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WHAT IS IRREGULAR SAMPLING ?

FIGuRe1: Z, = (h*u)(x,,y,) + n, (1)
A = [(xk’yk)

u " : continuous scene  n :i.i.d. gaussian vector

<p<y - Sampling grid h : impulse response

The irregularity in the sampling grid may come from :

* microvibrations of the push-broom satellite during acquisition
 superresolution by fusion of multiple aliased views of the
same scene

* missing pixels

STATE OF THE ART l

Recent methods use regularized formulations to solve
the irregular sampling linear problem :

Argmin

E(u) st || Su—Z H2 < N.o

ucek

where the functional space F may be trigonometric
polynomials [1,3,4], or integer shift invariant spaces
(splines) [2].

Non-linear regularizers like Total Variation [4] and
Frequency Adaptative Regularizers [3] where shown to
perform better than linear ones like ACT [1], which are
also used in the spline implementation [2].

On the other hand spline-based algorithms are much faster
due to their compactly supported base functions. (Sparse
operator S ) but the spline implementation [2] cannot deal
with convolution in addition to sampling.

Function | Regularization| Convolution | Fast
space
(1] T.P. linear yES +
3,4] T.P. non-linear yes
2] Splines linear no ++
Ours | Splines non-linear yes +

FIGURE 2 : Regularization methods in irregular sampling
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PROJECTION ON A SHIFT

INVARIANT SPACE

proj,(hxu) = 3 a,, proj,(hxp")(x—k, y—I)

proj, (hxp”) = drgmin,, |(hxp")=v|> (2

Indeed it is sufficient to compute the projection of only one
convolved spline with the Euler-Lagrange equation of (2)

2. H (B (x=i,y=j), B (x—k,y=1))
= (h*x B (x,y), 8% (x—k,y=1)) Y (k1)

where 171 ; are the coefficients of proj V( h *[3(3))

The associated matrix is circulant, the system is directly
inverted with Fourier transforms since

FFT(F) = FETWh*B(x. y). B (x—k. y=1))
FFT((B”(x, y), 8" (x =k, y=1)))

( direct computation ) = ﬁ(”(k,l)

By Plancherel's Formula the second scalar product rewrites :

; 2kTr 21 1T
Dt ez (h-\ﬁ \)(q—m ,p—n

m n

We have good approximation for frequencies in twice the
Nyquist range : (q,p) in [-m,m[x[-n,n[ (FIG. 5)
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FIGURE 4 : Fourier transforms and summed function FIGURE 5 : Convergence of the truncated sum
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THE SPLINE APPROXIMATION

Spline functions have piecewise polynomial expression

and compact support. Here the scene u is assumed to be in a
shift invariant, periodic space spanned by tensorial B-splines
of order 3, as in [2] .

T stpan[ﬁ%—k,y—l)lk,z
- m—1
(x,y)= Zk 0 Z aklﬁ (x—k,y=1)

FIGURE 3 : B-Splines

MOTIVATION OF THIS WORK =yt .
> nvolution product in (1) may not belong

» Faster restoration from irregular samples via :
- Compactly supported basis functions instead of
trigonometric polynomials
> Fast Splitting Algorithm
* Extend Arigovindan's work on spline resampling to
deconvolution and TV regularization

to a spline space this is why it is projected on V
> Evaluation on the irregular grid is a linear operator (S irr.)

(u<xk’yk))1<k<NS = S d

> Evaluation on the Regular Grid is also necessary (S reg.)

U — (u(k)l))0<k<m,0<l<n — Sl”eg a
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TV REGULARIZATION EXPERIMENTS AND RESULTS

min, TV(U) s.t. ||SW.[7.S;€;U—Z||2 < N.o

)m Xn

TV(U) = maxs., (VU,S) F=[S€(IR2 / ‘S ‘<1 Vi,j]

L, J

r(VU)I(k,z) — {U(kﬂ,l)—U(k,Z) if ktm—1

< 0 else
(VU), (k1) = Uk I+1)=Ul(k,l) ifl#n—1
o 0O else

\

Lagrangian form : AA>0 s.t. U minimizes
)

TV (U) + A||S,,.H.S,,.U=Z| (3)

7
"

V— &

/1(0) £.(U)

This sum of two convexe functions can be minimized by
the Forward-Backward splitting algorithm.

Problem (3) is equivalentto: 0 € o(f,+/,)(U)
<=>  -V/,U) € af,(U)
<=> U-1tV/[f,(U) € (ld+70f,)(U) ¥V 1>0

<=> U = ([d—I—Tafl)_l(U—Tsz(U))

SN— —_—r S ”

—~r

Backward Forward

—1
([d—l-T 8f1) is the proximal operator of f,

X = (ld+7af,) (Y) <=> X = Argmin, f1<V)=21T\

We use the fixed point algorithm ( Forward-Backward )

f 1
(k+5)
<Uk PE UVt
(k+2)
| Ut = proxy, \U 2)
and the Chambolle's Algorithm for TV-I12 denoising (4)

v-y| (4)

Theorem (Combettesetal. [S]): If 1< Ci where C, 1sthe

2

a minimizer of (3)

lipschitz constant of V f, then U *) defined by (5) converges to

Update of the Lagrange parameter is based on the
method noise S. H.a—Z

|S.E.a—z||2_02)
N
A = 0 :
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FIGURE 7: «Top: restored image (left) and reference (right)
 Middle : method noise and FFT
e Bottom : difference between the reference and the
restored image on the regular grid and FFT

4 N
Method | ACT FAR | AC-S| Tych-S | TV-S
Noise level (ours)
o=1 42,36 | 43,99 |42,28| 42,11 | 43,88
39s | 13mn30s| 2.9s 355 41s
=5 28,27 35,71 | 34,41 34,44 | 35,62
35s | 12Zmn35s| 1.5s 10s 39s
o=10 22,24 | 32,20 | 31,32 31,65 | 32,11
33s | 10mnlls| 1.2s 34s 53s
 ACT : a truncated conjugate gradient with trigonometric polynomials
 FAR : a non-linear regularizer with trigonometric polynomials and local constraints [3]
* AC-S : same as ACT with splines
* Tych-S : linear regularization (we adapted a version of [2]) with splines and CG

\ e TV-S : our algorithm, a non-linear TV regularization with splines /

FIGURE 8 : PSNR and computation time

CONCLUSION

* Results are very close in terms of PSNR to FAR method [3]
which is the best known method at this time and computation
time reduced by a factor of approximatively 20 (Fig. 8)
 Compared to linear regularization Tych-S, results are better
and computation times are of the same order.

* Method noise (Fig. 7) contains much less structure than the
restoration error but could be improved by more
sophisticated data fitting constraints (as in [3])
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