Note that they correspond to Lamé coefficiehts 8 andu = 4.
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(a) Computational domain
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(b) Mesh

Figure 11.4.1 — Configuration for the waveguide-type problem and radiatyyme problem.
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Properties | Density | Propagation velocity
Medium p (kg/m?) | cp (MIS)| cg (Ms)
Fluid 2 15 —
Solid 1 4 2

Table I.4.1 — Material properties of the considered fluid-structure raadi

[1.4.1 First validation test: a waveguide-type problem

For this first validation test, we assume that the pressule: died both potentialg, v exist as
plane waves, that is:

p=ear™ (11.4.9)
¢ =ew"" (11.4.10)
=t (11.4.11)

with d; = (cos 8, sin 0), dy = (cos a, sin «).

We will consider the cases where the displacement is cugldred then where it is divergence free.
In particular, these experiments will allow us to verify tha recover correctly both kinds of elastic
waves, i.e., P-waves and S-waves.

11.4.1.1 Curl-free displacement

In this first set of experiments, the curl-free displacemecdn be expressed as follows:
u= Vo, (1.4.12)

The potentialp and the pressure fieldare plane waves given by Eg#.4.9) and (1.4.10). We can
therefore compute explicitly the exact valuepatndu for each degree of freedom.
The right-hand sides of BVP (3) are given by:

i“x.dy

gr = Veu"".y (1.4.13)
, e, aeiﬁx-dl

g = wpre cp U — By (“414)

g = o(Vear )y 4Ty, (1.4.15)

They correspond to the particular case where and« given by Egs.|(.4.9), (11.4.10) and (1.4.11)
are solution to the problem. We take the following penaltsapseters:y; = v, = 3, 7y = 75 = 15
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andy; = v, = 60 for linear, quadratic and cubic elements respectively. Wfesiler the physical
material properties defined in the beginning of the Sectiofablell.4.1. Moreover, the angles of the
plane waves are given by:= o = 0°.

First, we compare the results obtained with different apjpnation orders going from 1 to 3. The
error results are reported in Tablegt.2 to 11.4.4. In Figurell.4.2(a)-(b), we show the real parts of
the pressure fielg and the displacement component for both approximate and exact solutions
obtained using cubic elements. Since the compongid zero in this case, we do not represent it.
Fig. 11.4.2(c) illustrates the absolute error between both solutioFise following observations are
noteworthy:

e IPDG delivers a very poor accuracy level when using lineameints as indicated in Talle4.2.
We observe that there is three orders of magnitude improntore the relative error when
going from linear to quadratic elements. Employing higbeter (cubic) elements, there is a
one order of magnitude improvement on the relative errav@ated to the displacement field,
and a two orders of magnitude improvement on the relative eorresponding to the pressure
field. Note that the error associated to the pressure fieldasgp than the errors corresponding
to the displacement field. This is due to the fact that the Veaggh in the fluid is smaller than
the wavelengths in the solid. Indeed, we have: k; < k,. To improve the accuracy when
employing the lowest-order elements, it is necessary togdhe mesh in the fluid part. For
example, halving the triangle edges two times successewxdyywhere, we obtain a relative
error of6.7% for the pressure field using linear polynomial elements.

e InFig.11.4.2 (a)-(b), we recognize the band structure of the plane waveseover, we observe
the difference of wavelengths between the two media. Theirkmhblue color for the error
representation in Figl.4.2(c) illustrates the good approximation of the exact solutiy the
proposed method when employing higher-order elements.

[Fields [ P | u [ uw |
L..-norm exact solution 1.000 | 2.500| 0.000
L.-norm approximate solution 9.717 | 2.688| 0.184
Absolute error 14.555 | 0.190| 0.191
L?-relative error {0) 301.866| 4.318| Infinity

Table 11.4.2 — Waveguide-type problem - Curl-free displacement - Errsulis using linear polynomial elements
@ =a=0°.

Second, we want to study the stability with respect to thedtiion of the pressure plane wave.
The angled of the directiond; = (cos(#),sin(f)) varies between 0 and 36With an increment of
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Figure 11.4.2 — Waveguide-type problem - Curl-free displacement - Figgag¢sind (b): Real parts of the pressure
field p and displacement componeint using cubic polynomial elements for the approximate andttesalutions
(6 = a = 0°). Figure (c): Absolute error between both solutions.
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[Fields [ p [ w [ uw ]
L..-norm exact solution 1.000 2.500 0.000
L.-norm approximate solution  1.019 2.500 4.391E-004
Absolute error 4.288E-002 2.095E-004| 1.932E-004
L?-relative error {) 0.856 4.735E-003| Infinity

Table 11.4.3 — Waveguide-type problem - Curl-free displacement - Erreulis using quadratic polynomial ele-
ments § = o = 0°).

[Fields [ p [ w [ uw ]
L..-norm exact solution 1.000 2.500 0.000
L.-norm approximate solution  1.000 2.500 6.501E-006
Absolute error 3.777E-004 5.744E-006| 2.070E-006
L?-relative error {) 7.533E-003 1.298E-004| Infinity

Table 11.4.4 — Waveguide-type problem - Curl-free displacement - Errsulis using cubic polynomial elements
@ =a=0°.

5°. Given the results obtained previously, we perform the grpents using cubic elements. We take
dy, = dy. We plot both the relative and the absolute errors in Figu#e3(a)-(d). We also plot in
Fig. I1.4.3(e) the condition number of the DG system matrix, as well asughper bound of the error
in the solution, provided by the solver MUMPS. The resultiicate the following:

e In Fig. 11.4.3 (a)-(c), we observe the well-behavior of the method, we vecthe periodicity.
The error curves associated to the displacement field is grapthan the error curve corre-
sponding to the pressure field, which is due to the differesfceravelengths between both
media. Note that, in Figl.4.3 (b), the presence of peaks in the relative error curves &gsdc
to the structural displacement figld, , u, ) are due to the fact that the displacement components
u, andu, are zero fo¥ = 7 andf = 2 x 7 respectively.

e In Fig.11.4.3) (d), we observe the periodic structure of the condition ham

11.4.1.2 Divergence-free displacement

Similarly to the previous part, the divergence-free congmin admits the following representa-

tion:
u=V x 1, (11.4.16)

The potentiat) and the pressure fiejdare plane waves given by EqH.4.11) and (1.4.9).
As previously, we consider the boundary value problem BV I§8t the corresponding right-hand

90



1.4 Numerical validation

Semi-log y scale Semi-log y scale

10 T T 10 T T
Y
-e-Uy
1057 ]
A by,
\* fﬁoeoos 2 ﬂ‘* oddﬁﬁ%o@ f’
4 4
= * [ * ® 4
N Lo S of s 2 7
<] <] ) % Yo %
= ] ¥ n ¥ /
5} @ ﬁ yo \ [ yo
L o] 1054 XQ P é [ ]
3 3 Sy roQ oy L
@ @ ! 1 b A 1 b
2 g gt sy pos P
_ O \ \ Q
10°% ! * f \ :P t f P
) “. N Q ® ‘f 1 °
1 \ + \ 1 \ + \
5.6] P 3 ! 0\ b t ! ?
"y 1
1077 6 % # y © % # by
1 1
° \ § 0 v %
* *
10734 . , . . . . . . 10*5-7‘9 . M . . L™ .
0 40 80 120 160 200 240 280 320 360 0 40 80 120 160 200 240 280 320 360
0 (degree) 0 (degree)
(a) Pressure absolute error (b) Displacement absolute error
o1 Semi-log y scale Semi-log y scale
10 T T T T T T T T T T T T T
, .
1
i
0 [}
L i
1024 10" :: H
n ':
n :I
S g I "
g 810} n "
5 b 1
¢ e " "
2 2 1 "
3 10719 3 " "
o 2 " n
h N "
10 b I '
| 1 ! :
107 ' o i
1 () : :
. STV S
10’215 L L L L L L L L 10’5 L L L L L L L L
0 40 80 120 160 200 240 280 320 360 0 40 80 120 160 200 240 280 320 360
6 (degree) 0 (degree)
(c) Pressure relative error (d) Displacement relative error
o Semi-log y scale
10 T T
‘\
l&
GR% ? ARECEE-
1 1 1
R W A
o [ 1
Ergiiol CIR gag o My SR e R
g o 0'”" Sy ; o ° ué’ lé 0; ,8‘
= 3 o\o! e o V., g
5 sy £
g i
(S [
10° It 1
—— Condition number
E -e-10%x Upper bound err
1 . . . . . : ; :
0 40 80 120 160 200 240 280 320 360

0 (degree)
(e) Condition number
Figure 11.4.3 — Waveguide-type problem - Curl-free displacement - Fig(ia¢gd): Sensitivity of the relative and

absolute errors to the angleusing cubic polynomial elements. Figure (e): Condition benof the system matrix
and the upper bound of the error in the MUMPS solution (Semiyl scale).

91



Chapter Il. Efficient DG-like formulation equipped with cur ved boundary edges for solving
elasto-acoustic scattering problems

sides are now given by:

gr = Ve (11.4.17)
2 i“Lx-do 6eiﬁx.dl

g1 = wppVxewr T.v— ey (1.4.18)

g = o(Vx a®®y peeathy, (1.4.19)

Once again, we compute explicitly the exact solutipr@sdu and compare them to the approx
imate solution performed with IPDG for linear to cubic pobynial elements. The error results are
summarized in Table$.4.5to 11.4.7. Fig. 1.4.4 illustrates the numerical results obtained with cubic
polynomial elements. The real parts of the approximatet®ols and exact values gfandu, are
represented in Figl.4.4(a)-(b), as well as the absolute error between both solsiiiofig.[1.4.4(c).
Note that, in this case, the componantis zero and is not represented. The results reveal the follow
ing:

e As before, the use of higher-order elements improve theracguespecially for the fluid pres-

surep.

e Fig.1l.4.4 shows the correct recovery of the band structure of the pleaves for both types of

media. The errors are poorer than for the P-wave case repeesa Fig.l1.4.2, this is again
due to the fact that < k, < k,.

[Fields [ P [ w [ w ]
L..-norm Exact solution 1.000 0.000 | 5.000
L-norm Approximate solution 54.459 | 2.084 | 5.849
Absolute error 95.221 | 1.684 | 1.076
L?-relative error {0) 1974.802| Infinity | 12.424

Table 11.4.5 — Waveguide-type problem - Divergence-free displacementrerEesults using linear polynomial
elements.

[Fields [ p | w [ uw ]
L..-norm Exact solution 1.000 0.000 5.000
L..-norm Approximate solution 1.221| 1.165E-002  5.009
Absolute error 0.475| 7.258E-003| 6.597E-003
L?-relative error {) 9.471| Infinity 7.455E-002

Table 11.4.6 — Waveguide-type problem - Divergence-free displacemenmteresults using quadratic polynomial
elements.
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‘ Fields ‘ p ‘ Uy ‘ Uy ‘
L..,-norm Exact solution 1.000 0.000 5.000
L.-norm Approximate solution  1.002 2.185E-004] 5.001
Absolute error 2.092E-003 5.590E-005 2.011E-004
L?-relative error ;) 4.172E-002) Infinity | 2.272E-003

Table 11.4.7 — Waveguide-type problem - Divergence-free displacementeriesults using cubic polynomial
elements.
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(c) Error between both solutions

Figure 11.4.4 — Waveguide-type problem - Divergence-free displacemeigurEs (a) and (b): Real parts of the
pressure fielp and displacement componem{ using cubic polynomial elements for the approximate andtexa
solutions § = o = 0°). Figure (c): Absolute error between both solutions.
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To complete this test case, we again study the stability kegpect to the directios, of the pres
sure plane wave. The angleof the directiond; = (cos(#), sin(6)) varies between 0 and 36With
an increment of 5andd, is chosen equal té;. We use cubic polynomial elements. In FHig4.5, we
represent both absolute and relative errors, and alsotrdg@ocondition number of the system matrix,
as well as the upper bound of the error in the solution, pexvidy the solver MUMPS. As before,
we recognize the periodic structure for all the curves. Wealzserve that the error in pressure is less
smooth than the error associated to the structural displacefield. Note that, in Figl.4.5 (b), the
presence of peaks in the relative error is due to the factiigadisplacement components and,,
are zero foil = 2 x m andf = 7 respectively.

To conclude, both validation cases allow us to ensure thatesever correctly P-waves and S-
waves. In particular, the use of high-order finite elememtsiples accurate results. Moreover, we
have observed a stability with respect to the direction efglane waves.

[1.4.2 Second validation test: a radiating-type problem

In this second set of experiments, we propose a test simildset previous one. We do no longer
consider plane waves but the solutigrendwu are respectively a Hankel function of the first kind and
the gradient or curl of a Bessel function for a fixed made
More precisely, the pressure and the potentials into censitn can be expressed as follows:

p = HWY (kr) cos(nd), (11.4.20)
¢ = Jp(kyr) cos(nd), (1.4.21)
Y = Jp(kgr) sin(nd), (1.4.22)

This test is useful to test the stability of the method.

11.4.2.1 Curl-free displacement

In this first part, the curl-free displacements expressed by:

u=Vo, (11.4.23)
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The potentialy and the pressure fieldare special functions given by Eq#.4.21) and (1.4.20). In
order to specify the expressionofwe write the gradient in polar coordinates as follows:

- oo, 10¢
Let us denote
U, = ? = —k,J, (k,r) cos(nd) (1.4.25)
r
ug = %% = —an(kpr) sin(nf). (11.4.26)
Then, we obtain:
U = U€r + Ug€l. (11.4.27)

Since the polar basis vectors are giveneby= (cos#, sinf)’ andé, = (—sin 6, cosf)?, it follows
that the displacement field can be expressed as:

Uy = UpCcOsH — ugsinb,

Uy = u,sind +uycosb,

Then, the boundary value problem is still formulated as B®Fb(t with different expressions of the
right-hand sides, that is,

0

IR = 5 [HT(ll)(/{IT) COS(TLQ)] , r=3 (1.4.28)
g = wQ,of% [ S (Kpr) cos(nB)] — % [Hr(bl)(kr) COS(TLQ)] , r=1 (1.4.29)
g2 = o(V [Ju(kpr)cos(nd)])v + [Hfll)(kr) cos(n&)} v, r=1 (1.4.30)

We keep the settings defined in the beginning of the section.

First, we consider the mode = 2. We summarize the error results obtained when using lireear t
cubic polynomial elements in Tabléds4.8to 11.4.10. In Fig. 11.4.7 (a)-(b), we depict the real parts of
the pressure solutiomand the displacement componentfor both approximate and exact solutions
when using cubic elements. Fig4.7 (c) illustrates the absolute error between both solutibmBig-
urell.4.6, we represent the imaginary part of the pressure fieldd the real part of the displacement
componenty, for both approximate and exact solutions when using cuimehts, as well as the
absolute error. Since the displacement field is real, we doapvesent the zero imaginary part. The
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conclusions are similar to those drawn up for the previossdase. More specifically, we observe
the following:

e As previously, IPDG delivers a very poor accuracy level whsimg linear elements. Indeed,
we observe that there is a three orders of magnitude impreneon the relative error when
going from linear to quadratic elements. However, obsdratethe use of highesrder elements
does not improve the accuracy except for the fluid pregsure

e InFig.11.4.7 (a)-(b) and Figll.4.6 (a)-(b), we recognize the radiating structure of the sohdi
In addition, the difference of wavelengths between bothimnedagain clearly observable.

e The dominant blue color in Fidl.4.7 (c) and Fig.ll.4.6 (c) illustrates the good approximation
of the exact solution when using cubic polynomial elemeNtste that it seems that the error is
concentrated on the transmission interface.

[Fields [ p 1w [ w ]
L..-norm exact solution 0.316 0.636 0.636
L.-norm approximate solution 3.770 0.711 0.707
Absolute error 7.130 | 9.491E-002 9.369E-002
L?-relative error {) 949.789| 11.471 11.323

Table 11.4.8 — Radiating-type problem - Curl-free displacement - Erraults using linear polynomial elements
(n =2).

Fields o w1y
L..-norm exact solution 0.316 0.636 0.636
L..-norm approximate solution  0.318 0.636 0.636
Absolute error 4.238E-003 6.002E-005| 6.191E-005
L?-relative error ;) 0.543 7.216E-003) 7.443E-003

Table 11.4.9 — Radiating-type problem - Curl-free displacement - Erreutes using quadratic polynomial elements
(n=2).

| Fields | p | Uy | u, |
L..-norm exact solution 0.316 0.636 0.636
L..-norm approximate solution 0.316 0.636 0.636
Absolute error 1.731E-004| 4.699E-005| 4.670E-005|
L?-relative error {) 2.219E-002 5.649E-003| 5.615E-003

Table 11.4.10 — Radiating-type problem - Curl-free displacement - Err@uits using cubic polynomial elements
(n=2).
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Figure 11.4.6 — Waveguidetype problem - Curl-free displacement - Figures (a) and (bjaginary part of the
pressure fielgh and real part of the displacement compongntising cubic polynomial elements for the approximate
and exact solutions(= 2). Figure (c): Absolute error between both solutions.
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Figure 11.4.7 — Waveguidetype problem - Curl-free displacement - Figures (a) and R&al parts of the pressure
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(n = 2). Figure (c): Absolute error between both solutions.
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Second, we study the stability with respect to the moad the special functions. We consider a
mode varying fromm = 0 to n = 10. Given the previous observations, we employ cubic poly@bmi
elements. In Figuré.4.8, we depict both absolute and relative errors. We also reptéise condition
number of the DG matrix, as well as the upper bound of the enrtihe solution, provided by the
solver MUMPS. It seems that there is a relative stabilityhwiéspect to the mode. Whereas the
pressure approximation remains relatively stable, thative errors corresponding to the structural
displacement seem to increase with the mode number. Thiseigadthe fact that the displacement
field tends to vanish as the mode number increases, whiclsesdble on the absolute error curves.
Last, though we remark that the condition number of the systecreases with, this is not the case

for the error in the Mumps solution.

Remark 11.4.2.1 Later, we will use curved boundary edges on both boundatiasd X in order to
better take into account the geometry of the domain and hetdeleling the incoming and outgoing
waves as well the surface wave at the wet surface. We wilhsgéhis can significantly improve the
results. However, we can already observe the effect of usinged boundary edges on the accuracy
of IPDG for the radiating-type problem into consideratiofihe preliminary results are reported in
Tablell.4.11 and Figurell.4.2.1 using cubic polynomial finite elements. Tahld.11 suggests that
there is a gain on both pressure and displacement fields whieily gsurved boundary edges compared
to Tablell.4.10. Moreover, the error curves depicted in Fig.4.2.1 are smoother than the ones in
Fig. 1.4.8.

| Fields | p | U, | u,, |
L..-norm exact solution 0.316 0.636 0.636
L..-norm approximate solution 0.316 0.636 0.636
Absolute error 7.735E-005 7.064E-006| 7.107E-006
L?-relative error ;) 9.914E-003 8.480E-004| 8.532E-004

Table 11.4.11 — Radiating-type problem - Curl-free displacement - Err@utts using cubic polynomial elements
equipped with curved boundary edges=£ 2).

11.4.2.2 Divergence-free displacement

In this second part, the divergence-free displacemesexpressed as follows:

W=V x o, (1.4.31)
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The pressure fielg is given by Eq. [.4.20) and the potentia) by the Eq. (1.4.22). As above, we
expand the form of the solutian First, we have:

1oy, oy
V x ’l/) = ;%67« — Eeg. (“432)
Therefore, we obtain:
Uy = Uu,cosf — ugsinb,
Uy = u,sind +ugcosb,
where
100 n
U= o = ;Jn(ksr) cos(nh),
ug = —g—@f = —kyJ, (ko) sin(nd).

Then, similarly to the previous part, we consider BVP (3)wite following expression for the right
hand sides:

gr = % [Hfll)(kr) cos(n&)} , r=3 (11.4.33)
g = WpV x [Ju(ker)sin(nd)] - v — % [Hfll)(kr) cos(n@)} , r=1 (1.4.34)
g2 = o(V x [J,(ksr)sin(nd)])v + [H,(Ll)(k:'r’) cos(n@)} v, r=1 (1.4.35)

The parameters are the ones defined in the beginning of thiersec
In this case, the mode number is again fixed te 2. The error results using linear to cubic polyno-
mials are reported in Tabléks4.12to 11.4.14. In Fig.11.4.10 (a)-(b), we represent the real parts of the
pressure fielgh and the displacement componentfor both approximate and exact solutions when
using cubic elements. Fi¢J.4.10 (c) depicts the absolute error between both solutions. IFig11
gives the representation of the imaginary part of the pres&eid p and the real part of the displace-
ment component,, for both approximate and exact solutions when employingacalements, as
well as the absolute error. Since the displacement fieldais wee only show its real part. The results
are similar to those obtained in the case of curl-free degtaent. They indicate the following:
e As observed in the curl-free displacement case, there ise@ thrders of magnitude improve-
ment on the relative error when going from linear to quadrakements. Furthermore, going
from quadratic to cubic elements - once again - does not makéeaence, except for the
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pressure field (see Tabldst.12-11.4.14).

e Again, we recover the radiating structure of the soluti@e®(Figll.4.10and Fig.ll.4.11), and
can observe the difference of wavelengths between bothanedi

e The concentration of the error on the fluid-solid interfaxagain observable on Fi.4.10 (c)
and Fig.l1.4.11 (c).

| Fields | P | w | u |
L..-norm exact solution 0.316 1.788 | 1.79
L.,-norm approximate solution 20.808 | 2.359 | 2.344
Absolute error 35.381 | 0.476 | 0.471
L?-relative error {) 4712.858| 32.390| 32.06

Table 11.4.12 — Radiating-type problem - Divergence-free displacementrefEresults using linear polynomial
elementsq®{ = 2).

‘ Fields ‘ p ‘ Uy ‘ Uy ‘
L..-norm exact solution 0.316 1.793 1.797
L..-norm approximate solution  0.328 1.794 1.798
Absolute error 5.885E-002 1.02E-003| 1.034E-003
L?-relative error {) 7.544 6.788E-002| 6.884E-002

Table 11.4.13 — Radiating-type problem - Divergence-free displacementefesults using quadratic polynomial
elementsq®{ = 2).

| Fields | p | U, | u,, |
L..-norm exact solution 0.316 1.799 1.799
L.-norm approximate solution  0.318 1.799 1.799
Absolute error 3.915E-003 6.148E-004| 6.182E-004
L?-relative error ;) 0.502 4.093E-002| 4.115E-002

Table 11.4.14 — Radiating-type problem - Divergence-free displacementreEresults using cubic polynomial
elementsq® = 2).

To end this study, we analyze the stability with respect éotioden. of the special functions. The
mode varies from = 0 ton = 10 using cubic elements. The error curves are depicted inFHgl2,
together with the condition number of the DG system matisxyvall as the upper bound of the error
in the solution, provided by the solver MUMPS. In Flg4.12 (a)-(b), we observe that the errors on
the pressure field remain relatively stable. It is also treedar the displacement approximations.
Note that the presence of peaks in the relative errors agedcio the displacement components in
Fig.11.4.12(b) for the first mode: = 0 is due to the fact the displacement is zero for this mode yalue
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Ux_real P_real_ex

Ux_real_ex
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3 *:0,2 3
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(a) Approximate solution (b) Exact solution

P_real error Ux_real error
006815 003498
0,006 ED 003
0,004 Eo 002
0,002 0.001
8,729e-9 1.081e-8

(c) Error between both solutions

Figure 11.4.10 — Waveguidetype problem - Divergence-free displacement - Figuresuia) (b): Real parts of the

pressure fielh and displacement componemt using cubic polynomial elements for the approximate andtiexa
solutions ¢ = 2). Figure (c): Absolute error between both solutions.
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Figure 11.4.11 — Waveguidetype problem - Divergence-free displacement - Figuresata) (b): Imaginary part
of the pressure fielg and real part of the displacement componeptusing cubic polynomial elements for the
approximate and exact solution & 2). Figure (c): Absolute error between both solutions.
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as indicated by Figl.4.12(a). As previously, the condition number decreases witmtbde number
n but not the error in the Mumps solution (see Higt.12 (c)).

Semi-log y scale Semi-log y scale
T T T T T T

-+ -Ux

'
'
' -e-Uy
v
)

Absolute error
Relative error (%)

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Mode Mode
(a) Absolute error (b) Relative error

Semi-log y scale
10 T T T

Condition number

— Condition number
S| ©-10%x Upper bound errar
0 1 2 3 4 5 6 7 8 9 10
Mode

(c) Condition number

Figure 11.4.12 — Waveguidetype problem - Divergence-free displacement - Figureqlf}) Sensitivity of the
relative and absolute errors to the mode numbasing cubic polynomial elements. Figure (c): Condition inem
of the system matrix and the upper bound of the error in the NR$Molution (Semi-log y scale).

To conclude, it follows from the tests performed on the radgatype problem that we again
recover correctly P-waves and S-waves. The use of high-gedbic) polynomial elements ensures

an accurate approximation. Furthermore, the results sestrotv a stability with respect to the mode
number of the special functions.

Remark 11.4.2.2 Similarly to Remarkl.4.2.1, we address the effect of using curved boundary edges
on the approximation for the radiating-type problem in these of divergence-zero displacement.
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The corresponding results are reported in Tabld.11 and Fig.11.4.13 using cubic elements. The
comparison of these results with Tablet.10 and Fig. 11.4.12 suggests that the curved boundary
edges improves the accuracy level delivered by IPDG. Wesedl a more detailed analysis of the
IPDG method equipped with curved boundary edges in the eekios.

[Fields [ p [ w [ uw ]
L..-norm exact solution 0.316 1.799 1.799
L..-norm approximate solution 0.316 1.799 1.799
Absolute error 6.654E-004 7.633E-005| 7.613E-005
L?-relative error {) 8.529E-002 5.074E-003| 5.061E-003

Table 11.4.15 — Radiating-type problem - Divergence-free displacementreresults using cubic polynomial
elements equipped with curved boundary edges (2).

1.5 Numerical performance

In this Section, we investigate the numerical performari¢eeproposed IPDG method equipped
with curved boundary edges and compare it to the Ultra-Weallkatfonal Formulation (UWVF)49g].
The principle of the latter method is recalled in the statéhefart in the preamble ofp]. As its name
indicates, the UWVF method developed by Cessenat-Desf&fns constructed in a variational
framework. The term “ultra-weak” comes from the fact that thariational problem is obtained after
two integrations by parts. The wave field is approximatedphaae-wave basis, which results in in a
discontinuous function. The continuity across the intsgfais restored in the weak sense by solving a
system whose unknowns are defined on the mesh edges. Thigsdtie overall computational cost,
but auxiliary local problems must be solved before. Theréiszation of the obtained system leads to
a linear system associated with a Hermitian and definit&ipesnatrix, which nevertheless suffers
from ill-conditioning.

To this end, we consider the three-dimensional time-harcscattering of acoustic waves by an
infinite long aluminum cylinder immersed in water. Note thigis configuration has been used in
[88] to assess the performance of UWVF for fluid-solid inter@cton relatively coarse meshes. In
addition, since the axis of the cylinder is the problem reduces to a two-dimensional problem in
the (z, y)-plane. The considered computational domain is depictdegarell.5.1. The solid is a
circle Q¢ with radiuse = 0.01 m surrounded by the fluif/ delimited by the exterior circular-shaped
boundaryX: of radiusb = 0.02 m. The material properties of the considered elastic cordigan are
reported in Tablél.5.1. These are similar to the ones used3#,[38]. In the following, we consider
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Figure 11.4.13 — Waveguidetype problem - Divergence-free displacement - Figuregi§f) Sensitivity of the
relative and absolute errors to the mode numbesing cubic polynomial elements equipped with curved bamnd
edges. Figure (c): Condition number of the system matrixtaedipper bound of the error in the MUMPS solution
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P

Figure 11.5.1 — The computational domain: disshaped elastic scatter® surrounded by an exterior circular-
shaped boundary.

an incident plane wave of the forpi"c = ¢**¢ with d = (1,0). Note that, since the scatterer is
isotropic, the fourth-order stiffness tensor reduce€'tQ;,, = Adymd;n + 1(61;0mn + 61mdm;) Where

A = ps(ch — 2¢%) andp = pgck are positive numbers representing the constant Lamé deeffic
defined in terms of the densipg, as well as the pressure and shear velocitjeandcg in the solid
[93].

Properties | Density | Propagation velocity
Medium p (kg/m?) | cp (MIS)| cg (Ms)
Water 1000 1500 -
Aluminum 2700 6198 3122

Table I1.5.1 — Material properties of the considered fluid-structure madi

We use an analytical solution for the elasto-acoustic egag problem existing for simple scat-
terers, that are circles to derive the method adopted. Thstiection of the analytical solution in
polar coordinates is given in Appendi1 by using the separation of variables. Observe that the
analytical solution is designed to satisfy the low-ordem@terfeld-type condition and thus the same
problem as the approximate solution. By this way, the eredwben both exact and computed solu-
tions will not be influenced by the radiation condition. Assitvell-known, the exact solution of the
considered elasto-acoustic problem can be expressed agiarFseries (see, for exampl&d and
AppendixB.1). For completeness purposes, we recall here such an expressthe fluid domain,
the scattered pressure field is expressed as follbg]s [

+o0o

p(r,0)=>" {AnHr(Ll)(k:T) + BnH,(LQ)(kT)} cos(nf); a<r<b, 0e€l0,2m) (11.5.1)

n=0
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where H(" and H(? denote the Hankel functions of the first and second kifiddnd A4,,, B,, are
complex numbers. The first term of the series correspondset@titgoing field. The second term
represents the incoming wave due to the presence of thaaeundaryX.. In the solid obstacle,
the scattered displacement fields expressed using two displacement potentisdsidq) [120:

u=V¢+(—e,) x Vi (11.5.2)

where these two potentials are given by:

+o0

¢(r,0) = > CpJn(kyr)cos(nb), (1.5.3)
n=0

P(r,0) = JioDan(ksr) sin(nd); 0<r<a,6e]l0,2mr). (1.5.4)
n=0

Here,J,, andY,, denote the Bessel functions of the first and second kind céisply [2], andk, = CE
P

ky, = d represent the wavenumbers of the pressure and shear watles solid. Moreover, the
CS
complex coefficients|,,, B,,, C,, andD,, satisfy the following systenB]:

B X, = e (11.5.5)

whereX,, = (A,, B,,C,, D,)! andE, is a4 x 4 matrix whose complexalued entriefz" are given
by:

EY = kEHY(ka), j=1,2
EY¥ = —Wpsk,J (kya),
EM = —prngn(ksa),
E¥ = HY(ka), j=1,2

2 1
£ = a—'l; (n2 +n— §k§a2)Jn(kpa) — kpadn_1(kya)|,

B2 = 2 (4 1) (k) + Ko (k)]

B = EP=EP-EM =0,
2
Jor I _a_’;n[_(n+1)Jn(kpa)+kpajn_1(kpa)],
34 20 2 1o,
EY = —=|(n +n—§ksa VI (ksa) — ksad,_1(ksa)|,
a
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EY = EHU(kb) —ikHY (kb), j=1,2.

The righthand side:,, € C* corresponding to EqB(1.14) is given by:

el = —ei"kJ, (ka), (11.5.6)
e = —g,i"J,(ka), (1.5.7)
et = el =0, (11.5.8)

wheresy = 1 ande,, = 2forn > 1.

We also denote bys; = (EJ);_; 55,3, the reduced matrix in which the effect of the exterior

boundary is ignored, where&s = (ng)j:2 3.—3.4 IS the matrix representing the solid Fourier modes.

Recall that the Jones frequencies correspond to frequealagsfor which the uniqueness of the so-
lution in the elastic medium fails. Such resonance fregigsnmorrespond to the excitation of surface
waves on the fluid-solid interface whose integer number ofelemgths fits over the circumference
of the interface §8]. Consequently, the determination of these resonancedrezes can be accom-
plished by monitoring the dependence of these local threecesal,,, £ and £ with respect to
the normalized frequendya and by determining the values onfthat make the corresponding deter-
minants vanish. Note that, omitting the low-order Sommdfgpe condition term, the determinant
associated tdJ; corresponds to the real unbounded physical problem swuistize radiation condi-
tion. Moreover, observe that, siné¢ represents the vanishing traction on the surface of théi@las
scatterer, the determinant associated’{maturally coincides with the Jones frequencies.

In all numerical experiments presented here, the exactisnlbas been evaluated by computing
only the first2kb + 1 Fourier modes for both the fluid pressurand the structural displacementor
less Fourier modes if the relative change due to an additronde in both acoustic and elastic wave
fields is belowl0~°. It is worth mentioning that, though this is not necessamy,seale the systems
associated to both approximate and exact solutions in ¢éod®roid some instabilities, especially in
the high-frequency regime. Indeed, in our numerical expenits, there is a difference of scale of
10*? between both acoustic and elastic wave fields, and ther¢fmeystem matrices can suffer from
ill-conditioning. Note that, for high frequency valuesetanalytical solution turns out to be unstable,
more particularly the analytical pressure field, and a spexare to the mode number precision is
required.

We must point out that we have performed this numerical iingagon by taking values for the penalty
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terms~; and~, ranging from0 to 10°. The obtained results (see Appendi») suggest that one can
use any values fof; and~, without affecting the accuracy of IPDG, provided that theakies re

. 1 : .
main larger tharzp(p + 1), wherep is the order of the considered element.

We have performed several numerical experiments and caudpghe obtained results to those
obtained with UWVF 8. We present here a sample of illustrative results pemagirto (a) the
determination of Jones frequencies, (b) the sensitivithéomesh refinement, and (c) the sensitivity
to the frequency regime.

[1.L5.1 Numerical determination of the Jones frequencies

The objective here is to compute the Jones frequencies dfilea problem configuration. To
this end, we consider Mesh 1 depicted in High.2(a) and whose characteristics are reported in Ta-
ble 11.5.2. Sinceka varies from 4 to 21, the mesh resolution decreases from 20egits to about
3.9 elements per wavelength. In the first experiment, weidenghe case where the boundaries are

f points | 1 elements
r | | o | o
Mesh1| 80 | 160 | 1602 | 4840
Mesh 2| 320 | 160 | 1956 | 4244
Mesh 3| 44 | 27 | 461 | 184

Table 11.5.2 — Disk-shaped elastic scatterer problem - Mesh charadteist

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 11.5.2 — Disk-shaped elastic scatterer problem.
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polygonatshaped, that is, no curved boundary edges are used, andpl@yerubic polynomial func-
tions. The results are reported in FiguheS.3 to 11.5.6. The following observations are noteworthy:

o Except at discrete values bfi, the L?-relative error remains below 1.5% even when the mesh
resolution is as low as 3.9 elements per wavelength, asatetian Fig.11.5.3 (a).

¢ Fig. l1.5.3 (a) also indicates that the relative error curves assatiat¢he structural displace-
ment field(u,, u,) exhibit peaks that correspond to the resonance frequersEednfirmed in
Figurell.5.4 depicting the condition number of the global system givereQy(1.3.29).

e The curve corresponding to thé-relative error in the fluid pressure also exhibits peaks (se
Fig.ll.5.3) which is striking since there is no resonance frequenchérluid. The presence of
these spurious frequencies in the fluid medium is due to a @omoximation of the interface
fluid/structurel’, as it will be demonstrated in the next paragraph (seelFig18).

e Observe that the highest peak in Rigs.3 is located at the dimensionless frequehay= 9.26,
corresponding to the frequengy = 221 kHz. Fig.l1.5.5 reveals that, at this frequency value,
the three matrice€’,,, E; and E: for the third Fourier moder( = 2) become singular, as
observed in Fig. 7, page 178 i&g]. Note that the minimum values of the three determinants
are located at the same frequencies, which shows that tbheaeses for the modal problem
are the physically relevant Jones frequencies correspgridithe third type of determinants
in Figs.I1.5.5-11.5.6. This clearly demonstrates that the frequency vdlgeoincides with the
Jones frequency associated to the third Fourier mode.

Note that AppendixB.2 addresses a brief analysis on the sensitivity of the Joregiéncies to
perturbations of the scatterer.

[1.5.2 Towards the IPDG method equipped with curved bounday edges

In this section, we propose a progressive approach towael$RDG method equipped with
curved boundary edges on the transmission interface amdi@xboundary as follows. First, we
present the results obtained in the neighborhood of thenees® frequencyr highlighted previ-
ously, using straight boundary edges and the globally réfiviesh 1 depicted in Figl.5.2(a). Next,
we observe the improvements achieved by means of a refinerhii@ mesh interface, using Mesh 2
depicted in Figll.5.2(b), while still employing no curved edges at the boundargecond, we come
to the IPDG method equipped with curved boundary edges vitidbe adopted, using the coarser
Mesh 3 depicted in Figl.5.2(c).
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Figure 11.5.3 — Sensitivity of theL?-relative error and of the absolute error to the wavenuniaewhen using
Mesh 1 and cubic polynomial elements without curved boundedges.
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Figure 11.5.4 — Sensitivity of the condition number of the system matrix dhe upper bound of the error in
the MUMPS solution to the wavenumbk# when using Mesh 1 and cubic polynomial elements without edirv
boundary edges.

[1.5.2.1 IPDG method without curved boundary edges

In the following, we analyze the performance of the methotha neighborhood of the resonance
frequencyfr highlighted previously. Similarly tod8], we consider the three frequencigs= 219
kHz, fr = 221 kHz, andf; = 223 kHz, corresponding téa = 9.1735,9.2572, and9.341 respee
tively. We have computed the scattered fighdu,, u,) using two meshes: Mesh 1 and Mesh 2 (see
Fig. I1.5.2(a) and Figll.5.2(b)). Note that these two meshes are similar except at thet $lmucture
interface in which Mesh 2 is four times finer than Mesh 1, ascated in Tabldl.5.2. Moreover, the
numerical experiments have been performed using (a) lip@gnomials, (b) quadratic polynomials
and (c) cubic polynomials. We must point out that no curvegkesdat the boundaries were employed
in these experiments. The obtaingétrelative errors and absolute errors on the scattered field a
reported in Tabled.5.3-11.5.5, Tablell.5.6-11.5.5, and Fig.l1.5.7. Some illustrations of the numerical
results obtained using cubic polynomial elements are tisgbia Figsl.5.8to11.5.13. The following
observations are noteworthy:

e IPDG delivers a very poor accuracy level when using Mesh & Tadblesl.5.3-11.5.5) at the
Jones frequencyy. Observe that the use of higher-order elements does nobuafhe ac-
curacy except for the fluid pressupe The situation is slightly different for the two other fre-
guencies. Indeed, we observe that there is one order of tog@grnimprovement on the relative
error when going from linear to quadratic elements. Howetver error stagnates when using
higher-order (cubic) elements (see Talhlg.5).
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Figure 11.5.5 — Sensitivity of the determinant of the modal matrices to t@enumbeka. Cases where = 0,1, 2
(Semilog y scale).
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Figure 11.5.6 — Sensitivity of the determinant of the modal matrices to t@enumbeka. Cases where = 3,4, 5
(Semilog y scale).
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e The results reported in Tablés5.6-11.5.8 indicate that a finer mesh on the fluid-structure inter-
face (recall that Mesh 2 is four times finer than Mesh 1 on ttexfiace, as shown in Table5.2)
improves the accuracy level delivered by IPDG for all thnegjfiencies. These results clearly
illustrate the importance of well representiidor the accuracy. Yet, the error on the structural
displacement at the Jones frequerfgyis about two orders of magnitude higher than the error
on the field corresponding to the non-resonant frequenEigshermore, going from quadratic
to cubic elements - once again - does not make a differencadition, the spurious frequen-
cies are still present in the fluid medium, as depicted in Fig.7.

e Figs.11.5.8- 11.5.10, where the pressure modulus and the displacement ampfitide/w - «
are represented, suggest that the error is due to a poor impadelthe wave transmission
through the wet surface. Fig.5.11- 11.5.13 supports this idea since we can observe a kind of
thinning down of the error when considering a finer mesh orflthé-structure interface.

L/ (kH?) | | p [ w | w |

L..-norm exact solution 1.739 1.98E-013| 2.556E-013

219 L..-norm approximate solution 1.776 2.004E-013 2.427E-013

Absolute error 2.356E-003 1.201E-016| 1.901E-016
L?-relative error ) 11.323 6.464 9.572

L..-norm exact solution 1.73 4.612E-013| 6.346E-013

291 L.-norm approximate solution  1.757 1.757E-013 2.659E-013

Absolute error 2.459E-003 3.139E-015 3.247E-015
L?-relative error ) 11.77 102.723 67.206

L..-norm exact solution 1.706 2.462E-013 2.01E-013

293 L.-norm approximate solution  1.738 2.615E-013 1.815E-013

Absolute error 2.483E-003 2.252E-016| 2.875E-016
L?-relative error §) 11.931 11.023 17.319

Table 11.5.3 — Error results for linear polynomial elements using Mesh d an curved boundary edges.

Remark 11.5.2.1 Before using a refinement of the fluid-structure interfacly,ame have refined the
mesh globally by halving the triangle edges once, whichiplids the number of elements by 4. We
have obtained relative errors that are divided by a factaf ih the case of the resonance frequency:
0.28%), 19.881%, 12.594% for p, u,, andu, respectively, when using cubic elements, and similar re-
sults when employing cubic elements. Therefore, the glabiaement of Mesh 1 only slighty im-
proves the results compared to the benefits obtained usisty leMoreover, the computational cost
is clearly spoiled, and the limitations constituted by tlse of polygonal-shaped approximations re-
main. Note that with Mesh 1, the number of non-zero entrigketystem was 1,667,068, whereas
on Mesh 2, that admits about the same number of elements dsMédecomes 1,756,628, which
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L/ (kH?) | L p [ w | uw |

L..-norm exact solution 1.742 1.98E-013| 2.556E-013

219 L..-norm approximate solution  1.743 1.991E-013 2.546E-013

Absolute error 9.625E-005) 1.186E-017| 1.763E-017
L?-relative error ) 0.450 0.635 0.881

L..-norm exact solution 1.736 4.614E-013 6.346E-013

291 L.-norm approximate solution  1.732 2.671E-013 4.417E-013

Absolute error 1.612E-004| 1.625E-015 1.630E-015
L?-relative error ) 0.751 52.869 33.534

L..-norm exact solution 1.715 2.462E-013 2.01E-013

293 L.-norm approximate solution  1.715 2.482E-013 1.994E-013

Absolute error 9.512E-005| 1.703E-017| 2.211E-017
L?-relative error §) 0.444 0.829 1.320

Table 11.5.4 — Error results for quadratic polynomial elements using Mesimd no curved boundary edges.

L/ (kHz) | - U u, |
L..-norm exact solution 1.744 1.98E-013| 2.556E-013
219 L..-norm approximate solution 1.744 1.991E-013 2.545E-013
Absolute error 9.880E-005| 1.156E-017| 1.719E-017
L?-relative error ) 0.462 0.619 0.859
L..-norm exact solution 1.738 4.622E-013 6.351E-013
291 L..-norm approximate solution  1.734 2.700E-013| 4.446E-013
Absolute error 1.589E-004| 1.599E-015 1.605E-015
L?-relative error ) 0.74 52.045 33.008
L..-norm exact solution 1.717 2.462E-013 2.01E-013
293 L..-norm approximate solution  1.718 2.481E-013 1.993E-013
Absolute error 9.789E-005 1.682E-017| 2.167E-017
L?-relative error §) 0.457 0.819 1.294

Table 11.5.5 — Error results for cubic polynomial elements using Mesh 1amdurved boundary edges.
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L/ (kH?) | L p [ w | uw |

L..-norm exact solution 1.727 1.98E-013| 2.556E-013

219 L..-norm approximate solution  1.839 2.035E-013 2.397E-013

Absolute error 2.994E-003 1.672E-016| 2.456E-016
L?-relative error ) 14.555 9.012 12.371

L..-norm exact solution 1.723 4.631E-013 6.353E-013

291 L.-norm approximate solution  1.824 1.891E-013 2.506E-013

Absolute error 3.098E-003 3.292E-015 3.42E-015
L?-relative error {) 15.010 107.808 70.781

L..-norm exact solution 1.703 2.462E-013 2.01E-013

293 Ls.-norm approximate solution  1.809 2.577E-013 1.864E-013

Absolute error 3.144E-003 2.691E-016| 3.495E-016
L?-relative error §) 15.289 13.186 21.071

Table 11.5.6 — Error results for linear polynomial elements using Mesh @ an curved boundary edges.

L f (kH2) | [ P [ uw | oy
L..-norm exact solution 1.740 1.980E-013 2.556E-013
219 L..-norm approximate solution  1.740 1.980E-013 2.555E-013
Absolute error 3.207E-005| 1.242E-018 1.836E-018
L?-relative error ) 0.150 6.65E-002 | 9.173E-002
L..-norm exact solution 1.735 4.631E-013 6.353E-013
291 Ls.-norm approximate solution  1.735 4.338E-013 6.058E-013
Absolute error 4.330E-005| 2.410E-016| 2.418E-016
L?-relative error ) 0.202 7.835 4.968
L..-norm exact solution 1.716 2.462E-013 2.012E-013
293 L.-norm approximate solution 1.716 2.463E-013 2.010E-013
Absolute error 3.356E-005/ 1.546E-018 2.080E-018
L?-relative error §) 0.157 7.517E-0020 0.124

Table I1.5.7 — Error results for quadratic polynomial elements using M2simd no curved boundary edges.
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Figure 11.5.7 — Sensitivity of theL?-relative error and of the absolute error to the wavenuniaewhen using
Mesh 2 and cubic polynomial elements without curved boundedges.
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Figure 11.5.8 — Frequencyf; = 219 kHz using cubic polynomial elements, Mesh 1, and curved Hagnedges.
Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
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Figure 11.5.9 — Frequencyfr = 221 kHz using cubic polynomial elements, Mesh 1, and curved Hagnedges.

Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
solutions.
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Figure 11.5.10 — Frequencyf, = 223 kHz using cubic polynomial elements, Mesh 1, and curved Hannedges.
Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
solutions.
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Figure 11.5.11 — Frequencyf; = 219 kHz using cubic polynomial elements, Mesh 2, and curved Haonnedges.

Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
solutions.
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Figure 11.5.12 — Frequencyfr = 221 kHz using cubic polynomial elements, Mesh 2, and curved Haon

edges. Figures (g)): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between
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Figure 11.5.13 — Frequencyf, = 223 kHz using cubic polynomial elements, Mesh 2, and curved Haonnedges.

Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
solutions.

128



[1.5 Numerical performance

| f (kH2) | | p U, u,

L..-norm exact solution 1.745 1.980E-013 2.556E-013

219 L..-norm approximate solution  1.745 1.981E-013 2.555E-013
Absolute error 7.467E-006| 7.453E-019| 1.147E-018
L?-relative error §) 3.492E-002| 3.99E-002| 5.73E-002
L..-norm exact solution 1.738 4.631E-013 6.353E-013

291 L..-norm approximate solution  1.737 4.417E-013 6.14E-013
Absolute error 1.779E-005| 1.743E-016 1.747E-016
L?-relative error ) 8.284E-002 5.667 3.591
L..-norm exact solution 1.716 2.462E-013 2.012E-013

293 L..-norm approximate solution 1.716 2.463E-013 2.011E-013
Absolute error 7.421E-006) 9.709E-019| 1.395E-018
L?-relative error §) 3.467E-002 4.722E-002| 8.325E-002

Table 11.5.8 — Error results for cubic polynomial elements using Mesh 2amdurved boundary edges.

only represents an increase of 5%.

These results can explain the absence of gain when employbig polynomial elements. Indeed, as
far as the error is dominated by the volumic error, it is irgsting to use higher-order approximations.
Nevertheless, as soon as the boundary error represents dve value of the error, to increase the

order of approximation does not improve the computationgrere.

Remark 11.5.2.2 Regarding the issue of the choice of the penalty parameterhave performed

a numerical investigation in AppendB.3. Note that taking the following value for the penalty
termsy; = 80 and~, = 0 provides a slight improvement of the results when usingccaleiments:
0.724%, 50.793%, 32.215% for p, u, andu, respectively. Therefore, it seems that, in some situations
at least, it can be sufficient to penalize the exterior problén fact, in the case of the non-resonance
frequencies, the penalty terms ensure the stability, whigirantees the uniqueness that exists on the
continuous level in both media. However, in the case of teermant frequencies, we do not have
uniqueness of the displacement field on the theoretical, leNech can explain that the penalization

is not necessarily relevant inside the obstacle.

[1.5.2.2 [IPDG method equipped with curved boundary edges

Given the latter observations, we assess in the followiagffect of using curved boundary edges
on the accuracy of IPDG. In addition, we compare the obtarasdlts to those obtained with UWVF
[88]. To this end, we consider Mesh 3, which is coarser than MeahdLMesh 2 (see Fidl.5.2
and Tabldl.5.2). However, Mesh 3 is comparable to Mesh 2 usedi#].[ The latter has about 715
triangles. The results are reported in Tablés9to I1.5.11and Figuredl.5.14to 11.5.20. We provide
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some illustrations of the numerical results using cubig/poimial elements in Figsl.5.14-11.5.16.
These results indicate the following:

e The use of curved boundary edges, which is a more precisesemation of the boundaries,
improves significantly the accuracy of IPDG for all the thfesguencies in spite of using a
coarse mesh (Mesh 3), as indicated in Tahl&s9to1l.5.11and Figsll.5.14to11.5.16. Indeed,
employing cubic polynomials maintains the relative ernotloe scattered field below 1% for all
the three frequencies (see Tahl&é.11). Recall that this is not the case when using polygonal-
shaped approximations even with a very fine mesh at the boyrdaclearly demonstrated
previously in Tabldl.5.5 and Tablell.5.8. Moreover, Figure$l.5.14 to I1.5.16 illustrate this
significant improvement in comparison with the results pesly depicted in FigureH.5.11
toll.5.13.

e Figurell.5.17reveals that the error at the resonance frequgpndyas the same structure as the
corresponding resonance mode= 2, which proves again thafz = 221 kHz is indeed the
Jones frequency for the third mode £ 2).

e The relative error on the scattered field depicted in Figutel18 is obtained with a mesh
resolution of about 6.2 elements per wavelength fior= 4) to as low as about 1.2 elements
per wavelength (foka = 21). The following observations are worth mentioning:

o The error curve corresponding to the fluid pressure is smanadithe peaks corresponding to
the spurious frequencies observed earlier (seelFig3) are no longer present. Clearly, this
is a direct attribute to the use of curved boundary edgesddiitian, this smoothing effect
does not remove the peaks from the error curves correspgptaiihe structural displacement.
These physical peaks are clearly apparent which allows sy aétermination of the Jones
frequencies.

o Unlike the results presented previously (see Hi§.3), the use of curved boundary edges
with cubic polynomials preserves the accuracy level beléwfbr all frequency modes in
the frequency band < ka < 15, even with a mesh resolution as low as 1.7 elements per
wavelength.

o In contrast, the results depicted in Fig.6 p.177d6] [show that the nonphysical peaks in the
fluid pressure error curve delivered with UWVF remain alwpgassent. In addition, we ob-
serve that the accuracy level deteriorates at and aroun@ésbeance frequencies. We must
point out that the relative errors computed with UWVF areagied over the wet surfade
only, whereas the results depicted in High.18 are obtained over the entire computational
domain. The comparison of these results suggests the stipenf IPDG over UWVF.
Moreover, in order to maintain the condition number valulewel 08, the UWVF is limited
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to the use of a maximum of 15 plane waves, as stated by therauthf@8]. This may con
stitute a severe limitation, especially when consideriigiptirequency regime. On the other
hand, the use of cubic polynomial elements is sufficient RIDG equipped with curved
boundary edges to deliver an error smaller than 5% for alhtbdes in the frequency band
4 < ka < 15. In addition, the result depicted in Figuile5.19 tends to indicate that the con-
dition number of IPDG does not suffer dramatically when &aging the order of elements.
Indeed, going from linear to cubic polynomials slowly ineses the condition number. Last,
the UWVF results were obtained using 64 quadrature poinevétuate the integrals over
the curved boundary edges, and employing an iterative soldeereas IPDG uses 8 times
less points and a direct solver since the resulting systeaiasively small. This last obser-

vation also suggests, to some extent, the superiority ofdRer UWVF in terms of the

computational complexity.

L/ (kH?) | . [ w | u ]

L..-norm exact solution 1.679 1.931E-013 2.49E-013

219 Ls.-norm approximate solution  1.988 1.862E-013 2.303E-013

Absolute error 1.209E-002| 6.195E-016) 8.475E-016
L?-relative error §) 72.436 34.537 44.867

L..-norm exact solution 1.671 4.621E-013 6.297E-013

291 L..-norm approximate solution  1.98 1.837E-013 2.247E-013

Absolute error 1.231E-002| 3.158E-015 3.852E-015
L?-relative error §) 73.769 108.271 83.545

L..-norm exact solution 1.648 2.461E-013| 1.983E-013

293 L..-norm approximate solution 1.971 1.804E-013 2.192E-013

Absolute error 1.251E-002| 9.447E-016, 7.65E-016
L?-relative error ) 75.533 48.171 49.02

Table 11.5.9 — Error results for linear polynomial elements using Mesh 8 emrved boundary edges.

In view of the overall results and observations, we retaa|#iter higher-order IPDG method

equipped with curved boundary edges. In order to completattalysis of the method, we exam-

ine the sensitivity of the method to the mesh refinement, dsasdo the frequency regime, in the

forthcoming parts.

Remark 11.5.2.3 In afirst time, we have implemented curved finite elemenysamihe transmission
interfacel” and still used straight boundary edges on the exterior bamypél. The results obtained
are reported in Tabled.5.12t0 11.5.14. They indicate the following:
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L/ (kH?) | P [ w | oy

L..-norm exact solution 1.743 1.979E-013 2.553E-013

219 L..-norm approximate solution  1.76 1.959E-013 2.510E-013
Absolute error 1.100E-003 2.292E-017| 3.744E-017
L?-relative error ) 5.203 1.227 1.872
L..-norm exact solution 1.736 4.621E-013 6.346E-013

291 L..-norm approximate solution  1.749 2.787E-013 4.453E-013
Absolute error 1.173E-003 1.578E-015 1.597E-015
L?-relative error ) 5.526 51.340 32.836
L..-norm exact solution 1.714 2.461E-013 2.000E-013

293 L..-norm approximate solution  1.732 2.459E-013 1.985E-013
Absolute error 1.152E-003 2.593E-017| 4.107E-017
L?-relative error §) 5.446 1.262 2.454

Table 11.5.10 — Error results for quadratic polynomial elements using Mesimd curved boundary edges.

L/ (kHz) | b s
L..-norm exact solution 1.738 1.977E-013 2.554E-013
219 L..-norm approximate solution 1.736 1.977E-013 2.553E-013
Absolute error 9.794E-005) 1.476E-018 1.83E-018
L?-relative error ) 0.457 7.899E-002 9.141E-002
L..-norm exact solution 1.730 4.621E-013 6.353E-013
291 L..-norm approximate solution  1.728 4.593E-013 6.322E-013
Absolute error 1.017E-004| 2.578E-017| 2.558E-017
L?-relative error ) 0.473 0.838 0.526
L..-norm exact solution 1.708 2.461E-013 2.012E-013
293 L..-norm approximate solution  1.705 2.463E-013 2.012E-013
Absolute error 1.043E-004| 1.628E-018 1.936E-018
L?-relative error §) 0.487 7.916E-0020 0.116

Table 11.5.11 — Error results for cubic polynomial elements using Mesh 3 @nded boundary edges.
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Figure 11.5.14 — Frequencyf; = 219kHz using cubic polynomial elements, Mesh 3, and curved Hagnedges.
Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both

solutions.
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Figure 11.5.15 — Frequencyfr = 221kHz using Mesh 3, cubic polynomial elements, and curved Haonnedges.
Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
solutions.
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Figure 11.5.16 — Frequencyf, = 223kHz using Mesh 3, cubic polynomial elements, and curved Hagnedges.
Figures (a)(b): Pressure modulus and displacement amplitude fieldguré (c): Absolute error between both
solutions.
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Figure 11.5.17 — Comparison between the error in displacement and the thitdi& mode for the resonance
frequencyf—221kHz on Mesh 3 with cubic polynomial elements and curved bampddges.

e Globally, we can consider that the results are better thamséhobtained using polygonal-
shaped approximations even with a very fine mesh at the boyiisiee Table$l.5.6-11.5.8),
since Mesh 3 is clearly coarser than Mesh 2.

e When using cubic elements, we observe that employing cadgas on the fluid-solid interface
only is sufficient to improve significantly the relative es@n the displacement field for the
three frequencies. Indeed, the relative error on the soaditéield remains below 1%, even for
the resonance frequency.

e The use of curved boundary edges on the exterior boundaryslkio halve the error associated
to the pressure field, as clearly demonstrated previoushalrell.5.11.

[1.5.3 Sensitivity to the mesh refinement

The goal here is to investigate the dependence of the agcaraihe mesh refinement for a fixed
frequency and to assess the effect of using curved boundgsseon the convergence of the method.
The mesh refinement is performed as follows. The initial megtomposed of 10 elements on the
fluid-structure interfacé’, 20 elements on the exterior boundaty and triangles with a maximum
area 0f2.10~° m? in the domair2® U Q. Hence, this mesh provides about 1 element per wavelength
whenka = 10. The results presented here are obtained when employing palynomials and for
four frequencies. The first three are in the resonance regios 219 kHz, fr = 221 kHz (the res-
onance frequency) anfl = 223 kHz. The fourth onef; = 250 kHz is considered to be far from the
resonance region. These results illustrate the sengitivithe mesh refinement of (a) tié-relative
error on the scattered field (see Fig5.21 and Fig.11.5.23), and absolute error (see Fif.5.22
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Figure 11.5.18 — Sensitivity of theL?-relative error and of the absolute error to the wavenurkbearsing Mesh 3,

cubic polynomial elements and curved boundary edges.
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Figure 11.5.19 — Sensitivity of the condition number to the wavenumberusing Mesh 3, and curved boundary
edges.

L/ (kH?) | | e [ w | uw |

L..-norm exact solution 1.679 1.931E-013 2.49E-013

219 Ls.-norm approximate solution  1.988 1.862E-013 2.303E-013

Absolute error 1.209E-002| 6.195E-016) 8.475E-016
L?-relative error §) 72.436 34.537 44.867

L..-norm exact solution 1.671 4.621E-013 6.297E-013

291 L..-norm approximate solution  1.980 1.837E-013 2.247E-013

Absolute error 1.231E-002| 3.158E-015 3.852E-015
L?-relative error ) 73.769 108.271 83.545

L..-norm exact solution 1.648 2.461E-013| 1.983E-013

293 L.-norm approximate solution  1.971 1.804E-013 2.192E-013

Absolute error 1.251E-002| 9.447E-016, 7.65E-016
L?-relative error ) 75.533 48.171 49.02

Table 11.5.12 — Error results for linear polynomial elements and curvednglets on the transmission interface
only.
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Figure 11.5.20 — Sensitivity of theL?-relative error and of the absolute error to the wavenurkbearsing Mesh 1,

cubic polynomial elements, and curved boundary edges.
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L/ (kH?) | . [ w | u ]

L..-norm exact solution 1.743 1.979E-013 2.553E-013

219 L.-norm approximate solution 1.761 1.953E-013 2.513E-013

Absolute error 1.170E-003 2.377E-017| 3.773E-017
L?-relative error §) 5.551 1.273 1.887

L..-norm exact solution 1.736 4.621E-013 6.346E-013

291 L..-norm approximate solution  1.751 2.788E-013 4.451E-013

Absolute error 1.23E-003 | 1.575E-015 1.598E-015
L?-relative error §) 5.811 51.238 32.863

L..-norm exact solution 1.714 2.461E-013| 2.000E-013

293 L..-norm approximate solution 1.734 2.453E-013 1.981E-013

Absolute error 1.200E-003 2.687E-017| 4.336E-017
L?-relative error ) 5.692 1.308 2.591

Table 11.5.13 — Error results for quadratic polynomial elements and cueledhents on the transmission interface

only.

‘ f (kHz) ‘ ‘ p Uy Uy ‘
L..-norm exact solution 1.738 1.977E-013 2.554E-013
219 L-norm approximate solution  1.739 1.974E-013 2.557E-013
Absolute error 2.068E-004| 5.684E-018| 5.955E-018
L2-relative error ) 0.97 0.304 0.298
L..-norm exact solution 1.730 4.621E-013 6.353E-013
291 L..-norm approximate solution  1.731 4.599E-013 6.323E-013
Absolute error 2.061E-004 2.017E-017| 2.373E-017
L?-relative error §) 0.962 0.655 0.488
L..-norm exact solution 1.708 2.461E-013| 2.012E-013
293 L..-norm approximate solution  1.709 2.459E-013 2.013E-013
Absolute error 2.059E-004 6.187E-018 6.06E-018
L?-relative error ) 0.965 0.301 0.362

Table 11.5.14 — Error results for cubic polynomial elements and curved eleision the transmission interface only.
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and Fig.l1.5.24), and (b) the condition number of the global system matrsegiby Eqg. [1.3.29)
(see Fig.ll.5.27 and Fig.11.5.28). Furthermore, since the sparsity of the global systemimtra
performance indicator that complements the total numbekraf., particularly when employing di
rect methods, as explained ibd7)], the results depicted in Figl.5.25 and Fig.ll.5.26 are presented
to shed light on this computational efficiency aspect of IPDIGte that all the reported results are
obtained with and without using curved boundary edges. & hesults clearly demonstrate that em-
ploying curved boundary edges improves significantly thégoemance of the proposed method for
all considered frequencies. More specifically, we obsdredallowing:

¢ In the absence of curved boundary edges, Figuse21 suggests that the convergence order of
the method is 2, except at the Jones frequency where it dediggs to 3/2. On the other hand,
there is a gain of two orders when using curved boundary edgesdicated in Figll.5.23).

In addition, this convergence order is preserved at thesJivaguency (see Fidl.5.23(b)).

¢ A similar observation can be made about the sensitivity@fthrelative errors on the scattered
field to the total number of nonzero entries of the globaleystnatrix. Indeed, in the absence
of curved boundary edges, Fi§i5.25 suggests that this dependenc@®isv—!) for all frequen-
cies, except at the Jones frequency in which it deteriotat€ N —3/4) (see Fig.l.5.25(b)).
On the other hand, there is a one-order gain in the conveegaite when using curved bound-
ary edges, as depicted in Fid.5.26. This gain is also preserved at the Jones frequency (see
Fig. 11.5.26(b)).

e The situation is also similar for the condition number. Figh.27 suggests that the condition
number increases & h2) for all frequencies, except at the resonance frequencyreme
notice a dramatic deterioration @(h~"/2) (see Fig..5.27(b)). However, the use of curved
boundary edges prevents the deterioration of the conditiomber for all frequencies, as de-
picted in Fig.l1.5.28.

Before concluding this paragraph, we must point out that weewot able to compare the perfor-

mance of the proposed method with UWVF since there are ndasineisults reported irgg], except

to some extent the result reported in Fig.3 p.176. Indeedrdbult depicted in this figure describes
the convergence of UWVF with respectdfor the frequencyf;. However, this dependence is per-
formed when increasing the number of plane waves and notrrgfine mesh. Recall that the results
presented in this paragraph were obtained for a fixed ordelleaients: cubic polynomial functions.

Remark 11.5.3.1 Further to RemarKkI.5.2.1, let us observe the results that are obtained with the

use of curved boundary edges at the transmission interfateio Figuresll.5.29 to 11.5.32. In
the absence of curved boundary edges on the exterior boyniifer gain is not as significant as in
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Figs.11.5.23, the convergence order of the method when using curved boyiedges at the wet sur-
face is still 2. Nevertheless, we observe that, unlike pgtyshaped approximations in Figs5.21,
this convergence order is preserved at the Jones frequénsiynilar observation can be made about
the sensitivity of the.-relative errors on the scattered field to the total numbenohzero entries
(see Figll.5.31), and for the condition number, that does not deterioratthatJones frequency (see
Fig. 11.5.32).
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Figure 11.5.29 — Sensitivity of the relative error to the mesh resolutiomgsiubic polynomial finite elements and
curved boundary edges on the flegdlid interface only.

150



[1.5 Numerical performance

10
—P
R - +-10"% Ux
1072k T -e-10'% Uy
S O(hz)
S
o
[¢] .
5107 1
[e]
(%]
o]
<
10°} :
-8
10 :
10° {a_?; 10°
(@) f1 = 219 kHz
10
—P
N - +-10'% Ux
102 RS "e10% Uy
- - o)
S
@
[6] —
5107 ]
o
(2]
o
<
10° |
-8
10 :
10° 2/0; 167

() f2 = 223 kHz

10
102}
S
o
[¢] .
5107
[e]
(%]
o]
<
10°}
8 . ®
10
10° {a_?; 10°
(b) fr = 221 kHz
10
10° H
S
510 1 B
(6]
5
2.
£10°¢ |
- - - . o. .
10’8 S a 4
10|
10 :
10° {5); 167

(d) f5 = 250 kHz

Figure 11.5.30 — Sensitivity of the absolute error to the mesh resolutiongisubic polynomial finite elements and

curved boundary edges on the fltsdlid interface only.

151



Chapter II. Efficient DG-like formulation equipped with cur ved boundary edges for solving
elasto-acoustic scattering problems

10° 10°

10' |
~ 10" | i
S X
10 1<
o o
15 -1 is 2
oy 10 7k 3 oy 107 B
() (0]
= =
T o
© 10 ¢ k| o
04 14 15 |

10°% :

_4) -6
10 L L 10 L L L
10* 10° 10° 10’ 10* 10° 10° 10’ 10°
Number of non-zero elements N Number of non-zero elements N
(@) f1 = 219 kHz (b) fr = 221 kHz
10°
10'

-

Relative ’~error (%)
[
C)I

10
10°%
-4
10 10 : : :
10* 10° 10° 10’ 10* 10° 10° 10’ 10°
Number of non-zero elements N Number of non-zero elements N
(c) fo =223 kHz (d) f3 = 250 kHz

Figure 11.5.31 — Convergence of the relative error as a function of the nunmberf nonzero entries in the IPDG
system matrix using cubic polynomial finite elements andrediboundary edges on the flesdlid interface only.

152



[1.5 Numerical performance

10

=
Om
T

Condition number
=
‘?»

106} L :
- — Condition numbd

10O : — O(h_Z)

10° 10" 167
a’h

@) f1 = 219 kHz

10°

10°F |

Condition number
=
o—b

107 Pt ]
-7 — Condition numbd
A2
10’ ‘ ors
10° 10" 10°

alh
(€) f2 = 223 kHz

1 010

10

=
Q.
T

Condition number
5

N
Q,

10

- —— Condition numbe

- O(h—Z)

10

10

10" 10°
a/h

(b) fr = 221 kHz

=
%

Condition number
[
o—b

10 L :
- — Condition numbd
A2
F ‘ o(h™)
10° 10" 10°

a/h
(d) f3 = 250 kHz

Figure 11.5.32 — Sensitivity of the condition number to the mesh resolutisimg cubic polynomial finite elements
and curved boundary edges on the flaalid interface only.

153



Chapter Il. Efficient DG-like formulation equipped with cur ved boundary edges for solving
elasto-acoustic scattering problems

[1.5.4 Sensitivity to the frequency

The goal of this section is twofold: (i) to determine praatiguidelines for achieving a prescribed
accuracy level, and (ii) to examine and to assess the pmtigfifect. To this end, we have investigated
the numerical behavior of the?-relative error over the computational domain on the elastustic
scattered field as the frequency increases. Two sets ofimxgras have been performed. In the first
set, the mesh is fixed, that is, the resolution degrades dsettpgency increases. In the second set,
the resolution is maintained fixed, that is, the mesh is rdfemethe frequency increases. All these
experiments are performed with IPDG equipped with curvednidary edges and employing cubic
polynomial functions. For illustration purposes, we preésesample of results obtained in the mid-
to high-frequency regimes{ < ka < 300) using four different meshes.

The results depicted in Figuréis5.33 and 11.5.34 are obtained using Mesh 1 (see Figlité.2
and Tabldl.5.2) in the frequency band0 < ka < 50 corresponding t@38 kHz < f < 1193 kHz.
Hence, the resolution degrades from 8 elements per wavblémgbout 1.6 elements per wavelength.
The resulting linear system given by E{.3.29) possesses 80,440 unknowns and 1,667,068 nonzero
entries. As stated earlier, we solve this system using ardctbfization. The following observations
are noteworthy:

e As anticipated, Figll.5.33(a) indicates that the relative error deteriorates as #guiency in-
creases, that s, the resolution degrades. HowevenlFE@3(a) also reveals that IPDG delivers
an accuracy level of about 1% (resp. 5 %) on the fluid pressitteanresolution of about 2.6
elements per wavelength (resp. 2 elements per wavelengtioh corresponds to a frequency
ka ~ 32 or f ~ 752 kHz (resp.ka ~ 41, f ~ 978 kHz).

e The error curve corresponding to the fluid pressure (seedle curve in Fig.11.5.33(a)) is
smooth, as already observed in Figlir&.18, and no peaks corresponding to spurious reso-
nance frequencies are present. Again, as stated earieista direct effect of using curved
boundary edges.

e The error on the fluid pressure is higher than the ones on thetgtal displacement, except at
some resonance frequencies. This is expected since tHatreson the fluid is coarser than
the one in the elastic medium.

e The Jones frequencies are clearly located in the structlisplacement error curves by the
presence of the peaks (see Hlgh.33). Observe that the location of these peaks coincides with
the ones in the condition number curve (see Hi§.34). We must point out that these peaks
are clearly discernible because these results have beguutedwith a frequency step size of
1 kHz.
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¢ The condition number remains beld®? in the considered frequency bantl < ka < 50, that
is,238 kHz < f < 1193 kHz.

e Observe that the location of the peaks in Figh.33 coincides with the minimum values of the
three determinants in Figd.5.37-11.5.38, which correspond to the physically relevant Jones
frequencies. This suggests that the method does not sudier iumerical resonance in the
mid-frequency regime.
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Figure 11.5.33 — Sensitivity of theL?-relative error and absolute error to the frequehayn the interval[10, 50]
when using cubic polynomial finite elements, curved boupddges, and Mesh 1.

Next, we refine Mesh 1 (see Figuiles.2 and Tabldl.5.2) by halving the triangle edges. Hence,
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Figure 11.5.34 — Sensitivity of the condition number to the frequerieyin the interval[10, 50] when using cubic
polynomial finite elements, curved boundary edges, and Mesh

the resulting mesh contains exactly four times more triesighan Mesh 1, and the resulting linear
system given by Eq.li(3.29) possesses 321,760 unknowns and 6,698,992 nonzero emveest
vestigate the effect of this mesh refinement for higher feegies, up tda = 100, corresponding to
f = 2387 kHz. The results are depicted in Figis5.35and 11.5.36. They indicate the following:
e The relative error remains below 1% (resp. 5 %) upda~ 58 (resp.ka = 74) corresponding
to a resolution of about 2.8 elements per wavelength (re@eel2ments per wavelength).
e The condition number seems to not suffer from the mesh renéand remains, as previously,
below10® (see Figll.5.36).
¢ Note that the peaks corresponding to the Jones frequenaesagain clearly observable in
Fig. 11.5.35. These results were computed with a frequency step size diz1 k
The next results (see Fifj.5.39to Fig.11.5.42) were obtained with a mesh generated from Mesh
1 by halving the triangle edges two times successively. Eetie resulting mesh contains exactly
16 times more triangles than Mesh 1, and therefore, therlisgstem given by Eq.lI(3.29) pos-
sesses 1,287,040 unknowns and 26,857,408 nonzero eifftnesesults depicted in Figs.5.39 and
Fig. 11.5.40 are obtained in a frequency band expandekdce= 200 (f = 4774 kHz) and computed
with a frequency step size of 1 kHz. Figk5.41and 11.5.42 provides a zoom of the behavior in the
frequency band20 < ka < 140. Similarly to the previous two results, we observe that tlative
error onp remains below 1% (resp. 5 %) with only 3.1 elements per waxgle(resp. 2.4 elements
per wavelength) foka < 105 (resp.ka < 134). In addition, the condition number remains stable and
always belowl10® (see Fig.l1.5.40) Note that the peaks corresponding to the Jones frequearges
again clearly visible in Figl.5.39. This is a consequence of computing these results with adezy
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Figure 11.5.35 — Sensitivity of the relative error and absolute error to tregjfiencyka in the interval[10, 100)
when using cubic polynomial finite elements, curved boupedges, and Mesh 1 halved once.
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Figure 11.5.36 — Sensitivity of the condition number to the frequerteyin the interval[10, 100] when using cubic
polynomial finite elements, curved boundary edges, and Nésdived once.

step size f=1 kHz.

The last results of this set of experiments are reportedteThS.15. These results were obtained us
ing a mesh generated from Mesh 1 by halving the triangle etthges times successively. Hence, the
resulting mesh contains exactly 64 times more triangles ihesh 1, and incurs a linear system with
5,148,160 unknowns and 107,552,512 nonzero entries. Véssali®e effect of this mesh refinement
in the frequency bant00 < ka < 300 (2387 kHz< f <7162 kHz). The results are computed with
a frequency step size: = 25. Note that the resolution deteriorates from 6.5 elements/peelength

to about 2.2 elements per wavelength. These results shoWh& delivers an accuracy level below
1% (resp. 5%) with a mesh resolution as low as 3.7 elementsvaeelength (resp. 2.9 elements
per wavelength) up téa < 175 (resp. ka < 225). Next, we examine the pollution effect. We set
a mesh resolutiokh = 1.94 corresponding to about 3.2 elements per wavelength andateaihe
L?-relative error over the computational domain in the frezpyeband25 < ka < 200 (596 kHz

< f < 4774 kHz). The results reported in Tabl#.5.16 illustrate the behavior of the error as the
frequency value doubles while maintaining fixed the resotutThese results reveal that the relative
error onp increases linearly from about 0.3% to about 1.4%, whereashhange in the error on the
structural displacement is barely noticeable. These tetend to indicate that IPDG exhibits a very
little pollution effect in this relatively large frequentand. This observation illustrates the potential

of IPDG for solving efficiently high-frequency elasto-astia problems.
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Figure 11.5.39 — Sensitivity of the relative error and the absolute errohfrequencya in the interval[10, 200)

when using cubic polynomial finite elements, curved boupedges, and Mesh 1 halved twice.
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Figure 11.5.40 — Sensitivity of the condition number to the frequerteyin the interval[10, 200] when using cubic

polynomial finite elements, curved boundary edges, and Ndsiived twice.

(ko | p | w |

100 | 0.016 | 0.002 | 0.002
125| 0.061 | 0.006 | 0.007
150 | 0.201 | 0.058 | 0.060
175| 0.556 | 0.039 | 0.039
200| 1.355| 0.116 | 0.115
225| 2.971 | 0.306 | 0.310
250 | 6.125 | 7.408 | 7.533
275 | 11.423| 4.467 | 4.422
300 | 19.878| 13.530| 13.727

Table 11.5.15 — L2-relative error {) in the high-frequency regime when using cubic polynomigitdi elements,

curved boundary edges, and Mesh 1 halved thrice.

L?-relative error
ka p ‘ Uy ‘ Uy
25 | 0.279| 0.007| 0.008
50 | 0.420| 0.009| 0.009
100 | 0.707| 0.009| 0.009
200| 1.355| 0.116| 0.115

Table 11.5.16 — L2-relative error §%) obtained forkh = 1.94 constant with cubic polynomial functions and curved

boundary edges.
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Figure 11.5.41 — Zoom on the sensitivity of the relative error and absoluterdn the frequency bant20 < ka <

140 when using cubic polynomial finite elements, curved boupddges, and Mesh 1 halved twice.
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Figure 11.5.42 — Zoom on the sensitivity of the condition number in the freagieband120 < ka < 140 when
using cubic polynomial finite elements, curved boundaryesdgnd Mesh 1 halved twice.

1.6 Conclusion

A discontinuous Galerkin method, in which a penalty termnisorporated at the element level
for stability purpose, is suggested for solving elastoustic scattering problems. The proposed
method, termed IPDG, employs higher-order elements to h@oy®d in the high-frequency regime
and curved boundary edges to provide a natural setting fterreodeling the incoming and outgoing
waves, as well as the surface waves at the wet surface.

On the one hand, the implementation of the method has beriated by means of two test cases:
a waveguide-type problem and a radiating-type problems&meimerical experiments show a good
approximation of both types aP-waves andS-waves and illustrate some stability properties of the
method with respect to the direction of the plane waves, arilég mode number in the case of the
waveguide-type problem and of the radiating-type problespectively.

On the other hand, the numerical investigation performetercase of an infinite long aluminum
cylinder immersed in water reveals that there is a twofolagiein using curved element boundaries
rather than standard polygonal-shaped approximationst, Eiere is a gain of -at least- two orders of
magnitude on the relative error and this improvement is énginer at the Jones frequencies. Second,
this formulation prevents spurious resonance frequenaiescur in the fluid medium, which appears
to not be possible to achieve if a polygonal-shaped appratkan of the interface is used even with a
fine mesh and high-order elements. Moreover, the resultstepin this chapter illustrate the poten-
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1.6 Conclusion

tial of IPDG for solving this class of scattering problemshigh-frequency regimes. Indeed, IPDG
delivers an accuracy level below 3% fleg < 225 (f < 5371 kHz) using cubic polynomial elements,
and about three elements per wavelength only. Note thatresctution incurs solving a linear sys-
tem of about 5 million unknowns with about 107 million nonzemntries that is accomplished using
a direct method. An interesting prospect remains to studys#nsitivity of the method to the mesh
refinement, as well as to the frequency regime theoretically

Acknowledgements The authors acknowledge the support by Inria Carnot Irstituind ISIFOR

Carnot Institute. Any opinions, findings, conclusions arammendations expressed in this material
are those of the authors and do not necessarily reflect tiess \aECSUN or INRIA.
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Appendix B

Appendices to the Chapter Il

B.1 Analytical solution for the disk-shaped elastic scattesr prob-
lem

It is well-known that the exact solution of the considered elastarsttmproblem can be expressed
as a Fourier series (see, for exampkf]] for a disk-shaped configuration. For completeness pur-
poses, we recall here such an expression. In the fluid dotha&iscattered pressure field is expressed

as follows [L6]:
p(r,0) = Jio [A HW(kr) + B,H? (kr)} cos(nf); a<r<b, 0€]0,2m) (B.1.1)

n=0

where ") and H?) denote the Hankel functions of the first and second kigisand A,,, B, are
complex numbers. The first term of the series correspondset@titgoing field. The second term
represents the incoming wave due to the presence of thaaxb@undary>. The incident plane
wave admits the following Jacobi-Anger expansiaf]{

g = pinc(T’ 0) _ ezkrcose Z gn k??“ COS(TLQ) (812)
where
=1 and ¢,=2;Vn>0.

In the solid obstacle, the scattered displacement fiescexpressed using two displacement potentials

¢ andy [12Q:
u=Vo¢+(—e,) x V. (B.1.3)
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where these two potentials are given by:

o(r,0) = ZC’ I (kpr) cos(nb), (B.1.4)
P(r, ) = Jio D, Jy(kgr)sin(nf); 0<r <a, 0 €l0,2n). (B.1.5)
n=0

Here,J,, andY,, denote the Bessel functions of the first and second kind céisply [2], andk, =

ks = d represent the wavenumbers of the pressure and shear wathessiolid.
Cs
Let us explicit the Fourier series representation of botmgonents of.. In polar coordinates, we

have:
B 8gbﬁ lagbﬁ
Vo = 3.0+ 5% (B.1.6)
B 10 , Oy
(—62) X V'QZ) = ;%67 — 569. (Bl?)
We set
B oo 10y
Uy = E+;% (818)
_ 1o¢ oy
Then, we obtain:
U = U, €, + Up€y. (B.1.10)

Since the polar basis vectors are giveneby= (cos#, sin)! andé, = (—sin 6, cosf)?, it follows

that the displacement field can be written in the canonicsilshas:

Uy = Uy COSH — uysinb,
. (B.1.11)
Uy = Upsinf + ugcosb,
where
+o0 , n
u, = Y |Cokyd, (kpr) + —Dan(ksr)] cos(nf) (B.1.12)
n=0 r
+oo n
ug = Y - |:Cn;‘]n(kpr) + an?SJ;l(/{?ST)} sin(n@). (B.1.13)
n=0
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B.1 Analytical solution for the disk-shaped elastic scattesr problem

Note that the relationships between the Fourier seriesatisment potentials and corresponding dis
placements and tractions are reportedliad.

Moreover, the complex coefficients,, B,,, C,, andD,, satisfy the following systent]:
E. X, =e, (B.1.14)

whereX,, = (4,, B,,C,, D,,)! andE, is a4 x 4 matrix whose complex-valued entrié¥ are given
by:

EJ = kH9(ka), j=1,2

B} = —wprkyJ,(kya),

B = —wpmJy(ka),

EY = HD(ka), j=1,2
2 1

E® = a—'l; (n2+n—§k§a2)Jn(k3pa)—kpaJn_l(kpa) :
2

E® = — [n(=(n+ 1) Ju(kaa) + ks (ka))]
B3 - g3 E43 _ E44 =0

2

E® — —a—’l;n[—(n+1)Jn(kpa)+kpajn_1(kpa)],
2 1

g = 2L (n2+n—§k§a2)Jn(ksa)—ksaJn,l(ksa) :
a

EY = EHU(kb) —ikHY (kb), j=1,2.

The right-hand side,, € C* of the linear system related to E®.(.14) is given by:

el = —e,i"kJ, (ka), (B.1.15)
e2 = —epi"Ju(ka), (B.1.16)
et = el =0, (B.1.17)

whereey = 1 ande,, = 2forn > 1.
The system entries can be determined from the boundary ttmmslof BVP (2) as follows. Let us
consider the first transmission condition given by BEg2(9) of BVP (2):

/4 g
2 9 9
Wipsu v =5 + P onl’ (B.1.18)
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Taking the radial component of each modgives:

s <cnka;(kpa) + DnEJn(k:sa)) — A kH. O (ka) + BokH.® (ka) + eni™kJ. (ka).
a

We therefore infer the first equation of the systdsril(14).
Next, we consider the second transmission condition giyead (1.2.10) of BVP (2):

T(u) = —pv — gv onl.
Then, the normal and tangential components of the stresertare:

r(u)-v = —p—7p onl’
T(u)-t = 0 onT,

wheret denotes the tangential vector.

In polar coordinates, we have(u) - v = o, andr(u) - t = 0,4. We thus have:

Opp = —DP—DP onl’

o9 = 0 onI'.

Now, we express,,. ando,y as functions of) andq. For that purpose, we set:

Opr = O-?r + O-g}r
O = Oppt ol
and using 120, we obtain:
82
of = AAG+ L2
or?

T A Y
O =2 l@'r’ r 00

6 2“l1 ¢ 1&;5]

ro00r 1200

T RN A
ro r2 062 or \r or
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B.1 Analytical solution for the disk-shaped elastic scattesr problem

Observe thap satisfies the following scalar Helmholtz equation with waweberk, =

This yields:

Ay = —k2¢

zc(

(k2r?) Jn(kpr)> cos(nf).

By some calculations, we obtain:

¢
or?

99

a6
929
060

and

o
a0
A
o6

oY
or

oy
or?

Z Cok2J, (kyr) cos(nf)

Z CnT_Q (—k‘p'r’an(/ﬂp'r’) + (n*+n— kﬁrQ)Jn(kpr)) cos(nb),
i)

—+00

> =Cpndy(kyr) sin(nb),

n=0

+oo ,

> —Cunky,d, (kyr) sin(nd)

n=0

+oo n

> —Cn; (kprJp—1(kpr) — nd,(kpr)) sin(nd),
n=0

400

> Dynd,(ksr) cos(nb),

n=0

+o0

> —Dyn®J,(ksr) sin(nb),

n=0

400 ,

> DykgJ,(ksr) sin(nd)

n=0

+oo 1

Z Dn— (ksrJn_1(ksr) — nd,(ksr)) sin(nd),

ZDk

Z Dn_2 (‘krsTJn—l(k?sT) + (n® 4+ n— k?ETQ)Jn(kST)) sin(nd),
n=0 r

'(kyr) sin(nd)
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0%
orod

+oo
= > Dynk,J, (ksr) cos(nf)

n=0

+oo
= > Dn; (ksrJn_1(ksr) — ndy(ksr)) cos(nd).
n=0

" . . k2
In addition, sincé: (A + 2u) = kZu, we obtain:\ = k—gu — 2u. It follows that:
p

¢ 0
Opp = )‘AQZ)JFQMw

2

+00 ks 1
= ZOCn{ <ﬁ,u - 2#) {—T—Q(kiTQ)Jn(ka)]
n= P
1
+2M7’_2 (—k:prJn—1(kpr) +(n*+n— k:f,rQ)Jn(kpr)} } cos(nf)
+o00 2'u ) 1 )
= > Cnﬁ [(n +n— 5!{;57’ VI (kpr) — kp'r’Jnl(k:p'r’)} cos(nb).
n=0

" u| P O
7 2 |"or00 ~ 00

— i)Dni—'[; n (ksrJp_1(ksr) — ndyp(ker)) — nd, (kgr)] cos(né)

- +ZO° Dni—g‘ [nksrJu—1(ker) — n(n + 1) Jy(ker)] cos(nd).

n=0

Combinings?., 0¥

rr? rr?

along with Eqg. B.1.21) and Eq. B.1.23 atr = a leads to the second equation
of the systemB.1.14).
On the other hand, regardinag,, we have:

6 2“l1 ¢ 18¢>]

Org = ~ 5T

ro0or 1200

= Jio Cn_r—22'u (nkyrJy_1(kyr) —n(n + 1)J,(k,r)] sin(nd).

n=0

Moreover, for the)-term, we obtain:

ot = | O 0 (100
ro r? 062 or \r Or

[1 v 10 a%]

K 2002 ' ror or?
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400 1
= Z Dnuﬁ{—ann(ksr) + (ksrJp_1(ksr) — ndy(kgr))

- (k‘STJn_l(k?ST) +(n*+n— k:fTZ)Jn(kST))} sin(nd)

—+00

2 1 .
_ ZO _Dnr_l; Hn2 tn— QkETQ] Jn(ksr) — ksrjn_l(lgsr)} sin(nf).

Combinings?,, 0¥, with Eq. (8.1.22 and Eq. B.1.24 atr = a, we deduce the third equation of the
system B.1.14).
Finally, the absorbing boundary condition given by Bf2(10) of BVP (2):

0
—p—ikp:O onY
or

easily yields the last equation of the systdBnil(14) as follows:

Ap(kH M (kb) — ikH® (kb)) + By, (kH,® (kb) — ikH? (kb)) = 0.
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B.2 Issue on the Jones modes

In this Appendix, we are interested in the following issuessAme thaka is not a resonance
frequency for an initial configuration of the obstacle. Wlagaplying a deformation to the scatterer,
canka become a Jones frequency for the perturbed boundary vabiséepn?

This amounts to study the dependence between the frequerayd a perturbation of the obstacle.
To this end, we assume that the scatterer is a circle to wheelapply a deformation in the radial
direction, so that the perturbed obstacle remains a cifebe.a fixed normalized frequencdy:, the
radius delimiting the fluid domain is fixed to= 20 mm whereas the radius of the elastic obstacle
varies.

Consider the matri¥;, of the linear systenR.1.14) giving the coefficients of the exact Fourier series
solution (cf AppendixB.1). We denote byt = (EJ')._, , 4, 5, the reduced matrix in which the
effect of the exterior boundary is ignored, wherédgs = (Eg;l)j:273;l:3’4 is the matrix representing
the solid Fourier modes. Recall that the Jones frequenoiesspond to frequency values for which
the uniqueness of the solution in the elastic medium faisortler to identify the resonance mode,
we monitor the dependence of these local three matfigeds, and E; with respect to the obstacle
radiusa, and determine the values that make the correspondinghaegants vanish. We consider the
three frequencies in a resonance regifin= 219 kHz, fr = 221 kHz (the resonance frequency) and
fo = 223 kHz, corresponding téa = 9.1735,9.2572, and9.341 respectively. The results obtained
for mode numben, = 0, - - - , 5 are depicted in Figure3.2.1t0 B.2.6

In light of the results, the answer seems positive. Inddeglfdllowing observations are noteworthy:
¢ In FigureB.2.3(c), we recognize the vanishing determinant for the frequefix = 221 as

sociated to the mode = 2 at the radius: = 10 mm , which corresponds to the resonance
mode highlighted in our study in Sectidh5. This value of the frequency does not remain a
resonance frequency associated to the third Fourier madeefdurbed configurations of the
obstacle in the neighborhood @f= 10 mm, but it is again a Jones frequencysat 18 mm.
Moreover, the others curves in FigurB2.3-B.2.4 reveals thatfr can be a Jones frequency
associated to another modes at some other exceptionabwailuge.g. ate = 0.012 for the
first mode).

e As regards the case of the other frequendieand f, depicted in Figure8.2.1, B.2.2 B.2.5
and B.2.6, a similar observation can be made. Indeed, both frequera® non-resonance
frequencies att = 10mm, but they are Jones frequencies associated to the third foode
values ofa very close to 10 mm. In addition, the results also indicas# they can be Jones
frequencies associated to another mode in another pedtadrdiguration.
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Figure B.2.2— Frequencyf; = 219 kHz (ka = 9.1735) - Sensitivity of the determinant of the modal matrices to
the radius:. Cases where = 3,4,5 (Semi-log y scale).
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Figure B.2.3— Frequencyfr = 221 kHz (ka = 9.2572) - Sensitivity of the determinant of the modal matrices to
the radius:. Cases where = 0, 1,2 (Semi-log y scale).
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Figure B.2.4— Frequencyfr = 221 kHz (ka = 9.2572) - Sensitivity of the determinant of the modal matrices to
the radius:. Cases where = 3,4,5 (Semi-log y scale).
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Figure B.2.5— Frequencyfs = 223 kHz (ka = 9.341) - Sensitivity of the determinant of the modal matrices to
the radius:. Cases where = 0, 1,2 (Semi-log y scale).
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Figure B.2.6 — Frequencyfs = 223 kHz (ka = 9.341) - Sensitivity of the determinant of the modal matrices to
the radius:. Cases where = 3,4,5 (Semi-log y scale).
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B.3 Sensitivity to the penalty parameter

In this appendix, we examine the sensitivity of the relagw®r to the penalty parameters. First,
let us mention that this penalization is important for difiet reasons, chief among them:
e First, letus observe the case of the Laplace equation. tsitii@tion, we are only semi positive
definite. Then, when writing the formulation with discontous basis functions, the jump terms
appear and can decomposed into two parts as follows:

;/}(qu = ;/KVqu—z;/e[Vp-vq]
= ;/KVPVC]—;/;[VP'VHQ} —;/e{VP}V[Q]-

Till then, we remain semi positive-definite. Neverthelegsen we remove the pdi¥p - v|{q},
though we remain consistent, we lose this property. We timasugp with negative or zero
eigenvalues. When we impose the symmetry by adding theimegatm— 3", [.{Vq}v[p], we
increase this loss. The interest of the penalization isigerdne spectrum of the eigenvalues
as much as possible, so that there are the least possibléveegigenvalues. For Helmholtz
problems, it is even worse because-gf*.

e Moreover, the case that we study is a favorable case. Thdtppasameter is used to eliminate
spurious modes (c#]). Since in our case, the resonance Jones modes exist inlideaad
must exist, one can take = 0 when considering a resonance frequency. However, in the flui
we have to keep; different from O.

e Finally, the penalty parameter allows to stabilize the ¢tod number. Without this penaliza-
tion, some problems may occur. In our small case, this is ecéssarily a matter since we can
use a direct solver. Nevertheless, for larger simulatisesshould go to an iterative solver.

Now, we observe the results obtained for different valugb®penalty parameters and-, in three
cases: (a)y; = 7, given in TablesB.3.1to B.3.8 (b) v, vanishes and; varies, summarized in
TablesB.3.10to B.3.18 and (c)v; is fixed equal tal0 and~, varies, reported in Table3.3.19to
B.3.27 In each case, we have employed (i) quadratic polynomiahetes on Mesh 1, depicted in
Fig. 11.5.2(a), (ii) cubic polynomial elements on Mesh 1, as well a9 @ubic elements on Mesh 3
depicted in Figll.5.2(c), for the three frequencies, fr, fo-
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Vs & Vs ‘ p Uy Uy

0 1.459 0.144 0.129

1 7.645 0.771 0.709

2 9.816E002 | 2.448E-002 2.501E-002
3 8.321E-002| 2.289E-002 2.536E-002
4 8.042E-002| 2.265E-002 2.615E-002
5 8.017E-002| 2.274E-002 2.687E-002
6 8.069E-002| 2.291E-002 2.747E-002
7 8.143E-002| 2.31E-002| 2.795E-002
8 8.222E-002| 2.329E-002 2.836E-002
9 8.297E-002| 2.344E-002 2.869E-002
10 8.368E-002| 2.359E-002 2.898E-002
15 8.64E-002 | 2.414E-002| 2.993E-002
30 9.017E-002| 2.484E-002 3.103E-002
40 9.130E-002| 2.505E-002 3.134E-002
50 9.202E-002| 2.518E-002 3.152E-002
60 9.252E-002| 2.527E-002 3.165E-002
70 9.289E-002| 2.533E-002 3.175E-002
80 9.317E-002| 2.538E-002 3.182E-002
a0 9.339E-002| 2.542E-002 3.187E-002
100 9.357E-002| 2.545E-002 3.192E-002
1000 9.508E-002| 2.571E-002 3.228E-002
10000 9.523E-002| 2.574E-002 3.232E-002
100000 | 9.525E-002| 2.574E-002 3.232E-002
1000000| 9.525E-002| 2.574E-002| 3.232E-002

Table B.3.1— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters; and~, using quadratic polynomial elements, curved boundary &dgred Mesh 1 for the frequency
f1 (ka = 9.1735).
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580 | p | ue [ v
0 1.521 0.449| 0.285
1 7.71436 | 1.342| 0.798
2 0.101 0.715| 0.455
3 8.659E002 | 0.845| 0.537
4 8.409E-002 0.918| 0.584
5 8.408E-002 0.966| 0.614
6 8.476E-002 1.001| 0.636
7 8.564E-002 1.027| 0.653
8 8.653E-002 1.048| 0.666
9 8.737E-002 1.064| 0.676
10 8.815E-002 1.078| 0.685
15 9.109E-002 1.121| 0.712
30 9.510E-002 1.169| 0.743
40 6.630E-002 1.182| 0.751
50 9.706E-002) 1.19 | 0.756
60 9.759E-002 1.195| 0.76
70 9.798E-002 1.199| 0.762
80 9.827E-002 1.202| 0.764
90 9.850E-002 1.204| 0.765
100 9.869E-002 1.206| 0.766
1000 0.100 1.221| 0.776
10000 0.100 1.222| 0.777

100000 0.100 1.222| 0.777
1000000 0.100 1.221| 0.776

Table B.3.2— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters;; and~, using quadratic polynomial elements, curved boundary ®dged Mesh 1 for the frequency
fr (ka = 9.2572).
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Vs & Vs ‘ p Uy Uy

0 1.668 0.144 0.169

1 7.499 0.840 0.998

2 0.103 2.345E002 | 3.019E-002
3 8.727E-002| 2.201E-002 3.101E-002
4 8.416E-002| 2.182E-002 3.219E-002
5 8.379E-002| 2.193E-002 3.318E-002
6 8.426E-002| 2.210E-002 3.398E-002
7 8.498E-002| 2.228E-002 3.462E-002
8 8.577E-002| 2.246E-002 3.515E-002
9 8.653E-002| 2.261E-002 3.559E-002
10 8.724E-002| 2.275E-002 3.596E-002
15 9.002E-002| 2.326E-002 3.718E-002
30 9.39E-002 | 2.390E-002| 3.857E-002
40 9.507E-002| 2.409E-002 3.895E-002
50 9.581E-002| 2.421E-002 3.918E-002
60 9.633E-002| 2.429E-002 3.934E-002
70 9.671E-002| 2.435E-002 3.946E-002
80 9.7E-002 | 2.439E-002 3.955E-002
a0 9.723E-002| 2.442E-002 3.961E-002
100 9.741E-002| 2.445E-002 3.967E-002
1000 9.898E-002| 2.469E-002 4.012E-002
10000 9.914E-002| 2.471E-002 4.017E-002
100000 | 9.916E-002| 2.472E-002 4.017E-002
1000000| 9.916E-002| 2.471E-002 4.018E-002

Table B.3.3— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters;; and~, using quadratic polynomial elements, curved boundary ®dged Mesh 1 for the frequency
f2 (k:a = 9.341) .
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v &7 | p U, | u,

0 0.193 | 6.395E002] 5.722E-002
1 0.121 | 8.623E-002 8.203E-002
2 0.31 6.147E-002 5.809E-002
3 4.283E-003| 2.273E-003 1.802E-003
4 3.948E-003 2.214E-003| 1.773E-003
5 3.851E-003 2.194E-003| 1.778E-003
6 3.807E-003 2.185E-003| 1.785E-003
7 3.783E-003 2.180E-003| 1.793E-003
8 3.77E-003 | 2.178E-003| 1.8E-003
9 3.762E-003 2.178E-003| 1.806E-003
10 3.758E-003 2.178E-003| 1.811E-003
20 3.763E-003 2.187E-003| 1.842E-003
30 3.776E-003 2.193E-003| 1.855E-003
40 3.786E-003| 2.197E-003 1.862E-003
50 3.792E-003| 2.2E-003 | 1.867E-003
60 3.797E-003| 2.201E-003 1.87E-003
70 3.801E-003 2.203E-003| 1.872E-003
80 3.804E-003 2.204E-003| 1.874E-003
90 3.806E-003| 2.205E-003 1.875E-003
100 3.808E-003 2.205E-003| 1.876E-003
1000 | 3.826E-003 2.211E-003 1.885E-003
10000 | 3.828E-003 2.212E-003 1.887E-003
100000 | 3.828E-003 2.212E-003 1.887E-003
1000000| 3.828E-003 2.212E-003 1.887E-003

Table B.3.4— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters/s+ and~y; using cubic polynomial elements, curved boundary edgaesMesh 1 for the frequency

(ka = 9.1735).
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Table B.3.5— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters;; and-y, using cubic polynomial elements, curved boundary edgesMesh 1 for the frequencyr

(ka = 9.2572).

188

W&y | op | ue |y

0 0.553 4.153E002 | 2.537E-002
1 0.129 5.876E-002| 3.751E-002
2 0.245 5.125E-002| 3.267E-002
3 4.424E-003 3.713E-003 2.409E-003
4 4.08E-003 | 4.528E-003 2.931E-003
5 3.982E-003| 4.964E-003| 3.211E-003
6 3.937E-003| 5.248E-003] 3.392E-003
7 3.913E-003 5.45E-003| 3.520E-003
8 3.9E-003 | 5.601E-003| 3.617E-003
9 3.892E-003| 5.719E-003 3.692E-003
10 3.888E-003| 5.815E-003] 3.753E-003
20 3.895E-003| 6.250E-003 4.03E-003
30 3.909E-003| 6.399E-003| 4.124E-003
40 3.919E-003 6.475E-003 4.172E-003
50 3.926E-003 6.520E-003 4.201E-003
60 3.931E-003 6.551E-003 4.221E-003
70 3.935E-003| 6.573E-003| 4.235E-003
80 3.939E-003| 6.589E-003| 4.245E-003
90 3.941E-003 6.602E-003 4.253E-003
100 3.943E-003| 6.612E-003 4.26E-003
1000 3.961E-003| 6.696E-003 4.313E-003
10000 3.963E-003| 6.698E-003 4.315E-003
100000 | 3.964E-003 6.726E-003 4.332E-003
1000000| 3.964E-003| 6.789E-003| 4.370E-003
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&y | op e ] wy, ]
0 0.459 6.168E002 | 7.235E-002
1 0.138 9.121E-002 0.114
2 0.212 5.616E-002| 6.983E-002
3 4.559E-003 2.163E-003| 2.206E-003
4 4.201E-003 2.108E-003| 2.169E-003
5 4.098E-003| 2.089E-003| 2.176E-003
6 4.051E-003] 2.08E-003 | 2.186E-003
7 4.027E-003| 2.0758E-003 2.196E-003
8 4.013E-003 2.074E-003| 2.205E-003
9 4.005E-003 2.073E-003| 2.212E-003
10 4.001E-003| 2.074E-003| 2.219E-003
20 4.008E-003| 2.082E-003| 2.259E-003
30 4.022E-003| 2.088E-003| 2.276E-003
40 4.032E-003] 2.092E-003| 2.285E-003
50 4.04E-003 | 2.094E-003| 2.291E-003
60 4.045E-003 2.096E-003| 2.295E-003
70 4.049E-003| 2.097E-003| 2.298E-003
80 4.052E-003| 2.098E-003| 2.3E-003
90 4.055E-003 2.1E-003 | 2.301E-003
100 4.057E-003 2.1E-003 | 2.303E-003

1000 4.076E-003] 2.105E-003| 2.315E-003
10000 | 4.078E-003] 2.106E-003| 2.316E-003
100000 | 4.078E-003] 2.106E-003| 2.316E-003
1000000| 4.078E-003] 2.106E-003| 2.316E-003

Table B.3.6— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters/y+ and~; using cubic polynomial elements, curved boundary edges Mesh 1 for the frequencys,
(ka = 9.341).
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&y | p | w u,

0 7.271] 1.423 1.512

1 6.208| 0.627 0.555

2 7.202| 0.484 0.452

3 0.435| 6.078E002 | 6.509E-002
4 0.418| 6.366E-002 7.072E-002
5 0.421| 6.602E-002 7.441E-002
6 0.424| 6.780E-002 7.701E-002
7 0.427| 6.920E-002 7.896E-002
8 0.430| 7.032E-002 8.047E-002
9 0.433| 7.124E-002 8.17E-002
10 0.435| 7.201E-002 8.270E-002
20 0.446| 7.589E-002 8.763E-002
30 0.452| 7.738E-002 8.946E-002
40 0.454 | 7.817E-002 9.042E-002
50 0.456 | 7.865E-002 9.101E-002
60 0.457| 7.899E-002 9.141E-002
70 0.458| 7.923E-002 9.17E-002
80 0.459| 7.941E-002 9.192E-002
90 0.46 | 7.955E-002 9.209E-002
100 0.460| 7.967E-002 9.223E-002
1000 | 0.464| 8.063E-002 9.337E-002
10000 | 0.464| 8.073E-002 9.349E-002
100000 | 0.465| 8.074E-002 9.350E-002
1000000| 0.465 | 8.074E-002 9.350E-002

Table B.3.7— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters/y+ and~y; using cubic polynomial elements, curved boundary edgaesMesh 3 for the frequency;
(ka = 9.1735).
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58 | p [ w [ u |

0 5.902| 0.876| 0.573
1 6.225| 0.755| 0.567
2 6.917| 0.549| 0.249
3 0.449| 0.586| 0.374
4 0.431| 0.657| 0.416
5 0.434| 0.694| 0.438
6 0.438| 0.718| 0.453
7 0.441| 0.736| 0.463
8 0.444| 0.749| 0.471
9 0.447| 0.76 | 0.478
10 0.449| 0.768| 0.483
20 0.461| 0.808| 0.507
30 0.467| 0.808| 0.516
40 0.47 | 0.830| 0.521
50 0.472| 0.835| 0.524
60 0.473| 0.838| 0.526
70 0.474| 0.840| 0.527
80 0.475| 0.842| 0.528
90 0.475| 0.843| 0.529
100 0.476| 0.844| 0.529
1000 0.480| 0.853| 0.535
10000 | 0.480| 0.854| 0.535
100000 | 0.481| 0.854| 0.535
1000000| 0.481| 0.854| 0.535

Table B.3.8— Disk-shaped elastic scatterer problem - Sensitivity of ERerelative error %) to the penalization
parameters;; and-y, using cubic polynomial elements, curved boundary edgesMesh 3 for the frequencyr
(ka = 9.2572).
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Table B.3.9— Disk-shaped elastic scatterer problem - Sensitivity of iaelative error %) to the penalization
parameters/y+ and~; using cubic polynomial elements, curved boundary edges Mesh 3 for the frequencys,

(ka = 9.341).

192

&y | p | w u,

0 5.041] 1.020 1.415

1 6.442| 0.617 0.68

2 6.501| 0.443 0.560

3 0.461| 6.022E002 | 7.991E-002
4 0.443| 6.392E-002 8.842E-002
5 0.446| 6.654E-002 9.355E-002
6 0.45 | 6.842E-002 9.703E-002
7 0.453| 6.984E-002 9.959E-002
8 0.456| 7.096E-002  0.102

9 0.459| 7.186E-002  0.103
10 0.461| 7.261E-002  0.104
20 0.475| 7.63E-002| 0.111
30 0.480| 7.768E-002  0.113
40 0.483| 7.841E-002  0.114
50 0.485| 7.886E-002  0.115
60 0.487| 7.916E-002  0.116
70 0.488| 7.938E-002  0.116
80 0.489| 7.955E-002  0.116
90 0.489| 7.968E-002  0.116
100 0.49 | 7.979E-002  0.117
1000 | 0.494| 8.066E-002  0.118
10000 | 0.494| 8.075E-002  0.118
100000 | 0.494| 8.076E-002  0.118
1000000| 0.494| 8.076E-002  0.118
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7% | p | Uy u, | Condition numbet
0 1.459 0.144 0.129 40,805

1 1.463 0.64 0.585 52,986

2 1.465| 3.650E002 | 3.469E-002 49,091

3 1.466| 3.540E-002 3.519E-002 55,899

4 1.466| 3.514E-002 3.586E-002 62,842

5 1.466| 3.511E-002 3.644E-002 69,783

10 1.466| 3.542E-002 3.814E-002 95,003

50 1.466| 3.619E-002 4.024E-002 369,344
100 | 1.467| 3.633E-002| 4.056E-002 712,282
1000| 1.467| 3.647E-002| 4.087E-002 6,885,207

Table B.3.10— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 0 using quadratic polynomial elements, curved boundarygdgel Mesh 1 for the frequency

1 (ka = 9.1735).

% | » | w., | u, | Condition numbet
0 1.521| 0.449| 0.285 1,812,797
1 1.518| 1.310| 0.838 2,091,925
2 1.521| 0.691| 0.441 3,137,660
3 1.521| 0.825]| 0.526 4,338,652
4 1.521| 0.900| 0.574 5,557,654
5 1.521| 0.95 | 0.605 6,729,608
10 1.521| 1.064| 0.678 12,864,800
50 1.521| 1.178| 0.751 60,848,613
100 | 1.521| 1.195| 0.761 120,826,088
1000| 1.521| 1.21 | 0.771| 1,200,414,954

Table B.3.11— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 0 using quadratic polynomial elements, curved boundarygdgel Mesh 1 for the frequency

fr (ka = 9.2572).
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B Uy | u, | Condition numbet
0 1.668 0.144 0.169 67,516

1 1.669 0.668 0.805 80,149

2 1.663| 3.636E002 | 4.525E-002 113,470
3 1.662| 3.539E-002 4.597E-002 151,916
4 1.662| 3.518E-002 4.677E-002 191,533
5 0.162| 3.518E-002 4.742E-002 231,202
10 1.661| 3.552E-002 4.926E-002 429,561
50 1.661| 3.629E-002 5.144E-002 2,016,444
100 | 1.661| 3.643E-002 5.177E-002 4,000,050
1000| 1.661| 3.656E-002 5.209E-002 39,704,974

Table B.3.12— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 0 using quadratic polynomial elements, curved boundarygdgel Mesh 1 for the frequency

2 (ka = 9.341).

B Uy | u, | Condition numbet
0 0.193| 6.395E-002 5.722E-002 445,507
1 0.195| 9.067E-002 8.624E-002 453,489
2 0.193| 6.1E-002 | 5.758E-002 483,618
3 0.195| 2.342E-003 1.878E-003 455,550
4 0.195| 2.283E-003] 1.849E-003 464,890
5 0.195| 2.263E-003 1.853E-003 474,343
10 0.195| 2.246E-003 1.884E-003 521,630
50 0.195| 2.266E-003] 1.937E-003 899,720
100 | 0.195]| 2.272E-003| 1.947E-003 1,372,300
1000| 0.195| 2.278E-003 1.956E-003 9,878,652

Table B.3.13— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 0 using cubic polynomial elements, curved boundary edgesMash 1 for the frequency

(ka = 9.1735).
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7% | p | Uy | u, | Condition numbet
0 0.553| 4.153E002 | 2.537E-002 5,765,515
1 0.56 | 6.220E-002 3.971E-002 5,899,058
2 0.547| 4.94E-002 | 3.144E-002 7,045,859
3 0.557| 3.545E-003 2.164E-003 8,403,097
4 0.557| 4.296E-003 2.66E-003 9,795,700
5 0.557| 4.71E-003 | 2.930E-003 11,203,404
10 0.557| 5.533E-003| 3.465E-003 18,544,252
50 0.557| 6.228E-003| 3.914E-003 77,263,397
100 | 0.557| 6.32E-003| 3.973E-003 150,325,266
1000| 0.557| 6.403-003 | 4.027E-003] 1,476,746,193

Table B.3.14— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v = 0 using cubic polynomial elements, curved boundary edgeklivash 1 for the frequencyz

(ka = 9.2572).

EE Uy | u, | Condition numbet
0 0.46 | 6.168E-002 7.235E-002 1,044,132
1 0.464 | 9.496E-002 0.119 1,048,510
2 0.456| 5.85E-002| 7.278E-002 1,141,767
3 0.462| 2.319E-003 2.509E-003 298,285
4 0.463| 2.266E-003| 2.471E-003 345,565
5 0.463| 2.248E-003| 2.473E-003 393,420
10 0.463| 2.232E-003 2.505E-003 632,658
50 0.463| 2.250E-003 2.564E-003 2,550,151
100 | 0.463| 2.255E-003| 2.574E-003 4,947,016
1000| 0.463| 2.261E-003 2.584E-003 48,090,588

Table B.3.15— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 0 using cubic polynomial elements, curved boundary edgesMash 1 for the frequencys,

(ka = 9.341).
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% | p | u, | u, | Condition numbed
0 7.271| 1.423| 1.512 18,744
1 7.784| 0.742| 0.714 18,655
2 7.647| 1.001| 0.962 21,859
3 8.076| 0.673| 0.657 24,156
4 8.124| 0.674| 0.659 27,687
5 8.152| 0.675| 0.66 31,316
10 8.21 | 0.677| 0.662 49,830
50 8.260| 0.679| 0.664 198,010
100 | 8.267| 0.679| 0.664 383,304
1000| 8.273| 0.679| 0.664 3,718,738

Table B.3.16— Disk-shaped elastic scatterer problem - Sensitivity of BRerelative error {;) to the penalization
parametety, for v; = 0 using cubic polynomial elements, curved boundary edgesMash 3 for the frequency
(ka = 9.1735).

% | » | w., | u, | Condition numbet
0 5.902| 0.876| 0.573 687,947
1 6.305| 0.98 | 0.586 679,513
2 6.119| 0.851| 0.501 808,510
3 6.530| 0.934| 0.568 916,839
4 6.569| 0.981| 0.599 1,061,190

5 6.592| 1.007| 0.616 1,208,776
10 6.641| 1.061| 0.652 1,951,396
50 6.684| 1.11 | 0.684 7,946,735
100 | 6.69 | 1.117| 0.689 15,433,598
1000 | 6.695| 1.123| 0.693 15,0199,166

Table B.3.17— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v = 0 using cubic polynomial elements, curved boundary edgeklvash 3 for the frequencyz
(ka = 9.2572).
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% | » | u. | u, | Condition numbet
0 5.041| 1.020| 1.415 24,604
1 5.335| 0.545| 0.699 24,652
2 5.253| 0.715| 0.941 28,754
3 5.484| 0.461| 0.608 33,057
4 5.509| 0.463| 0.61 38,107
5 5.524| 0.464| 0.611 43,249
10 5.555| 0.466| 0.615 69,098
50 5.583| 0.469| 0.618 276,180
100 | 5.587| 0.469| 0.618 535,062
1000| 5.591| 0.469| 0.618 5,194,998

Table B.3.18— Disk-shaped elastic scatterer problem - Sensitivity of BRerelative error {;) to the penalization
parametety, for v; = 0 using cubic polynomial elements, curved boundary edgesMash 3 for the frequencys,
(ka = 9.341).

B P | Uy | u, | Condition numbet
0 6.728E-002 0.14 0.125 47,165
1 7.456E-002 0.640 0.585 49,224
2 7.935E-002| 2.496E-002 2.533E-002 55,267
3 8.09E-002 | 2.337E-002 2.566E-002 62,090
4 8.178E-002| 2.302E-002 2.638E-002 69,073
5 8.236E-002| 2.301E-002 2.703E-002 76,074
10 8.368E-002| 2.359E-002 2.898E-002 111,080
50 8.497E-002| 2.486E-002 3.14E-002 393,590
100 | 8.515E-002| 2.509E-002| 3.177E-002 747,630
1000 | 8.532E-002| 2.531E-002| 3.213E-002 7,094,191

Table B.3.19— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 10 using quadratic polynomial elements, curved boundarysdgel Mesh 1 for the frequency
f1 (ka = 9.1735).

The following observations are noteworthy:

¢ Outside the resonance frequerygy we improve the results by penalizing both the pressure and
displacement fields. On Mesh 1, since the error is around £%p(r0.1%) when employing
quadratic (resp. cubic) approximations, the choiceypf= v, = 0 can be sufficient (see
TablesB.3.1and B.3.3and Table$3.3.4and B.3.6). Nevertheless, on the coarser Mesh 3, the
error is about 5% for the pressure field when using= 0 (see Table$8.3.7and B.3.9). In
the presence of penalty terms, there is about one order ohitondg improvement. It seems
that the results using cubic polynomial elements with peatibn on the coarser Mesh 3 (see
TablesB.3.7 and B.3.9 are as accurate as those obtained using cubic polynoneialegits
without penalization on Mesh 1 (see Tabk8.4andB.3.6). Let us consider another example
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Table B.3.20— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 10 using quadratic polynomial elements, curved boundarysdgel Mesh 1 for the frequency

2 P | w. | wu, | Condition numbef
0 6.983E002 | 0.462| 0.292 1,839,643
1 7.942E-002 1.304| 0.829 2,120,642
2 8.244E-002 0.705| 0.448 3,171,656
3 8.445E-002| 0.839| 0.534 4,378,867
4 8.561E-002 0.914| 0.581 5,604,164
5 8.638E-002 0.964| 0.613 6,782,234
10 8.815E-002 1.078| 0.685 12,949,177
50 8.992E-002 1.192| 0.758 61,183,482
100 | 9.017E-002 1.209| 0.768 121,474,079
1000| 9.040E-002| 1.224| 0.778| 1,206,699,127

fr (ka = 9.2572).

Table B.3.21— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametety, for v; = 10 using quadratic polynomial elements, curved boundarysdgel Mesh 1 for the frequency

Vs | p Uy u, | Condition numbet
0 7.018E-002 0.139 0.163 48,623
1 7.782E-002 0.684 0.826 84,503
2 8.266E-002| 2.402E-002 3.201E-002 117,987
3 8.43E-002 | 2.254E-002| 3.239E-002 156,939
4 8.523E-002 2.223E-002] 3.317E-002 196,784
5 8.584E-002 2.222E-002] 3.387E-002 236,681
10 8.724E-002| 2.275E-002 3.596E-002 436,180
50 8.861E-002| 2.391E-002 3.851E-002 2,032,184
100 | 8.88E-002| 2.412E-002 3.890E-002 4,027,192
1000 | 8.898E-002| 2.432E-002 3.927E-002 39,937,348

2 (ka = 9.341).
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B P | Uy u, | Condition number
0 3.692E003 | 6.452E-002 5.771E-002 87,290
1 3.729E-003| 8.677E-002 8.254E-002 88,131
2 3.734E-003| 6.223E-002 5.879E-002 94,304
3 3.741E-003| 2.273E-003 1.801E-003 102,107
4 3.747E-003| 2.214E-003 1.773E-003 110,885
5 3.751E-003| 2.194E-003 1.777E-003 118,816
10 3.758E-003| 2.178E-003 1.811E-003 161,473
50 3.764E-003| 2.2E-003 | 1.867E-003 501,608
100 | 3.765E-003 2.205E-003 1.876E-003 925,953
1000 | 3.766E-003 2.211E-003 1.886E-003 8,557,984

Table B.3.22— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametery; for vy = 10 using cubic polynomial elements, curved boundary edgesMesh 1 for the frequency

1 (ka = 9.1735).

b o T w [y, |
0 3.803E-003| 4.220E-002| 2.575E-002| 5,785,296
1 3.854E-003| 5.916E-002| 3.778E-002] 5,918,825
2 3.848E-003| 5.169E-002| 3.295E-002] 7,065,615
3 3.866E-003| 3.689E-003 2.390E-003 8,363,171
4 3.875E-003| 4.511E-003 2.918E-003 9,815,347
5 3.879E-003| 4.952E-003 3.201E-003 112,22,999
10 3.888E-003| 5.815E-003| 3.753E-003 18,563,504
50 3.897E-003| 6.535E-003| 4.212E-003 77,280,349
100 | 3.898E-003| 6.629E-003| 4.272E-003] 150,339,536
1000 | 3.899E-003| 6.715E-003| 4.327E-003| 1,476,711,637

Table B.3.23— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametery; for vy = 10 using cubic polynomial elements, curved boundary edgesMesh 1 for the frequency
fr (ka = 9.2572).
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B P | Uy | u, | Condition number
0 3.93E003 | 6.23E-002 | 7.308E-002 218,662
1 3.971E-003| 9.165E-002 0.115 226,762
2 3.977E-003| 5.663E-002 7.042E-002 258,315
3 3.982E-003| 2.163E-003 2.205E-003 302,655
4 3.989E-003| 2.108E-003 2.169E-003 349,933
5 3.993E-003| 2.089E-003 2.176E-003 397,539
10 4.001E-003| 2.074E-003| 2.219E-003 637,205
50 4.008E-003| 2.094E-003| 2.291E-003 2,554,609
100 | 4.009E-003 2.1E-003 | 2.303E-003 4,951,364
1000| 4.01E-003| 2.105E-003 2.315E-003 48,092,949

Table B.3.24— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametery; for vy = 10 using cubic polynomial elements, curved boundary edgesMesh 1 for the frequency

2 (ka = 9.341).

% | p ] Uy | u, | Condition numbet
0 0.428 0.582 0.6 25,080
1 0.431 0.331 0.295 25,559
2 0.432 0.320 0.337 29,443
3 0.432| 7.007E-002| 7.617E-002 34,253
4 0.433| 6.99E-002 7.792E-002 39,441
5 0.434| 7.029E-002| 7.926E-002 -007 44,717
10 0.435| 7.201E-002| 8.270E-002 71,193
50 0.436| 7.454E-002| 8.657E-002 284,674
100 | 0.436| 7.496E-002] 8.716E-002 551,159
1000| 0.436| 7.536E-002] 8.771E-002 5,347,900

Table B.3.25— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametery; for vy = 10 using cubic polynomial elements, curved boundary edgesMesh 3 for the frequency

1 (ka = 9.1735).

200



B.3 Sensitivity to the penalty parameter

% | p | u, | u, | Condition numbed
0 0.442| 0.507| 0.334 838,322
1 0.446| 0.657| 0.403 848,754
2 0.445| 0.462| 0.290 992,025
3 0.446| 0.617| 0.386 1,159,156
4 0.447| 0.674| 0.422 1,344,199
5 0.448| 0.704| 0.442 1,532,768
10 0.449| 0.768| 0.483 2,479,570
50 0.450| 0.827| 0.520 1,0115,314
100 | 0.450| 0.835| 0.526 19,649,383
1000| 0.450| 0.843| 0.530 191,263,135

Table B.3.26— Disk-shaped elastic scatterer problem - Sensitivity of BRerelative error {;) to the penalization
parametery; for vy = 10 using cubic polynomial elements, curved boundary edgesMesh 3 for the frequency

fr (ka = 9.2572).

EE Uy u, | Condition numbet
0 0.455 0.563 0.767 28,042
1 0.459 0.301 0.358 28,648
2 0.458 0.314 2.501E-002 33,082
3 0.459| 7.021E-002 9.801E-002 38,775
4 0.46 | 7.036E-002 9.950E-002 44,718
5 0.460| 7.084E-002 0.101 50,751
10 0.461| 7.261E-002 0.104 81,018
50 0.462| 7.503E-002 0.109 323,210
100 | 0.462| 7.542E-002 0.109 625,950
1000| 0.463| 7.58E-002 0.11 6,075,273

Table B.3.27— Disk-shaped elastic scatterer problem - Sensitivity of iReelative error {;) to the penalization
parametery; for vy = 10 using cubic polynomial elements, curved boundary edgesMesh 3 for the frequency

2 (ka = 9.341).
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with the nonresonant frequency;. In TableB.3.28 we compare the results obtained on Mesh
1 when employingys; = vy = 10 to those obtained when refining Mesh 1, and using no
penalization, i.e.y, = vy = 0. TableB.3.28indicates that the error results are better using

| Mesh 1 refinement level y; & v, | P | Uy | u, |
0 10 7.734E-003| 3.95E-002 | 3.681E-002
1 0 3.758E-003| 2.178E-003| 1.811E-003

Table B.3.28— Disk-shaped elastic scatterer problem - Sensitivity ofiReelative error %) to the penalization
parameters; and~, using cubic polynomial elements, curved boundary edgebaatifferent refinement level of
Mesh 1 for the frequency .

202

Mesh 1 than its refinement thanks to the use of the penalizafitierefore, to some extent,
the penalization appears to be useful in order to avoid a mefsflement and to get a more
reasonable approximation of the scattered fields.

When considering the Jones frequency, we always improvadberacy when penalizing the
pressure field since we restore the stability in the fluid damaut we do not gain on the dis-
placement field because the interior problem is anywayafigal, as indicated in Tabl&s3.2,
B.3.5andB.3.8

TablesB.3.10to B.3.27support the idea that the presence of the penalty term ireprthe
accuracy for the fluid pressure for all the three frequencideey also illustrates an accuracy
improvement of the error associated to the displacemert iirethe presence of the elastic
penalty term, except at the Jones frequency. The obtaisedtsesuggest that one can use any
values fory; and~, without affecting the accuracy of IPDG, provided that theskeies remain
larger thanjlp(p +1).

Using cubic approximations on the fine Mesh 1, the conditiomber deteriorates in the ab-
sence of the penalty term in the fluid part, hg.= 0, in comparison with the results obtained
when; = 10 for both frequencieg; and f,, as indicated in TableB8.3.13andB.3.15and Ta-
blesB.3.22andB.3.24 However, this remark seems not to be observable neithepfadratic
elements on Mesh 1 (see TabR$8.10andB.3.12and Table$3.3.19andB.3.21), nor for the
results obtained on the coarser Mesh 3 (see Tdblésd6andB.3.18and TableB.3.25and
B.3.27). In the case of the resonance frequerigythe penalization of the pressure field does
not change the condition number, itis as spoiled in the alesag in the presence of the penalty
term (see Table8.3.14andB.3.23. Note that a too large penalty parameter can lead to a
significant deterioration of the condition number in alless
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Chapter Il

Characterization of the Fréchet derivative of the
elasteacoustic field with respect to Lipschitz
domains

In this chapter we establish the continuous Fréchet diffeadility of the elasto-acoustic field
with respect to Lipschitz continuous deformation of thepehaf an elastic scatterer. We then charac-
terize the derivative as a solution of a direct elasto-atizdtype problem. The proof only assumes the
boundary to be Lipschitz continuous and therefore can uhelsharp corners. We then characterize
the derivative of the elasto-acoustic scattered field adatiem of a direct elasto-acoustic-type prob-
lem. The proof of this characterization is rigorously gifensmooth scatterers of clagg, as well as
for curvilinear polygonal or polyhedral domains of cla@s!. We point out the issues that occur when
considering classes of more general Lipschitz domainsh 8wharacterization has the potential to
advance the state-of-the-art of the solution of inversestelacoustic scattering problems.

[11.1 Introduction

The determination of the shape of an obstacle from its effentknown acoustic or electromag-
netic waves is an important problem in many technologies stscsonar, radar, geophysical explo-
ration, medical imaging and non destructive testing. Thielise scattering problem is difficult to
solve, especially from a numerical point of view becauss itliposed and nonlinear. Its investiga-
tion requires as a prerequisite the fundamental undersigued the theory for the associated direct
scattering problem, and the mastery of the correspondingenigal solution methods. The solution
of this problem by regularized Newton-like methods incatseach iteration, the solution of a lin-
ear system whose entries are the Fréchet derivatives ofldemecoustic field with respect to the
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parameters representing the surface of the scattererriggsie stability, fast convergence and com
putational efficiency of these iterative methods calls fmmputing these Fréchet derivatives with a
greater robustness and a higher level of accuracy thanipessgih finite differences. To this effect,
it is noted that the Fréchet derivative of the acoustic soadkfield with respect to the shape of arigid
obstacle can be characterized as the solution of a direcisticascattering problem which differs
from the direct acoustic scattering problem only in the toarg conditions 39, 41]. Our goal is to
employ the techniques used &9 41] to extend the sensitivity analysis to the case of penetrabl
elastic scatterers immersed in a fluid.

The analysis of the dependence of the scattered field wiffeotdo the shape of a given obstacle
has received in the past twenty years a great deal of attebtidooth the mathematicians and the
engineers community. Various approaches have been sedggesinalyze the case of acoustic prob-
lems for rigid (non penetrable) scatterers with differeegularity requirements on the shape of the
scatterers as well as on the considered perturbat&gih8§, 96, 122, 124. The case of “pure” elastic
problems has been studied by Charalambopo@igs\hereas the class of electromagnetic problems
has been addressed by several authors including Potil¥adtiHaddar and Kress/f], and Costabel
and Le Louér 83, 34, 99].

In this chapter, we propose to extend the resulBéf {11] to the case of elastic scattere®si] by
analyzing the dependence of the solution of a direct elastastic scattering problem on the domain
of the obstacle. Such a characterization has been donrél]ifdr the solution of the associated in-
verse problem, but the whole approach is based on the var&tiormulation of the boundary value
problems involved. In this paper, we first establish the iomius Fréchet differentiability of the
elasto-acoustic field with respect to the shape of elastittesers. Our proof is based on the implicit
function theorem and the standard trace theorems. It asstimadoundary of the considered elastic
scatterer to be only continuous Lipschitzian, and theeet@n include sharp corners. The relevant
perturbations are continuous. Moreover, compared to g&pgra novelty for the acoustic part lies in
the fact that we formulate the problem into a weighted Sobsjece for the pressure field, which is
a natural framework for the exterior Helmholtz problemcsiiit incorporates explicitly the radiation
condition. Secondly, we then prove that the Fréchet devvaif the elasto-acoustic scattered field
can be characterized as a solution of the same direct edasiastic scattering problem but with dif-
ferent transmission conditions on the surface of the cemsitiscatterer. Such a result is obtained by
using of the chain rule of derivation, also valid in the infdimensional spaces. The main drawback
in the case of Lipschitz domains is the lack of proof for stiijgty of the trace operators in particular
for the elastic field. That is why we have organized our workdysidering first regular domains, and
thenC!-! polyhedra for which we were able to fully characterize thevdgive. We then consider the
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case of a0%! polyhedron for which we were able to give a sense to each telared to the pressure
field. Nevertheless, even in that case which is more regh&ar tor general Lipschitz domains, we
were faced to a lack of surjectivity. In the case of a Lipschdibmain, we have obtained a character
ization of a trace of high order but obviously, as in the cds&@"! polyhedral domain, we did not
obtain the full characterization. However, our formal @werization being justified for quite general
domains, at least from a numerical point of view where the @ons a mesh, we propose to use it for
general Lipschitz domains and postpone a rigorous corigiruthat we hope possible.

The computational implication of this theoretical chaeaization is that, at each Newton iteration,
one need to solve single system of equations withV, right-hand-sides}V,, being the number of
parameters representing the surface of the consideradrsrat

This result has the potential to advance the state-ofthefdhe solution of inverse elasto-acoustic
scattering problems. Furthermore, the methodology addptecharacterizing the Fréchet derivatives
with respect to the shape of an elastic scatterer can alsppiedto analyze the Fréchet differentia-
bility with respect to its material properties. This is reat to many inverse problems where not only
the shape of an obstacle is of interest but also, and oftee mmortantly, its structure.

The remainder of this paper is organized as follows. In $adti.2, we first specify the nomen-
clature and assumptions used in this work, then formul&éatus elasto-acoustic scattering problem
[93]. In Sectionlll.3, we establish in a first part the continuous Fréchet diffiéability of the elasto-
acoustic scattered field with respect to the domain of théaghes In the second part of Sectibh3,
we state as a theorem the characterization of the derivatittee scattered field with respect to the
domain as the solution of a direct elasto-acoustic-typélpra. We finally draw our conclusion in
Sectionlll.4.

[11.2 Problem Statement

[1.2.1 Nomenclature and Assumptions

Throughout this paper, we adopt the following notations asslimptions:
e () is a bounded domain @&" representing an elastic obstacle.

o Of =R"\ @’ is the homogeneous inviscid (fluid) medium surrounding thstie domain.

e ['is the boundary of2° and is assumed to be Lipschitz continuous. Neverthelesse slaw-
backs may occur in the general Lipschitz domains. In somesgage will thus restrict our
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study to polygonal or polyhedral domains. We will then adibyt notations of Grisvard/[J]
and Ciarlet eal [8-10].

e | - | is the Euclidean norm ii".

e x is a point ofR", understood as a column vector and- |z| is the distance from an origin
point toz.

e d is a unit vector representing the propagation directiomefihcident plane wave.
. 0 . o
e v is the outward normal td anda— is the normal derivative operator.
14
o S' = {z € R"||z| = 1} is the unit sphere iR".

e V is the gradient operator iR". The gradient of a scalar function is a column vector field. We
adopt the notations from Simdvurat [115 for the Jacobian matrix. The gradient of a column
vector field is a matrix, where the partial derivatives argradd in rows. For a row vector field,
we also define the gradient as a matrix, where the partialateres are put in columns.

e V. isthe divergence operator Rr".

e A isthe Laplace operator iR".

e D(F) is the space of infinitely differentiable functions with cpatt support ine.
e D'(FE) is the standard space of distributions.

o C¥Y(E) is the set of all Lipschitz continuous functions éhc R”, equipped with the norm
[lleor(my = |0lleo(m) + @l Lip(r), Where|g[Ly, = sup [¢(z1) — ¢(z2)|/|z1 — 2.

T1F#T2
e CLI(E) is the set of all continuous functiogson £ C R, with Lipschitz continuous deriva-
tives¢’ , equipped with the norfi¢||ci1(x) = [|Pller(m) + 9| Lip(e)-

e C!(E) is the space of functions with continuous derivativesoa R™.

e C"(E) is the space of functions with continuous derivatives uprtteom on £ C R, with
the maximum norm of all derivatives.

e [*(E)isthe standard Lebesgue space &fdFE) is Sobolev spaced].

o [?

loc

e For some tensar, we defineD(V - 0, Q%) = {w;w € (L*(Q%))" andV - o(w) € (L*(Q%))"}.

(E) is the space of functions that arefii( D) for any open bounded sétin E.

o D(A,QS) ={t;t € L2 () andAt € L2, (/).

loc loc
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H(V-, E)={w;w € (L*(E))" andV - w € L*(E)}, equipped with the norm:

1/2
Wl ey = (lwll}em + 1V - wliem) -

Hioo(V-, E) = {w;w € (L}

loc

(E))"andV -w € L} (E)}

Let p(r) := 1 + r2. We introduce the weighted Sobolev space:

— [+ ¢ 2 Vi 2 n ot . 2
H(E) = {1 1 € L*(B), —1 € (I*(B))" and - — ikt € 1*(E)}.

The test space associated to the trial sggd¢€') is defined as:

Hp(E) = {t; p*t € L*(E), p'/?Vt € (L*(E))" and? —ikt € L*(E)}.
T

We refer to [L18 130 for the definition of these Banach spaces and their assabtatal spaces.
Moreover, classical trace theorems, as well as Green'sula;mexist in these spacesq(.

H*(T") are the trace Sobolev spaces.
I : R" — R" is the identity mapping or the unitary matrix.

6 : R* — R™ denotes an admissible perturbatiof@ (R"))". It is assumed to have a compact

e 1
support and to be small enough so that ¢ is bijective inR", for examplel|0|| 1 gn)» < o

Q8 = (I +0)Q2* is an admissible perturbed configuration of the referenceailo2®; e = s, f.
Note that(2§ = Q°.

[y is the boundary of); andy, is the outward normal td,. Note thatl', = I".
: . : 06
[¢'] is the Jacobian matrix ¢f. Hence[d'] = <—l) :
ax]’ 1<l,j<n
[0']" is the transpose Jacobian matrixdof

T'rr is the trace operator dn

D,, and D, are two bounded domains with smooth boundaries, such that
DiccQ cD,. (1.2.1)

For normed spaces, the symbel denotes continuous injection.
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e Furthermore, in this paper we manipulate a couple of funstioy, py) that is defined on open
sets that vary witld. Hence, these functions cannot be differentiated witheetsfoé in the
classical sense. For this reason, we follai4, 133 and adopt the following concept of a local
derivative. We say thdt — wy is locally differentiable if for every open sét strictly included
in Q° and strictly included irf2; the restriction ofw, to D is differentiable. Similarly, in the
unbounded domain, we say thtat— ¢, is locally differentiable if for every open sé? strictly
included inQ/ and strictly included irﬂg; the restriction of, to D is differentiable. We denote
by (w',t") = ((Owy/08)(0)h, (0ty/00)(0)h) the local derivative ofwy, ty) atd = 0 and in the
directionh, whereh is a vector field satisfying € (€2(R"))™.

More generally,3(f)h is the derivative ofF at f in the directionh, and forF = F(f, g),
F%(a, b)h is the derivative with respect to the argumgrt (a, b) in the direction.

[11.2.2 Mathematical Formulation of the Problem

Receiver
Y

Source ){

Figure 11l.2.1 — Problem statement in an admissible perturbed configurafitme reference domain.

The scattering of a timbarmonic acoustic wave by an elastic obstagjeembedded in a homo-
geneous mediurfe), depicted in Figuréll.2.1, can be formulated as the following boundary value
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problem P3]:

V - o(ug) + w?psug = 0 in (1.2.2)
Apy + k*py =0 in Q) (11.2.3)
BVP T(U@) = —pgyga—pegyg ag on Fg (|||24)
2 V= r 11.2.5
WPopugve =5+ 50 onT ( )

. _ ops .

(n—1)/2 | X0 .

TEIJPOOT <6r 1k:p9> =0. (111.2.6)

where the paifuy, pg) represents the elastoustic scattered field, thatyig is the fluid pressure in

QJ whereas, is the displacement field ifts.
w

i—a-d

g=p" =e corresponds to the given incident plane wave.
w is the circular frequency ang is the speed of sound in the fIL@g. w andc; are associated with

the wavenumbek by k& = “ pr andp, are positive real numbers denoting respectively the densit
cr

of the fluid2} and that of the scatter€l;.

o is the stress tensor related to the strain teadayr Hooke’s law:
Oim = Cimjnjn (111.2.7)

whereC),,,;,, is a fourth order elastic stiffness tensor, suchat,, = Crijn = Cjnim @aNACH,n €m€jn >
o> e, for all symmetrical second order tengoNote that, in the case of an isotropic medium, it is

lm
invariant under rotations and reflectior¥s3], and reads as:
Clmjn = /\51m5jn + M(éljémn + 5ln6mj)

where), u are the Lamé coefficients.

Recall that the strain tenseiis related to the displacement field by:

(Vup + (Vu)')

1
e(ug) = B
Last,7 denotes the traction vector on the surface of the scatt&rehat is,

T(ug) = o(ug)vy.
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In this paper, we also consider the derivative of the acodatifield pattern. We remind the reader
that the scattering amplitudg ., of the acoustic scattered fietg that is the solution of the BVP is
defined on the unit spher® and is obtained from the asymptotic behaviopgf2§]: as follows:
ikr

bo = r(:—n/? (pe’“’ (%) O (%)) = el = e (11:2.8)
Observe that the direct problem BVP consists in the staneldetior Helmholtz problem Eqdl((2.3)
and (11.2.6), coupled with the elastodynamic equation BY.4.2) governing the equilibrium of an
elastic scatterer via the transmission conditions BYs2.4) and (I1.2.5). The first one is a dynamic
interface condition whereas the second one is a kinemdé@date condition.
This boundary value problem has been investigated mathheatipand results pertaining to the exis-
tence, unigueness and regularity can be found 92, 93, 104, among others, and Chapter

1.3 Main results

In this section, we present two main results of this studye piroof of these two results is based
on the ideas and the techniques used {1] for the exterior Helmholtz problems.

[1.3.1 Continuous differentiability of the scattered field

In this section, we establish the continuous Fréchet diffeability of the elasto-acoustic scattered
field with respect to the domain of the given obstacle.
The main idea is to reformulate the BVP such that the scattiezkl is a zero of a nonlinear operator
in Banach spaces which do not change with the shape defemai@nd then apply the Implicit
Function Theorem (cf, e.g.1§]).

[11.3.1.1 Transported solution and variational setting

We define the transported solution, o) in Q° x Q7 by:

(vo,q9) = (wgo (I +0),pgo (I +0)) (11.3.1)

where(ug, pg) is a solution to the problem BVP.
We notice that sincé has a compact support, we haugz) = gy(x) for all z such that)(z) = 0.
Thereforey, satisfies the Sommerfeld outgoing radiation condition Ef2(6) in BVP.
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Then, the first step consists in the construction of an ap@tgpvariational setting. Our analysis will

involve the use of the three following Banach spaces.

e Letthe Banach spack be given by
X = {0 € (€' (R")" suchthasuppd C D\ D1}

and equipped with the standard norm(@t (R"))".
We assume that is not a Jones frequency for the set of admissible pertuhsd{. In other
words, we suppose that is not a resonance frequency for an initial configuratiord e
assume that remains a non resonance frequency in the neighborhood afithéssible defer
mations. Actually, the Jones frequencies are very rare@mal & discrete spectrum. Therefore,
if the geometry under consideration may admit Jones motesn,the analysis is valid except
for at most a discrete set of frequencies. Note that, in ths¢,cwe can set onto a slightly per-
turbed frequency, which would not be a Jones frequency, lagl ise a continuity argument
with respect to frequency.

¢ We define the Banach spakehat is invariant with respect to shape perturbatinBhis space

is defined as a product spate= Y; x Y, where

Y1 = {vsuchthat|v|y, < +o0},

Y, = {qsuchthatlq|y, < +oo}
and

[vlly, = ||U||(H1(Qs))",

lally, = HQHU{(QJ‘)-

We notice that this space naturally takes into account thaydeondition for the pressure field,
given by the Sommerfeld outgoing radiation condition B.Z.6) in BVP.

e Moreover, the Banach spackis defined as follows:

Z221XZQ
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where

!

Zy = {(2’1,@1),2’1 € ((Hl(QS))n) , P11 € (H_l/Q(F))n}a

Zy = {((z.92), 22 € (F0 (), o€ HVAD)}

Note that both spaces, andZ, are equipped with the graph norm.

[11.3.1.2 Announcement of the first theorem and preliminary lemmas

We next state our first result.

Theorem I11.3.1.1 The mappind — (vg, q9), Where(uvy, go) is the transported solutionl(.3.1) of
the BVP, is continuously Fréchet differentiabledat= 0 from the Banach spac& to the Banach
spacey’.

The key idea of the proof of this first theorem is to reformeltie boundary problem as an
operator equation defined on a Banach space that is invavidntespect to shape perturbatiohs
and then apply the Implicit Function Theorem. In order t@kksh this proof, we thus need to derive
some preliminary lemmas.

The first one allows us to rewrite the BVP as an operator egoati the form3 (0, v, ¢) = 0.

Lemma 4 The BVP is equivalent t§(0, wy) = 0 wherew, = (vg, q9). MoreoverF : X xY — Z
is continuous on a neighborhood @f, w,) from X x Y to Z, and its Fréchet derivative$), andJ,
exist and are continuous on a neighborhood®fuw,) in X x Y.

The proof of this lemma follows the methodology employed3f] [for the exterior Helmholtz
problem. It especially makes use of the auxiliary resulvigled in Appendix A in B9]. This
Appendix contains some auxiliary propositions on Fréchiéerntiability of operators defined by
composition, known as Nemytski operato®§][ It also includes some properties of the transforma
tion of domains with Lipschitz boundary, and the associatemhge of variable in boundary integral
by a Lipschitz continuous mapping.

Proof We assumeé{d|| e =) is sufficiently small so that/ + 6)~' exists and2; has a Lipschitz
boundary (see Lemma A.3 i89)).
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Using the variational formulation, we aim at reformulatihg coupled problem BVP as an operator

equation of the form:
3:(9, Vg, q.g) =0.

For simplicity, we omit the complex conjugate notation oa tbst functions. The weak form of the

BVP is:

J

(V- olug) + w?peug) wdu=0 Vi (D))"

s
2

/S;f (Apo + Kpo) Wdp=0 W& € D(R"\ Q).

[4

Or, equivalently, by applying Green’s formula, for &lt, ¥) € (D(Q,))" x D(R"™\ Q) ,

/Qs o(ug) : Vipdu — /Q w?psugh dp — (o (ug) - vo, ) 172,172 = 0,
0

[4

Ope
Vpp - VW d —/ 2poW dp — (222 W)y e = 0.
/Qg Do 2 af Po¥ apt <8V9 >1/2,1/2

Then, by plugging the interface conditions into each vaat! equation, we get the weak formula
tion, for all (¢, ¥) € (D(Qy))" x D(R™\ Q3),

/Qs o(ug) : Vi du — /Q w?psugt d + (pevp + grg, ) _1/2,12 = 0
[

[4

Jg
Vpo - VU d —/ K2poW dpt+ (25— 2prug - vp, W) 19170 = 0
o Do H o] Do ’u+<8y9 w prug - Vg, V) _12,1/2

with

lim 71/ <% — ik‘pe) = 0.

r—-+00 r

Moreover, using Hooke’s law given by Edll(2.7), we obtain:

15}
/S > szjnSjn(Ue)% dp — /Q wpstug) dpe+ (povy + grg, V) 12172 = 0 (1.3.2)
m 0

0 Ilmjn 9

. dg
V¥ d —/ 2000 dit + (2L — 20 g - v, T _ .3.3
/Qg Vpg - V¥ dpu o Do /Hr(ayg wprug - vy, V) 172,172 =0 ( )
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with

r—+00

lim (=172 <% — ikpg) = 0.

Let P, = (I + 6)', ande; be thei'® vector of the canonical basis. Using the chain rule ($&8][

p. 661), we have for a scalar functigh

of
8:61-

o(I+0)=ePy'V[fo(l+0). (1.3.4)
We thus obtain for the transported solution given in Ed.3(1):
Vpg = PgitVQQ (|||35)

and

1
ejn(ts) = 5 (eh Py 'Vvg; + €4 Py Vg, (111.3.6)

Consequently, we transport the solutionftd x Q/, and transform the integrals in Eqsll.8.2)-
(11.3.3) using the results of change of variable given by Lemmas AbA6 in [39]. We then have,
forall (¢, ¢) € (D(Q°))" x D(R™\ Q°):
: 1
/QS( > Clmjné (e’;LPe_thgd- + ezPe_thgm) el Py Ny — wpsvpg)| det Py dpu
Ilmjn
+ [ (o + gla+ 0())v) @1, do = 0.
/Q (Py'Vgy - PV — Kqp)| det Py| dp

+/F <8g(:c +6(x))

% — prfug . V) wJr, do = 0,

The latter equations can be re-written as follows, fo@llp) € (D(Q°))" x D(R™ \ Q*):

1
/Q (> C’lmjné (Pe_lemefLPg_thaj + Pg_lemez»Pg_thgvn) -V — w?psvgd)| det Py| dp

° Imjn
+ [ @+ gl +0))w) 71, do = 0(11.3.7)
/Qf(Pe_lpe_tvqe Vi — K qop)| det Py dp

+/F (W — WPpsug- y) oJr, do = 0(111.3.8)
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On the one hand, we look at the first equation. For test funstioc (D(Q2*))", we get that
FU(0, vy, g5) = 0, whereF Y (6, v, q) € (D'(Q°))" denotes the functional

1, - _ _ _
?gl)(eava Q) : gb — /QS( Z Clmjn§ (Pg 16m6£LP9 tVUj —+ P9 1eme§.P9 tvvn) . v¢l
Ilmjn

—w?psvd)| det Pyl dy.

Becaused € (CL(R"))", VO € (L>=(R™))™*", andF" (6, v, q) is a bounded linear functional on
(HL(Q#))". Therefore we obtain

F 2 X x (HNQ))" x Yy — ((H'(@)") .
Moreover, regarding the differentiability, we recall thatferring to Lemma A.1 in39], V0 —
| det Py|, VO — Py lemel, Py | det By|, andVl — Py 'enelPy'| det Py| are continuously Fréchet
differentiable in a neighborhood of zero frath> (R™))" to L>=(R™), (L>=(R™))""", and(L>(R"))"*"
respectively.
In addition,&"%”(@, v, q) is given as the sum of trilinear forms of P, 'e,.e!, P, | det Py| and ¢, of
trilinear form ofv, P, 'e,,e! P, | det Py| andg, and of a trilinear form of, | det F| and¢, which are
bounded or{ H(2%))™ x (L>®(Q%))™™ x (Ha (%)™, (H'(Q%))" x (L=(Q%))™" x (Hy(£2*))", and
(HY(Q%))™ x L>®(R™) x (Hy(92%))™ respectively.
The resulting integrand is thus the composition of contusly differentiable mappings, and we
conclude thal’fil) is continuously Fréchet differentiable in a neighborhodd ® vy, ¢o) in X x
(H' ()" % Ya.

In order to take into account the boundary integral, we uselémsity of D(Q°))™ in (H'(92°))", and
then the equationl(.3.7) holds for allp € (H*(Q2*))".

In addition, there exists an extension opergtisom I', which is linear and continuous frofl /2 (I"))"
to (H'(€2°))", and such thatupp ¢ c Q°, for all & € (H'/2(T))", cf. [117.

Takel € (H/%(T"))". From Eq. (I1.3.7) with ¢ = £ , it follows that(vy, ¢y) satisfiesFt” (6, vy, gg) =
0, whereF® (6, v, q) : (H/(T'))" — C denotes the functional:

1
F20,0,¢): U= [o(S Clmjn§ ( Py el By iVu; + By lepet P(;thn) -V (D),
Imjn

—w?psv€W)| det Pyl du + [p (qv + gv) VJr, do.

Noting that¥\*) is a bounded linear functional ¢/ /2(I"))", for all (v, ¢) € Y, we findF\> (6, v, q) €
(H=2(D)".
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Since the extension operatgris linear continuous fronf7'/2(T"))" to (H'(©2*))", the continuous
Fréchet differentiability of the volume integral ovef follows from the same argument as ﬁﬁf”
above.

As regards Fréchet differentiability of the boundary ime#gwe also observe that it can be written
under the form

/N(Q,v,q)\lf do.
T

According to B9 (see Lemmas A.1, A.5 and A.7), the mappigs> v = v o (I + 0) andd — Jp,
are continuously Fréchet differentiable in a neighborhobdero from(€!(R"))" to (L>(T"))" and
L>(I") respectively.

Moreover, the trace operatér— T'rrf is linear and bounded frorf€*(R"))" to (WL (T))", there
fore from Lemma A.2 in $9)], the mapping — (z — g(z + 0(x)) = e*@+0@)d) is continuously
Fréchet differentiable fron!' (R"))" to WL (T").

By embedding theorem, cf.7(, 117, we haveW! (I') < H'/2(T'), thus the mapping — (z
g(x + 0(z)) is continuously Fréchet differentiable frof@' (R"))" to H/2(I') (< L*(T)).

Thanks to the regularity of, the integrandV (6, v, q) is therefore the composition of differentiable
applications. Combining the above arguments, it ensus\ty, v, ¢) is continuously Fréchet dif-
ferentiable forg in a neighborhood o and all(v, q) in Y, from (€'(R™))" x (L*(T))™ x Y, into
(LA(D))"

Finally, according to the trace theoremsg[20, 30, 32, 35, 70, 101, 117), the trace operator is linear
continuous from{ H'(Q¢))" to (H/2(I"))". Consequently, it follows that!” is continuously Fréchet
differentiable in a neighborhood 08, vy, o) from X x Y into (H~/%(T"))".

To sum up, the first variational equatidi.(3.7) is equivalent to the operator equati®n0, vy, gy) =
0, whered; = (3"%”,3”%2)) : X xY — Z; is continuously Fréchet differentiable in a neighborhood
of (0,vo, qo) from X x Y to Z;.

On the other hand, we deal with the second equatibB.8) by analogy.
For test functionsy € D(Q), we get thatF{" (6, vy, gy) = 0, whereFs" (6, v, q) € D'(Qf) denotes
the functional

F(0,0,q) : p — /Qf(PJlPJth -V — kqp)| det Py| dp.
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Sinced € (C1(R™))", VO € (L>(R™))""".
We can observe that," (4, v, q) is a bounded linear functional @i, (), therefore F5" (6, v, ¢) €
(Hr(2)))'. Consequently, we have proven that:

FV X x Y x He () — (Hp ()

Furthermore, regarding the differentiability, it has bestrown in B9 that V6 — |det F| and
VO — P;'P; ' det Py| are continuously Fréchet differentiable in a neighborhobdero from
(L>°(R™))" to L>*(R™) and(L>(R"))"*" respectively (see Lemma A.1i]]).

Then, we observe that" (0, v, q) is given as the sum of a trilinear form @f P, ' P, | det P,| andy,
and a trilinear form of;, | det P| andy, which are bounded of((2/) x (L°(R™))™" x Hy(QF),
and3 () x L°(R") x Hy(2) respectively.

The integrand is thus the composition of continuously déffeiable applications, and we deduce that
F{V is continuously Fréchet differentiable in a neighborhob@owy, ¢o) in X x Y; x Hp(QF).

Similarly, in order to take into consideration the surfagegral, we observe thdi(R™ \ €2%) is dense
in H1(97), and thus iH(1-(Q/). Consequently, the equation holds for@le H, (7).

Let D be a bounded domain such tiat ¢ D. Then, there exists an extension operatdrom
I, which is linear and continuous frotH'/2(T") to H,(f), and such thatupp &y C D, for all
Y e HY2(T), cf. [117).

Lety € HY2(T). Takinge = (v in (111.3.8), we obtain thatvy, ¢5) satisfiesFs> (6, vy, gg) = 0,
whereF$? (6, v, q) : HY/2(T') — C is defined by

T O0,0,q9) ¥ for (B 1PV - V(CY) — K2qCy)| det Pyl dps
dg
+ Jr (% —w?psu - V) Y Jr, do.

We observe thaty” is a bounded linear functional oH'/%(T). Thus, for(v,q) € Y, we have
F2(6,v,q) € HV2(I).

Then, because the extension operatisrlinear continuous front/ */2(I") to H, (), the continuous
Fréchet differentiability of the volume integral ov@f follows from the same argument as fﬁf)
above.

Regarding to the differentiability of the surface integraé first notice that it is of the form

/FK(G,v,q)zp do.
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Then, ithas been proven i) (see Lemmas A.1, A.5 and A.7) that the mappifigs v = vyo(/+6)
andd — Jr, are continuously Fréchet differentiable in a neighborhobdero from(C!(R"))" to
(L>(T"))™ andL>(I") respectively.

Moreover, the trace operatér— Trr0 is linear and bounded frof®!(R"))" to (WL (T')), there
fore from Lemma A.2 in $9)], the mapping — (z — g(z + 0(x)) = e*@+0@)d) is continuously
Fréchet differentiable frorC!' (R™))™ to WL (T).

By embedding theorem, cf.7(, 117, we haveW! (T') — H'Y2(T'), thus the mapping > (z
g(x + 0(z)) is continuously Fréchet differentiable frof@' (R"))" to H/2(I')(— L*(T)).

Thanks to the regularity af, the integrand< (¢, v, q) is thus the composition of differentiable appli-
cations. It follows that< (6, v, ¢) is continuously Fréchet differentiable féin a neighborhood of
and all(v, ¢) in Y, from (G*(R"))" x Y; x L?(T) into L*(T).

Moreover, by trace theorem1(), 30, 32, 35, 70, 101, 117)), the trace operator is linear continuous
from 3((Qf) to H/2(T"). Therefore, we conclude that” is continuously Fréchet differentiable in a
neighborhood of0, vy, qo) from X x Y into H—Y/2(T").

In summary, the second equatidii.8.8) is equivalent to the operator equatifn(d, vg, gs) = 0,
whereJ, = (3"51), 5—"§2)) : X xY — Z, is continuously Fréchet differentiable in a neighborhobd o
(0, vg, qo) from X x Y to Zs.

Combiningd; andJ,, we construct the desirelasd = (F,,%F) : X x Y — Z, and the proof
is completed.

In the next step, we require some existence and regulastjteeabout the solution of the elasto-
acoustic problem. The following lemma is a consequence @p@hl. Regarding the uniqueness,
there is no difficulty for the pressure field, as a consequentlee Rellich lemma. But it does not
imply thatw is unique. In factu is defined up to Jones modex?[ 104 which can exist for simple
geometries such as spheres. Nevertheless, Hagyéds obtained results which seem to show that
Jones modes do not exist for arbitrarily shaped bodies.drdlowing, we thus assume thatis not

a Jones frequency for all the set of admissible perturbation

Lemmab5 Let2* C R" be an elastic domain with Lipschitz boundary embedded inradgeneous

fluid 7. Letz € (HY(Q°)"), 22 € (3r(Q)), 1 € (HV3(I))" andy, € H-VA(T).
Then, there exists a unique,t) € (H'(92°))" x H(Q/) , up to Jone’s frequencies in the elastic
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scatterer, solution to the boundary value problem:

V-o(w) + w’paw = 2 in Q°
At + k*t = z in O
o(w)v +tv = ¢ onT (111.3.9)
wippw v — @ = onl
Pr 8Va_t P2
lim r("=1/2 <— — 1k3t> =0
r—-+oo or

Moreover,

t]|e2@m\ ) < oo for any domainD such thaf2” U supp 2, C D.

Remark 111.3.1.1

e The regularity of the data impacts on the regularity of théuson. In most of the cases, in
particular when dealing with scattered fields,= 0 and{y;},_; » is defined from the incident
field p™< which is regular as a plane wave. It is then interesting toesbe that if{;},;-12 €
L*(T), then bothw and ¢ are in Sobolev spaces of ord8f2. Indeed, sinceé € H. (Qf),
tr € HY*(I) and thustv € (L*(T'))". We then deduce that(u)v € (L*(I'))" and following
Dahlberg-Kenig-Verchotad6], we have thatv € (H*/2(Q*))". The same approach applies to
t. Indeed, ifw € (H'(2*))", w - yr € L*(T) sincewr € (H?(T'))" andv € (L>=(T'))". The
transmission condition implies th%atglF € L*(T") and following Jerison-Kenigq0], we obtain

thatt € HY/?(QF).

loc

¢ The previous observation remains valid when the boundas/regular (for instance€?). We
then get that € H?2 (/) andw € (H%(Q*))". The gain of regularity comes from the fact that
whenI' is €2, v is €' and the normal vector is thus a multiplier &f'/2,

[11.3.1.3 Proof of Theorem 111.3.1.1

We are now in a position to prove the main theorem. We want plyaghe Implicit Function
Theorem after checking that the needed conditions arelédlfil

Let F be the function constructed at LemmaWe proved thatf : X x Y — Z is continuous on
a neighborhood of0, v, qo) and its Fréchet derivative®; andJ; , exist and are continuous on a
neighborhood of0, vy, qo).

Moreover, is affine in(v, ¢) and thus, by differentiation and identification in the dizition sense,
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we obtain

?;,q(ov v, q) : (wv t) = (_v ' U(w) - CUQPSUJ, TTF(O-(w) v+iv+ gl/)’

ot dg
—_— —_— 2 —_— 2 . —_—
At — k t,T'r’p(8V wipsw - v+ aV)).

whereJd, A denotes the derivative of with respect tdv, ¢). We notice thatf;, , is a bounded bilinear
operator fromY” to Z and it does not depend @n, q).

In addition, from Lemmab, for all (21, 1, 22, ¢2) in Z, there exists a uniquev,t) € (H(Q*))" x
H(QF) such thatF, (0,0, q)(w,t) = (21, @1, 22, P2).

Consequently, we havé C 3 (0,v,q)Y.

We thus have injectivity and surjectivity of the operatigr, (0, v, ¢) and its inverse.

It follows thatJ;, (0, v, ¢) defines an isomorphism of the Banach spacesdZ.

In conclusion, we have three Banach spake¥” andZ, in whichd = F(6, v, q) satisfies the follow
ing conditions:
e F(0,v9,q0) = 0;
e By preliminary Lemma4, F is continuous on a neighborhood @f vy, ¢o) in X x Y to Z, and
the Fréchet derivative®; andJ;, , exist and are continuous on a neighborhoodofy, qo);
e 7, ,(0,v0,q0) admits a bounded inverse on

Consequently, we can apply the Implicit Function Theorear:everyf in a neighborhood of zero
in X, there exists a uniqu@y, g¢) in a neighborhood of, in Y such that¥ (0, vy, gs) = 0 and the
Fréchet derivative of the mappirig— (vy, gg) exists and is continuous on a neighborhood of zero in
X.

[11.3.1.4 Corollaries to the Theorem 111.3.1.1

Finally, we can derive as corollaries the continuous Fréditerentiability of the scattered field
(ug, pe) SOlution to the BVP with respect to continuous deformatiofthe domain of the scatterer.

Corollary 111.3.1.1 For any domainD such thatD c ¢, the mapping — uy, whereu, is the solu-
tion of problem BVP, is continuously Fréchet differentéinl a neighborhood of zero frot@! (R"))"
to (L*(D))™.
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Proof For a domainD, considerD;, D, such that Eqlll.2.1 is satisfied and
D C D;.

Then, there exists a distributighc D(D, \ D;), such thats = 1 on()’.

It follows thatsupp ¢0 C D, \ D, and the mapping — ¢0 is linear and bounded froif€* (R"))"
to X.

Furthermore, sincé = ¢6 in Q°, we have(23, = (2.

We can apply the previous theorem with € X. The mappind — (pgo (I + 0),ugo (I +0)) is
continuously Fréchet differentiable in a neighborhood ef 0 from (€'(R"))" to Y.

From Lemma 2.1 in 133, we deduce that the mappirtg— wu, is locally continuously Fréchet
differentiable in a neighborhood of zero frai@' (R™))" to (L*(D))™.

Corollary 111.3.1.2 For any domainD such that)” ¢ D, the mapping — p,, Wherepy is the solu-
tion of problem BVP, is continuously Fréchet differenteini a neighborhood of zero frof@* (R"))"
to L2 (R"\ D).

loc

Proof For a given domaiD, chooseD,, D, satisfying Eq. [11.2.1) and
D, C D.

Then, there exists a distributiegne D(D, \ D;), such that) = 1 on Q)"

It follows thatsupp ¢ C D, \ Dy, and the mapping — ¢6 is linear and bounded frof€! (R"))"
to X.

Furthermore, sincé = ¢0 in Q°, we have(2y, = (2.

We can apply the previous theorem with € X. The mapping — (pgo (I + 0),ugo (I +0)) is
continuously Fréchet differentiable in a neighborhood ef 0 from (€'(R™))" to Y.

From Lemma 2.1 in 133, we deduce that the mappirtg— py is locally continuously Fréchet
differentiable in a neighborhood of zero frai@' (R™))" to L2 .(R™ \ D).

loc

Remark I11.3.1.2 We have proven the continuous Fréchet differentiabilitthefscattered field with
respect to continuous deformations of the shape of theeseattAccording to the analysis carried
out in [39], Section 4, we can deduce the continuous Fréchet diffiereitity of the corresponding
acoustic far-field pattern. Indeed, both Corollaries 3.4ldremma 4.1 remains valid for the pressure

223



Chapter Ill. Characterization of the Fréchet derivative of the elasto-acoustic field with respect
to Lipschitz domains

field. Therefore, Theorem 4.2, which states that the mappirg ps . at # = 0 is continuously
Fréchet differentiable fron{C'(R"))" to €™(S!), still holds in our case, along with the stability
estimate of Theorem 4.3.

[11.3.2 Characterization of the derivative of the elasto-acoustic scattered field

The continuous differentiability of the scattered fieldrigeestablished, it is of interest to charac
terize the derivative in question. This characterizat®the purpose of the result stated in the next
theorem. A rigorous proof involves technical tools for doasting traces in Lipschitz domains. To
make the readability of the proof easier, we have decidecdsipone the regularity issues and to
address them later in Sectidih3.3.

[11.3.2.1 Announcement of the second theorem

Our aim is to prove that the local derivative of the elastoesstic scattered field with respect to
the boundary of the scatterer is the solution of a boundalyevaroblem that can be viewed as a
particular direct elasto-acoustic scattering problens $hown to only differ from the initial BVP by
the transmission conditions at the interface of the elasttterer as follows.

Theorem 111.3.2.1 Let («/,p’) be the local derivative & = 0 and in a directionh € (C?(R™))™ of
the solution(ug, pg) of the problem BVP. Thef/, p’) is the solution of the boundary value problem:

Vo) +w?pu’ =0 in Q°

Ap + K =0 in Qf

7(u') = —p'v+ F(u,p, h) onl
o (111.3.10)

w’ppu v = 8—Z+G(u,p, h) onl’

op’
. (n=1)/2 [ & 1. _
where the functiong’ and G are given by:

F(u,p,h) = —h'Vo(u)v—Vp" - hv+o(u)[h]'v+p' Ry, (111.3.11)
G(u,p,h) = —(Wp;Vu—V(Vp")h-v+ (Wpru—Vp") - [K]'y, (111.3.12)
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and p” = p+ p"c. Here, the notatiorh!Vo(u)v stands forh!Vo(u)v = [h'Vo(u)n]i=1 ... n,
whereo;, is the row! of the matrixo(u).

111.3.2.2 Corollary to the Theorem 111.3.2.1

From the fact that the mappirtg— py - iS continuously Fréchet differentiable ét= 0 in the
directionh € (C*(R™))™ from (C'(R"))" to (C™(S*))" (see Remarkl.3.1.2), we finally deduce the
following characterization of the derivative of the-fégld pattern(opy ../096)(0)h (cf. [28)]).

Corollary I11.3.2.1 Letp!_ be the far-field pattern of the solutigh of BVP, and le{0py ~./96)(0)h
be the derivative &8 = 0 and in a directiom: € (C*(R"))" of the far-field patterm, ., of the solution

py Of BVP. We have
6]79,00
00

(0)h = pl.. (11.3.13)

[11.3.2.3 Formal proof of Theorem 111.3.2.1

In the following, we omit to precise the suitable functiofi@mework for the characterization
because it requires distinguishing different cases relat¢he regularity of2°. We prove this theo-
rem in five steps, each formulated as a lemma. The use of the kha leads to the desired result.
More specifically, the first two equations and the Sommerdeludition are relatively easy to derive,
whereas the transmission conditions require a more eltdmbaand careful work.

We first prove that the local derivativé atd = 0 in a directioni of the solutioru, to the BVP is
a solution of the elastodynamic equation.

Lemma 6 The local derivativeu’ of the elastic scattered field & = 0 and in a directionh <
(C%(R"))" satisfies the following elastodynamic equation

Vo) +w?pu’ =0 in Q° (11.3.14)
Proof By analogy to Lemma 1 ird[1], we define
B =V -0 +wpl, (11.3.15)

and
9 = Buyg. (11.3.16)
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Then, the elastic scattered fielg satisfies the elastodynamic equation HER.2 in BVP, i.e.
do =0 in Q) (11.3.17)
and we thus have by transportation on the reference domain
doo(I+0)=0 in Q°. (111.3.18)

In addition, B is also a linear and continuous operator frofht (Q¢))™ into (D’(2%))", B is differen
tiable at least in the distribution sense, thavisy (Bv, ¢) is differentiable for eacty € D(Q2*), and
0B

— = B. 1.3.1
e (11.3.19)

From Theoremll.3.1.1 and Corollariedll.3.1.1 and1l1.3.1.2, 6 +— wy o (I + 0) andfd — uy are
differentiable, therefore, it follows tha&t — ¢, o (I + 0) andf — ¢4 are respectively continuously
Fréchet differentiable, and locally continuously Fréctidterentiable - at least in the distribution
sense - al = 0 and in a directiorh € (C*(R"))" .

Then, ford € (€*(R™))" an admissible perturbation in a neighborhood of zero, wainbt

)

B o
5 (Oh = 22(d5 0 (1+0))(0)h = Vo(0)h in Q°. (111.3.20)

SinceBu = 0in Q°, we verify V¢(0) = V(Bu) = 0in Q°.
Combining this along withl{1.3.18) in (111.3.20), we get

060 1 _ OB oy

o9 (Oh = == (0)h =0 in Q°. (11.3.21)

By definition of B and (11.3.19), we conclude
Bu' =V -ou +w?pu/ =0 in Q°, (11.3.22)

which gives (11.3.14).
[

The next lemma states that the local derivapivet # = 0 in a directionh of the solutionpy
satisfies the following Helmholtz equation.
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Lemma 7 The local derivativey’ of the acoustic scattered field 4t= 0 and in a directionh €
(C%(R"))" satisfies the following Helmholtz equation

Ap' +k*p' =0 in Q7. (11.3.23)

Proof The proof is analogous to the one of Lemfand can be found irp).

Then, we derive the first transmission condition satisfiebyp’) in the next lemma.

Lemma 8 Let (v/, p') be the local derivative of the scattered fieldfat 0 and in a directionh €
(C2(R™))™. Then, it satisfies formally the following boundary equatio

(') = —p'v+ F(u,p, h) onT. (111.3.24)
whereF' is given by:
F(u,p,h) = —h'Vo(u)r —Vp"  hv+o(u)[W]'v+ p'[W]'v. (111.3.25)

Proof Letd be an admissible perturbatien(C!(R"))".
The scattered fiel@uy, py) satisfies:

o(ug)vg = —peve — guy onTy, (111.3.26)
that is
(o(ug) +po+g)vg =0 onl.
We definep, by:
¢g = o(ug) +po+g. (11.3.27)
We therefore have
gbgl/@ =0 onl'y. (|||328)

By transportation, we thus get
dgo(I+0)go(l+0)=0 onI" a.e. (11.3.29)
Furthermore (se€l[L5, Lemma 4.8), we have:
1

voo (I+0) = mj(e)u onI' a.e, (111.3.30)
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where
JO)=[(I+0)]" in R". (11.3.31)

Using (11.3.30) and Eq.l11.3.31in Eq.111.3.29, we get
dgo(I+0)J(O)v=0 onl' a.e. (11.3.32)

In order to differentiate with respect iowe then extend the last equation to an operisebntaining

['y. Let the extension of the normal vecterinto (L>°(R™))" still be denoted by. Moreover, the
transported solutiotug o (I + 0), pg o (I + 0)) is extended into the wholB and its extension is still
denoted by(ug o (I +0),pgo (I +0)).

We can introduce the following auxiliary functian defined onD by

o = pgo (I +0)J(0) inD a.e. (111.3.33)

Note thatyp, satisfies
0o =0 onl' a.e. (11.3.34)

Then, we prove that — gy is differentiable- at least in the distribution sense fat 0 in a direction
h € (C*(R™))".

On the one hand, from Theoreith.3.1.1, we have shown that the mappin@s— py o (I + ) and
0 — wug o (I + 60) are differentiable a# = 0 in a directionh € (C*(R"))". Since,d — go (I + 0) is
differentiable, and since the stress tensor operaisrlinear and continuous, it follows thét— ¢,
is differentiable - at least in the distribution sense§ at 0 in a directionh € (€*(R"))".

Moreover, the mapping — J(0) is differentiable a¥ = 0 in a directionh € (C*(R"))", from
(CY(R™))™ into (C'(R™))™ and we have (see Ed4) in [39)),

9.J(0) i
—=(0)h = = |I']". 111.3.35

i (O = —[1 (11.3.35)
Consequently, the mappig— oy is differentiable - at least in the distribution sensed at 0 in a
directionh € (C*(R™))™. We then compute the local derivative with respeat for each term ofp,
as follows.

On the one hand, we have

oo (1+0)JO0) (Oh =+ (o (1+6)) O)hT(O)
+ppo (I + 9)|9_0&g—(:)(0)h1/. (111.3.36)
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Applying the classical rule of derivation, férin a neighborhood of zero, we have
0 Ope
—(pgo (I +6))(0)h=—(0)h+ Vpg(0) - h. (111.3.37)
06 06

Observe that/(0) = I. Combining (11.3.37) and (11.3.35) with (111.3.36), it follows that

5 0o (4 0)700) O = (B O+ ) 1)yl

that is

% (poo (I+6)J(O)v)(0)h=(p+ Vp-h)v—p[hv. (111.3.38)

Similarly, we obtain forg the following local derivative

% (go (I+8)J(O)v) (0)h =Vg-hv— g[h]'v. (111.3.39)

On the other hand, we compute the local derivag%e(a(ue) o(I+6)J(0)v)(0)h.

In order to apply the derivation formula established by Sirvurat [115 for a scalar function, we
use a reasoning component by component on the tensar; (L@} be thel’” line of the matrixo (uy).
We thus have

% (o(ug) o (I +0)J(0)v) (0)h = P (01(ug) o (I + 6)J(0)v) (0)h . (111.3.40)

For1 <[ < n, this leads to

% (01(ug) o (I +6)J(0)v) (0)h

_ % (o1(us) o (I +8)) (VLT (0} + o1(ug) o (I + 6)

9.7 ()

=059 (0)hY.

Moreover, using the same rule as [H.8.37) for each component;,,,(u) of the lines;(u), we have:

9 (on(us) o (I + ) (0)h

0
~ | omtwa) o (4 ) 01

80'lm(UQ)
=

1<m<n

(0)h + h - Valm(u(;)(())]

1<m<n
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_ lalm (%(0%) + htvmm(u)]

1<m<n

Sinceo;(u) is a row vector field, let us denote Byo;(u) the Jacobian matrix defined as follows

Voi(u) = [Vor(u)™1<jmen = laaén;(u)l . We thus get
0 I+6)J0)v)(0)h
g (01(ue) o (I +6)J(0)v) (0)

= (gl (%(O)h) + htVUl(u)> v —oy(u)[W]'v.
Consequently, we obtain far< ! <n

% (01(ug) © (I + 0)J(O)v) (0)h = (ov(u) + h'Voy(u) ) v — ay(w) [W]'v.

Using the notatio' Vo (u) := [A'Voi(u)],,,,, we deduce that

% (o(ug) o (I +0)J(0)v) (0)h = (o(u) + h'Vo(u)) v — o(u)[W]'v. (11.3.41)

Note thath' Vo (u)v = [Z htVUlm(u)l/m]
m=1 1<

I<n
From Equationsl{1.3.34), (111.3.38), (111.3.39) and (l1.3.41), it follows that

)

50 (0)h = o)+ h'Vo(u)v —o(u)[h]'v

+p'v+ Vp-hv —p[l/'v + Vg - hv —g[W]'v inD. (111.3.42)

Assuming that Eq.I[1.3.42) has a sense dn, it follows from both equationd|(.3.33) and (11.3.32)

that%(o)h = 0onI and thus:

o(u v+ h'Vo(u)v — o(u)[h]'v
+p'v+Vp-hv —plh]'v +Vg-hv—glh]'v =0onT.

Rewriting the latter equation, we obtain:
(W) = —p'v — hVo(u)v + o(u)[W]'v — Vp' - hv + p" W]y, (111.3.43)

which completes the proof of Lemn&a
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[
Remark 111.3.2.1 The previous proof is not really complete since we shouleltaven a sense to
the derivative ofpy. As formerly mentioned, we did not address this issue beciusquires non
obvious definitions of traces dn

Next, we specify the second transmission condition sati$fig«’, p’) in the following lemma.

Lemma 9 Let (v, p’) be the local derivative of the scattered field,fat 0 and in a directionh €
(C%(R™))". Then, it satisfies formally the following boundary equatio

w’ppu v = g—i + G(u, p, h) onT, (111.3.44)
whereG is given by:
G(u,p,h) = —(Wp;Vu—V(Vp))h-v+ (Wpru—Vph) - [W]'v. (111.3.45)

Proof Letd be an admissible perturbatien(C!(R"))".
We use the boundary condition satisfied(by, uy)

wzprQ ‘U = Vpe - Vg + Vg ) onl'y. (|||346)
Setting
Yy = w’psug — Vpy — Vg,

from (111.3.46) we have
Yo - vg =0 onl'y a.e. (11.3.47)

We thus get
Yoo (I+0) -vgo(I+6)=0 onl' a.e. (111.3.48)

From (11.3.48) and (11.3.30), we thus deduce
Ygo(I+6)-JO)r=0 onI' a.e. (111.3.49)

Before differentiating with respect #) we extend the last equatiohl(3.49) to an open seb con
taining'y. Again, v denotes an extension of the normal veatanto (L>(R"))". We also extend
the transported solutiofpy o (I + 0),ug o (I + 0)) in the wholeD and still denote its extension by
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(poo (I +80),ugo(l+0)).
We can thus introduce an auxiliary functigp defined onD by

Wy =g o (I+06)-J(O)v in D. (111.3.50)

It thus satisfies
Uy =0 onl a.e. (111.3.51)

Then, we prove that — ¥, is differentiable at least in the distribution sense fat 0 in a direction

h € (C*(R™))".

On the one hand, from Theorelt.3.1.1, we have shown that the mappings— py o (I + 0) and

0 — ugo (I+0)atd =0. Sincef — go (I +0)is differentiable, and from the fact that the gradient
operatorV is linear and continuous, it follows thét— ), o (I + 0) is differentiable - at least in the
distribution sense - & = 0 in a directionk € (€*(R"™))".

Let ¢, denote thd component of the column vectgy. Applying the classical rule of derivation

for a scalar function from Simon-Murat 15, we then have, foé in a neighborhood of zero,

&0 (I +0)(O)h (1.3.52)
0

= l%( o (I+ 9))(0)hLl<n (11.3.53)

= la_%(())h + wgm)h] (11.3.54)
80 1<i<n

_ %(O)h + Vi (0)h. (111.3.55)

We have seen that the mappifig— J(6) is differentiable a¥ = 0 in a directionh € (C€*(R"))",
from (€' (R™))™ into (C'(R"))" with

0J(0) B e
W(O)h = —[n]". (111.3.56)

Therefore, with the use of the chain rule, we can differeatia with respect ta, and obtain

SR = (W (I+O)O)h- J(B), v
by o (1+6),,_, - 8?9—(;)(0)}”/ in D. (I11.3.57)
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Combining equationdI(.3.52), (111.3.56) with (I11.3.57), it follows that

0, g
S0 = <

g (O + W)e(O)h) - J(0)v — (0) - [W]'vin D. (111.3.58)

We notice that/(0) = I and sinca)y(0) = w’psu — Vp — Vg, we have

Vibe(0) = w?p;Vu — V(Vp) — V(Vyg). (111.3.59)

where the gradient of the vector fields defined ad/u = [Vuy;]1<ji<n = l%] :
8%' 1<j,l<n

Furthermore, we also get

e Vi — w20 2% (o\h o [ OP0 v (%
S (0 = pr S (O)h V(ae (0)h> v(ae(())h>.
Hence, 5
%(O)h = Wl — VY. (111.3.60)

From Eq.ll1.3.58 to Eq.I11.3.60, we deduce that

oz

W(O)h = (Wppu/ —Vp') v+ wp;Vuh v

—V(Vp)h-v—=V(Vg)h-v
—(w?pju—Vp—Vg)-[W'v in D. (11.3.61)

Assuming thatl{l.3.61) has a sense dn, it follows from equation|(l.3.51) that:

(W?ppu' — V') - v+ w?p;Vuh - v
—V(Vp)h-v =V (Vg)h-v
—(W?pju—Vp—Vg)-[W]'v=0 inT,

which gives (I1.3.44).

Remark 111.3.2.2 The previous proof is not really complete since we shouleltaven a sense to
the derivative off,. As formerly mentioned, we did not address this issue beciusquires non
obvious definitions of traces dn
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The last lemma finally shows that the local derivagivVef the scattered fielg, with respect to an
obstacle’s domain satisfies the outgoing Sommerfeld camdit

Lemma 10 The local derivativey’ of the acoustic scattered fiejg), at & = 0 and in a direction
h € (C*(R™))", satisfies the following outgoing radiation equation

/
im0/ @—i - ipifp'> — 0. (111.3.62)

Proof The proof is given in39].
[

Lemmas8 and9 are necessary for the characterization of the Fréchetatam®(v’, p’). Never

theless, their proof is based on the fact that we can givesaestm%%(o)h and%(o)h. We have

decided to omit this point in the proof of the Lemmas becausequires to establish regularity re-

sults which are not obvious when the boundgig only Lipschitz. In the next section of this chapter,
we gather results which form a complete proof of the char&etion in some cases. We have also
depicted some of the results that were able to prove in thergenase of a Lipschitz continuous

domain. Unfortunately, we were not able to get a proof in taste. In particular, the proof failed

because of the lack of surjectivity of the trace operators.

[11.3.3 Mathematical framework for the characterization o f the Fréchet deriva-
tive
The characterization of the derivative of the elasto-attotisld exhibits non homogeneous trans-
mission conditions involving traces that are either nomd#ad (like the normal derivative of the
pressure gradient) or for fields with a poor regularity. Ithas not obvious to give a sense to these

traces, in particular when the sok® is only Lipschitz. We organize this section by increasing th
difficulty level which is related to the regularity 6F.

111.3.3.1 Q¢ is of classC?

We want to give a sense to the following quantitiedon

)

g (Oh = o)+ Va(uy —o(u)[]'v

+p'v+Vp-hv —plh]'v+Vg-hv — g[h]'v (111.3.63)
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and

(0)h = (Wppu/ —Vp') v +w?p;Vuh v
—V(Vp)h-v =V (Vg)h-v
—(w?pju—Vp—Vg) - [W]'v. (11.3.64)

(i) Letus begin with the terms involved in LemrBa

According to Remarkil.3.1.1, u € (H?(Q*))", andp € H? _(Q/). We thus have’ € (H'(Q2°))" and
p € HL.(QF). Regarding i{1.3.63), we can thus define easily most of the traces from the clalssic
trace theorems3p, 35, 70, 71, 101, 102, 117):

e u € ((H*Q))" implies thato(u) € ((H'(Q2*))"*". Since the directiorh € (C*(R"))",
K € (C(R™))™*™ which is a multiplier of( H/2(T))". Then,o(u)r € (HY?(T))™*" implies
thato (u) [W/]fp € (H'/*(T"))™" and so does (u)[W/]{pv € (H'/*(T'))" sincev € (C1(T))™.

e p € H} (Q) implies thatp[h/]'v is defined in(H'/?('))" sincepr € H**(I), [W]' €

(CH(R™))™" andv € (C(R™))™.

e p € H2 (QF) implies thatVp - nir € (HY*('))". Sinceh € (C*(R™))", we also havéVp -
h)yr € (HY?(I))" sincev € (C1(T))™.

e The terms depending on the datymdo not pose a problem singeis regular, for instance,
g € H(T'). We thus hav&/g - hyr € (L*(I"))" andg[h/]'v € (L*(T"))" too.

o u' € (H'(Q?))" implies thato(v') € (H(V-,Q%))"*". The traces(u)rv is thus defined in
(H-12(I))".

o p c H!

loc

(/) implies thatp. € H'/*(T'), andp'v € (H'/?(T"))" sincev € (C'(T'))".

e As a consequence, the only term that requires a particulantain seems to be'Vo (u)v.
Nevertheless, in the case of a regular domain, we knowutlsat 72(Q%))", which implies that

o(u) € (H'(£2%))™". Now let us denote by one of the partial derivativegaf, 1<j<n.
Zj

We then have:
V- 0y(0u) +w?p,0u; =0, V1<I<n. (111.3.65)
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Using thatdo;(u) = o,(0u), we can thus deduce thaw,;(u) € (H(V-,Q*))", which implies
thatdo, (u)v is well-defined ini ~/2(T"). By this way, since the directioh € (C2(R™))", we
can definev* Vo (u)v in H=Y/2(T") also for alll <[ < n.

Collecting each of the previous regularity results, we bat expressionli|.3.63) is well-defined in
(H~/2("))™ when the solid?® is of classC?.

(ii)
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We continue our analysis by focusing on Leména

We havep € HZ,.(Q/) and thusVp € (H..(Q7))". We then hav&/p;r € (HY?(T'))". The

direction vector, € (C%(R"))". Hence, the entries ¢f'] are inC!(R™). Knowing thatC! (R")
is a multiplier of 7/2(T"), we then deduce that:

[WVpr € (HY*(I))"
and sinces € (C(I")), itis a multiplier of (F/'/2(T"))™ and we finally obtain:
[W]Vp-yr € HYA(T).

We have thatr- € (H3/2(T'))" sinceu € (H*(Q2*))". We then havéh']u € (H'/*(I'))" and so
does[h]u - vr which belongs taf/2(T').

Sinceu € (H*(Q%))", Vu € (HY(Q*))™" andVuh € (HY?(T'))" sinceh € (C*(R™))". We
then deduce tha¥uh - v € H'*(T) at least sinc&uhr € (HY*(T"))" andv € (C'(R™))"

Sinceu’ € (H'(2°))", we haveu|, € (H'/*(T))", andv € (€')" is a multiplier of (H'/*(T))".
We thus have/ - v € HY2(T).

Sincep’ ¢ H}

loc

(QF) with Ap' € L2 _(QF), we know thatg—p e H-VX(I).

loc v

As a consequence, the only term that requires a particutarseems to b& (Vp)h - v. Nev-
ertheless, in the case of a regular domain, we know jthat A7 (Q2*), which implies that
Vp € (H'(92*))™. Moreover, we have:

A(Vp) + k*Vp = 0. (11.3.66)
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Using thatA(Vp) = V - V(Vp), we can thus deduce th&t(Vp) € (H,..(V-, Q/))™", which
implies thatV(Vp)v is well-defined in(H~/2(I")). By this way, since the directioh ¢
(C2(R™))", we can defin&’ (Vp)h - vin H=1/2(T).

Using embedding theorems, we conclude that EQ3(64) is valid in #~'/2(") onT.

Remark 111.3.3.1 Inthe previous proof, we have assumed thhelongs ta?. In fact,C! is sufficient
becausé only needs to be a multiplier @ /2.

111.3.3.2 T'is either a curvilinear polygon or a polyhedron of classC!!

For these cases, we refer to the book§ [71] written by Grisvard. We are then able to define
the traces locally in the sense that they are defined on eagh(te) and a generalized Green-like
formula is available.

We suppose that the bounddryof Q¢ is a curvilinear polygon (polyhedron) of clag$’. LetT),
1 < j < N, be the set of"! curves (faces) defining = UX_T';. Let; be a vector of clasg”!
defined in a neighborhood 6F as the unit normal vector outwardly directedta Then,v; = v a.e
onI';, butin generaly; # v inside()”.

Recall that we want to give a sense to the following quaistiviel :

%(O)h = o(u)v+ h'Vo(u)v — o(u)[h]'v
+p'v+Vp-hv —p[h]'v +Vg-hv — glW]'v (11.3.67)
and
o,
6—09(0)h = (Wppu/ —Vp') v+ wp;Vuh v

—V(Vp)h-v—=V(Vg)h-v
—(w?pju—Vp—Vg) - [W]'v. (111.3.68)

We will apply a result fromT0, 71] which concerns a second order elliptic operator denoted yth
coefficients smooth enough. LEX A, 2) be the maximal domain ol. WhenQ) = Q*, D(V - ¢,Q°)
is given by:

D(V -0,9%) = {v € (L*(Q))", V-o(v) € (L*(Q%))"}, (111.3.69)
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and wher) = O/,
D(A, ) ={qe L},.(), Aq e Li,.(Q)}. (11.3.70)

Following Grisvard }0, 71], we have (see Theorems 1.5.3.4 and 1.5.3.6, pp. 54 and 57):

14
3yj T,
unique continuous extension as an operator fldd\, /) into H~/2-¢(T;) x H~3/>=%(T;) for any

e>0,foralll1 <j <N.

Theorem 111.3.3.1 The mapping +— (p|p]., o ) which is defined fop € H? (), has a

Theorem 111.3.3.2 The mapping: (u|pj,a(u)uj‘rj), which is defined for, € (H*(Q%))3, has a
unique continuous extension as an operator fld(Y - o, Q%) into (H—1/275(T';))" x (H~3/2=¢(T;))™
foranye > 0,forall1 < j < N.

Always following [70, 71], it is possible to characterize the traces in the dual spﬁd%l/Q(Fj)
and 73/2(T';), wheref*(T';) denotes the space of functionsfiff(T';) such that their continuation by
zero toI" belongs to/*(I"). By analogy with the classical notations, the dualbf(I';) is denoted
by H—*(T;). We then have:

Theorem 111.3.3.3 The mapping — (ppj, a@_p ) is defined and continuous from(A, /) into
Vi,

H=V2(T;) x H3/*(T;), forall 1 < j < N.

Moreover, letBy be the ball with radius? > 0 large enough to hav®” C Bg. Lety € H?(Bg)

such thatp = 0 on9(Bx \ ©2°) andd,¢ = 0 ondBg. Then, for any € D(A, Q7),

N
Ap — App =Y (p, Dy, 0)m 3 .3.71
/BR\QSp v Bp\Q* by ]Zl<p S ) 1/2,1/2T ( )

Lety € H%(Bg) suchthav,» = 0ond(Bg \ ) andy = 0 ondB. Then, forany € D(A, Q7),

N

Aty — App = =S (B, p, ) _ . 11.3.72
/BR\QSP P B\ pY Jz=:1< ;P 1/’) ,—3/2,3/2,T; ( )
Theorem I11.3.3.4 The mapping: (U‘[‘j, a(u)ujlri) is continuously defined fro@(V - o, Q%)
into (FH~Y/2(T';)) x (H~3?(T';))", forall 1 <j < N.
Moreover, letp € H?(Q2*) such thatp = 0 onT. Then, for any. € D(V - 7, Q*),

N

/S uV - o(p) — g;s V-o(u)e =Y (u,0(Q)Vj)m—1/21/21,;- (111.3.73)

J=1
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Lety € H?(Q?) such thatd, ) = 0 onT. Then, for any, € D(V - 7, *),

N
/S uV-o(p) — . V-o(u)p=— Z<O’(u)l/j, V)~ 3/2,3/2.T; - (111.3.74)

Regarding the solutiofw, p) to the direct problem, two terms are easy to define using tesidal
trace theorems3), 35, 70, 71, 101, 102 117]. They are as follows:

e pc H?(Q) implies thatp- € H'/2(T"). Moreover, becausk € (C2(R"))", each entry of its
Jacobian matrixh/] is continuous. Since € (L>(T"))", the vector2/]'v thus defines a vector
of L*>°, which is a multiplier ofL*(T"). We then getp[h/]'vr € (L*(T"))".

e u € (H¥*(Q2))" implies thatyr € (H'/*(T))". In addition, we have seen thit]'v is well-
defined o™ in (L>°(T"))". We thus deduce that- [#']'v € L*(T).

Next, Theoremsll.3.3.3 andll1.3.3.4 will help us to define the traces of the elasto-acoustic Fe&ch
derivative. Indeed, we have:

o p e HY*(Q/) implies thaty’ € H\/?(0f). Sincep’ satisfies the Helmholtz equatiohl 3.23),
we thus have’ € D(A, Q7). Therefore, we can apply Theordth3.3.3to give a sense tqu
in F1-'/2(T';). Regarding the transmission condition, we need to defing. . But we know
thatu; is locally regular. We thus also haw; . € (H=V2(T;))", 1< j < N.

o u € (H32(Q%))" implies thatu’ € (HY2(92°))". Observing that/ is solution to the Navier
equation [(11.3.14), we thus have/ € D(V - 0,Q°). We can then apply Theoreit.3.3.4,
which allows us to define (u')v; . in (H~*>(T;))".

Moreover we also have:
e — € HT;),1<j<N,following Theoremll.3.3.3,

and

o Wr, € (H~V*(T';))", 1 < j < N, following Theoremlll.3.3.4. Observing that; is regular
onT;, we then have also that - v; € H~Y/2(I';),1 < j < N.

Now, we can apply again Theorertis3.3.3 and|lll.3.3.4 to give a sense to each of the following
terms:Vp - hvir, Vp - [R]'yr, Vuh - yr, ando (u) [1/]'vr, using similar arguments as fptandw’.
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: . .0 0
Indeed, let us denote kiyone of the partial derlvatlvegf, 1 < j <n,p can be replaced b§£,
Zj Zj

0
1 <j <n,andu’ by 8—“ 1 < j < n as follows.
T

e Sincep satisfies the Helmholtz equatiohl (2.3) and using the fact that the partial derivatives
of p commutes with the Laplace operator, we have:

A(dp) + k*0p = 0. (111.3.75)

Observing thabp is in H,/>(Q/) because € H;/?(Qf), we thus obtain thap € D(A, Q).
Theoremlll.3.3.3 then implies thatpr, is well-defined in~'/%(T';), and thereforeVpr,
is well-defined in(Z/~/%(T';))". Using that the directioh € (C*(R™))", Vp - hr, remains
in H=Y/%(T';). Then, sincev is locally regular,Vp - hvr, is also in(H~Y2(T;)), for all

1<j<A.

e We have seen thapr, € (H~'/*(T';))". Observing that each entry §f] is in ¢!(R"), and
using thatv is locally regular, we thus obtain th&tp - [']*vr, is well-defined inf—/*(T';)
too, foralll < j < N.

e Sinceu satisfies the Navier equatiohl(2.2) and using the fact that the partial derivatives.of
commutes with the elastodynamic operator, we then have:

V - 0(0u) + w?ps0u = 0. (111.3.76)

Becauséu € H'/?(Q*), we getthabu € D(V -0, ). It then follows from Theorenil.3.3.4
thatour, is well-defined in =/%(T';))", and therefor& v r, is well-defined i H=/2(T';))™™.
Using thath € (€2(R™))" andw is locally regular, we obtain th&tuh-vr, is also inH~/*(T;),
forall1 <j < N.

e We have noticed thatur, € (H'2(T;))". It follows that the trace of the strain tensd)
is in (—/2(T;))™". Assuming that the coefficients;;,,.,, of the fourth order elastic stiffness
tensor are sufficiently regular, the trace of the stresotens:)r, remains in(F—1/2(T;))™".
Then, since each entry @f'] is in €' (R"), andw is locally regular, we deduce thatu)[h/]'vr,
is well-defined in( 1 ~'/2(T;))" too, forall1 < j < N.

Now, to complete the characterization, we need to definedhewing terms involving high-order

derivatives:(V(Vp)h) - v, h*Vo(u)vr. We can use the same arguments as%%r ando (u')yr.
r
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e Let us begin with the trac¥ (Vp)h - vr. We have seen thdlp € D(A, Qf). Therefore, we
can apply Theorerfil.3.3.3 and give a sense G (dp) - v on eachl’; in H—%2(T';). It then
follows thatV(Vp); .. can be defined inH ~3/2(T';))". Now, sincelr, € (€*(T'))", we then
have :

htV(Vp)Vj‘Fj c H3(T;),1<j<N.

because? is a multiplier of %/%(T;).

e As regards the last terf*Vo(u)vr, we proceed similarly. We have observed that €
D(V - 0,Q%). Therefore, following Theorenil.3.3.4, o(0u)yr has a sense on eadh in
(H~3/%(T;))", which amounts t@a; (u)v;, € H~*?(T;), forall 1 <1 < n. It then follows
that Vo (u)v;., can be defined ifH—%(T;))". Consequently, sinckr, € (C*(I))", we
conclude that:

(htVal(u)VﬂF]_)lngn c H32(T;), 1<j<N.

Remark 111.3.3.2 We can notice the importance of the local regularity of thenmal vector to be
able to give a sense to the quantities of interest on the banynd, such as, for instanceyr, and

u .

111.3.3.3 T is either a linear polygon or a polyhedron of class2%!

Here, we deal directly with the three dimensional case. Wesicer the case a polyhedron of
classC®! using the results from Ciarlet at [8-10].
This case is less regular than the previous one in the seasththboundary' is locally represented
by aC®! function. Nevertheless, the normalis regular on each face, but the boundary can admit
corners, which was not the case in the previous section.
Using the same notations as in Sectibr8.3.2, and following B-10], we have, for alll < j < N:

Theorem 111.3.3.5
(i) The mapping — pyr, is linear and continuous from (A, Q7) to H-12(T).
(ii) The following Green formula holds:

dq
A —/ Ap = g .
/pr q qu D : <p|1“~,7

%FV)N,_UQJ/Q,F]., Y (p,q) € D(A, Q) xHP(QF). (1.3.77)

(iii) The mappingp — g_p is linear and continuous from (A, Q) to H~%/2(T;).
Vr;
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(iv) The following Green formula holds:

: 0
[pa= [ adp =0 an)e s, ¥ (p.0) € DA Q) x HY (). (113.78)
Qf Qf ovr,

In the above theoreni]*(T';) is defined as the space of elemeptsf /7*(T';) such that the continua
tion of ¢ by 0 toT belongs taf7*(T"). The dual space df*(T';) is then denoted’ —*(T';). Moreover,
always following P], the space$/”(Q/) and H," (2/) are given by:

HP(QF) = He (97)n Hy(Q)

Q) = (gm0, X

=0 =0,VI#y
loc 8V|F ) Q\Fl ) ;é j}

The spacefls(l“j) has been introduced by Grisvard inJ[ 71] and also in [4]. Theoremlll.3.3.5
provides a generalized Green formula that is of great istéoewrite the variational formulation of
the problem definingu/, p'). In particular, it shows that for the numerical simulatipne define each
trace locally on each fade;, which is consistent with the regularity results that weagrnt

Now, recall that we want to give a sense to the following qii@stonI":

9o

50 (0)h = o)+ h'Vo(u)v —o(u)[h]'v

+p'v+Vp-hv —p[l]'v +Vg-hv — glW]'v (11.3.79)

and

ot

50 (0)h = (Wppu/ —Vp')-v+wp;Vuh v

~V(Vp)h-v—V(Vg)h-v
—(w?pju—Vp—Vg) - [W]'v. (11.3.80)

The termsp[/]'vr andu - [1']'v, associated with the solutiof, p) to the direct problem, can be
defined in(L*(T"))" and L*(T") respectively, in the same way as in the previous sectiorgubinclas-
sical trace theorems.

Moreover, as Theorertl.3.3.1 in the previous section, Theorelh.3.3.5 allows to give a sense to
.- ~ op’
the termsp'vir,, Vp - hyr,, Vp - [ vy, in (H7Y3(T;))" and H~/*(T;), as well as o and

) ov|r,
V(Vp)h - v, in H3/2(T;).
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However, regarding the displacement field, we have to exteadesults of §] given in the case
of the Laplace operator. Unfortunately, the proof of Theotd.3.3.5 requires surjectivity results
that are not obvious. For instance, we need to prove thatrfpraac (H'/2(T;))", there exists

u € {v e (H*(Q))" N (Hy(2))", o(u)yr, = 0, for 1 # j}, such thatr (u)yr, = ¢. At first sight,
we were not able to construct such a lifting operator and, ttesquestion remained open. However,
a joint work has been recently initiated with Serge Nicag®] we think that we are able to define
such results in the case of the elastodynamic operator. @umoe, this should allow to complete the
rigorous justification in the framework of a Lipschitz pogdron.

I11.3.3.4 The general casexX?’ is a continuous Lipschitz domain

Obviously, this case generates more difficulties than tegipus ones. We still aim at giving a
sense to the following quantities @n

9o

50 (0)h = o)+ h'Vo(u)v —o(u)[h]'v

+p'v+Vp-hv —p[l]'v+Vg-hv — glW]'v (111.3.81)
and

(0)h = (Wppu/ —Vp') v +w?p;Vuh v
—V(Vp)h-v =V (Vg)h-v
—(w?pju—Vp—Vg) - [W]'v. (111.3.82)

What remains true is that the termig/]*r andw - [1/]'v can be defined iL?(T") and (L*(T"))" re-
spectively, using the classical trace theorems as donecii®&dl1.3.3.2.

We tried to get more results but, unfortunately even in trsead the pressure fluid, we were not able
to extend the results 0®] 70] to give a sense tg' in particular. Indeed, such a result should be neces-
sary to give a sense to the tepfwhich belongs taD (A, Q7). More precisely, if one wants to follow
the lines of B, 9], some surjectivity results are required to define the ttheerems inD(A, Q).

The difficulty remains the construction of the suitableift operators because of the compatibility
condition defining the range of the trace mappings and whegiedds on the geometry of the domain.
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Nevertheless, we obtained a characterization of the trélpgs andV (Vp)y . This allows to give a
sense to the following terms associated to the pressure Weld hv, Vp - ["*]v, andV(Vp)h - v on
the Lipschitz boundary. We proceed as follows.
According to P1], we define the range of the trace mappid®$rom H?2-functions on a Lipschitz
domain() as follows:

R = {yov,11v,v € H*(Q)}. (111.3.83)

This is a Hilbert space dense ii' (I") x L?(T"). It has been characterized i?l] and it is proved that
in R, the pair(yyv, y1v) satisfies a compatibility condition, given in three dimemsi by:

R ={(g0,01) € H'(T) x L*(T") such thaWr(go) + g1v € (HY/*(T))"}. (111.3.84)

We can view it as a product spa®e= R, x R;.

It is worth noting that, when considering smooth domainslaésC? (or C''!), the range of the trace
mappings is exactly characterized, and is equat to H3/2(T") x H'/?(T"). As regards polyhedra of
Cbor ¢, without going into the details, the traces are describedllp face by face. Because of
the boundary singularities, there exists matching comastiat edges and cornefisl] 15, 70]. Then,
the range of the trace mappings are defined, on eaciifagethe spacél'/?(T';) x H*?(T';), whose
definition can be found ing~10, 70] and Sectiorill.3.3.3.

We do not argue about the infinite domaw. Indeed, we deal with the solution to the Helmholtz
equation which is thus regular in the neighborhood of anyasersurrounding2?’. We can thus
restrict the proof to the case of a bounded domain that wetdéhand whose boundary has the same
regularity tharl", and is still denoted by

Proposition 111.3.3.1 Let us consider the problem in pressure, formulated asvidlo

{ “Ap=apeH () (111.3.85)
Op _ 99 _ 19 =
a—cwy—aelj (T)

w2
witha = — ande = w?py.
s
Then,(Vpr, %VMF) is well defined as an element (de)n X (Ro)n
Moreover, the trace of any elementiéf (Q)/ K (Q) isin (H(T))" x (L*(T"))", whereK (Q) is given
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by the following closed subspace®f(2):

K(Q) = { € HX(Q); [/Q vp-vg—i’ —/Qg—imz)] —0). (111.3.86)

Proof A natural idea is to do this by means of a process of dualig, ihto say in the dual spaces
to the trace spaces. The difficulty encountered here corogstfie fact that the boundaftyof Q° is
only assumed lipschitzian. The classical Sobolev spac¢E) onT" are only defined intrinsically for
-1 <s<1.
For a function; € H?(02), the classical traces can no longer be well defined as elero&ht/?(T") x
H'Y2(T"), as in the regular case. Moreover, the surjectivity of taedroperators, that we will denote
by o, 71, from H2(Q) onto H3/2(T") x HY2(T') is no longer true.
Actually, these traces are iR, defined by Eql(1.3.83), which is a subspace df}(T") x L?(T"), and
have to satisfy a compatibility condition that depends angbometry of?, given by Eq.(11.3.84).
The trace spaces of functions BF(Q) for a lipschitzian domairf2 have been characterized by G.
Geymonat and F. Krasucks §] in two dimensions and by A. Buffa and G. Geymonat in threeeadim
sions R1]. These characterizations extend those accomplished Gyigvard [/ 1] in the case of a
polygon ofR? or a polyhedron irR3. )

/4

Using the results of Jerison-Kenig(, 91], and M. Costabel31], sincea— € L*(I'), we easily check
1%

thatyp € H*(T') and thatp € H3/%(Q).

. . 0
Let x be one of the coordinate variablesiif. Setq = !

0 .
P We want to give a sense ? onl.
14

o0x

We first remark that, in the distribution sense, we have:
— Ag = aq. (111.3.87)

: : . dq .
Note that ifQ2 was regular, and becauge= L*((2), this would give a sense tgg in H=3/2(I).
14
Moreover, we recall thai is solution to the following variational equation:

Ip
/QVp Vv = /Qapv + /F 2wl = /Qapv —|—/Fl(u)v, (111.3.88)
1 . dg
forallv € H'(Q2), with[(u) = cun - v — £ onT.
Fory € H?*(Q), we takev = g—w in (111.3.88) and using Eq.1{1.3.87), we obtain:
xr
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~[Aw =« g_% (111.3.89)
Q Q OT
_ _a/ pa—¢ +a/(p2/})l/x (111.3.90)
ap o
_ _/vp v + [ 5 aﬁ / P)va. (111.3.91)

This last expression defines a continuous linear forni/é(12). Therefore, the linear form defined as

O wov /

/Aqw+/Vp v@x r v Ox

is also linear continuous ol ?(92).
At this stage, it should be first noted thatyife HZ($2) (defined as the closure @1(92) in H%(2)),

(11.3.92)

thenZ(y) = 0.

Thus, L only depends on the traces®f Hence,L is a continuous linear form dR which, according
to [21], is contained inF ' (T") x L*(T).

Consequently, there exists a pair®f dual of R, denoted L, L), such that:

L) = Lo(vov) + Li(mv). (11.3.93)

To come down to a standard situation, we set:

L) = [—/QAqw+/QqA¢] + l/QVp-Vg—i —/quz)]. (111.3.94)

We denoted by« (2) the following closed subspace &F(Q):

K(Q) ={ye HQ(Q);/va : vg—i - /qup =0} (111.3.95)

Then, for ally € KQ), we have:

— [ Aqu+ [[ahv = Lo(i) + L) (111.3.96)
8p 81p
- [ 35 —|—a/(pz/1)yx. (111.3.97)

The terma/(pz/;)ux only depends onyv. For the second one, we proceed as follows.
T
We consider, for almost every € T, a basis(r, 72, ) obtained by atlas. We note;, e, e3) the
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canonical basis. For instance, assuming that the chos&blar is the first one, we have:

o
o = (Vd)er
Then, if (a1, as, a3) are the coordinates ef is the basigr, 75, ), we have:

oY 5@/) oY oY
or M TR, Ty,

whereay, as, az are L>°(I")-functions.

Hence, we can rewrité as follows:

_ Ip Oy op| o o
L(y) = 8V8y+ F%l 8—ﬁ+ 287'] a/F(pw)Vm

It is then clear that:

Lo(yov) = ay “or T on

3 oY

.0 o .
Slncea—p c L*(T), a; € L=(I") fori = 1,2, 3, it immediately follows that:
14

[Lo(vo)| < C (/F V|2 + |1/1\2) 1/2

Still according to P1] (see Proposition 4), we get:

| Lo(o)| < Cllvot| -

In addition, we obtain, for) € K (), that:

- fyaao+ foasv = fagia

L2 0] e [

r Ov 871

(11.3.98)

(11.3.99)

(111.3.100)

(11.3.101)

(11.3.102)

(11.3.103)

(11.3.104)

(111.3.105)

247



Chapter Ill. Characterization of the Fréchet derivative of the elasto-acoustic field with respect
to Lipschitz domains

This formally gives:

dp
q= @3@
@ = 6—7'1 <a1@> + 8—7'2 <CL2@> —apr, ONnl.

The latter has a sense ii!(T"), andg = a3g—p c L*(I).

14
We deduce thatL, (v1v), Lo(70%)) is defined as an element (R,)" x (R,)", but restricted to the
subspacé((£2), it is written as

d
Lo(vov) = —<8—Z, YoU) (1)< H(I) (111.3.107)

Limy) = (¢:mY) 2=z m)- (111.3.108)

Note that because has no boundary, we hayé&'(I"))" = H-(T).
Using the same argument for each variable, we finally getdbelt.

Remark 111.3.3.3 Let us consider) under the following form:
U(z,y,2) =ar+ Py +yz+0
with o # 0.
o

It is then clear that) € K(£2) becauseAy = 0 andVa— = 0. This condition is actually necessary
Xz
because of the non-uniqueness of the Neumann problem.

Indeed, the Neumann problem formulated-agyp = ap with g_p =, gives:
1%
op Op O
=— | —a=— | ——. 111.3.109
/Qapoz r o r Ov Ox ( )
Moreover, we have
. 8]?
Ly) = / 9p 111.3.110
() = a o ( )
= a/F(p@Z))l/m —a/ﬂpa (111.3.111)
Op oY
—— . 11.3.112
r ay ax +a/r(p¢)Vm ( 3 )
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I11.4 Conclusion

We recover the compatibility condition given by Eil.8.109). Therefore,K'(€2) can be identified
(for the three derivatives) as the quotient &%(2) by the polynomials of degree 1 (without the
unnecessary constraints for our construction).

Remark 111.3.3.4
e Actually, even ifp’ has a sense in some spagg(I'), with s < 0, the productp'v is not
meaningful anymore since the normalis only L. Therefore, the regularity of should
be at leastL?(T") to be able to define such a product globally. This means thahould be
H?7(QF) and thus would require to be H/>"*(Qf) for somee > 0, which is not the case
due to the boundary singularities. Otherwise, we might rteeestrict ourselves to Lipschitz
domain such that is piecewise smooth.

e Since it appears to be difficult to define such traces in soroagsense on Lipschitz domains,
an idea might consist of approaching the Lipschitz boundawyith a polyhedron’;,. Then,
we would have to prove that the solutign,, p,) in €25 x Q7 and its traces tend to the solution
(u, p) and the corresponding traces at least in a very weak sensegs, This could ensure that
the problem on Lipschitz domains would be well-posed in g werak sense.

Remark 111.3.3.5 The general Lipschitz case provides a very challengingrétaal issue but we
do not think it defines the real limitations to this work. ledethe boundary value problem satisfied
by the Fréchet derivative is artificial. It has no real phyaieneaning, but only a practical one.
Moreover, from a numerical viewpoint, these are the cas@g®lyhedral domains of clagd"! or %!
that interest us, since they would correspond to our contprtal domain. Consequently, it can be
viewed as sufficient to have the rigorous justification festnkinds of domains for our computations.

1.4 Conclusion

In this paper, we have established the continuous depeeadsribe scattering amplitude on the
shape of the scattering, by proving that both the scatteeddidind the fafield pattern are differen-
tiable with respect to the domain of the obstacle. Moreavethave fully characterized the derivative
of the elasto-acoustic scattered field with respect toqadr Lipschitz domains lik€'!! polyhedra.
For C°! polyhedra, we conjecture that the justification can be cetepl, this is an ongoing work.
For general Lipschitz domain, we were not able to completeptioof because of a lack of surjec-
tivity of the trace of the elastic displacement. However,vage formally obtained that the Fréchet
derivative is a solution of the same direct elasto-acoussiattering problem that only differs by the
transmission conditions at the interface of the elastittsea. This characterization will thus be of
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practical interest and has an important potential for redythe complexity of the solution of inverse
scattering problems by Newtegpe methods.
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Chapter IV

A regularized Newtoftype method for the
solution of an Inverse Obstacle Problem in
fluid-structure interaction

In this chapter, we present some promising results obtam#dthe proposed solution methodol-
ogy for solving efficiently inverse two-dimensional elaatoustic problems. We observe the behavior
of the method using different types of parametrization efsttatterer (polygonal shape, star-like do-
main, and quadratic B-spline representation).

IV.1 Introduction

The determination of the shape of an obstacle from its effentknown acoustic or electromag-
netic waves is an important problem in many technologiek sgconar, geophysical exploration and
medical imaging or non-destructive testing. Because afiised and nonlinear character, this in-
verse obstacle problem (IOP) is difficult to solve, espécfabm a numerical viewpoint. Any attempt
to its investigation requires the fundamental understandf the theory for the associated direct scat-
tering problem, and the mastery of the corresponding nuwalesolution methods.

In this work, we are interested in retrieving the shape oflastie scatterer from the knowledge of
some scattered far-field patterns, and assuming certaraatRastics of the surface of the obstacle.
We propose a solution methodology based on a regularizeddetype method, known to be robust
and efficient to solve this class of IOPs. Note that this appinocan be viewed as an extension to
the method proposed id ] for the case of impenetrable scatterers. A number of methagle been
proposed in recent years to solve elastic inverse problemeerically. In particular, Elchnegt al
proposed an optimization method i with an objective functional-based approach depending on
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a positive regularization parameter, together with a Galesston method. It is worth noting that our
formulation coincides with their third objective functiain They also extend the method of Kirsch
and Kress, based on an integral equation approach, to tRid4Q@, and compare the results with
their optimization method ir4[g]. At the same time, Monk and Selgas applied the Linear Sargpli
Method (LSM), introduced by Colton and Kirsch, to the ineepsoblem with far-field pattern data in
[109 and near-field sampling-type methodsii []. One advantage of the LSM over Newton method
is that it avoids an iterative process, since the inversblpno can be formulated as an ill-posed first
kind linear integral equation. Moreover, LSM allows to coies limited-aperture data and different
boundary conditions without an a priori knowledge of theetyjf boundary conditions, so that it is
independent of the geometry and physical properties of tateser. However, the main drawback
of the LSM is that it requires to have the far-field patterradairresponding to incident waves from
many directions. In contrast, Newton method should dekvgood reconstruction using only a few
incident directions and limited-aperture data. Therefewen if Newton method requires an efficient
direct solver, and a priori information, the method is cqutoally simple, it is known to be more
stable with respect to nonsmooth boundaries and more rtdbtis¢ noise. Last, our methodology is
interesting to reconstruct simultaneously both the shapelze material properties of the scatterer.
The solution of this IOP by a regularized Newton method iscat each iteration, the solution of a
linear system whose entries are the Fréchet derivativédgedatlasto-acoustic field with respect to the
shape parameters. Moreover, ensuring the stability, fastergence, and computational efficiency
calls for computing these derivatives with a greater ratess and a higher level of accuracy than pos-
sible with finite differences. To this effect, following tapproach used irBp)] for the case of exterior
Helmholtz problems, we have characterized in Chajpit¢he Fréchet derivative of the elasto-acoustic
scattered field with respect to the shape of an elastic destathe solution of a direct elasto-acoustic
scattering problem which differs from the considered dismattering problem only in the transmis-
sion conditions on the surface of the scatterer. Conselyyaheach regularized Newton iteration, we
can thus evaluate both the scattered field and the direttien&atives by solving a single system of
equations with different right-hand sides. Observe tngt} @], the approach to characterize the direc-
tional derivative of the scattered field is based on the dhffgation of the variational formulation of
the boundary value problem, and the gradient for their agation problem can be computed as the
solution of the variational equation of the same transmirsgroblem but with modified right-hand
sides.

Clearly, the performance of the IOP solver depends mainlyhencomputational efficiency of the
solution of the forward problems that arise at each Newtnaiton. To this end, we propose to solve
the direct scattering-type problems using a finite-elenmegithod based on discontinuous Galerkin
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approximations, equipped with curved boundary edges rifbestin Chaptetl. We present numeri
cal results that illustrate the potential of the proposddtsm methodology for retrieving the shape
of scatterers with some singularities.

The remainder of the chapter is organized as follows. Ini@edtV.2, we recall the associated
direct elasto-acoustic scattering problem. In Sechib8, we outline the proposed solution method-
ology. We formulate the I0P of interest. We recall the impottanalytical characterization of the
Fréchet derivatives of the far-field pattern with respedhshape parameters established in Chap-
ter Ill, and highlight its significance to the evaluation of the Ig&o matrices associated with the
regularized Newton method. We also recall the discretmathethod proposed in Chaptiér and
summarize the computational complexity of the proposedda@Btion methodology. In sectidi.4,
we illustrate the salient features of our proposed comjmrtat methodology for retrieving the shape
of scatterers defined using three types of parametrizatiqnulygonal approximation, a star-like do-
main, and a quadratic B-spline representation. In SedWds we conclude this chapter and give
some perspectives.

IV.2 The corresponding direct elasto-acoustic scatteringorob-
lem

The corresponding direct elasto-acoustic scatteringlpnolrtonsists in the scattering of time-
harmonic acoustic waves by an elastic obstd2leembedded in a homogeneous medi¥ as
depicted on Figurév.2.1. It can be formulated as follows:

inc

Xp

Of

Figure 1V.2.1 — Problem statement in the infinite domain.
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Ap+k*p=0 in Qf (IV.2.1)
V- o(u) + w?psu =0 in Q° (IvV.2.2)

Jp Og

2 . e <
BVP (1) wpru-v o + o onI’ (|V23)
T(u) = —pv — gv onl’ (IV.2.4)
lim (=172 <@ — ik:p) =0. (IvV.2.5)

r—+o0 or

In practice, this is not the near fietdvhich is measured, but the féield patterrp,, of the solutiorp
of the BVP (1) characterizing the asymptotic behavior ofabeustic scattered fiel@{]:
ikr

p(x) = 7“(271)/2 ( 0 (%) +0 (%)) ;1= |zl = +oo. (IV.2.6)

Hence,p., is defined on the unit spher® , and admits the following representation in two dimen-
sions:

ei7r/4 - 8]) aeikaﬁ~y
r) = Y (y) — I IV.2.7
el) = S [ (#7520 - 25000 ) (v27)

This boundary value problem BVP (1) has been investigateithenaatically and results pertaining
to the existence, uniqueness and regularity can be fountDif} and the references therein, among
others for sufficiently smooth domains, as well as in Chaptehen assuming the wet surfateo

be only Lipschitz continuous, which is of more practicakmast . More specifically, in Chapterwe
prove, under minimal condition on the fluid-structure ifdeel’, (a) the existence of the solution of
the BVP, (b) the uniqueness of the fluid pressure, and (c) nigueness of the structural displace-
ment field modulo the so-called Jones frequencis $2]. These frequencies may exist only for
a particular class of elastic objects, such as sph&gs!ip, 79]. Therefore, it is worth noting that,
although the fluid-structure problem may admits non-unismectural displacement solutions with
the internal Jones resonance frequencies that can excsitfiain geometries, the scattered figlahd

its far-field-pattern are always unique and depend contislyoon the shape of the obstacle.

V.3 Computational methodology

We propose a solution methodology based on a regularizedddetype method for solving the
IOP. The proposed method is an extension of the regularizvddh algorithm developed for solv-
ing the case where only Helmholtz equation is involved, thdahe acoustic case by impenetrable
scatterers42].
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IV.3.1 Formulation of the IOP

The direct elast@coustic scattering problem defines an operatorI’ — p., which maps the
boundaryl’ of the scatteref2® onto the far-field patterp.,. Hence, given one or several measured
far-field patterng..(z), corresponding to one or several given directidrssd wavenumbers, one
can formulate IOPs as follows:

Find a shapd” such that F(T)(2) = p(2); & € S (IV.3.1)

where the tilde notation designates a measured quantity.

Observe that the problem is nonlinear, because the solotithve direct problem depends nonlinearly
on the boundary. Moreover, it is improperly ill-posed, grte far-field pattern is extremely smooth-
ing due to the analyticity of the far-field patterad.

We recall next some theoretical results that were alreadytioreed in f12] and dealing with the
case of the three dimensional exterior Helmholtz problem.

e Whenp,, is measured on the entitg (full-aperture) and for an infinite number of incident
waves characterized by distinct directions and the samenvaber, the IOFY.3.1) admits a
unique solution28, 97).

e When some information about the size of the unknown scatteralso provided, the IOP
(IV.3.1) admits a unique solution even when the full-aperture fldfpattern data..(z) are
available only for a finite number of incident waveXs3] 29). In particular, when the scatterer
can be embedded in a sphere of radilandk R < , it suffices to know the far-field pattern
on the entireS; for a single incident wave to be able to determine uniquetyuhknown shape
[28].

e Because the far-field pattefn, is an analytic function, it can be determined on the entiié un
sphereS; from its knowledge on a subset §f. Hence, both theoretical results recalled above
also hold whernp,, is measured only on a subset&f (limited-aperture).

In the case of the three dimensional exterior Helmholtz lemobnumerical experiments (for example,
see [39-42] in42]) performed in the resonance region —that is, for a wavetletigt is approximately
equal to the diameter of the obstacle — tend to indicate thatactice, and at least for simple shapes,
a unique and reasonably good solution of the IOF3(1) can often be computed:

e using only one incident wave and full-aperture far-fieldeglat
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e or using anywhere from 13 to 24 incident waves and lim@perture far-field data as long
as the aperture is larger than For smaller apertures, the reconstructiori’diecomes more
difficult and nearly impossible for apertures smaller than.

Regarding the case of elastic scatterers, the questiore@Xistence and the uniqueness of the solu-
tion to the inverse problem also arises, as well as the cganee of the Newton method (see, for e.g.,
[46, 110, 116 and the references therein). However, from a numericalp@nt, one may expect to
have similar results to the case of impenetrable scattdsetsvith additional sensitivities due to the
material properties of the scatterer.

IV.3.2 Parametrization

We assume that the fluid-structure interfacis Lipschitzian and can be represented¥yyshape
parameters as follows:
I =I(s) wheres=[s;,---,sy]' € RY.

Then, observe that?(S;) is the natural space for the far-field patterg which is usually measured
at a finite number of observation pointsdenoted byV;. Consequently, we project the IOR/@.1)
onto a finite-dimensional subspaceldf(S; ) and transform it into the following problem:

Find s € RY suchthat F(T'(s))(#;) = Peo(?;); @€ 5S4, j=1,---, N;. (IV.3.2)

which can be solved by a suitable Newton-like method.
It is worth noting that the finite-dimensional IOR/(3.2) can also be formulated as an unconstrained
optimization problem, and that its solutiercan also be defined by:

F(T(t))(21) — Poo(21)

S = arg min . (IV.3.3)

teRN

FI(1))(#n;) = Poo(n;)

L 4112

wherearg is used to denote thatis the minimizer of the considered vector function oReY.

IV.3.3 Linearization and regularization

The solution of the nonlinear IOR\(3.2) by the Newton method incurs at each iteratiothe
solution of a linearized problem of the form:
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SIFLTOR) @S = pocldy) = FTW)(E), j =1, Na, (IV.3.4)

=1

r®)

whereh; = Os) oy — D(s™) 5" =" 4 55",
851

and F.(I'™)h, is the Fréchet derivative of the FFP with respect to the slufplee obstacle in the

direction of the parametey.

Moreover, since in practice the number of observation gaWjtis greater that the number of shape
parametersV, the solution of the nonlinear IOP by the Newton method ie@treach iteration the
solution of a linearized system of equations that is typyoaverdetermined. Therefore, the obtained
system will be solved in a leastjuare sense as follows:

S S (FEC™) ) (@) [T ) (200)) 055" (IV.3.5)

where the overline designates the complex conjugate.

Becausé' is a compact operator, each linear problem of the form ginghvi3.4)— and a fortiori that
givenin (V.3.5) —is ill-posed. Consequently, the discrete versions oblems (V.3.4) and (V.3.5)
can be expected to be severely ill-conditioned. For thisarathe inversion must be done with a
special treatment that must restore the stability to theaggo. A stabilization technique such as
Tikhonov’s regularization is almost always used duringgbkition of (V.3.5) to restore the stability.
The standard Tikhonov’s regularization technique coasisintroducing a penalty term in\(.3.2)
and therefore replacing\(.3.5) by the following problem:

x

N N
> S (FC) ) () [(FL ™) h) (@0)]05)" + ads™ (IV.3.6)
=1 m=1

N

) hj)(@m)](ﬁOO(@m) - F(F(n))(@m))a j=1--- N,

m=1

wherea > 0 is the regularization parameter. Numerical simulationgaéthat the convergence of
the Newton method is strongly dependent on the choice. ofts determination could be done by
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theoretical considerations such as Morozov’s discrepaniagiple [113 114]. However, the mathe
matical foundation of this principle is limited to lineargiiems and incurs the solution of an auxiliary

nonlinear problem. For these reasomss chosen simply by trial and error.

IV.3.4 Evaluation of the Jacobians

The solution of this IOP by a regularized Newton methodsiisicat each iteration, the solution
of a linear system whose entries are the Fréchet derivative®e elasto-acoustic field with respect
to the shape parameters representing the surface of therscaFurthermore, ensuring the stability,
fast convergence, and computational efficiency of the segadd Newton method applied to the so-
lution of this class of IOPs calls for computing these ddiwes Fréchet derivatives arising during the
Newton iterations with a greater robustness and a highef #vaccuracy than possible with finite
differences.

Using finite differencing for this purpose raises two isspedaining to robustness and computational
efficiency. Indeed, the estimation by finite differences &réchet derivativéd” (I')h; j may or may
not strongly depend on the size of the perturbation of tharpaters;, depending on the variation
of the operatolr’ with respect to that parameter. Furthermore, the evaluaycsecond-order central
differencing of theV directional derivatives requires the solution at each lasgaed Newton iteration
(IV.3.6) of 2N + 1 distinct direct elasto-acoustic scattering problems.tkese reasons, we consider
here another approach for computing the Fréchet derisatifthe far-field pattern with respect to the
shape parameters.

To this effect, following the ideas and the approach use®#hfior the case of exterior Helmholtz
problems, we proved in Chapt#t that the Fréchet derivative of the elasto-acoustic seattéeld
with respect to the shape of an elastic obstacle can be ¢bazad as a solution of the same direct
elasto-acoustic scattering problem which differs from ¢besidered forward problem only in the

transmission conditions on the surface of the scatterer.

We recall that the Fréchet derivative of the elasto-acosstattered field with respect to the shape of
an obstacle in the direction of a parametgrwhich we denote here by, v’), is the solution of the

following direct elasto-acoustic scattering problem :
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Ap); + k*p; = 0 in Q7 (IV.3.7)
V- o(uf) + wzpsu; =0 in Q° (IvV.3.8)
op';
BVP (2) Wrppuy v =22+ Glu,p, hy) onT (IV.3.9)
T(uj) = —piv + F(u, p, hy) onTl’ (IV.3.10)
op’;
2 (9P )
rggloor (87“ 1k:pj> =0. (Iv.3.11)

where the functiong” andG are given by:

F(u,p,h;) = —h'Vo(u)v —Vp" - hjv + o(u)[h]'v + p' [h)]'v, (IV.3.12)

G(u,p, h;) = —(W?pVu—V(Vp")hj v+ (Wppu—Vp')-[h]'v, (IV.3.13)

and p’ =p+pre
Here, the notation’ Vo (u)v stands for; Vo (u)n = [RVoy(u)v]i=i ... n, Whereo is the rowl of the
matrix o (u).

The computational implication of this theoretical chaesidation is as follows. If the sougiaffter
shape is represented By parameters, then, at each regularized Newton iteratienytlirectional
derivatives needed for constructing the Jacobians canrbpuied by solvingV direct elasto-acoustic
scattering problems that differ only by their boundary dtnds. Or, in algebraic terms, after FEM
discretization, we can evaluate the scattered field and'tHeectional derivatives by solving a single
system of equations witlVv + 1 right-hand sides. In contrast, evaluating the sawéirectional
derivatives by a central differencing scheme, togetheh whe scattered field, would require first
choosing an arbitrary small parameter, then sol2ing+ 1 distinct forward problems.

IV.3.5 A multi-stage solution procedure

Even with the use of the regularization technique, the IQRaias difficult to solve, especially
when the number of shape parameters is large. In order téeaateethe convergence of the specified
method, we propose a multi-stage procedure for determihgought-after shape as B].

Step 1 Initialize s := s® and construcf® = T'(s(®).
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Step 2 Given a frequency and for a chosen, solve the IOPI{.3.2) by the regularized Newton
method (V.3.6) until convergence or stagnation of the residial (s™)) — p..

e If convergence to a specified tolerance is achieved, stop.
e If not, go to Step 3.

Step 3 Switch to a lower regularization parameterand/or a higher frequenay, initialize the
shape parameters with their final values in the previousstep- s, and repeat Step 2.

Note that it assumes that FFP data are also available fohahigavenumber. Moreover, this pro
cedure allows to recognize the influence of the wavenumbéh@@acoustic scattering observability
of the small geometric features.

IV.3.6 Efficient solution of the direct elasto-acoustic scdering problems

For implementation purposes, we reformulate the BVP (1) moanded domaimé in view of
its discretization by the finite-element method and perfogmumerical simulations. The latter is
accomplished by replacing the outgoing Sommerfeld camdith BVP (1) (V.2.5) by some simple
absorbing boundary condition. Consequently, as explam€thapteil, the finite-element discretiza-
tion of the direct elasto-acoustic scattering problemddadhe following algebraic problem:

(Af +C B) (P> = (Fl) . (IV.3.14)
B* A% \U B

whereA’ is a symmetric matrix given by:

Af = é (K7 =M — JF +7,87) (IV.3.15)
and
— K/ is the block diagonal stiffness matrix associated to thesure field.
— M7 is the block diagonal mass matrix associated to the presisinte
— J7 is the matrix that contains the jump terms. The entries of thatrix are defined over the
interior edges.
— S7 is the mass-like matrix defined over the interior edges irflthié resulting from the penalty

term.
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C is the complexvalued damping matrix. It is a mass-like matrix, whoseiestare all zeros except
for the elements located at the exterior boundagy The matrixA¥ + C is symmetric, but non-
hermitian, and thus non-positive-definite.

The symmetric matrixA® is given by:

A* = K* — w*p,M* — J* +~,8°, (IV.3.16)

and
— K? is the block diagonal elastic stiffness matrix related ®displacement field.
— M is the block diagonal mass matrix related to the displacefiedd.
— J? is the matrix that contains the jump terms. The entries «f thatrix are defined over the
interior edges.
— S¢isthe mass-like matrix defined over the interior edges irsthigl resulting from the penalty
term.
Note that the matrixA? is positive-definite up to the Jones frequencies, thankseartterior penalty
term that compensates the weak ellipticity of the equatpmerator. B is a mass-like boundary matrix
whose entries are defined on the interface edges only, wh&red F;, are the source vectors. The
vector P (resp. U) is the fluid pressure (resp. structural displacement)estation in the finite
element basis.

Moreover, as mentioned in Sectitvi3.4, the Fréchet derivative of the elasto-acoustic scattered
field with respect to the shape parametecan be evaluated by solving the same system of equations
(1V.3.14) but with different right-hand side5, ;, F; ;. Then, the corresponding far-field pattern — that
is, the Frechet derivative of the far-field pattern with esito the shape parametgr— is obtained
by post-processing the solution usiny.2.6) onT'("™).

In summary, adopting the nomenclature &%]} if the IOP (V.3.1) employs a single incident
wave, the iterative methodology for retrieving the shaparoélastic obstacle requires solving at each
iterationn;:

e One sparse system of equations associated with the disdreti of the elasto-acoustic scatter-
ing problem but forV + 1 different right-hand sides (Problem P1),

e and one smaller-scale but full system of equations of sizaleig N and of the form given in
(IV.3.6) (Problem P2).
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When the IOPI{/.3.1) is formulated usingV, incident waves characterized by the same wavenumber
but N, different incident directions, the same iterative procedequires solving at each iteration

e One sparse system of equations associated with the deatreti of the elast@acoustic scatter-
ing problem but forN, (N + 1) different right-hand sides (Problem P1),

e and one smaller-scale but full system of equations of sizaleq N, N and of the form given
in (IV.3.6) (Problem P2).

Clearly, the performance of the IOP solver outlined in tthamter depends essentially on the com-
putational efficiency of the solution of the forward probke(Problem P1) that arise at each Newton
iteration. To this effect, we propose to solve the directtecag-type problems using a finite-element
method based on high-order discontinuous Galerkin apprations equipped with curved boundary
edges introduced in Chaptir

Note that, the additional cost incurs by the computationhef Jacobian matrix is small compared
with the solution of the initial forward problem. Indeedetassembly and the LU factorization of the
matrix is done only once for the evaluation of the scattered {iP, U), using MUMPS for instance.
Then, the evaluation of th& Fréchet derivatives only require the construction of a ipldtright-
hand side, and the solution of a linear system already adedrabd factorized.

Remark 1V.3.6.1 Itis also possible to solve the IOPA3.1) using the adjoint-state method based on
the minimization of a cost functional under constraintsg @ombine it, for example, with a Quasi-
Newton algorithm. This technique is a Lagrangian-type faation. The advantage is that such
approach is independent of the number of parameters, anddheatives are expressed for all per-
turbations. This procedure requires the solution of onevend problem and one adjoint problem.
However, the factorization of the system matrix carriedfouthe solution of the initial direct prob-
lem is in general not reusable for the solution of the adjsiydtem. Indeed, the system matrix is not
only the transpose but also the conjugate of the matrix spoading to the initial direct problem,
owing to the presence of the complex-valued term assoamdtbedhe absorbing boundary condition.
It is expected that the cost associated with the factoredf such a system matrix is larger than the
cost corresponding to the solution with a multiple rightadeside performed in our situation.

IV.4 Applications

Numerical results are presented to illustrate the feasilof the proposed solution methodol-
ogy for retrieving the shape of an elastic scatterer fromntleasurement of several far-field patterns
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Pso(Z), corresponding to one directiahand one wavenumbér.

Our objective is to retrieve the shape of the obstacle witfiading its location. For this reason, as
mentioned in 42], we exploit only the intensity of the measured-ferld pattern —that is, the square
of its amplitude, given by:

U)(2) = [FD)@)][FIT)(2)]; (IV.4.1)

which is invariant under any translation. This is a soundtsgy not only for parametrization pur-
poses, but also because the measuremeritsase usually more accurate than the measurements of
the phase of'. Note that, since we do not locate the object, we lose theuamigss.

Consequently, the regularized Newton iteratibn3.6) becomes:

and we deduce the Fréchet derivativédofrom the Fréchet derivative df as follows:
UL(T)hy) () = 2Re ([FT) (20)][FL(T)Rs) (1)) (IV.4.2)

In all numerical experiments, we choose to work with a simitection of incidencel = (1,0), and
full-aperture far-field pattern data, that is 360 FFP datateNhat we use the same numerical method
for generating the synthetic data and for solving the fodyamoblems arising during the regularized
Newton iterations. Therefore, in order to avoid the invensme, the synthetic far-field pattern data
are generated by solving the direct elasto-acoustic scagtproblem BVP (1) for the target obstacle
on a fine mesh defined with abo, 4., €lements per wavelength, whereas the forward problems
arising at each Newton iteration are solved on meshes usjnglements per wavelength. At each
iteration, the exterior boundary is updated and defined hycéeavhose radiug is equal toR times
the maximum of the shape parameters. This should avoid thersel effect of domain truncation.
The numerical experiments are performed using the sameriaigteoperties as in Sectioh.5 of
Chapterill, corresponding to an aluminum object immersed in waterrapdrted in TabléV.4.1.

We monitor the convergence of our IOP solver via the decapef¢lative residual on the FFP

intensity given by:
|U(C) = ppocllz
1P Do |2

(IV.4.3)
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Properties | Density | Propagation velocity
Medium p (kg/m?) | cp (MIS)| cg (Ms)
Water 1000 1500 -
Aluminum 2700 6198 3122

Table IV.4.1 — Material properties of the considered flesttucture medium.

Remark 1V.4.0.2 The FFP computation via the integral formul/2.7) on the surfacd’ of the
obstacle has been validated by means of the analyticalsgren for the unbounded problem in the
case of Disk-shaped elastic scatterer problem (see Appé&hd).

Since the evaluation of the Fréchet derivative calls fordgbmputation of second-order derivatives of
u andp, we consider higher-order elements of degree 5 for the molwif the inverse problem. Let us
consider an obstacle of radius=0.01m, and compute 360 FFP data. We fix= 1376017, which
corresponds to the dimensionless frequehecy= 9.17, and use 5 elements per wavelength.

¢ First, we use the simplest condition that reads as:

P _p—0  on Ip (1V.4.4)
on

We report in TabldV.4.2the error results on both fields (over the entire computational fluid
domain Qﬂ) and p,, (over the unit sphere). These errors are evaluated witheeso the
analytical series expressed in the infinite domain, thatithout taking into account the low-
order ABC in the series expansion, for different values efridiusb of the exterior circular-
shaped boundar¥.

(b [ba]l » | pe |
0.03] 3 2.50 | 2.208
0.04| 4 | 1.496| 1.426
0.05| 5 1.05 | 1.051
0.1 10 | 0.421| 0.464

Table 1V.4.2 — Disk-shaped elastic scatterer problem - Sensitivity of ERerelative errors %) on p andp. to
different values of the the radigsf the exterior circular-shaped boundatywith the low-order CLA.

The following observations are noteworthy:

e As we move away the exterior boundary, the approximate Féfpated in the bounded
configuration, tends to the analytical FFP expressed in tiimite domain.

e The error on the FFP,, remains of the same order as the error on the solupatself,
which validates the FFP computation via the integral foren(iv.2.7).
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e Second, a first-order condition, that is widely employedjven by:

0
DL ikprEp=o0 on Tp (IV.4.5)
on 2
wherex denotes the curvature of the external surfége
TablelV.4.2shows the error results on both fielgdgover the entire computational fluid domain
Q%) andp.. (over the unit sphere). The errors are evaluated with resfethe analytical series
expressed in the infinite domain, that is without taking #xtoount the first-order ABC in the
series expansion, for different values of the radio$the exterior circular-shaped bounda¥y

(b [ba]l » | po |

0.03| 3 | 2.095| 1.575
0.04| 4 | 1.116| 0.868
0.05| 5 | 0.695]| 0.550
0.1 10 | 0.166| 0.136

Table 1V.4.3 — Disk-shaped elastic scatterer problem - Sensitivity of fRerelative errors %) on p andp to
different values of the the radidsof the exterior circular-shaped boundatywith the first-order CLA.

These results indicate the following:

e When using the first-order ABC4.5) instead of [V.4.4), the errors are halved. Thus using
the curvature allows to improve the approximation.

e We observe that the more distant the exterior boundary éybre the approximations are
accurate.

¢ We notice that the relative?-error on the FFP remains of the same order as the error on the
solutionp itself, which once again validates the evaluation of the Fth (1V.2.7).

Remark 1V.4.0.3 The Fréchet derivative computation associated with BVPhé&) been validated
via the analytical series given for the unbounded problethécase of Disk-shaped elastic scatterer
problem. The construction of the exact series(jdru’) is given in Appendix.2

We report in TabldV.4.4the error results on both field, «) and (p’, «") with respect to the ana-
lytical series expressed in the infinite domain, that is autthtaking into account the first-order ABC
in the series expansion, for different values of the radiofsthe exterior circular-shaped boundary

We observe the following:

e Once again, the more the exterior boundary is far from theadie, the more the approxima-
tions are accurate.
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/

/

/

‘ b ‘ b/a ‘ D Uy Uy ‘ P u, u;,
0.03| 3 | 2.095 0.698 0.646 2.366 0.634 0.580
0.04| 4 |1.116 0.387 0.357 1.284 0.309 0.216
0.05| 5 | 0.695 0.257 0.237 0.813 0.185 0.170
0.1 | 10 | 0.166| 6.185E002 | 5.658E-002 0.199| 4.642E-002 4.066E-002

Table IV.4.4 — Disk-shaped elastic scatterer problem - Sensitivity ofithaelative errors%) on (p, u) and(p’, u’)
to different values of the the radibdf the exterior circular-shaped boundatywith the first-order CLA.

e The relativeL?-error on the Fréchet derivative remains of the same ordethaserror on the
solutionp itself, which tends to validate the evaluation of the Fréatezivative with BVP (2).

In the following numerical examples, we recover shapes dédfwith 10 parameters employing
polygonal-shaped approximations, 9 parameters usingig@bmetric parametrization in Fourier
series, and 24 parameters using B-splines.

When the simulations are noise-free, we monitor the comvrerg of our IOP solver via the decay
of the relative residual on the FFP intensity with a tolemfiged to 1%, which corresponds to a
tolerance of about 2%-5% on the FFP phase. We also assed$ettteoé the noise level on the re-
construction by using various noise levels. Note that wepmae the synthetic data of the far-field
pattern phase.., then we add the noise to these measuremgptsand from them, we derive the
intensity of FFP dat@.. |, which is used in the Newton algorithm. Given that, we mantite decay
of the relative residuals on the phase and the magnitudedéatkield pattern.

The choice of the regularization parameter is empirical @mae by trial and error. In each exper-
iment, we specify the dimensionless frequeriay where2a represents the diameter of the target
scattererg = max s; being the maximum of the shape parameters.

IV.4.1 Polygonal-shaped obstacles

IV.4.1.1 Parametrization

We want to recover a polygonal-shaped object of boun@lario that effect, we parametrized the
cos 0;

shapel” by means ofV verticesX; = r; yJ =

. 1,--- N, uniformly distributed in the polar
sin 6;

coordinate angle.
For each face; of the polygon, we use a linear interpolation as follows:

S;(t)=(1—t)X; +tX;41, te[0,1],j=1,---,N (IV.4.6)

266



IV.4 Applications

with XN+1 = Xi.
This can be rewritten under the matricial form:

S;(t) =t 1}(_11 (1)) [X)il}

I ={S(), te[0,1], j=1,---,N}. (IV.4.7)

Therefore, we have:

The shape is entirely defined by theradiir;, j = 1, - -- N, so that it can be written as follows:

= {irj¢j(s) (COS 9]') . selo, N]} (IV.4.8)

sin 0;

where,t =s —j+1,
1—t if0<s<l,

di(s)= {1 TN-1<s< N, (IV.4.9)
0 otherwise
and forj # 1,
1—t ifj—1<s<j,
6i(s) = {° fj-2=s<j-1 (IV.4.10)
0 otherwise

Then, the corresponding deformation directions with resfethe N shape parameters are given

by hy(s) = 6,(s) ( 0]’) .

sin 0;

IV.4.1.2 Square
We want to retrieve a square defined by using 8 parametersniidize the object with a larger

shape, as reported in Tab\é4.5.

The number of elements per wavelength used to simulate theodathe soughkafter shape is equal
to Ny 4ata = 7, Whereas it is equal to/, = 5 for the meshes in the Newton iterations. Note that, in
that experiment, we consider the exterior boundary for gimey the far-field data ak,.;, = 5 and
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Initial
Parameter | Target GUess
51 0.010607| 0.0175
S9 0.01 0.0175
S3 0.010607| 0.0175
Sy 0.01 0.0175
S5 0.010607| 0.0175
S6 0.01 0.0175
S7 0.010607| 0.0175
S8 0.01 0.0175

Table IV.4.5 — Shape parameters for the squahaped target and the initial guess.

take R = 4 to define the exterior boundary during the Newton iteratidigs is an argument to avoid
the adverse effect of domain truncation.

Free noise results

The given frequency is = 150000, which corresponds tha = 1.06. The regularization parameter
a is chosen equal to 1 in Step 2. At the fourth iteration, we g&tep 3, and the regularization
parameter is decreased to 0.01 in order to accelerate thergamce.

The results are reported in Figui®s4.1 andIV.4.2. The iterative shapes are depicted in Figiuéd.1
and we plot in FigurdV.4.2 the convergence of the corresponding relative discreiduakon the
far-field intensity. The Newton algorithm achieves the #jet tolerance of 1% on the FFP intensity
within 6 iterations. In FiguréV.4.2, we can observe the switch to the smaller regularizatioarpater
highlighted by the jump in the error. Note that we can not exfiee error to be reduced more. Indeed,
the level of the order of0~'% that is achieved corresponds to the error due to the differbrtween
the exterior boundary radit,,,, and R that are used for generating the data and along the Newton
iterations.

Results with 5% of noise

In that experiment, the simulated FFP data are tainted with 5 % of noise, and we monitor the
convergence of our IOP solver via the decay of the relatisgltals on the phase and the intensity of
the far-field pattern.

The given frequency is = 150000, which corresponds tha = 1.06. The regularization parameter

« is chosen equal to 1 in Step 2. At the iteration 6, we go to Steph®&re we switch to a higher
frequencyw = 200000, corresponding téa = 1.41, and the regularization parameter is decreased to
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Shele

(a) Initial guess (b) Iter 1 (c) lter2
(d) Iter 3 (e) Iter4 (f) Iter5

(g) Iter6

Figure 1V.4.1 — Iterative shapes for the square with nefsee data.
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Figure 1V.4.2 — Convergence history for the square with neiisee data.

0.01 in order to accelerate the convergence. We then ingithe shape parameters with their values
at stagnation in the previous step, and solve again the |GQRebyame regularized Newton method.
The results are reported in Figurdé4.3 andIV.4.4. They are similar to those obtained with noise-
free data. In Figurév.4.4, we compare the results to the previous ones obtained witle+icee data.

In the case of tainted data, we also observe the convergétive ielative residuals on the FFP phase
and FFP intensity. The Newton algorithm achieves a levehafreof 6% on the FFP phase within
8 iterations, which is comparable to that of noise. The spoading relative residual on the FFP
intensity is of 1 %.

IV.4.1.3 A 4-point compass rose-like scatterer

We want to retrieve a 4-point compass rose-like obstaclaiodd using 8 parameters. The initial
guess is a larger square. The shape parameters are reporedalalV.4.6.

The number of elements per wavelength and the definitioneoéxterior boundary are defined as in
the previous experiment for the square scatterer.

Free noise results
Given the frequency = 150000, which corresponds tha = 1.5, the regularization parameteris
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w

Figure 1V.4.3 — Final shape for the square with data containing 5% of noise.
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Figure 1V.4.4 — Convergence history for the square.
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Initial
Parameter | Target GUess
51 0.006 | 0.012374
S9 0.015 | 0.0175
S3 0.006 | 0.012374
S4 0.015 | 0.0175
S5 0.006 | 0.012374
S6 0.015 | 0.0175
S7 0.006 | 0.012374
S8 0.015 | 0.0175

Table IV.4.6 — Shape parameters for thepbint compass rose-shaped target and the initial guess.

chosen equal to L is reduced to 0.1 at thg” iteration to accelerate the convergence in Step 3.

The convergence to the specified tolerance of 1% on the FERSity is achieved within 7 iterations,

as depicted in Figurd¥.4.5 andIV.4.6. Similar comments to the previous example can be done. The
method succeeds in recovering all corners of the shape.

Results with 2% of noise

In that case, we choose a level of 2% of noise to contaminatdata of the FFP phage..

We consider agaiw = 150000, corresponding téa = 1.5, anda = 1. At iteration 4 and iteration
6, the regularization parameteris decreased to 0.1 and 0.01 respectively, in order to aetelthe
convergence.

The results are reported in Figurds4.7 andIV.4.8. In FigurelV.4.8, we compare the results to the
previous ones obtained with noise-free data. The Newtaorigign converges within 11 iterations to
a level of 3% of error on the FFP phase, which is a level conipparta that of noise. This is a slightly
higher value than the noise level, but the corners of thestarlystacle are recovered, as illustrated in
FigurelV.4.7. The corresponding relative residual on the FFP intensigftgo of the order of 3%.

IV.4.2 Star-like domains

IV.4.2.1 Parametrization

Now, we aim to retrieve the shape of curved scatterers. Wesghto describe a class of star-like
domains. Using polar coordinates, the shape (that we assuime centered at the origin) can be
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AR A

(a) Initial guess (b) Iter 1 (c) Iter 2

PSR AR

(d) Iter 3 (e) Iter4 (f) lter5

R

() lter6 (h) Iter7

Figure I1V.4.5 — Iterative shapes for the doint compass rose-like scatterer.
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Figure IV.4.7 — Final shape for the 4-point compass rose-like scatterér gédta containing 2% of noise.
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Figure IV.4.8 — Convergence history for thegoint compass rose-like scatterer.

parametrized as follows:

sin 0

I = {r(0) (COS 0) , 0€]0,2m)},

(IV.4.11)

wherer represent the polar radius. We approximabgy its truncated Fourier series as follows:

M
r™(0) = ao + Y by cos(kB) + ¢ sin(k6).

k=1

(IV.4.12)

In this case, the shape is entirely defined by dhe= 20 + 1 coefficients:ay, b; j = 1,--- M, and

¢j,j=1,---M, so that we have:

I'= {i_v: $j;(0)

wheres; = ag, sop = bg, Sop41 = fork =1,--- , M and
»m(0) = 1
Po(0) = cos(kb),
Gopr1(0) = sin(kh), fork=1,--- M.

(0939) T [o,zm},
sin 6

(IV.4.13)

(IV.4.14)
(IV.4.15)

(IV.4.16)
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Then, the associated deformation directions with respethé N shape parameters are given by

hi(0) = ¢;(0) (COSH),J' =1,---,N.

sin 6

IV.4.2.2 Circle

The Fourier series given by EGM(4.12) is truncated fotM/ = 0, and we define a circulehaped
obstacle using the following shape parametgr:= 0.01. The object is initialized with the larger
circle of radius 0.015, so that = 0.015.

The number of elements per wavelength employed for gengréttie data with the target shape is
equal toN, 4.t = 5, Whereas it is equal t&/, = 3 for the Newton iterations. Note that we consider
the same definition of the exterior boundary for the far-figdda generation and during the Newton
iterations, i.e Ry = R = 4.

The given frequency is equal to = 350000, which corresponds tha = 2.33. « is chosen equal to
0.1.

The convergence results are depicted in Figives9 andlV.4.10. The Newton algorithm converges
in 4 iterations to the specified tolerance of 1% on the intgridithe far-field pattern. Note that since
we have taken the same values If,;, and R, the error can be reduced to a lower order. It requires
2 additional iterations within Step 2 to reduce the errds.i®—*.

When starting with a smaller radius ef = 0.005 the algorithm requires 3 iterations. Nevertheless,
note that the interest of this example do not rely on the fagetrieve a circle since the problem
only consists in determining one parameter. This exampbevalto observe the effect of the initial
guess and wavenumber on the convergence algorithm. Indesdme that we start from the same
frequencyw = 350000 (corresponding tda = 2.33) and a radius; = 0.02. Then, the Newton
algorithm fails to converge to the sought-after shape. Hukéus only reduces to 0.0196 in the first
iteration and then stagnates. Once could think that we aeddd at a radius for which is a Jones
frequency. However, according to the numerical study ashapterll, it seems that this is not the
case for the first six modes. Then, it is necessary to switeémésher higher frequency to “reset” the

convergence.
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OO C

(a) Initial guess (b) Iter 1 (c) lter2

(d) Iter 3

Figure 1V.4.9 — Iterative shapes for the circle.
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Figure 1V.4.10 — Convergence history for the circle.

IV.4.2.3 Potato-like scatterer

The Fourier series given by EQV(4.12) is truncated forM/ = 1, and we define a potatshaped
obstacle by means of 3 shape parameters summarized inlVablé The object is initialized with
the circle of radius 0.0125.

Initial
Parameter | Target Guess
S1 0.01 | 0.0125
S9 0.007 0
S3 0.0025 0

Table IV.4.7 — Shape parameters for the potato-shaped target and tlz quigss.
We consider the same number of elements per wavelength arghthe value for the radius of the

exterior boundary as in the previous experiment.

Free noise results

The given frequency is = 1100000, which corresponds tba = 7.33, and the regularization param-
etera is chosen equal to 50.
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The convergence results obtained within the single Step @epicted in Figurel/.4.11andIV.4.12.
We observe that the proposed method requires 7 iteratiomshieve the prescribed tolerance of 1%
on the FFP intensity.

Results with 5% of noise

In that case, we add 5% of noise to the FFP gata

We keep the frequencey = 1100000, corresponding téa = 7.33, and the regularization parameter
a = 50.

The results are reported in Figui®s4.13andIV.4.14. The shape reconstruction is similar to the one
achieved with noiséree data. In Figurév.4.14, we compare the convergence results to the previous
ones obtained with noise-free data. The Newton algorithnwve@es within 6 iterations to a level of
error of 6% on the FFP phase, which is a level comparable tofhaise. The corresponding error
on the FFP intensity is of 3%.

IV.4.2.4 Peanut-like scatterer

The truncation of the series given by Ef/.4.12) is done forM = 2, and we represent a peanut-
shaped obstacle using 5 shape parameters indicated in [Vabke and we initialize the shape with
the circle of radius 0.0125.

Initial
Parameter | Target Guess
S1 0.01 | 0.0125
So 0.002 0
S3 0.0005 0
Sy 0.004 0
S5 0.001 0

Table I1V.4.8 — Shape parameters for the peanut-shaped target and tlaé guiéiss.
We consider the same number of elements per wavelength arghthe value for the radius of the

exterior boundary as in the previous sets of experiments.

Free noise results
The circular frequency is given ky = 700000, which corresponds tha = 4.67. The regularization
parametery is equal to 100.
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OO O

(a) Initial guess (b) Iter 1 (c) Iter2
(d) Iter 3 (e) Iter4 (f) Iter 5
(9) lter 6 (h) lter 7

Figure IV.4.11 — Iterative shapes for the potalike scatterer.
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Figure 1V.4.12 — Convergence history for the potalike scatterer with noise-free data.
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Figure IV.4.13 — Final shape for the potato with data containing 5 % of noise.
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Figure 1V.4.14 — Convergence history for the potato.

The iterative shapes are depicted in Figuiéd.15 and1V.4.16 and we plot in FigurdV.4.17 the
convergence of the corresponding relative discrete rakio the intensity of the fdiield pattern
during Step 2. The Newton algorithm converges in 12 iteratito the specified tolerance of 1%
within a single step. It is worth noting that, once the tote of 1% is achieved, the algorithm
requires some additional steps for reducing the relatisgloal associated with the FFP intensity to
102,

Results with 5% of noise

In that case, the synthetic data of the FFP plgasare tainted with 5% of noise.

Given the frequencyw = 700000, corresponding t&a = 4.67, and for a regularization parameter
a = 100, the results are reported in Figuri&s4.18 andIV.4.19.

In FigurelV.4.19, we compare the convergence results to those obtained wigk-free data. In the
case of tainted data, the Newton algorithm requires 15titera to reduce the relative residual on
the FFP phase to a value of 6% comparable to the noise level.cditesponding error on the FFP
intensity is of 5%.

IV.4.2.5 Ghost-like scatterer

The truncation of the series given by EQ/.4.12) is done forM = 3, and we represent a ghost-
shaped obstacle using 7 shape parameters, and the ingsd @githe circle of radius 0.02, as reported
in TablelV.4.9.
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DO O

(a) Initial guess (b) Iter 1 (c) Iter2
(d) Iter 3 (e) Iter4 (f) Iter 5
(g) Iter 6 (h) Iter 7 (i) Iter 8

Figure IV.4.15 — Iterative shapes for the pearike scatterer.
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CD CO O

(a) Iter9 (b) Iter 10 (c) lter11

(d) lter 12

Figure 1V.4.16 — Iterative shapes for the pearlike scatterer.

Initial
Parameter | Target Guess
S 0.015 | 0.02
S9 0.005 0
S3 0.0015 0
S4 0.007 0
S5 0.0004 0
Sg 0.005 0
S7 0.003 0

Table IV.4.9 — Shape parameters for the ghost-shaped target and thégpitiss.
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Figure 1V.4.17 — Convergence history for the pearike scatterer with noise-free data.

Figure 1V.4.18 — Final shape for the peanut with data containing 5 % of noise.
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Figure IV.4.19 — Convergence history for the peanut.

We consider the same number of elements per wavelength arghthe value for the radius of the
exterior boundary as in the three previous experiments.

Free noise results

The given frequency is = 700000, which corresponds tha = 7, and the regularization parameter
a is equal to 100.

The convergence results obtained within the single Ste 2l@picted in Figureb/.4.20to 1V.4.22
andIV.4.23. The convergence to the souglfter shape is quite slow in that case, and requires 18
iterations for the given tolerance of 1%.

Results with 5% of noise

Here, the measurements of the far-field patgerrare tainted with 5 % of noise, and we monitor the
errors on the phase and the intensity of the far-field pattern

We keepw = 700000, corresponding téa = 7, anda = 100.

The results are reported in Figurnés4.24 andlV.4.25. The final shape superimposed with the target
depicted in FigurdV.4.24 illustrates a good reconstruction, all major features eftdrget obstacle
are recovered. In comparison with the results obtained motke-free data, we achieve convergence
within 18 iterations, in which the relative residual on theFFphase is reduced to a value of 7%,
comparable to the noise level (see Figivet.25). The corresponding relative residual on the FFP
intensity is of 3%.
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> & O

(a) Initial guess (b) Iter 1 (c) Iter2

SORVORNG)

(d) Iter 3 (e) Iter4 (f) Iter 5

VORVS)

(g) lter 6 (h) lter 7

Figure IV.4.20 — Iterative shapes for the ghost scatterer.
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D D

(a) lter 8 (b) Iter9 (c) lter 10
(d) lter 11 (e) lter 12 (f) Iter 13
(9) Iter 14 (h) Iter 15

Figure IV.4.21 — Iterative shapes for the ghost scatterer.
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(a) Iter 16 (b) Iter 17
Figure 1V.4.22 — Iterative shapes for the ghost scatterer.
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Figure IV.4.23 — Convergence history for the ghost scatterer with néise data.
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Figure 1V.4.24 — Final shape for the ghost with data containing 5 % of noise.
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Figure 1V.4.25 — Convergence history for the ghost.
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IV.4.2.6 Mini-Submarine-like scatterer

Before being able to recover a real submarine, a first stefpedo recover a smoother shape re
sembling a mini-submarine as in Figuké4.26. To that purpose, we truncate the trigonometric series
for M = 4, and we represent a simplified fish-shaped scatterer ustng shape parameters summa-
rized in TableV.4.10. We initialize the shape with an oval initial guess, as iathd in TabldV.4.10.

Figure 1V.4.26 — Fictitious mini-submarine

Initial

Parameter | Target GUess

S1 0.015 | 0.0175

So 0.005 | 0.006

S3 0.0005 0

S4 0.006 | 0.001

S5 0.0001 0

S6 0.002 0

S7 0.001 0

Ss 0.002 0

Sg 0.003 0

Table 1V.4.10 — Shape parameters for the mini-submarine-shaped targehanitial guess.

In that case, we increase the mesh resolution. The numbésrakats per wavelength used to simu-
late the data on the sought-after shape is equalt@.., = 8, whereas it is equal t&/, = 6 for the
meshes during the Newton iterations. Note that, in that exg@at, we consider the exterior boundary
for the far-field pattern generation &Y,,,, = 5 and still takeR = 4 to define the exterior boundary
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during the Newton iterations. This is an argument to avoéddtiverse effect of domain truncation.

Free noise results

We considet = 350000, which corresponds tba = 3.5. The regularization parameteris chosen
equal to 100.

The iterative shapes and convergence results obtainethwiité single Step 2 are depicted in Fig
ureslV.4.27to IV.4.29. In the absence of noise, the Newton algorithm convergdsmii? iterations

to the prescribed tolerance of 1%. Unlike the previous drpamts, the error can not be reduced
more. Indeed, the level achieved of the ordet @f'% corresponds to the error due to the difference
between the exterior boundary radij,,;, and R that are used for generating the synthetic data and
along the Newton iterations.

Sensitivity to the noise level

The previous results were performed with noise-free datahe following numerical example, we
assess the performance of the algorithm when adding whise no the synthetic data,,. As pre-
viously, we monitor the convergence of the IOP solver viadbeay of the discrete relative residuals
on the phase and the intensity of the far-field pattern.

We keepw = 350000, corresponding téa = 3.5, anda = 100, and we vary the level of white noise
between 0 and 20%.

The convergence results are depicted in Figur€.30 and the corresponding relative errors obtained
during Step 2 are summarized in Tabl®st.11 and 1V.4.12. For most cases where the FFP data
are tainted by noise, the IOP solver converges in a few itrsiwithin a single step. The initial
relative residual on the FFP phase is reduced to a level cablgeto that of the noise, as indicated in
TablelV.4.11. Consequently, these results highlight the effect of norsthe recovery. Nevertheless,
FigurelV.4.31 also illustrates that all major features of the target aoevered in all cases with a
good overall accuracy, even when using 20% of noise. Thigpparted by TabléVv.4.12. It is worth
noting that once the relative residual is reduced to a lemelgarable to that of the noise, it stagnates
during a few iterations but then diverges. This is partidylaisible on the last experiment with 20%
of noise, as shown in Figut®.4.32with 5 additional iterations in Step 2.

Remark IV.4.2.1 Sensitivitytotheregularization parameter - Note that we have considered a higher
or smaller regularization parameter, such as= 1000 or « = 10, but then the algorithm fails to con-
verge when keeping the same parameters (initial guessggimeguency, ...).
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(DD

(a) Initial guess (b) Iter 1 (c) Iter2
(d) Iter 3 (e) Iter4 (f) Iter 5
(g) lter 6

Figure IV.4.27 — Iterative shapes for the misiubmarine-like scatterer.
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LI

(a) lter7 (b) Iter 8 (c) Iter9
(d) Iter 10 (e) lter 11 (f) Iter 12

Figure 1V.4.28 — Iterative shapes for the misiubmarine-like scatterer.

| Noiselevel 0 | 1 | 5 | 10 | 20 |

Doo 1.2] 2 [5.2]10.5] 185
DaoPoo 0.3/08[3.4| 59118
Iter. 15|13 14| 9 6

Table 1V.4.11 — L2-relative error on the reconstructed FFP: Sensitivity torthise level.
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10 |

Relative residual (%)

-1

10
0

5 _ 10
lteration number

15

Figure IV.4.29 — Convergence history for the misuibmarine-like scatterer with noise-free data.

| Noiselevell 0 | 1 | 5 [ 10] 20|

Ll

05|/14/16|28|7.6

L2

05|/11/16|29| 6

LOO

05/08]1.73.0|43

Iter.

151314 9 | 6

Table IV.4.12 — Relative error on the shape parameters: Sensitivity to theerievel.
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Relative residual (%) — FFP intensity
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Figure 1V.4.30 — Convergence history : Sensitivity to the noise level.
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ADLARI A

(a) 0 %noise (b) 1 %noise (c) 5 %noise

L

(d) 10 %noise (e) 20 %noise

Figure 1V.4.31 — Effect of the noise level on the shape reconstruction: Cdatb(blue) vs Target (red).

Figure IV.4.32 — Shape reconstruction: Computed (blue) vs Target (red@wtion 11 of Step 2 using 20%
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IV.4.3 B-spline representation

IV.4.3.1 Parametrization

We want to retrieve the shape of curved scatterers usingmmifuadratic Bsplines. To that

cos 0;

effect, we define a set df control points:X; = r; ( , 7 =1,--- N, uniformly distributed in

sin 0;
the polar coordinate angle.

Then, thej™ B-spline of degree 2 denoted ISy is the parametric curve defined as follows:

Si(t) == [ =2t + D)Xy + (=22 + 2t + )X, + X, t€[0,1], 5 =1, ,(W4.17)

DO | =

with XN+1 =X andXo = Xy.

Put under matricial form, we have:

1
Sj(t)zﬁ{tQtl} —2 2 o|| X,
1 1 0)| X;
Therefore, we get:
I'={S;(t), tel0,1],j=1,---,N} (IV.4.18)

The shape is entirely defined by theradiir;, j = 1, --- N, so that it can be written as follows:

N 9
F={3ros) [ 7). selo,N] (IV.4.19)
j=1 S1n Hj
where,t = s —j+1,
2 —2t+1 if1<s<2,
X 2242t +1 ifO0<s<1,
=5 IV.4.20
¢1(5) 2 2 if N —1<s<N, ( )
0 otherwise
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29t 41 ifo<s<1,
X —2t2+2t+1 fN-1<s<N,
g1 IvV.4.21
dn(s) 5 /2 ifN-2<s<N-1, ( :
0 otherwise
andforj =2,--- N —1,
2 —2t+1 if j<s<j+1,
1 224 2+1 ifj—1<s<]
oL IV.4.22
0 otherwise

Consequently, the deformation directions with respeché\ shape parameters are given by

hy(s) = 6,(s) ( 9]’) |

sin 0;

IV.4.3.2 Oval

We want to retrieve an ovahaped obstacle parametrized with 4 shape parametersitiséze
the object with the larger shape given in Tablet.13.

Initial
Parameter | Target GUess
S1 0.01 | 0.0175
So 0.015 | 0.0175
S3 0.01 | 0.0175
S4 0.015 | 0.0175

Table IV.4.13 — Shape parameters for the oval-shaped target and the opitissis.
The number of elements per wavelength used to simulate taeodahe sought-after shape is equal

to Ny aate = 5, Whereas it is equal t&/, = 3 for the meshes in the Newton iterations. Here, we take
Rdata =R=4.
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Free noise results

The frequency is given by = 300000, which corresponds tha = 3. The regularization parameter
ais equal to 1.

The Newton algorithm converges in only 3 iterations. Theesponding shapes and the convergence
of the relative residual during Step 2 are depicted in Figivet.33 and 1V.4.34. It is worth noting
that, once the tolerance of 1% is achieved, the algorithmiresgfive additional iterations for reducing
the relative residual on the FFP intensitylto 2.

O C

(a) Initial guess (b) lter 1
(c) lter2 (d) Iter 3

Figure 1V.4.33 — Iterative shapes for the oval scatterer.

Results with 5% of noise
In that case, the simulated FFP data are tainted with 5 % of noise, and we monitor the errors on
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Figure 1V.4.34 — Convergence history for the oval scatterer with ndise data.

the phase and the intensity of the far-field pattern.

The frequency is given by = 300000, corresponding téa = 3 and we choose = 50. At the 4™
iteration, we switch tev = 5.

The results are reported in FigurBs4.35 and|V.4.36. In FigurelV.4.36, we compare the results
to the previous ones obtained with noise-free data. In tee oétainted data, we also observe the
convergence of the relative residuals. We achieve conmeegeithin 5 iterations, in which the two
relative residuals associated with the FFP phase and thenkdti3ity are reduced to the noise level.

IV.4.3.3 A rounded square

We want to retrieve a rounded square target obtained uss@ $hape parameters reported in
TablelV.4.14. We initialize the object with the larger shape givenhy= 0.0175, forj =1,--- ,8.
Note that, in that experiment, we still také, ;... = 5 and N, = 3, but we consider the exterior
boundary for generating the far-field pattern data?af,, = 5 and still takeR = 4 to define the
exterior boundary during the Newton iterations.

Free noise results
The frequency is given by = 150000, which corresponds téa = 1.5, and the regularization
parametery is equal to 1 in Step 2. At iteration 9, the regularizationapagter is switched to 0.01
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Figure 1V.4.35 — Final shape for the ovalhaped scatterer with data containing 5 % of noise.
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Figure 1V.4.36 — Convergence history for the oval-shaped scatterer.
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Initial
Parameter | Target GUess
S1 0.01 | 0.0175
S9 0.015 | 0.0175
S3 0.01 | 0.0175
Sy 0.015 | 0.0175
S5 0.01 | 0.0175
S6 0.015 | 0.0175
S7 0.01 | 0.0175
S8 0.015 | 0.0175

Table IV.4.14 — Shape parameters for the rounded scisti@ped target and the initial guess.

and 0.001 in two successive steps, whereas the wavenuméendbchange.

The corresponding shapes and the relative residual caawveegluring the successive Step 2 and Step
3 are depicted in Figurd¥.4.37to 1V.4.39. The Newton algorithm converges in 11 iterations. We can
observe in FigurdV.4.39the acceleration in the convergence due to the decrease kddghlarization
parameter.

Results with 5% of noise

Once again, we contaminate the synthetic data of the FFRephittsa noise level of 5%.

The frequency is given by = 150000, corresponding téa = 1.5, and we choose again= 1. At

the 6" iteration, we switch tay = 200000, which corresponds tha = 2, anda = 5.

The results are reported in Figurds4.40 and1V.4.41. Even when the data are tainted with white
noise, the algorithm converges. It requires 10 iteratiomeduce the two relative residuals associated
with the FFP phase and the FFP intensity to a value of 4% §fightaller than the noise level.

IV.4.3.4 Submarine-like scatterer

A parameter identification problem We want to recover a simplified submarine parametrized us-
ing 24 B-splines. The values of these 24 parameters comegmp to the target are specified in
TablelV.4.15. For simplification purpose, we assume that we know the stre®f the object, and
we want to retrieve its real size. Therefore, we considendiai guess which is the half of the object
to be retrieved.

The mesh resolution is the sam®; 4., = 5 and N, = 3. We again consideR,,;, = 5andR = 4
to avoid the adverse effect of domain truncation.
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Sl

(a) Initial guess (b) Iter 1
(c) lter2 (d) Iter 3
(e) Iter4 (f) Iter5

Figure IV.4.37 — Iterative shapes for the rounded square.
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O

(a) lter 6 (b) Iter 7
(c) Iter 8 (d) Iter 9
(e) Iter 10 (f) Iter 11

Figure 1V.4.38 — Iterative shapes for the rounded square.
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Relative residual (%)
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lteration number

Figure 1V.4.39 — Convergence history for the rounded square with néiise data.

Figure 1V.4.40 — Final shape for the rounded square with data containing 5 Poisk.
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Initial
Parameter | Target Guess
S 0.018 | 0.009
S9 0.017 | 0.0085
S3 0.015 | 0.0075
Sy 0.012 | 0.006
S5 0.01 0.005
Sg 0.014 | 0.007
S7 0.015 | 0.0075
Sg 0.014 | 0.007
Sg 0.01 0.005
$10 0.013 | 0.0065
S11 0.018 | 0.009
S12 0.027 | 0.0135
$13 0.03 0.015
S14 0.024 | 0.012
S15 0.014 | 0.007
S16 0.01 0.005
S17 0.008 | 0.004
S18 0.0075| 0.00325
S19 0.007 | 0.0035
S20 0.0075| 0.00375
S91 0.008 | 0.004
S99 0.01 0.005
$93 0.013 | 0.0065
So4 0.016 | 0.008

Table IV.4.15 — Shape parameters for the submaramaped target and the initial guess.
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Figure IV.4.41 — Convergence history for the rounded square scatterer.

The frequency is given by = 100000, which corresponds téa = 2, and the regularization pa

rameter is chosen equal to= 0.5. When the error stagnates in Step 2, we switcly te 200000,

corresponding tda = 4 anda = 0.05 at iteration 5. We then initialize the shape parameters with

their values at stagnation in the previous step, and solamale IOP by the same regularized New-
ton method. Next, at iteration 11, we switchuio= 300000, that iska = 6, anda = 0.005. Last, to
improve the convergence results, we redade 0.00005 at iteration 15.

The corresponding shapes and the relative residual caawvesgbtained during the successive Step 2

and Step 3 are depicted in Figui®s4.42to IV.4.44. The Newton algorithm requires 14 iterations to

pass below the tolerance of 1% on the FFP intensity. The Bestto a small regularization parameter
and higher frequency allow to recover the global features.

Results with 2% of noise

Here, we choose a noise level of 2% to contaminate the datedifP phasg...

We consider the frequency = 100000, which corresponds tba = 2, to start in Step 2, with a reg-

ularization parameter = 0.75. When the error stagnates, we switchite= 200000, that iska = 4

anda = 0.1 at iteration 6. Next, at iteration 11, we switchao= 300000, corresponding téa = 6,

and keepy = 0.1.

The results are depicted in Figuid4.45 and FigurelV.4.46. FigurelV.4.45 illustrates a good re-
construction where all major features of the target areveraal. In FigurdV.4.46, we observe the

convergence within 14 iterations when the data are taini#ld noise. The initial relative residual
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T T D

(a) Initial guess (b) Iter 1 (c) Iter 2
(d) Iter 3 (e) Iter4 (f) lter5
(g) Iter 6 (h) Iter 7 (i) Iter 8

Figure 1V.4.42 — Iterative shapes for submarifike scatterer.
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COCOHTCD

(a) Iter9 (b) Iter 10 (c) Iter11
(d) Iter 12 (e) Iter 13 (f) Iter 14

Figure 1V.4.43 — Iterative shapes for submaritike scatterer.
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Figure 1V.4.44 — Convergence history for the submarililee scatterer with noise-free data.

on the FFP phase is reduced to a value of 4%, which is slighglgen than the noise level. The
corresponding error on the FFP intensity is of 0.5%.

IV.5 Conclusions

On the given numerical examples, we have demonstrated éiséikty of the method. The nu-
merical experiments that have been presented here are miisnimary results, but are promising
results since they tend to illustrate the potential of thregppsed solution methodology.

In particular, we have observed a sensitivity to various$disc

the initial guess,

the number of FFP data,
the regularization parameter

the wavenumber (or wavelength),
the parametrization choice,

the noise level,

the number of quadrature points to evaluate the FFP,

the direction of the incident wave,

the distance of the exterior boundary,
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Figure 1V.4.45 — Final shape for the submariiiée scatterer with data containing 2% of noise.

312

2
2 10° ory ‘ ‘ : - o 10 : -
o N -+-0% noise| @ «"2 -+-0% noise
g \“\‘ . < 2% noisg] § . ~-2% noise
= Y, N, e
£ A a R
o . X |‘ : B \‘ \‘ "Q o [y \‘ Y \‘
10 ¢ U Rey 1 AR -
| Yo S s Y oan —_ e g ! \‘ “ 3
(2] Ll 1oy o A ' !’ [y
= N * F Y > Y eed A
S - v o < g +.9-4 N 0.0‘ RN
~ ‘\ * ': ‘b| f_s 10 b ~\ “ .‘ “ ]
= ' R a “a > -’ R
=} Y Iy L XY =] | S
S 0 P ‘a 0 o
»n 10 ¢ L W 1 o *
Q “ W RJ [} ‘\
N .

G>) ‘f \ Y g ‘0~
= [+ -
g " s
2 5 ' g

10 . . . . .

0 5 5 15 20

0
Iteration number

(a) FFP intensity

Iteration number
(b) FFP phase

Figure 1V.4.46 — Convergence history for the submarine-like scatterer.




IV.5 Conclusions

— the order of the finite elements,

— the order of the curved boundary edges,
We now pursue the numerical investigation. To go further ianorder to provide inverse problem
solvers based on a regularized Newton method the robustees&d for realistic applications, some
sensitivity analysis to the previous points should be aslrd. For instance, the automatic intial
ization of the regularization parameter remains outstajdisues, as well as the choice of the initial
guess. More specifically, the setting of the frequency sdemdspend on the size of the scatterer to
be found, on the complexity of the form and on the paramdtamaThe choice of the regularization
parameter appears to be dependent on the survey wavenuwnlibe complexity of the shape, and
the noise level. It seems that the more we start with a higjuigacy, the more the regularization pa-
rameter has to be large. Moreover, the more there is nosethe the problem must be regularized.
Regarding the initial guess, its definition depends on thaa@ipnformations, if available, that we
can have on the obstacle.

A parallelization of the post-processing on the solutidatesl to the evaluation of the far-field pattern
should be done in order to accelerate and optimize the iesmiver.

Moreover, it would be relevant to study the behavior of thgoathm when considering a blind test
problem, or a test problem with an imperfect parametriratwhile adding different noise levels to
the data and employing, for instance, B-splines.

We have used the same parametrization for the sought-dftéade and the iterative shapes, and the
number of shape parameters is a priori known. A procedureenthe number of shape parameters is
incremented all along the iterative process when the etagnates could be considered. Moreover,
we may mix polygonal and curved representations to rettlegecharacteristics of a submarine for
which we would have a priori information on the parameterisdadentified.

In addition, we have used the intensity of the FFP, but wedcobkerve the behavior of the method
when considering FFP data to retrieve both the location bedhape of the scatterer.

Furthermore, it could be interesting to consider anothee ©f regularization. An attempt to use the
Levenberg-Marquardt algorithm, which also consists inkh®nov’s regularization where the regu-
larization termn/ is replace withn diag(U*U ), has been quickly tried. A first observation is that the
choice of the parameters for the simulation seems to betllighferent and no improvement has
been achieved for the time being.
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Another prospect consists in considering the Limifgeerture Problem, employing multiple incident
waves. Last, it would be interesting to retrieve both thegostend the material properties of the elastic

scatterer.
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Appendix C

Appendices to the Chapter IV

C.1 Analytical far-field pattern for the disk-shaped elastic scat-
terer problem

In order to derive the analytical expression of the 2Dffeld patternp,,, we proceed as ir2f].

Recall that, in the infinite fluid domain, the outgoing saatepressure field is expressed as follows:
[16]:
p(r,0) = A, HW (Er) cos(n). (C.1.1)

where the complex-valued coefficiems thus satisfy:

A HWY (kr) :/s p(rz)cos(nd)dz. (C.1.2)

Moreover, for large radius?f] (p.66, Eqg. (3.59)), we have the following asymptotic bebaof the
Hankel function:

2 .
HD (kr) ~ k_emkrfmr/sz/zl)_ (C.1.3)
wr

Nevertheless, in order to obtain the FFP of the pressure fsddcannot take the limit as — +oo
because the asymptotic behavi@r1.3 does not hold uniformly im. However, according to Theo-
rem 2.5 in Colton-Kressd], the far-field pattern is an analytic function. This imglidatp,, admits

the following expansion:
Poo(®) = > Ay, cos(nb). (C.1.4)
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whereA,, are complexvalued coefficients given by:

A = | poo(Z)cos(nd)dz. (C.1.5)
S1

From Eqg. (V.2.6), we have the following asymptotic behavior :

Poo(Z) = lim /re *p(r). (C.1.6)

r—+00

Therefore, substituting the latter equati@h.6 into Eq. (C.1.9 and using Eq.C.1.2, we obtain:

A, = / lim +/re *"p(ri)cos(nd)di
s

1 r—-+00

= lim fre ¥ / p(rz)cos(nb)dz
S1

r—-+00

= lim re %A HY (kr).

r—+00

N 9 ei7r/4
A = (=
km intl

Finally, we conclude that the far-field pattern can be exqgdss follows:

Then, we deduce that:

) 6i7r/4

A, cos(nb). (C.1.7)

where the coefficientd,, are given by the series of the pressure field Eql(J).

C.2 Analytical Fréchet derivative for the disk-shaped elasc scat-
terer problem

In this Appendix, we derive the analytical series of the Retcderivative in the disk-shaped
configuration. In that case, the parametrization of cirdkawadiusr = a is given by:

cos 0

sin

r:{xeR%x:a< );eemﬂm} (C.2.1)

We denote by, ¢) the polar basis vectors given By = (cos 6, sin )" andéy = (—sin 6, cos6)".
Then, we want to derive the expression of the Fréchet derd/gt’, ') of the scattered field with
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respect to- in the directionh, = é,.
Let
={z e R?||z|| = a +t}. (C.2.2)

Then,
= {z € R? ||z = a}. (C.2.3)

Let (p¢, us) (resp.(po, uo) = (p, u)) be the scattered field correspondingXox QF (resp.Qg x Q) =
Qf x Q%), where

Qf = {zeR%a+t<|z|} (C.2.4)
QO = {reR}0< ||z|| <a+t} (C.2.5)

Therefore, in the infinite fluid domain, the outgoing scatepressure field is expressed as follows
[16]:

Z A () HWY (kr) cos(nd); Vr <a+t, 0€l0,2n). (C.2.6)

and
Z A HV (kr) cos(nb); Yr <a,fc|0,2r). (C.2.7)

In the solid obstacle, the scattered displacement fig{cesp.u) is expressed using two displacement
potentialsp andy [12Q:

ug = Vo + (—e,) x Vo, (resp.u = Vo + (—e,) x Vi, (C.2.8)

where these two potentials are given by:

Pe(r,0) = ZC w(kpr) cos(nb),

(r,0) = Z D, (t)J(ksr)sin(nf); VYO0<r<a-+t, 6e€l0,2m). (C.2.9)
(resp.
o(r,0) = io Crdn(kpr) cos(nh),
n=0
W(r,0) = JioDan(ksr) sin(nd); V0<r<a,fecl02r)). (C.2.10)
n=0
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Moreover, the complex coefficient$,(¢), C

(see B8] and Chaptetl):

»(t) and D, (t) satisfy a system of the following form

S (8) X (t) = by(?)

whereX,,(t) =
We set:
(qtv Ut) -

let® € [0,27) be fixed. Therefore,

Z A
and
vy = Vei(r+t,0)+
where:
Oi(r+1,0) = ZC
(r+t,0) = ZD
Observe that:
Vp-h =
Then, we obtain:
pl =

320

(pe;u) o (I +t,1) =

(pe(r +1,0),u(r +t,0)).

(r+t))cos(nf); Vr<a,

(—e.) x Vi (r+t,6),

»(r + 1)) cos(nb),
(r+1t))sin(nf); V0<r<a.
op Op Op
[are’" "o 8969] h
o onon
o T arae
Op
or
o,
Ot |t=0
g
oy h
Ot =0 b
Oy 829
Ot |t=0 Cor

(C.2.11)

(An(t), Cy(t), Dy(t)) andS,(t) is a3 x 3 matrix with complexvalued entries.

(C.2.12)

(C.2.13)

(C.2.14)

(C.2.15)

(C.2.16)

(C.2.17)

(C.2.18)

(C.2.19)

(C.2.20)
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and similarly for the displacement field,

uo= Ouy
Ot |t=0
Oy ou
© Otp=o  Or

= V¢’ + (—e.) x Vi

B Od(r +1,0) Oy
=V < ot tO) Flme) xV < ot |t0>

-V (%) + (—e,) x V (%ﬁ)

Moreover, differentiating with respect to the perturbatradiust, we have:

g X dAL)

— — 27 HW(k 6
Ot |t=0 Z dt =0 " (kr) cos(n6)

n=0
—+00 ,

+>° A kHW (k) cos(nd)
n=0

X dAL)

= Y T‘t:O['{fll)(kr) cos(nd)

n=0
op

o Va<r.

_|_

and similarly for the displacement field,

vy B Opy(r +t,0) Oy
ot =0 V( ot |t=0 Tlme) <V ot |1=0)
where:
0o (r +1,0) XA,
5 — nzzo oy \t:OJn(ka) cos(nd)
+oo
+ > CrkyJ, (k1) cos(nd)
n=0
XdC, 1)
_ J,(k 0
52 ) costun)
+ %; Vo<r<a
or
O (r +1,0) X dD,(1) ,
T — nzzo o |t:OJn(k8T) sin(nd)

(C.2.21)

(C.2.22)

(C.2.23)

(C.2.24)
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+o00o
+ S" Dok J, (kgr) cos(nf)

n=0
XdD,t) _
— nz::() I lt:OJn(ks'r) sin(nf)
+ 6—¢.; VO<r<a. (C.2.25)
or

Substituting Eqs(.2.29-(C.2.25 into Egs.C.2.20-(C.2.2]), we deduce that:

;N dA)

Yo=Y T HW (kr) cos(nd) (C.2.26)
o |t=0
and
W= Ve 4 (—e) x VI, (C.2.27)
where
+o00
g = > dz";t) Jn(kpr) cos(nb), (C.2.28)
= |t=0
+o00
Vo= ) dlc)lnt(t) Jn(ksr) sin(nd). (C.2.29)
n=0 |t=0
Therefore, in order to comput@’, v’), we need to evaluate the complex coefficieg%%@ :
t=0
dflnt(t) andauzl”t(t)| . SinceX,, (t) = (A,(t), Cu(t), Da(t))" satisfy Eq. C.2.19, we have:
t=0 t=0

X (t) = [Sn(t)]'ba(t). (C.2.30)

Then, differentiating with respect toit follows that:

AX, () _ dIS(0)] L
at ;@[S — (C.2.31)

= s W g 1,0 + 1.0

C.2.32
w2 (C23)

which concludes this Appendix.
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General conclusions and perspectives

In this research work, we have proposed a solution methggdiar retrieving the shape of an
elastic bounded object immersed in an homogeneous fluidumefiiom some measurements of the
far-field pattern, and assuming certain characteristics o$tinface of the obstacle. Our approach for
solving this inverse obstacle problem is based on a regeliNewton-type method.

Since the solution of this IOP mainly depends on the solutibthe associated direct problem, the
work accomplished here pertains to the mathematical anetricah analysis of both the direct elasto-
acoustic scattering problem and of the inverse obstacteesicey problem.

First, we have examined the direct problem. On a theoretieapoint, we have revisited the
guestion of the existence and uniqueness of the solutidmeadiirect elasto-acoustic scattering prob-
lem (Chapteil). The proposed analysis distinguishes itself from previstudies by employing the
DtN operator properties, and the Fredholm theory. We haea tibserved that the mathematical
framework we propose is equivalent to set the problem in ate Sobolev spaces. This approach
allows the range of validity of the standard well-posed Itssto the case where the elastic scat-
terer is assumed to be only Lipschitz continuous, which isnofe practical interest. Then, we
have developed a numerical solution methodology for thectliproblem, based on discontinuous
Galerkin approximations (Chapti). The proposed method possesses two distinctive feattirss,
it employs higher-order polynomial finite elements neededddress the high-frequency propaga-
tion regime. Second, it is equipped with curved boundaryesdg provide a better modeling of
the fluid-structure interaction. The designed solver risviederesting performances. The numerical
investigation demonstrates accurate approximations antustness to the resonance phenomenon.
It also exhibits very little pollution effects, which higghts the potential of the proposed solution
methodology for efficiently solving mid- to high-frequenelasto-acoustic scattering problems.
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Second, we have focused our attention on the inverse probMahave established the continuous
Fréchet differentiability of the elastacoustic field with respect to Lipschitz continuous defation
of the shape of an elastic scatterer (Chapitgr In order to evaluate the Jacobian matrix that arises
at each Newton iteration with more robustness and accutatypossible with a finite difference
scheme, we have established a characterization of thedirétthe elasto-acoustic scattered field.
It is characterized as the solution to a particular direastel-acoustic scattering problem that differs
only in the transmission conditions. Consequently, thedaisolver we have developed has been used
to solve the inverse two-dimensional elasto-acousticamstproblem into consideration by a regu-
larized Newton-like method (Chapté&v). We have illustrated the feasibility of our approach using
different types of parametrization of the scatterer, eviemthe data are tainted with noise.

As regards the main prospects to the works presented héegietical analysis of the DG method
applied to the fluid-structure interaction problem prombseChapteil would be interesting. More-
over, we keep in mind, in the long term, to apply this solvecoofigurations from geophysics by
considering heterogeneous solids. We could then benetfit &mother interesting flexibility property
of the DG method by combining different orders of polynomsidh addition, some theoretical issues
related to the characterization of the Fréchet derivativhé framework of Lipschitz domains have
been raised in Chaptél and remain open. Indeed, when the boundary is assumed tdykipn
schitz continuous, we have been faced with the absence & segularity results to give a sense to
the transmission conditions satisfied by the Fréchet daresan the boundary'.

As regards the inverse problem, its ill-posed nature insptiemerical difficulties, with a strong sen-
sitivity and instabilities for its solution. We have presash preliminary results in Chaptéy . Its
investigation is still pursued. In particular, the optiation of the code should be considered to speed
up the computations. Some perspectives will consist, instieeter or longer term, in considering
more complex configurations, the determination of both trepe and the material properties of the
elastic scatterer, and the limited aperture problem.
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Contribution a l'analyse mathématique et a la résolution numériqgue d’'un probléme inverse de scattering
élasto-acoustique

Résumé :La détermination de la forme d'un obstacle élastique immagns un milieu fluide a partir de mesures

du

champ d’onde diffracté est un probléme d’'un vif intérét ddasnombreux domaines tels que le sonar, I'explorgtion

géophysique et I'imagerie médicale. A cause de son caeaot@klinéaire et mal posé, ce probléme inverse de |
stacle (IOP) est trés difficile a résoudre, particulierentiun point de vue numérique. De plus, son étude requis
compréhension de la théorie du probléme de diffractionctifeP) associé, et la maitrise des méthodes de réso
correspondantes. Le travail accompliici se rapporte alise mathématique et numérique du DP élasto-acoustigies
I'lOP. En particulier, nous avons développé un code de sitral numérique performant pour la propagation des o
associée a ce type de milieux, basé sur une méthode de typeiiBgEngloie des éléments finis d’ordre supérieur et
éléments courbes a I'interface afin de mieux représentgeiaction fluide-structure, et nous I'appliquons a la nstaic-
tion d’objets par la mise en oeuvre d’'une méthode de Newtgulaéisée.

Mots-clés : interaction fluide-solide, probleme de diffraction, Frégoe de Jones, inégalité de Garding, alternativ
Fredholm, espace de Sobolev a poids, méthode de Galerkiondisue, méthode élément fini, raffinemeént effet de
pollution, arétes de frontiére courbes, factorisation différentiabilité au sens de Fréchet, dérivée de domano@-
tiere Lipschitzienne, théoréme des fonctions impliciteéthode de Newton, régularisation de Tikhonov, domainiéé
B-splines quadratiques.
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Contribution to the mathematical analysis and to the numertal solution of an inverse elasto-acoustic scatterin
problem

Abstract : The determination of the shape of an elastic obstacle imgdénswater from some measurements of the S

cat-

tered field is an important problem in many technologies sagcBonar, geophysical exploration, and medical ima
This inverse obstacle problem (IOP) is very difficult to sglespecially from a numerical viewpoint, because of its-
linear and ill-posed character. Moreover, its investigratiequires the understanding of the theory for the asstiitec
scattering problem (DP), and the mastery of the correspgnadiimerical solution methods. The work accomplis
here pertains to the mathematical and numerical analysiedaflasto-acoustic DP and of the IOP. More specifically,
have developed an efficient numerical simulation code fareygopagation associated to this type of media, baseqd

ng.
on

hed
we
ona

DG-type method using higher-order finite elements and aciedges at the interface to better represent the fluid-
interaction, and we apply it to the reconstruction of olgeweith the implementation of a regularized Newton method

Keywords : fluid-solid interaction, scattering problem, Jones fratpye Garding’s inequality, Fredholm alternati

weighted Sobolev space, Discontinuous Galerkin methoite fitlement methodip-refinement, pollution effect, curved

boundary edges, LU factorization, Fréchet differentighilomain derivative, Lipschitz boundary, implicit futhan the-

rt

e,

orem, Newton method, Tikhonov regularization, star domairadratic B-splines.




