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Résumé

Dans cette thèse nous développons une théorie de catégories faiblement enrichies. Par ‘faible-
ment’ on comprendra ici une catégorie dont la composition de morphismes est associative à homo-
topie près; à l’inverse d’une catégorie enrichie classique où la composition est strictement associa-
tive. Il s’agit donc de notions qui apparaissent dans un contexte homotopique. Nous donnons une
notion de catégorie enrichie de Segal et une notion de catégorie enrichie co-Segal ; chacune de ces
notions donnant lieu à une structure de catégorie supérieure. L’une des motivations de ce travail
était de fournir une théorie de catégories linéaires supérieures, connues pour leur importance dans
des différents domaines des mathématiques, notamment dans les géométries algébriques commu-
tative et non-commutative.

La première partie de la thèse est consacrée à la notion de catégorie enrichie de Segal. Nous
définissons une telle catégorie enrichie comme morphisme (colax ) de 2-catégories satisfaisant cer-
taines conditions dites conditions de Segal. Le fil rouge de notre démarche est la définition de
monoïde à homotopie près donnée par Leinster. Les monoïdes de Leinster correspondent pré-
cisément aux catégories enrichies de Segal avec un seul objet; ici on suit la coutume en théorie
des catégories qui consiste à identifier un monoïde avec l’espace des endomorphismes d’un objet.
Notre contribution ici est donc une généralisation des travaux de Leinster. Nous montrons com-
ment notre formalisme couvre le cas des catégories de Segal classique, les monoïdes de Leinster et
surtout apporte une définition de DG-catégorie de Segal. Les catégories enrichies ‘classiques’ sont
des catégorie enrichies sur une catégorie monoïdale. L’École australienne a étudié la notion plus
générale de catégorie enrichie lorsqu’on remplace ‘monoïdale’ par ‘2-catégorie’. Notre formalisme
généralise de manière naturelle le cas australien en ajoutant de l’homotopie dans la 2-catégorie
sur laquelle on enrichit.

Les principaux résultats de la thèse sont dans la deuxième partie qui porte sur les catégories
enrichies co-Segal. Nous avons introduit ces nouvelles structures lorsqu’on s’est aperçu que les
catégories enrichies de Segal ne sont pas faciles à manipuler pour faire une théorie de l’homotopie.
En effet il semble devoir imposer une condition supplémentaire qui est trop restrictive dans beau-
coup de cas. Ces nouvelles catégories s’obtiennent en ‘renversant’ la situation du cas Segal, d’où le
préfixe ‘co’ dans ‘co-Segal’. Nous définissons une catégorie co-Segal comme morphisme (lax) de 2-
catégories satisfaisant des conditions co-Segal. Ces structures se révèlent plus souples à manipuler
et notamment pour faire de l’homotopie. Notre résultat principal est l’existence d’une structure
de modèles au sens de Quillen sur la catégorie des précatégories co-Segal; avec comme particularité
que les objets fibrants sont des catégories co-Segal. Cette structure de modèle s’obtient comme
localisation de Bousfield et repose sur des méthodes initialement développées par Jardine et Joyal.



Abstract

In this thesis we develop a theory of weakly enriched categories. By ‘weakly’ we mean an en-
riched category where the composition is not strictly associative but associative up-to-homotopy.
We introduce the notion of Segal enriched categories and of co-Segal categories. The two notions
give rise to higher categorical structures. One of the motivations of this work was to provide an
alternative notion of higher linear categories, which are known by the experts to be important in
both commutative and noncommutative algebraic geometry.

The first part of the thesis is about Segal enriched categories. We define such an enriched cate-
gory as a (colax) morphism of 2-categories satisfying the so called Segal conditions. Our definition
is deeply inspired by the notion of up-to-homotopy monoid introduced by Leinster. These weak
monoids correspond precisely to Segal enriched categories having a single object. Our work here
was to generalize Leinster’s work by giving the many object form of his definition. We show that
our formalism cover the definition of classical Segal categories and generalizes Leinster’s definition.
Furthermore we give a definition of Segal DG-category. The theory of enriched categories started
with enrichment over a monoidal category. Then the theory was generalized to enrichment over
a 2-category, notably by the Australian school. Our formalism generalizes naturally this idea of
enrichment over a 2-category by bringing homotopy enrichment at this level.

The main results of this work are in the second part of the thesis which is about co-Segal
categories. The origin of this notion comes from the fact that Segal enriched categories are not
easy to manipulate for homotopy theory purposes. In fact when trying to have a model structure
on them, it seems important to require an extra hypothesis that can be too restrictive. We define a
co-Segal category as a (lax) morphism of 2-categories satisfying the co-Segal conditions. The idea
was to ‘reverse’ everything of the Segal case i.e from colax to lax, hence the terminology ‘co-Segal’.
These new structures are much easier to study and to have a homotopy theory of them. The main
theorem is the existence of a Quillen model structure on the category of co-Segal precategories;
with the property that fibrant objects are co-Segal categories. This model structure is a Bousfield
localisation of a preexisting one and lies on techniques which go back to Jardine and Joyal.
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Chapter 1

Introduction

Version française

Aperçu général

Soit M = (M,⊗, I) une catégorie monoïdale. On définit une catégorie C enrichie sur M en
se donnant:

− des objets A, B, C, ... de C;
− des hom-objets C(A,B) ∈ Ob(M), pour chaque pair d’objets;
− un morphisme identité IA : I −→ C(A,A) pour chaque objet;
− une composition: cABC : C(B,C)⊗ C(A,B) −→ C(A,C), pour chaque triplet (A,B,C);

avec les axiomes naturels sur la composition qui sont l’associativité et l’invariance par les identités.
On dira que C est une ‘M -catégorie’. Lorsque M est (Set,×), (Ab,⊗Z), (Top,×), (Cat,×),...,
une M -catégorie est, respectivement, une catégorie au sens classique 1, une catégorie pré-additive,
une catégorie pré-topologique, une 2-catégorie, etc. On appelle M “la base d’enrichissement” ou
simplement ‘la base’.

On a une notion de foncteur entre M -catégories (les M -foncteurs), de transformations na-
turelles entre M -foncteurs, qui généralisent les notions usuelles pour les petites catégories. Les
catégories enrichies sur une base M forment une catégorie notée M -Cat qui est en fait une 2-
catégorie. Le lecteur trouvera dans le livre de Kelly [49] une exposition de la théorie des catégories
enrichies sur une catégorie monoïdale.

Dans son article fondateur, Bénabou [10] introduit les bicatégories ainsi que les différents
types de morphisme entre elles. Il a remarqué qu’une bicatégorie ayant un seul objet est la même
chose qu’une catégorie monoïdale. Cette généralisation des catégories monoïdales en bicatégories
a donné lieu à un élargissement naturel de la théorie des catégories enrichies en une théorie où la
base M est une bicatégorie. Il y a dans la littérature de nombreuses références à ce sujet; on peut
par exemple citer [52], [86], où l’on trouve plusieurs aspects de cette théorie et d’autres références.

Street [86] a observé que les catégories enrichies sur une bicatégorie M apparaissaient déjà
dans l’article de Bénabou [10] sous la terminologie polyade. Bénabou a défini une polyade dans
une bicatégorie M comme étant la version “plusieurs objets” de monade. Pour un ensemble X,
il définit une X-polyade comme étant un morphisme lax de bicatégories de X vers M ; où X est
la catégorie indiscrète 2 associée à X. Dans ce contexte, pour une polyade F : X −→ M , si on
note MX

F la M -catégorie correspondante; on peut baptiser F comme étant le le nerf de MX
F et

identifier F et MX
F , tout comme Grothendieck a caractérisé le nerf d’une petite catégorie.

L’approche de Grothendieck d’identifier et définir une catégorie par son nerf, donc par un
morphisme, est utilisée dans la théorie des catégories de Segal. Rappelons qu’une catégorie de

1Ce qu’on appelle couramment une petite ou localement petite catégorie
2On l’appelle également catégorie ‘grossière’ ou ‘chaotique’ associée à X
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Segal est un objet simplicial d’une catégorie monoïdale M = (M,×), qui satisfait les dites
conditions de Segal. Les origines de la notion de catégorie de Segal sont dans l’article de Segal
[78] dans lequel il donne un critère de reconnaissance des espaces de lacets en topologie (‘the
delooping problem’ ). L’idée d’utiliser les méthodes de Segal pour définir des catégories (faibles)
apparaît dans les travaux de Dwyer-Kan-Smith [31] et Schwänzl-Vogt [76]. La théorie des caté-
gories de Segal en général (les n-catégories de Segal) est traitée par Hirschowitz et Simpson [41].
Le lien avec les espaces de lacets et les catégories de Segal est simplement le fait qu’un espace de
lacets a naturellement une structure de 1-catégorie de Segal avec un seul objet (monoïde de Segal).

La définition de n-catégories d’Hirschowitz et Simpson est inspirée par les travaux de Tam-
samani [87] et Dunn [29], qui à leur tour ont suivi les idées de Segal [78]. Ils définissent une
n-catégorie de Segal par son nerf qui est un foncteur défini sur ∆op à valeurs dans une catégorie
M et qui satisfait les conditions de Segal. Ici M est une catégorie possédant une classe de mor-
phismes appelés equivalence faibles; le plus souvent M est une catégorie de modèles possédant des
objets discrets. Les objets discrets de M servent à apporter “l’ensemble d’objets” de la n-catégorie
de Segal qu’on définit.

On peut interpréter cette définition comme un enrichissement sur M même si il est préferable
de dire “objet en catégorie interne”. Ces idées ont été reprises dans la thèse de Pellissier [71] pour
définir les catégories enrichies faibles mais toujours dans le cas où M a un produit cartésien et
possède des objets discrets. L’une des motivations de cette thèse était d’étendre les travaux de
Pellissier dans un contexte où M n’ a pas d’objets discrets et a un produit ⊗ différent du produit
cartésien.

Parallèlement Rezk [73] s’est aussi inspiré des idées de Segal et a introduit les “Espaces com-
plets de Segal ” 3 comme étant des catégories faiblement enrichies sur (Top,×) et (SSet,×). Les
1-catégories de Segal et les espaces complets de Segal sont tous deux des modèles de ce qu’on
appelle (∞, 1)-catégories. Nous renvoyons le lecteur à l’article de Bergner [15] où l’on trouve une
comparaison entre catégories de Segal, epaces complets de Segal, quasicatégories, (∞, 1)-catégories
et catégories simpliciales.

Afin d’enlever l’hypothèse ‘présence d’objets discrets dans M ’, Lurie [66] a utilisé la catégorie
∆X associée à un ensemble X, dont l’origine remonte à Bergner [17, 18]. ∆X est une version col-
orée de la catégorie usuelle 4 des simplexes ∆; lorsque X n’a qu’un élément alors ∆X est isomorphe
à ∆. Récemment, Simpson [79] a utilisé cette catégorie ∆X pour définir les catégories de Segal
comme un “vrai” enrichissement sur M . L’adjectif “vrai” ici signifie simplement que l’ensemble
d’objets X n’est pas dans M .

Dans cette thèse nous introduisons deux types de catégories faiblement enrichies : les caté-
gories enrichies de Segal et les catégories enrichies co-Segal. Les deux notions découlent
de la philosophie des catégories de Segal classiques et généralisent la notion usuelle de catégories
(strictement) enrichies donnée au début de cette introduction. Chacun de ces deux type de ‘caté-
gories’ se définit comme un morphisme à valeurs dans M qu’on interpretera alors comme étant le
nerf.

La notion de catégories enrichies de Segal complète en quelque sorte la théorie classique qui est
développée jusqu’ici dans un contexte où M = (M,×) est monoïdale pour le produit cartésien.
Nous donnons une définition adaptée au cas où M = (M,⊗) a un produit qui n’est pas le produit
cartésien, mais qui s’applique aussi bien lorsque M = (M,×). Notre definition est étroitement

3‘complete Segal spaces’ en anglais
4Par usuelle nous entendons ici la catégorie ∆ qui ne contient pas le vide
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guidée par la notion de monoïde à homotopie près de Leinster [61] qui correspond exactement à
une catégorie enrichie de Segal avec un seul objet. Notre travail ici se positionne donc comme une
généralisation des travaux de Leinster (passer d’un seul objet à plusieurs objets).

Pour définir ces monoïdes faibles, Leinster utilise la catégorie monoïdale (∆+,+,0) dont les
objets sont les ensembles finis totalement ordonnés n = {0, ..., n−1}, en prenant 0 pour l’ensemble
vide. Nous attirons l’attention du lecteur sur le fait que ∆ et ∆+ sont deux catégories différentes.
Les morphismes de ∆+ sont les fonctions croissantes et + représente l’addition des ordinaux.
Cette catégorie (∆+,+,0) est fondamentale dans la théorie des monoïdes classiques (strictes)
car elle joue de rôle de ‘catégorie classifiante’ comme nous l’apprend Mac Lane [68, p. 175].
Plus précisément Mac Lane a montré qu’avoir un monoïde c dans une catégorie monoïdale M
est équivalent à avoir un foncteur monoïdal C : (∆+,+,0) −→ M avec C(1) = c; en ce sens
(∆+,+,0) contient le monoïde universel qui correspond à l’objet 1. Par exemple la multiplication
µ : c⊗ c −→ c est encodée dans le diagramme ci-dessous:

C(1)⊗ C(1)

C(1)

C(2)∼

C(2−→1)

OO55

En suivant cette philosophie, Leinster considère la notion analogue d’objet simplicial à valeur
dans une catégorie monoïdale M = (M,⊗) ; il s’agit de la notion de foncteur colax monoïdal de
(∆+,+,0) vers M . Sommairement, un foncteur colax monoïdal C : (∆+,+,0) −→ M consiste
en la donnée d’un foncteur C : ∆+ −→M , avec des morphismes de colaxité ϕn,m:

ϕn,m : C(n + m) −→ C(n)⊗ C(m)

qui doivent satisfaire des conditions de cohérence. Leinster montre que si M = (M,×) est monoï-
dale pour le produit cartésien alors il y a une équivalence de catégories entre foncteurs colax
monoïdaux C : (∆+,+,0) −→M et objets simpliciaux de M (voir [60, Prop. 3.1.7]).

Avec ces deux ingrédients, Leinster définit un monoïde à homotopie près dans une catégorie
monoïdale M comme étant un foncteur colax monoïdal C : (∆+,+,0) −→ M satisfaisant les
conditions de Segal, c’est à dire, tous les morphismes de colaxité ϕn,m, et ϕ0 : C(0) −→ I sont
des équivalences faibles:

ϕn,m : C(n + m)
equiv. faible−−−−−−−→ C(n)⊗ C(m).

Comme dans le cas stricte, la structure de monoïde (faible) est sur l’objet C(1) sauf qu’il n’y a plus
de multiplication explicite; on peut en avoir une avec n’importe quel inverse faible du morphisme
de colaxité ϕ1,1:

C(1)⊗ C(1)

C(1)

C(2)∼
ϕ1,1oo

canonique

OO55

En prenant M égale à (Top,×) ou (SSet,×), on obtient une 1-catégorie de Segal classique
ayant un seul objet.

Pour définir une M -catégorie de Segal C ayant comme ensemble d’objets X, nous imitons la
définition de Leinster et définissons C comme un foncteur colax de 2-catégories C : PX −→M qui
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satisfait les conditions de Segal. Ici PX est une 2-catégorie qui est le substitut de ∆X dans notre
situation. Les objets de PX sont les éléments de X, un 1-morphisme de A vers B est une suite
d’éléments (A0, ..., An) avec A0 = A etAn = B. Les 2-morphismes sont paramétrés par les mor-
phismes de ∆+ et se traduisent par les répétitions ou suppressions de lettres pour passer d’une suite
à une autre tout en gardant A et B fixés. On a par exemple un 2-morphisme (A,E,B) −→ (A,B)
paramétré par l’unique morphisme 2 −→ 1 de ∆+. La composition dans PX est la concaténation
de suites. Lorsque X a un seul élément on a un isomorphisme PX

∼= (∆+,+,0) et on peut donc
dire que PX est un ‘gros’ (∆+,+,0).

Un tel morphisme colax C donne lieu à des diagrammes dans M du type:

C(A,B)⊗ C(B,C)

C(A,C)

C(A,B,C)ϕABC
oo

canonique

OO55

Les conditions de Segal reviennent à demander que tous les morphismes de colaxités (= les
morphismes de Segal) soient des équivalences faibles:

ϕ : C(A0, ..., Ai, ..., Ak)
equiv. faible−−−−−−−→ C(A0, ..., Ai)⊗ C(Ai, ..., Ak).

En particulier le morphisme ϕABC : C(A,B,C) −→ C(A,B)⊗ C(B,C) dans le diagramme précé-
dent est une équivalence faible; ceci permet de choisir un inverse faible et avoir une composition
associative à homotopie près.

Après avoir trouvé le bon formalisme, il reste à développer une théorie d’homotopie de ces
structures, c’est à dire avoir une structure de catégorie de modèle sur les M -catégories de Se-
gal pour M = (M,⊗, I) une catégorie monoïdale de modèles avec un produit ⊗ non cartésien.
Lorsque ⊗ est le produit cartésien la théorie est largement traitée dans le livre de Simpson [79].
Pour les catégories de Segal classiques, on met la structure de modèles sur la catégories des pre-
catégories de Segal qui sont simplement tous les diagrammes (colax) sans imposer les conditions
de Segal. Pour avoir la structure de modèles on a besoin d’un procédé de “Segalification” Seg qui
a pour but d’associer à toute précategorie une catégorie de Segal qui est minimal dans un sens
homotopique. Simpson traite ce procédé dans son livre, en termes de projection monadique faible.

La structure de modèles sur les précatégories de Segal est inspirée par les travaux de Jardine
[44], Joyal [46] sur les (pré)-faisceaux simpliciaux, et est comprise comme étant un cas spécial de
localisation de Bousfield (voir [79] ainsi que les références mentionnés dedans ). Ces techniques
sont désormais standards pour les experts et ont été beaucoup utilisées dans la littérature.

Dans notre cas, on a voulu suivre la même philosophie; c’est à dire de construire d’abord un
foncteur de Segalification Seg qui associe à tout diagramme colax C : PX −→M , un diagramme
Seg(C) qui satisfait les conditions de Segal. Mais nous sommes confrontés à deux obstacles:

− Premièrement les morphismes de Segal ϕ : C(A,B,C) −→ C(A,B) ⊗ C(B,C) ne sont pas
‘naturels’, dans le sens où ce sont des morphismes qui vont vers un produit tensoriel, où il n’y
a à priori pas de possibilité de récupérer une projection sur chaque facteur. De fait lorsqu’on
a un produit ⊗ qui n’est pas le produit cartésien, le produit de deux objets est habituellement
une source d’un morphisme plutôt que le but.
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− L’autre obstacle vient du fait que pour construire un tel foncteur Seg l’idée est de factoriser les
morphismes de Segal ϕ comme la composée d’une cofibration suivie d’une fribration triviale:

ϕ : C(A,B,C)
i
↪−→ Q(A,B,C)

j
−−−�
∼

C(A,B)⊗ C(B,C).

Seulement dans le diagramme colax C il y a des produits de morphismes de Segal; et le pro-
duit des factorisations vont induire des produits de fibrations triviales j ⊗ j dans M que l’on
demanderait d’être une fibration triviale.

Le comportement des fibrations triviales par rapport au produit tensoriel n’a pas été vraiment
considéré par les spécialistes. Et il est même certain qu’en général les fibrations (triviales) ne
sont pas stables par produit tensoriel. Cependant il existe des cas où les fibrations sont stables
par produit. Un des exemples les plus intéressants de cette situation c’est lorsque M = Ch(R),
la catégorie des complexes de (co)-chaines sur un anneau commutatif R; les fibrations sont juste
les morphismes surjectifs degré par degré (voir [42, Prop. 4.2.13]).

Ces deux contraintes sont apparues pendant une discussion avec Lurie et nous ont conduit à
changer de direction pour le reste de la thèse. Cela dit on peut quand même conjecturer que si
les fibrations sont stables par produit, alors on devrait pouvoir construire un foncteur Seg. Ceci
est un problem ouvert que nous avons laissé pour des travaux futurs.

Dans la deuxième partie de cette thèse, nous avons introduit la notion de M -catégories co-
Segal ; celles-ci sont encore des catégories homotopiquement enrichies. Cette fois-ci les diagrammes
qui donnent lieu à une composition faiblement associative sont de la forme:

C(A,B)⊗ C(B,C) C(A,B,C)

C(A,C)

ϕABC //

equiv. faibleo

��

Comme on peut le remarquer, ce diagramme s’obtient à partir du diagramme du cas Segal en
inversant le sens des flèches; d’où la terminologie ‘co-Segal’. Les conditions ‘co-Segal’ ici consistent
à demander que le morphisme verticale soit une équivalence faible à chaque fois que nous avons
un diagramme de ce type. L’autre différence importante avec le cas Segal vient du fait que pour
f ∈ C(A,B) et g ∈ C(B,C) il y a déjà une précomposée ϕ(f ⊗ g) dans “objet-tampon” C(A,B,C).

Nous définissons une M -catégorie co-Segal ayant un ensemble d’objets X comme étant un
foncteur lax C : (SX)2-op −→M satisfaisant les conditions co-Segal. Ici on a SX ⊂PX et si X a
un seul élément on a un isomorphisme SX

∼= (∆+
epi,+,0).

Ces nouvelles structures sont faciles à étudier et le reste de la thèse était de développer une
théorie d’homotopie pour elles. Comme pour le cas Segal, nous mettons une structure de modèles
sur la catégories de tous les diagrammes lax dans M indexés par (SX)2-op quand X parcourt
la catégorie Set des ensembles. Nous baptisons ces diagrammes comme étant les précatégories
co-Segal et notons par MS(Set) la catégorie qu’ils forment. Le résultat principal ici est le:

Théorème. Soit M une catégorie monoïdale symétrique de modèles qui est cofibrement engendrée
et telle que tous les objets sont cofibrants. Alors on a

1. La catégorie MS(Set) des précatégories co-Segal admet une structure de modèles cofibrement
engendrée;

2. les objets fibrants sont des M -catégories co-Segal.
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3. Si M est combinatorielle alors MS(Set) est aussi combinatorielle.

Cette structure de modèle s’obtient comme localisation de Bousfield d’une structure préexis-
tante; nous utilisons un “foncteur de co-Segalification” et suivons la démarche de Simpson qui a
proposé une méthode de localisation directe (voir [79, Chap. 9]).

Perspectives de recherche

Les deux types de catégories faiblement enrichies considérées dans cette thèse donnent lieu à
des structure de catégories supérieures. La théorie des catégories supérieures constitue à elle seule
un vaste domaine de recherche et nous espérons que ce travail contribuera à lever un coin du voile
sur certains aspects de ces structures mystérieuses et fascinantes.

Les idées amorcées ici peuvent être poursuivies dans plusieurs directions; tant sur le plan fon-
dationnel que sur les applications dans les différents domaines des mathématiques. Nous indiquons
brièvement dans cette section, quelques une des différentes pistes qui seront considérées dans un
avenir proche.

L’homotopie des M -catégories de Segal

Comme nous l’avons dit plus haut, nous avons changé de direction au cours de la thèse car
le cas des catégories de Segal semble nécessiter l’hypothèse suivante sur M = (M,⊗, I) (avec
⊗ 6= ×).

Hypothèse (Sketch). La classe des fibrations (triviales) est stable par produit tensoriel, c’est à
dire: f ⊗ g est une fibration (triviale) si f et g sont tous deux des fibrations (triviales).

Nous savons que cette hypothèse est vraie dans la catégorie Ch(R) des complexes de (co)-
chaines sur un anneau commutatif R; et en particulier lorsque R est un corps. Dans ce cas les
catégories enrichies de Segal qu’on obtient sont ce qu’on appellera DG-catégories de Segal dont la
définition a été la motivation première d’avoir le formalisme Segal dans un contexte avec produit
⊗ non cartésien. Cette idée d’avoir une notion de DG-catégorie faible remonte au projet de Toën
[93] d’avoir une théorie de catégories linéaires supérieures pour faire de la dualité de Tannaka
supérieure. On imagine une théorie itérative à la Simpson-Tamsamani; c’est à dire qu’il devrait
y avoir une catégorie monoïdale de modèles de toutes les M -(pré)-catégories de Segal avec un
produit � qu’on utiliserait comme base d’enrichissement.

Lurie a dégagé la notion de (∞, 1)-catégorie stable comme exemple de catégories linéaire
supérieure. Cette notion est déjà utilisée par beaucoup pour faire de la dualité de Tannaka
supérieure. Le lecteur trouvera une exposition de cette théorie dans la thèse de Wallbridge dont
le sujet porte sur la dualité de Tannaka supérieure.

Sous l’hypothèse précédente on conjecture que

Conjecture.

− Il existe un foncteur de Segalification Seg de PreSeg(M ) vers elle même qui à tout dia-
gramme colax C associe une catégorie de Segal Seg(C).

− Le foncteur Seg est muni d’une transformation naturelle η : Id −→ Seg, qui est une cofibra-
tion niveau par niveau; et tel que si C satisfait les condition de Segal alors η : C −→ Seg(C)
est une équivalence faible dans PreSeg(M ) (= niveau par niveau).

xii



− Il y a deux structures de modèles PreSeg(M )proj et PreSeg(M )Reedy sur la catégorie PreSeg(M );
on les appellera respectivement la structure projective et la structure Reedy. Dans chacun de
ces deux cas, les trois classes, cofibrations, fibrations et équivalences faibles seront définies
comme pour le cas où ⊗ = × (voir [79]).

Unités faibles pour les M -catégories co-Segal

La définition d’une M -catégorie co-Segal donne lieu à une structure de semi-catégorie faible-
ment enrichie, ce qui veut dire qu’il n’y a pas de morphismes identité. Il y a, cela dit, une notion
naturelle d’unité faible que nous allons brièvement décrire dans un instant. Nous avons la même
situation que pour les A∞-catégories qui sont apparues dans un premier temps sans morphisme
identité (voir [35, 36]). Si C est une M -catégorie co-Segal, nous désignerons par [C] la ho(M )-
catégorie co-Segal qu’on obtient par le changement de base d’enrichissement L : M −→ ho(M ).
[C] est une ho(M )-catégorie co-Segal stricte, ce qui signifie que c’est une semi-catégorie enrichie
sur ho(M ).

Définition (Sketch). Nous dirons qu’une M -catégorie co-Segal C a des identités faibles si [C] est
une catégorie enrichie sur ho(M ) (=avec des morphismes identités).

Il est naturel de se demander si on ne peut pas avoir directement les identités i.e sans utiliser
le changement de base L : M −→ ho(M ). Pour l’heure nous ne savons pas si une telle démarche
est naturelle mais nous indiquons ci-dessous quelques directions possibles.

Directions possibles

1. La première tentative est demander que pour chaque objet A de C, on a un morphisme
IA : I −→ C(A,A) tel que pour tout B, le diagramme suivant commute (à homotopie près
?):

I ⊗ C(A,B)

C(A,A)⊗ C(A,B) C(A,A,B)

C(A,B)

ϕAAB //

equiv. faibleo

��

∼= //

IA⊗Id

��

Ce diagramme donnera l’invariance à gauche par composition avec IA; et le même type
de diagramme donnera l’invariance à droite. Il est important de remarquer que nous ne
considérons là que l’invariance vis à vis des ‘1-simplexes’ C(A,B) de C et non par rapport à
tous les C(A0, ...An) avec n > 1.

Il y a au moins deux raisons qui motivent cette limitation. La première vient du fait que pour
définir les A∞-catégories avec unité, on se limite à l’invariance vis à vis de la multiplication
binaire ‘m2’ (voir par exemple Kontsevich-Soibelman [54, Sec. 4.2], Lyubashenko [67, Def.
7.3]).

L’autre raison est le fait que C(A,B) et C(A, ..., Ai, ..., B) ont le même type d’homotopie
(grâce aux conditions co-Segal); par conséquent si C(A,B) est faiblement invariant par IA,
il en sera de même pour C(A, ..., Ai, ..., B).

Enfin dans le schéma général de l’algèbre, il est évident que l’ajout de conditions supplé-
mentaires réduit la classe d’objets qui sont soumis à celles-ci.

2. Une autre alternative serait de suivre la démarche de Kock [53] pour avoir des unités faibles
dans les catégories supérieures. Kock utilise une catégorie ‘∆+ épaissie’ pour produire des
unités faibles. Puisque les 2-catégories SX et PX sont des généralisations de ∆+, il est
naturel de se demander s’il y a une version ‘épaissie’ de SX ou PX .
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L’homotopie des catégories co-Segal unitaires

Avec la notion de catégories co-Segal avec les unités (unitaires), on peut donner la bonne
définition d’équivalence faible entre catégories co-Segal. Jusqu’ici un morphisme σ : C −→ D

de catégories co-Segal est une équivalence faible si la fonction Ob(σ) : Ob(C) −→ Ob(D) est
un isomorphisme, et si c’est une équivalence niveau par niveau. Ceci n’est guère surprenant
puisqu’on ne peut pas exprimée le fait d’être “essentiellement surjectif” sans unités (faibles). Nous
adopterons donc la définition suivante:

Définition. Un morphisme σ : C −→ D de catégories co-Segal unitaires est essentiellement
surjectif si le morphisme induit [σ] : [C] −→ [D] est essentiellement surjectif comme foncteur de
catégories strictement enrichies sur ho(M ).

Nouvelle structure de modèles Cette nouvelle définition d’équivalences faibles changera la
structure de modèles actuelle sur MS(Set); il faudra donc construire une autre structure de
modèles qui prendra en compte la présence d’unités faibles.

Une catégorie monoïdale de modèles La structure de modèle sur MS(Set) donnée ici ne
tient pas compte du produit tensoriel sur MS(Set). L’une des taches importantes qui restent sera
d’inclure le produit tensoriel dans la structure de modèles.

Segal, co-Segal et strictification

Il est coutume de comparer chaque nouvelle notion ou généralisation avec celles qui existent
déjà. Ce principe est d’autant plus important dans la théorie des catégories supérieures, qui est
un domaine réputé pour la multitude de définitions des objets qu’on étudie. À l’heure actuelle
plusieurs groupes de chercheurs se penchent sur la comparaison des différentes approches et défi-
nitions qui existent pour les catégories supérieures. Il y a déjà plusieurs résultats à ce sujet dont
les travaux de Barwick et Schommer-Pries [8], Bergner [15], Bergner-Rezk [16], Cheng [21], Lurie
[66], Simpson [79], Toën [92] et beaucoup d’autres.

1. Nous nous intéresserons au problème de la comparaison de l’homotopie des M -catégories
de Segal, M -catégories co-Segal et M -catégories strictes.

2. La méthode utilisée par Bergner [17] qui repose sur des techniques développées par Badzioch
[5] semble s’appliquer au cas co-Segal; on imagine une équivalence de Quillen entre M -Cat
et ‘co-Segal M -Cat’ (donc une strictification).

3. Lorsque M a un produit cartésien, la comparaison entre M -catégories de Segal M -catégories
strictes a déjà été étudiée (voir [15], [79] et les références qu’on y trouve).

Comparaison avec les A∞-catégories et les (∞, 1)-catégories stables Lorsqu’on considère
une M -catégorie (Co)-Segal pour M = (Ch(R),⊗R,R), on obtient une DG-catégorie faible qu’on
interprète comme étant un exemple de catégorie supérieure linéaire. Comme indiqué plus haut la
définition de structures linéaires supérieures était l’une des motivations principales de cette thèse.
Il y a actuellement deux notions de structures linéaires supérieures qui sont utilisées:

− la notion de A∞-catégorie introduite par Fukaya et Kontsevich (voir [34],[37], [55],[54],[48],
[67]) qui remonte à la notion de A∞-algèbre de Stasheff [82].

− la notion de ∞-catégorie stable introduite par Lurie [65].

xiv



1. Nous essaierons donc d’avoir une compréhension profonde des connections qu’il y a entre
les catégories co-Segal linéaires, les A∞-catégories et les ∞-catégories stables, d’un point de
vue homotopique.

2. Une possible équivalence entre les catégories co-Segal linéaires et et les A∞-catégories perme-
ttrait d’avoir une approche simpliciale et moins combinatorielle de la géométrie algébrique
non commutative et les sujets connexes. On peut aussi espérer simplifier certaines construc-
tions du ‘ monde A∞’.

3. La plupart des notions des catégories enrichies strictes se transportent naturellement aux cas
(Co)-Segal. Pour M = (Ch(R),⊗R,R) les notions de DG-module et A∞-module jouent
un rôle central en géométrie algébrique non commutative. Dans la théorie des catégories
enrichies les DG-modules correspondent aux préfaisceaux à valeur dans M et sont un cas
particulier de la notion plus générale de bimodules, qu’on appelle également distributeurs
(enrichis) ou profoncteurs.

La géométrie algébrique avec des ‘outils co-Segal’

Suivre les suggestions de Deligne

Deligne [26] a dégagé beaucoup d’idées pour faire de la géométrie algébrique dans une caté-
gorie tannakienne en analysant ce qui se passe pour la catégorie tannakienne des représentations
linéaires Rep(G) d’un k-schéma en groupes affine G (pour un corps k).

Deligne définit un anneau commutatif avec unité dans une catégorie tannakienne T comme
étant un objet R ∈ T avec une structure de monoïde commutatif et une unité. Il définit en suite
la catégories des T-schémas affines comme d’habitude, c’est à dire, comme la catégorie opposée
des anneaux commutatifs avec unité dans IndT 5. Pour T = Rep(G) les T-schémas affines cor-
respondent aux k-schémas affines classiques munies d’une action à droite de G ( les G-modules).
Les k-schémas affines ‘tout court’ sont vus comme ayant l’action triviale de G. De même un
morphisme de k-schémas devient de manière tautologique un morphisme de T-schémas affines.
Deligne indique que les notions usuelles de la géométrie algébrique se transportent aussi bien pour
les T-schémas affines: produits fibrés, schémas en groupes, platitude, module (quasi-cohérent),
torseurs, etc.

L’un des avantages quand on est dans une catégorie tannakienne c’est qu’il y a un Hom interne;
ce qui fait de T une catégorie monoïdale fermée et en particulier une catégorie enrichie sur elle
même. Pour des k-schémas affines classiques, on sait grâce à l’anti-équivalence de Grothendieck
qu’un morphisme de k-schémas est induit par un morphisme de k-algèbres commutatives (qui
va dans l’autre sens); seulement les morphismes de k-algèbres ne forment qu’un ensemble et on
perd toute la structure vectoriel des morphismes entre k-espaces vectoriels sous-jacents (aux k-
algèbres).

Pour T = Rep(G), le fait de voir un k-schéma affine classique comme un T-schéma (avec l’action
triviale), permet de garder une ‘trace’ de la structure de morphismes entres k-espaces vectoriels
sous-jacents tout en manipulant des objets géométriques. Nous voyons en cela un enrichissement
de la catégorie des k-schémas affines sur T.

Pour le peu que je comprends de la philosophie des motifs, on cherche à ‘héberger’ la caté-
gorie des variétés algébriques dans une catégorie (supérieure) linéaire qui est (homotopiquement)
minimale. Ici par ‘héberger’ j’entends simplement trouver un enrichissement, donc des Hom à

5IndT représente le complété par petites limites inductives de T; les objets de IndT sont les limites inductives
de représentables dans T̂ = Hom(Top,Set)
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coefficient linéaires qui contiennent les ‘vieux’ morphismes comme sous-objet ‘simple’. Cette ten-
tative de mettre une structure sur les morphismes de schémas apparaît également dans les travaux
de Voevodsky qui a considéré la catégorie ‘Cor’ des correspondances entre schémas dans sa défi-
nition des dits motifs de Voevodsky (voir [69]).

Récemment il y a eu des notions d’homotopie en géométrie algébrique qui se sont dégagées
telles que la A1-homotopie ou l’Homotopie Étale. Le prolongement des idées de Deligne dans ce
contexte homotopique fera intervenir des catégories linéaires supérieures comme le dit par exemple
Toën [93]; et on espère que les notions que nous développons ici contribueront à révéler certains
aspect de l’idée de motifs imaginée par Grothendieck.

Pour concrétiser cette démarche nous aurons besoin des notions suivantes.

1. Une notion correcte de catégorie monoïdale symétrique co-Segal.

2. Une définition de catégorie co-Segal tannakienne (neutre)

3. Par ailleurs il semble naturel de penser qu’une DG-algèbre commutative co-Segal devrait
être équivalent à un E∞-anneau. Les E∞-anneaux et les anneaux simpliciaux sont au cœur
de la Géométrie algébrique Homotopique et Dérivée.

Organisation du manuscrit

Nous avons essayé de rendre les chapitres aussi indépendants que possible. Chaque chapitre
commence par une brève introduction qui donne un panorama du contenu.

� Le chapitre 2 contient essentiellement la prépublication de l’auteur [3] dans lequel nous
exposons la définition des catégories enrichies de Segal. Les définitions sont données dans
le langage général des catégories enrichies sur une 2-catégorie M . Nous montrons comment
notre définition généralise naturellement le travail de Leinster [60] et que, comme on s’y
attend, le cas Segal stricte donne bien une M -catégorie classique.

� Les principaux résultats de cette thèse sont dans le chapitre 3 qui parle des catégories co-
Segal. Afin d’avoir la structure de modèles sur MS(Set) énoncée plus haut, nous avons
d’abord traité le cas MS(X) où l’on fixe l’ensemble d’objets X. Ensuite on a propagé la
structure de modèles en utilisant un résultat de Roig-Stanculescu qui permet d’avoir une
structure de modèles de la catégorie totale E d’une fibration de Grothendieck p : E −→ B.

� Enfin le chapitre 4 contient les différents appendices.
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English version

Overview

Let M = (M,⊗, I) be a monoidal category. An enriched category C over M , shortly called
‘an M -category’, consists roughly speaking of :

− objects A, B, C, · · ·
− hom-objects C(A,B) ∈ Ob(M),
− a unit map IA : I −→ C(A,A) for each object A,
− a composition law : cABC : C(B,C)⊗C(A,B) −→ C(A,C), for each triple of objects (A,B,C),

satisfying the obvious axioms, associativity and identity, suitably adapted to the situation.
Taking M equal to (Set,×), (Ab,⊗Z), (Top,×), (Cat,×),..., an M -category is, respectively, an
ordinary6 category, a pre-additive category, a pre-topological category, a 2-category, etc. The
category M is called the base as “base of enrichment”.

Just like for Set-categories, we have a notion of M -functor, M -natural transformation, etc.
The reader can find an exposition of the theory of enriched categories over a monoidal category
in the book of Kelly [49]. For a base M , we commonly denote by M -Cat the category of M -
categories.

Bénabou defined bicategories, and morphisms between them (see [10]). He pointed out that a
bicategory with one object was the same thing as a monoidal category. This gave rise to a general
theory of enriched categories where the base M is a bicategory. We refer the reader to [52], [86]
and references therein for enrichment over a bicategory.

Street noticed in [86] that for a set X, an X-polyad 7 of Bénabou in a bicategory M was the
same thing as a category enriched over M whose set of objects is X. Here an X-polyad means
a lax morphism of bicategories from X to M , where X is the coarse8 category associated to X.
Then given a polyad F : X −→M , if we denote by MX

F the corresponding M -category, one can
interpret F as the nerve of MX

F and identify F with MX
F , like Grothendieck’s characterization of

the nerve of a category.

Recall that a Segal category is a simplicial object of a cartesian monoidal category M , sat-
isfying the so called Segal conditions. The theory of Segal categories has its roots in the paper
of Segal [78] in which he proposed a solution of the delooping problem. The general theory starts
with the works of Dwyer-Kan-Smith [31] and Schwänzl-Vogt [76]. The major development of Segal
n-categories was given by Hirschowitz and Simpson [41].

Hirschowitz and Simpson used the same philosophy as Tamsamani [87] and Dunn [29], who
in turn followed the ideas of Segal [78]. A Segal n-category is defined by its nerve which is an
M -valued functor satisfying the suitable Segal conditions. The target category M needs to have
a class of maps called weak or homotopy equivalences. Moreover they required the presence of
discrete objects in M which will play the role of ‘set of objects’. We can interpret their approach
as an enrichment over M , even though it’s better to say “internal weak-category-object of M ”.
The same approach was used by Pellissier [71].

6By ordinary category we mean small category
7Bénabou called polyad the ‘many objects’ case of monad. ‘X-polyad’ means here “polyad associated to X”
8Some authors call it the ‘chaotic’ or ‘indiscrete’ category associated to X
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Independently Rezk [73] followed also the ideas of Segal to define complete Segal spaces as
weakly enriched categories over (Top,×) and (SSet,×). We refer the reader to the paper of
Bergner [15] for an exposition of the interactions between Segal categories, complete Segal spaces,
quasicategories, (∞, 1)-categories, etc.

To avoid the use of discrete objects, Lurie [66] used a category ∆X introduced by Bergner
[17, 18] which is a ‘colored version’ of the usual9 category of simplices ∆. Simpson [79] used this
∆X to define Segal categories as a “proper” enrichment over M . Here by “proper” we simply mean
that the set X which will be the set of objects is taken ‘outside’ M .

In this thesis we introduce two types of weakly enriched categories. The first ones are called
Segal enriched categories and the second ones are called co-Segal categories. The two no-
tions derive from the philosophy of classical Segal categories; and have the expected behavior that
is: strict Segal and co-Segal M -categories are just the usual M -categories. Furthermore they are
both defined as a morphism that we shall also consider to be the corresponding nerve.

Segal enriched categories complete somehow the theory of classical Segal categories which were
defined so far only when the base M = (M,×) is monoidal for the cartesian product. In fact
the main motivation here was to push forward the Segal formalism to have a definition of M -
categories when M has a tensor product ⊗ different from the cartesian product. Their definition
is a generalization of the notion of up-to-homotopy monoid introduced by Leinster [61] which is
precisely a Segal enriched category with one object.

To define these weak monoids, Leinster used the monoidal category (∆+,+,0) whose objects
are the finite totally ordered sets n = {0, ..., n − 1} with 0 being the empty set. We would
like to warn the reader that ∆ and ∆+ are different categories. The morphisms of ∆+ are the
nondecreasing functions and + is the ordinal addition. As pointed out by Mac Lane [68, p. 175],
(∆+,+,0) contains the universal monoid which corresponds to the object 1; the universality here
is to be understood that for any monoid c in a monoidal category M there is a unique monoidal
functor C : (∆+,+,0) −→ M with C(1) = c. For example the multiplication µ : c⊗ c −→ c is
encoded in the diagram below:

C(1)⊗ C(1)

C(1)

C(2)∼

C(2−→1)

OO55

Following this philosophy Leinster considered the appropriate notion of simplicial object which
is given by the notion of colax monoidal functor from (∆+,+,0) to M . A colax monoidal functor
C : (∆+,+,0) −→M consists roughly speaking of a functor C : ∆+ −→M , together with colaxity
maps ϕn,m:

ϕn,m : C(n + m) −→ C(n)⊗ C(m)

which must satisfy a coherence condition. He showed that if M is monoidal with the cartesian
product then there is an equivalence of categories between colax morphisms C : (∆+,+,0) −→M
and simplicial objects of M (see [60, Prop. 3.1.7]).

With these two ingredients Leinster defined an up-to-homotopy monoid C in M to be a colax
monoidal functor, C : (∆+,+,0) −→ M satisfying the Segal conditions, that is all the colaxity

9By usual ‘∆’ we mean the topological one which doesn’t contain the empty set
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maps ϕn,m, and ϕ0 : C(0) −→ I are weak equivalences:

ϕn,m : C(n + m)
weak. equiv−−−−−−−→ C(n)⊗ C(m).

Just like in the strict case, the monoid structure is on the object C(1) but there is no specification
of a mutliplication; one gets a multiplication using any weak inverse of the colaxity map ϕ1,1:

C(1)⊗ C(1)

C(1)

C(2)∼
ϕ1,1oo

canonical

OO55

When M is (Top,×) or (SSet,×), we get a usual Segal 1-category with one object.

To define a Segal M -category C having a set of objects X, we mimic Leinster’s definition
and define C as a colax morphism of 2-categories C : PX −→ M satisfying the suitable Segal
conditions. Here PX is a 2-category which is the substitute of ∆X in our context. The objects
of PX are the elements of X, a 1-morphism from A to B is a sequence of elements (A0, ..., An)
with A0 = A and An = B. The 2-morphism are parametrized by the morphisms of ∆+ and
consists of repeating of deleting some letters keeping A and B fixed. We have for example a
2-morphism (A,E,B) −→ (A,B) which is parametrized by the unique map 2 −→ 1 of ∆+. The
composition in PX is the concatenation of sequences side by side. When X has one element then
PX

∼= (∆+,+,0) so we can consider PX as a big (∆+,+,0).

Such a colax morphism C comprises the following type of diagram in M :

C(A,B)⊗ C(B,C)

C(A,C)

C(A,B,C)ϕABC
oo

canonical

OO55

The Segal conditions require that all the colaxity maps (= the Segal maps) are weak equiva-
lences:

ϕ : C(A0, ..., Ai, ..., Ak)
weak. equiv−−−−−−−→ C(A0, ..., Ai)⊗ C(Ai, ..., Ak).

In particular the map ϕABC : C(A,B,C) −→ C(A,B)⊗ C(B,C) in the above diagram has to be
a weak equivalence; this will allow us to consider a weak inverse and get a weak composition.

Once we’ve established the formalism it remains to develop a homotopy theory i.e put a model
structure for Segal M -categories when M = (M,⊗, I) is a monoidal model category with a non-
cartesian product ⊗. When ⊗ is the cartesian product the theory is widely treated in the book of
Simpson [79]. For classical Segal categories, one puts a model structure on the category of Segal
precategories which are simply all the (colax) diagrams without demanding the Segal conditions.
The model structure uses a “Segalification functor” Seg which assigns to every Segal precategory
a Segal category which is homotopically minimal in some sense. Simpson formalized this in term
of weak monadic projection.

The model structure on Segal precategories is inspired by earlier works of Jardine [44], Joyal
[46] on simplicial (pre)-sheaves and has been understood to be a special case of Bousfield localiza-
tion (see [79] and the many references therein). These techniques are now ‘standard’ for homotopy
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theorists and have been widely used in the literature.

In our case we would like to follow the same philosophy, that is to construct first a functor
Seg assigning to every colax diagram C : PX −→M a colax diagram Seg(C) satisfying the Segal
conditions. But we are confronted with the following constraints.

− First the Segal maps ϕ : C(A,B,C) −→ C(A,B)⊗ C(B,C) are not ‘natural’, in the sense that
they are maps going into a product where there is no a priori a way to have a projection on
each factor. In fact for a noncartesian product ⊗, the product of two objects gives much more
information when it’s a a source of morphisms rather than a target.

− The other problem is that to construct Seg, the idea is to factorize each Segal map ϕ as a
composite of a cofibration followed by a trivial fibration:

ϕ : C(A,B,C)
i
↪−→ Q(A,B,C)

j
−−−�
∼

C(A,B)⊗ C(B,C).

But since in the colax diagram C we have also a product of Segal maps, the above factorization
leads us to consider a tensor product j ⊗ j of trivial fibrations in the model category M ; and
demand that the result is again a trivial fibration.

The behavior of the (trivial) fibrations with respect to the tensor product is not something
that has really been studied by homotopy theorists. In fact it’s surely not true in general that
(trivial) fibrations are closed under tensor product. However there are some monoidal model
categories in which it’s true. An interesting example is the category Ch(R) of chain complex
over a commutative ring R where the fibrations are just the degree-wise surjective morphisms
(see [42, Prop. 4.2.13]).

These two constraints emerged during a discussion with Lurie and led us to change the direc-
tion of this thesis. We can conjecture though that if the fibrations are closed by tensor product,
one should be able to construct such a functor Seg. This is an open problem and is reserved for
the future.

In the second part of this thesis we set up another type of ‘homotopical enrichment’ with the
notion of co-Segal M -categories. This time the diagrams which provide a weak composition are
of the form:

C(A,B)⊗ C(B,C) C(A,B,C)

C(A,C)

ϕABC //

weak.equivo

��

As one can see, this diagram is obtained by reversing the morphisms in the Segal situation,
hence the terminology ‘co-Segal’. The ‘co-Segal conditions demand that the vertical map is a
weak equivalence whenever we have this type of diagram. There is another difference with the
Segal formalism which is the fact that given f ∈ C(A,B) and g ∈ C(B,C) there is already a
precomposite ϕ(f ⊗ g) in the “buffer-object” C(A,B,C).

A co-Segal M -category having a set of objectsX is defined as a lax morphism C : (SX)2-op −→
M satisfying the co-Segal conditions. Here we have SX ⊂PX and when X has one element then
SX
∼= (∆+

epi,+,0).

These new structures are much easier to study and the rest of the thesis was to set up a
homotopy theory of them. Just like for classical Segal categories, we put a model structure on
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the category of all lax diagrams in M indexed by (SX)2-op as X runs through Set. We called
these diagrams co-Segal precategories and denoted by MS(Set) the category they form. The main
result here is the following:

Theorem. Let M be a symmetric monoidal model category which is cofibrantly generated and
such that all the objects are cofibrant. Then the following holds.

1. the category MS(Set), of co-Segal precategories admits a model structure which is cofibrantly
generated,

2. fibrant objects are co-Segal categories,

3. If M is combinatorial then so is MS(Set).

The above model structure is a Bousfield localization of a preexisting model structure; we use
a “co-Segalification functor” and follow the same method as in the book of Simpson who proposed
a Direct localization method (see [79, Chap. 9]).

Research perspectives

The two types of weakly enriched categories considered in this thesis give rise to higher cat-
egorical structures. Higher category theory constitutes on its own a large research area and we
hope that this work will help to enlighten some facets of these fascinating structures. The ideas
developed here can be pursued in different ways; from the foundational level to the applications in
other areas of mathematics. We outline very briefly some of the directions that will be considered
in the near future.

Homotopy theory of Segal M -categories

We will consider the Segal case which was left aside for a moment. As said before, it seems
that one needs the following extra hypothesis on the (symmetric) monoidal model category M =
(M,⊗, I) (when ⊗ 6= ×).

Hypothesis (Sketch). The class of fibrations is closed under tensor product that is: f ⊗ g is a
(trivial) fibration if f and g are simultaneously (trivial) fibrations.

As we mentioned earlier, this hypothesis holds in the category Ch(R) of chain complexes over
a commutative ring R; and in particular when R is a field. In this case we have the corresponding
notion of Segal DG-category which was one of the motivation of bringing the Segal formalism in
this context. The idea goes back to Toën’s considerations in [93] to have a Segal like theory of
higher linear categories which will be used in his approach to higher Tannaka duality. The theory
should be iterative à la Simpson-Tamsamani; in particular one should have a new monoidal model
category of Segal M -categories with an appropriate tensor product �, that can be used to enrich
over.

Lurie introduced the notion of stable (∞, 1)-category as an example of higher linear category.
The reader can find in Wallbridge’s PhD thesis [94] and the references therein, an account of
higher Tannaka duality using these higher categorical structures.

Under the above hypothesis we can conjecture that

Conjecture. − There exists a Segalification functor Seg from PreSeg(M ) to itself which as-
signs to any colax diagram C a colax diagram Seg(C) satisfying the Segal conditions.

xxi



− The functor Seg comes equipped with a natural transformation η : Id −→ Seg, which is a
level-wise cofibration; and such that if C satisfies the Segal conditions then η : C −→ Seg(C)
is a weak equivalence in PreSeg(M ) (= level-wise weak equivalence).

− There are two model structures PreSeg(M )proj and PreSeg(M )Reedy on the category PreSeg(M );
these are called respectively projective and Reedy model structures. In each case the three
classes of cofibrations, fibrations and weak equivalences are defined as in the case where
⊗ = × (see [79]).

Weak unity in co-Segal M -categories

The definition of a co-Segal M -category gives rise to a weakly enriched semi-category, which
means that there is no identity morphism. But there is a natural notion of weak unity we are
going to explain very briefly. This is the same situation as for A∞-categories which arose with
weak identity morphisms (see [35, 36]). If C is a co-Segal M -category denote by [C] the co-Segal
ho(M )-category we get by the change of enrichment (=base change) L : M −→ ho(M ). [C] is
a strict co-Segal category which means that it’s a semi-enriched ho(M )-category. Then we can
define

Definition (Sketch). Say that a co-Segal M -category C has weak identity morphisms if [C] is a
classical enriched category (=with identity morphisms) over ho(M ).

There is a natural question which is to find out whether or not it’s relevant to consider a
“direct” identity morphism i.e without using the base change L : M −→ ho(M ). At this level
we don’t know for the moment if such consideration is ‘natural’. Below we list some possible
directions to address this question.

Possible directions

1. A first attempt will be to demand that for any object A of C there is a map IA : I −→ C(A,A)
such that for any object B the following commutes (up-to-homotopy ?):

I ⊗ C(A,B)

C(A,A)⊗ C(A,B) C(A,A,B)

C(A,B)

ϕAAB //

weak.equivo

��

∼= //

IA⊗Id

��

This will give the left invariance of IA; the same type of diagram will give the right invariance.
Note that we’ve limited the invariance to the ‘1-simplices’ C(A,B) of C i.e we do not require
such a diagram with C(A0, ...An) with n > 1. There are two reasons that suggest this
limitation. The first one comes from the fact that for unital A∞-categories, the unity
condition is only required for the binary multiplication ‘m2’ (see for example Kontsevich-
Soibelman [54, Sec. 4.2], Lyubashenko [67, Def. 7.3]).

The other reason is that C(A,B) and C(A, ..., Ai, ..., B) have the same homotopy type (the
co-Segal conditions); thus if C(A,B) is weakly invariant under IA we should have the same
thing for C(A, ..., Ai, ..., B). Finally we should mention that in the grand scheme of algebra,
imposing further conditions reduces the class of objects.

2. Another alternative is to follow the ideas developed by Kock [53] of having weak units in
higher category. Kock considered a category ‘fat ∆+’ to produce weak units. Since SX and
PX are big versions of ∆+ it’s natural to find out if there is a corresponding notion of ‘fat
SX or fat PX ’.
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Homotopy theory for unital co-Segal categories

Having at hand the notion of weak identity arrows, we can define the “correct” notion of weak
equivalence between co-Segal categories. So far a morphism σ : C −→ D of co-Segal categories
can be a weak equivalence only if the underlying function Ob(σ) : Ob(C) −→ Ob(D) is an
isomorphism of sets. This is not surprising since we cannot define a notion of being “essentially
surjective” without (weak) identity maps. For unital co-Segal categories we will say that

Definition. A morphism σ : C −→ D if essentially surjective if the induced map [σ] : [C] −→ [D]
is essentially surjective as a functor of strict enriched category over ho(M ).

New model structure These new weak equivalences will change the model structure on
MS(Set), so we will have to construct a new one which will take account of the identity morphisms.

A monoidal model category The model structure on MS(Set) does not take account of the
monoidal structure on MS(Set). One of the remaining pieces of work to do will be to include the
monoidal structure in the model structure.

Segal, co-Segal and Strictification

It’s an ancestral task to compare the ‘new notions’ with the existing ones. This principle is
even more important in higher category theory, which is an area where the objects of study have
different definitions and ‘shadows’. The comparison of these theories and variant definitions is
under active consideration by many people; results on this problem include the works of Barwick
and Schommer-Pries [8], Bergner [15], Bergner-Rezk [16], Cheng [21], Lurie [66], Simpson [79],
Toën [92] and others.

1. We will try then to compare the homotopy theory of Segal M -categories, co-Segal M -
categories and strict M -categories.

2. The method used by Bergner [17] which goes back to Badzioch [5] seems to apply directly to
co-Segal categories; this will give a Quillen equivalence between M -Cat and co-Segal M -
Cat (a strictification). However it’s not clear that one should proceed in the same manner
for the Segal case.

3. When M has a cartesian product, the comparison between Segal M -categories and strict
M -categories is already treated (see [15], [79] and references therein).

Comparison with A∞-categories, Stable (∞, 1)-categories When we consider a (Co)-Segal
M -category for M = (Ch(R),⊗R,R), the category of chain complexes over a commutative ring
R, we get a weak differential graded (=DG) category which we think as a higher linear category.
As we said before the definition of higher linear structures is one of the main motivation of this
thesis. The two notions which are now used as weak linear categories are:

− the notion of A∞-category introduced by Fukaya and Kontsevich (see [34],[37], [55],[54],[48],
[67]) which goes back to Stasheff’s notion of A∞-algebra [82].

− Lurie’s notion of stable ∞-category (see [65]).

1. We will try to have a deep understanding of the connections between linear co-Segal cate-
gories, A∞-categories and stable ∞-categories on the homotopic theoretical point of view.
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2. Having a hypothetical equivalence between linear co-Segal categories and A∞-categories will
give a less combinatorial approach of non commutative algebraic geometry and the many
related fields. We can also hope that it will provide some simplification of many constructions
in the ‘A∞-world’.

3. Almost all the notions of classical enriched categories can be defined for both co-Segal and
Segal M -categories. For M = (Ch(R),⊗R,R) the notion of DG-module and A∞-module
play a central role in the program of non commutative algebraic geometry. In enriched cat-
egory theory, DG-modules are the equivalent notion of M -valued presheaf and are special
cases of the notions of bimodules also known as (enriched) distributors or profunctors.

The considerations of these objects in the co-Segal world will lead immediately to some
obvious questions such as:
How shall we interpret a co-Segal category being equivalent to a smooth dg-manifold in the
sense of Kontsevich-Soibelman [54] ?

Algebraic Geometry in co-Segal settings

Pursuing Deligne’s idea of algebraic geometry in monoidal categories

In [26] Deligne proposed a formal categorical framework for doing algebraic geometry in a
tannakian categories; the guiding example is the category Rep(G) of linear representations of an
affine k-group scheme G, for a field k.

Deligne defines a commutative ring object R in a tannakian category T, to be a commutative
monoid with unit. He then defines the category of affine T-schemes to be the opposite category
of commutative ring objects with unit in T, like in the classical case. For T = Rep(G), affine
T-schemes correspond to classical affine k-schemes equipped with right action of G (G-modules).
In this setting any affine k-scheme is an affine T-scheme because we can take the trivial action
of G. And any map between two affine k-schemes induces in a tautological way a map of affine
T-scheme. Deligne points out that many of the classical notion and constructions can be given
for T-schemes: fiber products, group schemes, flatness, (quasi-coherent) modules, torsors, etc.

In a Tannakian category there is an internal Hom which makes T an enriched category over
itself. By the Grothendieck anti-equivalence, we know that a morphism of classical affine k-
schemes is induced by a morphism of commutative k-algebras (which goes in the opposite sense).
But morphisms of k-algebras form only a set and have no extra structure; we loose for example
the vector space structure of the morphisms between the underlying k-vector spaces (of the k-
algebras).

For T = Rep(G), when we view a classical affine k-schemes as affine T-schemes, we keep track
of their geometric nature while ‘hosting’ the morphisms between them into a richer object (the
linear maps between the underlying vector spaces). We view this situation as an enrichment of
the category of affine k-schemes over T.

As far as I understand the philosophy of motives, we try to ‘host’ the category of algebraic
variety in a (higher) linear category which is somehow (homotopically) minimal. Here by ‘host’ I
mean find a enrichment, thus new Hom in coefficient in a linear category, that contains the ‘old’
morphisms as a ‘simple’ sub-object. This attempt of putting an extra structure on morphism
between schemes can be seen in the work of Voevodsky who considered the category ‘Cor’ of
correspondences between schemes in his definition of Voevodsky motives (see [69]).

xxiv



There are different type of homotopy theory in algebraic geometry that are now studied,
such as A1-homotopy theory or Etale Homotopy theory. The consideration of Deligne’s ideas
in these theories will undoubtedly involves higher linear structures as pointed out, for example,
by Toën [93]. We hope that the notions developed here will help to understand some facets of
Grothendieck’s dream about motives.

Such consideration will require the following notions:

1. A good definition of a symmetric monoidal co-Segal category. Usually one would define it
as a Γ-object in the monoidal category of unital co-Segal categories;

2. A definition of a (neutral) Tannakian co-Segal category.

3. It seems that a commutative co-Segal DG-algebra should be equivalent to an E∞-ring. E∞-
rings and simplicial rings are in the center of Homotopical and Derived Algebraic Geometry.

Organization of the manuscript

All the chapters are meant to be readable independently. Each chapter begins with a short
introduction which gives an overview of the discussion.

� Chapter 2 contains essentially the author’s preprint [3] in which we set up the definition of
Segal enriched categories. All the definitions are given in the setting of enrichment over a
2-category M . We show how the definition generalizes the work of Leinster [60] and that
the strict case correspond to the classical M -categories.

� The main results of the thesis appear in chapter 3 which is about co-Segal categories. To get
the model structure on MS(Set), we treat first the case MS(X) consisting of co-Segal pre-
categories having a fixed set of objects X; then we extend the model structure using a Roig-
Stanculescu theorem of having a model structure on the total category E of a Grothendieck
bifibred category p : E −→ B.

� Chapter 4 contains the different appendices.

xxv



Warning: ∆ and ∆+

In this thesis two different categories “Delta” are used. We include this short notice to warn
the reader about the potential confusion. We outline very briefly some known facts about these
two “Delta”.

• ∆ is the category of finite ordinals n = {0, ..., n}, without the empty set. The morphisms
are the nondecreasing functions.

• ∆+ is the category of all finite ordinals n = {0, ..., n− 1}, with the empty set (= 0). The
morphisms are also the nondecreasing functions.

So the ‘underlined n’, n = {0, ..., n}, represents an object of ∆ corresponding to the first (n+ 1)
natural numbers; while the ‘bold n’, n = {0, ..., n− 1}, represents an object of ∆+ corresponding
to the first n natural numbers. In both n and n we consider the natural order.

From ∆ to ∆+

If n = {0, ..., n} and m = {0, ...,m} are two objects of ∆, say that f : n −→ m preserves the
extremities if:

f(0) = 0 and f(n) = m.

Let Ω ⊂ ∆ be the subcategory having the same objects as ∆ and whose morphisms are the
ones that preserve the extremities. Then we claim that:

Claim. There is an isomorphism of categories between Ωop and ∆+.

We will not give a detailed proof of the claim but we will give the main idea. To show that
the claim holds we explicitly construct an isomorphism T : ∆+ −→ Ωop.

On the objects, T maps n = {0, ..., n−1} to n = {0, ..., n}. To see what T does on morphisms
we need to go back to Mac Lane’s description of the category ∆+ [68, p.172]. The category ∆+

has a monoidal structure given by the the ordinal addition +. Mac Lane showed that the arrows
in ∆+ are generated by addition and composition from µ : 2 −→ 1 and η : 0 −→ 1. Therefore in
order to define T we simply have to give T (µ) and T (η).

The maps T (µ) and T (η) are, respectively, the opposite of the following maps of Ω:

• T (µ)op : {0, 1} −→ {0, 1, 2}, the unique map that takes 0 to 0 and 1 to 2.

• T (η)op : {0, 1} −→ {0}, the unique constant map.

We leave the reader to check that the functor T we get is an isomorphism.



Chapter 2

Segal Enriched Categories

2.1 Introduction

In this chapter we present the theory of Segal enriched categories and provide some situations
where they appear naturally. We give our definitions in the context of enrichment over a bicat-
egory (2-category). The theory of enriched categories over a 2-category generalizes the classical
theory of enrichment over a monoidal category and also gives rise to various points of view in many
classical situations. Walters [96] showed for example that a sheaf on a Grothendieck site C was the
same thing as Cauchy-complete enriched category over a bicategory Rel(C) built from C. Later
Street [86] extended this result to describe stacks as enriched categories with extra properties and
gave an application to nonabelian cohomology.

Both Street and Walters used the notion of bimodule (also called distributor, profunctor or
module) between enriched categories. The notion of Cauchy completeness introduced by Lawvere
[58] plays a central role in their respective work. In fact ‘Cauchy completeness’ is a property of
representability and is used there to have the restriction of sections and to express the descent
conditions.

This characterization of stacks as enriched categories is close to the definition of a stack as
fibered category satisfying the descent conditions. One can obviously adapt their result with the
formalism we develop here. We can consider a Segal version of their results using the notion of
Segal site of Toën-Vezzosi [91] or Lurie’s notion of ∞-site [66].

By the Giraud characterization theorem [38] we know that a sheaf is an object of a Grothendieck
topos. Then the results of Walters and Street say that a Grothendieck (higher) topos is equivalent
to a subcategory of M -Cat for a suitable base M . A Segal topos of Toën-Vezzosi should be a
subcategory of the category of Segal-enriched categories over a base M . Street [85] has already
provided a characterization theorem of the bicategory of stacks on a site C, then a bitopos. Here
again one may propose a characterization theorem for Segal topoi of Toën-Vezzosi by suitably
adapting the results of Street.

More generally we can extend the ideas of Jardine [45], Thomason [88] followed by, Dugger [28],
Hirschowitz-Simpson [41], Morel-Voevodsky [70], Toën-Vezzosi [89, 90] and others, who developed
a homotopy theory in situations, e.g in algebraic geometry, where the notion of homotopy was
not natural. The main ingredients in these theories are essentially the use of simplicial presheaves
with their (higher) generalizations, and the functor of points initiated by Grothendieck.

Enriched categories appear naturally there because, for example, the category of simplicial
presheaves is a simplicially enriched category i.e an SSet-category. An interesting task will be,
for example to ‘linearize’ the work of Toën-Vezzosi and develop a Morita theory in ‘Segal settings’.
This will be discussed in future work.
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Plan
Finding a ‘big’ ∆+

We start by introducing the new tool which generalizes the monoidal category (∆+,+, 0). The
reason for this approach is the fact that this category (∆+,+, 0) is known to contain the universal
monoid which is the object 1. More precisely, Mac Lane [68] showed that a monoid V in a monoidal
category M can be obtained as the image of 1 by amonoidal functor N (V ) : (∆+,+, 0) −→M .
And as mentioned previously a monoid is viewed as an M -category with one object, so we can
consider the functor N (V ) as the nerve of the 1 corresponding category whose hom-object is V .

From this observation it becomes natural to find a big tool which will be used to ‘depict’
many monoids and bimodules in M to form a general M -category. This led us to the notion of:
2-path-category associated to a 1-category C (see Proposition-Definition 2.2.1).

We construct from any 1-category C a 2-category PC which is characterized by the following
universal property: for any 2-category M there is an isomorphism of sets between:

− the set of lax morphisms, in the sense of Bénabou [10], from C to M

− the set of strict homomorphisms from PC to M .

Furthermore for the unit category 1 we have a monoidal isomorphisms P1
∼= (∆+,+, 0).

Similar constructions have been considered by Dawson, Paré and Pronk for double categories
(see [25]). One can compare the Example 1.2 and Remark 1.3 of their paper with the fact that
here we have: P1 ‘is’ (∆+,+, 0).

As mentioned above the idea of enrichment will be to consider special types of morphisms from
PC to other bicategories. We will see that when C is X, PX will replace Lurie’s ∆X and will
be used to define Segal enriched categories. This will generalize the definition of up-to-homotopy
monoid in the sense of Leinster which may be called up-to-homotopy monad in the language of
bicategories.

The fact that C is an arbitrary small category allows us to consider geometric situations when
C is a Grothendieck site and in this way we can ‘transport’ geometry in enriched category context.

The environment

Before giving the definition of enrichment, we describe the type of category M which will
contain the hom-objects C(A,B) (see Definition 2.2.4).

We will work with a bicategory M equipped with a class W of 2-cells satisfying the following
properties.

− Every invertible 2-cell of M is in W , in particular 2-identities are in W ,

− W is stable under horizontal composition,

− W has the vertical ‘3 out of 2’ property.

1the category is unique up to isomorphism.

2



Such a pair (M ,W ) will be called base as ‘base of enrichment’. When M has one object, therefore
a monoidal category, we get the same environment given by Leinster [61].

Since we work with bicategories, M can also be :

− any 1-category viewed as a bicategory with all the 2-morphisms being identities,

− the ‘2-level part’ of a strict ∞-category.

Note. To define Segal enriched categories, W will be a class of 2-morphisms called homotopy
2-equivalences. In this case, following the terminology of Dwyer, Hirschhorn, Kan and Smith
[33] one may call M together with W ‘a homotopical bicategory’.

Relative enrichment

With the previous materials we give the definition of relative enrichment in terms of path-
objects (Definition 2.2.5). One can compare the following definition with Definition 2.3.2.

Definition.
Let (M ,W ) be a base of enrichment. A path-object of (M ,W ) is a pair (C, F ), where C is a

small category and F = (F,ϕ) a colax morphism of Bénabou:

F : PC −→M

such that for any objects A, B, C of C and any pair (t, s) in PC(B,C)×PC(A,B), all the 2-cells

FAC(t⊗ s) ϕ(A,B,C)(t,s)−−−−−−−−→ FBC(t)⊗ FAB(s)

FAA([0, A])
ϕA−−→ I ′FA

are in W . Such a colax morphism will be called a W -colax morphism and ϕ(A,B,C) will
be called ‘colaxity maps’.

− When W is a class of homotopy 2-equivalences, then (C, F ) will be called a Segal path-
object of M and F : PC −→M will give a relative enrichment of C over (M ,W ).

− We will say for short that (C, F ) is a ‘C-point’ or a ‘C-module’ of M . In [4] a duality
theory of enrichment is developed and we will prefer the terminology C-module.

− When C = X a Segal X-point of (M ,W ) is called a Segal MW -category.

The reason we consider colax morphisms, is the fact that ‘colax’ is the appropriate replace-
ment of simplicial (see Proposition 2.3.4) when working with general monoidal categories, in
particular for noncartesian monoidal ones. In fact when M is monoidal for the cartesian product,
the colaxity maps will give all the face maps and we can consider a path-object of (M ,W ) as
a ‘super-simplicial object’ of (M ,W ) ‘colored by’ C. In the Segal case we may consider F as a
‘C-homotopy coherent nerve’

But there are also other interpretations that arise when we consider special bases (M ,W ).
Some times in the Segal case we can consider F as a homotopic M -representation of C (see 2.3.5).

One of the advantages of having enrichment as a morphism is the fact that classical operations
such as base change will follow immediately. In addition to that, we can use the notions of
transformations and modifications to have a first categorical structure of the ‘moduli space’
of relative enrichments of C over M . This is discussed in sections 2.4 and 2.4.4.
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Examples

In section 2.3 we show that the formalism we’ve adopted covers the following situations.

Category theory

− Up-to-homotopy monoid in the sense of Leinster (Proposition 2.3.5).

− Simplicial object (Proposition 2.3.5).

− Classical enriched categories (Proposition 2.3.7).

− Segal categories in the sense of Hirschowitz-Simpson (Proposition 2.3.9).

− Linear Segal categories are defined in Definition 2.3.10

Nonabelian cohomology

− In section 2.3.5 we remarked that for a group G in (Set,×), a G-torsor, e.g EG, is the
same thing as a “full” G-category. The cocyclicity property of torsors reflect a ‘degenerated’
composition i.e the composition maps cABC are identities. We recover the classification role
of BG because to define a G-category we take a path-object of BG.

This remark can be extended to the general case of a group-object using the functor of
points.

− For a nonempty set X, the coarse category X is the ‘EG’ of some group G (see Remark
2.2.5). And as we shall see we will take X-point of (M ,W ) to define enriched categories.
When M is a 1-category e.g Vect the category of vector space, an EG-point of Vect will
give in some case a representation of G (all elements of G, which correspond to the objects
of EG, are sent to the same object of Vect).

− In section 2.3.5 we give an example of 1-functor considered as a (free) path-object. We want
to consider a parallel transport functor as a path-object. In the Segal case we will have
homotopic holonomy.

− Finally we’ve introduced some material for the future with the notion of quasi-presheaf
(see 2.3.6). We define a quasi-presheaf on C to be a Segal Cop-point of (M ,W ). This is not
simply a ‘generalization-nonsense’ of classical presheaves. We want to consider, for example,
the Grothendieck anti-equivalence between affine schemes and commutative rings as a ‘co-
enrichment’ having a reconstruction property, then a good enrichment (see Example 2.3.15).
A detailed account will appear in [4].

Another example is to consider any cohomology theory on C as a family of ‘free’ Cop-points
i.e relative enrichments of Cop. We hope that using the machine of ‘Segal enrichment’: base
changes of Cop-points, enriched Kan extension, Segal categories etc, together with model
categories, we can understand some facets of motivic cohomology.

These considerations will require an appropriate descent theory of relative enrichment which
will be discussed in [4].
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Morphisms, Bimodules and Reduction

In section 2.4 we’ve revisited some classical notions adapted to our formalism. We’ve tried as
much as possible to express these notions in terms of morphisms of bicategories. The idea is to
have everything ‘at once’ using path-objects.

− Given two path-objects F : PC −→ M and G : PD −→ M , we define first an M -
premorphism to be a pair Σ = (Σ, σ) consisting of a functor Σ : C −→ D together with a
transformation of (colax) morphisms of bicategories σ : F −→ G ◦PΣ (Definition 2.4.2).
An M -morphism is a special type of an M -premorphism.

− We define bimodules (also called “distributors”, “profunctors” or “modules”) in terms of path-
object (Definition 2.4.3).

− Finally in Proposition 2.4.10, we introduce a bicategory W −1M which is rougly speaking
the ‘secondary’ Gabriel-Zisman localization of a base (M ,W ) with respect to W . With this
bicategory W −1M we can reduce any Segal point to its homotopic part.

Yoga of enrichment

“ In mathematics, there are not only theorems. There are, what we call, ‘philoso-
phies’ or ‘yogas’, which remain vague. Sometimes we can guess the flavor of what
should be true but cannot make a precise statement. When I want to understand a
problem, I first need to have a panorama of what is around it. A philosophy creates a
panorama where you can put things in place and understand that if you do something
here, you can make progress somewhere else. That is how things begin to fit together. ”

Pierre Deligne, in Mathematicians, Mariana Cook, PUP, 2009, p156.
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In the following we present some facets of enrichment and give some interpretations 2 around
it. We hope that it will help a reader who is unfamiliar with Segal categories to have a panoramic
understanding of the subject.

The general picture

In a classical enriched category C, we have :

− compositions cABC : C(A,B)⊗ C(B,C) −→ C(A,C) : thought as partial multiplications

− an identity map IA : I −→ C(A,A); then the pair think [C(A,A), IA] is like a pointed space
with multiplication e.g π1(x,X), ΩxX, etc.

In a Segal category there is no prescription, in general, of the previous data but we have
the following diagrams.

1)

C(A,B)⊗ C(B,C) C(A,C)

C(A,B,C)

weak equiv.

zz

canonical

""

2)

I C(A,A)

C[0,A]

weak equiv.

zz

canonical

""

The two types of maps

C(A,B,C) −→ C(A,B)⊗ C(B,C) and C[0,A] −→ I

are called ‘Segal maps’ and they are required to be weak equivalences.
The idea is that when these maps are isomorphisms (strong equivalences) then using their

respective inverses we can run these diagrams from the left to the right and we will have the data
of a classical category.

But when the Segal maps are not isomorphisms but only weak equivalences then we can think
that each weak inverse of the previous maps will give a ‘quasi-composition’ and a ‘quasi-identity
map’. It turns out that Segal categories are more general than classical categories and appear to
be a good tool for homotopy theory purposes.

Note. In this paper the Segal maps will be the ‘colaxity maps’.

2or philosophies
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Why relative enrichment ?

For a given small category C and a bicategory M we define a relative enrichment of C over
M to be a morphism of bicategories F : PC −→M satisfying some extra conditions which can
be interpreted as ‘generalized Segal conditions’.

To understand the meaning of ‘relative’ it suffices to consider the trivial case where M is a
1-category viewed as a bicategory with identity 2-morphisms. In this case the morphism F is
determined by a 1-functor F|C : C −→M (see Observations 2.2.1).

And the idea is to observe that given any functor G : C −→M then we can form the category
G[C] described as follows.

− Ob(G[C]) = Ob(C)

− For each pair of objects (A,B) we take the morphism to be the image 3 of the function

GAB : C(A,B) −→M (GA,GB)

− The composition is defined in the obvious way.

In this situation we will consider G[C] as a relative enrichment of C over M . One can interpret
G[C] as a copy of C of type M .

As usual we have the following philosophical questions.

− What is the ‘best copy’ of C of type M ?

− Does such a ‘motivic copy’ of C exist for a given M ?

− Which M shall we consider to have much informations about C ?

The machine of enriched categories allows us to do base changes i.e move M , and we hope that
the ideas of Segal-like enrichment can guide us, using homotopy theory, to find an answer to those
questions.

In the previous example we can see that we have the usual factorization of the functor G as

C
j−→ G[C]

i−→M

where j is full and i is faithful.
If the functor is an equivalence then we may say that G[C] is a ‘good copy’ of C of type M

and if G reflects isomorphisms then G[C] will provide a good copy of some subcategory of the
interior of C, etc. We can also form a category whose set of objects is the image of the function
G : Ob(C) −→ Ob(M ); the morphisms are those ‘colored’ or coming from C. In this way we will
form a category which lives in M .

With this point of view, we can also consider that enrichment over M is a process which
enlarges M . In fact it’s well known that some properties of M are transferred to M -Cat and
M -Dist.

The recent work of Lurie [64] on cobordism hypothesis (framed version) says roughly speaking
that a copy of Bordfr

n which respects the monoidal structure and the symmetry i.e a symmetric
3As G may not be faithful we need to take the image to have a set
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monoidal functor, is determined by the copy of the point which must be a fully dualizable object.
This reflect the fact that Bordfr

n is in some sense built from the point using bordisms and disjoint
unions.

Remark 2.1.1. To have the classical theory of enriched categories we will consider the case where
C is of the form X (see 2.2.5) for a nonempty set X and M a bicategory with one object, hence
a monoidal category.

A ‘Big Bang’

“ Will mathematics merely become more sophisticated and specialized, or will we
find ways to drastically simplify and unify the subject? Will we only build on existing
foundations, or will we also reexamine basic concepts and seek new starting-points?
Surely there is no shortage of complicated and interesting things to do in mathematics.
But it makes sense to spend at least a little time going back and thinking about simple
things.”

John C. Baez, James Dolan, From Finite Sets to Feynman Diagrams [6] p2.

If we look closely the composition ‘C(A,B) ⊗ C(B,C) −→ C(A,C)’ in any category, we can
see the similarity with the other classical formulas such as:

− −−→AB +
−−→
BC =

−→
AC : basic geometry

− d(A,B) + d(B,C) ≥ d(A,C) : triangle inequality

− ϕAB · ϕBC = ϕAC : cocyclicity of transition functions for a vector bundle, etc.

In fact all of these formulas can be described in terms of enriched categories and base changes.
For example Lawvere [58] remarked that the triangle inequality is the composition in a metric
space when considered as an enriched category over (R+,+, 0,≥).

We’ve used the terminology ‘Big bang’ because many structures are encoded in this way by
enriched categories. But enriched categories are defined using a big version of the category ∆.
And ∆ is itself built from 1, which in turn can be taking to be {∅}.

It appears that almost everything comes from the empty ...

2.2 Path-Objects in Bicategories

2.2.1 The 2-path-category

We follow the notation of Deligne [27], and denote here by ∆+ the “augmented” category of all
finite totally ordered sets, including the empty set. We will denote by ∆ the“topological” one,
which does not contain the empty set and which is commonly used to define simplicial objects.

Recall that the objects of ∆+ are ordinal numbers n = {0, ..., n − 1} and the arrows are
nondecreasing functions f : n −→ m. ∆+ is a monoidal category for the ordinal addition, has an

8



initial object 0 and a terminal object 1. The object 1 is a “universal” monoid in the sense that
any monoid in a monoidal category M is the image of 1 under a monoidal functor from ∆ to M .
The reader can find this result and a complete description of ∆+ in [68].

Warning. The category ∆+ we consider here is denoted by Leinster [61] and MacLane [68] as ∆.

Proposition-Definition 2.2.1. [2-Path-category] Let C be a small category.

1. There exists a 2-category PC having the following properties:

− the objects of PC are the objects of C,

− for every pair (A,B) of objects, PC(A,B) is posetal and is a category over ∆ i.e we
have a functor called length or degree

LAB : PC(A,B) −→ ∆+

− 0 is in the image of LAB if and only if A = B; and in this case LAA becomes a
monoidal functor with the composition.

2. if C ∼= 1, say Ob(C) = {O} and C(O,O) = {IdO}, we have monoidal isomorphism:

PC(O,O)
∼−→ (∆+,+, 0)

3. the operation C 7→PC is functorial in C:

P[−] : Cat≤1 2-Cat

C
F−→ D PC

PF−−→PD

//

� //

where Cat≤1 and 2-Cat are respectively the 1-category of small categories and the category of
2-categories (and homomorphisms).

Proof. The construction of PC is given in Definition 4.7.2. Below we give a short description.

− The objects of PC are the objects of C;

− a 1-morphism from A to B is a chain of composable morphisms A −→ A1 −→ · · · −→ B;
we shall denote such chain as [n,A −→ A1 −→ · · · −→ B] where n represents the number
of arrow in the chain;

− the composition is the concatenation of chains;

− the identity of A is the chain (A) = [0, A];

− the 2-morphisms are parametrized by the morphism of ∆. For example we have the following
2-morphisms which somehow generate all the other ones:

A

X

B

f ?? g

��

g◦f
//

��

A

(A)

A
IdA //
KS

In the above diagrams the left one is a 2-morphism (f, g) −→ (g ◦ f) which is parametrized
by the unique map σ0 : 2 −→ 1 of ∆; and the one on the right is a 2-morphism (A) −→ (IdA)
parametrized by the unique map 0 −→ 1 of ∆.

9



�

From the construction of PC one can easily show that (see [22] and references therein for a
general statement).

Corollary 2.2.2. For any 2-category M we have an isomorphism of sets functorial in C:

Lax(C,M ) ∼= Hom(PC,M )

where the left hand side is the set of lax morphisms from C to M while the right hand side is the
set of strict homomorphisms in the sense of Bénabout [10].

Remark 2.2.1. 1. The ‘path-functor’ as presented above doesn’t extend immediately to a
2-functor because natural transformations in Cat are not sent to transformation in Bicat.

2. We can fix the problem either by using co-spans in PC(A,B) or by localizing each PC(A,B)
with respect to the class of maps which correspond to compositions in C, then ‘reversing the
composition’.

3. Another solution could be to work in the area of Leinster’s fc-multicategories instead of
staying in Bicat, but we won’t that do here. In fact PC carries a good enough combinatoric
for our first purpose which is to have a Segal version of enriched categories.

Observations 2.2.1. For a small category C, the following properties follow directly from the
construction of PC.

1. Since 1 is terminal in Cat, we have by functoriality a homomorphism (strict 2-functor):
PC →P1. We may call it the ‘skeleton-morphism’ and we will view PC to be over P1.

2. We have (PC)1-op ∼= PCop , where (PC)1-op is the 1-opposite of PC, which is characterized
by:

(PC)1-op(A,B) := PC(B,A).

2.2.2 Basic properties

In the following we give some basic properties of the path-functor.
It is clear that P[−] preserves equivalence and is an isomorphism reflecting in the sense that if
PF : PC −→PD is an isomorphism (of 2-categories) then so is F : C −→ D.
From the definition one has immediately that PC

∐
D
∼= PC

∐
PD. For the product we need to

be careful.

Let C and D be two small categories and C×D their cartesian product. The projections from
C×D to each factor induce two maps

PC×D −→PC, PC×D −→PD

which in turn give a map
PC×D → (PC ×PD)

by universal property of the cartesian product.
This map has no section, which means that it cannot be a biequivalence. We can see it from

the fact that we have a canonical map PC×D →P1 while such map doesn’t exist with PC×PD.
This is related to the fact that (∆,+, 0), which is P1, is not symmetric monoidal.

But everything is not lost since we have.
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Proposition 2.2.3. Let C and D be two small categories and PC → P1, PD → P1 the corre-
sponding 2-path-categories. Then we have an isomorphism of 2-categories

PC×D
∼−→ (PC ×P1 PD).

Sketch of proof. It suffices to write the definition of PC×D. A chain [n, s] in PC×D is by defini-
tion the same thing as a pair of chains ([n, sC], [n, sD]). And a morphism of chains is PC×D is by
definition a morphism of ∆ which is ‘simultaneously’ the same in both PC and PD which means
that it’s a morphism of the fiber product PC ×P1 PD.

Here PC ×P1 PD is given by :

• Objects : Ob(C)×Ob(D)

• Morphisms : Consider two pairs (A,X), (B, Y ), with A,B objects of C and X,Y objects of
D. From the length functors :

LAB : PC(A,B) −→ ∆, LXY : PD(X,Y ) −→ ∆

we define
(PC ×P1 PD)[(A,X), (B, Y )] := PC(A,B)×∆ PD(X,Y ).

• The composition is given by the concatenation of chains factor-wise.

�

Remark 2.2.2.

1. If we use cospans in each PC(A,B) and extend P[−] to a 2-functor, then one can compute
the general limits and colimits with respect to P[−], but we won’t do it here.

2. If we apply the 2-functor to a monoidal category D, then PD will be a monoidal 2-category
with a suitable tensor product.

2.2.3 Base of enrichment

Let M be a bicategory and W a class of 2-cells of M .

Definition 2.2.4. The pair (M ,W ) is said to be a base of enrichment if W has the following
properties:

1. Every invertible 2-cell of M is in W , in particular 2-identities are in W ,

2. W has the vertical ‘3 out of 2’ property, that is :

U V

f

��

h

FF
//

α
��

β
��

U V

f

!!

h

==β?α
��

//

if 2 of α, β, β ? α are in W then so is the third,
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3. W is stable under horizontal composition, that is :

W V U

f

��

f ′

]]

g

��

g′

]] β ��
α
��

W U

g⊗f
||

g′⊗f ′

bbβ⊗α ��
//

if α and β are both in W then so is β ⊗ α.

Observations 2.2.2.
This definition is simply a generalization of the environment required by Leinster to define

the notion of up-to-homotopy monoid in [61], when M is a monoidal category, hence a bicategory
with one object.

Remark 2.2.3. The reader may observe that for any bicategory M , the class W = 2-Iso consisting
of all invertible 2-cells of M satisfies the previous properties. In this way we can say that the
pair (M , 2-Iso) is the smallest base of enrichment since by definition every base (M ,W ) contains
(M , 2-Iso).

Note that if we take W to be the class 2-Mor(M ) of all of 2-cells we get the largest base
(M , 2-Mor(M ))

2.2.4 Path-object

Definition 2.2.5. Let (M ,W ) be a base of enrichment. A Path-object of (M ,W ) is a pair
(C, F ), where C is a small category and F = (F,ϕ) a colax morphism of Bénabou:

F : PC −→M

such that for any objects A, B, C of C and any pair (t, s) in PC(B,C)×PC(A,B), all the 2-cells

FAC(t⊗ s) ϕ(A,B,C)(t,s)−−−−−−−−→ FBC(t)⊗ FAB(s)

FAA([0, A])
ϕA−−→ I ′FA

are in W . Such a colax morphism will be called a W -colax morphism.

Terminology.

1. If W is a class of 2-cells called 2-homotopy equivalences then (C, F ) will be called a Segal
path-object. The maps ϕ(A,B,C) and ϕA will be called Segal maps. If F is a strict ho-
momorphism (respectively nonstrict homomorphism) we will say that that (C, F ) is a strict
Segal path-object (respectively pseudo-strict Segal path-object).

2. For U in Ob(M ), an object over U is an object A of C such that FA = U (See Figure 1
below). Here we’ve followed the geometric picture in enrichment over bicategories as in [86],
[95], [96]. Sometimes it’s also worthy to thinkof it as an object connected to U because
we’re going to use the combinatoric of PC to ‘extract’ from M , ‘the skeleton’ of a category.

3. If W = 2-Mor(M ), we will not mention W and call (C, F ) a path-object of M .

12



4. Since a path-object is a sort of morphism from PC to M we will call it a ‘PC-point’ or a
‘PC-module’ of M . And for short we will simply say C-point or C-module of M . We will
therefore say Segal C-point (or C-module) for a Segal path-object (C, F ).

[1,f]

[1,g]

[2,f,g]

[1,gof]

F([1,f])
F([1,g])

F([1,g]) ⊗ F([1,f]) 

F([2,g,f]) 

φ([1,g],[1,f])

•

•
•

●

●

●

[1,h]

U

V

A

J

K

B

W

C

L

F([1,h])

F

"F-1(U)"

F

F

Figure 1

M

PC

C (A, B)⊗ C (B,C) −→ C (A, C)

1

M

PC

C (A, B)⊗ C (B,C) −→ C (A, C)

1

Observations 2.2.3.
In Figure 1, we took t = [1, B

g−→ C] and s = [1, A
f−→ B].

We have t⊗ s = [2, A
f−→ B

g−→ C] and a canonical 2-cell in PC(A,C)

A C

[1,A
g◦f−−→C]

99

[2,A
f−→B

g−→C]

%%
2

!−→1
��

given by the composition in C and ‘parametrized’ by the (unique) arrow 2
!−→ 1 of ∆. The image

by F of this 2-cell is a 2-cell of M

U W

F ([1,A
g◦f−−→C])

88

F ([2,A
f−→B

g−→C])

&&

��
.

Now if we combine this with the colaxity map ϕ(A,B,C)(t, s) we have the following span in
M (U,W ):

F ([1, B
g−→ C])⊗ F ([1, A

f−→ B]) F ([1, A
g◦f−−→ C])

F ([2, A
f−→ B

g−→ C])

ϕ(A,B,C)(t,s)

zz

F (‘2
!−→1′)

""

13



If ϕ(A,B,C)(t, s) is a weak equivalence (e.g a Segal map) therefore is weakly invertible, any
choice of a weak inverse of ϕ(A,B,C)(t, s) will give a map :

F ([1, B
g−→ C])⊗ F ([1, A

f−→ B]) −→ F ([1, A
g◦f−−→ C])

by running the span from the left to the right.
In that situation if we want this construction to be consistent, we have to assume that all the

weak inverses of ϕ(A,B,C)(t, s) must be homotopy equivalent in some sense. This way the ‘space’
of the maps

F ([1, B
g−→ C])⊗ F ([1, A

f−→ B]) −→ F ([1, A
g◦f−−→ C])

obtained for each weak inverse, will be contractible.
One of the interesting situations is when F ([1, B

g−→ C]) and F ([1, A
f−→ B]) stand for hom-

objects of some category-like structure. The maps

F ([1, B
g−→ C])⊗ F ([1, A

f−→ B]) −→ F ([1, A
g◦f−−→ C])

will be a sort of composition up-to homotopy, like for classical Segal categories.

Remark 2.2.4.

1. For every object U of M , denote by F−1(U) the set of objects of C over U via F . For each
U F−1(U) we have a full subcategory CU of C, corresponding to the “restriction” of C to
F−1(U). Then F gives a ‘foliation’ of C of ‘leaves’ CU . We get by functoriality a canonical
injection PCU ↪→PC and the composition by F gives a CU -point of (MUU ,WUU ).

2. We see that a C-point of a bicategory (M ,W ) is a ‘moduli’ 4 of ‘bimodules’ between Ci-points
of some monoidal bases of enrichment (Mi,Wi). As one can see if we start with a monoidal
category (M ,W ), all object of C will be over the same object, say ∗, with Hom(∗, ∗) = M .

3. We’ve used the terminology of foliation theory because each CU can be an algebraic leaf of a
foliated manifold C. In that case CU is determined by a collection of rings satisfying a (co)-
descent condition. We will have a path-object of the bicategory Bim of rings, bimodules and
morphism of bimodules (see [10]). Here again we will need a descent theory for path-objects.

4. In Bim we have both commutative and noncommutative rings so it appears to be a good
place where both commutative and noncommutative geometry meet. Then the study of
path-objects of Bim (and its higher versions) needs to be considered seriously.

Observations 2.2.4.
The collection of C-points of (M ,W ) forms naturally a bicategory M +

W (C) = Bicat[W ](PC,M ),
of W -colax morphisms, transformations and modifications. In fact, in Bicat one has an internal
colax-Hom between any two bicategories. In particular we have a ‘colax-Yoneda’ functor (of
points)5 Bicatcolax(−,M ). We recall briefly this bicategorical structure on M +

W (C) as follows.

1. Ob(M +
W (C)) = {F : PC −→M }, the collection of W -colax morphisms of Bénabou between

PC and M ,

2. For every pair (F,G) of W -colax morphisms, a 1-cell σ : F −→ G is a transformation of
morphisms of bicategories

PC M

G

88

F

&&
σ
��

.

4or is “generated” by Ci
5This justifies our terminology of ‘C-points’
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3. For every pair (σ1, σ2) of 1-cells, a 2-cell Γ : σ1 −→ σ2 is a modification of transformations :

�%

σ1

y�

σ2Γ *4PC M

F

��

G

CC .

The definitions of transformations and modifications are recalled in section 2.4.

2.2.5 The coarse or indiscrete category

Recall that the ‘object functor’ Ob : Cat −→ Set that takes a category B to it set of objects
Ob(B), has a left adjoint disc : Set −→ Cat ‘the discrete functor’. It turns out that this functor
has also a right adjoint indisc : Set −→ Cat. We will denote by X := indisc(X). By definition
for any category B and any set X we have an isomorphism of sets:

Hom(B, X) ∼= Hom(Ob(B), X)

functorial in X and B; where the left-hand side is the set of functors from B to X while the
right-hand side is the set of functions from Ob(B) to X. Below we give a brief description of X.

Brief description of X The category X is the terminal connected groupoid having X as the
set of objects. There is precisely a unique morphism between any pair of elements:

X(a, b) = HomX(a, b) := {(a, b)} ∼= 1.

The composition is obvious: it’s the bijection 1× 1 ∼= 1. Given a function g : Ob(B) −→ X, the
associated functor g : B −→ X is given by the (unique) constant functions

gUV : B(U, V ) −→ X(g(U), g(V )) ∼= 1.

Remark 2.2.5. 1. If X has two elements then X is the “walking-isomorphism category”
in the sense that any isomorphim in a category B is the same thing as a functor X −→ B.

2. One may observe that X looks like EG for some group G. As we shall see in a moment EG
is a G-category.

3. When X has only one element, say X = {A}, X consist of the object A with the identity 1A,
hence X ∼= 1. The by Proposition 2.2.1 we have a monoidal isomorphism between PX(A,A)
and (∆+,+, 0).

Terminology. For a setX we will simply sayX-point orX-module of (M ,W ) for a path-object
(X,F ) of (M ,W ).

We will write M +
W (X) := Bicat[W ](PX ,M ), for the bicategory of W -colax morphisms from

PX to M .
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Some natural path-objects For a set X, we’ve considered the coarse category X which is
a groupoid, but one may consider any preorder. Recall that by preorder we mean a category in
which there is at most one morphism between any two objects. For preorders R, The R-points of
(M ,W ) are important because in some sense they ‘generate’ the general C-points for arbitrary
small categories C. This comes from the nerve construction of a small category.

Recall that for a category C one defines the nerve of C to be the following functor :

N (C) : ∆op −→ Set

n 7→ Hom([n],C)

where [n] is the preorder with n objects. Explicitly [n] is the category defined as follows.
Take Ob([n]) = {0, 1, · · · , n} the set of the first n+ 1 natural numbers and

[n](i, j) =





{(i, j)} if i < j

{Idi = (i, i)} if i = j

∅ if i > j

The composition is the obvious one.

The set N (C)n = Hom([n],C) is the set of n composable arrows of C through (n+ 1) objects
A0, ..., An :

A0
f1−→ · · ·Ai−1

fi−→ Ai −→ · · · fn−→ An.

Each element of N (C)n is called a n-simplex of C. The n-simplices of C from A0 to An are exactly
the 1-cells (of length n) in PC(A0, An).
It’s important to notice that for every n-simplex r of C, i.e a functor r : [n] −→ C, we have a
pullback-category [r] described as follows.
Ob([r]) = Ob([n]) = {0, 1, · · · , n} and

[r](i, j) =





{fj ◦ · · · ◦ fi} if i < j

{Idr(i)} if i = j

∅ if i > j

Now if all the arrows f0, · · · , fn are invertible we can extend [r] to a coarse category by adding
the inverse of each fi or by formally adding the inverses of the fi. This will be the case where C

is a groupoid or by localizing C with respect to some class of morphisms S.

Since the construction of the path-category is functorial it follows that for every n-simplex r
of C, i.e a functor r : [n] −→ C, we have a strict homomorphism Pr : P[n] −→ PC. Therefore
any C-point F : PC −→ M gives by pullback an [n]-point. The reason we’ve considered these
constructions is that:

Proposition 2.2.6. A colax morphism F : PC −→M satisfies the Segal conditions if and only
if for very n-simplex r : [n] −→ C of C the pullback P?

r (F ) : P[n] −→ M satisfies the Segal
conditions.

Proof. Obvious. �

2.3 Examples of path-objects

Our goal in this section is to outline how the language of path-objects covers some classical
situations, from enriched category theory to other areas.
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2.3.1 Up-to-homotopy monoids and Simplicial objects

Definition 2.3.1. Let N, N′ be two monoidal categories. A colax monoidal functor N′ −→ N

consists of a functor Y : N′ −→ N together with maps

ξAB : Y (A⊗B) −→ Y (A)⊗ Y (B)

ξ0 : Y (I) −→ I

(A,B ∈ N′), satisfying naturality and coherence axioms.

Here ⊗ and I denote the tensor operation and unit object in both monoidal categories N′ and
N. We refer the reader to [60] for the coherence axioms of colax functors.

The following definition is due to Leinster. The generalization of this definition was the
motivation of this work.

Definition 2.3.2. Let M be a monoidal category equipped with a class of homotopy equivalences
W such that the pair (M ,W ) is a base of enrichment. A homotopy monoid in M is colax
monoidal functor

(Y, ξ) : (∆+,+, 0) −→M

for which the maps ξ0, ξmn are in W for every m,n in ∆+.

Definition 2.3.3. Let M be a category. A simplicial object of M is a functor Y : ∆op −→M .

Remark 2.3.1. In this definition M may be a higher category. For example in [41], Simpson
and Hirschowitz use simplicial objects of some higher (model) category to define inductively Segal
n-categories.

A special case of simplicial object which is relevant to our path-objects comes when the am-
bient category M is a category with finite products with an empty-product object 1, which is
terminal by definition. In this case M turns to be a cartesian monoidal category (M ,×, 1).

The following proposition is due to Leinster [60].

Proposition 2.3.4. Let (M ,×) be a category with finite products. Then there is an isomorphism
of categories

Colax((∆+,+, 0), (M ,×, 1)) ∼= Hom[∆op,M ].

Remark 2.3.2. Colax((∆+,+, 0), (M ,×, 1)) represents the category of colax monoidal functors.

In what follows we are going to rephrase the proposition and the definitions given above in
terms of points of M . We will use the following notation.
1 = {O,O IdO−−→ O} = the unit category.
Iso(M ) = the class of all invertible morphisms of M .
Mor(M ) = the class of all morphisms of M .
As usual, since Bénabou, we will identify M with a bicategory with one object (See Example
4.6.2 of the Appendix A).

Proposition 2.3.5. Let (M ,⊗, I) be a monoidal category.

1. We have an equivalence between the following data:

− a 1-point of (M , Iso(M )) i.e an object of M +
Iso(M )(1),

− a monoid of M .
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2. Assume that M is equipped with a class W of morphisms called homotopy equivalences, such
that (M ,W ) is a base of enrichment. Then we have an equivalence between the following
data

− a 1-point of (M ,W ) i.e an object of M +
W (1),

− an up-to homotopy monoid in the sense of Leinster [61].

3. If M has finite products, and is considered to be monoidal for the cartesian product, then
we have an equivalence between

− a 1-point of (M ,Mor(M )) i.e an object of M +
Mor(M )(1),

− a simplicial object of M .

Each of the above equivalences will be automatically an equivalence of categories with the appro-
priate notions of morphism of C-points.

Observations 2.3.1.

1. The assertion (1) is simply a particular case of (2) when W = Iso(M ). The main motivation
to consider general classes of homotopy equivalences W other than Iso(M ) is to have a Segal
version of enriched categories over monoidal categories. The idea is to view a monoid of M
as a category enriched over M with one object and to view an up-to-homotopy monoid of
Leinster as the Segal version of it.

The ‘several objects’ case is considered in the upcoming examples. We will call them Segal
enriched categories.

2. As pointed out earlier, in the assertion (3), M may be a higher category having finite
product. This suggests to extend the definition of C-points of (M ,W ) (Definition 2.2.5)
to a general one where C and M are ∞-categories. A first attempt would consist to use
Postnikov systems (see [7]) to “go down” to the current situation. We will come back
to this later.

3. Again in the assertion (3), the category M may have discrete objects and we can give a
definition of Segal categories or (weak) internal category object in M (see [41]) in terms of
1-point of (M ,W ).
An immediate step is to ask what we will have with general X-points. This is discussed
later.

Proof of Proposition 2.3.5

The proof of the proposition is based on the following two facts:

− the path-bicategory of 1 ‘is’ ∆+ (see Proposition 2.2.1).

− bicategories with one object and morphisms between them are identified with monoidal
categories and the suitable functors of monoidal categories, and vice versa.

Let F be 1-point of (M ,W ). By definition F is a W -colax morphism of bicategories F : P1 −→
M .
As P1 is a one-object bicategory, F is entirely determined by the following data:

1. a functor FOO : P1(O,O) −→M which is the only component of F

2. arrows FOO(t⊗ s) ϕ(O,O,O)(t,s)−−−−−−−−−→ FOO(t)⊗ FOO(s) in W , for every pair (t, s) in P1(O,O),
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3. an arrow FOO([0,O])
ϕO−−→ I in W ,

4. coherences on ϕ(O,O,O)(t, s) and ϕO.

But one can check that these data say exactly that FOO is a colax monoidal functor from
(P1(O,O), c(O,O,O), [0,O]) to (M ,⊗, I).

As remarked previously we have an isomorphism of monoidal categories

(∆+,+, 0) ∼= (P1(O,O), c(O,O,O), [0,O]).

We recall that this isomorphism is determined by the following identifications.
0←→ [0,O].

n←→ [n,O IdO−−→ O · · ·O IdO−−→ O︸ ︷︷ ︸
n identities

] = s.

m←→ [m,O IdO−−→ O · · ·O IdO−−→ O︸ ︷︷ ︸
m identities

] = t.

(n+m)←→ [n+m,O IdO−−→ · · ·O︸ ︷︷ ︸
n identities

IdO−−→ · · ·O︸ ︷︷ ︸
m identities

] = c(O,O,O)(t, s) = t⊗ s.

{Coface maps in ∆ } ←→ {Replacing consecutive arrows by their composite }.
{Codegeneracy maps in ∆ } ←→ { Adding identities } (see Appendix B).

Summing up the above discussion we see that F is equivalent to a colax monoidal functor from
(∆+,+, 0) to (M ,⊗, I):

− F̃ : ∆+ −→M ,

− ϕmn : F̃ (m+ n) −→ F̃ (m)⊗ F̃ (n) ∈ W

− ϕ0 : F̃ (0) −→ I ∈ W .

If W is a class of homotopy equivalences, we recover the definition of a homotopy monoid given
by Leinster in [61], which proves the assertion (2).

If W = Mor(M ) and M is cartesian monoidal we get an object of Colax((∆+,+, 0), (M ,×, 1))
and the assertion (3) follows from the Proposition 7 above. �

2.3.2 Classical enriched categories

The theory of enriched categories over a monoidal category M has a natural extension when
M is a 2-category (see [86]). For completeness we recall hereafter the definition of an M -category
for a 2-category M .

Definition 2.3.6. Let M be a 2-category. An M -category C consists of the following data :

− for each object U of M , a set CU of objects over U ;

− for objects A,B over U, V , respectively an arrow C(A,B) : U −→ V in M ;
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− for each object A over U , a 2-cell IA : IdU =⇒ C(A,A) :

UU

C(A,A)

bb

IdU

�� IA

��

in M ;

− for object A,B,C over U, V,W , respectively, a 2-cell cABC : C(B,C)⊗C(A,B) =⇒ C(A,C):

U

V

W

C(A,B)

nn
C(B,C)

		

C(A,C)

hh

C(B,C)⊗C(A,B)

}}
cABC

��

in M ;

satisfying the obvious three axioms of left and right identities and associativity.

The reader can immediately check that if M has one object we recover the enrichment over
a monoidal category as in [49]. We’ve followed here the terminology ‘object over’ of Street [86].
This provides a geometric vision in the theory of enriched categories which is very useful in some
situations.

Remark 2.3.3. We will assume that all the sets CU are nonempty, otherwise we replace M by
its “restriction” to the set of U such that CU is nonempty.

Proposition 2.3.7. Let M be a bicategory and W be the class of invertible 2-cells of M . We
have an equivalence between the following data

1. an X-point of (M ,W )

2. an enriched category over M having X as set of objects i.e a polyad of Bénabou.

Note. Here again, the above equivalence is an equivalence of categories with the appropriate
notions of morphisms of X-points.

Conventions.

− If (f1, · · · , fn) is a n-tuple of composable 1-morphisms of M we will write f1 ⊗ · · · ⊗ fn for
the horizontal composition of f1, · · · , fn with all pairs of parentheses starting in front,

− Similarly if (α1, · · · , αn) is a n-tuple of composable 2-morphisms we will write α1⊗· · ·⊗αn
for the horizontal composition of the α1, · · · , αn with all pairs of parentheses starting in
front,

− For every 1-morphism f : U −→ V of M we will write rf (resp. lf ) for the right identity
(resp. left identity) isomorphism f ⊗ IdU

∼−→ f (resp. IdV ⊗f ∼−→ f). We will write Idf for
identity 2-morphism.
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Proof. We start with the direction (2)⇒ (1).
Let C be an M -category. Denote by X the set

⊔
CU . Our goal is to construct a (colax)

homomorphism denoted again C : PX −→M . Before doing this we recall some basics fact about
the path-category.

By definition for each pair (A,B) of elements of X, PX(A,B) is the category of elements of
some functor from ∆+ to Set 6. It follows that the morphisms of PX(A,B) are parametrized by
the morphisms of ∆.

Since the morphisms of ∆ are generated by the cofaces di : n+1 −→ n, and the codegeneracies
si : n −→ n+1 (see [68]), one has that the morphisms of PX(A,B) are generated by the following
two types of morphisms:

[n+ 1, A −→ · · ·Ai−1
(Ai−1,Ai)−−−−−−→ Ai

(Ai,Ai+1)−−−−−−→ Ai+1 · · · −→ B]

[n,A −→ · · ·Ai−1
(Ai−1,Ai+1)−−−−−−−→ Ai+1 · · · −→ B]

(∗) di
��

and

[n,A −→ · · ·Ai
(Ai,Ai+1)−−−−−−→ Ai+1 · · · −→ B]

[n+ 1, A −→ · · ·Ai
(Ai,Ai)−−−−→ Ai

(Ai,Ai+1)−−−−−−→ Ai+1 · · · −→ B]

(∗∗) si
��

.

The morphisms of type (∗) correspond to composition and those of type (∗∗) correspond to add the
identity of the ith object. With these observations we define the component CAB : PX(A,B) −→
M as follows.

1. The image of [n,A −→ · · ·Ai
(Ai,Ai+1)−−−−−−→ Ai+1 · · · −→ B] by CAB is the 1-morphism of M :

C(An−1, B)⊗ · · · ⊗ C(Ai, Ai+1)⊗ · · · ⊗ C(A,A1).

2. When A = B ∈ CU , then the image of [0, A] is IdU , the unity of M (U,U).

3. The image of a morphism of type (∗) by CAB is the composite :

C(An, B)⊗ · · · ⊗ C(Ai, Ai+1)⊗ C(Ai−1, Ai)⊗ · · · ⊗ C(A,A1)

C(An, B)⊗ · · · ⊗ [C(Ai, Ai+1)⊗ C(Ai−1, Ai)]⊗ · · · ⊗ C(A,A1)

C(An, B)⊗ · · · ⊗ C(Ai−1, Ai+1)⊗ · · · ⊗ C(A,A1)

o
��

IdC(An,B)⊗···⊗cAi−1AiAi+1
⊗···⊗IdC(A,A1)

��

.

6 from ∆ to Set if A = B
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4. Similarly the image of a morphism of type (∗∗) is the composite:

C(An−1, B)⊗ · · · ⊗ C(Ai, Ai+1)⊗ · · · ⊗ C(A,A1)

C(An−1, B)⊗ · · · ⊗ [I ⊗ C(Ai, Ai+1)]⊗ · · · ⊗ C(A,A1)

C(An−1, B)⊗ · · · ⊗ [C(Ai, Ai)⊗ C(Ai, Ai+1)]⊗ · · · ⊗ C(A,A1)

C(An−1, B)⊗ · · · ⊗ C(Ai, Ai)⊗ C(Ai, Ai+1)⊗ · · · ⊗ C(A,A1)

o IdC(An−1,B)⊗···⊗l−1
C(Ai,Ai+1)

⊗···⊗IdC(A,A1)

��

IdC(An,B)⊗···⊗[IAi⊗IdC(Ai,Ai+1)]⊗···⊗IdC(A,A1)

��

o
��

.

5. Using the bifunctoriality of the composition ⊗ in M , its associativity and the fact that
morphisms of type (∗) and (∗∗) generate all the morphisms of PX(A,B), one extends the
above formula to a functor CAB : PX(A,B) −→M .

The construction of the homomorphism is not complete until we say what are the colaxity maps
ϕ(A,B,C)(t, s) : CAC(t⊗ s) −→ CBC(t)⊗ CAB(s).

But if s = [n,A · · ·Ai
(Ai,Ai+1)−−−−−−→ Ai+1 · · · −→ B], and t = [m,B · · ·Bj

(Bj ,Bj+1)−−−−−−→ Bj+1 · · · −→ C] ,
we have:

− t⊗ s = [n+m,A −→ · · ·B −→ · · ·C],

− CAC(t⊗ s) = C(Bm−1, C)⊗ · · · ⊗ C(B,B1)⊗ C(An−1, B)⊗ · · · ⊗ C(A,A1),

− CBC(t)⊗ CAB(s) = [C(Bm−1, C)⊗ · · · ⊗ C(B,B1)]⊗ [C(An−1, B)⊗ · · · ⊗ C(A,A1)].

Then the map ϕ(A,B,C)(t, s) is the unique isomorphism from CAC(t ⊗ s) to CBC(t) ⊗ CAB(s)
given by the associativity of the composition ⊗. This map consists to move the parentheses from
the front to the desired places. Clearly ϕ(A,B,C)(t, s) is functorial in t and s.
We leave the reader to check that the functors CAB together with the maps ϕ(A,B,C)(t, s) and
ϕA = IdI , satisfy the coherence axioms of morphism of bicategories. There C is a (colax) unitary
7 homomorphism from PX to M as desired.

The direction (1)⇒ (2) has a short proof. Let C be an X-point of (M ,W ). We construct an
M -category denoted again C as follows.

1. Put Ob(C) = X.

2. For every pair (A,B) of elements of X, the hom-object is C(A,B) := CAB([1, (A,B)]).

3. If C takes A ∈ X to U ∈ Ob(M ), then the component CAA : PX(A,A) −→M (U,U) is a
(colax) strict monoidal functor; in particular ϕA : C([0, A]) −→ IdU is invertible.
Furthermore we have a canonical 2-cell [0, A]

!−→ [1, (A,A)] in PX(A,A) whose image under

C is a 2-morphism C([0, A])
CAA(!)−−−−→ C([1, (A,A)]). One takes the unit map IdA to be the

composite:

IdU
ϕA
−1

−−−→ C([0, A]) −→ C([1, (A,A)]) = C(A,A).

7unitary means ϕA is the identity for every object A.
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4. For every triple (A,B,C) of elements ofX we construct the composition as follows. Consider
the following span

C([1, (B,C)])⊗ C([1, (A,B)]) C([1, (A,C)])
cABC

C([2, (A,B,C)])

ϕ(A,B,C)(t,s)

zz

C{[2,(A,B,C)]
!−→[1,(A,C)]}

""
//

where the left leg is the colaxity map while the right leg is an evaluation of the component
CAC . By hypothesis the map ϕ is invertible, and we take the composition to be:

cABC = C{[2, (A,B,C)]
!−→ [1, (A,C)]} ? ϕ(A,B,C)(t, s)−1

5. Finally one can easily check that the associativity and unity axioms required in C follow
directly from the coherence axiom required in the definition of the morphism C.

It’s clear that the above data give an M -category. �

Remark 2.3.4. The above proof can be shortened if we use the isomorphism mentioned before
in Corollary 2.2.2:

Lax(X,M ) ∼= Hom(PX ,M ).

Lax(X,M ) is precisely the category of M -category having as set of objects X. The reason we did
not present that proof in the first place is the fact that we wanted to outline the combinatorics
that PX carries.

2.3.3 Segal categories

We recall that ∆ is the “topologists’s category of simplices” (the empty set has been removed
from ∆+). We mentioned previously that for a small category C we can associate functorially a
simplicial set N (C) : ∆op −→ Set, called nerve of C. The natural maps, called Segal maps

N (C)k −→ N (C)1 ×N (C)0
· · · ×N (C)0

N (C)1

are isomorphisms.
Simpson and Hirschowitz [41] generalized this process to define inductively Segal n-categories.
They defined first a ‘category’ nSePC of Segal n-précat as follows.

• A Segal 0-précat is a simplicial set, hence a 1-point of (Set,×, 1) in our terminology.

• For n ≥ 1, a Segal n-précat is a functor :

A : ∆op −→ (n− 1)SePC

such that A0 = A (0) is a discrete object of (n − 1)SePC. Since (n − 1)SePC has finite
products, we can formulate it again in terms of 1-point of (n− 1)SePC.

• A morphism of Segal n-précat is a natural transformation of functors.

These data define the category nSePC. They gave a notion of equivalence in nSePC and model
structure on it.

Finally they define a Segal n-category to be a Segal n-précat A : ∆op −→ (n− 1)SePC such
that :
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• for every k, Ak is a Segal (n− 1)-category ,

• for every k ≥ 1, the canonical maps

Ak −→ A1 ×A0 · · · ×A0 A1

are equivalences of Segal (n− 1)-précats.

Remark 2.3.5. These definitions involved the use of discrete objects. A discrete object in [41],
is by definition an object in the image of some fully faithful functor from Set to (n − 1)SePC.
For a Segal n-category A the discrete object A0 plays the role of “set of objects”. We can see the
analogy with the nerve of a small category.
It’s important to notice that in the above definitions, one needs a notion of fiber product to
define the Segal maps

Ak −→ A1 ×A0 · · · ×A0 A1.

In fact (n− 1)SePC is a cartesian monoidal category.

One could interpret A as a generalized nerve of a category enriched over ((n−1)SePC,×, 1)
with an ‘internal set’ of object A0.

If we do not have a notion of discrete object and a fiber product we need to change the con-
struction a little bit to define generalized Segal categories. For this purpose, one needs a category
M together with a class of homotopy equivalences such that (M ,W ) form a base of enrichment
. We take the set of objects ‘outside’ M , to avoid the use of discrete objects, by introducing the
set X.

The following definition is on the “level 2” when M is bicategory. We will extend it later to
the case where M is an ∞-category .

Definition 2.3.8. For (M ,W ) a base of enrichment with W a class of homotopy equivalences.
For any set X, an X-point of (M ,W ) will be called a Segal M -category.

Proposition 2.3.9. Let M = (n−1)SePC and W be the equivalences of Simpson and Hirschowitz.
For a set X we have an equivalence of categories between

− a Segal n-category A in the sense of Simpson-Hirschowitz, with A0 = X

− an X-point F of (M ,W ), satisfying the induction hypothesis:
F [p, (x0, · · · , xp)] is a Segal (n− 1)-category.

Proof. Obvious. �

2.3.4 Linear Segal categories

We fix M = (ChModR,⊗R,R) the monoidal category of (co)-chain complexes of R-modules
for a commutative ring R.

Choice of the class of maps W

1. When working with a general commutative ring R then we will take W to be the class of
chain homotopy equivalences.

2. But if R is a field we can take W to be the class of quasi-isomorphisms.
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Warning. We do not require a priori M to be a model category where W is the class of
weak equivalences. However the examples that are relevant for our purposes are where M =
(ChModR,⊗R,R) is equipped with the monoidal model structure ( see [42, Prop. 4.2.13]) with
W the class of quasi-isomorphisms.

Remark 2.3.6. Leinster [60] pointed out that for a general commutative ring R, the quasi-
isomorphisms may not be stable under tensor product because of the Künneth formula.

Definition 2.3.10. Let X be a set and M = (ChModR,⊗R,R) together with W the suitable
class of weak equivalences. A Segal DG-category is an X-point of (M ,W ), that is a W -colax
morphism

F : PX −→M

Remark 2.3.7.

• As one can see a strict Segal point of (M ,W ) is a classical DG-category.

• As usual we can use the iterative process à la Simpson-Tamsamani by defining enrichment
over M -Cat with the suitable weak equivalences. This way we can define also higher lin-
ear Segal categories. But in order to iterate the process one needs a definition of a weak
equivalence between Segal DG-categories (see Definition 2.4.12).

2.3.5 Nonabelian cohomology

G-categories

Bénabou [10] pointed out that we can use polyads to ‘pick up’ a coherent family of isomor-
phisms satisfying cocyclicity. But polyads are enriched categories and correspond to strict Segal
X-points in our language, it appear that the cocyclicity conditions of torsors reflect a com-
position operation. For example EG for a group G in (Set,×) is a G-category in an obvious
manner. The reader can find in [47] an account on torsors.

We denote by BG the usual category having one object say, ?, and Hom(?, ?) = G.

Definition 2.3.11. Let X be a set. An X-point F : PX −→ BG is called a G-category.

If we denote by MX
F the corresponding category then we have for every pair (a, b) of elements

of X, an element MX
F (a, b) of G. The composition is the identity and gives a cocyclicity condition

MX
F (a, b) �MX

F (b, c) = MX
F (a, c) and MX

F (a, a) = e, where e is the unit in G.

Observations 2.3.2.

− We’ve considered a group in the category of sets but we can generalize it to any group
object using the functor of points. This will be an iterative process of enrichment, that is
enrichment over the categories of G-Cat when G is group in (Set,×).

− It follows immediately that any group homomorphism from G to H will take a G-category
to an H-category.

− The geometric picture behind a G-category is the notion of G-bundle. Roughly speaking we
want to consider each element of X as an open set of some space and to consider MX

F (a, b)
as a transition function. We can then consider F a generic trivialization. When all the
MX

F (a, b) are equal to e, then our vector bundle (or local system) is trivial.
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Terminology. Let A be a small category. Following the terminology of Simpson, we will call
interior of A and denote by Int(A ) the biggest groupoid contained in A . For a base (M ,W ),
we take the interior Int[(M ,W )] to be the sub-bicategory whose underlying 1-category is the
interior of M≤1.

Definition 2.3.12. Let C be a small category. A C-generic cohomological class in coefficient in
M is a Segal C-point of Int[(M ,W )].

Remark 2.3.8. When C = X an X-generic cohomological class is precisely a Segal MW -category
having X as set of object and such that each Hom(A,B) is invertible. We can require also that
each Hom(A,A) is contractible.

Parallel transport

In the following we give an example of 1-functor which is viewed as an enrichment. We refer
the reader to Schreiber-Waldorf [75] and references therein for an account on parallel transport
with a guidance toward higher categories.

Warning. For a smooth manifold M we will consider below the Path-groupoid P1(M) as
defined in [75] which is different from the fundamental groupoid Π1(M).

Definition 2.3.13. Let x, y be two points in M . A path γ from x to y is a smooth map
γ : [0, 1] −→M such that there is a positive number ε, 0 < ε < 1 with

− γ|[0,ε] = x;

− γ|[1−ε,1] = y.

The terminology can be confusing since the paths we consider here are not the usual paths for a
topological space. There is a notion of thin homotopy equivalence of paths (see [75, Definition
2.2]). Parallel transport along these special paths is invariant by thin homotopy equivalence even
if we have a non flat connection. We can form the path groupoid P1(M) where the objects are
the points of M and the morphisms are the class of thin-homotopy classes of smooth paths in M .

Let M be a smooth manifold and E −→ M a vector bundle equipped with a connection ∇.
The connection induces a functor

Tra∇ : P1(M) −→ Vect

called ‘parallel transport functor’ where Vect is the category of vector spaces.
The functor sends each point x of M to its fiber Ex, and each path f : x −→ y, to the parallel
transport Tra∇(f) : Ex −→ Ey induced by the connection along the path.

The relation with enriched categories comes when we view each point x of P1(M) to be over
its fiber Ex.

In fact if we consider Vect as a bicategory, and even a strict 2-category, with all the 2-cells
being identities (or degenerate) we can “lift” the functor

Tra∇ : P1(M) −→ Vect

to a strict homomorphism from the 2-path-bicategory of P1(M) to Vect (see Observations 2.2.1).
In our terminology this will be strict ‘free’ P1(M)-point of Vect but we may prefer the terminol-
ogy P1(M)-module in this situation.

The corresponding P1(M)-module will be denoted E −1 and is described as follows.
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1. For every x in P1(M), E −1(x) = Ex.

2. For every pair (x, y) , the component E −1
xy : PP1(M)(x, y) −→ Vect is given by :

if s = [n, x −→ · · ·xi fi−→ xi+1 · · · −→ y] with each fi : xi −→ xi+1 a morphism in P1(M)
then we set

E −1(s) := Tra∇(fn−1) ◦ · · · ◦ Tra∇(fi) ◦ · · · ◦ Tra∇(f0).

We see that E −1(s) is a linear map from Ex to Ey.

3. For x = y , we have E −1([0, x]) = IdEx .

4. for every s, s′ in PP1(M)(x, y), and any morphism u : s −→ s′ then we define E −1
xy (u) =

IdE−1(s). This definition is well defined because we know that morphisms in PP1(M)(x, y)
are generated by the morphisms of type (∗) and (∗∗) as we saw in the proof of Proposition
2.3.7. And one easily see that the image of a morphism of type (∗) or (∗∗) is the identity,
therefore E −1(s) = E −1(s′).

5. Finally for every triple (x, y, z) and every (t, s) in PP1(M)(y, z)×PP1(M)(x, y) it’s easy to
see that

E −1(t⊗ s) = E −1(t) ◦ E −1(s).

These data satisfy the coherences axioms and E −1 is a strict P1(M)-module (or P1(M)-point) of
(Vect, IdVect).

Observations 2.3.3. The following observations are also suggestions that one may want to
consider.

1. Since P1(M) is a groupoid, every morphism f : x −→ y is invertible therefore the induced
map
Tra∇(f) : Ex −→ Ey is invertible in Vect. Taking x = y we see that E −1

xx is a represen-
tation of the (smooth) fundamental group π1(M,x). Therefore studying C-point with C a
groupoid becomes important to understand the homotopy of generalized spaces M .

2. It’s well known that if we consider flat connection ∇, then the functor Tra∇ factorizes
through P1(M), the fundamental groupoid of X. And we can still work in enriched cate-
gory context.

3. The idea of thinking a vector bundle on M as an enriched category extend our intuition
which consists to ‘view’ a category as a topological space (the classifying space). We can
consider a vector bundle with a connection as a linear copy 8 of our space M . A point x
is identify with the corresponding fiber Ex and every path from a point x to a point y gives
a linear map by parallel transport.

4. Grothendieck defined the fundamental group in algebraic geometry as the group automor-
phism of a fiber functor (see [39]). This suggests to identify a point x of a generalized space
M with it’s “motivic” fiber functor Mot(ωx) (to be defined). In our terminology we will view
x as being over (or taking as ‘copy’) Mot(ωx). We will then have an enrichment over the
“category of fiber functors”. Enrichment in this situation can be thought as giving a copy of
C ‘of type M ’.

8 this terminology matches with the expression ‘linear representation’
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5. We see through out this example how enriched category theory appears in geometry and
homotopy context. We saw that if we take Vect as our base of enrichment we have a
“linearization” of the 1-homotopy type of M . Now if want more information on the higher
homotopy, we need to replace Π1(M) by Π∞(M) and Vect by another base which contains
more information, then doing a base changes and base extensions.

One can take for example SVect,nVect,ChVect,Perf , which are ,respectively, the cate-
gory of simplicial vector spaces, n-vector spaces, complex of vector spaces, perfect complexes.
In these categories there is a notion of weak equivalence , and we can consider Segal C-points
(or C-module). It appears that having a theory of Segal enriched categories becomes impor-
tant.

6. A further step will be to consider the notion of gluing Segal Ci-points of M where Ci is a
covering of C. This will be part of [4].

2.3.6 Quasi-presheaf

Definition 2.3.14. Let C be a small category and (M ,W ) a base of enrichment with W a class of
homotopy 2-equivalences. A Segal MW -presheaf in values in M is a Segal Cop-point of (M ,W ),
that is a W -colax morphism

F : PCop −→M .

Example 2.3.15. Let’s consider the Grothendieck anti-equivalence given by the ‘global section
functor’ :

Aff op Γ−→ ComRing

where Aff is the category of affine schemes and ComRing is the category of commutative rings; Γ
is the global section functor of the structure sheaf.
We want to consider this functor as a quasi-presheaf which is a real presheaf taking its values in
Bim. Recall that Bim is the bicategory described as follows.

− Objects are rings : R, S,...

− a 1-morphism from R to S is a bimodule SMR,

− a 2-morphism from SMR to SNR is a morphism of bimodule,

− The composition is given by the obvious tensor product.

The reader can find a detailed description of Bim in the paper of Bénabou [10].

Then the presheaf consists roughly speaking to send

− each (Spec(R),OSpec(R)) to R

− each morphism of schemes f : Spec(R) −→ Spec(S) to the (S,R)-bimodule ϕ? : S 9 R,
where ϕ is the corresponding ring homomorphism given by the anti-equivalence.

Note. In a more compact way we obtain the presheaf using the ‘embedding’ described in [10]
from ComRing to Bim.
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2.4 Morphisms of path-objects

2.4.1 Transformation

We recall briefly the notion of transformation between colax morphisms.

Definition 2.4.1. [Transformation]
Let B and M be two bicategories and F = (F,ϕ), G = (G,ψ) be two colax morphisms from

B to M . A transformation σ : F −→ G

B M

G

88

F

&&
σ
��

.

is given by the following data and axioms.

Data :

− 1-cells σA : FA −→ GA in M

− Natural transformations

B(A,B)

M (FA,FB)

M (GA,GB)

M (FA,GB)

GAB //

FAB

��

−⊗σA

��

σB⊗−
//..

��

σAB

19

thus 2-cells of M , σt : σB ⊗ Ft −→ Gt⊗ σA, for each t in B(A,B).

Axioms :

The following commute :

σC ⊗ F (t⊗ s) G(t⊗ s)⊗ σA

σC ⊗ (Ft⊗ Fs) (Gt⊗Gs)⊗ σA

(σC ⊗ Ft)⊗ Fs

(Gt⊗ σB)⊗ Fs Gt⊗ (σB ⊗ Fs)

Gt⊗ (Gs⊗ σA)

Id⊗σs

<<

σt⊗Id &&

σt⊗s //

Id⊗ϕ

��

ψ⊗Id

��

a−1

��
a−1

OO

a //

//

σA ⊗ FIA

σA

GIA ⊗ σA

σA ⊗ IFA IGA ⊗ σAr
∼ //

l−1

∼ //

Id⊗ϕA

��

ψA⊗Id

��

σIA //
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Remark 2.4.1. When all the 1-cells σA : FA −→ GA are identities we will not represent them
in the diagrams.

2.4.2 Morphism of path-objects

In this section we’re going to define what is a morphism between C-point and D-point of
(M ,W ), for C and D two small categories, we call them pre-morphisms. We will see in a mo-
ment that the morphisms of points of (M ,W ) which are relevant to enrichment behave exactly as
morphisms of vector bundle over M , which means fiber wise compatible. This is not surprising
because it only makes sense to speak about ‘morphism’ between enriched categories having the
same ‘type of enrichment’. When M has one object then this condition will be fulfilled but the
morphisms we consider are more general than a classical morphisms between enriched categories.
The M -morphisms correspond to the notion of icons in the sense of Lack [57].

Recall that for any category C, by construction of PC we have Ob(C) = Ob(PC). Moreover
any functor
Σ : C −→ D extends to a strict homomorphism PΣ : PC −→PD.

Definition 2.4.2. Let F : PC −→ M and G : PD −→ M be respectively two path-objects
of (M ,W ). An M -premorphism from F to G, is a pair Σ = (Σ, σ) consisting of a functor
Σ : C −→ D together with a transformation of morphisms of bicategories σ : F −→ G ◦PΣ

PC PD

M

PΣ //

F

$$
G

}}

σ +3

An M -premorphism is called an M -morphism if all the 1-cells σA are identities. In particular
if A is over U ∈ Ob(M ) then so is ΣA (see Figure 4 below).

[1,Σf]

G

F([1,f]) G([1,Σf])
σ

M

PC

C (A, B)⌦ C (B,C) �! C (A, C)

PD

P�

1

M

PC

C (A, B)⌦ C (B,C) �! C (A, C)

PD

P�

1

M

PC

C (A, B)⌦ C (B,C) �! C (A, C)

PD

P�

1

M

PC

C (A, B)⌦ C (B,C) �! C (A, C)

d(A, B) + d(B,C) � d(A, C)

µ : R⌦R �! R

��!
AB +

��!
BC =

�!
AC

R
AB

+
R

BC
=

R
AC

'ab.'bc = 'ac

1 + 1 � 1

P1(X)

Ex

Ey

Ez

x

y

z

Trar(f)

f

PD

P�

P⌃

1

•

•

●

●

●

[1,f]

●

U

V

A

B

ΣA

F

Figure 4

ΣB
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Observations 2.4.1. Given two sets X and Y , if F and G are respectively strict X-point and
Y -point of M , it’s easy to check that an M -morphism is exactly an M -functor from MX

F to M Y
G

in the classical sense.

2.4.3 Bimodules

Warning. We remind the reader that the composition in an M -category is presented here in this
order :

C(B,C)⊗ C(A,B) −→ C(A,C).

Then each C(A,B) is a (C(B,B),C(A,A))-bimodule with C(B,B) acting on the left and C(A,A)
on the right. But as one can see if the composition was presented as : C(A,B) ⊗ C(B,C) −→
C(A,C), then the action of C(B,B) would have been on the right.

We saw that a monoid T (or monad) in (M ,W ) is given by a strict 1-point that is a homomor-
phism:

T : P1 −→M .

Let 2 be the posetal category described as follows.
Ob(2) = {0, 1} and

2(i, j) =





{(i, j)} if i < j

{Idi = (i, i)} if i = j

∅ if i > j

The composition is the obvious one.

We have two functors : 1
i0−→ 2 and 1

i1−→ 2. These functors induce by functoriality two
functors Pi0 and Pi0 from P1 to P2.

Definition 2.4.3. Let T0, T1 be two Segal 1-points of (M ,W ). A bimodule from T0 to T1 is a
Segal path-object

Ψ : P2 −→M

such that Ψ ◦Pi0 = T0 and Ψ ◦Pi1 = T1.

This definition has a natural generalization for every C-point and D-point of (M ,W ).

The general case All through this work we’ve always identified monoids with enriched cate-
gories with one object. Now for bimodules in M , e.g C(A,B), we want to identify them with
oriented enriched categories having two objects. Here by ‘oriented’ we mean that there may
not be a hom-object between some pair of objects.

We saw previously, that in some cases, given a C-point F : PC −→M we want to identify F
with a generalized M -category M C

F . In the following we’re going to express the classical notion
of bimodule (also called distributor, profunctor or module) using path-objects. We will express
everything in terms of morphisms of path-object but one should keep in mind that these defini-
tions generalize the classical ones.

Our idea to define a bimodule in general between a C-point and a D-point is to consider an
E -point, where E contains both C and D together with an ‘order’ in E between the objects of C
and D. This lead us to the following.
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Definition 2.4.4. Let C and D be two small categories. A bridge from C to D (resp. D to C) is
a category E equipped with two embedding 9 functors

E|C : C −→ E , E|D : D −→ E

such that for every A in Ob(C) and B in Ob(D) we have E (B,A) = ∅ (resp. E (A,B) = ∅). 10

A morphism of bridges is a functor β : E −→ G such that : β ◦ E|C = G|C and β ◦ E|D = G|D.

A bridge E is said to be rigid if Ob(E ) ∼= Ob(C)
∐

Ob(D).

Warning. We make no claim of inventing or introducing these notions. The theory of distributors
(or profunctors or modules) is widely treated in the literature; the reader can find an account on
distributors in [11],[20], [58], [86]. It was acknowledged to the author that what we call ‘rigid
bridge’ appear in Street’s paper [84], as a special case of collage.

Example 2.4.5.

1. The first example is the previous category 2 which is a bridge from 1 to 1.

2. In the following we’re going to construct the ‘thin’ bridge between any small categories.

Let’s denote by C ≺ D the small category described as follows.

We take Ob(C ≺ D) = Ob(C)
∐

Ob(D).

[C ≺ D](A,B) =





C(A,B) if (A,B) ∈ Ob(C)×Ob(C)

D(A,B) if (A,B) ∈ Ob(D)×Ob(D)

{(A,B)} ∼= 1 if (A,B) ∈ Ob(C)×Ob(D)

∅ if (A,B) ∈ Ob(D)×Ob(C)

The composition is given by the following rules.

− For A in Ob(C) and B in Ob(D) , if O is an object of C then the composition cOAB is
the constant (unique) function which sends every pair [f, (A,B)] to (O,B).

− Similarly if P is an object of D, then the composition cABP is the constant function
which sends every pair [(A,B), g] to (A,P ).

− The restriction of the composition to C ( resp. to D) is the original one.

One easily check that C ≺ D is a category and we have two canonical embeddings :
iC : C −→ (C ≺ D) and iD : D −→ (C ≺ D).

Remark 2.4.2. It’s easy to see that (C ≺ D) is the terminal rigid bridge. In some cases
depending of the base M we will only consider this terminal rigid bridge.

Notation 2.4.1. We will denote by PC↪→E and PD↪→E the induced embeddings on the 2-path-
categories.

9By ‘embedding’ we mean injective on object and fully faithful
10We’ve identified A with E|C(A) and B with E|D(B)
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Bridges and classical bimodules (or distributors) are connected by the following proposition
that we attribute to Street [83, Theorem 6.13]. Since our context is very simple, we give a direct
proof using less technology than in Street’s paper.

Proposition 2.4.6. We have an equivalence categories between the following data.

1. A distributor X : D 9 C (equivalently a functor X : D −→ Ĉ);

2. A rigid bridge E from C to D

This equivalence is an equivalence of categories.

Sketch of proof. Given a bridge E from C to D one defines the associated distributor X (E ) :

D −→ Ĉ by the functor of points X (E )(D) := Hom(E|C(−), D) and similarly on morphisms
X (E )(f) := Hom(E|C(−), f).

Conversely given a distributor X : D −→ Ĉ, we define the associated bridge E (X ) as follows.

Set Ob(E (X )) = Ob(C)
∐

Ob(D).

The restriction of E to Ob(C) (resp. Ob(D)) is equal to C (resp. D) and for A in Ob(C) and
D in Ob(D) we take E (A,D) := X (D)(A).

We define the composition in the following manner.

− For a triple of object (A,A′, D) with A,A′ in Ob(C) and D in Ob(D), the composition
function is given by

cAA′D : X (D)(A′)× C(A,A′) −→X (D)(A)

which sends each element (a, f) of X (D)(A′)× C(A,A′) to X (D)(f)a.

− Similarly given D, D′ two objects of D and A an object of C then

cADD′ : D(D,D′)×X (D)(A) −→X (D′)(A)

sends an element (g, b) ofD(D,D′)×X (D)(A) to X (g)A(b), where X (g)A is the component
at A of the natural transformation X (g) : X (D) −→X (D′).

�

Definition 2.4.7. Let F : PC −→M and G : PD −→M be respectively two Segal C-point and
D-point of (M ,W ) and E a rigid bridge from C to D,

− An E -(G,F )-bimodule Ψ : G9 F is a Segal E -point of (M ,W )

Ψ : PE −→M

satisfying the ‘boundary conditions’: Ψ ◦PC↪→E = F and Ψ ◦PD↪→E = G

− Given Ψ1, Ψ2 two E -(G,F )-bimodules, a morphism of bimodules from Ψ1 to Ψ2 is an M -
morphism (IdE ,Θ) which induces the identity on both F and G.
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− More generally, let E1 and E2 be two rigid bridges from C to D and Ψ1 (resp. Ψ2) be an
E1-(G,F )-bimodule (resp. E2-(G,F )-bimodule).

A morphism of (G,F )-bimodules from Ψ1 to Ψ2 is an M -morphism

Σ = (Σ, σ) : Ψ1 −→ Ψ2

such that the induced morphism from Ψ1 to Σ?Ψ2 is a morphism of E1-(G,F )-bimodules.
Here Σ?Ψ2 is the obvious pullback of Ψ2 along Σ.

Observations 2.4.2.

1. To understand what’s really happening in this definition it suffices to write it when C = X,
D = Y , E = (X ≺ Y ) and F , G and Ψ are respectively strict X-point, Y -point and
(X ≺ Y )-point of M .

Let Ψ =G ΨF be an (X ≺ Y )-strict point of M . Given a pair (P,Q) of objects of X and an
object R of Y , we have by definition of Ψ the following span of the same type as the ones
which give the composition in the categories F and F .

Ψ([1, (Q,R)])⊗Ψ([1, (P,Q)]) Ψ([1, (P,R)])
cPQR

Ψ([2, (P,Q,R)])

ϕ

zz

Ψ{[2,(P,Q,R)]
!−→[1,(P,R)]}

""
//

And the condition Ψ ◦PiC = F says that Ψ([1, (P,Q)]) = FPQ([1, (P,Q)]) = F (P,Q) and
we have a map

cPQR : Ψ([1, (Q,R)])⊗ F (P,Q) −→ Ψ([1, (P,R)]).

Similarly if we take one object Q in X and two objects R,S in Y , we will have a map

cQRS : Ψ([1, (Q,R)])⊗G(R,S) −→ ΨQS([1, (Q,S)]).

It’s clear that these data together with unity and the associativity coherences contained in
the definition of Ψ give a bimodule (also called distributor, profunctor or module) from F
to G in the classical sense.

2. We have the classical fact any M -morphism Σ = (Σ, σ) from F to G induces two bimodules
: Σ? : F 9 G and Σ? : G9 F , see [11], [20] [58] [86], for a description.

Remark 2.4.3.

1. We can define the classical operations such as composite or ‘tensor product’ of a E -(G,F )-
bimodule by another E ′-(F,D)-bimodule but the existence of such (G,D)-bimodule will
involve some cocompleteness conditions on the hom-categories in M . The idea consists to
consider the ‘composite bridge’ which is given by the composite of the corresponding dis-
tributors and define a path-object satisfying the ‘boundary conditions’.

2. With this composite we can define a category of ‘enriched distributors’ in a suitable manner.
We will come back to this when we will give a model structure in [4].
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For the moment we will assume that M is ‘big and good’ enough to have all these
operations. We will denote by M -Dist the bicategory described as follows.

− Objects are Segal path-objects (C, F )

− Morphisms are Bimodules

− 2-morphisms are morphism of bimodules.

Presheaves on path-object
For a given Segal path-object F : PC −→ M , denote by M C

F the corresponding generalized
Segal M -category. In the following we give the definition of the analogue of a presheaf on M C

F ,
that is functor from (M C

F )op to M . When M is (ChVect,⊗k,k), then M C
F will be a generalized

DG-category, and a functor A : (M C
F )op −→ M is sometimes called ‘A -DG-module’ or simply

A -module. So in general we may call such a functor an M -module, like in [86].

Notation 2.4.2.

1. We will denote by η the ‘generic object’ of M , which consist to select an object U of M
with it’s identity arrow IdU . We have

ηU : P1
[U,IdU ]−−−−→M

which express IdU as the trivial monoid. We will identify ηU with U . When M has one
object, hence a monoidal category there is only one generic object. ηU is sometimes denoted
simply U or Û .

2. For an object A of C, we have the canonical distributor YA : 1 −→ Ĉ which consists to select
the functor of points C(−, A). We will denote by E (C)A the associated bridge from C to 1
given by Proposition 2.4.3.

Taking 1 = {?, Id?}, E (C)A is described as follows.

− Ob(E (C)A) = Ob(C)
∐{?}

− For every B in Ob(C) we define E (C)A(B, ?) := C(B,A) and , E (C)A(?,B) := ∅

− We take E (C)A(?, ?) = {Id?}

The composition is the obvious one and we check easily that E (C)A is a rigid bridge from C

to 1.

3. In general a distributor 1 −→ Ĉ consists precisely to select an object of Ĉ, say Z, and we
will denote by EZ the corresponding bridge from C to 1.

Definition 2.4.8. Let F : PC −→ M be a Segal path-object. We denote by PF the category
described as follows.

1. Objects are (ηU , F )-bimodules i.e Segal path-object Ψ : PE (ηU ) −→ M with E (ηU ) a rigid
bridge from C to 1, such that the ‘boundary conditions’ are satisfied:
Ψ ◦PC↪→E (ηU ) = F and Ψ ◦P1↪→E (ηU ) = ηU .
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2. For ΨU , ΨV respectively in M -Dist(ηU , F ), M -Dist(ηV , F ), a morphism α : ΨU −→ ΨV

when it exists, is the object of M -Dist(ηU , ηV ) = M (U, V ) who represents the functor

M -Dist[ΨV ⊗−,ΨU ] : M -Dist(ηU , ηV ) −→M -Dist(ηU , F )

Relative Yoneda functor We have a relative F -Yoneda functor YF : C −→ PF who sends an
object A of C to a path-object YF,A : PE (C)A −→M ∈M -Dist(ηFA, F ), described as follows.

Recall that here E (C)A is the rigid bridge from C to 1 obtained by the distributor YA : 1 −→ Ĉ.
To define YF,A we need to specify the image of a chain [1, P

γ−→ ?] which generated the other chains
of E (C)A ending at ?. But for this it suffices to specify only for P = A, because the morphisms
in E (C)A between P and ? are generated by C(P,A) and the morphism between A and ?. But in
some sense we can think ? ‘as’ a copy of A, which means that A has a ‘multiplicity’.

So to define the path-object YF,A we need to remove the discrepancy between the actions of
A and ?. We do it by sending every chain [1, A

γ−→ ?] to the identity arrow IdFA. More generally
for a chain [n, s] ending at ?, we take the image of [n, s] to be the image of [n′, s′], where s′ is the
‘longest’ chain ending at A contained in s.

When C = X and F is a strict path-object, then YF,A is just the classical Yoneda functor, see
for example [86].

2.4.4 Base Change and Reduction

Definition 2.4.9. Given two bases of enrichment (M1,W1), (M2,W2), a morphism of bases is a
homomorphism of bicategories L : M1 −→M2 such that L(W1) ⊆ W2.
Then if (C, F ) is a point of (M1,W1) it follows immediately that (C,L ◦F ) is a point of (M2,W2).
This operation is called base change along L.

Proposition 2.4.10. Let (M ,W ) be a base of enrichment. There exists a bicategory W −1M
together with a homomorphism LW : M −→ W −1M such that:

1. LW makes W invertible,

2. any homomorphism Φ : M −→ B which makes W invertible factorizes as Φ = Φ ◦ LW with

Φ : W −1M −→ B

a homomorphism.

3. W −1M is unique up to isomorphism.

Remark 2.4.4. The above result is restricted to the underlying 1-category of the 2-category of
bicategories, homomorphisms and icons. The reader who might be interested can generalize the
above result and make W −1M weakly universal i.e universal in the 2-category.

Proof. See Appendix 4.9. �

Definition 2.4.11. Let (M ,W ) be a base of enrichment and LW : M −→ W −1M a localization.
For any Segal point (C, F ) of (M ,W ) the pair (C,LW ◦ F ) is called a reduction of (C, F ). It’s a
strict Segal point of W −1M . We will denote for short [F ] = (C,LW ◦ F ).

Definition 2.4.12. A morphism of Segal M -categories σ : F −→ G is a weak equivalence of Segal
M -categories if the induced map [σ] : [F ] −→ [G] is a classical equivalence of W −1M -categories.
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The above definition concerns only morphisms between Segal M -categories, which is not suffi-
cient since we need to work in the largest category of Segal path-objects (=Segal M -precategories).
The natural notion of weak equivalences therein needs a “Segalification functor” Seg that takes
a Segal M -precategory F to a Segal M -category Seg(F ).

Having at hand the functor Seg, we can define a morphism σ : F −→ G of Segal M -
precategories to be a weak equivalences if Seg(σ) is a weak equivalence of Segal M -category
in the sense of Definition 2.4.12. This new definition involving Seg agrees with old one for a
morphism of Segal M -categories; this is because Seg preserves the homotopy type and W has
the 3-for-2 property.

37



Chapter 3

Lax diagrams and Enrichment: co-Segal categories

3.1 Introduction

We pursue here the idea initiated in the previous chapter of having a theory of weakly enriched
categories over a symmetric monoidal model category M = (M,⊗, I). We introduce the notion
of co-Segal M -category. The main idea is this. Rather than specifying a composition law

C(A,B)⊗ C(B,C) −→ C(A,C)

we have instead the following diagram:

C(A,B)⊗ C(B,C) C(A,B,C)

C(A,C)

//

o
��

where the vertical map C(A,C) −→ C(A,B,C) is required to be a weak equivalence. As one can
see when this weak equivalence is an isomorphism or an identity (the strict case) then we will
have a classical composition and everything is as usual. In the non-strict case, one gets a weak
composition given by any choice of a weak inverse of that vertical map.

The previous diagram is obtained by ‘reversing the morphisms’ in the Segal situation, hence
the terminology ‘co-Segal’. The diagrams below outline this idea:

C(A,B)⊗ C(B,C) C(A,B,C)

C(A,C)

∼oo

OO

In a Segal category

C(A,B)⊗ C(B,C) C(A,B,C)

C(A,C)

//

o
��

In a co-Segal category

If the tensor product ⊗ of the category M = (M,⊗, I) is different from the cartesian prod-
uct × e.g M is a Tannakian category, the so called Segal map C(A,B,C) −→ C(A,B)⊗ C(B,C)
appearing in the Segal situation is not ‘natural’; it’s a map going into a product where there is
no a priori a way to have a projection on each factor. The co-Segal formalism was introduced
precisely to bypass this problem.

In [3], following an idea introduced by Leinster [61], we define a Segal enriched category C

having a set of objects X, as a colax morphism of 2-categories

C : PX −→M

satisfying the usual Segal conditions. As we shall see a co-Segal category is defined as a lax
morphism of 2-categories

C : (SX)2-op −→M
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satisfying the co-Segal conditions (Definition 3.4.7 ). Here PX is a 2-category over ∆+ while
SX ⊂ PX is over ∆+

epi. These 2-categories are probably examples of what we called a locally
Reedy 2-category, that is a 2-category such that each category of 1-morphisms is a Reedy category
and the composition is coherent with the Reedy structures.

To develop a homotopy theory of these co-Segal categories we follow the same philosophy as
for Segal categories, that is we consider the more general objects consisting of lax morphisms
C : (SX)2-op −→ M without demanding the co-Segal conditions yet; these are called co-Segal
precategories.

As X runs through Set we have a category MS(Set) of all co-Segal precategories with mor-
phisms between them. We have a natural Grothendieck bifibration Ob : MS(Set) −→ Set.

The main result in this chapter is the following

Theorem. Let M be a symmetric monoidal model category which is cofibrantly generated and
such that all the objects are cofibrant. Then the following holds.

1. the category MS(Set), of co-Segal precategories admits a model structure which is cofibrantly
generated,

2. fibrant objects are co-Segal categories,

3. If M is combinatorial then so is MS(Set).

Plan

We begin this chapter with a review the definition of a lax diagram in a 2-category M , which
are simply lax functors of 2-category in the sense of Bénabou [10]. We point out that M -categories
are special cases of lax diagrams as earlier observed by Street [86].

Then in section 3.3 we recall some basic definitions about multisorted operads or colored oper-
ads. The idea is to use the powerful language of operads to treat 2-categories and lax morphisms
in terms of O-algebras and lax morphisms of O-algebras for some suitable operad. The operads
we’re working with are the ones enriched in Cat.

Given two O-algebras C. and M. there is a category LaxO-alg(C.,M.) of lax morphisms and
morphism of lax morphisms. After setting up some definitions we prove that:

• for a locally presentable O-algebra M. the category LaxO-alg(C.,M.) is also locally pre-
sentable (Theorem 3.3.8);

• If M. is a special Quillen O-algebra (Definition 3.3.9) and under some hypothesis, the cate-
gory LaxO-alg(C.,M.) carries a model structure (Theorem 3.3.12).

In section 3.4 we introduce the language of co-Segal categories starting with an overview of
the one-object case. We’ve tried as much as possible to make this section independent from the
previous ones. We only use the language of lax functor between 2-categories rather than lax
morphisms of O-algebras. We introduce first the notion of an S-diagram in M which correspond
to co-Segal precategories (Definition 3.4.6). Then we define a co-Segal category to be an S-diagram
satisfying the co-Segal conditions (Definition 3.4.8). After giving some definitions we show that

• A strict co-Segal M -category is the same thing as a strict (semi) M -category (Proposition
3.4.9);

• The co-Segal conditions are stable under weak equivalences (Proposition 3.4.12).
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In section 3.5 we show that the category MS(X) of co-Segal precategories with a fixed set of
objects X is:

• is cocomplete if M is so (Theorem 3.5.2) ; and

• locally presentable if M is so (Theorem 3.5.1).

For both of these two theorems, we’ve presented a ‘direct proof’ i.e which doesn’t make use of the
language of operads; the idea is to make the content accessible for a reader who is not familiar
with operads.

In section 3.6 we consider the notion of locally Reedy 2-category. The main idea is to provide
a direct model structure on the category MS(X) (Corollary 3.6.15).

In section 3.7 we give two type of model structures on MS(X), using a different method. These
model structures play an important role in the later sections. We show precisely that if M is a
symmetric monoidal model category, which is cofibrantly generated and such that all the objects
are cofibrant, then we have:

• a projective model structure on MS(X) denoted MS(X)proj (Theorem 3.7.6);

• an injective model structure on MS(X) denoted MS(X)inj (Theorem 3.7.7);

• the identity functor Id : MS(X)proj � MS(X)inj : Id is a Quillen equivalence (Corollary
3.7.8);

These model structures are both cofibrantly generated (and combinatorial if M is so). The pro-
jective model structure is the same as the one given by Corollary 3.6.15.

The section 3.8 is dedicated to study of the category MS(Set) of all co-Segal precategories.
We show that:

• MS(Set) inherits the cocompleteness and local presentability of M (Theorem 3.8.2); and

• that MS(Set) carries a fibered projective model structure which is cofibrantly generated.
And if M is combinatorial then so is MS(Set) (Theorem 3.8.8 and Corollary 3.8.13).

In section 3.9, we begin by constructing for each set X, an endofunctor S : MS(X) −→
MS(X), called ‘co-Segalifcation’ which takes any co-Segal precategory to a co-Segal category
(Proposition 3.9.7). Assuming that MS(X) is left proper if M is so (Hypothesis 3.9.1) we prove
that:

• There exists a new injective model structure on MS(X) denoted MS(X)+
inj which is com-

binatorial and such that the fibrant objects are co-Segal categories. MS(X)+
inj is the left

Bousfield localization of MS(X)inj with respect to some set of maps Kinj (Theorem 3.9.12).

• There is also a new projective model structure on MS(X) denoted MS(X)+
proj which is

combinatorial and such that the fibrant objects are co-Segal categories. The model category
MS(X)+

proj is the left Bousfield localization of MS(X)proj with respect to some set of maps
Kproj (Theorem 3.9.21).

• We have also a new fibered projective model structure on MS(Set) denoted MS(Set)+
proj

which is combinatorial and such that the fibrant objects are co-Segal categories (Theorem
3.9.24).
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In section 3.10 we reviewed the basics about M -categories for a 2-category M . For a fixed set
of objects X, we show that if M is locally a model category (Definition 3.10.1) and all the objects
are cofibrant, then the category M -Cat(X) has a model structure which is cofibrantly generated
and combinatorial if M is so. We leave the reader who might be interested to give a fibered model
structure on M -Cat and even the ‘canonical model structure’ in the sense of Berger-Moerdijk
[13].

It seems clear that all the previous results on co-Segal categories should hold if we replace the
monoidal model category M by a 2-category which is locally a model category.

3.2 Lax Diagrams

Warning. By “2-category” we mean the same thing as bicategory; that is the composition is as-
sociative up-to natural isomorphisms and the identities are invariant up-to natural isomorphisms.
By “strict 2-category” we mean a 2-category where the composition is strictly associative and the
identities are strictly invariant.

In the following we fix a 2-category M . For a sufficiently large universe V we will assume that
all the 2-categories we will consider (including M ) have a V-small set of 2-morphisms.

Definition 3.2.1. A lax diagram in M is a lax morphism F : D −→ M , where D is a strict
2-category.

For each D we will consider Lax(D,M ) the 1-category of lax morphisms from D to M and
icons in the sense of Lack [57].

− The objects of Lax(D,M ) are lax morphisms,
− the morphisms are icons (see [57]) .

Icons are what we call later simple transformations (Definition 3.4.10). The reader can find
for example in [57, 59] these definitions.

Warning. Note that in general there is only a 2-category ( which is not a strict 2-category) of
lax morphisms. This 2-category is described as follows

− The objects of are lax morphisms,
− the 1-morphisms are transformations of lax morphisms,
− the 2-morphisms are modifications of transformations.

By definition of a lax morphism F : D −→M we have a function between the corresponding
set of objects

Ob(F ) : Ob(D) −→ Ob(M ).

This defines a function Ob : Ob[Lax(D,M )] −→ Hom[Ob(D),Ob(M )] which sends F to Ob(F ).

Given a function φ from Ob(D) to Ob(M ) we will say that F ∈ Lax(D,M ) is over φ if
Ob(F ) = φ. We will denote by Lax/φ(D,M ) be the full subcategory of Lax(D,M ) consisting of
objects over φ and transformations of lax morphisms.

M -categories are lax morphisms Given an M -category C having a set of objects X, then
we can define a lax morphism denoted again C : X −→ M . The category X is defined in the
previous chapter ( see 2.2.5); we refer to it as the indiscrete or coarse category associated to X.
In this context one interprets the lax morphism as the nerve of the enriched category.
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This identification of M -categories as lax morphisms goes back to Bénabou [10] as pointed
out by Street [86]. Bénabou defined them as polyads as the plural form of monad.

We pursue the spirit of this identification which is somehow the ‘universal lax situation’.

3.3 Operads and Lax morphisms

In the following we use the language of multisorted operads also called ‘colored operads’ to
treat the theory of 2-categories and lax functors as O-algebras and morphism of O-algebras of a
certain multisorted operad O. When there is no confusion we will simply say operads to mean
multisorted operads.

Although the results of this section will be stated for a general operad O, one should keep in
mind the special case where O is the operad we will see in the Example 3.3.1 below.

We recall briefly hereafter the definition of the type of operad we will consider. For a detailed
definition of these one can see, for example, [14] or [62]. In the later reference multisorted operads
are called multicategories.

Let C be a set (thought as a set of colors or sorts).

A C-multisorted operad O in Cat, or a Cat-operad, consists of the following data.

1. For all n ≥ 0 and each (n + 1)-tuple (i1, ..., in; j) of elements of C there is a category
O(i1, ..., in; j).

2. For each i ∈ C, we have an identity operation expressed as a functor 1 1i−→ O(i; i), where 1
is the unit category.

3. There is a composition operation:

O(i1, ..., in; j)× O(h1,1, ..., h1,k1 ; i1)× · · · × O(hn,1, ..., hn,kn ; in) −→ O(h1,1, ..., hn,kn ; j)

(θ, θ1, ..., θn) 7→ θ ◦ (θ1, ..., θn).

4. The composition satisfies associativity and unity conditions. The reader can find all the
details in [62, Chap.2] or in [56, Part I].

When the set C has only one element (one color) we recover the definition of an operad.

Remark 3.3.1. In the condition (1) above, when n = 0 we have no color in ‘input’, so we will
denote by O(0, i) this category. Here the ‘0’ means zero input.

This category O(0, i) allows us to have an ‘identity’ or ‘unity object’ when we want to have
the notion of unital O-algebra.

For a fixed set of colors C, we have a category of C-multisorted operads in Cat with the obvi-
ous notion of morphism. The reader can find a definition in [14]. We follow the same notation as
in [14] and will denote by OperC(Cat)the category of C-multisorted operads in Cat. Similarly if
E is a monoidal category, we will denote by OperC(E ) the category of C-multisorted operads in E .

Below we give an example of a multi-sorted operad which will play an important role in the
upcoming sections. This is the multi-sorted operad whose algebras are 2-categories i.e enriched
categories over Cat. The construction we present here is equivalent to the one given in [14, Section
1.5.4].
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Example 3.3.1. Let X be a set and X be the associated indiscrete or coarse category. Recall
that X is the category with X as the set objects and such that there is exactly one morphism
between any pair of elements.

Let C = X × X be the set of pairs of elements of X. There is a one-to-one correspondence
between C and the set of morphisms of X. We will denote by N (X) the nerve of X and by
N (X)n its set of n-simplices.

We define a C-multisorted operad OX as follows.

• for n > 0 we take

OX(i1, ..., in; j) =

{
1 = the unit category if (i1, ..., in) ∈ N (X)n and j = in ◦ · · · ◦ i1
∅ = the empty category if not

• For n = 0 we set

OX(0, i) =

{
1 if i = IdA in X i.e i = (A,A) for some A ∈ X
∅ if not

• The ‘identity-operation’ functor 1 −→ OX(i, i) is the identity Id1.

• The composition:

OX(i1, ..., in; j)×OX(h1,1, ..., h1,k1 ; i1)×· · ·×OX(hn,1, ..., hn,kn ; in) −→ OX(h1,1, ..., hn,kn ; j)

is either one of the (unique) functors:




1× · · · × 1
∼=−→ 1

∅ Id−→ ∅
∅ −→ 1

• The associativity and unity axioms are straightforward.

We will see in a moment that an OX -algebra in Cat is equivalent to a 2-category having X
as its set of objects.

Claim. Given a category B, If we replace everywhere X by B in the construction above, one gets
a multisorted operad OB in Cat where the set of colors C is the set Arr(B) of all morphisms of
B. An OB-algebra is the same thing as a lax morphism from B to (Cat,×,1).
And more generally given a symmetric monoidal category M = (M,⊗, I) having an initial object
0, we can construct a multisorted M -operad OB, replacing 1 and ∅ respectively by I and 0. As
in the previous case an OB-algebra in M will be the same thing as a lax morphism from B to M .

Definition 3.3.2. Let O be a C-multisorted operad in Cat.

An O-algebra M. is given by the following data.

• For each i ∈ C we have a category Mi.

• M0 = 1.
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• For each (n+ 1)-tuple (i1, ..., in; j) of elements of C there is a functor:

O(i1, ..., in; j)×Mi1 × · · · ×Min

θ
i.|j−−−→Mj

• We have also a functor O(0, i)×M0 −→Mi.

• These functors are compatible with the associativity and unity of the composition of O.

Notation 3.3.1. Given (x,m1, ...,mn) ∈ O(i1, ..., in; j)×Mi1 × · · · ×Min we will use the sugges-
tive notation ⊗x(m1, ...,mn) = θ

i.|j (x,m1, ...,mn). The idea is to think each functor θ
i.|j (x,−) as

a general tensor product.

The following proposition shows us how the theory of lax functors and operads are related
within the theory of enriched categories.

Proposition 3.3.3. Let X be a set. We have an equivalence between the following data.

i) An OX-algebra in Cat,

ii) A 2-category with X as the set of objects.

iii) A lax morphism F : X −→ (Cat,×,1)

Remark 3.3.2. We can also include a fourth equivalence between the strict homomorphism from
PX to (Cat,×,1), where PX is the 2-path category associated to X (see [3]). And as claimed
above, one can replace everywhere X by an arbitrary category B. The fourth equivalence will be
a homomorphism from PB to (Cat,×,1).

Sketch of proof. The equivalence between ii) and iii) is well known and is left to the reader.
We simply show how we get a 2-category from an OX -algebra. The implication ii)⇒ i) will follow
immediately by ‘reading backwards’ the argumentation we present hereafter.

Let M. be an OX -algebra in Cat. We construct a 2-category M as follows.

1. Ob(M) = X

2. Given a pair (A,B) ∈ X2 = C, we have a category M(A,B) and we set M(A,B) = M(A,B).

3. Given A,B,C in X, if we set i1 = (A,B), i2 = (B,C) and j = (A,C) we have O(i1, i2; j) = 1
and the functor OX(i1, i2; j)×Mi1 ×Mi2 −→Mj gives the composition:

M(A,B)×M(B,C)
∼=−−−−−→

canonical
1×M(A,B)×M(B,C) −→M(A,C).

4. Each OX(i, i) acts trivially on Mi i.e the map OX(i, i)×Mi −→Mi is the canonical isomor-
phism 1×Mi

∼=−→Mi.

5. One gets the associativity of the composition in M using the fact the following functors are
invertible and have the same codomain:

• OX(i1 ◦ i2, i3; j)× OX(i1, i2; i1 ◦ i2)× OX(i3; i3)
∼=−→ OX(i1, i2, i3; j)
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• OX(i1, i2 ◦ i3; j)× OX(i1, i1)× OX(i2, i3; i2 ◦ i3)
∼=−→ OX(i1, i2, i3; j)

with i1 = (A,B), i2 = (B,C), i3 = (C,D) and i1 ◦ i2 = (A,C), i2 ◦ i3 = (B,D). This
provides a natural isomorphism between the domains of the two functors. Putting these to-
gether with the fact that the action of OX on M. is compatible with the composition of OX ,
we get the desired natural isomorphism expressing the associativity of the composition in M.

6. For each i of the form (A,A) we have OX(0, i) = 1 and the unity condition of the algebra
provides a morphism 1 −→ M(A,A) which satisfies the desired conditions of an identity
morphism in a 2-category.

�

The functor Ob : Cat −→ Set which sends a category to its set of objects, commutes with
the cartesian product, so that it’s actually a (strict) monoidal functor. As a consequence we get
a functor

Ob : OperC(Cat) −→ OperC(Set).

For R ∈ OperC(Set) and O ∈ OperC(Cat) we will say that O is over R if Ob(O) = R.

Remark 3.3.3. It’s not hard to see that since the functor Ob is monoidal, for any O-algebra M.
then Ob(M.) is automatically an Ob(O)-algebra.

3.3.1 Lax morphism of O-algebra

We now consider the type of morphism of O-algebras we are going to work with. Our defini-
tion is different than the standard definition of morphism of algebras. The idea is to recover the
definition of lax functor between 2-categories when O is of the form OX .

Definition 3.3.4. Let O be an object of OperC(Cat) and C., M. be two O-algebras.

A lax morphism F. : C. −→ M. of O-algebras, or simply a lax O-morphism,is given by the
following data and axioms.

Data:

• A family of functors {Fi : Ci −→Mi}i∈C .

• For each (n+ 1)-tuple (i1, ..., in; j), a family of natural transformations {ϕ = ϕ(i.; j)} :

O(i1, ..., in; j)× Ci1 × · · · × Cin Cj

O(i1, ..., in; j)×Mi1 × · · · ×Min Mj

θ //

ρ
//

Fj

��

Id×Fi1×···×Fin

��
ϕ
;C

⊗x(Fi1c1, ...,Fincn)
ϕ(x,c1,...cn)−−−−−−−→ Fj [⊗x(c1, ..., cn)]
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Axioms: The natural transformations ϕ
i.|j (−) satisfy the following coherence conditions, which

are the ‘ 2-dimensional’ analogue of those satisfied by θ
i.|j (−) and ρ

i.|j (−):

ϕ
i.|j ⊗θ {IdIdO(i.|j) ×[(

∏

i

ϕhi,.|i)⊗ Idshuffle]} = ϕh.,.|j ⊗ {Idγh.,.|i.|j × IdId∏
Mh.,. }.

More explicitly, given

• (x, x1, ..., xn) ∈ O(i.|j)× O(h1,. |i1)× · · · × O(hn,. |in)

• (d1,1 , ..., d1,k1
, ..., dn,1 , ..., dn,kn ) ∈Mh1,1

× · · · ×Mh
1,k1
× · · · ×Mh

n,kn

• ⊗γ(x,x1,...,xn)(d1,1 , ..., dn,kn ) = c

• ⊗xi(di,1 , ..., di,ki ) = ci, i ∈ {1, ..., n},

• ⊗x(c1, ..., cn) = c

• ϕi = ϕ(xi, di,1 , ..., di,ki ) : ⊗xi(Fdi,1 , ...,Fdi,ki ) −→ F[⊗xi(di,1 , ..., di,ki )] = Fci

we require the equality :

ϕ(γ(x, x1, ..., xn), d1,1 , ..., dn,kn ) = ϕ(x, c1, ...cn) ◦ [⊗x(ϕ1, ..., ϕn)].

In the next paragraph we make some comments about the coherence conditions in the previous
definition.

Coherences
The previous coherence can be easily understood when we think that the family of functors {Fi :
Ci −→Mi}i∈C equipped with the family of natural transformations {ϕ

i.|j (x)}x∈Ob(O(i1,...,in;j)), is
an O-algebra of some arrow-category we are about to describe.

Let’s consider Arr(Cat)+ the double category given by the following data.

• The objects are the arrows of Cat i.e functors F

• A morphism from F to G consists of a triple (α, β, ϕ) where α and β are functors and ϕ a
natural transformation as shown in the following diagram:

· ·

· ·

α //

β
//

G

��

F

��

ϕ
;C

We will represent such morphism as a column or a row:




α
β
ϕ


, (α;β;ϕ).
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• The horizontal composition ⊗h and vertical composition ⊗v in Arr(Cat)+ are given as
follows 


α′

β′

ϕ′




G−→H

⊗h




α
β
ϕ




F−→G

=




α′ ◦ α
β′ ◦ β

ϕ′αx ◦ β′(ϕx)




F−→H


α
β
ϕ′




K−→L

⊗v




β
γ
ϕ




F−→G

=




α
γ

L(ϕx) ◦ ϕ′Fx




KF−→LG

It’s not hard to see that Arr(Cat)+ carries a monoidal structure with the cartesian product of
functors where the unity is the identity functor Id1. The product of two morphisms (α, β, ϕ) and
(α′, β′, ϕ′) is given by: 


α
β
ϕ


×




α′

β′

ϕ′


 =




α× α′
β × β′
ϕ× ϕ′




Remark 3.3.4. We have a functor Cat ↪→ Arr(Cat)+ sending a natural transformation σ :
F −→ G to (Ids; Idt;σ) where s and t are the source and target of both F and G.

Given an object F of Arr(Cat)+, we will use the notation O�F := IdO×F . With the monoidal
category (Arr(Cat)+,×, Id1) we can say that the coherence conditions on ϕ

i.|j are equivalent to
saying that the family {Fi}i∈C is an O-algebra in (Arr(Cat)+,×, Id1) where the maps

O(i1, ..., in; j)� [Fi1 × · · · × Fin ] −→ Fj

are given by the family of triples (θ
i.|j , ρi.|j , ϕi.|j ).

Composition of lax O-morphisms

Let C.,M.,N. be three O-algebras and (F., ϕ
i.|j ) : C. −→M.,

(G., ψ
i.|j ) : M. −→ N. be two lax O-morphisms.

We define the composite G. ◦ F. to be the lax O-morphism given by the following data.

• The family of functors {Gi ◦ Fi : Ci −→ Ni}i∈C .

• For each (n+1)-tuple (i1, ..., in; j), the family of natural transformations {χ
i.|j (x)}x∈Ob(O(i1,...,in;j))

where:
χ
i.|j (x) = Gj [ϕi.|j (x)] ◦ ψ

i.|j (x)∏
Fi(−)

.

• More precisely the component of χ
i.|j (x) at (c1, ..., cn) ∈ Ci1 × · · · × Cin is the morphism:

χ
i.|j (x)(c1,...,cn) = Gj [ϕi.|j (x)(c1,...,cn)] ◦ ψi.|j (x)(Fi1c1,...,Fincn).

We leave the reader to check that these data satisfy the coherence conditions of the Definition
3.3.4.

Remark 3.3.5.
The identity O-morphism of an algebra (M., θ

i.|j ) is given by the family of functors {IdMi
}i∈C

and natural transformations {Idθ
i.|j (x)}x∈Ob(O(i1,...,in;j)).
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3.3.2 Morphisms of lax O-morphisms

O-algebras and lax O-morphisms form naturally a category. But there is an obvious notion
of 2-morphism we now describe. A 2-morphism is the analogue of the transformations of lax
functors.

Definition 3.3.5. Let (F., ϕ
i.|j ) and (F.′, ϕ′

i.|j ) be two lax O-morphisms from C. to M..

A 2-morphism σ. : F. −→ F.′ is given by the following data and axioms.

Data: A family of natural transformations {σi : Fi −→ F′i}i∈C .

Axioms: For any x ∈ O(i1, ..., in; j), and any (c1, ..., cn) ∈ Ci1×· · ·×Cin , the following commutes
:

⊗x(Fi1c1, ...,Fincn) Fj [⊗x(c1, ..., cn)]

⊗x(F′i1c1, ...,F
′
in
cn) F′j [⊗x(c1, ..., cn)]

ϕ(x,c1,...,cn) //

ϕ′(x,c1,...,cn)
//

σj,⊗x(c.)

��

⊗x(σi1,c1 ,...,σin,cn )

��

The composition of 2-morphisms is the obvious one i.e component-wise. We will denote by
LaxO-alg(C.,M.) the category of lax O-morphisms between two O-algebras C. and M..

3.3.3 Locally presentable O-algebras

Below we extend the notion of locally presentable category M to O-algebras for an operad
O ∈ OperC(Cat).

Definition 3.3.6. Let (M., θ
i.|j ) be an O-algebra. We say that M. is a locally presentable O-

algebra if the following conditions holds.

• For every i ∈ C the category Mi is a locally presentable category in the usual sense.

• For every (i1, ..., in; j) the functor θ
i.|j preserves the colimits on each factor ‘ik’ (1 ≤ k ≤ n)

that is for every (ml)l 6=k ∈
∏
l,l 6=kMil and every x ∈ O(i1, ..., in; j) the functor

θ
i.|j (x; (ml)) := θ

i.|j (x; ...,ml, ...mk−1,−,mk+1, ...) : Mik −→Mj

preserves all colimits.

Example 3.3.7.

1. If O is the operad of enriched categories, then any symmetric closed monoidal category M
which is locally presentable is automatically a locally presentable O-algebra. The second
condition of the definition follows from the fact that being closed monoidal implies that the
tensor product of M (which is a left adjoint) preserves colimits on each factor.

2. More generally any biclosed monoidal category M (see [49, 1.5]), not necessarily symmetric,
which is locally presentable is a locally presentable O-algebra.

3. Any 2-category (or bicategory) such that the composition preserves the colimits on each
factor and all the category of morphisms are locally presentable, is a locally presentable
OX -algebra for the operad OX of the Example 3.3.1.
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Remark 3.3.6. In the same way we will say that M. is a cocomplete O-algebra if all the Mi are
cocomplete and if the second condition of the previous definition holds.

The main result in this section is the following.

Theorem 3.3.8. Let M. be a locally presentable O-algebra. For any O-algebra C. the category of
lax O-morphisms LaxO-alg(C.,M.) is locally presentable.

Proof. See Appendix 4.4 �

3.3.4 Special Quillen O-algebra

In the following we consider an ad-hoc notion of Quillen O-algebra.

Definition 3.3.9. Let (M., θ
i.|j ) be an O-algebra. We say that M. is a special Quillen O-

algebra if the following conditions holds.

1. M. is complete and cocomplete,

2. For every i ∈ C the category Mi is a Quillen closed model category in the usual sense.

3. For every x ∈ O(i1, ..., in; j), the functor ⊗x preserves (trivial) cofibrations with cofibrant
domain. This means that for every n-tuple of morphisms (gk)k in Mi1 × · · · ×Min , such
that each gk has a cofibrant domain, then ⊗x(g1, ..., gn) is a (trivial) cofibration in Mj if all
g1, ..., gn are (trivial) cofibrations.

Say that M. is cofibrantly generated if all the Mi are cofibrantly generated. Similarly if each Mi

is combinatorial we will say that M. is combinatorial.

Example 3.3.10.

• Any model category is obviously a special Quillen O-algebra with the tautological operad
(no operations except the 1-ary identity operation).

• Another example of special Quillen algebra is a symmetric monoidal model category. In fact
using the pushout-product axiom one has that (trivial) cofibrations with cofibrant domain
are closed by tensor product.

Remark 3.3.7. Note that in our definition we did not include a generalized pushout product
axiom; it doesn’t seem relevant, for our purposes, to impose this axioms in general. But if one is
interested in having such axiom, a first approximation will be of course to mimic the monoidal
situation. Below we give a sketchy one.

Axiom: Say that M. is pushout-product compatible if:

• for every x ∈ O(i1, ..., in; j)

• for every cofibrations f : ak −→ bk ∈Mik , g : al −→ bl ∈Mil ,

• for every (n− 2)-tuple of cofibrant objects (cr)r 6=l,r 6=l

then the map

δ : ⊗x(−, ak,−, bl,−) ∪⊗x(−,ak,−,al,−) ⊗x(−, bk,−, al,−) −→ ⊗x(−, bk,−, bl,−)

is a cofibration which is moreover a trivial cofibration if either f of g is.
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⊗x(c1, ..., ak,−, al, ..., cn) ⊗x(c1, ..., ak,−, bl, ..., cn)

⊗x(c1, ..., bk,−, al, ..., cn) ⊗x(c1, ..., bk,−, bl, ..., cn)

⊗x(Id,...,Id,−,g,...,Id)//

⊗x(Id,...,Id,−,g,...,Id)
//

⊗x(Id,...,f,−,Id,...,Id)

��

⊗x(Id,...,f,−,Id,...,Id)

��

. ww33
δ

**

The main result in this section is to say that under some hypothesis on the triple (O,C.,M.) then
there is a model structure on LaxO-alg(C.,M.). We don’t know for the moment if we have the
same result without any restriction. We will denote by KC. =

∏
i Hom(Ci,Mi).

Definition 3.3.11. Let (C., ρ) and (M., θ) be two O-algebras.

1. Say that C. is O-well-presented, or O-identity-reflecting (henceforth ir-O-algebra) if for
every n+ 1-tuple (i1, ..., in; j) the following functor reflects identities

ρ : O(i1, ..., in; j)× Ci1 × · · · × Cin −→ Cj .

This means that the image of (u, f1, ..., fn) ∈ O(i1, ..., in; j) × Ci1 × · · · × Cin is an identity
morphism in Cj (if and) only if all u, f1, ..., fn are simultaneously identities.

2. Say that (C.,M.) is an O-homotopy-compatible pair if F : KC. −→ KC. preserves level-
wise trivial cofibrations, where KC. is endowed with the injective model structure. Here F is
the left adjoint of the functor U which forgets the laxity maps (see Appendix 4.4.1).

The motivation of these definitions is explained in the Appendix 4.5.2.
With the previous material we have

Theorem 3.3.12. For an ir-O-algebra C., and a special Quillen O-algebra M. assume that

• (C.,M.) is an O-homotopy compatible pair,

• all objects of M. are cofibrant,

• M is cofibrantly generated with I. (resp. J.) the generating set of (trivial) cofibrations

then there is a model structure on LaxO-alg(C.,M.) which is cofibrantly generated. A map σ :
F −→ G is

• a weak equivalence if Uσ is a weak equivalence in KC.,

• a fibration if Uσ is a fibration in KC.,

• a cofibration if it has the LLP with respect to all maps which are both fibrations and weak
equivalences,

• a trivial cofibration if it has the LLP with respect to all fibrations.

• the set F(I.) and F(J.) constitute respectively the set of generating cofibrations and trivial
cofibrations in LaxO-alg(C.,M.).

The pair
U : LaxO-alg(C.,M.)�

∏

i

Hom(Ci,Mi) : F

is a Quillen pair, where F is left Quillen and U right Quillen.
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Proof. The idea is to transfer the (product) model structure on KC. =
∏
i Hom(Ci,Mi) through

the monadic adjunction F a U using a lemma of Schwede-Shipley [77]. In fact LaxO-alg(C.,M.) is
equivalent to T-alg for the monad T = UF. The method is exactly the same as in the proof of
theorem 3.7.6.
All we have to check is that the pushout of Fσ is a weak equivalence for every generating trivial
cofibration σ in KC.. This is exposed in the Appendix 4.5.2. �

An alternative description of LaxO-alg(C.,M.)

In the following we fix a multi-sorted operad O and consider two O-algebra C. andM.. Our goal
is to describe the category LaxO-alg(C.,M.) as subcategory of LaxO’-alg(1.,M.) for some operad
O′ = OC. =

∫
C.; here 1. is the terminal algebra. This will simplify many constructions such as

pushouts and colimit in general.

Definition of OC.

By definition of C., for each (n+ 1)-tuple we have an action of O given by a functor

θ
i.|j : O(i1, ..., in; j)× Ci1 × · · · × Cin −→ Cj .

When there is no confusion we will omit the subscript and will write simply θ.

The set D of colors or sorts of OC. is the set of object of C., that is D =
∐
i∈C Ob(Ci).

Given an (n+ 1)-tuple (c1, ..., cn, cj) ∈ Ci1 × · · · × Cin × Cj , we define the category of operations
OC.(c1, ..., cn, cj) as follows:

• the objects are pairs (x, h), with x ∈ O(i1, ..., in; j) and h : θ(x, c1, ..., cn) −→ cj a morphism
in Cj

• a morphism from (x, h) to (y, k) is a morphism u : x −→ y in O(i1, ..., in; j) such that
h = k◦θ(u, c1, ..., cn); or equivalently θ(u, c.) is a morphism from h to k in the slice category
Cj/cj .

If γ is the multiplication or substitution of O, then we define the associated multiplication γ
C.

in the natural way to be a mixture of γ and θ.

Given [(xi, hi)]1≤i≤n with (xi, hi) ∈ OC.(di,1, ..., d1,ki , ci) then we set

γ
C. [(x1, h1), ..., (xn, hn)] := [γ(x1, ..., xn), θ(d1,1, ..., dn,kn)].

Proposition 3.3.13. The data OC.(c1, ..., cn, cj) with γC. constitute a D-multisorted Cat-operad.

Proof. The associativity of γ
C. follows from the associativty of γ and θ. �

Remark 3.3.8. Note that there is a function p : D −→ C between the set of colours which is
just the subscript-reading operation: for ci ∈ Ob(Ci) p(ci) = i. Pulling back O along p we get a
D multisorted operad p?O.
We have then that for each (c1, ..., cn, cj) ∈ Dn+1, p?O(c1, ..., cn, cj) = O(i1, ..., in; j).
The projection on the first factor is a functor π : OC.(c1, ..., cn, cj) −→ O(i1, ..., in; j) ( π(x, h) = x)
and it’s not hard to see that these functors π fit coherently to form a morphism of D-multisorted
operads denoted again π : OC. −→ p?O.

For an O-algebra M, by p we have an p? O-algebra and by π we have an OC.-algebra π?[p?M.].
When there is no confusion we will simply write π?M..
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Definition 3.3.14. Let C and D be two small 1-categories. A prefunctor F : C −→ M is an
object given by the same data and axioms of a functor except the preservation of identities, that
is we do not require to have F (IdA) = IdFA for A ∈ C.

In other terms a prefunctor is the same thing as a morphism between the underlying graphs
which is compatible with the composition on both sides.
The compatibility of the composition forces each F (IdA) to be an idempotent in M. Obviously
any functor is a prefunctor.

In the same way given two O-algebras C. and M. a prelax O-morphism F. : C. −→ M. is
the same thing as a lax O-morphism except that each Fi : Ci −→Mi is a prefunctor.

Proposition 3.3.15. Let C. and M. be two O-algebras. We have an equivalence between the
following data:

1. a prelax O-morphism from C. to M.,

2. a lax OC.-morphism from 1. to π?M..

Proof. Simply write the definition of each object. �
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3.4 co-Segal Categories

3.4.1 The one-object case

Conventions.

• By semi-monoidal category we mean the same structure as a monoidal category except
that no unit object is required. Obviously any monoidal category has an underlying semi-
monoidal category.

• A lax functor between semi-monoidal categories is the same thing as a lax functor between
monoidal categories without the data involving the units. A strict functor will be call as
well ‘monoidal functor’.

• More generally we will say semi-bicategory (resp. semi-2-category) to be the same thing
as bicategory (resp. 2-category) except that we don’t require the identity 1-morphisms.

• We have also the notion of lax morphism, transformation of lax morphisms, between semi-
bicategories in the natural way.

• For a semi-bicategory A and a bicategory B, a lax morphism from A to B will be a
morphism from A to the underlying semi-bicategory of B which will be denoted again B.

In the following we fix M = (M,⊗, I) a monoidal category.

3.4.2 Overview

As we identify M -categories with one object and monoids of M , we shall expect that a co-
Segal category with one object will be a kind of homotopical semi-monoid1 of M . We will call
them co-Segal semi-monoids.

To define a co-Segal category C with one object A, we need a sequence of objects of M





C(A,A) C(1) : the ‘hom-space’ of A
C(A,A,A) C(2)

· · ·
C(n ∗A) = C(A, ..., A︸ ︷︷ ︸

(n+1)-A

) C(n) n ≥ 1

together with the following data.

1. A diagram expressing a ‘quasi-multiplication’

C(A,A)⊗ C(A,A) C(A,A,A)

C(A,A)

µ1,1 //

weak.equivγ0

��

generic lifting
55

1In the standard terminology we would have said ‘up-to-homotopy’ monoid but this terminology is already used
for another notion of weak monoid (see [3]).
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2. Some other semi-multiplications: C(n ∗A)⊗ C(m ∗A)
µn,m−−−→ C((n + m) ∗A)

3. In the ‘semi-cubical’ diagram below each face is commutative and the weak equivalences γi
must satisfy : γ1 ◦ γ0 = γ2 ◦ γ0 to have an associativity up-to homotopy.

C(A,A)⊗ C(A,A)⊗ C(A,A) C(A,A)⊗ C(A,A,A)

C(A,A,A)⊗ C(A,A) C(A,A,A,A)

Id⊗µ1,1 //

µ1,1⊗Id

uu
µ1,2

uu

µ2,1

//

C(A,A)⊗ C(A,A)

C(A,A)⊗ C(A,A) C(A,A,A)

µ1,1

uu

γ0⊗Id

OO
Id⊗γ0

OO

µ1,1

//

γ2

\\

γ1

BB

C(A,A)

γ0

OO

4. We have other commutative diagrams of the same type as above which give the coherences
of this weak associativity of the quasi-multiplication etc.

As one can see when all of the maps ‘γi’ are isomorphisms we will have the data of semi-category
with one object i.e a semi-monoid of M . In this case we know from Mac Lane [68] that a semi-
monoid in M is given by a monoidal functor:

N (C) : (∆+
epi,+,0) −→M

which we interpret as the nerve of the semi-enriched category C with one object.

Remark 3.4.1. The object 0 doesn’t play any role here since there is no morphism from any
another object to it. So we can restrict this functor to the underlyinng semi-monoidal categories
(see Definition 3.4.2 below).

3.4.3 Definitions

Definition 3.4.1. We will denote by (∆+
epi,+) be the semi-monoidal subcategory of (∆+,+,0)

described as follows.

• The set of objects is: Ob(∆+)− {0}.
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• The morphisms are surjective maps f : m −→ n of ∆+

Remark 3.4.2.

1. For a morphism f : m −→ n in (∆+
epi,+) , by definition f is surjective and nondecreasing

then it follows that f preserves the ‘endpoints’ i.e f(0) = 0 and f(m− 1) = n− 1.

2. For n ≥ 1 we denote by σni the unique map of (∆+
epi,+) from n + 1 to n such that σi(i) =

σi(i + 1) for i ∈ n = {0, · · · , n − 1}. The maps σni generate all the maps in (∆+
epi,+) (see

[68]) and satisfies the simplicial identities:

σnj ◦ σn+1
i = σni ◦ σn+1

j+1 , i ≤ j.

3. Mac Lane [68] pointed out that just like (∆+,+, 0), (∆+
epi,+) contains the universal semi-

monoid which still corresponds to the object 1 together the (unique) map σ1
0 : 2 −→ 1.

Now we can take as definition.

Definition 3.4.2. Let M = (M,⊗, I) be a monoidal category. A semi-monoid of M is a
monoidal functor

F : (∆+
epi,+) −→M .

We now assume that M is equipped with a class of map called homotopy or weak equivalences.
We refer the reader to [3] for the definition of base of enrichment.

Definition 3.4.3. Let (M ,W ) be abase of enrichment. A co-Segal semi-monoid of (M ,W )
is a lax monoidal functor

F : (∆+
epi

op
,+) −→M

satisfying the co-Segal conditions:
for every f ∈ (∆+

epi,+)(m,n) the morphism F (f) : F (n) −→ F (m) is a weak equivalence i.e
F (f) ∈ W .

Remark 3.4.3.

1. It’s important to notice that in the first definition we use (∆+
epi,+) while in the second we

use (∆+
epi

op
,+).

2. Here as usual, the underlying semi-monoid is the object F (1).

3. Finally it’s important to notice that since the morphism of (∆+
epi,+) are generated by the

maps σni and because W is stable under composition, it suffices to require the co-Segal
conditions only for the maps F (σni ).

To understand the definition one needs to see the data that F carries.

Observations 3.4.1.

1. By definition of a lax morphism for every n,m we have a ‘laxity map’

Fn,m : F (n)⊗ F (m) −→ F (n + m).

In particular for m = n = 1 we have a map F1,1 : F (1)⊗ F (1) −→ F (2).
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2. The co-Segal condition for f = σ1
0 : 2 −→ 1 says that the map F (σ1

0) : F (1) −→ F (2) is
a weak equivalence. If we combine this map with the previous laxity map we will have a
quasi-multiplication as we described earlier:

F (1)⊗ F (1) F (2)

F (1)

F1,1 //

weak.equivF (σ1
0)

��

3. For every f : n −→ n′ and g : m −→m′ the following diagram commutes

F (n′)⊗ F (m′) F (n′ + m′)

F (n)⊗ F (m) F (n + m)

Fn′,m′ //

F (f)⊗F (g)

��

F (f+g)

��Fn,m //

4. For every triple of objects (m,n,p) using the laxity maps and the maps ‘F (f)’ we have
some semi-cubical commutative diagrams as before, which will give the associativity up-to-
homotopy and the suitable coherences.

Terminology.

• When all the maps F (f) are isomorphisms then we will say F is a strict co-Segal semi-monoid
or a co-Segal semigroup.

• Without the co-Segal conditions in the Definition 3.4.3 we will say that F is a pre-semi-
monoid.

Proposition 3.4.4. We have an equivalence between the following data:

• a classical semi-monoid or semigroup of M

• a strict co-Segal semi-monoid of M .

When we will define the morphisms between co-Segal semi-monoids, this equivalence will
automatically be an equivalence of categories.

Sketch of proof.

a) Let F : (∆+
epi,+) −→ M be a semi-monoid. We define the corresponding co-Segal semi-

monoid F̃ as follows.

• We set F̃ (n) = F̃ (1) := F (1) for every n, and for every f : m −→ n we set
F̃ (f) := IdF (1).
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• Finally the laxity maps correspond to the multiplication of the semi-monoid F (1) i.e
F̃n,m is the composite:

F (1)⊗ F (1)
Id−→ F (2)

F (σ1
0)−−−→ F (1)

for m ≥ 1,n ≥ 1.

b) Conversely let G : (∆+
epi

op
,+) −→ M be a strict co-Segal semi-monoid. We get a semi-

monoid [G] in the following manner.

• [G](1) = G(1),

• [G](n) = G(1)⊗n = G(1)⊗ · · · ⊗G(1)︸ ︷︷ ︸
n-times

,

• We have a multiplication µ : [G](1)⊗[G](1) −→ [G](1) which is the map G(σ1
0)−1◦G1,1

obtained from the diagram below:

G(1)⊗G(1) G(2)

G(1)

G1,1 //

∼=G(σ1
0)

��

µ
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• On morphism, we define [G] on the generators by [G](σni ) := IdG(1)⊗i ⊗µ⊗IdG(1)⊗n−i−1

• Finally one gets the associativity from the semi-cubical diagram mentioned before.

�

3.4.4 The General case: co-Segal Categories

3.4.5 S-Diagrams

In addition to the notations of the previous section, we will also use the following ones.

Notation 3.4.1.
Cat≤1 = the 1-category of small categories with functors.
Bicat2= the 2-category of bicategories, lax morphisms and icons ([57, Thm 3.2]). 2

1
2 Bicat2 = the category of semi-bicategories, lax morphisms and icons.
PC = the 2-path-category associated to a small category C (see [3]) .
1 = {O,O IdO−−→ O} = the unit category.
X = the coarse category associated to a set X.
(B)2-op = the 2-opposite (semi) bicategory of B. We keep the same 1-cells but reverse the 2-cells
i.e

(B)2-op(A,B) := B(A,B)op.

2Note that Bicat2 is not the standard one which includes all transformation. The standard one is not a
2-category.
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(M ,W ) = a base of enrichment, with M a general bicategory.
2-Iso(M ) = the class of invertible 2-morphisms of M . Recall that (M , 2-Iso) is the smallest base
of enrichment.

Note. We will freely identify bicategories and 2-categories. And as usual monoidal categories will
be identified with bicategories with one object.

Recall that the 2-path category PC is a generalized version of the monoidal category (∆+,+,0)
in the sense that when C ∼= 1 then PC

∼= (∆+,+,0). It has been shown in [3] that a classical
enriched category with a small set of objects was the same thing as a homomorphism in the sense
of Bénabou from PX to M , for some set X.

In what follows we introduce a generalized version of the semi-monoidal category (∆+
epi,+) just

like we did for (∆+,+,0). For C a small category, we consider SC, a semi-2-category contained in
PC, such that S1 ‘is’ (∆+

epi,+).

Proposition-Definition 3.4.5. Let C be a small category.
There exists a strict semi-2-category SC having the following properties.

− the objects of SC are the objects of C,

− for every pair (A,B) of objects, SC(A,B) is a category over ∆+
epi i.e we have a functor called

length or degree
LAB : SC(A,B) −→ ∆+

epi

− LAA becomes naturally a monoidal functor when we consider the composition on SC(A,A),

− if C ∼= 1, say ob(C) = {O} and C(O,O) = {IdO}, we have an isomorphism of semi-monoidal
categories:

SC(O,O)
∼−→ (∆+

epi,+)

− the operation C 7→ SC is functorial in C:

S[−] : Cat≤1
1
2 Bicat2

C
F−→ D SC

SF−−→ SD

//

� //

Proof. SC is the object obtained from the genuine fibred product of semi-2-categories:

SC PC

(∆+
epi,+) (∆+,+,0)

� � i //

L

��
� �

i
//

L

��

�
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Note. We will be interested in particular to the cases where C is of the form X, the indiscrete
or coarse category associated to a set X. In that case an object of SX(A,B) can be identified
with an (n + 1)-tuple (E0, · · · , En) of elements of X for some n, with E0 = A and En = B. For
simplicity we will use small letters: r, s, t,..., to represent such chains (E0, · · · , En).

A morphism u : t −→ s of SX(A,B) can be viewed as an operation which deletes some letters
of t to get s, keeping A and B fixed.

In the upcoming definitions we consider a 2-category M which is also a special Quillen O-
algebra for the operad ‘OX ’ of 2-categories. This situation covered also the special case of a
2-category which is locally a model category (Definition 3.10.1).

Definition 3.4.6. Let M be a 2-category which is a special Quillen algebra.
An S-diagram of M is a lax morphism F : (SC)2-op −→ M for some C. We will say for short
that F is an SC-diagram of M .

One can observe that this definition is the generalization of Definition 3.4.3 without the co-
Segal conditions.

Definition 3.4.7. Let M be a 2-category which is a special Quillen algebra.
A co-Segal S-diagram is an S-diagram

F : (SC)2-op −→M

satisfying the co-Segal conditions: for every pair (A,B) of object of C, the component

FAB : SC(A,B)op −→M (FA,FB)

takes its values in the subcategory of weak equivalences. This means that for every u : s −→ s′ in
SC(A,B), the 2-morphism

FAB(u) : FAB(s′) −→ FAB(s)

is a weak equivalence in the model category M (FA,FB).

Terminology. When all the maps FAB(u) are 2-isomorphisms , then we will say that F is a strict
co-Segal SC-diagram of M .

Observations 3.4.2. By construction of SC, for every pair of objects (A,B) and for every
t ∈ SC(A,B) we have a unique element f ∈ C(A,B) and a unique morphism ut : t −→ [1, f ].
Concretely t is a chain of composable morphisms such that the composite is f , or equivalently t
is a ‘presentation’ (or factorization) of f with respect to the composition. It follows that for any
morphism v : t −→ s we have that ut = us ◦ v.

Since in each M (FA,FB) the weak equivalences have the 3 for 2 property and are closed
under composition, it’s easy to see that F satisfies the co-Segal conditions if and only if F (ut) is
a weak equivalence for all t and all pairs (A,B).

Definition 3.4.8. A co-Segal M -category is a co-Segal SX-diagram for some set X.

The classical examples

In the following discussion we will use the following conventions.

− By semi-enriched category we mean a structure given by the same data and axioms of an
enriched category without the identities . We will say as well M -semi-category to mention
the base M which contains the ‘Hom’. This is the generalized version of semi-monoids.
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− As for M -categories, we have morphisms between M -semi-categories by simply ignoring
the data involving the identities.

− Our M -categories and M -semi-categories will always have a small set of objects.

The following proposition is the generalized version of Proposition 3.4.4.

Proposition 3.4.9. We have an equivalence between the following data:

1. an M -semi-category

2. a strict co-Segal SX-diagram of M .

The proof is very similar and is straightforward. We give hereafter an outline for the case
where M is a monoidal category.

Sketch of proof. Let A be an M -semi-category with X = Ob(A ). We define the corresponding
strict co-Segal SX -diagram F = (F,ϕ) as follows:

1. each component FAB : SX(A,B) −→M is a constant functor :
{
FAB([n, s]) = FAB([1, (A,B)]) := A (A,B) for all [n, s]
FAB(f) := IdA (A,B) for all f : [n, s] −→ [n′, s′] in SX(A,B)

2. the laxity maps are given by the composition:

ϕs,t := cABC : A (B,C)⊗A (A,B) −→ A (A,C)

Conversely let F : (SX)2-op −→M be a strict co-Segal SX -diagram. We simply show how we get
the composition of the M -semi-category which is denoted by MX

F .

1. First we have Ob(MX
F ) = X.

2. We take MX
F (A,B) := FAB([1, (A,B)], for every A,B ∈ X.

3. The laxity map ϕs,t for s = [1, (A,B)], t = [1, (B,C)] is a map of M

ϕs,t : MX
F (B,C)⊗MX

F (A,B) −→MX
F (A,B,C)

where MX
F (A,B,C) := FAC([2, (A,B,C)]).

4. Now in SX(A,C) we have a unique map [2, (A,B,C)]
σ1

0−→ [1, (A,C)] parametrized by the
map σ1

0 : 2 −→ 1 of (∆+
epi,+). The image of this map by FAC is a map

F (σ1
0) : MX

F (A,C) −→MX
F (A,B,C)

which is invertible by hypothesis.

5. And we take the composition cABC = F (σ1
0)−1 ◦ϕs,t as illustrated in the the diagram below:

MX
F (B,C)⊗MX

F (A,B) MX
F (A,B,C)

MX
F (A,C)

ϕs,t //

∼=F (σ1
0)

��

cABC
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�

Remark 3.4.4. The previous equivalence will turn to be an equivalence of categories when we
will have the morphisms of S-diagrams.
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3.4.6 Morphisms of S-Diagrams

As our S-diagrams are lax morphisms of semi-bicategories, one can guess that a morphism of
S-diagrams will be a transformation of lax morphisms in the sense of Bénabou. This is the same
approach as in [3] where the morphism of path-objects were defined as transformations of colax
morphisms.

But just like in [3] not every transformation will give a morphism of semi-enriched categories.
In [3], a general transformation is called ‘M -premorphism’ and an M -morphism was defined as
special M -premorphism.

Warning. In the following, we will only consider the transformations which will give the clas-
sical notion of morphism between semi-enriched categories. We decide not to mention ‘M -
premorphisms’ between S-diagrams.

We recall hereafter the definition of the transformations of morphisms of semi-bicategories we
are going to work with. The following definition is slightly different from the standard one, even
though in the monoidal case, it is the standard one.

Definition 3.4.10. Let B and M be two semi-bicategories and F = (F,ϕ), G = (G,ψ) be two
lax morphisms from B to M such that FA = GA for every object A of B.

A simple transformation σ : F −→ G

B M

G

88

F

&&
σ
��

.

is given by the following data and axioms.

Data: A natural transformation for each pair of objects (A,B) of B:

B(A,B) M (FA,FB)

GAB

55

FAB

))
σ
��

.

hence a 2-morphism of M , σt : Ft −→ Gt, for each t in B(A,B), natural in t.

Axioms: The following commutes :

Fs⊗ Ft F (s⊗ t)

Gs⊗Gt G(s⊗ t)

ϕs,t //

σs⊗σt

��

σs⊗t

��ψs,t //

With this definition we can now give the definition of morphism of S-diagrams.

Definition 3.4.11. Let F and G be respectively an SC-diagram and an SD-diagram of M . A
morphism of S-diagrams from F to G is a pair (Σ, σ) where:
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1. Σ : C −→ D is a functor such that for every A ∈ Ob(C) we have FA = G(ΣA),

2. σ : F −→ G ◦ SΣ is a simple tranformation of lax morphisms:

(SC)2-op (SD)2-op

M

(SΣ)2-op
//

F

$$
G

}}

σ +3

When all the components ‘σt’ of σ are weak equivalences we will say that (Σ, σ) is a level-wise
weak equivalences.

Notation 3.4.2.

1. For a small category C, we will denote by Lax∗[(SC)2-op,M ] the category of SC-diagrams
with morphisms of SC-diagrams.

2. We will denote by MS(C) the subcategory of Lax∗[(SC)2-op,M ] with morphisms of the form
(IdC, σ). It follows that the morphisms in MS(C) are simply determined by the simple
transformations ‘σ’.

3. For C = X, we will write MS(X) to mean MS(X).

Proposition 3.4.12. Let M be a 2-category which is a base of enrichment or a special Quillen
algebra, and F : (SC)2-op −→M , G : (SC)2-op −→M be two S-diagrams in M . For a level-wise
weak equivalence (Σ, σ) : F −→ G we have:

1. If G is a co-Segal S-diagram then so is F ,

2. If F is a co-Segal S-diagram and if Σ is surjective on objects and full then G is also a co-Segal
S-diagram.

Remark 3.4.5. In the category MS(C) the condition required in (2) is automatically fulfilled
because the morphisms in MS(C) are of the form (IdC, σ).

Sketch of proof. The key of the proof is to use the ‘3-out-of-2’ property of weak equivalences in
M . This says that whenever we have a composable pair of morphisms (f, g), then if 2 members
of the set {f, g, g ◦ f} are weak equivalences then so is the third.

For assertion (1), we need to show that for every u : s −→ s′ in SC(A,B), we have FAB(u) :
FAB(s′) −→ FAB(s) is a weak equivalence in M . To simplify the notations we will not mention
the subscript ‘AB’ on the components of F and G.

By definition of (Σ, σ) for every u : s −→ s′ in SC(A,B), the following diagram commutes:

F (s′) G[SΣ(s′)]

F (s) G[SΣ(s)]

σs′

∼
//

F (u)

��

G[SΣ(u)]o

��
σs
∼

//

Since all three maps are weak equivalences by hypothesis, we deduce by 3 for 2 that F (u) is also
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a weak equivalence, which gives (1).

For assertion (2) we proceed as follows. The assumptions on Σ imply that for any morphism
v : t −→ t′ in SD(U, V ) there exists a pair of objects (A,B) of C and s′, s in SC(A,B) together
with a maps u : s −→ s′ such that:
ΣA = U , ΣB = V ,
SΣ(s) = t, SΣ(s′) = t′,
SΣ(u) = v.

And we have the same type of commutative diagram:

F (s′) G(t′)

F (s) G(t)

σs′

∼
//

F (u) o

��

G(v)

��
σs
∼

//

Just like in the previous case we have by 3 for 2 that G(v) is also a weak equivalence.
�

3.5 Properties of MS(C)

This section is devoted to the study of the properties that MS(X) inherits from M e.g (co)-
completeness, accessibility, etc. For simplicity we consider here only the cases C = X, for some
set X. The methods are the same for an arbitrary C.

Environment: We assume that M = (M,⊗, I) is a symmetric closed monoidal category
(see [49] for a definition). One of the consequences of this hypothesis is the fact that for every
object A of M the two functors

−⊗A : M −→M and (hence) A⊗− : M −→M

preserve the colimits. Note that these conditions turn M into a special Quillen algebra.

Warning.

1. When we say that ‘M is complete/cocomplete’ we mean of course that the underlying
category M is complete/cocmplete. And by colimits and limits in M we mean colimits and
limits in M .

2. We will say as well that M is locally presentable, accessible when M is so.

3. Some results in this section are presented without proof since they are easy and are sometime
considered as ‘folklore’ in category theory.

3.5.1 MS(X) is locally presentable if M is so

Our goal here is to prove the following

Theorem 3.5.1. Let M be a symmetric closed monoidal category which is locally presentable.
Then for every set X the category MS(X) is locally presentable.
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To prove this, we proceed in the same way as in the paper of Kelly and Lack [50] where they
established that M -Cat is locally presentable if M is so.

The idea is to use the fact that given a locally presentable category K and a monad T on K,
then if T preserve the directed colimits then the category of algebras of T (called the Eilenberg-
Moore category of T) is also locally presentable (see [1, Remark 2.78]).

In our case we will have:

• K is the category
∏

(A,B)∈X2 Hom[SX(A,B)op,M ]. We will write KX to emphasize that it
depends of the set X

• There is a forgetful functor U : MS(X) −→ KX which is faithful and injective on object,
therefore we can consider MS(X) is a subcategory of KX .

• There is left adjoint Γ of U inducing the monad T = UΓ.

• The category of algebra of T is precisely MS(X).

Remark 3.5.1. The theory of locally presentable categories tells us that any (small) diagram
category of a locally presentable category, is locally presentable (see [1, Corollary 1.54]). It follows
that each Hom[SX(A,B)op,M ] is locally presentable if M is so. Finally KX is locally presentable
since it’s a (small) product of locally presentable categories.

But before proving the Theorem 3.5.1 we must first show that MS(X) is co-complete to be
able to consider (filtered) colimits. This is given by the following

Theorem 3.5.2. Given a co-complete symmetric monoidal category M , for any set X the category
MS(X) is co-complete.

Proof of Theorem 3.5.2. See Appendix 4.3 �

Proposition 3.5.3. The monad T = UΓ : KX −→ KX is finitary, that is, it preserves filtered
colimits.

Proof of the proposition. Filtered and directed colimits are essentially the same and it’s known
that a functor preserves filtered colimits if and only if it preserves directed colimits (see [1, Chap.
1, Thm 1.5 and Cor ]). This allows us to reduce the proof to directed colimits.

Recall that colimits in KX =
∏

(A,B)∈X2 Hom[SX(A,B)op,M ] are computed factor-wise.

For F = (FAB) recall that TF = ([ΓF]AB) where Γ is the left adjoint of U (see Appendix
4.2.1).3 To simplify the notation we will not mention the subscript ‘AB’. For each pair (A,B) the
AB-component of ΓF is ΓF : SX(A,B)op −→M the functor given by:

• for t ∈ SX(A,B) we have

ΓF(t) =
∐

(t0,··· ,tl)∈Dec(t)

F(t0)⊗ · · · ⊗ F(tl).

3Note that actually TF = ([UΓF]AB) but since U consists to forget the laxity maps it’s not necessary to mention
it.
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• for u : t −→ t′ , we have

ΓF(u) =
∐

(u0,··· ,ul)∈Dec(u)

F(u0)⊗ · · · ⊗ F(ul)

where ui : ti −→ t′i.

Let λ < κ be an ordinal and (Fk)k∈λ be a λ-directed diagram in KX whose colimit is denoted
by F∞.

For any l the diagonal functor d : λ −→∏
i=0...l λ is cofinal therefore the following colimits are

the same




colim(k0,...,kl)∈λl+1{Fk0(t0)⊗ · · · ⊗ Fkl(tl)}

colimk∈λ{Fk(t0)⊗ · · · ⊗ Fk(tl)}
The first colimit is easy to compute as M is symmetric closed and we have

colim(k0,...,kl)∈λl+1{Fk0(t0)⊗ · · · ⊗ Fkntl } = F∞(t0)⊗ · · · ⊗ F∞tl .

Consequently colimk∈λ{Fk(t0)⊗ · · · ⊗ Fktl} = F∞(t0)⊗ · · · ⊗ F∞(tl).

From this we deduce successively that:

colimk∈λΓFk(t) = colimk∈λ{
∐

(t0,··· ,tl)∈Dec(t)

Fk(t0)⊗ · · · ⊗ Fk(tl)}

=
∐

(t0,··· ,tl)∈Dec(t)

colimk∈λ{Fk(t0)⊗ · · · ⊗ Fk(tl)}

=
∐

(t0,··· ,tl)∈Dec(t)

F∞(t0)⊗ · · · ⊗ F∞(tl)

= ΓF∞(t)

which shows that T = UΓ preserves directed colimits as desired. �

Now we can give the proof of Theorem 3.5.1 as follows.

Proof of Theorem 3.5.1. Thanks to Theorem 4.3.9 we know that U : MS(X) −→ KX is monadic
therefore MS(X) is equivalent to the category T-alg of T-algebras. Now since T is a finitary monad
on the locally presentable category KX , we know from a classical result that T-alg (hence MS(X))
is also locally presentable (see [1, Remark 2.78]). �
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3.6 Locally Reedy 2-categories

In the following we give an ad hoc definition of a locally Reedy 2-category. One can generalize
this notion to O-algebra but we will not go through that here. The horizontal composition in
2-categories will be denoted by ⊗.

Definition 3.6.1. A small 2-category C is called a locally Reedy 2-category if the following
holds.

1. For each pair (A,B) of objects, the category C(A,B) is a classical Reedy 1-category;

2. The composition ⊗ : C(A,B) × C(B,C) −→ C(A,C) is a functor of Reedy categories i.e
takes direct (resp. inverse) morphisms to direct (resp. inverse) morphism.

Example 3.6.2. 1. The examples that motivated the above definition are of course the 2-
categories, PD and SD, and their respective 1-opposite and 2-opposite 2-categories: (PD)op,
(SD)2-op, etc. In particular (∆,+, 0) is a monoidal Reedy category (a locally Reedy 2-
category with one object).

2. Any classical Reedy 1-category D can be considered as a 2-category with two objects 0 and
1 with Hom(0, 1) = D, Hom(1, 0) = ∅; Hom(0, 0) = Hom(1, 1) = 1 (the unit category);
the composition is the obvious one (left and right isomorphism of the cartesian product). It
follow that any classical category is also a locally Reedy 2-category.

3. As any set is a (discrete) Reedy category, it follows that any 1-category viewed as a 2-
category with only identity 2-morphisms is a locally Reedy 2-category. In that case the
linear extension are constant functors.

Warning. It’s important to notice that we’ve chosen to say ‘locally Reedy 2-category’ rather than
‘Reedy 2-category’. The reason is that the later terminology may refer to the notion of ‘Reedy
M-category’ (=enriched Reedy category) introduced by Angeltveit [2] when M = (Cat,×,1).

In our definition we’ve implicitly used the fact that if A and B are two classical Reedy cat-
egories, then there is a natural Reedy structure on the cartesian product A × B (see [40, Prop.
15.1.6]). This way we form a monoidal category of Reedy categories and morphisms of Reedy
categories with the cartesian product; the unit is the same i.e 1. We will denote by Cat×Reedy this
monoidal category.

Our definition is equivalent to

Definition 3.6.3. A locally Reedy 2-category is a category enriched over Cat×Reedy.

Remark 3.6.1. 1. This definition can be generalized to locally Reedy n-categories, but we
won’t consider it, since the spirit of this work is to use lower dimensional objects to define
higher dimensional ones.

2. One can replace Cat×Reedy by a suitable monoidal category M -CatReedy
⊗ of Reedy M -

categories in the sense of Angeltveit [2]; but we don’t know how relevant this would be.

3. We can also enrich over the category of generalized Reedy categories in the sense of Berger-
Moerdijk [12] and in the sense of Cisinski [23, Chap. 8].

4. We can also push the definition far by considering not only Reedy O-algebras, but defin-
ing first a Reedy multisorted operad as being multicategory enriched over Cat×Reedy,M -
CatReedy

⊗, etc.
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3.6.1 (Co)lax-latching and (Co)lax-matching objects

Let C be a locally Reedy 2-category (henceforth lr-category). Given a lax morphism or colax
morphism F : C −→M we would like to define the corresponding latching and matching objects
of F at a 1-morphism z of C. Our definitions are restricted to the case where C is equipped with
a global linear extension which respects the composition. This means that we have an ordinal
λ such that the linear extension deg : C(A,B) −→ λ satisfies deg(g ⊗ f) = deg(g) + deg(f).

Note. We don’t know many examples other than the 2-categories that motivated this consider-
ation, but we choose to have a common language for both PX , SX and the others 2-categories
we can construct out of them. However it’s clear to see that for a classical Reedy 1-category
D, if we view D as an lr-category with two objects (see Example 3.6.2) and if we declare both
deg(Id0) = deg(Id1) = 0 then D has this property.

We will consider lax morphism F : C −→ M which are unitary in the sense of Bénabou i.e
such that F(Id) = Id and the laxity maps F Id⊗Ff −→ F(Id⊗f) are the natural left and right
isomorphisms.

Let λ be an infinite ordinal containing ω. We can make λ into a monoidal category with the
addition; and we can consider it a usual as a 2-category with one object having as hom-category
λ.

Definition 3.6.4. A locally Reedy 2-category C is simple if there exist an infinite ordinal λ such
that the linear extension form a strict 2-functor deg : C −→ λ. Here on object deg : Ob(C) −→ {∗}

From this definition we have the following consequences:

− First if C is a simple lr-category then composition reflects the identities; thus C is an ir-O-
algebra for the operad of 2-categories.

− For any object A ∈ C, we have deg(IdA) = 0 since deg(IdA) = deg(IdA⊗ IdA) =
deg(IdA) + deg(IdA).

− Another important consequence is that a 1-morphism z cannot appear in the set

⊗−1(z) =
∐

l>1

{(s1, ..., sl);⊗(s1, ..., sl) = z}

if deg(si) > 0 for all i.

Using the Grothendieck construction For each pair (A,B) we have a composition diagram
which is organized into a functor c : ∆+

epi −→ Cat and represented as:

C(A,B)
∐

C(A,A1)× C(A1, B)
∐

C(A,A1)× C(A1, A2)× C(A2, B) · · ·oo oooo

More precisely one defines:

− c(1) = C(A,B),

− c(n) =
∐

(A,...,B) C(A,A1)× C(A,A1)× · · · × C(An−1, B).

Note that the morphisms in ∆+
epi are generated by the maps σni : n + 1 −→ n which are char-

acterized by σni (i) = σni (i + 1) for i ∈ n = {0, · · · , n − 1} (see [68, p.177]). Then the functor
c(σni ) : c(n + 1) −→ c(n) is the functor which consists to compose at the vertex Ai+1.

Let
∫

c be the category we obtained by the Grothendieck construction:
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− the objects are pairs (n, a) with a ∈ Ob(c(n)). Such object (n, a) can be identified with an
n-tuple of 1-morphisms (s1, ..., sn) with si ∈ C(Ai−1, Ai).

− a morphism γ : (n, a) −→ (m, b) is a pair γ = (f, u) where f : n −→ m is a morphism of
∆+

epi and u : c(f)a −→ b is a morphism in c(m). Here c(f) : c(n) −→ c(m) is a functor
(image of f by c).

− the composite of γ = (f, u) and γ′ = (g, v) is γ′ ◦ γ := (g ◦ f, v ◦ c(g)u).

One can easily check that these data define a category. Note that for each n ∈ ∆+
epi the subcategory

of objects over n is isomorphic to c(n).

Claim. For a simple lr-category C and for each pair (A,B) there is a natural Reedy structure on∫
c.

In fact one has a linear extension by setting deg(n, a) = deg(a) = deg(s1) + · · · + deg(sn)
for a = (s1, ..., sn). A morphism γ = (f, u) : (n, a) −→ (m, b) is said to be a direct (resp. inverse)
if u is a direct (resp. inverse) morphism in c(m). The factorization axiom follows from the fact
that c(m) is a Reedy category.

Remark 3.6.2.

1. There is a general statement for the category
∫
F associated to any functor

F : D −→ Cat×Reedy.

2. For any morphism of h : x −→ y of D and any morphism u : a −→ b of F (x), the following
commutes in

∫
F :

(x, a) (y, F (h)a)

(x, b) (y, F (h)b)

(h,IdF (h)a)
//

(Idx,u)

��

(Idy ,F (h)u)

��

(h,IdF (h)b)
//

Let
∫ −→c ⊂

∫
c be the direct category. We will denote by

∫ −→c ↓ (n, a) the slice category at
(n, a).

Definition 3.6.5. Let z ∈ C(A,B) be a 1-morphism. Define the generalized latching category
at z, ∂•

C/z, to be the subcategory of
∫ −→c ↓ (1, z) described as follows.

− the objects are direct morphisms γ : (n, a) −→ (1, z) such that z doesn’t appear in a; or
equivalently we have a = (s1, ..., sn) with deg(si) < deg(z) for all i.

− the morphisms are the usual morphisms of the comma category
∫ −→c ↓ (1, z):

(n, a) (1, z)

(m, b)

γ //

δ

��
γ′

::

− the composition is the one in
∫ −→c ↓ (1, z).
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Lax functor and diagram on
∫

c Given a lax functor F : C −→M we can define a natural
functor denoted again F on

∫
c as follows.

1. F(n, a) = ⊗(Fs1, ...Fsn) for a = (s1, ..., sn);

2. To define F on morphisms it suffices to define the image of morphisms γ = (σni , u) since
they generated all the other morphisms. Such morphism γ : (n + 1, a) −→ (n, b) for
a = (s1, ..., sn+1) and b = (t1, ..., tn) corresponds to a n direct morphisms {αl : sl −→
tl}l 6=i,l 6=i+1 ∪ {αi : si⊗ si+1 −→ ti}. With these notations one defines F(γ) : F(n+ 1, a) −→
F(n, b) to be the composite:

⊗(Fs1, ...,Fsn+1)
Id⊗...⊗ϕ(si,si+1)⊗... Id−−−−−−−−−−−−−−−→ ⊗(Fs1, ...,F(si⊗si+1), ...Fsn)

⊗F(αl)−−−−→ ⊗(Ft1, ...,Ftn)

where ϕ(si, si+1) : Fsi ⊗ Fsi+1 −→ F(si ⊗ si+1) is the laxity map.

These data won’t define a functor until we show that F(γ ◦ γ′) = F(γ) ◦ F(γ′). But this is given
by the coherence axioms for the lax functor F : C −→ M as we are going to explain. First of
all we will denote by ϕσi the above map Id⊗ · · · ⊗ ϕ⊗ · · · ⊗ Id which uses the laxity map of the
ith and (i + 1)th terms. For any map f : n −→ m of ∆+

epi and any object a ∈ c(n) there is a
canonical map fa : (n, a) −→ (m, c(f)a) given by fa = (f, Idc(f)a). As pointed out by Mac Lane
[68, p.177], each morphism f : n −→ m of ∆+

epi has a unique presentation f = σj1 ◦ · · · ◦ σjn−m
where the string of subscripts j satisfy:

0 ≤ j1 < · · · < jm−n < n− 1.

With the previous notations we can define ϕf = F(fa) := ϕσj1 ◦ · · · ◦ ϕσjn−m to be the laxity
map governed by f . Here we omit a in ϕf for simplicity.

Proposition 3.6.6. Given f : n −→ m and g : m −→ m′ then F(g ◦ fa) = F(gc(f)a) ◦ F(fa) i.e
ϕg◦f = ϕg ◦ ϕf .

The proposition will follow from the

Lemma 3.6.7. The maps ϕσi respect the simplicial identities σj ◦ σi = σi ◦ σj+1 (i ≤ j). This
means that we have ϕσj ◦ ϕσi = ϕσi ◦ ϕσj+1 .

Sketch of proof. If i < j then the assertion follows from the bifunctoriality of ⊗. In fact given two
morphisms u, v of M then u⊗ v = (Id⊗v) ◦ (u⊗ Id) = (u⊗ Id) ◦ (Id⊗v). So the only point which
needs to be clarified is when i = j. In that case the equality is given by the coherence condition
which says that the following commutes:

Fsi ⊗ Fsi+1 ⊗ Fsi+2 Fsi ⊗ F(si+1 ⊗ si+2)

F(si ⊗ si+1)⊗ Fsi+2 F(si ⊗ si+1 ⊗ si+2)

σi+1 //

σi

��

σi

��

σi
//

�

To prove the proposition one needs to see how we build a presentation of g ◦ f out of the
presentation of f = σj1 ◦ · · · ◦σjn−m and g = σl1 ◦ · · · ◦σlm−m′ where 0 ≤ l1 < · · · < lm−m′ < m− 1
and 0 ≤ j1 < · · · < jm−n < n − 1. By induction one reduces to the case where g = σl. Then
g ◦ f = σl ◦ σj1 · · ·σjn−m , and we proceed as follows.
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1. if l ≥ j1 then we use the simplicial identities to replace σl ◦ σj1 by σj1 ◦ σl+1; if not we’re
done.

2. then g ◦ f = σj1 ◦ (σl+1σj2 · · ·σjn−m) and we apply the first step with g′ = σl+1 and f ′ =
σj2 · · ·σjn−m .

3. after a finite number of steps one has the presentation of g ◦ f = σk1 ◦ · · · ◦ σkn−m+1 with
0 ≤ k1 < · · · < km−n+1 < n− 1.

Proof of Proposition 3.6.6. By definition F(g ◦ f) = ϕσk1
◦ · · · ◦ ϕσkn−m′ and we have

F(gc(f)a) ◦ F(fa) = ϕσl1 · · ·ϕσlm−m′ ◦ ϕσj1 · · ·ϕσjn−m .

From the last expression we apply the lemma to each step we’ve followed to get the presentation
of g ◦ f ; after a finite number of steps we end up with the expression ϕσk1

◦ · · · ◦ ϕσkn−m′ which
completes the proof. �

As we already said, each morphism f : n −→ m induces a functor c(f) : c(n) −→ c(m). A
morphism u in c(n) is a n-tuple of morphism u = (u1, ..., un). When there is no confusion we
will write ⊗(F(u)) to mean ⊗(Fu1, ...,Fun); the image of u by f will be denoted by fu instead of
c(f)u and we may consider ⊗(F(fu)).

According to these notations we can define shortly F on the morphisms of
∫

c by:

F(γ) = ⊗(Fu) ◦ ϕf with γ = (f, u)

Lemma 3.6.8. For every morphism f : n −→ m of ∆+
epi and every morphism u = (u1, ..., un) of

c(n) we have an equality:
⊗[F(fu)] ◦ ϕf = ϕf ◦ ⊗(Fu).

This means that the following commutes:

⊗(Fsi) ⊗[Ff(si)]

⊗(Fti) ⊗[Ff(ti)]

ϕf //

⊗(Fu)

��

⊗[F(fu)]

��

ϕf
//

Sketch of proof. By standard arguments (repeating the process), one reduces the assertion to the
case where f = σi. In this case the result follows from the functoriality of the coherence for the
laxity maps, that is that all the following diagram commutes:

Fsi ⊗ Fsi+1 F(si ⊗ si+1)

Fti ⊗ Fti+1 F(ti ⊗ ti+1)

ϕσi //

Fui⊗Fui+1

��

F(ui⊗ui+1)

��

ϕσi
//

�

With the previous lemma at hand we conclude that
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Proposition 3.6.9. Given two composable morphisms γ and γ′ then we have F(γ′ ◦ γ) = F(γ′) ◦
F(γ) i.e F is a functor on

∫
c.

Proof. Let γ = (f, u) and γ′ = (g, v). Then by definition γ′ ◦ γ = [(g ◦ f), v ◦ g(u)].

In one hand we have by definition F(γ′ ◦ γ) = ⊗[F(v ◦ g(u))] ◦ ϕg◦f . On the other hand we
have F(γ) = ⊗(Fu) ◦ ϕf and F(γ′) = ⊗(Fv) ◦ ϕg. Using the functoriality of F and ⊗ together
with the fact that ϕg◦f = ϕg ◦ ϕf we establish that

F(γ′ ◦ γ) = ⊗[F(v ◦ g(u))︸ ︷︷ ︸
Fv◦Fg(u)

] ◦ ϕg◦f︸︷︷︸
=ϕg◦ϕf

= ⊗(Fv) ◦ ⊗[Fg(u)] ◦ ϕg︸ ︷︷ ︸
=ϕg◦⊗(Fu)

◦ϕf

= ⊗(Fv) ◦ ϕg︸ ︷︷ ︸
=F(γ′)

◦⊗(Fu) ◦ ϕf︸ ︷︷ ︸
=F(γ)

= F(γ′) ◦ F(γ)

�

Observations 3.6.1. As we pointed out earlier, for each n the category of objects in
∫

c over n
is isomorphic to c(n) and we have an embedding c(n)

ιn
↪−→

∫
c. By the universal property of the

coproduct we get a functor

ι :
∐

c(n) −→
∫

c .

Given a family of functors {FAB : C(A,B) −→ M } we can define a functor for each n, Fn :
c(n) −→M by the above formula F(s1, ..., sn) := ⊗(Fs1, ...,Fsn). These functors define in turn
a functor ∐

Fn :
∐

c(n) −→M .

Then the left Kan extension of
∐

Fn along ι :
∐

c(n) −→
∫

c creates laxity maps. This is the
same idea we use to define the ‘free lax-morphism’ generated by the family {FAB : C(A,B) −→M }
(see Appendix 4.4.1).

Denote by U the canonical forgetful functor U : ∂•
C/z −→

∫
c.

Definition 3.6.10. Let F : C −→M be a lax functor.

1. The lax-latching object of F at z is the colimit

Latchlax(F, z) := colim∂•
C/z

U? F.

2. Define the lax-matching object of F at z to be the usual matching object of the component
FAB : C(A,B) −→M (FA,FB) at z ∈ C(A,B).

Remark 3.6.3.

1. By the universal property of the colimit, there is a unique map ε : Latchlax(F, z) −→ Fz.

2. There is a canonical map η : Latch(F, z) −→ Latchlax(F, z), from the classical latching
object to the lax-latching object and we have an equality

Latch(F, z) −→ Fz = ε ◦ η.
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Locally direct categories

We focus our study to lax diagrams indexed by locally directed category C which are also
simple in the sense of Definition 3.6.4. This case is precisely what motivated our considerations.
Indeed the 2-category (SX)2-op has the property that each SX(A,B)op is a direct category (like
∆+

epi
op).

Given a lax morphism F : C −→ M and an element m ∈ λ, we would like to consider a
truncation ‘F≤m’ just like for simplicial sets. The problem is that to define such a morphism we
need to change SX into ‘SX

≤m’ and consider the corresponding notion of lax functor.
An obvious attempt is to define ‘SX

≤m’ as follows.

− The objects are the same i.e Ob(SX
≤m) = X;

− the category of morphisms between from A to B is SX
≤m(A,B) := SX(A,B)≤m, the full

subcategory of objects of degree ≤ m.

But these data don’t define a 2-category since the horizontal composition z ⊗ z′ is only defined
if deg(z) + deg(z′) ≤ m. This is the same situation where (∆,+,0) is a monoidal category but
any truncation (∆≤n,+, 0) fails to be stable by addition.

By the above observation we need to enlarge a bit our 2-categories and consider a more general
notion of 2-groupement à la Bonnin [19]. The notion of groupement was introduced by Bonnin
[19] as a generalization of a category. The concept of groupement covers the idea of a category
without a set of objects in the following sense. For a small 1-category D denote by Arr(D) the
‘set’ of all morphisms on D. We can embed the set of objects Ob(D) in Arr(D) using the identity
morphism and the composition gives a partial multiplication on Arr(D). This way the category
structure is transferred on Arr(D) and we no longer mention a set of objects.

Warning. We will not provide an explicit definition of 2-groupement but will use the terminology
to refer a sort of 2-category where the horizontal composition is partially defined. Our discussion
will be limited to C≤m for locally directed category C which is simple.

From now C≤m is the 2-groupement or the ‘almost 2-category’ having the same objects as C

and all 1-morphisms of degree ≤ m; the 2-morphisms are the same.

Definition 3.6.11. A lax g-morphism G : C≤m −→M consists of:

1. A family of functors GAB : C(A,B)≤m −→M (GA,GB);

2. laxity maps ϕ : Gs⊗ Gt −→ G(s⊗ t) if deg(s) + deg(t) ≤ m;

3. the laxity maps respect the functoriality i.e the following commutes when all the laxity maps
exist

Gs⊗ Gt G(s⊗ t)

Gs′ ⊗ Gt′ G(s′ ⊗ t′)

ϕ //

Gu⊗Gv

��

G(u⊗v)

��

ϕ
//

4. a coherence condition which say that the following commutes if all the laxity maps are defined

Gr ⊗ Gs⊗ Gt Gr ⊗ G(s⊗ t)

G(r ⊗ s)⊗ Gt G(r ⊗ s⊗ t)

ϕ //

ϕ

��

ϕ

��

ϕ
//
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There is an obvious notion of transformation of lax g-morphism given by the usual data except
that we limit everything to the 1-morphisms of degree ≤ m. We will denote by Laxg(C≤m,M )
the category of lax g-morphisms and transformations (the g here stands for groupement).
We leave the reader to check that any lax functor F : C −→ M induces a lax g-morphisms
F≤m : C≤m −→M , functorially in F. Thus we have a truncation functor

τm : Lax(C,M ) −→ Laxg(C≤m,M ).

It’s natural to ask if this functor has a left adjoint. This is the same situation with simplicial
sets. In the next paragraph we will see that there is an affirmative answer to that question.

Lax Left Kan extensions Our problem can be interpreted as an existence of a lax left Kan
extension. Proceeding by induction on m we reduces our original question to the existence of a
left adjoint of the truncation functor

τm : Laxg(C≤m+1,M ) −→ Laxg(C≤m,M ).

Proposition 3.6.12. For every m ∈ λ there is a left adjoint to τm

skm : Laxg(C≤m,M ) −→ Laxg(C≤m+1,M )

Sketch of proof. Given a lax functor F : C −→M and a 1-morphism z, we defined previously the
lax-latching object of F at z to be

Latchlax(F, z) := colim∂•
C/z
⊗ (Fs1, ....,Fsn)

where the colimit is taking over the sub-comma category of (direct) morphisms γ : (n, s1, ..., sn) −→
(1, z) such that deg(sj) < deg(z) for all j.
Then given a lax g-morphism G : C≤m −→ M and a 1-morphism z of degree m + 1, all the
values Gsj are defined for deg(sj) < m+ 1. Using the coherence of the lax g-morphism and the
functoriality of its components, one can show like in Proposition 3.6.9, that we have a functor
Lz : ∂•

C/z −→M by the formula Lz(γ) = ⊗(Gs1, ...,Gsn). Since M is (locally) complete, then we
can define

Latchlax(G, z) = colim∂•
C/z
⊗ (Gs1, ....,Gsn) = colim∂•

C/z
Lz.

For each γ we have a canonical map ιγ : ⊗(Gs1, ....,Gsn) −→ Latchlax(G, z). If n = 1
then γ is just a 2-morphism s −→ z of C(A,B) with z ∈ C(A,B); and ιγ is a structure map
Gs −→ Latchlax(G, z). If n > 1 then ιγ is a laxity map (eventually composed with a structure
map); in particular when (s1, s2) ∈ ⊗−1(z) and γ = Id, we have a pure laxity map

ιγ : Gs1 ⊗ Gs2 −→ Latchlax(G, z).

So for every 1-morphism z of degree m + 1 the object Latchlax(G, z) comes equipped with
structure maps and laxity map which are compatible with the old ones. If we assemble these data
for all z of degree m+ 1 we can define skm G : C≤m+1 −→M as follows

− (skm G)z := Latchlax(G, z);

− (skm G)|C≤m = G

− the structure maps Gs −→ Latchlax(G, z) give the components

(skm G)AB : C(A,B)≤m+1 −→M (GA,GB)
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− the laxity maps are the obvious ones.

− the coherences come with the definition of each Latchlax(G, z)

We leave the reader to check that these data define a lax g-morphism skm G : C≤m+1 −→M and
that skm is indeed a left adjoint to τm. �

Remark 3.6.4. 1. According to the description of skm, given a transformation α : F −→ G

in Laxg(C≤m,M ), one defines skm(α) as the transformation given the maps αs : Fs −→ Gs
(deg(s) < m) together with the maps Latchlax(F, z) −→ Latchlax(G, z) (deg(z) = m+ 1)
induced by the universal property of the colimits. In particular for each pair (A,B) we have
a natural transformation (skm α)AB : (skm F)AB −→ (skm G)AB extending αAB : FAB −→
GAB.

2. It turns out that a map α : F −→ G in Laxg(C≤m+1,M ) is determined by its restriction
α≤m together with the following commutative squares for all z of degree m+ 1:

Fz Gz

Latchlax(F, z) Latchlax(G, z)

//
OO OO

//

Colimits and Factorization system

Let M be a 2-category which is locally complete and such that each M (U, V ) has a factoriza-
tion system. For simplicity we will reduce our study to the case where M is a monoidal category
having a factorization system (L,R). Let C be as above and consider:

− R = the class of lax morphisms α : F −→ G such that for all z, the map

gz : Fz ∪Latchlax(F,z) Latchlax(G, z) −→ Gz

is in R;

− L = the class of lax morphisms α : F −→ G such that for all z the map αz : Fz −→ Gz is
in L.

Similarly for each m ∈ λ there are two classes Lm and Rm in Laxg(C≤m,M ).

Lemma 3.6.13. With the above notations the following holds.

1. The functor τm : Laxg(C≤m+1,M ) −→ Laxg(C≤m,M ) creates colimits.

2. Let α : F −→ G be an object Laxg(C≤m+1,M ) such that τmα has a factorization of type
(Lm,Rm):

τmF
i−→ K

p−→ τmG.

Then there is a factorization of α of type (Lm+1,Rm+1) in Laxg(C≤m+1,M ).

3. Let α : F −→ G be in Lm+1 (resp. Rm+1). If τmα has the LLP (resp. RLP) with respect
to all maps in Rm (resp. Lm) then α has the LLP (resp. RLP) with respect to all maps in
Lm+1 (resp. Rm+1).

We dedicate the next paragraph for the proof of the lemma.
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Proof of Lemma 3.6.13

Proof of (1) Let X : I −→ Laxg(C≤m+1,M ) be a diagram such that τmX has a colimit E
in Laxg(C≤m,M ). For i ∈ I we have a canonical map ei : τmXi −→ E.
Let z be a 1-morphism of degree m+ 1 in C≤m+1. By the universal property of the colimit there
is canonical map

πi : Latchlax(τmXi, z) −→ Latchlax(E, z).

Note that Latchlax(τmXi, z) ∼= Latchlax(Xi, z) so we can drop the τm here. Furthermore the
maps πi are functorial in i, that is we have an obvious functor π : I −→ (M ↓ Latchlax(E, z)).

Let Λz be the diagram in M made of the following spans (= pushout data) which are connected
in the obvious manner:

Xiz Xjz

Latchlax(Xi, z) Latchlax(Xj , z)

X(i−→j) //

εi

OO

εj

OO

//

Latchlax(E, z)

πi

{{
πjss

Denote by Ẽz the colimit of Λz. The are several ways to compute this colimit. One can proceed
as follows.

− Introduce X∞z = colimI Xiz = colimI Evz ◦ X; we have a canonical map δi : Xiz −→ X∞z.

− Let Oi(z) = X∞z ∪Latchlax(Xi,z) Latchlax(E, z) be the object obtained by the pushout

Latchlax(Xi, z) X∞z

Latchlax(E, z) Oi(z)

δi◦εi //

πi

�� ��
//

− The objects Oi(z) are functorial in i, that is we have a functor O(z) : I −→M that takes
i to Oi(z).

− Then it’s easy to see that Ẽz ∼= colimI O(z).

So for each i and each z of degree m + 1 we have a canonical map ιi : Xiz −→ Ẽz and the
following commutes

Xiz Ẽz

Latchlax(Xi, z) Latchlax(E, z)

ιi //

εi

OO

can

OO

can
//

The objects Ẽz together with the obvious maps defined a unique lax g-morphism Ẽ : C≤m+1 −→M
such that τm(Ẽ) = E. We leave the reader to check that Ẽ equipped with the natural cocone
satisfies the universal property of the colimit in Laxg(C≤m+1,M ). This proves the assertion (1).
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Proof of (2) Let α : F −→ G be in Laxg(C≤m+1,M ) and z be of degreem+1. By hypothesis
the following commutes

Fiz Gz

Latchlax(F, z) Latchlax(G, z)Latchlax(K, z)

α //

ε

OO

ε

OO

i
//

p
//

So we have a unique map Fz ∪Latchlax(F,z) Latchlax(K, z) −→ Gz. We use the factorization in
M to factorize this map as

Fz ∪Latchlax(F,z) Latchlax(K, z)
i′−→ K′z

p′−→ Gz

where i′ ∈ L and p′ ∈ R. Write pz = p′ and iz for the composite

Fz −→ Fz ∪Latchlax(F,z) Latchlax(K, z)
i′−→ K′z.

If we assemble these data for all z of degree m+ 1, we have an object K′ ∈ Laxg(C≤m+1,M )
such that τmK′ = K with maps i : F −→ K′ ∈ Lm+1 and p : K′ −→ G ∈ Rm+1 such that α = p◦i.
And the assertion (2) follows.

Proof of (3) Consider a lifting problem in Laxg(C≤m+1,M ) defined by α : F −→ G and
p : X −→ Y:

F X

G Y

//

α

��

p

��
//

By hypothesis, in the two cases, there is a solution h : τmG −→ τmX for the truncated problem
in Laxg(C≤m,M ). The idea is to extend h into a lax g-morphism h′ : G −→ X. As usual we
reduce the problem to find h′z for z of degree m+ 1. For each z of degree m+ 1, we have by h a
canonical map Latchlax(G, z) −→ Latchlax(X, z); if we compose with ε we get a map

Latchlax(G, z) −→ Latchlax(X, z)
ε−→ Xz.

By the universal property of the pushout we get a unique map Fz∪Latchlax(F,z) Latchlax(G, z) −→
Xz and the following commutes:

Fz ∪Latchlax(F,z) Latchlax(G, z) Xz

Gz Yz

//

gz

��

pz

��
//

So if either gz ∈ L or pz ∈ R we can find a lift h′z : Gz −→ Xz making everything commutative.
In particular the following commutes:
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Gz Xz

Latchlax(G, z) Latchlax(X, z)

h′z //

ε

OO

ε

OO

h
//

Thus the collection of h together with the maps h′z constitutes a lax g-morphism G −→ X

which is obviously a solution to the original problem. �

3.6.2 Application: a model structure

We apply the previous material to establish the following theorem.

Theorem 3.6.14. Let M be a 2-category which is a Quillen algebra, and C be a locally direct
category which is simple and such that the degree function deg : C −→ λ has a minimal value m0

for non identity 1-morphisms.

Then there is a model structure on the category Lax(C,M )u of all normal lax morphisms;
where a morphism α : F −→ G is:

1. a weak equivalence if for all 1-morphism z, αz : Fz −→ Gz is a weak equivalence;

2. a fibration if for all 1-morphism z, αz : Fz −→ Gz is a fibration;

3. a cofibration if for all z the canonical map

gz : Fz ∪Latchlax(F,z) Latchlax(G, z) −→ Gz

is a cofibration.

Corollary 3.6.15. For a monoidal model category M such that all objects are cofibrant, the
category MS(X) has a model structure, called the Reedy model structure, with the above three
classes of weak equivalence, fibration, cofibration. We will denote it by MS(X)Reedy.

Proof of Theorem 3.6.14. The proof is very similar to the one given by Hovey [42, Thm 5.1.3] for
classical diagrams indexed by direct categories.
An easy exercise shows that the above three classes of maps are closed under retracts. Following
Hovey, we will say that α is a good trivial cofibration if for all z

gz : Fz ∪Latchlax(F,z) Latchlax(G, z) −→ Gz

is a trivial cofibration.

It’s not hard to see that in the almost-2-category C≤m0 , the only 1-morphisms of degree ≤ m0

are identities, which are of degree 0; and the ones of degree m0. This is a consequence of m0 being
a minimal value. In addition to that, there are no nontrivial 2-morphisms between 1-morphisms
of degree m0; indeed, the factorization axiom in the Reedy 1-categories C(A,B) will contradict
the minimality of m0.

Furthermore since we assumed that the composition in C adds the degrees i.e, deg(x ⊗ y) =
deg(x) +deg(y), it’s easy to see that for z such that deg(z) = m0, the only pairs (x, y) such that
x⊗ y = z are: (Id, z) and (z, Id) (as m0 is minimal). If we put these observations together, we see
that objects of the category Laxg[C≤m0 ,M ]n have no pure laxity maps i.e, the only laxity maps
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are the isomorphisms Id⊗F(z)
∼=−→ F(z) and F(z)⊗ Id

∼=−→ F(z). Consequently it’s not hard to see
that the functor that forgets the laxity map induces an equivalence of categories:

Laxg(C≤m0 ,M )u −→
⊔

Ob(C)
φ−→Ob(M )

∏

(A,B)∈Ob(C)2

Hom[C≤m0(A,B),M (φA, φB)].

On the right hand side, each summand is a product of diagram categories, where each factor
is indexed by the Reedy 1-category C≤m0(A,B). From the classical theory of Reedy diagrams,
we know that each factor in each summand carries a model structure, in particular is complete
and cocomplete. Therefore the whole right hand side carries the obvious model structure and by
equivalence, we deduce that Laxg(C≤m0 ,M )u carries also a model structure; and in particular
is cocomplete and has the obvious two factorization systems. Now thanks to Lemma 3.6.13 we
establish (by induction) that:

− Lax(C,M )u is cocomplete; it’s also complete since limits are computed level-wise.

− Any map α can be factorized as a cofibration followed by a trivial fibration.

− Any map α can be factorized as a good trivial cofibration followed by a fibration.

− Good trivial cofibrations have the LLP with respect to all fibrations; and trivial fibrations
have the RLP with respect to all cofibrations.

Finally following the same method as Hovey one shows using a retract argument that every map
which is both a weak equivalence and a cofibration is a good trivial cofibration. �

Remark 3.6.5. For a classical Reedy 1-categoryD, if we view it as an lr-category which is simple,
then the previous theorem gives the same model structure for diagrams in M indexed by D (see
[42, Thm 5.1.3]).

3.7 A model structure on MS(X)

In this section we want to show, with a different method that for a fixed set X, the category
SX -diagrams whose objects are called co-Segal precategories has a model structure when M is
monoidal model category. In the first case we will assume that M is cofibrantly generated model
category with a set I (resp. J) of generating cofibrations (resp. acyclic cofibrations).

The model structure will be obtained by transfering the model structure on the category
KX =

∏
(A,B)∈X2 Hom[SX(A,B)op,M ] along the monadic adjunction MS(X)� KX .

On KX we will consider for our purposes the projective and injective model structures. Each
of these model structures is the product of the one on each factor KX,AB = Hom[SX(A,B)op,M ].
Since each SX(A,B) is an inverse category (like ∆epi) the projective and Reedy model structure
on the presheaf category KX,AB are the same. In fact the identity is an isomorphism of model
categories between (KX,AB)proj and (KX,AB)Reedy see [9, 3.17], [42, Ch. 5]. In the last reference
one views KX,AB as a functor category where the source is the directed category SX(A,B)op.
The reader can find in [9, Prop 3.3], [40, Ch. 11.6; Ch.15 ],[42, Ch. 5], [66, A.3.3] [79, Ch. 7.6.2],
a description of these model structures on diagram categories.

Denote by KX-proj (resp. KX-inj) the projective (resp. injective) model structure on KX .
These are cofibrantly generated model categories as (small) product of such model categories.
The generating cofibrations and acyclic cofibration are respectively I• =

∏
(A,B)∈X2 IAB and
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J• =
∏

(A,B)∈X2 JAB, where IAB (resp. JAB) is the corresponding set of cofibration (resp. acyclic
cofibrations) in Hom[SX(A,B)op,M ]. For KX-proj one can actually tell more about the sets IAB
and JAB; the reader can find a nice description in the above references.

In contrast to the projective model structure, there is not an explicit characterization in KX-inj
for the generating set of (trivial) cofibrations. The generating cofibrations are known so far to be
(trivial) cofibrations between presentable objects see [9], [66], [79] and references therein.

Extra hypothesis on M For the moment we will assume that all objects of M are cofibrant.

The following lemma due to Schwede-Shipley [77] is the key step for the transfer of the model
structure on KX to MS(X) through the monadic adjunction

U : MS(X)� KX : Γ

Lemma 3.7.1. Let T be a monad on a cofibrantly generated model category K, whose underlying
functor preserves directed colimits. Let I be the set of generating cofibrations and J be the set of
generating acyclic cofibrations for K. Let IT and JT be the images of these sets under the free
T-algebra functor. Assume that the domains of IT and JT are small relative to IT-cell and JT-cell
respectively. Suppose that

1. every regular JT-cofibration is a weak equivalence, or

2. every object of K is fibrant and every T-algebra has a path object.

Then the category of T-algebras is a cofibranty generated model category with IT a generating
set of cofibrations and JT a generating set of acyclic cofibrations.

In our case we will need only to show that the condition (1) holds. We do this in the next
paragraph.

Note. In the formulation of Schwede-Shipley [77], IT-cell and JT-cell are respectively denoted by
IT-cofreg and JT-cofreg.

3.7.1 Pushouts in MS(X)

Our goal here is to understand the pushout in MS(X) of Γα where α : A −→ B is a (trivial)
cofibration in KX-inj or KX-proj.

By construction Γ preserves level-wise cofibrations and weak equivalences in KX so Γα is
clearly a level-wise (trivial) cofibration if α is a (trivial) cofibration.

For an object F of MS(X) we want to analyze the pushout of ΓB
Γα←−↩ ΓA −→ F. Before going

to this task we start below with a constant case; we consider three objects with lax morphisms
which are coherent. The goal is to outline how one builds laxity maps when we move each of the
three objects.

Analysis of the constant case Let m1,m2,m3,m12,m23 and m be objects of M with maps:

− ϕ : m1 ⊗m2 ⊗m3 −→ m,

− ϕ1,2 : m1 ⊗m2 −→ m12,

− ϕ2,3 : m2 ⊗m3 −→ m23,
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− ϕ1,23 : m1 ⊗m23 −→ m,

− ϕ12,3 : m12 ⊗m3 −→ m,

Assume moreover that the following ‘associativity condition’ holds:

ϕ12,3 ◦ (ϕ1,2 ⊗ Idm3) = ϕ1,23 ◦ (Idm1 ⊗ϕ2,3) = ϕ.

These equalities are pieces of the coherence conditions required for the laxity maps: think
F (s) = m1, F (t) = m2, F (u) = m3, F (s⊗ t) = m12, ϕt,s = ϕ1,2, etc. We’ve considered only three
generic objects because the coherences for lax morphisms involves three terms.

Terminology. We will say that the objects mi,mij together with the maps ϕ satisfying the
previous equality form a 3-ary coherent system. There is also a notion of n-ary-coherent system
when we consider n objects m1, ...,mn with compatible laxity maps. These are the ‘constant data’
of lax morphism between O-algebras.

Given three maps αi : mi −→ m′i ( i ∈ {1, 2, 3}), we consider successively:

− α12 : m12 −→ R12 the pushout of α1 ⊗ α2 along ϕ1,2. R12 = m′1 ⊗m′2 ∪m1⊗m2 m12.

− α23 : m23 −→ R23 the pushout of α2 ⊗ α3 along ϕ2,3.

These pushouts come with canonical maps: ϕ̃i,i+1 : m′i ⊗m′i+1 −→ Ri,i+1 ( i ∈ {1, 2}).

Definition 3.7.2. Define the coherent object m′ to be the colimit of the diagram below:

m1 ⊗m2 ⊗m3

m12 ⊗m3

m1 ⊗m23

m

ϕ⊗Id
22

Id⊗ϕ ++

ϕ

++

ϕ

22

m′1 ⊗m′2 ⊗m′3

R12 ⊗m′3

m′1 ⊗ R23

m′

ϕ̃⊗Id
22

⊗αi

��
++

��

�� β

��

Id⊗ϕ̃ ++

22

Proposition 3.7.3. With the above notation, assume that all objects of the ambient category
M are cofibrant. Then if each αi : mi −→ m′i is a (trivial) cofibration, then the canonical map
β : m −→ m′ is a (trivial) cofibration as well.

Remark 3.7.1. The reason we demand the objects to be cofibrant is the fact that tensoring with
a cofibrant object preserves (trivial) cofibrations. This is a consequence of the pushout-product
axiom.

The strategy to prove the proposition is to ‘divide then conquer’; we will use the following
lemma which treats the case where one of the faces in the original semi-cube is a pushout square.
This is a classical Reedy-style lemma (see for example Lemma 7.2.15 in[40]).
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Lemma 3.7.4. Let Q be a semi-cube in a model category M whose colimit is an object m′:

.

.

.

.

22

��

δ1
��22

.

m

.

22

δ2
��

,,

,,

,,

Assume that the face containing δ1 is a pushout square. Then if δ2 is a (trivial) cofibration,
then the canonical map β : m −→ m′ is also a (trivial) cofibration.

In practice we will use the lemma when all the vertical map are (trivial) cofibrations.

Proof of the lemma . We simply treat the case where δ2 is a trivial cofibration; the method is the
same when δ2 is just a cofibration. β will be a trivial cofibration if we show that it has the LLP
with respect to all fibrations.
Consider a lifting problem defined by β and a fibration p : x� y:

m x

m′ y

i //

β

��

p

����j //

A solution to this problem is a map out of m′, h : m′ −→ x, satisfying the obvious equalities.
Since m′ is a colimit-object, we simply have to show that we can complete in a suitable way the
semi-cube Q into a commutative cube ending at x; the map h will be then induced by universal
property of the colimit.

If we join the lifting problem to the universal cube we get a commutative diagram displayed
below

.

.

.

.

22

��

δ1
��22

.

m

.
m′

22

� _

δ2 o
��

β

��
22

,,

,,

,,

,,

x

y

i //

j //

p

����

f

66
g

33

h

99

Since δ2 is a trivial cofibration there is a solution f to the lifting problem defined by δ2 and p.
With the map f we get a commutative square starting from the horn defining the pushout square
in the back (the one containing δ1) and ending at x; so by universal property of the pushout, there
is a unique map g making the obvious diagram commutative.

With the maps f and g we have a commutative cube ending at x, so by universal property of
the colimit we have a unique map h : m′ −→ x making everything commutative. In particular h
satisfies the equality i = h ◦ β.

By construction the two cubes ending at y obtained with the maps j and p ◦ h are the same,
so by uniqueness of the map out of the colimit we have j = p ◦ h. Consequently h is a solution to
the original lifting problem and β is a trivial cofibration as desired. �
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Remark 3.7.2. The statement of the lemma remains valid if we consider a more general situation
where the pushout square containing δ1 is replaced by another commutative square in which the
morphism ε out of the pushout is a (trivial) cofibration:

. .

. .

.

//

��

δ1

��

}}44

//

� q
ε
##

Proof of Proposition 3.7.3

To prove the proposition, we will present the cube defining m′ as a concatenation of other
universal cubes where each of them satisfies the condition of the previous lemma. The proof is
organized as follows.

• First we treat the case where only m1 moves that is α2 = Idm2 and α3 = Idm3 . We will
denote by z1 the coherent object defined with these data and denote by Q1 the induced
universal cube. Denote by β1 : m −→ z1 the canonical map.

• The lower face of the cube Q1 is a coherent system ending at z1. We construct z2 to be the
coherent object with respect to that associative system, where only m2 moves i.e α1 = Idm′1
and α3 = Idm3 . We will denote by Q2 the new universal cube. There is a canonical map
β2 : z1 −→ z2.

• Finally with the lower face of Q2, we treat the case where only m3 moves, which is similar
to the first case. We have a coherent object z3 with a new cube Q3; there is also a canonical
map β3 : z2 −→ z3.

• By universal property we have z3
∼= m′, thus we can take β = β3 ◦ β2 ◦ β1.

• Each cube Qi is constructed from a semi-cube satisfying the conditions of the previous
lemma, thus each βi will be a (trivial) cofibration and the result will follow.

We need some pieces of notation for the rest of the proof.

Notation 3.7.1.

1. Let O12 and P12 be the objects obtained from the pushout squares:

S1 =

m1 ⊗m2 m12

m′1 ⊗m2 O12

ϕ //

α1⊗Id

��
h12

��ϕ̃ //

S2 =

m′1 ⊗m2 O12

m′1 ⊗m′2 P12

ϕ̃ //

Id⊗α2

��
k12

��ϕ̃′ //

From lemma 4.1.2 we know that the ‘vertical’ concatenation ‘S1
S2
’ of these pushout squares

is ‘the’ pushout square defining R12; it follows that P12
∼= R12.

Now since colimits distribute over the tensor product, tensoring S1 and S2 with m3 gives
two pushout squares S1 ⊗m3 and S2 ⊗m3. The concatenation of the latter squares is the
pushout square

D =

m1 ⊗m2 ⊗m3 m12 ⊗m3

m′1 ⊗m′2 ⊗m3 R12 ⊗m3

ϕ⊗Id //

α1⊗α2⊗Id

��
p12⊗Id

��ϕ̃⊗Id //
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2. Let K23 and L23 be the objects obtained from the the pushout squares:

T1 =

m2 ⊗m3 m23

m′2 ⊗m3 K23

ϕ //

α2⊗Id

�� ��ϕ̃ //

T2 =

m′2 ⊗m3 K23

m′2 ⊗m′3 L23

ϕ̃ //

Id⊗α3

�� ��ϕ̃′ //

As usual the concatenation of T1 and T2 is the pushout square defining R23 so we can
take L23 = R23. And if we tensor everywhere by m′1 we still have pushout square m′1 ⊗ T1

and m′1 ⊗ T2 and their concatenation is the pushout square:

E =

m′1 ⊗m2 ⊗m3 m′1 ⊗m23

m′1 ⊗m′2 ⊗m′3 m′1 ⊗ R23

Id⊗ϕ//

Id⊗α2⊗α3

�� ��
Id⊗ϕ̃ //

Step 1: Moving m1

In this case we consider the following semi-cube whose colimit is z1:

m1 ⊗m2 ⊗m3

m12 ⊗m3

m′1 ⊗m2 ⊗m3

O12 ⊗m3

22

��

��
22

m1 ⊗m23

m

m′1 ⊗m23

22

��

,,
,,

,,

The face in the back is precisely the pushout square S1 ⊗m3 and the map δ2 = α1 ⊗ Idm23

is a (trivial) cofibration since α1 is so (Remark 3.7.1); then by Lemma 3.7.4 we know that the
canonical map β1 : m −→ z1 is also a (trivial) cofibration.

Step 2: Moving m2

Introduce the following semi-cube whose colimit is z2:

m′1 ⊗m2 ⊗m3

O12 ⊗m3

m′1 ⊗m′2 ⊗m3

R12 ⊗m3

22

��

��
22

m′1 ⊗m23

z1

m′1 ⊗N23

22

��

,,
,,

,,

The two faces not containing z1 are pushout squares; the one in the back is S2 ⊗m3 and the
other one is m′1 ⊗ T1. All the vertical maps appearing there are (trivial) cofibrations since α2 is
so, therefore by Lemma 3.7.4 the canonical map β2 : z1 −→ z2 is also a (trivial) cofibration.
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Step 3: Moving m3

This time we consider the semi-cube below whose colimit is denoted by z3:

m′1 ⊗m′2 ⊗m3

R12 ⊗m3

m′1 ⊗m′2 ⊗m′3
R12 ⊗m′3

22

��

��
22

m′1 ⊗N23

z2

m′1 ⊗ R23

22

��

,,
,,

,,

The face on the left is a pushout square and corresponds to m′1⊗T2. The map δ2 = IdR12 ⊗α3

in the face on the back is a (trivial) cofibration since α3 is so; applying lemma 3.7.4 again we
deduce that the canonical map β3 : z2 −→ z3 is also a (trivial) cofibration.

One can easily see that the (vertical) concatenation of the previous universal cubes constitutes
a universal cube for the original semi-cube defining m′. By uniqueness of the colimit we can take
m′ = z3 and β = β3 ◦β2 ◦β1. Since each βi is a (trivial) cofibration, by composition β is a (trivial)
cofibration as well, which is just we wanted to prove. �

Remark 3.7.3. The proposition remains valid if we allow the objects m12 and m23 to move by
(trivial) cofibrations. This time we will have to use the more general version of Lemma 3.7.4
pointed out in Remark 3.7.2.

The main lemma

In the following our goal is to establish that

Lemma 3.7.5. Given a diagram ΓB
Γα←−↩ ΓA −→ F, consider the pushout in MS(X):

ΓA F

ΓB G

σ //
_�

Γα

��

Hα

��
//

Then if α is a level-wise trivial cofibration in KX then UHα is a level-wise trivial cofibration;
in particular Hα is a weak equivalence in MS(X).

Proof. This is a special case of Lemma 4.5 in the Appendix. In fact (SX)2-op is an O-algebra where
O is the multisorted operad for (nonunital) 2-categories; M is a special Quillen O-algebra with
all the objects cofibrant. Furthermore:

1. (SX)2-op is an ir-O-algebra in the sense of Definition 4.5.1. This follows from the fact that
the composition in SX is a concatenation of chains and the 2-morphisms are parametrized by
the morphisms in ∆+

epi. In fact the composition of 2-morphisms is simply a generalization
of the ordinal addition of morphisms in (∆+

epi,+,0) ; consequently the concatenation of
2-morphisms cannot be the identity unless all of them are identities.

2. The pair ((SX)2-op,M ) is an O-hc-pair in the sense of Definition 4.5.1, since the left adjoint
Γ preserves the level-wise trivial cofibrations (see Remark 4.2.3).

We have MS(X) = LaxO-alg((SX)2-op,M ). �
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Remark 3.7.4. It’s important to notice that in the lemma we’ve considered a level-wise cofibra-
tion α in KX ; these are precisely the injective cofibrations therein. But this situation covers also
the projective case, since projective cofibrations are also injective ones.
So in either KX-proj or KX-proj, the pushout of Γα is a level-wise weak equivalence and the con-
dition (1) of lemma 3.7.1 will hold.

3.7.2 The projective model structure

According to a well known result on diagram categories in cofibrantly generated model categories,
see [40, Theorem 11.6.1], each diagram category Hom[SX(A,B)op,M ] has a cofibrantly generated
model structure which is known to be the projective model structure.

In these settings a morphism σ : F −→ G is:

• A weak equivalence in Hom[SX(A,B)op,M ] if it is a level-wise equivalence: for every w the
component σw : Fw −→ Gw is a weak equivalence in M ,

• A fibration in Hom[SX(A,B)op,M ] if it is a level-wise fibration: σw : Fw −→ Gw is a
fibration in M .

• A trivial fibration is a map which is both a fibration and a weak equivalence.

Left adjoint of evaluations For any object w ∈ SX(A,B)op the evaluation functor at w :
Evw : Hom[SX(A,B)op,M ] −→M has a left adjoint

Fw
− : M −→ Hom[SX(A,B)op,M ]

One defines Fw
− by ‘the body’ of the Yoneda functor Yw (see [40, Section 11.5.21 ]):

Fw
m = m⊗ Yw =

∐

Hom(w,−)

m, for m ∈M .

This means that for v ∈ SX(A,B)op, Fw
m(v) is the coproduct of copies of m indexed by the set

HomSX(A,B)op(w, v). The fact that Fw
− has the desired properties follows from the Yoneda lemma.

With the functor F we have that the set of generating cofibrations is:

IAB =
∐

w∈SX(A,B)op

Fw
I =

∐

w∈SX(A,B)op

{Fw
m

Fwα−−→ Fw
m′}(m α−→m′)∈I

Similarly the set of generating acyclic cofibrations is:

JAB =
∐

w∈SX(A,B)op

Fw
J

Consider the product model structure on KX-proj =
∏

(A,B)∈X2 Hom[SX(A,B)op,M ]proj where
the three class of maps, cofibrations, fibrations, weak equivalences, are the natural ones i.e, factor-
wise cofibrations, fibrations, and weak equivalences (see [42, Example 1.16]).
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The main theorem

Theorem 3.7.6. The category MS(X) has a combinatorial model structure where:

− a weak equivalence is a map σ such that U(σ) is a weak equivalence in KX-proj,
− a fibration is a map σ such that U(σ) is a fibration in KX-proj,
− a cofibration is a map having the left lifting property (LLP) with respect to all trivial fibrations,
− the set of generating cofibrations is Γ(I),
− the set of generating acyclic cofibrations is Γ(J).

We will refer this model structure as the ‘projective’ model structure on MS(X) and denote it by
MS(X)proj.

Proof. Thanks to our lemma 3.7.5, the condition (1) of lemma 3.7.1 holds. It follows from the
lemma that MS(X) is a cofibrantly generated model category with the corresponding set of gen-
erating (trivial) cofibrations. And from Theorem 3.5.1) we know that MS(X) is locally pre-
sentable. �

3.7.3 Lifting the injective model structure on KX

By the same argument as in the projective case we establish the following.

Theorem 3.7.7. The category MS(X) has a combinatorial model structure where:

− a weak equivalence is a map σ such that U(σ) is a weak equivalence in KX-inj,
− a fibration is a map σ such that U(σ) is a fibration in KX-inj,
− a cofibration is a map having the left lifting property (LLP) with respect to all trivial fibrations,
− the set of generating cofibrations is Γ(I),
− the set of generating acyclic cofibrations is Γ(J).

We will refer this model structure as the ‘injective’ model structure on MS(X) and denote it by
MS(X)inj.

Proof. The same as for the previous theorem. �

Corollary 3.7.8. The identity functor Id : MS(X)proj �MS(X)inj : Id is a Quillen equivalence.

Proof. The weak equivalences are the same and a projective (trivial) cofibration is also an injective
(trivial) cofibration. �

Remark 3.7.5. Note that in both MS(X)inj and MS(X)proj the fibrations and weak equivalences
are the underlying ones in KX-inj and KX-proj respectively. Since limits in MS(X) are computed
level-wise, it’s easy to see that both MS(X)proj and MS(X)inj are right proper if M is so. In
fact one establishes first that KX-proj and KX-inj are also right proper. For left properness the
situation is a bit complicated, we will discuss it later.

3.8 Variation of the set of objects

Let Set be the category of sets of some universe U ( U′. So far we’ve considered the category
MS(X) for a fixed set X ∈ U. In this section we are going to vary X.

Since the construction of SX is functorial in X, any function f : X −→ Y induces a strict
2-functor Sf : SX −→ SY . We then have a functor f? : MS(X) −→ MS(Y ). Below we will see
that there is a left adjoint f! of f?. When no confusion arises we will simply write again f to
mean Sf .

Let MS(Set) be the category described as follows.
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1. The objects are pairs (X,F) with X ∈ Set and F ∈MS(X),

2. The morphisms from (X,F) to (Y,G) are pairs (f, σ) with f ∈ Set(X,Y ) and σ ∈MS(X)(F, f?G).

In the same way we have a category KSet and a forgetful functor U : MS(Set) −→ KSet.

Lemma 3.8.1. If M is a symmetric closed monoidal category which is cocomplete then:

1. U is monadic

2. The monad induced by U preserves directed colimits.

Proof. Assertion (1) is easy and is treated in the same way as in the fixed set case. For assertion
(2) we simply need to see how one computes colimits in KSet. Each function f : X −→ Y induces
an adjoint pair: f! : KX � KY : f?.

Every diagram J : D −→ KSet, induces on the set of objects, a diagram pr1(J) : D −→ Set and
we can take the colimit X∞ = colimpr1(J). For each d ∈ D the canonical map id : Xd −→ X∞ in-
duces an object id!Jd inKX∞ . It’s not hard to see that J induces a diagram i!J : D −→ KX∞ where
the morphisms connecting the different id!Jd are induced by the universal property of the adjoint.

The colimit of J is the colimit of the pushforward diagram i!J. Given a directed diagram
J, one has to show that the pushforward of the colimit of J is the colimit of the pushforward
diagram. One proceeds exactly in the same manner as Kelly and Lack [50, Lemma 3.2, Thm 3.3]
who treated the case for M -categories. �

Theorem 3.8.2. Let M be a symmetric monoidal closed category.

1. If M is cocomplete then so is MS(Set) ,

2. If M is locally presentable then so is MS(Set).

Proof. All is proved in the same way as for MS(X). �

3.8.1 Some model structures on MS(Set)

f? has a left adjoint

Let f : X −→ Y be a function. As pointed out above we have an adjunction f! : KX � KY : f?

which is just the product adjunction for each pair (A,B):

f!AB : Hom[SX(A,B)op,M ]� Hom[SY (A,B)op,M ] : f?AB.

The last adjunction is a Quillen adjunction between the projective model structure: this is Propo-
sition 3.6 in [9]. It follows that f! : KX � KY : f? is also a Quillen adjunction between the
respective projective model structure.

In what follows we will show that we have also a Quillen adjunction between the projective
model structures on MS(X) and MS(Y ). We will denote again by f? : MS(Y ) −→ MS(X) the
pullback functor. By definition f? preserves everything which is level-wise: (trivial) fibrations
, weak equivalences, limits in MS(Y ) (limits are computed level-wise). To show that we have a
Quillen adjunction it suffices to show that f? has a left adjoint since it already preserves fibrations
and trivial fibrations (see [42, lemma 1.3.4] ). We will use the adjoint functor theorem for locally
presentable categories since MS(X) and MS(Y ) are such categories.
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Theorem 3.8.3. A functor between locally presentable categories is a right adjoint if and only if
it preserves limits and λ-directed colimits for some regular cardinal λ.

Proof. See [1, 1.66] �

Proposition 3.8.4. For a symmetric monoidal model category M which is locally presentable,
and a function f : X −→ Y the following hold.

1. The functor f? has a left adjoint f! : MS(X) −→MS(Y ).

2. The adjunction f! : MS(X)�MS(Y ) : f? is a Quillen adjunction.

3. We have a square of Quillen adjunctions

MS(X) MS(Y )

KX KY

f!

//
oo f?

U

��

OO

Γ U

��

OO

Γ

f!

//
oo f?

in which only two squares are commutative:

− U ◦ f? = f? ◦ U and
− Γ ◦ f! = f! ◦ Γ .

Proof. Since f? preserves limits and thanks to the adjoint functor theorem, it suffices to show
that it also preserves directed colimits. But as the functor U : MS(Y ) −→ KY preserves filtered
colimits (Proposition 3.5.3) , it follows that filtered colimits in MS(Y ) are computed level-wise
and since f? : MS(Y ) −→MS(X) preserves every level-wise property it certainly preserves them
and assertion (1) follows.

Assertion (2) is a consequence of [42, lemma 1.3.4]: from (1) we know that f? is a right adjoint
functor but as it preserves (trivial) fibrations, the adjunction f! a f? is automatically a Quillen
adjunction. Assertion (3) is clear. �

Recall that for F ∈MS(X), G ∈MS(Y ) a morphism σ ∈ HomMS(Set)(F,G) is a pair σ = (f, σ)
where f ∈ Set(X,Y ) and σ ∈ HomMS(X)(F, f

?G). An easy exercise shows that:

Proposition 3.8.5. The canonical functor P : MS(Set) −→ Set is a Grothendieck fibration, the
fiber category over X ∈ Set being MS(X) and the inverse image functor is f? for f ∈ Set(X,Y ).

Remark 3.8.1. Note that for f ∈ Set(X,Y ) and G ∈MS(Y ), f?G is the composite

(SX)2-op (Sf )2-op

−−−−−→ (SY )2-op G−→M .

The identity IdG(f(s)) gives, in a tautological way, a canonical cartesian lifting of f , therefore P
has a cleavage (or is cloven).

As we saw previously the inverse image functor has a left adjoint f! so we deduce that

Proposition 3.8.6. The canonical functor P : MS(Set) −→ Set is a bifibration, that is,

Pop : MS(Set)op −→ Setop

is also a Grothendieck fibration (or MS(Set) is cofibered).

Proof. Apply lemma 9.1.2 in [43]. �

Remark 3.8.2. From the adjunction f! a f?, it’s not hard to see that Pop has a cleavage; thus P
is a cloven bifibration.
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The fibred model structure on MS(Set)

In what follows we give a first model structure on MS(Set) using the previous bifibration
P : MS(Set) −→ Set. The key ingredient is to use Roig’s work [74] on Quillen model structure on
the ‘total space’ of a Grothendieck bifibration. As pointed out by Stanculescu [81], there is a gap
in Roig’s theorem. A reformulation was given by Stanculescu in loc. cit and is recalled hereafter.

Theorem 3.8.7 (Roig-Stanculescu). Let P : E −→ B be a cloven Grothendieck bifibration.
Assume that

i. E is complete and cocomplete,

ii. the base category B as a model structure (cof ,we,fib)

iii. for each object X ∈ B the fiber category EX admits a model structure (cofX ,weX ,fibX),

iv. for every morphism f : X −→ Y of B, the adjoint pair is (f!, f
?) is a Quillen pair,

v. for f = P(σ) a weak equivalence in B, the functor f? preserves and reflects weak equivalences,

vi. for f = P(σ) a trivial cofibration in B, the unit of the adjoint pair (f!, f
?) is a weak equiv-

alence.

Then there is a model structure on E where a map σ : F −→ G in E is

• a weak equivalence if f = P(σ) ∈ we and σf : F −→ f?G ∈ weX ,

• a cofibration if f = P(σ) ∈ cof and σf : f!F −→ G ∈ cofY ,

• a fibration if f = P(σ) ∈ fib and σf : F −→ f?G ∈ fibX .

Let Setmin be the category of Set with the minimal model structure: weak equivalences are
isomorphisms, cofibration and fibrations are all morphisms. In particular trivial cofibrations and
fibrations are simply isomorphisms. Recall that if f : X −→ Y an isomorphism then (Sf )2-op is
also an isomorphism, and we can take f! = (f−1)? ; one clearly sees that conditions (v) and (vi)
of the theorem hold on the nose.

Let’s fix the projective model structure on each MS(X) as X runs through Set. By virtue of
the previous theorem we deduce that

Theorem 3.8.8. For a symmetric closed monoidal model category M , the category MS(Set) has
a Quillen model structure where a map σ = (f, σ) : F −→ G is

1. a weak equivalence if f : X −→ Y is an isomorphism of sets and σ : F −→ f?G is a weak
equivalence in MS(X),

2. a cofibration if the adjoint map σ̃ : f!F −→ G is a cofibration in MS(Y ),

3. a fibration if σ : F −→ f?G is a fibration in MS(X).

We will denote MS(Set) endowed with this model structure by MS(Set)fib.

Proof. MS(Set) is complete and cocomplete as any locally presentable category. The other con-
ditions of Theorem 3.8.7 are clearly fulfilled. �

Remark 3.8.3. If we replace everywhere MS(Set) by KSet in the previous theorem we will get
as well a fibered model structure on KSet. The adjunction U : MS(Set) � KSet : Γ is a Quillen
adjunction.
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3.8.2 The canonical model structure

In the following we use the fact that we have a fibred model structure to construct a new
model structure on MS(Set), called the canonical model structure (following the terminology of
[13]). In the new model structure we are about to construct, the fibrations are the same but the
weak equivalences are no longer required to induce an isomorphism on the set of objects.

Recall that we assume that M is cofibrantly generated with a set I (resp. J) of generating
cofibrations (resp. trivial cofibrations).

Some natural S-diagrams The discussion we present here follows closely Simpson’s consider-
ations in [79, 13.2].

Let [n] be the indiscrete category associated to the set {0, ..., n}. In the 2-category S[n], there
is a special 1-morphism from 0 to n corresponding to the n + 1-tuple (0, ..., n). It is the max-
imal nondegenerate simplex in the nerve of [n]. We will denote this 1-morphism by sn. Let
Fsn
− : M −→ Hom[S[n](0, n)op,M ] be the left adjoint of the evaluation at sn.

We have as usual the categories MS([n]) and K[n] with the monadic adjunction

U : MS([n])� K[n] : Γ.

This adjunction is moreover a Quillen adjunction. For the record MS([n]) is the category of nor-
mal lax morphisms from S2 -op

[n] to M and K[n] =
∏

(i,j)∈Ob([n])2 Hom[S[n](i, j)
op,M ].

For B ∈ Ob(M ) we will denote by δ(sn, B) the object of K[n] given by:

δ(sn, B)ij =

{
Fsn
B if i = 0, j = n

(∅, Id∅) the constant functor otherwise.

For B ∈ Ob(M ) define h([n];B) ∈MS([n]) to be Γδ(sn, B).

Lemma 3.8.9. For any B ∈ Ob(M ) and F ∈MS(Y ) the following are equivalent.

1. A morphism σ : h([n];B) −→ F in MS(Set).

2. A sequence of elements (y0, ..., yn) of Y together with a morphism B −→ F(y0, ...., yn) in
M .

Sketch of proof. A morphism σ = (f, σ) : h([n];B) −→ F is by definition a function

f : {0, ..., n} −→ Y

together with a morphism σ : h([n];B) −→ f?F in MS([n]). Setting yi = f(i) we get fsn =
(y0, ..., yn) and by adjunction we have:

HomMS(Set)[(h([n];B),F] = HomMS([n])[(h([n];B), f?F]

= HomMS([n])[Γδ(sn, B), f?F]

∼= HomK[n]
[δ(sn, B),U(f?F)]

∼= Hom[Fsn
B , f

?Fy0yn ]
∼= Hom[B,Fy0yn(fsn)]

= Hom[B,F(y0, ...., yn)].

�
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Definition 3.8.10. Say that a map σ = (f, σ) : F −→ G is:

1. a local fibration if it’s a fibration in the fibred model structure i.e if for all s, the map

Fs
σs−→ Gf(s)

is a fibration;

2. a local weak equivalence if for all s, the map

Fs
σs−→ Gf(s)

is a weak equivalence.

Notation 3.8.1. We will use the following notation.

1. Wloc = the class of local weak equivalences.

2. IMS(Set) =
∐
n≥1{h([n]; q) : h([n];A) −→ h([n];B)}q:A−→B∈I.

3. JMS(Set) =
∐
n≥1{h([n]; q) : h([n];A) −→ h([n];B)}q:A−→B∈J.

4. IKSet =
∐
n≥1{δ(sn, q) : δ(sn, A) −→ δ(sn, B)}q:A−→B∈I.

5. JKSet =
∐
n≥1{δ(sn, q) : δ(sn, A) −→ δ(sn, B)}q:A−→B∈J.

Since projective (trivial) fibrations are the object-wise (trivial) fibrations, it follows that a
map σ = (f, σ) : F −→ G is a (trivial) fibration if for all s the map Fs

σs−→ Gf(s) has the right
lifting property (RLP) with respect to all maps in (I) J.

If we combine this observation and Lemma 3.8.9 we deduce that

Proposition 3.8.11. With the previous notation the following hold.

1. A map σ : F −→ G has the RLP with respect to maps in IMS(Set) if and only if it is a local
fibration and is in Wloc.

2. A map σ : F −→ G has the RLP with respect to maps in JMS(Set) if and only if it is a local
fibration. In particular Wloc ∩ JMS(Set)-inj ⊆ IMS(Set)-inj.

3. We have JMS(Set)-cell ⊆ Wloc ∩ IMS(Set)-cof.

Proof. We prove (1) and (2) by adjointness. Let F ∈MS(X), G ∈MS(Y ), f : X −→ Y and σ :
F −→ f?G a morphism in MS(X). Let s = (x0, ..., xn) be a generic 1-morphism of SX ; s = Sf (sn)
where f : {0, ..., n} −→ X is the function that takes i to xi. Let q : A −→ B ∈ Arr(M ) be a
generic morphism of M . From Lemma 3.8.9, it’s easy to see that we have functorial isomorphisms
in the respective arrow-categories:

HomArr[MS(Set)][h([n]; q), σ] ∼= HomArr[KSet][δ(sn; q),Uσ] ∼= HomArr(M )[q, σs].

And as q runs through I (resp. J), we get that σs has the RLP with respect to I (resp. J) if
and only if Uσ has the RLP with respect to IKSet (resp. JKSet). Finally Uσ has the RLP with
respect to IKSet (resp. JKSet) if and only if σ has the RLP with respect to ΓIKSet = IMS(Set)

(resp. to ΓJKSet = JMS(Set)); and the two assertion follows.

For Assertion (3) we proceed as follows. First observe that in M , we have J-cell ⊆ I-cof,
therefore by adjointness we get the inclusion JMS(Set)-cell ⊆ IMS(Set)-cof. Finally observe that
maps in JMS(Set) are trivial cofibrations in the fibred model structure, thus all maps in JMS(Set)-cell
are also trivial cofibration in the fibred model structure; in particular they are weak equivalences
therein. But a weak equivalence in the fibred model structure is also a local weak equivalence,
and we have the inclusion JMS(Set)-cell ⊆ Wloc which gives the assertion. �
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Remark 3.8.4. Since the functors h and δ are left Quillen functors they preserve (trivial) cofi-
brations. In particular if A is cofibrant then so are h([n];A) and δ(sn, A). It follows that if the
domain of maps in I are cofibrant in M then so are the domain of maps in IMS(Set) and IKSet .
This is useful when we want to preserve tractability.

In order to establish our main theorem we need to use the recognition theorem for cofibrantly
generated model categories. We recall it hereafter as stated in [42].

Theorem 3.8.12. Suppose C is a category with all small colimits and limits. Suppose W is
a subcategory of C, and I and J are sets of maps of C. Then there is a cofibrantly generated
model structure on C with I as the set of generating cofibrations, J as the set of generating trivial
cofibrations, and W as the subcategory of weak equivalences if and only if the following conditions
are satisfied.

1. The subcategory W has the two out of three property and is closed under retracts.

2. The domains of I are small relative to I-cell.

3. The domains of J are small relative to J-cell.

4. J-cell ⊆ W ∩ I-cof.

5. I-inj ⊆ W ∩ J-inj.

6. Either W ∩ I-cof ⊆ J-cof or W ∩ J-inj ⊆ I-inj.

By virtue of the previous theorem we can establish that:

Theorem 3.8.13. There is a cofibrantly generated model structure on MS(Set) with IMS(Set) as
the set of generating cofibrations, JMS(Set) as the set of generating trivial cofibrations, and Wloc as
the subcategory of weak equivalences. The fibrations are the local fibrations. If M is combinatorial
then so is MS(Set).

We will denote this model structure by MS(Set)proj and will call it the canonical or projective
model structure. The identity functor Id : MS(Set)fib −→MS(Set)proj is a right Quillen functor.

Proof. Combine Proposition 3.8.11, Theorem 3.8.12 and Theorem 3.8.2. �
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3.9 co-Segalification of S-diagrams

Environment: In this section (M ,W ) is a symmetric monoidal model category where
W represents the class of weak equivalences. We refer the reader to [42] for the definition of
(symmetric) monoidal model categories.

For simplicity we consider in this section only SX -diagrams of (M ,W ). For a general category
C the methods we will use will be the same.

Notation 3.9.1.
A cofibration of M will be represented by an arrow of the form: ↪→.
A fibration will be represented by: �
A weak equivalence will be represented by an arrow: ∼−→.
An isomorphism will be represented by:

∼=−→.
ℵ0 = the first countable cardinal. ℵ0 is identified with the ordinal ω = (N, <).
κ = a regular uncountable cardinal.
End[MS(X)] = the category of endofunctors of MS(X).
I = the class of cofibrations of M .
I-inj = the class of I-injective maps.
M [1] = Hom([1],M ) = the category of arrows of M (here [1] is the interval category).
∅ = the initial object of M .

All along our discussion X is a fixed set of cardinality < κ.
The purpose of this section is to build a process which associates to any SX -diagram F a co-Segal
SX -diagram S (F ). This process will be needed in the upcoming sections when we localize the
previous model structures on the category MS(X).

We are going to construct a functor S : MS(X) −→MS(X) equipped with a natural trans-
formation

ηS : IdMS(X) ↪→ S

whose component at each F , ηS ,F : F ↪→ S (F ), will be a cofibration in MS(X).

The natural transformation ηS will arise automatically from the construction of the functor S .

The functor S will be obtained as a colimit of a κ-sequence of cofibrations in MS(X):

IdMS(X) = S0 ↪→ S 1 ↪→ S 2 · · · ↪→ S n−1 ↪→ S n ↪→ · · ·

3.9.1 co-Segalification by Generators and Relations

Recall that an SX -diagram F is given by a family of functors {FAB}(A,B)∈X2 together with
some laxity maps {ϕs,t} and suitable coherences.
Here each FAB is a classical functor FAB : SX(A,B)op −→M , with SX(A,B) a category over ∆epi.

Such an F is said to be a co-Segal SX-diagram if for every pair (A,B) and any morphism
u : t −→ s of SX(A,B), the morphism F(u) : F(s) −→ F(t) is a weak equivalence in M . Following
Observation 3.4.2 we know that it suffices to have these conditions for u = ut for all t, where
ut : t −→ (A,B) is the unique map from t to (A,B).
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The functor S we are about to construct will have the property that S (F)(ut) will be a trivial
fibration in M for all t. But since M is a model category 4 S (F)(ut) is a trivial fibration if and
only if S (F)(ut) ∈ I-inj i.e it has the right lifting property (RLP) with respect to the class I of
all cofibrations (see [42, Lemma 1.1.10], [72, Ch.5]). This lifting property amounts to saying that
whenever we have a commutative diagram in M

U S [F](A,B)

V S [F](t)

f //
_�

h

��

S [F](ut)

��g //

k

::

with h ∈ I then we can find a lifting i.e there exists k : V −→ S [F](A,B) such that k ◦ h = f
and S [F](ut) ◦ k = g.

If we consider separately in M the map F(ut), the classical trick to produce S [F](ut) is to
use the small object argument which gives, up to some hypothesis on I, a functorial factorization
F(ut) = βt(F) ◦ αt(F) with:





αt(F) : F(A,B) −→ D an I-cell complex
βt(F) : D −→ F(t) an element of I-inj
for some D ∈ Ob(M ).

The map αt(F) is obtained as a transfinite composition of pushouts of a coproduct of the maps in
I. The smallness or compactness of D is used to show that βt(F) has the RLP with respect to I.
The reader can find an exposition of the small object argument for example in [32, Section 7.12],
[42, Theorem 2.1.14].

In this situation we can set S [F](A,B) = D, S [F](t) = F (t), S [F](ut) = βt(F) and the nat-
ural transformation ηS ,F will be given by αt(F) : F(A,B) −→ S [F](A,B) and IdF(t) : F(t) −→
S [F](t).

In our case we want to use the same trick i.e using a transfinite composition of pushouts of
maps of some class IMS(X) ⊂ Arr(M ), but we want these pushouts as well as the other operations
to take place in MS(X).

An important adjunction

Let t be a 1-morphism of SX of length > 1 i.e t ∈ Ob(SX(A,B)op) for some pair of elements
(A,B) of X. Recall that t corresponds to a sequence (A0, A1, ..., An) with A0 = A and An = B.

Let Pt : MS(X) −→M [1] be the evaluation functor at ut : (A,B) −→ t:

• For F ∈MS(X) we have Pt(F) = F(ut),

• For σ ∈ HomMS(X)[F,G], we have Pt(σ) = (σ(A,B), σt) which corresponds to the commutative

4Here we adopt the modern language and simply say ‘model category’ to mean what Quillen [72, Ch.5] called
‘closed model category’.
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square:

F(A,B) G(A,B)

F(t) G(t)

σ(A,B) //

F(ut)

��

G(ut)

��
σt //

Proposition 3.9.1. For every object t of length > 1 the following holds.

1. The functor Pt has a left adjoint, that is, there exists a functor

Pt! : M [1] −→MS(X)

such that for every F ∈MS(X) and every h ∈M [1] we have an isomorphism of sets:

HomMS(X)[Pt!h,F] ∼= HomM [1] [h,F(ut)]

which is natural in both h and F.

2. Pt! is a left Quillen functor.

Sketch of proof. For assertion (1), we write Pt as the composite of the following functors:

MS(X)
U−→

∏

(A′,B′)∈X2

Hom[SX(A′, B′)op,M ]
prAB−−−→ Hom[SX(A,B)op,M ]

Evut−−−→M [1]

where:

• U is the functor which forgets the laxity maps,

• prAB is the functor which gives the component at (A,B),

• Evut is the evaluation at ut.

Thanks to Lemma 4.2.1 in the Appendix, U has a left adjoint Γ. Evut has a left adjoint
Fut (see Appendix 4.2.2). Finally prAB has clearly a left adjoint δAB as explained below. The
composite of these left adjoints gives a left adjoint of Pt.
The functor δAB is simply the ‘Dirac extension’. For F ∈ Hom[SX(A,B)op,M ] we define δ(F) ∈
KX by

δ(F)A′B′ =

{
F if (A′, B′) = (A,B)

(∅, Id∅) the constant functor otherwise.

One can easily see that δ is a functor and that we have indeed an isomorphism of sets:

Hom[F,GAB] ∼= Hom[δ(F),G]

which is natural in both F and G; this completes the proof of assertion (1).

Assertion (2) follows from the fact that all the three functors Γ, δ and Fut are left Quillen
functors. In fact Γ is a left Quillen functor by construction of the model structure on MS(X)
(injective or projective). δ is clearly a left Quillen functor. For Fut see Corollary 4.2.3 and
Corollary 4.2.5. It follows that Pt! is a composite of left Quillen functors therefore it’s a left
Quillen functor. �
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For any map h : U −→ V of M , we have a tautological commutative square:

U V

V V

h //

h

��

IdV

��IdV //

which says that (h, IdV ) is, in a natural way, a morphism in M [1] from h to IdV . We will denote
by h/V this morphism.5

Lemma 3.9.2. For a symmetric monoidal model category M which is also tractable, for any
pushout square in either MS(X)inj or MS(X)proj:

Pt!(h) F

Pt! IdV G

σ //
_�

Pt!(h/V )

��

H

��
σ //

the following holds.

1. If h : U −→ V is a cofibration in M then H is a cofibration in MS(X)inj.

2. If moreover h : U −→ V is a trivial cofibration in M then H is a weak equivalence in both
MS(X)inj and MS(X)proj.

Proof. The map h/V is an injective (trivial) cofibration in M [1] and since Pt! is a left Quillen
functor, we know that Pt!(h/V ) is a (trivial) cofibration in MS(X)inj. Applying Lemma 3.7.5
we deduce that H is a weak equivalence in MS(X)inj but weak equivalences in MS(X)inj and
MS(X)proj are the same. �

The local ‘co-Segalification’ process

Let t be a fixed object in SX(A,B) and F be an object of MS(X).
As M is a model category we can factorize the map F(ut) as: F(ut) = j◦h where h : F(A,B) ↪→ U
is a cofibration and j : U � Ft is a trivial fibration.
The pair (IdF(A,B), j) defines a morphism S(j, h) ∈ HomM [1] [h,F(ut)] in a tautological way:

F(A,B) F(A,B)

U Ft

Id

h

��

j
//

F(ut)

��

When necessary we will write h = h(F, t) and j = j(F, t) to mention that we working with
the factorization of F(ut).

5The notation ‘h/V ’ is inspired from the fact that the commutative square above is the (unique) canonical map
from h to IdV in the slice category M/V . We recall that IdV is final in M/V .
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By adjunction we have a unique map T (h, j,F, t) ∈ HomMS(X)[Pt!(h),F] ‘lifting’ S(j, h) .
Denote by S 1

t (F) the object of MS(X) obtained by the pushout diagram 6:

Pt!(h) F

Pt! IdU S 1
t (F)

T (h,j,F,t) //
_�

Pt!(h/U )

��

H1

��
α //

Proposition 3.9.3. With the above notation the following holds.

1. For every such factorization (h, j) ∈ (cof ,we∩fib) of F(ut) the map H1 : F −→ S 1
t (F) is

an injective cofibration in MS(X).

2. If F(ut) is a weak equivalence in M , then H1 is an injective trivial cofibration. In particular
H1 is a weak equivalence in both MS(X)inj and MS(X)proj and the map [S 1

t F]ut is a weak
equivalence in M .

3. If the factorization axioms in M is functorial then the operation F 7→ S 1
t F is a functor.

Sketch of proof. As h is a cofibration in M , the assertion (1) follows immediately from Lemma
3.9.2 1.

If F(ut) = j ◦h is a weak equivalence and as j is a weak equivalence by hypothesis, then by the
3 for 2 property we deduce that h is also a weak equivalence; therefore h is a trivial cofibration
and half of assertion (2) follows also from Lemma 3.9.2 2.
By definition of map in MS(X), we know that the pair (H1,AB, H1,t) defines a map in M [1] from
F(ut) to [S 1

t F](ut). In particular we have an equality:

[S 1
t F]ut ◦H1,AB = H1,t ◦ F(ut).

Since H1 is a weak equivalence, then both H1,AB, H1,t are weak equivalences in M ; it follows
that H1,t ◦F(ut) is a weak equivalence if F(ut) is so. Now by the 3 for 2 property we deduce that
[S 1

t F](ut) is also a weak equivalence. This complete the proof of (2).

Assertion (3) is clear and is left to the reader. �

Remark 3.9.1. By adjoint transpose we have the following commutative square in M [1]:

h F(ut)

IdU S 1
t (F)(ut)

S(j,h) //
_�

h/U

��

Pt(H1)

��
α //

To simplify the notation in diagrams we will write F1 for S 1
t (F). The above diagram is

6“the Gluing Construction” in [32]
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displayed as a commutative cube in M :

F(A,B) F(A,B)

U Ft

Id //

��

F(ut)

��j //
U F1(A,B)

U F1t

αAB //

Id

��

F1ut

��αt //

h

yy

H1,AB

yy

Id

yy
H1,tyy

From the upper and bottom faces of that cube we deduce that H1,AB = αAB ◦ h and αt =
H1,t ◦ j; from the front face we have that αt = F1ut ◦ αAB. If we put these together we see that
in the diagram below everything is commutative (triangles and squares):

F(A,B) F1(A,B)

Ft F1t

U

H1,AB //

Fut

��

F1ut

��H1,t //

� r

h
$$

j
o

����

αAB 33

Warning. For the rest of the discussion we assume that factorization axioms, in the model
category M , are functorial.

For k > 1 we define inductively objects S k
t (F) of MS(X) by setting S k

t (F) := S 1
t [S k−1

t (F)]
with S 0

t (F) = F. One uses a (functorial) factorization (hk, jk) ∈ (cof ,we∩fib) of the map
S k−1
t (F)ut and apply the previous construction.

We have a canonical map Hk : S k−1
t (F) −→ S k

t (F) which is a cofibration in MS(X)inj.
We have a κ-sequence in MS(X)inj:

F = S 0
t (F)

H1
↪−→ S 1

t (F) ↪→ · · · ↪→ S k−1
t (F)

Hk
↪−→ S k

t (F) ↪→ · · ·

Define S∞
t (F) = colimkS

k
t (F) and denote by ηt : F −→ S∞

t (F) the canonical map.

Proposition 3.9.4. For every F ∈MS(X) then:

1. The map S∞
t (F)(ut) has the RLP with respect to all cofibrations in M i.e it’s a trivial

fibration in M

2. The map ηt is a cofibration in MS(X)inj.

3. If F(ut) is a weak equivalence in M , then ηt is trivial cofibration in MS(X)inj, in particular
a weak equivalence in MS(X).

Proof. For notational convenience we will write in this proof Fk = S k
t (F) and F∞ = S∞

t (F).

Assertions (2) and (3) are straightforward: if F(ut) is a weak equivalence then applying in-
ductively Lemma 3.9.2, we get that all Hk are either cofibrations in case (2) or trivial cofibrations
in case (3). In both cases ηt is a transfinite composition of such morphisms so it’s also either a
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cofibration or a trivial cofibration in MS(X)inj.

To prove the assertion (1) we use the small object argument in the locally presentable category
MS(X). Choosing κ big enough we can assume that Pt!(g) is small for every cofibration g of M .

Let g be a cofibration in M and consider a lifting problem defined by g and F∞(ut):

P F∞(A,B)

Q F∞ t

f //
_�

g

��

F∞ ut

��l //

Such a lifting problem is defined by a morphism θ ∈ HomM [1] [g,F∞(ut)]. By adjunction θ cor-
responds to a unique morphism θ̃ ∈ HomMS(X)[Pt!g,F

∞]. Since Pt!g is κ-small, θ̃ factorizes
through one of the Fk, say Fk0 : there is a map θ̃0 : Pt!(h) −→ Fk0 such that θ̃ = ιk0 ◦ θ̃0, where
ιk0 : Fk0 −→ F∞ is the canonical map.

By construction ιk0 = ιk0+1 ◦Hk0 and from the adjunction we have an equality:

θ = Pt(ιk0) ◦ θ0 = Pt(ιk0+1) ◦ Pt(Hk0) ◦ θ0

where θ0 = (f0, l0) is the adjoint transpose of θ̃0.
It follows that our original lifting problem can be factorized as:

P F∞(A,B)

Q F∞ t

f //
_�

g

��

F∞ ut

��l //

=

P Fk0(A,B)

Q Fk0t

Uk0

f0//
_�

g

��

Fk0ut

��

l0
//

Fk0+1(A,B)

Fk0+1t

Fk0+1ut

��

Hk0,AB //

Hk0,t //

F∞(A,B)

F∞ t

F∞ ut

��

ι //

ι //

hk0
**

jk0zzzz

αk0

44
55

The pair (hk0 , jk0) is ‘the’ factorization cofibration-trivial fibration used to construct Hk0 and
αk0 is the obvious map (see Remark 3.9.1). As jk0 is a trivial fibration, the induced lifting problem
by g and jk0 has a solution: there is a map β0 : Q −→ U satisfying the obvious equalities. We
leave the reader to check that the composite

ι ◦ αk0 ◦ β0 : Q −→ F∞(A,B)

is a solution to the original lifting problem.

It follows that F∞(ut) has the RLP with respect to all cofibrations of M , thus it’s a trivial
fibration as desired. �

S∞
t is homotopically minimal Let ho(MS(X)) be the homotopy category associated to both

MS(X)inj and MS(X)proj. Given a map σ : F −→ G in MS(X), we will denote by [σ] the class of
σ in ho(MS(X)).

Denote by R ⊂ MS(X) the subcategory consisting of co-Segal categories; these are objects
F such that for every t, F(ut) is a weak equivalence. For a fixed t denote by Rt ⊂ MS(X) the
subcategory of object F such that F(ut) is a weak equivalence. We have R ⊂ Rt ⊂MS(X).
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Thanks to Proposition 3.9.4, for any F ∈ MS(X) we have S∞
t F ∈ Rt. In what follows we

show that among all objects of Rt, S∞
t F is the ‘homotopic-nearest object’ to F.

Definition 3.9.5. Let F be an object of MS(X) and G be an object of Rt. A map σ0 : F −→ G is
homotopically minimal with respect to Rt if for any Q ∈ Rt and any morphism σ : F −→ Q there
exist a morphism γ : [G] −→ [Q] in ho(MS(X)) such that [σ] = γ ◦ [σ0].

Diagrammatically this is displayed in ho(MS(X)) as

[F] [Q]

[G]

[σ] //

[σ0]

��
γ

::

Proposition 3.9.6. For every F ∈ MS(X) the map ηt : F −→ S∞
t F is homotopically minimal

with respect to Rt.

Proof. For a map σ : F −→ Q with Q ∈ Rt, by functoriality we have an induced map

S∞
t (σ) : S∞

t F −→ S∞
t Q

and the following commutes:
[F] [Q]

[S∞
t F] [S∞

t Q]

σ //

(ηt)F

��

S∞t σ
//

(ηt)Q

��

Note that the map S∞
t σ is induced by universal property of the pushout (inductively), so

it’s a universal morphism. Since Q ∈ Rt we have from Proposition 3.9.4 (3) that (ηt)Q is a
weak equivalence in MS(X), thus [(ηt)Q] is an isomorphism in ho(MS(X)). Take γ = [(ηt)Q]−1 ◦
[S∞

t σ]. �

The global co-Segalification process

In what follows we use the previous functors S∞
t to construct the desired functor S such

that for any t and any F, S (F)ut is a weak equivalence, that is, S (F) is an object of R.

Denote by Mor(SX) the set of all 1-morphisms t of degree > 1 in SX .
Define S 1F to be the object obtained from the generalized pushout diagram formed by all the
morphisms ηt : F −→ S∞

t F as t runs through the set of all 1-morphisms of degree > 1:

F S∞
t F

S∞
t′ F S∞

t′′ F

� � //
_�

��

� r

%%

S 1F := colimt,deg(t)>1{ηt : F −→ S∞
t F}.

Let η1 : F −→ S 1F and ι1t : S∞
t F −→ S 1F be the canonical maps. It follows that for all t

we have η1 = ι1t ◦ ηt. Like every S∞
t , S 1 is functorial in F.
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Remark 3.9.2. We leave the reader to check that we have the following properties.

1. For every F the map η1 is a cofibration in MS(X)inj (see Lemma 4.1.6).

2. If F ∈ R then S 1F ∈ R. Equivalently S 1 induces an endofunctor on R. Moreover η1 is a
trivial cofibration in MS(X)inj; in particular a weak equivalence in MS(X).

Define inductively a sequence of functors S k by S k(F) := S 1[S k−1(F)] :

F = S 0(F)
η1
↪−→ S 1(F) ↪→ · · · ↪→ S k−1(F)

ηk
↪−→ S k

t (F) ↪→ · · ·

Set S (F) := colimkS
k(F); denote by ηF : F −→ S (F) the canonical map.

Proposition 3.9.7. For every F ∈MS(X), the following hold.

1. For all 1-morphism t, S (F)(ut) is a trivial fibration in M , in particular a weak equivalence,
thus S (F) ∈ R i.e satisfies the co-Segal conditions.

2. The canonical map η : F −→ S (F) is a cofibration in MS(X)inj.

3. If F ∈ R then η : F −→ S (F) is a trivial cofibration in MS(X)inj, in particular a weak
equivalence in MS(X).

Sketch of proof. Assertions (2) and (3) are clear and are left to the reader.
To prove (1) one proceeds exactly in same way as in the proof of Proposition 3.9.4. We will adopt
the notation Fk = S k(F) for simplicity.

For any cofibration g of M , using suitably the small object argument and the adjunction Pt! a
Evut , any lifting problem defined by g and (SF)ut can be factorized, for some k0, as:

P (SF)(A,B)

Q (SF)t

f //
_�

g

��

(SF)ut

��
l //

=

P Fk0(A,B)

Q Fk0t

(S∞
t Fk0)(A,B)

(S∞
t Fk0)t

f0 //
_�

g

��

Fk0ut

��

l0
//

**

44

Fk0+1(A,B)

Fk0+1t

Fk0+1ut

��

//

//

(SF)(A,B)

(SF)t

(SF)ut

��

can //

can //

(S∞t Fk0 )uto
����

ιt 33

ιt ++

88

In the above diagram, everything is commutative (squares and triangles), and since (S∞
t Fk0)ut

has the RLP with respect to all cofibration (Proposition 3.9.4(1)) there is a solution β : Q −→
(S∞

t Fk0)(A,B) to the lifting problem induced by g and (S∞
t Fk0)ut. Clearly the composite

can ◦ ιk0
t ◦ β : Q −→ S (F)(A,B)

is a solution to the original lifting problem. Here of course ‘can’ is the canonical map going to the
colimit.

Consequently (SF)ut has the RLP with respect to any cofibration g in M , thus it’s a trivial
fibration as desired. �

Note. Since weak equivalences in MS(X)inj and MS(X)proj are the same, if we choose a functorial
factorization in MS(X)proj of the map ηF as:

ηF : F
η̃F
↪−→ Z

q
−−−�
∼

S (F)

where η̃F is cofibration and q is a trivial fibration, then we can set S (F) := Z when working in
the projective model structure. This new functor has the same properties as the previous one.
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3.9.2 Localization by weak monadic projections

Weak monadic projection

Let M be a model category and R ⊂M be a subcategory stable under weak equivalences. We
recall very briefly the definition of weak monadic projection as stated in [79, 9.2.2].

A weak monadic projection from M to R is a functor F : M −→ M together with a natural
transformation ηA : A −→ F (A) such that:

1. F (A) ∈ R for all A ∈M;

2. for any A ∈ R, ηA is a weak equivalence;

3. for any A ∈M the map F (ηA) : F (A) −→ F (F (A)) is a weak equivalence;

4. If f : A −→ B is a weak equivalence between cofibrant objects then F (f) : F (A) −→ F (B)
is a weak equivalence; and

5. F (A) is cofibrant for any cofibrant A ∈M.

Remark 3.9.3. If F is a monadic projection from MS(X)inj to R then we can extract a monadic
projection F̃ from MS(X)proj to R. In fact one uses the (functorial) factorization in MS(X)proj:

ηA : A
η̃A
↪−→ F̃ (A)

pA−−−−�
∼

F (A)

where η̃A is a projective cofibration and pA a trivial fibration.

(WPr1) holds because p : F̃ (A) −→ F (A) is a weak equivalence and R is stable under weak
equivalences;
(WPr2) follows by the 3 for 2 property of weak equivalences: pA is already a weak equivalence,
consequently if in addition ηA is a weak equivalence then η̃A is also a weak equivalence ;
(WPr3) also follows from the 3 for 2 property: from the functoriality of the factorization in
MS(X)proj one has that the following commutes:

F̃ (A) F̃ (F̃ (A))

F (A) F (F (A))

F̃ (η̃A) //

p o

����

F (ηA)

∼ //

p o

����

and all the other maps are weak equivalences.
For (WPr4) we use the fact that projective cofibrations are also injective cofibrations. Therefore
if A is cofibrant in MS(X)proj, then it’s also cofibrant in MS(X)inj. It follows that if f : A −→ B
is a weak equivalence between cofibrant objects in MS(X)proj, then F (f) : F (A) −→ F (B) is a
weak equivalence in MS(X). The functoriality of F̃ gives a commutative square where all the
other maps are weak equivalences:

F̃ (A) F̃ (B)

F (A) F (B)

F̃ (f) //

pA o

����

F (ηA)

∼ //

pB o

����
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and F̃ (f) is a weak equivalence by 3 for 2;
(WPr5) holds ‘on the nose’ since η̃A : A −→ F̃ (A) is a projective cofibration: if ∅ −→ A is a
cofibration, by composition ∅ −→ F̃ (A) is also a cofibration.

In our case We would like to show that the functor S constructed previously is a weak monadic
projection from MS(X)inj or MS(X)proj to R. The only nontrivial condition in our case is the con-
dition (WPr3), namely that the map induced by universal property S (ηF) : S (F) −→ S (SF))
is a weak equivalence.

But rather than verifying step by step that S is a weak monadic projection, we will use the
more general approach of Simpson [79, Chap. 9] who usedDirect localizing systems to produce
weak monadic projections.

Direct localizing system

The present discussion follows closely [79, Chap. 9].

Let (M, I, J) be a tractable left proper cofibrantly generated model category which is more-
over locally presentable. Recall that tractable means that the domains of maps in I and J are
cofibrant. Suppose we are given a subclass of objects considered as a full subcategory R ⊂ M,
and a subset K ⊂ Arr(M). We assume that:

1. K is a small set;

2. J ⊂ K;

3. K ⊂ cof(I) and the domain of arrows in K are cofibrant;

4. If A ∈ R and if A ∼= B in ho(M) then B ∈ R; and

5. inj(K) ⊂ R.
Say that (R,K) is direct localizing if in addition to the above conditions:

6. for all A ∈ R such that A is fibrant, and any A −→ B which is a pushout along an element
of K, there exists B −→ C in cell(K) such that A −→ C is a weak equivalence.

Note. In our case (M, I, J) will be (MS(X)inj, IMS(X)inj ,JMS(X)inj) and R will be R, the subcat-
egory of co-Segal categories.

Notation 3.9.2.

1. We remind the reader that h/V : h −→ IdV is the map represented by the commutative
square:

U V

V V

h //

h

��

IdV

��IdV //

2. Let Kinj be the set
JMS(X)inj ∪

∐

t∈SX,deg(t)>1

{Pt!(h/V )}h∈I.
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Remark 3.9.4. Thanks to a theorem of Lurie [66, Prop. A.1.5.12] we can assume that every
cofibration of M is an in cell(I). It follows that for any cofibration i : E −→ Q the map Pt!(i/Q)
is in cell(Kinj).

As we shall see in a moment the maps h/V allow us to transport in a tautological way, a lifting
problem defined in M into a extension (or horn filling) problem in M [1]. And thanks to the
adjunction Pt! a Evut , we will be able to test if F(ut) is a trivial fibration or not in terms of being
injective with respect to the maps Pt!(h/V ).

The main result in this section is the following

Theorem 3.9.8. With the above notation the pair (R,Kinj) is direct localizing in
(MS(X)inj, IMS(X)inj ,JMS(X)inj).

Proof of Theorem 3.9.8 To prove the theorem we will verify that all the conditions (A1),...,
(A6) hold.

Conditions (A1) and (A2) are clear. Since we assumed that all objects of M are cofibrant, it
follows that all objects inKX-inj are cofibrant as well; therefore the elements of IMS(X)inj = ΓIKX-inj

have cofibrant domain by definition of the model structure on MS(X)inj.
By construction Pt! : M [1]

inj −→ MS(X)inj is a left Quillen functor and since h/V is clearly
a cofibration in M [1]

inj when h ∈ I, we deduce that Pt!(h/V ) is cofibration in MS(X)inj (with
cofibrant domain). Putting these together one has (A3).

Condition (A4) follows from the stability of R under weak equivalence (Proposition 3.4.12).
We treat (A5) and (A6) in the next paragraphs.

The condition (A5) holds To prove this we begin by observing that

Proposition 3.9.9. For a commutative square in M

U X

V Y

f //

h

��

p

��g //

considered as a morphism α = (f, g) : h −→ p in M [1] the following are equivalent.

• There is a lifting in the commutative square above i.e there exists k : V −→ X such that:
k ◦ h = f , p ◦ h = g.

• We can fill the following ‘horn’ of M [1]:

h p

IdV

α //

h/V

��

??

that is, there exists β = (k, l) : IdV −→ p such that β ◦ h/V = α.
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Proof. Obvious. �

Let F ∈MS(X) be an object in inj(Kinj). As F is Kinj-injective, it has the left lifting property
with respect to all maps in Kinj, so in particular for any generating cofibration h ∈ I and any
t ∈ SX, there is a solution to any lifting problem of the following form:

Pt!(h) F

Pt! IdV ∗

a //
_�

Pt!(h/V )

��

!

��! //

??

where ∗ is the terminal object in MS(X). But such a lifting problem is equivalent to the extension
or horn filling problem:

Pt!(h) F

Pt! IdV

a //
_�

Pt!(h/V )

��

??

It follows by adjunction that F(ut) has the extension property with respect to all h/V , as
h runs through I. Thanks to the previous proposition, F(ut) has the RLP with respect to any
generating cofibration of h ∈ I; therefore F(ut) is a trivial fibration and in particular a weak
equivalence. Assembling this for all t we get that F is a co-Segal category i.e an object of R, and
(A5) follows. �

The condition (A6) holds The condition is given by the following:

Lemma 3.9.10. Let F be a co-Segal category i.e an object of R. For a pushout square in MS(X)inj

A F

B Z

β //

α

��
//

q

��

if α ∈ Kinj then there exists a map ε : Z −→ E which is a pushout along an element γ ∈ cell(Kinj)
such that the composite ε ◦ q : F −→ E is a weak equivalence.

Proof. The assertion is clear if α ∈ JMS(X)inj , just take E = Z and ε = IdZ; ε ∈ Kinj is the pushout
of itself along itself and q is a trivial cofibration so in particular a weak equivalence.

Assume that α = Pt!(h/V ) : Pt!(h) −→ Pt!(IdV ); then α is clearly a cofibration in MS(X)inj.
Our map β : Pt!(h) −→ F corresponds by adjunction to a map (a1, a2) : h −→ F(ut) in M [1].
Denote by E the object we get from the pushout of h along a1.

U F(A,B)

V Ft

E

a1 //
_�

h

��
a2

//

F(ut)

��

f

{{
88

r ##
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This gives a factorization of F(ut) : F(A,B)
f
↪−→ E

r−→ Ft.

If we analyze our original pushout square at t like in Remark 3.9.1 we get a diagram in which
every triangle and square is commutative.

U F(A,B)

V Ft

Z(A,B)

Zt

a1 //
_�

h

��
a2

//
��

qAB //

qt
//

Z(ut)

��

44

By the universal property of the pushout of h along a1, there exists a unique map δ : E −→
Z(A,B) making everything commutative. The uniqueness of the map out of the pushout implies
the commutativity of:

E Z(A,B)

Ft Zt

δ //

r

��
qt

//

Z(ut)

��

Choose a factorization of r: E
i
↪−→ Q

j
−−−�
∼

Ft; this yields a factorization of F(ut) by cofibration
followed by a trivial fibration:

F(ut) = F(A,B)
i◦f
↪−−→ Q

j
−−−�
∼

Ft.

This factorization is like the one we used to construct the functor S 1
t . Since j is already a weak

equivalence, if F is in R then F(ut) is a weak equivalence and by 3 for 2, i◦f is a weak equivalence
and hence a trivial cofibration.

Let us set h′ = i ◦ f : F(A,B) −→ Q the previous trivial cofibration and denote as usual
h′/Q = (h′, IdQ) ∈ HomM [1](h′, IdQ) the obvious map. The morphism Pt!(h

′
/Q) is an element of

Kinj and since h′ is trivial cofibration then Pt!(h
′
/Q) is also a trivial cofibration in MS(X)inj.

Introduce as before S(h′, j) ∈ HomM [1](h′,F(ut)) the commutative square:

F(A,B) F(A,B)

Q Ft

Id

h′

��

j
//

F(ut)

��

and denote by T (h′, j,F, t) ∈ HomMS(X)[Pt!(h
′),F] its adjoint transpose. Denote by H ′1 the

pushout of Pt!(h′/Q) along T (h′, j,F, t). By stability of cofibrations under pushout we know that
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H ′1 is a trivial cofibration, so in particular a weak equivalence in MS(X):

Pt!(h
′) F

Pt! IdQ E

T (h′,j,F,t) //
_�

Pt!(h
′
/Q

) o

��

_�

H′1o

��
// (3.9.2.1)

Goal: The rest of the proof will be to show that we can factorize H ′1 as:

F
q−→ Z

ε−→ E

where ε is a pushout of a map γ ∈ Kinj. This will complete the proof of the Lemma since H ′1 is a
weak equivalence.

Claim. The map γ is Pt!(i/Q) : Pt!(i) −→ Pt!(IdQ), where i : E ↪→ Q is the previous cofibration
appearing in the factorization of the morphism E

r−→ Ft. This map is in cell(Kinj) (see Remark
3.9.4).

Let R ∈ HomM [1](h, h′) be the morphism represented by the commutative square:

U F(A,B)

V Q

E

a1 //

h

��
g

//

h′

��
<<

""

��

The composite S(h′, j) ◦ R : h −→ F(ut) is the map (a1, a2) whose adjoint transpose is
β : Pt!(h) −→ F of the original pushout square.

One can easily check that the morphism θ = (f, IdQ) : h′ −→ i is the pushout in M [1] of
h/V along R and that the following commutes:

h h′

IdV IdQ

i

R //
_�

h/V

��

_�

h′
/Qo

��
//

77 � u

i/Q ((

θ

ww =

U F(A,B)

V Q

a1 //

��

h′

��
//

V Q

V Q

//

Id

�� ��
//

h

yy
h′

yy

Id

yy

Id

yy

E

Q

i

��

i
!!

!!

33

33

rr

rr

The functor Pt! is a left adjoint, therefore preserves colimits in general, in particular it preserves
pushout squares. It follows that Pt!(θ) is the pushout of Pt!(h/V ) along Pt!(R). If we apply Pt! in
the above square and join the pushout square (3.9.2.1) we get the following commutative diagram
in MS(X):

Pt!(h) Pt!(h
′)

Pt!(IdV ) Pt!(IdQ)

Pt!(i)

Pt!(R) //
_�

Pt!(h/V )

��

Pt!(h
′
/Q

)

��
//

99 � s
Pt!(i/Q)

&&

Pt!(θ)

yy

F

E

H1

��

T (h′,j,F,t) //

//
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The naturality of the adjunction implies that T (h′, j,F, t) ◦ Pt!(R) = β : Pt!(h) −→ F. Now
introduce the pushout of Pt!(θ) along T (h′, j,F, t):

D1 =

Pt!(h) F

Pt!(i) M

T (h′,j,F,t) //
_�

Pt!(θ)

��

_�

g

��ξ //

On one hand by Lemma 4.1.2, we know that ‘a pushout of a pushout is a pushout’, thus the
concatenation of the two squares below is a pushout of Pt!(h/V ) along β (which is the pushout of
the Lemma):

Pt!(h) Pt!(h
′)

Pt!(IdV ) Pt!(i)

Pt!(R) //
_�

Pt!(h/V )

��

� _

Pt!(θ)

��
//

F

M

g

��

T (h′,j,F,t) //

ξ
//

By uniqueness of the pushout, we can assume (up to a unique isomorphism) that M = Z and
that g = q. On the other hand if we consider D2 the pushout square of γ = Pt!(i/Q) along the
previous map ξ:

D2 =

Pt!(i) Z

Pt!(IdQ) N

ξ //
_�

Pt!(i/Q)

��

_�

ε

��ζ //

then the vertical concatenation D1
D2

is a pushout of Pt!(h′/Q) along T (h′, j,F, t). By uniqueness of
the pushout we can assume (up-to a unique isomorphism) that N = E. Consequently we have
H ′1 = ε ◦ q and by construction ε is the pushout of Pt!(i/Q) ∈ Kinj. This completes the proof of
the Lemma. �

Localization of the injective model structure

We now go back to the functor S : MS(X)inj −→MS(X)inj constructed before. Recall that
S has the following properties:

1. for every F ∈MS(X), S (F) ∈ R;

2. we have a natural transformation ηF : F −→ S (F) which is a cofibration in MS(X)inj.

3. if F ∈ R then ηF : F −→ S (F) is a trivial cofibration therein.

In order to apply the material developed by Simpson in [79], we need some other properties.

The first thing we need, that will not be proved for the moment is the

Hypothesis 3.9.1. We will assume from now that if M is left proper then MS(X)inj is also left
proper.
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Remark 3.9.5. We are not sure for the moment that this hypothesis is valid in all cases. But if
it’s not, there are many reasons to believe that we can have a structure of a catégorie dérivable
in the sense of Cisinski [24]

Warning. We modify S by another functor denoted Sinj which is a Kinj-injective replacement
functor. Sinj is constructed by the Gluing construction (see [32, Prop. 7.17]) and the small object
argument in the locally presentable category MS(X).

With the above modifications and hypothesis, and thanks to Theorem 3.9.8 we have

Proposition 3.9.11. The pair (Sinj, η) is a weak monadic projection from MS(X)inj to R.

Proof. This is Lemma 9.3.1 in [79]. �

New homotopical data Let P be a cofibrant replacement functor on MS(X)inj.

Define a map σ : F −→ G to be

• a new weak equivalence if the map Sinj(Pσ) : Sinj(PF) −→ Sinj(PG) is a weak equiva-
lence in MS(X);

• a new cofibration if σ is a cofibration;

• a new trivial cofibration if σ is a cofibration and a new weak equivalence;

• a new fibration if it has the RLP with respect to all new trivial cofibrations; and

• a new trivial fibration if it’s a new fibration and a new weak equivalence.

With the above definitions we have:

Theorem 3.9.12. The classes of original cofibrations, new weak equivalences, and new fibrations
defined above provide MS(X) with a structure of closed model category, cofibrantly generated and
combinatorial. It is left proper. This structure is the left Bousfield localization of MS(X)inj by the
original set of maps Kinj.

The fibrant objects are the Kinj-injective objects, in particular they are co-Segal categories; and
a morphism F −→ G to a fibrant object is a fibration if and only if it is in inj(Kinj). We will
denote by MS(X)+

inj this new model structure on MS(X).

Proof. Follows from Theorem 9.7.1 in [79]. The fact that fibrant objects are co-Segal categories
follows from property (A5). �

3.9.3 Localization of the projective model structure

The Classical localization

In the fist place we begin by using the classical localization method to localize the projective
model structure MS(X)proj.

We will use the following theorem, due to Smith [80], as stated by Barwick [9, Thm 4.7 ].

Theorem 3.9.13. If M is left proper and U-combinatorial, and K is an U-small set of homotopy
classes of morphisms of M, the left Bousfield localization LK M of M along any set representing
K exists and satisfies the following conditions.

1. The model category LK M is left proper and U-combinatorial.
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2. As a category, LK M is simply M.

3. The cofibrations of LK M are exactly those of M.

4. The fibrant objects of LK M are the fibrant K-local objects Z of M.

5. The weak equivalences of LK M are the K-local equivalences.

We introduce some pieces of notation.

Given a cofibration h, the map h/V considered previously is an injective cofibration in M [1]

but not in general a projective cofibration. We will then replace h/V by a slight modification ζ(h)
which is a projective cofibration.
If we consider h/V as a commutative diagram, by universal property of the pushout of h along
itself, there is a unique map k : V ∪U V −→ V making everything commutative:

U V

V V

V ∪U V

� � h //
_�

h

��

Id
//

Id

��

i1

{{

i0

88 � r

k $$

Choose a factorization ‘cofibration-trivial fibration’ of the map k : V ∪U V −→ V :

r = V ∪U V
a
↪−→ Z

q
−−−�
∼

V.

Such factorization is a relative cylinder object for the cofibration h : U −→ V .

For each cofibration h ∈ I, define ζ(h) = (h, ai0) ∈ HomM [1](h, ai1) to be the induced map
represented by the commutative square:

U V

V Z

V ∪U V

h //
_�

h

��
��

ai0
//

ai1

��

{{

88 � r

a $$

By construction we have j ◦ (ai0) = IdV and since j and IdV are weak equivalences, it follows
by 3 for 2 that ai0 is a weak equivalence, hence a trivial cofibration.

Remark 3.9.6.

1. It’s clear that ζ(h) is automatically a projective (= Reedy) cofibration in M [1]; and if h is
a trivial cofibration then so is ζ(h).

2. Since Pt! a Evut is a Quillen adjunction with the corresponding projective model structures,
then Pt!ζ(h) is a (trivial) cofibration in MS(X)proj is h is so.

The map ζ(h) plays the role of h/V , that is, we can detect if F(ut) is a weak equivalence in
M in terms of horn filling properties against all the map ζ(h) (using a homotopy lifting Lemma).
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Definition 3.9.14. Let M be a model category. Say that g : A −→ B has the right homotopy
lifting property (RHLP) with respect to h : U −→ V if for any commutative square:

U A

V B

u //

h

��
v

//

g

��

r

::

there exists a map r : V −→ A such that:

• rh = u i.e the upper triangle commutes;

• gr and v are homotopic relative to U , that is, we have a relative cylinder object

V ∪U V
a
↪−→ Z

q
−−−�
∼

V

together with a map f : Z −→ B restricting to gu = vh on U ; and inducing the equalities
fai0 = v, fai1 = gr.

Remark 3.9.7. It’s important to observe that this definition is well defined in the sense that

it doesn’t depend on the choice of the relative cylinder object for h. Indeed if r′ = V ∪U V
a′
↪−→

Z ′
q′

−−−�
∼

V is another cylinder, then by the lifting axiom we can find a map k : Z ′ −→ Z such
that a = ka′ and q′ = qk. Therefore if f : Z −→ B is a homotopy lifting with respect to r then
automatically f ′ = fk is a homotopy lifting with respect to r′.

Proposition 3.9.15. For a cofibration h : U −→ V and a map g : A −→ B in a model category
M , the following are equivalent.

1. g has the RHLP with respect to h.

2. g is {ζ(h)}-injective.

Proof. We simply show how we get (1) from (2). The converse follows by ‘reversing’ the argumen-
tation since we can assume that the relative cylinder chosen in (1) is the one used to construct
ζ(h) thanks to Remark 3.9.7.

Assume that g is {ζ(h)}-injective. A lifting problem defined by g and h

U A

V B

u //

h

��
v

//

g

��

corresponds to a map α = (u, v) ∈ HomM [1](h, g); since g is {ζ(h)}-injective we can fill the
following horn in M [1]

h g

ai1

α //

ζ(h)

��
β

??
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with a map β = (r, f). Displaying this horn in M we end up with with a commutative diagram
where every triangle and square commutes:

U A

V B

u //

h

��

g

��
v

//
V

Z

ai1

��

h

yy

ai0

yy

r

33

f

33

One clearly has that (r, f) gives the desired relative homotopy lifting. �

The following is a classical result in model categories.

Lemma 3.9.16. In a tractable left proper model category M , if a map g : A −→ B between fibrant
objects has the RHLP with respect to any generating cofibration h, then g is a weak equivalence.

Proof. This is Lemma 7.5.1 in [79]. �

Notation 3.9.3.

1. We will denote for short ζ(I) = {ζ(h)}
U
h−→V ∈I

.

2. For t ∈ SX we will write Pt!ζ(I) the image of ζ(I) by Pt!.

3. Let Kproj be the set JMS(X)proj ∪ (
∐
t∈SX,deg(t)>1 Pt!ζ(I)).

Recall that R is the subcategory of co-Segal categories. Under Hypothesis 3.9.1, we have by virtue
of Theorem 3.9.13 that:

Theorem 3.9.17. There exists a combinatorial model structure on MS(X)proj such that the fibrant
objects are co-Segal categories i.e, objects of R. This model structure is moreover left proper and
is the left Bousfield localization with respect to Kproj.

Proof. Take MS(X)proj with the Bousfield localization with respect to Kproj which exists by The-
orem 3.9.13. The maps in Kproj are weak equivalences in the Bousfield localization and since they
are old cofibrations, they become trivial cofibrations. It follows that if F is fibrant, it is then
Kproj-injective.

Let F be a Kproj-injective object. On the one hand, as JMS(X) -proj ⊂ Kproj, we have that
F is fibrant in the old model structure, which means that F is level-wise fibrant. On the other
hand, since F is {Pt!ζ(I)}-injective for all t, it follows by the adjunction Pt! a Evut , that F(ut) is
ζ(I)-injective. Combining Proposition 3.9.15 and Lemma 3.9.16, we deduce that F(ut) is a weak
equivalence, thus F ∈ R. �

Direct localizing the projective model structure.

Let’s consider the injective localized model structure MS(X)+
inj constructed with the direct

localizing system (R,Kinj). As we mentioned before it’s the left Bousfield localization of the
original model structure with respect to Kinj; in other words, it’s the same Bousfield localization
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we will have using Theorem 3.9.17.

Since every map in Kinj is a weak equivalence in MS(X)+
inj , we have in particular that for all

h ∈ I, the map Pt!(h/V ) : Pt!(h) −→ Pt!(IdV ) is a weak equivalence in MS(X)+
inj. Recall that each

map ζ(h) is constructed out of h/V and we have a factorization of h/V :

h
ζ(h)
↪−−→ ai1

`−−� IdV .

The factorization is displayed below as:

U V

V Z

V

V

h //
_�

h

��
��

ai0
//

_�

ai1o

��

Id //

q
∼ // //

Id

��

As q is a trivial fibration, the map ` : ai1 −→ Id is a level-wise trivial fibration in M [1], in
particular, a weak equivalence therein. Since we’ve assumed that all the objects of M are cofi-
brant, then both the source and target of ` are cofibrant in M 2

proj. From Ken Brown Lemma Pt!
preserves weak equivalences between cofibrant objects (as any left Quillen functor); thus Pt!(`) is
an old weak equivalence, hence a new weak equivalence (= a weak equivalence in MS(X)+

inj).

From the equality Pt!(h/V ) = Pt!(`) ◦ Pt!ζ(h) we deduce by 3 for 2 in the model category
MS(X)+

inj, that Pt!ζ(h) is a weak equivalence therein; moreover since projective cofibrations are
also injective cofibration, then Pt!ζ(h) is an old cofibration, hence a new cofibration. Putting
these together one has that every Pt!ζ(h) is a trivial cofibration in MS(X)+

inj.

New projective data Recall that weak equivalences in MS(X)+
inj are those maps σ such that

Sinj(Pσ) is a weak equivalence in the original model structure MS(X)inj. Here Sinj is a weak
monadic projection from MS(X)inj to R and P is a cofibrant replacement functor in MS(X)inj.
As pointed out in [79, Sec 9.3], the notion of new weak equivalence depends only on R and doesn’t
depend neither on Kinj nor on P.

Using again the fact that projective cofibrations are injective ones, and since old weak equiv-
alences in MS(X)inj and MS(X)proj are the same, we clearly have that a cofibrant replacement
functor in MS(X)proj is also a cofibrant replacement for MS(X)inj. Therefore we can assume that
P is a projective cofibrant replacement functor.

As mentioned in Remark 3.9.3 we can extract from the weak monadic projection Sinj a weak
monadic projection Sproj from MS(X)proj to R. This is obtained by applying the functorial
factorization of the type (cof ,fib∩we) to the natural transformation η : IdMS(X) −→ Sinj in the
model category MS(X)proj. In particular there is trivial projective fibration Sproj −→ Sinj.

Warning. In the upcoming paragraphs we will write ‘new injective’ or ‘new projective’ to avoid
confusion when saying ‘new weak equivalence’. We will remove this distinction later since the new
weak equivalences will be the same.

Let P be cofibrant replacement functor on MS(X)proj.

Define a map σ : F −→ G to be:
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• a new projective weak equivalence if the map Sproj(Pσ) : Sproj(PF) −→ Sproj(PG)
is a weak equivalence in MS(X) ;

• a new cofibration if σ is a cofibration;

• a new trivial cofibration if σ is a cofibration and a new (projective) weak equivalence;

• a new fibration if it has the RLP with respect to all new trivial cofibrations; and

• a new trivial fibration if it’s a new fibration and a new weak equivalence.

Proposition 3.9.18. The classes of new projective weak equivalences and and new injective weak
equivalences coincide.

Proof. For any morphism σ : F −→ G we have by construction the commutativity of:

Sproj(PF) Sproj(PG)

Sinj(PF) Sinj(PG)

Sproj(Pσ)
//

o

����

Sinj(Pσ)
//

o

����

with all the above vertical maps being weak equivalences in MS(X). Therefore if one of two maps
Sproj(Pσ), Sinj(Pσ) is a weak equivalence in MS(X) then by 3 for 2 of weak equivalence in
MS(X) the other one is also a weak equivalence. �

Remark 3.9.8. 1. It follows from the proposition that the new projective weak equivalences
are closed under retracts, composition and satisfy the 3 for 2 property. We leave the reader
to check that the class of new projective (trivial) cofibrations and (trivial) fibrations are also
so closed under retract and composition.

2. Since the old projective cofibrations are also old injective cofibrations, by the proposition we
deduce that the new projective trivial cofibrations are also a new injective trivial cofibrations.

We remind the reader that the functor Sinj is a Kinj-injective replacement functor. The
following proposition tells us that:

Proposition 3.9.19. The functor Sproj is a Kproj-injective replacement functor, that is, there is
a lift to any diagram:

A Sproj(F)

B ∗

//

α

��

!

��! //

??

for any morphism α : A −→ B in Kproj.

Sketch of proof. Such lifting problem is simply an extension problem:

A Sproj(F)

B

//

��

∃?

??
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If α ∈ JMS(X)proj ⊂ JMS(X)inj ⊂ Kinj, by extending the above diagram using the projective

trivial fibration p : Sproj(F)
∼−−−� Sinj(F), we find a lift 1 in the diagram:

A Sproj(F)

B

Sinj(F)//

α

��

p

∼
// //

1

55

2

??

With the map 1 we have a commutative square which gives a lifting problem defined by α

and p; by the lifting axiom in the model category MS(X)proj we can find a lift B
2−→ Sproj(F)

making everything commutative, in particular we have the desired lift of the original extension
problem.

Assume now that α = Pt!ζ(h), then by extending the diagram with the map p and the map
Pt!(`) we end up with the following diagram

Pt!h Sproj(F)

ai1

Sinj(F)

IdV

//

Pt!ζ(h)

��

p

∼
// //

Pt!`

��

1

99

Pt!h/V

��

2

;;

Since Pt!h/V ∈ Kinj, there is a lift IdV
1−→ Sinj(F); the commutative square we get is a lifting

problem defined by the projective cofibration Pt!ζ(h) and the projective trivial fribration p. By

the lifting axiom in MS(X)proj there is a lift ai1
2−→ Sproj(F) making everything commutative; in

particular we have a lift to the original extension problem. �

Pushout along new projective trivial cofibrations We need a last ingredient in order to
apply Smith recognition theorem for combinatorial model categories as stated for example by
Barwick [9, Proposition 2.2 ].

Lemma 3.9.20. For a pushout square

A F

B G

//

f

��
//

g

��

in MS(X)proj, if f is a new projective trivial cofibration then g is a new projective trivial cofibration.

Proof. Since g is already an old projective cofibration it suffices to show that g is a new projec-
tive weak equivalence. By Proposition 3.9.18, it’s the same thing as being a new injective weak
equivalence.

As pointed out above f is also a new injective trivial cofibration, and since (trivial) cofibrations
are closed under pushout in any model category, it follows that g is also a new injective trivial
cofibration in MS(X)+

inj. In particular g is a new injective weak equivalence, thus a new projective
weak equivalence. �
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The new weak equivalences form an accessible subcategory of Arr(MS(X)proj) because they
are the weak equivalences of the combinatorial model category MS(X)+

inj. A map in inj(IMS(X))
is a trivial fibration, in particular an old weak equivalence. But old weak equivalences are also
new weak equivalences, therefore any map in inj(IMS(X)) is a new weak equivalence.

By virtue of Smith’s theorem we have that:

Theorem 3.9.21. The classes of original cofibrations, new weak equivalences, and new fibrations
defined above provide MS(X) with a structure of closed model category, cofibrantly generated and
combinatorial. It is indeed left proper.

This model structure is the left Bousfield localization of MS(X)proj with respect to Kproj. Fi-
brant objects are co-Segal categories.

We will denote by MS(X)+
proj this new model structure on MS(X).

Proof. The model structure is guaranteed by Smith’s theorem. A fibrant object F is by definition
an α-injective injective object for every new trivial cofibration α.

From the previous observations the maps Pt!ζ(h) become new trivial cofibrations, and since
the maps in JMS(X)proj are already new trivial cofibrations, all the elements of Kproj are new trivial
cofibrations. Consequently if F is fibrant, it’s in particular Kproj-injective and one proceeds as in
the proof of Theorem 3.9.17 to conclude that F is a co-Segal category which is fibrant in the old
model structure (= level-wise fibrant).

It remains to prove that this model structure is the left Bousfield localization of MS(X)proj
with respect to Kproj. To prove this we will simply show that the model structure MS(X)+

proj
and the one of Theorem 3.9.17 are the same; that is, we have the same classes of cofibrations and
fibrations on the underlying category MS(X)proj.

For the notation we will denote by MS(X)cproj the ‘classical’ localized model structure of
Theorem 3.9.17. In both MS(X)+

proj and MS(X)cproj the cofibrations are the old cofibrations in
MS(X)proj so we only have to show that we have the same fibrations.

In the two model structures the fibrations are defined to be the maps having the RLP with
respect to all maps which are both cofibration and new weak equivalences. It follows that the
fibrations will be the same as soon as we show that we have the same weak equivalences. Thanks
to the Lemma below we know that the weak equivalences are indeed the same. �

Lemma 3.9.22. Given a map σ : F −→ G in MS(X) the following are equivalent:

1. σ is a weak equivalence in MS(X)cproj i.e a Kproj-local equivalence;

2. σ is a weak in MS(X)+
proj, that is, Sproj(Pσ) is an old weak equivalence;

3. σ is a weak in MS(X)+
inj, that is, Sinj(Pσ) is an old weak equivalence or equivalently a

Kinj-local equivalence.

Proof of the Lemma. The equivalence between (2) and (3) is clear; we mentioned it there just for
a reminder. We will show that (3) is equivalent to (1).

The general picture is that MS(X)cproj is obtained by turning the maps Pt!ζ(h) to weak equiv-
alences while MS(X)+

inj is obtained by turning the maps Pt!h/V into weak equivalences. The two
type of maps are related by the equality Pt!(h/V ) = Pt!(`) ◦ Pt!ζ(h) where Pt!(`) is already a
weak equivalence; thus if we turn one of them into a weak equivalence then the other one also

116



become a weak equivalence by 3 for 2. This is the general philosophy; we shall now present a proof.

In the following we use the language of classical Bousfield localization of a model category
with respect to a set of maps. This requires the notion of local object and local equivalence. These
definitions can be found for example in [9], [33], [30], [40], [42] , [66]. We will denote by Map(−,−)
a homotopy function complex on MS(X) (see the previous references for the definition of function
complex). The homotopy type of Map(−,−) depends only on the weak equivalences, so we can
use the same for MS(X)inj and MS(X)proj.

We start with the direction (3) ⇒ (1). Let σ : F −→ G be a Kinj-local equivalence, that is,
a weak equivalence in MS(X)+

inj. Then σ will be a weak equivalence in MS(X)cproj, by definition,
if for all Kproj-local object E the induced map of simplicial sets σ? : Map(G,E) −→ Map(F,E) is
weak equivalence.

Let E be a Kproj-local object. By definition E is fibrant in MS(X)proj and for any α : A −→ B

in Kproj then α? : Map(B,E) −→ Map(A,E) is a weak equivalence. As E is not fibrant in MS(X)inj
we have to introduce a fibrant replacement Ẽ in MS(X)inj; we have a weak equivalence q : E −→ Ẽ.
But fibrant objects in MS(X)inj are also fibrant in MS(X)proj, therefore Ẽ is fibrant in MS(X)proj.

Claim. Ẽ is also Kproj-local and Kinj-local.

The fact that Ẽ is Kproj-local is classical: Kproj-locality is invariant under weak equivalences
of fibrant objects. In fact for any α : A −→ B in Kproj, the following commutes:

Map(B,E) Map(A,E)

Map(B, Ẽ) Map(A, Ẽ)

α?

∼
//

q? o

��

α?
//

q?o

��

The maps α? : Map(B,E) −→ Map(A,E) is a weak equivalences of simplicial sets by hypoth-
esis; the two vertical maps q? are also weak equivalences (see [40, Thm 17.7.7]). Therefore by 3

for 2 in the model category of simplicial sets the other map α? : Map(B, Ẽ) −→ Map(A, Ẽ) is also
a weak equivalence, which proves that Ẽ is Kproj-local.

To prove that Ẽ is Kinj-local we have to show that for all α ∈ Kinj then

α? : Map(B, Ẽ) −→ Map(A, Ẽ)

is a weak equivalence i.e Ẽ is α-local. If α ∈ JMS(X)inj then α is in particular an old weak equiva-
lence so Ẽ is α-local by [40, Thm 17.7.7] (any object is local with respect to any weak equivalence).
It remains the case where α = Pt!h/V .

On the one hand since Pt!(`) is a weak equivalence, we have by [40, Thm 17.7.7] again that
Ẽ is Pt!(`)-local. On the other hand since Ẽ is Kproj-local, it’s in particular Pt!ζ(h)-local. It
follows that Ẽ is {Pt!(`) ◦ Pt!ζ(h)}-local (as weak equivalences of simplicial sets are closed under
composition); but Pt!(`)◦Pt!ζ(h) = Pt!h/V , thus Ẽ is Pt!h/V -local. Summing up this, one has that
Ẽ is also Kinj-local.

Claim. A Kinj-local equivalence is also a Kproj-local equivalence.
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By the above if σ is a Kinj-local equivalence then σ? : Map(G, Ẽ) −→ Map(F, Ẽ) is a weak
equivalence of simplicial sets. If we put this in the commutative diagram below:

Map(G,E) Map(F,E)

Map(G, Ẽ) Map(F, Ẽ)

σ? //

q? o

��

σ?
∼ //

q?o

��

then all three maps are weak equivalences, therefore by 3 for 2 the map σ? : Map(G,E) −→
Map(F,E) is also a weak equivalence. Consequently σ is also a Kproj-local equivalence, as claimed.

For the direction (1)⇒ (3) the proof is the same. Let σ : F −→ G be a Kproj-local equivalence.
By definition for any Kproj-local object E, σ? : Map(G,E) −→ Map(F,E) is a weak equivalence.

Claim. If E is a Kinj-local object then it is also a Kproj-local object.

In fact if E is Kinj-local, E is fibrant in MS(X)inj (hence in MS(X)proj) and the map

α? : Map(B, Ẽ) −→ Map(A, Ẽ)

is a weak equivalence for all α ∈ Kinj.

Recall that Kproj = JMS(X)proj ∪ (
∐
t∈SX,deg(t)>1 Pt!ζ(I)).

If α ∈ JMS(X)proj then α is in particular an old weak equivalence in MS(X)proj and MS(X)inj
so E is automatically α-local by [40, Thm 17.7.7].

Assume that α = Pt!ζ(h). By applying Map(−,E) to the equality Pt!(`) ◦ Pt!ζ(h) = Pt!h/V
we get Pt!ζ(h)? ◦ Pt!(`)? = Pt!h

?
/V ; and since E is Kinj-local, it is in particular Pt!ζ(h)-local, thus

Pt!ζ(h)? is a weak equivalence.
As Pt!(`) is an old weak equivalence then E is Pt!(`)-local by [40, Thm 17.7.7] which means

that Pt!(`)? is a weak equivalence; putting these together we conclude by 3 for 2 that Pt!ζ(h)? is
a weak equivalence and E is α-local.

Now if σ is a Kproj-local equivalence, by the above for any Kinj-local object E the map

σ? : Map(G,E) −→ Map(F,E)

is also a weak equivalence which means precisely that σ is a Kinj-local equivalence. �

3.9.4 A new fibered model structure on MS(Set)

In the following we want to vary the set X when MS(X) is equipped with the Bousfield local-
ization with respect to Kproj constructed previously.

We will use the following notation.

Notation 3.9.4.
From now we will specify by K(X)proj, K(Y )proj the corresponding sets.
MS(X)+

proj = the Bousfield localization of MS(X)proj with respect to K(X)proj, for a set X.
LX : MS(X)proj −→MS(X)+

proj = the canonical left Quillen functor.
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Recall that for any function f : X −→ Y there is a Quillen adjunction

f! : MS(X)proj �MS(Y )proj : f?

where f! is left Quillen and f? is right Quillen.

Proposition 3.9.23. For any sets X,Y and any function f : X −→ Y there is an induced Quillen
adjunction, denoted again f! a f?:

f! : MS(X)+
proj �MS(Y )+

proj : f?

and the following commutes:

MS(X)proj MS(Y )proj

MS(X)+
proj MS(Y )+

proj

f!

//
oo f?

LX

��

LY

��

f!

//
oo f?

Sketch of proof. We will show that f!(K(X)proj) ⊂ K(Y )proj. The new ‘f!’ will be induced by
universal property of the Bousfield localization.

Consider α in K(X)proj = JMS(X)proj ∪ (
∐
t∈SX,deg(t)>1 Pt!ζ(I)).

Claim. If α ∈ JMS(X)proj then f!(α) ∈ JMS(Y )proj ⊂ K(Y )proj.

To see this first recall that JMS(X)proj = ΓJKX-proj , whereKX =
∏

(A,B)∈X2 Hom[SX(A,B)op,M ].
Furthermore there is also a Quillen adjunction f! : KX-proj � KY -proj : f?; and by definition we
have:

JKX-proj =
∐

t∈SX

{Ft
h, h ∈ J},

where Ft is the left adjoint of the evaluation at t. It suffices then to show that f!(JKX-proj) ⊂
JKY -proj .

Using the adjunction one establishes that for any m ∈M and any G ∈ KY :

Hom(f!F
t
m,G) ∼= Hom(Ft

m, f
?G)

∼= Hom(m, (f?G)(t))

= Hom(m,Gf(t))

∼= Hom(Ff(t)
m ,G)

Consequently f!F
t
m
∼= F

f(t)
m ; similarly f!F

t
α
∼= F

f(t)
α (we can actually assume that we have an

equality). One clearly has that f!(JKX-proj) ⊂ JKY -proj and the claim holds.

Claim. For every t and every h ∈ I then f!Pt!ζ(h) ∼= Pf(t)!ζ(h)

This also holds by the adjunction. For any h and any G ∈MS(Y ) one has:

Hom(f!Pt!ζ(h),G) ∼= Hom(Pt!ζ(h), f?G)
∼= Hom(ζ(h), (f?G)(ut))

= Hom(ζ(h),G f(ut)︸ ︷︷ ︸
=uf(t)

)

= Hom(ζ(h),Guf(t))

∼= Hom(Pf(t)!ζ(h),G)
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and the claim follows. If we combine the two claims we have the desired result �

By virtue of the Roig-Stanculescu result (Theorem 3.8.7) and under Hypothesis (3.9.1) we
have

Theorem 3.9.24. For a symmetric closed monoidal model category M whose objects are all
cofibrant, the category MS(Set) has a Quillen model structure where a map σ = (f, σ) : F −→ G

is

1. a weak equivalence if f : X −→ Y is an isomorphism of sets and σ : F −→ f?G is a weak
equivalence in MS(X)+

proj,

2. a cofibration if the adjoint map σ̃ : f!F −→ G is a cofibration in MS(Y )+
proj,

3. a fibration if σ : F −→ f?G is a fibration in MS(X)+
proj.

4. fibrant objects are co-Segal categories

We will denote by MS(Set)+
proj the new model structure on MS(Set). There is a canonical left

Quillen functor
L : MS(Set)proj −→MS(Set)+

proj

whose component over X is LX : MS(X)proj −→MS(X)+
proj.

Proof. The proof is the same as for Theorem 3.8.8. On Set we take the minimal model structure:
cofibrations and fibrations are all maps, weak equivalences are isomorphisms. One can check easily
that all the conditions of Theorem 3.8.7 are fulfilled; this gives the model structure described above.

For F ∈ MS(X)+
proj, F is fibrant if the canonical map  : F −→ ∗ is a fibration MS(Set)+

proj,
where ∗ is the terminal object therein. By definition this is equivalent to  : F −→ ?∗ being a
fibration in MS(X)+

proj; and it’s not hard to see that ? is the terminal object in MS(X). Moreover
for every X the terminal object in MS(X) is automatically fibrant in MS(Set)+

proj.

Summing this up, one has that F is fibrant in MS(Set)+
proj if and only if it is fibrant in

MS(X)+
proj, therefore F is a co-Segal category by Theorem 3.9.21. �

Cofibrantly generated

Since the cofibrations in MS(Set)proj and MS(Set)+
proj are the same, the set IMS(Set)proj

consti-
tutes also a generating set for the cofibrations in MS(Set)+

proj. Using the fact that MS(Set)+
proj is

already a model category which is locally presentable, one can easily check that the set IMS(Set)proj

and the class of weak equivalences of MS(Set)+
proj satisfy the conditions of Smith’s recognition

theorem ([9, Proposition 2.2]).

By Smith’s theorem we have a combinatorial model structure on MS(Set)proj with the same
cofibrations and weak equivalences of MS(Set)+

proj. The set IMS(Set)proj
constitutes a generating

set for the cofibrations and there exists a set JMS(Set)+
proj

which is a set of generating trivial cofi-
brations.

But since this new model category has the same cofibrations and weak equivalences (hence the
same fibrations) as MS(Set)+

proj we deduce that this new model structure is in fact isomorphic to
MS(Set)+

proj; thus MS(Set)+
proj is combinatorial and in particular cofibrantly generated.
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The monoidal category (MS(Set),⊗S, I)

Given a small category C, by construction there is a degree (or length) strict 2-functor deg :
SC −→ S1 where 1 is the unit category and S1 ∼= (∆+

epi,+,0). If D is another category we can
form the genuine fiber product of 2-categories SC ×S1 SD.

Proposition 3.9.25. There is an isomorphism of 2-categories: SC×D ∼= SC ×S1 SD.

Proof. Obvious. �

Tensor product of S-diagrams

Let M = (M,⊗, I) be a symmetric monoidal category. Let I : (∆+
epi,+)op −→ M be the

constant lax functor of value I and IdI ; the laxity maps are the obvious natural isomorphism
I ⊗ I ∼= I. The co-Segal diagram I exhibits I in a tautological way as a (semi) monoid.

Given F : (SC)2-op −→M and G : (SD)2-op −→M we define F⊗S G : (SC×D)2-op −→M to be
the lax functor given as follows.

1. For 1-morphisms (s, s′) ∈ (SC×D) we set (F ⊗S G)(s, s′) := F(s)⊗ G(s′),

2. The laxity map ϕF⊗SG : (F⊗S G)(s, s′)⊗ (F⊗S G)(t, t′) −→ (F⊗S G)(s⊗ t, s′⊗ t′) is obtained
as the composite:

F(s)⊗G(s′)⊗F(t)⊗G(t′)
Id⊗sym⊗Id−−−−−−−→ F(s)⊗F(t)⊗G(s′)⊗G(t′)

ϕF⊗ϕG−−−−→ F(s⊗ t)⊗G(s′⊗ t′)

where sym is the symmetry isomorphism in M (we have sym : G(s′)⊗F(t)
∼=−→ F(t)⊗G(s′)).

3. One easily sees that if f : C′ −→ C and g : D′ −→ D then (f × g)?F ⊗S G ∼= f?F⊗S g
?G.

4. If σ = (σ, f) ∈ HomMS(Set)(F,G) and γ = (γ, g) ∈ Hom(F′, g?G′) we define

σ⊗S γ = (σ ⊗ γ, f × g) ∈ HomMS(Set)[F⊗S G,F
′⊗S G

′]

to be the morphism whose component at (s, s′) is σs ⊗ σs′ .

We leave the reader to check that:

1. ⊗S is a bifunctor and is associative,

2. we have a canonical symmetry: F⊗S G ∼= G⊗S F,

3. for any F we have a natural isomorphism F⊗S I ∼= F.

3.10 A model structure for M -Cat for a 2-category M

In the following M is a 2-category. We will use capital letters U, V,W for the objects of M and
f, g, h, k for 1-morphisms and α, β, γ for 2-morphisms. For U, V ∈ Ob(M ) we will write MUV the
category of morphisms from U to V ; when U = V we will simply write MU . If f, g are composable
1-morphisms, we will denote by g ⊗ f the horizontal composite. Similarly for 2-morphisms α, β
we will write β ⊗ α the horizontal composite while β ◦ α will represents the vertical composite.

Definition 3.10.1. Let M be 2-category. We will say that M is locally a model category if
the following conditions hold:
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1. Each MUV is a model category in the usual sense.

2. M is a biclosed that is: for every 1-morphism f the following functors have right adjoints:

f ⊗− −⊗f

3. The pushout-product axiom holds: given two cofibrations α : f −→ g ∈ Arr(MUV ) and
β : k −→ h ∈ Arr(MVW ) then the induced map β�α : h ⊗ f ∪k⊗f k ⊗ g −→ h ⊗ g is a
cofibration in MUW which is moreover a trivial cofibration if either α or β is .

4. For every U and any 1-morphism f ∈ MUV , if Q(IdU ) −→ IdU is a cofibrant replacement
then the induced map Q(IdU )⊗ f −→ f is a weak equivalence in MUV .

As one can see this is a straightforward generalization of a monoidal model category considered
as a 2-category with one object. Condition (2) allows us to distribute colimits with respect to the
composition on each factor.

We recall briefly below the definition of a category enriched over a 2-category M .

An M -category X consists roughly speaking of:

1. for each object U of M , a set XU of objects over U ;

2. for objects A,B over U, V respectively, an arrow X (A,B) : U −→ V ∈MUV ;

3. for each object A over U , a 2-cell IA : IdU =⇒X (A,A) ∈MU ;

4. for object A,B,C over U, V,W , respectively, a 2-cell cABC : X (B,C) ⊗ X (A,B) =⇒
X (A,C) ∈MUW satisfying the obvious three axioms of left and right identities and asso-
ciativity.

Equivalently X can be defined as a lax morphism X : X −→ M or a strict homomorphism
X : PX −→ M (see [3]). Note that for each U , we have a category X|U enriched over the
monoidal category MU ; the set of objects of X|U is XU .

Given two M -categories X and Y an M -functor is given by the following data:

1. a function Φ : Ob(X ) −→ Ob(Y ), Φ =
∐
U ΦU with ΦU : XU −→ YU ;

2. for A,B in X over U, V , respectively we have a morphism ΦAB : X (A,B) −→ Y (ΦA,ΦB)
in MUV

3. for each object A over U we have IΦA = ΦAA ◦ IA; satisfying the obvious compatibility with
respect to the composition on both sides.

M -categories with M -functors form the category M -Cat. There is an obvious category M -
Graph whose objects are M -graphs and morphisms are just the natural ones.

We have a forgetful functor just like in the monoidal case U : M -Cat −→M -Graph.

Remark 3.10.1. As usual there is a restriction Φ|U : X|U −→ Y|U of Φ, which is a MU -functor.
And any M -functor has an underlying morphism between the corresponding M -graphs.

Proposition 3.10.2. Let M be a biclosed 2-category which is locally locally-presentable that
is: each MUV is locally presentable in the usual sense. Then M -Cat is locally presentable.
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Proof. All is proved in the same manner as for a monoidal category M . Below we list the different
steps:

1. First one shows that M -Graph is cocomplete. This is easy: just apply the same method
as Wolff [97].

2. U is monadic: construct a left adjoint of U with the same formula given in [97]. Then show
that M -Cat has coequalizers of parallel U-split pairs, again using the same idea in loc.
cit. As U clearly reflects isomorphisms, it follows by Beck monadicity theorem that U is
monadic.

3. Linton’s result [63, Corollary 2] applies and we have: M -Cat is cocomplete as well.

4. Following the same method as Kelly and Lack [50] one has that the monad induced by
U preserves filtered colimits and M -Graph is locally presentable. From this we apply [1,
Remark 2.78] to establish that M -Cat is also locally presentable.

Note that being biclosed is essential in order to permute (filtered) colimits and ⊗. �

Terminology. Let W be a class of 2-morphisms in M . An M -functor Φ : X −→ Y is said
to be locally in W if for every pair of objects A,B of X the 2-morphism ΦAB : X (A,B) −→
Y (ΦA,ΦB) is in W . We will say the same thing for a morphism between M -graphs.

The category M -Cat(X)

For each U ∈ M let’s fix a set XU of objects over U and consider X =
∐
U XU . Denote by

M -Cat(X) the category of M -categories with fixed set of objects X and M -functors which fix
X. Similarly there is a category M -Graph(X) of M -graphs with vertices X and morphisms
fixing X.

Just like in the case where M is a monoidal category there is a tensor product in M -Graph(X)
defined as follows. If X ,Y ∈M -Graph(X) one defines X ⊗X Y by:

(X ⊗X Y )(A,B) =
∐

Z∈X
X (A,Z)⊗ Y (Z,B).

The unit of this product is the M -graph I given by

I (A,B) =

{
IdU if A and B are over the same object U
∅ = initial object in MUV If A over U , and B over V with U 6= V

As usual it’s not hard to see that M -Cat(X) is the category of monoids of (M -Graph(X),⊗X ,I ).
We have an obvious isomorphism of categories:

M -Graph(X) ∼=
∏

(U,V )∈Ob(M )2

M
(XU×XV )
UV

where M
(XU×XV )
UV = Hom(XU × XV ,MUV ). From this we can endow M -Graph(X) with the

product model structure. In this model structure, fibrations, cofibrations and weak equivalences
are simply component wise such morphism.

Theorem 3.10.3. Let M be a 2-category which is locally a model category and locally cofibrantly
generated. Assume moreover that all the objects of M are cofibrant. Then we have:
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1. the category M -Cat(X) admits a model structure which is cofibrantly generated.

2. if M is combinatorial, then so is M -Cat(X)

Proof. This is a special case of Theorem 3.3.12 where O = OX , C. = X and M. = M �

Remark 3.10.2. One can remove the hypothesis ‘all the objects of M are cofibrant’ by using an
analogue of the monoid axiom of [77]. In fact one can use the method in loc.cit to establish the
theorem. Lurie [66] also presented a nice description of the model structure for the case where
M is the monoidal category of simplicial sets. It seems obvious that we can adapt his method to
calculate the pushout of interest in our case.
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Chapter 4

Appendices

4.1 Some classical lemmas

The first lemma we present is a classical result of category theory concerning the universal
property of a pushout diagram. We include this part for completeness.

Warning. In this discussion κ is a regular uncountable cardinal and all ‘sets’ that will be consid-
ered in the sequel are assumed to have a cardinality < κ: this is what we mean by being a κ-small
set.

Definition 4.1.1. Let C be a small category and f : A −→ B, g : A −→ C be two morphisms of
C with the same source A.

A pushout of 〈f, g〉 is a commutative square:
A B

C R

f //

g

��
u

��v //

such that for any commutative

square
A B

C S

f //

g

��
h

��k //

there exists a unique morphism t : R −→ S such that h = t ◦ u and

k = t ◦ v.

Notation 4.1.1. To stress the fact a commutative square is a pushout square we will put the
symbol ‘y’ at the center of the diagram:

A B

C R

y

f //

g

��
u

��v //

Observations 4.1.1. It follows from the universal property of the pushout that if a commutative
square

A B

C S

f //

g

��
h

��k //

is also a pushout of 〈f, g〉 then the unique map t : R −→ S we get from the definition is an
isomorphism.

In this situation, up to composition by the morphism t, we can assume that R = S, h = u
and k = v.
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Terminology. The map v : C −→ R is said to be ‘the pushout of f along g’ and by symmetry v
is the pushout of g along f .

Using again the universal property of the pushout, we get the following lemma which says that
‘a pushout of a pushout is a pushout ’.

Lemma 4.1.2. Let C be a small category. Given two commutative squares in C:

A B

C R

f //

g

��
u

��v //

B D

R U

p //

u

��
w

��q //

If the two are pushout squares then the ‘composite square’:

A D

C U

p◦f //

g

��
w

��q◦v //

is also a pushout square.

Proof. Elementary. �

Remark 4.1.1. If the set Mor(C) of all morphisms of C is κ-small, then the previous lemma can
be applied for any set of consecutive pushout squares indexed by an ordinal β with β < κ.

Definition 4.1.3. Let K be set of cardinality |K| < κ and 1 = {O,O IdO−−→ O} be the terminal
category. We identify K with the discrete category whose set of objects is K.
The cone associated to the set K is the category ε(K) described as follows.
Ob(ε(K)) = K t {O} and for x, y ∈ Ob(ε(K)) we have

ε(K)(x, y) =





{(O, y)} if x = O and y ∈ K
{Idx} if x = y

∅ otherwise

The composition is the unique one.

Remark 4.1.2. Our notation ‘ε(K)’ is inspired by the category ε(n) used by Simpson (see [79]
13.1). In fact if K is a set of cardinality n then ε(K) is isomorphic to ε(n).
Following the terminology in [3], ε(K) is the thin bridge from the 1 to K which was denoted
therein by ‘1 < K’.

With the category ε(K) we can give a general definition.
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Definition 4.1.4. Let M be a category and K be a set of cardinality |K| < κ. A cone of M
indexed by K is a functor τ : ε(K) −→M .

The ordinal |K| is said to be the size of τ .

Concretely a cone of M corresponds to a K-indexed family {A −→ Bk}k∈K of morphisms of
M having the same domain. We can write

τ = {A −→ Bk}k∈K
with A = τ(O), Bk = τ(k) and τ [(O, k)] = A −→ Bk.

Terminology.

• If M is a model category then a cone τ = {A −→ Bk}k∈K is said to be a cone of cofibra-
tions if every morphism A −→ Bk is a cofibration.

• More generally given a class of maps I of a category M , a cone τ = {A −→ Bk}k∈K is said
to be a cone of I if every map A −→ Bk is a member of I.

• A cone τ : ε(K) −→M is said to be small if the index set K is such that |K| < κ for some
regular cardinal κ.

Definition 4.1.5. Let M be a category. A generalized pushout diagram in M is a colimit of
a cone τ of M . Here the colimit is the colimit of the functor τ .

One can check that for a cone τ associated to a set K of cardinality 2, then the colimit of the
diagram τ is given by a classical pushout square.

Using the fact that in a model category, the pushout of a cofibration is again a cofibration we
have the following lemma.

Lemma 4.1.6. Let κ be regular cardinal. For any κ-small model category M the following hold.

1. Every small cone τ of M has a colimit.

2. If τ = {A ↪→ Bk}k∈K if a cone of (trivial) cofibrations then all the canonical maps:

Bk −→ colim(τ)

A −→ colim(τ)

are also (trivial) cofibrations.

Sketch of proof. Assertion (1) follows from the fact that M has all small colimits by definition of
a model category.

For the assertion (2) it suffices to prove that the canonical map Bk −→ colim(τ) is a (triv-
ial) cofibration for every k. The map A −→ colim(τ) which is the composite of A ↪→ Bk and
Bk −→ colim(τ), will be automatically a (trivial) cofibration since (trivial) cofibrations are closed
under composition. For the rest of the proof we will simply treat the trivial cofibration case; the
other case is implicitly proved by the same method.

We proceed by induction on the cardinality of K.
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• If |K| = 1, there is nothing to prove.

• If |K| = 2, K = {k1, k2}, the colimit of τ is a pushout diagram and the result is well known.

• LetK be an arbitrary κ-small set and assume that the assertion is true for any subset J ⊂ K
with |J | < |K|.

Let’s now choose k0 ∈ K and set J = K − {k0} and τ ′ := τ|ε(J).
As |J | < |K| the assertion is true for τ ′ and we have that the canonical maps

{
A −→ colim(τ ′)

Bk −→ colim(τ ′) for all k ∈ J

are trivial cofibrations.

Consider in M the following pushout square:

A Bk0

colim(τ ′) S

� � //
_�

�� ��
//

Since trivial cofibrations are closed under pushout, we know that the canonical maps
{
colim(τ ′) −→ S

Bk0 ↪→ S

are trivial cofibrations. We deduce that the following maps are also trivial cofibrations:
{
Bk ↪→ S = [colim(τ ′) ↪→ S] ◦ [Bk ↪→ colim(τ ′)] k ∈ J
A ↪→ S.

Finally one can easily verify that the object S equipped with the morphisms:




A ↪→ S

Bk0 ↪→ S

Bk ↪→ S for all k ∈ J.

is a colimit of the functor τ , that is, it satisfies the universal property of ‘the’ colimit of τ . So we
can actually take colim(τ) = S, and the assertion follows.

�

Remark 4.1.3. If I is the set of cofibrations of M then what we’ve just showed can be rephrased
in term of relative I-cell complex. We refer the reader to [42, Ch. 2.1.2] or [79, Ch. 8.7] and
references therein for the definition of relative cell complex.

In this terminology we’ve just showed that each map Bk −→ colim(τ) is a relative I-cell
complex. Now it’s well known that a relative I-cell complex is an element of some set I-cof (see
[42, Lemma 2.1.10]). In general for an arbitrary class of maps I we have an inclusion I ⊂ I-cof;
but in a model category in which I is the set of cofibrations of M we have an equality I-cof = I
(see [42, Ch. 2.1.2]).
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4.2 Adjunction Lemma

4.2.1 Lemma 1

In the following we fix M a cocomplete a symmetric closed monoidal category.
We remind the reader that being symmetric monoidal closed implies that the tensor product
commutes with colimits on both sides. In particular for every (small) diagram D : J −→M , with
J a discrete category i.e a set, then we have:

[
∐

j∈J
D(j)]⊗ P ∼=

∐

j∈J
[D(j)⊗ P ]

P ⊗ [
∐

j∈J
D(j)] ∼=

∐

j∈J
[P ⊗D(j)].

Let X be a κ-small set and U : MS(X) −→ ∏
(A,B)∈X2 Hom[SX(A,B)op,M ] be the functor de-

fined as follows.

{
U(F ) = {FAB}(A,B)∈X2 for F = {FAB, ϕs,t}(A,B)∈X2 ∈MS(X)

U(σ) = {σAB : FAB −→ GAB}(A,B)∈X2 for F σ−→ G

So concretely the functor U forgets the laxity maps ‘ϕs,t’.

Our goal is to prove the following lemma.

Lemma 4.2.1. The functor U has a left adjoint, that is there exists a functor

Γ :
∏

(A,B)∈X2

Hom[SX(A,B)op,M ] −→MS(X)

such that for all F ∈MS(X) and all X ∈ ∏(A,B)∈X2 Hom[SX(A,B)op,M ], we have an isomor-
phism of sets:

Hom[Γ[X ], F ] ∼= Hom[X ,U(F )]

which is natural in F and X .

We will adopt the following conventions.

Conventions.

• If (U1, · · · , Un) is a n-tuple of objects of M we will write U1⊗· · ·⊗Un for the tensor product
of U1, · · · , Un with all pairs of parentheses starting in front.

• For a set J and J1, J2 two subsets of J such that J1
⊔
J2 = J then for every family (Uj)j∈J

of objects of M we will freely identify the two objects
∐
j∈J Uj and (

∐
j∈J1

Uj)
∐

(
∐
j∈J2

Uj)
and we will call it “the” coproduct of the Uj .

In particular for each k ∈ J1, the three canonical maps




ik : Uk −→
∐
j∈J Uj

iJ1 :
∐
j∈J1

Uj −→
∐
j∈J Uj

ik,J1 : Uk −→
∐
j∈J1

Uj

are linked by the equality: ik = iJ1 ◦ ik,J1 .
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Before giving the proof we make some observations.

Observations 4.2.1. Let (A,B) be a pair of elements of X and t ∈ SX(A,B). Denote by d the
degree (or length) of t.

Consider the set Dec(t) of all decomposition or ‘presentations’ of t given by:

Dec(t) =
∐

0≤l≤d−1

{(t0, · · · , tl),with t0 ⊗ · · · ⊗ tl = t}

where for l = 0 we have t0 = tl = t.

Given t′ ∈ SX(A,B) of length d′ and a morphism u : t −→ t′ (hence d′ ≤ d) then for any
(t′0, · · · , t′l) ∈ Dec(t′), there exists a unique (t0, · · · , tl) ∈ Dec(t) together with a unique (l+1)-tuple
of morphisms (u0, · · · , ul) with ui : ti −→ t′i such that:

u = u0 ⊗ · · · ⊗ ul.

This follows from the fact in SX the composition is a concatenation of chains ‘side by side’
which is a generalization of the ordinal addition in (∆+

epi,+, 0). In fact by construction each
SX(A,B) is a category of elements of a functor from ∆+

epi to the category of sets. In particular
the morphisms in SX(A,B) are parametrized by the morphism of ∆+

epi and we clearly have this
property of decomposition of morphisms in (∆+

epi,+).

It follows that any map u : t −→ t′ of SX(A,B) determines a unique function Dec(u) :
Dec(t′) −→ Dec(t). Moreover it’s not hard to see that if we have two composable maps u : t −→ t′,
u′ : t′ −→ t′′ then Dec(u′ ◦ u) = Dec(u′) ◦Dec(u).

Remark 4.2.1. One can observe that for t ∈ SX(A,B) and s ∈ SX(B,C) we have a canonical
map of sets

Dec(s)×Dec(t) −→ Dec(s⊗ t)

which is injective, so that we can view Dec(s)×Dec(t) as a subset of Dec(s⊗ t).
And more generally for each (t0, · · · , tl) ∈ Dec(t) with l > 0 we can identify Dec(t0)×· · ·×Dec(tl)
with a subset of Dec(t).

Proof of Lemma 4.2.1

Let X = (XAB) be an object of
∏

(A,B)∈X2 Hom[SX(A,B)op,M ].
To prove the lemma we will proceed as follows.

− First we give the construction of the components Γ[X ]AB.

− Then we define the laxity maps ξs,t.

− Finally we check that we have the universal property i.e that the functor F 7→ Hom[X ,U(F )]
is co-represented by Γ[X ].
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The components Γ[X ]AB

1. We define Γ[X ](t) by induction on the degree of t by:

• Γ[X ](t) = X (t) if deg(t) = 1, i.e t = (A,B) for some (A,B) ∈ X2

• And if deg(t) > 1 then we set

Γ[X ](t) = X (t)
∐

l>0,(t0,··· ,tl)∈Dec(t)

Γ[X ](t0)⊗ · · · ⊗ Γ[X ](tl).

This formula is well defined since for every (ti)0≤i≤l ∈ Dec(t) with l > 0 we have deg(ti) <
deg(t) and therefore each Γ[X ](ti) is already defined by the induction hypothesis.

2. Note that by construction we have the following canonical maps:




Γ[X ](t0)⊗ · · · ⊗ Γ[X ](tl)
ξ(t0,··· ,tl)−−−−−−→ Γ[X ](t) with l > 0

X (t)
ηt−→ Γ[X ](t)

(4.2.1.1)

3. Given a map u : t −→ t′ of SX(A,B), we also define the map Γ[X ](u) : Γ[X ](t′) −→ Γ[X ](t)
by induction.

• If t is of degree 1 we take Γ[X ](u) = X (u).

• If the degree of t is > 1, for each (t0, · · · , t′l) ∈ Dec(t′) we have a unique (t0, · · · , tl) ∈
Dec(t) together with maps ui : ti −→ t′i such that u = u0 ⊗ · · · ⊗ ul.

By the induction hypothesis all the maps Γ[X ](ui) : Γ[X ](t′i) −→ Γ[X ](ti) are defined, and
we can consider the maps:

{
Γ[X ](t′0)⊗ · · · ⊗ Γ[X ](t′l)

⊗Γ[X ](ui)−−−−−−−→ Γ[X ](t0)⊗ · · · ⊗ Γ[X ](tl) with l > 0

X (u) : X (t′) −→X (t)
(4.2.1.2)

The composite of the maps in (4.2.1.2) followed by the maps in (4.2.1.1) gives the following




Γ[X ](t′0)⊗ · · · ⊗ Γ[X ](t′l)
ξ(t0,··· ,tl)◦(⊗Γ[X ](ui))−−−−−−−−−−−−−−→ Γ[X ](t) with l > 0

X (t′)
ηt◦X (u)−−−−−→ Γ[X ](t)

(4.2.1.3)

Finally using the universal property of the coproduct, we know that the maps in (4.2.1.3)
determines a unique map:

Γ[X ]AB(u) : Γ[X ]AB(t′) −→ Γ[X ]AB(t).

4. It’s not hard to check that these data determine a functor Γ[X ]AB : SX(A,B)op −→M .
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5. We leave the reader to check that all the maps in (4.2.1.1) are natural in all variables ti including
t. In particular the maps ηt determine a natural transformation

ηAB : XAB −→ Γ[X ]AB

These natural transformations {ηAB}(A,B)∈X2 will constitute the unit of the adjunction.

Remark 4.2.2. We can define alternatively Γ[X ] without using induction by the formula:

Γ[X ](t) =
∐

(t0,··· ,tl)∈Dec(t)

X (t0)⊗ · · · ⊗X (tl).

where we include also the case l = 0 to have X (t) in the coproduct.

It’s not hard to check that the Γ[X ] we get by this formula and the previous one are naturally
isomorphic. But for simplicity we will work with the definition by induction.

The laxity maps The advantage of the definition by induction is that we have ‘on the nose’
the laxity maps which correspond to the canonical maps :

Γ[X ](s)⊗ Γ[X ](t)
ξs,t−−−−−−−−−→

(s,t)∈Dec(s⊗t)
Γ[X ](s⊗ t)

for all pair of composable morphisms (s, t). And one can check that these laxity maps satisfy the
coherence axioms of a lax morphism, so that Γ[X ] is indeed an SX -diagram.

Given two objects X , X ′ with a morphism δ : X −→X ′, one defines Γ(δ) = {Γ(δ)t} with:

Γ(δ)t = δt
∐

(t0,··· ,tl)∈Dec(t),l>0

Γ(δ)t0 ⊗ · · · ⊗ Γ(δ)tl .

We leave the reader check that Γ is a functor.

Remark 4.2.3. If M is a symmetric monoidal model category such that all the objects are
cofibrant, then by the pushout-product axiom one has that the class of (trivial) cofibrations is
closed under tensor product. It’s also well known that (trivial) cofibrations are also closed under
coproduct. If we combine these two facts one clearly sees that if δ : X −→ X ′ is a level-wise
(trivial) cofibration, then Γδ is also a level-wise (trivial) cofibrations.

The level-wise (trivial) cofibrations are precisely the (trivial) cofibration on KX-inj (= KX

equipped with the injective model structure). We have also by Ken Brown lemma (see [42, Lemma
1.1.12]) that both ⊗ and

∐
preserve the weak equivalences between cofibrant objects; thus if δ is

a level-wise weak equivalence then so is Γδ.

The universal property It remains to show that we have indeed an isomorphism of sets:

Hom[Γ[X ], F ] ∼= Hom[X ,U(F )]

Recall that the functor U forgets only the laxity maps, so for any F,G ∈MS(X) we have:
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- (UF )AB = FAB,

- For any σ ∈ HomMS(X)(F,G) then U[σ] = σ.

So when there is no confusion, we will write F instead of U(F ) and σ instead of U(σ).

Consider η : X −→ Γ[X ], the canonical map appearing in the construction of Γ[X ]. Actually
η is a map from X to U(Γ[X ]).

Let θ : Hom[Γ[X ], F ] −→ Hom[X ,U(F )] be the function defined by:

θ(σ) = U(σ) ◦ η

with θ(σ)t = σt ◦ ηt. By abuse of notation we will write θ(σ) = σ ◦ η.

Claim. θ is one-to-one and onto, hence an isomorphism of sets

Injectivity of θ
Suppose we have σ, σ′ ∈ Hom[Γ[X ], F ] such that θ(σ) = θ(σ′) . We proceed by induction on the
degree of t to show that for all t, σt = σ′t.

• For t of degree 1 we have Γ[X ](t) = X (t) and ηt = IdΓ[X ](t) therefore θ(σ)t = σt and
θ(σ′)t = σ′t. The assumption θ(σ)t = θ(σ′)t gives σt = σ′t.

• Let t be of degree d > 1 and assume that σw = σ′w for all w of degree ≤ d − 1. We will
denote for short by Dec(t)∗ the set Dec(t) − {t} which is exactly the set of all (w0, · · · , wp) in
Dec(t) with p > 0.

For each (w0, · · · , wp) ∈ Dec(t)∗ we have two canonical maps:




Γ[X ](w0)⊗ · · · ⊗ Γ[X ](wp)
ξ(w0,··· ,wp)−−−−−−−→ Γ[X ](w0 ⊗ · · · ⊗ wp) = Γ[X ](t)

F (w0)⊗ · · · ⊗ F (wp)
ϕ(w0,··· ,wp)−−−−−−−→ F (w0 ⊗ · · · ⊗ wp) = F (t)

(4.2.1.4)

The map ξ(w0,··· ,wp) is the one in (4.2.1.1) and the map ϕ(w0,··· ,wp) is uniquely determined by laxity
maps of F and their coherences, together with the bifunctoriality of the product ⊗ and it asso-
ciativity. We remind the reader that the choice and order of composition of these maps (laxity,
associativity, identities) we use to build ϕ(w0,··· ,wp) doesn’t matter (Mac Lane coherence theorem
[68, Ch. 7]).

Now by definition of a morphism of SX -diagrams, for any (w0, w1) with w0 ⊗ w1 = t the
following diagram commutes:

Γ[X ](w0)⊗ Γ[X ](w1) Γ[X ](t)

F (w0)⊗ F (w1) F (t)

ξw0,w1 //

σw0⊗σw1

��

σt

��ϕw0,w1 //

And using again a ‘Mac Lane coherence style’ argument we have a general commutative diagram
for each (w0, · · · , wp) ∈ Dec(t):
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Γ[X ](w0)⊗ · · · ⊗ Γ[X ](wp) Γ[X ](t)

F (w0)⊗ · · · ⊗ F (wp) F (t)

ξ(w0,··· ,wp) //

⊗
σwi

��

σt

��ϕ(w0,··· ,wp) // (4.2.1.5)

If we replace σ by σ′ everywhere we get a commutative diagram of the same type.

Let’s denote by Diagt(σ) and Diagt(σ′) the set of maps:

Diagt(σ) =
{
ϕ(w0,··· ,wp) ◦ (⊗σwi), (w0, · · · , wp) ∈ Dec(t)∗

}
t {θ(σ)t}

Diagt(σ
′) =

{
ϕ(w0,··· ,wp) ◦ (⊗σ′wi), (w0, · · · , wp) ∈ Dec(t)∗

}
t
{
θ(σ′)t

}
.

Using the induction hypothesis σwi = σ′wi and the fact that θ(σ) = θ(σ′) we have:
{
ϕ(w0,··· ,wp) ◦ (⊗σwi) = ϕ(w0,··· ,wp) ◦ (⊗σ′wi) for all (w0, · · · , wp) ∈ Dec(t)∗

θ(σ)t = θ(σ′)t

so that Diagt(σ) = Diagt(σ′).

The universal property of the coproduct says that there exists a uniquemap δt : Γ[X ](t) −→ F (t)
such that: 




ϕ(w0,··· ,wp) ◦ (⊗σwi) = δt ◦ ξ(w0,··· ,wp)

ϕ(w0,··· ,wp) ◦ (⊗σ′wi) = δt ◦ ξ(w0,··· ,wp)

θ(σ)t = δt ◦ ηt
θ(σ′)t = δt ◦ ηt

But we know from the commutative diagrams (4.2.1.5) that both σt and σ′t satisfy these relations,
so by uniqueness we have σt = δt = σ′t .

By induction we have the equality σt = σ′t for all t which means that σ = σ′ and θ is injective.

Remark 4.2.4. The set of maps
{
ϕ(w0,··· ,wp) : F (w0)⊗ · · · ⊗ F (wp) −→ F (t) for all (w0, · · · , wp) ∈ Dec(t)∗

IdF (t) : F (t) −→ F (t)

determines by the universal property of the coproduct a unique map:

ε′t :
∐

Dec(t)

F (w0)⊗ · · · ⊗ F (wp) −→ F (t).

Note that the source of that map is a coproduct taken on Dec(t) i.e including t. We have the
obvious factorizations of ϕ(w0,··· ,wp) and IdF (t) through ε′t. From the Remark 4.2.2 we have

Γ[UF ](t) ∼=
∐

Dec(t)

F (w0)⊗ · · · ⊗ F (wp)

and ε′t gives a map εt : Γ[UF ](t) −→ F (t). That map εt will constitute the counit of the adjunction.
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Surjectivity of θ
Let π : X −→ U(F ) be an element of Hom[X ,U(F )]. In the following we construct by induction
a morphism of SX -diagrams σ : Γ[X ] −→ F such that θ(σ) = π.
Let t be a morphism in SX of degree d.

• For d = 1 since Γ[X ](t) = X (t) and ηt = IdΓ[X ](t), we set σt = πt. We have:

θ(σ)t = σt ◦ ηt = πt ◦ IdΓ[X ](t) = πt.

• For d > 1, let’s assume that we’ve constructed σwi : Γ[X ](wi) −→ F (wi) for all wi of degree
≤ d− 1 such that:

θ(σ)wi = σwi ◦ ηwi = πwi .

Using the the universal property of the coproduct with respect to the following set of maps:

{
ϕ(w0,··· ,wp) ◦ (⊗σwi) : Γ[X ](w0)⊗ · · · ⊗ Γ[X ](wp) −→ F (t) for all (w0, · · · , wp) ∈ Dec(t)∗

πt : X (t) −→ F (t)

we have a unique map σt : Γ[X ](t) −→ F (t) such that the following factorizations hold:
{
ϕ(w0,··· ,wp) ◦ (⊗σwi) = σt ◦ ξ(w0,··· ,wp) for all (w0, · · · , wp) ∈ Dec(t)∗

πt = σt ◦ ηt.

These factorizations imply that all the diagrams of type (4.2.1.5) are commutative. So by induction
for all t we have these commutative diagrams which gives the required axioms for transformations
of lax-morphisms (see Definition 3.4.11).

Moreover we clearly have by construction that θ(σ)t = σt ◦ ηt = πt for all t, that is θ(σ) = π
and θ is surjective.

We leave the reader to check that all the constructions considered in the previous paragraphs
are natural in both X and F . �

4.2.2 Evaluations on morphism have left adjoint

In the following M represents a cocomplete category. Given a small category C and a mor-
phism α of C we will denote by Evα : Hom(C,M ) −→M [1] the functor that takes F ∈ Hom(C,M )
to F(α).

Recall that [1] = (0 −→ 1) is the interval category. A morphism α of C can be identified with
a functor denoted again α : [1] −→ C, that takes 0 to the source of α and 1 to the target.
Then we can identify Evα with the pullback functor α? : Hom(C,M)

α◦−→ Hom([1],M ) = M 2.
With this identification one easily establishes that:

Lemma 4.2.2. For a small category C and any morphism α ∈ C the functor Evα has a left adjoint
Fα : M [1] −→ Hom(C,M ).

Proof. This is a special case of a more general situation where we have a functor α : B −→ C; the
left adjoint of α? is α! which corresponds to the left Kan extension functor along α. The reader
can find a detailed proof for example in [66, A.2.8.7], [79, Ch. 7.6.1], [40, Ch. 11.6]. �
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Corollary 4.2.3. Fα is a left Quillen functor between the corresponding projective model struc-
tures.

Proof. A left adjoint is a left Quillen functor if and only if its right adjoint is a right Quillen
functor (see lemma [42, 1.3.4]); consequently Fα is a left Quillen functor if and only if Evα is a
right Quillen functor.

But in the respective projective model structure on Hom(C,M ) and M [1] = Hom([1],M ),
the (trivial) fibrations are the level-wise ones, so Evα clearly preserves them. Thus Evα is a right
Quillen functor and the result follows. �

Remark 4.2.5. From Ken Brown’s lemma ([42, Lemma 1.1.12]), Fα preserves weak equivalences
between cofibrant objects. Recall that a cofibrant object in M 2

proj is a cofibration in M with a
cofibrant domain. In particular if all the objects of M are cofibrant, then the cofibrant objects in
M 2

proj are simply all the cofibrations of M . Therefore if all the objects of M are cofibrant then
Fα preserves weak equivalence between any two cofibrations.

Our main interest in the above lemma is when C = SX(A,B)op and α = ut, the unique mor-
phism in SX(A,B)op from (A,B) to t (see Observation ??).

Each category SX(A,B)op is an example of direct category, that is, a category C equipped
with a linear extension functor deg : C −→ λ, where λ is an ordinal (see [42]). One requires
furthermore that deg takes nonidentity maps to nonidentity maps; this way any nonidentity map
raises the degree. Note that SX(A,B)op has an initial object e which corresponds to (A,B).

For such categories C one has the following

Lemma 4.2.4. Let C be a direct category. Then for any model category M , the adjunction

Fα : M [1] � Hom(C,M ) : Evα

is also a Quillen adjunction with the injective model structures on each side.

Corollary 4.2.5. For any t ∈ SX(A,B) the functor

Fut : M
[1]
inj −→ Hom[SX(A,B)op,M ]inj

is a left Quillen functor.

Proof of Lemma 4.2.4. We assume that α is an nonidentity map since the assertion is obvious
when α is an identity. Let c0 = α(0) and c1 = α(1) be respectively the source and target of α,
and h : U −→ V be an object in M [1] = Hom([1],M ). Note that since α is an nonidentity map
we have deg(c0) < deg(c1), thus Hom(c1, c0) = ∅.

By definition of the left Kan extension along α one defines Fα
h(c) as:

Fα
h(c) = colim

(α(i)
k−→c)∈α/c

α(i)

where α/c represents the over category (see [68], [79, 7.6.1]). Let Dα(c0, c) ⊂ Hom(c0, c) be the
subset of morphisms that factorizes through α. One can check that the previous colimit is the
following coproduct:

Fα
h(c) = (

∐

f∈Dα(c0,c)

V )
⊔

(
∐

f /∈Dα(c0,c)

U)
⊔

(
∐

f∈Hom(c1,c)

V ).
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In the above expression, when the set indexing the coproduct is empty, then the coproduct is
the initial object of M .

Given g : c −→ c′ the structure map Fα
h(g) : Fα

h(c) −→ Fα
h(c′) is given as follows:

1. On
∐
f∈Dα(c0,c)

V , one sends the V -summand corresponding to f : c0 −→ c to the V -
summand corresponding to gf : c0 −→ c′ by the identity IdV . Note that this is well defined
since gf factorizes also through α.

2. On
∐
f /∈Dα(c0,c)

U , one sends the U -summand corresponding to f : c0 −→ c to:

− the V -summand corresponding to gf by the morphism h : U −→ V , if gf ∈ Dα(c0, c
′).

− the U -summand corresponding to gf , if gf /∈ Dα(c0, c
′) by the morphism IdU .

3. On
∐
f∈Hom(c1,c)

V we send the V -summand indexed by f to the V -summand in Fα
h(c′)

corresponding to gf by the morphism IdV .

4. If one of the coproducts is to the initial object ∅ of M then one uses simply the unique
map out of it.

It follows that given an injective (trivial) cofibration θ = (a, b) : h −→ h′:

U U ′

V V ′

� � a //

h

��
� �

b
//

h′

��

the c-component of Fα
θ is the coproduct

Fα
θ,c = (

∐

f∈Dα(c0,c)

b)
⊔

(
∐

f /∈Dα(c0,c)

a)
⊔

(
∐

f∈Hom(c1,c)

b).

Since (trivial) cofibrations are closed under coproduct we deduce that Fα
θ,c is a (trivial) cofibration

if θ is so, thus Fα is a left Quillen functor as desired. �

4.3 MS(X) is cocomplete if M is

In this section we want to prove the following:

Theorem 4.3.1. Given a cocomplete symmetric monoidal category M , for any set X the category
MS(X) is cocomplete.

The proof of this theorem follows exactly the same ideas as the proof of the co-completeness
of M -Cat given by Wolff [97].

We will proceed as follows.

• We will show first that MS(X) is monadic over KX =
∏

(A,B)∈X2 Hom[SX(A,B)op,M ] using
the Beck monadicity theorem.

• As the adjunction is monadic we know that MS(X) has coequalizers of U-split pairs of
morphisms and U preserves them.

• Since KX is cocomplete by a result of Linton [63, Corollary 2] the category of algebras of
the monad, which is equivalent to MS(X), is cocomplete.
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4.3.1 MS(X) has coequalizers of reflexive pairs

The question of existence of coequalizers in MS(X) is similar to that of coequalizers in M -
Cat which was treated by Wolff [97]. For our needs we only treat the question of coequalizer of
reflexive pairs.
Given a parallel pair of morphisms in MS(X) (σ1, σ2) : D ⇒ F one can view it as defining a
‘relation’ ‘R = Im(σ1 × σ2) ⊂ F × F ’ on F . We will call such relation ‘precongruence’. In this
situation the question is to find out when a quotient object ‘E = F/R’ (‘the coequalizer’) exists
in MS(X). We will proceed in the same manner as Wolff; below we outline the different steps
before going to details.

1. We will start by giving a criterion which says under which conditions the coequalizer com-
puted in KX lifts to a coequalizer in MS(X).

2. When a parallel pair of morphisms is a reflexive pair (=the analogue of the relation R to be
reflexive) we will show that the conditions of the criterion are fulfilled and the result will
follow.

Lifting of coequalizer

Definition 4.3.2. Let F be an object of MS(X).

1. A precongruence in F is a pair of parallel morphisms in KX

A UF
σ1

//
σ2 //

for some object A ∈ KX .

2. Let E be a coequalizer in KX of (σ1, σ2), with L : UF −→ E the canonical map. We say
that the precongruence is a congruence if:

• E = U(Ẽ) for some Ẽ ∈MS(X) and

• L = U(L̃) for a (unique) morphism L̃ : F −→ Ẽ in MS(X).

When there is no confusion we simply write E for Ẽ and L for L̃.

Lemma 4.3.3. Let F be an object of MS(X) and consider a precongruence:

A UF E
σ1

//
σ2 // L //

Denote by ϕs,t : F (s)⊗ F (t) −→ F (s⊗ t) be the laxity maps of F .

Then the precongruence is a congruence if and only if for any pair (s, t) of composable 1-morphisms
in SX the following equalities hold:

Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ1(t))] = Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ2(t))]

Ls⊗t ◦ [ϕs,t ◦ (σ1(s)⊗ IdF (t))] = Ls⊗t ◦ [ϕs,t ◦ (σ2(s)⊗ IdF (t))].

In this case the structure of SX-diagram on E is unique.
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Remark 4.3.1. If F was (the nerve of) an M -category, taking s = (A,B), and t = (B,C),
we have s ⊗ t = (B,C) and the laxity maps correspond to the composition: cABC : F (A,B) ⊗
F (B,C) −→ F (A,C). One can check that the previous conditions are the same as in [97, Lemma
2.7].

Sketch of proof. The fact that having a congruence implies the equalities is easy and follows from
the fact that L is a morphism in MS(X) and that L is a coequalizer of σ1 and σ2. We will then
only prove that the equalities force a congruence.

To prove the statement we need to provide the laxity maps for E: φs,t : E(s) ⊗ E(t) −→
E(s⊗ t).
By definition of E, for any 1-morphism s ∈ SX , E(s) is a coequalizer of (σ1(s), σ2(s)), which is
a particular case of colimit in M . Since M is a symmetric monoidal closed, colimits commute
on each factor with the tensor product ⊗ of M . It follows that given a pair (s, t) of composable
morphisms then E(s)⊗ E(t) is the colimit of the ‘diagram’:

ε(s, t) = {A(s)⊗A(t)
σi(s)⊗σj(t)−−−−−−−→ F (s)⊗ F (t)}i,j∈{1,2}.

Now we claim that all the composite Ls⊗t ◦ ϕs,t ◦ [σi(s) ⊗ σj(t)] : A(s) ⊗ A(t) −→ E(s ⊗ t) are
equal.
This equivalent to say that the diagram

ε′(s, t) = Ls⊗t ◦ ϕs,t ◦ ε(s, t) := {Ls⊗t ◦ ϕs,t ◦ [σi(s)⊗ σj(t)]}i,j∈{1,2}

is a compatible cocone. Before telling why this is true let’s see how we get the laxity maps for E.
For that it suffices to observe that since ε′(s, t) := Ls⊗t ◦ϕs,t ◦ε(s, t) is a compatible cocone, by the
universal property of the colimit of ε(s, t) there exists a unique map ψs,t : E(s)⊗E(t) −→ E(s⊗t)
making the obvious diagrams commutative. In particular for any s, t the following is commutative:

F (s)⊗ F (t) F (s⊗ t)

E(s)⊗ E(t) E(s⊗ t)

ϕs,t //

Ls⊗Lt

��

Ls⊗t

��ψs,t //

The fact that the morphism ψs,t fit coherently is left to the reader as it’s straightforward: it
suffices to introduce a cocone ε(s, t, u) whose colimit ‘is’ E(s)⊗E(t)⊗E(u) and use the universal
property of the colimit. This shows that (E,ψs,t) is an object of MS(X) and that L extends to a
morphism in MS(X).

Now with some easy but tedious computations one gets successively the desired equalities:
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Ls⊗t ◦ ϕs,t ◦ [σ1(s)⊗ σ2(t)] = Ls⊗t ◦ ϕs,t ◦ [(IdF (s)⊗σ2(t)) ◦ (σ1(s)⊗ IdA(t))]

= Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ2(t))]
︸ ︷︷ ︸

=Ls⊗t◦[ϕs,t◦(IdF (s)⊗σ1(t))]

◦(σ1(s)⊗ IdA(t))

(1) = Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ1(t))] ◦ (σ1(s)⊗ IdA(t))

= Ls⊗t ◦ ϕs,t ◦ [σ1(s)⊗ σ1(t)]

From (1)  = Ls⊗t ◦ ϕs,t ◦ [(IdF (s)⊗σ1(t)) ◦ (σ1(s)⊗ IdA(t))]

= Ls⊗t ◦ ϕs,t ◦ [(σ1(s)⊗ IdF (t)) ◦ (IdA(s)⊗σ1(t))]

= Ls⊗t ◦ [ϕs,t ◦ (σ1(s)⊗ IdF (t))]︸ ︷︷ ︸
=Ls⊗t◦[ϕs,t◦(σ2(s)⊗IdF (t))]

◦(IdA(s)⊗σ1(t))

(2) = Ls⊗t ◦ [ϕs,t ◦ (σ2(s)⊗ IdF (t))] ◦ (IdA(s)⊗σ1(t))

= Ls⊗t ◦ ϕs,t ◦ [σ2(s)⊗ σ1(t)]

From (2)  = Ls⊗t ◦ [ϕs,t ◦ (σ2(s)⊗ IdF (t))] ◦ (IdA(s)⊗σ1(t))

= Ls⊗t ◦ ϕs,t ◦ [(IdF (s)⊗σ1(t)) ◦ (σ2(s)⊗ IdA(t))]

= Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ1(t))
︸ ︷︷ ︸

=Ls⊗t◦[ϕs,t◦(IdF (s)⊗σ2(t))

◦(σ2(s)⊗ IdA(t))

= Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ2(t)) ◦ (σ2(s)⊗ IdA(t))

= Ls⊗t ◦ ϕs,t ◦ [σ2(s)⊗ σ2(t)]

�

Following Linton [63] we introduce the

Definition 4.3.4. Let σ1, σ2 : A⇒ UF be a parallel pair of morphisms in KX i.e a precongruence
in F . We will say that a morphism L : F −→ E in MS(X) is a coequalizer relative to U if:

1. If UL ◦ σ1 = UL ◦ σ2 and

2. if for any morphism L′ : F −→ Z in MS(X) which satisfies UL′ ◦ σ1 = UL′ ◦ σ2 then there
exists a unique morphism H : E −→ Z in MS(X) such that L′ = H ◦ L.

Lemma 4.3.5. If a precongruence

A UF E
σ1

//
σ2 // L //

is a congruence then the morphism L : F −→ E is a coequalizer rel. to U.

Proof. Obvious: follows from the construction of (E,ψs,t).
�

Lemma 4.3.6 (Linton). Let U : D −→ C be a faithful functor and f̃ , g̃ : A −→ B be a pair of
parallel of morphisms in D. Denote by f = Uf̃ and g = Ug̃. Then for p : A −→ E in D, the
following are equivalent:

• p is a coequalizer of (f̃ , g̃),

• p is a coequalizer rel. to U of (f, g).
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Proof. See [63, Lemma 1]. �

For a given F ∈ MS(X), among the precongruences defined in F we have the ones coming
from parallel pair of morphisms in MS(X) namely:

UD UF
Uσ̃1

//
Uσ̃2 //

for some D ∈MS(X).

The following lemma tells about these congruences.

Lemma 4.3.7. Let F be an object of MS(X). Consider a precongruence in F

UD UF E
Uσ̃1

//
Uσ̃2 // L // .

If there exists a split i.e a morphism p : UF −→ UD in KX such that Uσ̃1◦p = Uσ̃2◦p = IdUF

then:

• the precongruence is a congruence and hence

• L : F −→ E is a coequalizer in MS(X) of the pair (σ̃1, σ̃2) : D ⇒ F (and is obviously
preserved by U).

Proof. We will simply need to show that the equalities of Lemma 4.3.3 holds. We will reduce
the proof to the first equalities since the second ones are treated in the same manner by simply
permuting IdF ⊗σi to σi ⊗ IdF .

Setting σ1 = Uσ̃1 and σ2 = Uσ̃2, these equalities become:

Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ1(t))] = Ls⊗t ◦ [ϕs,t ◦ (IdF (s)⊗σ2(t))]

And to simplify the notations we will remove the letters ‘s ⊗ t, s, t’ but will mention ‘ϕF ’ or
‘ϕD ’ for the laxity maps of F and D respectively. The previous equality will be then written,
when there is no confusion, as follows:

L ◦ [ϕF ◦ (IdF ⊗σ1)] = L ◦ [ϕF ◦ (IdF ⊗σ2)].

Since σ1 ◦ p = IdF = σ2 ◦ p, we have that

IdF ⊗σ1 = (σ1 ◦ p)⊗ (σ1 ◦ IdD)

= (σ1 ⊗ σ1) ◦ (p⊗ IdD).

Similarly for σ2: IdF ⊗σ2 = (σ2 ⊗ σ2) ◦ (p⊗ IdD).

With these observations we can compute

L ◦ [ϕF ◦ (IdF ⊗σ1)] = L ◦ ϕF ◦ (σ1 ⊗ σ1) ◦ (p⊗ IdD)

= L ◦ σ1 ◦ ϕD ◦ (p⊗ IdD) (a)

= L ◦ σ2 ◦ ϕD ◦ (p⊗ IdD) (∗)
= L ◦ ϕF ◦ (σ2 ⊗ σ2) ◦ (p⊗ IdD) (b)

= L ◦ [ϕF ◦ (IdF ⊗σ2)]

This gives the desired equalities. We justify the different steps below.

141



• In (a) and (b) we’ve used the fact that σ1 and σ2 are morphisms in MS(X), which implies
in particular that

ϕF ◦ (σi ⊗ σi) = σi ◦ ϕD .

This last equality is equivalent to say that the following diagram commutes:

D(s)⊗D(t) D(s⊗ t)

F (s)⊗ F (t) F (s⊗ t)

ϕ
D //

σi⊗σi

��

σi

��ϕ
F //

• In (∗) we’ve used the fact that L is a coequalizer of σ1 and σ2 therefore: L ◦ σ1 = L ◦ σ2.

Now from the lemma 4.3.5, we know that L is a coequalizer of (Uσ̃1,Uσ̃2) rel. to U, since U

is clearly faithful Lemma 4.3.6 applies, hence L is a coequalizer in MS(X) of (σ̃1, σ̃2) (and is
obviously preserved by U). �

Corollary 4.3.8. MS(X) has coequalizers of reflexive pairs and U preserves them.

Proof. Given a pair of parallel morphisms (σ̃1, σ̃2) : D ⇒ F with a split p̃ in MS(X) , setting
p = Up̃, by definition of morphism in MS(X), p is a split of (Uσ̃1,Uσ̃2) and we conclude by the
Lemma 4.3.7. �

4.3.2 Monadicity and Cocompleteness

Theorem 4.3.9. If M is cocomplete then MS(X) is monadic over KX .

Proof. We use Beck’s monadicity theorem (see [68, Chap.6, Sec.7, Thm.1]) for U : MS(X) −→ KX

since:

• U has a left adjoint Γ ( Lemma 4.2.1),

• U clearly reflect isomorphisms since by definition a morphism σ is an isomorphism in MS(X)
if U(σ) is so,

• MS(X) has has coequalizers of U-split parallel pair (= reflexive pair) and U preserves them
(Corollary 4.3.8).

�

Theorem 4.3.10. For a cocomplete symmetric closed monoidal category M , the category MS(X)
is also cocomplete.

Proof. By the previous theorem MS(X) is equivalent to the category of algebra of the monad
T = UΓ on KX . Since KX is cocomplete and MS(X) (hence T-alg) has coequalizer of reflexive
pair, a result of Linton [63, Corollary 2] implies that T-alg (hence MS(X)) is cocomplete. �
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4.4 LaxO-alg(C.,M.) is locally presentable

Our goal in this section is to prove the following

Theorem 4.4.1. Let M. be a locally presentable O-algebra. For any O-algebra C. the category of
lax O-morphisms LaxO-alg(C.,M.) is locally presentable.

The proof of this theorem is technical and a bit long so we will divide it into small pieces, but
for the moment we give hereafter an outline of what we will do.

1. We will construct a left adjoint F, of the forgetful functor U : LaxO-alg(C.,M.) −→∏
i∈C Hom(Ci,Mi).

2. We will show that U is monadic that is LaxO-alg(C.,M.) is equivalent to the category of
algebra of the induced monad UF. We will transfer the local-presentability by monadic
adjunction following the same idea as Kelly and Lack [50] who proved that M -Cat is
locally presentable if M is so. All we need will be to check that the monad is finitary i.e
preserve filtered colimits and the result will follow by a classical argument.

Proposition 4.4.2. Let O be a multisorted operad and M. a cocomplete O-algebra. Then for any
O-algebra C. the category LaxO-alg(C.,M.) is cocomplete.

We will denote by KC. =
∏
i∈C Hom(Ci,Mi) and KCi = Hom(Ci,Mi) the ith-factor.

Consider U : LaxO-alg(C.,M.) −→ KC. the functor which forgets the laxity maps.
For the proof of the proposition we will establish first the following lemma.

Lemma 4.4.3. Let O be a multisorted operad and M. a cocomplete O-algebra. Then the functor

U : LaxO-alg(C.,M.) −→ KC.

has a left adjoint.

As the proof is long we dedicate the next section to it

4.4.1 The functor U has a left adjoint

In the following we give a ‘free algebra construction process’ which associates to any family
of functors F. = (Fi)i∈C , a lax O-morphism FF.. One can consider it as the analogue of the
‘monadification’ of a classical (one-sorted) operad (see for example [56, Part I, Section 3]. For
the operad OX it will cover the process which associates an M -graph to the corresponding free
M -category.

Notation 4.4.1. If (x, c1, ..., cn) ∈ O(i1, ..., in; j)× Ci1 × · · · × Cin , we will write ⊗x(c1, ...cn) =
ρ
i.|j (x, c1, .., cn).
ρ−1
i.|j (c) = the subcategory of O(i1, ..., in; j)× Ci1 × · · · × Cin whose objects are (x, c1, ..., cn) such

that ⊗x(c1, ...cn) = c and morphisms (f, u1, ..., un) such that ρ
i.|j (f, u1, ..., un) = Idc.

Fc
− : Mj −→ Hom(Cj ,Mj) = the left adjoint of the evaluation functor at c: Evc : Hom(Cj ,Mj) −→

Mj .

Informally from a family of (abstract) objects (Li)i∈C , one defines the associated free O-algebra
(FLi)i∈C as follows

FLj =
∐

n∈N
(
∐

(i1,...,in)

O(i1, ..., in; j)� [Li1 ⊗ · · · ⊗ Lin ]).
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Here ‘�’ is the action of O on the category containing the object Li and ⊗ is the internal
product of that category. The algebra structure is simply given by the multiplication of O and
shuffles; the reader can find a description of the algebra structure, for the one sorted case, in loc.
cit.

In our case we want to use the description presented previously, according to which we view
a lax O-morphism as an O-algebra of some category Arr(Cat)+ (see 3.3.1). The action of O on
Arr(Cat)+ was denoted by ‘�’.

So if we start with a family of functors (Fi : Ci −→ Mi)i∈C we would like to define the
associated free algebra by:

‘ FFj =
∐

n∈N
(
∐

(i1,...,in)

O(i1, ..., in; j)� [Fi1 ⊗ · · · ⊗ Fin ]) ’

But as one can see in this coproduct the functors are not defined over the same category, which
we want to be Cj , so the previous expression actually doesn’t make sense in general. But still it
guides us to the correct object which is some left Kan extension of something similar.

For each (i1, ..., in) ∈ Cn introduce Lanj(O,Fi.) the left Kan extension of the functor

ρ
i.|j ◦ [O(i1, ..., in; j)�

∏
Fi] = ρ

i.|j ◦ [IdO(i1,...,in;j)×
∏

Fi]

along the functor θ
i.|j . This left Kan extension exists since Mj is cocomplete and we have the

following diagram

O(i1, ..., in; j)× Ci1 × · · · × Cin Cj

O(i1, ..., in; j)×Mi1 × · · · ×Min Mj

θ
i.|j //

ρ
i.|j

//

Lanj(O,Fi. )

��

IdO(i1,...,in;j)×Fi1×···×Fin

��

ε
i.|j ;C

Here ε
i.|j is the universal natural transformation arising in the construction of the left Kan

extension (see [68, Ch. X]). This diagram represents a morphism in Arr(Cat)+

Φ(i1, ..., in; j) : O(i1, ..., in; j)� [Fi1 × · · · × Fin ] −→ Lanj(O,Fi.)

which, according to the notations in section (3.3.1), is (θ
i.|j ; ρi.|j ; εi.|j ).

Definition of F is C. is a free O-algebra

Let C. be a free O-algebra. F. ∈ KC.. Then we define FF. by

F(F)j =
∐

n∈N

∐

(i1,...,in)

Lanj(O,Fi.).

Note that in this coproduct there is a hidden term for n = 0 which is just Fj itself, since Fj
is the left Kan extension of itself along the identity IdCj . The inclusion in the coproduct yields a
natural transformation:

ηj : Fj −→ F(F)j .

We have to specify the morphisms: O(i1, ..., in; j) � [F(F)i1 × · · · × F(F)in ] −→ F(F)j . Before
doing this we need to outline some important fact about free O-algebras:

144



Remark 4.4.1. Since C. is a free algebra, C. is a defined by a collections of categories (Li)i∈C
and one has

Cj =
∐

n∈N
(
∐

(i1,...,in)

O(i1, ..., in; j)× [Li1 × · · · × Lin ]).

It follows that each multiplication θ
i.|j : O(i1, ..., in; j)× Ci1 × · · · × Cin −→ Cj is an inclusion to

a coproduct, one view it as a ‘grafting trees’ operation; it’s image defines a connected component
of Cj . Therefore any cj ∈ Im(θ

i.|j ) has a unique presentation (x, c1, ...cn) ∈ O(i1, ..., in; j)× Ci1 ×
· · · × Cin .
Consequently the Kan extension Lanj(O,Fi.) consists to take the image by (Fi) of the presentation
i.e : Lanj(O,Fi.)c = ρ

i.|j (x,Fi1c1, ...,Fincn).

With this description we define the morphism: O(i1, ..., in; j)� [F(F)i1 × · · · ×F(F)in ] −→ F(F)j
as follows.

− First if we expand O(i1, ..., in; j)� [F(F)i1 × · · · × F(F)in ] we have:

O(i.; j)� [F(F)i1 × · · · × F(F)in ] =
∐

n∈N

∐

(i1,...,in)

∐

(h1,1,...,hn,kn )

IdO(i.;j)×
∏

i

Lani(O(hi,. |i),Fhi,l. )

− Then introduce Lanj [O(i.|j),Lani(O(hi,. |i),Fhi,l. )], the left Kan extension of the summand
IdO(i.;j)×

∏
i Lani(O(hi,. |i),Fhi,l. ) along θ

i.|j . This left Kan extension comes equipped with a
natural transformation:

δ : IdO(i1,...,in;j)×
∏

i

Lani(O(hi,. |i),Fhi,l. ) −→ Lanj [O(i.|j),Lani(O(hi,. |i),Fhi,l. )].

Claim. We have an equality Lanj [O(i.|j),Lani(O(hi,. |i),Fhi,l. )] = Lanj [O(h.,l. |j),Fh.,l. ].

Before telling why the claim holds, one defines the desired map by sending the summand
IdO(i.;j)×

∏
i Lani(O(hi,. |i),Fhi,l. ) of O(i1, ..., in; j)� [F(F)i1 × · · · × F(F)in ] to the summand

Lanj [O(h.,l. |j),Fh.,l. ] of F(F)j by the composite:

IdO(i.;j)×
∏

i

Lani(O(hi,. |i),Fhi,l. )
δ−→ Lanj [O(h.,l. |j),Fh.,l. ] ↪→ F(F)j .

By the universal property of the coproduct we have a unique map:

Φ
i.|j : O(i1, ..., in; j)� [F(F)i1 × · · · × F(F)in ] −→ F(F)j .

To see that the claim holds one proceeds as follows. Consider [x, (xi, di,1, ..., di,ki)1≤i≤n] an object
of O(i.|j)× [O(h1,. |i1)×C1,. ]× · · ·× [O(hn,. |in)×Cn,. ]. Such presentation defines a unique object
c ∈ Cj , and each (xi, di,1, ..., di,ki) defines a unique object ci ∈ Ci.

In the free algebra C, one declares that the following objects are equal to c ∈ Cj

− (γ(x, xi); d1,1, ..., dn,kn) = c,
− (x, c1, ..., cn) = c,

Here γ is the substitution in O and (xi; di,1, ..., di,ki) = ci. Then one computes in one hand

Lanj [O(h.,l. |j),Fh.,l. ](c) = ⊗γ(x,xi)(Fd1,1, ...,Fdn,kn).
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On the other hand one has:

Lanj [O(i.|j),Lani(O(hi,. |i),Fhi,l. )](c) = ⊗x[⊗xi(F(d1.), ...,⊗xn(Fdn.)].

Now as M. is an O-algebra one has the equality:

⊗γ(x,xi)(Fd1,1, ...,Fdn,kn) = ⊗x[⊗xi(F(d1.), ...,⊗xn(Fdn.)]

which means that the two functors are equal as claimed.

By virtue of the previous discussion we have the

Proposition 4.4.4.

1. The family F(Fi)i∈C forms a lax O-morphism of algebra. Equivalently F(Fi)i∈C is an O-
algebra of Arr(Cat)+.

2. For any G. = (Gi)i∈C ∈ LaxO-alg(C.,M.) we have a functorial isomorphism of sets:

Hom[F(Fi)i∈C ,G.] ∼=
∏

i

Hom[Fi,Gi]

Proof of Proposition 4.4.4. We will simply give a proof of the assertion (1). The statement (2) is
tedious but straightforward to check.
The only thing we need to check is the fact that the natural transformations Φ

i.|j fit coherently. We
are asked to say if for any (h1,1, ..., h1,l1 ; i1); · · · ; (hn,1, ..., hn,ln ; in) the following is commutative:

O(i.|j)× O(h1,. |i1)× · · · × O(hn,. |in)×∏F(Fh.,l. ) O(h.,l. |j)×
∏

F(Fh.,l. )

O(i.|j)×∏F(Fi) F(Fj)

γ×Id //

Φ
i.|j

//

Φh.,l. |j
��

(IdO(i.|j)×
∏

Φ
hi,l. |i )◦shuffle

��

(4.4.1.1)
But the commutativity of that diagram boils down to check that the following maps are

identities:
Lanj [O(h.,l. |j),Fh.,l. ]

canonical−−−−−→ Lanj [O(i.|j),Lani(O(hi,. |i),Fhi,l. )]
But this follows from the previous discussion. Consequently the maps Φ

i.|j fit coherently and
(FFi)i∈C equipped with Φ

i.|j is a lax O-morphism of algebra.
�

Definition of F for an arbitrary O-algebra C.

Let C. be an arbitrary O-algebra and F. ∈ KC.. For each j ∈ C consider,

F1
j =

∐

n∈N

∐

(i1,...,in)

Lanj(O,Fi.).

This is the same type of expression as before; the inclusion in the coproduct yields a natural
transformation:

ej : Fj −→ F1
j .
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For each c and each (x, c1, ..., cn) ∈ ρ−1c, we have a map:

ε : ⊗x(Fc1, ...,Fcn) −→ Lanj(O,Fi.)(c) ↪→ F1c.

By the adjunction Fc a Evc, the map ε corresponds to a unique map in Kj = Hom(Cj ,Mj):

Fc
⊗x(Fc1,...,Fcn) −→ F1.

Let R(e;x, c1, ..., cn) be the object defined by the pushout diagram in Kj :

Fc
⊗x(Fc1,...,Fcn) F1

Fc
⊗x(F1c1,...,F1cn) R(e;x, c1, ..., cn)

//

Fc⊗x(e1,...en)

��

p(e;x,c1,...,cn)

��
//

An intermediate coherence
Let [x, (xi, di,1, ..., di,ki)1≤i≤n] be an object of O(i.|j)× [O(h1,. |i1)×C1,. ]× · · ·× [O(hn,. |in)×Cn,. ]
such that:

− ⊗xi(di,1, ..., di,ki) = ci,
− ⊗γ(x,xi)(d1,1, ..., dn,kn) = c, and
− ⊗x(c1, ..., cn) = c; here γ is the substitution in O.

From the map

ηε : ⊗γ(x,xi)(Fd1,1, ...,Fdn,kn) −→ F1,1(⊗γ(x,xi)(d1,1, ..., dn,kn)) = F1,1c.

Using the adjunction Fc a Evc, we define the object Q(x, xi; d1,1, ..., dn,kn) given by the pushout
diagram in Kj :

Fc
⊗γ(x,xi)

(Fd1,1,...,Fdn,kn ) F1

Fc
⊗x(Rc1,...,Rcn) Q(x, xi; d1,1, ..., dn,kn)

//

Fc⊗x[(pε)1,...,(pε)n]

��

g(x,xi;d1,1,...,dn,kn )

��
//

Introduce Z(x, xi; d1,1, ..., dn,kn) to be the object obtained from the pushout:

F1 R(e, γ(x, xi); d1,1, ..., dn,kn)

Q(x, xi; d1,1, ..., dn,kn) Z(x, xi; d1,1, ..., dn,kn)

p //

g(x,xi;d1,1,...,dn,kn )

��

g′(x,xi;d1,1,...,dn,kn )

��
//

Denote by Zh.,i.,j(c) : ρ−1c −→ F1
/Kj

, the functor that takes [x, (xi, di,1, ..., di,ki)] to natural
transformation:

F1 −→ Z(x, xi; d1,1, ..., dn,kn).

Let F1,c
h.,i.,j be the colimit of Zh.,i.,j(c) and denote by ηh.,i.,j : F1 −→ F

1,c
h.,i.,j the canonical map.
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Definition 4.4.5. Define F
1,1
h.,i.,j to be the object obtained by the generalized pushout diagram in

Kj as c runs through Cj:

F
1,1
h.,i.,j = colimc∈Cj{F1 η1,c−−→ F

1,c
h.,i.,j}.

We have canonical maps η : F1 −→ F
1,1
h.,i.,j and δ+(x, (xi, di,1, ..., di,ki)) : Z(x, xi; d1,1, ..., dn,kn) −→

F
1,1
h.,i.,j.

Define T(e,F,F1)j to be the object defined also by the generalized pushout:

T(e,F,F1)j = colim
∐

n∈N

∐

(i1,...,in)

∐

(h1,1,...,hn,kn )

{ηh.,i.,j : F1 −→ F
1,1
h.,i.,j}

where e : F −→ F1 is the original morphism from the left Kan extension which gives the first laxity
maps ε.

We will write F2 = T(e,F,F1) and η1 : F1 −→ F2 the canonical map. By construction we end
up with new laxity maps ε1 : ⊗x(F1c1, ...,F

1cn) −→ F2(c) which are not coherent, but we can
iterate the process to build an object F3 = T(F1,F2) which ‘bring the coherences of ε1’. But the
new laxity maps are not coherent so we have to repeat the process an infinite number of time.

Proceeding by induction we define for k ∈ λ, an object Fk with maps ηk : Fk −→ Fk+1 by:

1. F0 := F and η0 = e.

2. Fk+1 := T(ηk−1,Fk−1,Fk), we have a map ηk : Fk −→ Fk+1 from the construction ‘T’.

We therefore have a λ-sequence in Kj :

F = F0 −→ F1 −→ · · · −→ Fk −→ Fk+1 −→ · · ·

and we can take the colimit F∞ = colimk∈λ{Fk
ηk−→ Fk+1}.

Definition 4.4.6. For a family F. = (Fj)j∈C we define F(F.) by setting:

F(F.)j := F∞.

We have a canonical map η : Fj −→ F(F.)j.

We have also sequences of objects Rk, Qk and Zk which are created step by step and there are
also maps induced by universal property from Rk −→ Rk+1 and similarly for Qk and Zk.

Proposition 4.4.7. For a cocomplete O-algebra M. we have that:

1. the family F(F.) is a lax morphism from C. to M. and

2. the functor F is left adjoint of U.

Sketch of proof. The assertion (2) is straightforward so we leave it to the reader. For the assertion
(1) we need to specify the laxity maps and check that they satisfy the coherence conditions.

By construction the following diagram involving Rk commutes
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Fc
⊗x(Fkc1,...,Fcn) Fk+1

Fc
⊗x(Fk+1c1,...,Fk+1cn) Rk+1(ηk;x, c1, ..., cn) Fk+2

Fc
⊗x(Fk+2c1,...,Fk+2cn) Rk+2(ηk+1;x, c1, ..., cn)

//

Fc
⊗x(ηk1 ,...η

k
n)

��

p(ηk;x,c1,...,cn)

��
// //

Fc
⊗x(ηk+1

1 ,...ηk+1
n )

��
//

��''

ηk+1

''

From this diagram it’s easy to see that the sequences Rk and Fk ‘converge’ to the same object,
that is they have the same colimit object. A simple analysis shows that also Qk and Zk have as
colimit object F∞.

Since λ is a regular cardinal for any λ-small cardinal µ the diagonal functor d : λ −→ ∏
µ λ

from λ to the product of µ copies of λ is cofinal: a consequence is that diagrams indexed by λ and∏
µ λ have the same colimits. It follows, in particular, that for any (i1, ..., in) ∈ Cn the following

colimits are the same 



colim(k1,...,kn)∈λn{⊗x(Fk1
i1
c1, ...,F

kn
in
cn)}

colimk∈λ{⊗x(Fki1c1, ...,F
k
in
cn)}

One of the assumptions on the algebra M. = (Mi)i∈C is the possibility to commute colimits
computed in M. and the tensor products ‘⊗x’.

If we put these together the first colimit is easily computed as:

colim(k1,...,kn)∈λn{⊗x(Fk1
i1
c1, ...,F

kn
in
cn)} = ⊗x(F(Fi1)c1, ...,F(Fin)cn).

And we deduce that:

colimk∈λ{⊗x(Fki1c1, ...,F
k
incn)} = ⊗x(F(Fi1)c1, ...,F(Fin)cn).

All these are natural in (x, c1, .., cn). One gets the laxity maps by the universal property of the
colimit with respect to the compatible cocone which ends at F(Fj)c

⊗x(Fkc1, ...,Fcn) Fk+1c

⊗x(Fk+1c1, ...,F
k+1cn) Rk+1(ηk;x, c1, ..., cn)c Fk+2c

Rk+2(ηk+1;x, c1, ..., cn)c F(Fj)c

//

⊗x(ηk1 ,...η
k
n)

��

p(ηk;x,c1,...,cn)c

��
// //

��))

ηk+1

))

canonical

''
canonical //�� 22
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So we get a unique map ϕ∞(x, c1, ..., cn) : ⊗x(F(Fi1)c1, ...,F(Fin)cn) −→ F(Fj)c which makes
the obvious diagram commutative. As usual the maps ϕ∞(x, c1, ..., cn) are natural in (x, c1, ..., cn).

The fact that these maps ϕ∞(x, c1, ..., cn) satisfy the coherence conditions is easy bu tedious to
check. One use the diagram involving Qk and Zk and take the colimit everywhere; the universal
property of the colimit will force (by uniqueness) the equality between the two maps out of
⊗γ(x,xi)(F(Fh1,1)d1,1, ...,F(Fhn,kn )dn,kn) and going to F(Fj)c. For the record these maps are:

- ϕ∞(γ(x, xi), d1,1, ..., dn,kn)

- ϕ∞(x, c1, ..., cn) ◦ [⊗x(ϕ∞(x1, d1,1, ..., d1,k1), · · · , ϕ∞(xn, dn,1, ..., dn,kn))].

�

Remark 4.4.2. As U has a left adjoint F we have an induced monad T = UF. It’s not hard to see
that T automatically preserves the colimits appearing in the definition of F namely the λ-directed
ones. And since directed colimits are the same as filtered ones we deduce that T preserves filtered
colimits as well.

4.4.2 LaxO-alg(C.,M.) is monadic over Hom(C.,M.)

Let σ1, σ2 : F. −→ G. be a pair of parallel morphisms between two lax-morphisms in LaxO-alg(C.,M.).
Denote by L : G. −→ E. the coequalizer of σ1, σ2 in KC. =

∏
i∈C Hom(Ci,Mi):

UF. UG. E.
σ1

//
σ2 // L //

Note that we’ve freely identified σi and it’s image Uσi. The following lemma is the general version
of lemma 4.3.3 except that we do not use the language of precongruences.

Lemma 4.4.8. Consider F.,G.,E. with σ1, σ2 and L as before. Assume that for every (x, c1, ..., cn) ∈
O(i1, ..., in; j)× Ci1 × · · · × Cin with c = ⊗x(c1, ..., cn) and any l ∈ {1, ..., n} the following equality
holds:

Lc◦ϕG
(x, c1, ..., cn)◦[⊗x(IdGc1 , ..., σ1(cl), ..., IdGcn)] = Lc◦ϕG

(x, c1, ..., cn)◦[⊗x(IdGc1 , ..., σ2(cl), ..., IdGcn)].

Then we have:

1. E. becomes a lax morphism and

2. L is the coequalizer of σ1 , σ2 in LaxO-alg(C.,M.).

When there is no confusion we will simply write ϕ
G
instead of ϕ

G
(x, c1, ..., cn).

Sketch of proof. The assertion (2) will follow from the proof of (1). To prove (1) we will simply
give the laxity maps; the coherence conditions are straightforward.

As mentioned before, the assumptions on M. allow to distribute (factor wise) colimits over
each tensor product ⊗x. It follows that ⊗x(Ec1, ...Ecn) equipped with the maps ⊗x(Lc1 , ..., Lcn)
is the colimit of the diagram

ε(σ1, σ2; c1, ..., cn) =
∐

(τ1,...,τn)∈{1,2}n
{⊗x(στ1c1, ..., στncn) : ⊗x(Fc1, ...,Fcn) −→ ⊗x(Gc1, ...,Gcn)}.

(For each l, στl is either σ1 or σ2).
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For each (τ1, ..., τn) ∈ {1, 2}n let Θ(τ1, ..., τn) = Lc ◦ ϕG
(x, c1, ..., cn) ◦ ⊗x(στ1c1, ..., στncn) be

the map illustrated in the diagram below:

⊗x(Fc1, ...,Fcn) Fc

⊗x(Gc1, ...,Gcn) Gcϕ
G

//

⊗x(στ1c1,...,στncn)

��

Ec

Lc

��

Now we claim that Θ(τ1, ..., τn) = Θ(τ ′1, ..., τ
′
n) for all (τ1, ..., τn) , (τ ′1, ..., τ

′
n) in {1, 2}n. The

claim will holds as soon as we show that for every l ∈ {1, ..., n} we have Θ(τ1, ..., τl, ...τn) =
Θ(τ1, ..., τ

′
l , ..., τn) where τl and τ ′l are ‘conjugate’ that is: if τl = 1 then τ ′l = 2 and vice versa.

Let’s assume that τl = 1 (hence τ ′l = 2) that is στl = σ1.
We establish successively the following equalities:

Θ(τ1, ..., τn) = Lc ◦ ϕG
◦ ⊗x(στ1c1, ..., σ1cl, ..., στncn)

= Lc ◦ ϕG
◦ [⊗x(IdGc1 , ..., σ1cl, ..., IdGcn) ◦ ⊗x(στ1c1, ..., IdFcl , ..., στncn)]

= {Lc ◦ ϕG
◦ [⊗x(IdGc1 , ..., σ1cl, ..., IdGcn)]} ◦ ⊗x(στ1c1, ..., IdFcl , ..., στncn)

(∗) = {Lc ◦ ϕG
◦ [⊗x(IdGc1 , ..., σ2(cl), ..., IdGcn)]} ◦ ⊗x(στ1c1, ..., IdFcl , ..., στncn)

= Lc ◦ ϕG
◦ [⊗x(IdGc1 , ..., σ2cl, ..., IdGcn) ◦ ⊗x(στ1c1, ..., IdFcl , ..., στncn)]

= Lc ◦ ϕG
◦ ⊗x(στ1c1, ..., σ2cl, ..., στncn)

= Θ(τ1, ..., τ
′
l , ..., τn)

(In (∗) we use the hypothesis to switch σ1 and σ2 in the expression contained in ‘{ }’.) �

Remark 4.4.3. If F. is simply an object of KC. but not necessarily a lax morphism but G. is a
lax morphism, we will have a precongruence in G. and the first assertion of the lemma will hold.
The proof will exactly be the same.

The next lemma tells about the existence of coequalizer of a parallel U-split pair. This is the
generalization of lemma 4.3.7.

Lemma 4.4.9. Consider F.,G.,E. with σ1, σ2 and L as before. Assume that there is a U-split
i.e a morphism p : UG. −→ UF. in KC. such that σ1 ◦ p = σ2 ◦ p = IdUG. .
Then we have:

1. E. becomes a lax O-morphism,

2. L : G. −→ E. is a coequalizer in LaxO-alg(C.,M.) of the pair (σ1, σ2) and U obviously
preserves it (as a coequalizer).

Proof. All is proved in the same manner as for lemma 4.3.7. We simply have to show that the
equalities of lemma 4.4.8 holds.

Since for each τ ∈ {1, 2}), στ ◦ p = IdG, for every (c1, ..., cn) and every l ∈ {1, ..., n} we have
that:

⊗x(IdGc1 , ..., στ cl, ..., IdGcn) = ⊗x(στ c1, ..., στ cl, ..., στ cn) ◦ ⊗x(pc1, ..., IdFcl , ..., pcn).
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Moreover as στ is a morphism of lax-morphisms the following commutes:

⊗x(Fc1, ...,Fcn) Fc

⊗x(Gc1, ...,Gcn) Gc

ϕ
F //

ϕ
G

//

στ c

��
⊗x(στ c1,...,στ cn)

��

which means that we have an equality: στ c ◦ ϕF
= ϕ

G
◦ ⊗x(στ c1, ..., στ cn). If we combine all the

previous discussion we establish successively the following.

Lc ◦ ϕG
◦ [⊗x(IdGc1 , ..., σ1cl, ..., IdGcn)] = Lc ◦ ϕG

◦ [⊗x(σ1c1, ..., σ1cl, ..., σ1cn) ◦ ⊗x(pc1, ..., IdFcl , ..., pcn)]

= [Lc ◦ ϕG
◦ ⊗x(σ1c1, ..., σ1cl, ..., σ1cn)

︸ ︷︷ ︸
=σ1c◦ϕF

] ◦ ⊗x(pc1, ..., IdFcl , ..., pcn)

= [Lc ◦ σ1c︸ ︷︷ ︸
=Lc◦σ2c

◦ϕ
F
] ◦ ⊗x(pc1, ..., IdFcl , ..., pcn)

= [Lc ◦ σ2c ◦ ϕF︸ ︷︷ ︸
=ϕ

G
◦⊗x(σ2c1,...,σ2cl,...,σ2cn)

] ◦ ⊗x(pc1, ..., IdFcl , ..., pcn)

= [Lc ◦ ϕG
◦ ⊗x(σ2c1, ..., σ2cl, ..., σ2cn)] ◦ ⊗x(pc1, ..., IdFcl , ..., pcn)

= Lc ◦ ϕG
◦ [⊗x(σ2c1, ..., σ2cl, ..., σ2cn) ◦ ⊗x(pc1, ..., IdFcl , ..., pcn)]

= Lc ◦ ϕG
◦ [⊗x(IdGc1 , ..., σ2cl, ..., IdGcn)].

�

Corollary 4.4.10. Let M. be a cocomplete O-algebra. Then we have

1. The functor U : LaxO-alg(C.,M.) −→ KC. is monadic.

2. LaxO-alg(C.,M.) is cocomplete.

3. If moreover M. is locally presentable then so is LaxO-alg(C.,M.).

Sketch of proof. The assertion (1) follows from Beck monadicity theorem since:

• U has a left adjoint F (Proposition 4.4.2),

• U clearly reflect isomorphisms,

• LaxO-alg(C.,M.) has coequalizers of parallel U-split pairs and U preserves them (Lemma
4.4.9).

It follows that LaxO-alg(C.,M.) is equivalent to the category T-alg for the monad T = UF. The
assertion (2) follows from Linton’s theorem [63] since T is defined on KC. which is cocomplete and
T-alg has coequalizer of reflexive pair.
From the Remark 4.4.2 we know that T preserves filtered colimits, and since KC. is locally pre-
sentable we know from [1] that T-alg (hence LaxO-alg(C.,M.)) is automatically locally presentable
and the assertion (3) follows. �

152



4.5 Some pushouts in LaxO-alg(C.,M.)

In this section we want to show that for a trivial cofibration α ∈ KC. then the pushout of
Fα is a weak equivalence in LaxO-alg(C.,M.), when M. is a special Quillen O-algebra (Definition
3.3.9). On KC. we will consider the injective and projective model structures; these are product
model structures of the ones on each Kj = Hom(Cj ,Mj).

Given a diagram in LaxO-alg(C.,M.)

FA F

FB

σ //

Fα

��

with α is a trivial cofibration in KC.; if we want to calculate the pushout, then the first thing
to do is to consider the pushout in KC. then build the laxity map etc. But the left adjoint F we’ve
constructed previously, when considered as an endofunctor on KC., may not preserve weak equiv-
alences for arbitrary O-algebra C. and M.. In particular it may not preserve trivial cofibrations.
So the pushout of Fα will hardly be a weak equivalence.

The obstruction of F to be a left Quillen functor can be seen in the following phenomena:

1. first the left Kan extension we’ve considered to define F1 may not in general preserves
level-wise (trivial) cofibrations:

O(i1, ..., in; j)× Ci1 × · · · × Cin Cj

O(i1, ..., in; j)×Mi1 × · · · ×Min Mj

θ
i.|j //

ρ
i.|j

//

Lanj(O,Fi. )

��

IdO(i1,...,in;j)×Fi1×···×Fin

��

ε
i.|j ;C

2. second the F
1,c
h.,i.,j appearing in the construction of F may not be left Quillen functor . In

fact F1,c
h.,i.,j is a colimit of a functor:

Zh.,i.,j(c) : ρ−1c −→ F1/Kj

where the source ρ−1c can a priori be any category; so the colimit may not preserve (trivial)
cofibrations.

These two facts lead us to some restrictions on our statements, for the moment.
We will reduce our statement to the O-algebra C such that ρ−1c is a discrete category i.e a set.
This way the colimit of Zh.,i.,j(c) is a generalized pushout diagram in Kj ; and pushouts interact
nicely with (trivial) cofibrations.

So rather than trying to figure out under which conditions F preserves the level-trivial cofibration
as endofunctor on KC., we will work by assuming that it is.

This reduction may appear to be too restrictive, but hopefully the cases we encounter in ‘the
nature’ will be in this situation. Usually this will be the case for all the ‘simple objects’ we use

153



to built complicated ones eg: the operad OX , ∆, X, SX , every 1-category D, free O-algebra, etc.

Recall that we introduced previously the

Definition 4.5.1. Let (C., ρ) and (M., θ) be two O-algebra.

1. Say that C. is O-well-presented, or O-identity-reflecting if:
for every n+ 1-tuple (i1, ..., in; j) the following functor reflects identities

ρ : O(i1, ..., in; j)× Ci1 × · · · × Cin −→ Cj .

This means that the image of (u, f1, ..., fn) ∈ O(i1, ..., in; j) × Ci1 × · · · × Cin is an identity
morphism in Cj (if and) only if all u, f1, ..., fn are simultaneously identities.

2. Say that (C.,M.) is an O-homotopy-compatible pair if F : KC. −→ KC. preserves level-
wise trivial cofibrations, where KC. is endowed with the injective model structure.

Remark 4.5.1.

1. A consequence of the definition is that if C. is an O-identity-reflecting algebra (henceforth
ir-O-algebra), then the fiber ρ−1c = ρ−1{Idc} is a set.

2. Any free O-algebra C. is an ir-O-algebra; and for any special Quillen O-algebra M. having
all its objects cofibrant, the pair (C.,M.) is O-homotopy compatible (henceforth O-hc pair).

With the previous material we can announce the main result:

Lemma 4.5.2. Let M. be a special Quillen O-algebra such that all objects of M. are cofibrant.
Let C. be ir-O-algebra such that the (C.,M.) is an O-hc pair. Then for any pushout square in
LaxO-alg(C.,M.)

FA F

FB G

σ //

Fα

��

Hα

��
//

Hα : F −→ G is a level-wise trivial cofibration if α is so.

Proof of the lemma

By the adjunction F a U the map σ : FA −→ F in the pushout is induced by a unique map
A −→ UF in KC.. Similarly the map FB −→ G is also induced by a map B −→ UG. We will
construct G out of F and focus our analysis on the construction of the map Hα : F −→ G; the
map B −→ UG will follow automatically. The first thing to do is to consider the pushout square
in KC.:

UFA UF

UFB E

Uσ //

UFα

��

p

��
//

Since we assumed that Fα is a level-wise trivial cofibration, the map p : F −→ E is automati-
cally a level-wise trivial cofibration as well.
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Intermediate laxity maps Let (x, c1, ..., cn) be an object in O(i1, ..., in; j) × Ci1 × · · · × Cin
with c = ⊗x(c1, ..., cn) ∈ Cj .
Using the adjunction Evc : Hom(Cj ,Mj)�Mj : Fc for the laxity map

⊗x(Fc1, ...,Fcn) −→ F(⊗x(c1, ..., cn)) = F(c)

define R(p;x, c1, ..., cn) to be the object we get from the pushout diagram in Kj :

L1 =

Fc
⊗x(Fc1,...,Fcn) F

Fc
⊗x(Ec1,...,Ecn) R(p;x, c1, ..., cn)

//

Fc⊗x(p1,...pn)

��

h(x,c1,...,cn)

��q //

As each pk is a trivial cofibration (with cofibrant domain) and since M is a special Quillen
O-algebra, we have that ⊗x(p1, ...pn) is trivial cofibration in Mj . Applying the left Quillen functor
Fc, we have that Fc

⊗x(p1,...pn) is a projective (hence an injective) trivial cofibration. It follows that
h(x, c1, ..., cn) is also a projective trivial cofibration (as a pushout of such morphism) and therefore
a level-wise trivial cofibration.
When the context is clear we will simply write R(x, c.) or Rc., and p(x, c.), etc.

Intermediate coherences With the ‘temporary’ laxity maps we need to have a ‘temporary
coherence’ as well. We start with the objects on the fiber ρ−1c = ⊗−1{c}.

Let [x, (xi, di,1, ..., di,ki)1≤i≤n] be an object of O(i.|j)×[O(h1,. |i1)×C1,. ]×· · ·×[O(hn,. |in)×Cn,. ]
such that:

− ⊗xi(di,1, ..., di,ki) = ci,
− ⊗γ(x,xi)(d1,1, ..., dn,kn) = c, and
− ⊗x(c1, ..., cn) = c.

The coherence condition on the lax morphism F is equivalent to say that the upper face of the
semi-cube below is commutative.

⊗γ(x,xi)(Fd1,1, ...,Fdn,kn)

Fc

⊗x(Fc1, ...,Fcn)

Fc

ϕ
11

⊗x(ϕ1,...,ϕn) ++

Id

ϕ
11

⊗γ(x,xi)(Ed1,1, ...,Edn,kn)

R(γ(x, xi), d1,1, ..., dn,kn)

⊗x(Rd1.c1, ...,Rdn.cn)

11

⊗γ(x,xi)
p

��
⊗x(hci )

��

��

1 ++

Here 1 represents the map:

⊗γ(x,xi)(Ed1,1, ...,Edn,kn) = ⊗x[⊗x1(Ed1.), ...,⊗xn(Edn.)]
⊗x[qd1. ,...,qdn. ]−−−−−−−−−−→ ⊗x(Rd1.c1, ...,Rdn.cn)

with qdi. : ⊗xi(Edi,1, ...,Edi,ki) −→ R(xi, di,1, ..., di,ki).
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Extend the upper face by the commutative square (L1) above; then extend the face on the
right by taking the pushout of the trivial cofibration ⊗x(hci) along the trivial cofibration ⊗x(pci).
We get a new semi-cube C(x, xi, di) where the face in the back is unchanged.
Since the face in the back is a pushout square and the vertical map in the front is a trivial cofi-
bration, we are in the situation of the Reedy style lemma 3.7.4.

Introduce O(x, xi, di) to be the colimit of the semi-cube C(x, xi, di) . By virtue of lemma
3.7.4, the canonical map β : Fc −→ O(x, xi, di) is a trivial cofibration. Applying the left Quillen
functor Fc we get a projective trivial cofibration Fc

β : Fc
Fc −→ Fc

O(x,xi,di)
.

The co-unit of the adjunction Fc a Evc corresponds to a map e : Fc
Fc −→ F. Define Q(x, xi, di)

to be the functor we get by the pushout of Fc
β along e in Kj :

Fc
Fc Fj

Fc
O(x,xi,di) Q(x, xi, di)

e //

_�

Fcβ o

��

p(x,xi,di)

��
//

Define F
1,c
j to be colim(x,xi,di)∈ρ−1c {Fj

p(x,xi,di)−−−−−→ Q(x, xi, di)}, where:

ρ−1c =
∐

n∈N∗

∐

(i1,...,in)

∐

(h1,1,...,hn,kn )

ρ−1
h.,i.,j{Idc}.

Since we assumed that C is an ir-O-algebra then ρ−1c is a set, therefore the colimit is a gen-
eralized pushout diagram in Kj . This is what we called a cone of trivial cofibrations in the model
category Kj-inj. By Lemma 4.1.6 we deduce that all the canonical maps going to the colimit are
trivial cofibrations in Kj-inj; in particular the map ιc : Fj −→ F

1,c
j is an injective trivial cofibration.

The construction ‘P’ Recall that all the previous construction are obtained from the map
p : F −→ E which is an object of the under category F/KC. . It’s not hard to see that these
constructions are functorial in p.

Definition 4.5.3. For each j, define P(j, p,F,E) to be the colimit of the cone of trivial cofibrations
in Kj:

P(j, p,F,E) = (
∐

c∈Ob(Cj)

ιc : Fj −→ F
1,c
j ) ∪ {pj : F −→ Ej}.

Denote by η1
j : Fj −→ P(j, p,F,E) and δ1

j : Ej −→ P(j, p,F,E) the canonical trivial cofibrations.

By the above remark one clear see that P is an endofunctor of F/KC. , that takes p to η1.
Moreover for any j the following commutes:

Fj P(j, p,F,E)

Ej

η1
j //

pj '' δ1
j

77

As P is an endofunctor, we can repeat the process and apply the previous construction to

η1 = {Fj
η1
j−→ P(j, p,F,E)} and repeat again and so forth.
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Let κ be a regular cardinal. For each j we define a κ-sequence (Fkj )k∈κ in Kj as follows.

1. Fj = F0
j ,

2. F1
j = Ej ,

3. Fkj = P(j, ηk−1,F,Fk−1) for k ≥ 2,

4. there are canonical maps δk : Fk−1
j −→ Fkj and ηk : Fj −→ Fkj such that ηk = δk ◦ ηk−1;

with η0
j = pj

We end up with a κ-directed diagram in Kj :

Fj = F0
j

pj−→ F1
j

δ1
j−→ · · ·

δk−1
j−−−→ Fkj

δkj−→ Fk+1
j

δk+1
j−−−→ · · ·

Define F∞j to be the colimit in Kj of that κ-sequence and denote by η∞j : Fj −→ F∞j the
canonical map.

Remark 4.5.2. Since both δk and ηk are trivial cofibrations, it follows that η∞j is also a trivial

cofibration. Furthermore we have a factorization of η∞j as: Fj
pj
↪−→ Ej

δ∞j
↪−−→ F∞j . By construction

we have also other κ-sequences (Rk)k∈κ, (Ok)k∈κ and (Qk)k∈κ; Rk bring the laxity maps and Qk

bring the coherences. These objects interact in the semi-cubes Ck(x, xi, di).
For each j and each c ∈ Cj , all the three sequences {Rk(c)}k∈κ, {Ok(c)}k∈κ and {Qk(c)}k∈κ have
the same colimit object which is F∞j (c).

We complete the proof with the following

Proposition 4.5.4.

1. For every laxity map ⊗x(Fc1, ...,Fcn) −→ F(c) we have a map ⊗x(F∞c1, ...,F
∞cn) −→

F∞(c) and the following commutes:

⊗x(Fc1, ...,Fcn) F(c)

⊗x(F∞c1, ...,F
∞cn) F∞(c)

ϕ //

⊗x(η∞c1,...,η∞cn)

��
η∞

��ϕ∞ //

2. The maps ϕ∞ fit coherently and (F∞j )j equipped with ϕ∞ is a lax O-morphism i.e an object
of LaxO-alg(C.,M.).

3. The map η∞ = (η∞j ) : F −→ F∞ is the pushout in LaxO-alg(C.,M.) of Fα along σ.

4. U(η∞) is also a level-wise trivial cofibration, so in particular a weak equivalence.

Sketch of proof. The proof of (1) is exactly the same for the Proposition 4.4.7. One gets the
laxity maps by the universal property of the colimit of {⊗x(Fkc1, ...,F

kcn)}k∈κ, with respect to
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the following compatible cocone which ends at F∞(c) (and starts from ⊗x(Fc1, ...,Fcn) −→ F(c)):

⊗x(Fkc1, ...,F
kcn) Fk+1c

⊗x(Fk+1c1, ...,F
k+1cn) Rk+1(x, c1, ..., cn)c Fk+2c

Rk+2(x, c1, ..., cn)c F∞(c)

//

⊗x(δk1 ,...δ
k
n)

��

p(x,c1,...,cn)c

��
// //

��))

δk+1

))

canonical

''
canonical //�� 22

One computed the colimit of {⊗x(Fkc1, ...,F
kcn)}k∈κ by the same method explained in the

proof of Proposition 4.4.7. The map ϕ∞(x, c1, ..., cn) : ⊗x(F∞c1, ...,F
∞cn) −→ F∞(c) is the

unique map which makes everything commutative.

The coherence condition follows by construction; one takes the colimit everywhere in the
universal cube defined by the semi-cubes Ck(x, xi, di). The coherence is given by ‘the cube at the
infinity’. The assertion (3) is easily checked and follows by construction: F∞ with the obvious
maps satisfies the universal property of the pushout. It’s important to notice that this is valid
because both FA and FB are free objects, therefore the map FB −→ F∞ is induced by the
composite B −→ FB −→ E −→ F∞.

The assertion (4) is obvious. �

4.6 Review of the notion of bicategory

4.6.1 Definitions

Definition 4.6.1. A small bicategory C is determined by the following data:

− a nonempty set of objects C = Ob(C)

− a category C(A,B) of arrows for each pair (A,B) of objects of C

− a composition functor c(A,B,C) : C(B,C)× C(A,B) −→ C(A,C) for each triple (A,B,C)
of objects of C

− an identity arrow IA : 1 −→ C(A,A) for any object A of C

− for each quadruple (A,B,C,D) of objects of C a natural isomorphism a(A,B,C,D), called
associativity isomorphism, between the two composite functors bounding the diagram :

C(C,D)× C(B,C)× C(A,B)

C(B,D)× C(A,B)

C(C,D)× C(A,C)

C(A,D)

Id×c(A,B,C) //

c(B,C,D)×Id

��

c(A,C,D)

��

c(A,B,D)
// ..
  

a(A,B,C,D)

19
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Explicitly :

a(A,B,C,D) : c(A,B,D) ◦ (c(B,C,D)× Id) −→ c(A,C,D) ◦ (Id×c(A,B,C))

Then if (h, g, f) is an object of C(C,D)× C(B,C)× C(A,B), the isomorphism, component
of a(A,B,C,D) at (h, g, f) will be abbreviated into a(h, g, f) or even a :

a = a(h, g, f) = a(A,B,C,D)(h, g, f) : (h⊗ g)⊗ f h⊗ (g ⊗ f)
∼ //

− for each pair (A,B) of objects of C, two natural isomorphisms l(A,B) and r(A,B) called
left and right identities, between the functors bounding the diagrams:

1× C(A,B)

C(A,B)C(B,B)× C(A,B)

∼

&&

IB×Id

��

c(A,B,B)
//

l(A,B)

;C

C(A,B)× 1

C(A,B)C(A,B)× C(A,A)

∼

&&

Id×IA

��

c(A,A,B)
//

r(A,B)

;C

If f is an object of C(A,B), the isomorphism, component of l(A,B) at f

l(A,B)(f) : IB ⊗ f f
∼ //

is abbreviated into l(f) or even l, and similarly we write

r = r(f) = r(A,B)(f) : f ⊗ IA f
∼ //

The natural isomorphisms a(A,B,C,D), l(A,B) and r(A,B) are furthermore required to satisfy
the following axioms :

(A. C.): Associativity coherence : If (k, h, g, f) is an object of C(D,E)×C(C,D)×C(B,C)×C(A,B)
the following diagram commutes :

((k ⊗ h)⊗ g)⊗ f (k ⊗ (h⊗ g))⊗ f

(k ⊗ h)⊗ (g ⊗ f) k ⊗ ((h⊗ g)⊗ f)

k ⊗ (h⊗ (g ⊗ f))

a(k,h,g)⊗Id //

a(k⊗h,g,f)

��

a(k,h⊗g,f)

��

a(k,h,g⊗f) %% Id⊗a(h,g,f)yy

(I. C.): Identity coherence : If (g, f) is an object of C(B,C)× C(A,B), the following diagram com-
mutes :

(g ⊗ IB)⊗ f g ⊗ (IB ⊗ f)

g ⊗ f

a(g,IB ,f) //

r(g)⊗Id %% Id⊗l(f)yy
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Variant. When all the natural isomorphisms a, l, r are identities then C is said to be a strict
2-category

Classically objects of C are called 0-cells, those of each C(A,B) are called 1-cells or 1-morphisms
and arrows between 1-morphisms are called 2-cells or 2-morphisms.

1. In each C(A,B) :

− every 1-cell f has an identity 2-cell :

A B

f

%%

f

991f
��

− we have a vertical composition of 2-cells: ‘− ?−’

A B

f

��

h

FF
//

α
��

β
��

A B

f

!!

h

==β?α
��

//

2. In the composition functor we have:

− a classical composition of 1-cells: ‘−⊗−’

C B A
f

oo
g

oo C A
g⊗f
oo//

− a horizontal composition of 2-cells: ‘−⊗−’

C B A

f

��

f ′

]]

g

��

g′

]] β ��
α
��

C A

g⊗f
||

g′⊗f ′

bbβ⊗α ��
//

(β ⊗ α)(g ⊗ f) = β(g)⊗ α(f) = g′ ⊗ f ′

Example 4.6.2. [Bénabou] Let (M ,⊗, I, α, λ, ρ) be a monoidal category. We define a bicategory
M̃ by:

− Ob(M̃ ) = {F}

− M̃ (F,F) = M

− c(F,F,F) = ⊗

− IF = I

− a(F,F,F,F) = α

− l(F,F) = λ

− r(F,F) = ρ
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We easily check that the isomorphisms a, l, r satisfy the (A.C.) and (I.C.) axioms since α, λ, ρ
satisfy the associativity and identities axioms of a monoidal category. Conversely every bicategory
with one object “is” a monoidal category.

More generally we have:

Proposition 4.6.3. Let C be a bicategory and A an object of C, then ⊗ = c(A,A,A), I = IA,
α = a(A,A,A,A), λ = l(A,A), ρ = r(A,A) determine a monoidal structure on the category
C(A,A).

4.6.2 Morphisms of bicategories

Definition 4.6.4. [Lax morphism] Let B = (B, c, , I, a, l, r) and C = (C, c′, I ′, a′, l′, r′) be two
small bicategories. A lax morphism F = (F,ϕ) from B to C is determined by the following:

− A map F : B −→ C, A FA

− A family functors
FAB = F (A,B) : B(A,B) −→ C(FA,FB),

f  Ff, α Fα

− For each object A of B an arrow of C(FA,FA) (i.e a 2-cell of C) :

ϕA : I ′FA −→ F (IA)

− A family of natural transformations :

ϕ(A,B,C) : c′(FA,FB,FC) ◦ (FBC × FAB) −→ FAC ◦ c(A,B,C)

B(B,C)×B(A,B)

C(FB,FC)× C(FA,FB)

B(A,C)

C(FA,FC)

c(A,B,C) //

FBC×FAB

��

FAC

��

c′(FA,FB,FC)
// --

  

ϕ(A,B,C)

19

If (g, f) is an object of B(B,C)×B(A,B), the (g, f)-component of ϕ(A,B,C)

Fg ⊗ Ff ϕ(A,B,C)(g,f)−−−−−−−−−→ F (g ⊗ f)

shall be usually abbreviated to ϕgf or even ϕ.

These data are required to satisfy the following coherence axioms:

(M.1): If (h, g, f) is an object of B(C,D) ×B(B,C) ×B(A,B) the following diagram, where the
indices A,B,C,D have been omitted, is commutative:

(Fh⊗ Fg)⊗ Ff (F (h⊗ g))⊗ Ff F ((h⊗ g)⊗ f)

Fh⊗ (Fg ⊗ Ff) F (h⊗ (g ⊗ f))Fh⊗ (F (g ⊗ f))

ϕhg⊗Id
//

ϕ(h⊗g)f //

a′(Fh,Fg,Ff)

��

Fa(h,g,f)

��Id⊗ϕgf //
ϕh(g⊗f) //
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(M.2): If f is an object of B(A,B) the following diagrams commute:

Ff ⊗ I ′FA Ff ⊗ FIA F (f ⊗ IA)

Ff Ff

Id⊗ϕA
//

ϕfIA
//

r′(Ff)

��

Fr(f)

��

I ′FB ⊗ Ff FIB ⊗ Ff F (IB ⊗ f)

Ff Ff

ϕB⊗Id
//

ϕIBf
//

l′(Ff)

��

Fl(f)

��

Variant.

1. We will say that F = (F,ϕ) is a colax morphism if ϕ(A,B,C) and ϕA are in the opposite
sense i.e

Fg ⊗ Ff ϕ(A,B,C)(g,f)←−−−−−−−−− F (g ⊗ f)

I ′FA
ϕA←−− F (IA)

and all of the horizontal arrows in the diagrams of (M.1) and (M.2) are in the opposite
sense.

2. If ϕ(A,B,C) and ϕA are natural isomorphisms, so that Fg ⊗ Ff
∼−→ F (g ⊗ f) and

I ′FA
∼−→ F (IA) then F = (F,ϕ) is called a homomorphism.

3. If ϕ(A,B,C) and ϕA are identities, so that Fg ⊗ Ff = F (g ⊗ f) and I ′FA = F (IA) then
F = (F,ϕ) is called a strict homomorphism.

4.7 The 2-Path-category of a small category

Let C be a small category. For any pair (A,B) of objects such that C(A,B) is nonempty, we
build from the composition operation and its properties a simplicial diagram as follows :

1. If A 6= B:

C(A,B)
∐

C(A,A1)× C(A1, B)
∐

C(A,A1)× C(A1, A2)× C(A2, B) · · ·oo ////
// oo

oo //

//

2. If A = B:

C(A,A)
∐

C(A,A1)× C(A1, A)
∐

C(A,A1)× C(A1, A2)× C(A2, A){A} ∼= 1 · · ·oo //1A // //
// oo

oo //

//

Here the dotted arrows correspond to add an identity map of an object and the normal arrows
correspond to replace composable pair of arrows by their composite.

In each case the diagram “represents” a functor which is a cosimplicial set:

− If A 6= B: PAB : ∆+ −→ Set,

− If A = B: PAA : ∆ −→ Set.
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Observations 4.7.1.

1. Here PAB(n) is the set of n-simplices of the nerve of C, with extremal vertices A and B :

PAB(n) =
∐

(A=A0,...,An=B)

C(A0, A1)× · · · × C(An−1, An)

in particular we have : PAB(1) = C(A,B).

2. If A = B and for n = 0, PAA(0) has a unique element which is identified with the object
A.

3. We will represent an element s of PAB(n) as a n-tuple

s = (A0 −→ A1, · · · , Ai −→ Ai+1, · · · , An−1 −→ An)

or as an oriented graph

s = A0 −→ A1 −→ · · · −→ Ai −→ Ai+1 −→ · · · −→ An−1 −→ An.

4. For a map u : n −→ m of ∆, PAB(u) : PAB(n) −→ PAB(m) is a function which sends a
n-simplex to a m-simplex.
Such function corresponds to :

− (one or many) insertions of identities if n < m

− (one or many) compositions at some vertices if n > m.

Terminology. An element of PAB(n) will be called a path or chain of length n from A to B.
When A = B we will call loops of length n the elements of PAA(n). In particular there is a unique
path of length 0, which is identified with the object A.

We can rewrite the simplicial diagrams above as :

PAB(1) PAB(2) PAB(3)· · ·oo ////
// oo

oo //

//

PAA(0) PAA(1) PAA(2) PAA(3)· · ·oo ////
// oo

oo //

//
1A//

Definition 4.7.1. [Concatenation of paths]
Given s in PAB(n) and t in PBC(m)

s = A −→ A1 −→ · · · −→ Ai −→ Ai+1 −→ · · · −→ An−1 −→ B

t = B −→ B1 −→ · · · −→ Bj −→ Bj+1 −→ · · · −→ Bm−1 −→ C

we define the concatenation of t and s to be the element of PAC(n+m) :

s ∗ t := A −→ A1 −→ · · · −→ An−1 −→︸ ︷︷ ︸
s

B−→ B1 −→ · · · −→ Bm−1 −→ C︸ ︷︷ ︸
t

.

It follows from the definition that for any n and for any s ∈PAB(n) we have :

− s ∗B = s,

− A ∗ s = s .
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The Grothendieck construction In the following we’re going to apply the Grothendieck con-
struction to the functors PAB, PAA.

For any pair of objects (A,B) we denote by PC(A,B) the category of elements or the
Grothendieck integral of the functor PAB described as follows.

− The objects of PC(A,B) are pairs [n, s], where n is an object of ∆ and s ∈PAB(n).

− A morphism [n, s]
u−→ [m, t] in PC(A,B) is a map u : n −→ m of ∆ such that image of u by

PAB sends s to t :
PAB(u) : PAB(n) −→PAB(m)

and
PAB(u)s = t.

We have a forgetful functor LAB which makes each PC(A,B) a category over ∆ (or ∆+) :

LAB : PC(A,B) −→ ∆

with LAB([n, s]) = n and LAB([n, s]
u−→ [m, t]) = u.

The functor LAB will be called length or degree.

Remark 4.7.1.

1. The concatenation of paths is a functor. For each triple (A,B,C) of objects of C we denote
by c(A,B,C) that functor:

c(A,B,C) : PC(B,C)×PC(A,B) PC(A,C)






[n′, s′]

[m′, t′]

u′
��


 ,




[n, s]

[m, t]

u
��










[n+ n′, s ∗ s′]

[m+m′, t ∗ t′]
u+u′
��




//

� //

2. It’s easy to check that the concatenation is strictly associative.

Notation 4.7.1. We will use the following notations:
s′ ⊗ s := c(A,B,C)(s′, s) = s ∗ s′,

t′ ⊗ t := c(A,B,C)(t′, t) = t ∗ t′ and

u′ ⊗ u := c(A,B,C)(u′, u) = u+ u′

Now we’ve set up all the tools needed for the definition of the 2-path-category.

Definition 4.7.2. Let C be a small category. The 2-path-category PC of C is the bicategory given
by the following data:

− the objects of PC are the objects of C

− for each pair (A,B) of objects of PC, the category of arrows of PC is the category PC(A,B)
described above
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− for each triple (A,B,C) the composition functor is given by the concatenation functor de-
scribed in the remark above:

c(A,B,C) : PC(B,C)×PC(A,B) −→PC(A,C)

− for any object A of C we have a strict identity arrow IA : 1 −→PC(A,A) which is [0, A]

− for each quadruple (A,B,C,D) of objects of C the associativity natural isomorphism a(A,B,C,D)
is the identity

− the left and right identities natural isomorphisms are the identity for each pair (A,B) of
objects of C

These data satisfy clearly the Associativity and Identity Coherence axioms (A. C.) and (I. C.) so
that PC is even a strict 2-category.

Let C and D be two small categories and F a functor F : C −→ D. By definition F commutes
with the compositions of C and D, sends composable arrows of C to composable arrows of D
and sends identities to identities. We can then easily see that F induces a strict homomorphism
PF : PC −→PD. That is we have a functor:

P[−] : Cat≤1 2-Cat

C
F−→ D PC

PF−−→PD

//

� //

where Cat≤1 and 2-Cat are respectively, the 1-category of small categories and the 1-category of
2-categories (and strict 2-functors).

4.8 Localization and cartesian products

Notation 4.8.1. In this section we will use the following notations.
Cat = the category of small categories.
Hom(C,E ) = category of functors from C to E .
LS : C −→ C[S−1] = a Gabriel-Zisman localization of C with respect to a class of maps S.
LS
∗(E ) = Hom(C[S−1],E )

−◦LS−−−→ Hom(C,E ).
HomS(C,E ) =the full subcategory of Hom(C,E ) whose objects are functors which make S invert-
ible 1 in D.

Note. It is well known that every functor making S invertible, factorizes in a unique way through
LS, hence LS

∗ induces an isomorphism of categories:

LS
∗(E ) : Hom(C[S−1],E )

∼−→ HomS(C,E ).

Our goal here is to prove the following lemma which was established independently and long-
time ago before the present paper by Kelly, Lack and Walters in [51, Section 3.1]. We put the
proof here for completeness.

Lemma 4.8.1. Let C and D be two small categories, S and T be respectively two class of morphisms
of C and D. Choose localizations LS : C −→ C[S−1] and LT : D −→ D[T−1].

Assume that :
1We say that F : C −→ E makes S invertible if for all s ∈ S, F (s) is invertible in E .
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1. S contains all identities of C

2. T contains all identities of D

Then the canonical functor

C×D
LS×LT−−−−→ C[S−1]×D[T−1]

is a localization of C×D with respect to S× T.

Observations 4.8.1. From the lemma we have the following consequences.

1. Any object F of HomS×T(C×D,E ) factorizes uniquely as F = F ◦ (LS × LT) where F is an
object of Hom(C[S−1]×D[T−1],E ).

2. We have an isomorphism :

(LS × LT)∗(E ) : Hom(C[S−1]×D[T−1],E )
−◦(LS×LT)−−−−−−−→ HomS×T(C×D,E )

3. For every pair (E1,E2) of categories and any functors F in HomS(C,E1), G in HomT(D,E2),
if we write :
F = F ◦ LS,
G = G ◦ LT,
then the functor F ×G is in HomS×T(C×D,E1 × E2) and factorizes (uniquely) as:

F ×G = (F ×G) ◦ (LS × LT).

We therefore have “ F ×G = F ×G ”.

Proof of Lemma 4.8.1

For the proof of the lemma we will use the following:

− Hom : Catop × Cat −→ Cat is a bifunctor,

− Cat is symmetric closed for the cartesian product,

− the universal properties of the Gabriel-Zisman localization.

Cat is symmetric closed

The fact that Cat is symmetric closed means that for every category B the endofunctor
−×B : Cat −→ Cat (and also ‘B ×−’) has a right adjoint :

Hom(B,−) : Cat −→ Cat.

The adjunction says that the following functor is an isomorphism:

α : Hom(A ×B,E ) Hom(A ,Hom(B,E ))

(F : A ×B −→ E ) (α(F ) : A −→ Hom(B,E ))

//

� //

166



Remark 4.8.1. Given a functor G in Hom(A ,Hom(B,E )), we define α−1(G) : A ×B −→ E
by setting:
G(A,B) := [GA]B on objects
G(f, g) := [Gf ]g for every morphism (f, g) of A ×B.
One can immediately check that this defines indeed a functor from A ×B to E . It’s obvious that
α−1 is a functor and for every every F ∈ Hom(A ×B,E ) we have an equality :

F = α−1(α(F )).

Let F : C×D −→ E be an object of HomS×T(C×D,E ).
We want to show that F factorizes in a unique way as : F = F ◦ (LS × LT), with F an object of
Hom(C[S−1]×D[T−1],E ).

Step 1: Factorization of α(F ) Consider α(F ) : C −→ Hom(D,E ) the functor given by the
above adjunction.

Given s : A −→ A′ a morphism of S and U an object of D, we have (s, IdU ) ∈ S × T and by
assumption F (s, IdU ) is invertible in E .

By definition α(F )s is a natural transformation whose component at U is exactly F (s, IdU ) :

[α(F )s]U := F (s, IdU ) : F (A,U) −→ F (A′, U).

Then α(F )s is a natural isomorphism which means that α(F ) makes S invertible, hence factorizes
uniquely as α(F ) = α(F ) ◦ LS with α(F ) : C[S−1] −→ Hom(D,E ).

Now if we apply the inverse ‘α−1’ to both α(F ) and α(F ) it’s easy to see that we have the
following equality :

F = F0 ◦ (LS × IdD)

where F0 = α−1(α(F )) is a functor from C[S−1]×D to E .

Step 2: Using the symmetry of ‘×’ It suffices to apply the Step 1 to F0 : C[S−1]×D −→ E
with S0 ⊆ C[S−1], S0 := Id(C[S−1]), and interchanging the role of T and S0 using the symmetry of
the cartesian product in Cat.
We then have a factorization :

F0 = F1 ◦ (IdC[S−1]×LT)

with F1 : C[S−1]×D[T−1] −→ E .

Combining this with the previous equality we have :

F = F0 ◦ (LS × IdD)

= [F1 ◦ (IdC[S−1])×LT)] ◦ [LS × IdD]

= F1 ◦ [(IdC[S−1]) ◦LS)× (LT ◦ IdD)]

= F1 ◦ (LS × LT)

Then F = F1. �
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4.9 Secondary Localization of a bicategory

In this section we’re going to define the Gabriel-Zisman localization of M with respect to W
when (M ,W ) is a base of enrichment.

In addition to the previous notations we will write:
MUV = M (U, V ).
WUV = W

⋂
M (U, V ).

cM : MVW ×MUV −→MUW= the composition functor in M ; when the context is clear.

Remark 4.9.1. From the assumptions made on W , we clearly see that each WUV is a subcategory
of MUV having the same objects. Moreover the functor cM sends WVW × WUV to WUW , so we
can view W as a sub-bicategory M , having the same objects and 1-cells.

Definition 4.9.1. Let B be a bicategory and Φ : M −→ B a homomorphism in the sense of
Bénabou [10]. We will say that Φ makes W invertible if for every pair (U, V ) in Ob(M ), the
functor

ΦUV : M (U, V ) −→ B(ΦU,ΦV )

makes WUV invertible.

Our purpose is to construct a bicategory W −1M with a homomorphism LW : M −→ W −1M
which is “universal” among those making W invertible. The universality here means that for
any homomorphism Φ : M −→ B making W invertible there is a factorization, unique up-to a
transformation2, Φ = Φ ◦ LW , where
Φ : W −1M −→ B is a homomorphism.

Like in the classical case the target bicategory W −1M should (essentially) have the same object
as M , so that LW will be the identity on objects. Moreover if such localization homomorphism
LW exists, we should have factorizations of its components:

LW ,UV : MUV

LWUV−−−−→MUV [W −1
UV ]

LW ,UV−−−−→ W −1M (LW U,LW V ).

This suggests to take MUV [W −1
UV ] as category of morphisms in W −1M for each (U, V ).

Proposition 4.9.2. Let (M ,W ) be a base of enrichment. There exists a bicategory W −1M
together with a homomorphism LW : M −→ W −1M such that :

1. LW makes W invertible,

2. any homomorphism Φ : M −→ B which makes W invertible factorizes as Φ = Φ ◦ LW with

Φ : W −1M −→ B

a homomorphism.

3. W −1M is unique up to a biequivalence 3.

4.9.1 Proof of Proposition 4.9.2

Choose a localization LWUV : MUV −→MUV [W −1
UV ] for each pair (U, V ) of objects of M .

Set Ob(W −1M ) = Ob(M ),
W −1M (U, V ) = MUV [W −1

UV ].

2the transformation is unique up to a unique modification
3The biequivalence is itself unique up to a unique strong transformation.
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Construction of the composition

By applying lemma 4.8.1 for each triple (U, V,W ), we have a localization

MVW ×MUV

LWVW
×LWUV−−−−−−−−−→MVW [W −1

VW ]×MUV [W −1
UV ]

of MVW ×MUV with respect to WVW ×WUV .

Since cM : MVW ×MUV −→MUW sends WVW ×WUV to WUW , it follows that the composite

LWUW ◦ cM : MVW ×MUV −→MUW [W −1
UW ]

makes WVW ×WUV invertible, hence factorizes as :

MVW ×MUV MUW [W −1
UW ]

MVW [W −1
VW ]×MUV [W −1

UV ]

LWUW
◦cM (U,V,W )

//

LWVW
×LWUV

��
cW−1M

66

which gives the composition functor.

If we follow the notations of the factorization as in lemma 4.8.1 we will write:

LWUW ◦ cM = LWUW ◦ cM ◦ (LWVW × LWUV )

which means that cW −1M := LWUW ◦ cM .

The associativity

We build the following commutative diagram using the universal property of the Gabriel-
Zisman localization and lemma 4.8.1.

MWZ ×MVW ×MUV

MWZ ×MUW

MV Z ×MUV

MUZ

a(U,V,W,Z)
3;

a(U,V,W,Z)
3;

IdMWZ
×cM (U,V,W ) 11

cM (V,W,Z)×IdMUV

##

cM (U,W,Z)

##

cM (U,V,Z)

11

MWZ [W −1
WZ ]×MVW [W −1

VW ]×MUV [W −1
UV ]

MWZ [W −1
WZ ]×MUW [W −1

UW ]

MV Z [W −1
V Z ]×MUV [W −1

UV ]

MUZ [W −1
UZ ]

γ1 11

LWWZ
×LWVW

×LWUV

��

cW−1M (U,W,Z)

##

��

��

LWUZ

��γ2

##
cW−1M (U,V,Z)

11

η2
11

η1

''

σ2

11

σ1

((
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We use hereafter the same notations as in lemma 4.8.1. Then for every functor F which
factorizes through a localization L, we will denote by F the unique functor such that F = F ◦ L.

− The double dotted vertical maps are localizations given by lemma 4.8.1.

− We’ve denoted for short η1 = cM (U,W,Z) ◦ [IdMWZ
×cM (U, V,W )].

− Similarly η2 = [cM (V,W,Z)× IdMUV
] ◦ cM (U, V, Z)

− γ1 is by definition LWWZ
× (LWUW ◦ [IdMWZ

×cM (U, V,W )] and is given universal property
with respect to LWWZ

× LWVW × LWUV .

− γ2 is (LWV Z × LWUV ) ◦ [cM (V,W,Z)× IdMUV
]

− σ1 = LWUZ ◦ η1

− σ2 = LWUZ ◦ η2

− a(U, V,W,Z) is the inverse image of a(U, V,W,Z)⊗ IdLWUZ
, which is an invertible the 2-cell

in Cat, by the isomorphism of categories [LWWZ
× LWVW × LWUV ]∗(MUZ [W −1

UZ ]).

Recall that [LWWZ
× LWVW × LWUV ]∗(MUZ [W −1

UZ ]) is an isomorphism from the hom-category

Hom(MWZ [W −1
WZ ]×MVW [W −1

VW ]×MUV [W −1
UV ],MUZ [W −1

UZ ])

to the hom-category

HomWWZ×WVW×WUV (MWZ ×MVW ×MUV ,MUZ [W −1
UZ ]).

It’s clear that a(U, V,W,Z) is an invertible 2-cell in Cat (a natural isomorphism) from σ2 to σ1

We need to show that the following hold

− γ1 = IdMWZ [W −1
WZ ] × cW −1M (U, V,W )

− γ2 = cW −1M (V,W,Z)× IdMUV [W −1
UV ]

− σ1 = cW −1M (U,W,Z) ◦ γ1

− σ2 = cW −1M (U, V, Z) ◦ γ2

We proof the equality for γ1 and σ1, the argument is the same for the remaining cases.

For γ1 we use the the property ‘F ×G = F ×G’ (see Observations 4.8.1). We have

γ1 = LWWZ
× (LWUW ◦ cM (U, V,W ))

= LWWZ
× LWUW ◦ cM (U, V,W )
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But since LWWZ
= IdMWZ [W −1

WZ ] ◦LWWZ
then LWWZ

= IdM
WZ[W−1

WZ
]
.

Combining with the fact that cW −1M (U, V,W ) := LWUW ◦ cM (U, V,W ), we deduce that

γ1 = IdMWZ [W −1
WZ ] × cW −1M (U, V,W )

as desired.

For σ1 we’re going to use the commutativity of the vertical faces in the ‘cubical’ diagram and
the fact that Cat is as strict 2-category.

We write

[cW −1M (U,W,Z) ◦ γ1] ◦ (LWWZ
× LWVW × LWUV ) = cW −1M ◦ [γ1 ◦ (LWWZ

× LWVW × LWUV )]

= cW −1M ◦ [(LWWZ
× LWUV ) ◦ (IdMWZ

×cM )]

= [cW −1M ◦ (LWWZ
× LWUV )] ◦ [IdMWZ

×cM ]

= [LWUZ ◦ cM ] ◦ [IdMWZ
×cM ]

= LWUZ ◦ [cM ◦ (IdMWZ
×cM )]

= LWUZ ◦ η1

= σ1 ◦ (LWWZ
× LWVW × LWUV ).

The uniqueness of the factorization implies : σ1 = cW −1M (U,W,Z) ◦ γ1.

For the axioms in W −1M

We give hereafter the argument for the associativity axiom. The argument is the same for the
identity axioms.

The idea is to say that these axioms are satisfied in M and we need to check that they’re trans-
ferred through the localization and this is true. The reason is that the property ‘F ×G = F ×G’
of functors hold also for natural transformations and commute with the composition.

For every objects T, U, V, W of M , the pentagon of associativity from MWZ×MVW×MUV ×
MTU to MTZ gives by composition with LWTZ a commutative pentagon from MWZ ×MVW ×
MUV ×MTU to MTZ [W −1

TZ ].

For each vertex other than MTZ [W −1
TZ ], each ‘path’ from the vertex to MWZ [W −1

WZ ] factorizes
through the suitable localization functor.

These factorizations fit together because we have

− a uniqueness of the factorization of the path from MWZ×MVW ×MUV ×MTU with respect
to the localization LWWZ

× LWVW × LWUV × LWTU .

− for every triple of objects, we have a cubical commutative diagram.

We finally have a pentagon of associativity from MWZ [W −1
WZ ] ×MVW [W −1

VW ] ×MUV [W −1
UV ] ×

MTY [W −1
TU ] to MTZ [W −1

TZ ] as desired.

Finally one easily check that these data define a bicategory W −1M with a canonical homo-
morphism LW : M −→ W −1M , and that LW satisfies the universal property. �
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Catégories faiblement enrichies sur une catégorie monoïdale symétrique

Résumé Dans cette thèse nous développons une théorie de catégories faiblement enrichies. Par
‘faiblement’ on comprendra ici une catégorie dont la composition de morphismes est associative à
homotopie près; à l’inverse d’une catégorie enrichie classique où la composition est strictement as-
sociative. Il s’agit donc de notions qui apparaissent dans un contexte homotopique. Nous donnons
une notion de catégorie enrichie de Segal et une notion de catégorie enrichie co-Segal ; chacune de
ces notions donnant lieu à une structure de catégorie supérieure. L’une des motivations de ce tra-
vail était de fournir une théorie de catégories linéaires supérieures, connues pour leur importance
dans des différents domaines des mathématiques, notamment dans les géométries algébriques com-
mutative et non-commutative. Les catégories enrichies de Segal généralisent la notion de monoïde
à homotopie près introduite par Leinster. Les monoïdes de Leinster correspondent précisément
aux catégories enrichies de Segal avec un seul objet. Nous montrons comment notre formalisme
couvre le cas des catégories de Segal classique, les monoïdes de Leinster et surtout apporte une
définition de DG-catégorie de Segal. Les principaux résultats de la thèse sont dans la deuxième
partie qui porte sur les catégories enrichies co-Segal. Nous avons introduit ces nouvelles structures
lorsqu’on s’est aperçu que les catégories enrichies de Segal ne sont pas faciles à manipuler pour
faire une théorie de l’homotopie. En effet il semble devoir imposer une condition supplémentaire
qui est trop restrictive dans beaucoup de cas. Ces nouvelles catégories s’obtiennent en ‘renversant’
la situation du cas Segal, d’où le préfixe ‘co’ dans ‘co-Segal’. Notre résultat principal est l’existence
d’une structure de modèles au sens de Quillen sur la catégorie des précatégories co-Segal; avec
comme particularité que les objets fibrants sont des catégories co-Segal.

Mots-clés: Catégories enrichies, catégories de Segal, catégories co-Segal, catégories supérieures,
catégories de modèles, diagrammes lax, opérades, DG-catégorie co-Segal, enrichissement homo-
topique.

Weakly enriched categories over a symmetric monoidal category

Abstract In this thesis we develop a theory of weakly enriched categories. By ‘weakly’ we
mean an enriched category where the composition is not strictly associative but associative up-to-
homotopy. We introduce the notion of Segal enriched categories and of co-Segal categories. The
two notions give rise to higher categorical structures. One of the motivations of this work was to
provide an alternative notion of higher linear categories, which are known by the experts to be
important in both commutative and noncommutative algebraic geometry. The first part of the
thesis is about Segal enriched categories. A Segal enriched category is the generalization of the
notion of up-to-homotopy monoid introduced by Leinster. The monoids of Leinster correspond
precisely to Segal enriched categories having a single object. We show that our formalism cover
the definition of classical Segal categories and generalizes Leinster’s definition. Furthermore we
give a definition of Segal DG-category. The main results of this work are in the second part of
the thesis which is about co-Segal categories. The origin of this notion comes from the fact that
Segal enriched categories are not easy to manipulate for homotopy theory purposes. In fact when
trying to have a model structure on them, it seems important to require an extra hypothesis that
can be too restrictive. The co-Segal formalism is obtained by ‘reversing’ everything in the Segal
case, hence the terminology ‘co-Segal’. Our main result is the existence of a Quillen model struc-
ture on the category of co-Segal precategories; with the property that fibrant objects are co-Segal
categories.

Keywords: Enriched categories, Segal categories, co-Segal categories, higher categories,
model categories, lax diagrams, operads, co-Segal DG-categories, homotopy enrichment.
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