
THE SPLINE APPROXIMATIONTHE SPLINE APPROXIMATION
Spline functions have piecewise polynomial expression 
and compact support. Here the scene u is assumed to be in a 
shift invariant, periodic space spanned by tensorial B-splines
of order 3, as in [2] . 

u x , y =∑k=0

m−1
∑l=0

n−1
ak , l

3 x−k , y−l 

V=span {3x−k , y−l }k ,l

➔ The convolution product in (1) may not belong 
   to a spline space this is why it is projected on V
➔ Evaluation on the irregular grid is a linear operator (S irr.)

u x k , yk 1kN s
= S irr .a

➔ Evaluation on the Regular Grid is also necessary (S reg.)
U = uk , l 0 km, 0ln = Sreg .a

Z k = h∗u xk , yk   nk 1

WHAT IS IRREGULAR SAMPLING ?WHAT IS IRREGULAR SAMPLING ?

h : impulse response
n : i.i.d. gaussian vector

 = {xk , yk }1kN s

The irregularity in the sampling grid may come from :
● microvibrations of the push-broom satellite during acquisition
● superresolution by fusion of multiple aliased views of the 
same scene
● missing pixels

PROJECTION ON A SHIFT PROJECTION ON A SHIFT 
INVARIANT SPACEINVARIANT SPACE

projV h∗u = ∑k ,l ak , l projV h∗3x−k , y−l 
projV h∗3  = Argminv∈V ∥h∗3 −v∥L2 2

Indeed it is sufficient to compute the projection of only one
convolved spline with the Euler-Lagrange equation of (2)

∑i , j
H i , j 〈

3 x−i , y− j  ,3 x−k , y−l 〉

= 〈h∗3 x , y  ,3 x−k , y−l 〉 ,∀k , l 

The associated matrix is circulant, the system is directly
inverted with Fourier transforms since 

FFT H  = FFT 〈h∗3  x , y ,3 x−k , y−l 〉
FFT  〈3x , y  ,3x−k , y−l 〉

= 7 k , l ( direct computation )

∑q , p∈ℤ2  h .∣3∣2q 2
m

, p 2
n e−i. q

2 k
m

p 2 l 
n



By Plancherel's Formula the second scalar product rewrites :

We have good approximation for frequencies in twice the 
Nyquist range : (q,p) in [-m,m[x[-n,n[ (FIG. 5)

Aquisition

: sampling grid

FIGURE 1 :

u                : continuous scene

FIGURE 3 : B-Splines
order 1 to 5

FIGURE 4 : Fourier transforms and summed function FIGURE 5 : Convergence of the truncated sum 

STATE OF THE ARTSTATE OF THE ART
Recent methods use regularized formulations to solve 
the irregular sampling linear problem :

Argminu∈F E u  s.t. ∥ S.u−Z ∥2  N s .
2

where the functional space F may be trigonometric 
polynomials [1,3,4], or integer shift invariant spaces 
(splines) [2].
Non-linear regularizers like Total Variation [4] and 
Frequency Adaptative Regularizers [3] where shown to 
perform better than linear ones like ACT [1], which are 
also used in the spline implementation [2].  

On the other hand spline-based algorithms are much faster 
due to their compactly supported base functions. (Sparse 
operator S ) but the spline implementation [2] cannot deal 
with convolution in addition to sampling.

Function
space

Regularization Convolution Fast

[1] T.P. linear yes +

[3,4] T.P. non-linear yes -

[2] Splines linear no ++

Ours Splines non-linear yes +

FIGURE 2 : Regularization methods in irregular sampling

MOTIVATION OF THIS WORKMOTIVATION OF THIS WORK
● Faster restoration from irregular samples via :

➢ Compactly supported basis functions instead of 
trigonometric polynomials 

➢ Fast Splitting Algorithm
● Extend Arigovindan's work on spline resampling to 
deconvolution and TV regularization

where H i , j  are the coefficients of projV h∗
3
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MINIMIZATION ALGORITHMMINIMIZATION ALGORITHM

is the proximal operator of 

Problem (3) is equivalent to : 0 ∈ ∂ f 1 f 2U 
= −∇ f 2U  ∈ ∂ f 1U 
= U−∇ f 2U  ∈  Id∂ f 1U  ∀ 0
= U =  Id∂ f 1 −1


Backward

U−∇ f 2U 
Forward

Id∂ f 1
−1

f 1

X =  Id∂ f 1 
−1
Y  = X = ArgminV f 1V 

1
2

∥V−Y∥2
4

We use the fixed point algorithm ( Forward-Backward )

{U k1
2  = U k −∇ f 2U

k 

U k1  = proxTV ,U k 1
2


5

and the Chambolle's Algorithm for TV-l2 denoising (4)

Theorem  (Combettes et al. [5]) : If 
2
C2

where C2 is the

lipschitz constant of ∇ f 2 then U k  defined by (5) converges to
a minimizer of (3)

EXPERIMENTS AND RESULTSEXPERIMENTS AND RESULTS

Update of the Lagrange parameter is based on the
method noise 

l1 =  l . e
∥S.H . a−Z∥ 2

N e
−2

TV REGULARIZATIONTV REGULARIZATION

minu TV U  s.t. ∥S irr .H . S reg
−1 .U−Z∥2

 N s .
2

{∇U 1k , l  = {U k1, l −U k , l  if k≠m−1
0 else

∇U 2 k , l  = {U k , l1−U k , l  if l≠n−1
0 else

TV U  = maxS∈ 〈∇U ,S 〉 ={S∈ℝ2m×n / ∥S i , j∥1 ∀ i , j}

Lagrangian form :

TV U 
f 1 U 

 ∥S irr .H . Sreg
−1 .U−Z∥2


f 2 U 

3

∃0 s.t. U minimizes

This sum of two convexe functions can be minimized by 
the Forward-Backward splitting algorithm. 

                  Method
Noise level

ACT FAR AC-S Tych-S TV-S
(ours)

=1 42,36
39s

43,99
13mn30s

42,28
2,9s

42,11
35s

43,88
41s

=5 28,27
35s

35,71
12mn35s

34,41
1,5s

34,44
10s

35,62
39s

=10 22,24
33s

32,20
10mn11s

31,32
1,2s

31,65
34s

32,11
53s

● ACT : a truncated conjugate gradient with trigonometric polynomials
● FAR : a non-linear regularizer with trigonometric polynomials and local constraints [3]
● AC-S : same as ACT with splines
● Tych-S : linear regularization (we adapted a version of [2]) with splines and CG
● TV-S : our algorithm, a non-linear TV regularization with splines

FIGURE 6 : Restored image (size 513x513)=5
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FIGURE 8 : PSNR and computation time 
S.H .a−Z

● Top :      restored image (left) and reference (right) 
● Middle : method noise and FFT  
● Bottom : difference between the reference and the 

   restored image on the regular grid and FFT

● Results are very close in terms of PSNR to FAR method [3] 
which is the best known method at this time and computation 
time reduced by a factor of approximatively 20 (Fig. 8) 
● Compared to linear regularization Tych-S, results are better 
 and computation times are of the same order.
● Method noise (Fig. 7) contains much less structure than the 
restoration error but could be improved by more 
sophisticated data fitting constraints (as in [3])
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CONCLUSIONCONCLUSION

FIGURE 7 :


	Diapo 1
	Diapo 2

